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Abstract

The development and use of Reduced Order Models (ROMs) has attracted lots of at-

tention among the engineering and scientific community in the past decades. Indeed,

these models are able to significantly reduce the original complexity of a system, without

severely affecting the accuracy. A crucial point to consider when elaborating Reduced

Order Models (ROMs) for unsteady (e.g. transient) nonlinear problems in fluid dynam-

ics is the definition of a proper set of dominant features, alias modes or basis functions,

that can project the fluid system behaviour in a low-dimensional space without losing

essential dynamics. To ensure that this is the case, a quantitative assessment is often

necessary to define how well the low-dimensional space is approximating the underlying

dynamics. For transient nonlinear flows, elaborating such a ROM, equipped with an

efficient and reliable measure of its accuracy, can be a rather challenging task.

To address these aspects, the present work reports a heuristic study of ROM perfor-

mance, targeted for transient nonlinear fluid flows, when using different low-dimensional

spaces, that are defined using different algorithms for the extraction of dominant fea-

tures and different sorting of dominant features within each algorithm. An analysis is

also performed to assess quantitatively such ROMs. In particular, the reliability of an

error measure is investigated, namely the residual error, based on a specific discretisa-

tion of the initial set of equations of the fluid system, as opposed to an error measure

that requires the computation of high-fidelity reference solution to obtain information

about the accuracy of the ROM.

The results of these analyses have shown that different linear low-dimensional spaces,

identified by a specific set of global basis functions, are able to solve for different dy-

ii



namic features with a good degree of accuracy. Moreover the residual error has demon-

strated to be a reliable means to assess the relative performance of the various ROMs

considered. As a consequence, a Model-Based Adaptive ROM Framework has been

introduced. The novel framework combines the strengths of several linear ROMs in a

unique monolithic structure by selecting the best low-dimensional space, among a col-

lection of available ones, based on the specific time window where the low-dimensional

reconstruction is needed. The term Model-Based refers to the residual error that is

used to drive the selection of the basis.

The performance of the Model-Based Adaptive ROM has been finally assessed on a

set of test-cases relevant for the aeronautical field, that exhibit transient nonlinear

dynamics with advection-diffusion and interaction of flow structures. Namely, a multi-

element airfoil, also in a 3D wing-body configuration, an isolated delta wing and three

delta wing geometries in a formation flight configuration have been considered. The

Adaptive ROM has shown promising capabilities in promoting strong dimensionality

reduction (degrees of freedom less than 10-15, compared to the 106 − 108 degrees of

freedom (DOFs) of a common three dimensional CFD problem), while preserving good

accuracy and physical consistency. Such a reduction in terms of DOFs will have a sub-

stantial impact on the reduction in computational cost to achieve any low-dimensional

solution within the time window where the ROM has been trained. It is worth noting

that, being the method data-driven, the overall advantage in terms of computational

cost has to be filtered with the upfront cost of generating the training dataset.

The Adaptive ROM has demonstrated to be able to solve more details in terms of flow

structures present in the field, which can be of advantage when design and/or flow

control problems are addressed.
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Chapter 1

Introduction

1.1 Motivation

The development of algorithms capable of reducing the computational effort required to

characterize the behaviour of complex systems has attracted lots of attention in the past

decades [1, 2, 3]. Reduced Order Model (ROM) is the denomination used to indicate

this wide class of algorithms, whose aim is to find a good trade-off between accuracy in

describing the system behaviour and reduction of the complexity of the system itself.

The complexity reduction is often associated with a reduction of dimensionality of the

original system, which might have a very large number of degrees of freedom (DOFs).

This fundamental aspect of a ROM has determined its widespread usage over almost all

fields of engineering, including modeling of electrical circuits [4, 5, 6] and Micro-Electro

Mechanical Systems(MEMS) [7, 8, 9], applications to structural problems [10, 11, 12],

processing and compression of videos and images [13, 14], aeroelasticity [15, 16, 17, 18,

19], other than fluid dynamics [20, 21, 22]. For these problems, where a lot of high-

dimensional data are usually produced by experiments or computationally demanding

high-fidelity simulations, it is indeed possible in some cases to define a low-dimensional

space where to describe the system dynamics. It is crucial to prove that the behaviour

of the system is in fact confined within a low-dimensional manifold since reliability and

accuracy of a ROM depend on it. This has proven to be the case for many systems

where the dynamics in time or the behaviour over a parameter space is confined within
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an attractor [23]. The attractor represents a subset of the whole vector space where

solutions of the system lie. This subset is usually very low-dimensional (i.e. dependent

on very few parameters with respect to the high-fidelity model of the system) and

therefore paves the way for a definition of a low-dimensional model.

The elaboration of a ROM often represents the starting point to perform further analysis

later, for example in the phase of the conceptual and preliminary design of engineering

devices, where it is fundamental to have algorithms able to provide solutions in a real-

time manner [17, 19], as opposed to computational demanding high-fidelity simulations

or time demanding experiments that need to be set up [24, 25, 26, 27].

1.1.1 Why Reduced Order Models in fluid dynamics

Model reduction in fluid mechanics can be discussed from two fundamental conceptually

different, yet linked, points of view:

1. identify patterns and physical primitives governing the nonlinear behaviour of the

flow system;

2. approximate the detailed dynamics of the system for a range of operating condi-

tions in a much faster yet physically consistent manner.

The research on ROMs in the fluid dynamic field has widely covered both aspects. The

former is quite important due to the huge amount of data coming from both experi-

ments and high-fidelity models. This makes the extraction of meaningful information

about time dynamics, as well as parametric system behaviour, unmanageable without

relying on any algorithm for projecting initial data on a low-dimensional manifold,

where data can be more interpretable. The problem has been historically introduced in

the fluid dynamics community through the analysis of turbulent flows, where it became

rather soon clear that the very chaotic behaviour hides an underlying more organized

motion happening in the flow [28, 29, 30]. This observation led for the first time to

define a procedure that allow identifying some coherent structures in space and time,

which are the main responsible for the flow time dynamics [23, 31, 32]. Since then,

isolation of dominant flow features, and often also the extraction of important dynam-

2



Chapter 1. Introduction

ical information (e.g. frequencies and growth/decay rates) associated to them, was

introduced in many fields of fluid dynamics, in order to visualize essential dynamics

and/or parametric behaviour with only few degrees of freedom. The effort has been

put in defining extraction algorithms for the identification of flow features that pro-

vide correct information about the actual physics underlying the collected data. For

the specific case of pure unsteady flows, it has been shown that being able to define

dominant structures on the basis of important physical consideration was a key point

to extract physically meaningful information from the fluid system [33, 34, 35, 36, 37].

Dominant flow features not only provide a deeper understanding of the flow physics

but also put the basis to act on specific spatial structures that have a strong impact on

the overall flow dynamics. This last aspect is strongly related to the many applications

of ROMs for flow control problems [20, 38, 39, 40, 41, 42].

When the focus is only on the numerical aspect of fluid dynamics problem, the second

point listed above becomes important. The need to elaborate ROMs in this case is

linked to the very high computational demand of CFD simulations. Solving a fluid

dynamics problem using CFD techniques requires the discretisation of the original sys-

tem of Partial Differential Equations (PDEs), i.e. the set of Navier-Stokes equations

for the general case of a viscous compressible flow, over a specific computational do-

main. When dealing with complex geometries and three dimensional (3D) problems,

the computational mesh can count up to hundreds of millions grid points leading to

an equivalently large number of Degrees of Freedom (DOFs). The very high number

of points in the computational mesh is linked to the need to resolve important spa-

tial scales, catch all the meaningful dynamics and limit numerical diffusion. Figure

1.1 shows some examples of CFD problems of this kind. It becomes clear that retain-

ing the entire description of the system in the high-dimensional space, when unsteady

behaviours need to be described or the system behaviour needs to be explored over

a large parameter/design space, makes the analysis unfeasible due to the well-known

curse of dimensionality problem. Therefore, approximating the system evolution over

a low-dimensional space with few degrees of freedom is fundamental for these kind of

problems.
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Figure 1.1: Examples of 3D CFD problems with millions of Degrees of Freedom, whose
unsteady and/or parametric analysis promptly leads to curse of dimensionality. From
left to right: High-Lift Wing-Body configuration; Delta Wing geometry featuring vortex
breakdown phenomenon; Delta Wing geometries in Formation Flight configuration.

Despite the definition of the low-dimensional space is also open to the introduction of

a wide range of analytical approximation methods (e.g. response surfaces, polynomial

approximations, etc.), the possibility to take advantage of the information embedded

into a set of few dominant primitives (data-driven ROMs) has proven to be both more

efficient and more effective in the development of reduction techniques, showing su-

perior performance while making detailed reconstructions of the flow physics. In this

last case, few “physically” meaningful flow features that are able to span the low-

dimensional space are identified and then used for projecting the system onto such

space. This highlights how the two aspects of ROMs in fluid dynamics discussed in this

section are strongly interconnected. The definition of a good low-dimensional space is

indeed linked to how well the extracted features describe the underlying physics of the

problem and therefore are at the basis of generating a robust and reliable ROM. Never-

theless, it is worth noting that, when the focus is only on the approximation of complex

fluid systems, dominant features do not need to be “physically meaningful”, i.e. they

do not necessarily need to have a physical interpretation (such as coherent structures in

a turbulent flow) in order to provide a sufficiently accurate approximation of the flow

physics. This is for example the case of the impulsively started dynamics associated to

particular geometries, which is investigated in the present work. Although it is difficult

to extract features that alone can be representative of specific structures present in

the flow due to its purely transient nature, the combination of these features is able
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to reconstruct the overall dynamics preserving the essential physics (see for examples

results presented in Section 3.4 and Chapter 7). There are instead cases where a clearer

connection can be made between structures appearing in the flow and the flow features

extracted by a specific algorithm. Section 4.2 reports an example of this kind, where

some of the features extracted and eventually used to build the low-dimensional model

unveil coherent structures actually present in the flow.

1.1.2 Transient nonlinear aerodynamic flows: motivation and chal-

lenges

Dominant flow structures in unsteady nonlinear flows can undergo significant changes

in terms of their intensity, e.g. the energy associated to them. They can appear and/or

disappear or be relevant only over a specific time window. All of this makes their identi-

fication and the consequent definition of a low-dimensional model a nontrivial problem.

This difficulty is exacerbated when performing the numerical study of the unsteady

aerodynamic environment developing around lifting bodies. The generation of starting

vortices, the coalescence and interaction of such vortical structures, the occurrence of

possible separation regions determine a rather nonlinear scenario. Moreover, the de-

scription of such nonlinear spatio-temporal dynamics in a very high-dimensional space,

like the one arising from the discretisation of the original computational domain, can

be very inefficient in terms of both computational cost and memory storage required.

It is worth noting that the degree of nonlinearity of the considered spatio-temporal

dynamics is difficult to quantify in local terms, e.g. defining the degree of nonlinearity

of interacting and/or advecting vortices developing in the flow field. Therefore the

term nonlinear used hereafter will refer more in general to the nonlinear nature of the

original system of equations solved, i.e. the full set of Navier-Stokes equations, which

dictates the formation and evolution of such flow structures. The term transient will

instead refer to the unsteady behaviour of flow structures generated by fixed geometries

in flow fields with constant boundary conditions.

The scientific community has built a strong awareness of the difficulties linked to the

extraction of physically meaningful flow structures from fluid flows that exhibit a com-
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plex dynamics, with many features interacting and mixing together in a nonlinear man-

ner [33, 36, 43, 44, 45]. The debate has been focused on the limitations of two widely

used techniques in the fluid dynamics community, that are Proper Orthogonal Decom-

position (POD) [23, 31] and Dynamic Mode Decomposition (DMD) [46, 47]. POD has

been recognized to have limitations in extracting all the important dynamic informa-

tion from a set of collected snapshots. Indeed its optimal property promote the most

energetic structures of the flow, which are not always the only structures responsible

for fundamental dynamics. Rowley et al. [48] points out for examples how fluid flows

where acoustic resonances occur, acoustic waves play a crucial role, even though their

energy content is much smaller than other pressure fluctuations that can be present in

the flow. In their work they demonstrate the beneficial effect of combining POD with

a balanced truncation algorithm in extracting physically meaningful flow feature for

a linearized channel flow problem. Sieber et al. [36] also introduces an alternative to

POD that is able to deal with flows exhibiting complex dynamics, where complexity

is mainly linked to intermittent dynamics, frequency modulations, to mention a few.

This leads to a condition where dominant flow structures cannot be easily isolated. In

particular, examples of such complex flows are given, that are the flow near the region

of a gurney flap, the flow in a swirl-stabilized combustor and the flow resulting from a

sweeping jet generated by a fluidic oscillator. In all these cases, the authors propose an

alternative to POD which reveals to be better in separating flow structures, facilitating

its ranking on the basis of their dynamic importance. The work of Rowley et al. [48]

and Sieber et al. [36] will be also better discussed in Chapter 2, where a literature

review of methods is presented.

The isolation of pure coherent structures is also a limitation of DMD, since it extracts

flow features with single frequencies that might not exactly reproduce their complex

dynamics. Besides this, it has been recognized also how DMD can fail in describing

transient dynamics. In particular Bagheri [43] has shown how DMD fails in describing

the dynamics of a cylinder wake when the DMD observation window is stretched too

far from the limit of the characteristic periodic oscillations. Moreover, Page and Ker-

swell [45] have discussed more in general how DMD can fail when describing a system
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dynamics over an observation window that contains crossover points of the dynamical

system.

In the context of isolating dominant flow features, and more in general defining an ac-

curate and efficient ROM when complex dynamics associated to flow structures mixing,

advection and diffusion is considered, it is possible to identify four main challenges:

Challenge 1. The identification of dominant flow features that are able to describe

transient nonlinear dynamics in a low-dimensional space in a consistent, i.e. systematic

and automatic, manner. Complex unsteady flows, expressed by the full set of Navier-

Stokes equations, often present dynamics happening on several spatial and temporal

scales. Defining low-dimensional manifolds through data-driven techniques that are

close to the physical one, if it exists, needs careful considerations in order not to miss

essential dynamical information [33, 35, 36, 44, 46, 49].

Challenge 2. Advection-dominated phenomena are common in unsteady fluid flows

and they are mainly characterised by the convection of flow structures over the compu-

tational domain. For this specific class of flows, using conventional ROM approaches

leads to reduced models that still need quite a large number of degrees of freedom to

achieve a satisfactory accuracy [50, 51, 52, 53]. The ability to obtain a reduced model

that has a rather small number of DOFs but retains CFD-like accuracy in the recon-

structed solution is still one important open problem in model reduction techniques for

advection-diffusion PDEs.

Challenge 3. Intrusive ROMs, i.e. ROMs that project the original governing equa-

tion of the system on a low-dimensional space through the set of basis functions com-

puted, are widely used in the literature [54, 55, 56, 57]. Using an intrusive ROM allows

to convert the high-dimensional system of ODEs coming from the spatial discretisation

of the original PDEs in a system of few ODEs that describes the evolution of the system

in a low-dimensional space. The main challenge for this class of ROMs, when unsteady

dynamics is considered, is how to deal with stability issues linked to the integration in

time of the low-dimensional system of equations [39, 58, 59, 60, 61, 62]. This is also
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better clarified in Section 2.4.1.

Challenge 4. Defining a set of flow features requires an initial phase of training,

where a set of high-dimensional solutions, i.e. snapshots, are computed at various

instants of time. When dealing with transient nonlinear flows, a uniform sampling in

time might not be the best choice. Moreover, differently from what happens in the case

of parametric problems, where each solution over the parameter space can be computed

independently, a specific sampling for unsteady problems might require also to define

an adaptive time step for the solution of the initial set of equations, in order to make

the sampling procedure more efficient [63].

1.2 Objective and Research Questions

The present research work focuses on the exploration of the first two challenges reported

above by studying a class of flows exhibiting significant nonlinear features in space and

time and characterised by the interaction and advection of complex structures. Indeed,

the analysis of this kind of flows raises the problem of defining a proper low-dimensional

space that is able to take into account the essential dynamics, including advection

phenomena, while keeping the number of DOFs as small as possible. The work is

also originating from a more engineering context and its relevance can be assessed

both in terms of applied research, as it tackles a series of challenges relevant to the

design of air vehicles, and in terms of fundamental research, as it aims at exploring the

methodological and numerical aspects of computational reduction techniques.

Research questions. The following interconnected research questions will be ad-

dressed:

1) “When identifying the fundamental flow structures at the basis of the reduction

process, what is the impact of explicitly considering the time correlation between

snapshots on the accuracy of the reduced solution?”

2) “Is it possible to define an error measure, both computationally efficient and reli-
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able, that allows to perform a quantitative assessment of the accuracy of different

sets of flow features in the reduced order reconstruction of complex unsteady dy-

namics?”

3) “If no best-in-class ROM can be identified, is there a way to formulate a computa-

tional reduction technique that is able to combine the strengths of diverse existing

methods, in terms of resolving specific dynamic features in time, in a unique and

cohesive reduction framework?”

The first research question is linked to the well-known problem in the ROM commu-

nity of defining a low-dimensional model that is able to isolate the essential dynamics

of the fluid system. Many efforts have been indeed devoted to this task in the recent

past, all mainly focusing on extracting pure dynamical information and describing the

dynamics of conceptually simple problems, or at least problems where some important

information are known a-priori [35, 36, 47]. The present work instead represents an

effort more focused on the reconstruction accuracy that can be achieved by these newer

techniques when they are applied to problems featuring relevant nonlinear transient in

time, e.g. impulsive starts, and complex dynamics in space, with structures advecting

and interacting over the computational domain. The study related to the first research

question is therefore strongly connected to the first two challenges presented above,

since it provides a more in depth insight on the limitations and advantages of diverse

extraction techniques in describing the evolution of advection-dominated phenomena.

The second research question addresses the problem of defining a quantitative assess-

ment of the various ROMs considered. In the literature many examples can be found ad-

dressing the problem of defining ROM accuracy through the definition of a-priori and a-

posteriori error bounds, which make the method certified and reliable [64, 65, 66, 67, 68].

Nevertheless, comparable rigorous error estimations have not been addressed in the

same detail for problems governed by the full set of Navier-Stokes equations applied

to impulsive start problems of aeronautical relevance. The present work represents an

effort in this direction, tackling the general problem of defining error measures in these

cases with a more engineering rather than mathematical approach. With respect to
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the first two challenges presented above, the second research question provides also a

quantitative study of the performance of diverse algorithms for feature extraction to

target transient nonlinear flows with advecting flow structures.

The last research question represents an effort to offer a possible solution to the first

two challenges and it is also a natural consequence of the first two research questions. It

explores the problem of how different reduced methods should be regarded and possibly

combined together to generate a single monolithic ROM that improves the description

of transient nonlinear dynamics. The improvements are measured not only in terms

of accuracy, but also in terms of reduction of degrees of freedom. Namely a trade-off

between the two will be used in the present work to define the capabilities of such new

ROM when compared to single reduced order techniques.

Overarching objective. Stemming from the last of the research questions above, the

overarching objective of the present work is to formulate and implement a non-intrusive

ROM able to describe the dynamics of impulsively started aeronautical geometries with

superior accuracy when compared with the different existing methods, and capable to

ensure a significant reduction in the number of degrees of freedom of the original prob-

lem [69, 70]. The identification of a low-dimensional space that is able to preserve all

the essential dynamics developing over several spatial and temporal scales represents

a central challenge, which can hardly be addressed by relying on a single reduction

technique. Research efforts have been put in defining a framework able to exploit ca-

pabilities of different reduction techniques and the associated low-dimensional spaces.

Information obtained addressing the two first research questions are crucial in the effort

to define this unique framework.

Contribution to knowledge. The research needed to address the above research

questions allows identifying the following specific objectives, each one providing an

original contributions to the field of computational reduction:

- Investigate how a range of classical and more recent linear decomposition tech-

niques compare with respect to the widely used POD in reconstructing complex

10



Chapter 1. Introduction

dynamics in time, for the specific case of complex unsteady aerodynamics flows;

- Explore how different ranking of modes for the specific case of POD and DMD

influence the accuracy in reconstruction of unsteady complex aerodynamics flows;

- Define an error estimation formula derived from the Navier-Stokes equations that

allows for a consistent ranking of available reduction methods in reconstructing

the solution for untried condition;

- Introduce a synergistic integration of low-dimensional spaces coming from differ-

ent reduction techniques to improve the reconstruction of complex dynamics.

The list will be also mirrored in the final Chapter, where conclusions are reported, in

terms of what has been done to build these contributions.

1.3 Outline

The remainder of this thesis is structured as follows:

• Chapter 2 reports some background about Reduced Order Modeling in fluid

dynamics, literature review, and state of the art of ROMs used for the specific

case of unsteady fluid dynamics problems.

• Chapter 3 presents a list of ROMs used to extract physically meaningful features

from a set of snapshots of the fluid flow, namely POD, Spectral Proper Orthogo-

nal Decomposition (SPOD), DMD, and Recursive Dynamic Mode Decomposition

(RDMD). It also shows the qualitative performances of these different algorithms

in reconstructing unsteady complex dynamics, namely the impulsive start of a

NACA0012 airfoil evolving to a quasi-periodic behaviour, and the impulsive start

of a 30P30N multi-element airfoil.

• Chapter 4 presents methods for ranking flow features extracted using the al-

gorithms presented in Chapter 3. In particular, a qualitative and quantitative

analysis is carried out for the specific case of POD and DMD. The effect of en-

ergy redistribution among POD modes is investigated when reconstructing the
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dynamics of a set of impulsively started geometries and the vortex shedding of

a cylinder. A novel approach is also presented for properly selecting physically

meaningful DMD modes in describing the dynamics of the early transition in a

channel flow.

• Chapter 5 introduces the novel approach for non-intrusive low-dimensional mod-

eling of complex unsteady fluid dynamics. The technique is an Adaptive ROM

that exploits the best aspects of the various linear ROMs introduced in Chapter

3, in the effort to create a synergy among them. Two different definitions of

the error are introduced to complete the Adaptive Framework. A comparative

study is also performed to investigate the Adaptive ROM performances when it

is equipped with such error definitions. Namely a residual error that does not re-

quire reference solutions, and a direct error that instead requires a set of reference

solutions, are considered. The Model-Based Adaptive ROM is finally introduced.

The term Model-Based refers to the residual error eventually used within the

Adaptive Framework.

• Chapter 6 presents a preliminary analysis of the features of the Model-Based

Adaptive Framework as the number of modes retained is changed. The analysis

represents an effort to achieve a good trade-off between solution accuracy and

dimensionality reduction of the initial problem. An investigation is also provided

regarding the influence of the initial mesh resolution on the performance of the

Model-Based Adaptive ROM.

• Chapter 7 finally shows the performance of the Model-Based Adaptive frame-

work when applied to impulsively started aeronautical geometries, exhibiting com-

plex dynamics in time and space. Geometries are indeed investigated that gener-

ate complex vortical structures, namely the 30P30N multi-element airfoil and its

3D version in a Wing Body configuration, as well as simple geometries in config-

urations that generate complex dynamics in time, namely Delta Wing exhibiting

vortex breakdown and Delta Wings geometries in Formation Flight configuration

exhibiting vortex interactions.
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• Chapter 8 draws the conclusions, summarizing results presented from Chapter 3

to Chapter 7, and providing answers to the research questions presented in Section

1.2. Possible further developments of the novel Adaptive Framework introduced

in Chapter 5 are also discussed.

1.4 Publications arising from this thesis
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G. Pascarella, G. Barrenechea, M. Fossati. Model-based Adaptive Reduced Or-

der Modeling for Unsteady Aerodynamics. Part I: Concepts and Formulation.

Journal Of Computational Physics.

G. Pascarella, G. Barrenechea, M. Fossati. Model-based Adaptive Reduced Or-

der Modeling for Unsteady Aerodynamics. Part II: Applications. Journal Of

Computational Physics.

- Published

G. Pascarella, M. Fossati, G. Barrenechea. Impact of POD modes energy redis-

tribution on flow reconstruction for unsteady flows of impulsively started airfoils

and wings. International Journal of Computational Fluid Dynamics, 34(2):108-

118,2020.

G. Pascarella, I. Kokkinakis, M. Fossati. Analysis of transition for a flow in a

channel via reduced basis methods. Fluids, 4(4):202, 2019.

G. Pascarella, M. Fossati, G. Barrenechea. Adaptive reduced basis method for

the reconstruction of unsteady vortex-dominated flows. Computers & Fluids,

190:382-397, 2019.
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Conference Papers

G. Pascarella, M. Fossati. Model-based adaptive MOR framework for unsteady

flows around lifting bodies . In MODRED 2019. (In press)

G. Pascarella, M. Fossati, G. Barrenechea. Model-based adaptive reduced basis

methods for unsteady aerodynamics studies. In AIAA Aviation 2019 Forum,

2019-3332.
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Chapter 2

Background and Literature

Review

2.1 Low-dimensional Modeling in fluid dynamics

Although there are many assumptions as starting points to elaborate low-order models,

the main assumption that will be used in the present work is that the generic quantity

u(x, t, µ) can be expressed as a sum of Nm products of parameter-dependent coefficients

and parameter-independent basis functions, namely

u(x, t, µ) =

Nm∑
i=1

ai(t, µ)φi(x) (2.1)

where Nm represents the number of basis functions used in the ROM, i.e. the number of

degrees of freedom of the low-order model, φi is the generic set of basis functions, alias

modes, ai is the generic coefficient associated to the basis function, which dictates the

system evolution into the low-dimensional space. The time dependence t of coefficients

ai is separated from the generic parameter µ, since different considerations need to be

taken and different algorithms can be implemented depending on whether the problem

is steady or unsteady. x represents a discrete vector of points where the solution vector

u is computed, i.e. the points of the computational mesh if considering the high-fidelity

solution coming from a CFD simulation. The vector u will be hereafter used to indi-
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cate the generic physical quantity under study on a set of discrete points and it is

often a very high-dimensional vector for fluid dynamics problems. The assumption in

Equation 2.1 is crucial to elaborate a low-order model that is able to capture essential

behaviour of the system using as few DOFs as possible, still preserving a good degree

of accuracy and physical consistency, as opposed to low-fidelity methods, e.g. vortex-

lattice or panel methods. Indeed, although they can provide enough accuracy if some

underlying conditions are met (e.g. negligible 3D effects), these low-fidelity methods

might provide misleading results when strong separations and important cross-flows

occur in the flow field, which leads to the necessity of full CFD (high-fidelity) simu-

lations. It is worth to highlight that, even if the basic assumption in Equation 2.1 is

“linear”, since it decomposes the solution u as a linear combination of basis functions

through some coefficients ai, it is also able to treat “nonlinearity”. Indeed, the basis

functions φi can represent nonlinear spatial structures that evolve through nonlinear

function ai over the time and parameter space. Recent literature [71] has also pointed

out the importance of having spatio-temporal basis functions, i.e. φi = φi(x, t), in

order to enrich the description of the low-dimensional subspace and take into account

more complex nonlinearities. Nevertheless, the extraction of features of this kind still

remains an open question. Furthermore, while increasing the complexity in modeling

flow physics through accurate spatio-temporal features, attention has to be paid in or-

der not to define models that have a level of complexity comparable to the one of the

original set of equations.

The two main components of Equation 2.1 allow to distinguish each ROM in two main

phases: an offline phase and an online phase. The offline phase consists of a training

step, where usually high-fidelity solutions are computed and fed into an algorithm that

provides the set of basis functions φ. This procedure is performed once and for all,

therefore the time required for the training and extraction stage is usually of minor

importance. It is worth noticing that the training is the most delicate step in building

a ROM, since the resulting low-dimensional model will be at most capable of describing

behaviours contained in the collected solutions, independently from the specific algo-

rithm used. Therefore, the more the solutions span all the possible behaviours of the
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original system, the more the ROM is able to accurately describe the system behaviour

in a low-dimensional manner. The online phase, instead, represents the true computa-

tional speedup of the method. It allows indeed to compute coefficients ai in Equation

2.1 and therefore describes the system evolution in a low-dimensional manifold. Equa-

tion 2.1 can be used then to project the solution in the low-dimensional space to the

high-dimensional space once coefficients are provided.

It is worth noting at this stage that the Equation 2.1 will be used in the present work

only to elaborate a ROM that is able to compute low-dimensional solutions within

the space sampled and used to train the ROM. No prediction capabilities, in terms

of testing the ROM when new solutions are computed out of the sampled space, will

be developed or investigated. The remainder of the Chapter reports an overview of

ROMs implementation and usage in fluid dynamics for both the aspects highlighted in

Section 1.1.1. In particular: Section 2.2 provides the main aspects that have to be con-

sidered before trying to define a Reduced Order Model; Section 2.3 provides a review of

ROMs used for fluid modal analysis; Section 2.4 provides instead a review of reduced

models for describing the system behaviour in a fast, yet accurate, low-dimensional

manner.

2.2 Prerequisites for dimensionality reduction

Although ROMs are a very powerful method to provide quantitatively and qualitatively

accurate descriptions of a system behaviour, there are some considerations that need to

be done before trying to elaborate algorithms for dimensionality reduction. All these

considerations stem from the actual existence of low-dimensional manifolds where to

describe the system behaviour. Lassila et al. [72] provides a good overview of the main

aspects to be considered before building a ROM for a generic high-dimensional system.

The most important one is the Kolmogorov n-width. It mathematically represents the

distance dn(M,X) of the low-dimensional manifold M and the corresponding high-
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dimensional space X, defined as follows

dn(M,X) := inf
Xn⊂X

sup
u∈M

inf
ũ∈Xn

‖u− ũ‖X (2.2)

Here, ũ represents the low-order reconstruction of the quantity u, while n is the same

as Nm defined in Equation 2.1. Therefore, the faster dn tends to zero as n → ∞, the

stronger the dimensionality reduction that can be achieved using a ROM. Naturally,

knowing or computing a-priori the Kolmogorov n-width is not an easy task, especially

for very complex problems originating from the full set of Navier-Stokes equations.

