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Abstract

We investigate the properties of an unsupervised neural network which uses simple

Hebbian learning and negative feedback of activation in order to self-organise. The
negative feedback circumvents the well-known difficulty of positive feedback in Heb-
bian learning systems which causes the networks’ weights to increase without bound.
We show, both analytically and experimentally, that not only do the weights of net-
works with this architecture converge, they do so to values which give the networks
important information processing properties: linear versions of the model are shown
to perform a Principal Component Analysis of the input data while a non-linear
version is shown to be capable of Exploratory Projection Pursuit.

While there is no claim that the networks described herein represent the com-
plexity found in biological networks, we believe that the networks investigated are
not incompatible with known neurobiology. However, the main thrust of the thesis is
a mathematical analysis of the emergent properties of the network; such analysis is

backed by empirical evidence at all times.
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Chapter 1

Introduction

The purpose of this thesis is the identification and analysis of means of extraction of
information from high dimensional data sets. We will later define “information” in
a Shannon-rigorous way but, for now, it is sufficient to take “information” to mean
any increase in our (human) knowledge.

The central idea of the thesis is that negative feedback of activation can be used
to control the development of very simple self-organising artificial neural networks
which nevertheless have powerful information-extraction properties.

We will use simple Hebbian learning in our networks. There i1s a well known
difficulty with this type of learning which is that the network weights will tend to
increase without bound unless we perform some type of specific remedial action.
However, we will show that the negative feedback of activation not only causes the
weights to converge, it also causes it to converge to directions which have powerful
information processing properties.

Since we insist that the retention of simplicity is a major design criterion, we
cannot claim that such networks will be accurate models of biological information

processors. Yet we will base our models on biologically-plausible premises wherever

possible.

The aim of creating intelligent machines is not new: one of the first attempts to

mimic human capabilities was the study of cybernetics.
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1.1 The Influence of Cybernetics

We begin by relating this thesis to the topic of cybernetics, a term which has become

unfashionable in recent years. The word was coined by the Austrian mathematician

and engineer Norbert Weiner (Wiener, 1948) who used it in defining a science of

communication and control in both animals and machines.

The defining feature of cybernetics is feedback which was thought to be the prin-

cipal organising principle of all complex systems: hence, it came to be used as a basic
methodology of systems theory and management science. The study has often be-
come tinged with an anti-reductionist slant because of its emphasis on the emergent

properties of complex systems and it is perhaps this which has contributed most of

all to 1ts recent neglect.

The application of cybernetic principles as a paradigm of neural network develop-

ment will be used in this thesis:

o Its theme is that negative feedback of activation may be used as an organising

principle of neural network development.

e The neural networks’ development will be environment driven.

o The networks will use unsupervised learning to self-organise.

o Several properties of the networks discussed will appear-as emergent properties

which were not predicted a priori.

o The interaction of parts of the networks, simple though they are, will be im-

portant in the final properties of the networks.

o At any one time we will be able to identify the state of the system and can, 1f

we wish, inspect all component states of the system at that time.

e and, most important of all, the networks will be quintessentially involved in

information processing.
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1.2 Artificial Neural Networks

Artificial Neural Networks, on the other hand, are very much a currently-active re-

search topic. The history of its rise (1950s ,60s), sudden decline (1969) and gradual
re-emergence (1980s) has been detailed elsewhere (e.g. (Hertz et al., 1992)) and gives

a iascinating insight into the Sociology of Science but will not be repeated here.
This thesis deals with a class of nets which self-organise using unsupervised Heb-
bian learning. We will use (mostly) 2 layer nets in which one layer is designated the
input layer. They will be feedforward nets in the sense that they will be strongly di-
rectional, though we will use a feedback transfer of activation to stabilise the growth
of the network. We will concentrate on a static analysis of the networks and rarely
consider the dynamics of how the network converges to a particular state. The nets
will initially be linear in Chapters 2 to 5 and subsequently non-linear. We will base

our nets on biologically possible models but will sacrifice biological plausibility where

necessary 1n order to investigate statistical properties of the network.

1.2.1 Principles for Self-organisation in Neural Networks

We will treat the need for organisation in information processors as axiomatic: a
network with random weights is unlikely to have important information processing
properties. We will create algorithms which cause the weights to become organised
in such a way that the network develops information prc;;:essing properties such as
the transmission of maximal information in noise-free environments.

Discussion of the process of organisation in neural nets must begin with a state-
ment of what it is that is to be organised. For example, we may organise the actual

structure of the network by adding new nodes as necessary. This is the methodol-
ogy used in Cascade Correlation (see e.g. (Fahlman and Lebiere, 1991; Shultz and
Schmidt, 1991)), in Adaptive Logic Nets (e.g. (Armstrong et al., 1991; Dwelly, 1990))
and in similar methods based on other types of nets such as Kohonen nets (see below)
(e.g. (Fritzke, 1991; Fritzke, 1993b)) or Principal Component nets (e.g. (Rubner and
Tavan, 1989; Rubner and Schulten, 1990)). An alternative is to prune network links

which seem to become redundant during learning (e.g. (Frean, 1990; McClelland
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et al., 1986)). Occasionally this is taken to the extreme case where sets of nodes
(layers) are brought into play at one time - this is usually disguised as having some
layers reacting passively, if at all, while other layers are learning (see e.g. (Linsker,
1986a)). The view taken in this thesis is that the introduction and pruning of nodes
can be subsumed in a process which simply organises the weights through which neu-
rons pass their activations to one another: a new neuron is one which is joined to
all other nodes (and the external environment) by means of connections with weights
zero until such time that the neuron begins learning (at which time the weights will
become non-zero). Therefore we will be interested in that form of organisation of

artificial neural networks which during the learning phase changes the weights be-

tween neurons. This section is devoted to a discussion of the principles on which such

organisation takes place.

Probably the most frequently used type of Artificial Neural Network is that which
uses backpropagation; since the principles on which the development of the network
weights is founded is the same as that on which the perceptron’s weights are adjusted,
such a network is often called a Multi-Layered Perceptron. Such networks require a
teacher as well as examples from the environment of the mapping to be learned; they
are thus grouped under the genre “supervised learning”. They organise on the basis
that the network’s weights should be adjusted to make the network’s output more like
the teacher’s output than it was prior to the adjustment. ThJs reflects the principle

that there exists a teacher who has expert knowledge of the environment and will

use that knowledge to guide the development of the network. Such a principle would
be interpreted in educational circles as advocating a didactic methodology. A special
case of the didactic principle is that known as “reinforcement learning” (e.g. (Thrun,
1992; Barto et al., 1991; Barto et al., 1989)) in which the teacher merely tells the
pupil that it is right or wrong. This has been shown to be particularly effective in
control technology.

In contrast to a didactic methodology, one might propose an exploratory principle.
While educationists might baulk at the description of unsupervised learning as an
instance of exploratory methods, we will group methods which do not include a

teacher as unsupervised learning. An alternative name might be environment-driven
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learning.

Since there 1s no teacher, such nets must use information in the training exams-
ples on which to base any changes to the current weights i.e. on which to base their
learning. However, as we shall see, this does not in itself constitute an “organising
principle”: we will show in the next chapter that the simplest of all network learning
methods will cause the weights to grow without bound unless some organising princi-

ple is invoked to control their growth. Some examples of organising principles in the

development of unsupervised neural networks are found in

1. Attractor Neural Networks (Hopfield Networks)(Hopfield, 1982; Amit, 1989) in
which, in general, all nodes are thought of as belonging to a single layer. An
input pattern is represented by a set of activations (typically 1s or -1s) across
the set of nodes. The organising principle used for this net is that nodes which

% fire together for a particular pattern have the weights between them reinforced.

; The net effect of this organising principle is that if part of a pattern or a noisy

% version of the pattern is presented to the trained network, activation will be

| passed back and forth across the network before finally settling to an attractor

- state - hopefully that corresponding to that which has been learned. Note that

we are making a distinction here between the organising principle - reinforcing

weights between concurrently active nodes (one-shot learning) - and the aim of

the process - pattern completion. .-

‘n

2. ART (Adaptive Resonance Theory)(e.g. (Carpenter and Grossberg, 1987b;
Carpenter and Grossberg, 1987a)) Networks which have the aim of creating

a network which retains its ability to learn from new data while not losing
its memory of previously learned data. This is Grossberg’s stability-plasticity
dilemma. Here the organising principle is the “resonance” of a new input with
those currently learned; resonance takes place if the new input is sufficiently like
previously learned inputs. If resonance with a node’s previous learning takes

place, the node adjusts its learned weights to more closely match the new input

while if resonance does not take place, a new node must be created.

3. (Kohonen) Feature Maps(e.g. (Martinetz, 1993; Fritzke, 1991; Fritzke, 1993a))
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which aim to provide a low dimensional representation of the input data which
remains topographically true to the major features of the input data. In this

type of network, the organising principle is adjustment of weights so that neigh-
bouring neurons respond similarly to any input. Now we can make a 3-way

distinction between the aim, the organising principle and the implementation
since the implementation may be done through lateral connections (Willshaw

and von der Malsburg, 1976) or simple updating of a winner’s neighbours (Ko-
honen, 1984).

We will use negative feedback of activation as the organising principle.

1.3 About this Thesis

Three aspects of the thesis must be made clear from the start:

1. Throughout this thesis, we will repeatedly return to the biological plausibility as
a reason for investigating certain networks. This is not to be taken as implying
that our networks have reached the level of sophistication of biology nor that we
consider the thesis to be an exploration of carbon-based neural networks. We
do however believe that, since our motivation lies in emulating biological neural
networks’ properties, we should not gainsay nature’s technologies without due
cause. Therefore the networks found herein are more aptly described as not

being biologically implausible rather than tke more positive assertion that they

are biologically plausible.

2. We have stated that this is not a biological investigation. It is in fact a math-
ematical/statistical investigation; the structures and properties investigated in
this thesis have an abstract existence independent of any implementation de-

tails. In almost all cases, the simulations on which we report are extremely

simple simulations in which our aim is to illustrate a point rather than to

demonstrate an implementation.

3. Where possible, we have related the emergent properties of our network to

the methods of traditional statistics. We make no claims about the network’s
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efficiency with respect to these methods; indeed, in the case of Principal Com-
ponent Analysing networks, there is a widespread acknowledgement that tradi-
tional statistical methods are more efficient than neural network methods. Qur
purpose is to investigate the properties of the negative feedback network per se;
we will not compare the implementation of these properties with the standard

methods.

Chapters 2,3,4 and 5 deal with Networks which perform Principal Component
Analysis: Chapter 2 gives a short discussion of Hebbian learning and Principal Com-
ponent Analysis, and a brief review of currently-popular PCA networks; the impor-

tance of Anti-Hebbian learning and negative feedback are discussed for the first time.

Chapter 3 introduces the negative feedback network and shows its equivalence to
current Principal Subspace networks; the PCA properties of the network are analyt-
ically developed and an algorithm which finds the actual Principal Components is
devised; empirical results are given to complement the analysis; finally the feedfor-
ward weights are dissociated from the feedback weights to give a more biologically
plausible network. Chapter 4 extends the basic network by allowing the negative
feedback to influence those neurons giving the feedback; it is shown that this alone 1s
not sufficient to cause convergence to the actual Principal Components but ways of
causing this convergence are investigated. The importance of asymmetry in causing
convergence to the Principal Components is highlighted. Chapter 5 gives 2 variations
of the network based on different biologically-plausible features of either the input
data or the means of transmission of the activation; for the first time a non-linearity
is introduced and its effects analysed and then used in a particular application.
Chapters 6 deals with networks which introduce non-linearity into the networks

of the previous chapters to create networks which perform exploratory data analysis.

A general outline of the network is given along with specific examples of its use;
different projection indices are used on various sets of input data and the effect of using

different indices simultaneously is investigated. We conclude by giving examples of the

networks which are discussed therein being used in biologically necessary operations

ViZ. 1n vision processing.
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Chapter 7 provides a summary of the thesis and suggests directions for future

research.

It will be noted that there is a marked disparity between the space devoted to linear
networks and that devoted to non-linear networks; we feel that this is essential in the
light of our current lack of understanding of artificial neural networks’ properties.

There are many properties of many of our most popularly used networks which are

beyond current analysis and the emphasis on linearity in the current thesis has, we
feel, been justified by the insights gained through this emphasis. This is not to deny
that the insights gained from our investigations of the linear networks may be useful

in our investigations of the non-linear networks.



Chapter 2

Principal Components and ANNs

In this chapter, we define the Information Theory background to Principal Component
Analysis(PCA) and give a brief survey of the major most-popular Artificial Neural
Networks(ANNs) which perform a PCA. We will not, in this chapter, provide proofs

of convergence of the various nets discussed since such proofs are very similar to those
we use in Chapter 3 to prove convergence of our new network. We begin by outlining

the simplest possible ANNs and review a very simple unsupervised learning rule.

2.1 Hebbian Learning

.

The aim of unsupervised learning is to present a neural net with raw data and allow

the net to makeits own representation of the data - hopefully retaining all information
which we humans find important. Unsupervised learning in neural nets is generally

realised by using a form of Hebbian learning which is based on a proposal by Donald
Hebb (Hebb, 1949) who wrote:

When an azon of cell A is near enough to excite a cell B and repeatedly or per-
sistently takes part in firing it, some growth process or metabolic change takes place
in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.

