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Abstract 

Earthquakes are among the most dangerous natural hazards that pose significant threat to 

the functioning and integrity of civil infrastructures. The fact that many buildings and 

bridges around the world continue to fail due to earthquakes demonstrates that there is 

still a need of improving current tools and technologies for seismic risk evaluation and 

mitigation.   

 

This Thesis aims to advance current procedures for the seismic assessment and design of 

bridges, with a particular focus on three areas: the performance under repeated shocks 

during the bridge design lifetime, the performance under aftershock events following the 

occurrence of a mainshock, and the optimal design of the bridge pier properties to achieve 

target seismic reliability levels. 

 

With regards to the first area of research, a study to compare different methodologies for 

predicting damage accumulation in structures exposed to multiple earthquakes has been 

carried out. Global and local Engineering Demand Parameters (EDPs) have been used to 

describe the damage. The accuracy of these methodologies has been evaluated and 

improvements to the models have been proposed. 

 



X  

 

A Bayesian network-based probabilistic framework has been developed for updating the 

aftershock risk in bridges. The framework integrates information about mainshock 

earthquake intensity, structural response, and damage to critical components, reducing 

uncertainty in assessing the risk of bridge failure. The Bayesian network considers various 

random variables related to seismic damage assessment, incorporating data from seismic 

stations, structural health monitoring sensors, and visual inspections.  

 

The Thesis also addresses the development of a risk-targeted design approach to assess 

the seismic structural safety of newly-designed bridges. This approach involves a 

probabilistic optimization procedure to minimize the design resisting moment at the pier 

base, with a surrogate model to reduce the computational effort. 

 

The tools and analyses presented in this Thesis provide important guidance in the area of 

seismic analysis and design of bridges, ultimately contributing to the development of 

more resilient and earthquake-resistant infrastructure. 
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1  

1 Introduction 
 

1.1.  Motivation 
 

Ageing, degradation, and extreme events such as earthquakes can jeopardize the 

efficiency of civil infrastructure and have an immediate impact on the community 

resilience. The failure of structures like bridges, railways or dams can result in significant 

direct and indirect losses, and therefore it is crucial to guarantee their appropriate 

functioning and to take preventive actions in order to avoid irreparable damage or 

collapse.   

In the last decades, the performance-based earthquake engineering (PBEE) has emerged 

as a new paradigm for the seismic safety assessment of structures (Deierlein et al., 2003; 

Porter, 2003). The promise of PBEE is to produce structures with predictable seismic 

performance. 

The seismic vulnerability of bridges is usually expressed in the form of fragility curves, 

defined as the probability that the structure will experience damage if subjected to an 

earthquake ground motion of a given intensity level. Bridge fragility curves are used in 

the assessment of seismic performance providing valuable data for retrofit measures and 

they can be of great help to asset managers and public authorities in making better 
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informed decisions concerning the management of the risk due to future events in the 

short and long term. Therefore, the need for consistent and reliable fragility curves arises.  

In traditional PBEE approaches, the seismic reliability assessment of a structure assumes 

that earthquake damage occurs in single events, and that the structure is immediately 

retrofitted to the as-built condition after the event. However, a large percentage of the 

world’s infrastructure is located in earthquake-prone regions where structural systems are 

expected to experience more than a single shock during their design lifetime. Multiple 

earthquakes can, over a long period of time, result in a reduction in structural capacity 

and can eventually lead to structural collapse in a structure designed to resist a single 

event. The problem of damage accumulation under repeated events close in time has been 

experienced several times in the past: during the Umbria-Marche earthquake in 

September 1997 (Amato et al., 1998) and the Christchurch-New Zealand in September 

2010 (Bradley & Cubrinovski, 2011). In both cases the weakening of structural capacities 

following a main shock seismic event led to collapse under the following less intense 

aftershocks. Recent studies have investigated the issue of damage accumulation by 

developing probabilistic approaches taking account of the probabilistic nature of the 

hazard and the inherent randomness in the response of structures under repeated 

earthquakes shocks (Duerr & Tesfamariam, 2012; Ghosh et al., 2015; Iervolino et al., 

2016, 2020; Park & Ang, 1985). The reliability of these approaches vis-à-vis their 

computational cost has not been fully investigated, yet. 

The development of tools able to predict potential damage after an earthquake event can 

prevent catastrophic collapses. In this context, structural monitoring of a bridge is an 

effective method used to provide, in near real time, reliable information regarding the 

structural health of the construction and it has been widely applied for many engineering 

purposes (Comisu et al., 2017). It is not possible though to monitor an entire infrastructure 

or even all the components within a structure, as it is economically unsustainable. A way 

to overcome this limitation is to install monitoring systems on a limited number of critical 

components and use a probabilistic approach to extend this information to the other 

components within a network. The state of the structure can be represented by random 

variables and their interdependence can be modelled using a Bayesian Network. 

Observations can be used to update the distribution of the random variables, thus 
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contributing to reduce the uncertainty in the component demand and capacity. One 

possible application of use of monitoring data for near real time damage assessment and 

risk updating is in the context of aftershock risk assessment of bridges. The risk of 

aftershocks has only recently been studied because, for a long time, seismic risk 

evaluation considered only mainshocks. A mainshock is certainly the most violent event 

capable of causing heavy damage to structures and a large number of victims. 

Nevertheless, aftershocks can be equally violent in some cases and the damage associated 

to aftershocks is relevant. Aftershocks can cause vast losses due to direct repair costs, 

business interruptions and casualties, especially if the affected structures and 

infrastructure are left unrepaired upon initial damage due to the first event (Abdelnaby, 

2012; Amato et al., 1998). 

Alongside with the problem of risk assessment and risk updating, there is also a need of 

improving current approaches for the design of structures. In particular, there is a need of 

risk-based design methodologies, able to identify the optimal properties of a structure that 

allow to meet prefixed performance criteria. Such approach consists in designing a 

structure to meet more refined performance objectives that have to be explicitly stated in 

terms of risk metrics associated with the exceedance of tolerable thresholds of loss 

(Franchin et al., 2018; Vamvatsikos & Aschheim, 2016). While several approaches have 

been developed for the risk-based design of buildings (Shi et al., 2012), methodologies 

for the risk-based design of bridges are still needed. 

 

1.2. Aim of the research 

The research project aims to improve current approaches for the risk assessment and 

design of structures. The specific objectives of the project are: i) evaluating alternative 

methods for the performance assessment of structures subjected to repeated earthquakes 

during their design life-time and proposing improvements to these methods, ii) 

developing a method for improving the knowledge of the structural state and risk of 

bridges following an earthquake event, by exploiting the information from available 

sensing data, iii) developing a methodology for the risk-targeted design of bridges and 

explore the variation of risk-targeted design results in areas of different seismicity. 
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1.3. Outline of the thesis  

This manuscript is organized into six chapters. Chapter 2 contains an introduction to the 

seismic risk assessment problem and a review of practical methods for probabilistic risk 

assessment of structural systems. In particular, sub-sections 2.2 and 2.3 summarize 

existing work on simulation-based and conditional-based methodologies. Sub-section 2.4 

presents an extension of the PEER PBEE Framework to address the cumulative effects of 

multiple earthquakes on structural damage. Sub-sections 2.5 and 2.6 introduce Bayesian 

approaches to damage assessment and seismic risk-based design approaches respectively. 

Chapter 3 presents a comparative study of recently developed methodologies for the 

prediction of damage accumulation in structures subjected to multiple earthquakes. 

Besides evaluating the effectiveness of each approach, possible improvements of the 

cumulative demand model are tested. A reinforced concrete bridge model with a single 

pier is examined as case study and Park-Ang damage index is considered to describe the 

damage accumulation. The results demonstrate the importance of considering the 

occurrence of multiple shocks. In Chapter 4, a probabilistic methodology based on the 

use of a Bayesian Network (BN) is proposed to describe the logical process of evaluating 

structural damage following a main earthquake event and the risk associated with possible 

aftershocks. This proposed approach also allows for the integration of information from 

data provided by sensors and visual inspections to obtain a better estimation of the 

structural condition and risk of failure following an earthquake event. Chapter 5 illustrates 

a methodology for the risk-targeted design of RC piers in multi-span bridges. Such 

approach aims to minimize a function related to the cost of the design, while ensuring that 

a prefixed target reliability level is not exceeded. The methodology is applied to a case 

study located in various locations across Italy to illustrate the variations in the optimal 

risk-based design properties of bridges across regions with varying seismic hazard. 

Finally, in Chapter 6, some conclusions are drawn and future developments are discussed. 
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2 Overarching Seismic Risk Assessment 

Framework 
 

2.1 Introduction  

The term risk assessment refers to the quantitative or qualitative determination of the risk 

associated with a defined situation and a known threat. It consists of a hazard analysis, 

which aims at identifying and evaluating probable future events that may cause harm to 

people and to the environment, and of a vulnerability evaluation, that allows determining 

the tolerance for such events. Nowadays the importance of the conservation of the 

surrounding environment and the safety of individuals, as well as a fair management of 

available natural and economical resources, has become of great concern, especially in 

the civil engineering field. Decision support tools based on risk and reliability analysis 

are extremely requested and their demand will increase in the near future.  

Risk and reliability analysis are interdisciplinary engineering branches and they request 

the knowledge of probability, statistics and decision analysis (Faber & Stewart, 2003). 

The first step to a clear comprehension of risk analysis is defining the concept of risk. 

Usually the term risk is used as a synonym of likelihood or chance and it is described as 
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the effect of uncertainty on objectives (ISO 31000:2009. Risk Management—Principles 

and Guidelines, 2009) indicating that we are uncertain about the effects of an activity with 

respect to something that humans value. Technically speaking, risk is defined as the 

measurement of the damage expected in a given interval of time and it is a combination 

of three components: hazard H, vulnerability V and exposure E. 

 
𝑅 = 𝐻 ∙ 𝑉 ∙ 𝐸 (2-1) 

Hazard – a potentially destructive natural or human-induced physical 

phenomenon(Cardona, 1990; UNDHA, 1992; UNDRO, 1980; White, 1973). Common 

natural hazards include earthquakes, floods, hurricanes, tsunami, landslides, and more. 

Vulnerability – the likelihood that human beings, their livelihoods and assets will suffer 

adverse effects when exposed to a hazard (Cardona, 1986; Thywissen, 2006; UNDRO, 

1980). For example, a building with multiple floors may be more vulnerable to shaking 

from an earthquake and more likely to collapse than a one-story building. Another 

example, elderly persons may be more vulnerable to the impacts of flooding because they 

have a harder time evacuating or moving quickly. As discussed in Manyena (2006) 

Thywissen (2006), vulnerability is related to predisposition, susceptibilities, fragilities, 

weaknesses or deficiencies that favor adverse effects on the exposed elements. 

Exposure – a measure of the extent and importance of the consequences expected in an 

area. It refers to the inventory of elements in an area that could be affected by a hazard 

(Cardona, 1990; UNISDR, 2004). Thus, it depends on population, construction, density, 

factories, farmland, and etc. Many times, exposure and vulnerability have been confused 

and exchanged but they have distinct meanings. Exposure is a necessary, but not 

sufficient, factor in determining risk. It is possible to be exposed without being 

vulnerable, e.g. residing in a flood-prone area but having adequate resources to protect 

the building structure and contents to minimize potential damage. However, to be 

vulnerable to a severe event, exposure is a prerequisite. 

In many cases, the only parameter that can be controlled in order to mitigate the risk, is 

the vulnerability. In a way, the exposure can also be controlled if, for instance, we choose 

not to build in a region with expected hazard.  
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A crucial problem in risk analysis is the identification of the hazards associated with the 

system and the possible states of failure to be considered. If not all the relevant threats are 

identified then the analysis will be inefficient and could affect negatively in the evaluation 

of risk jeopardizing people’s life and the environment. Engineers have developed 

different qualitative and quantitative tools for hazard assessment such as: 

- Hazard identification: FMEA (acronym for Failure Mode and Effect Analysis) 

and HAZOP (acronym for Hazard and Operability Study) 

- Accident Scenarios Identification: Event tree and Fault Tree 

- Uncertainty Quantification and calculation of probability of failure: Reliability 

analysis and Monte Carlo method 

 

Earthquake engineering stands out as one of the disciplines characterized by the highest 

degree of uncertainty. This uncertainty stems from the fact that earthquakes are inherently 

unpredictable and the features that characterize them, such as the earthquake intensity or 

the ground motion characteristics, cannot be determined in a deterministic way, as well 

as the structural response of buildings to seismic events.  

Traditional seismic design philosophy is based on insuring no damage to structural and 

non-structural building elements in low-intensity earthquakes, limiting damage to 

elements that can be repaired in medium-intensity earthquakes, and preventing the 

complete or partial collapse of buildings in high-intensity earthquakes. In spite of the fact 

that the structures complied with the available seismic codes and were built in accordance 

with conventional design principles, the structural engineering community realized after 

the 1994 Northridge and 1995 Kobe earthquakes that the amount of damage, the 

economic loss resulting from downtime, and the repair costs of the structures were 

unacceptably high (Lee & Mosalam, 2005). This realization is where the idea of 

performance-based earthquake engineering (PBEE) first emerged. 

The general procedure for seismic risk assessments has been formulated and employed 

by earthquake engineers for more than 40 years (Kongar et al., 2017). Companies have 

also embraced this procedure, developing catastrophe modeling software for the 
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insurance industry. The seismic risk assessment comprises four essential components: an 

exposure module, a hazard module, a vulnerability module, and a loss module. This is 

illustrated in the flowchart in Figure 2-1. 

 

Figure 2-1 Flowchart outlining the steps in the seismic risk assessment 

The exposure module identifies and categorizes the structure and its components. The 

hazard module simulates earthquake events, identifying appropriate earthquake hazard 

parameters and generating local seismic hazard intensities for each site. The vulnerability 

module assesses the damage level experienced by each structural component. It 

establishes scales for classifying damage, employing a hazard-damage relationship (a 

fragility function). Lastly, the loss module transforms the damage into an estimate of the 

loss metric, evaluating the overall system's performance based on damages assigned to 

the structure. 

This introduction section has defined the general problem of seismic risk assessment.  

Sub-sections 2.2 and 2.3 describe two alternative approaches for seismic risk assessment 

of structures, namely the simulation-based approach (i.e. direct approach) and the 

conditional-based approach. Subsequently, sub-section 2.4 illustrates the extension of the 

risk-assessment framework to account for the accumulation of damage in the case of 

multiple shocks and aftershock scenarios. In sub-section 2.5, Bayesian approaches for the 
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damage assessment and risk updating described together with an overview of Bayesian 

Networks. The final sub-section introduces the concept of seismic risk-based design. 

 

2.2 Simulation-based method 

Different methods can be used to perform probabilistic risk analysis. These methods can 

be essentially categorized in two main classes (Cornell, 2005; Scozzese et al., 2020): 

(direct) simulation-based approach and conditional approach. Table 2-1 summarizes the 

main features of the two approaches. 

Table 2-1 Main characteristics of the conditional and simulation-based probabilistic approaches 

Simulation-based  Conditional  

Research-oriented Practice-oriented 

No need of conditioning to any intensity 

measure  

Need of conditioning to an intensity 

measure 

Robust and confident tool for estimating 

seismic risk  

Potentially biased if ground motion 

records are not representative of the 

hazard 

Large number of simulations (analyses) 

required  

Requires a reduced number of structural 

analyses  

A stochastic model is required to describe 

the seismic input  

Can be applied using recorded ground 

motions 

 

The simulation-based method consists in the observation of the structural system’s 

response to the seismic input. A set of seismic inputs is generated from the joint density 

f(x) of the random input parameters that describe the seismic source (e.g. random 

magnitude and location) and the corresponding outputs (in terms of response, or failure 

events, or even losses) are post-processed to infer their statistical distribution.  

Mathematically, the method consists in characterising the response parameter y  ℝ (i.e. 

max damper displacement), knowing the parameters x  Ω from PDF 𝑝𝑋(𝒙) (i.e. M, R). 

The performance function 𝑔(𝒙) relates the random input to the response output:  
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𝑦 = 𝑔(𝒙) (2-2) 

It is possible to define a failure region 𝐹 = {𝒙: 𝑔(𝒙) > 𝑑∗} as the subset of the whole 

sample space Ω made by samples able to provide a response which is higher than a fixed 

threshold d*. The probability of failure is: 

 
𝑃(𝒙 ∈ 𝐹) = 𝑃(𝑦 > 𝑑∗) = ∫ 𝑝𝑋(𝒙)𝑑𝑥

Ω∩𝐹

 (2-3) 

The integral ∫ 𝑝𝑋(𝒙)𝑑𝑥Ω∩𝐹
 is called reliability integral and it is the formal expression of 

the reliability problem. This integral has not a close form solution due to the inherent 

complexity in understanding the precise nature of the failure. By introducing the Indicator 

Function Id 

 
{
𝐼𝑑(𝒙) = 1, 𝑖𝑓 𝑃(𝒙 ∈ 𝐹) = 1 (𝑓𝑎𝑖𝑙𝑢𝑟𝑒)

𝐼𝑑(𝒙) = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2-4) 

it is possible to transform the integral in the following, extending it to the whole sample 

space Ω: 

 
𝑃(𝒙 ∈ 𝐹) = 𝑃(𝐹) = ∫ 𝑝𝑋(𝒙)𝑑𝑥

Ω∩𝐹

= ∫ 𝐼𝑑(𝒙)𝑝𝑋(𝒙)𝑑𝑥 = 𝐸[𝐼𝑑]
Ω

 (2-5) 

The integral ∫ 𝐼𝑑(𝒙)𝑝𝑋(𝒙)𝑑𝑥Ω
 is the definition of the expected value of 𝐼𝑑.  

The simplest but robust method for performing direct simulation is called Monte Carlo 

Method. The Monte Carlo method is a computational technique used for approximating 

numerical solutions to a variety of mathematical and statistical problems. It relies on 

random sampling and statistical inference to estimate values or outcomes that might be 

difficult or impossible to compute precisely using traditional analytical methods. In the 

Monte Carlo method, random samples are generated from a known or assumed 

distribution and are used as input values for a specific mathematical function or model 

relevant to the problem at hand. By calculating the average or sum of the function values 

from the generated samples, an estimate or approximation of the desired solution is 

obtained. The accuracy of the Monte Carlo method improves as the number of random 

samples (iterations) increases. As more samples are used, the estimated value converges 

toward the true value, following the law of large numbers. According to Monte Carlo 

Method, the probability of failure is approximated by simply counting the number of 
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failure samples and dividing them by the total number of samples used in the simulation. 

It this way, it is possible to approximate the expected value of the indicator function. 

For example, we can generate N independent identically distributed samples according to 

a given continuous CDF F(x). Given that a random variable X is represented by F(x), 

Monte Carlo simulation aims to provide sets of samples xi whose discrete CDF tends to 

F(x) as the number of samples increases. The method requires calculating the inverse of 

the CDF to estimate xi. Figure 2-2 illustrates the sampling procedure, starting from 

generating random variables 𝑢𝑖 from a known distribution. 

 

 
𝐹(𝑥𝑖) = 𝑢𝑖 (2-6) 

 

 
𝐹𝑥
−1(𝑢𝑖) → 𝑥𝑖 (2-7) 

 

Figure 2-2 Illustration of sampling procedure 
 

Repeating this procedure N times, it is possible to approximate a continuous CDF with a 

discrete CDF; to better approximate the continuous CDF, it is necessary to increase the 

number of simulations. It is a simple way to generate samples according to any type of 

CDF function. 

Programming languages are able to provide samples of uniformly distributed random 

variables in [0,1]. Mathematically, the probability of failure computed using the Monte 

Carlo method is represented by: 
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𝐸[𝐼𝑑] ≈ �̃�(𝐹) =
1

𝑁
∑𝐼𝑑(𝑥𝑖) =

𝑛𝑢𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁

𝑖=1

 (2-8) 

Equation (2-8) is the definition of “statistical averaging”. The method provides the exact 

solution for 𝑁 → ∞. The advantages of using Monte Carlo simulation are the simplicity 

of implementation, the applicability to any integral (or system of equations), the 

simplifying assumptions involved in the analytical models, the attainment of a model that 

can be treated analytically. The limit of Monte Carlo method is the inability to efficiently 

generate samples with very small exceedance probabilities. This can be better appreciated 

by observing the complementary CDF (Figure 2-3).  

 

Figure 2-3 CCDF 
 

Monte Carlo is not able to efficiently generate samples in the tail of the distribution. The 

coefficient of variation 𝛿 (�̃�(𝐹)), which is a measure of the accuracy of the Monte Carlo 

estimator �̃�(𝐹), is linked to the target probability to be estimated and the number of 

samples (Au & Beck, 2003). 

 

𝛿 (�̃�(𝐹)) =
𝜎 (�̃�(𝐹))

𝐸[�̃�(𝐹)]
=
√𝑣𝑎𝑟[𝐼𝑑(𝑋)]

𝑃(𝐹)
= √

1 − 𝑃(𝐹)

𝑁 ∙ 𝑃(𝐹)
 (2-9) 

According to Table 2-2, to achieve an estimation of the probability of failure of 10-3, 

denoted by a small coefficient of variation of 0.10, the number of required simulations is 

105. This significant number of simulations is necessary to accurately characterize such a 

small failure probability. The challenge does not lie in the generation of random samples 

(i.e. magnitude values or epicentral distance values) as this can be easily accomplished 

using computational resources. The true challenge arises in performing a corresponding 



13  

number of numerical analyses like nonlinear time history analyses, each corresponding 

to a ground motion sample. If the structural model is a complex, nonlinear, multi-degree 

of freedom system, performing 105 simulation analyses implies a computational time of 

probably a month or more.  

 

Table 2-2 Number of simulations required for a given P(F) and 𝛿(�̃�(𝐹))  

P(F) 
𝛿(�̃�(𝐹)) 

0.30 0.20 0.10 

10-1 1.11⋅102 2.5⋅102 1⋅103 

10-3 1.11⋅104 2.5⋅104 1⋅105 

10-6 1.11⋅106 2.5⋅107 1⋅108 

 

There are other advanced strategies for performing direct simulations; for instance, 

Hypercube sampling, also known as Latin Hypercube Sampling (LHS), is a stratified 

sampling technique used to generate representative samples from a multidimensional 

probability distribution (McKay et al., 1979). This method involves defining the input 

space, represented by multiple dimensions or variables, and dividing it into equally 

probable intervals along each axis. Then, a single point is selected randomly within each 

interval and along each axis. This ensures that the samples are well-distributed and 

representative of the input space. The selected points are used to construct hypercubes 

within the input space. Each hypercube is characterized by one point per dimension. The 

points are randomly permuted within each hypercube to generate the final set of samples. 

Hypercube sampling provides a more uniform and efficient sampling compared to simple 

random sampling, as it ensures better coverage of the input space. 

A more efficient and smarter tool for performing simulations is the Subset Simulation 

method (Au & Beck, 2003). This method enables the accurate estimation of low-

probability failure events by dividing the event into more manageable subsets. The target 

rare event, representing a failure or undesirable outcome, is subdivided into a sequence 

of nested subsets with increasing probabilities. The algorithm performs sampling within 

these subsets, starting from the lowest probability subset and progressing to higher 

probability ones. For each subset, the algorithm uses Monte Carlo simulations or other 
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numerical techniques to estimate the probability of reaching the subset. The outcomes 

obtained from each subset are combined using conditional probabilities to estimate the 

overall probability of the rare event. Subset Simulation is particularly effective in cases 

where the failure event is associated with a very low probability, making it difficult to 

estimate using traditional Monte Carlo simulations. Breaking down the estimation 

process into a series of nested subsets allows for more accurate and efficient estimation 

of rare event probabilities while still maintaining precision.  

 

2.3 PEER PBEE Framework 

Conditional-based approaches, also called IM-based approaches, have been developed 

with the purpose to make seismic risk estimation a more practice-oriented and 

computationally affordable task. These approaches rely on the definition of a specific 

intensity measure (IM) that describes the ground motion intensity at the site of the 

structure (Cornell, 2005).  

Currently, one of the most robust IM-based approach for the risk assessment used 

worldwide is the performance-based earthquake engineering (PBEE) methodology.  In 

the last 20 years, performance-based earthquake engineering (PBEE) has evolved, from 

its first definitions in the SEAOC Vision 2000 (1995) and FEMA 273 (ATC/BSSC, 1997) 

reports, into the rigorous probabilistic framework formalized by the Pacific Earthquake 

Engineering Research (PEER) Center (Cornell & Krawinkler, 2000; Deierlein et al., 

2003; Krawinkler & Miranda, 2004; Moehle & Deierlein, 2004), also referred to as the 

PEER PBEE framework. More recently, this framework was implemented in the FEMA 

P-58 report (FEMA, 2018) and in professional guidelines for design and assessment of 

tall buildings in California (e.g. Brandow, 2018; PEER, 2017). 

The PEER probability-based framework is developed for seismic performance-based 

design and evaluation and it is designed to meet multiple performance objectives, each 

comprising a performance level at a seismic hazard level (Mackie & Stojadinovic´, 2001). 

Performance objectives are described in terms of decision variables DV and the evaluation 

of the frequency with which various levels of DV are exceeded during the period of 

interest is the main objective of the framework. However, a general probabilistic model 
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directly relating decision variables to seismic hazard intensity measures IM is too 

complex to be resolved in a rigorous and consistent manner. Instead, the PEER framework 

is based on the total probability theorem (Cornell & Krawinkler, 2000) so that the problem 

can be deaggregated in various sources of randomness and uncertainty. In particular, 

PEER PBEE methodology consists of four successive analyses: Probabilistic Seismic 

Hazard Analysis, Probabilistic Seismic Demand Analysis (or Structural Analysis), 

Probabilistic Seismic Capacity Analysis (or Damage Analysis), and Seismic Loss 

Analysis. Probabilistic Seismic Hazard Analysis (PSHA) involves determining the 

likelihood of different levels of ground shaking occurring in a specific area due to 

earthquakes. This is often done using historical seismic data and probabilistic models. It 

considers the uncertainty of the components that characterize the earthquake hazard, 

including factors like fault locations and recurrence rates of magnitude. Probabilistic 

Seismic Demand Analysis (PSDA) focuses on understanding how different types of 

structures (buildings, bridges, etc.) will respond to the ground shaking predicted by the 

hazard analysis. This involves considering factors such as building materials, construction 

practices, and design codes. It accounts for uncertainties arising from the structural 

aspects like material properties or damping, as well as uncertainties stemming from 

earthquake excitation characteristics, such as variations in ground motion features at the 

same hazard level. Probabilistic Seismic Capacity Analysis (PSCA) evaluates the 

potential impacts of the earthquake on people, property, and the environment and defines 

the level of damage corresponding to the response of the structure. Seismic Loss Analysis 

estimates casualties, economic losses and disruptions to critical infrastructure 

corresponding to damage, considering the uncertainty in damage distribution across the 

structure. Figure 2-4 illustrates the stages of the PEER PBEE methodology. 

 

Figure 2-4 Stages of PEER PBEE methodology 

This methodology reflects the probabilistic nature and the uncertainties associated with 

the seismic performance prediction. The outcome of each analysis is a probability of 
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exceedance distribution (Der Kiureghian, 2005). The framework combines ground 

motion hazard (IM, Intensity Measure), structural response (EDP, Engineering Demand 

Parameter), prediction of structural damage (DM, Damage Measure), and prediction of 

structural loss (DV, Decision Variable). The equation that expresses the mathematical 

formalization of the framework is:  

𝑃𝐷𝑉(𝑑𝑣)

= ∫ ∫ ∫ 𝐺𝐷𝑉|𝐷𝑀(𝑑𝑣|𝑑𝑚)|𝑑𝐺𝐷𝑀|𝐸𝐷𝑃(𝑑𝑚|𝑒𝑑𝑝)||𝑑𝐺𝐸𝐷𝑃|𝐼𝑀(𝑒𝑑𝑝|𝑖𝑚)||𝑑𝐺𝐼𝑀(𝑖𝑚)|
𝐼𝑀𝐸𝐷𝑃𝐷𝑀

 
(2-10) 

The probabilistic models comprised in Equation (2-10) are: 

- 𝐺𝐷𝑉|𝐷𝑀(𝑑𝑣|𝑑𝑚), the result of Seismic Loss Analysis. This model predicts the 

probability of exceeding a DV (e.g. repair cost or traffic capacity reduction) 

conditioned on a DM. 

- 𝐺𝐷𝑀|𝐸𝐷𝑃(𝑑𝑚|𝑒𝑑𝑝), the result of Probabilistic Seismic Capacity Analysis. This 

model provides the probability of exceeding a DM (e.g. crack density), 

conditioned on the EDP. 

- 𝐺𝐸𝐷𝑃|𝐼𝑀(𝑒𝑑𝑝|𝑖𝑚), the result of Probabilistic Seismic Demand Analysis. This 

model provides the probability that a response parameter EDP (e.g. drift ratio) 

overcomes the value edp, given a value of a seismic hazard IM.  

- 𝐺𝐼𝑀(𝑖𝑚), the result of Probabilistic Seismic Hazard Analysis. This model predicts 

the probability of exceeding a seismic hazard intensity measure IM (e.g. spectral 

acceleration) in a given period of interest. 

The deagreggation of the problem is possible only if the conditional probabilities involved 

in the framework are mutually independent (discrete Markov process). Additionally, the 

models should be efficient, meaning that the dispersion between the model and the data 

is small and constant over the entire range of variables. 
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Being able to outline a good deaggregated performance-based framework is not an easy 

task (Cornell & Krawinkler, 2000) but it is essential to simplify the problem and to 

decouple it into independent units that can be designed separately.  

 

2.3.1 Probabilistic Seismic Hazard Analysis (PSHA) 

PSHA is conducted to describe in a probabilistic manner the likelihood of ground shaking 

at a particular location over a specified period of time. PSHA takes into account the 

complex and uncertain nature of seismic events, adding some complexity to the procedure 

but making it a valuable approach for managing earthquake risks.  

PSHA identifies and characterizes potential seismic sources within a given region. These 

sources can include known fault lines, subduction zones, and other geological features 

capable of generating earthquakes. The aim is to provide a probabilistic characterization 

of the intensity measure IM that includes the probabilistic definition of source-to-site 

distances and expected earthquake magnitudes associated with each source (Baker et al., 

2021). The IM characterizes the intensity of the expected earthquakes and it must account 

for all the random variables involved in the seismic scenario. Indeed, the mathematical 

formulation that provides the probabilistic distribution of the IM is given by the following 

integral, found applying the Total Probability Theorem: 

 
𝑃𝐼𝑀(𝑖𝑚) = ∫ 𝑃𝐼𝑀|𝑆(𝑖𝑚|𝑠)𝑓𝑠(𝑠)𝑑𝑠

𝑆

 (2-11) 

where 𝑓𝑠(𝑠) is the joint probability density function (PDF) of all the quantities S involved 

in the seismic scenario (earthquake magnitude, source-to-site distance, etc.) and 

𝑃𝐼𝑀|𝑆(𝑖𝑚|𝑠) is the probability for IM exceeding a given treshold value im conditioned on 

the occurence of S. If only the magnitude M and the source-to-site distance R are 

considered to describe the seismic scenario and assuming they are mutually independent, 

i.e. 

 𝑓𝑀,𝑅(𝑚, 𝑟) = 𝑓𝑀(𝑚)𝑓𝑅(𝑟) (2-12) 
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equation (2-11) can be rewritten as: 

 
𝑃𝐼𝑀(𝑖𝑚) = ∫ ∫ 𝑃𝐼𝑀|𝑀,𝑅(𝑖𝑚|𝑚, 𝑟)𝑓𝑀(𝑚)𝑓𝑅(𝑟)𝑑𝑚𝑑𝑟

𝑅𝑀

 (2-13) 

Equation (2-13) does not include any information about the frequency of occurrence of 

seismic events. However, it is possible to modify the equation including the mean annual 

rate of earthquake magnitudes M of interest (M>𝑚0) 𝑀(𝑚0): 

 
𝐼𝑀(𝑖𝑚) = 𝑀(𝑚0)∫ ∫ 𝑃𝐼𝑀|𝑀,𝑅(𝑖𝑚|𝑚, 𝑟)𝑓𝑀(𝑚)𝑓𝑅(𝑟)𝑑𝑚𝑑𝑟

𝑅𝑀

 (2-14) 

𝐼𝑀(𝑖𝑚) represents the annual probability of seismic excitation expecting to exceed 

various levels of intensity IM and it provides the so-called seismic hazard curve.  

To better understand how to characterize a seismic scenario, a detailed explanation of the 

source-to-site distance R and earthquake magnitude M random variables is provided in 

Appendix C.  

To estimate the ground shaking produced by different magnitudes of earthquakes at a 

specific location, PSHA employs Ground Motion Prediction Equations (GMPEs), also 

called Ground-Motion Models (GMMs) or attenuation relations. These equations 

consider factors such as distance from the seismic source, site conditions, and local 

geological characteristics and provide estimates of ground motion parameters, such as 

peak ground acceleration and spectral accelerations (Baker et al., 2021). A GMPE 

consists of a regression on collected results which are used to model the probability of 

exceeding the intensity measure given the seismic scenario parameters, according to a 

log-normal distribution. Figure 2-5 shows an attenuation relationship for magnitude 6.5. 

It can be observed how the intensity measure decreases when the distance from the source 

increases. 
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Figure 2-5 GMPM for PGA (magnitude 6.5) 

Assuming a log-normal distribution, a general form of a GMPE is: 

 
ln(𝐼𝑀) = µln(𝐼𝑀)(𝑀, 𝑅, 𝛩) + 𝜎ln(𝐼𝑀)(𝑀, 𝑅, 𝛩) ⋅ 𝜀 (2-15) 

where µln(𝐼𝑀)(𝑀, 𝑅, 𝛩) is the predicted mean value of ln(𝐼𝑀) and 𝜎ln(𝐼𝑀)(𝑀, 𝑅, 𝛩) is the 

predicted standard deviation of ln(𝐼𝑀). These terms are functions of the magnitude (M), 

the distance (R) and other parameters (θ) and they are the outputs of the ground motion 

prediction model. 𝜀 is the standard normal random variable that accounts for the IM 

variability. The latest prediction models for µln(𝐼𝑀)(𝑀, 𝑅, 𝛩) and 𝜎ln(𝐼𝑀)(𝑀, 𝑅, 𝛩) can be 

very complex with numerous terms and coefficients. 

It is common practice in structural analysis to use recorded ground motions, which are 

usually selected from a ground motion database. The primary challenge relates to the 

limited availability of data of strong ground motion from past seismic events. The existing 

dataset comprises a limited number of earthquakes and lacks records of strong ground 

motions. Consequently, performing a probabilistic analysis at the highest intensity 

measure levels requires the scaling of the recorded ground motion. Specifically, a low-

intensity ground motion associated with a given seismic scenario is selected and then 

scaled to target a specific intensity. However, the scaling, forcing, or stretching 

procedures can modify the earthquake features, making the record no longer realistic and 

raising concerns within the scientific community. A valid alternative strategy may be 

using ground motion simulation models. These simulations, coupled with actual recorded 

ground motion data, serve to enrich the dataset.  



20  

Ground motion simulation models can be classified in 2 main classes: physics-based 

(source-based) models and site-based (stochastic) models (Douglas & Aochi, 2008). The 

first class comprises models that rely on a proper mathematical description which is 

intended to simulate the real physics of the fault rupture and the waves propagation, until 

the shallower ground layers (Atkinson & Silva, 2000; Brune, 1970, 1971). They are 

generally developed by seismologists or geophysicist who have knowledge on the 

physical process. In fact, the inputs required for these models are quantities not easily 

attainable and therefore they are not practice oriented but limited to research field.  

The second class of models consists of stochastic methods that simulate the ground 

motions at a given site by means of ground motion models calibrated empirically on a set 

of past seismic events, without considering any physical aspect related to earthquake 

generation. There are different methods belonging to this class. Examples are spectral 

representation methods (Saragoni & Hart, 1973; Yamamoto & Baker, 2013), auto-

regressive moving average (ARMA) models (Polhemus & Cakmak, 1981), filtered 

Poisson pulses (Cornell, 1964), filtered Gaussian white noise processes (Rezaeian & Der 

Kiureghian, 2010; Shinozuka et al., 1967).  

