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ABSTRACT 

Hybrid propulsion system (HPS) has become popular in marine industry due to 

increasingly strict emission control standards. Hence, as one component in the 

system, marine batteries become attractive in marine design. Solid Oxide Fuel Cells 

(SOFCs) and lithium ion battery are the most promising energy storage devices in 

the electric propulsion system or HPS. Since silicon particles expand around 400% 

in volume during lithation, the battery electrodes will experience large volumetric 

change during normal battery cycling. As a result, misdistribution of stress may 

form inside the battery electrode. Therefore, degradation and delamination may 

occur in the battery electrode after many cycling process of marine battery. Many 

efforts have been devoted to investigate the damage in the marine battery. Majority 

of numerical simulation methods nowadays are based on classical continuum 

mechanics (CCM). Partial differential equations (PDEs) are applied in CCM to 

describe the motion of material structure. However, due to the limitation of PDEs, 

most of numerical techniques based on this theory have difficulties in describing the 

motion of material body with discontinuous fields, such as cracks and kinks. In 

order to have a better understanding of the fracture mechanics in marine battery, the 

peridynamic theory is applied in this thesis. Different from classical theory, 

peridynamic theory has applied spatial integral equations to describe the motion of 

material structure. Therefore, it has great advantage on fracture analysis of material 

structure. Based on the nonlocality of peridynamic theory, the peridynamic 

differential operator is introduced and studied in this thesis. Peridynamic differential 

operator has transformed the PDE into spatial integral equation under the framework 

of peridynamic theory. Hence, the governing equations of thermomechanical 

deformation and the coupled diffusive-mechanical deformation can be reformed in 

the framework of peridynamic theory which benefit the relative numerical 

simulations.  
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In this thesis, the electrode models of SOFC and lithium ion battery in both two and 

three dimensions are selected. In order to validate the peridynamic theory, some 

results are compared with CCM. They have shown good agreement with each other. 

In the fracture analysis of SOFC, we have found out that fracture formation and 

evolution depend on the strength of interactions between electrode and electrolyte 

particles. For weak connection, the cracks will propagate along the interface of 

electrode and electrolyte. For uniform and strong connection, the cracks will start to 

propagate at regions with high geometrical singularity, such as pores or sharp corner 

regions. High hydrostatic stress is also located in these regions. In the fracture 

analysis of lithium ion battery, we have found out that facture formation and 

evolution depend on the hydrostatic stress and material properties. High hydrostatic 

stress generally reflects on high bond stretch value. Once the bond stretch value has 

exceed the critical value, cracks may form and propagate. Lithiated silicon, on the 

other hand, has decreased the critical bond stretch value. Hence, in some situations, 

crack propagation may not always be led by hydrostatic stress. Besides, the high 

hydrostatic stress will also increase the lithium ion concentration.  

Finally, peridynamic theory has shown excellent performance in the numerical 

estimation of damage formation and evolution in the marine batteries without pre-

defined crack path or cohesive element as compared with classical techniques. It has 

provided an efficient and reliable tool in the design, manufacture, failure detection 

and life prediction of the marine battery in the real life. 
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1 INTRODUCTION 

This chapter, in general, gives the background and layout of this PhD thesis and it is 

divided by four sections. The basic knowledge about the current marine environment 

and information about marine batteries are provided in Section 1.1. Section 1.2 

shows the motivation of my PhD research and the major objectives of this thesis are 

listed in Section 1.3. Finally, the structural arrangement of the whole thesis is shown 

in Section 1.4. 

1.1 Background and motivation 

Fossil fuel is widely applied in marine industry since the invention of the inner 

combustion engine at the beginning of the last century. With the high power-rate 

ratios, the engines have various applications in vessels and marine equipment such 

as cruise ships, tugboats, icebreakers, yachts and oil rigs. During the burning of 

fossil fuel, large amount of marine waste gases are emitted into environment. Hence, 

the emission control in marine industry has become a concerning issue in 

environmental protection and it is under the restriction of IMO regulations. 

According to Marpol Annex VI requirement, emission of nitrogen oxides (NOx) 

should reduce nearly 80% after 2016 as compared with that in 2000. On the other 

hand, emission of sulfur oxides (SOx) in 2020 is enforced to remain below 10% of 

that in 2012, as shown in Fig. 1.1[1]. The emission standard becomes increasingly 

strict especially in the emission control area (ECA), such as costal region of North 

America and part of North Sea. 
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Figure 1.1. Marpol Annex VI requirement about NOx and SOx. [1] 

As a result, HPS has become more popular in marine industry as one of the solutions 

in emission reduction [2]. HPS is composed of two or more energy sources (main 

engine, auxiliary engines, battery, etc.), converter, electric motor, gearbox and 

propeller, as shown in Fig.1.2. With the advantages of low fuel consumption, low 

emission, safe and reliable propulsion, high manoeuvrability and high redundancy, 

HPS has a better performance than the traditional propulsion system in efficiency 

especially when dealing with various marine operating conditions.  
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Figure 1.2. Hybrid Propulsion System [3]  

Marine batteries, therefore, as one of the components in HPS are under plenty 

investigations in order to optimise the battery performance and reduce the price [2]. 

Based on battery applications, marine batteries could be categorised into starting 

batteries and deep cycle batteries [4]. Starting battery is usually designed to start the 

marine engine with relatively high power output in a short period. Hence, starting 

battery is usually composed of series of thin electrode plates to increase 

electrochemical reaction interface. However, thin electrodes do not have strong 

mechanical stiffness for high impact operating environment and do not support deep 

cycle charging. Deep-cycle batteries (or reserve batteries), on the other hand, do not 

have strong energy output like starting batteries, but have relative large capacity 

which could discharge for a long time [4], [5]. Therefore, deep-cycle marine 

batteries are usually applied as the battery banks in auxiliary systems and hybrid 

propulsion systems. Based on battery chemistry, marine batteries can be categorised 

in several types. Detailed advantages and disadvantages are shown in Table 1.1. 

Apart from cost, marine lithium-ion battery is one of the most promising power 

storage systems due to its high energy to weight ratio, high energy density, low self-

discharge and long life cycle [5], [6]. 
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Table 1.1. Comparison of Marine batteries [7] 

Battery 

type 
Advantages Disadvantages 

Lead-acid 

Low cost 

Low self-discharge (2-5% per month) 

Short life cycle (1200~1800 cycles) 

Cycle life affected by depth of charge 

Low energy density (about 40 Wh/kg) 

Nickel-

based 

Can be fully charged (3000 cycles) High cost, 10 times of lead acid battery 

High self-discharge (10% per month) Higher energy density (50-80 Wh/kg) 

Lithium-ion 

High energy density (80~190 Wh/kg) 

Very high efficiency (90~100%) 

Low self-discharge (1~3% per month) 

Very high cost ($900~1300/kWh) 

Life cycle severely shorten by deep 

discharge 

Require special overcharge protection 

circuit 

Sodium High efficiency (85~92%) Be heated in stand-by mode at 325°C 

Sulphur 

(NaS) 

High energy density(100 Wh/kg) 

No degradation of deep charge 

No self-discharge 

 

Flow batery 

Independent energy and power ratings 

Long service life (10000 cycles) 

No degradation for deep charge 

Negligible self-discharge 

Medium energy density (40~70 Wh/kg) 

  

The performance of lithium-ion battery mainly depends on the material properties of 

electrodes and electrolyte. The selection of electrode material components are based 

on the operating environment of the lithium-ion batteries. In view of cathode 
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material, Cobalt (Co) compound and Nickel (Ni) compound are highly electrical 

stable but low thermal stable and toxic. Manganese (Mn) compound has relatively 

high electrical capacity and high thermal stability but low cycle performance [8]. 

Silicon (Si) is found to be an excellent cathode material due to its high theoretical 

capacity (3600 mAHg-1). However, lithiated silicon compound formed during 

lithiation process causes up to about 400% volume expansion [9]. Therefore, 

frequent cycling will cause stress misdistribution and degradation, delamination of 

the battery may occur which have negative influence on battery performance. 

On the other hand, SOFC is another type of powerful storage equipment with high 

energy conversion efficiency, high fuel flexibility, low emission and low material 

cost. As a common fuel cell type, SOFC is composed of solid electrode and 

electrolyte layers. Ni, Yttria Stabilized Zirconia (YSZ) and perovskite-based 

LaMnO3 are the most commonly used materials for anode, electrolyte and cathode, 

respectively [10], [11]. Typically, the electrodes and electrolyte are made into layers 

and stacked on each other in a certain sequence. In order to increase the efficiency of 

electrochemical reaction, electrolyte material is added inside the electrode layers 

[12]. Electrochemical reactions (oxidation of the hydrogen) that are required for 

generation of the free electrons occur through the Triple Phase Boundaries (TPBs) 

which are the intersection lines of the metal/non-metal grains and fuel filled pores. 

The reaction rate and the generated power in the anode and cathode depend on the 

active TPBs which can be controlled by the amount of the compositions, grain size 

and porosity ratio. The reactions taking place in a hydrogen fuelled SOFC are given 

below: 

2H2 => 4H+ + 4e- (Anode region; oxidation reaction) 

O2 + 4H+ + 4e- => 2H2O (Cathode region; reduction reaction) 

2H2 + O2 => 2H2O (the redox reaction) 
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In marine environment, SOFC does not only requires hydrogen, but also carbon 

oxides and some hydrocarbon substance which can be obtained from marine waste 

gases and marine fuel oil. Fossil fuels like gasoline, natural gas, coal gas and liquid 

petroleum gas could also be regarded as possible fuel of SOFC [13]. The redox 

reaction in SOFC generates large amount of heat which rises the operating 

temperature up to around 800 °C [14]. High temperature does not only provides a 

suitable environment for ion transportation through ceramic electrolyte, but also 

catalyses side reactions in SOFC. Impurities in marine fuels like hydrogen sulphide, 

chloride, alkali compounds and tars may react with part of the electrode and 

electrolyte materials, and form stable and inert by-product on the TPB. This will 

lead to performance degradation of SOFC and harmful waste gas emission [13], 

[15]–[17]. Hence, gas purifying equipment is mandatorily installed before SOFC 

sections [13]. Under large thermal loading, the electrode and electrolyte layers will 

deform. Since the electrolyte material is added inside the electrode layer, the 

mechanical properties in each layer are not homogenous. Besides, due to different 

material properties of electrodes and electrolyte, differences in mechanical 

deformation are observed at different parts of SOFC [12]. Hence, degradation of 

SOFC may occur which may cause negative influence on fuel cell performance and 

even failure. 

Overall, the performance of marine batteries strongly relies on the material 

properties and structural integrity of electrodes and electrolyte. Generally, the 

electrochemical reaction (redox reaction) inside batteries will increase operating 

temperature dramatically. Under this working environment, degradation may occur 

in the electrodes and electrolyte. As a result, unstable voltage, low capacity and cell 

failure may eventually occur which lead to performance loss of the batteries. Hence, 

the fracture and fatigue analysis is important in the life span prediction and cell 

performance optimisation of marine batteries [18]. CCM is a widely used 

methodology in solid mechanics and it has provided a good framework for finite 

element method (FEM). However, PDEs in CCM formulation may encounter 

difficulties in modelling fracture and failure since PDEs do not have definitions over 



CHAPTER 1: INTRODUCTION 

 

7 

 

 

discontinuous domains. Therefore, standard FEM can not describe the damage 

formation and propagation accurately. There are various techniques proposed for 

failure prediction such as FEM by remeshing, virtual crack closure technique 

(VCCT), cohesive zone model (CZM) and extended finite element method (XFEM). 

Although these techniques are suitable for the analysis of certain problems, they 

have several limitations such as requirement of pre-existing damage, mesh 

dependency, etc. Therefore, a new numerical analysis method, called peridynamics, 

is introduced by Silling in 2000 [19], which can be a suitable alternative to evaluate 

the formation and evolution of material fracture and failure. Peridynamic theory (PD) 

is based on integro-differential equations which are valid along discontinuous 

domains without any pre-defined condition and criteria. Moreover, pre-existing 

damage is not required and the crack path is not affected by the discretisation. 

Detailed information about PD will be illustrated in Chapter 3. 

1.2 Objectives of research 

Four major objectives are under discussion in this thesis: 

 Study the framework of peridynamic differential operator (PDO) in 3 

dimensions. PDO has applied an integral equation as a replacement of 

differential equation which could simplify the numerical simulation in 

fracture analysis. It has also provided a framework for numerical simulation 

in mechanical, thermal and coupled field analysis. 

 Build up a two-dimensional model based on PD to investigate the fracture 

formation and evolution in SOFC electrode plate. Since the mechanical 

stiffness between electrode particles and electrolyte particles is unknown, 

different stiffness situations are under investigation. 

 Build up a two-dimensional model based on PD to investigate the fracture 

evolution in pre-damaged lithium-ion electrode plate. Based on several 

damage cases, a series of simulations are provided to illustrate the crack 

evolution under consideration. 
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 Build up a three-dimensional model based on PD for the fracture analysis of 

special structures in lithium ion batteries such as spherical energy storage 

particles and silicon nanowires. 

1.3 Structure of the thesis 

This thesis is constructed into following chapters: 

 Chapter 1: Some information about marine batteries is provided in this chapter, 

which include the type of batteries, the fracture in several batteries and methods 

that are applied to analyse the fracture of batteries. Besides, the main objective 

and motivation of these researches and the whole arrangement of thesis are 

mentioned in this chapter. 

 Chapter 2: Several numerical implementation methods that are commonly 

applied today in fracture analysis are under discussion in this chapter. These 

numerical implementation methods are based on CCM and the advantages and 

limitations of them will also be provided in this chapter. 

 Chapter 3: Basic information about bond-based peridynamics is produced. The 

bond-based peridynamics is the theoretical basis of all of the simulations in this 

thesis. 

 Chapter 4: The concept of PDO is introduced. PDO will replace a PDE with an 

integral equation. It has simplified the numerical simulation of fracture analysis 

dramatically. In this chapter, the 3 dimensional framework based on the PDO 

will be constructed and the relavant convergence studies are applied to validate 

the reliability of PDO.  

 Chapter 5: In this chapter, a single charging process for two-dimensional SOFC 

electrode plate is simulated.  High thermal loading is applied on the plate and 

the fracture situations of different mechanical stiffness are under discussion. 

 Chapter 6: In this chapter, models of two-dimensional lithium-ion electrode 

plate with pre-existing cracks are constructed. Under single lithiation process, 

various pre-damaged situations with pressure gradient effect are under 

discussion. 
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 Chapter 7: In this chapter, model of three-dimensional lithium-ion electrode 

structures are constructed. These models are pre-damaged by a penny shape 

crack. The evolution of hydrostatic stress and lithium-ion concentration inside 

these anode structures are under investigation. 

 Chapter 8: Review of the whole thesis (objectives, summaries, contributions). 

The discussion of future works and remarks are also provided. 

1.4 Summary 

Marine batteries have played important roles in HPS. Since the battery cost is high 

and the battery life span is short in general, the fracture and failure analysis is of 

vital importance in life span prediction and battery optimisation.  Since fracture and 

failure analysis may be costly in real experiments, most of the researches rely on the 

numerical simulations. Traditional numerical simulation methods are based on CCM, 

which has limitations in simulation of non-continuous problems such as damage and 

failure. Hence, PD is introduced in this thesis as an alternative approach. PD applies 

integral equations which has overcame the limitation of non-continuous problems. In 

this thesis, two most promising marine batteries (lithium-ion and SOFC) are under 

investigation. The major objective is to build up new numerical simulation 

frameworks, for the failure and fracture analysis of marine batteries which will be 

helpful in battery optimisation and life span prediction. 
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2 LITERATURE REVIEW 

2.1 Introduction 

The aim of this chapter is to make a summary of researches and experiments in 

fracture and failure analysis of batteries in history. From the historical overview, the 

basic information of fracture analysis method, fracture analysis implementations of 

SOFCs and lithium-ion batteries are discussed in this chapter. The advantages and 

limitations of numerical simulation methods are provided and the comparison 

between these methods and PD will also be stated here. This chapter is composed of 

four parts. The first part states the introduction and main purpose of this chapter. 

The discussions of traditional numerical methods are listed in Section 2.2. The 

experiments and simulations that are applied in fracture analysis of SOFC in the 

history are provided in Section 2.3. The experiments and simulations that are applied 

in fracture analysis of lithium-ion battery in the history are stated in Section 2.4. 

2.2 Historical overview of numerical methods in fracture analysis 

Continuum mechanics is a branch of solid mechanics which focuses on mechanical 

motions of structures under external loading. The deformation, stress and failure of 

structures are affected by external force, thermal loading, phase change and 

electrical loading [20]. However, due to the limited computing power in the past, 

researchers can only obtain analytical solutions for simple geometry and loading 

conditions [21], [22]. In reality, most of the solid materials are heterogeneous and 

anisotropic which can not be described simply by analytical solution. In recent years, 

due to the rapid development in computer technology, numerical analysis of solid 

mechanics becomes more efficient and accurate. Various numerical methods, such 

as FEM and boundary element method (BEM), are widely utilised for the solid 

mechanics analysis. 
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2.2.1 Finite element method 

Finite element method (FEM), as a numerical analysis method, is usually applied to 

deal with problems with complex geometry and boundaries. The capability of FEM 

is not only limited to mechanical stress analysis and can be used for other physical 

fields such as thermal conduction and diffusion [23]. By discretizing the whole 

geometry into finite number of small elements, the whole structure can be 

represented and simplified. The behavior of the solid body and structure in terms of 

displacement, temperature, concentration and pressure are embodied in the nodes by 

which the elements are connected [24]. 

FEM is currently the most commonly applied analysis tool. Since a solid body can 

be expressed by elements in various sizes during the discretization process, FEM can 

deal with problems with irregular geometries. FEM also have various applications 

on fracture mechanics based on classical continuum mechanics (CCM) framework. 

In CCM, the equation of motion is defined by a PDE. However, PDE does not have 

definition over discontinuous geometries such as cracks. In CCM, there are several 

methods widely applied for fracture analysis such as stress intensity factor and strain 

energy release rate [25]. Theoretically, the stress value around crack tip is expressed 

as = 2K r  . K is the stress intensity factor and r is the distance to the crack tip. 

Once the stress reaches critical value, crack will propagate. Therefore, in order to 

increase the accuracy of analysis, mesh around crack tip regions should be refined as 

much as possible to capture the stress singularity. Although this increases the 

accuracy, higher computing performance and longer computing time are required. 

Besides, this expression of stress is inappropriate, since the stress will reach infinite 

as r tends to 0. Even though small loading is applied on the structure, the stress at 

the crack tip will still reach infinity, which is impractical in the real world. Moreover, 

stress intensity factor approach can describe the propagation of a crack, but can not 

explain the formation of a crack.  
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Inglis has provided linear elastic solution for stresses around elliptical shape crack 

tip [26]. He believes that the crack tips will deform and be flattened under loading 

while stress will increase to infinity. However, there is no such kind of material can 

resist infinite stress without being damaged. Therefore, Griffith (1921) and Irwin 

(1957) have introduced the stain energy release rate as the criteria of material 

fracture [27], [28]. They believe that crack will propagate when the amount of 

decreased elastic energy is larger than the increased newly formed surface energy. 

Otherwise, crack should not propagate [29]. The Griffith fracture criterion is 

introduced for homogeneous, brittle and elastic materials. However, it will lose 

accuracy when dealing with ductile materials. Hence, an alternative method, J-

integral, was proposed by J. Rice to estimate the strain energy release rate for 

materials with elastic-plastic behavior [30]. FEM has also applied the strain energy 

release rate as a criterion in determining fracture evolution. However, this method 

still can not explain the formation of cracks. Besides, once the crack propagates, the 

entire boundary should change. Madenci and Oterkus have emphasized the 

importance of remeshing process in modelling crack propagation by FEM [31]. 

Although there are various remeshing techniques available for FEM, such as node 

relaxation and convective/stationary formulation [32], the numerical simulation 

becomes complex and more computing time is required.  

Since classical FEM has difficulties in modelling moving boundary problem, XFEM 

was introduced to increase the accuracy of these simulations. XFEM has applied 

additional enrichment term based on partition of unity concept [33] to the classical 

FEM governing equation: 

      
*

h

i i i i

i I i I

u x N x u M x a
 

    (2.1) 

The second term in Eq. (2.1) is the enrichment function of XFEM which has 

achieved the approximation of singularities, kinks and jumps under the FEM domain 

[34]. Hence, mesh of material structure of XFEM does not have to align with 

discontinuity boundary. In XFEM, the discontinuous boundary can be located at 
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element interiors. Therefore, remeshing process in fracture analysis by FEM can be 

avoided.  Belytschko et al. believe that XFEM can also be applied for dynamic 

fracture analysis [35]. The level-set method was introduced to describe the cracks 

and the loss of hyperbolicity criterion is applied in fracture prediction. However, 

level-set method can not detect the branching phenomenon in crack propagation. 

