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Abstract

Currently, engineers can only aspire to match nature’s capabilities where
the same control mechanism can scale from one hundred starlings to five
thousand whilst maintaining properties such as cohesion and rapid re-
sponse to predation. These aspirations have led to engineered swarms
that rely on remote or human control to assemble formations, which there-
fore do not require leaders within the network that can communicate using
inter-agent connections. As a consequence, it is primarily in theory where
network leadership is considered, usually through the exploitation of a
standard set of centrality metrics - such as PageRank, degree centrality or
betweenness - ubiquitous across network science.

This dissertation attempts to lay the foundations for large, mobile, multi-
agent swarms through a scalable control approach. This mechanism can
achieve similar capabilities to that of a starling flock but with greater con-
trol over the swarm’s movement. These criteria are met by defining control
rules for the environment, using artificial kinematic fields, rather than for
the individual; enabling agents to join or leave the swarm without a break-
down in cohesion or responsiveness - just like starlings. The functionality
of this method, and the potential for swarm based applications, is demon-
strated through a remote inspection case study. This control approach con-
tributes to our rapidly increasing ability to create networked systems, but
our understanding of how to control such complexity is not advancing as
fast.

The identification of optimal network leaders is a significant step towards
achieving a responsive, controllable, swarm. By not constraining the prob-
lem to a set number of leaders, the solution space - for anything other than
small networks - is too vast to attempt an exhaustive search. The remedy
for this leader selection problem has, so far, eluded researchers. Eigen-
vectors are presented here as key to solving this problem for determining
optimal leadership when considering fast convergence to consensus. The
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semi-analytical algorithms, developed herein, haveO(n3) time complexity
and are found to perform as well as numerical optimisers with significantly
greater complexity, O(n4).

Eigenvectors map the dynamic response of a network where they are found
to expose the most responsive communities that form in the wake of exter-
nal perturbations. Comparisons, of eigenvector-based methods, with in-
formation flow simulations illustrate that analytical models can, in a com-
putationally efficient manner, cast light on the interplay between leader-
ship and topology. Whilst providing a greater understanding of the effec-
tiveness and function of nature’s networked systems, including the vastly
complicated and responsive network of the human brain.
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Chapter 1

Introduction

Edmund Selous, a British ornithologist in the early 20th century, observed a starling
murmuration where many hundreds of birds “turned, wheeled, reversed the order of

their flight, changed in one shimmer from brown to grey, from dark to light, as though

all the individuals composing them had been component parts of one individual or-

ganism”, Selous (1931). This was a remarkable sight but his conclusions, upon wit-
nessing such behaviour, were also remarkable and echoed the well-known statement
from Arthur C. Clarke (1973) that “any suitably advanced technology is indistinguish-

able from magic” . In this case, it was not magic but mental telepathy (“some form of

thought-transfer”) that was deemed the only possible mechanism for achieving such
instant synchronisation. Research into swarms has made significant progress since
then. The synchronicity is still remarkable but more plausible explanations now exist,
which are based on the propagation of agent interactions. However, many open ques-
tions on the precise nature of the mechanisms governing such swarms still need to be
tackled. In particular, the role network topology plays in creating influential individu-
als is not fully understood. This dissertation is built upon these questions but does not
constrain itself to just starlings, with these birds and other natural swarms also serv-
ing as inspiration in the development of control mechanisms for engineered swarms.
The universality of network analysis is then revealed by utilising the tools developed
for identifying influential swarm agents to investigate the most complex of networked
systems: the brain.
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1.1 Natural Swarms

Starlings are a well-known example of coordinated movement, but they are far from
alone. The behaviours that enable starlings to flock are not unique, nor particularly
rare, with all creatures exhibiting similar behaviour to varying degrees, as noted by
Reynolds (1987). Schools of fish are another obvious example where, like starlings,
the swarm provides protection from predation; extending the sensing range of an in-
dividual fish whilst making target selection difficult for the predator. The term coined
by Vicsek and Zafeiris (2012) in their study of such coordinated phenomena is col-
lective motion, where collective behaviour - introduced earlier by Vicsek (2001) - is
inclusive of other examples of synchronisation, such as firefly light displays, and not
just motion. Collective motion has been observed in a host of natural systems in-
cluding macromolecules, bacteria colonies, cells, insects, fish, birds, mammals and
humans. The defining features of collective motion are that agents in the swarm are
fairly homogenous and move with approximately the same absolute velocity. To act
as a swarm these agents must be capable of changing direction in response to fellow
swarm agents, which are within a specific interaction range, to achieve alignment that
is subject to noise.

Swarms are an attractive topic of study for engineers as the collective motion seen in
nature has developed to be flexible, robust, scalable and responsive. Each of which is
a desirable property, although often hard to attain, when designing a system.

Flexibility is marked by a capacity to handle different or changing environments. Şahin
(2004) notes that ants are impressively flexible; acting independently when foraging
but then coordinating when moving food too large to carry individually, while also
being capable of larger scale coordination when forming chain structures to reach or
pull desired objects.

Robustness is the ability to cope with the loss of individual agents, whilst remaining
connected and able to accomplish the desired task. Again starlings are exemplary
is this aspect, where Miller (2010) states that the approximately nearest neighbour
structure - where each starling tracks a set number of its nearest neighbours even as
flock density varies - gives the starling flock a remarkable elasticity. The flock is able
to expand and contract dramatically and rapidly without splitting into disconnected
groups. This set number also means that a starling will select a new neighbour to
monitor if one of its neighbours is lost from view. In fact, Young et al. (2013) found
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that starling flocks maximise robustness by always observing approximately 7 other
flock members.

Scalability is one of the most remarkable aspects of collective motion, as the capacity
to remain cohesive and responsive remains regardless of the number of participants.
Herring are a particularly good example of this seemingly limitless capacity for system
growth, where migrating herring can number in the millions with 17 mile long schools
having been observed by Scheffer (1983).

Responsiveness - a key focus of this dissertation - captures the ability of the swarm
to produce a fast coordinated response to stimulus. It is an essential performance
metric for predator avoiding swarms, where information of incoming attack spread
through the swarm rapidly to enable a coordinated but rapid manoeuvre as noted in
Potts (1984); Treherne and Foster (1981).

1.2 Engineered Swarms

The first work to formally introduce the concept of swarm engineering was by Win-
field et al. (2004) - although the term swarm engineering was first coined a few years
earlier by Kazadi (2000). Winfield et al. highlighted the potential benefits of designing
a distributed system, based upon swarm intelligence, and captured the challenges that
emerge when the decision making and control is distributed across the system. The
challenges include difficulty in predicting behaviour, when so many agents can poten-
tially weild influence, and difficulty in control, if unexpected behaviours do emerge.
The ability to design a swarm, or network, that produces a predictable response and
can have its behaviour influenced, irrespective of its topological complexity, is at the
core of this dissertation’s contribution.

An engineered swarm is a group of autonomously operating robots that, based on their
sensing capabilities and without access to a centralised controller, cooperate to com-
plete a task. Brambilla et al. (2013) divides the different design methods for engineered
swarms into behaviour-based design and automatic design methods.

Behaviour-based design methods focus on all robots implementing local rules, adjust-
ing behaviour based on other members of the swarm, from which emergent swarm
behaviour occurs. One of the most commonly used approaches is that of the finite
state machine design, see Minsky (1967). This provides agents with a finite selection
of possible behaviours that agents choose from based on sensory input. Therefore,
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each agent is in a particular state at any point in time and transitions to a different
state as a consequence of receiving stimulus. Probabilistic transitions are commonly
used to determine when an agent has received enough stimulus to switch state, where
a popular approach is that of the response threshold, developed by Granovetter (1978).
This threshold guarantees that an agent remains in its state when a low stimulus is
present, and ensures it switches state when receiving a large enough stimulus. For a
stimulus that lies between these two options a function defines the probability that an
agent will change its behaviour. De Lope et al. 2013 produced an illustrative paper for
the state-of-the-art in multi-robot systems, where both a response threshold model and
a reinforcement learning approach were shown to be effective in controlling multiple
robots that must select and complete multiple heterogeneous tasks.

The reinforcement learning approach - used by de Lope et al. - also relies on a finite
state machine, but it belongs to the category of automatic design methods alongside
other popular methods such as evolutionary optimisation. Automatic design deter-
mines the final behaviour of the swarm through an autonomous trial and error approach
that attempts to optimise the performance of the swarm. This approach essentially
removes the human designer, providing an optimised performance but at the risk of
creating unexpected and potentially undesired behaviour.

Virtual physics-based design falls into the behaviour-based design category and is of
particular interest in this dissertation as it is the primary approach adopted herein for
controlling swarm motion. The method is based on having every agent represented
as a virtual particle that is influenced by virtual forces with those virtual forces then
translated into the real world through an agent’s propulsion system. In most imple-
mentations the virtual forces are exerted on agents by other agents in the swarm or
by obstacles. An early example of this was the artificial potential field, pioneered by
Khatib (1986), where a single manipulator was guided to a target point by a field of
forces. The position of the target was a source of attraction whilst the obstacles present
had repulsive surfaces associated with them. This control has since been applied in
a swarm context with the most commonly applied function being the Lennard-Jones
potential, introduced by Jones (1924), which approximates the interaction between a
pair of neutral atoms or molecules. In a swarm context, applying this potential to each
agent-pair interaction creates a potential well that maintains the distance between the
agents. The approach detailed in this dissertation takes inspiration from the previous
work by Jones but is a distinct method that defines a vector field for the operating
environment, and will be referred to herein as an Artificial Kinematic Field (AKF).
This method - where agents follow a vector flow just like particles being carried by
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a river’s current - is a deviation from most other virtual physics-based approaches -
where agents are pulled towards an attractive source with obvious analogies to grav-
itational attraction. However, the benefits of both approaches are similar; the control
laws are unaffected by the system’s scale and the motion of agents are governed by
mathematical rules that translate between sensory input and desired actuator output.
These methods also benefit from provable stability, for the resulting agent behaviour,
by using control theory, specifically Lyapunov stability theory. However, where AKFs
excel is in their less disruptive approach to motion, allowing agents to flow around ob-
stacles rather than just be repelled away from them. Therefore, AKFs are of particular
interest when considering an engineered swarm that is able to emulate the smooth and
coordinated motion performed by fish and birds. It should also be noted that the main
challenge is not just achieving coordinated motion, which has been shown using virtual
physics-based design back by Reynolds (1987), but it is having control and influence
over the swarm so that it can be applied to a range of challenging applications.

A plethora of proposals have been put forward for engineered swarm applications.
Mapping is a popular task for swarm robotics where one such example, developed by
Kumar and Sahin (2003), uses a finite state machine approach based on ant foraging
techniques to detect land mines with cooperative robots. Potential fields are also promi-
nent in systems attempting to tackle the real-world; Bruemmer et al. (2002) enabled
robots to detect a spillage and position themselves around the perimeter of the spill with
potential fields acting on each robot. While Penders et al. (2011) developed a robotic
swarm to assist firefighters by utilising artificial potential forces to keep the robots in
contact with the firefighter but away from obstacles. Dangerous environments are an
area where swarm applications have a strong case. The use of robots removes the risk
of harm to humans who would have previously carried out the activity, see Marjovi
et al. (2010) where a finite state machine approach is used to create a fire searching
swarm for operation in an unknown environment. Another situation where humans
may be exposed to risk is that of structural inspection, for example the structure re-
quiring review could be in a radioactively contaminated area or an exposed section on
an offshore oil platform. This is why remote structural inspection is demonstrated in
Chapter 2 using multiple aerial vehicles. Many of these applications are promising but,
to fully unlock the potential of engineered swarms, these systems should be capable of
accommodating a vast number of agents. This is where the emerging field of network
science becomes key as it will allow large systems with changeable topologies to be
understood and controlled.
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1.3 Network Science

For any swarm, natural or engineered, the interactions can be mapped to produce a
networked system where agents share information through these interactions, whether
that be data on position, velocity or any another parameter that can be agreed upon.
Simplifying a swarm to its connections can, by using the tools of graph theory, provide
powerful insights that are often obscured by the system’s complexity.

Network science is a relatively new field, and according to Lewis (2011) a contentious
one. It combines graph theory and control theory with applications across numerous
disciplines. Despite the existence of doubt over its validity as a science, its history can
be traced back to 1735 when graph theory was essentially created and applied to the
Bridges of Königsberg problem (see Alexanderson (2006)) by Leonhard Euler, who
solved how to circumnavigate all seven bridges of Königsberg by only crossing each
once. This first application is an insight into the ubiquity of networks, and hence the
wide applicability of graph theoretical approaches.

The solution to the Bridges of Königsberg problem did not trigger a surge of net-
work science research instead there was a gap of over 200 years before any significant
progress was made. Paul Erdős, in the 1950s, produced papers concentrating on ran-
dom graphs with the notable development of the Erdős-Rényi model - where G(n, p) is
a random graph with n vertices where each possible edge has probability p of existing.
The ability to model random graphs is the basis of many network analysis methods
where comparison with a random graph can reveal order. Modularity - a concept that
will be prominent later in this dissertation - is a prime example of this, where commu-
nities are defined as groups of nodes that are more densely connected than would be
expected in a random graph. The next significant work followed over a decade later
with Stanley Milgram’s development of the small-world concept. Milgram’s work and
then the development of scale-free networks by Barabási and Albert (1999), in the late
1990s, are two of the most wide reaching developments in network science and, as
such, will be discussed in greater detail in the following paragraphs.

The concept of a small-world was introduced by Milgram who created the notion of
six degrees of separation with his US postal experiment. Participants from Nebraska
and Kansas were asked to forward a letter to a person closer to the final destination,
which was Cambridge and Boston, Massachusetts. The person receiving the letter was
instructed to do the same, with the aim being that the letter would eventually find its
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way to Massachusetts at which point Milgram was to be notified. Ignoring the lost let-
ters, the resulting number of hops was on average 5.2 (see Travers and Milgram (1967)
where the hops ranged from 2 to 10) and as a result of some questionable rounding
(plus a film starring Will Smith (1993)) the concept of six degrees of separation was
placed into the public consciousness. Recently, Facebook have updated this average
number of hops for the more connected age we now live in; Edunov et al. (2016) find-
ing an average of 3.57 degrees of separation. Obviously this only applies to those
people who have Facebook accounts but the principle remains the same, that despite
having a huge graph, the diameter - the longest distance between two nodes - remains
startlingly small. This is a phenomenon seen in many organically developed networks,
such as brain networks - see Bassett and Bullmore (2006) - where this structure tends
to minimise wiring costs while supporting high dynamical complexity.

Another significant topological discovery is that of scale-free networks, where the dis-
tribution of connections is highly non-random with the curve following a power law.
This law defines the probability that a node has exactly k links with the following equa-
tion: P(k) ∼ k−γ where γ is a parameter that defines the connection distribution with
scale-free networks most often characterised by 2 < γ < 3 (see Barabási and Albert
(1999) for examples). Hence, most of a network’s nodes have a low number of con-
nections whilst a small selection are very well connected. Barabási (2009) summarises
the discovery of scale-free networks where the initial work focused on how both the
interlinked pages of the world wide web (WWW) and then the interconnected hard-
ware of the internet, which supports the WWW, are both topologically scale-free. This
topology has been rigorously examined, revealing a number of interesting properties;
Pastor-Satorras and Vespignani (2001) found that viruses can spread easily in scale-
free networks. Albert et al. (2000) noted that this topology is highly vulnerable to
targeted attacks but Cohen et al. (2000) found that they are, at the same time, resistant
to random node deletion.

1.3.1 Network Leadership

Although not focused on either the small-world or scale-free properties of networks,
this dissertation does consider the role of network topology and hence inevitably crosses
paths with these two most universal of examples in network science literature. The
primary focus on networks, detailed herein, is that of optimal leader detection i.e. un-
covering which nodes if perturbed will achieve the fastest convergence of the whole
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network to a new state of consensus. Returning to Edmund Selous, our perplexed or-
nithologist, who observed - correctly this time - that starlings could not possibly have
a single leader or employ sentinels. These were popular theories, at that time, for ex-
plaining the coordinated motion, where sentinels were proposed as birds whose job it
was to detect danger and tell the rest of the flock. We now know that consensus can be
achieved despite the absence of a central authority, but that does not mean every node
leverages the same amount of influence. Often there are instigators of transition that,
although not designated as leaders, have the connections to spread information effec-
tively and in essence lead the network in that moment. Much of this dissertation is
dedicated to the detection of these effective influencers in the network, a task that has
only been briefly addressed before now with most other research focused on problems
such as the minimum number of leaders required to fully control a system, see Liu
et al. (2011), or leader selection for optimising other metrics such as network robust-
ness, observability and controllability with notable works by Liu et al. (2011); Lozano
et al. (2008); Ni et al. (2013); Rahmani et al. (2009). Another common approach is to
consider an engineered system with a designated leader that the other agents follow,
such as in Ying et al. (2014) work on undirected networks that examined how quickly
each node could guide the rest of the network to a new state of consensus. Ying found
that a node’s ability to lead fast consensus was correlated with its degree. This dis-
sertation goes further in considering directed networks where the ratio of indegree and
outdegree - number of incoming connections versus number of outgoing connections -
proves to be a crucial factor.

In nature, swarm leaders are chosen for a variety of reasons and are not necessarily
those best placed in the network to lead. Attanasi et al. (2015) and Herbert-Read et al.
(2015) observed that starlings on the edge of the flock will trigger predator avoidance
as they will detect the predator first. These leaders may be more likely to be at the
edge of the flock but the randomness of the predator attack means that the leaders in
a starling swarm are not necessarily those that will achieve the fastest response. For
an engineered system, leaders can be selected that are best placed within a network to
achieve optimal convergence speed to consensus. For small networks, where there are
a limited and computable number of options, this is a simple enough problem to solve
numerically. However, as the network grows the combinatorial nature of the problem
results in a rapid increase of the possible options and, hence, the solution space.

The final aspect of leadership that bears consideration is that in practice it comes in
many forms. A variety of leadership styles are employed by people who usually select
their style with the aim of achieving a desired performance from their team. Therefore
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it is worth considering whether a leadership approach can be selected to optimise a net-
work’s response in systems aiming for consensus. While starlings function well with
what appears to be a flat leadership structure (egalitarian) there are still indications
from nature that there are benefits to be found in varying, if not the style of leadership,
the hierarchy of those in the network. Nagy et al. (2010) found that homing pigeons
not only determine their spatial positions but weight their neighbour monitoring based
on a well-defined hierarchy. The authors go on to suggest that such a hierarchy, where
pigeons pay more and less attention to others based on their seniority within the group,
produces a more efficient flock than would be achieved with an egalitarian leadership
structure. As will become clear when progressing through this dissertation, it is invari-
ably a two way street, nature can inspire and prompt effective design but in attempting
to optimise an engineered solution we can often shine a light back on nature’s design
revealing the mechanisms that make for a scalable and responsive system.

1.4 Aims and Objectives

This dissertation concerns itself with systems that have no central controller and where
there is limited communication between agents, i.e. agents are not able to communicate
with all other members of the network at the same time (all-to-all communication). The
main objectives of this work fall under three observations on naturally existing systems
and are as follows:

� Natural swarms display remarkable scalability:

– Produce a framework that could support a scalable, autonomous, engi-
neered swarms.

� Large schools and flocks maintain their ability to respond and avoid predators:

– Discover what makes agents in a network more influential and what role
topology plays in creating these influential leaders.

– Find out how to identify these agents in any given network.

– Uncover effective topologies for creating a highly responsive system.

� Networks are ubiquitous:

– Can the lessons learnt from highly responsive swarming systems be applied
to other responsive networks?
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1.5 Dissertation Map

Chapter 2 will introduce a method for controlling scalable engineered swarms by
using artificial kinematic vector fields combined and collision avoidance
manoeuvres. This scheme is validated through tests in a laboratory envi-
ronment using multiple quadcopters. A case study is presented to highlight
a future application for such a system.

Chapter 3 considers how to achieve a fast network response from a network by iden-
tifying and influencing effective leaders. Semi-analytical algorithms are
developed herein to define a perturbation that maximises a system’s con-
vergence speed to consensus. The algorithms rely on the influence of the
first left eigenvector of the Laplacian matrix, where the eigenvector is a
known metric for a node’s ability to spread information. The effectiveness
of autocratic leadership in improving the speed of the system’s response
is also studied. Finally, the dynamic response and leadership selection in
the more complex case of variable outdegree networks is considered. A
simple but effective method, that is again dependent on a system’s eigen-
vectors, is developed. This chapter includes a number of proofs, with the
algorithms developed also supported by simulations and toy examples.

Chapter 4 focuses on the large scale and highly responsive networks of brain connec-
tomes. The methods developed in the previous chapter for swarm control
are now applied in the analysis of a network. Analysis is undertaken on
a number of directed animal brain networks. The results produced are
then compared with previous studies that have numerically modelled the
information flow in brain networks. These studies validate the results and
highlight that useful insights, previously inaccessible via traditional graph
theory approaches, can be gained by taking a perturbation driven consen-
sus approach. Finishing with a demonstration of the analytical capabilities
developed through a study of large human connectomes.

1.5.1 Contributions to Knowledge

� Developing, applying and testing a vector field approach for multiple aerial ve-
hicles.
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In particular, the creation of a novel, distributed and scalable control scheme that
could accommodate a large engineered swarm.

– Created a scalable control scheme using an artificial kinematic field. (Sec-
tion 2.1)

– Applied this scheme in a laboratory environment with multiple quadcopters.
(Section 2.4)

– Part of the novelty lies in the less disruptive vehicle avoidance mechanism,
which was also demonstrated in a laboratory environment. (Section 2.1.1)

� Using a perturbation driven consensus approach to create optimal leader selec-
tion methods, but also demonstrating its applicability in the analysis of existing
network systems by revealing new insights.

– Created effective and efficient algorithms that can find the optimal pertur-
bation distribution in constant outdegree networks, and hence identify the
effective leader(s). (Section 3.2.2)

– Highlighted when the first left eigenvector is an effective map of node influ-
ence but also discovered topologies for which it is not accurate at predicting
influence. (Section 3.2.4)

– Revealed how starlings facilitate fast response to predator attack by re-
lying on a limited number of topologically determined interations. (Sec-
tion 3.2.6)

– Proved that for a complete graph autocratic leadership will always produce
a faster convergence rate to consensus than egalitarian leadership, in the
absence of noise. (Section 3.3)

– Developed an effective and novel approach to community detection and
leader selection for variable outdegree networks. (Section 3.4)

– Demonstrated the effectiveness of analytical graph theoretic approaches on
connectome analysis through comparison with results reliant on numerical
methods. (Section 4.1 & 4.2)

– Performed eigenvector-based analysis of human brain networks, identify-
ing influential pathways in the brain that were used to distinguish between
subjects. (Section 4.3)
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Chapter 2

Scalable Swarm

The goal of engineering a swarm is to produce an autonomously operating system
that can accommodate additional agents without having to alter its control scheme. It
is this capacity for scaling that may well form the foundation of future autonomous
swarms, where leadership and control become more challenging issues with the poten-
tial for vast size and complexity. To begin our journey towards such lofty ambitions,
it is wise to take a first step with a simpler and more constrained system. As a result,
this chapter will concentrate on circling; this is a common swarm behaviour with its
continuous looping pattern often observed in natural swarming systems, where indi-
viduals can remain in motion but the swarm’s position is essentially static. One of the
most familiar examples is performed by schooling fish, often as a response to preda-
tor attack. Bumann et al. (1997) demonstrated that there is a significantly higher risk
to fish leading a school and therefore an obvious solution for a fish, upon finding it-
self in a leading position, is to follow the tail of the group. This results in a circling
motion that achieves a more even spread of predation risk amongst members of the
school. Circling is a behaviour that is far from exclusive to predator response and can
be displayed by far simpler organisms such as bacterial colonies. These colonies have
ring shaped trajectories, as noted in Vicsek (2001) where Fig. 2.1 was sourced and dis-
plays a single rotating droplet containing the Paenibacillus vortex bacteria alongside
the corresponding velocity field.

A final case of circling in nature is an illustrative example of the potential for undesir-
able behaviour in complex swarming systems. Army ants display a circling behaviour
that can result in the death of all the ants involved. This ant mill, or death spiral,
is usually a consequence of a group of blind army ants becoming disconnected from
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Chapter 2 Scalable Swarm

Figure 2.1: Rotating droplet of Paenibacillus
vortex bacteria. (a) photo of droplet (b) velocity
field representing bacteria motion. Figure re-
produced from a paper by Czirók et al. (1996).

the rest of the swarm. If these discon-
nected ants begin to follow the splinter
group’s own pheromone trail a circling
pattern is formed, much like schooling
fish, but, unlike the fish, the ants have
no way to escape. A consequence of
the ants’ blindness is a complete re-
liance on pheromones for navigation
and without a disruption to the cir-
cling pattern they will eventually die
from exhaustion, as noted by Beebe
(1921), when he recorded a 350 m di-
ameter spiral. Such examples moti-
vate engineers to design systems that
are not susceptible to unexpected and
undesired behaviour.

The deterministic control scheme de-
veloped in this chapter shall not look
too dissimilar from that shown in
Fig. 2.1 (b), which is in contrast to
most other multi-vehicle coordination
work where precise control of every
agent is employed. This includes
the impressive displays at the General
Robotics, Automation, Sensing & Per-
ception (GRASP) laboratory, Univer-

sity of Pennsylvania, (see Fig. 2.2) by KMel Robotics with their video, A Swarm of

Nano Quadrotors (2012), that has, at the time of writing, been seen over 8.38 million
times. Kushleyev et al. (2013) explains how their control scheme operated, stating that
it relies on intermediate waypoints to guide the vehicles to their target, with the control
decentralised to a certain extent by splitting the swarm into groups that follow a given
waypoint. This is a step towards a fully distributed system, but would not satisfy the
aim of this dissertation for a fully autonomous and distributed control scheme.

A prominent approach to swarm control is to calculate many possible trajectories, then
asses the collision risk of each before optimisation routines reduce the options and
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Chapter 2 Scalable Swarm

Figure 2.2: KMel Robotics quadrotor swarm display, image produced by KMel Robotics
(2012).

make a final selection. An example of this control scheme is detailed in Shanmu-
gavel et al. (2010) where cooperative path planning is undertaken to ensure that all
vehicles arrive at their target simultaneously. These methods can be effective when
given a small enough swarm or a large amount of computing resources but the vector
field approach, proposed in this chapter, is a computationally light and scalable control
scheme for multiple unmanned aerial vehicles (UAVs). It is designed for implementa-
tion in a distributed manner but like the Kushleyev et al. (2013) swarm it is not fully
decentralised as the distributed scheme is implemented in a laboratory environment.
A central controller is, therefore, setup to simulate multiple decentralised agents with
access to localisation information.

Decentralised control is achievable by using a vector field (often referred to as a Lya-
punov vector field), which is a virtual physics-based method built from analytical func-
tions that create a guidance law. Artificial potential functions (APFs) were mentioned
in Section 1.2 as a popular and similar virtual physics-based design method, with this
form of control extensively researched and successfully demonstrated for real-world
applications. One such example is Leonard et al. (2007) where a fleet of underwa-
ter gliders were controlled with APFs, by attaching an attractive potential to virtual
leaders (bodies) that have trajectories generated centrally before being broadcast to the
gliders.

