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Abstract 

New methods of designing Fractional Order PID (FOPID) controllers are 

developed for regulating product’s purity in distillation columns. It is widely known 

that poorly tuned PID controllers lead to bad quality of products and accompanied 

reduction in profit margin in the process industry. In distillation columns, tight 

composition control of products with 98% purity level is not achievable with simple 

pressure controllers only due to sensitivity to disturbances. Therefore, FOPID 

controllers are proposed to solve these multivariable impurity problems. FOPID 

controllers have extra tuning parameters that can counteract effects of time delays in 

distillation columns if properly tuned. This property is exploited as a tool for improved 

performance. Original contributions of this thesis include the development of three 

new design methods for multivariable FOPID controllers and results are analysed 

using inverse maximum singular value of relevant sensitivity functions to assess robust 

stability. Several conventional PID controller design methods are also reviewed for the 

purpose of comparison.  

Thereafter, a decentralised FOPID control system is developed for 

multivariable systems based on plant’s critical frequency point and results show 

improved performance over conventional PID controllers. The proposed critical 

frequency point method provides very easy-to-use tuning rules similar to Cohen-Coon 

tuning rule for integer-order PID controllers. In addition, a new decentralised 

multivariable FOPID controller is also proposed based on Internal Model Control 

(IMC) method but settings are tuned using Biggest Log-magnitude Technique (BLT). 

This IMC-FOPID control design scheme overcomes the need for critical frequency 

point experiments. Another contribution of this thesis is the development of a novel 

discrete Fractional Order Predictive PI (FOPPI) control design scheme suitable for 

linear multivariable systems. Comparative study of these methods is presented. 

Simulation results prove that both top and bottoms products’ purity of 98% are 

achievable with improved disturbance rejection when using the proposed FOPPI 

controller. In comparison, simpler FOPID control design schemes developed in 

continuous time are found to meet design objectives but at the expense of having a 

more conservative control action. 
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Chapter 1 

Introduction 

1.1 Control of Single Input Single Output (SISO) and Multivariable 

Systems 

The need for regulation, stability and disturbance attenuation are fundamental 

motivations for design of control systems for various processes and systems. Systems 

with one actuating control input and a single output are generally considered to be 

Single Input Single Output (SISO) systems. On the contrary, systems with more than 

one actuating input and two or more output variables may be considered to be 

multivariable systems. Multivariable systems are also termed Multi-Input Multi-

Output (MIMO) systems.  

Today, the most dominant controller type in industry for both SISO and MIMO 

systems is still Proportional-Integral-Derivative (PID) controller. Large number of 

PID controllers can be found in chemical reactors, industrial boiler systems, water 

treatment plant, separation systems and many other automation systems. Industrial 

popularity of the PID controller is due to simplicity of design, widespread familiarity 

in industrial circles as well as its robust performance against sensor and actuator’s 

limitations in practical plants (Astrom & Hagglund, 1995). The control objective of 

SISO systems (with PID controller) is to maintain desirable behaviour of the output 

variable by varying a manipulated signal. This is mainly achieved using feedback 

architecture. A simple diagram of SISO control system is shown in Fig. 1.1 where G(s) 

represents the scalar process, C(s) is the controller, U(s) is the control signal, Y(s) is 

the system’s output while R(s) represents system’s reference input (desired input). 

 

Fig. 1.1 A SISO control system showing controller C(s) and process G(s) 

Input
OutputG(s)

U(s)
R(s)

Y(s)C(s)
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Fig. 1.2 An example of decentralised MIMO control system with two inputs and outputs 

Application of feedback principle helps reduce sensitivity to noise and other 

process variations and also aids tracking of set-point. In many cases, Proportional-

Integral (PI) controllers and PID controllers are generally a simple implementation of 

feedback in a SISO system as shown in Fig. 1.1. In a coupled MIMO case, feedback 

principle can be applied using multi-loop configuration as shown in Fig. 1.2 where the 

process matrix [G11 G12; G21 G22] represents the two-input two-output system; C1 

and C2 represent the two decentralised controllers; R1 and R2 represent the two input 

signals while Y1 and Y2 are the two system’s outputs. Over the past six decades, these 

PID controllers have been found to yield satisfactory control actions for many control 

problems especially, when the process dynamics are first or second order and 

performance requirements are not too stringent. PID controllers have been found to 

eliminate steady state errors through integral action while the derivative component 

provides anticipatory action and aids damping. Several tuning methods for this class 

of controllers are already well-established in industry and there is a well-established 

practice of installing and running these conventional PID controllers (Astrom & 

Hagglund, 1995). However, in extending most of these established PID controller 

design methods to multivariable process control, there is a major setback of 

multivariable interaction which limits the performance of such systems (Johnson & 

Moradi, 2006). 

Reference R1
C1

C2

Output Y1

G21

G12

G22

G11

Reference R2 Output Y2
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Multivariable system control has been known over many decades to be more 

challenging to design when compared to SISO applications. This is primarily due to 

presence of interaction and directions in the system (Albertos & Sala, 2004). Examples 

of such systems are distillation systems and industrial boiler systems. Some 

multivariable systems have the same number of inputs and outputs and are generally 

termed square systems. A functional transfer function model of MIMO systems is 

given below in (1.1):   

 ( ) ( ) : 2,3,..., ; 2,3,..., .ijG s G s i n j m= = =      (1.1) 

Simulation studies in this thesis are limited to square systems with two or three inputs 

i.e. i = j; {n, m} = {2, 3}. This is because a simplified distillation column model 

contains two or three inputs and outputs. Examples of square systems considered in 

this work are two-input two-output distillation system e.g. Wood-Berry (WB) model 

and a three-by-three distillation model given by Ogunnaike and Ray (OR) (Ogannaike 

& Ray, 1994). Non-square systems are not considered because the scope of this thesis 

is limited to the design of control system for distillation column process which contains 

equal number of outputs and inputs. In practice, many distillation columns have a 

corresponding flow rate as input variable to a corresponding output (product 

composition) and this is naturally a square system. Non-square systems may present 

difficult controllability issues and may require some form of mathematical pre-

treatment before linear-time-invariant design techniques are extended to them. 

Emphasis is placed on practical distillation column control system design hence the 

limitation, in scope, to square systems only. 

Some mathematical tools have been developed to identify the degree of 

interaction in MIMO systems. For instance, the level of interaction can be estimated 

using indices such as Relative Gain Array (RGA) (Luyben, 1986). A large RGA value 

indicates high level of interaction in a particular system and that suggests the difficulty 

in effective pairing of manipulated and controlled variables for control design. 

Similarly, small RGA signifies lower level of interaction between associated variables. 

This information is a useful guide in pairing output variables (y) with corresponding 

input variables (u) for some form of multi-loop decoupled control. RGA is generally 
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computed as a function of frequency. It is the corresponding matrix of relative gains

( )ijG as given in (1.2) where i and j denotes input-output loop’s numbering. 

  1

ij ji
RGA G G− =        (1.2) 

where:  , 1,2,3...i j =  

In addition to RGA analysis, physical relationship of input and output variables is 

also considered during selection of variable pairs.  

1.2 Background of Distillation Process  

Fractional distillation is a separation technique used in crude oil refining process 

for separation of inlet feed mixture into constituent fractions such as gasoline, kerosene 

and methane based on product’s volatility. Two distinct column types are found in 

practice namely, trayed and packed distillation columns. Trayed columns are 

predominant in crude oil refineries (Haydary, 2009). A trayed distillation column 

consists of a vertical column where trays or plates are used at each stage within the 

column to enhance component separation. A reboiler is used to provide heat for 

vaporisation of liquid products from the bottom of the column. At the top, a condenser 

is used to cool and condense vapour from the top of the column and a reflux drum 

serves as a vessel to hold condensed vapour so that liquid reflux can be recycled back 

from the top of the column (Balchen, 1988). Column pressure is relatively kept 

constant using a simple proportional controller and other relevant product can be 

withdrawn at the relevant plate as required. 

In a trayed binary distillation control system shown in Fig. 1.3, where ‘i’ denotes 

each tray’s number, output variables are molar composition of top and bottoms 

products. Inputs may be drawn from any of these five manipulated variables (flow 

rates) namely: 

▪ Liquid flow rate at ith stage in Kmol/min (Li), 

▪ Vapour flow rate at ith stage in Kmol/min (Vi ), 

▪ Distillate (Product) flow rate in Kmol/min (Di), 

▪ Bottoms product flow rate Kmol/min (BNn), 

▪ Reflux flow rate in Kmol/min (LF). 
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This yields five potential degrees of freedom for control design in any trayed 

distillation system. Therefore, composition control of distillation column is naturally 

a multivariable control problem. 

 

 

Fig. 1.3 A simple binary distillation column showing 2 outputs (top -D and bottoms - B products) 

On the contrary, packed colums does not use any plates but maintains vapour-

liquid contact continuously in a packed bed. The liquid flows down in the column over 

a packing surface while the vapour moves in the opposite direction, upwards in the 

column. Maintenance of good vapour -liquid distribution throughout the packed bed 

significantly influence the efficiency of a packed column. Comparatively: 

▪ Packed columns are cheaper to design for distillation of corrosive mixture 

compared to trayed columns due to the number of plates that may be used 

for such applications in a trayed column. 

▪ Trayed columns can be designed to handle a wider range of liquid and 

vapour flow rates than packed columns.  

▪ The liquid hold-up is lower in a packed column compared to trays because 

trays have higher retention rate for liquids. 

▪ Efficiency of a trayed column can easily be predicted unlike in packed 

columns because it is dependent on number of plates (flexible design 

parameter) (Karacan, et al., 1998).  

KEY
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In practice, trayed columns are found to be more common than packed columns and 

emphasis is placed on trayed columns although the basic theory and models of trayed 

column can be directly applied to packed columns too. 

Three distillation model types are studied for control design namely: 

▪ Transfer function model,  

▪ Staged model, 

▪ State space model.  

All three considered model types are essentially linear multivariable models. Any 

linearisation method may be used to obtain an approximate linear multivariable model 

for non-linear trayed distillation column once an operating point has been identified. 

In the design of distillation control systems, it is widely known that tight 

composition control of products with 98% level of purity is not achievable with simple 

proportional pressure controllers only (Balchen, 1988; Minh, 2009). This is due to 

sensitivity of the distillation process to feed variability, variation in input flow rate and 

other disturbances. Impurity concentration in end product is expected to be less than 

2% in many high purity columns and this require some form of efficient control of the 

entire process (Minh, 2009). Additionally, safety and reliability problems can arise if 

liquid level in the reboiler and reflux drum drop below tolerable limit. Simple 

proportional controllers are identified for these inventory safety concerns. However, 

there is a need for implementation of composition controllers to get desired end 

product’s quality. This is in addition to column pressure and level control systems 

which are typically made up of simple proportional controllers. To attenuate effects of 

multivariable interaction in a coupled-MIMO systems, several PID control design 

methods have been proposed over the years for tuning conventional PID controllers 

but with mixed results (Besta & Chidambaram, 2015; Chang, 2007; Chen & Marquez, 

2008; Luyben, 1986). In this work, fractional order controllers are proposed to solve 

this multivariable distillation control problem because when properly designed, the 

extra tuning parameters can be tuned to counteract effects of time delays in the column 

(Monje, et al., 2010; Baruah, et al., 2016). 
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1.3 Objectives and Scope  

A clear identification of an overriding set of objectives is a requisite for 

determining the direction of any research project and greatly influences overall 

probability of success of such research endeavour. The entire project plan and/or list 

of research activities are usually fundamental derivatives of clearly defined set of 

research objectives. To this end, key research questions in this thesis are defined as 

follows: 

“How can PID controllers and Fractional Order PID (FOPID) controllers be 

designed and tuned to solve a linear multivariable control problem such as 

composition control of distillation column with multiple time delays? If FOPID 

controller is selected to solve a time-delayed multivariable distillation control 

problem, how can it be designed and tuned to yield 98% distillate’s purity and 2% 

bottoms impurity in the face of disturbances like 20% fluctuation in feed flow rate?” 

Many researchers can argue that design of PID controllers is now a mature field 

with overwhelming number of tuning methods already made available. Many of the 

conventional PID controller tuning methods have been reported to give satisfactory 

performance when the process dynamics are first or second order systems and 

performance requirements are modest. However, performance deteriorates when 

applied to solve interactive multivariable control problem such as distillation control 

(Astrom & Hagglund, 1995). Additionally, conventional PID controllers do not have 

sufficient parameters or capability to handle long dead-times in an analytical fashion 

(Astrom & Hagglund, 2006; Johnson & Moradi, 2006). Consequently, fractional order 

controllers such as FOPID controller and fractional order MPC are proposed to solve 

these interactive multivariable control problems. One major difference between 

conventional PID controller and FOPID controller is that FOPID controller is more 

flexible in terms of frequency domain characteristic. Given the non-restriction of 

orders of integral and derivative terms of the controller, more parameters are available 

for slope manipulation of both magnitude and phase curves at high and low 

frequencies. When properly tuned, this frequency domain flexibility enables FOPID 

controller to yield superior control performance over conventional PID controllers for 

a class of systems although at the expense of having more tuning parameters or 
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parameterised equations (Monje, et al., 2010; Baruah, et al., 2016). Flexibility of 

fractional order systems is also exploited in fractional order MPC to attempt to 

improve disturbance rejection property when compared to a standard MPC system. 

These frequency domain features explain the rationale behind the choice of fractional 

order controllers, for multivariable process control applications, over those 

conventional controllers where derivative orders are restricted to integers only.  

One major problem associated with fractional order controllers is that there is no 

well-established methodology for designing MIMO FOPID controller for 

multivariable applications unlike SISO process control systems. Therefore, the aim of 

this research is to develop effective multivariable FOPID controller design schemes 

suitable for handling multivariable control problems like composition control of end 

products in a typical distillation column. This is a primary example of multivariable 

control problem. In addition, most distillation column models contain multiple dead-

times and this introduces difficulty in composition control. FOPID controllers have 

long been identified as a potential control design solution for tackling control problems 

involving long time delays (Monje, et al., 2010).  

Design and tuning of FOPID controllers for time delayed SISO processes have 

been developed over the years with varying degree of success. However, no 

established design or tuning rules have been developed for MIMO cases. Firstly, 

established methods of designing conventional PID controllers in a MIMO scenario is 

studied and adapted to design MIMO FOPID controllers. Such established design 

methods include Internal Model Control (IMC) and Model-based Predictive Control 

(MPC) design methods. A widely accepted method of tuning integer order PID 

controllers known as Biggest Log-modulus Tuning (BLT) method is also adapted to 

tune FOPI controllers. These conventional control design schemes are also considered 

for comparison purpose too. 

In industry, many distillation columns are still operated manually without any 

automatic product’s composition control system except simple proportional 

controllers for operational safety constraints like column’s pressure. Therefore, a 

suitable automatic control system is proposed to improve purity of product’s 

compositions in a trayed or batch distillation column. This is not limited to 
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conventional PID controllers only but those with fractional orders are studied and 

design methods are developed too. In addition, Fractional Order Predictive PI (FOPPI) 

control system is developed using a similar approach to conventional discrete model-

based predictive control scheme. Extended simulation studies are presented to 

demonstrate suitability of designed controllers for tight composition control of a 

typical distillation column using Matlab/Simulink.  

 Matlab and Simulink are used to model a typical distillation column in order to 

provide a framework for control design. In a case where non-linear model is obtained, 

deviation variables are used to obtain an approximate linear model around a relevant 

operating point. Both transfer function model and state space model of distillation 

column are considered for controller design. Thereafter, some scalar PID controller 

design methods are reviewed along with their MIMO extensions in a multi-loop 

control system configuration. Simulation of unit step response and disturbance 

rejection are carried out using Matlab to determine suitability for multivariable control 

system design.  

To build on robust performance of conventional PID controllers, FOPID controller 

design methods are developed for linear multivariable systems. Emphasis is placed on 

centralised multivariable controller design architecture. In addition, augmented state 

space model is used to develop a fractional order predictive PI control scheme for 

composition control of distillation column in discrete time. This allows for 

incorporation of future set-point information in control law formulation leading to 

improved set-point tracking and disturbance rejection. Simulation studies are carried 

out using Matlab and results are presented to demonstrate the benefits of proposed 

design schemes. 

In a nutshell, objectives of this thesis are summarised as follows: 

▪ To study both centralised controller design methods and multiloop PID control 

design methods such as relay feedback, Internal Model Control (IMC) and 

Biggest Log-modulus Tuning (BLT) methods. Given any open-loop stable 

distillation process, it is expected that these control design methods are 

implemented and results analysed for stability and robust performance, 
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▪ To evaluate and compare both performance and robust stability of these 

controllers using relevant sensitivity functions and uncertainty models, 

▪ To design FOPID controllers for multivariable systems such as the 

experimental three-by-three distillation plant given by Ogunnaike and Ray, 

▪ To develop a model-based predictive control method for designing FOPID 

controllers for a linear multivariable system.  

The scope of this work is limited to control of open loop stable processes only. 

Open loop unstable processes are not treated primarily because distillation column, 

which is the primary focus of this research, is an open-loop stable process. Open loop 

unstable systems may require some form of pre-stabilisation before the centralised and 

decentralised controller synthesis methods, applicable to linear time invariant systems, 

are extended to them. All simulation examples are open-loop stable distillation models 

with two or three inputs and outputs. Distillation models considered are only those 

models of distillation columns set up for separation of ideal mixtures (or near-ideal 

mixtures) such as crude oil. There are other mixtures in practice termed azeotropic 

mixtures and these are liquid-mixtures that cannot be separated in a simple distillation 

process. This is because constituents of azeotropic mixtures have constant boiling 

point and cannot be altered during a simple distillation process (Arlt, 2014). 

Specialised distillation towers are generally required for separation of such azeotropic 

mixtures and the separation process typically involves a combination of techniques 

including distillation. Therefore, only distillation of ideal mixtures is considered where 

the mixture only requires one separation process only i.e. fractional distillation. 

In terms of process model types used during control design, transfer function 

models and conventional state space models are considered in development of control 

design methodology. Pseudo-state space models or fractional-order system models are 

not considered. There are published papers for designing FOPID controllers for SISO 

systems with fractional order dynamics (Padula, et al., 2014). However, in this thesis, 

fractional order controllers are mainly used as a tool to improve control design 

performance and stability of conventional multivariable distillation columns. There are 

many examples where authors successfully utilised FOPID controllers to control 

integer order processes and basically exploited the design flexibility inherent within 

FOPID controllers (Monje, et al., 2010; Baruah, et al., 2016; Anon., 2017). However, 
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these methods were demonstrated for SISO systems only. In this thesis, the equivalent 

multivariable FOPID controller design for coupled-MIMO process control systems 

(with integer orders) is considered as the main focus because of the possibility of 

exploiting the same desirable property of fractional-order controllers (frequency-

domain flexibility) for improved stability and robust performance of MIMO systems 

modelled with conventional integer order dynamics. It should be noted that available 

models of these distillation columns are conventional lumped-parameter models 

(ordinary differential equations with integer orders). Therefore, controller-design is 

aimed at practical process control systems only, with integer order models. 

1.4 Preliminary Definitions 

A glossary of some specialised terms found in this thesis is given in this section. 

▪ Centralised controller 

A centralised controller is a fully cross-coupled multivariable controller 

(Johnson & Moradi, 2006).  

▪ Controllability 

Input-output controllability is defined as the ability to achieve acceptable 

control performance, that is, to keep the outputs within specified bounds or 

displacements from their references in spite of unknown but bounded 

variations such as disturbances and plant changes, using available inputs and 

available measurements (Skogestad & Postlethwaite, 2005). 

▪ Decentralised controller 

 A decentralised controller is a multi-loop controller configured in such a way 

that a distinct controller term is synthesized from each major diagonal 

(decoupled) transfer function term. Off-diagonal (interaction terms) elements 

are often ignored and the structure reduces to multiple-SISO configuration 

(Albertos & Sala, 2004).  

▪ Fractional Derivative  

Fractional-order derivative of a function f(t) with order λ is defined by 

Riemann-Liouville as: 

1

0

1 ( )
( ) ,

( ) ( )

tn

n n

d f
D f t d

dt n t








  − +

 
=  

 − − 
      (1.3) 



12 

 

where 0, 1 ,t n n −    n   (Monje, et al., 2010). 

 

▪ Fractional Distillation 

Fractional distillation is defined as separation of a liquid mixture into fractions 

differing in boiling point by means of boiling and condensation, typically using 

a fractionating column (Balchen, 1988). 

▪ Fractional order Proportional-Integral-Derivative (FOPID) controller 

FOPID controller may be defined in continuous form as given below: 

 ( ) ;I
p d

k
C s k k s

s




= + +      (1.4) 

where  and  are the integral and derivative orders; kp, kI and kd are 

proportional, integral and derivative gains respectively (Edet & Katebi, 2016). 

▪ Gain margin 

The gain margin is the amount of gain increase or decrease required to make 

the loop gain unity at the phase cross-over frequency where the phase angle is 

–180° (Seborg, et al., 2010). 

▪ Multivariable interaction 

This refers to the coupling effect between different inputs and outputs in a 

multi-input multi-output process or system (Ogannaike & Ray, 1994) 

▪ Multivariable System 

A multivariable system or process refers to systems with more than one 

actuating input and two or more output variables (Ogannaike & Ray, 1994). It 

is synonymous with multi-input multi-output system 

▪ Observability 

Observability refers to the ability to infer internal states of a system from 

knowledge of external outputs (Wang, 2009). 

▪ Phase margin 

Phase margin refers to additional phase lag that a system can tolerate before 

becoming unstable (Seborg, et al., 2010) 

▪ Robustness 

Robustness is a measure of the resilience of a system in the face of internal 

changes in behaviour (Maciejowski, 1989). 
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▪ Scalar system 

Scalar system refers to single input single output system. There are no 

directions in scalar systems (Albertos & Sala, 2004). 

▪ Sensitivity 

This is the measure of changes in output of a system due to small perturbations 

in the system (Maciejowski, 1989). 

▪ Stability 

A system is said to be stable if it produces bounded output to a bounded input 

(Astrom & Hagglund, 1995). 

1.5 Original Contributions of Thesis 

Major contributions to knowledge are given as follows: 

▪ A new method of designing fractional order PID controller (FOPID) is 

developed for scalar systems in chapter 4. Although the proposed procedure is 

similar to modified Ziegler-Nichols tuning method for conventional PID 

controllers in terms of requiring critical frequency point experiment, it is 

significantly different in terms of obtained tuning relations. Details have been 

published in (Edet & Katebi, 2016). 

▪ These new FOPID controller design rules are extended to multivariable 

systems using sequential loop closing method in subsections of chapter 4. The 

OR distillation model is considered as process model for simulation study and 

FOPID controller is designed for composition control in order to improve 

distillate’s quality. Performance is evaluated and robust stability is studied 

using inverse maximum singular value of sensitivity along with input/output 

multiplicative uncertainty models. 

▪  IMC-BLT-FOPI controller type is developed in a multivariable setting for the 

first time. This is reported in chapter 5. However, fine tuning of controller 

parameters is achieved by BLT tuning method. Although BLT is widely 

studied for conventional PID controller tuning, it is modified for tuning of 

IMC-FOPI controllers using multiloop configuration. This new control scheme 

is implemented for composition control of distillation systems and it essentially 

overcomes the drawback of critical frequency point experiments associated 
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with Ziegler-Nichols type algorithms. Both WB and OR models are studied and 

performance is compared with optimal PID controller. Details are published in 

(Edet & Katebi, 2018). 

▪ A novel predictive fractional-order control design method is developed based 

on augmented state space model in chapter 6. Inherent robust properties of 

FOPID controller are retained without losing anticipatory action and other 

defining features of model-based predictive control scheme (Edet & Katebi, 

2018). Details of this control design scheme have been published in (Edet & 

Katebi, 2017).    

1.6 Organisation of Thesis 

In this section, organisation of the entire thesis is presented. In chapter 1, 

motivation, objective, outline and contributions to knowledge have been presented. In 

chapter 2, several methods of designing conventional PID controllers for multivariable 

systems are reviewed. Model-based methods such as internal model control as well as 

parametric model free design methods such as single frequency point methods are 

described in detail. Some of the reviewed methods use multiloop structure e.g. relay 

feedback design method. Fully cross coupled PID controller design methods such as 

Maciejowski or Martin-Katebi methods are also presented. A section of chapter two is 

dedicated to performance and robustness evaluation. Inverse maximum singular value 

of sensitivity functions, input multiplicative uncertainty and output multiplicative 

uncertainty models are considered to analyse robust stability of designed control 

systems. Integral Absolute Error (IAE) is used to estimate steady state error or as 

indicator for set-point tracking. 

Chapter 3 describes system modelling. Since distillation system is the process 

in focus, a chapter is dedicated to modelling issues involving distillation columns. 

Non-linearity, sensors and general instrumentation requirements are some of the 

controllability and observability issues discussed. Two transfer function models are 

discussed and a non-linear staged model is presented too. Simulation studies are 

carried out on a two-by-two WB distillation model using some tractable methods of 

designing conventional PID controllers. These two linear models (OR and WB) are 
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thereafter used in subsequent chapters as they predominantly provide framework for 

control design in continuous time domain. 

Chapter 4 sets out a new method of designing FOPID controller for SISO 

systems. Furthermore, the proposed approach is extended to multivariable systems 

using sequential loop closing method. A case study of distillation control is presented 

and results obtained via simulation studies with a three-by-three OR column model are 

presented.  

In chapter 5, IMC method for designing conventional PID controllers is 

extended to Fractional Order PI (FOPI) controllers. The conventional IMC strategy is 

retained but different set of formulae are developed to set the gains of an IMC-FOPI 

controller. This is developed in a multivariable setting. Although initial controller 

settings are provided by IMC method, BLT is used to further tune these controller 

parameters to meet a robust specification for any linear multivariable system. Robust 

stability is also analysed and comparative study is presented. 

Chapter 6 presents a survey of model-based predictive control design 

methodology. However, only one suitable predictive control algorithm is extended to 

design FOPI controller for both SISO and MIMO control problems in discrete time. 

Practical applications and limitations are also given attention. A novel fractional-order 

predictive PI controller design method is developed for multivariable system control. 

Finally, chapter 7 states the major conclusions and summary of the reported 

work. Recommendations for future work concerning non-linear control of distillation 

system are given in this chapter. Other useful suggestions for future work are also 

included in this section. Appendices contain details of Matlab programs and Simulink 

diagrams for distillation examples reported in the thesis. 
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Chapter 2 

Review of Multivariable PID Controllers 

 In this chapter, different multivariable PID controller design schemes and 

multi-loop PI controllers are reviewed. The aim of reviewing these established 

conventional PID design schemes is to identify some algorithms that may be effective 

in handling multivariable interactions (coupling) and use them as baseline for judging 

robust performance of FOPID control schemes proposed in subsequent chapters 

because the two controller types are similar in structure but only differ in the 

derivative/integral orders and frequency domain properties. In addition, some of these 

conventional PID control design narratives are also suitable for designing 

proportional-integral-derivative controllers with fractional orders with little 

modifications. All these design narratives are discussed in this chapter although 

detailed design of fractional-order PID controllers can be found in chapter 4 and in 

subsequent chapters. Firstly, it is imperative to understand process characteristics 

before designing efficient controllers to meet any pre-determined performance or 

stability criteria. Therefore, a generic multi-input multi-output transfer function model 

is briefly discussed before reviewing PID controller design methods. 

 A generic Multi-Input Multi-Output (MIMO) transfer function matrix can be 

used to represent a distillation column. Consider a MIMO transfer function model with 

m number of inputs and outputs represented with a transfer function matrix G(s): 
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where the elements ( )ijg s  have the form ( ) ;ijL s

ij ijg s G e
−

= , 1, 2,3... ;i j m= ijL =  time 

delay (non-negative) and ( )ijG s represents a strictly proper, stable, scalar, real, rational 

function with first or second order characteristic.  G(s) is assumed to be square and 

non-singular. Other distillation model types such as staged-equilibrium model and 

state space model are discussed in detail in chapter 3. A multivariable PID controller 
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is required to be designed to control this MIMO system G(s). Inherently, the structure 

of the MIMO transfer function model lays bare the difficulty expected to be 

encountered when designing a multivariable controller for the system. This primary 

difficulty is associated with the presence of multiple process elements and 

accompanying multivariable interactions (coupling effects). These inherent limitations 

and multivariable characteristic are taken into consideration during the control design 

phase. Various methods of designing suitable multivariable PID controllers can be 

categorised under two major groups depending on model requirement as explained in 

the next section. 

2.1 Grouping of MIMO PID Controllers 

Existing multivariable PID controller tuning methods can be classified as 

model-based and non-parametric model-based methods. A design method is classified 

as parametric model-based method if it relies on availability of a detailed process 

model for controller synthesis. Non-parametric model-based design methods are based 

on the assumption that a detailed process model is unavailable (Katebi, 2012). Process 

model can be obtained from historical data and system identification or derived 

analytically from physical laws governing the system. Non-parametric model-based 

methods are suitable for online tuning of the system while parametric model-based 

methods are only suitable for offline tuning of the controller due to computational 

delays (Johnson & Moradi, 2006). PID controller design algorithms can also be 

grouped as follows: fixed parameter and adaptive methods; or optimisation-based 

methods and non-optimal algorithms. A brief classification is illustrated in Fig 2.1. 
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Fig. 2.1 Grouping of MIMO PID controllers  

where MVC represents Minimum Variance Control; Dec. Diag. refers to Decentralised 

and Diagonal Elements Design Methods.  

A closer examination of Fig. 2.1 reveals an increasing number of model-based 

methods of designing MIMO PID controllers. These methods vary from direct 

synthesis in time or frequency domain to optimisation-based methods (Besta & 

Chidambaram, 2015; Chang, 2007; Katebi & Moradi, 2001; Chen & Marquez, 2008). 

They are devised to meet certain performance specifications on the closed-loop time 

domain response or a frequency domain property (Vu & Lee, 2008). Some of the 

methods leave closed-loop stability to be post-checked. Several authors presented 

analytical solution to PID type problems and developed a direct synthesis method of 

designing PID controllers (Skogestad, 2012; Luyben, 1986). Other authors treated 

each loop of the MIMO system as a SISO and thereafter utilised Internal Model 

Control (IMC) to design both PI controllers and PID type controllers for the whole 

MIMO process (Vu & Lee, 2008; Vilanova & Katebi, 2009; Besta & Chidambaram, 

2015). When a FOPDT process model is used for derivation, a PI controller is obtained 

using IMC method. However, when a Second Order Plus Dead Time (SOPDT) model 

is used as process model, a three term (PID) controller is obtained (Skogestad, 2012). 

Predictive PID controller design and tuning methods have been successfully developed 

too and it requires detailed plant model and optimisation (Katebi & Moradi, 2001).  
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Considering controllers with fractional orders such as Fractional Order 

Proportional-Integral-Derivative (FOPID) controllers, optimisation-based methods 

have been developed for such controllers but results have been found to be impressive 

predominantly in SISO applications. For instance, optimisation-based methods have 

been exploited to design optimal FOPID controllers using IMC framework for a class 

of SISO system which exhibits fractional first order plus dead-time dynamic 

characteristic (Padula, et al., 2014). Other optimisation based methods include: 

minimum variance control, intelligent control algorithms and linear matrix inequality 

(LMI) methods (Almeida & Coelho, 2002; Song, et al., 2014; Huynh, 2008). All these 

control schemes require detailed process model for controller synthesis. Generally, 

optimisation based methods are suitable for offline tuning due to computational delays 

and will not be discussed in detail. Emphasis is placed on methods that are easily 

adaptable to online tuning. 

In contrast, there are some simple model-free methods of designing 

multivariable PID controllers for MIMO process control systems. Sequential loop 

closing technique can be combined with Ziegler-Nichols type PID tuning rules for 

multivariable process control (Loh, et al., 1993). This method relies on critical 

frequency experiments set up to identify ultimate frequency point of the plant and it is 

easily adaptable to autotuning. It is also implemented in a multiple-SISO loop fashion 

due to the decentralised approach. Decentralised approach reduces multivariable 

control design to a multiple-SISO loop structure where each loop handles each control 

variable to satisfy the design objective with respect to that variable. In addition, there 

are four fully cross-coupled multivariable PID controller design algorithms that will 

be discussed in detail in later subsections of this chapter. These four methods include 

Davison multivariable controller, Penttinen-Koivo PI controller, Maciejowski 

algorithm and Martin-Katebi multivariable controller (Davison, 1976; Katebi, et al., 

2001). These are model-free methods that are easily adaptable to online tuning and do 

not involve extensive computational delays. 

2.2  Two Major Control Structures 

Two major configurations are identified for implementing multivariable PID 

control systems. These are centralised control structure (which is also known as fully 
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cross-coupled control configuration) and decentralised control structure which is also 

commonly referred to as multi-loop control configuration. 

2.2.1. Centralised control system structure 

A MIMO control system can be implemented in a fully cross-coupled or 

centralised feedback control structure. Each element of the transfer function matrix is 

equally considered for control design to reduce effects of interaction. It is also called 

fully cross-coupled configuration. Where this configuration is preferred, the 

centralised control system reduces to a simple feedback control structure. An example 

of a TITO centralised control system diagram is shown in Fig. 2.2. If G(s) represents 

a TITO distillation process transfer function matrix with FOPDT sub-models i.e.: 

,11 12

21 22 ,

( ) ( )
( ) ; ( ) ;

( ) ( ) 1

ijL s

P ij

ij

P ij

k eG s G s
G s G s

G s G s s

−
 

= = 
+ 

 

where , 1,2;  Pi j k= = steady state gain; P =  time constant;  =L  dead time, a 

centralised PI controller of the form C(s) in (2.1) can be designed to control the TITO 

process. 

 
11 12

,

21 22 , 2 2

( ) ( ) 1
( ) , ( ) 1 ,

( ) ( )
ij p ij

I ij

C s C s
C s C s k

C s C s s


  
= = +  

    
    (2.1) 

     

where , 1,2;  pi j k= = proportional gain; I =  integral time.  
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Fig. 2.2 Centralised control system C(s) with TITO process G(s) 

2.2.2 Multi-loop composition control system structure 

Multi-loop approach reduces the whole multivariable design problem to multiple 

SISO loop structure where one variable is manipulated per loop to meet desired design 

objective (Albertos & Sala, 2004). Only the major diagonal transfer function elements 

are taken into consideration during controller synthesis. A major challenge associated 

with any SISO based structure of multivariable control system is choice of pairing 

input and output variables for controller implementation. The level of cross-coupling 

or multivariable-interaction in distillation column complicates any basis for selection 

of manipulated/control variable-pair (Ogannaike & Ray, 1994). In most practical case 

studies of distillation column, a logical way of pairing these variables is based on 

physical relationship of input and output parameters. For example, pairing flows with 

their corresponding level measurements (Balchen, 1988). In general, input/output 

variables of the transfer function that will give the highest gain margin and/or phase 

margin are usually paired together (Morari, 2002). RGA analysis also gives an 

analytical methodology to variable pairing as reviewed in the introductory section. 

This reduces cross coupling effect. In terms of comparison with centralised 

architecture, it is relatively simple to tune each controller in a multi-loop arrangement 
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but centralised algorithms tend to give better control actions in terms of robust 

performance for many TITO or three-input three-output systems. 

A simple diagram illustrating a TITO system (2.2) controlled with multi-loop PI 

controllers is given in Fig. 2.3 where 

1

,

2 ,

( ) 0 1
( ) ;  ( ) 1 ; 1,2;  

0 ( )
j p j

I j

C s
C s C s k j

C s s

  
= = + =  

    

    (2.2) 

pk =  proportional gain; I =  integral time. 

 

Fig. 2.3 Decentralised controllers with TITO process G(s) 

2.3 Tuning of Multiloop (Decentralised) PID Controllers 

Several scalar PID design and tuning methods that have been successfully 

extended to MIMO systems in control literature are reviewed in this section. Some of 

these sets of PID controller design methods include relay-feedback, IMC and BLT 

methods.  

2.3.1 Biggest Log-modulus Tuning (BLT) Method 

BLT method as proposed by Luyben is an iterative method of tuning a set of n 

multi-loop PI/PID controllers where n is the number of loops. In the original BLT 

publication, ultimate gains and ultimate periods of diagonal elements of the system’s 

transfer function G(s) were determined experimentally as ,u jk and , ;  1, 2,..., .u j j n =   
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Subsequently, a Ziegler-Nichols (Z-N) setting for each loop was calculated , ,( , )p j I jk    

and final fine tuning of the conventional PID controller was carried out (Luyben, 

1986). Firstly, the jth diagonal PI controller is given by (2.3) below: 

 ,

,

1
( ) ( ) 1 ,p j

I j

C s k s
s

 
= +  

 
       (2.3)  

where ,  = p jk Ziegler-Nichols proportional gain; ,I j =  Ziegler-Nichols integral gain. 

This implies that: , , 0.45 ;   1.2.p j u I j uk k  =  =   

A summary of the tuning procedure is presented as follows: 

▪ Set up sustained oscillation experiment in each loop using proportional 

controller to determine ultimate parameters: ,u jk and , ;  1,2,..., .u j j n =   

▪ Compute Ziegler-Nichols settings i.e.: , , 0.45 ;   1.2.p j u I j uk k  =  =  

▪ Thereafter, the characteristic function ( ) 1 ( ) ( )W I G j C j  = − + +  is 

defined where I is an identity matrix. The tuning factor F is chosen such that: 

2 < F < 5. 

▪ Tune controller gains as follows: 
,

, , ,;  .
p j

p j tuned I j tuned i j

k
k F

F
 − −= =   

▪ The closed loop function 10

( )
( ) 20

( )

W
L Log

I W





=

+
 is calculated and the 

tuning factor F is adjusted until ( )L  is equal to 2n dB. Controller parameters 

are detuned with this new value of F where n represents number of loops.  

Immediate advantages of BLT method are simplicity and very small computational 

demand. It can serve as a baseline to judge other model-based design methods. 

However, it may not meet some performance specification in certain applications 

except specifications are modest. It can yield high overshoot and an unstable response 

for highly interactive processes because of the Ziegler-Nichols tuning rule. Therefore, 

BLT PID tuning method, which utilizes Ziegler-Nichol’s ultimate parameters, is 
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recommended only as a baseline for comparison of other control design schemes in 

terms of set-point tracking or disturbance rejection.  