Hence, the XFEM can not provide accurate result in fracture evolution. Besides, the 

enrichment term of XFEM increases the complexity of simulation. 

2.2.2 Boundary element method 

BEM, or boundary integral method, was introduced as an alternative method in 

many engineering applications. The theory was founded by Betti, Somigliana and 

Lauricella [36], and the numerical implementation was developed by Rizzo [37]. 

Main difference between BEM and FEM lies on the discretization of material body. 

BEM applies the boundary integral method to describe the boundary state. Therefore, 

the discretization of interior body is not necessary [24]. As a result, BEM reduces 

the problem by one order. Only boundary lines and surfaces are discretized in 2D 

and 3D problems, respectively. It is a simplified analysis approach which saves large 

amount of computing resources. Besides, the resolution of stress and displacement 

of interior material body is improved which leads to an improvement of efficiency.  

Although BEM is suitable for material structure with continuous and linear elastic 

properties [38], it has limitation for fracture mechanics analysis. The pre-existing 

damage can be regarded as a boundary, but for a newly-formed damage, interior of 

the material structure must be under consideration and it will bring difficulties for 

BEM. Moreover, BEM has a low accuracy in analyzing material structures with high 

boundary surface to volume ratio, such as shell and thin plate structure [38], [39].  It 

is because of the close distance of nodes on either side of the structure. In recent 

years, some hybrid BEM/FEM approaches are introduced to solve plastic and 

nonlinear problem [40]–[43]. 
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2.2.3 Cohesive Zone Method 

CZM is one of the commonly applied methods in fracture analysis based on CCM. 

The origin of CZM goes back to Barenblatt [44], [45] and Dugdale’s [46] works. 

From Barenblatt’s view, the upper and lower crack surface is held by molecular 

cohesive forces located at the crack tip region. Dugdale regards the molecular 

cohesive forces having a constant value of yield stress, which is the fundamental 

assumption of Dugdale’s strip yield model. According to the application of CZM 

nowadays, a narrow-band with zero thickness is located in front of crack tip to 

represent fracture process zone. The cohesive traction based on various cohesive 

laws [47] in fracture process zone links the upper and lower crack surfaces [48]. As 

the separation of the crack surfaces take place, the magnitude of traction force will 

follow a certain traction law and eventually vanish when new crack surface forms. 

The cohesive traction in the fracture process zone has solved the singularity problem 

successfully under the scheme of FEM by introducing an interface element between 

two elements. However, it will also bring some other problems. Since the interface 

cohesive element lies between elements, the crack propagation is strongly mesh 

dependent and the accuracy of the results will also rely on the refinement of mesh. 

Moreover, it is difficult to predict the cracks which propagate through elements and 

branching cracks [48]. Xu and Needleman have developed a FEM/CZM model [49]. 

They have aligned the interface cohesive element with all the element boundaries 

and therefore, cracks can automatically form and propagate. However, the total 

stiffness of the whole structure may reduce even in undeformed state and this will 

lead to the distortion of elastic properties of this material structure [50]. Besides, the 

insertion of large amount of cohesive surface element will increase the complexity 

of the structure dramatically and higher computing performance is required. 

2.2.4 Peridynamic Theory 

As mentioned earlier, FEM, BEM and CZM have certain limitations in fracture 

analysis, because they are based on CCM. In CCM, a PDE is applied as the equation 
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of motion to describe the mechanical behavior of material points. However, PDE is 

valid in continuous domain only and it does not have definition over kinks, cracks 

and damages which have discontinuous property. Hence, Silling have introduced an 

alternative numerical method, named peridynamic theory, to solid mechanics 

especially fracture analysis [19]. PD has applied an integral equation as the equation 

of motion, hence the continuity of material structure does not have any influence to 

the numerical model [31]. PD uses the “bond” connection between material points to 

describe the material fracture and it does not need additional criteria for the 

definition of damage. Besides, it can also capture the detailed information about 

crack initiation and propagation such as crack propagation speed and crack 

branching. PD has various applications on multiple physical fields such as heat 

conduction, diffusion and coupled field analysis [18], [51]–[54]. Although 

peridynamic theory is efficient in predicting the crack formation and evolution, it 

does not shows better efficiency in the analysis without considering damage and 

failure as compare with classical theories. Currently, for bond-based peridynamic 

theory, uniform discretization is applied. Hence, it may require more computing 

resources during numerical simulations. In some areas of a model which has less 

importance in simulation, uniform discretization may increase the computing time 

without an obvious accuracy improvement. Therefore, based on this theory, we can 

have a better understanding of fracture analysis in  marine batteries. 

 

2.3 Numerical investigations of SOFC 

As a common fuel cell type, SOFC is composed of solid electrodes and electrolyte. 

Ni, YSZ and perovskite-based LaMnO3 or LSCF are the most commonly used 

materials for anode, electrolyte and cathode, respectively [10], [11]. Electrode and 

electrolyte of SOFC are commonly made into layers and stacked on each other in a 

certain sequence. Besides, some electrolyte material is added inside the electrode 

layers in order to increase the efficiency of electrochemical reaction [12]. Hence, the 
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material properties may not be homogeneous. However, redox reaction in SOFC 

generates large amount of heat which rises the operating temperature up to around 

800°C [14]. High thermal load poses challenges for thermal stability of SOFC layers. 

Moreover, the misdistributed stress after volumetric expansion due to high 

temperature has become the main factor of structure defection and failure. Oxidised 

nickel (NiO) has a lower oxygen diffusivity which reduces the efficiency of redox 

reaction in SOFC layers [55]. 

Many efforts are devoted to fracture analysis through various numerical simulations 

and experiments. Since a SOFC layer is composed of different materials, the internal 

stress depends on different coefficient of thermal expansion of different components 

on the layer. Celik et al. found out that the stress depends on the percentage of 

electrode, electrolyte and pores on the layers [56]. They pointed out that stress can 

be reduced by increasing the percentage of Ni, YSZ and pores. Increasing porosity 

can significantly increase the efficiency in stress reduction. However, it also 

decreases the layers strength and reduces the cell performance by the reduction of 

TPB. Normal cell operation is a cycling of oxidization and reduction of cell 

electrode. For Ni based electrode, the Ni material experiences large volume change 

during cycling process. Timurkutluk et al. and Sarantaridis et al. have some detail 

studies on the volumetric effect by redox reaction [57]–[59]. During oxidization 

process, Ni particles get oxidized and transformed into NiO particles which leads to 

around 70% volumetric expansion. However, during reduction process, NiO 

particles will be reduced and transformed back into Ni particles which lead to 

around 42% volumetric shrink. Hence, the redox reaction can be regarded as an 

irreversible process. Since the SOFC layer is constrained by neighbour layers, after 

many cycling processes, stress will be accumulated in the layer. However, the 

critical stress for Ni is 317MPa [12]. When stresses exceed this value, damage will 

likely form and delamination and decomposition can happen in this SOFC layer. 

Stress normally rises up during (i) manufacture, (ii) high operating temperature and 

(iii) anode re-oxidisation processes. For different SOFC structures, such as anode 
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supported cell and electrolyte supported cell, the failure probability of each layer is 

different [60]. Laurencin et al. summarised the relationship between cell structure 

and cell stage [60], [61]. After cell assembly, electrolyte support cell will introduce 

initial stress on anode which may become a potential for anode cracking, whereas 

the electrolyte and cathode layers are predicted as undamaged. In anode support 

cells, the thickness of electrolyte should be around 10 μm in order to avoid any 

degradation. However, high elastic energy stored in electrolyte causes delamination 

of electrodes and electrolyte layers. During anode reduction process, operating 

temperature keeps increasing and ceramic electrolyte will expand. Hence, the stress 

in electrolyte layer of both cell structures will release. During anode re-oxidisation 

process, Ni will transfer into NiO which leads to anode expansion. For anode 

supported structure, 0.12% to 0.15% expansion in volume is predicted to lead to 

electrolyte and cathode damage. For electrolyte supported structure, anode 

oxidisation may lead to delamination at the electrode/electrolyte surface. 

The operating temperature of SOFC varies from 800°C to 1000°C, which has 

provides a good environment for ions diffusing through the ceramic electrolyte and 

catalyses side reaction in the SOFC layers [62]. As mentioned above, the possible 

fuels for SOFC are not only hydrogen, but also various types of fossil fuels [63]. In 

marine environment, the major fuel injected into SOFC modules is marine diesel oil 

which contains hydrocarbon compound, hydrogen sulphide and chlorine hydride. 

Papurello et al. and Madi et al. found out that Ni is active to this halogen compounds 

[13], [15]–[17]. High operating temperature also leads to the degradation of material 

mechanical properties. Giraud et al. indicate that the elastic modulus of reduced 

anode plate (Ni-YSZ) keeps reducing as temperature increases until 430ºC and 

increasing when temperature is above 600ºC [64]. However, Pihlatie et al. show 

different results [65]. They investigate both Ni-YSZ plate and oxidised anode plate 

(NiO-YSZ). In their study, the elastic modulus of NiO-YSZ plate keeps constant at 

low temperature state, followed by a sharp increase up to 133GPa at 240ºC. Then as 

temperature increases, young’s modulus decreases and reaches to 110GPa at 1200ºC. 
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For Ni-YSZ plate, elastic modulus keeps reducing through the whole heating up 

process. 

2.4 Numerical investigations of lithium-ion battery 

Performance of lithium ion battery mainly depends on material properties of anode, 

cathode and electrolyte. Several metals and compounds are selected as anode 

material such as Co, Ni, Mn and iron phosphate due to different performance in 

thermal stability, capacity, conductivity and safety [8]. Si is also found to be an 

excellent anode material in conventional lithium ion battery due to its high 

theoretical charging capacity (3600 ~ 4200mAHg-1) [66], [67]. However, as lithium 

ions penetrate into Si particles, the Si particles are expected to experience a large 

volume expansion up to 400% [66], [68].  Frequent cycling of the lithium ion battery 

will lead to stress misdistribution, degradation and delamination of the components 

especially electrodes and electrolyte and it will affect the battery performance. 

Many efforts are conducted to avoid the defection and fracture of the Si based anode. 

Chan et al. established a new Si structure named Si nanowires in order to improve 

the battery performance [66]. Nanowire structures are embedded on metallic current 

collector. Due to small diameter of nanowire structure, anode will have higher 

tolerance on volumetric expansion with little defection. Nanowire structure exhibit 

higher electrical capacity than normal Si structure and it can sustain high capacity in 

high current situation. Since the nanowire is one dimensionally displaced on current 

collector, it is not easily smashed into small particles which increase the reliability 

of lithium ion batteries. 

Liu et al. set up a thin Si film model to investigate the lithiation induced tensile 

stress and surface cracking by analytical technique and FEM [69]. They observed a 

compression-traction transition located on lithitaion and unlithiation surface zone. 

From their perspective, large volumetric expansion, plastic deformation and slow 

charging rate are the main factors which build up this transition and it will lead to 
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cracks and fracture. They also show that the magnitude and profiles of tensile stress 

at the surface of lithiated section depend on volumetric misfit strain, yield stress and 

modulus of unlithiated section. 

Stamps and Huang conducted a mix mode fatigue evaluation of lithium ion battery 

by setting up a pre-cracked electrode model [70]. Stress energy release rate and 

crack surface energy are the main criteria in crack propagation prediction. The 

simulation was performed by considering a series of damage situations with crack 

length over width range from 0.05 to 0.9. They found out that if a crack could 

propagate under certain loading when the length of pre-existing crack is more than 

half size of the electrode width, the same loading will also lead propagation of a 

longer pre-existing crack for the same electrode. Otherwise, the comparison between 

maximum strain energy release rates and crack surface energy is necessary [29]. Ryu 

et al., on the other hand, believe that the size of Si nanowire may have influence on 

fracture of nanowire structure [68]. Maximum possible strain energy release rate and 

fracture toughness of Si were composed. They concluded that the Si nanowire with a 

diameter size less than 300 nm can hardly fail during cycling even the nanowire 

structure is initially damaged. This value also matched well with in-situ TEM 

experimental observations. 

Ryu et al also mentioned that during normal cycling process, pressure gradients 

always formed along with the large volume changes [68] and it will affect the 

process of lithium diffusion in the electrode particles and crack evolution. Grantab 

and Shenoy provided an investigation about pressure gradient factor on crack 

propagation in Si nanowires [9]. They applied CZM to model fracture in nanowires 

and J-integral to calculate the stress state around fracture region in order to predict 

the fracture evolution. In early diffusion stage, since localised stress around the 

crack tip is lower than surrounding nanowire surface region, a large mass flux 

toward crack tip region occurs. Hence, large amount of lithium ions move into crack 

tip region which cause relatively larger volume expansion in this region. Then, the 

stress around the crack tip should be reduced. Similarly, Zuo and Zhao applied an 
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alternative method, phase field method, to study the stress evolution and crack 

propagation [71]. A series of damaged electrode models with different crack 

numbers and different crack orientations were considered to illustrate the evolution 

of fracture in electrode. They indicated that pressure gradient factor depends on 

Young’s modulus, partial molar volume, lithium ion concentration, Poisson’s ratio 

and the localised concentration around the crack tip region. 

Gao and Zhou have investigated the softening effects caused by lithiation induced 

fracture in electrode material [72]. They set up a finite element framework and 

applied J-integral method to investigate the crack propagation. They also observed 

that large amount of lithium ions accumulate on crack tip regions during charging 

process, which cause a relaxation of hydrostatic stress. However, standard form of J-

integral is no longer path independent due to pressure gradient factor. 

2.5 Summary 

Several numerical simulation methods in fracture analysis are provided in this 

chapter. The advantages and limitations of these methods are discussed. Various 

studies about fracture analysis on SOFC and lithium-ion battery are briefly 

explained. However, the numerical simulation methods, such as FEM, XFEM, BEM 

and CZM, are based on CCM, which has limitations in capturing the dynamic 

performance of fractures in material structure. Hence, PD is introduced in the 

fracture analysis of marine batteries as an alternative approach. Since PD does have 

definitions in both continuous and non-continuous domains, it has superiority in 

fracture prediction. Detailed information and studies about peridynamic theory are 

provided in the following chapters. 
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3 PERIDYNAMICS 

3.1 Introduction 

As mentioned in Chapter 2, classical numerical simulation methods based on FEM, 

such as FEM, BEM and CZM, have some limitations in fracture analysis. Hence, a 

new numerical simulation method, called peridynamics, is introduced by Silling in 

2000. Generally, PD can be classified into three categories: bond-based PD, ordinary 

state-based PD and non-ordinary state-based PD. Bond-based PD is a simplified 

version of ordinary state-based PD by removing the dilatation term. Since all of the 

simulations in this thesis are based on brittle elastic material assumption, bond-based 

PD is applied as the numerical method in fracture analysis. In order to provide 

detailed information about bond-based PD, the nonlocal theory will be discussed in 

Section 3.2. Based on nonlocal theory, the bond-based PD will be illustrated in 

Section 3.3. The numerical implementation of this theory is provided in Section 3.4 

followed by a summary of this Chapter in Section 3.5. 

3.2 Nonlocal Theory 

In general, physical variables, such as mass, temperature, voltage and stress, 

describe the influences among different parts in a material structure and body. In 

microscopic analysis, such as molecular dynamics, these influences are explained as 

the interactions among small particles of the material. The investigation of mirco-

scale physics contributes to the understanding of various kinds of physical 

phenomenon [73]. Various theories were applied in the past to numerically simulate 

the behaviour of the material structure in micro-scale such as CCM. CCM was 

introduced by Cauchy in 19th century [74]. In CCM, material body is assumed to be 

continuous throughout the whole structure and it is composed of infinite number of 

material particles that can only interact with their closest neighbours. Hence, CCM 

is regarded as a local theory. However, in microscopic analysis, material particles 
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can interact not only with close neighbours particles but also particles within a 

certain distance. The interaction between long-range material particles is named as 

long-range interaction and this interaction is evident in the microscopic analysis, 

especially in molecular dynamics [73]. Hence, CCM which is based on local theory 

may not be sufficient enough to describe the motion of each material particle. 

Eringen and Edelen [75] and Eringen [76], [77] introduced a nonlocal continuum 

theory by taking the long-range interaction of elastic solids into consideration. 

Within the nonlocal theory, the existence of long-range force is evident for small 

scale problems. Hence, the material particles can build up interaction not only with 

particles of close neighbours, but also particles in the whole material structure or 

body. Weight functions are applied to describe the influence or the strength of 

interactions of the long range interactions. Based on this theory, the analysis of 

motion on microstructure is available by the continuum mechanics. 

In order to increase the performance of batteries, some nanoscale structures, such as 

Si nanowires, are embedded on the surface of battery electrodes. Hence, nonlocal 

theory is important for the fracture analysis of these nanostructures. Eringen and 

Kim have proposed a criterion of crack propagation by calculating the critical stress 

value around crack tip under the framework of nonlocal continuum mechanics [78]. 

The results agreed with Griffith criterion for static fracture in linear elastic fracture 

mechanics (LEFM). In LEFM, according to 2ij K r  , stresses reach infinitely 

large at crack tips. However, no material can withstand infinite stresses which make 

the prediction of stress value at crack tip meaningless. Rice, on the other hand, 

introduced a path independent method to calculate the strain concentration around 

cracks and notches [30]. For elastic materials, the J-integral value is identical with 

the strain energy release rate proposed by Irwin [27]. Since the integral contour stay 

finite distance to crack tips, it avoids the singularity and the J-integral value shows 

the average strain energy state within the contour region. As an alternative approach, 

a new nonlocal theory, called peridynamic theory, is introduced to solve the non-

continuous problems in the following sections. 
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3.3 Bond-based peridynamic theory 

3.3.1 Equation of motion 

In CCM, the motion of each material particle is defined by the stress and body force, 

which can be expressed as: 

 
 

 
2

2

,
, 


 



u x t
b x t

t
 (3.1) 

where  , u  and b  refers to the density, displacement and body force of material 

particle x  at time t.  is Nabla operator, which shows gradient of stress tensor along 

the material geometry. Since Nabla operator is composed of a series of derivatives, 

describing the gradient of stress tensor on the particle x  at time t, it does not have 

definition over non-continuous material geometries such as cracks. Hence, this has 

brought limitation for CCM in failure and fracture analysis. 

As an alternative approach in dealing with fracture and failure analysis, the PD is 

first introduced by Silling in 2000 [19]. Particles can build up interactions or 

material bonds, which weave the whole material structure. Hence, in peridynamics, 

the equation of motion (Eq. (3.1)) for each particle can be rewritten as follows: 

  
      

2

'2

,
f , , , ,


   

 
x

x
H

u x t
u x' t u x t x' x dV b x t

t
 (3.2) 

where f  refers to the pairwise force functions for each bond between particles x'  to 

x . Vx′ represents the volume of particle x' . Material particle x  can build up 

interactions with neighbour particles within finite distance (shown as Fig. 3.1) and 

these neighbour particles have built up the horizon of the material particle x  (Hx). It 

is assumed that particle x  can not build up interaction beyond the horizon, because 

the contribution of the particles outside horizon for particle x  is so weak that can be 

ignored. Horizon size, δ, is manually defined. Larger horizon size can lead to more 
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accurate result but requires longer computing time. As horizon size tends to 0, the 

Eq. (3.2) converge to Eq. (3.1). In this thesis, the horizon size is selected as 3 times 

of grid space in all simulations. Hence, material particles can build up long-range 

interaction with other particles which shows that PD is a nonlocal theory. 

 

Figure 3.1. Horizon of material point i 

The pairwise force function f is derived from strain energy density. In bond-based 

PD, the pairwise force function can be expressed by the reference configuration, 

deformed configuration (shown as Fig. 3.2) and material properties. In reference 

configuration, the relative position of two material particles is denoted by  , where 

 ξ = x' - x  (3.3) 

and the relative displacement after deformation can be expressed as: 

    η= u x',t -u x,t  (3.4) 
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Figure 3.2. Reference and deformed configurations 

Hence, ξ +η  shows the relative position after deformation and the stretch of the 

bond after deformation can be expressed as: 

 

avg

ξ +η - ξ
s = - αT

ξ
 (3.5) 

where α refers to the coefficient of diffusive expansion and Tavg refers to the average 

concentration value of the bond. In thermal conduction analysis, α represents the 

coefficient of thermal expansion and Tavg refers to the average temperature value of 

the bond. 

Material bond constant c does also affect the pairwise force function f  . In bond-

based PD, the value of constant c depends on the horizon, elastic (Young’s) modulus 

and structure geometry. There are different bond constants are applied for different 

dimensions which are listed in detail as follows: 
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Table 3.1. Material bond constant for three dimensions [31] 

 Bond constants 

one-dimension 
2

2

A

E
c   

two-dimension 
3

9

h

E
c   

three-dimension 
4

12



E
c   

where E refers to elastic modulus of the material. A represents the cross-sectional 

area and h refers to the thickness of the two-dimension plate. Therefore the pairwise 

force function in bond-based PD can be expressed as: 

 f
 

 





cs  (3.6) 

3.3.2 Failure definition 

Crack formation and propagation in a material body will increase the crack surface 

area, but reduce the elastic energy of material particles [79]. Therefore, by 

comparing the strain energy release rate with crack surface energy, the dynamic 

motion of crack can be captured. In FEM, the VCCT is one of the most applied 

methods in calculating the energy release rate of the structure with fractures [80].  

