
Cancer Therapy: Origin and Application

Fiona L. Roberts

Department of Mathematics & Statistics

University of Strathclyde

Glasgow, UK

April 2012

This thesis is submitted to the University of Strathclyde for the

degree of Doctor of Philosophy in the Faculty of Science.



This thesis is the result of the author’s original research. It has been composed

by the author and has not been previously submitted for examination which has

led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation

3.50. Due acknowledgement must always be made of the use of any material

contained in, or derived from, this thesis.

Signed: Date:



Acknowledgements

I would like to thank my supervisors Dr Gabriel Barrenechea and Dr Steven

Webb for all their help and support throughout the course of this PhD. I would

also like to thank the University of Strathclyde for funding my studies.

I am so grateful to my family and friends for all their support. I would especially

like to thank my Mum and sister for always being there for me, without them

this wouldn’t have been possible!

i



Abstract

In this thesis we use mathematical techniques to model two biological systems.

First, we examine the growth dynamics of the antibiotic producing bacteria

Streptomyces coelicolor and present a system of PDEs. We study the system

both numerically and analytically. Due to oscillations in the numerical solution

when solved using NAG, which uses a finite difference discretization, we change

to a finite element discretization which corrects the oscillations.

S. coelicolor also produces anticancer drugs, these can be encapsulated during

the self-assembly of nanometre-sized vesicles, BPVs (biomimetic polymer vesi-

cles) which are used as a novel targeted cancer therapy. We present a system

of ODEs that focuses on the binding kinetics between cell-surface receptors and

targeting molecules (ligands) on the BPV. We solve the system numerically,

showing there is an optimal number of ligands per BPV for optimal uptake by

tumour cells. We extend the model to allow for the infiltration of BPVs into

tumour spheroids. Numerical solutions show that the growth of the spheroid

is linear if the therapeutic BPVs are absent, and slows in the other case (for

some parameter values). Using large time asymptotics we explore regions of

parameter space where either steady states or travelling waves will occur.
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Chapter 1

Introduction

1.1 Origin of Anti-Cancer Drugs

Streptomycetes are soil-dwelling multicellular filamentous bacteria, from the

actinobacteria phylum [5], with a complex life cycle of morphological differ-

ention and metabolite production. An important feature of streptomycetes is

their metabolite production, the common antibiotic streptomycin is produced

by Streptomyces griseus and was the first drug to cure tuberculous meningitis

[81, 93]. About 60% of the world’s naturally derived antibiotics are produced by

streptomycetes [9]. This family of bacteria can not only produce antibiotics but

also anti-cancer agents [10] and tumour suppressors, hence there are extensive

studies on the growth and metabolite production of streptomycetes. The species

we focus on is Streptomyces coelicolor. The genome of strain A3(2) (which was

sequenced in 2002) gave a wealth of information which has aided the genetic

engineering of new compounds for medical use [9], for example the metabolite

undecylprodigiosin has anti-cancer properties [45, 63].

1



Introduction 2

As mentioned previously S. coelicolor has a complex life cycle. On a solid surface,

a bacterial colony starts with the germination of a single spore in a nutrient rich

environment. The hyphae emerge as a few germ tubes which grow in length by

apical tip extension and branching [34]. The hyphae grow linearly behind the

tip, with the hyphal extension being a result of new cell wall material forming at

the tip [39]. This growing network of filaments are referred to as the substrate

(vegetative) mycelium and extends into the nutrient rich environment.

S. coelicolor is a saprophyte, meaning that they degrade and utilise dead organic

matter as a nutrient source. As the colony grows localised nutrient deprivation

occurs, resulting in lysis (or breakdown) of substrate hyphae in these regions.

In responce to this S. coelicolor undergoes morphological differentiation and the

growth of aerial hyphae starts after a transient period of no growth. Aerial

hyphae are coated in a hydrophobic sheath allowing them to break the surface

tension and extend vertically above the solid media [34, 99]. Their morphological

structure is different to that of substrate mycelium, while in the substrate the

hyphae are linear and branched the aerial hyphae are helical and are the precur-

sors to the reproductive cycle. The aerial hyphae extend and septate into around

50 compartments. Each containing a copy of the linear chromosome, each com-

partment then matures into a hydrophobic spore [31]. The spores are dispersed

into new environments, if these new environments are nutrient rich then the life

cycle continues, see Figure 1.1 for a sketch of the life cycle described above.

The initiation of the secondary metabolite occurs as the aerial hyphae begin

to grow [10]. In S. coelicolor, there are four antibiotics produced; actinorhodin

(Act), undecylprodigiosin (Red), calcium-dependent antibiotic (CDA) [9] and

methylenomycin A [100]. There is no consensus as to why secondary metabolites

are produced. There is the theory of competition where the host species can

inhibit growth of other bacteria in nutrient deprived areas. A recent paper by
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Luti et al [63] shows an increased production in Red when grown together with

live or dead cultures of the bacteria Bacillus subtilis. However, in laboratory

conditions, where there is no inter-species competition for resources, metabolite

production is observed [64]. Hodgson [46] hypothesised that the origin of the

secondary metabolite was to keep the primary metabolite pathways running

when a specific nutrient was low until such time that the nutrient was restored.

Spore

Substrate mycelium

Aerial hyphae

Spore development

Antibiotic production

Figure 1.1: A sketch of streptomycetes life cycle in soil. The germination of a

spore results in a network of filaments referred to as the substrate mycelium.

As nutrient deprivation occurs, the aerial hyphae growth is initiated along with

the biosynthesis of secondary metabolites such as antibiotics. The aerial hyphae

become helical and septate into compartments which mature into spores. The

release of the spores completes the life cycle. For a review of this complex life

cycle see [34].

The growth of S. coelicolor changes when grown on different medium. We have
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described the growth on solid medium but for commercial production of sec-

ondary metabolites it is not appropriate to cultivate streptomycetes in this way.

Instead they are grown in liquid media. In this media, the morphology of the

colony changes to clumps or spherical pellets with maximum diameter of roughly

900µm, for example see Figure 1.2. It turns out that it is this cell aggregation

that is important for secondary metabolite production [64].

Figure 1.2: S. coelicolor pellet after 24 hours (diameter ∼ 260µm) of growth in

liquid media, viewed under fluorescent microscopy, the dead cells fluoresce red

and the living fluoresce green. This image was taken during a growth experiment,

see Chapter 2 for more details.

The differences in morphology of the colony changes the differentiation processes

that occur during the streptomycetes life cycle [25, 64]. It has been seen that

apoptosis (programmed cell death) plays an important role in the developing

pellets, with the pellets growing radially until an arrest which is caused by cell

death at the centre of the pellet. After a period of time, the viable mycelium

initiates growth (now referred to as the secondary mycelium) and the pellet
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radius increases again. The time of growth/arrest and final pellet density is

dependent on the initial density of the inoculum (spores).

Due to the lack of aerial hyphae differentiation in liquid cultures it is assumed

that nutrient limitation experienced by the pellets affects the antibiotic produc-

tion by the mycelium [50, 64, 91]. Nutrient depletion occurs in the centre of

the pellet, therefore nutrients must diffuse from the media into the centre of the

pellet if there is to be a resupply to that region. It is thought that the lack of

nutrient at the centre of the pellet causes lysis of cells [91] and it has been shown

by Manteca et al (2008), [64], that antibiotic production has a strong correlation

with the secondary mycelium with biosynthetic genes being activated during the

arrest phase.

The growth of this filamentous bacteria along with the production of important

metabolites is a very complex process which is still not completely understood.

Mathematical modelling the system may shed some light on the driving mech-

anisms of growth and help in the optimization of metabolite production within

an industrial setting.

Mathematical Modelling Background

There are a limited number of previous mathematical models that specifically

look at the growth of Streptomyces coelicolor but there is a large number of

models that look at other species in the genus which have similar growth prop-

erties. We shall give a review of previous mathematical models that have been

applied to the growth of bacterial pellets and also those of fungal growth despite

the size difference, nutrient translocation and filament fusion, the filamentous

growth behaviour is very similar to that of filamentous bacteria.
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Yang et al [102] presented a model for tip growth and branching for Strepto-

myces tendae. The model was extended from work in [101] and focused on the

relationship between branching and septation. The model includes deterministic

and stochastic parts; the kinetics of septation and apical extension are governed

by the deterministic whereas branching is taken to be random. Typical results

show a 2-D developing pellet that initiates growth from a single germ tube.

This produces realistic looking pellets although the authors neglect the possibil-

ity of having nutrient deficiencies, which could only be realistic at early stages

of development where no nutrient deficits occur.

Using the Yang et al model framework [101, 102], Meyerhoff at el [66] presented

a general model for the pellet development of microorganisms, focusing on the

growth of single hyphal elements. Here the authors addressed the issues of shear

stress on the pellet and nutrient limitation that occurs within a pellet due to

limited substrate diffusion, with the death of mycelium as a consequence. The

tip extension is controlled by a diffusable limiting factor present within the cell.

The model presented assumes that the spherical pellets are divided into spher-

ical layers, each layer having an averaged cell density, cell mass concentration

and substrate consumption rates. The authors extended the work in [65] in an

attempt to move from the microscopic to macroscopic scale, with the aim of

reducing the simulation time of the very detailed model presented in [66]. Again

they assume the division of pellets into rings, and hold cell density, growth and

substrate concentration constant in each layer instead of a single hypha within

each ring.

Fungal growth is very similar to that of filamentous bacteria if size is neglected,

hence we also look to previous mathematical models that describe fungal growth.

Davidson [22] presents a system of reaction-diffusion equations that have three

variables; biomass density, internal and external substrate concentrations. The
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external substrate is the energy source for the whole system. The author allows

for influx and efflux of substrate over the mycelium wall which is taken to be

proportional to the biomass density. A capped biomass growth is assumed due

to space restrictions. The hyphae movement is limited depending on the avail-

ability of internal substrate, with the internal substrate actively moving toward

high densities of biomass. Initially the system is examined in radially symmetric

space using the NAG routine D03PCF to solve the system numerically. They

found that a travelling front appeared, following a wave of biomass density de-

crease. This behaviour is reflected in the internal substrate concentration, with

the external substrate being used in regions where biomass is present (exter-

nal substrate is initially taken to be uniform in the domain). The author then

goes on to examine the growth in 2-D in a heterogeneous medium, where tiles

are used to represent the distribution of external substrate and no diffusion is

allowed between tiles.

Using work from Davidson [22], Boswell et al [13] remodelled aspects of the

fungal growth. The model assumes that hyphae growth is a result of a trail left

behind as the hyphal tip extends. The authors take into account the translo-

cation of internal nutrients within the hyphae, allowing for passive diffusion of

nutrients through the network as well as active motion toward the hyphal tip.

Anastomosis is also included and is described by a loss of hyphal tips. The

resulting model is a system of mixed hyperbolic-parabolic equations in two spa-

tial dimensions. To solve it, the system is discretized using a finite difference

scheme. After spatial discretization, the resulting ODEs are split into stiff (diffu-

sion) and nonstiff (convection) parts, with the convection terms being discretized

using flux limiters to retain positivity. This splitting method allowed the two

parts to be solved separately.

This same splitting method was presented in Boswell et al [14] for a similar
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model, in 1-D with less complex hyphal tip flux term. The system is solved

on a heterogeneous domain, determined by the initial condition assigned for

the external substrate, with glucose only present in droplets at the edge of the

domain and not at the centre where inoculation occurs. The diffusion of external

substrate is set to zero indicating no diffusion of nutrients between neighbouring

agar plates. The results show that the highest concentration of biomass would

be present in glucose rich areas, but due to reverse translocation there is biomass

present in the regions of no glucose and it is concluded that this was solely due

to diffusion.

In our work, we derived a model for S. coelicolor growth using a similar frame

work to that in Boswell et al [13]. However, due to differences between the

biological systems, we neglect the processes of translocation of nutrients and

anastomosis which do not occur in S. coelicolor growth. The flux of hyphal tips

in our system is taken to be a combination of random diffusion and directed

movement up a substrate gradient. We look at metabolite production which is

not present in [13, 14], we also assume that oxygen and substrate are limiting

factors, and within designated concentrations of these factors hyphal and tip

decay is modulated and antibiotics are produced.

As mentioned previously, S. coelicolor produces metabolites, some are classed

as anticancer drugs, for example undecylprodigiosin [45, 63]. Traditional can-

cer therapies are not cell-specific and so side-effects are observed by patients.

New targeted cancer therapies are in development in which anticancer drugs are

targeted to specific tumour cells via appropriate vectors, which should reduce

side-effects. In the next section, we shall discuss the development of these cancer

therapies.
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1.2 Targeted Cancer Therapy

A tumour initially starts as a single mutated cell. This single cell will divide

continuously, obtaining necessary nutrients from the existing surrounding tissue

vascular system. The resulting cells grow at an exponential rate into a small

mass of cells. As the mass grows, nutrients cannot diffuse adequately to the

centre of the cellular mass which results in the tumour having 3 distinct regions;

an inner necrotic core (composed of dead cells), a hypoxic (an area of low oxygen

concentration critical in tumour progression) region where the cells are quies-

cent (non-proliferating) and an outer proliferating edge. After a few weeks, the

growth rate will eventually decrease and the avascular tumour will reach a sat-

urated size (roughly 2 mm in diameter). In vivo the tumour cells typically then

express tumour angiogenesis factors (TAFs) such as vascular endothelial growth

factor (VEGF) [38, 53]. Here, angiogenesis is the growth of new blood vessels

from parent vessels. If the tumour can be vascularized, the blood supply can be

re-established giving the tumour nutrients to continue to grow. Another conse-

quence of the tumour obtaining a blood supply is the formation of metastatic

growths, as cells from the original tumour can then migrate to neighbouring tis-

sues through the blood stream forming secondary (or metastatic) tumours [44].

The most common tissues for secondary tumours are the brain, bones, adrenal

and liver. For an in-depth review of these processes see [4].

It is proposed that the accumulation of mutations in a single cell in the tumour

suppressor genes and proto-oncogenes (once mutated they become oncogenes)

that allows for cancers to develop [83]. These genes are responsible for the

regulation of cell growth and apoptosis (programmed cell death). Mutations of

these genes can cause a cell to respond differently or ignore signals received from

surrounding normal cells. There are specific pathways to ensure the genomic
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integrity of the cell, for example DNA damage repair pathways which, if switched

off, can allow the cell to progress through the cell cycle passing the mutation to

successive cell generations. There are many mutagenic and carcinogenic agents

in our environment: for example, UV light, x-rays and tobacco smoke. Some

genetic conditions can also increase a persons chance of developing cancer, for

example Li-Fraumeni syndrome is an autosomal-dominant hereditary disorder

of whom over 75% have a mutation in the TP53 gene [33]. This gene encodes

the tumour suppressor protein p53, a vital protein in regulating the cell cycle,

DNA repair and apoptosis [83] . For full details of DNA repair processes see [4].

Head and neck squamous cell carcinoma (HNSCC)

Cancer is one of the leading cause of death in the UK. Head and neck squamous

cell carcinoma (HNSCC), in particular, account for more than 500,000 new can-

cer cases worldwide each year [43]. Squamous cell carcinoma are tumours of the

epithelial cells (cells covering the surface of all tissues) these include tumours

of the nasal and oral cavities, larynx, pharynx and paranasal sinuses. There

have been great advances in cancer treatments and survival rates in general; for

example the survival rate of a woman with breast cancer is 82% after 5 years

which is a large increase to that of 30 years ago when it was only 52%, figures

taken from Cancer Research UK [1]. This is not the case however for HNSCC,

over the past 30 years the survival rate after 5 years has not increased from 50%

[49]. As with many cancers early detection is vital. Patients presenting at stage

I can have a 90% survival rate after 5 years, but if presented at stage IV the

patients have survival rates less than 40% [23]. The majority of presentations

occuring in the latter stages of the disease with noticable symptoms such as a

mass, pain or obstruction in the airways [23]. The location of the HNSCC tu-

mour can be life changing, with typical changes being to the facial appearance,
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speech impairment and problems with swallowing after surgery. The typical risk

factors for HNSCC include having a history of tabacco use and heavy alcohol

consumption. Patients with HNSCC are normally male over the age of 40 [26].

With histological examination of tumours from the head and neck it has been

proven that the human papilloma virus (HPV) subtype 16 has an etiological role,

i.e. the origin or causation, in tumour development. HPV-16 accounts for 20-

25% of HNSCC tumours [24, 94] and its role is similar to that of HPV-positive

cervical cancer. This is a growing concern as the typical risk factors don’t

apply to HPV-positive HNSCC as it presents in younger patients with lower

alcohol and tabacco consumption, and is also thought to be sexually transmitted

[43, 89, 94]. Although, a HPV-positive tumour has a better prognosis than

the HPV-negative tumour [24], possibly due to the positive tumour having less

p53 mutations which can initiate apoptosis pathways when treatment such as

ionizing radiation and chemotherapy are used [55].

Treatment of cancer varies depending on the individual patient, the type of tu-

mour and what stage the tumour has progressed to. With HNSCC in the early

stages, the traditional method of treatment is to obtain control of the tumours

environment by surgically removing the tumour and then radiation therapy (ra-

diotherapy) either before or after surgery [15]. Radiotherapy uses ionizing radi-

ation to introduce free radicals which damage the DNA by introducing double

stranded breaks. The cells will either apoptose after the mutation has been

inherited by daughter cells or it will slow their growth. Although radiotherapy

does has disadvantages, it uses free radicals which causes problems for treating

low oxygen regions of the tumour [67, 69]. The tumour will be more resistant to

the therapy as it is oxygen that makes the breaks in the DNA permanent. So,

when oxygen is low, damage to the DNA tend not to be permanent [16]. There

is also the problem that this therapy is non-specific to tumour cells. So normal
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cells, as well as tumour cells, are damaged with the radiation. This means that

continuous radiation cannot be administered. The damage uncured by the nor-

mal cells may result in the patient having side-effects which may include; dry

mouth and eyes, fibrosis, soreness and ulcers in the mouth and throat, and also

additional cancerous growths (a long term side-effect) may emerge [54].

If the tumour is at a later stage chemotherapy is also introduced [86]. This treat-

ment uses cytoxic drugs which target cells that have a high proliferation rate.

Their aim is to affect mitosis or to induce apoptosis, so more aggressive tumours

are normally more sensitive to these drugs [80]. The treatment has better results

when treating a more differentiated tumour, as regulation of apoptotic pathways

may still be intact. The drugs are delivered through the blood stream and so

normal cells, for example epithelium, that have a high proliferation rate are also

affected by the treatment, which can result in side-effects such as nausea, hair

loss and toxicity of organs [92]. The unfortunate outcome with chemotherapy,

much like an infection with antibiotics, is that the tumour can become resistant

to the drugs. Additionally, on the cell surface, pumps have been found that

actively remove the drugs from the cytosol [4].

Advancements in treatment

There have been advancements over these traditional cancer treatments, includ-

ing for example promising molecular targeting therapies such as monoclonal

antibodies. For a full review of the use of monoclonal antibodies see [38], it

has been shown that in solid tumours, such as colorectal and HNSCC, the epi-

dermal growth factor receptor (EGF-R) is overexpressed. EGF-R is a receptor

which activates a cascade of intracellular signalling when bound by a ligand.

Cetuximab is an anti-EGF-R monoclonal antibody, which interferes with the
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ligand-binding domain thereby influencing the intracellular signalling. This en-

hances the tumour cells apoptosis, prevents DNA repair mechanisms (damage

from radiation or chemotherapy is then permanent) and it also reduces normal

cell toxicity. This discovery is described as significant is found to have a limited

effect. Other targets for similar therapies have been identified, such as VEGF.

Macrophages are fully differentiated white blood cells. They play a major com-

ponent in the human immune system and have two main roles: the first is a

non-specific defence, where the macrophage will phagocytose cell debris in an

inflammatory response; the second role is antigen presentation, they phagocy-

tose a pathogen and present the antigen (normally a protein on the pathogen

surface) to an immune T-cell, which will then invoke an appropriate immune

response to the pathogen. For a general overview of macrophages and their role

in the immune system see [4].

Within the tumour microenvironment, it is common to find tumour-associated

macrophages (TAMs) which have an important role in tumour progression and

survival of the patient. It has been shown that there is a correlation between

high numbers of TAMs and poor prognosis for specific cancer types such as

breast cancer and squamous cell carcinoma [58]. The accumulation of TAMs

offers an opportunity for a targeted cancer therapy, although TAMs are not

usually tumouricidal but can be if they become activated by an antibody or a

particular signalling molecule [11]. Sometimes, when TAMs are in the hypoxic

regions of the tumour microenvironment, they can actually aid the tumour cells

by producing angiogenesis factors and factors to promote growth [58]. It has

been attempted by Griffiths et al [41] to use genetically modified macrophages

as targeted cancer agents that will exploit changes in gene expression in hypoxic

regions of tumours to express cytochrome P450, an enzyme that will activate

a chemotherapeutic agent to an active form. Their results are promising but
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transferring this treatment to in vivo is proving difficult.

Recently, biologists have been developing drug and gene delivery devices using

synthetic biomimetic polymer vesicles (BPVs) or sometimes referred to in the

literature as polymersomes. Their work follows from liposomal targeting [20, 78].

Liposomes are biological structures that are found within cells that have a lipid

bilayer morphology. They have been used as a delivery device but have recently

proven unsuccessful due to the following factors: the liposomes being leaky and

removed quickly from circulation, by the reticuloendothelial system (RES) [48].

This problem was overcome somewhat by the addition of polyethylene glycol

(PEG) to the liposomes surface, which greatly increases the circulation time [48].

Liposomes loaded with anti-cancer drugs have been modified to target cancer

cells by adding folic acid to their surface. Folate receptors are overly expressed

in cancer cells [76] and appears to be an ideal initial target [56]. Although the

expression is not exclusive to cancer cells which may lead to cytotoxicity to

normal tissue.

Liposomes are internalized by receptor-mediated endocytosis (and not by fusing

with the cell membrane) [62]. Unfortunately when loaded with DNA, the in-

tegrity of the genetic information is compromised [79] which results in liposomes

not being ideally suitable as a gene delivery vector. BPVs on the other hand are

synthetic and so can be produced with desirable characteristics which should

overcome these shortcomings of liposomal targeting.

BPVs are synthetic copolymer amphiphiles (also referred to as polymersomes

in literature) that mimic the self-assembly capabilities of phospholipids that are

found naturally in all cells (for example the cell membrane, liposomes) [27].

A complete BPVs is composed of diblock copolymers and contain hydrophobic

and hydrophilic elements. At pH<7 the diblock copolymers exist as monomers,
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when the pH is raised to a more physiological (pH ∼ 7) level the copolymers

polymerise in a similar mannor to that of lipids in cell membranes, with the

hydrophobic regions at the core and hydrophilic regions on the surface, resulting

in a stable (5-50 times tougher than liposomes [37]) nanometre-sized spheroid

with an aqueous core [59, 60]. During polymerisation it has been shown that

encapsulation of molecules, including hydrophilic components in the aqueous

core [8] and hydrophobic drugs within the membrane, are possible. Specifically,

the encapsulation of anticancer drugs has been observed such as doxorubicin

(DOX) or paclitaxel (TAX) [2], and a finding of great importance is that the

encapsulation ability of the BPV is ideal for it to be used as a vector for gene

therapy [59, 61].

As with the liposomes it is important to add molecules that can disguise the BPV

from the immune system. This is done by combining the hydrophilic copolymer

with biomimetic poly(2-methacryloxyethyl phosphorylcholine) or

PMPC, (PEG can also be used) [68]. By adding these “stealth” molecules the

circulation time of the BPV is increased greatly [59], and found to be more ad-

vantageous than using liposomes as a drug delivery system [57]. The hydropho-

bic copolymer used is poly(2-diisopropylaminoethyl methacrylate) or PDPA and

is pH sensitive, which is important for the release of the encapsulated payload

within targeted cells [68].

BPV up-take by cells

Tumour cells endocytose the BPVs (the process by which the BPVs are inter-

nalized by the cells). There are many endocytic pathways including pinocytosis

(ingestion of fluid and small particles) and phagocytosis (ingesting large parti-

cles), often referred to as cell drinking and cell eating respectively. Pinocytosis
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can be divided into 4 different pathways; macropinocytosis, clathrin-dependent,

caveolin-dependent and clathrin/caveolin independent, we shall focus our at-

tention on macropinocytosis and clathrin-dependent (also known as receptor-

mediated) pathways, as the process of BPV internalization, as discussed in [3],

is most likely due to one of these.

Macropinocytosis is the process in which relatively large volumes of non-specific

solute is internalized by the cell [88]. The process of macropinocytosis requires

2 cell surface ruffles to extend into the extracellular environment. The ruffles

subsequently join at the furthermost point, creating a vesicle and encapsulat-

ing solutes/molecules present. The vesicle is then entered into the endosomal

pathway.

Receptor-mediated endocytosis requires that a ligand binds to a specific recep-

tor on the cell surface. Underneath the cell membrane there are clathrin coated

pits. The cell membrane invaginates and then pinches off from the cell mem-

brane, creating a clathrin coated vesicle. The clathrin detaches from the vesicle

within seconds, and the resulting uncoated vesicle will enter into the endosomal

pathway. For specificity to HNSCC cells (and not normal cells) it has been pro-

posed that the targeting ligand HN-1 peptide is used [47]. For a full review of

the various endocytosis pathways see [4, 21].

Whether the BPV is internalized by macropinocytosis or receptor mediated en-

docytosis the internal process remains the same. Once internalized the BPV

enters an endosome, which naturally has a lower pH (∼ 5 − 6) [4]. A conse-

quence of entering a region of lower pH is the dissociation of the BPV which

results in the release of the BPV contents into the endosome. It has been shown

that the DNA remains viable in this lower pH as it forms a complex with the

PMPC-PDPA copolymer [59]. The sudden increase in particle number changes
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the osmotic pressure within the endosome causing it to rupture, releasing the

contents of the dissociated BPV. The pH of the cytosol is 7.2, this change in

environment results in the PMPC-PDPA losing its affinity for the DNA, which

is then becomes free within the cytosol [61]. See Figure 1.3 for a sketch of DNA

encapsulation by BPV self-assembly.

Figure 1.3: A sketch of DNA encapsulation during BPV self-assembly. Compo-

nents of the BPV exist as unimers at a low pH. When the pH rises, the unimers

combine to produce the BPV and while doing so the DNA is encapsulated.

Lomas et al [59, 60] have shown promising results using BPVs as a gene vectors,

using both Chinese hamster ovary cells and human dermal fibroblast cells, as

GFP (green fluorescent protein) was shown to be expressed in the cytosol of the

cells after internalization of BPVs containing a GFP-encoding DNA plasmid.

BPVs are very promising, not only in the targeted treatment of cancer but
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can be applied to other diseases. The research into the treatment of cancer is

ongoing, aiming to improve life expectancy and reduce the side-effects.

Mathematical Modelling Background

There is a long history of applying mathematics to the study of cancer. Specific

aspects of tumour development are generally focused on, including avascular

tumour growth, angiogenesis (the process by which a tumour becomes vascular-

ized), and cancer therapy (traditional and novel). In this section we give a short

review of some of the mathematical models in these fields.

