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Abstract 

We investigate the properties of an unsupervised neural network which uses simple 
Hebbian learning and negative feedback of activation in order to self-organise. The 

negative feedback circumvents the well-known difficulty of positive feedback in Heb- 

bian learning systems which causes the networks' weights to increase without bound. 

We show, both analytically and experimentally, that not only do the weights of net- 

works with this architecture converge, they do so to values which give the networks 
important information processing properties: linear versions of the model are shown 
to perform a Principal Component Analysis of the input data while a non-linear 

version is shown to be capable of Exploratory Projection Pursuit. 

While there is no claim that the networks described herein represent the com- 

plexity found in biological networks, we believe that the networks investigated are 

not incompatible with known neurobiology. However, the main thrust of the thesis is 

a mathematical analysis of the emergent properties of the network; such analysis is 

backed by empirical evidence at all times. 
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Chapter 1 

Introduction 

The purpose of this thesis is the identification and analysis of means of extraction of 
information from high dimensional data sets. We will later define "information" in 

a Shannon-rigorous way but, for now, it is sufficient to take "information" to mean 

any increase in our (human) knowledge. 

The central idea of the thesis is that negative feedback of activation can be used 
to control the development of very simple self-organising artificial neural networks 

which nevertheless have powerful information-extraction properties. 
We will use simple Hebbian learning in our networks. There is a well known 

difficulty with this type of learning which is that the network weights will tend to 

increase without bound unless we perform some type of specific remedial action. 
However, we will show that the negative feedback of activation not only causes the 

weights to converge, it also causes it to converge to directions which have powerful 
information processing properties. 

Since we insist that the retention of simplicity is a major design criterion, we 

cannot claim that such networks will be accurate models of biological information 

processors. Yet we will base our models on biologically-plausible premises wherever 

possible. 
The aim of creating intelligent machines is not new: one of the first attempts to 

mimic human capabilities was the study of cybernetics. 

5 
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1.1 The Influence of Cybernetics 

We begin by relating this thesis to the topic of cybernetics, a term which has become 

unfashionable in recent years. The word was coined by the Austrian mathematician 

and engineer Norbert Weiner (Wiener, 1948) who used it in defining a science of 

communication and control in both animals and machines. 
The defining feature of cybernetics is feedback which was thought to be the prin- 

cipal organising principle of all complex systems: hence, it came to be used as a basic 

methodology of systems theory and management science. The study has often be- 

come tinged with an anti-reductionist slant because of its emphasis on the emergent 

properties of complex systems and it is perhaps this which has contributed most of 

all to its recent neglect. 
The application of cybernetic principles as a paradigm of neural network develop- 

ment will be used in this thesis: 

" Its theme is that negative feedback of activation may be used as an organising 

principle of neural network development. 

" The neural networks' development will be environment driven. 

" The networks will use unsupervised learning to self-organise. 

" Several properties of the networks discussed will appear-as emergent properties 

which were not predicted a priori. 

9 The interaction of parts of the networks, simple though they are, will be im- 

portant in the final properties of the networks. 

" At any one time we will be able to identify the state of the system and can, if 

we wish, inspect all component states of the system at that time. 

" and, most important of all, the networks will be quintessentially involved in 

information processing. 
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1.2 Artificial Neural Networks 

Artificial Neural Networks, on the other hand, are very much a currently-active re- 

search topic. The history of its rise (1950s 
, 60s), sudden decline (1969) and gradual 

re-emergence (1980s) has been detailed elsewhere (e. g. (Hertz et al., 1992)) and gives 

a fascinating insight into the Sociology of Science but will not be repeated here. 

This thesis deals with a class of nets which self-organise using unsupervised Heb- 

bian learning. We will use (mostly) 2 layer nets in which one layer is designated the 

input layer. They will be feedforward nets in the sense that they will be strongly di- 

rectional, though we will use a feedback transfer of activation to stabilise . the growth 

of the network. We will concentrate on a static analysis of the networks and rarely 

consider the dynamics of how the network converges to a particular state. The nets 

will initially be linear in Chapters 2 to 5 and subsequently non-linear. We will base 

our nets on biologically possible models but will sacrifice biological plausibility where 

necessary in order to investigate statistical properties of the network. 

1.2.1 Principles for Self-organisation in Neural Networks 

We will treat the need for organisation in information processors as axiomatic: a 

network with random weights is unlikely to have important information processing 

properties. We will create algorithms which cause the weights to become organised 
in such a way that the network develops information processing properties such as 
the transmission of maximal information in noise-free environments. 

Discussion of the process of organisation in neural nets must begin with a state- 

ment of what it is that is to be organised. For example, we may organise the actual 

structure of the network by adding new nodes as necessary. This is the methodol- 

ogy used in Cascade Correlation (see e. g. (Fahlman and Lebiere, 1991; Shultz and 
Schmidt, 1991)), in Adaptive Logic Nets (e. g. (Armstrong et al., 1991; Dwelly, 1990)) 

and in similar methods based on other types of nets such as Kohonen nets (see below) 

(e. g. (Fritzke, 1991; Fritzke, 1993b)) or Principal Component nets (e. g. (Rubner and 
Tavan, 1989; Rubner and Schulten, 1990)). An alternative is to prune network links 

which seem to become redundant during learning (e. g. (Frean, 1990; McClelland 
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et al., 1986)). Occasionally this is taken to the extreme case where sets of nodes 
(layers) are brought into play at one time - this is usually disguised as having some 
layers reacting passively, if at all, while other layers are learning (see e. g. (Linsker, 

1986a)). The view taken in this thesis is that the introduction and pruning of nodes 

can be subsumed in a process which simply organises the weights through which neu- 

rons pass their activations to one another: a new neuron is one which is joined to 

all other nodes (and the external environment) by means of connections with weights 

zero until such time that the neuron begins learning (at which time the weights will 
become non-zero). Therefore we will be interested in that form of organisation of 

artificial neural networks which during the learning phase changes the weights be- 

tween neurons. This section is devoted to a discussion of the principles on which such 

organisation takes place. 
Probably the most frequently used type of Artificial Neural Network is that which 

uses backpropagation; since the principles on which the development of the network 

weights is founded is the same as that on which the perceptron's weights are adjusted, 

such a network is often called a Multi-Layered Perceptron. Such networks require a 

teacher as well as examples from the environment of the mapping to be learned; they 

are thus grouped under the genre "supervised learning". They organise on the basis 

that the network's weights should be adjusted to make the network's output more like 

the teacher's output than it was prior to the adjustment. This reflects the principle 

that there exists a teacher who has expert knowledge of' the environment and will 

use that knowledge to guide the development of the network. Such a principle would 
be interpreted in educational circles as advocating a didactic methodology. A special 

case of the didactic principle is that known as "reinforcement learning" (e. g. (Thrun, 

1992; Barto et al., 1991; Barto et al., 1989)) in which the teacher merely tells the 

pupil that it is right or wrong. This has been shown to be particularly effective in 

control technology. 

In contrast to a didactic methodology, one might propose an exploratory principle. 
While educationists might baulk at the description of unsupervised learning as an 
instance of exploratory methods, we will group methods which do not include a 
teacher as unsupervised learning. An alternative name might be environment-driven 
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learning. 

Since there is no teacher, such nets must use information in the training exam- 
ples on which to base any changes to the current weights i. e. on which to base their 

learning. However, as we shall see, this does not in itself constitute an "organising 

principle": we will show in the next chapter that the simplest of all network learning 

methods will cause the weights to grow without bound unless some organising princi- 

ple is invoked to control their growth. Some examples of organising principles in the 
development of unsupervised neural networks are found in 

1. Attractor Neural Networks (Hopfield Networks)(Hopfield, 1982; Amit, 1989) in 

which, in general, all nodes are thought of as belonging to a single layer. An 

input pattern is represented by a set of activations (typically is or -1s) across 
the set of nodes. The organising principle used for this net is that nodes which 
fire together for a particular pattern have the weights between them reinforced. 
The net effect of this organising principle is that if part of a pattern or a noisy 

version of the pattern is presented to the trained network, activation will be 

passed back and forth across the network before finally settling to an attractor 

state - hopefully that corresponding to that which has been learned. Note that 

we are making a distinction here between the organising principle - reinforcing 

weights between concurrently active nodes (one-shot learning) - and the aim of 
the process - pattern completion. ,, - 

2. ART (Adaptive Resonance Theory)(e. g. (Carpenter and Grossberg, 1987b; 

Carpenter and Grossberg, 1987a)) Networks which have the aim of creating 

a network which retains its ability to learn from new data while not losing 

its memory of previously learned data. This is Grossberg's stability-plasticity 
dilemma. Here the organising principle is the "resonance" of a new input with 
those currently learned; resonance takes place if the new input is sufficiently like 

previously learned inputs. If resonance with a node's previous learning takes 

place, the node adjusts its learned weights to more closely match the new input 

while if resonance does not take place, a new node must be created. 

3. (Kohonen) Feature Maps(e. g. (Martinetz, 1993; Fritzke, 1991; Fritzke, 1993a)) 
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which aim to provide a low dimensional representation of the input data which 

remains topographically true to the major features of the input data. In this 

type of network, the organising principle is adjustment of weights so that neigh- 
bouring neurons respond similarly to any input. Now we can make a 3-way 

distinction between the aim, the organising principle and the implementation 

since the implementation may be done through lateral connections (Willshaw 

and von der Maisburg, 1976) or simple updating of a winner's neighbours (Ko- 

honen, 1984). 

We will use negative feedback of activation as the organising principle. 

1.3 About this Thesis 

Three aspects of the thesis must be made clear from the start: 

1. Throughout this thesis, we will repeatedly return to the biological plausibility as 

a reason for investigating certain networks. This is not to be taken as implying 

that our networks have reached the level of sophistication of biology nor that we 

consider the thesis to be an exploration of carbon-based neural networks. We 

do however believe that, since our motivation lies in emulating biological neural 

networks' properties, we should not gainsay nature's technologies without due 

cause. Therefore the networks found herein are mpre -aptly described as not 
being biologically implausible rather than the more positive assertion that they 

are biologically plausible. 

2. We have stated that this is not a biological investigation. It is in fact a math- 

ematical/statistical investigation; the structures and properties investigated in 

this thesis have an abstract existence independent of any implementation de- 

tails. In almost all cases, the simulations on which we report are extremely 

simple simulations in which our aim is to illustrate a point rather than to 

demonstrate an implementation. 

3. Where possible, we have related the emergent properties of our network to 

the methods of traditional statistics. We make no claims about the network's 



CHAPTER 1. INTRODUCTION 11 

efficiency with respect to these methods; indeed, in the case of Principal Com- 

ponent Analysing networks, there is a widespread acknowledgement that tradi- 

tional statistical methods are more efficient than neural network methods. Our 

purpose is to investigate the properties of the negative feedback network per se; 

we will not compare the implementation of these properties with the standard 

methods. 

Chapters 2,3,4 and 5 deal with Networks which perform Principal Component 

Analysis: Chapter 2 gives a short discussion of Hebbian learning and Principal Com- 

ponent Analysis, and a brief review of currently-popular PCA networks; the impor- 

tance of Anti-Hebbian learning and negative feedback are discussed for the first time. 

Chapter 3 introduces the negative feedback network and shows its equivalence to 

current Principal Subspace networks; the PCA properties of the network are analyt- 
ically developed and an algorithm which finds the actual Principal Components is 

devised; empirical results are given to complement the analysis; finally the feedfor- 

ward weights are dissociated from the feedback weights to give a more biologically 

plausible network. Chapter 4 extends the basic network by allowing the negative 
feedback to influence those neurons giving the feedback; it is shown that this alone is 

not sufficient to cause convergence to the actual Principal Components but ways of 

causing this convergence are investigated. The importance of asymmetry in causing 

convergence to the Principal Components is highlighted. Chapter 5 gives 2 variations 

of the network based on different biologically-plausible features of either the input 

data or the means of transmission of the activation; for the first time a non-linearity 
is introduced and its effects analysed and then used in a particular application. 

Chapters 6 deals with networks which introduce non-linearity into the networks 

of the previous chapters to create networks which perform exploratory data analysis. 
A general outline of the network is given along with specific examples of its use; 
different projection indices are used on various sets of input data and the effect of using 
different indices simultaneously is investigated. We conclude by giving examples of the 

networks which are discussed therein being used in biologically necessary operations 

viz. in vision processing. 



CHAPTER 1. INTRODUCTION 12 

Chapter 7 provides a summary of the thesis and suggests directions for future 

research. 
It will be noted that there is a marked disparity between the space devoted to linear 

networks and that devoted to non-linear networks; we feel that this is essential in the 

light of our current lack of understanding of artificial neural networks' properties. 
There are many properties of many of our most popularly used networks which are 
beyond current analysis and the emphasis on linearity in the current thesis has, we 
feel, been justified by the insights gained through this emphasis. This is not to deny 

that the insights gained from our investigations of the linear networks may be useful 
in our investigations of the non-linear networks. 



Chapter 2 

Principal Components and ANNs 

In this chapter, we define the Information Theory background to Principal Component 

Analysis(PCA) and give a brief survey of the major most-popular Artificial Neural 

Networks(ANNs) which perform a PCA. We will not, in this chapter, provide proofs 

of convergence of the various nets discussed since such proofs are very similar to those 

we use in Chapter 3 to prove convergence of our new network. We begin by outlining 
the simplest possible ANNs and review a very simple unsupervised learning rule. 

2.1 Hebbian Learning 

The aim of unsupervised learning is to present a neural net with raw data and allow 
the net to make its own representation of the data - hopefully retaining all information 

which we humans find important. Unsupervised learning in neural nets is generally 

realised by using a form of Hebbian learning which is based on a proposal by Donald 

Hebb (Hebb, 1949) who wrote: 
When an axon of cell A is near enough to excite a cell B and repeatedly or per- 

sistently takes part in firing it, some growth process or metabolic change takes place 
in one or both cells such that A's efficiency, as one of the cells firing B, is increased. 

Neural nets which use Hebbian learning are characterised by making the activation 
of a unit depend on the sum of the weighted activations which feed into the unit. They 

use a learning rule for these weights which depends on the strength of the simultaneous 

13 
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activation of the sending and receiving neuron. With respect to the network depicted 

in Figure 1, these conditions are usually written as 

Yi = wiixi ý1) 

and Ow; i = axiy1 (2) 

the latter being the learning mechanism. Here y; is the output from neuron i, x is the 

jth input, and wii is the weight from x to ys. a is known as the learning rate and is 

usually a small scalar which may change with time. Note that the learning mechanism 

says that if xi and y; fire simultaneously, then the weight of the connection between 

them will be strengthened in proportion to their strengths of firing. However, we will 

not, unlike Kosko (Kosko, 1991), rename the Hebb Learning rule when an activation 
function is used. i. e. when 

yi = 9(E wi xj) 
i 

and 0wsj = axjZZ{ 

(3) 

(4) 

for some function, g(), we will still call this Hebb learning. 
Substituting Equation (1) into Equation (2), we can write the Hebb learning rule 

as 

I, 

Aw; j = ax; EWkjxk 

k 

= aEwkjxkxi (5) 
k 

which is equivalent to 
dt 

W(t) of CW(t) (6) 

where C; j is the correlation coefficient calculated over all input patterns between the 

ith and jth terms of the inputs and W(t) is the matrix of weights at time t. In moving 
from the stochastic equation (5) to the averaged differential equation (6), we must 

place certain constraints on the process particularly on the learning rate a which we 

will discuss in more detail later. 
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weights 

WII 

w12 yl 37 IN Inputs 
w 

w 
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y2 

wln I-W 

Figure 1: A Simple Neural Net 
The inputs are the xis and the outputs are the y; s . The strength of the connections 
between x's and y's are the w's. The learning rule changes the strengths of the w's 
till the net can be said to have learned a mapping. 

The advantage of this formulation is that it emphasises the fact that the resulting 

weights depend on the second order statistical properties of the input data. A review 

of the importance of this aspect of the Hebb learning rule is given in Section 2.3. 

Because of these statistics-based properties, Hebb learning has found applications 
in a number of early associative-type memories e. g. Steinbuch's Learning Matrix 

(Steinbuch, 1961), Anderson's linear associative memory (Anderson, 1968), Koho- 

nen's Adaptive Associative Memory (Kohonen, 1974) and the Willshaw Model (Will- 

shaw et al., 1969). 
However, a major difficulty with this learning rule is that unless there is some 

limit on the growth of the weights, the weights tend to grow without bound: we have 

a positive feedback loop -a large weight will produce a large value of y (Equation 1) 

which will produce a large increase in the weight (Equation 2). It is instructive to 

follow e. g. (Hertz et al., 1992), in examining the Hebb rule's stability: 
Recall first that a matrix A has an eigenvector x with a corresponding eigenvalue 

A if 

Ax = Ax 
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In other words, multiplying the vector x or any of its multiples by A is equivalent 
to multiplying the whole vector by a scalar A. Thus the direction of x is unchanged 

- only its magnitude is affected. 
Consider a one output-neuron network and assume that the Hebb learning process 

does cause convergence to a stable direction, w'; then if wk is the weight vector linking 

xktoy, 

0 (Yxi) = (E wix, x) 
ii 

where the angled brackets indicate the expected value taken over the distribution and 
R is the correlation matrix of the distribution. Now this happens for all i, so Rw = 0. 

Now the correlation matrix, R, is a symmetric, positive semi-definite matrix and so 

all its eigenvalues are non-negative. But the above formulation shows that w' must 
have eigenvalue 0. Now consider a small disturbance, e, in the weights in a direction 

with a non-zero (i. e. positive) eigenvalue. Then 

(Ow*) = R(w* + E) = Re >0 

i. e. the weights will grow in any direction with non-zero eigenvalue (and such direc- 

tions must exist). Thus there exists a fixed point at W=O but this is an unstable 
fixed point. In fact, it is well known that in time, the weight direction of nets which 

use simple Hebbian learning tend to be dominated by the, direction corresponding to 

the largest eigenvalue. 
We will later discuss one of the major ways of limiting this growth of weights while 

using Hebbian learning and review its important side effects. However, we begin with 

short reviews of 2 subjects which will be important to the thesis: Information Theory 

and Principal Component Analysis. 

2.2 Quantification of Information 

Shannon (Shannon, 1948) devised a measure of the information content of an event 
in terms of the probability of the event happening. He wished to parameterise the 
intuitive concept that the occurrance of an unlikely event tells you more than that of 
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a likely event. He defined the information in an event i, to be - log p; where p; is the 

probability that the event labelled i occurs. 
Using this, we define the entropy (or uncertainty or information content) of a set 

of N events to be 
N 

H=-E ps 1og p; 
i=i 

That is, the entropy is the information we would expect to get from one event hap- 

pening where this expectation is taken over the ensemble of possible outcomes. 
For a pair of random variables X and Y, if p(i, j) is the joint probability of X 

taking on the ii" value and Y taking on the jth value, we define the entropy of the 

joint distribution as: 

H(x, y) > P(i, j) log p(i, j) 
$12. 

Similarly, we can define the conditional entropy (or equivocation or remaining 
uncertainty in x if we are given y) as: 

H(xly) = -EP(i, j)logp(i j) 
$1j 

Shannon also showed that if x is a transmitted signal and y is the received signal, 
then the information which receiving y gives about x is 

I(x; y) = H(x) - H(xl y) (7) 

or I(x; y) = H(y) - H(yl x) (8) 

or I(x; y) = H(x) + H(y) - H(x, y) (9) 

Because of the symmetry of the above equations, this term is known as the mutual 
information between x and y. 

The channel capacity is defined to be the maximum value over all possible values 
of x and y of this mutual information. 

The basic facts in which we will take an interest are: 

" Because the occurance of an unlikely event has more information than that of 
a likely event, it has a higher information content. 
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9 Hence, a data set with high variance is liable to contain more information than 

one with small variance. 

"A channel of maximum capacity is defined by 100% mutual information i. e. 
I (x; y) = H(x) 

2.3 Principal Component Analysis 

Inputs to a neural net generally exhibit high dimensionality i. e. the N input lines can 

each be viewed as 1 dimension so that each pattern will be represented as a coordinate 
in N dimensional space. 

A major problem in analysing data of high dimensionality is identifying patterns 

which exist across dimensional boundaries. Such patterns may become visible when 

a change of basis of the space is made, however an a priori decision as to which basis 

will reveal most patterns requires fore-knowledge of the unknown patterns. 
A potential solution to this impasse is found in Principal Component Analysis 

which aims to find that orthogonal basis which maximises the data's variance for a 

given dimensionality of basis. The usual tactic is to find that direction which accounts 
for most of the data's variance - this becomes the first basis vector. One then finds 

that direction which accounts for most of the remaining variance - this is the second 
basis vector and so on. If one then projects data onto the Principal Component 

directions, we perform a dimensionality reduction which will be accompanied by the 

retention of as much variance in the data as possible. 
In general, it can be shown (Jolliffe, 1986) that the kth basis vector from this 

process is the same as the kt' eigenvector of the co-variance matrix 1, C where 

Cu = ((xi - (x))(xj - (x))) 

where the angled brackets indicate an ensemble average i. e. the average over all 

possible sequences of values x, from any arbitrary starting position of the sequence. 

'where the eigenvectors are enumerated in normal form i. e. the eigenvector corresponding to the 
largest eigenvalue is first, that corresponding to the second largest is second etc. 
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For zero-mean data, the covariance matrix is equivalent to a simple correlation 

matrix. 
Now, if we have a set of weights which are the eigenvectors of the input data's 

covariance matrix, C, then these weights will transmit the largest values to the out- 

puts when an item of input data is in the direction of the largest correlations which 

corresponds to those eigenvectors with the largest eigenvalues. Thus, if we can create 

a situation in an Artificial Neural Network where one set of weights (into a particular 

output neuron) converges to the first eigenvector (corresponding to the largest eigen- 

value), the next set of weights converges to the second eigenvector and so on, we will 
be in a position to maximally recreate at the outputs the directions with the largest 

variance in the input data. 

Note that representing data as coordinates using the basis found by a PCA means 
that the data will have greatest variance along the first principal component, the next 

greatest variance along the second, and so on. While it is strictly only true to say 
that information and variance may be equated in Gaussian distributions, it is a good 

rule-of-thumb that a direction with more variance contains more information than 

one with less variance. PCA is the process of projecting the n-dimensional input 

data onto that m-dimensional subspace (where m«n) which is spanned by those 

vectors which contain most variance. Thus PCA provides a means of compressing 
the data whilst retaining as much information within the data as possible. It can 
be shown that if a set of input data has a covariance matrix whose eigenvalues are 
{. 11, )12, 

..., 
)º�} and if we represent the data in coordinates on a basis spanned by 

the first m eigenvectors, the loss of information due to the compression (i. e. due to 

projecting the data onto the lower dimensioned subspace) is 

n 
E Ai (10) 

i=m+1 

2.3.1 Calculation of Principal Components 

Since most users of Principal Components will use a standard statistical package 
(and hence not care about the method of calculating the PCs) this section provides 
only a short summary of the major methods of calculating Principal Components 
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; more detailed discussion of methods can be found in many standard statistical 
texts. For computer scientists, the invaluable "Numerical Recipes in C" (Press et al., 
1988)provides an excellent introduction. We discuss 3 methods 

1. The Power Method 

2. The QL (or similar QR) method 

3. The method of Singular Value Decomposition 

The discussion below owes much to that found in Joliffe (Jolliffe, 1986). 

The Power Method 

The power method, though not in general use now, is included as it is the most 
intuitively obvious method and was the first to be identified. We describe the simplest 
form. Let us wish to find the largest eigenvalue and corresponding eigenvector of a 

p*p matrix T. We choose an intitial p-vector, uo and the-_ form the sequence 

U1 = Tuo 

ua = Tui =T auo 

U3 = Tua = T3u0 

r ur = r-i =T ua 

If the eigenvectors of T are a1, a2, a3i ... ap with corresponding eigenvalues a� then 

for any vector u0, 
P 

uo = Ewia1 

j=l 
for scalars w1. Then, for our sequence above, we have 

ui = Tuo 
P 

_E wjTaj 
j=l P 

_E wi ai ai 

j=l 

(11) 
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Similarly, we have 

U, 
_ 

Ej_1 w1A aj 
w1 A Wl Arl 

(al + 
wa (L2 )r as ++ 

wp (; p )r aP) wl _ T1... wi Al 

-º a, as r --> oo 

provided . 11 > a;, i 5A 1. Speed of convergence of the algorithm depends both on the 
initial choice of uo and also on the relative magnitude of the first eigenvalue to the 

second. 
Various refinements of the method can be shown to enable convergence to subse- 

quent eigenvectors. 

The QL (or QR) Algorithms 

The method of the QL algorithm depends on the fact that any (non-singular) matrix 
T can be decomposed as T= QL where Q is an orthogonal matrix and L is a lower 

triangular matrix. Again an iterative procedure is used: let Ti = T; then use Ti = 
Q1L1 to enable calculation of Q1 and Li and then calculate T2 using T2 = L1Q1. This 

is the first step in an iterative procedure which can be shown to cause convergence of 
T, to a diagonal matrix comprising the eigenvalues of T in order. 

The QR algorithm is very similar except that it uses the fact that any (non- 

singular) matrix T can be decomposed as T= QR where Q is an orthogonal matrix 

and R is an upper triangular matrix. 

Singular Value Decomposition 

SVD is the method which is most often used by modem statisticians in the calculation 

of Principal Components due to its proven efficiency. This relies on the fact that any 

n*p matrix T can be written as T= ULAT where 
U is a n*r matrix such that UTU = I,. 

A is a p*r matrix such that ATA = 
L is a r*r diagonal matrix and r is the rank of X. 
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Since this is defined for a non-square matrix, it may be used for situations in which 
the number of observations is lower than the number of variables (i. e. where the rank 

of the sample covariance matrix is reduced). The actual method of calculation of the 

singular values is very similar to the iterative methods of the QR / QL section above. 

Artificial Neural Networks and PCA 

Artificial Neural Networks and PCA come together in 2 ways: 

1. There are some networks which use Principal Components as an aid to learning 

e. g. (Huang and Huang, 1993) 

2. Some networks have been explicitly designed to calculate Principal Components 

It is the latter with which this thesis will deal. 

2.4 Weight Decay in Hebbian Learning 

As noted in Section 2.1, if there are no constraints placed on the growth of weights 

under Hebbian learning, there is a tendancy for the weights to grow without bounds. 

It is possible to renormalise weights after each learning epoch, however this adds an 

additional operation to the network's processing. 
Another possibility is to allow the weights to grow until`each reaches some limit 

(Linsker, 1986b), e. g. have an upper limit of w+ and a lower limit of w- and clip the 

weights when they reach either of these limits. Clearly a major disadvantage of this 

is that if all weights end up at one or other of these limits' the amount of information 

which can be retained in the weights is very limited. 

A third possibility is to prune weights which do not seem to have importance 

for the network's operation. However, this is an operation which must be performed 

using non-local knowledge - typically which weights are of much smaller magnitude 
than their peers. 

2This will certainly happen if simple Hebbian learning is used 
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Hence, interest has grown in the use of decay terms embedded in the learning 

rule itself (e. g. (McClelland et al., 1986), Chapter 17). Ideally such a rule should 

ensure that no single weight should grow too large while keeping the total weights 

on connections into a particular output neuron fairly constant. One of the simplest 
forms of weight decay was developed as early as 1968 by Grossberg(Grossberg, 1968) 

and was of the form: 

dw, i 
dt = ayixj - w+i (12) 

It is clear that the weights will be stable (when dät 
= 0) at the points where w; j =a< 

y, x1 > where the angled brackets indicate an ensemble average. Using a similar type 

of argument to that employed for simple Hebbian learning, we see that at convergence 

we must have aCw = w. Thus w would have to be an eigenvector of the correlation 

matrix of the input data with corresponding eigenvalue We shall be interested in 

a somewhat more general result. 
Grossberg went on to develop more sophisticated learning equations which use 

weight decay e. g. for his instar coding, (Grossberg, 1988a) he has used 
dw; l 
dt = a{y, - wij}xi (13) 

where the decay term is gated by the input term xi and for outstar coding 
dw,, 

dt = a{x; - w; j}yj I -- (14) 

where the decay term is gated by the output term y,. These, while still falling some 

way short of the decay in which we will be interested, show that researchers of this 

time were beginning to think of both differentially weighted decay terms and allowing 
the rate of decay to depend on the statistics of the data presented to the network. 

2.4.1 Principal Components and Weight Decay 

Miller and MacKay (K. Miller and MacKay, 1992) have provided a definitive study of 
the results of a decay term on Hebbian learning. They suggest an initial distinction 

between Multiplicative Constraints and Subtractive Constraints. 
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They define Multiplicative Constraints as those satisfying 

dt W(t) = Cw(t) - -r(W)W(t) 
where the decay in the weights is governed by the product of a function of the weights, 

ry(w), and the weights, w(t), themselves. The decay term can be viewed as a feedback 

term which limits the rate of growth of each weight in proportion to the size of the 

weight itself while the first term defines the Hebbian learning itself. 

Subtractive Constraints are satisfied by equations of the form 

ýtw(t) 
= Cw(t) - e(w)n 

where the decay in the weights is governed by the product of a function of the weights 

, e(w), and a constant vector, n, ( which is often {1,1, 
.. 1}T ý. 

They prove that 

" Hebb rules whose decay is governed by Multiplicative Constraints will, in cases 
typical of Hebb learning, ensure that the weights will converge to a stable point 

" This stable point is a multiple of the principal eigenvector of the covariance 

matrix of the input data 

" Hebb rules governed by Subtractive Constraints will tend to lead to saturation 

of the weights at their extreme permissible values3 1a 

" Under Subtractive Constraints, there is actually a fixed point within the per- 

mitted hypercube of values but this is unstable and is only of interest in anti- 
Hebbian learning(see below). 

9 If specific limits ( w+ and w') do not exist, weights under Subtractive Con- 

straints will tend to increase without bound. 