To progress beyond this APF based work, a control scheme is desired that is more
representative of what can be seen in nature. Therefore, a method is needed that does
not depend on the calculation of waypoints or trajectories for virtual leaders but still
facilitates smooth, non-disrupted, motion. This chapter shall focus on defining the
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agents’ response to their position within an environment using vector fields. The work
presented does not progress to the point of considering unknown environments but a
control scheme will be applied that enables a circling swarm behaviour that can be
demonstrated in a laboratory setting. To meet these criteria APF methods come close,
but a potentially less disruptive approach is that of Artificial Kinematic Fields (AKFs).
AKFs are defined herein to be a vector field that is created without considering an
associated potential function. Frew et al. (2008) demonstrated that a vector field could
produce a stable convergence to a continuous circling trajectory, referred to as a limit
cycle. One such method for achieving a limit cycle is a Hopf bifurcation, where a local
bifurcation about a fixed point of a dynamical system generates a limit cycle. A simple
Hopf bifurcation, defined by Bennet and McInnes (2009), for an x-y coordinate frame
is:

ẋ = µx+ y− x(x2 + y2) (2.1)

ẏ =−x+µy− y(x2 + y2) (2.2)

where these equations produce a circling limit cycle behaviour. Frew et al. (2008)
and Lawrence et al. (2008) considered the control of UAVs as an application of vector
fields with limit cycles. Both of these works consider a more constrained flight control
case, by using fixed wing aircraft instead of quadcopters, and also did not progress to
real-world testing where noise and disturbances affect the effectiveness of kinematic
field control.

Bennet and McInnes (2009) proved that the Hopf bifurcation is linearly stable, with
the term ż = −αz included for maintaining the vehicle’s altitude. This stability was
proven by investigating the eigenvalues for the Jacobian matrix of the system, where
for µ < 0 and α > 0 a linearly stable spiral forms and for µ > 0 a bifurcation occurs
with an oscillatory limit cycle appearing. Note, the radius of the limit cycle grows
larger as µ is increased. Lyapunov second theorem was then employed by Bennet to
demonstrate that nonlinear stability was also present. Bennet defined the Lyapunov
function, L, as L = 1

2 ∑i x2
i , which results in dL

dt = ∑i[ρ
2
i (µ−ρ2

i )−αz2
i ] where ρ is the

radial position. From this it could be seen that for µ > 0 and α > 0, L̇> 0 if ρ2
i < µ and

L̇ < 0 if ρ2
i > µ . Therefore, the system is attracted to a limit cycle of radius, ρi = µ ,

in the x-y plane.

Frew et al. (2008), Lawrence et al. (2008), and Bennet and McInnes (2009) form the
foundation of what is developed in this chapter, where the main challenges concern
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adapting theoretical control mechanisms for application and incorporating a suitable
vehicle collision avoidance mechanism.

2.1 Kinematic Field Definition

The kinematic field is defined in the horizontal plane with the swarm driven to circle
around the origin of the global reference frame. The fundamental structure of the
field is a modified version of the Hopf bifurcation function from Bennet and McInnes
(2009), which was introduced previously. This function allows the radius at which
circling takes place to be defined in an x-y plane, where x and y are distances from the
centre of the field, as

ẋ = co
1(y+µx)−Rx

√
x2 + y2 (2.3)

ẏ = co
1(−x+µy)−Ry

√
x2 + y2 (2.4)

where R defines the radius of the limit cycle trajectory, co
1 is a constant, ẋ and ẏ are

desired velocities, and µ is a dimensionless scalar parameter that was discussed in the
previous section.

The benefit of writing the Hopf bifurcation in the form shown in eqs. 2.3 and 2.4 is
that µ can be defined as follows

µ =
R2

co
1

(2.5)

to guarantee a circular trajectory of radius R around the centre. This can be verified
by transforming eqs. (2.3) and (2.4) into polar coordinates (r,θ) and showing that the
radial velocity is always null at a distance R from the centre

(
R = r =

√
x2 + y2

)
.

ẋ = co
1(y+µx)−R2x = co

1y (2.6)

ẏ = co
1(−x+µy)−R2y =−co

1x (2.7)

ṙ = ẋ cosθ − ẏ sinθ

= co
1 (y cosθ − x sinθ)

= co
1 (R sinθ cosθ −R cosθ sinθ) (2.8)

ṙ = 0 . (2.9)

It can also be easily verified that, along the circular trajectory, the tangential velocity
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(vθ ) is constant

vθ = r θ̇ =−ẋ sinθ − ẏ cosθ

=−co
1 (y sinθ + x cosθ)

=−co
1 R(sin2

θ + cos2
θ) (2.10)

ṙ =−co
1 R . (2.11)

In theory a vehicle starting at any point in the field will fall into a limit cycle, see eq.
2.3. In practise momentum gathered by a vehicle beginning outside the limit cycle
may result in it overshooting and possibly passing straight over the central point. This
is addressed here by the addition of a function that provides a stronger control action
close to the central point, while effectively leaving the characteristics of the field, pro-
duced from eqs. (2.3) and (2.4), unaltered. This function is a radial field in the form
1/(1+

√
x2 + y2), which increases the repulsion from the centre while decreasing the

attraction at large distances, thus making approaching manoeuvres smoother and pre-
venting overshoots in the direction of the central point. The resulting field is described
by

ẋ =
c2

cU +
√

x2 + y2

[
co

1(y+µx)−Rx
√

x2 + y2
]

(2.12)

ẏ =
c2

cU +
√

x2 + y2

[
co

1(−x+µy)−Ry
√

x2 + y2
]

(2.13)

where c2 is a constant used to scale the whole expression as appropriate to fit its output
within the control architecture and cU is a unitary constant with dimensions in metres.
The constant c2 performs a scaling function for all the vectors in the field, but if it is
negative then the vehicles will be repelled from the desired radius rather than attracted.
In the next section, c1 is introduced to replace co

1 where it will influence the rotation
of the field and enable collision avoidance manoeuvres. The values for the constants
used in this work were found empirically, for use with the Parrot AR.Drone 2.0 (2015)
in the laboratory environment as will be discussed in Section 2.2, but importantly do
not need to be varied when more than one drone is used. For reference, the values are
co

1 = 3×105 m2, c2 = 1.5×10−7 m−1s−1 and R = 1.2 m.

In Fig. 2.3 the field produced from eqs. (2.3) & (2.4) where streamlines starting at the
edge of the plot have the largest vectors. In Fig. 2.4 the field produced from eqs. (2.12)
& (2.13) is shown where it can be seen that streamlines have a similar vector magnitude
and point towards the limit cycle. The streamlines exist in an ideal simulated scenario,
but the field in Fig. 2.4 has better protection against vehicles attempting to pass over
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the central point as well as a reduced gradient for agents travelling in from outside the
limit cycle.

Figure 2.3: Hopf Bifurcation vector
field with streamlines as defined in eqs.
(2.3) and (2.4).

Figure 2.4: Hopf Bifurcation vector
field with streamlines as defined in eqs.
(2.12) and (2.13).

2.1.1 Vehicle Collision Avoidance

A popular way to perform collision avoidance, in multi-agent systems, is a form of
APF where there is a mutual repulsive potential associated with each agent, see for
example Bennet and McInnes (2009); Leonard and Fiorelli (2001); McCamish et al.
(2010); Vasile et al. (2011). This way each agent alters the kinematic field by producing
a short-range repulsive action on the other agents. This is an efficient but crude mech-
anism for performing collision avoidance as the trajectories generated only consider
collision prevention. This creates the possibility that the APF can prevent or reverse
the agents from proceeding in their desired direction, which may have a detrimental
effect on system performance. Instead of an APF, a less disruptive approach will be
introduced that blends well with the global kinematic field by altering an agent’s field
when collision avoidance is necessary.

The novel approach, to vehicle collision avoidance that is presented in this section,
modifies a vehicle’s kinematic field when it approaches another vehicle, thereby re-
ducing the magnitude of the field’s rotating component. In order to be effective only
the trailing vehicle (with respect to the direction of the field’s rotation) is inhibited.
Identification of this vehicle is achieved by considering the scalar product of the rela-
tive position vector with the desired velocity vector. Fig. 2.5 depicts a collision avoid-
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1

2

Figure 2.5: Scheme for avoidance manoeuvre, based on the direction of travel, with mul-
tiple quadcopters.

ance scenario for two quadcopters with a binary variable, h, defined on the basis of the
following scalar product

Vdes1 ·P2−1 ≥ 0→ h = 1 (2.14)

Vdes1 ·P2−1 < 0→ h = 0 (2.15)

where P2−1 is the position vector of vehicle 2 with respect to vehicle 1 in the global
reference frame and Vdes1 is the desired velocity vector, as defined by the kinematic
field, for vehicle 1. This enables the kinematic field to be modified asymmetrically -
i.e. only the trailing vehicle, where h = 1, is affected.

The desired velocity of vehicle 1, as calculated in eqs. (2.12) and (2.13), is filtered
to create the asymmetrically modified kinematic field. This asymmetry is achieved by
replacing the constant co

1 with the following function:

c1 = hH co
1− (1−h)co

1 (2.16)

where H is dimensionless and scales the rotational component of the field as a function
of P2−1 and co

1 is a constant. Eq. 2.16, given that h is either 0 or 1, essentially represents
a binary choice between H co

1 when h = 1 and co
1 when h = 0. This change does not

affect the radial velocity at distance R from the target centre, which remains null, with
the calculation of µ in eq. (2.5) updated with c1.

This asymmetrically modified field only occurs when vehicles are in close proximity.
The H term that governs this proximity enables a threshold distance between two ve-
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hicles to be defined, whereby passing this point results in a switch of direction for the
rotational component of the global kinematic field, affecting that drone, as depicted
in Fig. 2.6. The modified field enables station keeping, relative to the leading vehicle
and at the defined distance from the target, until the leading vehicle moves on. The
function used is in the form

H =
|P2−1|−ρ

||P2−1|−ρ|
+

ρ−|P2−1|
|ρ−|P2−1||

e−
(|P2−1|−ρ)2

cs (2.17)

where ρ defines the threshold distance between vehicles and cs is an empirically sought
scaling factor that influences the gradient of the function (cs = 15× 104 m2). The
value of cs may require adjustment, for example to ensure collision avoidance while
operating in a more turbulent environment where the vehicles may deviate further from
the path defined by the kinematic field. Fig. 2.6 details how the scaling of the kinematic
field’s rotational component affects the modified global field for one vehicle. This
figure highlights that H equals 0 at the threshold distance (ρ = 1000 mm), which was
chosen as a result of tests in the laboratory environment where turbulence was able to

Figure 2.6: Centre: H according to (2.17) where ρ = 1000mm and cs = 15× 104 m2.
Side: Instantaneous snapshots from above the modified kinematic field (centred on the
target with streamlines displaying flow in the field) at different values of H; rotating clock-
wise (1), reduced rotational field strength as H → 0 (2), clockwise with reduced (3) and
increased strength (4).
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dominate the vehicle’s motion when the inter-vehicle distance was less than a metre.
The rotational component of the kinematic field is shown in Fig. 2.6 to act in opposite
directions either side of this threshold distance. Each vehicle only considers the closest
vehicle ahead of it when modifying its kinematic field and in the case that one vehicle
holds its position, all of the following vehicles will form a queue along the circular
trajectory.

Any final implementation of this system would require the ability to bypass agents
that become stranded due to malfunction. Therefore, an alteration to the kinematic
field is proposed whereby the radius of the limit cycle shall be increased as the inter-
vehicle distance reduces. In effect, this allows the following vehicle to pass around the
stationary one and then return to the usual radius of the limit cycle. Such an approach
was not feasible given the limited size of the laboratory used (see the following section)
but this would be a useful progression for a more robust system.

2.2 Hardware and Setup

To demonstrate the proposed control scheme, a series of laboratory trials were carried
out using multiple aerial vehicles. These vehicles are commercially available quad-
copters, Parrot AR.Drones 2.0 (see Parrot (2015) for further details), with the following
capabilities:

� Embedded 720p, 30 fps, camera that has a 92◦ wide angled lens, which produces
JPEG compressed images.

– A rolling shutter is used that can result in significant motion blur.

� Lithium-Ion Polymer (1,000 mAh) battery provides 10–12 minutes of flight
time.

� Four-rotor helicopter, or quadcopter, with a wingspan of 517 mm, see Fig. 2.7.

� Four brushless 28,500 RPM motors with long blades of radius 98.5 mm.

� Capable of transmitting status and configuration information - including battery
charge, control state (landed, flying etc.), attitude and speed estimation.

� Video is recorded onto an on-board USB memory storage device.

22



Chapter 2 Scalable Swarm

The system tests carried out were all performed at the University of Strathclyde, in
collaboration with the Centre for Ultrasonic Engineering:

� Vehicles are tracked from above by a six camera Vicon MX motion capture sys-
tem, developed by Vicon (2015) and displayed in Fig. 2.8.

– Positional tracking coverage is provided for a volume of approximately
6×3×3 m, refered to from here on as the test volume.

– 6 degrees of freedom information for an estimated error of less than±3 mm
throughout the test volume, see Dobie et al. (2013).

– Vehicles are identified by a unique pattern of three or more spherical (14
mm diameter) markers, see Fig. 2.7, that reflect infrared light and are af-
fixed to the frame.

� Vehicles controlled through a computer interface connected over a 65Mbps,
IEEE 802.11n (Wi-Fi), network.

– Positional information is passed over the wireless network at 100 Hz to the
computer that implements a distributed controller for each vehicle.

2.3 Guidance and Control

The software architecture is built upon open source code, developed in C# by Bal-
anukhin (2013), to control a solitary Parrot AR.Drone that was then adapted to com-
mand multiple vehicles through a Graphical User Interface (GUI). The control scheme

Figure 2.7: Parrot AR.Drone 2.0 with 7
reflective markers.

Figure 2.8: Vicon tracking system en-
vironment.
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was centralised to one computer, but emulates the operations of an autonomous and
distributed system whilst alleviating the quadcopters of the control algorithms compu-
tational load. The software architecture is depicted in Fig. 2.9; programme capabilities
include autonomous and manual control of the vehicles while displaying the status
and navigation data through the GUI. In this work, a maximum of three vehicles are
used, but the architecture is designed to accommodate far larger numbers. Fig. 2.9
shows that the distributed controller and GUI have their command outputs processed
by the Command Sender before being passed onto the vehicles. This allows manual
commands to be passed to the vehicles while they are in autonomous flight; enabling,
for example, the initiation of video recording or a switch from autonomous mode into
manual flight control. The Command Sender passes on commands at 30 Hz to each ve-
hicle, as recommended in the Parrot developer guide Piskorski et al. (2012), to ensure
smooth flight. The commands, including yaw rate, vertical velocity, pitch and roll an-
gle, are transformed to 32-bit integers according to the IEEE754 standard before being
transformed to an ASCII string and passed on to the vehicle control software through
a User Datagram Protocol (UDP) port.

A kinematic field provides a highly nonlinear guidance law, which is a function of
the vehicle’s position with respect to a central target, that is mapped to the control
action through a linear controller. This arrangement generates smooth trajectories for
the vehicles, with the control architecture illustrated in Fig. 2.10. The desktop com-
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Figure 2.9: Software architecture for the control of multiple vehicles.
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Figure 2.10: Control architecture scheme for one vehicle (dotted line indicates wireless
data transfer; dashed line indicates causal effect).

puter is provided with the vehicle’s own position and the relative positions of the other
vehicles by the Vicon system. Based on this information, the local kinematic field
of each vehicle is computed to produce the desired velocities in the horizontal plane
of the external reference frame (i.e. the flight volume). These desired velocities are
then converted to the vehicle centred (local) reference frame, before they are passed to
a linear controller. This controller provides the pitch and roll angles to the on-board
controller with desired yaw and vertical speeds also supplied. This in turn commands
the motors to execute the requested manoeuvre. The control scheme is designed to
be highly scalable if the vehicles have sufficient on-board processing capabilities and
position tracking. The on-board processing is limited, for the vehicles used in the
following work (Parrot AR.Drone 2.0), with the control handled, in a distributed man-
ner, by a central processor. The specifics of this scheme are outlined in the following
paragraphs.

2.3.1 Altitude Control

A proportional controller is implemented to control the altitude of the vehicles, which
operates in conjunction with the quadcopter’s on-board, ultrasound dependant, altitude
controller. The output of the proportional controller is converted from the global to
the body reference frame as shown in Fig. 2.10. The requirements for altitude control
were simple with the vehicle decreasing its height by a set interval after target coverage
was complete at the current altitude, allowing a simple z-axis waypoint to be used in
conjunction with this controller to transition to different altitudes. To determine if
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complete coverage has been achieved at any given altitude, each vehicle has to have
knowledge of where the vehicle ahead of it started on the current coverage altitude.
This knowledge would allow the trailing vehicle to reach that starting point before
transitioning to another altitude. In this way the control scheme remains easily scalable
with collision avoidance and coverage determination requiring each vehicle to only
observe the one ahead of it.

2.3.2 Attitude Control

For a typical quadcopter, pitch and roll angles are coupled with the forward and lateral
motion respectively. This design enables forward or side force components to be pro-
duced by tilting the vehicle. When no forward or side movements are commanded, the
vehicle hovers and in this phase the attitude is controlled in closed loop by the on-board
controller only. This is overridden by control commands when altering the yaw angle,
which is controlled in the same closed loop manner as the altitude. For the inspection
task, discussed in the following case study, the attitude controller keeps the vehicle’s
x-axis pointing in the direction of the target whilst the quadcopter manoeuvres around
it. This is a requirement as the Parrot AR.Drone has a rigidly held front facing camera.
As a consequence, the desired azimuth changes with position. This is defined as

ψdes(i) = atan2(yi,xi)±π (2.18)

where xi and yi are the coordinates of the vehicle in the global reference frame that is
centred on the target and atan2(yi,xi) is similar to calculating the arctangent of yi/xi,
except that the signs of both arguments are used to determine the quadrant of the result
in the range [−π ,π]. To set the desired vehicle angle towards the centre of the field
±π is applied to ensure the result remains within the range [−π ,π]. The error in the
actual angle is then mapped to an angular rate through a linear controller that selects
the shortest rotation direction to reach the desired angle.

2.3.3 Linear Control

The linear controller maps the desired velocity of each vehicle to commanded pitch
and roll angles. The desired velocity vector is decomposed along its forward and lat-
eral components in the body reference frame and these are scaled by a proportional
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controller. The result is then filtered to output in the range [−1,1], required for the
AR.Drone on-board software, by using the hyperbolic tangent function

γ
∗ = tanh(γ) (2.19)

where γ is the vector of the controlled variables (including the roll angle ϕ , pitch angle
ϑ , vertical velocity vz and yaw rate ψ ) and γ∗ is the normalised output.

A proportional controller is used to map from desired forward and lateral velocities
according to the kinematic field, vertical velocity and azimuth angle to commanded
pitch angle, roll angle, vertical velocity and yaw rate. The controller is expressed by

ϑ

ϕ

vz
ψ

=


cϑ vdes(x)
cϕvdes(y)

cz(Zdes− z)
cψ(ψdes−ψ)

 (2.20)

where, vdes(x) and vdes(y) are the forward and lateral velocities in the body reference
frame produced by the kinematic field, ψdes is the desired azimuth angle that varies
with time, ψ is the actual one, and cϑ , cϕ , cz, cψ are the gains of the proportional
controller. The values of the gains were sought empirically and specifically to achieve
smooth dynamics with the Parrot AR.Drones with cϑ = 0.7 sm−1, cϕ = 0.7 sm−1,
cz = 1 s−1 and cψ = 1.5 used. The difference in the gains defined are a result of the
quadcopter design with similar control movements resulting in the same gains for cϑ

and cϕ .

2.4 Performance

The focus of the AKF approach is to generate smooth trajectories automatically. This
field then enables autonomous flight for multiple vehicles simultaneously. However,
the trajectory errors shall provide context for the restriction of the current approach
and the progress that can be made in future work.

2.4.1 Trajectory Errors

A circling flight, where the vehicle is required to complete five orbits around a central
object, starts at 1.5 m altitude and descends 0.3 m after each orbit, finishing at 0.3 m
altitude. This approach helps to quantify the effect that ground proximity has on flight
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errors with this trajectory directly applicable to the case study that will be discussed
shortly.

The standard deviation of the error for each band is detailed in Table 2.1 where the
errors in height position indicate that flights at lower altitude were more susceptible to
error (the error ellipsoids are visualised later in this chapter in Fig. 2.15). It is assumed
that the ground effect - downwash from the quadcopter blades - is responsible for the
larger errors with a more turbulent flight environment present when flying close to
the floor. A similar trend can be seen in the radial error for one vehicle but in the

Table 2.1: Standard Deviation of Positional Error from Multiple (1 & 2 Vehicle) Drum
Inspection Flights

Nominal Height [mm] 1500 1200 900 600 300
1 Vehicle: Mean of radial error

134 168 202 219 197
Standard Deviation [mm]

1 Vehicle: Mean of height error
20 65 65 65 89

Standard Deviation [mm]

2 Vehicles: Mean of radial error
205 167 201 160 206

Standard Deviation [mm]

2 Vehicles: Mean of height error
38 67 75 85 104

Standard Deviation [mm]

two-vehicle case this trend is not obvious, which is probably a result of increased air
turbulence resulting in noisier data.

The large radial error in the two-vehicle case, at height 1500 mm, is likely due to the
lack of control on the starting positions of the drones combined with the increased
turbulence when compared with a solitary drone. The plot in Fig. 2.11 supports this
claim with the initial positions seen to be offset from the radial path and the control
method unable to prevent overshoot when attempting to maintain a radial distance.
It also appears that, in this case at least, the time to complete an orbit decreases as
the vehicles descend to lower altitudes with this fast coverage again likely to be a
consequence of the ground effect, a common aerodynamic phenomenon.

2.4.2 Control Improvements

More precise positional control, than has been presented here, is possible with way-
point based trajectories, but a reduced level of precision is accepted to enable a dis-
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Figure 2.11: Representative flight data from one vehicle during a two-vehicle flight with
the altitude transitions marked above the plot.

tributed and more scalable system. That is not to say that the errors cannot be reduced
as the proportional (P) controller, described in Section 2.3, can be substituted with a
proportional and derivative (PD) controller to enhance the control performance and, in
particular, reduce the overshoot. Currently the vehicles fly at a relatively low speed,
which allows the desired pitch and roll to be commanded sufficiently with only the
AKF-defined velocity (see Eq. 2.20) rather than its difference with respect to the ac-
tual velocity. The introduction of a PD controller would instead consider the error in
velocity in the horizontal plane and its derivative. The error along the vertical axis and
the yaw angle could also be controlled by a more straightforward PD controller.

2.4.3 Collision Avoidance

The collision avoidance mechanism is required even when only two-vehicles are flying
in the test volume; the variable starting positions and turbulent flight environment can,
within such a limited space, result in vehicle-vehicle collisions. The collision avoid-
ance can be used to form a queue of vehicles, as displayed in Fig. 2.12; when the lead-
ing vehicle remains stationary, the other vehicles will attempt to remain at a threshold
distance from one and other. In nominal operation the collision avoidance will have a
reduced influence from the queuing scenario, where the approaching vehicle will slow
or stop briefly before resuming normal operation when the inter-vehicle distance grows
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Figure 2.12: Testing collision avoidance; two
vehicles queuing behind the shell of another.

sufficiently large.

In Fig. 2.13, a sample of the an-
gular velocity of the trailing vehicle
(determined from the angular position
as recorded by Vicon during a two-
vehicle flight) is compared with the
collision avoidance function H, see
Fig. 2.6. It can be seen that there is a
delay between command and execution
but it is also clear that the rotational
component of the vehicle’s velocity de-
creases and begins rotating in the oppo-
site direction in the places where the H

falls below zero.

Figure 2.13: Comparison of flight data with collision avoidance function.
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2.5 Case study: Remote Structural Inspection

The proposed kinematic field based control scheme was demonstrated with an appli-
cation of an engineered swarm; remote structural inspection. This application employs
autonomously or remotely controlled vehicles to inspect structural assets such as tanks,
flare stacks, chimneys, and wind turbines. In this particular case, aerial vehicles (quad-
copters) are used to autonomously and visually asses the state of a structure. Examples
of visual structural inspection, that use aerial vehicles, include Fraundorfer (2015) who
presented a 3D reconstruction of a building’s facade from aerial imaging, while Ortiz
et al. (2014) demonstrated an autonomous approach to the visual inspection of metallic
vessels to identify coating breakdown, corrosion, and cracks. Remote inspection has
also received interest from Khanna et al. (2015) in reviewing agricultural fields and
from Remondino et al. (2011) in recording sights of archaeological interest.

2.5.1 Inspection Setup

For this case study an inspection of a nuclear intermediate level waste (ILW) storage
drum was undertaken, see Fig. 2.14. The drum is a waste packaging and encapsulation
plant liquor drum, from the Sellafield nuclear reprocessing site and constructed from
316 Stainless Steel, that has a diameter of 800 mm and a height of 1200 mm. The test
volume allows for the drum to be circled by the Parrot AR.Drones, but the number of

Figure 2.14: Three vehicles circling the ILW storage drum in the tracking environment.
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vehicles used was restricted due to the volume constraints with the inspections carried
out by two vehicles.

The Parrot AR.Drones are equipped with an ultrasound sensor for performing on-board
height stabilisation control. Only two frequencies are available for the ultrasound,
therefore a three-vehicle system in close proximity, although tested in the test volume
and capable of operating, is prone to disruptive ultrasonic sensor interference. Even in
a two vehicle scenario, the variation in starting conditions and the limited test volume
for the two vehicles often results in some, usually minor, collision avoidance being
required.

To complete the inspection, two vehicles takeoff and then enter autonomous flight; ris-
ing above the top of the drum to the first coverage band at a height of 1.5 m. Coverage
is achieved by using coverage bands, as mentioned in Section 2.3.1, whereby each ve-
hicle registers the position of the vehicle ahead and once all the vehicles have reached
their registered position they transition to another band to repeat the process. For this
case each band was separated by 30 cm with the vehicles landing after completing
the final band at a height of 30 cm above the floor. Each band took 10-15 seconds
to complete with five bands used for the drum inspection, with the bands and drum
shown in Fig. 2.15 where the error ellipsoids relate to the positional errors presented
in Section 2.4.1.

The visual inspection is carried out by the 720p HD camera, rigidly incorporated into
the AR.Drone’s main structure, with in-flight video recorded onto an on-board USB
memory storage device. This device is then removed and the footage processed after

Figure 2.15: Mean error flight ellipsoids at the five coverage bands for one vehicle com-
pleting the drum inspection.
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the flight.

2.5.2 Three-Dimensional Model Construction

The inspection can be completed using the aforementioned control methods but the
collected data needs to be processed before reviewing the structural state of the target.
An intuitive method for displaying visual inspection data is to map it into a three-
dimensional (3D) space to allow a reviewer to explore an object to check for faults
and failures. Photogrammetry analysis can enable the creation of a 3D model from
the inspection images, providing an estimation of the geometry as well as a reviewable
environment. This model construction shall be briefly described to give context to the
challenges of using a swarm for such an application.

