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ABSTRACT 

Steam turbines are an important asset of nuclear power plants, and are required to 

operate reliably and efficiently. Unplanned outages have a significant impact on the 

ability of the plant to generate electricity. Therefore, condition-based maintenance (CBM) 

can be used for predictive and proactive maintenance to avoid unplanned outages while 

reducing operating costs and increasing the reliability and availability of the plant. In 

CBM, the information gathered can be interpreted for prognostics (the prediction of 

failure time or remaining useful life (RUL)). 

The aim of this project was to address two areas of challenges in prognostics, the 

selection of predictive technique and accommodation of post-maintenance effects, to 

improve the efficacy of prognostics. The selection of an appropriate predictive algorithm 

is a key activity for an effective development of prognostics. In this research, a formal 

approach for the evaluation and selection of predictive techniques is developed to 

facilitate a methodic selection process of predictive techniques by engineering experts. 

This approach is then implemented for a case study provided by the engineering experts. 

Therefore, as a result of formal evaluation, a probabilistic technique the Bayesian Linear 

Regression (BLR) and a non-probabilistic technique the Support Vector Regression (SVR) 

were selected for prognostics implementation.  

In this project, the knowledge of prognostics implementation is extended by including 

post maintenance affects into prognostics. Maintenance aims to restore a machine into a 

state where it is safe and reliable to operate while recovering the health of the machine. 

However, such activities result in introduction of uncertainties that are associated with 

predictions due to deviations in degradation model. Thus, affecting accuracy and efficacy 

of predictions. Therefore, such vulnerabilities must be addressed by incorporating the 

information from maintenance events for accurate and reliable predictions. This thesis 

presents two frameworks which are adapted for probabilistic and non-probabilistic 

prognostic techniques to accommodate maintenance. Two case studies: a real-world case 

study from a nuclear power plant in the UK and a synthetic case study which was 

generated based on the characteristics of a real-world case study are used for the 

implementation and validation of the frameworks. The results of the implementation 

hold a promise for predicting remaining useful life while accommodating maintenance 
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repairs. Therefore, ensuring increased asset availability with higher reliability, 

maintenance cost effectiveness and operational safety.  
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CHAPTER 1: INTRODUCTION 

1.1. Introduction to Research 

Nuclear power is a sustainable source of energy. There are 442 reactors operating in 31 

countries producing around 11% of the world’s electricity. Alone in the UK, where it is 

considered an integral part of base load power generation, about 21% of the electricity 

comes from 15 nuclear reactors at 8 sites. However, almost half of its capacity is to be 

retired by 2025. The UK government has stated its desire for nuclear power to remain 

significant part of a balanced generation mix. It has proposed meeting this by extending 

the operational life of nuclear power plants (NPPs) while stimulating a renaissance in 

building NPPs so that it contributes to all three objectives of ‘trilemma’ of secure supply, 

decarbonisation, and affordability [1].  

Electricity from nuclear power plants is used mostly for base-load because it is reliable 

and safe. One major factor affecting the nuclear power plant is producing electricity in a 

cost-effective manner without compromising safety. Therefore, the risk of early closure, 

unplanned shutdown, or restrictions to operation are mitigated through planned 

maintenance strategy, equipment reliability and plant life extension programmes in 

order to achieve reliable and safe operation of NPPs. Maintenance strategies broadly fall 

into three main categories of preventive maintenance (PM), reactive maintenance (RM) 

and condition based maintenance (CBM). 

In PM strategy, maintenance is scheduled periodically for each system or component 

regardless of any degradation or abnormal behavior in order to prevent any sustained 

damages. In this type of maintenance approach, faults can be identified at an early stage 

through regular inspections to keep damages to equipment minimal. However, very often 

components are replaced before they even reach their time of failure (TOF). Figure 1.1 

shows the costs that are associated with the PM strategy. The PM maintenance strategy 

results in high maintenance costs to achieve reduction in operational costs due to failures 

occurring in operation. 
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Figure 1.1 - Costs associated with Preventive Maintenance strategy 

In RM strategy, a component is allowed to reach TOF and maintenance is only performed 

when failure occurs. Figure 1.2 shows the costs that are associated with the RM strategy. 

The RM strategy may reduce costs associated with unnecessary inspections and 

maintenance, but greatly increases the risk of catastrophic failure occurring within the 

machine which may lead to higher costs that are incurred for component repairs and 

replacements. 

 

Figure 1.2 - Costs associated with Reactive Maintenance strategy 

CBM strategies involve performing maintenance when necessary based on the condition 

of an equipment. CBM incorporates continuous monitoring of state of an equipment. 
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Compared to both preventive and reactive maintenance strategies, CBM aims to minimise 

operational and maintenance costs as illustrated in Figure 1.3. In CBM, the information 

gathered on the state of the equipment is used for diagnostics (detection, isolation, and 

identification of faults) and prognostics (the prediction of failure time) [2]. 

 

Figure 1.3 - Costs associated with CBM strategies, adapted from [3] and [4] 

Prognostics is defined as the detection of precursors faults or conditions leading to a 

failure, and predicting when an equipment or component is likely to fail [5]. Prognostics 

has also been defined as an estimation of remaining useful life (RUL), where RUL is the 

time until a component or an equipment no longer meets its design function [6]. 

Prognostics is considered as an ultimate CBM regime that can increase safety and 

reliability and reduce unplanned plant shutdowns while facilitating operations planning 

and timely maintenance. Prognostics can be classified into three types. Type 1 or 

Reliability-based prognostics depends on historical failure time data. Type 2 or Stressor-

based prognostics takes operational and environmental conditions into account. Type 3 

or degradation-based prognostics measures degradation state of an equipment or 

component for the estimation of RUL [4]. 

1.2. Motivation for Research 

Prognostics has the potential to significantly reduce operational and maintenance cost 

while increasing reliability, availability and safety. Despite of increased research and 

development, prognostics is still relatively new area of CBM and has yet to build its 

reputation compared to other areas of CBM [7]. Much work has been done to improve 
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prognostics for estimation of RUL of engineering assets. However, there are many 

challenges within prognostics that still exist when implementing prognostics and need to 

be addressed in order to achieve reliable and meaningful results. The most notable areas 

of challenges in prognostics include: selection of prognostics technique; lack of run-to-

failure data; management of prognostics uncertainties; effects of maintenance actions; 

effects of failure interactions; performance evaluation of prognostics. Out of these areas 

of challenges, selection of prognostics technique and effects of maintenance actions are 

two most underdeveloped areas of prognostics. Main drivers for selecting these two 

areas of prognostics was discussions with reliability engineers that desired a methodic 

way of selecting predictive algorithms and inclusion of changes in degradation rates due 

to maintenance. Therefore, in this research, these two areas of prognostics are addressed 

to improve the efficacy of prognostics.  

Selection of an appropriate prognostics algorithm is a key activity for an effective 

development of prognostics in order to achieve benefit of maintenance planning and as a 

result cost-effective operation [8]. Recent work, [9] provides a generic design framework 

for selection of prognostics technique. Based on this work and wider literature review, 

data characteristics, and project requirements a formal evaluation and selection process 

for prognostics has been developed. This formal evaluation process enables selection of 

two prognostics techniques: Bayesian Linear Regression (BLR) and Support Vector 

Regression (SVR).  These techniques are adapted to accommodate maintenance.  

Maintenance activities affect prognostics accuracy and efficacy. Maintenance actions also 

do not completely restore system’s health and introduces uncertainties that are 

associated with predictions. Therefore, in order to address such vulnerabilities of 

prognostics, information from maintenance events must be incorporated into 

prognostics for accurate predictions. One of the most notable work for incorporating 

maintenance in prognostics is the use of Bayesian online change point detection method 

to detect events. Then, this event information is used as an input to prognostics algorithm 

to update estimation of RUL [10].  

In this research, a retrospective changepoint detection method is used to detect 

maintenance events which is used as an input information to adapt prognostics 

algorithms to accommodate maintenance. BLR as a probabilistic prognostic technique 

accommodates maintenance by updating parameters such as slope and intercept after 



 23 

maintenance has taken place. Whereas SVR as a non-probabilistic prognostic technique 

accommodates maintenance by using synthetic data which is generated based on the 

model retained prior to maintenance. A case study from the data of an operational steam 

turbine of a nuclear power plant in the UK was used to implement the adapted prognostic 

techniques. Most of the prognostic techniques are usually developed as “fit for purpose” 

[11]. Therefore, to ensure wider applicability and performance validation of the adapted 

prognostic techniques, synthetic data which closely mimics the real case study is 

generated and is used to implement adapted prognostic technique.  

1.3. Novel Contributions 

This thesis claims the following original contributions:  

• Development of formal evaluation process for selecting prognostic techniques 

which is widely applicable to various engineering assets. 

• Adaptation BLR and SVR to accommodate maintenance and estimate remaining 

useful life 

• Implementation of Adapted-BLR and Adapted-SVR using a real-world and a 

synthetic data case to demonstrate improved efficacy of prognostics 

• Comparison and evaluation of the Adapted-BLR and Adapted-SVR prognostic 

techniques for application to Nuclear Power Plants 

 

1.4. Thesis Outline 

The thesis presents solutions for selecting prognostic techniques and adapting them to 

accommodate maintenance. The structure of the thesis is as follows 

 

Chapter 2 

This chapter provides literature review of state-of-the-art prognostics techniques and 

applications in various engineering fields. The chapter also provides detailed overview of 

challenges that are involved during the applicability of prognostics. The opportunities 

that stem from prognostic implementation challenges are also discussed. 
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Chapter 3 

This chapter describes the development of formal evaluation and selection process of 

prognostic techniques which uses prognostic metrics identified from the literature 

review, data analysis and industrial requirements of the project for selecting prognostic 

algorithms. The developed formal evaluation and selection process utilises look up tables 

which are formed based on the PHM implementation requirements and the inherent 

ability of the technique to score prognostic techniques for selection metrics. This chapter 

also presents two case studies identified from literature to validate the implementation 

of the formal evaluation process. After validating the process, the process is implemented 

for nuclear prognostics. As a result of implementation, BLR and SVR are selected for 

prognostics implementation.  

 

Chapter 4 

This chapter provides background review on nuclear power plant steam turbine with a 

description of its subsystems and components. In addition, associated steam turbine 

instrumentation is also discussed. An analysis on the data of nuclear steam turbine to 

form a case study is presented. This chapter also presents a process for generating 

synthetic data which is used to ensure wider applicability of adapted prognostic 

algorithms and to validate performance. 

 

Chapter 5 

This chapter of the thesis details the development, implementation, and adaptation of 

BLR as a probabilistic prognostics technique to accommodate maintenance in 

prognostics. This is achieved by updating the model parameters of the BLR after the 

maintenance. A synthetic and a real-world case studies are used to test Adapted-BLR 

algorithm. This chapter also provides a performance comparison of BLR and Adapted-

BLR. 

 

Chapter 6 

This chapter of the thesis details the development, implementation, and adaptation of 

SVR as a non-probabilistic prognostics technique to accommodate maintenance in 

prognostics. This is achieved by using synthetic data generated based on the model 
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retained prior to maintenance as a historic data. The adapted technique is tested using a 

synthetic and a real-world case study. A performance comparison of SVR and adapted 

SVR is detailed in this chapter. 

 

Chapter 7 

In this chapter, a discussion on the implementation of formal evaluation and selection 

process for prognostics is presented. The chapter also discusses Adapted-BLR and 

Adapted-SVR in detail while listing the strengths and weaknesses of both techniques. 

Results from the comparison of both adapted techniques is also discussed in this chapter.  

 

Chapter 8 

This chapter states main conclusions of this thesis and future work. 

 

1.5. Publications 

To summarise contributions, this section provides a list of the publications: 

 

O. Panni, G. West, V. Catterson, S. McArthur, D. Shi and I. Mogridge, “Implementation of a 

Bayesian Linear Regression Framework for Nuclear Prognostics,” in European Conference 

of the Prognostics and Health Management Society, 2016. 

 

O. Panni, “Increasing Certainty in Nuclear Prognostics,” in Rolls-Royce Engineering 

Doctorate Conference, Derby, 2015.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

This literature review chapter provides comprehensive overview of prognostics health 

management (PHM) and prognostics algorithms. Available prognostic techniques and 

their applications from variety of industries are outlined. The main objective of this 

chapter is to present available state of the art prognostics techniques, thus, laying the 

foundation for the development of formal evaluation process of prognostic techniques 

which is discussed in Chapter 3 of this thesis. The formal evaluation process was used to 

select prognostic techniques for application to a case study from a NPP.  

 

2.2. Prognostics Health Management (PHM) 

As an integrated technology, PHM provides health overview of a system or an overall 

asset in order to enhance its reliability and availability by detecting current and 

predicting future states of a system, thus providing for mitigation of the system risks [12]. 

The process diagram of PHM is shown in Figure 2.1.  

 

Figure 2.1 - PHM Process, adapted from [13] 

The main tasks of PHM system include data acquisition, data pre-processing, feature 

extraction, fault detection, diagnostics and prognostics in order to support the 

maintenance decision making process. Each of these tasks of a PHM system are described 

below: 
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2.2.1. Data Acquisition 

Data acquisition is a process of acquiring condition monitoring and covariates data. 

Condition monitoring data is sensory information such as temperature, vibration signals, 

etc. It is acquired via installed sensors from asset under investigation. The covariates data 

is event data (failure, breakdown, maintenance, installation, etc.), operating conditions, 

and environmental factors. The covariates data is collected through experts, information 

management system, standards, etc. and can be used to enhance RUL estimation. For 

example, load and speed changes were used by Gebraeel and Pan [14] to improve RUL 

estimation of bearings. 

The main challenges of data acquisition process include right sensor selection and 

installation, data acquisition system selection, and data storage.  

2.2.2. Data Pre-Processing and Feature Extraction 

Data pre-processing and feature extraction is a process that involves cleaning the data 

and extracting useful data subset that best represents the system health state being 

monitored.  

Basic operations of data cleaning process include handling missing data fields and dealing 

with noise and known changes in order to create a data set that is error-free for further 

investigation. A cleaned data set then undergoes a feature extraction process. During this 

process, only useful and system health representative information is extracted either by 

reducing the dimensions of the data or transforming the data. For example, Gebraeel et 

al. [15] and Widodo and Yang [16] estimated root mean square (RMS) value and kurtosis 

of vibration signals to characterise health condition of rolling element bearings. Walker 

and Coble [17] used approximate entropy (ApEn) as a health indicator for bearings to 

early detect degradation. Once a feature is extracted, it undergoes feature evaluation 

process during which monotonicity, prognosability, and trendability of the feature 

dataset is assessed. After the evaluation, best features are selected for further 

assessment.  

The main challenges of data pre-processing and feature extraction include data 

dimensionality, data transformation, and health indicator construction. 

2.2.3. Diagnostics 

Diagnostics is the process of fault detection, isolation (location of fault), identification 

(type of fault), and assessment (severity of fault). Fault detection is performed by 



 28 

comparing health signals against expected profile signals or operational limits. Whereas 

for fault isolation, identification and assessment, feature signal is assessed. Knowledge 

based system can also be used for fault isolation, identification, and assessment [13]. The 

process of diagnostic occurs when the machine or system is either in failure or faulty 

state. Therefore, diagnostic results can be used for reactive and proactive maintenance.  

The main challenges of diagnostic process include: fault detection, isolation, and 

identification; and defining failure threshold. 

2.2.4. Prognostics 

Prognostics is the process of estimating the RUL or time after which a system or a 

component fails to perform its intended design function. Prognostics process utilises 

prognostics algorithm on degradation signals to predict future health of a system or 

component.  

The main challenges of prognostics process include RUL prediction horizon, prognostics 

metrics, impact of covariates, and uncertainty management.  

2.2.5. Knowledge Based System 

Knowledge based system (KBS) is a system consisting of a database and an inference 

engine. The database of the system contains expert knowledge, reliability, failure, and 

operational information about a system or a component. The inference engine applies 

logical rules to the database to deduce information about an asset under observation to 

help maintenance engineers diagnose faults. This deduced information from KBS, can be 

used for diagnostics and prognostics [18].  

The main challenges of a KBS include knowledge elicitation bottlenecks, brittleness of 

rules as an approach to storing knowledge, inference efficiency problems, knowledge 

interpretation and maintenance of inference engine.  

2.2.6. Health Management System 

Health management system (HMS) integrates diagnostics/prognostics, covariates, and 

externals factors (i.e. safety, cost, etc.) information to provide optimised recommended 

actions as decision support for operations and maintenance. Recommended actions can 

be maintenance interventions, operational reconfigurations, or component 

replacements. These recommendations and actions are prioritised based on asset 

optimisation principles [18]. 
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The main challenges of HMS involve profile changes and reconfigurations, and fault 

tolerant control system. 

2.3. Prognostics Algorithms 

The aim of prognostic algorithms is to estimate RUL after which a component or a system 

no longer meets its design function due to a fault. As a result, a component or a system is 

likely to fail. The estimation of RUL requires knowledge of the fault and the rate at which 

the component or the system will degrade over time. The rate of failure can be derived 

from historical data (observations or examples of run to failure) or model representing 

degradation process [19]. Therefore, prognostic algorithms can be categorised into three 

categories based on the information they use to make RUL estimates. These categories 

are time-to-failure analysis, stressor-based and degradation-based [20], as shown in 

Figure 2.2.  

 

Figure 2.2 - Categories of prognostics methods, adapted from [21] 

Each of these categories of prognostics algorithms is discussed in the following sections: 

2.3.1. Type 1: Time to Failure Analysis 

Time to failure analysis is an extension of traditional reliability analysis. Prognostics 

algorithms in this category use probability distributions of runtimes from historical 

examples of failure in similar systems to estimate TOF [21]. The Weibull distribution is 



 30 

the most commonly used parametric distribution, which is used to model variety of 

failure rates of similar systems [22]. The equation used to model failure rates is:  

 
𝑝(𝑥) =

𝛽

𝛼
(

𝑥

𝛼
)

𝛽−1

 

 

(2.1) 

where 𝑥 is the failure time, 𝛼 is a scale parameter, and 𝛽 is a shape parameter. The scale 

and shape parameters of Weibull distribution allows modelling of increasing, decreasing, 

constant failure rates. Examples of different shape parameters exhibiting different 

failures rates are given in Figure 2.3. 

 

Figure 2.3 - Weibull distribution with different shape (k) parameters 

Type 1 prognostics rely upon the assumption that all similar systems have operated 

under similar conditions, and therefore, the failure rate is similar to historic failure rates 

[21]. Thus, making them impractical in many industrial applications. The impact of 

operating conditions must be considered to improve prognostics results [23] [24].  

2.3.2. Type 2: Stressor-Based 

Stressor-based prognostic is an extension of type 1 prognostics. It incorporates past and 

future operating conditions of the system to estimate RUL. The operating conditions of 

the system may include speed, temperature, etc. providing usage indication of 

components/systems to model failure rate of an average component operating under 

these measured conditions [21]. 
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Common type 2 prognostics techniques include regression analysis, Markov chain 

models, proportional hazards models, physics-of-failure models, and life consumption 

models [21]. 

Type 2 prognostics rely upon assumption that systems operation under same conditions 

will fail at similar rates and there is little unit-unit variance between systems operating 

under same operating conditions. Like type 1 prognostics, type 2 prognostics is also 

dependent on historical examples of failure. Therefore, these methods are unsuitable for 

new applications, where historical data of failures times will be sparsely available.  

2.3.3. Type 3: Degradation Based 

Degradation based prognostic algorithms predict the failure rates or remaining useful life 

of a system from its measured degradation parameters. Degradation parameters of a 

system or component provide health indication, which are used to estimate the RUL [20]. 

Degradation parameters of a component or a system can be measured directly or 

generated indirectly to infer the level of damage. Figure 2.4 shows the process of 

estimating the RUL using degradation parameter. 

 

Figure 2.4 - Estimation of RUL using degradation-based prognostics 

From Figure 2.4, the RUL can be estimated as: 

 𝑅𝑈𝐿 = 𝑡𝑏 − 𝑡𝑝 (2.2) 
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where 𝑡𝑏 is the future point in time at which warning threshold is breached and 𝑡𝑝 is the 

point in time at which prediction are made. 

Type 3 prognostics also require rate of degradation in order to extrapolate degradation 

parameter forward in time to a failure threshold. Type 3 prognostics can be split into 

three categories: model-based, data-driven, and hybrid [12] [25] [26] [27]. Degradation 

is inferred from model representing the underlying failure mechanism, historical data, or 

combination of both. Prognostics techniques in this category are most suitable for new 

applications as they do not rely on the availability of historic data to predict failure time. 

Predictions can be inferred from the current health of individual components, operating 

conditions, and through the measurement of a degradation parameter. Models 

representing similar components operating in different environment can be constructed, 

where model parameters can be tuned to best fit the observed trend of degradation.  

The categories of degradation-based prognostic are further discussed in the remainder 

of this chapter with their applications and challenges involved during the 

implementation of prognostics techniques.  

2.3.3.1. Model-Based Prognostics 

Model based prognostics use physical models represented as mathematical equations to 

characterise the behaviour of a system [28] [29] [30]. These physical models govern 

system’s failure degradation behaviour and therefore require complete understanding of 

physics-based knowledge of the specific system or the knowledge of the failure of similar 

components in different systems. Hence, physical models are very difficult to derive for 

practical applications with varying dynamic responses and complex damage evolution 

processes [28] [30]. However, model-based approaches are more accurate and are not 

dependent on the availability of run-to-failure data. They provide long prediction horizon 

[31] and with increasing understanding of system degradation physical models can also 

enhance accuracy by tuning parameters of the model to best fit the observed degradation 

process [28]. 

Figure 2.5 shows a generic methodology of model-based prognostics. In this 

methodology, a model representing system dynamics and the degradation process is 

identified. Fast and slow dynamic variables of the model represent the behaviour of the 

system and the degradation of the system respectively. Slow dynamic variables are used 
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to simulate random scenarios which are compared to measurable data in order to identify 

the appropriate feature which is later used to estimate the RUL.  

 

Figure 2.5 - Model-based prognostics methodology adapted from [32] 

The most popular model-based prognostic approaches include Paris law, Forman Law, 

Fatigue Spall Initiation and Progression Model, and Parameter Estimators. For example, 

Paris et al. [33] modelled degradation mechanism to estimate crack growth rate for RUL 

estimation. Kacprzynski et al. [34] combined Paris crack propagation model and 2D Finite 

Element Analysis to estimate RUL based on crack growth. Li and Lee [35] extended this 

combined approach and developed a dynamic model to estimate RUL of gear with fatigue 

crack based on the estimated crack size and dynamic load on the cracked tooth. 

Oppenheimer and Loparo [36] used Forman law of linear elastic fracture mechanics to 

model rotor shaft crack growth and estimated RUL using vibration data. 

Rolling bearings provide necessary support to rotating machinery by transmitting axial 

and radial loads from the rotating part to the structure, thus minimising friction losses in 

the sliding direction. Li et al. [37] predicted rolling element bearing defect growth and 

remaining useful life using adaptive defect propagation model that incorporates variable 

nature of defect propagation by a mechanistic model with time varying parameters. Qiu 

et al. [38] developed an integrated degradation model defining the damage as a function 

of the stiffness in order to estimate the RUL of the bearing. Liang et al. [39] estimated 

instantaneous rate of defect propagation for RUL estimation using self-adapting RUL 
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method. Marble and Morton [40] modelled turbine engine bearing spall progression and 

estimated failure time and spall growth trends.  

Parameter estimators such as Kalman Filter (KF), Particle Filter (PF), etc. had been 

applied as model based prognostic approaches depending on the sophistication of the 

system [41]. Most common parameter estimators are shown in Table 2.1. 

Table 2.1 - Parameter estimators as model-based prognostic methods 

Linear Estimators Non-Linear Estimators 

Least Square (LS) 

Kalman Filter (KF) 

Switching Kalman Filter (SKF) 

Extended Kalman Filter (EKF) 

Particle Filter (PF) 

 
Bayesian estimators are capable of dealing with various types of uncertainty and can be 

used to model linear and non-linear systems. Baraldi et al. [42] applied KF to predict RUL 

of a turbine blade based on creep damage. Creep is permanent deformation caused due 

to low loads below the elastic limit at high temperature over prolonged period of time. 

Turbines undergoing this degradation process can lose its blades and abrupt changes in 

power conversion system are experienced [43]. Lim and Mba [44] applied SKF to 

estimate model and the RUL of tail rotor gear box output shaft bearing using condition 

monitoring data. Results of this approach showed that SKF can be applied to provide 

decision support for maintenance. Orchard et. al. [45] compared the results of EKF and 

PF applied to estimate crack lengths of gear box plate using Paris Law. The results of the 

comparison showed that Particle Filter provides better RUL estimates. 

Model-based prognostics have also been applied to electronic applications. Kwon and 

Yoon [46] applied PF to predict time of failure of electronic interconnections based on 

Paris Law which was used to model fatigue crack growth in interconnections. Lall et al. 

[47] explored electronic component failures due to shock and vibration loads and 

predicted RUL using failure model of interconnects for KF. Saha and Goebel [48] studied 

Li-ion battery capacity depletion and predicted RUL of the battery using empirical model 

for PF.  

Model-based prognostics suffers from several drawbacks. In many practical applications, 

the process of building a representative model is very tedious and complex. It requires 

thorough understanding of system dynamics and the degradation process of the system. 
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They are only developed for specific uses addressing unique failure type and dynamic 

damage evolution and very difficult to adapt to a different system [49]. They require large 

sets of data for validation [50]. As an alternative, data-driven prognostics can be used to 

estimate RUL based on the historical information and degradation measurements of the 

equipment [51].  

2.3.3.2. Data-Driven Prognostics 

Data Driven prognostics use statistical or machine learning methods to model system 

behavior directly from historic data instead of deriving models based on system 

dynamics and the degradation process [52]. The observed degradation trend is then 

utilised to estimate RUL of the system by extrapolating the trend into future until it 

reaches a predefined threshold. The accuracy of data-driven prognostic methods 

depends on the availability of condition monitoring data [9]. These prognostic methods 

rely upon the assumption that there is underlying stability in the monitored system in 

order to utilize past patterns of degradation to predict future degradation.  

Figure 2.6 shows a generic methodology for data-driven prognostics. In this 

methodology, raw data is used to extract feature signals which are used to identify a 

model representing the degradation process. This degradation model is then used to 

estimate the RUL. 

 

Figure 2.6 - Data-driven prognostics methodology 
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Data-driven prognostic approaches can be classified into conventional and machine 

learning methods. Conventional methods such as Autoregressive Integrated Moving 

Average (ARIMA) has been applied for rotating machinery prognostics to model non-

stationary time series signals and estimate RUL. For example, Marinai et al. [54] applied 

ARIMA with regression analysis to estimate RUL of turbo fan engine based on turbine gas 

temperature margins. Wu et al. [55] compared the results of improved ARIMA with the 

traditional Box-Jenkins ARIMA using simulated vibration data. The results validated that 

the improved prediction method performed marginally better than the standard ARIMA. 

However, long term predictions still suffered due to observational and dynamic noise and 

the sensitivity to initial conditions. Therefore, Liu et al. [56] proposed a novel Match 

Matrix algorithm to address long term prediction inaccuracy. Match Matrix compares 

current degradation time series data with the historical degradation time series data to 

estimate similarity distance. If the similarity distance is large, then historical times series 

data can be used for modelling and estimating RUL for the current developing 

degradation.    