Indeed, this last problem is usually characterized by many spatial and temporal scales

and only numerical approximations or substitute quantities to Kolmogorov n-width

can be computed, which are still able to provide an indication of the existence of low-

dimensional manifolds. There have been efforts for very simple problem to provide

a mathematical computation of the Kolmogorov n-width. Unger and Gugercin [73]

have tried to define dn(M,X) for a Linear Time Invariant (LTI) system, showing that

the quantity in Equation 2.2 for such systems equal their (n + 1)st Hankel singular

values. Brown et al. [74] and Combettes and Dũng [75] define Kolmogorov widths

for subspaces generated by a particular class of smooth functions and non-degenerate

differential operator, respectively. Lassila et al. [76] and Bachmayr and Cohen [77]

also provided estimates of the Kolmogorov widths for parametric and ellipic PDEs,

showing the important link between the n-width of the solution manifold and the fast

convergence of reduced basis methods. For complex problems generating from Navier-

Stokes equations, a quantity that is considered a good substitute to Kolmogorov width

is the set of singular values produced by a collection of snapshots of the system. To

compute a set of singular values of the system that represents a reliable measure of the

low-dimensional structure, it is necessary to have a good number of solutions available

from the original system and a proper sampling of these solutions. The rate of decay

of the singular values provides then a measure of how much the dimensionality of the

system can be reduced. Many works use singular values decay as an estimate of the

capability to reduce dimensionality of a complex systems and singular values are often
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used to define the rank of the reduced model through the Relative Information Content

(RIC) defined as follows [72, 78],

RIC =

∑r
i=1 σ

2
i∑ntot

i=1 σ
2
i

(2.3)

where r represents the number of flow features eventually used in the ROM, therefore

equivalent to the quantity Nm in Equation 2.1, ntot is the total number of collected

solutions, σi is the i-th singular value. Peherstorfer [50] uses the different rate of decay

of singular values with local versus global approaches to elaborate a fast and accurate

adaptive reduced model for convection dominated flows.

The introduction of local ROMs stems from another important guideline for dimension-

ality reduction stated in [72], that is “Divide and conquer whenever possible”. It is well

known, indeed, that accuracy and reliability of a ROM often decays as new evaluation

are searched for in the low-dimensional space, far away from the range of parameters

value with which the model has been trained. Therefore, taking into account that a

global Kolmogorov width cannot be found for very complex problems but more low

subspaces can be found for different ranges of time and parameters, local adaptive

strategies are to be preferred and usually lead to more accurate and reliable results. In

order to detect and check for low-dimensionality in complex problem, Williams et al.

[79] proposed also an hybrid ROM integrator that uses two independent reduced order

algorithm, namely Proper Orthogonal Decomposition and Dynamic Mode Decomposi-

tion (DMD), to elaborate a criterion able to determine if the ROM is accurate or not

without directly evaluating the underlying system governing equations. Specifically,

DMD and POD low-dimensional results are compared and if the two models produce

different solutions, the algorithm switches back to the Full Order Model (FOM). The

rationale behind the algorithm is that POD and DMD are two independent methods

whose dynamics should agree on attractors. Therefore, the disagreement of the two

methods should be an indicator that the dynamics does not lay anymore on a low-

dimensional attractor and a Full Order Model is required again. It is worth noting

that the method still remains heuristic and based on the assumptions that POD and
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DMD are widely used models in the literature, with their efficacy tested on several

problems exhibiting low-dimensional behaviour. Checking for the actual convergence

of both POD and DMD to the low-dimensional attractors of complex nonlinear sys-

tems still remains an open mathematical question. This leads to possible uncertainties

when the hybrid model needs to be generalized to any class of problems. In conclusion,

the hybrid integrator represents only a step forward achieving a more reliable ROM in

terms of detecting and describing low-dimensionality, but still not a final solution to

the problem of identifying and reconstructing nonlinear attractors. This is also justified

by the presence of different hybrid ROMs in the literature, which target problems with

different complexities [80, 81, 82].

2.3 Reduced Order Models for fluid analysis and discov-

ering time dynamics

As already stated in Section 1.1.1, one of the main objective of ROMs is to gain more

physical insight into system dynamics. The current section offers a review of how this

can be performed for fluid systems, focusing on the extraction of different sets of ba-

sis functions. Indeed, the φ presented in Equation 2.1 can be extracted using several

different methods, and each algorithm used for their computation brings different in-

formation that can be useful to gain an understanding of the physical behaviour of

the system. It is worth to highlight that the techniques reviewed here are data-driven

based techniques, i.e. they compute the basis functions φ from a collection of available

snapshots of the system. Naturally, there are ways to define the set of basis functions

analytically, using for example Fourier or Wavelet Decomposition, but this will not

explicitly consider the dynamics of the system, as it can be learned from actual realiza-

tion of the system itself. One of the techniques most used and first to be introduced in

the fluid dynamics community as a data-driven algorithm to compute basis functions

φ is Proper Orthogonal Decomposition (POD). POD was introduced by Lumley [31]

as a means to extract coherent structures in turbulent flows. Its widespread usage in

many fields and fluid dynamics is strictly related to the main properties of the ex-
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tracted basis. The set of φ is indeed optimal with respect to a specific norm (usually

an L2 or euclidean norm) and defines an orthonormal basis [23, 83]. The optimality

property guarantees that the POD basis is the closest basis to the original dataset with

respect to any other linear basis obtained adopting the same norm and for a given rank.

Moreover, if velocity fields are processed, for the specific case of fluid dynamics prob-

lems, the euclidean norm used in the process represents the kinetic energy of the flow.

Therefore the POD basis can be interpreted also as the one able to describe the most

energetic structures in a fluid flow. The orthonormality of the basis set, instead, makes

the POD basis very attractive to build ROMs, especially the ones based on projection

techniques [54, 55, 56, 84, 85, 86]. Although its desirable properties and the simplicity

of its algorithm, which is basically equivalent to a Singular Value Decomposition, it has

been widely recognized in the literature that POD has limitations in extracting mean-

ingful dynamical information, e.g. specific frequencies or stable/unstable behaviour in

time. The energy criterion of POD does not always allow to isolate coherent structures

with pure frequencies, assuming such structures are present in the flow field. What

the method often extracts in this case instead is spatial features having multiple fre-

quencies (frequency mixing). Moreover, the energy ranking of POD might also neglect

the importance of less energetic structures that, despite their low energy content, are

still important for the system dynamics. To deal with the frequency mixing prob-

lem and the lack of important dynamical information, Dynamic Mode Decomposition

(DMD) was introduced by Schmid [46] in the fluid dynamics community. DMD takes

directly into account the time dynamics underlying the collected data by considering

a linear regression in time over all the set of available snapshots [87]. Each state is

assumed to propagate in time by a constant matrix. From its basic assumption, DMD

is able to extract spatial modes, namely dynamic modes, with associated frequencies

and growth/decay rates. Differently from a Discrete Fourier Transform (DFT), which

only extracts pure frequencies from data, DMD is therefore able to spot also transient

dynamics of specific spatial structures through information coming from growth and

decay rate coefficients, thanks to its linear system dynamics assumption. As for POD,

also DMD has its limitations. When dealing with complex nonlinear dynamics, with-
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out any specific frequency components, the spectral purity of DMD can indeed provide

misleading information. Coherent structures that are mixed in frequencies might be

possible in complex nonlinear flows, as well as dynamic features existing only in par-

ticular time windows, therefore a pure frequency decomposition might not be the most

suitable for a dynamic analysis. As pointed out by Noack [71], a crucial point in fluid

modal decomposition is how to bridge the energy optimality promoted by the POD

and the spectral purity promoted by DMD and DFT, as these are both fundamental

aspects to gain the correct understanding of the physics of a fluid flow. In the following,

methods that try to correct the optimal property of the POD and the spectral purity

of the DMD are reviewed.

2.3.1 Methods based on POD

The POD variants mentioned in the present section represent an effort to overcome the

two main limitation of the POD algorithm: the energy ranking criterion used to classify

the POD modes importance, which might neglect important dynamical features having

low energy content; the frequency mixing in the set of flow features extracted. The Bal-

anced POD (BPOD), proposed by Rowley [33], represents mainly an effort to overcome

the first limitation. It combines balanced truncation [88] and POD in order to obtain

a good approximation of balanced truncation for very high-dimensional systems, like

the one arising from problems in fluid dynamics. Balanced truncation aims at finding a

basis transformation where to represent the system dynamics. It has the main feature

that observable and controllable states have the same importance. Here, controllability

refers to the ability of an input to control the evolution of a state, observability, instead,

measures the effect of a given initial state on future outputs. These two quantities are

measured through two matrices, called controllability and observability Gramians, and

the role of POD is to provide a low-dimensional approximation of these two Grami-

ans. Considering the new system of coordinates defined by the BPOD basis, where

observable and controllable states are balanced, showed to be an important aspect for

describing transient dynamics in non-normal system [89], as more observable states are

able to capture important dynamics features that are neglected by the energy based
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modes coming from pure POD. Spectral POD, introduced by Sieber et al. [90], puts

the effort in overcoming the frequency mixing limitation. Not to be confused with the

POD in the frequency domain [91], it tries to bridge energy optimality of the POD and

spectral purity of the DFT through the application of a filter in the POD algorithm.

Since the dimension of the applied filter can be changed continuously, it is possible to

gradually switch from POD to DFT. This should allow to extract also coherent features

responsible for the flow dynamics that have multiple frequencies. Sieber et al. [36] show

indeed for the case of a gurney flap configuration, a swirling combustor and a sweeping

jet, how intermediate dimensions of the filter are able to extract coherent features and

related dynamic information better than the DMD algorithm. Sieber et al. conclude

that SPOD allows for a better separation of fluid structures into single modes, can solve

for temporal dynamics also for partially recorded phenomena and ensures a smooth evo-

lution of modes in time, as opposite to the chaotic evolution usually provided by POD.

Nevertheless, the choice of the right filter dimension is something that cannot be de-

fined a-priori and requires some knowledge of the problem at hand. A further step in

isolating coherent features and bridging optimality and spectral purity was taken by

Mendez et al. [37], introducing Multiscale Proper Orthogonal Decomposition (mPOD).

The basic idea of mPOD is to apply a multi resolution analysis to the temporal cor-

relation matrix of the POD in order to split contribution coming from different scales.

Each contribution is then processed with the common POD algorithm, obtaining an

orthonormal basis for each scale. The bases of each scale are finally merged together

into a temporal basis and spatial structures are found. The algorithm proposed was

applied to a synthetic dataset, a numerical and an experimental test-case and for each

problem showed a good extraction capability of coherent features, a good time local-

ization of these features and good convergence to the actual solution. Mendez et al.

[37] therefore conclude that mPOD represents an excellent compromise between energy

optimality and spectral purity, while also preserving the orthogonality of the basis set.

All the POD variants presented are usually targeted to specific applications and gen-

eralization of these methods still provide room for further research and investigation.

Indeed, Balanced POD requires specific datasets (inputs coming from impulsive re-
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sponses of the systems) and its application is quite limited to experimental data, even

if some additional work has already been envisaged in the direction of solving these

limitations [21]. SPOD requires some previous knowledge of the problem at hand in or-

der to exploit at best its capabilities. Moreover, non-orthogonality of its modes might

represents a strong limitation for specific applications (e.g. projection-based ROM).

Finally, Multiscale POD introduces additional complexities in the algorithm of feature

extraction through elements of Multi-Resolution Analysis (MRA). This paves the way

for further investigation on the specific parameters used for the MRA step, i.e. how to

break different scales [92]. Nevertheless, mPOD remains one of the best methods pro-

posed to isolate specific structures associated to different scales, while still preserving

the original orthogonality property of the POD.

2.3.2 Methods based on DMD

The drawbacks of the DMD method for dynamical features extraction mainly derive

from the assumption of linear dynamics. Moreover, it has been shown that data used

for generating dynamic modes need to have specific properties in order for the DMD

to be considered valid [93]. Although DMD has shown to approximate eigenvalues and

eigenfunctions of Koopman operator [94, 95], which is an infinite dimensional linear

operator for describing nonlinear dynamics, and therefore able to handle also nonlinear

phenomena of some kind, it might generate misleading results for complex nonlinear

and transient phenomena. Several variants of the DMD algorithm have been proposed

to overcome its limitations. Optimal Mode Decomposition (OMD) by Wynn et al. [34]

is presented as a generalization of the DMD algorithm. The DMD algorithm for fluid

dynamics problems, where a huge number of DOFs have to be treated, needs a further

reduction step to obtain eigenmodes and eigenvalues from the dynamic matrix of the

linear system. This reduction step is usually performed projecting the dynamic matrix

in the low-dimensional space identified by POD modes. OMD tries instead to define an

optimal low rank space where to project the system dynamics and extract eigenvalues

and eigenmodes of the system. The optimal low rank space is searched for using a

conjugate-gradient based algorithm and tools from manifold theory. Although Wynn
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et al. [34] were not able to prove if OMD is able also to provide a better estimation of

the Koopman modes for a general nonlinear system, they showed how OMD outper-

forms DMD in terms of accuracy in describing system dynamics, even in presence of

measurement noise, and also in spotting higher frequency modes in turbulence. Vari-

ants of DMD have been proposed also to address the specific problem of sensor noise,

when dealing with experimental data, as the algorithm has shown to be quite sensitive

to it [96]. MultiResolution Dynamic Mode Decomposition (mrDMD), introduced by

Kutz et al. [97], represents the equivalent of mPOD in the realm of DMD algorithms,

and allows to provide a separation of dynamics happening on different time scales. It

combines tools from multi resolution analysis and the DMD algorithm. The mrDMD

method recursively removes low-frequency content from the collected snapshots, pro-

viding a separation of dynamic phenomena that either have different temporal scales or

are happening only on specific time intervals. It has been shown on different cases that

mrDMD can perform very well in spotting localized dynamics, separating fast and slow

modes and handling invariances in data such as translation and rotation. The Recur-

sive Dynamic Mode Decomposition (RDMD) by [44] represents another method that,

like the SPOD by Sieber et al., directly tries to bridge the POD optimality and DMD

spectral purity. It is based on a recursive DMD modes extraction, where the mode that

produces the least time-averaged error in reconstructing the initial snapshots data is

selected at each step of recursion. Differently from SPOD, RDMD has the advantage to

provide orthogonal modes, such as the POD algorithm, and does not need any filtering

parameter to be tuned. Therefore, it is presented as a good compromise between POD

and DMD. The High Order Dynamic Mode Decomposition (HODMD), introduced by

Le Clainche and Vega [98], represents an extension of the DMD algorithm able to deal

with systems presenting a very wide spectrum of frequencies that cannot be solved

using the standard DMD algorithm. The spectral complexity of DMD, which is the

maximum number of frequencies it is able to extract from available data, is indeed

limited by the maximum number of available snapshots of the system. This might not

be enough to describe the entire frequency spectrum. The HODMD enlarges this spec-

trum considering a matrix of time-lagged snapshots and applying the DMD algorithm
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to it. As for the POD variants, also the algorithms proposed to overcome the limits

of the DMD are targeted to solve specific limitations, usually related to the specific

problem at hand. OMD is presented as a method that can introduce major improve-

ments when measurement noise and high frequencies contribution are present in the

collected data (specifically high frequencies related to turbulent flow dynamics). Multi-

resolution DMD can isolate structures and dynamics happening on different scales, but

it can easily incur in the problem of extracting many flow features since DMD on differ-

ent scales needs to be applied. This can represent a drawback when a low-dimensional

approximation is searched for and many different spatial and temporal scales need to

be resolved. HODMD is presented as an alternative to DMD when not enough data

are available to solve their entire spectral content and its applications are limited to

instability analysis and identification of flow patterns in transient evolving towards

attractors [98, 99, 100]. Finally RDMD has shown greater performance only when de-

scribing dynamics on attractors [44], with some degradation when transient behaviour

is considered.

2.3.3 Recent developments using machine learning algorithms

POD, DMD and their variants presented in the previous Sections are all linear methods,

as also stated in Section 2.1, where the main assumption is introduced in Equation 2.1.

Nevertheless, high-dimensional data coming from nonlinear dynamics usually lie on

low-dimensional manifolds that are nonlinear and therefore not well described by linear

subspaces. The detection of nonlinear manifolds allows to extract more coherent spatial

and temporal structures from data and furtherly reduces the space where the system

dynamics is projected. It is natural to expect that to describe nonlinear manifolds

with linear bases would require more DOFs to ensure a good accuracy. Recently,

deep learning algorithms are also used to extract coherent features and are based on

Convolutional Neural Networks (CNNs), mainly autoencoders [101]. They can lead

to non-orthogonal spatial modes but they are still capable of describing the nonlinear

embedding of low dimension [102]. Deep learning has also been used in the literature to

improve the DMD approximation of the Koopman eigenvalues and eigenmodes [103].
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Many other nonlinear algorithms have been introduced to build the low-dimensional

embedding, which belong instead to the class of manifold learning techniques [104,

105], the most widely used being Self-Organizing Maps (SOMs) [106], ISOMAP [107],

Locally Linear Embeddings (LLE) [108, 109] and Kernel methods, like Kernel Principal

Component Analysis (kPCA [110]). The first two are based on the computation of

geodesic distances to learn the shape of the manifold. Therefore a graph needs to be

constructed and usually a Multi Dimensional Scaling (MDS) [111] is applied to define

the actual dimension of the nonlinear manifold. The kernel methods, instead, are still

based on euclidean distances and use nonlinear functions from a defined dictionary in

order to take into account the nonlinearity of the manifold.

A good review of methods used in nonlinear dimensionality reduction is reported in

[110]. Examples of applications and recent advances in the field of fluid mechanics are

well described and summarized by [102]. Future perspectives for deep learning in fluid

dynamics are also given by [112]. It is worth noting that all these methods will lose the

characteristic linear modal decomposition reported in Equation 2.1 and therefore not

always allow to compute a back mapping from the low-dimensional nonlinear manifold

to the high-dimensional physical space. Moreover, it is also worth noting that the

research on deep learning algorithms in fluid flows is still at its early stage and many

aspects need to be further investigated. The main challenge is related to the many

parameters to handle, which can easily lead to a condition where the level of complexity

is comparable to that of the original high-dimensional model. Additional criticism

addressed to models based on machine learning algorithms and deep learning is also

related to: how to perform latent parameter searching; how to carry out a proper

training that avoid overfitting; optimization issues that can be related to the presence

of local minima, especially when very high-dimensional systems are treated [113]. All

the points mentioned have led a wide part of the scientific community to continue using

linear models, like the ones presented in Sections 2.3.1 and 2.3.2.
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2.4 Reduced Order Models for fast simulations

The fluid modal analysis can be considered as the first step to elaborate ROMs, i.e. try-

ing to define a low-dimensional space through some meaningful features able to catch

the essential dynamics. Once some considerations related to what stated in Section

2.2 have been appropriately made and the φ have been determined through one of the

algorithms presented in Section 2.3, a way to compute the coefficients ai needs to be

defined, in order to describe the dynamics into the low-dimensional space. The back

mapping to the high-dimensional physical space is then easily done through Equation

2.1, considering only linear methods. These last two step represent the true compu-

tational speedup of the ROM. Indeed, the coefficients that need to be computed are

only a few compared to the high number of DOFs of the original system, especially

when dealing with problems in fluid dynamics, where very refined meshes are used

in CFD simulations or PIV experimental measurements are performed with very high

resolution cameras. Considering the time required for state-of the-art CFD solver, the

computational speedup a ROM can provide is therefore of several orders of magnitude.

The current Section will present the various methods that have been used in the liter-

ature to compute the coefficients ai. They can be classified in two categories, namely

intrusive and non-intrusive methods, the former using the governing equation of the

system, the latter being completely equation-free.

2.4.1 Intrusive techniques

Techniques classified as intrusive use the system governing equations to compute the

coefficients ai. Therefore these equations need to be known and careful considerations

need to be taken in order to obtain stable and reliable ROMs.

Projecting the system of equations into the low-dimensional linear space defined by the

ROM has been widely used in the literature as a means to compute the coefficients

of the model [78, 114]. The two main preferred basis used as a starting point for the

solution decomposition have been the POD basis [115] and the basis coming from the

Reduced Basis Method [66, 116]. Depending then on the basis used for the projection
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operation, the methods can be classified in Galerkin methods [55, 62], if the basis used

for projection is the same used for the decomposition, and Petrov-Galerkin methods

[117], if the basis for the projection and the basis for the decomposition are different.

In both cases, low-dimensional operators depending only on spatial basis functions are

computed offline once and for all, and a system of Ordinary Differential Equations

(ODEs) is obtained for the set of coefficients ai, that is much smaller than the original

system of ODEs originating from the direct discretization of the original Partial Dif-

ferential Equations (PDEs).

Galerkin methods have been widely studied in the literature for the incompressible

Navier-Stokes equations. In this case, indeed, the entire set of reduced order Navier-

Stokes equations is reduced to the momentum equation only, since the divergence prop-

erty coming from the continuity equation is identically satisfied by the POD or ROM

modes and the energy equation decoupled from momentum. Despite the apparent sim-

plicity deriving from the reduction of the full set of Navier-Stokes equation to only

one equation, there are issues related to the elaboration of Galerkin ROMs also for

the case of incompressible flows. The main problem of such models is instability, es-

pecially on long time integrations, which is mainly related to the presence of transient

dynamics, not properly described when higher order modes are truncated [33], and

the pressure term appearing in the momentum equation [85]. This aspects need the

introduction of ad hoc fixes. Cazemier et al. [118] addressed the problem of unsolved

POD modes adding a damping term to the ROM to elaborate a closure model for long

term prediction of a lid-driven cavity flow. This damping coefficient is a function of the

retained modes and is computed from an energy conservation equation. In [86] instead,

the pressure term problem is addressed, introducing a pressure extended ROM that

takes into account a possible modeling of such term. Moreover, the problem of model-

ing finer scales associated to dissipation and enrichment of POD basis when changing

some parameters of the system is considered. Caiazzo et al. [119] also proposes a novel

velocity-pressure ROM, which uses pressure POD modes and shows improvements with

respect to an only velocity POD modes based Galerkin ROM. Further develompments

on the stabilization of the pressure term are also presented by Ballarin et al. [60]. Also
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a recent work [120] on POD-Galerkin models has investigated the problem of instabili-

ties due to long time integration. Rubini et al. [120] showed that a specific data-driven

sparsification and calibration of a Galerkin based ROM is able to improve the temporal

stability of the model. Specifically, the method has shown to outperform Galerkin dense

models (i.e. not involving sparsification) in predicting the turbulent kinetic energy and

its power spectrum. Examples are present in the literature that try to expand Galerkin

models to the case of compressible flows [59, 61]. Rowley et al. [48] shows a particular

definition of the POD norm, which links all the independent variables in a consistent

way, to define a Galerkin model for slightly compressible flows. Nevertheless, a com-

mon issue when dealing with the full set of Navier-Stokes equations or for complex

flows in general, is the treatment of the nonlinear term, which strongly compromises

the efficiency of the ROM as it has to be updated at each step of the computation.

Also elaborating Galerkin models considering the full set of Navier-Stokes equations

represents a very cumbersome task [114], as the projection operations required increase

exponentially with the number of modes retained, due to the presence of the nonlin-

ear terms. The work of Rubini et al. [120], already cited above, also addressed this

problem, introducing an l1 regularised regression approach that aims at retaining only

important quadratic interactions between modes, which are resulting from the nonlinear

term. To avoid the problem of nonlinearities of the full set of Navier-Stokes equations,

techniques have also been proposed in the literature that introduce an hyper-reduction

step, focused on how to accelerate the computation of the nonlinear term. A widely

used method has been the Discrete Empirical Interpolation Method (DEIM) [121] that

tries to describe the nonlinear term through the evaluation of the nonlinear function

only at some meaningful points. Another class of intrusive techniques is based on a

residual minimization step. Coefficients ai are computed as the solutions of a minimiza-

tion problem once the decomposition in Equation 2.1 is substituted into the governing

equations of the system. The residual, coming from the particular discretization of the

system of PDEs, is computed as a function of the coefficients ai and the optimization

problem is solved [24]. Residual minimization techniques have been used also to elab-

orate hyper-reduction models for the compressible set of Navier-Stokes equations and
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usually belong to the class of nonlinear model reduction methods based on POD and

using Petrov-Galerkin projection [122]. A well known residual minimization method is

the Gauss-Newton method of approximated tensors (GNAT), introduced by Carlberg

et al. [57]. Amsallem et al. [123] also reported a discussion on the importance of defin-

ing a proper norm for the residual involved in the minimization procedure. Specifically

the work introduces a new residual norm definition in the effort to make the model

reduction process independent from mesh spacing consideration, i.e. different influence

of small and large cells.

2.4.2 Non-Intrusive techniques

To avoid the problems arising from acting directly on the governing equations of the sys-

tem under study, which for fluid dynamic problems means the need to access the source

code of the CFD solver, and to circumvent all the issue related with projection oper-

ation, non-intrusive ROMs have been widely implemented and used in the literature.

The coefficients ai are in this case computed with completely equation free techniques

that involve regression or interpolation. The online phase of the final ROM, therefore,

becomes completely independent from the original system of equations. Non-intrusive

ROMs might be very useful when governing equations of the system are unknown, in

case of data collected through experiments, and can be also used to infer dynamic equa-

tions of the system, using techniques from symbolic regression. A recent introduced

algorithm that operates in this direction is the Sparse Identification of Nonlinear Dy-

namics (SINDy), introduced by Brunton et al. [124]. Despite its great success, marked

by the combination of symbolic regression techniques with algorithms to promote spar-

sity, SINDy has its own limitations. Indeed, the accuracy of the method strongly

depends on the sampling, how the time derivatives used to train the dynamic model

are computed, and the dictionary of functions defined before the sparse algorithm is

executed. Although a dictionary of polynomial functions has been quite extensively

tested on fluid dynamics problems [125], this has been limited to problem exhibiting

periodic and/or quasi-periodic behaviour, for which the existence of a low-dimensional

attractor is known a-priori. Extension to problems with stronger nonlinearities and
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transient [126], as well as adapting the algorithm for very high-dimensional problems

as the one arising from complex fluid dynamics, is still an open field of research. In-

deed SINDy and similar algorithms are usually applied after an initial reduction step

is carried out, e.g. using POD or other techniques from machine learning.

Other techniques for non-intrusive ROMs, specifically oriented to the computation of

coefficients, can be interpolation based or operator based. Stochastic regression and

interpolation based techniques mainly used in ROMs are kriging [127, 128, 129] and

Radial Basis Functions (RBF) [130, 131, 132] respectively. This last technique will be

the one used in the present work and will be introduced in detail in Chapter 3, when

discussing about the online Reconstruction methods. More recently, also regression

techniques based on Gaussian Processes [133] have been introduced to define the map-

ping between time-parameters inputs and the coefficients of the ROM [134].

Operator based techniques provide an analytical expression for the coefficients. The

DMD algorithm belongs to this class, which extracts a set of coefficients ai with a

particular frequency and growth/decay rate and amplitude that can be computed with

specific algorithms [35, 87]. Cammilleri et al. [135] applies the DMD algorithm on the

POD coefficients to determine the time dynamics in the low-dimensional attractor iden-

tified by POD. Limitations of using DMD operator based techniques are linked to the

discussion already reported in Section 2.3 and can be summarized with the difficulty

of expressing transient and nonlinear dynamics with a linear operator. Other exam-

ples of operator based techniques come from Global Stability Analysis [136, 137, 138],

which allows to express the time evolution of global stability modes in an analytical

manner, together with its complementary method for nonlinear problems, that is re-

solvent analysis [139, 140]. However, their application is limited to the identification

of growth and/or decay rates of perturbations with respect to a given base or mean

flow. Moreover, both approaches require discretized operators from the Navier–Stokes

equations to perform the modal stability analysis.

Koopman operator is instead a nonlinear operator, which represents a good alternative

to the linear operators presented above in order to express nonlinear dynamics [141].

Although it has been investigated in the literature for a long time [95, 142, 143], the
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definition of a Koopman operator, i.e. Koopman eigenmodes and eigenfunctions, for

fluid dynamics problem is an open field of research. The main challenge is related

to the main characteristic of the Koopman operator, which is an infinite-dimensional

operator.

Recent developments in Neural Network have also paved the way to compute coeffi-

cients of a ROM in a non-intrusive manner using deep learning algorithms. Besides

extracting coherent features using CNNs, as already shown in Section 2.3.3, Neural

Networks are also used to compute the evolution of the coefficients. Many techniques

are usually hybrid, combining a POD extraction stage with a Neural Network for com-

puting coefficients [42, 144, 145, 146]. Other non-intrusive techniques use instead an

entire ML framework from the extraction stage till the online phase [101, 147]. In both

cases, machine learning algorithms used for the definition of reduced order models are

still an early area of research and present some limitations linked to overfitting, lack

of interpretability, many hyper-parameters and challenges in introducing physical con-

straints as opposed to linear techniques.

In conclusion, non-intrusive techniques based on interpolation methods represent a

good compromise in terms of generalizability and level of complexity of the model.

Indeed, they do not need to access the set of underlying governing equations of the

problem while computing ROM solutions and they do not require the tuning of many

hyper-parameters, which is instead needed for machine learning approaches. As regards

instead the intrusive techniques reviewed in Section 2.4.1, they are usually targeted to

very specific class of problems and require remodelling on the basis of the specific set of

equations at hand, and therefore they are less prone to generalization. For the specific

case of fluid dynamic problems, ad hoc intrusive techniques need to be defined depend-

ing on the compressible or incompressible nature of the flow, the specific discretisation

used for the set of equations(e.g. Finite Volume, Finite Element, Finite Difference),

and considerations on time stability issues related to long time integration.
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Assessment of different Basis

Extraction Methods

Central to linear reduced modeling is the identification of a number of flow primitives,

also referred to as flow structures, modes or basis functions, capable of representing

the essential dynamics of complex fluid flows. The algorithm used to obtain these flow

features is crucial in defining the quality of dynamic information extracted and also

the accuracy in the final reconstruction of the system dynamics. Different algorithms

are presented and a comparative analysis is carried out to assess the performance of

the resulting flow features in capturing the essential dynamics of unsteady flows. The

impulsive start of a NACA0012 airfoil converging to a periodic attractor and a multi-

element airfoil converging to a steady state flow will be used in this chapter to carry out

the assessment. The key message resulting from this analysis is that for problems of

unsteady aerodynamics presenting nonlinear advection and interaction of spatial struc-

tures, such as the dynamics resulting from impulsively started airfoils, there is not a

unique set of modes that can be considered the best in describing such dynamics.