One of the most representative and widely used stochastic ground motion model is the 

Atkinson and Silva (AS) ground motion (GM) model (Atkinson & Silva, 2000). This 

model considers the physical phenomena associated with a seismic event, including fault 

rupture and site-specific amplification effects. It provides the source-spectrum which 

represents the mean Fourier spectrum of the simulated accelerograms. The seismic input 

is defined through the moment magnitude M and the source-to-site distance R. The 

probability density function (PDF) for M for a given earthquake event is derived from the 

Gutenberg-Richter law, as described by (C-13). The ground motion is generated from a 

white noise represented by w(t). The white noise is modulated in time using the function 

e(t), resulting in the time function z(t)=e(t)w(t). To obtain the amplitude and frequency 

content, 𝑧̅(𝑓) (the Fourier transform of z(t)) is multiplied by the radiation spectra 

𝜀𝑚𝑜𝑑𝑆(𝑓). 𝜀𝑚𝑜𝑑 is a scaling factor accounting for amplitude variability; 𝑆(𝑓) is a 

deterministic function of the frequency f (Jalayer & Beck, 2008). The radiation spectrum 

considers various physical factors affecting the propagation of seismic waves and 
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provides a spectral representation of the ground motion. The mathematical expression of 

𝑆(𝑓) is reported in Appendix D. 

The outcome of a hazard analysis is represented by a hazard curve, showing the 

relationship between a chosen intensity measure and the mean annual frequency (MAF) 

of exceedance (Algermissen et al., 1982; Bommer & Abrahamson, 2006; McGuire, 

1976). In 1968, Cornell proposed (Cornell, 1968) the basic procedure to construct a 

hazard curve. The steps required for the evaluation of a hazard curve are (FEMA P-58-1, 

2012; Kramer, 1996): 

- For a given site, identify all the earthquake sources that may significantly affect 

the system; 

- For each seismic source, characterize the probabilistic distribution of the source-

to-site distances and the earthquake magnitude (and other parameters involved); 

- Select an appropriate probabilistic relationship (Ground Motion Prediction 

Equation) between the site's intensity measure (IM) and a specified set of 

seismological parameters; 

- Apply the Total Probability Theorem to estimate the probability of exceedance 

PIM (im). 

The hazard curves depict the probability of experiencing ground shaking at various levels 

of intensity (e.g., PGA or SA) over a specific time frame (usually 50 years) at a given 

location. They provide a graphical representation of seismic hazard and are very useful 

in building codes and engineering design. 

Figure 2-6 shows an example of a seismic hazard curve in terms of mean annual rate of 

exceedance 𝜈𝐼𝑀(𝑖𝑚) of a defined value of im. 
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Figure 2-6 Illustrative example of a hazard curve 

Sometimes, PSHA results are shown in terms of return periods of exceedance. The mean 

return period Tr represents the average interval between exceedances of that level of 

ground motion and it is defined as the reciprocal of the mean rate of occurrence: 

 
𝑇𝑟 =

1

𝜈(𝑖𝑚)
 (2-16) 

For example, a 2% probability of exceedance in 50 years corresponds to a 2,500-year 

return period 

It can be useful to compute the exceedance probability of the intensity measure for a finite 

interval of time rather than the mean annual frequency of exceedance, which is a 

characterization of the occurrence rate per year. To do this, it is necessary to introduce a 

temporal distribution recurrence law for earthquake. One of the simplest model for the 

temporal distribution of the earthquakes occurrence is the Homogeneous Poisson model, 

according to which, seismic events have an equal chance of occurrence between 

consecutive events and these events are considered to be independent from each other.  

Indeed, those are strong assumptions and a certain level of interdependence exists among 

seismic events. For instance, seismic forces can release stress following an earthquake, 

leading to evolving conditions and the probability of events may fluctuate after a seismic 

event. However, if we exclude all aftershocks and foreshocks, this assumption yield a 

more realistic perspective. Nevertheless, this model is widely accepted and the most 

adopted. 
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According to this Poisson assumption, the probability of observing a number n of seismic 

events with magnitude higher than zero is given by this relation: 

 
𝑃[𝑁 = 𝑛, 𝑡] =

(𝜈𝑡)𝑛𝑒−𝜈𝑡

𝑛!
 (2-17) 

The parameters involved are the mean rate of occurrence of events 𝜈, the time interval of 

interest t and the number of samples n in the time interval. The mean value is equal to the 

variance of this distribution. 

 𝐸[𝑁] = 𝑉𝑎𝑟[𝑁] = 𝜈𝑡 (2-18) 

Figure 2-7 illustrates an example of Poisson distribution of earthquakes. It can be 

observed that the mean value is around 4. 

 

Figure 2-7 Example of a Poisson distribution 

It is possible to derive the exceedance probability of events with 𝑀 > 𝑚0 in t from the 

complementary CDF (CCDF) (Probability of at least one event of 𝑀 > 𝑚0 in t), 

expressed by the following equation: 

 𝑃[𝑀 > 𝑚0] = 1 − 𝑃[𝑁 = 0, 𝑡] = 1 − 𝑒−𝜈𝑡 (2-19) 

This relation allows the link between the mean annual frequency and the probability of 

exceeding in the time interval t. Deriving Equation (2-19) with respect to time, the PDF 

of the distribution is obtained.   
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When assuming a Poisson model for the earthquake temporal distribution, it is possible 

to compute the probability of exceedance of a given intensity measure threshold for an 

interval of time of interest TL:  

 𝑃[𝐼𝑀 ≥ 𝑖𝑚; 𝑇𝐿] = 1 − 𝑒−𝜈𝐼𝑀(𝑖𝑚)𝑇𝐿 (2-20) 

 

2.3.1.1 Seismic Intensity Measures (IMs) 

Seismic intensity measures refer to quantifiable parameters used to measure the intensity 

or strength of ground shaking during an earthquake. Seismic intensity measures 

encompass a range of parameters, including but not limited to: 

- Peak Ground Acceleration (PGA): The maximum acceleration experienced by the 

ground during an earthquake. 

- Peak Ground Velocity (PGV): The maximum velocity of ground movement 

during an earthquake. 

- Peak Ground Displacement (PGD): The maximum displacement or movement of 

the ground during an earthquake. 

- Spectral Acceleration (SA): Acceleration response in different periods or 

frequencies, typically obtained from a response spectrum. 

- Average spectral acceleration (Sa,avg): Defined as the geometric mean of spectral 

acceleration values over a range of periods. 

- RotD50Sa (Boore et al., 2006): The current state-of-the-art IM usually adopted by 

current GMPEs. Rot indicates the rotation of the two orthogonal components of 

the ground motion, D indicates that period-dependent rotations are used and 50 

corresponds to the percentile value (the median value in this case). 

The intensity measure must be chosen in such a way to fulfil two main requirements: 

sufficiency and efficiency of the intensity measure (Luco & Cornell, 2007). The 
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sufficiency is the ability to predict the structural seismic response independently from 

other ground motion characteristics. It allows the applicability of the total probability 

theorem. Magnitude, distances and other seismic scenario related parameters must be 

fully accounted by a sufficient intensity measure as it is the link for conditioning the 

structural response. The efficiency reflects the capability of the IM to predict the structural 

responses with low dispersion. In this case, a small set of ground motion records is 

required to provide a good estimate of the seismic demand.  

 

2.3.2 Probabilistic Seismic Demand Analysis 

While PSHA estimates the likelihood of ground shaking at a specific location, 

Probabilistic Seismic Demand Analysis (PSDA) focuses on assessing the probabilistic 

response of structures to these ground motions. PSDA uses the results from PSHA, which 

provide probabilistic estimates of ground shaking parameters like peak ground 

acceleration (PGA) and spectral accelerations (SA) for various levels of earthquake 

intensity and quantifies the probability of a structure experiencing various levels of 

damage or performance states under different seismic scenarios. This analysis helps 

engineers and decision-makers evaluate the seismic performance and potential damage of 

buildings and infrastructure. Engineers develop mathematical models of buildings or 

structures, that consider factors such as building materials, geometry, mass distribution, 

and damping characteristics, to simulate their behaviour during an earthquake. PSDA 

employs nonlinear static or dynamic analysis techniques to account for the nonlinear 

behaviour of structures under strong ground shaking and to capture phenomena like 

stiffness degradation, yielding of structural elements, and energy dissipation. The end 

result of a PSDA is the response spectra generated for each seismic hazard scenario 

defined by PSHA, that represent the variation of structural response.  

For each intensity level of earthquake hazard, nonlinear time history analyses are 

performed to predict the structural responses using the ground motions selected for that 

specific intensity level. The responses are expressed in terms of chosen engineering 

demand parameters (EDPs). EDPs are measures that quantify the effects of an earthquake 

on a structure and can include displacements, accelerations, inter-story drifts, or other 
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quantities. The selection of appropriate EDPs depends on the specific project and the 

design criteria. 

Thus, the PSDA of a system provides information about the demand of a seismic response 

parameter (EDP) including the description of uncertainties conditioned to the seismic 

intensity measure (𝑃(𝐸𝐷𝑃|𝐼𝑀)) (Freddi, 2012). Figure 2-8 provides a brief description 

of the steps involved in PSDA. 

 

Figure 2-8 PSDA steps to derive probability distribution for EDPs 

The probability of a global collapse event, denoted as 𝑃(𝐶|𝐼𝑀), can be approximated by 

the number of simulations resulting in global collapse divided by the total simulations 

conducted for the given intensity level. Conversely, the probability of no global collapse 

is defined as 𝑃(𝑁𝐶|𝐼𝑀) = 1 − 𝑃(𝐶|𝐼𝑀). These probabilities play a crucial role in the 

subsequent loss analysis stage. 

To assign a suitable probability distribution, such as lognormal, to each considered EDP, 

the distribution parameters are calculated based on data obtained from simulations 

without global collapse. The total number of probability density functions resulting from 

PSDA is NIM × NEDP, where NIM represents the number of IM data points, and NEDP 

represents the number of considered EDPs. 

The most used conditional probabilistic methods are Incremental Dynamic Analysis 

(IDA), Multi-stripe analysis and Cloud Analysis. 

Incremental Dynamic Analysis (IDA) is a parametric analysis method that aims at better 

understanding the relationship between the range of response (demands) and the levels of 

ground motion record, the assessment of the dynamic capacity of the entire structural 
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system, at having an enhanced insight into how structural response characteristics change 

as the intensity of ground motion increases and a better comprehension of the implications 

associated with more severe ground motion scenarios. IDA is useful when the assumption 

of homoscedasticity is not accepted, aiding in estimating the dispersion of the demand for 

a specific IM value. The method is considered as the dynamic equivalent of the static 

pushover analysis and involves performing multiple nonlinear dynamic analyses on a 

structural by scaling the same record using different values of the IM  (Vamvatsikos & 

Allin Cornell, 2002). This methodology, thus, employs a single ground motion and does 

not account for the record-to-record variability. The results are usually presented in terms 

of curves of the structural response (commonly measured by an EDP) or a state variable 

(DM) versus seismic intensity measure IM (see Figure 2-9). 

 

Figure 2-9 Illustrative example of IDA curves. The grey dots correspond to collapse state. 

To address the limitations of IDA, Multi Stripe Analysis (MSA) method has been 

introduced and proven to provide accurate risk estimates with low computational cost 

(Scozzese et al., 2020). The method can be seen as a collection of Single-Record IDA 

using different ground motion records. The main difference between IDA and MSA is 

that IDA employs a single set of records, which are scaled to increasing amplitude levels, 

until the achievement of structural collapse (Jalayer & Cornell, 2009). In MSA, different 

sets of records are adopted for every intensity measure. Figure 2-10 shows the steps of 

the Multi-Record IDA process. The first step to perform MSA is to discretize the hazard 

curve according to different intensity levels and for each of these levels, select a given 

number of recorded ground motions. All the ground motion records are scaled to a 
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common value of an appropriately chosen IM (i.e. the spectral acceleration corresponding 

to the first modal period T1). Nonlinear dynamic analyses are performed and for each 

intensity measure, a stripe of outcomes is obtained. Each dot represents the maximum 

registered value of the parameter of interest for a given IM.  The resulting plot of an MSA 

shows the stripes at each IM level.  

 

Figure 2-10 MSA process 

Cloud Analysis method (Cornell et al. 2002) employs a set of unscaled recorded ground 

motion time-histories used to perform structural analysis (NTHA) (Figure 2-11). The aim 

is to collect a cloud of IM-EDP (intensity-response). The method involves the use of 

Probabilistic Seismic Demand Models (PSDMs) and regression analysis to compute the 

conditional mean and standard deviation of EDP given IM under the common assumption 

of lognormal distribution (Shome & Cornell, 1999). The simplest regression model is the 

linear model between IM-EDP natural logarithms (Baker & Cornell, 2006) (see Paragraph 

2.3.2.1). An example of cloud analysis is shown in Figure 2-12 below where grey points 

are observed values, obtained through NTHA and the black line represent the regression 

model.  
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Figure 2-11 Cloud analysis process 

 

 
Figure 2-12 Example of a cloud analysis model 

 

2.3.2.1 Engineering Demand Parameters (EDPs) 

Engineering demand parameters (EDPs) refer to quantities used to characterize the 

demand on a structure or system during an extreme event. They can be divided into global 

and local EDPs. Global EDPs are used to provide a generic description of the structural 

behaviour but local parameters can more realistically and efficiently describe the 

mechanisms of failure for structural vulnerability evaluations (Radomir, 2015), especially 

if the structure has low-ductility. Several global damage indices have been proposed in 

scientific literature which can be classified into different categories: cumulative, non-

cumulative, combined, displacement-related, energy-related, just to name a few. 

Concerning displacement-related damage indices, the attainment of a certain limit state is 

assessed from the exceedance of a maximum displacement threshold and thus of a 
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maximum deformation. Energy-related damage indices refer to the case in which the 

damage is related to energy dissipated, for example, through a hysteretic response. In 

addition, there are hybrid indices that essentially combines the ductility demand with the 

dissipated hysteretic energy to obtain a better estimate of the cyclic load effect. One of 

the most used hybrid index for safety assessment is the Park and Ang Index (Park & Ang, 

1985). Global EDPs, used to study the overall structural damage, are characterized by a 

reduced computational effort but, in structures with low ductility, can lead to inaccurate 

results. Therefore, it is necessary to study local EDPs in order to have a more realistic 

estimation of the structural degradation. The correct choice of these parameters can be 

made analysing the possible collapse mechanisms of the structural component under 

examination. Among the local indices, we can list the following: bending moments, 

curvatures, rotations, strain for steel and concrete fibres, forces and deformations, strength 

of cross-section, peak absolute accelerations, residual displacements, peak transient 

displacements (Radomir, 2015). Different EDPs can be employed to evaluate the damage 

of different components in a structure. For instance, it is possible to use inter-story drift 

for the structural system of a building, while office or laboratory equipment in the same 

building can be assessed using floor acceleration (Günay & Mosalam, 2013).  

 

2.3.2.2 Probabilistic Seismic Demand Model (PSDM) 

A Probabilistic Seismic Demand Model (PSDM), known also as regression model, is a 

mathematical representation used to relate the probability distribution of ground motion 

IM to EDP measures. It provides a statistical description of the seismic demands that 

structures or systems may experience during an earthquake and it can be seen as the link 

between PSDA and PSHA (Shome et al., 1998). The PSDM takes into account various 

parameters, including the seismic source characteristics, local site conditions, and 

structural properties, to model the uncertainty associated with ground motion.  

The selection of IM-EDP pairs is crucial for a successful PSDA. The properties that an 

optimal PSDM should have are efficiency, effectiveness, sufficiency and practicality. An 

IM-EDP pair in a demand model is practical when it aligns with engineering principles 

and can be readily derived from available ground motion measurements (for IM) and 
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nonlinear analysis response quantities (for EDP). It is crucial for both intensity and 

demand measures to maintain statistical independence from ground motion 

characteristics such as moment magnitude and epicentral distance. This condition is 

essential to achieve deaggregation. Demand models adhering to such conditional 

statistical independence are considered sufficient. The effectiveness of a demand model 

is evaluated by its ease of integration within a deaggregated performance-based design 

framework. The model gains credibility when the outcomes show strong correlations with 

existing experimental data. 

The relationship between the structural demand EDP and IM was proposed by Cornell et 

al. (2002) to be approximated by a power model: 

 
𝐸𝐷𝑃 = 𝛼(𝐼𝑀)𝛽 (2-21) 

where α and β are regression coefficients. Equation (2-21) can be transformed into a linear 

equation in the log-log space, as follows: 

 
ln(𝐸𝐷𝑃) = ln(𝛼) + 𝛽 ln(𝐼𝑀) (2-22) 

Employing a log-log linear demand model facilitates the closed-form evaluation of the 

integrals within the deaggregated performance-based design framework. Coefficients α 

and β are determined through linear regression analysis of the logarithms of the IM-EDP 

data, resulting in a line that represents the IM-EDP data when plotted on a log-log scale 

(as illustrated in Figure 2-13). The dispersion 𝛽𝐸𝐷𝑃 of the IM-EDP data concerning the 

regression fit, defined as the standard deviation of the logarithm of regression residuals 

for the demand measure (Cornell et al. 2002), is a metric describing the variability of EDP 

given IM.  

 

𝛽𝐸𝐷𝑃 = √
∑ [ln(𝐸𝐷𝑃𝑖) − (ln(𝑎) + 𝑏 ln(𝐼𝑀𝑖))]2
𝑛
𝑖=1

𝑛 − 2
 (2-23) 

 

An efficient demand model minimizes dispersion, thereby necessitating a reduced number 

of distinct nonlinear time-history analyses to compute coefficients α and β with the same 

level of confidence.  
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Figure 2-13 Illustrative example of a linear model 
 

In Equations (2-22) and (2-23), EDP represents the value of seismic demand obtained 

from nonlinear dynamic analysis, and n is the total number of recorded responses. There 

is no general consensus on which IM to employ in PSDMs for bridges. For instance, 

Freddi et al. (2017) identified spectral acceleration at a 1.0-second period and peak ground 

velocity as the most effective structure-independent IMs. Conversely, Ma et al. (2019)  

emphasized peak ground acceleration as the optimal IM for the drift ratio model of bridge 

columns.  

The traditional PSDM (Equation (2-21)) is the simplest approach for developing demand 

models of bridge components but it is afflicted with numerous limitations that can result 

in inaccurate predictions of demands and raise concerns about the reliability of associated 

fragility and resilience assessments. The limitations are due to the nonlinear behaviour of 

structures, so the linear model could be invalid for the entire IM range of interest. 

Researchers have tried to improve the traditional PSDM formulation. It has been found 

that a good fit can be obtained by adopting a bilinear regression. Many authors developed 

fragility curves based on bilinear regression models (Aljawhari et al., 2021; Bai et al., 

2011; Freddi et al., 2017; Gardoni et al., 2002, 2003; Ramamoorthy et al., 2006). A 

bilinear model can be written as: 

ln(𝐸𝐷𝑃)

= {
𝛽10 + 𝛽11 ln(𝐼𝑀) + 𝜀1, ln(𝐼𝑀) ≤ ln(𝐼𝑀∗)

 [𝛽10 + 𝛽11 ln(𝐼𝑀
∗)] +𝛽21[ln(𝐼𝑀) − ln(𝐼𝑀

∗)] + 𝜀2, ln(𝐼𝑀) > ln(𝐼𝑀∗)
 

(2-24) 



33  

𝛽10 controls the intercept of the first slope while 𝛽11and 𝛽21control the inclination (see 

Figure 2-14). ln(𝐼𝑀∗) identifies the point of intersection of the two segments. Two 

different dispersions, one for the first segment and one for the second segment, must be 

considered. The model parameters 𝛽10, 𝛽11, 𝛽21, ln(𝐼𝑀
∗) can be estimated by nonlinear 

least square regression. 

 

Figure 2-14 Illustrative example of a bilinear model 

The PSDM formulations are typically conditioned on a single predictor, which is usually 

an IM. However, when dealing with multiple predictors, it is necessary to employ 

parameterized metamodels like the Polynomial Response Surface Model (PRSM), 

Multivariate Adaptive Regression Splines (MARS), and Artificial Neural Networks 

(ANN) to effectively handle these situations (Ghosh et al., 2013; Mangalathu et al., 2018; 

Towashiraporn, 2004). 

 

A multiple linear (or multilinear) regression model is used to assess the relationship 

between multiple independent variables and one dependent variable. Unlike simple linear 

regression, which involves only one independent variable, multilinear regression 

considers several predictors to model the variability in the dependent variable. Multiple 

linear regression makes all of the same assumptions as simple linear regression: 

- Homogeneity of variance (homoscedasticity): the error size of the in the prediction 

doesn’t change significantly across the values of the independent variable. 

- Independence of observations: the observations are collected using statistically 

valid sampling methods and there are no hidden relationships among variables. 

- Normality: The data follows a normal distribution. 
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The generic formula for a multiple linear regression in the logarithmic space is: 

 
𝑦 = 𝛽0 + 𝛽1𝑋1 +⋯+ 𝛽𝑛𝑋𝑛 + 𝜀 (2-25) 

where y is the predicted value of the dependent variable, 𝛽0, … , 𝛽𝑛 are the regression 

coefficients, 𝑋0, … , 𝑋𝑛 are the independent variables and 𝜀 is the model normal error. 

In multiple linear regression, it is possible that some of the independent variables are 

actually correlated with one another, so it is important to check these before developing 

the regression model. If two independent variables are too highly correlated (R2 > ~0.6), 

then only one of them should be used in the regression model. The coefficient of 

determination, denoted as R2, is a statistical measure that represents the proportion of the 

variance in the dependent variable 𝑓𝑖 that is predictable from the independent variables 𝑦𝑖 

in a regression model. It quantifies the goodness of fit of the regression model, providing 

insights into the proportion of the response variable's variability that is captured by the 

predictor variables. 

 
𝑅2 = 1 −

∑ (𝑦𝑖 − 𝑓𝑖)
2

𝑖

∑ (𝑦𝑖 − �̅�)2𝑖
 (2-26) 

 

�̅� is the mean of the observed data. The value of 𝑅2 ranges from 0 to 1: 𝑅2 = 0 indicates 

that the model does not explain any variability in the dependent variable. 𝑅2 = 1 indicates 

that the model perfectly explains the variability in the dependent variable. 

 

A model that considers several multiple linear regression models simultaneously is called 

multivariate regression model, where there are multiple response variables, linearly 

modelled in relation to several predictor variables. In other words, a multivariate 

regression refers to cases where Y is a vector of dependent variables: 

 
𝒀 = 𝑿𝜷 + 𝜺 (2-27) 

for a predictor vector X. 

The model error term 𝜺 accounts for the difference between the model and the observed 

data and the record-to-record variability and it is usually assumed to be normally 
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distributed. Different methods can be adopted to compute the error term. One of those is 

the sample regression residual covariance (SCOV) method which adopts a constant zero 

mean normal distribution to model the correlated error terms (Du & Padgett, 2020). The 

error covariance matrix is computed as follows: 

  

 
�̂�𝑆𝐶𝑂𝑉 =

𝑬𝑇𝑬

𝑛
 (2-28) 

 

where 𝑬 is the matrix of the sample regression residuals. 

 

 

2.3.3 Probabilistic Seismic Capacity Analysis 

Probabilistic Seismic Capacity Analysis (PSCA) is a crucial component of the PEER 

framework and consists in the assessment of the probability of exceedance of a fixed 

damage level or limit state, conditioned to the response of the structure P(DM|EDP). 

PSDA and PSCA together are classified under the name of Seismic Vulnerability 

Assessment with the aim to provide the seismic vulnerability of the system (P(DM|IM)). 

The outcome of PSCA is the fragility function, which is a mathematical expression that 

relate the probability of reaching or exceeding specified damage states (e.g., slight 

damage, moderate damage, collapse) to the seismic intensity. These functions provide 

valuable insights into the vulnerability of the structure. PSCA informs decision-making 

processes by helping engineers, policymakers, and building owners understand the 

likelihood of various performance outcomes and make informed choices regarding 

retrofitting, repair, or replacement strategies. Based on the results of PSCA, engineers can 

recommend retrofitting or mitigation measures to enhance a structure's seismic resilience. 

These measures are tailored to address the specific vulnerabilities identified in the 

analysis. 

Once PSDMs have been established, it is possible to derive an analytical solution to 

construct the fragility curve. This solution considers various sources of uncertainty 

through an indirect approach. The failure of the structure is assessed by comparing the 
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demand against the capacity. In this probabilistic approach, the demand and the capacity 

do not have a unique value, but they are described by random variables that follow a 

probabilistic distribution. Therefore, it is necessary to define probabilistic models for the 

demand (𝑥𝐷) and the capacity (𝑥𝐶) and to include all available information about the 

statistical characteristics of the parameters involved. For a structural component, the 

probability of failure can be expressed by: 

 
𝑃𝑓 = 𝑃(𝑥𝐶 ≤ 𝑥𝐷) = 𝑃(𝑥𝐶 − 𝑥𝐷 ≤ 0) = ∫ 𝑓𝐶(𝑥)𝑓𝐷(𝑥)𝑑𝑥

∞

−∞

 (2-29) 

 

where 𝑥𝐷 is the demand and 𝑥𝐶 is the capacity which are represented as random variables 

- statistically independent of each other - with probability density function 𝑓𝐷(𝑥) and 

𝑓𝐶(𝑥) respectively. The exact solution of this integral is possible, but only in the case the 

random variable is described by multivariate standard normal random variables and the 

limit state function is a linear function of the random variable. Numerical approaches that 

approximate the solution can be employed in most practical applications. 

 

2.3.3.1 Fragility Curves 

A fragility curve is the graphical representation of the damage exceedance probability 

given a level of ground shaking intensity. These curves are independent on load design 

and this allows a better identification of the effect of uncertainty, especially in the case of 

significant demand variability as for floods or earthquakes. The general equation of a 

fragility curve (or conditional probability) is expressed by (Billah & Alam, 2015): 

 
𝑓𝑟𝑎𝑔𝑖𝑙𝑖𝑡𝑦 = 𝑃[𝐷𝑀|𝐼𝑀] (2-30) 

Several equations were developed based on Equation (2-30); however, other authors, as 

Yamaguchi & Yamazaki (2000), Kirçil & Polat (2006) and Ibrahim & El-Shami (2011), 

predominantly employed the following equation:  

 
𝑃[𝐷𝑀|𝐼𝑀] = 𝜙 [

ln(𝐷𝑀) − 𝜇ln(𝐷𝑀)(𝐼𝑀)

𝛽ln(𝐷𝑀)
] (2-31) 

where 𝜙(⋅) is the standard normal cumulative distribution function, 𝜇ln(𝐷𝑀)(𝐼𝑀) is the 

median value of the structural capacity, and 𝛽ln(𝐷𝑀) is the logarithmic standard deviation, 
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or dispersion of the capacity. It is common to assume homoscedasticity of the demand 

model (βDM|IM = βDM), as observed in studies by Bai et al. (2011), Celik & Ellingwood 

(2010). This equation found widespread usage and was extensively tested by Yamaguchi 

and Yamazaki across diverse structural types.  

In a fragility curve, the x-axis represents the intensity measure (IM), and the y-axis 

represents the probability of exceeding a certain damage or performance level (DM) (see 

Figure 2-15). The curve depicts the likelihood of experiencing damage or reaching a 

specified level of damage given a particular intensity measure. Different threshold values 

representing different damage state conditions can be chosen. For every threshold level, 

a different fragility curve expressing the probability of exceeding that specific threshold 

is obtained (Figure 2-16). 

 

Figure 2-15 A typical fragility curve 
 

 

Figure 2-16 Two different fragility curves corresponding to two damage thresholds �̅�1 and �̅�2. 
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The probabilistic seismic assessment of structures therefore requires the definition of 

accurate fragility curves describing the vulnerability of engineering structures to seismic 

damage (Flenga & Favvata, 2021).  

Fragility curves can be generated experimentally (Vosooghi & Saiid Saiidi, 2012), 

analytically (Mander & Basöz, 1999; Moschonas et al., 2009; Shinozuka et al., 2000), 

empirically (Basöz & Kiremidjian, 1998; Rossetto & Elnashai, 2003; Sarabandi et al., 

2004) or based on the opinion of experts (Applied Technology Council (ATC), 1985; 

Rossetto & Elnashai, 2003).  

Expert-opinion fragility curves can prove unreliable since they are based on 

professionals’ experience and judgement. Empirical fragility curves are developed on the 

basis of damage observation from previous seismic events while experimental fragility 

curves are generated from experimental outcomes. If there are no data available from past 

earthquakes, it is possible to derive fragility curves employing results from analytical 

simulations: data can be obtained from spectral analysis, non-linear static analysis or non-

linear dynamic analysis and in this is the case of analytical fragility curve. There is one 

last method to obtain such curves: it can be termed as hybrid method and it combines two 

or more of the above approaches. For example, in Kappos et al. (1995) the authors 

proposed a hybrid methodology that involves empirical and analytical approaches. In 

Kappos et al. (2006), the risk assessment of reinforced concrete and masonry buildings 

implicates the use of a hybrid method which combines statistical observations derived 

from earthquake-damaged structures with results from nonlinear static or dynamic 

analyses. Taking into consideration analytical fragility curves, it is necessary to determine 

the uncertainties concerning the demand and the capacity. In Argyroudis et al. (2018) the 

authors provide a comprehensive summary and review of fragility curves used for 

different transportation infrastructures under seismic forces, outlining key parameters and 

limitations associated with each. Many methodologies of developing analytical fragility 

curves can be found in literature: the maximum likelihood estimation method, the moment 

method, the probabilistic seismic demand model, Monte Carlo method, IDA, methods 

based on Markovian model, just to name a few. The method of maximum likelihood 

maximizes the likelihood of generating observed data in order to obtain the fragility curve 

parameters (Baker et al. 2011). Porter et al. (2007) explained the moment method where 
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the parameters of the fragility curves are deduced from the observed intensities of the 

earthquake. For a specific IM level, it is possible to assess the failure rate of the system 

by individually comparing the demand samples with the capacity samples. This 

evaluation allows for the determination of the proportion of cases in which the system 

fails and consequently, the probability of failure for that particular IM value. The same 

procedure needs to be repeated for all IM levels.  

Fragility curves are tools used to predict potential damage during an earthquake, acting 

as a means for seismic risk assessment. These curves offer insights into the expected 

physical damage resulting from the most powerful earthquake (mainshock). Beyond this, 

they are instrumental in evaluating the likelihood of aftershocks, aiding decisions 

regarding building re-occupancy post-earthquake. Additionally, fragility functions play a 

direct role in minimizing damage costs and loss of life during seismic events. 

Consequently, fragility curves become essential decision-making tools in both pre- and 

post-earthquake scenarios, potentially influencing future local building code provisions. 

 

 

2.3.4 Seismic Loss Analysis 

Seismic loss analysis is the last stage of the PEER PBEE methodology. This process 

allows to assess the potential economic, social, and structural losses that may occur due 

to seismic events. It involves quantifying potential losses in terms of infrastructure 

damage, economic loss, casualties, and social disruption. In particular, the analysis aims 

to estimate the direct financial losses incurred due to damage to buildings, infrastructure, 

and other assets (including repair and reconstruction costs), to assess the economic impact 

caused by business interruption, loss of productivity and market disruptions, to evaluate 

the social and environmental consequences and to estimate potential human casualties 

and injuries resulting from the seismic event, considering factors like building collapse, 

infrastructure damage, and population density.  

 

The data on damage derived from PSCA is converted into final decision variables (DVs). 

These DVs are directly applicable in the design process and decision-making. The most 

frequently used DVs are: 
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- Fatalities: The count of deaths directly resulting from damage to the structure. 

- Economic Loss: Monetary loss incurred due to repair costs for damaged 

components of the structure or replacement of the facility. 

- Repair Duration: The duration required for repairs, during which the structure is 

non-functional. 

- Injuries: The count of injuries resulting directly from damage to the facility. 

These first three DVs are commonly referred to as the "3 Ds" - deaths, dollars, and 

downtime. 

The probability of exceedance of losses at various damage measures (DMs) is determined 

through loss functions. Figure 2-17 shows that the loss curve 𝑃𝐷𝑉(𝑑𝑣) is the combination 

of the loss curves for individual structural and non-structural components an example of 

a loss curve. 

 

Figure 2-17 Loss function 
 

The loss curve is derived through the total probability theorem combining hazard, 

demand, capacity and loss analyses. The process of calculating the loss curve involves 

the following (Günay & Mosalam, 2013): 

 

- Identify the loss functions for each component j in the structure for each DM, 

denoted as 𝑃(𝐷𝑉𝑗|𝐷𝑀𝑘). 

- Combine the results of loss and capacity analyses for each component: 

𝑃(𝐷𝑉𝑗|𝐸𝐷𝑃𝑗) = ∑ 𝑃(𝐷𝑉𝑗|𝐷𝑀𝑘)𝑃(𝐷𝑀𝑘|𝐸𝐷𝑃𝑗)𝑘 . 

- Determine the probability of exceedance of DV for each component under the 

condition of no global collapse NC, 𝑃(𝐷𝑉𝑗|𝑁𝐶, 𝐼𝑀) =

∑ 𝑃(𝐷𝑉𝑗|𝐸𝐷𝑃𝑗)𝑃(𝐸𝐷𝑃𝑗|𝐼𝑀)𝑘 . 



41  

- Aggregate the results for each structural component to determine the overall 

exceedance probability of DV for the entire structure for a given IM under the 

condition of no global collapse, denoted as 𝑃(𝐷𝑉|𝑁𝐶, 𝐼𝑀) = ∑ 𝑃(𝐷𝑉𝑗|𝑁𝐶, 𝐼𝑀)𝑗 . 

- Combine the results for non-collapse and collapse cases and determine the overall 

exceedance probability of DV for the structure for a given IM: 𝑃(𝐷𝑉|𝐼𝑀𝑗) =

𝑃(𝐷𝑉|𝑁𝐶, 𝐼𝑀)𝑃(𝑁𝐶|𝐼𝑀) + 𝑃(𝐷𝑉|𝐶, 𝐼𝑀)𝑃(𝐶|𝐼𝑀). 

- Include the hazard analysis results: 𝑃(𝐷𝑉) = 𝑃(𝐷𝑉|𝐼𝑀)𝑃(𝐼𝑀)). This represents 

the probability of exceedance of DV in T years. 

 

Developing strategies to mitigate the identified risks and reduce potential losses is the 

main goal of Loss Analysis. For example, (Argyroudis et al., 2021) proposed a risk and 

resilience assessment framework that encloses the estimate of direct and indirect losses 

due to traffic disruption. A novel cost-based resilience index is presented and different 

restoration strategies are explored and assessed. The indices that estimate direct and 

indirect losses can streamline the allocation of resources, planning, and interventions for 

asset owners. 

Seismic loss analysis is crucial for disaster risk reduction and helps in the development 

of effective policies, emergency response plans, and risk management strategies. It plays 

a significant role in enhancing resilience and minimizing the adverse effects of seismic 

events on communities and economies. 

 

 

 

2.4 Extension of the framework to multiple earthquakes for damage 

accumulation  
 

In the previous chapters, we discussed the fundamentals of the PBEE framework and its 

application to single earthquakes. However, in reality, structures are exposed to multiple 

earthquake events during their lifetime. Understanding the cumulative damage caused by 

multiple earthquakes is essential for assessing the long-term performance and resilience 

of structures. This chapter explores the extension of the PEER PBEE framework to 

account for damage accumulation over multiple earthquakes.  
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Most earthquakes form part of a sequence, related to each other in terms of location and 

time. A typical sequence consists of foreshocks, a mainshock, and then aftershocks. 

Potential seismic damage can accumulate due to the impact of multiple earthquakes 

within a cluster and/or because the structure remains unrepaired between different 

clusters. In the context of performance-based earthquake engineering, the traditional 

framework often overlooks the accumulation of seismic damage. This oversight is 

primarily because PSHA typically focuses on mainshocks, and classical fragility curves 

only depict the failure probability for a given intensity in a single event. However, for a 

comprehensive life cycle assessment, the accumulation of seismic damage resulting from 

multiple events should be considered. Previous studies have shown that a Markovian 

model, incorporating damage accumulation across multiple mainshocks, can be 

effectively calibrated by preserving PSHA from the classical PBEE framework and 

substituting structural fragility with a set of state-dependent fragility curves. Remarkably, 

this Markov chain model remains applicable even when damage accumulates from 

multiple aftershocks following a known mainshock magnitude and location, provided 

aftershock PSHA replaces the traditional PSHA. 

Damage and structural failure in bridges have been extensively documented following 

multiple earthquakes. Seismic events like the 1989 Loma Prieta, 1994 Northridge, 2010 

Chile, and more recently, the 2017 Mexico City earthquake had substantial direct and 

indirect economic impacts on the countries affected. These events led to the necessity of 

incorporating seismic loads in structural design, especially in regions prone to frequent 

seismic activity.  

Several studies have examined the accumulation of damage from a single shock defined 

by repeated cyclic loadings while there is a relatively scarce literature on structural 

damage accumulation due to repeated earthquakes. Ballio & Castiglioni (1994) proposed 

a method for the estimate of cumulative damage during an earthquake calculated through 

dynamic linear and non-linear analyses. Jeong & Iwan (1988) investigated the aftermath 

of loading-unloading cycles from a single earthquake shock on the accumulation of strain. 