In summary then, Subtractive Constraints offer little that cannot be had from 

simple clipping of the weights at preset upper and lower bounds. Multiplicative 

'Such values may be partially determined by the eigenvalues of the covariance matrix but are 
not, in general, multiples of the eigenvectors. 
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Constraints, however, seem to give us not just weights which are conveniently small, 
but also weights which are potentially useful since 

yi = wiixj = wl. x 

where wi is the vector of weights into neuron y; and x is the vector of inputs. But, 

Wi. X = Iw1I IXI cos 0 
where Idl is the length of d and 0 is the angle between the 2 vectors. 

This is maximised when the angle between the vectors is 0. Thus, if wi is the 

weight into the first neuron which converges to the first Principal Component, the first 

neuron will maximally transmit information along the direction of greatest correlation, 
the second along the next largest, etc. In Section 2.3, we noted that these directions 

were those of greatest variance which from Section 2.2, we are equating with those of 

maximal information transfer through the system. 
Given that there are statistical packages which find Principal Components, we 

should ask why it is necessary to reinvent the wheel using Artificial Neural Networks. 

There are 2 major advantages to PCA using ANNs: 

1. Traditional statistical packages require us to have available prior to the calcula- 

tion, a batch of examples from the distribution being investigated. While it is 

possible to run the ANN models with this method -`batch mode" - ANNs are 

capable of performing PCA in real-time i. e. as information from the environ- 

ment becomes available we use it for learning in the network. We are, however, 

really calculating the Principal Components of a sample, but since these esti- 

mators can be shown to be unbiased and to have variance which tends to zero as 
the number of samples increases, we are justified in equating the sample PCA 

with the PCA of the distribution. The adaptive/recursive methodology used in 

ANNs is particularly important if storage constraints are important. 

2. Strictly, PCA is only defined for stationary distributions. However, in realistic 

situations, it is often the case that we are interested in compressing data from 
distributions which are a function of time; in this situation, the sample PCA 
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outlined above is the solution in that it tracks the moving statistics of the 

distribution and provides as close to PCA as possible in the circumstances. 

However, most proofs of PCA ANNs convergences require the learning rate to 

converge to 0 in time and, in practice, it is the case that convergence is often 

more accurate when the learning rate tends to decrease in time. This would 

preclude an ANN following a distribution's statistics, an example of the well- 
known trade-off between tracking capability and accuracy of convergence. 

We now look at several ANN models which use weight decay with the aim of capturing 
Principal Components. We will make no attempt to be exhaustive since that would 
in itself require a thesis; we do however attempt to give representative samples of 

current network types. 

2.5 Early Models 

There were a number of ANN models developed in the 1980s which used Hebbian 

learning. We will investigate 2 for comparative purposes: 

1. Linsker's Model 

2. Oja's Single Neuron Model 

2.5.1 The InfoMax Principle in Linsker's Model 

Linsker(Linsker, 1986b) has developed a Hebb learning ANN model which attempts to 

realise the InfoMax principle - the neural net created should transfer the maximum 

amount of information possible between inputs and outputs subject to constraints 

needed to inhibit unlimited growth. Linsker notes that this criterion is equivalent to 

performing a Principal Component Analysis on the cell's inputs. 

Although Linsker's model is a multi-layered model, it does not use a supervised 
learning mechanism; he proposes that the information which reaches each layer should 
be processed in a way which maximally preserves the information. That this does 

not, as might be expected, lead to an identity mapping, is actually due to the effect 
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Figure 2: Linsker's model 

of noise. Each neuron "responds to features that are statistically and information- 
theoretically most significant" ((Linsker, 1988), page 116). He equates the process 
with a Principal Component Analysis. 

Linsker's network is shown in Figure 2. Each layer comprises a 2-dimensional 

array of neurons. Each neuron in layers from the second onwards receives input from 

several hundred neurons in the previous layer and sums these inputs in the usual 
fashion. The region of the previous layer which sends input to a neuron is called the 

receptive field of the neuron and the density of distribution of inputs from a particular 

region of the previous layer is defined by a Gaussian distribution. At the final layer, 

lateral connections within the layer are allowed. 
The Hebb-type learning rule is 

Ow; i = a(x - (x))(yi - (y)) +b 

where a and b are constants. 
In response to the problem of unlimited growth of the network weights, Linsker 

uses a hard limit to the weight-building process i. e. the weights are not allowed to 

exceed w+ nor decrease beyond w- where w- = -zv+. 
Miller and MacKay (K. Miller and MacKay, 1992) have observed that Linsker's 

model is based on Subtractive Constraints, i. e. 
Ow; j = axsy1 - a(x)yj - a(y)(x+ - (x»» 

Layer C 
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Both y, and <y> are functions of w, but in neither case are we multiplying these 
by w itself. Therefore, as noted earlier, the weights will not tend to a multiple of the 

principal eigenvector but will saturate at the bounds (w t or wsý) of their permissible 
values. 

Because the effects of the major eigenvectors will still be felt, there will not be a 

situation where a weight will tend to w- in a direction where the principal eigenvector 
has a positive correlation with the other weights. However, the directions of the weight 

matrix will, in general, bear little resemblence to any eigenvector of the correlation 

matrix. The model will not, in general, enable maximal information transfer through 

the system. 

2.5.2 Oja's One Neuron Model 

Oja (Oja, 1982) proposed a model which extracts the largest principal component 
from the input data. He suggested a single output neuron which sums the inputs in 

the usual fashion 

y=1WiXi 

i=l 
His variation on the Hebb rule, though, is 

Ow; = a(x1y - y2w1) 
ý. . 

Note that this is a rule defined by Multiplicative Constraints (y2 = 7(w) ) and 

so will converge to the principal eigenvector of the input covariance matrix. The 

weight decay term has the simultaneous effect of making E w; tend towards 1 i. e. the 

weights are normalised. 
However, this rule will find only the first eigenvector (that direction corresponding 

to the largest eigenvalue) of the data. It is not sufficient to simply throw clusters of 

neurons at the data since all will find the same (first) Principal Component; in order 
to find other PCs, there must be some interaction between the neurons. Other rules 

which find other principal components have been identified by subsequent research, 

an example of which is shown in the next Section. 
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2.6 Recent PCA Models 

We will consider 3 of the most popular PCA models. It is of interest to begin with 
the development of Oja's models over recent years. 

2.6.1 Oja's Subspace Algorithm 

The One Neuron network reviewed in the last section is capable of finding only the 
first Principal Component. While it is possible to use this network iteratively by 

creating a new neuron and allowing it to learn on the data provided by the residuals 
left by subtracting out previous Principal Components, this involves several extra 

stages of processing for each new neuron. 
Therefore Oja's(Oja, 1989) Subspace Algorithm provided a major step forward. 

The network has N output neurons each of which learns using a Hebb type rule with 
weight decay. Note however that it does not guarantee to find the actual directions of 
the Principal Components; the weights do however converge to an orthonormal basis 

of the Principal Component Space. We will call the space spanned by this basis the 
Principal Subspace. The learning rule is 

Ow;, = a(x+yi - yi ýWikyk) 
k 

(15) 

which has been shown to force the weights to converge to -a basis of the Principal 
Subspace 4. 

One advantage of this model compared with some other networks (e. g. (Sanger, 

1990)) is that it is completely homogeneous i. e. the operations carried out at each 
neuron are identical. 

The major disadvantage of this algorithm is that it finds only the Principal Sub- 

space of the eigenvectors not the actual eigenvectors themselves. 
4In this case y(wq) = yy . However, the additional weight decay constraints from the other 

outputs y' EJ#k w; kyk force decay in the directions of other eigenvectors. Therefore the total of the 
decay parameters only forces weight convergence to the subspace 
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2.6.2 Oja's Weighted Subspace Algorithm 

The final stage is the creation of algorithms which find the actual Principal Compo- 

nents of the input data. In 1992, Oja et al recognised the importance of introducing 

asymmetry into the weight decay process in order to force weights to converge to the 

Principal Components. The algorithm is defined by the equations 

n 
yj = wijxi 

i=1 1 

where a Hebb-type rule with weight decay modifies the weights according to 
N 

Aw; i = 77yilx+ - ei E ykwki 
k=1 

Ensuring that 01 < 92 < 03 < ... allows the neuron whose weight decays propor- 
tional to 01 (i. e. whose weight decays least quickly) to learn the principal values 

of the correlation in the input data. That is, this neuron will respond maximally to 

directions parallel to the principal eigenvector, i. e. to patterns closest to the main 

correlations within the data. The neuron whose weight decays proportional to 62 

cannot compete with the first but it is in a better position than all of the others and 

so can learn the next largest chunk of the correlation, and so on. 
It can be shown that the weight vectors will converge to the principal eigenvectors 

in the order of their eigenvalues. The algorithm clearly satisfies Miller and Mackay's 

definition of Multiplicative Constraints with -y(w; ) = B; Ek ykwkiXi" 

2.6.3 Sanger's Generalized Hebbian Algorithm 

Sanger (Sanger, 1990) has developed a different algorithm (which he calls the "Gen- 

eralized Hebbian Algorithm") which also finds the actual Principal Components. He 

also introduces asymmetry in the decay term of his learning rule: 
i 

Aw, j = a(xjyj -yi 
LWikyk) 

k-1 
(is) 

Note that the crucial difference between this rule and Oja's Subspace Algorithm is 

that the decay term for the weights into the jth neuron is a weighted sum of the first 
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j neurons' activations. Sanger's algorithm can be viewed as a repeated application of 
Oja's One Neuron Algorithm by writing it as 

j-1 
Iwij = a([xiyj - yj 

E 
wikykl - yjwi7) 

k=1 
(17) 

I': '-- see that the central tcrm comprises the residuals after the first j-1 Principal Com- 

ponents have been found, and therefore the rule is performing the equivalent of One 

Neuron learning on subsequent residual spaces. However, note that the asymme- 
try which is necessary to ensure convergence to the actual Principal Components, is 

bought at the expense of requiring the jth neuron to `know' that it is the jth neuron 
by subtracting only j terms in its decay. It is Sanger's contention that all true PCA 

rules are based on some measure of deflation such as shown in this rule. 

2.7 Principal Components and Anti-Hebbian Learn- 

ing 

All the ANNs we have so far met have been feedforward networks - activation has been 

propagated only in one direction. However, many real biological networks are char- 

acterised by a plethora of recurrent connections. This has led to increasing interest 

in networks which, while still strongly directional, allow activation to be transmitted 

in more than one direction i. e. either laterally or in the 'reverse direction from the 

usual flow of activation. One interesting idea is to associate this change in direction 

of motion of activation with a minor modification to the usual Hebbian learning rule 

called Anti-Hebbian learning (a comprehensive analysis of Anti-Hebbian learning is 

given in (Palmieri et al., 1993)). 

If inputs to a neural net are correlated, then each contains information about the 

other. In information theoretical terms, there is redundancy in the inputs (I(z; y) >0 
)" 

Anti-Hebbian learning is designed to decorrelate input values. The intuitive idea 
behind the process is that more information can be passed through a network when 
the nodes of the network are all dealing with different data. The less correlated the 
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weights 

yl 

-qp Inputs 

Anti-Hebbian 
Weights 

Figure 3: Anti-Hebbian Weights 
Negative decorrelating weights between neurons in the same layer are learned using 
an "anti-Hebbian" learning rule 

neurons' responses, the less redundancy is in the data transfer. The aim of producing 
decorrelated responses, however, in order to maximise information transfer must be 

modified if the outputs are subject to noise: intuitively, the more noise in the network 

the more correlation is necessary to optimise information transfer((Plumbley, 1991)). 

If 2 neurons respond to the same signal, there is a measure of correlation between 

them and this is used to affect their responses to future similar data. Anti-Hebbian 

learning is sometimes known as lateral inhibition as this type of learning is generally 

used between members of the same layer and not between members of different layers. 

The basic model is defined by 

Ow; J = -a(y, yj) 

Therefore, if initially y; and y; are highly correlated then the weights between 

them will grow to a large negative value and each will tend to turn the other off. 
It is clear that there is no need for weight decay terms or limits on anti-Hebbian 

weights as they are automatically self-limiting, provided decorrelation can be attained. 

((yi. y, ) -' 0) = (Ow;, --, 0) (18) 
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i. e. weight change stops when the outputs are decorrelated. Success in decorre- 

lating the outputs results in weights being stabilised. 
It has been shown (Rubner and Tavan, 1989) that not only does anti-Hebbian 

learning force convergence in the particular case of a deflationary algorithm but that 

the lateral connections do indeed vanish. 
The method is valid for all deflationary networks. 
Several authors have developed Principal Component models using a mixture of 

one of the above PCA methods (often Oja's One Neuron Rule) and Anti-Hebbian 

weights between the output neurons e. g. (Brause, 1993b; Rubner and Schulten, 1990; 

Brause, 1993a; Palmieri, 1993; White, 1993). 

We first note a similarity between the aims of PCA and anti-Hebbian learning: the 

aim of anti-Hebbian learning is to decorrelate neurons. If a set of neurons performs a 
Principal Component Analysis, their weights form an orthogonal basis of the space of 

principal eigenvectors. Thus, both methods perform a decorrelation of the neurons' 

responses. 
Further, in information theoretic terms, decorrelation ensures that the maximal 

amount of information possible for a particular number of output neurons is trans- 

ferred through the system. We will consider only noise-free information-transfer since 
if there is some noise in the system, some duplication of information may be beneficial 

to optimal information transfer. 

2.7.1 The Interneuron Model 

Plumbley (Plumbley, 1991) has developed a model of Hebb learning which is based on 
the minimisation of information loss throughout the system. However, for Gaussian 

signals there is no difference between this principle and InfoMax. 
Since there are no known biological examples of neurons which both excite and 

inhibit other neurons of the same type (Dale's Law), Plumbley postulates a layer of 
interneurons which act as decorrelating neurons for the output neurons. 

He develops these interneurons in 2 ways, suggesting that he is giving 2 different 

views of the same network. However, we will see that these interneurons have different 

capabilities depending on which network is used. 
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Figure 4: The Interneuron Model 

In both networks the interneurons are developed as anti-Hebbian neurons with the 

additional property of trying to optimise information transfer within limited power 

constraints. Plumbley notes that the best information transfer rate will be found 

when the outputs are decorrelated; however, he also tries to equalise the variance of 
the outputs to ensure that they are then carrying equal information. 

Figure 4 shows the form of the first model. 
The dynamics of the network are described by 

Z=VTY 

where z3 is the activation of the interneuron 

yi is the output from the network 
and V1 is the weight joining the ith ouput neuron to the jth interneuron. 

This makes the output response 

y=x-Vz 

Plumbley concentrates on the information preserving properties of the forward 
transformation between inputs and outputs and shows 

Y= (I + VVT)-ix 
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Plumbley uses a weight decay mechanism in his learning: 

Avij = 1I (Yixj 
- i14Jii) 

This is equivalent to a learning rule in the limit of 

d 
T v(t) = (C - ryI)v 

A solution to this equation is 

v(t) =A exp(C - ryI)t 

Therefore, the weights will increase without limit in directions where the eigen- 

value of the correlation matrix exceeds ry . Thus the weights will never tend to a 

multiple of the principle eigenvector and no selectivity in information transfer will 
be achieved. Note that there are fixed points on the eigenvectors but these are not 

stable. 
The crucial difference between this model and Oja's model is that in Oja's model 

the decay term is a function of the weights times the weights. In this model, the 

decay term is not strong enough to force the required convergence. 
Equally, the anti-Hebbian learning rule does not force convergence to a set of 

decorrelated outputs. 

AV{j = 77(y{Zj - Avij) 
1' ` 

does not mean that 

(Ov+i = 0) = ((yiZj) = 0). 

However, in taking "another view of the skew-symmetric network", Plumley uses 
the interneurons as the outputs to the network. 

In this model, we have forward excitations U and backward excitations V where 

Z=UTY 

y=x-Vz 
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i. e. 

z= UT(I + VUT)'ix 

where the weight update is done using the same update rule Ov; i = 77(yiZj - Av; j) 
Since the output is from the interneurons we are interested in the forward trans- 

form from the x values to the z values. 

yi = Xi - 
>'Lkixk 

k 

Now, Duji = rl (y. zi - Au; i) 

= i«Xs -> Ukizk)Zj - Au;. i) 
k 

Plumbley states that the last term is the weight decay term. In fact, as can be 

seen from the above equations, the second term is the important weight decay term, 
being a form of Multiplicative Constraint. There is an implicit weight decay built 

into the recurrent architecture -a fact which we will use in the next Chapter. 

However, if we consider the network as a transformation from the x values to the 

y values we do not find the same implicit weight decay term. 

zi = u'jyj 

Euij(xj 
- 

Eukjzk) 

jk 

EUijXj 
-E Zk\ 

J 
UijUkj 

jkj 

And so, 

Du; i = rl (yszi - i1 u; i 

= rl (yº(E ui. ixi -EZ (> u1iuki))- Au; i) 
iki 

Using this form, it is hard to recognise the learning rule as a Hebb rule, let alone 

a decaying Hebb rule of a particular type. 

However, as we shall see in the next chapter, the negative feedback in Plumbley's 

first network is an extremely valuable tool. 
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: 'ztAk = FY 

Figure 5: The System Model of the Novelty Filter 

2.8 Negative Feedback in Neural Networks 

Plumbley's model may be viewed as a negative feedback ANN. In this section, we 

consider other ANNs which have used negative feedback. We review separately those 

models where the dynamics of the network settling to an attractor state have been 

important to the value of the state reached and those models which have considered 

only the transfer of activation as a single event. 

2.8.1 Static Models 

The role of negative feedback in static models has most often been as the mechanism 
for competition (see e. g. (Carpenter, 1989; Kohonen, 1984) for, summaries) often based 

on biological models of activation transfer e. g. (von der Malsburg, 1973) and sometimes 
based on psychological models e. g. (Cohen et al., 1988; Grossberg and Schmajuk, 

1989; Grossberg, 1984) 

An interesting early model was proposed by Kohonen (Kohonen, 1984) who uses 

negative feedback in a number of models, the most famous of which (at least of the 

simple models) is the so-called "novelty filter" (see Figure 5). Here we have an input 

vector x which generates feedback gain by the vector of weights, M. Each element of 
M is adapted using anti-Hebbian learning: 

dm; 5 ,, 
dt - -ax x, (19) 

where z=x+ Mx (20) 
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) 

(a) Feeedforward Inhibition (b) Feedback Inhibition 

Figure 6: Two models of inhibition both of which yield on-centre, off-surround net- 
works: (a) Feedforward inhibition (b) feedback inhibition 

= (I - M)-lx = Fx (21) 

"It is tentatively assumed (I - M)-1 always exists. " Kohonen shows that, under 
fairly general conditions on the sequence of x and the initial conditions of the matrix 
M, the values of F always converge to a projection matrix under which the output 
x approaches zero although F need not converge to the zero matrix i. e. F converges 
to a mapping whose kernel ((Lipschutz, 1968), page 125) is the subspace spanned by 

the vectors x. Thus any new input vector xi will cause an output which is solely a 
function of the novel features in xl. 

2.8.2 Dynamic Models 

The negative feedback of activation has most often been used in those models of Ar- 

tificial Neural Networks which are based on a dynamic settling of activation. These 

are generally called Hopfield nets(Hertz et al., 1992) after John Hopfield (Hopfield, 

1982) who performed an early analysis of their properties though earlier work on 
their properties was performed by other researchers e. g. following Grossberg (Gross- 

berg, 1988b), we note (see Figure 6) that there are 2 types of on-center off surround 

networks possible using inhibition. It is possible to generate 
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" Feedforward inhibition: the activation transfer rule is 

Cýts 
-Ay +(B-1yi)xi-yiEzk 

kýi 

(22) 

A, B constants and x; is the input to the ith neuron. Grossberg points out that, 

if the activation is allowed to settle, this model has a stationary point (dt = 0) 

when 

Xi B Ek xk 
yi = 

Ekxk A+EkXk 
(23) 

Possibly of most interest is its self normalisation property, in that the total 

activity 

BEkxk > Yk =A+ Ek x, 6 

is a constant. 

(24) 

" Feedback inhibition: we use here Grossberg's term though we will in future 

make a distinction between feedback inhibition between layers (as in Plumb- 

ley's network) and lateral inhibition between neurons in the same layer. Here 

Grossberg discusses the activation passing equation 
dyi 

_ -Atli + (B 
- yi) [xi + 

,f 
(yi)] 

- yi[Ji + 
,f 

(yk)] (25) 
dt 

k#i 

where J_ Ekg{ xk. The most interesting properties from this model develop 

when the activation function, f(), is a sigmoid which has the property that it 

forms a winner take-all network which suppresses noise, and quantises the total 

activity. Again these properties arise from an analysis of the dynamic properties 

of the negative feedback acting on the network activations. 

For the remainder of this thesis we will be interested in negative feedback of 
activation in static models. We will use Plumbley's model with a simplified learning 

rule and investigate its emergent properties. 



Chapter 3 

The Interneuron Network 

3.1 Introduction 

In this chapter' we investigate more closely a network based on Plumbley's network 
(Chapter 2). We will, in fact, develop an extremely simple and effective Principal 

Component network which needs no weight decay in its learning rule: because of the 

negative feedback of activation, we can use simple Hebbian learning which will not 

cause instability in the weight growth process and which moreover causes the weights 

to converge to the Principal Components of the input data. 

3.1.1 The Interneuron Network 
º, '" 

For convenience we show again Plumbley's network in Figure 7. We recall from 

the previous chapter that Plumbley uses Hebbian learning with weight decay in his 

network. We retain the activation-transfer rules of his network but use no weight 
decay in the learning term. 

We will show that the decay mechanism is unnecessary - that the architecture 

of the network alone is sufficient to guarantee convergence to the relevant principal 

subspace. 
1Some of this work has already appeared in (Fyfe, 1993c; Fyfe, 1993d). 

40 
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Figure 7: The Interneuron Model 

The rules governing the organisation of the network are 

y=x-Wz 

Z=WTy 

OW=77YZT 

41 

where x is the vector of inputs, z is the vector of activations at the interneurons and W 

is the weights joining the two layers of neurons. We use y to`represent the activation 

at the summing neurons when the interneurons' activations have been returned. 
There is no explicit weight decay, normalisation or clipping of weights in the model. 

The subtraction of the weighted sum of the interneuron values acts like anti-Hebbian 
learning. We will consider the network as a transformation from inputs x to interneu- 

ron outputs z; by considering the effects of these rules on individual neurons, we can 

quickly show that the resultant network is equivalent to Oja's Subspace Algorithm. 

We have 

Yi = xi wkizk 
k 

zi = 'w; i yi 
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Therefore, 

Ow; j = iy+zi 

_ %(x: - 
Eukizk)zj 

k 

_ 1](X. x; - z, E uk: zk) (26) 
k 

This last formulation of the learning rule (26) is exactly the learning rule for the 

Subspace Algorithm(Oja, 1989), Equation (15). A more formal analysis is given in 

Section 3.2 

In order to compare this network with Oja's Subspace Algorithm, simulations 

were carried out on similar dataato that which Oja et al(Oja et al., 1992a) used 
to compare the Subspace and Weighted Subspace Algorithms. The results shown in 

Table 1 are from a network with 5 inputs each of zero mean random Gaussians, where 

xi's variance is largest, x2's variance is next largest, and so on. 
Therefore, the largest eigenvalue of the input data's covariance matrix comes from 

the first input, xi, the second largest comes from x2 and so on. The advantage of 

using such data is that it is easy to identify the principal eigenvectors (and hence 

the principal subspace). There are 3 interneurons in the network and it can be seen 
that the 3-dimensional subspace corresponding to the first 3 principal components 
has been identified by the weights. There is very little of each vector outside the 

principal subspace i. e. in directions 4 and 5. The left matrix represents the results 
from the interneuron network, the right shows Oja's results. 

The lower (WT W) section shows that the weights form an orthonormal basis of 
the space and the upper (W) section shows that this space is almost entirely defined 

by the first 3 eigenvectors. The interneuron network also maintains the advantages 

of homogeneity and locality of computation (indeed, it is difficult to imagine a com- 

putationally simpler model). 
Note that while we report, in general, on simulations run on this very special type 

of input data, all the networks developed in this thesis (other than those specifically 
identified in Chapter 5) perform excellently on all types of data. 

'I did not have the value of the variances Oja used and therefore used variances of 5,4,3,2,1 
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W w 
Interneuron 1 Interneuron 2 Interneuron 3 Output 1 Output 2 Output 3 

0.249 0.789 0.561 0.207 -0.830 0.517 
0.967 -0.234 -0.100 -0.122 0.503 0.856 

-0.052 -0.568 0.821 0.970 0.241 -0.003 
0.001 0.002 0.016 -0.001 0.001 0.001 

-0.001 0.009 0.005 0.000 0.000 -0.001 
WW WTW 
1.001 0.000 0.000 1.000 0.000 0.000 
0.000 1.000 0.000 0.000 1.000 0.000 
0.000 0.000 1.000 0.000 0.000 1.000 

Table 1: Results from the simulated network and the reported results from Oja et al. 
The left matrix represents the results from the interneuron network, the right from 
Oja's Subspace Algorithm. Thus the first column represents the weights from the 
input neurons to the first interneuron (or alternatively the first row represents the 

weights from the first input neuron to the interneurons). Note that the weights are 
very small outside the principal subspace and that the weights form an orthonormal 
basis of this space. Weights above 0.1 are shown in bold font. 

3.1.2 Algorithm for PCA 

While the above networks may be adequate for biological information processors, a 

more precise engineering requirement is that of finding the actual Principal Compo- 

nents. 
Recall that Oja et al(0ja et al., 1992a) amended the Subspace Algorithm by 

proposing the following modification to the learning rule 
N 

AWij = 112Ji(x+ - ei EYkwki) 

k=1 

Ensuring that 0<0< 03 < ... allows the neuron whose weight decays pro- 

portional to 61 (i. e. whose weight decays least quickly) to capture the principal 

component of the variance. The second captures the next largest component, and so 

on. The crucial point is the introduction of asymmetry into the learning algorithm. 
This algorithm is local and homogeneous in that each neuron knows only its own 

value of 8;. Analysis of the interneuron learning rule shows that, to simply insert a 

parameter, B;, would require computation at the level of the synapse. Whilst this may 
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be biologically feasible and algorithmically simple to implement, a different algorithm 
is developed here which uses the fact that the proposed network already incorporates 

subtraction of values. 
The algorithm is: the system is created with 1 interneuron; this interneuron finds 

the first principal component using the above learning rule. It then loses its plasticity 
i. e. its weights will not subsequently change. We then create a second interneuron. 

Since the first neuron has found and subtracted the first principal component, the 

second neuron will find the largest remaining principal component. It too now loses its 

plasticity. Then the third interneuron is created etc.. Therefore, we have introduced 

our asymmetry in the time dimension; note that whereas to do so with e. g. Oja's 

Single Neuron Network would have required the introduction of an extra mechanism - 
that of subtracting the projection of the data onto the subspace already found - we do 

not require this here as the network automatically finds and subtracts this subspace. 
To compare the results with Oja's Weighted Subspace Algorithm, we repeated 

the above experiment with the algorithm. Oja's simulation was carried out for 40000 

iterations. The interneuron simulation allowed each interneuron to learn in 13000 

iterations. The first interneuron learned during the first 13000 iterations, the second 
learned during the next 13000 and the third learned during the last 13000 iterations. 

The results are shown in Table 2; the left set is from the interneuron network, the 

right from Oja(1992). 

Clearly both methods find the Principal eigenvectors. We note that the interneu- 

ron results have the advantage of equally weighting each eigenvector. 
The algorithm retains the advantages of homogeneity and locality of computation. 

A more analytical proof of the convergence algorithm is developed in the next section. 

3.2 An Analytical Investigation of Convergence 

This section provides an analytical investigation of the algorithm which causes the 

interneuron weights to converge to the principal components of the input data's co- 

variance matrix. 
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W w 
1.000 -0.036 -0.008 1.054 -0.002 -0.002 
0.036 0.999 -0.018 0.002 1.000 0.001 
0.010 0.018 1.000 0.003 -0.002 0.954 
-0.002 -0.002 0.016 -0.001 0.001 -0.002 
0.010 0.003 0.010 0.001 -0.001 0.000 
WW WTW 

1.001 0.000 0.000 1.111 0.000 0.000 
0.000 1.000 0.000 0.000 1.000 0.000 
0.000 0.000 1.000 0.000 0.000 0.909 

Table 2: Results from the interneuron network (left) and from Oja (right). 
Both methods find the principal eigenvectors of the input data covariance matrix. The 
interneuron algorithm has the advantage that the each vector is equally weighted. 

The proof of the algorithm follows closely the methods developed by Oja and 
Karhunen (e. g. (Oja and Karhunen, 1985)) over the last decade; it is in 3 parts each 

of which refers to the interneuron learning rules: 

y=x-Wz 

Z=WTy=WTX 

OW=11yz 

In the first section we show that the weights of a single interneuron will converge to 

an eigenvector of the co-variance matrix; in the second, we show that these weights 
in fact converge to the principal eigenvector; in the third, we show that the algorithm 

ensures that the it' interneuron's weights converge to the ith eigenvector. 

Theorem 1 The weights, W, of a single interneuron with the above learning rules 

converges to an eigenvector of the input data co-variance matrix. 

Let w; be the weight of the connection between y; and z. 
If the weights of a single interneuron converges to a limit, the expected weight 

change over a sufficiently long time will tend to zero. Given some assumptions3, 
'Which will be discussed later 



CHAPTER 3. THE INTERNEURON NETWORK 46 

particularly regarding the learning rate 77 and the nature of the distribution of x, and 

using (x) to indicate the expected value of x with respect to the distribution from 

which it is drawn, 

(Ow, ) =0b (rly; z) =0 

b (y; z) =0 
((xi - w; z)z) =0 
((x 

- w{ E wkxk) E 
wjxz) =0 

kl 
(E WjXlCi - 'uli 

E 
WkXkZlwl) =0 

(27) 

l ki 

b EWlcli 
- wi EWkCkjwl =0 (28) 

1 ki 

where C;, is that element of the co-variance matrix showing the co-variance between 

the ith and jth elements of the input data x. If the weights of the interneuron are to 

converge, then the above must be true for all values of w;. Therefore the above may 
be written in matrix notation as 

(sw) =0b Cw - (wTCw)w =0 

ýi Cw = (wTCw)w 

Now it is a standard result that the co-variance matrix C is positive-semidefinite; and 
hence 

WTcW =>0 

where A is a non-negative real number. Hence, 

Cw=Aw 

Therefore, w converges to an eigenvector of C. 