2.3.2 Relay Feedback Method: Sequential Loop Closing Technique. 

This is similar to Ziegler-Nichols method because it uses a single frequency point 

information for controller synthesis but a more suitable tuning relation can be chosen 

for better set-point tracking. Controller implementation is achieved using a 

decentralised control structure by sequential loop closing. The fastest loop is first 

closed with a relay as a controller in order to obtain ultimate parameters before tuning 

the slower loops (Zhuang, 1994; Wang, et al., 1997). Once sustained oscillation is 

reached, the ultimate frequency (period) and ultimate gain are recorded. 
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Fig. 2.4 Relay feedback control system 

The term K(s) represents the controller term in Fig. 2.4. Ultimate gain and ultimate 

period can be obtained from this experiment using
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and u = ultimate period. Thereafter, a simple table such as Tyreus and Luyben 

algorithm is applied to obtain controller parameters i.e.: 

 0.31 , 2.2 .p u I uk k  =  =    

The exact procedure is repeated for the second loop with the first loop’s relay replaced 

with the designed PI controller. Stability is achieved if the feedback control of each 

loop with the PI controller produces a sustained oscillation at every stage of loop 

closing and ultimate point parameters are correctly identified. 

2.3.3 Internal Model Control (IMC) 

PID parameters can be obtained by approximation of the simple feedback form 

of IMC-PID control structure shown in Fig. 2.5. The straightforward design approach 

is based on a prior process model and a low pass filter is included for robustness 

(Katebi, 2012).  Maclaurin series or Taylor series is usually used as an approximation 

method to obtain a PID controller function. If the model of process is FOPDT, it 

naturally results in a PI controller type. However, second order model yields a 

conventional PID controller. 

 

Fig. 2.5 Internal model control system 

Skogestad presented another method of IMC design commonly termed as 

SIMC design method. Here, controller parameters are derived to meet a desired closed 

loop set-point specification. It retains some features of direct synthesis method. For 

instance, it uses process model for controller synthesis. Consider a FOPDT process 

( )
1

Ls

P

P

k e
G s

s

−

=
+

with internal model ( )mG s  as shown in Fig. 2.5 where L= Process time 
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delay, P  = Process time constant and Pk  = System’s steady state gain, SIMC method 

results in a conventional PI controller of the form (2.2) with controller gain (Kc) 

defined as:  

 ;
( )

P
c

P f

K
k L




=

+
 integral time   min{ ,4( }.I fL  = +   (2.4)  

Time constant of the filter ( )f  is usually selected as a function of the system’s time 

constant ( )f p = . This gives room for tuning using a small parameter ( ).  is 

sometimes chosen between 0.7 and 1.5.  If the model is a SOPDT system, a PID 

controller type is obtained with gains defined as follows: 

 1
1 2;   min{ ,4( )}; .

( )
c I f d

P f

K L
k L


    


= = + =

+
    (2.5) 

where SOPDT model is of the form:
( )( )1 2

( ) ;  
1 1

Ls

P
d

k e
G s

s s


 

−

=
+ +

 = derivative time.  

Good set-point tracking can be observed by simulating a unit step response of the 

closed loop control system for each design method. This is carried out for the entire 

controller-actuator-plant-sensor feedback control system using WB column in chapter 

three. 

2.4 Centralised Controllers 

In preceding sections, all PID controller design methods presented have been 

an attempt to extend a SISO method to multivariable control applications. These SISO-

based methods do not handle interaction in an intuitive sense. If interaction is very 

significant, it can lead to poor control action. Consequently, fully cross-coupled or 

centralised PID controllers have been developed for improved performance. For 

instance, Lieslehto and Tanttu developed a full multivariable PID controller design 

and tuning scheme using IMC (Lieslehto, et al., 1993). 

 In Lieslehto and Tanttu’s (L-T) algorithm, two phases of design are involved. 

Firstly, each constituent loop is designed independently and individual controller 

settings ( ), ,,p ij I ijk   are determined using IMC. Thereafter, a centralised controller 
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matrix ( ), ,,p ij I ijK K is obtained in the second phase. To obtain the centralised PI 

controller, a gain matrix containing reciprocals of scalar IMC settings is inverted. This 

method has been proven to be predominantly effective for TITO systems. For a TITO 

process model G(s), a simple feedback control system can be designed using L-T 

algorithm as illustrated in Fig 2.2: 

where ,11 12

21 22 ,

( ) ( )
( ) ; ( ) ;

( ) ( ) 1

ijL s

P ij

ij

P ij

k eG s G s
G s G s

G s G s s

−
 

= = 
+ 

 , 1,2; Pi j k= =  process steady state 

gain; p  = process time constant; L= delay. 

Let L-T centralised PI controller be C(s); where ,p ijk  and ,I ijk  represent proportional 

and integral gain respectively for each ijth loop determined using IMC formulae. The 

L-T PI controller can be represented mathematically as given below: 
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where gain matrices are obtained as follows:
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This algorithm is found to adequately deal with interactions in simple TITO processes. 

If interaction is very significant like in systems with three or more inputs and outputs, 

obtained gains do not handle multivariable directions properly leading to poor control 

action. 

One limitation of L-T centralised algorithm is that it is unsuitable for larger 

systems where there may be three, four or more loops. There are other inherent 

multivariable methods of designing PID controllers for MIMO system without any 

restriction to the number of loops. These inherent MIMO PID controller design 

methods span over three decades of control research and publications. In this section, 
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these four fully cross-coupled MIMO PID controller design methods are presented in 

detail. These are: 

▪ Davison integral controller, 

▪ Penttinen-Koivo PI controller, 

▪ Maciejowski multivariable controller and 

▪ Martin-Katebi PI controller. 

One common feature of these algorithms is that they do not require detailed 

parametric model of the plant for controller synthesis. Davison method uses an integral 

controller only to decouple the system at zero frequency using a constant gain 

compensator based on the inverse of the plant model. Penttinen-Koivo controller 

achieves a diagonalised plant at both low and very high frequencies. This is achieved 

by adding a proportional term to Davison’s integral control structure. 

  Maciejowski developed a multivariable PI controller with the parameters 

(gains) calculated based on operational bandwidth frequency. Therefore, it requires 

frequency tests on the plant. Martin and Katebi proposed another method that retained 

tractable properties of Maciejowski method but without the need for plant’s frequency-

based experiments. A detailed implementation of these design rules is given in chapter 

3. In this section, a general overview of these methods is presented. 

2.4.1 Davison Integral Controller 

Davison method uses an integral controller structure to derive a multivariable 

controller for process control. It introduces system decoupling at low frequency using 

a constant gain compensator based on the inverse of the plant model at zero frequency 

G-1(0) (Davison, 1976). Some simplifying assumptions are made. 

▪ Plant model G(s) is assumed to be linear, time-invariant and open loop stable. 

▪ It is assumed that plant’s steady state gain parameters are available. 

▪ Disturbances are assumed to be constant or varying very slowly. 

Therefore, Davison method reduces to finding the steady-state gain matrix of the plant 

for a step input (Katebi, 2012).  A small tuning parameter  is included in the controller 

structure for fine tuning integral gain (kI) as shown below in (2.6): 
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( ) ( ) Ik
u s e s

s
= where integral gain  

1(0).Ik G −=                                 (2.6) 

The tuning parameter ( ) is usually determined online. Tuning involves making 

adjustments in the loops simultaneously starting with a very small positive value and 

increasing it until the unit step response yields maximum speed. Therefore, G(0) can 

be obtained using step tests. In addition, since the controller is an inverse of the model 

at zero frequency, good decoupling at low frequencies is obtainable by Davison 

method (Davison, 1976). Furthermore, it guarantees asymptotic stability and 

asymptotic tracking for a class of disturbance given a square linear open-loop stable 

plant.  

2.4.2 Penttinen-Koivo Method 

In this method, a proportional component is added to Davison’s integral 

controller to form a multivariable PI controller suitable for MIMO system control. 

Penttinen-Koivo algorithm achieves a diagonalised plant at very low and very high 

frequencies (Penttinen & Koivo, 1980). The control law is given below in (2.7): 

1 1( ) ( ) where  ( ) and (0).I
p p I

k
u s k e s k CB k G

s
 − − 

= + = =  
 

  (2.7) 

The term (  ) is a constant scalar tuning parameter while kI and kp are integral and 

proportional gains respectively. CB is product of output and input matrices obtained 

from state space model of plant. In the absence of state-space model, step tests can be 

performed to determine CB. For instance, if unit step tests are carried out with each 

input in the matrix, CB can be obtained from the gradient of the output. This can be 

proven using Laurent series approximation. Consider a plant given as G(s) where 

 
1( ) ( ) .G s C sI A B−= −   

  

Expanding G(s) using Laurent series: 
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In tuning the controller online,   is increased from a small positive value until the 

unit step closed loop response is acceptable.  can thereafter be reduced slightly and 

   is increased from a small positive value until maximum speed of closed loop 

response is achieved.  

2.4.3 Maciejowski Multivariable Controller 

Maciejowski developed a multivariable PI tuning algorithm similar to Penttinen-

Koivo method in (2.7) except that the controller gains (kp, ki) are calculated based on 

operational bandwidth frequency ( )b . This is desirable because bandwidth limitation 

problem is associated with implementation of Penttinen-Koivo controller in real time 

systems. Penttinen-Koivo controller uses frequency range that is much greater than the 

desired frequency band. In contrast, Maciejowski’s algorithm obtains PI controller 

parameters at operational bandwidth frequency. Proportional and integral gains are 

required to be proportional to the inverse of plant’s dynamics at a specified frequency 

as shown in (2.8). A derivative term may be added to the structure if required.  

1 1( ),   ( ).I b p bk G j k G j  − −=  =      (2.8) 

The terms (  ) and ( )  are small tuning parameters typically chosen between zero and 

one. Frequency response is required at a single point if plant’s model is available. 

However, if model is unavailable, practical frequency response tests should be carried 

out on the actual plant at the desired frequency ( )b to yield values for gain and phase

( )  . If the plant is non-linear, an approximated linear result can be obtained using a 

low amplitude sinusoidal excitation (Katebi, 2012). 

It should be noted that
1( )bG j−

 term causes the solution of these equations to 

be complex terms, which are not physically realisable. Therefore, a real approximation 

of 
1( )bG j−

matrix is required for final controller parameters to be realisable. Real 

approximation can be carried out using Matlab’s ‘align’ function to find a constant 

real gain matrix (M), to minimise a cost function (J) for the entire plant with n loops 

as follows: 

( , ) ( ( ) ) ( ( ) )j T j

b bJ M G j M e G j M e   = − −  where  ( ); 1,2,..., ;idiag i n = =  
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 i = open loop phase (Vilanova & Katebi, 2009). Setting  𝐾𝑝 to M produces desirable 

features in the multivariable system as each loop will be almost totally decoupled. 

2.4.4 Martin - Katebi Method 

Although Maciejowski’s multivariable controller yields good response, practical 

frequency response experiments are required to be carried out on the plant. Martin and 

Katebi (2012) proposed a modified form of Maciejowski’s PI controller algorithm 

where there is no need for frequency-based experiments. Eliminating practical 

frequency response experiments is meant to make control design scheme appealing to 

industrial practitioners. Some of the tractable properties of Maciejowski method are 

retained. The discretised control law is stated in (2.9). 

1
( ) 1 ( )

1

sT
u k K e k

z−

 
= + 

− 
 with ( )

1

(0) (1 ) pK G CG 
−

= + −      (2.9) 

where Ts = sampling time,  = tuning parameter, CGp = high frequency gain product 

and K= controller gain matrix when using Martin-Katebi algorithm 

According to the algorithm given in (2.9), proportional gain and integral 

feedback gain are obtained as a blend of the inverse of the plant’s dynamics at zero 

G(0) and high frequencies (CGp). Therefore, if the plant has a low pass frequency 

characteristic, a good approximation of 
1( )G j−

can be obtained by selecting 

appropriate value for the additional controller tuning parameter  . The parameter   is 

usually fine-tuned between the interval zero and one. These four methods are selected 

for design of composition control system for a typical distillation system in the next 

chapter but firstly, some control system design issues are discussed. 

 2.5 Fractional Order Systems and FOPID Controllers 

All the controllers reviewed before this section are conventional PID type 

controllers suitable for MIMO process control systems. It should be noted that another 

group of PID controllers with fractional orders have been developed in recent times 

for practical process control systems (Tepljakov, et al., 2018). These fractional order 

controllers are modelled with fractional-order differential equations. Traditionally, 

ordinary differential equations have been used as modelling tools for analytical control 
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design. Transfer functions, which form basis for classical control design and analysis, 

is a method of directly transforming ordinary differential equations in time domain to 

complex frequency domain to enable easy algebraic operations. State space approach 

tends to compute states directly in time domain using associated state equations formed 

from systems’ differential equations. All these mathematical tools have integers as 

their corresponding derivative order. 

However, interesting control engineering applications have been developed 

using differential equations of generalised order where the derivative order can be a 

non-integer or a fraction. One of such application of fractional calculus is the 

development of fractional order PID controllers. Considering time delayed process 

control applications, fractional order control systems have been reported to yield better 

performance when compared to conventional (integer order) controllers under fair 

comparison but at the expense of more tuning parameters (Li & Chen, 2014). The 

reason for superior performance of fractional order controllers have been partly due to 

availability of more tuning parameters and the frequency domain flexibility of 

fractional order system. Any generalised order differential equation such as

( ) ( )f D u t u t= + is considered to be a fractional order system if the order is not an 

integer i.e. 0, 1 ,t n n −    n  . 

One limiting factor associated with fractional order systems is that they are 

irrational functions and cannot be directly realised physically. However, the fractional 

order derivative term can be computed approximately using some standard definitions 

in continuous time or discretised form. Two continuous time domain definitions that 

allow for computation of fractional order derivative are presented below: 

▪ Caputo’s fractional order derivative,  

▪ Riemann-Liouville Definition. 

Riemann-Liouville definition of fractional-order derivative of a function f(t) was 

given previously in chapter 1 i.e. (1.3) 

1

0

1 ( )
( ) ,

( ) ( )

tn
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d f
D f t d

dt n t








  − +

 
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 − − 
       

where 0, 1 ,t n n −    n .  
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However, Caputo gave an alternative definition of fractional-order derivative of a 

function f(t) as: 

1

0

1 ( )
( ) ,

( ) ( )

t n

n

f
D f t d

n t








  − +

 
=  

 − − 
  where 0, 1 ,t n n −   n   (2.10) 

. 

The inclusion of the nth order derivative of f(t) in Caputo’s definition imposes 

restriction compared to Riemann-Liouville form (Monje, et al., 2010). This is because 

it requires an absolute integration of an nth order derivative of the function f(t). Also, 

direct application of these definitions in solving control system’s problems have been 

limited by a common problem of selecting initial states. If a system is modelled 

completely using fractional calculus, it can be argued that conditions in such a system 

cannot be accurately described as states. Initial point is not unique, and conditions of 

the system can be described as pseudo-states at best. So, emphasis is placed on using 

the idea of fractional-order calculus as a tool to design more robust controllers for 

integer order systems. One example of fractional order control system is the FOPID 

Controller. These controllers have been applied in many systems such as mechatronic 

and irrigation canal control systems. Structurally, FOPID controller may be 

represented in the form given below in Laplace domain: 

 ( ) ;I
p d

k
C s k k s

s




= + +      (2.11) 

where  and  are the integral and derivative orders; kp, kI and kd are proportional, 

integral and derivative gains respectively. Therefore, five parameters are available for 

tuning: kp, kI, kd,  and . It can be observed that conventional PID controller is a subset 

of this generalized-order FOPID controller where  and  are set to one. So, FOPID is 

sometimes called PID controller. Design methods for this group of controllers are 

discussed in chapter 4 and subsequent chapters. 

2.6 Sensitivity and Uncertainty Analysis  

It is important to define a suitable index for assessing the effectiveness of any 

given controller. Sensitivity function is a useful indicator of closed loop performance 

and robustness in multivariable systems. Margins of stability such as gain margin and 

phase margin are good indices of robust stability estimation in SISO systems but are 

not very suitable for multivariable system analysis and design due to presence of 
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multiple transfer function elements. Ideally, sensitivity of a control system is expected 

to fall within specified limits. Given a general feedback control system such as the 

system in Fig. 2.4, sensitivity function S(s) can be defined as: 

 
1

(s) . 
1 ( ) ( )

S
C s G s

=
+

  

Complementary sensitivity function T(s) can be defined as: 

 
( ) ( )

(s)= ,
1 ( ) ( )

C s G s
T

C s G s+
  

where each term retains the usual meaning as given in both Fig 1.1 and Fig. 2.4. 

Maximum singular value and inverse maximum singular value analyses can be 

used to define sensitivity limits for MIMO systems. These indices are recommended 

particularly for multivariable systems and are used predominantly to assess designed 

control systems in this work.  

2.6.1 Uncertainty 

Uncertainties such as plant-model mismatch and time variations can be represented by 

a dynamic system block ∆. Examples of ways of handling uncertainty include: 

▪ Unstructured additive uncertainty model, 

▪ Input multiplicative uncertainty and output multiplicative uncertainty, 

▪ Structured singular value. 

Examples of sources of uncertainty include: 

▪ Parametric uncertainty arises due to errors in the values of the coefficient state 

space matrices or transfer function matrix of the system. 

▪ Diagonal actuators and sensors are also sources of uncertainty. Although 

diagonal matrices or diagonal transfer functions are used for actuator-sensor 

description, coupling does exist in real systems between different actuators and 

sensors. This coupling effect is usually ignored when using diagonal 

uncertainty description. For instance, in valve actuated distillation plants, 

diagonal input uncertainty is very significant. 
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▪ Unmodelled interconnections and known subsystems such as existence of 

internal cascade loops or amplifiers contribute uniquely to the overall 

modelling error of the system.  

It is well known that high gain integral controllers can cancel out effects of static 

nonlinearity, parametric uncertainty and random disturbances (Maciejowski, 1989). 

However, unmodelled dynamics usually imply gain limitations in control system 

implementation. A high gain integral controller may easily result in an unstable and 

unsatisfactory control performance because of model mismatch. In many design 

solutions, trade-off between stability and performance is evident.  

2.6.2 Robust Stability Analysis and Performance of MIMO control system 

Robust stability analysis is required to know the degree of stability of the control 

system in the presence of plant-model mismatch and other uncertainties. Although 

many dynamic perturbations that may occur in different parts of a system can be 

lumped into a single perturbation block  , a structured method of analysing these 

uncertainties is beneficial to overall system design. For instance, un-modelled high 

frequency dynamics can be grouped together under one uncertainty block and a single 

metric of measurement devised to estimate robustness (Skogestad & Postlethwaite, 

2005). These indices of robust stability are fundamentally based on relevant sensitivity 

functions and can serve as indices for comparative study. Some of these robust stability 

indicators are discussed below: 

▪ Maximum Singular Value (MSV): If the maximum singular value of the 

complementary sensitivity function of a control system A is smaller than the 

MSV of control system B in all relevant frequency range, then system A is more 

robust as the stability is relatively better. MSV may be used for both structured 

and unstructured uncertainties and is suitable for multivariable system analysis. 

▪  Inverse Maximum Singular Value (ISV): This is another suitable method of 

robust analyses for multivariable systems. If the area under the ISV curve of 

control system A’s complementary sensitivity function is greater than the area 

under the same curve for control system B in all relevant frequency range, then 

system A has a greater stability region making it a more robust system.  ISV 

may be used for both structured and unstructured uncertainty. 
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▪ Structured Singular Value (SSV): A system is stable if the SSV is less than 

one. With respect to internal parameter variations, SSV is relatively 

conservative and it is only suitable for structured uncertainties. 

▪ Spectral radius: A system is stable if spectral radius is less than unity. It may 

be used for both structured and unstructured uncertainty types. 

     Inverse maximum singular value of complementary sensitivity function is chosen 

throughout this work to analyse robust stability because of suitability for multi-input 

multi-output (MIMO) system. It also gives a very accurate way of comparing robust 

stability levels of two alternative control design narratives for multivariable systems 

(Besta & Chidambaram, 2015). Given a process multiplicative input uncertainty 

 ( ) ( ) ,IG s I s+  Maciejowski established the stability of the system if (2.12) holds 

(Maciejowski, 1989).  

  11
( ) ( ) ( ) ( ) ( ) ,I j I C j G j C j G j    



−
  +     (2.12) 

where   is the maximum singular value of the closed loop system.  

For a process multiplicative output uncertainty  ( ) ( ),OI s G s+  the closed loop 

system is said to be stable if (2.13) holds. 

   11
( ) ( ) ( ) ( ) ( ) .O j I G j C j G j C j    



−
  +     (2.13) 

( )I s and 0 ( )s  are assumed to be stable. A Matlab program can be developed to plot 

right hand side terms of (2.12) and (2.13) in order to reveal regions of stability for each 

control system. The greater the area under the curve, the greater the stability of the 

system. Therefore, a more robust controller will yield larger area under the curve. This 

way, one can judge robustness of two alternative controller types and make design 

decision. Matlab is used to simulate and analyse ISV of complementary sensitivity 

functions with different multivariable controller design options including fractional 

order controllers in subsequent chapters. 
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2.7 Summary  

Many conventional PID control design algorithms for MIMO systems have 

been reviewed in this chapter. Some of these algorithms are direct extension of SISO 

PID design methods to multivariable systems (Palmor, et al., 1995). Since the 

introduction of PID controllers decades ago, several design methods have been 

developed and many of such methods have been adopted industrially with varying 

degree of commercial success. Many PID controller design patents have been obtained 

and commercial success of PID control technology is not in doubt.  

  At the core of many of these multivariable PID algorithms is the idea of using 

a detuning factor to reduce effects of interaction in MIMO systems (Wang, et al., 2008; 

Zhuang, 1994). Niederlinski modified Ziegler-Nichol’s tuning rule for MIMO 

applications by introducing a detuning factor to meet the stability and performance 

specification of the system (Vu & Lee, 2008). Luyben introduced the biggest log 

modulus tuning method of designing PID controllers for MIMO systems. The original 

BLT algorithm is an iterative tuning method that extends Ziegler-Nichol’s SISO rule 

to multivariable system using a detuning factor (Luyben, 1986). However, it gives 

control actions with high overshoot even in systems with moderate interaction level. 

This is demonstrated on a simple binary TITO distillation system in the next chapter. 

Another approach to multivariable PID system control design was developed 

using relays. Auto-tuning strategy was also developed along with relay feedback 

method. Several authors recommend this method along with sequential loop closing 

technique (Zhuang, 1994; Palmor, et al., 1995; Loh, et al., 1993; Shiu & Hwang, 1998). 

In sequential loop closing method, the fastest loop is designed independently and 

closed first before calculating controller parameters for the remaining loops 

sequentially. This is implemented using a multi-loop or decentralised control structure. 

Although it is easily adaptable for online tuning and practical implementation, the 

experimental process of identifying critical frequency point can be less intuitive 

(Ogannaike & Ray, 1994). 

  Another widely reported method has been the extension of Internal Model 

Control (IMC) for multi-loop control systems (Vu, et al., 2007). This is a model-based 

design method that overcomes limitations of critical frequency point experiments. 
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Skogestad introduced a simple but effective method of obtaining IMC settings for 

SISO systems while Lieslehto and Tanttu (L-T algorithm) developed a multivariable 

PID design and tuning method with IMC (Lieslehto, et al., 1993). L-T algorithm gives 

good control actions in TITO systems but does not handle multivariable directions and 

interactions effectively in MIMO systems with three or more inputs and outputs. 

Other multi-loop PID design methods include Dynamic Nyquist Array (DNA) 

and direct synthesis methods. Ho and Xu proposed the DNA method which is based 

on shaping the Gershgorin bands and involves a graphical procedure in the control 

design process (Ho & Xu, 1998). PID controllers can be synthesized in frequency 

domain given some well formulated stability criteria. Margins of stability such as gain 

margin and phase margin are used to formulate design criteria for which each 

controller parameter is derived to satisfy. This results in simple frequency domain 

parameterised algorithm. These Gain margin/Phase margin based methods yield 

satisfactory control actions when design specifications are modest and level of 

multivariable interaction is insignificant but fails to produce stable control actions for 

highly interactive distillation systems. 

In addition, optimal solutions to multivariable PID design problem have been 

developed by minimising a suitable cost function. Several variants of optimisation-

based methods include Linear Matrix Inequality (LMI) and minimum variance control 

methods. Wang developed a MIMO PID controller design scheme based on LMI 

optimisation with availability of state space model assumed (Wang, et al., 2006). LMI 

is a model-based design method that utilizes state space model in control law 

formulation. Some optimal methods such as Bilinear Matrix Inequality (BMI) and 

H  do not result in PID controllers directly but require an additional procedure of 

model reduction in order to realise a PID controller structure. Consequently, attention 

have not been given to such higher order algorithms. All these optimal methods yield 

controllers with excellent set-point tracking but at the expense of high computational 

overhead. 

Furthermore, intelligent control algorithms completely inspired by complex 

biological systems have been developed and applied to control design, parameter 

estimation and tuning of conventional PID controllers with integer order. These 
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include genetic algorithm and Particle Swarm Optimisation (PSO). Many authors have 

published technical papers where intelligent algorithms were successfully used to tune 

a set of multivariable PID controllers for MIMO applications (Mukherjee & Ghoshal, 

2007; Wang, et al., 2006). For instance, Chang (2007) developed a decoupled 

multivariable PI controller tuning scheme using genetic algorithm. The author used a 

simple three parent differential crossover and uniform mutation operators in the 

optimisation process and results demonstrate better performance compared to BLT 

method. Iruthayarajan & Baskar (2009) developed a MIMO PID tuning method based 

on Differential Evolution (DE) algorithm. Implementation of the method on Wood-

Berry distillation column for composition control produced good control performance 

(Iruthayarajan & Baskar, 2009). These intelligent methods compare favourably with 

BLT method in terms of disturbance rejection and set-point tracking measured by 

Integral Absolute Error (IAE). However, significant computational cost is associated 

with intelligent algorithms just like other optimisation-based algorithms.  

PID control law have also been implemented using Fuzzy Logic Controllers 

(FLCs). These FLCs were previously tuned by trial and error procedure and the process 

was tedious and time consuming (Eranda & Mann, 2008). However, intelligent 

algorithms have been developed to tune FLCs. For instance, genetic algorithm has 

been widely used for parameter setting and tuning in fuzzy control systems. However, 

the drawback of complex computation involved in FLCs in a multi-loop structure 

implies that some decoupling methods lead to a complex rule-base. This does not offer 

comparative benefit over existing controllers like IMC controllers in real-time systems 

(Almeida & Coelho, 2002).  

In recent years, many research works have identified benefits of using 

fractional order controllers for practical systems control (Anon., 2017; Baruah, et al., 

2016). Some of the tuning strategies earlier discussed such as optimisation and 

intelligent methods have been utilised to tune fractional order PID controllers. Das 

(2012) extensively reviewed papers where intelligent methods were developed to tune 

fractional order PID (FOPID) controllers for scalar systems. Song (2014) transformed 

the problem of fractional order PID controller design to that of a static output feedback 

controller design in descriptor form using linear matrix inequalities (Song, et al., 

2014). Furthermore, ideal decoupling, simplified and inverted decoupling techniques 
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associated with integer order systems have been extended to fractional order TITO 

processes (Li & Chen, 2014). 

 However, implementation of fractional order PID controllers in multivariable 

plants such as distillation systems with measurement and actuator delays is not yet 

reported. A major contribution of this thesis is therefore the development of design 

methods for multivariable FOPID controllers suitable for composition control of 

distillation column. Implementation of these fractional order controllers is 

demonstrated by simulation on both two-by-two and three-by-three distillation 

systems. Among the model-based methods of designing conventional PID controllers, 

IMC and MPC design algorithms have been found to be satisfactory in dealing with 

multivariable interactions. These two algorithms have been identified for 

implementing FOPID control strategy although with slight modifications in chapter 

five and chapter six. Specifically, Dynamic Matrix Control (DMC) algorithm has been 

chosen for comparative study of proposed predictive PID control system in chapter six 

because DMC exhibits very good predictive capability. IMC and Ogunnaike’s optimal 

PI controllers are chosen for comparative study of a three-by-three distillation system 

in chapters four and five. Table 2.1 summarises and compares these multivariable PID 

controller design methods. 

Table 2.1 Summary of PID Controller Design Methods 

Design Methods Features and Performance 

Comparison 

 Model 

Needed? 

Experiment 

Required? 

Davison integral 

controller 

(Davison, 1976) 

Model-free; uses integral 

component only; robust 

stability may be obtained if 

properly tuned; fully cross-

coupled implementation. 

No Yes, except 

output 

response to 

step inputs is 

available. 

Penttinen-Koivo 

Algorithm 

(Penttinen & 

Koivo, 1980) 

PI components only; robust-

performance and stability 

may be obtained if properly 

tuned; fully cross-coupled 

implementation. 

No Yes, except 

output 

response to 

step inputs is 

available. 
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The BLT Method 

(Luyben, 1986) 

Original BLT method was 

based on Ziegler-Nichols; 

High overshoot may be 

obtained; Easy to understand. 

Multi-loop method. 

No Yes 

Maciejowski 

Multivariable 

PID Controller 

(Maciejowski, 

1989) 

PI (D) components; operate 

within process bandwidth; 

bandwidth feature makes it 

appealing for real-time 

plants; robust performance 

and stability may be obtained 

if properly tuned; fully cross-

coupled implementation. 

No Yes 

Relay feedback 

tuning (Loh, et 

al., 1993) 

Implemented in multi-SISO 

loop configuration; iterative 

tuning required; it is based on 

critical frequency point. 

Modest performance can be 

obtained as seen in examples; 

easy to adapt for online 

tuning. 

No Yes 

Lieslehto and 

Tanttu IMC 

Algorithm 

(Lieslehto, et al., 

1993) 

Suitable for TITO systems; It 

is a variation of IMC; Good 

nominal performance can be 

obtained; Suitable for multi-

loop method and cross-

coupled (centralised) 

controller configurations. 

Yes No 

Sequential-loop 

closing method 

(Wang, et al., 

1997) 

Require generalised Ziegler-

Nichols or similar rules for 

tuning PID controller; good 

disturbance rejection; it may 

No Yes 
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be unsuitable for demanding 

applications due to high 

overshoot; easily understood 

and uses multi-loop. 

Direct Nyquist 

Array Method 

(Ho & Xu, 1998) 

Similar to direct synthesis; 

stability bounds may be used 

as criteria for design. Good 

nominal performance can be 

obtained. Unsuitable if there 

are many loops e.g five 

inputs/outputs. 

Yes No 

Predictive PID 

controllers 

(Katebi & 

Moradi, 2001; 

Anon., 2002) 

Optimal gains may be 

obtained although some 

solutions are sub-optimal; 

increased computational 

load; optimal performance 

within pre-defined horizons; 

Yes No 

Martin-Katebi 

multivariable 

PID algorithm 

(Martin & 

Katebi, 2005) 

Contains PID components; 

robust stability may be 

obtained if properly tuned; 

fully cross-coupled or 

centralised implementation. 

Good decoupling at high and 

low frequencies. Model-free. 

No Yes, except 

output 

response to 

step inputs is 

available. 

Internal model 

control (IMC) 

(Vu, et al., 2007) 

Straightforward just like any 

direct synthesis method; low 

pass filter may be included 

for robustness; many IMC 

variations have been 

developed e.g. Generalised 

IMC algorithm, Garcia-

Morari IMC, Lieslehto-

Yes No 
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Koivo and Dong-Brosilow 

IMC controllers. Better 

nominal performance may be 

obtained than previous two 

methods at the expense of 

greater robustness. 

Direct synthesis 

(Vu & Lee, 2008)  

Typically based on gain 

margin and phase margin for 

TITO systems; sensitivity 

bounds may be used as 

criteria for design. Good 

nominal performance can be 

obtained. Unsuitable if there 

are many loops e.g five 

inputs/outputs. 

Yes No 

optimisation-

based methods 

and Intelligent 

algorithms 

(Iruthayarajan & 

Baskar, 2009; 

Bouhajar, et al., 

2015).  

Optimal gains may be 

obtained although some 

solutions are sub-optimal; 

increased computational 

load; optimal performance 

within pre-defined horizons; 

Robustness may be sacrificed 

for faster response. 

Yes No 

FOPID-based 

algorithms (Edet 

& Katebi, 2018; 

Song, et al., 2014) 

Greater flexibility in design 

at expense of more tuning 

parameters. 

Yes No 
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Chapter 3 

Distillation Modelling, Control Design and Implementation 

In the preceding chapter, various PID controller design narratives have been 

reviewed especially, the design schemes that are suitable for multivariable process 

control systems. One key factor that impacts the success or failure of a controller is 

the level of knowledge of the process itself that is available to the control design 

specialist. Accuracy of system’s model is a key factor that impacts efficient design and 

tuning of a controller if design specifications are to be met brilliantly. Sequel to this 

requirement, chapter 3 is devoted to modelling issues involving distillation columns, 

model types, sensors and actuator’s constraints and implementation of designed 

composition controllers. 

3.1  Design considerations in a Typical Distillation Column 

Fractional distillation is generally carried out in a trayed or batch distillation 

column as explained earlier in the introductory part of chapter 1. There are operability 

constraints involved in routine running of distillation systems. As far as safety is 

concerned, these constraints require some form of simple proportional controllers to 

regulate them. This is required in addition to a separate products composition control 

system. For instance, column pressure needs to be kept fairly constant within tolerable 

limits and liquid levels in reflux drum and column’s base have to be kept within safe 

limit. Sudden fluctuation in pressure is hazardous in any distillation column. For 

instance, sudden decrease in column’s pressure can result in flashing of liquid on the 

trays and excessive vapour rates which floods the column while sudden increase in 

pressure can result in excessive condensation of vapour resulting in weeping and 

dumping of trays. This is widely known in industrial circles and it is routinely referred 

to as inventory control requirements (Balchen, 1988; Skogestad, 2007).  

It has been established that this basic inventory (pressure and drum-level) control 

system is inadequate for operational specification of end product’s quality (Balchen, 

1988). So, there is need for composition control of final products to ensure relative 

purity of distilled fractions. In most cases, there is additional disturbances on the 
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system’s steady state operation due to sensitivity to feed stream characteristic and 

changes in flow rate. 

A distillation column is termed binary distillation column if only two products 

are obtained from the column as outputs. Examples include Wood-Berry distillation 

column and Minh petroleum distillation column (Minh, 2009). In these two columns, 

composition of top product (first output) is controlled by manipulating reflux flow rate 

(first input). Similarly, the composition of bottoms product (second output) is 

controlled by manipulating the boil-up flow rate (second input variable). It is clear that 

these binary distillation systems are square systems because the model consists of two 

input and two output variables. 

There are other categories of distillation columns in existence as practical 

colums are not limited to binary distillation columns only. These non-binary columns 

are generally termed multi-component separation systems e.g. multi-staged trayed 

columns (Balchen, 1988). In these multi-staged trayed columns, relevant product 

(distilled at each tray) can be withdrawn at the relevant plate as required. For instance, 

in Fig. 3.1, a third product (boiling fraction A) is withdrawn at the middle of the column 

in addition to distillate and bottoms products (D, B). The withdrawal rate can be used 

as the third input (manipulated) variable to control the third product’s composition 

(output A). Here, the composition of top product (first output D) is still controlled by 

manipulating reflux flow rate (first input) and the composition of bottoms product 

(second output B) is still controlled by manipulating the boil-up flow rate (second input 

variable). Two examples are given in this work for these multi-staged columns namely: 

▪ Ogunnaike and Ray’s distillation column (Ogunnaike & Ray, 1983). 

▪ Giwa’s three-by-three reactive distillation column (Giwa & S.Karacan., 

2012). 
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Fig. 3.1 Diagram of trayed distillation column showing three outputs (D, A, B) 

Furthermore, a case study of Minh and Rani’s trayed distillation column is 

presented in chapter six with emphasis on composition control design. It has 15 trays 

and was experimentally set up for petroleum distillation. Designed distillation column 

was expected to reach steady state product quality of 98% distillate purity at the top 

tray and 2% impurity of bottoms but it was never achieved with basic pressure and 

level control systems alone (Minh, 2009). They proposed some form of decentralised 

composition controller for all petroleum distillation units in the gas processing project. 

In this thesis, an improved centralised controller is developed for the same column and 

performance evaluation of both controllers is reported in chapter 6. Reflux flow rate 

and boil up are utilised as manipulated variables for Composition Control (CC) of both 

distillate and bottoms product in the binary distillation system. In a nutshell, the major 

factors affecting column’s separation efficiency in any distillation column include: 

▪ Relative volatility of the components ( ) , 

▪ Number of trays in the column (Nn), 

▪ Entry point of feed (liquid mixture) into the column (NF), 

▪ The ratio between liquid flow rates and vapour flow rates. 

Although multicomponent distillation columns are used in practical refineries 

and separation systems, only a simplified model of distillation is considered in this 

work. An understanding of control system design for a simplified distillation column 

gives fundamental insight into the dynamics of complex distillation systems. For 

KEY
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instance, the principles of distillation of a binary mixture can be directly extended to 

separation of ternary mixtures in Vacuum Distillation Unit (VDU), Crude Distillation 

Unit (CDU) and main fractionator of practical refineries. In terms of control objectives, 

with respect to product composition, if the specification of purity of the distillate is 

higher than or equal to 98% and the impurity of the bottoms product is less than or 

equal to 2%, the composition control problem is said to be of tight specification (Minh, 

2009).  

Distillation control design is usually considered during the detailed design 

phase of many real-time product refining systems. Also, some model simplifying 

assumptions are made during the design phase. Most distillation column control 

systems, either conventional or advanced, assume that the column operates at constant 

pressure. This assumption is reasonable for modelling and design of ideal binary 

mixture because a simple proportional controller can keep the pressure fairly constant 

across a column (inventory controllers). A second assumption is that liquid and vapour 

are essentially in contact at the same temperature and pressure on each tray (Balchen, 

1988).  

Each tray in a staged distillation column is sieved and contains bubble cap for 

effective contact between liquid and vapour during flashing. The reboiler produces 

vapour which enters the column from the bottom and rises with a flow rate called the 

boil up flow rate (V). The feed (f) is sometimes pre-heated and introduced into the 

column at the middle section. As the vapour passes upwards through each tray, it 

bubbles upwards through the liquid. On the other hand, liquid flows downwards to 

lower plates in the column (Balchen, 1988). Liquid component can therefore be 

withdrawn as bottoms while at the top, vapour is condensed and removed as distillate. 

A small fraction of the liquid is fed back into the column from the top as reflux. 

Resistance to upward flow of vapour gives a pressure gradient across the column.  

In a typical distillation column, the following process variables are identified: 

▪ Concentration of the most volatile component in the distillate (This is affected 

by the top temperature), 

▪ Concentration of the most volatile component in the bottoms product, 

▪ Pressure at the top of the column (This is influenced by temperature at the top), 
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▪ Pressure difference between the top and bottom section of the column, 

▪ Bottom temperature (This relates to product concentration and pressure at the 

bottom tray), 

▪ Top temperature (This influences composition. Distillate’s composition can be 

directly inferred from top tray temperature). 