VCCT is derived from the Irwin’s crack closure integral [79] and it is commonly 

used for mix-mode fracture analysis. However, as mentioned in Chapter 2, new 

surfaces (elements and nodes) should be manually introduced in the implementation 

of fracture formation and evolution, which is a computationally difficult process. 

In PD, material particles build up interactions through bonds with each other in their 

horizons. Hence, the failure of material structure is reflected on the invalidation of 
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interaction, or “bond break”. If the material is brittle and the stretch of a material 

bond exceeds a certain value sc, the bond will break (Fig. 3.3). Once the bond breaks, 

there is no longer interaction between the material points associated with this bond. 

Hence, the failure parameter can be defined to describe the state of a bond as: 

  




，

，
c

c

1 s < s
μ t,ξ =

0 s > s
 (3.7) 

where sc represents the critical stretch. The bond force and bond stretch are linear 

related for brittle elastic material. Therefore, the local damage of the material point 

x  can be expressed as: 

  
 





x

x

x'
H

x'
H

μ x,t dV
x,t = 1-

dV
 (3.8) 

(a) (b) 

Figure 3.3. Crack nucleation and propagation 

Local damage is the percentage of the invalid (broken) bonds of material point x . φ 

= 0 means particle x  is undamaged and φ = 1 refers to particles x  losing all of its 

interactions and becoming fully damaged. As more material points being damaged, 

crack forms and propagate automatically in the material structure as shown in Fig. 

3.3. 

The value of critical stretch depends on critical energy release rate, Gc [19]. Gc can 

be expressed according to peridynamics for two-dimensional plate as: 
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42

4

1
hcsG cc   (3.9) 

where h is the thickness of two-dimensional model. On the other hand, Gc can also 

be calculated from fracture toughness K [81] as: 

 
E

K
Gc

2

  (3.10) 

By substituting Eqs. (3.3 ~ 3.10) into Eq. (3.2), the displacement of each material 

point can be calculated. 

3.3.3 Pressure 

The pressure state and stresses can also be evaluated as part of post-processing 

operation. Hydrostatic pressure can be derived from Cauchy stress and first Piola-

Kirchoff stress. The first Piola-Kirchoff stress can be obtained in peridynamics [82], 

in two-dimension for example, as: 

  
x

0 x'
H

σ = f x' - x dV  (3.11) 

Then, Cauchy stress can be calculated by the first Piola-Kirchoff stress and 

deformation gradient F  as: 

 
 
 
 

11 12T

0

21 22

σ σ
σ = Jσ F =

σ σ
 (3.12) 

where 

  J = det F  (3.13) 

and 
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  
x

x'22 H

2 1
F = ξ +η ξdV

πhδ ξ
 

(3.14) 

Hence, the two-dimensional hydrostatic stress of the material point x  can be 

expressed as: 

  2211
2

1
 hyd

 (3.15) 

Moreover, the pressure (P) of material point x  can be defined as: 

   hydP  (3.16) 

Since any stress tensor is the summation of hydrostatic stress and deviatoric stress, 

the deviatoric stress can be obtained as: 

 dev hydσ = σ -σ I  (3.17) 

where I is the identity matrix. Hence, the two-dimensional von-Mises stress can be 

calculated as: 

 VM dev devσ = 2σ : σ  (3.18) 

3.4 Numerical implementation of peridynamic theory 

Analytical solution of Eq. (3.1) is generally not possible for complex geometrical 

structures. Hence, numerical simulation methods are important to approximate the 

solution. In peridynamic theory, material structure is discretized by finite number of 

material particles. Each particle is represented by a material point as shown in Fig 

3.4 with certain volume. The points inside horizon are marked as yellow, while 

outside horizon are marked as white. Material points inside the horizon can build up 

interaction with central particles via bonds, while the interaction is too weak for 
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points outside the horizon that can be ignored. The discretisation of the material 

structure is usually uniform and the shape of the horizon is not necessarily to be 

symmetric either. 

 

Figure 3.4. PD domain discretisation 

In this thesis, the uniform discretisation and symmetric horizon are applied for 

simplicity. Therefore, Δ is used to represent the grid space or the distance between 

two close neighbour material particles. Hence, the discretised form of equation of 

motion of particle x (Eq. (3.2)) can be expressed as: 

         
1

, f , , , ,


   
n

i j i j i j j

j

u x t u x t u x t x x V b x t  (3.19) 

where n is the number of particles inside the horizon of material particle xi. 

3.4.1 Volume correction factor 

In order to simplify the numerical programming process, the spherical horizon is 

utilised in this thesis. Due to uniform discretisation, the particle volumes are usually 
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in cube shape for three-dimension, square shape for two-dimension and line shape 

for one-dimension. Therefore, volume of some particles, especially for those close to 

horizon boundary, can not be fully enclosed inside the horizon. In order to increase 

the accuracy of numerical simulation, a volume correction factor Vc is applied as a 

parameter to describe the real volume of these material particles.  

As explain in [19], the horizon size depends on the characteristic length dimensions. 

For nanoscale model, the horizon may represent the maximum distance of physical 

interaction between atoms or molecules. For macroscale model, the horizon does not 

have a physical correspondence. The value of horizon in macroscale analysis can be 

manually selected for convenience. Rao has established benchmark studies of one-

dimensional bar with six different horizon sizes (δ = 1, 3, 5, 10, 25, 50 times grid 

space) [83]. The model is discretized by very fine grid in order to minimize the 

numerical error. By comparing with analytical solution, he has found out that the 

highest accuracy is achieved for horizon size of δ = 1 and 3 times grid space. 

Furthermore, large horizon size requires better computing performance and more 

computing time. In this thesis, 3 times grid space horizon size are selected as 

horizon sizes due to its good accuracy. 1 time grid space can only capture crack 

propagation behavior and not applicable to crack branching behaviour [31]. For 

those particles, whose entire volume are fully enclosed inside the horizon, the 

volume correction factor is set as 1, i.e. Vc = 1. For those particles, whose entire 

volume is partially enclosed inside the horizon, the volume correction factor 

depends on bond length: 

 
δ ξ 1

Vc = +
dx 2

 (3.20) 

3.4.2 Surface correction factor 

The motion of material particles is determined by numerical integration through 

their horizon members inside the horizon. For particles close to free surfaces, such 

as boundaries and crack surfaces (shown as Fig. 3.5), they may not have horizons in 
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full size. Since the free surface effect is problem dependent, it is difficult to get 

analytical solutions. Hence, surface correction factors are determined based on 

numerical implementation [31]. 

 

Figure 3.5. Surface effect in material structure 

In bond-based PD, the surface correction factor is derived from the integration of 

strain energy density inside the material structure for simple loading conditions. By 

comparing the value of strain energy density by CCM and PD, the surface correction 

factor for material particles can be calculated. 

In bond-based PD, the strain energy density for material particles relies on bond 

constant c and bond stretch s. The scalar micro-potential w can be represented as: 

 2

2

1
csw   (3.21) 

Since the micro-potential is associated with a bond, each material particle shares half 

of the micro-potential. By integrating the micro-potential through the whole horizon, 
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the numerical expression of total strain energy density of material particle x is shown 

as: 

 
1

2


n

PD ij j

i=1

W = w V  (3.22) 

In CCM, strain energy density is composed of the stress and strain state of material 

particle ( 
2

1
CCMW ). The detailed expression of strain energy density varies 

according to the dimension of the problem.  Hence, surface correction factor for 

each material point can be expressed as: 

 
PD

CCM

W

W
scf   (3.23) 

The components of surface correction factors in x, y and z directions, g(gx, gy, gz), 

are derived from average values of surface correction factors of material particles on 

bond. They can build up the principal values of an ellipsoid, as shown in Fig. 3.6. 

 

Figure 3.6. Construction of an ellipsoid for surface correction factors 
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Hence, the intersection of ellipsoid and direction vector,  =  j i j in x x x x , 

builds up the correction factors of each bond as: 
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3.4.3 Numerical stability 

3.4.3.1 Time convergence study 

The explicit time integration is generally applied in the bond-based PD. For material 

particle xi, the acceleration is calculated from Eq. (3.2). Hence, the velocity and 

displacement can be calculated as: 

 n+1 n n

i i iu = u +u Δt  (3.25a) 

 n+1 n n

i i iu = u +u Δt  (3.25b) 

where 
n+1

iu and 
n

iu represent the displacement vectors of the material point xi for the 

next and the current time step respectively. 
n+1

iu and 
n

iu refer to the velocity vectors 

of the material point xi for the next and the current time step, respectively. 
n

iu  is the 

acceleration vector of the material point xi for the current time step and t  represents 

the time step length. Since the explicit time integration is applied in numerical 

simulations, results are sensitive to time step length t . The stability condition is 

determined by material properties and discretisation, as shown in Eq. (3.26) [19], 

[31], derived from von Neumann stability analysis [84] 

 
2

p ipp

t
V C


 


 (3.26) 
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where  fCip . A safety factor β (varies from 0 to 1) is applied in Eq. 3.26 to 

improve the stability condition. 

A square plate with pre-existing single crack is selected as the specimen of time 

convergence study as shown in Fig. 3.7. The size of the plate sides is 5cm and the 

size of the crack length is 20% of the side length. The plate is uniformly discretised 

into 200 points in both x and y directions. Hence, the total number of the 

discretisation is 40000 particles. This plate suffers from velocity boundary loading 

(50m/s) on the top and bottom edges and this process last for 1.6667e-5 second. If 

we assume that the critical time step size for mechanical deformation 

is
2




c

p ipp

t
V C

, simulations with different time step sizes, 

 0.05 0.1 0.2 0.4 0.5 0.8 1.0 1.5 2.0 2.5  cΔt = t , are considered. 

 

Figure 3.7. Initial damage plot of square plate specimen with pre-existing crack 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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(i) (j) 

Figure 3.8. Results of time convergence study: (a) 0.05tc (b) 0.1tc (c) 0.2tc (d) 0.4tc 

(e) 0.5tc (f) 0.8tc (g) 1.0tc (h) 1.5tc (i) 2.0tc (j) 2.5tc 

According to Fig. 3.8, simulation with 0.05tc time step size is the most refined case 

which can capture crack propagation and multiple branching cracks. As time step 

size increase, the results become coarse and fuzzy. In the cases of 0.5tc and 0.8tc, 

only two branching cracks can captured. After 1.0tc, results become fluctuate and 

unstable. Results shows serious distortion at 2.5tc, since unwanted cracks emerge on 

the boundary region of the plate. For the cases with time step sizes larger than 2.5tc, 

results is fully distorted and there has no stable result that can be plotted. 

However, the cases with most refined result requires larger amount computing times 

depends on the computing performance. In some situations, the most refined result is 

impractical. Hence, we need negotiation between time refinement and computing 

performance. Within the critical time step size tc, the results follows the similar trend 

in terms of the way of crack propagation and crack branching. Usually, we set the 

safety factor  = 0.5 0.8  ct  to keep relative good accuracy, save computing 

resource and avoid destroying stability. 

3.4.3.2 Size Convergence study 

Apart from time step size, the grid size or size of discretization can also have 

influence on accuracy and stability of numerical simulation. Similar to meshing 

process by nodes and element in FEM, PD apply material points with finite volume 

to discretized material body. Therefore the analytical solution can be explained by 
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integrating the material points. In this study, the same numerical model is selected as 

shown in Fig. 3.7. Several discretization with 

25 25 50 50 80 80 100 100 200 200 500 500       particles are discussed. 

The time step size is selected as 1.3367e-8 second and this process will last 1250 

steps. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 3.9. Results for size convergence study: (a) 25 25 points (b) 50 50 points 

(c) 80 80 points (d) 100 100 points (e) 200 200 points (f) 500 500 points 

Fig. 3.9 shows results of crack propagation with different discretisation under 

velocity boundary condition. For the cases of 25 25 points, 50 50 points and 
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80 80 points, we can observe fluctuating results like no crack propagation, crack 

over propagation and abnormal crack propagation, respectively. For the cases of 

100 100 points, 200 200 points and 500 500 points, crack propagation and crack 

branching is stable. 

In general, as the number of material points increase, numerical model will become 

more refined and the numerical results will be more accurate. However, more 

computing time and higher computing performance are required at the same time. In 

order to optimise computing resource and keep relative high accuracy and high 

stability, heterogeneous discretisation scheme is commonly applied in numerical 

simulation. However, the heterogeneous discretisation is currently not available in 

bond-based PD due to some issues such as horizon, volume correction factor, weight 

function, etc. Therefore uniform discretisation has to be applied in this thesis. The 

number of material points that selected during discretisation does not have a clear 

rule and it depends on the complexity of the models and problems. 

3.5 Adaptive Dynamic Relaxation 

Although PD is based on the equation of motion in dynamic form, it can also solve 

static problem. The static solution is regarded as a special situation in transient 

response of the solution, as explained by [85]. The fluctuating results will converge 

to a certain value by introducing a damping factor to the dynamic motion of the 

system, and then the static solution can be obtained. The damping factor is an 

artificial value which may not always converge to the results efficiently. Hence, the 

adaptive dynamic relaxation scheme is applied by Underwood [86]. 

The equation of motion by peridynamics can be rewritten as a series of ordinary 

differential equations (ODE) by introducing new fictitious inertia and damping 

terms as: 

      ' ', , , , , nDU X t c DU X t F U U X X  (3.27) 
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where D is the fictitious diagonal density matrix and cn is the damping coefficient 

determined by Greschgorin’s theorem [86] and Rayleigh’s quotient, respectively. F 

is the vector which depends on the initial position ( X ) and displacement (U ) and it 

is composed of peridynamic interaction and body forces. The components of force 

vector for material point i can be expressed as: 

           
1

  
N

i i j j i j i
j

F t t V b  (3.28) 

where Vj shows the actual volume of material point j (the horizon member of point i), 

hence it should be multiplied by a volume correction factor. t is the force vector 

represented based on ordinary peridynamic theory. In Eq. (3.27), the density matrix, 

D, the damping coefficient c and time step size (Δt) do not have physical quantities 

and they can be manually defined in order to get a fast convergence in numerical 

analysis. Therefore, in adaptive dynamic relaxation technique, the explicit time 

integration scheme can be applied in numerical simulations. In general, the time step 

size can be manually selected as 1 for a convenient calculation. According to 

Greschgorin’s theorem, the diagonal elements of the density matrix, D, can be 

expressed as: 

 
21

4
ii ij

j

t K     (3.29) 

where Kij is the stiffness matrix of the system and it is derived from the peridynamic 

interaction force with respect to the relative displacement vector,  . The elements 

of the stiffness matrix, Kij, can be calculated by applying the small displacement 

assumption as: 
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(3.30) 

where e  is the unit vector along the x, y and z coordinates in Cartesian coordinate 

system.  

Since the elements of the density matrix given in Eq. (3.29) may have large 

numerical values, which can lead to numerical, Then, Eq. (3.27) can be rewritten at 

the nth iteration as: 

      1 ' ', , , , , n n n n n n n nU X t c U X t D F U U X X  (3.31) 

Damping coefficient can be calculated by applying the lowest frequency of the 

system. The lowest frequency can be derived by using Rayleigh’s quotient as: 

 
T

T

U KU

U DU
   (3.32) 

Hence, the damping coefficient cn can be expressed by Eq. (3.31) and Eq. (3.32) as: 

      2 /
T T

n n l n n n nc U K U U U  (3.33) 

in which l nK is the diagonal “local” stiffness matrix which is given as: 

    1 1/2/ /l n n n n

ii i ii i ii iK F F tu       (3.34) 

Recalling the Eq. (3.31) and by applying central-difference scheme, displacements 

and velocities for the next time step can be obtained as: 

 
  

 

1 2 1

1 2
2 2

2

 


   


 

n n n

n

n

c t U tD F
U

c t
 (3.35a) 

and 
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 1 1 2  n n nU U tU  (3.35b) 

where n represents the nth iteration. However, at first iteration, the physical values at 

t-1/2 does not have physical meanings. Then the initial displacement field and initial 

velocity field are assumed as 0 0U  and 0U  . Hence, the integration can be started 

by: 

 
1 0

1 2

2

tD F
U


  (3.36) 

3.6 Summary 

In this chapter, basic information about peridynamics is provided. PD has shown as 

an alternative method in solving both dynamic and static problems. Without 

meshing, the material body or structure is discretised into finite amount of material 

particles. Each particle is represented by a material point with finite volume. Each 

pair of material particles, within a certain distance can build up interaction via 

“bond”. The fracture and failure can be easily represented by “bond breakage”. It is 

the major convenience and advantage of peridynamic theory over other kind of finite 

element analysis in fracture analysis. PD equations can be solved by using the 

explicit time integration scheme which is sensitive to the time step size. Large time 

size may not lead to convergent results. Therefore, a stability condition, which is 

derived from material properties and discretisation, is necessary in the simulations. 
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4 PERIDYNAMIC DIFFERENTIAL OPERATOR 

4.1 Introduction 

Generally, PDEs are applied to describe most kind of physical phenomena, such as 

thermal conduction, ion diffusion and mechanical deformation. Unlike ODEs, PDEs 

contain functions with multiple unknown variables and partial derivatives. They are 

usually applied to model multi-physical problems. For some complicated PDEs, it is 

impractical to get the analytical solution. With the help of computer power, the 

numerical approximation of PDEs becomes a feasible method. The FEM, finite 

volume method (FVM) and finite difference method (FDM) are the most widely 

used in numerical approximation of PDEs. However, as discussed in previous 

chapters, the FEM, FVM and FDM may encounter difficulties in solving 

discontinuous problems. Hence, based on peridynamic theory, a new numerical 

differential scheme, PDO, is provided in this chapter. 

4.2 Peridynamic differential operator 

PDO is introduced by Madenci [87] by transferring the local form PDEs into non-

local form. The concept of “Horizon” is applied to the PDO. In other words, the 

value of PDEs on material particles depends on their horizon members. The 

numerical expression of PDO depends on dimensions of the problem and it will be 

presented respectively in following sections. 

4.2.1 One-dimensional peridynamic differential operator 

The PDO can be derived from the Taylor Series. For the one-dimensional case, the 

Taylor series can be expressed as: 
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    
   2

2

2

1

2!
 
 

   
 

i i

j i

f x f x
f x f x R

x x
 (4.1) 

Eq. (4.1) shows the one dimensional second order Tayler Series. R represents the 

remainder terms which are small enough to be neglected.  f x  is the physical 

variable depending on the problem of interest. jx  is one of the horizon members of 

the material point ix  and   refers to the distance between these points. By moving 

the first term on the right hand side of Eq. (4.1) to the left hand side, the Eq. (4.1) 

can be rewritten as: 

    
   2

2

2

1

2!
 
 

   
 

i i

j i

f x f x
f x f x R

x x
 (4.2) 

Multiplying each term in Eq. (4.2) by a peridynamic function,  1 pg  , with p = 1, 2 

and integrating over the horizon of material point xi, Eq.(4.2) will become: 

      
 

 
 

 
2

2

1 1 12

1

2!
    

 
  

   
x x x

i ip p p

j i

H H H

f x f x
f x f x g dV g dV g dV

x x
 

(4.3) 

By considering the orthogonality property of peridynamic functions: 

  1

1

!
  

x

n p

np

H

g dV
n

 (4.4) 

where n, p = 0, 1, 2 and np represents the Kronecker Delta. Substituting the Eq. (4.4) 

in Eq. (4.3), we have: 

 

 

 
    

 

 

1

1

2 2

1
2





 
  

   
    

    
  


x

i

j i

Hi

f x
g

x
f x f x dV

f x g

x

 (4.5) 
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The one-dimensional peridynamic functions 
1

Pg  contains weight function ω and 

unknown coefficients p

ia  which can be constructed as [87]: 

       2

1 1 2       p p pg a a  (4.6) 

The weight function ω is a manually defined function which describes the strength 

of the bond interaction. Generally, for most kind of materials, longer bonds should 

have weaker interactions. For bonds longer than horizon size, the interaction 

strength is so much weak which can be ignored. The exponential functions are 

usually applied for the weight function. However, for simple numerical simulation 

and relatively high accuracy, the weight function in this thesis is represented by: 

  
1


 





 
 
 
 

p

p  (4.7) 

The orthogonality property of the PD functions requires that: 

 

2

1

q
p p

nq q n

q

A a b




  (4.8) 

in which q = 1 or 2 and 

 !p

n npb n   (4.9) 

Eq.(4.8) can be written in matrix form by using the shape matrix A, the unknown 

matrix a and the known matrix b and they can be expressed as: 

      
n q

nq q

H

A dV  (4.10) 

where 
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   2

11 1

1

  



n

j

j

A V  (4.11a) 

   3

12 2

1

  



n

j

j

A V  (4.11b) 

   3

21 1

1

  



n

j

j

A V  (4.11c) 

   4

22 2

1

  



n

j

j

A V  (4.11d) 

By calculating Eqs. (4.11)Eq. (4.10) can be rewritten as: 

 

3
11 12

5
21 22

2 0

0

A A A
A

A A A





  
    
   

 (4.12) 

According to Eq. (4.9), 1

1 1b  and 2

2 2b  . Therefore the unknown matrix a can be 

obtained as: 

 

1 2 13 3
1 1 1

1 2 2

2 2 2
5 5

1 1
0 0

02 2

1 20
0 0

a a bA A
a

a a b

A A

 

 

   
      

        
      
      

 (4.13) 

Substituting Eq. (4.7) and Eq. (4.13) in Eq. (4.6), the one dimensional peridynamic 

functions can be expressed as: 

 
1

1

1

2  
g

A
 (4.14a) 

 
2

1 2

2

 
g

A
 (4.14b) 
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By substituting Eqs. (4.14) in Eq. (4.5), the one dimensional PDEs can be written in 

terms of peridynamic form. 

