
1:, Gvý. ý 4O-7 1 °) G

Negative Feedback as an
Organising Principle for

Artificial Neural Networks

By

Colin Fyfe

A Thesis submitted in fulfilment

of the requirements for the degree

of Doctor of Philosophy

'i 1.

University of Strathclyde, Glasgow

Department of Computer Science March, 1995

1

Copyright © 1995 Colin Fyfe

The copyright of this thesis belongs to the author under the terms of the United
Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.49.
Due acknowledgement must always be made of the use of any material contained in,

or derived from, this thesis.

2

Acknowledgements: I would like to gratefully acknowledge the help and

support of a great number of people.
First, I must record the help I received from all (past and present) members of the

IKBS group of the Computing Science Department at the University of Strathclyde.

All have shown a tolerance of my stumbling steps that has made my time with the

group most enjoyable. I must especially thank Craig Renfrew who helped me enor-

mously in the initial stages of this research and pointed my interest originally towards

unsupervised learning.

Secondly, I must acknowledge the help of the group of Dr. E. Rolls in the Experi-

mental Psychology Department of the University of Oxford. My knowledge of "wet"

neural networks increased hugely during my brief stay at Oxford. I must especially

express my gratitude to Dr. Roland Baddeley who quickened my interest in statistical
aspects of Artificial Neural Networks.

I have an enormous debt to Professor Douglas McGregor for many aspects of the

last 3 years: Douglas provides both a test-bed and a sounding board for half-formed

ideas. His incisive comments are always valuable and his good humour legendery.

His humility and honesty provides a model for all new researchers and is a living

expression of "nullius in verba".
Finally, I must thank my wife, Mary Teresa, for supporting my efforts during this

time; without that support, this thesis would never have been completed.

Abstract

We investigate the properties of an unsupervised neural network which uses simple
Hebbian learning and negative feedback of activation in order to self-organise. The

negative feedback circumvents the well-known difficulty of positive feedback in Heb-

bian learning systems which causes the networks' weights to increase without bound.

We show, both analytically and experimentally, that not only do the weights of net-

works with this architecture converge, they do so to values which give the networks
important information processing properties: linear versions of the model are shown
to perform a Principal Component Analysis of the input data while a non-linear

version is shown to be capable of Exploratory Projection Pursuit.

While there is no claim that the networks described herein represent the com-

plexity found in biological networks, we believe that the networks investigated are

not incompatible with known neurobiology. However, the main thrust of the thesis is

a mathematical analysis of the emergent properties of the network; such analysis is

backed by empirical evidence at all times.

Contents

1 Introduction 5

1.1 The Influence of Cybernetics 6

1.2 Artificial Neural Networks 7
1.2.1 Principles for Self-organisation in Neural Networks

7

1.3 About this Thesis
10

2 Principal Components and ANNs 13
2.1 Hebbian Learning 13

2.2 Quantification of Information 16

2.3 Principal Component Analysis 18

2.3.1 Calculation of Principal Components 19
2.4 Weight Decay in Hebbian Learning

........ 22

2.4.1 Principal Components and Weight Decay :..... 23

2.5 Early Models 26

2.5.1 The InfoMax Principle in Linsker's Model 26

2.5.2 Oja's One Neuron Model 28

2.6 Recent PCA Models 29

2.6.1 Oja's Subspace Algorithm 29

2.6.2 Oja's Weighted Subspace Algorithm 30
2.6.3 Sanger's Generalized Hebbian Algorithm 30

2.7 Principal Components and Anti-Hebbian Learning 31

2.7.1 The Interneuron Model 33

2.8 Negative Feedback in Neural Networks 37

1

CONTENTS 2

2.8.1 Static Models 37

2.8.2 Dynamic Models
. 38

3 The Interneuron Network 40
3.1 Introduction 40

3.1.1 The Interneuron Network
. 40

3.1.2 Algorithm for PCA 43
3.2 An Analytical Investigation of Convergence

........... 44
3.2.1 Alternative Derivations

.........
50

3.3 Network Properties
.... 53

3.3.1 Plasticity and Continuity 53
3.3.2 Speed of Learning and Information Content

.......... 55
3.4 The VW Model 57

3.4.1 Properties of the VW Network 62
3.5 Relation to Other Models and Biology

........... 63

4 Pee r-Inhibitory Interneurons 66
4.1 Parallel Learning Networks

...................... .. 66

4.2 Analysis of Differential Learning Rates 69

4.2.1 The GW Anomaly 79
4.2.2 Simulations

........... 80
4.3 Differential Activation Functions

. 81

4.3.1 Model 1- Lateral Activation Functions 82

4.3.2 Model 2- Lateral and Feedforward Activation Functions ... 85
4.3.3 Model 3- Feedforward Activation Functions 88
4.3.4 Summary

......................... 90
4.3.5 Other Models 94

4.4 Emergent Properties of the Peer-Inhibition Network 97
4.5 Conclusion

........... 98

5 Biological Asymmetries 100
5.1 Back to the Biological Drawing Board

. 100

CONTENTS 3

5.2 Non-negative Weights
..... 101

5.2.1 Other data sets 102
5.2.2 Theoretical analysis 105

5.3 Using Distance Differences
..... 106

5.3.1 Equivalence to Sanger's Algorithm
. 108

5.4 The Interneuron Coding Network
. 109

5.4.1 Results
....... 111

5.4.2 Statistics and Weights
..... 113

5.4.3 Reconstruction Error 115

5.4.4 Topology Preservation -1 117
5.4.5 Topology Preservation -2... 118

5.5 A Hierarchical Feature Map 120

5.5.1 An Example 122
5.5.2 The Principal Component Analysis

............... 123
5.5.3 Augmenting a Map 126
5.5.4 Reparing a Damaged Map 127

5.5.5 Summary 129
5.6 A Single Type of Neuron

..................... 129
5.7 Conclusion

.................. 131

6 Non-linear Structure Extraction 135
6.1 Introduction

................................ 135
6.2 Exploratory Projection Pursuit

136
6.2.1 Interesting Directions

......
137

6.3 The Data and Sphering
......... 138

6.4 The Projection Pursuit Network 139

6.4.1 Non-linear PCA 140
6.4.2 The Projection Pursuit Indices

....... 142
6.4.3 Principal Component Analysis

. 144
6.4.4 Convergence of the Algorithm

................ .. 145

6.5 Simulations and Results
........ 146

CONTENTS

6.5.1 One Interesting Direction
6.5.2 More Than One Interesting Direction
6.5.3 Differing Types of Interesting Directions
6.5.4 Using Hyperbolic Functions

6.6 Other Indices
6.6.1 Indices based on Information Theory
6.6.2 Friedman's Index
6.6.3 Intrator's Index

6.7 Early Vision Processing
6.7.1 The Statistics of Natural Images
6.7.2 Results

.......
6.7.3 Boundary Conditions and Pre-processing
6.7.4 Coding Methods

6.8 Concl usion

7 Conclusion
7.1 Future directions
7.2 Cybernetics

4

147

150
151
153
157
157
159
161

162

162

164

167

169

171

173

...
174

......
175

Chapter 1

Introduction

The purpose of this thesis is the identification and analysis of means of extraction of
information from high dimensional data sets. We will later define "information" in

a Shannon-rigorous way but, for now, it is sufficient to take "information" to mean

any increase in our (human) knowledge.

The central idea of the thesis is that negative feedback of activation can be used
to control the development of very simple self-organising artificial neural networks

which nevertheless have powerful information-extraction properties.
We will use simple Hebbian learning in our networks. There is a well known

difficulty with this type of learning which is that the network weights will tend to

increase without bound unless we perform some type of specific remedial action.
However, we will show that the negative feedback of activation not only causes the

weights to converge, it also causes it to converge to directions which have powerful
information processing properties.

Since we insist that the retention of simplicity is a major design criterion, we

cannot claim that such networks will be accurate models of biological information

processors. Yet we will base our models on biologically-plausible premises wherever

possible.
The aim of creating intelligent machines is not new: one of the first attempts to

mimic human capabilities was the study of cybernetics.

5

CHAPTER 1. INTRODUCTION 6

1.1 The Influence of Cybernetics

We begin by relating this thesis to the topic of cybernetics, a term which has become

unfashionable in recent years. The word was coined by the Austrian mathematician

and engineer Norbert Weiner (Wiener, 1948) who used it in defining a science of

communication and control in both animals and machines.
The defining feature of cybernetics is feedback which was thought to be the prin-

cipal organising principle of all complex systems: hence, it came to be used as a basic

methodology of systems theory and management science. The study has often be-

come tinged with an anti-reductionist slant because of its emphasis on the emergent

properties of complex systems and it is perhaps this which has contributed most of

all to its recent neglect.
The application of cybernetic principles as a paradigm of neural network develop-

ment will be used in this thesis:

" Its theme is that negative feedback of activation may be used as an organising

principle of neural network development.

" The neural networks' development will be environment driven.

" The networks will use unsupervised learning to self-organise.

" Several properties of the networks discussed will appear-as emergent properties

which were not predicted a priori.

9 The interaction of parts of the networks, simple though they are, will be im-

portant in the final properties of the networks.

" At any one time we will be able to identify the state of the system and can, if

we wish, inspect all component states of the system at that time.

" and, most important of all, the networks will be quintessentially involved in

information processing.

CHAPTER 1. INTRODUCTION 7

1.2 Artificial Neural Networks

Artificial Neural Networks, on the other hand, are very much a currently-active re-

search topic. The history of its rise (1950s
, 60s), sudden decline (1969) and gradual

re-emergence (1980s) has been detailed elsewhere (e. g. (Hertz et al., 1992)) and gives

a fascinating insight into the Sociology of Science but will not be repeated here.

This thesis deals with a class of nets which self-organise using unsupervised Heb-

bian learning. We will use (mostly) 2 layer nets in which one layer is designated the

input layer. They will be feedforward nets in the sense that they will be strongly di-

rectional, though we will use a feedback transfer of activation to stabilise . the growth

of the network. We will concentrate on a static analysis of the networks and rarely

consider the dynamics of how the network converges to a particular state. The nets

will initially be linear in Chapters 2 to 5 and subsequently non-linear. We will base

our nets on biologically possible models but will sacrifice biological plausibility where

necessary in order to investigate statistical properties of the network.

1.2.1 Principles for Self-organisation in Neural Networks

We will treat the need for organisation in information processors as axiomatic: a

network with random weights is unlikely to have important information processing

properties. We will create algorithms which cause the weights to become organised
in such a way that the network develops information processing properties such as
the transmission of maximal information in noise-free environments.

Discussion of the process of organisation in neural nets must begin with a state-

ment of what it is that is to be organised. For example, we may organise the actual

structure of the network by adding new nodes as necessary. This is the methodol-

ogy used in Cascade Correlation (see e. g. (Fahlman and Lebiere, 1991; Shultz and
Schmidt, 1991)), in Adaptive Logic Nets (e. g. (Armstrong et al., 1991; Dwelly, 1990))

and in similar methods based on other types of nets such as Kohonen nets (see below)

(e. g. (Fritzke, 1991; Fritzke, 1993b)) or Principal Component nets (e. g. (Rubner and
Tavan, 1989; Rubner and Schulten, 1990)). An alternative is to prune network links

which seem to become redundant during learning (e. g. (Frean, 1990; McClelland

CHAPTER 1. INTRODUCTION 8

et al., 1986)). Occasionally this is taken to the extreme case where sets of nodes
(layers) are brought into play at one time - this is usually disguised as having some
layers reacting passively, if at all, while other layers are learning (see e. g. (Linsker,

1986a)). The view taken in this thesis is that the introduction and pruning of nodes

can be subsumed in a process which simply organises the weights through which neu-

rons pass their activations to one another: a new neuron is one which is joined to

all other nodes (and the external environment) by means of connections with weights

zero until such time that the neuron begins learning (at which time the weights will
become non-zero). Therefore we will be interested in that form of organisation of

artificial neural networks which during the learning phase changes the weights be-

tween neurons. This section is devoted to a discussion of the principles on which such

organisation takes place.
Probably the most frequently used type of Artificial Neural Network is that which

uses backpropagation; since the principles on which the development of the network

weights is founded is the same as that on which the perceptron's weights are adjusted,

such a network is often called a Multi-Layered Perceptron. Such networks require a

teacher as well as examples from the environment of the mapping to be learned; they

are thus grouped under the genre "supervised learning". They organise on the basis

that the network's weights should be adjusted to make the network's output more like

the teacher's output than it was prior to the adjustment. This reflects the principle

that there exists a teacher who has expert knowledge of' the environment and will

use that knowledge to guide the development of the network. Such a principle would
be interpreted in educational circles as advocating a didactic methodology. A special

case of the didactic principle is that known as "reinforcement learning" (e. g. (Thrun,

1992; Barto et al., 1991; Barto et al., 1989)) in which the teacher merely tells the

pupil that it is right or wrong. This has been shown to be particularly effective in

control technology.

In contrast to a didactic methodology, one might propose an exploratory principle.
While educationists might baulk at the description of unsupervised learning as an
instance of exploratory methods, we will group methods which do not include a
teacher as unsupervised learning. An alternative name might be environment-driven

CHAPTER 1. INTRODUCTION 9

learning.

Since there is no teacher, such nets must use information in the training exam-
ples on which to base any changes to the current weights i. e. on which to base their

learning. However, as we shall see, this does not in itself constitute an "organising

principle": we will show in the next chapter that the simplest of all network learning

methods will cause the weights to grow without bound unless some organising princi-

ple is invoked to control their growth. Some examples of organising principles in the
development of unsupervised neural networks are found in

1. Attractor Neural Networks (Hopfield Networks)(Hopfield, 1982; Amit, 1989) in

which, in general, all nodes are thought of as belonging to a single layer. An

input pattern is represented by a set of activations (typically is or -1s) across
the set of nodes. The organising principle used for this net is that nodes which
fire together for a particular pattern have the weights between them reinforced.
The net effect of this organising principle is that if part of a pattern or a noisy

version of the pattern is presented to the trained network, activation will be

passed back and forth across the network before finally settling to an attractor

state - hopefully that corresponding to that which has been learned. Note that

we are making a distinction here between the organising principle - reinforcing

weights between concurrently active nodes (one-shot learning) - and the aim of
the process - pattern completion. ,, -

2. ART (Adaptive Resonance Theory)(e. g. (Carpenter and Grossberg, 1987b;

Carpenter and Grossberg, 1987a)) Networks which have the aim of creating

a network which retains its ability to learn from new data while not losing

its memory of previously learned data. This is Grossberg's stability-plasticity
dilemma. Here the organising principle is the "resonance" of a new input with
those currently learned; resonance takes place if the new input is sufficiently like

previously learned inputs. If resonance with a node's previous learning takes

place, the node adjusts its learned weights to more closely match the new input

while if resonance does not take place, a new node must be created.

3. (Kohonen) Feature Maps(e. g. (Martinetz, 1993; Fritzke, 1991; Fritzke, 1993a))

CHAPTER 1. INTRODUCTION 10

which aim to provide a low dimensional representation of the input data which

remains topographically true to the major features of the input data. In this

type of network, the organising principle is adjustment of weights so that neigh-
bouring neurons respond similarly to any input. Now we can make a 3-way

distinction between the aim, the organising principle and the implementation

since the implementation may be done through lateral connections (Willshaw

and von der Maisburg, 1976) or simple updating of a winner's neighbours (Ko-

honen, 1984).

We will use negative feedback of activation as the organising principle.

1.3 About this Thesis

Three aspects of the thesis must be made clear from the start:

1. Throughout this thesis, we will repeatedly return to the biological plausibility as

a reason for investigating certain networks. This is not to be taken as implying

that our networks have reached the level of sophistication of biology nor that we

consider the thesis to be an exploration of carbon-based neural networks. We

do however believe that, since our motivation lies in emulating biological neural

networks' properties, we should not gainsay nature's technologies without due

cause. Therefore the networks found herein are mpre -aptly described as not
being biologically implausible rather than the more positive assertion that they

are biologically plausible.

2. We have stated that this is not a biological investigation. It is in fact a math-

ematical/statistical investigation; the structures and properties investigated in

this thesis have an abstract existence independent of any implementation de-

tails. In almost all cases, the simulations on which we report are extremely

simple simulations in which our aim is to illustrate a point rather than to

demonstrate an implementation.

3. Where possible, we have related the emergent properties of our network to

the methods of traditional statistics. We make no claims about the network's

CHAPTER 1. INTRODUCTION 11

efficiency with respect to these methods; indeed, in the case of Principal Com-

ponent Analysing networks, there is a widespread acknowledgement that tradi-

tional statistical methods are more efficient than neural network methods. Our

purpose is to investigate the properties of the negative feedback network per se;

we will not compare the implementation of these properties with the standard

methods.

Chapters 2,3,4 and 5 deal with Networks which perform Principal Component

Analysis: Chapter 2 gives a short discussion of Hebbian learning and Principal Com-

ponent Analysis, and a brief review of currently-popular PCA networks; the impor-

tance of Anti-Hebbian learning and negative feedback are discussed for the first time.

Chapter 3 introduces the negative feedback network and shows its equivalence to

current Principal Subspace networks; the PCA properties of the network are analyt-
ically developed and an algorithm which finds the actual Principal Components is

devised; empirical results are given to complement the analysis; finally the feedfor-

ward weights are dissociated from the feedback weights to give a more biologically

plausible network. Chapter 4 extends the basic network by allowing the negative
feedback to influence those neurons giving the feedback; it is shown that this alone is

not sufficient to cause convergence to the actual Principal Components but ways of

causing this convergence are investigated. The importance of asymmetry in causing

convergence to the Principal Components is highlighted. Chapter 5 gives 2 variations

of the network based on different biologically-plausible features of either the input

data or the means of transmission of the activation; for the first time a non-linearity
is introduced and its effects analysed and then used in a particular application.

Chapters 6 deals with networks which introduce non-linearity into the networks

of the previous chapters to create networks which perform exploratory data analysis.
A general outline of the network is given along with specific examples of its use;
different projection indices are used on various sets of input data and the effect of using
different indices simultaneously is investigated. We conclude by giving examples of the

networks which are discussed therein being used in biologically necessary operations

viz. in vision processing.

CHAPTER 1. INTRODUCTION 12

Chapter 7 provides a summary of the thesis and suggests directions for future

research.
It will be noted that there is a marked disparity between the space devoted to linear

networks and that devoted to non-linear networks; we feel that this is essential in the

light of our current lack of understanding of artificial neural networks' properties.
There are many properties of many of our most popularly used networks which are
beyond current analysis and the emphasis on linearity in the current thesis has, we
feel, been justified by the insights gained through this emphasis. This is not to deny

that the insights gained from our investigations of the linear networks may be useful
in our investigations of the non-linear networks.

Chapter 2

Principal Components and ANNs

In this chapter, we define the Information Theory background to Principal Component

Analysis(PCA) and give a brief survey of the major most-popular Artificial Neural

Networks(ANNs) which perform a PCA. We will not, in this chapter, provide proofs

of convergence of the various nets discussed since such proofs are very similar to those

we use in Chapter 3 to prove convergence of our new network. We begin by outlining
the simplest possible ANNs and review a very simple unsupervised learning rule.

2.1 Hebbian Learning

The aim of unsupervised learning is to present a neural net with raw data and allow
the net to make its own representation of the data - hopefully retaining all information

which we humans find important. Unsupervised learning in neural nets is generally

realised by using a form of Hebbian learning which is based on a proposal by Donald

Hebb (Hebb, 1949) who wrote:
When an axon of cell A is near enough to excite a cell B and repeatedly or per-

sistently takes part in firing it, some growth process or metabolic change takes place
in one or both cells such that A's efficiency, as one of the cells firing B, is increased.

Neural nets which use Hebbian learning are characterised by making the activation
of a unit depend on the sum of the weighted activations which feed into the unit. They

use a learning rule for these weights which depends on the strength of the simultaneous

13

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 14

activation of the sending and receiving neuron. With respect to the network depicted

in Figure 1, these conditions are usually written as

Yi = wiixi ý1)

and Ow; i = axiy1 (2)

the latter being the learning mechanism. Here y; is the output from neuron i, x is the

jth input, and wii is the weight from x to ys. a is known as the learning rate and is

usually a small scalar which may change with time. Note that the learning mechanism

says that if xi and y; fire simultaneously, then the weight of the connection between

them will be strengthened in proportion to their strengths of firing. However, we will

not, unlike Kosko (Kosko, 1991), rename the Hebb Learning rule when an activation
function is used. i. e. when

yi = 9(E wi xj)
i

and 0wsj = axjZZ{

(3)

(4)

for some function, g(), we will still call this Hebb learning.
Substituting Equation (1) into Equation (2), we can write the Hebb learning rule

as

I,

Aw; j = ax; EWkjxk

k

= aEwkjxkxi (5)
k

which is equivalent to
dt

W(t) of CW(t) (6)

where C; j is the correlation coefficient calculated over all input patterns between the

ith and jth terms of the inputs and W(t) is the matrix of weights at time t. In moving
from the stochastic equation (5) to the averaged differential equation (6), we must

place certain constraints on the process particularly on the learning rate a which we

will discuss in more detail later.

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 15

weights

WII

w12 yl 37 IN Inputs
w

w
outs

y2

wln I-W

Figure 1: A Simple Neural Net
The inputs are the xis and the outputs are the y; s . The strength of the connections
between x's and y's are the w's. The learning rule changes the strengths of the w's
till the net can be said to have learned a mapping.

The advantage of this formulation is that it emphasises the fact that the resulting

weights depend on the second order statistical properties of the input data. A review

of the importance of this aspect of the Hebb learning rule is given in Section 2.3.

Because of these statistics-based properties, Hebb learning has found applications
in a number of early associative-type memories e. g. Steinbuch's Learning Matrix

(Steinbuch, 1961), Anderson's linear associative memory (Anderson, 1968), Koho-

nen's Adaptive Associative Memory (Kohonen, 1974) and the Willshaw Model (Will-

shaw et al., 1969).
However, a major difficulty with this learning rule is that unless there is some

limit on the growth of the weights, the weights tend to grow without bound: we have

a positive feedback loop -a large weight will produce a large value of y (Equation 1)

which will produce a large increase in the weight (Equation 2). It is instructive to

follow e. g. (Hertz et al., 1992), in examining the Hebb rule's stability:
Recall first that a matrix A has an eigenvector x with a corresponding eigenvalue

A if

Ax = Ax

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 16

In other words, multiplying the vector x or any of its multiples by A is equivalent
to multiplying the whole vector by a scalar A. Thus the direction of x is unchanged

- only its magnitude is affected.
Consider a one output-neuron network and assume that the Hebb learning process

does cause convergence to a stable direction, w'; then if wk is the weight vector linking

xktoy,

0 (Yxi) = (E wix, x)
ii

where the angled brackets indicate the expected value taken over the distribution and
R is the correlation matrix of the distribution. Now this happens for all i, so Rw = 0.

Now the correlation matrix, R, is a symmetric, positive semi-definite matrix and so

all its eigenvalues are non-negative. But the above formulation shows that w' must
have eigenvalue 0. Now consider a small disturbance, e, in the weights in a direction

with a non-zero (i. e. positive) eigenvalue. Then

(Ow*) = R(w* + E) = Re >0

i. e. the weights will grow in any direction with non-zero eigenvalue (and such direc-

tions must exist). Thus there exists a fixed point at W=O but this is an unstable
fixed point. In fact, it is well known that in time, the weight direction of nets which

use simple Hebbian learning tend to be dominated by the, direction corresponding to

the largest eigenvalue.
We will later discuss one of the major ways of limiting this growth of weights while

using Hebbian learning and review its important side effects. However, we begin with

short reviews of 2 subjects which will be important to the thesis: Information Theory

and Principal Component Analysis.

2.2 Quantification of Information

Shannon (Shannon, 1948) devised a measure of the information content of an event
in terms of the probability of the event happening. He wished to parameterise the
intuitive concept that the occurrance of an unlikely event tells you more than that of

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 17

a likely event. He defined the information in an event i, to be - log p; where p; is the

probability that the event labelled i occurs.
Using this, we define the entropy (or uncertainty or information content) of a set

of N events to be
N

H=-E ps 1og p;
i=i

That is, the entropy is the information we would expect to get from one event hap-

pening where this expectation is taken over the ensemble of possible outcomes.
For a pair of random variables X and Y, if p(i, j) is the joint probability of X

taking on the ii" value and Y taking on the jth value, we define the entropy of the

joint distribution as:

H(x, y) > P(i, j) log p(i, j)
$12.

Similarly, we can define the conditional entropy (or equivocation or remaining
uncertainty in x if we are given y) as:

H(xly) = -EP(i, j)logp(i j)
$1j

Shannon also showed that if x is a transmitted signal and y is the received signal,
then the information which receiving y gives about x is

I(x; y) = H(x) - H(xl y) (7)

or I(x; y) = H(y) - H(yl x) (8)

or I(x; y) = H(x) + H(y) - H(x, y) (9)

Because of the symmetry of the above equations, this term is known as the mutual
information between x and y.

The channel capacity is defined to be the maximum value over all possible values
of x and y of this mutual information.

The basic facts in which we will take an interest are:

" Because the occurance of an unlikely event has more information than that of
a likely event, it has a higher information content.

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 18

9 Hence, a data set with high variance is liable to contain more information than

one with small variance.

"A channel of maximum capacity is defined by 100% mutual information i. e.
I (x; y) = H(x)

2.3 Principal Component Analysis

Inputs to a neural net generally exhibit high dimensionality i. e. the N input lines can

each be viewed as 1 dimension so that each pattern will be represented as a coordinate
in N dimensional space.

A major problem in analysing data of high dimensionality is identifying patterns

which exist across dimensional boundaries. Such patterns may become visible when

a change of basis of the space is made, however an a priori decision as to which basis

will reveal most patterns requires fore-knowledge of the unknown patterns.
A potential solution to this impasse is found in Principal Component Analysis

which aims to find that orthogonal basis which maximises the data's variance for a

given dimensionality of basis. The usual tactic is to find that direction which accounts
for most of the data's variance - this becomes the first basis vector. One then finds

that direction which accounts for most of the remaining variance - this is the second
basis vector and so on. If one then projects data onto the Principal Component

directions, we perform a dimensionality reduction which will be accompanied by the

retention of as much variance in the data as possible.
In general, it can be shown (Jolliffe, 1986) that the kth basis vector from this

process is the same as the kt' eigenvector of the co-variance matrix 1, C where

Cu = ((xi - (x))(xj - (x)))

where the angled brackets indicate an ensemble average i. e. the average over all

possible sequences of values x, from any arbitrary starting position of the sequence.

'where the eigenvectors are enumerated in normal form i. e. the eigenvector corresponding to the
largest eigenvalue is first, that corresponding to the second largest is second etc.

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 19

For zero-mean data, the covariance matrix is equivalent to a simple correlation

matrix.
Now, if we have a set of weights which are the eigenvectors of the input data's

covariance matrix, C, then these weights will transmit the largest values to the out-

puts when an item of input data is in the direction of the largest correlations which

corresponds to those eigenvectors with the largest eigenvalues. Thus, if we can create

a situation in an Artificial Neural Network where one set of weights (into a particular

output neuron) converges to the first eigenvector (corresponding to the largest eigen-

value), the next set of weights converges to the second eigenvector and so on, we will
be in a position to maximally recreate at the outputs the directions with the largest

variance in the input data.

Note that representing data as coordinates using the basis found by a PCA means
that the data will have greatest variance along the first principal component, the next

greatest variance along the second, and so on. While it is strictly only true to say
that information and variance may be equated in Gaussian distributions, it is a good

rule-of-thumb that a direction with more variance contains more information than

one with less variance. PCA is the process of projecting the n-dimensional input

data onto that m-dimensional subspace (where m«n) which is spanned by those

vectors which contain most variance. Thus PCA provides a means of compressing
the data whilst retaining as much information within the data as possible. It can
be shown that if a set of input data has a covariance matrix whose eigenvalues are
{. 11,)12,

...,
)º�} and if we represent the data in coordinates on a basis spanned by

the first m eigenvectors, the loss of information due to the compression (i. e. due to

projecting the data onto the lower dimensioned subspace) is

n
E Ai (10)

i=m+1

2.3.1 Calculation of Principal Components

Since most users of Principal Components will use a standard statistical package
(and hence not care about the method of calculating the PCs) this section provides
only a short summary of the major methods of calculating Principal Components

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 20

; more detailed discussion of methods can be found in many standard statistical
texts. For computer scientists, the invaluable "Numerical Recipes in C" (Press et al.,
1988)provides an excellent introduction. We discuss 3 methods

1. The Power Method

2. The QL (or similar QR) method

3. The method of Singular Value Decomposition

The discussion below owes much to that found in Joliffe (Jolliffe, 1986).

The Power Method

The power method, though not in general use now, is included as it is the most
intuitively obvious method and was the first to be identified. We describe the simplest
form. Let us wish to find the largest eigenvalue and corresponding eigenvector of a

p*p matrix T. We choose an intitial p-vector, uo and the-_ form the sequence

U1 = Tuo

ua = Tui =T auo

U3 = Tua = T3u0

r ur = r-i =T ua

If the eigenvectors of T are a1, a2, a3i ... ap with corresponding eigenvalues a� then

for any vector u0,
P

uo = Ewia1

j=l
for scalars w1. Then, for our sequence above, we have

ui = Tuo
P

_E wjTaj
j=l P

_E wi ai ai

j=l

(11)

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 21

Similarly, we have

U,
_

Ej_1 w1A aj
w1 A Wl Arl

(al +
wa (L2)r as ++

wp (; p)r aP) wl _ T1... wi Al

-º a, as r --> oo

provided . 11 > a;, i 5A 1. Speed of convergence of the algorithm depends both on the
initial choice of uo and also on the relative magnitude of the first eigenvalue to the

second.
Various refinements of the method can be shown to enable convergence to subse-

quent eigenvectors.

The QL (or QR) Algorithms

The method of the QL algorithm depends on the fact that any (non-singular) matrix
T can be decomposed as T= QL where Q is an orthogonal matrix and L is a lower

triangular matrix. Again an iterative procedure is used: let Ti = T; then use Ti =
Q1L1 to enable calculation of Q1 and Li and then calculate T2 using T2 = L1Q1. This

is the first step in an iterative procedure which can be shown to cause convergence of
T, to a diagonal matrix comprising the eigenvalues of T in order.

The QR algorithm is very similar except that it uses the fact that any (non-

singular) matrix T can be decomposed as T= QR where Q is an orthogonal matrix

and R is an upper triangular matrix.

Singular Value Decomposition

SVD is the method which is most often used by modem statisticians in the calculation

of Principal Components due to its proven efficiency. This relies on the fact that any

n*p matrix T can be written as T= ULAT where
U is a n*r matrix such that UTU = I,.

A is a p*r matrix such that ATA =
L is a r*r diagonal matrix and r is the rank of X.

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 22

Since this is defined for a non-square matrix, it may be used for situations in which
the number of observations is lower than the number of variables (i. e. where the rank

of the sample covariance matrix is reduced). The actual method of calculation of the

singular values is very similar to the iterative methods of the QR / QL section above.

Artificial Neural Networks and PCA

Artificial Neural Networks and PCA come together in 2 ways:

1. There are some networks which use Principal Components as an aid to learning

e. g. (Huang and Huang, 1993)

2. Some networks have been explicitly designed to calculate Principal Components

It is the latter with which this thesis will deal.

2.4 Weight Decay in Hebbian Learning

As noted in Section 2.1, if there are no constraints placed on the growth of weights

under Hebbian learning, there is a tendancy for the weights to grow without bounds.

It is possible to renormalise weights after each learning epoch, however this adds an

additional operation to the network's processing.
Another possibility is to allow the weights to grow until`each reaches some limit

(Linsker, 1986b), e. g. have an upper limit of w+ and a lower limit of w- and clip the

weights when they reach either of these limits. Clearly a major disadvantage of this

is that if all weights end up at one or other of these limits' the amount of information

which can be retained in the weights is very limited.

A third possibility is to prune weights which do not seem to have importance

for the network's operation. However, this is an operation which must be performed

using non-local knowledge - typically which weights are of much smaller magnitude
than their peers.