Artificial Neural Networks (ANNs) are the most commonly applied machine learning 

prognostic technique [57]. An ANN consists of a layer of input nodes, one or more layers 

of hidden nodes, and a layer of output node. An ANN learns a trend and pattern by 

adjusting weights which are connections between the nodes. Different types and 

structures of ANNs have been widely applied in rotating machines to estimate RUL. For 

example, Mahamad et al. [58] applied Feed Forward Neural Network (FFNN) to estimate 

RUL of bearings using RMS and kurtosis of the vibration signal. Gebraeel and Lawley [59] 

estimated RUL of bearings using Feed Forward Back Propagation Neural Network 

(FFBPNN). Whereas, Rodríguez et al. [60] used FFBPNN to estimate the RUL of steam 

turbine blades. Yu et al. [61] presented an Elman Recurrent Neural Network (ERNN) 

Model to predict behaviour of a boring process during its full life cycle. Mazhar et al. [62] 

estimated the remaining life of used components in consumer products by using 

multilayer feedforward back propagation neural network (MFFBPNN). Other notable 

applications of ANNs include Electro-hydraulic servo valve of aircraft actuator 

components [63], planetary gear plate of a helicopter transmission [64], planetary gear 

train of motor-pump in power station [65], grinding mill liners [66], and Li-ion batteries 

[67]. ANNs are typically data hungry machine learning techniques and require 

considerable amount of historical failure examples for training. They do not cope very 
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well when subjected to future failure examples that do not exhibit similar behaviour of 

the training dataset [68]. Most of the ANNs do not provide confidence limits with RUL 

predictions. Confidence limits are highly desirable feature of RUL estimates as they 

provide the means for uncertainty management.  

Gaussian Process Regression (GPR) is a non-linear and non-parametric Bayesian 

regression technique which places prior distribution over the space of functions and 

estimates posterior degradation by constraining prior distribution to fit the training 

dataset [69]. The uncertainty associated with predictions is managed by providing 

variance around mean predictions. Baraldi et al. [70] estimated RUL of filters that are 

used to clean sea water entering the condenser of the BWR reactor. Similarly, Richardson 

et al. [71] applied GPR to estimate RUL of Li-ion batteries using capacity vs cycle dataset.  

Support Vector Regression (SVR) is a variant of Support Vector Machine (SVM) and is 

used to predict RUL using time series data. SVR achieves this by extrapolating an optimal 

regression hyperplane (ORH) in order to best fit the training data and extract feature 

model which is used to make predictions for the test data. The application of SVR include 

bearings [72], batteries [73], steam turbine rotor [74], and HP LNG pump [75]. Despite of 

SVR being a state-of-the-art technique it suffers from lack of probabilistic interpretation 

of its outputs, therefore, Relevance Vector Machine (RVM) was developed which attempts 

to address this issue in a Bayesian framework while utilising fewer kernel functions [76]. 

Zio and Di Maio [77] applied RVM for degradation model identification, degradation state 

regression and RUL estimation of a component undergoing crack growth. The RVM is able 

to account for the inherent uncertainties through its Bayesian interpretation, but this 

advantage can be a drawback if training dataset is small or if the test dataset is 

significantly different.  

 

A hidden Markov model (HMM) is a statistical Markov model in which the system being 

modelled is assumed to be a Markov process with unobserved (hidden) states. The 

objective of HMM in prognostics is to predict the evolution of the state of health of a 

system from its current state to its failure based on the model and the measurements. 

Baruah and Chinnam [78] predicted the RUL of machining drill based on thrust-force and 

torque signals. The results indicate that HMMs can provide reasonable prediction 

accuracy however they do suffer from computational burden because of competitive 

learning process. Standard HMMs also do not have intrinsic transition probabilities 
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between health states, therefore, they require additional techniques in order to estimate 

health state transition probabilities to be used for RUL estimation. To overcome these 

difficulties, Camci and Chinnam [79] used Hierarchical Hidden Markov Model (HHMMs) 

which is variant of HMM, to capture health state transition probabilities while estimating 

RUL of the drill-bits on a CNC machine. Another variation of HMMs is Hidden Semi-

Markov Model (HSMMs) which uses grid-based techniques to estimate health-state 

related probability distributions [80] to be used for RUL estimation. Dong and He [81] 

introduced new integrated HSMM approach to estimate the RUL of hydraulic pumps 

using multi-sensor data. Other applications of HMMs include bearings [82] [83] and turbo 

fan engines [84]. 

Other data-driven techniques that have been applied in prognostics include linear and 

quadratic regression [85], Regression Trees [86] [87], Fuzzy Logic and Neuro-Fuzzy 

Network [88], Dempster-Shafer Theory [89], and Bayesian Approaches [13], [15]. Each 

approach has its own advantages. In general, the strength of data-driven approaches is 

transformation of data into useful information for prognostics decision making. Data 

driven approaches require sufficient run-to-failure data with all failure-modes of interest 

in order to learn and capture degradation mechanisms. This may be more practical or 

available solution for prognostics of complex systems in many applications.   
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2.3.3.3. Hybrid Prognostics 

Hybrid Prognostics is an integration of prognostics approaches.  It aims to leverage the 

strengths of different approaches while minimising their limitations in order to achieve 

finely tuned prognostics models for better system or component health estimation and 

RUL prediction. Hybrid prognostics can be classified into following two categories based 

on the literature survey of prognostics implementation:  

• Model-Based and Data-Driven Prognostics 

• Multiple Data-Driven Prognostics 

In this section, these classifications are explained with their applications in prognostics. 

2.3.3.3.1. Model-Based and Data-Driven Prognostics 

This hybrid prognostics approach integrates model-based and data-driven prognostics 

in order to achieve accuracy in predictions by interfacing different types of models. For 

example, data-driven prognostic approaches can be used to build measurement model or 

equation based on which RUL can be estimated. Saha et al. [90] used RVM as data-driven 

technique to develop a model representing the health state of the Li-ion batteries. This 

model was then incorporated into a PF framework in order to estimate the RUL while 

using statistical estimates of noise and anticipated operational conditions. Later this 

work was extended by Saha et al. [91] by using Rao-Blackwellized Particle Filter (RBPF) 

framework. Baraldi et al. [92] proposed a novel hybrid approach in which a bagged 

ensemble of ANNs was used as a data-driven prognostics technique to build an empirical 

measurement model for a Particle filtering approach in order to estimate the RUL of 

bearings based on crack depth and crack propagation rate. This type of hybrid 

prognostics approach allows inclusion of uncertainty into predictions. However, to 

benefit from this approach full life cycle data should be used in order to achieve accuracy 

in predictions as the data collected after the detection of incipient fault is most effective 

for building measurement model [93].  

Data-driven prognostics can also be used to replace system model of model-based 

prognostics in order to reduce modelling effort. This type of hybrid approach can be 

potentially applicable to different systems. However, this approach also heavily relies on 

availability and completeness of the data in order to achieve accuracy in predictions 

while minimising uncertainties. For example, Galloway [94] used exponential model as 

the system model for PF in order to estimate RUL using simulated gearbox data. The 
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results provided predictions with higher accuracy indicating that sensible prognostic 

estimates can be achieved by using data driven models as a system model in model-based 

prognostics. This type of hybrid prognostic approach has also been applied by Chen et al. 

[95] [96] for crack growth prognostics. The adaptive neuro fuzzy system (ANFS) was 

trained on the historical data to model degradation and the PF estimated the RUL 

probability density function (PDF). Liu et al. [97] applied integrated prognostics 

approach to estimate the RUL of Li-ion batteries. Data-driven prognostic techniques (i.e. 

NN, NF, and Recurrent NF) were used to predict the future measurements in order to 

update the weights of the particles for long term RUL predictions. This type of hybrid 

prognostics allows accurate long-term predictions when degradation does not follow the 

fault growth model especially in the case of PFs as they suffer from degeneracy. However, 

if data-driven prognostics performs poorly in terms of predicting future measurement, it 

can significantly affect the performance of hybrid prognostics [93]. 

Model-based prognostics and data-driven prognostics had also been applied 

simultaneously for the RUL prediction. The model-based prognostic approach 

incorporates physics-based degradation model whereas data-driven prognostic utilises 

historical data to estimate the system state. The final RUL is calculated by fusing the 

prediction results of both prognostics approaches. Goebel et al. [98] fused the damage 

prediction results of model-based and data-driven prognostics in order to achieve 

reliable and robust estimation of RUL for bearings.  

2.3.3.3.2. Multiple Data-Driven Prognostics 

Multiple Data-Driven Prognostics combines two or more data-driven prognostics 

approaches in order to achieve accuracy in predictions by capturing system or 

component dynamics both in failure modes and operating conditions. In this type of 

hybrid prognostics, one data-driven technique is used to estimate health which is 

extrapolated using another data-driven technique to predict RUL. Yan and Lee [99] 

estimated RUL based on the tool wear condition. The tool wear condition was estimated 

by applying logistic regression with a maximum likelihood on features extracted from the 

vibration signals. Then tool wear condition was extrapolated using autoregressive 

moving average (ARMA) to predict the RUL.  

In multiple data-driven prognostics, two or more data-driven prognostic approaches can 

be applied as competing algorithms estimating the RUL simultaneously. The results of 
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data-driven prognostic approaches are fused together to estimate aggregated RUL while 

reducing prediction errors. Gebraeel et al. [100] developed a multiple data-driven 

prognostics technique for bearing failure prediction using feedforward back propagation 

neural networks. In this approach, NNs were trained on the data collected from a single 

bearing and a cluster of bearings. An aggregated estimate of the RUL was made by 

weighting the outputs of NNs.  

2.4. Prognostics Challenges and Opportunities 

Developing an effective prognostics system is a complex and challenging process. The 

main challenges that are involved in the process of implementing effective prognostics 

are discussed below with the opportunities that stem from these challenges: 

2.4.1. Prognostics Technique Selection 

As discussed, prognostic approaches can be categorised into model-based, data-driven, 

and hybrid approaches. Each prognostic approach has its own advantages and 

disadvantages. Model-based approaches tend to produce accurate results and require 

less data. However, model-based approaches are component or defect specific and 

require exhaustive modelling for POF progression which can be very hard for complex 

systems. On the other hand, data-driven approaches solely depend on the run-to-failure 

data but gathering comprehensive data may not always be possible. To overcome these 

weaknesses of model-based and data driven approaches, hybrid prognostics can be 

applied which leverages upon the strengths of model-based and data-driven approaches.  

Therefore, the effective and reliable application of prognostics depends on proper 

selection of prognostics methods for particular application. There is no standardised 

applicable methodology which suggests a prognostic technique according to the user 

requirements.  The selection of applicable prognostics technique is mainly driven by the 

available engineering resources (run-to-failure data or physics-based degradation 

model), failure threshold, generality or scope of the approach, uncertainty management, 

and transparency. Azipurua et al. [9] proposed prognostics selection methodologies for 

prognostics categories. However, these proposed methodologies need further validation 

and development while considering business requirements and performance evaluation 

(i.e. computation complexity, learning experience, cost-benefit analysis, etc.). 
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2.4.2. Lack of Run-to-Failure Data 

Most of the prognostics approaches are dependent on historical data containing failure 

events. However, many industrial assets are not allowed to run-to-failure because of 

interactive functioning nature of components which can result in initiating failure in 

other components, accelerating their degradation or total breakdown of a system. In most 

cases, the defective unit is replaced well before it fails and as a result condition 

monitoring data is recorded only up to the point of maintenance. Therefore, availability 

of run-to-failure data for real-life prognostics implementation is almost non-existing. 

Thus, making it a big challenge for effective prognostics implementation which is able to 

provide accurate prediction results.     

2.4.3. Uncertainty Management 

Uncertainties can lead to inaccurate predictions. Therefore, for effective implementation 

of prognostics, uncertainties must be addressed. Figure 2.7 shows sources of 

uncertainties that can affect prediction accuracy of prognostics. These sources of 

uncertainties are grouped into three categories: Data uncertainties are caused by sensors 

collecting the data, data errors, data processing tools for feature extraction, and 

uncertainty estimation in the state; Modelling uncertainties deal with the factors that 

affect true representation of degradation process through a model and its parameters: 

Prediction uncertainties are induced by the factors such as loading, operating and 

environmental conditions of the system, prediction model quantifying combined effect of 

uncertainties, and prediction methods. 
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Figure 2.7 - Sources of uncertainty 

Hence, developing and implementing prognostic methods that are able to deal with 

uncertainty and can describe uncertainty is very important. Accommodating 

uncertainties in prognostics is a complex process and if this problem is not addressed it 

can lead to the significant deviation of the prognostics results from actual situation. 

Examples of uncertainty quantification can be found in [101], [102], and [103]. 

2.4.4. Effects of Maintenance Actions 

The main objective of prognostics is to provide decision support for maintenance by 

optimising maintenance schedules and actions. This is achieved by continuously 

estimating the health of the asset so that the effectiveness of maintenance can be 

measured. Though, maintenance actions do not restore system to “as good as new” but 

the changes in machine health after such actions must be incorporated into prognostics 

for accurate predictions. Researchers in [104], [105], [106], and [107] have used 

reliability models to incorporate maintenance. However, this area of research can be 

further improved by incorporating the effects of maintenance on the health of an asset. 

2.4.5. Effects of Failure Interactions 

Most of the prognostics to-date has been implemented to predict the RUL of components. 

However, a complex system is made up of many interactively functioning individual 
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components and predicting the degradation of one component may not be sufficient to 

predict the failure of overall system due to the fact that a component may initiate or 

accelerate the failure of another component or vice versa. Literature in prognostics for 

multi-component systems is very limited. Existing examples of system-level PHM can be 

found in [108] and [109]. However, there still remains the challenge to be solved to 

develop system-level PHM addressing component degradation interactions and 

uncertainties at system-level PHM. 

2.4.6. Performance Evaluation 

There are many benefits of implementing prognostics [110]. Evaluation of overall 

effectiveness and technical performance of prognostics system is a challenging and multi-

objective task necessary for the justification of prognostics implementation. There is no 

general agreement to appropriate and acceptable set of metrics to quantify the benefits 

of prognostics [111]. Saxena et al. [112] provided functional classification of performance 

metrics. The performance metrics were categorised into following three categories: 

• Algorithm Performance: Metrics used in this class assess the accuracy, precision, 

and robustness of prognostics algorithm.  

• Computation Performance: Metrics in this category highlight the computation 

performance of prognostics algorithms in order to assess their decision-making 

ability especially in the cases of critical systems.  

• Cost-Benefit-Risk Analysis: Metrics in this category measure the economic 

benefits of prognostics which are influenced by the accuracy with which RUL is 

predicted. Operational costs can be reduced if RUL is predicted accurately, 

resulting in fewer component replacements and potentially fewer costly repairs. 

Although efforts in [112] have been made to develop a framework of metrics to assess 

the performance of prognostics systems, further refinements in concepts, definitions, and 

implementation are expected.  
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2.5. Summary 

This chapter presents a thorough survey on PHM literature and its importance in 

maintaining and managing critical engineering assets at reduced operational costs with 

lower risks. A detailed survey of prognostics classifications and approaches with their 

advantages and disadvantages is presented. This enabled the identification of major 

challenges for the implementation of prognostics system. One of these challenges is 

selecting appropriate prognostics methods. The following chapter of this thesis presents 

a formal evaluation and selection process for prognostic techniques. The process utilises 

selection metrics that are identified during the literature survey, user requirements, and 

engineering resources. The detailed overview of techniques that are considered for 

evaluation is also presented in the following chapter.   
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CHAPTER 3: EVALUATION AND SELECTION 

OF PROGNOSTIC TECHNIQUES 

3.1. Introduction 

This chapter presents a formal evaluation and selection process of prognostic techniques. 

A review of the background and theory behind the mathematical techniques which were 

evaluated using a formal review process is presented. To assess the feasibility of 

prognostic techniques, a selection of metrics identified from prognostics literature and 

the requirements of the project were used to facilitate evaluation and selection of 

prognostic techniques.  The underlying idea of using this methodology is to develop a 

methodological approach that enables maintenance engineers to select suitable 

prognostic techniques for real world applications. This chapter also details the 

implementation of this formal review process and as a result a probabilistic and a non-

probabilistic technique are selected for prognostics implementation.  

3.2. Prognostic Techniques 

3.2.1. Linear Regression (LR) 

A linear regression (LR) model is used to describe a linear relationship between input 

variable 𝑥 and an output or response variable 𝑦. Therefore, the form of LR model is given 

by 

 𝑦 =  𝛽0 + 𝛽1𝑥 +  𝜀 (3.1) 

 

The terms 𝛽0 and 𝛽1 are parameters of the model termed as intercept and slope. These 

parameters are usually called regression coefficients. The term 𝜀 represents the 

difference between the true and observed realisation of 𝑦. The term 𝜀 is often represented 

as Gaussian Noise expressed as 𝜀 =  𝒩(0, 𝜎2). The determination of LR model depends 

on the determination of 𝛽0, 𝛽1, and 𝜎2. The most common method of determining these 

values is ordinary least squares (OLS) [113] which utilises 𝑛 pairs of observations 

(𝑥𝑖, 𝑦𝑖)(𝑖 = 1, 2, … , 𝑛). Therefore, the model for each observation can be written as  

 𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖 +  𝜀𝑖 , (𝑖 = 1, 2, … , 𝑛) (3.2) 
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The main objective of OLS regression modelling is to estimate regression coefficients 

such that the ordinary least square function is minimised [114]. The cost function which 

is the sum of squared residual (SSR) error between the true and observed values of 𝑦 is 

given by:  

 
𝑆𝑆𝑅 =  ∑ 𝜀𝑖 

2

𝑛

𝑖=1

=  ∑(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2

𝑛

𝑖=1

 (3.3) 

 

 
         =  ∑(𝑦𝑖

2 − 2𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖) +

𝑛

𝑖=1

𝛽0
2 + 2𝛽0𝛽1𝑥𝑖 + 𝛽1

2𝑥𝑖
2) (3.4) 

 

To minimise SSR and determine regression coefficients, partial derivatives of SSR with 

respect to 𝛽0and 𝛽1are calculated 

 𝜕𝑆𝑆𝑅

𝜕𝛽0
= ∑(−2𝑦𝑖 + 2𝛽0 + 2𝛽1𝑥𝑖)

𝑛

𝑖=1

 (3.5) 

 

 
0 = ∑(−𝑦𝑖 + 𝛽̂0 + 𝛽̂1𝑥𝑖)

𝑛

𝑖=1

 (3.6) 

 

 0 = −𝑛𝑦̅ + 𝑛𝛽̂0 + 𝛽̂1𝑛𝑥̅ (3.7) 

 

 𝛽̂0 = 𝑦 − 𝛽̂1𝑥 (3.8) 

 

 𝜕𝑆𝑆𝑅

𝜕𝛽1
= ∑(−2𝑥𝑖𝑦𝑖 + 2𝛽0𝑥𝑖 + 2𝛽1𝑥𝑖

2)

𝑛

𝑖=1

 (3.9) 

 

 
0 = − ∑ 𝑥𝑖𝑦𝑖 +  𝛽̂0 ∑ 𝑥𝑖

𝑛

𝑖=1

+ 𝛽̂1 ∑ 𝑥𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

 (3.10) 
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0 = − ∑ 𝑥𝑖𝑦𝑖 + (𝑦̅ − 𝛽̂1𝑥̅) ∑ 𝑥𝑖

𝑛

𝑖=1

+ 𝛽̂1 ∑ 𝑥𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

 (3.11) 

 

 
𝛽̂1 =

∑ 𝑥𝑖(𝑦𝑖 −𝑛
𝑖=1 𝑦 )

∑ 𝑥𝑖(𝑥𝑖 −𝑛
𝑖=1 𝑥 )

 (3.12) 

 

The solution of Equation 3.8 and 3.12 allows estimation of 𝛽0and 𝛽1. In multiple 

regression the matrix formula for the coefficient estimates is  

 𝛽̂ = (𝑋𝑇𝑋 )−1𝑋𝑇𝑦 (3.13) 

 

The main advantages of implementing linear regression include 

• Easier determination of model parameters  

• Mathematically explicable and provides deterministic estimation of target 

variables 

However, the technique also suffers from disadvantages of  

• Sensitivity to outliers, noise, or deviation in the data resulting in poor predictions 

of target variables 

• RUL is estimated as a single point, thus lacking the ability to quantify uncertainty 

associated with the prediction of failure 

3.2.2. Bayesian Linear Regression 

Bayesian Linear Regression (BLR) is a statistical framework of linear regression that 

utilises Bayesian inference to update its model parameters. The Bayesian inference 

utilises Bayes theorem to update prior probability of the model parameters (the slope 

and the y-intercept) into posterior probability by incorporating the evidence provided by 

the data in the form of the likelihood function. The Bayes theorem in generalised form 

[115] is expressed as:  

 
𝑝(𝑤|𝐷) =  

𝑝(𝐷|𝑤)𝑝(𝑤)

𝑝(𝐷)
 (3.14) 
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where 𝑝(𝑤|𝐷) is the posterior probability distribution, 𝑝(𝐷|𝑤) is the likelihood function, 

𝑝(𝑤) is the prior probability distribution and 𝑝(𝐷) is the probability of the data. 

Alternatively, according to Gelman et. al [116], given the above definition of the likelihood 

function, Bayes theorem can be expressed as:  

 

 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝  𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×  𝑝𝑟𝑖𝑜𝑟 (3.15) 

 

3.2.2.1. Model Setup  

According to Murphy [117], before the application of BLR, degradation is modelled as: 

 

 𝑦 =  𝜙(𝑥)𝑇𝑤 + 𝜀 (3.16) 

 

where 𝑦 is the degradation signal, 𝜀 is random error, 𝑤 is vector of weights (the slope and 

the y-intercept) and 𝜙(𝑥)𝑇 is first order polynomial basis with 𝑥 denoting time. The first 

order polynomial basis function in reduced form can be represented as:  

 

 𝜙(𝑥)𝑇𝑤 = [1 𝑥1] [
𝑤0

𝑤1
] (3.17) 

 

3.2.2.2. BLR Framework 

As shown in Figure 3.1, there are four parts in the BLR framework. For the first three 

parts of the BLR Framework, Bayes theorem [116] is applied to update the prior 

probability distribution of the model parameters to form a posterior distribution with 

the likelihood of the observation data. Once the model parameters 𝑤 (or the slope and 

the 𝑦-intercept) are updated, they are used to get the predicted signal over the desired 

time as shown by “predictive distribution” in Figure 3.1.  
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Figure 3.1 - BLR Framework 

3.2.2.3. Prior Distribution 

The weights are modelled as a multivariate normal distribution to capture the variable 

dependency (in the case of a linear model there are two dimensions to the distribution, 

one each for 𝑤0 and 𝑤1). Therefore, the prior distribution can be specified as:  

 

 𝑝(𝑤) =  𝒩(𝑤|𝑚, 𝑆) (3.18) 

 

where 𝑚 and 𝑆 are the mean and covariance of 𝑤 respectively. For further simplicity, the 

prior distribution can be modelled as a zero mean Gaussian distribution so that 𝑚0 = 0 

and 𝑆0 =  𝛼−1𝐼 with 𝛼 → 0. The parameters 𝛼 and 𝐼 represent prior noise precision and 

identity matrix respectively. In zero mean Gaussian distribution form, the prior can be 

expressed as:  

 

 𝑝(𝑤) =  𝒩(𝑤|𝑚0, 𝑆0) (3.19) 

   

 𝑝(𝑤) =  𝒩(𝑤|0, 𝛼−1𝐼) (3.20) 

 

Therefore, when no data is observed the posterior distribution is the same as the prior 

distribution. Also, when data points arrive sequentially, the posterior distribution acts as 

a prior distribution for the subsequent data point.  
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3.2.2.4. Likelihood Function 

The likelihood is the conditional probability of the observed data 𝑥 and the model 

parameters (𝑤, 𝛽), and is given by:  

 

 𝑝(𝑦|𝑥, 𝑤, 𝛽) =  𝒩(𝜙(𝑥)𝑇𝑤, 𝛽−1) (3.21) 

 

where 𝜙(𝑥)𝑇 is first order polynomial basis with 𝑥 denoting time and 𝛽 is called the 

likelihood noise precision parameter.  

3.2.2.5. Posterior Distribution 

According to Equation 3.20, the posterior distribution is proportional to the product of 

the likelihood function and the prior distribution. Mathematically it can be expressed as:  

 

 𝑝(𝑦|𝑥, 𝑤, 𝛼, 𝛽) ∝  𝑝(𝑦|𝑥, 𝑤, 𝛽) 𝑝(𝑤|𝛼) (3.22) 

 

 

Due to the fact that the prior has been chosen to be a conjugate normal distribution, the 

posterior distribution is also normal and therefore can be expressed as:  

 

 𝑝(𝑦|𝑥, 𝑤, 𝛼, 𝛽) = 𝒩(𝑦|𝑚(𝑥), 𝑠2(𝑥)) (3.23) 

 

where 𝑠2(𝑥)−1 =  𝑆0
−1 + 𝛽𝑥𝑇𝑥 and 𝑚(𝑥) =  𝑠2(𝑥)(𝑆0

−1𝑚0 + 𝛽𝑥𝑇𝑦). Since, the prior has 

been modelled as a zero mean Gaussian distribution, therefore, 𝑠2(𝑥)−1 =  𝛼𝐼 + 𝛽𝑥𝑇𝑥 

and 𝑚(𝑥) =  𝛽𝑠2(𝑥)𝑥𝑇𝑦. As mentioned earlier, due to the choice of prior, the posterior 

distribution acts as a prior distribution for the subsequent data point when data points 

arrive sequentially. The resulting posterior is also used to compute the predictive 

distribution.  

3.2.2.6. Predictive Distribution 

The posterior distribution results in update of the model parameters 𝑤, which can be 

used to make predictions of 𝑦 at a given future point in time. Therefore, the predictive 

distribution is evaluated using the following equation:  
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 𝑝(𝑦𝑛𝑒𝑤|𝑦, 𝛼, 𝛽) = ∫ 𝑝(𝑦|𝑥, 𝑤, 𝛽)𝑝(𝑦|𝑥, 𝑤, 𝛼, 𝛽) (3.24) 

 

This predictive distribution represents the predicted degradation signal 𝑦𝑛𝑒𝑤  

probabilistically. The predictive distribution can also be expressed as:  

 

 𝑝(𝑦𝑛𝑒𝑤|𝑥, 𝑦, 𝛼, 𝛽) =  𝒩(𝑦|𝑚(𝑥)𝑇, 𝑥, 𝜎2
𝑁(𝑥)) (3.25) 

 

where 𝜎2
𝑁(𝑥) =

1

𝛽
+ 𝑥𝑇𝑠(𝑥)𝑥. It should be noted that the predicted values of 𝑦𝑛𝑒𝑤 

correspond to a Normal distribution rather than one single value. This is fundamentally 

because of the uncertainty in the model parameters of 𝑤: there is uncertainty in the slope 

of the linear trend 𝑤1 and in the intercept 𝑤0. The distribution of 𝑦𝑛𝑒𝑤 values is the result 

of combining predictions from all linear trends within the envelope of possible 

parameters.  