3.1 The importance of using different basis functions

As already pointed out in Chapter 2, the flow features, alias modes or basis functions

φ of a fluid system, can be extracted using different methods. Each method performs
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a transformation of system coordinates that tries to compress the information content

coming from the collected snapshots in only few modes. Then, depending on the spe-

cific algorithm used, the compression of data can unveil different patterns. The present

Chapter reports a numerical study of the influence of a particular set of basis functions

on the accuracy in reconstructing complex dynamics of fluid flows. All the methods

considered are linear methods and therefore can be fully described through Equation

2.1. The Chapter is structured as follows: Section 3.2 presents in more details the linear

methods considered for the comparative study; Section 3.3 describes the non-intrusive

formula used to compute the evolution coefficients of the low-dimensional model; Sec-

tion 3.4 reports a comparative study on two 2D test-cases, typical of aeronautical flows,

namely the impulsive start of a NACA0012 airfoil, converging to a periodic limit cycle,

and a multi element 30P30N airfoil, converging to a steady flow state.

3.2 Methods for Basis Extraction

The present Section offers a more detailed description of the ROMs used to perform the

comparative study. Among the several algorithms available in the literature for feature

extraction, the ones that promote a strong dimensionality reduction and decompose

the flow according to Equation 2.1, i.e. linear methods, are considered. Specifically

Proper Orthogonal Decomposition (POD) [83] for its optimality property, Dynamic

Mode Decomposition (DMD) [46] for its ability to extract pure dynamic information,

Spectral POD [36] and Recursive DMD [44], since they try to bridge the optimal prop-

erty of POD and spectral purity of DMD. All the methods, with the specific quantities

involved, will be introduced for the specific case of fluid dynamics problems for which

CFD solutions are available. Nevertheless, an extension is straightforward to any kind

of problems that exhibit temporal dynamics and for which data can be collected. In

the following, u will indicate a column vector that collects the solution of a fluid dy-

namic problem at each point of a computational grid. When more than one variable

is considered in the process, they can be processed in two different ways: either they

are stacked in a unique vector, for example when dealing with vector quantities such
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as velocity, momentum, vorticity, etc, and projected in the same low-dimensional space

elaborating a unique ROM, or they are processed independently and a ROM is defined

for each quantity. The first approach will be the one considered for the analysis pre-

sented in the current Chapter, since the velocity vector will be the quantity processed

by the ROM. The second approach will be adopted when different physical quantities

will be considered in the process, such as the entire set of conservative variables coming

from the Navier-Stokes equations. For this case, indeed, it can be unphysical to define

a unique norm and consider the same low-dimensional evolution for the entire vector

u.

3.2.1 Proper Orthogonal Decomposition

POD allows to extract an optimal basis from a given set of snapshots in terms of a

specific norm, defined over the Np−dimensional space spanned by the snapshots. For a

CFD simulation, Np is the number of grid points defined by the mesh times the number

of unknowns chosen to build the reduced basis. The unknowns can be the entire set

of conservative variables, coming from the set of Navier-Stokes equations, or a specific

kinematic or thermodynamic variable. The norm used hereafter is the 2-norm based

on the euclidean distance, therefore for each snapshot

‖u‖2 =

√√√√ Np∑
i=1

u2
i (3.1)

According to the discussion reported above, u can be a vector containing the solution

of a scalar field in each point of the computational mesh or, in case of vector fields, a

unique vector containing each scalar component stacked on top of each other (see also

Equation 3.19). Therefore Np can be either the number of grid points or the number of

grid points times the number of scalar fields considered. The POD optimality condition,

which allows to extract the closest basis to the initial dataset, is then defined

max
φi∈Rn

〈U, φi〉 with ‖φi‖2 = 1 i = 1, 2, . . . , Ns (3.2)
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where 〈·, ·〉 represents the average over time, U is the matrix of the collected snapshots,

{u1,u2, . . . ,uNs} with sizeNp×Ns andNs represents the number of collected snapshots,

with Ns � Np for fluid dynamic problems. The solution of the optimal problem in

Equation 3.2 can be found using different algorithms. The most widely used is SVD.

Once the matrix U has been filled with the computed snapshots ui, the POD modes

are computed with the following matrix decomposition

UNp×Ns = ΦNp×NsΣNs×NsA
∗
Ns×Ns (3.3)

where the matrix Φ contains the POD spatial functions, i.e. POD modes, the matrix A

their relative time dynamics (the ∗ indicates the transpose conjugate) and the matrix

Σ is a diagonal matrix containing the square root of the POD eigenvalues, which give a

quantitative measure of the energy associated to each mode. Specifically, the energetic

content of each mode is given by Ei = σ2
i , where σi is the generic diagonal element of the

matrix Σ. The SVD is the most robust and stable algorithm to compute POD modes

[2], nevertheless it can be very computationally expensive for vectors coming from fluid

dynamics problems ( the computational cost scales with O(N3
p) ), where the row size of

matrix U can be very high, of the order of the DOFs of the CFD simulations. A much

less expensive method for very huge problems is the method of snapshots from Sirovich

[148]. The method is based on the assumption that POD modes can be expressed as a

linear combination of the initial snapshots

φi(x) =

Ns∑
i=1

biui (3.4)

therefore the procedure used to extract POD modes is equivalent to solving the following

eigenvalue problem

Rai = λiai (3.5)

where R is the POD temporal correlation matrix, defined as R = U∗U and therefore

with size Ns×Ns, λi = σ2
i are the POD eigenvalues. The vectors ai are the eigenvectors

of the temporal correlation matrix and are equivalent to the right singular vectors in

37



Chapter 3. Assessment of different Basis Extraction Methods

Equation 3.3. Once the eigenvalue decomposition problem is solved, the POD modes

can be recovered as follows

φi =
1√
λi

Uai (3.6)

The division by
√
λi represents a normalization of the POD modes and the φi in formula

3.6 are equivalent to the modes collected in the columns of matrix Φ in Equation 3.3.

For fluid dynamics problems, the size of the matrix R is considerably lower than the

matrix of snapshots U (Ns � Np), therefore the eigenvalue problem defined through

the method of snapshots represents a faster method to compute POD modes and it is

also the algorithm that will be used in the present work. The Eigen Library [149] is

used in the present work to solve the eigenvalue problem in Equation 3.5 and perform

all the matrix operations needed for the basis extraction. This will also be the library

used for the implementation of the algorithms presented hereafter.

3.2.2 Spectral Proper Orthogonal Decomposition

The Spectral POD is structured around the POD approach using the method of snap-

shots. The idea behind Spectral POD is to introduce a filter applied to the correlation

matrix R, which leads to the following filtered matrix

Rfi,j =

Nf∑
k=−Nf

gkRi+k,j+k (3.7)

Boundary conditions need to be defined for the matrix R in order to apply the filter to

all the elements of the matrix. For more in-depth discussion on how to impose boundary

condition to the matrix R and alternatives to the zero-padded boundary condition the

reader can refer to [36]. The rationale behind the filtering process is to circumvent

the POD limit in separating spatial structure and temporal evolution. The SPOD, in

fact, considers a spatio-temporal evolution across a time span related to the size of the

filter during the modes extraction. This leads to the main difference between snapshot

POD and SPOD: the former reveals the more likely states of the system among all

the collected snapshots [31], whereas the latter reveals similar space-time trajectories
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within the original data [90].

From Equation 3.7 it can be noticed how the SPOD filter acts along the diagonal of

the temporal correlation matrix, which is equivalent to weight elements characterized

by the same ∆t in time (the function R(t1, t2) evaluated for different t1 and t2, keeping

t1− t2 = ∆t constant). This procedure leads to a redistribution of the energy levels Ei

defined above within the modes with respect to POD. The weights gk can be defined

in different ways, but the most reasonable choice is either a box filter, with gk =

1
1+Nf

= const., or a Gaussian filter with certain variance. The choice of the weights

should reflect the evolution of specific spatial structures over time sub-windows and,

therefore, it can take advantage of some previous knowledge about the investigated flow

dynamics. When no considerations about the evolution of specific fluid structures can

be inferred a-priori from the fluid flow, which is the case of the problems considered

later in this Chapter, the simplest assumption of a box filter is made and the behaviour

of the method is also invesitgated varying the size of the filter Nf (see Sections 3.4.1

and 3.4.2).

Once the Rf matrix is computed, the procedure to extract spatial and temporal modes

proceeds in the same way as POD. The new eigenvectors extracted from the filtered

matrix Rf are still orthogonal (the filtering operation preserves the symmetry of the

correlation matrix), whereas the spatial modes φ are not anymore, at least in a POD

sense [90]. It is worth to notice that, when the filter in Equation 3.7 acts over the

entire correlation matrix, the SPOD is equivalent to a Discrete Fourier Transform

(DFT) [150, 151]. Therefore, hereafter, every time the SPOD is performed, using Nf

equal to the size of the matrix R, it will be referred to as DFT.

3.2.3 Dynamic Mode Decomposition

The DMD extraction technique is based on the following assumption

un+1 = Tun (3.8)
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where un+1 represents solution at discrete time n + 1, un the solution at discrete

time n and T is a linear time dynamics matrix with size Np × Np. Equation 3.8

therefore defines the linear dynamics that best fits the initial set of snapshots. The

DMD algorithm to extract dynamic modes and eigenvalues was first introduced by

Schmid [46] and Rowley et al. [94] as a variant of the standard Arnoldi algorithm. It

aims at computing Ritz eigenvalues and eigenvectors of a companion matrix coming

from the assumption that the last snapshots un at time tn can be expressed as a linear

combination of the previous n − 1 ones. Nevertheless, the procedure is numerically

unstable, especially for very large problems, since it has to deal with an eigenvalue

problem applied to a matrix in companion form. Therefore, an alternative algorithm

will be briefly presented, following the one reported in [87, 93], and it will be the one

used in the present work. A straightforward way to extract DMD modes is indeed

to compute the eigenvalue decomposition of the matrix T, which will be called the

dynamic matrix of the approximated linear system. For fluid dynamics problems, the

dimension of this matrix might be very high (Np � 1), therefore a reduction step is

performed in order to circumvent such an expensive step, as it will be shown below.

The set of initial snapshots is collected into two matrices whose columns differ by a

time shifting of ∆t, namely U = [u1 u2 . . . uNs−1] and U
′

= [u2 u3 . . . uNs ]. Equation

3.8 can be expressed for the entire set of snapshots

U
′

= TU (3.9)

An SVD is then applied to the matrix U, expressed as in Equation 3.3, and the following

similarity transformation is applied to express the time dynamics in a low-rank space

T̃Nm×Nm = Φ∗Np×Nm
TNp×NpΦNp×Nm (3.10)

where the Φ are the equivalent of the POD spatial modes as defined in Equation 3.3.

Combining Equation 3.9 with the SVD of U, Equation 3.3, and solving for T, the

following expression is obtained for the low rank matrix T̃, which circumvents the
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computation of the high-dimensional matrix T [87]

T̃Nm×Nm = Φ∗Np×Nm
U

′
Np×Ns

ANs×NmΣ−1
Nm×Nm

(3.11)

It becomes clearer, at this stage, that the new matrix T̃ might be of many order of

magnitude smaller than the initial matrix T for fluid dynamics problems (Nm ≤ Ns �

Np). A further reduction step is implicitly considered in Equation 3.11, where only

the first Nm columns of the matrix Φ are retained on the basis of the singular values,

Nm ≤ Ns (the reader can refer for example to the singular value hard threshold method

[152]).

An eigenvalue problem is then solved on the reduced matrix T̃ and the computed

eigenvectors can be projected again on the high-dimensional space using the similarity

transformation in Equation 3.10, obtaining the spatial DMD modes. In particular, the

i−th DMD mode is recovered as follows

φi =
1

λi
U′AΣ−1wi (3.12)

defined as the exact DMD mode in [93]. In Equation 3.12, λi and wi represent the i−th

eigenvalue and eigenvector respectively of the reduced dynamic matrix T̃. The time

dynamics is recovered from the eigenvalues λi, whose real and imaginary part provide

the growth/decay rate and the frequency of each mode. Since it is a linear regression

over the entire set of snapshots, the DMD might not be the best choice to express

complex evolution in time even if all the modes coming from the presented algorithm

are used.

3.2.4 Recursive Dynamic Mode Decomposition

The Recursive DMD introduces a procedure for feature extraction that combines the

extraction algorithm coming from the DMD with the optimality condition of the POD.

The modes are extracted recursively selecting at each step of recursion the DMD mode

that is the closest to the set of data. The closest mode at each step of the recursion is
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selected in terms of the minimum of the vector of residuals

min
i∈{1,2,...,Ns−1}

= ‖Ur − φi,rai,r‖2 (3.13)

where Ur is the set of data the DMD extraction is applied to at the r-th step of

recursion, whereas Φi,rai,r represents the reconstruction computed considering only

the i-th DMD mode at the r-th step of recursion. The quantity Ur is calculated by

subtracting the contribution of the first r − 1 modes from the set of initial snapshots.

The RDMD technique has shown to outperform even the POD in the description of

the limit cycle [44], which will be proved also for the test-cases presented in this work.

3.3 Non-Intrusive Reconstruction method

Depending on the method chosen to extract the basis, two distinct expressions for

reconstruction have to be considered

u(x, t) ≈ û =

Nm∑
i=1

ai(t)φi(x) (3.14)

u(x, t) ≈ û =

Nm∑
i=1

αiφi(x)eωit (3.15)

Both equations are in accordance with the linear decomposition presented in Equation

2.1, with the main difference that Equation 3.15 provides an explicit analytical expres-

sion for the time evolution of coefficients ai. Equation 3.14 is used in the case of POD,

SPOD and RDMD and it performs an interpolation to calculate solutions outside the

training points (non-intrusive technique). Equation 3.15, used in the case of DMD,

represents an explicit function of time and does not require any further operation to

reconstruct the flow field, once the basis is extracted and the constant coefficients αi

are computed, as shown below. Therefore, in all cases a completely equation-free ap-

proach is adopted for the online phase of the ROM and governing equations are not

considered to compute online solutions. The interpolation technique used for Equation
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3.14 is radial basis function (RBF)

ai(t) ≈ p(t) +

Ns∑
j=1

wjf(|t− tj |) (3.16)

where p(t) is a polynomial of low degree and the basis function f is a real valued

function on [0;∞) [153]. The basis functions used in the present work are mainly linear

or gaussian functions, namely fj = |t− tj | and fj = e|t−tj |. The tj are referred to as the

centers of the RBF and they are the time instants corresponding to the components of

the POD eigenvectors ai in Equation 3.5. For the coefficients αi in the Equation 3.15

the following optimization problem is solved

min
αi∈Rr

‖U′ −ΦDαV‖2 (3.17)

where Dα is a diagonal matrix containing the DMD coefficients αi, r is DMD rank, i.e.

the number of DMD modes extracted, and V is the Vandermonde matrix built with

DMD eigenvalues

V =


1 λ1,DMD λ2

1,DMD . . . λNs−1
1,DMD

1 λ2,DMD λ2
2,DMD . . . λNs−1

2,DMD
...

...
...

. . .
...

1 λNs−1,DMD λ2
Ns−1,DMD . . . λNs−1

Ns−1,DMD

 (3.18)

The optimization in Equation 3.17 is convex and can be solved analytically for the

coefficients αi in matrix Dα. The reader can refer to [35] for further details.

3.3.1 A note on rank reduction

The number of modes Nm used in the reconstruction formulae (3.14) and (3.15) defines

the further rank reduction performed by the single ROM, Nm ≤ Ns � n, with n the

number of DOFs of the initial high-dimensional problem. The main aim of the rank

reduction is to reduce as much as possible the computational cost and the number of

DOFs to deal with, while preserving sufficient accuracy in describing the dynamics of
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the system. There is not a universally recognized criterion to define the rank reduction

due to the lack of rigorous a-priori error bounds, especially when the ROM is used

for predicting solutions out of the training samples. Indeed, the accuracy of ROMs is

usually reported varying the number of modes [118, 122]. Since the aim of Section 3.4 is

to highlight how different methods perform while using a low-dimensional space of the

same rank, the number of modes is fixed and chosen to be less then the initial number

of snapshots. These modes are selected in terms of the Nm highest contributions in

the reconstruction formulae (see Equations 3.14 and 3.15), which is equivalent to keep

the modes associated to the highest eigenvalues for POD, the modes with the highest

euclidean norm for SPOD and the first Nm modes for RDMD. For the specific case of

DMD, instead, the reduction step preserves the Nm columns of the matrix Φ associated

to the highest singular values σi in Equation 3.10, and all the modes extracted from

the low-rank dynamics are retained (singular value truncation).

3.4 Comparative Analysis on the accuracy in reconstruc-

tion

It has been widely discussed in the literature how POD-based methods provide the

optimal basis to describe an ensemble of collected snapshots in terms of the least square

error between the original data set and the basis extracted. Nonetheless, this optimality

condition is defined on an average over all the set of snapshots and it could penalize

snapshots that are not important in an energetic sense but fundamental for the unsteady

dynamics. Therefore, relaxing this optimality condition could sometimes lead to better

results in terms of reconstruction over the whole time interval. The comparison of

different methods is presented in terms of the ability to reconstruct a flow field at

various time steps. Two test-cases will be considered here, namely the impulsive start

of a NACA0012 airfoil and the high-lift configuration 30P30N [154].

For the specific case of SPOD, for each test-case a box filter will be considered, using

also different sizes, and zero-padded boundary conditions will be used for the temporal

correlation matrix. Each reduced model will be built for the velocity field only, treated

44



Chapter 3. Assessment of different Basis Extraction Methods

as a unique vector. A unique low-dimensional space is therefore defined for all the

components of velocity and the column vector u will be arranged as follows

u =


ux

uy

uz

 (3.19)

where ux, uy and uz represent the velocity components, each one a vector containing

the discretised solution over the computational domain.

The CFD snapshots used to build the ROM are computed using the open-source Finite

Volume solver SU2 [155]. A C++ code based on the Eigen library [149] for matrix

operations implements the various algorithms presented in Section 3.2 and the non-

intrusive reconstruction reported in Section 3.3, and it is used for the comparative

analysis performed in the current Section. A configuration file is provided as an input to

the code, which allows to define the ROM method to be performed and its specifications

(e.g. number of snapshots to use, rank of the ROM, query points where to reconstruct

the solution, etc.). A run of the code consists of reading the snapshots computed by the

SU2 solver, extracting flow features φi and training coefficients ai/αi for the specified

method, compute the reconstruction at desired query points in time.

A note on the convergence study of CFD solutions. The main aim of the

work presented throughout this thesis is to demonstrate the ability of linear ROM

methods, targeted for unsteady fluid flows, to resolve the essential dynamics contained

in the initial snapshots. Therefore, the reference dynamics is assumed to be the one

contained in the snapshots, regardless of how they are computed. The only aspect worth

to highlight is that the snapshot computation often requires both high computational

effort and high memory storage, which defines the need for a ROM. On the basis

of these observations, a rigorous unsteady convergence study, in terms of resolution

in space and time, has not been carried out for the test-cases presented in the later

Sections and Chapters of the thesis. Nevertheless, for each test-case, an effort has
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been put in defining the mesh used in order to solve as much as possible the expected

dynamics, both in terms of time and space resolution of the original CFD simulation.

In this effort, also some choices in terms of maximum space-time resolution have been

done on the basis of the computational resources available for the present work.

For the specific case of the 30P30N geometry presented for the first time in Section 3.4.2,

an unsteady CFD solution is reported on two different meshes, in order to practically

show the effort invested in the choice of the mesh for the different test-cases. The

mesh indicated with M1 has 559, 652 elements and 327, 733 grid points, while the

mesh indicated with M2 has 1, 221, 067 elements and 688, 721 grid points. Details of

the simulation setup are given later in Section 3.4.2 when the test-case is introduced.

Figure 3.1 shows the solution on the two different meshes in terms of filled contours

of the Mach number for four instants of time. An impulsive start from freestream

conditions is considered. In particular, the first two rows report a close-up view of the

flow field near the flap region of the 30P30N geometry at two instants after a small time

from the impulsive start. The last two rows report instead two later time instants, when

the starting vortex is almost fully developed and it is only convecting downstream. It

can be observed how, despite the small differences on the two meshes, the coarse one

(left column in Figure 3.1) is able to describe with good resolution the dynamics that

is expected from the specific geometry and the specific setup defined. For expected

dynamics of this test-case, it is intended for example the formation of small vortical

structures generated from the various component of the 30P30N geometry, namely

slat, main component and slat, two of which are visible on both meshes at the first

two time instants represented in Figure 3.1. Another feature visible on both meshes is

the merging of the vortex structures generated from the flap and main component in

a single starting vortex propagating downstream, together with the convection of the

vortex generated by the slat towards the wake formed downstream of the flap (last two

rows in Figure 3.1). For completeness, Figure 3.2 reports also the plots of the Pressure

Coefficient on the surface of the 30P30N geometry for the same time instants reported

in Figure 3.1. These results show in practice what have been the aspects considered

in defining the mesh for the various test-cases together with the limitations linked
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to the computational resources available (especially for the 3D test-cases), without

considering a rigorous grid convergence study. It is worth highlighting again that the

practical choice of space-time resolution for the various test-cases is not an alternative

to a rigorous space-time convergence study, but it is the solution taken in the present

work in order not to remove the focus from the main aim of the analysis.

Figure 3.1: Evolution in time in terms of Mach number of an impulsive start of the
30P30N geometry, used later as a test-case, on two different meshes. Left column
represents the solution on mesh M1 (coarse), right column represents the solution on
mesh M2 (fine). The first two rows report a close-up view near the flap at earlier
instants of time. The last two rows report the flow around the entire geometry once
the starting vortex has fully developed and is propagating downstream.

3.4.1 NACA0012 test-case

The impulsive start of a NACA0012 airfoil is considered first. The parameters used for

the unsteady simulation are summarized in Table 3.1. The Mach number, Reynolds

number and angle of attack are fixed respectively to M = 0.1 , Re = 10, 000, α = 15 deg.

Under these conditions, a vortex-dominated flow is established. In particular, the flow
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Figure 3.2: Plots of Pressure Coefficient Cp on the surface of the 30P30N geometry at
different instants of time for mesh M1 (coarse) and mesh M2 (fine).

field is characterized by an initial laminar bubble that grows gradually in time until it

interacts with the separated region near the trailing edge. This eventually leads to the

onset of an instability in the airfoil wake, causing the development of a quasi-periodic

vortex shedding like motion.

The mesh used for the domain discretisation is a viscous structured mesh with 91, 039

Table 3.1: NACA0012 simulation parameters

Mach α [deg] Reynolds T∞ [K] Time [s] ∆t [s] CFL

0.1 15 10,000 288.15 0.3 10−3 5

elements and 91, 650 grid points. The time discretisation is obtained using a constant

time step, ∆t = 10−3s, for advancing the unsteady simulation. As regards the numer-

ical setup for the high-fidelity simulation, the laminar Navier-Stokes equations have

been solved, using a second order Finite Volume Discretisation for the fluxes (MUSCL
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approach) and a second order Dual-time stepping scheme to deal with the unsteady

part. In particular, the convective fluxes have been discretised using Roe scheme. As

initial condition, the entire domain is initialized to freestream quantities, while the

boundary conditions on the body and at the domain borders are no-slip (for momen-

tum equations) adiabatic (for energy equation) and free stream quantities respectively.

The time interval investigated with the ROM ranges from the very initial transient to

the development of the vortex shedding flow past the airfoil, t ∈ [0; 0.3]s. The perfor-

mances of the different techniques are therefore tested for both a transient and periodic

behavior. Within this time window the ROM is built using a sampling ∆t of 2× 10−3,

which results in a number of snapshots Ns = 150, equispaced in time. It is worth

noting at this stage that the time window is defined on the basis of some dynamics of

interest happening, for which a low-dimensional description is looked for. This is the

same rationale used for all the test-cases presented in this thesis. Additional valuable

analysis can be carried out on the influence of how the sampling is performed within the

fixed time window, e.g. changing the sampling frequency of the snapshots or defining

a non-uniform sampling based on adaptive strategies, but this is out of the scope of

the present work. A uniform sampling is implemented for all the test-cases presented

hereafter, with a sampling frequency depending on the CFD solutions available within

the fixed time frame.

The time required for the database generation is 60 core/hours (CH). The time re-

quired for the extraction of flow features, instead, depends on the different algorithms

used and, for the specific case of DMD and RDMD, it depends also on the number of

modes extracted. For the test-case reported here, the number of modes extracted has

been fixed to 30, which requires, on a single core, ∼ 1s for POD and SPOD, ∼ 6s for

DMD and ∼ 8min for RDMD. RDMD is the most costly algorithm, since it needs to

iteratively apply the full rank DMD algorithm for each extracted feature. Overall, the

time required for the generation of the reduced basis is negligible when compared to the

time required for the database generation. Therefore this last time can be considered a

good approximation of the computational cost of the offline phase. The time required

for the online phase is approximately a tenth of a second to compute a reconstructed
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ROM solution and it does not change with the specific algorithm used.

Figure 3.3 and 3.4 show respectively a qualitative comparison of different ROMs during

the initial transient, at time t = 10−3s after the impulsive start, and once the quasi-

periodic motion is established, at time t = 0.211s, with the number of modes of each

reduced basis fixed to 30. It can be noted how the DMD and RDMD are not able to

reconstruct the dynamics of the starting vortex with sufficient accuracy at the very

initial time steps (Figure 3.3). Many higher order oscillations are introduced near the

wall of the aerodynamic body and spurious spatial oscillation are also visible around

the starting vortex, which is solved with very poor accuracy. The POD basis is in-

stead able to reconstruct with a good resolution the starting vortex, and only slight

differences are introduced with the application of the SPOD filter. In particular, the

effect of the SPOD filter for the initial transient seems to slightly reduce the recon-

struction accuracy. Moving forward in time, once the transient is vanished and the

quasi-periodic vortex shedding has settled (Figure 3.4), the DMD and RDMD repro-

duce the flow considerably better than at the beginning of the time window. SPOD and

DMD present overall a reconstruction accuracy that is comparable to the one provided

by POD. Moreover, RDMD gives slightly better results than POD at this specific time

according to the results in [44].

3.4.2 30P30N test-case

The impulsive start of a 30P30N airfoil is considered [154]. Table 3.2 summarizes the

parameters used for the unsteady simulation. The Mach number, Reynolds number

and angle of attack are fixed respectively to M = 0.2 , Re = 9 × 106, α = 19 deg.

Under these conditions, a nearly-steady state field is established in the region near

the airfoil after the initial transient. The initial transient is instead characterised by

formation and shedding of vortices from the various lifting surfaces, which eventually

interact and merge together in the wake of the airfoil. As regards the numerical setup,

a dual-time stepping method is used for the unsteady simulation with a ∆t = 10−4s.

A second order discretisation in space is used (MUSCL approach) with Roe scheme for

fluxes computation. As initial condition, the entire domain is initialized to freestream

50



Chapter 3. Assessment of different Basis Extraction Methods

Figure 3.3: Qualitative comparison of different ROMs using 30 modes at time t = 10−3s,
Velocity Magnitude (filled contours CFD, lines ROM), NACA0012.

Figure 3.4: Qualitative comparison of different ROMs using 30 modes at time t =
2.11× 10−3s, Velocity Magnitude (filled contours CFD, lines ROM), NACA0012.
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quantities, while the boundary conditions on the body and at the domain borders

are no-slip (for momentum equations) adiabatic (for energy equation) and free stream

quantities respectively. The simulation is run as fully turbulent, using the SST model

[156]. The mesh used is a viscous hybrid mesh with 559, 652 elements and 327, 733 grid

points.

The time interval investigated with the ROM ranges from the very initial transient to

the steady state condition around the airfoil, with one big resulting vortex propagating

downstream, t ∈ [0; 0.06]s. The reduced basis is built within this interval using a

sampling ∆t equal to 6× 10−4, which results in Ns = 100 equispaced in time.

The time required for the database generation is 7200 CH. The number of modes

Table 3.2: 30P30N simulation parameters

Mach α [deg] Reynolds T∞ [K] Time [s] ∆t [s] CFL

0.2 19 9×106 288.15 0.06 10−4 0.4

extracted has been fixed to 30, which requires, on a single core, ∼ 3s for POD and

SPOD, ∼ 20s for DMD and ∼ 25min for RDMD. It can be noticed again how the

time for the database generation can be considered as a good approximation of the

whole cost of the offline phase. The online phase requires approximately few tenths of

a second to compute a reconstructed ROM solution and it does not change with the

specific algorithm used.

Following the same qualitative analysis as the one presented for NACA0012, Figure 3.5

shows the reconstruction of the different reduced order techniques at a very early stage

of the transient, namely t = 4 × 10−4s. It can be noticed again how DMD is not able

to recover the initial unsteady dynamics and RDMD is less accurate than POD and

SPOD. DMD presents many high order spatial oscillation, both near the wall and in

the region around the aerodynamic body. RDMD is performing poorly in the resolution

of the starting vortex, even if it is capable of removing the spatial oscillation caused

by DMD. Moreover, also for this test-case, it can be noticed how the application of the

SPOD filter slightly lowers the performance of the model in reconstruction accuracy

of the very initial transient. In particular, accuracy is decreasing in solving features
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around the main component of the airfoil and in reconstructing the starting vortex

dynamics. After the strong initial transient, instead, Figure 3.6, the SPOD filter seems

to have more beneficial effects on solution accuracy, especially in solving the region

around the starting vortex. The higher order spatial oscillations of the DMD vanishes

and its performance is much higher than in the initial time window. Finally, RDMD

performs slightly better than POD.