Some papers on deterministic seismic damage accumulation of structures due to repeated 

earthquakes can be found. For instance,Murià-Vila & Toro Jaramillo (1998) conducted a 

study on building founded in soft soil under repeated earthquake excitations. Elnashai & 
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Bommer (1998) demonstrated that the ductility demand after a multiple earthquake 

scenario is in most of the cases lager than the ductility demand requested for a single 

shock scenario. In Amadio et al. (2003) the authors studied a single degree of freedom 

system under repeated seismic ground motion and analysed the behaviour of the system 

and the effects on damage accumulation. Nevertheless, all these studies do not consider 

the probabilistic nature of risk and the uncertainties of the structural behaviour but they 

examine the problem as deterministic. Moreover, taking into consideration only a short 

duration between seismic occurrences, they did not capture the damage accumulation.  

 

Recently, innovative approaches evaluated the progressive structural degradation due to 

the accumulation of damage from repeated main-shock events during the lifetime of 

structures. It is found that in earthquake-prone regions there is a high probability of 

observing more than one damaging earthquake in a bridge’s service life. It is fundamental 

taking into consideration the cumulative damage in the seismic design because it can 

significantly influence the reliability of the structure. In Kumar et al. (2012) the authors 

calculated the probability of occurrence of more than one damaging event and developed 

a probabilistic model for computing the degraded deformation capacity of flexural RC 

bridge columns as a function of cumulative low-cycle fatigue damage. They concluded 

that the fragilities of the columns for given deformation demand increases with the 

increase in the value of fatigue damage and the fragilities of ductile columns increase 

faster than the non-ductile columns. Ghosh et al. (2015) proposed an approach based on 

regression models for predicting damage accumulation based on earthquake intensity and 

damage history. Alternatively, Iervolino et al. (2016) described the progressive structural 

degradation using a homogeneous discrete Markov process through which the transition 

probabilities between different progressive damage states are derived, given the 

occurrence of an earthquake. Similarly, Gusella (1998) proposed a method that estimates 

the safety probability of masonry structures with cumulative damage. In the work, a finite 

number of discrete states represents the damage and the evolution of damage is 

characterized by a Markov chain. The results are then compared and analysed through a 

numerical model that does not consider the accumulation of damage. Heredia-Zavoni et 

al. (2000) found an analytical close-form solution based on Bayes theorem for the 

probability damage accumulation after a seismic event occurred give the information of 
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the inelastic structural response and the distribution prior to the event. The model is 

applied to a reinforced concrete frame and describes the evolution of secant stiffness 

through cycles of inelastic response. Tolentino et al. (2020) presented an alternative 

approach to calculate fragility curves for bridges. The method considers sequences of 

seismic loading, in an instant of time, for the damage accumulation analysing the 

nonlinear behaviour of the structure.  

 

The degradation process due to seismic damage accumulation can be written in terms of 

residual capacity 𝑐(𝑡):  

 
𝑐(𝑡) = 𝑐0 − 𝑐𝑡𝑜𝑡(𝑡) (2-32) 

where 𝑐0 is the initial capacity at time t=0 and 𝑐𝑡𝑜𝑡(𝑡) is the total degradation at time t 

(Iervolino et al., 2016). If we represent the damage increment in a single seismic event 

with ∆𝑑𝑖, 𝑐𝑡𝑜𝑡(𝑡) can be defined as sum of the damage increments due to all earthquakes 

events N(t) in the time t (we ignore aging): 

 

𝑐𝑡𝑜𝑡(𝑡) = ∑ ∆𝑑𝑖

𝑁(𝑡)

𝑖=1

 (2-33) 

 

The computation of the structural failure probability due to the accumulation of seismic 

damage. 

 𝑃𝑓(𝑡) = 𝐹𝑇(𝑡) = 𝑃[𝑐(𝑡) ≤ 𝑐𝐿𝑆] = 𝑃[𝑐𝑡𝑜𝑡(𝑡) ≥ 𝑐0 − 𝑐𝐿𝑆] (2-34) 

Equation (2-34) represents the likelihood that the structure exceeds a specific limit state 

𝑐𝐿𝑆 at any point before t. Equation (2-34) also gives the cumulative probability function 

FT(t) in the lifetime T of the structure. Commonly, it is assumed that N(t) (i.e. seismic 

events) follows a Homogeneous Poisson distribution with a constant rate parameter λ. 

Consequently, the probability of failure can be calculated as in Equation (2-35), involving 

an integral of the k-th order when assessing the distribution of accumulated earthquake 

damage based on the number of earthquakes and their ground motion intensity measures 

(IM),  

 𝑃𝑓(𝑡) = 𝑃[𝑐𝑡𝑜𝑡(𝑡) ≥ 𝑐0 − 𝑐𝐿𝑆] (2-35) 
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=∑𝑃[𝑐𝑡𝑜𝑡(𝑡) ≥ 𝑐0 − 𝑐𝐿𝑆|𝑁(𝑡) = 𝑘] ∙ 𝑃[𝑁(𝑡) = 𝑘]

+∞

𝑘=1

 

=∑𝑃[𝑐𝑡𝑜𝑡(𝑡) ≥ 𝑐0 − 𝑐𝐿𝑆|𝑁(𝑡) = 𝑘] ∙
(𝜆 ∙ 𝑡)𝑘

𝑘!
𝑒−𝜆𝑡

+∞

𝑘=1

 

=∑ ∫ 𝑃 [∑∆𝑑𝑖 ≥ 𝑐0 − 𝑐𝐿𝑆|𝐼𝑀 = 𝑖𝑚,𝑁(𝑡) = 𝑘

𝑘

𝑖=1

]

𝑖𝑚

+∞

𝑘=1

∙ 𝑓𝐼𝑀(𝑖𝑚)𝑑(𝑖𝑚)
(𝜆 ∙ 𝑡)𝑘

𝑘!
𝑒−𝜆𝑡 

 

When the occurrence of seismic events N(t) can be described by a Homogeneous Poisson 

process, the IM in different earthquakes can be considered independent and identically 

distributed random variable (i.i.d. RV). The function 𝑓𝐼𝑀(𝑖𝑚) is the product of marginal 

distributions 𝑓𝐼𝑀𝑖
(𝑖𝑚). Usually, a homogeneous Poisson process is used for mainshock 

scenarios. In the case of aftershock scenarios, a nonhomogeneous Poisson process with 

time-varying hazard rate λ(t) is employed. The time interval considered is one year (i.e., 

T = 365 days) following a main shock event, after which the risk of aftershock usually 

decays to a negligible level (Luco et al., 2002). In the case of aftershock scenarios 

(nonhomogeneous Poisson process), the probability 𝑃[𝑁 = 𝑘, 𝑇] of having N shocks in 

time T can be computed as:  

 

𝑃[𝑁 = 𝑘, 𝑇] =
[∫ 𝜆(𝑡)
𝑇

0
]
𝑘

𝑘!
𝑒−∫ 𝜆(𝑡)

𝑇
0  

(2-36) 

 

The main challenge is determining the probability of capacity exceedance, given the IM 

and the number of earthquakes 𝑃[∑ ∆𝑐𝑖 ≥ 𝑐0 − 𝑐𝐿𝑆|𝐼𝑀 = 𝑖𝑚,𝑁(𝑡) = 𝑘𝑘
𝑖=1 ]. Different 

approaches can be employed to evaluate this probability. Iervolino et al. (2013) found a 

closed-form solution using gamma or exponential distribution to model earthquake 

damage accumulation, suitable to be applied to simple single degree of freedom (SDOF) 

elastic-perfectly-plastic structures when damage accumulation is based on hysteretic 

energy dissipation and the structural response in one earthquake does not depend on 

previous shock history.  
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Chapter 3 presents and compares different methodologies for the prediction of damage 

accumulation in structures subjected to multiple earthquakes within their lifetime. In 

particular, a Markov-chain based approach and four different PSDMs are analysed. The 

study results demonstrate the importance of considering the possibility of occurrence of 

multiple shocks in estimating the life-cycle performance of structures and highlight 

strengths and drawbacks of the investigated methodologies 

 

 

2.5 Damage assessment and risk updating based on inspections and 

sensor data– Bayesian approaches 

The problem of post-earthquake functionality and the estimation of aftershock risk is 

nowadays becoming crucial, especially if we consider strategical structures such bridges, 

and the introduction of an early-warning method able to detect damage in short time and 

warn the competent authorities in case of imminent risk is essential. It is of great relevance 

to be able to recognize whether a structure, though still standing, is failing or on the other 

hand, if a construction is still safe and capable of carrying loads despite the presence of 

signs of damage. At present, this task is under the responsibility of the officials in charge 

and it depends on their judgements. The inspections can be slow, resource-intensive, 

subjective and potentially inaccurate.  

In recent years, many methodologies and frameworks have been introduced to address 

the issue with the aim to support the decision on opening the bridge to traffic. Franchin 

& Pinto (2009) proposed a criterion for deciding whether or not to allow traffic on a 

bridge based on the survival probability of a mainshock-damaged bridge under aftershock 

hazard. The criterion is based on the comparison between the risk of the intact structure 

and the risk of the mainshock-damaged structure. The method comprises two steps: in the 

first step they defined increasing damage states and the fragility curve that characterizes 

the damage states. They used probabilistic seismic hazard analysis to evaluate the risk of 

collapse. In the second phase, aftershock fragility curves are calculated and used to 

determine the aftershock intensities that lead the bridge to collapse. Comparing the two 

risks, it is possible to decide whether or not to open the bridge to traffic. The problem of 

the uncertain knowledge of the bridge state following the mainshock was, however, not 
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addressed in their study. They assumed that the bridge damage is both analytically and 

visually detectable and that a near real-time estimation of the mainshock source and site 

parameters is available. 

Efficient tools for rapid loss assessment are required to improve timely emergency 

response and rescue operations and to provide precise loss estimates and accurate 

information to the public immediately after the occurrence of a major earthquake. Some 

methods utilize shake maps derived from seismic station data to determine seismic 

intensity, but the use of vulnerability fragility curves is still necessary to estimate damage, 

introducing significant uncertainty. Structural health monitoring (SHM) systems offer 

valuable information for seismic damage assessment. For instance, strain gauges can be 

used to measure the deformation of a concrete surface or to understand whether the 

concrete surface is cracked or not. Accelerometers are often employed to acquire the free 

and forced vibration modes 

Erdik et al. (2010) provides an overview of recent developments in earthquake rapid 

response systems aimed at estimating earthquake losses in quasi real-time. It includes a 

critical discussion of various methodologies for earthquake loss estimation and 

summarizes the features of available loss estimation software. The existing near real-time 

loss estimation tools are categorized into two main groups based on the coverage area: 

Global Systems and Local Systems. Çelebi et al. (2004) described an advanced seismic 

monitoring system for a 24-story building, developed by the owner of the building, in 

collaboration with a federal agency with expertise in seismic monitoring of buildings, 

private consulting engineers, and a supplier. The system enables the real-time recording 

of accelerations, computation of displacements, and estimation of drift ratios. The drift 

ratio is an indicator of the building's damage condition. This system fulfils the 

requirement for rapid quantitative assessments and decisions on post-earthquake 

occupancy. The operational system appears promising for rapid post-earthquake building 

assessments, for long-term assessment and damage detection.  

In Soyoz & Feng (2008), advancements to promptly identify elemental stiffness values 

of a structure in real-time during a seismic event that causes damage are introduced. The 

methodology is based on the extended Kalman filtering (EKF) method and it is validated 
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through experiments involving a large-scale realistic bridge model exposed to realistic 

seismic damage. 

Data from sensors like accelerometers might be easily accessible, but typically offer 

insights only into specific response parameters. Furthermore, processing this data can be 

time-consuming before useful information regarding structural damage can be obtained. 

A way to overcome these limitations is to exploit Bayesian inference.  Bayesian inference 

tools are used to update the knowledge of the state of damage of an infrastructure 

following an event, by fusing the a priori estimates of the damage with the measurements 

of observed variables correlated to the damage. For this purpose, the aim is to develop 

Bayesian Networks to facilitate multi-disciplinary risk analysis and to allow the 

assessment of the status of the infrastructure given some evidence (e.g. computing the 

reliability of a bridge given information about earthquakes or data from sensor). They can 

also be adopted for diagnostic purposes to identify the most likely causes of disruption. 

Alessandri et al. (2013) proposed a method for evaluating post-earthquake bridge 

operability based on a rational combination of information derived from numerical 

analyses and in-situ inspections. A Bayesian approach was developed to update the 

mainshock damage probability and thus the aftershock risk using the observation made 

by visual inspections. The study showed that in-situ inspections could drastically affect 

and modify the damage estimates for a structure, helping to decide whether to open traffic 

on bridges. 

In the study described in Montes-Iturrizaga et al. (2003), the authors developed optimal 

strategies for maintenance or repair of structures at minimum cost. They establish a 

damage threshold as a decision variable for the optimization of costs given an acceptable 

reliability level. The underlying concept is that the structural damage accumulates over 

seismic events until a certain level of damage is reached: if this threshold is exceeded, the 

structure requires to be repaired. The expected future costs and structural reliability as a 

function of damage threshold are then estimated. A Markovian model is used to describe 

the damage accumulation process and an algorithm to evaluate the transition probabilities 

between damage states is proposed. Furthermore, the paper examines how information 

obtained from the earthquake response of instrumented structures can be included and 
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used for maintenance strategies. Using a Bayesian approach, this information is utilized 

to update the probability distribution of the damage in order to increase the reliability and 

accuracy of the predictions about costs.  

Tubaldi, Ozer, et al. (2022) developed a Bayesian network-based approach which 

involves integrating high-fidelity structural models with seismic event information, such 

as magnitude and epicenter location, which are typically available shortly after an 

earthquake. Additionally, intensity recordings from nearby seismic stations and data from 

a wide array of sensors have been incorporated. The probabilistic BN-based framework 

presented in the article uses diverse sensor data to evaluate seismic damage for critical 

structures under earthquake loading. The framework is applied to a two-span bridge 

model in a high seismicity zone. The study compares the effectiveness of sensing 

techniques using pre-posterior variance and relative entropy reduction metrics. Two 

measures for quantifying the reduction in uncertainty resulting from these observations 

are introduced, relying on the concepts of pre-posterior variance and relative entropy 

reduction. The research applies this framework to evaluate the effectiveness of different 

sensing strategies for rapidly estimating a bridge's response and losses during moderate 

and strong earthquake scenarios. Two alternative parameters are defined to quantify the 

effectiveness of data obtained from different sensor types in reducing uncertainty 

concerning structural damage. The first parameter is a variance-based effectiveness 

measure, calculated as the ratio of the standard deviation associated with the prior 

probabilistic distribution of the variable of interest to the "pre-posterior" value, which 

represents the expected value of the posterior variance derived from averaging across all 

potential observations from the sensors. The second measure is derived from information 

theory and relies on Kullback-Leibler divergence, measuring the reduction of relative 

entropy. The Bayesian network framework developed by Tubaldi, Ozer, et al. (2022) 

focused only on mainshock scenarios. In Chapter 4, an expansion of the same framework 

is presented to include aftershocks in the risk evaluation of bridge structures.  

Bayesian Networks are powerful tools not only for seismic risk assessment but also in the 

context of structures exposed multiple hazards ( Lee et al., 2019; Sakovych et al., 2022; 

Sperotto et al., 2017). In 2016, Gehl & D’Ayala introduced a method for developing 

multi-hazard fragility functions using system reliability methods and Bayesian Networks 
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(BNs). By decomposing a bridge system into its components, the approach isolates 

specific failure mechanisms and damage states. At the system level, Bayesian analysis 

estimates the probabilities of different failure modes based on these component states, 

allowing for accurate predictions of downtime or traffic reduction. Applied to a bridge 

exposed to earthquakes, ground failures, and floods, the BN framework predicts four 

levels of functionality loss as functions of peak ground acceleration and flow discharge, 

considering cumulative damage from multiple hazards. 

The paper of Liu et al., 2015 proposes a three-level framework for multi-risk assessment. 

The first level uses a flow chart to guide users on whether a multi-hazard approach is 

necessary. The second level employs a semi-quantitative method to determine if a more 

detailed assessment is needed. The third level involves a detailed quantitative analysis 

using Bayesian networks. This framework, demonstrated with examples, is essential for 

sustainable development, land-use planning, and risk mitigation. It includes qualitative 

analysis, semi-quantitative evaluation of hazard interactions and dynamic vulnerability, 

and accurate quantitative assessment with Bayesian networks. This structured approach 

allows for systematic, step-by-step multi-risk assessment. 

Gehl, 2017aims to create a methodological framework for multi-risk assessment of road 

infrastructure systems, with a focus on deriving fragility functions for bridges facing 

earthquakes, floods, and ground failures. Given that network performance relies on the 

functional states of its physical elements, harmonizing fragility models and damage scales 

across various hazards is essential. The framework begins by cataloging hazard-specific 

damaging mechanisms for each bridge component (e.g., piers, deck, bearings). It then 

derives fragility curves for these failure modes and maps their functional consequences 

in a damage-functionality matrix based on expert surveys. These failure modes are 

integrated at the bridge level for specific damage configurations. A Bayesian Network 

approach is developed to derive system fragility functions robustly and efficiently, 

providing probabilities of functionality loss and accounting for multi-hazard interactions. 

At the network level, a fully probabilistic approach integrates multi-risk interactions at 

both hazard and fragility levels, incorporating a temporal dimension to account for joint 

independent hazard events and cascading failures. Bayesian Networks are explored as an 
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alternative to conventional sampling methods for quantifying extreme events, 

highlighting the computational challenges of large and complex systems. 

The following sub-section summarises basic concepts for constructing Bayesian 

Networks, with a particular focus on Bayesian Inference. 

 

2.5.1 Constructing Bayesian networks 

 

A Bayesian Network (BN), also known as a Bayesian belief network or probabilistic 

graphical model, is a graphical representation of probabilistic relationships among a set 

of variables. It's named after Thomas Bayes, an 18th-century statistician, and is rooted in 

Bayesian probability theory. It employs a Directed Acyclic Graph (DAG) – a graph with 

no cyclic paths (no loops), allowing efficient inference and learning – where nodes 

represent variables, and directed arches between nodes represent probabilistic 

dependencies between the variables. Each node is associated with a probability 

distribution that quantifies the uncertainty or belief about that variable given the state of 

its parent nodes (nodes that have arches directed towards it). Bayesian networks are used 

for modelling uncertainty, reasoning under uncertainty, and making predictions or 

inferences based on observed or partially observed data. They find applications in various 

fields like artificial intelligence, machine learning, medicine, finance, natural language 

processing, and more. They are useful for decision-making, risk assessment, diagnosis, 

and many other tasks that involve uncertainty and complex relationships between 

variables. 

The key components of a Bayesian network are: 

- Nodes (Vertices): These represent random variables or attributes that are part of 

the model. Each node corresponds to a specific variable or event. 

- Arches (Directed): These represent the probabilistic dependencies between the 

variables. An arch from node A to node B indicates that A is a parent or direct 

influence on B. 

- Conditional Probability Distributions (CPDs): These specify the probability of 

each variable given its parent variables. They represent the conditional 

probabilities of a node based on its parent nodes. 
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For a given variable V in a DAG, we can define: 

- Parents(V): The parent nodes of V, which constitute the set of graph variables 

connected to V through an oriented arc, exiting themselves and directed towards 

V. For instance, in Figure 2-18, the parents of X2 are X5 and X1. 

- Descendants(V): The descendants of V, referring to the variables linked to V 

through an oriented path directed from V to them. For example, in Figure 2-18, 

the descendants of X5 are X2 and X3. 

- Non-Descendants(V): Variables that are neither parents nor descendants of V. In 

the figure, for instance, the non-descendants of X5 are X1 and X4. 

 

Figure 2-18 depicts a simple example of Bayesian Network, illustrating five random 

variables 𝑿 = {𝑋1, … , 𝑋5} and their associated probabilistic relationships. In this 

example, the random variable 𝑋2 depends probabilistically on the variables 𝑋1 and 𝑋5, as 

indicated by the arrows. Using BN terminology, 𝑋2 is a child of 𝑋1 and 𝑋5 , while 𝑋1 and 

𝑋5 are parents of 𝑋2. Similarly, 𝑋2 is defined conditionally on 𝑋5 and 𝑋3 is defined 

conditionally on 𝑋2. Nodes without parents, like 𝑋5 and 𝑋1, are often referred to as root 

nodes. 

 

Figure 2-18 An example of a DAG 
 

A Bayesian Network can encompass discrete, continuous, or both variables. When 

dealing with discrete variables, each node is associated with a set of mutually exclusive 

and collectively exhaustive states. There are no exact algorithms that can be used in a 

generic network with continuous variables. Consequently, a common approach involves 

discretizing the variables.  
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A DAG can be interpreted as a compact representation of the following relationship, 

defined as the independent statement: 

 
𝐼(𝑉, 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑉),𝑁𝑜𝑛_𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠(𝑉)) (2-37) 

Given the states of the parent nodes, each variable within a network is conditionally 

independent of the states of all non-descendant variables. This principle is referred to as 

the Markov assumption, and for a given generic Directed Acyclic Graph (DAG) G, it is 

denoted as Markov(G). When we perceive the DAG as a causal structure, Parents(V) 

represent the direct causes of variable V, while Descendants(V) symbolize the effects of 

V. The DAG depicted in Figure 2-18 encloses the following statements: 

 𝐼(𝑋3, 𝑋2, {𝑋5, 𝑋1, 𝑋4}) 

𝐼(𝑋2, {𝑋5, 𝑋1}, 𝑋4) 

𝐼(𝑋5, ∅, {𝑋1, 𝑋4}) 

𝐼(𝑋4, 𝑋1, {𝑋5, 𝑋2, 𝑋3}) 

𝐼(𝑋1, ∅, 𝑋5) 

(2-38) 

The symbol ∅ indicates that the variables 𝑋1 and 𝑋5 have no parent nodes. Therefore, 𝑋1 

and 𝑋5 are called root nodes. 

It is necessary to define the probability distributions (P) of the different variables and 

their interrelationships when designing a BN. The relationships between variables are 

represented through conditional probability distributions (CPDs) of the form 𝑃(𝑋𝑗|𝑋𝑖). 

 

Bayesian Network with discrete variables 

In a Bayesian Network with discrete variables, each node is associated with a Conditional 

Probability Table (CPT) that defines the probability of each possible state in relation to 

the values of its parent nodes. Specifically, for every variable X with its parent set U, the 

conditional probability P(x|u) is specified for each value x of variable X, corresponding 

to a specific state u of the parent node or nodes U. For nodes without parent nodes, a prior 

distribution is defined that assigns a specific probability value to each state. A Bayesian 

Network is fully defined when, in addition to the DAG, the conditional probability tables 

for each variable are provided (Darwiche, 2009). 
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Bayesian Network with continuous variables 

In a Bayesian Network involving continuous variables, these variables are represented by 

continuous probability distributions. In the context of continuous variables, the 

probability distributions associated with each node in the Bayesian Network are typically 

continuous probability distributions, often characterized by probability density functions 

(PDFs). These PDFs describe the likelihood of the continuous variable taking on specific 

values. Performing inference and learning in Bayesian Networks with continuous 

variables involves integrating PDFs and CPDFs, often using numerical methods due to 

the continuous nature of the distributions 

A BN is a graphical representation of a joint probability distribution (JPD) over all the 

variables, representing dependence and conditional independence relationships. The JPD 

can be expressed in terms of a product of CPDs, describing each variable in terms of its 

parents:  

 
𝑃(𝑋1, … 𝑋𝑛) =∏𝑃(𝑋𝑖|𝑋𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖))

𝑛

𝑖=1

 (2-39) 

Bayesian networks perform three principle tasks: (i) conducting probabilistic inference to 

estimate unobserved values based on available evidence, (ii) parameter learning and (iii) 

structure learning. 

Probabilistic inference is the process that allows the updating of the probability 

distributions of a subset of variables within the BN after observing another subset of 

variables in the model (referred to as the evidence variables). In other terms, it allows 

calculating the posterior distribution of variables given the observed evidence. Indeed, a 

Bayesian network is a complete model that describes the random variables involved and 

their interrelationships and therefore it can be used to address probabilistic queries related 

to these variables. For example, the value of 𝑋1 in Figure 2-18 may be inferred from the 

values of the other variables, i.e. 𝑃(𝑋1|𝑋2, 𝑋3, 𝑋4). More generally, inferences of the 

values of a set of variables can be made given the evidence of another set of variables, by 

marginalising over unknown variables. The process of marginalization consists of 

considering all the values that the unknown variables might assume and averaging over 

them.  



55  

Theoretically, inference is calculated as a product of CPDs, exploiting Bayes’ rule to 

compute the posterior probabilities. Given two generic variables XA and XB, the Bayes' 

formula reads:  

 
𝑃(𝑋𝐴|𝑋𝐵) =

𝑃(𝑋𝐴, 𝑋𝐵)

𝑃(𝑋𝐵)
=
𝑃(𝑋𝐵|𝑋𝐴) ∙ 𝑃(𝑋𝐴)

𝑃(𝑋𝐵)
 (2-40) 

where 𝑃(𝑋𝐴|𝑋𝐵) is the posterior probability, 𝑃(𝑋𝐴) is the prior probability,  𝑃(𝑋𝐵|𝑋𝐴) is 

the likelihood and 𝑃(𝑋𝐵) is the evidence. 

However, computing inference in this way is hard and inefficient. Various techniques 

leverage the graph's structure to develop precise and efficient inference algorithms, 

including the sum–product and max–sum algorithms. Nevertheless, exact inference 

becomes impractical for many problems. Consequently, the adoption of approximation 

methods such as variational techniques and sampling approaches becomes necessary. The 

most commonly used exact inference methods include variable elimination, clique tree 

propagation, recursive conditioning and AND/OR search. In addition to exact inference 

methods, various approximate inference algorithms are employed, including importance 

sampling, stochastic Markov Chain Monte Carlo (MCMC) simulation, generalized belief 

propagation.  

Probabilistic inference includes two distinct approaches: forward (predictive) analysis 

and backward (diagnostic) analysis. In forward analysis, the aim is to compute the 

probability distribution of any node within the BN based on known initial conditions or 

prior data. It involves propagating information from the initial state to predict future 

states. Backward analysis is the opposite of forward analysis and it involves working 

backward from a known observation to determine the possible causes or prior states that 

led to that result. Backward analysis in Bayesian networks is particularly powerful, as 

highlighted by (Bobbio et al., 2001). 
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Figure 2-19 Graphical illustration of forward and backward analysis 
 

The ability of BNs to easily compute the conditional distribution of any subset of 

variables in the BN given the information about the states of any other variable makes it 

highly suitable for applications in near-real-time seismic risk assessment and decision 

support. To apply precise inference algorithms effectively, discretization of all continuous 

random variables within the BN is usually required, excluding cases like linear functions 

of continuous Gaussian nodes that do not have discrete children.  

Parameter learning and structure learning are data-driven techniques. Parameter learning 

involves estimating the unknown parameters within the conditional distributions in 

Bayesian networks (BNs) based on the available data to maximize their likelihood. This 

estimation process can be accomplished through methods like the expectation-

maximization algorithm, as described in (Moon, 1996). On the other hand, Structure 

learning focuses on determining the graphical structure of the Bayesian network, 

including the arrangement of nodes and the directional relationships (edges or arrows) 

between them. This process is essential when the network structure is not known a priori 

or when you want to improve the network's performance by adjusting its topology. 

Structure learning methods aim to discover the most appropriate network structure based 

on the available data or domain knowledge. This involves identifying where and in which 
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direction arrows should be placed between nodes. This is outlined in studies like 

(Heckerman, 2008). 

 

 

2.6 Seismic risk-based design  
 

Risk-based design is an approach to designing structures that incorporates considerations 

of risk and performance criteria into the decision-making process. The goal is to identify 

and implement optimal design features that allow a structure to meet specific performance 

objectives while accounting for potential risks. Rather than relying only on traditional 

design standards, risk-based design sets explicit performance objectives. These objectives 

are often quantified in terms of risk metrics associated with the potential exceedance of 

tolerable thresholds of loss. This involves assessing and quantifying the risks associated 

with various design options, ensuring that the chosen design minimizes the likelihood and 

impact of adverse events. By identifying and addressing potential risks during the design 

phase, risk-based methodologies enable proactive risk management. This approach 

enhances the safety and performance of structures over their lifecycle. The determination 

of an acceptable risk, characterized by a specific probability of collapse, is subject to 

adopting models of acceptable risk. However, it's important to note that a universally 

agreed upon acceptable seismic risk is yet to be established.   

The limitation of current seismic design regulations, such as Eurocode 8 (CEN, 2004b) 

and ACI 318-11 (ACI, 2011), is the adoption of a uniform-hazard philosophy based on 

deterministic and simplified practices. This approach, although established and yielding 

satisfactory performance, leads to varying risk levels in different regions, despite 

structures being designed under the same regulations (Collins et al., 1996; Silva et al., 

2016a). 

Modern seismic design codes typically employ a force-based approach, defining 

earthquake input through an acceleration response spectrum. Simplified elastic analyses 

are employed and the ductile behavior is considered by applying a reduction factor to 

convert the elastic spectrum into an inelastic design spectrum. In EC8 (CEN, 2004b), this 

spectrum is based on a PGA value derived from the hazard curve of the structure's site 

for a predetermined probability of exceedance (CEN, 2004b). The spectral shape is 
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assumed to be influenced only by soil conditions. However, this design framework 

establishes uniform hazard levels across different locations, meaning that the 'uniform-

hazard' design PGA values share the same exceedance probability at every location. 

Notably, this approach results in non-uniform risk levels across different locations 

(Gkimprixis et al., 2019). 

 Recognizing this drawback, modern design philosophies advocate for fully probabilistic 

approaches to explicitly address the risk levels of structures.  

The United States made the first official attempt to manage seismic risk nationally across 

regions with varying seismicity levels. This initiative involved regulations (ASCE, 

2017;FEMA, 2009) suggesting the use of risk-targeted ground motion maps.  

Observations from past earthquakes reveal that while life safety is assured by compliance 

with design codes, economic losses due to structural and non-structural damage can be 

significant. Structures designed for inelastic behavior often overlook the behavior of non-

structural components, resulting in notable losses (Perrone et al., 2019). 

The challenge in seismic design is balancing safety and economic considerations. 

Achieving both objectives can be conflicting, as enhancing safety often requires increased 

construction costs. Therefore, a compromise is necessary between construction expenses 

and targeted safety levels. This dilemma has triggered intensive research into designing 

techniques that can benefits from reducing future losses when the seismic design level, 

and consequently the initial construction cost, is elevated (Gkimprixis et al., 2020). 

In the last ten years, numerous applications of 'risk-targeting' principles have been 

explored. Various risk-targeted design methods have been developed and applied to solve 

a wide range of design problems (Altieri et al., 2018; Barbato & Tubaldi, 2013; Costa et 

al., 2010; Dall’Asta et al., 2021; Franchin et al., 2018; O’Reilly et al., 2022; Rojas et al., 

2011; Sinković et al., 2016; Vamvatsikos et al., 2020; Vamvatsikos & Aschheim, 2016) 

The studies investigating this problem involve calculating seismic risk through the 

convolution of a seismic hazard curve, determined through probabilistic seismic hazard 

analysis for a specific location, with a fragility curve representing a designed structure. 

The ground motion intensity that the structure is designed to withstand is selected to 

ensure the structure attains a predetermined probability of achieving a particular 

performance standard, such as avoiding collapse. 
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Lazar & Dolšek (2012) introduces a simplified design procedure for buildings, based on 

the concept of acceptable risk. The authors propose an iterative process that involves a 

preliminary design of the structure as a first step. Subsequently, the seismic risk is 

assessed and compared against an acceptable threshold. If the seismic risk overpass this 

threshold, measures are taken to reduce it. The seismic risk is then re-evaluated for the 

new improved structure. To illustrate the proposed design approach, examples of an eight- 

and a fifteen-storey reinforced concrete building are presented. 

In 2007, Luco et al. (Luco et al., 2007) introduced an approach that targets a constant risk 

level throughout a region. This approach offers three advantages compared to the 

traditional method of defining design levels: clarity, consistent risk levels across a region, 

and the capacity to evaluate and, ideally, manage risk for various hazard types like 

earthquakes and wind. However, it does introduce a downside of explicitly specifying 

more choices, as opposed to implicit assumptions driven by convention (e.g., opting for 

a 475-year design return period). 

In the paper of Shi et al. (2012), the authors presented the concept and the assessment 

process for uniform risk-targeted seismic design. They analyzed the risks of collapse for 

buildings located in different Chinese regions with the same seismic fortification intensity 

but different seismic hazards. The results show that with China’s current seismic design 

method, the risk of structural collapse throughout the building's service life can vary 

significantly across different regions. 

More recently, Dang J. (2021) developed a direct risk-based seismic design approach for 

bridges based on incremental dynamic analysis, fragility and risk assessment, and life 

cycle cost analysis indicators, which are used as design input parameters to control the 

downtime due to the damage of key components such as rubber bearings. 

Deb, Zha, et al. (2022) proposed a method for risk-targeted performance-based seismic 

design of bridge piers for Californian Ordinary Standard Bridges to facilitate risk-

informed design and decision making. The proposed formulation has the advantage of 

finding a first physically realizable design point in the primary parameter space. This 

design point can be further refined by setting other bridge design variables to meet the 

requirements of capacity design, code-based minimum ductility capacity, minimum 
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reinforcement, and/or other external restrictions and requirements, i.e. within a risk-

targeted perspective. In a companion work, the same authors expanded the previously 

developed formulation to account for the aleatory uncertainty associated with the choice 

of finite element (FE) model parameters, and the epistemic uncertainty related to the use 

of finite datasets to estimate the parameters of the probability distributions characterizing 

the FE model and LS fragilities (Deb, Conte, et al., 2022) Deb et al. (2022a). Lian et al. 

(2022) proposed the concept of seismic importance adjustment factor as a way to adjust 

the bridge seismic importance factor in seismic design codes, based on the evaluation of 

direct (i.e. repair costs) and indirect (i.e. increased travel time) losses. Hence, the seismic 

importance adjustment factor ensures the accomplishment of the target requirements in 

terms of seismic risk. 

The risk‑targeted design methodology aims to design a structure that will be exposed to 

an acceptable and controlled risk level. The risk level is expressed as the mean annual 

frequency (MAF) of collapse. The solution of the risk-targeted problem requires an 

iterative approach (see Figure 2-20) that eventually leads to assuring the target risk level 

to the structure.   

 

 

Figure 2-20 Flowchart showing the risk-based design procedure. 
 

 

Overall, risk-based design methodologies provide a systematic framework for engineers 

and designers to create structures that are not only compliant with traditional standards 

but also resilient in the face of uncertainties and potential risks, contributing to enhanced 

safety and performance.  
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3 Safety assessment of bridge’s piers 

subjected to multiple earthquakes: Markov 

model vs Regression model  
 

 
This chapter is adapted from: 

Turchetti, F., Tubaldi, E., Patelli, E. et al. Damage modelling of a bridge pier subjected to multiple 

earthquakes: a comparative study. Bull Earthquake Eng 21, 4541–4564 (2023).  

 

In earthquake-prone regions, structures are exposed to repeated seismic events throughout 

their design life. The occurrence of multiple earthquakes, such as mainshock-aftershock 

sequences, can lead to a progressive reduction in structural capacity over time potentially 

resulting in catastrophic collapses and significant human and economic losses. As an 

example, the 1997 Umbria-Marche earthquake was characterized by a long sequence of 

earthquakes (i.e., six) of magnitude between 5 and 6 (Amato et al., 1998). In this case, 

although the main-shock event caused significant seismic damage in several structures, it 

was the subsequent events that led to structural collapse (Abdelnaby, 2012; Dolce & 

Larotonda, 2001).  
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Several studies have investigated the performance of structural systems under earthquake 

sequences, using models with different levels of complexity (see e.g. Aljawhari et al., 

2021; Fragiacomo et al., 2004; Di Sarno, 2013; Hatzivassiliou & Hatzigeorgiou, 2015). 

Researches have also focused on the development of state-dependent fragility curves 

(Aljawhari et al., 2021; Zhang et al., 2020) which are essential tools for the life-cycle risk 

assessment. 

Few studies have addressed the problem of damage accumulation by accounting for the 

probabilistic nature of the hazard, i.e. the randomness inherent to the occurrence time and 

intensity of the earthquakes. Specifically, Kumar et al. (2012) developed a probabilistic 

model for computing the degraded deformation capacity of flexural RC bridge columns 

under multiple damaging events as a function of cumulative low-cycle fatigue damage. 