State-of-the-art image-based reconstruction systems derive markers or features from
the texture information present in the images and by triangulating markers, creating
point clouds corresponding to the geometry of the scene. This method is attractive
when dealing with remote environments and has been previously investigated in the
literature El Kahi et al. (2011); Hansen et al. (2013); Harris and Stephens (1988); Shi
and Tomasi (1994). In particular for robotic inspection Dobie et al. (2013) but also for
archaeological work Brutto and Meli (2012); Kersten and Lindstaedt (2012), where the
reconstruction tools were the same as those adopted in this work. The system detailed
here uses this reconstruction method to enable a remote inspection that then provides
data review in a similar manner to an in-person inspection.

2.5.2.1 Photogrammetry

The recorded video footage is processed to enable the creation of a 3D model using
photogrammetry analysis carried out by Autodesk’s 123D Catch software Autodesk
(2015). The challenges included selecting frames from the video recorded that were
clear and detailed present with the footage prone to suffering from motion blur. These
frames then had to be corrected for the distortion caused by the lens of the Parrot
AR.Drone 2.0. A calibration was carried out, as described by Azad et al. (2008), that
enables objects that appear curved because of the lens distortion to be straightened
to more accurately represent their real shape. Fig. 2.16 (a) shows a vehicle-recorded
image and (b) is the post-processed output, where some of the image at the borders of
(a) has been lost in the distortion correction process.
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(a) (b)

Figure 2.16: (a) Image from inspection footage and (b) distortion corrected image.

A 3D surface-meshed model of the drum’s lid and side is created as a product of the
image matching and stitching with the recorded images mapped to the 3D mesh point
cloud. The final textured CAD model, seen in Fig. 2.17, was made possible by manual
input during the stitching process, where points could be selected that appeared in at
least three images. The manual inputs and artificial markers had an influence on the
final model by ensuring there were no gaps in the model construction and to prevent
image placement errors that could produce significant but localised errors.

2.5.3 Improvements & Automation

To inspect a large outdoor structure, such as a chimney, the Parrot AR.Drones could be
replaced by commercial grade inspection vehicles such as the Falcon 8 from Ascending

Technologies (2015) and the Vicon MX positioning system could be replaced by GPS
or for improved accuracy, the work of Misra and Enge (2006) on differential GPS.

Figure 2.17: Generated 3D model produced from two-vehicle flight footage.
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Pose uncertainty would increase when comparing a GPS tracking system with that
of Vicon, but the control scheme can be adapted to compensate, with the collision
avoidance threshold distance increased as well as increasing the safety margin on the
set distance to target.

2D-2D feature correspondence data was added manually to aid the reconstruction pro-
cess used in 123D Catch. This step was necessary due to the low texture associated
with the target, which in turn was compounded by the compression used by the on-
board camera. A fully automated system could be realised through modifications to
the hardware and algorithms with a possible version of such a system presented in
Fig. 2.18. It is envisioned that this system would carry on generating trajectories until
making an autonomous decision on whether coverage was complete, with target cov-
erage requirements being manually inputted before the flight. The use of wireless data
transfer and a higher resolution imager, with some form of image stabilisation, would
enable full automation of the model generation process. Errors in the final model could
also be reduced by automatically combining localisation information to ensure the ac-
curacy of image location prior to image stitching. Finally, a combination of automated
and manual inspection of the final data would probably be necessary to complete the
inspection.

Auto.
Trajectory
Generation

Launch Vehicles

Define Coverage

Inspection
& Image

Collection

Complete
target

coverage?

Land
Vehicles

Download
Images

Auto.
Model

Generation

Data Analysis

no

yes

Figure 2.18: Flowchart of a feasible fully automated version of the system. Green requires
user input, red is autonomously executed and blue is a decision process.

2.6 Summary

A scalable and autonomous control scheme has been presented for creating a circling
swarm behaviour. The proposed technique benefits from the relative simplicity of the
control scheme as the trajectory does not have to be re-evaluated if the vehicle diverts
from the planned course or requires another process to return the vehicle to the initial
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path before continuing. The key and novel aspects of this distributable and scalable
control are to be found in the vehicle and target collision avoidance developments. The
scheme has been implemented for three vehicles, where the collision avoidance was
tested with the vehicles forming a queue while maintaining their defined distance from
the target, and validated through a remote inspection case study where two-vehicles
performed an autonomous inspection on a nuclear ILW storage drum. The results
achieved highlight the potential for autonomous trajectory generation that, in theory
and in the absence of spatial constraints, could be increased in scale whilst still pro-
ducing a similar performance to the smaller systems demonstrated in this chapter. The
technological constraints, highlighted and discussed in this chapter, are not the only
stumbling blocks to realising a vast swarming system. Our understanding of how to
identify or create agents, which can effectively lead the whole system, is also in need
of advancement.
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Responsive Swarms

The previous chapter established a mechanism for creating a large engineered swarm
that could approximate the performance and scale of natural swarming systems. In-
creasing scale without a rigid structure leads to a more complex system that in turn
opens the door to unexpected behaviour and complete failure. An excellent example
of a complex system behaving unexpectedly is the development of a neural network
- an autonomous behaviour design approach - based Artificial Intelligence (AI) for
playing the Super Smash Bros. video game by Firoiu et al. (2017). Neural network
AIs operate like a black box with designers not fully aware of the reason decisions
are made, but they often prove effective as in this case where the AI played and beat
ten of the world’s top ranked players (ranked between 16th and 70th). However, and
this is of vital importance when considering an engineered system, the lack of system
understanding can lead to failure despite a good performance in nominal conditions.
In this case, if the opposition player remain crouched at the side of the battle area for a
long enough the AI would “behave very oddly, refusing to attack and eventually KO-
ing itself by falling off the other side of the stage”. While the ramifications of a video
game character falling to their demise are minimal, a real world robotic system could
pose a more substantial threat if it were to behave erratically. The removal of the black
box of control is, therefore, essential.

When considering a swarming system, the product of agent interactions could lead to
unexpected behaviours and would represent a black box if uninvestigated. This chapter
endeavours to understand how these interactions can lead to consensus by using graph
theoretic tools to see past the obscuring tangle of connections and reveal how nodes
are influenced by the state of others in the network.

37



Chapter 3 Responsive Swarms

3.1 Graph Theory

This chapter will lean heavily on the definitions and tools of graph theory with this
section serving as a brief introduction to some of the more pertinent aspects. Graphs
come in many forms but an important distinction, for this work, is that of directed and
undirected graphs. An undirected graph is defined as G = (V,E), where there is a set
of V nodes and E edges, which are unordered pairs of elements of V i.e. the connection
between two nodes can be traversed in either direction. A directed graph has a similar
definition but the edges are ordered pair of elements of V . The undirected graph can be
considered to be a special case of the directed graph, where an edge (i, j)∈ E denotes a
connection between agent i and agent j. The undirected graph edge (i, j) corresponds
in the directed graph to edges (i, j) and ( j, i). Graph theory allows for self edges
(i, j) ∈ E , but these shall not be considered in the work detailed here.

The degree of a node is defined, for an undirected graph, as the number of edges
connected to that node. For directed graphs, indegree and outdegree are the terms used;
indegree - number of connections entering a node, outdegree - number of connections
leaving a node.

A path is a sequence of edges in a graph. That is, there are connections that connect
the node at the start of the path to the one at the end. A subset of paths are cycles,
where the same node is at the start and end of the path. An important definition is that
of connectedness for undirected graphs, where they are connected if there is a path
between every pair of nodes. Directed graphs, on the other hand, can either be strongly
or weakly connected. To be strongly connected there has to be a sequence of nodes that
are connected with each edge directed in the same direction. To be weakly connected
there only has to be a sequence of nodes connected by edges where the direction of
the edges does not matter. Another similar concept, which is neccessary for consensus
(see Lemma 3.1), is spanning trees. A spanning tree occurs when every node in V
can be reached by a single node. For the undirected case, the existence of a spanning
tree means the graph is connected and vice versa. For the directed case, a spanning
tree is only evidence of a weakly connected graph and, therefore, does not guarantee
strong connectedness. A specific case for a directed graph is an arborescence (or rooted
directed spanning tree) where there is a root node that has only outgoing connections
with all other network nodes only having one parent. A parent node is defined here
as a node that has an outgoing connection to any number of child nodes. A directed
spanning tree does not require its root node to have no incoming connections, nor
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are the other nodes required to have only one parent but the arborescence exists as a
subgraph (V′,E′) of (V,E) of this tree.

The adjacency matrix, A, is a square N×N matrix when representing a graph of N

nodes. This matrix captures the network’s connections where ai j > 0 (ai j is the i j

entry of the graph adjacency matrix) if there exists a directed edge from node i to j

and 0 otherwise. Variable edge weights contain information on the relative strength
of interactions, whilst uniform edge weighting either only represent the presence of a
connection or is a result of all the edges having the same information carrying capacity.
For an undirected graph, the adjacency matrix is symmetric with an edge (i, j) ∈ E
resulting in ai j = a ji > 0.

The Laplacian matrix is composed of the adjacency matrix and the degree matrix, D,
as

L = D−A

where the degree matrix is a diagonal matrix where the ith diagonal element is the out-
degree of node i, which is equivalent to summing the elements of row i of A. This
makes L diagonally dominant, as the off-diagonal elements are nonpositive and the di-
agonal elements nonnegative. The Laplacian has many useful properties that emanate
from the fact the row sum is always zero. For instance, this row sum property assures
that there is at least one zero eigenvalue of L that is associated with a connected compo-
nent of the graph. In the case where there is more than one zero eigenvalue, the number
of zero eigenvalues represent the number of connected components of the graph. Dhal
et al. (2014) notes that the dominant eigenvalue (zero eigenvalue in this case) is real
and, for a strongly connected graph, has an algebraic multiplicity of 1 (referred to as a
simple eigenvalue). When there is a single zero eigenvalue there is only one compo-
nent, known as the giant component. For directed graphs the situation is slightly more
complicated where a giant component will always be present in strongly connected
graphs. A giant component may also be present for weakly connected graphs but it is
not guaranteed; for example, at least two graph components will be present in a weakly
connected graph with two nodes that have no outdegree.

Gershgorin’s disc theorem can be used to understand the position of the non-zero
eigenvalues. This theorem can be used to show that the Laplacian matrix is posi-
tive semidefinite, i.e. all the matrix eigenvalues are nonnegative. When plotted with
real and imaginary axes every eigenvalue of a complex, square matrix lie within the
Gershgorin discs. Each disc is associated with a row of the square matrix and has a
radius, Ri = ∑ j 6=i |ai j|, that is equal to the sum of the absolute value of the off-diagonal
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elements. The centre of each disc is the diagonal element of the row, therefore there
will be N discs for an N×N matrix. Since the diagonal elements of a Laplacian ma-
trix are invariable nonnegative, then none of the Gershgorin discs are centred in the
negative real part of the plane. Now consider that the sum of the off-diagonal ele-
ments is never greater in magnitude than the diagonal element, this prevents this disc
from ever crossing into the negative real plane. Therefore all the eigenvalues must
be nonnegative and for −L all the eigenvalues are nonpositive, which is a necessary
condition for a stable system. It is also possible to say that, in the undirected case,
λ1 = 0≥ λ2 ≥ λi ≥ ...≥ λN where λi is the ith smallest eigenvalue of L. The smallest,
non-zero eigenvalue, is the algebraic connectivity (λ2) that quantifies the convergence
rate of consensus for a system. Directed graphs are similar but there can be com-
plex eigenvalues - that occur in conjugate pairs - therefore it can only be said that
IR(λ1) = 0 ≥ IR(λ2) ≥ IR(λi) ≥ ... ≥ IR(λN). In the directed case the smallest non-
zero eigenvalue, λ2, continues to capture the convergence rate to consensus, with this
metric vital to the majority of work to follow where consensus, and the nodes most
effective at influencing it, shall be explored.

3.1.1 Consensus

Consensus is a process that begins with every agent having an initial value, which dif-
fers from some or all of the other agents in the network or from a target value. When
successful a system converges to one value for all agents, by exchanging informa-
tion with neighbours in an attempt to minimise the difference between their values.
The consensus process is fundamental to many networked systems and has been in-
vestigated in relation to flocks and swarms, applied in distributed computing and in
algorithms like PageRank, see Page et al. (1999). In the case of flocking, Jadbabaie
et al. (2003) applied consensus analysis to explain the emergence of alignment in a
simple flocking model developed by Vicsek et al. (1995).

As mentioned in the previous section, the negated Laplacian provides a stable system
with the collective dynamics of linear consensus expressed as

ẋ =−Lx , (3.1)

which Murray (2003) proved will guarantee that consensus is reached asymptotically
when the graph is connected. Writing this consensus protocol in another way, by
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looking at it from the point of agent interactions, as

ẋi =
N

∑
j=1

ai j(x j− xi) (3.2)

reveals how the Laplacian matrix captures the averaging process conducted by agents
to achieve consensus.

3.1.2 Perturbation Driven Consensus

Perturbation driven consensus is a critical aspect of design for a multi-agent system
that is required to respond rapidly to external stimuli. It also appears to be a slightly
neglected topic of study, as most similar work has concentrated on the effectiveness of
selected leaders rather than applying a variable perturbation to one or many agents in
the network. The networks considered herein have N agents connected via local com-
munication with a static, time-invariant, topology. This is represented with a directed
graph G = (V,E), that is at least weakly connected with one giant component. A uni-
form signal u = u[1,1, · · · ,1]ᵀ∈ IRN is supplied to all agents with different positive
gains ci, where i = 1,2, ...,N. The dynamics of this system are defined as

ẋi =
N

∑
j=1

ai j(x j− xi)+ ci(u− xi) (3.3)

where xi is the state of the ith agent and u is the scalar target value that all agents must
achieve. The resource allocation, ci, ranges from 0 to 1, where ∑i ci = 1, and scales the
comparison between the uniform input signal, u, and the current state xi.

The global dynamics of the network can be expressed as

ẋ =−Lx+C(u−x) (3.4)

where C is the perturbation matrix, C = diag(c) = diag(c1, ...,cP). Spanning trees,
highlighted previously as vital for consensus, have been explored by Jadbabaie et al.
(2003); Mesbahi and Egerstedt (2010); Shao et al. (2015) who produced the following
lemma.

Lemma 3.1. For a directed network G defined by Eq. (3.4), consensus could be achieved
if G contains a directed spanning tree, that is, a graph that does not contain a directed
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cycle and there exists a vertex u such that for any w ∈ V , there exists a directed path
from u to w.

The essence of Lemma 3.1 implies that for a directed network, the sufficient condition
for achievement of consensus is that each agent is reachable from the input u through
a directed path.

Eq. (3.3) can then be transformed to

ẋ =−(L+C)x+Cu . (3.5)

Consider the following coordinate change

v = x− (L+C)−1Cu. (3.6)

Applying this affine transformation to Eq. (3.5) will remove the Cu term with the model
becoming

v̇ =−(L+C)v . (3.7)

Punzo (2013) demonstrated that for the system (−L−C) the perturbation would be
non-singular; always producing a stable response, with the eigenvalues remaining neg-
ative. The non-singular property being necessary to satisfy (L+C)−1 in Eq. (3.6).
There would be no zero eigenvalue as (−L−C) is Hurwitz with Punzo (2013) proving
this for when the diagonal perturbation C = diag(c) has nonnegative entries c as long
as < c,v >6= 0 where v is the first left eigenvector of L (the eigenvector associated with
the smallest eigenvalue in magnitude). This stipulation essentially ensures that all i

nodes without an outdegree are supplied with a perturbation resource, ci 6= 0, other-
wise the perturbation would have no effect. The conclusion of this work was that a
perturbation supplied to a node that is the root of a spanning tree, i.e. globally observ-
able, will influence all of its child nodes and eventually result, in the absence of noise,
in a graph reaching consensus.

3.2 Constant Outdegree Networks

The networks considered in this section are constrained to be k-outdegree (constant
outdegree). A similar network structure is often seen in nature with starlings and
schooling fish, which are found to have network connections that form according to
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topological rather than metric distance, see Ballerini et al. (2008). Such a topological
rule would therefore seem suitable and implementable for a scalable robotic system
where each robot could be instructed to monitor k neighbours.

The constant outdegree constraint also produces useful mathematical properties, such
as a uniform first right eigenvector (FRE). For a given system - the outdegree of node A
represents node A following node B’s state, and the indegree represents node B moni-
toring node A’s state - the first left eigenvector (FLE) can be colloquially described as
a ranking metric in terms of a nodes influence in the network. High ranking nodes, ac-
cording to the FLE, are those that collate information from across the network. While
the FRE could be seen as ranking a nodes influenceability, i.e. how easy it is for oth-
ers in the network to influence that particular node. High ranking nodes, according
to the FRE, are those who receive information from sources across the network. The
constant outdegree, and associated uniform FRE, means that all nodes have the same
influenceability but this does not mean that all nodes will be equally effective network
leaders. It does, however, mean that analysis relying on only the left eigenvector can be
an effective strategy for detecting optimal network leaders. This would not necessarily
be the case if outdegree values varied enough to cause some nodes to receive far less
information and, as a result, become harder to lead to a new consensus state.

The adjacency matrix was previously introduced, see Section 3.1, but shall now be
more specifically defined for the k-outdegree case to be ai j = 1/k if there exists a
directed edge from node i to j, and 0 otherwise. Each row of the adjacency matrix
will, therefore, have the same sum total,

∑
j

ai j = 1 ∀ i, j ∈ V. (3.8)

3.2.1 Consensus Speed Limit

A definition for the theoretical upper bound for convergence rate to consensus (often
referred to herein as consensus speed), for a perturbation driven system, is defined
in this section. The upper bound is defined for graphs irrespective of whether that
bound can be achieved through an optimal perturbation. It is worth mentioning that
throughout this dissertation the notation (.)i is used to indicate an element of the vector
(.) whenever the vector’s notation already includes a subscript or the vector is the result
of an operation indicated in the brackets.
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Theorem 3.1. Let L be the Laplacian of a connected, directed graph with outdegree of
k for all nodes (k-outdegree) and C = diag([c1, ...,cP ]) be the diagonal perturbation
matrix consisting of non-negative entries, where ∑i ci = 1. Then, the limits for the
smallest eigenvalue of the perturbed Laplacian system, S =−L−C, is

−maxi((vL1)i)< λS1 < 0 (3.9)

where (vL1)i ∀ i ∈ V is an element of the FLE of L with (vL1)i ≥ 0.

Theorem 3.1 can be proved as follows:

Proof. The first left eigenvector of S, vS1, is defined as vᵀS1S = λS1vᵀS1 from which the
dominant eigenvalue can be found, when ∑i(vS1)i = 1, to be

λS1 = ∑
i
(λS1vᵀS1)i = ∑

i
(vᵀS1S)i . (3.10)

Since L is a Laplacian matrix, ∑i(v
ᵀ
S1L)i = 0, the diagonal perturbation matrix, C, can

be substituted into Eq. (3.10) as

λS1 = ∑
i
(vᵀS1S)i =−∑

i
(vᵀS1C)i =−∑

i
(vS1)ici . (3.11)

The maximum dominant eigenvalue can then be defined as

max(λS1) = max(−∑
i
(vS1)ici) =−maxi((vS1)i×1) . (3.12)

Defining max(λS1) = −maxi((vS1)i) is rather trivial when considering the ∑i ci = 1
constraint, whereby max(λS1) = 1×−maxi((vS1)i). In the case where e elements of
vS1 are equal to maxi((vS1)i), then ci = 1/e for those i corresponding to maxi((vS1)i)

and 0 elsewhere.

An equation that approximates the shift, δλ1, in a distinct eigenvalue of a generic
square matrix for small perturbations is defined by Deif (1995) as

δλS1 ≈
vᵀL1 δS rL1

vᵀL1rL1
=−

vᵀL1C rL1

vᵀL1rL1
=

vᵀL1 SrL1

vᵀL1rL1
, (3.13)

since vᵀL1L = 0 and where vL1 and rL1 are the left and right eigenvectors respectively
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of L corresponding to the eigenvalue, λL1. Given that

λS1 =
vᵀS1 SrS

vᵀS1rS
(3.14)

and δλS1 = λS1−λL1 = λS1 it can be seen, with reference to Eq. (3.13), that vS1 ≈ vL1

and rS1 ≈ rL1 for small perturbations.

For larger perturbations, Eq. (3.13) is no longer valid with vS1 6= vL1 and rS1 6= rL1.
Consider that

vᵀL1L = λL1vᵀL1 = 0

and
(vᵀL1S)i = (vᵀL1L)i = 0 (3.15)

for i where ci = 0. Now consider that

(vᵀS1S)i = (λS1vᵀS1)i < 0 (3.16)

as long as i is a globally reachable node.

The optimal perturbation, ci = 1/e, was implicitly defined in Eq. (3.12) for e nodes
whose eigenvector entry, (vS1)i, equals maxi((vS1)i). Comparing eqs. 3.15 and 3.16
it can be seen that (vS1)i > (vL1)i, where ci = 0. Due to the ∑i (vL1)i = ∑i (vS1)i = 1
constraint, it follows that for this optimal perturbation scenario (vS1)i < (vL1)i for i cor-
responding to ci = 1/e. Hence, the limit for the magnitude of the smallest eigenvalue
of the perturbed Laplacian is maxi((vL1)i) and is approached when (vS1)i→ (vL1)i.

3.2.2 Leadership Selection Algorithms

The allocation of leadership in networks is a continuing field of research, where brute
force searches can guarantee good results but become computationally challenging for
large networks. Most work in this area has focused on the leader-follower scenario,
usually by selecting a set number of nodes as leadership candidates. Ying et al. (2014)
took such an approach by developing a consensus centrality metric with the aim of
achieving fast consensus driven by a leader. Degree centrality can be taken as a rough
guide to leadership selection with Ying et al. (2014) also highlighting its potential
as a leader selection metric. The work presented in this dissertation is not directly
comparable with works similar to Ying et al. (2014) that are concerned with selecting
a set number of leaders, but it is more applicable to a variety of real-world problems
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where influence can be targeted in a variable manner.

The work of Punzo et al. (2016) on resource allocation is directly comparable to the
problem considered here, where they demonstrated that the FLE of the Laplacian ma-
trix is a good strategy for allocating variable resources, in certain cases, for leading a
network to consensus. However, Punzo et al. (2016) also noted that a numerical opti-
miser, using sequential quadratic programming methods with an active-set algorithm,
see MathWorks (2015a), is able to consistently uncover better allocations. The main
drawback of using such an optimiser is the expansion of the search space, since it is de-
pendent on the network size. This results in O(N) operations that calculate the matrix
eigenvalue, at a cost of O(N3) according to Stewart (2000), producing a total run time
of O(N4). Two semi-analytical strategies shall be presented, for graphs composed of
a single component, that have reduced computational run times but can produce simi-
lar results to fully numerical attempts. Firstly, the Power Optimisation approach - for
when all the nodes in the graph can be led effectively by a few central nodes - and
then the Communities of Influence method - for when the graph is connected but there
exists groups of isolated nodes that require local leaders to achieve a fast network-wide
response. The method is referred to as communities as it finds the community that re-
spond to these local leaders that exert a strong local influence but not necessarily any
significant global network influence.

3.2.3 Power Optimisation

The Power Optimisation (Power Opt) strategy is a newly developed semi-analytical
approach that focuses resources on the most effective leaders by raising the FLE to
some power, p, according to

c =
vp

L1

∑i (vL1)i
p (3.17)

where c is the resource allocation vector, vL1 is the first left eigenvector of the Lapla-
cian matrix and vL1

p an element-wise operation. Eq. (3.17) maximises λS1 by locally
changing p in IR. When p→ 0 the resource allocation, c, approaches a uniform vec-
tor state. The Power Opt method iteratively reduces the resources to less influential
nodes while increasing those assigned to the most prominent, as p is increased while
maintaining ∑i ci = 1, until the convergence rate stops increasing. For a large value of
p, ci > 0 for any nodes that have an eigenvector entry vL1i ≈ maxi((vL1)i) and ci ≈ 0
for all others. An iterative search along the line can reveal a large enough p to achieve
these values for ci and maximise the convergence rate to consensus. For networks,
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where a close approach to this upper limit is not possible, the search space appears
to always be convex with a single maximum occurring between the low and high p

values. An iterative line search is again employed to solve for these networks, which is
then followed by the bisection method (see Kaw et al. (2008) for details) when increas-
ing the p value further would result in a reduction of the convergence rate. The search
space of the Power Opt method is dependent on the power, p, and does not grow with
an increasing number of nodes, N. Hence, the eigenvalue calculation is the dominant
process resulting in O(N3) complexity for the Power Opt method. This is obviously
an improvement on the O(N4) resulting from the purely numerical process.

In Fig. 3.1 the 75 nodes of an Erdős-Rényi random network, where each node has an
outdegree of 5, is displayed as a geometrical interpretation with each point’s coordi-
nates defined by the three most dominant left eigenvectors, associated with the three
smallest eigenvalues in magnitude of the Laplacian. A similar network visualisation
has been used for the networks in the KONECT database produced by Kunegis (2016),
but these were not used for any analytical purpose. The leadership resource selection
is defined by the numerical optimiser that applies a sequential quadratic programming
method ∗. Comparing the node sequence selected by the numerical approach with the
first left eigenvector (FLE) indicates that the FLE is an effective indicator of influence
for this graph. The results of this comparison in Fig. 3.1 showed that for this network
the numerical approach selected 14 nodes to be supplied with resources, these 14 were
the 14 top ranked nodes as determined by the FLE. It was, however, not a perfect match
with a couple of deviations in the order of the most influential nodes, with the 3rd &
4th nodes swapping places and the 10th,12th & 13th changing order. The node ranking
according to the FLE (vL1) is a close approximation of the ranking according to the nu-
merical allocation for the graphs investigated. This similarity is the basis of the Power
Optimisation’s effectiveness as it just varies the resource allocation and not the node
sequence. This shall be shown to not always be the case when the presence of multiple
distinct communities creates multiple significant modes of system response, with vL2

and vL3 also becoming relevant to the optimal system response.

3.2.3.1 Results

The consensus speed limit, introduced in section 3.2.1, is not used for comparison
in most of the following analyses as, in many cases, the upper speed limit is far in
excess of what can actually be achieved. Only in certain topological conditions does

∗implemented with the fmincon algorithm in MATLAB by MathWorks (2015a).
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Figure 3.1: 75 node, 5 outdegree, random network where the numerically optimised lead-
ership resource selection is represented with circled nodes (the diameter of each corre-
sponds to the resources allocated); (a) vL1 and vL2 are the first and second left eigenvector
of the network, (b) includes vL3 and (c) represents the network where green lines mark
bi-directional connections and grey are uni-directional.
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Figure 3.2: Consensus speed ratio with respect to maxi((vL1)i) for various resource allo-
cation vectors over a range of outdegrees in a 50 node k-NNR network.

an optimal benchmark match the result of the upper limit, see Fig. 3.2. Hence the
validity of Power Opt method was supported through comparisons with a numerical
optimiser, described in Section 3.2.2, that is used in this dissertation to represent the
optimal benchmark. In reality, the optimiser cannot guarantee optimality as it may find
a locally optimal solution but given the size of the networks used it should be similar
to the globally optimal result.