Figure 3.5: Qualitative comparison of different ROMs using 30 modes at time t =
4× 10−4s, Velocity Magnitude (filled contours CFD, lines ROM), 30P30N.

3.5 Remarks

A qualitative analysis of accuracy in reconstruction while using basis functions coming

from different reduction algorithms has been presented for two test-cases, namely the

impulsive start of the NACA0012 airfoil and the impulsive start of 30P30N multi-

element airfoil. To perform this analysis, the number of modes has been fixed, in

order to investigate the performances of the various methods when dealing with the

same DOFs of the reduced order model. The output of this analysis has shown that
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Figure 3.6: Qualitative comparison of different ROMs using 30 modes at time t =
3.51× 10−2s, Velocity Magnitude (filled contours CFD, lines ROM), 30P30N.

performance of a single ROM varies over time when looking at large time windows

where different dynamical phenomena are happening. This statement holds also for

POD, despite it gives a basis that is the closest one to the initial set of snapshots,

according to its optimality property. Indeed, the optimality is defined over the entire

set of snapshots, and the average operation that defines the optimality condition in

Equation 3.2 might miss meaningful dynamics at specific time instants. For the case

of NACA0012, for instance, there is an initial time dynamics linked to the formation

of laminar bubble on the upper part of the airfoil that eventually interacts with the

trailing edge and lead to the formation of a quasi-periodic motion, namely the vortex

shedding. For the 30P30N test-case, there is a small initial time window where vortices

are first detaching from the various lifting surfaces, and then eventually they merge

together in the far wake of the airfoil. In the near field, instead, the flow converges

to a steady state, with a well defined stable wake over the main component linked to

the slat positioned upstream, and a separated flow on the flap. The dynamics in both
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cases is therefore not showing any repeating patterns or specific periodic motions when

looking at the entire investigated time window. The qualitative analysis shows how the

very first instant of the initial transient are better resolved by POD and SPOD, while

DMD and RDMD present lots of spurious oscillation in representing such dynamics.

Moving to the second half of the investigated time window, which means getting closer

to the final solution attractor, instead, DMD and RDMD improve significantly their

performances in catching meaningful dynamics in the flow. In conclusion, there is not a

unique ROM that can be considered the best technique for the fixed number of modes

chosen, in order to describe the dynamic over the entire investigated time window. A

possible synergy among all the linear methods considered can be therefore created and

will be at the basis of the framework presented later in Chapter 5.

Computational requirements have also been reported for the two test-cases considered.

It has been shown that, although the time required for the extraction of features is

dependent on the specific algorithm used, this time is negligible when compared to

the time required for the database generation. Therefore a good approximation of the

time required for the offline phase is the time associated with the computation of the

training snapshots. Moreover, it has been shown that the online phase is able to provide

reconstructed ROM solutions in a real-time manner (t < 1s), with no differences among

the various algorithms used.
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Ranking of Modes

The choice of the number of modes to use to express the dynamics of a complex flow

in a low-dimensional space, i.e. the rank of the ROM, is another key element for the

ROM to be accurate, stable, reliable and fast. In order to select only few meaningful

features among the entire set of the ones available, a specific ordering needs to be

defined on the basis of their importance in expressing the final dynamics. An overview

of the different methods used in the literature to perform the ranking of fundamental

flow features is presented. An analysis is performed on POD modes for three different

test-cases, changing the modes ranking through the application of a filter, and a new

approach for DMD modes selection, based on their time dynamics, is presented for the

specific case of turbulent transition in a channel flow. Two key conclusions can be drawn

from the analysis conducted here. The first is that the energy redistribution among

POD modes, promoted by the application of the filter, is improving the description of

some dynamics in time through the new set of modes retained. The second is that a

newly proposed selection criterion proves to be able to identify the most meaningful

DMD modes in describing a quasi-linear dynamic in time. In particular, the early

transition phase happening in a channel flow is considered and an actual improvement

of the proposed selection criterion is observed with respect to the common energy based

ranking criterion.
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4.1 Ranking of POD and SPOD modes

The ranking of POD modes has been always based on the eigenvalues extracted from

the algorithm reported in Section 3.2.1. Indeed, following also the normalization of

the modes φi as in Equation 3.6, each eigenvalue λi brings the energy content, alias

the actual euclidean norm, of the corresponding mode. A cumulative sum is therefore

defined

En =

∑Nm
i=1Ei∑Ns
i=1Ei

× 100 =

∑Nm
i=1 λi∑Ns
i=1 λi

× 100 (4.1)

that represents the percentage of the full energy retained by the first Nm modes and

is equivalent to the RIC defined in Equation 2.3. The full energy represents the whole

amount of energy contained in the original training snapshots. It has been already

widely discussed in Chapter 2 how the energy criterion can penalize dynamics, espe-

cially when there are very complex phenomena to model in a low-dimensional manner.

Therefore the ranking of POD modes, despite straightforward and very intuitive, might

not be a very accurate way to describe complex underlying dynamics. Christensen et al.

[157] proposed a weighted POD in the effort to be able to select modes important for

the dynamics that have less energetic content. The Spectral POD method introduced

in Section 3.2.2, instead, operates on the energy ranking criterion promoting a different

energy distribution among the original POD modes, through the application of the

filter to the POD temporal correlation matrix (see Equation 3.7). Figure 4.1 shows the

effect of the SPOD filter Nf on the cumulative sum En reported in Equation 4.1. It

is clearly visible how, for a specific energetic content, SPOD selects a different set of

modes with respect to POD. This will be shown to improve the description of some

dynamics.

4.1.1 Numerical Test-Cases

The effect of the energy redistribution among POD modes is assessed using as snapshots

set of CFD solutions computed using the open-source solver SU2. Roe scheme is used for

the convective terms, while a central scheme is used for the viscous part. A Monotonic

Upwind Scheme for Conservation Laws (MUSCL) approach and a dual time-stepping
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Figure 4.1: Energy redistribution among modes as a function of the SPOD filter Nf,
with Nf ∈ [0; 60].

method based on the Backward Differentiation Formula (BDF) are used to obtain

second order accuracy in space and time. Three test-cases are considered to evaluate

the ability of POD and SPOD in reconstructing the unsteady flow field. One case

considers a canonical flow around a 2D square cylinder developing a von Karman vortex

street, i.e. with vortices periodically detaching from its upper and lower edges, while the

other two refer to flows around impulsively started lifting bodies with no characteristic

frequency. The velocity vector is the quantity considered to build the ROM. The

components are processed as a unique vector (see Equation 3.19) and, therefore, a

unique low-dimensional space is identified for the entire velocity vector. For each test-

case, the global error in reconstruction, defined as

ε =
‖uCFD − uROM‖2
‖uCFD‖2

(4.2)

is reported for a specific time instant, where the uROM is the reduced basis reconstruc-

tion obtained with either POD or SPOD, fixing the energetic content in Equation 4.1,

whereas uCFD is the exact CFD solution. Moreover, qualitative results in terms of

reconstruction are also reported, comparing the contour lines of the ROM and CFD

solution. Information about the time required for the offline and online phase are also

reported, in order to highlight the computational speed-up of the ROM with respect to
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the high-fidelity simulation, once the basis is extracted. All the reconstructed time in-

stants are computed out of the training points but still within the time window where

the sampling is performed, in order to test how the ROM performs in reconstruct-

ing new solutions, i.e. not used to build the reduced basis. It is worth noting that the

ROMs presented are not able to make predictions and, therefore, all the reconstructions

presented are always computed within the sampled time window.

Square cylinder The periodic flow past a square cylinder is considered. The solu-

tion is initialized using the far field conditions and only the snapshots after the initial

transient, once the vortex shedding has established, are considered for the training of

the ROM. The domain discretisation is performed through a completely structured

mesh with 190, 244 elements and 191, 040 grid points points. A dual time-stepping

method is used for the unsteady simulation with ∆tCFD = 1.5 × 10−3s and the Mach

number, Reynolds number and angle of attack are respectively M = 0.1, Re = 22, 000

and α = 0 deg. At the fixed Reynolds number, the vortex street is turbulent, therefore

the simulation is run as fully turbulent using SST turbulence model [156]. To build the

ROM, a sampling ∆t equal to 6×10−3s is used within the time window [3.4575; 3.9975]s,

which corresponds to almost two complete shedding cycles, resulting in a number of

snapshots Ns = 30, equispaced in time. The time required for the database generation

is approximately 60 CH, considering for the dual-time stepping 10−6 as the residuals

tolerance and a maximum of 1, 000 inner iterations, which mainly determines the com-

putational effort needed for the offline phase. Indeed, for both POD and SPOD, the

time required to extract the basis is approximately 0.3s on a single core, while 0.12s

is the time required, still on a single core, to obtain one reconstructed snapshot dur-

ing the online phase. Table 4.1 reports the error for the two components of velocity

as defined in Equation 4.2 and the number of modes required for two fixed energetic

contents, namely 95% and 99.9%. It can be clearly noticed how the main effect of the

application of the filter is a redistribution of the initial POD energy on a higher number

of modes, according to what was reported in Figure 4.1, with a consequent reduction

of the global error in reconstruction ε (εu and εv in Table 4.1). Figures 4.2 and 4.3
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report contours of the CFD and reconstructed solution (solid lines and dashed lines

respectively). There is no visible improvements in solving local features when setting

the energy level to 99.9% (Figure 4.3), while slightly increased accuracy can be noticed

in reconstructing features further downstream in the von Karman vortex street when

retaining 95% of the energy (Figure 4.2).

(a) Nf = 0 (b) Nf = 10

(c) Nf = 20 (d) Nf = 30

Figure 4.2: Comparison between velocity magnitude contours from CFD and ROM
reconstruction with different values of the SPOD filter Nf, using En = 95% at time
t = 3.5 s from the impulsive start. Solid line: CFD coloured with the value of the error
ε; Dashed line: ROM reconstruction.

30P30N The impulsive start of the three component 30P30N airfoil is now investi-

gated [154]. Differently from the square cylinder case, where the time window consid-

ered for the snapshots refers to the periodic regime only, excluding the initial transient,

in this case, the time window includes the entire initial transient, from the initial con-

dition up to an instant of time when the flow is almost stationary in proximity of the

airfoil. The test-case is equivalent to the one reported in Section 3.4.2, with the only

difference in the ∆tCFD used for the physical time step, which is 10−3s. The ROM is
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(a) Nf = 0 (b) Nf = 10

(c) Nf = 20 (d) Nf = 30

Figure 4.3: Comparison between velocity magnitude contours from CFD and ROM
reconstruction with different values of the SPOD filter Nf, using En = 99.9% at time
t = 3.5 s from the impulsive start. Solid line: CFD coloured with the value of the error
ε; Dashed line: ROM reconstruction.

built using a sampling ∆t equal to 3 × 10−3s within the time window [0, 0.12]s where

the dynamics of interest is happening, which results in a number of snapshots Ns = 40,

equispaced in time. The time required for the database generation is approximately

150 CH, considering for the dual-time stepping 10−6 as the residuals tolerance and a

maximum of 1, 000 inner iterations. For both POD and SPOD, the time required for

features extraction is approximately 0.7s on a single core, which, together with the time

required for the database generation, completes the information about the time needed

for the offline phase. The online phase, instead, requires 0.32s on a single core to ob-

tain one reconstructed snapshot. Table 4.2 reports the error for the two components of

velocity as defined in Equation 4.2 and the number of modes required for two fixed en-

ergetic contents, namely 95% and 99.9%. The same trend, in terms of number of modes
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Nf Nm/Ns(En = 99.9%) εu(%) εv(%) Nm/Ns(En = 95%) εu(%) εv(%)

0 (POD) 22/30 1.5 4.0 6/30 3.4 8.4

10 28/30 1.4 3.8 10/30 4.3 9.4

20 29/30 1.4 3.8 12/30 2.7 7.5

30 (DFT) 29/30 1.4 3.8 13/30 2.0 5.7

Table 4.1: Error in reconstruction for the square cylinder, computed according to
Equation 4.2 for u and v component of velocity, for two different energetic contents
and varying the SPOD filter size.

retained as the filter increases, can be observed also for this test-case. Additionally, a

major improvement in terms of error is present, with the value of ε falling from 0.4%

to 0.2% for the u component of velocity, and from 0.98% to 0.53% for the v component

of velocity, when setting the energy content to 99.9%. A strong improvement is also

achieved when lowering the energy level retained to 95%. The main reason for the

strong reduction of the error can be better explained looking at the contours reported

in Figures 4.4 and 4.5, where both CFD and reconstructed solutions are represented.

It can be clearly observed how the main effect of the filter is in both cases a better

resolution of the vortex structure propagating downstream.

Nf Nm/Ns(En = 99.9%) εu(%) εv(%) Nm/Ns(En = 95%) εu(%) εv(%)

0 (POD) 20/40 0.4 0.98 7/40 2.8 4.9

10 32/40 0.3 0.72 14/40 1.7 3.2

20 35/40 0.2 0.53 18/40 0.8 1.9

30 38/40 0.2 0.53 22/40 0.5 1.2

40 (DFT) 40/40 0.2 0.53 25/40 0.5 1.2

Table 4.2: Error in reconstruction for the 30P30N, computed according to Equation
4.2 for u and v component of velocity, for two different energetic contents and varying
the SPOD filter size.

High-Lift Wing-Body Configuration The impulsive start of a High-Lift Wing-

Body configuration is finally considered [158]. Only half of the geometry is retained and

a symmetry boundary condition is imposed on the plane of symmetry. The mesh used

is a viscous unstructured mesh with 21, 492, 137 elements and 3, 652, 657 grid points.

Similarly to the 30P30N test-case, the time window considered for the ROM analysis
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(a) Nf = 0 (b) Nf = 10

(c) Nf = 30 (d) Nf = 40

Figure 4.4: Comparison between velocity magnitude contours from CFD and ROM
reconstruction with different values of the SPOD filter Nf, using En = 95% at time
t = 6.5 × 10−2 s from the impulsive start. Solid line: CFD coloured with the value of
the error ε; Dashed line: ROM reconstruction.

ranges from the initial transient, when the wing is impulsively set into motion, up to the

point where a nearly steady state is reached near the wing and the unsteadiness is only

coming from the advection of the vortical structures shed by the wing. A dual time-

stepping method is used for the unsteady simulation with ∆tCFD = 10−3s and the Mach

number, Reynolds number and angle of attack are respectively M = 0.2, Re = 4.3×106

and α = 13 deg. The turbulence is modeled using SST turbulence model. The ROM is

built using a sampling ∆t equal to 6× 10−3s within the time window [0, 0.108]s where

the dynamics of interest is happening, which results in a number of snapshots Ns = 18,

equispaced in time. The time required for the database generation is approximately

8600 CH, considering for the dual-time stepping 10−6 as the residuals tolerance and a

maximum of 1, 000 inner iterations. For both POD and SPOD, the time required for

features extraction is approximately 12s on a single core, still negligible with respect

to the computational effort required for the database generation. The online phase,
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(a) Nf = 0 (b) Nf = 10

(c) Nf = 30 (d) Nf = 40

Figure 4.5: Comparison between velocity magnitude contours from CFD and ROM
reconstruction with different values of the SPOD filter Nf, using En = 99.9% at time
t = 6.5 × 10−2 s from the impulsive start. Solid line: CFD coloured with the value of
the error ε; Dashed line: ROM reconstruction.

instead, requires 8.2s on a single core to obtain one reconstructed solution. Table 4.3

reports the error for the three components of velocity as defined in Equation 4.2 and the

number of modes required for a fixed energetic content of 99.9%. There is no significant

improvement in terms of global error for all the components of velocity. Nevertheless,

looking at Figures 4.6 and 4.7, which report contours of the exact and reconstructed

solution on two different slices in the span wise direction, it can be observed how SPOD

is able to better resolve features of the starting vortex further downstream of the wing

(second slice in Figure 4.7). The almost constant behaviour of the global error as the

filter increases might be linked to the low resolution of the mesh in the wake region

of the wing and for the entire far field. This hampers a good resolution of important

spatial features in the original spatial snapshots used to build the ROM. Having a good

description of these spatial features is fundamental to exploit at best the capabilities

of the SPOD filter. Indeed, a local improvement of the SPOD can still be seen from
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the reconstruction of the entire flow field, but it cannot be noticed when an integral

measure is used, such as the global error ε.

(a) Nf = 0 (b) Nf = 6

(c) Nf = 12 (d) Nf = 18

Figure 4.6: Comparison between velocity magnitude contours from CFD and ROM
reconstruction with different values of the SPOD filter Nf, using En = 99.9% at time
t = 8.1 × 10−2 s from the impulsive start. Filled contours: CFD velocity magnitude;
Solid black lines: ROM reconstruction.

4.1.2 Remarks

The energy redistribution due to the filter applied to the POD correlation matrix entails

a greater number of modes to reach a fixed energetic content for each test-case, as it

can be noticed from Tables 4.1, 4.2 and 4.3. Nevertheless, the computational cost of

the two techniques is almost the same, both for the offline and online steps, since the

main dimensionality reduction is performed in terms of considering at most Ns modes,

instead of the n initial DOFs coming from the CFD simulation. There is no significant

effect on the global error as the filter is varied for the three test-cases but differences can

be noticed locally, looking at the contour fields. For the periodic case, vortex shedding
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(a) Nf = 0 (b) Nf = 6

(c) Nf = 12 (d) Nf = 18

Figure 4.7: Comparison between velocity magnitude contours from CFD and ROM
reconstruction with different values of the SPOD filter Nf, using En = 99.9% at time
t = 8.1 × 10−2 s from the impulsive start. Filled contours: CFD velocity magnitude;
Solid black lines: ROM reconstruction.

past a square cylinder, an energetic content of 99.9% shows no difference between

POD and SPOD (Figure 4.3). However, as the energetic content is lowered to 95%

(Figure 4.2) a fine difference can be noticed between the two techniques in resolving

the coherent structures more downstream in the von Karman vortex street. For the case

of the impulsive start of the 30P30N airfoil, the same behaviour can be highlighted for

both the energetic contents (Figure 4.4 and 4.5). The POD does not perform as well as

SPOD in reproducing the dynamic of the starting vortex as it propagates downstream

and dissipates. The difference between the two techniques is much more remarkable

when an energetic content of 95% is fixed (Figure 4.4), where it can be noticed how

the performance in resolving the starting vortex dynamics improves significantly as the

filter increases. Finally, for the 3D High-Lift Wing-Body configuration, the Figures

4.6 and 4.7, corresponding to an energetic content of 99.9%, highlight again how the

66



Chapter 4. Ranking of Modes

Nf Nm/Ns(En = 99.9%) εu(%) εv(%) εw(%)

0 (POD) 14/18 1.20 1.35 3.65

6 17/18 1.22 1.35 3.65

12 18/18 1.22 1.35 3.65

18 (DFT) 18/18 1.22 1.35 3.65

Table 4.3: Error in reconstruction for the 3D High-Lift Wing-Body configuration, com-
puted according to Equation 4.2 for u, v and w component of velocity, with fixed
energetic content and varying the SPOD filter size.

POD fails in reconstructing the whole dynamics of the starting vortex. As a matter of

fact, Figure 4.7 shows how the reconstruction improves as the filter increases, i.e. more

details of the flow field are recovered. This behaviour, common over the three test-cases,

can be easily explained considering the optimization procedure the POD algorithm is

based on. Since the POD modes represent a set that maximize in average the energy

kept from the set of initial snapshots (for the specific test-cases analyzed, kinetic energy,

since the velocity vector is considered), coherent structures that are less energetic might

not be recovered properly. This can be clearly seen comparing the two slices reported

in Figures 4.6 and 4.7 for the 3D test-case. Closer to the wing, where the coherent

structures have an higher energetic content, POD is able to recover the flow field with

the same level of detail as SPOD. On the slice far away from the wing, instead, the

coherent structures are less energetic and SPOD performs better. Same considerations

apply to the 30P30N test-case, where it is evident the better performance of SPOD in

catching the advection of the starting vortex as it dissipates and becomes less energetic.

Downstream of these observations, the following conclusions can be drawn:

- The energy-based POD mode truncation has limitations in recovering the whole

unsteady dynamics of less energetic structures;

- It is relevant to take into account the temporal dependency of snapshots at the

modes extraction level (SPOD filter applied to the temporal correlation matrix);

- The energy-based SPOD mode truncation allows a better reconstruction of less

energetic flow structure dynamics.
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4.2 Ranking of DMD modes

DMD extracts only pure frequencies and possible transient behaviour through growth/decay

rate information coming from the dynamic matrix eigenvalues. Therefore it is not an

easy task to recognize a-priori the subset of DMD modes that are important for describ-

ing the essential dynamics. If there is some a-priori knowledge of the system dynamic

behaviour, in terms of characteristic frequencies, it is possible to spot the important

DMD modes as the ones corresponding to the expected frequencies. If the dynamics

is completely unknown, instead, it becomes tricky to provide a classification of DMD

modes as done for POD. Besides the truncation performed on the basis of the singular

values, which is when the dynamic matrix is projected into the low-dimensional space

where DMD information is extracted, the further selection of modes meaningful for the

dynamics, at the end of DMD algorithm, has been mainly performed in the literature

trying to mimic the energy criterion from POD. Classifications have been proposed on

the basis of DMD modes norm or DMD coefficients αi (see Equation 3.15) [93, 98], that

do not take into account the DMD modes dynamic and therefore could penalize tran-

sient linked to strong decay rates. Integral measures have also been used in the effort

to take into account also the time evolution of DMD modes [159, 160]. Specifically, the

following integral has been used to perform a DMD mode ranking

Ei =
1

T

∫ T

0
‖φi‖2e2σitdt = ‖φi‖2

e2σiT − 1

2Tσi
(4.3)

where T is the time interval over which DMD is applied and σi is the real part of the i−th

DMD eigenvalue. Nevertheless, also in this case, being the final measure an integral

over time, local importance of DMD modes, which might be related to the transient

behaviour dictated by the real part of DMD eigenvalues, is not considered. Moreover,

it is worth noticing that both the rankings based on the integral measure and DMD

coefficients or modes norm are neither related directly to the total energy content of the

initial snapshots set nor they can be used to define a cumulative sum as in Equation 4.1.

Other methods have also been proposed, that try to isolate meaningful DMD modes

at the extraction stage of the method, using optimization algorithms. Optimized-
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DMD [161], recently proposed also for the case of snapshots unevenly spaced in time

[162], uses a global optimization algorithm that has shown to extract more physical

frequencies when applied to the case of the transient and post-transient dynamics of a

cylinder wake. Sparsity promoting DMD (spDMD) [35] tries to induce sparsity through

regularization of the least-squares deviation between the matrix of snapshots and the

linear combination of DMD modes, with an additional term that penalizes the l1-

norm of the vector of DMD amplitude αi. The algorithm was successfully applied to

three test-cases showing an improvement in the extraction of dynamical information.

Nevertheless, both the algorithms rely on numerical optimization procedures, where

the rank of DMD modes is user defined and other few parameters need to be tuned in

the process. A new approach, that exploits the local time dynamics of DMD modes

and does not use any optimization algorithm for modes extraction or energy ranking

criteria for modes selection, is the t−envelope method, presented in the following for the

specific case of describing the dynamics of early transition in a Channel flow. Even if the

specific flow considered is not a flow of aeronautical interest, it is a good demonstration

case which shows in a tangible manner the importance of the selection of appropriate

DMD modes from a set of available ones, in order to express some dynamics of interest.

Indeed, for this specific case, some connections will be also introduced between the

modes extracted by DMD and the underlying physics of the flow.

4.2.1 DMD Modes classification for reconstruction of early transition

in Channel flow

The DMD algorithm is applied to a collection of snapshots coming from the Direct

Numerical Simulation (DNS) of a by-pass type transition in a channel flow [163, 164].

In the following details of the simulation are briefly described. The 9th-order WENO

scheme and 1283 mesh resolution are employed, for which the accuracy of the results

were previously shown to be DNS–like [163]. The Reynolds number based on the friction

velocity (uτ ) and the channel half-height (Lh) is equal to Reτ ≈ 395, whereas the one

based on the bulk velocity (ub) is Reb ≈ 6887. The y+ value of the first point from the

wall is equal to 0.74, resulting in a resolved mean friction Reynolds number of just over
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393, within less than 0.5% of the target value. The employed grid and numerical scheme

were previously shown to be capable of accurately resolving the turbulence properties

of the test-case and set-up considered in this study [163]. In order to obtain a sufficient

number of flow snapshots of the bypass transition, the initial velocity field is perturbed

with white noise in all directions by 5% of the local streamwise velocity (instead of the

10% used in [163]), which in turn is obtained by a laminar Poiseuille parabolic profile.

The quantity used to describe the entire transitional process is the wall shear stress τw

(see Figure 4.9).

DMD characterization

The DMD method is applied to 1000 snapshots of the numerical simulation sampled

in the time interval highlighted in Figure 4.9, using an equispaced non-dimensional

∆t = 10−3 Lhu−1
b . This is the maximum value admissible to have time-resolved data,

i.e. the maximum ∆t that still allows to follow the evolution in time of flow structures.

Each snapshot consists of all the three components of the velocity arranged in a unique

column vector, u = [u, v, w]T . The time interval selected considers the early stage of

transition, when the vortical laminar tubes that appear in the left half of the channel

start showing spatial oscillations. These oscillations are then amplified and eventually

determine the interaction and breakdown of the laminar tubes, which rearrange in more

chaotic yet coherent turbulent structures. The reader can refer to the first three time

instants reported in Figure 4.8 to have a direct visualization of the described process.

Since a transient phenomenon is considered, it is worth noticing here that another

crucial aspect of DMD recently discussed in the literature is how much it is capable to

provide consistent results when transient phenomena are considered [43]. Specifically

Page and Kerswell [45] have shown, for a simple Couette flow, how DMD can fail when

trying to describe the dynamics of a fluid system moving between two equilibria along

an heteroclinic orbit. Nevertheless, in the same work it was also shown how the DMD

looks accurate if applied to very short time windows not containing cross-over points

of the dynamical system. This is why the DMD extraction method applied in the

present work is focusing on a small window at the early stage of transition. The whole
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Figure 4.8: Q-criterion isosurfaces coloured by the velocity magnitude at 4 instants
of time and depicting the bypass transition process. From top-left to bottom right:
t = 1450 Lhu−1

b (Q = 10−4), laminar; t = 1480 Lhu−1
b (Q = 10−4) and t = 1530 Lhu−1

b

(Q = 5× 10−4), transition; t = 1700 Lhu−1
b (Q = 0.05), fully developed.

transition process is indeed an heteroclinic orbit going from the unstable equilibrium

of the laminar flow to the stable limit cycle of the fully-turbulent flow. Therefore,

applying DMD to the entire time window is very likely to give results that are not

consistent. Figure 4.10 reports the information coming from the DMD in terms of the

eigenvalues λi and the time dynamics αie
ωit of the dynamic modes extracted. Since the

DMD modes are normalized, the time dynamics is a direct indication of the importance

of each mode with respect to the others at all time instants.

The t-envelope method

The DMD algorithm reported in Section 3.2.3 extracts 999 dynamic modes out of the

1000 snapshots collected in the chosen time window. The selection of the relevant

modes among the ones available is the aim of the present section. The method here

introduced, which represents an effort to take into account the local dynamics of DMD

modes and will be hereafter referred to as t-envelope, will respond to two important
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Figure 4.9: Shear stress evolution for the time interval used in DMD (left). Full time
window from transition to a fully developed turbulent flow (right).

(a) DMD eigenvalues on the unit circle (b) time dynamics of DMD modes

Figure 4.10: DMD eigenvalues and time dynamics.

questions: 1) can we identify DMD modes associated to physical flow structures that

characterize the onset of transition and 2) can we identify those few DMD modes that

better allow reconstructing the flow field in the region leading to the transition phase.

The assessment and evaluation of DMD modes with respect to the two above criteria

will be carried out by looking at the similarity between the reconstructed flow field

using a few selected modes and the actual flow field in the time window preceding the

actual transition zone, where turbulent structures will already show a chaotic behaviour.

Moreover, a comparison with the energy ranking criterion by Tissot et al. [159] will be

performed to show the improvements of the proposed method in expressing a specific
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dynamics.

The proposed t-envelope method allows to perform a modes selection that is based on

a criterion that is local in time and does not rely on an integral quantity, such as the

one reported in Equation 4.3. The algorithm is straightforward and does not imply any

computational step, besides the selection of local maxima. It can be schematized with

the following few steps

1 The time dynamics of all the DMD modes, namely the functions αie
ωit, are

evaluated at the sampling points and their amplitude is collected in a matrix

Tdyn, where on each row there are the time amplitudes of the corresponding

DMD mode;

2 Since the DMD modes φi are normalized, these functions represent the actual

contribution of each mode to the resulting flow field; therefore the maxima for

each column of the matrix Tdyn are computed and the corresponding modes are

selected;

3 Once these modes have been selected, the positions of the maxima in the matrix

Tdyn are set to zero, the new maxima are computed and the corresponding modes

selected;

4 The procedure can be iterated for any levels of selection, depending on how much

resolution is desired for the coherent structures in the flow field.

The criterion for modes selection at each level can be expressed with a mathematical

formula as follows:

Idm(t) = arg max
i=1,...,Nm

‖αieωit‖ with 0 < t < T. (4.4)

Once the Idm(t) is built at each level, all the modes are collected and used as inputs

in the Equation 3.15 to obtain an approximation of the dynamic of the transition.
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Analysis of DMD eigenvalues and modes

The selection process presented in the previous section is compared with the energy

ranking criterion in Equation 4.3 in terms of differences of modes and corresponding

eigenvalues selected among the entire set of the available ones.