4.2.2 Two-dimensional peridynamic differential operator 

Recalling the Taylor Series, the physical variables  jf x  can be expressed as: 

   
         2 2 2

2 2

1 2 1 2 1 22 2

1 2 1 2 1 2

1 1

2! 2!
     
    

      
     

i i i i i

j i

f x f x f x f x f x
f x f x R

x x x x x x

                    (4.15) 

where. 1  and 1x  refer to the x component of the bond   and material point position 

ix  respectively. 2  and 2x  refer to the y component of material bond   and material 

point position ix  respectively. R, as remainder terms, is small enough to be 

neglected. By moving the first term on the right hand side of Eq. (4.15) to the left 

hand side, multiplying each term with a peridynamic function  1 2

2 p pg  (with p1, p2 

= 0, 1, 2 except p1 = p2 = 0) and integrating through the horizon, Eq. (4.15) can be 

expressed as: 

      

 
 

 
 

 
 

 
 

 
 

1 2

1 2 1 2

1 2 1 2 1 2

2

1 2 2 2

1 2

2 2 2

2 2

1 2 2 2 1 2 22 2

1 2 1 2

1 1

2! 2!



   

      

 

 
 

 

  
 

   



 

  

x

x x

x x x

p p

j i
H

i ip p p p

H H

i i ip p p p p p

H H H

f x f x g dV

f x f x
g dV g dV

x x

f x f x f x
g dV g dV g dV

x x x x

                    (4.16) 

The orthogonality property of the peridynamic function can be shown as: 

  1 2 1 2

1 1 2 21 2 2

1 2

1

! !
    

x

n n p p

n p n p
H

g dV
n n

 with n1, n2 = 0 , 1 , 2 (4.17) 
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where npδ  is the Kronecker delta. By substituting Eq. (4.17) into Eq. (4.16), relations 

between partial derivatives and peridynamic functions can be expressed as: 

 

 

 

 

 

 

    

 

 

 

 

 

1

10

2

01
2

2
2

20

22

1
02

2
2

2 11
2 2

2

1 2











 
 

 
  
  
  
  

   
    

   
   
   

   
  

 
   


x

i

i

i

j i
H

i

i

f x

x

gf x

x g

f x
f x f x g dV

x

gf x

x g

f x

x x

 (4.18) 

The two-dimensional peridynamic functions  1 2

2 p pg  are constructed by 

polynomials which contains weight function ω and coefficients of unknown matrix 

a as: 

       

   

1 2 1 2 1 2 1 2

1 2 1 2

2

2 10 10 1 01 01 2 20 20 1

2

02 02 2 11 11 1 2

         

      

   



p p p p p p p p

p p p p

g a a a

a a
(4.19) 

The unknown coefficient matrix a above depends on peridynamic shape matrix A 

and known coefficient matrix b with a relationship shown below: 

   

1

1 2 1 2

1 2 1 21 2 1 2

1 2

22

0 0

q
p p p p

q q n nn n q q
q q

A a b


 

  (4.20) 

In which q1, q2 = 0, 1, 2 and q1 and q2 can not be both equal to 0. The peridynamic 

shape matrix A depends on the weight functions ω and relative position of 

interacting material particles associated with the bond. The relationship between 

these factors is shown as follow: 
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      1 1 2 2

1 21 2 1 2
1 2     

x

n p n p

q qn n p p H
A dV  (4.21) 

The known coefficient matrix b can be constructed as: 

 1 2

1 2 1 1 2 21 2! !p p

n n n p n pb n n    (4.22) 

and the weight function is: 

 

1 2

1 2

1






 

 
 
 
 

q q

q q
 (4.23) 

The peridynamic shape matrix A can be written based on Eq. (4.21) as: 

              

              

              

              

              

4

10 10 10 01 10 20 10 02 10 11
4

01 10 01 01 01 20 01 02 01 11

6 6
20 10 20 01 20 20 20 02 20 11

02 10 02 01 02 20 02 02 02 11
6 6

11 10 11 01 11 20 11 02 11 11

1
0 0 0 0

2

1
0 0 0 0

2

1 1
0 0 0

4 12

1 1
0 0 0

12 4

0 0 0 0

 

 

   

   

 
 
 
 

 
 
 
 
 

h

A A A A A
h

A A A A A

A A A A A h h

A A A A A
h h

A A A A A

61

12
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

h

(4.24) 

The unknown coefficient matrix a can be expressed as: 

  

10 01 20 02 11

10 10 10 10 10

10 01 20 02 11

01 01 01 01 01

10 01 20 02 11

20 20 20 20 20

10 01 20 02 11

02 02 02 02 02

10 01 20 02 11

11 11 11 11 11

a a a a a

a a a a a

a a a a a a

a a a a a

a a a a a

 
 
 
 
 
 
 
 

 (4.25) 
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According to Eq. (4.20), the relationship between the elements of the shape 

coefficient matrix A, unknown coefficient matrix a and known coefficient matrix b 

can be expressed as: 

   
10 10

10 1010 10
A a b  (4.26a) 

   
01 01

01 0101 01
A a b  (4.26b) 

      
20 20 20

20 02 2020 02 20 02
A a A a b   (4.26c) 

      
02 02 02

20 02 0202 20 02 02
A a A a b   (4.26d) 

   
11 11

11 1111 11
A a b  (4.26e) 

According to Eq. (4.22), the known coefficient matrix b can be expressed as: 

  

10

10

01

01

20

20

02

02

11

11

1 0 0 0 00 0 0 0

0 1 0 0 00 0 0 0

0 0 2 0 00 0 0 0

0 0 0 2 00 0 0 0

0 0 0 0 10 0 0 0

b

b

b b

b

b

   
   
   
    
   
   
     

 (4.27) 

Hence, substituting Eq. (4.24) and Eq. (4.27) into Eq. (4.26), the unknown 

coefficient matrix a can be obtained as: 
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  

4

4

6 6

6 6

6

2
0 0 0 0

2
0 0 0 0

9 3
0 0 0

3 9
0 0 0

12
0 0 0 0

 

 

   

   

 

 
 
 
 
 
 
  
 
 
 
 
 
 
 

h

h

a
h h

h h

h

 (4.28) 

Substituting Eq. (4.28) back to Eq. (4.19), the two dimensional peridynamic function 

can be calculated as: 

  10

2 2

2
cos 

  
g

h
 (4.29a) 

  01

2 2

2
sin 

  
g

h
 (4.29b) 

  20 2 2

2 3 3

9 3
cos sin  

     
 g

h h
 (4.29c) 

  02 2 2

2 3 3

3 9
cos sin  

     
  g

h h
 (4.29d) 

  11

2 3

12
cos sin  

  
g

h
 (4.29e) 

where θ is the angle between bond and horizontal axis. By substituting Eqs. (4.29) 

into Eq. (4.18), the two dimensional partial derivatives in both first and second order 

can be calculated. 
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4.2.3 Three-dimensional peridynamic differential operator 

Similar to one-dimensional and two-dimensional PDO, the three-dimensional PDO 

can also be derived from Taylor Series. The three-dimensional Taylor Series can be 

expressed as: 

   
         

       

2 2

1 2 3 2 2

1 2 3 1 2

2 2 2 2

1 2 1 3 2 32

3 1 2 1 3 2 3

1 1

2! 2!

1

2!

  

     

    
      

    

   
   

      

i i i i i

j i

i i i i

f x f x f x f x f x
f x f x

x x x x x

f x f x f x f x
R

x x x x x x x

 

(4.30) 

where 3  represents length along z-direction of the bond   and R is the remainder 

terms, which is small enough to be neglected. Moving  if x  to left hand side, 

multiplying each term in Eq. (4.30) with a peridynamic function  1 2 3

3 p p p
g and 

integrating through the horizon of material particle x, in which p1, p2, p3 = 0, 1, 2 

and can not be equal to 0 at the same time. 

      
 

 
 

 

 
 

 
 

 
 

 
 

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3

3 1 3 2 3

1 2

2 2

2 2

3 3 1 3 2 32 2

3 1 2

2

2

2 32

3

1 1

2! 2!

1

2!

    

     

 

 
  

 

  
  

  

 
 



  

  



i ip p p p p p p p p

j i

Hx Hx Hx

i i ip p p p p p p p p

Hx Hx Hx

i p p p

Hx

f x f x
f x f x g dV g dV g dV

x x

f x f x f x
g dV g dV g dV

x x x

f x
g dV

x

 
 

 
 

 
 

1 2 3

1 2 3 1 2 3

2

1 2 3

1 2

2 2

1 3 3 2 3 3

1 3 2 3

  

     

 

 
 

   



 

i p p p

Hx

i ip p p p p p

Hx Hx

f x
g dV

x x

f x f x
g dV g dV

x x x x

 

(4.31) 
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The orthogonality property of peridynamic functions  1 2 3

3 p p p
g can be written as: 

  3 1 2 31 2

1 1 2 2 3 31 2 3 2

1 2 3

1

! ! !
      

x

n p p pn n

n p n p n p
H

g dV
n n n

 (4.32) 

where n1, n2, n3 = 0, 1, 2 and δ represents the Kronecker Delta. Substituting Eq. 

(4.32) into Eq. (4.31), the relationships between partial derivatives and peridynamic 

functions  1 2 3

3

p p p
g  can be expressed as: 

 

 

 

 

 

 

 

 

 

 

    

1

2

100

3
3

010
2 3

001
2 3
1 200

2 3

020

2 3

2 002

32
110

32
13
3

2

1 2

2

1 3

2

2 3

 
 

 
 
 

 
 
 

 
 
 

 
 
  

  
 

 
 

 
 
 

  
 
 

 
 

 
 
 
   

i

i

i

i

i

j i

i

i

i

i

f x

x

f x

x

f x

gx

g
f x

g
x

g
f x

f x f x g
x

g
f x

g
x

g
f x

x x

f x

x x

f x

x x

01

011

3

 
 
 
 
 
 
 
 
 
 
 
 
 
  


Hx

dV

g

 

(4.33) 

In Eq. (4.33), the peridynamic functions  1 2 3p p p

3g ξ  can be constructed by: 
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       

     

     

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3

1 2 3 1 2 3 1 2 3

3 100 100 1 010 010 2 001 001 3

2 2 2

200 200 020 020 002 002

110 110 1 2 101 101 1 3 011 011 2 3

         

        

           

  

  

  

p p p p p p p p p p p p

p p p p p p p p p

p p p p p p p p p

g a a a

a a a

a a a

 (4.34) 

The weight function  
1 2 3q q q   can be expressed as: 

  
1 2 3

1 2 3

1q q q

q q q


 



  

 
 
 
 

 (4.35) 

where q1, q2, q3 = 0, 1, 2 and they can not be equal to zero at the same time. As 

shown in Eq. (4.34) the peridynamic functions  1 2 3p p p

3g ξ  is composed of elements 

of unknown coefficient matrix a, weight function ω and bond length in x, y and z 

directions. The unknown coefficient matrix a can be derived from peridynamic 

shape matrix A and known coefficient matrix b as:  

   

1 1 2

1 2 3 1 2 3

1 2 3 1 2 31 2 3 1 2 3

1 2 3

2 22

0 0 0

q q q
p p p p p p

q q q n n nn n n q q q
q q q

A a b
  

  

   (4.36) 

In which q1, q2, q3 = 0, 1, 2 and can not equal to 0 at same time. The elements in 

peridynamic shape matrix A can be expressed as: 

     
1 2 31 2 3 1 2 3

q q qn n n q q q

Hx

A    3 31 2 2 2

1

n +qn +q n +q

2 3ξ ξ ξ dV  (4.37) 

Hence, by substituting Eq. (4.35) into Eq. (4.37), the peridynamic shape matrix A 

can be written as:  
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



















































7

7

7

777

777

777

5

5

5

15

1
00000000

0
15

1
0000000

00
15

1
000000

000
5

1

15

1

15

1
000

000
15

1

5

1

15

1
000

000
15

1

15

1

5

1
000

000000
9

4
00

0000000
9

4
0

00000000
9

4



















A  

(4.38) 

The elements of known matrix b can be expressed as: 

 
332211

321

321
!!! 321 pnpnpn

ppp

nnn nnnb   (4.39) 

Hence, the known coefficient matrix b can be written as: 

 





































100000000

010000000

001000000

000200000

000020000

000002000

000000100

000000010

000000001

b  (4.40) 
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Substituting Eq. (4.38) and Eq. (4.40) into Eq. (4.36), the unknown coefficient 

matrix a can be calculated as: 

 



























































7

7

7

777

777

777

5

5

5

15
00000000

0
15

0000000

00
15

000000

000
1233

000

000
3123

000

000
3312

000

000000
4

9
00

0000000
4

9
0

00000000
4

9



















a  (4.41) 

By substituting Eq. (4.41) and Eq. (4.35) into Eq. (4.34), the three-dimension 

peridynamic functions,  321

3

ppp
g , can be calculated as: 

 
100

3 3

9 1
sin cos

4
 

 
g  (4.42a) 

 
010

3 3

9 1
sin sin

4
 

 
g  (4.42b) 

 
001

3 3

9 1
cos

4


 
g  (4.42c) 

 
200 2 2 2 2 2

3 4 4 4

12 1 3 1 3 1
sin cos sin sin cos    

    
  g  (4.42d) 
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020 2 2 2 2 2

3 4 4 4

3 1 12 1 3 1
sin cos sin sin cos    

    


  g  (4.42e) 

 
002 2 2 2 2 2

3 4 4 4

3 1 3 1 12 1
sin cos sin sin cos    

    


  g  (4.42f) 

 
110 2

3 4

15 1
sin cos sin  

 
g  (4.42g) 

 
101

3 4

15 1
sin cos cos  

 
g  (4.42h) 

 
011

3 4

15 1
sin cos sin  

 
g  (4.42i) 

where θ refers to the angle between bond and z axis. ϕ represents the angle between 

the projection of bond on x-y plane and x axis as shown in Fig. 4.1. Substituting Eqs. 

(4.42) into Eq. (4.33), the three-dimensional partial derivatives can be calculated. 

 

Figure 4.1. Three dimensional bond orientation 
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4.3 Transforming CCM equations to PD equations by using 

peridynamic differential operator 

The basic information of PDO has been provided in section 4.2. By applying the 

concept of “Horizon”, the PDEs can be transformed into spatial integral equations. 

Hence, the limitation of PDEs in describing discontinuous problem can be overcome. 

In order to validate the reliability of PDO, the convergence studies of PD to the 

CCM in three dimensions are shown in the following sections. 

4.3.1 One-dimensional formulation 

Based on Hooke’s Law, the one-dimensional stress-strain relationship for linear, 

isotropic, elastic body, is presented as [74]: 

 
u

E E
x

 


 


 (4.43) 

where E refers to the elastic modulus of the material. In CCM the motion of material 

particles can be described by Newton’s Second Law (or equation of motion) as: 

   u b  (4.44) 

where u refers to the displacement of material particles and b refers to body force 

density. Without considering body force for simple calculation and substituting Eq. 

(4.43) into Eq. (4.44), the equation of motion can be expressed as: 

 
2 2

2 2

u u
E

t x

 


 

 (4.45) 

Eq. (4.45) is the one-dimensional equation of motion based on CCM. The partial 

differential term in this equation can be replaced by a spatial integral term by 

considering Eq. (4.5) as: 
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   2

1  
x

i j i
H

u E u u g dV  (4.46) 

Substituting Eq. (4.14) into Eq. (4.46) and simplifying this equation, we get: 

 
 

2

2

x

j i

i
H

u uE
u dV

A


 


   (4.47) 

Recalling the one-dimensional bond constants in Table 3.1 in Section 3.3.1, Eq. 

(4.47) becomes: 

 
 





 

x

j i

i
H

u u
u c dV  (4.48) 

 


j iu u
 refers to the stretch of a bond associated with the material points i and j. 

Hence, Eq. (4.48) has recovered the expression of equation of motion in one-

dimensional bond-based PD from CCM. 

4.3.2 Two-dimensional formulation 

Under the plane stress assumptions, the two-dimensional stress-strain relationship 

for linear, isotropic, elastic body is presented as: 

 2

1 0

1 0
1

1
0 0

2

  

  


  

 
    
    

    
        

 

xx xx

yy yy

xy xy

E
 (4.49) 

where E refers to the elastic modulus and ν refers to the Poisson’s Ratio. Recalling 

back Eq. (4.44), the two-dimensional equation of motion based on CCM can be 

expressed as: 



CHAPTER 4: PERIDYNAMIC DIFFERENTIAL OPERATOR 

 

60 

 

 

 
 

   
2 2 2

2 2
2 1 1

2 1

i i i
i

u v uE
u

x x y y
  



   
     

     
 (4.50a) 

 
 

   
2 2 2

2 2
2 1 1

2 1

i i i
i

v u vE
v

y x y x
  



   
     

     
 (4.50b) 

The PDEs in Eqs. (4.51) can be replaced by spatial integral equations as shown in 

Eq. (4.18). Substituting Eqs. (4.29) and Eq. (4.18) into Eqs. (4.51), the equations of 

motion can be rewritten as: 

 
 

 

 

   

2
2 2

0 0

2

32 0 0

2
2 2

0 0

2 3cos sin

3
1 4cos sin

2 1

1 3sin cos

 

 

 

    


      
  

     


 
  

 
 
   
 
 

  
 
 

 

 

 

j i

j i

i

j i

u u
h d d

v vE
u h d d

h

u u
h d d

 (4.51a) 

 
 

 

 

   

2
2 2

0 0

2

32 0 0

2
2 2

0 0

2 cos 3sin

3
1 4cos sin

2 1

1 sin 3cos

 

 

 

    


      
  

     


 
   

 
 
   
 
 

   
 
 

 

 

 

j i

j i

i

j i

v v
h d d

u uE
v h d d

h

v v
h d d

 (4.51b) 

After simplification, Eq. (4.51a) and Eq. (4.51b) can be expressed as: 

 

    

 

2
2 2

0 0

32

5 cos 1 3 sin
3

2 1
4 1 cos sin

 

   


   
 

  


 
    

 
 
 
 
 

 
j i

i

j i

u u

E
u h d d

v vh
  

(4.51c) 
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 

    

 

2
2 2

0 0

32

5 cos 1 3 sin
3

2 1
4 1 cos sin

 

   


   
 

  


 
    

 
 
 
 
 

 
j i

i

j i

v v

E
v h d d

u uh
  

(4.51d) 

where h refers to the two-dimensional plate thickness. If we assume the Poisson’s 

Ratio is 1/3, the Eqs. (4.51) can be reformed as: 

 
   2

2

3 0 0

cos cos sin9 j i j i

i

u u v vE
u d d

    
   

 

   
 
 
 
   (4.52a) 

 
   2

2

3 0 0

sin cos sin9 j i j i

i
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v d d

    
   

 

   
 
 
 
   (4.52b) 

For two-dimensional isotropic plate, the equation of motion expressed by bond-

based PD is: 

 
    2

2

0 0

cos cos sin    
   



   
 
 
 

 
j i j i

i

c u u v v
u h d d  (4.53a) 

 
    2

2

0 0

sin cos sin    
   



   
 
 
 

 
j i j i

i

c v v u u
v h d d  (4,53b) 

By comparing Eqs. (4.53) with Eqs. (4.52), we can find out that 

 3

9

 


E
c

h
 and 

1

3
   (4.54) 

which matches with the bond constant in Table. 3.1. Hence, Eqs. (4.50) transforms 

to the equation of motion of two-dimensional bond-based PD by using PDO. 
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4.3.3 Three-dimensional formulation 

Recalling the stress-strain relationship for three-dimensional linear, isotropic, elastic 

body as: 
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 (4.55) 

The equations of motion for three-dimensional material particles based on CCM 

without considering body force for simple calculation are shown as: 

 

2

2

 


 
  

   

xyxx xzu

t x y z
 (4.56a) 

 
2

2

  


  
  

   

yx yy yzv

t x y z
 (4.56b) 

 

2

2

 


 
  

   

zyzx zzw

t x y z
 (4.56c) 

Substituting Eq. (4.55) into Eqs. (4.56), the equation of motion can be rewritten in 

terms of displacement component as: 

  
 

2 2 2 2 2

2 2 2

1 2 1 2 1 1
1

1 1 2 2 2 2 2

i i i i i
i

u u u v wE
u

x y z x y x z

 
 

 

      
      

         
 

(4.57a) 
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  
 
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i i i i i
i

v v v u wE
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 

 

      
      
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(4.57b) 
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(4.57c) 

The partial derivatives in Eqs. (4.57) can be replaced by spatial integral equation as 

shown in Eq. (4.33). Therefore the equation of motion can be reformed as: 
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(4.58a) 
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(4.58c) 

Substituting Eqs. (4.43) into Eqs. (4.59), the equations of motion can be rewritten as: 
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(4.59a) 
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(4.59c) 

If we assume the Poisson’s ratio to be 1/4, the equations of motion can be simplified 

as: 

           
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(4.60c) 

Recalling Eq. (3.2), the three-dimensional equations of motion in PD can be shown 

as: 
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(4.61a) 
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
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j i j i j i
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Hx

w w cos θ+ u u sinθcosθcos + v v sinθcosθsin
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(4.61c) 

By comparing Eqs. (4.61) with Eqs. (4.60), the value of c can be calculated as: 

 4

12E
c


  with 

1

4
   (4.62) 

Eq. (4.62) satisfies the three-dimensional bond constant in Table 3.1 in Section 3.3.1, 

which means Eqs. (4.57) transforms to the equations of motion in three-dimension 

bond-based PD by PDO. 