2This will certainly happen if simple Hebbian learning is used

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 23

Hence, interest has grown in the use of decay terms embedded in the learning

rule itself (e. g. (McClelland et al., 1986), Chapter 17). Ideally such a rule should

ensure that no single weight should grow too large while keeping the total weights

on connections into a particular output neuron fairly constant. One of the simplest
forms of weight decay was developed as early as 1968 by Grossberg(Grossberg, 1968)

and was of the form:

dw, i
dt = ayixj - w+i (12)

It is clear that the weights will be stable (when dät
= 0) at the points where w; j =a<

y, x1 > where the angled brackets indicate an ensemble average. Using a similar type

of argument to that employed for simple Hebbian learning, we see that at convergence

we must have aCw = w. Thus w would have to be an eigenvector of the correlation

matrix of the input data with corresponding eigenvalue We shall be interested in

a somewhat more general result.
Grossberg went on to develop more sophisticated learning equations which use

weight decay e. g. for his instar coding, (Grossberg, 1988a) he has used
dw; l
dt = a{y, - wij}xi (13)

where the decay term is gated by the input term xi and for outstar coding
dw,,

dt = a{x; - w; j}yj I -- (14)

where the decay term is gated by the output term y,. These, while still falling some

way short of the decay in which we will be interested, show that researchers of this

time were beginning to think of both differentially weighted decay terms and allowing
the rate of decay to depend on the statistics of the data presented to the network.

2.4.1 Principal Components and Weight Decay

Miller and MacKay (K. Miller and MacKay, 1992) have provided a definitive study of
the results of a decay term on Hebbian learning. They suggest an initial distinction

between Multiplicative Constraints and Subtractive Constraints.

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 24

They define Multiplicative Constraints as those satisfying

dt W(t) = Cw(t) - -r(W)W(t)
where the decay in the weights is governed by the product of a function of the weights,

ry(w), and the weights, w(t), themselves. The decay term can be viewed as a feedback

term which limits the rate of growth of each weight in proportion to the size of the

weight itself while the first term defines the Hebbian learning itself.

Subtractive Constraints are satisfied by equations of the form

ýtw(t)
= Cw(t) - e(w)n

where the decay in the weights is governed by the product of a function of the weights

, e(w), and a constant vector, n, (which is often {1,1,
.. 1}T ý.

They prove that

" Hebb rules whose decay is governed by Multiplicative Constraints will, in cases
typical of Hebb learning, ensure that the weights will converge to a stable point

" This stable point is a multiple of the principal eigenvector of the covariance

matrix of the input data

" Hebb rules governed by Subtractive Constraints will tend to lead to saturation

of the weights at their extreme permissible values3 1a

" Under Subtractive Constraints, there is actually a fixed point within the per-

mitted hypercube of values but this is unstable and is only of interest in anti-
Hebbian learning(see below).

9 If specific limits (w+ and w') do not exist, weights under Subtractive Con-

straints will tend to increase without bound.

In summary then, Subtractive Constraints offer little that cannot be had from

simple clipping of the weights at preset upper and lower bounds. Multiplicative

'Such values may be partially determined by the eigenvalues of the covariance matrix but are
not, in general, multiples of the eigenvectors.

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 25

Constraints, however, seem to give us not just weights which are conveniently small,
but also weights which are potentially useful since

yi = wiixj = wl. x

where wi is the vector of weights into neuron y; and x is the vector of inputs. But,

Wi. X = Iw1I IXI cos 0
where Idl is the length of d and 0 is the angle between the 2 vectors.

This is maximised when the angle between the vectors is 0. Thus, if wi is the

weight into the first neuron which converges to the first Principal Component, the first

neuron will maximally transmit information along the direction of greatest correlation,
the second along the next largest, etc. In Section 2.3, we noted that these directions

were those of greatest variance which from Section 2.2, we are equating with those of

maximal information transfer through the system.
Given that there are statistical packages which find Principal Components, we

should ask why it is necessary to reinvent the wheel using Artificial Neural Networks.

There are 2 major advantages to PCA using ANNs:

1. Traditional statistical packages require us to have available prior to the calcula-

tion, a batch of examples from the distribution being investigated. While it is

possible to run the ANN models with this method -`batch mode" - ANNs are

capable of performing PCA in real-time i. e. as information from the environ-

ment becomes available we use it for learning in the network. We are, however,

really calculating the Principal Components of a sample, but since these esti-

mators can be shown to be unbiased and to have variance which tends to zero as
the number of samples increases, we are justified in equating the sample PCA

with the PCA of the distribution. The adaptive/recursive methodology used in

ANNs is particularly important if storage constraints are important.

2. Strictly, PCA is only defined for stationary distributions. However, in realistic

situations, it is often the case that we are interested in compressing data from
distributions which are a function of time; in this situation, the sample PCA

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 26

outlined above is the solution in that it tracks the moving statistics of the

distribution and provides as close to PCA as possible in the circumstances.

However, most proofs of PCA ANNs convergences require the learning rate to

converge to 0 in time and, in practice, it is the case that convergence is often

more accurate when the learning rate tends to decrease in time. This would

preclude an ANN following a distribution's statistics, an example of the well-
known trade-off between tracking capability and accuracy of convergence.

We now look at several ANN models which use weight decay with the aim of capturing
Principal Components. We will make no attempt to be exhaustive since that would
in itself require a thesis; we do however attempt to give representative samples of

current network types.

2.5 Early Models

There were a number of ANN models developed in the 1980s which used Hebbian

learning. We will investigate 2 for comparative purposes:

1. Linsker's Model

2. Oja's Single Neuron Model

2.5.1 The InfoMax Principle in Linsker's Model

Linsker(Linsker, 1986b) has developed a Hebb learning ANN model which attempts to

realise the InfoMax principle - the neural net created should transfer the maximum

amount of information possible between inputs and outputs subject to constraints

needed to inhibit unlimited growth. Linsker notes that this criterion is equivalent to

performing a Principal Component Analysis on the cell's inputs.

Although Linsker's model is a multi-layered model, it does not use a supervised
learning mechanism; he proposes that the information which reaches each layer should
be processed in a way which maximally preserves the information. That this does

not, as might be expected, lead to an identity mapping, is actually due to the effect

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 27

Figure 2: Linsker's model

of noise. Each neuron "responds to features that are statistically and information-
theoretically most significant" ((Linsker, 1988), page 116). He equates the process
with a Principal Component Analysis.

Linsker's network is shown in Figure 2. Each layer comprises a 2-dimensional

array of neurons. Each neuron in layers from the second onwards receives input from

several hundred neurons in the previous layer and sums these inputs in the usual
fashion. The region of the previous layer which sends input to a neuron is called the

receptive field of the neuron and the density of distribution of inputs from a particular

region of the previous layer is defined by a Gaussian distribution. At the final layer,

lateral connections within the layer are allowed.
The Hebb-type learning rule is

Ow; i = a(x - (x))(yi - (y)) +b

where a and b are constants.
In response to the problem of unlimited growth of the network weights, Linsker

uses a hard limit to the weight-building process i. e. the weights are not allowed to

exceed w+ nor decrease beyond w- where w- = -zv+.
Miller and MacKay (K. Miller and MacKay, 1992) have observed that Linsker's

model is based on Subtractive Constraints, i. e.
Ow; j = axsy1 - a(x)yj - a(y)(x+ - (x»»

Layer C

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 28

Both y, and <y> are functions of w, but in neither case are we multiplying these
by w itself. Therefore, as noted earlier, the weights will not tend to a multiple of the

principal eigenvector but will saturate at the bounds (w t or wsý) of their permissible
values.

Because the effects of the major eigenvectors will still be felt, there will not be a

situation where a weight will tend to w- in a direction where the principal eigenvector
has a positive correlation with the other weights. However, the directions of the weight

matrix will, in general, bear little resemblence to any eigenvector of the correlation

matrix. The model will not, in general, enable maximal information transfer through

the system.

2.5.2 Oja's One Neuron Model

Oja (Oja, 1982) proposed a model which extracts the largest principal component
from the input data. He suggested a single output neuron which sums the inputs in

the usual fashion

y=1WiXi

i=l
His variation on the Hebb rule, though, is

Ow; = a(x1y - y2w1)
ý. .

Note that this is a rule defined by Multiplicative Constraints (y2 = 7(w)) and

so will converge to the principal eigenvector of the input covariance matrix. The

weight decay term has the simultaneous effect of making E w; tend towards 1 i. e. the

weights are normalised.
However, this rule will find only the first eigenvector (that direction corresponding

to the largest eigenvalue) of the data. It is not sufficient to simply throw clusters of

neurons at the data since all will find the same (first) Principal Component; in order
to find other PCs, there must be some interaction between the neurons. Other rules

which find other principal components have been identified by subsequent research,

an example of which is shown in the next Section.

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 29

2.6 Recent PCA Models

We will consider 3 of the most popular PCA models. It is of interest to begin with
the development of Oja's models over recent years.

2.6.1 Oja's Subspace Algorithm

The One Neuron network reviewed in the last section is capable of finding only the
first Principal Component. While it is possible to use this network iteratively by

creating a new neuron and allowing it to learn on the data provided by the residuals
left by subtracting out previous Principal Components, this involves several extra

stages of processing for each new neuron.
Therefore Oja's(Oja, 1989) Subspace Algorithm provided a major step forward.

The network has N output neurons each of which learns using a Hebb type rule with
weight decay. Note however that it does not guarantee to find the actual directions of
the Principal Components; the weights do however converge to an orthonormal basis

of the Principal Component Space. We will call the space spanned by this basis the
Principal Subspace. The learning rule is

Ow;, = a(x+yi - yi ýWikyk)
k

(15)

which has been shown to force the weights to converge to -a basis of the Principal
Subspace 4.

One advantage of this model compared with some other networks (e. g. (Sanger,

1990)) is that it is completely homogeneous i. e. the operations carried out at each
neuron are identical.

The major disadvantage of this algorithm is that it finds only the Principal Sub-

space of the eigenvectors not the actual eigenvectors themselves.
4In this case y(wq) = yy . However, the additional weight decay constraints from the other

outputs y' EJ#k w; kyk force decay in the directions of other eigenvectors. Therefore the total of the
decay parameters only forces weight convergence to the subspace

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 30

2.6.2 Oja's Weighted Subspace Algorithm

The final stage is the creation of algorithms which find the actual Principal Compo-

nents of the input data. In 1992, Oja et al recognised the importance of introducing

asymmetry into the weight decay process in order to force weights to converge to the

Principal Components. The algorithm is defined by the equations

n
yj = wijxi

i=1 1

where a Hebb-type rule with weight decay modifies the weights according to
N

Aw; i = 77yilx+ - ei E ykwki
k=1

Ensuring that 01 < 92 < 03 < ... allows the neuron whose weight decays propor-
tional to 01 (i. e. whose weight decays least quickly) to learn the principal values

of the correlation in the input data. That is, this neuron will respond maximally to

directions parallel to the principal eigenvector, i. e. to patterns closest to the main

correlations within the data. The neuron whose weight decays proportional to 62

cannot compete with the first but it is in a better position than all of the others and

so can learn the next largest chunk of the correlation, and so on.
It can be shown that the weight vectors will converge to the principal eigenvectors

in the order of their eigenvalues. The algorithm clearly satisfies Miller and Mackay's

definition of Multiplicative Constraints with -y(w;) = B; Ek ykwkiXi"

2.6.3 Sanger's Generalized Hebbian Algorithm

Sanger (Sanger, 1990) has developed a different algorithm (which he calls the "Gen-

eralized Hebbian Algorithm") which also finds the actual Principal Components. He

also introduces asymmetry in the decay term of his learning rule:
i

Aw, j = a(xjyj -yi
LWikyk)

k-1
(is)

Note that the crucial difference between this rule and Oja's Subspace Algorithm is

that the decay term for the weights into the jth neuron is a weighted sum of the first

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 31

j neurons' activations. Sanger's algorithm can be viewed as a repeated application of
Oja's One Neuron Algorithm by writing it as

j-1
Iwij = a([xiyj - yj

E
wikykl - yjwi7)

k=1
(17)

I': '-- see that the central tcrm comprises the residuals after the first j-1 Principal Com-

ponents have been found, and therefore the rule is performing the equivalent of One

Neuron learning on subsequent residual spaces. However, note that the asymme-
try which is necessary to ensure convergence to the actual Principal Components, is

bought at the expense of requiring the jth neuron to `know' that it is the jth neuron
by subtracting only j terms in its decay. It is Sanger's contention that all true PCA

rules are based on some measure of deflation such as shown in this rule.

2.7 Principal Components and Anti-Hebbian Learn-

ing

All the ANNs we have so far met have been feedforward networks - activation has been

propagated only in one direction. However, many real biological networks are char-

acterised by a plethora of recurrent connections. This has led to increasing interest

in networks which, while still strongly directional, allow activation to be transmitted

in more than one direction i. e. either laterally or in the 'reverse direction from the

usual flow of activation. One interesting idea is to associate this change in direction

of motion of activation with a minor modification to the usual Hebbian learning rule

called Anti-Hebbian learning (a comprehensive analysis of Anti-Hebbian learning is

given in (Palmieri et al., 1993)).

If inputs to a neural net are correlated, then each contains information about the

other. In information theoretical terms, there is redundancy in the inputs (I(z; y) >0
)"

Anti-Hebbian learning is designed to decorrelate input values. The intuitive idea
behind the process is that more information can be passed through a network when
the nodes of the network are all dealing with different data. The less correlated the

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 32

weights

yl

-qp Inputs

Anti-Hebbian
Weights

Figure 3: Anti-Hebbian Weights
Negative decorrelating weights between neurons in the same layer are learned using
an "anti-Hebbian" learning rule

neurons' responses, the less redundancy is in the data transfer. The aim of producing
decorrelated responses, however, in order to maximise information transfer must be

modified if the outputs are subject to noise: intuitively, the more noise in the network

the more correlation is necessary to optimise information transfer((Plumbley, 1991)).

If 2 neurons respond to the same signal, there is a measure of correlation between

them and this is used to affect their responses to future similar data. Anti-Hebbian

learning is sometimes known as lateral inhibition as this type of learning is generally

used between members of the same layer and not between members of different layers.

The basic model is defined by

Ow; J = -a(y, yj)

Therefore, if initially y; and y; are highly correlated then the weights between

them will grow to a large negative value and each will tend to turn the other off.
It is clear that there is no need for weight decay terms or limits on anti-Hebbian

weights as they are automatically self-limiting, provided decorrelation can be attained.

((yi. y,) -' 0) = (Ow;, --, 0) (18)

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 33

i. e. weight change stops when the outputs are decorrelated. Success in decorre-

lating the outputs results in weights being stabilised.
It has been shown (Rubner and Tavan, 1989) that not only does anti-Hebbian

learning force convergence in the particular case of a deflationary algorithm but that

the lateral connections do indeed vanish.
The method is valid for all deflationary networks.
Several authors have developed Principal Component models using a mixture of

one of the above PCA methods (often Oja's One Neuron Rule) and Anti-Hebbian

weights between the output neurons e. g. (Brause, 1993b; Rubner and Schulten, 1990;

Brause, 1993a; Palmieri, 1993; White, 1993).

We first note a similarity between the aims of PCA and anti-Hebbian learning: the

aim of anti-Hebbian learning is to decorrelate neurons. If a set of neurons performs a
Principal Component Analysis, their weights form an orthogonal basis of the space of

principal eigenvectors. Thus, both methods perform a decorrelation of the neurons'

responses.
Further, in information theoretic terms, decorrelation ensures that the maximal

amount of information possible for a particular number of output neurons is trans-

ferred through the system. We will consider only noise-free information-transfer since
if there is some noise in the system, some duplication of information may be beneficial

to optimal information transfer.

2.7.1 The Interneuron Model

Plumbley (Plumbley, 1991) has developed a model of Hebb learning which is based on
the minimisation of information loss throughout the system. However, for Gaussian

signals there is no difference between this principle and InfoMax.
Since there are no known biological examples of neurons which both excite and

inhibit other neurons of the same type (Dale's Law), Plumbley postulates a layer of
interneurons which act as decorrelating neurons for the output neurons.

He develops these interneurons in 2 ways, suggesting that he is giving 2 different

views of the same network. However, we will see that these interneurons have different

capabilities depending on which network is used.

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 34

Figure 4: The Interneuron Model

In both networks the interneurons are developed as anti-Hebbian neurons with the

additional property of trying to optimise information transfer within limited power

constraints. Plumbley notes that the best information transfer rate will be found

when the outputs are decorrelated; however, he also tries to equalise the variance of
the outputs to ensure that they are then carrying equal information.

Figure 4 shows the form of the first model.
The dynamics of the network are described by

Z=VTY

where z3 is the activation of the interneuron

yi is the output from the network
and V1 is the weight joining the ith ouput neuron to the jth interneuron.

This makes the output response

y=x-Vz

Plumbley concentrates on the information preserving properties of the forward
transformation between inputs and outputs and shows

Y= (I + VVT)-ix

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 35

Plumbley uses a weight decay mechanism in his learning:

Avij = 1I (Yixj
- i14Jii)

This is equivalent to a learning rule in the limit of

d
T v(t) = (C - ryI)v

A solution to this equation is

v(t) =A exp(C - ryI)t

Therefore, the weights will increase without limit in directions where the eigen-

value of the correlation matrix exceeds ry . Thus the weights will never tend to a

multiple of the principle eigenvector and no selectivity in information transfer will
be achieved. Note that there are fixed points on the eigenvectors but these are not

stable.
The crucial difference between this model and Oja's model is that in Oja's model

the decay term is a function of the weights times the weights. In this model, the

decay term is not strong enough to force the required convergence.
Equally, the anti-Hebbian learning rule does not force convergence to a set of

decorrelated outputs.

AV{j = 77(y{Zj - Avij)
1' `

does not mean that

(Ov+i = 0) = ((yiZj) = 0).

However, in taking "another view of the skew-symmetric network", Plumley uses
the interneurons as the outputs to the network.

In this model, we have forward excitations U and backward excitations V where

Z=UTY

y=x-Vz

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 36

i. e.

z= UT(I + VUT)'ix

where the weight update is done using the same update rule Ov; i = 77(yiZj - Av; j)
Since the output is from the interneurons we are interested in the forward trans-

form from the x values to the z values.

yi = Xi -
>'Lkixk

k

Now, Duji = rl (y. zi - Au; i)

= i«Xs -> Ukizk)Zj - Au;. i)
k

Plumbley states that the last term is the weight decay term. In fact, as can be

seen from the above equations, the second term is the important weight decay term,
being a form of Multiplicative Constraint. There is an implicit weight decay built

into the recurrent architecture -a fact which we will use in the next Chapter.

However, if we consider the network as a transformation from the x values to the

y values we do not find the same implicit weight decay term.

zi = u'jyj

Euij(xj
-

Eukjzk)

jk

EUijXj
-E Zk\

J
UijUkj

jkj

And so,

Du; i = rl (yszi - i1 u; i

= rl (yº(E ui. ixi -EZ (> u1iuki))- Au; i)
iki

Using this form, it is hard to recognise the learning rule as a Hebb rule, let alone

a decaying Hebb rule of a particular type.

However, as we shall see in the next chapter, the negative feedback in Plumbley's

first network is an extremely valuable tool.

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 37

: 'ztAk = FY

Figure 5: The System Model of the Novelty Filter

2.8 Negative Feedback in Neural Networks

Plumbley's model may be viewed as a negative feedback ANN. In this section, we

consider other ANNs which have used negative feedback. We review separately those

models where the dynamics of the network settling to an attractor state have been

important to the value of the state reached and those models which have considered

only the transfer of activation as a single event.

2.8.1 Static Models

The role of negative feedback in static models has most often been as the mechanism
for competition (see e. g. (Carpenter, 1989; Kohonen, 1984) for, summaries) often based

on biological models of activation transfer e. g. (von der Malsburg, 1973) and sometimes
based on psychological models e. g. (Cohen et al., 1988; Grossberg and Schmajuk,

1989; Grossberg, 1984)

An interesting early model was proposed by Kohonen (Kohonen, 1984) who uses

negative feedback in a number of models, the most famous of which (at least of the

simple models) is the so-called "novelty filter" (see Figure 5). Here we have an input

vector x which generates feedback gain by the vector of weights, M. Each element of
M is adapted using anti-Hebbian learning:

dm; 5 ,,
dt - -ax x, (19)

where z=x+ Mx (20)

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 38

)

(a) Feeedforward Inhibition (b) Feedback Inhibition

Figure 6: Two models of inhibition both of which yield on-centre, off-surround net-
works: (a) Feedforward inhibition (b) feedback inhibition

= (I - M)-lx = Fx (21)

"It is tentatively assumed (I - M)-1 always exists. " Kohonen shows that, under
fairly general conditions on the sequence of x and the initial conditions of the matrix
M, the values of F always converge to a projection matrix under which the output
x approaches zero although F need not converge to the zero matrix i. e. F converges
to a mapping whose kernel ((Lipschutz, 1968), page 125) is the subspace spanned by

the vectors x. Thus any new input vector xi will cause an output which is solely a
function of the novel features in xl.

2.8.2 Dynamic Models

The negative feedback of activation has most often been used in those models of Ar-

tificial Neural Networks which are based on a dynamic settling of activation. These

are generally called Hopfield nets(Hertz et al., 1992) after John Hopfield (Hopfield,

1982) who performed an early analysis of their properties though earlier work on
their properties was performed by other researchers e. g. following Grossberg (Gross-

berg, 1988b), we note (see Figure 6) that there are 2 types of on-center off surround

networks possible using inhibition. It is possible to generate

CHAPTER 2. PRINCIPAL COMPONENTS AND ANNS 39

" Feedforward inhibition: the activation transfer rule is

Cýts
-Ay +(B-1yi)xi-yiEzk

kýi

(22)

A, B constants and x; is the input to the ith neuron. Grossberg points out that,

if the activation is allowed to settle, this model has a stationary point (dt = 0)

when

Xi B Ek xk
yi =

Ekxk A+EkXk
(23)

Possibly of most interest is its self normalisation property, in that the total

activity

BEkxk > Yk =A+ Ek x, 6

is a constant.

(24)

" Feedback inhibition: we use here Grossberg's term though we will in future

make a distinction between feedback inhibition between layers (as in Plumb-

ley's network) and lateral inhibition between neurons in the same layer. Here

Grossberg discusses the activation passing equation
dyi

_ -Atli + (B
- yi) [xi +

,f
(yi)]

- yi[Ji +
,f

(yk)] (25)
dt

k#i

where J_ Ekg{ xk. The most interesting properties from this model develop

when the activation function, f(), is a sigmoid which has the property that it

forms a winner take-all network which suppresses noise, and quantises the total

activity. Again these properties arise from an analysis of the dynamic properties

of the negative feedback acting on the network activations.

For the remainder of this thesis we will be interested in negative feedback of
activation in static models. We will use Plumbley's model with a simplified learning

rule and investigate its emergent properties.

Chapter 3

The Interneuron Network

3.1 Introduction

In this chapter' we investigate more closely a network based on Plumbley's network
(Chapter 2). We will, in fact, develop an extremely simple and effective Principal

Component network which needs no weight decay in its learning rule: because of the

negative feedback of activation, we can use simple Hebbian learning which will not

cause instability in the weight growth process and which moreover causes the weights

to converge to the Principal Components of the input data.

3.1.1 The Interneuron Network
º, '"

For convenience we show again Plumbley's network in Figure 7. We recall from

the previous chapter that Plumbley uses Hebbian learning with weight decay in his

network. We retain the activation-transfer rules of his network but use no weight
decay in the learning term.

We will show that the decay mechanism is unnecessary - that the architecture

of the network alone is sufficient to guarantee convergence to the relevant principal

subspace.
1Some of this work has already appeared in (Fyfe, 1993c; Fyfe, 1993d).

40

CHAPTER 3. THE INTERNEURON NETWORK

Figure 7: The Interneuron Model

The rules governing the organisation of the network are

y=x-Wz

Z=WTy

OW=77YZT

41

where x is the vector of inputs, z is the vector of activations at the interneurons and W

is the weights joining the two layers of neurons. We use y to`represent the activation

at the summing neurons when the interneurons' activations have been returned.
There is no explicit weight decay, normalisation or clipping of weights in the model.

The subtraction of the weighted sum of the interneuron values acts like anti-Hebbian
learning. We will consider the network as a transformation from inputs x to interneu-

ron outputs z; by considering the effects of these rules on individual neurons, we can

quickly show that the resultant network is equivalent to Oja's Subspace Algorithm.

We have

Yi = xi wkizk
k

zi = 'w; i yi

CHAPTER 3. THE INTERNEURON NETWORK 42

Therefore,

Ow; j = iy+zi

_ %(x: -
Eukizk)zj

k

_ 1](X. x; - z, E uk: zk) (26)
k

This last formulation of the learning rule (26) is exactly the learning rule for the

Subspace Algorithm(Oja, 1989), Equation (15). A more formal analysis is given in

Section 3.2

In order to compare this network with Oja's Subspace Algorithm, simulations

were carried out on similar dataato that which Oja et al(Oja et al., 1992a) used
to compare the Subspace and Weighted Subspace Algorithms. The results shown in

Table 1 are from a network with 5 inputs each of zero mean random Gaussians, where

xi's variance is largest, x2's variance is next largest, and so on.
Therefore, the largest eigenvalue of the input data's covariance matrix comes from

the first input, xi, the second largest comes from x2 and so on. The advantage of

using such data is that it is easy to identify the principal eigenvectors (and hence

the principal subspace). There are 3 interneurons in the network and it can be seen
that the 3-dimensional subspace corresponding to the first 3 principal components
has been identified by the weights. There is very little of each vector outside the

principal subspace i. e. in directions 4 and 5. The left matrix represents the results
from the interneuron network, the right shows Oja's results.

The lower (WT W) section shows that the weights form an orthonormal basis of
the space and the upper (W) section shows that this space is almost entirely defined

by the first 3 eigenvectors. The interneuron network also maintains the advantages

of homogeneity and locality of computation (indeed, it is difficult to imagine a com-

putationally simpler model).
Note that while we report, in general, on simulations run on this very special type

of input data, all the networks developed in this thesis (other than those specifically
identified in Chapter 5) perform excellently on all types of data.

'I did not have the value of the variances Oja used and therefore used variances of 5,4,3,2,1

CHAPTER 3. THE INTERNEURON NETWORK 43

W w
Interneuron 1 Interneuron 2 Interneuron 3 Output 1 Output 2 Output 3

0.249 0.789 0.561 0.207 -0.830 0.517
0.967 -0.234 -0.100 -0.122 0.503 0.856

-0.052 -0.568 0.821 0.970 0.241 -0.003
0.001 0.002 0.016 -0.001 0.001 0.001

-0.001 0.009 0.005 0.000 0.000 -0.001
WW WTW
1.001 0.000 0.000 1.000 0.000 0.000
0.000 1.000 0.000 0.000 1.000 0.000
0.000 0.000 1.000 0.000 0.000 1.000

Table 1: Results from the simulated network and the reported results from Oja et al.
The left matrix represents the results from the interneuron network, the right from
Oja's Subspace Algorithm. Thus the first column represents the weights from the
input neurons to the first interneuron (or alternatively the first row represents the

weights from the first input neuron to the interneurons). Note that the weights are
very small outside the principal subspace and that the weights form an orthonormal
basis of this space. Weights above 0.1 are shown in bold font.

3.1.2 Algorithm for PCA

While the above networks may be adequate for biological information processors, a

more precise engineering requirement is that of finding the actual Principal Compo-

nents.
Recall that Oja et al(0ja et al., 1992a) amended the Subspace Algorithm by

proposing the following modification to the learning rule
N

AWij = 112Ji(x+ - ei EYkwki)

k=1

Ensuring that 0<0< 03 < ... allows the neuron whose weight decays pro-

portional to 61 (i. e. whose weight decays least quickly) to capture the principal

component of the variance. The second captures the next largest component, and so

on. The crucial point is the introduction of asymmetry into the learning algorithm.
This algorithm is local and homogeneous in that each neuron knows only its own

value of 8;. Analysis of the interneuron learning rule shows that, to simply insert a

parameter, B;, would require computation at the level of the synapse. Whilst this may

CHAPTER 3. THE INTERNEURON NETWORK 44

be biologically feasible and algorithmically simple to implement, a different algorithm
is developed here which uses the fact that the proposed network already incorporates

subtraction of values.
The algorithm is: the system is created with 1 interneuron; this interneuron finds

the first principal component using the above learning rule. It then loses its plasticity
i. e. its weights will not subsequently change. We then create a second interneuron.

Since the first neuron has found and subtracted the first principal component, the

second neuron will find the largest remaining principal component. It too now loses its

plasticity. Then the third interneuron is created etc.. Therefore, we have introduced

our asymmetry in the time dimension; note that whereas to do so with e. g. Oja's

Single Neuron Network would have required the introduction of an extra mechanism -
that of subtracting the projection of the data onto the subspace already found - we do

not require this here as the network automatically finds and subtracts this subspace.
To compare the results with Oja's Weighted Subspace Algorithm, we repeated

the above experiment with the algorithm. Oja's simulation was carried out for 40000

iterations. The interneuron simulation allowed each interneuron to learn in 13000

iterations. The first interneuron learned during the first 13000 iterations, the second
learned during the next 13000 and the third learned during the last 13000 iterations.

The results are shown in Table 2; the left set is from the interneuron network, the

right from Oja(1992).

Clearly both methods find the Principal eigenvectors. We note that the interneu-

ron results have the advantage of equally weighting each eigenvector.
The algorithm retains the advantages of homogeneity and locality of computation.

A more analytical proof of the convergence algorithm is developed in the next section.

3.2 An Analytical Investigation of Convergence

This section provides an analytical investigation of the algorithm which causes the

interneuron weights to converge to the principal components of the input data's co-

variance matrix.

CHAPTER 3. THE INTERNEURON NETWORK 45

W w
1.000 -0.036 -0.008 1.054 -0.002 -0.002
0.036 0.999 -0.018 0.002 1.000 0.001
0.010 0.018 1.000 0.003 -0.002 0.954
-0.002 -0.002 0.016 -0.001 0.001 -0.002
0.010 0.003 0.010 0.001 -0.001 0.000
WW WTW

1.001 0.000 0.000 1.111 0.000 0.000
0.000 1.000 0.000 0.000 1.000 0.000
0.000 0.000 1.000 0.000 0.000 0.909

Table 2: Results from the interneuron network (left) and from Oja (right).
Both methods find the principal eigenvectors of the input data covariance matrix. The
interneuron algorithm has the advantage that the each vector is equally weighted.

The proof of the algorithm follows closely the methods developed by Oja and
Karhunen (e. g. (Oja and Karhunen, 1985)) over the last decade; it is in 3 parts each

of which refers to the interneuron learning rules:

y=x-Wz

Z=WTy=WTX

OW=11yz

In the first section we show that the weights of a single interneuron will converge to

an eigenvector of the co-variance matrix; in the second, we show that these weights
in fact converge to the principal eigenvector; in the third, we show that the algorithm

ensures that the it' interneuron's weights converge to the ith eigenvector.

Theorem 1 The weights, W, of a single interneuron with the above learning rules

converges to an eigenvector of the input data co-variance matrix.

Let w; be the weight of the connection between y; and z.
If the weights of a single interneuron converges to a limit, the expected weight

change over a sufficiently long time will tend to zero. Given some assumptions3,
'Which will be discussed later

CHAPTER 3. THE INTERNEURON NETWORK 46

particularly regarding the learning rate 77 and the nature of the distribution of x, and

using (x) to indicate the expected value of x with respect to the distribution from

which it is drawn,

(Ow,) =0b (rly; z) =0

b (y; z) =0
((xi - w; z)z) =0
((x

- w{ E wkxk) E
wjxz) =0

kl
(E WjXlCi - 'uli

E
WkXkZlwl) =0

(27)

l ki

b EWlcli
- wi EWkCkjwl =0 (28)

1 ki

where C;, is that element of the co-variance matrix showing the co-variance between

the ith and jth elements of the input data x. If the weights of the interneuron are to

converge, then the above must be true for all values of w;. Therefore the above may
be written in matrix notation as

(sw) =0b Cw - (wTCw)w =0

ýi Cw = (wTCw)w

Now it is a standard result that the co-variance matrix C is positive-semidefinite; and
hence

WTcW =>0

where A is a non-negative real number. Hence,

Cw=Aw

Therefore, w converges to an eigenvector of C.

Theorem 2 The weights, W, of a single interneuron with the above learning rules
converges to the eigenvector with the largest eigenvalue of the input data co-variance
matrix.

CHAPTER 3. THE INTERNEURON NETWORK 47

Proof

The proof is by contradiction.
Assume that w converges to an eigenvector c` of C with corresponding eigenvalue
a'. Then, we will show that if there exists an eigenvector cl of C with corresponding

eigenvalue A' > a' a small perturbation in the direction of cl will cause w to be

unstable i. e. convergence will not take place.
Let w have converged to a direction close to c' but to have a component e in the
direction of c1. Then,

(Ow) = Cw - (wTCw)w

= C(C* + 6) -
((C"T + ET)C(C" , i' 6))(C* + 6)

= CC* + CE -
(C*TCC*)C*

_
(C*TCC*)e

-
(C*TCE)C*

-
(ETCC*)C* + O(E2)

= A*C* + AIE
-

A*C*
-.

