
UNIVERSITY OF STRATHCLYDE

TYPES
CATEGORIES

ACTIONS

by
Timothy Revell

Submitted for the degree of
Doctor of Philosophy

Faculty of Science
Computer and Information Sciences

February 2016

http://www.strath.ac.uk/
timothyrevell@gmail.com
http://www.strath.ac.uk/science/
http://www.strath.ac.uk/cis/

DECLARATION OF
AUTHORSHIP

This thesis is the result of the author’s original research. It has been composed by the
author and has not been previously submitted for examination which has led to the award
of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom
Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowl-
edgement must always be made of the use of any material contained in, or derived from,
this thesis.

I, Timothy Revell, declare that this thesis titled, Types, Categories, Actions and the work
presented in it is my own, except where explicitly stated.

Signed:

Date: February 23, 2016

i

“It’s gonna be a really tough project. You’re gonna have to use your
head, your brain, and your mind, too.”

Dewey Finn

UNIVERSITY OF STRATHCLYDE

Abstract
Faculty of Science

Computer and Information Sciences

Doctor of Philosophy

by Timothy Revell

This thesis explores relational parametricity using fibrations. We present a complementary
view of Reynolds’s relational parametricity using the relations fibration. This approach
allows us to uncover some of the hidden categorical structure present in Reynolds’s original
definitions and results, leading to new insights in the study of parametricity. In a similar
vain we provide an alternative parametric model of System F using group actions, which
has some novel differences to the standard relational model. We then alter the type
system leading to a general categorical framework for type systems with dimension types.
We develop some informative models of this type theory, including a model based on group
actions that captures invariance under scaling.

http://www.strath.ac.uk/
http://www.strath.ac.uk/science/
http://www.strath.ac.uk/cis/
timothyrevell@gmail.com

CREDITS
This thesis could not have been possible without the help and support of the people around
me. I would like to thank my supervisor, Neil Ghani, for his guidance throughout my PhD.
His knowledge and experience has been invaluable, but it is his enthusiasm and passion
for mathematics that I have required (and admired) most. He has constantly inspired me
to search for beautiful mathematics and has made my time as a PhD student incredibly
enjoyable.

I would like to thank everyone in the MSP (Mathematically Structured Programming)
group. Our regular MSP 101 talks provided me with the opportunity to learn, discuss, and
present new ideas, as well as creating a wonderful working atmosphere. I am particularly
thankful to Bob Atkey, Fredrik Nordvall Forsberg, Patricia Johann, Federico Orsanigo and
Sam Staton for detailed conversations and joint work. I am also incredibly grateful for
the comments on the early versions of this thesis by Fredrik Nordvall Forsberg and Neil
Ghani.

I would like to thank the members of theGIST (Glasgow Insight into Science and Tech-
nology) for improving my writing abilities beyond recognition and for their social support.
Without regular discussions with GISTers and their strictly regimented feedback, the qual-
ity of the writing in this thesis would have been substantially lower.

I would like to thank my family for their love and support throughout my PhD. I am
especially grateful to my mother and father for their contributions to my mental (and
financial) well-being, as well as to my sister for her love and friendship. I would also like
to give a special thanks to my grandmother for always being able to provide a smile, a
story and a lunch, and for her exuberantly positive attitude to life.

Finally, I would like to thank Emilie Steinmark for her love, support, and encouragement.
Emilie, du er den eneste ene.

iv

http://www.msp.cis.strath.ac.uk/index.html
http://www.msp.cis.strath.ac.uk/index.html
http://www.msp.cis.strath.ac.uk/msp101.html
http://www.the-GIST.org

FOR THE
LAYPERSON
Let’s play a game. I’ll give you an item and you can do whatever you like with it before
returning it to me. Th only additional rule is that you have to tell me what you will do
with the mystery item before I give it to you. This means that you will never know what
the item is going to be before you have to say what you will do with it. I win if you can’t
carry out your action, otherwise you win. So let’s play.

What are you going to do with the item? You scratch your head for a bit, and then reply
“I’m going to rotate it by 90 degrees”. I ponder your response and then decide to give you
a plot of land, which you can’t rotate, so I win. Let’s play again.

You think for a moment and then say “OK, this time I will divide the item in two.” If I
give you the plot of land again, you can just put up a fence through the middle to the win
the game. But I realise this and give you a fundamental particle, which cannot be divided
in two, so I win again. “Shall we play once more?” I say.

Again you have a little think and then proclaim “Aha! I’m going to add a sticker to it.
Whatever you give me I can always place a sticker on it. I win!” I think for a moment,
and then give you an idea. Unfortunately for you, you can’t add a sticker to an idea, so I
win again.

“OK. One more game,” you say. “I’m going to do nothing to the item, and then I will
return it”. There’s no way for me to win, you can always do nothing. And so I give you a
thesis, which you return in it’s original condition, and you become the winner.

v

For the Layperson vi

The trick to winning this game was to come up with an action for returning the item that
could be done in every situation. If the action relied in any way on something specific
about an item, for example it’s ability to be rotated, divided, or have something added to
it, then an item could always be chosen that wouldn’t have the required property. There
is only one action that can be chosen to win this game and it’s the do-nothing approach.

In computer science there is an analogous situation. Sometimes, we wish to write computer
programs that work for any possible input without any knowledge of the input itself. We
call such programs parametrically polymorphic, and programs of this type are one of the
main focuses of this thesis.

Sparing you the details (for those look in the thesis!) parametrically polymorphic functions
arise in many different places throughout computer science and so it is important to study
them and to understand them. By using a subject called category theory and a concept
called fibrations, this is exactly what this thesis has contributed to. So if you wish, please
read on. Hopefully you will agree that studying the do-nothing approach required quite a
lot of work.

CONTENTS
Abstract iii

Credits iv

For the Layperson v

Notation ix

1 Introduction 1

2 Fibrations 6
2.1 Examples . 11
2.2 Examples from Pullbacks . 13
2.3 Fibrations with Structure . 14
2.4 Group Actions . 21
2.5 The Grp-Set Fibration . 23

3 Parametricity 24
3.1 System F . 25
3.2 Semantics . 28

3.2.1 The Semantics of Types . 29
3.2.2 The Semantics of Terms . 32

3.3 Parametricity, What is it good for? . 34
3.3.1 Graph Relations . 37
3.3.2 Initial Algebras . 39
3.3.3 Initial Algebras for System F . 42

4 Group Action Parametricity 46
4.1 Examples of Group Actions . 47
4.2 Relations on G-Sets . 49

4.2.1 Structure on Relations on G-Sets . 50
4.3 Group Actions as a Model of System F . 53

vii

Contents viii

4.4 Initial Algebras for System F, Again . 58
4.4.1 The G-Set Interpretation of ∀X.X → X 58
4.4.2 The Beginnings of a Generalisation 62
4.4.3 Defining the Initial Algebra Action 65
4.4.4 Initial Algebra Theorem for G-Sets 67
4.4.5 Initial Algebra Theorem in Action 71

4.5 Nominal Discussion . 73

5 Dimensions 75
5.1 Mismatching Mistakes on Mars . 75
5.2 Types with Physical Dimensions . 77
5.3 Terms with Physical Dimensions . 79
5.4 Categorical Semantics of Dimension Types 81
5.5 Examples . 84
5.6 Group Actions and Dimension Types . 88
5.7 Relational Models . 94
5.8 Concluding Remarks . 97

6 Conclusion 99

Bibliography 102

NOTATION
Algebras kA , kB , kR , in
Contexts Γ, ∆
Categories A, B, C, E , Rel, Set, [G,Set]
Elements of a Group π, σ, τ , e, g, h
Functors F , F0, F1, p, q, T , T0, T1
G-Sets (A, ·A), (B, ·B), A, B, ϕ, ψ
Groups G, H
Morphisms f , g, h, fold, id, u
Natural Transformations η, t0, t1
n-Tuples A, B, R, a, b, r
Objects A, B, C, D, E, X, Y, Z,
Relations R, R′

Sets X, Y, A, Ai, B, C, I, J
Terms t, u
Types T , T1, T2, U , Quantity(X)

ix

CHAPTER 1

INTRODUCTION
Let’s play a game. I give you a term t : T , and you can do whatever you like with the term

before returning it to me provided that its type remains the same. The only other rule of

this game is that you have to tell me what you will do with the mystery term before I give

it to you. This means that you will never know what the term is going to be before you

have to say what you will do with it. I win if you can’t carry out your action, otherwise

you win. So let’s play.

I begin by asking you “what are you going to do with the term?” You scratch your head

for a bit, and then reply “I’m going to divide it by two to give (x/2) : X”. I ponder your

response and then decide to give you the list [1, 2, 3] : List(N), which you cannot divide by

2, because ([1, 2, 3]/2) : List(N) hasn’t been assigned a meaning. You could have defined a

function /2 : List(N) → List(N) and then used that, but you would have needed to have

defined this function before I gave you the term. Let’s play again.

You think for a moment and then say “OK, this time I will add the term to itself to

give x + x : X, and if you give me a list ‘+’ will stand for concatenation.” If I give you

[1, 2, 3] : List(N), you can easily calculate [1, 2, 3] + [1, 2, 3] = [1, 2, 3, 1, 2, 3] to win this

round. But I realise this and so instead give you just the character a : Char, which you

do not know how to add to itself and so I win.

“OK. One more game,” you say. “I’m going to do nothing to the term, and then I will

return it”. I think about this for a moment and soon realise that there is no way for me

1

Introduction 2

to win, you can always do nothing. And so I give you thesis : String , which you return

in its original condition, and you become the winner.

The trick was to come up with an action for returning the term that could be done whatever

the situation. If the action relied in any way on something specific about the term to define

a function in an ad-hoc way, for example its ability to be divided by 2 or added to itself,

then a term could always be chosen that would not have the required property. There is

only one action that can be chosen to win this game and it’s the do-nothing approach.

This game in computer science corresponds to writing programs that work for all possible

inputs without any knowledge of the input itself. We call such programs parametrically

polymorphic, and programs of this type will be one of the main focuses of this thesis.

When writing a parametrically polymorphic function, one is severely restricted by the gen-

erality in which you must work. This means there is only one parametrically polymorphic

function of type ∀X.X → X — the polymorphic identity function ΛX.λx : X.x. In our

game, this corresponds to the do-nothing approach. However, mathematically proving

that the polymorphic identity function ∀X.X → X is the only parametric function of this

type isn’t so simple. Though by using a technique called relational parametricity it can be

done.

In this thesis we will look to understand relational parametricity with insights from cate-

gory theory by using fibrations. This will require a working knowledge of fibrations and

so we will present an introduction to fibrations as well as some additional background

material in Chapter 2.

In Chapter 3 we will look at relational parametricity for System F. This is the scenario

in which relational parametricity was originally formulated by Reynolds [1]. When types

are interpreted solely as sets without any relational constraints, the interpretation of forall

types does not represent parametric polymorphism. This means that ad-hoc functions

can inhabit the type ∀X.X → X. Reynolds noticed that if we instead interpret types as

relations and terms as relation homomorphisms, then we reach a parametric model.

Instead of reproducing Reynolds’s original paper we will present an alternative viewpoint

using fibrations. This approach has lead to a general fibrational description of relational

Introduction 3

parametricity [2] by the author of this thesis in a collaborative paper. To maintain our

focus we will not describe the model in its full generality here, but instead use it to guide

our exploration of parametricity. Towards the end of Chapter 3 in Corollary 42, we will

prove that in this model the polymorphic identity function is the only inhabitant of the

type ∀X.X → X.

In Chapter 4 we will look at System F polymorphism in the context of G-sets, where G

is a group. This situation is not covered by the general approach described in [2] as the

category of G-sets is not well-pointed, which is a requirement of the general framework.

This means that results such as there being only one function of type ∀X.X → X are no

longer true, in fact there is a function for every element of G. In terms of the term-game

this corresponds to introducing a new rule (which makes the game seem a lot easier). The

new rule says that with every term you have a “G-action” which can be used whenever

you like. This means that there is a winning strategy for every element of G, and in

Theorem 78 we prove this concretely.

Finally, in Chapter 5 we will look at dimension polymorphism. Up until this point in

the thesis, we will have concentrated on polymorphism of type variables, but dimension

variables will behave differently, and so will the parametricity that we see. To account for

dimension polymorphism we will work with a different type system to System F that is

able to represent dimensions (e.g. length, time) and units (e.g. metres, seconds), as well

as being able to define dimension polymorphic functions. For example, the term

(ΛX.λx : Quantity(X). x+ x) : ∀X.Quantity(X) → Quantity(X) (1.1)

takes as input a dimension X, a quantity of that dimension x : Quantity(X), and returns

its double x + x of the same dimension. Extending the term-game-analogy, Chapter 5

corresponds to finding a winning strategy that is invariant under scaling. Your strategy

must be appropriately scaled if I were to scale the term before handing it to you.

In our study of dimension polymorphism we will define a general categorical model for

such type systems, as well as giving a general description of relational parametricity in

this setting. Along the way we will spend some time looking at a model that uses group

Introduction 4

actions and prove many theorems that usually require a separate relational semantics, but

in the group actions model can be proven directly. This leads to some slick and elegant

proofs and we will explore whether adding parametricity here actually gives us any extra

power.

We will try to avoid assuming a large quantity of knowledge by the reader, in an attempt

to make this thesis as accessible as possible. As a minimum, we will expect the reader to

have a passing familiarity with category theory and of type theory.

Throughout this thesis we will look at the interaction between category theory and type

theory in a parametric setting, whilst also exploring the role of group actions. The main

contributions of this work are as follows.

• We present Reynolds’s relational parametricity in a new light using fibrations. This

approach allows us to uncover some of the hidden categorical structure present in

Reynolds’s original definitions and results, leading to new insights in the study of

parametricity.

• We show how initial algebra theorems fit into the fibrational framework.

• We give a parametric model of System F using group actions.

• We show that in the group actions model of System F a generalised version of the

standard inital algebra theorem holds.

• We give a general categorical semantics for type systems with dimension polymor-

phism.

• We explore a semantics for dimension polymorphism using group actions, and show

how this can be used to prove parametricity-like theorems.

• We give a general relational model for type systems with dimension types, and

compare this to the group actions model.

The material presented in Chapter 2 is well-known and given here for completeness. The

material in Chapter 3 is entirely the work of John Reynolds [1] but presented in a way that

Introduction 5

highlights its fibrational nature. This is made possible by insights given from the general

fibrational approach developed by the author of this thesis and others in [2]. Chapter 4

contains material developed by the author of this thesis with support and guidance from

Neil Ghani and Fredrik Nordvall Forsberg. Finally, the material in Chapter 5 is from a

joint paper [3]. My specific contributions are as follows.

• I developed the categorical formulation of Reynolds’s Relational Parametricity pre-

sented in Chapter 3, including the fibrational presentation of the Abstraction Theo-

rem (Theorem 39) and the categorical proof of the Graph Lemma (Theorem 48).

• I formulated and proved all of the results in Chapter 4, except where explicitly

stated. This included showing that G-sets give a parametric model of System F

in Section 4.3 that satisfies the Identity Extension Lemma (Theorem 73) and the

Abstraction Theorem (Theorem 75), characterising the interpretation of ∀X.X → X

in the G-set model (Theorem 78), and proving a generalised initial algebra theorem

(Theorem 85).

• The categorical model of dimension types in Chapter 5 was developed as part of

collaborative work. I helped formulate the model, proved the majority of the results

in the group actions model in Section 5.6 (Theorem 100 – 105), and developed the

relational models (Example 107 and Example 108) in Section 5.7.

In only three words this thesis is about types, categories, and actions. In one sentence

this thesis is about using fibrations to study polymorphism and parametricity. And in one

thesis this thesis is about...

CHAPTER 2

FIBRATIONS
Throughout mathematics and computer science there are many examples of indexed collec-

tions of “stuff”. The stuff might be sets, monoids, groups, categories, types or something

completely different, but these collections often share two similar properties. The first is

that each collection is indexed by some mathematical object, and the second is that there

exists a reindexing operation.

For example, consider a collection of sets {Ai}i∈I indexed by another set I, called the

indexing set, so that for each element of i we have a set Ai. We can capture this situation

with a function ϕ : A → I, with A = ⊔i∈IAi, defined by ϕ(i, a) = i. In other words, for

each element i of I, we have a set given by the preimage ϕ−1i = Ai.

Suppose further that f : J → I is a function. By taking the pullback of ϕ along f we

obtain a new function f∗ϕ : f∗A→ J .

f∗A - A

J

f∗ϕ

?

f
- I

ϕ

?

6

Fibrations 7

Here f∗A is given by the set {(j, x) | fj = ϕx}, which we can be rewritten as,

f∗A = {(j, x) | x ∈ ϕ−1(fj)}

=
⊔
j∈J

Afj .

Hence, the function f∗ϕ defines a reindexed collection of sets {Afj}j∈J , which is now

indexed by the set J instead of I.

Putting this together we see that a collection of sets can be viewed as a function, where

reindexing is given via pullback along a function between indexing sets. The universal

property of pullbacks guarantees that reindexing gives the “best possible substitution”.

By generalising this example to categories and functors we reach the notion of a fibration

[4, 5]. We will spell out the relationship between fibrations and indexed sets in Example 12,

but first we need a couple of definitions.

Definition 1 (Cartesian Morphism). Let p : E → B be a

functor. Suppose that f : A → B is a morphism in B and

E is an object of E such that pE = B. Then h : X → E is

said to be a Cartesian morphism above f if the following

conditions hold.

• ph = f

• For any morphism g : Z → E in E such that f◦u = pg

for some morphism u : pZ → A in B, there exists a

unique morphism ũ : Z → X in E such that h◦ ũ = g

and pũ = u.

Z E

X

∃!ũ

?

h
- E

g

-

pZ

A

u

?

f
- B

pg

-

B

p

?

Using Cartesian morphisms, we now define fibrations.

Definition 2 (Fibration). A functor p : E → B is a fibration if for every morphism f : A→ B

in B and object E in E such that pE = B, there exists a Cartesian morphism above f

with codomain E, denoted f §
E
: f∗E → E.

We will denote f §
E

simply by f § when the subscript can be inferred from context. We now

introduce some standard fibrational terminology.

Fibrations 8

Definition 3 (Fibration Terminology). Let p : E → B be a fibration. We call E the total

category and B the base category. We say that an object E in the total category is over

an object B in the base category if pE = B, and similarly for morphisms. We call a

morphism of the total category a vertical morphism if it is over an identity morphism idB ,

for some object B in the base. We call the subcategory of E consisting of objects over B

and morphisms over idB the fibre above B denoted EB .

A functor p : E → B is an opfibration if pop : Eop → Bop is a fibration, and is a bifibration

if it is simultaneously a fibration and an opfibration. We do not spell out the details here

but instead refer the reader to [4] for more information, and note that the examples in

Section 2.1 and Section 2.2 are all bifibrations. We will use both Cartesian and opcartesian

maps in Chapters 3 and 4 to define the graph of a relation, and hence the introduction

of opfibrations here. In the following examples, definitions and comments we will mostly

consider fibrations for ease of presentation, but analogous statements can be made about

opfibrations (and hence bifibrations) as well.

It is often useful to have fibrations that are equipped with a specific choice of Cartesian

morphisms, such a fibration is called cloven and we call the choice of Cartesian morphisms

a cleavage. Assuming the Axiom of Choice it is always possible to construct a particular

cleavage for a fibration.

Next, we introduce the reindexing functor.

Theorem 4 (Reindexing Functor). Let p : E → B be a cloven fibration and f : A → B a

morphism in the base B. Then the assignment of objects E in the fibre above B to f∗E is

a functor EB → EA. We denote this functor f∗ and call it the reindexing functor along f .

To see that f∗ : EB → EA is actually a functor, let g : E → E′ be a morphism in EB .

Then we define the morphism f∗g : f∗E → f∗E′ as the unique morphism that makes the

Fibrations 9

following diagram commute.

f∗E
f §
E - E

f∗E′

f∗g

?

f §
E′

- E′

g

?

The existence and uniqueness of f∗g is guaranteed by the universal property of the Carte-

sian morphism f §
E′ .

In Chapter 5 we will require fibrations where the reindexing functor satisfies the following

definition.

Definition 5 (Split Fibration). A fibration p : E → B is split if for any two morphisms

f : A → B, h : B → C in the base B, and any object E in the total category E the

following two equalities hold.

(idpE)∗ = idE (h ◦ f)∗ = f∗ ◦ h∗

A very basic theorem about fibrations is that they are closed under composition.

Theorem 6. Suppose that p : E → B and q : B → A are both fibrations. The q ◦ p is also a

fibration.

Proof. Let f : A → A′ be a morphism in A, and let E be an object in E such that

(q ◦ p)E = A′. Then to show that q ◦ p is a fibration, we must show that there exists a

Cartesian morphism f §
E

above f , i.e., such that (q ◦ p)f §
E
= f .

Firstly, notice that since q : B → A is a fibration and pE is an object of B that is above

A′, there exists a Cartesian morphism f §
pE

: f∗(pE) → pE in B, such that qf §
pE

= f . But

p : E → B is also a fibration and E is an object in E above pE, so there exists a Cartesian

morphism (f §
pE
)§
E

: f∗E → E such that p(f §
pE
)§
E

= f §
pE

. Hence, (f §
pE
)§
E

is a Cartesian

morphism above f as required.

Fibrations 10

This theorem allows us to combine two fibrations to form another, but there are some other

ways to produce fibrations. We recall two methods here, taking the discrete fibration and

taking the product.

Theorem 7. Recall that for any category C the discrete category |C| consists of the objects

of C and only the identity morphisms. Then any functor p : E → B induces another functor

|p| : |E| → |B| defined as the restriction of p to |E|. Moreover, |p| is trivially a fibration,

which we call the discrete fibration on p.

Further, suppose that p is a fibration, and n is a natural number. Then the functor

pn : En → Bn defined by pn(E1, . . . , En) = (pE1, . . . , pE2), is also a fibration.

Proof. It is trivial to see that |p| is a fibration since the only morphisms in the base and the

total category are identity morphisms. Hence, the condition of being a fibration collapses

to being a functor. To see that pn is a fibration, simply compute Cartesian morphisms

component-wise.

Before we look at some examples, we make one more observation about fibrations — they

form a 2-category.

Definition 8 (Fibred Functor and Fibred Natural Transformation). Suppose that p : E → B

and p′ : E ′ → B′ are fibrations. Then a fibred functor F : p→ p′ is given by two functors

F0 : B → B′ and F1 : E → E ′ such that p′ F1 = F0 p and

Cartesian morphisms are preserved, i.e., if f § is a Carte-

sian morphism in E over f in B then F1f is a Cartesian

morphism in E ′ over F0f in B′. We will often denote a

fibred functor F by (F1, F0).

If F ′ : p → p′ is another fibred functor, then a fibred nat-

ural transformation η : F → F ′ is given by two natural

transformations η0 : F0 → F ′
0 and η1 : F1 → F ′

1 such that

p′ η1 = η0 p, in other words η1 is over η0.

E

p′

��

F ′
1

99

F1

%%
ww�η1 E ′

p′

��

B

F ′
0

88

F0

&&
ww�η0 B′

Fibrations 11

Just like the collection of all (small) categories forms a 2-category consisting of categories,

functors and natural transformations, the collection of fibrations, fibred functors and fibred

natural transformations forms a 2-category, which we denote Fib.

2.1 EXAMPLES

Let us now look at a few examples of fibrations. All of these fibrations are well-known

and more detailed descriptions can be found in [4], [5], [6], [7], and [8], as well as in many

other places.

Example 9 (Subobject Fibration). Let C be a category and let Sub(C) denote the category

consisting of subobjects of C and commuting squares. If C has pullbacks of monomorphisms

along arbitrary morphisms, then the functor p : Sub(C) → C, which sends each subobject

to its codomain C, is a fibration called the subobject fibration.

To see that p is a fibration let f : X → Y be a morphism in the

base C, and let s : A ↣ Y be (a representative of) a subobject

of Y . Then the pullback f∗(s) : f∗(A) → X of s along f is also

a monomorphism, see [9], and so the equivalence class of f∗(s)

gives a subobject.

f∗(A)
s∗(f)

//
��

f∗(s)

��

A��

s

��

X
f

// Y

Moreover, s∗(f) : f∗(A) → A is a Cartesian morphism above f by the universal property

of pullbacks.

The case where C is equal to Set is used in Chapter 3 and Chapter 5, so we recall its

specific details.

Example 10 (Subset Fibration). The subobjects in the category Set are given by subsets, and

so we call the functor p : Sub(Set) → Set, which takes a subset A ⊆ X to X, the subset

fibration.

For a function f : X → Y in the base and a subset B ⊆ Y , the Cartesian morphism

f §
B
: f∗B → B above f is given by the restriction of f to the preimage f−1B.

Fibrations 12

For the rest of the fibrations in this section, we will omit the proofs that they are actually

fibrations and instead just describe their basic structure. For more information see the

introductory texts mentioned at the start of this section.

The next example is a generalisation of Example 9. Provided that the category C has

enough structure, then the functor cod : C→ → C which returns the codomain of a mor-

phism, is a fibration.

Example 11 (Codomain Fibration). For any category C we denote the category of morphisms

of C by C→. If C has pullbacks then the codomain functor cod : C→ → C is a fibration.

The Cartesian morphisms of the codomain fibration are given by pullback squares, and

the universal property of Cartesian morphisms is guaranteed by the universal property of

pullbacks.

The example at the beginning of this chapter (on page 6) of indexed sets can be seen as

an example of the codomain fibration, by taking C to be Set.