3.2 Process Instrumentation 

In crude distillation unit of a petrochemical refinery, hundreds of flow 

transmitters, temperature sensors and indicators are used for measurement of process 

variables. Also, control valves, electric motors, pumps and compressors are required 

as actuators while generators and turbines are plant-wide energy inputs. Although there 

are several hundreds of flow meters, they serve as indicators of flow for visual display 

unit rather than measurements for control system. Measurement of feed, reflux and 

distillate flows can be carried out using suitable flow meters. Some flow meters are 

inaccurate and may introduce measurement errors. However, where such 

measurements are found to be inaccurate due to the flow meters installed, a more 

accurate reading can be derived from associated pump characteristics for many control 

applications. Sometimes, flow meters are physically blocked by tiny particles and that 

can interfere with accuracy of measurements. 

In addition, control valves and electric motors have limits and unique 

characteristics, which must be considered in the design and construction of the process 

facility. For instance, actuator saturation must be considered during control design 

phase. A simple method of handling saturation constraints is control signal scaling as 

well as appropriate scaling of inputs and output variables. Decision on selection of 

measurement system types for product flow rates, composition, pressure and 

temperature needs to be made with respect to process specification. Typically, 

concentration of distillate and bottoms product can be derived from temperature 

measurement by appropriate location of accurate Resistance Temperature Detectors 

(e.g. Platinum RTDs) in the column. Thermocouples can also be used but it does 

require linearisation of output measurements.  

Moreover, with advances in technology and process instrumentation, direct 

chemical concentration analysers are available with higher accuracy compared to 
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inferred data from temperature measurement. Cost-benefit analysis is also a useful 

decision-making tool during process facility design and selection of sensors and 

instruments. A brief description of required instrumentation in a typical distillation 

unit is presented. 

3.2.1 Condenser and Associated Sensors 

The condenser contains cooling water supplied by an external water pump. Flow 

rate is controlled by a pneumatic valve and measured by differential pressure 

transmitter. Temperature is also monitored using any suitable sensor. There are some 

desired qualities that serve as guide to selection of instruments. For instance, Platinum 

RTDs (Pt.RTD) are substantially linear in operation with very high sensitivity but 

thermocouples are more rugged and can withstand harsh environment. Thermocouples 

are installed in thermowells in practical plants. Level transmitter and indicators are 

also used for level detection and display (Tellez-Anguiano, et al., 2009). In summary, 

these factors influence selection of sensors and instruments: 

▪ Accuracy, 

▪ Sensitivity, 

▪ Linearity, 

▪ Repeatability, 

▪ Cost, 

▪ Resolution, 

▪ Process compatibility in terms of signal type, instrument’s size and material. 

3.2.2  Chemical Sensors and Analysers 

There are several chemical sensors capable of composition analysis of 

multicomponent stream. These chemical analysers include: 

▪ Liquid chromatograph, 

▪ Gas chromatograph, 

▪ Mass spectrometer, 

▪ UV spectrometer, 

▪ Infra-red spectrometer, 

▪ Near-Infra Red spectrometer (NIR), 

▪ Nuclear Magnetic Resonance analyser (NMR), 
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▪ Chemo-luminescence analyser. 

Performance characteristic or equipment specification can be found on vendor’s 

data sheet. In addition, location of the analyser in the distillation column must be 

considered in the overall design. For instance, a gas chromatograph should be installed 

where vapour is directly obtainable and transportation delays should be analysed for 

effective control system application. Some distillation systems rely on column 

temperature for inference of approximate composition in terms of molar concentration. 

However, chemical analysers give more accurate measurement compared to 

mathematical inference from column’s temperature.  

3.2.3 Reboiler 

Reboiler contains an electric thermo-coil which provides heat energy for 

vaporisation of liquid feed mixture. Reboiler is usually located at the base of the 

distillation column. There are RTDs or thermocouples in this unit for temperature 

sensing. Within the main body of the tower, which consists of several perforated plates, 

RTDs are also used for measuring temperature.  

3.2.4 Liquid Ring Vacuum Pump 

Pumps designed for refinery distillation systems are expected to be very reliable 

and able to safely handle explosive gases with pressure up to 15 bar (220 psia). This 

is because any failure in pump or compressor unit may result in fire hazards and 

production downtime and sometimes fatal loss. There are specialised pressure 

transmitters designed for hazardous environment. Related safety regulatory documents 

such as Hazard and Operability (HAZOP) guidelines can be used as a guide in 

selecting instrument type, capacity and specification in each unit.  

3.3 Controllability 

Controllability refers to an inherent property of the system concerned with the 

ability or inability to reach specified performance objectives given the presence of 

anticipated plant’s variations and uncertainties. Skogestad (2005) termed it input-

output controllability. In this context, controllability is defined as the ability to achieve 

acceptable control performance, that is, to keep the outputs (y) within specified bounds 

or displacements from their references (r) in spite of unknown but bounded variations 
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such as disturbances (d) and plant changes, using available inputs and available 

measurements (Skogestad & Postlethwaite, 2005). Any form of controllability analysis 

will require a system model. Accuracy of analysis of the system properties will largely 

depend on the accuracy of the model. In many distillation applications, a reduced-order 

model is usually derived for analysis and control design.  Mass balance equations and 

thermodynamic analyses of distillation process typically result in bulky non-linear set 

of equations that describe system’s dynamic behaviour. Such detailed model is 

unsuitable for controllability and stability analyses. This is due to complex levels of 

non-linearities. However, simple transfer function models are readily obtainable for 

distillation process through system identification and model fitting. Examples include 

two-input two-output models for binary distillation system (e.g. Wood-Berry 

distillation model - WB) and three-input three-output distillation model such as 

Ogunnaike and Ray’s distillation system (OR). State space modelling technique can 

also be used to represents the dynamics of a distillation column. 

3.4 Modelling of Distillation Column 

3.4.1 Non-linear Model 

Modelling and design of distillation column can be approached analytically using 

relative volatility of components of the binary mixture and material balance equation. 

However, such analytical models are derived with simplifying assumptions to have an 

adequate model for control design. There is no accurate model of distillation that 

captures all the dynamics and steady state behaviour of the process without 

assumptions (Rijnsdorp & Papadourakis, 1992; Tyreus, 1992; McFarlane & Rivera, 

1992). This is due to complexity of variable relationships in each distillation system. 

Every distillation plant is unique in terms of parameterised models. Also, complex 

non-linear models are not suitable for most control design narratives. 

However, simplified models of distillation are generally similar as they are based 

on fundamental operating principles. Given an Nn-trayed distillation column, vapour 

and liquid composition of light component on each tray are inter-related in a non-linear 

manner as given by the relative volatility equation (3.1). 

;  1, 2,3,..., .
1 ( 1)

i
i

i

x
y i Nn

x
= =

+ −
            (3.1) 
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where   is the relative volatility, iy  = vapour component, ix  = liquid component on 

ith stage and Nn is the number of trays. Relative volatility is assumed to be constant 

and it is independent of pressure and composition. This non-linear relationship 

between vapour and liquid introduces non-linearity in the overall column model. 

Model types that can be used include mass-balance equations (e.g staged column A 

model), transfer function model and state space model. 

3.4.2 Skogestad-Morari Column A Model 

This is an example of a distillation process model derived by considering 

material balance and energy balance on each stage of the column. This process usually 

result in a non-linear model. To obtain an approximate linear model, some simplifying 

assumptions are made.  

▪ Feed is assumed to be an ideal binary mixture. Azeotropic mixture is not 

considered. 

▪ The feed phase condition must be known at the column pressure which is 

assumed to be constant. 

▪ Total number of stages is assumed to be 41 with reboiler and condenser 

inclusive. 

▪ Vapour flow is assumed to be constant at all stages. 

▪ Vapour Liquid Equilibrium (VLE) is assumed on all trays in the column. 

▪ Molar flows are assumed to be constant in the distillation column. 

▪ Total condenser is assumed and liquid dynamics are linearised. 

However, it does not assume constant liquid hold up on each stage implying that 

liquid flow dynamics is included in the model. Since the column is assumed to have 

41 trays, a set of 41 differential equations describing composition dynamics on each 

tray were derived and simulations carried out using Simulink to show steady state 

properties of the column. Another 41 differential equations describe material hold up 

on each tray yielding 82 states in total. Material balance equations and steady state 

values of column parameters are presented. 

Given that i = 2,…, Nn (non-feed trays) and considering light component only, let 

system variables be defined as follows: 
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▪ ix  = Liquid composition of light component on ith stage, 

▪ iy  = Vapour composition of light component on ith stage, 

▪ iM  = Liquid hold-up on ith stage, 

▪ iV  = Vapour hold-up on ith stage, 

▪ Nn = Number of stages (trays) in the column. 

Skogestad (2007) and Minh (2009) derived equations for overall material balance on 

each tray as shown: 

▪ Feed tray (i=Nf) 

1 1 .
fN

i i i i

dM
L V L V f

dt
+ −= + − − +       (3.2) 

Material balance of light component is given by: 

1 1 1 1 .
f fN N

i i i i i i i i F

dM x
L x V y L x V y fz

dt
+ + − −= + − − +      (3.3) 

▪ At reboiler i =1; material balance of light component is given by: 

1 1
1 1 .i i i i i i

dM x
L x V y B x

dt
+ += − −         (3.4) 

Overall material balance is given by (3.5) below:                  

1
1 .i i i

dM
L V B

dt
+= − −          (3.5) 

▪ Considering the condenser, i = Nn.   

Material balance of light component is given by:  

1 1 .Nn Nn
i i i i i i

dM x
V y L x D x

dt
− −= − −        (3.6) 

Overall material balance on condenser is given by: 

1 .Nn
i i

dM
V L D

dt
−= − −          (3.7) 

▪ Material balance of light component on all other trays is given by:  
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1 1 1 1 .i i

i i i i i i i i

dM x
L x V y L x V y

dt
+ + − −= + − −      (3.8) 

Liquid composition equation can be derived as: 

,

i i i
i

i

i

dM x dM
x

dx dt dt
Mdt

 
− 

 =        (3.9) 

where overall material balance is given by: 

1 1
i

i i i i

dM
L V L V

dt
+ −= + − −  (Skogestad, 1997; Minh, 2009) 

The liquid flows depend on the liquid hold up on the stage above and the vapor flow 

as follows: 

 ( )0
0 0 0 1

1

,i i
i i i

M M
L L V V

 −

−
= + + −      (3.10) 

where 0 iL  (measured in Kmol/min) and 0iM  (Kmol) are nominal values for the liquid 

flow and hold up on ith stage. 1  is time constant (minute) for liquid flow dynamics 

on each stage. 0 is a constant that accounts for effect of vapor flow on liquid flow 

rate. If it is greater than one in a trayed column, there is a risk of getting inverse output 

response (Skogestad, 1997).  

0 is generally very small in packed columns and kept close to zero. Steady 

state model can be obtained from design specification of the column. Although the 

dynamics of the distillation column is strongly non-linear, controller design and 

analysis is based on a simplified model of the column linearised around the steady 

state operating point in Table 3.1. This is done using deviation variables. Fig. 3.2 

shows simulation of column A at the given operating point.  

3.4.2 Operating Point of Distillation Column - A  

Table 3.1 shows the given operating conditions of the simplified binary distillation 

column A model.  
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Table 3.1    Steady state data of column A model 

  

Total number of stages (Nn) 41 

Feed tray location (NF) 21 

Feed flow rate in Kmol/min (f) 1 

Mole fraction of feed composition (zf) 0.5 

Fraction of liquid in feed (qf) 1 

Relative volatility (α) 1.5 

Liquid flow in Kmol/min (Li) 2.706 

Boil up flow rate in Kmol/min (Vi) 3.206 

Distillate flow rate in Kmol/min (D) 0.5 

Mole fraction of distillate’s light composition (xD) 0.99 

Mole fraction of bottom’s light composition (xB) 0.01 

Time constant for liquid flow dynamics in minutes 1( )  0.063 

Nominal liquid hold up in Kmol (M0) 0.5 

 

 

Fig. 3.2 Column A at steady state showing molar fraction of products 

3.5 Linear Transfer Function Models 

A second approach to distillation modelling is experimental system identification. 

This results in transfer function models. Examples are: 
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▪ Ogunnaike and Ray’s distillation column (OR model). 

▪ Wood-Berry (WB) Linear model: This is used in this chapter for preliminary 

PID controller comparisons. 

3.5.1 Wood-Berry Linear model (WB) 

Wood-Berry transfer function model was developed for a methanol-water pilot 

distillation plant. The outputs ( 1y and 2y ) are mole fractions of methanol in overhead 

and bottoms product respectively. Variation in feed flow rate is the disturbance (d) 

term modelled. Manipulating inputs ( 1u and 2u ) represent reflux flow rate and steam 

flow rate at the bottom (Seborg, et al., 2010). Some simplifying assumptions are given: 

▪ Constant pressure and negligible vapour hold up: This assumption implies that 

a change in the vapour flow at the bottom of the column will immediately 

trigger a change in vapour flow at the top of the column. It is valid when vapour 

phase component hold-up can be neglected compared to that of the liquid 

phase.  

▪ Constant molar flows: This implies that vapour flow rates in the column are 

equal. Wood-Berry distillation column model does not assume constant liquid 

hold-up and this makes it suitable for control design studies. The transfer 

function model is given as: 

3 8

1 1

3 3
2 2

12.8 18.9 13.8

16.7 1 21.0 1 14.9 1
,

6.6 19.4 4.9

16.7 1 14.4 1 13.2 1
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   −
      + + +   = +   
   −   
   

+ + +   

     (3.11) 

where 

▪ d = Feed flow rate changes (m3/s), 

▪ 1y  = Overhead ethanol mole fraction, 

▪ 2y  = Bottoms Composition, 

▪ 1u  = reflux flow rate (m3/s), 

▪ 2u  = Reboiler steam pressure (kPa). 
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3.5.2 OR Distillation Column Model 

This is a three-by-three model of distillation system developed few decades ago. 

A 19-plate, 12-inch diameter distillation column was experimentally set up and studied 

by Ogunnaike and Ray (Ogunnaike & Ray, 1983). The column had side-stream draw 

off as well as variable feed input with measurements taken for plate temperatures, 

overhead composition, reflux, feed flow rate and product lines. The distillation column 

was set up for ethanol-water separation as well as ternary mixtures and a three-by-

three transfer function was identified as a suitable model for the experimental plant. 

The model is described in (3.12): 
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   (3.12) 

where output variables are: 

▪ 1y  = overhead ethanol mole fraction, 

▪ 2y = side-stream composition, 

▪ 3y = bottoms composition (tray-19 temperature). 

The input variables are given as: 

▪ 1u = reflux flow rate (m3/s), 

▪ 2u  = side-stream product flow rate (m3/s), 

▪ 3u  = Reboiler steam pressure (kPa). 
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The disturbance terms are: 

▪ 1d  = Feed flow rate changes (m3/s), 

▪ 2d = Feed Temperature changes (deg. Celsius). 

These two transfer function models are predominantly used for controller design 

in this thesis. WB model is used to compare control actions of PID controller 

algorithms found to be predominant in control literature. OR model, which is a more 

interactive system, is used for demonstration of robust performance of proposed 

control design philosophy given in this work. In addition to these functional models, a 

third model type used for distillation system is the state space model. Some advanced 

control narratives require availability of state space model. Model-based predictive 

controllers introduced in chapter six is based on an augmented state space model. 

3.5.3 Interaction Analysis and Variable Selection 

A general definition of Relative Gain Array (RGA), as given in (1.2), shows that 

it is an inherent property of a system. RGA is a useful analytical tool for variable-

pairing in multivariable systems such as distillation systems. A large RGA value 

indicates high level of interaction in a system and that suggests the difficulty in 

variable pairing for some form of multi-loop control. Similarly, small RGA signifies 

lower level of interaction between associated variables and can be paired (Skogestad 

& Postlethwaite, 2005). RGA is independent of plant scaling. Therefore, RGA analysis 

can be carried out independently before controller design. It is a function of frequency 

and it is an inherent property of a system.  

         Consider WB distillation system, relative gain array matrix is calculated as 

follows: 

 
0.3687 0.6313

.
0.6313 0.3687

RGA
 

=  
 

  

RGA is less than one. This is a relatively simple TITO system and some PID 

controllers are designed and tested on this system. A more interactive system is the OR 

distillation column. 

    The RGA of OR distillation system is calculated: 
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-0.1904 1.1625 0.0278

1.9928 0.1854 0.8074 .

0.8024 0.0229 1.7796

RGA

 
 

= − −
 
 − 

  

Level of interaction is greater, and directionality is also more pronounced in this 

system as seen with change of sign in the matrix. It is desirable to compare centralised 

PID controller design methods along with multi-loop PID design methods discussed 

in the preceding chapter. A simple linear distillation model (WB) is selected for this 

comparative study. It is a TITO system. It is also important to understand composition 

control configurations in a real-time distillation system. 

3.6 Control Configurations in Distillation Column 

Control of product composition in a distillation column is achieved via 

manipulation of feed-split and fractionation using relevant flows and reflux ratio. In a 

binary distillation column, there are several possible configurations of manipulated 

variables for composition control namely: 

▪ The energy balance structure (L-V configuration), 

▪ D-V configuration, 

▪ D-B configuration, 

▪ L-B configuration, 

▪ The double ratio configuration type such as L/D - V/B configuration, 

where Li refers to liquid flow rate at ith stage in the column, Vi represents vapour flow 

rate at ith stage, D refers to distillate (Product) flow rate and B represents bottoms 

product flow rate. 

In practice, only few combinations result in a feasible control configuration 

despite possibility of a very large number of theoretical permutations. This is due to 

practical variables relationship and interactions with respect to control. The L-V and 

D-V methods are not self-regulating but they are generally less sensitive to feed flow 

rate fluctuation at high frequency. The double ratio method is self-regulating with 

respect to fluctuation in feed flow rate compared to the other configurations but it 
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requires online measurement of all flow rates which is expensive. In the L-V 

configuration, liquid flow rate (L) is selected to control top product concentration 

(distillate’s composition) while vapour boil-up flow rate (V) is used to control bottoms 

composition. Energy balance (L-V) configuration is predominant in both experimental 

and industrial plants because of practical variables relationship. Consequently, it is the 

preferred configuration for composition control implementation in all illustrations 

given in this work.  

Three strategies for implementing control system in a binary distillation 

column include: open loop control, one-point feedback control and a two-point 

feedback control. In the open loop case, there is no product composition control as 

flow rates are manually controlled by operators via valves and the column tends to 

drift away and be filled with light component or heavy component only. Manual 

monitoring is generally inadequate. This prompts the need for some form of automatic 

composition control system for product’s quality.  

In one-point control system implementation, one of the product’s component 

is controlled (e.g. light component) with a feedback control system. This reduces it to 

a SISO control system. However, since top and bottoms product compositions are 

strongly coupled, one-point control can potentially have satisfactory control action on 

both distillate and bottoms’ compositions in a binary distillation system if 

specifications are modest. Industrial implementation of one-point control with energy 

balance configuration in the process industry is common as it is cheaper due to fewer 

number of sensors and other required instruments. In contrast, both light and heavy 

compositions of binary mixture are controlled in a two-point control strategy 

(Skogestad, 1997). Liquid flow rate (L) and vapour flow (V) directly affect top and 

bottom compositions. In the TITO WB distillation control example, L-V configuration 

is used with two-point control. The reflux and steam flows are manipulated variables 

utilised for control of both top and bottoms’ compositions.   

3.6.1 Control of Process Constraints and Composition 

In practical distillation plants, there are operability constraints that require 

simple controllers. For instance, column pressure needs to be kept fairly constant and 

liquid levels in reflux drum and column’s base has to be kept within safe limit. This is 
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sometimes referred to as inventory control. Several ways of maintaining constant 

column pressure have been devised such as hot vapour bypass, direct pressure valve 

control system and vent-bleed system (Ogannaike & Ray, 1994). 

Similarly, level control in the reflux drum can be achieved by manipulating 

distillate flow rate (top product removal rate) while the liquid level in the column base 

can be controlled by manipulating bottoms product flow. In a situation where the liquid 

level in column base is below the limit or empty, there is a likelihood of fire hazards 

due to overheating of the reboiler. Therefore, when liquid level in reflux drum is kept 

within tolerable limit, column’s controllability and reduced steady state operational 

cost are resultant benefits. These primary operability constraints are required to be 

considered during the overall design review phase of the distillation system in addition 

to product composition control. 

3.7 Multiloop PID Controller Design - WB Distillation Column 

3.7.1 Biggest Log-modulus Tuning (BLT) Method 

BLT method is the most predominant multi-loop PID controller tuning method 

used in literature as a baseline for comparative study of multivariable control systems. 

The original BLT method proposed by Luyben is considered for multi-loop PID 

controller design (Luyben, 1986). It is included here mainly as a baseline to judge other 

methods. This is because, the algorithm uses Ziegler-Nichols (Z-N) setting for 

controller parameters and better algorithms have been developed to build on the load 

rejection property of Z-N tuning rule. 

Consider the first diagonal element in the model: 

 
12.8

( ) ;
16.7 1

se
G s
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−

=
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 Each diagonal PI controller is given by equation (3.13) 

where each parameter retained its usual meaning as given previously. 

,
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I j
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k
C s k j

s
= + =      (3.13) 

Ultimate gain and ultimate period can be obtained as: 

u = 5min, ku = 2.1. 
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The second diagonal element is given: 
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+
 u = 14mins, ku = -0.41. 

The function ( )W   is defined as 1 ( ) ( )I G j C j − + + .  

Thereafter, closed loop function 10
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



=

+
 is calculated and the 

tuning factor F is adjusted until L is equal to 4 dB. 4 dB point is chosen because the 

number of loops in WB column is two. With F=0.42, PI controller settings realised are 

given as follows: 

0.3750 0 0.0450 0
, .

0 0.0750 0 0.0031
p Ik k

   
= =   

− −   
 

This controller is used as a baseline for comparative study of other controllers in terms 

of set-point tracking as design objective and results are presented in Fig. 3.3 - Fig.3.4. 

3.7.2 Relay feedback method: Sequential loop closing 

One problem with the Ziegler-Nichols based BLT method is the risk of running 

a real-time plant at the critical frequency point when the plant is just on the verge of 

instability. This experiment is not reasonably practicable when considering some 

critical real-time applications. Relay feedback method helps overcome this drawback 

while still identifying critical point parameters for control design. A relay experiment 

is set up in the first loop containing the first diagonal element. Loop 1 is closed and 

output is observed when oscillation occurs. Obtained parameters are:  

u = 85 – 80 = 5 minutes, ku = (4 x 1)/(π x 0.375) = 3.395. 

The relay is replaced with designed PI controller. Thereafter, the first loop is 

closed with the designed controller while setting up sustained oscillation experiment 

in second loop. The second loop directly contains the second diagonal element.  This 

is the sequential loop closing technique of multivariable system. If the feedback control 

of each loop with the controller produces a sustained oscillation at every stage of loop 

closing and ultimate point parameters are correctly observed, stability is established. 
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   Ultimate period and ultimate gain can be readily obtained as before and final 

controller settings are obtained using Tyreus and Luyben algorithm that relate ultimate 

point parameters to individual controller gains.  

0.5310 0 0.0483 0
, .

0 0.0780 0 0.0070
p Ik k

   
= =   

− −   
 

  

3.7.3 Internal Model Control (IMC) 

Skogestad’s IMC PID commonly termed SIMC method is based on set-point 

tracking as a design objective. Controller settings are selected for output to track a 

given reference signal for any given first order or second order model with time delay. 

SIMC method results in a conventional PI controller with gains defined already in 

(2.5).  

 ;   min{ ,4( )}.
( )

P
p I P f

P f

k L
k L


  


= = +

+
     (3.14) 

A small tuning parameter is included when choosing filter’s time constant f  as a 

function of system’s time constant. f P = .  

Applying SIMC rule for the top composition loop: 

 1pk =  0.334,  min ,4( )I P fL  = + and I = 16.65.  

  

Similarly, the same algorithm is applied in second loop and obtained controller settings 

are given as: 

0.2609 0 0.0156 0
, .

0 0.0571 0 0.0039
p Ik k

   
= =   

− −   
 

These controllers are simulated and performance of each PI controller is 

compared with the baseline method. Results of the simulation study are illustrated in 

Fig. 3.3 and Fig. 3.4. It is also desirable to compare these multi-loop PID controller 

design techniques with available centralised PI controller design techniques. 

Therefore, four multivariable PID control design algorithms are considered for 

implementation on the same distillation model. 
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3.8 Centralised PID Controller Design -WB Distillation Column 

Four fully-cross coupled multivariable PID controller design methods are 

reviewed in this section for solving MIMO system control problems. These methods 

are generally grouped as centralised PID control design methods. Examples are single 

frequency point multivariable PID controllers and centralised IMC controllers. 

3.8.1 Davison Integral Controller 

This is an integral controller suitable for multivariable system and was proposed 

few decades ago for MIMO systems (Davison, 1976). Davison integral controller 

decouple a system at zero frequency using a constant gain compensator based on the 

inverse of the plant model. Since the controller gain is based on the inverse of the plant 

at steady state, good decoupling is achievable for a class of square-stable MIMO 

systems. The algorithm is used to design a multivariable controller for WB distillation 

column as follows: 

1( ) ( )  with  (0)I
I

k
u s e s k G

s

−= =  ,                                                     (3.15) 

 where 
0.1570 0.1529

, 
0.0534 0.1036

Ik
− 

=   
− 

is chosen as 0.038 for a smoother 

response. This small tuning parameter is chosen by trial and error to have a satisfactory 

response speed and it is expected to be a small positive number such that: 0 1.   

  

3.8.2 Penttinen-Koivo Multivariable Controller 

Penttinen-Koivo multivariable controller achieves a diagonalised plant at very 

low and high frequencies using both integral and proportional control action. The 

control law is shown below in (3.16): 

1 1( ) ( ); ( ) ; (0).I
p p I

k
u s k e s k CB k G

s
 − − 

= + = = 
 

     (3.16) 

The term  is a constant scalar tuning parameter for the proportional component. CB 

is product of output and input matrices obtained from state space model of plant. 

Considering the same WB distillation column model, obtained PI parameters are shown 

as: 
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2.7629 1.8546
; 0.2;

1.2420 1.5722

0.1570 0.1529
; 0.038.

0.0534 0.1036

p

I

k

k

 

 

− 
= = 

− 

− 
= = 

− 

   

It should be noted that all tuning parameters have small positive values and are chosen 

in a similar fashion as in the Davison algorithm i.e. 0 1.   

3.8.3 Maciejowski PID Controller 

Maciejowski multivariable controller, defined in (2.8), is implemented using the 

same WB distillation system. The gains are as given in (3.17) where each term retains 

the usual meaning as defined previously in (2.8). 

1 1( ),   ( ).I b p bk G j k G j   − −= =        (3.17) 

Frequency band ( )b  of 0.2 rad/sec is selected and obtained PI controller gains for WB 

distillation model are presented as: 

 

1

1

0.4592 0.3217
,  is chosen as 0.1. 

0.4754 0.0934

0.4592 0.3217
,  is chosen as 0.7 like in previous cases.

0.4574 0.0934

I

p

k G j

k G j

  

  

−

−

− 
= ( )     

− 

− 
= ( )   

− 

                      

3.8.4 Martin-Katebi Multivariable PID 

According to Martin and Katebi algorithm, the control law is given as follows: 

1
( ) 1 ( );

1

sT
u k K e k

z−

 
= + 

− 
 ( )

1

(0) (1 ) .pK G CG 
−

= + −     (3.18) 

Each term of the controller retains the same definition as given previously in (2.9). 

Obtained controller gain K for WB distillation column model is: 

 
0.3439 0.3460

.
0.1416 0.2870

K
− 

=  
− 

 

Transient characteristic of these control systems can be observed in step response 

diagram of Fig. 3.3. Performance indices are also tabulated in Table 3.2. 
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Fig. 3.3 Comparison of MIMO-PID controllers - top product 

 

  Fig. 3.4 Comparison of MIMO-PID controllers – Bottoms product 
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Table 3.2   Comparison of performance in time domain 

Comparison of  

Control 

Performance 

Distillate (Top) 

Composition 
Bottoms Composition 

% 

OS 

Rise 

Time 

(mins) 

Settling 

Time 

(mins) 

% 

OS 

Rise 

Time 

(mins) 

Settling 

Time 

(mins) 

BLT 26 5 30 30 10 40 

IMC 12 7 20 10 10 32 

Relay-Feedback 27 4 35 48 10 44 

Davison 

Controller 
20 50 120 19 46 100 

Penttinen-Koivo 18 15 50 25 15 50 

Maciejowski 0 30 40 19 7 32 

Martin-Katebi 0 30 50 0 36 40 

 

Preliminary results (as tabulated in Table 3.2) show that multi-loop methods 

(Relay Feedback and SIMC) yield faster response (rise time of four minutes and seven 

minutes respectively) but with larger overshoot compared to centralised methods (1% 

-20%) implying that the four centralised controllers produce a more conservative 

control action. In contrast, considering all three performance criteria, SIMC, 

Maciejowski and Martin- Katebi all gave very satisfactory performance in terms of 

settling time and percentage overshoot (less than 10%) consistently for both top and 

bottom loops. However, these results are still conservative in terms of time domain 

response speed for a simple TITO process. To obtain faster responses with greater 

robust-stability region, FOPID controllers are considered due to the extra tuning 

parameters that may be utilised for improved performance. In addition, these PID 

controllers with fractional orders are also known to counteract effects of time delays 

in very interactive distillation columns e.g. OR column (Baruah, et al., 2016; Monje, 

et al., 2010). If properly tuned, improved control actions are expected from fractional 

order controllers at the expense of one or two extra tuning parameters. It is also 

desirable to evaluate the performance of these controllers on a full-scale non-linear 

distillation column, so a brief control design review of Skogestad’s non-linear 

distillation system (column A) is given in the next section. 

3.19 Composition Control of Non-Linear Column A 

It is interesting to see how centralised PID control algorithms perform in a full 

non-linear plant. Consequently, composition control of column A model is considered 
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here. The control objective is to regulate top composition at 0.99 (99%) thereby 

keeping bottoms impurity under 1% despite effects of disturbances. The disturbance 

signal is a 10% change in feed flow rate. Since all four centralised methods are based 

on linear models, an approximate form of the model is used for controller design. The 

model is linearised around operating point given in Table 2.1 using deviation variables. 

Using the exact steady state data given in Table 2.1, the un-scaled steady state gain 

matrix was obtained as: 

0.8754 0.8618
(0) .

1.0846 1.0982
G

− 
=  

− 
       (3.19) 

However, disturbance rejection studies and all control system simulations are 

carried out on the full 41-staged non-linear model. For instance, simulation of output 

response of the non-linear column with centralised composition controller when there 

is a 10% variation in feed flow rate (disturbance) is given in Fig. 3.6 and Fig. 3.7. The 

disturbance (feed flow variation) is introduced at time t=10 minutes. Distillate 

composition controller is expected to regulate composition at the nominal rate of 0.99 

(99%) in the presence of feed flow rate disturbances. In this simulation study, all inputs 

are kept at nominal rate as given in Table 2.1 (L = 2.706 Kmol/m, V = 3.206 Kmol/m) 

except disturbance input f which is increased by 10%. It is desirable to study effects of 

these controllers in terms of disturbance rejection and output regulation. The steady 

state model used for controller synthesis is given as: 

0.8754 0.8618
.

1.0846 1.0982

D

B

dy dL

dx dV

−     
=    

−    
            (3.20) 

3.9.1 Davison Multivariable Controller: Non-linear Column A Simulation 

Davison’s integral controller is given by: 

1( ) ( )  with  (0)I
I

k
u s e s k G

s
 −= = . 

0.1570 0.1529
, 

0.0534 0.1036
Ik  

− 
=  

− 
is chosen as 0.038. This was chosen by trial and error. It 

is best to set  to 1 before reducing it gradually to get the best or fastest response. In 

general 0 1.    
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On simulating Davison’s controller on a full nonlinear column A model, it 

gives better output responses compared to the decentralised Skogestad’s PI controller. 

However, other centralised algorithms give slightly better performance than Davison’s 

integral controller. The centralised controllers regulate top composition at 0.99 and 

bottoms impurity at 0.01 almost perfectly except Davison’s controller which deviates 

slightly from set-point as observed in Fig. 3.5 and Fig. 3.6. 

The diagram in Fig. 3.5 has been magnified such that a slight deviation of 

0.000001 molar fraction of products can be visible. Both axes are magnified. Both 

studies show sensitivity of control system to unmodelled non-linearity in the system. 

Skogestad’s decentralised PI controller originally designed for column A is included 

as a baseline for comparison. Disturbance is introduced and effects of two centralised 

controllers can be observed in Fig. 3.7 as disturbances are rejected though very 

sluggishly. It is to be noted that Skogestad’s PI controller, which is used here as a 

baseline, is a decentralised optimal PI controller obtained directly using Matlab’s 

optimisation toolbox. 

3.9.2 Penttinen-Koivo Controller (Non-linear Simulation) 

Using Penttinen-Koivo method, control law is derived as follows: 

1 1( ) ( ); ( ) ; (0).I
p p I

k
u s k e s k CB k G

s
 − − 

= + = = 
 

  

2.3433 1.0794 0.7361 0.5802
,  .

0.5115 0.8080 0.7270 0.5894
p Ik k 

− −   
= =   

− −   
  

Typical values of 𝛽 and   used are 0.8 and 0.6 respectively. Results of full non-linear 

simulation is shown in Fig. 3.5 and Fig. 3.6. Disturbance rejection property is 

demonstrated in Fig. 3.7 and Fig. 3.8. 

3.9.3 Maciejowski Multivariable Controller (Non-linear Simulation) 

Maciejowski controller parameters are computed at plant’s operating frequency. 

Therefore, range of frequency of interest for the distillation column is extracted from 

the Bode diagram of the linearised model. A bandwidth of 0.2 rad/min is suitable for 

design. 
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1

0.0115 0.0150
( 0.2)

0.0120 0.0279
pk G j −

− 
= =  

− 
  

where   is a small positive parameter. A typical value of 0.7 gives a fast response for 

this system hence it is chosen as 0.7. 

1
0.0115 0.0150

, chosen as 0.7
0.0120 0.0279

Ik G j  −
− 

=  ( )    
− 

 as explained previously 

Simulation results are given in Fig. 3.5 and Fig. 3.6. It is compared with other 

centralised PID controllers.  

3.9.4 Martin-Katebi Multivariable Controller (Non-linear Simulation) 

The control law is defined as: 

( )
1

1
( ) 1 ( ),  (0) (1 ) .

1

s
p

T
u k K e k K G CG

z
 

−

−

 
= + = + − 

− 
 

For WB column, matrix (K ) is obtained as follows: 

0.2081 0.1035
.

0.0634 1.1535
K

− 
=  

− 
 

Fig 3.5 shows how it compares with other centralised controllers in terms of top 

composition regulation on the full non-linear column A. The output response, after 

10% feed-variation (disturbance) is introduced in the system, is shown to have 

different settling times for two centralised controllers as shown in Fig 3.7. 

Fig 3.6 shows effect of all four centralised controllers in terms of bottoms 

composition regulation at 0.01 impurity (99% molar percentage). The simulated 

outcome is magnified such that a difference of 0.00000001 unit of deviation can be 

visually observed. However, all four centralised controllers regulate the plant at 0.99 

molar fraction for the top which correspond with 99% top purity. The centralised 

controllers all give smoother output compared to the decentralised controller. 
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Fig. 3.5 Top composition: Comparison of different controllers 

 

Fig. 3.6 Bottoms composition: Comparison of different controllers 
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Fig. 3.7 Disturbance rejection - 10% feed flow(f) variation in top loop 

 

Fig. 3.8 Disturbance rejection - 10% feed flow (f) variation in bottoms loop 
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made with conventional three-term (PID) controllers (Podlubny, 1999; Hu, 2001; Lee 

& Chang, 2010). Although, all the authors (cited here) demonstrated these comparative 

advantages of FOPID controllers over conventional PID controllers for SISO systems, 

this thesis aims to demonstrate that improved results with FOPID controllers can be 

extended to MIMO systems. Therefore, FOPID controllers are considered to obtain 

improved control action for time-delayed MIMO systems. The extra flexibility offered 

by non-restriction of derivative order is expected to be exploited for improved 

performance. Details are reported in chapter 4 and subsequent chapters. 

3.10 Summary 

In conclusion, three different types of models have been presented for 

modelling of distillation column for the purpose of composition control design. These 

include: 

▪ Staged modelling method using mass balance equations,  

▪ transfer function models usually obtained using step response tests,  

▪ state space model.  

Staged model results in a non-linear set of equations because of non-linear 

vapour-liquid relationship. However, linearisation is carried out around plant’s 

operating point using deviation variables to obtain a linear model. An example of 

staged model is the Skogestad’s column A model. Transfer function models are linear 

time invariant models. Examples are WB TITO model and the three-by-three OR 

distillation model. Two state space models of distillation column considered in chapter 

six are Karacan-Giwa state space model and Minh petroleum distillation model. It is 

also well known that actuator delays and non-linearity can cause linear control system 

to deteriorate in real-time applications. Therefore, practical instrumentation 

constraints involving distillation columns have been addressed in this chapter. 

Thereafter, MIMO PID controller design schemes reviewed in chapter two 

have been extended to composition control of a simple TITO WB distillation column. 

Both decentralised and centralised controllers have been designed for the same system 

to compare performance. Centralised control algorithms take interaction terms in 

system’s transfer function into account during controller design phase. Decentralised 

algorithms do not account for interaction terms during control law formulation.  
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Simulation studies show that centralised controllers give better control action with 

very little or zero overshoot when compared to decentralised (multi-loop) controllers 

except Davison integral controller (20% overshoot).  

Consequently, two centralised controllers have been extended to a non-linear 

staged column A model. Although controller synthesis is based on linearised model, 

simulations have been carried out on the full non-linear column A model with 10% 

feed-flow disturbance introduced. Both Penttinen-Koivo controller and Martin-Katebi 

PI controller deal adequately with interactions, non-linearity and disturbance rejection. 

However, the best response (Martin-Katebi) has a settling time of 200 minutes. This 

is a very conservative performance. To improve this time response, fractional-order 

PID controllers are proposed in subsequent chapters. 
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Chapter 4 

Fractional-order PID Controller Design and Tuning 

In the previous chapter, the design of conventional (multivariable) PID 

controllers have been presented and control performance evaluated on a typical binary 

distillation column with no disturbances (nominal performance). Simulation results of 

these conventional controllers have been very conservative on the two-input two-

output Wood-Berry distillation column with very high rise time and settling time 

ranging from 40 – 150 minutes. Consequently, these conventional PID controllers 

cannot possibly give superior performance in a more interactive (coupled) three-input 

three-output distillation column (OR column) compared to the TITO system. This is 

because, ORA column has higher coupling effects judged by higher RGA values as 

earlier given in chapter 3 and there is a change of sign within the RGA matrix 

indicating greater control design difficulty compared to the WB column given in 

chapter 3. 

i.e. RGA of OR distillation system is calculated as follows: 

 

-0.1904 1.1625 0.0278

1.9928 0.1854 0.8074 .