Neural nets which use Hebbian learning are characterised by making the activation
of a unit depend on the sum of the weighted activations which feed into the unit. They

use a learning rule for these weights which depends on the strength of the simultaneous

13
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activation of the sending and receiving neuron. With respect to the network depicted

in Figure 1, these conditions are usually written as

Vi = ) Wi | (1)

and Aw;,- = QLY (2)

the latter being the learning mechanism. Here y; is the output from neuron i, ; is the
7** input, and w;; is the weight from z; to y;. a is known as the learning rate and is
usually a small scalar which may change with time. Note that the learning mechanism
says that if z; and y; fire simultaneously, then the weight of the connection between
them will be strengthened in proportion to their strengths of firing. However, we will

not, unlike Kosko (Kosko, 1991), rename the Hebb Learning rule when an activation

function 1s used. i.e. when

9(2_ wijz;) (3)
and Aw,-,- = QT;Y; (4)

Y

for some function, g(), we will still call this Hebb learning.
Substituting Equation (1) into Equation (2), we can write the Hebb learning rule

as

Aw,—,— — QT Z 'wk,-:z:k
k
— O Z ‘leJ‘:Bk:B,' (5)
k
which is equivalent to -gz W(t) < CW(t) (6)

where C;; is the correlation coeficient calculated over all input patterns between the
+*# and j** terms of the inputs and W (%) is the matrix of weights at time t. In moving
from the stochastic equation (5) to the averaged differential equation (6), we must

place certain constraints on the process particularly on the learning rate a which we

will discuss in more detail later.
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weights
) wlil
0/1/' ts
\@)
win

Figure 1: A Simple Neural Net
The inputs are the z;5 and the outputs are the y;s . The strength of the connections

between x’s and y’s are the w’s. The learning rule changes the strengths of the w’s
till the net can be said to have learned a mapping.

The advantage of this formulation is that it emphasises the fact that the resulting
weights depend on the second order statistical properties of the input data. A review
of the importance of this aspect of the Hebb learning rule is given in Section 2.3.

Because of these statistics-based properties, Hebb learning has found applications
in a number of early associative-type memories e.g. Steinbuch’s Learning Matrix
(Steinbuch, 1961), Anderson’s linear associative memory (Anderson, 1968), Koho-
nen’s Adaptive Associative Memory (Kohonen, 1974) and the Willshaw Model (Will-
shaw et al., 1969).

However, a major difficulty with this learning rule is that unless there is some
limit on the growth of the weights, the weights tend to grow without bound: we have
a positive feedback loop - a large weight will produce a large value of y (Equation 1)
which will produce a large increase in the weight (Equation 2). It is instructive to
follow e.g.(Hertz et al., 1992), in examining the Hebb rule’s stability:

Recall first that a matrix A has an eigenvector x with a corresponding eigenvalue

) if

Ax = Ax
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In other words, multiplying the vector x or any of i1ts multiples by A is equivalent
to multiplying the whole vector by a scalar A. Thus the direction of x is unchanged
- only 1ts magnitude is affected.

Consider a one output-neuron network and assume that the Hebb learning process

does cause convergence to a stable direction, w*; then if wy is the weight vector linking

i to vy,
0 = (Aw}) = (yz;) = (}_wjzjzi) = ) Rijwj
7 J

where the angled brackets indicate the expected value taken over the distribution and
R is the correlation matrix of the distribution. Now this happens for all1, so Rw = 0.
Now the correlation matrix, R, is a symmetric, positive semi-definite matrix and so

all its eigenvalues are non-negative. But the above formulation shows that w* must
have eigenvalue 0. Now consider a small disturbance, €, in the weights in a direction

with a non-zero (i.e. positive) eigenvalue. Then
(Awx) = R(w* 4+ €)= Re>0

i.e. the weights will grow in any direction with non-zero eigenvalue (and such direc-
tions must exist). Thus there exists a fixed point at W=0 but this is an unstable
fixed point. In fact, it is well known that in time, the weight direction of nets which
use simple Hebbian learning tend to be dominated by the direction corresponding to
the largest eigenvalue.

We will later discuss one of the major ways of limiting this growth of weights while
using Hebbian learning and review its important side effects. However, we begin with

short reviews of 2 subjects which will be important to the thesis: Information Theory

and Principal Component Analysis.

2.2 Quantification of Information

Shannon (Shannon, 1948) devised a measure of the information content of an event
in terms of the probability of the event happening. He wished to parameterise the

intuitive concept that the occurrance of an unlikely event tells you more than that of
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a likely event. He defined the information in an event i, to be — log p; where p; is the
probability that the event labelled 2 occurs.

Using this, we define the entropy (or uncertainty or information content) of a set

of N events to be

N
H = —Zp.-logp.—

1=1
That is, the entropy is the information we would expect to get from one event hap-

pening where this expectation is taken over the ensemble of possible outcomes.

For a pair of random variables X and Y, if p(z,4) is the joint probability of X
taking on the i** value and Y taking on the j** value, we define the entropy of the

joint distribution as:
H(z,y) = — ) _p(3,7)log p(3, 5)
0,

Similarly, we can define the conditional entropy (or equivocation or remaining

uncertainty in x if we are given y) as:
H(zly) = — >_p(3,5)log p(il5)
i3

Shannon also showed that if x is a transmitted signal and y is the received signal,

then the information which receiving y gives about x is

I(z;y) = H(z)- H(zly) o (7)
or I(z;y) = H(y)— H(ylz) (8)
or I(z;y) = H(z)+ H(y)— H(z,y) (9)

Because of the symmetry of the above equations, this term is known as the mutual

information between x and y.

The channel capacity is defined to be the maximum value over all possible values

of x and y of this mutual information.

The basic facts in which we will take an interest are:

e Because the occurance of an unlikely event has more information than that of

a likely event, it has a higher information content.
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e Hence, a data set with high variance is liable to contain more information than

one with small variance.

¢ A channel of maximum capacity is defined by 100% mutual information 1.e.

I(z;y) = H(z)

2.3 Principal Component Analysis

Inputs to a neural net generally exhibit high dimensionalityi.e. the N input lines can
each be viewed as 1 dimension so that each pattern will be represented as a coordinate
in N dimensional space.

A major problem in analysing data of high dimensionality is identifying patterns
which exist across dimensional boundaries. Such patterns may become visible when
a change of basis of the space is made, however an a priori decision as to which basis
will reveal most patterns requires fore-knowledge of the unknown patterns.

A potential solution to this impasse is found in Principal Component Analysis
which aims to find that orthogonal basis which maximises the data’s variance for a
given dimensionality of basis. The usual tactic is to find that direction which accounts
for most of the data’s variance - this becomes the first basis vector. One then finds
that direction which accounts for most of the remaining variance - this is the second
basis vector and so on. If one then projects data onto'tlie Principal Component

directions, we perform a dimensionality reduction which will be accompanied by the
retention of as much variance in the data as possible.
In general, it can be shown (Jolliffe, 1986) that the k'* basis vector from this

process is the same as the kt* eigenvector of the co-variance matrix !, C where

cij = ((zi = (z))(z; — (z)))
where the angled brackets indicate an ensemble average i.e. the average over all

possible sequences of values z; from any arbitrary starting position of the sequence.

lwhere the eigenvectors are enumerated in normal form i.e. the eigenvector corresponding to the
largest eigenvalue is first, that corresponding to the second largest is second etc.
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For zero-mean data, the covariance matrix 1s equivalent to a simple correlation

matrix.

Now, if we have a set of weights which are the eigenvectors of the input data’s
covariance matrix,C, then these weights will transmit the largest values to the out-
puts when an item of input data is in the direction of the largest correlations which

corresponds to those eigenvectors with the largest eigenvalues. Thus, if we can create

a situation in an Artificial Neural Network where one set of weights (into a particular
output neuron) converges to the first eigenvector (corresponding to the largest eigen-
value), the next set of weights converges to the second eigenvector and so on, we will

be in a position to maximally recreate at the outputs the directions with the largest

variance 1n the input data.

Note that representing data as coordinates using the basis found by a PCA means
that the data will have greatest variance along the first principal component, the next
greatest variance along the second, and so on. While it is strictly only true to say
that information and variance may be equated in Gaussian distributions, it is a good
rule-of-thumb that a direction with more variance contains more information than
one with less variance. PCA 1is the process of projecting the n-dimensional input
data onto that m-dimensional subspace (where m<<n) which is spanned by those
vectors which contain most variance. Thus PCA provides a means of compressing
the data whilst retaining as much information within the data as possible. It can
be shown that if a set of input data has a covariance matrix whose eigenvalues are
{A1,22,...,An} and if we represent the data in coordinates on a basis spanned by
the first m eigenvectors, the loss of information due to the compression (i.e. due to

projecting the data onto the lower dimensioned subspace) is

b= g: A (10)

1=m+1

2.3.1 Calculation of Principal Components

Since most users of Principal Components will use a standard statistical package
(and hence not care about the method of calculating the PCs) this section provides

only a short summary of the major methods of calculating Principal Components
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s more detailed discussion of methods can be found in many standard statistical
texts. For computer scientists, the invaluable “Numerical Recipes in C” (Press et al.,

1988)provides an excellent introduction. We discuss 3 methods

1. The Power Method

2. The QL (or similar QR) method

3. The method of Singular Value Decomposition

The discussion below owes much to that found in Joliffe (Jolliffe, 1986).

The Power Method

The power method, though not in general use now, 1s included as it is the most
intuitively obvious method and was the first to be identified. We describe the simplest
form. Let us wish to find the largest eigenvalue and corresponding eigenvector of a

p*p matrix T. We choose an intitial p-vector, up and the-. form the sequence

Uy = Tllo
Uy = Tl.l]_ = Tqu
U3z = r.[‘l.lg _ T3ll0

ur —_— Tl].r...l — TruO .

If the eigenvectors of T are a;, a3, a3, ...a, with corresponding eigenvalues A;, then

for any vector ug,
P
Ug = Zw,-a_,- (11)
J=1

for scalars w;. Then, for our sequence above, we have
U = Tllo

P
= Z w,-Ta_,-

j=1

P
Y wjkja;

1

|
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Similarly, we have

U,  Xj= wiAja;
wy AT w1A'
= (a4 22(2 2+ ot 22(32) 3y

Wy Ay
— alasr—aoo

provided A; > A;,1 # 1. Speed of convergence of the algorithm depends both on the
initial choice of uy and also on the relative magnitude of the first eigenvalue to the
second.

Various refinements of the method can be shown to enable convergence to subse-

quent eigenvectors.

The QL (or QR) Algorithms

The method of the QL algorithm depends on the fact that any (non-singular) matrix
T can be decomposed as T = QL where Q is an orthogonal matrix and L is a lower
triangular matrix. Again an iterative procedure is used: let T; = T; then use T; =
Q:L; to enable calculation of Q; and L.; and then calculate T'; using T3 = L;Q;. This
1s the first step in an iterative procedure which can be shown to cause convergence of
T, to a diagonal matrix comprising the eigenvalues of T in order.

The QR algorithm is very similar except that it uses the fact that any (non-
singular) matrix T can be decomposed as T = QR where Q is an orthogonal matrix

and R i3 an upper triangular matrix.

Singular Value Decomposition

SVD is the method which is most often used by modern statisticians in the calculation
of Principal Components due to its proven efficiency. This relies on the fact that any
n*p matrix T can be written as T = ULA? where

U is a n*r matrix such that UTU = I.

A is a p*r matrix such that ATA =1,

L is a r*r diagonal matrix and r is the rank of X.
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Since this is defined for a non-square matrix, it may be used for situations in which
the number of observations is lower than the number of variables (i.e. where the rank

of the sample covariance matrix is reduced). The actual method of calculation of the

singular values is very similar to the iterative methods of the QR / QL section above.

Artificial Neural Networks and PCA

Artificial Neural Networks and PCA come together in 2 ways:

1. There are some networks which use Principal Components as an aid to learning
e.g. (Huang and Huang, 1993)

2. Some networks have been explicitly designed to calculate Principal Components

It 1s the latter with which this thesis will deal.

2.4 Weight Decay in Hebbian Learning

As noted in Section 2.1, if there are no constraints placed on the growth of weights
under Hebbian learning, there is a tendancy for the weights to grow without bounds.
It is possible to renormalise weights after each learning epoch, however this adds an
additional operation to the network’s processing.

Another possibility is to allow the weights to grow until each reaches some limit
(Linsker, 1986b), e.g. have an upper limit of wt and a lower limit of w™ and clip the
weights when they reach either of these limits. Clearly a major disadvantage of this
is that if all weights end up at one or other of these limits? the amount of information
which can be retained in the weights is very limited.

A third possibility is to prune weights which do not seem to have importance
for the network’s operation. However, this is an operation which must be performed

using non-local knowledge - typically which weights are of much smaller magnitude
than their peers.

4This will certainly happen if simple Hebbian learning is used
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Hence, interest has grown in the use of decay terms embedded in the learning
rule itself (e.g. (McClelland et al., 1986),Chapter 17). Ideally such a rule should
ensure that no single weight should grow too large while keeping the total weights

on connections into a particular output neuron fairly constant. One of the simplest

forms of weight decay was developed as early as 1968 by Grossberg(Grossberg, 1968)

and was of the form:

dw,; '
gt = O¥i% = Wi (12)

It is clear that the weights will be stable (when %ﬁ = 0) at the points where w;; = a <
y;T; > where the angled brackets indicate an ensemble average. Using a similar type
of argument to that employed for simple Hebbian learning, we see that at convergence
we must have aCw = w. Thus w would have to be an eigenvector of the correlation
matrix of the input data with corresponding eigenvalue ~. We shall be interested in
a somewhat more general result.

Grossberg went on to develop more sophisticated learning equations which use

weight decay e.g. for his instar coding, (Grossberg, 1988a) he has used

dw, ;
dtJ = aly; — wij}z: (13)

where the decay term is gated by the input term z; and for outstar coding

dw;;

w7 = olzi — wij}y; . - (14)

where the decay term is gated by the output term y;. These, while still falling some

way short of the decay in which we will be interested, show that researchers of this
time were beginning to think of both differentially weighted decay terms and allowing
the rate of decay to depend on the statistics of the data presented to the network.

2.4.1 Principal Components and Weight Decay

e

Miller and MacKay (K.Miller and MacKay, 1992) have provided a definitive study of

the results of a decay term on Hebbian learning. They suggest an initial distinction

between Multiplicative Constraints and Subtractive Constraints.
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They define Multiplicative Constraints as those satisfying

£ w(t) = Cw(t) = 7(w)w(t)

where the decay in the weights is governed by the product of a function of the weights,
v(w), and the weights, w(t), themselves. The decay term can be viewed as a feedback
term which limits the rate of growth of each weight in proportion to the size of the
weight itself while the first term defines the Hebbian learning itself.

Subtractive Constraints are satisfied by equations of the form

d
-a;w(t) = Cw(t) — ¢(w)n

where the decay in the weights is governed by the product of a function of the weights
,e(w), and a constant vector,n, ( which is often {1,1,..1}7 ).