Example 12 (Indexed Sets). Consider the fibration p : Set→ → Set defined by p (ϕ : A →

I) = I. Then for any function f : J → I in Set and indexed set ϕ : A→ I in Set→ above

I, we have that f∗(ϕ) : f∗(A) → J is given by taking the pullback of ϕ along f .

Another useful fibration is the families fibration.

Example 13 (Families Fibration). Let C be a category. We define category the Fam(C),

which has objects given by pairs (I, f), where I is a set and f is a function I → |C|, and

morphisms (u, α) : (I, f) → (J, g) are given by a function u : I → J in Set and a family of

morphisms αi : f(i) → g(u(i)). Pictorially,

I

α
=⇒f
��
>>

>>
>>

>>
u // J

g
����
��
��
��

C

The families fibration for C is the functor p : Fam(C) → Set defined by p(I, f) = I. For

any morphism u : I → J in Set and any pair (J, g) in Fam(C), reindexing is given by

u∗(J, g) = (I, g ◦ u) and the Cartesian morphism above u is given by (u, id) : (I, g ◦ u) →

(J, g)

Fibrations 13

2.2 EXAMPLES FROM PULLBACKS

We’ve seen that Cartesian morphisms can be pullbacks, such as in Example 9 and Exam-

ple 11, but fibrations can be pullbacks too. In fact, the pullback of a fibration is again a

fibration.

Theorem 14. (Change-of-Base) Let p : E → B be a fibration and

let F : A → B be a functor. Then the pullback of p along F in

Cat, denoted F ∗(p) : F ∗(E) → A is a fibration.

F ∗(E)
p∗(F)- E

A

F ∗(p)

?

F
- B

p

?
Proof. The proof is left as an exercise or alternatively a proof

can be found in [4].

A fibration that is constructed via the pullback of another fibration is said to arise via

change-of-base. Two of the fibrations that we will focus heavily on in this thesis both arise

via change-of-base— the homogeneous relations fibration and the heterogeneous relations

fibration.

As a forewarning, we mention at this point that we will use the same notation for the do-

main of both the homogeneous relations fibration and the heterogeneous relations fibration,

but their uses will be separated by chapters. The heterogenous relations fibration appears

in Chapters 3 and 4, whereas the homogeneous relations fibration appears in Chapter 5.

Example 15 (Homogeneous Relations Fibration). Suppose that

p : E → B is a fibration and _ × _ is a functor B → B defined

by (_ × _)A = A×A on objects, and similarly for morphisms.

Then the homogeneous relations fibration is given by taking the

pullback of p along _ × _.

Rel(E) p∗F - E

B

F ∗p

?

_ × _
- B

p

?

The objects in the fibre above an object B are given by pairs (B,R), where B is an object

of B and R is in the fibre EB×B above B ×B.

One of the main examples of a relations fibration uses the subset fibration Sub(Set) → Set.

In this case the objects of Rel(Sub(Set)) are given by a pair (A,R), where R is a subset

of A × A, i.e., R is a relation on A × A. For a morphism f : A → A′ in the base and a

relation R′ ⊆ A′ × A′, reindexing is given by the relation f∗(R′) = {(a, b) | (fa, fb) ∈ R′}

Fibrations 14

on A × A. Later in this thesis we will also be interested in the relations fibration as a

bifibration and so we also note that for a relation R ⊆ A×A opreindexing is given by the

relation Σf = {(fa, fb) | (a, b) ∈ R} on A′ ×A′.

We can also describe a heterogeneous version of the homogeneous relations bifibration, and

again this arises via change-of-base.

Example 16 (Heterogeneous Relations Fibration). Suppose that

p : E → B is a fibration and × is the product functor

B × B → B defined by (×)(A,B) = A × B and similarly

for morphisms. Then the heterogeneous relations fibration is

given by change-of-base along × .

Rel(E) p∗F - E

B × B

F ∗p

?

_ × _
- B

p

?

Again instantiating this to the subset fibration gives the archetypal example, where objects

in the relations fibration above a pair of sets (A,B) are given by heterogeneous relations

((A,B), R), where R ⊆ A×B. For a morphism (f, g) : (A,B) → (A′, B′) in the base and

a relation R′ ⊆ A′×B′, reindexing is given by the relation (f, g)∗(R′) = {(a, b) | (fa, gb) ∈

R′} on A×B, and for a relation R ⊆ A×B opreindexing is given by Σ(f,g)R = {(fa, gb) |

(a, b) ∈ R}.

We will normally call the homogeneous relations fibration and the heterogeneous relations

fibrations simply the relations fibration, only saving the words homogeneous and heteroge-

neous for when it is not clear from context which we mean or an emphasis is required.

2.3 FIBRATIONS WITH STRUCTURE

Throughout this thesis we will use fibrations to give the semantics of type theories and

to provide descriptions of parametricity in each setting. This will require fibrations with

extra structure, and so we introduce a few more basic definitions.

Definition 17 (Bicartesian Closed). Let p : E → B be a fibration. We say that p is bicartesian

closed if for every object B in the base B, the fibre EB is a Cartesian closed category

with finite coproducts, and each reindexing functor preserves products, coproducts and

exponentials.

Fibrations 15

To be explicit, we say that each reindexing functor preserves the bicartesian closed structure

if for any morphism f : A → B in the base B, and any two objects E,E′ in the fibre EB
above B, that f∗(E × E′) ∼= f∗E × f∗E′, f∗(E ⇒ E′) ∼= f∗E ⇒ f∗E′, and f∗(E + E′) ∼=

f∗E + f∗E′, where the ×, ⇒, and + on the left-hand side denote the bicartesian closed

structure in EB , and on the right-hand side the bicartesian closed structure in EA .

A bicartesian closed fibration with finite products in the base category can be used to

give semantics to a Simply Typed λ-Calculus with coproducts and type variables. Type

contexts are interpreted using the finite products in the base, and the types and terms

are interpreted in the fibres above the contexts in which they are defined using the fibred

bicartesian closed structure. This correspondence is well-known and more details can be

found in, for example [10].

To extend the interpretation of the Simply Typed λ-Calculus to a calculus with polymor-

phism, we must be able to interpret the universal quantification of types. One categorical

description uses simple products, which has the Beck-Chevalley condition as part of its

definition.

Definition 18 (Beck-Chevalley for Products). Let p : E → B be a

fibration with products and suppose that we have this pullback

square on the right. Further, denote the right adjoints of h∗

and g∗ by h∗ ⊣ ∀h and g∗ ⊣ ∀g. Then we say that the Beck-

Chevalley condition is satisfied if there is a natural isomorphism

∀hf∗ ∼= j∗∀g.

A
h - C

B

f

?

g
- D

j

?

Pictorially, we can describe the Beck-Chevalley condition for products as follows.

ED
j∗

//

g∗

��

⊢

EC

h∗

��

⊢

EB f∗
//

∀g

XX

EA

∀h

XX

Fibrations 16

Definition 19 (Products). Let p : E → B be a fibration with products in the base category.

For an object B in the base B, we say that p has B-products if for any object X in the base

B, reindexing by the projection morphism πX : X × B → X has a right adjoint π∗
X

⊣ ∀X
satisfying the Beck-Chevalley condition. If p has B-products for all objects B in B, then

we say that p has simple products. And finally, we say that p has products if there exists

a right adjoint f∗ ⊣ ∀
f

for all morphisms f : A → B in the base B, that satisfies the

Beck-Chevalley condition.

Finally, by combining a few of these definitions we reach the important notion of a λ∀-

fibration.

Definition 20 (λ∀-Fibration). Let p : E → B be a fibration. We say that p is a λ∀-fibration

if it is a bicartesian closed fibration with simple products.

All of the fibrations of interest in this thesis will be λ∀-fibrations, as they contain all of

the structure that we will need to produce categorical models. It is well-known that λ∀-

fibrations give a categorical model of the fragment of first-order logic without existential

quantifiers [4].

Let’s have a look at a λ∀-fibration in action by revisiting the subset fibration.

Example 21. The subset fibration p : Sub(Set) → Set is a λ∀-fibration.

First notice that for any set X every morphism in the fibre above X is a restriction of the

identity function. Hence, for two subsets A ⊆ X and B ⊆ X we have that there exists a

morphism f : A → B in the fibre above X if, and only if, A ⊆ B. With this in mind, let

X be a set, then the bicartesian closed structure of Sub(Set)X is given as follows.

Terminal and Initial Objects: The terminal object is given by the subset X ⊆ X.

Clearly any object in the fibre above X is a subset of X by definition, and all morphisms

are unique. The initial object is given by the empty subset ∅ ⊆ X.

Products and Coproducts: For two subsets A ⊆ X and B ⊆ X the product in the

fibre Sub(Set)X is given by (A ⊆ X) ×
Sub(Set)X

(B ⊆ X) = (A ∩ B) ⊆ X. We have projection

morphisms since A ∩ B ⊆ A and A ∩ B ⊆ B, and the universal property of products is

Fibrations 17

satisfied since any set that is a subset of both A and B is also a subset of A ∩ B. By

making the dual arguments we see that the coproduct of two subsets A ⊆ X and B ⊆ X in

the fibre Sub(Set)X is given by (A ⊆ X) +
Sub(Set)X

(B ⊆ X) = (A ∪B) ⊆ X.

Exponential Objects: For two subsets A ⊆ X and B ⊆ X their exponential in Sub(Set)X
is given by (A ⊆ X) ⇒

Sub(Set)X
(B ⊆ X) =

(
(X \ A) ∪ B

)
⊆ X. To see that this is really an

exponential we must show that Hom(A ∩ B,C) ∼= Hom(A, (X \ B) ∪ C) in the fibre

above X. Or equivalently, that A ∩ B ⊆ C if, and only if, A ⊆ (X \ B) ∪ C. To this

end, first suppose that A ∩ B ⊆ C. Then by taking a union on both sides we have that

(X\B)∪(A∩B) ⊆ (X\B)∪C, and clearly A ⊆ (X\B)∪(A∩B). Hence, A ⊆ (X\B)∪C by

transitivity. Conversely, suppose that A ⊆ (X \B)∪C. Then A∩B ⊆
(
(X \B)∪C

)
∩B,

and clearly
(
(X \ B) ∪ C

)
∩ B = C ∩ B which is a subset of C. Hence by transitivity

A ∩B ⊆ C as required.

Finally, since Set has finite products it only remains to show the existence of simple

products.

Simple Products: Suppose that πX : X × Y → X is a projection morphism, and that A

is a subset of X × Y . Then the right adjoint to reindexing along πX , denoted ∀π, is given

by ∀π(A) = {x | ∀y ∈ Y (x, y) ∈ A}. To see this is actually a right adjoint we refer the

reader to [11].

Though we won’t use this fact its also worth noting that there exists a left adjoint ∃π, which

corresponds to existential quantification (∃π)A = {x | ∃y ∈ Y (x, y) ∈ A}.

The subobject fibration is such that provided the base category has enough structure then

it is always a λ∀-fibration.

Theorem 22. Suppose that B is a bicartesian closed category with finite limits. Then the

subobject fibration Sub(B) → B has simple products.

It is also worth noting that the families fibration over Set is a λ∀-fibration.

Theorem 23. The families fibration p : Fam(Set) → Set is a λ∀-fibration.

Fibrations 18

Proofs to both Theorem 22 and Theorem 23 can be found in e.g. [4]. We will finish

this section with a few theorems about fibrations with structure. First we look at the

composition of two bicartesian closed fibrations, which is bicartesian closed fibration if

there exists appropriate simple products.

Theorem 24. Suppose that q : A → B and p : B → C are bicartesian

closed fibrations and let u : A → C denote the composite p ◦ q (hence

u is also a fibration). Then if q has simple products, u is bicartesian

closed.

A
q - B

C

p

?

u

-

Proof. Let C be an object in the base C, and let A and A′ be objects in the fibre AC , i.e.,

uA = C and uA′ = C, then the bicartesian structure is given as follows.

Terminal and Initial Objects: To find the terminal object in AC , first let 1B
C

denote

the terminal object in the fibre BC , which exists since p is a bicartesian closed fibration.

Then the terminal object in AC is given by the terminal object in the fibre above 1B
C

,

which exists since q is bicartesian closed. The initial object is similarly given by the initial

object in the fibre above ∅B
C

.

Products and Coproducts: Since p is a bicartesian closed fibration, we have the fibred

product qA× qA′, and the projection morphisms π1 : qA× qA′ → qA and π2 : qA× qA′ →

qA′, in the fibre BC . The fibred product of A and A′ is given by π∗1A × π∗2A
′ in the

fibre A
qA×qA′ , which exists since q is a bicartesian closed fibration. Similarly, the fibred

coproduct ofA andA′ is given by ι∗1A+ι∗2A′, where ι1 and ι2 denote the injection morphisms

ι1 : qA→ qA+ qA′ and ι2 : qA
′ → qA+ qA′ respectively.

Exponential Objects: Since p is a bicartesian closed fibration, we have the fibred ex-

ponential qA ⇒ qA′ in BC , the evaluation morphism ev : (qA ⇒ qA′) × qA → qA′, and

the projection morphism π2 : (qA ⇒ qA′) × qA → qA. Note also that since q has sim-

ple products, reindexing by the projection π1 : (qA ⇒ qA′) × qA → (qA ⇒ qA′) has a

right adjoint π∗1 ⊣ ∀π1 . Putting this all together, the fibred exponential A ⇒ A′, is given

by ∀π1(π∗2A ⇒ ev∗A′), which exists since q is a bicartesian closed fibration with simple

products.

Fibrations 19

λ∀-fibrations are not closed under composition in general either, we need a stronger condi-

tion on one of the fibrations to ensure the existence of simple products for a composition.

Theorem 25. Suppose that q : A → B and p : B → C are fibrations, and let u : A → C

denote the composite u = p ◦ q, as in Theorem 24. Suppose further that p has simple

products. Then u has simple products that are preserved by q if and only if for any projection

morphism π : p(B) × Y → p(B) in C, the reindexing functor (π§
p(B)

)∗ : AB → A
π∗(B)

has

right adjoints for all B ∈ B, satisfying the Beck-Chevalley condition.

Proof. This theorem is proven by using the factorisation and lifting properties of the 2-

category Fib as outlined by Hermida in [12].

Unlike composition, change-of-base of fibrations with structure is easy. Both bicartesian

closed fibrations, and fibrations with simple products are closed under change-of-base along

a product preserving functor.

Theorem 26. Suppose that p : E → B is a λ∀-fibration, A is

a category with finite products, and F : A → B is a product

preserving functor. Then the pullback of p along F , denoted

F ∗(p) : F ∗(E) → A, is a λ∀-fibration.

F ∗(E)
p∗(F)- E

A

F ∗(p)

?

F
- B

p

?

Proof. Recall that F ∗(E)A ∼= EFA . Since each fibre in F ∗(E) is a fibre in E it is bicartesian

closed and the structure is preserved by reindexing. By definition A has finite products

and so all that remains to show is the existence of simple products.

Let πA : A×B → A be a projection morphism in A. Then the right-adjoint to reindexing

along πA , denoted ∀A : (F ∗E)A×B → (F ∗E)A , is given by ∀A(A × B,E) = (A, ∀
F (A)

E),

where ∀
F (A)

: E
F (A)×F (B)

→ E
F (A)

is the right adjoint to reindexing along F (πA) : F (A) ×

F (B) → F (A), which exists because p has simple products. Notice that we used product

preservation to ensure that F (πA) is also a projection morphism.

An interesting class of fibrations with simple products has functors as objects in the total

category. Let S be a category (typically S = Set), and consider the category Cat//S. The

Fibrations 20

objects of Cat//S are pairs (C, P : C → S), where C is a small category and P : C → S

a functor. Morphisms (F, ϕ) : (C, P) → (D, Q) are pairs of a functor F : C → D and a

natural transformation ϕ : P → Q ◦ F . The projection functor (C, P) 7→ C is a fibration

Cat//S → Cat. The fibre over a small category C is the category [C,S] of functors C → S

and natural transformations between them. Reindexing is given by precomposition of

functors.

Theorem 27. If S has all small limits then the fibration Cat//S → Cat has simple products.

This result appears in the literature (see e.g. Lawvere [13, end of §3], Melliès and Zeil-

berger [14]), but its construction is important in Chapter 5 so we will sketch it here.

Proof Sketch. For any functor F : C → D, the reindexing functor F ∗ : SD → SC has a right

adjoint F∗ : SC → SD given by the right Kan extension along F ,1 which exists when S has

limits. For simple products, we are only interested in a right adjoint to weakening, i.e. in

the functor ∀C : SC×D → SC which is the right Kan extension along the projection functor

πC : C×D → C. Expanding the definitions, we see that ∀C(P) : C → S is a point-wise limit:

(∀C P)(c) = lim
d∈D

P (c, d) . (2.1)

The Beck-Chevalley condition requires that the canonical map F ∗∀C′ → ∀C(F × idD)
∗ is a

natural isomorphism for all functors F : C → C′, which is satisfied since for any functor

P : C × D → S and any object c ∈ C,

(F ∗(∀C′ P))(c) = (∀C P)(F (c)) ∼= lim
d∈D

P (F (c), d) = lim
d∈D

(((F × idD)
∗(P))(c, d))

∼= (∀C((F × idD)
∗(P))(c) as required.

1For a refresher on Kan extensions see [9].

Fibrations 21

2.4 GROUP ACTIONS

To finish this chapter we look will recall some basic properties about group actions, as well

as introducing one more fibration in Section 2.5. This section will provide the prerequisite

knowledge of group actions that we will require in Chapter 4 and Chapter 5.

Definition 28 (Group Action). Let A be a set, and G be a group. A group action on A is

given by a function ·A : G× A→ A such that the following two conditions hold for every

element a in the set A, and every pair of elements σ and π in the group G.

e ·A a = a (Identity)

σ ·A (π ·A a) = (σπ) ·A a (Compatibility)

Note that in the compatibility equation σπ denotes the multiplication in the group G of

π by σ. We call a set A equipped with a group action ·A : G×A→ A a G-set, and denote

it by (A, ·A), or simply A. We say that a function f : A→ B between G-sets (A, ·A) and

(B, ·B) is an equivariant map if the group action is preserved, i.e., f(π ·A a) = π ·B (fb) for

any elements a in A, and π in G.

Theorem 29. Let G be a group. The collection of G-sets and equivariant maps between

them forms a category.

An alternative view of G-sets and equivariant maps can be given as follows. Given a group

G, we write G (with a different font) for the corresponding one-element category, which has

morphisms given by elements of G and composition given by group multiplication. Then a

G-set is simply a functor ϕ : G → Set and an equivariant map is a natural transformation.

The collection of functors ϕ : G → Set and natural transformations between them forms

the functor category [G,Set], which is a presheaf category and hence comes equipped with

structure such as Cartesian closure. This category is isomorphic to the category of G-sets

above.

In this thesis we will jump between these two views of G-sets. We will denote ϕ(⋆) by |ϕ|

for the underlying carrier set of a G-set ϕ : G → Set, and we will use [G,Set] to denote

Fibrations 22

both the category of G-sets viewed as functors as well as the category of G-sets viewed as

sets with group actions.

Since we will make use of the bicartesian closed structure of [G, Set], we spell it out here.

Terminal and Initial Object: The terminal object in [G, Set] is given by the one object

set 1 and the trivial action π ·1 ∗ = ∗, where ∗ denotes the canonical element of 1. The

initial object in [G, Set] is given by the empty set ∅.

Products and Coproducts: Let (A, ·A) and (B, ·B) be G-sets, then their product

(A × B, ·A×B) is given by taking the product in Set and assigning the point-wise group

action, i.e., for any π in G and (a, b) in A × B, the action is given by π ·A×B (a, b) =

(π ·A a, π ·B b). For any two G-sets (A1, ·A1
) and (A2, ·A2

) the coproduct (A1+A2, ·A1+A2
)

is given by the disjoint union A1 + A2 = {(i, a) | i ∈ {1, 2} and a ∈ Ai} with the action

π ·A1+A2
(i, a) = (i, π ·Ai a).

Set-Indexed Products: Suppose that {(Ai, ·Ai)}i∈I is an I-indexed collection of G-sets,

for some set I. Then the product
∏
i∈I(Ai, ·Ai) is given by taking the product in Set and

the action is given point-wise, i.e., for for any π in G and f in
∏
i∈I Ai the action is given

by π ·∏ f = λi.(π ·Ai fi).

Exponential Objects: Let (A, ·A) and (B, ·B) be G-sets, then the exponential is given

by the set A⇒ B = {f : A→ B} and the action π ·⇒ f = λa. π ·B f(π−1 ·A a). Notice that

the elements of A⇒ B are not equivariant maps, but are merely functions i.e., morphisms

in Set. Every equivariant map is an element of the exponential, but not every element in

the exponential is equivariant.

Though the category of G-sets has lots of nice properties, one that it is missing is well-

pointedness. Recall the following definition.

Definition 30 (Well-Pointed Category). Let C be a category with a terminal object 1. We

say that C is well-pointed if for any pair of non-equal morphisms f, g : X → Y in C, there

exists a morphism u : 1 → X such that f ◦ u ̸= g ◦ u.

To see that the category of G-sets is not well-pointed, notice that by equivariance any

morphism u : 1 → A satisfies π ·A u(∗) = u(∗) for all π in G. This means that there must

Fibrations 23

be an element a of A such that π ·A a = a for all π. In many situations this does not occur

and there are no morphisms 1 → A. For example, consider the integers under addition.

2.5 THE GRP-SET FIBRATION

By collecting all of the categories of G-sets together we can define the category Grp//Set.

Definition 31 (Grp-Set Category). The category Grp//Set has as objects pairs (G,A) where

G is a group and A is a G-set. A morphism (G,A) → (H,B) in Grp//Set is given by a

group homomorphism ϕ : G→ H and a function f : A→ B such that for any π ∈ G and

a ∈ A we have f(π ·A a) = (ϕπ) ·B (fa).

Definition 32 (Grp-Set Fibration). Let Grp be the category of groups and homomorphisms.

Then there is a projection functor Grp//Set → Grp defied by (G,A) 7→ G. This functor is

λ∀-fibration, which we call the Grp//Set fibration.

Theorem 33. The Grp//Set fibration is a λ∀-fibration.

Proof. For any group G, the fibre above G is the category [G, Set] and hence each fibre

is bicartesian closed with the structure outlined on Page 22. Reindexing preserves the

bicartesian closed structure by definition. There is a product-preserving, full and faithful

functor Grp → Cat, taking a group to the corresponding one-object category, and the

fibration Grp//Set → Grp is given by the pullback of the fibration Cat//Set → Cat along

this embedding Grp → Cat. Therefore, by Theorem 26 and Theorem 27, Grp//Set → Grp

has simple products.

Now that we have introduced and studied a good collection of fibrations, we have the

categorical knowledge required for the rest of this thesis.

CHAPTER 3

PARAMETRICITY
This chapter looks at relational parametricity for System F using some basic fibrational

category theory. We will take Reynolds’s relational semantics as originally stated in [1]

and express it in terms of fibrations. This will allow us to make use of general categorical

properties to help understand the underlying structure. Reynolds’s constructions fit per-

fectly within the relations fibration and so do the main results of parametricity, namely

The Abstraction Theorem and The Identity Extension Lemma.

One general formulation of Reynolds’s relational parametricity has been developed by this

author and his collaborators in [2]. In that paper, we provided a bifibrational framework for

parametric models of System F, and then showed that we could derive expected properties

such as the existence of initial algebras and final coalgebras. The results in that paper

mean that the mathematics in this chapter is simply a concrete example of a bigger and

more general picture. However, to introduce all of the machinery required to tell that

story would detract from the main narrative of this thesis. Instead, we will focus solely on

the concrete example of the relations fibration, which will provide the necessary insights

for treading the unfamiliar path of parametricity with G-sets in Chapter 4. We begin by

recalling System F.

24

Parametricity 25

3.1 SYSTEM F

In this section we introduce the syntax of System F. Everything that we introduce in

this section is standard and well-known, and so we will not dwell on the details, instead

we refer the reader to Pierce’s Types and Programming Languages for a comprehensive

introduction [15, Chapter 18].

System F was developed independently by Girard in 1972 [16] and Reynolds in 1974 [17].

It has the same basic constructions as the Simply Typed λ-Calculus, but with the addition

of polymorphism, which is introduced using the binder “∀”. The type ∀X.T , where T is

also a type which may refer to X, contains terms that can be instantiated at types, which

we call polymorphic terms.

One example is the identity function. In the Simply Typed λ-Calculus there is no way to

uniformly define this function for all types, instead we have to define identity functions

for each type. In System F however, we can write ΛX.λx : X.x : ∀X.X → X to denote

the polymorphic identity function. The symbol X represents a type variable, which we can

instantiate at a type to obtain the identity function for that type, i.e.,

(ΛXλx : X.x : ∀X.X → X)[T] = λx : T.x : T → T ,

where T is a type. We use square brackets to emphasise that we are performing type

application and not term application.

Formally, the syntax of System F is given as follows.

Type Contexts and Types: A type context ∆ is a finite list of distinct type variables

X1, . . . , Xn. A well-formed type is given by a judgement of the form ∆ ⊢ T Type, where

∆ is a type context. The type judgements are generated by the following rules.

Parametricity 26

SYSTEM F TYPES

X1, . . . , Xn ⊢ Xi Type for 1 ≤ i ≤ n TYPE VARIABLES

∆ ⊢ T1 Type ∆ ⊢ T2 Type
∆ ⊢ T1 → T2 Type ARROW TYPES

∆, X ⊢ T Type
∆ ⊢ ∀X.T Type FORALL TYPES

Base types or other type constants ∆ ⊢ C Type can be added to the language if desired.