0.8024 0.0229 1.7796

RGA

 
 

= − −
 
 − 

 

While the RGA of the relatively simple TITO system (WB column) is less than 1 and 

all elements are positive as shown:  

            
0.3687 0.6313

.
0.6313 0.3687

RGA
 

=  
 

  

Therefore, FOPID controller is chosen for product’s composition control of OR 

column due to its inherent frequency domain flexibility. Critical-frequency-point 

method of designing Fractional Order PID controller (FOPID) is proposed for 

multivariable process control applications such as distillation column control system 

in this section. Since ultimate parameter-based tuning rules applicable to conventional 
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PID controllers (e.g. Ziegler-Nichol’s tuning rule, Cohen-Coon and Hagglund’s rules) 

are not directly applicable to the tuning of FOPID controllers, a new algorithm is 

developed to tune these FOPID controllers based on critical-frequency-point test. 

Minimal information about process’s dynamics is required and it is easily adaptable to 

online tuning and implementation. Results of these MIMO-FOPID controllers have 

been published (Edet & Katebi, 2016). Firstly, well-established methods of designing 

FOPID controllers for SISO systems are reviewed including methods of implementing 

irrational functions. More detailed review of practical applications of FOPID 

controllers in industry can be found in Aleksei’s paper (Tepljakov, et al., 2018). 

4.1 Introduction 

FOPID controllers can be designed and tuned for both SISO systems and 

MIMO systems involving time delays (Baruah, et al., 2016; Vale´rio & Costa, 2009; 

Monje, et al., 2010). Considering SISO control system applications, many well-known 

methods of tuning this class of controllers exist. These design methods are either based 

on time domain parameter optimisation or frequency domain. FOPID controller 

parameters can be computed directly in frequency domain to meet some desired 

specifications such as phase margin, constant phase at gain cross over frequency and 

other sensitivity constraints as shown by several authors (Luo, et al., 2010; Luo & 

Chen, 2009; Vale´rio & Costa, 2009). Other methods of designing FOPID controllers 

include optimisation-based methods such as Linear Matrix Inequality (LMI), 

probabilistic optimisation index, and evolutionary algorithms (Lee & Chang, 2010; 

Song, et al., 2011; Wu, et al., 2018). All these papers present design of FOPID 

controllers for SISO applications only. 

FOPID controller is flexible in terms of frequency domain characteristic. Given 

the non-restriction of orders of integral and derivative terms of the controller, more 

parameters are available for slope manipulation of both magnitude and phase curves 

at high region and lower range of frequency. When properly tuned, this frequency 

domain flexibility enables FOPID controller to yield superior control performance 

over conventional PID controllers for a class of systems. Several authors demonstrated 

this comparative benefit by simulation studies of both FOPID controller and 

conventional PID controllers (Monje, et al., 2010; Lee & Chang, 2010; Padula, et al., 
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2014). Clearly, these comparative benefits can easily be understood when considering 

frequency domain properties of an ideal integrator compared to a fractional order type. 

In the case of fractional or generalised integrator, magnitude and phase properties can 

easily be manipulated freely using appropriate gains to meet extra gain margin or phase 

margin constraint. Such freedom is limited when considering a pure integrator. In 

terms of robustness to gain-variations and uncertainties, FOPID controller is known to 

give better performance compared to conventional PID controller when properly 

designed. For instance, loop shaping design technique can be used to design FOPID 

controller in such a way that the phase is kept constant around the gain cross over 

frequency. This robust property of FOPID controller is explored in detail in section 

4.2 

Considering steady state error rejection, a fractional order integrator of order 

; ( ;  0< <1)k k +   is as efficient as a conventional integer order integrator of 

order k+1 (Monje, et al., 2010). This can easily be confirmed using final value 

theorem. Given a system G(s): 

where
1

1

1

1

( ... 1)
( ) , .

( ... 1)

m m

m m
mn n

n n

K a s a s
G s

s b s b s

 




−

−

−

−

+ + +
= 

+ + +
 

Assuming a reference signal (r) of the form: 
( )

1

1
( ) , ( ) ,r t At R s

s






+

 +
= = steady state 

error can be analysed with both conventional integral controller and fractional order 

integrator. The conventional (integer order) integrator is well known to eliminate 

steady state error. So, steady state error analysis with equivalent fractional order 

integrator is presented. Position error constant is given by Kp = 
0

lim ,
s

ks −

→
implying 

that steady state error (position) 
1

1
p

p

e
K

=
+

 . Considering velocity error constant (Kv), 

1

0 0
lim . lim ;
s s

s ks ks − −

→ →
= steady state error (velocity)

1
.v

v

e
K

=    
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Also, considering acceleration error constant (Ka),
2 2

0 0

1
lim . lim ;a
s s

a

s ks ks e
K

 − −

→ →
=  =  

where ea refers to steady state error (acceleration). Similar steady state error results are 

obtainable with conventional (integer order) integral controller where 1. =   

In terms of implementation, FOPID controllers must be band limited. The 

fractional order integrator ( )s −  can also be implemented as 1 1s s − − to take 

advantage of the action of pure integrator at very low frequencies. This effectively 

eliminates steady state errors at very low frequencies. Three scenarios are identified 

where fractional order dynamics can be applied: 

▪ Design of fractional order controller for a conventional (integer order) plant. 

Examples can be found in many published papers (Baruah, et al., 2016; 

Tepljakov, et al., 2018) 

▪ Design and tuning of integer order controllers for a class of systems identified 

with fractional order dynamics (Monje, et al., 2010). 

▪ Design of fractional order controllers for a class of systems identified with 

fractional order dynamics (Luo, et al., 2010; Luo & Chen, 2009). 

As explained in the motivation section of chapter 1, the problem of designing a suitable 

FOPID controller for a conventional multivariable process (integer order plant) is the 

focus of this work.  

4.2 Realisation of Fractional order Terms by Approximation 

Fractional order functions are not analytic functions and cannot be directly 

realisable (physically). To obtain a realisable controller function, some forms of 

integer order approximation methods are required. Continuous time models can be 

approximated using curve fitting, interpolation or some other forms of approximation.  

Considering discrete time models, continued fraction expansion or trapezoidal rule can 

be applied to obtain a rational approximation. For instance, consider an integral 

controller C(s):  

( ) ;C s s −=  where 1 , .n n n−      
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It is not possible to find a finite order filter to fit the function for all frequencies since 

it is infinitely dimensional. However, a band limited implementation is feasible where 

a frequency range of interest can be defined for integer order approximation using 

suitable computational software tool like Matlab. Two common approximation 

methods are reviewed. 

4.2.1 Continued Fraction Expansion (CFE) 

This is an evaluation method that frequently converges more rapidly and in a 

larger complex plane’s domain than power series expansion (Vinagre, et al., 2000). A 

major feature of CFE is that it inherently mirrors the poles of the system and directly 

yields rational functions from the approximation process. A function G(s) may be 

represented in continued fraction expansion form as: 

 
1

0
2

1
3

2

3

( )
( ) ( )

( )
( )

( )
( )

( ) ...

b s
G s a s

b s
a s

b s
a s

a s

= +

+

+
+

  

where b and a functions are numerator and denominator terms of G(s) 

respectively. So, G(s) can be rewritten as: 

 
31 2

0

1 2 3

( )( ) ( )
( ) ( ) ...

( ) ( ) ( )

b sb s b s
G s a s

a s a s a s
= + + + +   

This way, an irrational C(s) may be approximated with a rational function using 

CFE by considering the high frequency range and low frequency points only. 

4.2.2 Oustaloup’s Recursive Approximation (ORA) Method 

Oustaloup’s recursive approximation method is a frequency band limited 

approximation of the irrational function. It makes use of recursive distribution of poles 

and zeros to obtain an integer order function that approximately mimics the 

characteristic of the original fractional order function within the specified frequency 

range ( ),h l  . For instance:  

Given that G(s) = s − , 0 1  , within the band ( ), ,h l   Oustaloup’s 

approximation may be defined as follows: 
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

+ + −

+
 
   =  
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N = Number of poles/zeros, u =  frequency at unit gain, h = high transitional 

frequency limit, l =  low transitional frequency limit and  =  fractional order. 

N is chosen reasonably before starting the approximation as it influences accuracy. 

The gain C is adjusted to achieve a unity gain at 1 rad/sec. 

To use Matlab to implement ORA approximation, the band must be provided along 

with fractional order and expected number (N) of poles/zeros. These four parameters 

are used to approximate the fractional expression into an equivalent integer order form. 

This method is used predominantly in this work. 

4.3 Preliminary Control Design Considerations 

Frequency response data, step response and transfer function models contain 

information about dynamic characteristic of processes. Process knowledge is essential 

for formulation of control objectives and design of a FOPID controller capable of 

meeting predetermined design specifications. A wide range of plant is found in 

practice such as systems with fast and slow modes, integrating processes, open loop 

unstable systems, Right Half Plane (RHP) zero systems, time delay and lag systems as 

well as oscillatory processes. These are examples of operating conditions of real time 

plants. Although the list is not fully exhausted, it shows examples of complexities of 

control design problems typically encountered in real time systems.  

Consequently, many algorithms have been developed over the years to design 

conventional PID controllers for various systems with varying degree of success. In 

some cases, meeting stringent performance specification means increased complexity 

of the resultant controller causing an increased computational cost. In this chapter, a 

method of designing FOPID controllers for controlling product compositions in a 
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typical distillation column is discussed. This is implemented using a simple feedback 

architecture.  

The idea of implementing feedback in automatic control design is known to 

reduce sensitivity to uncertainties, model mismatch and noise. Model uncertainty and 

robustness have played key roles in the development of automatic control design 

technology. Many control design schemes have been developed over the years solely 

to improve robustness by reducing sensitivity to disturbances and parametric model 

variations. To illustrate this feedback property, consider a simple closed loop system 

(G) shown in Fig. 4.1 where input signals are given: R is reference signal; D is the load 

disturbance input and N is the measurement noise term. The output term is Y; C is the 

controller. 

 

Fig. 4.1 A simple block diagram of a feedback control system 

Considering all three inputs and two outputs (X and Y), four transfer functions 

(‘s’ is dropped for convenience) with significant effects can be identified: 

▪  ;
1

CGX
R CG

=
+

 which is complementary sensitivity function T(s); 

▪  
1

GX
E CG

=
+

; 

▪ 
1

 ;
1

Y
N CG

=
+

 which is sensitivity function S(s); 

▪  .
1

CU
R CG

=
+

  

Assuming a small perturbation G  on the nominal plant G(s), the effect of feedback 

on such disturbances can be analysed by studying the sensitivity of the perturbed plant 

.G G+  In the open loop case, sensitivity is given by S(s) = 
( ) / ( )

1.
( ) / ( )

G s G s

G s G s


=


  

C GR E U V X
Y

ND
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When feedback is applied, we have a closed loop case. Sensitivity of this closed loop 

case is obtained as 
( ) / ( ) ( ) ( ) 1

.
( ) / ( ) ( ) ( ) 1 ( ) ( )

T s T s G s T s

G s G s T s G s C s G s

 
= =

  +
 . 

Given that ( ) ( ) 1,  C s G s  Sensitivity  1.  Therefore, sensitivity is highly reduced 

because of feedback. So, maximum values of both sensitivity and complementary 

sensitivity functions max ( )  and max ( )  
0 0

 S j T j 
 

 
 

      
 are used as design 

parameters to define robustness’ constraints. 

 Given that Ms = peak value of the system’s sensitivity i.e. max ( )
0

S j
  

 and peak 

value of the system’s complementary sensitivity Mp = max ( )
0

T j
  

, Ms can be 

deduced from Nyquist diagram as the reciprocal of the shortest distance between 

Nyquist plot and the critical point. The largest amount of admissible perturbation in a 

process is therefore given by the largest value of Mp. Setting a target for maximum 

allowable limit for these terms form a reasonable objective that can be used to derive 

robust controller parameters.  

 In addition, some control systems are designed to meet an additional 

requirement of robustness namely: insensitivity of phase to gain changes. This was 

first demonstrated by Bode’s ideal transfer function. In Bode’s system, changes in 

open loop gain introduces changes in gain cross over frequency but the phase margin 

remains constant over a given frequency range. Once this constraint is achieved, 

robustness of the system against gain variations is guaranteed within a specified 

interval. This is a very significant robustness feature because overshoot of system’s 

response will remain constant within that interval. It can be challenging to design a 

PID controller to meet all these desirable objectives because some of these criteria are 

contradictory. For instance: ( ) ( ) 1.T j S j + = Therefore, both terms cannot be 

simultaneously forced down to zero. 

 In scalar systems, it is sufficient to use open loop gain to define specification 

and impose constraints on the closed loop performance. Consequently, gain margin 

and phase margin can be easily defined for SISO systems as robustness constraints. In 
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multivariable systems, the concept of maximum singular values of sensitivity can be 

used to formulate closed loop performance requirement. There are preliminary 

challenges associated with formulation of control requirements for multivariable 

control systems just like conflicting objectives encountered in SISO control system 

design. These limitations are illustrated below: 

▪ In feedback control, the open loop gain C(s)G(s) is expected to be large enough 

to reject effects of disturbances and model mismatch. This reduces sensitivity 

to disturbances as 
1

1.
1 ( ) ( )C s G s+

 Within the lower frequency range, load 

disturbance and reference signals occupy that band implying that the maximum 

value of the sensitivity function S(s) should be reduced to achieve good 

disturbance rejection. However, this increases complementary sensitivity value 

and can amplify measurement noise. The same scenario plays out in 

multivariable systems too. In MIMO systems,  ( )1
( ) ( )I G j C j  

−
+  is kept 

small but this increases ( )T j which is linked to measurement noise. 

▪ To meet any requirement on measurement noise attenuation, (C(s)G(s)) is kept 

as small as possible so that
( ) ( )

small
1 ( ) ( )

C s G s

C s G s


+
. At high frequencies where 

measurement error (noise) is predominant, the maximum value of the 

complementary sensitivity function T(s) should be reduced to attenuate high 

frequency noise. This conflicts with the first objective. In multivariable case, 

 ( )1
( ) ( )I I G s C s

−
− +  is kept as low as possible. This also conflicts with the 

first objective. 

▪ To achieve set-point tracking in MIMO systems,  ( )1
( ) ( ) 1I I G s C s

−
− +  . 

This conflicts with the second requirement but not with the first objective. 

It is evident that trade-off is required in formulating design specifications 

during control system design. Selection of appropriate gain margin, phase margin and 

sensitivity bounds can ensure an optimum performance and stability of the system in 

the presence of disturbance. This is not usually straightforward even in scalar systems. 
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In many applications, satisfaction of these design specifications usually implies an 

increase in the complexity of the controller thereby increasing cost. Many authors have 

shown that Fractional order PID controllers can meet these design objectives, although 

in SISO process control applications (Baruah, et al., 2016; Tepljakov, et al., 2018).  

This is due to the inherent frequency domain properties of FOPID controllers. 

Therefore, FOPID controller is proposed to solve some of these multivariable control 

system design problems because it retains the relatively simple structure of 

conventional PID controllers and produced better performance although at the expense 

of two extra tuning parameters. This way, improved control action can be obtained 

without losing the simplicity of a typical PID controller. FOPID controller is also 

found to be an attractive option for control design because some familiar PID 

controller tuning algorithms can be extended to design FOPID with very little 

modifications (Monje, et al., 2010; Vale´rio & Costa, 2009). This improves end user 

experience. 

4.4 FOPID Controller Design: Review of Integral Gain Optimisation 

Over the years, some optimisation-based techniques of designing conventional 

PID controllers have been extended to a class of fractional order controllers. Some of 

these optimisation methods are based on maximising robustness to parametric model 

variations, robustness to load disturbances and robust loop shaping. Integral gain 

optimisation is one of such ways of extending conventional PID design procedure to 

fractional order controllers. Ms constrained Integral Gain Optimisation (MIGO) 

method developed by Astrom, Panagopoulos and Hagglund is reviewed in this section 

(Astrom & Hagglund, 1995). The aim of the design is to obtain optimal values of 

controller parameters with the objective of minimising a sensitivity function 

(Sensitivity to load disturbance). This method is generally termed Fractional Ms 

Constrained Integral Gain Optimisation (F-MIGO) method (Monje, et al., 2010). 

Maximising the integral gain reduces effects of load disturbance at the output. Load 

disturbance effect can be quantified using Integral Squared Error (ISE). 

 
2

0
( )ISE e t dt



=   where e(t) is the error. 

Due to contrasting nature of design objectives, an intermediate design parameter 

is formulated by imposing constraint on the peak values of both sensitivity functions. 
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Choosing Ms as the design parameter implies that the Nyquist plot of the transfer 

function must lie outside the Ms circle. Generally, the design parameter is chosen such 

that it encloses both the Ms circle and the Mp circle to achieve a design trade-off 

between these two terms. The centre of this circle C is given by:   

2 2

2

2 1

2 ( 1)

s s p s p p

s p

M M M M M M
C

M M

− − + −
=

−
 (Monje, et al., 2010). The radius of this circle 

is defined as R where:
2

1
.

2 ( 1)

s p

s p

M M
R

M M

+ −
=

−
  

The optimal control design problem can therefore be stated as: 

“Maximising the integral gain to obtain the controller parameters such that the closed 

loop system is stable and the Nyquist plot of the loop’s transfer function lies outside 

the circle with centre, C and radius, R.” (Monje, et al., 2010) 

Ms constrained Integral Gain Optimisation (MIGO) algorithm has been proven 

to yield optimal results for FOPDT plants. Optimal values of ,  p Ik k and  can be 

obtained using relevant optimisation routine to meet the specified sensitivity 

constraints in frequency domain i.e.
2( , , , )p If k k R   in Matlab. Finally, obtained 

FOPID function is realised using any approximation methods such as continuous 

fraction expansion or ORA method. This is primarily a SISO design method. 

Other novel approaches to FOPID controller design include the CRONE 

control design narrative (Lanusse & Sabatier, 2011). The CRONE control design suite 

is a well-developed optimisation-based design method that gives optimal values of 

gains when you select frequency domain design criteria such as gain margin and phase 

margin. It has a well-developed user interface for objective selection and running of 

optimisation routine. However, CRONE method has the same limitation as the 

Fractional Ms Constrained Integral Gain Optimisation (F-MIGO) algorithm because it 

is limited to SISO control system design only. There are other optimisation routines 

that are directly based on pre-defined margins of stability such as frequency domain-

based constrained optimisation. 
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4.5  Review of Constrained Optimisation Approach 

This is another optimisation-based design method for FOPID controllers. The 

first step is to define design specifications expected to be satisfied by the fractional 

order controller. These design objectives are defined in frequency domain to take care 

of important control objectives: stability, performance and robustness. In practical 

control design and implementation, objectives are defined based on requirements of 

individual applications and can take any combination of these stated specifications. 

Controller parameters can thereafter be tuned to satisfy these design specifications.  

4.5.1 Gain Margin and Phase Cross-over Frequency Specification. 

Gain margin (Am) is a primary index of relative stability in conventional control 

theory. A pre-defined margin can be used to formulate a robustness constraint on the 

system gain. Equation (4.1) defines the relationship between gain margin and phase 

cross over frequency. Equation (4.2) defines the gain margin constraint. 

( ) ( ) 0 .cg cg dB
C j G j dB  =         (4.1) 

1
( ) ( )cp cp dB

m

C j G j
A

  = ,        (4.2) 

where: 

cg represents the gain crossover frequency; 

cp represents the phase cross over frequency; 

Am  represents the gain margin. 

 4.5.2 Phase Margin and Gain Cross over Frequency Specification 

Phase margin and gain margin are extended to fractional order control theory as 

useful indices of robust stability. A controller can be designed to satisfy the phase 

margin condition given in (4.3). 

arg( ( ) ( )) ,cg cg mC j G j   = − +        (4.3) 

where m  is the phase margin and ‘arg(.)’ represents argument. 
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4.5.3 Constant Phase with Plant’s Gain Variations  

 Bode’s ideal loop defines the criteria for absolutely stable SISO loop. If there 

is constant phase around the crossover frequency (useful band), robust stability against 

gain variations is guaranteed within that frequency range in spite of gain variations. 

 arg ( ) ( )
0.

cg cg

cg

C j G j 




=


        (4.4) 

If (4.4) is satisfied, the phase of the forward loop function will be flat around the cross 

over frequency. This improves robustness against gain-like variations in plant and the 

overshoot is nearly constant within that frequency range. 

4.5.4 High frequency noise rejection specification  

 In order to ensure satisfactory measurement noise rejection, appropriate bound 

for complementary sensitivity function has to be defined: 

( )
dB

T j AdB           (4.5) 

( ) ( )

1 ( ) ( )
dB

C j G j
AdB

C j G j

 

 


+
        (4.6) 

for ω ≥ t  rad/s where ( )T j is the complementary sensitivity function and A dB is 

the specified attenuation level in dB for the band ω ≥ t rad/s. 

4.5.5 Output disturbance rejection specification 

 Sensitivity constraint can be defined to ensure satisfactory output disturbance 

rejection by the controller. 

1
 dB,

1 ( ) ( )
dB

B
C j G j 


+

        (4.7) 

where B dB = the specified magnitude of the sensitivity function in dB for the band ω 

≥ s rad/s.  

 The controller parameters can then be calculated and optimized to meet any 

combination of these design specifications. Therefore, more parameters are available 

for optimisation to meet more control objectives.  
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For instance, Monje (2010) used Matlab’s optimisation tool (fmincon) to 

formulate an optimisation problem that solves for these five parameters and it was a 

constrained non-linear optimisation problem with five unknown variables. This is 

primarily a SISO method. Therefore, it is desirable to develop a design procedure for 

FOPID controller that is suitable for multivariable process control systems. 

Another major problem encountered when using the current method is that the 

optimisation routine requires suitable initial settings without offering a means of 

identifying it. A simpler way of obtaining robust values for FOPID controller gains is 

to use sustained oscillation experiment. The fractional order for the integral controller 

term can be chosen to satisfy robust performance criteria. In the case of a time delayed 

process, relative deadtime provides a guide for selecting fractional order and this is 

tabulated in Table 4.1 and referred to in all examples. This table is relevant because, 

considering first-order processes with dead-time, appropriate values of fractional 

orders to counteract effects of such time delays have been experimentally determined 

(Monje, et al., 2010). It can also be easily extended to multivariable applications. The 

proposed method is presented in the next section. 

4.6 FOPID Controller Design using Critical Point Parameters 

A decentralised FOPID control design method is developed based on critical 

frequency point information. The control scheme is suitable for SISO process control 

but it can also be extended to MIMO processes in a decentralised or multi-loop 

configuration. Ziegler-Nichols type rules are still dominant for tuning PID controllers 

for simple first order or second order process models. In this section, a similar 

technique is developed for designing FOPID controllers suitable for process control 

applications. The experiment is set up by using a proportional controller in cascade 

with a plant under a closed loop configuration. Thereafter, proportional gain is 

systematically increased from very small values until sustained oscillation or 

continuous cycling is observed at the process output. The value of the proportional 

gain that yields this sustained oscillation is recorded as the critical gain (ku) while the 

period of oscillation is noted as ultimate period ( )u . Relay feedback method can also 

be used to identify critical frequency point without running the plant up to the verge 

of instability. 
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Several other important information about the process are obtainable from 

these critical point measurements. For instance, the phase cross over frequency ( pco ) 

can be obtained as: 2 .pco u  =  If a Fractional Order PI controller (FOPI) structure 

given in (4.8) is chosen for process control, appropriate gains can be derived from 

critical point information. 

( ) ,
( )

I
p

k
C j k

j 



= +       (4.8) 

where .I p ik k =  

FOPI controller can be obtained by relocating this ultimate frequency point on the 

complex plane to a more desirable point. This is illustrated on the Nyquist diagram of 

Fig. 4.2. The critical point or ultimate point is the stability limit signified by the point 

where the Nyquist curve intersects the unit circle (-1, 0). 

4.6.1 Derivation of Gains for FOPI Controller  

Consider the FOPI controller given in (4.8), a desirable point on Nyquist curve is 

chosen as point B given by: 
( )Bj

Br e
 +

 where ( ),B Br   are magnitude and phase at the 

chosen point B. The controller is expected to move the ultimate point  ( )1 ,0uk  to this 

desirable point. On the Nyquist plot, the ultimate point is point A ( )( )Aj

Ar e
 + . 

1
0;  ;A A

u

r
k

 = =       (4.9) 

where ( ),A Ar   are magnitude and phase at the critical point A. 
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Fig. 4.2 Nyquist diagram of SISO system showing critical frequency point 

Let the frequency characteristic of the controller C(s) be 
( )Cj

Cr e


  where cr and c  

are magnitude and phase of controller C(s). This controller is expected to relocate point 

A to point B implying that (4.10) holds.  

( ) ( )C A Bj j

A C Br r e r e
 + + +

=       (4.10) 

( ) ( )cA Bjj j B
C

A

r
r e e e

r

 + +
=       (4.11) 

 
( )c B Ajj B

C

A

r
r e e

r

  + − −
=                  (4.12) 

Substituting (4.9) in (4.12) and applying Euler’s formula yields: 

 
( )

(cos sin )Cj B
C B B

A

r
r e j

r


=  +                  (4.13) 

( )
(cos sin )Cj

C B u B Br e r k j


=  + 
 

Therefore, the controller should be chosen to satisfy these two conditions below: 
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C B Ar r r=           (4.14) 

0C B =  −          (4.15) 

In frequency domain, C(s) controller structure can be expressed as follows: 

( ) ,
( )

I
p

k
C j k

j 



= +  

1
( ) 1 .

( )
p

I

C j k
j 


 

 
= + 

 
 

To rationalize this function, consider the complex operator: 

cos sin .
2 2

j j  − = −  

So: 
1

( ) 1 (cos sin )
2 2

p

I

C j k j


 


 

 
= + − 

 
     (4.16) 

 
1

1 (cos sin ) (cos sin ).
2 2

p B u B B

I

k j r k j


 

 

 
 + − =  +  

 
  (4.17) 

By comparing real part of (4.17), proportional gain can be obtained as shown below: 

1
cos 1 (cos )

2
B u B p

I

r k k




 

 
 = + 

 
      (4.18) 

 
cos

1 cos
2 2

B u B
p

u
I

r k
k


 





=

   
+   

  

       (4.19) 

In the same vein, imaginary part of (4.17) is compared: 

1

sin
2

tan
1

1 (cos
2

p

I
B

p

I

k

k







 



 

−

 
− 

  =
  

+   
  

 

1

1

sin
2tan

(1 cos )
2

I

B

I






 


 

− −

− −

−

 =

+

       (4.20) 
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To solve for integral gain: 

tan cos sin
2 2

 ;
tan

tan
.

tan cos sin
2 2

B

I

B

p B

I

B

k
k





 




 


−

−

 
−  + 

 =


− 
=

 
 + 

 

      (4.21) 

4.6.2 Justification of Design Point 

In general, the desired point B is chosen such that: 

Br = 0.29; B = 46  . 

This is a very desirable point because it translates to -0.2 - j0.21 point on the complex 

plane. The distance (d) from this point to the stability limit (-1, j0) is given as d where

2 2( 0.2 1) ( 0.21)d = − + + − . This distance is approximately 0.9. Closed loop sensitivity 

can be deduced from this information on the Nyquist curve of the forward loop because 

the maximum sensitivity sM is the reciprocal of the shortest distance from the Nyquist 

curve to the critical point. On Nyquist diagram, 1 .sM d=   

 This is desirable for robustness. For the closed loop system to be robust against 

variations in process dynamics, maximum sensitivity of the closed loop system is 

specified as: Ms < 2. Reasonable values of Ms ranges from 1.05 to 1.95. This indicates 

good robustness for many practical control applications and it is therefore 

recommended in this work as the design point as far as critical frequency point 

procedure is concerned.  In terms of closed loop stability, it meets Nyquist stability 

criterion as the critical stability (-1, j0) point will not be encircled. Therefore, the 

fractional order PI controller can be obtained using (4.22) and (4.23). 

( )

0.202

1 cos
2 2

u
p

u
I

k
k


 



=
 +  
 

       (4.22) 

Fractional order is selected from Table 4.1. Given a time delayed system G(s): 
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( ) ;
1

Ls

p

k e
PG s

s

−

=
+

relative dead time (T) is expressed as follows ,
( )P

L
T

L 
=

+
 

where L = dead time, k
P

 = process steady state gain, p = process time constant. 

The relative dead time provides a guide for selection of fractional order as shown in 

Table 4.1 (Monje, et al., 2010). 

Table 4.1   Relative dead time and fractional-order 

Selection of 

Fractional 

Order 

Relative Dead 

Time (T) 

Fractional 

Order 

T < 0.1 0.7 

0.1 ≤ T < 0.4 0.9 

0.4 ≤ T < 0.6 1.0 

T ≥ 0.6 1.1 

 

0.966 ( ) (sin 1.036cos )
2 2 2

u
I

  




 
= + 

 
      (4.23) 

For Second order processes, derivative component can be included for a more damped 

response. One possible solution is to design the fractional order controller using a

PI D  controller structure. It is however tuned using the same method as in the 

fractional order PI controller case i.e. using ultimate parameters. 

4.6.3 The PIλ D Controller Structure - Derivation of Gains 

 The structure of the controller is given as: 

( ) ( )
( )

I
p d

k
C j k k j

j 
 


= + +        (4.24) 

Let the controller function ( )C j be characterised by
( )Cj

Cr e


in frequency domain and 

desirable point on Nyquist plane chosen as point B (i.e.
( )Bj

Br e
 +

) as described in the 
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preceding section. The controller is expected to move the ultimate point ( )1 ,0uk  to 

this desirable point as given before. On the complex plane, the ultimate point is point 

A ( )j

Ar e  . Therefore (4.10), (4.14) and (4.15) must be fulfilled as earlier shown. 

Applying (4.10) to this controller yield (4.25) below: 

( )cos sincj B
c B B

A

r
r e j

r


=  +                     (4.25) 

( )

1
( ) 1 ( )

cos sin
2 2

cos sin

p d

I

B u B B

C j k j

j

r k j

  
 



 
 
 = + +

  +  
  

=  + 

     (4.26) 

Equation (4.26) can be re-arranged to compare real part: 

 
1

1 cos cos
2

p B u B

I

k r k




 

 
+ =  

 
      (4.27) 

 
cos

.
1

1 cos
2

B u B
p

I

r k
k





 


=

 
+ 

 

       (4.28) 

Comparing imaginary part of (4.26): 

 
1

sin sin .
2

p d B u B

I

k r k





 

 
− =  

 

     (4.29) 

Substituting (4.28) in (4.29) yields: 

 

1
sin

2
tan( ) .

1
1 cos

2

d

I
B

I








 



 

−

 =

+

      (4.30) 

Solving for integral time yields: 
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tan cos sin
2 2

.
2

(2 ) tan

u B

I

d
B

u





 








 
 + 

 =
 

−  
 

      (4.31) 

 Given that the order µ is obtained as described in previous section using Table 4.1, 

there are now three parameters left to be calculated from two equations. One way to 

solve this simultaneous equation is to treat the ratio of d to I as a constant (Astrom 

& Hagglund, 2006). For instance, set 0.25d I =  .  

At point B: Br = 0.29, B = 46 .  

 

1.036cos sin
0.2022 2

, .
2

(2 ) 1.036 1 cos
2(2 )

u
u

I p

d u

u i

k
k








 



  


  

 
+ 

 = =
   

− +   
   

  

All four parameters can therefore be calculated.  

1.036cos sin
2 2

 
2

(2 ) 1.036

u

I

d

u





 








 
+ 

 =
 

− 
 

       (4.32) 

0.202

1 cos
2(2 )

u
p

u

I

k
k





 

 

=
 

+ 
 

        (4.33) 

The second structure of FOPID controller with fractional order derivative term is of

PID  form. 

4.6.4 The PID  Controller Structure – Derivation of Gains 

The structure of PID controller is given by (4.36): 

( ) ( )I
P d

k
C j k k j

j

 


= + +          (4.34) 
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1

( ) 1 ( )p d

I

C j k j j   
 

 
= − + 

 
             (4.35) 

As described in preceding section, this controller is expected to move the ultimate 

point ( )1 ,0uk  to the new design point B (i.e.
( )Bj

Br e
 +

) implying that required 

conditions stated in (4.10), (4.14) and (4.15) must be met. Applying these equations as 

before and comparing real parts of controller yields: 

 ( )1 cos( / 2) (cos )B
P d B A

A

r
k

r

  + =  −    

( )

cos( )

1 cos( / 2)

B
B A

A

P

d

r

r
k

  

 
 −  

 
=

+
       (4.36) 

( )

( )
cos( )

1 cos( / 2)

B u B A

P

d

r k
k

  

 − 
=

+
        (4.37) 

Considering imaginary part: 

1sin( / 2) sinp d B u B
I

k r k  


 − =  
 

      (4.38) 

( )
( )

sin( / 2) (1/ )
tan

1 cos( / 2)

d I

B

d





   

  

−
 =

+
      (4.39) 

 

( )

tan
2

2 sin( / 2) cos( / 2) tan

u
B

I

d

B
u




 


  



  +  
 

=
  −  
 

   (4.40) 

The ratio of integral time to derivative time is assumed to be constant i.e. 0.25 .D i =  

Equations (4.37) and (4.40) can be used to calculate these two controller gains. 

Fractional order is selected using relative dead time guide as explained in previous 

cases. 
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 At point B: Br = 0.29; B = 46 .  These controller settings can further be summarized 

as (4.41) and (4.42) while integral time is taken as 4 times the value of derivative time. 

 
0.202

 

21 cos( / 2)

u
P

d
u

k
k



  


=
  +   

  

      (4.41) 

 

( )

1.036
2

2 sin( / 2) 1.036cos( / 2)

u

I

d

u




 


  



 +  
 

=
  − 
 

    (4.42) 

4.7 Simulation Example 1 

A simple FOPDT process is used for preliminary tests. The system is given as: 

 

12.8
( )

16.7 1

se
G s

s

−

=
+   

Three controllers C1, C2 and C3 are designed with the following structures: ,PI 
PI D  

and PID controllers respectively. This is done using the sustained oscillation method 

as described in this work. Obtained controllers are given as follows: 

 

1 20.7 0.7

0.7

3

1 0.1
0.04 1 , 0.32 1 0.35 ,

1.12

1
0.218 1 1.08 .

3.6

C C s
s s

C s
s

   
= + = + +   

   

 
= + + 

 

  

Fig. 4.4 - Fig. 4.6 show Nyquist diagram of each of these three control systems. The 

integral term s-0.7 is implemented as s0.3. s-1 using Oustaloup Recursive Approximation 

(ORA) in order to obtain integer order form of the controller with similar frequency 

domain properties. It is observed that the controller moves the design point of the plant 

to a desired (stable) region.  The step response of these controllers is compared in Fig 

4.3. 
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Fig. 4.3 Step response of FOPID controllers 

In all three examples, notice the blue dotted curve crosses the (-1, j0) point showing 

that the process was at the verge of instability without controller. When simulating the 

entire feedback control system with FOPID controller, the green curve moves away 

from the point of instability and good margins of stability are achieved. 

 

Fig. 4.4 Nyquist Diagram of FOPDT Plant with controller C1 
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Fig. 4.5 Nyquist diagram of FOPDT plant with controller C2. 

 

Fig. 4.6 Nyquist diagram of FOPDT plant with controller C3 

Consider an integrating process such as the SOPDT example below:  

0.2
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2
( )

(0.5 1)

se
G s

s s

−

=
+

 

Controllers (C22 and C11) are designed with the following structures: PI D  and 

PID respectively. Results of simulations are shown in Bode diagram of Fig. 4.8, 

sensitivity diagram of Fig. 4.7 and step response diagram of Fig. 4.9. 
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0.444 0.175 0.3 , 0.459 0.28 .C s s C s
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Consider the sensitivity Ms and complementary sensitivity Ts function: 

1
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+
 

( ) ( )
max ,0 .

1 ( ) ( )
s

C jw G jw
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

 
=   

+
 

 

Fig. 4.7 Sensitivity diagram of integrating process with controller C11 

   

Fig. 4.8 Bode diagram of integrating process with controllers 

Over a wide range of frequency, sensitivity and complementary sensitivity are 

illustrated in Fig. 4.7. These SISO based methods yield good response for the models 

10
-2

10
-1

10
0

10
1

10
2

-100

-80

-60

-40

-20

0

20

M
ag

n
it

u
d

e 
(d

B
)

 

 

Frequency  (rad/sec)

Complementary Sensitivity

Sensitivity

-200

-100

0

100

 

 

M
a
g
n
it
u
d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

-1440

-720

0

720

P
h
a
s
e
 (

d
e
g
)

Frequency  (rad/s)

c11

c22

C22 Controller: Gain Margin 17.2 dB

Phase Margin 62.4 deg.

Gain Crossover freq. 7.93 rad/s

Phase Crossover freq. 1 rad/s

C11 Controller: Gain Margin 16.3 dB

Phase Margin 60.9 deg.

Gain Crossover freq. 5.51 rad/s

Phase Crossover freq. 1.05 rad/s



102 

 

considered as reflected in gain margin, phase margin and delay margin for each control 

system.  

 

Fig. 4.9 Step response diagram of integrating process  

Summary of Proposed Algorithm for SISO processes 

▪ Obtain critical frequency point parameters using sustained oscillation or relay 

experiment. 

▪ Record critical gain (ku) and the period of oscillation ( )u . 

▪ For first order processes with delay, select fractional order using Table 4.1. For 

SOPDT models, desired fractional order can be selected to shape the frequency 

curve. 

▪ For FOPI controller, use (4.23) and (4.22) to get I  and Pk respectively. 

▪ For second order processes with delay, if the PIDλ controller structure is 

chosen, derivative gain can be obtained using (4.42). Pk is given by (4.41) and

4I d = . 

▪ For PI D controller, integral gain can be obtained using (4.32) and 0.25 .d I =

Pk is given by (4.33). 
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In addition to good margins of stability, very little computation is required to 

yield desired fractional order controller. Therefore, it is extended to a more 

complicated process like multivariable distillation system. 