They prove that

e Hebb rules whose decay is governed by Multiplicative Constraints will, in cases

typical of Hebb learning, ensure that the weights will converge to a stable point

e This stable point is a multiple of the principal eigenvector of the covariance

matrix of the input data

¢ Hebb rules governed by Subtractive Constraints will tend to lead to saturation

of the weights at their extreme permissible values® ..

e Under Subtractive Constraints, there is actually a fixed point within the per-
mitted hypercube of values but this is unstable and is only of interest in anti-

Hebbian learning(see below).

o If specific limits ( wt and w™) do not exist, weights under Subtractive Con-

straints will tend to increase without bound.

In summary then, Subtractive Constraints offer little that cannot be had from

simple clipping of the weights at preset upper and lower bounds. Multiplicative

3Such values may be partially determined by the eigenvalues of the covariance matrix but are
not, in general, multiples of the eigenvectors.
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Constraints, however, seem to give us not just weights which are conveniently small,

but also weights which are potentially useful since

Yi = ) WisTj = WiX
j

where wj is the vector of weights into neuron y; and x is the vector of inputs. But,
wi.X = |wjl||x|cos @

where |d| is the length of d and 8 is the angle between the 2 vectors.

This is maximised when the angle between the vectors is 0. Thus, if w; is the
weight into the first neuron which converges to the first Principal Component, the first
neuron will maximally transmit information along the direction of greatest correlation,
the second along the next largest, etc. In Section 2.3, we noted that these directions

were those of greatest variance which from Section 2.2, we are equating with those of

maximal information transfer through the system.

Given that there are statistical packages which find Principal Components, we
should ask why it is necessary to reinvent the wheel using Artificial Neural Networks.
There are 2 major advantages to PCA using ANNs:

1. Traditional statistical packages require us to have available prior to the calcula-
tion, a batch of examples from the distribution being investigated. While 1t is
possible to run the ANN models with this method -‘“batch mode” - ANNs are
capable of performing PCA in real-time i.e. as information from the environ-
ment becomes available we use it for learning in the network. We are, however,
really calculating the Principal Components of a sample, but since these esti-
mators can be shown to be unbiased and to have variance which tends to zero as
the number of samples increases, we are justified in equating the sample PCA

with the PCA of the distribution. The adaptive/recursive methodology used in

ANNs is particularly important if storage constraints are important.

2. Strictly, PCA is only defined for stationary distributions. However, in realistic
situations, it is often the case that we are interested in compressing data from

distributions which are a function of time; in this situation, the sample PCA
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outlined above is the solution in that it tracks the moving statistics of the

distribution and provides as close to PCA as possible in the circumstances.

However, most proofs of PCA ANNs convergences require the learning rate to
converge to 0 in time and, in practice, it is the case that convergence 1is often
more accurate when the learning rate tends to decrease in time. This would

preclude an ANN following a distribution’s statistics, an example of the well-

known trade-off between tracking capability and accuracy of convergence.

We now look at several ANN models which use weight decay with the aim of capturing

Principal Components. We will make no attempt to be exhaustive since that would

in itself require a thesis; we do however attempt to give representative samples of

current network types.

2.5 Early Models

There were a number of ANN models developed in the 1980s which used Hebbian

learning. We will investigate 2 for comparative purposes:

1. Linsker’s Model

2. Oja’s Single Neuron Model

b.

tl‘

2.5.1 The InfoMax Principle in Linsker’s Model

Linsker(Linsker, 1986b) has developed a Hebb learning ANN model which attempts to
realise the InfoMax principle - the neural net created should transfer the maximum
amount of information possible between inputs and outputs subject to constraints
needed to inhibit unlimited growth. Linsker notes that this criterion is equivalent to

performing a Principal Component Analysis on the cell’s inputs.

Although Linsker’s model is a multi-layered model, it does not use a supervised
learning mechanism; he proposes that the information which reaches each layer should
be processed in a way which maximally preserves the information. That this does

not, as might be expected, lead to an identity mapping, is actually due to the effect
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Environment

\/

Layer A

Layer B

Layer C
Figure 2: Linsker’s model

of noise. Each neuron “responds to features that are statistically and information-
theoretically most significant”((Linsker, 1988), page 116). He equates the process
with a Principal Component Analysis.

Linsker’s network is shown in Figure 2. Each layer comprises a 2-dimensional

array of neurons. Each neuron in layers from the second onwards receives input from
several hundred neurons in the previous layer and sums these inputs in the usual

fashion. The region of the previous layer which sends input to a neuron is called the
receptive field of the neuron and the density of distribution of inputs from a particular

region of the previous layer is defined by a Gaussian distribation. At the final layer,
lateral connections within the layer are allowed.

The Hebb-type learning rule is
Awij = a(z; — (2))(y; — (v)) + b

where a and b are constants.

In response to the problem of unlimited growth of the network weights, Linsker
uses a hard limit to the weight-building process i.e. the weights are not allowed to

exceed wt nor decrease beyond w~ where w— = —wt.

Miller and MacKay (K.Miller and MacKay, 1992) have observed that Linsker’s

model 1s based on Subtractive Constraints, i.e.

Aw;; = azy; — a{z)y; — aly)(z; — (z))



CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 28

Both y; and < ¥ > are functions of w, but in neither case are we multiplying these
by w itself. Therefore, as noted earlier, the weights will not tend to a multiple of the

principal eigenvector but will saturate at the bounds ( w}"j or w;;) of their permissible
values.

Because the effects of the major eigenvectors will still be felt, there will not be a
situation where a weight will tend to w™ in a direction where the principal eigenvector
has a positive correlation with the other weights. However, the directions of the weight
matrix will, in general, bear little resemblence to any eigenvector of the correlation
matrix. The model will not, in general, enable maximal information transfer through

the system.

2.5.2 0Oja’s One Neuron Model

Oja (Oja, 1982) proposed a model which extracts the largest principal component

from the input data. He suggested a single output neuron which sums the inputs in

the usual fashion
y =) waz;
s=1

His variation on the Hebb rule, though, is

Aw; = ofziy — y'w;) ..

L

Note that this is a rule defined by Multiplicative Constraints ( ¥* = y(w) ) and
so will converge to the principal eigenvector of the input covariance matrix. The
weight decay term has the simultaneous effect of making 3 w? tend towards 1 i.e. the
weights are normalised.

However, this rule will find only the first eigenvector (that direction corresponding
to the largest eigenvalue) of the data. It is not sufficient to simply throw clusters of
neurons at the data since all will find the same (first) Principal Component; in order
to find other PCs, there must be some interaction between the neurons. Other rules

which find other principal components have been identified by subsequent research,

an example of which is shown in the next Section.
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2.6 Recent PCA Models

We will consider 3 of the most popular PCA models. It is of interest to begin with

the development of Oja’s models over recent years.

2.6.1 Oja’s Subspace Algorithm

The One Neuron network reviewed in the last section is capable of finding only the
first Principal Component. While it is possible to use this network iteratively by
creating a new neuron and allowing it to learn on the data provided by the residuals
left by subtracting out previous Principal Components, this involves several extra
stages of processing for each new neuron.

Therefore Oja’s(Oja, 1989) Subspace Algorithm provided a major step forward.
The network has N output neurons each of which learns using a Hebb type rule with
weight decay. Note however that it does not guarantee to find the actual directions of
the Principal Components; the weights do however converge to an orthonormal basis

of the Principal Component Space. We will call the space spanned by this basis the

Principal Subspace. The learning rule is
Aw;; = oTiy; — y; D WikYk) (15)
k

which has been shown to force the weights to converge {o &« basis of the Principal

Subspace?.

One advantage of this model compared with some other networks (e.g. (Sanger,

1990)) is that it is completely homogeneous i.e. the operations carried out at each

neuron are identical.

The major disadvantage of this algorithm is that it finds only the Principal Sub-

space of the eigenvectors not the actual eigenvectors themselves.

*In this case y(w;;) = y}. However, the additional weight decay constraints from the other
outputs y; Z# ; Wik Yk force decay in the directions of other eigenvectors. Therefore the total of the

decay parameters only forces weight convergence to the subspace
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2.6.2 Oja’s Weighted Subspace Algorithm

The final stage 1s the creation of algorithms which find the actual Principal Compo-
nents of the input data. In 1992, Oja et alrecognised the importance of introducing
asymmetry into the weight decay process in order to force weights to converge to the

Principal Components. The algorithm is defined by the equations

Yj = Ewijzi

=1

where a Hebb-type rule with weight decay modifies the weights according to

N
Aw.-; = ny,'(:c; - 9_1' E ykwa')
k=1

Ensuring that 8; < ; < 63 < ... allows the neuron whose weight decays propor-
tional to 6; ( i.e. whose weight decays least quickly ) to learn the principal values
of the correlation in the input data. That is, this neuron will respond maximally to
directions parallel to the principal eigenvector, i.e. to patterns closest to the main

correlations within the data. The neuron whose weight decays proportional to 6,
cannot compete with the first but it is in a better position than all of the others and
so can learn the next largest chunk of the correlation, and so on.

It can be shown that the weight vectors will converge to the principal eigenvectors
in the order of their eigenvalues. The algorithm clearly satisfies Miller and Mackay’s
definition of Multiplicative Constraints with y(w;) = 6; > yswsiz;.

2.6.3 Sanger’s Generalized Hebbian Algorithm

Sanger (Sanger, 1990) has developed a different algorithm (which he calls the “Gen-
eralized Hebbian Algorithm”) which also finds the actual Principal Components. He

also introduces asymmetry in the decay term of his learning rule:

3
Aw;; = a(Tiy; — y5 Y WikYx) (16)
k=1

Note that the crucial difference between this rule and Oja’s Subspace Algorithm is
that the decay term for the weights into the j** neuron is a weighted sum of the first
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j neurons’ activations. Sanger’s algorithm can be viewed as a repeated application of

Oja’s One Neuron Algorithm by writing it as

3-1

Awi; = o[ziy; — y; Y wikyx] — yiwi;) (17)
k=1

W see that the central tczm comprises the residuals after the first j-1 Principal Com-
ponents have been found, and therefore the rule is performing the equivalent of One
Neuron learning on subsequent residual spaces. However, note that the asymme-
try which 1s necessary to ensure convergence to the actual Principal Components, 1s
bought at the expense of requiring the j** neuron to ‘know’ that it is the 7** neuron

by subtracting only 7 terms in its decay. It is Sanger’s contention that all true PCA

rules are based on some measure of deflation such as shown in this rule.

2.7 Principal Components and Anti-Hebbian Learn-
ing

All the ANNs we have so far met have been feedforward networks - activation has been
propagated only in one direction. However, many real biological networks are char-
acterised by a plethora of recurrent connections. This has led to increasing interest

in networks which, while still strongly directional, allow actlvatmn to be transmitted

in more than one direction i.e. either laterally or in the reverse direction from the

usual flow of activation. One interesting idea is to associate this change in direction

of motion of activation with a minor modification to the usual Hebbian learning rule

called Anti-Hebbian learning (a comprehensive analysis of Anti-Hebbian learning is
given in (Palmieri et al., 1993)).

If inputs to a neural net are correlated, then each contains information about the

other. In information theoretical terms, there is redundancy in the inputs (I(z;y) > 0
).

Anti-Hebbian learning is designed to decorrelate input values. The intuitive idea
behind the process is that more information can be passed through a network when
the nodes of the network are all dealing with different data. The less correlated the
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Figure 3: Anti-Hebbian Weights

Negative decorrelating weights between neurons in the same layer are learned using
an “anti-Hebbian” learning rule

neurons’ responses, the less redundancy is in the data transfer. The aim of producing
decorrelated responses, however, in order to maximise information transfer must be
modified if the outputs are subject to noise: intuitively, the more noise in the network
the more correlation is necessary to optimise information transfer((Plumbley, 1991)).
If 2 neurons respond to the same signal, there is a measure of correlation between
them and this 1s used to affect their responses to future sim_ila.r data. Anti-Hebbian
learning is sometimes known as lateral inhibition as this type of learning is generally

used between members of the same layer and not between members of different layers.

The basic model 1s defined by
Awi; = —a(yiy;)

Therefore, if initially y; and y; are highly correlated then the weights between
them will grow to a large negative value and each will tend to turn the other off.
It is clear that there is no need for weight decay terms or limits on anti-Hebbian

weights as they are automatically self-limiting, provided decorrelation can be attained.

((v:.95) = 0) = (Aw;; — 0) (18)
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1.e. weight change stops when the outputs are decorrelated. Success in decorre-

lating the outputs results in weights being stabilised.
It has been shown (Rubner and Tavan, 1989) that not only does anti-Hebbian

learning force convergence in the particular case of a deflationary algorithm but that

the lateral connections do indeed vanish.

The method 1s valid for all deflationary networks.

Several authors have developed Principal Component models using a mixture of
one of the above PCA methods (often Oja’s One Neuron Rule) and Anti-Hebbian
weights between the output neurons e.g. (Brause, 1993b; Rubner and Schulten, 1990;
Brause, 1993a; Palmieri, 1993; White, 1993).

We first note a similarity between the aims of PCA and anti-Hebbian learning: the

aim of anti-Hebbian learning is to decorrelate neurons. If a set of neurons performs a
Principal Component Analysis, their weights form an orthogonal basis of the space of
principal eigenvectors. Thus, both methods perform a decorrelation of the neurons’
responses.

Further, in information theoretic terms, decorrelation ensures that the maximal
amount of information possible for a particular number of output neurons 1s trans-
ferred through the system. We will consider only noise-free information-transfer since
if there is some noise in the system, some duplication of information may be beneficial

to optimal information transfer.

2.7.1 The Interneuron Model

Plumbley (Plumbley, 1991) has developed a model of Hebb learning which 1s based on
the minimisation of information loss throughout the system. However, for Gaussian
signals there 1s no difference between this principle and InfoMax.

Since there are no known biological examples of neurons which both excite and
inhibit other neurons of the same type (Dale’s Law), Plumbley postulates a layer of
interneurons which act as decorrelating neurons for the output neurons.