*E
- C*TC(EC") -

(CE)TC"C* + Q(E2)

= A'E
-

i1*E
-

(A, ETC*)C* + O(E2)

= ale-A*f+O(0)

where we have used the facts that CT =C and that its eigenvectors are mutually

orthogonal.
So, ignoring terms of O(e2), if Al > a`

,a perturbation in the direction of c1 will

always be unstable. Therefore, c' is the principal eigenvector corresponding to the

largest eigenvalue of the co-variance matrix. 4.. ,

Theorem 3 If interneuron i is installed in the network at time t;, where ti < t2 <

t3 < ..., and if the weights into the first i-1 interneurons have already converged to the

first i-1 eigenvectors, the weights of the ith interneuron will converge approximately
to the ith eigenvector of the input data's covariance matrix, where such eigenvectors

are ordered such that the eigenvalue of vector 1 is the largest, that of vector 2 is next
largest and so on.

Proof

Let interneurons 1,..., M-1 be already connected to the network. We assume that
their weights have already converged to the subspace of the first M-1 eigenvectors, and

CHAPTER 3. THE INTERNEURON NETWORK 48

show that the weights of interneuron M (where M> 1) will converge approximately"
to the Mb' eigenvector of the co-variance matrix C.

In this proof, let Wp be the weight vector associated with the pth interneuron.

Then,

(0WM)/77 =< YZM)

= «(x - Wz)zM)
M

= ((x
-Z zkWk)ZM)

k=1
M-1

= `((x -E zkWk - ZMWM)zM)
k=1

M-1

= «x
-E

(WkTx)Wk)
- ZMWM)ZM)

k=1

_ «xM_1
- zMWM)zM)

where xM_1 is the projection of x onto the subspace of possible values orthogonal to

the first M-1 eigenvectors.
Consider the application of this equivalence to the ith component of Wm, i. e. WM;,

the weight on the connection between y; and zM. Then, denoting the it' component

of xM_1 by p1,

(OWMi) =0 ((Pi
- ZMWMi)ZM) =0

((Pi
- WMi E WMkxk) WMIXI) =0

kl
WMIXlpi -

WMi WMkxkXIWM1) _0
(29)

l ki

We note the similarity between this equation and Equation (27) in Theorem 1. For

values of xI within the subspace xM_1, the first term of Equation (29) acts exactly
like plp; and so the remainder of Theorems 1 and 2 hold for values of x restricted to

this subspace. For values of x outwith this subspace, the first term is 0 (xi is in the

subspace whose basis is the first M-1 eigenvectors, p; is in the orthogonal projection
4Approximately, since the proof really requires an infinite convergence time for each weight vector.

For a stationary source, x, the finite time intervals used are close to perfect but we can only claim
'approximately' here

CHAPTER 3. THE INTERNEURON NETWORK 49

of this space) and the second term causes the weights to decrease to zero (recall that

wTCw =A is a scalar).
Therefore we can apply Theorems 1 and 2 to this subspace to show that the

Mth interneuron weights will converge to the eigenvector corresponding to the largest

eigenvalue of this subspace. This eigenvector has eigenvalue smaller than those of
the M-1 eigenvectors already allocated to weight vectors W1, ... WM_1 but is larger

than any other. Hence this eigenvalue is the Mth largest eigenvalue of the covariance

matrix of the original input vector, x.
Therefore, if the result is true for M-1 interneurons, it is true for M interneurons.

We know (Theorem 1) that it is true for 1 interneuron. Therefore, the algorithm will
force the weights to converge as required.

The Assumptions in the Proofs of Convergence

The proof given above is based on a proof developed by Oja and Karhunen (Oja

and Karhunen, 1985) and by Oja et al (Oja et al., 1992a; Oja et al., 1992b) for

their feedforward networks. The major difficulty with the proof is the step from the

stochastic equations (27) which are used in an empirical algorithm to the ordinary
differential equations (28) which are solvable as seen above.

Denoting by Ck the covariance matrix of the input data after k presentations of
input vectors from the distribution, the proof given in (Oja and Karhunen, 1985)

makes 4 critical assumptions:

1. Each Ck is almost surely bounded and symmetric and the Ch are mutually
statistically independent with (Ck) =C for all k.

2. The eigenvalues of C have unit multiplicity

3.77k? O, E17 <OO, E7ik=oo

4. Each Ck has a probability density which is bounded away from zero uniformly
in k in some neighbourhood of C in R"-*-

The first constraint is easiest to satisfy since by taking k large enough we can sam-
ple the distribution sufficiently often so that the condition is almost surely satisfied.

CHAPTER 3. THE INTERNEURON NETWORK 50

The second one cannot be guaranteed for every distribution, however not satisfying
it will only result in (a pair of) neurons converging to the subspace which is spanned
by the eigenvectors with equal eigenvalues.

The third one is the difficult one to satisfy in any particular stochastic realisation

of the algorithm: we are constraining the learning rate in a way which will not be

practicable to sustain in any actual simulation - not only must the learning rate

converge to zero (which is easy to manage) but it must do so sufficiently slowly that

Ej raj is infinite. This leads to a long simulation! In practice, it has been found that

slow annealing of the learning rate will, under a wide range of annealing schedules,

cause the weights to converge to the principal components.
Another way to regard the problem is to say that we have not proved convergence;

we have only proved that if the weights converge, they do so in a specific direction.

We know also that if the weights reach this direction, they will be stable there but we
have not proved that, in any single simulation, they must reach this direction. The

proof that they would so converge with probability one uses the fact that each point
in the neighbourhood of the attractor is sampled infinitely often.

3.2.1 Alternative Derivations

Derivation from Constrained Variance Maximisation

Attempts have been made to derive the above algorithm `from the criterion that

we wish to maximise the function J(W) =E i((wi. x)2lwi) which is equal to the

variance of the z-values (for zero-mean data). Thus the underlying concept is the max-
imisation of the information available at the interneurons. In order to keep solutions
finite we add the constraint that the weights wi must be orthonormal. We use La-

grange multipliers to include this constraint in the function to give

1M1MM
(30) J(W) =2 E((Wi"x)"wi) +2 EEA'j(w'-wi. - 5")

where Sj=1 if i=j, S;? =0 if i0j. In matrix terms, we may write this as

J(W) = 1T2(WXXTWIW) +
1tr[A(WTW

- I] (31)

CHAPTER 3. THE INTERNEURON NETWORK 51

where. tr[] denotes the trace of the matrix, 1 is the vector of is, A is the matrix whose

elements are aq, and I is the identity matrix.
Taking derivatives of 30 with respect to the weight vector, w;, we get

Ö. T(w)

_
(xxT

M
(32) wslw{) +E At.

7w, 7 aw; j=l
Since at an optimum, the derivatives must vanish for all i i. e.

ai(W)
_ (XXTWIW) + WA =0 (33)

aw
Differentiation of J(W) with respect to the Lagrange multipliers and again finding

the point where the derivatives vanish gives

WTW=I

Premultiplying (33) by WT and substituting 34 gives

A=_WT<XXTWIWI

Using this value of A in (33) gives

OJ(W)
_ [I - WWT](XXTwIW)

aw
= [I-WWT]CW

= CW
-

WWTCW
It

..

(34)

(35)

(36)

As we have seen above, this equation completely defines the learning of the interneu-

ron network. Therefore the interneuron network may be thought of as maximising the

value of the function E; 11((wi. x)2Iw;) under the stated orthonormality constraints.
However this derivation, too, is not secure because we have used the converged

value of A during the convergence process. Indeed, Baldi and Hornik (Baldi and
Hornik, 1988) have shown that this algorithm is not derivable from such a gradient-
descent procedure. The effect of the approximation is discussed in more detail in a

slightly more general setting in Chapter 6.

CHAPTER 3. THE INTERNEURON NETWORK 52

Derivation from Error Minimisation

Attempts have also been made to derive the algorithm by minimising the error, e, at

y after the interneuron activation is returned.
We wish to minimise

J(W) =
11T(e2IW)

=
11T((X

- WWTX)2IW) (37)
22

where 1 is the vector of is.

Consider the jt' component of the reconstruction error, e3.
M

ei = xi - wiiw;. x (38)
i. l

where, as before, wi is the vector of weights into the its` interneuron. Then we wish
to find stationary point(s) of the derivative of J(W) i. e. where

OJ(W)
_ej_O

(39)
ÖWm

j=1
' awm

Now,

i9ej_
-wmjx- (WM. X)[0, U1 .. 113 U' .. U]T (40)

ÖWm

where the last vector has a1 in only the jth position. Then,
M OJ(w) r

öWm =- Lý(Xj -E wijW;. X). {wm, X + Wm. X[U, 09..
'

1,0.., U]T)}

j=1 i=1 3, "

= -(X - WTWX)Wm. X -
(X

- WT. WX)(Wm. X)1T (41)

This can be used in the usual way in the gradient descent algorithm

ow «-
eia(W)w

to give a learning rule

OW = xTx(I - WTW)W + (x - WTWx)(Wx)T (42)

Now while this last equation is not quite the algorithm we wished, Xu (Xu, 1993)

has shown that "on the average", the scalar product of our algorithm and the above
learning rule is positive. Thus "on the average", the interneuron network can be

thought of as minimising the residuals at y.

CHAPTER 3. THE INTERNEURON NETWORK 53

Derivation from Statistical Mechanics

Recently, several authors have investigated PCA-type neural networks from statis-
tical mechanics considerations e. g. (Prugel-Bennett and Shapiro, 1993; Biehl and
Mietzner, 1993; Biehl, 1993; Shapiro and Prugel-Bennett, 1992) in an attempt to

find an absolutely secure derivation of convergence. We will not consider such inves-

tigations in detail but merely note that such derivations always rely on arguments

using infinity - in their case, infinitely large networks. Such derivations then may be

analytically sound but the step of equating them with actual implementations must

remain suspect.
In summary, then, we have analytically derived the PCA properties of the network

but have had to rely on arguments which use approximations at some point. This

leaves the possibility that some particular network - operating in the real world under

constraints of finiteness (of time, magnitude etc.) - will not converge from a specific

set of initial conditions while being trained on a particular set of data. In practice,
this does not seem to be a problem - we have yet to find -. case where a network did

not converge for any data-set.

3.3 Network Properties

In this section, we investigate empirically some of the emergent properties of the

interneuron network. We view these properties as emergent properties as we do

not believe that they could be expected a priori to exist ,
i. e. without a detailed

investigation of the network.

3.3.1 Plasticity and Continuity

The results reported in the last section were based on a model which suggested that

only a new interneuron could learn. The underlying assumptions are

" an interneuron can only learn during a special period of its existence

" only one interneuron can learn at any instant in time

CHAPTER 3. THE INTERNEURON NETWORK 54

Disjoint Learner Model Contin. Learner Model
w w

1.000 -0.036 -0.008 1.000 -0.015 -0.014
0.036 0.999 -0.018 0.014 0.999 0.045
0.010 0.018 1.000 -0.015 -0.046 0.999

-0.002 -0.002 0.016 -0.015 0.006 -0.021
0.010 0.003 0.010 0.003 -0.007 0.010
WTW WTW
1.001 0.000 0.000 1.000 0.000 0.000
0.000 1.000 0.000 0.000 1.000 0.000
0.000 0.000 1.000 0.000 0.000 1.000

Table 3: Results from the interneuron network in which each interneuron stopped
learning as a new one was created(left) and from the network in which each interneu-
ron continued to learn (right).

These are clearly not good properties for biological learners to have; we do not

wish to have new learning remove the hard-won gains already achieved from previous
learning; but equally, we do not wish to have to specify in advance how much time

each neuron will have to learn. Further, in setting a specific time period during which
learning will take place, we are providing the system with a form of meta information.

To test the effects of allowing interneurons to continue to learn even after other

new interneurons were created, two more simulations were carried out. In the first,

the interneurons lost their plasticity gradually and there was an overlap in the times

when two or more interneurons were learning; in the second, interneurons kept their

plasticity throughout.

Thus, in this last model, the first interneuron learns from its creation till the end

of the simulation, the second interneuron learns from its creation at iteration 13000

till the end of the simulation and the last interneuron learns from iteration 26000 till

the end of simulation.
Only the results of the last model are reported, as the conclusions are identical:

we do not have to postulate that interneuron weights lose their plasticity. The left

matrix of Table 3 repeats the results from the interneuron model described in the

previous section; the results from interneurons which continue learning are shown on
the right. The table shows that the interneurons can retain their plasticity without

CHAPTER 3. THE INTERNEURON NETWORK 55

there being major loss of precision in finding the actual principal components.
We suggest that this model then represents a more plausible model of the form

of learning which takes place in biological learners and further, that in most cases of

unsupervised learning, the Continuing Learning Model is to be preferred.

3.3.2 Speed of Learning and Information Content

One of the most interesting aspects of the proposed model is its reaction to statistical
data which have inherently differing amounts of information. One might hope that a

model would react to data which has more information more quickly than it does to

data with less. This, in fact, happens.
It is well known (e. g. (Cover and Thomas, 1991), page 225) that for the Shannon

information content (Shannon, 1948) of a Gaussian with variance o2

h(ry) oc log a

which is a mathematical formulation of the fact that there is more information in

random variables with large variance than in random variables with small variance.
It would seem plausible to argue that an organism which can quickly identify data-

sources with large information content would have an advantage over an organism

which does not have this ability. This is, in fact, an emergent property of the model.
Therefore, in the current set of experiments, there is n1Qre-information in x1 than

in X2 etc. i. e. h(xi) > h(x2) > h(x3) > h(x4) > h(xs). We therefore hope that z1

will be learned quickest, etc.
Figure 8 shows the length of time which individual interneurons take to converge

to the appropriate solution. The first solid line on the graph shows how long the first

interneuron took to converge to (1,0,0,0,0), the second to (0,1,0,0,0) and the third to

(0,0,1,0,0).

Additional experiments to ensure that this rate was not merely a function of the

order of the interneuron's learning confirm that data with larger variances is learned

more quickly.
Clearly, interneuron 1 is the fastest learner; it learns the component /direction

with the largest information content. Interneuron 2 makes a bad start; actually,

CHAPTER 3. THE INTERNEURON NETWORK

1.

o.

Proportion
0'

of
interneuron

weights
in the 0.

appropriate
eigenvector
direction 0.
(solid lines)

0.

0.

o.

o.

o.

56

Angle
between
V and W
(radians)
(dotted lines

Figure 8: Intcrneuron convergence times.
Solid lines show the time for each interneuron to converge to the appropriate eigen-
vector of the covariance matrix of the input data: the first interneuron converges
most quickly.
Dotted lines show the speed with which individual interneuron's feedforward and
feedback weights in the VW model converge to the same direction: those of the first
interneuron converge most quickly.

No of iterations ('000x)

CHAPTER 3. THE INTERNEURON NETWORK 57

because of the initial conditions (which were randomly generated), interneuron 2

attempts initially to make a play for the first eigenvector direction before giving up the

unequal struggle against interneuron 1. It then converges quickly to the appropriate

eigenvector. That this is not a necessary property of PCA networks is shown in

(Diamantaras, 1992), Figure 2.7 where the network takes longest to converge to the

first eigenvector.

3.4 The VW Model

The results of the last section have one major drawback when considered as a model

of biological systems: the weights of the connections from the interneuron, z, to the

summing neuron, y, are assumed to be identical to those from the summing neuron, y,
to the interneuron, z. This is biologically implausible. We now propose a model where
these weights are initially different.

y=x- Vz (43)

z= Wy = Wx (44)

OW = cxwyzT (45)

OVT = avYZT (46)

where the initial values of both VT and W are small randpnm numbers not correlated
in any way with each other.

Note that both learning rules for W and V are identical up to the learning rate

and use only simple Hebbian learning.
The convention we will use here is that wii is the weight of the connection from

y, to zi; similarly, v; 3 is the weight of the connection from z; to y. Unless specifically

stated otherwise, we shall be interested in the vectors to and from the interneurons.

Therefore we take the vectors v; to be the weight vector into the ith interneuron, i. e.
to be the vector of form {v; k} for all k; similarly we take the vector wi to be the

vector of weights from the i°' interneuron i. e. to be the vector {wk } for all k; we

note here that vi corresponds to a column of the matrix V of weights while w; is a

CHAPTER 3. THE INTERNEURON NETWORK 58

row of W. Both are vectors of length n where n is the number of summing neurons.
We consider the effect of these rules on a network with a single interneuron, z.

Lemma 1
If the weights, w, of a single interneuron with the above learning rules converge to an

eigenvector of the input data co-variance. matrix, then the weights w and the weights

v converge to the same eigenvector.
Proof

Let w; be the weight of the connections from y; to z and and v; be that from z to

vi.
If the weights of a single interneuron converges to a limit, the expected weight

change over a sufficiently long time will tend to zero. Given the usual approximations,

particularly regarding the learning rate 77, and using (x) to indicate the average value

of x over the time period,

(Ow;) =0(? 7y; z) =0

b (y; z)=0
((Xi - viz)z) =0
((Xi

- Vi WkXk) WIX1) =0
kI

ý-ý (E wixlxi - Vi EWkXkxlWl)
=0

1 k, I
E

w1Cli - vi >
WkCkIWI =O

I k, l

where C;, is that element of the co-variance matrix of the input data x showing the

co-variance between the i. th and jth elements. We note that the same criterion may
be deduced from (Av;) = 0. If the weights of the interneuron are to converge, then

the above must be true for all values of to. Therefore it may be written in matrix

notation as

(Ow) =0 Cw - (wTCw)v =0

4 Cw = (wTCw)v

Now it is a standard result that the co-variance matrix C is positive-semidefinite; and

CHAPTER 3. THE INTERNEURON NETWORK 59

Inter neuron model VW Model
w w V

1.000 -0.036 -0.008 0.985 -0.041 -0.003 1.013 -0.017 -0.024
0.036 0.999 -0.018 -0.019 1.033 0.031 -0.027 0.965 0.032
0.010 0.018 1.000 0.022 -0.032 1.028 0.020 -0.017 0.969

-0.002 -0.002 0.016 -0.024 -0.041 0.038 -0.007 -0.034 0.037
0.010 0.003 0.010 0.098 -0.007 -0.011 0.010 0.000 0.002

Table 4: Results from the interneuron network (left) with symmetric weights, W. and
for the V and W vectors from the VW Model(see text)

hence

wTCw =, y >0 (47)

where ry is a non-negative real number. Hence ,

Cw = ryv (48)

Therefore, if w converges to an eigenvector of C (see below), then Cw = Aw for some

real number, A, and so v= aw, where a is a scalar; that is, v and w converge to the

same eigenvector. Therefore, it is possible to apply the further analysis developed

for the WW network and hence show that the ith interneuron converges to the ith

eigenvector of the covariance matrix.
Experimental results, shown in Table 4 confirm this. It can be seen that both v

and w converge to the same eigenvector, although the results are slightly less clear

cut that in the previous algorithm. However, given the simplicity of this biologically

inspired model, the results are extremely clear: any entity which used such a method

would be able to extract the greatest amount of information from its environment

with a minimal amount of interneurons using a very simple learning rule.
However there remains the possibility that the weight w will not converge to an

eigenvector. Therefore, the next theorem is necessary.

Theorem 4 If the weights, w, of a single interneuron with the above learning rules

converge, then the weights w and the weights v converge to the same eigenvector of
the input data's covariance matrix.

CHAPTER 3. THE INTERNEURON NETWORK 60

From the lemma, we know that the weights converge as stated if they converge to

an eigenvector. Therefore now, we must prove that if w converges, it does so to an

eigenvector of C. We use a contradiction argument.
Assume that there is a solution of

Cw = ryv (49)

where w is not an eigenvector nor the degenerate solution, w = 0.
Let the eigenvectors of C be Cl, C2,..., cn. Then

w=Fw. Ci
i=l

Since w#0, there exists a direction cb, such that wb 0 0. Since w is not an

eigenvector, there exists 1 other direction cg with a non-zero component wa.
Then

W= WaCa + WbCb +E wiCi
i#a, b

where 1<a, b<n, a: / b, and

V= vacs + VbCb +E ViCi
i$a, b

and from Equation 49,

A6w6 = 'yVb

AaWa =Wa

ý, .

Consider a disturbance of magnitude e>0 in the direction of ca i. e. a disturbance

of ea. Then if w is a stable point of convergence of the weights, the expected change
in the weights over time is zero. Therefore,

(Ow) =0 Cw - (wTCw)v =0

C(waca + WbCb + ea +E wici) - ry (vaca + vbcb +E vici) =0
i#a, b i#a, b

4 Jtawaca +. bwbcb + AaEa +E AiwiCi

i#a, b

rr

-, y Vaca - ry VbCb - It' E vici =0
igta, b

CHAPTER 3. THE INTERNEURON NETWORK 61

where ry = (w + ea)TC(w + ea) >0 since C is a positive semi-definite matrix.
Now, considering the components of the transformation in the direction of eb,

Abwb-'fVb=0

Then, 7Vb -7 Vb =0

Therefore, ry = ryI since vb # 0. Now, considering the components of the transforma-
tion in the direction of c8,

)taWa+%taf-iVa=0

7va-IfVa+AaE=0

aae =0

which is a contradiction. Hence there does not exist a non-zero, non-eigenvector

solution to equation (49).

Theorem 5 At equilibrium, the weights v and w converge to the same eigenvector,
Ca with

1
V_II, w

w

Proof
At equilibrium,

Cw = (wTCw)v = , IV

and, by theorem 4, w is an eigenvector of C, ca. Therefore,

Cw = AaW

where A. is the eigenvalue corresponding to eigenvector ca.

Therefore, . Xaw =1'v

Therefore, v=A. w=
wT Cw w

7

(50)

CHAPTER 3. THE INTERNEURON NETWORK 62

Now, wTCw is a scalar; hence,

wTCW = IwTCwI = IwIICwI = InII?
awl = AaJW12

Therefore,

1
V= I law w

Note: The theorems in this section imply that the further analysis of this in-

terneuron network is identical to that performed previously for the WW network.
In other words, an interneuron network with asymmetric weights, w; and v;, will

calculate the principal components if the interneurons are created in the network as
in the previous section.

3.4.1 Properties of the VW Network

Týe motivation for the introduction of the VW model is that it removes a constraint
from the network builder: in the WW model, the weights into and out of each in-

terneuron must be the same and so must be known in a meta-sense i. e. outwith

the learning space. One feature of symmetry still remaining in the network is the

equivalence of the learning rates in the V and W weights.
Experimental results show that, when v and w learn withdifferent rates, the angle

between v and w converges as quickly as before but the weight, v or w, with the

larger learning rate acquires a larger length than the other. Indeed the result of the

last theorem still applies.
While most of the emergent properties of the symmetric (WW) network still are

found with the VW network, there is one property which this network does not have:

the interneurons cannot retain their plasticity when new interneurons are created.
There always remains a slight angle between v and w (dotted lines in Figure

8); even although this can be made arbitrarily small, it is sufficient to destabilise

the interneuron weights. It is not possible for the weights v and w to be both

exactly orthogonal to any new interneuron's weights; therefore the new interneuron

will destabilise the weights of existing interneurons. The interaction between v and

CHAPTER 3. THE INTERNEURON NETWORK 63

w will further move the weights away from the eigenvector and so the weights will be

rotated in the principal subspace. This is also an empirical finding.
Therefore, for VW interneurons, each interneuron's weights must be allowed to

converge to the eigenvector but must then loose their plasticity. This is algorithmically

easy to implement but the need to take this action has led to a search for other

algorithms.

3.5 Relation to Other Models and Biology

The basic interneuron network has been discovered independently by other researchers
in the past - though the link between them and the network described above is not

often obvious.
The first reference to an interneuron-type of network appears to be William's

Symmetric Error Correction (SEC) Network (Williams, 1985) where the residuals at

y were used in a symmetric manner to change the network weights. The SEC network

may be easily shown to be equivalent to the network described in this Chapter.
A second reference to an interneuron-type network was given in (Levin, 1990).

Levin introduces a network very similar to Plumbley's network and investigates its

noise resistant properties. He develops a rule for finding the optimal converged proper-
ties and, in passing, shows that it can be implemented using simple Hebbian learning.

His derivation is a simplified version of that given in Sectiön 3.2.1 and must equally
be described as approximative.

A third strand has been the adaption of simple Elman nets((Hinton and Shallice,

1991; Kehagias, 1991; Elman, 1991; Elman, 1992; Bates and Elman, 1992)) which
have a feedforward architecture but with a feedback from the central hidden layer to

a "context layer". Typically, the Elman nets use an error-descent method to learn,

however Dennis and Wiles (Dennis and Wiles, 1993; Dennis et al., 1992) have modified
the network so that the feedback connection uses Hebbian learning. However, the
Hebbian part of the network uses weight decay to stop uncontrolled weight growth

and the other parts of the network continue to use back propagation of errors to learn.

More recently, Xu (Xu, 1993) has rediscovered the interneuron network and has

CHAPTER 3. THE INTERNEURON NETWORK 64

given a very strong analysis of its properties. While he begins by considering the
dynamic properties of a multi-layer network (all post-input layers use negative feed-

back of activation), it is clear from his discussion that the single layer model which
he investigates in detail is identical to the network outlined above.

An interesting feature is Xu's empirical investigation into using a sigmoid acti-

vation function at the interneurons; he reveals results which show that the network
is performing a PCA and suggests that this feature enabled the network to be more

robust i. e. resistant to outliers, a finding in agreement with other researchers (e. g.
(Karhunen and Joutsensalo, 1993a; Oja et al., 1991; Oja and Karhunen, 1993)). We

will return to non-linearity in Chapter 6 where we will base our findings in con-
temporary statistical practice in a way which permits an analytical investigation of

non-linearity.
In keeping with our overall aim, we would like to link our networks with those

of biology. The overall aim for an early processing network has been described as

the minimisation of redundancy so that the further network can be developed as a
"suspicious coincidence" (Barlow, 1989) detector. The decorrelation of inputs formed

by projection onto the Principal Components clearly achieves this. The network

most like that described above was devised by Ambrose-Ingerson et al (Ambrose-

Ingerson et al., 1990) in which a network which uses negative feedback between layers

attempts to simulate the transfer of olefactory information in the paleocortex. The

sole difference between that network and the interneuron network is that the network

uses a competitive activation transfer arrangement; the authors conjecture that a
form of PCA is taking place.

Murphy and Sillito (Murphy and Sillito, 1987) have shown that LGN neurons

seem to be inhibited by the V1 cells (in the visual cortex) which they excite. Pece

(Pece, 1992) has developed a model based on negative feedback which simulates the

reduction in redundancy in an information-transferring network.
As an interesting aside, we note that Robinson (Robinson, 1987) has shown that

negative feedback cannot be used to control the visuomotor system in a continuously

operating closed-loop system with a finite delay term. He shows that the negative
feedback in the system can be made stable if the system is refractory: each eye saccade

CHAPTER 3. THE INTERNEURON NETWORK 65

is followed by a short period when it will not respond to another change in target

position (due to the sampling rate having a finite frequency). Because of this, we can
think of such a system as running on open-loop dynamics for much of the time which
is equivalent to having discrete time intervals in which activation is passed forward

and back. It is results like this which underlie our conviction that the interneuron

network is based on cybernetic principles.
A network very like the network which we have investigated, has been developed in

(Jonker, 1992) in which inhibition is specifically used in an Artificial Neural Network

to model the cerebellum. The network appears identical to that displayed in Figure

4 but is considered as a dynamic model where the activation is allowed to pass round
the network till settling takes place. However, since Jonker makes "the biologically

plausible assumption that the characteristic time-scales in the evolution of interactions

are much larger than the time-scales involved in the neuronal dynamics", ((Jonker,

1992) page 87)it is not surprising that the emergent properties of the network are

very similar to those which are developed in the next section from a static network.

ý.

Chapter 4

Peer-Inhibitory Interneurons

4.1 Parallel Learning Networks

Three factors make the interneuron network especially exciting as a PCA network:

simplicity - there are no logistic or hyperbolic functions to be calculated; there is no

additional computation within the learning rule; there is no sequential passing
back of errors or decay terms.

homogeneity - every interneuron is performing exactly the same calculation as its

neighbours; every summing neuron is performing exactly the same calculation

as its neighbours.

locality of information - each synapse uses only the information which it receives
from its own connections; similarly with the summing neurons which calculate
the y values

However, the phased creation of neurons described in the last chapter does not

utilise the inherent potential of this network for parallel information processing. We

now develop learning algorithms which do this while retaining as much as possible of
the other features.

Thus, in this chapter', we create the entire network at one instant in time and train

all weights simultaneously. Recall that when we do this with the first interneuron

1Some of this work has already appeared in (Fyfe, 1993f; Fyfe, 1993b).

66

CHAPTER 4. PEER-INHIBITORY INTERNEURONS

X

ins

Inputs

67

Figure 9: The inputs, x, are passed forward to the interneurons via the W weights as
before but before the interneuron's activations are passed back, the activation from
each interneuron is passed to the others as inhibition

network, we find the principal subspace but not the principal components themselves.
We amend the basic network by allowing the inhibitory effect of each interneuron

to act on the other interneurons as well as the summing neurons(see Figure 9). Two

methods will be used with this amended network in order to create the necessary

asymmetry: in the first, we will allow the network weights to be upgraded at different

rates; in the second, we will use different activation functions to force convergence to

the Principal Components.

The first type of network will be characterised by
iL

y=x- Vz (51)

zý = Wy = Wx (52)

=1 zz- Uz (53)

AW = r/wyZT (54)

AV = rj�yzT (55)

DU = ryzzT (56)

where z' is the initial activation of the interneuron before receiving the lateral inhibi-

tion from other interneurons and U is the matrix of weights between the interneurons.

As before, the initial input vector x is fedforward through the W weights to the in-
terneurons. Now the interneurons feed their activation (as inhibition) to the other

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 68

interneurons through the U weights before the interneurons' activations are fed back

as inhibition (through the V weights) to the summing neurons.
We do not however allow self-connections from interneurons to themselves.
We note that we have now a 3-phase operation:

1. The activation is fed forward from the summing neurons to the interneurons

2. The interneurons feed their activation to their peers and recalculate their acti-
vations

3. The activation is fed back to the summing neurons from the interneurons

While this is more computationally complex than before, we only require O(ma)

additional calculations, where m is the number of interneurons. Further all learning

processes continue to use simple Hebbian learning.

We will introduce a matrix G(x)=(I-U)W(x), a which represents the forward func-

tion from x to z. G is an integral part of the mathematical model which we will use
for understanding the network but it makes no overt contribution to the development

of the network in the real, stochastic world. The actual learning in the network i. e.
the weight updates, is accomplished by updating the actual weights U, V and W al-
though we will discuss G- as though it were being performed in the same sense that

e. g. is performed.
We can prove (an obvious special case of Theorem 7) that the learning rules

detailed above are equivalent to

dVT
_

dW
wt dt = (I - U)WC - (I - U)WCWT(I - U)TVT (57)

dU
dt = (I - U)W CWT (I - U)T (58)

dt
= (I-U) dd

-
dtW (59)

where G is the forward function relating x and z and C is the covariance matrix of
the input data.

'I being the identity matrix

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 69

We will show, as with other models with lateral inhibition, that U=0 is a stable

stationary point of the system

Now, G= (I - U)W

and so
dG

= (I - U)
dW

-
dUW

dt dt dt
= (I - U){(I - U)WC - (I - U)WCWT(I - U)TVT}

-(I - U)WCWT(I - U)TW

= (I - U){GC - GCGT VT }- GCGT W

--4 GC-GCGTVT -GCGTW
asU --+ O

Now G -. W as U --> 0 and so dc
--; WC-2WCWTW using the fact that VT = W.

It can be seen that the necessary asymmetry between the Hebbian learning term

and the weight decay term has not been achieved; however the important point to note
is that part of the weight decay term comes from the ' term which we can manipulate
independently of 41-1' term in order to create the necessary asymmetry.