4.8 Sequential Loop Closing Technique 

        To extend sustained oscillation method to MIMO plant control, each loop of the 

entire MIMO system should be treated independently using sequential loop closing 

technique. Sequential loop closing method has been used to design conventional PID 

controllers for MIMO system successfully. In conventional PID/MIMO scenario, the 

fastest loop is designed first using sustained oscillation experiment and after 

computing controller gains for the first loop, it is closed before setting up the same 

experiment in the next loop. This principle is extended to tune fractional order PID 

controllers in a multivariable setting. The difference is in the inclusion of a suitable 

fractional order selected for each loop using relative dead time guide or to meet Mr 

condition. One major advantage of this method is that very little computations are 

involved. 

The technique handles interaction effectively if input and output variables are 

effectively paired and the system has limited number of loops. The first step is to 

design the fastest loop of the system independently before closing remaining loops 

sequentially. When designing controllers by sequential loop closing technique in TITO 

systems or systems with three inputs and three outputs, significant iteration may not 

be needed before convergence is reached. Each sub-transfer function of the model is 

also assumed to be open loop stable. Many processes in practice are found to be open 

loop stable (Loh, et al., 1993).  

In terms of overall system stability, if the feedback control of each loop with 

the proportional controller produces a sustained oscillation at every stage of loop 

closing and ultimate point parameters are correctly measured, stability is established. 

The algorithm is very simple and offers very easy to use method of computing FOPID 

controller gains for MIMO systems. However, there could be a challenge of identifying 

the accurate critical frequency point of the plant or the experimentation process may 

take too much time than desired in some applications.  

Consider a three-input three-output process as follows: 
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31 32 33
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G s G s G s
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= =  + 
 

 

where , 1,2,3; Pi j k= = steady state gain;  P = time constant; L=dead-time, 

proposed MIMO FOPI controller for this process is of the form C(s): 

1

2 ,

,

3

( ) 0 0
1

( ) 0 ( ) 0 ;  ( ) 1 ; 1,2,3;  

0 0 ( )

j p j

I j

C s

C s C s C s k j
s

C s


 
  

= = + =  
    

  

where pk =  proportional gain and I =  integral time.  

Summary of proposed tuning procedure of FOPID controllers for MIMO processes 

▪ Consider diagonal transfer function elements only. Choose the fastest diagonal 

element as loop 1. Close the loop with a proportional controller to obtain 

critical frequency point parameters via sustained oscillation experiment. Keep 

the other loops open. Critical frequency point can also be identified by 

connecting a relay using relay feedback method. 

▪ Record critical gain (ku) and the period of oscillation ( u ) of loop 1. 

▪ Tune loop one using the proposed algorithm given in SISO section i.e. for first 

order processes with delay, select fractional order using Table 4.1. For SOPDT 

models, use peak resonant equation to obtain suitable fractional order for 

frequency loop shaping. 

▪ Use (4.23) and (4.22) to get integral time and proportional gain respectively. 

▪ For second order processes with delay, derivative gain can be obtained using 

(4.42). pk  is given by (4.41). 4I d =  and PID controller is realized. 

▪ If PI D controller structure is considered, integral gain can be obtained using 

(4.32) and 0.25d I = . pk is given by (4.33). 

▪ Replace the proportional controller with the tuned fractional controller. Keep 

it closed and chose the next loop for the same sustained oscillation experiment. 
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▪ Tune the selected loop in the same way as loop one and close it by replacing 

the proportional controller with the newly designed fractional controller. 

▪ Proceed in the same manner until all the loops are designed and closed. 

Design of FOPI controller for OR distillation column is now considered as an 

example to demonstrate the procedure. The model is shown below. 
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Each term is as defined previously in (3.12). To design a fractional order PI controller 

for this column, the first loop (fastest loop in the system based on time constant) is 

considered. This contain the last diagonal element which is a second order transfer 

function. That is: 

 3

3

0.87(11.61 1)

(3.89 1)(18.8 1)

sy s e

u s s

−+
=

+ +
  

  A proportional controller is connected and sustained oscillation experiment is 

set up. Loop 1 is closed as given in the algorithm. It should be noted that the SOPDT 

is first approximated to a FOPDT model for comparison purpose only in order to 

determine which loop to tune first. Obtained parameters are: 12.54;  5.u uk = =

Fractional order is selected as 0.9 as described in previous sections. The controller 

gains are calculated using (4.22) and (4.23): pk = 2.2; Ik = 2.4. Thereafter, the 

proportional controller is replaced with the designed FOPI controller in loop 1. The 

other two loops are left open while designing the first loop. 
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Shortly after closing the first loop with the FOPI controller, sustained 

oscillation experiment is set up in loop 2. This is the loop which directly contains the 

second diagonal element.  A proportional controller is directly connected and the value 

is slightly increased from small values until sustained oscillation is observed at the 

process output y2. 

 

3

2

2

2.36

5 1

sy e

u s

−−
=

+
  

Obtained parameters are: uk = -1.241; u = 16. Also, 0.9 is selected as fractional order. 

The third loop is still open but the second loop is tuned to get: pk =  -0.13; Ik =  -0.1. 

Thereafter, a proportional controller is connected and sustained oscillation experiment 

is set up in the third loop. The third loop contains the first diagonal element.  

 
2.6

1

1

0.66

6.7 1

sy e

u s

−

=
+

  

Obtained parameters are: uk = 5.58; u = 19. The same fractional order of 0.9 is selected. 

The other two loops are left closed and loop three is tuned to get: pk = 0.65; Ik = 0.2. 

Table 4.2 shows the proposed controller (FOPI) and the gains of the base line Optimum 

PI controller (OPI). In summary, after designing all three diagonal controllers, a set-

point change (unit step) is introduced in loop 1 with all loops closed.  

 Fig. 4.10 and Fig. 4.11 illustrate responses in all three loops because of a step 

change in r1. The corresponding output y1 rises to one while the controller forces other 

outputs in loops two and three to zero as expected. 
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Fig. 4.10 Step change in r1 - top composition loop (y1) 

 

Fig. 4.11 Interactions due to step change in r1 
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Fig. 4.12 Side-stream loop - y2 response to step change in r2 

 

Fig. 4.13 Bottoms product loop – y3 response to step change in r3 

The next step is to introduce set point change in loop two (r2) while all three 

loops remain closed. Fig. 4.12 shows that corresponding output (y2) rises to the set 

point. The controller forces interaction terms in loops one and three to zero as shown 

in Fig. 4.12. Finally, with all loops closed, set-point change is introduced in loop three 

(r3). The output in loop three due to the set point change is shown in Fig. 4.13. Outputs 

in other loops due to this set point change are also observed to be forced down to zero 

as expected. Each controller has good effect on interactions by reducing it to zero at 

steady state. This demonstrates how the proposed design method handles interaction 

in a multivariable system. 
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Table 4.2   OR Column: OPI and proposed FOPI controller Settings 

Parameters FOPI Optimum PI (OPI) 

kp 0.65 0 0

0 0.13 0

0 0 2.2

 
 

−
 
  

  
1.2 0 0

0 0.15 0

0 0 0.6

 
 

−
 
  

 

kI 0.2 0 0

0 0.1 0

0 0 2.4

 
 

−
 
  

 
0.24 0 0

0 0.015 0

0 0 0.15

 
 

−
 
  

 

Order   0.9 1 

 

These algorithms yield control actions with a good compromise between robustness 

and performance. In this example, simulation has been carried out without any 

disturbance input. Disturbance rejection effect of the FOPID controller is studied in 

the next simulation example. 

Considering the same OR distillation system, the proposed controller is 

simulated with significant disturbance signals introduced. A 20% step disturbance 

signal (d1) is introduced at time t = 500min (feed flow changes) while a 30% step 

disturbance signal is simultaneously introduced at t=600min as changes in feed 

temperature (d2). The column is simulated for 1,000 minutes and results are shown in 

Fig. 4.14- Fig. 4.20. Output responses are compared on Fig. 4.14, Fig. 4.16, Fig. 4.18 

while control signals are compared on Fig. 4.15, Fig. 4.17 and Fig. 4.19. 

It is desirable to establish how this controller compares with other well-known 

conventional PID control schemes. Therefore, the proposed controller (FOPI) is 

compared with an optimum PI controller proposed by Ogunnaike and Ray (Ogunnaike 

& Ray, 1983) under exact conditions. The optimum PI gains was obtained by 

optimisation via extended simulations as published by Ogunnaike and Ray (Ogunnaike 

& Ray, 1983). It is used as a baseline since it was proven to yield optimal controller 

settings for the distillation column. Comparison is based on recovery time from 

perturbation (settling time) as well as set-point tracking using integral absolute error. 

This is tabulated in Table 4.3 
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Fig. 4.14 Disturbance rejection – y1 loop 

 

Fig. 4.15 Comparison of control effort in loop 1 – u1 
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Fig. 4.16 Disturbance rejection – y2 loop 

 

 

Fig. 4.17 Comparison of control effort in loop 2 – u2 
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Fig. 4.18 Disturbance rejection – y3 loop 

 

Fig. 4.19 Comparison of control effort in loop 3 – u3 
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Fig. 4.20 Comparison of robust stability of the two controllers 

 

Table 4.3  OR Column: Performance of OPI and FOPI controllers 

Step Change  y1  y2 y3 

FOPI - IAE 28.86 16.25 5.81 

OPI  - IAE 12.46 53.45 12.05 

FOPI - Recovery Time (mins)  10 20 125 

OPI – Recovery Time (mins)  10 80 130 

 

It can be observed that the proposed FOPI controller compares favorably with 

ORA’s optimum PI controller in terms of disturbance rejection and set-point tracking. 

Considering loops one and two (distillate and side stream product), FOPI controller 

reject both disturbances in a very short time (within 10 to 20 minutes). There is 

deterioration in the third loop due to simultaneous effects of these two disturbances in 

all three loops but FOPI still outperforms OPI controller in rejecting these input 

disturbances. Similarly, control signals of these two controllers are compared on Fig. 

4.15, Fig. 4.17 and Fig. 4.19. These control efforts are found to be almost equal. Robust 

stability of both FOPI controller (blue line) and conventional but optimal (OPI) 

controller (red line) are shown simultaneously in Fig. 4.20. The constant gap between 

the two lines in both multiplicative-input and output sections show that they offer 
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different levels of robust stability. The region below each line shows enclosed region 

of stability. For instance, considering input multiplicative uncertainty, FOPI controller 

has higher region or level of robust stability (the blue line is higher than the red line 

for all frequency range of interest 0.01rad/s - 100 rad/s) 

4.9 Conclusions 

A new FOPI controller design scheme is derived analytically using critical-

frequency-point parameters. Most algorithms for tuning FOPID controllers rely on 

optimisation routines which increases computational cost. However, this design 

scheme presents new and simple formulae for obtaining proportional and integral gains 

when using FOPI controller without using any optimisation routine. There are well 

established algorithms for tuning conventional PID controllers based on critical point 

information but very little is being published about tuning FOPID controllers using 

ultimate point parameters. Therefore, ultimate point parameters are used in this new 

algorithm for designing FOPID controllers. It is suitable for both SISO process control 

and MIMO applications. In MIMO case, a decentralised or multi-loop configuration is 

recommended using sequential loop closing technique. The procedure gives one a 

quick option of obtaining robust values for FOPID controller gains. However, 

computational cost is highly reduced as no optimisation routine is required unlike 

optimal PI controllers.  

For instance, simulation studies carried out on the three-by-three ORA column 

shows that the proposed FOPI controller compares favourably with OPI controller but 

with settling time reduced by 70% i.e. from 90 minutes (OPI controller) to 20 minutes 

for output y2 by the proposed FOPI controller. It gives similar responses in both y1 

and y3 loops in terms of settling time but with integral absolute error reduced by 69.6% 

(from 53.45 to 16.25 for y2) and reduced by 51.8% (from 12.05 to 5.81 for y3) with 

step change in respective inputs r2 and r3. OPI gives a smaller IAE in y1 with step 

change in input r1 as tabulated in Table 4.3. 

Also, the proposed FOPI controller yields control actions with good 

compromise between robustness and performance. A method of judging robustness 

based on inclusion of input and output multiplicative uncertainty models have been 

presented. A closer look at Fig 4.20 shows that the proposed FOPI gives a more robust 
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control action if considering multiplicative input uncertainty because the blue line 

(FOPI controller) is higher than the red line (OPI controller) and that shows it has a 

larger robust stability region. With multiplicative output uncertainty model, optimum 

PI produces a slightly larger area of robust stability. However, one undesirable feature 

of this proposed scheme is the need for frequency response experiment for 

determination of critical frequency point. To overcome this limitation, another method 

of designing FOPID controller, without frequency response experiment, is presented 

in the next chapter. 
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Chapter 5 

Design of FOPID Controllers by IMC Approach  

 In chapter 4, there was need for critical frequency point experiment before 

FOPID controllers can be synthesised. This can pose a practical limitation for certain 

real-time process control systems. Consequently, a new method of designing FOPID 

controller for multivariable process control is presented in this chapter without any 

need for critical frequency point experiment. The proposed algorithm is based on an 

established controller design method known as Internal Model Control (IMC) scheme. 

Results are compared with Ogunnaike’s optimal PI (OPI) controller. The proposed 

controller shows greater robustness compared to OPI and results have been published 

(Edet & Katebi, 2018). 

5.1 Derivation of FOPI controller Gains by IMC 

A decentralised FOPID controller design method is developed based on 

modified internal model control approach. Final fine tuning of settings is carried out 

using biggest log-magnitude tuning technique. There are well-established internal 

model control design schemes for designing conventional PID controllers for both 

SISO and multivariable applications. One of such successful design methodology is 

the Smith’s predictor proposed decades ago mainly for scalar process control 

application. It has been modified over the years for multivariable systems control. 

Other PID controller methods that use IMC technique are Tanttu and Lieslehto 

multivariable PI controller design method as well as power series method. These 

methods are limited to conventional PID controllers with integer orders and does not 

address FOPID controller design problem. To extend this fundamental idea of internal 

model to controllers with fractional orders, a new fractional order PID design method 

is derived. The proposed control design scheme is developed with set-point tracking 

as a primary design objective just like Skogestad’s IMC rule for conventional SISO 

PID controllers.  

Consider a SISO transfer function G(s) with FOPDT dynamic characteristic: 

 1

1

( ) ,
1

Lsk e
G s

s

−

=
+

        (5.1) 
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where k1 is the steady state open loop gain and 1  is the time constant for the same 

system; L is the process’s dead time; if desired trajectory is represented by D, the 

trajectory equation is given as follows (5.2) to achieve set-point tracking: 

 ,
1

Ls

f

e
D

s

−

=
+

         (5.2) 

where f  is the desired time constant of the system. In conventional IMC PID control 

system, this desired time constant provides a means of tuning the IMC PID controller. 

However, in the fractional-order PID controller case, using this single tuning 

parameter ( )f is insufficient. Consequently, a suitable design and tuning algorithm is 

developed for FOPI controllers and it takes the fractional-order dynamics of the 

controller into consideration. Since the desired set-point objective is specified for the 

entire closed-loop control system, it implies that D can also be expressed as follows: 

 ( ) ( )
.

1 ( ) ( )

C s G s
D

C s G s
=

+
        (5.3) 

The controller C(s) is of the FOPI form given in (5.4) with same parameters as already 

defined in (2.2): 

  
1

( ) .I I
p p

I

k s
C s k k

s s



 





 +
= + =  

 
     (5.4) 

From (5.3), we can solve for C(s): ( )
( ) ( )

D
C s

G s DG s
=

−
  

 1 1

1 1

( )
1 1 1 1

Ls LsLs Ls

f f

k e k ee e
C s

s s s s   

− −− −   
=  −     + + + +   

  

Substituting controller equation as given in (5.4) yields: 

 1 1

1 1

1

1 1 1 1

Ls LsLs Ls

I
p

I f f

s k e k ee e
k

s s s s s







    

− −− −     +
  −       + + + +     
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To simplify (5.5), we work in complex frequency domain as .s j=   

The term:  

 cos sin
2 2

j j  −  
= − 

 
  

 1

1

111 cos sin .
2 2 ( )

p
I f

j
k j

j k L


 

   

+  
 + −   

+  
   (5.6) 

Considering RHS of (5.6) and rationalising it to remove complex operator from 

denominator, it is further simplified as follows: 

 11 cos sin ,
2 2

p
I

k j A jB

 

 

  
+ − = −  

  
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( )
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2 2 2 2 2 2
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Comparing real part yields: 
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21p

I

k A




 

 
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Integral gain (and by extension integral time) can be obtained by comparing imaginary 

part: 

 
sin

2
Ik

B





−  −   

 

sin
2

i

B
k




=          (5.9) 

Integral gain is computed first before combining (5.8) and (5.9) to get proportional 

gain. Integral time can be obtained as: 

 
cos

2
I

I

A
abs

k 






 
 

= − 
 
 

  

These new set of formulae (5.8 and 5.9) define proportional and integral gains 

for the IMC-FOPI control scheme. Initial settings of controller parameters are obtained 

for each loop before final fine tuning. Since FOPID controller has been tested 

extensively for time delayed processes, a guide to selection of fractional order based 

on delay factor is available. Table 4.1 used in previous cases is also relevant for 

selection of fractional-order for the integral component of the IMC-FOPI controller. 

Fractional order is pre-selected before calculating other controller parameters. 

These IMC gains can be extended to multivariable process control using a 

multi-loop configuration. A generalized multi-input multi-output system G(s) is 

considered with two or three individual loops. For a TITO system, the MIMO 

controller will be of the form given in (2.2) with parameters as already defined in (2.2): 

 
,1

,

2

( ) 0
( ) ;  ( ) , 1,2.

0 ( )

I j

j p j

kC s
C s C s k j

C s s

 
= = + = 

 
     (5.10) 

If the system is a three-by-three system, the MIMO controller will be of the form C(s) 

as already defined in chapter two where: 



120 

 

 
1

,

2 ,

3

( ) 0 0

( ) 0 ( ) 0 , ( ) , 1,2,3.

0 0 ( )

I j

j p j

C s
k

C s C s C s k j
s

C s



 
 

= = + = 
 
 

  (5.11) 

Finally, FOPI controller settings are determined individually for each jth-diagonal 

transfer function using (5.12), (5.13) and (5.14). 
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where: ,p j imck −  is the proportional gain for FOPI controller in jth loop. 

,I j imck −  is the integral gain for FOPI controller in jth loop. 

,I j imc −  is the integral time for jth loop’s FOPI controller. 

5.2 Proposed Multivariable Tuning Method (BLT- IMC)  

Although the proposed IMC settings in (5.13) and (5.14) achieves good set-

point tracking, further fine tuning of these settings is recommended for effective 

disturbance rejection. To strike that balance between performance and robustness, 

biggest log-magnitude tuning method is utilised to fine tune IMC-FOPI controller 

gains. This means that FOPI controller gains given above in (5.12) and (5.14) provide 

initial (starting) point for the BLT tuning process. This Proposed multivariable FOPI 

controller tuning method is similar to the conventional PID control design algorithm 

proposed by Besta and Chidambaram (Besta & Chidambaram, 2015). However, 

derived expressions are different in the present scheme because fractional dynamics 

are fully accounted for during control law formulation.  
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To use this FOPI controller design method, consider only diagonal process 

elements. Determine the IMC gains for each diagonal loop using (5.12) and (5.14). 

Here, the IMC tuning parameter is unused as it is set to one. The BLT detuning factor 

F is initially chosen as 0.7 if relative gain array of the system
ij < 1. If the relative 

gain array is greater than one, F is initially assumed to be 1.5. These values are found 

to be good starting point to deal adequately with interaction in each system. For 

processes with relative gain array greater than one, detuning involves decreasing 

control gains and increasing integral times. If derivative component is used, derivative 

time is decreased during the detuning process too. The procedure is briefly summarised 

here. 

▪ Preliminary gains of the controller are calculated as follows: 

 
,

,

p j IMC

p j

k
k

F

−
=          (5.15) 

 
, ,FI j I j IMC =  −

        (5.16) 

▪ The diagonal controller matrix is calculated as C(s) given in (5.11). 

▪ Determine the corresponding multivariable Nyquist diagram of the 

characteristic (scalar) function W: 

 ( ) 1 ( ) ( )W j I C j G j  =− + +      (5.17) 

where I represents identity matrix of corresponding size. 

▪ Determine the multivariable closed- loop log modulus L as shown below in 

(5.18). 

 10

( )
( ) 20

1 ( )

W j
L j Log

W j





= 

+
      (5.18) 

▪ The peak of L over the entire frequency range is the biggest log modulus termed

max .L    
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▪ Finally, the factor F is varied (with 0.01 incrementally) until maxL is equal to 2n 

(4 dB for two-input two-output system and 6 dB for three-input three-output 

system). Here, n is the number of independent loops in the system. 

▪ Final gains are obtained using F equal to 2n. FOPI controller is realised using 

(5.15) and (5.16) with the new value of tuning factor F. 

5.2.1. Example 1- Composition control of a TITO distillation system  

The diagonal transfer functions are: 

3

1 2

12.8 19.4
( ) ; ( ) .

16.7 1 14.4 1

s se e
G s G s

s s

− −−
= =

+ +  

IMC gains are calculated as explained in the algorithm and tuned accordingly as 

F is varied until maxL equals 4dB. Resultant parameter gains are tabulated in Table 5.1. 

The transient response for both top composition loop and bottoms composition loop 

are shown in Fig. 5.5 and Fig. 5.6 respectively. In Fig. 5.5, a unit step response of the 

system is simulated due to a step change in reference input (r1) while keeping r2 at 

zero. It can be observed that y1 rises to follow the set-point while reducing interaction 

in other loops to zero (y2 = 0). In Fig. 5.6, second input r2 is set to 1 (unit step) while 

keeping r1 at zero.  The controller ensures set-point tracking as y2=1 while y1 is 

simultaneously brought down to zero. In the next section, a more challenging system 

(ORA column) is considered. The relative gain array is greater in ORA column and 

that shows the greater level of interaction and difficulty of control. 

5.2.2  Example 2 - Composition control of OR Distillation Column  

The three diagonal transfer functions are considered independently. That is: 

 
2.6 3

31 2

1 2 3

0.66 2.36 0.87(11.61 1)
, , .

6.7 1 5 1 (3.89 1)(18.8 1)

s s syy ye e s e

u s u s u s s

− − −− +
= = =

+ + + +
  

Initial IMC settings are calculated as explained in the algorithm. The transfer function 

of the third loop is first approximated as a FOPDT model using Taylor series before 

calculating initial IMC settings. If the second order transfer function is used directly, 

a derivative component will be required. In this work, only proportional and integral 

gains are required using the FOPI controller structure. These gains are tuned 
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accordingly as F is varied until maxL equals 6dB. Resultant parameter gains are 

tabulated in Table 5.2.  In addition, integral absolute error (IAE) index is used to judge 

performance in terms of set-point tracking and it is tabulated in Table 5.3. 

 Simulated results demonstrate that the proposed IMC-FOPI controller 

compares favourably with an optimal PI controller in terms of set-point tracking and 

counteracting multivariable interaction. However, computational cost is significantly 

reduced when using IMC-FOPI controller. Fig. 5.1 and Fig. 5.2 illustrate responses in 

all three loops of the column because of a step change in r1. The corresponding output 

y1 rises to one while the proposed controller forces other outputs in loops two and 

three to zero after 80 minutes. This is better than the settling time provided by the 

conventional Optimal PI (OPI) controller. OPI controller brings down interaction in 

loop two to zero after 175 minutes.  

The next step is to introduce set-point change in loop two (r2) while all three 

loops remain closed. Fig. 5.3 shows that the corresponding output (y2) tracks the set-

point too. The controller forces interaction terms in loops one and three to zero as 

shown in the same diagram. Finally, with all loops closed, set-point change is 

introduced in loop three (r3). The output in loop three due to the set point change is 

shown in Fig. 5.4. Outputs in the other two loops due to this set point change are also 

observed to be forced down to zero as expected. Each controller has good effect on 

interactions by reducing it to zero at steady state. This demonstrates how the proposed 

design method handles interaction in a multivariable system and how it compares with 

optimal PI controller. 
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Fig. 5.1 Output - top composition set-point tracking comparison. 

 

Fig. 5.2 Side-stream composition (y2) output due to input r1 set to 1. 
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Fig. 5.3 Side-stream composition loop: Set-point tracking comparison 

 

Fig. 5.4 Output: Bottoms composition set-point tracking comparison  
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Table 5.1   WOBE Column:  Controller Parameters (F=0.57, L=4dB) 

Parameters IMC BLT-IMC 

kp 0.0924 0

0 0.0152

 
 

−    

0.1621 0

0 0.0267

 
 

−   

kI 0.0196 0

0 0.0100

 
 

−   

0.0603 0

0 0.0310

 
 

−   

order 0.7  0.7 

 

Fig. 5.5 Top composition response – input r1 is set to one.  

 

Fig. 5.6 Bottoms composition loop- input r2 is set to one. r1 is not excited 
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Table 5.2   OR Column:  Obtained PI Controller (F=0.46, L=6dB) 

 Settings IMC BLT-IMC Optimum PI (OPI) 

 Kp 0.4256 0 0

0 0.1075 0

0 0 0.1245

 
 

−
 
     

0.7881 0 0

0 0.1991 0

0 0 0.2306

 
 

−
 
    

1.2 0 0

0 0.15 0

0 0 0.6

 
 

−
 
    

 Ki 0.0423 0 0

0 0.0143 0

0 0 0.0044

 
 

−
 
    

0.1452 0 0

0 0.0491 0

0 0 0.0151

 
 

−
 
    

0.24 0 0

0 0.015 0

0 0 0.15

 
 

−
 
    

Order    0.9 0.9 1 

 

Table 5.3   Controller Performance Comparisons - OR 

Step Change  y1  y2 y3 

FOPI - IAE 38.4 31.0 33.9 

OPI  - IAE 12.42 53.48 12.06 

FOPI - Recovery Time 10m 15m 90m 

OPI-Recovery Time (m) 10 80 130 

 

 

Fig. 5.7 Top composition response – input r1 is set to one  
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Fig. 5.8 Comparison of IMC-FOPI control effort in loop 1 – u1 

 

 

Fig. 5.9 Side-stream composition loop – input r2 is set to one 
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Fig. 5.10 Comparison of IMC-FOPI control effort in loop 2 – u2 

 

 

Fig. 5.11 Output bottoms composition loop – input r3 is set to one 
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Fig. 5.12 Comparison of IMC-FOPI control effort in loop 3 – u3 

5.3 Control Performance and Disturbance Rejection 

Considering OR distillation column, the proposed controller is simulated under 

drastic perturbations. A 20% step disturbance signal (d1) is introduced at t= 500 

minutes (feed flow changes) while a 30% step disturbance signal is simultaneously 

introduced at t=600 minutes as changes in feed temperature (d2). The simulation is 

carried out for 1000 minutes and results are shown in Fig. 5.7 - Fig. 5.12. These 

diagrams (Fig. 5.7, Fig. 5.9 and Fig. 5.11) indicate how the disturbance rejection of 

both controllers compare in terms of output regulation. The top distillate and side-

stream composition loops almost have a smooth response despite significant amount 

of disturbance in both feed flow rate and feed temperature (20% change in d1 and 30% 

change in d2). The bottoms composition loop is more sensitive to disturbance, but 

these controllers still attenuate their effects within 80 minutes. Fig. 5.8, Fig. 5.10 and 

Fig. 5.12 compares the control effort of these controllers. FOPI controller is found to 

use smaller control effort to achieve specified output regulation targets compared to 

the OPI controller. 

In terms of robustness, the proposed BLT-IMC FOPI controller is compared 

with an optimum PI controller under exact conditions and disturbances. Inverse 

maximum singular value analysis of sensitivity is used to quantify robustness of the 

FOPI control system and results are plotted in Fig. 5.13 (blue line). The same 

procedure is repeated using ORA optimum PI control system within the same 
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frequency range (red line). The area below each curve represents stability region as 

each line depicts stability bounds. It can be observed that the blue line covers a greater 

area and that shows a greater stability region provided by the proposed FOPI controller 

within the frequency range of interest. Performance comparison based on recovery 

time from perturbation (settling time) as well as set-point tracking using integral 

absolute error. This is also tabulated in Table 5.4. The proposed method compares 

favourably with the optimum PI method as reflected in the tabulated IAE index. 

However, IMC is based on simple time domain and frequency response calculations 

and does not require any extensive optimisation routine. This reduces computational 

burden when compared with optimal methods like Optimum PI (OPI). In addition, it 

yields a more robust control system as shown by the ISV analysis in Fig. 5.13. 

 

Fig. 5.13 Robust stability comparison with input and output uncertainties 

5.4 Conclusions 

A new multivariable control design scheme is proposed for open loop stable 

multivariable system in this chapter and details are summarised in a flow chart diagram 

of Fig. 5.14. This combines both internal model control strategy and BLT method for 

tuning fractional order PI controllers. The proposed control system does not depend 

on critical frequency point experiment. This algorithm presents new and simple 

formulae for proportional and integral gains when using FOPI control system. 

However, obtained IMC settings are further fine-tuned using biggest log-magnitude 

technique. Although, implementation of this IMC-FOPI controller can be done using 
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a fully cross-coupled or centralised controller configuration, decentralised 

configuration is presented because target systems of interest are expected to have many 

loops (more than two or three inputs and outputs). The proposed algorithm produces 

more robust control actions compared to conventional OPI controller with input and 

output multiplicative uncertainty models considered (see Fig. 5.13). Simulation studies 

have been carried out using the highly interactive OR distillation model (with two 

disturbance inputs of 20% and 30% variations introduced as d1 and d2). Step responses 

in all three loops show good set-point tracking, zero overshoot and good disturbance 

rejection. This compares favourably with Ogunnaike’s optimum PI controller because 

recovery time in top composition’s loop has been reduced by 50% (from 10 minutes 

to 5 minutes for y1) and reduced by 87.5% (from 80 minutes to 10 minutes for y2) with 

step change in respective inputs r1 and r2 while y3 does not show any comparative 

improvement. 

In conclusion, the proposed IMC-BLT FOPI controller gives design engineer 

an easier method of estimating the gains of FOPI controller for process control.  Since 

it yields better stability bounds with respect to both input and output multiplicative 

uncertainty models, it is more suitable for many process control applications. All these 

design methods treat the controller synthesis in continuous time. In certain stringent 

applications where optimal control performance may be required, robust benefits of 

FOPI controller can be combined with predictive features of discrete model-based 

predictive control scheme to formulate a new Fractional Order Predictive PI (FOPPI) 

controller with improved set-point tracking. This predictive approach is discussed in 

discrete time domain. It is well-known that incorporation of set-point information in 

formulation of control law improves control actions especially, set-point tracking. This 

hybrid benefit is exploited in a new FOPPI control scheme. 
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Fig. 5.14 Summary of chapter five in a flow chart 
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Chapter 6 

Fractional-order Predictive PID Controller 

In previous chapters, FOPID controllers have been designed in continuous time 

domain. These continuous time FOPID controllers are particularly beneficial for 

process control systems where parametric system models are available in continuous 

form e.g. Laplace Transfer function model. However, many process control 

applications exist where controllers are implemented in digital form. Examples include 

programmable logic controllers and direct use of computers in general. In such 

instances, continuous time signals have to be discretized and converted to digital form 

before control synthesis using the computer. Thereafter, discrete control signal output 

may be converted back to continuous time signal before application to a real time plant 

which works daily in continuous time. In this chapter, a new Fractional Order 

Predictive Proportional-Integral (FOPPI) controller is designed in discrete time 

domain. 

This FOPPI controller shares similar features with Model-based Predictive 

Controller (MPC), especially, Dynamic Matric Control (DMC) algorithm. A general 

state space model of plant is assumed to be available and the model is used for 

prediction of future outputs just as it is done when using Dynamic Matrix Control 

(DMC) algorithm. A basic block diagram illustrating MPC algorithm is shown in Fig. 

6.1 while the MPC process is illustrated in Fig.6.2. On the contrary, this novel 

Fractional Order Predictive Proportional-Integral (FOPPI) controller retains combined 

benefits of conventional predictive control algorithm and robust features of fractional-

order PID controller. Results have been published (Edet & Katebi, 2017). The novelty 

is in the robust control action of the FOPPI control scheme. A single control narrative 

(FOPPI) combines predictive feature and robust stability such that anticipatory control 

action is ensured without compromising the robustness of a classical PID controller. 

Firstly, discrete MPC control technique is reviewed without any fractional dynamics. 

Thereafter, FOPPI controller design scheme is derived for multivariable process 

control systems. 

 



135 

 

 

 

Fig. 6.1 Basic Block diagram of MPC structure  

 

 

Fig. 6.2 Basic principle of MPC implementation (Esko, 2018) 

6.1 Review of DMPC 

Model-based Predictive Control (MPC) narrative is an inherent multivariable 

control design scheme that yields optimal or sub-optimal controller gains. It is 

implemented in a centralised control configuration. Several variants of MPC schemes 

have been developed and applied to systems with optimal results (Katebi & Moradi, 

2001; Naeem, et al., 2005; Naeem, et al., 2004). Some of these DMPC algorithms have 

been modified to optimally tune conventional PID controllers with reasonable level of 

success (Katebi & Moradi, 2001). These DMPC algorithms include: Generalised 

Predictive Control (GPC), Dynamic Matrix Control (DMC), Model Algorithmic 

Control (MAC) and Finite Spectrum Assignment (FSA) etc. The central feature is 
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retained which is incorporation of future set-point information in control law 

formulation. However, each algorithm differs slightly in the structure of objective 

function being optimised and in the type of model used for prediction of future set-

point (Camacho & Bordons, 1999). 

This motivates the idea of using discrete MPC algorithm to design fractional 

order PID controller for open loop stable MIMO systems. In this section, a brief review 

of discrete model predictive control procedure is given. Design of MPC based 

controllers for scalar process control application is considered in the first section (as 

illustrated in Fig. 6.2) before extending it to MIMO applications.  

Consider a SISO system described by the state space equation below: 

( 1) ( ) ( )

( ) ( ) ( ),

p p

p p p

x k A x k B u k

y k C x k D u k

+ =  + 

=  + 
       (6.1) 

where u is the control input; py is the output; x is the state variable vector and matrices 

Ap, Bp, Cp, and Dp are system matrix, input control matrix, output matrix and 

feedthrough matrix. In receding horizon control, current information of the plant is 

required for prediction and control implying that the input u(k) cannot directly affect 

the output py (k) at the same time. Therefore, Dp = 0 in the plant model. The state space 

model for a SISO process is re-written: 

( 1) ( ) ( )

( ) ( ),

p p

p p

x k A x k B u k

y k C x k

+ =  + 

= 
        (6.2) 

where 1 1n xn

pA   is n1 x n1 system matrix, 1 1n x

pB   is n1 x 1 input matrix, 11xn

pC   

is 1 x n1 output matrix. The vector   1

1 2 3 1( ) ( ), ( ), ( ),..., ( )
T n

nx k x k x k x k x k=   is state 

column vector while u(k) and ( )py k are single input and output respectively. 

In order to formulate suitable model for control derivation with integral action, the 

standard state space model in (6.2) is augmented as follows: 

( 1) ( 1) ( ),u k u k u k + = + −   
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( 1) ( 1) ( ) ( ) ( ).p px k x k x k A x k B u k + = + − =  +    

It can easily be observed that ( )u k  is an input signal into the system and not u(k). 

Therefore, a new state variable vector is defined as follows: 

( ) ( ) ( ) .
T

Tx k x k y k =       

Considering output equation: 

( 1) ( 1) ( ) ( 1) ( )

( 1) ( ) ( )

( 1) ( 1).

p p p p p

p p p p p

p p

y k y k y k C x k C x k

y k C A x k C B u k

y k C x k

 + = + − = + −

 + =  + 

 + =  +

    

Therefore: 

11

2

0 ( )
( )

( )

T
pp n

p pp p

BAx x k
u k

C BC A Ix y k

       
= +       

       

     (6.3) 

 
1

( )
( ) [0   1]

( )p n

p

x k
y k

y k

 
=  

 

  

where  1 2( 1);  ( 1).px x k x y k=  + =  +   

In summary, if 
1

1

0
, , [0   1],

T
pp n

n

p pp p

BA
A B C

C BC A I

   
= = =   

    
 augmented state space 

model can therefore be stated as follows: 

( 1) ( ) ( )

( ) ( ),  p

x k Ax k B u k

y k Cx k

+ = + 

=
  

where: ( ) ( ) ( ) .
T

Tx k x k y k =    

This augmented state space model [A, B, C] is used for prediction of future states.  

Let the prediction horizon be represented as ‘P’ and control horizon be ‘N’. 

Given that 𝑃 ≥ 𝑁, future states can be predicted as follows: 

ˆ( 1) ( ) ( )x k Ax k B u k+ = +   
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2ˆ( 2) ( ) ( ) ( 1)x k A x k AB u k B u k + = +  +  +   

This implies that the generic term: 

    1ˆ( ) ( ) ( ) ... ( 1).P P P Nx k P A x k A B u k A B u k N− −+ = +  + +  + −    (6.4) 

Similarly, the future output variables can be predicted using: 

 ˆ ( 1) ( ) ( )py k CAx k CB u k+ = +     

 
2ˆ ( 2) ( ) ( ) ( 1)py k CA x k CAB u k CB u k + = +  +  +    

 
1ˆ ( ) ( ) ( ) ... ( 1).P P P N

py k P CA x k CA B u k CA B u k N− − + = +  + +  + −   (6.5) 

The prediction equation can therefore be summarised as given in (6.6): 

 ˆ ˆ
p pY F X G U= +              (6.6) 

where: 
2

1

p

P

xP

CA

CA
F

CA

 
 
 =
 
 
 

; 1ˆ ˆ ˆ ˆ( 1), ( 2),..., ( )
T

P

p p p pY y k y k y k P   = + + +    

 1 ( ), ( 1), ( 2),..., ( 1)
TNU u k u k u k u k N  =   +  +  + −   

 
2

1 2 3

0 0 0

0 0

0

...

P N

P P P P N

PxN

CB

CAB CB

G CA B CAB CB

CA B CA B CA B CA B



− − − −

 
 
 
  =
 
 
  

 

The cost function to be minimised is given by J:  

1 12 2

ˆ
P N

s p

i j

J R Y Q U R
= =

= − +                     (6.7) 

where: 

1[111...1] ( )T

s NR r k=   
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r(k) = desired reference signal 

ˆ
pY =  Predicted or estimated output 

R = weighting vector for the control effort 

Q = state weighting matrix and I = identity matrix 

 ( ) ( ),..., ( 1)
T

U k u k u k N =   + −   is the incremental control vector. 

A standard solution exists for this optimisation problem assuming no input constraint 

and taking derivative of J. Therefore, the optimal control signal is given by: 

( )( ) ( )mpc mpc mpc sU K e k K R Fx k = = −        (6.8) 

where: e(k) represents error at sampling instant ‘k’. Rs is the set-point data vector while 

Kmpc is the first column of the matrix 
1

;   T TG G I G 
−

 + =  tuning weight.  