They concluded that the fragilities of the piers for a given deformation demand rise with 

the increase in the value of fatigue damage and the fragilities of ductile piers increases 

faster than that of non-ductile piers. Ghosh et al. (2015) proposed an approach based on 

predictive regression model describing the probability of reaching a given damage level 

based on the intensity of the earthquake and previously accumulated damage. The model 

was used to predict the probability of damage exceedance conditioned on the number of 

earthquakes experienced by the structure. Time-dependent exceedance probabilities were 

computed using site-specific hazard curves for main shocks and aftershocks, 

characterized respectively by homogeneous and non-homogeneous Poisson process rates. 

Gusella (1998) proposed a method to estimate the reliability of masonry structures 

undergoing cumulative damage. In this methodology, the structural damage is represented 

by a finite number of discrete states and the evolution of damage is described as a 

homogeneous Markov discrete process, with a transition matrix that describes the 

probability of moving from a damage state to another given the occurrence of an 

earthquake. The occurrences of the earthquake events was modelled through a 

homogeneous Poisson process. Montes-Iturrizaga et al. (2003) implemented a Markovian 

model to describe the accumulation of damage under future multiple earthquakes and 

integrated it in an algorithm for optimal maintenance decisions for structures located in 

seismic regions. A Bayesian approach was employed for damage updating by 

incorporating information from sensors. Iervolino et al. (2016) evaluated alternative 
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approaches for defining the state transition matrix within the Markovian framework for 

damage accumulation, and also proposed an extension of the framework to account for 

non-stationary earthquake occurrence rates typical of aftershock sequences and ageing.  

This Chapter present a study which aims to review, evaluate and compare the 

effectiveness and accuracy of the abovementioned approaches for the prediction of 

damage accumulation in structures subjected to multiple earthquakes within their lifetime. 

In particular, the method of Ghosh et al. (2015) and the Markov-chain based approach of 

Gusella (1998), Montes-Iturrizaga et al. (2003) and Iervolino et al. (2016) are considered. 

In order to evaluate these methods, a simulation-based approach similar to the one 

followed in Scozzese et al. (2020) for evaluating multiple stripe analysis is employed. For 

this purpose, a stochastic earthquake hazard model is used to generate sample sequences 

of ground motion records that are then used to estimate the probabilistic distribution of 

the damage accumulated during the time interval of interest. This simulation-based 

approach provides a reference solution against which the other methods are evaluated. 

Besides assessing the effectiveness of each approach, some possible improvements of the 

cumulative demand model of Ghosh et al. (2015) are proposed and evaluated.  

A reinforced concrete (RC) bridge pier model (Lehman & Moehle, 2000) is considered 

to apply and compare the various approaches for damage assessment, and the Ang-Park 

damage index (Y.-J. Park & Ang, 1985) is used to describe the damage accumulation. It 

is noteworthy that the action of continuous progressive degradation (i.e. ageing) and the 

impact of retrofit interventions (e.g. Bender et al., 2018 ) between subsequent shocks are 

not considered in this study, although they may play an important role in the life-cycle 

assessment. Moreover, while this study focuses on a single pier and a single damage 

indicator, a more comprehensive assessment of the seismic risk of bridges should consider 

the fragility of multiple components and their contribution to the system reliability (see 

e.g. Gkatzogias & Kappos, 2022; Liu et al., 2022; Stefanidou et al., 2017; Stefanidou & 

Kappos, 2017). The study results demonstrate the importance of considering the 

possibility of occurrence of multiple shocks in estimating the performance of structures, 

highlight strengths and drawbacks of the investigated methodologies, and provide 

indications on the optimal procedures to follow for applying them.  
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Sub-section 3.1 presents the probabilistic model for the accumulation of damage and the 

alternative methods employed to calculate it. Sub-section 3.2 introduces the seismic 

hazard model and describes the details of the model of the reinforced concrete (RC) bridge 

pier adopted as case study. Finally, Sub-section 3.3 shows the results of the comparison 

of the different methodologies. This is followed by a final section that presents the 

conclusions drawn from this work and a discussion on future developments.  

 

3.1 Framework for damage accumulation  

3.1.1 Damage index for seismic damage accumulation 

The choice of a suitable parameter for describing the damage is an essential step at the 

base of the development of any methodology for evaluating the structural reliability under 

multiple earthquake shocks. A large number of damage indicators have been proposed in 

the scientific literature. These can be broadly categorized in two main classes: 

deformation-related and energy-related indices (Cosenza & Manfredi, 2000) . The first 

group comprises for example the maximum ductility demand (Baig et al., 2022) or the 

maximum drift demand (Bouazza et al., 2022; Gentile & Galasso, 2020). The second class 

of damage indices comprise parameters as the amount of energy dissipated through 

hysteretic response (Gentile & Galasso, 2021). In addition, there are hybrid indices that 

capture the combined effects of deformation and energy dissipation in order to have a 

better assessment of the cyclic load effects. One of such parameters is the Park and Ang 

damage index (Park et al., 1985; Park & Ang, 1985), defined as follows for a structural 

component under cyclic flexural loadings: 

 
𝐷 =

𝑑𝑚𝑎𝑥
𝑑𝑢

+ 𝛽𝑑
𝐸ℎ
𝐹𝑦𝑑𝑢

 (3-1) 

where 𝑑𝑚𝑎𝑥 is the maximum displacement of the structural member, 𝑑𝑢 represents the 

ultimate displacement under monotonic loading, 𝐸ℎ denotes the dissipated hysteretic 

energy, 𝐹𝑦 is the yield strength and 𝛽𝑑 is a dimensionless empirical factor describing the 

contribution of hysteretic energy to damage compared to the displacement demand. 

Experimental values of 𝛽𝑑 are in the range of -0.3 and 1.2 (Cosenza et al., 1993). 
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Table 3-1 Park et al. (1985) damage index classification. 

Level Damage Damage measure 

I D<0.1 No damage 

II 0.1<D<0.25 Minor damage 

III 0.25<D<0.4 Moderate damage 

IV 0.4<D<1.0 Severe damage 

V D>1.0 Loss of the element load resistance 

 

Park et al. (1985) proposed the relation reported in Table 1 between observed empirical 

damage and calculated damage index values. Values lower than 0.1 are associated with 

virtually no damage, while values higher than 1 are associated with a total loss of the load 

carrying capacity. The Park and Ang damage index has been employed in many studies 

on damage for RC columns under single shock scenarios (Kappos, 1997; Kunnath et al., 

1997).  

 

 

3.1.2 Overarching framework for seismic damage accumulation 

 

The failure condition of a system under a seismic sequence within a time frame T is 

controlled by the probability of exceedance of different levels of the considered damage 

index. Denoting with D the damage index, the probability of D exceeding the value d 

during the time T can be expressed through the total probability theorem as follows: 

 
𝑃[𝐷 ≥ 𝑑] =∑𝑃[𝐷 ≥ 𝑑|𝑛] ∗ 𝑃[𝑛, 𝑇]

∞

1

 (3-2) 

 

where 𝑃[𝐷 ≥ 𝑑|𝑛] is the probability that the damage D exceeds d, conditional on having 

the occurrence of n shocks, and 𝑃[𝑛, 𝑇] is the probability of having n shocks during T. It 

is noteworthy that in this study only mainshock events are considered, and that the hazard 

model is assumed as time-invariant. Thus, the probabilistic distribution of the earthquake 

characteristics is the same at each earthquake occurrence and the occurrence of the main 

shock events can be described by a time-invariant Poisson process with constant hazard 

rate �̅�. In view of this, the term 𝑃[𝑛, 𝑇] can be evaluated as follows: 

 



67  

 
𝑃[𝑛, 𝑇] =

(�̅�𝑇)𝑛

𝑛!
𝑒−�̅�𝑇 (3-3) 

 

where �̅� denotes the mean annual frequency of occurrence of events of any intensity, and 

it is specific for the site of interest.  

In the following, two different approaches for evaluating 𝑃[𝐷 ≥ 𝑑|𝑛] are illustrated: (i) 

the approach put forward by Ghosh et al. (2015), referred herein as “Regression-based 

Method (RBM)”, and (ii) the approach proposed by Gusella (1998), Montes-Iturrizaga et 

al. (2003) and Iervolino et al. (2016) denoted as “Markovian Method (MM)”. These 

approaches are evaluated against the classic frequentist approach, called hereafter 

“Simulation-based Method (SBM)”. The three approaches have in common that they 

require a set of ground motion sequences in order to evaluate 𝑃[𝐷 ≥ 𝑑|𝑛]. In this study, 

similarly to (Scozzese et al., 2020), these sequences are generated with a Monte Carlo 

approach by sampling from a stochastic ground motion model. Figure 3-1 summarizes 

the overarching framework for the evaluation of 𝑃[𝐷 ≥ 𝑑] following the three 

approaches. It is noteworthy that for practical purposes, the sum in Equation (3-2) is 

carried out up to a value of n equal to N, beyond which the probability of occurrence of 

the given number of events becomes negligible.  

 

 
Figure 3-1 Framework for seismic damage accumulation 

 

 

3.1.3 Simulation-based Method (SBM) 

The Simulation-based Method (SBM) requires a stochastic representation of the 

earthquake hazard, as the one employed in Scozzese et al. (2020). It estimates directly 

𝑃[𝐷 ≥ 𝑑|𝑛] by a Monte-Carlo approach, which involves generating a series of Ns 

earthquake sequences from the hazard model and performing time history analyses of the 

finite element (FE) model of the structure to obtain samples of the damage index for 

different number of shocks (N=n). Figure 3-2 shows an example of earthquake sequence 
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consisting of various shocks and the corresponding evolution of accumulated damage. 

Note that only the damage at the end of a shock is reported. For minor intensity 

earthquakes, the increase in damage is zero or not noticeable at the scale of the figure. 

 

 

(a) 

 

(b) 

 

Figure 3-2 (a) Sample earthquake sequence consisting of 7 shocks with time history 

ag(t) and intensity IM, (b) damage level D accumulated under the various shocks 

 

The damage exceedance probability is obtained by the following equation: 

  

 

𝑃[𝐷 ≥ 𝑑|𝑛] =∑
𝐼[𝐷 ≥ 𝑑|𝑛]

𝑁𝑠

𝑁𝑠

1

 (3-4) 

 

where I is the indicator function, assuming the value of 1 if 𝐷 ≥ 𝑑 conditional to the 

occurrence of n earthquakes, and zero otherwise, and Ns is the number of sequences, i.e., 

of samples of the damage index for a given number of shocks. Obviously, a significant 

number of samples is required to achieve confident estimates of 𝑃[𝐷 ≥ 𝑑|𝑛], particularly 

for high d values. 
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3.1.4 Regression-based Method (RBM) 

The approach proposed by Ghosh et al. (2015), denoted herein as RBM, is based on a 

probabilistic model that is a direct extension of the probabilistic seismic demand models 

(PSDMs) commonly used in Performance Based Earthquake Engineering (see e.g. 

Cornell et al., 2002 and Tubaldi et al., 2016). According to Cornell et al. (2002), for a 

single event, the relationship between the median value of a generic demand (in this case 

the damage index D) and the intensity measure of ground motions (IM) can be 

approximated by a power law: 

 

 𝐷1̂ = 𝑎1(𝐼𝑀1)
𝑏1 (3-5) 

 

The linear regression model (LR) is better represented in the log-log space, with Equation 

(3-5) rewritten as: 

 

 ln 𝐷1 |𝐼𝑀1 = 𝑎1 + 𝑏1 ln𝐷1 + 𝜀1 (3-6) 

 

where a1 and b1 are the regression coefficients and 𝜀1 is the error variable relative to the 

regression, which has a normal distribution with zero mean and standard deviation 𝛽1. 

The unknown coefficients and 𝜀1 can be evaluated through a least squares regression. In 

order to define the model for damage accumulation, Ghosh et al. (2015) introduced the 

Markovian assumption that the probabilistic distribution of the damage 𝐷𝑛 at the end of 

the n-th earthquake (with n>=2), depends only on the damage accumulated up to the time 

when the earthquake occurs, and not on the whole earthquake sequence and damage 

progression history. Obviously, the probabilistic distribution of 𝐷𝑛 must depend also on 

the intensity of the n-th earthquake, IMn. This leads to the following multilinear regression 

model, developed by Ghosh et al. (2015) and denoted as RM1: 

 

 ln𝐷𝑛| 𝐼𝑀𝑛, 𝐷𝑛−1

= 𝑎𝑛 + 𝑏𝑛 ln 𝐷𝑛−1 + 𝑐𝑛 ln 𝐼𝑀𝑛 + 𝑑𝑛 ln 𝐷𝑛−1 ln 𝐼𝑀𝑛

+ 𝜀𝑛 

(3-7) 
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where an, bn, cn, dn, are the regression coefficients and the term 𝜀𝑛 is the error variable 

relative to the regression, which is normally distributed with zero mean and lognormal 

standard deviation 𝛽𝑛. This model can be seen as an extension of the model presented in 

Equation (3-6) because the damage index of the structure after the n-th shock of a 

sequence depends on how “weak” the structure has become after being exposed to the 

previous n - 1 shocks (quantified herein only by 𝐷𝑛−1) (Ghosh et al. (2015). 

Alternative models are proposed hereinafter to improve further the model of Equation 

(3-7), by introducing more terms in the regression, similar to what was done e.g. by 

Tubaldi et al. (2022) and Tubaldi et al. (2016). 

The second regression model (RM2) considers a bilinear surface regression: 

 

 ln𝐷𝑛| 𝐼𝑀𝑛, 𝐷𝑛−1

= (𝑒𝑛 + 𝑓𝑛 ln𝐷𝑛−1)𝐻𝑛

+ (𝑔𝑛 ln 𝐼𝑀𝑛 + ℎ𝑛 ln 𝐼𝑀𝑛 ln𝐷𝑛−1)(1 − 𝐻𝑛) + 𝜀𝑛 

(3-8) 

where Hn is a step function that is Hn = 1 for IMn ≤ IM* and Hn= 0 for IMn> IM*. The IM* 

parameter can also be evaluated through a nonlinear least squares regression. The third 

model (RM3) is an improvement of RM1, using the max function:  

 

 ln𝐷𝑛|𝐼𝑀𝑛, 𝐷𝑛−1

= max {
𝑖𝑛 + 𝑙𝑛 ln𝐷𝑛−1 +𝑚𝑛 ln 𝐼𝑀𝑛+𝑛𝑛 ln 𝐷𝑛−1 ln 𝐼𝑀𝑛

𝐷𝑛−1
     + 𝜀𝑛 

(3-9) 

The previous models may return values of 𝐷𝑛 lower than 𝐷𝑛−1 due to the nature of the 

regression model and 𝜀𝑛. One way to overcome this physical inconsistency (i.e., damage 

can only increase) is to postulate that 𝐷𝑛>𝐷𝑛−1. The fourth regression model (RM4) 

employs the max function to solve the issue:  

 ln 𝐷𝑛|𝐼𝑀𝑛, 𝐷𝑛−1

= max {
𝑎𝑛 + 𝑏𝑛 ln 𝐷𝑛−1 + 𝑐𝑛 ln 𝐼𝑀𝑛+𝑑𝑛 ln𝐷𝑛−1 ln 𝐼𝑀𝑛 +𝜀𝑛

𝐷𝑛−1
 

(3-10) 

In order to fit the regression models described above, the FE model of the structure must 

be analysed under Ns =5000 sequences of ground motions consistent with the considered 
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hazard model. The 5000 samples of the responses under the first shock are used to fit the 

model of Equation (3-6). The fitting of the model for (𝐷𝑛|𝐼𝑀𝑛, 𝐷𝑛−1) is based on the 

samples of the damage indexes at the end of the n-th and of the (n-1)-th shocks, as well 

as of the samples of IMn. In theory, different models should be considered for n=2,...,N. 

However, assuming the regression model as homogeneous, the term n in the regression 

coefficient can be dropped, or in other words the regression coefficients (and thus the 

probability of moving from a state of damage to another) do not depend on the number n 

of the shock considered. Thus, the samples corresponding to different values of n can be 

considered jointly to fit the regression model. Once the regression model is fitted, the 

unconditional probability of exceeding the specified damage levels can be assessed with 

a Monte Carlo-based approach. For this purpose, Ns sequences of earthquake intensities 

can be generated by sampling from the stochastic model of the earthquakes for the site, 

and the regression equations with the associated uncertainties can be repeatedly applied 

to estimate the damage indices conditional to the number n of shocks. Finally, the 

probability exceeding a threshold damage level is estimated following a similar approach 

as the one used for the SBM method (i.e. Equation (3-4)).  

3.1.5 Markovian Method (MM) 

The approach proposed by Gusella (1998), Iervolino et al. (2016) Montes-Iturrizaga et al. 

(2003), denoted herein as MM, is applied to structures accumulating seismic damage and 

it is based on a Markovian representation of the degradation process (Serfozo, 2009). The 

underlying hypothesis is the stationarity of the process meaning that the evolution of the 

damage after a given time depends probabilistically only on the state of the structure at 

that time. The vulnerability is then represented as a state-dependent phenomenon 

described by a homogeneous Markovian chain, modelled through the transition 

probability matrix (TPM) that completely characterizes the stochastic process. For this 

purpose, damage d is discretized into a finite number of states 𝑛𝑒 where the first state 

corresponds to the undamaged structure (d1=0) and the last state corresponds to failure or 

collapse (dne=1). Defining (k-1) and k, with k=2,…, N, as two sequential seismic events, 

the transition probability between two damage states can be computed as: 
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 𝜙𝑖𝑗
𝑘 = 𝑃[𝑗 − 𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 𝑘|𝑖 − 𝑡ℎ 𝑠𝑡𝑎𝑡𝑒 𝑎𝑡 (𝑘 − 1)],

𝑖, 𝑗 = 1,… , 𝑛𝑒   
(3-11) 

 

where 𝜙𝑖𝑗
𝑘   denotes the probability that at the end of the k-th earthquake the structure 

reaches damage state j, given that the initial state is i. The probabilities of transition 𝜙𝑖𝑗
𝑘  

can be arranged in the TPM Ф(𝑘) of dimensions (𝑛𝑒x𝑛𝑒): 

 

 𝚽(𝑘) = {𝜙𝑖𝑗
𝑘 ;  𝑖, 𝑗 = 1,… , 𝑛𝑒} (3-12) 

The rows and columns of the TPM are labelled with the damage states of the structures 

arranged progressively from the top one corresponding to the as-new state to the bottom 

one that necessarily denotes the failure of the structure. The matrix is upper triangular 

because of the monotonous nature of the damage process. It may be used entering the row 

with the pre-event condition of the structure to get the probability to find it in any of the 

other states. It is noteworthy that 𝚽(𝑘) is estimated via simulation, as no closed form 

expressions are available. 

The damage probability vector 𝑷(𝑘) of dimensions (1x𝑛𝑒), computed at the end of the k-

th event, can be express as: 

 
𝑷(𝑘) = 𝑷(𝑘 − 1)𝚽(𝑘) (3-13) 

where 𝑷(𝑘 − 1) is the damage probability vector of dimensions (1x𝑛𝑒) at the start of the 

k-th event. The j-th element 𝑃𝑗
𝑘 of the vector 𝑷(𝑘), which expresses the probability of 

being in damage state j at the end of the k-th seismic event, is given by: 

 

𝑃𝑗
𝑘 =∑𝑃𝑖

𝑘−1𝜙𝑖𝑗
𝑘

𝑛𝑒

𝑖=1

 (3-14) 

where 𝑃𝑖
𝑘−1 represents the probability of being in damage state i at the start of the k-th 

seismic event.  

Under the assumption of homogeneity already introduced for the RBM, the damage 

accumulation process can be described as a homogeneous Markov chain defined by a 
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single TPM 𝚽, and the probability mass function after the occurrence of the N-th 

earthquake can be written as: 

 𝑷(𝑁) = 𝑷(0)Ф𝑵 (3-15) 

 

where 𝑷(0) is a vector (1x𝑛𝑒) that denotes the initial state of the structure. The probability 

that damage does not exceed a damage level 𝑑𝑗 conditional on the number of shocks n 

can be expressed by:  

 

𝑃[𝐷 < 𝑑𝑗|𝑛] =∑𝜓𝑖𝑗
𝑁𝑝𝑖

0 =

𝑗

𝑖=1

∑(∑𝑞𝑖𝑙
𝑁

𝑗

𝑙=1

)𝑝𝑖
0

𝑗

𝑖=1

 (3-16) 

 

where 𝑞𝑖𝑙
𝑁 is the element at row i and column l of the N-th product of matrix 𝑸 =

{𝜙𝑖𝑙; 𝑖, 𝑙 ≤ 𝑗}. This matrix is obtained by deleting from the matrix 𝚽 the rows and columns 

whose index is higher than l. Then, the matrix 𝜳N= {𝜓𝑖𝑗
𝑁} = {∑ 𝑞𝑖,𝑙

𝑛𝑗
𝑙=1 } can be formed. 

Therefore, the conditional probability of exceeding a given damage state 𝑑𝑗 is: 

 

 

𝑃[𝐷 ≥ 𝑑𝑗|𝑛] = 1 −∑𝜓𝑖𝑗
𝑁𝑝𝑖

0

𝑗

𝑖=1

 (3-17) 

 

3.2 Case study 

3.2.1 Stochastic earthquake model 

Similarly, to previous studies (Altieri et al., 2018; Dall’Asta et al., 2017), the seismic 

scenario is described by a single source model, characterized by two main random 

seismological parameters, namely the moment magnitude Mm, and the epicentral distance 

R. Earthquakes of magnitude between Mmin = 5.5 and Mmax = 8 have the same likelihood 

of occurrence within a circular area of radius Rmax = 25 km centred at the site where the 

structure is situated. The frequency of occurrence of the earthquakes is described by the 

Gutenberg-Richter recurrence law and the mean annual frequency of occurrence �̅� of 

earthquakes of any intensities is 0.0997 per year. The attenuation from the source to the 

site of the structure is described by the Atkinson–Silva (Altieri et al., 2018) source-based 

ground motion model, combined with the stochastic point source simulation method of 
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(Boore, 2003). The Spectral acceleration Sa(Tfund,ξ) at the fundamental period Tfund and 

the damping ratio ξ of the structure is chosen as intensity measure (IM). Figure 3-3a 

illustrates the probability mass function of the number n of shock occurrences during the 

lifetime of the structure (T =50 years). It can be seen that the probability of having 15 or 

more shocks is negligible. Figure 3-3b the probability of exceedance of IM, conditional 

on the number of occurrences. The values of Tfund and ξ refer to the case-study pier 

illustrated in section 3.2.2. A pool of Ns=5000 ground motion records are generated by 

sampling from the probabilistic distributions of Mm and R and by using the Atkinson-

Silva attenuation model (see Altieri et al., 2018 for further details). Since the model is 

homogeneous, Ns sequences of 20 consecutive ground motions are built by randomly 

extracting the sampled records from the pool of records. These ground motion sequences 

are then used as input for the time-history analyses required to estimate the evolution of 

damage. 

  
(a) (b) 

Figure 3-3 (a) Probability of n shocks in lifetime T = 50 years; (b) Probability of exceedance of IM in 50 

years conditional to the number of shocks n 

 
 

3.2.2 RC pier model 

A RC bridge pier (Figure 3-4) of height L=4.9m is selected as case study. It corresponds 

to specimen denoted as 815 in Lehman & Moehle (2000). The details of the considered 

bridge pier are summarised in Table 3-2. The pier is characterized by a circular cross-

section with diameter Dm=610 mm and it has a mass of 35.6 ton. The fundamental period 

of the pier is Tfund = 0.69s and the damping ratio ξ is 0.05. Figure 3-4 represents an 

illustration of the chosen column. 
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Table 3-2 Details of the structural model Lehman & Moehle (2000) 

Column 

ID 

Height 

L 

[mm] 

L/Dm 

Vertical 

bar 

diameter 

[mm] 

Number 

of vertical 

bars 

Horizontal 

Bar 

diameter 

[mm] 

Horizontal 

Bar 

spacing 

[mm] 

ρl ρh 
Tfund   

[s] 

815 4876.8 8 16 22 6.5 32 1.49 0.01 0.69 

 

 

   

 

(a) (b) 

Figure 3-4 Schematic view of the bridge pier (Lehman & Moehle 2000) (a) longitudinal view (b) 

cross section 

 

A detailed numerical model of the RC column was constructed in OpenSees (2011) with 

due account of geometric and material nonlinearities by means of the fibre-based section 

discretisation technique (Kashani et al., 2016, 2017; Spacone, Filippou, et al., 1996). This 

includes an accurate representation of the influence of inelastic steel buckling and low 

cycle fatigue degradation. To this end, beam-column elements were employed to model 

the bridge pier and the cross-section of the element was discretized into a number of steel 

and concrete fibres at the selected integration points. This research follows the modelling 

approach described in Kashani et al. (2016) in which three Gauss–Lobatto integration 

points (Berry & Eberhard, 2007) are specified for the first element, where most of the 

nonlinear response is concentrated, based on the recommendations provided by Coleman 

& Spacone (2001) and Pugh (2012). Similarly, a force-based element with five integration 

points is considered to model the top part of the column, in accordance with Berry & 

Eberhard (2007). A schematic view of the fibre model and fibre sections is shown in 

Figure 3-5. The following material properties were assumed: a steel yield stress of fy=540 

MPa, maximum deformations of confined and unconfined concrete under compression of 

610 mm 

610 mm 

2500 mm 

4900 mm 

2500 mm 

1220 mm 

610 mm 
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εccore=0.035 (Van et al. 2003) and εccover=0.00428 (Karthik 2009), respectively, and a 

maximum longitudinal concrete tensile deformation of εt=0.000125 (Mander et al. 1988), 

while a maximum deformation of the steel under compression of εcs
 
=0.08 was adopted. 

The material nonlinearity was described through a uniaxial material relationship for steel 

(tension and compression) and concrete (confined and unconfined). In this study, the 

Concrete04 model available in OpenSees (2011) was used to model the unconfined 

concrete in the cover and the confined concrete in the core of the pier. This model is based 

on the Popovics (1988) curve in compression, and a linear-exponential decay curve in 

tension. The Karsan–Jirsa model (Karsan and Jirsa 1969) was used to account for the 

stiffness degradation and determine the unloading-reloading stiffness in compression 

while the secant stiffness was employed to define the unloading/reloading stiffness in 

tension. The confinement parameters (i.e., the maximum compressive stress of the 

concrete and the strain at the maximum compressive stress) were taken from Mander et 

al. (1988). The model developed by Scott et al. (1982) was used to define the confined 

concrete crushing strain in the confined concrete model. Besides, the phenomenological 

uniaxial model developed by Kashani et al. (2015) was used to describe the behaviour of 

steel reinforcement. For its implementation, the Hysteretic material model available in 

OpenSees (2011) was used. Moreover, the generic uniaxial fatigue material developed by 

Uriz (2005) was wrapped to the steel material in order to simulate the low cycle fatigue 

failure of vertical reinforcing bars.  Further information about the model can be found in 

Kashani et al. (2016) and Kashani et al. (2017). 
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Figure 3-5 Schematization of fibre beam-column element (a) with the bar buckling and bar slip model 

(b) 

 

3.3 Results 

3.3.1 Reference solution via SBM 

The direct simulation (SBM) approach provides the reference solution for the comparison 

of the RBM and MM methods. Figure 3-6 shows the probability of damage exceedance, 

computed for an increasing number of earthquake sequences Ns from 200 to 5000. The 

total number of shocks N examined for each curve is 20, and 40 discrete damage levels 

between 0 and 1 were considered to calculate the probability of exceedance. The value of 

the coefficient 𝛽𝑑 considered in the calculation of the damage index using Equation (3-1) 

is 0.05. It can be noted that by increasing Ns the exceedance curves tend toward the one 

calculated for Ns=5000 and the curves obtained considering Ns≥1000 are very close to 

each other. The maximum value of the coefficient of variation of the estimate of the 

exceedance probability for the highest damage level (D=1) is of the order of 6.5%. Thus, 

quite accurate estimate of the probability is achieved with the maximum number of 

sequences Ns considered. Beyond Ns=5000, there is no appreciable change in the 

estimated curve: the maximum relative difference in the probability of exceedance 

between the curves calculated with Ns =4000 and Ns =5000 is less than 2.5%. Thus, it can 

be assumed that the curves have reached convergence and for this reason, the solution 
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obtained with Ns=5000 is considered as reference solution for evaluating the accuracy of 

the other methods under analysis. 

 

 
 

Figure 3-6 Influence of the number of samples on the probability of exceedance of the damage D 

computed via SBM  

 

A further study is conducted to assess the maximum number of earthquake occurrences 

N to be considered during the assumed design life (T=50 years) of the structure in the 

summation of Equation (3-2). Figure 3-7 shows the probability of failure for an 

increasing number of N and for a number of Ns equal to 5000. It can be seen that, for low 

values of N, by increasing the maximum number of occurrences, the probability of failure 

increases significantly, whereas for value of N higher than 10, there is no change in the 

risk estimate. The value of N in the subsequent analyses is set equal to 20.  
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Figure 3-7 Exceedance probability of a limit threshold, evaluated via SBM for 5000 samples, for an 

increasing number N=n of shocks in 50 years  

 

 

3.3.2 RBM fitting 

This subsection describes the results of the application of the linear and multi-linear 

regression models obtained by employing a set of Ns=5000xN=20 samples. Figure 3-8 

shows the sample values of the damage index 𝐷1 versus 𝐼𝑀1  in the log-log plane, together 

with the median of the linear model of Equation (3-6). It can be observed that log(𝐷1) 

increases linearly with the log(𝐼𝑀1). The high value of the coefficient of determination 

(R2=0.964), and the low value of the mean square error or lognormal standard deviation 

(𝛽1=0.187), reported in Table 3-3, reveal a satisfactory fit of the model to the data. Figure 

3-9 illustrates the response samples and the fitted median demand obtained by using the 

various multi-linear regression models of Equations (3-7)-(3-10). Each figure shows the 

logarithm of the samples of the damage index 𝐷𝑛 observed for the n-th event as a function 

of the logarithms of the intensity measure 𝐼𝑀𝑛 and of the damage index 𝐷𝑛−1 observed 

for the (n-1)-th event. The surface plotted in the figures corresponds to the fitted median 

models (see Table 3-4 for the model parameters). The values of the 𝛽𝑛 and R2 (Table 

3-3) corresponding to the various models show that overall, the regression models are 

quite accurate, and RM3 is the one that performs best.   
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Figure 3-8 Linear regression model for predicting damage after the first occurrence 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 3-9 Models for damage accumulation: (a) RM1; (b) RM2; (c) RM3; (d) RM4 
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Table 3-3 𝛽n and R2 values of the linear and multi-linear regression models 

 𝛽1 𝛽n R2 

LR 0.187 - 0.964 

RM1 - 0.244 0.900 

RM2 - 0.229 0.912 

RM3 - 0.118 0.977 

RM4 - 0.224 0.910 

 

Table 3-4 Parameters of the linear and multi-linear regression models (LN, RM1, RM2, RM3, RM4) 

𝒂𝟏 𝒃𝟏 𝒂𝒏 𝒃𝒏 𝒄𝒏 𝒅𝒏 𝒆𝒏 𝒇𝒏 𝒈𝒏 𝒉𝒏 𝒊𝒏 𝒍𝒏 𝒎𝒏 𝒏𝒏 

-
3.55 

1.0
5 

-
0.20 

0.8
5 

-
0.22 

-
0.19 

-
0.31 

0.8
1 

-
0.32 

-
0.24 

-
3.24 

0.0
7 

0.9
7 

-
0.02 

 
 

3.3.3 Convergence analysis of the RBM 

Figure 3-10 shows the estimates of the probability of damage exceedance obtained for 

each of the RBM models fitted in the previous sections and compares them to the 

reference solution. The curves are obtained considering Ns=5000 sequences and N=20 

occurrences per sequence, and 40 discrete damage levels. It can be observed that the 

curves obtained with RM3 and RM4 are more stable and closer to the reference curve 

while the curves of RM1 and RM2 are more scattered for high values of D. The bias of 

the RM-based estimates is quantified numerically through the errors Δmax and Δmean, 

denoting respectively the maximum and the mean of the normalized distances between 

the curves obtained with each RM and the corresponding reference curve. The values of 

Δmax and Δmean are reported in Table 3-5. As already expected by observing Figure 

3-10, the lowest values of the errors are obtained for RM3 and RM4. In particular, RM3 

presents the minimum values of Δmax and Δmean, thus it can be considered in general 

as the most accurate model. It is noteworthy that the 𝛽n and R2 values of Table 3-3 follow 

the same trend of the values of Δmax and Δmean in Table 3-5, i.e., the best performing 

demand models yield the most accurate risk evaluations. 
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Figure 3-10 Estimate of the damage exceedance probability evaluated for the four regression models for 

Ns=5000 and N=20 

Table 3-5 Max and mean values of the normalized distances between the probability curves computed for 

each RM and the reference solution (minimum values are in bold) 

 Δmax Δmean 

RM1 0.9560 0.5885 

RM2 0.9353 0.5451 

RM3 0.8031 0.3408 

RM4 0.8392 0.5243 
 

A further study has been conducted on RM3 in order to establish the minimum number 

of Ns and N to be considered for estimating the probability of failure without affecting 

significantly the accuracy of the results. For this purpose, different regression models are 

built by fitting RM3 to different samples sets, obtained for an increasing number of Ns 

between 200 and 5000, for N =20. Figure 3-11 shows the probability of damage 

exceedance obtained considering the different sample sets. Figure 3-12 compares the 

corresponding values of the errors Δmax and Δmean. It can be observed that by increasing 

Ns, the errors tend to decrease as the exceedance curves become closer to the reference 

solution. The curves corresponding to values of  Ns≥500 are very close to each other, and 

thus Ns=500 can be considered as a good number of sequences for estimating the damage 

exceedance curve. 

 

d 
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Figure 3-11 Influence of number of sequences Ns on the estimate of the damage exceedance probability 

for RM3 (N=20) 

 

  
(a) (b) 

Figure 3-12 Plot of the normalized distances between the probability curves calculated for an increasing 

number of Ns and the reference solution (a) max values; (b) mean values 

 

Figure 3-13 Influence of number of shocks N on the estimate of the damage exceedance probability for 

RM3 (Ns=500) 

The influence of the number of shocks N to be considered for RM3 is also assessed. 

Figure 3-13 shows the probability of damage exceedance obtained with RM3 for Ns=500 

d 

d 
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and for an increasing number of N. The deviation between each curve and the reference 

solution is measured by the errors reported in Figure 3-14: the errors are very high for 

low values of N, whereas they decrease and stabilise for N≥10. Thus, N=10 is deemed 

sufficient to achieve accurate estimates of the curve.  

  
(a) (b) 

Figure 3-14 Plot of the max and mean values of the normalized distances between the probability curves 

calculated for an increasing number of N and the reference solution. (a) max values; (b) mean values 

 
 

3.3.4 Convergence analysis of the MM 

Following the same methodology of subsection 3.3.3, this subsection investigates the 

accuracy of the MM and examines how the number of Ns and N affects the estimation of 

the curve expressing the probability of damage exceedance. For these purposes, the 

probability curves are built initially using the MM for an increasing number of Ns between 

200 and 5000, 40 damage levels and N=20. The obtained curves are compared against the 

reference solution in Figure 3-15. As expected, for increasing values of Ns, the probability 

curves approach the reference solution. Figure 3-16 compares the error measures 

expressing the normalized distances between the probability curves and the reference 

solution. In general, the errors are low and decrease for increasing Ns values. For values 

of Ns increasing beyond 1000, the errors do not decrease significantly. Thus, Ns=1000 is 

a good number of sequences to be considered for fitting MM. 
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Figure 3-15 Influence of number of sequences Ns on the estimate of the damage exceedance probability 

evaluated with the MM (N=20) 

 

  
(a) (b) 

Figure 3-16 Plot of the max and mean values of the normalized distances between the probability curves 

calculated for an increasing number of Ns and the reference solution (a) max values; (b) mean values 

 

In order to evaluate the effect of the number of shocks N, the probability of damage 

exceedance is calculated for an increasing number of N, keeping fixed the number of 

sequences Ns=1000. Figure 3-17 shows the probability of damage exceedance vs D for 

an increasing number of N. The curves tend to overlap with the reference curve for a high 

number of N. Figure 3-18 compares the error measures obtained for the different values 

of N. As expected, increasing the number of N improves the estimate of the exceeding 

probability as the values of the Δmax decrease. In this case, N=20 must be considered as 

the error values decrease considerably up to N=20.    

 

d 
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Figure 3-17 Influence of number of shocks N on the estimate of the damage exceedance probability 

 

  
(a) (b) 

Figure 3-18 Plot of the max and mean values of the normalized distances between the probability curves 

calculated for an increasing number of N and the reference solution (a) max values; (b) mean values 

 

 

3.3.5 Comparison of the different methods 

This subsection summarizes the results obtained and shown in the previous paragraphs. 