The main advantages of BLR as prognostics technique includes: 

• Ability to explicitly track the uncertainty in the linear model 

• BLR provides analytical framework based on conjugate Gaussian distributions to 

estimate model parameters using available data, thus allowing estimation of 

posterior and predictive distributions 

• RUL can be estimated from the failure/warning distributions which is obtained 

based on the predicted values exceeding the failure/warning threshold, thus 

allowing quantification of uncertainty in predictions 

The main disadvantage of BLR is potential uncertainty in capturing noise characteristics 

due to the assumption that the variation in observed health of an asset over its lifetime is 

constant.  

3.2.3. Auto-Regressive Integrated Moving Average (ARIMA) 

Auto-regressive integrated moving average (ARIMA) is a time series modelling technique 

generalising ARMA model to characterise data or predict future points in the series [118]. 

ARIMA uses autoregressive (AR) model to forecast future points in time series based on 

the relationship between an observation and lagged observations 𝑝. Whereas, moving 

average (MA), models the dependency between an observation and a residual error from 
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the AR model using number of elements 𝑞 as a size of the moving average window. MA 

indicates the regression error is a linear combination of residual errors. ARIMA achieves 

stationarity by differencing 𝑑 times (i.e. subtracting an observation 𝑥𝑡 from an 

observation 𝑥𝑡−1). The AR model is represented as: 

 𝑥𝑡 = 𝑐 + ∑ 𝜙𝑖𝑥𝑡−𝑖

𝑝

𝑖=1

+ 𝜖𝑡, (𝑖 = 1, 2, … , 𝑝) (3.26) 

 

where 𝑥𝑡 is a stationary series, 𝑥𝑡−1 represents lagged observations, 𝜙𝑖  are parameters of 

the model, 𝑐 is a constant, and 𝜖𝑡 is a noise. The MA is calculated as: 

 𝑥𝑡 = 𝜇 + ∑ 𝜃𝑖𝜖𝑡−𝑖

𝑞

𝑖=1

+ 𝜖𝑡, (𝑖 = 1, 2, … , 𝑞) (3.27) 

 

where 𝜃𝑖  are the parameters of the model, 𝜇 is the expectation of 𝑥𝑡, and 𝜖𝑡 , 𝜖𝑡−1, … , 𝜖𝑡−𝑞 

are noise terms. After the initial differencing step, the ARIMA process can be expressed 

as:  

 𝑥𝑡 = 𝑐 + 𝜖𝑡 + ∑ 𝜙𝑖𝑥𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝜃𝑖𝜖𝑡−𝑖

𝑞

𝑖=1

 (3.28) 

 

The basic process of using ARIMA as forecasting technique outlined by [118] includes:  

• Checking Stationarity: If time series data lacks stationarity, differencing is applied 

to transform time series data into stationary data 

• Identification: Specification of appropriate number of AR terms, 𝑝, moving 

average terms, 𝑞, from Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) correlograms 

• Forecasting: Multi-step-ahead prediction to forecast failure/warning breach time 

based on the forecasting model 

• Verification: If predictions result in an unexpected behaviour, repeat 

identification and forecasting steps until the difference between the actual values 

and forecasted values are small enough and model fits the data well 
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The main advantage of implementing ARIMA as a prognostic technique is its abilities to 

deal with non-stationary data in order to provide short-term forecasts based on historic 

data while keeping number of parameters to a minimum. There are more disadvantages 

than advantages of implementing ARIMA as a prognostic technique. Main disadvantages 

include:  

• Stationarity is difficult to achieve and can result in inaccurate results due to 

repeated differencing 

• Inability to provide long term predictions 

• Entire modelling procedure requires update when new data point becomes 

available  

3.2.4. Support Vector Regression (SVR) 

Support Vector Regression (SVR) is a common application form of support vector 

machines (SVMs) that is used to estimate functional relation between input and output 

variables [72]. Suppose there are 𝑘 training data (𝑥𝑖, 𝑦𝑖),  𝑖 = 1,2, … , 𝑘, where 𝑥𝑖 ∈ 𝑅𝑛 is 

an input vector, 𝑦𝑖 ∈ 𝑅 is a scaler output. In case of linear regression, the regression 

function takes the following form 

 𝑓(𝑥) =  〈𝑤, 𝑥〉  + 𝑏 (3.29) 

 

where 𝑤 ∈ 𝑅𝑛 is a coefficient vector and 𝑏 ∈ 𝑅 is a bias defining the regression function 

𝑓. The optimal regression function can be acquired as a solution to the following 

optimisation problem: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒
1

2
‖𝑤‖2  (3.30) 

 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑦𝑖 − 𝑤. 𝑥𝑖 − 𝑏 ≤ 𝜀
𝑤. 𝑥𝑖 + 𝑏 −  𝑦𝑖 ≤ 𝜀

  (3.31) 

 

where 𝜀 denotes prediction precision. Equation 3.30 and 3.31 are only valid when the 

predition error is less than 𝜀. Therefore, in order to cope with the data that can result in 

prediction error greater than 𝜀, slack variables 𝜉𝑖, 𝜉𝑖
∗ and error penalty 𝐶 are introduced. 

Hence, Equtions 3.30 and 3.31 takes the following form: 
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 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

  (3.32) 

 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑖 − 𝑤. 𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖

𝑤. 𝑥𝑖 + 𝑏 −  𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

  (3.33) 

 

where 𝐶 penalises deviations that are larger than 𝜀 while determining the trade-off 

between flatness of function 𝑓(𝑥) and the number of deviations larger than 𝜀. By applying 

Lagrangian multiplier, the Equation 3.32 can be converted into optimisation problem as: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 {−
1

2
 ∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)〈𝑥𝑖, 𝑥𝑗〉

𝑛

𝑖,𝑗=1

− 𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑛

𝑖=1

+ ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

}  

(3.34) 

 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

= 0 and 𝛼𝑖, 𝛼𝑖
∗ ≥ 0 (3.35) 

 

Therefore, the regression function can be expressed as: 

 𝑓(𝑥) =  ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

〈𝑥𝑖, 𝑥〉  + 𝑏 (3.36) 

 

The regression function 𝑓(𝑥) for non-linear implementation with the application of 

kernal function 𝐾(𝑥𝑖, 𝑥) takes the following form 

 𝑓(𝑥) =  ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

𝐾(𝑥𝑖 , 𝑥) + 𝑏 (3.37) 

 

The kernel function 𝐾(𝑥𝑖 , 𝑥) maps original data onto high dimensional feature space 

where linear regression is possible [119]. The main advantages of SVR include  
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• Provides robust and accurate predictions while accommodating different sizes of 

datasets based on maximised decision boundary 

• Mathematically explicable and easy to implement while achieving good 

generalisation performance on a limited number of learning degradation patterns 

Main disadvantages of the technique include: 

• No standard way of selecting kernel functions 

• RUL is estimated as a single point, thus lacking the ability to quantify uncertainty 

associated with the prediction of failure 

• Tuning parameters is difficult to achieve and are specifically adapted for the 

degradation problem  

3.2.5. Relevance Vector Machine (RVM) 

Relevance Vector Machine (RVM) is a Bayesian representation of identical functional 

form to SVM [120]. As a supervised learning technique, RVM starts with a given set of 

input-target pairs  {𝑥𝑛, 𝑡𝑛}𝑛=1
𝑁 . The target values 𝑡𝑛 are samples from a model with 

additive noise, such that  

 𝑡𝑛 = 𝑦(𝑥𝑛, 𝑤) + 𝜀𝑛 (3.38) 

 

where 𝜀𝑛 is the noise term and is assumed to be following zero mean Gaussian 𝒩(0, 𝜎2) 

distribution, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)T is a weight vector. The function 𝑦(𝑥) which is used to 

sample target values 𝑡𝑛 can be expressed as  

 𝑦(𝑥) =  𝑤𝑛𝜙(𝑥) = 𝑤TΦ (3.39) 

 

where Φ is a design matrix with Φ = [𝜙(𝑥1), 𝜙(𝑥2), … , 𝜙(𝑥𝑛)], where 𝜙(𝑥𝑛) =

[1, 𝐾(𝑥𝑛, 𝑥1), 𝐾(𝑥𝑛, 𝑥1), … . , 𝐾(𝑥𝑛, 𝑥𝑁)], where 𝐾(𝑥𝑛, 𝑥𝑖) is a kernel function. Assuming 𝑡𝑛 

is independent, the likelihood of the data can be estimated as  

 𝑝(𝑡|𝑤, 𝜎2) = (2𝜋𝜎2)−𝑁/2 exp {−
1

2𝜎2
‖𝑡 − 𝛷𝑤‖} (3.40) 

 

The maximum likelihood estimation of 𝑤 and 𝜎2 in Equation 3.40 results in overfitting. 

To address this issue, a constraint is placed on the parameters by defining zero mean 

Gaussian distribution over 𝑤 [121] such that  



 57 

 𝑝(𝑤|𝛼) = ∏  𝒩(𝑤𝑖|0, 𝛼𝑖
−1)

𝑁

𝑖=0

 (3.41) 

 

where 𝛼 is a vector of 𝑁 + 1 hyperparameters. Each individual and independent 

hyperparameter is associated with each individual weight 𝑤𝑖. These hyperparameters 

control the deviation of each 𝑤𝑖 from zero. Having defined the prior, Bayes’ rule is used 

to infer the posterior over all the weights [120] given the data as 

 𝑝(𝑤|𝑡, 𝛼, 𝜎2) =
𝑝(𝑡|𝑤, 𝜎2)𝑝(𝑤|𝛼)

𝑝(𝑡|𝛼, 𝜎2)
  

 

 

      = (2𝜋)−(𝑁+1)/2 |Σ|−1/2 × 

exp {−
1

2
(𝑤 − 𝜇)TΣ−1(𝑤 − 𝜇)} 

(3.42) 

where posterior mean 𝜇 and covariance Σ are given by 

 𝜇 =  Σ𝛷TB𝑡 (3.43) 

 Σ = (𝛷TB𝛷 + A)−1 (3.44) 

with A = 𝑑𝑖𝑎𝑔(𝛼1, 𝛼2, … , 𝛼𝑁+1) and B = 𝜎2I 

To estimate posterior mean and covariance, most probable values of hyperparameters 

𝛼MP and 𝜎MP
2  are estimated by maximising the marginal likelihood. Once 

hyperparameters are estimated, predictions can be computed for new input data 𝑥∗ in 

terms of the predictive distribution as 

 𝑝(𝑡∗|𝑡, 𝛼MP, 𝜎MP
2 ) = ∫ 𝑝(𝑡∗|𝑤, 𝜎MP

2 )𝑝(𝑤|𝑡, 𝛼MP, 𝜎MP
2 ) 𝑑𝑤 (3.45) 

 

The predictive distribution in Gaussian form can be represented as  

 𝑝(𝑡∗|𝑡, 𝛼MP, 𝜎MP
2 ) = 𝒩(𝑡∗|𝑦∗, 𝜎∗

2) (3.46) 

 

where predictive mean 𝑦∗ and variance 𝜎∗
2 are given by  

 𝑦∗ = 𝜇T𝜙(𝑥∗) (3.47) 
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 𝜎∗
2 = 𝜎MP

2 + 𝜙(𝑥∗)TΣ𝜙(𝑥∗)  (3.48) 

The main advantages of RVM include:  

• Predictions generated by RVM are probabilistic, thus providing interpretation in 

Bayesian framework to accommodate uncertainties that are associated with the 

predictions 

• Ability to detect underlying trends in noisy and varying dataset 

• Utilises fewer kernel functions compared to SVM as many model weights are set 

to zero in order to achieve sparsity 

Main disadvantages of the technique include: 

• Insufficient data for training or significantly different testing data affects the 

performance of the RVM 

• Compared to SVM, training time can be longer  

•  Higher computational costs due to update rules for hyperparameters 

3.2.6. Gaussian Process Regression (GPR) 

Gaussian Process Regression (GPR) is a Bayesian technique for nonlinear regression that 

computes posterior degradation estimates by constraining the prior distribution to fit the 

available training data [122]. GPR samples function 𝑓(𝑥) from a Gaussian Process (GP) 

instead of postulating a parametric form for the function 𝑓(𝑥, 𝑤) and estimating the 

parameters 𝑤 [123]. A Gaussian process (GP) is defined as a probability distribution over 

functions and is represented as 

 𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (3.49) 

 

where 𝑥, 𝑥′ ∈ X are random variables, 𝑚(𝑥) and 𝑘(𝑥, 𝑥′) are the mean and covariance 

functions respectively, and can be defined as  

 𝑚(𝑥) =  Ε[𝑓(𝑥)] (3.50) 

 𝑘(𝑥, 𝑥′)  =  Ε [(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))
T

] (3.51) 

 

For regression GP model with noise is defined as 

 𝑦 = 𝑓(𝑥) + 𝜀 (3.52) 
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Where 𝑥 is the input vector, 𝑓 is the function output, and 𝑦 is the observed values with 

noise 𝜀 which is following zero mean gaussian distribution 𝒩(0, 𝜎𝑛
2). The prior 

distribution of 𝑦 is given by 

 𝑦~𝒩(𝑚(𝑥), 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼𝑛) (3.53) 

 

The prior joint distribution of 𝑦 and the prediction value of 𝑦∗ is defined as 

 [
𝑦
𝑦∗] ~𝒩 (𝑚(𝑥), [

𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼𝑛 𝐾(𝑋, 𝑥∗)

𝐾(𝑥∗, 𝑋) 𝑘(𝑥∗, 𝑥∗)
]) (3.54) 

 

where 𝐾(𝑋, 𝑋) is a symmetric positive definite covariance matrix, 𝐼𝑛 is the unity matrix, 

𝐾(𝑋, 𝑥∗) =  𝐾(𝑥∗, 𝑋)T is the covariance matrix of the test input 𝑥∗ and the training data 

𝑋, and 𝑘(𝑥∗, 𝑥∗) is the covariance matrix of test input 𝑥∗.Under the conditions of a given 

input 𝑥∗ and the training data 𝑋, 𝑦∗ can be calculated as the the posterior distribution: 

 𝑦∗|𝑥∗, 𝑋~𝒩(𝜇𝑦∗ , 𝜎𝑦∗
2 ) (3.55) 

 

 𝜇𝑦∗ = 𝑚 + 𝐾(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼𝑛]−1(𝑦 − 𝑚) (3.56) 

 

 𝜎𝑦∗
2 = 𝑘(𝑥∗, 𝑥∗) − 𝐾(𝑥∗, 𝑋) × [𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼𝑛]−1𝐾(𝑋, 𝑥∗) (3.57) 

 

where 𝜇𝑦∗  and 𝜎𝑦∗
2  are the mean and variance of the prediction output 𝑦∗. The main 

challenge in GPR is to estimate the covariance function which encodes the assumptions 

about the functions to be learnt by defining the relationship between data points [124]. 

The main advantages of GPR include:  

• Ability to accommodate uncertainties in predictions through variance around the 

mean prediction of the gaussian process model 

• Provides both the regression function and the uncertainty estimates depending 

on the variance of the data 

• Ability to produce accurate predictions despite of small training data 
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Though GPR is an attractive option for the implementation of prognostics. However, its 

disadvantages can limit prognostics performance. Main disadvantages of implementing 

GPR as a prognostic technique include: 

• Difficult to choose covariance function in the absence of any knowledge about the 

actual process 

• Only suitable for gaussian likelihood 

• Provides extremely conservative confidence bounds for predictions, thus leading 

to unmanageable bounds when prediction horizon is long 

• Assumes that the data is normally distributed, the error between each data point 

is correlated, and the noise in the training dataset is constant over the entire input 

domain 

3.2.7. Kalman Filters (KFs) 

The Kalman Filter (KF) is a linear recursive Bayesian technique that estimates the future 

state. The future estimations are made based on the measurements of the state that are 

observed over time and the mathematical state transition model such that the estimated 

state error covariance is minimum [125]. The KF assumes that the state 𝑥 at time step 𝑡 

can be inferred from the previous step 𝑡 − 1 as in Equation 3.58, where 𝐹𝑡 is a state 

transition model, 𝐵𝑡 is a control-input model applied to inputs 𝑢𝑡 , and 𝑤𝑡is process noise 

which follows zero mean gaussian distribution with covariance 𝑄𝑡 

 𝑥𝑡 = 𝐹𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 (3.58) 

 

Measurements of true state 𝑦𝑡can be expressed as  

 𝑦𝑡 = 𝐻𝑡𝑥𝑡 + 𝑣𝑡  (3.59) 

 

where 𝐻𝑡 is an observation model and 𝑣𝑡  is observation noise which is also assumed to 

follow zero mean gaussian distribution with covariance 𝑅𝑡.The Kalman filter uses two 

steps to calculate optimal state [126]. In the first step, the state in the current point in 

time 𝑡 is predicted using the previous state in time (𝑡 − 1) as shown in Equation 3.60 and 

3.61 

 𝑥̃𝑡|𝑡−1 = 𝐹𝑡𝑥̃𝑡−1|𝑡−1 + 𝐵𝑡−1𝑢𝑡−1 (3.60) 
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 𝑃𝑡|𝑡−1 = 𝐹𝑡𝑃𝑡−1|𝑡−1𝐴𝑡
T + 𝑄𝑡 (3.61) 

 

where 𝑥̃ denotes the state estimates and 𝑃 denotes the estimates’ error covariance. In the 

second step, the current state estimate in time 𝑡 and its error covariance are updated with 

observations 𝑦𝑡 as shown in Equations 3.62 to 3.64 [127] 

 𝑥̃𝑡|𝑡 = 𝑥̃𝑡|𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝐻𝑡𝑥̃𝑡|𝑡−1) (3.62) 

   

 𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
T(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

T + 𝑅𝑡)
−1

 (3.63) 

   

 𝑃𝑡|𝑡 = (I −  𝐾𝑡𝐻𝑡)𝑃𝑡|𝑡−1 (3.64) 

 

where 𝐾𝑡 is a weighting known as the Kalman gain. Prognostics in KF is performed by 

repeating the first step Equations 3.60 and 3.61 iteratively estimating the future 

degradation states until it crosses the failure or warning threshold. The RUL of the 

damaged equipment can then be estimated as time difference between failure or warning 

threshold crossing time 𝑡𝑡ℎ𝑟𝑒𝑠ℎ and the time of prediction 𝑡𝑝. 

 𝑅𝑈𝐿 = 𝑡𝑡ℎ𝑟𝑒𝑠ℎ − 𝑡𝑝 (3.65) 

 

The main advantages of implementing KF as a prognostic technique include:  

• Ability to estimate both the current state and the future states while 

accommodating incomplete and noisy measurements 

• Ability to correct the state estimate with the latest observation while minimising 

state error covariance 

• Computationally efficient and is able to deal with large datasets 

Despite of KF’s usefulness it also suffers from disadvantages which limits its applicability 

in prognostics. Main disadvantages of the technique include: 

• Inability to deal with non-linear data and therefore, is only applicable to linear 

systems with gaussian noise model 
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• System and measurement model need to be defined 

3.2.8. Extended Kalman Filter (EKF) 

As discussed in Section 3.2.7, KF estimates the state of degradation that is represented by 

a linear stochastic equation. However, when the process or the relationship between the 

process and the measurements is non-linear Extended Kalman Filter (EKF) is used [118]. 

The EKF linearises non-linear functions around the current mean estimate and its 

covariance. The non-linear state transition and observation models must be 

differentiable for the EKF [118]. These models can be expressed as:  

 𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑢𝑡) +  𝑤𝑡 (3.66) 

   

 𝑦𝑡 = ℎ(𝑥𝑡, 𝑣𝑡) (3.67) 

 

Here, 𝑓 is the non-linear function and relates the state at the previous point in time (𝑡 −

1) to the state at the current point in time 𝑡.  Whereas, the non-linear function ℎ in 

Equation 3.66 relates the state 𝑥𝑡 to the measurement 𝑦𝑡. For 𝑓 and ℎ, the Jacobian 

matrices (matrices of partial derivatives) 𝐹 and 𝐻 are calculated respectively at each time 

step 𝑡 with the predicted state at (𝑡 − 1) as in Equation 3.68 and 3.69 

 𝐹𝑡 = (
𝜕𝑓

𝜕𝑥
) | 𝑥̃𝑡−1|𝑡−1, 𝑢𝑡  (3.68) 

   

 𝐻𝑡 = (
𝜕ℎ

𝜕𝑥
) | 𝑥̃𝑡|𝑡−1 (3.69) 

 

From here, the prediction and update steps of KF are applied (as in Equations 3.60 to 

3.64) [128], where Equation 3.60 becomes 3.70 to accommodate non-linear model. 

 𝑥̃𝑡|𝑡−1 = 𝑓(𝑥̃𝑡−1|𝑡−1, 𝑢𝑡) (3.70) 

 

Main advantages of implementing the EKF as a prognostic technique include:    

• Ability to linearise non-linear dynamic system in the context of KF 

• Ability to estimate both the current state and the future states 



 63 

Despite the useful linearisation ability of the EKF, technique suffers from many 

disadvantages which may affect the prognostics performance. Main disadvantages of the 

EKF include: 

• Exhibits divergence when dealing with significant non linearities due to 

approximation errors introduced during the linearisation process 

• Computationally expensive due to the calculation of Jacobian matrices 

3.2.9. Unscented Kalman Filter (UKF) 

Although, the EKF provides solution for the non-linear system by approximating the 

mean and covariance using a first order approximation of system dynamics. However, 

when non-linearities are significant, the EKF exhibits divergence [129]. The unscented 

Kalman Filter (UKF) overcomes these deficiencies by estimating the distribution of the 

state using a deterministic technique called Unscented Transform [130]. Weighted 

sample points (also known as sigma points) are sampled around the mean and are 

propagated through the non-linear functions to form an approximate estimate of the new 

mean and covariance [129] as shown in Equations 3.71 to 3.73 

 𝛾𝑖 = 𝑓(𝜒𝑖) (3.71) 

   

 𝑦 =  ∑ 𝑤𝑖𝛾𝑖

𝑖

 (3.72) 

 𝑃𝑦𝑦 =  ∑ 𝑤𝑖(𝛾𝑖 −  𝑦)(𝛾𝑖 −  𝑦)
T

𝑖

 (3.73) 

   

Here, 𝜒𝑖  represent sigma points which are passed through the non-linear function 𝑓 such 

that the new mean 𝑦 and covariance 𝑃𝑦𝑦 can be estimated. The term 𝑤𝑖 is weights of each 

𝑖𝑡ℎsigma point. The UKF then follows the same procedure as of the KF and the EKF such 

that the first and second stage equations can be written as 

 𝜒̃𝑡|𝑡−1
𝑖 = 𝑓(𝜒𝑡−1|𝑡−1

𝑖 , 𝑢𝑡) (3.74) 

   

 𝑥̃𝑡|𝑡−1 =  ∑ 𝑤𝑖𝜒̃𝑡|𝑡−1
𝑖

𝑖

 (3.75) 
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 𝛾̃𝑡|𝑡−1
𝑖 = ℎ(𝜒̃𝑡|𝑡−1

𝑖 ) (3.76) 

   

 𝑦̃𝑡}𝑡−1 = ∑ 𝑤𝑖𝛾̃𝑡|𝑡−1
𝑖

𝑖

 (3.77) 

   

 𝑃𝑡|𝑡−1 = 𝑄𝑡 + ∑ 𝑤𝑖(𝜒𝑡|𝑡−1
𝑖 −

𝑖

 𝑥̃𝑡|𝑡−1)(𝜒𝑡|𝑡−1
𝑖 −  𝑥̃𝑡|𝑡−1)

T
 (3.78) 

   

The update stage then becomes:  

 𝑃𝑦𝑦 = 𝑅 + ∑ 𝑤𝑖(𝛾̃𝑡|𝑡−1
𝑖 −

𝑖

 𝑦̃𝑡}𝑡−1)(𝛾̃𝑡|𝑡−1
𝑖 − 𝑦̃𝑡}𝑡−1)

T
 (3.79) 

   

 𝑃𝑥𝑦 = ∑ 𝑤𝑖(𝜒𝑡|𝑡−1
𝑖 −

𝑖

 𝑥̃𝑡}𝑡−1)(𝛾̃𝑡|𝑡−1
𝑖 − 𝑦̃𝑡}𝑡−1)

T
 (3.80) 

   

 𝐾𝑡 = 𝑃𝑥𝑦𝑃𝑦𝑦
−1 (3.81) 

   

 𝑥̃𝑡|𝑡 = 𝑥̃𝑡|𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝑦̃𝑡}𝑡−1) (3.82) 

   

 𝑃𝑡}𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡𝑃𝑦𝑦𝐾𝑡
T (3.83) 

 

Main advantages of implementing the UKF as a prognostic technique include:  

• Ability to linearise non-linear dynamic system in the context of KF with higher 

accuracy compared to the EKF 

• Ability to represent uncertainty on a linearised function 

• More computationally efficient than the EKF as no Jacobian matrices are required 

to be estimated  

The UKF also suffers from many disadvantages which can affect the accuracy of the 

algorithm as a prognostic technique. Main disadvantages include:  
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• Difficult to choose unscented transformation parameters in the absence of any 

knowledge about the process 

• Only applicable to models that are driven by Gaussian noises 

3.2.10. Particle Filter (PF) 

The particle filter (PF) is an alternative approach and can be applied to non-linear 

systems with non-gaussian noise [127]. The underlying principle of the methodology is 

to estimate the state probability distribution by a set of particles (samples from the space 

of the unknowns) and their associated weightings. A non-linear process model, a set of 

measurements, a measurement model, and prior estimate of the state distribution are 

used to generate and recursively update particles. These particles can be expressed as:  

 {𝑥𝑡
𝑖 , 𝑤𝑡

𝑖}
𝑖=1

𝑃
 (3.84) 

 

where 𝑥𝑡
𝑖  and 𝑤𝑡

𝑖 represent the state vector estimate and weight respectively for particle 

𝑖 at each time step 𝑡, for 𝑃 number of particles [129]. The posterior density of these 

samples can be calculated as 

 𝑝(𝑥𝑡|𝑦0:𝑡 ) ≈  ∑ 𝑤𝑡
𝑖  𝛿𝑥𝑡

𝑖 (𝑑

𝑁

𝑖=1

𝑥𝑡) (3.85) 

 

where 𝛿𝑥𝑡
𝑖  (𝑑𝑥𝑡) is the Dirac delta function at each particle state estimate 𝑥𝑡

𝑖 . Sample 

importance resampling (SIR) [131] is the most frequently used technique in prognostics 

[118]. It resamples particles at each time step in order to stop degeneracy. The 

degeneracy is a problem that causes single particles to dominate after few iterations 

[127]. The state estimate for each particle can be calculated as:  

 𝑥𝑡
𝑖  ~ 𝑝(𝑥𝑡|𝑥𝑡−1

𝑖 , 𝑢𝑡−1) (3.86) 

   

 𝑥𝑡
𝑖 =  𝑓(𝑥𝑡−1

𝑖 , 𝑢𝑡−1) + 𝜔𝑡−1
𝑖  (3.87) 

 

The term 𝑥𝑡−1
𝑖  represents previous particle state estimate, 𝜔𝑡−1

𝑖  is a sample process noise 

generated from a process noise PDF. Based on 𝑦𝑡 which can be calculated as in Equation 

3.88, weights are then assigned to each particle. 
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 𝑦𝑡 = ℎ(𝑥𝑡
𝑖, 𝑣𝑡

𝑖) (3.88) 

   

 𝑤𝑡
𝑖 =  𝑤𝑡−1

𝑖  𝑝(𝑦𝑡|𝑥𝑡
𝑖) (3.89) 

 

The term 𝑣𝑡
𝑖  represents samples of observation noise generated from an observation 

noise PDF. Weights are then normalised such that: 

 𝑤̂𝑡 =
𝑤𝑡

∑ 𝑤𝑡
𝑖𝑁

𝑖=1

 (3.90) 

 ∑ 𝑤𝑡
𝑖

𝑖

= 1 (3.91) 

Then, particles {𝑥𝑡
𝑖 , 𝑤𝑡

𝑖} resampling is performed based on the effectiveness of the number 

of particles 𝑃𝑒𝑓𝑓 falling below some threshold 𝑃𝑇  [127]. The effectiveness of the particles 

can be calculated as:  

 𝑃̂𝑒𝑓𝑓 =
1

∑ (𝑤𝑡
𝑖)2𝑁

𝑖=1

 (3.92) 

 

The PF has significant advantage over KF techniques. It provides the benefit of dealing 

with non-linear dynamic systems with non-gaussian noise. Other main advantages of 

implementing the PF as a prognostic technique include:  

• Ability to provide long term predictions 

• Ability to provide highly accurate results due to SIR 

The PF also suffers from disadvantages which can affect its prognostics performance. 