He develops these interneurons in 2 ways, suggesting that he 1s giving 2 different

views of the same network. However, we will see that these interneurons have different

capabilities depending on which network is used.
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Figure 4: The Interneuron Model

In both networks the interneurons are developed as anti-Hebbian neurons with the
additional property of trying to optimise information transfer within limited power
constraints. Plumbley notes that the best information transfer rate will be found
when the outputs are decorrelated; however,he also tries to equalise the variance of

the outputs to ensure that they are then carrying equal information.
Figure 4 shows the form of the first model.
The dynamics of the network are described by

z=VTy

where 2; is the activation of the interneuron
y; 18 the output from the network
and V; is the weight joining the ** ouput neuron to the j** interneuron.

This makes the output response
y=Xx-—Vz

Plumbley concentrates on the information preserving properties of the forward

transformation between inputs and outputs and shows

y = (I+ VVT)_lx
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Plumbley uses a weight decay mechanism in his learning:
Avy; = n(yizj — Avi;)

This 1s equivalent to a learning rule in the limit of

}% v(t) = (C —~I)v

A solution to this equation 1s
v(t) = Aexp(C —~I)¢

Therefore, the weights will increase without limit in directions where the eigen-
value of the correlation matrix exceeds 4 . Thus the weights will never tend to a
multiple of the principle eigenvector and no selectivity in information transfer will

be achieved. Note that there are fixed points on the eigenvectors but these are not
stable.

The crucial difference between this model and Oja’s model is that in Oja’s model

the decay term is a function of the weights times the weights. In this model, the
decay term is not strong enough to force the required convergence.

Equally, the anti-Hebbian learning rule does not force convergence to a set of

decorrelated outputs.

Avi; = n(yiz; — Avy;) L.
does not mean that

(Avy; = 0) => ((yi2;) = 0).

However, in taking “another view of the skew-symmetric network”, Plumley uses

the interneurons as the outputs to the network.

In this model, we have forward excitations U and backward excitations V where

z = Uly

y=x-—Vz
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i.e.
2z =UT(I+VU")x
where the weight update is done using the same update rule Av;; = n(y:z; — Av;;)

Since the output is from the interneurons we are interested in the forward trans-

form from the x values to the z values.

Yi
NOW, Au;,-

Ti— ) UkiZk
k

n(yizj — Auij)
n((zi — ) ukize)zj — Augj)
k

Plumbley states that the last term is the weight decay term. In fact, as can be

seen from the above equations, the second term is the important weight decay term,
being a form of Multiplicative Constraint. There is an implicit weight decay built

into the recurrent architecture - a fact which we will use in the next Chapter.

However, if we consider the network as a transformation from the x values to the

y values we do not find the same implicit weight decay term.

Zi = ) iy
j
> ui(T5 — ) urjzx)
3 k
D iz — ) 2k wijunj)
j k3

And so,

Aui; = 1(yiz; — dui;)
= (YD uijzs — Ek: zk( ) wijukj)) — Auij)

Using this form, it is hard to recognise the lea.rninlg rule as a Hebb rule, let alone

a decaying Hebb rule of a particular type.

However, as we shall see in the next chapter, the negative feedback in Plumbley’s

first network i1s an extremely valuable tool.
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x'=x+Mx =Fx

Figure 5: The System Model of the Novelty Filter

2.8 Negative Feedback in Neural Networks

Plumbley’s model may be viewed as a negative feedback ANN. In this section, we
consider other ANNs which have used negative feedback. We review separately those
models where the dynamics of the network settling to an attractor state have been

important to the value of the state reached and those models which have considered

only the transfer of activation as a single event.

2.8.1 Static Models

The role of negative feedback in static models has most often been as the mechanism
for competition (see e.g.(Carpenter, 1989; Kohonen, 1984) for summaries) often based
on biological models of activation transfer e.g.(von der Malgburg, 1973) and sometimes
based on psychological models e.g. (Cohen et al., 1988; Grossberg and Schmajuk,
1989; Grossberg, 1984)

An interesting early model was proposed by Kohonen (Kohonen, 1984) who uses

negative feedback in a number of models, the most famous of which (at least of the
simple models) is the so-called “novelty filter” (see Figure 5). Here we have an input
vector X which generates feedback gain by the vector of weights, M. Each element of
M is adapted using anti-Hebbian learning:

dm; 1 P
where x = x4+ Mx (20)
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(a) Feeedforward Inhibition (b) Feedback Inhibition

Figure 6: Two models of inhibition both of which yield on-centre, off-surround net-
works:(a) Feedforward inhibition (b) feedback inhibition

= (I-M)'x=Fx (21)

“It is tentatively assumed (I — M)~! always exists.” Kohonen shows that, under
fairly general conditions on the sequence of x and the initial conditions of the matrix

M, the values of F always converge to a projection matrix under which the output

'x approaches zero although F need not converge to the zero matrix i.e. F converges

to a mapping whose kernel ((Lipschutz, 1968), page 125) is the subspace spanned by
the vectors x. Thus any new input vector x; will cause an output which is solely a

function of the novel features in x;.

_‘I
ll’

2.8.2 Dynamic Models

The negative feedback of activation has most often been used in those models of Ar-
tificial Neural Networks which are based on a dynamic settling of activation. These
are generally called Hopfield nets(Hertz et al., 1992) after John Hopfield (Hopfield,
1982) who performed an early analysis of their properties though earlier work on
their properties was performed by other researchers e.g. following Grossberg (Gross-

berg, 1988b), we note (see Figure 6) that there are 2 types of on-center off-surround

networks possible using inhibition. It is possible to generate
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o Feedforward inhibition: the activation transfer rule is

dy;
%‘ = —Ayi + (B —yi)zi — y: )_ & (22)
k£

A,B constants and z; is the input to the :** neuron. Grossberg points out that,

if the activation is allowed to settle, this model has a stationary point (%‘ = 0)

when
L B &L
Yg = oK ..._....._E__k_..{‘._ (23)
2Tk A+ Yz
Possibly of most interest is its self normalisation property, in that the total
activity
BY .z
Yy = BorTk_ (24)

1s a constant.

o Feedback inhibition: we use here Grossberg’s term though we will in future
make a distinction between feedback inhibition between layers (as in Plumb-
ley’s network) and lateral inhibition between neurons in the same layer. Here

Grossberg discusses the activation passing equation

#I

dy; !

— = — Ay + (B —yi)[ai + f(y)] — wil i + X f(w)] (25)
ki

where J; = 3 ;; Zx. The most interesting properties from this model develop

when the activation function, (), is a sigmoid which has the property that it

forms a winner take-all network which suppresses noise, and quantises the total

activity. Again these properties arise from an analysis of the dynamic properties

of the negative feedback acting on the network activations.

For the remainder of this thesis we will be interested in negative feedback of

activation in static models. We will use Plumbley’s model with a simplified learning

rule and investigate its emergent properties.
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Chapter 3

The Interneuron Network

3.1 Introduction

In this chapter’ we investigate more closely a network based on Plumbley’s network
(Chapter 2). We will, in fact, develop an extremely simple and effective Principal
Component network which needs no weight decay in its learning rule: because of the

negative feedback of activation, we can use simple Hebbian learning which will not

cause instability in the weight growth process and which moreover causes the weights

to converge to the Principal Components of the input data.

3.1.1 The Interneuron Network

For convenience we show again Plumbley’s network in Figure 7. We recall from
the previous chapter that Plumbley uses Hebbian learning with weight decay in his

network. We retain the activation-transfer rules of his network but use no weight

decay in the learning term.

We will show that the decay mechanism is unnecessary - that the architecture

of the network alone is sufficient to guarantee convergence to the relevant principal

subspace.

1Some of this work has already appeared in (Fyfe, 1993c; Fyfe, 1993d).

40
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x1l yl
OF
interneuron
X2 . Y2
(P
interneuron
Xn yn

Figure 7: The Interneuron Model

The rules governing the organisation of the network are

y=X— Wz
z=Wly
AW = nyz’

where x is the vector of inputs, z is the vector of activations at the interneurons and W
is the weights joining the two layers of neurons. We use y to represent the activation
at the summing neurons when the interneurons’ activatio;s have been returned.
There is no explicit weight decay, normalisation or clipping of weights in the model.
The subtraction of the weighted sum of the interneuron values acts like anti-Hebbian
learning. We will consider the network as a transformation from inputs x to interneu-
ron outputs z; by considering the effects of these rules on individual neurons, we can

quickly show that the resultant network is equivalent to Oja’s Subspace Algorithm.
We have

Ly — Z WkiZk
k
Z Wi5Y;
3

Ys

Z4
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Therefore,
Awi; = NYiz;
= n(z; — ) urizk)z;
k
= 1(ziz; — 2; ) urizk) (26)
k

This last formulation of the learning rule (26) is exactly the learning rule for the
Subspace Algorithm(Oja, 1989), Equation (15). A more formal analysis is given in
Section 3.2

In order to compare this network with Oja'’s Subspace Algorithm, simulations
were carried out on similar data’to that which Oja et al(Oja et al., 1992a) used

to compare the Subspace and Weighted Subspace Algorithms. The results shown in
Table 1 are from a network with 5 inputs each of zero mean random Gaussians, where
z1’s variance 18 largest, z;’s variance is next largest, and so on.

Therefore, the largest eigenvalue of the input data’s covariance matrix comes from
the first input, z,, the second largest comes from z; and so on. The advantage of
using such data is that it is easy to identify the prinéipal eigenvectors (and hence
the principal subspace). There are 3 interneurons in the network and it can be seen
that the 3-dimensional subspace corresponding to the first 3 principal components
has been identified by the weights. There is very little of each vector outside the
principal subspace i.e. in directions 4 and 5. The left matrix represents the results
from the interneuron network, the right shows Oja’s results.

The lower (W?TW) section shows that the weights form an orthonormal basis of
the space and the upper (W) section shows that this space is almost entirely defined
by the first 3 eigenvectors. The interneuron network also maintains the advantages
of homogeneity and locality of computation (indeed, it is difficult to imagine a com-

putationally simpler model).

Note that while we report, in general, on simulations run on this very special type
of input data, all the networks developed in this thesis (other than those specifically
identified in Chapter 5) perform excellently on all types of data.

*I did not have the value of the variances Oja used and therefore used variances of 5,4,3,2,1
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| Interneuronl Interneuron 2 Interneuron 3 | Output 1 Output 2 Output 3 |

0.207 -0.830 0.517
-0.122 0.503 0.856
0.970 0.241 -0.003
-0.001 0.001 0.001

0.002

: 0.009 : 0.000 0.000 -0.001
ww___ Tw'w_ |

1.001 0.000 0.000 1.000 0.000 0.000

0.000 1.000 0.000 0.000 1.000 0.000

0.000 0.000 1.000 0.000 0.000 1.000

Table 1: Results from the simulated network and the reported results from Oja et al.
The left matrix represents the results from the interneuron network, the right from

Oja’s Subspace Algorithm. Thus the first column represents the weights from the
input neurons to the first interneuron (or alternatively the first row represents the

weights from the first input neuron to the interneurons). Note that the weights are

very small outside the principal subspace and that the weights form an orthonormal
basis of this space. Weights above 0.1 are shown in bold font.

3.1.2 Algorithm for PCA

While the above networks may be adequate for biological information processors, a

more precise engineering requirement is that of finding the actual Principal Compo-

nents.

Recall that Oja et alOja et al., 1992a) amended the Subspace Algorithm by

proposing the following modification to the learning rule

N
Aw;; = ny;(z; — 0; Z YkWk;)
k=1

Ensuring that §; < 0; < 6; < ... allows the neuron whose weight decays pro-
portional to 6, (i.e. whose weight decays least quickly) to capture the principal
component of the variance. The second captures the next largest component, and so
on. The crucial point is the introduction of asymmetry into the learning algorithm.

This algorithm is local and homogeneous in that each neuron knows only its own
value of 0;. Analysis of the interneuron learning rule shows that, to simply insert a

parameter, 6;, would require computation at the level of the synapse. Whilst this may
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be biologically feasible and algorithmically simple to implement, a different algorithm
is developed here which uses the fact that the proposed network already incorporates
subtraction of values.

The algorithm is: the system is created with 1 interneuron; this interneuron finds
the first principal component using the above learning rule. It then loses its plasticity
1.e. its weights will not subsequently change. We then create a second interneuron.
Since the first neuron has found and subtracted the first principal component, the
second neuron will find the largest remaining principal component. It too now loses its
plasticity. Then the third interneuron is created etc.. Therefore, we have introduced
our asymmetry in the time dimension; note that whereas to do so with e.g. Qja’s
Single Neuron Network would have required the introduction of an extra mechanism -
that of subtracting the projection of the data onto the subspace already found - we do
not require this here as the network automatically finds and subtracts this subspace.

To compare the results with Oja’s Weighted Subspace Algorithm, we repeated
the above experiment with the algorithm. Oja’s simulation was carried out for 40000
iterations. The interneuron simulation allowed each intcrneuron to learn in 13000

iterations. The first interneuron learned during the first 13000 iterations, the second
learned during the next 13000 and the third learned during the last 13000 iterations.

The results are shown in Table 2; the left set is from the interneuron network, the
right from Oja(1992).

hl

L4

Clearly both methods find the Principal eigenvectors. We note that the interneu-

ron results have the advantage of equally weighting each eigenvector.
The algorithm retains the advantages of homogeneity and locality of computation.

A more analytical proof of the convergence algorithm is developed in the next section.

3.2 An Analytical Investigation of Convergence

This section provides an analytical investigation of the algorithm which causes the

interneuron weights to converge to the principal components of the input data’s co-

variance matrnx.
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' 1. 000 -0.036 -0.008 || 1. 054 -0.002 -0.002
0.036 0.999 -0.018 | 0.002 1.000 0.001
0.010 0.018 1.000 | 0.003 -0.002 0.954
-0.002 -0.002 0.016 || -0.001 0.001 -0.002

0.010 0.003 0.010 | 0.001 -0.001 0.000
\ww__ ww

1.001 0.000 0.000 || 1.111_0.000 0.000
0.000 1.000 0.000
0.000 0.000 0.909

0.000 1.000 0.000

0.000 0.000 1.000

Table 2: Results from the interneuron network (left) and from Oja (right).