The analyses whose results are reported in Sections 3.3.2 and 3.3.3 show that among the 

various RBMs, RM3 is the one that provides more accurate estimates of the probability 

of damage exceedance. It is sufficient to consider Ns=500 and N=10 to fit this model. 

With regards to the MM, based on the results reported in Section 3.3.4 it can be concluded 

that a slightly higher number of samples (Ns=1000 and N=20) is required to fit the model. 

Figure 3-19 shows the curves of the probability of damage exceedance resulting from the 

application of the RM3 (Ns=500 and N=20) and of the MM (Ns=1000 and N=20). It is 

possible to observe that the MM provides results very close to the reference ones obtained 

with the SBM, since it introduces no simplification in the evaluation of the evolution of 

d 
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damage during consecutive events. The estimates of the probability of damage 

exceedance obtained with the RBM, on the other hand, present some divergences due to 

the assumption introduced through the regression model. However, despite the 

differences, all methods lead to similar results. MM needs a slightly larger number of 

samples (and thus of analyses) with respect to RBM: this is due to the fact that in order 

to estimate with accuracy all the terms of the transition matrix, a greater number of 

samples is required, particularly to fit the bottom right part (corresponding to high levels 

of damage). The RBM yields some savings in terms of computational cost but at the 

expense of some bias.   

 

Figure 3-19 Comparison between the different approaches for evaluating the damage exceedance 

probability 

 
 

3.3.6 Results for T=5 years 

The methodologies investigated in this study assume that during the time T no 

interventions take place to return the structure to its undamaged state. This could be 

realistic only for small time frames. Thus, this subsection briefly illustrates some results 

obtained considering a shorter time interval T = 5 years for the evaluation of the 

unconditional damage exceedance probability. As shown in Figure 3-20, the probability 

of having more than 5 shocks in T = 5 years is negligible. Nevertheless, the value of N=20 

has been considered in the application of the methods for computing the risk via Equation 

(3-2). 

Figure 3-21a and Figure 3-21b show the probability of damage exceedances built using 

RM3 and the MM respectively for an increasing number of Ns between 200 and 5000. 

d 
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Figure 3-22a shows the variation with Ns of the mean error measure, expressing the 

normalized distances between the probability curves of Figure 3-21a and the reference 

solution. It can be seen that the error values decreases only slightly for increasing Ns 

values, since the method provides biased estimates of the risk. For values of Ns increasing 

beyond 1000, the reduction of the error can be considered not significant. Figure 3-22b 

compares the error measures for the curves obtained with the MM method, which are 

shown in Figure 3-21b. For values of Ns increasing beyond 1000, the error does not 

decrease significantly. 

 
Figure 3-20 Probability of n shocks in lifetime T = 5 years 

 

 

  
Figure 3-21 Influence of number of sequences Ns on the estimate of the damage exceedance probability 

computed for N=20 and for a period T = 5 years, built with (a) RM3 (b) MM 

 

 

d d 
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(a) (b) 

Figure 3-22 Plot of the mean values of the normalized distances between the probability curves 

calculated for an increasing number of Ns and the reference solution: (a) RM3, (b) MM. 
 

 

3.3.7 Sensitivity analysis on the natural period of the pier 

 

The natural frequency and period of a pier are indicators of its structural integrity, and 

these parameters can significantly change following an earthquake. When a pier is 

damaged by seismic activity, its stiffness typically decreases, leading to an increase in its 

natural period. The altered frequency may affect the selection of appropriate earthquake 

ground motions for analysis and design. Seismic codes and design practices often rely on 

the natural frequency to select ground motion records that are representative of the 

potential seismic demand on the structure. If the frequency changes significantly due to 

damage, the originally selected earthquake ground motions might no longer be 

appropriate, potentially underestimating or overestimating the seismic demands on the 

structure.  

This subsection presents a sensitivity analysis that elucidates the relationship between 

seismic damage and the pier's period. As reported in subsection 3.2.2, the fundamental 

period of the initial configuration of the pier is Tfund = 0.69s. Figure 3-23b shows the 

increase of the period T after every earthquake occurrence considering five different 

seismic sequences (Seq) and Figure 3-23a shows the relative damage D. The trend of the 

curves of Figure 3-23b is directly proportional to the trend of the damage curves, showing 

the correlation. The fourth occurrence of Sequences 4 and 5 produces considerable 

damage to the structure and thus the period of the pier increases considerably. After the 

occurrence of the twentieth shock, the natural period of all the five sequences results to 

be greater than 1s. Considering Ns=500 sequences as a sufficient number of sequences to 
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obtain accurate estimates, it is possible to compute the periods of the pier after each 

occurrence of a shock. Figure 3-24 shows the mean and the variance of the periods as a 

function of the number of occurrences N, computed considering Ns=500 sequences. It can 

be noticed how the period increases significantly until the occurrence of the 5th shock and 

then the increase diminishes. The variance of the periods decreases significantly after the 

10th shock, meaning that the period of the structure almost stabilizes. 

 

  
(a) (b) 

Figure 3-23 Damage D (a) and natural period (b) of the pier computed after each occurrence for five 

different sequences of 20 shocks. 
 

  
(a) (b) 

Figure 3-24 Mean (a) and variance (b) of the periods as a function of the number of occurrences N, 

computed considering Ns=500 sequences 
 

More in-depth analyses can be done to identify critical thresholds of stiffness reduction 

that significantly alter the natural frequency and to determine when it is appropriate to 

select more accurate earthquake ground motions to improve the overall risk assessment. 

However, this is beyond the scope of this thesis. 
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3.3.8 Aging effect 

 

Besides the damage directly due to earthquake shocks, the phenomenon that affects 

seismic structural vulnerability is the continuous deterioration of material characteristics, 

also known as “aging”. Damage from earthquakes can be termed as shock-based damage 

while aging is a progressive, continuous damage. Both processes contribute to damage 

accumulation. Aging is often related to an aggressive environment which worsens 

mechanical features of structural elements. Progressive degradation is typically a slow, 

continuous, time-dependent phenomenon, caused by factors such as chloride ingress, 

corrosion, fatigue, or biodeterioration (Bastidas-Arteaga et al., 2008, 2009). 

This subsection aims to show the effect of aging compared to earthquake damage in the 

lifespan of the structure. However a detailed understanding of this kind of wear 

phenomena is beyond the scope of this thesis and only a mathematical wear modelling 

will be given. In particular, the aim of this section is to discuss and to implement an aging 

mathematical model proposed by (Iervolino et al., 2013). 

To define a quantitative model that accounts for factors that contributes to deteriorate the 

structural integrity of a concrete infrastructure, the model is referred to the specialised 

bibliography (Li, 2020; Lu et al., 2022; Stewart et al., 2011). As stated in Iervolino et al., 

2013, it is more advantageous to model the cumulative seismic damage process separately 

from the progressive aging, given the lack of strong evidence for a significant correlation 

between progressive deterioration and shock-induced damage.  

The degradation process, written in terms of residual capacity 𝑐(𝑡), is described by 

Equation 2-32. Considering also aging and assuming that continuous and shock-based 

damaging events are independent, 𝑐𝑡𝑜𝑡(𝑡) can be written as:  

 

𝑐𝑡𝑜𝑡(𝑡) = 𝑑𝑐(𝑡) + ∑ ∆𝑑𝑖

𝑁(𝑡)

𝑖=1

 (3-18) 

where 𝑑𝑐(𝑡) is continuous damage at time t due to aging, ∆𝑑𝑖 is the damage increment in 

a single seismic event and N(t) is the number of earthquake events in time t. Both 
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deterioration effects can be expressed in terms of the same parameter which is the ductility 

to collapse μ(t) (Equation (3-19)). This parameter represents the ratio between the 

maximum displacement umax and the yield displacement uy. 

 

𝐷(𝑡) = 𝜇𝑐(𝑡) + ∑ ∆𝜇𝑖

𝑁(𝑡)

𝑖=1

 (3-19) 

In the case of continuous wear only, the modelling of aging can be represented by a 

gamma process and the probability of failure is given by (Iervolino et al., 2013): 

 
𝑃𝑓(𝑡) = 𝑃[𝐷(𝑡) > �̅�] = 𝑃[𝜇𝑐(𝑡) > �̅�] =

𝛤𝑢(𝑆𝑎 ∙ 𝑡, 𝛾𝑎 ∙ �̅�)

𝛤(𝑆𝑎 ∙ 𝑡)
 (3-20) 

where �̅� represents the limit state and 𝑆𝑎 and 𝛾𝑎 are the are the shape and scale parameters, 

respectively. The pdf of the damage accumulated in [0,t] is 

 

𝑓𝜇𝑐(𝑡)(𝜇) =
𝛾𝑎(𝛾𝑎 ∙ 𝜇)

𝑆𝑎𝑡−1𝑒−𝛾𝑎𝜇

𝛤(𝑆𝑎 ∙ 𝑡)
 

(3-21) 

with mean and variance that vary linearly: 

 𝐸[𝜇𝑐(𝑡)] = (𝑆𝑎/𝛾𝑎) ∙ 𝑡 = 𝑚𝑡 

𝑉𝑎𝑟[𝜇𝑐(𝑡)] = (𝑆𝑎/𝛾𝑎
2) ∙ 𝑡 = 𝜎2𝑡 

(3-22) 

Fixing m and 𝜎2, the parameters 𝛾𝑎 and 𝑆𝑎 can be obtained:  

 

 𝛾𝑎 = 𝑚/𝜎2 

𝑆𝑎 = (𝑚/𝜎)2 
(3-23) 

Typical values of parameters m and 𝜎2 for carbonation and chloride-induced corrosion 

are given in (Stewart et al., 2011). Estimating the shape and scale parameters of the 

gamma process due to aging involves statistical methods and analysis of data that 

represents the aging process of the material or structure in question. To estimate these 

parameters, data of the degradation process must be gathered over time, collected at 

regular intervals. This could include measurements of material properties, structural 
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integrity indicators, or any other quantifiable metrics of aging. In the case only aging is 

considered, i.e. 𝐷(𝑡) = 𝜇𝑐(𝑡), and assuming the degradation 𝐷(𝑡) follows a gamma 

distribution, the maximum likelihood estimation (MLE) can be used to estimate the shape 

and scale parameters. The MLE method finds the parameter values that maximize the 

likelihood function. Alternatively, Bayesian inference can also be used. Having no 

experimental data available, the specimens can be sampled from a gamma distribution. 

Figure 3-25 shows the curves of the probability of failure referred to the aging process 

and the shock-based process for each possible damage state �̅�. Figure 3-26 shows the 

same curves computed for �̅� =5 as a function of time T. The parameters 𝛾𝑎 and 𝑆𝑎 are set 

to 10 and 0.01 respectively, that correspond to a mild continuous deterioration (Iervolino 

et al., 2013, Vamvatsikos & Dolšek, 2011). As concluded in (Iervolino et al., 2013), for 

this specific case, the aging effect is negligible compared to the damage produced by 

earthquakes: the probability of experiencing a damage greater than 1 due to aging is ten 

times lower compared to earthquakes. 

 

 

Figure 3-25 Probability of failure curves referred to the aging process (dashed line) and the shock-based 

process (continuous line) as a function of the damage state �̅�. 
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Figure 3-26 Probability of failure curves computed for �̅� = 5, referred to the aging process (dashed line) 

and the shock-based process (continuous line) as a function of time T  
 

 

 

3.4 Conclusions 

The work provides a critical evaluation of alternative approaches for evaluating the 

evolution of damage in structures subjected to multiple shocks during their design life. 

The first approach considered is based on an existing regression model (RBM) that has 

been improved introducing three alternative models. The second approach is based on a 

Markovian method (MM) that requires fitting a transition probability matrix. The 

estimates of the probability of damage exceedance obtained via the alternative approaches 

are compared against the estimates obtained using a simulation-based Monte Carlo 

(SBM) approach. The nonlinear numerical model of a bridge pier is considered for the 

comparison.  

With regards to the first approach, it can be concluded that all the regression models 

exhibit similar performances but the RM3 model presents the lowest value of the 

lognormal standard deviation 𝛽 and highest value of R2. As a result of this, the estimate 

of the damage exceedance probability curve obtained with the proposed RM3 model for 

a time frame of 50 years is the closest to the reference one. Both the number of sequences 

Ns and the number of events within a sequence N significantly affect the estimates of the 

probability curves. A number of Ns equal to 500 and a number of N equal to 10 are 

sufficient to achieve accurate estimates of the probability of damage exceedance in 50 

years.  
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With regards to the MM, a good level of accuracy in the estimates of the probability of 

damage exceedance in 50 years can be obtained for Ns=1000 and N=20. The mean and 

maximum error in the risk estimate associated with this method are lower compared to 

the error values associated to the RBM. 

The various methods have also been applied considering a reduced time frame of 5 years 

for the evaluation of the probability of damage exceedance, during which it is more 

realistic to assume that no retrofit interventions take place following earthquake 

occurrences. The results obtained confirm that the RM3 model provides a biased estimate 

of the damage exceedance curve, and thus increasing the number of samples to consider 

for fitting the regression model does not result in significant improvements in terms of 

accuracy. On the other hand, by applying the MM method, quite accurate estimates of the 

probability of damage exceedance can be obtained for Ns=1000 and N=20. 

An analysis is carried out to demonstrate the sensitivity of the pier's period to seismic 

damage, highlighting the critical points where significant changes in structural behavior 

occur. More refined analyses can identify critical thresholds of stiffness reduction that 

significantly alter the natural frequency of the structure.   

The aging effect is also studied and the correlated damage is compared to the damage due 

to earthquakes. In the case of mild continuous deterioration, the aging effect is negligible 

compared to the damage produced by earthquakes. 

In conclusion, the RBM is computationally more efficient than the MM, since it is able 

to provide quite accurate damage estimates with a lower number of samples. However, it 

introduces some bias in the estimates of the probability of damage exceedance. Using the 

MM fitted considering a slightly higher number of samples, accurate and unbiased 

damage estimates can be achieved. 
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4 A probabilistic model for risk assessment 

of bridges under aftershocks  
 

 

This chapter is adapted from:  

Tubaldi, E, Turchetti, F, Ozer, E, Fayaz, J, Gehl, P, Galasso, C. A Bayesian network-based probabilistic 

framework for updating aftershock risk of bridges. Earthquake Engng Struct Dyn. 2022; 51: 2496-2519.. 

 

Earthquakes sequences are typically characterised by a mainshock followed by several 

smaller-magnitude aftershocks clustered in space and time. Such seismic sequences can 

lead to substantial losses, including direct repair expenses, business disruptions, and 

casualties, particularly if damaged structures and infrastructure are not promptly repaired 

after the initial event, often due to the short time between successive earthquakes. The 

assessment of structures following major earthquakes is crucial for effective emergency 

management decisions and ensuring their safe use, especially under the threat of 

aftershocks. Additionally, accurate evaluation helps in allocating resources strategically 

to minimize casualties, prevent business interruptions, and expedite recovery from 

disruption (Erdik et al., 2011). 

Many approaches and frameworks have been proposed in recent decades to address the 

post-earthquake functionality of bridges and their aftershock risk, with the objective of 
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assisting in the decision-making process regarding the reopening of bridges to traffic. 

Mackie & Stojadinović (2006), among others, developed an approach based on the 

performance-based earthquake engineering (PBEE) framework by the Pacific Earthquake 

Engineering Research (PEER) Center to evaluate the loss in load-carrying and traffic-

carrying capacity of bridges following a mainshock. However, their approach disregarded 

the increased risk of damage due to aftershocks.  

The accurate evaluation of the level of damage suffered by a structure following an 

earthquake is critical for a correct estimation of its aftershock risk (e.g., Aljawhari et al. 

(2021),Gentile & Galasso (2021)). Obviously, in the absence of direct evaluations of 

damage (e.g., via field inspections), knowledge of the earthquake-induced ground-motion 

intensity experienced by the structure is essential for inferring the level of damage 

sustained by it. The simplest approach for evaluating ground-motion intensity at a given 

target site involves using a ground motion model (GMM), estimating the amplitude of a 

ground-motion intensity measure (IM) given the information on the location and 

magnitude of the earthquake (and eventually other site-specific features). However, the 

dispersion associated with GMMs is generally large, thus leading to highly uncertain 

estimates of the ground-motion IM. This uncertainty could be reduced by using 

information from seismic stations near the site (Bragato, 2009; Gehl et al., 2017; Miano 

et al., 2016; Michelini et al., 2008; Wald et al., 2008). However, the correlation between 

intensities at two points reduces significantly with the distance between them; hence, the 

IM estimate is generally still quite uncertain unless a station is located very close to the 

site. In any case, a fragility model (i.e., probability of damage as a function of a hazard 

intensity measure) is needed to estimate the damage level given the uncertainty of the IM 

(and modelling uncertainties). This results in uncertainty propagation in damage and loss 

estimates, leading to further uncertainty in assessing structural/nonstructural risk under 

future earthquakes.  

One way to improve the knowledge of the actual state of a structure of interest is by 

exploiting observations from structural health monitoring (SHM) systems (Limongelli et 

al., 2017). Most existing SHM methodologies rely on vibration measurements through 

accelerometers to detect changes in the dynamic properties of the system that can be 

attributed to structural damage (Soyoz & Feng, 2008). Alternative sensors have also been 
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proposed for the dynamic identification and damage detection (e.g. Global Positioning 

System (GPS) receivers, cameras, etc.) (Im et al., 2013; Ozer et al., 2017; Porter, 2004; 

Spencer et al., 2004). Visual inspections after earthquakes help determine the damage’s 

severity, though they only partly capture effects of the seismic action (e.g., surface cracks 

in concrete, residual displacements). Moreover, conclusions on the level of damage 

associated with these effects can be subjective, prone to human error, and unreliable.  

Further studies have proposed approaches for improving bridge damage estimates using 

information from sensors and visual inspections. For example, Limongelli et al. (2017) 

developed a framework for quantifying the value of SHM sensor information for post-

earthquake emergency management of bridges, discussing alternative monitoring 

strategies. A similar framework was applied by Giordano & Limongelli (2022) to evaluate 

the value of information of SHM sensors for bridge risk management, considering 

aftershock hazard. The first natural frequency of the structure was considered as damage 

sensitive feature in the study. Tubaldi et al. (2022) developed a Bayesian network-based 

approach for evaluating and comparing the contribution of alternative data sources such 

as free-field seismic stations, GPS receivers, and structure-mounted accelerometers for 

bridge seismic risk assessment purposes. The comparison was conducted using two 

alternative measures that quantify the added value of information from the observations, 

based on pre-posterior variance and relative entropy reduction concepts. It was shown 

that the information from an accelerometer mounted on a bridge deck is superior in terms 

of uncertainty reduction to that provided by seismic stations located not very close to the 

site or by GPS receivers. 

The assessment of the aftershock risk for bridges - and thus decision making on post-

earthquake emergency management operations - may significantly benefit from the 

synergy of the various approaches outlined above and from the fusion of heterogeneous 

pieces of available information. The Bayesian-network (BN) framework developed by 

Tubaldi et al. (2022) only considers a mainshock scenario; in this Chapter, the framework 

is further extended to include aftershocks in the risk assessment of bridge structures. 

Furthermore, risk updating is carried out by combining valuable information from seismic 

stations, SHM sensors, and visual inspections. The framework extension requires 

defining an aftershock hazard model that describes the frequency and intensity of 
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aftershocks following a mainshock and developing a model that quantifies the damage 

accumulation under multiple aftershocks, given the damage experienced in the mainshock 

and the IMs of the aftershocks. The framework is applied to evaluate the aftershock risk 

of a case-study two-span bridge model, which is assumed to be located in Central Italy. 

This area was exposed to a series of aftershocks during the Central Italy earthquake of 

2016-17 (e.g. Ebrahimian & Jalayer, 2017; Sebastiani et al., 2019).  

Sub-section 4.1 illustrates the various models involved in the proposed BN. Sub-section 

4.2 presents the BN developed to describe the relationship between the various parameters 

involved in seismic damage assessment and updating of these parameters based on 

additional available information from different sources. Finally, sub-section 4.3 illustrates 

the implementation of the method on the two-span bridge as an illustrative case study. 

This is followed by a discussion of the results and some concluding remarks in sub-

section 4.4. 

 

4.1 Models for aftershock risk assessment 

This section describes the various models required to develop the BN for aftershock risk 

assessment, along with the parameters involved and the observations required for 

updating them. 

 

4.1.1 Mainshock analysis 

A GMM is required to estimate the probability distribution of a ground-motion intensity 

measure for the mainshock (MS) experienced by the considered bridge at the i-th site of 

interest, 𝐼𝑀𝑀𝑆𝑖, given the following variables that are assumed to be known at the end of 

the earthquake: moment magnitude of the mainshock earthquake (MMS); a measure of the 

source-to-site distance RMSi, for instance, assuming a point-source event, for simplicity; 

other parameters, collected in the vector si, characterising the fault (such as those 

describing the faulting mechanism, fault geometry, depth to the top of the rupture) and 

site properties. In general, a GMM is characterised by the following form (Douglas & 

Edwards, 2016): 

 

 log(𝐼𝑀𝑀𝑆𝑖) = 𝑓(𝑀𝑀𝑆, 𝑅𝑀𝑆𝑖 ,si) + 𝜂 + 𝜁𝑖 (4-1) 
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where 𝑓(𝑀𝑀𝑆, 𝑅𝑀𝑆𝑖 ,si) is a function describing the lognormal mean of 𝐼𝑀𝑀𝑆𝑖 given MMS, 

RMSi, and si; η is the inter-event (or between-event) error term, 𝜁𝑖, is the intra-event (or 

within-event) error term.  

The inter-event and intra-event variabilities of a GMM describe the multi-level 

variabilities inherited in the ground motion recordings that arise from multiple station 

recordings for multiple earthquake events. Specifically, the inter-event error term 

describes the systematic variability in the ground motions throughout the region produced 

by different earthquakes of the same magnitude and rupture mechanism. The intra-event 

error describes the variability in ground-motion intensity at various sites of the same soil 

classification and distance from the source during a single earthquake (Bommer & 

Crowley, 2006). Thus, following Park et al. (2007) and Crowley et al. (2008), the same 

inter-event variability is applied to all sites of interest for a given earthquake scenario. In 

contrast, the intra-event variability is represented by a spatially-correlated Gaussian 

random field. This can be built based on the intra-event error terms 𝜁𝑖 and the correlation 

coefficient ρij between the ground-motion parameters at two sites i and j for i,j=1,2,..Nsites, 

where Nsites is the number of sites of interest. The corresponding covariance matrix of the 

ground motion IM field has the following form: 

 

 𝚺𝐈𝐌 = [

𝜎𝜂
2 + 𝜎𝜉𝑖

2 ⋯ 𝜎𝜂
2 + 𝜌𝑖𝑗𝜎𝜉𝑖𝜎𝜉𝑗

⋮ ⋱ ⋮
⋯ ⋯ 𝜎𝜂

2 + 𝜎𝜉𝑗
2

] (4-2) 

 

where ση and σξ represent the standard deviations of the inter- and intra-event error terms 

provided by the GMM, respectively. Further details about this representation of the 

ground-motion field can be found in Gehl et al. (2017). The field observations of the 

ground-motion parameters at seismic stations can be used as evidence to update the prior 

estimates of the IM at the site of interest. The spatial correlation structure between the 

IMs at the monitored points and the target site plays a significant role in propagating the 

information from observed IMs to unobserved ones (Jayaram & Baker, 2009).  

 

4.1.2 Aftershock hazard analysis 

The magnitude and location of a mainshock event can be used to obtain realistic 

aftershock scenarios. Several alternate methods available in the literature can be used to 



102  

compute the seismicity/source parameters of aftershocks from the parameters of 

mainshocks. For example, Reasenberg & Jones (1989) proposed a stochastic Bayesian 

parametric model that allows the determination of probabilities for aftershocks and larger 

mainshocks during intervals following a mainshock. The estimate of the model 

parameters is obtained with Bayesian statistics using the ongoing aftershock sequence 

and a suite of historic California aftershock sequences. Currently, one of the most popular 

models to describe the seismicity of a region is the space-time Epidemic-Type Aftershock 

Sequence (ETAS) model (Iacoletti et al., 2021; Ogata, 1998). The model’s premise is that 

all earthquake events tend to trigger aftershocks with a stationary magnitude-dependent 

relation between them. The model considers earthquake seismicity from aftershocks 

(caused by internal stress adjustments in the seismogenic system) and background 

earthquakes (caused by forces within the plate tectonics, fluid/magma intrusion, slow slip 

etc.). The ETAS model is a point process representing the occurrence of earthquakes for 

a given magnitude threshold over a given temporal and spatial range. Due to the 

computational complexity of the ETAS model, particularly in terms of the location of 

aftershocks, simpler approaches such as the branching aftershock sequence (BASS) 

model (Turcotte et al., 2007) are available that probabilistically compute consistent 

source-to-site distances between the mainshocks and aftershocks. Apart from the models 

that relate the earthquake sequences using the causal event parameters, some methods 

propose the casual relations based on the intensity measures of the ground motions. For 

example, Fayaz et al. (2019) proposed a novel approach that uses time-series modelling 

concepts to temporally correlate the Arias intensity (used as a proxy for the energy content 

of ground motions) of various earthquakes sequences. 

Generally, for the purposes of structural analysis and risk analysis, the above-mentioned 

procedures are used to select consistent mainshock-aftershock ground motion records. 

Recently, Goda & Taylor (2012) proposed an aftershock record selection procedure that 

can be used to simulate time-series data for mainshock–aftershock sequences. The study 

used the generalised Omori’s law (Shcherbakov et al., 2005) as the basis of generating 

artificial sequences and simulated a series of events with their time and magnitude stamps. 

For simplicity, they used the same source-to-site distance R for mainshock and aftershock 

events. Alessandri et al. (2013) combined aftershock hazard analysis using Omori’s law 

and Latin Hypercube Sampling technique for selection of mainshock-aftershock ground 
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motions to conduct an aftershock risk assessment of bridge structures. Furthermore, a 

simplistic approach for simulating mainshock-aftershock sequences is to use Båth’s law 

(Båth, 1965) that postulates that the largest aftershock for a given mainshock is on average 

1.2 moment-magnitude units lower than the mainshock. 

In this study, for simplicity, the general procedure adopted by Papadopoulos et al. (2020) 

is utilised to compute the number of aftershocks, their moment magnitudes (𝑀𝐴𝑆), time 

between the mainshock and aftershocks (∆𝑡), and the distance between the epicentre of 

the mainshock and that of the aftershock (𝑟𝑒𝑝𝑖). The sequences are generated by means of 

the triggering component of the ETAS model. The model is based on three uncoupled 

probability distributions that model (a) the direct offspring productivity; (b) the spatial; 

and (c) the temporal distribution of the triggered earthquakes, as well as a magnitude 

distribution of earthquakes derived from the Gutenberg-Richter (GR) law. Specifically, 

the simulation of mainshock-consistent aftershock scenarios in this study uses Equations 

(4-3) to (4-6). First, the number of direct offspring events from a mainshock event with a 

magnitude 𝑀𝑀𝑆 is sampled from a Poisson distribution with mean 𝑘(𝑀𝐴𝑆) given in 

Equation (4-3). Then, for each of the offspring events, the distance 𝑟𝑒𝑝𝑖 between the 

epicentres of the two events and the inter-arrival time ∆𝑡 between the parent and offspring 

event are simulated using Equations (4-4) and (4-5), respectively, where ut, and ur are 

uniformly distributed random variables over the range [0,1], and A, a, p, c, D, q, γ are 

constant parameters representing the general spatial and temporal distributions of 

aftershock events and are estimated mainly through maximum likelihood estimation (Le 

Cam, 1990). Similarly, for each offspring aftershock, the corresponding magnitude 𝑀𝐴𝑆 

is sampled from the GR distribution using Equation (4-6), where um is a uniformly 

distributed random variable over the range [0,1], b is a constant parameter that represents 

the regional level of seismicity, and 𝑀𝑚𝑖𝑛 is the minimum considered magnitude. 

Equation (4-6) refers to the case of untruncated GR distributions with only a lower bound. 

After the direct offspring aftershocks (i.e., events triggered by the mainshock) are defined, 

the second generation of offspring events (triggered by direct aftershocks) can be sampled 

by repeating the procedure using the first-generation offspring as parent events. The 

second-generation offspring events can be again used as seeds for a third set and so forth 

until the sequence eventually dies out (zero offspring are sampled) or there are no more 
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seed earthquakes within the time of interest. A reasonable time span can be used to dictate 

the time of interest within which the majority of aftershocks are expected to occur, and 

bridges are not likely to be repaired (e.g., 1–3 years). In this study, whose focus is on the 

rapid response to earthquakes, a shorter time span of a few weeks might be considered. 

Earthquakes simulated outside of this time interval are usually discarded (Papadopoulos 

et al. 2020). 

𝑘(𝑀𝐴𝑆) = 𝐴 × exp (a(𝑀𝑀𝑆 −𝑀𝑚𝑖𝑛)) (4-3) 

𝑟𝑒𝑝𝑖 = 𝑑 × exp (𝛾(𝑀𝐴𝑆 −𝑀𝑚𝑖𝑛))
√𝑢𝑟

1
(1−𝑞)⁄

− 1 (4-4) 

∆𝑡 = −𝑐 + 𝑐(1 − 𝑢𝑡)
1
(1−𝑝)⁄

 (4-5) 

𝑀𝐴𝑆 = −
ln(1 − 𝑢𝑚)

𝑏 ln10
+ 𝑀𝑚𝑖𝑛 (4-6) 

 

The same GMM employed for the mainshock can be used to relate the IM of the 

aftershocks, collected in the vector IMAS, to the aftershock source to site distance (RAS) 

as well as the magnitude of the aftershocks (MAS). Though the framework can be easily 

updated to include aftershock specific GMPEs, based on studies like Lee et al. (2020), it 

was observed that the spectra of aftershocks and mainshocks do not vary significantly. 

Moreover, the use of average of spectral accelarations over a period range as the IM 

further reduces significant differences. Furthermore, there is a lack of usable aftershock 

recordings in the available databases. Due to this, the calibration process of aftershock 

specific GMPEs becomes unreliable (Papadopoulos et al. 2020) and hence most of the 

similar studies (Jalayer & Ebrahimian, 2017) have reverted to use same GMPEs for both 

mainshock and aftershock. 

 

4.1.3 Mainshock response and damage assessment 

Given the mainshock ground-shaking intensity, a statistical model is required to describe 

the joint probability distribution of the engineering demand parameters (EDPs) of interest 

for increasing intensity levels (Zhang et al., 2020). Furthermore, modelling the correlation 

structure between the various parameters of interest is very important as it is the basis for 

updating the probabilistic distribution of one EDP (e.g., floor acceleration in a building) 

given the observation of another (e.g., storey drift). 
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Alternative approaches can be employed to develop a joint probabilistic seismic demand 

model (PSDM), such as Multi-stripe analysis (Scozzese et al., 2020), Incremental 

Dynamic Analysis (Vamvatsikos & Cornell, 2002), or Cloud Analysis (Jalayer, 2003). 

Cloud analysis is adopted in this study, given its computational efficiency and resulting 

accuracy. For this purpose, the computational model of the considered structure is 

analysed under a set of ground-motion records of different IM levels. The response 

parameters (EDPi, for i = 1, 2, .., NEDP) are used as target variables for a regression model. 

In particular, a bilinear model is considered in this study (Freddi et al., 2017; Tubaldi et 

al., 2016) since it allows a better description of the trend of the structural response with 

the ground-motion intensity. The model for the generic i-th EDP is given in Equation 

(4-7) (see Figure 4-1): 

 

𝑙𝑛(𝐸𝐷𝑃𝑖|𝐼𝑀) = [𝑎1𝑖 + 𝑏1𝑖 𝑙𝑛(𝐼𝑀) + 𝜀1𝑖(~𝑁(0, 𝛽1𝑖))]𝐻(𝐼𝑀 − 𝐼𝑀∗)
+ [𝑎1𝑖 + 𝑏1𝑖 𝑙𝑛(𝐼𝑀

∗) + 𝑏2𝑖(𝑙𝑛(𝐼𝑀) − 𝑙𝑛(𝐼𝑀
∗))

+ 𝜀2𝑖(~𝑁(0, 𝛽2𝑖))][𝐻(𝐼𝑀
∗ − 𝐼𝑀)]  

 

(4-7) 

 where a1 is the intercept of the first segment, bi for i = 1, 2 are the slopes of the two 

segments, IM* is the breakpoint IM, which is defined as the point of intersection of the 

two segments.  

 

 ln(EDPi) 

ln(IM*) 

b2i 

1 

ln(IM) 

a1i b1i 1 

 

Figure 4-1: Illustration of the bilinear regression model. 

The step function H(·) controls which of the two segments must be considered (i.e., H = 

0 for IM ≤ IM*, and H = 1 for IM > IM*). The probability distribution of each EDP is also 

described by the values of two random variables (i.e., the error terms 𝜀1𝑖(~𝑁(0, 𝛽1𝑖)) and 

𝜀2𝑖(~𝑁(0, 𝛽2𝑖)) ), which are characterised by a normal distribution with zero mean and 

standard deviations 𝛽1𝑖 and 𝛽2𝑖. Moreover, to define a joint probability density function 

𝛽2i,IM|𝐸𝐷𝑃𝑖 

𝛽1i,IM|𝐸𝐷𝑃𝑖 
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(PDF) for the various EDPs, a covariance matrix must be assigned, which has the same 

form as that of Equation (4-2). For this purpose, different correlation coefficients must be 

estimated for the two conditions corresponding to IM ≤ IM* and IM > IM*, thus, leading 

to two correlation matrices. The EDPs considered in this study are the peak transient 

displacement (TD), the residual displacement (RD) and the peak absolute acceleration 

(PA) at the bridge deck level. The first two parameters may be measured using GPS 

receivers, laser vibrometer, transducers, and cameras, whereas PA is measured using 

accelerometers.  

In addition to the above response parameters, two more EDPs are needed to define the 

visual inspection outcomes, 𝜀𝑐𝑐 and 𝜀𝑐𝑡, respectively denoting the maximum strain of 

concrete cover in compression and tension experienced during the mainshock. For 

simplicity, it is assumed that a visual inspection provides information only on whether 

concrete cracking and crushing have occurred or not at the base of bridge piers. These 

two events are defined by 𝜀𝑐𝑐 and 𝜀𝑐𝑡 exceeding their respective limits �̅�cc and �̅�ct, which 

are in general also random variables. The state of the bridge is described in this study by 

a global damage index (D), which is an extension of the Park & Ang (1985) damage index 

(see Equation (3-1) ) to the case of biaxial loading. Since the structure examined is 

subjected to biaxial loading, a biaxial damage index 𝐷 is employed to define the bridge 

state. Rodrigues et al. (2013) carried out an experimental campaign on 24 reinforced 

concrete (RC) columns tested under bi-dimensional earthquake conditions and presented 

seven expressions for the evaluation of D. The present study considers the following one:  

 

 
𝐷 = √𝐷𝑥2 + 𝐷𝑦2 

 

(4-8) 

 

where 

 
𝐷𝑥 =

𝑑𝑚𝑎𝑥,𝑥
𝑑𝑢𝑙𝑡,𝑥

+ 𝛽𝑑
𝐸𝑥

𝐹𝑦𝑖𝑒𝑙𝑑,𝑥, ∙ 𝑑𝑢𝑙𝑡,𝑥
 

 

(4-9) 

 

 

 
𝐷𝑦 =

𝑑𝑚𝑎𝑥,𝑦

𝑑𝑢𝑙𝑡,𝑦
+ 𝛽𝑑

𝐸𝑦

𝐹𝑦𝑖𝑒𝑙𝑑,𝑦 ∙ 𝑑𝑢𝑙𝑡,𝑦
 

 

(4-10) 

 

 

In Equations (4-9) and (4-10), 𝐷𝑥 and 𝐷𝑦 refer to the damage indices calculated for each 

independent direction, 𝐸𝑥 and 𝐸𝑦 are the cumulative dissipated energy for each 

independent direction, 𝑑𝑚𝑎𝑥,𝑥 and 𝑑𝑚𝑎𝑥,𝑦 denote the maximum displacements, 𝑑𝑢𝑙𝑡,𝑥 and 
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𝑑𝑢𝑙𝑡,𝑦 represent the ultimate displacements, and 𝐹𝑦𝑖𝑒𝑙𝑑,𝑥 and 𝐹𝑦𝑖𝑒𝑙𝑑,𝑦 denote the yielding 

strength in each direction. To exploit the information from sensors and the outcomes of 

visual inspections for updating the knowledge of the bridge damage, the joint probabilistic 

model must include both the EDPs of interest and the damage index. 