As stated in Theorem 3.1, the unobtainable limit for the smallest eigenvalue in mag-
nitude of the perturbed, negated, Laplacian is equal to the largest element of the FLE,
maxi((vL1)i). The results in Fig. 3.2 approach this consensus speed limit at high out-
degrees for a 50 node network, where nodes have been randomly distributed in a plane
before applying k-Nearest Neighbour (k-NNR) connection rules for a range of outde-
grees. The consensus speeds for the numerical and Power Opt approaches are seen
to converge with, but never exceed, the maxi((vL1)i), achieving better results than the
unmodified FLE that was used as a good leadership allocation by Punzo et al. (2016).

Fig. 3.2 demonstrates that the Power Opt method can be effective. In this case it ap-
pears to match the numerical result for most of the outdegrees tested and as the outde-
gree increases the convergence speed achieved approaches the theoretical maximum.
The Power Opt is, therefore, effective for this network but the main benefit lies in its
efficiency, which is significantly better than the numerical optimiser. Table 3.1 details
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the worst case run times (asymptotic complexity) alongside trend lines for actual run
time - assessed from runs with a 1000 node, k = 10, k-NNR network - with the coef-
ficient of determination, R2, displayed to show the accuracy of the trend line fit. This
shows the efficiency of Power Opt with the trend for the numerical optimiser well over
an order of magnitude higher than it is for the Power Opt.

Table 3.1: Algorithm run time comparison for n nodes.

Algorithm Asymptotic
Complexity

Actual
Trend [s] R2

Numerical O(n4) 5×10−7n3.51 0.998

Power Opt O(n3) 1×10−5n2.06 0.982

The Power Opt method does not always match the numerical optimiser in Fig. 3.2 (see
outdegree 5, 10, 30 and 31). The reason for this sub-optimal performance is captured in
the following section. Networks are revealed to sometimes contain multiple influential
communities and the Power Opt method is seen to perform best when only a single
prominent community is present.

3.2.4 Communities of Influence

Well-connected networks, such as graphs where all nodes have a high outdegree, are
unlikely to have groups of nodes that are significantly isolated from the network as a
whole. For lower outdegree graphs, where due to the k-NNR topology edges connect
primarily to local proximity nodes, groups can form that have a high local clustering
but with few paths connecting these clustered nodes to the rest of the graph. This
emergence of local hubs is especially common with k-Nearest Neighbour (k-NNR)
topologies, where nodes connect to a set number of other nodes that are nearest to
them (unlike distance based connection metrics there is no threshold on the maximum
distance of a connection just a set number of outgoing connections). High and low out-
degree, in the context of this work and specifically for k-NNR graphs, is defined based
on the community structure that results. By displaying the network, in Fig 3.3, as a
geometrical interpretation, with each point represented by the second and third most
dominant eigenvectors, the difference between low outdegree, where multiple commu-
nities form, and high outdegree, where there is no longer a clear community structure,
can be seen. The FLE is not used in this depiction as all elements are positive and,
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therefore, the community structure is less clear than using the following eigenvectors
that include positive and negative values. For the cases shown in Fig 3.3, the boundary
between high and low outdegree is not clear but k ≥ 14 would be referred to as high
outdegree with a more homogenous distribution of nodes, while for k = 5 there is a
clear structure with lines of nodes that are indicative of multiple communities. This
structure can also be seen to a lesser extent in k = 8 and 11; why this indicates the
presence of distinct communities is the subject of further discussion in Section 3.4.
Before that, it is worth considering established community detection metrics.
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Figure 3.3: Geometrical interpretation of a 200 node, k-NNR, network with outdegree (k).
vL2 and vL3 represent the 2nd and 3rd most dominant left eigenvectors.

Leicht and Newman (2008) developed a community detection algorithm that, for di-
rected networks, maximises a modularity function, which takes into account edge di-
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rection, for any number of possible divisions in a network (discussed later). The com-
munities detected with the Leicht-Newman method shall be referred from hereon - as
they were by Leicht and Newman, and for the sake of clarity - as modules. For high
outdegree k-NNR networks, fewer non-overlapping modules are found (e.g. 2 modules
for a 100 node k-NNR network with an outdegree of 50) than in lower outdegree sce-
narios where many modules are present (e.g. 10 modules for 100 node network with
an outdegree of 5), as is displayed in Fig. 3.4.

Modularity

Modularity is defined as the fraction of a graph’s edges that lie within a given group

of nodes minus the expected fraction if the edges were distributed randomly. This can

be defined for both undirected and directed graphs, where the directed case takes into

account the edge direction. A positive value for modularity indicates the presence of

a module of nodes where the number of edges exceeds that which would be expected

from a random distribution. A negative modularity value is also possible and would

indicate fewer edges than expected. The modularity is calculated by randomising the

edges while maintaining the same outdegree for each node and then using this graph as

the expected graph with which the actual one can be compared to produce a modularity

value.

The simplest way to calculate modularity is for a network divided into two groups by a

vector s, where si = 1 if it belongs to one group and si = −1 if it belongs to the other.

The expected number of edges, for a random graph, is captured by kin
i kout

j /m where kin

and kout denote the indegree and outdegree for the labelled vertices, either i or j in this
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example. The modularity can then be calculated as

Q =
1

2me
∑
i j
[Ai j−

kin
i kout

j

me
](sis j +1)

=
1

2me
∑
i j

siBi js j

Q =
1

2me
sᵀBs (3.18)

where si is an element of the vector s, me is the number of edges in the network and

B = A− (kout kin)ᵀ

me
, which performs the comparison between the actual network and a

random graph with the same indegree and outdegree associated with each node.

To split the network into modules, eq. (3.18) is updated by replacing B with the symmet-

rical B+Bᵀ that has useful properties, such as eigenvectors that form an orthonormal

basis, which allows for s = ∑i aivBi with ai = vᵀBi · s. Then

Q =
1

2me
∑

i
aivᵀBiB∑

j
a jvB j

Q =
1

2me
∑

i
λi(vᵀBi · s)

2 , (3.19)

where λi is the eigenvalue of B+Bᵀ corresponding to eigenvector vBi. Under a normal-

isation constraint, for s, the maximum of Q is achieved when s is parallel to the leading

eigenvector vB1. The module detection works by maximising vB1 ·s that, given the con-

straints acting on s, results in (vB1)i > 0 when si = 1 and (vB1)i < 0 when si =−1. This

process works for splitting a network into two groups that maximise Q. But scaling this

process to multiple modules requires a slight modification to the equations presented.

Essentially a module is partitioned and then each newly created module is partitioned, if

this partitioning results in an increase in Q, with this process only halting when no fur-

ther partitioning of any module will result in an increased Q. This process is described

in detail by Leicht and Newman (2008).
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Figure 3.4: Number of Leicht-Newman modules for a 100 node k-NNR network with a
given outdegree. Circle colour dependent on the number of graphs with the same outdegree
and number of modules present, with 10 graphs generated for each outdegree.

A geometrical interpretation of the network, using the first three left eigenvectors, is
used to reveal how to optimally perturb a network to achieve the fastest convergence
rate to consensus in Fig. 3.5. This is a good example of distinct communities in a
75 node, 5 outdegree, k-NNR network where the modularity for this graph is high
at 0.691. This analysis reveals a clear structure, with Fig.g 3.5 (a) and (b) showing
three distinct lines of nodes emanating from the origin. This structure is not present
in the 75 node, 5 outdegree, random graph, from Fig. 3.1 (a) and (b), with this lack
of community/module structure explained by a significant decrease in modularity to
0.2544. The first left eigenvector, vL1, continues to be an important marker for effective
leadership. But, in contrast with the random case, the sequence of nodes according to
the numerically optimised resource distribution - represented by the size of the blue
circles centred on selected nodes - is very different to the sequence according to vL1.

Fig. 3.6 is used to demonstrate that multiple distinct communities will disappear in k-
NNR topologies, as well, when the outdegree increases. This is supported by the find-
ings in Fig. 3.4 where the number of Leicht-Newman communities decrease with in-
creasing outdegree. The modularity is also lower than the k = 5 random case (Fig. 3.1)
with 0.219 recorded.

The nodes, with the largest numerically optimised resource assignment in Fig. 3.5,
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Figure 3.5: 75 node, 5 outdegree, k-NNR network where the numerically optimised lead-
ership resource selection is represented with circled nodes; (a) vL1 and vL2 are the first
and second left eigenvector of the Laplacian matrix, (b) includes vL3 and (c) represents the
network where green lines mark bi-directional connections and grey are uni-directional.
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Figure 3.6: 75 node, 30 outdegree, k-NNR network where the numerically optimised
leadership resource selection is represented with circled nodes; (a) vL1 and vL2 are the first
and second left eigenvector of the Laplacian matrix, (b) includes vL3 and (c) represents the
network where green lines mark bi-directional connections and grey are uni-directional.
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are located at the end of each prominent line of nodes that leads back to the plot’s
origin (i.e. those furthest from the origin). If the Power Opt approach was applied to
this network it would not be able to match the numerically optimised result seen in
the Fig. 3.5. The Power Opt approach would appear to be more effective if applied
only to the nodes that belong to each line separately with the resulting allocations then
combined. To this end the Communities of Influence (CoI) method was developed, as
an extension of the Power Opt approach, for when the modularity decreases and the
Power Opt method is no longer effective.

The CoI algorithm will now be described with the first steps focused on defining CoI
vectors. It begins with the calculation of the FLE of the adjacency matrix (A) - not the
Laplacian as will be discussed later - that is set as the first CoI vector. The adjacency
matrix is then modified by removing all connections from the most prominent node as
indicated by the FLE. A new FLE of A is found for this modified matrix, this is now
the second CoI vector, with the adjacency again modified and the process repeated. By
performing this node removal, the Power Opt approach can be essentially repeated for
the separate lines in the eigenvector plot (as discussed in reference to Fig. 3.5) before
combining the resource allocations.

The algorithm is presented in more detail in Algorithm 3.1, with the Power Opt ap-
proach from eq. (3.17) used to attribute resources for each CoI vector and a numerical
optimiser, employing a sequential quadratic programming method∗, used to decide the
relative importance of the power optimised CoI vectors.

In Fig. 3.7 the effect of removing all connections to and from the most prominent
node of the top four CoI vectors, as described in Algorithm 3.1, is displayed using the
geometrical representation of a 75 node k-NNR network where k = 5 (as previously
displayed in Fig. 3.5). It can be seen that this process reduces the prominent node’s
(those numbered and circled) first left eigenvector (vA1) entry. Most of the nodes that
are lined up behind a prominent node in Fig. 3.7 (a) also have their vA1 entry reduced
after the connections are removed from their prominent node. This is evident from the
loss of a line of nodes in plots (b) and then (c).

In Algorithm 3.1, the number of communities required to find a near-optimal leader-
ship varies depending on the topology in question. Five communities of influence were
deemed to be a sufficient upper limit for all the networks examined in this chapter, but
for large sparse networks more communities may well be necessary. In Section 3.4 a

∗implemented with the fminunc algorithm in MATLAB MathWorks (2015b)

57



Chapter 3 Responsive Swarms

Algorithm 3.1 CoI
procedure FINITE LEADERSHIP OPTIMISATION

Calculate the FLE, vA1 = [v1,v2, ...,vN ], for the adjacency matrix,
A = (ai j) ∈ IRN×N .
for m = 1 to n ∈ IR+ do

Define the resource vector, cm = (vA1)
p

∑i (vA1)
p ∀ i ∈ V ,

where p = pm ∈ IR+.
∀ i ∈ V, j ∈ argmaxk vk, ai j = a ji = 0.
Calculate vA1 for the updated adjacency matrix.

end for
Numerical optimiser maximises |λS1| where
C = diag(cCoIn) with rm ∈ IR+ a weighting variable
for the different resource vectors.
cCoIn = f (c1, ...,cm, p1, ..., pm,r1, ...rm−1) with the
function f (...) defined in Eq. (3.20).

end procedure

method is presented for evaluating how many distinct lines are present in the eigen-
vector plot, but this work did not go as far as to implement such analysis into the CoI
optimisation. This could be incorporated by using it to set the upper bound for the
number of communities (i.e. CoI vectors) to be considered in the CoI analysis. The
number of CoI vectors used is important as it affects number of variables in the opti-
misation and, as a consequence, the computational time. This can be seen for n CoI
vectors, where the final resource allocation is produced by combining these vectors, as

cCoIn =
c1 +∑

n−1
i=1

ci+1
ri

1+∑
n−1
i=1

1
ri

(3.20)

where the denominator, with weighting variables r = {r1, ...,rn−1} that are initially set
to 1, scaling the combined vectors to ensure ∑i(cCoIn)i = 1. The initial guesses for
the powers (p1,...,pn) were based on analysis of densely connected k-NNR networks.
Ten networks were analysed between 50 and 150 nodes in size at each node interval
(of size ten) with an outdegree of 30, the results using the Power Opt method are
shown in Fig. 3.8. This analysis uncovered that the optimiser selected a high power, p,
between 45 and 220 for the best leadership resource distribution. A high power usually
translates to fewer nodes being provided with leadership resources. The CoI essentially
combines multiple Power Opt vectors for the multiple communities of influence in the
network, therefore the initial guesses for the powers (p1,...,pn) were set at 50 to help
avoid local minima and reduce computational effort. The presence of more variables in
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Figure 3.7: 75 node, 5 outdegree, k-NNR network where the numerically optimised lead-
ership resource selection is marked with circles (size corresponds to resource allocation)
and the top four CoI communities are numbered; (a) vA1 and vA2 are the 1st and 2nd left
eigenvector of the adjacency matrix, in the other plots the axes are for the adjacency after
the removal of the most prominent node (b) from the 1st CoI comm., (c) from the 1st and
2nd CoI comm., (d) from the 1st, 2nd and 3rd CoI comm.

the optimisation increases the search space and the algorithm run time when compared
with the Power Opt method, however the run time remains defined by the eigenvalue
calculation. The worst case for CoI is therefore alsoO(n3), but the difference in actual
computational time is explored in the next section.

For constant outdegree networks the FLE of the adjacency and Laplacian matrix are the
same but their eigenvalues differ. The dominant eigenvalue for the adjacency matrix,
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and therefore also the Laplacian matrix, is real and, for a strongly connected graph,
strictly dominant with an algebraic multiplicity of 1, see Dhal et al. (2014). The FLE
corresponds to this dominant eigenvalue that for the adjacency matrix is the largest
eigenvalue, while for the Laplacian it is the smallest eigenvalue in magnitude. For the
CoI algorithm; the adjacency matrix is used as the graph has to be modified, with node
removals, into a variable outdegree network and then analysed again by calculating the
FLE. To understand why the adjacency is used, consider the following simplification;
in comparing these matrices the FLE of the adjacency and Laplacian can be represented
as the Indegree and the ratio of Indegree to Outdegree (I/O) respectively. Therefore,
considering a node with both an in and out connection to a removed node, i.e. a node
that is a member of the most influential community, the relationship will change to
Indegree-1 and ((I−1)/(O−1)). This suggests that for the adjacency matrix the in-
fluence metric (value of FLE element vi) will decrease. Whereas for the Laplacian the
influence will increase since (I/O) < ((I− 1)/(O− 1)), if Indegree > Outdegree as
could be expected when the node in question is part of an influential community. The
adjacency matrix is, therefore, more effective in detecting the less prominent commu-
nities, with the FLE of the Laplacian susceptible to only detecting nodes that were part
of the original, most prominent, community. It is also possible for nodes that are part of
the influential community to only have an outgoing connection to the previously most

Figure 3.8: Power, p, required for Power Opt to match the consensus speed found by
numerical optimisation.
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influential but now removed node, which would result in no change for the adjacency
case with no change in Indegree but a larger increase in the ratio for the Laplacian case,
with the ratio becoming (I/(O−1)).

3.2.4.1 Results

The validity of the algorithms developed was supported through comparisons with
the numerical optimiser, described in Section 3.2.2, that is used in this dissertation to
represent the optimal benchmark. In reality, the optimiser cannot guarantee optimality
as it may find a locally optimal solution but given the size of the networks used it should
be similar to the globally optimal result. This claim is supported by the results shown
here, where the numerical optimiser can be seen to find more sub-optimal solutions
as the network size grows (see Fig. 3.13). The methods developed herein are shown
to be effective, through comparison with the optimal benchmark, for a number of k-
outdegree topologies, including k-NNR with small-world rewiring, random and scale-
free graphs. The consensus speed limit, introduced in section 3.2.1, is not used for
comparison in most of the following analyses as in many cases the upper speed limit is
far in excess of what can actually be achieved. Only in certain topological conditions
does the optimal benchmark match the result of the upper limit.

In Fig. 3.9 (a), a toy example of a 75 node network depicts the power optimised CoI
vectors (see Eq. (3.17)) as defined by the CoI optimisation method. This is the same
network as is displayed in Fig. 3.7. Five CoI vectors are displayed in (a) with CoI 2, 3
and 5 only having resources allocated to their most prominent node. To complete the
CoI optimisation a gain is applied to each of the CoI vectors. In Fig. 3.9 (b) the CoI
and numerically optimised resource allocations are presented together. It can be seen
from this figure that the vectors, CoI 5, is not allocated with any of the CoI resource
allocation, which indicates that the gains selected removed resources from these vec-
tors with a combination of the other four power optimised vectors providing the final
allocation. The CoI and numerical optimisation approaches resulted in very similar al-
locations, which is evident when comparing the orange and blue circles marking their
resource selections. The consensus speed is also compared with the values indicated in
table 3.2, where it is clear that using fewer than four CoI vectors in this example yields
a suboptimal response.
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(a)

(b)

Figure 3.9: 75 node, 5 outdegree, k-NNR network with resource allocations highlighted:
(a) the five, power optimised, CoI vectors are displayed; (b) the final optimised resource
allocations are shown. Two-way connections are depicted in green with one-way in grey.
Coloured circles overlay the network with the circle radius proportional to the resource
allocation for the node at their centre.
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Table 3.2: Convergence speed to consensus achieved when using a different number of
CoI vectors for the 75 node, 5 outdegree, k-NNR network shown in Fig. 3.9.

No. of CoI
Vectors

Convergence
Speed (λ )

1 0.320

2 0.356

3 0.389

4 0.405

5 0.405

k-NNR

In Fig. 3.10 the Power Opt and Communities of Influence (using five communities)
were compared with the numerical optimiser, defined previously, for k-NNR networks
with randomly distributed nodes. There were ten networks at each interval between
100 and 900. The Consensus Speed Ratio is defined in reference to the numerical
approach where a ratio value greater than 1 indicates a faster consensus speed than the
numerical result. The CoI results appear to improve with respect to the numerical as the
networks grow larger. The worst case run times (asymptotic complexity) are detailed
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Figure 3.10: Consensus Speed Ratio for k-NNR networks with outdegree set at 10. The
error bars mark the maximum and minimum deviation from the mean.
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in Table 3.3 for comparison with the trend lines from the data presented in Fig. 3.10.
These trend lines translate to the computational time, required for a 1000 node k-
NNR network, being two orders of magnitude higher for the numerical method when
compared with the five community CoI analysis. The coefficient of determination, r2,
is displayed in the table to show the accuracy of the trend line fit.

Table 3.3: Algorithm run time comparison for n nodes.

Algorithm Asymptotic
Complexity

Actual
Trend [s] r2

Numerical O(n4) 5×10−7n3.51 0.998

CoI O(n3) 2×10−4n2.10 0.993

Power Opt O(n3) 1×10−5n2.06 0.982

k-NNR with Small-world

The Power Opt and Communities of Influence (using five communities) were com-
pared with the numerical optimiser, defined previously, for k-NNR networks with ran-
domly created small-world connections where k = 5. These are presented in Fig. 3.11
where the probability of links being rewired and becoming small-world connections is
displayed on the x-axis. From this figure, it can be noted that only the Power Optimi-
sation’s performance changes as the rewiring probability increases.

For small-world graphs, it has been noted that the mean path length will decrease when
links are randomly rewired, see Newman (2000). The mean path length is defined as
the average number of steps when considering the shortest path between all possi-
ble combinations of two nodes in the network. This phenomena is also displayed in
Fig. 3.12 where the same models used in Fig. 3.11 are compared. Fig. 3.12 shows
that as the percentage of randomly rewired links increases the Power Opt results con-
verge with those of the five community CoI approach. The Consensus Speed Ratio,
in Fig. 3.12, is defined in reference to the five community CoI method where a ratio
value less than 1 indicates a slower consensus speed than the CoI result. The Power
Opt approach would be the same as a one community CoI analysis, therefore it can be
seen that as the rewiring probability increases the number of influential communities
decreases until only one remains.
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Figure 3.11: Consensus Speed Ratio values for a 100 node k-NNR network, where k = 5,
with randomly rewired links. The probability, q, of a link being randomly rewired is varied
marked on the x-axis. The error bars mark the maximum and minimum deviation from the
mean.

Figure 3.12: 100 node k-NNR networks, where k = 5, with randomly rewired links. The
probability, q, of a link being randomly rewired is varied marked on the x-axis. The error
bars mark the maximum and minimum deviation from the mean. Consensus Speed Ratio
values compare CoI and Power Opt approaches with the mean path length detailed on the
other y-axis.
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k-Outdegree Random

Fig. 3.13 displays the Power Opt and CoI methods compared with the numerical opti-
miser, for ten Erdős-Rényi random networks at each 100 node interval, with the outde-
gree set at 10 for all nodes. The Consensus Speed Ratio is again defined in reference
to the numerical approach where a ratio value greater than 1 indicates a faster consen-
sus speed than the numerical result. The CoI and Power Opt approaches improve, in
comparison with the numerical optimiser, as the networks grow in size with the CoI al-
ways outperforming the numerical for networks that are 500 nodes or larger. While the
Power Opt is similarly superior for networks of 800 nodes or greater. The difference
between the CoI and Power Opt remains fairly constant as the network size grows.
This is possibly an indicator that it is the numerical optimiser that underperforms as
the network increases in size. By their very definition, random graphs have minimal
community structure and, as a consequence, are likely to create many sub-optimal local
minima that could prevent a numerical optimiser from succeeding. The larger graphs
amplify this problem by having a larger solution space to traverse while searching for
the optimal result.

k-Outdegree Scale-free

Networks were generated that have scale-free properties but also conform to the k-
outdegree constraints, i.e. the indegree distribution follows a power law where a small
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Figure 3.13: Consensus Speed Ratio for random networks with outdegree set at 10. The
error bars mark the maximum and minimum deviation from the mean.
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number of nodes have the majority of the inward connections while most nodes have
few inward connections and the outdegree of all nodes is kept constant. This was
achieved using an adapted version of the algorithm presented in Prettejohn et al. (2011)
and analysed for k = 10.

For the networks analysed, the Power Opt, CoI and numerical approaches achieve
similar results, as depicted in Fig. 3.14. The semi-analytical methods are consistently,
but only slightly, outperformed by the numerical approach. This is notable as it differs
from the trends seen in Fig. 3.10 and 3.13 where the CoI method performed better, with
respect to the numerical, as the network size increased. These differences highlight the
respective strengths of the different approaches. The allocation of the perturbation is
more constrained in the CoI and Power Opt algorithms with vectors scaled or combined
to produce the final allocation, as opposed to the numerical method that alters each
value to find an optimal allocation. However, the CoI approach, in particular, appears
to be more effective at uncovering the most effective leader nodes when the network
becomes larger. Therefore, it could be anticipated that for scale-free networks, where
there are only a few well-connected nodes that would be effective leaders, that the
numerical approach would perform better. In contrast, the k-NNR and random cases
produce graphs where the leaders are more difficult to identify and, therefore, the semi-
analytical methods can outperform the numerical.

No. of Nodes
100 200 300 400 500 600 700 800 900

C
on

se
ns

us
 S

pe
ed

 R
at

io

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

Numerical
Power Opt.
CoI

Figure 3.14: Consensus Speed Ratio for scale-free networks with outdegree set at 10. The
error bars mark the maximum and minimum deviation from the mean.
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An optimal approach would be to combine the node detecting capability with the re-
source allocating capability of the fully numerical approach. But, as with most of
the methods considered, it is always a trade-off between performance and algorithm
run-time.

k-Outdegree Ring Lattice with Small-world

A regular ring lattice is a graph laid out in a circle with k/2 outward connections on
either side of each node. Small-world rewiring is then applied as in Section 3.2.4.1.
The leadership identification is simple for these graphs with the Power Opt able to find
the optimal leadership resource each time. Therefore, the graph is only included in the
following section on network comparison.

Network Type Comparison

In Fig. 3.15 the networks, considered so far, are compared for an optimised pertur-
bation found using the CoI optimisation method. The results presented here appear
to, on the surface, contradict previous work by Olfati-Saber (2005) where small-world
networks are stated to be ideal candidates for ultrafast information networks, however
Fig. 3.15 shows that both k-NNR and ring lattice networks with small-world rewiring

Figure 3.15: Consensus speed comparison for different network structures, where k = 10,
influenced by a near-optimal perturbation. The small-world connections were rewired with
a probability of q = 0.1.
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perform comparatively poorly. This highlights that there is a difference in the topology
requirements for fast consensus when information is being spread by a perturbation
compared with when nodes are averaging their state in the absence of a perturbation,
as considered by Olfati-Saber (2005).

In a node averaging situation, with no external perturbation, the ideal topology occurs
when every node is connected to every other (all-to-all). Introduce a perturbation and
an all-to-all topology produces a slow response as there is a larger system inertia to
overcome; making it more difficult to transition the whole network to a new state, as
displayed by Punzo et al. (2016). Therefore a network, where the majority of nodes
have few connections but these connections are arranged to produce short paths to
the leader nodes (those directly affected by the perturbation), will perform well in
achieving perturbation driven consensus. This topological description is similar to that
of a scale-free network, which is demonstrated in Fig. 3.15 where scale-free performs
significantly better than the other networks considered.

Fig. 3.15 also demonstrates that distinct community structure can produce a good per-
formance, with the k-NNR network outperforming the small-world and random graphs
in the majority of cases. This is less effective than the scale-free networks, but a similar
principle is at work. As discussed, scale-free networks are effective due to the short
paths between leader nodes (those receiving a perturbation) and every other node in the
graph. A short path between leaders and every other node in the graph is also achieved
for k-NNR, as each prominent hub is supplied with a perturbation and all the nodes
within the hub are well connected to each other. k-NNR probably performs less well
as the perturbation resource is limited and has to be divided to reach multiple hubs.
This reduces the rate of response from nodes in the k-NNR network when compared
with the scale-free graphs where an optimal allocation usually requires fewer nodes to
be supplied with a perturbation than in k-NNR graph examples.