The study of avascular tumour growth was first proposed by Thomlinson and

Gray [90] in 1955 to study the structure of lung cancer, with the avascular tu-

mours having a necrotic core due to lack of oxygen diffusion. This model has

been extended by Greenspan [40] to include a chemical inhibitor produced by

the necrosis of cells that slows the growth of the tumour, resulting in a spheroid

containing 3 distint regions; necrotic core, quiescent (non-diving cells) and a

proliferating edge. Apoptosis is an important factor in tumour development,

which is addressed by Byrne and Chaplain [17] who introduced an externally

sourced growth inhibitor, for example an anti-cancer drug or signal from neigh-

bouring cells. Ward and King [95] introduce a model that does not present

cells in different classes, rather they allow for volume fractions of living or dead

cells contained in a fixed volume. The cells reproduce or die dependent on a

concentration of external nutrient. Typical model solutions show a travelling

wave profile or growth retardation due to nutrient-deficient conditions within

the spheroid or due to necrosis. Ward and King follow up this work in [96] to

show that the passing of cellular material across the boundary of the tumour
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surface is necessary for growth saturation.

Angiogenesis is the process of vascularization which is extremely important in

the development and spread of cancer. In general, models of angiogenesis have

incorporated the release of TAFs (tumour-angiogenesis factors) from tumour

cells, resulting in vascularization of the tumour from a nearby parent vessel. The

methods commonly used to model angiogenesis are split between continuum and

discrete. In [19] Chaplain and Stuart use a system of two non-linear reaction-

diffusion equations focused on the migration of endothelial cells from a parent

vessel to a specific TAF profile. Another approach that has been used by Orme

and Chaplain [71] is to model the interaction between the tumour cells and

the vasculature, showing migration of tumour cells, regression of blood vessels

and the formation of a necrotic core. These authors continued their work to

look at the initial stages of angiogenesis [72], by modelling the formation of

capillary buds and initial branching from the parent vessel. Discrete models

appear to be better equipped to follow the individual progression of migrating

vessels, with the use of cellular atomator models being advantageous. Anderson

et al [6] discretize their continuum model which then enables them to follow of

individual sprout tips, resulting in a network of capillaries, including anastomosis

(or loops).

The treatment of cancer is an important issue, and as a result there are many

models with varying treatment types. For example, there are models which in-

clude the administration of traditional therapies such as chemotherapy drugs or

radiotherapy. Panovska et al [75] present a system of nonlinear partial differen-

tial equations that model continuous infusion of a vascular tumour and varying

different types of chemotherapy. The results include growth arrest or slowing,

or when using an anti-angiogenesis drug reverting the tumour to an avascular

state. Due to the side effects of chemotherapy, there have been novel treatments
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developed and modelled; for example, the use of tumour associated macrophages

(TAMs) [73, 98]. In these studies, the authors present systems of nonlinear par-

tial differential equations which describe infiltration of the macrophages into a

tumour spheroid. In Chapter 5, we adapt these model frameworks to include

BPV infiltration.

We mentioned previously the targeting of liposomes to cancer cells. A deter-

ministic mathematical model was presented by Ghaghada et al [36] who used

a system of ordinary differential equations to model a carrier (liposome) with

folate ligands incorporated to attach to folate receptors on the cell surface. The

model takes into account the tether length of the ligands and receptor spatial

distributions. Their results show a reasonable agreement between model simu-

lations and experimental data, and found an interesting result that when a very

large number of ligands per liposome are used, less liposomes are internalized.

We build our modelling framework from aspects of this model, and extend it to

include tumour cells, an internalized class of carrier (BPVs) and the release of

drug.

1.3 Thesis Outline

In this thesis, we aim to model two biological systems. Chapters 2 and 3 will

focus on the mathematical modelling of Streptomyces coelicolor growth and

metabolite production. Then, in Chapters 4 and 5 we move on to the mod-

elling of a novel cancer treatment, targeting BPVs to specific tumour cells.

In Chapter 2, we derive the equations that model S. coelicolor growth and

metabolite production. We first conduct a parameter sensitivity analysis. Fur-

ther numerical results indicate the presence of a travelling wave, which we anal-
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yse using travelling wave analysis.

In Chapter 3, we address numerical problems that appear in Chapter 2 by solving

a reduced growth model. We use the θ-method to discretize time, finite elements

for spatial discretization, and a quasi-Newton algorithm to solve the system in

Matlab. Initially, we test the algorithm on a simpler system that contains the

important aspects of the reduced growth model, and carry out an investigation

into the θ value and the time step, δt.

In Chapter 4, we derive a model for targeted cancer therapy, where we focus

on the binding kinetics between cancer cell receptors and ligands on the BPV

surface. We parameterize the model using values from the literature and carry

out a parameter sensitivity analysis around these base values. The numerical

simulations show a sharp transition close to t = 0, hence we conduct a singular

perturbation analysis which allows us to find analytical solutions for the inner

solution that match with these numerical observations.

In Chapter 5, we extend the model for targeted cancer therapy to include the

spatial effects within a tumour spheroid and focus on the infiltration of BPVs

into the spheroid. We implicitly introduce the concept of membrane deformation

during internalization of the BPV by varying the internalization function from

a constant rate to a Heaviside function, whereby a prescribed number of bonds

must be made between receptor and ligand before internalization can occur. We

then look at the large time behaviour of the system and conduct a bifurcation

analysis using AUTO to find travelling wave and steady state bifurcation curves

in various regions of parameter space.

We then finish (in Chapter 6) with a discussion of the work and present possible

future directions.



Chapter 2

Antibiotic Production in

Streptomyces coelicolor

2.1 Introduction

In this chapter we present a “tip and trail” type model to describe the growth of

a Streptomyces coelicolor pellet. S. coelicolor is a multicellular organism forming

filamentous colonies which develop from a single spore. In solid culture, hyphae

grow through apical tip extension and branching forms a network of filaments

(referred to as mycelium) [34]. When nutrients become limited the growth of

aerial hyphae is induced, which grow above the substrate mycelium which then

initiates the production of antibiotics [32]. Two different antibiotics are released,

one is released from the living mycelium (actinorhodin, Act) and the other is

released when the cells lyse (undecylprodigiosin, Red) [9]. The initiation of aerial

hyphae growth also signals the reproductive cycle. The aerial hyphae undergo

septation, these compartments mature into spores which will be dispersed into

22
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a new nutrient rich area.

In an industrial setting, S. coelicolor is cultured in flasks of medium (containing

nutrients for growth and development), and form spherical pellets. The process

of antibiotic production is slightly different in liquid culture as sporulation gener-

ally doesn’t occur [25, 64]. It has been shown that there are two growth phases,

separated by an arrest phase. The first phase is the growth of the substrate

mycelia described above, forming an early pellet. After some time, the hyphae

start to die (through apoptosis) at the centre which causes the arrest phase.

The second growth phase produces a new substrate from the viable mycelium,

which can then go on to produce antibiotics [64]. It has also been reported that

lack of nutrient at the centre of the pellet causes lysis and initiates the release

of metabolite activators and subsequently antibiotics [91].

2.2 Model Derivation

A short time after germination of a spore, tip cells extend outward (from the

germinated spore) with hyphae forming behind the tips. The tip cells extend

and branch creating a network of filaments. The tip cells and hyphae both

consume oxygen and substrate (the medium in which the Streptomyces is grown

and contains all the nutrients required for growth) due to movement and general

maintenance of the cells. Unlike filamentous fungi, there is no translocation of

nutrients, i.e. there is no transfer of nutrients from one area of the growing colony

to another that may be deprived, hence we assume that tip cells will actively

move to a higher concentration of oxygen/substrate. We also assume a general

random motion of hyphal tips and hyphae extension is then proportional to the

tip flux (a system referred to as tip and trail). The antibiotic is produced from
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the living mycelium (hyphae). It is not continuously produced but is dependent

on the concentration of oxygen and substrate.

The system we derive is defined by five partial differential equations for tip cell

density (number of tips per mm2), p(r, t), hyphae density (mm hyphae per mm2),

m(r, t), substrate concentration (g glucose per mm2), s(r, t), oxygen concentra-

tion (g oxygen per mm2), c(r, t), and antibiotic concentration (g antibiotic per

mm2), a(r, t), where r ∈ R
3, we use 1-D radially symmetric space, for simplicity.

The equation describing the rate of change of tips cells is given by

∂p

∂t
= − 1

r2

∂

∂r

(
r2Jp

)
+ bH(c− ĉ)H(s− ŝ)p− dback

p p− dmax
p H(ĉ− c)p, (2.1)

where Jp is the flux of the tips and H(·) are Heaviside functions. The network of

filaments produced during pellet development is due to tip cell branching, which

we assume is given by the constant rate b. If the concentration of substrate or

oxygen falls below a threshold (ŝ or ĉ, for substrate and oxygen, respectively)

we assume that the tips stop branching. The tip cells have a limited life span,

with the background death rate given by dback
p . Also, during times of stress, i.e.

when the oxygen concentration falls below a critical level, ĉ, the death rate of

the tips is increased and the additional death rate is given by dmax
p . The units

of all parameters can be found in Table 2.1.

The equation that governs the rate of change of hyphae reads

∂m

∂t
= γ |Jp| − dback

m m+ dmax
m H(ĉ− c)m, (2.2)

where hyphal extension is given by a proportion, γ, of the absolute value of the

flux of the tips, Jp. Similarly to the tip equation, hyphae die at a constant rate

dback
m which is increased by dmax

m when oxygen falls below a critical level.
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The rate of change of substrate is given by

∂s

∂t
= Ds

1

r2

∂

∂r

(
r2∂s

∂r

)
−dp

s|Jp|γ−db
sbH(c−ĉ)H(s−ŝ)p−(dcp

s p+ dcm
s m) s, (2.3)

where Ds is the diffusion coefficient of substrate and dp
s is the rate of consump-

tion associated with tip flux on substrate. The substrate is also utilised for tip

branching, which is represented by the rate of consumption db
s. General mainte-

nance of the tips and hyphae consume substrate, which are represented by the

consumption rates dcp
s , d

cm
s , respectively. The equation for oxygen is very similar

to that of substrate.

∂c

∂t
= Dc

1

r2

∂

∂r

(
r2 ∂c

∂r

)
−dp

c |Jp|γ−db
cbH(c− ĉ)H(s− ŝ)p−

(
dcp

c p+dcm
c m

)
c, (2.4)

where Dc is the diffusion coefficient of oxygen, and the costs associated with tip

movement, tip branching and general maintenance usage by tips and hyphae are

given by dp
c , d

b
c, d

cp
c and dcm

c respectively. The final equation describes the rate

of change of the antibiotic concentration and is given by

∂a

∂t
= Da

1

r2

∂

∂r

(
r2∂a

∂r

)
+ raH

(
c− ĉ

)
H
(
(ŝ− s)(s− s̄)

)
m. (2.5)

We assume that the antibiotic production is of actinorhodin, a diffusible antibi-

otic, from living hyphae during growth cessation. We assume that it is produced

at a constant rate ra by the hyphae but only during specific nutrient regions;

the substrate has to be limited for antibiotic production to be initiated but the

production will be switched off when the substrate is too low and oxygen must

be above the critical value for the cells to be viable, i.e. s̄ < s(r, t) < ŝ where

ŝ > s̄, and c(r, t) > ĉ for antibiotic production. An example of the Heaviside

function used, H
(
(ŝ− s)(s− s̄)

)
, is depicted in Figure 2.1.
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1

s̄ ŝ
substrate, s

H
( (ŝ

−
s)

(s
−
s̄)
)

Figure 2.1: Shown is a graph of H
(
(ŝ− s) (s− s̄)

)
as a function of s.

H
(
(ŝ− s) (s− s̄)

)
= 1 when s̄ < s(r, t) < ŝ and zero elsewhere.

In equations (2.1)-(2.4) there is a term to describe tip flux. We assume that the

tips move randomly via Fickian diffusion. We also assume that the tips migrate

up the concentration gradient of the substrate, which is given by a taxis term.

Hence, the tip flux in radially symmetric space is given by

Jp =

(
−Dp

∂p

∂r
+ χp

∂s

∂r

)
H(c− ĉ)H(s− ŝ),

where Dp and χ are positive constants. We include Heaviside functions, H(·),
to restrict the movement of the tips at low concentrations of the growth limiting

factors, substrate and oxygen.

2.2.1 Initial and Boundary Conditions

The system given by the equations (2.1)-(2.5) is solved on the radially symmet-

ric 1-D spatial domain [0, L] for t ≥ 0, and is subject to the following initial
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conditions

p(r, 0) = p0(r), m(r, 0) = m0(r), s(r, 0) = s0, c(r, 0) = c0, a(r, 0) = 0.

(2.6)

We use zero flux boundary conditions at the origin and a mixture of zero flux

and Dirichlet at r = L, they are as follows

at r = 0, Jp =
∂s

∂r
=

∂c

∂r
=

∂a

∂r
= 0, (2.7a)

at r = L, Jp =
∂a

∂r
= 0, and s = s0, c = c0. (2.7b)

We use Dirichlet boundary conditions for substrate and oxygen at r = L as we

assume that the pellet is grown in nutrient rich conditions, hence surrounding

the pellet there will be the constant levels of substrate and oxygen, s0 and c0,

respectively, with the domain we prescribe large enough that the hyphae and

tips do not extend to the edge of the boundary.

2.2.2 Parameter Values and Rescalings

To aid the parameter search we conducted an experiment with the aim of finding

the overall growth rate of a S. coelicolor pellet. With guidance from Dr P.

Hoskisson (SIPBS, University of Strathclyde), three, 50ml flasks of yeast extract-

malt extract (YEME) media were made. To these, at staggered times of 4 hours,

each flask was inoculated with 50µl of S. coelicolor spore culture and incubated

at 30oC on a shake platform.

After 24 hours, 5µl of culture was pipetted onto a microscope slide. To which

5µl of BacLightTM was pipetted onto the slide, mixed together with the culture

with the tip of the pipette and a coverslide was placed over the sample, with

care to remove any bubbles. This was repeated for the 20 and 16 hour samples.
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BacLightTM is a fluorescent stain that contains two nucleic acid stains, propid-

ium iodide (red) and SYTO9 (green) [85]. The staining can be viewed under

fluorescent microscopy, SYTO9 stains both living and dead cells, propidium io-

dide can only stain dead cells due to cell membrane degeneracy, hence living

cells will fluoresce green and the dead cells will fluoresce red when viewed.

We observed the samples using fluorescent microscopy, 20x objective lens. In

Figure 2.2 we show the progression of the pellet over 16-24 hours, during this

period of time we observe what appears to be linear growth of the pellet.

(i) (ii)

(iii) (iv)

Figure 2.2: S. coelicolor pellets at (i) 16 hours, (ii) 20 hours and (iii) 24 hours

after staining with BacLight. The living mycelia fluoresces green while the dead

regions fluoresce red. Progressing from 16-24 hours we observe the change in

pellet diameter and size of the necrotic core. (iv) shows the change in diameter

over the 8 hour window.
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With data provided by Dr P. Hoskisson (including the hyphal extension rate

and distances from tip to branches), we deduce that

branching rate =
hyphal extension rate

distance from tip to branch
=

20µm h−1

11µm
= 1.818h−1.

This provides us with an initial estimate to the branching rate parameter, which

will examine later in the parameter sensitivity analysis. Unfortunately, other

parameter values could not be derived from the data provided so we looked to

literature to find appropriate values.

First, for the random motion coefficient of the tip cells, Dp, we use Dp = 3.5 ×
10−6 cm2 s−1, which has been taken from Barton et al [7], which describes the

penetration of E. coli RP48 through sand-packed cores with a galactose and

peptone nutrient source, see Table I of [7]. The diffusion coefficient of oxygen

was obtained from Oostra et al [70] who presented a mathematical model to

describe oxygen limitation in (fungal) solid-state fermentation and calculated

the diffusion of oxygen coefficient from their biological experiments. We assume

our diffusion coefficient of oxygen to be comparable, Dc = 3 × 10−9 m2 s−1, see

Table II [70].

We now look the growth of fungal mycelia which is very similar to that of S.

coelicolor, albeit on a different scale. There have been multiple mathematical

models presented that describe the growth of fungal mycelia by Boswell et al

[12, 13] from which we’ve taken the diffusion coefficient for external substrate

(glucose), Ds. From [13] (Table 1), we assume a value Ds = 0.3456 cm2 day−1.

We assume the initial condition for substrate, s0, is given by s0 = 3 × 10−5

mol glucose cm−2 and we assume the decay of tips and hyphae to be given by

dback
p = dback

m = 0.5 day−1, see [12].

In the S. coelicolor model we include an increased rate of the decay of tips and

hyphae when oxygen becomes limited. We take this value to be dmax
p = dmax

m =
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20 h−1 which was presented in Meyerhoff et al (1995) in a model describing the

development of a microbial pellet [66].

Elibol and Mavituna (1999) presented a kinetic model for actinorhodin (ACT)

production by S. coelicolor and deduced their rate of ACT production at the

stationary phase of growth. Therefore we take, ra, the production of ACT

from this study to be ra = 0.137 mg ACT (g cells-h)−1 [30]. We assume that

the diffusion coefficient for ACT is the same as for the substrate, therefore

Da = 0.3456 cm2 day−1 and that ACT has a half life of 10 hours (Dr Hoskisson,

personal communication), hence we take da =
ln 2

10
= 0.0693 h−1.

Finding the individual consumption rates of substrate and oxygen due to tip

branching and tip movement has proved difficult. Therefore, inspection of the

model, we see that the rates for substrate and oxygen consumption due to tip

branching are db
s = O

(
s0

p0

)
and db

c = O

(
c0
p0

)
, respectively. The rates for sub-

strate and oxygen consumption due to the flux of the tips are dp
s = O

(
s0

m0

)
and

dp
c = O

(
c0
m0

)
, respectively. Hyphal extension is proportional to the movement

of the tips and we vary γ as no conclusive value could be found.

Other parameters such as the consumption rates of substrate or oxygen by hy-

phae or tips have been very difficult to estimate. Therefore later we will vary

these in the appropriate numerical simulations.

We introduce the following rescalings

m = m̃ms, p = p̃ps, s = s̃ss, c = c̃cs

where ms = ps = 10−2, ss = 10−4 and cs = 10−8. Using these rescalings, the

resulting system will be of O(1) with L = 1. The rescaled parameter values are

given in Table 2.1.
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Parameter Value and units Rescaled Reference

m0 10−3 (mm hyphae) mm−2 0.1 estimate

p0 10−3 (no. tips) mm−2 0.1 estimate

s0 5.4×10−5 (g glucose) mm−2 0.54 [14]

c0 9.1872×10−9 (g O2) mm−3 0.91872 [74]

a0 0 (g act) mm−3 0 estimate

Dp 1.2786 mm2 h−1 - [7]

Ds 1.44 mm2 h−1 - [13]

Dc 8.1 mm2 h−1 - [70]

Da 1.44 mm2 h−1 - estimate

χ 0.279 (g glucose mm−2)−1 mm2 h−1 2.79 × 10−5 [22]

b 1.818 h−1 - Hpc

dmax
p 20 h−1 - [66]

dmax
m 20 h−1 - [66]

dback
p 0.0208 h−1 - [12]

dback
m 0.0208 h−1 - [12]

dp
s ≈ 0.054 g glucose (mm hyphae)−1 5.4 estimate

dp
c ≈ 9.1872 × 10−6 g O2 (mm hyphae)−1 9.1872 estimate

γ
(

no. tips
hyphae

)
−1

- estimate

db
s ≈ 0.054 g glucose (no. tips)−1 5.4 estimate

db
c ≈ 9.1872 × 10−6 g O2 (no. tips)−1 9.1872 estimate

dcp
s (no. tips mm−2)−1 h−1 - estimate

dcm
s (mm hyphae mm−2)−1 h−1 - estimate

dcp
c (no. tips mm−2)−1 h−1 - estimate

dcm
c (mm hyphae mm−2)−1 h−1 - estimate

ra 0.137 × 10−4 g act (g hyphae)−1 h−1 - [30]

da 0.0693 h−1 - Hpc

ĉ - 1/3 Hpc

ŝ - 2/3 Hpc

s̄ - 1/3 Hpc

Table 2.1: The initial and parmeter values with their rescaled values for the S.

coelicolor model with a reference for their origins. Hpc = Dr Hoskisson, personal

communication.
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Although we have good approximations for the diffusion coefficients from the

literature, when it came to running simulations they had to be scaled down

to reproduce the growth of the pellet that we observed experimentally. This

also included the fine tuning of the consumption parameters db
s, d

b
c, d

p
s and dp

c .

Unfortunately there were some parameters we could not find experimentally or

in the literature, so we estimated these to give a good fit with the experiments.

Due to the uncertainty regarding these parameters, later, we shall carry out a

parameter sensitivity analysis which will highlight the parameters that are key

in affecting metabolite production and pellet growth.

2.3 Numerical Results

To solve the system we use NAG routine D03PHF, which solves parabolic PDEs

using finite differences to discretize space and then the method of lines to convert

the system of PDEs into a system of ODEs. The system of ODEs is then solved

using the backward differentiation formula or θ-scheme.

In Figure 2.3, we show the typical solution when solved using the rescaled pa-

rameter values. In (i) we show the total biomass (i.e. hyphae plus the tips).

We notice that, as time increases, the biomass moves outward from the centre

toward the substrate source. The substrate and oxygen diffuse into the pellet,

and hence a concentration gradient occurs. The growth and maintenance of the

biomass causes the substrate and oxygen to decay in the regions where biomass

is present, this reduction in nutrients results in the decay of biomass, shown

in (ii) and (iv). Hence the resulting pellet has an inner necrotic core with no

living biomass, a region of biomass which grows slowly and the outer rim where

most growth occurs due to there being the highest concentration of nutrients
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there. The antibiotic is produced by the living hyphae during nutrient depletion

conditions, hence we see antibiotic production out of phase behind the biomass,

in (iii). We set ŝ =
2

3
, s̄ =

1

3
and ĉ =

1

3
as we know from biological experiments

that the hyphae will produce antibiotic when there is roughly 2/3 of the glucose

left in the media and will stop producing it when the glucose level decreases

below 1/3 (Dr Hoskisson, personal communication).

We notice in Figure 2.3 (i) and (iii) there are oscillations present at the origin

which result in the solutions becoming negative in this region, which is not

representative of the biological system but a numerical artifact. We explore an

alternative method of solving this system in Chapter 3 to see if the oscillations

can be removed from the numerical solution.

Figure 2.4 shows the same solutions as in Figure 2.3 but depicted in a different

way. By presenting the solutions in this way we can see that the growth of

the pellet is approximately linear, which indicates the possibility of a travelling

wave, which we explore later in this chapter.
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Figure 2.3: Numerical solutions of the system (2.1)-(2.5) when solved using

NAG routine D03PHF with N = 201 grid points on [0, 1]. (i) shows the total

biomass (tips and hyphae), (ii) shows the substrate, (iii) shows the antibiotic

concentration and (iv) shows the oxygen concentration. Each line represents

the solution at successive times, the arrow indicates the direction of movement

with increasing time. Solved with the following parameter values dback
p = dback

m =

0.5, dmax
p = dmax

m = 20, b = 3, dp
s = dp

c = 10, db
s = db

c = 1, dcp
s = dcm

s = dcp
c = dcm

c =

1, γ = 400, Dp = 6.25×10−6, Ds = 6.25×10−5, Dc = 6.25×10−4, Da = 6.25×10−6

and χ = 1.25 × 10−4.
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Figure 2.4: Shows how the densities of (i) total biomass, i.e. tips and hyphae,

(ii) substrate, (iii) oxygen and (iv) antibiotic change over time when the system

(2.1)-(2.5) was solved using NAG routine D03PHF with N = 201 grid points

on [0, 1]. Solved with the following parameter values dback
p = dback

m = 0.5, dmax
p =

dmax
m = 20, b = 3, dp

s = dp
c = 10, db

s = db
c = 1, dcp

s = dcm
s = dcp

c = dcm
c = 1, γ =

400, Dp = 6.25 × 10−6, Ds = 6.25 × 10−5, Dc = 6.25 × 10−4, Da = 6.25 × 10−6

and χ = 1.25 × 10−4.
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2.3.1 Parameter Sensitivity

Obtaining all of the parameter values proved to be difficult. Of those that we

were unable to estimate, while running simulations we found the solutions were

sensitive to some paramaters. A parameter sensitivity analysis has been carried

out to give us insight into how these parameters affect pellet growth and final

hyphal and antibiotic densities.

In Figure 2.5, we vary the parameter b which represents the branching rate of

the tips. Shown in (i), (iii), (v) and (vi) are the solution profiles at the final time,

when b is varied between 1.2 and 4.8. The pellet grows through tip extension

and branching, hence when b is increased we expect that the final solution profile

will have a larger radius with a greater density, which is shown in (ii) and (iv)

respectively.

The next parameter we vary is dp
s, shown in Figure 2.6, which represents the cost

of the tip flux on substrate. As we increase dp
s, the tips consume more substrate

for the purpose of movement. We notice that the pellet radius varies slightly but

there is a much larger change in biomass density as dp
s varies. As we increase dp

s

the density of tips and hyphae decreases. The decrease in biomass density due

to the increased cost results in less living cells consuming the substrate, which

leads to less substrate being consumed which is observed in Figure 2.6 (iii).

The decrease in biomass density also affects antibiotic production and oxygen

consumption which are also decreased when dp
s is increased.
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Figure 2.5: Shown in (i), (iii), (v) and (vi) are the final time, T = 24 hours,

solution profiles for biomass, substrate, oxygen and antibiotic, respectively, for

varying values of b (shown) the branching rate of the tips. The red circles

in (i) indicates the approximate point of the leading part of the pellet, when

m+ p = 0.01. In (ii) we show the pellet radius and (iv) shows the total biomass

(at the final time) at each value of b. The remaining parameters are as in Figure

2.4.
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Figure 2.6: Shown in (i), (iii), (v) and (vi) are the final time (T = 24 hours)

solution profiles for biomass, substrate, oxygen and antibiotic, respectively, for

varying values of dp
s, cost on substrate of tip movement. In (ii) we show the

pellet radius and (iv) shows the total biomass (at the final time) at each value

of dp
s. The remaining parameters are as in Figure 2.4.
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Figure 2.7 shows the final solution profiles when we vary γ, the parameter that

represents hyphal growth due to tip extension. We would assume that by in-

creasing the rate of hyphal extension there would be an increase in biomass, but

as shown in Figure 2.7 (i) we see the opposite. There is however an increase

in hyphae density (not shown) but the density of tips is reduced hence there

is an overall decrease in pellet biomass. The decrease in biomass is due to the

increased cost of tip flux on oxygen and substrate when increasing γ, the greater

cost results in a less dense pellet. However, due to the individual increase in

hyphae, we do see an increase in antibiotic production.