Main disadvantages include:  

• Computational efficiency decreases with higher number of particles 

• Requires large number of data points to avoid degeneracy 

• Requires system dynamic and measurement model 
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3.3. Prognostics Techniques Selection Metrics 

An effective and accurate decision support for maintenance/intervention depends on 

accurate RUL predictions. To achieve accurate RUL predictions, selection of suitable 

prognostics technique is required in order to achieve accurate estimation of future failure 

progression. Most of the times prognostic techniques are selected based on expert 

knowledge and experience which often results in overlooking other suitable techniques. 

Therefore, in this thesis a simplistic formal evaluation and selection process for 

prognostic techniques is presented which utilises metrics that are identified from data 

characteristics, user requirements, and advantages and disadvantages of the techniques 

in mathematical context (See Section 3.2). The evaluation metrics use weighting criteria 

for evaluating the feasibility of prognostic techniques for PHM implementation. The 

weighting criteria uses look up tables which combines the requirements of PHM 

implementation and prognostic technique characteristics while evaluating a prognostic 

technique. This method is an improvement to the two existing methods such as decision 

trees [9] and ranking [18]. Using the first method of decision trees, a practitioner is able 

to select a predictive technique while navigating through the tree based on the 

implementation requirements. The method suffers from bottle necks due to hard 

decision points and lacks overall feasibility assessment of a prognostic technique for the 

implementation. The second method ranks predictive techniques based on the merits of 

techniques. The method utilises subjective ranking criteria and lacks practitioner’s 

perspective. Compared to the existing methods, the formal evaluation process through 

requirement driven methodology enables practitioners formally evaluate and select a 

predictive technique while considering the overall feasibility for prognostics 

implementation. The evaluation metrics that are considered for the assessment of 

prognostic techniques in this project are detailed below with their weighting criteria:  

3.3.1. Repeatability 

Repeatability deals with the ability of the technique to produce results that are fully 

determined by the parameter and input values. Whereas non-repeatability or 

stochasticity is the randomness in outputs which is due to inherent steps of the technique. 

For example, LR [132], SVR [72], KF [125], and UKF [128] produce repeatable results 

which can be used to realise parameter and input values, therefore, they are classed as 

deterministic approaches. Whereas rest of the techniques considered in this thesis, can 
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be classified as stochastic techniques. For instance, particle filter is classified as a 

stochastic prognostic technique due to its sampling methods which may introduce 

randomness in the results [68]. A look up table that combines possible PHM 

implementation requirement and repeatability of technique is shown below:  

Table 3.1 - Look-up Table: Repeatability 

PHM 
Implementation 

Requirement 

Repeatability of a Technique  
Deterministic Stochastic 

Deterministic 1 0 

Stochastic 0 1 

 

Table 3.1 shows that if PHM implementation requirement matches the capability of a 

prognostic technique to produce repeatable or non-repeatable results, the weighting of 1 

is assigned to a prognostic technique. However, if there is a mismatch between the PHM 

implementation requirement and the repeatability of a prognostic technique, the 

weighting of 0 is assigned to a prognostic technique in the formal evaluation process.  

3.3.2. Data Capability 

Data is the information that is collected from a component or a system under observation. 

Data capability of a prognostic technique is the ability of a technique to deal with linear 

or non-linear data that has gaussian or non-gaussian noise. Most of the techniques that 

are considered in this thesis except LR, BLR, and KF are capable of dealing with non-linear 

data. A look up table that combines possible PHM implementation requirement and the 

ability of a technique to deal with a kind of data whether linear or non-linear is shown 

below: 

Table 3.2 - Look-Up Table: Data Capability of a Technique 

PHM 
Implementation 

Requirement 

Data Capability of a Technique  
 Linear Non-Linear 

Linear 1 0 

Non-Linear 0 1 

 

Table 3.2 shows that if PHM implementation requirement matches the data dealing 

capability of a prognostic technique, the weighting of 1 is assigned to a prognostic 

technique. However, if there is a mismatch between the PHM implementation 
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requirement and the data dealing capability of a prognostic technique, the weighting of 0 

is assigned to a prognostic technique in the formal evaluation process.  

3.3.3. Explicability  

Explicability is the working explanation of the technique in mathematical context from 

input to output. The explicability of the technique can be categorised into high, medium, 

or low. For instance, LR is a highly explicable technique and can be explained with its 

mathematical equations from input to output. Similarly, techniques like BLR, ARIMA, and 

SVR can be explained in mathematical context. Whereas, a technique like PF requires 

understanding of available filtering and approximation of posterior state probability 

distribution function methods in order to avoid degeneracy problems. Therefore, PF can 

be classified as moderately explicable prognostic technique. Most of the techniques that 

are considered in this thesis are either classified as highly explicable or moderately 

explicable techniques. A look up table that combines possible PHM implementation 

requirement and the explicability of a prognostic technique is shown below: 

Table 3.3 - Look-Up Table: Explicability of a Technique 

PHM 
Implementation 

Requirement 

Explicability of a Technique  
High Medium Low 

High 1 0.5 0 

Medium 0.5 1 0.5 

Low 0 0.5 1 

 

Table 3.3 shows that if PHM implementation requirement matches the explicability of a 

prognostic technique, the weighting of 1 is assigned to a prognostic technique. However, 

if there is a mismatch between the PHM implementation requirement and the 

explicability of a prognostic technique, the weightings of 0.5 and 0 are assigned to a 

prognostic technique based on the level of mismatch in the formal evaluation process.   

3.3.4. Uncertainty Representation 

Uncertainty representation defines the presentation of prediction uncertainty that is 

associated with the estimated future failure progression. The prediction uncertainty can 

be represented as confidence intervals or probability distribution. Techniques such as LR 

[132] and ARIMA [118] present uncertainty as confidence intervals. Whereas, other 

techniques considered in this research present uncertainty as probability distribution. 

An example of a technique presenting uncertainty as probability distribution is BLR since 
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it defines the probability distribution over the parameters and predictions [133]. A look 

up table that combines possible PHM implementation requirement and the uncertainty 

representation of a prognostic technique is shown below: 

Table 3.4 - Look-Up Table: Uncertainty Representation of a Technique 

PHM 
Implementation 

Requirement 

Uncertainty Representation of a 
Technique  
Probability 

Distribution 
Confidence 

Intervals 

Probability 
Distribution 1 0 

Confidence 
Intervals 0 1 

 

Table 3.4 shows that if PHM implementation requirement matches the uncertainty 

representation of a prognostic technique, the weighting of 1 is assigned to a prognostic 

technique. However, if there is a mismatch between the PHM implementation 

requirement and the uncertainty representation of a prognostic technique, the weighting 

of 0 is assigned to a prognostic technique in the formal evaluation process.  

3.3.5. Implementation Complexity 

Implementation complexity is the likely time that is consumed to implement prognostics 

technique to achieve satisfactory prediction results. The implementation complexity of a 

prognostic technique can be categorised as high, medium, or low. All of the techniques 

considered in this research are classified as techniques with low or medium 

implementation complexities. Techniques that do not require deeper understanding and 

for which there are existing resources available in the form of either literature (i.e. 

tutorials, etc.) or toolkits/libraries (i.e. MATLAB, python, etc.) are classified as techniques 

with low implementation complexity. Whereas, if implementation requires deeper 

understanding and resources, a technique can be classified as a technique with medium 

implementation complexity. For instance, for the implementation of UKF, resources exist 

in the form of a tutorial and toolkits. However, the practitioner is required to have a 

deeper understanding of a toolkit and the technique to produce meaningful results. A 

look up table that combines possible PHM implementation requirement and the 

implementation complexity of a prognostic technique is shown below: 
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Table 3.5 - Look-Up Table: Implementation Complexity 

PHM 
Implementation 

Requirement 

Implementation Complexity of a Technique  
Low Medium High 

Low 1 0.5 0 

Medium 0.5 1 0.5 

High 0 0.5 1 

 

Table 3.5 shows that if PHM implementation requirement matches the implementation 

complexity of a prognostic technique, the weighting of 1 is assigned to a prognostic 

technique. However, if there is a mismatch between the PHM implementation 

requirement and the implementation complexity of a prognostic technique, the 

weightings of 0.5 and 0 are assigned to a prognostic technique based on the level of 

mismatch in the formal evaluation process.   

3.3.6. Run Time 

Run time is the running time of prognostics technique estimating the future failure 

progression and the RUL. This metric is evaluated based on the speed in completing the 

prediction tasks and therefore is categorised as high, medium, or low. The running time 

of a predictive technique can be a limiting factor of its real-time (i.e. safety critical) or 

retrospective application. Techniques such LR, BLR, and SVR have low running times 

[18]. Examples of techniques that have medium and high running times are KF [18]and 

EKF [29] [128]. A look up table that combines possible PHM implementation requirement 

and the run time of a prognostic technique is shown below: 

Table 3.6 - Look-Up Table: Run Time 

PHM 
Implementation 

Requirement 

Run Time of a Technique  
Low Medium High 

Low 1 0.5 0 

Medium 0.5 1 0.5 

High 0 0.5 1 

 

Table 3.6 shows that if PHM implementation requirement matches the running time of a 

prognostic technique, the weighting of 1 is assigned to a prognostic technique. However, 

if there is a mismatch between the PHM implementation requirement and the running 

time of a prognostic technique, the weightings of 0.5 and 0 are assigned to a prognostic 

technique based on the level of mismatch in the formal evaluation process.   
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3.3.7. Accuracy 

Accuracy measures the ability of a prognostic technique to correctly estimate future 

failure progression. The accuracy of a prognostic techniques can be categorised as high, 

medium, or low. Literature indicates that the techniques that produce highly accurate 

results include GPR and PF [18]. Examples of techniques that produce moderately 

accurate and less accurate results include BLR [133] and ARIMA [118]. A look up table 

that combines possible PHM implementation requirement and the accuracy of a 

prognostic technique is shown below: 

Table 3.7 - Look-Up Table: Accuracy 

PHM 
Implementation 

Requirement 

Accuracy of a Technique  
High Medium Low 

High 1 0.5 0 

Medium 0.5 1 0.5 

Low 0 0.5 1 

 

Table 3.7 shows that if PHM implementation requirement matches the accuracy of a 

prognostic technique, the weighting of 1 is assigned to a prognostic technique. However, 

if there is a mismatch between the PHM implementation requirement and the accuracy 

of a prognostic technique, the weightings of 0.5 and 0 are assigned to a prognostic 

technique based on the level of mismatch in the formal evaluation process.   

3.3.8. Robustness 

Robustness measures the ability of prognostic technique to deal with noise and 

uncertainty. The robustness of prognostic techniques can be categorised as high, 

medium, or low. GPR and PF are classified as highly robust techniques. GPR is capable of 

fitting models to data and recover underlying process form noisy observed data based on 

a particularly effective method for placing a prior distribution over the space of functions 

[12] [134]. PF is capable of producing accurate results in the presence of non-gaussian 

noise [127]. Rest of the techniques in this thesis are either classified as moderately or less 

robust techniques. Examples of moderately and less robust techniques are UKF [135]and 

LR. A look up table that combines possible PHM implementation requirement and the 

robustness of a prognostic technique is shown below: 
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Table 3.8 - Look-Up Table: Robustness 

PHM 
Implementation 

Requirement 

Robustness of a Technique  
High Medium Low 

High 1 0.5 0 

Medium 0.5 1 0.5 

Low 0 0.5 1 

 

Table 3.8 shows that if PHM implementation requirement matches the robustness of a 

prognostic technique, the weighting of 1 is assigned to a prognostic technique. However, 

if there is a mismatch between the PHM implementation requirement and the robustness 

of a prognostic technique, the weightings of 0.5 and 0 are assigned to a prognostic 

technique based on the level of mismatch in the formal evaluation process.  

3.3.9. Prediction Horizon 

Prediction horizon is the ability of a prognostic technique to estimate the future failure 

over the residual life of the asset within the desired accuracy range. The prediction 

horizon for a prognostic technique can be categorised as long, medium, or short. 

Techniques such as BLR [133], SVR [18], RVM [136] and PF [7] have long prediction 

horizon. GPR is the only technique considered in this thesis that has medium prediction 

horizon as it provides extremely conservative confidence bounds for predictions, thus 

leading to unmanageable bounds when prediction horizon is long [118]. An example of a 

technique that has small prediction horizon is ARIMA which is a purely data driven 

technique and is incapable of accommodating physics of the process which results in 

wide uncertainty margins. Therefore, ARIMA is not suitable for long term predictions 

[118]. A look up table that combines possible PHM implementation requirement and the 

prediction horizon of a prognostic technique is shown below: 

Table 3.9 - Look-Up Table: Prediction Horizon 

PHM 
Implementation 

Requirement 

Prediction Horizon of a Technique  
Long Medium Short 

Long 1 0.5 0 

Medium 0.5 1 0.5 

Short 0 0.5 1 

 

Table 3.9 shows that if PHM implementation requirement matches the prediction horizon 

of a prognostic technique, the weighting of 1 is assigned to a prognostic technique. 
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However, if there is a mismatch between the PHM implementation requirement and the 

prediction horizon of a prognostic technique, the weightings of 0.5 and 0 are assigned to 

a prognostic technique based on the level of mismatch in the formal evaluation process.   

3.4. Validation of Formal Evaluation Process 

In this section, two prognostic applications in the field of power systems are evaluated in 

order to show the applicability and validity of the formal evaluation and selection process 

through the analysis of different PHM implementation requirements. The assets that are 

examined for validation of the process include transformers and circuit breakers. These 

assets are selected for validation based on the discussions with the practitioners.   

3.4.1. Transformer Prognostics 

The transformer physical aging mechanisms can be divided into two groups of transitive 

and intransitive aging [137]. The transitive aging is the rapid aging of the transformer 

due to abnormal conditions such as highly distorted loads with harmonics, high ambient 

temperature, and overloading. The measurements of hot spot temperature are used to 

assess transitive gaining progression. The intransitive aging is the insulation 

deterioration of a transformer and can be assessed by using techniques such as degree of 

polymerization, dissolved gas analysis, detection of furanic compounds, recovery voltage 

measurement, and measurement of retaining tensile strength. 

To estimate the RUL of transformers different prognostics techniques have been 

implemented. For example, the transformer’s paper aging model [138] defining a gaining 

acceleration factor based on the hot spot temperature was used with PF to estimate the 

RUL of the transformer through the degree of polymerization of the paper at its most aged 

point [139]. The design requirements for PHM implementation [139] that are interpreted 

into prognostics selection metrics are shown in Table 3.10:  
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Table 3.10 - PHM Implementation Requirements for Transformer Prognostics 

PHM Implementation Requirements Requirement Interpretation 

The degradation process is stochastic 
and degradation equation is available 

Repeatability  
(Stochastic) 

Robustness  
(High) 

The degradation of the transformer is 
not linear and noise is non-gaussian 

Data  
(Non-Linear) 

The predictive model should be able to 
accommodate uncertainties in a 
probabilistic manner 

Uncertainty Representation  
(Probability Distribution) 

The prediction horizon should be long 
Prediction Horizon  

(Long) 

 

The look-up tables for the prognostic technique selection metrics were used to score the 

techniques that are considered in this thesis. Table 3.11 shows the evaluation of 

techniques that utilises look up tables to score each technique for the selection metrics 

based on the PHM implementation requirements and the inherent features of the 

techniques. The formal evaluation process shows that PF ranks highest which is the 

approach that was adopted for the RUL estimation of the transformer. Thus, validating 

the formal evaluation and selection process for prognostic techniques. 
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Table 3.11 - Ranking of Prognostic Techniques for Transformers based on PHM Implementation Requirements and Inherent Features of the Techniques 

Selection Metrics LR BLR ARIMA SVR RVM GPR KF EKF UKF PF 

Repeatability 0 1 1 0 1 1 0 1 0 1 

Data 0 0 1 0 1 1 0 1 1 1 

Uncertainty Representation 0 1 0 0 1 1 1 1 1 1 

Robustness 0 0.5 0 0.5 0.5 1 0.5 0.5 0.5 1 

Prediction Horizon 1 1 0 1 1 0.5 0 0 0 1 

Total Score 1 3.5 2 1.5 4.5 4.5 1.5 3.5 2.5 5 
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3.4.2. Circuit Breaker Prognostics 

Circuit breakers play valuable role in protecting the circuit from short circuits and 

overloads [140]. Failure precursor variables such as SF6 density, I2T, or arc timing are 

used to measure degradation of circuit breakers. For prognostics, LR has been used to 

estimate the number of days when the SF6 density within a breaker would reach a critical 

level known as lockout [132]. The design requirements for PHM [132] implementation 

that are interpreted into prognostics selection metrics are shown in Table 3.12: 

Table 3.12 - PHM Implementation Requirements for Circuit Breaker Prognostics 

PHM Implementation Requirements Requirement Interpretation 

The degradation parameter SF6 shows 
simple linear relationship and is 
relatively stable 

Data  
(Linear) 

Robustness  
(Low) 

Implementation Complexity 
(Low) 

The predictive model should be able to 
accommodate uncertainties using 
confidence intervals 

Uncertainty Representation  
(Confidence Intervals) 

The prediction horizon should be long 
Prediction Horizon  

(Long) 

 

The look-up tables for the prognostic technique selection metrics were used to score the 

techniques that are considered in this thesis. Table 3.13 shows the evaluation of 

techniques that utilises look up tables to score each technique for the selection metrics 

based on the PHM implementation requirements and the inherent features of the 

techniques. The formal evaluation process shows that LR ranks highest which is the 

approach that was adopted for the estimation of number of days when the SF6 density 

within a breaker would reach lockout stage. Thus, validating the formal evaluation and 

selection process for prognostic techniques. 
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Table 3.13 – Ranking of Prognostic Techniques for Circuit Breakers based on PHM Implementation Requirements and Inherent Features of the 
Techniques 

Selection Metrics LR BLR ARIMA SVR RVM GPR KF EKF UKF PF 

Data 1 1 0 1 0 0 1 0 0 0 

Robustness 1 0.5 1 0.5 0.5 0 0.5 0.5 0.5 0 

Implementation Complexity 1 1 1 0.5 1 0.5 1 0.5 0.5 0.5 

Uncertainty Representation 1 0 1 1 0 0 0 0 0 0 

Prediction Horizon 1 1 0 1 1 0.5 0 0 0 1 

Total Score 5 3.5 3 4 2.5 1 2.5 1 1 1.5 
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3.5. Implementation of Formal Evaluation Process for Nuclear 

Prognostics 

In this section, formal evaluation and selection of prognostic technique process is 

implemented for the application of steam turbines. In this research, prognostics is 

implemented to predict the RUL of steam turbine based on the failure progression due to 

the thermal expansion of the casing of a steam turbine (See Section 4.5.4). From the 

analysis of vibration data, a case study for the implementation of prognostics is extracted 

(See Section 4.5). This analysis was presented to maintenance engineers in the industry 

and based on the following discussion on prognostics implementation the design 

requirements were produced. Table 3.14 shows the interpretation of the design 

requirements into prognostics selection metrics.  

Table 3.14 - PHM Implementation Requirements for Steam Turbine Prognostics 

PHM Implementation Requirements 
Requirement 

Interpretation 

The degradation parameter shows relatively 
linear relationship 

Data  
(Linear) 

Technique should be able to accommodate 
uncertainties 

Robustness  
(Low) 

Technique should be implemented with existing 
toolkits and should have mathematical 
explicability 

Implementation Complexity 
(Low) 

Explicability  
(High) 

The estimated RUL should be fully determined by 
parameters and input values 

Repeatability  
(Deterministic) 

The predictive model should be able to 
accommodate uncertainties in a probabilistic 
manner 

Uncertainty Representation  
(Probability Distribution) 

The prediction horizon should be long 
Prediction Horizon  

(Long) 

Technique should be able to produce conservative 
results  

Accuracy  
(High) 

The time taken to estimate future failure 
progression, progression of parameters, and the 
RUL should be low 

Run Time 
(Low) 
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The look-up tables for the prognostic technique selection metrics were used to score the 

techniques that are considered in this thesis. Table 3.15 shows the evaluation of 

techniques that utilises look up tables to score each selection metric for the techniques 

based on the PHM implementation requirements and the inherent features of the 

techniques. 
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Table 3.15 - Ranking of Prognostic Techniques for Steam Turbine based on PHM Implementation Requirements and Inherent Features of the 
Techniques 

Selection Metrics LR BLR ARIMA SVR RVM GPR KF EKF UKF PF 

Repeatability 1 0 0 1 0 0 1 0 1 0 

Data 1 1 0 1 0 0 1 0 0 0 

Explicability 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 

Uncertainty Representation 0 1 0 0 1 1 1 1 1 1 

Implementation Complexity 1 1 1 0.5 1 0.5 1 0.5 0.5 0.5 

Run Time 1 1 0.5 1 0.5 0.5 0.5 0 0.5 0 

Accuracy 0 0.5 0 0.5 0.5 1 0.5 0.5 0.5 1 

Robustness 0 0.5 0 0.5 0.5 1 0.5 0.5 0.5 1 

Prediction Horizon 1 1 0 1 1 0.5 0 0 0 1 

Total Score 6 7 2.5 6.5 5 5 6 3 4.5 5 
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The formal evaluation process shows that the two techniques that rank highest are BLR 

and SVR. In this research, BLR and SVR are selected as probabilistic and non-probabilistic 

prognostic techniques for the implementation of prognostics. 

The selection metrics that are utilised in the formal evaluation and selection process 

provides the basic criteria for selecting a prognostic technique. Practitioners can adapt 

the evaluation and selection process for their requirements by ignoring the metrics that 

are not important for their implementation or by adding more selection metrics with 

their look-up tables to further expand the selection criteria.  Any additional technique can 

also be assessed by analysing the inherent features of the technique or assessing its 

applicability in literature by weighting the technique based on look-up tables of selection 

metrics which combines the PHM implementation requirements and the inherent 

features of the technique. Therefore, this enables the practitioners to make an informed 

decision for the selection of appropriate prognostic technique.  

3.6. Summary 

This chapter presents a review of the background and theory behind the mathematical 

techniques that are widely applied in prognostics literature. These techniques were 

formally assessed against the prognostics selection metrics using look-up tables. The 

look-up tables combine possible PHM implementation requirements and the inherent 

features of a technique to formally apply a weighting to a selection metric for a prognostic 

technique in order to assess their feasibility for prognostics implementation. Two 

prognostic applications in the field of power systems are evaluated in order to show the 

applicability and validity of the formal evaluation and selection process. After the 

validation, the evaluation process was implemented to select two prognostic techniques 

for nuclear prognostics. The evaluation process ranked BLR and SVR highest. Therefore, 

BLR and SVR were selected for prognostics implementation.   
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CHAPTER 4: STEAM TURBINE CONDITION 

MONITORING 

4.1. Introduction 

In this chapter, background information is presented on the steam turbine within a 

nuclear power station for readers unfamiliar with the terminology, practices, and 

technology utilised therein. Firstly, an overview of nuclear power plant steam turbine 

will be presented with a description of its subsystems and components. In addition, an 

introduction to the associated steam turbine instrumentation is presented with the type 

of measurements that are recorded for a condition-based maintenance analysis. This 

chapter also presents a problem that is associated with the steam turbine under 

observation. The preliminary analysis of the data that is collected to assess the health 

state of the steam turbine is presented. This preliminary analysis allowed extraction of 

the feature signal (case study) which was later used for prognostics implementation. 

4.2. Steam Turbine 

4.2.1. General Overview 

A Steam turbine is an important part of a nuclear power plant. It extracts and converts 

the energy content of steam into useful mechanical work. This process must be executed 

with maximum efficiency and reliability at minimum cost with minimum supervision and 

starting time. These objectives conflict with each other and the final outcome will be an 

acceptable compromise between them [141]. Almost without exception, modern large 

steam turbines are of the axial-flow type [142] as shown in Figure 4.1.  

 

Figure 4.1 - Axial-Flow Turbine [141] 
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The steam approaches a group of stages at one end, flows axially through the radially-

mounted blading and exhausts at the other end of the group stages. Figure 4.2 shows 

single-flow turbine which has the simplest configuration of blading.  

 

Figure 4.2 - Single-Flow Turbine [141] 

Group of stages within a turbine cylinder may be arranged for flow in opposite axial 

directions. For instance, in double-flow turbine as shown in Figure 4.3 group of stages are 

arranged so that the steam is admitted at the center of the cylinder and is divided to flow 

in opposite axial directions towards the ends of the rotor.  

 

Figure 4.3 - Double-Flow Turbine [141] 

For turbines of large output, it is normal to have several double-flow LP cylinders 

operating in parallel.  The double-flow arrangement reduces the axial thrust caused by 

the steam forces on the moving blades to zero and avoids excessively long blades which 

would be incurred by a single-flow arrangement [143]. Another type of arrangement 

which only reduces the axial thrust on the moving blades is the reverse-flow turbine. In 

this type of arrangement, the steam flows in one direction through one group of stages 

and is then inducted internally or externally to flow through a second group of stages in 

the opposite axial direction [142]. Figure 4.4 shows reverse-flow arrangement 
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Figure 4.4 - Reverse-Flow Turbine [141] 

Large machines use multi-cylinder design [143] as shown in Figure 4.5. The number of 

cylinders in turbine arrangements depends on terminal conditions and design 

considerations. A nuclear station would have one High Pressure (HP) turbine, one 

Intermediate Pressure (IP) turbine, and three Low Pressure (LP) turbines, rotating at 

3000 rpm for a 50Hz grid frequency [142]. The IP and LP turbines would probably be 

double-flow. The turbine with a number of cylinders on a single shaft is described as a 

tandem compound machine.  

 

 

Figure 4.5 - A Multi-Cylinder Turbine Arrangement 

The other main type is cross compound machine in which turbine cylinders are mounted 

on two separate parallel shafts driving two separate generators [144] as shown in Figure 

4.6. The steam connections and the auxiliary systems are arranged as for a single 

generating unit. 
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Figure 4.6 - A Cross-Compound Turbine Arrangement 

 

4.2.2. Turbine Components 

4.2.2.1. Turbine Blades 

The moving turbine blades convert the kinetic energy of the steam that has been 

accelerated in a nozzle or fixed blades into mechanical work on the turbine shaft. The 

impact of the steam on the blades produces a change in direction of motion of the steam 

which gives rise to a change in momentum and therefore to a force. The turbines can be 

classified as an impulse or reaction type based on the way by which the transfer of energy 

occurs in moving blades [145].  