Large Networks

For large networks (N ≥ 1000) a comparison of the Power Opt and CoI methods with
the numerical optimiser benchmark was not feasible, due to the computational time
required. The upper limit for consensus speed, maxi((vL1)i) as stated in Theorem 3.1,
was used instead as a benchmark to show, in Fig. 3.16, that near-optimal results were
still being achieved. Unlike the previous results in this Chapter, the upper limit could
be used as the high outdegree of 30 would enable the results to approach the limit’s
value. For previous analyses, especially those with relatively low outdegrees, the limit
would have greatly exceeded the convergence speed achieved by an optimal allocation.
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Figure 3.16: Solver time and difference between optimised consensus speed and
maxi((vL1)i) for large k-NNR networks with an outdegree of 30. A network was anal-
ysed at each 1000 node interval where maxi((vL1)i) = {31,14,10,7,5,4,4}×10−4 for the
analysed networks.

In Fig. 3.16 the Power Opt outperforms the CoI vector, due to the CoI method relying
on a numerical optimiser, that often finds suboptimal local minima when analysing
such a large network. The Power Opt method is effective even with very large net-
works (103 nodes) where the calculation times for the numerical optimiser would be
extremely long. The trend in Table. 3.3 predicted that a 7000 node network would take
approximately 166 days to evaluate with the numerical optimiser and computational
hardware used for this dissertation.

In the case of a high outdegree network, the CoI vector only requires the contribution of
one community, as discussed, and hence closely matches the resource allocation gen-
erated by the Power Opt approach. This is the case in Fig. 3.16 where an outdegree of
30 is large enough for Power Opt analysis to find a near-optimum resource allocation.
The explanation for this can be understood by looking at the comparison in Fig. 3.17
of the same distribution of 7000 nodes with (a) an outdegree of k = 5 and (b) k = 30
assigned according to k-NNR connection rules. This comparison emphasises that, al-
though there are lines extruding from the central collection of nodes in the k = 30 case,
these lines are short in comparison with the low outdegree example. Therefore, these
7000 node examples are presenting the same results as the 75 node examples from
Fig. 3.5 & 3.6. The k = 5 graph exhibited clear lines from the origin of the eigenvector

70



Chapter 3 Responsive Swarms

-0.05 0 0.05 0.1 0.15 0.2 0.25

v
L2

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
v L3

(a) k = 5

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03

v
L2

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

v L3

(b) k = 30

Figure 3.17: Geometrical interpretation of a 7000 node, k-NNR, network with outdegree
(k). vL2 and vL3 represent the 2nd and 3rd most dominant left eigenvectors.

plot (Fig. 3.17) with contributions from multiple communities of influence required to
find an optimal resource distribution. In the k = 30 graph the nodes were more clus-
tered together and this resulted in only one community of influence being required to
achieve an optimal allocation.

3.2.5 Influential Community Detection

The CoI approach also provides a form of community detection; when compared with
the modules detected by the Leicht-Newman algorithm (2008) the CoI algorithm found
that the different CoI vectors (see Algorithm 3.1) had their most prominent nodes - in
all but one case out of the 540 analysed - located in separate Leicht-Newman modules.
The graphs considered were k-NNR between 100 – 900 nodes with set outdegrees for
all nodes ranging from 5 to 10. The graphs were produced at 100 node intervals with
60 considered at each interval. Fig. 3.4 has already shown that the number of modules
present does not tend to vary by more than 3 for 100 node k-NNR with the same out-
degree. For 20 of these cases some of the leading nodes in the four top communities,
as determined by CoI, were in the same module, as determined by the Leicht-Newman
algorithm. However, in only one of these 20 cases did the CoI algorithm assign lead-
ership resources to the first group of leading nodes and not the second that inhabited
the same Leicht-Newman module. The one exception was a 900 node graph, with an
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outdegree of 7, where the first and second CoI determined communities resided in the
same 90 node Leicht-Newman module. Arguably this case was a result of the Leicht-
Newman algorithm failing to detect a community, as there was only a single outgoing
(observing) connection connecting the group of nodes in the first CoI to the rest of the
module.

The toy example introduced in Fig. 3.18 shall be used here and throughout the follow-
ing sections because of its clarity in displaying community divisions. In this section
it highlights that the CoI method allocates network leaders to separate modules in the
network. This figure reveals that there is some correlation between the modules defined
by Leicht-Newman and the leaders identified by the CoI method. It can be conjectured,
given this finding, that when the CoI method allocates resources to multiple CoI vec-
tors the network has multiple distinct communities that are more effectively lead from
within rather than by nodes that are central to the network as a whole.

This brief investigation into the use of the CoI approach to perform community de-
tection is developed upon and expanded later in this chapter, see Section 3.4, where
communities are defined with reference to first three eigenvectors of the system.

Figure 3.18: The CoI resource allocation is shown on this 50 node k-NNR network with
coloured circles where each colour relates to a specific CoI vector (CoI 1 - red, CoI 2
- green, CoI 3 - magenta). The light brown shaded areas mark out the Leicht-Newman
modules Leicht and Newman (2008) present in the graph.
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3.2.6 Starlings - Predator Response

In this dissertation’s introduction starlings were discussed and noted for their remark-
able ability to form and maintain large flocks. In particular, Ballerini et al. (2008)
found that starlings have approximately seven connections at all times regardless of
the flock density. The reason for this connection rule is unclear, but Cavagna et al.
(2010) later proposed two possible reasons for why starlings maintain this k neighbour
topology. The first of these suggestions was cognitive limit; a claim that is supported
by research on other birds where Emmerton and Delius (1993) performed experiments
on the cognitive limits of pigeons and found 7 to be the upper limit. The experiment
worked by training the pigeons to always select the higher number of dots - that were
projected onto a piece of paper - with the main finding being that pigeons were able
to differentiate between dot pairs until they reached a seven and eight dot compari-
son where they failed to pick successfully. If starlings had a similar cognitive limit
then tracking seven birds may just be a consequence of their processing capacity. The
second reason that Cavagna et al. (2010) proposed was that of optimal information
spreading where the unproven claim is that this number has evolved as it produces the
most effective graph for transferring information across the flock. The work of Young
et al. (2013) was also noted in the introduction and it suggests that seven connections
per bird provides the starlings with a more robust flock. The true reason for why k≈ 7
has emerged is still a matter of debate, but this section will present further evidence for
why a relatively low outdegree has emerged as an effective limit for flocking starlings.

Consensus has been used to study starlings before, Shang and Bouffanais (2014) con-
cluded that convergence rates increases as k increases for a k-NNR graph reaching
agreement on alignment. This would seem to imply that starlings could more effec-
tively spread information, of approaching predators, by observing more of their fellow
birds. However, the work by Shang and Bouffanais considered consensus in the ab-
sence of a perturbation and, as noted in section 3.2.4.1, the topologies that achieve fast
consensus in the presence of a perturbation are significantly different from those in
the unperturbed scenario. Therefore, by examining static networks from a perturbation
driven consensus point-of-view, it will be revealed that increasing k will not result in
faster consensus. Instead the benefits of k = 7 are revealed, through comparison with
higher outdegree models, as it enables multiple distinct communities to form that shall
be shown to be helpful for the starlings’ attempts to avoid predators.

The networks analysed thus far have all been planar graphs but starling formations,
which inspired this research, obviously exist in three-dimensional space. Starling
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flocks are stated in Young’s 2013 work to tend towards a thicknesses of between 0.13
and 0.27, where flock thickness is defined as the ratio of smallest to largest dimension
of an ellipsoid having the same principal moments of inertia as the flock. In Fig. 3.19
three examples of 1200 node networks are presented that represent starling flocks with
a thickness of 0.2, where the flocks were modelled in the same manner as Young et al.
(2013) by randomly distributing nodes from a uniform distribution within a rectangular
prism.

The leadership distribution examples in Fig. 3.19 are representative of the graphs anal-
ysed. The average perturbation driven convergence rate (from 10 randomly generated
starling distributions) was λS1 = 0.0040 for k = 7, and λS1 = 0.0019 for both k = 50
& k = 100. This follows the trend found in the analysis of planar k-NNR graphs. The
network response is faster for the lower k networks but also plateaus as the outdegree
is increased with little difference between the response times of k = 50 and k = 100.
What is of particular interest, when considering starling flocks, is the position of the
optimal leaders according to CoI. Fig. 3.19 reproduces a common finding from the
planar network analyses, where it was seen that the optimal leaders tend to be centrally
located when the distinct community structure is removed by increasing the outdegree
(see Fig. 3.5 and 3.6) as would be the case for k = 50 and k = 100. While for lower
k outdegree examples, where the distinct community structure is more prominent, the
optimal leaders are spread out. Considering an actual starling flock, this means that
the most influential leaders are placed nearer the edges of the flock and will be some
of the first birds to react to a predator attack as noted by Attanasi et al. (2015) and
Herbert-Read et al. (2015). Therefore, the k = 7 topological rule appears to promote
effective evasion of predators when compared with the slower responding high k out-
degree flock where none of the, centrally located, optimal leaders are likely to trigger
a predator evasion manoeuvre.

It is possible to conjecture that without such well-defined multiple community structure
the starling response would be more uniform and rigid. This would probably be easier
to track, predict and attack than the k = 7 network, where starlings maintain a cohesive
unit but the shape fluctuates due to different communities responding at different rates
triggered primarily by their local leaders. k = 7 therefore enables a fast and fluctuating
response while assuring connectivity with a sufficiently large outdegree. The upper
bound for k that ensures connectivity is defined by Balister et al. (2005), in their work
on connectivity of k-NNR graphs, and stated as 0.9967 log N where N is the number
of nodes in the network. For a network of 1200 nodes, as considered here, k ≥ 5.11
would assure connectivity.

74



Chapter 3 Responsive Swarms

(a)

(b)

(c)

Figure 3.19: 1200 node starling k-NNR flock model, as defined in Young et al. (2013)
where nodes are randomly distributed for a flock thickness of 0.2, analysis for (a) k = 7,
(b) k = 50 and (c) k = 100 where coloured circles are centred on nodes and the circle’s
radius is proportional to the resource allocation. Circle colour key: red – CoI vector 1,
green – CoI vector 2, magenta – CoI vector 3, black – CoI vector 4, blue – CoI resource
allocation.
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3.2.7 Discussion

Much of the focus of this chapter, so far, has been on k-NNR networks which, by
taking inspiration from starlings, could be an appropriate topology for developing a
fast responding mobile multi-agent system if applied with an optimal perturbation.
However, it could be argued that starling flocks have little to gain from achieving fast
perturbation driven convergence to consensus. The CoI algorithm has revealed that
the optimal solution for low outdegree k-NNR networks is to supply a perturbation to
separate communities in the graph that essentially reach consensus on their own with
limited input from nodes outside of their own community. Therefore a starling system,
where the perturbation is isolated to one region of the graph (a predator will only be
spotted by the birds in the local vicinity of the attack), employs a topology that is not
aiming to reach a fast consensus. Instead a fast local response will be triggered by
those in immediate danger, followed by a slower response from the other communities
that shall ensure the flock remains connected.

Again considering a multi-agent system, factors other than consensus speed would
still need to be considered before determining the ideal network topology. For ex-
ample it is likely that a scale-free topology, despite producing faster perturbation led
consensus, will be less resilient to targeted node removal, with its dependence on a few
network hub nodes that have a large number of inward connections making it vulner-
able. Whereas a k-NNR graph could withstand the removal of more influential nodes
since there is a more even distribution of connections and hence greater redundancy.

Finally, it is clear from the results that the semi-analytical methods are most beneficial
when employed on large networks. The difference in algorithm run time increasing
as the network size grows, as noted in Table 3.3, which is an obvious consequence
of the difference in time complexities for the algorithms used. Less predictable was
the CoI method outperforming the numerical optimiser for larger outdegree cases, see
Fig 3.13 for k-outdegree random networks and Fig. 3.10 for k-NNR. This reveals that
the numerical optimiser, for larger graphs, is more susceptible to settling into local
minimum, far from the global minimum. This failure occurs more often with the k-
outdegree random graphs where the lack of structure produces a more complicated
solution space for the optimiser to search.
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3.3 Autocratic Leaders

This section considers the case where leaders are given more influence by paying less
regard to the rest of the network when following a perturbation. These leaders that pay
less attention to other nodes in the network are referred to as Autocratic Leaders.

The networks considered here are directed with natural swarms such as starlings em-
ploying directed communication. If considering an engineered system, duplex commu-
nication would be an option but there are benefits to using directed information flow
in the system. One such advantage was found by Olfati-Saber and Murray (2004) who
demonstrated that the communication/sensing cost of protocols, where the information
flow is directed, is smaller than that of their undirected counterparts. Another advan-
tage is that a directed graph can facilitate faster response to perturbations. A robust
network, where redundant connections are an asset, should benefit from undirected
edges as this is a simple way to build redundancy. In contrast, the focus of this chapter
is on responsive systems and, as stated previously, the minimum requirement for con-
sensus is a directed spanning tree. Therefore redundant connections, which go against
the flow of information from a leader node, are likely to slow down system consensus
and reduce system responsiveness. This claim shall be investigated and justified in
Section 3.3.2.2.

To create autocratic leaders the edge weightings have to be adjusted for edges de-
parting from leader nodes. Omidi and Abdollahi (2013) and Xiao and Boyd (2004)
highlighted in their work that adjusting edge weightings based on the degree of the
vertices involved can improve the convergence speed to consensus. For this section,
the edge weighting shall only be adjusted for edges that depart from nodes that receive
a leadership perturbation. The edge weighting is then dependant on the amount of
resources that node is given. Once again nature can provide a source of inspiration;
Nagy et al. (2010) found that flocking homing pigeons determine their spatial posi-
tion and weight their neighbour monitoring based on a well-defined hierarchy. Nagy
et al. (2010) also suggest that weighting the connections based on hierarchy, rather than
having an egalitarian structure, may produce a more efficient flock. In this section the
mathematical framework developed in the previous section shall be further developed
to test whether a more efficient response could be achieved by an artificial swarm with
constant outdegree (k-outdegree) topologies, where the hierarchy is created from the
leadership resource allocation.
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3.3.1 Consensus Model with Autocratic Leaders

As in Section 3.2, the networks considered here have N agents connected via local
communication with a static, time-invariant, topology. The dynamics of this system
were previously defined in Eq. (3.3) but have now been updated, to include the edge
weighting on leader nodes to create autocratic leaders, as

ẋi =
N

∑
j=1

(1− ci)ai j(x j− xi)+ ci(u− xi) (3.21)

where xi is the state of the ith agent, ∑i ci = 1 and u is the scalar target value that all
agents must achieve. ai j is the i j entry of the graph’s normalised adjacency matrix.
For a network with the same outdegree for all nodes (k-outdegree), ai j = 1/k if there
exists a directed edge from node i to j and 0 otherwise.

Translating Eq. (3.21) into the global dynamics of the system gives

ẋ =−[I−C]Lx+C(u−x) (3.22)

where I is an identity matrix, C is the perturbation matrix, C = diag(c1, ...,cP), and L

is the normalised Laplacian matrix of graph G. The normalised Laplacian is defined as
L =D−A where D= diag(1) is the degree matrix of G, with elements di =∑ j ai j. This
Laplacian matrix, weighted and unweighted, always has at least one zero eigenvalue,
λ1 = 0, where the smallest, non-zero, eigenvalue (λ2) represents the consensus speed.

Eq. (3.22) can be transformed to

ẋ =−([I−C]L+C)x+Cu.

The Cu can be removed by considering

v = x− ([I−C]L+C)−1Cu,

which is possible since applying a perturbation guarantees that all eigenvalues are non-
zero, as noted for Eq. (3.6), making−([I−C]L+C) nonsingular. A coordinate change
(affine transformation) can then be implemented with the model now represented by

v̇ =−([I−C]L+C)v. (3.23)

For the perturbed, negated Laplacian (−[I−C]L−C) the smallest eigenvalue in magni-
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tude is negative (and non-zero) with λ1 representing the convergence rate to consensus.
It is worth nothing that this makes λ1 both the smallest eigenvalue in magnitude and
the largest eigenvalue of the system.

In the autocratic leader model (−[I−C]L−C) an individual agent, i, has its attention
focused on only its neighbours (ci = 0), only the external perturbation (ci = 1), or on
a weighted combination of neighbour (internal) and external perturbation (0 > ci > 1).
In contrast, the previous −L−C model makes no adjustment to the Laplacian with the
perturbation always being additional to the internal neighbour monitoring. It is proved
here for both models, when the perturbation is uniform, that the smallest eigenvalue in
magnitude becomes λ1 =−1/N.

Theorem 3.2. Let L be the Laplacian of a directed graph that is at least weakly con-
nected and CU the uniform perturbation matrix of N entries where CU = diag([c, ...,c])=
diag([ 1

N , ...,
1
N ]). Then, the smallest eigenvalue in magnitude of the negated, unweighted

(−L) and weighted (−[I−CU ]L) Laplacian perturbed by the matrix −CU is

λ(−L−CU )1 = λ(−[I−CU ]L−CU )1 =−c =− 1
N
. (3.24)

Theorem 3.2 can be proved as follows:

Proof. Hammack et al. (2011) states that the right eigenvector of the Laplacian asso-
ciated with the largest eigenvalue, λ1 = 0, is the uniform vector, 1 = [1,1, ...,1]T ∈IRN .
When the Laplacian is perturbed by a matrix CU , that is composed of a uniform vec-
tor along the diagonal, then the dominant right eigenvector remains uniform. This
can be shown by first considering the eigenvalue and eigenvector relationships for the
unperturbed Laplacian, which is

Lx1 = λx1

and the uniformly perturbed Laplacian

(L+PI)v1 = λLPv1,

where x1 and v1 are first right eigenvectors, P is a constant and λLP is an eigenvalue
of (L+PI). Then consider that

(L−λ I)x1 = 0

(L+PI−PI−λ I)x1 = 0
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[(L+PI)− (λ +P)I]x1 = 0,

which shows that λ +P is an eigenvalue of (L+PI) and that x1 is an eigenvector
of (L+PI). Therefore, λLP = λ +P and x1 = v1 where both eigenvectors are uni-
form. This applies for both the weighted and unweighted model where λ1 is the real
eigenvalue of smallest magnitude for a directed graph, since 0 >IR(λ1) ≥IR(λ2) ≥
...≥IR(λN) for any perturbed Laplacian.

Given that MU x1 = λ1x1, where x1 is uniform, it is then clear that

λ1 = ∑
j
(MU)i j =−c =− 1

N
(3.25)

where i, j ∈ V and MU represents either the weighted or unweighted Laplacian per-
turbed by a matrix CU as the eigenvector and the row sums are the same for both
cases.

Theorem 3.2 shows that, for a non-uniform perturbation, the weighted model will
achieve a larger magnitude of λ1, and hence a faster consensus speed, than the un-
weighted model.

Theorem 3.3. Let L be the Laplacian of a complete graph and CP the non-uniform,
diagonal, limited perturbation matrix of N entries. Then, the smallest eigenvalue in
magnitude of the perturbed, negated, weighted Laplacian (−[I−CP ]L−CP ) will al-
ways be greater than that of the unweighted (−L−CP ) model.

Theorem 3.3 can be proved as follows:

Proof. Theorem 3.2 establishes that λ1 will be the same for both the weighted and un-
weighted models influenced by a uniform perturbation. Introducing P as a deviation
from the uniformly perturbed state, which takes the form of a subtraction from an ele-
ment of the uniform perturbation, CU = diag(c), to create a non-uniform perturbation
matrix, CP . The matrix MU is the uniformly perturbed matrix, affected by CU , while
MP is a non-uniformly perturbed matrix, affected by CP .

Applying the addition of P to any entry of c will affect the row sum of the system
matrix, except when a node has no outdegree where it will remain the same,

∑
j
(MP)r j < ∑

j
(MU)r j ≤ 0 (3.26)
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for both the weighted and unweighted model where MP is the matrix MU that has been
altered by applying a deviation, P , to entry r of c. For a deviation P , given Eq. (3.26),

(MPx1)r < (MU x1)r < 0

for element r of the vector produced. It is known that MU x = λx and, as stated be-
fore, the right eigenvector for the uniformly perturbed scenario will be a uniform vec-
tor, such as x1. Therefore MPx1 6= hx1 where h ∈IR−, when MU x1 = hx1 and given
Eq. (3.26). To converge towards the solution, MPxP = hxP , the varied entry of xP
(referred to as xr) must decrease for any non-uniform perturbation as |(MPx1)r| >
|(MU x1)r|. As a result,

xr < xs ∀ {s ∈ V | s 6= r} (3.27)

when MPxP = hxP .

It shall be shown that for the non-uniform perturbation scenario (xr)w < (xr)uw and
(xs)w > (xs)uw by, again, considering how to converge towards the equality MPxP = hxP
where h ∈IR−. Convergence to equality is pursued by varying xr with −z, where xP is
an initially positive uniform vector. For clarity the variation √ is applied to c for only

the first entry, and hence affects the first element of the vector in Eq. (3.29), therefore
−z is only employed on the first element of xP .

MPxP(z) =

(MP)1,1 . . . (MP)1,N
... . . . ...

(MP)N,1 . . . (MP)N,N


(xP)1− z

...
(xP)N



=


(MP)1,1

(
(xP)1− z

)
+(MP)1,2

(
(xP)2

)
+ . . .

...

(MP)N,1

(
(xP)N− z

)
+(MP)N,2

(
(xP)2

)
+ . . .

 (3.28)

The derivative of MPxP(z) is

d
(
MPxP(z)

)
dz

=


−(MP)1,r

−(MP)2,r
...

−(MP)N,r

=


|(MP)1,1|
−|(MP)2,1|

...
−|(MP)N,1|

 (3.29)

where r = 1 and the sign of the MP entries are highlighted in the final expression
since the diagonal entries are positive and the off-diagonal entries negative. Given that
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|(MP)1,1|w < |(MP)1,1|uw, when the same P is applied to the first entry of c, and all
the other elements remain unaltered, then

(d
(
MPxP(z)

)
w

dz

)
r
<
(d
(
MPxP(z)

)
uw

dz

)
r
. (3.30)

This indicates that, for the same P and z variation, MPxP(z) will change less for the
weighted model than the unweighted. Therefore a smaller variation, z, is required to
achieve MPxP(z) = hxP(z), when using the same value of P , for the weighted model
than the unweighted, hence

(xr(z))w > (xr(z))uw (3.31)

and when normalising the right eigenvector (xs(z))w < (xs(z))uw.

An example of the unweighted model, (MP)UW, and weighted model, (MP)W, are
shown below where each is affected by a perturbation CP = diag([(cP)1, ...,(cP)N ])

and where ai, j is an element of the adjacency matrix

(MP)UW =

−1− (cP)1 . . . a1,N
... . . . ...

aN,1 . . . −1− (cP)N

 (3.32)

(MP)W =

 −1 . . . a1,N(1− (cP)1)
... . . . ...

aN,1(1− (cP)N) . . . −1

 . (3.33)

For a complete graph, i.e. all-to-all communication, considering Eq. (3.32) for the
unweighted graph, xr = (xr(z))uw and xs′ represents all the (xs(z))uw terms as the

∑ j ai j = 1 constraint in place, then

MPxP = λxP

(MPxP)1 = λ (xP)1

(−1− cP)(xr)+ xs′ = λ (xr)

λuw =−1+
xs′
xr
− cP (3.34)

Eq. (3.31) showed that xr would be less in the weighted case. To account for this it is
defined with respect to the unweighted case as follows, (xr)w = xr−κ where κ ∈IR+,
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and taking into account the normalisation of the right eigenvector (xs′)w = xs′+ κ .
Therefore, in a complete graph, i.e. all-to-all communication, considering Eq. (3.33)
for the weighted graph

(MPxP)1 = λ (xP)1

(−1)(xr−κ)+(1− cP)(xs′+κ) = λ (xr−κ)

λw =−1+
xs′+κ

xr−κ
− cP

xs′+κ

xr−κ
(3.35)

Eq. (3.27) shows that,

xs′+κ

xr−κ
>

xs′
xr

> 1

and it is know from Punzo (2013) that 0 > λuw, therefore

0 >−1+
xs′
xr
− cP

cP >−1+
xs′
xr

cP
xs′
xr

> cP >−1+
xs′
xr

Now the unweighted and weighted cases can be compared where cP
xs′
xr

is included for
clarity

|−1+
xs′
xr
− cP |< |−1+

xs′
xr
− cP

xs′
xr
|< |−1+

xs′+κ

xr−κ
− cP

xs′+κ

xr−κ
|.

|λuw|< |λw|

In the case of a directed k-outdegree graph, that is at least weakly connected, the con-
vergence speed in the weighted case will almost certainly be faster than the unweighted
case. This can not be as clearly shown as it was in the complete graph but the same
approach as Theorem 3.3 can be taken. Eq. (3.34) remains the same for non-complete
graphs but there is a change in Eq. (3.35). Specifically that (xs′)w = xs′+ κ is no
longer a valid assumption as not all of xs entries will be involved in the calculation
of (MPxP)1. xs′ is merely a comparitive tool between the unweighted and weighted
cases, therefore it does not change. The most likely replacement for this expression in
the k-outdegree case would be (xs′)w = xs′+

κ

n where n ∈IR+. However, it is possible
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that (xs′)w = xs′− κ

n or (xs′)w = xs′. Only in the negative κ scenario could the logic of
Theorem 3.3 be called into question as

xs′
xr−κ

>
xs′
xr
.

3.3.2 Leadership Selection Algorithm

Employing the Communities of Influence method to optimise the selection of auto-
cratic leaders produced a pattern of selection whereby only one leader per community
was ever given a perturbation resource. This differed from the unweighted case where
the perturbation resource would be spread among a number of nodes in a community
of influence. There is mathematical support for the allocation of perturbation resources
to an individual leader, especially in the case that this leader is autocratic with a high
outdegree.

3.3.2.1 Effectiveness of a Single Autocratic Leader

Merikoski and Virtanen (1997) states that for a generic matrix, M ∈ IRN×N , with real
and ordered eigenvalues, λ1 ≥ λ2 ≥ ...≥ λN , the bounds for the most prominent eigen-
value are

µ +
sd

(N−1)
1
2
≥ λ1 ≥ µ + s(N−1)

1
2 , (3.36)

where µ = tr M
N , i.e. trace of M divided by the number of vertices, is the mean of the

eigenvalues and

sd =

√
tr M2− (tr M)2/N

N
(3.37)

is the standard deviation. The equality on the left of Eq. (3.36) occurs if and only if
λ1 = λ2 = ...= λN−1 and on the right if and only if λ2 = λ3 = ...= λN .