We consider two types equivalent if they are α-convertible, i.e. if they are equal after a

renaming of bound variables (in a capture-avoiding way).

Term Contexts and Terms: Well-formed term contexts are given by judgements ∆ ⊢ Γ,

where ∆ is a type context, Γ is of the form x1 : T1, . . . , xn : Tn, and there is a well-formed

typing judgement ∆ ⊢ Ti Type for every i. Well-formed terms are given by judgements

∆;Γ ⊢ t : T , where ∆ ⊢ Γ is a well-formed term context and ∆ ⊢ T Type is a well-formed

type. The term judgements are generated by the rules below.

SYSTEM F TERMS

∆;x1 : T1, . . . , xn : Tn ⊢ xi : Ti for 1 ≤ i ≤ n VARIABLES

∆;Γ, x : T1 ⊢ t : T2
∆;Γ ⊢ λx.t : T1 → T2

ABSTRACTION

∆;Γ ⊢ f : T1 → T2 ∆;Γ ⊢ t : T1
∆;Γ ⊢ ft : T2

APPLICATION

∆, X; Γ ⊢ t : T
x /∈ Γ

∆;Γ ⊢ ΛX.t : ∀X.T
TYPE ABSTRACTION

∆;Γ ⊢ t : ∀X.T ∆;Γ ⊢ U
∆;Γ ⊢ t[U] : T [U/X]

TYPE APPLICATION

Parametricity 27

Type abstraction requires that X does not appear in Γ. Capture-free substitution of the

type U for the free occurrences of X in the type T is denoted T [U/X]. Term constants

∆;Γ ⊢ c : C can be added if desired. We have standard notions of α and β-conversion,

and additionally we have η and ξ-rules so that we can derive extensionality for functions

and type abstractions.

SYSTEM F CONVERSION RULES

(αλ)
Γ;∆ ⊢ λx. t = λy. t[y/x] : T1 → T2

(αΛ)
Γ;∆ ⊢ ΛX. t = ΛY. t[Y /X] : ∀X.T

(βλ)
Γ;∆ ⊢ (λx. t) s = t[s/x] : T2

(βΛ)
Γ;∆ ⊢ (ΛX. t)[A] = t : T [A/X]

x /∈ FV (t)
(ηλ)Γ;∆ ⊢ t = λx. t x : T1 → T2

X /∈ FTV (t)
(ηΛ)Γ;∆ ⊢ t = ΛX. tX : ∀X.T

Γ;∆,⊢ t1 = t2 : T1 → T2 Γ;∆,⊢ s1 = s2 : T1 congλ
Γ;∆ ⊢ t1 s1 = t2 s2 : T2

Γ;∆,⊢ t1 = t2 : ∀X.T congΛ
Γ;∆ ⊢ t1A = t2A : T [A/X]

Γ;∆, x : T1 ⊢ t1 = t2 : T2 (ξλ)Γ;∆ ⊢ λx. t1 = λx. t2 : T1 → T2

Γ, X;∆ ⊢ t1 = t2 : T (ξΛ)Γ;∆ ⊢ ΛX. t1 = ΛX. t2 : ∀X.T

(refl)
Γ;∆ ⊢ t = t : T

Γ;∆ ⊢ t = s : T
(sym)

Γ;∆ ⊢ s = t : T

To finish this section we give the typing derivation of the polymorphic identity type.

Example 34. The polymorphic identity function is typed using the variable, λ-abstraction

and type abstraction rules.
X;x : X ⊢ x : X

X ⊢ λx.x : X → X
⊢ ΛX.λx.x : ∀X.X → X

Parametricity 28

3.2 SEMANTICS

For the semantics of System F we want to capture a uniform notion of polymorphism

(forall types). As first described by Strachey [18], there are two type of polymorphism —

parametric polymorphism and ad-hoc polymorphism. Intuitively, a parametrically poly-

morphic program should act the same way for all data types, and an ad-hoc one does not

have this constraint.

For example, the constant function K : ∀X.∀Y.X → Y → X, which is defined by

K[X][Y](x)(y) = x, can be given with no specific knowledge of X and Y . The pro-

gram never needs to inspect the data types — it does not matter if X or Y are integers,

floats, colours or letters, the program still acts in the same way.

In contrast, the addition function + may be definable for all data types in your language,

but its definition (usually) depends on the data that is being “added”. The expression

x + y for integers can be defined to mean “numerically add x to y”, but for strings may

mean “append y on to the the end of x”. By defining a function + : ∀X.X → X → X

that adds integers numerically, appends strings, and is constant elsewhere (i.e. Λ.λx.λy),

we would have a polymorphic function ∀X.X → X → X. However, this function does

not act uniformly for all data types, and so defines an ad-hoc polymorphic program, not

a parametric one.

Intuitively, parametric polymorphism is easy to understand, but not so easy to semantically

characterise. Reynolds’s crucial insight was to notice that parametrically polymorphic pro-

grams preserve relations, and hence relational parametricity was born [1]. By requiring

that the semantics of forall types satisfies a uniformity condition expressed using relations,

Reynolds was able to capture semantic properties about parametrically polymorphic func-

tions.

In Section 3.2.1 and Section 3.2.2 we give a relational semantics to System F using the

heterogeneous relations fibration Rel(p) : Rel → Set× Set. The definitions that we provide

are analogous to those given by Reynolds but have a fibrational flavour. This means that

they generalise beyond sets and relations to fibrations with sufficient structure [2].

Parametricity 29

It’s worth noting that after Reynolds’s original paper he published the result that Poly-

morphism is Not Set Theoretic [19]. This is due to a contradiction that arises similar in

nature to Cantor’s Paradox. But just like with Cantor’s paradox it is possible avoid para-

doxical issues by using the (intuitionistic) internal language of [20] or using the Calculus

of Constructions [21] with impredicative Set. We leave that choice to the reader.

3.2.1 THE SEMANTICS OF TYPES

This subsection introduces the semantics of types. This will require the equality relation,

so we recall it now.

Definition 35 (Equality Relation on Sets). Let A be a set. We define the equality relation on

A as the relation given by EqA = {(a, a) | a ∈ A} ⊆ A×A.

The semantics of types is given as follows. Let ∆ = X1, . . . , Xn be a type context. Further,

let A and B denote n-tuples of sets (A1, ..., An) and (B1, ..., Bn) in |Set|n and let R denote

an n-tuple of relations (R1, ..., Rn) in |Rel|n such that Ri ⊆ Ai × Bi for i ∈ {1, ..., n}. We

denote this relationship by R ⊆ A × B and write the collection of relations on A × B by

Reln(A,B).

We give the interpretation of types as fibred functors

(J∆ ⊢ T TypeKr , J∆ ⊢ T TypeKo × J∆ ⊢ T TypeKo) : |Rel(p)||∆| → Rel(p),

which we denote by J∆ ⊢ T TypeK. We will often refer to J∆ ⊢ T TypeKo as the standard

semantics and J∆ ⊢ T TypeKr as the relational semantics. Before we give the definition

of this fibred functor, first note that since the domain of J∆ ⊢ T TypeK is a discrete

category, requiring that J∆ ⊢ T TypeK is a fibred functor amounts simply to requiring that

Parametricity 30

Diagram 3.1 commutes, i.e., no preservation of Cartesian morphisms is required.

|Rel||∆| J∆ ⊢ T TypeKr - Rel

|Set||∆| × |Set||∆|

|Rel(p)||∆|

?

J∆ ⊢ T TypeKo × J∆ ⊢ T TypeKo- Set × Set

Rel(p)

?

(3.1)

The use of discrete categories is reflected in Reynolds’s original approach [1], since he does

not give a functorial action of types on morphisms. Parametricity treats the action on

morphisms via graph relations, which we will see in Section 3.3.

Returning to the definition, the fibred functor J∆ ⊢ T TypeK : |Rel(p)||∆| → Rel(p) is given

inductively as follows.

Type Variables: The type variables are interpreted as projections, so that we haveJ∆ ⊢ Xi TypeKoA = Ai and J∆ ⊢ Xi TypeKrR = Ri.

Arrow Types: Both the standard semantics and the relational semantics of arrow types

are given by exponential objects, i.e., J∆ ⊢ T → UKoA = J∆ ⊢ T KoA ⇒ J∆ ⊢ UKoA, andJ∆ ⊢ T → UKrR = J∆ ⊢ T KrR ⇒ J∆ ⊢ UKrR. Recall that the exponential J∆ ⊢ T KrR ⇒J∆ ⊢ UKrR is given by {(f, g) | ∀(a, b) ∈ J∆ ⊢ T KrR, (fa, gb) ∈ J∆ ⊢ UKrR}. Hence, we

see a fundamental idea of Reynolds’s relational parametricity, that related inputs map to

related outputs.

Forall Types: Inhabitants of forall types must be parametrically polymorphic, and so we

see that a uniformity condition is imposed. For a function f in
∏
S∈Set FS where FS is

some expression, we denote the application of f to a set A by fA . The standard semanticsJ∆ ⊢ ∀X.T KoA is given by

{f :
∏

S ∈Set
J∆, X ⊢ T Ko(A, S) | ∀R ⊆ A×B, (fA , fB) ∈ J∆ ⊢ T Kr(EqnA, R)},

and the relational semantics J∆ ⊢ ∀X.T KrR ⊆ J∆ ⊢ ∀X.T KoA × J∆ ⊢ ∀X.T KoB is defined

by J∆ ⊢ ∀X.T KrR = {(f, g) | ∀R ⊆ A×B, (fA , fB) ∈ J∆ ⊢ T Kr(R, R)}.

Parametricity 31

In other words, two parametric functions are related if they map related inputs to related

outputs. The standard and relational semantics rely crucially on each other, and must

be defined simultaneously. The definition of J∆ ⊢ ∀X.T KoA contains J∆ ⊢ T Kr(EqnA, R)

and the definition of J∆ ⊢ ∀X.T Kr is a relation on J∆ ⊢ ∀X.T KoA × J∆ ⊢ ∀X.T KoB. This

means that instead of providing one set-based semantics and one relational semantics, we

really are defining a single semantics based on the relations fibration Rel → Set × Set.

Theorem 36. The interpretation of any type judgement ∆ ⊢ T Type defines a fibred functorJ∆ ⊢ T TypeK : |Rel(p)||∆| → Rel(p), in other words Diagram 3.1 commutes.

Proof. We prove this theorem by structural induction on the type judgements. Each case

requires showing that for any relation R ⊆ A × B, we have that J∆ ⊢ T TypeKrR is a

relation on J∆ ⊢ T TypeKoA × J∆ ⊢ T TypeKoB, which is true by construction.

Types do not just define fibred functors, they in fact define equality preserving fibred

functors. We add an equality subscript J∆ ⊢ T TypeK : |Rel(p)||∆| −→Eq Rel(p) to emphasise

that the type ∆ ⊢ T Type defines an equality preserving functor between the fibrations

|Rel(p)||∆| and Rel(p).

Theorem 37 (Identity Extension Lemma). If ∆ ⊢ T Type then J∆ ⊢ T TypeK is an equality

preserving functor |Rel(p)||∆| −→Eq Rel(p), in other words J∆ ⊢ T TypeKr ◦ |Eq||∆| = Eq ◦J∆ ⊢ T TypeKo.
Proof. The Identity Extension Lemma is proven by induction on the type judgement. To

give a flavour of the proof we show the forall types case, i.e., that J∆ ⊢ ∀X.T TypeKr ◦

|Eq||∆| = Eq ◦ J∆ ⊢ ∀X.T TypeKo , and we leave the rest as a simple exercise.

Suppose that ∆ ⊢ ∀X.T Type is a type, n = |∆|, and A is an n-tuple of sets in |Set|n.

To see that Eq (J∆ ⊢ ∀X.T TypeKoA) ⊆ J∆ ⊢ ∀X.T TypeKr(EqnA), let (f, f) be an

element of Eq (J∆ ⊢ ∀X.T TypeKoA). Then since f ∈ J∆ ⊢ ∀X.T TypeKoA, for any

relation R ⊆ A × B we have that (fA , fB) ∈ J∆, X ⊢ T TypeKr(EqnA, R), and hence

(f, f) ∈ J∆ ⊢ ∀X.T TypeKr(EqnA).

Parametricity 32

For the reverse direction suppose that (f, f ′) is an element of J∆ ⊢ ∀X.T TypeKrEqnA.

Then by definition we have that (fA , f
′
A
) ∈ J∆, X ⊢ T TypeKr(EqnA,EqA) for any set A.

Hence by the induction hypothesis (fA , f
′
A
) ∈ Eq

(J∆, X ⊢ T TypeKo(A, A)), or in other

words fA = f ′
A

, and since A was arbitrary f = f ′ as required.

To end this section we state a Substitution Lemma, which is proven by induction, since

we will require it in the proof of Theorem 39.

Lemma 38 (Substitution Lemma). Let A be an n-tuple of sets in Setn and let R be an

n-tuple of relations in Reln. If ∆, X ⊢ T Type is a type and ∆ ⊢ U is a type then,

J∆, X ⊢ T Ko(A, J∆ ⊢ UKoA) = J∆ ⊢ T [U/X]KoA,

and

J∆, X ⊢ T Kr(R, J∆ ⊢ UKrR) = J∆ ⊢ T [U/X]KrR.

3.2.2 THE SEMANTICS OF TERMS

A term context Γ = x1 : T1, . . . , xn : Tn is interpreted as a product of types, i.e., the

standard semantics is given by J∆ ⊢ ΓKo = J∆ ⊢ T1 TypeKo × · · · × J∆ ⊢ Tn TypeKo and

the relational semantics is given by J∆ ⊢ ΓKr = J∆ ⊢ T1 TypeKr × · · · × J∆ ⊢ Tn TypeKr ,
which defines a fibred functor J∆ ⊢ ΓK : |Rel(p)||∆| → Rel(p).

A term ∆;Γ ⊢ t : T is interpreted as a fibred natural transformation

(J∆;Γ ⊢ t : T Kr , J∆;Γ ⊢ t : T Ko × J∆;Γ ⊢ t : T Ko) : J∆ ⊢ ΓK → J∆ ⊢ T TypeK,
which we denote by J∆;Γ ⊢ t : T K and define inductively as follows.

Let A and B be two n-tuples of sets in |Set|n, let R be a relation on A×B in |Rel|n, and

let (a,b) be an element of R. In what follows below we will often omit the left-hand side

of the turnstile in judgements for ease of presentation, i.e., we will write term contexts

∆ ⊢ Γ simply by Γ, types ∆ ⊢ T Type simply by T , and terms ∆;Γ ⊢ t : T simply by t : T .

Parametricity 33

Variables: The morphism Jxi : TiKoA : JT1KoA × · · · × JTnKoA → JTiKoA is given by the

ith projection morphism, and similarly for Jxi : TiKrR : JT1KrR × · · · × JTnKrR → JTiKrR.

Abstraction: Since Set is a Cartesian closed category, we have a natural isomorphism

ϕ0 : Set(JΓKoA×JT1KoA, JT2KoA) → Set(JΓKoA, JT1KoA ⇒ JT2KoA), and similarly we have

an isomorphism ϕ1 : Rel(JΓKrA× JT1KrA, JT2KrA) → Rel(JΓKrA, JT1KrA ⇒ JT2KrA) since

Rel is Cartesian closed. Hence, we define Jλx.t : T1 → T2K : JΓKoA → (JT1KoA ⇒ JT2KoA)

by ϕ0(J∆;Γ, x : T1 ⊢ t : T2KoA) and similarly we define the morphism Jλx.t : T1 → T2KrR
by ϕ1(J∆;Γ, x : T1 ⊢ t : T2KrR).

Application: Let ev0 denote the evaluation map (JT1KoA ⇒ JT2KoA)× JT1KoA → JT2KoA
and let ev1 denote the evaluation map (JT1KrR ⇒ JT2KrR) × JT1KrR → JT2KrR. Then,

we define the morphism Jft : T2KoA : JΓKoA → JT2KoA by a simple use of the evaluation

map Jft : T2KoAa = ev0(Jf : T1 → T2KoAa, Jt : T1KoAa) for a ∈ J∆ ⊢ ΓKoA. Similarly

we define the relational interpretation J∆;Γ ⊢ ft : T2KrR : J∆ ⊢ ΓKrR → J∆ ⊢ T2KrR
by J∆;Γ ⊢ ft : T2KrRr = ev1(J∆;Γ ⊢ f : T1 → T2KrRr, J∆;Γ ⊢ t : T1KrRr) for any

r ∈ J∆ ⊢ ΓKrR.

Type Abstraction: First notice that from the type abstraction rule we have that J∆, X ⊢

ΓKo(A, A) = J∆ ⊢ ΓKoA for any set A, since X is not free in Γ. Hence, we defineJΛX.t : ∀X.T KoA : JΓKoA → J∀X.T KoA by (JΛX.t : ∀X.T KoAa)A =
(Jt : T Ko(A, A)a),

and the relational interpretation JΛX.t : ∀X.T KrR : JΓKrR → J∀X.T KrR is given byJΛX.t : ∀X.T KrRr = ΛR.
(Jt : T Kr(A, A)a, Jt : T Kr(B, B)b

)
.

To show that the uniformity condition is satisfied in both cases requires a simple use of

the induction hypothesis.

Type Application: We define Jt[U] : T [U/X]KoA : JΓKoA → JT [U/X]KoA by Jt[U] :

T [U/X]KoAa = (Jt : ∀X.T KoAa)(JUKoAa), which is an element of JT Ko(A, JUKoAa) by

definition, and hence an element of JT [U/X]KoA by Lemma 38. Similarly, we define Jt[U] :

T [U/X]KrR : JΓKrR → JT [U/X]KrR by Jt[U] : T [U/X]KrRr = (Jt : ∀X.T KrRr)(JUKrRr).

In summary, we have that every term defines a fibred natural transformation, where the

naturality condition is vacuous because we are working with discrete categories.

Parametricity 34

Theorem 39 (Abstraction Theorem). Every term defines a fibred natural transformation

(J∆;Γ ⊢ t : T Kr , J∆;Γ ⊢ t : T Ko × J∆;Γ ⊢ t : T Ko) : J∆ ⊢ ΓK → J∆ ⊢ T TypeK. Or

pictorially

|Rel|n

|Rel(p)|n

��

T1

66

Γ1

((
ww�t1 Set

Rel(p)

��

|Set|n × |Set|n

T0×T0

55

Γ0×Γ0

))ww�t0×t0 Set × Set

Where we denote J∆ ⊢ ΓKo by Γ0, J∆ ⊢ T TypeKo by T0, and J∆;Γ ⊢ t : T Ko by t0, and

similarly J∆ ⊢ ΓKr , J∆ ⊢ T TypeKr , and J∆;Γ ⊢ t : T Kr by Γ1, T1, and t1.

Proof. We prove this theorem by induction on the derivation of terms ∆;Γ ⊢ t : T . Each

case requires showing that for any n-tuple of relations R ⊆ A × B the interpretationJ∆;Γ ⊢ t : T KrR : J∆ ⊢ ΓKrR → J∆ ⊢ T KrR is over J∆;Γ ⊢ t : T KoA × J∆;Γ ⊢ t : T KoB,

which is trivial by construction. And since the domains of the fibred functors J∆ ⊢ ΓK andJ∆ ⊢ T K are discrete, the interpretation J∆;Γ ⊢ t : T K vacuously defines a fibred natural

transformation J∆ ⊢ ΓK → J∆ ⊢ T K.

3.3 PARAMETRICITY, WHAT IS IT GOOD FOR?

Relational parametricity is a property about the semantics of type systems, and is a cru-

cial technique for formal reasoning about programming languages. The list of uses of

parametricity is vast and varied, but to name just a few, parametricity has been used to

prove compiler correctness [22, 23], privacy guarantees [24], geometric invariance proper-

ties [25], and data type representations [26].

Parametricity 35

One of the most famous examples of parametricity is to generate “free theorems” as shown

in [27]. These theorems are properties that can be shown about terms, knowing only the

type and nothing more, such as the following from [27].

Theorem 40. Suppose that π is a parametric function in J∀X.∀Y.X × Y → XKo. Then for

any two sets A and B, and any two functions f : A→ A′ and g : B → B′

π
A′,B′ ◦ (f × g) = f ◦ πA,B .

Proof. First note that since ∀X.∀Y.X × Y → X is a closed type, the interpretationJ∀X.∀Y.X×Y → XK defines a fibred functor 1 → Rel(p). In other words, the interpretation

is given by a relation J∀X.∀Y.X ×Y → XKr on J∀X.∀Y.X ×Y → XKo × J∀X.∀Y.X ×Y →

XKo
By the semantics of forall types we have that for any two relations R ⊆ A × A′ and

R′ ⊆ B × B′, we have that (πA,B , πA′,B′) ∈ R × R′ → R. Let f : A → A′ and g : B → B′

be functions, and choose R be the graph relation ⟨f⟩ = {(a, fa) | a ∈ A} and R′ to be the

graph relation ⟨g⟩ = {(b, gb) | b ∈ B}. Then, we have that (πA,B , πA′,B′) ∈ ⟨f⟩ × ⟨g⟩ → ⟨f⟩.

Therefore, for any a ∈ A and b ∈ B, we have that
(
πA,B (a, b), πA′,B′ (fa, gb)

)
∈ ⟨f⟩, or in

other words that f
(
πA,B (a, b)

)
= π

A′,B′ (fa, gb). Hence, since a and b were arbitrary we

have the required result.

In the proof of the theorem above we used graph relations, which often turn up during

proofs using parametricity, and we will use them again and again throughout this thesis.

For that reason we dedicate Subsection 3.3.1 to a formal introduction of graph relations.

Another example of a free theorem involves deducing the following isomorphism. Consider

the (closed) System F type ⊢ ∀X.X → X. We know from Example 34 that the polymorphic

identity ΛX.λx.x is a term of that type, but are there any others? The intuitive answer is

no. If I give you a type and a term of that type, there is only one thing that you can do

without inspecting the type, and that is to return it to me (see Chapter 1). Hence, there

should only be one way to define a parametrically polymorphic function of this type, and

indeed our semantics proves this.

Parametricity 36

Theorem 41. Suppose that f is a parametric function in J∀X.X → XKo. Then for any set

A and an element a ∈ A, we have fAa = a.

Proof. By the definition of J∀X.X → XKo , we have that for any relation R ⊆ A×B,

(fA , fB) ∈ R→ R. (3.2)

Choose R to be the relation given by the graph of the function ϕ : 1 → A defined by

ϕ(⋆) = a, or in other words R = {(⋆, a)} ⊆ 1 × A. Then clearly the pair (⋆, a) is an

element of R, and hence Equation 3.2 gives that (f1⋆, fAa) ∈ R, or in other words that

fAa = a, as required.

Theorem 41 shows that there is a surjective function 1 → J∀X.X → XKo defined by ⋆ 7→

ΛA.λa.a, and moreover this function is trivially injective. Hence, we have an isomorphism.

Corollary 42. There is an isomorphism J∀X.X → XKo ∼= 1.

Let’s look at another example. Consider the type ∀X.X → (X → X) → X. This contains

parametric functions that take as input an element of X and a function f : X → X, what

could such a parametrically polymorphic function do?

Theorem 43. Suppose that f is a parametric function in J∀X.X → (X → X) → XKo. Let

A be a set, let a ∈ A, and let g : A → A be a function. Then, fA(a, g) = gna for some

natural number n.

Proof. The proof of this theorem is very similar to the proof of Theorem 41. Let R be the

graph of the function ϕ : N → A defined by ϕ(n) = gna. In other words R = {(n, y) | y =

gna} ⊆ N×A. Then clearly (0, a) ∈ R, and the pair (succ, g) is a relation homomorphism

R → R, where succ : N → N denotes the successor function succ(n) = n + 1. Hence,

the pair (fN(0, succ), fA(a, g)) is related in R, and so by setting n = fN(0, succ), we have

fA(a, g) = gna, as required.

This theorem shows that we have a surjective function N → J∀X.X → (X → X) → XKo
defined by n 7→ ΛA.λa.λg.gna. To see that this function is injective let n and m be natural

Parametricity 37

numbers such that ΛA.λa.λg.gna = ΛA.λa.λg.gma. Then by setting A = N, a = 0, and

g = succ, we have succn(0) = succm(0), or in other words n = m as required. Hence, we

again have an isomorphism.

Corollary 44. There is an isomorphism J∀X.X → (X → X) → XKo ∼= N.

The isomorphisms proven in Corollary 42 and Corollary 44 both allude to a more general

theorem. It turns out that this isomorphism is the result of the universal property of an

initial algebra, which we prove this in Theorem 61.

To reach Theorem 61 we first recall some basic properties about graph relations in Sec-

tion 3.3.1 and of initial algebras in Section 4.4.2.

3.3.1 GRAPH RELATIONS

We used graph relations in both Theorem 41 and Theorem 43. These two theorems are

examples of a more general result which we prove later in this chapter (Theorem 61).

Before we can prove the general result we need to look at graph functors in more detail.

The key result is called the Graph Lemma (Theorem 48) and is often proven by induction

on type derivations. However, here we present the fibrational approach, which relies on

defining the graph of a function both in terms of reindexing and opreindexing.

Definition 45 (Graph Relation on Functions, Concretely). Let f : A → B be a function in

Set. Then the graph relation on f is defined by ⟨f⟩ = {(a, fa) | a ∈ A} ⊆ A×B.

Abstractly, we can characterise the graph relation as follows.

Theorem 46. Let f : A→ B be a function in Set. Then

⟨f⟩ = (f, idB)∗EqB and ⟨f⟩ = Σ(id
A
,f)EqA.