 

 

4.1.4 Aftershock damage assessment 

The process describing the evolution of damage in a bridge under repeated events such as 

a mainshock-aftershock sequence is a state-dependent process, i.e., the increment of 

damage that characterises a given shock depends on the history of damage accumulated 

during the previous shocks. Previous studies (Iervolino et al., 2016) considered the 

Markovian assumption, i.e., the damage evolution under a given ground motion, 

conditional to the features of the ground motion, depends only on the state of the structure 

at the time of the shock and not on all of its damage history. Ghosh et al. (2015) 

demonstrated in their study that earthquake damage accumulation can be treated as a 

homogeneous Markov process. Introducing this assumption, the damage index at the end 

of the n-th event or ground motion can be expressed as a function of the intensity of the 

event and of the damage at the end of the (n-1)-th event or ground motion. Specifically, 

the multi-variate model developed by Ghosh et al. (2015) is employed in this study, which 

has the following form:  

 

 ln(𝐷𝑛|𝐼𝑀𝑛, 𝐷𝑛−1)
= 𝑐𝑛 + 𝑑𝑛 ln(𝐷𝑛−1)
+ 𝑒𝑛 ln(𝐼𝑀𝑛) + 𝑓𝑛 ln(𝐷𝑛−1) ∗ ln(𝐼𝑀𝑛)
+ 𝜀𝑛(~𝑁(0, 𝛽𝐴𝑆)) 

  
 

(4-11) 

 

where 𝐼𝑀𝑛 is the ground motion intensity of the nth event, 𝐷𝑛−1 is the damage index after 

the (n-1)th event; 𝑐𝑛, 𝑑𝑛, 𝑒𝑛, and 𝑓𝑛 are regression coefficients, and 𝜀𝑛(~𝑁(0, 𝛽𝐴𝑆)) is a 

random variable normally distributed with zero mean and lognormal standard deviation 

𝛽𝐴𝑆. This model can be fitted to empirical data from analyses of the structure under a 

series of mainshock-aftershock sequences, where 𝐷𝑛 = 𝐷𝑀𝑆 for n=1. It is noteworthy that 

Equation (4-11) may return values of 𝐷𝑛 lower than 𝐷𝑛−1 due to the nature of the 

regression model and 𝜀𝑛. One way to overcome this physical inconsistency (i.e., damage 

can only increase) is to postulate that 𝐷𝑛>𝐷𝑛−1: 
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ln(𝐷𝑛|𝐼𝑀𝑛, 𝐷𝑛−1)
= max [𝑐𝑛 + 𝑑𝑛 ln(𝐷𝑛−1)
+ 𝑒𝑛 ln(𝐼𝑀𝑛) + 𝑓𝑛 ln(𝐷𝑛−1) ∗ ln (𝐼𝑀𝑛) + 𝜀𝑛 ,  𝐷𝑛−1] 

  
 

(4-12) 

 

This choice is expected to provide more physics-based results than the model originally 

developed by Ghosh et al. (2015). It is worth mentioning that under the assumption of a 

homogeneous Markov process, the coefficients of the model in Equations (4-11) and 

(4-12) are independent of n, i.e., the probability of moving from a state of damage to 

another under a given ground motion does not depend on the number of ground motion 

in the sequence (e.g. the same model can be used for the 2nd earthquake and the 3rd 

earthquake in a sequence). 

 

 

4.2 Bayesian framework 

This section presents the Bayesian framework developed for the assessment of the 

aftershock risk of a bridge and for its updating using observations from seismic stations, 

structural monitoring sensors, and visual inspections. 

 

4.2.1 Bayesian network 

This subsection illustrates the BN developed to describe the probabilistic relationship 

between the parameters specified in the previous section, perform predictive analysis, and 

update these parameters based on additional information from different observations (see 

Figure 4-2). The magnitude of the point-source mainshock earthquake (MMS) and location 

between the source and the site as well as the source and the seismic stations (collected 

in RMS) are assumed to be known. Various types of information are considered to be 

available for updating the probabilistic relationships of the variables in the network: on-

site seismometers located close to the site of the structure, providing information on IM 

levels; GPS data, updating the knowledge of the RD; accelerometer data, updating the 

knowledge of the PA in the bridge deck; and the outcome of a visual inspection (VI), 

updating the knowledge of 𝜀𝑐𝑐 and 𝜀𝑐𝑡. In the last case, the values of 𝜀𝑐𝑐 and 𝜀𝑐𝑡 are 

updated only if concrete cracking and/or crushing are observed, as this means that the 

deformations in the most critical fibre of the base section have likely exceeded the limit 

threshold corresponding to tensile cracking and/or crushing. Since the BN is static, i.e., it 
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does not account for the temporal evolution of the system between the end of the 

mainshock and the occurrence of the aftershocks. Thus, information from sensors and 

visual inspections gained at different times after the occurrence of an earthquake can 

potentially be merged together. 

The nodes of the BN represent random variables, each characterised by a PDF. Nodes are 

related to their parent and child variables through edges that state conditional 

dependencies between variables (i.e., use of conditional probability distributions). Nodes 

with no parents are termed root nodes, associated with marginal probability distributions. 

Two forms of probabilistic inference can be carried out in BNs: predictive analysis that 

is based on evidence (i.e., information that the node is in a particular state) on root nodes, 

and diagnostic analysis, also called Bayesian learning, where observations enter into the 

BN through the child nodes. When evidence enters the BN, it is spread inside the network, 

thereby updating the probability distributions of the variables through one of the two 

forms of inference mentioned above. 

The earthquake-induced ground shaking for the mainshock event is modelled by the 

deterministic root nodes MMS and RMS. For demonstration purposes, two seismic stations 

(represented by IMMS2 and IMMS3) are assumed to be in the vicinity of the bridge site 

(represented by IMMS1).  

Following Gehl et al. (2017), the inter-event variability is modelled by the root node W, 

which is parent to the three IMs of interest and follows a standard normal distribution. 

The intra-event variability is modelled via three root nodes, Uj, for j=1,2,3, also following 

a standard normal distribution. The following relation expresses the joint conditional 

distribution of the IMs given W and Ui: 

               𝑙𝑛(𝐼𝑀𝑀𝑆𝑖|𝑊,𝑈𝑗) = 𝑙𝑛 𝐼𝑀𝑖 (𝑀𝑀𝑆, 𝑅𝑀𝑆𝑖) + 𝜎𝜉 ∑ 𝑡𝑖𝑗𝑈𝑗
3
𝑗=1 + 𝜎𝜂𝑊   

i=1,2,3 
(4-13) 

where 𝐼𝑀𝑀𝑆𝑖 is the median value of the IM at the i-th site, and 𝑙𝑛 𝐼𝑀𝑀𝑆𝑖 (𝑀𝑀𝑆, 𝑅𝑀𝑆𝑖) is 

the lognormal mean, which is a function of 𝑀𝑀𝑆 and 𝑅𝑀𝑆𝑖 (see also Equation (4-1) ), 𝜎𝜉 

and 𝜎𝜂 are the lognormal standard deviations describing the intra-event and inter-event 

variability, respectively, 𝑡𝑖𝑗is a term of the lower triangular matrix obtained through a 

Cholesky factorisation of 𝐂𝐈𝐌, which is the spatial correlation matrix expressing the 

correlation between the IMs at the various sites. 



110  

A similar approach is used for the PSDM describing the conditional distribution of the 

EDPs and damage index DMS given the IM at the site, IMMS. However, in this case, a 

bilinear regression model is employed, and thus two different error variables and 

correlation matrixes have to be considered, one for *
MS

IM IM  and the other for

*
MS

IM IM . In addition, three additional root nodes, denoted as eVD, eGPS and ePA, are 

introduced. They are used to describe the errors in the visual damage estimation and the 

measurement errors of the observations obtained with GPS and accelerometers. These 

error variables are assumed to be zero-mean normally distributed variables. They 

implicitly represent the accuracy and reliability of the observations from sensors and the 

visual inspection: for example, if the standard deviation of eVD is large, the information 

from visual inspections is not very reliable. Thus its contribution in the BN updating will 

be almost negligible. 

The IMs of the forecasted aftershock events, collected in IMAS, are computed by using the 

same GMM used for the mainshock, based on the knowledge of the distances between 

the aftershock source and the site, collected in the vector RAS, and the magnitude of the 

aftershock sequence MAS. Finally, the model described in Equation (4-11) is employed to 

describe the relationship between the damage incurred from the mainshock DMS and the 

damage incurred from the aftershocks DAS, given the IMs of the forecasted aftershock 

events collected in IMAS. 
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Figure 4-2: Bayesian network illustrating the relationships between the parameters involved in the 

damage assessment (observed quantities are indicated by thick lines, parent nodes filled with grey). 

 

4.2.2 Bayesian updating algorithm 

The BN detailed in Figure 4-2 is used to perform a predictive analysis, starting from the 

prior distribution of the root nodes and a diagnostic analysis, entering an observation at 

the nodes IMMS2, IMMS3, RDobs, and PAobs and visual observations (VI). For this purpose, 

the OpenBUGS software (Lunn et al., 2009) is employed, which is interfaced with the R 

statistical tool. OpenBUGS can treat both deterministic (e.g., MMS and RMS) and 

probabilistic (e.g., IMMSi, TD) variables. These latter are sampled through a Markov-

Chain Monte-Carlo (MCMC) sampling scheme. Each chain is built with a Gibbs sampling 

scheme, where variables are sampled successively from the posterior distribution of 

previous variables: the posterior distribution of a variable is obtained from the product of 

the prior distribution and the likelihood function (probability of a given observation 
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occurring given the prior distribution). The samples are then aggregated to estimate 

empirical statistics of the variables of interest, representing the posterior distributions. 

Although Bayesian inference based on sampling provides only approximate solutions 

(i.e., the posterior distribution is built from the samples), it has the benefit of being much 

more flexible than exact inference algorithms such as junction-tree inference (Huang & 

Darwiche, 1996), since it allows modelling continuous variables using various probability 

distributions. Due to the approximate nature of the posterior distributions sampled by the 

MCMC scheme, there is no guarantee that exact distribution parameters may be obtained. 

However, in the present study, the following steps are taken to ensure reasonable accuracy 

of the results: 

• generation of multiple MCMC chains starting with different combinations of 

initial conditions to ensure that all chains converge towards the same values;  

• generation of a high number of samples for each chain (e.g., several tens of 

thousands); 

• definition of a “burn-in phase”, where the first part of each chain is removed from 

the estimation of the posterior distribution, to remove samples that have not yet 

converged; 

• thinning of the samples (i.e., only one sample in every five is considered in each 

chain) to reduce autocorrelation effects inherent in MCMC sampling. 

Specific statistical tools in OpenBUGS are dedicated to estimating autocorrelation and 

require a minimum number of samples. In any case, preliminary tests are necessary to 

calibrate the sampling parameters carefully. The chosen sampling results from a trade-off 

between the required accuracy level and the computational cost. In the present 

application, the relatively modest size of the BN does not imply unreasonable 

computational times, and the convergence towards an accurate posterior distribution is 

checked by estimating the “R-hat” value (Gelman & Rubin, 1992) and the effective 

sample size (Geyer, 2011) for all variables. 
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4.3 Case study 

4.3.1 Case study description 

For demonstration purposes, the structural system considered in this study consists of a 

two-span bridge with a continuous multi-span steel-concrete composite deck, 

hypothetically located in Aquila, Italy (latitude 42.5650N, longitude 12.6438E). The 

selected bridge represents a class of regular medium-span bridges commonly used in 

transportation networks (Dezi L, 2008; Gray, 2011; Tubaldi et al., 2013) (see Figure 4-3). 

The bridge superstructure, designed according to the specifications given in Eurocode 4 

(ECS) (CEN, 2004a) consists of a reinforced concrete slab of width B = 12 m, which hosts 

two traffic lanes, and of two steel girders positioned symmetrically with respect to the 

deck centreline at a distance of 6 m. Class C35/45 concrete (i.e., characteristic 

compressive concrete strength of 35 MPa) is used for the superstructure slab. The 

reinforcement bars are made of grade B450C steel (characteristic yield strength of 450 

MPa), and the deck girders are made of grade S355 steel (characteristic yield strength of 

355 MPa). The distributed gravity load due to the deck’s self-weight and nonstructural 

elements is 138 kN/m for a mass per unit length md = 14.07 kN/m. The reinforced concrete 

piers have a circular cross-section of diameter d = 1.8 m. They are made of class C30/37 

concrete with a longitudinal reinforcement steel ratio of 1% and a transverse 

reinforcement volumetric ratio rw= 0.5%. Further details about the bridge can be found in 

Tubaldi et al. (2013). 

 a) 
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Figure 4-3: a) Two-span bridge profile, b) transverse deck section (source Tubaldi et al. (2013)). 

 

A three-dimensional finite element (FE) model of the bridge is developed in OpenSees 

(McKenna et al., 2006) following the same approach as described in Tubaldi et al. (2010), 

i.e., using linear elastic beam elements for describing the deck, and the beam element with 
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inelastic hinges developed by Scott & Fenves (2006) to describe the pier. Further details 

of the FE model and the pier properties are given in Tubaldi et al. (2010). The elastic 

damping properties of the system are characterised by a Rayleigh damping model, 

assigning a 2% damping ratio at the first two vibration modes. The FE model described 

in this study is assumed to be deterministic and characterised by no epistemic 

uncertainties. Future extensions of the methodology will consider the introduction of 

modelling uncertainty (such as considering the approach outlined in Tubaldi et al. (2012) 

and their effects on the results.  

Figure 4-4 shows the hysteretic response of the pier to a bi-directional ground-motion 

record, in terms of moment-curvature of the base and base shear-top displacement, along 

the two principal directions of the bridge. It can be observed that some degradation of 

stiffness and pinching characterise the model. This results from the constitutive model 

adopted to describe the concrete fibres in the plastic hinge region (Concrete 02 in 

OpenSees (McKenna et al., 2006)). However, a more sophisticated description of the 

hysteretic behaviour of the pier and other bridge components (see for instance Fayaz, 

Medalla, et al. (2020); Kashani et al. (2016)) is out of the scope of this study. 

  
(a) (b) 

Figure 4-4: a) Base moment-curvature response and b) base shear-top displacement response, along 

the two principal directions of the bridge. 
 

To develop the probabilistic seismic models that describe response and damage under the 

mainshock-aftershock sequences, 200 mainshock-aftershock recordings from the 

database developed by Goda & Taylor (2012) and Goda et al. (2015) are considered. The 

database contains 703 mainshock events and their corresponding strongest aftershocks 

(described in terms of peak ground acceleration and magnitude). The M-Rrup distribution 
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of the data used is provided in Figure 4-5, along with corresponding histograms. In 

addition, Appendix A provides further details on the selection process of the 200 

mainshock-aftershock sequences employed in this study to build the probabilistic seismic 

response and damage models. The RotD50 pseudo-spectral acceleration at the 

fundamental period of the bridge (RotD50Sa) is the selected IM for both the mainshock 

and the aftershocks for simplicity. More advanced IM could be used (as done in the record 

selection, see Appendix A). The GMM of Lanzano et al. (2019) is used to estimate the 

ground motion IM values at the site from the considered earthquake point sources, 

assuming soft soil conditions (Vs=300m/s) and a normal fault mechanism. 

   
(a)     (b) 

Figure 4-5: .a) M-Rrup distributions of: (a) mainshocks and (b) aftershocks of the selected database 

(703 GMs) 
 

As described in Appendix A, the ground motion components are scaled such that their 

RotD50Sa matches the target spectral acceleration level. After the ground motion 

components are selected and scaled, the two ground motion components are randomly 

rotated and then applied to the two orthogonal directions of the bridge structure. This is 

done to avoid any assumptions regarding the incident angle of the ground motions with 

respect to the bridge structure (Fayaz, Dabaghi, et al., 2020). The PSDM described in sub-

section 4.1.3 is built using the 200 samples of the various response parameters of interest 

for the performance assessment obtained under the mainshock event. These are the 

residual displacement (EDP1=RD), the peak transient displacement (EDP2=TD), the peak 

absolute accelerations (EDP3=PA), the maximum strain of concrete cover under 

compression (EDP4= 𝜀𝑐𝑐), the maximum strain of concrete cover under tension (EDP5= 
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𝜀𝑐𝑡) and the damage index DMS. The value of the coefficient 𝛽𝑑 considered in the 

calculation of the damage index is 0.8. A sensitivity analysis on the number of samples 

has been performed and the results have shown that the PSDM parameters and also the 

risk estimates shown in the later section do not change significantly by increasing the 

number of samples. 

Figure 4-6 shows the sample values of these parameters versus IMMS in the log-log plane. 

In the same figures, the median of the fitted PSDM is also plotted. For simplicity, the 

same value of IM* is used for the various parameters of interest. The value of IM* = 7.39 

m/s2 corresponds to a median value of the magnitude of the top displacement vector of 

0.0106 m. According to Figure 4b, the pier is expected to experience significant inelastic 

deformations beyond this displacement level. This corresponds to a change of slope in 

the demand model. It can be observed that 𝜀𝑐𝑐 and 𝜀𝑐𝑡 increase almost linearly with the 

ground-motion intensity, and their trend of variation does not change significantly when 

IMMS exceeds 𝐼𝑀∗. The coefficient of determination R2, for the various fittings, ranges 

from a minimum value of 0.59 for the DMS, to a maximum of 0.72 for PA. 

  
(a) (b) 



117  

  
(c) (d) 

  
(e) (f) 

Figure 4-6: Sample values and model results in terms of (a) RD,(b) TD,(c) PA,(d) 𝜀𝑐𝑐,(e) 𝜀𝑐𝑡, and (f) 

DMS vs. IMMS in the log-log plane 

The results show that the highest correlations are observed between TD and DMS 

(correlation coefficient of the order of 0.97 for both branches of the PSDM) and between 

𝜀𝑐𝑐 and 𝜀𝑐𝑡 (correlation coefficients of the order of 0.99). On the other hand, the 

correlation between TD and PA is of the order of 0.7 for the first branch of the PSDM, 

and of 0.497 for the second branch of the PSDM. This suggests that the information on 

accelerations may be used to reduce uncertainty in estimating the bridge’s peak transient 

displacements. It is noteworthy that this approach avoids the need to doubly integrate the 

measured acceleration signal when estimating displacements, which is characterised by 

several limitations (Trapani et al., 2015).  

The model for damage accumulation corresponding to Equation (4-11) is fitted to the 

results of the time history analyses of the bridge model under the 200 mainshock-

aftershock sequences. The fitted model describes the damage at the end of the first 
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aftershock given the mainshock earthquake. Under the homogeneous Markov process 

assumption for the damage accumulation process, it can also describe the damage under 

any aftershock event of the sequence given the previously accumulated damage.  

Figure 4-7 shows the samples of the damage index after the aftershock 𝐷𝐴𝑆 as a function 

of the IM of the aftershock 𝐼𝑀𝐴𝑆 and the damage index at the end of the mainshock 𝐷𝑀𝑆, 

and the surface corresponding to the fitted median model. The coefficient of 

determination of the model, R2, is 0.697. These values reveal a relatively adequate model 

fit to the generated damage index data. To increase the accuracy of the results, a higher-

order nonlinear model would be required. The regression coefficients for the models of 

Equation (4-7) and Equation (4-11), the covariance matrices of the PSDM for the 

mainshock damage assessment and the corresponding correlation matrices can be found 

in Appendix B. 

It is assumed that the bridge is equipped with one accelerometer mounted at the 

superstructure level above the pier. The measurement error of the accelerometer is 

characterised by a normal distribution with zero mean and a standard deviation of 0.002 

m/s2. This value is based on the noise root mean square (RMS) levels of exemplary low-

cost sensor specifications extracted from representative datasheets (ST Microelectronics, 

for a typical low-cost MEMS accelerometer). Other sources of information are not 

considered in this specific study. 
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(a) 

  
(b) (c) 

 

Figure 4-7: Multilinear regression model for describing the damage index after the aftershock as a 

function of the IM of the aftershock and the damage index after the mainshock. (a) 3D view (b)-(c) side 

views. 

 

 

4.3.2 Rapid damage assessment for a single scenario 

This subsection describes the results of the Bayesian updating of the aftershock risk for a 

single mainshock scenario, considering the information provided by an accelerometer 

mounted on the bridge deck above the pier and by a visual inspection carried out at the 

end of the mainshock. It is assumed that seismic stations are not sufficiently close to the 

site to provide valuable information for hazard and risk updating. The use of information 

from stations close to the site is explored in Tubaldi, Ozer, et al. (2022). The seismic 

scenario corresponds to a seismic event originating from a point source with magnitude 

MMS 6.5, located 15 km from the site. These values are consistent with the modal values 

of the seismic hazard disaggregation for the region of interest.  

The predictive analysis is first run based on the information at the root nodes. 

Subsequently, multiple independent diagnostic analyses are performed by entering a piece 
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of evidence one at a time at the nodes PAobs and by entering all the information at these 

nodes at the same time. These analyses are performed with OpenBugs (Lunn et al., 2009) 

using three MCMC chains generated with different combinations of initial conditions. 

This is to ensure that the three different starting points converge towards similar posterior 

distributions. Each chain contains 10,000 samples obtained by starting from 60,000 

iterations, discarding the first 10,000 (burn-in), and thinning to reduce autocorrelation. 

Ultimately, a total of 30,000 samples are used to estimate the posterior distributions. It is 

noteworthy that the computation time required to perform a single Bayesian inference 

analysis is low (in the order of a few seconds on a standard personal computer). 

Figure 4-8 shows the empirical cumulative distribution function (ECDF) of the prior 

distribution of the damage at the end of the mainshock event DMS, and the posterior 

distributions given the observations of the visual inspection (Figure 4-8a) and of an 

accelerometer on the bridge deck (Figure 4-8b). In the analyses, 𝜀𝑐𝑐 and 𝜀𝑐𝑡 have been 

assumed as lognormal random variables with mean values respectively equal to 0.004 and 

0.001, and a coefficient of variation of 0.3. The visual inspector has been assumed to be 

well trained, so that concrete crushing and cracking are always correctly detected if they 

occurred. First of all, it is observed that the expected value of the damage index at the end 

of the mainshock is low according to the prior estimate of damage. However, the 

outcomes of the visual inspection can change this distribution significantly. Two different 

outcomes of the visual inspection are considered. The first one corresponds to the 

observation of concrete cracking and crushing, while the second one observes no cracking 

or crushing. In the case of the second outcome, the ECDF shifts to the left (i.e. the damage 

is overall less than the prior estimate), whereas in the case of cracking and crushing, it 

shifts significantly towards the right (damage significantly higher than expected). Two 

different observations of the accelerometer placed at the deck level are considered for 

updating the damage. In the case of a low value of recorded acceleration (PA=2.95 m/s2), 

the expected value of damage reduces, whereas it increases for a very high value of the 

recorded acceleration (PA=7.83 m/s2), as expected. 
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                (a)        (b) 

Figure 4-8: Empirical cumulative distribution function (ECDF) of the parameters of interest before 

and after updating with observations from visual inspection (a) and accelerometer measurements (b). 

 

A series of 10,000 mainshock-aftershock sequences is generated following the 

methodology outlined in sub-section 4.1.2. Each sequence is described by the seismic 

intensities of the aftershocks that occur within a time window of interest following the 

mainshock, collected in the vector IMAS.  

Figure 4-9 shows the ECDF of the number of aftershock occurrences in an interval of 10 

days and 360 days following the mainshock. Obviously, the number of occurrences can 

assume only discrete values. It can be observed that the average number of occurrences 

of aftershocks of any intensity increases for increasing time. The average number of 

occurrences is about 1 in 10 days, and it increases to 2 in 360 days. 

Figure 4-10 shows the probability of exceedance of the IM for the case of the mainshock 

event only and for the mainshock-aftershock sequence within different time windows. It 

can be observed that the probability of exceedance increases significantly if aftershocks 

are considered, despite the magnitude of the aftershock being constrained to be less of 

that of the mainshock. This is because the aftershock could originate from a point source 

closer to the site than the source of the mainshock, but also due to the uncertainty inherent 

in the GMM regarding the ground motion attenuation from source to site. Obviously, 

increasing the time window of interest, the probability of exceedance also increases, but 

the highest relative increase is observed when only a few days after the mainshock are 

considered. This is because the rate of occurrence of the aftershock decreases with time 

since the mainshock occurrence. 
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Figure 4-9: Empirical cumulative distribution of the total number of aftershock occurrences in a time 

frame of 10 and 360 days following the mainshock. 

 

 
Figure 4-10: Probability of IM (RotD50Sa) exceedance under mainshock and mainshock-aftershock 

sequence for different time windows. 

 

For each of the 10,000 sample mainshock-aftershock sequences, the evolution of the 

damage index is evaluated by using the model corresponding to Equation (4-12). The 

various samples of the mainshock damage index DMS obtained by running the Bayesian 

network are considered as starting points for the various sequences. Obviously, different 

sample sets must be used, depending on whether the prior estimates or the posterior 

estimates of DMS following an observation are considered. The IMAS samples are then 

used together with Equation (4-12) to generate samples of the damage index vector DAS 

collecting the damage index values at the end of each aftershock. The damage at the end 

of the mainshock-aftershock sequence, denoted as DAS,max, is then used for evaluating the 

aftershock risk.  
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Figure 4-11 shows the result of the application of the procedure to a sample sequence, 

considering a time window of 360 days. In particular, Figure 4-11a shows the values of 

the IM of the mainshock (event 1) and of the subsequent aftershocks (events 2-8). Figure 

4-11b shows the corresponding values of the damage index at the end of the mainshock 

and the subsequent aftershocks. The damage increase is observed only in correspondence 

to events with significant intensity, as expected. The samples of DAS,max obtained for the 

10,000 considered sequences are used subsequently to estimate the probability of damage 

exceedance in the time window of interest.  

Figure 4-12 shows the probability of exceeding different levels of damage at the end of 

the mainshock and the end of the mainshock-aftershock sequence, 10 days after the 

mainshock. In Figure 4-12a, the risk related to prior 𝐷𝑀𝑆 estimates is compared with that 

related to posterior estimates that result from a visual inspection in which no cracking or 

crushing was observed. In Figure 4-12b, the risk related to prior DMS estimates is 

compared with that related to starting posterior estimates that result from a measurement 

of a low peak absolute acceleration (2.95 m/s2) at deck level during the mainshock. It can 

be observed that the increased risk of bridge damage obtained considering the aftershocks 

hazard is low, though not negligible. Moreover, accounting for the observations from 

visual inspections or accelerometers can change the damage risk estimates significantly. 

The decrease in damage risk due to the observation of no cracking or crushing is more 

significant than the increase in damage risk due to the consideration of aftershocks. It is 

noteworthy that the obtained results are not significantly affected by the number of 

samples used to fit the demand and damage models. 
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(a) (b) 

Figure 4-11: a) IM values for various events of a mainshock-aftershock sample sequence, b) 

corresponding damage index values. 

 
 

  
  

(a) (b) 

Figure 4-12: Probability of exceeding different levels of damage at the end of the mainshock and the 

end of the mainshock-aftershock sequence, 10 days after the mainshock, considering prior DMS estimates 

and posterior estimates following a visual inspection (a) and an accelerometer measurement (b). 

 

Figure 4-13 shows the time-dependent probability of exceeding various levels of the 

damage index under the mainshock-aftershock sequence, obtained starting from the prior 

estimate of DMS or from the posterior estimate with no observed cracking/crushing. In 

general, the probability of exceedance increases for an increasing number of days elapsed 

after the mainshock. The rate of increase is higher a few days after the mainshock and 

then decreases due to two different effects: the time-decaying rate of aftershocks and the 

fact that the intensity of the aftershock is limited. A similar trend was observed in Jalayer 

et al. (2011). It is also interesting to observe that the relative increase of risk for the 

mainshock-aftershock sequence compared to the mainshock is more significant if the 
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posterior estimate of DMS is considered as an initial condition. Starting from the prior 

estimate of DMS, the probability of DAS,max exceeding the value of 1, corresponding to 

significant damage, is equal to about 2.67∙10-2 in the case of the mainshock event only, 

and it increases to 1.22∙10-1 if the whole mainshock-aftershock sequence within a time 

window of 360 days is considered. On the other hand, starting from the posterior estimate 

of DMS, the probability of exceeding the damage level of 1 increases from 5.41∙10-6 at 0 

days to 6.82∙10-2 after 360 days. These results could be communicated to transport 

agencies or bridge managers and can help make better-informed decisions concerning 

bridge closure in the aftermath of a mainshock. 

 
Figure 4-13: Probability of exceedance of various levels of the damage index under mainshock and 

mainshock-aftershock sequence vs. time elapsed since the mainshock, starting from the prior estimate of 

DMS and posterior estimates of DMS accounting for visual inspection with an observation of no cracking or 

crushing. 

 

4.4 Conclusions 

This study illustrated a Bayesian framework for the aftershock risk assessment of bridges. 

The main novelty aspect of the framework is that it allows to specifically exploit 

heterogeneous information from seismic stations, structural health monitoring sensors 

(accelerometers and GPS receivers) and visual inspections for updating knowledge of the 

damage state of the structure after the mainshock and thus make a more accurate 

assessment of the risk due to future aftershocks.  

The proposed framework is applied to a hypothetical bridge in Central Italy subjected to 

a moderately strong mainshock scenario. A probabilistic model is fitted to describe the 

joint distribution of the various parameters related to the bridge state (damage index), the 

monitored responses (e.g. accelerations, residual displacements), and the visual 
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inspection outcomes (concrete cracking and crushing). The correlation between the 

involved variables is exploited to update the damage state given the sensor readings and 

the visual inspection reports.  

The study results show that observations of sensors and visual inspections can 

significantly affect the decision-making process concerning bridge closure in the 

aftermath of a mainshock. For example, a bridge for which prior knowledge of the 

mainshock magnitude and source-to-site distance results in a high probability of large 

damage after a mainshock may be classified as safe following a visual inspection that 

reports no cracking/crushing of bridge piers. This obviously has an impact on the risk due 

to future aftershocks. Similar results may be obtained by exploiting the information from 

accelerometers, if the recorded maximum absolute accelerations are low compared to the 

ones based on the only knowledge of the earthquake magnitude and location. It is 

noteworthy that the results obtained by applying the proposed framework to the case-

study bridge can be strongly affected by the modelling choices. These include the 

description of the earthquake aftershock hazard, the structural model and the damage 

accumulation under multiple events, and the outcomes of the visual inspections given a 

possible damage state.  
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5 A methodology for the risk-based design of 

bridges in Italy  
 

 

This chapter is adapted from:  

Turchetti, F., Tubaldi, E., Douglas, J. et al. A risk-targeted approach for the seismic design of bridge 

piers. Bull Earthquake Eng 21, 4923–4950 (2023).  

 

Current design codes are mostly based on a force-based seismic design approach, which 

accounts for the inelastic capacity of structures by means of a reduction coefficient, i.e. 

behaviour factor. The earthquake action used for sizing the structural components of a 

system is expressed in the form of a Uniform Hazard Spectrum (UHS) (Baltzopoulos et 

al., 2021; Shahnazaryan & O’Reilly, 2021). The UHS provides the seismic demand for a 

specific location and a predefined return period (TR). The choice to design a structure in 

accordance with a “uniform” level of seismic demand relies on the assumption that such 

a procedure would lead to the same annual probability of failure (i.e. collapse) wherever 

the building is located (Gkimprixis et al., 2020; Silva et al., 2016b). Various limit state 

conditions have to be considered, corresponding to UHS for different TR values (e.g. 475 

years for the ultimate limit state, which is the “benchmark” limit state in Eurocode 8 

(CEN, 2004b). 
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Following the development of modern performance-based earthquake engineering, the 

research community has focused on understanding whether such a design approach is able 

to ensure a sufficient and uniform level of structural safety against earthquake actions for 

different structures located at various sites. Many studies have shown that this objective 

was not achievable following a uniform hazard design framework (e.g. Cornell & 

Krawinkler, 2000; Dall’asta et al., 2016; Ellingwood, 2008; Tubaldi, Barbato, & 

Ghazizadeh, 2012). A recent Italian study within the RINTC Project (Iervolino et al., 

2018) aimed at computing for some representative building archetypes and a series of 

sites across Italy the “implicit risk” characterizing code-compliant buildings. This study 

showed a strong hazard-dependency of the seismic safety of code-compliant buildings 

(Pacifico et al., 2022).   

In the last decade, risk-targeted seismic design has emerged as a highly promising 

approach for designing structures with controlled seismic risk and/or loss levels. 

Following the work of Luco et al. (2007), the principle of “risk-targeting” has been 

embedded in the development of design maps, which are currently used in US design 

codes (e.g. Proposed AASHTO Guidelines for Performance-Based Seismic Bridge 

Design, 2020). As discussed by Fajfar (2018), the risk-targeting paradigm and concepts 

of risk-targeted maps and behaviour factors (Gkimprixis et al., 2019; Žižmond & Dolšek, 

2019) are expected to form the basis of future design codes for many countries (Allen et 

al., 2015; Douglas et al., 2013; Douglas & Gkimprixis, 2018; Talebi et al., 2021; Vanzi 

et al., 2015). 

The majority of the mentioned studies and codes focuses on the design of buildings. The 

risk-targeted design for bridges is a less explored topic and only few studies have 

proposed risk-targeting design methods for these structures. Wang et al. (2014) proposed 

a method to design reinforced concrete (RC) bridge columns to achieve a uniform risk of 

failure. The authors proposed a multi-parameter probabilistic seismic demand model to 

be further used in a uniform risk framework that was specifically developed, by 

identifying an appropriate target ductility, for the design of RC columns. The relationship 

between the failure probability of typical RC columns and ductility factors was analysed 

to define a method to identify the target ductility factor based on an acceptable failure 

probability for RC bridges located in different US regions. Zakeri & Zareian (2017) also 
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developed a framework based on full Monte Carlo probabilistic simulation within 

Probabilistic-Based Seismic Assessment (PBSA) while considering the correlation 

between demands in different components, to estimate bridge repair-cost ratios at various 

levels of column drift ratio. Based on this framework, these authors implemented Monte 

Carlo simulations and Bayesian updating to perform an extensive parametric analysis to 

estimate probabilities of collapse and the probabilities of exceeding a repair-cost ratio for 

various design-parameter configurations. These authors also find that column ductility 

demand d, is not a reliable factor for risk-based design of bridges due to the high level 

of uncertainty in deriving d. This finding is in contrast to those of Wang et al. (2014).  

Additionally, the implementation of a rigorous and straightforward risk-targeted seismic 

design procedure helps achieve resilience of bridges against multiple hazards. A growing 

interest in Multi-Hazard Design (MHD) that accounts for cascading effects has been also 

developed in recent years, with studies dealing with the interaction between different 

hazards (Argyroudis et al., 2020; Nikellis et al., 2019; Petrini et al., 2020; Zaghi et al., 

2016) showing how the right balance between opposing design strategies can be found 

by adopting a "uniform-risk" strategy amongst different hazards. 

The present study proposes a risk-targeted method for the seismic design of bridges. In 

particular, the proposed procedure addresses the design problem for RC piers in multi-

span bridges. The only variables considered as free design parameters are the pier 

diameter and the longitudinal reinforcement ratio, which are the most important 

parameters that control the performance of a bridge pier designed according to capacity 

design principles. In order to reduce the computational effort, a metamodel is built to 

describe the changes in the bridge dynamic behaviour and seismic fragility with these two 

design parameters. The optimal values of the design parameters are found as the solution 

of a simplified reliability-based optimization problem aimed at minimising the pier 

resisting moment, without the need to resort to complex and time-consuming optimization 

strategies. The methodology is applied in various locations across Italy to illustrate the 

variations in the optimal risk-based design properties of bridges across regions with 

varying seismic hazard and soil conditions, and the impact of the choice of the target risk 

level on the design results. The proposed procedure efficiently includes the seismic hazard 
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at the construction site by developing a map for the design parameters for bridge piers 

required to obtain uniform risk over the territory. The present study is therefore the first 

attempt to deal with risk-targeting of bridge piers in Italy. 

The Chapter is organised as follows. Sub-section 5.1 illustrates the risk-targeted design 

procedure for bridge piers together with some design choices in the application of the 

procedure, Sub-section 5.2 illustrates the case study and the results of the parametric study 

carried out to evaluate the fragility curves for different combinations of design 

parameters. Sub-section 5.3 illustrates the application of the risk-targeted design 

procedure to selected sites characterised by different seismicity. In Sub-section 5.4, risk-

targeted design maps are developed for Italy, considering different design choices in 

terms of free design parameters, target risk levels, and soil type. In the final sub-section, 

conclusions and future studies are outlined. 