We now examine the effect of varying dback
p , the parameter that represents the

background death rate of tips, shown in Figure 2.8. The background death of

tips is independent of substrate or oxygen, hence when the death rate is low

we see a higher density of biomass. Unlike previous simulations, the biomass is

present in the centre of the pellet, which results in a lower concentration of both

substrate and oxygen in the centre of the pellet due to living biomass consuming

more nutrients. As the death rate is increased, the final pellet radius and density

decrease, hence less oxygen and substrate are consumed. Due to the biomass

decrease there is also a slight reduction in antibiotic production.

The final parameter we look at is db
c, the cost of tips branching on oxygen,

see Figure 2.9. Instantly, we notice that varying this parameter has a minimal

affect on both final biomass density and pellet radius, and no effect on antibiotic

production. There is an increase of oxygen consumption with increased cost of

branching but it is not enough to reach the threshold ĉ to switch off the tip flux

or antibiotic production.
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Figure 2.7: Shown in (i), (iii), (v) and (vi) are the final time solution profiles for

biomass, substrate, oxygen and antibiotic, respectively, for varying values of γ,

hyphal growth on due to tip extension. In (ii) we show the pellet radius and (iv)

shows the total biomass (at the final time) at each value of γ. The remaining

parameters are as in Figure 2.4.
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Figure 2.8: Shown in (i), (iii), (v) and (vi) are the final time solution profiles

for biomass, substrate, oxygen and antibiotic, respectively, for varying values of

dback
p , constant rate of the background death of tips. In (ii) we show the pellet

radius and (iv) shows the total biomass (at the final time) at each value of dback
p .

The remaining parameters are as in Figure 2.4.
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Figure 2.9: Shown in (i), (iii), (v) and (vi) are the final time solution profiles for

biomass, substrate, oxygen and antibiotic, respectively, for varying values of db
c,

constant rate of the cost of tips branching on oxygen. In (ii) we show the pellet

radius and (iv) shows the total biomass (at the final time) at each value of db
c.

The remaining parameters are as in Figure 2.4.
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We have shown that by varying these parameters we can change the growth rate

and antibiotic production of the Streptomyces pellet. As expected, increasing

the branching rate b produces a larger, more dense pellet. When we increase

the cost of tip flux on the substrate, dp
s, the pellet does not decrease in size, but

becomes less dense and hence produces less antibiotic. We observe an interesting

result when varying γ, the parameter that represents hyphal growth due to tip

extension. When increasing γ the pellet remains the same size with a decreasing

density but the antibiotic production is increased. When increasing the back-

ground death rate of tips the pellet radii and density decreases, indicating that

the tips are the driving force of pellet growth. The final parameter we examined

was db
c, the cost of tip branching on oxygen. By increasing db

c we observe very

little change in biomass density and overall pellet size, although it is clear that

more oxygen is being consumed within the pellet.

2.4 Analytical Results of Radial Symmetric Growth

The purpose of this section is to find analytical solutions of the system (2.1)-

(2.4) so that we can get insight into the growth dynamics of the Streptomyces

pellet.

In an attempt to find analytical solutions and compare them to the numerical

results of the system (2.1)-(2.4), we use the properties of the Heaviside function

to separate the analytical solution into four different regions which are dependant

on substrate and oxygen concentrations. Note that we now neglect the antibiotic

equation, (2.5), since it is uncoupled from the system.

The four regions we consider correspond to:
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1. s(r, t) ≃ s0 > ŝ and c(r, t) ≃ c0 > ĉ, i.e. substrate and oxygen rich

2. s(r, t) ≃ s0 > ŝ and 0 < c(r, t) < ĉ, i.e. substrate rich and oxygen deprived

3. s(r, t) < ŝ and c(r, t) > ĉ, i.e. substrate deprived and oxygen rich

4. s(r, t) < ŝ and c(r, t) < ĉ, i.e. substrate and oxygen deprived

Region 1: s(r, t) ≃ s0 > ŝ and c(r, t) ≃ c0 > ĉ

In this scenario, we assume that the pellet is very small with the nutrients,

substrate and oxygen, unlimiting to pellet growth. Using the assumption that

substrate and oxygen is constant withing the pellet, i.e. s(r, t) ≃ s0 > ŝ and

c ≃ c0 > ĉ(r, t), the system (2.1)-(2.4) reduces to

∂p

∂t
= − 1

r2

∂

∂r

(
r2Jp

)
+
(
b− dback

p

)
p,

∂m

∂t
= γ|Jp| − dback

m m.

Note that the flux of the tips is now described by Jp = −Dp

∂p

∂r
.

The tip equation is then

∂p

∂t
=
Dp

r2

∂

∂r

(
r2∂p

∂r

)
+ (b− dback

p )p, (2.8)

which is decoupled from the rest of the system and we can solve this using sep-

aration of variables. Specifically, we let p(r, t) = T (t)R(r) to give the following:

T ′ − Tc = 0 where c is the separation constant, (2.9)

and

r2R′′ + 2rR′ + r2R

(
c− λ

Dp

)
= 0, where λ = dp − b. (2.10)
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Equation (2.9) has the solution,

T (t) = A exp(−ct), (2.11)

where A is the constant of integration. Equation (2.10) is of the form of the

spherical Bessel differential equation which has a solution of the form,

R(r) =
BJ 1

2

(kr)
√
kr

+
CY 1

2

(kr)
√
kr

, where k =

√
c− λ

Dp

, (2.12)

where B and C are constants, and J 1

2

(x) and Y 1

2

(x) are the half integer Bessel

functions of the first and second kind, respectively:

J 1

2

(x) =

√
2

πx
sin(x) and Y 1

2

(x) = −
√

2

πx
cos(x).

Therefore,

R(r) =
B′ sin(kr)

kr
− C ′ cos(kr)

kr
,

where B′ and C ′ are constants. Since the solution for p(r, t) at the origin is finite

we know that C ′ must be zero, and using the zero flux boundary condition (at

r = L) we obtain,

R(r) =
B′ sin(kr)

kr
, (2.13)

subject to the transcendental equation tan(kL)− kL = 0, which determines the

separation constant c and corresponding eigenfunctions R(r).

Hence the general analytical solution to equation (2.8) is given by

p(r, t) = E

∞∑

k=1

exp(−ct) sin(kr)

kr
, (2.14)

where E = AB′ is a constant.

Note that although sin(kr) is periodic around zero we anticipate that the linear

sum of the eigenfunctions (2.14) will approximate to give a positive function

that matches p(r, t).

We now consider what happens as oxygen becomes limiting, i.e. c(r, t) < ĉ.
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Region 2: s(r, t) ≃ s0 > ŝ and c(r, t) < ĉ

Here, we assume that the pellet has unlimited substrate but is growing under

anaerobic conditions, i.e. c(r, t) < ĉ. Using the assumption that s(r, t) ≃ s0 > ŝ

and 0 < c(r, t) < ĉ, the system (2.1)-(2.4) reduces to

∂p

∂t
= −(dmax

p + dback
p )p, (2.15)

∂m

∂t
= −(dmax

m + dback
m )m, (2.16)

∂c

∂t
= Dc

1

r2

∂

∂r

(
r2 ∂c

∂r

)
− db

cbp− c (dcp
c p+ dcm

c m) , (2.17)

which leads to the following solutions for tips and hyphae, respectively,

p(r, t) = A exp
(
− t
(
dmax

p + dback
p

) )
,

m(r, t) = B exp
(
− t
(
dmax

m + dback
m

) )
,

where A and B are constants. Thus, in an anaerobic state we expect tips and

hyphae to exponentially decline at an exponential rate given by the sum of the

background and maximum death rates, i.e. dmax
p + dback

p .

Region 3: s(r, t) < ŝ and c(r, t) > ĉ

In this situation, the pellet is growing in glucose restricted media under aerobic

conditions. This pellet is at an intermediate size with glucose deprivation oc-

curring within the pellet core. Using the assumption that 0 < s(r, t) < ŝ and
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c(r, t) > ĉ, the system (2.1)-(2.4) reduces to

∂p

∂t
= −dback

p p,

∂m

∂t
= −dback

m m,

∂s

∂t
= Ds

1

r2

∂

∂r

(
r2∂s

∂r

)
− s (dcp

s p + dcm
s m) ,

∂c

∂t
= Dc

1

r2

∂

∂r

(
r2 ∂c

∂r

)
− c (dcp

c p+ dcm
c m) .

This reduced system decouples the tips, p, and hyphae, m, equations and can

be solved easily with the solutions given by

p(r, t) = A exp
(
−tdback

p

)
, (2.18)

m(r, t) = B exp
(
−tdback

m

)
, (2.19)

where A and B are constants.

The expressions (2.18)-(2.19) are of the exponential decay of tips and hyphae

under the conditions of limited glucose but plentiful oxygen. Figure 2.10 shows

the decay of tips and hyphae at a fixed point in the domain. We see that

the solutions are exponentially decreasing. The fit between the analytical and

numerical solutions are very good for early times corresponding to glucose re-

stricted, aerobic media conditions.
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Figure 2.10: Log plot of the analytical solution of the tip equation (top) and

hyphae equation (bottom), for fixed space versus time, matched to the corre-

sponding numerical solution, with dback
p = 0.5. We choose A and B to best fit the

numerical data, the values are A = B = 0.45 and in the region where 0 < s < ŝ

and c > ĉ.
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Region 4: s(r, t) < ŝ and c(r, t) < ĉ

Here, we are assuming that the pellet grows in glucose and oxygen deprived

conditions. The pellet is fully developed with glucose and oxygen deprivation

at the core. Using the assumption that 0 < s(r, t) < ŝ and 0 < c(r, t) < ĉ, the

system (2.1)-(2.4) reduces to

∂s

∂t
= Ds

1

r2

∂

∂r

(
r2∂s

∂r

)
− s (dcp

s p+ dcm
s m) ,

∂c

∂t
= Dc

1

r2

∂

∂r

(
r2 ∂c

∂r

)
− c (dcp

c p+ dcm
c m) ,

with the equations for tips and hyphae given by (2.15) and (2.16), respectively.

We solve these cases, and in particular we wish to have the solution for the tips,

p(r, t), as it is the tips that determine the growth rate and overall size of the

pellet. We have

∂p

∂t
= −p

(
dmax

p + dback
p

)
,

∂m

∂t
= −m

(
dmax

m + dback
m

)
,

the solutions of which are given by

p(r, t) = A exp
(
−t(dmax

p + dback
p )

)
,

m(r, t) = B exp
(
−t(dmax

m + dback
m )

)
,

where A and B are constants. Again, we see that in glucose and oxygen depleted

areas, tips and hyphae decay exponentially with the exponent dmax
p + dback

p .

2.5 Travelling Wave Analysis

When looking at the numerical results in Figure 2.3 we notice that there is

a wave-like advancement through the domain, hence in this section we carry

out a travelling wave analysis. For simplicity we explore a reduced system of
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partial differential equations derived from the S. coelicolor model, (2.1)-(2.5).

A travelling wave is described as a wave of constant shape propagating with

constant speed. First, we compare the reduced system (derived from (2.1)-(2.4),

at this stage we neglect the antibiotic as it is decoupled from the system) to the

S. coelicolor growth model. We then carry out the analytical travelling wave

analysis on the reduced system.

The system (2.1)-(2.4) is solved using NAG routine D03PHF in Fortran, with

an initial seeding of biomas (hyphae and tips) at the origin in an oxygen and

substrate enriched media with boundary conditions described by (2.7). For the

corresponding solution profiles see Figure 2.3.

From numerical simulations such as that shown in Figure 2.3 (and the parameter

sensitivity analysis) we see that substrate is the key limiting growth factor.

Typically, we observe that c > ĉ. Hence, setting c > ĉ and assuming that the

consumption rate of substrate by hyphae, dcm
s , is small we can reduce the model

to two partial differential equations by decoupling the equations for hyphae and

oxygen, (2.2) and (2.4) respectively, to give

∂p

∂t
= − ∂

∂x

(
Jp

)
+ bpH(s− ŝ) − dback

p p, (2.20)

∂s

∂t
= Ds

∂2s

∂x2
− dp

s|Jp|γ − db
sbpH(s− ŝ) − dcp

s sp, (2.21)

subject to the initial conditions

p(x, 0) = p0(x) and s(x, 0) = 1,

with the following boundary conditions

Jp = 0,
∂s

∂x
= 0, at x = 0,

Jp = 0, s = 1, at x = 1.

We should note that by changing the coordinate system we do not resolve the
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numerical problem of oscillations close to the origin in the tip solution, this is

examined later in Chapter 3.

To facilitate the travelling wave analysis, we regularise the Heaviside functions

replacing them with a continuous Hill function to overcome difficulties with the

Heaviside discontinuity. We write

H(s− ŝ) ≃ f(s) =
sα

ŝα + sα
with α > 1. (2.22)

The system (2.20)-(2.21) is solved again using NAG routine D03PHF in Fortran.

We compare these numerical results to the full system results when we let dcm
s =

0 (decoupling the hyphae, oxygen and antibiotic equations). The comparison

is shown in Figure 2.11. The comparison between the full S. coelicolor growth

model and the reduced model is very good when α is large, hence we now carry

out the travelling wave analysis using this reduced system.

We find the spatially homogeneous steady states by setting
∂

∂t
= 0 and

∂

∂x
= 0

resulting in

0 = bpf(s) − dback
p p,

0 = db
sbpf(s) + dcp

s sp.

The solutions of which are, p = 0 and s = s∗, p 6= 0 and s =

(
dback

p ŝα

b− dback
p

) 1

α

.

Additionally, we can deduce that the state ahead of the advancing wave is

(p, s) = (0, 1).
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Figure 2.11: Shows the comparison of of the full S. coelicolor growth model

(when dcm
s = 0), (2.1)-(2.4), to the reduced model, (2.20)-(2.21), when using

f(s) instead of H(s− ŝ), see equation (2.22), we take α = 300.

In the usual way, we seek travelling wave solutions of the form p(x, t) = P (z),

where z = x− vt and v is the constant wave speed. Substituting the travelling

wave variable into the system (2.20)-(2.21), we get

P ′′ +
v

Dpf(S)
P ′ − χ

Dp

(
PS ′

)
′

+
f ′(S)

f(S)

(
P ′ +

χPS ′

Dp

)
+
bf(S) − dback

p

Dpf(S)
P = 0,

S ′′ +
(
vS ′ − dp

s

∣∣−DpP
′ + χPS ′

∣∣γ − db
sbPf(S) − dcp

s PS
) 1

Ds

= 0,
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with

f(S) =
Sα

Ŝα + Sα
and f ′(S) =

Sα−1Ŝαα

(Ŝα + Sα)2
S ′,

where the prime denotes the derivative with respect to z. The boundary condi-

tions in terms of z are given below:

P (±∞) = 0, S(−∞) = s∗, S(+∞) = 1,

P ′(±∞) = 0 and S ′(±∞) = 0.

By letting Q = S ′ and W = P ′ we get a system of four first-order ordinary

differential equations, given by

P ′ = W, (2.23)

S ′ = Q, (2.24)

W ′ = − v

Dpf(S)
W +

χ

Dp

(
WQ+ PQ′

)
− f ′(S)

f(S)

(
W +

χPQ

Dp

)

−
bf(S) − dback

p

Dpf(S)
P, (2.25)

Q′ = −
(
vQ− dp

s

∣∣−DpW + χPQ
∣∣γ − db

sbPf(S) − dcp
s PS

) 1

Ds

, (2.26)

with

f ′(S) =
Sα−1Ŝαα

(Ŝα + Sα)2
Q.

We linearised about the steady state (P, S,W,Q) = (0, 1, 0, 0) to get a system

of the form,
dU

dz
= AU, where U = (P, S,W,Q)T

and A is the Jacobian matrix, with the eigenvalues given by det(A − λI) = 0.

Solving this characteristic equation, we obtain

λ1 = 0, λ2 = − v

Ds

< 0,

and

λ3,4 = − 1

2Dp

(
v(ŝα + 1) ±

√
(v + vŝα)2 − 4Dp(dback

p − b)(ŝα + 1)
)
.
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For (0, 1, 0, 0) to be a stable node we require,

v ≥ vmin =
2
√

(ŝα + 1)(b− dback
p )Dp

(ŝα + 1)
= 0.0079.

This places a constraint on the branching rate and decay rate of the tips, we

require b ≥ dback
p for the wavespeed to be real and biologically relevant. We

notice that

lim
α→∞

vmin = 2
√

(b− dback
p )Dp = 0.0079,

vmin is therefore an increasing function of the branching rate and the diffusion

rate of the hyphal tips (given by b and Dp, respectively), and a decreasing

function of the decay rate of the tips, dback
p .

We expect the travelling wave solutions to travel at some speed greater than

or equal to the minimum wavespeed, vmin. We can calculate the corresponding

numerical wavespeed using simulation data produced when solving the system

(2.20)-(2.21) and it is given by vn = 0.0105 which is indeed greater than the

predicted minimum wavespeed.

In Figure 2.12 we observe the effect on the minimum and numerical wavespeeds

when we vary key parameters, b, dback
p andDp which represent the branching rate,

background decay rate, and random movement of the hyphal tips, respectively.

In (i) we vary the branching rate, b, as we have previously seen in Figure 2.5

increasing b results in a larger pellet. In this case increasing b increases both the

numerical and minimum wavespeeds, although there is an overall greater increase

in numerical speed. In (ii) we vary the background death rate of the tips, dback
p ,

and we find that by increasing this the analytical and numerical wavespeeds

decrease, although it is more pronounced in the numerically obtained values. In

(iii) we vary the random movement coefficient of the tips, Dp. We would expect

an increase in wavespeed when increasing the random movement of tips and we

do see an increase in both analytical and numerical wavespeeds when we increase
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Dp, but unlike (i) and (ii) the greatest increase occurs in the analytical speed.

In all cases the analytical wavespeed (vmin) is always below the numerical speed

(vn) as we would expect.
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Figure 2.12: Shows the minimum wavespeed, vmin, and numerical wavespeed,

vn, when we vary three key parameters that occur in the expression for the

minimum wavespeed. The parameters we vary are (i) b, (ii) dback
p and (iii) Dp.

The remaining parameters are as in Figure 2.4.
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2.6 Discussion

In this chapter we present a tip and trail model that describes the growth of

a Streptomyces coelicolor pellet and the associated antibiotic production. The

Streptomyces family are of great importance for their production of secondary

metabolites, such as anti-cancer drugs and antibiotics, and by modelling the

biological system we get key information that can enhance growth and optimize

metabolite production.

The model we present is a typical tip and trail model, hence hyphal extension

arises from the movement of the tip cells which move randomly and towards

a high concentration of glucose. A network of filaments is produced through

tip branching, these process are all energetic therefore the substrate (glucose) is

consumed for branching, movement and also the general maintenance of the cells.

These process are not anaerobic hence we have included usage of the oxygen

as well. We do neglect the aerial hyphae which is a precursor to metabolite

production, but it has been shown that in submerged cultures of S. coelicolor

they do not form.

To parameterize the model we carried out a biological experiment and produced

a growth curve, this could not give all the parameters required so we looked

to literature for the remaining values. Due to the sensitivity of the system the

model parameters had to be fine tuned, with the unknown parameters estimated

to fit the observed experimental data. With uncertainty surrounding some of the

the values, we carried out a parameter sensitivity analysis which gave insight

into which parameters affected the pellet growth the most. Interestingly, we

found that when increasing γ, the hyphal extension proportionality parameter,

there was an increase in antibiotic production but an overall decrease in pellet

density.
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To find analytical solutions to the model we used the properties of the Heaviside

function to examine four cases which are determined by the concentrations of

substrate and oxygen. The case where the pellet is very small with very high

concentrations of substrate and oxygen we were able to find an analytical so-

lution for the tips for a very early time frame, this results in a good match.

We also found another analytical solution for the tips when the pellet is of in-

termediate size, where the mycelia have utilised the substrate in the centre of

the pellet causing glucose deprivation but the pellet is still small enough that

the oxygen concentration does not affect cell viability. We found this to be an

exponentially decaying solution.

The typical dynamics of the system shows a wave-like propagation into the

domain, see Figure 2.3, hence we conducted a travelling wave analysis. We found

an expression for the minimum wavespeed, vmin. The numerical wavespeed, vn,

was calculated and found to be indeed always greater than the minimum. We

can see from the vmin expression that the wave speed is an increasing function

of branching rate and tip diffusion and a decreasing function of tip decay rate,

which is to be expected.



Chapter 3

Finite Element Solutions of the

Reduced Streptomyces Model

3.1 Introduction

As discussed in Chapter 2 we continue to model the growth of Streptomyces

coelicolor, a multicellular bacterium very important in the world’s production of

antibiotics, [52], and anticancer drugs [18]. The bacterium are found naturally

in soil, but when grown for antibiotic production S. coelicolor are grown within

flasks of liquid media which contain all the nutrients required for growth. As a

result of growing the bacterium in this way, spherical pellets of biomass form,

which is not seen in soil colonies.

In Chapter 2 we described a radially symmetric reduced growth model (2.20)-

(2.21), which we solved using the NAG routine D03PHF. The typical numerical

solutions were not ideal with oscillations present, namely in the solution for the

tips, p(r, t), see Figure 2.3. As an attempt to reduce these oscillations we now

58
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turn to the use of the Finite-Element Method (FEM).

FEM involves using a “weak” formulation to approximate the PDE, where the

second derivatives are converted into first derivatives. Finite elements are most

commonly used when solving problems on complex domains due to the advan-

tageous nature of the spatial discretization. In 2-D the domain is commonly

discretized into triangles which can be refined in areas of interest.

In this chapter we first attempt to solve a simplified problem in 1-D, that con-

tains the main aspects of the reduced S. coelicolor growth model, including its

nonlinearity. This problem will play the role of a test for our numerical method

(using a quasi-Newton algorithm).

Using the numerical method formulated, with the inclusion of adaptive timestep-

ping, we solve the reduced S. coelicolor growth model and present the results.

3.2 A Simplified Problem

As a starting point and to test the numerical strategy we begin by solving the

following simplified system, with coupled variables a(x, t) and m(x, t):

∂a

∂t
+ ξ(m)D2m

∂a

∂x
−D1

∂2a

∂x2
= 0, (3.1)

∂m

∂t
+ (1 + a)m+ γD1

∣∣∣∣
∂a

∂x
+m

∣∣∣∣ = 0, (3.2)

where

ξ(m) = H(m−m∗)H(m̂−m), (3.3)

with m∗, m̂ > 0, and H is the Heaviside function defined by,

H(m) =





0 if m < 0,

1 if m ≥ 0.
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The system is solved in [0, L] × (0, T ) with initial conditions given by,

a(x, 0) =





1 if x ≤ 0.1,

0 elsewhere,

m(x, 0) = 1,

and boundary conditions,

∂a

∂x
= 0 at x = 0, x = L. (3.4)

We choose the parameter values such that transport in the problem will dominate

over diffusion, and are given by

D1 = 0.01, D2 = 3, γ = 0.1,

m̂ = 0.7, m∗ = 0.3.

This system includes all the interesting aspects of the reduced Streptomyces

model, such as the inclusion of a Heaviside function that controls the convection

of a(x, t) depending on the value of m(x, t). The system has been developed to

include the non-linear aspects seen in the reduced Streptomyces model, with the

inclusion of the absolute values which are required in the reduced growth model

(2.20)-(2.21) to account for the direction of the tip flux.

3.2.1 Time Discretization

We use as time discretization a fully implicit θ-scheme. Let us divide (0, T ) into

M time steps, with δt =
T

M
, and let us denote an = a(x, tn) where tn = nδt.

Then, the method reads

Un+1 + δtθAUn+1 + δt(1 − θ)AUn − Un = 0, (3.5)
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where U = (a,m)T , and

AU =




−D1
∂2a

∂x2
+ ξ(m)D2m

∂a

∂x

(1 + a)m+ γD1

∣∣∣∣
∂a

∂x
+m

∣∣∣∣


 .

Note that the initial conditions are given by

a0 =





1 if x ≤ 0.1,

0 elsewhere,

m0 = 1.

When θ = 1 the discretization is called implicit Euler (1st order), and Crank-

Nicolson when θ =
1

2
(2nd order [77]). In component form, (3.5) reads as follows

an+1 + δtθξ(m
n+1)D2m

n+1∂a
n+1

∂x
− δtθD1

∂2an+1

∂x2

+δt(1 − θ)ξ(mn)D2m
n∂a

n

∂x
− δt(1 − θ)D1

∂2an

∂x2
− an = 0, (3.6)

mn+1 + δtθ(1 + an+1)mn+1 + δtθγD1

∣∣∣∣
∂an+1

∂x
+mn+1

∣∣∣∣

+δt(1 − θ)(1 + an)mn + δt(1 − θ)γD1

∣∣∣∣
∂an

∂x
+mn

∣∣∣∣−mn = 0, (3.7)

where an, an+1 satisfy the boundary conditions (3.4).

The choice of an implicit scheme is due to stability reasons. Explicit schemes

were also explored but did not produce satisfactory results due to the lack of

stability.

3.2.2 Space Discretization using FEM

We now turn to the space discretization of the system (3.6)-(3.7). Let

L2(I) := {q : I → R :

∫

I

|q|2 <∞},
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and

V := {q ∈ L2(I) : q′ ∈ L2(I)} ⊆ C0(I).

Then, we multiply (3.6) by a test function q, where q ∈ V , integrate (3.6) by

parts, and apply the boundary condition given by (3.4), which results in the

following weak form

∫ L

0

an+1q + δtθD2

∫ L

0

ξ(mn+1)mn+1∂a
n+1

∂x
q

+ δtθD1

∫ L

0

∂an+1

∂x

∂q

∂x
+ δt(1 − θ)D2

∫ L

0

ξ(mn)mn∂a
n

∂x
q

+ δt(1 − θ)D1

∫ L

0

∂an

∂x

∂q

∂x
−
∫ L

0

anq = 0. (3.8)

Analogously, we multiply (3.7) by a test function v (where v ∈ L2(I)) and

integrate resulting in the weak form given by

∫ L

0

mn+1v + δtθ

∫ L

0

(1 + an+1)mn+1v + δtθγD1

∫ L

0

∣∣∣∣
∂an+1

∂x
+mn+1

∣∣∣∣ v

+ δt(1 − θ)

∫ L

0

(1 + an)mnv + δt(1 − θ)γD1

∫ L

0

∣∣∣∣
∂an

∂x
+mn

∣∣∣∣ v

−
∫ L

0

mnv = 0. (3.9)

To solve this system (3.8)-(3.9) numerically we discretize [0, L] in N intervals,

introducing the nodes

x0 = 0, xi+1 = xi + h, for i = 0, ..., N − 1,

where h =
L

N
.
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Figure 3.1: Spatial discretization is carried out using the basis functions which

satisfy ψi(xj) = δij .

Let {ψ0, ψ1, ..., ψN} be the basis for q, v which is given by the typical “hat”

function (see Figure 3.1 for a graphical representation)

ψi(x) =





x− xi−1

xi − xi−1

if x ∈ [xi−1, xi],

xi+1 − x

xi+1 − xi

if x ∈ [xi, xi+1],

0 elsewhere,

for every i = 1, .., N − 1, with

ψ0(x) =
x1 − x

x1 − x0
and ψN (x) =

x− xN−1

xN − xN−1
,

at the boundaries. These functions satisfy ψi(xj) = δij. We then let

q(x) =

N∑

i=0

qiψi(x), v(x) =

N∑

l=0

vlψl(x),
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and we approximate an+1 ≃ an+1
h and mn+1 ≃ mn+1

h , where

an+1
h =

N∑

j=0

an+1
j ψj and mn+1

h =

N∑

k=0

mn+1
k ψk.