4.2 Analysis of Differential Learning Rates

y= X- Vz (60)
Z= Wy=Wx (61)
z= z' - Uz (62)

AW = 7lwzYT (63)

OVT = nvzyT (64)

DU = rzzT (65)

Let us review our naming conventions: the convention we will use is that w1 is the

weight of the connection from summing neuron yi to interneuron z;; similarly, vi; is the

weight of the connection from z; to y,; u; j is the weight of the connection from z, to z;.
Unless specifically stated otherwise, we shall be interested in the vectors to and from

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 70

the interneurons. Therefore we take the vectors v; to be the weight vector into the it'`

interneuron, i. e. to be the vector of form {vks} for all k; similarly we take the vector

wi to be the vector of weights from the its' interneuron i. e. to be the vector {w; k} for

all k. Both are vectors of length n where n is the number of summing neurons. Note

that the learning rates of U values are different for different interneurons as we wish
to force the first interneuron to learn the first principal component, the second the

next and so on. Thus we have a diagonal matrix, r.

Since we ensure that there are no self-connections, the main diagonal of U is

composed of zeros. Also note that r is the matrix diag{ryl, rya, ..., #ym} where m is

the number of interneurons and ry; is the learning rate for the U weights of the ith
interneuron such that 'yi < rye < ... < ry,,,. We allow all learning rates to decrement

to zero as time tends to infinity.
As introduced in the previous Section, G(x)=(I-U)W(x) is the forward function

from x to z. We will assume that, if ry; (t) is the value of ryi during time interval t,
limt_. o ttý exists and is positive. This assumption will be discussed in Section 4.2.1.

Theorem 6 v; converges if and only if w; converges, where v; is the weight vector
from the it' interneuron and w; is the weight vector into the ith interneuron. Further,

Vi=aWi -i'P

where a= limt--+o ,
i (t) is the value of 77v during time interval t

and p is a vector depending on the initial conditions of vi and wi.

Proof
At time B, we have

w,,; (B) = wi, (B - 1) + i73; (B)y,, (B)z; (B)

If we start from time 0, we can equate the continuous time point T with the sum of
the discrete intervals 77;;. i. e.

B

T =: '1ji(P) P=O

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 71

Thus, we are breaking up continuous time into discrete time steps 77'; . Now the

convergence, if it exists must be taking place simultaneously over all weights. There-
fore, we must ensure that raj; = 77 for all values of i, j. In order to have no limit on
continuous time, we must have

00

E 71(P) = 00 P=O

If we further assume that ri(p) >0 for all p, then we have

Owij = 1lyiz+

_ 77(xj -E vjszs)zi

e

77(xj - [ý vj-(E wslXl -E Uap
EwPlxi))(E

witxt -E uiq
Ewq.

x)

elpltqr

Or, in matrix terms,

W(B) - W(B -1) = (I - U(B))W(B)x(B)x(B)T
r7(B)

-(I - U(B))W(B)x(B)x(B)TW(B)T(I - U(B))TV(B)T

(66)

If we also assume that

lim +oo? 7(p) =0

then the sequence of w3; (T) asymptotically approaches a continuous-time function and
the left-hand side of Equation (66) approaches its derivative. Then we can replace
Equation (66) with the corresponding averaged differential equation

dW
= (I _ U)WC - (I - U)WCWT(I - U)TVT (67)

dt

where C is the covariance matrix of the stationary distribution producing the xk
values Now, under the same assumptions as in the previous chapter about the rate 77
it can be shown that the solution of the stochastic algorithm approaches the solution
of the differential equation (67) with probability 1.

Now consider v's learning.

vii(B) = v+i(B - 1) + iiv(B)yi(B)'zi(B)

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 72

Therefore,

vii(B) - vii(B - 1)

, 7(B)
_

ýýB)) {> wj"(B)xj(B)x (B)(1- > ui4) -E vk3(B) *
qk

(1- E ui4) > wpk(B)xp(B)xl(B)wti(B)(1- S uP)I
9 p, l p

Given the same assumtions as before and making the additional assumption that

lim ? 'V (P)
=a>0i. e. the limit exists and is positive

p-. 0 17(p)

we have the corresponding differential equation,

dVT
= a((I - U)WC - (I - U)WCWT (I - U)TVT) (68)

dt

Therefore,

dVT
_

dW
dt - adt

Therefore, W converges to a solution (where = 0) if and only if V converges to a

solution.

Now,
dW

= (I - U)WC - (I - U)WCWT(I - U)TVT =
,f

(W, V)

Let F(W, V) =
j°°f(W, V)dt

Then, VT = aF(W, V) + aK and W= F(W, V) +K

where K is a function of the initial values of V and W.
Thus, v; = wi + p, where p is a vector depending only on the initial values of the

system.
Thus if v; and wi converge, they do so simultaneously and close to the same

vector.

Note 1 For the remainder of this section we will assume that a=1. i. e. the learning

rates for V and W are equal.

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 73

Note 2 We note that the vectors vi and wi may be made arbitrarily close by limiting

the original size of vectors v; (0) and wi(O). i. e. p may be made arbitrarily

small by appropriate initial choice of v and w. Hence we are able to assume
that vi =A. ^swi.

Theorem 7 The learning rules detailed above are equivalent to

dVT
_

dW
_ dt dt - (I - U)WC - (I - U)WCWT(I - U)TVT (69)

dU
= A(I - U)WCWT(I - U)T (70)

dt
dG

= (I - U)dW -
dUW (71)

dt dt dt

where G is the forward function relating x and z
and A is the matrix diag{ al, a2, ..., an } with a; = 1imt, o ;ý ttl with -y (t) being the

value of 'y; .
during the time interval t.

Proof
With the same assumptions as before, we can write

W(B) - W(B -1) _ (I - U(B))W(B)x(B)x(B)T
i7(B)

-(I - U(B))W(B)x(B)x(B)TW(B)T(I - U(B))TV(B)T

f'

If we also assume that

limp.. (p) =0

(72)

then the sequence of w,,; (T) asymptotically approaches a continuous-time function and
the left-hand side of Equation (72) approaches its derivative. Then we can replace
Equation (72) with the corresponding averaged differential equation

dW
= (I - U)WC - (I - U)WCWT(I - U)TVT (73) dt

where C is the covariance matrix of the stationary distribution producing the xk
values. Now, under certain assumptions about the rate 77 it can be shown that the

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 74

solution of the stochastic algorithm approaches the solution of the differential equation
73 with probability 1.

Similarly, for the weight updates of the U weights,

u"i(B) = uji(E - 1) +'y1(B)z1(B)z3(B)

Therefore,

U(B) - U(B-1)
_ 7; (B)

. ý ? I(B) 77(B)
zýz.

If we make the further assumption that limB--. o ý(B) exists, we can take the limit of
the above stochastic equation giving

dU
_ AQ ät

where A= diag{ al, a2,..., a,,, } with a; = limt-, o ýý) >0, and Q the m*m matrix

with elements q; 3 = (z; z,,), i0j, and q;; =0 for all ij. The angled brackets indicate

an ensemble average. We will, for the time being, assume that the a; values are

constant during the learning process. We will return to this assumption in section
4.2.1 Now ,

Q= (zzT) (74)

_ ((I - U)WxxT WT (I - U)T) (75)

_ (I - U)WCWT(I - U)T (76)

where C;,, is (x x) for all i, j. Hence,

dU
= A(I - U)WCWT(I - U)T ät

The transform from x to z is G where G(t) = (I - U(t))W(t) where U(t) is the

value of U at time t etc. Then,

aG
= (I - U(t)) d

dt
t)

-
dU

dtt) w(t) (77)

= (I - U)
dW

-
dU

W (78)
dt dt

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 75

Theorem 8 U=O, the m*m zero matrix, is a solution ofd =0, and g; = wi _
1 c; is the corresponding solution for G and W where c; are the eigenvectors of l+a:

the covariance matrix of the input data in order . i. e. if ryuL < ry,,, < ... < y,, then

w; = l+Qi c; where c; is that eigenvector with corresponding eigenvalue a; where
Al > Az > ... > A,,, and, as before, a; =1imt--. o --Y'Itl)

Proof

dG dW dU
dt

(I - Uý
dt dt

First we note that as U --º 0,
dG dW

_
dU

W
dt dt dt

= (I - U)WC - (I - U)WCWT (I - U)T VT

-A(I - U)WCWT(I - U)TW

= GC - GCGT VT - AGCGT W

--> WC - (I + A)WCWTW

at the point of convergence of V and W.
Note the similarity between these equations and those which are required for Oja's

Weighted Subspace Theorem; therfore, we conjecture that a solution of dC =0 at
U=0 is g; = wi = l+Qi ci the i" eigenvector of C in normal order. Here we show
that the stated values are solutions; stability will be proved later.

dG dW dU
dt = (I - U)

dt dt
W

= (I - U)((I - U)WC - (I - U)WCWT(I - U)TVT) - A(I - U)WCWT(I -

-º WC - WCWTVT - AWCWTW

= AW - KVT - AKW

where K is diagonal matrix whose (i, i)th element is) wi12 with a; the ith eigenvalue

and A is the diagonal matrix whose (i, i)th element is A;.

Then taking g; as the its` vector of G i. e. going into the ith interneuron and using
the fact that w; = vi, we have

dg'
= a; w; - kiwi - a; k; w;

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 76

Ai Ai 1 aiai 1 _ci
1+a - 1+a: 1+aß - 1-f-ai 1--ai

Ai(1 + ai) - Ai - ajAi)ci=0
l+ai(1+a1)

So the stated values are stationary points of the system.
Note: We can in fact go further, in that if U=0 then

dgl

ät = A{wi
-

kiwi
- a1kjwl

= (a; -)tilwiI2 - aj)jIwiI2)wi

= a; (1 - lwila - a, IwiI2)wi

so if
d=0 then IwiI2(1 + a;) =1i. e. lw; l=f

l+ai .

Theorem 9 At the solutions U=O, w; = i+ai ci of dG = 0, then

it _0 for allij dt

if as 56 0 i. e. the ith eigenvalue is not zero.

Proof

dU
= A(I - U)WCWT(I - U)T

= AWCWT

Now wiCwjT =0 for all ij and wCw; T = a; jwija. Therefore WCWT is a
diagonal matrix of the form diag{kl, k2, .., km} where ki = AIIw; 12

,
A, being the its'

eigenvalue. Then

dU
dt = AK = diag{aikl, a2k2,

Therefore, dd =0 for all i#j.

Theorem 10 The solutions u; j = 0, w; = l+Qi c; for all ij of dG =0 ensure all

variables are stationary at this point.

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 77

Proof

At the stated points of solution of d=0 then 4=0. But

dG dW dU
dt - ýI - Uý

dt dt
W

dW
dt

dG_dU_dW_dVT SO
dt "" dt - dt - dt

Theorem 11 If c1 are the unit length eigenvectors of C, the solutions
1

vi=wi= 1+Qci

u; = 0, where 0 is the m*1 zero vector

of the equations governing the dynamics of this network are asymptotically stable for

all i.

Proof

First consider the ui. We have already shown that U=0 du = 0. Consider

a disturbance of e in U=O. We have

dU
= A(I - (0 + E))WCWT(I - (0 + e))T dt
= AK-A6WCWT -AWCWT6+O(e2)

= -AEWCWT - AWCWTC + 0(c2) (off diagonal)

= -AcK - AKE + O(c2)

Since A and K are both diagonal matrices with entries > 0, if e>0, the rate of

change of U is negative i. e. U must decrease. If e<0, the rate of change of U is

positive i. e. U will increase.

Now consider the W weights. We have proved that the stated values are solutions;
we must still prove asymptotic stability. Note that at the stated points of convergence,

G= (I - U)W =W
dG

_
dW

_
dU

dt
(I - U) WT dt

W

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 78

Now since G=W at the points stated, any instantaneous disturbance in W will have

an equal instantaneous effect on G. Therefore, we will investigate the effect of a
disturbance in W on G in order to derive the asymptotic stability of W. We do this

through investigating the effects of the disturbance on U and W. Let there be a
disturbance of E in the converged weights W. Then,

dU
= A(W + E)C(W + E)T dt
= AWCWT + AECWT + AWCET + AECET

(AWCWT) + AECWT + AWCET

ignoring terms of 0(E2). Thus,

Ji(W
+ E) = (AWCWT + AECWT + AWCET)(W + E)

AWCWTW + AECWTW + AWCETW + AWCWTE

= (AWCWTW) + AECWTW + AWCETW + AKE

Similarly,

dW
_ (W + E)C - (W + E)C(W + E)T VT

dt
WC + EC - WCWTVT - ECWTVT - WCETVT

= (WC - WCWTVT) + EC - ECWTVT - WCETVT

So still ignoring terms of 0(E2),

dG dW dU
ät - dt dt

W

= (WC - WCWTVT - AWCWTW) + EC - ECWTVT - WCETVT

-AECWTW - AWCETW - AWCWTE

= EC - ECWTVT - WCETVT - AECWTW - AWCETW - AKE

= EC - AKE - (I + A)(ECWT + WCET)W

Now, considering a disturbance of e in the direction of cj of the weight w;, (i. e. a
disturbance of ej) we note first that the matrix(1+A)(ECWT+WCET)is a diagonal

matrix with its jth element (1 + aj) l+aý .
So considering the rate of change of g; in

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 79

the direction of cj
ddtl

= Ai ej - ai ki cj - (1 + ai)
2A

+ic a ,
'uni

VT -

= (Aic - ai+
aE-(1+'ai)

2+a
+a,

)c.
l ��

+ a3)eck (79)
1+ ai

Since C is symmetric, A>0. Further, the learning rates ry, were such that ai >0

. Then, Equation (79) shows that if c>0, which would cause G to grow, the system

will self-organise to cause G to shrink; if e<0 the system will self-organise to cause
G to grow. Since we have shown that U=0 is a stable solution, then the solutions of

the W vectors must also be stable.
Now consider the vi. The proof that the stated values are solutions is implicit in

the section above. To show asymptotical stability, let there be a disturbance of e>0
in V. Then

dVT
= (I - U)WC - (I - U)WCWT (I

dt - U)T(V + e)T

= WC - WCWT (V + e)T
= WC_WCWTVT

_WCWTET

= _WCWTcT
= -KET

<0

since every element of K is greater than 0. Similarly, if e<0, we have 1>0.

Thus all the stated values are stable points of the system.

4.2.1 The GW Anomaly

There is an apparent anomaly in the above equations. The solution of dG- =0 is

gi = wi = l+aý ci whereas the solution of '=0 occurs at wi = ci. Further, as
U-º 0, G --'W. This suggests a less stable system than before and this is indeed the

case. Thus in order to minimise instability, it is necessary to ensure that the a; values

are low. Experimental results suggest a value of 0.1 is sufficient to ensure stable

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 80

convergence to Principal Components. However, we note that, at w; = i+ai c;, U=0

and so
dW
dt = (I - U)WC - (I - U)WCWT(I - U)TWTVT

-> WC-WCWTVT
dwi a; a; 1

and so dt =1 -+a i
ei - I+ a; 1+a; of

Ai a;
- ci

1+ai1+ai

Therefore, for any a; #0, there will be a tendancy for the weights to grow away
from the global optimum. However, as seen in the equations governing L, this cause
instantaneous change in U which will drive the W weights in the opposite direction.

In order to produce a damped system, the values of a; should be small.
One possible response to this anomaly is to insist that as we are taking a limit to

infinity, the a; values can only be >0i. e. to allow equality. However, this is not the

experimental situation where a strict ratio is maintained as the terms decrease to 0

nor does it help the analysis as we then have a diagonal matrix which is not of full

rank and would not then provide the differential decay necessary for convergence to

the Principal Components.

The approach chosen here is to choose the values of a; appropriately small so that

the term i+
1. Under this constraint the system has been found experimentally

to be stable. `

The final point to note is that in this system the decay of the learning rate to

0 may be essential to the fixed stability of the system; if the learning rates are not

allowed to decay to zero, the very dynamical nature of the convergence will continue.

4.2.2 Simulations

The results of a typical experiment on the same type of data as in the previous

chapters are indicated in Table 5. Here, the first interneuron has the smallest learning

rate i. e. aul < aU2 < a,, 3.
Further, while the initial values of the w and v weights

were 0(0.0001) those of the u weights were 0(0.00001).

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 81

V w
1.000 0.012 0.000 1.000 0.012 -0.000
0.030 1.000 0.008 0.030 1.000 0.009
0.005 -0.003 0.994 0.004 -0.003 0.994
0.004 0.007 -0.023 0.004 0.007 -0.023
-0.002 0.000 -0.000 -0.002 0.000 0.000
Interneuron No: 1 2 3
Angle (radians) 0.0011 0.0006 0.0004

Table 5: Results show the weights of a typical set of V and W weights from the Parallel
Learning Algorithm with the angle in radians between the v and w vectors. No. of
iterations=40000. Initially, a,,, = a� = 0.0001; a, = 0.000005; a,,, = 0.00001; a,,, _
0.000015

V w
0.651 0.188 1.0312 0.650 0.188 1.031

-0.151 0.984 -0.092 -0.150 0.984 -0.092
0.824 0.049 -0.305 0.842 0.049 -0.305
-0.019 0.006 0.006 -0.018 0.006 0.006

-0.001 -0.001 -0.001 -0.001 -0.001 -0.002
Table 6: Results of the same network as before with homogeneous U learning rates

In order to show that it is the different learning rate which causes the convergence
to Principal Components the same experiment was rerun with all the U weights having

the same learning rate; the results of this are shown in Table 6. While there may

appear to be a soft PCA taking place, this effect vanishes in larger networks. This

effect - that increased size removes the tendancy to perform a `soft' PCA - has been

found in other models in this section and therefore slightly larger networks have been

used in obtaining other corroborative empirical results.

4.3 Differential Activation Functions

In this section we investigate 3 models of Peer Inhibitory Interneurons which use

activation functions instead of learning rate to break the symmetry of the system.
We will not repeat the explicit derivations of the last section for each of the 3 models

as the mathematics is usually very similar; however specific points of interest will be

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 82

identified and analysed. First each of the 3 models is introduced and experimental

results are given; points of interest in each are identified. Then a comparison of the

models is made and additional models which have similar properties are outlined.
Unless stated otherwise, the empirical data is obtained from a network with 12

inputs, 7 interneurons and input data with variance of x1 > variance of x2 > A

is a diagonal matrix with All > A22 >... The network here is slightly larger than in

previous sections in order to highlight various interesting empirical results which are

not so obvious in smaller networks.
Restricting ourselves to models where only the interneurons use activation func-

tions and restricting such activation functions to multiplicative factors, (so that we

still have a linear system) there are several possible models; we will identify 3 separate

classes of models by determining the characteristics of 3 of these models. We will use
the same conventions in naming vectors as before. Note, in particular, that there are

still no self-connections for the interneurons i. e. the main diagonal of U is composed

of zeros. In this section, all u weights will learn at the same rate 77U but there will
be differential activation functions (multiplicative factors) on the interneurons. For

simplicity, we assume that raw = ray =77u =77. (This does not affect our results and

provides a simpler mathematical model)

4.3.1 Model 1- Lateral Activation Functions

y=x- Vz (80)

I= Wy = Wx (81)

z=z- AUz' (82)

AW= r7zyT (83)

OVT = i, zyT (84)

DU = nzzT (85)

Then, omitting details, we have G= (I - AU)W and
dW

_ (I - AU)WC - (I - AU)WCWT(I - AU)TVT (86)
dt

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 83

dU
= (I - AU)WCWT(I - AU)T (87) dt

dG
= (I -

dW
-A

d-W
(88)

Then if U converges to 0 at which point G=W=VT,

dG
dt = (I - AU){(I - AU)WC - (I - AU)WCWT(I - AU)TVT}

-A{(I - AU)WCWT (I - AU)T }W

_ (I - AU){GC - GCGT VT - AGCGT W}

-* GC - (I + A)GCGT W as U --*0

at convergence, which should be compared with the equations in the previous section.
However the dynamics of the two models should not be assumed to be the same;

note for example the different format of the equations governing the behaviour of
the U values. This will be shown to be important in the investigation below. The

w; weights (almost)converge to the eigenvectors of the input data's covariance ma-
trix. The underlying rationale for this network is that each interneuron has different

susceptibility to the inhibition from its peers.
The results shown in Table 7 are from a 12-input, 7 interneuron network, with

a; = 1.58 - 0.2 * (i - 1) for i=1,..., 7. We note that while almost all the Principal

Components have been certainly identified, the second and third interneurons have

not identified precisely their respective Principal Components. The vectors seem
to be almost correct and to satisfy w2. w3 =0 : ºet are not in the direction of the

eigenvectors themselves. In fact by appropriate choice of the parameters a;, this

effect can be eliminated; however,

1. We wish to develop a network which will not require any fine tuning as it is

used in different situations

2. The analysis of this fault provides insight into the network behaviour

The reason for this fault lies in the convergence of the U values. In the model of
the last section the learning rule for the U values was shown to be

dU
_ A(I - U)WCWT (I - U)T

dt

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 84

Notice that as U-iO, this learning rule continues to be dominated by the A matrix

whereas, in Model 1, the effect of the A matrix vanishes as U-+O (see Equation 87).

The importance of is due to the fact that the value of drJ is a major component
in the decay term in d2. Thus as U tends to zero and hence -+ 0, the decay term

tends to zero. In the previous model this decay term maintained its differential effect

as it decreased but in Model 1, as U -+ 0, the decay loses its directional impact - it

becomes homogeneous.
More formally, consider the convergence to a solution of the system which is not

an eigenvector. Let w; have converged to aci + bcj, a, b#0 and let wj have converged

to cc; + dcj, c, d#0. Both c and d are necessarily not zero as w;. wj = 0. Then we

can show that the (i, j)th element of WCWT can be shown to be

w; Cwj T= (a; ac, + aihcj)"(ccl -}' dcj)

=A ac+ ajbd

Similarly, wiCw; T = A1a2 + X, b2

wjCw; T = aiac+ Ajbd

wjCwj T= ilic2
-f'

Ajl2

Now the ith row of (I-AU) is [-a; u; i... l... - a; u,,,... - a; u;,, i
] where the 1 is in the ith

position. Similarly with the jth row. Then,

dtv = (I - AU); WCWT(I - AU);

= ý(a+ai(a; ac -})ºibd)) - uii(ai(Aiaa +)ib2) + ai(Atca + Aida)) + (. \ ac + aibc

Thus ddc at u; j =0 is equal to (a; ac +A bd) which is exactly zero for b=c=0i. e.
the eigenvectors.

But, as u; l -+ 0, a situation arises where there is no particular impulse for the

change of ujj in any particular direction provided the constraint ac + bd =0 is

satisfied. The symmetry of the formula shows that dd
=

dd ; thus the differential

term in di
also vanishes at this point and so the weights, having approached the

eigenvectors, need not converge precisely to any eigenvector - the driving force of
differential weight decay has vanished.

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 85

For the system analysed in the previous section, we have
du, ý = a; u ý(a; ac + aibd) - uji(a; (. 1; aa +))ib2) + ai(ýica +)id2)) + a; (a; ac +A jbd) dt

Note the asymmetry in this rule in that even as u; j -+ O, d# dä Therefore this

system will maintain a preferred degree of slope no matter how small U becomes. As

noted earlier, the value of
ät is precisely the value of the differential decay term in

dg-
and so W will continue to converge taking account of the network's asymmetry,

no matter how small U becomes.

It is possible to somewhat circumvent this problem by choosing values of a; which

are sufficiently different to make the term containing u; j significant till U is closer to

zero; however this is an heuristic and an a priori decision on the size of the a; cannot
be made.

A further difficulty with this Model is that we now have the activations fed to the

interneurons being processed differently depending on their origins: all interneurons

are responding equally to the fed-forward activations from the summing neurons but

are responding differentially to the activations from their p.. ers. This seems unrealistic
for a biological model and requires an engineered model to have meta-information (as

to whether to use an activation function or not). Model 2 is designed to rectify this.

4.3.2 Model 2- Lateral and Feedforward Activation Func-

tions

Our equations are almost the same as in the last section but note that every input to
Z carries an activation function times the weighted inputs. The rationale behind this

model is a belief that all inputs to an interneuron should be treated equally.

y=x- Vz (89)

Z= AWy = AWx (90)

I z=z- AUz' (91)

OW = 77ZyT (92)

, &VT = 77zyT (93)

AU =r zzT (94)

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 86

1 2 3 4 5 6 7
1 -0.005 -0.001 0.004 0.006 -0.023 -0.025 0.999
2 0.001 0.005 0.012 0.008 -0.014 0.999 0.029
3 -0.011 0.011 0.022 -0.045 -0.998 -0.023

-0.031
4 -0.003 0.021 0.058 -0.999 0.024 0.010 -0.003
5 0.001 0.146 -0.996 -0.031 0.019 -0.002 0.009
6 0.040 0.998 0.119 -0.004 -0.012 -0.019 -0.002
7 0.998 0.029 0.023 0.004 -0.016 0.013 0.014
8 -0.016 -0.013 0.004 0.004 0.003 0.011 -0.007
9 0.004 0.006 -0.003 0.004 -0.003 -0.001 -0.20
10 0.013 0.005 -0.001 0.002 -0.001 0.003 -0.005
11 -0.001 -0.004 -0.001 -0.001 -0.003 0.001 0.004
12 0.001 -0.001 -0.003 -0.003 -0.004 -0.002 0.001

Table 7: Model 1 Results.
The results are from a network with 12 inputs/summing neurons and 7 interneurons;

each column is the vector of weights into each interneuron. In most cases the actual
Principal Components have been identified since ideally we would wish an array whose
only non-zero elements would be a diagonal (top-right to bottom-left) line of 1s.

Then we have

z= (I - AU)z'= (I - AU)AWx

Therefore

G= (I - AU)AW
dG

= IT - AU)AdW - AdUAW
dt dt dt

As before, we can show that
dW

= (I - AU)AWC - (I - AU)AWC((I - AU)AW)TVT (95)
dt
dU

= (I - AU)AWC((I - AU)AW)T (96)
dt

and so that
dG

= (I - AU)A(I - AU)AWC - (I - AU)A(I - AU)AWC((I - AU)AW)TVT ät
-A(I - AU)AWC((I - AU)AW)TAW

-ý A'WC -A 2 WC(AW)TVT -A 2 WC(AW)T AWas U --* 0

= A{(AW)C - (AW)C(AW)TVT - (AW)C(AW)TAW} (97)

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 87

1 2 3 4 5 6 7
1 0.438 -0.359 0.763 0.001 -0.039 -0.013 0.004
2 0.661 0.199 -0.418 -0.176 -0.070 0.017 0.008
3 0.022 0.709 0.275 0.478 0.112 -0.012 -0.001
4 0.076 -0.266 -0.182 0.852 0.273 0.006 0.047
5 0.007 0.010 0.023 -0.206 1.063 0.394 0.010
6 -0.027 0.009 0.016 0.060 -0.248 1.248 0.101
7 0.009 0.006 0.010 -0.007 -0.007 -0.062 1.611
8 0.003 0.006 -0.010 -0.006 0.002 -0.009 0.006
9 -0.011 0.010 -0.013 -0.002 0.001 -0.006 0.010
10 -0.003 0.004 -0.004 0.005 -0.002 0.002 0.013
11 0.003 0.001 0.003 0.002 0.001 -0.005 -0.002
12 0.000 0.001 0.002 0.002 0.001 0.002 0.002

Table 8: Model 2 Results
Results from a network with 12 inputs/summing neurons and 7 interneurons. Each

vector into each interneuron(the columns above) has almost all of its weight int the
first 7 directions. The actual Principal Components have not, in general, been iden-
tified.

The factor A which multiplies the whole of the right side of Equation 97 acts on the

whole of that side equally i. e. does not have the differential decay effect necessary
to force convergence to Principal Components. It does however have the effect that

the first vector wi has the highest learning rate and so will tend to adapt to those

directions which contain the greatest variance before the others do. This results in a
"fuzzy" PCA. The first and last terms are precisely those of the Subspace Algorithm

i. e. will cause (AW), and hence W, to converge to the Principal Subspace though not
to the Principal Components themselves. The results of a simulation based on the

usual set of data are shown in Table 8.

A second drawback of this model is that the activation function in Eqn 91 is

applied only to the effect of the other inhibitory interneurons. i. e. the interneurons

are calculating their final output values after the activation function has been applied.
This may not be appropriate in a biological mode.

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 88

4.3.3 Model 3- Feedforward Activation Functions

Now we only have an activation function on the first calculation of the z values:

y=x- Vz (98)
z= AWy = AWx (99)

z=z- Uz (100)

OW =i zyT (101)

1VT = fzyT (102)

AU = nzzT (103)

Then we have

z= (I - U)z' = (I - U)AWx

Therefore

G= (I - U)AW
dG

= (I -
dW

-
dUAW

As before, we can show that

dW
= (I - U)AWC - (I - U)AWC((I - U)AW)TVT (104)

dt
dU

= (I - U)AWC((I - U)AW)T (105) dt
and so that

dG
=I UAI d(-)(- U)AWC - (I - U)A(I - U)AWC((I - U)AW)TVT

-(I - U)AWC((I - U)AW)TAW

-º A2WC -A 2 WC(AW)TVT - AWC(AW)TAW as U-º 0

= A{(AW)C - (AW)C(AW)TVT} - (AW)C(AW)T(AW)

= A{(AW)C - (AW)C(AW)TA-1(AW)

-A-1(AW)C(AW)T(AW)} (106)

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 89

The rationale behind this model is that each interneuron has equal inhibitory effect

on the others but have differential responses to inputs.

The central term causes convergence to the Principal Subspace but within that

subspace causes no convergence to the Principal Components themselves. The last

term is the one which causes convergence to the actual Principal Components.

In more detail, consider the system as governed by

dG
_ (I - U)A(GC - GCGTVT - ((I - U)A)-1GCGTAW) dt

-> A(GC - GCGT VT - A-1GCGT G) as U-> 0

We note that as A is diagonal and of full rank, it has an inverse, which is also diagonal,

and each element of the inverse, (A'1);; = as -1
Then, as before, the central term will have no effect on convergence once the

weights have converged to the Principal Subspace. Within that subspace convergence

of the weights is governed by the equation

dG
= A(GC - A'1GCGT

dt G)

This causes gi to converge to 4ck = a- Jck where k=m-i. Note that if a; > a, then

as 1< al 1 and so this model causes convergence in the "opposite direction" to that

normally associated with the A values. See Table 9. Now, g; _ (I - U)Aw; -' a, wi;
therefore,

aiwi = aiCl

1
i. e. wi = ci

ai

Now G is simply a mathematical construct to help us understand the model; the

actual learning processes take place in the modification of the W and U weights; in

particular, the values of the W weights are determined by the convergence of '. At

Wi =i ci

dw;
= a; w; C - a; w; C(a; w1)Tv T

dt
-21

= aiAiai c1 - ai(ai 2 ci)C(a; a; Cj)T (a, Cj)

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 90

1 2 3 4 5 6 7
1 0.794 -0.024 0.014 -0.009 -0.004 -0.002 0.001
2 0.020 0.849 0.003 -0.007 0.014 0.013 0.005
3 -0.027 -0.012 0.918 0.047 0.028 -0.008 -0.010
4 -0.005 0.010 -0.021 1.007 -0.015 0.018 -0.001
5 0.002 -0.002 -0.017 -0.004 1.129 0.016 0.013
6 -0.005 -0.018 0.011 0.000 -0.007 1.308 -0.040
7 0.009 0.013 0.014 -0.001 -0.025 0.021 1.613
8 -0.007 0.010 -0.002 -0.004 -0.001 -0.010 0.006
9 -0.017 -0.001 0.002 -0.004 -0.004 0.006 -0.013
10 -0.003 0.001 0.002 -0.003 0.001 0.006 0.003
11 0.003 -0.002 0.003 0.001 -0.003 -0.003 0.002
12 0.001 0.001 0.004 0.003 0.001 0.002 0.001

Table 9: Model 3
The results are from a network with 12 inputs/summing neurons and 7 interneurons;

each column is the vector of weights into each interneuron. In all cases the actual
Principal Components have been identified. Note the different direction of `slope' of
the bold figures (see text).

Aiai cj -A jai cj. ai cj(Ä+ai 1 ci)

}I

= A1a; c; -Aiaia; 2ci

=o
In other words, that solution of the overall system dynamics,.. =0 is also a solution

of = 0. The system will converge in harmony.