This is the standard MPC control technique. Receding horizon method of 

implementation is usually followed to obtain feedback control. In this section, the cost 

function given in (6.7) is modified to obtain a new fractional order predictive controller 

design method. Integral error correction component (with fractional order) is included 

in the cost function and this improves robustness or disturbance rejection property of 

the proposed control scheme compared to conventional MPC controller. However, 

implementation is done by receding horizon control technique by applying only the 

first column of control input and re-calculating each prediction matrix coefficient at 

every sampling instant. This ensures feedback control.   

6.2 Review of Predictive PID Controller Based on GPC 

The first attempt to build some form of integral and derivative structure into 

model based predictive controllers was successful as it led to design of predictive PID 

controllers. Today, this idea has been well accepted industrially as predictive PID 

controllers are now commercially available e.g. Honeywell’s range of predictive PID 

controllers. These set of PID controllers generally retain the design objective of 

conventional PID controllers but with future set-point information incorporated in the 
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design process (Katebi & Moradi, 2001). It also retains constraint handling capability 

of MPC control paradigm as well as inherent MIMO capability of MPC. 

Incremental model can be used to derive a predictive PID control law for a 

system without restriction to model order. Discrete form of integer order PID 

controller is presented as: 

( )
0 1

( ) ( ) ( ) ( ) ( 1)
P k

p i d

i n

u k i K e k i K e n i K e k i e k i
= =

 
+ = + + + + + − + − 

 
         

 where: P is the prediction horizon. In their proposed design scheme, the predictive 

PID controllers consist of P parallel PID controllers where the number of PID 

controllers (P) equals the number of sampling instances within the prediction horizon 

(Katebi & Moradi, 2001). Therefore, at P > 0, the predictive PID control system 

produces similar predictive capability like MPC controllers. Control signal matching 

method is used to select optimal PID gains and value of P that yields best 

approximation to MPC control signal solution. At P = 1, conventional discrete PID 

controller is obtained. 

Also: ( )
1

1

( 1) ( 1) ( ) ( 1) ( 2) .
k

p i d

n

u k K e k i K e n i K e k i e k i
−

=

− = + − + + + + − − + −   

 Therefore, incremental model of the control signal is given as: 

 

( )
( )

( ) ( ) ( 1) ( ) .
2 ( 1) ( 2)

pid p i d

e k i
u k i K e k i e k i K e k i K

e k i e k i

+ 
 + = + − + − + + +  

− + − + + − 
  

This can be represented in matrix form as: 

  ( ) ( ) ( )pid pidU k i K r k i y k i + = + − +    

where: 

 

0 1 1

0 0 1

1 2 1

pid p i dK k k k

− 
  =    
 −    

 Reference signal is assumed to be zero: ( ) 0r k i+ =    

  ( ) ( )pid pidu k i K Y k i + = − +   

where future output   3 1( ) ( 2) ( 1) ( ) .
T

Y k i y k i y k i y k i + = + − + − +   
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The authors recommend generalised predictive control (GPC) algorithm for tuning the 

controller based on controlled autoregressive and integrated moving average 

(CARIMA) model of the plant i.e.
1 1( ) ( ) ( ) ( 1)A z y k B z u k− −=  −  where y(k) and ( )u k  

are the output and incremental control input sequence of the plant. 

Coefficients A and B are polynomials in the backward shift operator 1.z−  These 

polynomials are usually defined in the form given below: 

 

1 1 2 3

1 2 3

1 1 2 3

0 1 2 3

( ) 1 ...

( ) ...

Na

Na

Nb

Nb

A z a z a z a z a z

B z b b z b z b z b z

− − − − −

− − − − −

= + + + + +

= + + + + +
  

For future set-point prediction: 

0 0
ˆ( ) ( ) ( ) ( )i i iY k i G u k F y k G u k+ =  + +       (6.9) 

   

where ,i iG F and
iG are prediction matrices obtained from plant’s CARIMA model 

coefficients i.e. 

( ) ( ) ( )( )

( ) ( ) ( )( )

( )

2 1 2 2 2 13 0

2 3 0 1 1 1 2 1 1

1 2 3 0
1 2 1

... 0 0

0 ;  

i i i Nai

i i i i i i i Na

i i i
i i i Na

f f fg g

G g g g F f f f

g g g g f f f

− − − +−

− − − − − +

− − −
+

 
 

 
 

= =  
 

 
     

  

 

( ) ( ) ( )

( ) ( ) ( )

2 1 2 2 2

1 1 1 2 1

1 2

i i i Nb

i i i i Nb

i i iNb

g g g

G g g g

g g g

− − −

− − −

   
 

   =  
 

   

  

Equation 6.9 is used to derive the kth control increment as follows: 

 
0

( ) ( )
p

pid

i

U k K Y k i
=

 = − +   

  0
ˆ( ) ( ) ( ) ( )pid t t t oU k K u k F y k G u k = −  + +    

where:
0 0 0

 ;  ;  
p p p

t i t i t i

i i i

G F F G G
= = =

= = =       

⇒  1

0 0( ) (1 ) ( ) ( )pid t t tU k K K F y k G u k − = − + +       (6.10) 

Optimal values can be obtained by signal matching i.e. by minimising the objective 

function J: 
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 2pid mpcJ U U=  − 
  

Optimal Controller gain can be obtained: 

 
( )

 

1

0 0 0 0

0where  

T T

opt g g g

t t

K K S K S K S K

S F G

  
−

     = − − −     

=

     (6.11) 

Individual PID parameters can be deduced by comparing (6.11) with pidK  matrix: 

2 (1) (2); (1) (2) (3); (1).p opt opt I opt opt opt D optK K K K K K K K K= − − = + + =    

Several authors implemented these types of predictive PID controllers and 

demonstrated an improved control action and performance over conventional PID 

controllers tuned without considering future set-point information (Johnson & Moradi, 

2006; Saeed, et al., 2010; Bouhajar, et al., 2015; Katebi & Moradi, 2001). Some of 

these predictive PID controllers turned out to be a close approximation to existing GPC 

or DMC algorithm as optimal gains are obtained for both SISO and MIMO process 

control cases (Katebi & Moradi, 2001). It is desirable to develop a similar control 

design methodology for FOPID controllers where future set-point information is 

incorporated to produce optimal (or sub-optimal) control action. 

6.3 Proposed Fractional Order Predictive PI (FOPPI) Controller 

6.3.1. A Variant of Fractional Predictive Control 

In this section, discrete time model predictive control algorithm forms the 

foundation for a new control design and tuning procedure with predictive PI 

controller objective function. However, this new controller is implemented using 

receding horizon control implementation technique. Firstly, discrete PI  control 

objective is formulated before minimising the objective function to obtain a fractional-

order predictive PI controller. 

6.3.2. PI   Controller in Discrete Time Domain 

The structure of PI   controller in continuous time domain is well known. 

Frequency domain representation of the same FOPID controller as shown in (2.11) is 

also a well-known expression in Laplace domain. However, in discrete form, several 

authors have used different approximation methods to derive an approximate version 

of PI  controller. Most of these approximations are based on sampling the continuous 
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time signal and discretising the integral operator. Examples are Tustin approximation, 

forward Euler approximation, backward Euler approximation and Taylor series 

approximation. However, in this work, Grunwald-Letnikov (GL) definition given in 

(6.12) is used to handle fractional order derivatives and integrals. Although the GL 

definition results in infinite series, a truncated form given below in (6.13) is used 

extensively by several authors for deriving numerical solution. This gives a good 

approximation suitable for controller development. As a result, it is being used 

throughout this chapter to define fractional order integral or derivative. 

( )
0

0

( ) lim 1 ( )
k

j

t k

j

D f t f k j
j

 





  −

=
→

=

 
= − − 

 
      (6.12) 

where: t > 0; n-1 < α < n; n   

j

 
 
 

 represents binomial coefficient. 

 

( )

( )

0

( ) ( )
N t

t L t j

j

D f t b f t j  −

−

=

= −      (6.13) 

0 1 0 2 1 1

where:  is binomial coefficient.

1 1
1;  ; 1 ; 1 .

2

j

j j

b

b b b b b b b
j

 
 −

 + + 
= = = − = −  

   

 

L = memory length;     ( ) min ,t LN t  = .  

Therefore, the discrete form of FOPI controller can be written as: 

0

( ) ( ) ( )
k

pi P I s j

j

u k k e k k T b e k j

=

= + −       (6.14) 

where: 

0 1 0 2 1 1

 is binomial coefficient.

1 1
1. . 1 . 1 .

2

j

j j

b

b b b b b b b
j

 
 −

 + + 
= = = − = −  

        

Pk , Ik  and  = proportional gain, integral gain and fractional order respectively. 

Equation (6.14) can be expressed in incremental form as follows: 
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( ) ( ) ( 1).pi pi piu k u k u k = − −
  

1

0

( 1) ( 1) ( 1 )
k

pi P I s j

j

u k k e k k T b e k j
−

=

− = − + − −   

( )
1

0 0

( ) ( 1) ( ) ( 1) ( ) ( 1 )
k k

pi pi P I s j j

j j

u k u k k e k e k k T b e k j b e k j
−

= =

 
− − = − − + − − − − 

 
    

( ) 1

1

1
( ) ( ) ( 1) ( ) ( )

k

pi P I s j

j

u k k e k e k k T e k b e k j
j

 
−

=

 +
 = − − + − − 

 
   

 

1

( ) ( ) ( ) ( )
k

pi P I s j

j

u k k e k k T e k B e k j

=

 
 =  + − − 

 
      (6.15) 

where: 

1

1
j jB b

j


−

+
=

 . 

Replace the integral coefficient with a single term i.e. I I sK k T =   

Equation (6.15) is therefore re-written: 

1

( ) ( ) ( ) ( )
k

pi P I j

j

u k k e k K e k B e k j
=

 
 =  + − − 

 
      (6.16) 

Two distinct components are evident in (6.16) namely: a proportional term and a 

fractional order integral component. These two terms are sufficient to formulate a new 

cost function which is minimised using analytical method of optimisation in order to 

obtain the proposed Fractional Order Predictive PI (FOPPI) controller. ( )piu k is not 

implemented directly as given in (6.16). Direct implementation of FOPID controller 

has to be band-limited. In contrast, a model-based predictive control framework is used 

for implementation of the fractional order predictive PI controller. Consequently, 

control signal limits are defined inherently using constraint handling feature of MPC 

when necessary. Derivative component is unused because anticipatory action is 

inherently ensured by incorporating future set-point information in the predictive 

control framework. 



145 

 

6.3.3. Derivation of New FOPPI Controller 

The first consideration in deriving a new fractional predictive control law is 

formulation of suitable model. This has been fully dealt with in section 6.1. Although, 

PID controller with fractional order is being considered, a full state space model of 

process is required instead of pseudo-state space model for control derivation. 

Therefore, augmented state space model derived previously is used for control 

formulation in this section. This is because systems and process models available are 

all defined using conventional lumped parameter models (i.e. ordinary differential 

equations with integer orders). Therefore, design of controllers for systems that are 

modelled with fractional-order dynamics is not included in the scope of study. 

Emphasis is placed on design of a typical distillation column for improved purity of 

distilled outcomes.  

The augmented state space model is summarised below: 

( 1) ( ) ( )

( ) ( ). where: ( ) ( )  ( ) .
T

T

x k Ax k B u k

y k Cx k x k x k y k

+ = + 

 = =  

 

1

1

0
;  ;  [0   1].

T
pp n

n

p pp p

BA
A B C

C BC A I

   
= = =   

    
 

The control law is derived by minimising a cost function similar to DMPC procedure. 

However, the cost function is structured to reflect not only proportional error but 

fractional-integral error component too. This is expected to improve robust properties 

of the new control scheme, especially, disturbance rejection. 

At a sample instant k, within a prediction horizon P, the aim of the control system 

is to bring the future predicted output ˆ( 1)Y k +  as close as possible to the expected set-

point signal ( 1)dY k + assuming the set point signal remains constant in the optimisation 

window.  The task is therefore reduced to finding the optimum control parameter 

vector ΔU such that an error function between the set-point and the predicted output is 

minimised.  Given: 

 P = prediction horizon; N = control horizon; the cost function J can be written as: 
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1 12 2

ˆ( ) ( ) ( 1) .
P N

d

i j

J Y k i Y k i Q U k j R
= =

= + − + +  + −   

Replacing the error signal, the structured quadratic cost function to be 

minimised is of the form:   

( ) ( ) ( )
2 2 2

1

1

2

( 1) ( 1) ( 1 )

( )

P k

P I I j

j

N

J k e k K e k K B e k j

u k

−

=

 
=  + + + + + − + 

 



 



  (6.17) 

where: 

  = Constant control signal penalising factor. KI component defines integral 

(fractional-order) error term i.e. .I I sK k T =  

Also, the future output ˆ( 1)Y k + after P steps is the sum of free output response ˆ ( 1)pY k +   

and forced output ( 1)fY k + . That is: 

ˆ ˆ( 1) ( 1) ( 1).p fY k Y k Y k+ = + + +   

Similarly, error signal is the difference between desired set point and predicted output: 

ˆ( 1) ( 1) ( 1)de k Y k Y k+ = + − + . 

Forced output is given below: 

( 1) ( ).fY k G u k+ =    

Therefore, error signal can be expressed as shown in (6.18). 

 ˆ( 1) ( 1) ( 1) ( ).d pe k Y k Y k G u k+ = + − + −       (6.18) 

The cost function given in (6.17) can be re-written in vector form as shown in (6.19) 

below: 

 

1

,
k

T T T T

P I I j j j

j

J k e e K e e K B e e u u
=

=   + + +        (6.19) 

where error signals are as expressed below: 
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ˆ ;

ˆ ;

ˆ ˆ .

d p

d p p

j dj pj j dj pj j

e Y Y G u

e Y Y G u

e Y Y G u Y Y G u

= − − 

 =  −  − 

= − −  = − − 

  

 Error, output and control vectors are defined as follows: 

 

 

 

 

( 1), ( 2), ( 3),..., ( ) ;

( 1), ( 2), ( 3),..., ( ) ;

( 1 ), ( 2 ), ( 3 ),..., ( ) ;

( 1), ( 2), ( 3),..., ( ) ;

( 1), ( 2), ( 3),..., (

T

T

T

j

T

d d d d d

d d d d d

e e k e k e k e k P

e e k e k e k e k P

e e k j e k j e k j e k P j

Y y k y k y k y k P

Y y k y k y k y k

= + + + +

 =  +  +  +  +

= + − + − + − + −

= + + + +

 =  +  +  +  + 

 

) ;

( 1 ), ( 2 ), ( 3 ),..., ( ) ;

T

T

dj d d d d

P

Y y k j y k j y k j y k P j= + − + − + − + −

  

ˆ ˆ ˆ ˆ ˆ( 1), ( 2), ( 3),..., ( ) ;

ˆ ˆ ˆ ˆ ˆ( 1), ( 2), ( 3),..., ( ) ;

ˆ ˆ ˆ ˆ ˆ( 1 ), ( 2 ), ( 3 ),..., ( ) ;

T

p p p p p

T

p p p p p

T

pj p p p p

Y y k y k y k y k P

Y y k y k y k y k P

Y y k j y k j y k j y k P j

 = + + + + 

  =  +  +  +  + 

 = + − + − + − + − 

  

 

 

( ), ( 1), ( 2),..., ( 1) ;

( ), ( 1 ), ( 2 ),..., ( 1) .

T

T

j

U u k u k u k u k N

U u k j u k j u k j u k N j

 =   +  +  + −

 =  −  + −  + −  + − −
  

In addition, the structure of prediction matrices (all three coefficients of u ) are also 

given. 

  

 

1

2 1

3 2 1

1 3 1

1 2 1

0 0 0

0 0

0

N N N

P P P P N P N

g

g g

g g g

G

g g g g

g g g g

− −

− − − + 

 
 
 
 
 

=  
 
 
 
 
 

  

  

Matrix G is based on the process model. So, it is the same G-matrix derived 

from plant’s state space model as given in the introductory section of DMPC. 
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2

1 2 3

0 0 0

0 0

0

...P P P P N

P N

CB

CAB CB

G CA B CAB CB

CA B CA B CA B CA B− − − −



 
 
 
 =
 
 
  

 

Other prediction matrices (Gp and Gj) are derived from G as given below 

1

2 1 1

1 1 2 1

   0              0

                   0

                
p

P P P P P N P N P N

g

g g g
G

g g g g g g− − − − + − 

 
 

−
 =
 
 

− − − 

  

 1 2[ , ,...., ];   =1,2,3, ..., j kG G G G j k=
  

where 

 

1

1 2 1

1 2

0 0 0 0

0 0 0

0 0

P P P N P N

g

G g g

g g g− − − 

 
 
 
 =
 
 
  

 ,  

 

 
1

2

2 1

2 3 1

0 0 0 0

0 0 0 0

0 0 0
 ,...,  0.

0 0
k

P P P N P N

g
G G

g g

g g g− − − − 

 
 
 
 

= = 
 
 
 
  

  

Substituting error signals in J as in (6.19) yield: 

1

ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]

ˆ ˆ[ ] [ ] ;

T T

P d p p d p p I d p d p

k
T T

j dj pj j dj pj j

j

J k Y Y G u Y Y G u K Y Y G u Y Y G u

k Y Y G u Y Y G u u u
=

=  −  −   −  −  + − −  − − 

+ − −  − −  +  
  

where 1

1
.j I j I jk K b K B

j


−

+
= =  
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The minimum point can be obtained by finding the gradient of J with respect to u . 

 
0;

J

u


=

   

1

1

ˆ ˆ ˆ( )( ) ( )( ) ( )( )

2 (2 ) (2 ) 2 ( ),

k
T T T

P p d p p d p I I d p j dj pj

j

k
T T T

P p p I j j j

j

k G Y k G Y Y K G K G Y Y k G G Y Y

u u k G G u K G G u k G G

=

=

  +  −  + + − + + −

=  +  +  + 





  

where 1

1
j I j I jk K b K B

j


−

+
= =  . 

Solving for minimum control increment: 

1

ˆ ˆ ˆ( ) ( ) ( ) ( ),
k

T T T

P p d p I d p j j dj pj

j

u k k G l Y Y K G l Y Y k G l Y Y  
=

 =  −  + − + −   (6.20) 

where: matrix [1,0,0,...,0]Tl = is N x 1. 

1

1

( )
k

T T T

P p p I j j j

j

k G G K G G k G G I 

−

=

 
= + + + 

 
 . 

Equation (6.20) describes the new fractional predictive PI control law for the state 

space plant. It embeds fractional-order PI controller structure and retains the predictive 

capability of MPC algorithm. During implementation, at each sampling instant, only 

the first sample of control sequence is taken to form an incremental optimal control 

signal. All prediction matrices are re-calculated at the next sampling instant. Although 

prediction horizons and control signal penalising factor can be set as tuning 

parameters, only proportional and integral gain are recommended in this algorithm as 

tuning parameters for any necessary adjustment. This is because horizons and input 

penalising factor are expected to be properly pre-selected during initial control design 

phase. 

6.3.4. Handling of Constraints 

One attractive feature of using model-based predictive control narrative for 

control design is the ability to handle constraints in a very structured way. Constraints 

can be readily formulated into the cost function thereby turning the control design 

problem into a quadratic programming problem (Katebi, et al., 2001). Several 
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quadratic programming routines are available for solving constrained optimisation 

problem. The most common constraint is on the amplitude of input control signal 

allowable in a system. This type of constraint can be defined to handle input saturation 

problems. Therefore, the control design narrative can compensate for practical actuator 

saturation problems in real-time plants. Other types of constraints that may be 

incorporated include input rate constraint and output constraints. In this thesis, 

unconstrained process control examples are given for both scalar and multivariable 

systems. 

6.3.5. SISO Simulation Example: Double Integrator Process Control 

Since distillation columns are multivariable systems in nature, it is desirable to 

illustrate the implementation of this controller firstly, with a SISO system because of 

simplicity before considering multivariable distillation examples. Consider a double 

integrator plant (SISO system) given by: 

( 1) ( ) ( )

( ) ( )

p p

p

x k A x k B u k

y k C x k

+ = +

=
 

where: 

 

1 1 0

0 1 0

1 1 1

pA

 
 

=
 
  

  

0.5

1 ;    = 0 0 1 .

0.5

p pB C

 
 

=
 
  

  

Let the sampling period be 0.01s and prediction horizon chosen to be: P = 7. Also, N 

= 7 and all weighting matrices chosen as unity identity matrices of proper dimension. 

Small values of kP and kI i.e. 0 < [kP, kI] > 1 can be used to tune the plant until a 

properly damped response is obtained. In this example, kI and kP equal to 0.00351 and 

0.7x10-4 are chosen with fractional order set to 0.7 in order to get a properly damped 

response. These small values are chosen as very small fractions by trial and error until 

satisfactory response is obtained. Optimisation is unconstrained too. 

The resultant (incremental) control matrix is given: 
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17

0.502 0.502 0.251 0.1255 0.0628 0.0157 0.002

0.1391 0.1391 0.0695 0.0348 0.0174 0.0043 0.0005
10

0.002 0.002 0.001 0.0005 0.0003 0.0001 0.0000

U x−

− − − − − − − 
 
  =
 
 
   

The figure below shows step response and corresponding unconstrained control signal 

with the proposed fractional predictive control algorithm. It yields excellent set-point 

tracking as shown in Fig. 6.3. 

 

Fig. 6.3 Step response diagram  

6.3.6 Disturbance Rejection: Non-Minimum Phase Control Comparison 

A second example is given for SISO application of this predictive controller. 

Here, the system contains RHP zeros. Consider a non-minimum phase process control 

example where process model is described using state space with matrices: 

  
0.0217 0.3141 0.3141

;   = ;  = 1 2 .
0.3141 0.7630 0.2364

p p pA B C
− −   

= −   
   

  

The sampling period Ts is selected as 1 second. Prediction horizon chosen to be 7 and 

fractional order of 0.9. 

The number of optimisation steps is chosen to be 7 and all weighting matrices chosen 

as unity identity matrices of proper dimension. Obtained incremental control matrix is 

given: 
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12

0.5539 0.7005 0.6584 0.5142 0.3281 0.149 0.0252

0.1401 0.1772 0.1666 0.1301 0.0830 0.0377 0.0065
10

0.002 0.0003 0.0003 0.0002 0.0001 0.0001 0.0000

U x−

− − − − − − − 
 
  =
 
 
    

kI and kP equal to 0.15 yield excellent set-point tracking as illustrated in Fig. 6.4.  

In order to demonstrate comparative benefit, DMC is used as a baseline with weight R 

= 0.9I. The resultant (incremental) DMC control signal: 

13

0.1503

10 0.0190

0.0479

mpcU x−

 
 

 =
 
    

The applied control signal is updated ( 1 0 1u u u= +   ). Fig. 6.5 shows 

disturbance rejection property of these two algorithms. It is simulated over a longer 

timescale with a 25% step disturbance introduced at k = 50 seconds. Figure 6.3 also 

compares applied control signal. It can be observed that DMC controller only starts to 

act after effects of disturbance are already evident in the system. On the contrary, 

proposed FOPPI controller acts immediately and rejects the step disturbance signal. 

This improved disturbance rejection property is due to integral action of the new 

FOPPI control scheme. A high gain integral controller, in conventional sense, is known 

to cancel out effects of static non-linearity, parametric uncertainty and random 

disturbances. So, the proposed FOPPI control scheme retains robustness property of 

an integral controller. This extra robust feature gives FOPPI controller a major 

comparative advantage over conventional DMC algorithm. Also, FOPPI controller 

uses smaller effort as control input of the proposed fractional-order predictive 

controller is found to be within the range: 0 0.8u  . This is smaller than the DMC 

signal as shown in Fig. 6.5. 
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Fig. 6.4 Step response comparison 

 

Fig. 6.5 Comparison: 10% disturbance (green) is introduced at k=50s. 

  

6.4 Multivariable Case: Control of Distillation Process  

The first step in extending this new fractional-order predictive PI controller 

design algorithm to MIMO system is to derive state space model of a multivariable 

plant.  This is readily achieved using state space model because the only significant 

difference when compared to SISO case is in the dimension of relevant matrices. The 

proposed method is also able to counteract multivariable interaction in a very intuitive 

way using suitable predicting matrices. In formulating MIMO state space model, let: 

m1 = number of inputs, 
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m2 = number of outputs, 

n1=number of states in the system. 

Assumptions: 

It is assumed that number of inputs (m1) equals number of outputs (m2) as only square 

systems are considered. So, m square process is considered where m1 = m2 = m. Also, 

assuming that this m-square system has n1 states, each of the measurable output can be 

independently controlled without any steady state error using a similar FOPPI control 

scheme outlined for SISO state space control system. In addition, it is also assumed 

that noise sequence in the system is negligible. Therefore, the augmented state space 

system earlier derived is suitable for control design although with a commensurate 

increase in system dimension. 

10( 1) ( )
( )

( 1) ( )

T
pp n

p pp p mxm

BAx k x k
u k

C BC A Iy k y k

  +      
= +       

+        
  

 1

( )
( ) [0   ]

( )
n mxm

x k
y k I

y k

 
=  

 
  

where: 

Matrix 1 1n xn

pA   is n1 x n1 system matrix 

Matrix 1 1n xm

pB   is n1 x m1 input matrix 

Matrix 2 1m xn

pC   is m2 x n1 output matrix 

Imxm is identity matrix with dimension m2 x m2 

On1 is zeros matrix with dimension m2 x n1 

1( )
n

x k   is the state column vector 

1( )
m

u k  is the input column vector 

2( )
m

y k  is the output column vector 
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In summary, the augmented state space model used for MIMO predictive 

control is given: 

( 1) ( ) ( )

( ) ( ). where: ( ) ( )  ( )
T

T

x k Ax k B u k

y k Cx k x k x k y k

+ = + 

 = =  

 

1

1

0
;  ;  [0   ].

T
pp n

n mxm

p pp p mxm

BA
A B C I

C BC A I

   
= = =   

    
 

6.4.1. Controllability, Observability and Poles of Augmented State Space System 

It has been established that the proposed predictive control design scheme does 

not directly use original plant’s state space model but controller synthesis is based on 

an augmented state space model. Consequently, it is important to investigate the poles 

(eigenvalues), controllability (state reachability) and observability of the augmented 

model before designing a control system. This is required in order to ensure desired 

closed loop performance of the designed control system. Let the characteristic equation 

of the augmented state space system be ( ).C    

 
10

( )
( 1)

T

p n

p p mxm

I A
C

C A I






−
 =

− −
  

 ( 1) 0m

pI A  − − =      (6.21) 

where   represents eigenvalues. 

Lower triangular matrix property is used to solve (6.21) for eigenvalues of the system. 

The determinant of a block lower triangular matrix equals the product of determinant 

of diagonal matrices. Therefore, eigenvalues of augmented state space model equals 

the union of eigenvalues of original plant (Ap, Bp and Cp) and the m number of 

eigenvalues, 1. =  This embeds integral action in the resultant predictive control 

system as m number of integrators are embedded in the augmented state space model. 

 In addition, controllability of the augmented state space model is presented. 

Since augmented model introduces integral modes, it is desirable to analyse all 

sufficient conditions required for stability of these integral modes. Bay’s sufficient 

condition for stability is achieved if minimal realisation condition of plant model is 
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realised. This is because, he proved that a minimal realisation is both controllable and 

observable.  

In many practical multivariable processes, model information is available as 

step response data or identified Laplace transfer function models. When converting 

these models to state space for discrete predictive control design, a minimal realisation 

is required and simple codes exist for such model conversions and minimal realisation. 

For instance, the following Matlab program produces minimal realisation of a plant 

identified as“Gmin”, converts it to state space and discretized it using zero order hold 

method with sampling time of 1s to get (Ap, Bp, Cp, Dp) model.  

“Gmin=ss(g,'min'); 
T=1; 
[Ac,Bc,Cc,Dc]=ssdata(Gmin); 
[Ap,Bp,Cp,Dp]=c2dm(Ac,Bc,Cc,Dc,T,'zoh');” 

 

According to Wang (2009), a good definition of minimum realisation of a 

system is given as follows: 

“A realisation of transfer function G(z) is any state space triplet (Ap, Bp, Cp) such that 

Gp(z) = Cp(zI- Ap)
-1Bp. If such a set (Ap, Bp Cp) exists, then Gp(z) is said to be realisable. 

A realisation (Ap, Bp Cp) is called a minimal realisation of a transfer function if no 

other realisation of smaller dimension of the triplet exists” (Wang, 2009). 

If (Ap, Bp Cp) system is both controllable and observable, and has minimal realisable 

transfer function Gp(z) = Cp(zI- Ap)
-1Bp , then the augmented system with transfer 

function: ( ) ( )
1

p

z
G z G z

z
=

−
 is both controllable and observable if and only if the plant 

model Gp(z) has no zero at z = 1. Therefore, the sufficient condition for controllability 

and observability of augmented system is stated below in condition (6.22). 

 ( ) ( )
1

p

z
G z G z

z
=

−
     (6.22) 

This provides a method of analysing controllability and observability of augmented 

MIMO state space system. If Laplace transfer function model is used directly in 

Laplace domain, minimal realisation of G(s) can be verified using (6.23). 

 
adj( )

( )
p p p

p

C sI A B
G s

sI A

 −
=

−
     (6.23) 
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Every pole of G(s) has to be a zero of 
psI A− which is also eigenvalue of Ap. This is 

the condition for controllability and observability. The pole-polynomial is given by the 

term C(s) where: ( ) pC s sI A= − .This is minimal realisation because zeros of 

psI A−  will not cancel any pole of ( )
1

.p p pC sI A B
−

−  

6.4.2. Solution to MIMO FOPPI Control problem 

FOPPI control law is derived by minimising a cost function similar to the SISO 

derivation. At a sample instant k, within a prediction horizon p, the control system is 

designed to minimise error between desired set-point and predicted future output to 

the least possible value. It is assumed that the set point signal remains constant in the 

optimisation window as in the SISO case.   

 Let: P = prediction horizon 

 N = control horizon 

In conventional DMPC, cost function may be defined as J such that: 

1 12 2

ˆ( ) ( ) ( 1)
P N

d

i j

J Y k i Y k i Q U k j R
= =

= + − + +  + −   where each term retains their 

usual meaning as given previously in SISO case. 

Substituting for error signal using FOPI controller error function:   

( ) ( ) ( )
2 2 2

1

1

2

( 1) ( 1) ( 1 )
P k

P I I j

j

N

J k e k K e k K B e k j

U

−

=

 
=  + + + + + − + 

 



 



  (6.24) 

where: 

  =  control signal weight. 

The future output after P steps is the sum of free output response and forced output. 

ˆ ˆ( 1) ( 1) ( 1)p fY k Y k Y k+ = + + +
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where ˆ( 1)Y k +  is predicted future output; ( 1)fY k +  is the forced output and ˆ ( 1)pY k +  

is free response. 

Similarly, error signal is the difference between desired set-point and predicted output: 

ˆ( 1) ( 1) ( 1)de k Y k Y k+ = + − + . 

The forced output is given below: 

( 1) ( )fY k G u k+ =  . where: 1 1m N m N
G


  is an mN x mN coefficient matrix.  

 ( ), ( 1), ( 2),..., ( 1)
T

U u k u k u k u k N =   +  +  + −   

Therefore, error signal can be expressed as given below in (6.25). 

 ˆ( 1) ( 1) ( 1) ( )d pe k Y k Y k G u k+ = + − + −       (6.25) 

The cost function given in (6.17) can be re-written in vector form as done before: 

 

1

k
T T T T

P I I j j j

j

J k e e K e e K B e e u u
=

=   + + +        (6.26) 

where error signals are as defined in previous section: 

ˆ

ˆ

ˆ

d p

d p p

j dj pj j

e Y Y G u

e Y Y G u

e Y Y G u

= − − 

 =  −  − 

= − − 
  

Some definitions of vectors and matrices involved in (6.26) are given: 

 

 

 

 

 

( 1), ( 2), ( 3),..., ( )

( 1), ( 2), ( 3),..., ( )

( 1 ), ( 2 ), ( 3 ),..., ( )

( 1), ( 2), ( 3),..., ( )

( 1), ( 2), ( 3),..., ( )

T

T

T

j

T

d d d d d

T

d d d d d

e e k e k e k e k P

e e k e k e k e k P

e e k j e k j e k j e k P j

Y y k y k y k y k P

Y y k y k y k y k P

Y

= + + + +

 =  +  +  +  +

= + − + − + − + −

= + + + +

 =  +  +  +  +

 ( 1 ), ( 2 ), ( 3 ),..., ( )
T

dj d d d dy k j y k j y k j y k P j= + − + − + − + −
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ˆ ˆ ˆ ˆ ˆ( 1), ( 2), ( 3),..., ( )

ˆ ˆ ˆ ˆ ˆ( 1), ( 2), ( 3),..., ( )

ˆ ˆ ˆ ˆ ˆ( 1 ), ( 2 ), ( 3 ),..., ( )

T

p p p p p

T

p p p p p

T

pj p p p p

Y y k y k y k y k P

Y y k y k y k y k P

Y y k j y k j y k j y k P j

 = + + + + 

  =  +  +  +  + 

 = + − + − + − + − 

 

 

 

( ), ( 1), ( 2),..., ( 1)

( ), ( 1 ), ( 2 ),..., ( 1)

T

T

j

U u k u k u k u k N

U u k j u k j u k j u k N j

 =   +  +  + −

 =  −  + −  + −  + − −
 

Also, prediction matrices are as given previously but with greater dimension:  

  

 

1

2 1

3 2 1

1 3 1

1 2 1

0 0 0

0 0

0

N N N

P P P P N P mN

g

g g

g g g

G

g g g g

g g g g

− −

− − − + 

 
 
 
 
 

=  
 
 
 
 
 

  

  

Again, matrix G is obtainable from process model: 

2

1 2 3

0 0 0

0 0

0

...P P P P N

P mN

CB

CAB CB

G CA B CAB CB

CA B CA B CA B CA B− − − −



 
 
 
 =
 
 
  

. 

Other prediction matrices (Gp and Gj) are derived from G: 

1

2 1 1

1 1 2 1

   0              0

                   0

                
p

P P P P P N P N P mN

g

g g g
G

g g g g g g− − − − + − 

 
 

−
 =
 
 

− − − 

 , 

 1 2[ , ,...., ];   =1,2,3, ..., j kG G G G j k=
  

where 
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1

1 2 1

1 2

0 0 0 0

0 0 0

0 0

P P P N P mN

g

G g g

g g g− − − 

 
 
 
 =
 
 
  

 ,   

 

 
1

2

2 1

2 3 1

0 0 0 0

0 0 0 0

0 0 0
 ,...,  0.

0 0
k

P P P N P mN

g
G G

g g

g g g− − − − 

 
 
 
 

= = 
 
 
 
  

  

Substituting error signals in J i.e. put (6.25) in (6.26) yields: 

1

ˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ]

ˆ ˆ[ ] [ ]

T T

P d p p d p p I d p d p

k
T T

j dj pj j dj pj j

j

J k Y Y G u Y Y G u K Y Y G u Y Y G u

k Y Y G u Y Y G u u u
=

=  −  −   −  −  + − −  − − 

+ − −  − −  +  
 

The minimum point can be determined by finding the gradient of J with respect to 

:u  

 
0;

J

u


=

   

1

1

ˆ ˆ ˆ( )( ) ( )( ) ( )( )

2 (2 ) (2 ) 2 ( )

k
T T T

P p d p p d p I I d p j dj pj

j

k
T T T

P p p I j j j

j

k G Y k G Y Y K G K G Y Y k G G Y Y

u u k G G u K G G u k G G

=

=

 +  −  + + − + + −

=  +  +  + 




  

where 1

1
j I j I jk K b K B

j


−

+
= =  . 

Solving for minimum control increment: 

1

ˆ ˆ ˆ( ) ( ) ( ) ( )
k

T T T

P p d p I d p j j dj pj

j

u k k G Y Y K G Y Y k G Y Y  
=

 =  −  + − + −   (6.27) 

where 
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1

1

( )
k

T T T

P p p I j j j

j

k G G K G G k G G I 

−

=

 
= + + + 

 
 . 

Applying the receding horizon principle as before, only the first m columns is taken at 

each sampling instant to form incremental control signal. 

6.4.3. Petroleum Distillation Column Control Example 

Minh (2009) developed a state space model for a distillation column set up as 

part of a real-time petroleum refining and gas processing unit in Malaysia. The authors 

used deviation from set-points (deviation variables) to describe the column. The 

summary of the steady state data of the column and main streams measurements are 

available in the paper (Minh, 2009). Precisely, the input feed (condensate) is fed into 

a 14 - trayed column at the middle and the mixture is separated into two components: 

liquefied petroleum gas (LPG) as distillate (output - overhead product) while bottom 

product from the column is raw gasoline. At nominal operation without any 

disturbance or composition control system, the system is expected to reach at least 

96.54% (yD = 0.9654) purity of distillate and 3.75% (yB = 0.0375) impurity in raw 

gasoline at bottom plate. However, this objective was not achieved when 

experimenting without composition control as there was sensitivity to feed stream 

variability. The authors implemented MPC controller for regulation of product’s 

composition.  

In addition, it is desirable to raise purity level in the column to 98% distillate 

purity and 0.02% raw gasoline impurity level ( )0.98;  0.02D By y  .Therefore, there 

is a need for composition controller to force steady state values of the system to these 

desired output targets. Since the authors used deviation from set-point as variables, the 

distillate reference set-point will be required to be 0.0261 molar fraction for distillate 

and -0.0275 for bottoms product reference (r1 = 0.0261; r2 = -0.0275) in order to track 

0.9654 purity of top product (by molar fraction) and molar fraction of 0.0375 impurity 

of bottoms product (Minh, 2009). Notice that the purity of bottoms product in reality 

is not negative but the negative r2 is only a deviation from a set-point of 0.0375. If the 

controller outputs track these changes, it will force steady state values of distillate 

concentration to at least 97% purity level at top plate and 3% impurity at bottoms plate. 
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This was the requirement for the liquefied petroleum gas (top product) and gasoline 

(bottoms product). 

State space model of the process is given: 

 

0.5105 0 1 0
( 1) ( )

0 0.5105 0 1

0.0021 0.0031
( ) ( )

0.0026 0.0037

x k x k u

y k x k

−   
+ = +    

−   

− 
=  

− 

         (6.28) 

Since the authors used deviation variables, the input and output variables are defined 

as follows: 

( ) ( )( )
( ) ;  ( ) ;  ( )= .

( ) ( )( )

D D D D

B B B B

y k y y k yL k L
x k u k y k

y k y y k yV k V

− − −   
=  =     

− −−    
  

where the variables with a hat (i.e. , ,D By y L andV ) are steady state values. It 

can be readily observed that the nominal plant is asymptotically stable due to location 

of poles in Left Half Plane (LHP). A predictive controller is designed according to our 

proposed algorithm for this plant. Simulation studies are carried out with the nominal 

plant followed by perturbed plant model with perturbed state space model coefficient. 