Theorem 2 The weights, W, of a single interneuron with the above learning rules 
converges to the eigenvector with the largest eigenvalue of the input data co-variance 
matrix. 
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Proof 

The proof is by contradiction. 
Assume that w converges to an eigenvector c` of C with corresponding eigenvalue 
a'. Then, we will show that if there exists an eigenvector cl of C with corresponding 

eigenvalue A' > a' a small perturbation in the direction of cl will cause w to be 

unstable i. e. convergence will not take place. 
Let w have converged to a direction close to c' but to have a component e in the 
direction of c1. Then, 

(Ow) = Cw - (wTCw)w 

= C(C* + 6) - 
((C"T + ET)C(C" , i' 6))(C* + 6) 

= CC* + CE - 
(C*TCC*)C* 

_ 
(C*TCC*)e 

- 
(C*TCE)C* 

- 
(ETCC*)C* + O(E2) 

= A*C* + AIE 
- 

A*C* 
-. 

\*E 
- C*TC(EC") - 

(CE)TC"C* + Q(E2) 

= A'E 
- 

i1*E 
- 

(A, ETC*)C* + O(E2) 

= ale-A*f+O(0) 

where we have used the facts that CT =C and that its eigenvectors are mutually 

orthogonal. 
So, ignoring terms of O(e2), if Al > a` 

,a perturbation in the direction of c1 will 

always be unstable. Therefore, c' is the principal eigenvector corresponding to the 

largest eigenvalue of the co-variance matrix. 4.. , 

Theorem 3 If interneuron i is installed in the network at time t;, where ti < t2 < 

t3 < ..., and if the weights into the first i-1 interneurons have already converged to the 

first i-1 eigenvectors, the weights of the ith interneuron will converge approximately 
to the ith eigenvector of the input data's covariance matrix, where such eigenvectors 

are ordered such that the eigenvalue of vector 1 is the largest, that of vector 2 is next 
largest and so on. 

Proof 

Let interneurons 1,..., M-1 be already connected to the network. We assume that 
their weights have already converged to the subspace of the first M-1 eigenvectors, and 
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show that the weights of interneuron M (where M> 1) will converge approximately" 
to the Mb' eigenvector of the co-variance matrix C. 

In this proof, let Wp be the weight vector associated with the pth interneuron. 

Then, 

(0WM)/77 =< YZM) 

= «(x - Wz)zM) 
M 

= ((x 
-Z zkWk)ZM) 

k=1 
M-1 

= `((x -E zkWk - ZMWM)zM) 
k=1 

M-1 

= «x 
-E 

(WkTx)Wk) 
- ZMWM)ZM) 

k=1 

_ «xM_1 
- zMWM)zM) 

where xM_1 is the projection of x onto the subspace of possible values orthogonal to 

the first M-1 eigenvectors. 
Consider the application of this equivalence to the ith component of Wm, i. e. WM;, 

the weight on the connection between y; and zM. Then, denoting the it' component 

of xM_1 by p1, 

(OWMi) =0 ((Pi 
- ZMWMi)ZM) =0 

((Pi 
- WMi E WMkxk) WMIXI) =0 

kl 
WMIXlpi - 

WMi WMkxkXIWM1) _0 
(29) 

l ki 

We note the similarity between this equation and Equation (27) in Theorem 1. For 

values of xI within the subspace xM_1, the first term of Equation (29) acts exactly 
like plp; and so the remainder of Theorems 1 and 2 hold for values of x restricted to 

this subspace. For values of x outwith this subspace, the first term is 0 (xi is in the 

subspace whose basis is the first M-1 eigenvectors, p; is in the orthogonal projection 
4Approximately, since the proof really requires an infinite convergence time for each weight vector. 

For a stationary source, x, the finite time intervals used are close to perfect but we can only claim 
'approximately' here 
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of this space) and the second term causes the weights to decrease to zero (recall that 

wTCw =A is a scalar). 
Therefore we can apply Theorems 1 and 2 to this subspace to show that the 

Mth interneuron weights will converge to the eigenvector corresponding to the largest 

eigenvalue of this subspace. This eigenvector has eigenvalue smaller than those of 
the M-1 eigenvectors already allocated to weight vectors W1, ... WM_1 but is larger 

than any other. Hence this eigenvalue is the Mth largest eigenvalue of the covariance 

matrix of the original input vector, x. 
Therefore, if the result is true for M-1 interneurons, it is true for M interneurons. 

We know (Theorem 1) that it is true for 1 interneuron. Therefore, the algorithm will 
force the weights to converge as required. 

The Assumptions in the Proofs of Convergence 

The proof given above is based on a proof developed by Oja and Karhunen (Oja 

and Karhunen, 1985) and by Oja et al (Oja et al., 1992a; Oja et al., 1992b) for 

their feedforward networks. The major difficulty with the proof is the step from the 

stochastic equations (27) which are used in an empirical algorithm to the ordinary 
differential equations (28) which are solvable as seen above. 

Denoting by Ck the covariance matrix of the input data after k presentations of 
input vectors from the distribution, the proof given in (Oja and Karhunen, 1985) 

makes 4 critical assumptions: 

1. Each Ck is almost surely bounded and symmetric and the Ch are mutually 
statistically independent with (Ck) =C for all k. 

2. The eigenvalues of C have unit multiplicity 

3.77k? O, E17 <OO, E7ik=oo 

4. Each Ck has a probability density which is bounded away from zero uniformly 
in k in some neighbourhood of C in R"-*- 

The first constraint is easiest to satisfy since by taking k large enough we can sam- 
ple the distribution sufficiently often so that the condition is almost surely satisfied. 
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The second one cannot be guaranteed for every distribution, however not satisfying 
it will only result in (a pair of) neurons converging to the subspace which is spanned 
by the eigenvectors with equal eigenvalues. 

The third one is the difficult one to satisfy in any particular stochastic realisation 

of the algorithm: we are constraining the learning rate in a way which will not be 

practicable to sustain in any actual simulation - not only must the learning rate 

converge to zero (which is easy to manage) but it must do so sufficiently slowly that 

Ej raj is infinite. This leads to a long simulation! In practice, it has been found that 

slow annealing of the learning rate will, under a wide range of annealing schedules, 

cause the weights to converge to the principal components. 
Another way to regard the problem is to say that we have not proved convergence; 

we have only proved that if the weights converge, they do so in a specific direction. 

We know also that if the weights reach this direction, they will be stable there but we 
have not proved that, in any single simulation, they must reach this direction. The 

proof that they would so converge with probability one uses the fact that each point 
in the neighbourhood of the attractor is sampled infinitely often. 

3.2.1 Alternative Derivations 

Derivation from Constrained Variance Maximisation 

Attempts have been made to derive the above algorithm `from the criterion that 

we wish to maximise the function J(W) =E i((wi. x)2lwi) which is equal to the 

variance of the z-values (for zero-mean data). Thus the underlying concept is the max- 
imisation of the information available at the interneurons. In order to keep solutions 
finite we add the constraint that the weights wi must be orthonormal. We use La- 

grange multipliers to include this constraint in the function to give 

1M1MM 
(30) J(W) =2 E((Wi"x)"wi) +2 EEA'j(w'-wi. - 5") 

where Sj=1 if i=j, S;? =0 if i0j. In matrix terms, we may write this as 

J(W) = 1T2(WXXTWIW) + 
1tr[A(WTW 

- I] (31) 
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where. tr[] denotes the trace of the matrix, 1 is the vector of is, A is the matrix whose 

elements are aq, and I is the identity matrix. 
Taking derivatives of 30 with respect to the weight vector, w;, we get 

Ö. T(w) 

_ 
(xxT 

M 
(32) wslw{) +E At. 

7w, 7 aw; j=l 
Since at an optimum, the derivatives must vanish for all i i. e. 

ai(W) 
_ (XXTWIW) + WA =0 (33) 

aw 
Differentiation of J(W) with respect to the Lagrange multipliers and again finding 

the point where the derivatives vanish gives 

WTW=I 

Premultiplying (33) by WT and substituting 34 gives 

A=_WT<XXTWIWI 

Using this value of A in (33) gives 

OJ(W) 
_ [I - WWT](XXTwIW) 

aw 
= [I-WWT]CW 

= CW 
- 

WWTCW 
It 

.. 

(34) 

(35) 

(36) 

As we have seen above, this equation completely defines the learning of the interneu- 

ron network. Therefore the interneuron network may be thought of as maximising the 

value of the function E; 11((wi. x)2Iw; ) under the stated orthonormality constraints. 
However this derivation, too, is not secure because we have used the converged 

value of A during the convergence process. Indeed, Baldi and Hornik (Baldi and 
Hornik, 1988) have shown that this algorithm is not derivable from such a gradient- 
descent procedure. The effect of the approximation is discussed in more detail in a 

slightly more general setting in Chapter 6. 
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Derivation from Error Minimisation 

Attempts have also been made to derive the algorithm by minimising the error, e, at 

y after the interneuron activation is returned. 
We wish to minimise 

J(W) = 
11T(e2IW) 

= 
11T((X 

- WWTX)2IW) (37) 
22 

where 1 is the vector of is. 

Consider the jt' component of the reconstruction error, e3. 
M 

ei = xi - wiiw;. x (38) 
i. l 

where, as before, wi is the vector of weights into the its` interneuron. Then we wish 
to find stationary point(s) of the derivative of J(W) i. e. where 

OJ(W) 
_ej_O 

(39) 
ÖWm 

j=1 
' awm 

Now, 

i9ej_ 
-wmjx- (WM. X)[0, U1 .. 113 U' .. U]T (40) 

ÖWm 

where the last vector has a1 in only the jth position. Then, 
M OJ(w) r 

öWm =- Lý(Xj -E wijW;. X). {wm, X + Wm. X[U, 09.. 
' 

1,0.., U]T)} 

j=1 i=1 3, " 

= -(X - WTWX)Wm. X - 
(X 

- WT. WX)(Wm. X)1T (41) 

This can be used in the usual way in the gradient descent algorithm 

ow «- 
eia(W)w 

to give a learning rule 

OW = xTx(I - WTW)W + (x - WTWx)(Wx)T (42) 

Now while this last equation is not quite the algorithm we wished, Xu (Xu, 1993) 

has shown that "on the average", the scalar product of our algorithm and the above 
learning rule is positive. Thus "on the average", the interneuron network can be 

thought of as minimising the residuals at y. 
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Derivation from Statistical Mechanics 

Recently, several authors have investigated PCA-type neural networks from statis- 
tical mechanics considerations e. g. (Prugel-Bennett and Shapiro, 1993; Biehl and 
Mietzner, 1993; Biehl, 1993; Shapiro and Prugel-Bennett, 1992) in an attempt to 

find an absolutely secure derivation of convergence. We will not consider such inves- 

tigations in detail but merely note that such derivations always rely on arguments 

using infinity - in their case, infinitely large networks. Such derivations then may be 

analytically sound but the step of equating them with actual implementations must 

remain suspect. 
In summary, then, we have analytically derived the PCA properties of the network 

but have had to rely on arguments which use approximations at some point. This 

leaves the possibility that some particular network - operating in the real world under 

constraints of finiteness (of time, magnitude etc. ) - will not converge from a specific 

set of initial conditions while being trained on a particular set of data. In practice, 
this does not seem to be a problem - we have yet to find -. case where a network did 

not converge for any data-set. 

3.3 Network Properties 

In this section, we investigate empirically some of the emergent properties of the 

interneuron network. We view these properties as emergent properties as we do 

not believe that they could be expected a priori to exist , 
i. e. without a detailed 

investigation of the network. 

3.3.1 Plasticity and Continuity 

The results reported in the last section were based on a model which suggested that 

only a new interneuron could learn. The underlying assumptions are 

" an interneuron can only learn during a special period of its existence 

" only one interneuron can learn at any instant in time 
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Disjoint Learner Model Contin. Learner Model 
w w 

1.000 -0.036 -0.008 1.000 -0.015 -0.014 
0.036 0.999 -0.018 0.014 0.999 0.045 
0.010 0.018 1.000 -0.015 -0.046 0.999 

-0.002 -0.002 0.016 -0.015 0.006 -0.021 
0.010 0.003 0.010 0.003 -0.007 0.010 
WTW WTW 
1.001 0.000 0.000 1.000 0.000 0.000 
0.000 1.000 0.000 0.000 1.000 0.000 
0.000 0.000 1.000 0.000 0.000 1.000 

Table 3: Results from the interneuron network in which each interneuron stopped 
learning as a new one was created(left) and from the network in which each interneu- 
ron continued to learn (right). 

These are clearly not good properties for biological learners to have; we do not 

wish to have new learning remove the hard-won gains already achieved from previous 
learning; but equally, we do not wish to have to specify in advance how much time 

each neuron will have to learn. Further, in setting a specific time period during which 
learning will take place, we are providing the system with a form of meta information. 

To test the effects of allowing interneurons to continue to learn even after other 

new interneurons were created, two more simulations were carried out. In the first, 

the interneurons lost their plasticity gradually and there was an overlap in the times 

when two or more interneurons were learning; in the second, interneurons kept their 

plasticity throughout. 

Thus, in this last model, the first interneuron learns from its creation till the end 

of the simulation, the second interneuron learns from its creation at iteration 13000 

till the end of the simulation and the last interneuron learns from iteration 26000 till 

the end of simulation. 
Only the results of the last model are reported, as the conclusions are identical: 

we do not have to postulate that interneuron weights lose their plasticity. The left 

matrix of Table 3 repeats the results from the interneuron model described in the 

previous section; the results from interneurons which continue learning are shown on 
the right. The table shows that the interneurons can retain their plasticity without 
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there being major loss of precision in finding the actual principal components. 
We suggest that this model then represents a more plausible model of the form 

of learning which takes place in biological learners and further, that in most cases of 

unsupervised learning, the Continuing Learning Model is to be preferred. 

3.3.2 Speed of Learning and Information Content 

One of the most interesting aspects of the proposed model is its reaction to statistical 
data which have inherently differing amounts of information. One might hope that a 

model would react to data which has more information more quickly than it does to 

data with less. This, in fact, happens. 
It is well known (e. g. (Cover and Thomas, 1991), page 225) that for the Shannon 

information content (Shannon, 1948) of a Gaussian with variance o2 

h(ry) oc log a 

which is a mathematical formulation of the fact that there is more information in 

random variables with large variance than in random variables with small variance. 
It would seem plausible to argue that an organism which can quickly identify data- 

sources with large information content would have an advantage over an organism 

which does not have this ability. This is, in fact, an emergent property of the model. 
Therefore, in the current set of experiments, there is n1Qre-information in x1 than 

in X2 etc. i. e. h(xi) > h(x2) > h(x3) > h(x4) > h(xs). We therefore hope that z1 

will be learned quickest, etc. 
Figure 8 shows the length of time which individual interneurons take to converge 

to the appropriate solution. The first solid line on the graph shows how long the first 

interneuron took to converge to (1,0,0,0,0), the second to (0,1,0,0,0) and the third to 

(0,0,1,0,0). 

Additional experiments to ensure that this rate was not merely a function of the 

order of the interneuron's learning confirm that data with larger variances is learned 

more quickly. 
Clearly, interneuron 1 is the fastest learner; it learns the component /direction 

with the largest information content. Interneuron 2 makes a bad start; actually, 
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Figure 8: Intcrneuron convergence times. 
Solid lines show the time for each interneuron to converge to the appropriate eigen- 
vector of the covariance matrix of the input data: the first interneuron converges 
most quickly. 
Dotted lines show the speed with which individual interneuron's feedforward and 
feedback weights in the VW model converge to the same direction: those of the first 
interneuron converge most quickly. 
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because of the initial conditions (which were randomly generated), interneuron 2 

attempts initially to make a play for the first eigenvector direction before giving up the 

unequal struggle against interneuron 1. It then converges quickly to the appropriate 

eigenvector. That this is not a necessary property of PCA networks is shown in 

(Diamantaras, 1992), Figure 2.7 where the network takes longest to converge to the 

first eigenvector. 

3.4 The VW Model 

The results of the last section have one major drawback when considered as a model 

of biological systems: the weights of the connections from the interneuron, z, to the 

summing neuron, y, are assumed to be identical to those from the summing neuron, y, 
to the interneuron, z. This is biologically implausible. We now propose a model where 
these weights are initially different. 

y=x- Vz (43) 

z= Wy = Wx (44) 

OW = cxwyzT (45) 

OVT = avYZT (46) 

where the initial values of both VT and W are small randpnm numbers not correlated 
in any way with each other. 

Note that both learning rules for W and V are identical up to the learning rate 

and use only simple Hebbian learning. 
The convention we will use here is that wii is the weight of the connection from 

y, to zi; similarly, v; 3 is the weight of the connection from z; to y. Unless specifically 

stated otherwise, we shall be interested in the vectors to and from the interneurons. 

Therefore we take the vectors v; to be the weight vector into the ith interneuron, i. e. 
to be the vector of form {v; k} for all k; similarly we take the vector wi to be the 

vector of weights from the i°' interneuron i. e. to be the vector {wk } for all k; we 

note here that vi corresponds to a column of the matrix V of weights while w; is a 
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row of W. Both are vectors of length n where n is the number of summing neurons. 
We consider the effect of these rules on a network with a single interneuron, z. 

Lemma 1 
If the weights, w, of a single interneuron with the above learning rules converge to an 

eigenvector of the input data co-variance. matrix, then the weights w and the weights 

v converge to the same eigenvector. 
Proof 

Let w; be the weight of the connections from y; to z and and v; be that from z to 

vi. 
If the weights of a single interneuron converges to a limit, the expected weight 

change over a sufficiently long time will tend to zero. Given the usual approximations, 

particularly regarding the learning rate 77, and using (x) to indicate the average value 

of x over the time period, 

(Ow; ) =0(? 7y; z) =0 

b (y; z)=0 
((Xi - viz)z) =0 
((Xi 

- Vi WkXk) WIX1) =0 
kI 

ý-ý (E wixlxi - Vi EWkXkxlWl) 
=0 

1 k, I 
E 

w1Cli - vi > 
WkCkIWI =O 

I k, l 

where C;, is that element of the co-variance matrix of the input data x showing the 

co-variance between the i. th and jth elements. We note that the same criterion may 
be deduced from (Av; ) = 0. If the weights of the interneuron are to converge, then 

the above must be true for all values of to. Therefore it may be written in matrix 

notation as 

(Ow) =0 Cw - (wTCw)v =0 

4 Cw = (wTCw)v 

Now it is a standard result that the co-variance matrix C is positive-semidefinite; and 
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Inter neuron model VW Model 
w w V 

1.000 -0.036 -0.008 0.985 -0.041 -0.003 1.013 -0.017 -0.024 
0.036 0.999 -0.018 -0.019 1.033 0.031 -0.027 0.965 0.032 
0.010 0.018 1.000 0.022 -0.032 1.028 0.020 -0.017 0.969 

-0.002 -0.002 0.016 -0.024 -0.041 0.038 -0.007 -0.034 0.037 
0.010 0.003 0.010 0.098 -0.007 -0.011 0.010 0.000 0.002 

Table 4: Results from the interneuron network (left) with symmetric weights, W. and 
for the V and W vectors from the VW Model(see text) 

hence 

wTCw =, y >0 (47) 

where ry is a non-negative real number. Hence , 

Cw = ryv (48) 

Therefore, if w converges to an eigenvector of C (see below), then Cw = Aw for some 

real number, A, and so v= aw, where a is a scalar; that is, v and w converge to the 

same eigenvector. Therefore, it is possible to apply the further analysis developed 

for the WW network and hence show that the ith interneuron converges to the ith 

eigenvector of the covariance matrix. 
Experimental results, shown in Table 4 confirm this. It can be seen that both v 

and w converge to the same eigenvector, although the results are slightly less clear 

cut that in the previous algorithm. However, given the simplicity of this biologically 

inspired model, the results are extremely clear: any entity which used such a method 

would be able to extract the greatest amount of information from its environment 

with a minimal amount of interneurons using a very simple learning rule. 
However there remains the possibility that the weight w will not converge to an 

eigenvector. Therefore, the next theorem is necessary. 

Theorem 4 If the weights, w, of a single interneuron with the above learning rules 

converge, then the weights w and the weights v converge to the same eigenvector of 
the input data's covariance matrix. 
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From the lemma, we know that the weights converge as stated if they converge to 

an eigenvector. Therefore now, we must prove that if w converges, it does so to an 

eigenvector of C. We use a contradiction argument. 
Assume that there is a solution of 

Cw = ryv (49) 

where w is not an eigenvector nor the degenerate solution, w = 0. 
Let the eigenvectors of C be Cl, C2,..., cn. Then 

w=Fw. Ci 
i=l 

Since w#0, there exists a direction cb, such that wb 0 0. Since w is not an 

eigenvector, there exists 1 other direction cg with a non-zero component wa. 
Then 

W= WaCa + WbCb +E wiCi 
i#a, b 

where 1<a, b<n, a: / b, and 

V= vacs + VbCb +E ViCi 
i$a, b 

and from Equation 49, 

A6w6 = 'yVb 

AaWa =Wa 

ý, . 

Consider a disturbance of magnitude e>0 in the direction of ca i. e. a disturbance 

of ea. Then if w is a stable point of convergence of the weights, the expected change 
in the weights over time is zero. Therefore, 

(Ow) =0 Cw - (wTCw)v =0 

C(waca + WbCb + ea +E wici) - ry (vaca + vbcb +E vici) =0 
i#a, b i#a, b 

4 Jtawaca +. bwbcb + AaEa +E AiwiCi 

i#a, b 

rr 

-, y Vaca - ry VbCb - It' E vici =0 
igta, b 
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where ry = (w + ea)TC(w + ea) >0 since C is a positive semi-definite matrix. 
Now, considering the components of the transformation in the direction of eb, 

Abwb-'fVb=0 

Then, 7Vb -7 Vb =0 

Therefore, ry = ryI since vb # 0. Now, considering the components of the transforma- 
tion in the direction of c8, 

)taWa+%taf-iVa=0 

7va-IfVa+AaE=0 

aae =0 

which is a contradiction. Hence there does not exist a non-zero, non-eigenvector 

solution to equation (49). 

Theorem 5 At equilibrium, the weights v and w converge to the same eigenvector, 
Ca with 

1 
V_II, w 

w 

Proof 
At equilibrium, 

Cw = (wTCw)v = , IV 

and, by theorem 4, w is an eigenvector of C, ca. Therefore, 

Cw = AaW 

where A. is the eigenvalue corresponding to eigenvector ca. 

Therefore, . Xaw =1'v 

Therefore, v=A. w= 
wT Cw w 

7 

(50) 
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Now, wTCw is a scalar; hence, 

wTCW = IwTCwI = IwIICwI = InII? 
awl = AaJW12 

Therefore, 

1 
V= I law w 

Note: The theorems in this section imply that the further analysis of this in- 

terneuron network is identical to that performed previously for the WW network. 
In other words, an interneuron network with asymmetric weights, w; and v;, will 

calculate the principal components if the interneurons are created in the network as 
in the previous section. 

3.4.1 Properties of the VW Network 

Týe motivation for the introduction of the VW model is that it removes a constraint 
from the network builder: in the WW model, the weights into and out of each in- 

terneuron must be the same and so must be known in a meta-sense i. e. outwith 

the learning space. One feature of symmetry still remaining in the network is the 

equivalence of the learning rates in the V and W weights. 
Experimental results show that, when v and w learn withdifferent rates, the angle 

between v and w converges as quickly as before but the weight, v or w, with the 

larger learning rate acquires a larger length than the other. Indeed the result of the 

last theorem still applies. 
While most of the emergent properties of the symmetric (WW) network still are 

found with the VW network, there is one property which this network does not have: 

the interneurons cannot retain their plasticity when new interneurons are created. 
There always remains a slight angle between v and w (dotted lines in Figure 

8); even although this can be made arbitrarily small, it is sufficient to destabilise 

the interneuron weights. It is not possible for the weights v and w to be both 

exactly orthogonal to any new interneuron's weights; therefore the new interneuron 

will destabilise the weights of existing interneurons. The interaction between v and 
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w will further move the weights away from the eigenvector and so the weights will be 

rotated in the principal subspace. This is also an empirical finding. 
Therefore, for VW interneurons, each interneuron's weights must be allowed to 

converge to the eigenvector but must then loose their plasticity. This is algorithmically 

easy to implement but the need to take this action has led to a search for other 

algorithms. 

3.5 Relation to Other Models and Biology 

The basic interneuron network has been discovered independently by other researchers 
in the past - though the link between them and the network described above is not 

often obvious. 
The first reference to an interneuron-type of network appears to be William's 

Symmetric Error Correction (SEC) Network (Williams, 1985) where the residuals at 

y were used in a symmetric manner to change the network weights. The SEC network 

may be easily shown to be equivalent to the network described in this Chapter. 
A second reference to an interneuron-type network was given in (Levin, 1990). 

Levin introduces a network very similar to Plumbley's network and investigates its 

noise resistant properties. He develops a rule for finding the optimal converged proper- 
ties and, in passing, shows that it can be implemented using simple Hebbian learning. 

His derivation is a simplified version of that given in Sectiön 3.2.1 and must equally 
be described as approximative. 

A third strand has been the adaption of simple Elman nets((Hinton and Shallice, 

1991; Kehagias, 1991; Elman, 1991; Elman, 1992; Bates and Elman, 1992)) which 
have a feedforward architecture but with a feedback from the central hidden layer to 

a "context layer". Typically, the Elman nets use an error-descent method to learn, 

however Dennis and Wiles (Dennis and Wiles, 1993; Dennis et al., 1992) have modified 
the network so that the feedback connection uses Hebbian learning. However, the 
Hebbian part of the network uses weight decay to stop uncontrolled weight growth 

and the other parts of the network continue to use back propagation of errors to learn. 

More recently, Xu (Xu, 1993) has rediscovered the interneuron network and has 
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given a very strong analysis of its properties. While he begins by considering the 
dynamic properties of a multi-layer network (all post-input layers use negative feed- 

back of activation), it is clear from his discussion that the single layer model which 
he investigates in detail is identical to the network outlined above. 

An interesting feature is Xu's empirical investigation into using a sigmoid acti- 

vation function at the interneurons; he reveals results which show that the network 
is performing a PCA and suggests that this feature enabled the network to be more 

robust i. e. resistant to outliers, a finding in agreement with other researchers (e. g. 
(Karhunen and Joutsensalo, 1993a; Oja et al., 1991; Oja and Karhunen, 1993)). We 

will return to non-linearity in Chapter 6 where we will base our findings in con- 
temporary statistical practice in a way which permits an analytical investigation of 

non-linearity. 
In keeping with our overall aim, we would like to link our networks with those 

of biology. The overall aim for an early processing network has been described as 

the minimisation of redundancy so that the further network can be developed as a 
"suspicious coincidence" (Barlow, 1989) detector. The decorrelation of inputs formed 

by projection onto the Principal Components clearly achieves this. The network 

most like that described above was devised by Ambrose-Ingerson et al (Ambrose- 

Ingerson et al., 1990) in which a network which uses negative feedback between layers 

attempts to simulate the transfer of olefactory information in the paleocortex. The 

sole difference between that network and the interneuron network is that the network 

uses a competitive activation transfer arrangement; the authors conjecture that a 
form of PCA is taking place. 

Murphy and Sillito (Murphy and Sillito, 1987) have shown that LGN neurons 

seem to be inhibited by the V1 cells (in the visual cortex) which they excite. Pece 

(Pece, 1992) has developed a model based on negative feedback which simulates the 

reduction in redundancy in an information-transferring network. 
As an interesting aside, we note that Robinson (Robinson, 1987) has shown that 

negative feedback cannot be used to control the visuomotor system in a continuously 

operating closed-loop system with a finite delay term. He shows that the negative 
feedback in the system can be made stable if the system is refractory: each eye saccade 
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is followed by a short period when it will not respond to another change in target 

position (due to the sampling rate having a finite frequency). Because of this, we can 
think of such a system as running on open-loop dynamics for much of the time which 
is equivalent to having discrete time intervals in which activation is passed forward 

and back. It is results like this which underlie our conviction that the interneuron 

network is based on cybernetic principles. 
A network very like the network which we have investigated, has been developed in 

(Jonker, 1992) in which inhibition is specifically used in an Artificial Neural Network 

to model the cerebellum. The network appears identical to that displayed in Figure 

4 but is considered as a dynamic model where the activation is allowed to pass round 
the network till settling takes place. However, since Jonker makes "the biologically 

plausible assumption that the characteristic time-scales in the evolution of interactions 

are much larger than the time-scales involved in the neuronal dynamics", ((Jonker, 

1992) page 87)it is not surprising that the emergent properties of the network are 

very similar to those which are developed in the next section from a static network. 

ý. 



Chapter 4 

Peer-Inhibitory Interneurons 

4.1 Parallel Learning Networks 

Three factors make the interneuron network especially exciting as a PCA network: 

simplicity - there are no logistic or hyperbolic functions to be calculated; there is no 

additional computation within the learning rule; there is no sequential passing 
back of errors or decay terms. 

homogeneity - every interneuron is performing exactly the same calculation as its 

neighbours; every summing neuron is performing exactly the same calculation 

as its neighbours. 

locality of information - each synapse uses only the information which it receives 
from its own connections; similarly with the summing neurons which calculate 
the y values 

However, the phased creation of neurons described in the last chapter does not 

utilise the inherent potential of this network for parallel information processing. We 

now develop learning algorithms which do this while retaining as much as possible of 
the other features. 

Thus, in this chapter', we create the entire network at one instant in time and train 

all weights simultaneously. Recall that when we do this with the first interneuron 

1Some of this work has already appeared in (Fyfe, 1993f; Fyfe, 1993b). 
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Figure 9: The inputs, x, are passed forward to the interneurons via the W weights as 
before but before the interneuron's activations are passed back, the activation from 
each interneuron is passed to the others as inhibition 

network, we find the principal subspace but not the principal components themselves. 
We amend the basic network by allowing the inhibitory effect of each interneuron 

to act on the other interneurons as well as the summing neurons(see Figure 9). Two 

methods will be used with this amended network in order to create the necessary 

asymmetry: in the first, we will allow the network weights to be upgraded at different 

rates; in the second, we will use different activation functions to force convergence to 

the Principal Components. 