4.3.4 Summary

We present a summary comparison of the models using the rate of change of the

various weights to guide the comparison.

dW
dt

Note first that in all three models, 1' will cause convergence to the Principal Subspace

but not to the actual Principal Components themselves. We repeat the equations here

for convenience:

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 91

Al A2 A3 A4 A5 A6 A7

x 1.58 1.38 1.18 0.98 0.78 0.58 0.38
1.26 1.17 1.09 0.99 0.88 0.76 0.62
0.79 0.85 0.92 1.01 1.14 1.31 1.62

Table 10: Experimental values of A; and corresponding values of f (A;) for the func-
tions shown

W1 wa W3 W4 W5 W6 W7

Modell 0.998 1.000 0.998 0.999 0.999 0.999 1.000
Model 2 0.792 0.861 0.930 1.013 1.130 1.309 1.614
Model 3 0.795 0.849 0.919 1.008 1.130 1.308 1.614

Table 11: Lengths of the relevant vectors from the 3 Models

Model 1 d' = (I - AU)WC - (I - AU)WCWT(I - AU)TVT

Model 21= (I - AU)AWC - (I - AU)AWC((I - AU)AW)TVT

Model 3 9r = (I - U)AWC - (I - U)AWC((I - U)AW)TVT

All three equations are of the form

dd
--i, GC - GCGTVT as U--* 0

and as before it can be shown that VT = KG for some diagonal matrix K. Therefore,

all of these equations will cause the G vectors to converge to the Principal Subspace

but not to the Principal Components themselves. We note that if a; wi has converged
to an eigenvector then wi has converged to the same eigenvector. Further, these

equations will determine the size of the W vectors; since each vector, g; is of length 1,

we have, noting that limt u; 1 =0

Model 1 1wi) =1
i

Model 2 Iwil = a; '
L

Model 3 1w; I = a; '

This analysis is corroborated by Tables 10 and 11 We will demonstrate that the

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 92

stated solution is correct for Model 2- the other models can be similarly' analysed.
We have

dW
_ (I - AU)AWC - (I - AU)AWC((I - AU)AW)TVT

dt

--> AWC - AWC(AW)TVT as U -+ 0
I

Now let wi = a; ' b; where bi bjc; i. e. bi is a unit length combination of the

vectors ci , with ci the eigenvectors of C as usual. Then,

dW
_ AWC - AWC(AW)TVT

dt

dt - -,
(a b c"C - a; a; bicjCa; a bicý a; bicj

dw;
,' .i(')('

)T(')
iii .7

=a ai bicj -a ai bici(a? E bic3) (a 'E bi ci)
iiii

it
=a aibicj -aEA, bici(E bici

=0

since bb is a unit length vector and so (E, b; cj)2 = 1;

dU
dt

Neither will cause convergence to the actual eigenvectors.

Model 1A_ (I - AU)WCWT(I - AU)T

Model 2E_ (I - AU)AWC((I - AU)AW)T

Model 3E_ (I - U)AWC((I - U)AW)T

Note that all equations have the general form 4= GCGT. We consider only the

case U=O, since it can be shown that, at U=0 in all models, dý = 0. Then since A

is a diagonal matrix, convergence to non-zero diagonal elements is achieved whenever

3Indeed, more simply since we can use the fact that these models cause convergence to the
eigenvectors . 'This is not to be taken that we assume that aU =0=U=0

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 93

the rows and columns of W are orthogonal. (If a; w; 1 ajwj then wi 1 wj). Consider

Model 3, at U=0 , wi = a; ' c; ; then

dtj - (I - U)Aw; C((I - U)Awj)T

-+ Aw; C(Aww)T as U -->O
ajAiwi, aiwj

_ Aiaidjwi"Wj

- Aiaiajbijai d;
Z

Äi6ijai aj'

where S il is the Kronecker delta. Therefore, off the main diagonal, -d, -i24- = 0. So the

equations governing the growth of U and W merely ensure that the columns of W

form an orthogonal basis of the Principal Subspace of the covariance matrix of the

input data.

dG
dt

dG is the equation which causes convergence to the Principal Components. dG is the

manifestation of the interaction between the dynamical development of U and that

of W.

Recall that G is defined as

Model 10= (I - AU)W

Model 2G= (I - AU)AW

Model 3G= (I - U)AW

If we assume convergence at U=O, then we have

Model 1

dG
_V I AU)GC - GCG / AU){ GC T} - AGCGT W

dt
-ý

(I

- (I
1+

A)GCGT W

GC - (I + A)GCGT G

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 94

This causes convergence of g; to l+ic;;
however note the caveats made in

section 4.3.1

Model 2

dG
= (I - AU)A{GC - GCGT VT }- AGCGT (AW)

-º A{GC -
GCGT VT - GCGT (AW)}

There is no specific parameter which will force the weights to the actual Prin-

cipal Components themselves; both decay terms cause convergence to the Prin-

cipal Subspace but within that subspace are non-directional.

Model 3

dG
= (I - U)A{GC - GCGT VT }- GCGT AW

--º A{GC - GCGT VT - A'1GCGT AW}

A{GC - GCGT (A'1G) - A-1GCGT G}

This causes convergence to Acm_i. The essential point to note is that that

vector associated with the smallest value of A corresponds to that vector with
the largest eigenvalue.

11

4.3.5 Other Models
1, r

Clearly the models identified above are not the only possible models; however, all
models investigated have been found to be of one of the three classes defined by the

above 3 models e. g.

Model 4 Our equations are almost the same as in Model 2 but note that the second
outputs of the interneuron are calculated after the subtraction of the inputs
from their peers :

y= x-Vz

zF = AWy = AWx

(107)

(108)

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 95

z= A(z' - Uzi) (109)

OW = r7zyT (110)

OVT = r? zyT (111)

AU = rizzT (112)

Then we have

z= A(I - U)z'= A(I - U)AWx

Therefore

G= A(I-U)AW
dG

_ A(I - U)AdW - AdUAW
dt -T t-

As before, we can show that

dd
= A(I - U)AWC - A(I - U)AWC(A(I - U)AW)TVT (113)

dU
= A(I - U)AWC(A(I - U)AW)T (114) ät

and so that
dG
dt

---i

A(I - U)AA(I - U)AWC - A(I - U)AA(I - U)AWC(A(I - U)AW)'

-AA(I - U)AWC(A(I - U)AW)TAW

A(I - U)A(GC - GCGTVT - (A(I - U))-1GCGT(AW)

A2{(A2W)C - (A2W)C(A2W)TVT - A-1(A2W)C(A2W)TAW}

This model acts similarly to Model 3 in that the A-1 causes convergence. All

effects, however, are even more pronounced: the differential learning rates of
the feedforward functions gi are even more exaggerated, and the differences in

the size of vectors are larger. The rationale behind this model is that each
interneuron will calculate its activation at all times based on the sum of the

inputs at that time. This is possibly the most realistic biological model; it

requires no meta knowledge and is local, simple and parallel.

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 96

Model 5

y= x- Vz (115)

Z= Wy = Wx (116)

z= A(z - Uz) (117)

OW =i zyT (118)

AVT = 77zyT (119)
AU = r1zzT (120)

Then we have

z= A(I - U)z = A(I - U)Wx

Therefore

G= A(I - U)W
dG

= A(I - U)dW - AdUW
dt dt dt

As before, we can show that
dW

= A(I - U)WC - A(I - U)WC(A(I - U)W)TVT (121) WT
dU

_ A(I - U)WC(A(I - U)W)T (122)
ät
dG

--> A{GC - GCGT VT - GCGT W}"" (123)

This model acts like Model 2. It finds the Principal Subspace but not the
Principal Components themselves as there is no differential decay in the model.

Model 6

y= x- Vz (124)

z1 = AWy = AWx (125)

z= A(z'- AUz') (126)

AW = nzyT (127)

OVT = rizyT (128)

DU = ? lzzT (129)

r

ff

i

rE

Eý

CHAPTER 4. PEER-INHIBITORY INTERNEURONS

Then we have

z= A(I - AU)z' = A(I - AU)AWx

Therefore

G= A(I - AU)AW
dG

= A(I - AU)AdW - AAdU AW
dt dt dt

As before, we can show that

dW
dt
dU
dt
dG
dt

97

= A(I - AU)AWC - A(I - AU)AWC(A(I - AU)AW)TVT130)

= A(I - AU)AWC(A(I - AU)AW)T (131)

--> A2{GC - GCGTVT - GCGTAW} (132)

Again there is no asymmetry in the learning process and so the model will act
like Model 2- it finds the Principal Subspace but not the Principal Components.

4.4 Emergent Properties of the Peer-Inhibition

Network

A possible criticism of envisaging biological neural nets as performing a Principal

Component Analysis is that it leads to a situation whereby one neuron is in charge of

all information passing in a particular direction; therefore, if it is in any way damaged,

the information in that direction which should be passed on will be lost.

An interesting property of large Peer-inhibitory networks is that such so-called
"grandmother" cells take a very long while to form: the network quickly self-organises
till each interneuron's weights are maximally sensitive to 4/5 directions but it then

takes a very long while to converge to a single Principal Component. A typical set

of weights is shown in Tables 13 - 16. It should be seen that each weight is gradually

converging to a particular Principal Component; what is more difficult to show is

that the direction of each Principal Component is maximally associated with the

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 98

weights of approximately 4 or 5 interneurons after 50000 iterations and the weights

only gradually thereafter converge to a single Principal Component. The full matrix

would appear as a "fuzzy" diagonal of bold-faced type.

4.5 Conclusion

In this chapter, we have used the negative feedback effect of each interneuron on the

other interneurons in an attempt to ensure that the weights into each interneuron

converge to the actual Principal Components themselves. We have shown that it

is not enough to simply feedback the activations of the interneurons as they are

calculated - some measure of asymmetry must be introduced into the network.
Two main methods of introducing such asymmetry have been shown to be suc-

cessful: interneurons using different learning rates and interneurons using different

activation functions. While both of these methods have been shown to be successful,
the results of the analysis and experiments with different activation functions show
that simply to introduce an asymmetry into the network without a theoretical under-

standing of the consequences could lead to unpredictable consequences: in the case

of activation functions, it has been shown that the same activation function can have

the desired effect, no effect or the opposite effect to that which might be predicted
depending on where it is introduced.

Nevertheless, several models have been shown to be extremely successful at finding

Principal Components of input data and hence of transmitting the maximum amount

of information with the least possible amount of hardware. The inherent parallelism

of the network should make possible a very fast implementation of the network on

parallel hardware.

CHAPTER 4. PEER-INHIBITORY INTERNEURONS 99

Table 12: Each row represents the first 7 components of the first 5 interneuron weights
in a network of 100 inputs and 50 interneurons after 50000 iterations; all weights not
shown are less than 0.1. most considerably less...

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7
Interneuron 1 0.737 0.405 0.464 0.063 0.154 0.114 -0.079
Interneuron 2 0.072 0.323 -0.637 0.360 0.557 -0.030 -0.021
Interneuron 3 0.046 0.638 -0.375 -0.461 -0.429 -0.045 0.297
Interneuron 4 0.340 -0.259 -0.255 0.533 -0.475 -0.015 -0.440
Interneuron 5 0.506 -0.466 -0.366 -0.443 0.123 0.322 0.170

Ta1-i1F+ l A- TIPP carne nefwnrk as aikn-t, P a; +sar. 1 nnnnn

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7
Interneuron 1 0.898 0.325 0.256 -0.021 0.081 -0.025 -0.048
Interneuron 2 0.021 0.361 -0.690 0.379 0.466 -0.032 0.059
Interneuron 3 -0.095 0.626 -0.319 -0.496 -0.471 0.043 -0.091
Interneuron 4 0.266 -0.289 -0.378 0.490 -0.653 -0.086 -0.226
Interneuron 5 0.329 -0.525 -0.488 -0.525 0.101 0.190 0.209

Tah1P 1d" The came. nP4wnrlr ac a}invs+ !. f+... 9nnnnn ; 4erý4;.,,, o
Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7

Interneuron 1 0.922 0.022 0.162 -0.130 -0.032 -0.015 0.023
Interneuron 2 0.207 0.191 -0.850 0.339 0.248 0.083 -0.053
Interneuron 3 -0.082 0.845 -0.082 -0.457 -0.273 0.004 0.060
Interneuron 4 0.034 -0.184 -0.257 0.180 -0.914 -0.121 -0.016
Interneuron 5 -0.010 -0.479 -0.398 -0.737 0.005 0.237 0.131

TA1P 1.5" Th camp nefwnrle as ahnvP nftP1. Innnnn ; faýý4; nne
Input 1. Input 2 Input 3 Input 4 Input 5 Input 6 Input 7

Interneuron 1 0.961 -0.133 0.139 -0.167 -0.037 -0.002 0.041
Interneuron 2 0.218 0.164 -0.902 0.308 0.091 0.035 -0.015
Interneuron 3 0.063 0.949 0.078 -0.265 -0.101 0.056 0.016
Interneuron 4 -0.032 -0.063 -0.102 0.034 -0.971 -0.157 0.067
Interneuron 5 -0.137 -0.219 -0.367 -0.860 0.011 0.190 0.103

Table 16: At the other end of the matrix/table, the interneurons' weights are con-
,.... , verging only sugntiiy more siowiy

Input 50 Input 49 Input 48 Input 47 Input 46 Input 45 Input 44
Interneuron 45 0.013 0.273 -0.061 0.123 -0.717 -0.077 0.297
Interneuron 46 0.129 -0.172 0.122 0.271 -0.017 -0.868 0.039
Interneuron 47 0.065 0.317 -0.072 -0.859 -0.090 -0.313 0.018
Interneuron 48 -0.088 0.058 0.963 -0.114 -0.105 0.121 -0.093
Interneuron 49 0.731 0.558 0.080 0.223 0.270 0.108 0.002
Interneuron 50 0.617 -0.654 0.007 -0.237 -0.297 0.170 -0.015

Chapter 5

Biological Asymmetries

5.1 Back to the Biological Drawing Board

The initial rationale for the development of ANNs came from attempting to emulate
biology. We have been trying in the previous chapters to create an engineered PCA

machine which does not stray too far from a possible biological model. However, the

models of the last section have moved quite a distance from a conceivable biological

model, not simply in terms of the increase of complexity of the model but also, more
importantly, in the necessity for structured time intervals. In the previous chapter,

we required a 3-phase operation in transferring activations:

Phase 1 The activation is fed forward; the interneurons calculate their activations.

Phase 2 The interneurons' activations are fed to the other interneurons; the in-

terneurons recalculate their activations.

Phase 3 The interneurons activations are fed back to the summing neurons; the

summing neurons calculate their activations

and it is only after all 3 phases have taken place that any learning will take place.
All biological evidence suggests that nature does not countenance such complex

dependencies; she tends to throw lots of simple robust power at problems.
Let us restate the situation as we currently find it:

100

CHAPTER 5. BIOLOGICAL ASYMMETRIES 101

1. The interneuron network has been shown to converge to the Principal Subspace

(i. e. not to the Principal Components themselves but to some basis of the PCA

subspace) when simply set running in parallel mode.

2. We can force the network to learn the actual Principal Components if we intro-

duce asymmetry into the network either by creating interneurons in a phased

manner(temporal asymmetry) or by creating asymmetry in a Peer-Inhibition

network by means of differential learning rates (acceleration asymmetry) or dif-

ferential activation functions (efficiency asymmetry).

3. In introducing any of the asymmetries to the network, we corrupt some of the

attractive properties of the basic network which we have identified as

" Simplicity

" Homogeneity

" Locality of information use

" Parallelism

In this Chapter'
, we consider the effects of two naturally-occuring asymmetries and

then use one in an application of our negative feedback neural network.

5.2 Non-negative Weights
ý; .

There is one obvious asymmetry used in nature which we have not used as yet: it is

believed that signals from neurons may be excitatory or inhibitory but not both i. e.

a neuron's output can excite (positively) other neurons or it can inhibit (negatively)

other neurons; what cannot happen is that it excites some and inhibits others. The

results reported in previous Chapters were based on a model where the weights were

allowed to take any value positive or negative and so a; neuron could be exciting some
neurons while inhibiting others. In fact, it is possible for a neuron to switch from

excitatory activation to inhibitory as its weight changes from positive to negative. If
'Some of this work has appeared in (Fyfe, 1993a; Fyfe, 1993e; Fyfe and McGregor, 1994).

CHAPTER 5. BIOLOGICAL ASYMMETRIES 102

Input 1 Input 2 Input 3 Input 4 Input 5
Interneuron 1 0.552 0 0.004 0.000 0.001
Interneuron 2 0.700 0 0.005 0.000 0.001
Interneuron 3 0.035 0.991 0.004 0.000 0.000
Interneuron 4 0.450 0 0.003 0.000 0.001

Table 17: A5 input, 4 interneuron network with the same type of input data as
previously

we allow only non-negative weights i. e. ensure that if a weight, while learning, never
takes a negative value, we have the following interesting situation:

Assume that two weights of our converged network have values aci + bcj and

cci + dcj, with the same notation as before. Then since the weights converge to an

orthogonal basis of the space, ac + bd = 0. Now if none of the terms a, b, c or d

can be negative, then at least 2 must be zero (one from each term ac and bd). In

other words, this constraint swings the weight vectors through the weight space to

the actual Principal Components themselves. Since we are not directing the process,

situations where several sets of weights converge to the same Principal Component

tend to appear. An extreme example is shown in Table 17 in which we report the

results of a simulation on the same type of data as previously but where the basic

VW interneuron network was set up and the weights allowed to learn concurrently.
Clearly, the weights of interneurons 1,2 and 4 have all converged to the same

Principal Component. Note that the weights marked ordy'u0" have been stopped
from becoming negative.

5.2.1 Other data sets

However, there is one clear difficulty with this program - if we are calculating Principal

Components from a general data set, there must be a negative term in at least one of
the Principal Components' coordinates. (In order to have orthogonal directions, the

inner product of the components must be zero and hence there must be at least one

negative component).
To further investigate the network's potential, data from a distribution whose

CHAPTER 5. BIOLOGICAL ASYMMETRIES 103

Direction 1 2 3 4 5 Value
First PC 0.584 0.811 0.000 -0.002 -0.002 59.3

Second PC -0.006 0.001 -0.469 -0.617 -0.632 33.7
Third PC -0.811 0.584 -0.010 0.005 0.011 7.1
Fourth PC 0.012 -0.008 -0.876 0.235 0.421 2.4
Fifth PC 0.002 -0.001 0.111 -0.751 0.650 0.5

Table 18: Principal Components of the new data calculated using a standard statis-
tical package

Interneuron 1 0.005 0.000 0.465 0.616 0.635
Interneuron 2 0.391 0.518 0.001 0.000 0.000
Interneuron 3 0.324 0.467 0.001 0.000 0.000
Interneuron 4 0.296 0.409 0.001 0.000 0.000

Table 19: A 5-4 interneuron circuit operating on the data of the previous table

Principal Components are shown in Table 18 was used as input to the network:
it should be clear that there is a sharp division in the data between the first two

directions and the last three. It might seem to be possi:. le for the network to con-

verge to a mixture of the above weights e. g. the directions {0.584,0,0.469,0,0} and
{0,0.811,0,0.617,0.632} span the subspace of the first two Principal Components. This

does not happen; the network converges to the first 2 Principal Components them-

selves (see analysis in the next Section).

It is impossible for the network using the positive weight- constraint to converge
to any direction containing a negative component i. e. from the third onwards. To

find out how the network would respond to a situation where there were more degrees

of freedom than possible directions to be found, we used the network with these 5

inputs and 4 interneurons (with the constraint that no weights are allowed to become

negative). The results are shown in Table 19.

It is clear that the first interneuron has found the second Principal Component

while the second, third and fourth interneurons have found the first Principal Com-

ponent. This is a general finding with this type of network with the non-negative
weight constraints.

This form of information extraction may be of importance if the data has been

CHAPTER 5. BIOLOGICAL ASYMMETRIES 104

Inter Input Weight Inter Input Weight Inter Input Weight
0 9 1.000 17 23 0.999 34 10 0.374
1 19 1.000 18 3 0.308 35 20 0.999
2 33 0.998 19 4 0.455 36 16 0.999
3 8 0.554 20 28 0.998 37 25 0.999
4 12 1.000 21 5 1.000 38 6 0.999
5 1 0.370 22 27 0.998 39 0 0.641
6 1 0.490 23 35 0.993 40 18 0.999
7 0 0.611 24 26 0.998 41 31 0.998
8 2 0.999 25 30 0.999 42 22 1.000
9 32 0.997 26 14 0.999 43 7 0.674
10 15 0.999 27 3 0.951 44 0 0.142
11 8 0.481 28 10 0.870 45 10 0.320
12 29 0.998 29 11 0.797 46 21 0.999
13 34 0.995 30 17 0.999 47 7 0.738
14 0 0.441 31 8 0.679 48 11 0.602
15 13 1.000 32 1 0.451 49 1 0.648
16 4 0.890 1

1
33 24 0.999

Table 20: Results from an interneuron network with 100 inputs labelled 0-99, and
50 interneurons labelled 0-49, e. g. the weights into interneuron 0 have converged to
(input) direction 9 and the weight in that direction was 1.000

preprocessed in order to have isolated the "texture" data from the "colour" data from

the "smell" data etc.. This type of distributed data-processing is known to happen in

biological neural networks. However, this type of data-processing cannot be an initial

data-processing function. The information must first be differentiated into disjoint

dimensions: if there is any overlap between the dimensions in which the data exists,

no more than one Principal Component per data set is possible.
We note that the length of the total vector of weights into interneurons 2,3 and

4 is one unit.
Restricting ourselves to our specialised data, we can show that the principal di-

rections are found: in Table 20, we show the weights from a network with 100 inputs

of the same specialised form as before and 50 interneurons. All weights not shown

were under 0.015 after 100000 iterations. We note that

" The weights into each interneuron converged to a single Principal Component

CHAPTER 5. BIOLOGICAL ASYMMETRIES 105

" Some of the directions with largest eigenvalues, (those of the first 12 Principal

Components) were covered by more than 1 interneuron. Maximally, directions

0 and 1 were covered by the weights of 4 interneurons

9 The weights in each direction still (approximately) had length 1

" There is no half-way house with this network's converged weights- the weights
into different interneurons are either totally orthogonal or in completely the

same direction.

The last 2 points are potentially important in considering an interneuron network

as a possible explanation of biological networks' information management processes.
If such recognition is spread over a group of neurons such as is shown here, this

provides a robustness in the network which has been missing up till now.
Further, since the total weight in any direction still has length 1, then directions

which are represented by more than one interneuron are not overemphasised in any
data processing.

Experiments with larger sizes of networks have shown that the above effects in-

creases with size.

5.2.2 Theoretical analysis

Consider a network with 4 inputs and 2 interneurons. Let the eigenvector of the input

data with the largest eigenvalue be a= {al, a2,0,0} and the second eigenvector be

b= {0,0, b3, b4}. Then, in the situation described in the last section, if wi is the

vector of weights into interneuron i, then wi converges to a and w2 to b or vice-

versa. We show that this is a stable solution.
Using angled brackets to indicate the ensemble average, the expected input is

(x) = k�a + kbb = {kcal, ka2, kbb3, kbb4} (133)

(z1) = ka(ai + aä) (134)

(yi) = kaai - kaai(ai + aä) (135)

CHAPTER 5. BIOLOGICAL ASYMMETRIES 106

So, the expected change in the weight between yi and zl is

(w11) = 71(ylzl)

_ 1(dl(1 - (a1 + az))kä(a1 + dä)} (136)

So, since a; 0 0, Vi and k. > 0, (Aw11) =0b ai + a2 = 1. Since the eigenvector a
has length 1, the converged weights are stable.

Now consider a network whose weights have converged to values incorportating

both eigenvectors e. g. let wi have converged to {al, 0, b3,0} and w2 have converged

to {0, a2,0, b4}. Then a similar argument to the above leads to

(w11) _ (kaa2 + kbb3)al(ka - (kaa2 + kbb3))

So (1 wii) =0k,, = kb
i- 7= kb-. This equation imposes constraints on the

input data relating the internal proportion of each eigenvector in each direction to

the relative size of each eigenvalue.
Thus, while it is possible to construct data to satisfy these criteria, it is not

generally the case that data-sets will comply with the constraints.
Further note that this equation is only one of 4 derivable from the system. We

can show that the system requires k=H=A for stability. This will not generally
be true.

`
I.

5.3 Using Distance Differences

Another possible model is suggested by the innate asymmetry in real biological neural

networks in terms of the distances between neurons. This will manifest itself as
different times to respond to a signal depending on the distance which the signal

must travel (assuming that there is some uniformity in the speed of information

transfer).

This differential is used in a new model where different interneurons take different

lengths of times to respond to the input signal x. Therefore while the activation from

the input neurons is transmitted to all interneurons at the same time, each interneu-

ron's response takes a different length of time to feedback to the input neurons. Thus

CHAPTER 5. BIOLOGICAL ASYMMETRIES 107

the negative feedback is felt and used in a phased manner and learning takes place
immediately the returned signal is received. Therefore, we embed the learning process
in the feedback loop, so that we now postulate a learning and activation-transmission

process which takes place in the order in which the following equations are given.

initial value of y= y(0) = x (137)

z= Wy (138)

y(t) = y(t - 1) - v; (t -1)z; (139)

Owi(t) = q(t)z; (t)y(t) (140)

Ov; (t) = q(t)zi(t)y(t) (141)

where e. g. v; (t - 1) indicates the value of the vector of weights vi at the time t-1.

Other than the first two steps, (the acceptance of the initial activation x and its

forward transmission to the interneurons) the process (defined by Equations (139),

(140) and (141)) is repeated for each interneuron in turn. This corresponds to the

feedback from the interneurons being received at different times (perhaps depending

on the physical distance which the activation must traverse, perhaps depending on

the efficiency of transmission of the interneuron). This process results in the weights

of the first (fastest) interneuron learning the first Principal Component, the second
fastest interneuron learns the second Principal Component etc.. Experimental results
from a network with 5 inputs and 3 interneurons are given in Table 21. In order to

demonstrate the effect of the network, we have carried out our simulations on the

same type of data as previously. Clearly the first 3 principal components have been

found by the 3 interneurons.

Note that the crucial difference between this model and previous models is the

embedding of the learning process in the activation reception process. When this is

done, the resulting network is more similar to a Sanger-type (Sanger, 1990) network

rather than an Oja-type network. The kth interneuron is learning to extract the

maximum amount of information which is left after the previous (k-1) interneurons

have extracted their information.

CHAPTER 5. BIOLOGICAL ASYMMETRIES 108

v w
1.000 0.006 -0.010 1.000 0.006 -0.010
-0.000 -1.000 0.013 -0.000 -1.000 0.013
0.012 0.023 1.000 0.012 0.023 1.000
0.000 -0.003 0.004 0.000 -0.002 0.004

-0.002 -0.004 -0.001 -0.002 -0.004 -0.001

Table 21: Results of the Differential Distance Model; each column shows the con-
verged weights between one interneuron and the input neurons after learning on data
from independent zero mean Gaussians with descending variances

5.3.1 Equivalence to Sanger's Algorithm

Sanger's algorithm has, as a learning rule
i

t&wij = 77Yi(x, i -E ykwki)
k-1

in a totally feedforward architecture, where the outputs at y are given by

yi w. ixi

We can show that the interneuron network using the rules determined by Equations

137 - 141 is equivalent to Sanger's algorithm:
Let the y values be indexed with the time of feedback from the interneurons.

Then,

y3(0) is the initial value of yj at time 0. i. e. y, (0) = xj

y, (1) is the value of y3 after receiving the feedback activation from the first (and hence

closest) interneuron. i. e. yj(1) = y3(0) - vl3zl. Note that the time values are only

ordinal indices - they do not imply equal intervals between feedback activations.
Similarly, if y, (2) is the value of yj after receiving feedback from the first 2 in-

terneurons, then

a
yj(2) = yi(l) - v2jz2 = yi(O) -E VkjZk

k-1
(142)

In general, if y,, (i) is the value of y3 after receiving feedback from the first i interneu-

rons,
ii

yj(i) = yj(O) - EVkjZk = O7 - LVkjZk (143)
k-1 k=1

CHAPTER 5. BIOLOGICAL ASYMMETRIES

Therefore,

Ovij = Awij = 17Yj(Z)'zi

i

= n(yj(0) -E vkjzk)zi

k=1

i

? 7zi(Xj -E vkjzk)
k-1

which is exactly Sanger's formulation (see Chapter 2).

5.4 The Interneuron Coding Network

109

The various algorithms (such as that above) describing learning within the interneuron

network have been shown to extract the maximum information from sets of stochastic
data. The next obvious question is to decide what a network should do with such
information when it has been extracted. Some form of coding would be helpful in

classifying such data.

The interneuron coding network was developed in appreciation of the way in which
Carlson (Carlson, 1990) amended the basic network of Rubner and Schulten (Rubner

and Schulten, 1990), a PCA network, in order to create a coding network.
While we have wished to emulate his success, we have the continuing design ethos

based on the retention of as many of the attractive features of the basic interneuron

network as possible - those of simplicity, homogeneity, locality of information use and

parallelism.
Our aim is to create a network which will take a set of raw data and code it so

that different sections of the data are coded differently and such that data which have

most similarity are most alike in codes i. e. a topology-preserving network. A binary

code is easiest to implement with a simple threshold. Since we require several bits

for each codeword, we suggest a network such as shown in Figure 10.

This network is shown with only one input and 3 coding interneurons. Raw data

at the x input is converted to a binary coded vector z at the coding interneurons.

There are only two differences between this network and those investigated pre-

viously: each interneuron is connected to only one input and each interneuron has

CHAPTER 5. BIOLOGICAL ASYMMETRIES

C
0
D
E
S

110

Figure 10: The Coding Network. Raw data is fed in from the left; binary codes
emerge from the right

a threshold above which its weighted inputs must sum in order to force a positive
firing; if the threshold is not reached, the interneuron will have a negative activation.
In detail,

" Each interneuron, in turn, receives a weighted sum (in this case of only 1) of the

y values; however, each interneuron has a threshold above which its activation
will have a positive value and below which the activation will be negative. We

choose the threshold for all interneurons to be 0. Then, if zi is the activation of
this interneuron,

z; = 1ifw; x>0

= -lifw; x<0

" This activation is then returned (weighted) and subtracted from the y values.

y(t + 1) = y(t) - viz;

where y(t) is the value of y at time t (and y(O)=x).

THE CODING NETWORK CODING

_INTERNEURONS

CHAPTER 5. BIOLOGICAL ASYMMETRIES 111

" The weights, w; and v; are updated according to the same rule as previously,
i. e. a simple Hebbian learning rule

Wi = wt + 17yzi

vi = V: +7 YZi

Note that the zs values are either 1 or -1; changing the weights is the sole method
of learning in the system to ensure that appropriate codes are found.

We wish to emphasise that we have not programmed a threshold nor any specific
function which monitors the variance of the data and adjusts the network's response

appropriately.

5.4.1 Results

A typical set of results is shown in Table 22. These resu'.: s are for an 6 interneuron

network which is learning from a set of x-values generated from a uniform distribution'
between 2 and 4. The network used a learning rate of 0.01 and ran for 10000 iterations

Several points are worth noting:

" First the coding seems fairly inefficient in that the first figure is always 1. This
is due to our insistence that all means are zero. Thus the first code element is

always 1 for inputs >0 (see Section 5.4.2

" If we wish a code where the first interneuron performs maximum discrimination,

(i. e. in the above example, all inputs less than 3 would be coded as -1, all inputs

>3 would be coded as +1) we would use a threshold which will also learn; a

rule such as

B" = 61 + aw1. x

2We use a uniform distribution here to make it clear why each weight has converged to the value
it has converged to

CHAPTER 5. BIOLOGICAL ASYMMETRIES

Decimal Decimal
2.0 1 0 0 0 0 0 3.0 1 0 1 1 1 1
2.1 1 0 0 0 0 1 3.1 1 1 0 0 0 1
2.2 1 0 0 0 1 1 3.2 1 1 0 0 1 1
2.3 1 0 0 1 0 0 3.3 1 1 0 1 0 0
2.4 1 0 0 1 1 0 3.4 1 1 0 1 1 0
2.5 1 0 1 0 0 0 3.5 1 1 0 1 1 1
2.6 1 0 1 0 0

,1
3.6 1 1 1 0 0 1

2.7 1 0 1 0 1 1 3.7 1 1 1 0 1 0
2.8 1 0 1 1 0 0 3.8 1 1 1 1 0 0
2.9 1 0 1 1 1 0 3.9 1 1 1 1 1 0

112

Table 22: A section of coding for vectors produced by a 1-input 6-interneuron network
for input data from a uniform distribution between 2 and 4. Learning rate = 0.01,
number of trials = 10000. We have replaced -1 with 0 to highlight the binary nature
of +b rnrýP

Interneuron 123456
Weight (w) 3.005 0.505 0.254 0.123 0.063 0.031

Table 23: The weights which the above network learned using only simple Hebbian

learning

where 9i is the threshold for the jt interneuron is an entirely local rule and easy
to implement; however, in keeping with our design philosophy of maintaining

simplicity, we have not implemented that here.