Proof. By Example 16 we have that (f, idB)∗EqB = {(a, b) | (fa, idBb) ∈ EqB}. Hence,

(f, idB)∗EqB = {(a, b) | fa = b} which is clearly equal to ⟨f⟩, and a similar argument

shows that ⟨f⟩ = Σ(id
A
,f)EqA.

Parametricity 38

Since the graph can be defined using the reindexing functor (equivalently the opreindexing

functor) we also have an action on morphisms, which is characterised by the following

theorem.

Theorem 47. Suppose that f : A → B and g : A′ → B′ are functions. Then two functions

α : A → A′ and β : B → B′ define a relation homomorphism (α, β) : ⟨f⟩ → ⟨g⟩ if, and

only if, the following diagram commutes.

A
α - A′

B

f

?

β
- B′

g

?

(3.3)

Proof. Suppose that (a, fa) in ⟨f⟩. Then we have that (α, β)(a, fa) = (αa, βfa) is an

element of ⟨g⟩ if, and only if, βfa = gαa, as required.

Graph relations interact very nicely with the semantics of System F, since types define

graph preserving functors. This is a well-known result that is normally proven using

induction, but here we are able to prove it fibrationally.

Theorem 48 (Graph Lemma). Suppose (T1, T0 × T0) : Rel(p) −→Eq Rel(p) is an equality

preserving fibred functor. Then for any function f : A→ B we have T1⟨f⟩ = ⟨T0f⟩.

Proof. First note that we have a Cartesian morphism (T0f, idT0B) : ⟨T0f⟩ → EqB by the

definition of ⟨T0f⟩ and a morphism T1(f, idB) : T1⟨f⟩ → T1(EqY) by the definition of

⟨f⟩ and the functoriality of T . Additionally Eq(T0B) = T1(EqB) since (T1, T0 × T0) is

an equality preserving functor. Then since (T0f, idT0B) is a Cartesian morphism and the

following diagram commutes,

T0A× T0B
(T0f, idT0B)- T0B × T0B

T0A× T0B

(idT0A , idT0B)

?

(T0f, idT0B)
- T0B × T0B

=

?

Parametricity 39

we have a unique map (idT0A , idT0B) : T1⟨f⟩ → ⟨T0f⟩. Hence, T1⟨f⟩ ⊆ ⟨T0f⟩.

By using the definition of the graph of a function using opreindexing we can dualise these

arguments to conclude that ⟨T0f⟩ ⊆ T1⟨f⟩, and hence T1⟨f⟩ = ⟨T0f⟩, as required.

Notice that in the Graph Lemma the codomain of the fibred functor (T1, T0 × T0) :

Rel(p) −→Eq Rel(p) is not discrete. This was needed to obtain a morphism T1(f, idB) :

T1⟨f⟩ → T1(EqY) and was crucial to the proof. When we come to use the Graph Lemma

later, we will ensure that we are working with types that define fibred functors on non-

discrete domains by only working with functorial type expressions (Definition 57).

3.3.2 INITIAL ALGEBRAS

Throughout functional programming inductive data types can be seen in abundance. The

most common examples are natural numbers, lists and trees. Categorically, the construc-

tion of inductive data types is given by defining an initial algebra.

In the literature there are several proofs of the existence of initial algebras in parametric

models, see, e.g., example [28, 29] and a general fibrational approach [2] developed by the

author of this thesis as part of collaborative work. We will not recount the fibrational

approach in full generality but instead specialise it to within the relations fibration. But

before we reach that point, we first recall some basic properties about initial algebras,

beginning with the definition.

Definition 49 (Algebra). Let F : C → C be an endofunctor. Then an F -algebra is a pair

(A, k) where A is an object in C and k : FA→ A is a morphism in C. We call A the carrier

of the F -algebra and k the structure map.

Definition 50 (Algebra Homomorphism). For any two F -algebras (A, k) and (A′, k′), an F -

algebra homomorphism (A, k) → (A′, k′) is a morphism f : A → A′ in C such that the

Parametricity 40

following diagram commutes.

FA
Ff- FA′

A

k

?

f
- A′

k′

?

Definition 51 (Initial Algebra). We say that an F -algebra (A, k) is an initial F -algebra if for

any F -algebra (A′, k′) there exists a unique F -algebra homomorphism fold
A′ k

′ : (A, k) →

(A′, k′). If for every algebra (A′, k′) the morphism foldA k merely exists (i.e. is not required

to be unique), then we call (A, k) a weak initial algebra. We denote a (weak) initial algebra

by (µF, in).

A very simple example of an initial algebra is given by a set.

Example 52. Let A be a set and F : Set → Set be the functor defined on objects by FX = A

and on morphisms Ff = idA. Then there exists an initial F -algebra (A, idA). To see this

let (A′, k′) be an F -algebra and define fold
A′ k

′ : A→ A′ by fold
A′ k

′ = k′, which is trivially

an F -algebra and unique.

Initiality is a useful property and allows us to prove the following result.

Theorem 53. Let F : C → C be a functor. If (µF, in) is an initial algebra, then foldµF in =

idµF.

Proof. By uniqueness of the mediating morphism foldµF in : µF → µF.

A helpful theorem for understanding initial algebras is given by Lambek’s Lemma (Theo-

rem 54), which says that the structure map of an initial algebra is an isomorphism.

Theorem 54 (Lambek's Lemma). Let F : C → C be a functor. If (µF, in) is an initial

F -algebra then in : F (µF) → µF is an isomorphism, where the inverse in−1 : µF → F (µF)

is given by in−1 = fold
F (µF) F (in).

Parametricity 41

Proof. Since F (in) : F 2(µF) → F (µF) is an F -algebra, we have that the left-hand side of

the following diagram commutes by initiality and the right-hand side trivially.

F (µF)
F
(
fold

F (µF) F (in)
)
- F 2(µF) F (in)- F (µF)

µF

in

?

fold
F (µF) F (in)

- F (µF)

F (in)

?

in
- µF

in

?

(3.4)

By initiality we have that in ◦
(
fold

F (µF) F (in)
)
= foldµF in and hence by Theorem 53 we

have that in ◦
(
fold

F (µF) F (in)
)
= idµF . For the reverse direction note that,

id
F (µF) = F (in ◦ fold

F (µF) F (in)) by functoriality,

= F (in) ◦ F (fold
F (µF) F (in)) by functoriality.

Hence, by the left-hand side of Diagram 3.4 we have that fold
F (µF) F (in) ◦ in = id

F (µF) , as

required.

If an initial algebra exists for a functor, then Lambek’s Lemma can be used to help work

out what it will be. Let’s consider the functor F : Set → Set defined by FX = 1 +X. If

F has an initial algebra (µF, in) then by Theorem 54 there is an isomorphism 1+ µF ∼= µF.

Hence, any element x of the set µF corresponds to to in(⋆) or in(x′) for some x′ ∈ µF,

which looks a lot like the natural numbers. To confirm that the natural numbers is actually

an initial F -algebra we still need to do the proof.

Example 55. The initial algebra of the functor F : Set → Set defined by FX = 1 + X,

is given by the pair (N, [0, succ]), where [0, succ] : 1 + N → N is defined by 0(⋆) = 0 and

succ(n) = n + 1. To see this let [k0, k1] : 1 + A → A be an F -algebra, then we define

foldN [k0, k1] : N → A inductively by (foldN [k0, k1])0 = k0(⋆) and (foldN [k0, k1])(n+ 1) =

k1
(
(foldN [k0, k1])n)

)
. We leave it as a simple exercise to show that foldN [k0, k1] is an

F -algebra homomorphism and that it is unique.

Similarly, let’s have a look at the functor FX = S × (1 +X) for some set S. Since Set is

distributive, this functor is equivalent to FX = (S × 1) + (S ×X). By Lambek’s Lemma

Parametricity 42

we have that if there exists an initial algebra µF then any element x in µF corresponds to

either x = in(s, ∗) for some s ∈ S or x = in(s, x′) for some s ∈ S and x′ ∈ µF, which looks

a like non-empty lists of elements of S.

Example 56. Let S be a set and suppose that F : Set → Set is the functor defined by

FX = (S × 1) + (S × X). Then an initial algebra for F is given by (List+(S), [ι, cons]),

where List+(S) denotes the collection of non-empty positive lists with elements in S, the

function ι : S × 1 → List+(S) is defined by ι(s, ⋆) = [s], and the function cons : S ×

List+(S) → List+(S) is given by cons(s, [ss]) = [s, ss]. For any F -algebra [k0, k1] : FA→ A

the mediating morphism morphism fold [k0, k1] : List+(S) → A is given inductively by

fold [k0, k1][s] = k0(s, ⋆) and fold [k0, k1][s, ss] = k1(s, fold [k0, k1][ss]).1 It is left as an

exercise to show fold is unique.

3.3.3 INITIAL ALGEBRAS FOR SYSTEM F

We are now ready to show the generalisation of Corollary 44 and Corollary 42 using initial

algebras. To this end we first show that the interpretation of every System F type with one

free type variable that defines an endofunctor has a weakly initial algebra in the relations

fibration.

To formulate this theorem we need to be careful about which types we are talking about,

since we need to have an action on morphisms to talk about initial algebras. This leads

us to the notion of a functorial type.

Definition 57 (Functorial Type). A type ∆ ⊢ T Type is functorial if there exists a term

tmap : ∀X.∀Y.(X → Y) → TX → TY such that

• tmap[X][X]idX = idTX and

• (tmap[Y][Z]g) ◦ (tmap[X][Y]f) = tmap[X][Z](g ◦ f).

All type expressions with one free type variable occurring only positively give rise to

functorial type expressions, and in the semantics functorial type expressions give functors.
1We omit the subscript on fold for typographic reasons.

Parametricity 43

We will now show that for any functorial type ∆ ⊢ T Type an initial J∆ ⊢ T TypeKo-algebra

exists. We begin by showing weak initiality.

Theorem 58. Let X ⊢ T Type be a functorial type and denote J∆ ⊢ T TypeKo by T0,J∆ ⊢ T TypeKr by T1, J∀X.(TX → X) → XKo by Z0, and J∀X.(TX → X) → XKr by Z1.

Then Z0 is a weakly initial T0-algebra and Z1 is a weakly initial T1-algebra.

Proof. We begin by constructing the mediating morphisms.

Mediating Morphisms: Suppose that A is a set and that kA : T0A → A is a T0-

algebra. Then since J(TX → X) → XKoA = (T0A ⇒ A) ⇒ A, we can define the function

foldA kA : Z0 → A by (foldA kA)f = fA(kA).2Similarly, for a relation R on A × B in Rel

and a T1 algebra kR : T1R→ R where kR = (kA , kB), we define the relation homomorphism

foldR kR : Z1 → R by (foldR kR)(f, g) = (fAkA , gBkB). We see that foldR kR is a relation

homomorphism by the definition of Z1, and clearly (foldR kR)(f, g) = (foldA kA , foldB kB).

The Structure Maps: The morphism in0 : T0Z0 → Z0 in Set is given using foldA by

in0 x = λA.λkA . kA
(
(T0foldA kA)x

)
and we similarly define in1 : T1Z1 → Z1 by in1(x, y) =

λR.λkR .
(
kA(T0foldA kA)x, kB (T0foldB kB)y

)
.

Algebra Homomorphisms: All that remains to prove Theorem 58 is to show that

foldA kA is a T0-algebra homomorphism for any T0-algebra kA : T0A → A, and that

foldR kR is a T1-algebra homomorphism for any T1-algebra kR : T1R → R, which is done

as follows.

foldA kA(in0 x) = in0 x A kA by the definition of foldA ,

= kA((T0foldA kA)x) by definition of in0 .

A similar argument holds for the relational case.

To show that Z0 as defined above in Theorem 58 is a strong initial algebra requires the

following theorem.
2Notice that there are two different meanings for a subscript here. The first is that algebra homomor-

phisms, e.g. kA , are labelled with their codomain, and the second is the projection of a parametric function,
e.g., fA . This clash is slightly unfortunate, but by pointing this distinction out, we hope to avoid confusion.

Parametricity 44

Theorem 59. Suppose that kA : T0A → A and kB : T0B → B are T0-algebras and that

h : kA → kB is T0-algebra homomorphism. Then h ◦ foldA kA = foldB kB .

Proof. By Theorem 47 we have that (kA , kB) is relation homomorphism ⟨T0h⟩ → ⟨h⟩,

and by the Graph Lemma (Theorem 48) we have that ⟨T0h⟩ = T1⟨h⟩ and hence the

pair (kA , kB) : T1⟨h⟩ → ⟨h⟩ is a T1-algebra. Therefore, since Z1 is weakly initial we

have a relation homomorphism fold⟨h⟩ (kA , kB) : Z1 → ⟨h⟩. By the Identity Extension

Lemma (Theorem 37) we have that Z1 = EqZ0, and by a trivial calculation we have that

EqZ0 = ⟨idZ0
⟩. Hence, fold⟨h⟩ (kA , kB) is a map between graphs ⟨idZ0

⟩ → ⟨h⟩, and so by

Theorem 47 we have that h ◦ foldA kA = foldB ◦ idZ0
as required.

As a simple corollary we have the following result, reminiscent of Theorem 53.

Corollary 60. Let Z0, in0, and foldZ0
be defined as in Theorem 59. Then

foldZ0
in0 = idZ0

.

Proof. Let kA : T0A → A be a T0-algebra, then foldA kA is a T0-algebra homomorphism

Z0 → A by Theorem 58. Hence, by Theorem 59 we have that foldA kA ◦ foldZ0
in0 =

foldA kA . In other words, for any x ∈ Z0, we have (foldZ0
in0 x)A kA = x A kA . Hence by

extensionality we have that foldZ0
in0 x = x as required.

And finally we can prove the main theorem of this chapter.

Theorem 61. The pair (Z0, in0) is an initial T0-algebra.

Proof. Suppose that kA : T0A → A is T0-algebra and h is T0-algebra homomorphism

in0 → kA . Then by Theorem 59 we have that h ◦ foldZ0
in0 = foldA kA as required.

To conclude this chapter, let’s see this theorem in action.

Example 62. Suppose that T is the constant type T = A. Then we have that J∀X.(A →

X) → XKo is the initial algebra of the functor T0X = A, denoted µT0. By Example 52 we

already know that µT0 = A and hence we have that J∀X.(A→ X) → XKo = A.

Parametricity 45

Similarly, we can show that J∀X.(1 + X → X) → XKo ∼= N using Example 55 andJ∀X.(S × (1 +X) → X) → XKo ∼= List+(S) using Example 56.

Using Theorem 61 and Lambek’s Lemma we can see why there are no set-theoretic models

of System F in classical logic. Consider TX = (X → 2) → 2, which by Theorem 61

has an initial algebra µT0. Using classical logic we also have that the interpretation of T

is the double-powerset functor P ◦ P : Set → Set. Hence, by Lambek’s Lemma we have

P(P(µT0)) ∼= µT0, i.e., |µT0| = 22
|µT0| , contradicting Cantor’s Theorem, and hence there

can be no set-theoretic models of System F in classical logic.

In this Chapter we have seen a fibrational presentation of Reynolds’s relational parametric-

ity, as well as a proof of one of the most important consequences of parametricity — the

existence of initial algebras (Theorem 61). In the next chapter we will explore what hap-

pens when we change the role played by sets to G-sets.

CHAPTER 4

GROUP ACTION
PARAMETRICITY
Group actions are about symmetry. They allow a departure from solely talking about

symmetries of geometries and allow a discussion about symmetries of more abstract math-

ematical objects. This level of abstraction means that group actions arise in many different

places including in combinatorics, Galois theory, quantum mechanics, representation the-

ory, topology, and of course computer science.

Within computer science group actions arise in a large variety of subjects, ranging from

the study of quotient containers [30] to variable binding [31]. Group actions often provide

a handy tool for formulating invariance properties, i.e., when a structure or data type

is invariant under a particular symmetry. Similarly parametricity can be used to study

invariance.

Recall the “free theorem” proven in Theorem 40, which said that for any parametric

function π in J∀X.∀Y.X × Y → XKo , we have that for any two functions f : A → A and

g : B → B,

πA,B ◦ (f × g) = f ◦ πA,B . (4.1)

46

Group Action Parametricity 47

This result shows that a parametric function in J∀X.∀Y.X ×Y → XKo must act uniformly.

If one imagines that f and g are symmetries on A and B, then we see that Equation 4.1

says that πA,B must preserve those symmetries, i.e. is invariant. The uniformity conditions

imposed on parametric functions mean that relations are always preserved, and the “free

theorem” argument allows us to deduce invariance properties. This line of reasoning has

allowed parametricity to be used to describe invariance of data type representations [26],

geometric invariance [25] as well as giving the invariance of physical systems required to

use Noether’s theorem [32].

Motivated by the abundance of group actions in mathematics and computer science, and by

the invariance properties of parametricity, in this chapter we extend Reynolds’s relational

parametricity to the context of group actions. We will begin by recalling a few basic

examples of group actions in Section 4.1. We will then introduce the notion of relations

on G-sets in Section 4.2, before providing a relational semantics for System F using G-sets

and equivariant relations in Section 4.3. Once we have defined the relational semantics we

will be able to see a surprising difference between the set-valued relational model and the

G-set relational model in Sections 4.4.1 – 4.4.4.

4.1 EXAMPLES OF GROUP ACTIONS

For a group G there are plenty of ways to equip it with a group action, and here we explore

three of them .1 For each example we introduce a different notation for the underlying set

even though it remains the same. Though this is may seem a little heavy handed now, in

Section 4.4.2 the distinction will be necessary and using this notation will help to avoid

mixing up the different G-sets.

Example 63 (Trivial Action). Let GT denote the underlying set of the group G. Then equip

GT with the group action ·G
T
: G×GT → GT given by

σ ·G
T
π = π.

1For a reminder of the definition of a group action see Chapter 2 Section 5.6.

Group Action Parametricity 48

Both the identity and compatibility axioms are trivially satisfied by this action, which we

call ·G
T

the trivial group action.

Example 64 (Group Multiplication Action). Let GM denote the underlying set of G. Then we

equip GM with the group action ·G
M

: G×GM → GM given by

σ ·G
M
π = σπ.

The identity axiom is satisfied by the properties of the identity element in the group, and

the compatibility axiom is satisfied by the associativity axiom of the group. We call ·G
M

the group multiplication action.

The group multiplication action has the property that for any G-set X, and any element

x in X the function ϕx : GM → X defined by ϕx(π) = π ·X x is equivariant, as shown by a

simple calculation.

Example 65 (Conjugate Action). Let GC denote the underlying set of G. Then we equip GC
with the group action ·G

C
: G×GC → GC given by

σ ·G
C
π = σπσ−1.

We call ·G
C

the conjugate action. The identity axiom is satisfied since eπe−1 = π for any

element π of GC . The compatibility axiom is satisfied by using the associativity of the

group, as seen in the following quick calculation. For any two elements σ and π in the

group G and any element τ in GC we have,

σ ·G
C
(π ·G

C
τ) = σ ·G

C
(πτπ−1) by definition of ·G

C
,

= σ(πτπ−1)σ−1 by definition of ·G
C

,

= (σπ)τ(σπ)−1 by associativity of G,

= (σπ) ·G
C
τ as required.

The conjugate action has the additional property that for any G-set X, the group action

·X : GC ×X → X is equivariant.

Group Action Parametricity 49

Before we begin looking at group actions as a model for System F let’s have a look at one

last class of examples of G-sets, using lists.

Example 66 (Lists). Suppose that (X, ·X) is G-set. Then we denote the set of lists of

elements of X by List(X), and this induces a G-set (List(X), ·List(X)
) defined by

π ·List(X)
[x1, . . . , xn] = [π ·X x1, . . . , π ·X xn].

Similarly, for any G-set (X, ·X) let List+(X) denote the set of non-empty lists of ele-

ments of X. Then three examples of G-sets that we will see later are (List+(GT), ·LG
T
),

(List+(GM), ·LG
M
) and (List+(GC), ·LG

C
), where

• σ ·LG
T
[π1 , . . . , πn] = [σ ·G

T
π1 , . . . , σ ·G

T
πn],

• σ ·LG
M

[π1 , . . . , πn] = [σ ·G
M
π1 , . . . , σ ·G

M
πn], and

• σ ·LG
C
[π1 , . . . , πn] = [σ ·G

C
π1 , . . . , σ ·G

C
πn].

It is left as a simple exercise to show that these actions do actually define G -sets.

Not all G-sets act on groups, but all of the ones in this thesis do. Other examples of G-sets

include the set {1, . . . , n}, which is acted on by the symmetric group Sn by permuting its

elements, or the set of vertices of a polyhedron is acted on by its symmetry group, to name

but a few. For the interested we suggest looking in any good introductory text on group

theory (e.g. [33]) for more examples.

4.2 RELATIONS ON G-SETS

In Chapter 3 we showed how a parametric model for System F can be given using the

relations fibration. A similar semantics can be given using G-sets and equivariant relations,

and we can describe an analogous notion of relation. We have seen how the relations

fibration arises via pullback in Example 16 and we can use the same principle here to give

Group Action Parametricity 50

a notion of a G-set relation. Consider the following pullback square:

Rel([G,Set]) - Sub([G,Set])

[G, Set]× [G, Set]

Rel(p)

?

×
- [G,Set]

p

?

If S is a subset of A and π ·A s ∈ S for all π in G and s in S, then the pair (S, ·S) is a

subobject of A in [G, Set], where ·S denotes the restriction of the group action ·A to S.

Moreover, a morphism S ⊆ A → S′ ⊆ A′ in Sub([G, Set]) is given by an equivariant map

f : A→ A′ such that for any element s of S, the element f(s) is in S′.

Hence, objects of Rel([G,Set]) in the fibre above (A,B) are given by subobjects of A×B,

and a morphism R ⊆ A×B → R′ ⊆ A′×B′ in Rel([G, Set]) is given by a pair of equivariant

maps f : A → A′ and g : B → B′, such that for any pair (a, b) in R, the pair (fa, gb) is

in R′. This leads us to the following definition.

Definition 67 (Equivariant Subset and Equivariant Relation). Let S, A and B be G-sets.

Then we call S an equivariant subset (of A) if S is a subobject of A, i.e., if S is a subset

of A and π ·A s ∈ S for all π in G and s in S. Moreover, we call an equivariant subset of a

product A×B an equivariant relation (on A×B). We will denote equivariant subsets by

S ⊆ A. When we wish to talk about subsets that are not equivariant, we will make this

explicit by writing ⊆Set .

4.2.1 STRUCTURE ON RELATIONS ON G-SETS

For Rel([G,Set]) to be of any use as a model of System F it needs to be Cartesian closed

and luckily, it is.

Terminal Object: The terminal equivariant relation is given by the one object equiv-

ariant subset 1Rel([G,Set]) ⊆ 1[G,Set] × 1[G,Set], with the action given by the unique map

G× 1Rel([G,Set]) → 1Rel([G,Set]). We will usually just denote both 1Rel([G,Set]) and 1[G,Set] by

1, leaving the subscript to be inferred by context.

Group Action Parametricity 51

Products: The product of two equivariant relations R1 ⊆ A1 ×B1 and R2 ⊆ A2 ×B2 is

given by

R1 ×R2 = {(a1, a2, b1, b2) | (a1, b1) ∈ R1 and (a2, b2) ∈ R2},

with the group action given component-wise, i.e., π ·R1×R2
(a1, a2, b1, b2) = (π ·A1

a1, π ·A2

a2, π ·B1
b1, π ·B2

b2), which makes R1×R2 an equivariant relation on (A1×A2)×(B1×B2).

Exponential Objects: The exponential of two equivariant relations R1 ⊆ A1 × B1 and

R2 ⊆ A2 ×B2 is given by

R1 ⇒ R2 = {(f, g) | ∀(a, b) ∈ R1, (fa, fb) ∈ R2},

with the group action inherited from the G-set (A1 ⇒ A2) × (B1 ⇒ B2), which makes

R1 ⇒ R2 an equivariant relation on (A1 ⇒ A2)× (B1 ⇒ B2).2

Additional to the Cartesian closed structure we have a canonical equality functor analogous

to Definition 35.

Definition 68. The equality functor on G-sets Eq : [G, Set] → Rel([G,Set]) is defined on

objects by EqA = {(a, a) | a ∈ A}, where the group action is inherited from A×A and on

morphisms by Eq f = (f, f).

An equality functor can be defined in many different settings (using fibrational structure)

but for group actions the following important property holds.

Proposition 69. The equality functor Eq : [G,Set] → Rel([G, Set]) is full and faithful.

Proof. To see that Eq is full suppose that (f, g) is an equivariant map EqA→ EqB. Then

by definition, for all a in A, we have that (fa, gb) ∈ EqY , i.e., fa = gb. Hence, f = g

meaning that Eq f = (f, g) = Eq g as required.

For faithfulness, suppose that we have two equivariant maps f, g : A → B such that

Eq f = Eq g. Then, (f, f) = (g, g) and hence f = g as required.
2As remarked on Page 22, recall that an element f of the exponential A1 ⇒ A2 is simply a function

f : A1 → A2 and is not required to be equivariant. It is important to remember the distinction between
elements of the exponential and morphisms in the category, as they are not the same.

Group Action Parametricity 52

In addition to the equality functor, we also have the graph functor on G-sets, which we

now define. Recall that [G,Set]
→

is the arrow category on [G,Set] with objects given by

equivariant maps f : A → B and morphisms (α, β) : f → f ′ are given by commuting

squares.

A
α - A′

B

f

?

β
- B′

f ′

?