Figure 4.11 reports, on the left, the t-envelope selection of DMD modes using 8 levels of

selection and, on the right, the energy spectrum of DMD modes computed according to

Equation 4.3. On the energy spectrum the modes selected with the t-envelope method,

highlighted with black circles, are also reported together with the same number of the

most energetic ones, highlighted in red. Here it can be noticed how some of the modes

selected with the t-envelope method are not the most energetic ones but yet important

for the dynamics. The total number of modes used, with a number of levels fixed to 8

for the t-envelope, is 32. Figure 4.12 shows the DMD spectrum, where the red circles

indicate the growth/decay rate and frequencies of the DMD modes selected through

the t-envelope and the energy method. Similarly, Figure 4.13 shows the αi amplitudes

versus the frequencies (imaginary part of ωi eigenvalues) of the DMD modes selected

with the two methods. It is worth noting that the spectra reported in Figures 4.12

and 4.13 are symmetric since the original data processed through the DMD algorithms

are real. This generates outputs that appear always in complex conjugate pairs.

Figures 4.14 and 4.15 report the DMD modes selected with the t-envelope and the

energy methods respectively and used to compute the approximated flow field with the

Equation 3.15. All the modes are represented in terms of the Q-criterion computed on

the three components of each mode. Since each complex mode appears in the list of the

selected modes with its complex conjugate, only half of the modes is showed, excluding

the one related to the mean, which does not vary over time (ωDMD = 0). Therefore,

being the number of selected modes 32, only the real part of 15 of them is reported.

All the selected modes are sorted according to the energy level defined in Equation 4.3.

Comparing Figures 4.14 and 4.15 it can be observed how among the modes selected

by the t-envelope method, modes exist that are closely related to the stream tubes

characterizing the flow field at the beginning of the time window considered, which are

not present in the energy selection process.
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Figure 4.11: DMD modes selection using t-envelope method (left) and energy spectrum
of all the extracted DMD modes (right): the red circles highlight the modes selected
using the energy norm, the black circles the ones selected using the t-envelope method
with 8 levels of selection.

Reconstruction of the flow field

The difference among the selected modes becomes evident in Figure 4.16 where a more

explicit comparison of the onset of transition, as obtained through the numerical sim-

ulation and as it is reconstructed by the two set of modes, is presented. The DMD

reconstruction is computed according to Equation 3.15, where the multiplication and

summation of complex terms is treated using the complex matrix algebra implemented

in the Eigen Library [149]. The top row in Figure 4.16 reports the DNS-like solutions

at three distinct instants of time in the time window of Figure 4.9. The left plot refers

to a time instant at the beginning of the window, the central plot to an intermediate

one and the right plot to a time at the end of the time window, right at the beginning

of the actual transition phase as indicated by the shear stress plot. The middle row is

the reconstructed flow field using the t-envelope method and the bottom row reports

the reconstructed fields using the Energy method. In these Figures, the Q-criterion of

the reconstructed velocity field is shown.

Remarks

It can be noticed how the t-envelope method is able to provide reconstructed flow fields

that are closely related to the actual flow field. Indeed, the modes identified by the
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Figure 4.12: DMD spectrum (ω):(left) whole spectrum and (right) detailed view on the
selected modes. Red circles highlight the DMD modes selected on the DMD spectrum
using the t-envelope method (first row) and the energy method (second row).

Figure 4.13: Amplitude of α coefficients. Red circles highlight the DMD modes selected
using the t-envelope method (left) and the energy method (right).
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t-envelope clearly isolate the instabilities of the laminar streaks as they grow, as time

progresses and transition becomes evident. Also, it is worth noticing how the recon-

structed flow field by the t-envelope at the last instant of time of the time window

is visually very similar to the actual flow field. These elements support the case for

the adoption of the t-envelope method for the identification of structures leading to

transition and also for the identification of the few relevant modes for a fairly accurate

reconstruction. This is quite evident when a comparison with the energy-based re-

construction is presented, where the identification of relevant flow structures and their

evolution in time is not quite possible and also the reconstruction at the last instant of

time seems to be less accurate than in the case of the t-envelope. Moreover, for the first

two instants of time reconstructed with the Energy method, a different value for the

Q-criterion isosurfaces is used in order to be able to visualize the streamwise streaks,

while for all the other cases this value is kept constant. Also a quantitative analysis

has been carried out to prove that the t-envelope method is performing better than the

energy selection criterion. Figure 4.17 shows the error defined in Equation 4.2. The

error is reported over time for both the velocity magnitude and each component of the

velocity vector. It can be noticed how the t-envelope method always outperforms the

energy method also in terms of ε.
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Figure 4.14: Selected modes via the t-envelope approach coloured by φ magnitude.
Modes are ordered from left-to-right, from top-to-bottom, according to the correspond-
ing energy content.
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Figure 4.15: Selected modes via the energy approach coloured by φ magnitude. Modes
are ordered from left-to-right, from top-to-bottom, according to the corresponding en-
ergy content.
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Figure 4.16: Comparison of the onset of transition described through numerical simula-
tion (first row), DMD t-envelope (second row), DMD energy (third row); t = 1430Lhu−1

b

(first column), t = 1480Lhu−1
b (second column), t = 1530Lhu−1

b (third column).
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Figure 4.17: Relative error of the Energy and t-envelope method with respect to sim-
ulations, for the velocity vector: velocity magnitude and velocity components.

4.3 Ranking of RDMD modes

Since RDMD inherits the optimality property of POD, an energy criterion for modes

ranking can be defined, with an ordering that follows the recursion procedure. The

modes are normalized during the extraction step as described by Noack et al. [44]

and the associated energy content is linked to the singular values extracted during the

recursion [69]. Indeed, differently from DMD, the equivalence between singular values

and modes norm still holds as in the case of POD. The singular values are the ones

computed at each step of the recursion when the DMD algorithm is applied (see Section

3.2.4) and are eventually used to define the cumulative energy of the RDMD modes as

follows

Er−1 =

∑Ns−1
i=1 σ2

i −
∑Ns−1

j=1 σ2
i,r∑Ns−1

i=1 σ2
i

(4.5)

where Er is the energetic content of the first r modes (at the r-th step of recursion),

σi are the singular values at the first step of recursion, σi,r the ones at the r-th step of

recursion.
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Model-Based Adaptive Reduced

Order Model

A novel technique that aims at creating a synergy among different sets of basis functions

to reconstruct the dynamics of complex nonlinear unsteady flows is here formulated. Dif-

ferent ROMs are combined together to build a unique Adaptive Framework that selects

the most accurate method to reconstruct the solution at every untried/unsaved instant

of time within the sampled time window. Central to this novel Framework will be the

introduction of an error estimation to drive the adaptive choice of methods. Different

formulations for estimating ROM accuracy are presented, together with a comparative

analysis of the performance of the adaptive technique equipped with different error for-

mulas. The comparative analysis reported will show how an error measure based on

the evaluation of the FV residual is a good candidate when used as a means to drive

the adaptive selection in time of the low-dimensional space. The main advantage of

such formula is that it does not need any reference solution to be computed, as opposed

to a formulation where the reduced solution is compared directly to a set of reference

solutions. The comparative study leads to the definition of a hereinafter called Model-

Based Adaptive ROM, where the term Model-Based refers to the intrusive definition of

the error based on a residual evaluation. Although the error introduces a component of

intrusion, this is restricted to the offline phase when the error database is computed,
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whereas the online phase still remains non-intrusive.

5.1 Adaptive Reduced Order Models

When trying to use ROMs on parameter spaces that have large parameter variations

or over extended interval of time, the low-dimensional model is likely to have very low

performance in resolving local nonlinearities. There are different strategies to address

this problem using adaptive ROMs. Examples are present in the literature where an

adaptive sampling of snapshots is performed. Many are the algorithms that have been

proposed for a parametric adaptive sampling, often based on physical considerations.

Snapshots are added iteratively in regions of the design space where the ROM is less

accurate, according to an error estimator. Examples of such strategies are leave-one-

out [165, 166] and methods based on Gaussian Process Regression [167]. The starting

point can be a uniform sampling over the parameter space or a non-uniform sam-

pling, like Latin Hypercube, Centroidal Voronoi Tessellation (CVT), Halton sequence,

Sobol sequence and many others [107, 129, 168, 169, 170]. There is scarcity of meth-

ods instead to perform an adaptive sampling in time, which often implement ad hoc

functions depending on the specific dynamics at hand [146]. Usually the sampling is

performed uniformly, since proper techniques for the adaptive sampling in time need

to define an adaptive time step also for the solution of the initial set of equations [63].

Besides the adaptive sampling, there are also techniques that try to implement local

low-dimensional spaces, in order to deal with localized nonlinear phenomena. These

techniques usually extract local basis functions. Rewienski and White [171] presented

a trajectory piecewise linear approach that aims at giving a low-order piecewise linear

approximation of the nonlinear function appearing on the right hand side of the dy-

namic equations of the system. Rewieński and White [172] also offered a study of error

bounds for the proposed technique. Washabaugh et al. [173] proposed nonlinear ROMs

based on local approaches for parametric problem, using unsupervised learning algo-

rithm to cluster solutions and define sub-spaces over the entire parameter space. Zhan

et al. [174] implemented a similar approach to conduct a comprehensive exploration of
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the in-flight icing certification envelope. Local approaches are also often implemented

for advection dominated phenomena, where global basis functions usually show very

low performances as opposed to local approaches [175]. Examples of this effort are the

work of San and Borggaard [176], which proposed a Principal Interval Decomposition

to compute different set of basis functions on different time window, and the work of

Peherstorfer [50], which used an adaptive approach able to switch continuously between

the low-order and full-order model on the basis of an error estimator. Each time the

switch is performed, either a new basis is computed or the original basis is updated

with additional information. Recent effort to deal with advection problems have been

also oriented on defining Lagrangian ROMs, based on widespread techniques in the

fluid dynamics community [52, 53], or on computing advection modes [51].

A different approach, that goes beyond the idea of both adaptive sampling over time

and parameter space and the idea of defining local basis function, is the adaptive

h−refinement proposed by Carlberg [177], which borrows idea from h-adaptation of

computational meshes, generalizing it for POD basis functions. With this method, an

original set of basis functions coming from POD is recursively split until a certain error

tolerance is reached in the ROM solution. In particular, the selected reduced basis

vectors are split into multiple vectors with disjoint discrete support and the splitting

technique is based on a tree structure computed by applying k-means clustering to the

state variables. Differently from all the other methods, the h-adaptivity ROM proposed

by Carlberg ensures convergence to the full-order model, which is when the splitting

method leads to the same DOFs of the full-order solution. Etter and Carlberg [178]

further developed this idea using vector-space sieving for splitting the original set of

basis functions.

5.1.1 Adaptive Framework based on different sets of basis functions

The present chapter introduces a different idea of adaptive ROM, that is neither local

nor focused on the sampling procedure. Following the analysis performed in Chapter

3, it has emerged that different set of global basis functions, coming from different

algorithms for dimensionality reduction, provide different performances in describing
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the time dynamics over the selected time interval. For instance, RDMD has shown

to outperform POD when the solution is converging to the final attractor, once the

initial transient is vanished. Overall, considering the entire dynamics, it is clear that a

unique winner cannot be found to describe the whole dynamics with only one set of basis

functions. This is why all the methods presented in Chapter 3 will be used in synergy to

create a monolithic ROM framework, which will be referred hereafter as Adaptive, able

to select the best linear method for the computation of the online solution. Naturally,

the method that drives the selection is based on a particular definition of the error,

which is crucial for any adaptive strategy. Section 5.2 provides an overview of ways to

estimate ROM accuracy; Section 5.2.1 introduces a measure of how well a generic ROM

is approximating the high-dimensional space defined by the original snapshots; Sections

5.3 and 5.4 focus on two particular definitions of the error, namely a so-called direct

error, which has been already used in Chapter 4 to show the quantitative influence of

modes ranking on ROM reconstructions, and a so-called residual error [70]; Section 5.5

compares the performances of these two error definitions when used in the Adaptive

Framework, which is schematized in Section 5.6 [69].

5.2 Estimating the accuracy of a ROM

A reliable definition of the error to estimate the accuracy of a ROM is crucial for every

adaptive technique [65]. Indicating with v the exact solution and with v̂ the reduced

order approximation, a straightforward definition of the error is

e = v − v̂ (5.1)

All the quantities reported in Equation 5.1 are vectors, i.e. discretised solutions over

the computational domain. The quantity e can be then decomposed as [179, 180]

e = e‖ + e⊥ (5.2)
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e⊥ is the component of the error perpendicular to the low-dimensional space built

with the ROM and therefore it depends on the information content the extracted basis

is able to preserve. e‖ represents the component of the error that lies in the low-

dimensional space defined by the reduced basis, and it is a contribution to the error

linked to the method used to compute the coefficients ai of the expansion in Equation

2.1. Many efforts have been put in the literature to find a-posteriori error bounds

and a-posteriori error estimators for the quantity e in order to elaborate certified and

reliable ROMs. Nevertheless, the a-posteriori error estimators proposed have usually

been ad hoc for particular partial differential equations, such as parabolic [67, 68] or

elliptic [64, 65] problems, or linear and nonlinear systems of ODEs. The ad hoc a-

posteriori error estimator is also linked to the specific discretisation used. Usually

a-posteriori ROMs error estimation inherits a-posteriori error estimators from finite

element methods [64, 65, 181], but efforts have been put to define estimators also for

Finite Volume discretisation [85, 182, 183].

It is worth noticing that all these a-posteriori and a-priori error bounds and error

estimators have been so far introduced in the context of intrusive ROMs, therefore

they bring information about the accuracy of the ROM with respect to the exact

solution of the original system of equations. Since a non-intrusive online procedure is

implemented in the present work, the errors used are neither bounds nor estimators of

the actual accuracy of ROM with respect to the exact solution. They instead represent

an effort to define ROM accuracy with respect to the high-fidelity solution obtained

through some discretisation process of the initial system of governing equations, namely

the Finite-Volume discretisation of the set of Navier-Stokes equations. Therefore all

the errors introduced hereafter will consider the CFD solution as the exact reference

solution.

5.2.1 Projection error

A compact expression approximating the perpendicular component of the error e⊥ in

Equation 5.2 is here provided. Indicating with Pφ the projection operator defined by
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a general linear basis, the quantity e⊥ can be written as

e⊥ = v −Pφv (5.3)

If Φ is the matrix whose columns are the basis functions φ, extracted with one of the

algorithms reported in Section 3.2, an approximation to the projection operator Pφ

can be computed as (see also [161])

P̃φ = Φ(Φ∗Φ)−1Φ∗ (5.4)

A compact measure can be finally defined, the so-called projection error,

εP =
‖u− P̃φu‖2
‖u‖2

(5.5)

where u here represents a generic CFD reference solution. A low projection error

indicates that the set of basis Φ retains a large amount of information coming from the

original training snapshots. It is worth noticing that, since the projection error is only

an approximation of the actual e⊥ , it is not an indicator of a good accuracy of the ROM

with respect to the underlying physics. The set of basis functions is built from available

data u that might not span the entire low-dimensional space, therefore a low εP does

not guarantee accuracy at new untrained points where online solutions from the ROM

are computed. Nevertheless, a high projection error is still a good measure to define

inaccurate ROMs, as it indicates that the set of basis φ does not define properly the

low-dimensional space or that a low-dimensional space for the specific problem under

investigation cannot be found.

5.3 Direct error

The direct error is defined as the norm of the error in Equation 5.1, normalized by the

norm of the exact solution,

ε =
‖u− û‖2
‖u‖2

(5.6)
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where u represents a generic CFD reference solution. it represents the most reliable

way to estimate the accuracy of a ROM, but it is also the most expensive to compute at

untrained points as it requires additional full-order simulations to be run. The definition

is equivalent to the error estimation provided in Chapter 4, when quantitative results

on the accuracy in reconstruction have been reported. In order to evaluate error plots

that are also able to test the predictive capabilities of the ROM, a leave-n-out approach

is implemented, where Ns/2 equispaced snapshots over the entire investigated time

window are used to build the basis, while the remaining Ns/2 − 1, still equispaced in

time and in the mid-points between snapshots used for the ROM, are used to compute

the error (see also Figure 5.3). The strategy is similar to the leave-one-out approach,

implemented for example in [166, 174]. In this case, in order to compute the direct

error at a specific location, the corresponding snapshot is excluded from the training of

the reduced basis and is used to estimate the accuracy of the ROM using Equation 5.6.

Nevertheless, for the specific case of unsteady flows, iteratively excluding one snapshot

can lead to a situation where the sampling is not equispaced in time and inconsistencies

are present in the unsteady algorithms to extract flow features, which is why a leave-

n-out approach is implemented instead.

Figure 5.2 reports examples of direct error and projection error for the two test-cases

presented in Chapter 3. The first two rows report the direct error ε and the difference

ε− εP between direct and projection error in logarithmic scale for the NACA0012 test-

case, over the entire investigated time window. Analogously, the last two rows show

the same quantities for the 30P30N test-case. The DMD projection error is reported

for completeness, since no meaningful information can be inferred in this case. Indeed,

the different reconstruction formula used for DMD (see Section 3.3), does not allow

a straightforward decomposition of the error as the one presented in Section 5.2. For

all the other methods, once the rank has been fixed, it is worth noticing the higher

overall performance in defining a low-dimensional space when the set of basis functions

is orthogonal, i.e. for the case of POD and RDMD. These are indeed the cases that

show the lowest projection error for both NACA0012 and 30P30N, which means that

the main error source is principally linked to the computation of coefficients in the
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low-dimensional space. The behaviour of the SPOD basis is different instead, since it

shows comparable contribution to the final error linked both to the projection operation

and the computation of coefficients. Another aspect worth noticing from Figure 5.2 is

that for both test-cases there is no common pattern that allows to define a particular

ROM as the best one to approximate the evolution over the whole time-interval. This

consideration is at the basis of the adaptive strategy finally introduced in the present

Chapter, as the only possible way to combine best accuracy at each time step desired

for reconstruction.

(a)

(b)

Figure 5.1: Examples of Direct and Projection Error for the NACA0012 test-case pre-
sented in Chapter 3. Direct Error ε is reported in 5.1a, the difference between the two
ε− εP is reported in 5.1b. Errors are computed using the leave-n-out strategy (error in
the mid-points of the training snapshots).
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(a)

(b)

Figure 5.2: Examples of Direct and Projection Error for the 30P30N test-case presented
in Chapter 3. Direct Error ε is reported in 5.2a, the difference between the two ε− εP
is reported in 5.2b. Errors are computed using the leave-n-out strategy (error in the
mid-points of the training snapshots).

5.4 Residual error

The leave-n-out approach based on the direct error often leads to a severely depleted

set of snapshots to be actually used in the basis construction. A different definition of

the error is introduced instead in the present Section, i.e. the residual error, that does

not require any reference solution and therefore allows the ROM to use all the available

snapshots to build the low-dimensional space. The conceptual difference between the

two errors is illustrated in Figure 5.3. The residual error is computed substituting the

general ROM solution provided by Equation 2.1 in a particular discretisation of the

Navier-Stokes equations. Therefore it introduces a component of intrusion that might

limit its application to situations where the snapshots are based on CFD calculations.
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Figure 5.3: Conceptual difference between direct and residual error. RBM indicates a
Reduced Basis Method, alias ROM.

It is worth noticing that the residual produced by the original set of governing equations

of a fluid system has been already used in the literature to elaborate ROMs, even if for

completely different aims [24, 184]. Indeed, a residual minimization algorithm is often

used to compute the set of coefficients for the reduced basis, namely the ai in Formula

2.1, and therefore it is a part of an online phase that gives as output the final solution

reconstructed at the querying point. Other usage of residual evaluation includes also

stabilization techniques [185]. In the present work instead, the residual is used as a

measure to assess the performances of different ROM techniques. Since the focus is

on unsteady fluid problems, an edge-based Finite Volume formulation is considered

for the residual error, equipped with a Backward Difference Formula (BDF) for the

unsteady term, which ensures second order accuracy. The formula is briefly derived

in the following. A strong formulation of the Navier-Stokes equations in conservative

form is
∂w

∂t
+∇ · F(w) = 0 (5.7)

where w indicates the vector of conservative variables, namely w = [ρ, ρu, ρv, ρw, ρE]

and F represents the vector of convective and viscous fluxes. Considering a Finite Vol-

ume approach, Equation 5.7 is integrated over the generic cell Vi of the computational
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domain, obtaining ∫
Vi

∂w

∂t
dVi +

∫
∂Vi

F · n d(∂Vi) = 0 (5.8)

where the second integral is obtained applying the Divergence Theorem. Equation 5.8

is still exact and approximations are introduced to compute the volume and surface

integrals. Specifically a linear variation of the quantity w is considered over the generic

cell Vi and the generic flux F(w) is evaluated over the edges of cell Vi considering an

intermediate state ŵ, which is computed on the basis of the value of w in the actual cell

and the one in the neighbor cell sharing the same edge. The following approximations

are therefore introduced

w(x) ≈ wi + (x− xi) · ∇w (5.9)

∫
∂Vi

F · n d(∂Vi) ≈
Nedges∑
j=1

F̂j · Sj (5.10)

where F̂j is the flux computed at the intermediate state F̂j = F(ŵ), and Sj = nSj ,

with Sj the area of the generic edge. Substituting in Equation 5.8 and defining as R
′
i

the residual produced by the approximations introduced,

∂wi

∂t
Vi +

Nedges∑
j=1

F̂j · Sj = R
′
i (5.11)

A second order Backward Difference Formula (BDF) is finally considered for the tem-

poral derivative, obtaining the final expression of the residual Ri for the generic cell Vi

and for the entire set of the conservative variables,

Ri = Vi
3wn+1

i − 4wn
i + wn−1

i

2∆tres
+

Nedges∑
j=1

F̂j · Sj


n+1

with i = 1, 2, . . . , Np (5.12)

where Ri = R
′
i + r and r represents the additional contribution to the residual coming

from the discretisation of the temporal derivative. Np represents the number of points

of the computational domain. The residual is evaluated at time instant t = tn+1 and
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it will be referred to as Dual Time Residual (DTR). To obtain a final measure of

the residual error, the norm of Ri over the entire computational domain is computed,

normalized by the number of points. Therefore, for each conservative variable

εR,j =

√√√√ 1

Np

Np∑
i=1

R2
j,i (5.13)

with Rj,i the residual produced by the j−th conservative variable, in the i−th cell,

according to Equation 5.12. The ∆tres in the Equation 5.12 represents an additional

parameter for this particular error definition and dictates where the ROM reconstruc-

tions are computed to evaluate the residual. For turbulent simulations using turbulence

models, new conservative quantities need to be added to the vector w. In the present

work, only the residuals for mass, momentum and energy will be considered hereafter,

but turbulence variables are also computed (e.g. eddy viscosity, k and/or ε and/or ω

according to the turbulent model used for the simulation), since they are involved in

the computation of the residuals of the primary conservative variables.

It is worth noting that the computation of the quantity εR introduces a component of

intrusion in the process, since the original set of governing equation of the system is

needed. Despite that, the evaluation of Formula 5.13 will be always performed dur-

ing the offline phase of the ROM, in order to maintain the online process genuinely

non-intrusive (see Section 5.6).

5.4.1 A note on Time Integration

The residual presented in Equation 5.12 derives from an only spatial integration of

the initial set of Navier-Stokes equations, Equation 5.8. Therefore the error defined

in Equation 5.13 only accounts for a spatial measure of how well the ROM satisfies

the discretized equation. It is worth considering also a temporal contribution to the

residual previously introduced [186], to better understand if the ROM is introducing an

additional error while evolving the solution in time. The formulation of a residual that

accounts for both spatial and temporal contribution can be still derived from Equation
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5.7, integrating in space and time

∫ t+∆t

t

(∫
Vi

∂w

∂t
dVi +

∫
∂Vi

F · n d(∂Vi)

)
dt = 0 (5.14)

Considering the same spatial approximations introduced for Equation 5.8, it is legiti-

mate to consider directly the integral in time of Equation 5.11 for computing the new

expression of the residual, obtaining

∫ t+∆t

t

(
∂wi

∂t
Vi

)
dt+

∫ t+∆t

t

Nedges∑
j=1

F̂j · Sj

 dt =

∫ t+∆t

t
R

′
idt (5.15)

Since the first integral in time can be computed analytically using the fundamental

theorem of calculus, the only further approximation that needs to be introduced for

the computation of the final residual is related to the computation of the integral in

time of the flux term. For this term a trapezoidal formula is considered

∫ t+∆t

t
φdt =

1

2
(φt + φt+∆t) ∆t (5.16)

Applying the fundamental theorem of calculus for the first integral and the trapezoidal

formula for the second integral and dividing by the integration interval ∆t, an expression

for the space-time residual is obtained

R∆t,i = Vi
wt+∆t
i −wt

i

∆t
+

1

2

Nedges∑
j=1

F̂j · Sj


t

+
1

2

Nedges∑
j=1

F̂j · Sj


t+∆t

(5.17)

that is also known as the Crank-Nicholson formula [186]. Therefore this new residual

will be referred to as Crank Nicholson Residual (CNR). Comparing Formula 5.17 to

the Equation 5.12, the evolution over time of the fluxes is explicitly taken into account.

This provides additional information about the temporal contribution to the integral

measure of the error.

The computation of the two residual formulas, namely the DTR reported in Equa-

tion 5.12 and the CNR reported in Equation 5.17, is performed within SU2, introducing
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some modifications to the source code. The computation of fluxes and unsteady terms

appearing in the residual equations are performed using SU2 functions (e.g. Roe, JST

for the fluxes, or Backward Difference Formula for the unsteady term). Two separate

routines are introduced in the SU2 code, one for reading the input fields to substitute

in the residual formulas, the other to assemble together the different terms appearing

in the two residual formulas. The inputs come from the ROM code also used for the

analyses presented in the previous chapters, which reconstructs the conservative fields

at the time instant needed by the residual formulation. The cost associated to one

residual evaluation is mainly linked to the time required for the computation of con-

vective and viscous fluxes.

Figures 5.4-5.7 report a comparative analysis of the two residuals formulations, for the

two test-cases already presented in Sections 3.4.1 and 3.4.2. The same ∆t is considered

for both time discretisation in Equation 5.12 and time integration in Equation 5.17.

POD, DMD and RDMD are considered as methods for dimensionality reduction and

the residual error is computed over the time window investigated, on a set of test points

equispaced in time. To build each of the reduced models, 20 modes are considered for

the NACA0012 test-case, while 10 modes are considered for the 30P30N test-case. Fig-

ure 5.4 clearly shows a very slight difference between the two residuals formulations for

the case of the conservative variable density. Similar behaviour is shown also for all

the other primary conservative variables, namely momentum and energy, even if not

reported. This is also supported from Figure 5.5, where bar plots are reported for all

the conservative variables, that indicate the method selected at each time instant on

the basis of the lowest residual. In particular, the first row shows the selection driven

by Formula 5.12, second row shows the selection driven by Formula 5.17. There are

no significant differences between the bar plots reported on the two rows, which means

that the various ROM considered do not add any significant residual in time. Same

conclusions can be drawn from Figures 5.6 and 5.7, which report the same plots for the

30P30N test-case.

The performed analysis allows to define which of the two residual formulas intro-

duced above should be considered to build an adaptive framework composed of different
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Figure 5.4: Comparison of residual plots using spatial and spatio-temporal residual
error for various ROMs and conservative variable density, NACA0012 test-case.

Figure 5.5: Bar plots with Basis Functions selection versus time using spatial residual
error (first row) and spatio-temporal residual error (second row) for the set of conser-
vative variables, NACA0012 test-case.

sets of global basis functions. Since there is no significant temporal contribution to the

residual from each of the ROMs considered, Formula 5.12 should be used in the adaptive

framework for the following reasons:

- Formula 5.12 is faster, since it involves the computation of fluxes only at one time
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Figure 5.6: Comparison of residual plots using spatial and spatio-temporal residual
error for various ROMs and conservative variable density, 30P30N test-case.

Figure 5.7: Bar plots with Basis Functions selection versus time using spatial residual
error (first row) and spatio-temporal residual error (second row) for the set of conser-
vative variables, 30P30N test-case.

instant, while the Crank-Nicholson formula requires computation of fluxes at two

different time instants. The time required for the spatio-temporal formulation is

therefore almost twice the time required for the spatial formulation only;

- Formula 5.17 introduces some ambiguity since it represents an integration over
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a time interval, while Formula 5.12 is evaluated at a specific time instant. This

is more in line with the underlying idea of the Adaptive Framework that will be

introduced, since the main aim is to reconstruct the solution at a desired time

instant with the set of global basis functions producing the lowest residual at that

specific time instant.

In view of these considerations, Formula 5.12 will be the one used hereafter to define

the Adaptive Framework equipped with an equation-based error and will be the one

tested on various test-cases later in Chapter 7.

5.5 A comparative study of residual and direct error

The present Section offers a comparative study of the performances of two different

ROM Frameworks, both based on the idea of adaptation introduced in Section 5.1.1

that is an adaptive framework able to combine different sets of global basis functions.

The two frameworks are equipped with two different errors, namely the direct error

introduced in Section 5.3 and the residual error introduced in Section 5.4. A slight

modification of Equation 5.6 will be considered for this specific analysis, in order to

make the normalization of the two errors consistent, namely

εD =
1√
Np

‖u− û‖2 (5.18)

A prior sensitivity analysis is presented for the number of modes, i.e. the rank of each

single ROM that will be eventually used in the Adaptive Framework, which has as

final aim the identification of the set of modes that generates the lowest error possible.

A further sensitivity analysis is also carried out for the ∆tres quantity for the specific

case of the residual error. The performance of the Adaptive Framework with the two

definition of the error is then assessed on two different 2D test-cases. The reason for

this last analysis is to investigate accuracy of an Adaptive Framework equipped with

an error definition, namely residual error, that might be less reliable than the direct
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error, since it uses the equations of the governing system in its weak formulation and

does not compare to any reference exact solution.