In the impulse stage, the majority of the heat drop occurs in the stationary blading and 

the driving force on the stage arises from the change in momentum of the steam across 

the moving blades. Whereas in the reaction stage arrangement, steam approaches the 

moving blades with a velocity that is low and substantially axial in direction. 

Consequently, the driving force applied to the moving blades arises almost entirely from 

the reaction force of the steam as it accelerates through the moving blades. The impulse 

and the reaction stage arrangements are shown in Figure 4.7 
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Figure 4.7 - Impulse and Reaction Turbine Blading [141] 

 

4.2.2.2. Turbine Casing 

A turbine cylinder is essentially a pressure vessel with its weight supported at each end 

on the horizontal centerline. It is designed to withstand hoop stresses in the transverse 

plane, and to be very stiff in the longitudinal direction in order to maintain accurate 

clearances between the stationary and rotating parts of the turbine.  

The design is complicated by the need for internal access, all casings being split along 

their horizontal centerline, allowing the rotor to be inserted as a complete assembly. 

Substantial flanges and bolting are required to withstand the pressure forces at the 

horizontal joints. The relatively massive flanges respond more slowly to temperature 

changes than the rest of the casing, resulting in different rates of expansion and the 

setting up of temperature stresses and distortion, although these are minimised by the 

application of flange warming steam. Further stress complexities are set up by the gland 

housing and steam entry and exit passages [144].  

HP and IP casings are of cast construction and are circular in cross-section to minimise 

non-membrane stresses. Flanges, bolting, steam penetrations and other features are as 

far as possible symmetrically arranged to reduce thermal asymmetry and hence 

distortion. LP casings may be fabricated or a combination of castings and fabrications 

[145]. Figure 4.8, 4.9, and 4.10 show HP, IP and LP casing of double-shell design. 
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Figure 4.8 - Axial Section of an HP Turbine Cylinder [141] 

 

 

Figure 4.9 - Axial Section of an IP Turbine Cylinder [141] 
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Figure 4.10 - Axial Section of an LP Cylinder [141] 

To achieve maximum efficiency in a steam turbine, only small clearances are permitted 

between fixed and moving parts. These clearances must be maintained under all 

operating conditions, so the inner and outer casings must be supported in such a way as 

to maintain concentricity with the rotor as they expand and contract [142].  

The temperature change is greatest in the HP and IP cylinders. Therefore, axial expansion 

occurs mainly in HP and IP cylinders. The casings are supported to allow axial expansion 

and yet maintain the axial clearances between fixed and moving blades which may only 

be a few millimeters. Maintaining both concentricity and correct axial expansion leads to 

a complicated system of sliding supports and keys.  

4.2.2.3. Turbine Rotor 

Turbine rotor is the moving component of the steam turbine that carries turbine blades 

on its shaft. The moving blades penetrates between the rows of fixed blades because of 

the steam that is directed at a right angle for entry into the moving blades. The shafts of 
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the rotors are carried on bearings and are linked together and to the electrical generator. 

The linking of rotors is achieved by solid couplings.  

The turbine rotor is balanced both statically and dynamically. The main aim of balancing 

is to reduce the amplitude of vibration to negligible level. The rotor must also be properly 

aligned in order to achieve satisfactory dynamic behaviour of the running shaft line. A 

long shaft naturally bends under its own weight to form a catenary, but nevertheless 

revolves around its curved centreline during rotation [145]. The alignment is arranged 

so that the shaft system has minimum bending moments at the shaft couplings. Figure 

4.11 shows a typical shaft catenary for a large turbine. 

 

Figure 4.11 - Typical Shaft Catenary for a Large Steam Turbine 

Allowance must also be made for differential expansion between the rotors and the 

casings during thermal transients. Both must be free to expand without upsetting the 

alignment, while allowing the rotors to expand more quickly and to a greater degree than 

the casing.  

4.2.2.4. Couplings 

The couplings are used to link the shafts of multi-cylinder large turbine essentially to 

transmit torque. The couplings also provide the means to allow relative angular 

misalignment, transmit axial thrust, and ensure axial location or allow relative axial 



 91 

movement. The main types of couplings include flexible, semi-flexible, and rigid. For large 

multi-cylinder steam turbines, it is common practice to use rigid couplings. Figure 4.12 

shows the cross-section of a rigid coupling. 

 

Figure 4.12 - Rigid Monobloc Coupling [142] 

4.2.2.5. Journal Bearings 

The purpose of a turbine bearing is to retain the rotor system in its correct radial position, 

relative to the cylinders. In addition, the turbine bearing must provide a low friction 

support which will withstand the static and dynamic loads of shaft rotation, together with 

the frictional and conducted heat, and to remain free from maintenance except at major 

outages.  

Two bearings are normally support each section of the turbine shaft, although, with solid 

couplings, some designs only use one bearing between cylinders in order to save length 

and bearing losses. Plain white-metalled journal bearings are invariably used because of 

their high loading capacity, reliability, and absence of wear due to hydro-dynamically 

generated films of lubricating oil [141]. A main rotor bearing showing steel-back white 

metal liner is illustrated in Figure 4.13 
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Figure 4.13 - Main Rotor Bearing [142] 

Instrumentation specific to the performance of the bearing normally comprises white-

metal temperature, and oil inlet pressure and temperature. Provision is also made at the 

bearing housing to monitor vibration modes. Jacking oil pressure is monitored locally at 

each bearing.  

4.2.2.6. Thrust Bearing 

The purpose of the turbine thrust bearing is to provide axial location for the turbine 

rotors relative to the cylinders. To achieve this, it must be able to withstand the unbalance 

thrusts due to blade reaction and steam pressure acting on unbalanced areas. It must be 

free from maintenance, except at major outages [146]. Since it is universal practice to use 

solid couplings between rotors, only one thrust bearing is required in each complete shaft 

line. It is normally located close to the areas where blade/cylinder clearances are 

minimum and operating temperatures are highest and is split on the horizontal split 

centerline for ease of assembly and maintenance [144]. Figure 4.14 shows tilting thrust 

pad bearing 
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Figure 4.14 - Tilting Pad Thrust Bearing [142] 

4.2.2.7. Pedestals 

The main purpose of the bearing pedestals is to support the turbine rotor, via the journal 

bearings, in a fixed relationship to the cylinders so that gland clearances are maintained 

in all phases of operation. Mounted within (or on) the enclosure are all necessary 

instrumentation connections (e.g. bearing temperature, differential expansion pick-ups), 

together with eccentricity and vibration transducers. A manometric level system is 

attached to the pedestals adjacent to each bearing to detect misalignment due to support 

structure settlement [142].  

Particular care is taken to ventilate around the pedestals, keeping them cool so that any 

vertical thermal expansion effects, which might disturb the overall vertical alignment of 

the turbine, are minimised. In addition, those pedestals adjacent to the high temperature 

components of the turbine are frequently protected by thermal radiation shields, with 

provision for air circulation in the space between the shield and the pedestal structure, 

also to minimise thermal expansion effects.  

4.3. Plant State and Operating Conditions 

The operating conditions of the plant have a considerable bearing on the type and 

likelihood of fault situations arising. The information about the operational states plays 

an important role in finding the root-causes of faults identified by analysis of dynamic 
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behaviour [147]. The eight operational states in the general order in which they are 

experienced are as follows: Stationary; Shut Down, Start Up; Critical Speed; Load 

Transient; Thermal Transient; Steady State; Run Down. 

4.3.1. Stationary 

The plant is considered to be in stationary state when the shafting is at rest. However, the 

plant may be in a wide range of conditions such as jacking oil system in or out of service, 

main lubricating oil system in or out of service, thermal condition of the plant anywhere 

between fully cold to fully heat-soaked. In addition, the plant, in its broadest term (i.e. 

turbine-generator, steam raising plant or auxiliaries) could be undergoing maintenance 

work.  

4.3.2. Shut Down 

The plant is in shutdown state when the shafting is on electric turning gear (ETG) and the 

machinery is cold or cooling down following a period of generation. The conditions for 

plant shut-down or start-up apply whenever the plant is either taken down or brought 

back into service.  

4.3.3. Start Up 

Startup is the operational state of the machine when a set of activities that are needed to 

take the plant from the conditions of Shut Down through to the actual synchronisation of 

the machine’s speed with Grid frequency and the closing of the circuit breaker. Startup is 

the most critical time for a turbine-generator, with many potentially hazardous 

conditions. A high proportion of the hazards directly relate to the thermal state of the 

plant at the time of actually putting steam to the machine, referred to as steam-to-set 

(STS) [147].  

4.3.4. Critical Speed 

Critical speed indicates that the rotating speed of the machine is relatively close to the 

resonant frequency of the machine. During critical speed, high vibrations are observed 

and they can build up to a dangerous level. The critical speed is either above or below 

running speed, depending on rotor construction. If below, care must be exercised during 

run-up to ensure that the critical is passed as quickly as possible.   

4.3.5. Load Transient 

Change of load imply steam pressure and temperature changes in the turbine, and 

additionally, then imply that the excitation current of the generator rotor will also be 
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changed. Load transient in its broadest sense has an impact on generation. When machine 

is in hot or cold state, load conditions apply in order to avoid thermal stressing and the 

rise of excitation current.  

4.3.6. Thermal Transient 

The thermal transients in this category are those which occur when the unit is generating, 

but not those directly attributable to the power generated. They relate to the operation 

of auxiliary systems. 

4.3.7. Steady State 

Steady state is the normal operation of plant at a steady load and with constant thermal 

conditions. Steady state is also referred as online state. The Online state is the ideal state 

in which short-term and long-term trends can be examined.  

4.3.8. Run Down 

Run down usually indicates the shutdown of the machine which can be due to intentional 

trip or unintentional trip. The intentional trips are conducted to carry out tests on the 

machine and after the tests machine is resynchronised with the grid. However, 

unintentional trips may represent faulty conditions and machine is only returned to the 

service after the problem has been diagnosed and corrected. 

4.4. Steam Turbine Instrumentation 

The main purpose of the steam turbine instrumentation is to provide reliable information 

to operator in order to achieve high plant efficiency. The correct interpretation of the 

information provided allows the plant to be run-up and loaded in the minimum time 

consistent with safe operation. Optimum conditions for a given installation are 

determined by careful analysis of the data obtained during commissioning [148]. 

Deviation of a reading from the normal range established during commissioning provides 

advance warning of problems so that corrective action can be taken in time. A diagram of 

typical turbine supervisory instrumentation installation is shown in Figure 4.15 
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Figure 4.15 - Typical Steam Turbine Instrumentation Arrangement 

There are five main types of supervisory measurements that are taken in steam turbines 

[143] [148]. These measurements include: vibration; eccentricity; phase and speed; rotor 

and casing movement and expansion; temperature.  

4.4.1. Vibration Measurements 

In the measurement of vibration, a transducer converts the mechanical vibratory motion 

of the plant into another form of energy, usually voltage, which is directly proportional to 

displacement, velocity or acceleration. The moving coil velocity transducer is commonly 

used to measure vibrations. There is usually one transducer for a bearing and the 

vibration measurements are taken in vertical direction as shown in Figure 4.16.  

 

Figure 4.16 - Section Through a Velocity Transducer [142] 
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4.4.2. Eccentricity Measurements 

Eccentricity occurs when the center of rotation is at an offset from the geometric 

centerline of the shaft. For practical reasons the measurement is made on the shaft within 

the bearing pedestal. The change in radial airgap within the cylinder is inferred from this 

measurement. To measure shaft eccentricity, a non-contacting proximity probes, 

operating on the eddy current principle are used in horizontal direction. The eccentricity 

measurement is the most sensitive source of changes in dynamic behaviour and can be 

taken at the sustainable turning speed.  

4.4.3. Phase and Speed Measurement 

Phase measurements provide further insight into machine diagnostics. It is further used 

for orbital analysis, rotor balancing, and measuring speed. It is best practice to measure 

phase using eddy current probe at two quite separate reference points.  

4.4.4. Rotor and Casing Movement and Expansion Measurements 

The movement and expansion of individual casings is measured in order to ensure that 

the alignment between pedestals remains within acceptable limits. Rotor clearances are 

also maintained within the acceptable limits by measuring the movement and expansion 

of the rotor.  

4.4.5. Temperature Measurements 

Supervisory temperature measurements comprise casing temperatures and steam to 

metal temperature differences and thermal gradients. These measurements are provided 

by means of thermocouples. 

4.5. Steam Turbine Maintenance Approach 

The measurements captured using steam turbine instrumentation allow the 

implementation of CBM strategy as they provide the current state of an equipment. Thus, 

enabling the operator to perform predictive and pro-active maintenance actions based 

on the observed health of an equipment. CBM strategy involves using real-time system 

monitoring and data processing. Another capability that may form part of a CBM system 

is an ability to provide an estimate of the RUL of the system or component being 

monitored. This type of functionality is known as prognostics, as opposed to diagnostics 

which is used to assess the current condition of a monitored system.  

A CBM approach promises a range of improvements over existing approaches, with a 

potential reduction in overall maintenance costs being one of the primary drivers for 
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developing such approaches. The cost associated with each of the various maintenance 

approaches is depicted in Figure 1.1. A corrective maintenance approach has a relatively 

low maintenance cost (minimal preventative actions), but high-performance costs 

associated with the high cost of operational failures. In contrast, preventative 

maintenance generally has a low operating cost, associated with reduced instances of in-

service failures, but often uses very conservative estimates regarding the probability of 

component failures and so has a high maintenance cost, associated with the removal of 

components before they have reached the end of their useful lives. It would seem, 

therefore, that the most cost-efficient approach is to undertake maintenance when there 

is objective evidence of need, i.e. condition-based maintenance.  

The development of CBM approaches has been enabled by developments and 

advancements in sensor technologies, data collection, storage and processing 

capabilities, and continuous improvements in algorithms and data analysis techniques. 

CBM systems for steam turbines are founded upon the ability to infer equipment 

condition using data collected from the steam turbine instrumentation. It incorporates 

both diagnostic and prognostic capabilities. The distinguishing factor between diagnostic 

and prognostic capabilities is the nature of the analysis. Diagnostics involves posterior 

event analysis (i.e. identifying the occurrence of an event which has already happened), 

while prognostics is concerned with prior event analysis (i.e. predicting the future 

behaviour of the system).  

4.6. Problem Definition 

The general arrangement for handling thermal expansion in a steam turbine is shown in 

Figure 4.17. The outer casing palms of the HP cylinder lean on the transversal keys 

attached to the bearing pedestals. The transversal keys guide the thermal expansion of 

the casing. The bottom of the bearing pedestals is attached to the longitudinal keys 

allowing the bearing pedestal to slide on the foundation frame when the metal 

temperature of the turbine varies during the start-up, runup and rundown operating 

conditions [149]. 



 99 

 

Figure 4.17 - General Steam Turbine Arrangement for Thermal Expansion [149] 

The entire weight of the steam turbine rests on the bearing pedestals, as a result of which 

substantial frictional forces are produced which hinder the axial movement of the bearing 

pedestal along the foundation frame. This can be manifested in an increased 

displacement of the HP shaft, and increased level of vibrations within the bearings. HP 

gap measurements also indicate the level of clearances between the turbine blading and 

the casing. The fault is slow and progressive, in that without intervention the level of 

displacement increases over time which can result in distortion of casing, increased 

vibration, damage to the turbine bearings and couplings etc.  However, if the turbine is 

taken offline or stopped and the casing cools sufficiently, the displacement may reduce 

as well.  

This fault was observed within one turbine, fully analysed by the engineers, and 

corrective action taken by changing the interface between the pedestal and foundation 

from injected grease (which was inserted at first as a remedial solution to reduce friction) 

to a self-lubricating graphite-impregnated material.  

4.7. Preliminary Data Analysis and Data Transformation 

4.7.1. Data 

Data used in this work was obtained using the PlantProtech™ Analyser in proprietary 

format. A parser program was written in C++ to convert the data from proprietary format 

into MATLAB readable format. Within this research, data mining was used to discover 

trends and features within the data that was collected from an operational nuclear steam 

turbine in the UK. The obtained data is used for the development of degradation-based 

prognostics to predict the remaining useful life of the steam turbine using degradation 
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parameters that are specific to the steam turbine operating in specific conditions and an 

environment.  

The data contained 6685 files. Fields of data records varied from 1 to 4032 in these files. 

Typically, a single file contains 144 fields of data for a single day when conditions are 

stable operationally (i.e. online). However, the sampling frequency of the data varies 

depending on the operational status of the machine. AC, DC and Digital channels were 

used to record the data. There are 22 AC channels, which were used to record bearing 

velocity and shaft displacements at the different stages of the turbine. The number of DC 

channels varied from 16 to 172. However, the main DC channel parameter that was used 

for analysis is DC Channel 1 (Generated Power (MW)) as it indicated the supervisory 

operational status of the machine. Whereas, other DC Channels were deemed irrelevant 

for data analysis and were discarded after discussions with industrial experts. The file 

also contained data from 8 Digital channels.  

The overall summary of the data extracted from a single file is shown in Table 4.1. 
 

Table 4.1 - Overall Summary of Data File 

AC Channel 
1-22 

DC Channel 
1 – 16/172 

Digital Channel 
1 - 8 

Rotor 
Speed 

Elapsed 
Time 

FFT Data 

 
The data was then segregated based on operational states. The operational states are 

discussed in Section 4.3. For data analysis, online data was selected as this was the largest 

dataset and it is anticipated that when operating in online mode, the machinery response 

should be fairly consistent and any unusual behaviour and degradation should be easier 

to identify.  

4.7.2. Preliminary Data Analysis 

Mean values for each file were calculated to allow this large volume of data to be 

summarised. In other words, single file was represented by one value, the mean value of 

that parameter. For instance, there were 501406 measurements recorded for each 

parameter and by calculating the mean these measurements can be summarised by 6420 

mean values. This allowed the full dataset to be analysed at a coarse resolution, but will 

allow the major trends in the data to be identified.  

The initial analysis of the data involved assessing the affect of mean power on the mean 

vibration levels. It is essential that the operational routines are correctly identified so that 
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higher vibration levels during these operational routines are not mistaken for machinery 

faults. Figure 4.17 shows the online profile of the mean power  

 

 
Figure 4.18 - Mean Online Power 

 

From Figure 4.18, it can be seen that mean power is relatively steady. The maximum 

mean power generated is 680MW at 3000rpm approximately, and the minimum power 

generated is 0MW. In the majority of cases mean power lies within the band of 635MW – 

680MW. It is also observed that power fluctuates to approximately 30% and 70% of 

relatively steady power, which can be seen in the histogram of the mean power shown in 

Figure 4.19 

 

Figure 4.19 - Mean Online Power Histogram 
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The peaks at 230MW and 460MW have been identified as being due to refuelling events. 

Two such events are shown in Figure 4.20 and Figure 4.21 

 
Figure 4.20 - Refuelling Event 1 

 

 
Figure 4.21 - Refuelling Event 2 

These refuelling events are considered normal, as they are part of the operational routine. 

The data relating to refuelling events was removed from the set for initial analysis, as 

changes in power were clearly seen to influence vibration and displacement data. For 

example, Figure 4.22 shows mean online bearing 1 vibration and it can be seen that 

bearing vibration fluctuates with changes in power. This makes it difficult to identify any 

pattern visually by considering this full set of data across all power levels.  
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Figure 4.22 - Mean Online Bearing 1 Vibration vs Mean Online Power 

However, due to large variation in mean power, it was believed that data should be 

subdivided further in order to identify any patterns. A new data set called Full Power 

Dataset was created, based on the histogram of mean online power (Power ≥ 560MW) 

as shown in Figure 4.23. 

 

Figure 4.23 - Histogram of Mean Online Power ≥ 𝟓𝟔𝟎MW 

From Figure 4.22, it can be seen that most of the data is within the range of 637MW – 

681MW (±4% of 667MW). Therefore, this range is used to create Full Power Dataset. It 

is anticipated that the machinery response should be fairly consistent and any 
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operational changes and deviations due a fault should be easier to identify. Figure 4.24 

shows mean online full power 

 

 

Figure 4.24 - Mean Online Full Power 

The full power dataset was used to create visualisations of vibrations and displacements. 

The analysis of vibration and displacement trends clearly showed patterns in the HP 

displacement of a pedestal in the HP turbine stage. Figure 4.25 shows full power mean 

online HP displacement  

 

Figure 4.25 - Full Power Mean Online HP Displacement 
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4.7.3. Change Point Analysis 

Change point analysis is a technique used to identify points in which data parameters 

change notably over time [150]. This can be used to define step changes in time series 

data or detect subtle changes in data missed by visual inspection. Change point analysis 

also allows different modes of operation to be found within the data.  

Change point analysis can be performed through calculating the cumulative sum of 

differences (CUMSUM) of a data parameter from its mean value [150]. This is shown in 

Equation 4.1 where 𝐶𝑖 is the CUMSUM at time step 𝑖, 𝐶𝑖−1 is the CUMSUM at the previous 

time step, 𝑥𝑖  is the data value at time step 𝑖 and 𝑥̅ is the mean of the data. Changes in the 

gradient of 𝐶 can be used to identify and define change points. 

 

 𝐶𝑖 =  𝐶𝑖−1 + (𝑥𝑖 − 𝑥̅) (4.1) 

 

Figure 4.26 shows CUMSUM plot for detecting multiple change points in HP displacement. 

Two change points in the CUMSUM plot indicate the change in operational mode and the 

point in time at which the HP displacement starts to increase.  

 

Figure 4.26 - CUMSUM Plot of HP Displacement 

This technique identifies change points in iterations. For HP displacement, two iterations 

were performed based on the observation of the online full power HP displacement data. 

In the first iteration, the cumulative sum of the difference of the online full power HP 

displacement data from its mean was calculated, which resulted in the change point 1 as 
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shown in Figure 4.26. This change point is the lowest cumulative sum of the difference 

between the data points and their mean.  

In iteration 2, the lowest cumulative sum of the difference between data points before the 

change point 1 and their mean is calculated. The lowest cumulative sum in iteration 2 is 

change point 2. 

Change point analysis reveals three patterns in HP displacement over time as shown in 

Figure 4.27. The patterns are labelled as with region numbers. In region 1, there is very 

low HP displacement. After this region a step change is observed which is due to a change 

in operational conditions. In region 2, HP displacement tends to remain relatively steady 

with fluctuations towards the start. In region 3, a ramp up in HP displacement can be 

observed.  

 

Figure 4.27 - Identified Patterns in HP Displacement and HP Gap through Change Point Analysis  

The first change point as shown in Figure 4.26 is used to isolate the online full power HP 

displacement data of region 3 as shown in Figure 4.27. This dataset forms the HP ramp 

case study, which is shown in Figure 4.28 
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Figure 4.28 - HP Ramp Case Study with gaps 

The gaps in the data are due to the removal of the outages/stoppage durations, online 

data captured below full power, high vibrations experienced during critical speed state 

and other vibration data captured during the state of run up. The gaps in the data were 

removed and the x-axis was converted into Time Index from date format ‘dd/mm/yyyy’ 

by calculating the cumulative sum of time differences between the data points. Figure 

4.29 shows four patterns that were observed in HP Ramp Case Study. The patterns are 

labelled as the region numbers.  In region 1, HP displacement starts with the step and 

then tends to increase steadily. After this region, HP displacement ramps very sharply. 

To control this sharp increase in HP displacement, maintenance is performed which 

resets the HP displacement as shown at the start of region 3. In region 3, HP displacement 

increases sharply again and another maintenance is carried out to rectify the problem 

(See Section 4.5.4). The HP displacement in region 4 settles.  
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Figure 4.29 - HP Ramp Case Study with Labelled Regions 

4.8. Synthetic Data Generation 

The synthetic data provides a powerful method to validate the performance of a given 

prognostics algorithm because the characteristics of the synthetic data closely mimics the 

real case study. To achieve such resemblance, a three-step process is followed for 

generating the synthetic data. In first step, underlying model of the case study data is 

established by fitting curves to HP displacement data shown in Figure 4.28 . In second 

step, the variance within the case study data is captured by modelling noise. In third step, 

the underlying model is combined with the noise model to randomly generate the 

synthetic data. These steps for generating the synthetic data are explained below 

4.8.1. Curve Fitting 

The curve fitting models of first order polynomial, second order polynomial, third order 

polynomial, and exponential models were applied to the HP ramp case study as shown in 

Figure 4.30 in order to characterise the underlying model of the case study. 
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Figure 4.30 - Curve Fitting for Underlying Model Discovery 

The R-square errors (measured on the scale of 0-1, where the closer the value to 1, the 

better the fit of the model) of the candidate models are given in Table 4.2 which shows 

that the second order polynomial and the third order polynomial perform marginally 

better than the first order polynomial. However, the first order polynomial was selected 

as the underlying model for the case study as it provides a balance between goodness of 

the fit and simplicity of predictive algorithm implementation.  

Table 4.2 - R-Squared Values of Curve Fitting Models 

Fitting Models R-squared 
Error 

First order polynomial  0.6392 
Second order polynomial 0.7046 
Third order polynomial 0.7048 
Exponential 0.6097 

 

It is noted that there is room for improvement here, by selecting a more representative 

degradation model, particularly one accounting for periods of inactivity where no 

degradation takes place. However, for the purposes of generating a baseline of synthetic 

data, this first order polynomial fit was deemed adequate.  

4.8.2. Noise Modelling 

The region 2 of the full power HP displacement as shown in Figure 4.27 is used to model 

noise as the HP displacement remained relatively stable in region 2. The residuals for the 

underlying model (Polynomial Order 1) of region 2 were estimated by calculating the 
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difference between the region 2 data points and model data points. These residuals 

represent noise of the real data signal. The distribution of these residuals is shown in 

Figure 4.31. 

 
Figure 4.31 - Noise/Residual Distribution 

The residuals’ distribution was characterised based on its statistical moments and it 

approximately follows a Gaussian (Normal) distribution.  

4.8.3. Synthetic Data Generation 

Case study data can simply be generated by combining the underlying model of the case 

study and the noise model together. By introducing small variation in the polynomial 

parameters of the underlying model a wider range of data can be generated, while still 

retaining the underlying characteristic of the degradation. A sample of synthetic case 

study data is shown in Figure 4.32. 
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Figure 4.32 - Sample of Synthetic Case Study Data 

The gaps in the synthetic data replicate the gaps in the case study data. The comparison 

of the HP displacement with the generated synthetic data is shown in Figure 4.33.  

 

Figure 4.33 - Comparison of HP Displacement Case Study Data and Synthetic Data 

The differences between the actual case study and the synthetic data tend to appear later 

in the data because of the maintenance carried out to replace injected grease to a self-

lubricating graphite-impregnated material. Table 4.3 shows the comparison of the 

parameters of the case study and the generated synthetic data. 
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Table 4.3 - Parameters of HP Displacement Case Study Data and Synthetic Data 

Parameters Synthetic Data HP Displacement 
Case Study 

Mean 57.182 57.174 
Variance 126.850 196.467 
Slope (m) 0.030 0.030 
Intercept (c) 45.090 45.090 

 

The mean, slope and the intercept values of both datasets are similar. However, the 

variance of the datasets is different which is due to different noise models of the datasets. 