The first type of network will be characterised by 
iL 

y=x- Vz (51) 

zý = Wy = Wx (52) 

=1 zz- Uz (53) 

AW = r/wyZT (54) 

AV = rj�yzT (55) 

DU = ryzzT (56) 

where z' is the initial activation of the interneuron before receiving the lateral inhibi- 

tion from other interneurons and U is the matrix of weights between the interneurons. 

As before, the initial input vector x is fedforward through the W weights to the in- 
terneurons. Now the interneurons feed their activation (as inhibition) to the other 
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interneurons through the U weights before the interneurons' activations are fed back 

as inhibition (through the V weights) to the summing neurons. 
We do not however allow self-connections from interneurons to themselves. 
We note that we have now a 3-phase operation: 

1. The activation is fed forward from the summing neurons to the interneurons 

2. The interneurons feed their activation to their peers and recalculate their acti- 
vations 

3. The activation is fed back to the summing neurons from the interneurons 

While this is more computationally complex than before, we only require O(ma) 

additional calculations, where m is the number of interneurons. Further all learning 

processes continue to use simple Hebbian learning. 

We will introduce a matrix G(x)=(I-U)W(x), a which represents the forward func- 

tion from x to z. G is an integral part of the mathematical model which we will use 
for understanding the network but it makes no overt contribution to the development 

of the network in the real, stochastic world. The actual learning in the network i. e. 
the weight updates, is accomplished by updating the actual weights U, V and W al- 
though we will discuss G- as though it were being performed in the same sense that 

e. g. is performed. 
We can prove (an obvious special case of Theorem 7) that the learning rules 

detailed above are equivalent to 

dVT 
_ 

dW 
wt dt = (I - U)WC - (I - U)WCWT(I - U)TVT (57) 

dU 
dt = (I - U)W CWT (I - U)T (58) 

dt 
= (I-U) dd 

- 
dtW (59) 

where G is the forward function relating x and z and C is the covariance matrix of 
the input data. 

'I being the identity matrix 



CHAPTER 4. PEER-INHIBITORY INTERNEURONS 69 

We will show, as with other models with lateral inhibition, that U=0 is a stable 

stationary point of the system 

Now, G= (I - U)W 

and so 
dG 

= (I - U) 
dW 

- 
dUW 

dt dt dt 
= (I - U){(I - U)WC - (I - U)WCWT(I - U)TVT} 

-(I - U)WCWT(I - U)TW 

= (I - U){GC - GCGT VT }- GCGT W 

--4 GC-GCGTVT -GCGTW 
asU --+ O 

Now G -. W as U --> 0 and so dc 
--; WC-2WCWTW using the fact that VT = W. 

It can be seen that the necessary asymmetry between the Hebbian learning term 

and the weight decay term has not been achieved; however the important point to note 
is that part of the weight decay term comes from the ' term which we can manipulate 
independently of 41-1' term in order to create the necessary asymmetry. 

4.2 Analysis of Differential Learning Rates 

y= X- Vz (60) 
Z= Wy=Wx (61) 
z= z' - Uz (62) 

AW = 7lwzYT (63) 

OVT = nvzyT (64) 

DU = rzzT (65) 

Let us review our naming conventions: the convention we will use is that w1 is the 

weight of the connection from summing neuron yi to interneuron z;; similarly, vi; is the 

weight of the connection from z; to y,; u; j is the weight of the connection from z, to z;. 
Unless specifically stated otherwise, we shall be interested in the vectors to and from 
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the interneurons. Therefore we take the vectors v; to be the weight vector into the it'` 

interneuron, i. e. to be the vector of form {vks} for all k; similarly we take the vector 

wi to be the vector of weights from the its' interneuron i. e. to be the vector {w; k} for 

all k. Both are vectors of length n where n is the number of summing neurons. Note 

that the learning rates of U values are different for different interneurons as we wish 
to force the first interneuron to learn the first principal component, the second the 

next and so on. Thus we have a diagonal matrix, r. 

Since we ensure that there are no self-connections, the main diagonal of U is 

composed of zeros. Also note that r is the matrix diag{ryl, rya, ..., #ym} where m is 

the number of interneurons and ry; is the learning rate for the U weights of the ith 
interneuron such that 'yi < rye < ... < ry,,,. We allow all learning rates to decrement 

to zero as time tends to infinity. 
As introduced in the previous Section, G(x)=(I-U)W(x) is the forward function 

from x to z. We will assume that, if ry; (t) is the value of ryi during time interval t, 
limt_. o ttý exists and is positive. This assumption will be discussed in Section 4.2.1. 

Theorem 6 v; converges if and only if w; converges, where v; is the weight vector 
from the it' interneuron and w; is the weight vector into the ith interneuron. Further, 

Vi=aWi -i'P 

where a= limt--+o , 
i (t) is the value of 77v during time interval t 

and p is a vector depending on the initial conditions of vi and wi. 

Proof 
At time B, we have 

w,,; (B) = wi, (B - 1) + i73; (B)y,, (B)z; (B) 

If we start from time 0, we can equate the continuous time point T with the sum of 
the discrete intervals 77;;. i. e. 

B 

T =: '1ji(P) P=O 
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Thus, we are breaking up continuous time into discrete time steps 77'; . Now the 

convergence, if it exists must be taking place simultaneously over all weights. There- 
fore, we must ensure that raj; = 77 for all values of i, j. In order to have no limit on 
continuous time, we must have 

00 

E 71(P) = 00 P=O 

If we further assume that ri(p) >0 for all p, then we have 

Owij = 1lyiz+ 

_ 77(xj -E vjszs)zi 

e 

77(xj - [ý vj-(E wslXl -E Uap 
EwPlxi))(E 

witxt -E uiq 
Ewq. 

x ) 

elpltqr 

Or, in matrix terms, 

W(B) - W(B -1) = (I - U(B))W(B)x(B)x(B)T 
r7(B) 

-(I - U(B))W(B)x(B)x(B)TW(B)T(I - U(B))TV(B)T 

(66) 

If we also assume that 

lim +oo? 7(p) =0 

then the sequence of w3; (T) asymptotically approaches a continuous-time function and 
the left-hand side of Equation (66) approaches its derivative. Then we can replace 
Equation (66) with the corresponding averaged differential equation 

dW 
= (I _ U)WC - (I - U)WCWT(I - U)TVT (67) 

dt 

where C is the covariance matrix of the stationary distribution producing the xk 
values Now, under the same assumptions as in the previous chapter about the rate 77 
it can be shown that the solution of the stochastic algorithm approaches the solution 
of the differential equation (67) with probability 1. 

Now consider v's learning. 

vii(B) = v+i(B - 1) + iiv(B)yi(B)'zi(B) 
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Therefore, 

vii(B) - vii(B - 1) 

, 7(B) 
_ 

ýýB)) {> wj"(B)xj(B)x (B)(1- > ui4) -E vk3(B) * 
qk 

(1- E ui4) > wpk(B)xp(B)xl(B)wti(B)(1- S uP)I 
9 p, l p 

Given the same assumtions as before and making the additional assumption that 

lim ? 'V (P) 
=a>0i. e. the limit exists and is positive 

p-. 0 17(p) 

we have the corresponding differential equation, 

dVT 
= a((I - U)WC - (I - U)WCWT (I - U)TVT) (68) 

dt 

Therefore, 

dVT 
_ 

dW 
dt - adt 

Therefore, W converges to a solution (where = 0) if and only if V converges to a 

solution. 

Now, 
dW 

= (I - U)WC - (I - U)WCWT(I - U)TVT = 
,f 

(W, V) 

Let F(W, V) = 
j°°f(W, V)dt 

Then, VT = aF(W, V) + aK and W= F(W, V) +K 

where K is a function of the initial values of V and W. 
Thus, v; = wi + p, where p is a vector depending only on the initial values of the 

system. 
Thus if v; and wi converge, they do so simultaneously and close to the same 

vector. 

Note 1 For the remainder of this section we will assume that a=1. i. e. the learning 

rates for V and W are equal. 
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Note 2 We note that the vectors vi and wi may be made arbitrarily close by limiting 

the original size of vectors v; (0) and wi(O). i. e. p may be made arbitrarily 

small by appropriate initial choice of v and w. Hence we are able to assume 
that vi =A. ^swi. 

Theorem 7 The learning rules detailed above are equivalent to 

dVT 
_ 

dW 
_ dt dt - (I - U)WC - (I - U)WCWT(I - U)TVT (69) 

dU 
= A(I - U)WCWT(I - U)T (70) 

dt 
dG 

= (I - U)dW - 
dUW (71) 

dt dt dt 

where G is the forward function relating x and z 
and A is the matrix diag{ al, a2, ..., an } with a; = 1imt, o ;ý ttl with -y (t) being the 

value of 'y; . 
during the time interval t. 

Proof 
With the same assumptions as before, we can write 

W(B) - W(B -1) _ (I - U(B))W(B)x(B)x(B)T 
i7(B) 

-(I - U(B))W(B)x(B)x(B)TW(B)T(I - U(B))TV(B)T 

f' 

If we also assume that 

limp.. (p) =0 

(72) 

then the sequence of w,,; (T) asymptotically approaches a continuous-time function and 
the left-hand side of Equation (72) approaches its derivative. Then we can replace 
Equation (72) with the corresponding averaged differential equation 

dW 
= (I - U)WC - (I - U)WCWT(I - U)TVT (73) dt 

where C is the covariance matrix of the stationary distribution producing the xk 
values. Now, under certain assumptions about the rate 77 it can be shown that the 
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solution of the stochastic algorithm approaches the solution of the differential equation 
73 with probability 1. 

Similarly, for the weight updates of the U weights, 

u"i(B) = uji(E - 1) +'y1(B)z1(B)z3(B) 

Therefore, 

U(B) - U(B-1) 
_ 7; (B) 

. ý ? I(B) 77(B) 
zýz. 

If we make the further assumption that limB--. o ý(B) exists, we can take the limit of 
the above stochastic equation giving 

dU 
_ AQ ät 

where A= diag{ al, a2,..., a,,, } with a; = limt-, o ýý) >0, and Q the m*m matrix 

with elements q; 3 = (z; z,, ), i0j, and q;; =0 for all ij. The angled brackets indicate 

an ensemble average. We will, for the time being, assume that the a; values are 

constant during the learning process. We will return to this assumption in section 
4.2.1 Now , 

Q= (zzT) (74) 

_ ((I - U)WxxT WT (I - U)T) (75) 

_ (I - U)WCWT(I - U)T (76) 

where C;,, is (x x) for all i, j. Hence, 

dU 
= A(I - U)WCWT(I - U)T ät 

The transform from x to z is G where G(t) = (I - U(t))W(t) where U(t) is the 

value of U at time t etc. Then, 

aG 
= (I - U(t)) d 

dt 
t) 

- 
dU 

dtt) w(t) (77) 

= (I - U) 
dW 

- 
dU 

W (78) 
dt dt 
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Theorem 8 U=O, the m*m zero matrix, is a solution ofd =0, and g; = wi _ 
1 c; is the corresponding solution for G and W where c; are the eigenvectors of l+a: 

the covariance matrix of the input data in order . i. e. if ryuL < ry,,, < ... < y,, then 

w; = l+Qi c; where c; is that eigenvector with corresponding eigenvalue a; where 
Al > Az > ... > A,,, and, as before, a; =1imt--. o --Y'Itl ) 

Proof 

dG dW dU 
dt 

(I - Uý 
dt dt 

First we note that as U --º 0, 
dG dW 

_ 
dU 

W 
dt dt dt 

= (I - U)WC - (I - U)WCWT (I - U)T VT 

-A(I - U)WCWT(I - U)TW 

= GC - GCGT VT - AGCGT W 

--> WC - (I + A)WCWTW 

at the point of convergence of V and W. 
Note the similarity between these equations and those which are required for Oja's 

Weighted Subspace Theorem; therfore, we conjecture that a solution of dC =0 at 
U=0 is g; = wi = l+Qi ci the i" eigenvector of C in normal order. Here we show 
that the stated values are solutions; stability will be proved later. 

dG dW dU 
dt = (I - U) 

dt dt 
W 

= (I - U)((I - U)WC - (I - U)WCWT(I - U)TVT) - A(I - U)WCWT(I - 

-º WC - WCWTVT - AWCWTW 

= AW - KVT - AKW 

where K is diagonal matrix whose (i, i)th element is ) wi12 with a; the ith eigenvalue 

and A is the diagonal matrix whose (i, i)th element is A;. 

Then taking g; as the its` vector of G i. e. going into the ith interneuron and using 
the fact that w; = vi, we have 

dg' 
= a; w; - kiwi - a; k; w; 
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Ai Ai 1 aiai 1 _ci 
1+a - 1+a: 1+aß - 1-f-ai 1--ai 

Ai(1 + ai) - Ai - ajAi )ci=0 
l+ai(1+a1) 

So the stated values are stationary points of the system. 
Note: We can in fact go further, in that if U=0 then 

dgl 

ät = A{wi 
- 

kiwi 
- a1kjwl 

= (a; - )tilwiI2 - aj)jIwiI2)wi 

= a; (1 - lwila - a, IwiI2)wi 

so if 
d=0 then IwiI2(1 + a; ) =1i. e. lw; l=f 

l+ai . 

Theorem 9 At the solutions U=O, w; = i+ai ci of dG = 0, then 

it _0 for allij dt 

if as 56 0 i. e. the ith eigenvalue is not zero. 

Proof 

dU 
= A(I - U)WCWT(I - U)T 

= AWCWT 

Now wiCwjT =0 for all ij and wCw; T = a; jwija. Therefore WCWT is a 
diagonal matrix of the form diag{kl, k2, .., km} where ki = AIIw; 12 

, 
A, being the its' 

eigenvalue. Then 

dU 
dt = AK = diag{aikl, a2k2, 

Therefore, dd =0 for all i#j. 

Theorem 10 The solutions u; j = 0, w; = l+Qi c; for all ij of dG =0 ensure all 

variables are stationary at this point. 
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Proof 

At the stated points of solution of d=0 then 4=0. But 

dG dW dU 
dt - ýI - Uý 

dt dt 
W 

dW 
dt 

dG_dU_dW_dVT SO 
dt "" dt - dt - dt 

Theorem 11 If c1 are the unit length eigenvectors of C, the solutions 
1 

vi=wi= 1+Qci 

u; = 0, where 0 is the m*1 zero vector 

of the equations governing the dynamics of this network are asymptotically stable for 

all i. 

Proof 

First consider the ui. We have already shown that U=0 du = 0. Consider 

a disturbance of e in U=O. We have 

dU 
= A(I - (0 + E))WCWT(I - (0 + e))T dt 
= AK-A6WCWT -AWCWT6+O(e2) 

= -AEWCWT - AWCWTC + 0(c2) (off diagonal) 

= -AcK - AKE + O(c2) 

Since A and K are both diagonal matrices with entries > 0, if e>0, the rate of 

change of U is negative i. e. U must decrease. If e<0, the rate of change of U is 

positive i. e. U will increase. 

Now consider the W weights. We have proved that the stated values are solutions; 
we must still prove asymptotic stability. Note that at the stated points of convergence, 

G= (I - U)W =W 
dG 

_ 
dW 

_ 
dU 

dt 
(I - U) WT dt 

W 
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Now since G=W at the points stated, any instantaneous disturbance in W will have 

an equal instantaneous effect on G. Therefore, we will investigate the effect of a 
disturbance in W on G in order to derive the asymptotic stability of W. We do this 

through investigating the effects of the disturbance on U and W. Let there be a 
disturbance of E in the converged weights W. Then, 

dU 
= A(W + E)C(W + E)T dt 
= AWCWT + AECWT + AWCET + AECET 

(AWCWT) + AECWT + AWCET 

ignoring terms of 0(E2). Thus, 

Ji(W 
+ E) = (AWCWT + AECWT + AWCET)(W + E) 

AWCWTW + AECWTW + AWCETW + AWCWTE 

= (AWCWTW) + AECWTW + AWCETW + AKE 

Similarly, 

dW 
_ (W + E)C - (W + E)C(W + E)T VT 

dt 
WC + EC - WCWTVT - ECWTVT - WCETVT 

= (WC - WCWTVT) + EC - ECWTVT - WCETVT 

So still ignoring terms of 0(E2), 

dG dW dU 
ät - dt dt 

W 

= (WC - WCWTVT - AWCWTW) + EC - ECWTVT - WCETVT 

-AECWTW - AWCETW - AWCWTE 

= EC - ECWTVT - WCETVT - AECWTW - AWCETW - AKE 

= EC - AKE - (I + A)(ECWT + WCET )W 

Now, considering a disturbance of e in the direction of cj of the weight w;, (i. e. a 
disturbance of ej ) we note first that the matrix(1+A)(ECWT+WCET)is a diagonal 

matrix with its jth element (1 + aj) l+aý . 
So considering the rate of change of g; in 
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the direction of cj 
ddtl 

= Ai ej - ai ki cj - (1 + ai) 
2A 

+ic a , 
'uni 

VT - 

= (Aic - ai+ 
aE-(1+'ai) 

2+a 
+a, 

)c. 
l �� 

+ a3 )eck (79) 
1+ ai 

Since C is symmetric, A>0. Further, the learning rates ry, were such that ai >0 

. Then, Equation (79) shows that if c>0, which would cause G to grow, the system 

will self-organise to cause G to shrink; if e<0 the system will self-organise to cause 
G to grow. Since we have shown that U=0 is a stable solution, then the solutions of 

the W vectors must also be stable. 
Now consider the vi. The proof that the stated values are solutions is implicit in 

the section above. To show asymptotical stability, let there be a disturbance of e>0 
in V. Then 

dVT 
= (I - U)WC - (I - U)WCWT (I 

dt - U)T(V + e)T 

= WC - WCWT (V + e)T 
= WC_WCWTVT 

_WCWTET 

= _WCWTcT 
= -KET 

<0 

since every element of K is greater than 0. Similarly, if e<0, we have 1>0. 

Thus all the stated values are stable points of the system. 

4.2.1 The GW Anomaly 

There is an apparent anomaly in the above equations. The solution of dG- =0 is 

gi = wi = l+aý ci whereas the solution of '=0 occurs at wi = ci. Further, as 
U-º 0, G --'W. This suggests a less stable system than before and this is indeed the 

case. Thus in order to minimise instability, it is necessary to ensure that the a; values 

are low. Experimental results suggest a value of 0.1 is sufficient to ensure stable 
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convergence to Principal Components. However, we note that, at w; = i+ai c;, U=0 

and so 
dW 
dt = (I - U)WC - (I - U)WCWT(I - U)TWTVT 

-> WC-WCWTVT 
dwi a; a; 1 

and so dt =1 -+a i 
ei - I+ a; 1+a; of 

Ai a; 
- ci 

1+ai1+ai 

Therefore, for any a; #0, there will be a tendancy for the weights to grow away 
from the global optimum. However, as seen in the equations governing L, this cause 
instantaneous change in U which will drive the W weights in the opposite direction. 

In order to produce a damped system, the values of a; should be small. 
One possible response to this anomaly is to insist that as we are taking a limit to 

infinity, the a; values can only be >0i. e. to allow equality. However, this is not the 

experimental situation where a strict ratio is maintained as the terms decrease to 0 

nor does it help the analysis as we then have a diagonal matrix which is not of full 

rank and would not then provide the differential decay necessary for convergence to 

the Principal Components. 

The approach chosen here is to choose the values of a; appropriately small so that 

the term i+ 
1. Under this constraint the system has been found experimentally 

to be stable. ` 

The final point to note is that in this system the decay of the learning rate to 

0 may be essential to the fixed stability of the system; if the learning rates are not 

allowed to decay to zero, the very dynamical nature of the convergence will continue. 

4.2.2 Simulations 

The results of a typical experiment on the same type of data as in the previous 

chapters are indicated in Table 5. Here, the first interneuron has the smallest learning 

rate i. e. aul < aU2 < a,, 3. 
Further, while the initial values of the w and v weights 

were 0(0.0001) those of the u weights were 0(0.00001). 
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V w 
1.000 0.012 0.000 1.000 0.012 -0.000 
0.030 1.000 0.008 0.030 1.000 0.009 
0.005 -0.003 0.994 0.004 -0.003 0.994 
0.004 0.007 -0.023 0.004 0.007 -0.023 
-0.002 0.000 -0.000 -0.002 0.000 0.000 
Interneuron No: 1 2 3 
Angle (radians) 0.0011 0.0006 0.0004 

Table 5: Results show the weights of a typical set of V and W weights from the Parallel 
Learning Algorithm with the angle in radians between the v and w vectors. No. of 
iterations=40000. Initially, a,,, = a� = 0.0001; a, = 0.000005; a,,, = 0.00001; a,,, _ 
0.000015 

V w 
0.651 0.188 1.0312 0.650 0.188 1.031 

-0.151 0.984 -0.092 -0.150 0.984 -0.092 
0.824 0.049 -0.305 0.842 0.049 -0.305 
-0.019 0.006 0.006 -0.018 0.006 0.006 

-0.001 -0.001 -0.001 -0.001 -0.001 -0.002 
Table 6: Results of the same network as before with homogeneous U learning rates 

In order to show that it is the different learning rate which causes the convergence 
to Principal Components the same experiment was rerun with all the U weights having 

the same learning rate; the results of this are shown in Table 6. While there may 

appear to be a soft PCA taking place, this effect vanishes in larger networks. This 

effect - that increased size removes the tendancy to perform a `soft' PCA - has been 

found in other models in this section and therefore slightly larger networks have been 

used in obtaining other corroborative empirical results. 

4.3 Differential Activation Functions 

In this section we investigate 3 models of Peer Inhibitory Interneurons which use 

activation functions instead of learning rate to break the symmetry of the system. 
We will not repeat the explicit derivations of the last section for each of the 3 models 

as the mathematics is usually very similar; however specific points of interest will be 
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identified and analysed. First each of the 3 models is introduced and experimental 

results are given; points of interest in each are identified. Then a comparison of the 

models is made and additional models which have similar properties are outlined. 
Unless stated otherwise, the empirical data is obtained from a network with 12 

inputs, 7 interneurons and input data with variance of x1 > variance of x2 > .... A 

is a diagonal matrix with All > A22 >... The network here is slightly larger than in 

previous sections in order to highlight various interesting empirical results which are 

not so obvious in smaller networks. 
Restricting ourselves to models where only the interneurons use activation func- 

tions and restricting such activation functions to multiplicative factors, (so that we 

still have a linear system) there are several possible models; we will identify 3 separate 

classes of models by determining the characteristics of 3 of these models. We will use 
the same conventions in naming vectors as before. Note, in particular, that there are 

still no self-connections for the interneurons i. e. the main diagonal of U is composed 

of zeros. In this section, all u weights will learn at the same rate 77U but there will 
be differential activation functions (multiplicative factors) on the interneurons. For 

simplicity, we assume that raw = ray =77u =77. (This does not affect our results and 

provides a simpler mathematical model) 

4.3.1 Model 1- Lateral Activation Functions 

y=x- Vz (80) 

I= Wy = Wx (81) 

z=z- AUz' (82) 

AW= r7zyT (83) 

OVT = i, zyT (84) 

DU = nzzT (85) 

Then, omitting details, we have G= (I - AU)W and 
dW 

_ (I - AU)WC - (I - AU)WCWT(I - AU)TVT (86) 
dt 
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dU 
= (I - AU)WCWT(I - AU)T (87) dt 

dG 
= (I - 

dW 
-A 

d-W 
(88) 

Then if U converges to 0 at which point G=W=VT, 

dG 
dt = (I - AU){(I - AU)WC - (I - AU)WCWT(I - AU)TVT} 

-A{(I - AU)WCWT (I - AU)T }W 

_ (I - AU){GC - GCGT VT - AGCGT W} 

-* GC - (I + A)GCGT W as U --*0 

at convergence, which should be compared with the equations in the previous section. 
However the dynamics of the two models should not be assumed to be the same; 

note for example the different format of the equations governing the behaviour of 
the U values. This will be shown to be important in the investigation below. The 

w; weights (almost)converge to the eigenvectors of the input data's covariance ma- 
trix. The underlying rationale for this network is that each interneuron has different 

susceptibility to the inhibition from its peers. 
The results shown in Table 7 are from a 12-input, 7 interneuron network, with 

a; = 1.58 - 0.2 * (i - 1) for i=1,..., 7. We note that while almost all the Principal 

Components have been certainly identified, the second and third interneurons have 

not identified precisely their respective Principal Components. The vectors seem 
to be almost correct and to satisfy w2. w3 =0 : ºet are not in the direction of the 

eigenvectors themselves. In fact by appropriate choice of the parameters a;, this 

effect can be eliminated; however, 

1. We wish to develop a network which will not require any fine tuning as it is 

used in different situations 

2. The analysis of this fault provides insight into the network behaviour 

The reason for this fault lies in the convergence of the U values. In the model of 
the last section the learning rule for the U values was shown to be 

dU 
_ A(I - U)WCWT (I - U)T 

dt 
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Notice that as U-iO, this learning rule continues to be dominated by the A matrix 

whereas, in Model 1, the effect of the A matrix vanishes as U-+O (see Equation 87). 

The importance of is due to the fact that the value of drJ is a major component 
in the decay term in d2. Thus as U tends to zero and hence -+ 0, the decay term 

tends to zero. In the previous model this decay term maintained its differential effect 

as it decreased but in Model 1, as U -+ 0, the decay loses its directional impact - it 

becomes homogeneous. 
More formally, consider the convergence to a solution of the system which is not 

an eigenvector. Let w; have converged to aci + bcj, a, b#0 and let wj have converged 

to cc; + dcj, c, d#0. Both c and d are necessarily not zero as w;. wj = 0. Then we 

can show that the (i, j)th element of WCWT can be shown to be 

w; Cwj T= (a; ac, + aihcj)"(ccl -}' dcj) 

=A ac+ ajbd 

Similarly, wiCw; T = A1a2 + X, b2 

wjCw; T = aiac+ Ajbd 

wjCwj T= ilic2 
-f' 

Ajl2 

Now the ith row of (I-AU) is [ -a; u; i... l... - a; u,,,... - a; u;,, i 
] where the 1 is in the ith 

position. Similarly with the jth row. Then, 

dtv = (I - AU); WCWT(I - AU); 

= ý(a+ai(a; ac -} )ºibd)) - uii(ai(Aiaa + )ib2) + ai(Atca + Aida)) + (. \ ac + aibc 

Thus ddc at u; j =0 is equal to (a; ac +A bd) which is exactly zero for b=c=0i. e. 
the eigenvectors. 

But, as u; l -+ 0, a situation arises where there is no particular impulse for the 

change of ujj in any particular direction provided the constraint ac + bd =0 is 

satisfied. The symmetry of the formula shows that dd 
= 

dd ; thus the differential 

term in di 
also vanishes at this point and so the weights, having approached the 

eigenvectors, need not converge precisely to any eigenvector - the driving force of 
differential weight decay has vanished. 
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For the system analysed in the previous section, we have 
du, ý = a; u ý(a; ac + aibd) - uji(a; (. 1; aa + ))ib2) + ai(ýica + )id2)) + a; (a; ac +A jbd) dt 

Note the asymmetry in this rule in that even as u; j -+ O, d# dä Therefore this 

system will maintain a preferred degree of slope no matter how small U becomes. As 

noted earlier, the value of 
ät is precisely the value of the differential decay term in 

dg- 
and so W will continue to converge taking account of the network's asymmetry, 

no matter how small U becomes. 

It is possible to somewhat circumvent this problem by choosing values of a; which 

are sufficiently different to make the term containing u; j significant till U is closer to 

zero; however this is an heuristic and an a priori decision on the size of the a; cannot 
be made. 

A further difficulty with this Model is that we now have the activations fed to the 

interneurons being processed differently depending on their origins: all interneurons 

are responding equally to the fed-forward activations from the summing neurons but 

are responding differentially to the activations from their p.. ers. This seems unrealistic 
for a biological model and requires an engineered model to have meta-information (as 

to whether to use an activation function or not). Model 2 is designed to rectify this. 

4.3.2 Model 2- Lateral and Feedforward Activation Func- 

tions 

Our equations are almost the same as in the last section but note that every input to 
Z carries an activation function times the weighted inputs. The rationale behind this 

model is a belief that all inputs to an interneuron should be treated equally. 

y=x- Vz (89) 

Z= AWy = AWx (90) 

I z=z- AUz' (91) 

OW = 77ZyT (92) 

, &VT = 77zyT (93) 

AU =r zzT (94) 
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1 2 3 4 5 6 7 
1 -0.005 -0.001 0.004 0.006 -0.023 -0.025 0.999 
2 0.001 0.005 0.012 0.008 -0.014 0.999 0.029 
3 -0.011 0.011 0.022 -0.045 -0.998 -0.023 

-0.031 
4 -0.003 0.021 0.058 -0.999 0.024 0.010 -0.003 
5 0.001 0.146 -0.996 -0.031 0.019 -0.002 0.009 
6 0.040 0.998 0.119 -0.004 -0.012 -0.019 -0.002 
7 0.998 0.029 0.023 0.004 -0.016 0.013 0.014 
8 -0.016 -0.013 0.004 0.004 0.003 0.011 -0.007 
9 0.004 0.006 -0.003 0.004 -0.003 -0.001 -0.20 
10 0.013 0.005 -0.001 0.002 -0.001 0.003 -0.005 
11 -0.001 -0.004 -0.001 -0.001 -0.003 0.001 0.004 
12 0.001 -0.001 -0.003 -0.003 -0.004 -0.002 0.001 

Table 7: Model 1 Results. 
The results are from a network with 12 inputs/summing neurons and 7 interneurons; 

each column is the vector of weights into each interneuron. In most cases the actual 
Principal Components have been identified since ideally we would wish an array whose 
only non-zero elements would be a diagonal (top-right to bottom-left) line of 1s. 