5.5.1 Sensitivity Analysis

The error estimation depends on a number of parameters. In the case of direct error,

the sensitivity of the error is analysed with respect to the choice of the number of modes

in the reconstruction and the method used for the reconstruction. In this analysis, the

choice of modes is based on their ranking according to the relative energy content of

each mode [23, 69], the output of such analysis being the optimal number of modes to

be used for each set of basis function at a specific instant of time, that guarantees the

lowest error. In the case of residual error, an additional parameter that is considered

is the choice of the time step used to evaluate the BDF formula. The latter is quite

a relevant parameter since it will affect the error measure as a consequence of the

necessity of having two additional solutions to evaluate the BDF formula. This has

been achieved here by using the same ROM to reconstruct the three solutions, i.e. the

one at the instant of time of interest and two previous instants of time. Figure 5.8

left reports an example of the analysis done to assess the sensitivity of the residual

error on the choice of ∆tRES. Results in this Figure refers to the NACA0012 test-case

(Section 5.5.2). In all the analyses presented later, an iterative process has been put

into place to reach a state where the changes in residual error, as ∆tRES is reduced, is

below a specific tolerance set for all cases to 10−8. The right plot of the same Figure

shows instead the analysis done to assess the impact of the choice of the number of

modes in the evaluation of the error. The latter has been done both for residual and

direct error. On the basis of these considerations, an algorithm to compute the error

associated to a specific method has been proposed that, on one side, automatically

identifies the maximum ∆tres allowing for independence of the residual error from the

choice of ∆tres, while on the other, allows considering the optimal number of modes

to be used for a specific method during the reconstruction as the number of modes

guaranteeing the lowest error. The Pseudo-algorithm for error estimation is

Pseudo-algorithm
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Figure 5.8: Sensitivity with respect to the choice of ∆tres (left), number of modes and
choice of method for density (right).

for t = 1, Nt

if ∃ uREF(t) then

εd(t) = min εd(t;Nm,Nmet) ∀ Nm,Nmet

end

if uREF(t) .or. Resid then

∆tr = ∆tr0

εr(t;∆tr) = min εr(t;∆tr,Nm,Nmet) ∀ Nm,Nmet

εr,p = 0

∆er(t;∆r) = abs(εr - εr,p)

while ∆er(t;∆r) .gt. threshold

∆tr = ∆tr/K

εr,p = εr(t;∆tr)

εr(t;∆tr) = min εr(t;∆tr,Nm,Nmet) ∀ Nm,Nmet

∆er(t;∆r) = abs(εr - εr,p)

if ∆er(t;∆r) .lt. threshold

exit
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end

end

end

end

The pseudo-algorithm is performed offline (error estimation step in the left box in

Figure 5.15). The expected outcome for the direct error εD is the method Nmet and its

corresponding number of modes Nm that guarantees the lowest εD. Equivalently, for

the residual error the result will be the method Nmet and its corresponding number of

modes Nm that guarantees the lowest εR, with the only difference that a preliminary

sensitivity analysis is performed, as stated above, to compute the best ∆tres for the

evaluation of the residual. The selection of the best values for all these parameters

goes through a manual exploration of the parameter space, where a set of Nm, ∆tres

and all the methods Nmet are considered. Convergence of the pseudo-algorithm to a

global optimal solution is expected as the number of points in the parameter space is

increased.

5.5.2 NACA0012

The conditions of the simulation for the NACA0012 airfoil are the same presented for

the test-case in Section 3.4.1 ( Table 3.1), the corresponding details of the reduced

basis method are reported in Table 5.1. For additional details on the numerical setup

and computational mesh the reader can still refer to the test-case presented in Section

3.4.1. The time required for computing a single time step using high-fidelity CFD

is approximately 15 minutes on 1 core, while the time required to compute a single

time step with ROM is in the order of a tenth of a second on 1 core. The ROM has

been built in the time window where the dynamics of interest is happening, ranging

from the very initial transient to the development of the vortex shedding flow past the

airfoil, t ∈ [0; 0.3]s. Within this time interval, a sampling ∆t has been used equal to

4 × 10−3, which results in 75 snapshots equispaced in time. It is worth noting that
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Table 5.1: NACA0012 ROM setting

Ns ∆tNS [s] N.modes ∆tres [s] DOFCFD DOFROM ROM [s]

75 4 10−3 Error-
based

10−5 242,600 O(102) 1.8

the number of DOFs of the resulting ROM, reported in Table 5.1, is based only on

the pseudo-algorithm presented in Section 5.5.1, and therefore it can range from very

few modes retained to a maximum value which is linked to the number of snapshots

used. Additional considerations on further reducing the number of modes retained, and

therefore the resulting DOFs of the ROM, will be made later in the analysis presented

in Chapter 6. The sensitivity analysis on the time step used for the residual evaluation

led to a ∆tres of 10−5 seconds. Figure 5.9 reports the sensitivity of the reconstruction

error for the density with respect to the choice of the number of modes and with respect

to the different methods. While not reported in the Figure, the same analysis has been

performed for all the other conserved quantities. The way plots have been represented

reflects the steps of the pseudo-algorithm reported in section 5.5.1. Indeed for each plot

in Figure 5.9, the minimum envelop of the curves related to different modes is taken as

first step of the pseudo-algorithm. A general trend is observed where the error tends

to reduce as the number of modes employed for the reconstruction is increased. This

is not always observed in the case of DMD, where time windows exist for which the

reconstructed flow with as few as 5 modes is the one that globally has the lowest direct

error. This is supposed to happen as a consequence of the specific flow dynamics that

has a very specific frequency captured by the few DMD modes. In Figure 5.9 the first

column represents the sensitivity analysis on the number of modes performed using

the direct error, while the second column reports the same sensitivity performed with

the residual error, according to Equations 5.18 and 5.13. It can also be observed that

the direct error evaluation tends to be in general lower than the residual error when

comparing the same ROM. This difference is obviously related to the fact that the

two error definitions have different units. Indeed, the direct error refers to the actual

physical quantity, while the residual error refers to the conservation equation associated
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to the specific physical quantity considered.

Figure 5.10 represents the second and ultimate step of the pseudo-algorithm. Indeed

all the minimum envelopes obtained from Figure 5.9 for each method in the adaptive

framework are combined together to obtain the minimum envelopes reported in the

first row of Figure 5.10. The procedure is repeated for each conservative variable,

obtaining the remaining rows reported in Figure 5.10. Therefore, these final envelopes

represent the minimum error among all the considered methods and all the number of

modes used in the reconstruction. Also for this final step, results considering both error

definitions (residual error on the left, direct error on the right), are reported. Table 5.2

reports the percentage values of the choice of the best method over the time window

explored for each one of the conserved quantities, which better clarifies the contribution

of each of these methods to the minimum envelopes represented in Figure 5.10. It can

be observed that for this type of flow, POD and RDMD are the most used methods.

Some instants of time are best reconstructed using SPOD with a filter of 10 and only

very few instants of time are best reconstructed with DMD. Overall the behaviour in

terms of choice of methods is erratic, and it also depends on the specific conservative

variable, which justifies the need of the pseudo-algorithm introduced in Section 5.5.1

for elaborating a classification of methods. Finally, Figures 5.11a and 5.11b report the

reconstruction of the flow field by means of the adaptive approach for two different

instants of time. A comparison with a reference high-fidelity solution not used in the

definition of the ROM is presented. The momentum magnitude is shown as obtained

by reconstructing independently the two components ρu and ρv. Coloured contours

refer to the high-fidelity solution while solid black lines the reconstructed field. The

Figure also reports the number of modes and the method used for the reconstruction

of the two components of the momentum. Overall, the agreement is good and minor

differences are observed between the reconstruction based on the direct error and the

one based on the residual error.
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Figure 5.9: NACA0012 sensitivity with respect to number of modes and choice of
method for density. Residual error = log10(εR(ρ)) (left column), direct error =
log10(εD(ρ)) (right column).

104



Chapter 5. Model-Based Adaptive Reduced Order Model

Figure 5.10: NACA0012 minimum envelope of errors. Residual error =
log10(εR(ρ, ρu, ρv, ρe)) (left column), direct error = log10(εD(ρ, ρu, ρv, ρe)) (right col-
umn).
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(a) t = 0.05s

(b) t = 0.05s

Figure 5.11: NACA0012 momentum magnitude reconstructions at two different instants
of time within the sampled time window. Coloured contours report the CFD reference
solution, line contours represent the ROM reconstruction. The top row reports the
reconstruction with the choice of methods and number of modes driven by the pseudo-
algorithm based on residual error, the bottom row uses the pseudo-algorithm based on
direct error.
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Table 5.2: NACA0012 choice of ROM for each conserved quantity according to the
residual or direct error.

POD SPOD1 DMD RDMD

ρD 48% 4% 0% 48%
ρR 55% 9% 0% 36%

ρuD 54% 1% 0% 45%
ρuR 55% 4% 0% 41%

ρvD 48% 8% 0% 44%
ρvR 55% 4% 1% 40%

ρeD 32% 4% 0% 64%
ρeR 56% 7% 0% 37%

5.5.3 30P30N

The conditions of the simulation for the 30P30N airfoil are equivalent to the one pre-

sented for the test-case reported in Section 3.4.2 (Table 3.2), the corresponding details

of the reduced basis method are reported in Table 5.3. The time required for computing

a single time step using high-fidelity CFD is approximately 12.5h on 1 core, while the

time required to compute a single time step with ROM is in the order of a tenth of a

second on 1 core. It is worth noting that no further investigation has been carried out

on the specific numerical setup of the CFD simulation on the basis of its time require-

ments, although it is believed that the definition of a more appropriate numerical setup

can drastically reduce the computational cost. This is out of the scope of the work

presented here. The huge time requirement for this 2D test-case is related to the high

number of inner iterations used in the dual-time stepping strategy and the stringent

stopping criteria for the residual, which, together with the complexity of the geometry

investigated and the specific numerical setup used, makes the computation very time

costly.

The ROM has been built in the time window where the dynamics of interest is happen-

ing, ranging from the very initial transient where vortices are forming from the various

lifting surfaces, to the coalescence and advection of the final vortex in the wake of the

airfoil, t ∈ [0; 0.06]s. Within this time interval, a sampling ∆t has been used equal to

6× 10−4s, which results in 100 snapshots equispaced in time. The number of DOFs of
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Table 5.3: 30P30N ROM setting

NS ∆tNS [s] N.modes ∆tres [s] DOFCFD DOFROM ROM [s]

100 6 × 10−4 Error-
based

5×10−6 1,966,398 O(102) 24

the resulting ROM reported in Table 5.3 represents only the maximum value of DOFs

of the ROM. As already explained in the previous test-case, its actual value is provided

by the pseudo-algorithm reported in Section 5.5.1. The sensitivity analysis on the time

step used for the residual evaluation led to a ∆tres of 5×10−6 seconds. As for the pre-

vious test-case, Figure 5.12 reports the sensitivity of the reconstruction error for the

density with respect to the choice of the number of modes and with respect to the dif-

ferent methods. Differently from the NACA0012 case, no general trend can be observed

with respect to the reduction of reconstruction error as the number of modes increases.

This may be related to the different unsteady dynamics of this flow that reaches an

advection-dominated status as the vortices coalesce and then get transported down-

stream. The strong oscillations appearing for the DMD residual error as the number

of modes increases (third row on the left column of Figure 5.12) might be due to the

addition of higher frequency modes as the rank in the DMD algorithm increases, which

might not be representative of the actual dynamics and introduce spurious oscillation

in the time and space derivatives in the Formula 5.12 for the evaluation of the residual.

An investigation of the terms in Equation 5.12 that primarily contribute to these spu-

rious oscillation is out of the scope of the present work. Similarly to the NACA0012

case, the direct error evaluation tends to be in general lower than the residual error

when comparing the same ROM.

Also similarly to the previous test-case, Figure 5.13 reports the error curves obtained

as a result of the application of the pseudo-algorithm in Section 5.5.1. The steep in-

crease in the direct error envelope in the final part of the investigated time window

(Figure 5.13, right columns) can be related to interpolation issues at the border. In

particular, for this specific dynamics, where unsteadiness is more dominant in the first

half of the time window considered, the almost constant behaviour of the selected modes
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Table 5.4: 30P30N choice of ROM for each conserved quantity according to the residual
or direct error.

POD SPOD1 DMD RDMD

ρD 81% 11% 0% 8%
ρR 38% 26% 29% 7%

ρuD 82% 10% 0% 8%
ρuR 65% 26% 8% 1%

ρvD 90% 9% 0% 1%
ρvR 36% 43% 17% 4%

ρeD 69% 19% 0% 12%
ρeR 38% 28% 29% 5%

for the reconstruction can lead to oscillations among training points at the border of

the interpolated interval. This tendency is less pronounced in the residual error, at

the end of the time window, since the computation of the unsteady term might be

transparent to the oscillations linked to the interpolation if a very small ∆tres is used.

Table 5.4 reports the percentage values of the choice of the best method over the time

window explored for each one of the conserved quantities. Also for this flow, it can be

observed that POD is the most used method, but differently from the previous case

SPOD with a filter of 10 is the second best choice over the specified time window in

terms of percentage of use. Finally, Figures 5.14a and 5.14b report the reconstruction

of the flow field by means of the adaptive approach for two different instants of time.

A comparison with a reference high-fidelity solution that is not used in the definition

of the ROM is presented. The momentum magnitude is shown as obtained by recon-

structing independently the two components ρu and ρv. Coloured contours refer to the

high-fidelity solution while solid black lines the reconstructed field. The Figure also

reports the number of modes and the method used for the reconstruction of the two

components of the momentum. Despite the different choice of methods as opposite to

what happens in the previous test-case (see Figure 5.11a and 5.11b), overall, the agree-

ment is good and minor differences are observed between the reconstruction based on

the direct error and the one based on the residual error.
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Figure 5.12: 30P30N sensitivity with respect to number of modes and choice of method
for density. Residual error = log10(εR(ρ)) (left column), direct error = log10(εD(ρ))
(right column).
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Figure 5.13: 30P30N minimum envelope of errors. Residual error =
log10(εR(ρ, ρu, ρv, ρe)) (left column), direct error = log10(εD(ρ, ρu, ρv, ρe)) (right col-
umn).
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(a) t = 0.0159s

(b) t = 0.0507s

Figure 5.14: 30P30N momentum magnitude reconstructions at two different instants
of time within the sampled time window. Coloured contours report the CFD reference
solution, line contours represent the ROM reconstruction. The top row reports the
reconstruction with the choice of methods and number of modes driven by the pseudo-
algorithm based on residual error, the bottom row uses the pseudo-algorithm based on
direct error.
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5.5.4 Remarks

The choice of the error estimator is non trivial and sometimes driven by engineer-

ing/practical considerations and a combination of direct and residual error can be

considered to find the optimal trade-off between the ability to obtain a consistent es-

timation of the reconstruction error and the number of snapshots that need to be

excluded for the ROM due to the evaluation of the direct error. It is worth noticing

that the two definitions of the error introduced, which define the two different Adap-

tive Frameworks, can be compared only in an heuristic way, since they refer to different

quantities. In particular the direct error represents an actual measure of the error asso-

ciated to the specific physical quantity considered, while the residual error represents a

measure of how well a particular discretisation of the conservation equation associated

to the specific physical quantity considered is satisfied. Overall, the trends in terms

of choice of method between direct and residual error are consistent but differences

are observed when looking at specific time windows, i.e., for the 30P30N test-case, the

choice reported in figures 5.14a and 5.14b are different for the two definition of the

error. The direct error tends to be a more reliable estimation of the error since no pol-

lution is expected, nevertheless, it requires a bigger database of snapshots to be able

to use some of them only for error estimation and the rest for the ROM construction.

In practice, despite the difference in the methods selection, the reconstructed solutions

show a good agreement with a reference CFD solution using both error definitions.

The present analysis was based on conservative quantities, i.e. error estimation and

reconstruction was performed for mass, momentum and total energy. In case the ROM

is required to obtain a primitive or another derived quantity, these can be obtained

from the conservative ones.

The analysis carried out in the current Section also highlighted the importance of the

number of modes retained for each method within an Adaptive Framework, in terms

of its influence on the residual and direct error. In particular, the pseudo-algorithm

defined in Section 5.5.1 included the number of modes as a parameter, whose value

needs to be computed for each method in order to obtain the lowest error possible.
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5.6 Adaptive Framework equipped with residual error

The main idea of the present Chapter is to lay the foundations for formulating a new

concept of Adaptive ROM, that uses different sets of global basis functions and a

residual evaluation to be able to select the most suitable reduced model among the ones

presented. The residual of each ROM is computed substituting its reconstruction into

the residual formula presented in 5.4. This is different from the direct error definition

introduced in Section 5.3, which requires an extended database to build the adaptive

framework. The offline phase consists of three steps, each one repeated for all the

selected ROMs:

1) Extraction of flow primitives for each conservative variable;

2) Computation of the ROM reconstruction for all the conserved quantities on fixed

training points;

3) Construction of the database of residuals on these fixed training points, substi-

tuting the ROM reconstructions into the Finite Volume approximation of the

equations, Formula 5.12.

There is no limitation in the number and kind of ROMs to include into the Adaptive

Framework, and methods can be added and removed at any time, also on the basis of

the specific problem at hand. Consequently, at the end of the offline phase, a certain

number of different basis sets are extracted and each of them will have a residual error

database associated. The residual database is constructed feeding ROM solutions to the

same solver used to obtain high-fidelity snapshots for the training phase. The specific

solver used in the present work is the open source SU2 CFD solver [187].

The online phase consists of two very fast steps:

1) Selection of the best ROM at the desired time and for each conserved quantity

desired for reconstruction, using the residual database;

2) Reconstruction computation using either Equation 3.15 or Equation 3.14 on the

basis of the method selected.
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Figure 5.15: Schematic of the adaptive approach distinguished in the offline and online
phases.

A schematic of the complete offline and online procedure is reported in Figure 5.15.

Since the error definition the Adaptive strategy is equipped with is equation-based, i.e.

it uses the original set of governing equations of the system, the Adaptive Framework

implemented will be referred to as Model-Based Adaptive ROM. Moreover, considering

the definition of the residual error given in Equation 5.12, it will be always assumed

hereafter that the Adaptive Framework is applied to the entire set of conservative

variables, namely the vector w in Equation 5.12, all treated as independent variables

to build the low-dimensional space.

Two main C++ modules have been developed on top of the code already implemented

for the previous analyses, which handle the offline and online phase of the Model-Based

Adaptive ROM:

- The offline module performs the following steps

1. Generation of the snapshot matrix;

2. Extraction of the flow primitives for the various ROM algorithms;

3. Computation of the residual database for each ROM using an SU2 wrapper.

A slightly modified version of SU2 with the additional routines discussed in

Section 5.4.1 is used.

- The online module performs the following steps
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1. Reading residual database and database for reconstruction, i.e. modes and

coefficients for linear ROMs;

2. Defining best method at each selected point, i.e. method with lowest resid-

ual;

3. Computing online reconstruction at selected points using the best method.
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Residual Analysis varying the

number of modes

An analysis on the influence of the number of modes used within the Adaptive Frame-

work is presented to assess the impact of such a choice on the evaluation of the residual

error and the accuracy in the final reduced order reconstruction. The study is made

by considering the impulsive start of a NACA0012 airfoil and of a 30P30N airfoil. In

order to interpret the specific behaviour of the residual error, some flow field reconstruc-

tions are computed and, for the specific case of the NACA0012, also a grid dependence

study is carried out. One key conclusion is that the choices made within the Adaptive

Framework strongly depend on the initial mesh resolution, as this is linked to how well

the dynamics of spatial structures in time is captured. A second key message emerging

from the present analysis is the major improvement obtained by employing an Adaptive

Framework instead of a Single ROM, when very few modes are retained. This is a

key result contributing to the identification of the best trade-off between computational

reduction and accuracy of the resulting prediction.
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6.1 Adaptive ROM residual analysis varying the number

of modes

The choice of the number of modes to be used in the Adaptive Framework is mainly

related to two fundamental aspects:

• Accuracy in terms of error estimates;

• Reduction of degrees of freedom.

It is worth noting at this stage that the number of modes finally retained does not

sensibly impact the time required for the online phase of the ROMs defined in the

present work. Indeed, unless the number of training snapshots is potentially very high

(Ns ∼ Np), the further reduction associated to the value of Nm (number of modes)

in Equation 3.14 and 3.15 has a negligible influence on the computational time. Nev-

ertheless, this reduction can be beneficial in terms of the final number of parameters

to handle in order to describe the flow evolution in the low-dimensional space, when

for example an optimal state is looked for and the set of coefficients need to be opti-

mized. The further reduction will reveal to be also a crucial point when the Adaptive

Framework with different sets of global basis functions is used. In this case, indeed,

promoting a further reduction will still preserve more essential physics than if this re-

duction is performed on a Single ROM. This will lead to a situation where, retaining

only few modes will introduce more improvements of the Adaptive Framework with

respect to a Single ROM, as opposed to a condition where all the modes are retained

and a Single ROM might be able to describe the dynamics with similar accuracy. Here,

the expression Single ROM refers to any ROM that extracts one set of global basis

function from the original set of snapshots. According to this discussion and the two

points listed above, the analysis performed here focuses on defining a good trade-off

between solution accuracy and dimensionality reduction of the Adaptive Framework,

in order to preserve enough physical consistency while using as few degrees of freedom,

i.e. number of modes, as possible. Therefore, differently from the analysis reported

in Section 5.5, where the final objective has been only to identify an Adaptive ROM
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Framework with the best possible accuracy, the present Chapter offers also a view of

the importance of considering only a subset of modes.

It is also worth to mention that the number of modes finally retained, and therefore the

reduction of degrees of freedom introduced by a ROM, is strongly problem dependent.

Some aspects that influence the reduction are for example the time window investigated

and how complex the dynamics happening in this time window is.

An analysis is presented on the two 2D test-cases NACA0012 and 30P30N, which in-

vestigate the influence of the number of modes used in the Adaptive Framework on

the Residual Error introduced in Chapter 5. An important assumption is also made

for changing the number of modes: while defining the parameters of the final Adaptive

Framework, once the number of modes has been fixed, it will be considered constant

for all the methods included. This means that all the ROMs that define the Adaptive

strategy, such as POD, DMD, SPOD and RDMD, will use the same number of modes.

To perform the study, an integral in time of the residual error will be presented varying

the number of modes

εR,T =

∫ T

t0

εRdt (6.1)

where [t0, T ] is the time interval used to train each ROM, εR is the residual error

defined in Equation 5.13 for a generic conservative variable. To compute the integral,

the residual error εR is computed on set of test points equispaced in time and with

a resolution ∆t ≤ ∆tCFD, which represents the same procedure adopted to build the

residual error database for the Adaptive ROM. The integral is then approximated using

a trapezoidal rule. An additional quantity will be reported, which provides a better

understanding of the improvements introduced by the Adaptive Framework over the

investigated time window, varying the number of modes. The quantity represents the

difference of the residual error produced by the Adaptive ROM and the residual error

produced by a Single ROM,

εdiff = εR,S − εR,A (6.2)

where the subscripts A and S stand for Adaptive and Single respectively, while εR still

represents the residual error as defined in Equation 5.13, for a generic conservative
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variable. In the following analysis εR,S will be considered as the residual error of the

POD method. This is because POD has been the most widely used method in the

literature for implementing ROMs in the case of unsteady problems and it represents a

good reference point for the community, even if the εR,S can represent the error of any

Single ROM. For the same reason, also the analysis reported on εR,T for the Adaptive

Framework will be compared with the POD technique.

6.2 NACA0012 test-case

The NACA0012 test-case is considered first. Details for the computational mesh and

setup used to compute the training snapshots can be retrieved from Section 3.4.1. For

the analysis of εR,T and εdiff an Adaptive Framework is built within the time window

[0, 0.3]s where the dynamics of interest is happening, using a sampling ∆t of 4× 10−3s,

which results in a number of snapshots Ns = 75 equispaced in time. The maximum

number of modes that can be used in the Adaptive ROM is therefore 75. Figure

6.1 reports the quantity εR,T for the Adaptive ROM, red curve, and the POD, black

curve, for the entire set of conservative variables. An interesting aspect to discuss

for these plots is the presence of a non monotonic trend as the number of modes is

increased. Indeed, the residual integral starts from relatively lower values when using

very few modes and increases as other modes are added. Starting from a particular

number of modes, the overall trend is then decreasing, reaching a minimum when the

entire set of modes is used. The non monotonic behaviour can be linked to a physical

interpretation of the modes. Following the modes ranking described in Chapter 4, the

most important modes should carry information about large spatial structures, while

higher modes solve for smaller spatial structures. When using very few modes, small

spatial structures are not resolved and something closer to the mean field with little

variation in time is reconstructed, which might be responsible for the lower residual. It

is worth to highlight at this point that Formula 5.12 represents a weak discretization

of the set of initial governing equations of the system (the space of possible solutions

is therefore expanded), and moreover it is completely blind to the actual physical time
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considered. As more modes are added, new spatial structures start to be resolved,

even if with very low resolution, which cause the residual integral to increase. Once

the number of modes is reached where all the spatial structures are present in the

reconstructed flow field, adding additional modes will decrease the integral residual,

since also small structures start to be better resolved. A proof of this discussion can be

seen in Figure 6.3, where a reconstruction at a specific time instant, provided by the

Adaptive ROM, is reported using two different number of modes that show the same

residual integral from Figure 6.1, namely 2 modes (on the left) and 28 modes (on the

right). The reconstruction in the wake of the airfoil with 2 modes shows only averaged

flow features, where the region of separated flow is clearly visible, but no structures in

the wake are resolved. Moving to 28 modes, it can be noticed how more structures in

the wake are resolved, but also new oscillations not present in the reference field are

added. These oscillations will vanish only adding additional modes, with a consequent

reduction of the residual error.

The trend of εR,T with the number of modes is not a unique feature of the Adaptive

ROM. As a matter of fact, considering the number of modes in the same way as the

degrees of freedom of the computational mesh, the non monotonic behaviour has been

observed also for the case of error estimators used for a steady linear advection-diffusion

equation [188]. In particular, Allendes et al. [188] define error estimators that show a

non monotonic behaviour while increasing the size of the initial computational mesh.

Another important result from Figure 6.1 is that the improvement of the Adaptive ROM

with respect to the POD Single ROM is higher when using a number of modes that is

much less than the entire set of modes available (10− 15 out of 75, on the basis of the

distance between the red and black curves reported in Figure 6.1). Overall the Adaptive

Framework always performs better than pure POD in terms of residual integrals. Figure

6.2 shows εdiff, in log scale, in the box t×Nm = [0, 0.3]×[2, 75]. White spaces correspond

to εdiff = 0, which means that POD has been chosen from the Adaptive Framework for

that combination of time and number of modes. Details of ROMs used over the space

of different times and number of modes is not reported, since no common pattern has

been identified in switching among different ROMs and the behaviour is erratic, similar

121



Chapter 6. Residual Analysis varying the number of modes

to what has been shown for the analysis in Sections 5.5.2 and 5.5.3. Also from the

εdiff contours it is visible how the Adaptive Framework introduces improvements with

respect to the Single ROM (εdiff > 0) when using a subset of all the modes available.

As the number of modes is increased, the improvements introduced by the Adaptive

Framework with respect to POD are less and less visible. This is obviously linked

to the enrichment of the POD basis with the whole information content coming from

the training snapshots, which is eventually able to reconstruct the entire dynamics

contained in them.

Figure 6.1: log10(εR,T) varying the number of modes, for Adaptive ROM and POD,
NACA0012 test-case.

6.3 30P30N test-case

The 30P30N test-case is now considered. For details on the computational mesh and

setup used to compute high-fidelity training snapshots the reader can refer to Section

3.4.2. An Adaptive Framework is built within the time window [0, 0.03]s where the
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Figure 6.2: log10(εdiff) considering POD as reference Single ROM, versus time and
number of modes, NACA0012 test-case. White regions correspond to εdiff = 0, i.e. the
Model-Based Adaptive ROM selects POD.

Figure 6.3: Volume reconstruction of density at time t = 0.06s for 2 modes (left) and 28
modes (right), NACA0012 test-case. Coloured contours represent the CFD reference
solution.
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dynamics of interest is happening, using a sampling ∆t of 6 × 10−4s, which results

in a number of snapshots Ns = 50 equispaced in time. Analogously to the previous

test-case, Figure 6.4 reports the quantity εR,T for both Adaptive and POD ROM and

for all the primary conservative variables. Since high-fidelity solutions for the 30P30N

are computed using RANS, modeling turbulence with SST, the turbulent variables are

considered in the computation of the residual error for the primary variables, even if a

separate analysis for them is not reported. Also in this case a non monotonic behaviour

with the number of modes is clearly visible in the plots and a similar discussion can

be done considering Figure 6.4. Moreover, Figure 6.6 shows the reconstruction of the

flow field provided by the Adaptive Framework at a specific instant of time, for two

sets of modes that present the same value of εR,T. Namely, 6 modes are used for the

reconstruction on the left, 17 modes for the one on the right. The reconstruction of

the conservative variable density is reported and the filled contours represent the CFD

reference solution, while the black line contours are the Adaptive ROM reconstructions.

Using only 6 modes details of the vortices detaching from the multiple airfoil surfaces,

namely slat, main component and flap, are completely lost, since these vortices are

represented as a single large spatial structure. Switching to 17 modes (same value of

εR,T) adds more details in terms of vortices detaching from the airfoil, still not merged,

but also introduces additional oscillations in space, which will vanish only adding more

modes. This balance between resolving only for large spatial structures (6 modes case)

and resolving also for smaller structures but introducing spatial oscillations in other

regions of the flow field (17 modes case) explains the non monotonic behaviour in Figure

6.4. It is worth noticing that, since the most important dynamics is linked to the

advection of the vortices detaching from the various lifting surfaces, another important

aspect to consider is the advective nature of the problem. The spatial oscillations

downstream of the starting vortices, visible on the right contours in Figure 6.6, are

indeed not linked to the low resolution of spatial structures actually present in the flow

field at that specific time instant, instead they are due to the advection of the starting

vortices, which are transported to those regions in the following time instants. These

oscillations vanish when adding higher order modes.
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Figure 6.5 shows finally the quantity εdiff, in log scale, in the box t×Nm = [0, 0.03]×

[2, 50]. As for the previous test-case, no common pattern can be identified in switching

from one ROM to another over the various times and number of modes used, therefore

details on that are not reported. From the contours in this Figure, but also looking at

the integral results in Figure 6.4, it can be noticed how the improvement of the Adaptive

Framework with respect to the Single ROM (εdiff > 0) is much more evident when

using a small subset of modes, while the performances of the two methods (Adaptive

and Single ROM) becomes similar as the number of modes is increased. This is in

accordance with what has been already observed for the previous test-case and an

equivalent explanation can be provided. Moreover, a particular trend can be observed

on the contours reported in Figure 6.5. Specifically, the transition line between εdiff = 0

and εdiff > 0 can be approximated as a straight line with a specific slope. This particular

behaviour is linked to the specific dynamics that this test-case exhibits, which presents

an initial transient where many structures are forming, advecting and interacting, and

a very simple evolution in time after all these structures have merged together in a

single vortex propagating downstream. A possible interpretation for the specific trend

shown in Figure 6.5 is provided in the following. The energetic content associated to

the initial structures is higher than the one associated to the final vortex propagating

downstream since some energy is dissipated due to viscosity effects. As the number

of modes retained is increased, the POD basis is able to solve also for less energetic

structures present in the flow, which appear later in time, determining the quasi-linear

trend on the εdiff contours.