 

5.1 Risk-targeting design procedure 

The next two sub-sections present the direct and inverse reliability problems 

corresponding to the assessment of the bridge risk and the design of the bridge properties 

that satisfy a predefined performance level.  Similar to Deb, Zha, et al. (2022) and Wang 

et al. (2014), the risk-targeted design problem for a single bridge pier (such as that in 

Figure 5-1) is considered. This simplification is introduced due to the role played by 

bridge piers in controlling the seismic behaviour of bridges and also to facilitate the 

illustration of the proposed risk-based design procedure.  

 
Figure 5-1  Bridge model considered. 
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5.1.1 Direct problem 

The basis of the proposed design procedure is the solution of the direct reliability problem, 

which corresponds to evaluating the probability of exceeding one (or more) limit state(s) 

of interest during the time interval of interest. For this purpose, a cloud-based approach 

is employed (Jalayer et al., 2015), where the seismic input potentially causing the limit-

state exceedance for the considered structural system and site is synthetically described 

by one (or more) random variable IM, whose realizations are positive real values im, and 

by a set of records that describe the variability of the earthquake characteristics (e.g. 

frequency content, duration) conditional to the IM value.  

A capacity/demand format is used to evaluate the limit-state exceedance probability given 

the seismic intensity. This requires computing the probability of the demand exceeding 

the capacity conditional to the IM of the seismic input. The capacity is measured by a 

positive real-valued random variable C, whose possible realisations are denoted by c, with 

probability density function (PDF) 𝑓𝐶(𝑐) and cumulative density function (CDF) 𝐹𝐶(𝑐). 

The demand D is also expressed as a positive real valued random variable, whose possible 

realizations are denoted by d. The conditional distribution of the demand following events 

with a seismic intensity im is described by 𝑓𝐷|𝐼𝑀(𝑑|𝑖𝑚). The probability of failure 

associated to the condition C<D conditional to IM=im, is: 

 

𝑃𝑓|𝐼𝑀(𝑖𝑚) = ∫𝐹𝐶 (𝑧)𝑓𝐷|𝐼𝑀(𝑧|𝑖𝑚)𝑑𝑧 

 

(5-1) 

 

where z is a dummy variable. 

With regards to the recursive properties of the seismic events during the time interval of 

interest, it is assumed that an event such that IM>im can be described by a Poisson process 

fully defined by the Mean Annual Frequency (MAF) 𝑣𝐼𝑀(𝑖𝑚). Under the assumptions 

that the probability distribution of the earthquake characteristics remains the same at each 

earthquake occurrence as does the probability of exceedance of the limit state, the failure 

events also follow a Poisson process and the MAF of failure can be evaluated as follows: 

 

𝑣𝑓 = ∫ 𝑃𝑓|𝐼𝑀(𝑖𝑚) ⋅ |𝑑𝑣𝐼𝑀(𝑖𝑚)|
𝑖𝑚

 
(5-2) 
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The probability of failure in a time interval, e.g. the design lifetime 𝑡𝐿, can be obtained 

as: 

 𝑃𝑓,𝑡𝐿 = 1 − 𝑒−𝜈𝑓⋅𝑡𝐿 
(5-3) 

 

 

In the following, it is assumed that the capacity is a log-normal random variable and the 

two parameters associated to this distribution, the median �̂� and the standard deviation of 

the logarithms 𝛽𝐶, are known and independent of the seismic intensity. It is also assumed 

that the demand conditional on the seismic intensity is a log-normal random variable, with 

the parameters �̂� and 𝛽𝐷 denoting the median and standard deviation of the logarithms, 

respectively. The relationship between IM and D can be expressed as: 

 

log[𝐷|𝐼𝑀 = 𝑖𝑚] = log[�̂�(𝑖𝑚)] + 𝜀 = 𝑎 + 𝑏 ⋅ log(𝑖𝑚) + 𝜀 

(5-4) 

 

 

where 𝜀 is a normally distributed random variable with zero mean and standard deviation 

𝛽D. This model implies that only the median value varies with the intensity, while 𝛽D is a 

constant. This approximation is generally satisfactory and widely adopted in seismic 

reliability problems, although it may lead to some inaccuracy in the performance 

assessment (e.g. Gehl et al., 2015; Jalayer, 2003). The three parameters a, b and 𝛽D can 

be determined through ordinary least squares regression, once an adequate number of IM-

demand samples are known. The relationship expressed in Equation (5-4) is herein 

assumed, but other closed-form relations can be adopted, provided that they can be 

inverted (Romão et al., 2013). In this study, cloud analysis is carried out to develop the 

probabilistic seismic demand model (Jalayer, 2003). 

Under the above assumptions on the form of the capacity and of the demand, the 

conditional probability of failure can be expressed in a closed form as: 

 

𝑃𝑓|𝐼𝑀(𝑖𝑚) = 𝛷 [
log[�̂�(𝐼𝑀)/�̂�]

√𝛽𝐷
2 + 𝛽𝐶

2
] 

(5-5) 

 
 

and the MAF of failure can be evaluated by Equation (5-2) once the MAF of im is 

assigned.  
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If more than one failure mode is likely, then a system reliability analysis could be carried 

out to evaluate the failure probability of the bridge conditional to the IM, by also 

considering the correlation between the engineering demand parameters (EDPs) and 

based on the arrangement of the failure modes (e.g. series or parallel (Jalayer et al., 2007; 

Minnucci et al., 2022)). The same considerations can be made in the case where multiple 

piers bridges are analysed. 

 

5.1.2 Inverse problem 

Let x ∈Rn denote the vector of design parameters (e.g. pier longitudinal reinforcement 

ratio and pier diameter). The risk-targeted design of bridges is an inverse reliability 

problem that can be cast in the form of an optimization problem: find the set of optimal 

design parameters x* such that an objective function (cost function) is minimised. The 

solution must satisfy a stochastic constraint requiring that the failure probability (or the 

MAF of failure) is less or equal to a pre-fixed value, as well as other constraints on the 

values that can be assumed by x. In mathematical terms, the problem can be formalised 

as follows: 

 min
𝑿
              𝑔(𝒙)     

subject to   𝐡(𝒙) ≤ 0 
                      𝑣𝑓(𝒙) − �̄�𝑓 ≤ 0 

(5-6) 

 

 

where 𝑔(𝐱) is a cost function, depending on the design parameters, and 𝐡(𝐱) is the set of 

constraints on the range of variation of x. In Equation (5-6), the dependency of the MAF 

of failure on the design parameters x has been made explicit. The choice of a suitable cost 

function is essential for ensuring that a single design point is obtained. In fact, various 

combinations of the design parameters ensure that 𝑣𝑓(𝐱) − �̄�𝑓 ≤ 0. Alternative 

formulations of the risk-based design problem for structures have been proposed 

(Franchin et al., 2018). It is noteworthy that under the assumption of failures following a 

Poisson process, targeting a level of the MAF of failure 𝑣𝑓 is equivalent to targeting a 

level of failure probability in 𝑡𝐿 years equal to (1 − 𝑒−𝜈𝑓∗𝑡𝐿).The optimization problem 

employed in this study does not require a complex algorithm. The problem is solved by 

first pre-mapping the values of cost function 𝑔(𝐱) across the domain of x using different 

techniques (simulation and interpolation, as described in the next sub-section), and then 
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by using these gridded values to identify the optimal solution that complies with the target 

MAF. 

 

5.1.3 Design procedure  

The reliability-based design procedure for this problem consists of the following steps: 

1. Select various combinations of the design parameters. These could be arranged to 

form a design of experiments matrix 𝑿𝐸 = [𝐱1. . 𝐱𝑗 . . 𝐱𝑁𝐸] ∈ 𝑅𝑛×𝑁𝐸, where 

𝐱𝑗 = [𝑥1𝑗 𝑥2𝑗 𝑥𝑛𝑗]𝑇 nR  denotes the vector corresponding to the j-th 

combination of design parameters, and 𝑁𝐸  denotes the total number of design 

points. In the following, a two-dimensional regular grid of possible design 

parameters (DPs) is considered as in Deb, Zha, et al. (2022). Alternatively, 

recourse can be made to Latin Hypercube Sampling, Sobol Sampling (Hoang et 

al., 2021; Shekhar & Ghosh, 2020) or alternative techniques; 

2. For each combination of the DPs, the axial load value corresponding to the forces 

transmitted by the deck under the seismic load combination and the pier geometry 

is evaluated. This can be estimated using a linear FE model of the bridge. The 

design flexural resistance MRd of the plastic hinge section at the base of the pier is 

derived in accordance with Eurocode 8 provisions (CEN, 2004), i.e., by 

considering appropriate safety factors for the capacity of concrete and steel. 

Subsequently, the transverse reinforcement is designed by applying capacity 

design principles to ensure that the pier fails under bending rather than shear and 

by satisfying the minimum requirements for confinement (CEN, 2004); the 

confined concrete properties in the plastic hinge are evaluated using the Mander 

model (Mander et al., 1988) (see also Appendix E of CEN (2004)) and a nonlinear 

FE model of the bridge is developed;  

3. Cloud analysis is performed under a set of records representative of record-to-

record variability effects to develop a probabilistic demand model for the EDPs 

of interest. In this study, a single limit state, corresponding to the exceedance of 

the displacement ductility capacity of the bridge, is considered. This is likely to 

be the most critical failure mode in newly designed bridges, because the 
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application of capacity design principles ensures that the probability of occurrence 

of other failure modes (e.g. shear failure) is negligible; 

4. Thus, the monitored EDP is the displacement demand at the pier top, which must 

be compared to the displacement capacity. This can be evaluated by performing a 

pushover analysis of the pier nonlinear model;  

5. The probability 𝑃𝑓|𝐼𝑀(𝑖𝑚, 𝐱𝐸) of exceedance of the limit state of interest 

conditional to the chosen IM and the combination of DPs in xE is evaluated. In 

general, both the demand and the capacity are functions of x. The use of a non-

structure-specific IM is recommended to allow for comparison between fragility 

curves corresponding to different DP combinations. The only limit state we 

consider here is the exceedance of the pier displacement capacity, which is also a 

function of x. This is the most critical failure mode, with other modes, such as 

shear failure or bearing failure, avoided due to the application of capacity design 

principles;  

6. Based on the values of the conditional failure probability evaluated in 

correspondence of the support points, a surrogate model is fitted that provides the 

conditional failure probability for any possible value of x without needing to 

perform other seismic response analyses. The simplest approach for developing 

the surrogate model is to use linear interpolation. More sophisticated approaches 

could also be employed, such as those proposed by other authors for developing 

parametrized fragility functions (Dukes et al., 2018; Franchini et al., 2022; Hoang 

et al., 2021; Shekhar & Ghosh, 2020);  

7. Given a site of interest, characterised by a hazard curve 𝑣𝐼𝑀(𝑖𝑚), the MAF of 

failure given x, 𝑣𝑓(𝒙), can be evaluated. This quantity is required for solving the 

problem formalised in Equation (5-6). Obviously, the solution of the problem 

depends on the expression of the cost function and on the failure probability target 

(stochastic constraint), which are discussed below. 

 

5.1.4 Cost function 

The form adopted for the optimization problem is such that the consequences of pier 

failure in terms of direct and indirect losses are controlled by setting a maximum value of 

the MAF of failure. Since the total bridge life cycle cost is the sum of the cost of bridge 
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construction and the cost due to failure, in order to minimise this cost one could consider 

the pier cost as the cost function. In order to avoid defining costs of the materials and of 

the construction, in the application illustrated in the next section, the cost function is 

assumed to coincide with the design resisting moment at the base of the pier, MRd. This 

quantity is expected to be correlated to the bridge construction cost, as it increases with 

the pier diameter, the amount of longitudinal reinforcement, the concrete class and other 

factors. Moreover, by minimising MRd the design shear (and thus the amount of transverse 

reinforcement) is also minimised and so are the forces transmitted to the foundations and 

to the deck. 

 

5.1.5 Target failure probability  

Fajfar (2018) discusses the difficulty in defining a target level of failure for structures 

because it is a reflection of personal and societal value judgements and experience in 

previous events. Therefore, there is no generally accepted target value. According to 

Eurocode 0 (CEN, 2002), the minimum recommended values of the reliability index for 

a reference period of 1 year should be 4.2 for consequence class CC1 structures (low 

consequences of failure), 4.7 for CC2 class structures (moderate consequences of failure), 

and 5.2 for CC3 class structures (high consequences of failure). These correspond 

respectively to a MAF of failure of 1.33 x 10-5 years-1, 1.33 x 10-6 years-1, and 9.96 x 10-

8 years-1. However, it is not clear whether the values recommended by Eurocode 0 should 

be considered for the seismic design, as the draft version of the revised Eurocode 0 

explicitly exclude these (Fajfar, 2018). Appendix F of the draft version of the revised 

Eurocode 8 (Dolsˇek et al., 2017) suggests a target of 2 x 10-4 years-1, which according to 

Fajfar (2018) is a value comparable to the probabilities of failure estimated for buildings 

compliant with current seismic codes, also confirmed in a discussion among European 

code developers. 

In Wang et al. (2014), a mean annual failure probability of 2.3 x 10-4 years-1 was 

considered for the risk-based design of reinforced concrete bridge piers. This value was 

chosen because it is the median among the values suggested in different American codes 

or standards (AASHTO, 2010) for ultimate limit state (ULS) conditions. In Deb et al. 

(2022), different values of the target MAF of failure are associated to the various failure 
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modes considered: 1/225 years-1 for concrete cover crushing, 1/1000 years-1 for 

longitudinal bar buckling, and 1/2500 years-1 for longitudinal bar fracture. In Zanini et al. 

(2022) and Zanini & Hofer (2019) a 1-year target reliability value of 4.7 at ULS has been 

assumed for structural safety checks of common reinforced concrete arch bridges.  

Douglas & Gkimprixis (2018) provide a summary of assessed and target MAFs of failure 

from the literature. Many studies have adopted the US target value of 2x10-4 without much 

discussion, although Douglas et al. (2013) conclude that a target of 1x10-5 or even 1x10-6 

would be easier to justify based on risk targets from other fields such as nuclear safety. 

Using a database of collapsed RC buildings in Italy and Greece over the previous few 

decades, Douglas and Gkimprixis (2018) conclude that the observed risk of collapse for 

such structures is between 1x10-6 and 1x10-5. Because of the importance of road bridges 

both for life safety and their economic impact during and following earthquakes, a target 

MAF of failure of 1x10-6 is adopted for the following case study. The effect of this choice 

is examined by also considering 1x10-5 and 2x10-4 in subsequent steps. 

 

5.1.6 Risk-targeted methodology and Eurocodes 

  

Designing a bridge pier following Eurocodes involves a series of steps to ensure that the 

pier meets the necessary structural requirements and safety standards. The primary 

Eurocode for seismic design is Eurocode 8 (EC8), specifically Part 2 (EN 1998-2), which 

addresses the seismic design of bridges. The process begins with defining the site location 

and the structural layout, considering the bridge's geographical and environmental 

context. Next, loading conditions must be established, which include both permanent 

loads, such as the weight of the bridge itself, and variable loads, such as traffic and 

environmental influences. Assessing the soil type and classification is also crucial, as it 

affects the pier's foundation and seismic response.  

A preliminary design phase estimates the dimensions of the bridge pier based on initial 

loading and structural considerations. Following this, a detailed structural analysis is 

conducted, incorporating seismic hazard analysis to determine the seismic forces the 

bridge will need to withstand. The required reinforcement is calculated from this analysis, 

ensuring that the pier meets the ductility requirements outlined in EC8. Ductility is 
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essential for ensuring that the pier can undergo significant deformations without failing, 

which is crucial during an earthquake. 

The final steps involve verifying the pier design for Serviceability Limit State (SLS) and 

Ultimate Limit State (ULS). SLS checks ensure that the bridge remains functional and 

comfortable for users under normal conditions, while ULS checks verify that the pier's 

design strength meets or exceeds the maximum expected loads during extreme events, 

such as earthquakes. Many studies have shown that following this procedure does not 

always ensure a predetermined risk level. To accurately determine the risk level, a 

detailed risk analysis is necessary, which involves computing fragility curves to predict 

the probability of different levels of damage under various seismic scenarios. However, 

this process is time-consuming and is generally not performed by industries or 

engineering firms due to its complexity and resource requirements. 

If the risk analysis indicates that the target risk level is not met, the structure must be 

redesigned, following an iterative approach to refine the design until the target risk level 

is achieved. This iterative process can be cumbersome and inefficient. Furthermore, the 

Eurocode methodology, based on uniform hazard, has indirectly required that in some 

areas of the country, engineers design buildings more stringently, to reduce the likelihood 

of collapse, compared to other regions. The risk-targeted approach has mitigated this 

variability ensuring that the risk of collapse and the design stringency are consistent 

across all locations. 

Conversely, designing a bridge pier using the proposed risk-targeted methodology 

simplifies this process. This methodology is also iterative but avoids the need for 

performing a detailed risk analysis each time. Instead, it directly associates a specific risk 

level with a corresponding resisting moment. By ensuring that the pier design meets the 

specified resisting moment, engineers can be confident that the structure meets the desired 

risk level. This approach streamlines the verification process, as it ensures compliance 

with specific limit states without the need for extensive fragility assessments. 

While this risk-targeted methodology needs further study and refinement, it promises a 

more efficient and direct path to achieving and verifying structural safety and 

performance against seismic events.  
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In the future, the Eurocodes will likely be updated to incorporate risk-targeted methods. 

Specifically, the methodology presented herein could be included in the next generation 

of Eurocodes. This could be reflected in chapters focusing on seismic design provisions, 

where performance-based criteria are outlined to ensure that structures meet 

predetermined risk levels. The inclusion of risk-targeted design principles would help 

standardize safety and performance criteria across different regions, providing a uniform 

basis for seismic design that aligns with modern engineering practices and risk 

management strategies. By focusing on direct performance metrics linked to risk levels, 

this method could offer significant advantages in practical engineering applications, 

improving both the design process and the reliability of the resulting structures. This 

evolution in the Eurocodes would mark a significant advancement in the resilience and 

reliability of civil infrastructure. 

 

 

5.2 Case study description and results of parametric analyses 

A two-span bridge with a continuous multi-span deck is used to illustrate the application 

of the proposed risk-based design method. The bridge is representative of a class of 

medium-span bridges widely present in the European transport network. It was 

considered in previous studies by the same authors (Tubaldi et al., 2013; Tubaldi, Ozer, 

et al., 2022). The steel-concrete composite superstructure, designed according to 

Eurocode 4 (ECS) (CEN, 2004a), consists of an RC slab of width B = 12 m, made with 

class C35/45 concrete (i.e., characteristic cylindrical compressive concrete strength of 35 

MPa) and with grade B450C steel reinforcement bars (characteristic yield strength of 450 

MPa), and of two steel girders placed 6 m apart, made of grade S355 steel (characteristic 

yield strength of 355 MPa). The distributed gravity load due to the deck’s self-weight and 

non-structural elements is 138 kN/m, corresponding to a mass per unit length md = 14.07 

kg/m. The RC column is 5.4m high and has a circular cross-section with diameter Dc. It 

is made of class C30/37 concrete. The deck is free to move in both the longitudinal and 

transverse directions at the abutments. 

The three-dimensional FE model of the bridge is developed in OpenSees (2011) using the 

beam element with inelastic hinge developed by Scott & Fenves (2006) to describe the 
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bottom of the pier, and linear elastic elements to describe the remaining part of the pier. 

The plastic hinge length is evaluated using the Eurocode 8 part 2 formula (CEN 2004). 

The geometric and material nonlinearities are accounted by means of the fibre-based 

section discretisation technique. This allows the representation of the influence of 

inelastic steel buckling and low cycle fatigue degradation. Degrading of stiffness in linear 

unloading/reloading is modelled according to Karsan & Jirsa (1969). The concrete stress-

strain relationship is modelled through the Kent-Park model (Kent & Park, 1971). The 

reinforcement steel is modelled by the Menegotto-Pinto constitutive model (Menegotto 

& Pinto, 1973). The following material properties were assumed as fixed in all the 

models: a mean steel yield stress of fym=517.5 MPa, maximum deformations of 

unconfined concrete under compression εccover=0.0035 and an ultimate steel deformation 

εsu=0.075. The material nonlinearity was described through a uniaxial material 

relationship for steel (tension and compression) and concrete (confined and unconfined). 

In this study, the Concrete02 model and the Steel02 model available in OpenSees (2011) 

were used: Concrete02, which is a linear tension softening material model that considers 

unloading stiffness degradation, was used to model the unconfined concrete in the cover 

and the confined concrete in the core of the pier, whereas Steel02 was used to model the 

reinforcement bars. The bearings were represented by zero length elements with a module 

of elasticity of 210,000 MPa connected to the elastic element via a rigid link-beam (both 

the translational and rotational degrees of freedom are constrained). The deck was not 

modelled but a vertical load was added to the column to simulate the weight of the deck. 

The elastic damping properties of the system are characterised by a Rayleigh damping 

model, with a 5% damping ratio assigned to the fundamental vibration modes in the 

longitudinal and transverse directions. 

The same bridge is assumed to be located at various sites in Italy, characterised by 

different seismic hazards. A soil type A (corresponding to an time-averaged shear wave 

velocity up to 30 meters depth of Vs,30 = 800 m/s) is considered for all the locations. 

Similarly to Deb, Zha, et al. (2022), the only DPs herein considered in the application of 

the risk-based design procedure are the pier diameter Dc and the longitudinal 

reinforcement ratio ρL,; thus x=[ Dc, ρL]. It is noteworthy that these parameters are, among 

the many others that could be considered in x, the ones that mostly affect the bridge’s 
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seismic performance (Deb, Zha, et al., 2022; Wang et al., 2014). These DPs are assumed 

to vary in a realistic range that reflects construction practice and satisfies code 

requirements. In particular, ρL can vary between 1% and 4%, whereas Dc can vary from 

1.4 m to 2.2 m (source K. Mackie & Stojadinovic, 2003). In order to develop the surrogate 

model for the bridge fragility, a regular grid of values of Dc  and ρL is constructed. In 

particular, the values of Dc of 1.4m, 1.8m, and 2.2m and the values of ρL of 1%, 2%, 3% 

and 4% are considered. For simplicity, two-dimensional linear interpolation is used to 

find the values of dependent variables corresponding to intermediate values of Dc and ρL. 

The various functions that are interpolated exhibit smooth and regular trends and, hence, 

more sophisticated interpolation methods or metamodeling techniques are not necessary.  
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Figure 5-2 a) Two-span bridge profile, b) transverse deck section (source Tubaldi et al. (2013)). 

 

Figure 5-3 shows the moment-curvature relationship for the section at the base of the pier 

for the different combinations of DPs investigated. The curves have been derived using a 

fiber-based discretisation of the cross section, considering different values of the axial 

force (to account for the effect of the pier’s self-weight), as well as different levels of 

confinement, for the various values of Dc and ρL. 

 In all cases, the failure of the section corresponds to the crushing of the confined concrete, 

whereas the ultimate strain of the longitudinal reinforcement (assumed equal to 0.075) is 

never exceeded. 
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(a) (b) (c) 

Figure 5-3 Moment-curvature relationships for different combinations of DPs along the longitudinal 

direction

(a) Dc =1.4m (b) Dc =1.8m (c) Dc =2.2m. 

Figure 5-4 shows how the values of the design resisting moment MRd at the pier base 

(Figure 5-4a) and the transverse reinforcement ratio ρS (Figure 5-4b) increase with the 

diameter of the pier and the amount of longitudinal reinforcement. It can be noted that 

increasing Dc and ρL results in an increase of MRd  and thus of ρS. The increase of ρS is due 

to the application of capacity design principles, with the design shear that increases with 

the base design resisting moment MRd. In general, the design resisting moment is more 

sensitive to Dc than to ρL for low Dc values. However, for high Dc values increasing ρL 

results in large increase of MRd. The transverse reinforcement ratio ρS varies between a 

minimum of 0.75% for low values of Dc and ρL to a maximum of 1.89% for Dc =2.2m 

and ρL=4%. The diameter of the hoop bar ranges from 16mm to 22mm with a spacing 

between the bars from 80mm to 35mm.  

Figure 5-5 shows the variation of the fundamental vibration periods along the 

longitudinal and transverse direction due to the variation of Dc and ρL. The longitudinal 

period is shorter than the transverse one due to the lower effective bending length. The 

bending lengths are equal to the pier height in the longitudinal direction, and the pier 

height plus the distance between the pier top and the deck centroid in the transverse one. 

In fact, the bearings placed at the bottom of the two girders in the steel-concrete composite 

deck result in transmission of bending moments from the deck to the pier under the 

transverse earthquake component. Both these periods reduce by increasing Dc and ρL as 

the structure becomes stiffer. In general, it can be observed that the quantities shown in 

Figure 5-4 and Figure 5-5 exhibit smooth trends with the design parameters. 
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Table 5-1 reports the values of the yield displacement dy, the yield force Vy, and the 

ultimate displacements du for twelve combinations of DPs, in the longitudinal (L) and 

transverse (T) directions. The ultimate displacement has been identified based on a 

pushover analysis as the displacement that corresponds to the attainment of the ultimate 

curvature at the base section. The influence of higher order mode effects has been 

neglected in evaluating du, since they are not likely to affect the displacement demand 

significantly. Shear failure of the pier is not likely to occur thanks to application of 

capacity design principles. 

The yield and ultimate displacements decrease with increasing diameter Dc, as expected 

(see Priestley et al., 2008). On the contrary, these quantities increase for increasing values 

of ρL. The increase of stiffness (and thus reduction of period) due to the increase of 

longitudinal reinforcement (i.e. flexural strength) is a typical feature of reinforced 

concrete sections, which is at the base of the development of direct-displacement based 

design criteria (see Priestley et al., 2008).   

   
(a) (b) 

Figure 5-4 (a) Design resisting moment MRd at the pier base and (b) transverse reinforcement ratio ρS for 

different combinations of the DPs. 
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(a) (b) 

 
Figure 5-5 Fundamental vibration periods T (in seconds) along the (a) longitudinal and (b) transverse 

direction for different combinations of DPs. 

 

Table 5-1. Values of yield displacement dy, yield force Vy, and ultimate displacements du in 

longitudinal (L) and transverse (T) directions for different combinations of DPs. 

 Dc =1.4 m Dc =1.8 m Dc =2.2 m 

ρL  1% 2% 3% 4% 1% 2% 3% 4% 1% 2% 3% 4% 

dy,L [m] 0.036 0.039 0.041 0.043 0.027 0.030 0.032 0.033 0.022 0.024 0.026 0.027 

du,L [m] 0.167 0.164 0.175 0.191 0.141 0.155 0.166 0.171 0.138 0.149 0.163 0.168 

Vy,L [kN] 1520 2230 2950 3690 2780 4440 6080 7680 4710 7920 11100 14100 

dy,T [m] 0.065 0.069 0.073 0.077 0.048 0.054 0.057 0.059 0.039 0.044 0.047 0.049 

du,T [m] 0.283 0.278 0.296 0.324 0.239 0.262 0.281 0.290 0.233 0.252 0.275 0.283 

Vy,T [kN] 1140 1670 2210 2760 2080 3320 4550 5750 3530 5930 8280 10600 

 

Cloud analysis is performed to develop the probabilistic seismic demand models 

(PSDMs) for the various design cases. For this purpose, the same ground motion records 

employed in Tubaldi, Ozer, et al. (2022) is used. This consists of 221 real records (120 of 

which taken from Baker et al. (2011)), which are representative of a wide range of 

conditions in terms of source-to-site distance (R) (from 8.71 to 126.9 km), soil 

characteristics (the time-average shear wave velocity in the top 30 m spans from 203 to 

2016 m/s) and moment magnitude (Mw) (from 5.3 to 7.9). These records are not specific 

to any particular local site condition. The vertical component of the input is not 

considered. 

Figure 5-6 shows the hysteretic response of the pier to a bi-directional ground-motion 

record, in terms of base shear-top displacement along the two principal directions of the 
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bridge, for two different combinations of the design parameters. The top displacement is 

the displacement of the deck centroid, which coincides with the pier top displacement 

only in the case of longitudinal response. First of all, it can be observed that the response 

in the longitudinal direction is stiffer than in the transverse one. This is because the deck 

girders rest on two bearings, such that the effective length of flexure is larger for the 

transverse direction than for the longitudinal one. Moreover, the pier with higher 

longitudinal reinforcement is stiffer and stronger than the other one. This is also expected, 

given the higher bending moment capacity of the base section. Increasing the pier 

diameter while keeping the same amount of reinforcement ratio is also expected to 

increase the stiffness and strength of the system.  

  
(a) (b) 

 

Figure 5-6 Base shear-top displacement response along the two principal directions of the bridge for 

Dc =1.8m, and (a) ρL=1% and (b) ρL =4%. 

 

The maximum top displacements umax,L and umax,T along the longitudinal and transverse 

direction are considered to develop the PSDM and to evaluate the bridge performance. 

The intensity measure considered is RotD50Saavg, which is obtained as follows: first, the 

RotD50 (Boore, 2010) of the pseudo-acceleration response spectrum for the 221 records 

(two horizontal components) is computed, for a series of periods in the range between 

0.1s and 2.5s, and for a 5% damping ratio. Then, the geometric mean of these is evaluated 

to obtain the RotD50Saavg. It is noteworthy that the proposed IM is not structure-specific. 

Figure 5-7 shows the sample values of the maximum top displacement versus 

RotD50Saavg in the log-log plane corresponding to the DP combinations of [1.4, 1%] and 

[2.2, 4%] along the longitudinal and transverse directions. In the same figures, the median 
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of the fitted PSDMs is also plotted. It can be observed that log(umax) follows a linear trend 

with the log(RotD50Saavg) for each combination of DPs. Nevertheless, some scatter is 

observed, particularly for high values of ρL. The displacement ductility achieved from the 

considered GMs ranges between 4.2 and 6.2 along the longitudinal direction and between 

4.0 and 5.9 along the transverse direction. Table 5-2 reports the PSDM parameters along 

with the lognormal standard deviation of the regression models, 𝛽D. The low values of 𝛽D 

reveal a satisfactory fit of the PSDM to the data. Since the logs of the maximum 

displacements along the two directions exhibit a negligible correlation and they are 

assumed to jointly follow a bivariate normal distribution, they can be treated 

independently. 

  
(a) (b) 

  
(c) (d) 

 
Figure 5-7 Sample values and median model in terms of maximum top displacement for (a) Dc =1.4m 

and ρL =1% in the longitudinal direction, (b) Dc =1.4m and ρL =1% in the transverse direction, (c) Dc 

=2.2m and ρL =4% in the longitudinal direction, (d)  Dc =2.2m and ρL =4% in transverse direction 

 

Table 5-2 Parameters of the regression models and values of lognormal standard deviation 𝛽D 
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 Dc =1.4 m Dc =1.8 m Dc =2.2 m 

ρL  1% 2% 3% 4% 1% 2% 3% 4% 1% 2% 3% 4% 

log(a) -3.78 -3.89 -4.00 -4.07 -4.11 -4.29 -4.41 -4.52 -4.53 -4.80 -4.74 -5.16 

b 1.13 1.10 1.07 1.04 1.09 0.98 0.90 0.85 1.00 0.89 0.76 0.76 

𝛽D 0.42 0.41 0.40 0.41 0.43 0.46 0.48 0.50 0.50 0.53 0.50 0.56 

log(a) -3.54 -3.62 -3.68 -3.76 -3.91 -4.04 -4.12 -4.20 -4.21 -4.40 -4.24 -4.60 

b 1.14 1.12 1.10 1.10 1.16 1.09 1.03 1.00 1.08 0.99 0.84 0.84 

𝛽D 0.30 0.30 0.31 0.31 0.33 0.36 036 0.37 0.38 0.39 0.40 0.45 

RotD50 

Saavg,50% 
4.01 4.46 5.22 6.25 4.89 6.85 9.19 11.23 7.29 11.78 - - 

 
 

Figure 5-8 reports the fragility curves for the various combinations of DPs. These have 

been constructed by evaluating, for each value of RotD50Saavg, the probability of the pier 

displacement demand along each of the two directions exceeding the corresponding 

displacement capacity (reported in Table 5-1). Equation (5-5) has been used to compute 

this probability. It is noteworthy that the capacity limits have been evaluated based on a 

pushover analysis, and no account is made of damage accumulation phenomena in the 

performance assessment, as e.g. done in Turchetti et al. (2023) with the use of the Ang-

Park damage index. It can be observed that both the diameter and the longitudinal 

reinforcement ratio significantly affect the bridge fragility. Overall, increasing Dc is more 

effective than increasing ρL in reducing the bridge fragility. However, increasing the 

reinforcement ratio has a more significant effect in terms of reduction of fragility for large 

pier diameters than for low ones. These trends reflect the trend of variation of the resisting 

moment with Dc and ρL (see Figure 5-4). Table 5-2 reports also the values of the median 

fragility capacity, RotD50Saavg,50%, defined as the value of RotD50Saavg corresponding to 

a probability of failure of 50%. 

   
(a) (b) (c) 
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Figure 5-8 Fragility curves for different combinations of DPs (a) Dc =1.4m (b) Dc =1.8m (c) Dc 

=2.2m. 

  

5.3 Results of the risk-targeting design approach for selected sites 

Probabilistic seismic hazard assessment (PSHA) is carried out on a regular grid spaced 

by 0.05° for Italy. The same grid is used by the Italian National Institute of Geophysics 

and Volcanology (INGV) for developing hazard maps. The hazard curves for each site 

have been built using the software REASSESS V2.0 (Chioccarelli et al., 2019), using the 

ground motion prediction equation proposed by Lanzano et al. (2019) for RotD50Sa. The 

seismogenic source model is the one proposed by Meletti et al. (2008) with parameters 

taken from Barani et al. (2009). The interval of interest of the selected IM values ranges 

between 10-5g and +2g, where g denotes acceleration due to gravity. The condition of 

"Soil Type A" (bedrock, i.e. vs30 ≥ 800 m/s) has been considered.  

Figure 5-9a shows hazard curves in terms of MAF of exceedance of different values of 

RotD50Saavg for three Italian cities: Milan (latitude 45.472N; longitude 9.177E), Naples 

(latitude 40.852N; longitude 14.268E), and L’Aquila (latitude 42.350N; longitude 

13.400E). The three sites are exposed to roughly low-, mid-, and high-seismic hazard and 

have been considered in RINTC project to compare the risk levels across the country of 

various structures designed according to the Italian seismic codes (Tubaldi, Barbato, & 

Ghazizadeh, 2012). Figure 5-9b compares the MAFs of bridge pier failure corresponding 

to the minimum values of DPs (ρL =1%, Dc =1.4m, in green), and to the maximum values 

of DPs (ρL =4%, Dc =2.2m, in grey) for the three considered sites. The MAF of failure for 

L’Aquila is very high for the minimum values of DPs, and it reduces by three orders of 

magnitude if the maximum values of DPs are considered; likewise, the MAF for Naples 

reduces from 6x10-6 to 4x10-9. The MAF of failure for Milan is very low even for the 
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minimum DPs, and it reduces by almost four orders of magnitude by considering the 

maximum values of DPs. 

  

(a) (b) 

Figure 5-9 (a) Comparison of hazard curves in terms of IM=RotD50Saavg for three different sites in 

Italy; (b) comparisons of risks for ρL =1%, Dc =1.4m in green and ρL =4%, Dc =2.2m in grey. 

Figure 5-10a shows the mean annual frequency of pier failure for different combinations 

of DPs for the bridge located in L’Aquila. The optimal DP satisfying the stochastic 

constraint of a MAF of failure equal or less than 10-6 is also plotted in the figure and 

denoted by a star. Specifically, the star denotes a MAF of failure equal to 6x10-7.The 

combinations of DPs have been evaluated by assuming discrete values for Dc and ρL, with 

an interval of 0.1m for Dc, and of 0.005 for ρL. These intervals can be easily refined as 

there is no need to perform any further analysis. It can be observed that only one DP 

combination satisfies the required stochastic constraint in L’Aquila, which corresponds 

to a value of the resisting moment MRd, plotted in Figure 5-4a (and replotted in Figure 

5-10b for convenience). Thus, it is possible to identify a point that minimises MRd (cost 

function) while satisfying the stochastic constraint. In the case of the bridge pier located 

in L’Aquila, the optimum DP corresponds to Dc=2.2m and ρL=0.04 and a value of MRd of 

49330 kNm. Regarding the choice of the target MAF of failure equal or less than 10-6, 

this value is close to the value of 1.33x10-6 that corresponds to consequence class CC2. 

Other values of the target MAF of failure are also considered in the next section.  

Figure 5-11 shows the same results already shown in Figure 5-10, but considering the 

bridge located in Naples rather than in L’Aquila. As expected, compared to L’Aquila 
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there are more combinations of design parameters that satisfy the constraint on the 

acceptable risk of failure. Among these, the one that minimises the resisting moment 

corresponds to Dc=1.4m and ρL=3.5%. The identification of this point is straightforward, 

and does not require a complex optimisation algorithm but simply finding the 

combination that minimises MRd among the various pairs that satisfy the stochastic 

constraint. It is noteworthy that at mid- and high-seismic hazard sites, like Naples and 

L’Aquila, it is not possible to achieve the target of 10-6 with the minimum reinforcement 

ratio ρL allowed by Eurocode 8. 