Both methods find the principal eigenvectors of the input data covariance matrix. The
interneuron algorithm has the advantage that the each vector is equally weighted.

The proof of the algorithm follows closely the methods developed by Oja and
Karhunen (e.g. (Oja and Karhunen, 1985)) over the last decade; it is in 3 parts each

of which refers to the interneuron learning rules:
y=X— Wz
z=WTy =WTx
AW = nyz

In the first section we show that the weights of a single interneuron will converge to
an eigenvector of the co-variance matrix; in the second, we show that these weights

in fact converge to the principal eigenvector; in the third, we show that the algorithm

ensures that the i** interneuron’s weights converge to the it* eigenvector.

Theorem 1 The weights, W, of a single interneuron with the above learning rules

converges to an eigenvector of the input data co-variance matriz.

Let w; be the weight of the connection between y; and =z.
If the weights of a single interneuron converges to a limit, the expected weight

change over a sufficiently long time will tend to zero. Given some assumptions®

SWhich will be discussed later
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particularly regarding the learning rate 1 and the nature of the distribution of x, and

using (z) to indicate the expected value of z with respect to the distribution from

which it 1s drawn,

(Aw;) =0 (nyiz) =0
(yiz) =0

((z; — wiz)z) =0
{(zs — w; ;wkmk) ZI: wiz) = 0

(E WITIT; — W; Z wiTrziw;) = 0 (27)
{ ki

Y wCi —w; ) wiCrwy =0 (28)
t kI

111111

where C;; is that element of the co-variance matrix showing the co-variance between
the #** and j** elements of the input data x. If the weights of the interneuron are to

converge, then the above must be true for all values of w;. Therefore the above may

be written 1n matrix notation as

(Aw) =0 <= Cw— (WTCW)W =0

<> Cw = (w Cw)w

Now it is a standard result that the co-variance matrix C is positive-semidefinite; and

a -

hence )
wiCw=1>0

where A is a non-negative real number. Hence,
Cw = \w

Therefore, w converges to an eigenvector of C.

Theorem 2 The weights, W, of a single interneuron with the above learning rules

converges to the eigenvector with the largest eigenvalue of the input data co-variance

matriz.
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Proof

The proof is by contradiction.
Assume that w converges to an eigenvector c* of C with corresponding eigenvalue
A*. Then, we will show that if there exists an eigenvector c! of C with corresponding

eigenvalue A' > A* a small perturbation in the direction of ¢! will cause w to be

unstable i.e. convergence will not take place.

Let w have converged to a direction close to ¢* but to have a component € in the

direction of c!. Then,

(Aw)

Cw — (w' Cw)w

C(c* + €)= ((c** 4+ €T)C(c” + €))(c* + ¢)

Cc* + Ce— (¢ Cc*)c* — (c*TCc*)e — (c*TCe)c* — (¢ Cc*)c* + O(€?)
A*c¢” + Ale— A*c® — X%e — c*TC(ec*) — (Ce) c*c* + O(€?)

Ale—X%e— (Alefe*)c* + O(€)

= Me—Xe+ O(e’)

where we have used the facts that CT = C and that its eigenvectors are mutually
orthogonal.

So, ignoring terms of O(e?), if A! > X* , a perturbation in the direction of ¢! will
always be unstable. Therefore, c* is the principal eigenvector corresponding to the

.ﬂ'

largest eigenvalue of the co-variance matrix. d

Theorem 3 If interneuron 1 is installed in the network at time t;, where t; < i3 <
t3 < ..., and if the weights tnto the first 1—1 interneurons have already converged to the
first 1 — 1 eigenvectors, the weights of the it* interneuron will converge approzimalely
to the it* eigenvector of the input data’s covariance matriz, where such eigenvectors
are ordered such that the eigenvalue of vector 1 is the largest, that of vector 2 is nezt

largest and so on.

Proof

Let interneurons 1,...,M-1 be already connected to the network. We assume that

their weights have already converged to the subspace of the first M-1 eigenvectors, and
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show that the weights of interneuron M (where M> 1) will converge approximately*

to the M*" eigenvector of the co-variance matrix C.

In this proof, let Wy, be the weight vector associated with the p** interneuron.
Then,

(AWM)/n = <Yyzum)
= ((x—Wz)zu)
M
— ((x — Z szk)zM)
k=1
M-1
= (((x — ; kak — ZMWM)ZM)
= (- X (WxWa) - s Wan)aa)

= ((Xpr-1 — 24 WnM)2u)

where z3;_, is the projection of x onto the subspace of possible values orthogonal to

the first M-1 eigenvectors.
Consider the application of this equivalence to the 1** component of W, i.e. Wy,

the weight on the connection between y; and zis. Then, denoting the i** component

of thd'—l by Pi,

(AWni) =0 <= ((pi — 2uWnsi)em) = 0 e
= (i —Wmi Z Wumr k) Z Wanizi) =0
k I
= () Wamzips — Wi ) WanzeziWaar) = 0 (29)
l kl

We note the similarity between this equation and Equation (27) in Theorem 1. For
values of z; within the subspace x3,_,, the first term of Equation (29) acts exactly
like p;p; and so the remainder of Theorems 1 and 2 hold for values of x restricted to

this subspace. For values of x outwith this subspace, the first term 1s 0 (z; is in the

subspace whose basis 1s the first M-1 eigenvectors, p; is in the orthogonal projection

* Approximately,since the proof really requires an infinite convergence time for each weight vector.

For a stationary source,x, the finite time intervals used are close to perfect but we can only claim
‘approximately’ here
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of this space) and the second term causes the weights to decrease to zero (recall that
wlCw = ] is a scalar).

Therefore we can apply Theorems 1 and 2 to this subspace to show that the
M*™ interneuron weights will converge to the eigenvector corresponding to the largest

eigenvalue of this subspace. This eigenvector has eigenvalue smaller than those of
the M-1 eigenvectors already allocated to weight vectors Wi,...War—1 but is larger
than any other. Hence this eigenvalue is the Mth largest eigenvalue of the covariance

matrix of the original input vector, x.
Therefore, if the result is true for M-1 interneurons, it is true for M interneurons.

We know (Theorem 1) that it is true for 1 interneuron. Therefore, the algorithm will

force the weights to converge as required.

The Assumptions in the Proofs of Convergence

The proof given above is based on a proof developed by Oja and Karhunen (Oja

and Karhunen, 1985) and by Oja et al (Oja et al., 1992a; Oja et al., 1992b) for
their feedforward networks. The major difficulty with the proof is the step from the

stochastic equations (27) which are used in an empirical algorithm to the ordinary

differential equations (28) which are solvable as seen above.
Denoting by Ci the covariance matrix of the input data after k presentations of

input vectors from the distribution, the proof given in (Oja and Karhunen, 1985)

makes 4 critical assumptions:

1. Bach Cj 1s almost surely bounded and symmetric and the Ci are mutually
statistically independent with (C}) = C for all k.

2. The eigenvalues of C have unit multiplicity
3. Mk 2 0,7 < 00, XMk = 00

4. Each C} has a probability density which is bounded away from zero uniformly

in k in some neighbourhood of C in R™*™

The first constraint 1s easiest to satisfy since by taking k large enough we can sam-

ple the distribution sufficiently often so that the condition is almost surely satisfied.
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The second one cannot be guaranteed for every distribution, however not satisfying
it will only result in (a pair of) neurons converging to the subspace which is spanned
by the eigenvectors with equal eigenvalues.

The third one is the difficult one to satisfy in any particular stochastic realisation
of the algorithm: we are constraining the learning rate in a way which will not be
practicable to sustain in any actual simulation - not only must the learning rate
converge to zero (which is easy to manage) but it must do so sufficiently slowly that
> 7; 1s infinite. This leads to a long simulation! In practice, it has been found that
slow annealing of the learning rate will, under a wide range of annealing schedules,
cause the weights to converge to the principal components.

Another way to regard the problem is to say that we have not proved convergence;

we have only proved that if the weights converge, they do so in a specific direction.
We know also that if the weights reach this direction, they will be stable there but we
have not proved that, in any single simulation, they must reach this direction. The
proof that they would so converge with probability one uses the fact that each point

in the neighbourhood of the attractor is sampled infinitely often.

3.2.1 Alternative Derivations
Derivation from Constrained Variance Maximisation

Attempts have been made to derive the above algorithm from the criterion that
we wish to maximise the function J(W) = ¥, ((wj.x)?|w;) which is equal to the
variance of the z-values (for zero-mean data).Thus the underlying concept is the max-
imisation of the information available at the interneurons. In order to keep solutions
finite we add the constraint that the weights w; must be orthonormal. We use La-

grange multipliers to include this constraint in the function to give

J(W) = §<(wl X)) + & f:lix.,(wl - (30)

where §;; = 1 if 1 = 35,6;; = 0 1f ¢ # ;. In matrix terms, we may write this as

Tl

I(W) =173

~(WxxTW|W) + = tr[A(WTW 1] (31)
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where tr[| denotes the trace of the matrix, 1 is the vector of 1s, A is the matrix whose
elements are A;;, and I is the identity matrix.
Taking derivatives of 30 with respect to the weight vector, w;, we get

OJ(W)

6w,-

M
= (XXTW,"'W;) -+ E A;jo (32)

j=1
Since at an optimum, the derivatives must vanish for all i i.e.

dJ(W)
oW

= (xx"W|W) + WA =0 (33)

Differentiation of J(W) with respect to the Lagrange multipliers and again finding

the point where the derivatives vanish gives

WTW =1 (34)
Premultiplying (33) by W7 and substituting 34 gives

A=-WT<xxTW|W > (35)

Using this value of A in (33) gives

o0J(W
—-c;j-gw—) = [I - WWT{(xxTW|W)
= [I-WWT|ICW
= CW -WWICcw - (36)

As we have seen above, this equation completely defines the learning of the interneu-
ron network. Therefore the interneuron network may be thought of as maximising the
value of the function 3%, ((w;.x)?|w;) under the stated orthonormality constraints.

However this derivation, too, is not secure because we have used the converged
value of A duriﬁg the convergence process. Indeed, Baldi and Hornik (Baldi and
Hornik, 1988) have shown that this algorithm is not derivable from such a gradient-

descent procedure. The effect of the approximation is discussed in more detail in a

slightly more general setting in Chapter 6.
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Derivation from Error Minimisation

Attempts have also been made to derive the algorithm by minimising the error, e, at

y after the interneuron activation is returned.

We wish to minimise

1

J(W) = 217(e[W) =

~17{(x - WW*x)?|W) (37)

where 1 18 the vector of 1s.

Consider the j** component of the reconstruction error, e;.

Z WijWi.X (38)

where, as before, w; is the vector of weights into the :** interneuron. Then we wish

to find stationary point(s) of the derivative of J(W) i.e. where

BJ(W) }%33 36, _ (39)

ow,, e ow,,
Now,
Oe;
o = —umiX = (W X)[0,0,.,1,0, .07 (40)

where the last vector has a 1 in only the j** position. Then,

o0J(W
BEV ) = —E(:z:J Zw,,w, X).{WmiX + Wnn. x[O 0, ., 1,0..,0]%)}
™ 1=1 =1
= —(x—W'Wx)w,.x—(x-W7, Wx)(wm z)1” (41)
This can be used in the usual way in the gradient descent algorithm
0J(W)
AW ox — W

to give a learning rule
AW = xTx(I - W W)W + (x - WTWx)(Wx)T (42)

Now while this last equation is not quite the algorithm we wished, Xu (Xu, 1993)
has shown that “on the average”, the scalar product of our algorithm and the above

learning rule 1s positive. Thus “on the average”, the interneuron network can be

thought of as minimising the residuals at y.
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Derivation from Statistical Mechanics

Recently, several authors have investigated PCA-type neural networks from statis-
tical mechanics considerations e.g. (Prugel-Bennett and Shapiro, 1993; Biehl and
Mietzner, 1993; Biehl, 1993; Shapiro and Prugel-Bennett, 1992) in an attempt to
find an absolutely secure derivation of convergence. We will not consider such inves-
tigations in detail but merely note that such derivations always rely on arguments
using infinity - in their case, infinitely large networks. Such derivations then may be
analytically sound but the step of equating them with actual implementations must

remain suspect.

In summary, then, we have analytically derived the PCA properties of the network
but have had to rely on arguments which use approximations at some point. This
leaves the possibility that some particular network - operating in the real world under

constraints of finiteness (of time, magnitude etc.) - will not converge from a specific

set of initial conditions while being trained on a particular set of data. In practice,

this does not seem to be a problem - we have yet to find -. case where a network did

not converge for any data-set.

3.3 Network Properties

In this section, we investigate empirically some of the emergent properties of the
interneuron network. We view these properties as emergent properties as we do

not believe that they could be expected a priori to exist , i.e. without a detailed

investigation of the network.

3.3.1 Plasticity and Continuity

The results reported in the last section were based on a model which suggested that

only a new interneuron could learn. The underlying assumptions are

¢ an interneuron can only learn during a special period of its existence

e only one interneuron can learn at any instant in time
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‘ Disjoint Learner Model || Contin. Learner Model |
w w1
1.000 -0.036 -0.008 || 1.000 -0.015 -0.014
0.036 0.999 .0.018 || 0.014 0.999 0.045

0.010 0018 1.000 | -0.015 -0.046 0.999

-0.002 -0.002 0.016 || -0.015 0.006 -0.021
0.010 0.003 0.010 0.003 -0.007 0.010

| ww 0 i ww ]

1.001 0.000  0.000
0.000 1.000 0.000
0.000 0.000 1.000

1.000 0.000  0.000
0.000 1.000 0.000

0.000 0.000 1.000

Table 3: Results from the interneuron network in which each interneuron stopped

learning as a new one was created(left) and from the network in which each interneu-
ron continued to learn (right).

These are clearly not good properties for biological learners to have; we do not
wish to have new learning remove the hard-won gains already achieved from previous
learning; but equally, we do not wish to have to specify in advance how much time
each neuron will have to learn. Further, in setting a specific time period during which
learning will take place, we are providing the system with a form of meta information.