" The code seems to be topology preserving - similar inputs have similar outputs
(see Section 5.4.4).

" Experiments have shown that larger networks have no difficulty in providing

more detailed codes and require only a slight increase in time as each element

of the coding is done on the error remaining after the previous interneurons

have performed their coding.

"A topological feature map using the interneuron network has one major advan-
tage over e. g. a Kohonen feature map: it can easily be re-implemented to show

a hierarchy of subfeatures (see Section 5.5) by adding a new level of coding
interneuron

CHAPTER 5. BIOLOGICAL ASYMMETRIES 113

" Lower valued digits are automatically coded more slowly and hence are less

prone to an unusual input creating large changes

5.4.2 Statistics and Weights

We will investigate what the weights are actually learning by considering their values

at convergence. In general, we are using simple Hebbian learning, so

Ow; = r7y(i)z:

where the subscript denote the ith interneuron and y(i) denotes the value of y at time
i. The proof that v; = w; is similar to that shown previously and will not be repeated
here. We investigate 2 interesting cases before looking at the general case:

1. A zero mean symmetric distribution.

" Consider wl, the weight to the first interneuron. Then,

Awl = 71y(l)zi

= fl(x - wizi)zi

= r1(xzl - wl)

since z=1. Hence at convergence

(144)

(Awl) =0 4= (w1) = (xzi) I `. (145

With a zero mean symmetric distribution, zi = -1 when x is negative and

zl = +1 when x is positive; therefore zlx - IxI and so

'wi=(IxI)

at convergence i. e. wi converges to the expected value of the absolute value
of the input data, i. e. the mean absolute value. This has the effect of map-
ping the two halves of the distribution to a tighter (bipolar) distribution

which is mostly contained within the interval [-Ix[, IxI]. See Figure 11.

2. A positive, compact distribution.

By compact, we mean a distribution which contains no holes.

CHAPTER 5. BIOLOGICAL ASYMMETRIES 114

Figure 11: The original zero mean, symmetric distribution (as seen by the first in-
terneuron) is transformed into a bipolar distribution (which is seen by the second
interneuron) by the activity of the first interneuron. The bipolar distribution is al-
most totally between the negative and positive expected absolute values of the input
distribution.

" Consider wl; as before, we can show that, at convergence,
(Awl) =0 (wl) = (xzl) (146)

With this distribution, zi = +1 for all input values of x. So

wl = (x)

i. e. the mean value of the input data V

" Now consider w2, the weight to the second interneuron. Then,

Owe _ 71y(2)z2

_ 71(y(1) - w2z2)z2

_ 71(Y(1)z2 - w2) (147)

since zä = 1. But

y(1) =x- wiz,

= X- (x)

Now if x> (x), i. e. x> w1, then z2 =1 while if x<Y, i. e. x< wi,
then z2 = -1 Thus w2 at convergence equals (Ix - (x)J). Therefore, at

-XxI
0x

CHAPTER 5. BIOLOGICAL ASYMMETRIES 115

convergence, wa is bisecting the residual area of the distribution after wl
has subtracted out the mean. So w2 for this distribution is performing the

task which wi performed for the symmetric distribution.

3. In general, for values of x drawn from any distribution

Ow; = 77y(i)zj

= 77(y(i - 1) - w: z1)z:

= r7(y(i - 1)z; - wi)

Therefore, w; --; (y(i - 1)z;) at convergence

and ify(i-1)>0then z; =1

while if y(i - 1) <0 then z; = -1.
Therefore, at convergence, w; = (l y (i -1)1)

In general, the z values correspond to the coding taking place while the y values

represent the error after the coding has taken place.
The coding of a uniform distribution is shown in Table 22. We use a uniform

distribution this time to make it easy to corroborate that the network is performing

an efficient coding; note from Table 23 that w1 = (jxj) = (x) and w2 = (Ix - (x)I)

etc..

5.4.3 Reconstruction Error
v.

There are 2 possible sources of reconstruction error: from the Principal Component

Analysis and from the coding scheme in each PC direction. Each must be considered
independently.

Reconstruction Error from Coding

We show that, if we use the codes produced by this method to reconstruct the orig-
inal magnitude of the vector in each direction, we can make the expected absolute

reconstruction error from a final code (sometimes called the mean quantization error)

arbitrarily small by simply adding new coding interneurons.

CHAPTER 5. BIOLOGICAL ASYMMETRIES 116

Let us assume that we cannot i. e that there exists an e>0 such that all mean

absolute reconstruction errors are greater than e. We note from the above that this

is equivalent to showing that the value of w; >e for all i.

Note that for a finite distribution, the maximum possible absolute error after the
first coding is

E'Mas = max(IXMax -
(IxI)I, IXMin

-
(IxI)I, (Ix)))

where xMax, XM; n is the largest (resp. smallest) possible member of the distribution.

Thus EMay is finite.

Consider a particular input x. From the results in the last section, because the

system is creating the coding at z and subtracting the weighted coding at y, the value

y(i) is simply the error between the code found by the first i coding interneurons and
the input x after i codings have taken place. Therefore fly(i)j) is the mean absolute

error after i codings of the input. Now,

y(iý = y(i - 1) - w; z

= y(i-1)-(ly(i-1)1)z:

Ify(i-1)<0, z1=-land

y(aý = y(i - 1) + (I y(i - 1)l)

_ -ýy(i -1)I + (I y(i -1)1) ,..
while if y(i - 1) > 0, z; = +1 and

yýiý = y(i - 1) - fly(i - 1)1)

=I y(i - 1)1 - (I y(i -1)1)
Therefore the amplitude of y(i) is the difference between the absolute value of y(i-1)

and the mean absolute value of y(i-1). Thus

Iy(i)l = I{I v(i - 1)1 - (I y(i - 1)1i}1

= I{IO(i -1)I -will
< IIy(i-1)1 -EI

CHAPTER 5. BIOLOGICAL ASYMMETRIES 117

since all terms are positive. Therefore the absolute error at each stage is decreasing

by more than e. Therefore the mean absolute error is also decreasing by at least e at

each stage. Now the initial maximum error is EMax which is finite and the absolute

error is decreasing by a finite amount each time and so cannot remain above e for all
time.

Therefore, we can make the quantization error arbitrarily small by continuing the

coding for a sufficient number of coding interneurons.

Reconstruction Error from the PCA

Since the expected error in the Principal Component representation of the data after
having projected N-dimensional input data onto M PCs is given by

N

E=
i=M+1

(148)

where a; is the iah eigenvalue in normal order, the error may be made arbitrarily small
by increasing M. In particular, for full rank data, it may be necessary to have M=N.

5.4.4 Topology Preservation -1

In stating that we have a topology preserving coding, we mean that

1. similar inputs should be projected onto similar outputs and

2. similar outputs should be the representations of similar inputs.

This is only approximately true, in general, of feature maps using neural nets e. g.

a Kohonen (Kohonen, 1984) map attempts to project the input space onto a network
in such a way that the most essential neighbourhood relationships between data in

the input space are preserved. Yet input data can be constructed which do not permit

a 2-D (or 3-D) mapping to adequately represent all topological equivalences in the

data. We first give an intuitive notion of topology preservation here; a more formal

proof is given in the next Section.

CHAPTER 5. BIOLOGICAL ASYMMETRIES 118

Consider an n-unit coding of a set of input values. Let a particular point x be

represented by zi where zi = {z, 1, z; 2, ..., z;,, }. The subscript i denotes an ordering of
the z values (i. e. of the coding) such that zi < zj for all i<j.

Then any input x+ Ox is represented by the vector zi or by zi_1 or zj+j for

all Ax such that j0xI < w,,, the nth weight. i. e. similar inputs are represented by

similar outputs.
Now consider two distinct input values, x and u, which are represented by the

same zj. Then

n

_
Ew; zj, +Ax
i=l

n

u= 1w; zj; +Au
i=l

where Ax and Du are the errors in the representations after the first n codings have

taken place. Therefore,

X-u = Ox-Au

< 2wn

From the previous section, we know that the value of w� can be made arbitrarily

small and so a single code can be made to represent only similar values. Clearly a

similar argument will show that if the values, x and u, are, represented by contiguous

codes, the values x and u can only be at most 3w� apart. Thus similar codes represent

similar values.

5.4.5 Topology Preservation -2
We will use the results from Section 5.4.3 in this proof: recall that for every c>0,
there exists an n such that w� < e.

Let M be the metric space defined by that (sub)set. of the real numbers defined by

the probability distribution of the raw data. and the metric, d, defined by the usual
Euclidean distance metric.

CHAPTER 5. BIOLOGICAL ASYMMETRIES 119

Let Mi be the metric space defined by the set of codes (of the real numbers in M)

and the metric, dl, defined by the usual Euclidean distance metric (now calculating
in binary).

We do not prove that there is a topology-preserving function which maps M to a

particular instance of M1; however, it is possible to prove that there exists a mapping
from the set M to a member of the family {M1, M1, M13,...

' M1, ...
} where Mi is

the coding which has length n (i. e. formed by using n coding interneurons). In

other words, we can make our mapping as close to a topology preserving mapping as

possible by chosing n appropriately.
We shall create an ordering, {C; } of the codes in Mi based on the size of their

binary values. Thus C; < C; for i<j. Note that for this coding on Mi , if
f(x) is the

function which codes the inputs i. e. f: M -' Mi, then (C; - C;
_1) = w,,, the weight

of the nth level of the coding. Note also that the greatest distance between values

coded by the same code is also w,,.

" First consider the mapping f: M --º Ml.

Then take any point cEM. Vc > 0, we require to prove that 36 >0 such that

di(f(c), f(x)) <c

Vx E M: d(c, x) <6 1, -

Choose the coding MI' such that w� < äe. Let S=w,,. Let f map c to class C;,

the ith class of MI n. Then for all x such that d(c, x) <&=w,,, f(x) is either in

class C; or in one of its neighbours C1_1 or C; +1. So f(x) is within 2w� of f(c)

i. e. f (x) E (f (c) - e, f (c) + e), when d(x, c) < 2w,,. i. e.

di(f (c), f (x)) <e when d(c, x) <6

9 Now consider the mapping f: Ml -+ M.

Then take any point C; E Ml . Given any e>0, we must prove that

35>0: d(f(C;), f(x))<e, VxCM: di(C;, x)<S

CHAPTER 5. BIOLOGICAL ASYMMETRIES 120

Choose n such that w� < 2e; this defines the actual representative of Mi as
M. We chose 6 to be equal to 1. Then Vx E (C; - 5, C; + 6) is equivalent to

E Ci-1
i

Ci or C, 1

Now the maximum distance between the values which code to C;
_1 or C; +1 and

those which map to C; is 2w,. i. e. 2 times the remaining error after the nth

coding. i. e. d(f (e), f (cl)) < 2w� <e for all x in the declared interval.

Now any particular interneuron coding network is not truly topology preserving;
however, it can be made arbitrarily close to such a network by increasing the length of

the coding. Therefore any particular coding is performing an approximate topology-

preserving mapping.
We define an co-topology preserving network as an interneuron network in which

for all points cEM, Ve > co, 25 >0: dl(f (c), f (x)) < e, Vx EM: d(c, x) <ö where
f (z), f (c) are the binary codes.

Note that this is equivalent to defining w� =ä eo . Then each network in the

sequence of interneuron networks of increasing discrimination is an co-topology pre-

serving network with the value of co defined as 2w� for the specific mapping Mi .

5.5 A Hierarchical Feature Map

We now propose the complete network shown in Figure 12 änd use it in implementing

the ideas of the previous sections. The left half of the network is the basic interneuron

network described in Section 5.3; the right half of the network is the interneuron

coding network described in Section 5.4. The first section will extract the maximum
information from the raw input data i. e. data will be projected onto those directions

which contain maximum information; the second section will code the data along

each dimension independently.

All parts of the system use unsupervised learning. Our learning rule continues to

be simple Hebbian learning with no weight decay or clipping of weights.
Since the network is topology preserving in each direction, it is topology preserving

in the space spanned by these directions. Therefore the construction can be viewed

CHAPTER 5. BIOLOGICAL ASYMMETRIES

n

CODE FOR
DIRECTION 1

IN]
DA'.

CODE FOR
DIRECTION 2

CODE FOR
DIRECTION 3

ý, .
INFORMATION INFORMATION
EXTRACTION CODING
NETWORK NETWORK

121

Figure 12: The complete information extraction and coding network. The double
headed arrow represents both the feedforward weights and the feedback weights

CHAPTER 5. BIOLOGICAL ASYMMETRIES 122

as forming a feature map which is topology preserving in the major information

directions of the data. While it is possible to create continuous multi-dimensional

maps which are topologically different from their projection onto this subspace, each

such anomaly will tend to swing the principal components in the direction of the

anomaly suggesting that such anomalies can at most be a minor part of the input

data. Further, as will be shown, augmenting this type of feature map to take account

of such features is a simple process.
The inherently modular nature of the network (see Figure 12) allows us to consider

the effects of augmenting the network as a purely local process. This modular nature
is a direct consequence of the Principal Component Analysis performed by the first

section which leads to orthogonal input vectors for the second section.

5.5.1 An Example

Kohonen and Ritter (Ritter and Kohonen, 1989) used the data shown in Table 24 to

illustrate the emergence of a "semantic map" using a Kohonen feature map. They

trained a Kohonen network to learn to associate the name of each animal with the

attributes with which it might be associated. They then showed that by entering the

name (and only the name) of the animal into the network,

" different nodes responded maximally to different animals

" the spatial organisation (on a 2-D grid) grouped similar animals together

We have chosen to repeat this experiment with the interneuron network as it might
be thought that organising such a set of data might be difficult for a statistics-based

network such as the interneuron network. Figure 13 shows that the first 2 principal

components are sufficient to make the major differentiation into animals and birds

and within each group there is some differentiation into subgroups. However, the

advantage of using the interneuron network as an encoding network is that further

differentiation is possible by looking at other directions and the third principal com-

ponent shows clearly the differentiation into subgroups taking place in this direction.

This is equivalent to a semantic interpretation of data which allows us to be aware

CHAPTER 5. BIOLOGICAL ASYMMETRIES 123

dove ben duck goose owl hawk eagle fox dog wolf cat tiger lion home ebra cow
 mall 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0

medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
!L 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

2 age 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
41egs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

feathers 1 1 1 1 1 1 1
-

0 0 0 0 0 0 0 0 0
hunt 0 0 0 0 1 r I 1 0 1 1 1 1 0 0 0
run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0
BY 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 24: Animal names and their attributes

of similarities in attributes within a group while being aware of differences in other

attributes between members of the same group. This is the feature which allows us
to call the map a hierarchical feature map.

Following Kohonen and Ritter, each animal was represented by a 29-bit vector, the

first 16 bits of which were 0 except for the bit which identified the particular animal.
The other bits were the animal's attributes as shown in Table 24. The output data

were plotted in the obvious manner - each output vector was identified as a binary

number (1/0) and converted to decimal to give the coordinates in each direction.

While we do not believe that this is a good (or particularly useful) application of

a data-driven network, we believe that this example highlights the hierarchical nature

of the coding possible with an interneuron network.

5.5.2 The Principal Component Analysis

Another advantage of the proposed method is that to some extent, it allows us to

look inside the results in order to investigate how the results came about. This is

particularly interesting in examples such as the current one where the data have

strong everyday connotations for us.
Table 25 shows the first 3 Principal Components of the covariance matrix of the

data of Table 24 as identified by the interneuron weights of the middle layer. It is

easily verified that the vectors form an orthonormal basis of a3 dimensional subspace

of the data.

" The first Principal Component is most strongly identifying animal type features:

animals tend to be big, have 4 legs and hair; some have hooves or a mane;

CHAPTER 5. BIOLOGICAL ASYMMETRIES

Second
Component

15(

12:

101

7

First
Component

Fo

0 5

t
Lion L3e

Ti

100 150 200

Third Component

Owl Hawk Dove I Goose
Han n�re

124

Eagle

Figure 13: The results of the experiment displayed in graphical form

1LU 1SU 140 130

CHAPTER 5. BIOLOGICAL ASYMMETRIES

Attribute/class First PC Second PC Third PC
dove 0.017 -0.071 0.054
hen 0.013 -0.057 0.059
duck 0.014 -0.062 0.083

goose 0.018 -0.077 0.078
owl 0.027 -0.077 -0.022

hawk 0.027 -0.077 -0.022
eagle 0.028 -0.060 -0.116
fox 0.044 0.008 -0.155
dog 0.044 0.021 -0.066
wolf 0.061 0.020 -0.118
cat 0.044 -0.009 -0.062

tiger 0.057 0.021 -0.019
lion 0.065 0.026 0.005

horse 0.059 0.036 0.140
zebra 0.059 0.036 0.140
cow 0.041 0.024 0.102

small 0.161 -0.431 0.166
medium 0.177 -0.012 -0.457

big 0.281 0.143 0.369
2 legs 0.146 -0.482 0.113
4 legs 0.474 0.183 -0.034
hair 0.474 0.183 -0.034

hooves 0.159 0.096 0.383

mane 0.243 0.116 0.167
feathers 0.146 -0.482 0.112

hunt 0.354 -0.149 -0.512
run 0.345 0.159 0.081
fly 0.118 -0.364 -0.029

swim 0.032 -0.139 0.161

`,

125

Table 25: The first 3 Principal Components of the input data's covariance matrix. It
is easily verified that they form an orthonormal basis of the 3 dimensional subspace

CHAPTER 5. BIOLOGICAL ASYMMETRIES 126

somewhat more hunt and run.

" The second Principal Component completes the job: the birds all are repre-

sented by a negative component as are the small, medium, 2 legs, feathers,

hunt, fly and swim attributes. Also, it can be seen that the more prototypi-

cal bird-like features have larger absolute values e. g. Iflyl > Iswiml since the

prototypical bird is more likely to fly than swim. Note also that the cat has

a small negative value brought about by its prototypical bird-like attribute of

smallness. Thus, in the map (Figure 13), the cat appears closest to the birds in

the direction of the second PC.

" The Third Principal Component seems to be mainly differentiating the hunters

from the non-hunters, though differentiation in size and between fliers and swim-

mers is also taking place

Note that the components defining e. g. horse and zebra are identical in all 3 directions

as there is nothing in the input data provided which will allow us to discriminate

between these groups. Similarly, the attributes "4 legs" and "hair" are identically

represented as they are identically distributed in the information we have given.

5.5.3 Augmenting a Map

The desire to augment a map may be brought about by 2 circumstances:

1. The map is too crude as too little information has been extracted from the

original input data.

To extract more information from the raw data, we must find a new Principal

component along which to project the data. Therefore, we must create a new
data extraction interneuron i. e. in the central layer of the network. Now, by

adding our new interneuron at the end of the learning process described in

Equations (139), (140) and (141), we are not disturbing the learning in any

of the other directions which have already been found. Therefore the new
direction can be found without disturbing the principal components already

CHAPTER 5. BIOLOGICAL ASYMMETRIES 127

found; therefore the existing codes are not disturbed and the coding of the new
dimension can be done independently of the existing codes.

2. The map is too crude as too little discrimination has taken place in a particular
direction

Note again that the modular nature of the map allows the discrimination in each
direction to be modified independently of that in the other directions. Thus,

in the coding within a particular direction, we may simply add a new coding
interneuron into the network and, provided it learns after all the others have

learned, it will simply learn to bisect the remaining information after the others
have subtracted their activations. In other words, a new coding interneuron

will simply provide increased discrimination within that direction and will affect

neither the coding in other directions nor the existing coding in its direction.

Experimental results have confirmed this analysis.
Note that the potential for improving a map after it has been constructed is an

improvement on the Kohonen map whose parameters must be specified in advance.

5.5.4 Reparing a Damaged Map

The situation described in this section is more complex than that in the last. Again

2 possibilities must be considered: ý' `"

1. Where damage has occurred in the coding layer.

Here we consider what happens when a neuron is damaged, loses its learning (its

weight assumes a small random number) yet still remains in the same physical

position, with the same physical potential for learning. Experimental results
have shown that even in the worst case, that of damaging the coding interneu-

ron which extracts the greatest information (i. e. the first coding interneuron),

relearning is very fast. The network has the advantage that, when it loses an
interneuron, all of the weights which learn after the damaged interneuron's ac-
tivities, increase in the order in which they are learning - there is no complex
"dog-fight" which is sometimes seen in artificial neural networks. All of the

CHAPTER 5. BIOLOGICAL ASYMMETRIES 128

other interneurons whose weights had increased on a pro-rata basis gradually
lose their gains to the recovering interneuron till the previously existing weight

values are regained. If the new interneuron is deemed to be irrepairable, i. e.
does not recover its ability to learn, the other interneurons simply step up their

information coding capacities in order i. e. each weight increases until it is per-
forming exactly the same discrimination that the weight above it was previously

performing.

2. Where damage has occurred in the information extraction layer

This is potentially the most disruptive damage in the network: when 1 interneu-

ron in the central layer is damaged, the interneurons after it in the learning

sequence are able to take advantage of its incapacity to capture its previously
held information. This will obviously have an effect on those coding interneu-

rons which will have to readjust their weights in order to accommodate the new
information-bearing capacity of the first layer interneurons. Each weight will
tend to increase as it is now working for an interneuron which has captured

a little more of the available information in the network. However, this is a

minimal rearrangement: each coding neuron is most similar in weight to its

equivalent coding neuron for the previous direction. All coding neurons will

augment their weights in unison and no realignment of coding is necessary.

All increases and decreases in weight values are done as though synchronised;
there is never an example of the complex untwisting which we see in developing

Kohonen nets.

Again experimental results have confirmed this analysis.
Note again that the interneuron map is an improvement on the Kohonen map in

which the destruction of a single competitive neuron reduces that network's ability to

respond appropriately to the region which was optimally represented by that neuron.

CHAPTER 5. BIOLOGICAL ASYMMETRIES 129

5.5.5 Summary

We have described a novel robust topology-preserving neural network which seems
to have significant advantages over current networks with equivalent properties. We

must emphasise that both parts of the network are necessary:

" Without the first section, the second section would merely divide up the in-

formation as a whole. In other words, the amplitude of the message would
determine the coding and no account would be taken of its content.

" Without the second section, the first section would find those directions of

maximum information but an observer would not know e. g. if an output of 1.0

came from a direction with zero mean and variance 0.5 or mean 1 and variance
10. The second section of the network is essential to calibrate the mapping.

5.6 A Single Type of Neuron

We have however increased the complexity of our network considerably in that we

now have 2 different types of neuron in the network. In addition, it is well known

that biological neurons are not accurately modelled by either simple linear summation

neurons nor by neurons which have step functions as activation functions. Instead

a degree of non-linearity of response has been found which is usually modelled by a

sigmoidal function.

Using tanh() (See Figure 14) as an activation function for the interneurons allows

a unified model of the above two types of interneurons to be created:

" tanh() is approximately linear in its middle section. We may adjust the range
of middle section over which it is linear by using the parameter). in z; =
tanh(A Ejw; jyj). To get a large linear section requires a small value of A.
Experimental results have confirmed that A=0.1 is sufficiently small to ap-
proximate a linear function with which Principal Components can be found as
before.

CHAPTER 5. BIOLOGICAL ASYMMETRIES

1.5

1

0.5
x
-ý 0 c
cd
H

-0.5

-1

-1.5

tanh(x)

...

-4 -2 024
x

Figure 14: The Tanh() function

130

" tanh() may be made more dichotomous by adjusting the parameter, A, up-

wards. A value of 0(10) is sufficient to create an interneuron which performs a

smoothed coding of the input data (but see below). The larger the value of A,

the more step-like the function becomes.

Therefore a single type of interneuron with different A parameters can perform
both the information extraction and the information coding described above. Both

sets of interneurons will have an activation function, tanh(A Ej w;; yj). The sole dif-

ference is that interneurons in the first layer have the parameter). = 0.1, while those

in the second have the parameter A= 10. The first value is, of course, dependent

on the distribution of the input data and is based on distributions with single figure

standard deviation and mean; the second depends on the amount of discrimination

(length of the code) required.
Using such an activation function with the information extracting interneurons

has several implications:

1. The output values, z, at these interneurons are all in the range (-1,1)

CHAPTER 5. BIOLOGICAL ASYMMETRIES 131

2. Thus the weights in the first part of the network will grow much larger than

previously

3. The learning rate in this network can be made much larger than before as the

z values are constrained to this small range. Previous networks used a learning

ritte of 0(0.0001); with a tanh() activation function a learning rate of 0(0.1) is

possible.

However, there is a drawback to the use of this activation function in the coding layer:

with the values stated, codes for the first 3 coding interneurons in each direction

agree with those found with the step function network. However, for the later coding
interneurons a lack of discrimination develops leading to very imprecise codes. By the

6tß` coding interneuron, we have lost all claim to have a topology-preserving network.
To show that this cannot be wholly explained by the foreshortening of the outputs

from the first section of the network to the range (-1,1), we have used the same data

which produced the coding shown in Table 22 and multiplied the outputs of the first

section by 10 to put them in the same approximate range as before. The activation

values of the sixth digit (i. e sixth coding interneuron) are shown in Figure 15. Clearly

" the code cannot be called topology preserving in the neighbourhood of the

changes from 1 to -1.

" the number of differentiated codes is much smaller than it should be

This effect can be ameliorated by increasing the value of A from 10 to 100. The results

of this can be seen in Figure 16. Clearly, however, using this activation function means
that we have lost the ability to subclass at will almost infinitely often. Whether this
is important in a biological context must still be investigated.

5.7 Conclusion

We have in this Chapter introduced asymmetry into our interneuron network in 2

physically realistic ways: by considering the fact that weights cannot change from

CHAPTER 5. BIOLOGICAL ASYMMETRIES

1.5

1

aD 0.5
v
0 U

0
Q.

0 -0.5

-1

-1.5

r

.......

z

...

-6"

-10 -8 -6 -4 -2 02468 10

132

Figure 15: The coding produced by the sixth coding interneuron on 10*the output of
the first principal component when both are using tank(). A= 10.

CHAPTER 5. BIOLOGICAL ASYMMETRIES

1.5

1

0.5
0 U

0
0

0 -0.5

-1

_i

"z1 6"

-10 -8 -6 -4 -2 02468 10

133

Figure 16: The coding produced by the sixth coding interneuron on 10* the output
of the first principal component when both are using tanh(). A= 100.

CHAPTER 5. BIOLOGICAL ASYMMETRIES 134

positive to negative during the learning process and by considering the physical dis-

tance between neurons and allowing activation transfer to be a linear function of this

distance. Both were then shown to allow the network to perform an actual Principal

Component Analysis on the input data.

We then for the first time introduced a non-linear feature into the network and
developed a new method of creating a topology-preserving feature map composed of a
2 stage process involving projection of the input data onto the directions of maximum
information followed by a discrimination process within each direction.

The simple interneuron network performs the projection while the interneuron

coding network performs the discrimination. Both use only simple Hebbian learning

with no normalisation, weight decay or clipping of weights.
An attempt to produce a biologically feasible unification of the two types of in-

terneurons was partially successful in that a single type of interneuron with different

values of a parameter in its activation function has been shown to be capable of per-
forming both tasks necessary to produce the feature map; the single addition of an

activation function tanh(.)x) allowed us to dispense with the threshold in the coding
interneurons. This network requires parameter tuning if it is to perform more than a

crude discrimination in each direction.

The success of our first non-linearity suggests that this may be an interesting line

of further research. We will see that this is indeed the case in the next Chapter.

Chapter 6

Non-linear Structure Extraction

6.1 Introduction

Cross-fertilisation between the fields of artificial neural networks and statistics has

recently proved fruitful. In unsupervised learning, the realisation that simple neu-

ral network architectures are capable of performing classical statistical analysis has

allowed insight into the operation of simple Hebbian neural networks and allowed
the results of neural networks to be related to human psychophysical performance.
Principal Component networks have been the major outcomes of this research. Here

we use the same neural network architecture as in previous Chapters and show that

it has other important statistical properties.
Principal Component Analysis(PCA) has proved to be a powerful tool for the

investigation and analysis of large data sets. However, some structure in data sets is

not identifiable by means of the linear associations (correlations) among the variables;

such effects as clustering or definition of edges of data-sets are easily identified using
the human eye on low dimension projections of data but are not achievable by using

the tools of classical multivariate analysis. For example, Figure 17 shows two elipsoids

representing the shapes of two data clusters characterised by features Xl and X2; the

first Principal Component is along the direction Xl, yet the structure in the data -
the two clusters - is not visible in the projection onto this direction. This problem
increases in severity as the dimensionality of the data increases. The success of PCA

135

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 136

Figure 17: The two elipsoids indicate the shapes of the clusters of data points char-
acterised by two features, Xl and X2. The clusters are clearly visible to the human
eye, yet are completely hidden when projected onto the first Principal Component
direction, X1.

has, in part, been because those directions which contain rr., st of the variance in a
data set will tend to contain most of the structure in the data set. However, this

relationship is not logically necessary.
Exploratory Projection Pursuit (EPP)1 defines a recent form of exploratory data

analysis methods which attempt to find "interesting" directions in high dimensional

data (for reviews see (Huber, 1985; Jones and Sibson, 1987)). We introduce a non-
linearity to our PCA network and show that it is capable of performing an EPP.

6.2 Exploratory Projection Pursuit

The group of methods based on Projection Pursuit is based on one central idea:

rather than solving the difficult problem of identifying structure in high dimensional

data, project the data onto a low dimensional subspace and look for structure in the

projection. However not all projections will reveal the data's structure equally well.
Therefore we define an index that measures how "interesting" a given projection is,

'Some of this work has already appeared in (Fyfe and Baddeley, 1994) and will appear in (Fyfe
and Baddeley,).

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 137

and then represent the data in terms of the projections that maximise the index and

are therefore maximally "interesting". We will initially restrict our attention to one
dimensional subspaces i. e. we will identify an index for each line in the space and

attempt to maximise the index in order to make projections of the raw data onto the

line as interesting as possible.
Clearly the choice of index is the crucial factor in Projection Pursuit, and the

index is specified by our desire to identify interesting directions. Therefore we must
define what we mean by "interesting directions".

6.2.1 Interesting Directions

Friedman (Friedman, 1987) notes that what constitutes an interesting direction is

more difficult to define than what constitutes an uninteresting direction. The idea

of "interestingness" is usually defined in relation to the oft-quoted observation of
Diaconis and Freedman((Diaconis and Freedman, 1984)) that most projections of
high-dimensional data onto arbitrary lines through most multi-dimensional data give

almost Gaussian distributions. This would suggest that if we wish to identify "inter-

esting" features in data, we should look for those directions a, projections onto which

are as non-Gaussian as possible. Thus, we will look for an I(a) , an index function

of the direction a, which is maximum when the projection of the distribution onto a
is furthest from Gaussian.

Two common measures of deviation from a Gaussian distribution are based on
the higher order moments of the distribution (see Figure 18). Skewness is based

on the normalised third moment of the distribution and basically measures if the

distribution is symmetrical. Kurtosis is based on the normalised fourth moment of
the distribution and measures the heaviness of the tails of a distribution. A bimodal

distribution will often also have a negative kurtosis and therefore kurtosis can signal

that a particular distribution shows evidence of clustering. Whilst these measures
have there drawbacks as measures of deviation from normality (particularly their

sensitivity to outliers), their simplicity makes them ideal for explanatory purposes.

In passing, we note that if we know what type of interesting structure we expect
to find in the data set, instead of moving away from the uninteresting Gaussian

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION

A Skew A Kurtotic
,

Distributioct
, Distributi0 \%

138

Figure 18: Deviations from Gaussian distributions: the dotted line on the left rep-
resents a negatively skewed distribution; that on the right represents a positively
kurtotic distribution; in each case, the solid line represents a Gaussian distribution

distribution, we could move towards the interesting direction.