Definition 70 (Graph Functor on G-Sets). The graph functor ⟨ ⟩ : [G, Set]
→

→ Rel([G, Set])

is defined on objects by ⟨f⟩ = {(a, b) ∈ A×B | b = fa}, which is a relation on A×B, and

on morphisms by ⟨(α, β)⟩(a, fa) = (αa, βfa).3

Note that the action of the graph functor on morphisms is well-defined since βfa = f ′αa.

Additionally, we can define the “graph” of an element of the exponential in the same way.

However, it is only the case that the graph of a function is an equivariant relation when

the function is also equivariant.

Lemma 71. Suppose that f : A→Set B is a function. Then ⟨f⟩ = {(a, b) ∈ A×B | b = fa}

is an equivariant relation on A×B if, and only if, f is an equivariant map.

Proof. The graph relation ⟨f⟩ is equivariant if, and only if, for all (a, fa) in ⟨f⟩ and π in

G, that (π ·A a, π ·B fa) ∈ ⟨f⟩ holds, which is true if, and only if, f(π ·A a) = π ·B (fa), i.e.,

if f is an equivariant map.

Analogous to Theorem 47 we are able to characterise when we have an element of the

exponential of two graph relations.

Theorem 72. Suppose that A, A′, B, and B′ are G-sets. Suppose further that f is an

element of the exponential object A ⇒ B, f ′ is an element of the exponential object
3This definition is analogous to Definition 45 and can similarly be defined in terms of reindexing. For

simplicity we just give the concrete definition here.

Group Action Parametricity 53

A′ ⇒ B′, and α : A→ A′ and β : B → B′ are equivariant maps. Then (f, f ′) ∈ ⟨α⟩ ⇒ ⟨β⟩

if, and only if,

A
α - A′

B

f

?

β
- B′

f ′

?

commutes in Set.

Proof. The proof is almost identical to Theorem 47.

4.3 GROUP ACTIONS AS A MODEL OF SYSTEM F

So far in this chapter we have defined the notion of a relation on a G-set and have seen

the equality and graph relations for G-sets. Additionally, we have seen that the category

of equivariant relations on G-sets is Cartesian closed. It is now possible using the relations

fibration for G-sets Rel(p) : Rel([G, Set]) → [G,Set]× [G,Set] to give a relational semantics

for System F using G-sets.

In the G-set relational semantics for System F types are given by equality-preserving fibred

functors J∆ ⊢ T TypeK : |Rel(p)|n −→Eq Rel(p). In other words, a type is interpreted as a pair

of functors J∆ ⊢ T TypeKo : |[G, Set]|n → [G, Set] and J∆ ⊢ T TypeKr : |Rel([G, Set])|n →

Rel([G,Set]) such that J∆ ⊢ T TypeKr is over the product J∆ ⊢ T TypeKo × J∆ ⊢ T TypeKo
and the equality functor is preserved, i.e., Eq (J∆ ⊢ T TypeKoA) = J∆ ⊢ T TypeKr(Eq A).

Since both [G,Set] and Rel([G, Set]) are Cartesian closed categories we can interpret System

F types built up from 1, × and → in both categories in the usual way (see Chapter 3). All

Group Action Parametricity 54

that remains is the interpretation of ∀, which we define as follows.4

JΓ ⊢ ∀X.T KoA =

{f :
∏

A∈[G,Set]
JΓ, X ⊢ T Ko(A, A) | ∀R ⊆ A×B, (fA , fB) ∈ JΓ, X ⊢ T Kr(Eq A, R)},

with the action π ·∀ f = λA.(π ·JT KoA fA) and the relational interpretation given by

(f, g) ∈ JΓ ⊢ ∀X.T KrR iff ∀R ⊆ A×B (fA , gB) ∈ JΓ, X ⊢ T Kr(R, R),
where the action is inherited from JΓ ⊢ ∀X.T KoA × JΓ ⊢ ∀X.T KoB. We call a function f

in JΓ ⊢ ∀X.T KoA a parametric function.

Equivariance of Interpretation: To see that JΓ ⊢ ∀X.T KrR is actually an equivariant

relation on JΓ ⊢ ∀X.T KoA × JΓ ⊢ ∀X.T KoB, let (f, f ′) be related in JΓ ⊢ ∀X.T KrR. We

then have to show that for any element π in G, the pair π·(f, f ′) is related in JΓ ⊢ ∀X.T KrR.

By the induction hypothesis we have that JΓ, X ⊢ T Kr(R, R) is an equivariant relation,

and we know that (fA , f
′
B
) ∈ JΓ, X ⊢ T Kr(R, R), which means that π · (fA , f ′B) is related inJΓ, X ⊢ T Kr(R, R) as required.

So far we have managed to give an interpretation of forall types, but there is still some

work to do to show that it is the correct interpretation. In Theorem 73 we prove that this

interpretation is equality preserving as part of the Identity Extension Lemma for G-sets

and in Theorem 74 we show that the definition satisfies a general adjointness property for

a relational semantics.

Theorem 73 (Identity Extension Lemma for G-Sets). For any type ∆ ⊢ T Type, and any

G-set A in |[G,Set]|n, we have that Eq (J∆ ⊢ T TypeKoA) = J∆ ⊢ T TypeKr(Eq nA).

Proof. The proof is by structural induction on T . We will prove the forall types case and

leave the rest to the reader. To this end we need to show that the interpretation of ∀ is
4Similarly to Section 3.2.1, we need to be careful when writing large products. We avoid any trouble,

by again insisting that we either use the (intuitionistic) internal language of [20] or using the Calculus of
Constructions [21] with impredicative Set.

Group Action Parametricity 55

equality preserving, i.e.,

Eq (JΓ ⊢ ∀X.T KoA) = JΓ ⊢ ∀X.T Kr(Eq A).

First show that we have an inclusion Eq (JΓ ⊢ ∀X.T KoA) ⊆ JΓ ⊢ ∀X.T Kr(Eq A). Suppose

that f is a parametric function in JΓ ⊢ ∀X.T KoA. Then the pair (f, f) is an element of

Eq (JΓ ⊢ ∀X.T KoA), and hence by the definition of JΓ ⊢ ∀X.T KoA, we have that for any

equivariant relation R on A×B

(fA , fB) ∈ JΓ, X ⊢ T Kr(Eq A, R).

Or in other words the pair (f, f) is related in JΓ ⊢ ∀X.T Kr(Eq A) as required. To complete

the proof we show the reverse inclusion JΓ ⊢ ∀X.T Kr(Eq A) ⊆ Eq (JΓ ⊢ ∀X.T KoA). To

this end let (f, f ′) be an element of JΓ ⊢ ∀X.T Kr(Eq A), then by the definition of JΓ ⊢

∀X.T Kr(Eq A), we have that for any equivariant relation R on A×B,

(fA , f
′
B
) ∈ JΓ, X ⊢ T Kr(Eq A, R). (4.2)

In particular, for any G-set A, we have that (fA , f
′
A
) ∈ JΓ, X ⊢ T Kr(Eq A,EqA) by

instantiating Equation 4.2 at R = EqA. By the induction hypothesis we have thatJΓ, X ⊢ T Kr(Eq A,EqA) = Eq JΓ, X ⊢ T Ko(A, A), and hence for all A ∈ [G, Set], we

have (fA , f
′
A
) ∈ Eq JΓ, X ⊢ T Ko(A, A) implying f = f ′ as required.

Our interpretation of ∀ satisfies the general adjointness property of a relational semantics

for System F as stated in [2, Section 4.2]. The adjoint functors are defined as follows.

Let |Rel(p)|n −→Eq Rel(p) be the category whose objects are equality preserving fibred

functors from |Rel(p)|n to Rel(p) and whose morphisms are fibred natural transformations

between them. Let πn : |Rel(p)|n+1 → Rel(p)n be a projection morphism and denote the

pre-composition functor by ◦ πn : (|Rel(p)|n −→Eq Rel(p)) → (|Rel(p)|n+1 −→Eq Rel(p)).

Let ∀n = (∀r , ∀o × ∀o) be the fibred functor defined by,

(∀oTo)A = {f :
∏

A∈[G,Set]
To(A, A) | ∀R ⊆ A×B, (fA , fB) ∈ Tr(Eq A, R)},

Group Action Parametricity 56

with the group action given by π ·∀o f = λX.(π ·
To (A,A)

fA). And we define the relation

(∀rTr)R by

(f, g) ∈ (∀rTr)R iff ∀R ⊆ A×B, (fA , gB) ∈ Tr(R, R),

where the group action is inherited from (∀oTo)A × (∀oTo)B.

Theorem 74. For every projection morphism πn : |Rel(p)|n+1 → Rel(p)n, the pre-composition

functor has a right adjoint ◦ πn ⊣ ∀n, as described above.

Proof. To go through all of the details of this proof is rather lengthy, a little tedious,

not particularly illuminating and completely standard. For this reason, we define the

isomorphism and omit the remainder of the proof.

To simplify the presentation, let Cn denote the category |Rel(p)|n −→Eq Rel(p). Then we

show that the functor ∀n is the right adjoint to πn , i.e. (∀r ,∀o × ∀o) is right adjoint to

(πr , πo × πo), by constructing an isomorphism Cn+1(T ◦ πn , S)
∼= Cn(T, ∀nS), which is

natural in T and S. We begin by defining functions ϕ and ψ

Cn+1(T ◦ πn , S)

ϕ

&&

Cn(T, ∀S).

ψ

ff

Defining the Isomorphism: Let (αr , αo × αo) : T ◦ πn → S be any fibred natural

transformation in Cn+1(T ◦ πn , S), let A be an n-tuple of G-sets in |[G, Set]|n, and let

R ⊆ A × B be an n-tuple of relations in |Rel([G,Set])|n. Then we define ϕ as the pair

(ϕr , ϕo × ϕo) : Cn+1(T ◦ πn , S) → Cn(T, ∀nS) given by (ϕoαo)A = λa.λA.αo(A, A)a and

(ϕrαr)R = (ϕoαo)A × (ϕoαo)B.

To see that (ϕoαo)A is well-defined, i.e., that for any a in ToA, (ϕoαo)Aa is actually an

element of (∀oSo)A, we must show that for any relation R ⊆ A× B in |Rel([G, Set])|, the

pair
(
(ϕoαo)AaA, (ϕoαo)AaB

)
is in Sr(Eq A, R). To this end notice that,

(
(ϕoαo)AaA, (ϕoαo)AaB

)
=

(
αo(A, A)a, αo(A, B)a

)
by the definition of ϕo ,

= αr(Eq A, R)(a, a) by the definition of αr .

Group Action Parametricity 57

Hence, since (a, a) ∈ Eq (ToA), and Eq (ToA) = Tr(Eq A) = Trπr(Eq A, R), we have

that αr(Eq A, R)(a, a) is in Sr(Eq A, R), and therefore
(
(ϕoαo)AaA, (ϕoαo)AaB

)
is in

Sr(Eq A, R), as required. An analogous argument shows that (ϕrαr)R(a, b) is actually

an element of (∀rSr)R.

For the definition of ψ, let (βr , βo×βo) be any fibred natural transformation in Cn(T, ∀nS),

let (A, A) and (B, B) be (n + 1)-tuples of G-sets in |[G,Set]|n+1, and let (R, R) be an

(n+1)-tuple of relations in |Rel([G, Set])|n+1 on (A, A)× (B, B) . Then we define ψ to be

the pair (ψr , ψo×ψo) : Cn(T, ∀nS) → Cn+1(Tπn , S) given by (ψoβ0)(A, A) = λa.(βoAaA) and

(ψrβr)(R, R) = (ψrβr)(A, A) × (ψrβr)(B, B). To show that (ψoβo)(A, A) and (ψrβr(R, R)

are well-defined follows a similar line of arguments to above.

To complete the proof one should then show that ϕ and ψ are fibred natural transfor-

mations, that they are mutually inverse, and that the isomorphism is natural in T and

S.

We have managed to show that the types of System F can be interpreted using the relations

fibration on [G, Set] as equality preserving fibred functors. We will not explicitly state the

interpretation of terms, but a very similar process to Section 3.2.2 can be followed to yield

the Abstraction Theorem for G-sets.

Theorem 75 (Abstraction Theorem). In the relational G-set model every term defines a

fibred natural transformation (J∆;Γ ⊢ t : T Kr , J∆;Γ ⊢ t : T Ko × J∆;Γ ⊢ t : T Ko) : J∆ ⊢

ΓK → J∆ ⊢ T TypeK.
Just like in Chapter 3 we also have that the Graph Lemma holds (using almost an identical

proof), which we will need later.

Theorem 76 (Graph Lemma for G-Sets). Suppose (T1, T0 × T0) : Rel(p) −→Eq Rel(p) is an

equality preserving fibred functor. Then for any equivariant function f : A → B we have

T1⟨f⟩ = ⟨T0f⟩.

Group Action Parametricity 58

4.4 INITIAL ALGEBRAS FOR SYSTEM F, AGAIN

So far, we have followed a similar approach to Chapter 3 by providing a model for System

F only this time using G-sets. To continue along the same path, we might also wonder

whether it is possible to prove an initial algebra theorem analogous to Theorem 61 for the

G-set model, and indeed, it is. We prove this main result in Theorem 85, but we will find

out that there are some crucial differences. We find the first difference by tackling the

question: how many functions are there of ∀X.X → X in the G-set model?

4.4.1 THE G-SET INTERPRETATION OF ∀X.X→X

Consider the System F type ∀X.X → X. In Reynolds’s relational semantics this contains

only the parametric identity function ΛX.λx.x and so we are able to show that there is an

isomorphism J∀X.X → XKo ∼= 1 (see Corollary 42). But in the world of G-sets, something

slightly different happens.

Let’s have a look at the interpretation of ∀X.X → X using the relations fibration on

[G,Set]. Since ∀X.X → X is a closed type, the interpretation J∀X.X → XKo is an

equality-preserving fibred functor |[G,Set]|0 −→Eq [G, Set], i.e., a G-set with the carrierJ∀X.X → XKo given by

{f :
∏

A∈[G,Set]
JX ⊢ X → XKoA | ∀R ⊆ A×B, (fA , fB) ∈ JX ⊢ X → XKrR}.

Since X is a variable, for any G-set A, JX ⊢ X → XKoA = A⇒ A, and so we can rewrite

the above as

J∀X.X → XKo = {f :
∏

A∈[G,Set]
A⇒ A | ∀R ⊆ A×B, (fA , fB) ∈ R⇒ R}.

Suppose that π is an element of the group G. It seems like we can define a parametric

function by fAa = π ·A a, where a is an element of a G-set A. This would be parametric

in the sense that it could be uniformly defined for every G-set A. But this would mean

Group Action Parametricity 59

that we would have a quite different interpretation to the standard interpretation, since

there is no longer only one parametric function in J∀X.X → XKo , but instead one for each

element of G. Before we jump ahead of ourselves we need to ask a simple question: is the

function f actually an element of J∀X.X → XKo?
Theorem 77. Suppose that π is an element of the group G. Then the parametric function

f defined for any G-set A by fAa = π ·A a is an element of J∀X.X → XKo.
Proof. We need to show that f satisfies the uniformity condition of J∀X.X → XKo , in

other words that that for any equivariant relation R on A × B that (fA , fB) is related in

R ⇒ R. To this end, let (a, b) be a pair of related elements in R. Then to show that

(fAa, fBb) is related in R, we must show that (π ·A a, π ·B b) is related in R, which is true

since (π ·A a, π ·B b) = π ·A×B (a, b) and R is an equivariant relation.

If we look at the interpretation of ∀X.X → X in [G,Set] we now know from the theorem

above that it contains the identity function, as well as all of the functions of the form

fAa = π ·A a. There are no other obvious functions that we might expect to inhabitJ∀X.X → XKo , and so one might speculate that J∀X.X → XKo ∼= G, and indeed it is

(where G has an appropriate group action).

Theorem 78. The closed type ∀X.X → X has the following interpretation in the G-set

model J∀X.X → XKo ∼= GC .

Notice that in the statement of Theorem 78 we use the G-set GC with the conjugate action.

This action means that the bijective maps are actually isomorphisms (i.e. equivariant).

Interestingly, to be able to appeal to parametricity we also have to use the G-set GM to

define a relation. It is this ability to be able to jump back and fourth between these two

G-sets that allows the proof to go through, and so for the general initial algebras theorem

for G-sets in Section 4.4.4 we will need to generalise this trick.

Group Action Parametricity 60

Proof. We show that there exists mutually inverse equivariant maps ϕ and ψ.

J∀X.X → XKo
ϕ

##

GC

ψ

cc

To begin, first note that for any G-set A, and any element a in A, we have an equivariant

relation Ra on GM × A defined by Ra = ⟨ ·A a⟩ = {(π, a′) | a′ = π ·A a}, where ·A a :

GM → A denotes the function (·A a)π = π ·A a. To see that this relation is equivariant

suppose that we have two related elements (π, π ·A a) ∈ Ra, then for any element σ in G,

σ ·G
M

×A (π, π ·A a) = (σ ·G
M
π, σ ·A (π ·A a)) by definition of action,

= (σπ, (σπ) ·A a) by compatibility and definition of action,

which is clearly in the relation Ra as required. Notice here that for this relation to be

equivariant we needed to use the GM action.

Using this equivariant relation we can derive a quick parametricity result which we will

need later on in the proof.

Parametricity: The pair (e, a) is related in Ra and hence for any parametric function f

in J∀X.X → XKo we have that (fG
M
e, fAa) is related in Ra. Or written equivalently as,

fAa = (fG
M
e) ·A a. (4.3)

Defining the Isomorphism: Now we can define ϕ and ψ. We begin by defining the

morphism ϕ : J∀X.X → XKo → GC by ϕf = fG
M
e, which is well-defined because an

element of GM is also an element of GC by definition.5 To see that ϕ is an equivariant map
5Recall that a morphism in [G,Set] is a set-valued function that is also equivariant. This means that

we can construct ϕ in a non-equivariant way, i.e., as the composite of a (non-equivariant) function ϕ′ :J∀X.X → XKo → GM with the (non-equivariant) inclusion ι : GC → GM , and then prove that this
composition ϕ = ιϕ′ is equivariant. In the definition of ϕ above we do not make the use of the inclusion
explicit.

Group Action Parametricity 61

we simply compute. Let π be an element of GC , then,

(π ·∀ f)GM e = (π ·⇒ fG
M
)e by definition of ·∀ ,

= π ·G
M

(
fG
M
(π−1 ·G

M
e)
)

by definition of ·⇒ ,

= π(fG
M
)π−1 by definition of ·G

M
.

Now by the instantiating Equation 4.3 from the parametricity argument above with A =

GM and a = π, we have that fG
M
π−1 = (fG

M
e)π−1. Hence, we can conclude that,

(π ·∀ f)GM e = π(fG
M
)π−1 by definition of ·∀ ,

= π(fG
M
e)π−1 by Equation 4.3,

= π ·G
C
(fG

M
e) by definition ·G

C
,

= π ·G
C
ϕ(f) as required.

We define the morphism ψ : GC → J∀X.X → XKo by ψπ = ΛA.λa.π ·A a, which is well-

defined by Theorem 77. To see that ψ is equivariant we again simply compute. Let π and

σ be elements of GC , then

σ ·∀ ψ(π) = σ ·∀
(
ΛA.λa.π ·A a

)
by definition of ψ,

= ΛA.σ ·⇒ (λa.π ·A a) by definition of ·∀ ,

= ΛA.λa.σ ·A π ·A σ
−1 ·A a by definition of ·⇒ ,

= ΛA.λa.(σ ·G
C
π) ·A a by compatibility axiom,

= ψ(σ ·G
C
π) as required.

Notice here that we really do need the right-hand side of the isomorphism to be GC and

not GM , as otherwise ψ would not be equivariant.

Mutually Inverse: Finally, to complete the proof we must show that ϕ and ψ are

mutually inverse. Let’s do the slightly more difficult direction first. Let f be a parametric

function in J∀X.X → XKo , then we need to show that ψϕ(f) = f . The left-hand side of

this equation is given by ψϕ(f) = ψ(fG
M
e) = ΛA.λa.(fG

M
e) ·A a. Hence it suffices to show

Group Action Parametricity 62

that ΛA.λa.(fG
M
e) ·A a = f , or in other words for any G-set A, and any element a of A,

that fAa = (fG
M
e) ·A a, which is given by Equation 4.3.

In the reverse direction we just expand the definitions. For an element π of GC , we have

that ϕψ(π) = ϕ(ΛA.λa.π ·A a) = π ·G
M
e = π as required.

It’s worth taking a moment to look at the usual proof to see why J∀X.X → XKo ≇ 1 in the

G-set model. If we were to follow exactly the proof in the usual set based case, we would

define for any a in a G-set A the relation Ra = {(a, ∗)} on A× 1. However, this relation is

not an equivariant relation, and hence cannot be used to deduce a parametricity property.

More abstractly, the G-set relational model does not satisfy the general initial algebra

theorem from [2] since the category of G-sets [G, Set] is not well-pointed.

4.4.2 THE BEGINNINGS OF A GENERALISATION

The previous section described a clear difference between a parametricity result in the

usual Reynolds-style relational semantics of System F and the relational semantics given

by G-sets. Usually the type ∀X.X → X is interpreted as the terminal object, but instead

in the world of G-sets it is interpreted as the conjugate G-set GC . One then starts to

wonder if this is a general phenomenon. Normally a functor defined by the interpretation

of a functorial type of the form X ⊢ T Type, where T is some functorial type expression,

has an initial T -algebra with the carrier given by the interpretation of ∀X.(TX → X) → X,

as shown in Theorem 61. We have already seen that in the G-sets model this fails, but

this doesn’t necessarily mean that a similar result does not hold.

Normally, initial algebras can be thought of as trees (for strictly positive functors), and

∀X.X → X gives a tree with only one node. But in the G-set model, when we looked at

the interpretation of ∀X.X → X we saw that instead of containing only the parametric

identity, we found a function for every element of G. In terms of trees, we have a single

node that is labelled by elements of G. By imagining that a similar pattern might happen

for other types, one might guess that the interpretation of ∀X.(TX → X) → X in [G,Set]

has the same “structure” as the regular Reynolds-style case, but can additionally store an

Group Action Parametricity 63

element of G at each “node”. It turns out that the interpretation of the System F type

∀X.(TX → X) → X is the carrier of an initial algebra, just not the usual one. It is the

carrier of an initial F0-algebra, where F0 denotes a functor [G, Set] → [G, Set] defined by

F0A = GM × T0A, with an action that is analogous to the conjugate action. It takes a

little bit of effort to actually prove this theorem, which we do in the rest of this section

and then look at some examples in Section 4.4.5.

Since the proof of the initial algebra theorem for G-sets (Theorem 85) requires a reasonable

amount of work we first give a high-level overview. Instead of showing that an initial

algebra for the functor F0 exists, the theorem shows that if an initial F0-algebra exists,

then it is given by the interpretation of ∀X.(TX → X) → X. This lightens the workload

a little and allows us to focus on the most interesting part — how the result differs from

Theorem 61.

In what follows, the initial F0-algebra, which we denote µF0, plays the role of GM in

Section 4.4.1. To define the G-set that plays the equivalent role to GC we have to define

the action on |µF0| in terms of the fold map. We denote this action ·Z : G× |µF0| → |µF0|

and define it by

π ·Z t = π ·µF0

(
foldµF0

(α in(π−1,)) t
)
.

It is non-trivial to show that this action satisfies the identity and compatibility axioms,

and this task constitutes Theorem 81 and Theorem 82.

Once we have shown that (|µF0|, ·Z) is actually an action, we then show that this G-set is

isomorphic to J∀X.(TX → X) → XKo . We do this by first showing that for any h in |µF0|,

the function f defined by

fAh = foldA αh,

for any G-set A and any h ∈ T0A ⇒ A, is an element of J∀X.(TX → X) → XKo . This is

proven in Theorem 84, and we use this to prove the general G-set initial algebra result in

Theorem 85.

The first step on our journey towards Theorem 85 is to prove two technical theorems, that

show how to convert an element of the exponential into a morphism.

Group Action Parametricity 64

Theorem 79. Suppose that A and B are G-sets, f : A →Set B is a function in Set, and

define αf : GM ×A→Set B by αf(π, a) = π ·B f(π−1 ·A a). Then αf is an equivariant map

GM ×A→ B.

Proof. Let A and B be G-sets and f : A →Set B be a function in Set. To see that αf is

an equivariant map GM × A → B let (π, a) be a pair in GM × A and let σ be an element

of GM , then,

αf(σ ·G
M

×A (π, a)) = αf(σ ·G
M
π, σ ·A a) by definition of action,

= (σπ) ·B f((σπ)
−1σ ·A a) by definition of α,

= (σπ) ·B f(π
−1 ·A a) by definition of inverse,

= σ ·B
(
π ·B f(π

−1 ·A a)
)

by compatibility axiom,

= σ ·B (αf(π, a)) by definition of α, as required.

Moreover, we can use a similar setup to obtain a relation homomorphism from an element

of an exponential object in Rel([G,Set]).

Theorem 80. Suppose that R ⊆ A × B and R′ ⊆ A′ × B′ are equivariant relations and

(hA , hB) is an element of R → R′, then (αhA , αhB) is a morphism EqGM × R → R′ in

Rel([G,Set]).

Proof. To see that (αhA , αhB) is a relation homomorphism we need to show that for any

(π, π, a, b) related in EqGM ×R that (αhA , αhB)(π, π, a, b) is related in R′. To this end,

(αhA , αhB)(π, π, a, b) = (π ·A hA(π
−1 ·A a), π ·B hB (π

−1 ·B b)) by definition of α,

= π ·A×B (hA , hB)(π
−1 ·A×B (a, b)) by definition of π·A×B .