Then we have 

z= (I - AU)z'= (I - AU)AWx 

Therefore 

G= (I - AU)AW 
dG 

= IT - AU)AdW - AdUAW 
dt dt dt 

As before, we can show that 
dW 

= (I - AU)AWC - (I - AU)AWC((I - AU)AW)TVT (95) 
dt 
dU 

= (I - AU)AWC((I - AU)AW)T (96) 
dt 

and so that 
dG 

= (I - AU)A(I - AU)AWC - (I - AU)A(I - AU)AWC((I - AU)AW)TVT ät 
-A(I - AU)AWC((I - AU)AW)TAW 

-ý A'WC -A 2 WC(AW)TVT -A 2 WC(AW)T AWas U --* 0 

= A{(AW)C - (AW)C(AW)TVT - (AW)C(AW)TAW} (97) 
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1 2 3 4 5 6 7 
1 0.438 -0.359 0.763 0.001 -0.039 -0.013 0.004 
2 0.661 0.199 -0.418 -0.176 -0.070 0.017 0.008 
3 0.022 0.709 0.275 0.478 0.112 -0.012 -0.001 
4 0.076 -0.266 -0.182 0.852 0.273 0.006 0.047 
5 0.007 0.010 0.023 -0.206 1.063 0.394 0.010 
6 -0.027 0.009 0.016 0.060 -0.248 1.248 0.101 
7 0.009 0.006 0.010 -0.007 -0.007 -0.062 1.611 
8 0.003 0.006 -0.010 -0.006 0.002 -0.009 0.006 
9 -0.011 0.010 -0.013 -0.002 0.001 -0.006 0.010 
10 -0.003 0.004 -0.004 0.005 -0.002 0.002 0.013 
11 0.003 0.001 0.003 0.002 0.001 -0.005 -0.002 
12 0.000 0.001 0.002 0.002 0.001 0.002 0.002 

Table 8: Model 2 Results 
Results from a network with 12 inputs/summing neurons and 7 interneurons. Each 

vector into each interneuron(the columns above) has almost all of its weight int the 
first 7 directions. The actual Principal Components have not, in general, been iden- 
tified. 

The factor A which multiplies the whole of the right side of Equation 97 acts on the 

whole of that side equally i. e. does not have the differential decay effect necessary 
to force convergence to Principal Components. It does however have the effect that 

the first vector wi has the highest learning rate and so will tend to adapt to those 

directions which contain the greatest variance before the others do. This results in a 
"fuzzy" PCA. The first and last terms are precisely those of the Subspace Algorithm 

i. e. will cause (AW), and hence W, to converge to the Principal Subspace though not 
to the Principal Components themselves. The results of a simulation based on the 

usual set of data are shown in Table 8. 

A second drawback of this model is that the activation function in Eqn 91 is 

applied only to the effect of the other inhibitory interneurons. i. e. the interneurons 

are calculating their final output values after the activation function has been applied. 
This may not be appropriate in a biological mode. 
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4.3.3 Model 3- Feedforward Activation Functions 

Now we only have an activation function on the first calculation of the z values: 

y=x- Vz (98) 
z= AWy = AWx (99) 

z=z- Uz (100) 

OW =i zyT (101) 

1VT = fzyT (102) 

AU = nzzT (103) 

Then we have 

z= (I - U)z' = (I - U)AWx 

Therefore 

G= (I - U)AW 
dG 

= (I - 
dW 

- 
dUAW 

As before, we can show that 

dW 
= (I - U)AWC - (I - U)AWC((I - U)AW)TVT (104) 

dt 
dU 

= (I - U)AWC((I - U)AW)T (105) dt 
and so that 

dG 
=I UAI d(-)(- U)AWC - (I - U)A(I - U)AWC((I - U)AW)TVT 

-(I - U)AWC((I - U)AW)TAW 

-º A2WC -A 2 WC(AW)TVT - AWC(AW)TAW as U-º 0 

= A{(AW)C - (AW)C(AW)TVT} - (AW)C(AW)T(AW) 

= A{(AW)C - (AW)C(AW)TA-1(AW) 

-A-1(AW)C(AW)T(AW)} (106) 



CHAPTER 4. PEER-INHIBITORY INTERNEURONS 89 

The rationale behind this model is that each interneuron has equal inhibitory effect 

on the others but have differential responses to inputs. 

The central term causes convergence to the Principal Subspace but within that 

subspace causes no convergence to the Principal Components themselves. The last 

term is the one which causes convergence to the actual Principal Components. 

In more detail, consider the system as governed by 

dG 
_ (I - U)A(GC - GCGTVT - ((I - U)A)-1GCGTAW) dt 

-> A(GC - GCGT VT - A-1GCGT G) as U-> 0 

We note that as A is diagonal and of full rank, it has an inverse, which is also diagonal, 

and each element of the inverse, (A'1);; = as -1 
Then, as before, the central term will have no effect on convergence once the 

weights have converged to the Principal Subspace. Within that subspace convergence 

of the weights is governed by the equation 

dG 
= A(GC - A'1GCGT 

dt G) 

This causes gi to converge to 4ck = a- Jck where k=m-i. Note that if a; > a, then 

as 1< al 1 and so this model causes convergence in the "opposite direction" to that 

normally associated with the A values. See Table 9. Now, g; _ (I - U)Aw; -' a, wi; 
therefore, 

aiwi = aiCl 

1 
i. e. wi = ci 

ai 

Now G is simply a mathematical construct to help us understand the model; the 

actual learning processes take place in the modification of the W and U weights; in 

particular, the values of the W weights are determined by the convergence of '. At 

Wi =i ci 

dw; 
= a; w; C - a; w; C(a; w1)Tv T 

dt 
-21 

= aiAiai c1 - ai(ai 2 ci)C(a; a; Cj)T (a, Cj) 
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1 2 3 4 5 6 7 
1 0.794 -0.024 0.014 -0.009 -0.004 -0.002 0.001 
2 0.020 0.849 0.003 -0.007 0.014 0.013 0.005 
3 -0.027 -0.012 0.918 0.047 0.028 -0.008 -0.010 
4 -0.005 0.010 -0.021 1.007 -0.015 0.018 -0.001 
5 0.002 -0.002 -0.017 -0.004 1.129 0.016 0.013 
6 -0.005 -0.018 0.011 0.000 -0.007 1.308 -0.040 
7 0.009 0.013 0.014 -0.001 -0.025 0.021 1.613 
8 -0.007 0.010 -0.002 -0.004 -0.001 -0.010 0.006 
9 -0.017 -0.001 0.002 -0.004 -0.004 0.006 -0.013 
10 -0.003 0.001 0.002 -0.003 0.001 0.006 0.003 
11 0.003 -0.002 0.003 0.001 -0.003 -0.003 0.002 
12 0.001 0.001 0.004 0.003 0.001 0.002 0.001 

Table 9: Model 3 
The results are from a network with 12 inputs/summing neurons and 7 interneurons; 

each column is the vector of weights into each interneuron. In all cases the actual 
Principal Components have been identified. Note the different direction of `slope' of 
the bold figures (see text). 

Aiai cj -A jai cj. ai cj(Ä+ai 1 ci) 

}I 

= A1a; c; -Aiaia; 2ci 

=o 
In other words, that solution of the overall system dynamics,.. =0 is also a solution 

of = 0. The system will converge in harmony. 

4.3.4 Summary 

We present a summary comparison of the models using the rate of change of the 

various weights to guide the comparison. 

dW 
dt 

Note first that in all three models, 1' will cause convergence to the Principal Subspace 

but not to the actual Principal Components themselves. We repeat the equations here 

for convenience: 
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Al A2 A3 A4 A5 A6 A7 

x 1.58 1.38 1.18 0.98 0.78 0.58 0.38 
1.26 1.17 1.09 0.99 0.88 0.76 0.62 
0.79 0.85 0.92 1.01 1.14 1.31 1.62 

Table 10: Experimental values of A; and corresponding values of f (A; ) for the func- 
tions shown 

W1 wa W3 W4 W5 W6 W7 

Modell 0.998 1.000 0.998 0.999 0.999 0.999 1.000 
Model 2 0.792 0.861 0.930 1.013 1.130 1.309 1.614 
Model 3 0.795 0.849 0.919 1.008 1.130 1.308 1.614 

Table 11: Lengths of the relevant vectors from the 3 Models 

Model 1 d' = (I - AU)WC - (I - AU)WCWT(I - AU)TVT 

Model 21= (I - AU)AWC - (I - AU)AWC((I - AU)AW)TVT 

Model 3 9r = (I - U)AWC - (I - U)AWC((I - U)AW)TVT 

All three equations are of the form 

dd 
--i, GC - GCGTVT as U--* 0 

and as before it can be shown that VT = KG for some diagonal matrix K. Therefore, 

all of these equations will cause the G vectors to converge to the Principal Subspace 

but not to the Principal Components themselves. We note that if a; wi has converged 
to an eigenvector then wi has converged to the same eigenvector. Further, these 

equations will determine the size of the W vectors; since each vector, g; is of length 1, 

we have, noting that limt u; 1 =0 

Model 1 1wi) =1 
i 

Model 2 Iwil = a; ' 
L 

Model 3 1w; I = a; ' 

This analysis is corroborated by Tables 10 and 11 We will demonstrate that the 
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stated solution is correct for Model 2- the other models can be similarly' analysed. 
We have 

dW 
_ (I - AU)AWC - (I - AU)AWC((I - AU)AW)TVT 

dt 

--> AWC - AWC(AW)TVT as U -+ 0 
I 

Now let wi = a; ' b; where bi bjc; i. e. bi is a unit length combination of the 

vectors ci , with ci the eigenvectors of C as usual. Then, 

dW 
_ AWC - AWC(AW)TVT 

dt 

dt - -, 
(a b c"C - a; a; bicjCa; a bicý a; bicj 

dw; 
,' .i(')(' 

)T( ') 
iii .7 

=a ai bicj -a ai bici(a? E bic3) (a 'E bi ci) 
iiii 

it 
=a aibicj -aEA, bici(E bici 

=0 

since bb is a unit length vector and so (E, b; cj )2 = 1; 

dU 
dt 

Neither will cause convergence to the actual eigenvectors. 

Model 1A_ (I - AU)WCWT(I - AU)T 

Model 2E_ (I - AU)AWC((I - AU)AW)T 

Model 3E_ (I - U)AWC((I - U)AW)T 

Note that all equations have the general form 4= GCGT. We consider only the 

case U=O, since it can be shown that, at U=0 in all models, dý = 0. Then since A 

is a diagonal matrix, convergence to non-zero diagonal elements is achieved whenever 

3Indeed, more simply since we can use the fact that these models cause convergence to the 
eigenvectors . 'This is not to be taken that we assume that aU =0=U=0 
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the rows and columns of W are orthogonal. (If a; w; 1 ajwj then wi 1 wj). Consider 

Model 3, at U=0 , wi = a; ' c; ; then 

dtj - (I - U)Aw; C((I - U)Awj)T 

-+ Aw; C(Aww)T as U -->O 
ajAiwi, aiwj 

_ Aiaidjwi"Wj 

- Aiaiajbijai d; 
Z 

Äi6ijai aj' 

where S il is the Kronecker delta. Therefore, off the main diagonal, -d, -i24- = 0. So the 

equations governing the growth of U and W merely ensure that the columns of W 

form an orthogonal basis of the Principal Subspace of the covariance matrix of the 

input data. 

dG 
dt 

dG is the equation which causes convergence to the Principal Components. dG is the 

manifestation of the interaction between the dynamical development of U and that 

of W. 

Recall that G is defined as 

Model 10= (I - AU)W 

Model 2G= (I - AU)AW 

Model 3G= (I - U)AW 

If we assume convergence at U=O, then we have 

Model 1 

dG 
_V I AU)GC - GCG / AU){ GC T} - AGCGT W 

dt 
-ý 

(I 

- (I 
1+ 

A)GCGT W 

GC - (I + A)GCGT G 
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This causes convergence of g; to l+ic;; 
however note the caveats made in 

section 4.3.1 

Model 2 

dG 
= (I - AU)A{GC - GCGT VT }- AGCGT (AW ) 

-º A{GC - 
GCGT VT - GCGT (AW )} 

There is no specific parameter which will force the weights to the actual Prin- 

cipal Components themselves; both decay terms cause convergence to the Prin- 

cipal Subspace but within that subspace are non-directional. 

Model 3 

dG 
= (I - U)A{GC - GCGT VT }- GCGT AW 

--º A{GC - GCGT VT - A'1GCGT AW} 

A{GC - GCGT (A'1G) - A-1GCGT G} 

This causes convergence to Acm_i. The essential point to note is that that 

vector associated with the smallest value of A corresponds to that vector with 
the largest eigenvalue. 

11 

4.3.5 Other Models 
1, r 

Clearly the models identified above are not the only possible models; however, all 
models investigated have been found to be of one of the three classes defined by the 

above 3 models e. g. 

Model 4 Our equations are almost the same as in Model 2 but note that the second 
outputs of the interneuron are calculated after the subtraction of the inputs 
from their peers : 

y= x-Vz 

zF = AWy = AWx 

(107) 

(108) 
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z= A(z' - Uzi) (109) 

OW = r7zyT (110) 

OVT = r? zyT (111) 

AU = rizzT (112) 

Then we have 

z= A(I - U)z'= A(I - U)AWx 

Therefore 

G= A(I-U)AW 
dG 

_ A(I - U)AdW - AdUAW 
dt -T t- 

As before, we can show that 

dd 
= A(I - U)AWC - A(I - U)AWC(A(I - U)AW)TVT (113) 

dU 
= A(I - U)AWC(A(I - U)AW)T (114) ät 

and so that 
dG 
dt 

---i 

A(I - U)AA(I - U)AWC - A(I - U)AA(I - U)AWC(A(I - U)AW)' 

-AA(I - U)AWC(A(I - U)AW)TAW 

A(I - U)A(GC - GCGTVT - (A(I - U))-1GCGT(AW) 

A2{(A2W)C - (A2W)C(A2W)TVT - A-1(A2W)C(A2W)TAW} 

This model acts similarly to Model 3 in that the A-1 causes convergence. All 

effects, however, are even more pronounced: the differential learning rates of 
the feedforward functions gi are even more exaggerated, and the differences in 

the size of vectors are larger. The rationale behind this model is that each 
interneuron will calculate its activation at all times based on the sum of the 

inputs at that time. This is possibly the most realistic biological model; it 

requires no meta knowledge and is local, simple and parallel. 
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Model 5 

y= x- Vz (115) 

Z= Wy = Wx (116) 

z= A(z - Uz) (117) 

OW =i zyT (118) 

AVT = 77zyT (119) 
AU = r1zzT (120) 

Then we have 

z= A(I - U)z = A(I - U)Wx 

Therefore 

G= A(I - U)W 
dG 

= A(I - U)dW - AdUW 
dt dt dt 

As before, we can show that 
dW 

= A(I - U)WC - A(I - U)WC(A(I - U)W)TVT (121) WT 
dU 

_ A(I - U)WC(A(I - U)W)T (122) 
ät 
dG 

--> A{GC - GCGT VT - GCGT W}"" (123) 

This model acts like Model 2. It finds the Principal Subspace but not the 
Principal Components themselves as there is no differential decay in the model. 

Model 6 

y= x- Vz (124) 

z1 = AWy = AWx (125) 

z= A(z'- AUz') (126) 

AW = nzyT (127) 

OVT = rizyT (128) 

DU = ? lzzT (129) 

r 

ff 

i 

rE 

Eý 
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Then we have 

z= A(I - AU)z' = A(I - AU)AWx 

Therefore 

G= A(I - AU)AW 
dG 

= A(I - AU)AdW - AAdU AW 
dt dt dt 

As before, we can show that 

dW 
dt 
dU 
dt 
dG 
dt 

97 

= A(I - AU)AWC - A(I - AU)AWC(A(I - AU)AW)TVT130) 

= A(I - AU)AWC(A(I - AU)AW)T (131) 

--> A2{GC - GCGTVT - GCGTAW} (132) 

Again there is no asymmetry in the learning process and so the model will act 
like Model 2- it finds the Principal Subspace but not the Principal Components. 

4.4 Emergent Properties of the Peer-Inhibition 

Network 

A possible criticism of envisaging biological neural nets as performing a Principal 

Component Analysis is that it leads to a situation whereby one neuron is in charge of 

all information passing in a particular direction; therefore, if it is in any way damaged, 

the information in that direction which should be passed on will be lost. 

An interesting property of large Peer-inhibitory networks is that such so-called 
"grandmother" cells take a very long while to form: the network quickly self-organises 
till each interneuron's weights are maximally sensitive to 4/5 directions but it then 

takes a very long while to converge to a single Principal Component. A typical set 

of weights is shown in Tables 13 - 16. It should be seen that each weight is gradually 

converging to a particular Principal Component; what is more difficult to show is 

that the direction of each Principal Component is maximally associated with the 
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weights of approximately 4 or 5 interneurons after 50000 iterations and the weights 

only gradually thereafter converge to a single Principal Component. The full matrix 

would appear as a "fuzzy" diagonal of bold-faced type. 

4.5 Conclusion 

In this chapter, we have used the negative feedback effect of each interneuron on the 

other interneurons in an attempt to ensure that the weights into each interneuron 

converge to the actual Principal Components themselves. We have shown that it 

is not enough to simply feedback the activations of the interneurons as they are 

calculated - some measure of asymmetry must be introduced into the network. 
Two main methods of introducing such asymmetry have been shown to be suc- 

cessful: interneurons using different learning rates and interneurons using different 

activation functions. While both of these methods have been shown to be successful, 
the results of the analysis and experiments with different activation functions show 
that simply to introduce an asymmetry into the network without a theoretical under- 

standing of the consequences could lead to unpredictable consequences: in the case 

of activation functions, it has been shown that the same activation function can have 

the desired effect, no effect or the opposite effect to that which might be predicted 
depending on where it is introduced. 

Nevertheless, several models have been shown to be extremely successful at finding 

Principal Components of input data and hence of transmitting the maximum amount 

of information with the least possible amount of hardware. The inherent parallelism 

of the network should make possible a very fast implementation of the network on 

parallel hardware. 



CHAPTER 4. PEER-INHIBITORY INTERNEURONS 99 

Table 12: Each row represents the first 7 components of the first 5 interneuron weights 
in a network of 100 inputs and 50 interneurons after 50000 iterations; all weights not 
shown are less than 0.1. most considerably less... 

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 
Interneuron 1 0.737 0.405 0.464 0.063 0.154 0.114 -0.079 
Interneuron 2 0.072 0.323 -0.637 0.360 0.557 -0.030 -0.021 
Interneuron 3 0.046 0.638 -0.375 -0.461 -0.429 -0.045 0.297 
Interneuron 4 0.340 -0.259 -0.255 0.533 -0.475 -0.015 -0.440 
Interneuron 5 0.506 -0.466 -0.366 -0.443 0.123 0.322 0.170 

Ta1-i1F+ l A- TIPP carne nefwnrk as aikn-t, P a; +sar. 1 nnnnn 

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 
Interneuron 1 0.898 0.325 0.256 -0.021 0.081 -0.025 -0.048 
Interneuron 2 0.021 0.361 -0.690 0.379 0.466 -0.032 0.059 
Interneuron 3 -0.095 0.626 -0.319 -0.496 -0.471 0.043 -0.091 
Interneuron 4 0.266 -0.289 -0.378 0.490 -0.653 -0.086 -0.226 
Interneuron 5 0.329 -0.525 -0.488 -0.525 0.101 0.190 0.209 

Tah1P 1d" The came. nP4wnrlr ac a}invs+ !. f+... 9nnnnn ; 4erý4;.,,, o 
Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 

Interneuron 1 0.922 0.022 0.162 -0.130 -0.032 -0.015 0.023 
Interneuron 2 0.207 0.191 -0.850 0.339 0.248 0.083 -0.053 
Interneuron 3 -0.082 0.845 -0.082 -0.457 -0.273 0.004 0.060 
Interneuron 4 0.034 -0.184 -0.257 0.180 -0.914 -0.121 -0.016 
Interneuron 5 -0.010 -0.479 -0.398 -0.737 0.005 0.237 0.131 

TA1P 1.5" Th camp nefwnrle as ahnvP nftP1. Innnnn ; faýý4; nne 
Input 1. Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 

Interneuron 1 0.961 -0.133 0.139 -0.167 -0.037 -0.002 0.041 
Interneuron 2 0.218 0.164 -0.902 0.308 0.091 0.035 -0.015 
Interneuron 3 0.063 0.949 0.078 -0.265 -0.101 0.056 0.016 
Interneuron 4 -0.032 -0.063 -0.102 0.034 -0.971 -0.157 0.067 
Interneuron 5 -0.137 -0.219 -0.367 -0.860 0.011 0.190 0.103 

Table 16: At the other end of the matrix/table, the interneurons' weights are con- 
,.... , verging only sugntiiy more siowiy 

Input 50 Input 49 Input 48 Input 47 Input 46 Input 45 Input 44 
Interneuron 45 0.013 0.273 -0.061 0.123 -0.717 -0.077 0.297 
Interneuron 46 0.129 -0.172 0.122 0.271 -0.017 -0.868 0.039 
Interneuron 47 0.065 0.317 -0.072 -0.859 -0.090 -0.313 0.018 
Interneuron 48 -0.088 0.058 0.963 -0.114 -0.105 0.121 -0.093 
Interneuron 49 0.731 0.558 0.080 0.223 0.270 0.108 0.002 
Interneuron 50 0.617 -0.654 0.007 -0.237 -0.297 0.170 -0.015 



Chapter 5 

Biological Asymmetries 

5.1 Back to the Biological Drawing Board 

The initial rationale for the development of ANNs came from attempting to emulate 
biology. We have been trying in the previous chapters to create an engineered PCA 

machine which does not stray too far from a possible biological model. However, the 

models of the last section have moved quite a distance from a conceivable biological 

model, not simply in terms of the increase of complexity of the model but also, more 
importantly, in the necessity for structured time intervals. In the previous chapter, 

we required a 3-phase operation in transferring activations: 

Phase 1 The activation is fed forward; the interneurons calculate their activations. 

Phase 2 The interneurons' activations are fed to the other interneurons; the in- 

terneurons recalculate their activations. 

Phase 3 The interneurons activations are fed back to the summing neurons; the 

summing neurons calculate their activations 

and it is only after all 3 phases have taken place that any learning will take place. 
All biological evidence suggests that nature does not countenance such complex 

dependencies; she tends to throw lots of simple robust power at problems. 
Let us restate the situation as we currently find it: 

100 
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1. The interneuron network has been shown to converge to the Principal Subspace 

(i. e. not to the Principal Components themselves but to some basis of the PCA 

subspace) when simply set running in parallel mode. 

2. We can force the network to learn the actual Principal Components if we intro- 

duce asymmetry into the network either by creating interneurons in a phased 

manner(temporal asymmetry) or by creating asymmetry in a Peer-Inhibition 

network by means of differential learning rates (acceleration asymmetry) or dif- 

ferential activation functions (efficiency asymmetry). 

3. In introducing any of the asymmetries to the network, we corrupt some of the 

attractive properties of the basic network which we have identified as 

" Simplicity 

" Homogeneity 

" Locality of information use 

" Parallelism 

In this Chapter' 
, we consider the effects of two naturally-occuring asymmetries and 

then use one in an application of our negative feedback neural network. 

5.2 Non-negative Weights 
ý; . 

There is one obvious asymmetry used in nature which we have not used as yet: it is 

believed that signals from neurons may be excitatory or inhibitory but not both i. e. 

a neuron's output can excite (positively) other neurons or it can inhibit (negatively) 

other neurons; what cannot happen is that it excites some and inhibits others. The 

results reported in previous Chapters were based on a model where the weights were 

allowed to take any value positive or negative and so a; neuron could be exciting some 
neurons while inhibiting others. In fact, it is possible for a neuron to switch from 

excitatory activation to inhibitory as its weight changes from positive to negative. If 
'Some of this work has appeared in (Fyfe, 1993a; Fyfe, 1993e; Fyfe and McGregor, 1994). 
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Input 1 Input 2 Input 3 Input 4 Input 5 
Interneuron 1 0.552 0 0.004 0.000 0.001 
Interneuron 2 0.700 0 0.005 0.000 0.001 
Interneuron 3 0.035 0.991 0.004 0.000 0.000 
Interneuron 4 0.450 0 0.003 0.000 0.001 

Table 17: A5 input, 4 interneuron network with the same type of input data as 
previously 

we allow only non-negative weights i. e. ensure that if a weight, while learning, never 
takes a negative value, we have the following interesting situation: 

Assume that two weights of our converged network have values aci + bcj and 

cci + dcj, with the same notation as before. Then since the weights converge to an 

orthogonal basis of the space, ac + bd = 0. Now if none of the terms a, b, c or d 

can be negative, then at least 2 must be zero (one from each term ac and bd). In 

other words, this constraint swings the weight vectors through the weight space to 

the actual Principal Components themselves. Since we are not directing the process, 

situations where several sets of weights converge to the same Principal Component 

tend to appear. An extreme example is shown in Table 17 in which we report the 

results of a simulation on the same type of data as previously but where the basic 

VW interneuron network was set up and the weights allowed to learn concurrently. 
Clearly, the weights of interneurons 1,2 and 4 have all converged to the same 

Principal Component. Note that the weights marked ordy'u0" have been stopped 
from becoming negative. 

5.2.1 Other data sets 

However, there is one clear difficulty with this program - if we are calculating Principal 

Components from a general data set, there must be a negative term in at least one of 
the Principal Components' coordinates. (In order to have orthogonal directions, the 

inner product of the components must be zero and hence there must be at least one 

negative component). 
To further investigate the network's potential, data from a distribution whose 
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Direction 1 2 3 4 5 Value 
First PC 0.584 0.811 0.000 -0.002 -0.002 59.3 

Second PC -0.006 0.001 -0.469 -0.617 -0.632 33.7 
Third PC -0.811 0.584 -0.010 0.005 0.011 7.1 
Fourth PC 0.012 -0.008 -0.876 0.235 0.421 2.4 
Fifth PC 0.002 -0.001 0.111 -0.751 0.650 0.5 

Table 18: Principal Components of the new data calculated using a standard statis- 
tical package 

Interneuron 1 0.005 0.000 0.465 0.616 0.635 
Interneuron 2 0.391 0.518 0.001 0.000 0.000 
Interneuron 3 0.324 0.467 0.001 0.000 0.000 
Interneuron 4 0.296 0.409 0.001 0.000 0.000 

Table 19: A 5-4 interneuron circuit operating on the data of the previous table 

Principal Components are shown in Table 18 was used as input to the network: 
it should be clear that there is a sharp division in the data between the first two 

directions and the last three. It might seem to be possi:. le for the network to con- 

verge to a mixture of the above weights e. g. the directions {0.584,0,0.469,0,0} and 
{0,0.811,0,0.617,0.632} span the subspace of the first two Principal Components. This 

does not happen; the network converges to the first 2 Principal Components them- 

selves (see analysis in the next Section). 

It is impossible for the network using the positive weight- constraint to converge 
to any direction containing a negative component i. e. from the third onwards. To 

find out how the network would respond to a situation where there were more degrees 

of freedom than possible directions to be found, we used the network with these 5 

inputs and 4 interneurons (with the constraint that no weights are allowed to become 

negative). The results are shown in Table 19. 

It is clear that the first interneuron has found the second Principal Component 

while the second, third and fourth interneurons have found the first Principal Com- 

ponent. This is a general finding with this type of network with the non-negative 
weight constraints. 

This form of information extraction may be of importance if the data has been 
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Inter Input Weight Inter Input Weight Inter Input Weight 
0 9 1.000 17 23 0.999 34 10 0.374 
1 19 1.000 18 3 0.308 35 20 0.999 
2 33 0.998 19 4 0.455 36 16 0.999 
3 8 0.554 20 28 0.998 37 25 0.999 
4 12 1.000 21 5 1.000 38 6 0.999 
5 1 0.370 22 27 0.998 39 0 0.641 
6 1 0.490 23 35 0.993 40 18 0.999 
7 0 0.611 24 26 0.998 41 31 0.998 
8 2 0.999 25 30 0.999 42 22 1.000 
9 32 0.997 26 14 0.999 43 7 0.674 
10 15 0.999 27 3 0.951 44 0 0.142 
11 8 0.481 28 10 0.870 45 10 0.320 
12 29 0.998 29 11 0.797 46 21 0.999 
13 34 0.995 30 17 0.999 47 7 0.738 
14 0 0.441 31 8 0.679 48 11 0.602 
15 13 1.000 32 1 0.451 49 1 0.648 
16 4 0.890 1 

1 
33 24 0.999 

Table 20: Results from an interneuron network with 100 inputs labelled 0-99, and 
50 interneurons labelled 0-49, e. g. the weights into interneuron 0 have converged to 
(input) direction 9 and the weight in that direction was 1.000 

preprocessed in order to have isolated the "texture" data from the "colour" data from 

the "smell" data etc.. This type of distributed data-processing is known to happen in 

biological neural networks. However, this type of data-processing cannot be an initial 

data-processing function. The information must first be differentiated into disjoint 

dimensions: if there is any overlap between the dimensions in which the data exists, 

no more than one Principal Component per data set is possible. 
We note that the length of the total vector of weights into interneurons 2,3 and 

4 is one unit. 
Restricting ourselves to our specialised data, we can show that the principal di- 

rections are found: in Table 20, we show the weights from a network with 100 inputs 

of the same specialised form as before and 50 interneurons. All weights not shown 

were under 0.015 after 100000 iterations. We note that 

" The weights into each interneuron converged to a single Principal Component 
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" Some of the directions with largest eigenvalues, (those of the first 12 Principal 

Components) were covered by more than 1 interneuron. Maximally, directions 

0 and 1 were covered by the weights of 4 interneurons 

9 The weights in each direction still (approximately) had length 1 

" There is no half-way house with this network's converged weights- the weights 
into different interneurons are either totally orthogonal or in completely the 

same direction. 

The last 2 points are potentially important in considering an interneuron network 

as a possible explanation of biological networks' information management processes. 
If such recognition is spread over a group of neurons such as is shown here, this 

provides a robustness in the network which has been missing up till now. 
Further, since the total weight in any direction still has length 1, then directions 

which are represented by more than one interneuron are not overemphasised in any 
data processing. 

Experiments with larger sizes of networks have shown that the above effects in- 

creases with size. 