  

(a) (b) 

Figure 5-10 (a) MAF of pier collapse for a bridge site in L’Aquila and (b) corresponding values of the 

resisting moment MRd (unit kNm) for different combinations of DPs. The optimal design point is marked 

by a star. 

  

(a) (b) 

Figure 5-11 (a) MAF of pier collapse and (b) corresponding values of the resisting moment MRd (unit 

kNm) for different combinations of DPs for a bridge site in Naples. The design parameters satisfying the 

stochastic constraint are marked with a circle, the optimal design point is marked by a star. 

Figure 5-12a shows the variation of the MAF of failure with the design resisting moment 

MRd for the site of L’Aquila. It can be observed that there is a strong and inverse 
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correlation between these two quantities. A similar trend is observed for other sites. The 

case of Naples is illustrated in Figure 5-12b.  

  
(a) (b) 

Figure 5-12 Variation of the MAF of collapse vs. design resisting moment MRd obtained for various 

DP combinations for a bridge site in (a) L’Aquila and (b) Naples. The dashed red line indicates the target 

MAF of failure of 10-6 and the optimal design point is marked by a star. Note that the y-scale is different 

in the two plots. 

 

5.4 Risk-based design maps for Italy 

The proposed risk-based design procedure is applied to design the bridge pier across the 

whole of Italy, considering a target MAF of failure of 10-6. The purpose of this analysis 

it to show how the designs would change across areas of different seismic hazard, and to 

evaluate differences between the regional distribution of the bridge design parameters and 

the regional distribution of seismic hazard. 

Figure 5-13 shows the variation of RotD50Saavg across Italy for return periods of 100 

years, 475 years, and 2 475 years, corresponding respectively to 39%, 10%, and 2% 

probabilities of exceedance in 50 years. The intensity distribution across Italy is quite 

similar for the various return periods. However, for lower return periods higher intensities 

are observed in central Italy compared to southern Italy, whereas for the higher return 

period southern Italy shows intensities closer to those in central Italy. This is the effect of 

the different shape of the hazard curves for different locations, as already observed in 

Figure 5-9a.  

Figure 5-14 shows the variation of minimum resisting moment MRd at the base of the pier 

across Italy, corresponding to the optimal design point. In large parts of Italy the 
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minimum value of MRd, corresponding to ρL =1%, Dc =1.4m, is sufficient to satisfy the 

constraint and achieve risk levels less than 10-6. In these regions, the values of 

RotD50Saavg for a return period of 475 years are less than about 0.1m/s2. In general, the 

contour plots of MRd follow a similar trend of RotD50Saavg, i.e., higher MRd values are 

required at sites of higher seismicity. The peak values of MRd , above 40 000 kNm, occur 

in parts of southern Italy, along the Apennine belt, and in the north-east, as expected. 

   
(a) (b) (c) 

Figure 5-13 Variation of RotD50Saavg across Italy (unit m/s2) for return periods of 100 (a), 475 (b) and 

2475 years (c). 

 

 
Figure 5-14 Variation across Italy of the minimum resisting moment MRd at the base of the pier. 

Figure 5-15a and Figure 5-15b show a map of the optimal values of the pier diameter 

Dc and of the longitudinal reinforcement ratio ρL. In regions with lowest seismicity, the 

optimal DPs coincide with the minimum values of Dc and ρL, whereas in the regions with 

highest seismicity, they coincide with the maximum ones, as expected. Non-smooth 

changes of optimal DP values can be observed across adjacent regions that are 
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characterised by quite similar levels of hazard. This is because high values of Dc and low 

values of ρL yield similar risk levels to low values of Dc and higher values of ρL. For 

example, Nocera Umbra (latitude 43.114N; longitude 12.788E) and Pioraco (latitude 

43.181N; longitude 12.974E) are two towns located closed to each other and with similar 

hazard levels (Figure 5-16). Nevertheless, the optimal values of DPs are Dc=2.2m and 

ρL=2% for the bridge in Nocera Umbra, and Dc=1.8m and ρL=4% for the bridge in 

Pioraco, as shown in Figure 5-17. 

Obviously, a smoother variation of the optimal pier properties can be obtained if a single 

design parameter is considered, by keeping the other one fixed. Figure 5-18a shows the 

optimal values of ρL obtained considering a fixed diameter Dc of 2.2m. In this case, ρL 

exhibits a smooth variation across the country. It is found that while ρL = 4% is necessary 

only in the high-hazard regions, it is sufficient to consider the minimum percentage of ρL 

in most of Italy.  

  

(a) (b) 

Figure 5-15 Variation across Italy of the optimal pier diameter Dc (unit m) (a) and of the optimal ρL 

(expressed in terms of percentage) (b). 

Pioraco 
Nocera Umbra 

Pioraco 
Nocera Umbra 
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Figure 5-16 Comparison of hazard curves in terms of IM=RotD50Saavg for the cities of Nocera Umbra 

and Pioraco. 

  
(a) (b) 

Figure 5-17 Design resisting moment MRd at the pier base (in kNm) for different combinations of DPs 

for a bridge site in (a) Nocera Umbra and in (b) Pioraco. The optimal design point is marked by a star. 

The effect of the choice of the target risk level on the design parameters is evaluated by 

applying the proposed design procedure for a target MAF of failure of 10-5 and 2x10-4. 

The results obtained considering a MAF of 10-5 for a fixed value of the pier diameter Dc 

= 2.2m are shown in Figure 5-18b. As expected, increasing the target risk level from 10-

6 to 10-5 results in a significant reduction of the longitudinal reinforcement ratio across 

Italy. In this case, in many regions of Italy the minimum reinforcement amount according 

to Eurocode 8 is sufficient, and in the regions with high hazard the maximum value of ρL 

required is 3%. 
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(a) (b) 

Figure 5-18 Variation of the optimal ρL (expressed in terms of percentage) across Italy for Dc =2.2m 

obtained considering a target MAF of failure of 10-6 (a) and 10-5 (b). 

 

The application of a MAF of failure of 2x10-4 is presented in Figure 5-19. In this case, as 

shown in Figure 5-19a, the highest value of the MRd is around 12000 kNm, corresponding 

to a longitudinal reinforcement ratio ρL of 4% and Dc=1,4 m. The minimum Dc is 

sufficient all over Italy while it is necessary to increase the amount of ρL in the southern 

regions with highest seismic hazard (Figure 5-19b). 

  
(a) (b) 

Figure 5-19 Variation across Italy of the MRd at the base of the pier (a) and of the optimal ρL 

(expressed in terms of percentage) obtained considering a target MAF of failure of 2x10-4. 

To provide insight into the effect of soil class on the application of the risk-targeting 

design procedure, the seismic hazard is assessed at the three sites previously considered 
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(Milan, Naples and L’Aquila) for the soil types B, C and D. The new hazard curves are 

obtained using the software REASSESS V2.1 (Chioccarelli et al., 2019) and using the 

same ground motion prediction equation adopted for soil type A. Figure 5-20 shows the 

new hazard curves for the three cities computed for soil B, C and D respectively whilst 

Table 5-3 reports the corresponding risk levels for two different combinations of design 

parameters. It can be observed that the increase of risk is highest for Milan and lowest for 

L’Aquila. Furthermore, the MAF of failure for the case of L’Aquila is above 10-6 even 

for the case of ρL =4%, Dc =2.2m and it is above 10-5 if soil D is considered. Thus, the 

soil type can have a considerable impact on the results of the risk-targeting design 

procedure. 

 

Figure 5-20 Comparison of hazard curves in terms of IM=RotD50Saavg for three different sites in Italy 

assuming different soil classes. 

 

Table 5-3 Risks computed for Milan, Naples and L’Aquila for two combinations of DPs ([1.4, 1%] 

and [2.2, 4%]) and for different soil classes 

 Milan Naples L’Aquila 
 Dc =1.4m  

ρL =1% 

Dc =2.2m  

ρL =4% 

Dc =1.4m  

ρL =1% 

Dc =2.2m  

ρL =4% 

Dc =1.4m  

ρL =1% 

Dc =2.2m  

ρL =4% 

Soil B 4.75e-10 2.36e-13 1.39e-05 1.36e-08 6.26e-04 1.96e-06 

Soil C 1.18e-08 7.79e-12 9.50e-05 1.19e-07 1.81e-03 8.59e-06 

Soil D 1.25e-07 9.47e-11 3.67e-04 6.17e-07 3.77e-03 2.35e-05 

 

5.5 Conclusions  

This study illustrates a risk-targeting design procedure for bridge piers. The procedure 

identifies the optimal values of the pier diameter and longitudinal reinforcement ratio that 

minimise the resisting moment at the pier base while satisfying the stochastic constraint 

on the MAF of failure due to the exceedance of the pier displacement ductility capacity. 
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The proposed procedure is based on the solution of a series of direct reliability problems 

where the pier seismic fragility is evaluated for different combinations of the design 

parameters, and using linear interpolation, which is justified by smooth variation of the 

interpolated quantities (e.g. fragility, risk, resisting moment of the base section) with the 

design parameters. The application of the proposed design procedure is illustrated by 

considering a two-span continuous bridge representative of medium-size bridges found 

widely in the European transport network. The bridge is assumed to be located in various 

sites in Italy, characterised by very different seismicity levels. Based on the obtained 

results, the following main conclusions can be drawn: 

- The design resisting moment at the base of the pier exhibits a significant inverse 

correlation with the target MAF of failure and can be used to define the objective 

(cost) function to be minimised, as its value also affects the design of the transverse 

reinforcement of the pier, the design of the foundations, as well as the forces 

transmitted to the superstructure; 

- Targeting values of the mean annual frequency of failure lower than 10-6 years-1 in 

regions of high seismicity requires design parameters (e.g. pier diameter) that are 

out of the investigated range, which represent realistic values for bridges in Italy 

that comply with the Eurocode 8 requirements (e.g. on the maximum and minimum 

value of the longitudinal reinforcement ratio);  

- A large variation of the optimal design parameters is observed across Italy, as a 

result of significant variations in the seismic hazard.  

- In large parts of Italy, the minimum longitudinal reinforcement according to 

Eurocode 8 is sufficient to guarantee a target mean annual frequency of failure 

below 10-5 years-1. This latter value is significantly lower than the one considered 

in the US for risk-targeting, i.e. 2.3×10-4 years-1. 

- If both the pier diameter and the longitudinal reinforcement ratio are assumed as 

design parameters, non-smooth variations of the optimal values across adjacent 

sites could be obtained. This issue can be avoided by considering only a single 

design parameter and fixing the other. 
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- The site classification can influence the design results, especially in regions of high 

seismicity. Design maps should be built for different soil types to better estimate 

the effect of the site classification. 
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6 General conclusions and future work 
 

The present Thesis aims at enhancing current methodologies for the risk assessment and 

design of bridges exposed to earthquakes. Firstly, the project assessed alternative methods 

for evaluating the performance of bridges subjected to repeated earthquakes throughout 

their design life, with a proposal of improvements to these assessment methods. Secondly, 

a framework for the aftershock risk assessment of bridges was developed using a 

Bayesian Network approach and leveraging available sensing data to enhance 

understanding of the structural state and risk of bridges following seismic events. Lastly, 

the project aimed to establish a methodology for risk-targeted design of bridges, exploring 

variations in design outcomes across regions with differing seismicity levels. The 

outcomes of this research contribute insights and advancements to the field of earthquake 

engineering, laying the groundwork for more robust approaches to seismic risk evaluation 

and design. 

 

6.1 Key findings  

Summarized below are the investigations undertaken and the key findings: 
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- Chapter 3 introduced and compared recently developed methodologies for the 

prediction of damage accumulation in structures subjected to multiple earthquakes 

within their lifetime. A stochastic earthquake hazard model is used for generating 

sample sequences of ground motion records providing the reference solution and 

then used to estimate the probabilistic distribution of the damage accumulated 

during the time interval of interest. Besides evaluating the effectiveness of each 

approach, possible improvements of the cumulative demand model are tested. A 

reinforced concrete bridge model with a single pier is examined as case study and 

Park-Ang damage index is considered to describe the damage accumulation. The 

results demonstrate the importance of considering the occurrence of multiple 

shocks. It is proved that the RBM is computationally more efficient than the MM, 

providing accurate damage estimates with fewer samples. However, it introduces 

bias in the probability of damage exceedance estimates. On the other hand, 

employing the MM with a slightly higher number of samples yields accurate and 

unbiased damage estimates. In the study, no interventions were assumed to happen 

along the service life of the structure. This assumption could be realistic 

considering that retrofitting can often be impractical. This is the case when the 

level of damage following an earthquake event is visually irrelevant to motivate 

interventions or when economic restraints render retrofit actions infeasible after 

every earthquake. Despite the limitations, the analysis shows accurate results that 

can be used in practice. 

- Chapter 4 illustrates a Bayesian network-based probabilistic framework for 

updating the aftershock risk of bridges. The Bayesian network is developed for 

describing the probabilistic relationship among various random variables (e.g., 

ground-motion intensity, bridge response parameters, seismic damage, etc.) 

involved in the seismic damage assessment. This configuration allows users to 

leverage data observations from seismic stations, structural health monitoring 

(SHM) sensors, and visual inspections. The framework is applied to a hypothetical 

bridge in Central Italy exposed to earthquake sequences. The uncertainty reduction 

in the estimate of the aftershock damage risk is evaluated by utilising various 

sources of information. It is shown that the information from accelerometers and 
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visual inspections can significantly impact bridge damage estimates, thus affecting 

decision-making under the threat of future aftershocks. A bridge initially assessed 

as having a high probability of experiencing damage based on prior knowledge of 

the mainshock magnitude and source-to-site distance may be classified as safe if a 

visual inspection reports no cracking or crushing of bridge piers. This has evident 

implications for the risk posed by future aftershocks. Similar outcomes can be 

achieved by utilizing information from accelerometers, particularly if the recorded 

maximum absolute accelerations are low compared to those derived solely from 

knowledge of the earthquake magnitude and location. It is also shown how the 

updating of the BN impacts the evaluation of the aftershock risk. 

- In Chapter 5, a methodology for the risk-targeted design of RC piers in multi-span 

bridges is proposed. Such approach consists in computing the probability of failure 

of the structure by solving a direct reliability problem, associated with the 

exceedance of tolerable thresholds of loss. The methodology is applied in various 

locations across Italy to illustrate the variations in the optimal risk-based design 

properties of bridges across regions with varying seismic hazard. The study 

concludes that the design resisting moment at the base of the pier can be used as 

the objective function to be minimised. The design resisting moment is intrinsically 

correlated to the pier diameter and the longitudinal reinforcement ratio and it is 

demonstrated to be inversely correlated with the target mean annual frequency of 

failure. It is demonstrated that in regions of high seismicity, values of the MAF 

lower than 10-6 years-1 are unfeasible to target if considering design parameters that 

are in the range of values compliant with the Eurocode 8 requirements. On the 

other hand, it is possible to guarantee a target mean annual frequency of failure 

below 10-5 years-1 with the minimum longitudinal reinforcement ratio in most of 

Italy. 
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6.2 Future research 
 

Some limitations and future challenges have been identified along the process, and some 

of them are enlisted in the following: 

 

- Future investigations will explore the influence of aftershocks in the damage 

accumulation process. Furthermore, future work may involve the consideration of 

real earthquake ground-motion sequences instead of simulated ones. The 

methodologies explored could also be extended to encompass the vulnerability 

assessment of multiple critical components of bridges, along with the potential 

inclusion of retrofit interventions between successive seismic events. 

- Improvements can be made in the BN framework by developing more 

sophisticated finite element models and more consistent mainshock-aftershock 

ground motion selection approaches that better represent site-specific seismic 

hazard with a more comprehensive ground-motion database. The inclusion of more 

causal parameters in the analysis and more sources of information about the 

seismic response (e.g., information from drone-based surveys and damage 

detection) can also contribute to enhancing the proposed framework. 

- Future studies will include the impacts of models’ uncertainty in the results of 

Bayesian updating and bayesian model selection approach will be used to identify 

the most accurate model, given the information from the sensors. 

 

- More research is needed to develop accurate models, e.g. describing the 

relationship between amplitude and distribution of cracks and/or length of crushed 

concrete zone to the drifts and damage experienced by bridge piers. In addition, a 

robust definition of the levels of damage that should trigger decisions concerning 

the bridge serviceability should also be the object of further study. Future works 

will also explore the effectiveness and benefit of alternative monitoring and 

inspection strategies in terms of better-informed decisions concerning bridge 

operability, using concepts such as expected utility theory, multi-criteria decision 

making, and value of information. 
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- The impact of site classification on the risk-targeted design of new bridges, 

especially in regions with high seismic activity, underlines the necessity for 

developing different design maps for different soil types. Site-specific design maps 

can enhance the precision and effectiveness of structural engineering practices, 

ensuring that structures are appropriately designed to withstand seismic forces 

based on the specific characteristics of the soil. 

- Further investigations are needed to evaluate the risk implicit to the design of 

bridge piers according to current seismic codes and to compare these results to the 

application of the risk-based procedure proposed in Chapter 5. The proposed 

procedure can be extended to consider more design parameters, as well as other 

possible failure modes related to different bridge components (e.g. bearings and 

abutments). It can also be applied to the risk-based design of other bridge types, 

including isolated bridges. 
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Appendix A 
 

The 703 mainshocks (MS) – aftershock (AS) ground-motion (GM) sequences selected 

from the database provided by Goda & Taylor (2012) and. Goda et al. (2015) are used to 

compute their RotD50Sa spectra (Boore, 2010) for 2% damped oscillator at 40 periods. 

The 703 mainshocks and aftershock spectra are presented in Figure A-1. To select the 

ground motions appropriately while considering higher mode effects and period 

elongation effects, average RotD50Sa (denoted as RotD50Sa,avg) is utilised as the 

selected ground-motion intensity measure. RotD50Sa,avg is computed as the mean of 

RotD50Sa between 0.5T1 to 2T1 (Fayaz et al., 2021) where T1 = 0.432 secs. The 

histograms of the RotD50Sa,avg computed for the database, are presented in Figure A-2 

. 
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(a) (b) 

Figure A-1 RotD50Sa spectra (2% damped) of: (a) Mainshocks and (b) Aftershocks of the selection 

database (703 GMs) 

 

 
(a)  (b) 

Figure A-2 Average RotD50Sa (RotD50Sa,avg) of: (a) Mainshocks and (b) Aftershocks of the 

selection database (703 GMs) 

 

Firstly, MS GMs are chosen such that 10 GMs are selected for 20 levels of RotD50Sa,avg 

ranging from 0.1g to 2.0g at an interval of 0.1g with the requirement of no scaling. This 

leads to a total of 200 MS unscaled GMs. Figure A-3a shows the histogram of 

RotD50Sa,avg of the selected MS unscaled GMs. It can be observed from the histogram, 

~10 GMs are selected for each level of the 20 RotD50Sa,avg with slightly lesser number 

of GMs available for higher RotD50Sa,avg (i.e., RotD50Sa,avg >1.6 g). This due to the 

lack of recorded GM options for higher intensity levels. Finally, the 200 unscaled GMs 

are scaled such that 10 GMs exactly match each level of the RotD50Sa,avg to have 

precisely 10 GMs for each of the 20 RotD50Sa,avg levels. The histogram of the scaling 

factors is shown in Figure A-3b, and it can be observed that they range very close to 1, 

thereby signifying lower scaling levels. 
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 (a)        (b) 

Figure A-3 Selected MS GMs: (a) Unscaled RotD50Sa,avg (b) Scaling Factors 

 

The natural unscaled AS GMs corresponding to the 200 unscaled MS GMs selected above 

are selected for the AS sequence to maintain mainshock-aftershock  IM correlations. This 

leads to 200 unscaled AS GMs whose RotD50Sa,avg is presented in Figure A-4a. Figure 

A-5a further shows the RotD50Sa,avg of the 200 unscaled MS GMs, vs. the 

RotD50Sa,avg of the corresponding natural 200 unscaled AS GMs. It can be observed 

that for lower levels of MS RotD50Sa,avg levels, the RotD50Sa,avg levels of AS GMs 

tend to be very small, and the scatter plot tends to be very sparse for high AS 

RotD50Sa,avg levels. To remedy this, the selected unscaled AS GMs are scaled (with 

minimal scaling) such that for each MS RotD50Sa,avg level (i.e., 20 levels ranging from 

0.1g to 2.0g at an interval of 0.1g), the corresponding ten unscaled AS GMs lead to ten 

levels of RotD50Sa,avg ranging from 0.1g to 1.9g at an interval of 0.2g. The histogram 

of the utilised scaling factors is shown in Figure A-4b, and the RotD50Sa,avg of the 

selected scaled MS and AS GMs is shown in Figure A-5b. To ensure that minimal scaling 

is used for the AS GMs, for each level of MS RotD50Sa,avg, the corresponding ten 

unscaled AS GMs are scaled such that each one requires minimal scaling to achieve 

RotD50Sa,avg between 0.1g and 1.9g. This process leads to mainshock-aftershock  

sequences with RotD50Sa,avg shown in Figure A-5b. 
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 (a)        (b) 

Figure A-4 Selected AS GMs’: (a) Unscaled RotD50Sa,avg (b) Scaling Factors 

 
  (a)          (b) 

Figure A-5 RotD50Sa,avg of the selected MS vs. AS GMs: (a) Unscaled mainshock-aftershock GMs 

and (b) Scaled mainshock-aftershock GMs 

 

Furthermore, the magnitudes of the mainshock and aftershock remained consistent with 

the statistical knowledge obtained from the history of recordings where the selected 

mainshock-aftershock  led to mean MS magnitude = 8.15 and mean AS magnitude = 6.80. 

This is consistent with the literature available that mentions that the magnitude of AS is 

on average 1 to 1.2 points lower than the magnitude of MS event (Shokrabadi, 2018). The 

magnitudes of the MS and AS events of selected ground motions are shown in Figure 

A-6a and Figure A-6b, respectively. To further introduce randomness in the ground 

motions, the “as recorded” components of the 200 MS and AS ground motions were 

rotated at random angles. However, it was made sure that both MS and AS GMs of the 

sequence were rotated to the same random angle in order to maintain the internal 

correlations.  
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  (a)        (b) 

Figure A-6 Magnitudes of the selected GMs: (a) Mainshocks and (b) Aftershocks 
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Appendix B 
 

The regression coefficients for the average model of Equation (4-7) are listed in Table 

B-1. 

 

Table B-1 Coefficients of the bilinear regression model of Equation (4-7) for the various EDPs of 

interest 

Coefficient RD TD PA Ɛcc Ɛct DMS 

𝒂𝟏 -13. 220 -4.850 -0.208 -9.142 -9.192 -3.442 

𝒃𝟏 2.445 1.11 0.720 1.532 1.974 1.306 

𝒃𝟐 1.480 0.260 0.369 0.499 0.653 0.427 

  

The covariance matrices I and II , collecting the information on the variance of the 

error variables (in the lognormal space) and their correlation, for the two branches of the 

PSDM for the mainshock damage assessment (corresponding respectively to 

*MSIM IM  and *MSIM IM ), are: 

  

∑ =
𝐼

[
 
 
 
 
 
2.264  0.518 0.021 0.879 1.180 0.625
 0.518 0.221 0.016 0.315 0.409 0.277
0.021 0.016 0.183 0.033 0.060 0.041
0.879 0.315 0.033 0.537 0.707 0.436
1.180 0.409 0.060 0.707 0.961 0.564
0.563 0.277 0.040 0.436 0.564 0.440]

 
 
 
 
 

 
(B-1) 
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∑ =
𝐼𝐼

[
 
 
 
 
 
2.56  0.599 0.193 1.040 1.366 0.980
0.599 0.267 0.090 0.414 0.525 0.447
0.193 0.090 0.146 0.129 0.165 0.123
1.040 0.414 0.129 0.713 0.895 0.730
1.366 0.525 0.165 0.895 1.172 0.925
0.980 0.447 0.123 0.730 0.925 0.823]

 
 
 
 
 

 

 

and the corresponding correlation matrices are: 
  

 

𝐂𝐼 =

[
 
 
 
 
 
1 0.733 0.032 0.798 0.800 0.627

0.733 1 0.081 0.914 0.887 0.890
0.032 0.081 1 0.105 0.144 0.143
0.798 0.914 0.105 1 0.984 0.899
0.799 0.887 0.144 0.984 1 0.869
0.627 0.890 0.143 0.899 0.869 1 ]

 
 
 
 
 

 

 

𝐂𝐼𝐼 =

[
 
 
 
 
 
1 0.772 0.338 0.828 0.841 0.719

0.772 1 0.455 0.949 0.940 0.952
0.338 0.455 1 0.401 0.398 0.354
0.828 0.950 0.401 1 0.978 0.953
0.841 0.938 0.398 0.978 1 0.942
0.719 0.952 0.354 0.953 0.942 1 ]

 
 
 
 
 

 

 

(B-2) 

 

Table B-2 presents the regression coefficients for the average model of Equation (4-11). 

The estimate of the standard deviation of 𝜀𝑛 is 0.603. 

 

Table B-2 Coefficients of the multilinear regression model of Equation (4-11) 

Coefficient Value  

𝒄𝒏 0.233  

𝒅𝒏 0.935  

𝒆𝒏 0.166  

𝒇𝒏 -0.173  
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Appendix C 
 

Source-to-site distances can differ for typology (hypo-central distance, epicentral 

distance, seismogenic depth, etc.) and for the geometry of the source zone (Figure C-1) 

(Baker et al., 2021) .  

 
 

(a) (b) 

Figure C-1 (a) Different geometries of a source zone; (b) Types of distances 

The simplest model is the point source model. This model is usually adopted for 

representing particularly small seismic faults or volcanic phenomenon. The point source 

model is probabilistically described by the following PDF: 
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𝑓𝑅(𝑟) = {

1, 𝑖𝑓  𝑟 = 𝑟𝑝
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (C-1) 

The linear source model is detailed in Figure C-2, where Lf is the maximum length of the 

seismic fault, rmin is the orthogonal distance from the site to the midpoint of the line fault, 

r is the distance of the site from the epicenter and d is √𝑟2 − 𝑟𝑚𝑖𝑛
2  and it is mainly used 

to represent shallow faults. In this model, it is assumed that earthquakes are equally likely 

to occur at any point of the fault line and the only parameters to set are Lf and rmin. 

 

Figure C-2 Illustrative example of a linear source 

Having assumed these two quantities, the CDF 𝐹𝑅(𝑟) and the PDF 𝑓𝑅(𝑟) can be obtained 

applying the Pythagorean theorem on the triangle formed by d, r and rmin:  

 

𝐹𝑅(𝑟) =

{
 

 
0, 𝑖𝑓 𝑟 < 𝑟𝑚𝑖𝑛

2𝑑

𝐿𝑓
=
2√𝑟2 − 𝑟𝑚𝑖𝑛

2

𝐿𝑓
, 𝑖𝑓 𝑟𝑚𝑖𝑛 ≤ 𝑟 < (

𝐿𝑓

2
+ 1)

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (C-2) 

 

 

𝑓𝑅(𝑟) = {

2𝑟

𝐿𝑓√𝑟2 − 𝑟𝑚𝑖𝑛
2

, 𝑖𝑓 𝑟𝑚𝑖𝑛 ≤ 𝑟 < (
𝐿𝑓

2
+ 1)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (C-3) 

 

The plots of the CDF and PDF are shown in Figure C-3.  
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(a) (b) 

Figure C-3 (a) CDF and (b) PDF plots of the source-to-site distance of a linear source 

Figure C-4 depicts a circular areal fault model. In an areal fault model, it is assumed that 

the seismic source is producing random earthquakes with equal likelihood anywhere 

within a given fixed distance (rmax) from the site, beyond which the seismic effects 

become negligible. This type of model is adopted when a specific fault structure is not 

identified.  

 

Figure C-4 Illustrative example of an areal source 

The CDF and the PDF can be obtained based on the geometry of the fault model. The 

CDF depends on the square value of the epicentral distance r while the PDF is linear 

because it is the first derivative of the CDF. The plots of the CDF and the PDF 

respectively are presented in Figure C-5. The equations of the CDF and the PDF are 

respectively:  
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𝐹𝑅(𝑟) = {

0, 𝑖𝑓 𝑟 < 0

𝜋(𝑟)2

𝜋(𝑟𝑚𝑎𝑥)
2
=

𝑟2

𝑟𝑚𝑎𝑥
2
, 𝑖𝑓 0 ≤ 𝑟 < 𝑟𝑚𝑎𝑥

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (C-4) 

 

 
𝑓𝑅(𝑟) = {

2𝑟

𝑟𝑚𝑎𝑥
2
, 𝑖𝑓 0 ≤ 𝑟 < 𝑟𝑚𝑎𝑥

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (C-5) 

 

  

(a) (b) 

Figure C-5 (a) CDF and (b) PDF plots of the source-to-site distance of an areal source 

The other random variable involved in the hazard analysis is the earthquake magnitude. 

In 1944 Gutenberg and Richter found a linear relation between the magnitude and the 

logarithmic of mean annual frequency of exceedance (Equation (C-6)) (Gutenberg & 

Richter, 1942). This so-called Gutenberg-Richter law can be also expressed in the 

exponential form as reported in Equation (C-7). It provides an estimate of the mean 

number of events with magnitude M that exceed a magnitude value m within a given time 

frame. Typically, the time frame is assumed to be one year. 

 𝑀(𝑚) = 10
𝑎−𝑏𝑚 = 𝑒𝛼−𝛽𝑚 (C-6) 

 

 log [
𝑀
(𝑚)] = 𝑎 − 𝑏𝑚 (C-7) 
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The relation depends on two parameters, a and b. The parameter a accounts for the mean 

annual number of events expected in a given seismic source above a given magnitude 

threshold; this quantity reflects the seismicity of the region of interest. The parameter b 

describes the ratio of small to large magnitude events. These two parameters are source-

dependent and the value of the constant b is commonly assumed to be 1.0. The Gutenberg-

Richter law is employed in seismic assessment to generate sets of magnitude values. 

In the applications, the Gutenberg-Richter law is bounded within a given interval of 

magnitudes (McGuire & Arabasz, 1990). The lower bound of the interval 𝑚0 represents 

the minimum magnitude below which no effects are observed on structures. The upper 

bound value 𝑚𝑀𝑎𝑥 is the highest magnitude considered, beyond this value there are no 

earthquakes expected, or they wouldn't have a physical meaning. Using this upper and 

lower bound, the CDF and the PDF are expressed as:   

Lower bound magnitude 𝑚 < 𝑚0 

 𝑀(𝑚) = 𝑀(𝑚0)𝑒
−𝛽(𝑚−𝑚0) = (𝑒𝛼−𝛽𝑚0)𝑒−𝛽(𝑚−𝑚0)       𝑚 > 𝑚0 (C-8) 

 

 
𝐹𝑀(𝑚) = 𝑃(𝑀 < 𝑚|𝑀 ≥ 𝑚0) =

𝑀(𝑚0) − 𝑀(𝑚)

𝑀(𝑚0)
= 1 − 𝑒−𝛽(𝑚−𝑚0) (C-9) 

 

 𝑓𝑀(𝑚) = 𝛽𝑒−𝛽(𝑚−𝑚0) (C-10) 

 

Upper bound magnitude 𝑚 > 𝑚𝑚𝑎𝑥 

 
𝑀(𝑚) = 𝑀(𝑚0)

𝑒−𝛽(𝑚−𝑚0) − 𝑒−𝛽(𝑚𝑀𝑎𝑥−𝑚0)

1 − 𝑒−𝛽(𝑚𝑀𝑎𝑥−𝑚0)
       𝑚0 ≤ 𝑚 ≤ 𝑚𝑀𝑎𝑥 (C-11) 

 

 
𝐹𝑀(𝑚) = 𝑃(𝑀 < 𝑚|𝑚0 ≤ 𝑚 ≤ 𝑚𝑀𝑎𝑥) =

1 − 𝑒−𝛽(𝑚−𝑚0)

1 − 𝑒−𝛽(𝑚𝑀𝑎𝑥−𝑚0)
 (C-12) 

 

 
𝑓𝑀(𝑚) = 𝛽

𝑒−𝛽(𝑚−𝑚0)

1 − 𝑒−𝛽(𝑚𝑀𝑎𝑥−𝑚0)
 (C-13) 
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𝑀(𝑚) denotes the mean annual number of events with magnitude M that exceed a 

magnitude value m and 𝐹𝑀(𝑚) and 𝑓𝑀(𝑚) are the CDF and the PDF respectively. 
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Appendix D 
 

The mathematical expression of 𝑆(𝑓) is:  

 
𝑆(𝑓) = 𝜀𝑚𝑜𝑑𝑆0(𝑓) ∙ 𝑆𝑛(𝑓) ∙ 𝑆𝑓(𝑓) ∙ 𝑉(𝑓) (D-1) 

The two corner frequencies point-source spectrum is represented by 𝑆0(𝑓)  

 

𝑆0(𝑓) = 𝐶 ∙ 𝑀0 ∙ (2𝜋𝑓)
2 ∙

(

 
 
(1 − 𝜀) ∙

1

1 + (
𝑓
𝑓𝑎
)
2 + 𝜀 ∙

1

1 + (
𝑓
𝑓𝑏
)
2

)

 
 

 (D-2) 

𝑀0 is the seismic moment expressed as: 

 
𝑀0 = 10

2
3
(𝑀𝑚+10.70) 

(D-3) 

𝐶 is a constant: 
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𝐶 = 10−20

�̂� ∙ 𝑉 ∙ 𝐹𝑠
4𝜋𝜌𝛽3

 (D-4) 

where �̂� is the radiation pattern (�̂� = 0.55), V is a factor partitioning the total shear-wave 

energy into 2 horizontal components (V = 0.71), 𝐹𝑠 is the free-surface amplification factor 

(𝐹𝑠= 2.0), 𝜌 is the soil density (𝜌 = 2.8 t/m3) and β is the wave velocity (β =  3.5 km/s) 

near the source. The two corner frequencies fa and fb, and the ε parameter are related to 

the magnitude by 

 log (𝑓𝑎) = 2.181 − 0.496 ∙ 𝑀𝑚 (D-5) 

 

 log (𝑓𝑏) = 1.380 − 0.227 ∙ 𝑀𝑚 (D-6) 

 

 log (𝑓𝜀) = 3.223 − 0.670 ∙ 𝑀𝑚 (D-7) 

 

The 𝑆𝑛(𝑓) function characterizes the path effects of seismic waves and is expressed as: 

 
𝑆𝑛(𝑓) =

1

𝑅
𝑒
−𝜋𝑓𝑅
𝑄(𝑓)𝛽 (D-8) 

𝑄(𝑓) = 𝑄0𝑓
𝑛 is called the quality factor and accounts for the effect of waves-

transmission, with Q0 = 180 and n = 0.45 regional parameters.  

The 𝑆𝑓(𝑓) is given by: 

 

𝑆𝑓(𝑓) = 𝑒
(−𝜋𝑘𝑓) [1 + (

𝑓

𝑓𝑚𝑎𝑥
)
8

]

−0.5

 (D-9) 

where k = 0.03 and fmax = 100 Hz.  

V(f) is the soil amplification factor (Boore and Joyner 1997) (VS,30 = 310 m/s for a generic 

soil) and 𝜀𝑚𝑜𝑑 is the model-error parameter used for increasing the record-to-record 

variability. The latter is a lognormal random variable with 𝜇ln 𝜀 = 0, 𝜎ln 𝜀 = 0.5. 

The envelope function e(t) is defined by 

 
𝑒(𝑡) = 𝑎 ∙ (

𝑡

𝑇𝑛
)
𝑏

𝑒𝑥𝑝 (−𝑐 (
𝑡

𝑇𝑛
)) (D-10) 

 

 
𝑏 = −𝜀 ∙

ln(𝜂)

[1+𝜀(ln𝜀−1)]
; 𝑐 =

𝑏

𝜀
; 𝑎 = (

exp (1)

𝜀
)
𝑏

; 𝜂 = 0.05;  𝜀 = 0.2 (D-11) 
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The total duration of a ground motion is  

 
𝑇𝑛 = 2𝑇𝑤 = 2 ∙ (0.05 ∙ 𝑅 +

1

2𝑓𝑎(𝑀𝑚)
) (D-12) 

 

The hypo-central distance R, i.e. the distance from the earthquake source to the site, is 

defined as: 

 
𝑅 = √𝑟𝑒2 + ℎ2 (D-13) 

where 𝑟𝑒 is the epicentral distance and h is the moment dependent nominal pseudo-depth. 

 