4.4 Numerical validation of peridynamic differential operator 

For infinitely small discretisation and horizon size, the behaviour described by CCM 

should converge to those described by peridynamics as shown in Section 4.3. In this 

section, some numerical applications about PDO are provided. By comparing the 

results with analytical solutions or FEM solutions, the accuracy of the PDO can be 

validated. 

4.4.1 Numerical validation of 1st order PDEs 

Imagine a one-dimensional bar with 2 meter in length as shown in Fig. 4.2. The 

temperature of the bar varies along the length of the bar with the following 

relationship: 
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    
2

100 1T x x   (4.63) 

 

Figure 4.2. One-dimensional bar with varying temperature 

where T refers to the temperature and x represents the location along the bar. Then 

the analytical solution of the temperature gradient on this bar can be expressed as: 

  ( ) 200 1
T

grad T x
x


  


 (4.64a) 

In peridynamics, the bar was uniformly discretised into 100 material particles with a 

volume of (0.023) m3. The PDE in Eq. (4.54a) can be represented by PDO according 

to Eq. (4.5) as: 

    1

1

1

( ) 



  



n

j i j

j

T
grad T T T g V

x
 (4.64b) 

Hence the temperature gradient results by analytical solution and peridynamics are 

shown in Fig. (4.3): 
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Figure 4.3. Linear temperature gradient along the bar 

If the temperature along the bar has a different distribution, such as: 

   100cos
2

T x x
 

  
 

 (4.65a) 

The analytical solution of gradient of temperature can be expressed as: 

   50 sin
2

T
grad T x

x




  
    
  

 (4.65b) 

Replacing the PDE by PDO, the gradient of temperature can be shown as: 

      1

1

1
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j i j
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 (4.65c) 
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Hence, the temperature gradient results by analytical solution and peridynamics are 

shown in Fig. (4.4): 

 

Figure 4.4. Temperature gradient along the bar 

The results generated by PDO method are marked as “red cross”, while the results 

generated by analytical method are marked as “blue circle” The solutions by these 

two methods has agree very well with each other. Hence, the PDO is reliable in 

solving 1st order PDEs. 

4.4.2 Numerical validation of 2nd order PDEs 

In this section, one-dimensional thermal conduction and two-dimensional lithium 

ion diffusion are taken as examples to validate the accuracy of PDO for 2nd order 

PDEs. Since both of the simulations are dynamic analysis which require large 

amount of calculation, it is impractical to get analytical solutions manually. 

Therefore, in these two cases, two different methods, FEM and PDO method, are 



CHAPTER 4: PERIDYNAMIC DIFFERENTIAL OPERATOR 

 

70 

 

 

applied to simulate the thermomechanical process. The commercially available 

software, ANSYS, was used to implement the FEM analysis due to its sophisticated 

thermal-structural analysis capability. For thermal expansion analysis, 8 nodes 

coupled thermal mechanical element PLANE223 was selected as element type with 

plane stress assumption. Peridynamic analysis is performed by using a personal code 

and calculated by using MATLAB.  

Imagine a bar with initial temperature (0°C) is subjected to a static temperature 

loading of 0°C at left end and 100°C at right end. The material properties of the bar 

are given in Table 4.1. 

Table 4.1. Material properties of the bar 

Length 
Thermal 

Conductivity 
Density 

Specific Heat 

Capacity 

L k ρ cv 

(m) (W/m°C) (kg/m3) (J/kgK) 

2 233 10 3 

W/m°C (watt per meter per Celsius degree) is the same with corresponding standard 

SI unit W/mK (watt per meter per Kelvin). In this thesis, the unit of thermal 

conductivity is W/m°C for consistency. The bar structure is meshed/discretised into 

100 elements/particles. Different discretisation schemes in both ANSYS and 

MATLAB are shown in Fig. 4.5. The governing equation of the thermal conduction 

can be expressed as: 

 
2  vc T k T  (4.66a) 
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Figure 4.5. Difference in discretisation between FEM and PD: ANSYS 

discretisation are marked in blue while MATLAB discretisation are marked in red 

where ρ is the material density, cv refers to specific heat capacity and K refers to 

thermal conductivity. Blue dash-line and dots represent the discretisation in FEM 

(ANSYS) whereas red dot represents the discretisation by PD. According to Eq. 

(4.18), Eq. (4.66a) can be reformed as: 

    20

2  
x

v j i
H

c T k T T g dV  (4.66b) 

Substituting Eqs. (4.29) into Eq. (4.66b), the numerical solution by PDO can be 

calculated. After 5 seconds of diffusion, the results derived from ANSYS have been 

exported into MATLAB to provide a clear comparison as shown in Fig. 4.6: 
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Figure 4.6. Temperature distribution at 5s along the bar 

Due to different discretisation methods, there is a minor difference between FEM 

and PDO method. Overall, the results generated by two methods show good 

agreement with each other. 

For two-dimensional problems, a simulation of lithium-ion diffusion inside a thin 

plate is provided below as the validation test. Hence, a simple lithium-ion diffusion 

model is shown in Fig. 4.7 and the governing equation of lithium ion diffusion can 

be described as: 

 
2 2

2

2 2

C C
C D C D

x y

  
    

  
 (4.67a) 

where C refers to the lithium ion concentration and D represents the diffusivity of 

the lithium ion in the plate. Replacing the partial derivatives with integral terms 

according to Eq. (4.18), Eq. (4.67a) can be rewritten as: 
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     2 20 02

2 2
x x

j i j i
H H

C D C D C C g dV C C g dV        (4.67b) 

 

Figure 4.7. Two-dimensional plate 

Before the charging process starts, the square plate is free from lithium ions. 

Therefore, the initial lithium ion concentration of plate is C0 (0 mol/m3). Then, the 

plate is subjected to a maximum lithium ion concentration, Cmax (0.15 mol/m3), at all 

the boundaries of the plate. The material properties of the plate are given in Table 

4.2. Similar to the last thermal diffusion validation test, the results from FEM by 

ANSYS is compared to PDO method by MATLAB in order to validate the accuracy 

of the simulation. 
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Table 4.2. Material properties of the plate 

Elastic 

modulus 

Poisson's 

ratio 

Coefficient of 

expansion  
Density Diffusivity  

E ν α ρ D 

(GPa)  (m3/mol) (kg/m3) (m2/s) 

200 
3

1
 61050   1 1000 

Since the plate geometry and loading conditions are symmetric, only a quarter of the 

plate is modelled (as shown in red contour in Fig. 4.7). A sample point (black point 

on red contour) is selected to record the lithium ion concentration change as the time 

progresses. The results plots during the lithiation process is given in Fig. 4.8. 

(a) (b) 
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(c) (d) 

(e) (f) 

Figure 4.8. Results of thermal expansion: (a) Concentration distribution by FEM (b) 

Concentration distribution by PD (c) Displacement in x direction by FEM (d) 

Displacement in x direction by PD (e) Displacement in y direction by FEM (f) 

Displacement in y direction by PD 
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Figure 4.9. Time history of lithium-ion concentration on sample point 

After the diffusion process for 2.9210-3 seconds, the plate starts to expand from 

boundary region in both x and y direction. However, the central region remains 

undeformed. Maximum of displacements in FEM are 2.45e-5 meter and 2.45e-5 

meter in x and y direction respectively, while maximum of displacements in PD are 

2.65e-5 meter and 2.65e-5 meter in x and y direction respectively. The displacement 

fields and lithium ion concentration field in Fig. 4.8 show a good agreement between 

FEM and PD method. The lithium-ion concentration on sample point starts 

increasing at 0.2510-3 second and reaches 0.0572 mol/m3. Unlike the FEM, there is 

no material point locates on the contour in the discretisation of PD. Therefore, the 

material point next to the sample point is selected. Moreover, the FEM uses the 

implicit time integration scheme while the PD applies the explicit time integration 

scheme in numerical calculations. Hence, the results show a minor gap between 

these two methods in Fig. 4.8 and Fig. 4.9. 
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4.5 Summary 

As a useful tool in solving the PDEs, PDO, is introduced in this chapter. In section 

4.3, the equations of motion by CCM converge to bond-based peridynamics by 

applying PDO. In section 4.4, it was shown that the PDO method has a good 

accuracy in solving PDEs. The PDO uses the concept of “Horizon”. Unlike 

traditional methods in solving PDEs, such as FEM, FVM and FDM, the material 

points are influenced by the situation of its horizon members in PDO method. Since 

the PDEs have transformed into spatial integral equations, there is no limitation in 

solving problems with non-continuous material structures such as cracks and kinks. 

Besides, the material properties, such as thermal conductivity and ion diffusivity, 

can be directly applied to numerical simulations without transferring into micro-

diffusivity as in bond-based PD as shown in chapter 3. In following numerical 

simulations, the PDO is applied along with the bond-based PD. 
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5 THERMOMECHANICAL FRACTURE ANALYSIS 

5.1 Introduction 

In this chapter, the coupled field thermomechanical model of SOFC based on bond-

based PD is presented. An anode plate specimen is selected in the simulation, which 

is derived from [12] in the literature. The anode plate is mixed with electrolyte 

material in order to increase the TPBs. As a result, the efficiency of the 

electrochemical reaction increases. In this study, a bond-based peridynamic model is 

applied to describe the thermomechanical deformation of the anode plate. Based on 

the Fourier’s Law, a coupled field equation of motion in bond-based PD is created 

with the help of PDO. Moreover, a FEM model is also built by ANSYS as a 

comparison to the PD. 

5.2 Background 

Reversing water electrolysis process can be regarded as the basic principle of fuel 

cell, which is discovered by William Grove [88]. Based on his discovery, Grove 

developed an improved wet-cell battery, known as “Grove cell”, in 1838 [89]. 

Electrolyte, as an ion conductor in the battery system, is under discussion in the past 

and the researches about the state of the electrolyte last around 100 years. In 1897, 

Nernst developed a thin rod shape solid electrolyte [90]. With the help of an 

auxiliary heating appliance, the ion transferring can be implemented in the solid 

state electrolyte by continuously glowing the device. He pointed out that mixture 

oxides have enormous high conductivity as compare with pure oxides under elevated 

temperatures. The solid state electrolyte was applied on the Nernst lamp as the 

electric conductor. After verifying the experimental results and analytical results, 

Haber applied the first patent on fuel cell with solid electrolyte in 1905 [91]. The 

performance of the electrodes and electrolyte were under excessive investigation 
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after the invention of SOFC. Tradewell built up a fuel cell with silver/oxygen 

electrode and quartz/porcelain electrolyte in 1916 [92]. He found out the 

decomposition of the metal oxides on the electrode under 1000°C operating 

temperature. However, massive efforts were conducted to find the suitable 

candidates for electrodes and electrolyte, but the outcome was far from satisfactory 

until 1950s [93]. Due to the development of photoacoustic technique, the 

investigation of SOFC becomes more meticulous and accurate. In late 1950s, many 

research activities were established around the world in solid state electrochemistry 

[94], [95]. In these researches, metal oxides (such as ZrO2) based electrolyte became 

the popular candidate materials. Due to the exploration of outer space in 1960s, the 

SOFCs were widely applied in the spaceships [96]. In 1970s, numerous researches 

about the ion conductivity and stability of the electrolyte and electrodes were set up 

and it is difficult to cite all the achievements in this section. 

 

Figure 5.1. General Hydrogen Fuelled SOFC 

Similar to other types of batteries, the main components of modern fuel cells are 

electrodes and electrolyte. Based on the chemical characteristics of electrolyte, the 

fuel cells can be classified as, alkaline (AFC), direct methanol (DMFC), phosphoric 
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acid (PAFC), sulfuric acid (SAFC), proton-exchange membrane (PEMFC), molten 

carbonate (MCFC), SOFC and protonic ceramic (PCFC) fuel cells [62]. The former 

five types of fuel cells are also known as low-temperature fuel cells, since their 

operating temperature varies from 50~210°C. The latter three types are known as 

high-temperature fuel cells since their operating temperature can reach 600°C or 

even higher. High operating temperature provides the opportunities for the 

utilisation of methane which can be derived from fossil fuels directly and the 

inherent generation efficiency can reach up to 60% [97]. In this chapter, in 

consideration of the application in marine industry, the SOFC, as an example of 

high-temperature fuel cell is commonly used in marine propulsion systems, is 

selected for the fracture analysis during normal battery operation. 

The operating principle of SOFC is shown in Fig. 5.1. The redox reaction in SOFC 

generates large amount of heat which raise the operating temperature up to around 

800°C. High temperature not only provides a suitable environment for ion 

transportation through ceramic electrolyte materials, but also catalysis side reactions 

in SOFC. Moreover, the electrode and electrolyte layer will deform under large 

thermal loading. Since the electrolyte material is added inside the electrode layer, 

the mechanical properties in each layer are not homogenous. Besides, due to 

different material properties of electrodes and electrolyte, differences in mechanical 

deformation are observed at different parts of SOFC [12]. Hence, degradation of 

SOFC may occur which may cause negative influence on fuel cell performance and 

even failure. 

Fracture and fatigue analysis of SOFC is important in battery design. The numerical 

studies of fracture in SOFC is very limited in the literature. Laurencin et al. [60] 

utilized a combined finite element and statistical approach of Weibull to predict cell 

fracture. Although FEM is well-established technique for determination of stresses, 

its capability is relatively limited in failure prediction as discussed in chapter 3. In 

this chapter, fracture analysis of SOFC is under investigation by using bond-based 

PD. 
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5.3 Thermomechanical analysis of porous electrode plate 

5.3.1 Numerical model and loading condition for SOFC plate specimen 

Generally, the SOFC unit is a multilayer structure which is composed of ceramic 

and metallic materials [98]. Electrode layers and electrolyte layers are stacked in a 

certain sequence. Besides, part of electrolyte materials are inserted into the electrode 

layers to increase the efficiency of the electrochemical reaction. In order to obtain 

detailed visualization of particle distribution in electrode layers, various advanced 

technologies such as scanning electron microscopy and X-ray computed tomography 

have been applied [12], [99]. An anode layer (Ni-YSZ) is considered and a colour 

image is shown in Fig. 5.2. 

 

Figure 5.2. Nickel-YSZ anode layer [12] 

In Fig. 5.2, the yellow colour represents the electrolyte (YSZ) material and the green 

colour represents the electrode (Ni) material. Black colour in this figure represents 

pore. Based on this information, the anode layer can be uniformly discretised into 

finite number of points with a certain volume as shown Fig. 5.3. The dimensions of 
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the anode layer are given as 12 m 15.9 0.12m m    . Since the thickness is 

relatively small as compared to the length and width scales, the plane stress 

assumption is utilised. The whole anode plate is uniformly discretised by 11473 

material points. 3853 of them is electrode points and 7620 of them is electrolyte 

points. The operating temperature of SOFC varies from 800ºC to 1000ºC and 

multiple cases with different thermal loading conditions are considered in order to 

evaluate the stress evolution and fracture occurrence. 

 

Figure 5.3. Discretisation of Nickel-YSZ anode layer: electrolyte particles are 

marked in red and electrode particles are marked in blue 

5.3.2 Numerical Results 

In this chapter, we first performed thermomechanical analysis of SOFC layer 

without considering failure to obtain displacement and von Mises stress distributions 

to compare the PD results against FEM results. Then, the crack evolution is under 

investigation. Three different bond strength configurations for the electrode-

electrolyte interface (weak interface, uniform interface and strong interface) were 
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considered. Dimensions of the electrode plate specimen are specified 

as12 15.9m m  . Top edge of the plate is free whereas the left and right edges of 

the plate are constrained in horizontal direction. Bottom edge is fully constrained. 

Due to small plate dimensions and high operating temperature, it is assumed that the 

temperature is uniform throughout the plate. Moreover, the influence on temperature 

by mechanical deformation is weak that can be ignored. Recalling the coupled field 

equation of motion in Chapter 3 (Eq. (3.2)) and Fourier’s Law, the governing 

equation of this simulation can be expressed as: 
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With the PDO, the numerical expression of Eqs. (5.1) can be expressed as: 

      
1

, , 


  
n

avg j

j

u x t c s T V b x t  (5.2a) 

        20 02

2 2

1 1

+  
 

 
   

 
 

n n

v j i j j i j

j j

c T k T T g V T T g V  (5.2b) 

where c is the two dimensional bond constant as shown in Table 3.1 in Chapter 3. s 

refers to the bond stretch. α represents the coefficient of thermal expansion. Tavg 

shows the average temperature. b  is the body force and k represents the thermal 

conductivity. Material properties of electrode and electrolyte are given in Table 5.1. 
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Table 5.1. Material properties of anode layer 

Material Unit Nickel 8YSZ 

Temperature °C 800 800 

Elastic modulus GPa 207 157 

Poisson's Ratio N/A 0.31 0.313 

Specific heat capacity J/kgK 450 460 

Density kg/m3 8500 5200 

Thermal conductivity W/m°C 60.7 2.1 

Thermal expansion coefficient α10-6 13.5 10.5 

Yield strength MPa 59 N/A 

Tensile strength MPa 317 N/A 

Material Toughness MPa m  125 3.5 

5.3.2.1 Thermomechanical deformation without failure 

Normal operating temperature of SOFC varies from 800°C to 1000°C. High 

temperature may cause degradation of the electrode plate. In this case, 

thermomechanical analysis was performed by disregarding failure. Under uniform 

temperature loading at 800°C, operating condition of the electrode and origin of the 

damage can be investigated. Displacement and von Mises stress distributions based 

on PD are shown in Fig. 5.4 and Fig. 5.5. Besides, results are also obtained by using 

FEM for comparison. 

 (a) (b) 



CHAPTER 5: THERMOMECHANICAL FRACTURE ANALYSIS 

 

85 

 

 

 (c) (d) 

Figure 5.4. Comparison between PD and FEM: (a) Displacement in horizontal 

direction by PD (b) Displacement in horizontal direction by FEM (c) Displacement 

in vertical direction by PD (d) Displacement in vertical direction by FEM. 

 (a) (b) 

Figure 5.5. Comparison between PD and FEM: (a) von-Mises Stress by PD (b) von-

Mises Stress by FEM 

Table 5.2. Comparison of maximum deformation and von-Mises stress 

 
Ux(nm) Uy(nm) vM stress(MPa) 

FEM 31.7 203 49.7 

PD 28 207 50 

According to Table 5.2, Fig. 5.4 and Fig. 5.5, the results from PD and FEM have 

reached an agreement for von-Mises stress and displacements in both horizontal and 

vertical directions. Due to the heterogeneous discretisation scheme applied in FEM, 

more detailed stress (149MPa) value can be captured in high geometrical singularity 

regions. However, uniform discretisation scheme is applied in bond-based PD which 
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can only capture the stress roughly. The stress value around these regions boundary 

are similar to each other which shows a good reliability of bond-based PD in stress 

calculation. Since some of the boundaries of the plate specimen are constrained, the 

pores tend to shrink. Hence, high stresses will concentrate around pore regions 

especially those with sharp tips. Fig. 5.5 shows the distribution of von-Mises stress 

and they indicate the possible positions that cracks may form. The results have 

overall agreement between PD and FEM and they validate the capability and 

reliability of the peridynamic theory. 