5.2.2 Theoretical analysis 

Consider a network with 4 inputs and 2 interneurons. Let the eigenvector of the input 

data with the largest eigenvalue be a= {al, a2,0,0} and the second eigenvector be 

b= {0,0, b3, b4}. Then, in the situation described in the last section, if wi is the 

vector of weights into interneuron i, then wi converges to a and w2 to b or vice- 

versa. We show that this is a stable solution. 
Using angled brackets to indicate the ensemble average, the expected input is 

(x) = k�a + kbb = {kcal, ka2, kbb3, kbb4} (133) 

(z1) = ka(ai + aä) (134) 

(yi) = kaai - kaai(ai + aä) (135) 
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So, the expected change in the weight between yi and zl is 

( w11) = 71(ylzl) 

_ 1(dl(1 - (a1 + az))kä(a1 + dä)} (136) 

So, since a; 0 0, Vi and k. > 0, (Aw11) =0b ai + a2 = 1. Since the eigenvector a 
has length 1, the converged weights are stable. 

Now consider a network whose weights have converged to values incorportating 

both eigenvectors e. g. let wi have converged to {al, 0, b3,0} and w2 have converged 

to {0, a2,0, b4}. Then a similar argument to the above leads to 

( w11) _ (kaa2 + kbb3)al(ka - (kaa2 + kbb3)) 

So (1 wii) =0k,, = kb 
i- 7= kb-. This equation imposes constraints on the 

input data relating the internal proportion of each eigenvector in each direction to 

the relative size of each eigenvalue. 
Thus, while it is possible to construct data to satisfy these criteria, it is not 

generally the case that data-sets will comply with the constraints. 
Further note that this equation is only one of 4 derivable from the system. We 

can show that the system requires k=H=A for stability. This will not generally 
be true. 

` 
I. 

5.3 Using Distance Differences 

Another possible model is suggested by the innate asymmetry in real biological neural 

networks in terms of the distances between neurons. This will manifest itself as 
different times to respond to a signal depending on the distance which the signal 

must travel (assuming that there is some uniformity in the speed of information 

transfer). 

This differential is used in a new model where different interneurons take different 

lengths of times to respond to the input signal x. Therefore while the activation from 

the input neurons is transmitted to all interneurons at the same time, each interneu- 

ron's response takes a different length of time to feedback to the input neurons. Thus 
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the negative feedback is felt and used in a phased manner and learning takes place 
immediately the returned signal is received. Therefore, we embed the learning process 
in the feedback loop, so that we now postulate a learning and activation-transmission 

process which takes place in the order in which the following equations are given. 

initial value of y= y(0) = x (137) 

z= Wy (138) 

y(t) = y(t - 1) - v; (t -1)z; (139) 

Owi(t) = q(t)z; (t)y(t) (140) 

Ov; (t) = q(t)zi(t)y(t) (141) 

where e. g. v; (t - 1) indicates the value of the vector of weights vi at the time t-1. 

Other than the first two steps, (the acceptance of the initial activation x and its 

forward transmission to the interneurons) the process (defined by Equations (139), 

(140) and (141)) is repeated for each interneuron in turn. This corresponds to the 

feedback from the interneurons being received at different times (perhaps depending 

on the physical distance which the activation must traverse, perhaps depending on 

the efficiency of transmission of the interneuron). This process results in the weights 

of the first (fastest) interneuron learning the first Principal Component, the second 
fastest interneuron learns the second Principal Component etc.. Experimental results 
from a network with 5 inputs and 3 interneurons are given in Table 21. In order to 

demonstrate the effect of the network, we have carried out our simulations on the 

same type of data as previously. Clearly the first 3 principal components have been 

found by the 3 interneurons. 

Note that the crucial difference between this model and previous models is the 

embedding of the learning process in the activation reception process. When this is 

done, the resulting network is more similar to a Sanger-type (Sanger, 1990) network 

rather than an Oja-type network. The kth interneuron is learning to extract the 

maximum amount of information which is left after the previous (k-1) interneurons 

have extracted their information. 
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v w 
1.000 0.006 -0.010 1.000 0.006 -0.010 
-0.000 -1.000 0.013 -0.000 -1.000 0.013 
0.012 0.023 1.000 0.012 0.023 1.000 
0.000 -0.003 0.004 0.000 -0.002 0.004 

-0.002 -0.004 -0.001 -0.002 -0.004 -0.001 

Table 21: Results of the Differential Distance Model; each column shows the con- 
verged weights between one interneuron and the input neurons after learning on data 
from independent zero mean Gaussians with descending variances 

5.3.1 Equivalence to Sanger's Algorithm 

Sanger's algorithm has, as a learning rule 
i 

t&wij = 77Yi(x, i -E ykwki) 
k-1 

in a totally feedforward architecture, where the outputs at y are given by 

yi w. ixi 

We can show that the interneuron network using the rules determined by Equations 

137 - 141 is equivalent to Sanger's algorithm: 
Let the y values be indexed with the time of feedback from the interneurons. 

Then, 

y3(0) is the initial value of yj at time 0. i. e. y, (0) = xj 

y, (1) is the value of y3 after receiving the feedback activation from the first (and hence 

closest) interneuron. i. e. yj(1) = y3(0) - vl3zl. Note that the time values are only 

ordinal indices - they do not imply equal intervals between feedback activations. 
Similarly, if y, (2) is the value of yj after receiving feedback from the first 2 in- 

terneurons, then 

a 
yj(2) = yi(l) - v2jz2 = yi(O) -E VkjZk 

k-1 
(142) 

In general, if y,, (i) is the value of y3 after receiving feedback from the first i interneu- 

rons, 
ii 

yj(i) = yj(O) - EVkjZk = O7 - LVkjZk (143) 
k-1 k=1 
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Therefore, 

Ovij = Awij = 17Yj(Z)'zi 

i 

= n(yj(0) -E vkjzk)zi 

k=1 

i 

? 7zi(Xj -E vkjzk) 
k-1 

which is exactly Sanger's formulation (see Chapter 2). 

5.4 The Interneuron Coding Network 

109 

The various algorithms (such as that above) describing learning within the interneuron 

network have been shown to extract the maximum information from sets of stochastic 
data. The next obvious question is to decide what a network should do with such 
information when it has been extracted. Some form of coding would be helpful in 

classifying such data. 

The interneuron coding network was developed in appreciation of the way in which 
Carlson (Carlson, 1990) amended the basic network of Rubner and Schulten (Rubner 

and Schulten, 1990), a PCA network, in order to create a coding network. 
While we have wished to emulate his success, we have the continuing design ethos 

based on the retention of as many of the attractive features of the basic interneuron 

network as possible - those of simplicity, homogeneity, locality of information use and 

parallelism. 
Our aim is to create a network which will take a set of raw data and code it so 

that different sections of the data are coded differently and such that data which have 

most similarity are most alike in codes i. e. a topology-preserving network. A binary 

code is easiest to implement with a simple threshold. Since we require several bits 

for each codeword, we suggest a network such as shown in Figure 10. 

This network is shown with only one input and 3 coding interneurons. Raw data 

at the x input is converted to a binary coded vector z at the coding interneurons. 

There are only two differences between this network and those investigated pre- 

viously: each interneuron is connected to only one input and each interneuron has 
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Figure 10: The Coding Network. Raw data is fed in from the left; binary codes 
emerge from the right 

a threshold above which its weighted inputs must sum in order to force a positive 
firing; if the threshold is not reached, the interneuron will have a negative activation. 
In detail, 

" Each interneuron, in turn, receives a weighted sum (in this case of only 1) of the 

y values; however, each interneuron has a threshold above which its activation 
will have a positive value and below which the activation will be negative. We 

choose the threshold for all interneurons to be 0. Then, if zi is the activation of 
this interneuron, 

z; = 1ifw; x>0 

= -lifw; x<0 

" This activation is then returned (weighted) and subtracted from the y values. 

y(t + 1) = y(t) - viz; 

where y(t) is the value of y at time t (and y(O)=x). 

THE CODING NETWORK CODING 

_INTERNEURONS 
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" The weights, w; and v; are updated according to the same rule as previously, 
i. e. a simple Hebbian learning rule 

Wi = wt + 17yzi 

vi = V: +7 YZi 

Note that the zs values are either 1 or -1; changing the weights is the sole method 
of learning in the system to ensure that appropriate codes are found. 

We wish to emphasise that we have not programmed a threshold nor any specific 
function which monitors the variance of the data and adjusts the network's response 

appropriately. 

5.4.1 Results 

A typical set of results is shown in Table 22. These resu'.: s are for an 6 interneuron 

network which is learning from a set of x-values generated from a uniform distribution' 
between 2 and 4. The network used a learning rate of 0.01 and ran for 10000 iterations 

Several points are worth noting: 

" First the coding seems fairly inefficient in that the first figure is always 1. This 
is due to our insistence that all means are zero. Thus the first code element is 

always 1 for inputs >0 (see Section 5.4.2 

" If we wish a code where the first interneuron performs maximum discrimination, 

(i. e. in the above example, all inputs less than 3 would be coded as -1, all inputs 

>3 would be coded as +1) we would use a threshold which will also learn; a 

rule such as 

B" = 61 + aw1. x 

2We use a uniform distribution here to make it clear why each weight has converged to the value 
it has converged to 
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Decimal Decimal 
2.0 1 0 0 0 0 0 3.0 1 0 1 1 1 1 
2.1 1 0 0 0 0 1 3.1 1 1 0 0 0 1 
2.2 1 0 0 0 1 1 3.2 1 1 0 0 1 1 
2.3 1 0 0 1 0 0 3.3 1 1 0 1 0 0 
2.4 1 0 0 1 1 0 3.4 1 1 0 1 1 0 
2.5 1 0 1 0 0 0 3.5 1 1 0 1 1 1 
2.6 1 0 1 0 0 

,1 
3.6 1 1 1 0 0 1 

2.7 1 0 1 0 1 1 3.7 1 1 1 0 1 0 
2.8 1 0 1 1 0 0 3.8 1 1 1 1 0 0 
2.9 1 0 1 1 1 0 3.9 1 1 1 1 1 0 

112 

Table 22: A section of coding for vectors produced by a 1-input 6-interneuron network 
for input data from a uniform distribution between 2 and 4. Learning rate = 0.01, 
number of trials = 10000. We have replaced -1 with 0 to highlight the binary nature 
of +b rnrýP 

Interneuron 123456 
Weight (w) 3.005 0.505 0.254 0.123 0.063 0.031 

Table 23: The weights which the above network learned using only simple Hebbian 

learning 

where 9i is the threshold for the jt interneuron is an entirely local rule and easy 
to implement; however, in keeping with our design philosophy of maintaining 

simplicity, we have not implemented that here. 

" The code seems to be topology preserving - similar inputs have similar outputs 
(see Section 5.4.4). 

" Experiments have shown that larger networks have no difficulty in providing 

more detailed codes and require only a slight increase in time as each element 

of the coding is done on the error remaining after the previous interneurons 

have performed their coding. 

"A topological feature map using the interneuron network has one major advan- 
tage over e. g. a Kohonen feature map: it can easily be re-implemented to show 

a hierarchy of subfeatures (see Section 5.5) by adding a new level of coding 
interneuron 
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" Lower valued digits are automatically coded more slowly and hence are less 

prone to an unusual input creating large changes 

5.4.2 Statistics and Weights 

We will investigate what the weights are actually learning by considering their values 

at convergence. In general, we are using simple Hebbian learning, so 

Ow; = r7y(i)z: 

where the subscript denote the ith interneuron and y(i) denotes the value of y at time 
i. The proof that v; = w; is similar to that shown previously and will not be repeated 
here. We investigate 2 interesting cases before looking at the general case: 

1. A zero mean symmetric distribution. 

" Consider wl, the weight to the first interneuron. Then, 

Awl = 71y(l)zi 

= fl(x - wizi)zi 

= r1(xzl - wl) 

since z=1. Hence at convergence 

(144) 

(Awl) =0 4= (w1) = (xzi) I `. (145 

With a zero mean symmetric distribution, zi = -1 when x is negative and 

zl = +1 when x is positive; therefore zlx - IxI and so 

'wi=(IxI) 

at convergence i. e. wi converges to the expected value of the absolute value 
of the input data, i. e. the mean absolute value. This has the effect of map- 
ping the two halves of the distribution to a tighter (bipolar) distribution 

which is mostly contained within the interval [-Ix[, IxI]. See Figure 11. 

2. A positive, compact distribution. 

By compact, we mean a distribution which contains no holes. 
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Figure 11: The original zero mean, symmetric distribution (as seen by the first in- 
terneuron) is transformed into a bipolar distribution (which is seen by the second 
interneuron) by the activity of the first interneuron. The bipolar distribution is al- 
most totally between the negative and positive expected absolute values of the input 
distribution. 

" Consider wl; as before, we can show that, at convergence, 
(Awl) =0 (wl) = (xzl) (146) 

With this distribution, zi = +1 for all input values of x. So 

wl = (x) 

i. e. the mean value of the input data V 

" Now consider w2, the weight to the second interneuron. Then, 

Owe _ 71y(2)z2 

_ 71(y(1) - w2z2)z2 

_ 71(Y(1)z2 - w2) (147) 

since zä = 1. But 

y(1) =x- wiz, 

= X- (x) 

Now if x> (x), i. e. x> w1, then z2 =1 while if x<Y, i. e. x< wi, 
then z2 = -1 Thus w2 at convergence equals (Ix - (x)J). Therefore, at 

-XxI 
0x 
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convergence, wa is bisecting the residual area of the distribution after wl 
has subtracted out the mean. So w2 for this distribution is performing the 

task which wi performed for the symmetric distribution. 

3. In general, for values of x drawn from any distribution 

Ow; = 77y(i)zj 

= 77(y(i - 1) - w: z1)z: 

= r7(y(i - 1)z; - wi) 

Therefore, w; --; (y(i - 1)z; ) at convergence 

and ify(i-1)>0then z; =1 

while if y(i - 1) <0 then z; = -1. 
Therefore, at convergence, w; = (l y (i -1)1) 

In general, the z values correspond to the coding taking place while the y values 

represent the error after the coding has taken place. 
The coding of a uniform distribution is shown in Table 22. We use a uniform 

distribution this time to make it easy to corroborate that the network is performing 

an efficient coding; note from Table 23 that w1 = (jxj) = (x) and w2 = (Ix - (x)I) 

etc.. 

5.4.3 Reconstruction Error 
v. 

There are 2 possible sources of reconstruction error: from the Principal Component 

Analysis and from the coding scheme in each PC direction. Each must be considered 
independently. 

Reconstruction Error from Coding 

We show that, if we use the codes produced by this method to reconstruct the orig- 
inal magnitude of the vector in each direction, we can make the expected absolute 

reconstruction error from a final code (sometimes called the mean quantization error) 

arbitrarily small by simply adding new coding interneurons. 
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Let us assume that we cannot i. e that there exists an e>0 such that all mean 

absolute reconstruction errors are greater than e. We note from the above that this 

is equivalent to showing that the value of w; >e for all i. 

Note that for a finite distribution, the maximum possible absolute error after the 
first coding is 

E'Mas = max(IXMax - 
(IxI)I, IXMin 

- 
(IxI)I, (Ix))) 

where xMax, XM; n is the largest (resp. smallest) possible member of the distribution. 

Thus EMay is finite. 

Consider a particular input x. From the results in the last section, because the 

system is creating the coding at z and subtracting the weighted coding at y, the value 

y(i) is simply the error between the code found by the first i coding interneurons and 
the input x after i codings have taken place. Therefore fly(i)j) is the mean absolute 

error after i codings of the input. Now, 

y(iý = y(i - 1) - w; z 

= y(i-1)-(ly(i-1)1)z: 

Ify(i-1)<0, z1=-land 

y(aý = y(i - 1) + (I y(i - 1)l) 

_ -ýy(i -1)I + (I y(i -1)1) ,.. 
while if y(i - 1) > 0, z; = +1 and 

yýiý = y(i - 1) - fly(i - 1)1) 

=I y(i - 1)1 - (I y(i -1)1) 
Therefore the amplitude of y(i) is the difference between the absolute value of y(i-1) 

and the mean absolute value of y(i-1). Thus 

Iy(i)l = I{I v(i - 1)1 - (I y(i - 1)1i}1 

= I{IO(i -1)I -will 
< IIy(i-1)1 -EI 
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since all terms are positive. Therefore the absolute error at each stage is decreasing 

by more than e. Therefore the mean absolute error is also decreasing by at least e at 

each stage. Now the initial maximum error is EMax which is finite and the absolute 

error is decreasing by a finite amount each time and so cannot remain above e for all 
time. 

Therefore, we can make the quantization error arbitrarily small by continuing the 

coding for a sufficient number of coding interneurons. 

Reconstruction Error from the PCA 

Since the expected error in the Principal Component representation of the data after 
having projected N-dimensional input data onto M PCs is given by 

N 

E= 
i=M+1 

(148) 

where a; is the iah eigenvalue in normal order, the error may be made arbitrarily small 
by increasing M. In particular, for full rank data, it may be necessary to have M=N. 

5.4.4 Topology Preservation -1 

In stating that we have a topology preserving coding, we mean that 

1. similar inputs should be projected onto similar outputs and 

2. similar outputs should be the representations of similar inputs. 

This is only approximately true, in general, of feature maps using neural nets e. g. 

a Kohonen (Kohonen, 1984) map attempts to project the input space onto a network 
in such a way that the most essential neighbourhood relationships between data in 

the input space are preserved. Yet input data can be constructed which do not permit 

a 2-D (or 3-D) mapping to adequately represent all topological equivalences in the 

data. We first give an intuitive notion of topology preservation here; a more formal 

proof is given in the next Section. 
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Consider an n-unit coding of a set of input values. Let a particular point x be 

represented by zi where zi = {z, 1, z; 2, ..., z;,, }. The subscript i denotes an ordering of 
the z values (i. e. of the coding) such that zi < zj for all i<j. 

Then any input x+ Ox is represented by the vector zi or by zi_1 or zj+j for 

all Ax such that j0xI < w,,, the nth weight. i. e. similar inputs are represented by 

similar outputs. 
Now consider two distinct input values, x and u, which are represented by the 

same zj. Then 

n 

_ 
Ew; zj, +Ax 
i=l 

n 

u= 1w; zj; +Au 
i=l 

where Ax and Du are the errors in the representations after the first n codings have 

taken place. Therefore, 

X-u = Ox-Au 

< 2wn 

From the previous section, we know that the value of w� can be made arbitrarily 

small and so a single code can be made to represent only similar values. Clearly a 

similar argument will show that if the values, x and u, are, represented by contiguous 

codes, the values x and u can only be at most 3w� apart. Thus similar codes represent 

similar values. 

5.4.5 Topology Preservation -2 
We will use the results from Section 5.4.3 in this proof: recall that for every c>0, 
there exists an n such that w� < e. 

Let M be the metric space defined by that (sub)set. of the real numbers defined by 

the probability distribution of the raw data. and the metric, d, defined by the usual 
Euclidean distance metric. 
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Let Mi be the metric space defined by the set of codes (of the real numbers in M) 

and the metric, dl, defined by the usual Euclidean distance metric (now calculating 
in binary). 

We do not prove that there is a topology-preserving function which maps M to a 

particular instance of M1; however, it is possible to prove that there exists a mapping 
from the set M to a member of the family {M1, M1, M13,... 

' M1, ... 
} where Mi is 

the coding which has length n (i. e. formed by using n coding interneurons). In 

other words, we can make our mapping as close to a topology preserving mapping as 

possible by chosing n appropriately. 
We shall create an ordering, {C; } of the codes in Mi based on the size of their 

binary values. Thus C; < C; for i<j. Note that for this coding on Mi , if 
f(x) is the 

function which codes the inputs i. e. f: M -' Mi, then (C; - C; 
_1) = w,,, the weight 

of the nth level of the coding. Note also that the greatest distance between values 

coded by the same code is also w,,. 

" First consider the mapping f: M --º Ml. 

Then take any point cEM. Vc > 0, we require to prove that 36 >0 such that 

di(f(c), f(x)) <c 

Vx E M: d(c, x) <6 1, - 

Choose the coding MI' such that w� < äe. Let S=w,,. Let f map c to class C;, 

the ith class of MI n. Then for all x such that d(c, x) <&=w,,, f(x) is either in 

class C; or in one of its neighbours C1_1 or C; +1. So f(x) is within 2w� of f(c) 

i. e. f (x) E (f (c) - e, f (c) + e), when d(x, c) < 2w,,. i. e. 

di(f (c), f (x)) <e when d(c, x) <6 

9 Now consider the mapping f: Ml -+ M. 

Then take any point C; E Ml . Given any e>0, we must prove that 

35>0: d(f(C; ), f(x))<e, VxCM: di(C;, x)<S 
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Choose n such that w� < 2e; this defines the actual representative of Mi as 
M. We chose 6 to be equal to 1. Then Vx E (C; - 5, C; + 6) is equivalent to 

E Ci-1 
i 

Ci or C, 1 

Now the maximum distance between the values which code to C; 
_1 or C; +1 and 

those which map to C; is 2w,. i. e. 2 times the remaining error after the nth 

coding. i. e. d(f (e), f (cl)) < 2w� <e for all x in the declared interval. 

Now any particular interneuron coding network is not truly topology preserving; 
however, it can be made arbitrarily close to such a network by increasing the length of 

the coding. Therefore any particular coding is performing an approximate topology- 

preserving mapping. 
We define an co-topology preserving network as an interneuron network in which 

for all points cEM, Ve > co, 25 >0: dl(f (c), f (x)) < e, Vx EM: d(c, x) <ö where 
f (z), f (c) are the binary codes. 

Note that this is equivalent to defining w� =ä eo . Then each network in the 

sequence of interneuron networks of increasing discrimination is an co-topology pre- 

serving network with the value of co defined as 2w� for the specific mapping Mi . 

5.5 A Hierarchical Feature Map 

We now propose the complete network shown in Figure 12 änd use it in implementing 

the ideas of the previous sections. The left half of the network is the basic interneuron 

network described in Section 5.3; the right half of the network is the interneuron 

coding network described in Section 5.4. The first section will extract the maximum 
information from the raw input data i. e. data will be projected onto those directions 

which contain maximum information; the second section will code the data along 

each dimension independently. 

All parts of the system use unsupervised learning. Our learning rule continues to 

be simple Hebbian learning with no weight decay or clipping of weights. 
Since the network is topology preserving in each direction, it is topology preserving 

in the space spanned by these directions. Therefore the construction can be viewed 
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Figure 12: The complete information extraction and coding network. The double 
headed arrow represents both the feedforward weights and the feedback weights 
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as forming a feature map which is topology preserving in the major information 

directions of the data. While it is possible to create continuous multi-dimensional 

maps which are topologically different from their projection onto this subspace, each 

such anomaly will tend to swing the principal components in the direction of the 

anomaly suggesting that such anomalies can at most be a minor part of the input 

data. Further, as will be shown, augmenting this type of feature map to take account 

of such features is a simple process. 
The inherently modular nature of the network (see Figure 12) allows us to consider 

the effects of augmenting the network as a purely local process. This modular nature 
is a direct consequence of the Principal Component Analysis performed by the first 

section which leads to orthogonal input vectors for the second section. 

5.5.1 An Example 

Kohonen and Ritter (Ritter and Kohonen, 1989) used the data shown in Table 24 to 

illustrate the emergence of a "semantic map" using a Kohonen feature map. They 

trained a Kohonen network to learn to associate the name of each animal with the 

attributes with which it might be associated. They then showed that by entering the 

name (and only the name) of the animal into the network, 

" different nodes responded maximally to different animals 

" the spatial organisation (on a 2-D grid) grouped similar animals together 

We have chosen to repeat this experiment with the interneuron network as it might 
be thought that organising such a set of data might be difficult for a statistics-based 

network such as the interneuron network. Figure 13 shows that the first 2 principal 

components are sufficient to make the major differentiation into animals and birds 

and within each group there is some differentiation into subgroups. However, the 

advantage of using the interneuron network as an encoding network is that further 

differentiation is possible by looking at other directions and the third principal com- 

ponent shows clearly the differentiation into subgroups taking place in this direction. 

This is equivalent to a semantic interpretation of data which allows us to be aware 
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dove ben duck goose owl hawk eagle fox dog wolf cat tiger lion home  ebra cow 
 mall 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 

medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 
!L 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

2 age 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
41egs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 
hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 

feathers 1 1 1 1 1 1 1 
- 

0 0 0 0 0 0 0 0 0 
hunt 0 0 0 0 1 r I 1 0 1 1 1 1 0 0 0 
run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 
BY 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 

swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

Table 24: Animal names and their attributes 

of similarities in attributes within a group while being aware of differences in other 

attributes between members of the same group. This is the feature which allows us 
to call the map a hierarchical feature map. 

Following Kohonen and Ritter, each animal was represented by a 29-bit vector, the 

first 16 bits of which were 0 except for the bit which identified the particular animal. 
The other bits were the animal's attributes as shown in Table 24. The output data 

were plotted in the obvious manner - each output vector was identified as a binary 

number (1/0) and converted to decimal to give the coordinates in each direction. 

While we do not believe that this is a good (or particularly useful) application of 

a data-driven network, we believe that this example highlights the hierarchical nature 

of the coding possible with an interneuron network. 

5.5.2 The Principal Component Analysis 

Another advantage of the proposed method is that to some extent, it allows us to 

look inside the results in order to investigate how the results came about. This is 

particularly interesting in examples such as the current one where the data have 

strong everyday connotations for us. 
Table 25 shows the first 3 Principal Components of the covariance matrix of the 

data of Table 24 as identified by the interneuron weights of the middle layer. It is 

easily verified that the vectors form an orthonormal basis of a3 dimensional subspace 

of the data. 

" The first Principal Component is most strongly identifying animal type features: 

animals tend to be big, have 4 legs and hair; some have hooves or a mane; 
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Figure 13: The results of the experiment displayed in graphical form 
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Attribute/class First PC Second PC Third PC 
dove 0.017 -0.071 0.054 
hen 0.013 -0.057 0.059 
duck 0.014 -0.062 0.083 

goose 0.018 -0.077 0.078 
owl 0.027 -0.077 -0.022 

hawk 0.027 -0.077 -0.022 
eagle 0.028 -0.060 -0.116 
fox 0.044 0.008 -0.155 
dog 0.044 0.021 -0.066 
wolf 0.061 0.020 -0.118 
cat 0.044 -0.009 -0.062 

tiger 0.057 0.021 -0.019 
lion 0.065 0.026 0.005 

horse 0.059 0.036 0.140 
zebra 0.059 0.036 0.140 
cow 0.041 0.024 0.102 

small 0.161 -0.431 0.166 
medium 0.177 -0.012 -0.457 

big 0.281 0.143 0.369 
2 legs 0.146 -0.482 0.113 
4 legs 0.474 0.183 -0.034 
hair 0.474 0.183 -0.034 

hooves 0.159 0.096 0.383 

mane 0.243 0.116 0.167 
feathers 0.146 -0.482 0.112 

hunt 0.354 -0.149 -0.512 
run 0.345 0.159 0.081 
fly 0.118 -0.364 -0.029 

swim 0.032 -0.139 0.161 

`, 
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Table 25: The first 3 Principal Components of the input data's covariance matrix. It 
is easily verified that they form an orthonormal basis of the 3 dimensional subspace 



CHAPTER 5. BIOLOGICAL ASYMMETRIES 126 

somewhat more hunt and run. 

" The second Principal Component completes the job: the birds all are repre- 

sented by a negative component as are the small, medium, 2 legs, feathers, 

hunt, fly and swim attributes. Also, it can be seen that the more prototypi- 

cal bird-like features have larger absolute values e. g. Iflyl > Iswiml since the 

prototypical bird is more likely to fly than swim. Note also that the cat has 

a small negative value brought about by its prototypical bird-like attribute of 

smallness. Thus, in the map (Figure 13), the cat appears closest to the birds in 

the direction of the second PC. 

" The Third Principal Component seems to be mainly differentiating the hunters 

from the non-hunters, though differentiation in size and between fliers and swim- 

mers is also taking place 

Note that the components defining e. g. horse and zebra are identical in all 3 directions 

as there is nothing in the input data provided which will allow us to discriminate 

between these groups. Similarly, the attributes "4 legs" and "hair" are identically 

represented as they are identically distributed in the information we have given. 

5.5.3 Augmenting a Map 

The desire to augment a map may be brought about by 2 circumstances: 

1. The map is too crude as too little information has been extracted from the 

original input data. 

To extract more information from the raw data, we must find a new Principal 

component along which to project the data. Therefore, we must create a new 
data extraction interneuron i. e. in the central layer of the network. Now, by 

adding our new interneuron at the end of the learning process described in 

Equations (139), (140) and (141), we are not disturbing the learning in any 

of the other directions which have already been found. Therefore the new 
direction can be found without disturbing the principal components already 
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found; therefore the existing codes are not disturbed and the coding of the new 
dimension can be done independently of the existing codes. 

2. The map is too crude as too little discrimination has taken place in a particular 
direction 

Note again that the modular nature of the map allows the discrimination in each 
direction to be modified independently of that in the other directions. Thus, 

in the coding within a particular direction, we may simply add a new coding 
interneuron into the network and, provided it learns after all the others have 

learned, it will simply learn to bisect the remaining information after the others 
have subtracted their activations. In other words, a new coding interneuron 

will simply provide increased discrimination within that direction and will affect 

neither the coding in other directions nor the existing coding in its direction. 

Experimental results have confirmed this analysis. 
Note that the potential for improving a map after it has been constructed is an 

improvement on the Kohonen map whose parameters must be specified in advance. 