Equations (3.8)-(3.9) are then discretized as follows:

N∑

j=0

an+1
j

∫ L

0

ψjψi + δtθD2

N∑

j=0

N∑

k=0

an+1
j mn+1

k

∫ L

0

ξ(mn+1)ψk

∂ψj

∂x
ψi

+ δtθD1

N∑

j=0

an+1
j

∫ L

0

∂ψj

∂x

∂ψi

∂x
+ δt(1 − θ)D1

N∑

j=0

an
j

∫ L

0

∂ψj

∂x

∂ψi

∂x

+ δt(1 − θ)D2

N∑

j=0

N∑

k=0

an
jm

n
k

∫ L

0

ξ(mn)ψk

∂ψj

∂x
ψi

−
N∑

j=0

an
j

∫ L

0

ψjψi = 0, (3.10)

(1 + δtθ)

N∑

j=0

mn+1
j

∫ L

0

ψjψl

+ δtθ
N∑

j=0

N∑

k=0

an+1
j mn+1

k

∫ L

0

ψjψkψl + δtθγD1

∫ L

0

∣∣∣∣
∂an+1

∂x
+mn+1

∣∣∣∣ψl

+ δt(1 − θ)
N∑

j=0

N∑

k=0

an
jm

n
k

∫ L

0

ψjψkψl + δt(1 − θ)γD1

∫ L

0

∣∣∣∣
∂an

∂x
+mn

∣∣∣∣ψl

− (1 − δt(1 − θ))

N∑

j=0

mn
j

∫ L

0

ψjψl = 0, (3.11)

for every i, l = 0, ..., N . We write this nonlinear system in the following compact

form,

G(an+1,mn+1) = 0. (3.12)

The components of G are denoted by Gi. Every integral appearing in the defi-

nition of Gi is approximated using Simpson’s Rule.
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3.2.3 A Quasi-Newton Algorithm

To compute the Jacobian for this system analytically may be very difficult and

time consuming. We therefore describe a quasi-Newton algorithm which ap-

proximates it using a finite difference method, see [51] for a full description. To

initialize the algorithm we let V = U0, and

σi = max(|Vi|, 1)ηi,

with ηi given by

ηi =





1 if Vi = 0,
Vi

|Vi|
otherwise.

We make the approximation

DG(V) ≃ J, where J = Jij, (3.13)

where each Jij is defined as follows

Jij(V) =





Gi(ǫei) −Gi(V)

ǫ
, if Vi = 0,

Gi(V + ǫeiσj) −Gi(V)

ǫσj

otherwise,

where ǫ = 10−4, and ei is the unit vector in the ith direction. Note that the

Jacobian is a sparse matrix and as a time saving process we did not compute all

entries. If the code returned an entry of the Jacobian whose absolute value is

less than 1×10−15 we set that entry to zero. Then, the quasi-Newton algorithm

is initialized by: V0 = Un, and we iterate

Vk+1 = Vk − J−1G(Vk), (3.14)
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where k is the iteration, for k = 0, 1, ... until convergence, i.e. when the error is

satisfies
∣∣∣∣J−1G(Vk)

∣∣∣∣ ≤ 10−5. At convergence we let,

Un+1 = Vk+1.

3.2.4 Numerical Results

Using the algorithm described in the previous section, we solve the simplified

problem (3.1)-(3.2), obtaining typical solutions depicted by Figure 3.2.
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Figure 3.2: The simplified system (3.12) was solved in [0, 4] with h = 0.0267 and

δt = 0.0005. The θ-scheme used is implicit Euler (θ = 1), each line represents a

time t = 0, 0.1, 0.2, ..., 2.



Finite Element Solutions of the Reduced Streptomyces Model 67

We observe the general dynamics of the system in Figure 3.2, a(x, t) travels

across the domain with time, until m(x, t) < m∗, which switches ξ(m) from 1 to

zero resulting in the transport of a(x, t) stopping and the dynamics change to

diffusion-driven. For a closer inspection of the solutions we look to Figure 3.3.

In this Figure we split the solution into four main sections, (i) when ξ(m) = 0,

(ii) and (iii) when ξ(m) = 1 for part or all of the domain, and finally (iv) when

ξ(m) = 0.

In the first column of Figure 3.3, ξ(m) = 0 resulting in the diffusive behaviour

of a(x, t), with increasing time m(x, t) decreases at different rates depending

on a(x, t). In the second column, we see that close to the origin m(x, t) ≤ m̂

resulting in ξ(m) = 1. This initiates growth and transport of a(x, t). In the third

column, transport dominates the behaviour of a(x, t) with m∗ ≤ m(x, t) ≤ m̂.

In the final column, m(x, t) ≤ m∗ resulting in ξ(m) = 0 which switches off

transport of a(x, t) and so the behaviour is again driven by diffusion.
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Figure 3.3: The system (3.12) was solved in [0, 4] with N = 251 and δt = 0.005,

with θ = 1. (a) The solution for a(x, t), (i) m > m̂, hence diffusion-driven

dynamics. (ii) The solution starts to propagate as m ≤ m̂, and transport can

be clearly seen in (iii) as m∗ < m < m̂. (iv) m < m∗ hence diffusion-driven

movement. The arrows indicate the direction of movement with increasing time.

(b) The solution for m(x, t) at different times. With m̂ = 0.7, m∗ = 0.3.
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3.2.5 A Critical Evaluation of θ

In this section we perform an evaluation of the time discretization in our problem

by varying θ. Figures 3.4-3.5 show the solution of (3.12) at time t = 0.5 and

t = 2, respectively, for varying values of θ, ranging between
1

2
≤ θ ≤ 1. The

fully implicit θ-scheme is first order accurate when θ = 1, second order accurate

when θ =
1

2
, see [77].
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Figure 3.4: The simplified system (3.12) was solved in [0, 4] with h = 0.0267 and

δt = 0.025. The solid lines represent the test system solved with varying values

of θ. The arrow represents the increasing value of θ. The dashed red line is the

system solved with δt = 0.0005 and θ = 1 as a reference solution. The solution

presented is at t = 0.5.
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Figure 3.5: The simplified system (3.12) was solved on [0, 4] with h = 0.0267

and δt = 0.025. The solid lines represent the test system solved with varying

values of θ. The arrow represents the increasing value of θ. The dashed red line

is the system solved with δt = 0.0005 and θ = 1 as a reference solution. The

solution presented is at t = 2.

To “test” the θ-scheme, we solved the system (3.12) with varying values of θ,

each with the same grid refinement h and time step δt. Clearly, from Figures

3.4-3.5 there is a diffusive effect with different θ values. We know that when

using implicit Euler the solutions look stable, Crank-Nicolson is on the edge of

the stability region and so the solutions occasionally look less stable (see [77])

which can be seen in Figure 3.4 when θ =
1

2
.

We now explore varying the time-step when solving the system (3.12) using
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Crank-Nicolson method. In Figure 3.6 we decrease the time step to gauge accu-

racy. We see that the solution for δt = 0.005 is not really different from the one

using δt = 0.0025; the solutions appear to converge when δt ≤ 0.005. We use

this information later when directly compairing Crank-Nicolson with implicit

Euler.
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Figure 3.6: The simplified system (3.12) was solved in [0, 4] with h = 0.0267 and

θ = 0.5. To gauge accuracy of the time discretization δt was varied, the chosen

values are δt = 0.022, 0.005, 0.0025.

As a check, we solve the system (3.12) with implicit Euler and varying time-

steps. We have already used a reference solution, when θ = 1, in Figures 3.4-3.5

where δt = 0.0005. In Figure 3.7 we decrease the time-step further to check this

reference line is acceptable. We notice that there is no distinct difference between



Finite Element Solutions of the Reduced Streptomyces Model 72

the solutions when solved with δt = 0.00033 or δt = 0.0005; the solutions appear

to converge when δt ≤ 0.0005. If δt = 0.0005 is used, we have an accurate

solution for this problem.
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Figure 3.7: The simplified system (3.12) was solved in [0, 4] with h = 0.0267 and

θ = 1. To gauge accuracy of the time discretization δt was varied, the chosen

values are δt = 0.005, 0.0005, 0.00033.

We now perform a direct comparison between implicit Euler and Crank-Nicolson.

When solving with Crank-Nicolson we use δt = 0.005, as we have seen in Figure

3.6 that it is accurate, with implicit Euler we use the reference solution, when

solved with δt = 0.0005. In Figure 3.8 there is no noticeable difference between

the two solutions. We can say that we have accurate solutions for both Crank-

Nicolson and implicit Euler.
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Figure 3.8: For a comparison between implicit Euler and Crank-Nicolson the

simplified system (3.12) was solved in [0, 4] with h = 0.0267, when solved with

implicit Euler and Crank-Nicolson, we set δt = 0.0005 and δt = 0.005 respec-

tively.

In conclusion, with the testing of θ and δt, when h = 0.0267, we choose Crank-

Nicolson due to the method being second order with the acceptable stability

and the fact that we observe less diffusivity. We also examined the computa-

tional cost of running implicit Euler and Crank-Nicolson, due to the very small

time step required when solving with implicit Euler is costly, Crank-Nicolson is

cheaper with less timesteps required for the same accuracy. We must include

that care must be taken when deciding a time step due to the Heaviside func-

tion, if the time step is too large information from the decay of m(x, t) is not
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fully represented by the Heaviside function, altering the solution greatly.

With the results obtained from this simplified system we are now confident in

our full numerical scheme to extend it to solve the reduced Streptomyces model.

3.3 Reduced Streptomyces Model

In this section we will extend the numerical scheme used in the previous section

to solve the (rescaled) reduced model for Streptomyces growth we described in

Chapter 2. The Streptomyces growth model is given by,

∂p

∂t
+

∂

∂x
(Jp) − bE(s)p+ dback

p p = 0, (3.15)

∂s

∂t
−Ds

∂2s

∂x2
+ db

sbE(s)p + dp
sγ |Jp| + dcp

s sp = 0. (3.16)

Recall, from Chapter 2, that the tip density is represented by p(x, t), substrate

concentration by s(x, t) and the tip flux is given by,

Jp =

(
−Dp

∂p

∂x
+ χp

∂s

∂x

)
E(s),

where

E(s) = H(s− ŝ). (3.17)

Recall that H is the Heaviside function defined by,

H(s) =





0 if s < 0,

1 if s ≥ 0.

The system is solved in the domain [0, L] with zero flux boundary conditions

given by

Jp = 0,
∂s

∂x
= 0 at x = 0, and x = L, (3.18)

and the initial conditions
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p(x, 0) =
p0

2

(
1 − tanh

(
(x− λ1)ε

−1
))

,

s(x, 0) = 1,

where ε = 10−3, λ1 = 1.25×10−6 and p0 = 0.1. The system (3.15)-(3.16) is solved

with the parameter values (see Chapter 2 for details of parameter rescalings)

Dp = 6.25 × 10−6, χ = 1.25 × 10−4, Ds = 6.25 × 10−5,

ŝ = 2/3, dback
p = 0.5, b = 3,

dcp
s = 1, γ = 400, db

s = 1,

dp
s = 10.

In the model we have a Heaviside function which acts like a switch. This controls

the regions in which the tips can grow and move depending on the concentration

of the substrate (the medium in which the Streptomyces pellet is contained and

has all the nutrients required for growth). When the substrate s(x, t) < ŝ the

tips cannot branch or migrate.

Sometimes it is appropriate to approximate functions, often to simplify the ex-

pressions as in the case of Ward and King 1997, [95], who approximated a

Michaelis-Menten type function (Hill function) with a Heaviside function. We

examine this further in the appendix, where we introduce regularized functions

to avoid the discontinuities that arise in the Heaviside function.

We adopt the same technique of time and space discretization as in the simplified

model, recall we discretize time with a θ-scheme and for spatial discretization

we use first-order piecewise linear finite elements (see Section 3.1.1 and Section

3.1.2 for full a description). The fully discretized nonlinear system reads

F(pn+1, sn+1) = 0. (3.19)
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We approximate pn+1 ≃ pn+1
h and sn+1 ≃ sn+1

h , where

pn+1
h =

N∑

j=0

pn+1
j ψj , and sn+1

h =

N∑

j=0

sn+1
j ψj ,

and write (3.19) in component form as follows

N∑

j=0

pn+1
j

∫ L

0

ψjψi +Dpδtθ
N∑

j=0

pn+1
j

∫ L

0

∂ψj

∂x

∂ψi

∂x
E(sn+1)

− χδtθ

N∑

j=0

N∑

k=0

pn+1
j sn+1

k

∫ L

0

ψj

∂ψk

∂x

∂ψi

∂x
E(sn+1) − bδtθ

N∑

j=0

pn+1
j

∫ L

0

ψjψiE(sn+1)

+ dback
p δtθ

N∑

j=0

pn+1
j

∫ L

0

ψjψi +Dpδt(1 − θ)

N∑

j=0

pn
j

∫ L

0

∂ψj

∂x

∂ψi

∂x
E(sn)

− χδt(1 − θ)
N∑

j=0

N∑

k=0

pn
j s

n
k

∫ L

0

ψj

∂ψk

∂x

∂ψi

∂x
E(sn) − bδt(1 − θ)

N∑

j=0

pn
j

∫ L

0

ψjψiE(sn)

+ dback
p δt(1 − θ)

N∑

j=0

pn
j

∫ L

0

ψjψi −
N∑

j=0

pn
j

∫ L

0

ψjψi = 0, (3.20)

N∑

j=0

sn+1
j

∫ L

0

ψjψl +Dsδtθ
N∑

j=0

sn+1
j

∫ L

0

∂ψj

∂x

∂ψl

∂x

+ db
sbδtθ

N∑

j=0

pn+1
j

∫ L

0

E(sn+1)ψjψl + dp
sγ

∫ L

0

∣∣Jn+1
p

∣∣ψl

+ dcp
s δtθ

N∑

j=0

N∑

k=0

sn+1
j pn+1

k

∫ L

0

ψjψkψl +Dsδt(1 − θ)

N∑

j=0

sn
j

∫ L

0

∂ψj

∂x

∂ψl

∂x

+ db
sbδt(1 − θ)

N∑

j=0

pn
j

∫ L

0

E(sn)ψjψl + dp
sγ

∫ L

0

∣∣Jn
p

∣∣ψl

+ dcp
s δt(1 − θ)

N∑

j=0

N∑

k=0

sn
j p

n
k

∫ L

0

ψjψkψl −
N∑

j=0

sn
j

∫ L

0

ψjψl = 0, (3.21)

for all i, l = 0, ..., N . To evaluate the integrals we use Simpson’s rule, which is

exact for polynomials degree ≤ 3 and appropriate for all the integrals presented.
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3.3.1 Assessment of the FEM Method

In this section we present numerical results for the nonlinear system F(U) = 0,

(3.19). We use the algorithm described in Section 3.2.3 to solve the nonlinear

system (3.19), to optimize the code we introduced an adaptive time step. The

implementation is as follows:

1. At convergence, if the iteration, j, of the quasi-Newton scheme is ≤ 10,

then Un+1 = Vj+1 and if

• j ≤ 2, let δn
t = 2δt,

• j > 2, let δn
t =

δt
2

.

In both cases an upper bound δn
t ≤ δini

t is placed on δn
t , where δn

t is the

time step that will be used in the next iteration and δini
t is the initial time

step used at initialization of the algorithm.

2. If after the 10th iteration the quasi-Newton scheme has not converged, we

re-start the loop with δt =
δt
4
.

Using this adaptive time stepping allows the code to reduce δt considerably when

it is required, increasing it when it’s appropriate and making sure the time step

doesn’t get bigger than δini
t to retain accuracy. We recall that the upper bound

δini
t was needed to avoid losing important features of the solution.

As concluded in Section 3.2.5, we discretize time with Crank-Nicolson (i.e. when

θ =
1

2
) as it was shown to be optimal for a similar type of problem. Here we

take in initial look at convergence of solutions when refining the mesh. We solve

the system F(U) = 0 on four different mesh sizes; h = 10−3, 5 × 10−4, 2.5 ×
10−4, 1.25×10−4, solved with the same initial timestep δini

t = 0.005. The results

are shown in Figure 3.9.
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Figure 3.9: The system (2.20)-(2.21) was solved using finite elements. The

system was solved with h = 10−3, 5 × 10−4, 2.5 × 10−4, 1.25 × 10−4, δini
t = 0.005

and the solutions are presented at time, t = 1, 2, ..., 5.

We can see from Figure 3.9 that as the mesh is refined the numerical solutions

appear to converge.

We now show the numerical solutions when solved for a longer time and to

reduce the computational expense we set h = 10−3. The solutions are shown in

Figure 3.10.
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Figure 3.10: Finite element solution solved on [0, 0.4] with 401 grid points (h =

0.001) and initial δt = 0.005. The solution is presented at time t = 4, 8, ..., 20.

The tip equation (3.15) is governed by the tip flux, tip branching and tip decay,

both flux and branching are controlled by a Heaviside switch which is dependent

on the concentration of substrate. The tips diffuse randomly and actively mi-

grate towards a high concentration of substrate, this can be seen in the solution.

As the tips consume the substrate they make the substrate gradient region move

which encourages active migration and branching of the tips, creating a wave

that travels across the domain. Behind the wave there is decay of the tips, mod-

elled by the term dback
p p in (3.15). If dback

p = 0 we would have similar solutions to
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our simplified system, (3.1)-(3.2) where there is no decay behind the wavefront.

In the biological pellet, the highest concentration of tips will be found at the

edge of the pellet, the results represent this. We also notice that the solutions

are non-oscillatory, a problem which arose when solving the system using NAG

routine D03PHF in Chapter 2.

3.4 Discussion

In this chapter we developed a finite element numerical scheme for solving the

reduced Streptomyces model by introducing a simplified problem as an initial

starting point which was then extended to the reduced Streptomyces model

framework.

When looking at the simplified problem we examined the θ-scheme. Due to the

diffusivity brought to the system when using implicit Euler (i.e. when θ = 1) we

decided to use the less diffusive Crank-Nicolson (when θ =
1

2
), which resulted

in being able to use a larger time step and obtain the same accuracy. Having

carried out this study we decided use Crank-Nicolson as the time discretization

when solving the reduced Streptomyces model.

We used the quasi-Newton algorithm developed for the simplified problem to

solve the reduced Streptomyces model. We carried out a study to test mesh

convergence, which we observe at early time. Due to the refined mesh being

computationally expensive we could only run the simulation over a short time-

frame.

The aim of this chapter was to produce non-oscillatory solutions when solving
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the reduced Streptomyces model, as in Chapter 2 oscillations were present when

solving with NAG. We hypothesize that it is the finite difference discretization of

this problem that is the cause of the observed oscillations. We previously ruled

out the choice of coordinate system as the cause due to the oscillations being

present when solving with Cartesian coordinates in NAG. We have reached our

objective, we have non-oscillatory solutions which are essentially non-negative.

3.A Appendix

In this appendix we present some interesting exploratory results. We look at

the numerical solutions when changing the substrate diffusion coefficient. By

lowering the diffusion gradient of the substrate we effectively introduce a scenario

where the liquid medium is of a different composition which may have an effect

on the biomass growth and the resulting antibiotic production. We assume that

because we see convergence of numerical solutions in Figure 3.9 that the finite

element code is working correctly. Therefore we can assume that the following

numerical results will also converge if the mesh was to be refined. Figure 3.11

shows the finite element solution with Ds = 6.25× 10−6. For a comparison with

the solution for Ds = 6.25 × 10−5 see Figure 3.12.
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Figure 3.11: Finite element solution in [0, 0.4] solved with 401 grid points (h =

0.001), initial δt = 0.005, with Ds = 6.25 × 10−6. We show time t = 4, 8, ..., 20.

Figure 3.12 shows the two solutions (Ds = 6.25 × 10−5, Ds = 6.25 × 10−6) at

time t = 4, 16. By decreasing the diffusion coefficient of the substrate, Ds, we

instantly notice the increased steepness of the gradient of s(x, t). The speed of

transport of the tips has increased with reducing Ds, this is due to the increased

gradient of s(x, t). The tips movement is driven by the chemotaxis term, χp
∂s

∂x
,

thereby increasing the distance travelled along the domain. We also observe a

decrease (an average of 18.9%) in the tip density, where density is defined as the
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integral ∫ L

0

p dx =
h

2

N∑

i=1

(
p(xi−1) + p(xi)

)
,

where h =
L

N
and N is the number of intervals in [0, L]. Having a less substrate

diffusion results in a pellet with a larger radius but its density is lower.
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Figure 3.12: Finite element solution in [0, 0.4] solved with 401 grid points (h =

0.001) and initial δt = 0.005. The blue line represents the numerical solution

when solved with Ds = 6.25×10−6. The red dahsed line represents the numerical

solution when solved with Ds = 6.25 × 10−5, at time t = 4, 16.
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3.A.1 Comparing Numerical Solutions: Heaviside Func-

tion vs Continuous Function

We stated in Section 3.3 that it is sometime necessary to regularize functions.

Here we explore numerical results when we approximate the Heaviside function,

E(s), with two continuous functions, given below.

f(s) =
sα

ŝα + sα
, (3.22)

g(s) =
1

2

(
1 + tanh

(
λ2(s− ŝ)

))
, (3.23)

where α = 800 and λ2 = 50000. If we let α → ∞ and λ2 → ∞, f(s) → E(s)

and g(s) → E(s), respectively.

We have carried out a comparison of the Heaviside function E(s), (3.17), and

the smooth function f(s), (3.22), to see if the discontinuity of E(s) has an effect

on the solution, see Figure 3.13.
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Figure 3.13: Finite element solution in [0, 0.4] solved with 401 grid points (h =

0.001) and initial δt = 0.005. The blue line represents the numerical solution

when solved with E(s). The red dashed line represents the solution when solved

with f(s), at time t = 4, 8, ..., 20.

In Figure 3.13 we compare the solution of the Streptomyces growth model when

solved with the Heaviside, E(s) and the smooth function, f(s). We can see

the solutions do vary, it appears the f(s) solution is out of phase with the

Heaviside solution, and the difference between them is growing in magnitude as

time increases. We now compare the solution when solved with the Heaviside,

E(s) and the second smooth function, g(s), see Figure 3.14.
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Figure 3.14: Finite element solution in [0, 0.4] solved with 401 grid points (h =

0.001) and initial δt = 0.005. The blue line represents the numerical solution

when solved with E(s). The red dashed line represents the solution when solved

with g(s), at time t = 4, 8, ..., 20.

Shown above in Figure 3.14, we compare the two solutions when solved with

E(s) and g(s). The comparison between the solutions is difficult to see at t = 4,

unlike Figure 3.13 where the difference is clear and grows in magnitude as time

progresses. In Figure 3.15, we show all three solutions E(s), f(s), and g(s) at

t = 4 and t = 20. This comparison lets us observe how the initial (t = 4)

differences of the three solutions progress to the final time, t = 20.
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Figure 3.15: Finite element solution in [0, 0.4] solved with 401 grid points (h =

0.001) and initial δt = 0.005 at time, t = 4, 20. The blue line represents the

solution when solved with E(s), the red dashed line represents the solution

when solved with f(s), and the green dot-dashed line when g(s) is used.

We should note that in Figures 3.13, 3.14 and 3.15 have all been solved with

Ds = 6.25 × 10−5. From the results, it is clear that care must be taken when

approximating a Heaviside function with a smooth function (if ever). In this

case, when Ds = 6.25 × 10−5, we can conclude that the only approximation we

should allow is

E(s) ≃ g(s).
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We now look at the comparison between solutions when solving with the dis-

continuous function E(s) and the two smooth functions f(s) and g(s), given

by (3.17), (3.22) and (3.23), respectively, when Ds = 6.25 × 10−6. The first

comparison, shown in Figure 3.16, is between E(s) and f(s).
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Figure 3.16: Finite element solution in [0, 0.4] solved with 401 grid points (h =

0.001) and initial δt = 0.005. The blue line represents the numerical solution

when solved with E(s). The red dashed line represents the solution when solved

with f(s), at time t = 4, 8, ..., 20.

We observe a similar outcome as in Figure 3.13, where the solutions are out of

phase and the error between them increases over time.



Finite Element Solutions of the Reduced Streptomyces Model 89

We now examine the numerical solutions of (3.19) when solved with E(s) and

g(s), shown in Figure (3.17).
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Figure 3.17: Finite element solution in [0, 0.4] solved with 401 grid points (h =

0.001) and initial δt = 0.005. The blue line represents the numerical solution

when solved with E(s). The red dashed line represents the solution when solved

with g(s), at time t = 4, 8, ..., 20.

The solutions do appear to be a good match at early time, but an error is present

and it is increasing in magnitude over time. However, the error is not as large

as in Figure 3.16 (when solved with f(s)).

In Figure 3.18 we have presented the three solutions, E(s), f(s) and g(s) at
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t = 4, 20. This figure shows the initial and final errors that appear when solving

the nonlinear system F(U) = 0, (3.19).
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Figure 3.18: Finite element solution in [0, 0.4] solved with 401 grid points (h =

0.001) and initial δt = 0.005 at time, t = 4, 20. The blue line represents the

solution when solved with E(s), the red dashed line represents the solution

when solved with f(s), and the green dot-dashed line when g(s) is used.

When solving the nonlinear system F(U) = 0 using FEM, if an approximation

of E(s) is to occur we should accept, with caution

E(s) ≃ g(s).
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We conclude that when approximating a Heaviside function with a continuous

function, a precautionary study should be carried out. We found that when

Ds = 6.25 × 10−5 or Ds = 6.25 × 10−6, the Heaviside function E(s) could be

approximated by the hyperbolic tan function g(s), but not with the Hill function

f(s). Although there is an error between solutions when using E(s) and g(s)

when Ds = 6.25 × 10−5 and Ds = 6.25 × 10−6 but the error is not as large as

when solved using f(s). An approximation can be made but with caution.



Chapter 4

Novel Targeted Cancer Therapy

4.1 Introduction

Biomimetic polymer vesicles (BPVs) are synthetic diblock copolymers that self

assemble into nanometre-sized vesicles that can encapsulate anti-cancer drugs

during assembly [2]. A novel targeted cancer therapy has been proposed to use

BPVs to specifically target HNSCC (head and neck squamous cell carcinoma)

cancer cells using the HN-1 peptide, a receptor specific to HNSCC tumour cells

[47].

The BPVs enter tumour cells via the cells endocytic pathway, there is no con-

clusive evidence for which pathway the BPVs take. We assume (based on recent

evidence, see [3]) for modelling purposes that it is by receptor-mediated endocy-

tosis. Once internalized the BPV enters an endosome which causes the BPV to

rupture due to the change in pH, and subsequently the rupture of the endosome

due to an increased osmotic pressure. The anti-cancer drug is then released into

the cells cytosol.