5.3.2.2 Thermomechanical simulation with crack propagation 

According to Fig. 5.5, the maximum von-Mises stress inside the anode plate is 

around 150MPa under 800°C thermal loading. As a result, the stretch of bonds 

around this region can exceed a critical value. Since, the interaction strength 

between electrode and electrolyte particles is unknown, three cases were considered 

to demonstrate damage formation and evolution based on the strength of electrode-

electrolyte interface, i.e. weak interface, uniform interface and strong interface. 

Critical stretch values for the bonds crossing electrode-electrolyte interface are 

assumed to be 0.5sc as weak interface, sc as uniform interface and 2sc as strong 

interface. Thermal loading gradually increases from 0ºC to 1000ºC in 10000 steps. 

Damage states for the three different interface strength cases in one single charging 

process are shown in Fig. 5.6 ~ Fig. 5.8. The formation and evolution of cracks 

differ in all three cases. Damage initiates at high hydrostatic stress regions of the 

plate， such as pore regions with sharp geometry. As the temperature increases, the 

amount of damage increases. Maximum damage at 1000ºC reaches 16%, 3.1% and 

2.5% for weak, uniform and strong interface configurations, respectively. For the 

weak interface case, due to low critical stretch value, damage prefers to evolve and 

propagate along the electrode-electrolyte interface. This will lead to the separation 

between electrode particles and electrolyte particles. However, for uniform and 

strong interface cases, the separation of electrode and electrolyte is not obvious. 
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Most of the damages form at electrolyte regions and pore boundaries where high 

hydrostatic stresses are located. Since the fracture toughness of the YSZ is much 

weaker as compared to Ni, electrolyte particles damage much easier than electrode 

particles. Moreover, the damage starts at lower temperatures for the weak interface 

case. 

According to the simulations described above, damage evolution depends on 

electrode and electrolyte interface configuration and SOFC electrode plate geometry. 

By applying PD, the damage situation, probable position of fracture and probable 

direction of fracture evolution of the plate can be predicted in a single charging 

process. During frequent cycling operations, cracks may form and propagate due to 

the increase of damage. Electron flow from high electric potential region to low 

electric potential region through electrolyte particles. However, once the electrolyte 

particles are damaged, electron diffusion path may be blocked by these cracks and 

damages. Therefore, electron may have to find alternative paths to diffuse into a low 

electric potential region. This may cause an increase of inner resistance and 

reduction of electrical capacity and thermal stability, which will lead to performance 

degradation and even failure of the fuel cell. 

(a) (b) 
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(c) (d) 

Figure 5.6. Damage state for the weak interface configuration: (a) 600ºC (b) 800ºC 

(c) 900ºC (d) 1000ºC 

(a) (b) 

(c) (d) 

Figure 5.7. Damage state for the uniform interface configuration: (a) 600ºC (b) 

800ºC (c) 900ºC (d) 1000ºC 
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(a) (b) 

(c) (d) 

Figure 5.8. Damage state for the strong interface configuration: (a) 600ºC (b) 800ºC 

(c) 900ºC (d) 1000ºC 

5.4 Summary 

SOFC, as one of the most popular power storage equipment, has relatively high 

power output, excellent emission control and wide fuel suitability. In order to 

increase efficiency of electrolchemical reaction in fuel cells, electrolyte materials are 

mixed with electrode material. Since the operating termperature varies from 800ºC 

to 1000ºC, fuel cell may be damaged due to different material properties of electrode 

and electrolyte. Under high temperature loading, electrode plate deforms and 

stresses concentrate at some of the pore boundaries, especially those with sharp tips. 

Hence, damage may occur at these regions. Damage may also evolve along 

electrode-electrolyte interfaces especially if the interface strength is weaker. This 

may degrade the cell performance and even cause the failure of the fuel cell. 
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Therefore, fracture analysis of SOFC is essential and peridynamics as a new 

computational technique is used for the first time in the literature for this purpose. 

First, the capability of peridynamics is validated by considering a simple square 

plate specimen under uniform loading condition. Peridynamic results show a good 

aggreement with FEM. Then, damage evolution in a porous electrode plate under 

uniform temperature loading is investigated. Three different cases with different 

strengths of electorde and electrolyte interfaces are discussed in this study. For the 

weaker interface case, damage starts at lower temperature than the stronger interface 

cases. Moreover, since the fracture toughtness of electrolyte material (YSZ) is 

weaker than electrode material (Ni), electrolyte is damaged earlier while electrode 

remains undamaged. 

Due to the high complexity of three dimensional SOFC model and the limitation of 

computer performance in the university, the three dimensional study will be finished 

in my future research. The three dimensional fracture of SOFC will be extended to a 

whole SOFC unit, which contains anode, electrolyte and cathode, to obtain a more 

realistic model. Besides, the influence of temperature on material properties should 

also be taken into consideration. Due to only a single charging process is under 

consideration, damage results may not be obvious in uniform and strong interface 

cases. Hence, research with multiple cycling process is necessary as a future study.



CHAPTER 6: DIFFUSION INDUCED FRACTURE 

 

91 

 

 

6 DIFFUSION INDUCED FRACTURE 

6.1 Introduction 

In this chapter, the fracture analysis of two dimensional lithium ion battery is under 

investigation. Since Si experiences large volumetric change during battery cycling, 

fracture analysis or pulverization may occur inside the electrodes. In order to 

investigate the evolution of damage inside lithium ion battery electrode, the battery 

plate with various damage cases are selected. Based on these models, the 

relationship among fracture evolution, deformation, lithium ion concentration and 

hydrostatic stress is investigated. The background knowledge and previous works 

are presented in section 6.2. The lithiation induced deformation during charging 

process is described by coupled field equations which are presented in section 6.3. 

Numerical models of the electrode plate and the detailed material properties are 

shown in section 6.4. The fracture analysis of simple single crack cases is presented 

in section 6.5 while more complex cases are presented in section 6.6. Section 6.7 

gives a brief summary of the numerical results in this chapter. 

6.2 Background 

Lithium-ion (Li-ion) battery is one of the most promising energy storage systems 

due to its high energy density, high operating voltage, low self-discharge and low 

maintenance requirements [100]. Performance of Li-ion batteries mainly depends on 

material properties of anode, cathode and electrolyte. Several metals and compounds 

are selected as anode material such as Co, Ni, Mn and iron phosphate due to their 

performance in terms of thermal stability, capacity, conductivity and safety [8]. One 

of the anode materials, Si, is under investigation for more than 30 years due to its 

high theoretical charging capacity (3600~4200mAHg-1) [66], [67] [101]. However, 

as lithium ions diffuse into Si particles, the Si particles experience large volume 
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expansion up to around 400% [66], [68]. Frequent cycling of the lithium ion battery 

leads to stress misdistribution, degradation and delamination of the battery 

components which can significantly affect the battery performance. 

The lithiation process depends on the molecular structure of Si [102]. For crystalline 

Si, the Si molecules will turn into amorphous lithiated silicon (LixSi) at the initial 

stage of lithiation. As the lithiation proceeds, the amorphous LixSi will transform 

further into crystalline lithiated silicon (Li15Si4) due to the increase of lithium 

concentration. There will be a thin reaction layer lies between crystalline Li15Si4 and 

Si with a sharp gradient of lithium concentration. The moving speed of the reaction 

layer slows as the lithiation proceeds. For amorphous Si, pure Si will turn into 

amorphous lithiated silicon LixSi. The LixSi has two stages: x = 2.5 for early 

lithiation and x = 3.5 for fully lithiation. However, the reaction layer moves at a 

constant speed as the lithiation proceeds. 

Many research on lithium-ion battery can be found in section 2.4. In this study, as an 

alternative approach, PD is utilized to investigate the fracture evolution in electrode 

plates of lithium ion batteries by considering pressure gradient and material phase 

change factors. PDO is also applied in building up the numerical expression of 

coupled field equations to describe the relationships among lithium ion 

concentration, hydrostatic stress and mechanical deformation.  

The governing equation of diffusion induced deformation and the model are 

provided in sections 6.2 and 6.3, respectively. The results in single crack case and 

multiple crack cases are described in section 6.4 and section 6.5, respectively. 

Besides, the results with and without considering material phase change is also 

discussed in these sections. Finally, a short summary will be presented in section 6.6. 
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6.3 Coupled diffusion-mechanical deformation mechanism 

The general lithium diffusion phenomenon can be represented by using Fick’s 

Second Law [103]. Since Si is selected as anode material for lithium-ion battery in 

this study, there is a large amount of volume change during lithiation and 

delithiation as discussed above. Therefore, the stress induced by volume change 

during battery cycling should not be ignored. The stress components, ij , can be 

expressed as [71]: 
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where Ω is the partial molar volume of Si. u and v is the displacements in x and y 

directions, respectively. Cmax is the maximum lithium concentration in the plate and 

C is the current normalized concentration. As lithiation proceeds in the electrode, 

local stresses will increase at high geometrical singularity regions such as crack tips. 

Due to the pressure-gradient, large amount of lithium ions move into these regions 

which will lead to relatively large volume expansion and increase of lithium ion 

concentration. By considering these factors, the general Fick’s Second Law should 

be modified as [71]: 
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where M is molecular mobility, kB is Boltzmann constant, T is absolute temperature, 

NA is Avogadro’s constant and   is the hydrostatic stress. 
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Once the lithium ions diffuse into the anode plate, the anode material transforms 

from pure Si to LixSi. Normally, the material properties of the anode plate, such as 

elastic modulus and fracture toughness, will decrease depending on the state of 

lithiation. Hence, the Si lithiation process is also known as material softening 

process [104]. As described in last section, Si experiences partial and fully lithiation 

process. However, in this study, since the thickness of the reaction layer is very thin 

compared to the anode geometry [102], this interface layer is not taken into 

consideration. 

6.4 Numerical studies 

In this study, a square Si plate is selected to represent the anode plate of the lithium 

ion battery. Both pure Si and lithiated Si are regarded as brittle materials. 

Concentration values are normalized by maximum concentration. The square 

specimen with pre-existing crack is free from lithium-ions and mechanical 

constraints at its initial state (as shown in Fig. 6.1). Then the Si specimen is 

subjected to maximum lithium ion concentration on all of its boundaries. The 

thickness of the specimen plate is negligible compared with the boundary length. 

Therefore, plane stress assumption is utilized in order to simplify the numerical 

simulations. The square plate is uniformly discretised by 100 100  particles. 

Geometrical and material information are summarized in Table 6.1. 
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Figure 6.1. Pre-cracked square electrode plate specimen 

Table 6.1. Geometrical and material parameters in numerical simulations 

Description Parameter Value unit 

Length of the specimen L  1 μm 

Elastic constant of silicon 
SiE   80 GPa 

Elastic constant of amorphous Li15Si4 
15 4Li SiE   41 GPa 

Poisson's ratio of silicon 
Siν   0.22 N/A 

Poisson’s ratio of silicon 
15 4Li Siν   0.24 N/A 

Partial molar volume Ω   -68.5 10   3 -1m mol  

Molecular mobility M   500 2 -1 -1m J s  

Boltzmann constant 
Bk   -231.38 10    -1J K   

Absolute temperature T   300 K   

Avogadro's constant 
AN   236.02 10   -1mol   

Critical strain for silicon 
c_Sis   0.04 N/A 

Critical strain for amorphous Li15Si4 
15 4c_Li Sis   0.035 N/A 

Maximum concentration 
maxC   41.18 10    -3mol m   

Although the Poisson’s ratio of amorphous Si and lithiated Si are 0.22 and 0.24 

respectively, it has to be strictly set as 1/3 in the following simulations due to the 

limitation of two-dimensional bond-based peridynamics [31]. In this study, entire 



CHAPTER 6: DIFFUSION INDUCED FRACTURE 

 

96 

 

 

solution process of coupled peridynamic equation of motion is summarised by a 

flow chart as shown in Fig. 6.2. 

 

Figure 6.2. Flow chart of solution process 
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6.5 Coupled analysis for a single crack 

In this case study, an initial crack, which has a length equivalent to 20% of the 

length of the specimen plate, lies horizontally in the central region. Initial damage is 

shown in Fig. 6.3a. The whole specimen plate is regarded as pure Si plate during 

charging process. As the lithiation progresses, the boundary region of the plate 

expands first (Fig. 6.3b and Fig. 6.3c). Due to the deformation, the boundary region 

is subjected to compression loading and then the centre region is subjected to tension 

loading. Since crack is located at the centre of the plate, the stress concentrates at the 

two crack tip regions and the maximum tension stress reached around 420MPa (Fig. 

6.3.d). According to Eq. 6.3, the high pressure gradient at the crack tip regions is the 

main motivation of lithium ion enrichment, and therefore “two dots” can be 

observed in Fig. 6.3e which represents higher concentration around crack tip area. 

(a) (b) 

(c)  (d) 
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 (e) 

Figure 6.3. Results of electrode plate with stationary crack: (a) Initial damage (b) 

Displacement in x direction (c) Displacement in y direction (d) Hydrostatic stress (e) 

Lithium ion concentration 

The electrode material in this simulation is not strong enough to withstand high 

hydrostatic stress (420MPa). Therefore the crack should propagate to release the 

accumulated energy. As a result, strain energy release rate will decrease and crack 

surface energy will increase. In PD, according to Eq. (3.7) and Eq. (3.8) in chapter 3, 

the crack growth is reflected on large amount of bond breakage. The critical stretch 

for electrode material is 0.04 (Table 6.1). Once the bond stretch exceeds this value, it 

should break and then crack will propagate. The high lithium concentration region at 

the crack tips is moving as the crack propagates (Fig. 6.4). 

 (a)   (b) 
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 (c)  (d) 

 (e) (f) 

Figure 6.4. Results of electrode plate without considering material phase change: (a) 

Initial damage (b) Damage after deformation (c) Displacement in x direction (d) 

Displacement in y direction (e) Hydrostatic stress (f) Lithium ion concentration 

By considering the material phase change, the elastic modulus of the material 

particle drops from 80 GPa to 41 GPa after lithiation. The critical strain of material 

particle drops from 0.04 to 0.035. Therefore, material particle is “softened” after 

lithiation. Hence, the damage and hydrostatic pressure results are provided in Fig. 

6.5. 
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(a) (b) 

(c) (d) 

(e) 

Figure 6.5. Result of electrode plate by considering material phase change: (a) 

Initial damage (b) Damage after deformation (c) Hydrostatic stress (d) Lithium ion 

concentration (e) Damage after deformation in the literature[71] 

Results provided in Figs. 6.5 are the dynamic results of a single crack propagation 

by considering material phase change. During lithiation progresses, the amorphous 

silicon will transformed into fully lithiated silicon. However, by comparing the 
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results in the case without material phase change, the crack length after lithiation 

process is shorter than the case that does not consider the material phase change 

during the same lithiation period. Hence, the speed of crack propagation is 

dramatically reduced as shown in Fig. 6.5b. Since the crack tips are far from regions 

with high lithium ion concentration, the lithium ion concentration on crack tips is 

not as clear as Fig. 6.4f. By considering the material phase change, the hydrostatic 

stress around crack tip drops from 1.1GPa in Fig. 6.4e to 0.5GPa in Fig. 6.5d. 

Therefore, even though the critical bond stretch drops, the structure is stronger to 

withstand higher loading by considering the factor of material phase change. Fig. 

6.5e shows the crack propagation in the literature[71]. However, Zuo and Zhao have 

applied a different damage scheme. Red colour refers to undamaged situation while 

bule colour refers to fully damaged situation. Results of crack propagation with 

considering material phase change are matched well with each other. 

Single crack cases can not describe the influence of material phase change and 

lithium ion concentration on crack propagation in detail. More complex 

configurations are provided in following sections to illustrate this phenomenon. 

6.6 Coupled analysis for multiple crack cases 

Due to unexpected factors such as manufacturing quality and damage during 

transportation, electrodes may have multiple initial damages. Hence, single crack 

may not be sufficient for describing the conditions of damage in a battery electrode. 

In these case studies, electrode plates with multiple cracks with different orientation 

are investigated. 

6.6.1 Twin cracks 

A pair of cracks which are parallel to each other lie horizontally at the center of a 

plate as shown in Fig. 6.6. These cracks have the same length equivalent to 10% of 

the length of the specimen plate. Distance between these two cracks is 5% of the 
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plate width. As lithiation progresses, the hydrostatic stress and lithium ion 

concentration increase at the crack tips. Once peridynamic bonds reach the critical 

stretch value, they will break and crack will propagate. Similar to single crack case, 

the cases with and without material phase change are under investigation in this 

section. 

For the analysis without considering the material phase change, the material of 

specimen plate is strictly set as Si. Hence, the damage evolution is not affected by 

the decrease of critical bond stretch by material phase change. In this case, the crack 

formation and propagation depends on the stretch of each material bond. In other 

words, it also depends on the hydrostatic stress. The results of parallel twin cracks 

can be seen in Figs. 6.6. Hydrostatic stress rises both at crack tips and region 

between twin cracks as shown in Fig. 6.6c. Since the distance between these cracks 

is relatively small, material particles in this region have less horizon members with 

respect to other particles inside the plate. Therefore, the cracks prefer to merge into 

one large crack first as shown in Fig. 6.6b and the propagation at crack tips is not 

obvious. Once the cracks merge into one large crack, the hydrostatic stress between 

the twin cracks releases. The hydrostatic stress at the outer crack tip regions is 

relatively larger, and the newly formed crack starts to propagate at these regions. 

According to Eq. (6.2), in low concentration region, hydrostatic stress is the major 

motivation in the increase of lithium ion concentration. Hence, the lithium ion 

concentration on crack tips is relatively higher than that on the surrounding region as 

shown in Fig. 6.6d. 

(a)    (b) 
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(c)  (d) 

Figure 6.6. Result of plate with twin parallel cracks by considering material phase 

change: (a) Initial damage (b) Damage after deformation (c) Hydrostatic stress (d) 

Lithium ion concentration 

For the analysis by considering material phase change, material of the specimen 

plate will be transformed from Si to lithiated Si after charging. Hence, hydrostatic 

pressure is not the only criterion in the prediction of crack propagation, but the 

reduction of critical stretch can also lead to fracture and damage inside the plate. As 

shown in Fig. 6.7b, upper crack propagates in upward direction and lower crack 

propagates in downward direction. Besides, according to Fig. 6.6b, high hydrostatic 

stress also exists for particles between the twin cracks, which means two cracks have 

a potential to merge into one large crack. 

(a)  (b) 
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(c) (d) 

(e) 

 

Figure 6.7. Result of plate with twin parallel cracks by considering material phase 

change: (a) Initial damage (b) Damage after deformation (c) Lithium ion 

concentration (d) Hydrostatic stress (e) Damage after deformation in the 

literature[71] 

Twin cracks can also be arranged in other styles. In the following simulations, two 

cracks are arranged in right angle or oblique angle as shown in Fig 6.8a and Fig 6.9a. 

The size of the upper crack is 12% of the plate length and the size of the vertical 

crack is 10% of the plate length. The distance between these cracks is 10% of the 

plate length. Since the central region of the plate lies between these cracks, particles 

on central region can not build enough interactions with horizon members with 

respect to material particle in other regions. Hence, hydrostatic stress will 

concentrate at this region. 
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For cases without considering material phase change, crack propagation depends on 

high hydrostatic stress only. Since one of the crack tip of lower crack lies near 

central region, the hydrostatic stress will increase even higher. Therefore, cracks 

prefer to merge into a larger crack as shown in Fig. 6.8b and Fig. 6.9b. Then the 

hydrostatic stress in central plate releases. The newly formed crack propagates from 

outer crack tips toward high hydrostatic stress regions as shown in Fig. 6.8c and Fig. 

6.9c. Lithium ion concentration at outer crack tip regions is relative larger than 

surrounding region as shown in Fig. 6.8d and Fig. 6.9d. Crack repulsion shown in 

Fig. 6.8b has a good agreement with the result in literature as shown in Fig. 6.8e. 

(a) (b) 

(c) (d) 

Figure 6.8. Results of plate with twin perpendicular cracks without considering 

material phase change: (a) Initial damage (b) Damage after deformation (c) 

Hydrostatic stress (d) Lithium ion concentration 
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(a) (b) 

(c) (d) 

Figure 6.9. Results of plate with twin perpendicular cracks without considering 

material phase change: (a) Initial damage (b) Damage after deformation (c) 

Hydrostatic stress (d) Lithium ion concentration 

For the analysis by considering material phase change, the structural stiffness will be 

affected by material phase change. Since the lithium ion concentration at the crack 

tip regions is higher than surround regions, the critical strain value in these regions 

will drop from 0.04 to 0.035 as material changing from Si to lithiated Si. Even 

though central plate has largest hydrostatic stress, the crack prefers to propagate at 

crack tip regions since material bonds reach critical strain. Hence, the damage after 

deformation can be shown as Fig. 6.10b and Fig. 6.11b. Crack propagates from outer 

crack tips toward high hydrostatic stress regions. At the same time, cracks will also 

propagate at central regions of the plate. The twin cracks tries to merge each other 

into one large crack. Regions with high hydrostatic stress have higher lithium ion 

concentration as compared with surrounding regions as shown in Fig. 6.10d and Fig. 
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6.11d. Similar with the result in the literature [71], the PD method can also capture 

the same trend in crack merge and propagation as shown in Fig. 6.10e and Fig. 6.11e. 