To test the effects of allowing interneurons to continue to learn even after other
new interneurons were created, two more simulations were carried out. In the first,
the interneurons lost their plasticity gradually and there was an overlap in the times
when two or more interneurons were learning; in the second interneurons kept their

plasticity throughout.

Thus, in this last model, the first interneuron learns from its creation till the end

of the simulation, the second interneuron learns from its creation at iteration 13000
till the end of the simulation and the last interneuron learns from iteration 26000 till
the end of simulation.

Only the results of the last model are reported, as the conclusions are identical:
we do not have to postulate that interneuron weights lose their plasticity. The left

matrix of Table 3 repeats the results from the interneuron model described in the
previous section; the results from interneurons which continue learning are shown on

the right. The table shows that the interneurons can retain their plasticity without
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there being major loss of precision in finding the actual principal components.
We suggest that this model then represents a more plausible model of the form
of learning which takes place in biological learners and further, that in most cases of

unsupervised learning, the Continuing Learning Model is to be preferred.

3.3.2 Speed of Learning and Information Content

One of the most interesting aspects of the proposed model is its reaction to statistical
data which have inherently differing amounts of information. One might hope that a
model would react to data which has more information more quickly than it does to
data with less. This, in fact, happens.

It is well known (e.g.(Cover and Thomas, 1991), page 225) that for the Shannon

information content (Shannon, 1948) of a Gaussian with variance o*
h(v) < logo

which is a mathematical formulation of the fact that there is more information in
random variables with large variance than in random variables with small variance.
It would seem plausible to argue that an organism which can quickly identify data-
sources with large information content would have an advantage over an organism
which does not have this ability. This is, in fact, an emergent property of the model.

Therefore, in the current set of experiments, there is more.information in z; than
in z3 etc. i.e. h(z1) > h(z3) > h{z3) > h{z4) > h(zs). We therefore hope that z,
will be learned quickest, etc.

Figure 8 shows the length of time which individual interneurons take to converge
to the appropriate solution. The first solid line on the graph shows how long the first
interneuron took to converge to (1,0,0,0,0), the second to (0,1,0,0,0) and the third to
(0,0,1,0,0).

Additional experiments to ensure that this rate was not merely a function of the
order of the interneuron’s learning confirm that data with larger variances is learned
more quickly.

Clearly, interneuron 1 is the fastest learner; it learns the component/direction

with the largest information content. Interneuron 2 makes a bad start; actually,
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appropriate V and W
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Figure 8: Interneuron convergence times.

Solid lines show the time for each interneuron to converge to the appropriate eigen-
vector of the covariance matrix of the input data: the first interneuron converges
most quickly.

Dotted lines show the speed with which individual interneuron’s feedforward and

feedback weights in the VW model converge to the same direction: those of the first
interneuron converge most quickly.
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because of the initial conditions (which were randomly generated), interneuron 2
attempts initially to make a play for the first eigenvector direction before giving up the
unequal struggle against interneuron 1. It then converges quickly to the appropriate
eigenvector. That this is not a necessary property of PCA networks is shown in

(Diamantaras, 1992), Figure 2.7 where the network takes longest to converge to the
first eigenvector.

3.4 The VW Model

The results of the last section have one major drawback when considered as a model
of biological systems: the weights of the connections from the interneuron,z, to the

sumiming neuron,y, are assumed to be identical to those from the summing neuron,y,

to the interneuron,z. This is biologically implausible. We now propose a model where

these weights are initially different.

y = x—Vz (43)
z = Wy=Wx (44)
AW = a,yz’ (45)
AVT = a,,sz (46)

where the initial values of both VT and W are small random numbers not correlated

1in any way with each other.

Note that both learning rules for W and V are identical up to the learning rate

and use only simple Hebbian learning.
The convention we will use here is that wy; is the weight of the connection from
y; to z;; similarly, v;; is the weight of the connection from z; to y;. Unless specifically

stated otherwise, we shall be interested in the vectors to and from the interneurons.

Therefore we take the vectors v; to be the weight vector into the i** interneuron, i.e.
to be the vector of form {v;} for all k; similarly we take the vector w; to be the
vector of weights from the i** interneuron i.e. to be the vector {wy} for all k; we

note here that v; corresponds to a column of the matrix V of weights while w; is a
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row of W. Both are vectors of length n where n 1s the number of summing neurons.

We consider the effect of these rules on a network with a single interneuron,z.

Lemma l

If the weights,w, of a single interneuron with the above learning rules converge to an

eigenvector of the input data co-variance matriz, then the weights w and the weights

v converge to the same eigenvector.
Proof

Let w; be the weight of the connections from y; to z and and v; be that from 2z to
Yi-

If the weights of a single interneuron converges to a limit, the expected weight
change over a sufficiently long time will tend to zero. Given the usual approximations,

particularly regarding the learning rate 7, and using (z) to indicate the average value

of = over the time period,

(Aw;) =0 <= (nyiz) =0
< (yiz) =0
< ((z; —v2)2) =0
= ((zi—w ;wkwk) ;wm) =0

 —— (Z WITIT; — Vs zwkmkx;wz) =0
[ k.l

N —— Z wCl; — v, Zwkagw; =0
{ k.l

where C;; is that element of the co-variance matrix of the input data x showing the
co-variance between the i** and j** elements. We note that the same criterion may

be deduced from (Awv;) = 0. If the weights of the interneuron are to converge, then
the above must be true for all values of w;. Therefore it may be written 1n matrix

notation as

(AwW) =0 <= Cw—(w Cw)v=0

& Cw=(w Cw)v

Now it is a standard result that the co-variance matrix C is positive-semidefinite; and
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[Teier powon model | VW Modd [
\ |

1. 000 -0.036 -0.008 : -0.041 -0.003 | 1.013 -0.017 -0.024
0.036 0.999 -0.018 : 1.033 0.031 | -0.027 0.965 0.032
0.010 0.018 1.000 . -0.032 1.028 | 0.020 -0.017 0.969
-0.002 -0.002 0.016 . -0.041 0.038 | -0.007 -0.034 0.037
0.010 0.003 0.010 -0.007 -0.011 | 0.010 0.000 0.002

Table 4: Results from the interneuron network (left) with symmetric weights,W. and
for the V and W vectors from the VW Model(see text)

hence

wiCw=+92>0 (47)
where 4 is a non-negative real number. Hence ,

Cw =1V (48)

Therefore, if w converges to an eigenvector of C (see below), then Cw = Aw for some
real number,), and so v = aw, where « is a scalar; that is, v and w converge to the
same eigenvector. Therefore, it is possible to apply the further analysis developed
for the WW network and hence show that the i** interneuron converges to the 3t
eigenvector of the covariance matrix.

Experimental results, shown in Table 4 confirm this. It can be seen that both v
and w converge to the same eigenvector, although the results are slightly less clear
cut that in the previous algorithm. However, given the simplicity of this biologically
inspired model, the results are extremely clear: any entity which used such a method
would be able to extract the greatest amount of information from its environment
with a minimal amount of interneurons using a very simple learning rule.

However there remains the possibility that the weight w will not converge to an

eigenvector. Therefore, the next theorem 1s necessary.

- Theorem 4 If the weights,w, of a single interneuron with the above learning rules

converge, then the weights w and the weights v converge to the same eigenvector of

the input data’s covariance matriz.
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From the lemma, we know that the weights converge as stated if they converge to

an eigenvector. Therefore now, we must prove that if w converges, it does so to an
eigenvector of C. We use a contradiction argument.

Assume that there is a solution of
Cw =1qv (49)

where w is not an eigenvector nor the degenerate solution,w = 0.

Let the eigenvectors of C be ¢, c2,...,cn. Then
n
W= ) w;c;
=1
Since w # 0, there exists a direction c¢p, such that w, # 0. Since w 1s not an

eigenvector, there exists 1 other direction c, with a non-zero component ws,.

Then

W = WaCa + WsCh + ) W;iCj
s#a,b

where 1 < a,b<n,a # b, and

V = UaCa 1 UsCh + Z V,Ci
t#a,b

and from Equation 49,
AbWp = Vb
Aawa = YVq

Consider a disturbance of magnitude € > 0 in the direction of c, i.e. a disturbance
of €a. Then if w is a stable point of convergence of the weights, the expected change

in the weights over time is zero. Therefore,

(Aw) =0 <= Cw—(w Cw)v=0

<= C(waCa +wiCp + €a + Y  wici) — 'y'(vaca + vpcp + Z v;c;) =0

t#a,b t#a,b
= Aawdca + Ab‘wab + Aa::ea -+ Z Aiwici
iZab

—'y'vaca — 'y'vbcb — fy' Z v;c; =0
s#£a,b
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where v = (w + ea)TC(w + €a) 2> 0 since C is a positive semi-definite matrix.

Now, considering the components of the transformation in the direction of cp,

Abwb — 'y'vb =0
Then, ~v, — 7'1:5 =

Therefore, ¥ = 4 since v, # 0. Now, considering the components of the transforma-

tion in the direction of cg,

AaWq F Ag€ — "y'va =

YVa — YVa +Aa5 =0

Aq€ =0

which is a contradiction. Hence there does not exist a non-zero, non-eigenvector

solution to equation (49).

Theorem 5 At equilibrium, the weights v and w converge to the same eigenvector,

Ca With
V=W (50)

Proof - ;
At equilibrium,

Cw = (W Cw)v =qv

and, by theorem 4, w is an eigenvector of C, c,. Therefore,
Cw = AW

where A, 1s the eigenvalue corresponding to eigenvector ca.

Therefore, AgW = YV

Aa Aa
Therefore, V= -7w = T Gw

\34
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Now, wlCw is a scalar; hence,
wICw = |wlCw| = |w||Cw]| = |w||XaW| = Aa|W|?

Therefore,

Note: The theorems in this section imply that the further analysis of this in-
terneuron network is identical to that performed previously for the WW network.
In other words, an interneuron network with asymmetric weights, w; and vj, will

calculate the principal components if the interneurons are created in the network as

in the previous section.

3.4.1 Properties of the VW Network

T'.e motivation for the introduction of the VW model is that it removes a constraint
from the network builder: in the WW model, the weights into and out of each 1n-
terneuron must be the same and so must be known in a meta-sense i.e. outwith
the learning space. One feature of symmetry still remaining in the network is the
equivalence of the learning rates in the V and W weights.

Experimental results show that, when v and w learn with different rates, the angle
between v and w converges as quickly as before but the weight, v or w, with the

larger learning rate acquires a larger length than the other. Indeed the result of the

last theorem still applies.

While most of the emergent properties of the symmetric (WW) network still are
found with the VW network, there is one property which this network does not have:
the interneurons cannot retain their plasticity when new interneurons are created.

There always remains a slight angle between v and w (dotted lines in Figure
8); even although this can be made arbitrarily small, it is sufficient to destabilise
the interneuron weights. It is not possible for the weights v and w to be both

exactly orthogonal to any new interneuron’s weights; therefore the new interneuron

will destabilise the weights of existing interneurons. The interaction between v and
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w will further move the weights away from the eigenvector and so the weights will be
rotated in the principal subspace. This 1s also an empirical finding.

Therefore, for VW interneurons, each interneuron’s weights must be allowed to
converge to the eigenvector but must then loose their plasticity. This is algorithmically

easy to implement but the need to take this action has led to a search for other

algorithms.

3.5 Relation to Other Models and Biology

The basic interneuron network has been discovered independently by other researchers
1in the past - though the link between them and the network described above 1s not
often obvious.

The first reference to an interneuron-type of network appears to be William's
Symmetric Error Correction (SEC) Network (Williams, 1985) where the residuals at
y were used in a symmetric manner to change the network weights. The SEC network
may be easily shown to be equivalent to the network described in this Chapter.

A second reference to an interneuron-type network was given in (Levin, 1990).

Levin introduces a network very similar to Plumbley’s network and investigates its

noise resistant properties. He develops a rule for finding the optimal converged proper-
ties and, in passing, shows that it can be implemented using simple Hebbian learning.
His derivation 1s a simplified version of that given in Section 3.2.1 and must equally
be described as approximative.

A third strand has been the adaption of simple Elman nets((Hinton and Shallice,
1991; Kehagias, 1991; Elman, 1991; Elman, 1992; Bates and Elman, 1992)) which
have a feedforward architecture but with a feedback from the central hidden layer to
a “context layer”. Typically, the Elman nets use an error-descent method to learn,
however Dennis and Wiles (Dennis and Wiles, 1993; Dennis et al., 1992) have modified
the network so that the feedback connection uses Hebbian learning. However, the

Hebbian part of the network uses weight decay to stop uncontrolled weight growth

and the other parts of the network continue to use back propagation of errors to learn.

More recently, Xu (Xu, 1993) has rediscovered the interneuron network and has
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given a very strong analysis of its properties. While he begins by considering the
dynamic properties of a multi-layer network (all post-input layers use negative feed-

back of activation), it is clear from his discussion that the single layer model which

he investigates in detail is identical to the network outlined above.

An interesting feature is Xu’s empirical investigation into using a sigmoid acti-
vation function at the interneurons; he reveals results which show that the network
is performing a PCA and suggests that this feature enabled the network to be more
robust i.e. resistant to outliers, a finding in agreement with other researchers (e.g.
(Karhunen and Joutsensalo, 1993a; Oja et al., 1991; Oja and Karhunen, 1993)). We
will return to non-linearity in Chapter 6 where we will base our findings in con-
temporary statistical practice in a way which permits an analytical investigation of
non-linearity.

In keeping with our overall aim, we would like to link our networks with those
of biology. The overall aim for an early processing network has been described as
the minimisation of redundancy so that the further network can be developed as a
“suspicious coincidence” (Barlow, 1989) detector. The decorrelation of inputs formed
by projection onto the Principal Components clearly achieves this. The network
most like that described above was devised by Ambrose-Ingerson et al (Ambrose-
Ingerson et al., 1990) in which a network which uses negative feedback between layers
attempts to simulate the transfer of olefactory information in the paleocortex. The
sole difference between that network and the interneuron detwork is that the network
uses a competitive activation transfer arrangement; the authors conjecture that a
form of PCA is taking place.