Taking λ1 in Eq. (3.36) as the convergence speed to consensus for a perturbed Lapla-
cian. Then for the weighted model, where the perturbation alters the off-diagonal and
not the diagonal elements, of a constant outdegree graph, the trace of M is always
tr M = N given the adjacency matrix constraints used (see Eq. (3.8)). Only the stan-
dard deviation in Eq. (3.36) will vary when the perturbation is changed. A perturbation
that minimises tr M2 will ensure the minimal possible deviation of λ1 from the mean,
where the mean is maximum value achievable for λ1. To understand why minimising
tr M2 minimises the standard deviation, consider a simple multiplication y= (1−c)∗c.
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This equation represents a simplification of the resource allocation in a 2 node system
maximum and minimum difference in the split are 1:0 and 0.5:0.5 respectively, hence
(1− c)+ c = 1 and 0.5 ≥ c ≥ 1. The maximum value of y is found when c = 0.5,
i.e. equal distribution of resources, while the minimum is achieved when c = 1. The
same can be said for applying perturbations in the weighted case. For a weighted
(−[I−CP ]L−CP ) and complete graph, setting all the off-diagonal value to zero (i.e.
providing ci = 1 to a node) will produce the smallest tr M2. For a non-complete graph,
the situation is not as simple but it does provide important insights. The higher the
outdegree, i.e. the closer the situation is to the complete graph, the more impact the
weighted model has on the system response. It is possible to conceive of a case where
there is no benefit from supplying a node with perturbation resources. This would be
a non-k-outdegree scenario where the leader had no outward connections. It can be
concluded that for complete graphs a single autocratic leader will be most effective
and for non-complete graphs with a high outdegree this will continue to be an opti-
mal strategy. When the outdegree is not high the case changes, as will be seen in the
following sections, where it is most effective to have an individual community (rather
than whole network) leader is more common when considering autocratic leaders (i.e.
the weighted model).

3.3.2.2 Effect of Redundant Connections

Eq. 3.36 & 3.37 can also reveal aspects of optimal structural design for a network. It
was mentioned, briefly, that redundant connections, i.e. those counter to the flow of
information from the most prominent, would likely reduce the responsiveness of the
system. This can now be understood from a mathematical point of view, as these redun-
dant connections will influence the tr M2 value. If there are only uni-directional edges
then (M2)ii = (mii)

2, after a bi-directional edge is added (M2)ii = (mii)
2 + mi jm ji.

Therefore, redundant connections will increase tr M2 and, as a result, decrease the
systems responsiveness that is represented by |λ1|.

3.3.2.3 Nodes of Influence

A Communities of Influence (CoI) algorithm has been described previously for the
unweighted model, where vectors representing different influential communities were
combined to produce an optimal leadership resource allocation. In this section a sim-
ilar approach for the weighted model, Nodes of Influence (NoI), shall be presented
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where limited resources are distributed amongst multiple nodes, each of which have
been identified as the most influential in their community. These communities being
defined by the first left eigenvector (FLE) of the adjacency matrix and then manip-
ulated versions of that matrix. By only having to consider a single node from each
community of influence the NoI approach becomes less computational expensive than
the CoI algorithm. The NoI approach is defined here in Algorithm 3.2.

Algorithm 3.2 NoI – Variable Resources
procedure VARIABLE RESOURCES OPTIMISATION

Calculate the FLE, v1, for the adjacency matrix,
A = (ai j) ∈IRN×N .
for m = 1 : n ∈IR+ do

Select leader node, rm, that corresponds to
max(vi) ∀ i ∈ V .
airm = 0 and armi = 0 ∀ i ∈ V .
Calculate vm+1 for the updated adjacency matrix.

end for
Quasi-Newton solver∗maximising |λ1(−[I−C]L−C)|
by varying cl where l ∈ r = {r1, ...,rn}.

end procedure

Once the leader nodes have been identified a Quasi-Newton algorithm based optimiser∗

is used to determine the resource distribution amongst these selected nodes. For the
outdegrees and network sizes investigated in this paper 5 leading nodes were found,
through multiple tests on a range of scenarios, to be sufficient when seeking near-
optimal leadership.

3.3.3 Results

This section shall detail the results obtained by comparing a numerical optimiser,
which uses sequential quadratic programming methods†, with the Nodes of Influence
algorithm.

3.3.3.1 Nodes of Influence

In Fig. 3.20 a toy example of a 50 node k-NNR network (k = 5), previously introduced
in Section 3.2.5, depicts the most influential node from each of the five communities

∗implemented with the fminunc algorithm in MATLAB MathWorks (2015b)
†implemented with the fmincon algorithm in MATLAB by MathWorks (2015a).
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Figure 3.20: 50 node, 5 outdegree, k-NNR network. Two-way connections are depicted in
green with one-way in grey. Coloured circles are centred on nodes, with the circle radius
dependent on resource allocation.

of influence detected. The relative influence of each node for a specific community is
proportional to the radius of the associated circle. The perturbation resource alloca-
tions, NoI and Numerical, are also detailed in the figure and seen to produce identical
results with the blue and orange circles overlapping. In the unweighted case a pertur-
bation was supplied to three communities, with two of these enlisting multiple nodes
to spread the perturbation. But, as discussed, the weighted model requires only one
leader from each community for this magnitude of perturbation. It is also worth noting
that the NoI method allocated a perturbation to the first and third most prominent com-
munities with the third community receiving the largest perturbation. The community
order is often directly correlated with network influence but, as in this case, that is not
always true.

k-NNR

For a k-NNR graph, which is at least weakly connected, the NoI vector produces on
average a superior result when compared to the numerical optimiser for networks of
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Figure 3.21: Consensus speed ratio for k-NNR networks with outdegree set at 10. The
error bars mark the maximum and minimum deviation from the mean.

200 nodes or greater. This is displayed in Fig. 3.21 for different network sizes with 25
graphs examined at each interval.

In Fig. 3.22 the run time comparison between the two methods highlights the differ-
ence in calculation complexity, with the numerical approach requiring greater than
an order of magnitude more time to find an, on average, inferior result than the NoI
method. For both methods the worst case calculation complexity is mainly defined
by the eigenvalue computation, that is defined as O(N3) by Stewart (2000), with the
numerical also requiring a search space of N and hence becoming O(N4). These cal-
culation complexities were then compared with the actual trends from Fig. 3.22 and
detailed in Table 3.4 alongside the coefficient of determination (R2) for the trend.

Table 3.4: Algorithm run time comparison for N nodes.

Algorithm Complexity Actual Trend r2

Numerical O(N4) 2×10−6N3.3 0.9974

NoI O(N3) 9×10−4N1.8 0.9949

The maximum consensus speeds found in Fig. 3.21 can then be compared by analysing
the same graphs with the CoI method for the unweighted model (−L−C) and the NoI
method for the weighted model (−[I−C]L−C), as presented in Fig. 3.23. These
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Figure 3.22: Run time comparison where the error bars mark the maximum and minimum
deviation from the mean.
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Figure 3.23: Consensus speed comparison between weighted and unweighted k-NNR net-
works with outdegree set at 10. The error bars mark the maximum and minimum deviation
from the mean.
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results agree with the proof of Theorem 3.3 by showing that the weighted model always
achieves faster consensus speeds than the unweighted.

Lattice Ring with Small World Rewiring

A regular ring lattice is a graph layed out in a circle with k/2 outward connections
on either side of each node, as displayed in Fig. 3.24. Small world rewiring is then
applied, with a set probability that each link in the graph has a possibility of being
rewired to end at a different node but retain the same source. This network was anal-
ysed for a rewiring probability of q = 0.1 with the results displayed in Fig. 3.25. Even
with 10% of the connections being rewired, this network only ever contains one influ-
ential community. Therefore the full NoI approach is not required, instead the most
prominent node of the FLE is always selected to lead. Despite this network requiring
a simpler leader selection process, the complexity of the problem is highlighted by the
numerical optimiser uncovering on occasion only local minima that are far from the
global optimum, as shown in Fig. 3.25 for 300, 700 and 800 node networks. The ana-
lytical basis of the NoI and CoI algorithms is a strength as it guards against results that
are only locally optimal and far from the system’s global optimal.

Figure 3.24: Lattice ring network with small world rewiring; 20 nodes, 4 outdegree with
rewiring probability of q = 0.1. Rewired connections are in red, two-way in green and
one-way in grey

90



Chapter 3 Responsive Swarms

No. of Nodes
100 200 300 400 500 600 700 800 900

C
on

se
ns

us
 S

pe
ed

 R
at

io

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Numerical
FLE (prominent node)

Figure 3.25: Consensus speed ratio for lattice ring networks with small world rewiring
probability of q = 0.1 and outdegree for all nodes set at 10. The error bars mark the
maximum and minimum deviation from the mean.

3.3.4 Ratio of Perturbation to Edge Weighting

This section presented the NoI algorithm, which selects only one leader from each
community of influence when applying the weighted model (−[I−CP ]L−CP ). In the
examples shown previously, selecting one leader from each community of influence
was sufficient for an optimal convergence to consensus. This does not appear to be
true for all cases, in particular when alterations are made to the ratio of perturbation
magnitude to adjacency matrix weightings, i.e. the individual edge weightings (ω =

ai j for a connection from i to j). All edges in the adjacency matrix have the same
weighting, ω . Figure 3.26 demonstrates that when this ratio is altered, for all edges in
the weighted model, the (numerically found) optimal strategy selects multiple leaders
from each community of influence. Therefore, NoI does not generate the optimal
leadership allocation in these altered ratio scenarios.

The reason for this change in leadership distribution is proposed to be as follows;
when the perturbation becomes large, relative to the capacity of edges in the graph, a
bottleneck forms that delays the spread of information. For a large enough perturbation
it will become more effective to distribute the perturbation across multiple nodes in a
community. Eventually, by decreasing the edge weighting, the most effective approach
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becomes that of providing all nodes in the graph with the same perturbation. This claim
is supported by the example in Fig. 3.26 where the numerically optimised leadership
selection is shown, for a network of autocratic leaders, to require multiple leaders per
community in the ω = 0.1 and 0.01 cases. As mentioned, the NoI method would not
find a near-optimal result for these cases (as more than one leader was selected by the
numerical optimiser for each community), but the more general approach provided by
CoI, introduced in the previous chapter, is still valid.

It is also worth observing that varying the perturbation magnitude has a similar ef-
fect on the unweighted leadership model, as shown in Fig. 3.27, where increasing the
weighting for all edges results in only a single leader being selected from each commu-
nity. Both Fig. 3.26 and 3.27 are similar for the ω = 0.1 & 0.01 cases. But when ω = 1
the difference is more obvious with the autocratic case only selecting one leader from
two communities while the egalitarian model has contributions from 5 communities
with multiple nodes in two of those communities supplied with a perturbation.
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ω = 0.01 ω = 0.1

ω = 1
ω = 10

Figure 3.26: For the weighted model, a numerically optimised perturbation is marked for
a 250 node k-NNR network (k = 8) with a different edge weighting in each plot. The first
three left eigenvectors of the Laplacian matrix are represented by vL1, vL2 and vL3. The
blue circles mark nodes with perturbations applied where the diameter is proportional to
the percentage of the total perturbation applied.
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ω = 0.01 ω = 0.1

ω = 1
ω = 10

Figure 3.27: For the unweighted model, a numerically optimised perturbation is marked
for a 250 node k-NNR network (k = 8) with a different edge weighting in each plot. The
first three left eigenvectors of the Laplacian matrix are represented by vL1, vL2 and vL3.
The blue circles mark nodes with perturbations applied where the diameter is proportional
to the percentage of the total perturbation applied.
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3.4 Variable Outdegree

Up until now this dissertation has focused on constant, k, outdegree networks but this
section shall consider the optimal perturbation problem applied to variable outdegree
networks. Constant outdegree being a subset of variable outdegree. In Section 3.2
constant outdegree networks were discussed that have a uniform first right eigenvector;
enabling the first left eigenvector (FLE) to be effective at highlighting nodes for leading
fast convergence to consensus. But when the outdegree is variable this produces a
more challenging environment for optimal leadership detection; it becomes not only
important to identify the most influential nodes (as highlighted by the FLE) but it
may also be relevant to identify and concentrate resources on those that are hard to
influence. It is worth reiterating that the optimisation metric is that of convergence rate
to consensus, where consensus requires the whole graph to reach the new state. The
issue can be summarised, colloquially, by saying that the variable outdegree problem
needs to ensure that no one is left behind while enabling the most influential nodes to
lead.

3.4.1 Communities of Dynamic Response

The Leicht-Newman community detection algorithm has been introduced previously
as a community detection method that compares the density of connections present
with the density expected from a network where the edges are randomly allocated. This
section presents the Communities of Dynamic Response community detection method,
which operates on directed networks and - unlike the Leicht-Newman method - is not
heuristic as it is indirectly based on the structural layout of the network. Communities
are instead determined by considering the prominent modes of dynamic response, i.e.
the system’s eigenvectors. A comparison of the communities found by the Leicht-
Newman algorithm and the Communities of Dynamic Response is shown in Fig 3.28
for a toy example, prior to the Communities of Dynamic Response algorithm being
formally defined. This figure indicates a similarity in community division between
the two methods but also that there are clear differences. The dynamic response of the
network finding fewer communities (marked with blue, orange and red coloured nodes)
than the Leicht-Newman algorithm (marked out by light green shading). The Leicht-
Newman communities are predominantly associated with one community of dynamic
response, with one exception. This exception sees a Leicht-Newman community split
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Figure 3.28: Comparison of communities - detected for a 50 node, 5 outdegree, k-NNR
graph - by the Leicht-Newman algorithm (highlighted in light brown) with those detected
by Algorithm 3.3 (node colour indicating community designation).

between two dynamic response communities. The question that needs to be answered
is: what is the point in having a different and differing community detection method?

The Leicht-Newman algorithm highlights a group of nodes, in the centre of Fig. 3.28,
as the smallest grouping, but as is known from Fig. 3.18 this community is home to
the most influential nodes for this network, as determined by the FLE. Therefore, these
nodes wield the most influence over the whole network, but seen through the lens of the
Leicht-Newman approach they appear to be the most isolated clique. The communi-
ties of dynamic response, in comparison, show that these nodes have a wider reaching
influence, and that this network is likely to respond as three distinct groups. It is also
worth reiterating that the Leicht-Newman detection algorithm is a heuristic process,
that relies on probability, and, therefore, the communities it detects may vary if re-
peated analyses are conducted. The Communities of Dynamic Response algorithm is,
however, based solely on the graph’s eigenvectors that do not change without changing
the graph first.

The Communities of Dynamic Response algorithm is defined by considering the first
three left eigenvectors of the directed Laplacian matrix of a network. These three
eigenvectors can be visualised by plotting each node according to its value in the eigen-
vectors, as depicted in Fig. 3.29 (a) & (b). This reveals the communities that consist
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(a) vL1 against vL2 (b) vL2 against vL3

Figure 3.29: Visualisation of node placement in eigenvector space, where vL1, vL2 and
vL3 are the first three left eigenvectors of the Laplacian matrix for the 50 node k-NNR in
Fig. 3.28. Community designation according to Algorithm 3.3 is noted using node colour
and the most prominent community nodes have black outlines.

of nodes between the most prominent node (which has the largest value according to
the FLE for its community) and the origin of the plot. Nodes in the same dynamic
response community are part of a connected path in the graph that leads to this promi-
nent node. When considering dynamic response of the whole network the FLE is of
most importance, as it captures the biggest and most cohesive (in the same direction)
system response, and, hence, is used to determine the most prominent nodes. These
prominent nodes in Fig. 3.28 & 3.29 are marked with a black outline and are the same
as those identified previously by CoI algorithms in Fig. 3.18.

A more detailed description of the Communities of Dynamic Response algorithm is
now given in Algorithm 3.3.
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Algorithm 3.3 Detecting communities of dynamic response
procedure COMMUNITY DETECTION

Find the first three, normalised, eigenvectors of the Laplacian, L ∈ IRN×N ,
(associated with the three smallest eigenvalues in magnitude) vL1, vL2 and vL3.
for i = 1 to N do

Set ei = [(vL1)i,(vL2)i,(vL3)i] and Si = |ei|.
end for
Sort N nodes by S, where I is the index and I(1) is the node with max(S).
Set n = 1.
for i = 1 to N do

Set nI = I(i)
if node I(i) has an outdegree > 0. then

oI is a node that has an outward connection ending at I(i) .
Slo→I(i)

oI is the scalar projection of eoI onto eI(i)
(
i.e. (eI(i) • eoI)/SI(i)

)
.

if SI(i) > SloI→I(i) ∀ oK . then
Add all oI nodes to Cn = {I(i),o1, ...,om}, where n is the community
number and m is the number of oI nodes.
Set list =Cn.
Set Sllist

n (1) = {SI(i),SloI→I(i)
1 , ...,SloI→I(i)

m }.
while |list|> 0 do

Set K = list(1).
for i = 1 to indegree of j do

oK is a node that has an outward connection ending at K .
SloK→I(i)

oK is the scalar projection of eoK onto eI(i).

SloK→I(i)
K is the scalar projection of eK onto eI(i).

Find Scomp by subtracting SloK→I(i)
oK from SloK→I(i)

K .
if Scomp > 0 and oγ /∈Cn then

Add oK to Cn and list.
Add SloK→I(i)

K to Sllist
n .

end if
end for
Remove list(1) from list.

end while
Set n = n+1

end if
end if

end for
for i = 1 to N do

if node i is present in multiple communities (Cn) then
(Sllist

n )i is node i’s entry in Sllist
n .

Remove node i’s entry from Sllist
n and Cn ∀n where

(Sllist
n )i < max((Sllist

n )i).
end if

end for
end procedure 98
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3.4.1.1 Outdegree as a Marker for Influence

In Fig. 3.30 the left eigenvectors are again used to display a network, this time a 50
node graph where connections have been randomly assigned and nodes are constrained
to have an outdegree from 3 to 7. Unlike the previous example network, the communi-
ties of dynamic response are less clearly defined for this network and often composed
of only a few nodes. This is not unexpected as, has been previously discussed, a ran-
dom graph will usually result in a less well defined community structure. In fact, using
the definition of Leicht-Newman community detection, there should be only one com-
munity present. In contrast there are many communities of dynamic response detected.
The presence of so many dynamic response communities can be understood by look-
ing at Fig. 3.31. Observe that the community leaders (nodes of a specific colour that
are furthest from the plot’s origin) are primarily those with the lowest outdegree. Since
there are no clearly defined communities the influential nodes are primarily those that
are hardest to lead, i.e. the nodes with the lowest outdegree. This relates back to the
challenge of driving a variable outdegree network to consensus where a main part of
the focus is that no one is left behind. This claim can be supported by taking the same
approach as Section 3.3.2.1, where the effectiveness of a single autocratic leader was
investigated.

(a) vL1 against vL2 (b) vL2 against vL3

Figure 3.30: Visualisation of node placement in eigenvector space, where vL1, vL2 and vL3
are the first three left eigenvectors of the Laplacian matrix for a 50 node random graph
where outdegree varied between 3 and 7. Matching node colour indicates nodes belonging
to the same community according to Algorithm 3.3.

99



Chapter 3 Responsive Swarms

0.02 0.04
v

L1

-0.04

-0.02

0

0.02

0.04

0.06

0.08

v L2

3
4
5
6
7

Outdegree

(a) vL1 against vL2

-0.04 -0.02 0 0.02 0.04 0.06 0.08
v

L2

-0.02

0

0.02

0.04

0.06

0.08

v L3

3
4
5
6
7

Outdegree

(b) vL2 against vL3

Figure 3.31: Visualisation of node placement in eigenvector space, where vL1, vL2 and
vL3 are the first three left eigenvectors of the Laplacian matrix for a 50 node random graph
where the outdegree varied between 3 and 7. The node colour relates to the node outdegree.

Eq. 3.36 and 3.37 show that, for the unweighted model with variable outdegree, the
mean is always m = tr L+∑i cii

N ∀ i ∈ V where M =−L−C and cii is a diagonal element
of C. As seen before, the trace of M2 (i.e. tr M2) is the only value that can be optimised
when the magnitude of the perturbation is constrained. To maximise the magnitude of
λ1 a minimal value of s is required. As discussed in Section 3.3.2.1, for the weighted
model, reducing the outdegree of a node reduces the trace of M2. This relationship is
similar in the unweighted model.

Consider that, for the unweighted case, the diagonal element (M)ii = sum j ai j ∀ j ∈ V ,
then (M2)ii = ((M)ii)

2+ . . . where ((M)ii)
2 becomes an increasingly dominant compo-

nent of (M2)ii as the outdegree of i increases. Since the perturbation has to be added to
a diagonal element of M, that is then squared, adding it to the smallest element (i.e. the
row with the lowest outdegree) will result in the smallest increase in tr M2. This is not
the whole picture but supports the finding that many low outdegree nodes are selected
as influential leaders, especially in graphs that lack clear community structure, such as
in Fig. 3.30.

For completeness, the case of a nearest neighbour graph with variable outdegree, which
is constrained to be from 3 to 7, is considered and depicted in Fig. 3.32. Despite the
addition of variable outdegree the nearest neighbour network is still clearly divided
into communities of dynamic response. The outdegree remains related to influence,
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as in the random graph example, with the prominent community nodes all having a
low, either 3 or 4, outdegree as depicted in Fig. 3.32 (b) & (c). But, unlike the random
case, there are low outdegree nodes close to the plot’s origin, which indicates that these
nodes are less influential. Therefore, the relationship between outdegree is not as clear
cut, as it was in the random case, with position within the community structure also an
influencing factor.

3.4.1.2 Leader Selection

In Section 3.2.4, the CoI approach was compared with a numerical optimiser. Fig. 3.33 (a)
presents a similar comparison of the CoI method versus the numerical optimiser where
both are attempting to assign optimal resources/perturbations for driving the network
to a new consensus state.

Fig. 3.33 (a) demonstrates that for a variable outdegree network the CoI approach
(leading CoI nodes are marked out by different coloured circles) fails to find the nu-
merically optimal leadership nodes (marked out with orange circles that represent ap-
plied perturbation). The leading CoI nodes 34, 15 and 41 are not given any resources
and nodes 13, 43 and 49 are not detected as being influential. In contrast to the CoI
method’s success, it can be seen that the prominent nodes from Fig. 3.33 (b) and (c) -
i.e. nodes 13, 28, 43, 45 and 49 that have the highest vL1 value for their community
- are the only nodes allocated with the numerically optimal perturbation. It is inter-
esting to note by observing nodes 43 & 49, and 13 & 28, that when two communities
are aligned in a similar direction on the eigenvector plot it is the prominent node that
is furthest from the origin and has the greatest vL1 value that is assigned with more
resources. Another noteworthy point is that the magnitude of a node’s vL1 value is not
proportional to the resources allocated to it; for example, node 45 has the greatest vL1

value but not the largest allocation of resources.

Fig. 3.33 highlights the potential for the Communities of Dynamic Response method to
be adapted into a computationally light leadership selection algorithm. The calculation
of the first three left eigenvectors of the network would be used to select the prominent
nodes in the communities found on the eigenvector plot as leaders. This could be
done in a similar fashion to the CoI and NoI approaches, where an optimiser allocates
resources but the search space is drastically reduced by only considering a select group
of nodes.

101



Chapter 3 Responsive Swarms

(a) The communities of dynamic response are marked using different coloured nodes
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Figure 3.32: NNR graph with 50 nodes and an outdegree varying between 3 and 7: (a)
Planar NNR graph layout based on x-y coordinates. Blue lines indicate two-way commu-
nication edges and grey indicates a one-way connection, with the red at the start of a line
marking it as an outgoing edge. (b) & (c) Visualisation of node placement in eigenvector
space, where vL2 and vL3 are the second and third left eigenvectors, respectively, of the
Laplacian matrix. The dot colour denotes node outdegree.

The Communities of Dynamic Response method also excels as the most widely ap-
plicable leadership detection (optimal perturbation allocation) algorithm developed in
this dissertation. Since variable outdegree networks have boundless topological lay-
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(a) Network layout with the radius of the orange circles - centred on nodes - proportional to
the resource/perturbation applied to that node. Five leading nodes from the Communities
of Influence, see Algorithm 3.1, are also marked by a coloured circle.

(b) vL1 against vL2 (c) vL2 against vL3

Figure 3.33: NNR graph with 50 nodes and an outdegree varying between 3 and 7 where
certain nodes are labelled with an ID number for reference: (a) Optimal resource allocation
using a numerical optimiser. (b) & (c) Visualisation of node placement in eigenvector
space, where vL1, vL2 and vL3 are the first three left eigenvectors of the Laplacian matrix.
Nodes are coloured according to community designation as defined by Algorithm 3.3.
Certain nodes are labelled with an ID number for reference.
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outs and analysis can be applied to many other systems and applications, whereas
much of the focus here has been on networks such as k-NNR that are strongly relevant
to swarming systems. To this end, the following chapter shall move beyond develop-
ing decision-making and control methods for future swarming systems and explore the
potential of applying such algorithms as analytical tools on existing networks.

3.5 Summary

A number of semi-analytical methods have been presented, for constant outdegree
networks, that are able to select an optimal perturbation for leading a network rapidly
to consensus. The first of these methods, the Power Opt approach, relies solely on
the first left eigenvector (FLE) of the Laplacian matrix that is then scaled to realise
an optimal allocation. This method was shown to operate particularly well, matching
a numerical optimisers performance, in high outdegree networks where there is only
one dominant community present. When multiple influential communities are present,
such as in low outdegree k-NNR networks, another method of leadership selection
was developed; the Communities of Influence (CoI) approach. This approach is also
reliant on the FLE but crucially also investigates the FLEs of manipulated versions of
the adjacency matrix before employing an optimiser to produce an optimal leadership
allocation.

The influence of leadership style on convergence speed to consensus was considered by
contrasting egalitarian leaders with autocratic ones. Egalitarian leaders are those that
receive a perturbation but also have their state mediated by those they are connected
to. Autocratic leaders give greater weighting to the perturbation; in the case of a single
leader receiving all of the perturbation resources they will ignore all of their neighbours
and follow only the perturbation. Autocratic leaders were found to be more effective in
leading a fast convergence to consensus when a non-uniform perturbation was applied.
Autocratic leaders are often more effective when there is only one per community,
therefore, the Nodes of Influence (NoI) was developed to allocate leadership to indi-
vidual nodes in the most influential communities. This method was demonstrated to be
sub-optimal when the ratio of perturbation magnitude to edge weighting was altered;
specifically when increasing the perturbation or decreasing the edge weighting enough
multiple autocratic leaders in the same community became optimal.

Finally the case of variable outdegree networks, of which constant outdegree networks
are a subset, was considered. By combining the first three left eigenvectors, and con-
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sidering what nodes were connected, it was possible to detect communities of dynamic
response; i.e. the dominant communities that form in response to optimal perturba-
tions. The most prominent nodes in these newly defined communities were also iden-
tifiable, according to the FLE, and hence the most effective leaders for fast consensus
could be found. This is a useful discovery as the Power Opt, CoI and NoI methods
are not effective on variable outdegree networks, where the first right eigenvector is no
longer a uniform vector.
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Beyond the Swarm:
Brain Connectomes

In the previous chapter systems were considered where nodes followed the actions of
their neighbours. This meant that if well-connected nodes changed their state then
information on this change of state would spread quickly to the whole swarm. The
challenge, that has been successfully addressed by starlings, is to achieve high re-
sponsiveness as the scale of the swarm increase. The current chapter shall consider a
network that is as vast as any known to humankind but one that is required to respond
rapidly to stimulus; the brain. These networks are commonly referred to as connec-
tomes with the scale far exceeding anything considered thus far. But that is not the
only difference in this chapter, as a slight change of perspective will be required. For
connectomes, the connections are defined so that, the direction of the edge corresponds
to the direction of information flow. An effective leader node, as defined previously,
is likely to have many edges pointing towards it. In the connectome scenario, a so-
called ‘effective leader’ would become a bottleneck for information in the graph. This
‘leader node’ remains highly influential in the graph and critical to delivering the con-
nectome’s function, but now acts as a collator of information, rather than an effective
leader of nodes. The analytical capabilities, developed thus far, will be shown to pro-
vide insights into the key regions and the functions that these regions enable.