6.4 Grid sensitivity study

The present Section investigates the influence of the mesh used to compute the high-

fidelity snapshots on the residual integral error εR,T versus the number of modes. Be-

sides the influence of the modes extracted by a generic ROM algorithm, as already

discussed in the previous Sections, the initial mesh resolution is indeed another main

element responsible for the resolution of all the spatial structures present in the flow
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Figure 6.4: log10(εR,T) varying the number of modes, for Adaptive ROM and POD,
30P30N test-case.

field. The use of a very coarse mesh might lose the description of all the spatial scales,

which is also reflected on the spatial basis functions extracted by the ROM. According

to that, the peaks present in the plots reported in Figures 6.4 and 6.1 should narrow

and in the limit of very coarse meshes, completely disappear. Indeed, if the spatial basis

functions are extracted on very coarse meshes, very few modes are already capable of

resolving all the spatial scales encoded in the initial snapshots, and higher order spatial

oscillations introduced by the advection phenomena are no longer present or of minor

importance. As a direct consequence, the residual integral error εR,T should start the

monotonic decrease earlier and in the limit of very coarse meshes, present a monotonic

decrease over the entire set of modes.

For the specific test-case of the NACA0012 a much coarser mesh has been consid-

ered (see Figure 6.7) and the integral quantity εR,T has been computed varying the

number of modes. All the settings for the CFD simulation and the ROM construction

have been left unchanged, in order to study the particular effect of mesh coarsening.
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Figure 6.5: log10(εdiff) considering POD as reference Single ROM, versus time and
number of modes, 30P30N test-case. White regions correspond to εdiff = 0, i.e. the
Model-Based Adaptive ROM selects POD.

Figure 6.6: Volume reconstruction of density at time t = 0.0054s for 6 modes (left) and
17 modes (right), 30P30N test-case. Coloured contours represent the CFD reference
solution.
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Figure 6.7: Fine and coarse grids for the NACA0012 test-case, used to investigate the
influence on the residual error behaviour with the number of modes.

Therefore 75 snapshots have been sampled equispaced in time, with ∆t = 4∆tCFD.

Figure 6.8 reports the residual integral error εR,T computed for a Single ROM, namely

POD, on the Fine and Coarse meshes represented in Figure 6.7. Results are showed for

the entire set of conservative variables. It can be noticed how the black curve that is

computed on the coarse mesh present a narrower peak, especially for the two momen-

tum components ρU and ρV , when compared with the red curve computed on the finer

mesh. Moreover, the hyperbolic trend after the small initial peak for the coarse case, as

opposed to the almost linear trend for the finer case, highlights the minor importance

of higher order modes, which are not resolving any other additional spatial structures,

but are only refining the large spatial structures already resolved by the very first few

modes. Equivalently, the very low resolution allows to describe the advection of physi-

cal quantities without introducing significant spurious oscillations in space, even when

using few modes.

These aspects can be used as an additional proof of the discussion presented for the

two test-cases reported in Sections 6.2-6.3, where an initial explanation for the non

monotonic behaviour with the number of modes is provided looking also at the recon-

struction of the entire flow field at some time instants. Another important aspect to

discuss, that is linked to the initial grid used to compute the initial training snapshots,
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Figure 6.8: log10(εR,T) versus number of modes, considering only POD, for the two
different grids reported in Figure 6.7, NACA0012 test-case.

is the improvement of the Adaptive ROM with respect to a Single ROM. Figure 6.9

reports on the coarse mesh the same plot showed for the NACA0012 test-case in Figure

6.1. It can be noticed that a direct effect of losing resolutions of both some spatial

structures, i.e. the smaller ones, and their advection in time, reduces drastically the

improvements introduced by the Adaptive ROM with respect to a Single ROM. As a

matter of fact, the two curves reported in Figure 6.9 are much closer than in Figure

6.1. This is strongly linked to the Adaptive Framework rationale, that is using differ-

ent sets of basis functions in order to catch dynamics in time linked to different spatial

structures. It is therefore natural to conclude that part of the improvements intro-

duced by the Adaptive framework are lost when some spatial structures are missing

or poorly resolved and only a few of them are present in the original snapshots used

to train the model. It is worth noticing that all the discussion reported here has been

carried out on the integral quantity εR,T and therefore provide a preliminary indication

of the performance of the Adaptive Framework, without doing any local consideration
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in time.

Figure 6.9: log10(εR,T) varying the number of modes, for Adaptive ROM and POD on
the coarse grid, NACA0012 test-case.

6.5 Remarks

An analysis on the influence of the number of modes used in the Adaptive ROM has

been performed in the present Chapter. The common two 2D unsteady test-cases,

namely NACA0012 and 30P30N, have been considered. It has been shown in both

cases how the Adaptive Framework outperforms a Single ROM (specifically POD) and

that better improvements can be achieved with respect to the Single ROM when using

a subset of all the modes available, Figures 6.1 and 6.4. An explanation for the non

monotonic behaviour with the number of modes appearing in the plots of εR,T has

been provided also looking at some flow field reconstructions (see Figures 6.6 and 6.3).

From these reconstructions emerged that resolving only for very large spatial structures,

i.e. when using very few modes, produces a residual error from Equation 5.12 that is
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comparable with a case where other modes are added. Indeed, in the former case, a

solution is obtained that solves only for large spatial features, while in the former case

the reconstructed solution solves for more spatial structures, namely the smaller ones,

but also introduces spurious oscillation in the flow field. These spurious oscillations are

not only due to low resolution of existing spatial structures, but they are also linked to

the advective nature of the problems, as it is clearly visible from Figure 6.6 left, where

spurious spatial oscillations appear in regions where physical quantities are transported.

A further analysis has been presented in Section 6.4, for the specific case of NACA0012,

in order to investigate the influence of the grid resolution used to compute the initial

snapshots on the performance of the Adaptive Framework. It has been shown how

unresolved smaller spatial structures have a direct effect on the monotonicity of the

error curve (see Figure 6.8) and on the overall improvement of the Adaptive Framework

with respect to a Single ROM (see Figure 6.9). These results are also an additional

proof of concept for the explanation provided about the presence of the extended peak

in the finer case, since it tends to disappear in the limit of very coarse meshes.

Besides investigating on the qualitative behaviour of the εR,T as the number of modes

is changed, the additional aim of the analysis reported is to provide a suitable number

of modes to retain within the Adaptive Framework, in order to achieve a good trade-

off between accuracy and physical consistency of the final ROM solution on one side,

and a strong reduction of degrees of freedom on the other. On the basis of the results

shown, it has emerged that a small subset of the original set of modes available should

be used, to exploit at best the improvements of the Adaptive Framework with respect

to a Single ROM.
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Impulsively started lifting bodies

The Model-Based Adaptive framework is here applied to a number of unsteady com-

plex problems, typical of the aeronautical field where lifting bodies are considered. The

importance of using different sets of basis functions will be highlighted, in order to recon-

struct the dynamics over the entire investigated time window when dealing with complex

transient dynamics. Specifically, the major performance of the Model-Based Adaptive

ROM will be shown when using a small subset of all the modes that can be extracted

from the initial set of snapshots. Improvements will be reported in terms of contours

comparison of the entire flow field and integral errors with respect to pure POD, since

it is the most widely used ROM technique in the literature. For test-cases presenting

a single geometry, performance of the Model-Based Adaptive framework and its major

improvements with respect to POD will be also evaluated confining the analysis on the

aerodynamic surfaces.

7.1 Unsteady problems typical of aeronautical field

Numerical experiments are presented to assess the performance of the proposed Model-

Based Adaptive technique in the case of four impulsively started bodies such as a

30P30N high-lift configuration airfoil, a High-Lift Wing-Body configuration and a Delta

Wing, and a configuration with multiple Delta Wing geometries in Formation Flight.

A common feature of these flows, which makes them of interest also from a ROM per-
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spective when a possible low-dimensional representation is looked for, is the presence of

significant vortices interaction resulting from the shedding and coalescence of starting

vortical structures, as well as convection of these structures. Therefore, the capabil-

ities of the Model-Based Adaptive Framework will be tested in resolving this specific

dynamics and a sampling will be limited to the time window where this dynamic of

interest is happening. To obtain the High-Fidelity snapshots used to train the Adaptive

ROM, CFD simulations are performed using the Finite Volume SU2 open source tool

[155]. For the first three test-cases, featuring a single geometry in the computational

domain, two separate analyses are performed. One analysis is performed considering

a residual error evaluation integrated all over the computational domain and one con-

sidering only the surface of the aerodynamic body. Therefore, the capabilities of the

Adaptive Framework are assessed on two different residual databases. The analysis lim-

ited only on the surface is meaningful when the main interest is on aerodynamic loads

and aerodynamic coefficients. Having surface solutions available in real time manner is

moreover important when performing shape optimization problems, where the distri-

bution of a specific physical quantity, e.g. pressure, should be optimized. As already

highlighted in Section 5.6, the entire set of conservative variables is considered to build

the Adaptive Framework. Since all the simulations are run as viscous (no slip boundary

condition), for the surface residual evaluation only density and energy are considered

instead as conserved quantities, being the boundary condition of zero momentum iden-

tically satisfied by the Adaptive ROM. Indeed, each of the modes extracted respect

the no slip boundary condition and therefore also their linear combination. The final

test-case considered, namely a Formation Flight configuration with three equal Delta

Wing geometries, shows the performance of the Adaptive Framework in describing the

interaction of vortices detaching from the leader geometry with vortices generating from

the followers’ lifting surfaces. Since the focus for this last test-case is mainly on solving

vortex structures’ interactions happening in the flow field, only a volume analysis is

performed.

According to the statement in Section 5.6, there are no constraints in the number and

type of reduction algorithms to be used in the Adaptive Framework. For the applica-
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tions presented in the current Chapter, an Adaptive ROM is built considering three

linear methods, namely POD, DMD and RDMD. For each test-case, only a small subset

of the entire set of modes that can be extracted from the collected snapshots will be

considered, in order to exploit at best the improvements introduced by the Adaptive

ROM. In particular, a suitable choice of the number of modes to be eventually re-

tained in the Adaptive Framework is driven by the plots of εR,T, following the analysis

presented in Chapter 6. This quantity can provide valuable information in order to

achieve a good trade-off between solution accuracy and dimensionality reduction of the

problem.

The assessment of the proposed adaptive approach is presented in terms of its perfor-

mance with respect to the pure POD-based method, since it is the most widely used

method in the literature for implementing ROMs in the case of unsteady problems and

it represents a good reference point for the community. The analysis is performed by

comparing the contour levels of the CFD solution, the adaptive method and the pure

POD algorithm for few time instants in the investigated time window. The database

of residuals in time for all the methods included in the adaptive framework is also re-

ported for each test-case, only for the volume for the Formation Flight test-case, and

for both volume and surface for the first three test-cases.

7.2 30P30N

The impulsive start of a 30P30N airfoil is considered first [154]. For the details on

the mesh used and the setup of the CFD simulation, the reader can refer to the same

test-case presented in Section 3.4.2. For completeness, flow details in terms of time

evolution of pressure contours are reported in Figure 7.1.

The reduced model is built within the time window [0; 0.03]s where the dynamics

of interest is happening, with a sampling ∆t of 6 × 10−4s, which results in a number

of snapshots Ns = 50 equispaced in time. For these settings, εR,T has been already

computed varying the number of modes in the analysis presented in Section 6.3 (see

Figure 6.4). On the basis of these plots, a number of 10 modes out of the initial 50
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Figure 7.1: Contours of pressure for the impulsive start over the 30P30N airfoil at
different instants of time.

are retained, selected for each method according to the procedures stated in Chapter

4. For the specific case of DMD, where different modes ranking can be used, as shown

in Section 4.2, a simple truncation, based on the singular values computed in the first

step of the algorithm (see Section 3.2.3), is used to perform the rank reduction, and it

will be the procedure considered for all the test-cases presented in this Chapter.

As already highlighted in Section 6.1 the choice to retain only a small subset of modes is

not driven by the impact it has on the time requirements of the online phase, which will

remain practically unchanged. The further reduction is instead explored since it leads

to two beneficial aspects: the final number of parameters to handle when optimisation

steps are included in the process; a resulting Adaptive Framework that is able to

introduce more improvements in preserving essential dynamics with respect to a single

ROM as the number of modes retained is decreased. These two main aspects define

also the choice of the number of modes for all the other test-cases presented hereafter.
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For the test-case considered here, the time required for the database generation is

approximately 3700 CH, considering a residuals’ tolerance of 10−6 and a maximum

of 10, 000 iterations for the dual-time stepping scheme. The time required for the

extraction of all the set of features for the adaptive framework and the computation of

the residual database is approximately 2h, while the extraction of the POD basis only

requires few seconds (no residual database required), both on a single core. Although

these two time requirements are different, they are both negligible when compared to

the cost of the database generation, which therefore dictates the computational effort

of the offline phase. For the specific case of the Adaptive Framework, another valuable

information to report is the time required to perform one residual evaluation to build

the residual database. This time, indeed, provides the computational speedup achieved

during the offline phase by an Adaptive Framework based on the residual error, as

opposed to an Adaptive Framework based on the direct error, which instead requires

to compute an additional high-fidelity reference solution. For this specific test-case,

the time required for one residual evaluation to generate the residual database is 20s

on a single core, as opposed to the 12.5 CH required to compute one additional CFD

solution. Finally, the online phase requires for both the Adaptive Framework and the

POD few tenths of a second to reconstruct the ROM solution at each desired time.

7.2.1 Volume Analysis

The residual evaluation all over the computational domain is performed first. Fig-

ure 7.2 reports the details of this residual evaluation for all the conservative variables

considered (excluding turbulence) and the three methods included in the Adaptive

Framework. Time evolutions of the single ROMs are not reported, since it is irrelevant

for the definition of the Adaptive Framework. Indeed, the Adaptive ROM looks at the

performance of each set of features extracted in its entirety, on the basis of the residual

generated. This is why only the residuals are shown in Figure 7.2 and they will be

the only quantities related to the various ROMs that are shown also for all the other

test-cases presented hereafter. It can be noticed from Figure 7.2 how RDMD is the

most used technique in the second-half of the time window. This result is in accordance
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to the analysis reported in [44], highlighting the capability of RDMD in describing at-

tractors, which, for this particular test-case, is represented by the convergence to the

steady state flow as the strong transient linked to the impulsive start vanishes. The

more pronounced oscillations at the end of the time window for the RDMD, which can

be noticed from the blue curve in Figure 7.2, can be linked to interpolation issues at

the border of the interval considered to build the ROM. The time evolution of RDMD

modes reflects better than the other algorithms used the dynamics that is happening in

the time window investigated. Therefore, it presents an almost constant trend towards

the end of the time window when the solution is converging to a steady state flow

condition, whereas it shows a more evident unsteady behaviour in the first part of the

interval. This can cause oscillations to appear when the RBF interpolation is used on

the slowly varying part, which are amplified when the residual evaluation of the ROM

solution is performed. Overall, a slightly increasing trend with time, towards the end

of the time window, can be observed in the residual error for all the three algorithms

considered looking at Figure 7.2. This can still be linked to the particular dynamics

investigated, where the most important unsteadiness is happening in the first part of

the investigated time window (t < 0.015s). The only modes retained might propagate

information about the most important dynamics happening at previous time instants

also at later stages, resulting in an increasing trend of the residual error. The improve-

ments of the Adaptive framework are reported also in terms of contours of the entire

flow field in Figure 7.3, where the conservative variable density is shown. In the very

initial time window, some spurious oscillations are present for both the Adaptive ROM

and the POD (first row in Figure 7.3), as a consequence of using only a small subset of

modes to describe the very strong initial transient. The second row in Figure 7.3 still

shows poor accuracy in resolving the starting vortex for both techniques, but presents

overall slight improvements of the Adaptive ROM with respect to POD. Finally, for

the last two instants represented (last two rows in Figure 7.3), the starting vortex

is much better resolved while propagating downstream with respect to a pure POD,

which instead reconstructs a structure highly stretched in the streamwise direction and

loses accuracy in resolution. Also the reconstruction near the aerodynamic body shows
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slight improvements when the Adaptive ROM is used in the last two instants of time

represented.

Figure 7.2: Volume residual evaluation (left column) and choice of methods (right
columns) for all the conservative variables (excluding turbulence), fixed number of
modes Nm = 10, 30P30N test-case.
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Figure 7.3: Comparison of the volume solution in terms of ρ. coloured lines show
the ROM reconstruction while the black lines show the reference CFD solution. The
left column shows the adaptive reconstruction, the right columns shows the pure POD
reconstruction. Number of modes fixed, Nm = 10.

7.2.2 Surface Analysis

A residual evaluation considering only the body surface is now considered. Only the

residual evaluation of conservative variables ρ and ρE is reported in Figure 7.4, as the

no slip condition imposes a zero velocity, and therefore zero momentum, on the body

surface (momentum equations are identically satisfied, residuals are equal to zero). The

choice of the method is mostly limited to POD and RDMD. DMD might not be able

to solve the very small structures near the wall with enough accuracy with the adopted

truncation. Figure 7.6 reports few instants of time of the flow reconstructed on the

surface in terms of the conservative variable ρE. A detail is reported in this Figure,
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where the adaptive and pure POD reconstruction differ the most in describing the time

dynamics on the surface. This detail is highlighted with a shaded rectangle in Figure

7.5, where both the airfoil geometry and a CFD reference solution at a particular time

instant are reported. Slight improvements of the adaptive techniques are also present

on the slat and flap region (not reported).

Figure 7.4: Surface residual evaluation (left column) and choice of methods (right
columns) for the conservative variables ρ and ρE, fixed number of modes Nm = 10,
30P30N test-case.

7.3 High-Lift Wing-Body Configuration

The impulsive start of the High-Lift Wing-Body configuration from the AIAA 1st high-

lift workshop is now considered [158]. Details on the mesh and the CFD setup can

be retrieved from the 3D test-case presented in Section 4.1.1, the only difference be-

ing the physical time ∆t used to advance the dual-time stepping simulation, namely

∆t = 5 × 10−4s. The flow is started from rest (boundary conditions on the farfield

equal to freestream conditions), and it converges to a steady state in the vicinity of

the wing, with one big vortex advecting downstream. Flow dynamics in terms of the
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Figure 7.5: Surface reference solution in terms of ρE, 30P30N test-case. The shaded
rectangle highlights the region where a zoomed comparison between methods is re-
ported, see Figure 7.6.

Figure 7.6: Contour comparison of the surface solution in terms of ρE for (top to
bottom) t = 0.0073s, 0.0178s, 0.0250s for the 30P30N test-case. Coloured lines show
the ROM reconstruction while the black lines show the reference CFD solution. The
left column shows the adaptive reconstruction, the right columns shows the pure POD
reconstruction. Number of modes fixed, Nm = 10.
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evolution in time of the Mach number is reported in Figure 7.7.

The reduced model is built within the time window [0; 0.01]s where the dynamics of

Figure 7.7: Contours of Mach number at different instants of time for the impulsive
start of the High-Lift configuration.

interest is happening, with a sampling ∆t of 2 × 10−3s, which results in a number of

snapshots Ns = 50 equispaced in time. Figure 7.8 reports the quantity εR,T varying

the number of modes for all the primary conservative variables. Differently from what

happens in the 2D test-cases analysed in Chapter 6 and according to the discussion

reported in Section 6.4, there is no clearly visible hump in the plots reported. Indeed,

the mesh spatial resolution for the 3D test-case considered is coarser in the region

where vortex dynamics is happening, as it presents an highly refined region only close

to the body surface. This leads to a situation where adding modes at the beginning

does not introduce any spurious oscillations linked both to small spatial structures and

the advective nature of the problem, as it happens instead for the 2D test-cases (see

Figures 6.1-6.6). The lower resolution of the 3D test-cases is mainly dictated by the
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computational resources available for the present work.

According to the εR,T plots, to exploit at best the improvements of the Adaptive Frame-

work, a number of 10 modes out of 50 is retained to perform the complete analysis.

Despite from these plots it appears that there is not a marked advantage in integral

terms also when using the Adaptive Framework with a small subset of modes, it will

be shown instead that, with the specific choice of number of modes, the Adaptive

Framework is still capable of introducing improvements with respect to a single ROM

in resolving local dynamics. These improvements are expected to increase as the mesh

is refined and spatial structures are better resolved in the original snapshots used to

train the ROM, according to the analysis reported in Section 6.4.

The time required for the database generation is approximately 16, 000 CH, consider-

ing a residuals’ tolerance of 10−6 and a maximum of 1, 000 iterations for the dual-time

stepping scheme. The time required for the extraction of all the set of features for

the adaptive framework and the computation of the residual database is approximately

24h (most of the time is required to extract the RDMD basis), while the extraction

of the POD basis requires less than one minute (no residual database required), both

on a single core. The time required for one residual evaluation to generate the resid-

ual database is 800s on a single core, as opposed to the 80 CH required to compute

one additional CFD solution. Finally, the online phase requires for both the Adaptive

Framework and the POD few seconds to reconstruct the ROM solution at each desired

time.

7.3.1 Volume Analysis

As in the previous test-case, a residual analysis over the full domain is carried out and

Figure 7.9 shows the residual evaluation for all the conservative variables (excluding

turbulence) and for the different methods (left column) and the choice of methods (bar

plot on the right column). Again, there is a tendency of RDMD to perform better in the

second half of the investigated time window, where the strong transient is vanishing,

and the only structure left is a vortex, generated from the various lifting surfaces of

the wing, that is propagating downstream. A behaviour similar to the one observed for
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Figure 7.8: log10(εR,T) varying the number of modes, for Adaptive ROM and POD,
High-Lift Wing-Body Configuration test-case.

the previous test-case towards the end of the time window can be observed also for this

specific case when looking at the residuals of RDMD and POD. This, again, can be both

related to the physical information carried by the retained modes and the additional

problem of interpolation issues at the border when the RBF is interpolating on a

slowly varying dynamics. The DMD modes retained, instead, are almost completely

dumped after the initial transient, which results in the quasi-constant behaviour of

the residual after the initial time instants. It is worth highlighting that the DMD

uses a different reconstruction formula (Equation 3.15), not based on interpolation,

which dictates the different behaviour of the residuals. A detail of the better accuracy

in resolving the vortex propagating in the second half of the time window, using the

Adaptive Framework instead of pure POD, is reported in Figure 7.10, where the first

column shows the Adaptive reconstruction, while the second column shows the pure

POD reconstruction in terms of the conservative variable ρU . Although POD seems to

provide enough accuracy to understand the dynamics, the Adaptive Framework shows
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better accuracy both in time and space, i.e. the position of the vortex and its structure

respectively. Indeed, structures resolved by POD appear slightly shifted in time and

stretched in the streamwise direction.

7.3.2 Surface Analysis

A surface only residual evaluation is now carried out on the High-Lift Wing-Body

surface. The residual evaluation for the only two meaningful quantities on the surface

ρ and ρE are reported in Figure 7.11 and few surface reconstructions with both the

adaptive technique and pure POD are reported in Figure 7.12. As for the previous

case, in this figure a detail of the surface solution is shown, that is at the wing tip of

the geometry, where the adaptive and pure POD reconstruction differ the most. It can

be noticed from these details, how the adaptive reconstruction is able to resolve better

surface structures at the wing tip as the solution is approaching a steady state. Not

many differences are present on the rest of the surface in terms of contour comparisons.

7.4 Delta Wing

The impulsive start of a Delta Wing is considered. The geometry and the freestream

flow conditions have been taken from the literature with the only difference being the

exclusion of the model sting present in the original configuration[189]. The mesh used

is a viscous hybrid mesh with 10, 834, 270 elements and 2, 319, 893 grid points. A

dual-time stepping method is used for the CFD simulation with a ∆t = 10−4s. The

Mach number, Reynolds number and angle of attack are fixed respectively to M = 0.4

, Re = 6 × 106, α = 23 deg. The simulation is run as fully turbulent, using the

SST model [156]. Figure 7.13 reports few snapshots of the impulsive start where the

vortical structures originating from the leading edge are represented by means of the

Q-criterion. From the time evolution reported, it can be noticed the formation of the

characteristic leading edge vortices and their breakdown in proximity of the Delta Wing

trailing edge. A quasi-periodic behaviour is therefore established in the final instants of
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Figure 7.9: Volume residual evaluation (left column) and choice of methods (right
columns) for all the conservative variables (excluding turbulence), fixed number of
modes Nm = 10, High-Lift Wing-Body test-case.
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Figure 7.10: Contours comparison of volume solution in terms of ρU for the High-Lift
Wing-Body test-case. Black contours show the CFD reference solution, colour contours
report the ROM reconstruction. Left column shows the adaptive reconstruction, right
column shows the POD pure reconstruction. Number of modes fixed, Nm = 10.

the investigated time-window, that shows the classical vortex breakdown phenomenon

exhibited by Delta Wing Geometries at an angle of attack with respect to the freestream

flow [190, 191].

In order to describe such dynamics in a low-dimensional manner, the reduced model is

built within the time window [0; 0.021]s, with a sampling ∆t of 3×10−4s, which results

in a number of snapshots Ns = 70 equispaced in time. Figure 7.14 reports the quantity

εR,T for all the primary conservative variables. According to the considerations already

introduced for the previous test-case and the discussion reported in Section 6.4, the

plots show a decreasing trend, as opposed to the non-monotonic trend observed for

the 2D test-cases. Still according to these plots, a number of 10 modes out of the 70
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Figure 7.11: Surface residual evaluation (left column) and choice of methods (right
columns) for the conservative variables ρ and ρE, fixed number of modes Nm = 10,
High-Lift Wing-Body test-case.

Figure 7.12: Detail of wing tip surface solution in terms of ρE for the High-Lift Wing-
Body test-case. Black contours report the CFD reference solution, line contours show
the ROM reconstruction. Left column is adaptive reconstruction, right column is pure
POD reconstruction. Number of modes fixed, Nm = 10.

available is retained for each technique composing the adaptive framework. Although

not strong improvements of the Adaptive Framework can be observed from the εR,T
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Figure 7.13: Contours of Q-criterion Q = 800s−2 coloured with velocity magnitude for
different time instants, Delta Wing test-case.

plots with respect to POD, it will be shown also for this test-case how the Adaptive

Framework is able to better resolve local dynamics.

The time required for the database generation is approximately 10, 500 CH, considering

a residuals’ tolerance of 10−6 and a maximum of 1, 000 iterations for the dual-time

stepping scheme. The time required for the extraction of all the set of features for

the adaptive framework and the computation of the residual database is approximately

18h (most of the time is required to extract the RDMD basis), while the extraction of

the POD basis requires less than one minute (no residual database required), both on

a single core. The time required for one residual evaluation to generate the residual

database is 700s on a single core, as opposed to the 50 CH required to compute one

additional CFD solution. Finally, the online phase requires for both the Adaptive

Framework and the POD few seconds to reconstruct the ROM solution at each desired

time.

7.4.1 Volume Analysis

Also for this test-case, a residual evaluation all over the computational domain is first

performed. Figure 7.15 reports this residual evaluation in time for the entire set of
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Figure 7.14: log10(εR,T) varying the number of modes, for Adaptive ROM and POD,
Delta Wing test-case.

conservative variables (excluding turbulence), for the three methods in the adaptive

framework (left column) and the choice of these methods over the investigated time

window (bar plot on the right column). For the specific case of the main component of

momentum ρU and the two conservative variables ρ and ρE, RDMD performs better in

the description of an attractor that is now quasi-periodic, namely the vortex breakdown

happening very close to the trailing edge of the Delta Wing once the initial transient

linked to the impulsive start vanishes. It is worth noting that, since the dynamics sam-

pled is different from the two previous test-cases, the residuals of the various algorithms

present a different behaviour in time, which is more oscillating than slowly increasing

towards the end of the time window. Moreover, the characteristic oscillations at the

border, usually appearing for the RDMD, are less pronounced than in the previous test-

cases. This can be linked to the more varying dynamics of the modes, associated to the

quasi-periodic dynamics dictated by the vortex breakdown. The better performance of

the Adaptive Framework is clearly visible in terms of reconstruction of the entire flow
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field in Figure 7.16, where a slice on the symmetry plane is reported and contours of

the Adaptive and POD techniques are compared against the contours of the reference

CFD solution, for the conservative variable density and for different instants of time.

It can be noticed from this Figure how details of the trailing edge vortex advected

downstream are completely lost with the POD reconstruction, while they are resolved,

even if with not very good accuracy, by the Adaptive technique. Improvements are

introduced by the Adaptive strategy also in the region near the aerodynamic body.

7.4.2 Surface Analysis

Finally, residual evaluation only on the surface of the Delta Wing is carried out. Figure

7.17 shows the residual evaluation for the meaningful conservative quantities ρ and ρE,

while Figure 7.18 reports a detail of surface reconstruction for few time instants.