Then since (a, b) ∈ R we have that π−1 ·A×B (a, b) ∈ R because R is an equivariant relation,

and hence (hA , hB)(π
−1 ·A×B (a, b)) ∈ R′ as (hA , hB) is a relation homomorphism, and

therefore π ·A×B (hA , hB)(π
−1 ·A×B (a, b)) ∈ R′ as R′ is an equivariant relation.

Group Action Parametricity 65

All that remains is to show that (αhA , αhB) is equivariant, which is trivial since both αhA
and αhB are equivariant and the action is given componentwise.

4.4.3 DEFINING THE INITIAL ALGEBRA ACTION

In Section 4.4.1 we saw that we have to use both the conjugation action and the multipli-

cation action to prove that J∀X.X → XKo ∼= GC . These actions were simple to describe in

terms of each other (σ ·G
C
π = σ ·G

M
π ·G

M
σ−1), and this made it easy to use them both

in the proof of Theorem 78. However, when the data type is a bit more complicated, this

makes defining two actions a bit more complicated too. In Theorem 82 we describe this

action, and prove Theorem 81 to help show that it satisfies the compatibility axiom.

Theorem 81. Suppose that T0 : [G, Set] → [G, Set] is an endofunctor, F0 : [G, Set] →

[G,Set] is an endofunctor defined by F0A = GM × T0A, and that there exists an initial

F0-algebra µF0. Let π be an element of the group G and κπ be the F0-algebra α in(π−1,) :

GM × T0µF0 → µF0. Then for any function h in the exponential T0A⇒ A we have that,

(foldA αh)(foldµF0
κπ) = foldA α(π

−1 ·⇒ h). (4.4)

Proof. This proof relies on several uses of initiality. Firstly, since κπ is an F0-algebra, the

left-hand side of the following diagram commutes.

GM × T0µF0

id × T0foldµF0
κπ- GM × T0µF0

id × F0foldA αh- GM × F0A

µF0

in

?

foldµF0
κπ

- µF0

κπ

?

foldA αh
- A

α(π−1 ·⇒ h)

?

(4.5)

If we could show that the right-hand side also commutes then we could appeal to initiality

to get the final result. In other words, we need to show that for any (σ, t) in GM ×T0µF0,

(foldA αh)(κπ(σ, t)) = (α(π−1 ·⇒ h))(id × T0foldA αh)(σ, t), (4.6)

Group Action Parametricity 66

which we do by a brute force calculation. First, let’s expand the left-hand side of Equa-

tion 4.6.

(foldA αh)(κπ(σ, t)) = (foldA αh)(σ ·µF0
in(π−1, σ−1 ·

T0µF0
t)) by definition of κπ,

= (foldA αh)(in(σπ
−1, t)) by equivariance of in.

Similarly, we expand the right-hand side of Equation 4.6.

(α(π−1 ·⇒ h))(id × T0foldA αh)(σ, t)

= (α(π−1 ·⇒ h))(σ, (T0foldA αh)t) by definition of ×,

= σ ·A (π−1 ·⇒ h)(σ−1 ·T0A T0(foldA αh)t) by definition of α,

= σπ−1 ·A h(πσ
−1 ·T0A (T0foldA αh)t) by definition of ·⇒ ,

= αh(σπ−1, T0foldA αht) by definition of α,

= αh(id × T0foldA αh)(σπ
−1, t) by definition of ×.

Hence, proving that Equation 4.6 holds is equivalent to showing that

(foldA αh)(in(σπ
−1, t)) = αh(id × F0foldA αh)(σπ

−1, t),

which is true since αh is an F0-algebra, and foldA αh is an F0-algebra homomorphism, i.e.,

(foldA αh)in = αh(id×F0foldA αh). Therefore by uniqueness of the mediating morphism

foldA α(π
−1 · h) : µF0 → A we have that (foldA αh)(foldµF0

κπ) = foldA α(π
−1 · h) as

required.

Now using Theorem 81 we can define a generalised version of the conjugate action.

Theorem 82. Suppose that F0, T0 : [G,Set] → [G,Set] are both endofuctors, with F0A =

GM × T0A, and that there exists an initial F0-algebra µF0. Then we can define a G-set Z

that has the same underlying set as µF0, but has it’s action given by

π ·Z t = π ·µF0
(foldµF0

κπ)t.

Group Action Parametricity 67

Proof. To see that ·Z does in fact define a group action we must show that it satisfies the

identity and compatibility axioms.

Identity: For any t ∈ Z, we must show that e ·Z t = t, which we do by a simple

computation. First note that κe = in, since for any π in G and t in T0Z, we have that

κe(π, t) = α in(e−1,)(π, t) = π ·
F0µF0

in(e, π−1 ·µG t) = in(π, t),

by the equivariance of in. Hence, the identity axiom is satisfied as follows.

e ·Z t = e ·µF0
(foldµF0

κe)t = (foldµF0
in)t = t by Theorem 53.

Compatibility: For any element t of Z and any two elements σ and π of the group G,

we must show that σ ·Z (π ·Z t) = (σπ) ·Z t.

σ ·Z (π ·Z t) = σ ·µF0
(foldµF0

κσ)(π ·µF0
(foldµF0

κπ)t) by definition of ·Z ,

= σ ·µF0
π ·µF0

(foldµF0
κσ)(foldµF0

κπt) by equivariance of foldµF0
κπ,

= (σπ) ·µF0
(foldµF0

α(π−1 ·⇒ in(σ−1,))t by Theorem 81,6

= (σπ) ·µF0
(foldµF0

α(π−1 ·µF0
in(σ−1, π ·

T0µF0
))t by definition of ·⇒ ,

= (σπ) ·µF0
(foldµF0

α(in(π−1σ−1,))t by equivariance of in,

= (σπ) ·µF0
(foldµF0

κσπ)t by definition of κσπ,

= (σπ) ·Z t as required.

4.4.4 INITIAL ALGEBRA THEOREM FOR G-SETS

We are nearly ready to prove the general initial algebra theorem, but first we need to prove

the following helpful result.
6By Theorem 81 with h = in(σ−1,).

Group Action Parametricity 68

Theorem 83. Suppose that (F1, F0 × F0) : Rel(p) −→Eq Rel(p) is an equality preserving

fibred functor with initial F0 and F1-algebras given by (µF0, in0) and (µF1, in1), such that

µF1 = Eq µF0 and in1 = (in0 , in0). Then for any equivariant relation R ⊆ A×B and any

F1-algebra (k, k′) : F1R→ R, we have foldR (k, k′) = (foldA k, foldB k
′).

Proof. By applying the forgetful functor p : Rel([G, Set]) → [G, Set] × [G, Set] and then

the first projection functor π1 : [G,Set] × [G, Set] → [G, Set], we have a morphism π1 ◦

p(foldR (k, k′)) : µF0 → A, which makes the following diagram commute.

F0µF0

F0

(
π1 ◦ p(foldR (k, k′))

)
- F0A

µF0

in0

?

π1 ◦ p(foldR (k, k′))
- A

k

?

Hence, by initiality of µF0 we have that π1 ◦ p(foldR (k, k′)) = foldA k. By applying the

same argument with the second projection we see that π2p(foldR (k, k′)) = foldB k
′, and

hence foldR (k, k′) = (foldA k, foldB k
′) as required.

We can now prove the general initial algebra theorem, which we do in two parts analogous

to Theorem 77 and Theorem 78.

Theorem 84. Let X ⊢ T Type be a functorial type expression and denote J∆ ⊢ T TypeKo
by T0, denote J∆ ⊢ T TypeKr by T1, denote J∀X.(TX → X) → XKo by Z0, and denoteJ∀X.(TX → X) → XKr by Z1. Let (F1, F0 ×F0) : Rel(p) → Rel(p) denote the fibred fuctor

defined by F0A = GM × T0A and F1R = EqGM × T1R.

Suppose that there exists initial F0 and F1-algebras (µF0, in0) and (µF1, in1), such that

µF1 = Eq µF0 and in1 = (in0 , in0). Then for any t in µF0, any G-set A and any element

h of the exponential T0A⇒ A, the parametric function ρ defined by

ρAh = (foldA αh)t,

is an element of J∀X.(TX → X) → XKo.

Group Action Parametricity 69

Proof. First note that by Theorem 80 for any equivariant relation R ⊆ A × B and any

element (h, h′) of the exponential T1R⇒ R, we have a morphism (αh, αh′) : F1R→ R.

Then to see that ρ is an element of J∀X.(TX → X) → XKo we need to show that for any

equivariant relation R ⊆ A × B and any element of the exponential (h, h′) ∈ T1R ⇒ R,

that the pair (ρAh, ρBh
′) is in R, i.e., that

(
(foldA αh)t, (foldA αh

′)t
)
∈ R. Firstly, we

have a morphism foldR (αh, αh′) : µF1 → R since (αh, αh′) : F1R → R is an F1-algebra

and µF1 is weakly initial. Then since µF1 = Eq µF0 and (t, t) ∈ Eq µF0, we have that

foldR (αh, αh′)(t, t) ∈ R, which since foldR (αh, αh′)(t, t) =
(
(foldA αh)t, (foldB αh

′)t′
)

by

Theorem 83, proves the result.

We can now prove the general initial algebra theorem for G-sets.

Theorem 85. Suppose that we have the same set up as Theorem 84. Further, let Z denote

the G-set with carrier |Z| = µF0 and with the action given by π ·Z t = π ·µF0
(foldµF0

κπ)t.7

Then there is an isomorphism J∀X.(TX → X) → XKo ∼= Z.

Proof. Similar to the proof of Theorem 78, we start by looking at parametricity.

Parametricity: For any parametric function f in J∀X.(TX → X) → XKo we can deduce

the following parametricity property. Let A be a G-set, and h an element of the exponential

T0A⇒ A. Then by initiality of µF0 the following diagram commutes.

GM × T0µF0

id × T0foldA αh- GM × T0A

µF

in0

?

foldA αh
- A

αh

?

(4.7)

Further, since foldA αh : µF0 → A is an equivariant map, by Lemma 71 its graph ⟨foldA αh⟩

is an equivariant relation on µF0 × A. Hence, by the uniformity condition on f , we have

that (fµF0
, fA) ∈ (T1⟨foldA αh⟩ ⇒ ⟨foldA αh⟩) ⇒ ⟨foldA αh⟩. By instantiating Diagram 4.7

7Which actually defines an action by Theorem 82

Group Action Parametricity 70

at e, and noting that αh(e,) = h, we have that,

T0µF0

T0foldA αh- T0A

µF0

in0(e,)

?

foldA αh
- A

h

?

commutes in Set. Hence, by Theorem 72 we have that (in0(e,), h) is in the expo-

nential (T1⟨foldA αh⟩ ⇒ ⟨foldA αh⟩). Therefore, putting this all together we see that

(fµF0
in0(e,), fAh) ∈ ⟨foldA αh⟩, or in other symbols,

fAh = (foldA αh)(fµF0
in0(e,)). (4.8)

Defining the Isomorphism: We define the morphism ϕ : J∀X.(TX → X) → XKo → Z

by ϕf = fµF0
in0(e,), which is well defined since |µF0| = Z, and the morphism ψ : Z →J∀X.(TX → X) → XKo by ψt = ΛA.λh : T0A ⇒ A.(foldA αh)t, which is well-defined by

Theorem 84. To see that ϕ is equivariant let π be in GM , then,

ϕ(π ·∀ f) = (π ·∀ f)µF0
in(e,) by the definition of ϕ,

= π ·µF0
(fµF0

in0(π
−1,)) by the definition of ·∀ ,

= π ·µF0
(foldµF0

αin0(π
−1,))(fµFin0(e,)) by Equation 4.8.

= π ·µF0
(foldµF0

κπ)(ϕf) by the definition of κπ and ϕ,

= π ·Z (ϕf) by the definition of ·Z , as required.

Group Action Parametricity 71

Similarly, to see that ψ is equivariant, again let π be an element of GM , then

ψ(π ·Z t) = ΛA.λh. (foldA αh)(π ·Z t) by the definition of ψ,

= ΛA.λh. (foldA αh)(π ·µF0
foldµF0

κπ)t by the definition of ·Z ,

= ΛA.λh. π ·A (foldA αh)(foldµF0
κπ)t by equivariance of fold.

= ΛA.λh. π ·A (foldA α(π
−1 ·⇒ h)t) by Theorem 81 .

= π ·∀ (ΛA.λh. (foldA αh)t) by the definition of ·∀ ,

= π ·∀ ψ(t) as required.

Mutual Inverses: To see that the composition ψϕ gives the identity, let f be a parametric

function in J∀X.(TX → X) → XKo , then we have that

ψϕf = ΛA.λh. (foldA αh)(fµF0
in0(e,)) = f by Equation 4.8 .

For the reverse direction, suppose that t ∈ Z, then since κe = in0 , we have that

ϕψt = (foldµF0
αin0(e,))t = (foldµF0

in0)t = t by initiality.

Notice that Theorem 61 is a generalisation of Theorem 85 from Chapter 3. If the group

G is the trivial group 1 then we recover the original theorem.

4.4.5 INITIAL ALGEBRA THEOREM IN ACTION

Let’s look at a few examples of Theorem 85 in action.

Example 86. Let’s revisit the example that we looked at in Section 4.4.1. Suppose that

TX = 1 and hence F0A = 1×GM . Then F0 has an initial algebra given by µF0 = GM and

the morphisms in : GM × 1 → GM and foldA k : GM → A are given by in(π, ⋆) = π and

foldA kπ = k(π, ⋆) respectively.

Group Action Parametricity 72

By Theorem 85 the interpretation of ∀X.(1 → A) → A is given by (GM , ·Z), where the

action ·Z is given by

π ·Z σ = π ·G
M

(foldG
M
κπσ) by Theorem 85,

= π ·G
M

(
κπ(σ, ⋆)

)
by the definition of fold,

= π ·G
M

(
(α in(π−1,))(σ, ⋆)

)
by the definition of κπ,

= π ·G
M

(σ ·G
M
in(π−1, σ−1 ·1 ⋆) by the definition of α,

= π ·G
M
in(σ ·G

M
π−1, ⋆) by equivariance of in,

= π ·G
M
σ ·G

M
π−1 by the definition of in.

Hence, π ·Z σ = π ·G
C
σ and so J∀X.(1 → X) → XKo = (GC , ·G

C
) as expected (i.e., agreeing

with Theorem 78).

Example 87. Suppose that TX = 1+X and hence F0A = (GM×1)+(GM×A). Then F0 has

an initial algebra given by List+(GM).8 The morphism in : (GM ×1)+(GM ×List+(GM)) →

List+(GM) is given (inductively) by in(σ, ⋆) = [σ] and in(σ, [σ]) = [σ, σ], and the morphism

foldA k : List+(GM) → A is given (again inductively) by fold [k0, k1][σ] = k0(σ, ⋆) and

fold [k0, k1][σ1, . . . σn] = k1(π, fold [k0, k1][σ1, . . . σn−1]).9

By Theorem 85 we have that the interpretation of ∀X.(1 + X → X) → X is given by

(List+(GM), ·Z), where the action ·Z is given inductively as follows. Let π be an element of

G, let [σ] be a list of length one, an let [σ, σ] be a list of length n+ 1.

π ·Z [σ] = π ·LG
M

(fold κπ[σ]) by Theorem 85,

= π ·LG
M

(α in(π−1,))(σ, ⋆) by the definition of fold and in,

= π ·LG
M

(
σ · in(π−1, σ−1 · ⋆)

)
by the definition of α,

= π ·LG
M

(
in(σ ·G

M
π−1, ⋆)

)
by equivariance of in,

= π ·LG
M

[σ ·G
M
π−1] by the definition of in

= [π ·G
M
σ ·G

M
π−1] by the definition of ·LG

M
.

8For the set based case see Example 56.
9As in Example 56 we omit the subscript of fold.

Group Action Parametricity 73

To see the action ·Z on a list of length n + 1, first notice that by simply expanding the

definitions, we have that (α in(π−1,))(σ, [σ]) = [σ ·G
M
π−1, σ]. Hence, we have,

π ·Z [σ, σ] = π ·LG
M

(fold κπ[σ, σ]) by Theorem 85,

= π ·LG
M

(α in(π−1,))(σn, fold κπ[σ]) by definition of fold
List+(G

M
)
κπ,

= π ·LG
M

[σ ·G
M
π−1, fold κπ[σ]] by definition of α and in,

= [π ·G
M
σ ·G

M
π−1, fold κπ[σ]] by definition of ·LG

M
,

= [π ·G
C
σ, fold κπ[σ]] by definition of ·G

C
.

Therefore, putting this all together we have that π ·Z [σ1, . . . , σn] = [π ·G
C
σ1, . . . , π ·G

C
σn],

and hence J∀.(1 → X) → XKo = (List+(GC), ·LG
C
).

Example 88. Suppose that T0X = 1+(X×X) and hence F0A = (GM × 1)+ (GM ×A×A).

Then following a similar line of arguments to Theorem 86 and Theorem 87, we have that

the interpretation of ∀X.(1+ (X ×X) → X) → X gives the collection of binary trees with

an element of GC stored at each node, and the group action on a binary tree is given by

applying the group action of GC at each node.

4.5 NOMINAL DISCUSSION

In this chapter we have managed to show that the relations fibration on G-sets can be used

to give a parametric model for System F. Instead of the usual initial algebras theorem we

found that a different (but related) theorem holds. Where initial algebras normally give

trees, in the world of group actions we found that each node additionally contained an

element of G. This meant that the characterisation of the terminal object 1 became the

G-set given by the group with the conjugate action GC , and the characterisation of the

natural numbers N became the collection of non-empty lists List+(GC) containing elements

of GC .

One might think that a natural progression of this work would be to look at nominal sets.

Nominal sets are PermA-sets that are finitely supported, where PermA denotes the set of

finite bijections of a countably infinite set A. The term finite support means that for an

Group Action Parametricity 74

element x of a nominal set X, there is a set A ⊆ A such that, if for all π ∈ PermA, we

have (∀a ∈ A, πa = a) =⇒ π ·X x = x.

The restriction of PermA-sets to finitely supported ones is a very useful one, and the study

of nominal sets has been very fruitful (see e.g. [34] for an overview). However, it turns out

that by requiring PermA-sets to be finitely supported we make it a little more tricky to

apply the results proven in this chapter.

The first immediate stumbling block is given when trying to define the PermA-set with

the multiplication action (the equivalent of GM). This set is a PermA-set but it is not

finitely supported. To see this, let PermA denote the PermA-set with the multiplication

action π ·Perm A σ = πσ and consider the identity element e ∈ PermA. If A ⊆ A is a finite

support for e, then for any element π ∈ PermA such that ∀a ∈ A, πa = a

π ·Perm A e = e.

Or in other words π = e, which is not true in general. Since A is finite we can always

find two distinct elements a1 and a2 in A \ A. Then the transposition (a1 a2) satisfies

∀a ∈ A, (a1 a2) a = (a1 a2), but is clearly not equal to the identity element e. This

discussion does not mean that an initial algebras theorem for nominal sets as model for

System F can not be proven, just that it is not a direct generalisation of the work here.

Departing from System F in the next chapter we will look at types that are indexed by

dimensions. We will see that G-sets will also play an important role and we will look at

parametricity in this setting.

CHAPTER 5

DIMENSIONS
In this chapter we depart from looking at System F and instead focus on a new type

system that has types for physical dimensions. We will use the fibrational approach to

give a general categorical semantics for this type system and then explore parametricity

in this context, where we will discover a deep connection with group actions.

This material in this chapter has been published in a joint paper [3].

5.1 MISMATCHING MISTAKES ON MARS

Humans make errors. In 1999 the Mars Climate Orbiter disintegrated in the Martian

atmosphere due to a unit mismatch in the computer systems — one part used Newton-

seconds and the other pound-seconds [35]. This mismatch was not be detected by the

computer systems, instead it was assumed that the software had been correctly designed.

Due to human error the software specification had not been followed exactly. For the Mars

Climate Orbiter, this had a catastrophic result.

There has been a lot of work by many different people to try to avoid unit errors by

developing programming languages that can manipulate physical quantities [36–40]. Often

inspired by tales like the Mars Climate Orbiter, the idea is that if your programming

language knows the units that you are using, it can check whether there is ever a mismatch.

75

Dimensions 76

In this chapter (and thesis), we’re not interested in the specifics of the Mars Climate

Orbiter, and we are also not interested in the specifics of these programming languages,

but we are interested in their underlying structure. As part of our motivation, we hope

that by exploring a general semantics, we can unravel intrinsic properties that will help

to guide future development. Moreover, there is a natural fibrational approach in this

situation due to the indexing nature of units, and the machinery that we have developed

in Chapters 2–4 can provide additional insights.

Our starting point is the work of Andrew Kennedy. In his thesis [41] and subsequent

papers [25, 39], he developed a type theory for programs that can manipulate physical

quantities using dimension types, as well as a semantics based on complete partial orders.

Kennedy also develops a relational semantics, and proves a parametricity result, which he

uses to prove theorems about his type system.

We take a different approach by developing a general categorical notion of model for

programming languages with dimension types. This allows us to explore different ways of

building different models, as well using categorical tools to provide simple, elegant proofs

of some relevant theorems.

Specifically, in this chapter we will define a simple type theory called λD, indexed by

dimensions. From there we will introduce the semantics by defining the notion of a λD-

model in Section 5.4.

In Section 5.6 we will explore an important example of a λD-model, which is built from

group actions (Example 96), and we show that this model supports a diverse range of

parametricity-like theorems, without the need to define a separate relational semantics.

This results in simple proofs of theorems that would otherwise require more heavy ma-

chinery. Finally, in Section 5.7 we explore the relationship between the parametricity-like

theorems of the λD-model built from group actions, and a natural notion of a relational

model.

Dimensions 77

5.2 TYPES WITH PHYSICAL DIMENSIONS

Throughout science different physical quantities are organised into dimensions, such as

length or time. For any equation to be meaningful it must have the same dimensions on

both the left and the right-hand side of the equation. This provides a plausibility check

on derived equations and results, which is a crucial tool in the physical sciences, and is

central to the discipline known as dimensional analysis. As part of dimensional analysis, a

fundamental principle is that it is not meaningful to add or compare quantities of different

dimensions, but they can be multiplied.

To measure a physical quantity we use units, such as metres or seconds. We understand

these units as chosen constant quantities of given dimensions, which can then be scaled to

express different measurements. For example, a cricket pitch has a length that is twenty

times as long as one metre or more succinctly, has a length of 20m.

To express dimensions in a programming language we introduce a type Quantity(X) of

quantities with dimension X. We introduce this type more formally below, but let’s

first have a look at how it works. Here is a polymorphic program that is defined for all

dimensions; it takes a quantity x of a given dimension X, and returns its double, which

has the same dimension.

f := (ΛX.λx : Quantity(X). x+ x) : ∀X.Quantity(X) → Quantity(X) (5.1)

Though the symbols “ΛX” and “∀X” look like they belong to System F, here they mean

something completely different. Both occurrences of “X” in “ΛX” and “∀X” correspond

to dimension variables and not type variables. This means that the term in Equation 5.1

cannot be instantiated at an arbitrary type, but only at an arbitrary dimension. This

difference means that types no longer define functors, but instead simply objects in the

total category of a fibration. We give the full details of this below, but to illustrate consider

the following instantiation. Suppose we would like to know how long a cricket pitch would

be if we doubled its length, and we would like to use the polymorphic function f to find

Dimensions 78

out.

fLength (20m) = 20m + 20m : Quantity(Length)

= 40m : Quantity(Length)

Unsurprisingly, the total length is 40m, but there are a couple of key points that are worth

emphasising about this example.

• There are two kinds of variable, X and x. The first variable X stands for a dimension

whereas x stands for an inhabitant of a type. To emphasise this distinction, when

we abstract each variable we will use a different symbol, λ for term abstraction and

Λ for dimension abstraction, as seen in equation 5.1 above, and analogous to our use

of λ and Λ for System F.

• The type Quantity(X) depends on a dimension X, and it is inhabited by quantities

of that dimension. For example, the standard unit of measure for length, the metre,

is a quantity of the length dimension, i.e. a constant m : Quantity(Length), as well

as any multiple of the standard unit such as 20m.

To express programs such the one above, we introduce a simple type theory, which we will

call λD. Since there are two kinds of variables, we have two kinds of contexts.

Dimension Contexts and Dimension Expressions: A dimension context ∆ is a

finite list of distinct dimension variables X1 . . . Xn. A dimension-expression-in-context

∆ ⊢ D Dim is a monomial D in the variables ∆. In other words, a dimension-expression-

in-context is given by a collection of integers ki ∈ Z, and written as ∆ ⊢ Xk1
1 . . . Xkn

n Dim.

The set of dimension-expressions-in-context {D | ∆ ⊢ D Dim} is an Abelian group under

addition of exponents, i.e., Xk · Xk′ = Xk+k′

i , and this is the free Abelian group on ∆.

By the universal property of the free Abelian group, we have a substitution on dimension

expressions, which is given by, for example, X,Z ⊢ (X2Y 3)[(XZ
2)/Y] = X5Z6 Dim.

Types: Well-formed types are given by judgements of the form ∆ ⊢ T Type, where ∆ is

a dimension context. The judgements are generated by the following rules.