(a) (b) 

 (c)  (d) 

 (e) 

Figure 6.10. Results for plate with twin perpendicular cracks by considering 

material phase change: (a) Initial damage (b) Damage after deformation (c) 

Hydrostatic stress (d) Lithium ion concentration (e) Damage after deformation in the 

literature[71] 
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(a) (b) 

(c) (d) 

(e) 

Figure 6.11. Results for plate with twin oblique cracks plate by considering material 

phase change: (a) Initial damage (b) Damage after deformation (c) Hydrostatic stress 

(d) Lithium ion concentration (e) Damage after deformation in the literature[71] 
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6.6.2 Multiple randomly arranged crack cases 

Cracks in a battery electrode may have arbitrary arrangements in terms of crack 

number and crack orientations. In this study, triple horizontal crack case, six 

disorder crack case and eleven disorder crack case are under investigation. 

6.6.2.1 Triple horizontal crack analysis 

Cracks with the same length equivalent to 10% of the plate length located at the 

central plate region are shown in Fig. 6.12a. All of the cracks are horizontally 

oriented with spaces of 5% plate length in both horizontal and vertical directions. 

Since cracks are located close to each other, particles between cracks have fewer 

interactions with neighbouring particles within their horizons. Therefore, the 

stiffness of these particles are relatively weaker. Central crack propagates towards to 

neighbouring cracks from both crack tips and merges all three cracks into one crack 

as shown in Fig. 6.12b. It has make a good agreement with the result provided in the 

literature [71]. Then the propagation of outer crack tips continue horizontally along 

its initial crack path. High hydrostatic stresses exist at outer crack tips and the 

pressure at inner crack tips reduce since cracks already merge with each other as 

shown in Fig. 6.12c. Damage evolution of the plate with and without considering 

material phase change are similar with each other for this case as shown in Figs. 

6.13. 

(a) (b) 
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(c) (d) 

(e) 

Figure 6.12. Results of plate with triple cracks electrode by considering material 

phase change: (a) Initial damage (b) Damage after deformation (c) Hydrostatic stress 

(d) Lithium ion concentration (e) Damage after deformation in the literature[71] 

(a) (b) 
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(c) (d) 

Figure 6.13. Results of plate with triple cracks electrode plate without considering 

material phase change: (a) Initial damage (b) Damage after deformation (c) 

Hydrostatic stress (d) Lithium ion concentration 

6.6.2.2 Disordered crack analysis 

After certain amount cycling process, lithium ion battery electrodes may accumulate 

large amount of cracks. The shape and propagation direction of these cracks depend 

on the design of the battery electrode plate [105]. In order to simulate the damage in 

electrode plate after several cycling process, coupled field diffusion on battery 

electrode with multiple random cracks are under investigation in this section. Since 

the thickness of specimen plate is much smaller than its length, plane stress 

assumption is applied as in previous cases to increase calculation efficiency.  

Two different battery plate specimens with multiple cracks (six cracks and eleven 

cracks) were considered to represent two different damage situations after several 

battery cycling processes. Each crack with 10% of specimen length is randomly 

positioned inside the plate. As lithium ion diffuses into crack tip regions, hydrostatic 

stress increases dramatically at the crack tips. Hence, some cracks merged into a 

large crack from inner crack tips where high hydrostatic stress exist. After cracks 

merge into larger cracks, local stress releases. Hence, some cracks which is 

surrounded by these larger cracks will not propagate. The newly formed larger 

cracks are “preventing” the small cracks to propagate. On the other hand, outer crack 
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tips will not be affected by other cracks and propagate toward high hydrostatic stress 

region. 

By considering material phase change, crack propagation may not be always 

different from that without considering material phase change. For crack tips close 

to material phase boundary, the lithium ion concentration close to crack tip region is 

relatively higher than surrounding regions according to Eq. (6.2). Then, Si will 

transform into lithiated Si and the critical stretch drops. Cracks will also propagate 

from outer crack tips where material bonds reach critical value. 

(a) (b) 

(c) (d) 

Figure 6.14. Results of plate with six cracks without considering material phase 

change: (a) Initial damage (b) Damage after deformation (c) Hydrostatic stress (d) 

Lithium ion concentration 
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(a) (b) 

(c) (d) 

Figure 6.15. Results of plate with six cracks by considering material phase change: 

(a) Initial damage (b) Damage after deformation (c) Hydrostatic stress (d) Lithium 

ion concentration 

(a) (b) 
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(c) (d) 

Figure 6.16. Results of plate with eleven cracks without considering material phase 

change: (a) Initial damage (b) Damage after deformation (c) Hydrostatic stress (d) 

lithium ion concentration 

(a) (b) 

(c) (d) 

Figure 6.17. Results of plate with eleven cracks by considering material phase 

change: (a) Initial damage (b) Damage after deformation (c) Hydrostatic stress (d) 

Lithium ion concentration 
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6.7 Summary 

The crack evolution inside the pre-damaged anode plate of lithium ion battery 

during one single charging process is provided in this chapter. Several cases in 

considering the material phase change during lithiation are investigated. In this study, 

the nonlocal numerical simulation method, peridynamics and the method for solving 

PDE, PDO, are introduced to the fracture analysis.  

In PD, crack propagation depends on the condition of bond stretch. As discussed in 

chapter 3, once a bond exceeds the critical value, the bond will break and can not re-

build the interaction. Damage is the percentage of “broken” bonds associated with a 

material particle. For cases without considering material phase change, crack 

propagates along high hydrostatic stress regions. However, for cases by considering 

material phase change, the hydrostatic stress is not the only criterion in damage 

evolution. Since Si transforms into lithiated Si during charging process, the critical 

stretch drops from 0.04 to 0.035. Hence, the material bonds of lithiated Si may reach 

critical value earlier as compared with material bonds of pure Si in high hydrostatic 

stress region. Therefore, for single material cases, cracks prefer to merge themselves 

first and then propagate from outer crack tips. For multi-material cases, crack 

merging and propagation at outer crack tips happen synchronously, which may lead 

to a different damage situation of the electrode plate. For multiple-cracks situation, 

since there is a stress reduction after merging of cracks, some small cracks that are 

surrounded by merged crack may not propagate.  

Part of the electrode plate models in this study is provided by Zuo and Zhao in [71]. 

They applied the phase filed model to simulate crack evolution during lithiation 

process. Results of the cases by considering the factor of material phase change 

provided in this chapter reach a good agreement as compared with results produced 

by Zuo and Zhao.  

Overall, PD provides a good estimation of damage evolution in lithium ion battery 

plates. It is possible to obtain information about crack propagation without 
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remeshing process and using sophisticated damage criteria. By applying this method, 

we can have a better understanding on failure mechanisms in lithium ion batteries. 
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7 FRACTURE ANALYSIS OF THREE DIMENSIONAL 

ELECTRODE STRUCTURE 

7.1 Introduction 

In order to avoid the fracture and failure of lithium ion batteries, some special 

structures, such as nano-sphere or nanowires, are applied on the surface of the 

electrode plate. However, these nanostructures may eventually be shattered and 

crushed after many battery cycling processes. In this chapter, the fracture evolution 

on the nanostructures of battery electrodes is under investigation. The background 

information about nanostructure of battery electrodes are provided in section 7.2. 

The mechanics of diffusion induced fracture and the governing equations to describe 

this phenomenon are provided in section 7.3. Fracture analyses of spherical energy 

storage particle and cylindrical nanowire are given in section 7.4 and 7.5, 

respectively. The discussion of the results is provided in section 7.6. Chapter 

summary is given in section 7.7. 

7.2 Background 

Performance of lithium-ion batteries mainly depends on material properties of anode, 

cathode and electrolyte. The carbon group elements: graphite (C), Si, germanium 

(Ge), tin (Sn) and their alloys, can be used as anode material of lithium ion batteries 

[106], [107]. In many commercial grade lithium-ion batteries, graphitic carbon is the 

main component of the anode material due to its low expansion induced by lithiation 

during battery charging [106]. However, the major limitation of the graphite carbon 

is its low electric capacity (372 mAhg-1) by storing the lithium ions inside graphite 

sheets as (LiC6) [62], [96], [97], which can not satisfy the demand of high electric 

capacity for marine batteries. Si and Ge, on the other hand, have relatively high 

theoretical capacities as compared to graphite carbon (3579 mAhg-1 and 1625 mAhg-1) 

[108], which seems to be the suitable candidates for anode materials in lithium-ion 
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batteries. However, both Si anode and Ge anode experience large volumetric change 

during battery cycling. Si anode is observed to have large volume expansion up to 

around 400% during charging process [66], [68]. Similar to Si anode, Ge anode also 

expands at around 370% in volume during lithitaion process [109]. Frequent cycling 

of the lithium-ion battery may lead to stress misdistribution, degradation and 

delamination of the battery components. It may lead to failure, or even pulverization, 

of structural integrity of battery anode. 

Many efforts have been conducted to increase the electric capacity and avoid the 

defection of the electrode of lithium-ion batteries. Winter et al. pointed out that some 

metals, such as aluminum (Al), tin (Sn) and antimony (Sb) can store more lithium-

ion than graphite carbon by forming alloys with lithium ion [106]. However, the 

newly formed alloyed anode will experience 500% volumetric expansion, which is 

the major barrier in the application of anode material of rechargeable lithium-ion 

battery. Gao et al. suggested a carbon nanotubes as anode material. Carbon nanotube 

is a tubular structure of graphite sheet with high conductivity, high tensile strength, 

high rigidity and low density. It increases the electric capacity up to around 600 

mAhg-1 without damage or pulverization. [110] Metal or their alloys can also be 

added into the nanotube in the composite form. Hence, the advantage of the high 

electric capacity in metal alloys and low volumetric change in graphite carbon can 

be applied in anode materials [111], [112]. However, carbon nanotubes experience 

lithium-ion capacity loss during cycling and linear voltage drop during discharging 

processes [106]. 

As compared with graphite carbon or carbon nanotube anode, Si shows superior 

performance in electrical capacity but suffer from pulverization due to large 

volumetric change during battery cycling. The fracture mechanic of Si anode is 

under frequent investigation in recent years. Liu et al. performed a thin Si film 

model to investigate the lithiation induced tensile stress and surface cracking by 

analytical method and FEM [69]. A compression-traction transition zone is observed 

which lies along the interface of electrode and electrolyte. The transition zone 
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mainly depends on the large volumetric change, plastic deformation and slow 

charging rate. Crack formation and propagation is led by the location of transition 

zone. The magnitude and profiles of tensile stress at the surface of lithiated Si zone 

depends on volumetric misfit strain, yield stress and modulus of unlithiated Si. Ryu 

et al. found that the large volume change during normal cycling process is always 

accompanied with pressure gradient [68]. High hydrostatic stress will affect the 

lithium-ion diffusion and fracture propagation in anode of the battery. Grantab and 

Shenoy provided a detailed investigation about pressure gradient factor on crack 

propagation in Si nanowires [9]. The cohesive zone method is applied to model 

fracture mechanics in Si nanowires. Since localized stress around the crack tip is 

higher than surrounding nanowire surface region, large amount of lithium-ion rush 

into crack tip region which causes relatively large volume expansion. Therefore, the 

hydrostatic stress around crack tip reduces. Zuo and Zhao used phase field method 

to study the stress evolution and crack propagation [71]. Several damaged anode 

models with different crack number and different crack orientations were considered 

to illustrate fracture mechanics in the battery anode. The pressure gradient depends 

on elastic modulus, partial molar volume, concentration, Poisson’s ratio and the 

localized lithium-ion concentration. Gao and Zhou, on the other hand, applied the 

FEM and J-integral method to study the softening effect during lithiation process 

[72]. They also captured the high lithium-ion concentration at crack tip regions 

during charging process which lead to relaxation of hydrostatic stress in later 

diffusion process. The fracture evolution in Si nanowires also depends on the 

geometry of the structure. Ryu et al. also conclude that for Si nanowires with 

diameter smaller than 300nm will not fail during battery cycling, even for pre-

damaged nanowires [68]. Due to large pressure gradient and large volume expansion, 

lithium ions can diffuse into Si nanowires rapidly and minor stress evolves during 

this process. 

In this chapter, a three-dimensional cylindrical Si anode is selected as the 

configuration of the numerical simulation. The PD, as an alternative approach to 

FEM, is applied to investigate the fracture mechanics of the cylindrical anode of the 
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lithium-ion battery. The factors of pressure gradient and material phase change 

during lithiation (from Si to LixSi) are taken into consideration. Coupled field 

equations are applied to describe the charging process with the help of PDO. 

7.3 Coupled diffusion-mechanical analysis formulation 

Fick’s Second Law indicates the basic principle of ion diffusion [103]. Since the 

anode material is Si, large volume expansion happens as lithium ions diffuse into the 

anode. Hence, the diffusion induced stress during battery cycling should be taken 

into account in Fick’s Second Law. The strain component,
E

ij , by considering the 

influence of lithium-ion diffusion can be expressed as [9], [71]: 

 E

ij ij avg ijC      (7.1) 

where
E

ij refers to mechanical strain component as compared with total strain, ij . 

 represents coefficient of diffusive expansion and Cavg represents current average 

concentration value of material points i and j. ij  is the Kronecker Delta. Recalling 

the three-dimensional stress-strain constitutive equation: 
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and substituting Eq. (7.2) into Eq. (7.1), the coupled field normal stresses can be 

expressed as: 
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where C is the current value of normalized lithium-ion concentration while Cmax is 

the maximum value of lithium-ion concentration. The total normal strain in both 

three dimensions can be expressed in terms of displacement as: 
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Local stresses rise along with lithium-ion diffusion at regions with high geometrical 

singularity. High pressure-gradients lead large amount of lithium-ion movement into 

these regions which increases the lithium ion concentration. As a result, stress 

releases as volume expands. Hence, the general Fick’s Second Law should be 

reconstructed in consideration of pressure-gradient as: 
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 (7.5) 

where M is molecular mobility, kB is Boltzmann constant, T is absolute temperature, 

NA is Avogadro’s constant and  is the hydrostatic stress. 

As described in chapter 6, anode will experience a material phase change during 

charging process. Zhang et al. pointed out that Si has different lithiated stages during 

charging process [102]. In the early stages, since lithium-ion concentration is low, Si 

will transform into partial LixSi. As the lithium-ion concentration increases, the 

partially lithiated Si will further transform into Li15Si4. Moreover, since some 



CHAPTER 7: FRACTURE ANALYSIS OF 3D ELECTRODE STRUCTURE 

 

122 

 

 

material properties of lithiated Si, such as elastic modulus and fracture toughness, 

are lower as compared with pure Si, the lithiation process can also be regarded as a 

material softening process [104]. However, the size of partially lithiated Si region in 

battery anode is too small as compared with the anode geometry [102]. Therefore, in 

this study, only fully lithiated Si is considered 

7.4 Fracture analysis of spherical energy storage particle 

In this study, a spherical structure is selected to represent the energy storage particle 

with pre-existing penny shape crack. The materials of this particle, including pure Si 

and lithiated Si, are regarded as brittle material. Besides, the concentration values 

are normalized by maximum concentration as shown in Table 7.1. Before charging, 

the anode material remains pure Si. During charging process, maximum 

concentration of lithium ions will be subjected on all of the outer surface. Since the 

particle structure is free from any displacement constraints, it will experience a free 

expansion during the charging process. For three–dimensional bond-based PD, the 

Poisson’s ratio is forced to be 1/4. Even though the real Poisson’s ratio is provided 

in Tab. 7.1 below, the Poisson’s ratio for both lithiated Si and pure Si in this study 

are kept as 1/4. For the cases which are considered in this study, the Poisson’s ratio 

has limited influence on the fracture pattern. However, the actual Poisson’s ratio can 

be applied by using ordinary state based peridynamic formulation for the equation of 

motion [113]. The total number of material points that applied in spherical model is 

65752. Since the geometry of spherical energy storage particle is symmetric and the 

penny shape crack is horizontally oriented, the sample planes are selected along the 

longitude and latitude of the sphere as shown in red and black respectively in Fig. 

7.1 to capture the lithium ion concentration and mechanical deformation. 
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Figure 7.1. Spherical energy storage particle with pre-existing penny shape crack 

Table 7.1. Geometrical parameters and material properties of energy storage models 

Description Parameter Value unit 

Longitudinal length of cylindrical nanowire L  0.5 μm 

Diameter of cross section area of cylindrical 

nanowire 
L  0.5 μm 

Radius of spherical particle R 0.5 μm 

Elastic constant of silicon SiE   80 GPa 

Elastic constant of amorphous Li15Si4 
15 4Li SiE   41 GPa 

Poisson's ratio of silicon Siν   0.22 N/A 

Poisson’s ratio of silicon 
15 4Li Siν   0.24 N/A 

Partial molar volume Ω   -68.5 10   3 -1m mol  

Molecular mobility M   500 2 -1 -1m J s  

Boltzmann constant Bk   -231.38 10    -1J K   

Absolute temperature T   300 K   

Avogadro's constant AN   236.02 10   -1mol   

Critical strain for silicon c_Sis   0.04 N/A 

Critical strain for amorphous Li15Si4 
15 4c_Li Sis   0.035 N/A 

Maximum concentration maxC   41.18 10    -3mol m   

A penny shape crack is located in the central region of the anode structure. The 

diameter of penny shape crack is half of the diameter of anode and the crack is 

horizontally oriented as shown in Fig. 7.1. As lithiation progresses, material at the 

anode surface region will become Li15Si4 first. Hence, surface region will experience 

relatively large deformation while the central region remains undeformed. Due to 



CHAPTER 7: FRACTURE ANALYSIS OF 3D ELECTRODE STRUCTURE 

 

124 

 

 

this mechanical deformation, compressive stresses emerge on the particle surface 

regions, while tension stresses form in the particle central region especially at crack 

edge regions. Hence, according to Eq. (7.5), high hydrostatic stresses will affect the 

lithium ion distribution inside the spherical structure. 

(a) (b) 

(c) (e) 

Figure 7.2. Results for penny shape cracked anode in x-z mid-plane: (a) Initial 

damage (b) Damage after deformation (c) Hydrostatic stress (Pa) (d) Lithium ion 

concentration 
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(a) (b) 

(c) (d) 

Figure 7.3. Results for penny shape cracked anode in x-y mid-plane (crack surface 

plane): (a) Initial damage (b) Damage after deformation (c) Hydrostatic stress (Pa) 

(d) Lithium ion concentration 

The results of lithium ion diffusion and diffusion induced deformation during 

charging process are shown in Fig. 7.2 and Fig. 7.3. In order to have a clear 

understanding of the lithiation induced damage in three-dimensional structure, 

results are shown in both x-z plane and x-y plane (crack surface plane). Due to the 

heterogeneous distribution of deformations inside the spherical structure, high 

hydrostatic stresses rise at the edge of penny shape crack where high geometrical 

singularity lies as shown in Fig. 7.2c and Fig. 7.3c. As lithium ions keep diffusing 

into the spherical structure, the lithium ion concentration at the crack edge regions 

starts to rise as compared with surrounding regions. However, since the penny shape 

crack just starts to propagate as shown in Fig. 7.2b and Fig. 7.3b, the change of 

lithium-ion concentration may not be clear from the concentration plot. The 
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hydrostatic stress value around crack edge region is around 1.5GPa, which leads to 

the bond stretch far beyond the critical stress [114]. Hence the penny shape crack 

will continue to propagate unit the bond at the crack tip regions reduce below the 

critical stretch value shown in Table 7.1. 

7.5 Fracture analysis of cylindrical silicon nanowire 

As discussed in the literature [9], [68], special Si structures, such as Si nanowire, are 

produced in order to avoid the fracture formation and propagation of the battery 

anode. Hence, in this section, several different pre-damaged models are provided to 

investigate the fracture evolution in the Si nanowire. The Si nanowire is represented 

by a cylindrical shape structure. However, different from the spherical model in 

section 7.4, the cylindrical structure is not symmetric in all orientations. Hence, the 

fracture analysis of cases with different crack orientations are separately discussed in 

the following sections. The total number of material points in cylindrical Si 

nanowire mode is 98800. 

7.5.1 Single penny shape crack along horizontal axis 

A cylindrical shape structure with diameter L as shown in Fig. 7.4 is selected to 

represent a Si nanowire. A penny shape crack (marked as shadow lines in Fig. 6) 

with L/4 in diameter is horizontally oriented at the center of the cylindrical structure. 