The human brain is often cited as being the most complex known object, due to the es-
timated 100 billion neurons with 100 trillion synaptic connections Braun et al. (2015).
Our ability to map neurons and their connections is limited but ever improving. For
smaller (non-human) brains, tracing the flow of, for example, silver along neuronal
tracts in a brain can provide a map of connections (see Heimer and Robards (2013)
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for more information). These networks are referred to as structural connectomes as
the brain’s underlying wiring structure is mapped out. But these processes are far too
slow and labour intensive for more complicated and intricate brain structures. More
advanced methods have been developed that use electro-magnetic scans, such as diffu-
sion magnetic resonance imaging and functional magnetic resonance imaging (fMRI),
to create maps that encompass millions of neurons (see Van Den Heuvel and Pol (2010)
for a review on mapping resting-state brains with fMRI). These methods still require
refinement and have been used, primarily, to produce undirected graphs. The direction-
ality of the links is often unknown as it is only the co-activation of functionally related
brain regions that is noted, which does not consider which region activated first and,
therefore, does not highlight edge direction. These approaches do not produce a map
of the underlying structure, but instead reveals regions that have a function together,
therefore these graphs are called functional connectomes.

It is often the case that, when applying graph theoretical methods, the graph is trans-
formed to an undirected graph. This may make the analysis simpler, and the mathemat-
ics easier to work with, but much of the key information is lost by ignoring the imbal-
ance in the outdegree to indegree ratio. Indeed the Laplacian matrix, used throughout
this dissertation, emphasises this imbalance further with each diagonal element equal
to the sum of the non-diagonal elements in its row i.e. the indegree of a node.

The primary method of analysis in this chapter is based on the first three eigenvectors
of the Laplacian matrix, in a similar manner to Section 3.4 where the Communities of
Dynamic Response was introduced for directed graphs. For the cases where directed
graphs have not been produced, the Communities of Dynamic Response method shall
be employed to show that the method is still effective in undirected cases. The eigen-
vectors capture the dynamics of information flow from only the structural information
given by the graph topology. This approach is analytical, which can be of benefit if
considering possible datasets containing billions of neurons where any data processing
algorithms would have to be computationally light. It is, therefore, with an eye towards
the future of neuroscience that the following work is presented; efforts have already
been made to analyse many of the existing, smaller, brain connectomes to show how
these graphs correspond to existing intuitions and knowledge gained through experi-
mentation. These previous studies have identified important brain regions by perform-
ing sophisticated numerical simulations of information flow throughout the brain. But
such algorithms would be unlikely to perform as well as an analytical approach on mas-
sive graphs. These previous analyses do provide a useful comparison for the methods
developed herein with the majority of this chapter devoted to such comparisons.
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Understanding the brain’s function is a major pursuit of humankind, with mapping
and comprehending the human connectome a critical step. This work takes a step
towards achieving such a feet with its potential application on vast and, on the surface,
incomprehensible network.

4.1 Caenorhabditis Elegans

This chapter shall begin with a relatively simple subject, the caenorhabditis elegans; a
non-parasitic nematode (worm) that is transparent and unsegmented with a long cylin-
drical body shape that is tapered at both ends. They grow to about 1 mm in length and
have been a hugely popular subject for study, ever since Sydney Brenner introduced the
C. elegans as a model organism for developmental biology and neurology research, as
documented by Laboratory for Optical and Computational Instrumentation, University
of Wisconsin-Madison (2009).

The neuronal network of the C. elegans was original charted by White et al. (1986) in
1986 and is shown in Fig. 4.1 (image taken from WormAtlas (2013)). The 279 neu-
ron (node) network, used throughout this section, is an updated version of the original
connectome that was produced after further investigation by Varshney et al. (2011).
The neurons in this connectome belong, primarily, to four functional categories: mo-
tor neurons - control movement through synaptic contacts onto muscle cells; sensory
neurons - receive different forms of sensory input; interneurons - relays signals onto
other neurons; and polymodal neurons- poses multiple of these functions.

This connectome is composed of two topologies that can also be collated into a single
directed graph. The topologies are an undirected electrical junctions network and a
directed network of the chemical connections. When considering only the electrical
junction, the giant component of the graph is 248 nodes as detailed by Varshney et al.
(2011). When the graph becomes directed with the addition of the chemical connec-
tions the giant component grows to 274 nodes.

4.1.1 Varshney’s Intuitions

In the previous chapter, the networks were analysed by examining the system’s modes
of dynamic response (eigenvectors). A similar approach has already been taken for the
undirected electrical gap junction network of the C. elegans but this chapter expands
upon the intuitions detailed by Varshney et al. (2011) on the application of spectral
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Figure 4.1: Map of neurons with longitudinal nerve tracts and commissures in the body.
Image taken from WormAtlas (2013).
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analysis to brain connectomes. Varshney et al. highlighted the similarity between the
edges of a brain connectome and a network of resistors where a charge could be applied
to certain nodes and allowed to dissipate. For ’circuits’ represented by small eigenval-
ues of the Laplacian matrix, the charge will decay slowly after application and, thus,
these eigenmodes correspond to long-lived excitations. These long lived excitations
would be equivalent to the fastest modes of response in the starling networks, as de-
scribed in the previous chapter, where the direction of an edge represents the opposite
direction of information flow when compared with a connectome.

The eigenvectors of the Laplacian for a strongly connected graph (except for the one
associated with λ1) split the nodes according to the sign of their eigenvector entry. This
property of the eigenvectors is what produces the, previously presented, Communites
of Dynamic Response (Algorithm 3.3). Varshney et al. (2011) notes that circuits found
through experimental studies can be revealed by certain eigenvectors. One such ex-
ample is displayed in Fig. 4.2 (taken from the paper by Varshney et al. (2011)) where
the eigenvector, v3, associated with λ3 highlights the nodes belonging to circuits by
their sign and the large magnitude of their v3 entry. For positive entries, a coupling of
chemosensory neurons in the tail (PHBL/R) is found along with interneurons (AVH-
L/R, AVFL/R) and motor neurons (VC01-05) involved in egg laying behaviour. These
neurons are all weakly coupled to the circuits of chemosensory neurons in the head

Figure 4.2: Eigenmode (eigenvector) v3 corresponding to λ3. Image taken from Varshney
et al. (2011).
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(ADFR, ASIL/R, AWAL/R) and other interneurons (AIAL/R) that make a prominent
appearance on the negative side.

By employing the Communities of Dynamic Response using three consecutive eigen-
vectors, as shown in Fig. 4.3, the circuits identified by λ3 can be clearly defined as
belonging to the same circuit/community. The nodes highlighted in Fig. 4.2 have la-
bels attached to them in Fig. 4.3 for clarity.

In both Fig. 4.2 and 4.3 the circuits were clearly identifiable. However, this will not
always be the case. Consider λ6, see Fig. 4.4, where there appears to be two circuits
present. By employing the Communities of Dynamic Response (using λ5, λ6 and
λ7) a more nuanced picture emerges, in Fig. 4.5, where there are over 15 communi-

(a)
(b)

Figure 4.3: Visualisation of node placement in eigenvector space, where vL1, vL2 and vL3
are associated with λ1, λ2 and λ3 of the Laplacian matrix for the electrical junction network
of the C. elegans. Community designation (see Algorithm 3.3) is noted using node colour.
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Figure 4.4: Eigenmode (eigenvector) v6 corresponding to λ6.

ties detected. The circuit with chemosensory neurons and interneurons highlighted by
λ3 (ASIL, AIAL, ASIR, AWAL, AIAR, AWAR, ADFR) is still clearly identified in
Fig. 4.5.

4.1.2 Bacik’s Flow Model

This section shall compare the results gained from perturbation driven consensus and
dynamic response of the Laplacian matrix with that of numerical flow models con-
ducted on the same network. The paper by Bacik et al. (2016) is used for the com-
parison. Their work took a “dynamics-based (more specifically, flow based) perspec-
tive” on the C. elegans connectome “rather than focusing on structural features of the
network”. This chapter aims to demonstrate that structural information can provide
accurate insights into the dynamical behaviour of a network and does, in fact, pro-
vide a dynamics-based perspective without the needs for simulation. The aim is to
lessen the dependence on numerical simulations that could become computationally
exhaustive if considering connectomes where the neurons number in the millions (if
not billions). The key to these dynamical insights is in calculating the eigenvectors for
a graph, where information about node influence and response can be found.

The model presented by Bacik et al. (2016) uses a continuous-time diffusion process
to model the spread of information in the C. elegans neuronal network. This approach
captures signal diffusion along the directed edges of the connectome with a signal
introduced continually to every node in the graph. Each node transmits this signal
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Figure 4.5: Visualisation of node placement in eigenvector space, where vL5 and vL6 are
associated with λ5 and λ6 of the Laplacian matrix for the electrical junction network of the
C. elegans. Community designation (see Algorithm 3.3) is noted using node colour.

along its outgoing edges according the relative weight of those edges. Signals can
escape the network by arriving at sink nodes, which have no outgoing edges only
incoming edges. The re-introduction of signals can be understood to represent external
stimulus to neurons in the brain.

Bacik et al. investigated flow-based partitions of the connectome using the Markov
Stability (MS) framework for community detection. This framework, as well as the
diffusion process, shall be described here but for more detail see Bacik et al. (2016).
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MS Framework

The MS framework is used to define communities in the graph by examining the dif-

fusion of information based on the framework provided by Bacik et al. (2016). This

could be thought of as ink diffusing through the graph; for a completely random graph,

where no distinct communities form, the ink would diffuse isotropically and rapidly to

an even distribution across all nodes. For a graph, with prominent communities, the ink

would be trapped in the communities for longer than would be expected in the random

graph. Therefore, the communities, detected in the graph, would depend on time al-

lowed for diffusion. After a short amount of time, small communities will be detected.

Given a longer period of diffusion, larger community structures would be revealed. The

first analysis presented by Bacik et al. (2016) shall consider five time steps during the

diffusion process and, therefore, five different community structures, see Fig. 4.6 where

they are referred to as paritions A to E .

4.1.3 Single Ablations

The first comparison looks at predicting which nodes are most disruptive when re-
moved from the network. Bacik et al. (2016) revealed the partitions of the C. elegans

connectome at five different time steps, using the MS framework, as well as uncovering
which nodes would be most disruptive to the partition structure at each step.

Fig. 4.6 from Bacik et al. (2016) highlights the nodes that, if deleted/ablated, will have
the largest effect on the community (partition) structure present. Since the partitions
vary for each time step (A to E) the nodes that will be most disruptive, if deleted, vary
for each partition structure. The CV[i](P), used to rank the nodes in Fig. 4.6, represents
community variation (CV ) in the partition structure (P) for a deleted node (i), which
was calculated by running the MS framework for all possible single node deletions.
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Community Variation

The change induced in the partitions as a result of a node’s deletion is defined by Bacik

et al. (2016) as the community variation CV[i](P̂). To calculate this, the variation of

information, V I(P̂a, P̂b), between two partitions, P̂a and P̂b is defined by Meilă (2007)

as

V I(P̂a, P̂b) =
2Ω(P̂a, P̂b)−Ω(P̂a)Ω(P̂b)

log(n)

where Ω(P̂a) =−∑C q(C)log q(C) is a Shannon entropy, with q(C) given by the relative

frequency of finding a node in community C in partition P̂a; Ω(P̂a, P̂b) is the Shannon

entropy of the joint probability; and the factor log(N) ensures that the measure is nor-

malised between [0,1]. The community variation is then defined as

CV[i](P) = minτV I(P̂, P̂[i](τ))

Figure 4.6: Effect of single ablations on the make-up of partitionsA through to E . Figure
taken from Bacik et al. (2016).
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where P̂ are the partitions found for the unalterred graph and P̂[i](τ) is the most similar

partition achieved for the graph with node i removed. The community variation values

are shown in Fig. 4.6 for the nodes that cause the most disruption.

This community variation analysis focused on the robustness of the graph to node
deletion, which is a different concept from that of detecting main bottleneck nodes
for information flow in a graph. However, the comparison is still useful for valida-
tion as these bottleneck nodes are well connected to the majority of the graph and,
therefore, will be the nodes that cause the largest disruption to the partitions in the
graph if removed. This claim is supported by Fig. 4.7 where all of the nodes that
had the largest effect on partitions A to E , as detailed in Fig.4.6, are highlighted in
red. Fig. 4.7 (b) shows that the red ‘+’s are mainly those with the highest vL1 values
when compared with nodes of the same vL2 value. The prominent red ‘+’ nodes in
Fig. 4.7 (a) and (b) are all, except one, motor nodes that have the largest effect on
partitions A to E . Looking at the detail on Fig. 4.7 (c) it can be seen that SMDDR is
connected directly to the most prominent dynamic response community, shown in dark
blue in Fig. 4.7 (d). This may explain why SMDDR was found to be more disruptive
than DA08 (see Fig. 4.7 (c)), despite DA08 posessing a higher vL1 value.

The only interneuron that displays prominently, according to vL1, is RMDVL. The
other nodes are located near the origin of the plot. The role of the interneurons are
to pass information on, therefore, it is not surprising that they do not appear promi-
nently according to vL1. The results from Bacik et al. were for single ablations that
cause partition disruption with interneurons likely to disrupt partitions as they act as
the bridge between different types of neurons. In fact, the disruptive interneuron nodes
AVBR, AVAR and AVAL are found to be the 2nd, 3rd and 4th highest ranked according
to the betweeness centrality metric (that quantifies how often a vertex/node acts as a
bridge along the shortest path between two other nodes). AIAL and AIAR are disrup-
tive interneurons that neither have high betweeness scores or vL1 values. It is proposed
that AIAL and AIAR are key nodes in a small but prominent network community, that
displayed prominently in Fig. 4.3 and 4.5 when looking at only the electrical junction
network. Therefore, their removal is likely to cause significant localised disruption.
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(a) (b)

(c) (d)

Figure 4.7: Red ‘+’s and labels mark the nodes, in Fig. 4.6, that caused major disruption
to the partitions A to E . Black ‘+’s mark the other nodes in the network. (a) vL1, vL2
and vL3 are the first left eigenvectors. (b) vL1 against vL2 (c) zoomed in section (d) the
Communities of Dynamic Response that a node belongs to is denoted with the colour of
its dot.
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4.1.4 Signal Diffusion

The introduction of a simulated signal to certain nodes in the C. elegans graph shall
now be considered. Perturbation driven consensus was a major theme of the previous
chapter and the introduction of a signal is similar to applying a perturbation to a graph,
therefore similar methods can be called upon again. Fig. 4.8 was taken from the same
Bacik et al. (2016) paper and shows the signal spreading from different sets of starting
nodes. These starting nodes are as follows:

(i1) PDEL, PDER, PLML, PLMR, PVDL, PVDR

(i2) ADEL, ADER, ALMR, AQR, AVM, BDUL, BDUR, FLPL, FLPR, SDQL,
SIADL, SIADR

(i3) PHAL, PHAR, PHBL, PHBR

(i4) ADLL, ADLR, ASHL, ASHR, ASKL, ASKR

with the nodes showing the strongest response to the signal highlighted and labelled.

Figure 4.8: Depiction of a simulated signal propagating through the C. elegans connec-
tome from differing source neurons. Figure taken from Bacik et al. (2016).
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The approach taken throughout this dissertation has to be tweaked for this scenario.
Previously the eigenvectors were used to detect the most effective influencers in the
network, but now they are being employed to find those who are most influenced by the
nodes receiving a perturbation. Therefore, it is the eigenvectors of an altered Laplacian
(L), where the diagonal matrix D in L = D−A is created by summing the columns (not
the rows as previously seen) as di = ∑i ai j. Another alteration of the Laplacian is to
add a perturbation (p) to certain elements of D, therefore dp = ∑i ai j + p where dp

represents a perturbed element.

The effect of adding a perturbation to a diagonal element is to reduce the value of
that entry according to the first left eigenvector (FLE), for an explanation of how p

influences the FLE see Theorem 3.3. The FLE shall be referred to as vIL1 here as the
elements of the diagonal matrix are equal to the sum of the indegrees for each element
(plus any perturbations applied). This reduction in vIL1 entries will have a knock-on
effect for any node connected to a perturbed node, with the largest reductions seen for
those nodes that are most heavily influenced by the perturbed nodes. This is true for
the FLE of this perturbed Laplacian when the degree matrix depends on the outdegree
or indegree. But in the case of indegree, the FLE of the unperturbed Laplacian is a
uniform vector. Therefore, any loss in eigenvector entry value for either the perturbed
nodes or nodes strongly influenced by those perturbed nodes shall be clearly shown.
This is displayed in Figure 4.9 where the red ‘x’s mark nodes, highlighted in Figure 4.8,
that expressed the strongest response to the introduced signal.

In Fig. 4.10 and 4.11 a magnified section from the plots in Fig. 4.9 are displayed.
From these figures it can be seen that Bacik et al.’s results do not match completely
with those produced by the eigenvector approach. Most of the strongest responders
are identified correctly, but there are some black ‘x’s that are more prominent than
would be expected and a few red ‘x’s that have not seen much of a reduction in their
vIL1 value. Instead the eigenvector approach builds on Bacik et al.’s result to provide
further insights. In particular, it identifies whether strongly responding nodes are part
of local circuitry or well connected to the rest of the network. The red ‘x’s that have
not deviated far from their uniform eigenvector value are those that respond strongly to
the signal introduced but are also strongly connected to other pathways in the network.
Whereas the red ‘x’s with clearly reduced vIL1 values must be heavily influenced by
the signal source nodes and so be part of an information pathway with these source
nodes at the start.
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(a) i2 (b) i1

(c) i4 (d) i3

Figure 4.9: Response of c. elegans connectome to a perturbation where red ‘+’s mark
nodes highlighted in Fig. 4.8. Black ‘+’s mark the other nodes in the network.
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4.2 Macaque

The next subject of study, the macaque, has a substantially larger connectome than the
C. elegans and is a stepping stone towards considering a human connectome. Macaque
brain networks are readily available, which has led researchers to take up the task of ap-
plying graph theory to these connectomes in an attempt to better understand the brain’s
function. This section will continue to demonstrate the efficacy of the Communities
of Dynamic Response method, in response to the claimed limitations of using a graph
theoretic approach to investigate information flow.

The paper by Mišić et al. (2014) stated that the hippocampus (CA1) of the macaque
had long been known to neuroscientists to hold an influential role in the brain’s de-
cision making architecture. This region has been found to play an important role in
memory function as found by Squire (1992) and Moscovitch et al. (2005) where it is
most influential during the initial phase of memory creation. Mišić et al. notes that
the hippocampus is particularly noteworthy for its ability to form connections between
arbitrarily different external events, which highlights its role as a hub for information
from around the brain. Mišić et al. cites a number of graph theory based studies that
have failed to identify the hippocampus as an important hub, see Gong et al. (2008);
Hagmann et al. (2008); van den Heuvel et al. (2012) for humans and Harriger et al.
(2012); Honey et al. (2007); Modha and Singh (2010); Sporns et al. (2007) for the
macaque. Stating that these “analyses of anatomical and functional whole-brain net-

works have largely failed to demonstrate the topological centrality of the hippocam-

pus.” The conclusion of this study was that “the functional capacity of a given region

or subnetwork cannot be fully discerned by only analyzing the static structural con-

nectivity of the brain” ∗. Mišić et al. argues that the hippocampus is critical as it is
a bottleneck in the network through which information is funnelled. A definition that
is similar to the description, earlier in this chapter, for what the most prominent nodes
according to the FLE represent.

4.2.1 Hippocampus in the Queueing Network

Kötter (2004) created the CoCoMac database, which included a macro level map of the
macaque cortical (outer layer of the cerebrum) connectivity. This connectome was an

∗Functional capacity is understood to be an assessment of how effectively a region can carry out a
given function. In the case of the hippocampus, this would be an assessment of its ability to receive
information from across the whole network.
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aggregated network created from several hundred published axonal tract-tracing stud-
ies. Tract-tracing is the most popular method for mapping connections in the brain,
where a fluid (such as silver) is carefully observed as it traverses the connections be-
tween neurons to create a map of connections. The network nodes are defined as
neuronal areas with the connections between neurons assimilated to provide a macro-
scopic picture of information flow. The version of this connectome used here and by
Mišić et al. contains 242 nodes where each edge has the same weighting.

The information flow was modelled as a discrete-event queueing network by Mišić
et al. (2014). This queueing network functions by continually generating signal units,
at randomly-selected grey matter nodes in the network, and assigning these units with
randomly-selected destination nodes. The signals then diffuse through the network via
white matter projections (edges). Grey matter nodes are modelled as servers with a
finite buffer capacity, such that if a signal unit arrives at an occupied node, a queue
will form. Upon reaching its destination node, the signal unit is then removed from the
network. Mišić et al. used this numerical model to show that the hippocampus (CA1)
is a central hub according to this aggregated network. Demonstrating that the CA1
experiences a high throughput of signal traffic that places it in the top 3% for the total
number of signal units that arrive at a node, the mean number of signal units at a node
and the proportion of time a node is occupied by signals.

4.2.2 An Eigenvector Perspective

By examining the eigenvectors of the Laplacian matrix for the CoCoMac connectome,
the influence of the hippocampus (CA1) can also be revealed. First, the influential
points of information convergence in the CoCoMac network are identified in Fig. 4.12.
The most prominent areas are the TFM and TFL with CA1 appearing, on the surface
at least, to be unremarkable with a relatively small vL1. However, a graphic from
Mišić et al. (2014) demonstrates that this finding is in fact a confirmation of CA1’s
importance, see Fig. 4.13. Of the three outgoing connections, from TFL and TFM, two
of them connect to CA1. This is an important finding as this graph theoretical approach
has identified not only the importance of TFL and TFM as collators of information but
also CA1, which receives the output of this collation. The eigenvector approach reveals
that CA1 does not, in possible contradiction to Mišić et al. (2014), act as a bottleneck
but rather processes the collated data from TFM and TFL that appear to be the true
bottleneck nodes. This finding is significant as it demonstrates that it is possible to
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Figure 4.12: vL1 and vL2 are the first left eigenvectors. Each ‘+’ represents a neuronal area
with some prominent areas marked on the plot.

Figure 4.13: Outgoing and incoming connections from the TFL, TFM and CA1 neuronal
areas. Image taken from Mišić et al. (2014).
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detect CA1’s influence and importance by considering only structural connectivity of
the brain.

Detecting CA1’s influence using eigenvectors has been shown to be possible, but it
required some investigation to look beyond TFM and TFL. However, this approach
can be extrapolated to other nodes and connectomes reducing the need to numerically
investigate information flow. Extending the intuitions gained to the other prominent
nodes in Fig. 4.12 results in Table 4.1 where each highlighted prominent node (PN) is
detailed alongside an associated outgoing connection node (OCN) or nodes that lie at
the end of the PN’s outgoing edge(s). These OCNs, like the CA1, have an important
role in the macaque brain and are likely to have more influence than the PNs (the
bottleneck nodes). One clear example is the M2-HL as the PN that is connected to
the M1-hl as the OCN. In this case the supplementary motor cortex is acting as the
bottleneck that then provides information to the primary motor cortex, which is the
most influential region for motor control.

Table 4.1: Prominent nodes from Fig. 4.12.

Prominent Node (PN) Outgoing Connection Node (OCN)

Acronym Merged Brain Region Acronym Merged Brain Region

TFM Temporal area TF (medial
part)

CA1 Hippocampus

TFL Temporal area TF (lateral
part)

CA1,
Pros.

Hippocampus, Prosubicu-
lum

TSA Transitional sensory area 23c, 31,
PECg

Area 23c, Area 31, Parietal
area PE (cingulate part)

D9 Dorsal area 9 32, 14,
M9

Area 32, Orbitofrontal
area 14, Medial area 9

28m Medial entorhinal cortex TG Temporopolar area TG

M2-HL Supplementary motor cor-
tex M2, hindlimb area

M1-HL Primary motor cortex M1,
hindlimb area

DG Dentate gyrus ENT Entorhinal cortex

By representing the nodes with the first two, left, eigenvectors the prominent nodes are
identified in Fig. 4.12. A large indegree would be one intuitive identifier of prominent
nodes, however of the highlighted nodes in Fig. 4.12 the TFL node has the highest
indegree but is only 20th highest when considering the whole network. The outdegree
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is also a critical factor, as a node with a high outdegree and indegree will pass on much
of the information it receives and not act as a prominent node bottleneck. This claim
is supported by the ratio of outdegree to indegree (O : I) being significantly higher for
TFM and TFL than any other node, where the ratio is 34 and 20.5 respectively. The
next closest nodes, when sorted by O : I ratio, are as follows: DG, 28m, D9, TSA, and
M2-HL. These nodes are clearly prominent in Fig. 4.13 but the order according to the
O : I ratio differs from vL1. In summary, the PNs are likely to have a high indegree and
low outdegree, which is why there are few OCNs per PN in Table 4.1.

The paper by Mišić et al. (2014) also lists the most traversed connections in the graph,
which are detailed in Table 4.2 with the vL1 ranking of the nodes, at either end of the
connection, included. It is evident from the table that the outgoing connection node
is ranked highly, and for the most part in order, according to vL1. This change in
order, according to vL1, for the outgoing nodes could be attributed to node D9 having
two highly traversed edges. Whilst the lower ranked neuronal area 28m only has the
one and so more traffic accumulates on that edge. Table 4.2 lends further support to
the claim that the nodes ranked by vL1 can be viewed as bottlenecks for information
from across the whole network. The PN nodes are at the source of all of the largest
information carrying edges in the network, indicating that the majority of the network’s
information passes through these PN nodes.

The limitation of both the analysis conducted by Mišić et al. (2014) and that done in
this section is that the connectome used does not contain any edge weighting infor-
mation. It is likely that the connections between regions in the Macaque brain have

Table 4.2: Most traversed edges with node vL1 rankings.

Traversed edge
ranking

Edge
Description

Outgoing node
vL1 ranking

Incoming node
vL1 ranking

1 TFM to CA1 1 22
2 TFL to CA1 2 22
3 TFL to Pros 2 50
4 TSA to 31 3 12
5 TSA to 23c 3 29
6 TSA to PECg 3 13
7 28m to TG 5 49
8 D9 to 14 4 47
9 D9 to 32 4 41

10 M2-HL to M1-HL 6 33
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differing weights and including this information may alter the results. For example, if
the edges listed in Table 4.2 had a larger weight and could carry more information then
the PNs would no longer be bottlenecks for information in the network and it is likely
that the most prominent according to the first eigenvector would be the OCNs. Since
the OCNs would now become information bottleneck points.

4.3 Human

The final subject of study is the human brain where vast scale does not inhibit the brain
from responding rapidly to stimulus that enables us, as humans, to react to the world
around us. The effectiveness of analysing brain connectomes, with the first eigenvec-
tors of the network, has been presented in the previous sections. The first eigenvector
was shown to identify the main information collating nodes - for the C. elegans and the
macaque - with these claims validated through comparison with previously conducted
numerical flow-based analyses. The development of this analytical approach enables
analysis of huge networks where numerical flow models would require far more pro-
cessing power to function.