This is given below: 

0.5 0 1.5 0 0.0021 0.0031
;   .

0 0.75 0 2.5 0.0026 0.0037
p p pA B C

− −     
= = =     

− −     
  

Fig. 6.6 shows that controlled outputs (yD and yB) track the set-point for both output 

variables and will consequently regulate product composition of the column to 

expected levels of 97% distillate purity at top tray and 3% impurity level at bottom 

tray. This is achieved in the midst of feed variability disturbances and plant-model 

mismatches. 80;  20;  0.0001.P N = = =  The rise time is less than 8 Seconds when 

properly tuned with 0.001; 0.0002.P Ik k= =  These tuning parameters are chosen to 

obtain a smooth and properly damped response as earlier explained. 
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Fig. 6.6 Dual composition control of Minh distillation column. 

6.4.4. A Three-by-Three Reactive Column Control Example 

A second example is given to illustrate industrial application of proposed 

controller in distillation systems. This example is a very interactive three-by-three 

reactive column set up and studied by Karacan and Giwa (Giwa & S.Karacan., 2012). 

These authors developed state space model for an experimental column set up for 

esterification reaction between acetic acid and ethanol to produce an ester (ethyl 

acetate). The equilibrium-type esterification reaction is given in the equation below: 

 3 2 5 3 2 5 2

eqK

CH COOH C H OH CH COOC H H O+ +      (6.29) 

Summary of steady state data of the column, main streams measurements and 

experimental description are available in the paper (Giwa & S.Karacan., 2012). A 

discretized state space model obtained using Matlab’s c2d command is stated as 

follows: 

1 1 1

2 2 2

3 3 3

( 1) 0.9981 0.0024 0.0009 0.0003 0.0013 0.0565

( 1) 0.0034 0.9957 0.0008 0.0005 0.0019 0.0818

( 1) 0.0009 0.0052 0.9945 0.0025 0.0067 0.2808

x k x u

x k x u

x k x u

+ − −         
       

+ = − − + − −        
      + − − − −         

1 1

2 2

3 3

12.8258 4.0787 0.1685

3.7520 0.8266 1.9955

6.2674 17.6857 0.7129

y x

y x

y x





 


−     
    

= − − −
    
    − − −     

(6.30) 

      Composition of top distillate, segment draw-off and bottom plate product is 

inferred from temperature measurements at each tray in this experimental column. The 

output temperature of interest is a 70.75 o C for distillate tray. This was found to be 
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very important because, in the production of ethyl acetate from this esterification 

reaction, 70.75 o C is the optimal temperature for desired product quality of over 98% 

purity. Steady state values of nominal plant outcome without control system was found 

to be 69.89 o C for distillate product, 70.81 o C for reaction segment and 87.99 o C for 

bottom product. Therefore, a composition controller is required to drive the output 

temperature at the top of the column to 70.75 o C. Simulation was carried out with the 

following input (set-point changes) in the column: 0.86 step change in top temperature 

(from 69.89 o C steady state value to 70.75 o C), 0.5 o C change in reaction segment and 

1.5 o C change in bottoms product temperature. 

Fig. 6.7 shows that controlled outputs simultaneously track the set-point for all 

three output variables and will consequently regulate product composition of the 

column to expected level of 98% distillate purity. 200;  50;  0.0009.P N = = = The 

rise time is less than 10 s when properly tuned. 

 

Fig. 6.7 Composition control: Step response 

6.4.5. Comparison of all Three Fractional-order controllers on OR Column 

FOPPI controller is implemented on the OR column and results are illustrated 

in Fig. 6.8. In addition, Fig.6.9 – Fig.6.13 shows comparison of both control actions 

and control signals of all three proposed fractional-order controllers. The FOPPI 

controller yield better control actions than FOPID controllers tuned with ultimate 

parameters or using IMC-BLT method although with a higher comparative 

computational cost. For instance, settling time has been significantly reduced by 60% 
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for y2 and by 96% for y3 and by 75% for y1 in the OR column when FOPPI controller 

is implemented compared to IMC-FOPI and critical point FOPID controllers. These 

results have been tabulated in Table 6.1. 

Table 6.1 Settling Time Comparison on OR Column - Unperturbed 

Step Change  y1  y2 y3 

FOPI (Critical Point) 120m 75m 150m 

FOPI (IMC-BLT) 100m 150m 150m 

FOPPI (Predictive) 25m 50m 5m 

OPI (Baseline) 50m 200m 75m 
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 Fig. 6.8 OR distillation column control - predictive approach 

 

Fig. 6.9 Comparison of all proposed controllers on OR column – y1 loop 
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Fig. 6.10 Effect of all proposed controllers on interactions in loop 1 

 

 

Fig. 6.11 Control signal comparison u1 - all proposed controllers  
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Fig. 6.12 Comparison of all proposed controllers on OR column – y2 loop 

 

Fig. 6.13 Comparison of all proposed controllers on OR column – y3 loop 

 

6.5 Conclusions 

In conclusion, the proposed FOPPI controller ensures excellent set-point 

tracking and zero steady state error after the shortest possible time when compared to 

other fractional order PID controllers. It is also more robust than conventional MPC 

algorithm with better disturbance rejection capability. The proposed FOPPI control 

scheme assumes availability of state space model for prediction of future states and 

output. The control law is formulated as an analytical solution to an unconstrained 
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optimisation of an objective function. It is also possible to incorporate constraints 

during optimisation. This will turn the optimisation problem into a quadratic 

programming problem. The method has been extended to OR distillation column for 

the purpose of comparison as well as other distillation columns. It should be noted that 

OR model is given as Laplace transfer function model and this may make discrete time 

predictive control approach unattractive to it. FOPPI controller design is based on a 

discrete time state space model. However, Matlab’s “c2d’’command is available for 

discretization and “tf2ss’’ for conversion of transfer function model to state space. A 

unit step response simulation is carried out with the new predictive controller in order 

to compare with results of fractional order PI controllers introduced in chapters four 

and five. 

Fig. 6.8 shows reduction in both rise time and settling time when implementing 

predictive control of the highly interactive three-by-three OR column. Fig.6.9 – 

Fig.6.13 demonstrate these comparative advantages when there are no perturbations. 

The settling time for IMC and critical FOPI controllers are over 100 minutes for y1 and 

y2 while y3 is about 150 minutes. This has been significantly reduced by more than 

60% for y2 (50 minutes) and by more than 96% for y3 (5 minutes) and by 75% for y1 

(25 minutes) by the FOPPI controller. 
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Chapter 7 

Summary, Conclusions and Future Work  

At the beginning of this work, pertinent questions were asked about the 

feasibility of using controllers with fractional orders to obtain improved control actions 

for distillation systems as well as solving multivariable process control problems in 

general. These questions are re-summarised here: 

▪ How can PID controllers and Fractional Order PID (FOPID) 

controllers be designed and tuned to solve a linear multivariable 

control problem such as composition control of distillation column with 

multiple time delays? 

▪ If FOPID controller is selected to solve a time-delayed multivariable 

distillation control problem, how can it be designed and tuned to yield 

98% distillate’s purity and 2% bottoms impurity in the face of 

disturbances like 20% fluctuation in feed flow rate?” 

Throughout the body of this thesis, these questions have been addressed and 

research objectives have been satisfied. New FOPID design and tuning rules have been 

identified and developed for composition control of distillation column and similar 

multivariable process control applications. These include the critical frequency point 

method reported in chapter four; the modified IMC-BLT-FOPI controller proposed in 

chapter five and the predictive (FOPPI) controller developed in chapter six for solving 

MIMO process control system problems. Results of all these three contributions 

clearly demonstrate robust stability as well as robust performance as comparative 

studies with optimal PI controllers have been presented too. Peer reviews of each of 

these proposed control design schemes have been greatly positive and three papers 

have been published as a direct outcome of this research effort. Itemised lists of 

contributions and papers are highlighted in the first chapter.  

In this concluding chapter, the summary and major conclusions of this work 

are given in addition to suggestions for future research endeavours. Considering the 

highly interactive OR distillation column, Minh Petroleum distillation column and  

Karacan/Giwa’s three-by-three column as case studies, It should be noted that the 
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IMC-BLT-FOPI controller proposed in chapter five and the FOPPI composition 

control system all yield 98% distillate’s purity and 2% bottoms impurity in the face of 

disturbances like fluctuation in feed flow rate. This completely satisfy the aim and 

objectives of the research. In fact, with the FOPPI method, very fast response times 

are obtained even for relatively sluggish systems like distillation column. For instance, 

rise time of 8 seconds is achieved for MP column and 8 minutes for OR column. 

7.1 Summary of Critical Point Method of Designing FOPID Controller 

A new tuning method for FOPID controllers based on critical frequency point 

experiment has been given. This proposed design scheme presents new and simple 

formulae for proportional and integral gains when using FOPID controller without any 

need for optimisation. For a linear multivariable system, a decentralised multivariable 

controller is realised using these simple FOPID controller tuning rules in conjunction 

with sequential loop closing technique. 

 The control scheme is also suitable for SISO applications and in such cases, 

controller gains are obtained directly from ultimate point parameters using these tuning 

formulae. Sustained oscillation experiment is set up by using a proportional controller 

or relay. The value of the proportional gain that yields this sustained oscillation is 

recorded as the critical gain (ku) while the period of oscillation is noted as ultimate 

period ( )u . These two ultimate point parameters are used to calculate proportional 

and integral gains of FOPI controller. 

  If derivative component is required, a PI D controller or PID controller 

structure can also be designed and tuned using critical frequency point experiment. A 

desirable point on the Nyquist curve is chosen as point B given by: 
( )Bj

Br e
 +

 where  Br  

and B are magnitude and phase at the chosen point i.e. Br = 0.29, B = 46 . These 

controllers are obtained such that the design point on Nyquist plot i.e.
( )Aj

Ar e
 +

is 

relocated to point B where 1A ur k= and 0.A =    

FOPID controllers are known to be robust in terms of performance. 

Considering the same OR distillation system, the proposed controller is simulated with 

significant disturbance signals introduced. A 20% step disturbance signal (d1) is 
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introduced at time t = 500 minutes (feed flow changes) while a 30% step disturbance 

signal is simultaneously introduced at t = 600 minutes as changes in feed temperature 

(d2). Simulated results show effectiveness of FOPID controllers in disturbance 

rejection as well as output regulation (See Fig. 4.14 - Fig. 4.20). 

The proposed controller (FOPI) is also compared with an optimum PI controller 

proposed by Ogunnaike and Ray (Ogunnaike & Ray, 1983) under exact conditions. 

Time domain responses as well as robust stability analyses have been carried out with 

both controllers. 

7.1.1. Performance and Robustness of Control Action 

  Multivariable FOPI controllers have been designed for composition control of 

a three - by - three distillation column (OR model) using ultimate frequency point 

measurements. The proposed method yields control actions with good compromise 

between robustness and performance. A method of judging robustness based on 

inclusion of input and output multiplicative uncertainty models have been presented. 

When compared with a conventional PI controller optimally tuned by Ogunnaike and 

Ray, the proposed FOPI gives a more robust control action if considering 

multiplicative input uncertainty. With multiplicative output uncertainty model, 

optimum PI produces a slightly larger area of robust stability. However, one demerit 

of this proposed control scheme is the need for frequency response experiment for 

determination of critical frequency point. This is overcome by using a parametric-

model based method for design of FOPID controllers. 

7.2 Summary of IMC-BLT Design Method 

Although FOPID controller gains can easily be determined using sustained 

oscillation experiment, conducting the experiment itself can prove to be a limitation in 

certain applications because it drives the process to the verge of instability. 

Consequently, a new method of designing and tuning FOPI controllers is presented 

based on internal model and the IMC controller settings tuned using BLT approach. It 

is also beneficial to use this method in a fully cross-coupled or centralised 

configuration if the number of loops is limited to two like in TITO systems because, 

the cost of implementation of centralised controllers is directly proportional to the 

number of loops in the system (Besta & Chidambaram, 2015). However, a 
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decentralised controller is more suitable for applications where there are many 

variables and more than two control loops. In a decentralised IMC-BLT controller as 

proposed in this present work, only diagonal elements of the system model are 

considered thereby limiting the cost of implementation of sensors (measurement 

devices) and actual controllers. This is effective for systems with three or more number 

of loops. 

 The proposed control design scheme is developed with set-point tracking as a 

primary design objective. It is similar to Skogestad’s IMC rule for conventional SISO 

PID controllers. Considering, a FOPDT model, simple tuning formulae are derived 

using the principle of IMC for FOPI controllers. For SOPDT models, derivative 

component is added as derived controller is of the FOPID structure. Finally, these IMC 

settings are fine tuned to yield biggest log-modulus in frequency domain. For instance, 

in the OR distillation control example, a detuning parameter (F) is selected to get a 

BLT value of 6 dB. If the system is a TITO process, F is varied such that a BLT value 

of 4 dB is obtained. 

7.2.1. IMC-BLT: Performance and Robustness of Control Action 

Simulation studies carried out on the highly interactive OR distillation model 

(with two disturbance inputs of 20% and 30% variations introduced as d1 and d2) 

shows better performance compared to conventional PI controller (OPI). With the 

proposed controller design scheme, step responses in all three loops show good set-

point tracking, zero overshoot and good disturbance rejection. Step response 

comparison with optimum PI controller shows that this IMC FOPI controllers give 

better responses because recovery time in top composition’s loop has been reduced by 

50% (from 10 minutes to 5 minutes for y1); by 87.5% for y2 (from 80 minutes to 10 

minutes) with step change in respective inputs r1 and r2 while y3 does not show any 

comparative improvement (See Fig. 5.7 – Fig. 5.12). This is similar to results obtained 

with the critical frequency point FOPID controllers. 

In conclusion, the proposed IMC-BLT FOPI controller gives design engineer 

an easier method of estimating the gains of a FOPI controller for process control.  Since 

it yields better stability bounds with respect to both input and output multiplicative 
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uncertainty models compared to OPI controller, it is more suitable for many process 

control applications (See Fig. 5.13). 

7.2 Summary of a New FOPPI Control Design Narrative 

All previous methods of designing FOPID controllers given in this chapter do 

not consider future set-point information during control law formulation. In fact, 

FOPID controllers have been designed in continuous time form and by using Laplace 

transform definitions only. To incorporate future set-point information in formulation 

of control law, a new controller scheme (a Fractional Order Predictive PI-FOPPI-

controller) has been proposed. The proposed controller is defined in discrete time using 

approximate Grunwald-Letnikov (GL) definition given in (6.12) to handle fractional-

order derivatives and integrals. 

One assumption made is availability of plant’s state space model for control 

law derivation. Although, PID controller with fractional order is being considered, a 

conventional state space model is required instead of pseudo-state space model for 

control derivation. This is because most practical process model like the distillation 

column comes with integer order as explained in chapter 1. The conventional state 

space model is augmented with integrators before deriving prediction matrices, 

predicted future states and future outputs. This provides framework for derivation of a 

new FOPPI control law. The FOPPI cost function is defined to retain predictive 

proportional-integral control objective and the control law is obtained by minimising 

this objective function. This results in improved control actions especially, set-point 

tracking. Hybrid benefits of dynamic matrix control and robust benefit of FOPID 

controller are exploited in this novel FOPPI control scheme. These MPC benefits 

include excellent set-point tracking, constraint handling, and handling multivariable 

interaction. Conventional integral action allows for better disturbance rejection. These 

desirable objectives are retained in this new control scheme. 

 In terms of control system implementation, receding horizon principle is 

retained in the same manner as in DMC algorithm. Only the first m columns are taken 

at each sampling instant to form the incremental control signal where m is the number 

of inputs. At the next sampling instant, prediction matrices are re-calculated and 

control law is re-computed. In SISO case, only the first sample is taken at each 
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sampling instant to form the incremental control signal and applied to the process. The 

entire process of computing prediction matrices and control law is repeated at the next 

sampling instant. 

7.2.1. Proposed Predictive Approach: Performance and Robustness 

In conclusion, this FOPPI controller ensures that control specifications are not 

only met but exceeded. For instance, in both SISO and MIMO examples, excellent set-

point tracking and zero steady state error are achieved after the shortest possible time 

compared with other fractional order PID controllers. It is also more robust than 

conventional MPC algorithm with better disturbance rejection capability. When there 

are set-point changes and/or disturbance inputs, the controller acts immediately to 

reject disturbance and maintain desired output levels and this faster response times has 

been consistently better than conventional MPC controller in all examples. Simulation 

studies have been carried out on distillation columns such as Giwa-Karacan reactive 

distillation column, Minh petroleum distillation column and ORA distillation column. 

       In composition control of the three-by-three Giwa-Karacan reactive 

distillation column using proposed FOPPI controller, composition of top distillate, 

segment draw-off and bottom plate product are inferred from temperature 

measurements at each tray in this experimental column. The output temperature of 

interest is 70.75 o C for the distillate tray. This was found to be very important because, 

in the production of ethyl acetate from this esterification reaction, 70.75 o C is the 

optimal temperature for desired product quality of over 98% purity. In absence of 

composition control system, steady state values of nominal plant outcome was found 

to be 69.89 o C for distillate product, 70.81 o C for reaction segment and 87.99 o C for 

bottom product. However, composition controller is found to drive the output 

temperature at the top of the column to 70.75 o C. Simulation was carried out with the 

following input (set-point changes) in the column: 0.86 step change in top temperature 

(from 69.89 o C steady state value to 70.75 o C), 0.5 o C change in reaction segment and 

1.5 o C change in bottoms product temperature. Similar results are also obtained in 

other two columns with respect to set-point tracking, output regulation and disturbance 

rejection.  
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Considering the OR distillation column, interesting results have been obtained 

when comparing control actions of all three fractional order controllers along with 

their control effort as observed in Fig.6.9 – Fig.6.13. The FOPPI controller yield better 

control actions than FOPID controllers tuned with ultimate parameters or using IMC-

BLT method although with a higher comparative computational cost. For instance, 

settling time has been significantly reduced by more than 60% for y2 and by more than 

40% for y3 and by 37.5% for y1 in the OR column when FOPPI controller is 

implemented compared to IMC-FOPI and critical point FOPID controllers. 

7.3 Conclusions 

In this thesis, fractional order PID controller design methods have been developed 

for a linear multivariable system. Two of these proposed methods are decentralised in 

architecture. One fractional order predictive PI control scheme has been proposed in a 

fully cross-coupled centralised configuration. These three control design narratives are 

proposed for the first time and are major contributions of this present work. 

Comparative studies have been carried out with conventional PI control schemes on 

three-by-three distillation columns such as: 

▪ Ogunnaike and Ray column (OR), 

▪ Giwa and Karacan reactive distillation column (GK), 

▪ Minh Petroleum distillation column (MP). 

The first method uses critical frequency point parameters to compute FOPID 

controller gains. Obtained tuning rules are extended to multivariable systems using 

sequential loop closing method. OR distillation model is considered and FOPID 

controller is designed for composition control in order to improve distillate quality. 

Performance is evaluated and robust stability is studied using inverse maximum 

singular value of sensitivity along with input/output multiplicative uncertainty models. 

Superior control actions of the proposed FOPID controller is observed as settling time 

(after disturbance signals are introduced) was reduced to 8 minutes for 1;y  40 minutes 

for 2y and 36 minutes for 3.y This is better than conventional OPI controller. In 

addition, a greater region of robust stability is achieved with the FOPI controller when 

considering input multiplicative uncertainty model. 
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  Another contribution of this work combines IMC and BLT to derive new 

tuning rules for FOPI controllers in a multivariable setting. Initial controller settings 

are obtained using tuning relationships derived based on internal process model. 

However, fine tuning of controller parameters is achieved by BLT tuning method. 

Although BLT is widely studied for conventional PID controller tuning, it is modified 

for tuning of IMC-FOPI controller using multiloop configuration. This new control 

scheme is implemented for composition control of distillation systems and it 

essentially overcomes the drawback of critical frequency point experiments associated 

with Ziegler-Nichols type algorithms. OR distillation column is selected for 

comparative studies. Control performance is judged in terms of set-point tracking 

using IAE and robust stability is studied using inverse maximum singular value of 

system’s sensitivity along with input/output multiplicative uncertainty models.  

The proposed IMC-FOPI controller yields superior control action compared to 

optimum PI controller tuned optimally by Ogunnaike and Ray (OPI). A greater region 

of robust stability is achieved with the FOPI controller when considering both input 

and output multiplicative uncertainty model compared to OPI controller. In addition, 

settling time (after disturbance signals are introduced) was reduced to 8 minutes for 

1;y 10 minutes for 2y but could not simultaneously improve 3y which has recovery time 

of 140 minutes.  

Thirdly, a new predictive fractional-order control design method is developed 

based on augmented state space model. Inherent robust properties of FOPID controller 

is retained without losing anticipatory action and other defining features of model-

based predictive control scheme. So, constraint handling, incorporation of future set 

point in control law formulation as well as embedded integral action are beneficial 

features of this new control narrative. Simulation studies are carried out on MP 

distillation column and GK distillation column to demonstrate effectiveness in terms 

of set-point tracking, output regulation and disturbance rejection. 

Considering composition control study on MP column, the controlled outputs 

(yD and yB) tracks the set-point for both output variables and regulates product 

composition of the column to expected level of 98% distillate purity at top tray and 

2% impurity level at bottom tray. This is achieved in the midst of feed variability 
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disturbances and plant-model mismatches. Excellent set-point tracking has been 

achieved with rise time of about 8s. On simulating the same control scheme with GK 

distillation column, composition controller regulates the output temperature at the top 

of the column to 70.75 o C which corresponds with 98% distillate purity. In conclusion, 

this centralised FOPPI control narrative yields faster response and generally better 

performance than critical frequency point or IMC method but at the expense of 

increased computational overhead. 

For instance, considering settling time for all three controllers on the OR 

column when there are no perturbations, the FOPPI controller yield better control 

actions than FOPID controllers tuned with ultimate parameters or using IMC-BLT 

method although with a higher comparative computational cost. The settling time has 

been significantly reduced by 60% for y2 and by 96% for y3 and by 75% for y1 in the 

OR column when FOPPI controller is implemented compared to IMC-FOPI and 

critical point FOPID controllers. 

7.4 Future Work 

There are several opportunities for future work based on motivations drawn 

from this present research study.  

▪ In this thesis, multivariable FOPID controllers have been designed for 

distillation column models which are open loop stable in terms of dynamic 

characteristic. Design methods for fractional order controllers may be studied 

for process control systems exhibiting open-loop unstable dynamics. In 

addition, a generic model including systems with five or more inputs and 

outputs can be studied along with non-square systems. Some pre-treatment 

may be required before extending standard control design schemes such as 

MPC technique to such generic process control systems. 

▪ Design of fractional order controllers can be studied for full non-linear process 

models. In addition, some controller design methods, studied in this thesis such 

as MPC, can be modified for non-linear systems e.g. Nonlinear Model-based 

Predictive Controllers (NMPC). This provides a background for some form of 

comparative study of nonlinear controllers for real-time processes like 

distillation columns, waste management systems or industrial boilers. These 
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processes exhibit strong nonlinear characteristic. In this thesis, linear time 

invariant controllers have been synthesised from linearised models of 

distillation columns at nominal operating points. 

▪ This thesis has been limited to FOPID controller design for distillation columns 

where only ideal mixtures are considered for separation. Azeotropic mixtures, 

which are inherently more difficult to separate, have not been covered within 

the scope of study. Distillation of azeotropic mixtures require specialised 

separation towers which can only be modelled using complex mathematical 

models to reflect complex thermodynamic properties of such systems. This is 

different from regular or ideal mixtures. For instance, the order of boiling 

fractions may also vary with product’s composition and this require further 

research work. 

▪ It is also possible to design multivariable FOPID controllers for 

interconnected-distillation systems using similar methods proposed in this 

thesis, thus adding relevance for future research and practical applications. For 

instance, by connecting several distillation columns in series, the top product 

flow in one column can can act as a bottom feed to the next column and this 

interconnected distillation system may be studied for separation of 

multicomponent mixtures which are quite prevalent in industry. In this present 

work, a single distillation column has been considered rather than 

interconnected columns because, the knowledge of the dynamics and control 

of a typical column can be stretched to apply to interconnected columns but 

with some modifications (Arlt, 2014).
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Appendices - A: Simulink Models of Distillation Column 

Control Systems 

Appendix - A1: OR Distillation Column Control Simulink Block Diagram 

 

 

Detailed Diagram of Distillation Column Sub-system 
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Detailed Diagram of Controller Sub-system in Example 4 
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Appendix - A2: OR Distillation Column Control Simulink Block Diagram 

(With Disturbances) 

 

Detailed Diagram of Disturbance Sub-system is given 
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Appendix - A3: Simulink Block Diagram of Wood-Berry (WB) 

Distillation Model 

 

 

 
 

 

Details of Controller Sub-system is given: 
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Appendix - B: Matlab Programs  

Appendix - B1: Matlab Program for Skogestad’s Column A model 

 

function xprime=colamod(t,X,U)  
% 
% colamod - This is a nonlinear model of a distillation column with 
%           NT-1 theoretical stages including a reboiler (stage 1) 

plus a 
%           total condenser ("stage" NT). The liquid flow dynamics 

are 
%           modelled by a simple linear relationship. 
%           Model assumptions: Two components (binary separation); 

constant 
%           relative volatility; no vapor holdup; one feed and two 

products; 
%           constant molar flows (same vapor flow on all stages);  
%           total condenser 
% 
%           The model is based on column A in Skogestad and 

Postlethwaite 
%           (1996). The model has 82 states. 
% 
% Inputs:    t    - time in [min]. 
%            X    - State, the first 41 states are compositions of 

light 
%                   component A with reboiler/bottom stage as X(1) 

and  
%                   condenser as X(41). State X(42)is holdup in 

reboiler/ 
%                   bottom stage and X(82) is hold-up in condenser.  
%            U(1) - reflux L, 
%            U(2) - boilup V, 
%            U(3) - top or distillate product flow D, 
%            U(4) - bottom product flow B, 
%            U(5) - feed rate F, 
%            U(6) - feed composition, zF. 
%            U(7) - feed liquid fraction, qF. 
% 
% Outputs:   xprime - vector with time derivative of all the states  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%------------------------------------------------------------ 
% The following data need to be changed for a new column. 
% These data are for "colmn A". 
% Number of stages (including reboiler and total condenser:  
    NT=41;  
% Location of feed stage (stages are counted from the bottom): 
    NF=21; 
% Relative volatility 
    alpha=1.5; 
% Nominal liquid holdups 
    M0(1)=0.5;          % Nominal reboiler holdup (kmol) 
    i=2:NT-1; M0(i)=0.5*ones(1,NT-2);% Nominal stage (tray) holdups 

(kmol) 
    M0(NT)=0.5;         % Nominal condenser holdup (kmol) 
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% Data for linearized liquid flow dynamics (does not apply to 

reboiler and condenser): 
    taul=0.063;         % time constant for liquid dynamics (min) 
    F0=1;       % Nominal feed rate (kmol/min)  
    qF0 = 1;        % Nominal fraction of liquid in feed  
    L0=2.70629;         % Nominal reflux flow (from steady-state 

data) 
    L0b=L0 + qF0*F0;    % Nominal liquid flow below feed (kmol/min) 
    lambda=0;       % Effect of vapor flow on liquid flow ("K2-

effect") 
    V0=3.20629;V0t=V0+(1-qF0)*F0;% Nominal vapor flows - only needed 

if lambda is nonzero  
% End data which need to be changed 
%------------------------------------------------------------ 

  
% Splitting the states 
x=X(1:NT)';                          % Liquid composition from btm 

to top 
M=X(NT+1:2*NT)';                     % Liquid hold up from btm to 

top 

  
% Inputs and disturbances 
LT = U(1);                            % Reflux 
VB = U(2);                            % Boilup 
D  = U(3);                            % Distillate 
B  = U(4);                            % Bottoms 

  
F  = U(5);                            % Feedrate 
zF = U(6);                            % Feed composition 
qF = U(7);                            % Feed liquid fraction 

  
% THE MODEL 

  
% Vapor-liquid equilibria 
i=1:NT-1;    y(i)=alpha*x(i)./(1+(alpha-1)*x(i)); 

  
% Vapor Flows assuming constant molar flows 
i=1:NT-1;    V(i)=VB*ones(1,NT-1); 
i=NF:NT-1;   V(i)=V(i) + (1-qF)*F; 

  
% Liquid flows assuming linearized tray hydraulics with time 

constant taul 
% Also includes coefficient lambda for effect of vapor flow ("K2-

effect"). 
i=2:NF;      L(i) = L0b + (M(i)-M0(i))./taul + lambda.*(V(i-1)-V0); 
i=NF+1:NT-1; L(i) = L0  + (M(i)-M0(i))./taul + lambda.*(V(i-1)-V0t); 
L(NT)=LT; 

  
% Time derivatives from  material balances for  
% 1) total holdup and 2) component holdup 

  
% Column 
i=2:NT-1; 
dMdt(i) = L(i+1)         - L(i)       + V(i-1)         - V(i); 
dMxdt(i)= L(i+1).*x(i+1) - L(i).*x(i) + V(i-1).*y(i-1) - V(i).*y(i); 

  
% Correction for feed at the feed stage 
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% The feed is assumed to be mixed into the feed stage 
dMdt(NF) = dMdt(NF)  + F; 
dMxdt(NF)= dMxdt(NF) + F*zF; 

  
% Reboiler (assumed to be an equilibrium stage) 
dMdt(1) = L(2)      - V(1)      - B; 
dMxdt(1)= L(2)*x(2) - V(1)*y(1) - B*x(1); 

  
% Total condenser (no equilibrium stage) 
dMdt(NT) = V(NT-1)         - LT       - D; 
dMxdt(NT)= V(NT-1)*y(NT-1) - LT*x(NT) - D*x(NT); 

  
% Compute the derivative for the mole fractions from d(Mx) = x dM + 

M dx 
i=1:NT; 
dxdt(i) = (dMxdt(i) - x(i).*dMdt(i) )./M(i); 

  
% Output 
xprime=[dxdt';dMdt']; 

 

 

Appendix - B2: Matlab Program to compute Robustness and Compare 

OPI and FOPI Controllers in Examples 4 and 5 

% ********* Obtain Transfer function matrix of CONTROL system 

% clear all 
% clc 
% s=tf('s'); 

  

Kcd11 = tf([1.2 0.24],[1 0]); 
Kcd12 = 0; 
Kcd13=0; 
Kcd21 = 0; 
Kcd22 = tf([-0.15 -0.015],[1 0]); 
Kcd23=0; 
Kcd31=0; 
Kcd32=0; 
Kcd33 = tf([0.6 0.15],[1 0]); 
r = 1.0; 
% ********* Transfer function matrix of MV system **************** 
g11 = tf([0.66],[6.7 1],'iodelay',2.6); 
g12 = tf([-0.61],[8.64 1],'iodelay',3.5); 
g13 = tf([-0.0049],[9.06 1],'iodelay',1); 
g21 = tf([1.11],[3.25 1],'iodelay',6.5); 
g22 = tf([-2.36],[5 1],'iodelay',3); 
g23 = tf([-0.012],[7.09 1],'iodelay',1.2); 
g31 = tf([-34.68],[8.15 1],'iodelay',9.2); 
g32 = tf([46.2],[10.9 1],'iodelay',9.4); 
g33 = tf([10.1007 0.87],[73.132 22.69 1],'iodelay',1); 
% numg11=0.66; deng11=[6.7 1]; 
% numg12=-0.61; deng12=[8.64 1]; 
% numg13=-0.0049; deng13=[9.06 1]; 
% numg21=1.11; deng21=[3.25 1]; 
% numg22=-2.36; deng22=[5 1]; 
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% numg23=-0.012; deng23=[7.09 1]; 
% numg31=-34.68; deng31=[8.15 1]; 
% numg32=46.2; deng32=[10.9 1]; 
% numg33=[10.1007 0.87]; deng33=[73.132 22.69 1]; 
% d=[2.6 3.5 1;6.5 3 1.2;9.2 9.4 1]; 

  
G = [g11 g12 g13; g21 g22 g23; g31 g32 g33]; 
Gdc = [Kcd11 Kcd12 Kcd13; Kcd21 Kcd22 Kcd23; Kcd31 Kcd32 Kcd33]; 
% OUTPUT Uncertainty 
w = logspace(-3,3,10000)'; 
G1 = pade(G); 
h1 = ss(Gdc); 
h2 = ss(G); 
h5 = h2*h1; 
[A2,B2,C2,D2] = ssdata(h5); 
[b,a] = ss2tf(A2,B2,C2,D2,1); 
[b1,a1] = ss2tf(A2,B2,C2,D2,2); 
[b2,a2] = ss2tf(A2,B2,C2,D2,3);  
gh11 = tf(b(1,:),a); 
gh21 = tf(b(2,:),a); 
gh31 = tf(b(3,:),a); 
gh12 = tf(b1(1,:),a1); 
gh22 = tf(b1(2,:),a1); 
gh32 = tf(b1(3,:),a1); 
gh13 = tf(b2(1,:),a2); 
gh23 = tf(b2(2,:),a2); 
gh33 = tf(b2(3,:),a2); 
gh = [gh11+1 gh12 gh13;gh21 gh22+1 gh23;gh31 gh32 gh33+1]; 
h7 = ss(gh); 
h9 = inv(h7); 
h10 = h9*h5; 
for i = 1:1:10000 
w1(i) = w(i,1); 
h12 = freqresp(h10,w1(i)); 
sing1(i) = max(svd(h12)); 
sing(i) = 1/sing1(i); 
end 
subplot(1,2,1),loglog(w1,sing,'--') 
hold on; 
% INPUT Uncertainty 
w = logspace(-3,3,10000)'; 
G1 = pade(G); 
h1 = ss(Gdc); 
h2 = ss(G); 
h5 = h1*h2; 
[A2,B2,C2,D2] = ssdata(h5); 
[b,a] = ss2tf(A2,B2,C2,D2,1); 
[b1,a1] = ss2tf(A2,B2,C2,D2,2); 
[b2,a2] = ss2tf(A2,B2,C2,D2,3);  
gh11 = tf(b(1,:),a); 
gh21 = tf(b(2,:),a); 
gh31 = tf(b(3,:),a); 
gh12 = tf(b1(1,:),a1); 
gh22 = tf(b1(2,:),a1); 
gh32 = tf(b1(3,:),a1); 
gh13 = tf(b2(1,:),a2); 
gh23 = tf(b2(2,:),a2); 
gh33 = tf(b2(3,:),a2); 
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gh = [gh11+1 gh12 gh13;gh21 gh22+1 gh23;gh31 gh32 gh33+1]; 
h7 = ss(gh); 
h9 = inv(h7); 
h10 = h9*h5; 
for i = 1:1:10000 
w1(i) = w(i,1); 
h12 = freqresp(h10,w1(i)); 
sing1(i) = max(svd(h12)); 
sing(i) = 1/sing1(i); 
end 
subplot(1,2,2),loglog(w1,sing,'--') 
% hold on 

 

% ********* Repeat the same program for FOPI controller 

% ********* Obtain Transfer function matrix of CONTROL system 

%clear all 
% Define the MIMO FOPI control system 
s=tf('s'); 

  
Kcd11 = 0.65+(0.2*(1/s)*ora_foc(0.1,8,0.00001,100)); 
Kcd12 = 0; 
Kcd13=0; 
Kcd21 = 0; 
Kcd22 = -0.13-(0.0582*(1/s)*ora_foc(0.1,8,0.00001,100)); 
Kcd23=0; 
Kcd31=0; 
Kcd32=0; 
Kcd33=2.2+(2.4*(1/s)*ora_foc(0.1,8,0.00001,100)); 
r = 1.0; 
% ********* Transfer function matrix of MV system **************** 
g11 = tf([0.66],[6.7 1],'iodelay',2.6); 
g12 = tf([-0.61],[8.64 1],'iodelay',3.5); 
g13 = tf([-0.0049],[9.06 1],'iodelay',1); 
g21 = tf([1.11],[3.25 1],'iodelay',6.5); 
g22 = tf([-2.36],[5 1],'iodelay',3); 
g23 = tf([-0.012],[7.09 1],'iodelay',1.2); 
g31 = tf([-34.68],[8.15 1],'iodelay',9.2); 
g32 = tf([46.2],[10.9 1],'iodelay',9.4); 
g33 = tf([10.1007 0.87],[73.132 22.69 1],'iodelay',1); 
% numg11=0.66; deng11=[6.7 1]; 
% numg12=-0.61; deng12=[8.64 1]; 
% numg13=-0.0049; deng13=[9.06 1]; 
% numg21=1.11; deng21=[3.25 1]; 
% numg22=-2.36; deng22=[5 1]; 
% numg23=-0.012; deng23=[7.09 1]; 
% numg31=-34.68; deng31=[8.15 1]; 
% numg32=46.2; deng32=[10.9 1]; 
% numg33=[10.1007 0.87]; deng33=[73.132 22.69 1]; 
% d=[2.6 3.5 1;6.5 3 1.2;9.2 9.4 1]; 

  
G = [g11 g12 g13; g21 g22 g23; g31 g32 g33]; 
Gdc = [Kcd11 Kcd12 Kcd13; Kcd21 Kcd22 Kcd23; Kcd31 Kcd32 Kcd33]; 
% OUTPUT Uncertainty 
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w = logspace(-3,3,10000)'; 
G1 = pade(G); 
h1 = ss(Gdc); 
h2 = ss(G); 
h5 = h2*h1; 
[A2,B2,C2,D2] = ssdata(h5); 
[b,a] = ss2tf(A2,B2,C2,D2,1); 
[b1,a1] = ss2tf(A2,B2,C2,D2,2); 
[b2,a2] = ss2tf(A2,B2,C2,D2,3);  
gh11 = tf(b(1,:),a); 
gh21 = tf(b(2,:),a); 
gh31 = tf(b(3,:),a); 
gh12 = tf(b1(1,:),a1); 
gh22 = tf(b1(2,:),a1); 
gh32 = tf(b1(3,:),a1); 
gh13 = tf(b2(1,:),a2); 
gh23 = tf(b2(2,:),a2); 
gh33 = tf(b2(3,:),a2); 
gh = [gh11+1 gh12 gh13;gh21 gh22+1 gh23;gh31 gh32 gh33+1]; 
h7 = ss(gh); 
h9 = inv(h7); 
h10 = h9*h5; 
for i = 1:1:10000 
w1(i) = w(i,1); 
h12 = freqresp(h10,w1(i)); 
sing1(i) = max(svd(h12)); 
sing(i) = 1/sing1(i); 
end 
subplot(1,2,1),loglog(w1,sing) 
hold on; 
% INPUT Uncertainty 
w = logspace(-3,3,10000)'; 
G1 = pade(G); 
h1 = ss(Gdc); 
h2 = ss(G); 
h5 = h1*h2; 
[A2,B2,C2,D2] = ssdata(h5); 
[b,a] = ss2tf(A2,B2,C2,D2,1); 
[b1,a1] = ss2tf(A2,B2,C2,D2,2); 
[b2,a2] = ss2tf(A2,B2,C2,D2,3);  
gh11 = tf(b(1,:),a); 
gh21 = tf(b(2,:),a); 
gh31 = tf(b(3,:),a); 
gh12 = tf(b1(1,:),a1); 
gh22 = tf(b1(2,:),a1); 
gh32 = tf(b1(3,:),a1); 
gh13 = tf(b2(1,:),a2); 
gh23 = tf(b2(2,:),a2); 
gh33 = tf(b2(3,:),a2); 

  
gh = [gh11+1 gh12 gh13;gh21 gh22+1 gh23;gh31 gh32 gh33+1]; 
h7 = ss(gh); 
h9 = inv(h7); 
h10 = h9*h5; 
for i = 1:1:10000 
w1(i) = w(i,1); 
h12 = freqresp(h10,w1(i)); 
sing1(i) = max(svd(h12)); 
sing(i) = 1/sing1(i); 
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end 
subplot(1,2,2),loglog(w1,sing) 
hold on 

 

Appendix - B3: Matlab Program written for BLT tuning of FOPI 

Controllers - OR Distillation Column Control Example in Chapter 5 

% ********* Matlab program written to tune FOPI controllers for the 

%Three input three output OR distillation system. Controllers are 

%tuned such that biggest log-magnitude of 6 dB is obtained. 