5.5.4 Reparing a Damaged Map 

The situation described in this section is more complex than that in the last. Again 

2 possibilities must be considered: ý' `" 

1. Where damage has occurred in the coding layer. 

Here we consider what happens when a neuron is damaged, loses its learning (its 

weight assumes a small random number) yet still remains in the same physical 

position, with the same physical potential for learning. Experimental results 
have shown that even in the worst case, that of damaging the coding interneu- 

ron which extracts the greatest information (i. e. the first coding interneuron), 

relearning is very fast. The network has the advantage that, when it loses an 
interneuron, all of the weights which learn after the damaged interneuron's ac- 
tivities, increase in the order in which they are learning - there is no complex 
"dog-fight" which is sometimes seen in artificial neural networks. All of the 
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other interneurons whose weights had increased on a pro-rata basis gradually 
lose their gains to the recovering interneuron till the previously existing weight 

values are regained. If the new interneuron is deemed to be irrepairable, i. e. 
does not recover its ability to learn, the other interneurons simply step up their 

information coding capacities in order i. e. each weight increases until it is per- 
forming exactly the same discrimination that the weight above it was previously 

performing. 

2. Where damage has occurred in the information extraction layer 

This is potentially the most disruptive damage in the network: when 1 interneu- 

ron in the central layer is damaged, the interneurons after it in the learning 

sequence are able to take advantage of its incapacity to capture its previously 
held information. This will obviously have an effect on those coding interneu- 

rons which will have to readjust their weights in order to accommodate the new 
information-bearing capacity of the first layer interneurons. Each weight will 
tend to increase as it is now working for an interneuron which has captured 

a little more of the available information in the network. However, this is a 

minimal rearrangement: each coding neuron is most similar in weight to its 

equivalent coding neuron for the previous direction. All coding neurons will 

augment their weights in unison and no realignment of coding is necessary. 

All increases and decreases in weight values are done as though synchronised; 
there is never an example of the complex untwisting which we see in developing 

Kohonen nets. 

Again experimental results have confirmed this analysis. 
Note again that the interneuron map is an improvement on the Kohonen map in 

which the destruction of a single competitive neuron reduces that network's ability to 

respond appropriately to the region which was optimally represented by that neuron. 
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5.5.5 Summary 

We have described a novel robust topology-preserving neural network which seems 
to have significant advantages over current networks with equivalent properties. We 

must emphasise that both parts of the network are necessary: 

" Without the first section, the second section would merely divide up the in- 

formation as a whole. In other words, the amplitude of the message would 
determine the coding and no account would be taken of its content. 

" Without the second section, the first section would find those directions of 

maximum information but an observer would not know e. g. if an output of 1.0 

came from a direction with zero mean and variance 0.5 or mean 1 and variance 
10. The second section of the network is essential to calibrate the mapping. 

5.6 A Single Type of Neuron 

We have however increased the complexity of our network considerably in that we 

now have 2 different types of neuron in the network. In addition, it is well known 

that biological neurons are not accurately modelled by either simple linear summation 

neurons nor by neurons which have step functions as activation functions. Instead 

a degree of non-linearity of response has been found which is usually modelled by a 

sigmoidal function. 

Using tanh() (See Figure 14) as an activation function for the interneurons allows 

a unified model of the above two types of interneurons to be created: 

" tanh() is approximately linear in its middle section. We may adjust the range 
of middle section over which it is linear by using the parameter ). in z; = 
tanh(A Ejw; jyj). To get a large linear section requires a small value of A. 
Experimental results have confirmed that A=0.1 is sufficiently small to ap- 
proximate a linear function with which Principal Components can be found as 
before. 
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" tanh() may be made more dichotomous by adjusting the parameter, A, up- 

wards. A value of 0(10) is sufficient to create an interneuron which performs a 

smoothed coding of the input data (but see below). The larger the value of A, 

the more step-like the function becomes. 

Therefore a single type of interneuron with different A parameters can perform 
both the information extraction and the information coding described above. Both 

sets of interneurons will have an activation function, tanh(A Ej w;; yj). The sole dif- 

ference is that interneurons in the first layer have the parameter ). = 0.1, while those 

in the second have the parameter A= 10. The first value is, of course, dependent 

on the distribution of the input data and is based on distributions with single figure 

standard deviation and mean; the second depends on the amount of discrimination 

(length of the code) required. 
Using such an activation function with the information extracting interneurons 

has several implications: 

1. The output values, z, at these interneurons are all in the range (-1,1) 
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2. Thus the weights in the first part of the network will grow much larger than 

previously 

3. The learning rate in this network can be made much larger than before as the 

z values are constrained to this small range. Previous networks used a learning 

ritte of 0(0.0001); with a tanh() activation function a learning rate of 0(0.1) is 

possible. 

However, there is a drawback to the use of this activation function in the coding layer: 

with the values stated, codes for the first 3 coding interneurons in each direction 

agree with those found with the step function network. However, for the later coding 
interneurons a lack of discrimination develops leading to very imprecise codes. By the 

6tß` coding interneuron, we have lost all claim to have a topology-preserving network. 
To show that this cannot be wholly explained by the foreshortening of the outputs 

from the first section of the network to the range (-1,1), we have used the same data 

which produced the coding shown in Table 22 and multiplied the outputs of the first 

section by 10 to put them in the same approximate range as before. The activation 

values of the sixth digit (i. e sixth coding interneuron) are shown in Figure 15. Clearly 

" the code cannot be called topology preserving in the neighbourhood of the 

changes from 1 to -1. 

" the number of differentiated codes is much smaller than it should be 

This effect can be ameliorated by increasing the value of A from 10 to 100. The results 

of this can be seen in Figure 16. Clearly, however, using this activation function means 
that we have lost the ability to subclass at will almost infinitely often. Whether this 
is important in a biological context must still be investigated. 

5.7 Conclusion 

We have in this Chapter introduced asymmetry into our interneuron network in 2 

physically realistic ways: by considering the fact that weights cannot change from 
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Figure 15: The coding produced by the sixth coding interneuron on 10*the output of 
the first principal component when both are using tank(). A= 10. 
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Figure 16: The coding produced by the sixth coding interneuron on 10* the output 
of the first principal component when both are using tanh(). A= 100. 
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positive to negative during the learning process and by considering the physical dis- 

tance between neurons and allowing activation transfer to be a linear function of this 

distance. Both were then shown to allow the network to perform an actual Principal 

Component Analysis on the input data. 

We then for the first time introduced a non-linear feature into the network and 
developed a new method of creating a topology-preserving feature map composed of a 
2 stage process involving projection of the input data onto the directions of maximum 
information followed by a discrimination process within each direction. 

The simple interneuron network performs the projection while the interneuron 

coding network performs the discrimination. Both use only simple Hebbian learning 

with no normalisation, weight decay or clipping of weights. 
An attempt to produce a biologically feasible unification of the two types of in- 

terneurons was partially successful in that a single type of interneuron with different 

values of a parameter in its activation function has been shown to be capable of per- 
forming both tasks necessary to produce the feature map; the single addition of an 

activation function tanh(. )x) allowed us to dispense with the threshold in the coding 
interneurons. This network requires parameter tuning if it is to perform more than a 

crude discrimination in each direction. 

The success of our first non-linearity suggests that this may be an interesting line 

of further research. We will see that this is indeed the case in the next Chapter. 



Chapter 6 

Non-linear Structure Extraction 

6.1 Introduction 

Cross-fertilisation between the fields of artificial neural networks and statistics has 

recently proved fruitful. In unsupervised learning, the realisation that simple neu- 

ral network architectures are capable of performing classical statistical analysis has 

allowed insight into the operation of simple Hebbian neural networks and allowed 
the results of neural networks to be related to human psychophysical performance. 
Principal Component networks have been the major outcomes of this research. Here 

we use the same neural network architecture as in previous Chapters and show that 

it has other important statistical properties. 
Principal Component Analysis(PCA) has proved to be a powerful tool for the 

investigation and analysis of large data sets. However, some structure in data sets is 

not identifiable by means of the linear associations (correlations) among the variables; 

such effects as clustering or definition of edges of data-sets are easily identified using 
the human eye on low dimension projections of data but are not achievable by using 

the tools of classical multivariate analysis. For example, Figure 17 shows two elipsoids 

representing the shapes of two data clusters characterised by features Xl and X2; the 

first Principal Component is along the direction Xl, yet the structure in the data - 
the two clusters - is not visible in the projection onto this direction. This problem 
increases in severity as the dimensionality of the data increases. The success of PCA 

135 
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Figure 17: The two elipsoids indicate the shapes of the clusters of data points char- 
acterised by two features, Xl and X2. The clusters are clearly visible to the human 
eye, yet are completely hidden when projected onto the first Principal Component 
direction, X1. 

has, in part, been because those directions which contain rr., st of the variance in a 
data set will tend to contain most of the structure in the data set. However, this 

relationship is not logically necessary. 
Exploratory Projection Pursuit (EPP)1 defines a recent form of exploratory data 

analysis methods which attempt to find "interesting" directions in high dimensional 

data (for reviews see (Huber, 1985; Jones and Sibson, 1987)). We introduce a non- 
linearity to our PCA network and show that it is capable of performing an EPP. 

6.2 Exploratory Projection Pursuit 

The group of methods based on Projection Pursuit is based on one central idea: 

rather than solving the difficult problem of identifying structure in high dimensional 

data, project the data onto a low dimensional subspace and look for structure in the 

projection. However not all projections will reveal the data's structure equally well. 
Therefore we define an index that measures how "interesting" a given projection is, 

'Some of this work has already appeared in (Fyfe and Baddeley, 1994) and will appear in (Fyfe 
and Baddeley, ). 
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and then represent the data in terms of the projections that maximise the index and 

are therefore maximally "interesting". We will initially restrict our attention to one 
dimensional subspaces i. e. we will identify an index for each line in the space and 

attempt to maximise the index in order to make projections of the raw data onto the 

line as interesting as possible. 
Clearly the choice of index is the crucial factor in Projection Pursuit, and the 

index is specified by our desire to identify interesting directions. Therefore we must 
define what we mean by "interesting directions". 

6.2.1 Interesting Directions 

Friedman (Friedman, 1987) notes that what constitutes an interesting direction is 

more difficult to define than what constitutes an uninteresting direction. The idea 

of "interestingness" is usually defined in relation to the oft-quoted observation of 
Diaconis and Freedman((Diaconis and Freedman, 1984)) that most projections of 
high-dimensional data onto arbitrary lines through most multi-dimensional data give 

almost Gaussian distributions. This would suggest that if we wish to identify "inter- 

esting" features in data, we should look for those directions a, projections onto which 

are as non-Gaussian as possible. Thus, we will look for an I(a) , an index function 

of the direction a, which is maximum when the projection of the distribution onto a 
is furthest from Gaussian. 

Two common measures of deviation from a Gaussian distribution are based on 
the higher order moments of the distribution (see Figure 18 ). Skewness is based 

on the normalised third moment of the distribution and basically measures if the 

distribution is symmetrical. Kurtosis is based on the normalised fourth moment of 
the distribution and measures the heaviness of the tails of a distribution. A bimodal 

distribution will often also have a negative kurtosis and therefore kurtosis can signal 

that a particular distribution shows evidence of clustering. Whilst these measures 
have there drawbacks as measures of deviation from normality (particularly their 

sensitivity to outliers), their simplicity makes them ideal for explanatory purposes. 

In passing, we note that if we know what type of interesting structure we expect 
to find in the data set, instead of moving away from the uninteresting Gaussian 
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Figure 18: Deviations from Gaussian distributions: the dotted line on the left rep- 
resents a negatively skewed distribution; that on the right represents a positively 
kurtotic distribution; in each case, the solid line represents a Gaussian distribution 

distribution, we could move towards the interesting direction. 

6.3 The Data and Sphering 

Because a Gaussian distribution with mean a and variance x is no more or less inter- 

esting than a Gaussian distribution with mean b and variance y- indeed this second 

order structure can obscure higher order and more interesting structure - we remove 

such information from the data. This is known as "sphering". That is, the raw data 

is translated till it has mean 0, projected onto the principal component directions 

and multiplied by the inverse of the square root of its eigenvalue to give data in all 
directions which has mean zero and is of unit variance. We mäy think of this as mov- 
ing the data along each axis till it is centred over the origin and then compressing 

or expanding each direction till it has the same spread. This removes all potential 
differences due to first and second order statistics from the data. To do this, the 

eigenvalue-eigenvector decomposition of the covariance matrix' is performed. i. e. for 

input data X, we find the covariance matrix 

E=«X -(Xl)(X -(X))T) = UDUT (149) 

where U is the eigenvector matrix and D is the diagonal matrix of eigenvalues and 
the T denotes the transpose of the matrix. New samples drawn from the distribution 

2In practise, we make no distinction between statistics generated by samples from the distribution 

and those of the distribution itself 
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Figure 19: A block diagram of the Exploratory Projection Pursuit operation 
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Figure 20: The negative feedback network. Activation transfer is as before except that 
now a non-linear function of the interneuron activations is calculated and the weights 
are adjusted through simple Hebbian learning 

are then transformed to the principal component axes to give variables y where 

1n 
y, = E U+i(X: - (Xi)), for l<i<m 

Di i=1 
(150) 

where n is the dimensionality of the input data and m (< n) is the dimensionality of 
the sphered data. Typically m«n and so this operation makes high-dimensional 
data more manageable. It is important to note that any linear combinations of the 

y-values also retains these properties of the mean and variance e. g. see (Mardia 

et al., 1979), Corollary 3.2.1.3. This is the data in which we wish to find interesting 
directions. 

A block diagram of the operation is shown in Figure 19. 

6.4 The Projection Pursuit Network 

Figure 20 shows the network which we will use to perform Exploratory Projection 
Pursuit: as in previous Chapters, (the sphered) data is fedforward from the input 
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neurons (the x-values) to the output neurons (the interneurons). Here a linear sum- 

mation is calculated to give the activation of the output neurons and this activation 
is fed back to and subtracted from the input neurons. A function of the output ac- 
tivations is calculated and used in the simple Hebbian learning procedure. We have 

for N dimensional input data and M output neurons 
N 

Si _Ew; ixi(t) (151) 
j=1 

M 

xi(t + 1) <-- xj(t) -E Wk; sk (152) 
k=1 

N 

Ti = f(Ew+. ixi(t)) = f(si) (153) 
3=1 

Lwi; = iitr: x3(t + 1) (154) 
NMN 

= 'Itf (> Wckxk(t)){x, (t) -E wt; F wtpxp(t)} (155) 
k=1 1=1 p=1 

where r; is the value of the function f() on the ith output neuron and ; j(t) is the jth 

input at time t. Thus (155) may be written in matrix form as 

AW (t) = n(t)[I - w(t)WT(t)]X (t)f (XT (t)W (t)) (156) 

where t is an index of time and I is the identity matrix. 
The set of network rules described above is a generalisation-of those for the in- 

terneuron network which performs PCA. For this reason we feel able to link the 
Exploratory Projection Pursuit network to current work on Non-linear PCA. 

6.4.1 Non-linear PCA 

Recently, the topic of "non-linear PCA" has been receiving a great deal of attention 
from the neural net community e. g. (Shapiro and Prugel-Bennett, 1992; DeMers 

and Cottrell, 1993; Oja et al., 1991; Karhunen and Joutsensalo, 1993b; Karhunen 

and Joutsensalo, 1993a; Oja and Karhunen, 1993; Karhunen and Joutsensalo, 1994; 

Karhunen and Joutsensalo, 1992). The impetus for such a development is the recog- 

nition that neural networks are ideally suited to non-linear adaption because of their 
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incremental methods of learning: while closed form solutions may exist for linear pro- 

cesses such as PCA, such methods are simply not possible for non-linear algorithms. 
Following (Karhunen and Joutsensalo, 1994), we can derive (156) as an approxima- 

tion to the maximisation of a function, J, of the weights J(W) _ Et (g[xTww; ). 

We must ensure that the optimal solution is kept bounded; otherwise there is 

nothing to stop the weights from growing without bound. Formally, 

Let J(W) = 1: (9[XT w+] Iwi) +11: E Aii[WT Wj -a] (157) 
i=l j=l 

where the last term enforces the constraints wTw3 = a; j using the Lagrange multipli- 

ers . Xij. As usual, we differentiate this equation with respect to the weights and with 

respect to the Lagrange multipliers. This yields respectively, at a stationary point, 

aJ(W) 
= (xgI(XTW)IW) + WA =0 and 

WTW =A 

(158) 

(159) 

where g'(xTW) is the elementwise derivative of g(xTW) with respect to W, A 

is the matrix of parameters a; 3 (often the identity matrix) and A is the matrix of 
Lagrange multipliers. Equations (158) and (159) define the optimal points of the 

process. Pre-multiplying (158) by WT and inserting (159), we get 

A= -A-'W 
T(X9l(XTW)IW) 

2, .. 

and using this value and reinserting this optimal value of A into (158) yields the 

equation, 

OJ(W) 
_ [I - WA'1WT](xg'(xTW)JW) 

ow (160) 

We wish to use an instantaneous version of this in the gradient ascent algorithm 

ow « 
ai(w) 

aw 
to yield 

AW = µ[i - WA-1WT]xgl(XTW) (161) 
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We will be interested in the special case where the W values form an orthonormal 
basis of the data space and so A=I, the identity matrix. Therefore, we can equate 
(161) with (156). 

Karhunen and Joutsensalo point out that the algorithm is approximative since the 

expression for A is derived from the optimum solution and used from the beginning of 

the algorithm. As we shall see in Section 6.4.4, the implications of the approximation 

are profound: to be used in a gradient ascent algorithm, aay must be continuous and 

with positive slope in the iteration intervals. We shall see that these constraints can 

only be justified, in general, on the set of points where the second constraint in (157) 

is satisfied a priori. 

6.4.2 The Projection Pursuit Indices 

Now for projection pursuit, we wish to maximise a specific index. But note that 

from the derivation in the last section, when we wish to maximise an index function 

we must use its derivative in the learning algorithm: the function f() in (155) is 

equivalent to the function g'() in (161). Thus to maximise a projection pursuit index 

e. g. for skewness, we could use a learning process like that described in (161) noting 

that to maximise the skewness index we must use the derivative of the index in the 

learning process. 
Firstly, notice that from (151), we have s= xTW; hence,, g(s) = g(xTW) and 

d= x1'. But since changes to the parameters of the system are made during a 

single presentation of x, we may take -dI oc d during that particular presentation. 
We wish to emphasise the properties of the negative feedback network rather than 

those of specific indices. Thus we choose to report on the network's development in 

relation to the simplest possible indices. The indices which we investigate in this 

section are either directly based on the higher moments of the input data or are 
functions of them (see Figure 18): 

" To measure skewness in a Normal distribution, N(µ, a) we use 

9(s) _ 
((s _ 11)3) 

Q3 
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where s is a random variable drawn from the distribution with mean µ and 

standard deviation a. Now our data-distributions have all been sphered i. e. 
(x) = 0; ((x - (x))2) =1 and our weights, w; are normalised and therefore 

every direction s; has the same first and second moments. Thus g(s) = s3 is a 

measure of the skewness of the distribution. Thus in the algorithm, (156) we 

use 

f(s)=k*ss« 
sd 

ss 

Now in all Normal directions, this measure will be zero but in a direction with 

a skewed distribution, there will be a non-zero skew value. 

" Similarly, kurtosis3 is measured by 

9(s) _ 
((s - µ)4) 

a4 

Therefore as above, to measure a kurtotic deviation, we could use 

*s 
3oä14 

" We can also use functions (see Section 6.5.4 whose. expansions are dominated 

by either odd or even powers of s to measure kurtosis or skewness respectively. 

The first 2 are the simplest possible measures of departure from Normality yet are 
generally not used because of their susceptibility to outliers. For this reason, we have 

experimented with the third set of measures. We will use the naive sample-based 
versions of the measures making no adjustments for any potential differences between 

sample and distribution moments (see e. g. (Mardia et al., 1979) for a discussion of 

such differences). We further treat each test as measuring only one facet although 

we are aware that tests for skewness and kurtosis are distributionally dependent (see 

e. g. the discussion in (Horswell and Looney, 1992)). 

3Typically, 3 is subtracted from this measure in order to make the kurtosis of a truly Normal 
distribution 0. However, in the experiments reported herein, we have simply used the stated measure 

rI 
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Traditional statistical methods require a computationally-intensive recalculation 

of the distribution's moments from a reasonable sample of data points from the dis- 

tribution each time a measure must be recalculated. However, it will be shown that 

a Hebbian learning rule for neural networks based on a measure of the instantaneous 

moments does in fact find that direction of maximum interest in the sense of Section 

6.2.1. 

6.4.3 Principal Component Analysis 

The negative feedback network introduced here is identical to that used previously 

as a Principal Component network. The transfer of activation is exactly the same 

as described in this Chapter however there was previously no non-linear activation 
function at the output neurons. This is equivalent to a network with f (x) = x, the 

identity transformation. Now since f is the derivative of the function we wish to 

maximise, we can see that the PCA network is maximising the second moment of the 

distribution i. e. as we know, PCA is finding that direction . pith greatest variance. 
In fact, in the simulations described below, we use the above network twice - the 

first time to project the data onto the eigenvectors corresponding to the Principal 

Components and the second time to carry out Exploratory Projection Pursuit. 

The fact that the same network structure is capable of performing a PCA as 

well as EPP is unsurprising since Huber (Huber, 1985) has shown that PCA may be 

viewed as a particular case of Projection Puruit. Thus, for the PCA network, we are 

choosing f (x) =x oc (x2) and so the original network is seen to be maximising the 

second order statistics of the distribution i. e. finding the eigenvectors corresponding 
to maximal eigenvalues. 

This suggests that Oja's Subspace Algorithm can be derived in terms of a gradient 

ascent procedure. However, recall from Chapter 3 that Baldi and Hornik (Baldi and 
Hornik, 1988) have shown that this algorithm is not derivable from such a procedure. 
The reason for this apparent contradiction is found in the approximation assumptions 

used in the derivation of the algorithm and will be discussed in the next section. 
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6.4.4 Convergence of the Algorithm 

The derivation of the algorithm was based on gradient ascent using (157). Therefore, 

this equation must define a function of W which is twice differentiable with respect 

to W and whose second derivative is monotonic. 
Consider first the convergence of the algorithm on the set of points restricted to 

the surface 11wil = c, where 11.11 denotes the Euclidean norm and c is a constant. On 

this set, the second term of the equation, ä EMl E1a; j[wTwi -b j], is a constant 

and we may then return to the original maximisation, which we will denote 1'(W) = 
> Ml ((g[xT w; ] jw; )) on this set. Note first that each of the functions used in this 

Chapter is twice differentiable. 

Used as an instantaneous algorithm, we have, for the presentation of a single 

pattern x 

" For kurtosis, J'(W) =E i(xTw; )4. Then äw = 12(w;. x)2x! > 0. Thus 

the function f (s) = ks3, k>0 will converge to that direction with maximum 
kurtosis when the convergence takes place on the set of all points which satisfy 
11wIl = c. Similarly the function, f (s) = ks3, k<0 will always cause conver- 

gence to those directions with minimum kurtosis. Therefore to test kurtosis in 

a situation where the form of the data is unknown, we can (in parallel) test for 

both positive and negative kurtotic distributions e. g. with f (s) = kls3, kl >0 

and f (s) = k2s3, k2 < 0. `: ` 

" For skewness, Y(W) =E 1(xTw; )3. Now äw = 6(w;. x)z!. Thus if OW oc 
6 6ýjy 

, we have a gradient ascent rule if ((w;. x)) is greater than 0 i. e. we 

will ascend till we converge to the direction with greatest positive skewness. If 

((w;. x)) is less than 0, we will descend till we converge to the direction with 

most negative skewness. Thus one function can be used to test for both positive 

and negative skewness. It is important to recall that this is an exploratory data 

investigation tool: we do not care if the structure has positive or negative 

skewness - only that it is deviating from a Gaussian distribution. 

However, this does leave open the possibility that there exists a stage in the 
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convergence when skewness in two directions reaches a stable point of conver- 
gence which is a mixture of two optimal states, though we have never seen this 

situation experimentally. 

Therefore the algorithm may be viewed as gradient ascent on the hypersphere 

satisfying 11wil = c. Now we must consider the convergence of the algorithm in 

general; consider (158) with respect to a particular vector of weights into output 

neuron, i, for a function g(s) = sk. Then we have 

aJ 
= kx(w;. x)"`-1 + Wa; (162) 

aw; 
a'J 

= k(k -1)Diag{xxT }(w;. x)lc-2 + as; I (163) 
aw; 

where Diag{. } is an operator which sets all off-diagonal entries to 0 and Ai is the 

vector of Lagrange coefficients for the direction wi. Now since the data is sphered, 

< (x! ) >= 1. Thus we only have a positive gradient in those directions, w;, which 

satisfy 

(wt x)k-2 > -a;; (164) 
k(k - 1) 

Recalling that a; j determines the relative weight accorded to the function J' and the 

constraint [wTw, = 6q] and we can see that the use of the final converged value of 
Ail in the converging algorithm causes a more serious problem than merely being an 

approximation. The algorithm is not guaranteed to converge, . 

. 
In practice, this has not been found to be a problem. One possible heuristic would 

be to start the weights normalised and then converge across the surface. However 

there is the possibility that the convergence process will be slower using this. Empir- 

ically, little difference has been found between starting with small (near 0) random 

weights and starting with normalised vectors. 

6.5 Simulations and Results 

The neural network shown in Figure 20 was set up with 10 inputs, 10 interneurons 

and (initially) 1 output neuron. Input data was drawn from 9 independent zero- 

mean Gaussians while in the tenth direction data was also drawn from a Gaussian 

i 7 
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distribution but was modified in some way to make it interesting. 

The modifications were designed to be simple yet ensure that there existed dif- 

ferences in the high order statistics between this interesting direction and all other 
directions. Therefore 

1. To create a skewed distribution, we multiplied e. g. all values less than the mean 

of the distribution in this direction by a positive constant, generally in the range 
0.8 to 1.2. 

2. To create a distribution showing positive kurtosis (leptokurtic data) which ap- 

pears as a value greater than the Normal distribution's value of 3 in our tables, 

we randomly selected samples (typically 20% of the total available) and substi- 
tuted small random numbers in the range -0.25 to 0.25. This gives a narrowly 

peaked distribution. 

3. To create a distribution showing negative kurtosis (platykurtic data) which is 

quantified as values under 3 in our tables, we randomly divided all the samples 

of the distribution into two disjoint sets and added a constant value to all 

samples in one set and subtracted the same value from all samples in the other 

set. This "twin-peaked" distribution has a negative kurtosis since it has distinct 

shoulders. 

6.5.1 One Interesting Direction 
ý, 

As an example of using the generalised interneuron network, we show the results of 

a simulation in Figure 22. The Gaussian distribution in one direction was amended 
in order to create a distribution which was sharply peaked (see Figure 21) i. e. had a 

positive kurtosis. This distribution is generally one of the most difficult to find as it 

is only visible in one very tightly defined direction. The results of using the Kurtosis 

Index, f (S) = s3, are shown in Figure 22. 

Statistics from the data to which this network is responding is shown in Table 

26. Note that since the data is first sphered, it is not possible to base differential 

learning on first or second order statistics which are respectively 0 and 1 in each 
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View of Converged Direction (Kurtosis Index on Leptokurtic data) 
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Figure 21: The input data were projected onto the direction in which the net con- 
verged. The distribution is scaled from 0 to 50. Thus the view here shows the 
distribution as it would be seen by an observer looking at the projection of the data 
in the "interesting" direction 
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Convergence using Kurtosis Index on Kurtotic Data 
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Figure 22: The convergence trajectory of the weights to the "interesting" (highly- 

peaked) direction. The vertical axis shows the cosine of the angle between the current 
direction and the optimal direction. 
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Direction Mean Variance Cube Fourth Power 
1 0.000 1.015 0.055 3.082 
2 -0.019 0.968 -0.045 2.761 
3 0.007 0.987 0.015 2.890 
4 0.004 0.981 0.024 2.893 
5 -0.006 0.990 -0.022 2.949 
6 -0.006 0.998 -0.017 3.016 
7 -0.017 1.017 -0.037 3.103 
8 0.011 0.992 0.058 2.889 
9 -0.013 1.023 -0.087 4.001 
10 -0.010 0.988 -0.000 2.960 

Table 26: Statistics of the first set of 10-dimensional data: only one direction(9) has 
been modified to create a positively kurtotic distribution. Note that the sphering has 
produced a zero mean, variance 1 distribution in every direction 

direction. It is our finding that the sphering must be reasonably accurate otherwise 
the learning process responds to the low order statistics -a finding consistent with 
the statistics literature though not mentioned in neural network implementations of 

projection pursuit. 

6.5.2 More Than One Interesting Direction 

Since the projection pursuit method is designed to find interesting directions worthy 

of human investigation and since humans can visually investigate functions over a 

plane, we are often interested in finding 2 independent directions in a data set which 

contain interest. We first consider the situation when each interesting direction has 

the same type of interest. Experiments have shown that, in such situations, the 

network usually finds one direction more interesting than the others; the weights 

will converge to that direction on which the projection of the data has the largest 

deviation from the statistics of a normal distribution, e. g. when the kurtosis index 

is 3.67 in direction 4 and 3.66 in direction 7, the kurtosis index function invariably 

causes convergence to direction 4. 

. 
However, it may be appropriate to find all interesting directions. This situation 
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Direction Mean Variance Cube Fourth Power 
1 -0.000 1.011 -0.007 3.025 
2 0.009 0.995 0.005 2.965 
3 0.012 1.012 0.024 3.126 
4 0.018 0.978 0.079 2.874 
5 0.007 1.014 0.035 3.813 
6 -0.015 0.963 -0.054 2.715 
7 0.002 0.974 0.059 2.751 
8 -0.017 0.990 0.012 2.830 
9 0.017 0.961 -0.263 2.965 
10 0.009 1.003 0.047 2.982 

Table 27: Statistics of the distribution showing that direction 5 is interesting because 

of its 4th moment while direction 9 is interesting because of its 3rd moment 
, 

sometimes (Friedman, 1987) is dealt with by "structure removal" using a transforma- 

tion of the intersting direction to create a Normal distribution in that direction. This 

method has the disadvantage that such transformations may affect the Normality of 

other solution projections. However we note that the learning process used here not 

only finds but removes the interesting directions i. e. the residuals at x consist of 
the original data minus the projections onto the learned interesting directions. Thus 

we suggest running the network till one interesting direction is found; then set these 

weights and restart learning with a new output neuron. This has been found to be 

very effective. 