92
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Using targeted BPVs for cancer therapy is not limited to drug delivery, but is also

shown effective as a gene therapy delivery agent [59]. Due to the properties of the

BPVs the DNA to be delivered is protected from extracellular and intracellular

proteolic enzymes which would normally degrade the genomic integrity of the

DNA.

4.2 Model Derivation

The starting point for the modelling is the binding of the BPVs to the cancer cell

surface. Specifically the binding kinetics between receptors on the cell surface

and corresponding ligands on the BPVs. The idea is that ligands embedded on

the BPV surface bind to receptors on the tumour cell surface. A ligand-receptor

complex then arises through this binding event, thereby effectively attaching

the BPV to the tumour cell surface. We will consider multiple binding events

between BPV ligands and cell surface receptors. We also assume that any bond

can be broken resulting in the BPV dissociating from the cell surface when

previously attached by only one bond. Note that once a BPV is bound to a cell

we assume that it cannot bind to a neighbouring cell using free ligands, i.e. any

further ligand-receptor complexes that arise will be on the original cell. At some

rate the BPV will be internalized (the rate of internalization may depend on the

number of ligand-receptor bonds between the BPV and the cell, more details

later). The drug release is accounted for by lysis of the BPV at a constant rate

once internalized. See Figure 4.1 for a sketch of the processes involved in BPV

uptake.
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Figure 4.1: A sketch indicating the (i) structure of the free BPV, (ii) recep-

tor:ligand binding, (iii) cell membrane deformation during receptor-mediated

endocytosis of the BPV (iv) the rupture of the BPV releases its contents within

the endosome due to the pH change. Changes in the osmotic pressure with the

endosome causes it to rupture, releasing the BPVs contents into the cell.

We first assume that the system is well-mixed and so we ignore any spatial

effects and use a system of n + 5 ordinary differential equations (where n is

the maximum number of bound complexes) to model the system. The model

variables are: tumour cells per cm3, m(t); moles of receptor-ligand complexes

bound with j bonds per cm3, Bj(t) (with j = 1, ..., n); moles of free vesicle
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ligands per cm3, L(t); moles of cell receptors per cm3, F (t); moles of internalized

BPVs per cm3, Bin(t); and, moles of intracellular drug per cm3, P (t).

We also define the following relationships between variables,

V (t) =
L

l
, f(t) =

F

m
, bj(t) =

Bj

lm
, bin(t) =

Bin

m
and φ(t) =

P

m
, (4.1)

where V (t) is the number of free BPVs per cm3, l is the fixed moles of free

ligands per BPV, f(t) is the moles of unbound receptors per cell, bj(t) describes

the number of BPVs bound with j complexes per cell, bin(t) is the number of

internalized BPVs per cell and φ(t) describes the mole of drug per cell.

We describe how the tumour cells change over time with the following ODE,

dm

dt
=

growth︷ ︸︸ ︷
rm
(
1 − m

K

)
−

death︷ ︸︸ ︷
g(φ)m, (4.2)

where we assume that the cells undergo logistic growth at constant rate r, and

the carrying capacity of the system is K. The cell death is described by g(φ),

which we assume is constant when there is no intracellular drug present, other-

wise it is an increasing saturating function of the intracellular drug concentra-

tion.

By using the expression described in (4.1), which states that

V (t) =
L

l
=

moles of free ligands per cm3

moles of free ligands per BPV
= number of free BPVs per cm3,

we can derive an equation that describes the rate of change of free BPVs per

cm3 by using the following equation for the rate of change of ligands:

dL

dt
= −

initial receptor-
ligand binding︷ ︸︸ ︷

kaLF +

dissociation of
complex︷ ︸︸ ︷
kdB

1, (4.3)
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this equation states that, by using the law of mass action, free ligands bind to

free receptors at the rate ka, and the reverse reaction is taken at the rate kd.

Diving (4.3) by l (mole of free ligands per BPV), we get the rate of change of

free BPVs per cm3:
dV

dt
= − kaV F +

kd

l
B1. (4.4)

Remember that l is fixed and constant.

Receptor-ligand complexes bound by 1 bond changes over time by,

dB1

dt
=

initial receptor-
ligand binding︷ ︸︸ ︷

kaLF −

dissociation of
complex︷ ︸︸ ︷
kdB

1 −

association of
1→2 complexes︷ ︸︸ ︷

ka (ρllNA − 1) ρfFB
1

+

dissociation of 2→1
complexes︷ ︸︸ ︷

2kdB
2 −

internalization of
complex with 1 bond︷ ︸︸ ︷

kiB
1. (4.5)

We use the law of mass action to describe the binding kinetics. A receptor-ligand

complex bound by one bond occurs by ligands and receptors binding at the con-

stant association rate ka. The reaction is reversible at the constant dissociation

rate kd. We allow for multiple binding events, therefore subsequent binding can

occur at rate ka to produce BPVs bound by 2 receptor-ligand complexes.

In equation (4.5) we have terms including ρl and ρf . Theses terms describe the

fraction of ligands and receptors, respectively, that are available for 2-D binding.

The term 2-D binding is used to describe the subsequent binding after an initial

complex is formed. Due to the BPV being much smaller than the cell we assume

only a proportion of ligands can reach the cell receptors due to the ligand tether

length, see Figure 4.1 (ii) for an example of 2-D binding. This may result in

an increased association rate compared to that if no complexes have formed

due to close proximty of receptors and ligands (however, we choose to keep the

association rate constant throughout). Using ρl and ρf we can make assumptions

about the positioning of the receptors, for example if ρf is low this represents
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little receptor clustering on the cell surface and therefore a small number of

receptors available for 2-D binding. A low ρl would, for example, represent a

large BPV or a small ligand tether length. The term (ρllNA − 1) in the third

term of (4.5) represents the available ligands on the BPV for subsequent binding

after the initial binding event, where NA is Avogadro’s constant, i.e. there is

one less ligand available for subsequent binding for the BPV to become bound

by 2 complexes, B2. Dissociation of a receptor-ligand complex bound by 2

bonds results in a B1 and this happens at the rate 2kd, we use the factor two to

represent that any one of the two bonds can dissociate. Internalization of BPVs

occur at a constant rate ki.

In general, receptor-ligand complex bound by i bonds changes over time by,

dBi

dt
=

association of
(i−1)→i complexes︷ ︸︸ ︷

ka (ρllNA − (i− 1)) ρfFB
i−1 −

dissociation of i→(i−1)

complexes︷ ︸︸ ︷
ikdB

i

−

association of
i→(i+1) complexes︷ ︸︸ ︷

ka (ρllNA − i) ρfFB
i +

dissociation of (i+1)→i

complexes︷ ︸︸ ︷
(i+ 1)kdB

i+1

− kiB
i,︸ ︷︷ ︸

internalization of
complex with i bonds

(4.6)

where 2 ≤ i ≤ n − 1. This is the general case which describes the multiple

binding kinetics; complexes with (i − 1) and i bonds associate at the rate ka

to produce complexes with i and (i + 1) respectively; complexes with i bonds

dissociate at the rate ikd to produce complexes with (i−1) bonds; and complexes

with (i+1) dissociate at the rate (i+1)kd to produce complexes with i bonds; we

assume that the complex with i bonds (and hence the BPV) can be internalized

at the constant rate, ki.
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Finally, receptor-ligand complex bound by n bonds change over time by,

dBn

dt
=

association of
(n−1)→n complexes︷ ︸︸ ︷

ka (ρllNA − (n− 1)) ρfFB
n−1 −

dissociation of n→(n−1)

complexes︷ ︸︸ ︷
nkdB

n,

− kiB
n,︸ ︷︷ ︸

internalization of
complex with n bonds

(4.7)

where n is the maximum number of complexes that can form (which is given by

ρllNA). As in the general case, complexes with n bonds are formed when there

is an association of additional bond (at rate ka) when (n−1) bonds are present,

and the dissociation occurs at the rate nkd since any one of the n bonds can

break. Again we assume that a BPV with n complexes can internalized at a

constant rate, ki.

We describe the rate of change of free receptors by,

dF

dt
= −

initial receptor-
ligand binding︷ ︸︸ ︷

kaFL −

subsequent binding with ligands︷ ︸︸ ︷

ka

n∑

j

(ρllNA − j)ρfFB
j

+

dissociation of j bonds︷ ︸︸ ︷

kd

n∑

j

jBj −
receptor half-life︷︸︸︷

dfF +

receptor production︷ ︸︸ ︷
R(btot)m. (4.8)

There is a loss of receptors due to the initial and subsequent binding with BPV

ligands at the association rate ka, and a gain of receptors when dissociation

occurs (at the rate kd). We assume that receptor production occurs on the cell

surface and we assume that receptors are recruited to the cell surface at a rate

proportional to the number of bound receptors. We describe this receptor recy-

cling using the function R(btot), which we assume is constant if there is no bound

receptors, otherwise we assume an increasing saturating function dependent on

the total number of bound complexes per cell, which is given by

btot =
1

m

n∑

j

jBj.
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Hence, as an increasing number of receptors are internalized, the rate of receptors

returning to the surface (which are free to bind again) increases. We also assume

that receptors have a limited life on the cell surface, with the constant linear

decay rate df .

The rate of change in internalized BPVs over time is given by,

dBin

dt
=

total internalized BPVs︷ ︸︸ ︷
ki

l

n∑

j

Bj −
lysis of BPVs︷ ︸︸ ︷

dbBin. (4.9)

We use the factor
1

l
to convert BPVs with j bound complexes to the number

of bound BPVs. Internalized BPVs are lost due to BPV rupture at an assumed

constant rate db. When BPVs rupture within the cell they release drug, giving

the rate of change of intracellular drug as,

dP

dt
=

drug release through lysis︷ ︸︸ ︷
νdbBin −

drug half-life︷︸︸︷
dpP, (4.10)

where the release of the drug is proportional to the rupture of the BPV, ν, and

as with most drugs, we include a decay is drug activity which we assume occurs

at constant rate, dp.

We use the following functions for g(φ) and R(btot):

g(φ) = dm +
µφβ

P β
0 + φβ

and R(btot) = c1 +
c2b

α
tot

cα3 + bαtot

.

We further impose the following initial conditions to the system,

m(0) = M0
cells

cm3
, V (0) = V0

BPVs

cm3
, F (0) = F0

mol receptors

cm3
,

Bj(0) = 0, Bin(0) = 0 and P (0) = 0.

where j = 1, ..., n.
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4.2.1 Parameterization and Non-dimensionalization

The parameterization of the system proved difficult as the majority of the pa-

rameters for specific BPV binding are unknown. Hence we look to a similar

system of liposomal targeting which has similar dynamics to those of BPVs tar-

geting and is more well understood. Specifically we look to use some parameters

from a liposomal modelling study by Ghaghada et al [36], see Table 4.1.

Due to the similar dynamics of the two biological systems we assume the same

binding kinetics as [36], in which targeted liposomes bind to folate receptors of

C6 glioma cells. The binding rate constant used is ka = 3.701 × 105 M min−1,

the dissociation rate constant is kd = 3.701×10−5 min−1 and the internalization

rate constant is ki = 0.6124 min−1 (where M is molarity, i.e. M =
mol

cm3
).

Without any specific data available, we assume that the decay rate of the recep-

tors on the cell surface is df = 0.03 min−1, which has been taken from Webb and

Owen (2004) [97]. We derive the production of cell receptors, c1, by assuming

that, when there is no binding, production must equal decay, so that c1 = df ,

i.e. c1 = 0.03 mol cell−1 min−1. The parameters c2 and c3 characterise the Hill

function for receptor recycling. For simplicity we make c2 = c1. The parameter

c3 is value at which the half maximum of the function R(btot) is reached. We

assume that this value is c3 = 0.5 mol cell−1 and we choose a simple exponent

value given by α = 1.

We let the proportions ρf , ρl vary within (0, 1]. Using Ghaghada et al [36] as

a guide, we further assume that there are initially 104 receptors per cell. We

assume that there are 1010 BPVs per cm3 and 5×107 cells per cm3 [35], with the

tumour cells being at carrying capacity at t = 0 of the simulations. We assume

that tumour cells divide roughly once per day, therefore the growth rate, r, is
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given by r = 1 day−1 which has been used widely in previous mathematical

models for tumour growth (see e.g. [73]).

From Ahmed et al [3], we take the half-life cytotoxicity from the BPVs containing

taxol to be roughly 10 hours. Therefore, we use this as our initial estimate for

the death rate of tumour cells µ, i.e. µ =
ln 2

10
h−1 = 0.0012 min−1. From data

provided by Dr Craig Murdoch from the School of Clinical Dentistry in the

University of Sheffield, we notice that the time-frame of tumour size reduction

occurs much faster than the half-life of 10 hours, hence we increase the order of

magnitude of µ to suit and let µ = 1.2min−1 to make the numerical solutions

match the time-frame of the experiments.

It is known that the half-life of the free drug taxol is roughly 10 hours, similar to

the half-life cytotoxicity of the BPVs. We assume that the drug half-life is the

time it takes for half the drug to be used by the cells, and so we take the same

value for the decay rate of the drug, dp, as that for µ. From Ahmed et al [3],

we see that the half-life for BPVs to leave endosomes is roughly 5 hours. Hence

the rate of BPV rupture, db can be calculated by µ =
ln 2

5
h−1 = 0.0023min−1.

As with µ, however, we found this value to give unrealistic results as compared

to experiments. We found a much better match when we take db = 2.3min−1.

There are a few remaining unknown parameters which we estimate to match

experimental observations. The parameters along with the appropriate units for

this model, are shown in Table 4.1.
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Parameter Dimensional Value Reference

M0 5 × 107 cell cm−3 [35]

V0 1010 BPV cm−3 estimate

F0 104 mol cell−1 [36]

r 6.944 × 10−4 min−1 [35]

K 5 × 107 cells cm−3 estimate

ka 3.7010 × 108 mol−1min−1cm3 [36]

kd 3.7010 × 10−5 min−1 [36]

ki 0.6124 min−1 [36]

NA 6.022 × 1023 mol−1 -

l ·NA 1200 ligands BPV−1 estimate

df 0.03 min−1 [97]

ρf (0, 1] estimate

ρl (0, 1] estimate

db 0.05 min−1 [3]

dp 1.2 min−1 -

ν 8.3 × 10−16 mol BPV−1 -

µ 1.2 min−1 [3]

c1 0.03 mol cell−1 min−1 -

c2 0.03 mol cell−1 min−1 -

c3 0.5 mol cell−1 -

α 1 estimate

β 1 estimate

Table 4.1: The dimensional parameter values with the appropriate units and

references (where applicable).

The parameters chosen vary greatly in order of magnitude and this has caused
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problems when solving the system numerically. To overcome this we rescale the

system. The dimensional variables are rescaled as follows

m = m̂K, L =
L̂V0

NA

, F = F̂ f0K, B =
B̂V0

NA

,

Bin = B̂inV0, P = P̂P0K l =
l̂

NA

, t =
t̂

r
,

where the non-dimensional variables are denoted by hats. On removing the hats

for convenience, the rescaled system then reads

dm

dt
= m(1 −m) − g̃(φ̃)m, (4.11)

dV

dt
= −k̃aV F + k̃dB

1, (4.12)

dB1

dt
= k̃aLF − k̃dB

1 − k̃i

l̃
B1

−k̃a{ρll − 1}ρfFB
1 + 2k̃dB

2, (4.13)

dBi

dt
= k̃a{ρll − (i− 1)}ρfFB

i−1 − ik̃dB
i − k̃iB

i

−k̃a{ρll − i}ρfFB
i + (i+ 1)k̃dB

i+1, (4.14)

dBn

dt
= k̃a{ρll − (n− 1)}ρfFB

n−1 − k̃iB
n − nk̃dB

n, (4.15)

dF

dt
= −ηk̃aFL− ηk̃a

n∑

i

(ρll − i)ρfFB
i + ηk̃d

n∑

i

iBi

−d̃fF + R̃(b̃tot)m, (4.16)

dBin

dt
=

k̃i

l

n∑

i

Bi − d̃bBin, (4.17)

dP

dt
= ν̃d̃bBin − d̃pP, (4.18)

with

g̃(φ̃) = d̃m +
µ̃φβ

1 + φβ
and R̃(b̃tot) = c̃1 +

c̃2b̃tot

α

c̃3
α + b̃tot

α

where

b̃tot =
1

m

n∑

j

jBj.

The rescaled parameters denoted by tildes are defined as
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k̃a =
kaf0K

r
, k̃d =

kd

r
, k̃i =

ki

r
, d̃m =

dm

r
, µ̃ =

µ

r
,

η =
V0

NAf0K
, d̃f =

df

r
, d̃b =

db

r
, d̃p =

dp

r
, ν̃ =

V0ν

P0K
,

c̃1 =
c1
f0r

, c̃2 =
c2
f0r

, c̃3 =
c3NAK

V0

.

The rescaled system is then subject to the following initial conditions,

m(0) = 1, V (0) = 1, F (0) = 1, Bj(0) = 0, Bin(0) = 0, P (0) = 0, (4.19)

for j = 1, ..., n. For all future analyses we use the non-dimensional system

(4.11)-(4.18) and initial conditions (4.19) with the hats and tilde dropped for

simplicity.

4.3 Numerical Results

Using the parameters and rescaling described in Section 4.2, we now carry out

numerical simulations in order to find out the basic dynamics of the system.

We solve the system numerically using the ODE solver ode45 in Matlab, this

ODE solver uses the explicit Runge-Kutta 45 formula. In Figure 4.2 we show

the typical results.
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Figure 4.2: Shown are the solutions for (i) tumour cells, (ii) free BPVs, (iii)

internalized BPVs, (iv) free receptors and (v) intracellular drug plotted over

time. (vi) shows the density of BPVs bound with j complexes, as time increases

(vertically). Solved with the initial conditions in (4.19) with ka = 2.212, kd =

0.05, ki = 72, l = 1200, df = 43.2, db = 72, dp = 1.73 × 10−3, ν = 4, η = 0.02, µ =

1.73 × 10−3, c1 = 0, c2 = 43.2, c3 = 0.5, dm = 0.5, and ρl = ρf =
1

2
.
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The dynamics of the system show that for a specific set of parameters the tumour

cell population decreases to zero over time after BPVs are introduced. We notice

some interesting dynamics in the free receptors, initially there is a quick decrease

due to the fast initial binding with ligands on the BPV surfaces. A more gradual

decline is then observed as the number of tumour cells, and hence, cell surface

receptors decrease to zero. We notice that, with these parameters, the majority

of BPVs are bound by only 1 complex and are then quickly internalized, with

the maximum number of internalized BPVs occurring after around 1 hour. The

solution for intracellular drug exhibits a similar behaviour as the internalized

BPVs, as we would expect as the drug release assumed to be proportional to

the rate of internalization of BPVs.

In Figure 4.2, although the assumed maximum number of complexes that can

form is set to 20, the majority are bound with only 1 complex, with only a

small number being bound by 2 complexes. A slight change in parameters ρl,f

show that BPVs can bind to a much larger number of receptors before being

internalized. As shown in Figure 4.3.
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Figure 4.3: Shown are the densities of BPVs bound with j complexes as time

increases, with ρl = ρf = 1 and ki = 881.9, the remainder of the parameter

values are as in Figure 4.2.
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We notice when j = 20 that there is a slight accumulation of B20, this is due

to the truncation of the maximum number of complexes that can form, we have

assumed at n = 20. We introduced this as there is very little or no binding

occuring past this value in Figure 4.2. Hence even though there appears to be

little binding events occuring after j = 13 there is still some binding occuring,

due to the truncation of n at 20 we see the accumulation of B20 which are then

internalized quickly.

We have seen that by increasing the proportion of receptors and ligands available

for binding (ρf and ρl respectively) we see that BPVs are bound by an increasing

number of complexes before either internalization or subsequent binding between

receptors and ligands. Not shown in Figure 4.3 is that a longer time frame must

be observed to see the tumour cell population decrease to zero as a result of the

greater number of BPVs held on the cell surface and not being internalized. This

simple result indicates that a small parameter change may result in a significant

change in the system dynamics, hence in the next section we look to a parameter

sensitivity analysis to examine this fully.

4.3.1 Parameter Sensitivity

As shown in Figure 4.3, only slightly varying some parameters results in sig-

nificant changes within the system. In this section, we examine this further by

carrying out a parameter sensitivity analysis.

We solve the system numerically in MATLAB again using an ODE solver, ode45.

The first parameters we examine represent the proportion of ligands and recep-

tors available for 2-D binding, ρl and ρf respectively. Recall that ρl, ρf ∈ (0, 1].

By varying ρl, we are either varying the tether length of the ligand or size of the
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BPV. When varying ρf , we are mimicking the rate of clustering of receptors on

the cell surface.

Figure 4.4: Shown are the non-dimensional densities of (i) bound BPVs, (ii)

internalized BPVs, (iii) drug per cell and (iv) tumour cells when ρl and ρf are

varied and l = 1200, at t = 2. Recall that ρl, ρf ∈ (0, 1]. The remaining

parameters are as in Figure 4.2.
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In Figure 4.4, we notice that if we have a high proportion of receptors and

ligands available for binding the tumour cell density is at its highest. Recall,

when varying ρf we are essentially varying receptor clustering on the cell surface

(i.e. reducing ρf from 1 results in smaller receptor clusters), and by varying ρl

we are implicitly modelling the size of the BPV and tether length of the ligand

(tether length is the maximum length the ligands can extend to). For example,

for a fixed BPV diameter, a high ρl would indicate a large tether length, or a low

ρl would indicate a short tether length. When ρf , ρl ≈ 1, we have high tumour

density which is a result of the long tethers allowing many complexes to form.

This extended binding slows the internalization rate of the BPVs and therefore

less anti-cancer drug is released intracellularly.

We now vary the parameters ρl and l, the proportion of ligands available for

binding and the (fixed) number of ligands per BPV, respectively. The results

are shown in Figure 4.5. First, we notice that with a high number of ligands per

BPV and large proportion of ligands available for binding (ρl ≈ 1) the tumour

cell population is relatively high. This is a similar result to that seen in Figure

4.4 whereby there is an increased number of complex formation which leads

to slower internalization of the BPVs which then results in a higher density of

tumour cells due to less drug being released intracellularly. This is a significant

result which we would not have originally expected. Intuitively, we would expect

that having a high number of ligands would account for more BPV binding,

internalization and subsequently more cell death.

In Figure 4.6, we examine the behaviour of the system when we vary ρl and ka,

where ka is the association rate of receptor-ligand binding.
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Figure 4.5: Shown are the non-dimensional densities of (i) bound BPVs, (ii)

internalized BPVs, (iii) drug per cell and (iv) tumour cells when ρl and l are

varied with ki = 72 and ρf = 0.5, at t = 2. Recall that ρl ∈ (0, 1]. The remaining

parameters are as in Figure 4.2.

When varying ρl and ka together, we notice that if we increase the association

rate, ka, we see a decrease in tumour density with a greater decrease if the

proportion of ligands, ρl, is low. The highest density of tumour cells occurs

when ka is low with a high proportion of ligands available for 2-D binding.
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Having a higher association rate results in more BPVs being bound but a lower

proportion of ligands results in less internalization inhibition that we have seen

previously with high ρl (see Figures 4.4 and 4.5).

Figure 4.6: Shown are the non-dimensional densities of (i) bound BPVs, (ii)

internalized BPVs, (iii) drug per cell and (iv) tumour cells when ρl and ka are

varied with ki = 72, l = 1200 and ρf = 0.5, at t = 2. Recall that ρl ∈ (0, 1]. The

remaining parameters are as in Figure 4.2.
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Figure 4.7: Shown are the non-dimensional densities of (i) bound BPVs, (ii)

internalized BPVs, (iii) drug per cell and (iv) tumour cells when ka and l are

varied with ki = 72 and ρl, ρf = 0.5, at t = 2. The remaining parameters are as

in Figure 4.2.

We now vary the number of ligands available for binding and the binding as-

sociation rate, l and ka respectively (shown in Figure 4.7). This is a similar

result to that of Figure 4.6, whereby a high association rate and low proportion

of ligands results in a low density of tumour cells. The low number of ligands
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reduces the internalization inhibition that is seen with high numbers of ligands,

and hence more drug is released and tumour cell density decreases.

In Figure 4.8, we focus our attention on just the change of tumour cell density

when varying ki, l, kd, ν and µ. In (i), we vary the internalization rate ki and the

number of ligands per BPV, l. We notice that there is little change in tumour

density if we increase ki. As we increase l, the tumour density increases to a

slightly higher density when ki is low. As we have seen before, a higher number

of ligands inhibits the internalization process and by reducing the internalization

rate further results in a higher tumour density.

In (ii) we vary the dissociation rate and number of ligands per BPV, kd and l

respectively. We notice that any change in kd does not significantly affect the

final densities of tumour cells and we only see variation by changing l. As we

have seen previously increasing l, the number of ligands per BPV, results in an

increased density of bound BPVs on tumour cells and an increased tumour cell

density. Figure 4.8 (iii) shows the variation in tumour cell density when we vary

µ and ν, where µ is the death rate associated with intracellular drug and ν is the

proportion of drug that is released when a BPV ruptures. As expected, when

increasing µ and ν, the tumour density decreases due to the higher volume and

potency of drug delivered to the cells. The final parameters, in (iv), are µ and

db, where db is the rate of BPV rupture once internalized. As µ is increased there

is a decrease in tumour density (and bound BPVs), but this is independent of

the value of the chosen range of db.
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Figure 4.8: Shown are the non-dimensional density of tumour cells when param-

eters are varied, (i) varying l, ki, (ii) varying l, kd, (iii) varying µ, ν and finally

in (iv) we vary µ and db. The tumour density is calculated at time, t = 2, all

parameter values are given in Table 4.1

We have carried out an extensive parameter sensitivity analysis which has given

insight into how specific parameters affect the dynamics of the multiple binding

model framework. We now know that the dissociation rate, kd, has little affect

on the overall system dynamics, and there is an optimal number of ligands on
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the BPV surface where exceeding this results in a slower internalization and

hence a slower tumour cell death.

In the next section, we explore the fast transition that we observe in the receptor

numbers near t = 0 (see, for example, Figure 4.2 (iv)).

4.4 Singular Perturbation Analysis

When solving the non-dimensional system, given by (4.11)-(4.18), numerically,

we see that the solutions for V (t), F (t) and B(t) change very quickly at early

time due to the fast binding kinetics of the receptors and ligands (for example

see Figure 4.2). To get an analytical handle on this we carry out a singular

perturbation analysis.

For simplicity, we consider a single binding interaction, i.e. only one complex

between ligand and receptor has to form for the drug-loaded BPV to be internal-

ized. We do this by setting ρl = l−1 and ρf = 0 so that Bi(t) = 0 for 2 ≤ i ≤ n,

and so the model is now given by:

dm

dt
= m(1 −m) − g(φ)m, (4.20)

dV

dt
= −kaV F +

kd

l
B, (4.21)

dF

dt
= −ηkalV F + ηkdB − dfF +R(b)m, (4.22)

dB

dt
= kalV F − (kd + ki)B, (4.23)

dBin

dt
=

ki

l
B − dbBin, (4.24)

dP

dt
= νdbBin − dpP, (4.25)
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where B1(t) has been replaced with B(t) for notational convenience, with

R(b) = c1 +
cα2 b

α

cα3 + bα
and g(φ) = dm +

µφβ

1 + φβ
, (4.26)

where P = φm and B = bm. We solve the system, (4.20)-(4.25), numerically

and the results are shown in Figure 4.9. We notice the same very quick change

in solutions as seen in the full model results.