The synthetic data is generated based on the underlying model and the noise model of 

the region 2 of the HP displacement. As shown in Figure 4.27, the data points in region 2 

of the HP displacement are very close to the fit as compared to the data points in region 

3. Therefore, it was expected that the variance of the synthetic data will be smaller than 

the variance of the HP displacement case study.  This comparative analysis of the case 

study with the generated synthetic data shows that synthetic data is relatively similar to 

the case study. By varying the slope, intercept, and the variance of the noise model, wide 

range of data scenarios can be generated for the validation of prognostics algorithms. A 

sample of synthetic case study data that was generated without gaps is shown in Figure 

4.34. 

 

Figure 4.34 - Synthetic Data without Maintenance Intervals 

Another sample of synthetic case study data that was generated to accommodate 

maintenance repairs is shown in Figure 4.35. In this sample of data, maintenance is 

randomly introduced.  
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Figure 4.35 - Synthetic Data with Maintenance Intervals 

In the synthetic data with maintenance intervals, equipment deterioration is assumed to 

be continuous. Though, after maintenance machine health do not return to “as good as 

new” but the changes in machine health are simulated. This data set also simulates 

different rates of degradation as indicated by the linear fits of the data segments. This 

synthetic data with maintenance intervals is used to validate the performance of 

prognostics algorithms that are adapted to accommodate maintenance incorporating 

effects of maintenance actions. 

4.9. Summary 

In this chapter, the background information on the steam turbine of a nuclear power 

plant was presented. An overview of the main components of the steam turbine was 

discussed, beginning with the description of the major constituent parts. Each part of the 

steam turbine was presented in such detail that the function of these components was 

ultimately described. In addition, the reader was also introduced to the associated plant 

states, operating conditions, and steam turbine instrumentation. This chapter also 

describes the analysis on the data that was collected using the associated steam turbine 

instruments. This analysis allowed extraction of the case study datasets which were later 

used to test the implementation of prognostics technique that were adapted for 

maintenance intervals. To validate the effective implementation of the prognostic 

algorithms, synthetic data was generated based on the underlying degradation and noise 

model. 
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CHAPTER 5: BAYESIAN LINEAR REGRESSION 

(BLR) FOR STEAM TURBINE PROGNOSTICS  

5.1. Introduction 

Prognostics is very important aspect of condition-based maintenance as it provides 

operator and maintenance personal with the decision support for maintenance in order 

to avoid equipment failure in time and in cost-effective manner.  The inherent 

uncertainties associated with the generation of long-term predictions of equipment 

health affect the performance of prognostic algorithms. In this chapter, the development 

of Bayesian Linear Regression (BLR) as a prognostic technique for predicting remaining 

useful life (RUL) of a nuclear steam turbine is presented. The technique is capable of 

representing and managing uncertainties that are associated with predicting the future 

behaviour of degrading equipment. A real-world case study data from an operational 

nuclear power plant in the UK is used to test the newly developed prognostic algorithm. 

To further validate the performance, a synthetic case study is also used. The BLR is 

adapted to accommodate maintenance in order to provide better estimation of RUL by 

updating the parameters of the algorithm. The adapted algorithm is tested for different 

post maintenance scenarios using case studies. 

5.2. Bayesian Linear Regression for Prognostics 

Bayesian Linear Regression (BLR) is a statistical framework of linear regression that 

utilises Bayesian inference to update prior probability of model parameters into 

posterior probability by incorporating the evidence provided by the data in the form of 

the likelihood function. Thus, providing the ability to track model uncertainty. The 

resulting generalised degradation model can be used to obtain predictive degradation at 

a given point in time. In comparison to BLR, LR minimises SSR error to estimate model 

parameters as single estimates.  

For prognostics implementation, the BLR framework as shown in Figure 3.1 is extended 

in order to obtain warning threshold breach time distribution and the remaining useful 

life (RUL) of degrading equipment. Figure 5.1 shows extension of BLR framework for 

prognostics implementation 
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Figure 5.1 - BLR Framework extended for prognostics implementation 

The following subsections describe warning threshold breach time distribution and 

estimation of RUL of degrading equipment.  

5.2.1. Warning Threshold Breach Time Distribution 

The application of BLR for prognostics places two requirements on the handling of the 

threshold. As discussed in Chapter 4, the HP displacement is used to form a real-world 

case study for prognostics. The case study was also used to generate synthetic data for 

prognostics validation. The intervention threshold is derived from ISO 7919-2:2009 

[151], an industry standard which is used to establish operational vibrational limits that 

take the form of alarms and trips. The limits are established when a new steam turbine is 

commissioned and in the industry these limits are also referred as acceptance zones. The 

ISO standard categorises acceptance zones into four categories of zone A, B, C, and D to 

permit the evaluation of vibration severity and to provide guidelines on possible actions. 

In this research, zone boundary B/C is used to define a warning threshold at 82.5 𝜇𝑚 of 

displacement. That means that when displacement breaches this threshold, 𝑦𝑇ℎ𝑟𝑒𝑠ℎ, an 

intervention is required by the plant operator before more serious limits are reached and 

damage to the machine is occurred.  

Within the case study data, the point of threshold breach after consultation with 

industrial experts has been defined as the mean time of the first 20 data points to breach 

𝑦𝑇ℎ𝑟𝑒𝑠ℎ. This was chosen because a single data point may breach the threshold due to 
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transient behaviour, but 20 data points represents a more consistent trend. This mean 

time of threshold breach is considered the true end-of-life point that the prognostic 

system should predict.  

Secondly, early predictions are preferred over late predictions. In order to reduce the 

chance of late predictions, a Warning Threshold Breach Time Distribution is obtained by 

noting all possible predicted threshold breach times 𝑡. The predicted threshold breach 

time 𝑡 is the predicted end-of-life point when the mean of the predictive distribution 𝑦𝑛𝑒𝑤 

reaches or exceeds the threshold 𝑦𝑇ℎ𝑟𝑒𝑠ℎ. Together, all values of 𝑡 give a distribution of 

predictions.  

A final prediction, 𝑇, is chosen as the time two standard deviations below the mean of this 

distribution. If the mean of breach times 𝑡 was chosen as 𝑇, there would be an equal 

chance of early and late predictions. By selecting an earlier point, late predictions should 

be less likely. 

5.2.2. Estimation of RUL 

RUL is the remaining time before the degradation signal crosses the threshold and can be 

calculated as:  

 𝑅𝑈𝐿 = 𝑇 − 𝑥𝑡 (5.1) 

 

where 𝑇 is the warning threshold breach time and 𝑥𝑡 is the current time or the time of the 

prognosis.  

5.2.3. BLR Application: HP Displacement Case Study 

The HP displacement case study was used to assess the performance of the developed 

algorithm. Figure 5.2 and Figure 5.3 show RUL estimates when 300 and 400 data points 

of the HP displacement case study are used respectively. It can be seen that the 

implemented algorithm estimates the RUL of the steam turbine using the case study data 

(blue dots) and the warning threshold (red dotted line). The warning threshold (See 

Section 5.2.1, for detailed interpretation) provides the means for maintenance 

intervention before serious damage to the machine is occurred.  
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Figure 5.2 - RUL Predictions: 300 Data Points 

 

Figure 5.3 - RUL Predictions: 400 Data Points 

The distributions of warning threshold breach times t for the batch of 300 and 400 data 

points are shown in Figure 5.4 and Figure 5.5.  
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Figure 5.4 - Warning Threshold Breach Time Predictions: 300 Data Points 

 

Figure 5.5 - Warning Threshold Breach Time Predictions: 400 Data Pints 

 

As described in Section 5.2.1, a value of two standard deviations from the mean was 

chosen as the warning threshold breach time 𝑇. The case study contains data points that 

exceed the warning threshold. To evaluate the performance of the algorithm, estimates 

of true RUL and predicted RUL are compared. True RUL is the difference between the 

average of the first 20 breach times (i.e. data points breaching the warning threshold) 
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and the time of the prognosis (i.e. data points used for prognostic algorithm). Whereas, 

the predicted RUL is the difference between the average of the first of 20 predicted breach 

times and the time of prognosis. The comparison of true RUL and predicted RUL is given 

in Table 5.1.  

Table 5.1 - Early Predictions: Comparison of True RUL and Predicted RUL 

Set of Data 
Points 

True RUL 
(Days) 

Predicted 
RUL (Days) 

Prediction 
(Early or Late) 

300 726 480 250 Early 
350 676 396 280 Early 
400 626 414 212 Early 
450 576 502 74 Early 

 

The results show that when 300, 350, 400 and 450 data points of the HP displacement 

case study are fed into the BLR framework, early prediction of warning threshold breach 

is observed which is due to increase in HP displacement data just before the time of 

prognosis (represented as solid green lines in Figure 5.2 and Figure 5.3). It should also 

be noted that due to the slow and progressive nature of the fault, large values of RUL 

predictions are observed.  

As mentioned above, the BLR algorithm can provide predictions of time remaining until 

displacement breaches the warning threshold. However, there are two crucial aspects to 

consider further.  

First, the errors in Table 5.1 are generally large. If the error is over 200 days, there is a 

significant amount of remaining life that may be lost through early scheduling of 

maintenance. While early predictions are preferred, overall accuracy is also important.  

Secondly, and more critically, the performance of the algorithm tends to vary with 

different amounts of input data. For instance, when batches of 500 and 900 data points 

are used, the predictions are late as shown in Figure 5.6 and Figure 5.7.  
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Figure 5.6 - Late RUL Predictions: 500 Data Points 

 

Figure 5.7 - Late RUL Predictions: 900 Data Points 

The comparison of true RUL and predicted RUL is given in Table 5.2. 

Table 5.2 - Late Predictions: Comparison of True RUL and Predicted RUL 

Set of Data 
Points 

True RUL 
(Days) 

Predicted 
RUL (Days) 

Prediction 
(Early or Late) 

250 776 941 165 Late 
500 526 559 33 Late 
750 276 575 299 Late 
900 126 745 619 Late 
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The results show that the technique does generate late predictions. When it may be 

expected that performance improves with more data, in fact the predictions become later 

and less accurate when derived from more data. Reasons for this performance were 

considered in detail. The original case study data was re-examined alongside the BLR 

performance. It is clear that the technique is performing correctly, as the predicted linear 

trend updates as new data is added. However, while the case study exhibits an overall 

linear trend, the short-term behaviour captures some additional process. The technique 

is affected by the outliers (i.e. data points that are significantly away from mean), 

resulting in skewing the distributions. However, as more data becomes available the 

effect of outliers tend to diminish.  The BLR predictions are also highly dependent on the 

trend of the data at the prediction time 𝑥𝑡, and the technique has difficulty in separating 

the long term and short-term behaviour. 

As mentioned in Section 4.5 of Chapter 4, the raw data was transformed into the Full 

Power dataset by removing the refuelling data, outages/stoppage durations, online data 

captured below full power, and other vibration data captured during the state of run up 

which will almost certainly affect the degradation. The turbine will have the chance to 

cool down and therefore, a temporary reduction in vibration levels would be seen. In 

addition, the fault was recognised during the case study time period and maintenance 

actions were taken. These maintenance actions resulted in reducing the vibration levels. 

While BLR is able to make predictions when this fault type occurs, specifics of the 

application domain mean that an alternative data set such as synthetic data must be 

considered in order to validate the performance of BLR. The results also show that in 

order to enhance the performance and efficacy of BLR application, post-maintenance 

effects must also be incorporated.  

5.2.4. BLR Application: Synthetic Case Study 

To validate the performance of BLR under constant degrading conditions, synthetic case 

study data as shown in Figure 4.34 was used. In this synthetic data set, constant 

degradation of steam turbine is assumed and the steam turbine does not undergo any 

maintenance before it reaches the warning threshold. Figure 5.8 and Figure 5.9 show RUL 

estimates when 250 and 500 data points of the synthetic HP displacement case study are 

used respectively. It can be seen that the BLR estimates RUL using the synthetic data and 

the warning threshold.  
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Figure 5.8 - RUL Predictions: 250 Synthetic Data Points 

 

Figure 5.9 - RUL Predictions: 500 Synthetic Data Points 

The performance of the BLR under constant degrading conditions is recorded in Table 

5.3 

Table 5.3 - Synthetic Data Performance Assessment 

Set of Data 
Points 

True RUL 
(Days) 

Predicted 
RUL (Days) 

Prediction 
(Early or Late) 

250 1121 954 167 Early 

350 1021 857 164 Early 

500 871 735 136 Early 

750 621 499 122 Early 
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The results show that the technique is performing correctly, as the predicted linear trend 

updates as new data is added. This indicates that BLR can consistently produce only early 

predictions. However, it is important to note that for synthetic data constant degradation 

is assumed and operating conditions are excluded. In practice, the varying operating 

conditions of the turbine effect the rate of degradation. This shows that the technique is 

still required to be reliable enough to be used in the context when the operations of a 

machinery is non-linear. In other words, prognostics should be able to accommodate 

multiple operating conditions. Designing algorithms that incorporate operating 

conditions is therefore a next step to increase prognostics efficacy and enhance 

performance.  

5.3. Adapting BLR to Incorporate Maintenance 

Maintenance aims to bring machinery into a state where it is safe and reliable to operate 

while recovering health of the machine. Welz et. al. [152] categorised maintenance 

actions into two types: replacement, a maintenance action which restores a system to 

good as a new condition, and repair, a maintenance action restoring a system to working 

condition but removes less degradation than replacement. Both types of maintenance 

actions aim to improve the health of a machinery. However, they introduce deviations in 

degradation model thus affecting the performance of prognostics. Therefore, prognostic 

algorithms must incorporate post maintenance effects into prognostics. Figure 5.10 

shows adapted BLR framework for accommodating post maintenance effects 
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Figure 5.10 - Adapted BLR Framework 

As shown in Figure 5.10, the adapted BLR accommodates post maintenance effects by 

detecting maintenance window, estimating degradation rate and updating model 

parameters. The following subsections describe detecting maintenance, estimation of 

degradation rate and model parameter update.  

5.3.1. Detect Fault and Maintenance Events 

The change point analysis is used to detect fault and maintenance events within the data. 

The fault and maintenance events are the lowest cumulative sum of the difference 

between the data points and their mean (See Section 4.5.3, for estimation of change 

points). As shown in Figure 5.10, the change points are calculated for the data points 

continuously and in parallel to the BLR algorithm. If cumulative sum of the difference 

between the data points and their mean is the lowest, the degradation rate is estimated. 

However, if cumulative sum is not lowest, predictive distribution is estimated.  

5.3.2. Estimate Degradation Rate 

The degradation rate is estimated to detect changes in model that occur due to post-

maintenance effects which may lead to changes in degradation rate. As a result of which, 

degradation model is also affected. To estimate the degradation rate, first ten data points 
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are used to estimate the slope of current degradation path. If the slope of degradation 

path is different from the slope of pre-maintenance event degradation path, new model 

is estimated. However, if the slope of the degradation path is the same as the slope of pre-

maintenance event data, the intercept of the model for post-maintenance event data is 

updated in order to incorporate maintenance event into prognostics.  

5.3.3. Adapted-BLR Application: HP Displacement Case Study 

The HP displacement case study data shown in Figure 4.29 is used to test the 

implementation of the Adapted-BLR. The fault manifested as increased levels of 

vibrations is labelled as region 2 in Figure 4.29. To control increased levels of vibrations, 

maintenance was performed to inject grease as a remedial solution to reduce friction. As 

a result, vibration levels drop which is detected by the algorithm as maintenance event. 

However, as shown in labelled region 3 of Figure 4.29 vibration levels tend to increase 

again. Figure 5.11 shows RUL estimate when 75 HP displacement data points of the 

labelled region 3 of Figure 4.28 are used while retaining the degradation model of the HP 

displacement data of labelled region 2. It can be seen that Adapted-BLR estimates the 

future health of the steam turbine using the warning distribution which is obtained based 

on the predicted values exceeding the warning threshold. 

 

Figure 5.11 – Adapted-BLR RUL Predictions: 75 Data Points 

Figure 5.12 and Figure 5.13 show performance comparisons of Adapted-BLR and BLR 

when the rate of degradation (i.e. slope) of post-maintenance data labelled as region 3 in 
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Figure 4.29 is similar to the rate of degradation pre-maintenance data which is labelled 

as region 2 in Figure 4.29. The Adapted-BLR retains rate of degradation (i.e. slope) of pre-

maintenance data to inform prior distribution. As shown in Figure 5.12, the retention of 

rate of degradation results in better performance of model parameters as they tend to 

remain relatively close to the ground truths (i.e. slope and intercept of post-maintenance 

data). For the estimation of expected ground truth, linear regression has been used based 

on consultation with industrial peers. The model parameters of BLR take time to 

converge to Adapted-BLR model parameters and remain relatively close to the ground 

truth.  

 

Figure 5.12 - Comparison of Adapted-BLR and BLR Parameters 
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Figure 5.13 - Parameter Error Comparison of Adapted-BLR and BLR 

The comparison of RUL estimates produced by the BLR and the Adapted-BLR is shown in 

Table 5.4 

Table 5.4 - RUL comparison of BLR and Adapted-BLR when degradation rate is similar to the 
degradation rate of pre-maintenance data 

Set of Data 
Points 

BLR 
(RUL: Days) 

Adapted-BLR 
(RUL: Days) 

Gain 
(Days) 

5 14 42 28 
10 48 60 12 
15 58 65 7 
20 78 80 2 
75 32 32 0 

 

The results show that the Adapted-BLR is able to produce better RUL estimates with 

greater certainty using fewer data points. The retention of degradation model results in 

prognostic gain (i.e. the number of days for which maintenance can be deferred to avoid 

loss of RUL through early scheduling of maintenance) as the model parameters tend to 

remain relatively closer to the ground truth. As more data points become available, the 

performance of both algorithms tends to converge.  

The Adapted-BLR also shows superior performance when the rate of degradation of post-

maintenance data (i.e. data labelled as region 4 in Figure 4.28) is different from pre-

maintenance data (i.e. data labelled as region 3 in Figure 4.28). The retention of 
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degradation rate of pre-maintenance data allows Adapted-BLR to estimate RUL with 

greater certainty with less data. Figure 5.14 and Figure 5.15 show performance 

comparisons of Adapted-BLR and BLR when the rate of degradation of post-maintenance 

data is different from the rate of degradation of pre-maintenance data.  

 

Figure 5.14 – Performance Comparison of Adapted-BLR and BLR Model Parameters when rate of 
degradation is different from the rate of degradation of pre-maintenance data 

 

Figure 5.15 – Parameter Error Comparison of Adapted-BLR and BLR Model Parameters when rate 
of degradation is different from the rate of degradation of pre-maintenance data 
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Table 5.5 shows the comparison of RUL estimates produced by the BLR and the Adapted-

BLR when the degradation rate of the post-maintenance data is different from the 

degradation rate of the pre-maintenance data 

Table 5.5 - RUL comparison of BLR and Adapted-BLR when degradation rate is different from the 
degradation rate of pre-maintenance data 

Set of Data 
Points 

BLR 
(RUL: Days) 

Adapted-BLR 
(RUL: Days) 

Gain 
(Days) 

5 10 17 7 
10 19 24 5 
15 16 18 2 
20 23 24 1 
50 255 255 0 

 

It can be seen from the comparison that the retention of rate of degradation allows 

Adapted-BLR to produce better RUL estimates with fewer data points as the model 

parameters of the Adapted-BLR remain relatively closer to the ground truth as shown in 

Figure 5.14. Thus, producing RUL estimates with greater certainty compared to BLR. The 

Adapted-BLR produces RUL estimates with prognostic gain which tends to decrease over 

time as the performance of both algorithms converges. The prognostic gain can help 

practitioners avoid the loss of RUL through early scheduling of maintenance.  

It must also be noted that though retaining degradation rate of pre-maintenance data 

results in better performance. However, Adapted-BLR also produces late predictions due 

to inherent difficulty in separating the long term and short-term behaviour. The changes 

in operational settings also allow turbine to cool down and therefore, a temporary 

reduction in vibration levels would be seen. Therefore, synthetic case study data with 

maintenance events must be considered in order to validate the performance of Adapted-

BLR.  

5.3.4. Adapted-BLR Application: Synthetic Case Study 

To validate the performance of Adapted-BLR, synthetic case study data as shown in 

Figure 4.35 was generated. Synthetic case study data simulates equipment deterioration 

at constant rate. Post-maintenance effects (i.e. change in rate of degradation after 

maintenance as indicated by the linear fits of the data segments) are also simulated. 

Figure 5.16 to Figure 5.19 show performance comparison of model parameters of 

Adapted-BLR and BLR. The rate of degradation of pre-maintenance data is retained and 

is used to inform prior distribution of Adapted-BLR.  
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Figure 5.16 - Performance comparison of Adapted-BLR and BLR when rate of degradation is 
retained for Adapted-BLR and is similar to the rate of degradation of pre-maintenance data 

 

 

Figure 5.17 – Zoomed version of performance comparison of Adapted-BLR and BLR as shown in 
Figure 5.16 
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Figure 5.18 - Parameter Error Comparison of Adapted-BLR and BLR when rate of degradation is 
retained for Adapted-BLR and similar to the rate of degradation of pre-maintenance data 

 

 

Figure 5.19 – Zoomed version of Parameter Error Comparison of Adapted-BLR and BLR as shown 
in Figure 5.18 
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Table 5.6 shows comparison of RUL produced using the BLR and the Adapted-BLR for the 

synthetic data set 

Table 5.6 - RUL comparison of the BLR and the Adapted-BLR when degradation rates of pre-
maintenance and post-maintenance data sets are similar 

Set of Data 
Points 

BLR 
(RUL: Days) 

Adapted-BLR 
(RUL: Days) 

Gain 
(Days) 

3 5 16 11 
5 26 28 2 

10 63 87 24 
15 334 335 1 

500 785 785 0 
 

It can be seen from the comparison that the Adapted-BLR tends to produce RUL with 

prognostic gain. As shown in Figure 5.16 and Figure 5.17, the model parameter values 

tend to remain closer to the ground truth values compared to the model parameter values 

of the BLR. Due to informed priors, the practitioners are able to produce RUL predictions 

at the earlier stages when Adapted-BLR is used to estimate RUL. Therefore, helping the 

maintenance engineers avoid loss of RUL.  

Synthetic data also validates the superior performance of Adapted-BLR for RUL 

estimations when the rate of degradation of pre-maintenance data is retained and 

different from the rate of degradation of post-maintenance data. It can be seen in Figure 

5.20 and Figure 5.21 that model parameters of Adapted-BLR converge at much faster rate 

compared to BLR.  
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Figure 5.20 - Performance comparison of Adapted-BLR and BLR when rate of degradation is 
different from the rate of degradation of pre-maintenance data 

 

Figure 5.21 - Zoomed version of performance comparison of Adapted-BLR and BLR as shown in 
Figure 5.20 

The model parameter error of Adapted-BLR is also very low when compared to BLR as 

shown in Figure 5.22 and Figure 5.23. 
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Figure 5.22 - Parameter Error Comparison of Adapted-BLR and BLR when rate of degradation is 
different from the rate of degradation of pre-maintenance data 

 

Figure 5.23 - Zoomed version of Parameter Error Comparison of Adapted-BLR and BLR when rate 
of degradation is different from the rate of degradation of pre-maintenance data 
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Table 5.7 shows RUL comparison of the BLR and the Adapted-BLR for the post-

maintenance synthetic data which has rate of degradation compared to the pre-

maintenance data 

Table 5.7 - RUL comparison of Adapted-BLR and BLR when rate of degradation is different from 
the rate of degradation of pre-maintenance data 

Set of Data 
Points 

BLR 
(RUL: Days) 

Adapted-BLR 
(RUL: Days) 

Gain 
(Days) 

3 11 41 30 
5 48 67 19 

10 150 162 12 
15 246 249 3 

500 1855 1855 0 
 

The validation results using synthetic data show that the technique is performing 

correctly. The Adapted-BLR can consistently produce reliable RUL predictions with 

prognostic gain even with fewer data points. The implementation of the technique also 

showed that technique is capable of producing only early predictions with uncertainty 

representation for longer prediction horizon. The uncertainty that is associated with the 

predictions tends to increase with longer prediction horizons. It must be noted that 

though under constant degradation conditions Adapted-BLR produces consistent results. 

However, in practice, the varying operating conditions of the turbine effect the rate of 

degradation. The variance within the data due to different operating conditions impacts 

the overall performance of the algorithm. Therefore, uncertainty in predictions is higher 

due to non-linear operational modes. To further enhance the performance of the 

algorithm in terms of reliability, robustness, and accuracy, the prognostic algorithm must 

also accommodate operational events within the data that result in deviation from the 

expected degradation path. 

5.4. Summary 

In this chapter, BLR is presented as a prognostic technique for predicting RUL of a nuclear 

steam turbine. The technique is capable of representing and managing uncertainties that 

are associated with predicting the future behaviour of degrading equipment. A real-world 

case study data from an operational nuclear power plant in the UK was used to evaluate 

the performance of the algorithm. The results show varying performance due the 

inability of the technique to distinguish between short-term and long-term behaviours. 

The operating conditions of the plant also affect the performance of the algorithm. 
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Therefore, for further validation, a synthetic case study is used. The results of synthetic 

case study data show that the technique is working correctly under constant degradation 

conditions. This chapter also presents the improvements that are made to enhance the 

performance and efficacy of BLR. The Adapted-BLR is capable of producing more reliable 

RUL predictions by retaining the degradation rate of the pre-maintenance data. The 

model parameters of the Adapted-BLR tend to converge to ground truth at much faster 

rate while maintaining low error rate when compared to BLR. The Adapted-BLR also 

results in prognostic gain, thus, helping the maintenance engineers avoid loss of RUL 

through early scheduling of maintenance.  
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CHAPTER 6: SUPPORT VECTOR REGRESSION 

(SVR) FOR STEAM TURBINE PROGNOSTICS 

6.1. Introduction 

In this chapter, the development of Support Vector Regression (SVR) as a non-

probabilistic prognostic technique for predicting remaining useful life (RUL) of a nuclear 

steam turbine is presented. To test the newly developed algorithm, a real-world case 

study data from an operational nuclear power plant in the UK is used. A synthetic case 

study is also used to further validate the performance of the algorithm. The SVR is 

adapted to accommodate maintenance and estimate RUL by utilising synthetic data that 

is generated based on the model retained prior to maintenance. The adapted algorithm 

is tested for different post maintenance scenarios using case studies for wider 

applicability and performance validation. 

6.2. Support Vector Regression for Prognostics 

Support Vector Regression (SVR) maps non-linear data into higher dimensional feature 

space and solves a linear regression problem in this feature space. Compared to LR which 

minimises SSR errors to estimate model parameters, SVR provides analytical framework 

based on support vectors to determine the decision boundary, hyperplanes, and model 

parameters. The resulting decision boundary can be extrapolated at any point in time to 

predict degradation and estimate RUL. For prognostics implementation, the SVR 

framework as shown in Figure 6.1 is developed in MATLAB in order to estimate the 

remaining useful life (RUL) of the degrading equipment. 
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Figure 6.1 - SVR Framework 

There are five parts in the SVR framework. In the first part of the algorithm, based on the 

recommendation of reliability engineering experts, 70/30 ratio is used to split data into 

training and testing data sets. To create training and testing data sets random sampling 

method is used. In the second part of the algorithm, model is trained using the training 

dataset. To generalise the model, the k-fold cross validation method is used which splits 

the training data into k-folds/data subsets (default value of 10 is used). Models are 

trained using k-1 folds and the remaining folds are used to validate models. The average 

of prediction accuracies of models is estimated to finalise the model. To tune the 

hyperparameters C (the penalty factor which determines the trade-off between flatness 

of function 𝑓(𝑥) and the number of deviations larger than 𝜀) and 𝜀 (epsilon which 

represents prediction precision or error margin), the random grid search [153] method 

is implemented. The random grid search method uses random combination of 

hyperparameters and selects hyperparameters that best fits the model based on model 

accuracy. In the third part, the tuned model is tested to assess the accuracy of the 
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algorithm and obtain the model parameters (i.e. intercept and slope). These model 

parameters are used in the fourth part of the algorithm to predict degradation signal 𝑦 at 

a given future point in time. In the last part of the algorithm, RUL is estimated by 

subtracting the current time or the time of prognosis from the time when degradation 

trend exceeds the warning threshold limit (See Equation 5.1). The detailed description of 

warning threshold (i.e. 82.5um displacement) is provided in Chapter 5 Section 5.2.1. 