Material properties of the cylindrical anode is the same as the spherical model in 

Table 7.1. Before charging the battery, the cylindrical material is pure amorphous Si. 

During charging process, lithium ion with maximum concentration is applied to the 

outer surface of the cylinder structure. As a result, the material properties will 

change and the cylindrical structure will deform. Similar to spherical model, the 

results are shown in two plane views in order to capture the detailed fracture 

information. 
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Figure 7.4. Cylindrical anode structure with pre-existing horizontal crack 

(a) (b) 

(c) (d) 

Figure 7.5. Result plots of a cylinder with a single horizontal crack in x-z mid-plane: 

(a) Initial damage (b) Damage after deformation (c) Hydrostatic stress (Pa) (d) 

Lithium ion concentration 
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(a) (b) 

(c) (d) 

Figure 7.6. Result plots of a cylinder with a single horizontal crack in x-y mid plane 

(crack surface plane): (a) Initial damage (b) Damage after deformation (c) 

Hydrostatic stress (Pa) (d) Lithium ion concentration 

Due to material phase change during charging process, material points on the surface 

regions will expand as amorphous Si turns into lithiated Si while material points in 

the central regions remain undeformed. Therefore, the hydrostatic stress in outer 

surface is shown as compression stress which is marked as blue in Fig. 7.5c and Fig. 

7.6c. For hydrostatic stress in inner cylinder is shown as tensile stress which is 

marked as red, especially at the crack tip region. In this case, the crack propagation 

is evident. The penny shape crack edge lies close to the material phase boundary as 

shown Fig. 7.5b and Fig. 7.6b. Hence, according to Eq. (7.5), lithium ion 

concentration of crack edge regions is relatively higher than surrounding regions as 

shown in Fig. 7.5d and Fig. 7.6d. Since the hydrostatic stress at the crack tip region 

is around 2.3GPa, the bond stretch calculated by relative position of associated 
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material points will exceed the critical value. Hence, the crack propagation will not 

stop until the stretch value of the bonds at this crack edge regions reduces below the 

critical value shown in Table 7.1. 

7.5.2 Single penny shape crack along vertical axis 

Different from spherical energy storage particle model as described above, the 

cylindrical Si nanowire model may have different fracture results in radial direction 

and longitudinal direction. Hence, in this case study, the penny shape crack along 

longitudinal (z-direction) is under investigation. A penny shape crack with L/4 in 

diameter is located at the central position of the cylindrical model as shown in Fig. 

7.7. However, different from the case study in section 7.5.1, the crack is vertically 

oriented (or along the x-z mid-plane). Before charging the lithium ion battery, the 

cylinder is composed of pure amorphous Si and the lithium ion concentration is zero 

throughout the whole structure. During charging process, lithium ion concentration 

with maximum value is applied to all the outer surfaces of the cylinder. As the 

lithium ion concentration increases, pure Si will transform into fully lithiated Si, 

which leads to volume expansion. Stress and damage induced by this volume 

expansion are shown in Fig. 7.8 and Fig. 7.9. 

 

Figure 7.7. Cylindrical anode structure with a pre-existing vertical crack 
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(a) (b) 

(c) (d) 

Figure 7.8. Result plots of a cylinder with a single vertical crack in y-z mid-plane: (a) 

Initial damage (b) Damage after deformation (c) Hydrostatic stress (Pa) (d) Lithium 

ion concentration 

(a) (b) 
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(c) (d) 

Figure 7.9. Result plots of a cylinder with a single vertical crack in x-y mid plane: (a) 

Initial damage (b) Damage after deformation (c) Hydrostatic stress (Pa) (d) Lithium 

ion concentration 

The results were plotted in x-z mid-plane view (Fig. 7.8) and x-y mid-plane view 

(Fig. 7.9). During the charging process, the material points in outer surface regions 

get lithiated first and expand, while material points in the central region remain 

undeformed. As a result, a deformation gradient from outer surface to central 

cylinder is produced and hydrostatic stresses increase especially at crack edge 

regions according to Eq. (3.11~3.18). In Fig. 7.8c and Fig. 7.9c, compression stress 

appears at the outer surface region, which is represented as blue color in the figure. 

Tensile stresses exist at the central cylinder region especially at crack edge regions 

where geometrical singularity locates, which is represented as red color in the figure. 

As crack propagates, the crack will open which causes relatively high tension stress 

near crack surface. Since the crack propagates close to material phase boundary, the 

lithium ion concentration will be relatively higher than surrounding regions 

according to Eq. (7.5) as shown in Fig. 7.8d and Fig. 7.9d. 

7.5.3 Twin penny shape cracks along horizontal axis 

The case studies in section 7.5.1 and 7.5.2 focused on the fracture analysis of single 

crack which lies on the symmetrical plane of the cylindrical structure. Hence, due to 

the symmetric geometry and loading, the penny shape crack propagates along the 

crack surface plane. However, in reality, the crack can locate at any position inside 



CHAPTER 7: FRACTURE ANALYSIS OF 3D ELECTRODE STRUCTURE 

 

132 

 

 

the battery electrode. Hence, in this case study, the Si cylinder with cracks which do 

not lie on the symmetric plane is under investigation. As shown in figure below, 

twin cracks are located in the central region with a diameter equals to L/4 and the 

distance between these cracks is also L/4. Both of the cracks are horizontally 

oriented. Before charging the battery, the cylindrical nanowire is composed of pure 

amorphous Si only. During charging process, lithium ion with maximum 

concentration is applied on all the outer surface of the cylinder. As a result, the 

material points on the surface get lithiated and expand while the material points in 

central region remain undeformed. The heterogeneous deformation lead to the 

increase of hydrostatic stress in regions with geometrical singularity and speed up 

the diffusion as shown in Fig. 7.11. 

 

Figure 7.10. Cylindrical anode structure with pre-existing twin horizontal cracks 

(a) (b) 
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(c) (d) 

Figure 7.11. Result plots of silicon cylinder with twin horizontal cracks in x-z mid-

plane: (a) Initial damage (b) Damage after deformation (c) Hydrostatic stress (Pa) (d) 

Lithium ion concentration 

By comparing with the case in section 7.5.1, the crack propagation is different. At 

initial charging process, both cracks propagate along the crack surface plane. 

However, as the charging process continues, the upper crack propagates upward 

from the edge and the lower crack propagates downward from the edge. These 

cracks repel from each other as shown in Fig. 7.11b. Due to the heterogeneous 

volume expansion inside the cylinder, a deformation gradient forms from surface of 

the cylinder to center of the cylinder. As a result, the hydrostatic stress increases 

especially at the crack edge regions according to Eq. (3.11~3.18). Since material 

points at the surface region experiences expansion during charging process, the 

material points located in central region will suffer from compression stress which is 

represented in Fig. 7.11c. The expansion of these material points introduces a 

tension stress for the material points in central region especially around the crack 

edge region as shown in Fig. 7.11c. Since the crack edge is closer to the material 

phase boundary, lithium ions will diffuse into regions around the crack edge with 

higher priority according to Eq. (7.5). Hence, the lithium ion concentration is 

relatively higher than surrounding regions as shown in Fig. 7.11d. 
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7.5.4 Twin penny shape cracks along vertical axis 

After the analysis of twin cracks along radial direction, the case with twin cracks 

along longitudinal direction is also considered. In this section, twin vertically 

oriented cracks are arranged at the center region of the Si cylinder as shown in Fig. 

7.12. The diameter of both cracks is L/4 and the distance between these cracks is 

also L/4. Before charging the battery, the Si cylinder is made of pure amorphous Si. 

During charging process, lithium ion with maximum concentration is applied on all 

the outer surfaces of the cylinder. Hence, the material particles on the outer surface 

region get lithiated and expand. Then, it will influences the lithium ion diffusion and 

hydrostatic stress inside the cylinder which is shown in Fig. 7.13. 

 

Figure 7.12. Cylindrical anode structure with pre-existing twin vertical cracks 

(a) (b) 
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(c) (d) 

Figure 7.13. Result plots of a cylinder with twin vertical cracks in x-z mid-plane: (a) 

Initial damage (b) Damage after deformation (c) Hydrostatic stress (Pa) (d) Lithium 

ion concentration 

Fig. 7.13a shows the initial damage in the view of x-z mid-plane. During early 

charging process, penny shape cracks propagate along their crack surfaces. However, 

as charging process continues, the left crack propagates towards left and the right 

crack propagates towards right. Generally, these cracks repel each other as shown in 

Fig. 7.13b. Heterogeneous volume expansion leads to the formation of deformation 

gradient from surface region to central region. Therefore, hydrostatic stress increases 

inside the cylinder according to Eq. (3.11~3.18). The heterogeneous expansion 

introduces lithiation bring compression stress on material points at cylinder’s surface 

region which is marked in blue as shown in Fig. 7.13c. As a consequence, the 

material points at central cylinder region suffers from the tension stress which is 

marked in red. Since crack edge reaches the material phase boundary, the lithium ion 

diffuses into material points at the crack edge region first. Hence, a relatively high 

lithium ion concentration at the crack edge region as compared with its surrounding 

region can be observed in Fig. 7.13d. 

7.6 Discussion 

From the results shown above, the lithiation can influence the fracture behaviour of 

the battery electrode. In the perspective of PD, crack propagation is calculated based 
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on the bond stretch which depends on the deformation of the structure. Hence, the 

crack propagation generally depends on deformation which is induced by lithiation 

during battery charging. Since the amorphous Si transforms into lithiated Si, the 

material properties also changes which leads to changes of critical bond stretch. The 

comparison of fracture analysis with and without material phase change is discussed 

in chapter 6 and the previous works [113], [115]. In this chapter, since the material 

phase change during charging process is also under consideration, the critical bond 

stretch is also influenced by the material properties. 

For some electrode structures with a symmetric geometry, the way of crack 

propagation is different by considering the position of the initial crack. If the initial 

cracks lie on the symmetric plane, cracks will propagate along the crack surface 

plane since the geometry and loading are symmetric. However, if the initial cracks 

does not lie on the symmetric plane, the newly formed cracks may not align with 

initial crack. In the twin cracks cases, the two dimensional penny shape cracks turn 

into three dimensional bowl shape cracks after charging the battery. This is because 

of the material softening phenomenon during lithation as described in [104]. Due to 

the increase of lithium ion concentration, amorphous Si at crack edge regions will be 

transformed into Li15Si4. As a consequence, the critical bond stretch reduces as 

shown in Table 7.1. Hence, the bonds at crack edge region reaches critical values 

earlier which leads the crack edge propagation towards high lithium ion 

concentration region. High hydrostatic stress exists between the twin cracks as 

shown in Fig. 7.11c and Fig. 7.13c and the bonds located in these regions may not 

reach critical value. However, high hydrostatic stress shows a potential to merge 

these two cracks into one larger crack as shown in Fig. 7.13b. 

7.7 Summary 

In this chapter, PD in conjunction with the three dimensional PDO approach are 

introduced as the numerical method in fracture mechanics of lithium ion batteries. 

Two models, spherical energy storage particle and cylindrical nanowire, with 
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different pre-existing cracks are considered. According to numerical results, the 

crack propagation is usually led by high hydrostatic stress which reflects on bond 

breakage in PD. Besides, the material phase change from amorphous Si to lithiated 

Si also influences the crack propagation. Since the model geometry and loading are 

symmetric, the direction of crack propagation also depends on the initial crack 

position. High hydrostatic stress also lies between the cracks in twin crack cases, 

which means twin cracks have a potential to merge into one larger crack. 

 

As a summary, PD has a capability for the estimation of three dimensional damage 

evolution in lithium ion battery electrodes. In PD, the damage formation and 

evolution can be simplified without remeshing or applying sophisticated damage 

criteria. By using peridynamics, we can have a better understanding of the failure 

mechanisms during the cycling operation of lithium ion batteries. 
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8 Conclusions 

8.1 Summary of peridynamic theory  

The PD provides an alternative method in the studies of solid mechanics especially 

the fracture analysis. Different from methods that are based on CCM, PD uses 

spatial integral equations to describe the motion of the material body. This brings a 

great advantage for the analysis of material structure with discontinuities such as 

cracks and kinks. Generally, in PD, material structure is uniformly discretised by 

finite amount of material points with certain amount of volume, instead of elements 

that are used in FEM. Material points can build up interactions with surrounding 

particles through bonds within the horizon. Based on this model, the damage 

definition can be reflected on “bond breakage”, i.e. the invalidation of bonds. For 

prototype microelastic brittle material, once the material loses the interaction with 

the member point within its horizon, damage or fracture occurs and the interactions 

can not recover by themselves. Therefore, without pre-defined crack propagation 

path or pre-defined cohesive zone element, damage can be automatically calculated 

during structural deformation. Moreover, the speed, direction and branching of the 

crack can also be captured easily.  

PD can also be applied in multi-field physics. In this thesis, the PD has shown its 

capability in describing the thermal conduction and ion diffusion. For more 

complicated systems, such as coupled thermomechanical deformation and lithiation 

induced fracture, PD also have a good estimation as discussed in chapters 5, 6 and 7. 

In these problems, we may encounter several PDEs with different orders. This may 

cause difficulties in numerical simulation especially around crack region and 

boundaries. By applying the PDO, these PDEs can be transformed into spatial 

integral equations. This can overcame the problem that PDEs do not have definition 

over discontinuous regions, such as cracks and boundaries.  
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Overall, PD is an alternative approach for the numerical simulation of marine battery 

electrodes. In this thesis, from pure mechanical deformation to fully coupled 

diffusion induced fracture, we can have a better understanding of the failure 

mechanisms during the cycling operation of marine batteries. It can contribute 

significantly to the design, manufacture and maintenance of battery in marine 

industry. 

8.2 Achievements against the objectives 

The main objective of this thesis is build up PD models and framework to 

investigate the fracture evolution in the marine batteries as presented in section 1.2. 

From two dimensional cases to three dimensional cases and from partially coupled 

problems to fully coupled problems, the researches gradually becomes complicated 

and more representative of the situations in real life. The major achievements of the 

thesis against the research objectives are listed below: 

 Based on PDO, the PDEs were transformed into spatial integral equations. 

Hence, the coupled field equations can be significantly simplified by these 

PD functions and they have been applied into the fracture analysis of SOFC 

and lithium-ion batteries in chapters 5, 6 and 7. 

 A two dimensional PD model for thermomechanical analysis of SOFC was 

introduced. Since the normal operational temperature of SOFC is very high, 

the influence of deformation on temperature is negligible. Hence, this model 

can be regarded as a partially coupled model. In order to validate the PD 

model, results generated by PD are compared with those obtained by FEM 

and they have excellent agreement in both displacement and hydrostatic 

fields. The fracture analysis of the SOFC plate is split into several cases 

according to the strength of interaction between electrode particles and 

electrolyte particles. For different interaction strengths, the position and 

speed of crack formation and evolution may be different. 
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 A two dimensional PD model for describing lithiation induced fracture in 

lithium ion battery electrode plates was developed. From single crack case to 

multiple randomly oriented cracks cases, several damage situations that may 

occur inside the electrode plates are numerically simulated. Cases that 

considered the material phase change during charging process are also 

compared with those without material phase change. As a result, the fracture 

evolution of these two situations may not always the same and It depends on 

both material properties and hydrostatic stress. 

 Two three dimensional PD models: spherical energy storage particle and 

cylindrical Si nanowire, were developed to represent the special energy 

storage structures embedded on the electrode surface. The single and twin 

penny shape cracks in different orientations are investigated. Moreover, the 

material phase change factor was also considered. Results shows the PD has 

a very good capabilities in three dimensional fully coupled fracture analysis. 

8.3 Gaps and recommended future work 

In this thesis, the electrode material in the simulations is regarded as isotropic elastic 

material for simplicity. However, some of the material properties of the electrode 

and electrolyte, such as elastic modulus and coefficient of expansion, may be 

influenced by the operating temperature and lithium ion concentration in reality. 

Besides, electrode and electrolyte may experience plastic deformation, especially at 

regions with high geometrical singularity such as cracks and boundaries. 

Since the SOFC electrode plate is a porous electrode plate, it just shows the fracture 

situation in current electrode layer. Since the geometry of neighbouring layers might 

not always be the same as the current electrode layer, it is necessary to take into 

account the influence of different layers on current electrode layer for more accurate 

fracture analysis. 
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In this thesis, the PD particularly refers to bond-based PD. As a special case of 

ordinary state-based PD, the Poisson’s ratio is strictly limited at 1/3 for two 

dimensional model and 1/4 for three dimensional model. Although it may not 

influence the fracture formation and evolution dramatically, it can cause difference 

in structural deformation and stress fields. Moreover, bond-based PD can not deal 

with problem with plastic deformation. As a result, the material of electrode has to 

assume to be elastic material. 

In consideration of these gaps in my study, some future research plan are list below: 

 Continue to study the PD especially the ordinary state-based PD and non-

ordinary state-based PD, so that we can use this theory to describe the plastic 

deformation. Moreover, more realistic material properties can be applied into 

the research which increase the accuracy of the numerical simulation. 

 Create a three dimensional PD model of SOFC. In this model, the structure of 

anode (Ni), cathode (LSM) and electrolyte (YSZ) are defined, so that a small 

SOFC unit is created. Material properties that depend on operating temperature 

should also be taken into consideration. Similar with the current study, the 

difference of material failure induced by different interaction strength between 

electrode and electrolyte particles should also be under investigation. 

 Continue to study the lithiation induced fracture in lithium ion batteries. Based 

on three dimensional cylindrical Si nanowire model, develop an axisymmetric 

model. Hence, the three-dimensional cylindrical model will be simplified into a 

two dimensional model, which can reduce the computation time significantly. 

On the other hand, try to optimise the coupled field equations and main 

parameters, such as normalisation of the equation. Therefore, the large 

difference on critical time step size between mechanical deformation and 

lithium ion diffusion can be overcome. 



CHAPTER 8: CONCLUSIONS 

 

142 

 

 

 Try to apply the PD into realistic engineering programs, especially in fracture 

analysis. Moreover, I need to seek more opportunities to make real fracture 

experiments to validate the PD and numerical simulations. 

8.4 Novelty and contribution to the field 

Traditional numerical simulation methods that are based on CCM, such as FEM, 

FVM and CZM, have applied a local interaction framework. Material structure is 

meshed by using elements and PDEs are applied to describe the motion of nodes on 

the elements. However, PDE does not have definition on non-continuous regions 

such as cracks and kinks, which brings limitations for fracture analysis. PD, on the 

other hand, has built up a framework by nonlocal interactions. Without meshing, 

material structure is discretised by finite number elements. The motion of material 

points are described by spatial integral equations. Interactions between material 

points are represented by bonds which have simplified damage definition. Hence, 

PD has advantages in fracture analysis with respect to classical methods. Within the 

framework of PD, the PDO is studied in detail. Based on nonlocal property of the 

framework, the PDEs can be transformed into spatial integral equations within the 

horizon. Therefore, the gradient of deformation, hydrostatic pressure, temperature 

and concentration can be directly represented by PD which make the numerical 

simulation more convenient and efficient. 

Many of efforts have been devoted to the fracture analysis of SOFC. However, the 

researches that concentrate on fracture analysis of SOFC can rarely be found in the 

literature. In this thesis, the PD model of two dimensional electrode plate is 

considered for fracture analysis of SOFC for the first time in the literature. Different 

from numerical analysis methods in CCM, damage formation and propagation 

depends on the relationship between bond stretch and critical bond stretch. Hence, 

the damage can be automatically captured without pre-defined crack propagation 

path or cohesive elements as described in the literature. As a result, the accuracy and 

efficiency of the numerical simulation have been improved by using PD which will 
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contribute to the design, manufacture, failure detection and life span prediction of 

the SOFC. 

Lithiation induced fracture during normal battery cycling in lithium ion batteries is 

under excessive investigation with various numerical simulation methods based on 

CCM. However, in view of PD, this study is a pioneering work in this area. In this 

thesis, several PD models either two-dimensional or three-dimensional are 

established to investigate the fracture evolution inside the pre-damaged electrode. In 

these researches, the relationship between lithium ion concentration and hydrostatic 

stress is presented in PD. The cases with single and multiple cracks and the 

influence among the cracks during charging process are discussed within the 

framework of PD. With the help of PD, the degradation of lithium ion batteries 

during charging process is shown in detail. This study contributes to the 

performance development of marine lithium ion batteries. 
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8.6 Final remarks 

The nonlocal spatial integral equations of PD have brought significant advantages in 

fracture analysis as compared with conventional methods in fracture analysis. With 

these advantages, PD can be applied in the numerical simulation of marine batteries. 

The numerical results shown in this thesis have supported and validated the accuracy, 
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capability and reliability of PD. It has also shown the efficiency of PD in fracture 

analysis. Therefore the numerical models in this thesis can be helpful in the fracture 

analysis of both single field and coupled field problems. 
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