For further simplification of the model we notice that, with the parameter values

described in the previous section, we have
kd

l
∼ O(10−5), kd ∼ O(10−3) and

ηkd ∼ O(10−4). Also, knowing from the parameter sensitivity that having kd = 0

does not significantly change the dynamics we set kd = 0. To make the system

as simple as possible we also look to simplify the saturating functions R(b) and

g(φ), given by (4.26), we make g(φ) linear. To simplify R(b), we assume that c3

is small, remember that c3 is the threshold value for the half maxium value of

R(b). With c3 small we can assume,

R(b) = c1 +
cα2 b

α

bα
,

leading to R(b) = c2. Note that c1 = 0 as before. The numerical system

dynamics do not change when using these simplifications.

The reduced system is then given by

dm

dt
= m(1 −m) − µφm, (4.27)

dV

dt
= −kaV F, (4.28)

dF

dt
= −ηkalV F − dfF + c2m, (4.29)

dB

dt
= kalV F − kiB, (4.30)

dBin

dt
=

ki

l
B − dbBin, (4.31)

dP

dt
= νdbBin − dpP. (4.32)
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Figure 4.9: Numerical solution of the non dimensional single binding model

(4.20)-(4.25) solved with initial conditions m(0) = 1, V (0) = 1, F (0) = 1, B(0) =

0, Bin(0) = 0 and P (0) = 0. The remaining parameters are the same as those in

Figure 4.2.
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Recall that φ =
P

m
. Figure 4.10 shows the comparison between the numerical

results produced from the full system, given by (4.20)-(4.25), and this reduced

system, given by (4.27)-(4.32), where terms involving kd are set to zero and

the saturating functions describing receptor recycling and tumour cell death are

replaced by linear functions. We notice that these changes do not significantly

affect the dynamics of the system, and so we take the reduced system as an

acceptable approximation to the full system for this analysis.

To carry out the perturbation analysis, we first look at the orders of magnitude

of the parameter groupings involved in the kinetics of receptors and ligands.

Recall that the parameter values are as follows: ka = 2.212, l = 1200, η = 0.002

and df = 43.2. Hence we can write ηl =
η̂l

ε
and df =

d̂f

ε
where ε ≪ 1. We

should note here that the values for c2 and df are equal, hence we replace c2

with df for notational convenience. After rescaling we want these terms to be of

comparible order of magnitudes. These parameter rescalings only occur in the

equation for free receptors, given by (4.29), hence we obtain

ε
dF

dt
= −kaη̂lV F − d̂fF + d̂fm. (4.33)

Further analysis will be carried out with the hats dropped for convenience.
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Figure 4.10: Numerical solution of the non-dimensional single binding model,

solved with initial conditions: m(0) = 1, V (0) = 1, F (0) = 1, B(0) = 0, Bin(0) =

0 and P (0) = 0. The blue line represents the full system, (4.20)-(4.25), when

solved with R(b) = c1 +
cα2 b

α

cα3 + bα
and g(φ) = dm +

µφβ

1 + φβ
. The red dashed line

represents the reduced system, (4.27)-(4.32), where kd = 0 and solved with

R(b) = c2m and g(φ) = µφ. Note that in the full system c1 = dm = 0, and

c2 = df . The remaining parameters are the same as those in Figure 4.2.
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We now look to find the inner solutions of the system by assuming t = τε. Using

this assumption the system then becomes

dm

dτ
= εm(1 −m) − εµP, (4.34)

dV

dτ
= −εkaV F, (4.35)

dF

dτ
= −kaηlV F − dfF + dfm, (4.36)

dB

dτ
= εkalV F − εkiB, (4.37)

dBin

dτ
= ε

ki

l
B − εdbBin, (4.38)

dP

dτ
= ενdbBin − εdpP. (4.39)

These parameter rescalings allow us to find the simple leading order solutions

(ε = 0) in the inner region for m and P , given by m = 1 and P = 0, as given by

the initial conditions. These solutions allow us to solve the more complicated

leading order solution for free receptors, F . Note that the equations for bound

BPVs (B) and internalized BPVs (Bin) decouple from the system. We shall

return to these later.

Now, using the expansions, V (τ ; ε) =
∑

n=0 ε
nV n and F (τ ; ε) =

∑
n=0 ε

nF n, we

look for the inner solutions for free BPVs and free receptors.

To leading order, the equation for free BPVs, (4.35), is

dV 0

dτ
= 0. (4.40)

Solving this with the intital condition V (0) = V0, the leading order solution is

then given simply by

V 0(τ) = V0. (4.41)

Using this solution, we now look for the leading order solution for free receptors.

Equation (4.36) becomes

dF 0

dτ
+ (kaηlV0 + df)F

0(τ) = df ,
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which is easily solved using the integration factor method with initial condition

F 0(0) = F0. The resulting solution then reads

F 0(τ) =
df

β
+ C1 exp(−βτ), (4.42)

where

β = kaηlV0 + df and C1 = F0 −
df

β
. (4.43)

We know, by looking at the numerical solution for free BPVs (see Figure 4.10),

that within this time range the V (t) solution is not constant. Hence, we look to

O(ε) to find a more accurate solution for free BPVs, namely to O(ε) we have

dV 1

dτ
= −kaV

0(τ)F 0(τ).

Using (4.42) then leads to

dV 1

dτ
= −kaV0

(
df

β
+ C1 exp(−βτ)

)
,

which can be easily solved by direct integration with respect to τ to give

V 1(τ) = −kaV0

(
dfτ − C1 exp(−βτ)

β

)
+ C2. (4.44)

With the initial condition, V 1(0) = 0, we then have

C2 = −kaV0C1

β
.

In Figure 4.11, we show the inner analytical solutions for free BPVs and free

receptors, V (t) and F (t) respectively, compared to the corresponding numerical

solutions. We see that the inner solutions are valid for early time producing a

good match with the numerical solutions.
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Figure 4.11: Showing the numerical and (inner) analytical solutions of free BPVs

and free receptors from the non-dimensional single binding model, when solved

with m(0) = 1, P (0) = 0, V (0) = V0 and F (0) = V0. The blue line represents

the numerical solution and the red circles represent the inner analytical solution

when using the assumptions t = τε, η̂l = ηlε and d̂f = dfε, where ε = 0.1. The

remaining parameters are as in Figure 4.10.
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We now use the leading order inner solutions for free BPVs, (4.41), and free

receptors, (4.42), to find the solutions for the decoupled equations for bound

BPVs and internalized BPVs, B(t) and Bin(t) respectively. Recall the equation

for bound BPVs,
dB

dt
= kalV (t)F (t) − kiB(t),

where to leading order V (t) = V0 and F (t) = F 0(t). Therefore, we have

dB

dt
= kalV0

(
df

β
+ C1 exp(−βt)

)
− kiB(t),

where C1 is defined in (4.43). Again we can solve for B(t) using the integration

factor method to give,

B(t) = kalV0

(
df

βki

+
C1 exp(−βt)

ki − β

)
+ C3 exp(−kit), (4.45)

which, when solved with the intital condition B(0) = 0, gives

C3 = −kalV0

(
df

βki

+
C1

ki − β

)
.

We now use the solution for bound BPVs, (4.42), to solve for internalized BPVs.

Recall the equation for Bin(t) is given by

dBin

dt
=
ki

l
B(t) − dbBin(t).

Which, by using (4.42), leads to

dBin

dτ
+ dbBin(t) =

kikaV0

l

(
df

βki

+
C1 exp(−βt)

ki − β

)
+ C3 exp(−kit),

which can again be solved using the integration factor method. Note that we

use the following parameter groupings for simplicity

γ1 =
kalV0df

βki

, γ2 =
kalV0C1

ki − β
and γ3 =

ki

l
. (4.46)

The solution for internalized BPVs can then be calculated as

Bin(t) =
γ1γ3

db

+
γ2γ3

db − β
exp(−βt) +

C3γ3

db − ki

exp(−kit) + C4 exp(−dbt), (4.47)
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which, when solved with the initial condition Bin(0) = 0, we have

C4 = −γ1γ3

db

− γ2γ3

db − β
− C3γ3

db − ki

.

In Figure 4.12, we show the comparison between numerical and analytical solu-

tions for bound BPVs, B(t), and internalized BPVs, Bin(t), in the inner time

region. We see a good match between the numerical and analytical solutions.

We observe from Figure 4.12 (upper panel) that the maximum number of bound

BPVs occurs at a turning point (which occurs are around t = 0.02 in Figure 4.12.

We now look for an approximated analytical value of this maximum. Recall the

solution for bound BPVs, (4.45), is given by

B(t) = kalV0

(
df

βki

+
C1 exp(−βt)

ki − β

)
+ C3 exp(−kit),

where β, C1 and C3 are defined above. In the usual way, we can differentiate

this with respect to t to find the maximum. The turning point then occurs when
dB

dt
= 0. This can be calculated to occur at t = t∗, where

t∗ =
1

β − ki

ln

(
C3ki(β − ki)

kalV0C1β

)
,

therefore the maximum of number bound BPVs is then given by

Bmax = B(t∗) = kalV0

(
df

βki

+
C1

ki − β

(
kalV0C1β

C3ki(β − ki)

) β

β−ki

)

+ C3

(
kalV0C1β

C3ki(β − ki)

) ki
β−ki

, (4.48)

where β = kaηlV0 + df .
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Figure 4.12: The numerical and analytical solutions of bound BPVs and inter-

nalized BPVs from the non-dimensional single binding model, when solved with

m(0) = 1, P (0) = 0, B(0) = 0 and Bin(0) = 0. The blue line represents the

numerical solution and the red circles represent the inner analytical solution.

The remaining parameters are as in Figure 4.10.



Novel Targeted Cancer Therapy 127

Similarly, we can find the maximum of internalized BPVs. The analytical solu-

tion (4.47) tends to a constant value which, by observing the solutions in Figure

4.12, is the maximum value of the Bin numerical solution. Hence, the peak of

internalized BPVs can be approximated using the analytical solution, (4.47),

when t→ ∞, giving

Bin → γ1γ3

db

, as t→ ∞.

Therefore the approximate maximum of internalized BPVs is given by

Bmax
in =

γ1γ3

db

, (4.49)

where γ1 and γ3 are defined as in (4.46).

We now look to the behaviour of these quantities Bmax and Bmax
in when we

vary key parameters. In Figure 4.13, we observe that Bmax is an increasing

saturating function of l, the fixed number of ligands per BPV. As we increase l,

the maximum bound BPVs increases until it saturates. The internalized BPVs

decreases exponentially as l increases, which indicates that, by having a large

number of ligands, the internalization rate by tumour cells slows as we saw

previously. As we would expect, Bmax and Bmax
in are both increasing saturating

functions of ka and exponentially decreasing functions of η as observed previously

in the parameter sensitivity analysis.
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Figure 4.13: The analytical expression of the maximum bound BPVs and max-

imum internalized BPVs, given by Bmax (first column) and Bmax
in (second col-

umn). In the first row we vary l, the second row we vary ka and in the third

row we vary η. The remaining parameters are as in Figure 4.10.



Novel Targeted Cancer Therapy 129

4.5 Discussion

In this chapter, we present a mathematical model that describes the binding ki-

netics of synthetically produced biomimetic polymer vesicles (BPVs) to tumour

cells. The system is described by ordinary differential equations. The model

assumes that once a receptor-ligand complex forms, the BPV becomes bound to

the tumour cell. We allow for multiple binding events to occur mimicking the

behaviour of receptor-mediated endocytosis. Once bound to the cell, the BPV

can be internalized, a process which we assume in this chapter is not depen-

dant on the number of complexes present (we relax this assumption in the next

chapter). Once internalized the BPV then ruptures, releasing the drug payload.

The model described is for a new cancer therapy, and as such it was very diffi-

cult to find parameter values specifically for this biological system. We looked

to a similar model by Ghaghada et al [36] which describes liposomal targeting

to tumour cells and we used this to find base parameter values for the binding

kinetics of the BPVs (association, dissociation and internalization rates). Due

to the uncertainty surrounding some of the parameters, we carry out a param-

eter sensitivity analysis which highlights how key parameters affect the model

dynamics. The results from the parameter sensitivity facilitates a singular per-

turbation analysis, and also highlights that there is an optimal number of ligands

per BPV to give maximum cell death.

In the singular perturbation analysis, we assume a single binding event which

reduces the system. We further simplify the system by ignoring the BPV dis-

sociation rate and linearising the functions that describe receptor recycling and

cell death. We notice that these changes do not affect the observed early time

system dynamics. By carrying out this analysis we can answer some impor-

tant biological questions regarding the early kinetics of the BPV uptake. Using
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the expression we obtained for the maximum number of bound BPVs, given

by equation (4.45), we can show that the maximum number of bound BPVs is

an increasing saturating function of l (number of ligands per BPV). This sat-

urating nature shows that, after some given value of l, increasing l further has

little effect. Indeed, we have seen that by having more than an optimal number

of ligands, results in there being more bound BPVs, but this also results in a

much slower internalization rate and a smaller peak of internalized BPVs and

ultimately a reduced tumour cell death.

The findings from the perturbation analysis can be extremely useful for biologists

working on this targeted therapy as the number to targeted ligands on BPVs (l

in our model) is something specific to the BPV structure that can be modified

during the manufacturing of the BPVs.



Chapter 5

BPV Infiltration into Tumour

Spheroids

5.1 Introduction

The initiation of tumour growth begins with a mutated cell that can evade

growth signals (for example, that signal apoptosis) from surrounding normal

cells. As the mutated cell divides, a mass of cells will form that can develop into

a tumour. The tumour mass can grow until it reaches a saturation size, roughly

2mm in diameter afterwhich the growth of the mass appears dormant [42]. In

vivo, the tumour is referred to as an avascular tumour since it doesn’t have

a dedicated blood supply. A good in vitro representation of this is a tumour

spheroid. The tumour acquires nutrients from the surrounding environment and

so, once the tumour reaches this critical size, the inner regions of the tumour

become deprived of nutrients, which then leads to a hypoxic region. As the

inner cells are constantly not receiving nutrients they lyse creating an inner

131
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necrotic core (of dead cells). So, the tumour spheroid typically has 3 regions,

an inner necrotic core, a hypoxic region (where cells are quiescent) and an outer

proliferating edge (which is a relatively thin layer of reproducing cells which has

access to nutrients) [87] see Figure 5.1 for a sketch of this process.

Time

(a )

(b)

(c )

Figure 5.1: Sketch of the development of a tumour spheroid with increasing time.

(a) The spheroid is at early development, where cells are proliferating exponen-

tially. (b) The spheroid represents the linear growth stage, where the quiescent

region forms and an inner necrotic (dead) core. (c) The tumour spheroid is at

its saturated size, the white represents proliferating cells, blue region represents

quiescent cells and the black region is the necrotic (dead) core.

In vivo, the cells within the hypoxic region typically release tumour angiogenic

factors (TAFs) [53]. These TAFs, such as VEGF, encourage the blood epithelial

cells to migrate towards the tumour, restoring the blood supply. Nutrients

available to the tumour will then encourage growth, and the presence of a blood

supply also allows for the spread of the malignant tumour as cells can then break

away and create metastatic (secondary) tumours in other tissues, in the case of

HNSCC this is often to the cervical lymph nodes [49, 84].

A new treatment idea is to treat the cancer using biomimetic polymer vesicles
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(BPVs) loaded with anti-cancer drugs (see chapter 4 for full details) [2, 28].

These vesicles are designed to be cancer cell specific and so normal cells are af-

fected minimally by the treatment, unlike conventional chemotherapy where any

relatively fast reproducing cell is targeted (for example, stomach epithelial cells

or hair follicle cells). The idea is to load the BPVs with a potent chemotherapy

agent (such as doxorubicin, DOX) or DNA for gene therapy, which will then

infiltrate and be released in the tumour. The tumour cells can endocytose the

BPVs and, due to the pH sensitivity of the BPVs, the change from extracellular

to endosomal pH (7.4 to 5-6) causes the BPVs to dissociate into its monomers

[59]. Subsequently the endosome ruptures, which is thought be be due to the

increase in osmotic pressure when the BPV dissociates. This sequence of events

then results in the chemotherapy agent being released into the cytosol of the

cancer cell.

In this chapter, we present a model for the BPV treatment on an avascular

tumour spheroid. We assume that the avascular spheroid grows with a moving

boundary on which growth is governed by the balance of proliferating and dying

cells. In the model, we assume that tumour cells grow by utilising oxygen and

cellular material (a by-product of lysing cells which is also found external to

the spheroid in vitro). The tumour cells die by two mechanisms, the first is

due to the lack of oxygen the second is due to the action of the therapeutic

BPVs. We introduce free BPVs onto the spheroid boundary which are then

free to permeate and diffuse through the spheroid. BPVs are internalized by

the cells by the process of endocytosis, and we specifically look at the case for

receptor-mediated endocytosis (as in Chapter 4). In the first half of the chapter,

we examine a simple case, where only one binding event (one receptor-ligand

complex can form between cell and BPV) is enough for the cell to internalize

the BPV. The second half extends this assumption to include multiple binding

events. The model is a system of parabolic PDEs with a coupled ODE that
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describes the moving boundary. We look at the general dynamics of the system

during a short period of treatment and also a large time analysis of continual

treatment and aim to define parameter regions in which either linear growth of

the spheroid occurs or growth saturates to an equilibrium state.

5.2 Model Derivation

In this section, we describe a radially symmetric model of avascular tumour

growth with infiltrating BPVs. The model has two main phases, volume fraction

of tumour cells per unit control volume m(r, t) and volume fraction of cellular

material per unit control volume n(r, t). We assume that the cellular material

is composed mainly of water, proteins and lipids, which is produced when the

cells lyse and used when cells divide. The other model variables include oxygen

concentration c(r, t), free BPVs per cm3 V (r, t) (which we assume contributes

negligible effect to the volume of the tumour spheroid due to their nanometre-

size) and moles of bound BPVs per cm3 B(r, t). As in Chapter 4, we assume that

a free BPV will become bound when a receptor-ligand complex forms between a

ligand on a BPV and a receptor on the cells surface, and in this initial simplified

case we assume that only one bond is required to form before the BPV can

be internalized. We assume that the tumour spheroid occupies 0 ≤ r ≤ R(t)

where R(t) is the tumour boundary. We assume that this boundary moves with

the velocity of the tumour cells at r = R(t), resulting in a moving boundary

problem.

We assume that each of the constitutive phases move with the same common ad-

vection velocity which is denoted by v(r, t). With which, we obtain the following

system of partial differential equations
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Tumour:

∂m

∂t
= − 1

r2

∂

∂r

(
r2Jm

)
+

proliferation︷ ︸︸ ︷
pm(n, c)m −

death︷ ︸︸ ︷
dm(c)m − g(B), (5.1)

Cellular material:

∂n

∂t
= − 1

r2

∂

∂r

(
r2Jn

)
−

utilised for growth︷ ︸︸ ︷
pm(n, c)m +

released from cell lysis︷ ︸︸ ︷
dm(c)m + g(B), (5.2)

Oxygen:

∂c

∂t
= − 1

r2

∂

∂r

(
r2Jc

)
−

decay︷ ︸︸ ︷
dc(m,n, c), (5.3)

Free BPVs:

∂V

∂t
= − 1

r2

∂

∂r

(
r2Jv

)
−

association of
BPV to cell︷ ︸︸ ︷
kaV F +

dissociation of
BPV from cell︷︸︸︷

kd

l
B , (5.4)

Bound BPVs:

∂B

∂t
= − 1

r2

∂

∂r

(
r2B

m
Jm

)
+

association of
free BPV︷ ︸︸ ︷
kaLF −

dissociation of
bound BPV︷︸︸︷
kdB −

internalization by
cell︷︸︸︷
kiB, (5.5)

where

Jm = −Dm

∂m

∂r
+ vm, Jn = −Dn

∂n

∂r
+ vn,

Jc = −Dc

∂c

∂r
+ vc, Jv = −Dv

∂V

∂r
+ vV,

are the fluxes of tumour cells, cellular material, oxygen and BPVs respectively,

where Dm andDn are the random motility coefficients of the 2 phases for tumour

cells and cellular material, and Dc and Dv are the diffusion coefficients of oxygen

and BPVs, respectively. In equation (5.5) for the flux term we use
B

m
Jm, since

bound BPVs do not actively move but are convected at the same velocity of the

tumour cells on which they are bound.

The function pm(n, c) denotes tumour proliferation, which is an increasing satu-

rating function of both on the cellular material and oxygen concentration. The
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death rate due to apoptosis, dm(c), is a decreasing function of the oxygen con-

centration. The death rate due to the treatment, g(B), is assumed to be linear

and proportional to the number of BPVs internalized. In the oxygen equation,

there is a decay of oxygen due to tumour cell consumption which increases with

tumour cell density, and is given by dc(m,n, c). We use the following to describe

these terms

pm(n, c) = pmax
m S(c, cp) min

(
n

n0

, 1

)
, dm(n, c) = dmax

m (1 − S(c, cc)) ,

dc(m,n, c) = pmax
cm S(c, cc)m+ pmax

cp pm(n, c)m, g(B) = γkiB,

where

S(c, cp) =
cα(cαp + cα

∞
)

cα
∞

(cαp + cα)
.

S(c, cp) is a scaled Hill function with maximal value S = 1 when c = c∞ (which

we assume is the maximum value of oxygen at the tumour boundary), with the

steepness of the curve dependent on the value of α > 0. The framework we

are using here has been adapted from similar work which models the use of

therapeutic macrophages [98].

For a free BPV to become bound, a receptor-ligand complex (requiring 1 ligand

on the BPV surface and 1 receptor on the cell surface) must form. It does so at

the association rate given by ka. We assume that this reaction is reversible and

we take the dissociation rate to be given by kd. Once the BPVs become bound

we assume that they are then internalized at the rate ki. This internalization

rate implicitly includes a measure of the size of the BPV; that is, a slower

internalization rate will indicate a larger BPV.

In equation (5.4), F is the mole of receptors per volume, and in this spheroid

model we make the simplifying assumption that there is a constant number of

receptors per cell, f0. The sum of free receptors and bound BPVs results in the
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total number of receptors in the system per volume to be given by

F +B = f0m.

This assumption is similar to that adopted in Sherratt et al in [82]. We make

this assumption as it allows us to neglect issues that arise from receptor recycling

and it has the advantage of simplifying the problem by reducing the number of

equations. In equation (5.5), L is the mole of free ligands per volume and as

before we let L = lV where l is the constant mole of ligands per BPV.

At this point we introduce a no void condition, where m+ n = N0, where N0 is

a constant representing the total amount of cellular material contained within a

unit control volume. Using this no void condition and summing equations (5.1)

and (5.2) we can obtain an expression for the advection velocity, v:

∂m

∂t
+
∂n

∂t
= 0,

∴ v =
1

N0

(
Dm

∂m

∂r
+Dn

∂n

∂r

)
. (5.6)

5.2.1 Initial and Boundary Conditions

Initially, we let the tumour grow without the therapeutic BPVs being present.

That is

m(r, 0) = m0(r), n(r, 0) = N0 −m0(r), c(r, 0) = c0(r), (5.7)

V (r, 0) = 0, B(r, 0) = 0 and R(0) = R0. (5.8)

We introduce the BPVs on the surface of the tumour spheroid at some time t∗

by setting the surface concentration of BPVs, which we denote by V∞, to some

non-zero value (previously V∞ = 0 when 0 < t < t∗).
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Assuming the tumour is symmetric about the origin, we have

∂m

∂r
=
∂n

∂r
=
∂c

∂r
=
∂V

∂r
=
∂B

∂r
= 0 on r = 0. (5.9)

On r = R(t), we fix the nutrient concentration, c = c∞.

Let us denote n∞ and V∞ as the external concentrations of cellular material and

free BPVs, respectively, with their flux across the tumour boundary proportional

to
(
n∞−n(R, t)

)
and

(
V∞−V (R, t)

)
, respectively. The tumour boundary moves

with the velocity vm, hence the flux boundary conditions for cellular material

and unbound BPVs on r = R(t) are given by,

−n(vn − vm) = hn(n∞ − n)

⇒ Dn

∂n

∂r
−Dm

n

m

∂m

∂r
= hn(n∞ − n)

∣∣
r=R(t) , (5.10)

and

−V (vv − vm) = hv(V∞ − V )

⇒ Dv

∂V

∂r
−Dm

V

m

∂m

∂r
= hv(V∞ − V )

∣∣
r=R(t) , (5.11)

where hn and hv are the positive permeabilities of the cellular material and free

BPVs, respectively, across the tumour boundary. The velocities of tumour cells,

cellular material and free BPVs are given by

vm = v − Dm

m

∂m

∂r
, vn = v − Dn

n

∂n

∂r
, vv = v − Dv

V

∂V

∂r
.

Using n = N0 −m, (5.10) can be re-written as

−Dn

∂m

∂r
+Dm

(N0 −m)

m

∂m

∂r
= hn(n∞ −N0 +m)

∣∣
r=R(t). (5.12)

The boundary conditions for B on r = 0 and r = R(t) can be found by solving

along the characteristics of the PDE at these points, namely

∂B

∂t
= kalV (f0m−B) − (kd + ki)B. (5.13)
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The spheroid boundary moves with the tumour velocity vm,

dR

dt
= vm|r=R(t) =

(
v − Dm

m

∂m

∂r

)∣∣∣∣
r=R(t)

. (5.14)

Using (5.6) we can re-write (5.14) as

dR

dt
=

1

N0

(
Dm

(
1 − N0

m

)
∂m

∂r
+Dn

∂n

∂r

)
,

in other words
dR

dt
=

1

N0

hn(n∞ +m−N0). (5.15)

5.2.2 Non-Dimensionalization

In this section, we carry out a non-dimensionalization on the system (5.1)-(5.5)

and the initial and boundary conditions described above. Note that we make

the assumption that the oxygen concentration is at quasi-steady state. We do

this due to the fast timescale of oxygen diffusion compared to the timescale

of tumour growth. We use the following re-scalings to non-dimensionalize the

system where the hats denote the non-dimensional variables

m = m̂N0, n = n̂N0, c = ĉc∞, V =
V̂ N0

vm

, B =
B̂N0

vmNA

, F =
F̂N0

vmNA

,

r = r̂Rm, v = v̂Rmp
max
m , l̂ = lNA, t̂ = pmax

m t,

and on dropping the hats we obtain

∂m

∂t
= − 1

r2

∂

∂r

(
r2J̃m

)
+ p̃m(n, c)m− d̃m(c)m− g̃(B), (5.16)

0 = − 1

r2

∂

∂r

(
r2J̃c

)
− d̃c(m,n), (5.17)

∂V

∂t
= − 1

r2

∂

∂r

(
r2J̃v

)
− k̃aV (f̃0 − b) +

k̃d

l
B, (5.18)

∂B

∂t
= − 1

r2

∂

∂r

(
r2B

m
J̃m

)
+ k̃alV (f̃0m− B) − (k̃d + k̃i)B, (5.19)
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where

p̃m = S(ĉ, c̃p) min

(
n

ñ0

, 1

)
, d̃m = d̃max

m {1 − S(ĉ, c̃c)}, d̃c(m,n) =
dc(m,n)

Dcc∞
,

g̃(B) = γ̃k̃iB, S(ĉ, c̃p) =
cα(c̃αp + 1)

(c̃αp + cα)
.