Murphy and Sillito (Murphy and Sillito, 1987) have shown that LGN neurons
seem to be inhibited by the V1 cells (in the visual cortex) which they excite. Pece
(Pece, 1992) has developed a model based on negative feedback which simulates the
reduction in redundancy in an information-transferring network.

As an interesting aside, we note that Robinson (Robinson, 1987) has shown that
negative feedback cannot be used to control the visuomotor system in a continuously
operating closed-loop system with a finite delay term. He shows that the negative

feedback in the system can be made stable if the system is refractory: each eye saccade
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is followed by a short period when 1t will not respond to another change in target
position (due to the sampling rate having a finite frequency). Because of this, we can

think of such a system as running on open-loop dynamics for much of the time which
is equivalent to having discrete time intervals in which activation is passed forward

and back. It is results like this which underlie our conviction that the interneuron

network is based on cybernetic principles.

A network very like the network which we have investigated, has been developed in
(Jonker, 1992) in which inhibition is specifically used in an Artificial Neural Network
to model the cerebellum. The network appears identical to that displayed in Figure
4 but is considered as a dynamic model where the activation is allowed to pass round

the network till settling takes place. However, since Jonker makes “the biologically

plausible assumption that the characteristic time-scales in the evolution of interactions
are much larger than the time-scales involved in the neuronal dynamics”,((Jonker,

1992) ,page 87)it is not surprising that the emergent properties of the network are

very similar to those which are developed in the next section from a static network.
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Chapter 4

Peer-Inhibitory Interneurons

4.1 Parallel Learning Networks

Three factors make the interneuron network especially exciting as a PCA network:

simplicity - there are no logistic or hyperbolic functions to be calculated; there is no

additional computation within the learning rule; there is no sequential passing

back of errors or decay terms.

homogeneity - every interneuron is performing exactly the same calculation as its
neighbours; every summing neuron is performing exactly the same calculation

& -

as 1ts neighbours. a

locality of information - each synapse uses only the information which it receives

from its own connections; similarly with the summing neurons which calculate

the y values

However, the phased creation of neurons described in the last chapter does not
utilise the inherent potential of this network for parallel information processing. We
now develop learning algorithms which do this while retaining as much as possible of
the other features. |

Thus, in this chapter!, we create the entire network at one instant in time and train

all weights simultaneously. Recall that when we do this with the first interneuron

1Some of this work has already appeared in (Fyfe, 1993f; Fyfe, 1993b).

66
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Figure 9: The inputs, X, are passed forward to the interneurons via the W weights as
before but before the interneuron’s activations are passed back, the activation from
each interneuron is passed to the others as inhibition

network, we find the principal subspace but not the principal components themselves.

We amend the basic network by allowing the inhibitory effect of each interneuron
to act on the other interneurons as well as the summing neurons(see Figure 9). Two
methods will be used with this amended network in order to create the necessary
asymmetry: in the first, we will allow the network weights to be upgraded at different
rates; 1n the second, we will use different activation functions to force convergence to

the Principal Components.
The first type of network will be characterised by

y = x—-Vz | (51)
" = Wy=Wx (52)
z = z —Uz (53)
AW = n,yz? (54)
AV = n,yz’ (55)
AU = ~zzT (56)

where z is the initial activation of the interneuron before receiving the lateral inhibi-
tion from other interneurons and U is the matrix of weights between the interneurons.

As before, the initial input vector x is fedforward through the W weights to the in-

terneurons. Now the interneurons feed their activation (as inhibition) to the other
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interneurons through the U weights before the interneurons’ activations are fed back
as inhibition (through the V weights) to the summing neurons.

We do not however allow self-connections from interneurons to themselves.

We note that we have now a 3-phase operation:

1. The activation is fed forward from the summing neurons to the interneurons

2. The interneurons feed their activation to their peers and recalculate their acti-

vations

3. The activation is fed back to the summing neurons from the interneurons

While this is more computationally complex than before, we only require O(m?)

additional calculations, where m is the number of interneurons. Further all learning

processes continue to use simple Hebbian learning.

We will introduce a matrix G{x)=(I-U)W(x),? which represents the forward func-
tion from x to z. G is an integral part of the mathematical model which we will use
for understanding the network but it makes no overt contribution to the development

of the network in the real, stochastic world. The actual learning in the network 1.e.

the weight updates, is accomplished by updating the actual weights U,V and W al-

though we will discuss <2 as though it were being performed in the same sense that

e.g. % is performed.

h -

We can prove (an obvious special case of Theorem 7) that the learning rules

detailed above are equivalent to

T d
%- = -g- = (I-UWC-(I-U)WCW¥(I-U)'V? (57)
dU
— = (I-UWCWT(I-U) (58)
dG dW dU
w = -0 -FW )

where G is the forward function relating x and z and C is the covariance matrix of

the input data.

%] being the identity matrix
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We will show, as with other models with lateral inhibition, that U = 0 is a stable

stationary point of the system

Now,G = (I-U)W

dG dW dU
andso—d-i- = (I—U)-E-—-d—tW

= (I-D{(I-U)WC-(I-UWCWT(I-U)VvT}
—(I-UWCewi(1-U)Y'w

= (I-U){GC —-GCG'VT} -GCG*'W

- GC -GCG*VT —-GCG™W
as U — 0

Now G —» W as U — 0 and so 52 — WC —2WCWTW using the fact that VT = W.

It can be seen that the necessary asymmetry between the Hebbian learning term

and the weight decay term has not been achieved; however the important point to note

is that part of the weight decay term comes from the %U; term which we can manipulate

independently of the <= term in order to create the necessary asymmetry.

4.2 Analysis of Differential Learning Rates

y = x—Vz o (60)

z = Wy=Wx (61)

z = z —Uz (62)
AW = pyzy’ (63)
AVT = pyzyT (64)
AU = Tzz’ (65)

Let us review our naming conventions: the convention we will use is that w;; is the

weight of the connection from summing neuron y; to interneuron z;; similarly, v;; is the
weight of the connection from z; to y;; u,; is the weight of the connection from z; to z;.

Unless specifically stated otherwise, we shall be interested in the vectors to and from
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the interneurons. Therefore we take the vectors v; to be the weight vector into the #*»

interneuron, i.e. to be the vector of form {vy;} for all k; similarly we take the vector
w; to be the vector of weights from the ** interneuron i.e. to be the vector {w;:} for

all k. Both are vectors of length n where n is the number of summing neurons. Note

that the learning rates of U values are different for different interneurons as we wish

to force the first interneuron to learn the first principal component, the second the

next and so on. Thus we have a diagonal matrix, I .
Since we ensure that there are no self-connections, the main diagonal of U is
composed of zeros. Also note that I' is the matrix diag{y,2,...,Ym} where m is

the number of interneurons and 7; is the learning rate for the U weights of the #**

interneuron such that 73 < 72 < ... <. We allow all learning rates to decrement

to zero as time tends to infinity.

As introduced in the previous Section, G(x)=(I-U)W(x) is the forward function

from x to z. We will assume that, if 4;(¢) is the value of 4; during time interval t,

lim,_,o ﬂ-‘fi-(—)-(i) exists and 1s positive. This assumption will be discussed in Section 4.2.1.

Theorem 6 v;j converges if and only if w; converges, where vi i3 the weight vector

from the i** interneuron and w; is the weight vector into the i** interneuron. Further,

Vi =awj +p

¢
nw(t)’ v

nv(t) is the value of ny during time interval ¢

where a = lim_g

and P is a vector depending on the initial conditions of vi and wj.

Proof

At time B, we have
wji(B) = wji( B — 1) + 1;i(B)y;(B)z(B)

If we start from time 0, we can equate the continuous time point T' with the sum of

the discrete intervals 7;;. 1.e.

T = i n5i(p)

p=0
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Thus, we are breaking up continuous time into discrete time steps 7;; . Now the
convergence, if it exists must be taking place simultaneously over all weights. There-

fore, we must ensure that n;; = 5 for all values of 2,5. In order to have no limit on

continuous time, we must have

in(z’) = 00

p=0

If we further assume that n(p) > 0 for all p, then we have
Aw;; = nyjz
= n(z; — ) vie2s)z:

n(z; — z': 'Ujs(; Wy Ty — ; Uspp 2:, wpzmz))(; Wit Tt — ; Uig zr: WerTy)

Or, in matrix terms,

= (I-U(B))W(B)x(B)x(B)"

—(I - U(B))W(B)x(B)x(B) W(B)"(I - U(B))"V(B)'
(66)

If we also assume that

limyp-—.oon(p) = 0

oy W

l-l.

then the sequence of w;;(T') asymptotically approaches a continuous-time function and
the left-hand side of Equation (66) approaches its derivative. Then we can replace

Equation (66) with the corresponding averaged differential equation

%’- = (I - YWC — (I = VYWCWT(I - UYVT (67)

where C is the covariance matrix of the stationary distribution producing the zj
values Now, under the same assumptions as in the previous chapter about the rate 7

1t can be shown that the solution of the stochastic algorithm approaches the solution
of the differential equation (67) with probability 1.

Now consider v’s learning.

vi(B) = vii(B — 1) + nv(B)y;(B)z(B)
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Therefore,

vii(B) = vii(B—1) _ nv(B) s~ By BV (B — S vii(B) *
7(B) = n(B) {Z i(B) I(B) i(B)(1 E iq) — Z xi(B)

(1- zum) 2wpk(B)wp(B)mz(B)wu(Bxl . Zu.p)}

Given the same assumtions as before and making the additional assumption that

lim v (p) = a > 0 1.e. the limit exists and 1s positive
p-"".
0 n(p)
we have the corresponding differential equation,
dvt T TvsT
— =a((I-UWC-(I-U)WCW*(I-U)"'V*") (68)
Therefore,
dv7¥ dW
at T dt

Therefore, W converges to a solution (where %% = 0) if and only if V converges to a

solution.

Now, dz’ (I-U)WC-(I-U)Wewr(I1-u)'vT = f(w,V)

Let F(W,V) = fo " HW, V)t

h -

Then, VI = aF(W,V) +aK and W = F(W,V) + K

where K 1s a function of the initial values of V and W.

Thus, v; = w; + p, where p is a vector depending only on the initial values of the

system.

Thus if v; and w;j converge, they do so simultaneously and close to the same

vector.

Note 1 For the remainder of this section we will assume that a=1. i.e. the learning

rates for V and W are equal.
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Note 2 We note that the vectors v; and w; may be made arbitrarily close by limiting
the original size of vectors vi(0) and w;(0). i.e. p may be made arbitrarily

small by appropriate initial choice of v and w. Hence we are able to assume

that v; = A =~ wj.

Theorem 7 The learning rules detailed above are equivalent to

T
===l = (I-UWC -(I-UWCWT(I - U)TV7 (69)
d
T[f' = A(I-UYWCWT(I —U)T (70)
e dW  dU
x = U= -5V (T

where G s the forward function relating x and z
and A is the matriz diag{ a,,a,,...,a,, } with a; = lim,_,¢ :T;(g-) with v;(t) being the

value of «y; during the time interval t.

Proof

With the same assumptions as before, we can write

= (I-U(B))W(B)x(B)x(B)"

~(I - U(B))W(B)x(B)x(B)™W(B)*(I - U(B)I"V(B)"
.. (72)

If we also assume that
limy,eon(p) =0

then the sequence of w;;(T') asymptotically approaches a continuous-time function and
the left-hand side of Equation (72) approaches its derivative. Then we can replace

Equation (72) with the corresponding averaged differential equation

S = (I-UWC - (I -V)WCWT(I - U)V7 (73)

where C is the covariance matrix of the stationary distribution producing the zj

values. Now, under certain assumptions about the rate n it can be shown that the
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solution of the stochastic algorithm approaches the solution of the differential equation
73 with probability 1.
Similarly, for the weight updates of the U weights,

uij(B) = uij(B — 1) + 1(B)zi(B)z;(B)

Therefore,

UB)-U(B—-1) ~(B)
n(B) ~ n(B)

If we make the further assumption that limp_,0

~:(B

n(B} exists, we can take the limit of

the above stochastic equation giving

dU
dt =46

where A= diag{ a;,a3,...,a, } with a; = lim,;_,q 3",—((5)1 > 0, and Q the m*m matrnx
with elements ¢;; = (2;2;),1 # 7, and ¢;; = 0 for all i,j. The angled brackets indicate
an ensemble average. We will, for the time being, assume that the a; values are

constant during the learning process. We will return to this assumption in section
4.2.1 Now ,

Q = (zz') (74)
= (I -U)WxxTWT(I - U)T) oo (75)
= (I-U)WCWT(I-U)T (76)

where C;; is (z;z;) for all 1,j. Hence,

dU
dt

The transform from x to z is G where G(t) = (I — U(¢))W(t) where U(t) is the

value of U at time t etc. Then,

= A(I-UWCWT(I-U)"

iG dw(t) dU(%)
= = (I-—U(Z)V dth — W (t) (77)
= (I-U)— - W (78)
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Theorem 8 U=0, the m*m zero matriz, is a solution of -"-'&93- =0, and gg =wj =
;71=:_;".Ci 15 the corresponding solution for G and W where c; are the eigenvectors of
the covariance matriz of the input data in order . t.e. if Yy, < Vuy < oo < Yun, then

¢ - 1 . . y " y oy . .
Wi = oG where ¢; 15 that eigenvector with corresponding eigenvalue X; where

A > A > ... > A, and, as before, a; = lim,;_,g %ﬁzj
Proof
dG dW dU
@ =U=0g -7 W

dG dW dU
@ - @

= (I-UWC-(I-U)Wew(I-U)"vT
~A(I-UWCewWT(I-u)Y'w

= GC -GCG'V' - AGCG™W

— WC-(I+AWCWTwW

at the point of convergence of V and W.

Note the similarity between these equations and those which are required for Oja’s

Weighted Subspace Theorem; therfore, we conjecture that a solution of <X = 0 at

U=01sg; = wj = 711+_ﬂici the 1*P eigenvector of C in normal order. Here we show

that the stated values are solutions; stability will be proved later.

dG diW dU
7 = U-U)—g oW

= (I-U)(I-UWC—-(I-UWCWT(I-U)TVT) - A(I-U)WCW(I -
— WC-WCWTVT — AWCWTW

= AW —-—KVT - AKW

where K is diagonal matrix whose (%,1)* element is X;lwi|? with A; the 2,5 eigenvalue

and A is the diagonal matrix whose (7,1)!* element is ;.