6.5.3 Differing Types of Interesting Directions 

When the data contains directions which are interesting in different ways, we can 
investigate the data in different ways simultaneously. We can for example construct a 

network as before but with M output neurons each of which is searching for different 

characteristics in the sphered input data. 

For example, we repeat the above experiment but now we change the data so that 

we have one direction which is positively kurtotic and one direction which is negatively 

skewed. The statistics of this data are shown in Table 27 and the convergence of the 

appropriate directions are shown in Figure 23 
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Convergence of Weights to 2 Interesting Directions 
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Figure 23: Convergence of the weights into the neurons using the indices for Positive 
Kurtosis and Negative Skewness to the appropriate direction 
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These results are from a network created with 4 output neurons all of which 

converged to one or other of the interesting directions. So our final algorithm is: 

1. Sphere the input data 

2. Create a set of output neurons with M different indices and train this network. 
For example, for the indices we have so far considered we may simply have 2 

output neurons which use skew and kurtosis indices respectively. 

3. Visually examine (either individually, as lines, or in pairs, as planes) the direc- 

tions found in order to identify humanly interesting directions 

4. Remove those neurons whose weights have not converged to interesting direc- 

tions 

5. Repeat Sections 3-5 training the new neurons on the residuals after all current 

neurons have removed their projections. 

6.5.4 Using Hyperbolic Functions 

As an example of using hyperbolic functions we perform an experiment similar to the 

last one but report the convergence of 

"f (s) = tanh(s). Since f (s) = tanh(s) has an expansion. of`. -3+ 15 - ... , it 

is an odd function. It can then be used to measure the kurtotic deviation from 

the normal distribution. In detail, using tanh(s) as the learning function, f, in 

(156) maximises the integral of that function; thus, using f (s) = tanh(s) in the 

stochastic algorithm maximises 

(( %tanh(s)ds)) 
_ ((%(3 - 

33 
+ 

235 
- ... )ds)) (165) 

JJ3 15 
34 2s6 

((2 
12 

+ 
90 - ... 

» (166) 

_ ((2 . 92)) 
- ((. 94 )) +((2 

0 
)} - ... (167) 

= K-((12))+((90)) -... (168) 
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since s is a linear combination of sphered data. 

Now for small s, the most important parts of the series is the first few terms 

and that subsequent terms alternate between reinforcing the effect of the second 
term (being negative) and detracting from its effect. is > sö in the interval 

(-1.93,1.93) which contains almost exactly 95% of the sphered data in Normal 

directions. This proportion will be slightly different for a non-normal direction 

but the major conclusion must be that for the overwhelming majority of the 
data points the driving force of the learning is the cubed term in the expansion 

of tanh(s). Therefore if we use tanh(s) in our algorithm, we are minimising s4 
i. e. finding directions with least kurtosis. 

We used this index to force the weights to converge to direction 4 whose statistics 

are shown in Table 28. A view of the projection of a sample of the distribution 

onto the direction found using this index is shown in Figure 25. 

" Similarly we can use f (s) = sech2(s) which is the derivative of tanh(s) and is 

an even function, to find deviations in skewness from the normal distribution. 

The weights using this index converge to direction 7 in Table 28. A view of the 

projection of a sample of the distribution onto the direction found using this 

index is shown in Figure 24. 

We emphasise that these 2 directions were found in parallel. In, fact, not only does the 

convergence of the two indices not interfere with each other, the convergence of each 

may actually help the other if we use as input data for the second output neuron the 

residuals at x after the first neuron has subtracted its projection. This has the effect 

of decreasing the dimension of the space of input data in which the second neuron 

must search for interesting directions. Note also that these are by no means the only 
functions which can be used. For example, tan-1(s) can also be used for searching 
for kurtotic distributions as its expansion is also odd. 
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Direction Mean Variance Cube Fourth Power 
1 0.003 0.997 0.042 2.999 
2 -0.009 1.012 -0.068 3.137 
3 -0.004 0.993 0.026 2.990 

-0.003 1.007 -0.019 1.732 
5 0.018 0.991 0.098 3.020 
6 -0.000 0.971 -0.004 2.761 
7 -0.005 0.985 0.222 3.053 
8 -0.000 0.999 -0.021 2.954 
9 0.010 1.000 0.075 2.988 
10 0.002 0.988 -0.005 2.902 

Table 28: Statistics of the sphered data on which the hyperbolic indices were opti- 
mised 
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Figure 24: Projection of data onto the interesting direction found using the sech- 
index. The direction is skewed 
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Figure 25: Projection of data onto the interesting direction found using the tanh- 
index. The direction is interesting because of its kurtosis 
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6.6 Other Indices 

With the method and network for Projection Pursuit now established, we can in- 

vestigate other possible indices. We will investigate indices based on Information 

Theory and two specific indices: Friedman's Index and Intrator's Index. These have 

aroused a great deal of interest in their respective communities and are thought to 
be substantially the best currently on offer (though we must add the caveat that 

such assessments are usually made with respect to specific data sets). The most 
frequently referenced indices from the statistics community are those from Friedman 

(Friedman, 1987) and Hall (Hall, 1989). Both indices use polynomial approximations 
to analytically-deduced indices of interestingness; such polynomials are usually in- 

troduced for reasons of computational efficiency. We chose to investigate Friedman's 

rather than Hall's as the former index is thought to be more generally effective than 

the latter (e. g. see (Sun, 1993) for a recent comparison). 
In the neural network community, the series of articles written by Intrator(e. g. 

(Intrator, 1992; Intrator, 1993b; Intrator and Cooper, 1992)) stand virtually unchal- 
lenged as implementations of the Projection Pursuit methodologies. Other articles 
(e. g. (Hinton and Nowlan, 1990)) do not specifically mention Projection Pursuit 

though often appearing to use a PP methodology. An interesting implementation of 
PP methodologies using radial basis function nets is given in (Zhao, 1992). 

6.6.1 Indices based on Information Theory 

As noted by Marriot(in Discussion of (Jones and Sibson, 1987)), "a moment crite- 

rion, or any criterion dominated by third and fourth cumulants, will miss clustered 

projections that happen to be roughly symmetrical and nearly mesokurtic"; this has 

lead to a search of alternative measures of non-normality. 
Entropy measures suggest themselves as a means of measuring the divergence of 

the distribution from Normality; however using such measures requires having the 

neuron retain a memory of previous inputs in order to calculate a relative frequency 

approximation to the entropy. 
Nevertheless, it does suggest using in (155) the measure AS) log O(s), where 
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«(s) is the probability that it would have received input s had s come from a Normal 

distribution. This is equivalent to maximising 

lo9o(s)ds) J log{ex 
2 
}ds) 

Q 2x p -(2Q µ) 

a 
= (-flog 

1 
ds -{- 

ls µ) ds) 
v 2; r J 20 

s 
_-f log 

1 

N/2 -7r 
ds +f2s ds 

= s(k232 - kl) where k1, kaare constants (169) 

since the data has been sphered. It is clear that this index is maximising a function of 
two components with the second acting as a non-central pivot about which the other is 

maximised. Since the dominant term is s3 the function finds skew directions; however 

the extra pivoting power around ki permits convergence to twin-peaked (negatively 

kurtotic) directions also. 
It is of interest also, in this case to investigate the properties of äW which are 

information theory based. 

Thus when we use the measure f (s) log «(s), the expected value of the 

function used in the learning rule is 

8w 
Nf 

(sn) ,.. = Ný 
M 

E P(sm)f (sm) 

m=1 
M 

__r P(sm)1og cb(Sm) 

M=I 

where the data has been binned into M boxes and the mean value of s in the mth 
box is sm. p(sm) is the relative frequency of the sample in box m and is taken as an 

estimate of the probability of having an input s in box m. Now 

M 
D=- P(sm) log ý(sm) 
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_> P(s,,, ) log P(sm) 
_E P(S,,, ) log P(sm ) 

m=1 
O( ) 

m=1 

= D(P(s)Iý«(s)) + Hp (170) 

where D(allb) is the relative entropy between the distributions a and b and H. is 

the Shannon Entropy of the distibution a. Note that since we are using a discrete 

(binned) version of p(x), we may assume that H. > 0. 

This since relative entropy is convex and entropy is concave we may expect local 

minima as an inevitable fact of life. 

6.6.2 Friedman's Index 

Friedman (Friedman, 1987) has developed an index which has attracted wide interest 

within the community of statistics users. Sun (Sun, 1993) has performed a useful 

and informative comparison of Friedman's and Hall's indices and has concluded that 

Friedman's is generally better. Hall (Hall, 1989) agrees. Briefly, Friedman's index is 

based upon the transformation of the projection of the sphered data, xTw -º R= 

2, tp(xTw) -1 where 4)(X) is the standard normal cumulative density function 
s 

P(X) = 
2_ f 

00 

X 
exp(- 

2 )dt (171) 

If X follows a standard normal distribution, then R will be uniformly distributed in 

the interval [-1,1]. Therefore we take as a measure of the distance of XTw from the 

normal distribution, the integral squared distance of the variable R from the uniform 
distribution, 

f 1[p(R) 
- 2]2dR =1+1 p2(R)dR - (172) 

Friedman expands R in Legendre polynomials so that 

J-il p'(R)dR -2=f1 [E a1P, (R)]p(R)dR -2 (173) 
1=o 

where the Legendre polynomials are 

Po(R) =1 
P1(R) =R 
Pi(R) = 

(2j -1)RP; -i(R) - (j -1)Pi-2(R)Ibj >1 j 
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The coefficients a, are given by 

a' - 
2j 

21 
J+1 Pý(R)P(R)dR = 

2j 
2 

1([P, (R)]) (174) 

From this, we have an easily calculated projection index 

g(w) = F(27 + 1)([P, i(R)])2/2 (175) 

for any direction w, which is applied as 

9(w) =1 E(2j + 1)[1 F Pt(2ý(xTw) -1)]2 (176) 
2 j_i N c=o 

to give the sample version of the index. Note that this must be maximised under the 

constraint that WWT =1 to ensure a finite solution. 
However, we require the derivative of g(w) for our instantaneous measure, f(s), 

and so we use 
J 

f(s) oc E(2j + 1)(PI(R))([P'(R)exp-(XTw)2/2]) 
3_1 

Now Pý (R) is also easily calculated via the recursion relation 

Pi(R) =1 

P(R) = RPM-1(R) +jP, -1(R) 

Thus the instantaneous version of Friedman's Index used in our neural net implemen- 

tation is 

D 
f (s) = 11(2j + 1)P,, Pý exp(-(XTw)2) 

- 
Simulations on data such as used to test the polynomial indices have shown that 

such an index finds directions with either skew or kurtotic deviations from Normality 

with great reliability and accuracy. 
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6.6.3 Intrator's Index 

Intrator (Intrator, 1992; Intrator, 1993b; Intrator and Cooper, 1992; Intrator and 
Gold, 1993; Intrator, 1990; Intrator, 1993a) has constructed a model for Exploratory 

Projection Pursuit derived from the Bienenstock, Cooper, Monro (Bienenstock et al., 
1982) model of cortical plasticity. This model has a learning function of 

dt = µ(t)(x. w)(x. w - 
40. 

)x (177) 

where Bw = ((x. w)2) provides a moving threshold which yields the dynamic flexibility 

necessary for stability. 
-ý While no mention of sphering is made in the reported simulations using the BCM 

neuron, it is our finding that if Projection Pursuit is attempted using neural networks 

on unsphered data with either method, the learning rules respond to the lower mo- 

ments in the input data. We have thus in the simulations on which our findings are 
based performed sphering as an essential data preparation step. 

Though the format of the BCM Tearing rule is not immediately transferable into 

the format (156), the driving force of the Hebbian learning (as opposed to the decay 

term) is identical to the negative feedback network learning rules when the skew index 

is used. Unsurprisingly it is our finding that the BCM neuron finds positively skewed 
directions with the same facility as the negative feedback network. However, we do 

not find that this network can find negatively skewed or kurtotic_ distributions. 

An extension of the model introduced to improve the learning rule's robustness 

with respect to outliers involves introducing a sigmoid function non-linearity to a 

network loss function, L 

L(w) _ -µ{3a (w. x) - 4(Q2(w. x))Q2(w. x)} (178) 

which leads to the learning rule 

dt = µ(t)Q(x. w)(v(x. w) - 
30w)o'(x. 

w)x (179) 

where now Bw = (a2(x. w)). 
We do not believe that the significance of the sigmoid has been appreciated: our 

experiments on the artificial data using the BCM neuron show that this extension not 
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only improves stability (the basic rule is far from stable) but also permits convergence 
to negatively kurtotic distributions. A Taylor series expansion (similar to that given 
for the tanh() neurons in the negative feedback network) shows that the reason for 

this new capability is found in the nature of the sigmoid. 

6.7 Early Vision Processing 

We complete this Chapter with an example of Exploratory Projection Pursuit on 
image data. We choose to report on this area as not only does the experiment show 
Exploratory Projection Pursuit working on real data but also links in with biological 

speculations on the nature of early sensory processing. 

6.7.1 The Statistics of Natural Images 

A step performed early in image processing is the whitening of images which equalises 

the power(variance) over every frequency in the images. Edge detection is another of 

the early steps: it is generally held that in detecting edges we are representing the 

world in a way that is a prerequisite for making sense of the high-dimensional space 

which corresponds to visual data. 

Barlow and Tolhurst (Barlow and Tolhurst, 1992) have shown that in whitened 
images there is an excess of kurtosis in an image when 9 pixels are sampled in a line 

compared to that when 9 random pixels or 9 pixels in a square are sampled. This 

might suggest that edges in images create highly kurtotic distributions. 

We have an extremely simple and effective method to find those directions in high- 

dimensional spaces which exhibit most kurtosis. Instead of whitening our images we 

sphered the data (as above) as this also equalises the variance in each direction. 

The images consisted of a collection of pictures of natural scenes. Pictures were 
taken on a 35mm camera with a 50mm lens. The photographs were then digitised 

using a Hewlett Packard Scanjet Plus at the 75 dpi setting. The central 256 by 256 

pixel region was then sampled and the grey levels normalised so that the lowest value 
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was 0 and the largest was 255. No attempt was made to account for non lineari- 

ties in the processing. In an attempt to remove the artificial effects of composition 
(other than ensuring correct vertical alignment) we used the following techniques: the 

camera view finder was not used, the camera was pointed at random, and pictures 

were taken at set time intervals. This procedure produced three sets of 36 exposures. 
Out-of-focus pictures were removed together with pictures showing lens obstructions. 
Nine of these images in each group were randomly selected. This process was used 
to create 27 images: 9 of which are taken from the office environment, 9 from the 

countryside and 9 from a city centre. 
The kurtosis-extracting neural network technique was applied to samples of nat- 

ural images in order to estimate the filter with highest output kurtosis. Specifically 

the following was done: 

" From random locations within all 27 images, 32x32 samples were extracted from 

the images. This process could generate up to 1,354,752 different samples from 

the collection of natural images. 

" We used the Principal Component network to find the first eight principal com- 

ponents of the samples. Thus since our input vector is 1024 dimensional, our 
PCA network is performing a substantial dimensionality reduction. The cut-off 

after 8 principal components was chosen after an initial investigation showed 
that the standard deviations of the principal components fell in the ratios 

al : 02: 03: 04: 05: 06: a?: as=10: 3.9: 3.1: 2.3: 2.2: 1.6: 1.6: 1.5(180) 

with no other PC having a standard deviation greater than 0.6 on this scale. 

" The second layer of the neural network was used to perform gradient ascent on 
the output kurtosis. During this search, the learning rate was annealed from 

0.001 to 0. 

" After 100000 iterations4, the first four moments i. e. the mean, standard devia- 

tion, skewness, and kurtosis of the output distribution of the derived filters was 

measured. 
4Convergence typically took less than 10 th of this time 
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" This process was repeated ten times to assess the reliability of the network and 
its dependence on initial conditions. 

6.7.2 Results 

The statistics of 10000 samples of the output of the first (principal component ex- 
tracting) network after sphering are given in Table 29. As can be seen, the principal 

components are far from Gaussian(where the skewness and kurtosis would both be 

zero 5); note also that almost all directions show positive kurtosis. This might be 

thought to be in line with our expectations as many images contained many lines and 

not only confirms the findings of Barlow and Tolhurst but also shows that it was not 
their method of sphering which created the kurtosis in the data. The first 8 principal 

components are shown diagramatically in Figure 26. Comparing Table 29 and Figure 

26 we see that the kurtosis values for vertical directions are greater than those for 

horizontal directions. 

We report on the results of 10 simulations and within each simulation, we use a 
decomposition method: since the first neuron finds and subtracts one direction, the 

second neuron searches in the image space left after the first has subtracted its space. 
Note that this orthogonality is quite different from that seen on the images. The 

filters are shown in graphical form in Figure 26 and the kurtosis values corresponding 
to each direction is given in Table 30. As can be seen, the network consistently finds 

directions of high kurtosis. We see again that the vertical filters show higher kurtosis 

than the horizontal and, in general, the filters of each type which the kurtosis-seeking 

network found have greater kurtosis than those principal components of the same 
type. 

As has been stated, the algorithm was evolved as an Exploratory Projection Pur- 

suit method and the exploratory nature of the algorithm is well illustrated in the 
differences in the converged directions which were found during different simulations. 
Clearly the method is dependent on the initial conditions of the network and the 

actual images seen during training. 

5In this section we perform the more general step of subtracting 3 from the raw kurtosis figure 
so that comparison can be more easily made with other research findings 
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Direction First Second Third Fourth 
1 0.002 1.006 0.958 0.659 
2 -0.003 1.003 0.343 2.876 
3 0.004 0.958 0.013 7.676 
4 0.012 0.970 0.214 4.500 
5 -0.013 1.026 -1.112 21.638 
6 -0.012 1.026 0.215 5.547 
7 0.001 0.948 0.268 6.356 
8 0.005 1.028 -0.207 14.924 

Table 29: The statistics of the output of the first layer of the neural network. As can 
be seen, the outputs are normalised in both mean and standard deviation. Note that 
the statistics of the images are far from Gaussian: almost every direction shows both 
kurtosis and skewness; note also that all directions show positive kurtosis. 

Simulation 1 2 3 4 5 6 7 8 9 10 
First 22.8 24.4 25.9 24.0 5.7 16.2 7.4 24.9 17.8 27.4 

Second 15.0 20.5 31.7 19.0 18.4 18.3 17.9 19.1 22.6 16.8 
Third 7.4 7.1 7.1 7.8 9.9 8.9 6.7 8.3 7.3 9.4 

Table 30: The kurtosis for the directions found by 10 simulations using 3 kurtosis- 
seeking neurons each. 
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Figure 26: The directions found by the network with respect to the original images. 
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There are 15 directions whose orientation is vertical, 8 horizontal and 7 top- 

right/bottom-left blobs. It is clear from the statistics that the vertical directions 

have the greatest kurtosis which presumably accounts for the fact that a vertical 

orientation was found most often. 

6.7.3 Boundary Conditions and Pre-processing 

We repeat the above experiment with the same network but using slightly different 

input data to the PCA network: firstly we consider the effect of pre-processing the 

data with a logarithmic function and secondly the effect of a Gaussian mask on the 

data. 

The effect non-linear pre-processing 

Field (Field, 1994) performed his experiments upon log preprocessed images. This 

can be justified for two reasons. Firstly, human physiology appears to be more linear 

in the logarithm of contrast as opposed to simple contrast. Secondly, log prepro- 

cessing may help alleviate problems of differing illumination. By taking logarithms, 

local ratios in image intensity are transformed into local differences of image inten- 

sity. Ratios of intensity should be more robust to changes in illumination than are 

absolute differences. To investigate if logarithmic pre-processing affects the resulting 

components, we repeated the experiment, but this time, all, image intensities were 

replaced by their logarithms. The resulting components are shown in Figure 27 and 
the kurtosis of these directions are given in Table 31. Firstly it appears that the PCA 

directions have been unchanged. Secondly the network is still finding directions of 

great kurtosis. It appears also that the vertical directions continue to have an excess 

of kurtosis over the horizontal directions. 

The effect of boundary conditions 

The previous results may have been artificially affected by the square samples from 

image used. To find out if this was the case, we repeated the previous experiment 
but instead of simply presenting the 32x32 samples the the network, they were first 
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Figure 27: The directions found when the network is trained on logarithmically- 

preprocessed images. 
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Simulation 1 2 3 4 5 6 7 8 9 10 
First 12.3 15.3 14.2 13.1 7.6 17.1 7.3 14.3 11.3 15.3 

Second 14.8 12.5 14.6 13.7 6.6 13.0 15.2 13.2 16.3 7.0 
Third 9.0 5.6 9.1 7.6 15.6 9.3 11.9 8.0 5.6 14.4 

Table 31: The kurtosis for the directions found by the kurtosis seeking network after 
logarithmic preprocessing 

windowed with a Gaussian of standard deviation of 6. The filters found are shown 
in Figure 28. As can be seen, the network still mainly converges first to vertical 
directions and such directions continue to be very strongly kurtotic. However, having 
found and subtracted one vertical and one horizontal direction it then finds a third 
direction which also shows great kurtosis but little pattern in its shape. We conjecture 
that such a pattern is due to the extremely local nature of the mask and the particular 

set of images met during training. Experiments with different width Gaussians have 

confirmed the major findings that vertical (more kurtotic) directions are preferred. 

6.7.4 Coding Methods 

Field (Field, 1994) has made an important distinction between compact codes and 

sparse distributed codes: we may define a compact code as a code in which the 

dimensionality of the input data is reduced whereas a sparse distributed code will use 

the same number of dimensions but only a few of these will be non-zero at any one 

time. Any code produced by a sparse distributed coder may be viewed as belonging 

to a reduced dimension subspace of the original space but the whole set of codes will 

not require a basis of dimensionality equal to the original space. 
Therefore the code formed by projecting the data onto the first few Principal Com- 

ponents of the data may be thought of as a compact code since such a code reduces 
the dimensionality of the representation while it retains as much of the information 

in the data as possible. A sparse distributed code, on the other hand, retains (or 

perhaps even increases) the dimensionality of the representation but in such a way 
that any individual code uses only a few dimensions of the channel. 

The context for such a distinction is the work by Barlow (Barlow, 1989) on the 
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Figure 28: The directions found when the network is trained on gaussian-filtered 
images 
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early visual processing system. Barlow has suggested that a major task of this system 
is to use redundancies in the infinite information available to it in order to make sense 
of the data. Thus a PCA will reduce the redundancy inherent in the data by using 
the correlations in the data in order to create a compressed code. 

However, in a sparse distributed code, while overall each individual cell may have 

the same probability of firing, the chances of two cells firing together are very much 
reduced. Thus, the chances of false "suspicious coincidences" are very much reduced. 
The statistics of such a code are strongly kurtotic - each code has a great number 
of low firing cells corresponding to the random occasional firing of neurons while at 
the same time there are a few cells, those which correspond to the signal, firing very 
strongly. 

We have, in our Projection Pursuit Network, the first Artificial Neural Network 

which is capable of finding such sparse codes. Note also that the kurtosis-seeking 

neuron tends to identify those directions in the input data in which a line is most 
likely: i. e. the network becomes sensitized to directions which tend to contain lines. 

6.8 Conclusion 

We have introduced a neural network architecture which, using an extremely simple 
architecture and learning rule, has been shown to be capable of performing sophis- 
ticated statistical functions. The fact that the same network*structure is capable of 
performing a PCA as well as EPP is unsurprising since Huber (Huber, 1985) has 

shown that PCA may be viewed as a particular case of Projection Puruit. Thus, for 
the interneuron network, in performing a PCA we are choosing g(x) =x oc fix' and 
so the original network is seen to be maximising the second order statistics of the 
distribution i. e. finding the eigenvectors corresponding to maximal eigenvalues. 

The initial PP indices discussed in this Chapter are the simplest possible indices for 
the finding of non-normal interesting directions; however, the method was shown to be 

equally valuable with Information Theory indices or with more sophisticated indices 

such as an instantaneous version of Friedman's index (Friedman, 1987) or Intrator's 
index (Intrator and Cooper, 1992). The important point to note, however, is that the 
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method may be used with any function denoting a criterion which we wish to optimise. 
Our feeling is that information indices may prove to be the most effective indices in 

analysing a variety of distributions: we envisage further research into indices which 

maximise mutual information (Becker, 1992) or maximise the effects of contextual 
inforruation subject to externally-imposed conditions e. g. (Kay and Phillips, 1994). 

The advantage of using Projection Pursuit concepts is that it provides a frame- 

work for understanding and integrating previous neural network models which have 

tended to introduce non-linearity in an ad hoc fashion. However, we note that the 
format reviewed in this Chapter, required the function to be optimised to be differen- 

tiable; this need not be the case for the general neural network model. For example, 
Shapiro and Prügel-Bennet (Shapiro and Prugel-Bennett, 1992) have introduced a 
non-linearity -a power law - into Oja's Subspace Algorithm but also used a threshold 
below which the neuron will not fire. Since they set the threshold to be zero, the 

analysis of convergence of a second order network is understandable in PP terms yet 
the fact that the threshold may be changed suggests a direction for future research 
of PP indices. 

ýt 



Chapter 7 

Conclusion 

This thesis has discussed the role of negative feedback as an organising principle in 

the development of Arificial Neural Networks which use Hebbian learning to self- 

organise. We began by emphasising the holistic nature of our algorithms and we wish 

to reiterate this point here - every network is stable due to the interaction of the 

negative feedback of activation and the positive feedback of the learning rule which, 
in all cases, has been simple Hebbian learning. This method provides an alternative 
to classical methods of limiting weight growth in Hebbian learning networks and has 

the additional property that convergence takes place to statistically important sets 

of weights. 
Chapter 3 introduced the interneuron network and showed that Hebbian learning 

alone in this context was sufficient to cause convergence to the Principal Components 

of the input data. In our continuing search to develop models which might possibly be 

models of actual biological networks we showed that a network in which the forward 

and backward weights were independent was also capable of performing a PCA. An 

algorithm which found the actual PCs was developed. 
Chapter 4 investigated the case where the negative feedback of activation from 

each interneuron was allowed to affect all other interneurons. By introducing asym- 

metry into this process, we were able to devise a network whose weights converge to 

the actual Principal Components concurrently. Several different models were devel- 

oped and analysed. However such models seem to be unrealistic models of biological 

173 
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information processing. 
Thus, in Chapter 5 we investigated situations which may reflect conditions in 

carbon-based neural nets: first by adopting Dale's Law and not allowing weights to 

change from excitatory to inhibitory or vice versa. In doing this, we showed that the 

weights converge to the actual principal components in a parallel fashion; this seems 

an important gain in return for a minor constraint, yet we showed that there are 
limits to the data for which this convergence can be guaranteed. A second condition 

was to take into consideration the actual physical distance between neurons which 

would manifest itself as a differential in the times when negative feedback would be 

felt. Such a net was also shown to converge to the PCs, a slight modification to which 

produced an extremely simple binary coder. An interesting application of this net 
with artificial data saw the generation of a topology preserving neural network. 

In Chapter 6, we introduced non-linearity. The major insight of Chapter 6 is 
the embedding of the work which is being done on non-linear Principal Component 

type neural networks in the statistical theory of Projection Pursuit. In Chapter 6, 

we used an Exploratory Projection Pursuit network to find "interesting" structure 
in high-dimensional data spaces and investigated the statistics of images using this 
model. 

7.1 Future directions 

Future research on Artificial Neural Networks must inevitably concentrate on non- 
linearities. As we have pointed out, when closed form solutions of problems exist, they 

are almost always more efficient. The real promise of ANNs is in their application 
to non-linear problems. The non-linearities introduced in Chapter 6 are clearly not 
the only ones possible and the strength of the emergent properties of the networks 
described in that Chapter suggests that it would be wrong to dismiss any other non- 
linearity a priori. There are two obvious directions of continuing research in this 

area: 

1. Research into different types of functions in the Exploratory Projection Pursuit 

networks described in Chapters 6. 
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2. Research into the introduction of non-linearity in different manners: we note 

that Karhunen and Joutsensalo have discussed a different form of non-linearity 

which has interesting signal separation properties. 

The specific extensions which are of most interest to the author are the introduc- 

tion of non-linearity in the regression form of the negative feedback network and in 

the limiting case where the non-linearity becomes a dichotomy the use of the network 

as a classifier. 

7.2 Cybernetics 

While we have not discussed biological neural networks in detail in this thesis, we 
have continued to attempt to create models which have biological relevance and be- 
lieve that the mathematical models developed here are potentially of interest to neu- 
rophysiologists. Barlow (Barlow, 1989) has proposed that insight can be gained into 

the operation of low level vision operations by viewing them as statistical processes. 
For example, Principal Component Analysis results in filters that match some aspects 
of pysychophysical performance: the operation of the retina can be viewed, to a rea- 
sonable approximation, at high signal to noise levels as removing correlations between 

variables. Whether a PCA process is actually being implemented is a question for 

empirical research. 
Barlow has also recently (Barlow and Tolhurst, 1992) suggested that edge detec- 

tion is a consequence of the need for an economic representation of images in natural 
neural networks. He notes that, in whitened images, the edges are completely visible 
though whitening removes the correlations between pairs of images. Thus, if edges 

are examples of "suspicious coincidences", to investigate the statistics of edges in 

whitened images, we must go beyond second order statistics. Barlow has calculated 
the kurtosis excess (over the normal distribution's value) from sets of points and 

shows that when he choses a set of points which lie in a straight line that kurtosis for 

the set is much larger than average. However he feels that a search for fourth order 

statistics is too complex to be biologically feasible. 

Yet we have shown here that an extremely simple neural network is capable of 



CHAPTER 7. CONCLUSION 176 

finding kurtotic distributions. This would be an easy implementation of "edge detec- 

tors". 

Thus we have described a set of models model which self-organise on very sim- 

ple principles and which have demonstrably powerful statistical properties and seem 
equally valid as a model for new information processing devices and as a model for 
describing the processing of biological processes. 

It is for reasons such as these that we feel able to evoke the spirit of cybernetics: 
our research has been into a model of information processing which, being simple and 
robust, seems capable of being a model for both biological information processing 
and engineered information processes. We have seen the construction of mathemati- 
cal models as more important than any actual implementation but have nevertheless 
shown that all models reported herein can be easily implemented on current comput- 
ers. 
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