With

J̃m = −D̃m

∂m

∂r
+ vm, J̃n = −D̃n

∂n

∂r
+ vn,

J̃c = −∂c
∂r
, J̃v = −D̃v

∂V

∂r
+ vV.

Due to the no void condition, m + n = 1, we can neglect the cellular material

equation and obtain its solution from the tumour solution. The non-dimensional

advection velocity then is as follows

v =
(
D̃m − D̃n

) ∂m
∂r

. (5.20)

The parameter re-scalings read as,

D̃m =
Dm

R2
mp

max
m

, D̃n =
Dn

R2
mp

max
m

, D̃c =
Dc

R2
mp

max
m

, D̃v =
Dv

R2
mp

max
m

,

k̃i =
ki

pmax
m

, k̃d =
kd

pmax
m

, k̃a =
kaN0

pmax
m vmNA

, f̃0 = f0NA,

γ̃ =
γ

NA

, c̃p =
cp
c∞

, c̃c =
cc
c∞

, ñ0 =
n0

N0
,

d̃max
m =

dmax
m

pmax
m

.

For convenience in the remaining analysis we drop the tildes.

We further assume that equation (5.19) is at a quasi-steady state. We do so due

to the fast binding, dissociation and internalization rates compared to the rate

of tumour growth. We are then left with an algebraic equation for B given by,

0 = kalV (f0m− B) − (kd + ki)B.
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From which, we can obtain an expression for bound BPVs per cell which is given

by

B(r, t) =
kalV f0m

(kalV + kd + ki)
, (5.21)

which we feed directly into the death term in the tumour cell equation, (5.16).

With this expression for B(r, t), we now solve the non-dimensionalized system

(5.16)-(5.18) with the boundary conditions given by,

∂m

∂r
=
∂c

∂r
=
∂V

∂r
= 0 on r = 0. (5.22)

On the spheroid boundary, r = R(t), the oxygen concentration is c = 1 and we

have

−Dn

∂m

∂r
−Dm

(1 −m)

m

∂m

∂r
= hn(n∞ +m− 1)

∣∣
r=R(t) , (5.23)

Dv

∂V

∂r
−Dm

V

m

∂m

∂r
= hv(V∞ − V )

∣∣
r=R(t) . (5.24)

The spheroid boundary (r = R(t)) now moves with the tumour velocity so that

dR

dt
= hn(n∞ +m− 1). (5.25)

5.3 Numerical Results

Using the non-dimensionalized system (5.16)-(5.18) and using the expression for

bound BPVs per cell, (5.21), we solve the system numerically using the NAG

routine D03PHF with the initial and boundary conditions described as in the

previous section.
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Figure 5.2: The tumour spheroid radius and composition changing with time.

We plot the densities of tumour cells, oxygen concentration, free and bound

BPVs. Initially growth occurs with no free BPVs on the tumour surface. Then

we introduce BPVs by setting V∞ 6= 0 when 40 ≤ t ≤ 50. We notice that the

tumour growth rate decreases for the period of time treatment is administered,

but returns to linear growth afterwards. With Dm = 10, Dn = 500, Dv =

500, ka = 0.01, ki = 880, kd = 0.053, γ = 10−3, dmax
m = 2, f0 = 1000, n∞ =

0.2, cp = 0.6 and cc = 0.2.

In Figure 5.2, we show the density profiles of tumour cells, oxygen, free and

bound BPVs in space as time increases. The highest density of tumour cells
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occur at the spheroid boundary. The cells require oxygen for growth and the

density of highest oxygen is found on the boundary due to the spheroid having

no internal vasculature. The concentration of oxygen reduces as it diffuses into

the tumour spheroid and is consumed by the outer proliferating cells. As time in-

creases the reduction in nutrients creates a hypoxic region in which cells become

quiescent and the inner core of the spheroid cells lyse due to the concentration

of oxygen being too low for viability. We introduce the BPVs at some time t > 0

by setting the surface concentration, V∞ 6= 0. We introduce the BPVs on the

tumour surface when t∗ = 40 and they are removed when t = 50. We can see

that the highest concentration of free and bound BPVs occur at the spheroid

boundary during this period. The free BPVs diffuse slightly into the spheroid

but are quickly bound by cells at the periphery which slows the penetration into

the spheroid. In the period of time the therapeutic BPVs are introduced, there

was a notable decrease in tumour radius.

For a clear representation of the effect of BPV treatment, in Figure 5.3 we show

the changes in tumour radius with time. At early time (when V∞ = 0) the

tumour grows linearly. When the BPVs are introduced, by setting V∞ 6= 0 at

time t∗ = 40, the growth of the tumour decreases before the BPVs are removed

at time t = 50. After this time of treatment the tumour recovers and returns to

linear growth.
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Figure 5.3: The tumour radius plotted against time. The BPVs are introduced

on the surface of the spheroid by setting V∞ = 10 at time 40 ≤ t ≤ 50, for

t > 50 we let V∞ = 0 indicating the therapeutic BPVs have been removed from

the spheroid surface. In the therapeutic time frame, there is a reduction in

tumour radius. Before t = 40 and after t = 50, linear growth of the tumour is

observed. The parameters are as in Figure 5.2.

From Figure 5.3 we observe that the spheroid radius growth is approximately

linear in the absence of treatment which indicates that the solution may be

settling down to that of a travelling wave. In this next section, we will carry



BPV Infiltration into Tumour Spheroids 145

out a large-time travelling wave analysis on this problem and aim to find regions

of parameter space in which we can determine if there will be travelling waves

(linear growth) or steady state solutions (confined tumours).

5.3.1 Large Time Behaviour

From the numerical results presented in Figure 5.3, in the absence of BPVs the

tumour spheroid appears to grow linearly. In order to get an analytical handle

on this behaviour and the behaviour when we input BPVs, we now look to the

asymptotic solutions of the system as t→ ∞ and hence we carry out a travelling

wave analysis by assuming that the tumour grows at a constant speed, u > 0.

The rate of change of the spheroid radius will then be

dR

dt
= u.

So that R ∼ ut as t → ∞. We redefine our system with the travelling wave

coordinate, z = r − ut, and rewrite the equations (5.16)-(5.18) in terms of z.

The prime denotes the derivative with respect to z:

−um′ =
2

r
(Dmm

′ −mv) + (Dmm
′ −mv)′ + pm(n, c)m

−dm(c)m− g(B), (5.26)

c′′ = dc(m,n), (5.27)

−uV ′ =
2

r
(DvV

′ − V v) + (DmV
′ − V v)′ − kaV F

+
kd

l
B. (5.28)

We will use the quasi-steady expression for B as described in (5.19). Recall the

advection velocity (5.20),

v = ψm′ where ψ = Dm −Dn.
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We now write this system as a system of 6 first order ODEs, given below

m′ = W, (5.29)

c′ = P, (5.30)

V ′ = Q, (5.31)

W ′ =
1

ψm−Dm

(
uW − ψW 2 + pm(n, c)m− dm(c)m− g(B)

)
, (5.32)

P ′ = dc(m,n), (5.33)

Q′ = − 1

Dv

(
(u− ψW )Q− ψWV − kaV F +

kd

l
B

)
, (5.34)

note that we have neglected the terms containing r−1 since they are O(R−1)

when R→ ∞.

We will solve this system of equations numerically using AUTO (a continuation

and bifurcation software [29]). To facilitate the numerical solver we truncate

the semi-finite domain z ∈ (−∞, 0] to z ∈ [−R, 0], where R > 0 and taken to

be sufficiently large, for AUTO to be able to solve the boundary value problem.

We rescale z,

ẑ =
z

R
+ 100 so that ẑ ∈ [0, 100].

The wavespeed u can be written using (5.25) as

u = hn(n∞ +m− 1)|ẑ=1.

We use the following boundary conditions,

m′(0) = c′(0) = V ′(0) = 0, (5.35)

−Dnm
′ −Dm

(1 −m)

m
m′ = hn(n∞ +m− 1) |ẑ=1 , (5.36)

DvV
′ −Dm

V

m
m′ = hv(V∞ − V ) |ẑ=1 , (5.37)

which follow from (5.22)-(5.24). We also fix the oxygen concentration c = 1 at

ẑ = 100. We solve the system of 6 first order ODEs, (5.29)-(5.34), using AUTO.
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Note that we have 7 boundary conditions which is overposed for our 6 ODE

system. The additional boundary condition, namely u = hn(n∞ + m − 1), is

used to estimate the wavespeed u as the model parameters are varied.

Due to the long time frame being considered, we no longer use the initial con-

dition for free BPVs, whereby BPV infiltration is not initially permitted i.e.

V∞ = 0 for t < t∗. Then at some time t∗ we set V∞ 6= 0 implying BPVs are

administered on the tumour surface and then removed after a period of time.

In contrast, for these large time solutions we allow V∞ 6= 0 for all t ≥ 0.

In Figure 5.4, we show the typical long-time solution profiles obtained from the

AUTO calculation. We notice that the necrotic core of the tumour is present.

The cells consume oxygen which lowers the concentration causing a hypoxic

region which then causes the cells to lyse at the centre. When cells lyse they

produce cellular material which living cells on the periphery of the tumour can

then utilise as growth nutrients. The advection velocity is negative, which means

that the BPVs will tend to be transported to the centre of the tumour if not

first being bound by outer viable cells. The predicted wavespeed, u, for the

advancement of the tumour in this case is u = 0.72.

Using the continuation and bifurcation software AUTO [29], we examine how

changing model parameters affect the wavespeed of the moving boundary. In

Figure 5.5(i), we plot the wavespeed u against γ which represents the lysis rate

of the tumour cells due to the internalization of the BPV, and in (ii) we show

u against V∞, which represents the external concentration of the BPVs. We

can see that by increasing the lysis rate (or in other words the potency of the

BPVs), γ, the wavespeed decreases to zero, indicating a bifurcation from travel-

ling waves (linear growth) to steady-states where tumour growth is confined. As

V∞ increases we observe similar dynamics, where the bifurcation between linear
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and confined growth occurs at V∞ = 4.3, i.e. a greater concentration of BPVs

results in a more effective treatment.
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Figure 5.4: The leading edge profiles when solved using the AUTO bifurcation

software [29]. V∞ = 10, ka = 0.01, kd = 0.053, ki = 880, γ = 1 × 10−5, Dm =

10, Dn = 500 and Dv = 500.
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Figure 5.5: (i) The travelling wave velocity, u, with varying γ and fixed V∞ = 2.

As the death rate increases, the velocity increases. (ii) Travelling wave velocity

with varying V∞ and fixed γ = 1×10−4. A similar pattern can be seen as in (i).

As V∞ increases the velocity u deceases. The other parameters remain fixed,

ka = 0.01, kd = 0.053, ki = 880, l = 1000, Dm = 10, Dv = 500 and Dn = 500.
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We now examine the different regions of parameter space that can predict linear

growth of the spheroid (travelling wave solutions) or confined growth (corre-

sponding to an equilibrium steady state). In Figure 5.6, we show the bifurcation

of the two states (when the wavespeed u = 0) in the parameter space of (V∞,γ).

Recall V∞ is the external BPV concentration and γ is the lysis rate associated

with the BPV treatment. We can see that, with increasing concentration of

applied BPVs, a lower death rate is required for steady state solutions. Or by

increasing the potency of the BPVs, less BPVs are required to obtain an equilib-

rium state. The steady state solutions are to the right of the bifurcation curve

whereas travelling waves occur to the left.

The bifurcation presented in Figure 5.6 is expected. We would expect that, by

increasing the potency of the BPVs or by increasing their number, a reduction

in tumour growth would be seen. Eventually, growth will be confined which

corresponds to a steady state solution.
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Figure 5.6: The travelling wave:steady-state bifurcation curve in (V∞, γ) param-

eter space. Above the curve steady-state solutions (SS) occur, below there are

travelling waves (TW). We use ka = 0.01, kd = 0.053, ki = 880, l = 1000, Dm =

10, Dn = 500 and Dv = 500.

In Figure 5.7, we show again the travelling wave:steady-state bifurcation in

(V∞, γ) parameter space, but with varying n∞. n∞ is the parameter that de-

scribes the concentration of cellular material on the spheroid boundary. One

can interpret n∞ as the richness of the culture media conditions in vitro or the

degree of oxidation of the tumout in vivo. We would expect that by increasing

n∞ the tumour growth would increase resulting in a larger parameter region for

travelling waves. We have found that this is true but only to a certain threshold

value of n∞.
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Figure 5.7: Travelling wave:steady-state bifurcation curves in (V∞, γ) parameter

space for different values of n∞. Above the curve are the steady-state solutions

(SS). Below are the travelling waves (TW). We use ka = 0.01, kd = 0.053, ki =

880, l = 1000, Dm = 10, Dn = 500 and Dv = 500 with n∞ = 0.2, 0.4, 0.6 and 0.8.

We notice that for a fixed V∞, say, if we increase n∞, an increasing potency

of the BPVs (γ) is required for steady states to occur. That is, until a certain

threshold of n∞. Then the potency can be reduced whilst still achieving a

decreased tumour growth. We examine this further by fixing V∞ and following

the travelling wave, steady state bifurcation in (n∞, γ) parameter space (see

Figure 5.8).
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Figure 5.8: Travelling wave:steady-state bifurcation curve in (n∞, γ) parameter

space when V∞ = 5. Under the curve are steady-state solutions. Above the

curve are travelling waves. The remaining parameter values are the same as

those in Figure 5.7.

In Figure 5.8, we see that when n∞ is increased beyond a threshold value, the

BPVs do not need to be as potent to achieve confined growth. In Figure 5.9, we

examine the behaviour of the tumour cells and the internal velocity field within

the tumour spheroid for these parameter values. Typically (for example, when

n∞ = 0.2 corresponding to the blue dotted line in Figure 5.9(iv)) the advection

velocity within the spheroid is negative, which means that material is advected

into the centre of the spheroid. However, when increasing n∞ over a certain

threshold, we see that the advection velocity becomes positive near the spheroid

boundary (red dot-dashed line in Figure 5.9(iv)), this change in the direction of
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the velocity results in the BPVs being kept at the tumour boundary where the

tumour density is highest. As a consequence more viable cells are being targeted

and subsequently a lower lysis rate (γ) is required to give the same reduction in

tumour size.
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Figure 5.9: In (i), (ii) and (iii) are the solution profiles for tumour cells,

free BPVs and oxygen, respectively, at varying values of n∞; n∞ = 0.2

(green),0.4,0.6,0.8 (red). (iv) Advection velocity with n∞ = 0.2, 0.4, 0.6, 0.8.

We see a positive velocity at the tumour boundary with larger values of n∞.

The remaining parameter values are the same as in Figure 5.7.
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We now explore the travelling wave:steady-state bifurcation in (Dv, hv) param-

eter space, where, as a reminder, Dv is the diffusion coefficient of the free BPVs

and hv is the permeability of the BPVs into the tumour spheroid, we observe an

interesting result as shown in Figure 5.10.
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Figure 5.10: The travelling wave:steady-state bifurcation curve in (Dv, hv) pa-

rameter space. To the right are the steady-state solutions (SS). To the left are

the travelling waves (TW). The remaining parameter values are the same as in

Figure 5.7.

We notice that for a fixed value of hv (for example, if hv = 2.2) the solutions can

be either travelling waves for very small or very large values of Dv but steady

state solutions occur for intermediate values of Dv. In simulations (not shown),
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we see that when Dv is very small, the free BPVs are kept to the periphery and

don’t diffuse into the inner core of the spheroid, hence V (R, t) ≃ V∞ which slows

infiltration of further therapeutic BPVs. The opposite occurs when the diffusion

rate of free BPVs, Dv, is very large since the internal velocity will quickly move

the BPVs into the core of the spheroid rendering the BPVs useless. We see that

when the BPVs have an intermediate diffusion rate they are transported to the

core of the spheroid slower than if Dv is very large, giving an opportunity for

binding events and internalization to occur, and therefore slowing the growth

of the spheroid. For hv ≤ 1.96, only travelling waves exist for any value of Dv.

This is due to the permeability being too low to allow enough BPVs to penetrate

the spheroid.

In Figure 5.11, we show the travelling wave:steady-state bifurcation in the

(V∞, ka) parameter space, where V∞ is the external BPV concentration and ka

is the association rate for a BPV to become bound to the tumour cell surface.

Steady state solutions are to the right of the bifurcation curve and travelling

wave solutions are to the left.
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Figure 5.11: The travelling wave:steady-state bifurcation in the (V∞, ka) param-

eter space. Above the curve are steady-state solutions (SS), below are travelling

waves (TW). With γ = 10−4, n∞ = 0.2 and the remaining parameter values are

the same as in Figure 5.7.

Finally, we would expect that if we increase the concentration of BPVs infiltrat-

ing and also increase the binding association rate we will see a decreased tumour

growth, and this is indeed what is observed (see, e.g. Figure 5.11).

5.4 Extension to Multiple Binding

In section 5.2, we assume that only one receptor-ligand complex is required for

the tumour cells to internalize the BPVs. This is a simplistic assumption and
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so, in this section, we extend the model to include multiple binding events,

which represents the encapsulation of the BPV on the tumour surface through

receptor-mediated endocytosis.

Receptor-mediated endocytosis occurs in a clathrin-coated pit (clathrin is found

within the cell, and the pits form underneath the cell membrane) and is the

process in which a ligand (external to the cell) binds to a receptor on the cell

surface before it is internalized [21]. Once the complex between receptor and lig-

and have formed the cell membrane invaginates and then the membrane pinches

off to create an internal clathrin-coated vesicle. The clathrin coat detaches in

seconds and is recycled to the cell membrane. The uncoated vesicle will then fuse

with an endosome where the ligand will be released, and the process of receptor

recycling can begin [4]. The processes of membrane invagination, pinching off

and vesicle transport are all carried out using the cell’s cytoskeleton.

As in Section 5.2, we denote the volume fraction of tumour cells per unit control

volume m(r, t), the volume fraction of cellular material per unit control volume

n(r, t), oxygen concentration is given by c(r, t) and BPVs per cm3 V (r, t). To

convert the model to multiple binding we need to re-express the bound BPVs

variable, i.e. we now assume that Bk(r, t) is the mole of bound BPVs with

k ligand-receptor complexes per cm3, for k = 1, ..., n. We assume that the

(constant) mole of free receptors per cm3 is now given by

F = f0m︸︷︷︸
total mol receptors

per cm3

−
n∑

k=1

kBk,

︸ ︷︷ ︸
mol ligand-receptor
complexes per cm3

(5.38)

which is similar to the single binding case. Although, here we take into account

that a BPV may have more than one receptor-ligand complex.

To incorporate a more biologically realistic binding and internalization, we com-



BPV Infiltration into Tumour Spheroids 159

pare two cases of internalization functions; (1) a constant internalization rate ki

fixed ∀k, where k = 1, .., n is the number of receptor-ligand complexes, and (2)

an internalization function that depends on the number of complexes formed,

which we take to be given by

ki(k) = ki (ε1 +H(k − j∗)) . (5.39)

We use ε1 is a very small number, hence we assume that in this case there will

always be a (small and constant) minimum internalization rate kiε1 if the BPV

bound number is less that j∗. The level of membrane deformation is represented

by j∗, where j∗ ∈ N, j∗ ≤ n. With j∗ = 1 being no deformation required and

j∗ > 1 represents that at least j∗ receptor-ligand complexes are required for cell

surface deformation and endocytosis. Note that, here, we choose an upper bound

on j∗ to be j∗ = 5 due to the increasing complexity of the resulting algebraic

equations (described later in more detail). The internalization function (5.39)

describes the scenario where the BPVs will be internalized once bound with j∗

compexes. This allows us to implicitly model the membrane deformation that

occurs during receptor-mediated endocytosis.

To extend the model to include these multiple binding events we make the

same assumptions for the ODE system we present in Chapter 4. In that, we

assume a proportion of ligands and receptors will be available for 2-D binding,

controlled by ρl and ρf respectively. We assume that Bj (2 ≤ j ≤ n− 1) leaves

the system by either internalization at the rate ki(j), by the association (at

rate kd
a) of another ligand-receptor complex, becoming Bj+1, or when a ligand-

receptor complex dissociates (at the rate kd) becoming Bj−1. In the case when

the receptor-ligand complex dissociates in the B1 class, the BPV enters the free

BPV class, V .

Recall that the bound BPVs per cell move with the same flux of the tumour
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cells,
Jm

m
. Also, as previously described we use a no-void condition within the

spheroid, hence m+ n = N0 where N0 is a constant representing the amount of

cellular material contained within the unit control volume. Using these assump-

tions, we extended the single binding model from Section 5.2 to include multiple

binding events. We first show the full dimensional system for completeness and

then employ the same rescalings as before. The system is given by,

Tumour:

∂m

∂t
= − 1

r2

∂

∂r

(
r2Jm

)
+ pm(n, c)m− dm(c)m− g(Bk), (5.40)

Material:

∂n

∂t
= − 1

r2

∂

∂r

(
r2Jn

)
− pm(n, c)m+ dm(c)m+ g(Bk), (5.41)

Oxygen:

0 = − 1

r2

∂

∂r

(
r2Jc

)
− dc(m,n), (5.42)

Free BPVs:

∂V

∂t
= − 1

r2

∂

∂r

(
r2Jv

)
− kaV F +

kd

l
B1, (5.43)
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B1’s:

∂B1

∂t
= − 1

r2

∂

∂r

(
r2B1

m
Jm

)
+ kalV F − (kd + ki(1))B1

− kd
aρf

(
ρllNA − 1

)
FB1 + 2kdB2, (5.44)

Bj’s:

∂Bj

∂t
= − 1

r2

∂

∂r

(
r2Bj

m
Jm

)
+ kd

aρf

(
ρllNA − (j − 1)

)
FBj−1

− (jkd + ki(j))Bj − kd
aρf

(
ρllNA − (j − 1)

)
FBj

+ (j + 1)kdBj+1, (5.45)

Bn’s:

∂Bn

∂t
= − 1

r2

∂

∂r

(
r2Bn

m
Jm

)
+ kd

aρf

(
ρllNA − (n− 1)

)
FBn−1

− (nkd + ki(n))Bn, (5.46)

where in (5.45) j = 2, ..., n − 1 where n, as before, is the maximum num-

ber of ligand-receptor complexes that can form. Jm, Jn and Jv are the fluxes

of tumour cells, cellular material and free BPVs, respectively, and are previ-

ously defined in Section 5.2. We assume, as before, that the death rate of

tumour cells, g(Bk), is proportional to the total number of internalized BPVs,

i.e. g(Bk) = γ
n∑

k=1

ki(k)Bk.

As before, using the no-void condition and by summing equation (5.40) and

(5.40) we can deduce the following advection velocity,

v =
1

N0

(
(Dm −Dn)

∂m

∂r

)
. (5.47)

As we have seen in the single binding case, the fast binding kinetics of the

receptors and ligands compared to tumour cell growth allow us to take advantage
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of a quasi-steady state assumption for bound BPVs. Hence (5.44)-(5.46) become

0 = kalV F − (kd + ki(1))B1

−kd
aρf

(
ρllNA − 1

)
FB1 + 2kdB2, (5.48)

0 = kd
aρf

(
ρllNA − (j − 1)

)
FBj−1

−(jkd + ki(j))Bj − kd
aρf

(
ρllNA − (j − 1)

)
FBj

+(j + 1)kdBj+1, for j = 2, ..., n− 1 (5.49)

0 = kd
aρf

(
ρllNA − (n− 1)

)
FBn−1

−(nkd + ki(n))Bn, (5.50)

where n is is maximum number of bonds that can form and F is defined in (5.38).

We can solve (5.48)-(5.50) independently to give each Bk, (where k = 1, ..., n)

in terms of the remaining model variables.

As described above, we non-dimensionalized the system using the same variable

re-scalings as in Section 5.2.2, namely,

m = m̂N0, n = n̂N0, c = ĉc∞, V =
V̂ N0

vm

, B =
B̂N0

vmNA

, F =
F̂N0

vmNA

.

The full procedure and parameter re-scalings are given earlier in the chapter and

so the process is not fully repeated here. Note that from this point onwards the

variables are dimensionless with the hats dropped for simplicity.
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5.5 Numerical Results

To solve the system numerically we must initially solve the system (5.48)-(5.50).

First, we take n = 2. Equations (5.48)-(5.50) then give

0 = kalV (f0m− B1 −B2) − (kd + ki(1))B1

−kd
aρf (ρll − 1) (f0m−B1 − 2B2)B1 + 2kdB2, (5.51)

0 = kd
aρf (ρll − 1)(f0m− B1 − 2B2)B1

−(2kd + ki(2))B2. (5.52)

Using appropriate parameter groupings for simplicity we can express the solution

for B1 and B2 explicitly in terms of m and V , namely,

B1(r, t) =
1

2γ1(2µ1 − µ2

(
− kalV µ2 − γ1ki(2)f0m− µ1µ2

+
(
γ2

1ki(2)2f 2
0m

2 + 2γ1µ2f0m
(
4kalV µ1

− kalV ki(2)
)

+ µ2
2

(
kalV + µ1

)2) 1

2

)
(5.53)

B2(r, t) =
γ1(B1 + f0m)B1

2γ1B1 + µ2
, (5.54)

where

γ1 = kd
aρf (ρll − 1), µ1 = kd + ki(1) and µ2 = 2kd + ki(2). (5.55)

Note that we have attempted to solve the algebraic system (5.48)-(5.50) with

n = 3 but the solutions have turned out to be analytically intractable with the

equations in their current form, we therefore make a simplifying assumption to

allow progress. We introduce an approximation to F . Recall from (5.38) that

F = f0m−
n∑

k=1

kBk.

We now assume that there are much more free receptors than bound, i.e. F ≫
∑n

k=1 kBk, so that we can therefore make the leading order approximation

F = f0m. (5.56)
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First, we check if this approximation to F is acceptable. We first test this on

the simplest case; the single binding model. Recall that we have an expression

for bound BPVs per cell, (5.21). With this new approximation for free receptors

per cm3 (5.56) we now have the expression,

B(r, t) =
kalV f0m

(kd + ki)
, (5.57)

Now, for the n = 2 case, we can get an expression for B1 and B2 explicitly in

terms of m and V , and using (5.56) we get

B1(r, t) =
kalV f0mµ2

µ1µ2 + f0mγ1ki(2)
, (5.58)

B2(r, t) =
γ1f0mB1

µ2

, (5.59)

where γ1, µ1 and µ2 are defined as in (5.55).

In Figure 5.12, we show the difference in the radius of the tumour over time

when single binding (n = 1) and multiple binding (when n = 2) are compared.