6.2.1. SVR Application: HP Displacement Case Study 

The HP displacement case study was used to assess the performance of the developed 

algorithm. Figure 6.2 and Figure 6.3 show RUL estimates when 300 and 400 data points 

of the HP displacement case study are used respectively. It can be seen that the 

implemented algorithm estimates the future health of the steam turbine using the case 

study data (blue dots).  

 

Figure 6.2 - RUL Predictions using SVR: 300 Data Points 
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Figure 6.3 - RUL Prediction using SVR: 400 Data Points 

The comparison of true RUL and predicted RUL is given in Table 6.1.  

Table 6.1 - Early Predictions: Comparison of True RUL and Predicted RUL 

Set of Data 
Points 

True RUL 
(Days) 

Predicted 
RUL (Days) 

Prediction 
(Early or Late) 

300 736 449 287 Early 
350 686 425 261 Early 
400 636 434 202 Early 
450 586 497 89 Early 

 

The results show that when 300, 350, 400 and 450 data points of the HP displacement 

case study are fed into the BLR framework, early prediction of warning threshold breach 

is observed which is due to increase in HP displacement data just before the time of 

prognosis (represented as solid green lines in Figure 6.2 and Figure 6.3). It should also 

be noted that due to the slow and progressive nature of the fault, large values of RUL 

predictions are also observed.  

The SVR algorithm can provide predictions of time remaining until displacement 

breaches the warning threshold. However, as discussed in Chapter 5, there are two 

crucial aspects to consider further for the development of the algorithm.  

First, large remaining useful life predictions will result in loss of significant amount of 

remaining life through early scheduling of maintenance. While early predictions are 

preferred, overall accuracy is also important.  
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Secondly, and more critically, the performance of the algorithm also tends to vary with 

different amounts of input data. For instance, when batches of 500 and 900 data points 

are used, the predictions are late as shown in Figure 6.4 and Figure 6.5.  

 

Figure 6.4 - Late RUL Predictions using SVR: 500 Data Points 

 

Figure 6.5 - Late RUL Predictions using SVR: 900 Data Points 
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Table 6.2 - Late Predictions: Comparison of True RUL and Predicted RUL 

Set of Data 
Points 

True RUL 
(Days) 

Predicted 
RUL (Days) 

Prediction 
(Early or Late) 

250 786 895 109 Late 
500 536 576 40 Late 
750 286 575 289 Late 
900 136 851 715 Late 

 

The results of the SVR as a prognostics algorithm indicate that the technique generates 

late predictions. With the addition of more data, when it may be expected that 

performance improves instead the predictions become later and less accurate. Reasons 

for this performance were considered in detail. The original case study data was re-

examined alongside the SVR performance. The technique is performing correctly, as the 

predicted linear trend updates as new data is added. Outliers are penalised and tend to 

have marginal impact on the degradation model as the orientation of the degradation 

trend is estimated using the support vectors (i.e. data points on the hyperplanes). Thus, 

providing a robust framework for the estimation of degradation trend. However, the 

short-term behaviour capturing some additional process results in affecting the 

performance of the SVR despite the fact that the case study exhibits an overall linear 

trend. The SVR predictions are highly dependent on the trend of the data at the prediction 

time 𝑥𝑡, and the technique has difficulty in separating the long term and short-term 

behaviour.   

As mentioned in Chapter 4, the case study is a transformed dataset which only includes 

data points when the power is full and other operating conditions (i.e. refuelling, 

outages/stoppage durations, online data captured below full power, and other vibration 

data captured during the state of run up) are not considered and has been excluded. It 

was anticipated that when operating in online mode, the machinery response would be 

fairly consistent and any unusual behaviour and degradation would be easier to identify.  

The fault was recognised during the case study time period and maintenance actions 

were taken. These maintenance actions resulted in reducing the vibration levels. While 

SVR is able to make predictions when this fault type occurs, specifics of the application 

domain mean that an alternative data set such as synthetic data must be considered in 

order to validate the performance of the SVR. The results also show that in order to 
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enhance the performance and efficacy of the SVR, post-maintenance effects must also be 

incorporated in order to provide better RUL estimations. 

6.2.2. SVR Application: Synthetic Case Study 

The synthetic case study as shown in Figure 4.34 was used to validate the performance 

of SVR under constant degrading conditions. As mentioned in Chapter 4, constant 

degradation of steam turbine was assumed for this case study. It was also assumed that 

the steam turbine does not go under any maintenance before it reaches the warning 

threshold. Figure 6.6 and Figure 6.7 show RUL estimates when 250 and 500 data points 

of the synthetic HP displacement case study are used respectively. It can be seen that the 

SVR estimates remaining life of the steam turbine using the synthetic data. 

 

Figure 6.6 - RUL Prediction using SVR: 250 Synthetic Data Points 
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Figure 6.7 - RUL Prediction using SVR: 500 Synthetic Data Points 

The performance of the SVR under constant degrading conditions is recorded in Table 

6.3 

Table 6.3 - Synthetic Data Performance Assessment 

Set of Data 
Points 

True RUL 
(Days) 

Predicted 
RUL (Days) 

Prediction 
(Early or Late) 

250 1037 980 57 Early 
350 937 845 92 Early 
500 787 722 65 Early 
750 537 509 28 Early 

 

The results validate the performance of SVR as a prognostics technique. As expected, the 

predicted linear trend updates as new data is added. This shows that SVR can consistently 

produce only early predictions. However, it must be noted that constant degradation is 

assumed for the synthetic case study while excluding operating conditions other than 

online. In practice, the varying operating conditions of the turbine effect the rate of 

degradation and is exhibited as additional vibrational magnitude or variation within the 

vibration. Designing algorithms that are capable of incorporating operating conditions, 

maintenance affects, etc. is therefore considered the next logical step to increase 

prognostics efficacy and enhance performance by providing better RUL estimations. 
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6.3. Adapting SVR to Incorporate Maintenance 

The main purpose of maintenance is to bring machinery into a safe and reliable state for 

operation while improving the health of the machine either by repair or replacement. 

Both type of maintenance actions tends to introduce deviations in the degradation model, 

thus, affecting the performance of prognostic algorithms. Therefore, prognostic 

algorithms must incorporate post maintenance effects into prognostics in order to deal 

such deviations and provide better RUL estimates. Figure 6.8 shows adapted SVR 

framework for accommodating post maintenance effects 

 

 

Figure 6.8 - Adapted SVR Framework 

As shown in Figure 6.8, the adapted SVR accommodates post maintenance effects by 

detecting maintenance window, comparing pre-maintenance and post-maintenance 

model accuracy, and generating synthetic data. The following subsections describe 

detection of maintenance, comparison of model accuracy and synthetic data generation.  
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6.3.1. Detect Maintenance Events 

The maintenance events within the data are identified using Change Point Analysis. As 

shown in Figure 6.8, the change points are estimated for the batch of data points that is 

used for testing and training of the SVR model. If the cumulative sum of the difference 

between the data points and their mean is the lowest, the point in time is considered as a 

change point or maintenance event. However, if cumulative sum is not lowest, model 

parameters at that point in time can be used to predict degradation trend 𝑦 at a given 

future point in time.  

6.3.2. Compare Model Accuracy 

After the maintenance event has been identified, the model for the pre-maintenance data 

is tested using the post-maintenance data. If the accuracy of the model is higher or equal 

than the accuracy of the pre-maintenance data, the model parameters of the pre-

maintenance data are used to generate historic synthetic data. However, if the accuracy 

of the model when tested with the post-maintenance data is lower than the accuracy of 

the pre-maintenance data, the model is considered not suitable for generating historic 

synthetic data. Therefore, a new model must be built for the post-maintenance data.  

6.3.3. Generate Synthetic Data 

The historic synesthetic data is generated using the model parameters of the pre-

maintenance data. This historic synthetic data is then combined with the post-

maintenance data to form a new data set which is then used to retrain the model on the 

data that contains historic information while fine tuning the hyperparameters for better 

predicting the degradation trend and remaining useful life.  

6.3.4. Adapted-SVR Application: HP Displacement Case Study 

The HP displacement case study data shown in Figure 4.28 is used to test the 

implementation of the Adapted-SVR. The labelled region 2 in Figure 4.29 represents the 

fault manifested as increased levels of vibrations. Maintenance was performed to control 

these vibrations by injecting grease as a remedial solution to reduce friction. This 

resulted in lowering the vibrations levels which is detected as a maintenance event. 

However, vibration levels tend to increase again as shown in the labelled region 3 of the 

Figure 4.29. Figure 6.9 shows RUL estimate using adapted SVR framework when 75 HP 

displacement data points of the labelled region 3 of Figure 4.29 are used. The accuracy of 

the model when tested with the data in the labelled region 3 was higher than the accuracy 
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of the data in the labelled region 2 of Figure 4.29. Therefore, 200 historic synesthetic data 

points were generated using the model parameters of the labelled region 2 and are 

combined with the data in the labelled region 3. It can be seen that Adapted-SVR 

estimated the future health of the steam turbine.  

 

 

Figure 6.9 - Adapted-SVR RUL Predictions: 75 Data Points 

Figure 6.10 shows comparison of Adapted-SVR and SVR parameters. It can be seen that 

the addition of historic synthetic data, which is generated based on the model parameters 

prior to maintenance, to the post-maintenance data results in better performance of 

model parameters as they tend to remain relatively close to the ground truths (i.e. slope 

and intercept of post-maintenance data) and converge into the ground truths. The 

utilization of model parameters of the data prior to maintenance allows the retention of 

historic information which later can be simulated to accommodate maintenance. The 

performance of model parameters of SVR is also shown in Figure 6.10. The intercept of 

the SVR model was adjusted by bringing the point of intercept for the post maintenance 

data to same point as the intercept for the data prior to maintenance. It can be seen that 

the model parameters do not converge to the ground truths but remain relatively closer.  
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Figure 6.10 - Comparison of Adapted-SVR and SVR Parameters 

The model parameter errors of Adapted-SVR is also very low when compared to SVR as 
shown in Figure 6.11 

 

Figure 6.11 - Parameter Error Comparison of Adapted-SVR and SVR 
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The comparison of RUL estimates produced by the SVR and the Adapted-SVR with 

prognostic gain is showed in Table 6.4 

Table 6.4 - RUL comparison of the Adapted-SVR and the SVR when pre-maintenance model is 
retained 

Set of Data 
Points 

SVR 
(RUL: Days) 

Adapted-SVR 
(RUL: Days) 

Gain 
(Days) 

5 32 49 17 
10 54 63 9 
15 67 70 3 
20 74 77 3 
75 59 60 1 

 

The adapted-SVR is capable of estimating RUL with prognostic gain using fewer data 

points. The model parameters of the Adapted-SVR tend to remain relatively closer to the 

ground truth as shown in Figure 6.10. The ground truth of model parameters is estimated 

using linear regression. The Adapted-SVR helps practitioners estimate early RUL 

predictions while avoiding the loss of RUL through early scheduling of maintenance.  

As mentioned above, the adapted-SVR after detecting the maintenance compares the 

accuracy of the pre-maintenance model for the post-maintenance data with the accuracy 

of the pre-maintenance data. If the accuracy of the model for the post-maintenance data 

is lower than the model accuracy of the pre-maintenance data, the adapted-SVR only 

utilises the post-maintenance data to train and test the model. Figure 6.12 shows the 

performance of model parameters when maintenance is detected but the accuracy of the 

model for pre-maintenance data is lower when tested with the post-maintenance data.  
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Figure 6.12 - Performance of model parameter of Adapted-SVR when the accuracy of the model for 
the pre-maintenance data is lower when tested with post-maintenance data 
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it can be seen that the model parameters of the Adapted-SVR remain relatively close to 

the ground truth and converge into the ground truths at much faster rate. For example, 

the slope of the Adapted-SVR converge into the ground truth in 33 days whereas the SVR 

takes 51 days to converge. The intercept of the SVR takes same amount of time to achieve 

same performance as the Adapted-SVR. The performance of model parameters of the 

Adapted-SVR indicate that the technique is able to produce better RUL estimations with 

fewer data points and greater certainty compared to SVR.  

 

Figure 6.13 - Performance comparison of model parameters of Adapted-SVR and SVR using 
synthetic data 

 

 

Figure 6.14 - Error comparison of model parameters of Adapted-SVR and SVR using synthetic data 
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The comparison of RUL estimates produced by the SVR and the Adapted-SVR using 

synthetic data while retaining the pre-maintenance model is shown in Table 6.5 

Table 6.5 - RUL comparison of the SVR and the Adapted-SVR using synthetic data  

Set of Data 
Points 

BLR 
(RUL: Days) 

Adapted-BLR 
(RUL: Days) 

Gain 
(Days) 

3 11 28 17 
5 26 54 28 

10 92 97 5 
15 332 339 7 

500 786 788 2 
 

The results show that the Adapted-SVR can consistently produce reliable RUL predictions 

with prognostic gain with fewer data points. The Adapted-SVR was also tested for the 

scenario when maintenance is detected, however, the accuracy of the post-maintenance 

data when tested with the model for the pre-maintenance data is lower. Figure 6.15 and 

Figure 6.16 show the comparison of the model parameters of the Adapted-SVR and SVR. 

It can be seen from the comparison that the Adapted-SVR trains and tests the model with 

the post-maintenance data resulting in the performance of model parameters which is 

similar to the performance of the model parameters of SVR.  

 

Figure 6.15 - Performance comparison of model parameters of Adapted-SVR and SVR using 
synthetic data when the accuracy of the model for the pre-maintenance data is lower when tested 

with post-maintenance data 
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Figure 6.16 - Error comparison of model parameters of Adapted-SVR and SVR using synthetic data 
when the accuracy of the model for the pre-maintenance data is lower when tested with post-

maintenance data 
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of the algorithm. Therefore, for further validation, a synthetic case study is used. The 

results of synthetic case study data show that the technique is capable of producing early 

RUL prediction. This chapter also presents the improvements that are made to enhance 

the performance and efficacy of SVR. The Adapted-SVR is capable of producing more 

reliable early RUL predictions with fewer data points by retaining pre-maintenance 

model which is used to generate historic synthetic data. The model parameters of the 

Adapted-SVR tend to remain relatively closer to the ground truths and converge to 

ground truths at much faster rate while maintaining low error rate when compared to 

SVR. The Adapted-SVR also produces prognostic gain, thus, helping maintenance 

practitioners avoid loss of RUL.  
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CHAPTER 7: DISCUSSION 

7.1. Introduction 

This chapter provides detailed technical discussion on the contributions of the research 

work that are made in this project. The chapter starts by further explaining the formal 

evaluation and selection process of prognostic techniques which can enable reliability 

engineers to select the appropriate prognostic technique that suits their requirements 

and their application. The benefits of selecting appropriate prognostic technique for PHM 

implementation is also discussed. The selected prognostic techniques BLR and SVR are 

developed, implemented, and adapted to accommodate maintenance into prognostics. 

The results from both approaches are further discussed to help reliability engineers to 

understand the applicability and limitations of both approaches. 

7.2. Formal Evaluation and Selection Process 

There is no standardised applicable methodology which helps reliability engineers select 

a prognostic technique according to their requirements. The selection of applicable 

prognostics technique is mainly driven by the available engineering resources (run-to-

failure data or physics-based degradation model), failure threshold, generality or scope 

of the approach, uncertainty management, and transparency. Proposed methodologies in 

literature do not help reliability engineers make a collective decision based on all of their 

user requirements. Thus, they are unable to select a technique that would be the best fit 

for their overall user requirements. The generic design framework that is used to develop 

the formal evaluation and selection process is shown in Figure 7.1 
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Figure 7.1 - Generic Design Framework for Prognostics 

The proposed design framework assumes four stages:  

• Failure mode analysis to identify single fault type, aging behaviour, or a number 

of important failure modes that can affect the operation of an asset. Formal 

criticality assessment techniques (e.g., FMECA) and importance measurements 

[154] can help identify failure modes of interest and their criticality.  

• Transformation of high-level PHM implementation requirements into application 

specific prognostic metrics which help evaluate and validate different prognostics 

techniques under the same criteria. Prognostics metrics can be derived from 

available engineering resources (e.g. data), based on engineering understanding 

(e.g. failure mode of interest), model of degradation, and application specific 

requirements. 

• Prognostics Technique Selection utilises the process of evaluating a prognostics 

technique based on prognostics metrics. This activity determines which 

prognostic techniques are most suitable.  

• Validation and verification of selected prognostics technique using prognostics 

metrics.  
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The choices made throughout the design framework impact the immediately connected 

steps, and may lead to iteration of previous steps. For instance, if system requirements 

are not met, the designer should reconsider the initial system requirements or the 

adopted failure mode. While all the outlined activities are important for PHM 

implementation, this research focuses on the development of an approach for evaluating 

and selecting a prognostic technique in order to support effective and accurate decision 

making for maintenance/intervention by accurately predicting failure progression. In 

this thesis, a simplistic formal evaluation and selection process for prognostic techniques 

is presented. The process utilises look up tables to select an appropriate metric score for 

the prognostic metric. The scores in the lookup tables are allocated based on how well 

the requirements of PHM implementation and prognostic technique characteristics 

match each other. Therefore, enabling the assessment of a prognostic technique by 

scoring each and every prognostic metric that are considered for evaluation in the PHM 

implementation. The formal evaluation and selection process of a prognostic technique 

is validated through a user requirements driven process. The validation of the process 

using case studies show that the process can be applied to wide range of industrial 

applications (i.e. electrical and power industry, aerospace, marine, etc.). The process is 

dynamic as it allows evaluation of a prognostic technique using any number of prognostic 

metrics. The process is also extendable and more prognostic metrics can be added to the 

process by creating lookup tables.  

The main benefits of implementing formal evaluation and selection process include 

better and informed decision making because of thorough consideration of possible 

options of prognostic algorithms, reduction in time and effort required to implement 

prognostics, increased adoption of prognostic techniques in other domains/industry, and 

enabling consistent comparison of prognostic algorithms.  

The implementation of the process for the application of steam turbine (i.e. a rotating 

machine) from a nuclear power plant resulted in scoring the BLR highest. Therefore, the 

BLR was selected as a probabilistic prognostic technique. Whereas, the SVR was selected 

as a non-probabilistic prognostic technique as it was scored the second highest 

technique. The prognostics implementation of both techniques showed relatively similar 

yet varied results. The implementation of both algorithms generated early and late 

predictions. Despite the addition of more data, the performance of the algorithms did not 

improve as the short-term behaviour capturing some additional processes resulted in 
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affecting the performance of both algorithms. The predictions of both algorithms are 

highly dependent on the trend of the data at the prediction time 𝑥𝑡, and the techniques 

have difficulty in separating the long term and short-term behaviour.  It was assumed 

that when operating in online mode, the machinery response would be fairly consistent 

and any unusual behaviour and degradation would be easier to identify. Therefore, the 

feature case study when machine was operating in online operating mode at full power 

was extracted. The fault was recognised during the case study time period and 

maintenance actions were taken. These maintenance actions resulted in reducing the 

vibration levels which resulted in affecting the degradation path. Therefore, affecting the 

performance of both algorithms.  

The non-linear operational environment of the steam turbine makes it hard to establish 

efficient prognostics approaches, that are robust enough to tolerate uncertainty, and 

reliable enough to show acceptable performance under diverse conditions. The 

prognostics implementation showed that even if prognostic techniques are robust and 

capable of dealing with the uncertainties, techniques are still required to be reliable 

enough to be used in the context when the operations of a machinery is non-linear. In 

other words, prognostics should be able to accommodate multiple operating conditions. 

Robustness and reliability of a prognostics approach appear to be closely related, and 

both should be considered as important to ensure the accuracy of RUL estimates. The 

assessment also shows that perhaps a better prognostics technique which satisfies all the 

PHM implementation requirements and is reliable enough to predict failure progression 

of steam turbine more accurately is required.  

To address the reliability issue while further enhancing the performance of both 

algorithms, the algorithms were adapted to accommodate maintenance. In this research, 

two frameworks for adapting probabilistic and non-probabilistic prognostic techniques 

to accommodate maintenance are proposed. The probabilistic framework relies on 

updating the model parameters for the post-maintenance data using the information 

from the pre-maintenance data. Whereas, non-probabilistic framework generates 

historic synthetic data based on the model parameters of the pre-maintenance data. This 

historic synthetic data is then combined with the post-maintenance data to form a new 

data set which is used for prognostics implementation.  



 159 

7.3. Adapting Prognostics for Maintenance 

In steam turbine degradation, most of the degradation patterns are nearly linear over a 

longer period of time, however there are cases where the rates of degradation may be 

non-linear. There are several events that may affect the degradation of a steam turbine. 

For example, the degradation of a turbine may reduce due to maintenance action 

resulting in the recovery of the turbine performance. For accurate prognostics, 

knowledge of maintenance actions which affect the rate and state of degradation is 

crucial. A generic methodology about this concept is illustrated in Figure 7.2. Prognostic 

algorithm can be reset if a maintenance has been carried out which results in recovering 

the performance of a steam turbine. In this case, prior parameters/degradation data can 

be updated to then restart the RUL estimation.  

 

Figure 7.2 - Generic Methodology to Accommodate Maintenance 

The proposed methodology resets a probabilistic prognostic algorithm by reconfiguring 

the prior parameters when a maintenance event is detected. Whereas, for a non-

probabilistic prognostic algorithm synthetic historic data based on model prior to the 

maintenance is used to inform the prognostic algorithm. The main benefits of adapting 

prognostic techniques to include maintenance are: 

• Detection of deviations in degradation path due to maintenance 
• Inclusion of degradation deviations into prognostics to increase efficacy and 

accuracy of predictions 
• Prediction of RUL with fewer data points 
• Avoiding the loss of RUL through early scheduling of maintenance 
• Enabling maintenance practitioners make informed decision for maintenance 

scheduling 
 

In real world, it is difficult to detect directly any slope change in degradation due to 

maintenance because they are typically very noisy. Thus, leading to uncertainty which 
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impacts the ability to accurately predict the degradation. In order to overcome the 

aforementioned issue, sophisticated integrated prognostic approaches are introduced, 

combining BLR and SVR with the change point detection (CPD) algorithm in order to 

adapt prognostic algorithms to accommodate maintenance. The CPD algorithm plays an 

important role to detect any changes affecting degradation’s slope due to maintenance.  

A change point detection (CPD) algorithm, aims to discover points at which sudden 

changes occur in time-series data [155]. This method can be classified based on the delay 

in detection: real-time detection or retrospective detection. Real-time detection is used 

for applications which require immediate response. On the other hand, retrospective 

detection can be used for applications, which tolerate longer reaction periods. The latter 

algorithm tends to give more robust and accurate detection [155]. In this research, 

retrospective CPD algorithm is used for detecting maintenance events because delay has 

minor effect on the decision making due to slow and long failure progression in steam 

turbines. The information from CPD algorithm is utilised accordingly for enhancing the 

quality of RUL estimation and the performance of prognostics algorithms.  

In the following subsections, the implementation of proposed methodology for 

probabilistic and non-probabilistic prognostic techniques are discussed. For the 

implementation of proposed methodology, synthetic and real-world cases studies are 

used to discuss the adaptation of the algorithms to accommodate maintenance. In the 

discussion, metrics such as run time, number of data points for prediction, training 

sample, and uncertainty quantification and representation are used to explain the 

strengths and limitations of both techniques. 

7.3.1. Adapted-BLR 

The Adapted-BLR is an integrated prognostics technique which combines the BLR 

algorithm with the CPD algorithm to accommodate maintenance for prognostics while 

estimating RUL. The CPD algorithm is used to identify the maintenance events 

retrospectively. This information is then used to reconfigure parameters (i.e. slope and 

intercept) of the BLR algorithm.  

It is assumed that repairs are performed to return machinery to a working condition. A 

repair is a maintenance action that improves the health of a machinery but it does not 

completely remove the precursor failure conditions. Therefore, for parameters 

reconfiguration, same degradation rate (i.e. slope) is assumed for the post-maintenance 
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data. The initial degradation point (i.e. intercept) of pre-maintenance data is selected as 

the initial degradation point for the post-maintenance data.  

Figure 7.3 shows a detailed block diagram of the proposed concept. The degradation 

parameter is fed into BLR algorithm to estimate RUL. At the same time, degradation 

parameter is also monitored continuously by CPD algorithm. If CPD algorithm detects 

significant decrease in degradation, it considers that maintenance action is just 

performed and parameters of prognostic algorithm should be adjusted accordingly. The 

reconfiguration of parameters also considers the post-maintenance affect which is the 

change in degradation rate. If the degradation rate is within the higher and lower 

threshold limit (i.e. ± 5% of the pre-maintenance data), parameters are reconfigured. 

However, if the degradation rate is lower or higher than the threshold limit, parameters 

are reset. 

 

Figure 7.3 - Block Diagram of Combining BLR and CPD Algorithms 

The proposed concept was implemented using a real case study from a steam turbine in 

nuclear industry. As described in Section 4.7.3, maintenance actions such as injection of 

grease to reduce friction recovered degradation performance. The main prognostic 

algorithm requires this information when maintenance occurs, in order to reset the 

algorithm. However, as described earlier, to detect maintenance CPD is applied directly 
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to HP displacement as shown in Figure 7.3.  There were two maintenance events that 

were detected in the real-world case study as shown in Figure 4.29. These maintenance 

events result in decrease of vibrations due to friction. After the detection of these events, 

the rate of degradation for the post-maintenance data and the pre-maintenance data 

were compared. If the difference between the degradation rates is higher or lower than 

the threshold limit, the parameters of the algorithm were reset or reconfigured 

accordingly for the estimation of RUL due to the fact that maintenance leads to 

uncertainty due to a possible change in degradation rate which may affect the accuracy 

of the algorithm.  

The results of the implementation as described in Section 5.3.3 showed improved 

performance of the BLR algorithm. The parameters of the BLR algorithm remained 

relatively closer and converged into the ground truth. For the estimation of expected 

ground truth, linear regression has been used based on consultation with industrial 

peers. The implementation results as shown in Table 5.4 show that the Adapted-BLR 

produced RUL estimations with fewer data points. The results also show that the 

technique results in prognostic gain which is the time (i.e. RUL) for which maintenance 

can be deferred to maximise the utilisation of a component. This helps maintenance 

engineers avoid the loss of RUL through early rescheduling.  

The Adapted-BLR as an integrated approach allows improved estimation of RUL while 

tracking uncertainty in the linear model. The BLR algorithm provides analytical 

framework based on conjugate Gaussian distributions to estimate model parameters 

using available data, thus allowing estimation of posterior and predictive distributions. 