% ********* Firstly, Obtain Transfer function elements of the system 

numg11=0.66; deng11=[6.7 1]; 
numg12=-0.61; deng12=[8.64 1]; 
numg13=-0.0049; deng13=[9.06 1]; 
numg21=1.11; deng21=[3.25 1]; 
numg22=-2.36; deng22=[5 1]; 
numg23=-0.012; deng23=[7.09 1]; 
numg31=-34.68; deng31=[8.15 1]; 
numg32=46.2; deng32=[10.9 1]; 
numg33=[10.1007 0.87]; deng33=[73.132 22.69 1]; 
d=[2.6 3.5 1;6.5 3 1.2;9.2 9.4 1]; 

  
% kczn=[33.6 -7.5 0.1;22.4 -5.3 0.001;1945 -430.7 4.7]; 
% resetzn=[383.2 218.7 1592;576 75.8 182;901.8 704.9 99.7]; 
kczn=[0.7277 0 0;0 -0.17 0;0 0 0.5645]; 
resetzn=[10 0 0;0 7.5 0;0 0 28.2]; 

  

  

i=sqrt(-1); 
w=logspace(-1,0.8,200); 
s=i*w; 
f=1.5; 
df=0.01; 
loop=0; 
flagm=-1; 
flagp=-1; 
dbmax=-100; 
 while abs(dbmax)>0.05 
kc=kczn/f; 
reset=resetzn*f; 
% Form controller transfer function 
% numgc11=kc(1,1)*[reset(1,1) 1]; 
% dengc11=[reset(1,1) 0]; 
nc11=kc(1,1)*reset(1,1)*(ora_foc(0.9,5,0.01,100)+1); 
dc11=reset(1,1)*ora_foc(0.9,5,0.01,100); 
c11=nc11/dc11; 
[numgc11,dengc11]=tfdata(c11); 
% numgc12=kc(1,2)*[reset(1,2) 1]; 
% dengc12=[reset(1,2) 0]; 
% numgc13=kc(1,3)*[reset(1,3) 1]; 
% dengc13=[reset(1,3) 0]; 
% numgc21=kc(2,1)*[reset(2,1) 1]; 
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% dengc21=[reset(2,1) 0]; 
nc22=kc(2,2)*reset(2,2)*(ora_foc(0.9,5,0.01,100)+1); 
dc22=reset(2,2)*ora_foc(0.9,5,0.01,100); 
c22=nc22/dc22; 
[numgc22,dengc22]=tfdata(c22); 
% numgc23=kc(2,3)*[reset(2,3) 1]; 
% dengc23=[reset(2,3) 0]; 
% numgc31=kc(3,1)*[reset(3,1) 1]; 
% dengc31=[reset(3,1) 0]; 
% numgc32=kc(3,2)*[reset(3,2) 1]; 
% dengc32=[reset(3,2) 0]; 
nc33=kc(3,3)*reset(3,3)*(ora_foc(0.9,5,0.01,100)+1); 
dc33=reset(3,3)*ora_foc(0.9,5,0.01,100); 
c33=nc33/dc33; 
[numgc33,dengc33]=tfdata(c33); 
% Inside loop to vary frequency 
nwtot=length(w); 
for nw=1:nwtot 
wn=w(nw); 
% Process transfer function matrix (g’s) 
g(1,1)=polyval(numg11,s(nw)) / polyval(deng11,s(nw)); 
g(1,1)=g(1,1)*exp(-d(1,1)*s(nw)); 
g(1,2)=polyval(numg12,s(nw)) / polyval(deng12,s(nw)); 
g(1,2)=g(1,2)*exp(-d(1,2)*s(nw)); 
g(1,3)=polyval(numg13,s(nw)) / polyval(deng13,s(nw)); 
g(1,3)=g(1,3)*exp(-d(1,3)*s(nw)); 
g(2,1)=polyval(numg21,s(nw)) / polyval(deng21,s(nw)); 
g(2,1)=g(2,1)*exp(-d(2,1)*s(nw)); 
g(2,2)=polyval(numg22,s(nw)) / polyval(deng22,s(nw)); 
g(2,2)=g(2,2)*exp(-d(2,2)*s(nw)); 
g(2,3)=polyval(numg23,s(nw)) / polyval(deng23,s(nw)); 
g(2,3)=g(2,3)*exp(-d(2,3)*s(nw)); 
g(3,1)=polyval(numg31,s(nw)) / polyval(deng31,s(nw)); 
g(3,1)=g(3,1)*exp(-d(3,1)*s(nw)); 
g(3,2)=polyval(numg32,s(nw)) / polyval(deng32,s(nw)); 
g(3,2)=g(3,2)*exp(-d(3,2)*s(nw)); 
g(3,3)=polyval(numg33,s(nw)) / polyval(deng33,s(nw)); 
g(3,3)=g(3,3)*exp(-d(3,3)*s(nw)); 

  
% Controller transfer function matrix (gc's) 
gc(1,1)=polyval(numgc11,s(nw)) / polyval(dengc11,s(nw)); 
% gc(1,2)=(polyval(numgc12,s(nw)) / polyval(dengc12,s(nw))); 
% gc(1,3)=polyval(numgc13,s(nw)) / polyval(dengc13,s(nw)); 
% gc(2,1)=(polyval(numgc21,s(nw)) / polyval(dengc21,s(nw))); 
gc(2,2)=polyval(numgc22,s(nw)) / polyval(dengc22,s(nw)); 
% gc(2,3)=(polyval(numgc23,s(nw)) / polyval(dengc23,s(nw))); 
% gc(3,1)=(polyval(numgc31,s(nw)) / polyval(dengc31,s(nw))); 
% gc(3,2)=(polyval(numgc32,s(nw)) / polyval(dengc32,s(nw))); 
gc(3,3)=(polyval(numgc33,s(nw)) / polyval(dengc33,s(nw))); 
% "eye" operation forms an identity matrix 
wnyquist(nw)=-1+det(eye(size(g))+g*gc); 
% Calculate lc function 
lc(nw)=wnyquist(nw)/(1+wnyquist(nw)); 
dbcl(nw)=20*log10(abs(lc(nw))); 
% End of inside loop sweeping through frequencies 
end 
% Pick off peak in closedloop log modulus 
[dbmax,nmax]=max(dbcl); 
wmax=w(nmax); 
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loop=loop+1; 
if loop>50,break,end 
% Test if +4 dB and reguess f factor 
if dbmax>2 
if flagp>0,df=df/2;end 
flagm=1; 
f=f+df; 
else 
if flagm>0,df=df/2;end 
flagp=1; 
f=f-df; 
if f<10,f=10;end 
end 
end 

 

 

Appendix - B4: Matlab Program written for BLT tuning of FOPI 

Controllers in Chapter 5 – TITO WB Distillation Model 

% ********* Matlab program written to tune FOPI controllers for the 

%TITO WB system. Controllers are tuned such that biggest log-magnitude 

%of 4 dB is obtained. 

% ********* Firstly, Obtain Transfer function matrix of the system 

numg11=12.8; deng11=[16.7 1]; 
numg12=-18.9; deng12=[21 1]; 
% numg13=-0.0049; deng13=[9.06 1]; 
numg21=6.6; deng21=[16.7 1]; 
numg22=-19.4; deng22=[14.4 1]; 
% numg23=-0.012; deng23=[7.09 1]; 
% numg31=-34.68; deng31=[8.15 1]; 
% numg32=46.2; deng32=[10.9 1]; 
% numg33=[10.1007 0.87]; deng33=[73.132 22.69 1]; 
d=[1 3;1 3]; 

  
% kczn=[33.6 -7.5 0.1;22.4 -5.3 0.001;1945 -430.7 4.7]; 
% resetzn=[383.2 218.7 1592;576 75.8 182;901.8 704.9 99.7]; 
kczn=[0.0948 -0.0924;0.0157 -0.0305]; 
resetzn=[3.1325 2.4176;1.0448 1.0487]; 

  
i=sqrt(-1); 
w=logspace(-1,0.8,200);%logspace(a,b,n) generates n points between 

decades 10^a and 10^b. 
%y = logspace(a,pi) generates the points between 10^a and pi. 
%which is useful for DSP where frequencies over this interval go 

around the unit circle. 
s=i*w; 
%% Detuning Factors for Centralized Controller (4.0 dB) 
f=0.47331; 
df=0.01; 
loop=0; 
flagm=-1; 
flagp=-1; 
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dbmax=-100; 
%% Main loop to vary f in BLT tuning 
while abs(dbmax-2)>0.05 
kc=kczn/f; 
reset=resetzn*f; 
% Form controller transfer function 
% numgc11=kc(1,1)*[reset(1,1) 1]; 
% dengc11=[reset(1,1) 0]; 
% numgc12=kc(1,2)*[reset(1,2) 1]; 
% dengc12=[reset(1,2) 0]; 
% numgc21=kc(2,1)*[reset(2,1) 1]; 
% dengc21=[reset(2,1) 0]; 
% numgc22=kc(2,2)*[reset(2,2) 1]; 
% dengc22=[reset(2,2) 0]; 
[numgc11,dengc11,numgc12,dengc12,numgc21,dengc21,numgc22,dengc22]= 

TwoPolesCentral(reset,kc); 
% Inside loop to vary frequency 
nwtot=length(w); 
for nw=1:nwtot 
wn=w(nw); 
% Process transfer function matrix (g’s) 
g(1,1)=polyval(numg11,s(nw)) / polyval(deng11,s(nw)); 
g(1,1)=g(1,1)*exp(-d(1,1)*s(nw)); 
g(1,2)=polyval(numg12,s(nw)) / polyval(deng12,s(nw)); 
g(1,2)=g(1,2)*exp(-d(1,2)*s(nw)); 
g(2,1)=polyval(numg21,s(nw)) / polyval(deng21,s(nw)); 
g(2,1)=g(2,1)*exp(-d(2,1)*s(nw)); 
g(2,2)=polyval(numg22,s(nw)) / polyval(deng22,s(nw)); 
g(2,2)=g(2,2)*exp(-d(2,2)*s(nw)); 
% Controller transfer function matrix (gc's) 
gc(1,1)=polyval(numgc11,s(nw)) / polyval(dengc11,s(nw)); 
gc(1,2)=(polyval(numgc12,s(nw)) / polyval(dengc12,s(nw))); 
gc(2,1)=(polyval(numgc21,s(nw)) / polyval(dengc21,s(nw))); 
gc(2,2)=polyval(numgc22,s(nw)) / polyval(dengc22,s(nw)); 
% "eye" operation forms an identity matrix 
wnyquist(nw)=-1+det(eye(size(g))+g*gc); 
% Calculate lc function 
lc(nw)=wnyquist(nw)/(1+wnyquist(nw)); 
dbcl(nw)=20*log10(abs(lc(nw))); 
% End of inside loop sweeping through frequencies 
end 
% Pick off peak in closedloop log modulus 
[dbmax,nmax]=max(dbcl); 
wmax=w(nmax); 
loop=loop+1; 
if loop>32,break,end 
% Test if +4 dB and reguess f factor 
if dbmax>2 
if flagp>0,df=df/2;end 
flagm=1; 
f=f+df; 
else 
if flagm>0,df=df/2;end 
flagp=1; 
f=f-df; 
if f<1,f=1;end 
end 
end 
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Appendix - C: Matlab Programs used in Chapter Six for 

Predictive Control System Design 

 

Appendix - C1: Matlab Program written for Converting Transfer 

function model (OR Distillation Column) to State Space Model 

% Enter transfer function matrix as g 
 

s=tf('s'); 
g11=0.66*(exp(-2.6*s)/((6.7*s)+1)); 
g12=-0.61*(exp(-3.5*s)/((8.64*s)+1)); 
g13=-0.0049*(exp(-1*s)/((9.06*s)+1)); 
g21=1.11*(exp(-6.5*s)/((3.25*s)+1)); 
g22=-2.36*(exp(-3*s)/((5*s)+1)); 
g23=-0.012*(exp(-1.2*s)/((7.09*s)+1)); 
g31=-34.68*(exp(-9.2*s)/((8.15*s)+1)); 
g32=46.2*(exp(-9.4*s)/((10.9*s)+1)); 
g33=(exp(-s)*((10.1007*s)+0.87)/((73.132*(s^2))+(22.69*s)+1)); 
g=[g11 g12 g13;g21 g22 g23;g31 g32 g33]; 
C and minimum realisation 
Gmin=ss(g,'min'); 
T=2.5; % Set sampling time 

 
[Ac,Bc,Cc,Dc]=ssdata(Gmin); 
[Ap,Bp,Cp,Dp]=c2dm(Ac,Bc,Cc,Dc,T,'zoh'); % Discretization 

 
[m1,n1]=size(Cp); 
[n1,n_in]=size(Bp); 

 

Appendix - C2: Matlab Program written for obtaining Augmented State 

Space System and Predictive matrix G 

function [G,f,Rs,H_H,H_F,H_R,A_e,B_e,C_e] % Declare function 

=predictGainMIMO22(Ap,Bp,Cp,Nc,Np); % Ap Bp Cp state space 

% Nc is control horizon and Np is prediction horizon 
[m1,n1]=size(Cp); 
[n1,n_in]=size(Bp); 

% Augmentation of process state space model 
A_e=eye(n1+m1,n1+m1); 
A_e(1:n1,1:n1)=Ap; 
A_e(n1+1:n1+m1,1:n1)=Cp*Ap; 
B_e=zeros(n1+m1,n_in); 
B_e(1:n1,:)=Bp; 
B_e(n1+1:n1+m1,:)=Cp*Bp; 
C_e=zeros(m1,n1+m1); 
C_e(:,n1+1:n1+m1)=eye(m1,m1); 
h(1:m1,:)=C_e; 
f(1:m1,:)=C_e*A_e; 
for kk=m1+1:Np 
h(kk,:)=h(kk-1,:)*A_e; 
f(kk,:)= f(kk-1,:)*A_e; 
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end 

 
v=h*B_e; 
G=zeros(Np,Nc); 
G(:,1:m1)=v; 
for i=m1:+m1:Nc-m1 
G(:,i+1:i+m1)=[zeros(i,m1);v(1:Np-i,1:m1)]; %Toeplitz matrix 
end 

  
Rs=ones(Np,1); 
H_R=G'*Rs; 
H_H=G'*G; 
H_F=G'*f; 
 

% Declare predictive gain matrix function for SISO system 

function [G,f,BarR,H_H,H_F,H_R,A_e,B_e,C_e] 

=predictivegain1(Ap,Bp,Cp,Nc,Np); 
[m1,n1]=size(Cp);%Number of outputs 
[n1,n_in]=size(Bp);%Number of outputs 
A_e = eye(n1+m1,n1+m1); 
A_e(1:n1,1:n1) = Ap; 
A_e(n1+1:n1+m1,1:n1) = Cp*Ap; 
B_e=zeros(n1+m1,n_in); 
B_e(1:n1,:)=Bp; 
B_e(n1+1:n1+m1,:)=Cp*Bp; 
C_e=zeros(m1,n1+m1); 
C_e(:,n1+1:n1+m1)=eye(m1,m1); 
n=n1+m1; 
h(1:m1,:)=C_e; 
f(1:m1,:)=C_e*A_e; 
for kk = 2:Np 
    h(kk,:)=h(kk-1,:)*A_e; 
    f(kk,:)=f(kk-1,:)*A_e; 
end 
v=h*B_e; 
G=zeros(Np,Nc); 
G(:,1)=v; 
for i=2:Nc 
    G(:,i)=[zeros(i-1,1);v(1:Np-i+1,1)]; 
end 
BarR=ones(Np,1); 
H_H=G'*G; 
H_F=G'*f; 
H_R=G'*BarR; 

 

Appendix - C3: DMPC Matlab Program  

clc 
clear all 

  
%Get state space system 
Ap=[-0.0217,-0.3141;0.3141,0.7636];%Get KENNY state space system 
 Bp=[0.3141;0.2364];%proportional gain initialisation 
% ki=0.009;%integral gain initialisation 
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% landa=0.9;%Fractional order initialisation for kenny 
%Get Kj. 
 Cp=[-1,2]; 
% Ap=[1 1;0 1];%settles at Np=7 and Ki=0.00007 
% Bp=[0.5;1];Cp=[1 0]; 
Dp=0;Np=20;Nc=3; 
%Get prediction matrices and hessian matrix noting that matrix H is 

our 
%matrix Gp. 
%  [H,H_H,H_F,H_R,A_e,B_e,C_e] =predictivegain1(Ap,Bp,Cp,Nc,Np); 
[H,f,Rs,H_H,H_F,H_R,A_e,B_e,C_e] =predictGainMIMO22(Ap,Bp,Cp,Nc,Np); 
% [Np,Nc]=size(H); 
[n,n_in]=size(B_e); 
xm=[0;0]; 
Xf=zeros(n,1); 
N_sim=40; 

  
r=ones(N_sim,1); 
u=0; % u(k-1) =0 
y=0; 
for kk=1:N_sim; 
DeltaU=inv(H_H+0.1*eye(Nc,Nc))*(H_R*r(kk)-H_F*Xf); 
deltau=DeltaU(1,1); 
u=u+deltau; 
u1(kk)=u; 
y1(kk)=y; 
xm_old=xm; 
xm=Ap*xm+Bp*u; 
y=Cp*xm; 
Xf=[xm-xm_old;y]; 
end 
k=0:(N_sim-1); 
figure 
subplot(211) 
plot(k,y1) 
xlabel('Sampling Instant') 
legend('Output') 
subplot(212) 
plot(k,u1) 
xlabel('Sampling Instant') 
legend('Control') 

 

Appendix - C4: DMPC Matlab Program for Reactive Column Control 

Example 

 

clear all 
Ap=[0.9972 0.0029 -0.0003;-0.0059 0.9930 -0.0003;-0.0012 -0.0062 

0.9946]; 
Bp=[0.0002 0.0002 -0.0125;-0.0007 0.0016 -0.0697;0.0016 0.0066 -

0.2779]; 
Cp=[-12.8264 4.0787 -0.16808;-3.7502 -0.8260 -1.996;-6.2676 -17.6851 

-0.7126]; 
Dp=0; 
% Ap=[-0.0019 0.0024 -0.0009;-0.0034 -0.0043 -0.0008;-0.0009 -0.0052 

-0.0055];Np=200;Nc=50; 
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% Bp=[0.0003 0.0013 -0.0566;-0.0005 0.0019 -0.0822;0.0025 0.0067 -

0.2818]; 
% Cp=[-12.8258 4.0787 -0.1685;-3.752 -0.8266 -1.9955;-6.2674 -

17.6857 -0.7129];landa0.0000009 
% Ap=[0.9981 0.0024 -0.0009;-0.0034 0.9957 -0.0008;-0.0009 -0.0052 

0.9945]; 
% Bp=[0.0003 0.0013 -0.0565;-0.0005 0.0019 -0.0818;0.0025 0.0067 -

0.2808]; 
% Cp=[-12.8258 4.0787 -0.1685;-3.752 -0.8266 -1.9955;-6.2674 -

17.6857 -0.7129]; 
% Dp=0; 
RC=ss(Ap,Bp,Cp,Dp); 
Np=200; 
Nc=50; 
[H,f,Rs,H_H,H_F,A_e,B_e,C_e] =predictGainMIM22(Ap,Bp,Cp,Nc,Np); 
% [H,H_H,H_F,A_e,B_e,C_e] =predictGainMIMO(Ap,Bp,Cp,Nc,Np); 
% [H,f,Rs,H_H,H_F,H_R,A_e,B_e,C_e] 

=predictGainMIMO22(Ap,Bp,Cp,Nc,Np); 
[n,n_in]=size(B_e); 
[m1,n1]=size(Cp); 
[n1,n_in]=size(Bp); 
 xm=zeros(n1,1); 
 Xf=zeros(n,1); 

  
 N_sim=200; 
r1=70.75*ones(1,N_sim+10); 
r2=71.31*ones(1,N_sim+10); 
r3=89.45*ones(1,N_sim+10); 
% r2=-0.0275*ones(1,N_sim+10); 
r=[r1;r2;r3]; 
n=n1+m1; 
u=zeros(n_in,1);y=zeros(m1,1); 
h_r=(H_F(:,4:6)); 
for kk=1:N_sim; 
DeltaU1=inv((H_H+(0.0000009*eye(Nc,Nc))))*(((h_r*r(:,kk))-

(H_F*Xf))); 
deltau=DeltaU1(1:n_in,1); 

  
%    DeltaU2=inv(H_H+0.1*eye(Nc,Nc))*(H_R*sp(kk)-H_F*Xf);  
%    deltau2=DeltaU2(1,1); 
%    deltau=[deltau1;deltau2]; 
u=u+deltau; 
u1(:,kk)=u; 
y1(:,kk)=y; 
xm_old=xm; 
xm=Ap*xm+Bp*u; 
y=Cp*xm; 
Xf=[xm-xm_old;y]; 
end 
k=0:(N_sim-1); 
plot(k,y1(1,:),'r',k,y1(2,:),'g',k,y1(3,:)) 

 

Appendix - C5: FOPPI Matlab Program  

clc 
clear all 
% Ap=[1 1;0 1];%settles at Np=7 and Ki=0.00007 
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% Bp=[0.5;1];Cp=[1 0]; 
% D=0; 

  
%   Dp=0; 

  
%Get state space system 
Ap=[1 1 0;0 1 0;1 1 1];%settles at Np=7 and Ki=0.00007 
Bp=[0.5;1;0.5];Cp=[0 0 1];%Kp=0.000099 
% Dp=0; 
Np=7;Nc=7; 
%Get prediction matrices and hessian matrix noting that matrix H is 

our 
%matrix Gp. 
[H,f,BarR,H_H,H_F,H_R,A_e,B_e,C_e] =predictivegain1(Ap,Bp,Cp,Nc,Np); 
%  [H,F,Rs,H_H,H_F,H_R,A_e,B_e,C_e] 

=predictivegain1(Ap,Bp,Cp,Nc,Np); 
% [Np,Nc]=size(H); 

  

  
G(1,:)=H(1,:); 
sigmal=zeros(Nc,Nc); 
sigmalnew=zeros(Nc,Nc); 
sigmalopre=zeros(Nc,Nc); 

  
% G1(1,:)=zeros(1,Nc); 
% G2(1,:)=zeros(1,Nc); 
% G3(1,:)=zeros(1,Nc); 
% G4(1,:)=zeros(1,Nc); 
% %Get Gp&Gj from second row  
for i= 2:Np 
    G(i,1)=H(i,1)-H(i-1,1);%Get Gp first column  
    G(i,2:Nc)=G(i-1,1:Nc-1);%Get Gp from second row  
%     G1(i,:)=H(i-1,:);%Get Gj from second row  
%     G2(i,:)=G1(i-1,:); 
%     G3(i,:)=G2(i-1,:); 
%     G4(i,:)=G3(i-1,:); 
end 
ki=0.00351; 
kp=0.00007; 
%  ki=0.15; 
% kp=0.15;%proportional gain initialisation with KENNY 
% ki=0.3;%integral gain initialisation 
landa=0.9;%Fractional order initialisation 
%Get Kj. 
 b=1;k=ki; 
for i=1:Nc 
    if i<2 
        b(1)=-landa; 
        k(1)=-landa*ki; 
    else 
    b(i)=(1-(1+landa)/i)*b(i-1)*ki; 
    k(i)=(-(1+landa)/i)*b(i-1); 
    end 
end 
% kj2=(1-((1+landa)/2))*ki;kj3=(1-((1+landa)/3))*kj2;kj4=(1-

((1+landa)/4))*kj3; 
% k1=-(1+landa)*ki;k2=-((1+landa)/2)*kj2;k3=-((1+landa)/3)*kj3;k4=-

((1+landa)/4)*kj4; 
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for i= 1:Nc 
%     i 
%%calling Gj generator 
Gj =matrixG1(H,Nc); 
sigmalnew=(k(i)*(Gj'*Gj)); 

  
H=Gj; 

  
sigmal=sigmalnew+sigmalopre; 
sigmalopre=sigmalnew; 
% sigmal=k(j)*Gj; 
end 
%% 
%Get the summation term - last term of the control law -Product of 

KjGj... 

  

  
%sigmal=(k1*(G1'*G1))+(k2*(G2'*G2))+(k3*(G3'*G3))+(k4*(G4'*G4)); 
Xxx=(kp*(G'*G))+(ki*(H'*H))+sigmal+(0.18*eye(Nc,Nc)); 
%Get the teta function which is the only inverse operation 
[n,n_in]=size(B_e); 
xm=zeros(size(Bp)); 
Xf=zeros(n,1); 
N_sim=80; 
r=ones(1,N_sim);%desired reference 
l11=eye(Nc); 
l=l11(1,:); 
l2=l'; 
u=0; 
y=0;D=0;v=0; 
 m=eye(2);  
for kk=1:N_sim 
%  v=[zeros(N_sim/2,1);0.1*ones(N_sim/2,1)];  
%    v=[zeros(N_sim/80,1);ones((79*N_sim/80),1)]; 
   deltaU=(ki*(Xxx\H')*l2)*((r(kk)*H_R)-

(H_F*Xf))'+(kp*(Xxx\G')*l2)*((r(kk)*H_R)-

(H_F*Xf))'+((Xxx\sigmal)*l2)*((r(kk)*H_R)-(H_F*Xf))'; 
    dU=deltaU(1,1); 
u=u+dU; 
 xm_old=xm; 
xm=Ap*xm+Bp*u; 
    y=Cp*xm; 
    Xf=[xm-xm_old;y]; 
    u1(kk)=u; 
    y1(kk)=y; 
end 
k=0:(N_sim-1); 
figure 
subplot(211) 
plot(k,y1,k,v) 
xlabel('Sampling Instant') 
legend('Output Signal') 
subplot(212) 
plot(k,u1) 
xlabel('Sampling Instant') 
legend('Control Signal') 
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Appendix - C6: FOPPI Matlab Program showing Disturbance Rejection 

Property of the Controller 

clc 
clear all 
% [Ap,Bp,Cp,Dp]=state space system model 
Ap=[-0.0217,-0.3141;0.3141,0.7636];%Get KENNY state space system 
Bp=[0.3141;0.2364];%proportional gain initialisation 
% ki=0.009;%integral gain initialisation 
% landa=0.9;%Fractional order initialisation for kenny 
%Get Kj. 
Cp=[-1,2]; 
  Dp=0; 

  
%Get state space system 
% Ap=[1 1 0;0 1 0;1 1 1];%settles at Np=7 and Ki=0.00007 
% Bp=[0.5;1;0.5];Cp=[0 0 1];%Kp=0.000099 
% Dp=0; 
Np=7;Nc=7; 
%Get prediction matrices and hessian matrix noting that matrix H is 

our 
%matrix Gp. 
 [H,H_H,H_F,H_R,A_e,B_e,C_e] =predictivegain11(Ap,Bp,Cp,Nc,Np); 
% [Np,Nc]=size(H); 

  

  
G(1,:)=H(1,:); 
sigmal=zeros(Nc,Nc); 
sigmalnew=zeros(Nc,Nc); 
sigmalopre=zeros(Nc,Nc); 

  
% G1(1,:)=zeros(1,Nc); 
% G2(1,:)=zeros(1,Nc); 
% G3(1,:)=zeros(1,Nc); 
% G4(1,:)=zeros(1,Nc); 
% %Get Gp&Gj from second row  
for i= 2:Np 
    G(i,1)=H(i,1)-H(i-1,1);%Get Gp first row  
    G(i,2:Nc)=G(i-1,1:Nc-1);%Get Gp from second row  
%     G1(i,:)=H(i-1,:);%Get Gj from second row  
%     G2(i,:)=G1(i-1,:); 
%     G3(i,:)=G2(i-1,:); 
%     G4(i,:)=G3(i-1,:); 
end 
 ki=0.15; 
kp=0.15;%proportional gain initialisation 
% ki=0.3;%integral gain initialisation 
landa=0.9;%Fractional order initialisation 
%Get Kj. 
 b=1;k=ki; 
for i=1:Nc 
    if i<2 
        b(1)=-landa; 
        k(1)=-landa*ki; 
    else 
    b(i)=(1-(1+landa)/i)*b(i-1)*ki; 
    k(i)=(-(1+landa)/i)*b(i-1); 
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    end 
end 
% kj2=(1-((1+landa)/2))*ki;kj3=(1-((1+landa)/3))*kj2;kj4=(1-

((1+landa)/4))*kj3; 
% k1=-(1+landa)*ki;k2=-((1+landa)/2)*kj2;k3=-((1+landa)/3)*kj3;k4=-

((1+landa)/4)*kj4; 

  
for i= 1:Nc 
%     i 
%%calling Gj generator 
[Gj] =matrixG11(H,Nc); 
sigmalnew=(k(i)*(Gj'*Gj)); 

  
H=Gj; 

  
sigmal=sigmalnew+sigmalopre; 
sigmalopre=sigmalnew; 
% sigmal=k(j)*Gj; 
end 
%% 
%Get the summation term - last term of the control law -Product of 

KjGj... 

  

  
%sigmal=(k1*(G1'*G1))+(k2*(G2'*G2))+(k3*(G3'*G3))+(k4*(G4'*G4)); 
Xxx=(kp*(G'*G))+(ki*(H'*H))+sigmal+(0.2*eye(Nc,Nc)); 
%Get the teta function which is the only inverse operation 
[n,n_in]=size(B_e); 
xm=zeros(size(Bp)); 
Xf=zeros(n,1); 
N_sim=100; 
r=ones(N_sim,1);%desired reference 
l11=eye(Nc); 
l=l11(1,:); 
l2=l'; 
u=0; 
y=0;D=0;v=0; 
 m=eye(2); td=0.00005; k11=0.000001:0.000001:0.0001; 

  
%Introduce 25% disturbance signal 'v' 
 v=0.25*heaviside(k11-td); 
for kk=1:N_sim 

  
   deltaU=(ki*(Xxx\H')*l2)*((r(kk)*H_R)-

(H_F*Xf))'+(kp*(Xxx\G')*l2)*((r(kk)*H_R)-

(H_F*Xf))'+((Xxx\sigmal)*l2)*((r(kk)*H_R)-(H_F*Xf))'; 
    dU=deltaU(1,1); 
u=u+dU; 
 xm_old=xm; 
xm=Ap*xm+Bp*u+v(kk)*m(:,1); 
    y=Cp*xm; 
    Xf=[xm-xm_old;y]; 
    u1(kk)=u; 
    y1(kk)=y; 
end 
k=0:(N_sim-1); 
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Appendix - C7: FOPPI Matlab Program for Reactive Distillation Column 

Control Example 

%Get state space system 
 

Ap=[0.9972 0.0029 -0.0003;-0.0059 0.9930 -0.0003;-0.0012 -0.0062 

0.9946]; 
Bp=[0.0002 0.0002 -0.0125;-0.0007 0.0016 -0.0697;0.0016 0.0066 -

0.2779]; 
Cp=[-12.8264 4.0787 -0.16808;-3.7502 -0.8260 -1.996;-6.2676 -17.6851 

-0.7126]; 
Dp=0; 

  
Np=60; 
Nc=15; 
% 

[H,f,Rs,H_H,H_F,H_R,A_e,B_e,C_e]=predictGainMIMO22(Ap,Bp,Cp,Nc,Np); 
[H,f,Rs,H_H,H_F,A_e,B_e,C_e] =predictGainMIMO22(Ap,Bp,Cp,Nc,Np); 

  
G(1,:)=H(1,:); 
sigmal=zeros(Nc,Nc); 
sigmalnew=zeros(Nc,Nc); 
sigmalopre=zeros(Nc,Nc); 
% kp=-1.95;%proportional gain initialisation 
% ki=-2.9;%integral gain initialisationMalaysia 
 kp=0.000000049;%proportional gain initialisation 
 ki=0.00000049;%integral gain initialisation 

  
landa=0.7; 
for i= 2:Nc 
    G(i,1)=H(i,1)-H(i-1,1);%Get Gp first column  
    G(i,2:Nc)=G(i-1,1:Nc-1);%Get Gp from second row  
%     G1(i,:)=H(i-1,:);%Get Gj from second row  
%     G2(i,:)=G1(i-1,:); 
%     G3(i,:)=G2(i-1,:); 
%     G4(i,:)=G3(i-1,:); 
end 

  
b=1;k=ki; 
for i=1:Nc 
    if i<2 
        b(1)=-landa; 
        k(1)=-landa*ki; 
    else 
    b(i)=(1-(1+landa)/i)*b(i-1)*ki; 
    k(i)=(-(1+landa)/i)*b(i-1); 
end 
end 
for i= 1:Nc 
%     i 
%%calling Gj generator 
Gj =matrixG1(H,Np,Nc); 
sigmalnew=(k(i)*(Gj'*Gj)); 

  
H=Gj; 

  
sigmal=sigmalnew+sigmalopre; 
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sigmalopre=sigmalnew; 
% sigmal=k(j)*Gj; 
end 

  
% y=zeros(m1,1); 
% u=zeros(n_in,1); 
Xxx=(kp*(G'*G))+(ki*(H'*H))+sigmal+(0.00018*eye(Nc,Nc)); 
[m1,n1]=size(Cp); 
[n1,n_in]=size(Bp); 
y=zeros(m1,1); 
u=zeros(n_in,1); 
xm=zeros(n1,1); 
N_sim=2000; 
r1=zeros(1,N_sim+10); 
r2=zeros(1,N_sim+10); 
r3=ones(1,N_sim+10); 
sp=[r1;r2;r3]; 
n=n1+m1; 
% Xf=[zeros(2,1);zeros(2,1)]; 
Xf=[xm; y]; 
h_R=(H_F(:,4:6)); 
for kk=1:N_sim; 
% deltaU=((kp*inv(Xxx)*G'))*((H_R*sp(:,kk))-(H_F*Xf)); 
 deltaU=((ki*(Xxx\H'))*((h_R*sp(:,kk))-

(H_F*Xf)))+((kp*(Xxx\G'))*((h_R*sp(:,kk))-

(H_F*Xf)))+(((Xxx\sigmal))*((h_R*sp(:,kk))-(H_F*Xf))); 
deltau=deltaU(1:n_in,1); 

  
%    DeltaU2=inv(H_H+0.1*eye(Nc,Nc))*(H_R*sp(kk)-H_F*Xf);  
%    deltau2=DeltaU2(1,1); 
%    deltau=[deltau1;deltau2]; 
u=u+deltau; 
u1(:,kk)=u; 
y1(:,kk)=y; 
xm_old=xm; 
xm=Ap*xm+Bp*u; 
y=Cp*xm; 
Xf=[xm-xm_old;y]; 
end 
k=0:(N_sim-1); 
figure 
plot(k,y1(1,:),'r',k,y1(2,:),'g',k,y1(3,:)) 
% plot(k,y1(1,:),'r',k,y1(2,:),'g') 

 

Appendix - C8: FOPPI Matlab Program for Minh Petroleum Distillation 

Control Example 

clear all 
Ap=[-0.5105 0;0 -0.5105];%MalaysiaColumn 
Bp=eye(2); 
Cp=[0.0021 -0.0031;-0.0026 0.0037]; 
%SlovakiaColumnStartsHere 
% Ap=[-0.2616 0;0 -0.2616];%MalaysiaColumn 
% Bp=eye(2); 
% Cp=[0.0040 -0.0070;-0.0011 0.0017]; 
Np=80; 
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Nc=20; 
[H,f,Rs,H_H,H_F,A_e,B_e,C_e] =predictGainMIM22(Ap,Bp,Cp,Nc,Np); 
% [H,f,BarR,H_H,H_F,H_R,A_e,B_e,C_e] 

=predictivegain1(Ap,Bp,Cp,Nc,Np); 
% 

[H,f,Rs,H_H,H_F,H_R,A_e,B_e,C_e]=predictGainMIMO22(Ap,Bp,Cp,Nc,Np); 
[n,n_in]=size(B_e); 
[m1,n1]=size(Cp); 
[n1,n_in]=size(Bp); 
 xm=zeros(n1,1); 
 Xf=zeros(n,1); 
N_sim=150; 
% r=ones(N_sim,1); 
% u=0;  
% y=0; 
r1=0.0261*ones(1,N_sim+10); 
r2=-0.0275*ones(1,N_sim+10); 
r=[r1;r2]; 
n=n1+m1; 
u=zeros(n_in,1);y=zeros(m1,1); 
h_r=(H_F(:,3:4)); 
for kk=1:N_sim; 
DeltaU1=inv((H_H+(0.00002*eye(Nc,Nc))))*(((h_r*r(:,kk))-(H_F*Xf))); 
deltau=DeltaU1(1:n_in,1); 

  
%    DeltaU2=inv(H_H+0.1*eye(Nc,Nc))*(H_R*sp(kk)-H_F*Xf);  
%    deltau2=DeltaU2(1,1); 
%    deltau=[deltau1;deltau2]; 
u=u+deltau; 
u1(:,kk)=u; 
y1(:,kk)=y; 
xm_old=xm; 
xm=Ap*xm+Bp*u; 
y=Cp*xm; 
Xf=[xm-xm_old;y]; 
end 
k=0:(N_sim-1); 
plot(k,y1(1,:),'r',k,y1(2,:),'g') 
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