For simplicity we keep the internalization rate constant for this comparison.

The BPVs are introduced to the tumour surface at time t = 40 and removed

at time t = 50. We notice that when we extend the model to include multiple

binding events (when n = 2) there is a slightly lower decrease in tumour volume

compared to when n = 1. Importantly, we notice that when the free receptors

are approximated by F = f0m we have a very good match compared to the full

system in both single (n = 1) and multiple binding cases (n = 2). Since the

system is algebraically is intractable when using F = f0m−
n∑

k=1

kBk (if n ≥ 3)

we assume that the F ≈ f0m approximation holds for all cases when n ≥ 3.
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Figure 5.12: Shown are the tumour radii plotted against time when n = 1 and

n = 2 using a direct comparison between the assumption when F = f0m (red

dashed lines) and the full expression when F = f0m−∑n

k kBk (blue solid lines).

In the interval t = 30, ..., 80, we introduce the BPVs by letting V∞ = 10 for 40 ≤
t ≤ 50. We take V∞ = 0 otherwise. With Dm = 10, Dn = 500, Dv = 500, ka =

0.01, ki = 880, kd = 0.053, γ = 10−3, dmax
m = 2, f0 = 1000, n∞ = 0.2, cp = 0.6 and

cc = 0.2.

We now study the effects of taking n = 4 and n = 5, using a contant inter-

nalization rate. In Figure 5.13, we see that there is very little difference in the

final tumour radii as we increase n. We saw a similar result in Chapter 4 where,
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even though BPVs can bind to multiple receptors, with this parameter set, most

BPVs were bound with one complex and internalized quickly.
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Figure 5.13: The tumour radii when we increase the maximum number of bonds

available, n for n = 1, ..., 5. The parameter values are the same as in Figure

5.12.

We solve the non-dimensionalized system (5.40)-(5.43), using n = 5, together

with the analytical solutions for bound BPVs, Bk where k = 1, ..., 5. The typical

profiles are given in Figure 5.14, which show the spheroid radius versus time with

the associated density of tumour cells, oxygen, free BPVs and bound BPVs

within the tumour boundary. Here, we assume the BPVs are internalized at a
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constant rate. For 0 ≤ t < 40 there are no BPVs present and we observe linear

growth of the spheroid radius. As time increases, the tumour cells continue to

proliferate which increases the size of the spheroid. Due to the limitation of

oxygen diffusion there is a concentration gradient of oxygen with the highest

concentration at the spheroid boundary. This gradient results in a region of

lower density of tumour cells behind the proliferating edge. At the centre of the

spheroid there is a very low concentration of oxygen which results in a necrotic

core of dead cells. During this initial growth there are no BPVs present. At

time 40 ≤ t < 50, BPVs are introduced to the surface of the spheroid and these

infiltrate into the tumour. We see that the highest concentration of free BPVs

occurs at the boundary but we do now see infiltration into the centre of the

spheroid by t = 50. However, the highest concentration of bound BPVs are still

found at the proliferating edge of the tumour since where the viable tumour

cell density is highest. During the period of BPV application, we observe a

noticeable decrease in spheroid radius. The BPVs are removed at t = 50. The

spheroid then becomes re-oxygenated due to the smaller radius allowing for

effective diffusion. This then provides a good environment for growth, hence the

spheroid re-grows linearly for t > 50.
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Figure 5.14: The tumour spheroid changing with time. We plot the densities of

tumour cells, oxygen concentration, free and total bound BPVs. Initially growth

occurs with no free BPVs on the tumour surface, then we introduce BPVs by

setting V∞ = 10 when 40 ≤ t ≤ 50. We notice that the tumour growth rate

decreases for the period of time when treatment is administered, but returns to

linear growth (indicating travelling wave solutions) after. The parameters are

the same as those in Figure 5.12.
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5.5.1 Large Time Behaviour

As we see in Figure 5.14, travelling waves are still present in the multiple binding

case and so, in this section, we look for travelling wave solutions in the multiple

binding model. We also include the two internalization functions (5.39); one

describing constant internalization independent on the number of receptor-ligand

complexes formed and the other dependent on the number of complexes formed.

We carry out this analysis with the intention to find out if, in the long term, the

differing internalization functions can affect treatment efficacy.

As before we assume that tumour growth is at a constant speed, u > 0, so that

R ∼ ut as t → ∞. We redefine our system with the travelling wave coordinate,

z = r − ut, and rewrite the equations (5.40)-(5.43) in terms of z, in the usual

way. This system of three 2nd order ODEs is then converted to a system of six

first order ODEs.

We have carried out the domain truncation in the same way as before, see Section

5.3.1 for details. The final system for the travelling wave analysis is then given

by

m′ = W, (5.60)

c′ = P, (5.61)

V ′ = Q, (5.62)

W ′ =
1

ψm−Dm

(
uW − ψW 2 + pm(n, c)m− dm(c)m− g(Bk)

)
, (5.63)

P ′ = dc(m,n), (5.64)

Q′ = − 1

Dv

(
(u− ψW )Q− ψWV − kaV F +

kd

l
B1

)
, (5.65)

for k = 1, ..., n, subject to the following boundary conditions on the truncated
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domain ẑ ∈ [0, 100]: at ẑ = 0

m′(0) = c′(0) = V ′(0) = 0; (5.66)

at ẑ = 100,

−Dnm
′ −Dm

(1 −m)

m
m′ = hn(n∞ +m− 1) |ẑ=1 , (5.67)

DvV
′ −Dm

V

m
m′ = hv(V∞ − V ) |ẑ=1 , (5.68)

As before, we also fix the oxygen concentration c = 1 at ẑ = 100. We have

6 boundary conditions as before see (5.66)-(5.68). We impose an additional

boundary condition which fixes the wavespeed u at ẑ = 100 and this is given by

u = hn(n∞+m−1). This extra boundary condition allows us to use the bifurca-

tion and continuation AUTO to solve (5.60)-(5.65) to calculate the wavespeed,

u.

First, we explore the long term effects of the internalization function, ki(k)

(5.39), on the long time solution profiles. In Figure 5.15, we show the densities

of tumour cells, oxygen and free BPVs subject to the two different internalization

functions. We can see no difference in the solutions for tumour cells, oxygen or

free BPVs when using either internalization function.



BPV Infiltration into Tumour Spheroids 171

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

 

 

ki(k) = ki

ki(k) = ki (ε1 + H(k − j∗))

T
u
m

ou
r

C
el

ls
O

x
y
ge

n
F
re

e
B

P
V

s

Distance from centre

Distance from centre

Distance from centre

Figure 5.15: The profiles for tumour cells, free BPVs and oxygen, when solved

with the two different internalization functions described in (5.39). The blue line

represents the constant internalization rate ki and the red dashed line represents

the internalization when dependent on j∗. We observe no noticeable difference

between the two solutions. The parameters are the same as in Figure 5.12, where

j∗ = 5 and γ = 1 × 10−5.
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Figure 5.16: The numerical solutions for BPVs bound with k complexes, where

k = 1, ..., 5, when solved with the two internalization functions described in

(5.39). Here, we take j∗ = 5 and γ = 1 × 10−5. The blue line represents the

constant internalization rate ki for all k and the red dashed line represents the

internalization when bound by j∗ complexes. We can see an accumulation of

Bk’s on the surface of the tumour when ki(k) = ki (ε1 +H(k − j∗)) since they

are only likely to be internalized when in the B5 state. The parameters are the

same as in Figure 5.12.
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In Figure 5.16, we show the profiles of the bound BPVs by k = 1, ..., 5 complexes

subject to the two internalization cases. In the function case, we take j∗ = 5. In

contrast to Figure 5.15, we do observe a change in bound BPVs with k bonds

between the two internalization functions. We notice that there are a greater

number of BPVs bound when the internalization is dependent on the number of

complexes, i.e. when

ki(k) = ki (ε1 +H(k − j∗)) , where j∗ = 5.

The increase in the number of BPVs bound is due to the restriction on inter-

nalization when j ≤ 4. Instead of the BPVs with 1,2,3, or 4 complexes being

internalized, they stay bound to the tumour cell until more complexes can form.

In contrast, when

ki(k) = ki = constant

we see a greater number of BPVs internalized as they are not restricted to

additional bonds being formed.

In an attempt to explain why we do not see a significant difference in the long

time solution profiles for the two different internalization functions, we examine

the tumour death term g(Bk). Figure 5.17 shows the death term g(Bk) over the

spheroid interior for both internalization functions. The two curves in Figure

5.17 are very similar with a very small difference between the two internalization

cases. Although, from Figure 5.16, we see a difference in the number of bound

BPVs from these two internalization cases, the number internalized in the long

time are very similar.
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Figure 5.17: The blue line represents the constant internalization rate ki for

all k and the red dashed line represents the internalization when bound by

j∗ complexes (we take j∗ = 5). There is no significant difference in the final

death function g(Bk) when using either of the internalization functions, which

is reflected in the previous profile solutions where we also do not see a difference

in the final tumour profile. The remaining parameters are the same as Figure

5.12 with γ = 1 × 10−5.

We now examine the effect of the internalization functions on the wavespeed, u,

whilst also varying the tumour cell sensitivity to BPVs (γ). In Figure 5.18, we

notice that there is an increasingly large difference between the values γ may

take to decrease the wavespeed to zero.
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Figure 5.18: The wavespeed, u, versus γ with the two internalization functions

of ki(k). Showing that if we assume ki(k) = ki (ε1 +H(k − j∗)), where j∗ = 5,

we then require a larger death rate (γ) to confine growth (steady states). Here

V∞ = 2 in both cases, the remaining parameters are the same as in Figure 5.12.

When we take the Hill function internalization, we know (from Figure 5.16)

that there are more BPVs attached to the tumour surface which don’t appear

to be internalized. Hence the tumour cells must be more sensitive to the BPVs

that are internalized for a comparable decrease in wavespeed to be seen, thus,

requiring a larger death rate, γ. In Figures 5.19-5.20, we vary with the effect of

increasing the potency of the BPV and increasing the external concentration of

BPVs to the tumour surface on a short-timescale of treatment to see if there is
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any change in the spheroid radius when j∗ = 5.
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Figure 5.19: The spheroid radius when solved with the two internalization func-

tions at different values of γ. By increasing γ, we are increasing the potency of

the BPVs, by doing so we can produce a similar tumour radius profile to that

of constant internalization (blue line). The red line and green dash-dotted line

show the spheroid radius when solved with ki(k) = ki (ε1 +H(k − j∗)) when

j∗ = 5. The default value taken for γ is 10−3, and this is increased 50-fold, with

V∞ = 10 when 40 ≤ t ≤ 50. The remaining parameters are the same as Figure

5.12.
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We notice that there is a difference in the spheroid radius (when γ = 10−3) when

solving with the two internalization cases. If ki is not dependent on the number

of complexes, we see a reduced radius during the period of treatment. However,

if ki is dependent on the number of complexes (when in this case j∗ = 5), we do

not see any decrease in spheroid radius during this short time period, due to the

BPVs being held on the cell surface as they require additional bond formation

before internalization. When the death rate γ is increased, however, we then

observe a decrease in spheroid radius during the period of treatment. From

Figure 5.20, we see that also there must be a considerable increase in V∞ to

see a decrease in tumour radius when the internalization is complex dependent.

Therefore, a greater number of BPVs are required to be present when complex

number dependent internalization is assumed.

When internalization is dependent on the number of complexes, BPVs remain

on the cell surface instead of being internalized readily. This could suggest that

although eventually they will be internalized, the low rate of internalization of

BPVs in a short time frame means that we do not see the impact of the therapy.

If the amount of BPV applied is the same in both internalization cases, due

to low internalization rate when it is complex dependent, the tumour cells may

recover and grow. In the case of constant internalization, BPVs are more readily

internalized and the treatment has a much stronger impact.
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Figure 5.20: The spheroid radius versus time when solved with the two inter-

nalization functions at different values of V∞ (γ = 10−3 fixed). We vary the

concentration of BPVs on the tumour surface during 40 ≤ t ≤ 50. The red

line and green dash-dotted line show the spheroid radius when solved with

ki(k) = ki (ε1 +H(k − j∗)) where j∗ = 5. The blue line represents when

V∞ = 10. A significant increase in V∞ is required to get a similar radius profile

to that of constant internalization. The remaining parameters are the same as

Figure 5.12.
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We have seen the difference between the 2 different cases of internalization when

in the Hill function case, the threshold, j∗, is set to 5. We now relax the strictness

of internalization function to see the effect when an intermediate j∗ is chosen.

Figure 5.21 shows the spheroid radii when j∗ = 1, .., 5.
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Figure 5.21: The change in tumour radius over time with the internalization

function given by ki(k) = ki (ε1 +H(k − j∗)), with various j∗. The growth rate

is linear for j∗ = 5, but when 1 ≤ j∗ ≤ 4, a decrease in tumour size is seen during

the period of treatment. We have γ = 10−3 and V∞ = 10 when 40 ≤ t ≤ 50.

The remaining parameters are the same as Figure 5.12.
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We notice from Figure 5.21 that when j∗ ≤ 4 there is a decrease in spheroid

radius during the period of treatment comparable to that of constant internalisa-

tion, but if j∗ > 4 there is no reduction in spheroid growth during the treatment

time. Therefore, with this set of parameters j∗ = 5 appears to be a threshold.

That is, by forcing the BPV to bind to at least 5 complexes before internaliza-

tion we slow down the internalization of the BPV sufficiently so that treatment

is then not effective within this time frame.

We now compare the large-time solutions when j∗ = 3 and j∗ = 5. Previously

in Figure 5.21 we saw that when j∗ > 4 there is little effect on spheroid radius

during the period of treatment with BPVs. In contrast, if j∗ < 5 there is a

decrease in radius. In Figure 5.22, we examine whether this is a transient or

long term effect.

We observe in Figure 5.22, that the spheroid radius tends to a limit which is

not dependent on j∗. In early time, when j∗ = 5, we see a decrease in spheroid

radius only if the potency or volume of BPVs are increased. When j∗ < 5 no

increase in potency is required for the transient decrease in spheroid growth to

be seen.
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Figure 5.22: The spheroid radius changing with time when ki(k) =

ki (ε1 +H(k − j∗)) where j∗ = 3, 5. The treatment is applied for t ∈ [40, 50]

but we run the simulation for large-time to see if the differences between j∗ = 3

and 5 are transient or long term. We notice transient spheroid radius decrease

when j∗ = 3 (not present when j∗ = 5) but in large time both solutions tend to

the same final spheroid radius. The parameters are the same as in Figure 5.12.
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5.6 Discussion

In this chapter, we have presented a model of a novel targeted cancer therapy,

where BPVs infiltrate avascular tumour spheroids. The model represents the

growth of a tumour spheroid. In general the growth of the spheroid is dependent

on the balance between proliferating and dying tumour cells, which is controlled

by the nutrient (namely oxygen) availability. We include BPV infiltration into

the model by assigning a fixed concentration of BPVs on the tumour spheroid

boundary which are then free to permeate the boundary and diffuse throughout

the spheroid. BPVs are internalized by cells by the process of endocytosis. We

make the modelling assumption that the BPVs are only internalized by receptor-

mediated endocytosis. We also assume a death rate which is proportional to the

internalization of the BPVs.

In Section 5.2, we describe the simple case whereby we assume only one binding

event (where one receptor-ligand complex is formed) is required for the BPV

to become bound to a tumour cell and subsequently internalized. Whereas, in

Section 5.4, we extend this assumption to include multiple binding events. We

use numerical simulations and large time asymptotics to analyse the behaviour

of these two systems.

The numerical simulations show that for appropriate parameter values the spheroid

grows linearly when there is insufficient infiltration of the BPVs. When BPVs

infiltrate the spheroid there is a noticeable decrease in spheroid radius in the sin-

gle binding case which is dependent on the values of the therapeutic parameters.

We carry out a bifurcation analysis which highlights the regions of parameter

space where linear growth of the spheroid or saturation at an equilibrium state

occurs. The parameter regions with unexpected results include γ and n∞, the

death rate due to BPV internalization and the external concentration of cellular
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material, respectively. We assume that with an increase in n∞ there would be an

increase in growth and so require more potent BPVs to attain saturated growth.

This was indeed observed until a threshold of n∞, after which the model pre-

dicts that we are more likely to see saturation of growth when using less potent

BPVs i.e. lower γ. In this case, the internal velocity within the spheroid came

into play. By increasing n∞ past the threshold, the gradient of cellular mate-

rial switched direction, creating an opposite internal velocity. Hence, instead

of the BPVs accumulating in the centre of the spheroid, they mainly lie at the

proliferating edge of the spheroid where treatment will be most successful.

We see another interesting result when examining the hv, Dv parameter space,

where hv the permeability of BPVs over the spheroid boundary and Dv the

diffusion coefficient of free BPVs, respectively. We see that for a certain value

of hv, there can be either growth of the spheroid or saturation. For very small

or very large values of Dv, we see travelling waves whereas intermediate values

results in growth saturation.

When extending the model to include multiple binding events we also include

a more biologically realistic internalization function, in which a BPV must be

bound by a given number of complexes before internalization can occur mim-

icking the membrane deformation that occurs during receptor-mediated endo-

cytosis. We introduce an approximation to the free receptors concentration as

the multiple binding framework becomes algebraically intractable to solve when

n > 2 (where n is the maximum number of complexes that can form).

Numerical simulations indicate no change in the long-time tumour cell density

when using constant internalization or the complex dependent internalization,

although there is a difference seen in the numbers of BPVs bound to the tu-

mour cells. As expected more BPVs are bound on the tumour surface instead
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of being internalized when the more complex dependent internalization function

is assumed. There is also no change in long time tumour density due to the

total death rate being almost identical in both cases. What we do observe, how-

ever, is that the multiple binding dynamics produce only transient differences.

The radius of the spheroid tends to the same size, as t → ∞, independent of

internalization function used.



Chapter 6

Conclusions and Future work

6.1 S. coelicolor Growth and Metabolite Pro-

duction

In Chapter 2 and 3 of this thesis we look at the growth and metabolite produc-

tion of S. coelicolor, which are very important bacteria in the world’s production

of antibiotics. We derive a mixed system of hyperbolic-parabolic partial differ-

ential equations to describe the growth of a S. coelicolor pellet in 1-D radially

symmetric space. We assume that growth of the pellet is driven by the hyphal

tip flux, and used tip and trail expressions for the formation of hyphal biomass.

In Chapter 2, we parameterize the model using experimental data provided by

Dr P. Hoskisson and values from the literature. After rescaling the system we

solve the system using NAG routine D03PHF and produce numerical simulations

which correspond well to the real biological system. We carry out a parameter

sensitivity analysis which gives us insight into how specific parameters may in-

fluence pellet growth. We find that by increasing the hyphal growth due to tip

185
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extension the pellet decreases in hyphal density but produces more metabolites.

The model contains Heaviside functions which describe the switching between

hyphal biomass production (by controlling the tip flux and death rates of the

hyphae and hyphal tips) and antibiotic production. This switch is dependent

on the concentrations of substrate (glucose) and oxygen. We use the properties

of the Heaviside function to seek analytical solutions of the system in specified

regions of substrate and oxygen. For a small pellet, where the substrate and

oxygen concentrations are high and constant, i.e. at early time, we find that the

solution of the hyphal tips was given by

p(r, t) = E
∞∑

k=1

exp(−ct) sin(kr)

kr
,

where E = AB′ is constant, c is the separation constant and k =

√
c− dp + b

Dp

.

In the case where there is low substrate but high oxygen we find that the tips

and hyphae decay at an exponential rate which matches the numerical solutions

very well.

Due to the shape of the numerical solutions we carry out a travelling wave

analysis on a reduced growth model. The reduced system is simplified by setting

dcm
s = 0 which describes the consumption rate of substrate by hyphae, which

decoupled the hyphae and antibiotic equation, and for this set of parameter

values c(r, t) > ĉ (where ĉ is the threshold for hyphal tip branching, below

which branching stops) we can neglect the oxygen equation, which leaves only

the hyphal tip and substrate equations. We obtain the minimum wavespeed from

the travelling wave analysis, an increasing function of tip diffusion and branching

and a decreasing function of the tip decay rate. We find that the numerical

wavespeed that we observe is indeed always greater than this analytical minimum

wavespeed.
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We observe oscillations in the numerical solutions for the tip equation, which

result in the solutions becoming negative near the origin. We address this in

Chapter 3 by solving a reduced system using a finite element method. Initially we

solve a simplified problem to test the numerical scheme we develop. The problem

contains the important aspects of the S. coelicolor reduced model including

the nonlinearity and transport. We use a θ-method to discretize time in the

simplified problem. We experiment with different values of 1
2
≤ θ ≤ 1, a clear

difference in solutions is shown due to the diffusivity added to the system when

θ = 1. When solved with θ = 1
2

and θ = 1, a timestep 10 times smaller is

required when θ = 1 for convergence of the solutions. Hence this leads us to

using Crank-Nicolson (θ = 1
2
) when solving the reduced S. coelicolor growth

model. We use finite elements to discretize space in the reduced S. coelicolor

growth model. We approximate the Jacobian and solve the problem in Matlab

using a quasi-Newton algorithm. The results we obtain have no oscillations.

In this thesis, we aim to use mathematical models in order to get insight into

the biological system. In particular, we have found that a less dense pellet

produces more antibiotics, which could be implemented during experiments by

introducing a force which periodically breaks up the pellets to keep the density

low. We have also shown that by using our finite element code we can produce

non-oscillatory solutions that appear non-negative for this problem, unlike NAG

routine D03PHF.

Future work

The main focus of the work we present in Chapters 2 and 3 is on the growth

dynamics of the streptomyces system. We included antibiotic production within

the models but we assumed that it is merely a by-product of hyphal growth.
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The next stage is to focus more on the modelling of S. coelicolor antibiotic pro-

duction. There is a lack of knowledge surrounding this area. With a greater

understanding of the biological system a more realistic model of antibiotic pro-

duction can be produced. Due to the lack of practical data, some parameter

values are obtained from literature. We would have liked more experimental

data that was in the correct form for this model. The next stage of modelling

this system is gaining more usable experimental data to parameterize the model

fully.

We use simple numerical techniques to model a complex system. Future work

carrying on from Chapter 3 would be to extend the model to 2-D finite elements,

this would hopefully show the non-symmetrical nature in which pellets grow.

With this, along with the extension into 2-D finite elements, an adaptive mesh

would be advantageous for the regions such as the peak of the tips or the sharp

gradient change of the substrate.

6.2 Targeted Cancer Therapy

In Chapters 4 and 5 we introduce mathematical models to describe a novel cancer

therapy which involves the cancer cell-specific targeting by BPVs (bio-mimetic

polymer vesicles). These BPVs can be loaded with either DNA for gene therapy

or anti-cancer drugs.

We derive a deterministic model that describes the binding kinetics between

cell receptors and ligands on the BPV surface using a system of ordinary dif-

ferential equations. We parameterize the model using values obtained from a

similar system that model liposomal targeting [36] which are specific to the fo-

late receptors on C6 glioma cells. We carry out a parameter sensitivity analysis
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which gives us insight into how key parameters affect the dynamics of the sys-

tem. Due to the uncertainty of receptor-ligand interactions that are used when

targeting HNSCC, the parameter sensitivity provides an insight into what may

occur with HNSCC cells. We notice that, when the number of ligands per BPV

is high this restricts entry into cells, hence the treatment is more effective with

less ligands per BPV. Furthermore, by carrying out this analysis, we find that

by varying the dissociation rate, kd, there is little to no effect which allows us

to make simplifications that facilitates the singular perturbation analysis of the

early behaviours.

We explore the special case where n = 1, i.e. the single binding case. At early

time the solutions for free receptors, free BPVs and bound BPVs change rapidly

due to the fast binding kinetics of receptors and ligands compared to the slower

growth rate of the tumour cells. Using the fact that kd does not change system

dynamics, we carry out a singular perturbation on a reduced version of the

model with kd = 0. At early time we assume that m = 1 and P = 0, then

we rescaled parameter groupings by a small parameter ε, i.e. we let ηl =
η̂l

ε

and df =
d̂f

ε
where ε ≪ 0.1. Using these rescalings we find analytical solutions

for free BPVs, free receptors, bound BPVs and internalized BPVs at very early

time which match the numerical solutions. We find that the maximum value for

internalized BPVs was an increasing saturating function of ligands per BPV, l.

Hence this re-enforces the hypothesis that there is a optimal number of ligands

per BPV. Ghaghada et al [36] also find that there should be an optimal number

of ligands on the liposome surface and that over this value there is decreased

uptake of the liposomes. due to the synthetic nature of the BPVs.

We extend the model in Chapter 5 to represent BPV infiltration into a tumour

spheroid. The spheroid is composed of tumour cells and cellular material with



Conclusions and Future Work 190

the growth dependent on the nutrients available which diffuse across the spheroid

boundary. We include multiple binding kinetics between BPV ligands and cell

receptors derived in Chapter 4.

Initially, we present numerical solutions for the single binding case where only

one receptor-ligand complex is required before the BPV is internalized. We

noticed that the growth of the spheroid radius is linear except when the BPVs

are applied. This lead us to use large time asymptotics to analyse the behaviour

of the system. Using AUTO [29], we conduct a bifurcation analysis which results

in regions of parameter space where spheroid growth could either be saturated

(steady states) or linear (travelling waves).

We then look at the multiple binding case and use a quasi-steady state assump-

tion for bound BPVs. This allows us to solve the equations when the maximum

number of allowed complexes is low n < 3. When it is large (n ≥ 3), the solu-

tions were intractable. Hence to solve for n ≥ 3 we introduced the assumption

that the number of free receptors far exceeds the number of bound complexes,

i.e. F ≫ kBk, where k ≥ 3. Using large time asymptotics we then investigate

the internalization of the BPV in more detail. We used two functions to describe

the internalization; the first was constant, (ki previously used in Chapter 4), the

second is dependent on the number of receptor-ligand complexes, ki(k) which

would mimic the membrane deformation and encapsulation of the BPV. We find

no difference in final tumour cell density, free receptors or free BPVs, but we

see higher instances of BPVs with 1-5 complexes when ki(k) is used which is

due to the BPVs being held on the tumour surface until a sufficient number of

complexes have been reached.

The important aspect of this analysis is that the radius of the spheroid tends

to the same size as t → ∞, for both the constant internalization rate and the
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rate dependent on number of bound complexes, independent on the value of the

internalization terms used.

Future work

There are a few things that could continue from this work. The first improvement

would be to get a fully parameterized model using data provided by Dr Craig

Murdoch from Sheffield University. This would provide useful conclusions that

are specific to the BPVs they synthesize. An experiment carried out by this

research group involves using a monolayer of cells with BPVs placed over them.

To mimic this mathematically we can solve the system on a 2-D lattice geometry

and try to reproduce their experimental findings.

One issue we have with the PDE model described in Chapter 5 is the algebraic

difficulties when assuming that multiple binding interactions can occur and this

has restricted our analysis to a very low number of bonds. To carry this work

forward, we should implement a method that can sustain many binding events

which will allow for the improved modelling of membrane deformation and ad-

ditional binding events that can occur through this cell internalization process.
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