Then taking g; as the ** vector of G i.e. going into the #** interneuron and using
the fact that w; = v;, we have
dgi

= AW — kWi = aikw;
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/\i Ai 1 a,-A.- 1

v1+ a; B 14 a;+/1+ q; N 1+a;\/1+a;)ci

(r\i(l +a;) — A —ﬂi}\i) —0
Vita(l+a) ‘00

So the stated values are stationary points of the system.
Note: We can in fact go further, in that i1f U=0 then

(

dgi
di

= AW — kwi — a;k;w;
= (X = XN wil® — g wi|*)w

— A,’(l — |Wi|2 — a;IWilz)Wi

so if %i = 0 then |[w;|*(1 4+ ;) =1 1ie. |w;| = :1:7-1—.

14a;

Theorem 9 At the solutions U=0, w; = 7T1+-5Eci 0 % = 0, then

dsij
dt

if X\; £ 0 i.e. the i*" eigenvalue is not zero.

=0 for all 1,7

Proof
= = AI-UWCW(I -V .-
= AWCWT

Now wiCw;T = 0 for all i # j and w;Cw;T = X\;|w;|>. Therefore WCW? is a
diagonal matrix of the form diag{ky, kz,.., km} where k; = X;|w;[? , A being the 1*3

eigenvalue. Then

%[t{ = AK = diag{a1k1,azk2, '--1amk'm}

Therefore, -‘%‘:i = 0 for all 7 # 3.

Theorem 10 The solutions u;; = 0, w; = ﬁ:ci for all 2,5 of %f— = 0 ensure all

variables are stationary at this poindt.
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Proof

At the stated points of solution of dﬁ- = 0 then % = (. But

dW dU
(I - U)_ET — EW
aw
dt

Theorem 11 If ¢; are the unit length eigenvectors of C, the solutions

1

Ci

u; = 0, where 0 1s the m*1 zero vector

of the equations governing the dynamics of this network are asymptotically stable for

all 1.

Proof

First consider the u;. We have already shown that U =0 = %,U;- = 0. Consider

a disturbance of € in U=0. We have

dU
dt

A(I—(0+ €))WCWT(I — (0 + €))7

AK — AeWCWT — AWCWTe+0O(e) v =
—~AWCWT — AWCWTe + O(€?) (off diagonal)
—AeK — AKe + O(é€%)

Since A and K are both diagonal matrices with entries > 0, if € > 0, the rate of

change of U 1s negative i.e. U must decrease. If € < 0, the rate of change of U is

positive i.e. U will increase.

Now consider the W weights. We have proved that the stated values are solutions;

we must still prove asymptotic stability. Note that at the stated points of convergence,

G =
aG
dt

(I-U)W =W

dW dU
I=-Ug - =W
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Now since G=W at the points stated, any instantaneous disturbance in W will have
an equal instantaneous effect on G. Therefore, we will investigate the effect of a
disturbance in W on G in order to derive the asymptotic stability of W. We do this

through investigating the effects of the disturbance on U and W. Let there be a
disturbance of E in the converged weights W. Then,

al

— = AW+ E)C(W +E)

AWCWT + AECWT + AWCET + AECET
~ (AWCWT)+ AECWT + AWCET

ignoring terms of O(E?). Thus,

d

-:g-(w +E) = (AWCWT + AECWT + AWCET)(W + E)
AWCWTW + AECW™W + AWCET™W + AWCW'E
(AWCW'W) + AECWTW + AWCE™W + AKE

Q

oimilarly,

aw
dt

(W + E)YC — (W + E)C(W + E)'VT
WC + EC - WCWTVT — ECWTVT —wWCETVT
(WC - WCeW'VT) + EC - ECWTVT - wCETVT

2

So still ignoring terms of O(E?),

dG dW dU

- dt  dt
(WC - WCWTVT - AWCWTW) + EC — ECWTVT —WCE"V?!

—~AECW*W — AWCE*W — AWCWTE
= EC —ECWIVT —WCETVT — AECWTW — AWCETW — AKE
= EC—AKE —-(I+ A)(ECWT + WCET)W

[
|
|
|
S

Now, considering a disturbance of € in the direction of cj of the weight wj,(i.e. a

disturbance of €; ) we note first that the matrix(I+ A} ECWT+WCET)is a diagonal

matrix with its j¢* element (1 + a,-)vzléf—. So considering the rate of change of g; in
aj
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the direction of c;

dg; 2);€
— = NG~ askig — (14 a) - =3
- AJ' 2)_,'6 l
= (\je—a; g a.,-e (1+ a")mm)c"
a,;
— ). . 79
AJ(]' + 1 "I' GJ‘)GCJ ( )

Since C is symmetric, A; > 0 . Further, the learning rates «y; were such that a; > 0
. Then, Equation (79) shows that if € > 0, which would cause G to grow, the system
will self-organise to cause G to shrink; if € < 0 the system will self-organise to cause

G to grow. Since we have shown that U=0 is a stable solution, then the solutions of
the W vectors must also be stable.

Now consider the v;. The proof that the stated values are solutions is implicit 1n

the section above. To show asymptotical stability, let there be a disturbance of € > 0
in V. Then

dv?

= = ([-UWC - (I-U)WCWT(I-U)'(V +¢)f

WC - WCWI(V +¢)T

WC - WCeWTvT —wewle
= —WCWTe'

= —K¢e'

< 0

since every element of K is greater than 0. Similarly, if € < 0, we have -‘%{ > 0.

Thus all the stated values are stable points of the system.

4.2.1 The GW Anomaly

There is an apparent anomaly in the above equations. The solution of %?— =0 1s
g = Wj = VIITI?Ci whereas the solution of %’I’- = 0 occurs at w; = ¢;. Further, as
U— 0, G »W. This suggests a less stable system than before and this is indeed the

case. Thus in order to minimise instability, it is necessary to ensure that the a; values

are low. Experimental results suggest a value of 0.1 is sufficient to ensure stable
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convergence to Principal Components. However, we note that, at w; = 711_-l-aEci’ U=0

and so
aW T TriyTv/T
- WC-WCW?V
d so ﬂ = A C; A ! -
O T ira ) 1taita
A,‘ a,

v1+a;1+ a;ci

Therefore, for any a; # 0 , there will be a tendancy for the weights to grow away
from the global optimum. However, as seen in the equations governing &2, this cause
instantaneous change in U which will drive the W weights in the opposite direction.
In order to produce a damped system, the values of a; should be small.

One possible response to this anomaly is to insist that as we are taking a limit to

infinity, the a; values can only be > 0 i.e. to allow equality. However, this is not the
experimental situation where a strict ratio is maintained as the terms decrease to 0
nor does it help the analysis as we then have a diagonal matrix which is not of full
rank and would not then provide the differential decay necessary for convergence to
the Principal Components.

The approach chosen here is to choose the values of a; appropriately small so that

the term 71—}; = 1. Under this constraint the system has been found experimentally
to be stable. o

The final point to note is that in this system the decay of the learning rate to
0 may be essential to the fixed stability of the system; if the learning rates are not

allowed to decay to zero, the very dynamical nature of the convergence will continue.

4.2.2 Simulations

The results of a typical experiment on the same type of data as in the previous

chapters are indicated in Table 5. Here, the first interneuron has the smallest learning

rate i.e. a,, < o, < a,,. Further, while the initial values of the w and v weights
were 0(0.0001) those of the u weights were 0(0.00001).
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v w
1.000 0012 0.000 || 1.000 0.012 -0.000
0.030 1.000 0.008 || 0.030 1.000 0.009
0.005 -0.003 0.994 || 0.004 -0.003 0.994
0.004 0.007 -0.023 || 0.004 0.007 -0.023

-0.002 0.000 -0.000 ) -0.002 0.000 0.000

[Totermewon Vo] 1 2 3]
[ Angle (radians) | 0.0011 0.0006 0.0004

Table 5: Results show the weights of a typical set of V and W weights from the Parallel
Learning Algorithm with the angle in radians between the v and w vectors.No. of
iterations=40000. Initially, o, = a, = 0.0001; o, = 0.000005; o, = 0.00001; ctyyy =
0.000015

0.651 0.188 1.0312 || 0.650 0.188 1.031
-0.151 0.984 -0.092 |[ -0.150 0.984 -0.092

0.824 0.049 -0.305 | 0.842 0.049 -0.305
-0.019 0.006 0.006 | -0.018 0.006 0.006
-0.001 -0.001 -0.001 j -0.001 -0.001 -0.002

Table 6: Results of the same network as before with homogeneous U learning rates

In order to show that it is the different learning rate which causes the convergence
to Principal Components the same experiment was rerun with all the U weights having
the same learning rate; the results of this are shown in Table 6. While there may
appear to be a soft PCA taking place, this effect vanishes in larger networks. This
effect - that increased size removes the tendancy to perform a ‘soft’ PCA - has been

found in other models in this section and therefore slightly larger networks have been

used in obtaining other corroborative empirical results.

4.3 Differential Activation Functions

In this section we investigate 3 models of Peer Inhibitory Interneurons which use
activation functions instead of learning rate to break the symmetry of the system.

We will not repeat the explicit derivations of the last section for each of the 3 models

as the mathematics is usually very similar; however specific points of interest will be
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identified and analysed. First each of the 3 models is introduced and experimental
results are given; points of interest in each are identified. Then a comparison of the
models is made and additional models which have similar properties are outlined.

Unless stated otherwise, the empirical data is obtained from a network with 12

inputs, 7 interneurons and input data with variance of z; > variance of z2 > ....A

1s a diagonal matrix with A;; > Az; >... The network here is slightly larger than in

previous sections in order to highlight various interesting empirical results which are

not so obvious in smaller networks.

Restricting ourselves to models where only the interneurons use activation func-
tions and restricting such activation functions to multiplicative factors, (so that we
still have a linear system) there are several possible models; we will identify 3 separate
classes of models by determining the characteristics of 3 of these models. We will use
the same conventions in naming vectors as before. Note, in particular, that there are
still no self-connections for the interneurons i.e. the main diagonal of U is composed

of zeros. In this section, all u weights will learn at the same rate ny but there will

be differential activation functions (multiplicative factors) on the interneurons. For

simplicity, we assume that nw = nv = gy = 9. (This does not affect our results and

provides a simpler mathematical model)

4.3.1 Model 1 - Lateral Activation Functions

]

y = X-—Vz (80)

z = Wy=Wx (81)

z = z — AUz (82)
AW = nzy’ (83)
AVT = pzyT (84)
AU = nzzT (85)

Then, omitting details, we have G = (I — AU)W and

d
_d.‘:{.’. = (I—- AUYWC — (I — AUYWCWT(I — AU)TV? (86)
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dU

— = (I- AV)WCWT(I - AU (87)
dG dWw  dU
— = (U= AV)—- - A=W (88)
Then if U converges to 0 at which point G=W=V7,
%Ct"_ = (I- AUY{(I - AUYWC — (I — AUYWWCWT(I — AU)TVT}

—A{(I - AUYWCWT(I - AU)T}W
= (I-AU){GC —-GCG"VT — AGCGTW}
— GC —(I+ A)GCGTW as U —0

at convergence,which should be compared with the equations in the previous section.

However the dynamics of the two models should not be assumed to be the same;
note for example the different format of the equations governing the behaviour of
the U values. This will be shown to be important in the investigation below. The
w; weights (almost)converge to the eigenvectors of the input data’s covariance ma-
trix. The underlying rationale for this network is that each interneuron has different
susceptibility to the inhibition from its peers.

The results shown in Table 7 are from a 12-input, 7 interneuron network, with

a; = 1.58 — 0.2 x (2 — 1) for i=1,...,7. We note that while almost all the Principal
Components have been certainly identified, the second and third interneurons have
not identified precisely their respective Principal Components. The vectors seem

to be almost correct and to satisfy wa.ws = 0 vet are not in the direction of the

eigenvectors themselves. In fact by appropriate choice of the parameters a;, this

effect can be eliminated; however,

1. We wish to develop a network which will not require any fine tuning as it is

used 1n different situations

2. The analysis of this fault provides insight into the network behaviour

The reason for this fault lies in the convergence of the U values. In the model of

the last section the learning rule for the U values was shown to be

= A(I - UYWOW(I - V)"
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Notice that as U—0, this learning rule continues to be dominated by the A matrix
whereas, in Model 1, the effect of the A matrix vanishes as U—0 (see Equation 87).
The importance of is due to the fact that the value of is a major component

in the decay term in dt Thus as U tends to zero and hence % — 0, the decay term
tends to zero. In the previous model this decay term maintained its differential effect

as it decreased but in Model 1, as U — 0, the decay loses its directional impact - 1t

becomes homogeneous.

More formally, consider the convergence to a solution of the system which 1s not

an eigenvector. Let w; have converged to ac;+bc;,a,b # 0 and let w; have converged

to ccj + dcj, ¢,d # 0. Both c and d are necessarily not zero as wij.wj = 0. Then we
can show that the (7, 7)** element of WCW? can be shown to be

wiCw;' = (Xaci+ Ajbc;).(cci + dcj)
= Mjac+ A;bd
Similarly, wiCw;T = X\a?+ ;b
wiCwi® = Mac+ A;bd
wiCw;T = N+ \;d

Now the ih row of (I-AU) is [ —a;u4...1... — @;u;j... — @il | where the 1 is in the #**

position. Similarly with the j** row. Then,

du; a

= (I — AUZWCWT(I — AU);
m— u?j(a;aj(hgac -+ Ajbd)) — u;,-(a,-()t;az -+ Ajbz) <4 a;(A,-cz + Ajdz)) - (A;ac -+ A,‘bc

Thus -d—l at u;; = 0 is equal to (A;ac + A;bd) which is exactly zero for b = ¢ = 0 1.e.
the elgenvectors.

But, as u;; — 0, a situation arises where there is no particular impulse for the
change of u;; in any particular direction provided the constraint ac 4 bd = 0 1s
satisfied. The symmetry of the formula shows that dt' = d:t‘, thus the differential
term 1n dt L also vanishes at this poi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>