Dimensions 79

λD TYPES

∆ ⊢ D Dim
∆ ⊢ Quantity(D) Type DIMENSION TYPES

∆, X ⊢ T Type
∆ ⊢ ∀X.T Type DIMENSION POLYMORPHISM

∆ ⊢ T Type ∆ ⊢ U Type
∆ ⊢ T → U Type ARROW TYPES

∆ ⊢ 1 Type UNIT TYPE

∆ ⊢ T Type ∆ ⊢ U Type
∆ ⊢ T × U Type PRODUCT TYPES

∆ ⊢ 0 Type EMPTY TYPE

∆ ⊢ T Type ∆ ⊢ U Type
∆ ⊢ T + U Type SUM TYPES

Notice that we do not have System-F-style polymorphism, but instead, we have polymor-

phism of dimensions. In other words, types can be parameterised by dimensions, but

they cannot be parameterised by types, since we do no have type variables. This means

that this type system behaves very differently to System F. Looking at this setup via the

Curry-Howard correspondence, we have a first-order-logic where the domain of discourse

is the theory of Abelian groups and a single atomic predicate, Quantity.

5.3 TERMS WITH PHYSICAL DIMENSIONS

As usual we will focus our attention on the types of this system, but for the interested

reader we formally introduce the terms here.

Dimensions 80

Typing Contexts and Terms: Well-formed typing contexts are given by judgements

∆ ⊢ Γ Ctx, where ∆ is a dimension context, Γ is of the form x1 : T1, . . . , xn : Tn, and there

is a well-formed typing judgement ∆ ⊢ Ti Type for every i. Well-formed terms are given

by judgements ∆;Γ ⊢ t : T , where there is a well-formed typing context ∆ ⊢ Γ Ctx, and

a well-formed type ∆ ⊢ T Type. The rules for the type formers 1, 0, × , + , and

→ are the usual ones from the Simply Typed λ-Calculus, as stated below.

λD TERMS

∆ ⊢ Γ,Γ′ Ctx ∆ ⊢ T Type
∆;Γ, x : T,Γ′ ⊢ x : T

∆;Γ, x : T ⊢ t : U
∆;Γ ⊢ λx.t : T → U

∆;Γ ⊢ t : T → U ∆;Γ ⊢ u : T

∆;Γ ⊢ t u : U
∆ ⊢ Γ Ctx
∆;Γ ⊢ () : 1

∆;Γ ⊢ t1 : T1 ∆;Γ ⊢ t2 : T2
∆;Γ ⊢ (t1, t2) : T1 × T2

∆;Γ ⊢ t : T1 × T2
∆;Γ ⊢ pri(t) : Ti

∆;Γ ⊢ t : 0 ∆ ⊢ T Type
∆;Γ ⊢ case t : T

∆;Γ ⊢ t : Ti
∆;Γ ⊢ ιi t : T1 + T2

∆;Γ ⊢ t : T1 + T2
(
∆;Γ, xi : Ti ⊢ ui : U

)
i∈{1,2}

∆;Γ ⊢ case t of {ι1 x1 7→ u1; ι2 x2 7→ u2} : U

In addition, we can abstract over dimension variables, and substitute a dimension expres-

sion for an abstracted dimension variable, which gives the introduction and elimination

rules for quantification over a dimension variable.

λD TERMS CNTD...

∆, X; Γ ⊢ t : T
∆;Γ ⊢ ΛX.t : ∀X.T

∆ ⊢ D Dim ∆;Γ ⊢ t : ∀X.T
∆;Γ ⊢ tD : T [D/X]

We use bool as an abbreviation for 1 + 1. Our calculus is parameterised by a collection

Ops of primitive operation typings (op : Top), where for each primitive operation op : Top,

Dimensions 81

its type Top is closed (i.e., ⊢ Top Type). An example set of primitive operations includes

dimension-polymorphic arithmetic and test operations on quantities:

Ops = (+ : ∀X.Quantity(X)× Quantity(X) → Quantity(X),

× : ∀X1.∀X2.Quantity(X1)× Quantity(X2) → Quantity(X1 ·X2),

1 : Quantity(1),

inv : ∀X.Quantity(X) → Quantity(X−1),

< : ∀X.Quantity(X)× Quantity(X) → bool).

One could also define a type of signed/zero quantities real(X) := Quantity(X) + 1 +

Quantity(X), and then extend the language with further arithmetic term constants such

as signed addition + : ∀X.real(X)× real(X) → real(X).

To write terms that make use of common sets of dimensions and units, we judge terms

in a context (∆dim,Γunits). For example, ∆dim = (Length,Time) and Γunits = (m :

Quantity(Length), ft : Quantity(Length), s : Quantity(Time)).

5.4 CATEGORICAL SEMANTICS OF DIMENSION TYPES

Next up we give a general categorical semantics for the λD type theory. Central to this is

the notion of a λ∀-fibration, as introduced in Chapter 2.

Definition 89 (λD-Model). A λD-model (p, G, Q) is a λ∀-fibration p : E → B, an Abelian

group object G in B, and an object Q in the fibre EG .

This definition has all of the structure needed to model the λD type theory. As expected,

we will use the λ∀-fibration to separate the indexing information (the dimensions) from

the indexed information (the types and terms).

Dimension contexts will be interpreted as objects of the base category B and concatenation

of dimension contexts will be given by taking the product in B. Recall that an Abelian

group object in a category B with products is given by an object G together with maps

e : 1 → G, m : G × G → G and i : G → G satisfying the laws of Abelian groups. We

Dimensions 82

will use this group structure to interpret dimension expressions so that for each vector of

n integers we have a morphism Gn → G. Then substituting dimension expressions for

dimension variables will be interpreted using the morphisms in B.

An equivalent way to define Abelian group objects if B has chosen products is as follows.

The Lawvere theory for Abelian groups is the category LAb whose objects are natural

numbers, and where a morphism m → n is an m × n matrix of integers. Composition

of morphisms is given by matrix multiplication, and categorical products are given by

arithmetic addition of natural numbers. An Abelian group object in B is an object G of B

together with a strictly-product-preserving functor F : LAb → B such that F (1) = G. We

will use this alternative view of Abelian group objects in Theorem 95.

Types are interpreted as objects in the fibres above the contexts in which they are defined

by using the bicartesian closed structure, and terms are similarly interpreted as morphisms.

We will use the reindexing functor to describe substitution for dimension variables in types

and terms, and finally universal quantification of dimension variables in types will be

interpreted using the right adjoint to reindexing by a projection.

To establish the value of Definition 89 we have to do three things. First, show that a λD-

model actually provides categorical models of dimension types. Second, give examples, and

finally prove some theorems to show the viability of reasoning at this level of abstraction.

We take these in turn.

A λD-model provides a categorical semantics for dimension types as follows.

Dimension Contexts and Dimension Expressions: We interpret dimension contexts

∆ = X1, . . . , Xn as the product of the Abelian group object J∆K = Gn in B. And dimension-

expressions-in-context ∆ ⊢ D Dim are interpreted as morphisms Gn → G in the base B,

by using the structure of the Abelian group object G. For example, JX,Y ⊢ X · Y −1K =

G×G
id
G
×i

−−−−→ G×G m−→ G, or in other words JX,Y ⊢ X ·Y −1K(g1, g2) = g ·g−1. We assume

that there is a given interpretation JdK : 1 → G for every primitive dimension constant

d ∈ ∆dim.

Types: The interpretation of well-formed types ∆ ⊢ T Type is given by objects JT K in the

fibre above J∆K, defined by induction on the structure of T . We interpret 1, 0, ×, + and

Dimensions 83

→ using the bicartesian closed structure of the fibres, and quantification of a dimension

variable J∆ ⊢ ∀X.T K is defined by right adjoint to reindexing along the projection π : J∆ ⊢

Γ, XK → J∆ ⊢ ΓK. Quantities ∆ ⊢ Quantity(D) are interpreted by reindexing the object Q

along the interpretation of D, i.e. J∆ ⊢ Quantity(D)K = J∆ ⊢ D DimK∗(Q).

Typing Contexts and Terms: Well-formed typing contexts ∆ ⊢ Γ ctxt are interpreted

as products in the fibre above J∆K, i.e., the interpretation of J∆ ⊢ x1 : T1, . . . , xn : TnK
is given by J∆ ⊢ T1K × . . . × J∆ ⊢ TnK. We interpret well-formed terms ∆,Γ ⊢ t : T

as morphisms JtK : JΓK → JT K in the fibre above J∆K. We assume that there is an

interpretation JunK : 1 → JQuantity(D)K for each unit (un : Quantity(D)) ∈ Γunits of

dimension D, and an interpretation JopK : 1 → JT K for each primitive operation (op : T) ∈

Ops.

For the λD type system we see that the following substitution lemma holds.

Lemma 90. (Substitution Lemma) Suppose that ∆, X ⊢ T Type and that ∆ ⊢ D Dim

denotes a dimension expression. Then JT [D/X]K ∼= (idJ∆K , JDK)∗JT K.
Proof. By induction on the structure of T .

This Lemma says that in the semantics of substituting a dimension expression for a di-

mension variable is given by reindexing along the identity paired with the dimension

expression.

In this Chapter (and in this thesis) we have only considered universal quantification of

dimension variables but existential quantification can be given just as easily. Existential

quantification is interpreted as the left adjoint to reindexing along a projection, and so we

would just require a fibration with this additional structure. Then, properties of existential

quantification can be proven by dualising the relevant proofs of properties about universal

quantification.

Dimensions 84

5.5 EXAMPLES

We would expect the syntax to form a λD-fibration and indeed it does. This means that

we have a term model and hence a completeness result.

Example 91. (Syntactical Model) We can construct a category Cℓ(λD) from the syntax

in the standard way, and we have a λ∀-fibration p : Cℓ(λD) → LAb with base category

given by the Lawvere theory of Abelian groups LAb, and the fibre Cℓ(λD)n over n is the

category whose objects are types with n dimension variables, and whose morphisms are

terms in context. The object 1 in LAb is an Abelian group object, and hence we have that

(p : Cℓ(λD) → LAb, 1, (X ⊢ Quantity(X) Type)) is a λD-model.

In Kennedy’s paper [39], a simpler approach is taken to the semantics of dimensions.

Instead of separating the indexing information from the indexed information, Kennedy just

focusses on the latter. This means that in his semantics dimensions are simply thrown

away in a dimension-erasure semantics. From the categorical perspective, this means

the calculus is stripped of its fibred structure leaving only a Simply Typed λ-Calculus,

which Kennedy models within a bicartesian closed category. In particular, he chooses the

category of complete partial orders.1 Nevertheless, Kennedy’s model can be viewed as a

λD-model.

Example 92. (Dimension-Erasure Models) Let C be a bicartesian closed category. Then the

functor C → 1 is a λ∀-fibration, and the unique object of 1 is a trivial Abelian group object.

By taking C to be the category of complete partial orders and continuous functions, and by

choosing the flat pointed cpo Q⊥ to interpret Quantity we obtain a model corresponding to

Kennedy’s dimension-erasure model. This model supports an array of primitive operations,

including all the standard arithmetical ones. However, the model also contains many

functions which are not dimensionally invariant, i.e. they do not scale appropriately under

change of units. To reduce the model to the dimensionally invariant functions Kennedy

uses relational parametricity, which we will discuss further in Section 5.7.
1Kennedy uses the category of complete partial orders because his type system has recursion.

Dimensions 85

Recall the families fibration p : Fam(Set) → Set on Set, which has fibres above a set I

consisting of pairs (I, f), where I is a set and f : I → |Set| is a function. In other words,

the fibre above I consists of pairs (I, {Xi}i∈I), where {Xi}i∈I is an I-indexed family of

sets. Theorem 23 says that p is a λ∀-fibration, and so by choosing an appropriate Abelian

group object G, and a G-indexed family of sets, we have a λD-model.

Example 93. (The Dimension-Indexed Families Model) Suppose that B is a set of funda-

mental dimensions (e.g. Length, Time, Mass etc.) and let G be the free Abelian group

on B. The object Q in the fibre above G must be a G-indexed collection of sets. One

(reasonable) choice is given by providing a unit for each generator of G, known here as

fundamental dimensions, and obtaining the rest by induction. Formally, for a fundamental

dimension D, let QD = R+ × {D}, where D is a unit for D, i.e. Length = m. Then

since any element D of G is a monomial Dk1
1 . . . Dkn

n , we define QD = R+ × D, where

D = Dk1
1 . . . Dkn

n . We then have a λD-model (p : Fam(Set) → Set, G, (G, {QD}D∈G)).

In this model, a type with a free dimension variable X ⊢ T Type is interpreted as a family

of sets, indexed by the dimensions in G. Similarly a term with a free dimension variable is

interpreted as a family of functions, one for each dimension in G. This model does support

many primitive operations, but it does not support dimension invariant polymorphism. For

instance, the model supports adding a term eq : ∀X1.∀X2.bool which tests whether two

dimensions are the same, which is clearly not invariant under change of representation.

Similarly, we have examples given by the relations fibration Rel → Set, and the subobject

fibration Sub(Set) → Set, as well as the families fibration Fam(C) → Set if C is bicartesian

closed.

In Theorem 26, we saw that λ∀-fibrations are closed under change-of-base. Next we see

that λD-models are too.

Theorem 94. Let (p : E → B, G, Q) be a λD-model, F : A → B

be a product preserving functor, and let A be an Abelian group

object in A such that FA = G. Then (F ∗p, A, (A,Q)) is a

λD-model.

F ∗E
p∗F - E

A

F ∗p

?

F
- B

p

?

Dimensions 86

Proof. By Theorem 26 F ∗p is a λ∀-fibration. We have that A is an Abelian group object

and Q is in the fibre (F ∗p)FA = (F ∗p)G by construction, and hence (F ∗p, A, (A,Q)) is a

λD-model, as required.

For a simple illustration of this theorem, notice that the dimension-erasure fibration C → 1

of Example 92 arises from pulling back the families fibration Fam(C) → Set along the

unique product-preserving functor F : 1 → Set given by F (⋆) = 1.

A simple theorem that shows the usefulness of Theorem 94 says that any λD-model can

be expressed as a λD-model with the Lawvere theory of Abelian groups in the base, via

change-of-base. Intuitively this means that the model only uses products of the Abelian

group object in the base category and so we can essentially throw away all of the other

objects.

Theorem 95. (Models over the Lawvere Theory LAb) Let (p : E → B, G, Q) be a λD-model.

Then there exists a product preserving functor F : LAb → B such that
(
F ∗p : F ∗(E) →

LAb, 1, (1, Q)
)

is also a λD-model.

Proof. Recall that the Abelian group objectG in B gives rise to a unique product-preserving

functor F : LAb → B such that F (1) = G. Hence, by Theorem 94, we have a λD-model

(F ∗p, 1, (1, Q)).

Next we introduce a model built from group actions that we will examine in detail in

Section 5.6.

Theorem 96. (A Model Built from Group Actions) Let p : Grp//Set → Grp be the Grp//Set

fibration, G be an Abelian group, and let Q be a G-set. Then (p, G, Q) is a λD-model.

Proof. The Grp//Set fibration p is a λ∀-fibration by Theorem 33, and since an Abelian

group induces an Abelian group object in Grp,2 we have that (p, G, Q) is a λD-model.
2There is a functor Ab(Set) → Ab(Grp) that maps an Abelian group to an Abelian group object in Grp

using the group multiplication as the Abelian group object structure. For an Abelian group G, to show
that the map m : G×G → G is a group homomorphism crucially relies on the fact that G is Abelian. i.e.,
not just a group.

Dimensions 87

The Grp//Set model cannot support dimension constants because there is only one group

homomorphism 1 → G. It does support several term constants, which we discuss after

Theorem 100.

More generally, instead of having sets and group actions, we also have λD-models built

from actions of groupoids. Recall the following definitions.

Definition 97 (Groupoid). A groupoid is a small category C where every morphism is an

isomorphism, and we denote the category of groupoids and functors by Gpd. A groupoid

action (or presheaf) is a functor C → Set.

The category Gpd//Set has objects given by pairs (A, ϕ), where A is a groupoid and

ϕ : A → Set is a functor, and morphisms given by pairs (A, ϕ) → (B, ψ), where F : A → B

is a functor and η : ϕ→ ψ ◦ F is a natural transformation between functors A → Set.

By looking at the forgetful functor Gpd//Set → Gpd, which we call the Gpd//Set fibration,

we have another example of a λD-fibration.

Example 98. (A Model Built from Groupoid Actions) The Gpd//Set fibration Gpd//Set →

Gpd is a λD-model. The proof of this is very similar to Theorem 96, and so we do not

reproduce it here.

The Gpd//Set fibration can be used to construct the fibrations of Example 93 and Exam-

ple 96 by change-of-base.

• The families fibration Fam(Set) → Set from Example 93 arises from pulling back the

Gpd//Set fibration Gpd//Set → Gpd along the discrete-groupoid-functor Set → Gpd.

• The group action fibration Grp//Set → Grp from Example 96 arises from pulling back

the groupoid action fibration Gpd//Set → Gpd along the functor Grp → Gpd, which

maps each group as a groupoid with one object in the usual way.

Hence, the Gpd//Set fibration subsumes the families and group actions fibrations. In fact

it also subsumes them as λD-models.

Dimensions 88

To see this first recall that a homomorphism of Abelian groups f : G → H induces a

groupoid. The objects are given by the elements of H, and the hom-sets are given by

hom(h, h′) = {g ∈ G | f(g) ·H h = h′}, where composition is given by the group operation

in G. This groupoid can be given the structure of an Abelian group object in Gpd, and,

moreover, every Abelian group in Gpd arises in this way [42].

To see that the Gpd//Set model subsumes the group action model of Example 96, let G be

an Abelian group of scale factors. Then the Abelian group object induced by the unique

homomorphism G → 1 is a one-object groupoid, and hence we can build the λD-models

of group actions. To recover the families model of Example 93, fix a set of dimension

constants and let H be the free Abelian group on that set. The unique homomorphism

1 → H induces the discrete groupoid whose objects are H, and hence we build the λD-

models of families of sets.

5.6 GROUP ACTIONS AND DIMENSION TYPES

In this section we will look in greater detail at the λD-model given by the Grp//Set fibration.

Many interesting theorems can be proven in this model, and so we now take the time to

spell out the reindexing and simple product structure. Throughout this section we will

use semantic brackets J K to refer only to the Grp//Set interpretation.

Reindexing: Let ϕ be a G-set. Then since reindexing is given by precomposition, we

have that reindexing along π : G × H → G gives the G ×H-set given by ϕ ◦ π. In other

words, π∗ϕ is a G ×H-set with the same underlying set |π∗ϕ| = |ϕ| as the G-set ϕ, and

action given by (g, h) ·
π∗ϕ x = g ·

ϕ
x.

Simple Products: Let ψ : G ×H → Set be a G×H-set. According to Theorem 27, the

underlying set of ∀πψ is given by |∀πψ| = limy∈H ψ(⋆, y), which we can compute using the

universal property of limits as follows.

lim
y∈H

ψ(⋆, y) ∼= Set
(
1, lim
y∈H

ψ(⋆, y)
) ∼= [H,Set]

(
K1, ψ(⋆,)

)

Dimensions 89

Hence |∀πψ| = {y ∈ |ψ| | ∀h ∈ H . (eG, h) ·ψ y = y}, and the action is given by g ·∀πψ x =

(g, eH) ·ψ x. Notice that to give the group action of ∀πψ, we had to make a particular

choice of an element in H, namely the identity element eH . However, any element of H

would have given the same result, since for all y ∈ |∀πψ|,

(g, h) ·
ψ
y = ((g, eH)(eG, h)) ·ψ y = (g, eH) ·ψ ((eG, h) ·ψ y) = (g, eH) ·ψ y.

Note that by Substitution Lemma 90, we have that in the Grp//Set fibration

(idJ∆K , JDK)∗JT K ∼= JT K(idJ∆K , JDK),
since reindexing is given by precomposition. In other words, substitution of the nth unit

variable is given by precomposition at the nth component.

Now that we have explored the structure we can start to prove some theorems. In

Kennedy’s treatment of dimension types he introduces a relational semantics, and proves

a parametricity theorem. However, using our categorical semantics many of the theorems

that he proves using parametricity can be proven in the Grp//Set fibration, without having

to define a separate relational semantics. This forms the content of Theorems 100–105.

First, recall the following theorem about ends (as discussed in [9, Section 5]).

Theorem 99. For two functors F : C → D, G : C → D, Nat(F,G) ∼=
∫
C hom(FC,GC).

Using Theorem 99 and the Grp//Set model we can characterise the interpretation of arrow

types with a universally quantified variable.

Theorem 100. Suppose that X1, . . . , Xn, X ⊢ S, T Type, then

|J∀X.S → T K| ∼= [G, Set]
(JSK(⋆, . . . , ⋆︸ ︷︷ ︸

n−times

,), JT K(⋆, . . . , ⋆︸ ︷︷ ︸
n−times

,)
)
.

Proof. Let π denote the projection morphism JX1, . . . , Xn, XK → JX1, . . . , XnK, let ∀π

denote the right-adjoint to reindexing along π, i.e., π∗ ⊣ ∀π, let ∆ denote X1, . . . , Xn, and

Dimensions 90

let Ranπ denote the right Kan extension along π. Then, by definition we have that

|J∆ ⊢ ∀X.S → T K| ∼= J∆ ⊢ ∀X.S → T K ⋆n ∼= (RanπJ∆, X ⊢ T → SK) ⋆n ,

where ⋆n denotes the unique object of the category Gn.

By using the end formula for a right Kan extension,3 we have that

|J∆ ⊢ ∀X.S → T K|
∼=

∫
⋆n+1

Gn(⋆n, ⋆n) ⇒ J∆, X ⊢ T → SK⋆n+1 by Kan extension formula,

∼=
∫
⋆

∫
⋆n

Gn(⋆n, ⋆n) ⇒ J∆, X ⊢ T → SK(⋆n, ⋆) by separating the end,

∼=
∫
⋆
[Gn,Set]

(
Gn(⋆n,), J∆, X ⊢ T → SK(, ⋆)

)
by Theorem 99,

∼=
∫
⋆
J∆, X ⊢ T → SK(⋆n, ⋆) by the Yoneda Lemma,

∼=
∫
⋆
J∆, X ⊢ T K(⋆n, ⋆) ⇒ J∆, X ⊢ SK(⋆n, ⋆) by the definition of J K,

∼= [G, Set](J∆, X ⊢ T K(⋆n,), J∆, X ⊢ SK(⋆n,) by Theorem 99,

as required.

This Theorem says that in the Grp//Set model a universally quantified variable over an ar-

row type can be considered as a natural transformation between the domain and codomain

of the arrow type, with the first n components fixed. In other words, it is interpreted as

the set of functions that are equivariant in the last argument.

As a simple consequence of this theorem, we can see that the group actions model supports

several different term constants. Given a choice of G-set Q, then for any element q of Q,

we can accommodate a term constant q : Quantity(1), which is interpreted by JqK = q.

When Q = G, we can also accommodate a term constant for multiplication

× : ∀X.∀Y.Quantity(X)× Quantity(Y) → Quantity(X · Y)

3This is a well-known formula, see for example [9].

Dimensions 91

which is interpreted as the group operation. When Q = G = (R+,×, 1), the positive

reals, we also have addition, + : ∀X.Quantity(X) × Quantity(X) → Quantity(X) , which

is equivariant since q(r + s) = qr + qs.

Theorem 101. Suppose that we have a type ∆, X ⊢ T Type with one free dimension variable

X. Then,

|J∀X.Quantity(X) → T K| ∼= |JT [1/X]K|. (5.2)

Proof. Firstly, by expanding the left hand side of (5.2) and using Theorem 100, we see

that

|J∆ ⊢ ∀X.Quantity(X) → T K| ∼= [G, Set]
(J∆, X ⊢ XK∗Q(⋆n,), J∆, X ⊢ T K(⋆n,)

)
.

Then notice that the underlying carrier of the G-Set J∆, X ⊢ XK∗Q(⋆n,) is given byJ∆, X ⊢ XK∗Q(⋆n, ⋆) = Q(⋆) = G, and the action is defined by J∆, X ⊢ XK∗Q(⋆n, g) =

g · . Hence, the functor J∆, X ⊢ XK∗Q(⋆n,) is equal to the hom-functor G(⋆,), and

so we see that,

|J∆ ⊢ ∀X.Quantity(X) → T K| ∼= [G,Set](G(⋆,), J∆, X ⊢ T K(⋆n,))

∼= J∆, X ⊢ T K(⋆n, ⋆) by the Yoneda Lemma.

Finally, by expanding the right hand side of (5.2), and using Theorem 100, we see that

|J∆ ⊢ T [1/X]K| ∼= (idJ∆K , J∆, X ⊢ 1K)∗J∆, X ⊢ T K⋆n ∼= J∆, X ⊢ T K(⋆n, ⋆), as required.

We now prove some theorems about the Grp//Set fibration that are proven using para-

metricity in Kennedy’s original paper. The proofs here involve applications of Lemma 90,

Theorem 100 and Theorem 101. First, we take a look at the invariance of polymorphic

functions under scaling.

Theorem 102. Suppose that we have ∆dim; Γops ⊢ t : ∀X.Quantity(X) → Quantity(Xn),

where n ∈ N. Then, for any element g of G and any element x of |JQuantity(X)K|, we

have that JtK(g · x) = gn · JtKx.

Dimensions 92

Proof. We know from Theorem 100 that JtK ∈ [G,Set](JQuantity(X)K, JQuantity(Xn)K). Or

in other words, JtK(g · x) = gn · JtKx for all x ∈ |JQuantity(X)K|, as required.

This theorem tells us that polymorphic functions are invariant under scaling. If we apply

Theorem 101 to the type ∀X.Quantity(X) → Quantity(Xn), we see that

|J∀X.Quantity(X) → Quantity(Xn)K| ∼= |JQuantity(1n)K| ∼= |JQuantity(1)K| ∼= Q.

Hence, we conclude that all the terms of type ∀X.Quantity(X) → Quantity(Xn) are of the

form ΛX.λq : Quantity(X). r × qn for r ∈ Q.