The first brain considered is that of a 28 year old, right-handed, female (subject ID
113 from Landman et al. (2011)). The connectomes of her brain were generated by
Roncal et al. (2013) who produced a series of undirected, 1.8 million node, networks
of the human brain from the Magnetic Resonanse Imaging (MRI) scans carried out
by Landman et al. (2011). The nodes/vertices are defined as the intersection points
on a three dimensional grid where each point is 1 mm apart from its neighbours. The
edges of the network are defined as any two vertices that are connected by at least a
single fibre. The greater the number of fibres between any two vertices, the larger the
weight of that edge. The results from two brain scans on subject 113 are considered
here where an edge weight of 1 represents a single fibre connection and the highest
edge weighting observed was 1749 in scan 2.

Directionality of edge connections has been key to the previous network analyses, con-
ducted in this dissertation, where the left eigenvector has been effective in highlighting
influential nodes and pathways. For example, in the macaque case, Mišić et al. (2014)
shows that if the directionality of edges are reversed the hippocampus - shown to be
a hub for information - is no longer congested with information traffic. For human
connectomes, there are few sources of directed graphs and none found on the scale
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of millions of nodes. Therefore, this section performs analysis on an undirected con-
nectome. This may not produce as accurate an insight into brain functionality, which
is known to use directed transfer of information, as it would using a directed connec-
tome. But, as was displayed previously with the investigation of C. elegans and their
electrical junction network (see Section 4.1), insights can still be gained including the
detection of influential circuits in the brain.

4.3.1 Spectral Analysis

Although there were 1.8 million nodes in the network, not all of these are part of the
largest connected component, with approximately 0.9 million nodes for scan 1 and
0.65 million for scan 2 being part of this connected component. Spectral analysis on
the Laplacian matrix of such a network would have produced multiple zero eigenval-
ues, and associated first eigenvectors. One for each connected component in the graph.
Hence, it would have been easier, when using the Laplacian for this analysis, to re-
move the nodes not involved in the largest connected component before calculating
the eigenvectors. But by performing the spectral analysis on the adjacency matrix in-
stead, no nodes have to be removed since the prominent eigenvectors of the adjacency
and Laplacian matrices are the same when dealing with an undirected network and the
first eigenvector is clearly distinguishable.

For the adjacency matrix, the first eigenvector is associated with the eigenvalue of
largest magnitude. This first eigenvector has the notable characteristic of only contain-
ing positive entries. The following eigenvectors usually contain a fairly even distri-
bution of positive and negative values as has been demonstrated through eigenvector-
based plots through out this dissertation (see Fig. 4.2 and 4.4 as an example). However,
in the case of the human connectome the results presented differently from previous
analyses in Chapter 3. As some of the eigenvectors, associated with large eigenvalues
but not the largest, have structures that closely resemble the first eigenvector. These
false first eigenvectors have large entries that are primarily either positive or negative
with the entries of the opposite sign having far smaller values. It is possible that these
false first eigenvectors identify regions that are well connected within the connectome
but are poorly connected to the actual first eigenvector. The following sections shall
support the assertion that these false first eigenvectors are regions of high influence,
which correspond to areas of high brain activity.
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To determine the prominent communities, present in the first eigenvectors, the Com-
munities of Dynamic Response method is employed (Algorithm 3.3). Examples of
this are displayed in Fig. 4.14 where the majority of first eigenvectors appear like
Fig. 4.14 (b) with the orange nodes selected as members of the prominent community.
In Fig. 4.14 (a) the most prominent community is less clear cut, therefore nodes from
the green, maroon and purple nodes are selected as they contain nodes with the highest
v1 values.

4.3.2 Subject 113

4.3.2.1 Scan 1

Members of the most prominent communities according to each of the first eigenvector
and the false first eigenvectors are presented by mapping them onto a 3D representation
of the brain in Figure 4.15. The top ten eigenvectors were considered from brain scan
1 with the first, second, fourth, fifth, eigth and ninth shown in the figure. The third,
fourth, seventh and tenth are not displayed as they had large entries of both signs
and, hence, are not false first eigenvector but can be used to highlight the community
structure of the first eigenvectors, as in Fig. 4.14.
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Figure 4.14: Eigenvector plots for subject 113 where (a) uses the first, third and seventh
eigenvector to highlight the community structure of the first eigenvector and (b) employs
the fifth, sixth and seventh eigenvector to highlight the community of the fifth eigenvector
that is a false first eigenvector. The Communities of Dynamic Response are denoted by
the colour of the node’s dot.
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(a) (b)

(c)

Figure 4.15: Subject 113 - scan 1: brain represented by x,y,z outlines from a sur-
face model. Prominent nodes from the first eigenvector (1) and false first eigenvectors
(2,4,5,8,9) are displayed with a spectrum of colours from green (1) to blue (9). The most
prominent node for each eigenvector is marked with a circle. (a) View from above; (b)
View from behind; (c) View from the side with eigenvectors labelled.
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It is worth considering what these false first eigenvectors represent. Due to their large
associated eigenvalues they must indicate pathways in the brain where a large amount
of information is passing through. This hypothesis is supported by Figure 4.16 where
the 3500 largest weighted edges from brain scan 1 are overlaid on the first eigenvector
and false eigenvector nodes. The eigenvectors all overlap with the highest weighted
edges, although this overlap is reduced for the less influential eigenvectors 8 and 9.
In 8 there is still overlap with large edges but it is minimal and mainly centred on
the location of the node with the highest valued entry for v8. Figure 4.16 appears to
indicate that clusters of high weight edges are markers for influential regions with the
eigenvectors providing further, more quantative, insights by ranking these regions in
terms of influence. It is also worth noting that for a directed connectome the edge
weight is only half the picture as some of the influential regions might be sources or
sinks for information but this can only be determined with directed edge data.

132



Chapter 4 Beyond the Swarm: Brain Connectomes

(a) (b)

(c)

Figure 4.16: Subject 113 - scan 1: brain represented by x,y,z outlines from a sur-
face model. Prominent nodes from the first eigenvector (1) and false first eigenvectors
(2,4,5,8,9) are displayed with a spectrum of colours from green (1) to blue (9). The 3500
highest traffic edges are then overlaid in red (a) View from above; (b) View from behind;
(c) View from the side.
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Insights into brain activity

The Montreal Neurological (MNI) Institute created a standard brain atlas by using a

large series of MRI scans on normal control subjects. The eigenvectors in Figure 4.15

were manually mapped to the MNI standard model. The Regions of Interest (ROI)

defined by Power et al. (2011) as putative functional areas, using the MNI coordinate

frame, can now be compared with the most prominent node from each first eignvector

as detailed in Table 4.3 for subject 113 brain scan 1.

For eigenvector 4 (v4) the nearest region is undefined but it is also close to the left

Putamen with v1 closest to the right Putamen. The Putamen is known to have a

prominent role in a range of motor controlling functions, see DeLong et al. (1984);

Marchand et al. (2008). These nodes are also in close proximity to the thalamus,

which is a known hub for information in the brain, relaying information between

subcortical areas and the cerebral cortex, see Hwang et al. (2017). v2 is beside the left

Frontal Mid Orbital and Frontal Mid region. The latter is part of the Brodmann area 46

that plays a central role in managing working memory, as well as memory control and

organisation, see Bernal and Perdomo (2008a). v5 and v8 are in different parts of the

Precentral region on the left and right respectively. The precentral gyrus is also known

as the motor strip as it is involved in voluntary movements of skeletal muscles, see

McCaffrey (2014). v5 and v8 are also in, or close to, the Brodmann area 6 - a region

that includes part of the precentral gyrus - where the basic functions of this area are

thought to be motor sequencing and planning movements, see Bernal and Perdomo

(2008b). v9 is in the Thalamus, which has been described previously as a major

information hub. In conclusion, the regions highlighted appear to primarily deal with

motor control, information distribution, sustaining attention and managing working

memory.
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v MNI
Coordinates Closest Power et al. (2011) ROI

1 [25,-19,-3]
Putamen R (aal) - Right Cereberum,
Sub-lobar, Extra-Nuclear, White Matter

2 [-34,36,6]
Frontal Mid Orb L (aal) - Left Cerebrum, Frontal
Lobe, Middle Frontal Gyrus, White Matter

4 [-27,-20,-2]
Undefined - Left Cerebrum,
Sub-lobar, Extra-Nuclear, White Matter

5 [-26,-4,62]
Precentral L (aal) - Left Cerebrum, Frontal Lobe,
Middle Frontal Gyrus, Gray Matter, brodmann area 6

8 [30,-8,34]
Precentral R (aal)- Right Cerebrum,
Frontal Lobe, Precentral Gyrus, White Matter

9 [22,-20,6]
Thalamus R (aal) - Right Cerebrum,
Sub-lobar, Thalamus, Gray Matter

Table 4.3: Closest Power et al. (2011) ROI for each most prominent eigenvector node

4.3.2.2 Scan 2

A connectome was generated for the same subject (ID 113) after a different scan was
conducted in the same study by Landman et al. (2011). This connectome was analysed
and found to display false first eigenvectors again, though there were fewer present
than in brain scan 1. The results are displayed in Fig. 4.17 where only 3 false first
eigenvectors are found this time (after investigating the top ten eigenvectors). Fewer
eigenvectors, and fewer prominent nodes belonging to each vector, are clear indicators
of a change in the functional network that, unlike the underpinning structural network,
can change depending on the task undertaken by the brain. What is also evident is
the similarity of the four eigenvectors present in Figure 4.17 to the first four seen in
Figure 4.15. In fact, Figure 4.18 overlays the first four eigenvector from brain scan
1 and 2 to show that they are part of the same pathways. Table 4.4 confirms that the
prominent eigenvector pathways overlap and lie in close proximity. The pathways
consist of nodes that are members of the most prominent communities and also have a
large enough entry for the first eigenvector in question, i.e. |vi|> 0.05 ∀ i ∈ V . Despite
the similarities in pathways, there are significantly fewer prominent nodes belonging
to each pathway in brain scan 2 than scan 1. The order of the overlapping pathways is
also slightly altered with the 3rd and 4th ranked regions, according to the eigenvectors,
swapping place.

Figure 4.19 continues to emphasise this detected difference in functional activity, with

135



Chapter 4 Beyond the Swarm: Brain Connectomes

(a) (b)

(c)

Figure 4.17: Subject 113 - scan 2: brain represented by x,y,z outlines from a surface
model. Prominent nodes from the first eigenvector (1) and false first eigenvectors (2,3,5)
are displayed with a spectrum of colours from green (1) to blue (5). The most prominent
node for each eigenvector is marked with a cross. (a) View from above; (b) View from
behind; (c) View from the side with eigenvectors labelled.
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(a) (b)

(c)

Figure 4.18: Subject 113: brain represented by x,y,z outlines from a surface model.
Prominent nodes from scan 1 are displayed in yellow o’s with scan 2 marked in black
x’s. The most prominent node for each eigenvector is marked with a circle or cross. (a)
View from above; (b) View from behind; (c) View from the side with eigenvectors labelled.
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Table 4.4: Scan comparison of prominent nodes for subject 113.

Eigenvectors No. of Nodes Nearest node comparison
Scan 1 Scan 2 Scan 1 Scan 2 Min. Max. Mean

1 1 34 11 0 12.04 2.18
2 2 57 16 0 1.73 0.97
4 5 41 11 0 17.09 4.34
5 3 51 8 0 1.73 0.77

the top 3500 edges far less clustered than before.

Figure 4.20 provides further insight into the situation, revealing that the highest weighted
edges belong to brain scan 2, but that the edge weights rapidly decline to be consis-
tantly lower than the same rank of edge in brain scan 1. This is interesting as it supports
the finding that fewer false first eigenvectors, with fewer prominent members in each,
were found for scan 2. Since a large amount of information traffic, present in a few
pathways, combined with a relatively even spread of edge weights throughout the rest
of the network, could result in information being channelled towards these few influ-
ential pathways. This would mark these influential pathways as far more prominent
than other pathways in the brain. In scan 1, where there is a more even spread of edge
weights, it is not surprising that more pathways will rise to prominence with the most
influential pathways less prominent than they are in scan 2.

By comparing the top 3500 edges, according to weight, in Fig. 4.16 & 4.19 it would
be difficult to identify this brain as belonging to the same subject. Whereas, Fig. 4.18
and Table 4.4 reveal that the pominant pathways from both scans are very similar and
overlapping. Subject 679 shall now be presented to emphasise that the pathways found
are specific to a person with a different brain presenting notably different pathways.
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(a) (b)

(c)

Figure 4.19: Subject 113 - scan 2: brain represented by x,y,z outlines from a brain surface
model. Prominent nodes from the first eigenvector (1) and false first eigenvectors (2,3,5)
are displayed with a spectrum of colours from green (1) to blue (9). The 3500 highest
traffic edges are then overlaid in red (a) View from above; (b) View from behind; (c) View
from the side.
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Figure 4.20: Edge weight comparison between brain scan 1 and 2 for subject 113 from
Landman et al. (2011).

4.3.3 Subject 679

Subject 679 is similar to subject 113 in both gender, age and handedness as a female
of 30 years old with a dominant right hand. Her connectome was created in the same
study as subject 113 (see Roncal et al. (2013)) but her brain prominent pathways proved
to be quite distinct. Again two separate scans were compared in Fig. 4.21 that show a
clear correlation in prominent pathways between these scans.

For subject 679 there are four overlapping pathways with Table 4.5 detailing that close
proximity and overlapping nature of these paths. When performing the same com-
parison between the pathways of subject 113 and 679 the closest match is for v8 of
subject 113 scan 1 with v4 of subject 679 scan 2. The mean distance between nodes is
4.43 mm with a minimum distance of 1 mm and a maximum of 7.55 mm. This closest
match fails to have a single overlapping node but does equal the highest mean ob-
served in the matching pathways from 113 and 679. The most prominent node from
each pathway in this closest match is found in the right side of the Putamen. The right
side of the Putamen appears as a prominent node in all four scans, probably indicating
its relevance to the situation each subject is in when undergoing a scan. The second
most common region is the Precentral gyrus with the left and right side turning up in
three scans each. The Putamen and Precentral gyrus are recognised for their involve-
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(a) (b)

(c)

Figure 4.21: Subject 679: brain represented by x,y,z outlines from a brain surface model.
Prominent nodes from scan 1 are displayed with yellow o’s with scan 2 marked with black
x’s. The most prominent node for each eigenvector is marked with a circle or cross. (a)
View from above; (b) View from behind; (c) View from the side with eigenvectors labelled.
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Table 4.5: Scan comparison of prominent nodes for subject 679.

Eigenvectors No. of Nodes Nearest node comparison
Scan 1 Scan 2 Scan 1 Scan 2 Min. Max. Mean

1 1 39 46 0 1.73 0.67
3 3 45 55 0 3.74 1.08
6 2 56 52 0 22.16 1.86
8 7 56 90 0 2 0.48

ment in motor control, therefore it is likely that the subjects were performing some
form of motor control whilst undergoing the scan.

The second closest match sees the mean distance jump up to 9.02 mm, which is signif-
icant as it demonstrates that eigenvectors can be used to effectively identify a subject’s
brain. It is possible to speculate as to how such analysis could be used. By being able
to compare the prominence of pathways in the brain a patient could be monitored to
quantatively assess changes in their brain’s performance. For example, a stroke vic-
tim retraining neural pathways to regain speech could be monitored with scans taken
during speech based tasks. The prominence of the relevant neural pathways (i.e. those
in speech related regions of the brain) could be monitored to observe their growing
prominence as the pathways are retrained. This could provide a metric with which
to measure progress and provide further insight into the process of brain plasticity.
This analysis could even form the basis of the treatment itself, as noted by Fornito
et al. (2017). Fornito et al. stated that improved understanding of pathological cir-
cuitry had guided deep brain stimulation used in the treatment of Parkinson’s disease,
depression, and obsessive compulsive disorder. The potential of employing noninva-
sive brain stimulation techniques, such as transcranial magnetic stimulation, was also
discussed where the challenge lay in identifying specific neural systems for targeted
intervention. The work, presented in this chapter, has introduced a potential solution
to this challenge as eigenvectors can identify specific neural pathways and could also
be part of the treatment feedback loop by determining if the targeted pathways are
becoming more or less prominent over time.

4.4 Summary

Some of the intuitions gained from the previous chapter and the development of Al-
gorithm 3.3 were applied here to analyse brain connectomes. First the C. elegans - a
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small, transparent, flat worm - was considered. Previous intuitions from Varshney et al.
(2011) were expanded upon by employing a combination of eigenvectors to reveal the
network communities that correspond to circuits in the brain. Investigations into the
robustness of the C. elegans connectome by Bacik et al. (2016) found that the most
influential nodes were also among those that had the greatest impact to partitions in
the network when removed. For example the motor neurons, found by Bacik et al. to
cause the greatest disruption when removed, were clearly displayed by the system’s
first eigenvectors as key members of the most influential network community. Bacik
et al. (2016) also considered signal diffusion with eigenvectors shown to reveal if a
strong response node was in the local dynamic community of the signal source nodes.
Next, an adaptation of the eigenvector method used thus far was employed to highlight
the strongest responders when a signal was introduced in the network. This method
did not precisely replicate the results of Bacik et al., but rather complimented them.
It highlighted strong response nodes but also revealed that some strong responders are
in fact not under the dynamic influence of the signal introducing nodes. These nodes,
not under the influence of the signal receivers, appeared to be well connected to other
regions of the connectome and, as a result, would be difficult to influence without
contributions from other regions in the network.

The macaque’s well studied connectome presented another opportunity to contrast ana-
lytical results with those of numerical simulation. Specifically, the influence of the hip-
pocampus was stated to be undetectable using graph theoretic methods but the eigen-
vectors were able to detect its importance and corroborate the findings of the numerical
flow model. The eigenvectors were found to identify the nodes that collate information
from across the brain before passing this processed information onto a key region, such
as the hippocampus.

The final connectome considered was that of the human brain, with 1.8 million nodes
included in the functional connectome. The first eigenvector and false first eigenvectors
were able to present influential pathways in the brain. Many of these pathways were
found to remain when the same subject undertook separate scans. The similarity of
pathways could be used to differentiate between the two subjects, but at the same time
differences in the ranking order of these pathways, where the most influential node was
placed and how many pathway nodes presented as prominent suggested that there was
a change in brain function between the scans.
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Discussion

The main objectives of this work were determined by three observations on naturally
existing swarms. The first is that natural swarms display a remarkable scalability; a
school of fish is a prime example of a swarm that remains responsive and cohesive
regardless of whether there are a hundred members or a thousand. The aim was to
produce a framework that could support a large, autonomous, engineered swarm that
could emulate the scalability witnessed in nature. By creating a novel control scheme
that defined an artificial kinematic field for the environment there is, in theory, no limit
to the scalability of such a system. In practise, the success of the method relies on the
ability of agents to track and implement the vehicle avoidance mechanism developed
for this control scheme. This scheme has been demonstrated on aerial vehicles in a
laboratory environment, but further work is required to progress beyond the lab and to
incorporate a larger number of agents. The limited demonstration was still enough to
show the validity of the control scheme that could one day support a large, autonomous,
swarm.

The second objective was motivated by the ability of large swarms to rapidly respond
to predator attack; starlings flock in huge numbers and can evade predators effectively
by increasing their observational capacity but without significantly sacrificing their
response speed and manoeuverability. The example of starlings focused the initial in-
vestigations to consider only networks with constant outdegree constraints. The first
aim in this case was to understand what makes a node more influential and how topol-
ogy affects optimal network leaders. This was primarily addressed by the development
of semi-analytical optimisers that uncover the optimal leadership for achieving fast
convergence to consensus. This ability fed into achieving another aim, that of uncover-
ing what topologies are most effective for producing highly responsive systems. This
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investigation revealed how the optimal leadership differed for a number of constant
outdegree topologies; including random graph, nearest neighbour and small world net-
works. This work also considered the effect of increasing or decreasing the outdegree
of all nodes and how autocratic leaders could improve network responsiveness. When
analysing variable outdegree networks it became clear that these produce a more com-
plicated optimal leadership allocation than constant outdegree networks. But the most
effective leaders can still be identified by analysing the top three eigenvectors, which
in turn achieved the aim of being able to detect effective leaders in any given network.
Finally, the inspiration for this objective was examined with a model starling flock
analysed to show that topology plays a critical role in producing an effective predator
avoiding flock.

The last objective was inspired by the ubiquity of networked systems and the potential
for applying the lessons learnt from swarms on systems. The aim specifically was to
apply the tools developed on swarming systems on analysing other highly responsive
networked systems. This led to the identification of the brain as an excellent target
for eigenvector based analysis. Analysis that could cope with the vast scale of such
networks and achieve the aim by providing meaningful results on a system that is not a
swarm but does rely on consensus and rapid information transfer. The development of
methods for handling variable outdegree networks were especially key in dealing with
the far from constant outdegree nature of brain connectomes.
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Future Work

Creating an engineered swarm was a motivation for this dissertation, where the tech-
nological capability is no longer the limiting factor but rather it is our ability to control
and fully harness the potential of networked systems that holds us back. Chapter 2 was
devoted to laying the foundations for a scalable swarm with the control approaches
demonstrated, in a laboratory environment and through a remote inspection case study.
This work was closer to a proof of concept with limited applications, than a finalised
and adaptable system. There is plenty of scope for advancement, firstly it was men-
tioned that the current proportional controller could be improved by using a propor-
tional and derivative controller, which would tackle the main drawback of the current
scheme where the vehicles are prone to overshooting their desired path. An area of fur-
ther promise would be to develop kinematic fields that are not constrained to circular
motion; Lawrence et al. (2008), Frew et al. (2008) and Chen et al. (2013) have already
demonstrated the beginnings of such control where their methods focused on placing
multiple points in the environment with a limit cycle attached to each. This enabled,
in the case of Lawrence et al. (2008) and Frew et al. (2008), the development of more
complex loiter manoeuvres for unmanned aerial vehicles (UAVs). While Chen et al.
(2013) employed a hybrid approach involving limit cycles to create obstacle avoiding
trajectories. The next step for the work presented in this dissertation would be to vary
the field to achieve complex trajectories, but this could be done by altering the vector
field definition rather than just adding multiple limit cycles and using their interactions
to achieve more complex behaviour. Bennet and McInnes (2009), as well as propos-
ing limit cycle behaviour, also introduced bifurcation behaviour that converges to a
point that could be used to transport to locations while the limit cycle enables loiter-
ing. As in the limit cycle case (see Fig. 2.3 & 2.4), the actual implementation of such
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vector fields may require adjustment to deal with the reality of turbulent flight envi-
ronments and smoother trajectories. There would also be a challenge in how such a
system would decide when to alter the field - with a consensus process likely to take
place to reach such an agreement - and how a smooth transition between fields could
be accomplished.

The focus of much of this dissertation has been on networked system and understand-
ing how influence can be wielded in them. The networks were initially constrained
but this did not make them unapplicable, as starlings have similar network constraints
when operating as a flock. It was shown, in chapter 3, that starlings employ a low
enough outdegree for a nearest neighbour topology to produce multiple distinct com-
munities with these graphs having a high modularity. It could be argued that consensus
does not give the whole picture when considering a starling flock, where such a system
is in a constant state of flux. If anything it could be argued that the work developed
in this dissertation shows that the starling topology has evolved to avoid reaching con-
sensus, where they form communities of influenced nodes that are strongly influenced
by local nodes and only weakly affected by the rest of the network. Starlings are
seen to move as separate groups, within the flock, that gives the flock its undulating
and constantly shifting appearance. Therefore, there is much to investigate as to how
these communities of influenced nodes tie up with what is observed from starlings, and
whether these undulations are the result of perturbations influencing the local commu-
nity far faster than the rest of the flock.

The research on leadership in responsive networked systems led to an investigation
of brain connectomes from small flat worm’s nervous systems to human brains repre-
sented by millions of nodes. The macaque connectome was the largest directed con-
nectome considered but it only contained 242 nodes. One of the major advantages of
using analytical approaches, like those developed herein, is that they can handle large
networks with far less computational resources than numerical analysis requires. Un-
fortunately, there are only a small number of sources for directed connectomes and
these are especially limited for large human connectomes. The brain is know to be
a directed network, the accuracy of the results would therefore be enhanced by the
use of directed connectomes. Assuming that the availability of data sets will only in-
crease the next step for this work is to take it beyond the validation stage. Applying
these eigenvector approaches to draw conclusion from large datasets where common
analysis tools would struggle and to realise some of the proposed applications such as
constructing a treatment feedback loop for retraining the brain after a stroke.

147



Chapter 7

Conclusions

The beginnings of this dissertation were firmly rooted in the potential of swarm en-
gineering. In developing the ability to grow and control swarms, a toolset has been
produced that is applicable far beyond this niche for networks where responsiveness is
a desirable or already existing asset.

By emulating the scalability of bird flocks and fish schools with an artificial kinematic
field - defined for the environment around the swarm - a large scale swarm can be
created. The real-world validity of this approach was demonstrated through a remote
inspection where agents circled, in-plane, around a central object whilst the novel ve-
hicle avoidance mechanism adapted the field for only the trailing vehicle. To progress
from this foundation - and onto a fully scalable, flexible and autonomous swarm - the
ability to dynamically alter the kinematic field is key, otherwise the scheme is con-
strained to specific use cases such as the external inspection of large or inaccessible
objects.

It is possible to manage swarms, without needing to influence every node, by under-
standing what makes a node influential. The eigenvector based methods, developed
herein, can uncover influential leaders and, as a by-product, discover what topologies
and leadership styles are most effective for creating highly responsive systems. Eigen-
vector centrality is often used in network analysis but, by considering perturbation
driven consensus on a directed graph, the first left eigenvector proved to be an invalu-
able tool that had not previously been fully exploited. By considering multiple left
eigenvectors and how these relate to communities that define dynamic response; the
nature of a system’s response to perturbations can be revealed. This capability can
provide insight into nature’s effectiveness; in this case, how localised connection con-
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straints can construct a topology that places the most effective leaders in the positions
from which external perturbations are expected.

The application of eigenvector-based approaches on brain networks proved effective;
finding that previous assumptions on the limitations of graph theory’s insights, into
dynamic processes, are incorrect. Eigenvectors were demonstrated to be an effective
bridge from the structural information of the topology to the dynamic performance
of the network as information flows through it. The analysis of a, 1.8 million node,
human functional connectome was made possible by this analytical approach, which
could easily identify prominent neuronal pathways. In fact, the adjacency matrix cre-
ated from separate MRI scans can be shown to be from the same subject when there
is a high similarity in prominent eigenvector pathways. In this case of similar path-
ways, changes in the subject’s functional state during each scan are also evident. This
could pave the way to providing quantative data on the change in mental state and
performance of the same subject over time.

This dissertation has contributed to the development of autonomous robotic swarms
but, at the time of writing, useful and effective versions of these are not an immediate
prospect. Instead, it is the lessons we can take from developing such systems that are
timely; benefitting our understanding of complex systems and how to operate more
effective networks.
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