The RUL can be estimated from the failure or warning distributions which is obtained 

based on the predicted values exceeding the failure or warning threshold, thus allowing 

quantification of uncertainty in predictions. The CPD algorithm allows detection of 

maintenance events. This information is used to reconfigure the parameters of the BLR 

algorithm to produce better RUL estimations.   

The implementation of Adapted-BLR showed that the running time of the algorithm is 

very low. The time taken to estimate RUL using 1311 data points (i.e. the number of data 

points in the case study) is 5.712 seconds which is the highest time taken by the 

algorithm. Whereas, the lowest time recorded to get reasonable RUL estimation is 2.31 
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seconds for 50 data points. Table 7.1 shows the time taken by Adapted-BLR to estimate 

RUL using selected number of data points. 

Table 7.1 - Running Time of Adapted-BLR 

No. of Data Points 
Time Taken to 

Estimate RUL (s) 

200 3.965 

300 4.677 

400 4.766 

500 4.837 

600 4.986 

700 5.321 

 

The main limitation of the Adapted-BLR is potential uncertainty in capturing noise 

characteristics. The algorithm assumes that the variation in noise of degradation 

parameter of an asset over its lifetime is constant. However, the non-linear operational 

environment of the steam turbine results in varying noise levels which results in affecting 

accuracy, robustness, and reliability of the Adapted-BLR. The implementation of the 

technique shows that the technique is performing correctly and produces results that are 

explicable. Therefore, for further validation of the Adapted-BLR, a synthetic case study 

was also used. The synthetic case study assumes constant variation in noise level. The 

results of the implementation were promising. Results showed that the integrated 

technique is working as intended. The integrated approach detects maintenance events. 

The approach uses the information from the detected events to reconfigure or reset the 

parameters of the BLR algorithm in order to provide improved RUL estimations. The 

results obtained from the implementation are explicable and reliable. This is due to the 

assumptions of constant degradation and single operational mode (i.e. constant full 

power) which are used to generate synthetic case study data (See Section 4.6.3).  

The implementations using the real world case study and the synthetic data showed that 

the technique is capable of producing results with uncertainty representation for longer 

prediction horizon. As shown in Figure 5.11, RUL is estimated from the distribution of 

future health estimates that exceed the warning threshold. The uncertainty that is 

associated with the predictions tends to increase with longer prediction horizons. The 
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uncertainty in predictions is also higher when machine is running in non-linear 

operational modes. The operational modes tend to introduce noise and variation within 

the data. Thus, resulting in uncertainty. Therefore, to further enhance the performance of 

the algorithm in terms of reliability, robustness, and accuracy, the prognostic algorithm 

must also accommodate operational events within the data that result in deviation from 

the expected degradation path and affecting the performance of the algorithm.  

7.3.2. Adapted-SVR 

The Adapted-SVR is an integrated prognostics technique which combines the SVR 

algorithm with the CPD algorithm to accommodate maintenance for prognostics while 

estimating RUL. The CPD algorithm identifies maintenance events retrospectively. This 

information is used split the data into pre-maintenance and post-maintenance data. After 

the segregation of the data, the model for the pre-maintenance data is tested using the 

post-maintenance data. If the accuracy of the model is higher or equal than the accuracy 

of the pre-maintenance data, the model parameters of the pre-maintenance data are used 

to generate historic synthetic data. This historic data is then combined with the post-

maintenance data to form a new data set which is then used to retrain the model on the 

data that contains historic information while fine tuning the hyperparameters for better 

predicting the degradation trend and remaining useful life. However, if the accuracy of 

the model when tested with the post-maintenance data is lower than the accuracy of the 

pre-maintenance data, the model is considered not suitable for generating historic 

synthetic data. Therefore, a new model must be built for the post-maintenance data. 

As mentioned earlier, repairs are performed to return machinery to a working condition 

while improving the health of a machinery. Repairs do not completely remove the 

precursor failure conditions. Therefore, for historic synthetic data generation, same 

degradation rate (i.e. slope) is assumed. Whereas, the first historic data point that is 

generated based on the model parameters of the pre-maintenance data is selected as an 

initial degradation point (i.e. intercept) for the historic synthetic data.  

Figure 7.4 shows a detailed block diagram of the proposed concept. The degradation 

parameter is fed into SVR algorithm to estimate RUL of steam turbine. At the same time, 

degradation parameter is also monitored continuously by CPD algorithm. If CPD 

algorithm detects significant decrease in degradation, it considers that maintenance 

action is performed and accuracies of the model must be tested with the post-
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maintenance data. If the accuracy of the model is higher, historic synthetic data can be 

generated and combined with the post-maintenance data to retrain the model. However, 

if the accuracy of the model is lower for the post-maintenance data, the SVR algorithm is 

reset to estimate RUL. 

 

Figure 7.4 - Block Diagram of Combining SVR and CPD Algorithms 

The proposed concept was implemented using a real case study of a steam turbine (See 

Section 4.7.3). The case study contains two maintenance events as shown in Figure 4.29. 

The maintenance actions were performed to recover health of the machine and reduce 

vibration levels. The main prognostic algorithm requires this information about 

maintenance events when they occur in order to either reset the SVR algorithm or 

generate historic synthetic data. As described earlier, to detect maintenance CPD is 

applied directly to HP displacement as shown in Figure 7.4. After the detection of these 

events, the model of pre-maintenance data is tested with the post-maintenance data and 

the model accuracies of pre-maintenance and post-maintenance datasets are compared. 

The information from this comparison was then used to either reset the SVR algorithm 

or generate historic synthetic data to retrain the model.  

The results of the implementation as described in Section 6.3.4 showed improved 

performance of the SVR algorithm. The parameters of the SVR algorithm remained 

relatively closer and converged into the ground truth. The ground truth of the parameters 
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is estimated using linear regression. A comparison between the model accuracies for pre-

maintenance and post-maintenance data was performed to assess and accommodate the 

post-maintenance affect (i.e. change of degradation rate) for RUL estimation. If the model 

accuracy is higher or equal for the post-maintenance data historic synthetic data was 

generated to include historic information while the degradation rate remains same. 

However, if the model accuracy is lower, the SVR algorithm is reset in order to estimate 

RUL due to change in degradation rate. The generation of historic synthetic data allowed 

the parameters of the algorithm tend to converge quicker into the ground truth and 

remain relatively closer because the hyperparameters were fine-tuned and contained 

historic information. The results of the implementation as shown in Table 6.4 show that 

the Adapted-SVR is capable of estimating RUL with prognostic gain using fewer data 

points. The Adapted-SVR helps practitioners estimate early RUL predictions while 

avoiding the loss of RUL through early scheduling of maintenance.  

The Adapted-SVR as an integrated approach allows improved estimation of RUL while 

utilising the decision boundary of the SVM. The SVR algorithm provides analytical 

framework based on support vectors to determine the decision boundary, hyperplanes, 

and model parameters. The determined decision boundary can be extrapolated using the 

model parameters to estimate RUL based on the predicted values exceeding the failure 

or warning threshold. The hyperplanes of the SVR algorithm are sensitive to support 

vectors (i.e. data points on the hyperplane) as shown in Figure 7.5.  

 

Figure 7.5 - Effect of Data Uncertainty on Support Vectors 
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The uncertainty relating to the support vectors affects the orientation of the decision 

boundary. Therefore, changes in orientation of the decision boundary results in affecting 

the RUL estimations.  

The CPD algorithm of the adapted-SVR allows detection of maintenance events. The 

maintenance events information from the CPD algorithm was used to reset the SVR 

algorithm when the model accuracy was lower. However, when the model accuracy was 

higher, historic synthetic data was generated which was combined with the post-

maintenance data to form a new data set. This data set was then used to retrain the model 

in order to fine tune the hyperparameters. The tuning of parameters is a time consuming 

task and affects the overall run time of the algorithm. Table 7.2 shows the overall time 

taken by Adapted-SVR to estimate RUL using selected number of data points. 

Table 7.2 – Running Time of Adapted-SVR 

No. of Data Points 
Time Taken to 

Estimate RUL (s) 

200 386.159 

300 554.064 

400 781.085 

500 987.106 

600 1121.128 

700 1572.170 

900 1737.192 

 

On average, 99% of the overall time is spent on training the model. For instance, for the 

whole case study (i.e. 1311 data points), the adapted-SVR takes 2247.317 seconds to 

estimate RUL. The time taken to train SVR model is 2243.129 whereas the rest of the time 

is spent on detecting the maintenance events and making predictions. These results 

confirm that the training of the algorithm results in higher running time. The running 

time of a predictive technique can be a limiting factor depending on its application. As the 

Adapted-SVR is implemented retrospectively, the implementation is allowed to produce 

predictions in time. However, if the application required real-time results then the 

running time of the current implementation can be prohibitive.  
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The main limitation of the Adapted-SVR is its lack of uncertainty quantification that is 

associated with the prediction of failure because SVR predicts degradation as a single 

point. The algorithm is also incapable of quantifying uncertainty that is associated with 

the model due to single point estimations. The assumption that the variation in noise of 

degradation parameter is constant also affects the performance of the algorithm because 

the steam turbine of a nuclear power plant operates in a non-linear operational 

environment where noise levels are varying. Thus, affecting accuracy, robustness, and 

reliability of the Adapted-SVR. The implementation of the technique using the real-world 

case study shows that the technique is performing correctly and produces results that 

are explicable. Therefore, for further validation of the Adapted-SVR, a synthetic case 

study was also used. For the synthetic case study, constant noise level was assumed. The 

results of the implementation showed that the integrated technique is working as 

intended. The integrated approach detects maintenance events. The approach uses the 

information from the detected events to either reset the SVR algorithm or generate 

historic synthetic data which is combined with the post-maintenance data and is used as 

historic information to provide improved RUL estimations. The results obtained from the 

implementation are explicable and reliable.  

The implementations of the technique using the real world case study and the synthetic 

data showed that the technique is capable of producing results for longer prediction 

horizon. However, the technique as mentioned before does not consider the uncertainty 

that is associated with the model and predictions. The uncertainty in predictions is higher 

when machine is running in non-linear operational modes. The operational modes tend 

to introduce noise and variation within the data. Therefore, uncertainty associated with 

the data, model, or future predictions in longer prediction horizon may affect the 

performance of the algorithm. To enhance the performance of the algorithm in terms of 

reliability, robustness, and accuracy, the prognostic algorithm must also accommodate 

events within the data that result in deviation from the expected degradation path and 

affecting the performance of the algorithm. 

7.3.3. Comparative Analysis of Adapted-BLR and Adapted-SVR 

In this section, comparative analysis between adapted-BLR and adapted-SVR is 

presented. The proposed concepts of both techniques provide practitioners with two 

different ways of accommodating maintenance into prognostics. It enables practitioners 

to utilise maintenance events information to improve RUL estimations probabilistically 
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and non-probabilistically.  However, the performance of both algorithms varies in terms 

of convergence to the ground truth, uncertainty representation, and running time.  Figure 

7.6 shows performance comparison of Adapted-BLR and Adapted-SVR parameters after 

the detection of first maintenance event as shown in Figure 4.28. The algorithms utilised 

75 HP displacement data points (i.e. increased levels of vibration data) of the labelled 

region 3 of Figure 4.29 to estimate RUL.  

 

Figure 7.6 – Performance Comparison of Adapted-BLR and Adapted-SVR Parameters 

It can be seen that the parameters of the Adapted-SVR tend to remain relatively stable 

and closer to the ground truth compared to Adapted-BLR. This is due to the fact that there 

is more data available in the form of historic synthetic data points (i.e. first 200 data 

points) that were combined with the data from the labelled region 3 to form a new data 

set. Whereas, the Adapted-BLR algorithm relies on updating the parameters of the prior 

distribution to accommodate maintenance. The prior distribution gets updated over time 

due to which variation is seen at the start. This variation in parameters performance 

tends to settle and converge into ground truth when more data points become available 

as shown in Figure 5.16 (i.e. the implementation of Adapted-BLR using synthetic data). 

These results indicate that when parameters are either converged into ground truth or 
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relatively closer to the ground truth, both algorithms tend to produce improved RUL 

estimates while considering post-maintenance effects.  

Both algorithms are capable of producing RUL estimates that are explicable. Adapted-

BLR along with the RUL estimations provides means to quantify uncertainty compared 

to Adapted-SVR. As mentioned before, it utilises conjugate Gaussian distributions to 

estimate model parameters using available data. Whereas, Adapted-SVR determines 

model parameters using support vectors (i.e. data points). Both algorithms are capable 

of producing RUL estimations for longer prediction horizon. However, only Adapted-BLR 

is capable of quantifying uncertainty that is associated with the predictions because it 

relies on the distribution of data points exceeding the warning or failure threshold. The 

Adapted-SVR lacks the ability to represent uncertainty in predictions and estimates RUL 

by predicting the point in time when predicted degradation exceeds the threshold limit. 

Both algorithms suffer from potential uncertainty in capturing noise characteristics of 

the data. The algorithms assume that the variation in noise of degradation parameter of 

an asset over its lifetime is constant. However, the non-linear operational environment 

of the steam turbine results in varying noise levels which results in affecting accuracy, 

robustness, and reliability of the both algorithms when implemented with the real-world 

case study. The implementations using synthetic data for which constant degradation and 

noise was assumed showed that the technique is producing correct and explicable 

results.  

The implementation of both algorithms also showed that the running times vary greatly. 

The running time of a predictive technique can be a limiting factor depending on its real-

time (i.e. safety critical) or retrospective application. The running time of the Adapted-

BLR is considerably low compared to Adapted-SVR which is due to conjugate Gaussian 

distributions. The generation of historic synthetic data affects the running time of the 

Adapted-SVR as more time is spent on training the algorithm. The implementation 

complexity of both algorithms is low as existing literature and toolkits in MATLAB or 

Python were used to develop, implement, and test both prognostic techniques.  

All the above discussion in this chapter shows that Adapted-BLR has considerable 

advantages over Adapted-SVR and is a better prognostic technique that is capable of 

accommodating maintenance at less computational cost. It provides means to track 
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uncertainty in model, predictions, and RUL estimations. It becomes more reliable when 

more data points are available for estimations and when variation in data is low.  

7.4. Summary 

In this chapter, detailed technical discussion on the contributions of the research work 

was provided. The formal evaluation and selection process for prognostic techniques 

presented in this thesis utilises look up tables to select an appropriate metric score for 

the prognostic metric in order to enable the assessment of a prognostic technique by 

scoring each and every prognostic metric that are considered for evaluation in the PHM 

implementation. The process is dynamic, extendable, and applicable to range of 

industries. It will facilitate practitioners with better and informed decision making 

because of thorough consideration of possible options of prognostic algorithms. The 

evaluation and selection process was implemented and two prognostics techniques were 

selected. The selected prognostic techniques BLR and SVR were developed, implemented, 

and adapted to accommodate maintenance into prognostics. The results from the 

implementation of Adapted-BLR and Adapted-SVR were further discussed and compared 

to help reliability engineers understand the applicability and limitations of both 

approaches. The discussion and comparison show that the Adapted-BLR is a better 

prognostic technique that estimates RUL while considering uncertainties and at lower 

computation cost.   
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CHAPTER 8: CONCLUSION & FUTURE WORK 

This chapter concludes the research work by summarising issues addressed in the thesis, 

developments, and contributions. A discussion on possible future work is also presented. 

8.1. Contributions and Conclusion 

The main objective of this research is to develop generic prognostic algorithms that are 

capable of accommodating maintenance with applicability in various scientific and 

engineering domains, where in this particular work, the developed techniques are 

applied to the degradation data obtained from a steam turbine of a nuclear power plant 

in the UK. The development of such algorithms is of major interest to manufacturers and 

operators of critical equipment, for the range of maintenance and operational benefits. 

These include, reduced maintenance costs, reduced instances of equipment failure, a 

reduction in ongoing scheduled maintenance activities and costs, and improved 

equipment uptime and availability. Key to enabling such benefits to be realised are robust 

algorithms capable of operating within real-world environments. In this thesis, all of the 

algorithms presented were developed exclusively using data collected from an 

operational steam turbine of a nuclear power plant. Thus, the developed approaches have 

demonstrated applicability to the relevant domains for which they are developed and 

provide future practitioners with insight and guidance in the development of future 

prognostic algorithms.  

The project was conducted in three stages. In the first stage, a literature survey of 

condition monitoring and prognostics is conducted to identify key issues that affects 

asset management. The main challenges that also presented opportunities for research 

included selection of appropriate prognostic algorithms and accommodation of effects of 

maintenance into prognostics. The survey also allowed identification of prognostic 

metrics and widely applied prognostics techniques. In the second stage, a formal 

evaluation and selection process for prognostic techniques is developed, validated, and 

implemented using the prognostic metrics. The implementation of the process helped in 

selecting BLR and SVR as probabilistic and non-probabilistic techniques. In the third 

stage, the selected prognostics techniques were implemented. The performance 

assessment of the techniques helped in understanding various challenges that arise 

during the implementation of prognostics for complex systems such as steam turbines. 

One of the challenges identified is the management of effects of maintenance. In the final 
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stage, two proposals were presented to accommodate effects of maintenance for 

probabilistic and non-probabilistic prognostic techniques. The proposals were 

implemented, verified, and compared. The advantages and limitations of both techniques 

were presented for practitioners.  

During the course of this project the following achievements and contributions were 

made:  

• A review on state-of-the-art prognostics techniques with the challenges that are 

involved during the implementation of prognostics was conducted. This review 

allowed identification of challenges and opportunities. Out of the identified 

challenges in prognostics, selection of prognostics technique and effects of 

maintenance actions are addressed to increase the efficacy of prognostics.  

• A formal evaluation and selection process for prognostics technique which is 

widely applicable to various industries is developed, validated, and implemented. 

The process will help practitioners evaluate and select prognostic techniques 

based on available engineering resources, user requirements, and strength and 

weaknesses of prognostic techniques in mathematical context.  

• Adapted-BLR is developed and proposed as a probabilistic prognostic technique 

that is capable of accommodating maintenance and estimating RUL. The technique 

is implemented using a real-world case study. The results from the 

implementation are analysed and discussed in detail to help practitioners 

understand the applicability and limitations of the technique.  

• Adapted-SVR is developed and proposed as a non-probabilistic prognostic 

technique that is capable of accommodating maintenance and estimating RUL.  

The technique is also implemented using a real-world case study. The analysis of 

the results from the implementation is presented in detail to help practitioners 

understand the applicability and limitations of the technique.  

• Comparative analysis of the Adapted-BLR and Adapted-SVR is presented with 

detailed discussion of the results from prognostic techniques.  

The observations from the implementation results and the resulting conclusions drawn 

from these observations throughout the project are as follows:  

• Detailed literature survey of prognostics identified six major challenges for the 

implementation of prognostics system. These challenges include: selection of 
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prognostics technique; lack of run-to-failure data; management of prognostics 

uncertainties; effects of maintenance actions; effects of failure interactions; 

performance evaluation of prognostics. The selection of prognostics technique 

and accommodation of effects of maintenance actions into prognostics are the two 

most underdeveloped areas of prognostics.  

• A selection of an appropriate prognostic technique is a crucial activity for the 

implementation of reliable and accurate prognostic system that helps reliability 

engineers make an informed decision for maintenance. However, there is no 

standardised methodology in prognostics literature and practice that helps the 

practitioners with the selection and evaluation of prognostic techniques based on 

available engineering resources, user requirements, and thorough consideration 

of the merits of prognostic techniques. The proposed formal evaluation and 

selection process utilises prognostic metrics to help practitioners make better and 

informed decisions for the selection of a prognostic technique by thoroughly 

considering possible options of prognostic algorithms, while reducing time and 

effort required to implement prognostics. The process utilises lookup tables to 

select score for prognostic metrics to formally assess the applicability of a 

technique. The process will encourage increased adoption of prognostic 

techniques in other domains/industry. It will also enable consistent comparison 

of prognostic algorithms. 

• From the formal evaluation process of prognostic techniques, BLR and SVR were 

selected as probabilistic and non-probabilistic prognostic techniques for the 

implementation in nuclear prognostics. 

• BLR is a transparent probabilistic prognostic technique in its assumptions, where 

it provides a clear explicability of the rules that govern the relationships that make 

predictions possible. For the validation purpose, the transparent solution is 

important in the field of safety-related applications. BLR also allows incorporation 

of previous knowledge/experience in a coherent way and avoids over-fitting 

problems. Furthermore, BLR have been utilised widely and successfully in 

multidisciplinary fields such as reliability engineering, survival analysis and 

forecasting.  

• SVR is a supervised prognostic technique which provides clear steps for the 

prediction of RUL. However, SVR lacks the ability to represent uncertainty in 
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predictions and estimates RUL by predicting the point in time when predicted 

degradation exceeds the threshold limit.  

• For the development of prognostic algorithms, one of the primary challenges is 

identifying, or inferring, an appropriate signal of interest, for quantifying the 

current level of equipment degradation and for use in predicting equipment RUL. 

To track the evolution of an identified fault indicator over time requires that the 

operating conditions at which times the fault indicator is evaluated are consistent. 

In this way, the only issue which can be responsible for changes in the value of the 

fault indicator is equipment degradation, thus enabling the evolution of the 

degradation process to be tracked and forecasted accurately.   

• In steam turbines, vibration signals represent the overall health of the system. 

These signals are used to monitor the degradation of the steam turbine to detect 

the changes in performance and to indicate the need for inspection/maintenance. 

Thus, vibration signal (i.e. HP displacement) that represents degradation is 

forecasted for RUL estimation of the steam turbine. However, there is a large 

uncertainty associated with the signal as it gets corrupted with noise due to 

various reasons, including steam turbine design, manufacturing, operating 

condition, maintenance actions, etc. Large uncertainty in the data causes 

inconsistency in prognostic predictions, especially when there is little data 

available.  

• The implementation of BLR and SVR show varying performance due the inability 

of the techniques to distinguish between short-term and long-term behaviours. 

The operating conditions of the plant affect the performance of the algorithm. 

Therefore, for further validation, a synthetic case study is used. The synthetic data 

of known properties, which mimics degradation data with constant noise level, is 

generated. This methodology is very effective to validate the performance of the 

developed algorithms, because it shows that the technique is capable of producing 

early RUL prediction. 

• In steam turbine degradation, most of the degradation is nearly linear, however 

there are cases where the rates of degradation may be non-linear. In the second 

case, the engine performance may degrade at approximately constant rate for a 

period of time, followed by a decrease in rate or the level of degradation. This 

occurs when steam turbine performance returns due to maintenance action. 
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Maintenance actions introduce variation within the degradation parameters that 

are being monitored for condition monitoring. Therefore, for accurate 

prognostics, knowledge of maintenance actions which affect the rate and state of 

degradation is crucial.  

• To detect and accommodate maintenance actions, two integrated prognostic (i.e. 

probabilistic and non-probabilistic) approaches that utilise CPD algorithm are 

proposed.  The CPD algorithm helps identification of maintenance events. The 

information from CPD algorithm is utilised accordingly. For probabilistic 

algorithms, prior parameters can be reset or reconfigured when a maintenance 

event is detected. Whereas, for a non-probabilistic prognostic algorithm synthetic 

historic data based on model prior to the maintenance is used to inform the 

prognostic algorithm. The Adapted-BLR and Adapted-SVR proves to be promising 

to be applied in prognostics as they enhance the quality of RUL estimation and the 

performance of prognostics algorithms by accommodating maintenance into 

prognostics as shown by the implementation results. 

• The implementations of the Adapted-BLR and the Adapted-SVR resulted in RUL 

estimations with prognostic gain using fewer data points. For instance, using 5 

data points of the post-maintenance data of the real-world case study, the 

Adapted-BLR produced RUL estimation of 42 days compared to the BLR which 

estimated the RUL of 14 days. Thus, resulting in the prognostic gain of 28 days. 

This information can be used by maintenance engineers to schedule maintenance 

while maximising the utilisation of the asset and to avoid loss of RUL through early 

scheduling of maintenance.  

• The analysis and comparison of the adapted algorithms shows that Adapted-BLR 

has considerable advantages over Adapted-SVR. The Adapted-BLR is a better 

prognostic technique that is capable of accommodating maintenance at less 

computational cost. It provides means to track uncertainty in model, predictions, 

and RUL estimations. It becomes more reliable when more data points are 

available for estimations and when variation in data is low. 

• In a dynamic operational environment, the deterioration process of a machinery 

can be affected by different factors like engineering variances, failure modes, 

environmental and operating conditions. The data acquired from such machinery 

are usually noisy and subject to high level of uncertainty / unpredictability, and 
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estimation of RUL is usually a hard task. Therefore, for accurate prognostics, these 

factors must be addressed along with the inclusion of maintenance effects in order 

to encounter uncertain inputs, engineering variations, etc., and to meet industrial 

constraints and requirements. Nevertheless, this research work is a step ahead in 

PHM domain toward maturity of prognostics.  

8.2. Future Work  

The industrial partner for whom the technologies are developed have expressed their 

desire to take this work forward and are actively involved in investigating avenues for 

future research, in partnership with academic institutions. There are several ways the 

work conducted in this project could be developed and taken forward. This section 

provides several suggestions for future works: 

• Uncertainty due to variable operating conditions can greatly affect the reliability 

and implementation of prognostics in the real world. Thus, current and future 

operating conditions should be used as inputs for prognostics, and this topic needs 

to be further explored. 

• In the steam turbine’s case, the vibration data represents degradation. However, 

the supplied vibration data is very noisy and does not always show monotonic 

increase. As a result, the developed prognostic approaches are subject to large 

uncertainties when estimating RUL which leads to difficulty in decision making 

for maintenance. Therefore, either utilising better representative signal or 

multiple signals representing degradation could help prognostic algorithms 

perform better.  

• To reduce the computational complexity and cost of SVR different optimisation 

algorithms, difference sizes of training datasets, implementation approaches such 

ensembling models, etc. can be considered to improve the performance of SVR.  

• To deal with the uncertainty, SVR can be implemented in Bayesian probabilistic 

framework (i.e. PSVR) in order to estimate error bars along with the predictions.  

• Implement adapted prognostic techniques using other case studies such as Li-Ion 

Batteries [156], Bearings [157], Turbofan Engine [158], etc. to further validate the 

performance of the techniques.  

• Implement adapted prognostic techniques using synthetic data with varying level 

of noise. 



 178 

• Extend prognostic implementation by implementing latest prognostic techniques 

such as Recurrent Neural network with Long Short-Term Memory (LSTM) [159] 

or Temporal Convolutional Network (TCN) [160] for multi-step forecasting while 

comparing the performance of the technique with the existing prognostics 

implementation.  

• The ground truth data is very crucial to produce true failure-time data as well as 

an appropriate algorithm validation. In this work, based on consultation with 

industrial peers and expert matters, linear regression method is applied to the 

vibration data and it assumes the mean of the regression model as the “expected 

ground truth”. Nevertheless, this practice does not have a strong scientific 

foundation. Specific research in determining ground truth is strongly required, 

where the ground truth is rarely available in many situations, especially in a 

complex system such as steam turbines.  

• The formal evaluation and selection process helps identify suitable prognostic 

techniques. The method is extendable and more prognostic metrics can be 

included to further enhance the selection and evaluation process. A metric such as 

cost-benefit ratio can be included in order to help practitioners understand and 

assess the adoption and application of prognostic algorithms.  
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