Theorem 103. There is no ground term ⊢ t : ∀X.Quantity(X2) → Quantity(X)., i.e., we

cannot write a polymorphic square root function.

Proof. To see this we exhibit a model where the existence of such a term is impossible.

Consider the λD-model (p : Grp//Set → Grp, Z2, Z2), where Z2 denotes the Abelian group

= ({−1, 1}, ·, 1). Theorem 100 says that the interpretation of the type ∀X.Quantity(X2) →

Quantity(X) is given by,

|J∀X.Quantity(X2) → Quantity(X)K| ∼= [Z2,Set](JQuantity(X2)K, JQuantity(X)K),
i.e. any element f of |J∀X.Quantity(X2) → Quantity(X)K|, satisfies for all g, x ∈ Z2,

f(g2 · x) = g · (fx) (5.3)

If f exists, then either f(−1) = −1 or f(−1) = 1, but both lead to contradictions. To

this end suppose that f(−1) = −1, then by Equation 5.3 we have that f((−1)2 · −1) =

(−1) · f(−1), which is a contradiction since the left-hand side is equal to −1 and the right-

hand side is equal to 1. A similar argument shows that f(−1) = 1 is also not possible, and

hence there exists no such f .

This result can be extended to also include terms t using primitive operations, i.e. Γops ⊢

t : ∀X.Quantity(X2) → Quantity(X), as long as these operations can be interpreted in

Dimensions 93

the model. For example, the result holds in the presence of multiplication, since it can

be interpreted in the model as mentioned just before Theorem 101. This model does not,

however, support a polymorphic zero constant 0 : ∀X.Quantity(X), as such a primitive

would of course gives rise to a trivial counterexample to the theorem.

Next, we can prove a theorem that relates a dimensionally invariant function to a dimen-

sionless one. This is a simplified version of the Buckingham Pi Theorem of dimensional

analysis [43] (or for a more modern introduction see Sonin [44]).

Theorem 104. We have a bijection

|J∀X.Quantity(X)× Quantity(X) → Quantity(1)K| ∼= |JQuantity(1) → Quantity(1)K|.
Proof. This is a consequence of Theorem 101, after currying.

We finish this section with another uninhabitedness result, this time about a higher order

type. Higher order types normally show the power of parametricity, since they are mixed

variance, but as we do not have type variables, types are not interpreted as functors, and

so variance is not an issue.

Theorem 105. There is no ground term

⊢ t : ∀X1.∀X2.(Quantity(X1) → Quantity(X2)) → Quantity(X1 ·X2).

Proof. Choose G and Q to be Z2. Interpreting the type of t, we have that the interpretation

of J∀X1.∀X2.(Quantity(X1) → Quantity(X2)) → Quantity(X1 ·X2)K has the underlying set

given by

{t ∈ (Z2→Z2)→Z2 | ∀g1, g2 ∈ Z2, f : Z2→Z2. (g1g2) · (tf) = t(λq ∈ Z2. g2 · (f(g−1
1 · q)))}.

Hence for any t ∈ J∀X1.∀X2.(Quantity(X1) → Quantity(X2)) → Quantity(X1 · X2)K, by

choosing f to be equal to idQ we have that (g1g2) · (t(idQ)) = t(λq ∈ Z2. g2 · (g−1
1 · q)) for

all g1 and g2 in Z2, but this is not possible. If g1 = 1 and g2 = −1, then the equation

reduces to −1 · t(idQ) = t(idQ), which is a contradiction since t(idQ) ∈ Z2 = {−1, 1}.

Dimensions 94

Again, the result can be extended to terms defined in a context of primitive operations.

5.7 RELATIONAL MODELS

Parametricity is a powerful technique and in Kennedy’s work he uses it fully. He is able to

prove a series of theorems, all as a direct consequence of providing a relational semantics

and proving a parametricity theorem. Curiously, all of those theorems can be proven in

the Grp//Set λD-model, and in Section 5.6 we showed how. This did not involve defining a

relational semantics, and no parametricity theorem was required. This makes one wonder

whether the Grp//Set λD-model is just as good as having full-blown parametricity at ones

finger tips?

To look for an answer, we now provide a general method of attaching a (fibrational) logic

to a λD-model to give a notion of a relational λD-model. This allows us to reconstruct

Kennedy’s relational parametricity in our setting (Example 107), as well as talking about

a relational version of the Grp//Set λD-model (Example 108).

Given a λD-model q : A → L and a logic p : E → B, there is a

natural way to glue them together to provide a relational semantics.

Theorem 106. Let (q : A → L, G, Q0) be a λD-model, F : A → B

a product preserving functor and p : E → B a bicartesian closed

fibration with products. Consider the pullback of p along F , and

let QR denote an object in the fibre E
F (Q0)

.Then, the triple given by

(q ◦ F ∗p : F ∗E → L, G, (Q0, QR)) is a λD-model.

F ∗(E) - E

A

F ∗p

?

F
- B

p

?

L

q

?

Proof. Clearly G is an Abelian group object in L, and (Q0, QR) is in the fibre (F ∗E)G . To

check that F ∗p ◦ u is a bicartesian closed fibration is a simple exercise. Finally, since p

has all products, so does F ∗p. Hence, F ∗p ◦ u has simple products by Theorem 25.

Next, we look at an example that uses Theorem 106 to generate Kennedy’s original rela-

tionally parametric model of dimension types [39] from essentially the dimension-erasure

model back in Example 92.

Dimensions 95

Example 107. Let G be an Abelian group. Then using the notation from Theorem 106, let

L be the Lawvere theory of Abelian groups LAb, A be the category given by the product

LAb × Set, q : LAb × Set → LAb be the fibration given by the first projection, and p :

Sub(Set) → Set be the subset fibration. Define F : LAb × Set → Set to be the product

preserving functor defined on objects (n,X) ∈ LAb × Set by F (n,X) = Gn ×X ×X, and

on morphisms (f, g) : (n,X) → (m,Y) by F (f, g) = (Gf , g, g). Finally, we let Q0 = G,

and QR = {(g, g1, g2) | gg1 = g2} ⊆ G×G×G.

In this model, each type ∆ ⊢ T is interpreted as a triple (|∆|, JT Ko , JT Kr) ∈ LAb × Set ×

Sub(Set), where JT Kr ⊆ G|∆|×JT Ko×JT Ko. Spelling this out explicitly, we have the following

interpretations, which are equivalent to Kennedy’s original relationally parametric model

for dimension types:

J∆ ⊢ Quantity(D)K = (|∆|, G, {(g, g1, g2) | (JDKg)g1 = g2})

J∆ ⊢ T × UK = (|∆|, JT Ko × JUKo ,
{(g, (t1, u1), (t2, u2)) | (g, t1, t2) ∈ JT Kr , (g, u1, u2) ∈ JUKr}J∆ ⊢ T + UK = (|∆|, JT Ko + JUKo ,
{(g, ι1 t, ι1 t′) | (g, t, t′) ∈ JT Kr} ∪ {(g, ι2 u, ι2 u′) | (g, u, u′) ∈ JUKr}J∆ ⊢ T → UK = (|∆|, JT Ko → JUKo ,
{(g, f1, f2) | ∀t1, t2. (g, t1, t2) ∈ JT Kr =⇒ (g, f1t1, f2t2) ∈ JUKr}J∆ ⊢ ∀X. T K = (|∆|, JT Ko , {(g, t1, t2) | ∀g′ ∈ G. ((g, g′), t1, t2) ∈ JT Kr})

Note that in the interpretation of types ∀X. T , the carrier (i.e., the second component) is

exactly the carrier of the interpretation of T .

We can also apply Theorem 106 to obtain a natural relational model for the Grp//Set

λD-model (Example 96).

Example 108. As before, let G be an Abelian group and L be the Lawvere theory of Abelian

groups LAb. Let q : A → LAb be the pullback of the fibration Grp//Set → Grp along the

unique product-preserving functor M : LAb → Grp with M(1) = G, as in Example 95, so

that the objects of A are triples (n,X, ϕ) with (X,ϕ) a Gn-set. Let p : Sub(Set) → Set

be the subset fibration. Define F : A → Set to be the product preserving functor defined

Dimensions 96

on objects by F (n,X, ϕ) = Gn ×X ×X and on morphisms (f, α) : (n,X, ϕ) → (m,Y, ψ)

by F (f, α) = (α, f, f). Finally, we let Q0 = (G,ϕ), where ϕ denotes group multiplication,

and QR = {(g, g1, g2) | gg1 = g2} ⊆ G×G×G.

Then each type ∆ ⊢ T is again interpreted as a triple (|∆|, JT Ko , JT Kr) ∈ LAb × Sub(Set),

with JT Kr ⊆ G|∆| × JT Ko × JT Ko. The only difference between the interpretation of types in

this example and Example 107 is the second component of the interpretation of dimension

quantification:

J∆ ⊢ ∀X. T Kr = (|∆|, {t ∈ |JT Ko | | ∀g ∈ G. ((eG|∆| , g), t, t) ∈ JT Kr},
{(g, t1, t2) | ∀g′ ∈ G. ((g, g′), t1, t2) ∈ JT Kr}).

This interpretation, in contrast to the interpretation in Example 107, has “cut-down” the

carrier of the interpretation of ∀-types to only include the parametric elements. As a

consequence, this interpretation satisfies an analogue of the Identity Extension Lemma

(see Theorem 37) from relationally parametric models of System F .

Theorem 109. For any type ∆ ⊢ T Type with semantics given by (|∆|, JT Ko , JT Kr) as

outlined in Example 108, we have that for any x1, x2 ∈ JT Ko,
(e, x1, x2) ∈ JT Kr ⇔ x1 = x2.

Comparing this to the Identity Extension Lemma, we see that equality relations for the

free type variables are replaced by the unit element of the group G|∆|.

We end this discussion of relational models by showing the relationships between the mod-

els in Examples 107 and 108 and the Grp//Set model we considered in detail in Section 5.6.

By construction, the carriers of the interpretations of each type in the model in Exam-

ple 108 and the Grp//Set model are identical. Moreover, the relational interpretation in

Example 108 and the group action in the Grp//Set model are related as follows.

Theorem 110. For any type ∆ ⊢ T Type, if the interpretation of T in the model of

Example 108 is (|∆|, A, P ⊆ G|∆| × A × A) and the Grp//Set model interpretation is

(G|∆|, A, ψ), then (g, a1, a2) ∈ P ⇔ g ·
ψ
a1 = a2.

Dimensions 97

Proof. By induction on the derivation of ∆ ⊢ T Type.

Using Theorem 110, we can see that we could have used the relationally parametric model

to derive the results in Section 5.6. There is literally no difference between the two models

for the purposes of interpreting the types of our calculus.

It remains to discuss the relationship between Kennedy’s original relational model (Ex-

ample 107), and the relational model in Example 108 that satisfies the identity extension

property. As noted above, the difference between these interpretations lies in the seman-

tics of the ∀-type. Kennedy’s model does not restrict the carrier of the interpretation to

just the “parametric” elements, i.e., the elements that preserve all relations. Therefore,

the interpretations of types that contain nested ∀s are not directly comparable. We might

expect that we could observe a difference between the two models when proving statements

about terms whose types contain negatively nested forall types. However, Kennedy’s orig-

inal work does not present any results involving terms with such types, and we have

not found any natural examples. This is in contrast with the situation with relationally

parametric models of System F, where the proof that final coalgebras can be represented

crucially relies on the restriction of the interpretation of quantified types to the parametric

elements [29].

Therefore, our Grp//Set model and the equivalent relational model in Example 108 prac-

tically coincides with Kennedy’s original model, but offer the advantage of not requiring

a separate relational semantics to prove important theorems. This in many cases makes

proofs of these theorems clearer. Additionally, the Grp//Set model offers an interpretation

that directly links the semantics to symmetry.

5.8 CONCLUDING REMARKS

To conclude, in this chapter we have studied a typed λ-calculus with polymorphism over

physical dimensions, which we called λD (Section 5.2) and we have developed a model

theory for the calculus. Under the Curry-Howard correspondence, the λD-calculus is a

fragment of first-order logic where the domain of discourse is an unspecified Abelian group,

Dimensions 98

and so our notion of model (Definition 89) is based on the standard fibrational techniques

in categorical logic.

One particular model turned out to be particularly straightforward and yet informative

— the model based on group actions (Example 96). Of course, automorphisms and group

actions play a key role in the classical model theory of first order logic, but in this paper

we have shown that these techniques are also useful on the other side of the Curry-Howard

correspondence. Many arguments about the λD-calculus, including type isomorphisms

and definability arguments, can be made in this model (Section 5.6).

Parametricity is most often studied using relational techniques, and in this Chapter 5

we have developed a method for building relational λD-models (Theorem 106). Using

this method we were able to reconstruct two particular relational models: a relational

model due to Kennedy (Example 107, [39]) and a restriction of a relational model due

to Atkey (Example 108, [32]). Although the group-actions model is different in style, we

showed (formally) that it is actually closely related to the two relational models (Theo-

rem 110).

CHAPTER 6

CONCLUSION
In this thesis we have used fibrations to understand parametricity. In Chapter 3 we

demonstrated how the original description of relational parametricity can be reinterpreted

using fibrations. This revealed some previously hidden categorical structure in the original

definitions. In this setting we were able to prove the existence of initial algebras for

functorial types, using fibrational structure to prove one of the key results required — the

Graph Lemma.

In Chapter 4 we kept System F as our type system but looked to change the backdrop.

Departing from sets and relations, we were able to give a parametric semantics for System

F using G-sets and equivariant relations. This was described in terms of the relations

fibration on G-sets. Whilst looking at initial algebras in this setting we came to the

conclusion that a generalised version of the “normal” initial algebra theorem holds for G-

sets. For example the characterisation of the terminal object 1 became the G-set given by

the group with the conjugate action GC , and the characterisation of the natural numbers

N became the collection of non-empty lists List+(GC) containing elements of GC . We were

able to generalise this discovery to prove an initial algebra theorem for G-sets.

In Chapter 5 we moved away from System F to explore a type system with dimension types.

We were able to give a general categorical model to add to the semantics based on complete

partial orders that has previously been developed by Andrew Kennedy. This allowed us to

view a large array of different models for the λD-type system, and in particular for us to

look at a model given by G-sets. Using the G-sets model we were able to prove a big variety

99

Conclusion 100

of theorems that previously had required parametricity. This meant that without defining

a separate relational semantics we could prove results directly, which lead to simple and

slick proofs. The key to this approach was that our categorical semantics kept track of

the dimensions that indexed types, instead of the dimension-erasure approach taken by

Kennedy. Additionally, we were able to define a notion of a general relational model for

the λD-type system, and use this to compare the G-set model to one in the presence of

parametricity. When it came to interpreting the syntax and proving theorems, the G-set

model was just as powerful as the relational model.

There was big difference between the parametricity seen in Chapters 3 and 4 compared to

Chapter 5. In Chapters 3 and 4 parametricity clearly gave us extra strength to prove the-

orems, even when working with G-sets. But in Chapter 5 we found that the G-set model

was as powerful a parametricity. The key difference between these chapters was the pres-

ence of type variables. By not having type variables types did not define functors, meaning

that in Chapter 5 there was no initial algebras theorem, but also that parametricity was

in some way restricted.

Much of the strength of parametricity comes from the fact that it applies to mixed-variance

functors and is more powerful than dinaturality, and hence the λD-type system is not able

to express this power. This suggests a possible direction for future work. One could

develop a type system where the types were indexed by some kind of indexing structure

(such as dimensions) but there was also the presence of type variables. This would allow

a discussion of parametricity that would cover Chapters 3 – 5.

Another direction for possible future work would be to look more closely at the relationship

between symmetry and parametricity. A paper by Atkey [32] has shown how relational

parametricity can be used to derive free theorems from continuous smooth functions used

in classical mechanics. These free theorems turn out to give the exact conditions in which

Noether’s Theorem can be applied, which means that parametricity can lead directly to

conservation properties.

It would be interesting to see what insights the fibrational perspective could bring to

Atkey’s work on Noether’s theorem. Extending this further, there are many examples

Conclusion 101

of invariance properties being used throughout physics and it would be interesting to see

whether parametricity (and the fibrational perspective) can play a role in these other areas.

I hope that this thesis will be useful to those (categorically inclined people) looking to

understand parametricity in different settings. There has yet to be developed a fully

general characterisation of parametricity, and so for many it still seems to have some

mysterious properties. This thesis has built on and been directly inspired by the pioneering

work of Ma and Reynolds [45], Hermida [11, 46], Dunphy and Reddy [47], and Birkedal

and Møgelberg [29], who have all developed categorical formulations for parametricity in

different settings.

It is my hope that the material presented here will help to demystify parametricity in

the situations discussed in this thesis, and contribute to the overall understanding of the

subject.

Thank you for reading.

BIBLIOGRAPHY
[1] John C Reynolds. Types, abstraction and parametric polymorphism. 1983.

[2] Neil Ghani, Patricia Johann, Fredrik Nordvall Forsberg, Federico Orsanigo, and Tim-

othy Revell. Bifibrational functorial semantics of parametric polymorphism. MFPS,

2015.

[3] Robert Atkey, Neil Ghani, Fredrik Nordvall Forsberg, Timothy Revell, and Sam

Staton. Models for polymorphism over physical dimensions. In 13th Interna-

tional Conference on Typed Lambda Calculi and Applications (TLCA’15), Leib-

niz International Proceedings in Informatics (LIPIcs), pages 45–59, 2015. doi:

10.4230/LIPIcs.TLCA.2015.45.

[4] Bart Jacobs. Categorical logic and type theory, volume 141. Elsevier, 1999.

[5] Thomas Streicher. Fibred categories à la Jean Bénabou. 1999.

[6] Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and

modest sets. LFCS Report Series, 1992.

[7] Michael Barr and Charles Wells. Category theory for computing science, volume 49.

Prentice Hall New York, 1990.

[8] Francis Borceux. Handbook of Categorical Algebra 1, Basic Category Theory, vol. 50

of Encyclopedia of Mathematics and its Applications. Cambridge University Press,

1994.

[9] Saunders Mac Lane. Categories for the working mathematician. Springer, 1998.

102

Bibliography 103

[10] Joachim Lambek and Philip J Scott. Introduction to higher-order categorical logic,

volume 7. Cambridge University Press, 1988.

[11] Claudio Hermida. Fibrations, logical predicates and indeterminates. PhD thesis,

University of Edinburgh, 1993.

[12] Claudio Hermida. Some properties of Fib as a fibred 2-category. Journal of Pure and

Applied Algebra, 134(1):83–109, 1999.

[13] F. William Lawvere. Adjointness in foundations. Dialectica, 23(3-4):281–296, 1969.

[14] Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. In

Proceedings of the 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL 2015), pages 3–16, 2015.

[15] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[16] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de

l’arithmétique d’ordre supérieur. 1972.

[17] John C Reynolds. Towards a theory of type structure. In Programming Symposium,

pages 408–425. Springer, 1974.

[18] Christopher Strachey. Fundamental concepts in programming languages. Higher

Order Symbolic Computation, 13(1-2):11–49, 2000.

[19] John Reynolds. Polymorphism is not set-theoretic. In Semantics of Data Types, pages

145 – 156. 1984.

[20] A.M. Pitts. Polymorphism is set theoretic, constructively. In CTCS, pages 12 – 39.

1987.

[21] Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information and

Computation, 76:95 – 120, 1988.

[22] Nick Benton and Chung-Kil Hur. Biorthogonality, step-indexing and compiler cor-

rectness. ACM Sigplan Notices, 44(9):97–108, 2009.

Bibliography 104

[23] Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational

equivalence. In ACM Sigplan Notices, volume 43, pages 157–168. ACM, 2008.

[24] Jason Reed and Benjamin C Pierce. Distance makes the types grow stronger: a

calculus for differential privacy. In ACM Sigplan Notices, volume 45, pages 157–168.

ACM, 2010.

[25] Robert Atkey, Patricia Johann, and Andrew Kennedy. Abstraction and invariance

for algebraically indexed types. In ACM SIGPLAN Notices, volume 48, pages 87–100.

ACM, 2013.

[26] Ryu Hasegawa. Categorical data types in parametric polymorphism. Mathematical

Structures in Computer Science, 4(01):71–109, 1994.

[27] Philip Wadler. Theorems for free! In Proceedings of the fourth international confer-

ence on Functional programming languages and computer architecture, pages 347–359.

ACM, 1989.

[28] Gordon Plotkin and Martín Abadi. A logic for parametric polymorphism. In Typed

Lambda Calculi and Applications, pages 361–375. Springer, 1993.

[29] Lars Birkedal and Rasmus E Møgelberg. Categorical models for Abadi and Plotkin’s

logic for parametricity. Mathematical Structures in Computer Science, 15(04):709–772,

2005.

[30] Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Constructing

polymorphic programs with quotient types. In Mathematics of Program Construction,

pages 2–15. Springer, 2004.

[31] Murdoch J Gabbay and Andrew M Pitts. A new approach to abstract syntax with

variable binding. Formal aspects of computing, 13(3-5):341–363, 2002.

[32] Robert Atkey. From parametricity to conservation laws, via Noether’s theorem. In

Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL 2014), 2014. doi: 10.1145/2535838.2535867.

[33] Joseph Rotman. An introduction to the theory of groups, volume 148. Springer Science

& Business Media, 2012.

Bibliography 105

[34] Andrew M Pitts. Nominal Sets: Names and Symmetry in Computer Science, vol-

ume 57. Cambridge University Press, 2013.

[35] Arthur G Stephenson, Daniel R Mulville, Frank H Bauer, Greg A Dukeman, Peter

Norvig, LS LaPiana, PJ Rutledge, D Folta, and R Sackheim. Mars climate orbiter

mishap investigation board phase i report. NASA, Washington, DC, 1999.

[36] Ronald T. House. A proposal for an extended form of type checking of expressions.

The Computer Journal, 26(4):366–374, 1983.

[37] R Männer. Strong typing and physical units. ACM Sigplan Notices, 21(3):11–20,

1986.

[38] Mitchell Wand and Patrick O’Keefe. Automatic dimensional inference. In Computa-

tional Logic – Essays in Honor of Alan Robinson, pages 479–483, 1991.

[39] Andrew J. Kennedy. Relational parametricity and units of measure. In Proceed-

ings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’97, pages 442–455, New York, NY, USA, 1997. ACM. ISBN

0-89791-853-3. doi: 10.1145/263699.263761. URL http://doi.acm.org/10.1145/

263699.263761.

[40] Martin Erwig and Margaret Burnett. Adding apples and oranges. In Practical Aspects

of Declarative Languages, pages 173–191. Springer, 2002.

[41] Andrew John Kennedy. Programming languages and dimensions. Number 391. Uni-

versity of Cambridge, Computer Laboratory, 1996.

[42] Ronald Brown and Christopher B Spencer. G-groupoids, crossed modules and the

fundamental groupoid of a topological group. Proc. Indag. Math., 79(4):296–302,

1976.

[43] Edgar Buckingham. On physically similar systems; illustrations of the use of dimen-

sional equations. Physical Review, 4(4):345–376, 1914.

[44] Ain A Sonin. The physical basis of dimensional analysis. Department of Mechanical

Engineering, MIT, Cambridge, MA, 2001.

http://doi.acm.org/10.1145/263699.263761
http://doi.acm.org/10.1145/263699.263761

Bibliography 106

[45] QingMing Ma and John C. Reynolds. Types, abstractions, and parametric polymor-

phism, part 2. In MFPS, pages 1–40, 1992.

[46] Claudio Hermida. Fibrational relational polymorphism. Draft. Available at http:

//maggie.cs.queensu.ca/chermida/papers/FibRelPoly.pdf, 2006.

[47] Brian Dunphy and Uday S Reddy. Parametric limits. In Logic in Computer Science,

2004. Proceedings of the 19th Annual IEEE Symposium on, pages 242–251. IEEE,

2004.

http://maggie.cs.queensu.ca/chermida/papers/FibRelPoly.pdf
http://maggie.cs.queensu.ca/chermida/papers/FibRelPoly.pdf

“You’re still here? It’s over! Go home.”

Ferris Bueller

	Abstract
	Credits
	For the Layperson
	Notation
	1 Introduction
	2 Fibrations
	2.1 Examples
	2.2 Examples from Pullbacks
	2.3 Fibrations with Structure
	2.4 Group Actions
	2.5 The Grp-Set Fibration

	3 Parametricity
	3.1 System F
	3.2 Semantics
	3.2.1 The Semantics of Types
	3.2.2 The Semantics of Terms

	3.3 Parametricity, What is it good for?
	3.3.1 Graph Relations
	3.3.2 Initial Algebras
	3.3.3 Initial Algebras for System F

	4 Group Action Parametricity
	4.1 Examples of Group Actions
	4.2 Relations on G-Sets
	4.2.1 Structure on Relations on G-Sets

	4.3 Group Actions as a Model of System F
	4.4 Initial Algebras for System F, Again
	4.4.1 The G-Set Interpretation of ∀X.X→X
	4.4.2 The Beginnings of a Generalisation
	4.4.3 Defining the Initial Algebra Action
	4.4.4 Initial Algebra Theorem for G-Sets
	4.4.5 Initial Algebra Theorem in Action

	4.5 Nominal Discussion

	5 Dimensions
	5.1 Mismatching Mistakes on Mars
	5.2 Types with Physical Dimensions
	5.3 Terms with Physical Dimensions
	5.4 Categorical Semantics of Dimension Types
	5.5 Examples
	5.6 Group Actions and Dimension Types
	5.7 Relational Models
	5.8 Concluding Remarks

	6 Conclusion
	Bibliography