6.3 The Data and Sphering

Because a Gaussian distribution with mean a and variance x is no more or less inter-

esting than a Gaussian distribution with mean b and variance y- indeed this second

order structure can obscure higher order and more interesting structure - we remove

such information from the data. This is known as "sphering". That is, the raw data

is translated till it has mean 0, projected onto the principal component directions

and multiplied by the inverse of the square root of its eigenvalue to give data in all
directions which has mean zero and is of unit variance. We mäy think of this as mov-
ing the data along each axis till it is centred over the origin and then compressing

or expanding each direction till it has the same spread. This removes all potential
differences due to first and second order statistics from the data. To do this, the

eigenvalue-eigenvector decomposition of the covariance matrix' is performed. i. e. for

input data X, we find the covariance matrix

E=«X -(Xl)(X -(X))T) = UDUT (149)

where U is the eigenvector matrix and D is the diagonal matrix of eigenvalues and
the T denotes the transpose of the matrix. New samples drawn from the distribution

2In practise, we make no distinction between statistics generated by samples from the distribution

and those of the distribution itself

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 139

Principal Explontoq

Raw
Componen

Noimaliwtio projection
_. Data

[SIoU

Pursuit
Network o(variauoq Network

Figure 19: A block diagram of the Exploratory Projection Pursuit operation
xl

x2

x3

x1

Figure 20: The negative feedback network. Activation transfer is as before except that
now a non-linear function of the interneuron activations is calculated and the weights
are adjusted through simple Hebbian learning

are then transformed to the principal component axes to give variables y where

1n
y, = E U+i(X: - (Xi)), for l<i<m

Di i=1
(150)

where n is the dimensionality of the input data and m (< n) is the dimensionality of
the sphered data. Typically m«n and so this operation makes high-dimensional
data more manageable. It is important to note that any linear combinations of the

y-values also retains these properties of the mean and variance e. g. see (Mardia

et al., 1979), Corollary 3.2.1.3. This is the data in which we wish to find interesting
directions.

A block diagram of the operation is shown in Figure 19.

6.4 The Projection Pursuit Network

Figure 20 shows the network which we will use to perform Exploratory Projection
Pursuit: as in previous Chapters, (the sphered) data is fedforward from the input

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 140

neurons (the x-values) to the output neurons (the interneurons). Here a linear sum-

mation is calculated to give the activation of the output neurons and this activation
is fed back to and subtracted from the input neurons. A function of the output ac-
tivations is calculated and used in the simple Hebbian learning procedure. We have

for N dimensional input data and M output neurons
N

Si _Ew; ixi(t) (151)
j=1

M

xi(t + 1) <-- xj(t) -E Wk; sk (152)
k=1

N

Ti = f(Ew+. ixi(t)) = f(si) (153)
3=1

Lwi; = iitr: x3(t + 1) (154)
NMN

= 'Itf (> Wckxk(t)){x, (t) -E wt; F wtpxp(t)} (155)
k=1 1=1 p=1

where r; is the value of the function f() on the ith output neuron and ; j(t) is the jth

input at time t. Thus (155) may be written in matrix form as

AW (t) = n(t)[I - w(t)WT(t)]X (t)f (XT (t)W (t)) (156)

where t is an index of time and I is the identity matrix.
The set of network rules described above is a generalisation-of those for the in-

terneuron network which performs PCA. For this reason we feel able to link the
Exploratory Projection Pursuit network to current work on Non-linear PCA.

6.4.1 Non-linear PCA

Recently, the topic of "non-linear PCA" has been receiving a great deal of attention
from the neural net community e. g. (Shapiro and Prugel-Bennett, 1992; DeMers

and Cottrell, 1993; Oja et al., 1991; Karhunen and Joutsensalo, 1993b; Karhunen

and Joutsensalo, 1993a; Oja and Karhunen, 1993; Karhunen and Joutsensalo, 1994;

Karhunen and Joutsensalo, 1992). The impetus for such a development is the recog-

nition that neural networks are ideally suited to non-linear adaption because of their

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 141

incremental methods of learning: while closed form solutions may exist for linear pro-

cesses such as PCA, such methods are simply not possible for non-linear algorithms.
Following (Karhunen and Joutsensalo, 1994), we can derive (156) as an approxima-

tion to the maximisation of a function, J, of the weights J(W) _ Et (g[xTww;).

We must ensure that the optimal solution is kept bounded; otherwise there is

nothing to stop the weights from growing without bound. Formally,

Let J(W) = 1: (9[XT w+] Iwi) +11: E Aii[WT Wj -a] (157)
i=l j=l

where the last term enforces the constraints wTw3 = a; j using the Lagrange multipli-

ers . Xij. As usual, we differentiate this equation with respect to the weights and with

respect to the Lagrange multipliers. This yields respectively, at a stationary point,

aJ(W)
= (xgI(XTW)IW) + WA =0 and

WTW =A

(158)

(159)

where g'(xTW) is the elementwise derivative of g(xTW) with respect to W, A

is the matrix of parameters a; 3 (often the identity matrix) and A is the matrix of
Lagrange multipliers. Equations (158) and (159) define the optimal points of the

process. Pre-multiplying (158) by WT and inserting (159), we get

A= -A-'W
T(X9l(XTW)IW)

2, ..

and using this value and reinserting this optimal value of A into (158) yields the

equation,

OJ(W)
_ [I - WA'1WT](xg'(xTW)JW)

ow (160)

We wish to use an instantaneous version of this in the gradient ascent algorithm

ow «
ai(w)

aw
to yield

AW = µ[i - WA-1WT]xgl(XTW) (161)

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 142

We will be interested in the special case where the W values form an orthonormal
basis of the data space and so A=I, the identity matrix. Therefore, we can equate
(161) with (156).

Karhunen and Joutsensalo point out that the algorithm is approximative since the

expression for A is derived from the optimum solution and used from the beginning of

the algorithm. As we shall see in Section 6.4.4, the implications of the approximation

are profound: to be used in a gradient ascent algorithm, aay must be continuous and

with positive slope in the iteration intervals. We shall see that these constraints can

only be justified, in general, on the set of points where the second constraint in (157)

is satisfied a priori.

6.4.2 The Projection Pursuit Indices

Now for projection pursuit, we wish to maximise a specific index. But note that

from the derivation in the last section, when we wish to maximise an index function

we must use its derivative in the learning algorithm: the function f() in (155) is

equivalent to the function g'() in (161). Thus to maximise a projection pursuit index

e. g. for skewness, we could use a learning process like that described in (161) noting

that to maximise the skewness index we must use the derivative of the index in the

learning process.
Firstly, notice that from (151), we have s= xTW; hence,, g(s) = g(xTW) and

d= x1'. But since changes to the parameters of the system are made during a

single presentation of x, we may take -dI oc d during that particular presentation.
We wish to emphasise the properties of the negative feedback network rather than

those of specific indices. Thus we choose to report on the network's development in

relation to the simplest possible indices. The indices which we investigate in this

section are either directly based on the higher moments of the input data or are
functions of them (see Figure 18):

" To measure skewness in a Normal distribution, N(µ, a) we use

9(s) _
((s _ 11)3)

Q3

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 143

where s is a random variable drawn from the distribution with mean µ and

standard deviation a. Now our data-distributions have all been sphered i. e.
(x) = 0; ((x - (x))2) =1 and our weights, w; are normalised and therefore

every direction s; has the same first and second moments. Thus g(s) = s3 is a

measure of the skewness of the distribution. Thus in the algorithm, (156) we

use

f(s)=k*ss«
sd

ss

Now in all Normal directions, this measure will be zero but in a direction with

a skewed distribution, there will be a non-zero skew value.

" Similarly, kurtosis3 is measured by

9(s) _
((s - µ)4)

a4

Therefore as above, to measure a kurtotic deviation, we could use

*s
3oä14

" We can also use functions (see Section 6.5.4 whose. expansions are dominated

by either odd or even powers of s to measure kurtosis or skewness respectively.

The first 2 are the simplest possible measures of departure from Normality yet are
generally not used because of their susceptibility to outliers. For this reason, we have

experimented with the third set of measures. We will use the naive sample-based
versions of the measures making no adjustments for any potential differences between

sample and distribution moments (see e. g. (Mardia et al., 1979) for a discussion of

such differences). We further treat each test as measuring only one facet although

we are aware that tests for skewness and kurtosis are distributionally dependent (see

e. g. the discussion in (Horswell and Looney, 1992)).

3Typically, 3 is subtracted from this measure in order to make the kurtosis of a truly Normal
distribution 0. However, in the experiments reported herein, we have simply used the stated measure

rI

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 144

Traditional statistical methods require a computationally-intensive recalculation

of the distribution's moments from a reasonable sample of data points from the dis-

tribution each time a measure must be recalculated. However, it will be shown that

a Hebbian learning rule for neural networks based on a measure of the instantaneous

moments does in fact find that direction of maximum interest in the sense of Section

6.2.1.

6.4.3 Principal Component Analysis

The negative feedback network introduced here is identical to that used previously

as a Principal Component network. The transfer of activation is exactly the same

as described in this Chapter however there was previously no non-linear activation
function at the output neurons. This is equivalent to a network with f (x) = x, the

identity transformation. Now since f is the derivative of the function we wish to

maximise, we can see that the PCA network is maximising the second moment of the

distribution i. e. as we know, PCA is finding that direction . pith greatest variance.
In fact, in the simulations described below, we use the above network twice - the

first time to project the data onto the eigenvectors corresponding to the Principal

Components and the second time to carry out Exploratory Projection Pursuit.

The fact that the same network structure is capable of performing a PCA as

well as EPP is unsurprising since Huber (Huber, 1985) has shown that PCA may be

viewed as a particular case of Projection Puruit. Thus, for the PCA network, we are

choosing f (x) =x oc (x2) and so the original network is seen to be maximising the

second order statistics of the distribution i. e. finding the eigenvectors corresponding
to maximal eigenvalues.

This suggests that Oja's Subspace Algorithm can be derived in terms of a gradient

ascent procedure. However, recall from Chapter 3 that Baldi and Hornik (Baldi and
Hornik, 1988) have shown that this algorithm is not derivable from such a procedure.
The reason for this apparent contradiction is found in the approximation assumptions

used in the derivation of the algorithm and will be discussed in the next section.

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 145

6.4.4 Convergence of the Algorithm

The derivation of the algorithm was based on gradient ascent using (157). Therefore,

this equation must define a function of W which is twice differentiable with respect

to W and whose second derivative is monotonic.
Consider first the convergence of the algorithm on the set of points restricted to

the surface 11wil = c, where 11.11 denotes the Euclidean norm and c is a constant. On

this set, the second term of the equation, ä EMl E1a; j[wTwi -b j], is a constant

and we may then return to the original maximisation, which we will denote 1'(W) =
> Ml ((g[xT w;] jw;)) on this set. Note first that each of the functions used in this

Chapter is twice differentiable.

Used as an instantaneous algorithm, we have, for the presentation of a single

pattern x

" For kurtosis, J'(W) =E i(xTw;)4. Then äw = 12(w;. x)2x! > 0. Thus

the function f (s) = ks3, k>0 will converge to that direction with maximum
kurtosis when the convergence takes place on the set of all points which satisfy
11wIl = c. Similarly the function, f (s) = ks3, k<0 will always cause conver-

gence to those directions with minimum kurtosis. Therefore to test kurtosis in

a situation where the form of the data is unknown, we can (in parallel) test for

both positive and negative kurtotic distributions e. g. with f (s) = kls3, kl >0

and f (s) = k2s3, k2 < 0. `: `

" For skewness, Y(W) =E 1(xTw;)3. Now äw = 6(w;. x)z!. Thus if OW oc
6 6ýjy

, we have a gradient ascent rule if ((w;. x)) is greater than 0 i. e. we

will ascend till we converge to the direction with greatest positive skewness. If

((w;. x)) is less than 0, we will descend till we converge to the direction with

most negative skewness. Thus one function can be used to test for both positive

and negative skewness. It is important to recall that this is an exploratory data

investigation tool: we do not care if the structure has positive or negative

skewness - only that it is deviating from a Gaussian distribution.

However, this does leave open the possibility that there exists a stage in the

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 146

convergence when skewness in two directions reaches a stable point of conver-
gence which is a mixture of two optimal states, though we have never seen this

situation experimentally.

Therefore the algorithm may be viewed as gradient ascent on the hypersphere

satisfying 11wil = c. Now we must consider the convergence of the algorithm in

general; consider (158) with respect to a particular vector of weights into output

neuron, i, for a function g(s) = sk. Then we have

aJ
= kx(w;. x)"`-1 + Wa; (162)

aw;
a'J

= k(k -1)Diag{xxT }(w;. x)lc-2 + as; I (163)
aw;

where Diag{. } is an operator which sets all off-diagonal entries to 0 and Ai is the

vector of Lagrange coefficients for the direction wi. Now since the data is sphered,

< (x!) >= 1. Thus we only have a positive gradient in those directions, w;, which

satisfy

(wt x)k-2 > -a;; (164)
k(k - 1)

Recalling that a; j determines the relative weight accorded to the function J' and the

constraint [wTw, = 6q] and we can see that the use of the final converged value of
Ail in the converging algorithm causes a more serious problem than merely being an

approximation. The algorithm is not guaranteed to converge, .

.
In practice, this has not been found to be a problem. One possible heuristic would

be to start the weights normalised and then converge across the surface. However

there is the possibility that the convergence process will be slower using this. Empir-

ically, little difference has been found between starting with small (near 0) random

weights and starting with normalised vectors.

6.5 Simulations and Results

The neural network shown in Figure 20 was set up with 10 inputs, 10 interneurons

and (initially) 1 output neuron. Input data was drawn from 9 independent zero-

mean Gaussians while in the tenth direction data was also drawn from a Gaussian

i 7

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 147

distribution but was modified in some way to make it interesting.

The modifications were designed to be simple yet ensure that there existed dif-

ferences in the high order statistics between this interesting direction and all other
directions. Therefore

1. To create a skewed distribution, we multiplied e. g. all values less than the mean

of the distribution in this direction by a positive constant, generally in the range
0.8 to 1.2.

2. To create a distribution showing positive kurtosis (leptokurtic data) which ap-

pears as a value greater than the Normal distribution's value of 3 in our tables,

we randomly selected samples (typically 20% of the total available) and substi-
tuted small random numbers in the range -0.25 to 0.25. This gives a narrowly

peaked distribution.

3. To create a distribution showing negative kurtosis (platykurtic data) which is

quantified as values under 3 in our tables, we randomly divided all the samples

of the distribution into two disjoint sets and added a constant value to all

samples in one set and subtracted the same value from all samples in the other

set. This "twin-peaked" distribution has a negative kurtosis since it has distinct

shoulders.

6.5.1 One Interesting Direction
ý,

As an example of using the generalised interneuron network, we show the results of

a simulation in Figure 22. The Gaussian distribution in one direction was amended
in order to create a distribution which was sharply peaked (see Figure 21) i. e. had a

positive kurtosis. This distribution is generally one of the most difficult to find as it

is only visible in one very tightly defined direction. The results of using the Kurtosis

Index, f (S) = s3, are shown in Figure 22.

Statistics from the data to which this network is responding is shown in Table

26. Note that since the data is first sphered, it is not possible to base differential

learning on first or second order statistics which are respectively 0 and 1 in each

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 148

View of Converged Direction (Kurtosis Index on Leptokurtic data)
600

500

>% 400
U

300
cT aý
U- 200

100

0 05 10 15 20 25 30 35 40 45 50
Input Data (Scaled from 0 to 50), --

Figure 21: The input data were projected onto the direction in which the net con-
verged. The distribution is scaled from 0 to 50. Thus the view here shows the
distribution as it would be seen by an observer looking at the projection of the data
in the "interesting" direction

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 149

Convergence using Kurtosis Index on Kurtotic Data
1_

0.9
0.8

0.7

0.6 .N 0.5 U
0.4
0.3
0.2
0.1

Kurtosislndex

0 10 20 30 40 50 60 70 80 90 100
No. of Iterations (1000s) v"

Figure 22: The convergence trajectory of the weights to the "interesting" (highly-

peaked) direction. The vertical axis shows the cosine of the angle between the current
direction and the optimal direction.

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 150

Direction Mean Variance Cube Fourth Power
1 0.000 1.015 0.055 3.082
2 -0.019 0.968 -0.045 2.761
3 0.007 0.987 0.015 2.890
4 0.004 0.981 0.024 2.893
5 -0.006 0.990 -0.022 2.949
6 -0.006 0.998 -0.017 3.016
7 -0.017 1.017 -0.037 3.103
8 0.011 0.992 0.058 2.889
9 -0.013 1.023 -0.087 4.001
10 -0.010 0.988 -0.000 2.960

Table 26: Statistics of the first set of 10-dimensional data: only one direction(9) has
been modified to create a positively kurtotic distribution. Note that the sphering has
produced a zero mean, variance 1 distribution in every direction

direction. It is our finding that the sphering must be reasonably accurate otherwise
the learning process responds to the low order statistics -a finding consistent with
the statistics literature though not mentioned in neural network implementations of

projection pursuit.

6.5.2 More Than One Interesting Direction

Since the projection pursuit method is designed to find interesting directions worthy

of human investigation and since humans can visually investigate functions over a

plane, we are often interested in finding 2 independent directions in a data set which

contain interest. We first consider the situation when each interesting direction has

the same type of interest. Experiments have shown that, in such situations, the

network usually finds one direction more interesting than the others; the weights

will converge to that direction on which the projection of the data has the largest

deviation from the statistics of a normal distribution, e. g. when the kurtosis index

is 3.67 in direction 4 and 3.66 in direction 7, the kurtosis index function invariably

causes convergence to direction 4.

.
However, it may be appropriate to find all interesting directions. This situation

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 151

Direction Mean Variance Cube Fourth Power
1 -0.000 1.011 -0.007 3.025
2 0.009 0.995 0.005 2.965
3 0.012 1.012 0.024 3.126
4 0.018 0.978 0.079 2.874
5 0.007 1.014 0.035 3.813
6 -0.015 0.963 -0.054 2.715
7 0.002 0.974 0.059 2.751
8 -0.017 0.990 0.012 2.830
9 0.017 0.961 -0.263 2.965
10 0.009 1.003 0.047 2.982

Table 27: Statistics of the distribution showing that direction 5 is interesting because

of its 4th moment while direction 9 is interesting because of its 3rd moment
,

sometimes (Friedman, 1987) is dealt with by "structure removal" using a transforma-

tion of the intersting direction to create a Normal distribution in that direction. This

method has the disadvantage that such transformations may affect the Normality of

other solution projections. However we note that the learning process used here not

only finds but removes the interesting directions i. e. the residuals at x consist of
the original data minus the projections onto the learned interesting directions. Thus

we suggest running the network till one interesting direction is found; then set these

weights and restart learning with a new output neuron. This has been found to be

very effective.

6.5.3 Differing Types of Interesting Directions

When the data contains directions which are interesting in different ways, we can
investigate the data in different ways simultaneously. We can for example construct a

network as before but with M output neurons each of which is searching for different

characteristics in the sphered input data.

For example, we repeat the above experiment but now we change the data so that

we have one direction which is positively kurtotic and one direction which is negatively

skewed. The statistics of this data are shown in Table 27 and the convergence of the

appropriate directions are shown in Figure 23

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION

Convergence of Weights to 2 Interesting Directions
1

0.8
0.6

rn 0.4
Q 0.2
0 0
a)

-0 2
°

.
-0.4
-0.6

-0.8
-1

Kurtosis Index
Skew Index ----"

0 10 20 30 40 50 60 70 80 90 100
No of Iterations (1000s)

152

Figure 23: Convergence of the weights into the neurons using the indices for Positive
Kurtosis and Negative Skewness to the appropriate direction

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 153

These results are from a network created with 4 output neurons all of which

converged to one or other of the interesting directions. So our final algorithm is:

1. Sphere the input data

2. Create a set of output neurons with M different indices and train this network.
For example, for the indices we have so far considered we may simply have 2

output neurons which use skew and kurtosis indices respectively.

3. Visually examine (either individually, as lines, or in pairs, as planes) the direc-

tions found in order to identify humanly interesting directions

4. Remove those neurons whose weights have not converged to interesting direc-

tions

5. Repeat Sections 3-5 training the new neurons on the residuals after all current

neurons have removed their projections.

6.5.4 Using Hyperbolic Functions

As an example of using hyperbolic functions we perform an experiment similar to the

last one but report the convergence of

"f (s) = tanh(s). Since f (s) = tanh(s) has an expansion. of`. -3+ 15 - ... , it

is an odd function. It can then be used to measure the kurtotic deviation from

the normal distribution. In detail, using tanh(s) as the learning function, f, in

(156) maximises the integral of that function; thus, using f (s) = tanh(s) in the

stochastic algorithm maximises

((%tanh(s)ds))
_ ((%(3 -

33
+

235
- ...)ds)) (165)

JJ3 15
34 2s6

((2
12

+
90 - ...

» (166)

_ ((2 . 92))
- ((. 94)) +((2

0
)} - ... (167)

= K-((12))+((90)) -... (168)

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 154

since s is a linear combination of sphered data.

Now for small s, the most important parts of the series is the first few terms

and that subsequent terms alternate between reinforcing the effect of the second
term (being negative) and detracting from its effect. is > sö in the interval

(-1.93,1.93) which contains almost exactly 95% of the sphered data in Normal

directions. This proportion will be slightly different for a non-normal direction

but the major conclusion must be that for the overwhelming majority of the
data points the driving force of the learning is the cubed term in the expansion

of tanh(s). Therefore if we use tanh(s) in our algorithm, we are minimising s4
i. e. finding directions with least kurtosis.

We used this index to force the weights to converge to direction 4 whose statistics

are shown in Table 28. A view of the projection of a sample of the distribution

onto the direction found using this index is shown in Figure 25.

" Similarly we can use f (s) = sech2(s) which is the derivative of tanh(s) and is

an even function, to find deviations in skewness from the normal distribution.

The weights using this index converge to direction 7 in Table 28. A view of the

projection of a sample of the distribution onto the direction found using this

index is shown in Figure 24.

We emphasise that these 2 directions were found in parallel. In, fact, not only does the

convergence of the two indices not interfere with each other, the convergence of each

may actually help the other if we use as input data for the second output neuron the

residuals at x after the first neuron has subtracted its projection. This has the effect

of decreasing the dimension of the space of input data in which the second neuron

must search for interesting directions. Note also that these are by no means the only
functions which can be used. For example, tan-1(s) can also be used for searching
for kurtotic distributions as its expansion is also odd.

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 155

Direction Mean Variance Cube Fourth Power
1 0.003 0.997 0.042 2.999
2 -0.009 1.012 -0.068 3.137
3 -0.004 0.993 0.026 2.990

-0.003 1.007 -0.019 1.732
5 0.018 0.991 0.098 3.020
6 -0.000 0.971 -0.004 2.761
7 -0.005 0.985 0.222 3.053
8 -0.000 0.999 -0.021 2.954
9 0.010 1.000 0.075 2.988
10 0.002 0.988 -0.005 2.902

Table 28: Statistics of the sphered data on which the hyperbolic indices were opti-
mised

Projection of Distribution using Sech-index
350

300

250

200

a 150
LL

100

50

0

º_ `

05 10 15 20 25 30 35 40 45 50
Input Data (Scaled 0 to 50)

Figure 24: Projection of data onto the interesting direction found using the sech-
index. The direction is skewed

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 156

250

200

150

rr
= a) 100
U-

50

0

Projection of Distribution using Tanh-index

05 10 15 20 25 30 35 40 45 "50 Input Data (Scaled from 0 to 50)

Figure 25: Projection of data onto the interesting direction found using the tanh-
index. The direction is interesting because of its kurtosis

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 157

6.6 Other Indices

With the method and network for Projection Pursuit now established, we can in-

vestigate other possible indices. We will investigate indices based on Information

Theory and two specific indices: Friedman's Index and Intrator's Index. These have

aroused a great deal of interest in their respective communities and are thought to
be substantially the best currently on offer (though we must add the caveat that

such assessments are usually made with respect to specific data sets). The most
frequently referenced indices from the statistics community are those from Friedman

(Friedman, 1987) and Hall (Hall, 1989). Both indices use polynomial approximations
to analytically-deduced indices of interestingness; such polynomials are usually in-

troduced for reasons of computational efficiency. We chose to investigate Friedman's

rather than Hall's as the former index is thought to be more generally effective than

the latter (e. g. see (Sun, 1993) for a recent comparison).
In the neural network community, the series of articles written by Intrator(e. g.

(Intrator, 1992; Intrator, 1993b; Intrator and Cooper, 1992)) stand virtually unchal-
lenged as implementations of the Projection Pursuit methodologies. Other articles
(e. g. (Hinton and Nowlan, 1990)) do not specifically mention Projection Pursuit

though often appearing to use a PP methodology. An interesting implementation of
PP methodologies using radial basis function nets is given in (Zhao, 1992).

6.6.1 Indices based on Information Theory

As noted by Marriot(in Discussion of (Jones and Sibson, 1987)), "a moment crite-

rion, or any criterion dominated by third and fourth cumulants, will miss clustered

projections that happen to be roughly symmetrical and nearly mesokurtic"; this has

lead to a search of alternative measures of non-normality.
Entropy measures suggest themselves as a means of measuring the divergence of

the distribution from Normality; however using such measures requires having the

neuron retain a memory of previous inputs in order to calculate a relative frequency

approximation to the entropy.
Nevertheless, it does suggest using in (155) the measure AS) log O(s), where

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 158

«(s) is the probability that it would have received input s had s come from a Normal

distribution. This is equivalent to maximising

lo9o(s)ds) J log{ex
2
}ds)

Q 2x p -(2Q µ)

a
= (-flog

1
ds -{-

ls µ) ds)
v 2; r J 20

s
_-f log

1

N/2 -7r
ds +f2s ds

= s(k232 - kl) where k1, kaare constants (169)

since the data has been sphered. It is clear that this index is maximising a function of
two components with the second acting as a non-central pivot about which the other is

maximised. Since the dominant term is s3 the function finds skew directions; however

the extra pivoting power around ki permits convergence to twin-peaked (negatively

kurtotic) directions also.
It is of interest also, in this case to investigate the properties of äW which are

information theory based.

Thus when we use the measure f (s) log «(s), the expected value of the

function used in the learning rule is

8w
Nf

(sn) ,.. = Ný
M

E P(sm)f (sm)

m=1
M

__r P(sm)1og cb(Sm)

M=I

where the data has been binned into M boxes and the mean value of s in the mth
box is sm. p(sm) is the relative frequency of the sample in box m and is taken as an

estimate of the probability of having an input s in box m. Now

M
D=- P(sm) log ý(sm)

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 159

_> P(s,,,) log P(sm)
_E P(S,,,) log P(sm)

m=1
O()

m=1

= D(P(s)Iý«(s)) + Hp (170)

where D(allb) is the relative entropy between the distributions a and b and H. is

the Shannon Entropy of the distibution a. Note that since we are using a discrete

(binned) version of p(x), we may assume that H. > 0.

This since relative entropy is convex and entropy is concave we may expect local

minima as an inevitable fact of life.

6.6.2 Friedman's Index

Friedman (Friedman, 1987) has developed an index which has attracted wide interest

within the community of statistics users. Sun (Sun, 1993) has performed a useful

and informative comparison of Friedman's and Hall's indices and has concluded that

Friedman's is generally better. Hall (Hall, 1989) agrees. Briefly, Friedman's index is

based upon the transformation of the projection of the sphered data, xTw -º R=

2, tp(xTw) -1 where 4)(X) is the standard normal cumulative density function
s

P(X) =
2_ f

00

X
exp(-

2)dt (171)

If X follows a standard normal distribution, then R will be uniformly distributed in

the interval [-1,1]. Therefore we take as a measure of the distance of XTw from the

normal distribution, the integral squared distance of the variable R from the uniform
distribution,

f 1[p(R)
- 2]2dR =1+1 p2(R)dR - (172)

Friedman expands R in Legendre polynomials so that

J-il p'(R)dR -2=f1 [E a1P, (R)]p(R)dR -2 (173)
1=o

where the Legendre polynomials are

Po(R) =1
P1(R) =R
Pi(R) =

(2j -1)RP; -i(R) - (j -1)Pi-2(R)Ibj >1 j

t
i

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 160

The coefficients a, are given by

a' -
2j

21
J+1 Pý(R)P(R)dR =

2j
2

1([P, (R)]) (174)

From this, we have an easily calculated projection index

g(w) = F(27 + 1)([P, i(R)])2/2 (175)

for any direction w, which is applied as

9(w) =1 E(2j + 1)[1 F Pt(2ý(xTw) -1)]2 (176)
2 j_i N c=o

to give the sample version of the index. Note that this must be maximised under the

constraint that WWT =1 to ensure a finite solution.
However, we require the derivative of g(w) for our instantaneous measure, f(s),

and so we use
J

f(s) oc E(2j + 1)(PI(R))([P'(R)exp-(XTw)2/2])
3_1

Now Pý (R) is also easily calculated via the recursion relation

Pi(R) =1

P(R) = RPM-1(R) +jP, -1(R)

Thus the instantaneous version of Friedman's Index used in our neural net implemen-

tation is

D
f (s) = 11(2j + 1)P,, Pý exp(-(XTw)2)

-
Simulations on data such as used to test the polynomial indices have shown that

such an index finds directions with either skew or kurtotic deviations from Normality

with great reliability and accuracy.

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 161

6.6.3 Intrator's Index

Intrator (Intrator, 1992; Intrator, 1993b; Intrator and Cooper, 1992; Intrator and
Gold, 1993; Intrator, 1990; Intrator, 1993a) has constructed a model for Exploratory

Projection Pursuit derived from the Bienenstock, Cooper, Monro (Bienenstock et al.,
1982) model of cortical plasticity. This model has a learning function of

dt = µ(t)(x. w)(x. w -
40.

)x (177)

where Bw = ((x. w)2) provides a moving threshold which yields the dynamic flexibility

necessary for stability.
-ý While no mention of sphering is made in the reported simulations using the BCM

neuron, it is our finding that if Projection Pursuit is attempted using neural networks

on unsphered data with either method, the learning rules respond to the lower mo-

ments in the input data. We have thus in the simulations on which our findings are
based performed sphering as an essential data preparation step.

Though the format of the BCM Tearing rule is not immediately transferable into

the format (156), the driving force of the Hebbian learning (as opposed to the decay

term) is identical to the negative feedback network learning rules when the skew index

is used. Unsurprisingly it is our finding that the BCM neuron finds positively skewed
directions with the same facility as the negative feedback network. However, we do

not find that this network can find negatively skewed or kurtotic_ distributions.

An extension of the model introduced to improve the learning rule's robustness

with respect to outliers involves introducing a sigmoid function non-linearity to a

network loss function, L

L(w) _ -µ{3a (w. x) - 4(Q2(w. x))Q2(w. x)} (178)

which leads to the learning rule

dt = µ(t)Q(x. w)(v(x. w) -
30w)o'(x.

w)x (179)

where now Bw = (a2(x. w)).
We do not believe that the significance of the sigmoid has been appreciated: our

experiments on the artificial data using the BCM neuron show that this extension not

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 162

only improves stability (the basic rule is far from stable) but also permits convergence
to negatively kurtotic distributions. A Taylor series expansion (similar to that given
for the tanh() neurons in the negative feedback network) shows that the reason for

this new capability is found in the nature of the sigmoid.

6.7 Early Vision Processing

We complete this Chapter with an example of Exploratory Projection Pursuit on
image data. We choose to report on this area as not only does the experiment show
Exploratory Projection Pursuit working on real data but also links in with biological

speculations on the nature of early sensory processing.

6.7.1 The Statistics of Natural Images

A step performed early in image processing is the whitening of images which equalises

the power(variance) over every frequency in the images. Edge detection is another of

the early steps: it is generally held that in detecting edges we are representing the

world in a way that is a prerequisite for making sense of the high-dimensional space

which corresponds to visual data.

Barlow and Tolhurst (Barlow and Tolhurst, 1992) have shown that in whitened
images there is an excess of kurtosis in an image when 9 pixels are sampled in a line

compared to that when 9 random pixels or 9 pixels in a square are sampled. This

might suggest that edges in images create highly kurtotic distributions.

We have an extremely simple and effective method to find those directions in high-

dimensional spaces which exhibit most kurtosis. Instead of whitening our images we

sphered the data (as above) as this also equalises the variance in each direction.

The images consisted of a collection of pictures of natural scenes. Pictures were
taken on a 35mm camera with a 50mm lens. The photographs were then digitised

using a Hewlett Packard Scanjet Plus at the 75 dpi setting. The central 256 by 256

pixel region was then sampled and the grey levels normalised so that the lowest value

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 163

was 0 and the largest was 255. No attempt was made to account for non lineari-

ties in the processing. In an attempt to remove the artificial effects of composition
(other than ensuring correct vertical alignment) we used the following techniques: the

camera view finder was not used, the camera was pointed at random, and pictures

were taken at set time intervals. This procedure produced three sets of 36 exposures.
Out-of-focus pictures were removed together with pictures showing lens obstructions.
Nine of these images in each group were randomly selected. This process was used
to create 27 images: 9 of which are taken from the office environment, 9 from the

countryside and 9 from a city centre.
The kurtosis-extracting neural network technique was applied to samples of nat-

ural images in order to estimate the filter with highest output kurtosis. Specifically

the following was done:

" From random locations within all 27 images, 32x32 samples were extracted from

the images. This process could generate up to 1,354,752 different samples from

the collection of natural images.