Slight improvements of the adaptive techniques can be noticed from this Figure, on

the upper surface of the Delta Wing, especially in the central region. Adaptive recon-

struction performs better also on the lower surface (details not shown). POD appears

to provide enough accuracy in resolving surface dynamics. In particular, if integral

quantities are required, the slight differences between Adaptive and POD method can

be neglected. Nevertheless, when the focus is shifted more on resolving better local

dynamics on the surface, e.g. if the exact location of the vortex breakdown is a re-

quired information of the analysis, which can be the case for flow control purposes, the

Adaptive framework shows superior performance and it should be the one to consider.

7.5 Formation Flight featuring Delta Wing geometries

A configuration of three Delta Wings in Formation Flight is considered as the last

test-case. Each Delta Wing has the same geometry of the one used for the Delta Wing

test-case presented in Section 7.4. The configuration is symmetric, with one leader

and two followers symmetrically positioned with respect to the leader longitudinal

axis, next to the leader’s wake. There is no relative rotation among the different
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Figure 7.15: Volume residual evaluation (left column) and choice of methods (right
columns) for all the conservative variables (excluding turbulence), fixed number of
modes Nm = 10, Delta Wing test-case.
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Figure 7.16: Comparison of volume solution in terms of ρ for the Delta Wing test-case.
The black contours report the CFD reference solution, the coloured contour lines show
the ROM reconstruction. Left column shows the adaptive reconstruction, right column
shows the pure POD reconstruction. Number of modes fixed, Nm = 10.

bodies, which therefore exhibit the same angle of attack with respect to the free stream

direction. The mesh has been built for half configuration, being it perfectly symmetric,

and it is a viscous unstructured mesh with 15, 911, 216 elements and 3, 824, 705 grid

points. A refinement is present in the region of the leader wake and near the interaction

with the follower Delta Wing. A dual-time stepping method is used for the unsteady

simulation and the time step is fixed to ∆t = 10−4s. The Mach number, Reynolds

number and angle of attack are fixed respectively to M = 0.4 , Re = 6 × 106, α =

15 deg. The simulation is run as fully turbulent, using the SST turbulence model [156].

As initial condition for the CFD simulation, a freestream initialization of the entire

computational domain has been considered, i.e. impulsive start. The sampling to build

the reduced model is performed on the time window [0; 0.0294]s, which contains both

the strong initial transient and the dynamics linked to the interaction of the leading

edge vortex detaching from the leader with the leading edge vortex forming on the

followers’ geometries. Few snapshots are reported in Figure 7.19 that describe the time
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Figure 7.17: Surface residual evaluation (left column) and choice of methods (right
columns) for the conservative variables ρ and ρE, fixed number of modes Nm = 10,
Delta Wing test-case.

evolution of the flow field in terms of Q-criterion isosurfaces over the investigated time

window. Since the computational mesh has been refined only in the wake of the leader

Delta Wing and the early interaction region in proximity of the followers leading edge,

resolution of vortices is poorer in the wake of the followers geometries.

In order to build the Adaptive Framework, snapshots have been sampled in the time

window defined above, where the dynamic of interest is happening, using a sampling

∆t equal to 3× 10−4, which results in a number of snapshots Ns = 100 equispaced in

time. Figure 7.20 reports the quantity εR,T varying the number of modes for all the

conservative variables, excluding turbulence. On the basis of these plots, to exploit

the major improvements of the Adaptive Framework with respect to a single ROM, a

number of 15 modes out of 100 is retained to carry out the complete analysis. The

time required for the database generation is approximately 18, 000 CH, considering

a residuals’ tolerance of 10−6 and a maximum of 1, 000 iterations for the dual-time

stepping scheme. The time required for the extraction of all the set of features for

the adaptive framework and the computation of the residual database is approximately
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Figure 7.18: Detail of surface solution in terms of ρE for (top to bottom) t = 0.0096s,
0.0153s, 0.0198s for the Delta Wing test-case. Black contours indicate the CFD refer-
ence solution, coloured contours show the ROM reconstruction. Left column is Adap-
tive reconstruction, right column is pure POD reconstruction. Number of modes fixed,
Nm = 10.

20h (most of the time is required to extract the RDMD basis), while the extraction of

the POD basis requires less than one minute (no residual database required), both on

a single core. The time required for one residual evaluation to generate the residual

database is 103s on a single core, as opposed to the 60 CH required to compute one

additional CFD solution. Finally, the online phase requires for both the Adaptive

Framework and the POD few seconds to reconstruct the ROM solution at each desired

time. Figure 7.21 reports the residual evaluation in time for the entire set of conservative

variables (excluding turbulence), for the three methods in the adaptive framework (left

column) and the choice of these methods over the investigated time window (bar plot

on the right column). It is clearly visible how RDMD presents better performance for

almost the entire set of conservative variables in the second half of the investigated

time window, where the interaction of vortices is happening. Only for the specific case
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Figure 7.19: Contours of Q-criterion Q = 800s−2 coloured with velocity magnitude
(m/s) for different time instants, Formation Flight test-case.

of the Z component of momentum ρW , the different methods within the Adaptive

framework are almost equally chosen across the entire time interval shown. The steep

increase in the RDMD residual at the end of the time window can still be linked to

interpolation issues of the RBF at the border, due to the slowly varying dynamics of the

RDMD modes. The slightly increasing trend of the POD and DMD residual towards

the end of the time window can be instead linked to the specific dynamics considered.

The first half of the time window (t < 0.017s) contains the dynamics associated to

the propagation of the trailing edge vortices and the main interaction of the trailing

edge vortex of the leader with the two trailing edge vortices of the follower. The few

POD and DMD retained modes are mainly describing such dynamics, whereas they

are resolving with less accuracy the dynamics happening after the main interaction,

which represents a less energetic dynamics for POD and it is also dumped by DMD

eigenvalues as time increases. The major improvements of the RDMD, and therefore
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Figure 7.20: log10(εR,T) varying the number of modes, for Adaptive ROM and POD,
Formation Flight test-case.

of the Adaptive framework, in describing the dynamics of interacting vortices can be

observed in Figure 7.22, where the contours of the CFD reference solutions are compared

with the contours of the Adaptive and pure POD reconstruction on a specific slice,

taken at 0.45m from the symmetry plane. Few instants of time are shown where the

interaction of vortices is happening. Major accuracy is observed almost everywhere

over the shown slice and for the various time instants. In particular, details of the

interaction region are reported in Figure 7.23, where it is still clearly visible how the

Adaptive ROM is able to resolve better the dynamics of the interaction. Again, the

improvements are measured locally in terms of how close the contours of the ROM

solution are to the CFD reference solution, and in integral terms using the residuals

reported in Figure 7.21. Even if POD appears to be good enough for some time instants,

the Adaptive Framework is still able to introduce more details in the description of the

dynamics, which is believed to be important when problems related to flow control or

design of aerodynamic surfaces is addressed.
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Figure 7.21: Volume residual evaluation (left column) and choice of methods (right
columns) for all the conservative variables (excluding turbulence), fixed number of
modes Nm = 15, Formation Flight test-case.

158



Chapter 7. Impulsively started lifting bodies

Figure 7.22: Comparison of volume solution in terms of ρ for the Formation Flight
test-case. The black contours report the CFD reference solution, the coloured contour
lines show the ROM reconstruction. Left column shows the adaptive reconstruction,
right column shows the pure POD reconstruction. Slice taken at 0.45m from the plane
of symmetry. Number of modes fixed, Nm = 15.

7.6 Remarks

The current Chapter presented few applications of the Model-Based Adaptive Reduced

Basis framework introduced in Chapter 5 for unsteady complex flows. The complexity

has been presented both in terms of the geometries considered, i.e. the 30P30N air-

foil and the 3D High-Lift Wing-Body configuration test-case, and the complex vortex

structures that can be generated from simple geometries in specific configurations, i.e.

the Delta Wing at high angle of attack and Delta Wings in Formation Flight test-cases.

For the various test-cases reported a rigorous grid convergence study is not reported,

even if reasonable choices have been made on the space and time discretisation, ac-

cording to the expected dynamics involved and the computational resources available.

Performing a rigorous grid convergence study for all the test-cases presented is out of

the scope of the present work, which focuses instead on resolving the physics carried
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Figure 7.23: Detail of volume solution in the region of vortices interaction, in terms
of ρ for the Formation Flight test-case. The black contours report the CFD reference
solution, the coloured contour lines show the ROM reconstruction. Left column shows
the adaptive reconstruction, right column shows the pure POD reconstruction. Slice
taken at 0.45m from the plane of symmetry. Number of modes fixed, Nm = 15.

out by the collected snaphots. Therefore, the set of snapshots represents the target

physics to be described by the ROMs with the best accuracy possible (see also the dis-

cussion reported in Section 3.4). The accuracy and physical consistency of the method

has been assessed in reconstructing the entire flow field first and, for the first three

test-cases only, conserved quantities on the body surface after. To perform this task,

the residual evaluation has been considered all over the computational domain for the

former and only on the body surface for the latter.

It is worth noticing that since the L2-norm of the residual is considered as the final

value to drive the selection, the resulting performance indicator provides an integral

measure of the quality of the method. Therefore, especially in the case of unsteady

flows with complex dynamics in space and time, this might lead to a situation where

the selected ROM might not be the best in solving all the spatial structures in the en-

tire computational domain, despite being identified as the best method in terms of the
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computed residual. Nevertheless, looking at the comparisons over the entire flow fields,

it can be noticed a good improvement of the adaptive technique with respect to pure

POD for the most part of the computational domain where important dynamics is hap-

pening. For the first three test-cases, the adaptive framework is able to solve better the

advection of the starting vortex propagating downstream, Figures 7.3,7.10,7.16. This is

mainly linked to the better performance RDMD is able to provide in defining attractors

[44]. Moreover, the Adaptive Framework shows better accuracy also in resolving flow

features near the aerodynamic bodies. For the last test-case of the Formation Flight

configuration, the adaptive framework is introducing major improvements through the

RDMD basis in solving the time evolution of vortices interaction at the trailing edge

of the followers’ geometries, Figure 7.23. Regarding the surface evaluation performed

for the first three test-cases analysed, from Figures 7.6, 7.12 and 7.18 there are im-

provements of the adaptive framework with respect to pure POD in accordance with

the residual evaluation confined only on the body surface. Specifically, for the 30P30N

test-case, the resolution of the recirculation zone where the flap is retracted is improved

with the adaptive framework, Figure 7.6, and there is improvement also on the slat and

flap region. Major improvements from the High-Lift Wing-Body configuration are lo-

calized at the wing tip, Figure 7.12, while for the Delta Wing test-case there are slight

improvements in the resolution of both upper, Figure 7.18, and lower surface.

Considering the entire analysis reported, the adaptive framework has shown to achieve

significant reduction of the problem (Nm < Ns � NDOF), while retaining good consis-

tency and accuracy with the physics of unsteady aerodynamics problems. In particular,

it has been shown that, using a small subset of the entire set of modes that can in prin-

ciple be extracted from the original snapshots, the adaptive ROM is capable to provide

major improvements with respect to the classical POD method. Indeed the truncation

procedure, i.e. the number of modes finally retained, that is the fundamental step

to promote dimensionality reduction, is the main responsible in POD for the lack of

dynamic information, as the energy ranking might hide the dynamics of some low en-

ergy spatial structures. This dynamics can be recovered from the different sets of basis

functions within the adaptive framework. Moreover, the residual evaluation reported
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in Equation 5.12 has revealed to be a relevant measure to use in order to build the

Adaptive ROM, showing enough physical consistency with the actual reconstruction of

the flow field reported in the various test-cases.

It is worth noting again that the improvements of the Adaptive Framework with respect

to a Single ROM are measured both in terms of how close the contours of the ROM

solutions are to the CFD reference solution (local measure), and in terms of residual

errors (integral measure). Even if for some instants of time the POD method appears

to be good enough in describing some dynamics also locally, the Adaptive Framework

always introduces a more detailed description of the flow field. This is believed to be

of advantage for problems that require more refined solutions, e.g. flow control and

design problems. When integral quantities are of interest instead, e.g. aerodynamic co-

efficients, no evident differences are expected between the Adaptive and a single ROM

method. Finally, another important aspect is the computational time required for the

Tdatagen (CH) TFE-RE (h) TROM-online(s) TRes-Eval(s) TCFD(h)

Test-Case 1 3,700 2 ∼10−1 ∼20 12.5

Test-Case 2 16,000 24 <10 ∼800 80

Test-Case 3 10,500 18 <10 ∼700 50

Test-Case 4 18,000 20 <10 ∼103 60

Table 7.1: Comprehensive time breakdown for the Adaptive Framework in terms of time
required for the database generation (Tdatagen), time required for features extraction
and residual database computation (TFE-RE) and time required for the reconstruction
of one ROM solution (TROM-online). The last two columns define the time requirements
for the computation of the error database at one single point when a residual error
(TRes-Eval) or a direct error (TCFD) are used. The time for the database generation is
reported in CH, all the other times are considered on a single core.

online phase, which is able to provide low-dimensional solutions in real-time (less than

1s) and reproduce the high-dimensional solutions in less than 10s for the 3D test-cases.

Table 7.1 reports a detailed summary of the computational time requirements needed

by the different steps of the Adaptive ROM, namely offline (in the first two columns)

and online phase (in the third column). Table 7.1 also reports, in the last two columns,

details of the time required to perform one residual evaluation, TRes-Eval, and the time

required to compute one CFD physical time iteration, TCFD. These two last quantities
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highlight the computational speedup achieved by a residual based Adaptive ROM, as

opposed to a direct error based Adaptive ROM, which requires to run an additional

CFD time iteration to compute a reference solution. The CFD time requirements re-

ported in the last columns can be improved acting on the numerical setup used for

the unsteady simulation (e.g. turbulence models used, courant-friedrich-levy number,

unsteady time step), but this is out of the scope of the present work. Nevertheless, it

is expected that, also when introducing these improvements, the CFD time will still

be at least one order of magnitude higher than the TRes-Eval when using a Dual-Time

Stepping approach.
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Conclusions and Outlook

The implementation of reduced order models for unsteady fluid flows is a very chal-

lenging task. One of the main challenges is related to the following crucial aspect

“Defining a ROM framework able to reproduce in a strongly low-

dimensional manner the dynamics of transient nonlinear aeronautical

flows. The ROM framework should have the capability of preserving

the essential dynamics linked to the advection, interaction and diffusion

of characteristic vortical structures associated to this kind of flows.”

The strong dimensionality reduction refers to the number of modes finally retained in

the ROM, i.e. a small subset of the entire set of modes available (Nm < Ns � Np),

which has an impact on the final number of DOFs to handle in order to describe the

problem. The nonlinearity of the problem is referred in more general terms to the

nonlinear nature of the original system of equations solved, i.e. the full set of Navier-

Stokes equations. Therefore, the dynamics of the characteristic vortical structures of

the flow fields considered is assumed to be nonlinear since it is originating from a

system of nonlinear equations. It is finally worth noting that, although diverse sources

of unsteadiness can be present in the flow (e.g. moving and/or deforming geometries),

which are of equal interest in the fluid dynamics community, the present work focuses

on the specific case of unsteady flows originating from fixed geometries. The main

feature of this class of flows is the interaction and advection of vortices generated from
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the various lifting surfaces.

To address the challenge reported above, three research questions have emerged that

led to the following answers/findings.

Research Question 1

• Despite not covering all the possible impulsively started flows, the analyses pre-

sented in this work have given an heuristic yet conclusive evidence that there is

not a unique best-in-class linear low-dimensional approach that can be used to

describe the transient nonlinear dynamics associated to this class of flows. This is

even true when explicitly considering specific time correlations among snapshots.

Indeed, some of the most prominent and widely studied reduction approaches,

based on different rationale for the identification of modes, have shown to iden-

tify different features of the essential dynamics over the investigated time win-

dow. The reduction techniques considered for the analysis have been specifically

selected among the many algorithms introduced in the literature, based on their

potential to address problems with certain degree of nonlinearities both in space

and in time, while still preserving the linear assumption reported in Equation 2.1.

The interest in impulsively started flows is related to the dynamics originating

from specific geometries when an impulsive start is considered, i.e. various vorti-

cal structures that are advected and eventually interact. Although an impulse is

technically something not real, it still represents a good assumption to reproduce

dynamics of interest for aerodynamic bodies started from rest.

• The sorting, alias ranking, of dominant features is important from the point of

view of the interpretation of the modes themselves with respect to the underlying

physics, but it has proven to be also substantially important when looking at the

reconstruction of a certain flow field with a very limited number of modes. Two

aspects have emerged from the analysis performed on flow features ranking:

1. For the specific case of POD-based approaches, an energy-based criterion

that takes into account temporal correlation among snapshots is able to
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recover also the dynamics of less energetic flow structures, improving the

description of the overall time dynamics of the flow. In particular, the

temporal-driven energy redistribution has proven to be a key point in re-

producing the dynamics of both 2D and 3D impulsively started aeronautical

geometries. Nevertheless, the energy redistribution has also shown to need

more modes in order to reach a fixed energy content, in a measure that de-

pends on the width of the time window to which the temporal correlation is

applied. In particular, the more this width the more the modes needed to

obtain the desired energy content. Therefore, although the technique shows

better performance in reconstructing transient nonlinear dynamics, this also

leads to more degrees of freedom in the final model. Even if the analysis

has been limited to short periods of time, a similar behaviour is expected

on larger time intervals, since the main parameter that influences the re-

construction is the relative size of the time filter applied to the temporal

correlation matrix with respect to the size of the time interval where the

sampling is performed. Nevertheless, an in-depth analysis on the influence

of the initial span of the sampling interval has not been performed in the

present work.

2. For the specific case of DMD-based methods, two different criteria have been

considered for the modes ranking, namely the singular value truncation and

a criterion purely based on time dynamics. For describing the dynamics

of transient nonlinear aeronautical flows, a singular value truncation has

been adopted, which is the most robust way to express the dynamics in

a compact manner, i.e. with very few degrees of freedom, when neither

enough/meaningful physical information can be extracted from the DMD

algorithm nor they are known a-priori from the flow. For the specific case of

transient quasi-linear dynamics, such as the early transition to turbulence

in a channel flow, a criterion that is based exclusively on the time dynamics

of the modes, i.e. the t-envelope method, has shown instead to be more

effective in recovering time dynamics. The higher effectiveness of the novel
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method stems from the ability to isolate better a subset of modes that are

more dynamically important to describe the time evolution related to the

early transition. This has been demonstrated by means of a comparative

analysis of the t-envelope ranking criterion and a common energy ranking

criterion. The reconstruction of the entire flow field when considering the

modes selected through the t-envelope criterion showed improved accuracy

with respect to the one obtained with modes selected through the energy

ranking criterion.

Research Question 2.

• The residual error has been introduced as a measure to perform a quantitative

assessment of how well a reduced solution is reproducing the dynamics under-

lying the collected snapshots. In particular, a Finite Volume discretisation of

the full set of Navier-Stokes equations has been considered, and the residual pro-

duced by the reduced solutions when substituted in this discretisation has been

defined as the residual measure. The quantitative assessment is, therefore, con-

strained to reduced solution computed only for conservative variables. Moreover,

a fundamental assumption has been made, namely, that the reduced solution’s

accuracy is directly linked to how well a specific numerical discretisation of the

corresponding conservation equation is satisfied. On the basis of this assumption,

the residual error has shown to be quite a reliable measure to perform an assess-

ment of different sets of reduced solutions. The conclusion has been supported by

a comparative study of the assessment of various linear ROMs on the basis of the

residual error and the direct error, that instead compares the reduced solution

directly to the corresponding CFD reference solution. Indeed, only minor incon-

sistencies were reported. It is worth highlighting again that the residual error

introduced here does not belong to the wide class of a-priori and a-posteriori er-

ror bounds widely studied in the literature to define certified and reliable ROMs.

It represents instead an engineering tool to assess the performances of different

sets of ROMs.
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• The residual error revealed to be a good measure to drive the selection of the

reduced solution depending on the time instant, when used within an Adaptive

Framework that combines synergistically capabilities of various linear ROMs. In-

deed, few applications of the framework to impulsively started aeronautical ge-

ometries have shown how the residual error is able to select the reduced solution

that resolves most of the essential dynamics at each time instant.

• The trend of the residual error with the number of modes retained within a

generic linear ROM has shown to be influenced by the initial mesh resolution. In

particular, it has been shown how a non-monotonic trend on a well refined mesh

can change to a monotonically decreasing behaviour when the mesh is coarsened.

This has been linked to how many spatial features and how well these features

are resolved in the snapshots used to train the ROM.

Research Question 3.

• A Model-Based Adaptive ROM has been identified as a means to combine the

strengths of diverse existing linear methods in a unique and cohesive reduction

framework. The novel framework exploits the capabilities of the residual error as

a measure to drive the selection of the best linear method at each time instant

desired for reconstruction. Different applications to 2D and 3D aeronautical prob-

lems, consisting of impulsively started airfoils and wings, have demonstrated the

better performance of the Adaptive Framework with respect to a single ROM in

describing all the essential dynamics. Indeed, flow features were overall better

resolved both in space and time. The better resolution has been heuristically

measured in terms of how close the contours of the field reconstructed by the

ROM are to a CFD reference solution. This can be also practically quantified

considering the relative reduction in the residual error when switching from a

single ROM to the Adaptive Framework.

• The better performance of the Adaptive ROM with respect to a single ROM has

been firstly identified in terms of the residual error considered in this work. Specif-
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ically, an analysis changing the number of modes has shown how the Model-Based

Adaptive ROM is able to introduce major improvements with respect to a single

ROM when using only a small number of modes. This has been demonstrated

through a series of 2D and 3D impulsively started airfoils and wings. Some re-

constructions of the entire flow field for each of these test-cases have been also

reported, that confirmed the capability of the Adaptive Framework to preserve

dynamics of starting and interacting vortices even when using very few modes,

as opposed to a single ROM. The number of modes finally used in the Adaptive

Framework reflects the number of degrees of freedom needed to describe with

enough accuracy and physical consistency the system dynamics. This last con-

clusion is therefore quite an important one, as unsteady analyses can be often

involved in a design process that strongly benefits from a very low number of

degrees of freedom to deal with.

• When the interest is on integral quantities, e.g. aerodynamic coefficients, the

improvements of the Adaptive Framework with respect to a single ROM can be

negligible. Indeed, it has been shown, especially for surface solutions, how the

Adaptive Framework is able to introduce only slight improvements with respect

to a single ROM and that POD can provide already satisfying accuracy in de-

scribing some dynamics. Nevertheless, when more details are requested, e.g. for

problems involving design or problems that need exact localization and recon-

struction of specific flow features (e.g. for flow control purposes), the Adaptive

ROM introduced can make a difference when compared to a single ROM.

• The novel ROM framework introduced is not able to make predictions, i.e. the

reconstruction of the flow field is limited within the interval where the sampling

is performed. Although it has been applied only to a series of impulsively started

geometries, the Adaptive Framework can be used for any kind of unsteady prob-

lem and for data originating from CFD solvers, where there is no change in mesh

topology. This last aspect must be treated with more attention in terms of how

the various set of basis functions are extracted when the collected snapshots are
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computed on different meshes.

Contribution to knowledge. The list of contributions to the field of ROMs for un-

steady flows reported in Section 1.2 is expanded here in terms of how these contributions

were introduced:

• An analysis was performed on two specific test-cases, namely the impulsive start

of a NACA0012 airfoil and a multi-element airfoil, in terms of accuracy in the

reconstruction of few time instants considering different linear ROM methods;

• Two analyses were performed for the specific case of POD and DMD, investigating

the influence of the ordering of the set of flow features extracted on the accuracy of

the ROM reconstruction. In particular, the effects of the application of a filter to

the POD temporal correlation matrix was investigated when describing transient

nonlinear dynamics in time, and a novel criterion for DMD was tested, namely

the t-envelope method, to select few meaningful modes capable of describing the

early phase of transition to turbulence in a channel flow;

• An analysis was carried out on two specific test-cases, namely the impulsive start

of a NACA0012 airfoil and a multi-element airfoil, in order to compare the per-

formance of the residual error in the assessment of different linear ROMs with

respect to a more robust definition of the error, namely the direct error, which

uses reference solutions to be computed;

• The Model-Based Adaptive Framework was applied to a series of test-cases, con-

sisting of impulsively started geometries that exhibit complex dynamics in time in

terms of many interacting and advecting vortical structures. Details of the resid-

ual error based selection were provided and comparisons were made in terms of ca-

pabilities of the Adaptive Framework in reconstructing few CFD high-dimensional

solutions in time.
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Perspectives

The definition of the Model-Based Adaptive Framework paves the way to many other

further investigations and developments that are out of the scope of the present work

and are summarized in the following.

• Ensuring continuity in time

It would be worth performing a dedicated analysis on what happens in specific

time windows, where the Model-Based Adaptive framework switches from one

method to the other. In particular, investigate on smoothness and regularity of

solutions when transitioning from one low-dimensional space to the other and if

this regularity is an aspect actually required from a “practical” viewpoint (i.e.

does it compromise the description and/or the understanding of the underlying

time dynamics?).

• Adaptivity in space

The Model-Based Adaptive ROM has been implemented considering time as the

only parameter for the adaptation. Since solutions coming from Navier-Stokes

equations express dynamics happening on several temporal and spatial scales, a

further development of the adaptive strategy would be introducing space variables

as additional parameters for the adaptation. Therefore, instead of extracting few

sets of global spatial basis functions, each one to use in specific sub-windows of

time, the set of basis extracted would be also confined within particular sub-

domains, on the basis of the spatial features and spatial scales they are able to

solve. This would need to define a proper strategy for the decomposition of the

original domain in sub-regions where to assign local basis functions, and con-

strains that ensure continuity in space, when the solution needs to be projected

back to the high-dimensional space and the various sub-regions reassembled to-

gether.
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• Use the Model-Based Adaptive ROM for a non-conserved physical

quantity

The way the error measure is defined in the Model-Based Adaptive Framework

needs the application of the method on the entire set of conservative variables. A

relevant aspect to investigate would be how to adaptively select the ROMs when

the quantity desired for reconstruction is not a conserved quantity (e.g. Pressure,

Shear stress, etc.). There are two approaches that can be considered in this sense.

The first is a conservative one and looks at building the reduced solutions for the

conserved quantities first and then post-process them to obtain the primitive

variables required. This is the same procedure followed when computing a Finite

Volume solution for the conserved quantities, and then, for example, compute

the pressure using the equations of state of the gas. While being conceptually

straightforward, this approach might not be the most computationally efficient

since, if Pressure is the only quantity required, the method would still need to

compute four or five (depending on the spatial dimensions) reduced solutions.

The second alternative approach would be to rely on the definition of appropri-

ate relations connecting the residuals of the conserved quantities, as defined by

Equation 5.12, to the residuals of the primitive quantities and use directly the

latter to drive the selection within the Adaptive Framework. This would mean

to define a Model-Based Adaptive ROM that processes directly the variable of

interest, without having to pass through the computation of reduced solutions for

the entire set of conservative variables.

• Snapshots sampling procedure

The present work has always used a uniform sampling of snapshots in time to

train the low-dimensional model. Nevertheless, it has already been discussed how

important can a specific sampling procedure be to elaborate more accurate and

reliable ROMs (see also Chapter 1). Especially when time dynamics is strongly

nonlinear and exhibits transient behaviour, a uniform sampling might not be the
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best choice, as opposed to a non uniform sampling that accounts for nonlinearities

in time. This aspect represents another important area of investigation for further

improving the Model-Based Adaptive ROM. A first step in this direction could

be to adaptively select the snapshots in time through an optimization algorithm

that has as objective function an integral residual error to minimize, like the one

introduced in Equation 6.1.

• Extension to unsteady parametric problems

The Model-Based Adaptive ROM has been implemented and tested for the spe-

cific case of unsteady fluid flows. The algorithms considered within the Adaptive

Framework, excluding POD, are mainly conceived for unsteady problems, i.e.

they use assumptions related to specific time dynamics represented by the col-

lected snapshots to extract modes. Indeed, DMD assumes a linear dynamic in

time to unveil time dynamics information carried by the snapshots. SPOD uses

a filter applied to the POD temporal correlation matrix as a means to extract

spatio-temporal flow features, i.e. modes that are related to spatial structures

existing in specific time windows. RDMD, as a method derived from DMD, still

retains its unsteady nature at the extraction level. A further development of

the Adaptive ROM would therefore be to try extending its application also for

unsteady problems with variable parameters. A first step in this direction could

be a combined POD-Adaptive approach, where a first reduction is taken in the

parameter space using POD. Then, an Adaptive framework is built for the time

variable over the low-dimensional parameter space identified by POD. Specifically,

the POD algorithm is applied at each time instant to find a low-dimensional lin-

ear embedding in the parameter space. The coefficients extracted at each time

instant are then arranged in a matrix similar to the snapshots matrix U (see

Chapter 3) and an Adaptive Framework is built on it. A previous interpolation

needs to be computed, if the set of parameters for which an Adaptive ROM has

to be built is out of the training points.
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Interdisciplinary Journal of Nonlinear Science, 22(4):047510, 2012.

[144] Zheng Wang, Dunhui Xiao, Fangxin Fang, Rajesh Govindan, Christopher C Pain,

and Yike Guo. Model identification of reduced order fluid dynamics systems using

deep learning. International Journal for Numerical Methods in Fluids, 86(4):255–

268, 2018.

[145] Jan S Hesthaven and Stefano Ubbiali. Non-intrusive reduced order modeling of

nonlinear problems using neural networks. Journal of Computational Physics,

363:55–78, 2018.

[146] Zhen Gao, Qing Liu, Jan S Hesthaven, Baoshan Wang, Wai S Don, and Xiao

Wen. Non-intrusive reduced order modeling of convection dominated flows using

artificial neural networks with application to rayleigh-taylor instability.

[147] Arvind Mohan, Don Daniel, Michael Chertkov, and Daniel Livescu. Compressed

convolutional lstm: An efficient deep learning framework to model high fidelity

3d turbulence. arXiv preprint arXiv:1903.00033, 2019.

[148] Lawrence Sirovich. Method of snapshots. Quarterly of Applied Mathematics, 45

(3):561–571, 1987.
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