" We used the Principal Component network to find the first eight principal com-

ponents of the samples. Thus since our input vector is 1024 dimensional, our
PCA network is performing a substantial dimensionality reduction. The cut-off

after 8 principal components was chosen after an initial investigation showed
that the standard deviations of the principal components fell in the ratios

al : 02: 03: 04: 05: 06: a?: as=10: 3.9: 3.1: 2.3: 2.2: 1.6: 1.6: 1.5(180)

with no other PC having a standard deviation greater than 0.6 on this scale.

" The second layer of the neural network was used to perform gradient ascent on
the output kurtosis. During this search, the learning rate was annealed from

0.001 to 0.

" After 100000 iterations4, the first four moments i. e. the mean, standard devia-

tion, skewness, and kurtosis of the output distribution of the derived filters was

measured.
4Convergence typically took less than 10 th of this time

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 164

" This process was repeated ten times to assess the reliability of the network and
its dependence on initial conditions.

6.7.2 Results

The statistics of 10000 samples of the output of the first (principal component ex-
tracting) network after sphering are given in Table 29. As can be seen, the principal

components are far from Gaussian(where the skewness and kurtosis would both be

zero 5); note also that almost all directions show positive kurtosis. This might be

thought to be in line with our expectations as many images contained many lines and

not only confirms the findings of Barlow and Tolhurst but also shows that it was not
their method of sphering which created the kurtosis in the data. The first 8 principal

components are shown diagramatically in Figure 26. Comparing Table 29 and Figure

26 we see that the kurtosis values for vertical directions are greater than those for

horizontal directions.

We report on the results of 10 simulations and within each simulation, we use a
decomposition method: since the first neuron finds and subtracts one direction, the

second neuron searches in the image space left after the first has subtracted its space.
Note that this orthogonality is quite different from that seen on the images. The

filters are shown in graphical form in Figure 26 and the kurtosis values corresponding
to each direction is given in Table 30. As can be seen, the network consistently finds

directions of high kurtosis. We see again that the vertical filters show higher kurtosis

than the horizontal and, in general, the filters of each type which the kurtosis-seeking

network found have greater kurtosis than those principal components of the same
type.

As has been stated, the algorithm was evolved as an Exploratory Projection Pur-

suit method and the exploratory nature of the algorithm is well illustrated in the
differences in the converged directions which were found during different simulations.
Clearly the method is dependent on the initial conditions of the network and the

actual images seen during training.

5In this section we perform the more general step of subtracting 3 from the raw kurtosis figure
so that comparison can be more easily made with other research findings

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 165

Direction First Second Third Fourth
1 0.002 1.006 0.958 0.659
2 -0.003 1.003 0.343 2.876
3 0.004 0.958 0.013 7.676
4 0.012 0.970 0.214 4.500
5 -0.013 1.026 -1.112 21.638
6 -0.012 1.026 0.215 5.547
7 0.001 0.948 0.268 6.356
8 0.005 1.028 -0.207 14.924

Table 29: The statistics of the output of the first layer of the neural network. As can
be seen, the outputs are normalised in both mean and standard deviation. Note that
the statistics of the images are far from Gaussian: almost every direction shows both
kurtosis and skewness; note also that all directions show positive kurtosis.

Simulation 1 2 3 4 5 6 7 8 9 10
First 22.8 24.4 25.9 24.0 5.7 16.2 7.4 24.9 17.8 27.4

Second 15.0 20.5 31.7 19.0 18.4 18.3 17.9 19.1 22.6 16.8
Third 7.4 7.1 7.1 7.8 9.9 8.9 6.7 8.3 7.3 9.4

Table 30: The kurtosis for the directions found by 10 simulations using 3 kurtosis-
seeking neurons each.

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION

with resl

s to which the fir:
r9ed during 10 :i mi
to the original i ýy 1

Ti

166

lot

Figure 26: The directions found by the network with respect to the original images.

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 167

There are 15 directions whose orientation is vertical, 8 horizontal and 7 top-

right/bottom-left blobs. It is clear from the statistics that the vertical directions

have the greatest kurtosis which presumably accounts for the fact that a vertical

orientation was found most often.

6.7.3 Boundary Conditions and Pre-processing

We repeat the above experiment with the same network but using slightly different

input data to the PCA network: firstly we consider the effect of pre-processing the

data with a logarithmic function and secondly the effect of a Gaussian mask on the

data.

The effect non-linear pre-processing

Field (Field, 1994) performed his experiments upon log preprocessed images. This

can be justified for two reasons. Firstly, human physiology appears to be more linear

in the logarithm of contrast as opposed to simple contrast. Secondly, log prepro-

cessing may help alleviate problems of differing illumination. By taking logarithms,

local ratios in image intensity are transformed into local differences of image inten-

sity. Ratios of intensity should be more robust to changes in illumination than are

absolute differences. To investigate if logarithmic pre-processing affects the resulting

components, we repeated the experiment, but this time, all, image intensities were

replaced by their logarithms. The resulting components are shown in Figure 27 and
the kurtosis of these directions are given in Table 31. Firstly it appears that the PCA

directions have been unchanged. Secondly the network is still finding directions of

great kurtosis. It appears also that the vertical directions continue to have an excess

of kurtosis over the horizontal directions.

The effect of boundary conditions

The previous results may have been artificially affected by the square samples from

image used. To find out if this was the case, we repeated the previous experiment
but instead of simply presenting the 32x32 samples the the network, they were first

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 168

Figure 27: The directions found when the network is trained on logarithmically-

preprocessed images.

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 169

Simulation 1 2 3 4 5 6 7 8 9 10
First 12.3 15.3 14.2 13.1 7.6 17.1 7.3 14.3 11.3 15.3

Second 14.8 12.5 14.6 13.7 6.6 13.0 15.2 13.2 16.3 7.0
Third 9.0 5.6 9.1 7.6 15.6 9.3 11.9 8.0 5.6 14.4

Table 31: The kurtosis for the directions found by the kurtosis seeking network after
logarithmic preprocessing

windowed with a Gaussian of standard deviation of 6. The filters found are shown
in Figure 28. As can be seen, the network still mainly converges first to vertical
directions and such directions continue to be very strongly kurtotic. However, having
found and subtracted one vertical and one horizontal direction it then finds a third
direction which also shows great kurtosis but little pattern in its shape. We conjecture
that such a pattern is due to the extremely local nature of the mask and the particular

set of images met during training. Experiments with different width Gaussians have

confirmed the major findings that vertical (more kurtotic) directions are preferred.

6.7.4 Coding Methods

Field (Field, 1994) has made an important distinction between compact codes and

sparse distributed codes: we may define a compact code as a code in which the

dimensionality of the input data is reduced whereas a sparse distributed code will use

the same number of dimensions but only a few of these will be non-zero at any one

time. Any code produced by a sparse distributed coder may be viewed as belonging

to a reduced dimension subspace of the original space but the whole set of codes will

not require a basis of dimensionality equal to the original space.
Therefore the code formed by projecting the data onto the first few Principal Com-

ponents of the data may be thought of as a compact code since such a code reduces
the dimensionality of the representation while it retains as much of the information

in the data as possible. A sparse distributed code, on the other hand, retains (or

perhaps even increases) the dimensionality of the representation but in such a way
that any individual code uses only a few dimensions of the channel.

The context for such a distinction is the work by Barlow (Barlow, 1989) on the

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 170

Figure 28: The directions found when the network is trained on gaussian-filtered
images

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 171

early visual processing system. Barlow has suggested that a major task of this system
is to use redundancies in the infinite information available to it in order to make sense
of the data. Thus a PCA will reduce the redundancy inherent in the data by using
the correlations in the data in order to create a compressed code.

However, in a sparse distributed code, while overall each individual cell may have

the same probability of firing, the chances of two cells firing together are very much
reduced. Thus, the chances of false "suspicious coincidences" are very much reduced.
The statistics of such a code are strongly kurtotic - each code has a great number
of low firing cells corresponding to the random occasional firing of neurons while at
the same time there are a few cells, those which correspond to the signal, firing very
strongly.

We have, in our Projection Pursuit Network, the first Artificial Neural Network

which is capable of finding such sparse codes. Note also that the kurtosis-seeking

neuron tends to identify those directions in the input data in which a line is most
likely: i. e. the network becomes sensitized to directions which tend to contain lines.

6.8 Conclusion

We have introduced a neural network architecture which, using an extremely simple
architecture and learning rule, has been shown to be capable of performing sophis-
ticated statistical functions. The fact that the same network*structure is capable of
performing a PCA as well as EPP is unsurprising since Huber (Huber, 1985) has

shown that PCA may be viewed as a particular case of Projection Puruit. Thus, for
the interneuron network, in performing a PCA we are choosing g(x) =x oc fix' and
so the original network is seen to be maximising the second order statistics of the
distribution i. e. finding the eigenvectors corresponding to maximal eigenvalues.

The initial PP indices discussed in this Chapter are the simplest possible indices for
the finding of non-normal interesting directions; however, the method was shown to be

equally valuable with Information Theory indices or with more sophisticated indices

such as an instantaneous version of Friedman's index (Friedman, 1987) or Intrator's
index (Intrator and Cooper, 1992). The important point to note, however, is that the

CHAPTER 6. NON-LINEAR STRUCTURE EXTRACTION 172

method may be used with any function denoting a criterion which we wish to optimise.
Our feeling is that information indices may prove to be the most effective indices in

analysing a variety of distributions: we envisage further research into indices which

maximise mutual information (Becker, 1992) or maximise the effects of contextual
inforruation subject to externally-imposed conditions e. g. (Kay and Phillips, 1994).

The advantage of using Projection Pursuit concepts is that it provides a frame-

work for understanding and integrating previous neural network models which have

tended to introduce non-linearity in an ad hoc fashion. However, we note that the
format reviewed in this Chapter, required the function to be optimised to be differen-

tiable; this need not be the case for the general neural network model. For example,
Shapiro and Prügel-Bennet (Shapiro and Prugel-Bennett, 1992) have introduced a
non-linearity -a power law - into Oja's Subspace Algorithm but also used a threshold
below which the neuron will not fire. Since they set the threshold to be zero, the

analysis of convergence of a second order network is understandable in PP terms yet
the fact that the threshold may be changed suggests a direction for future research
of PP indices.

ýt

Chapter 7

Conclusion

This thesis has discussed the role of negative feedback as an organising principle in

the development of Arificial Neural Networks which use Hebbian learning to self-

organise. We began by emphasising the holistic nature of our algorithms and we wish

to reiterate this point here - every network is stable due to the interaction of the

negative feedback of activation and the positive feedback of the learning rule which,
in all cases, has been simple Hebbian learning. This method provides an alternative
to classical methods of limiting weight growth in Hebbian learning networks and has

the additional property that convergence takes place to statistically important sets

of weights.
Chapter 3 introduced the interneuron network and showed that Hebbian learning

alone in this context was sufficient to cause convergence to the Principal Components

of the input data. In our continuing search to develop models which might possibly be

models of actual biological networks we showed that a network in which the forward

and backward weights were independent was also capable of performing a PCA. An

algorithm which found the actual PCs was developed.
Chapter 4 investigated the case where the negative feedback of activation from

each interneuron was allowed to affect all other interneurons. By introducing asym-

metry into this process, we were able to devise a network whose weights converge to

the actual Principal Components concurrently. Several different models were devel-

oped and analysed. However such models seem to be unrealistic models of biological

173

CHAPTER 7. CONCLUSION 174

information processing.
Thus, in Chapter 5 we investigated situations which may reflect conditions in

carbon-based neural nets: first by adopting Dale's Law and not allowing weights to

change from excitatory to inhibitory or vice versa. In doing this, we showed that the

weights converge to the actual principal components in a parallel fashion; this seems

an important gain in return for a minor constraint, yet we showed that there are
limits to the data for which this convergence can be guaranteed. A second condition

was to take into consideration the actual physical distance between neurons which

would manifest itself as a differential in the times when negative feedback would be

felt. Such a net was also shown to converge to the PCs, a slight modification to which

produced an extremely simple binary coder. An interesting application of this net
with artificial data saw the generation of a topology preserving neural network.

In Chapter 6, we introduced non-linearity. The major insight of Chapter 6 is
the embedding of the work which is being done on non-linear Principal Component

type neural networks in the statistical theory of Projection Pursuit. In Chapter 6,

we used an Exploratory Projection Pursuit network to find "interesting" structure
in high-dimensional data spaces and investigated the statistics of images using this
model.

7.1 Future directions

Future research on Artificial Neural Networks must inevitably concentrate on non-
linearities. As we have pointed out, when closed form solutions of problems exist, they

are almost always more efficient. The real promise of ANNs is in their application
to non-linear problems. The non-linearities introduced in Chapter 6 are clearly not
the only ones possible and the strength of the emergent properties of the networks
described in that Chapter suggests that it would be wrong to dismiss any other non-
linearity a priori. There are two obvious directions of continuing research in this

area:

1. Research into different types of functions in the Exploratory Projection Pursuit

networks described in Chapters 6.

CHAPTER 7. CONCLUSION 175

2. Research into the introduction of non-linearity in different manners: we note

that Karhunen and Joutsensalo have discussed a different form of non-linearity

which has interesting signal separation properties.

The specific extensions which are of most interest to the author are the introduc-

tion of non-linearity in the regression form of the negative feedback network and in

the limiting case where the non-linearity becomes a dichotomy the use of the network

as a classifier.

7.2 Cybernetics

While we have not discussed biological neural networks in detail in this thesis, we
have continued to attempt to create models which have biological relevance and be-
lieve that the mathematical models developed here are potentially of interest to neu-
rophysiologists. Barlow (Barlow, 1989) has proposed that insight can be gained into

the operation of low level vision operations by viewing them as statistical processes.
For example, Principal Component Analysis results in filters that match some aspects
of pysychophysical performance: the operation of the retina can be viewed, to a rea-
sonable approximation, at high signal to noise levels as removing correlations between

variables. Whether a PCA process is actually being implemented is a question for

empirical research.
Barlow has also recently (Barlow and Tolhurst, 1992) suggested that edge detec-

tion is a consequence of the need for an economic representation of images in natural
neural networks. He notes that, in whitened images, the edges are completely visible
though whitening removes the correlations between pairs of images. Thus, if edges

are examples of "suspicious coincidences", to investigate the statistics of edges in

whitened images, we must go beyond second order statistics. Barlow has calculated
the kurtosis excess (over the normal distribution's value) from sets of points and

shows that when he choses a set of points which lie in a straight line that kurtosis for

the set is much larger than average. However he feels that a search for fourth order

statistics is too complex to be biologically feasible.

Yet we have shown here that an extremely simple neural network is capable of

CHAPTER 7. CONCLUSION 176

finding kurtotic distributions. This would be an easy implementation of "edge detec-

tors".

Thus we have described a set of models model which self-organise on very sim-

ple principles and which have demonstrably powerful statistical properties and seem
equally valid as a model for new information processing devices and as a model for
describing the processing of biological processes.

It is for reasons such as these that we feel able to evoke the spirit of cybernetics:
our research has been into a model of information processing which, being simple and
robust, seems capable of being a model for both biological information processing
and engineered information processes. We have seen the construction of mathemati-
cal models as more important than any actual implementation but have nevertheless
shown that all models reported herein can be easily implemented on current comput-
ers.

Bibliography

Ambrose-Ingerson, J., Granger, R., and Lynch, G. (1990). Simulation of paleocortex

performs hierarchical clustering. Science, 247: 1344-1348.

Amit, D. J. (1989). Modelling Brain Function. Cambridge University Press.

Anderson, J. A. (1968). A memory model using spatial correlation functions. Kyber-

netik, 5: 113-119.

Armstrong, W., Dwelly, A., Liang, J., Lin, D., and Reynold., S. (1991). Some re-

sults concerning adaptive logic networks. ftp from archive. cis. ohio-state. edu,
/pub/neuroprose.

Baldi, P. and Hornik, K. (1988). Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks, 2: 53-58.

Barlow, H. and Tolhurst, D. (1992). Why do you have edge detectors. JOSA Meeting,

Albuquerque.

Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1: 295-311.

Barto, A., Bradtke, S., and Singh, S. (1991). Real-time learning and control us-

ing asynchronous dynamic programming. Technical Report 91-57, University of
Massachusetts.

Barto, A., Sutton, R., and Watkins, C. (1989). Learning and sequential decision

making. COINS 89-95, University of Massachussetts.

177

BIBLIOGRAPHY 178

Bates, E. and Elman, J. (1992). Connectionism and the study of change. Technical

Report 9202, Centre for Research in Language, University of California, San

Diego, La Jolla, CA 92093-0526.

Becker, S. (1992). An Information-theoretic Unsupervised Learning Algorithm for

Neural Networks. PhD thesis, Gradute Department of Computer Science, Uni-

versity of Toronto.

Biehl, M. (1993). An exactly solvable model of unsupervised learning. (preprint).

Biehl, M. and Mietzner, A. (1993). Statistical mechanics of unsupervised structure

recognition. ftp from archive. cis. ohio-state. edu, /pub/neuroprose. neuroprose.

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for the develop-

ment of neuron selectivity: Orientation specificity and binocular interaction in

visual cortex. The Journal of Neuroscience, 2(1): 32-48.

Brause, R. (1993a). Transform coding by lateral inhibited neural nets. In Proceedings

of IEEE Tools with Artificial Intelligence.

Brause, R. W. (1993b). A symmetrical lateral inhibition network for pca and feature
decorrelation. In Gielen, S. and Kappen, B., editors, ICANN93, pages 486-490.
Springer Verlag.

Carlson, A. (1990). Anti-hebbian learning in a non-linear neural network. Biological

Cybernetics, 64: 171-176.

Carpenter, G. A. (1989). Neural network models for pattern recognition and associa-
tive memory. Neural Networks, 2: 243-257.

Carpenter, G. A. and Grossberg, S. (1987a). Art 2: Self-organization of stable cate-

gory recognition codes for analog input patterns. Applied Optics, 26: 4919-4930.

Carpenter, G. A. and Grossberg, S. (1987b). A massively parallel architecture for a

self-organizing neural pattern recognition machine. Computer Vision, Graphics,

and Image Processing, 37: 54-115.

BIBLIOGRAPHY 179

Cohen, M. A., Grossberg, S., and Stork, D. G. (1988). Evolution, Learning, Cognition,

and Advanced Architectures, chapter Speech Perception and Production by a Self-

organizing Neural Network, pages 217-231. World Scientific Publishing.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley-

Interscience Publication.

DeMers, D. and Cottrell, G. (1993). Non-linear dimensionality reduction. ftp

archive. cis. ohio-state. edu, /pub/neuroprose.

Dennis, S. and Wiles, J. (1993). Integrating learning into models of human mem-

ory: the hebbian recurrent network. Technical report, University of Queensland.

Dennis, S., Wiles, J., and Humphries, M. (1992). What does the environment look

like? setting the scene for interactive models of human memory. Technical Report

249, University of Queensland.

Diaconis, P. and Freedman, D. (1984). Asymptotics of graphical projections. The

Annals of Statistics, 12(3): 793-815.

Diamantaras, K. I. (1992). Principal Component Learning Networks and Applications.
PhD thesis, Princeton University.

Dwelly, A. (1990). An implementation of adaptive logic, networks. ftp from

archive. cis. ohio-state. edu, /pub/neuroprose.

Elman, J. (1991). Incremental learning, or the importance of starting small. Technical

Report 9101, University of California, San Diego, La Jolla, CA 92093-0126.

Elman, J. (1992). Distributed representations, simple recurrent networks, and gram-

matical structure. Machine Learning.

Fahlman, S. and Lebiere, C. (1991). The cascade correlation learning architecture.

Technical Report CMU-CS-90-100, Carnegie Mellon University.

Field, D. J. (1994). What is the goal of sensory coding. Neural Computation, 6: 559-

601.

BIBLIOGRAPHY 180

Frean, M. (1990). The upstart algorithm: A method for constructing and training

feedforward neural networks. Neural Computation, 2: 198-209.

Friedman, J. H. (1987). Exploratory projection pursuit. Journal of the American

Statistical Association, 82(397): 249-266.

Fritzke, B. (1991). Let it grow- self-organising feature maps with problem dependent

structure. In ICANN-91. Elsevier Science.

Fritzke, B. (1993a). Advances in Neural Information Processing Systems 5, chapter

Kohonen Feature Maps and Growing Cell Structures -a Performance Compari-

son. Morgan Kaufmann.

Fritzke, B. (1993b). Vector quantization with a growing and splitting elastic net. In

Proceedings of the International Conference on Artificial Neural Networks.

Fyfe, C. (1993a). The beneficial effect of distance on learning in interneurons. In

Neuronet'93.

Fyfe, C. (1993b). A fully parallel pca network. In IEEE/IEE Workshop on Natural
Algorithms in Signal Processing.

Fyfe, C. (1993c). Interneurons which identify principal components. In Recent Ad-

vances in Neural Networks, BNNS93. `

Fyfe, C. (1993d). Pca properties of interneurons. In From Neurobiology to Real World

Computing, ICANN 93.

Fyfe, C. (1993e). Positive weights in interneurons. In Neural Computing, Research

and Applications, the Third Irish Neural Networks Conference.

Fyfe, C. (1993f). A simple homogeneous parallel pca network. In IJCNN 93.

Fyfe, C. and Baddeley, R. Non-linear data structure extraction using simple hebbian

networks. Biological Cybernetics. (to appear).

BIBLIOGRAPHY 181

Fyfe, C. and Baddeley, R. (1994). A projection pursuit neural network. In Irish

Neural Net Conference.

Fyfe, C. and McGregor, D. R. (1994). A novel topology-preserving network. In Irish

Neural Net Conference.

Grossberg, S. (1968). Some nonlinear networks capable of learning a spatial pattern

of arbitrary complexity. Proceedings of the National Academy of Sciences(USA),

59: 368-372.

Grossberg, S. (1984). Unitization, automaticity, temporal order, and word recogntion.
Cognition and Brain Theory, 7: 263-283.

Grossberg, S. (1988a). Non-linear neural networks: Principles, mechanisms, and
architectures. Neural Networks, 1: 17-61.

Grossberg, S. (1988b). Nonlinear neural networks: principles, mechanisms, and archi-
tectures. Neural Networks, 1: 17-61.

Grossberg, S. and Schmajuk, N. A. (1989). Neural dynamics of adaptive timing and
temporal discrimination during associative learning. Neural Networks, (2): 79-
102.

Hall, P. (1989). On polynomial-based projection indices for'e: tploratory projection
pursuit. The Annals of Statistics, 17(2): 589-605.

Hebb, D. 0. (1949). The Organisation of Behaviour. Wiley.

Hertz, J., Krogh, A., and Palmer, R. G. (1992). Introduction to the Theory of Neural

Computation. Addison-Wesley Publishing.

Hinton, G. and Shallice, T. (1991). Lesioning an attractor network: Investigations of

acquired dyslexia. Psychological Review, 98(1): 74-95.

Hinton, G. E. and Nowlan, S. (1990). The bootstrap widrow-hoff rule as a cluster-
formation algorithm. Neural Computation, 2(3): 355-362.

190

BIBLIOGRAPHY 182

Hopfield, J. (1982). Neural networks and physical systems with collective computa-
tional abilities. Proceedings of the National Academy of Sciences, USA, 79: 2554-

2558.

Horswell, R. L. and Looney, S. W. (1992). A comparison of tests for multivariate
normality that are based on measures of multivariate skewness and kurtosis.
Journal of Statistical Computing Simulations, 42: 21-38.

Huang, S. and Huang, Y. F. (1993). Principal component vector quantization. Journal

of Visual Communication and Image Representation, 4(2): 112-120.

Huber, P. J. (1985). Projection pursuit. Annals of Statistics, 13: 435-475.

Intrator, N. (1990). A neural network for feature extraction. In NIPS 1, pages 719-
726. Morgan Kaufman.

Intrator, N. (1992). Feature extraction using an unsupervised neural network. Neural
Computation, 4(1): 98-107.

Intrator, N. (1993a). Combining exploratory projection pursuit and projection pursuit
regression with application to neural networks. Neural Computation, 5: 443-455.

Intrator, N. (1993b). On the use of projection pursuit constraints for training neural
networks. In Spatz, B., editor, NIPS 5, pages 3-10. Mordau

.
Kaufmann.

Intrator, N. and Cooper, L. N. (1992). Objective function formulation of the bcm
theory of visual cortical plasticity: Statistical connections, stability conditions.
Neural Networks, 5: 3-17.

Intrator, N. and Gold, J. I. (1993). Three-dimensional object recognition using an
unsupervised bcm network: The usefulness of distinguishing features. Neural
Computation, 5: 61-74.

Jolliffe, I. (1986). Principal Component Analysis. Springer-Verlag.

Jones, M. C. and Sibson, R. (1987). What is projection pursuit. The Royal Statistical

Society.

BIBLIOGRAPHY 183

Jonker, H. (1992). Information Processing and Self-Organisation in Neural Networks

with Inhibitory Feedback. PhD Thesis.

Karhunen, J. and Joutsensalo, J. (1992). Nonlinear hebbian algorithms for sinusoidal

frequency estimation. In Aleksander, I. and Taylor, J., editors, Artificial Neural

Networks, 2, pages 1099-1103. North-Holland.

Karhunen, J. and Joutsensalo, J. (1993a). Learning of robust principal component

subspace. In 1993 International Joint Conference on Neural Networks, pages
2409-2412.

Karhunen, J. and Joutsensalo, J. (1993b). Nonlinear generalizations of principal
component learning algorithms. In IJCNN'93, pages 2599-2602.

Karhunen, J. and Joutsensalo, J. (1994). Representation and separation of signals
using nonlinear pca type learning. Neural Networks, 7(1): 113-127.

Kay, J. and Phillips, W. (1994). Activation functions, computational goals and learn-
ing rules for local processors with contextual guidance. Technical Report CCCN-
15, Centre for Cognitive and Computational Neuroscience, University of Stirling.

Kehagias, A. (1991). Stochastic recurrent networks: Prediction and classification of
time series. ftp from archive. cis. ohio-state. edu, /pub/neuroprose.

K. Miller and MacKay, D. (1992). The role of constraiLts in hebbian learning. Neural
Computation.

Kohonen, T. (1974). An adaptive associative memory principle. IEEE Transactions

on Computers, C-23: 444-445.

Kohonen, T. (1984). Self-Organization and Associative Memory. Springer-Verlag.

Kosko, B. (1991). Pattern Recognition by Self-Organising Neural Nets, chapter Adap-

tive Bidirectional Associative Memories, pages 207-236.

Levin, A. (1990). Optimal dimensionality reduction using hebbian learning. In Con-

nectionist Summer School, pages 141-144.

BIBLIOGRAPHY 184

Linsker, E. (1988). Self-organization in a perceptual network. IEE Computer, pages
105-117.

Linsker, R. (1986a). From basic network principles to neural architecture. In Pro-

ceedings of National Academy of Sciences.

Linsker, R. (1986b). From basic network principles to neural architecture. In Pro-

ceedings of National Academy of Sciences.

Lipschutz, S. (1968). Theory and Problems of Linear Algebra. McGraw-Hill.

Mardia, K. V., Kent, J., and 'Bibby, J. (1979). Multivariate Analysis. Academic Press.

Martinetz, T. (1993). Competitive hebbian learning rule forms perfectly topology
preserving maps. In Gielen, S. and Kappen, B., editors, ICANN93, pages 427-
434. Springer Verlag.

McClelland, J., Rumelhart, D. E., and Group, T. P. R. (1986). Parallel Distributed
Processing, volume Volume 1 and 2. MIT Press.

Murphy, P. C. and Sillito, A. M. (1987). Corticofugal feedback influences the gener-
ation of length tuning in the visual pathway. Nature, 329: 727-729.

Oja, E. (1982). A simplified neuron model as a principal component analyser. Journal
of Mathematical Biology.

Oja, E. (1989). Neural networks, principal components and subspaces. International
Journal of Neural Systems.

Oja, E. and Karhunen, J. (1985). On stochastic approximation of the eigenvectors
and eigenvalues of the expectation of a random matrix. Journal of Mathematical
Analysis and Applications, 106: 69-84.

Oja, E. and Karhunen, J. (1993). Nonlinear pca: Algorithms and applications. Tech-

nical Report A18, Helsinki University of Technology.

BIBLIOGRAPHY 185

Oja, E., Ogawa, H., and Wangviwattana, J. (1992a). Pca in fully parallel neural

networks. In Taylor, A.., editor, Artificial Neural Networks, 2.

Oja, E., Ogawa, H., and Wangviwattana, J. (1992b). Principal component analysis by

homogeneous neural networks, part 1: The weighted subspace criterion. IEICE

Trans. If. 6 Syst., E75-D: 366-375.

Oja, E., Ogawa, J., and Wangviwattana, J. (1991). Learning in nonlinear constrained
hebbian networks. In Kohonen, T., Makisara, K., Simula, 0., and Kangas, J.,

editors, Artificial Neural Networks, pages 385-390. Elsevier Science Publishers.

Palmieri, F. (1993). Linear self-association for universal memory and approximation.
In World Congress on Neural Networks, pages 2-339- 2-343. Lawrence Erblaum
Associates.

Palmieri, F., Zhu, J., and Chang, C. (1993). Anti-hebbian learning in topologically

constrained linear networks: A tutorial. IEEE Transactions on Neural Networks,

4(5): 748 - 761.

Pece, A., (1992). Redundancy reduction of a Gabor representation: a possible compu-
tational role for feedback from primary visual cortex to lateral geniculate nucleus.
North-Holland.

Plumbley, M. (1991). On Information Theory and Unsupervised Neural Networks.

PhD thesis, University of Cambridge.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1988). Nu-

merical Recipes in C. Cambridge University Press.

Prugel-Bennett, A. and Shapiro, J. L. (1993). Statistical mechanics of unsupervised
hebbian learning. Journal of Physics A: Math. Gen., 26: 2343-2369.

Ritter, H. and Kohonen, T. (1989). Self-organising semantic maps. Biological Cyber-

netics, 61: 241-254.

BIBLIOGRAPHY 186

Robinson, D. A. (1987). Vision, Brain, and Cooperative Computation, chapter :

Why Vusuomotor Systems Don't Like Negative Feedback and How They Avoid

It, pages 89-107. MIT Press.

Rubner, J. and Schulten, K. (1990). Development of feature detectors and self-

organisation. Biological Cybernetics.

Rubner, J. and Tavan, P. (1989). A self-organising network for principal-component
analysis. Europhysics Letters, 10(7): 693-698.

Sanger, T. (1990). Analysis of the two-dimensional receptive fields learned by the

generalized hebbian algorithm in response to random input. Biological Cybernet-
ics.

Shannon, C. (1948). A mathematical theory of communication. Bell System Technical
Journal.

Shapiro, J. L. and Prugel-Bennett, A. (1992). Unsupervised hebbian learning and
the shape of the neuron activation function. In Aleksander, I. and Taylor, J.,
editors, Artificial Neural Networks, 2, pages 179-183. North-Holland.

Shultz, T. and Schmidt, W. (1991). A cascade-correlation model of balance scale
phenomena. In Thirteenth Annual Conference of the Cognitive Science Society,
pages 635-640. Erblaum.

Steinbuch, K. (1961). Die lernmatrix. Kybernetik, (1): 36-45.

Sun, J. (1993). Some practical aspects of exploratory projection pursuit. SIAM
Journal of Scientific Computing, 14(1: 68-79.

Thrun, S. (1992). Efficient exploration in reinforcement learning. Technical Report
CMU-CS-92-102, Carnegie-Mellon University.

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the

striate cortex. Kybernetik, 14: 85-100.

BIBLIOGRAPHY 187

White, R. W. (1993). Competitive hebbian learning 2: an introduction. In World

Congress on Neural Nets, pages 557-560.

Wiener, N. (1948). Cybernetics. MIT Press.

Williams, R. J. (1985). Feature di: covery through error-correcting learning. Technical

Report 8501, Institute for Cognitive Science, University of California, San Diego.

Willshaw, D. and von der Malsburg, C. (1976). How patterned neural connections

can be set up by self-organisation. Proceedings of the Royal Society of London

B, 194: 431-445.

Willshaw, D. J., Buneman, 0., and Longuet-Higgins, H. (1969). Non-holographic

associative memory. Nature, 222: 960-962.

Xu, L. (1993). Least mean square error reconstruction principle for self-organizing
neural-nets. Neural Networks, 6(5): 627 - 648.

Zhao, Y. (1992). On Projection Pursuit Learning. PhD thesis, MIT.

