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ABSTRACT

The non-linear hyperbolic partial-differential equations
governing long wave propagation 1in one and two plan
dimensions are derived. By application of the Preissmann
or ‘'box' finite difference scheme two numerical models
of long wave behaviour are developed.

The first, based on the one plan dimensional form
of the partial differential equations, is intended for the
solution of flood routing problems in natural river systems.
The model has two constituent parts. A main channel
algorithm reproducing flood wave behaviour in the main
channel of the drainage system and a washland algorithm
modelling the behaviour of lateral storage ponds on the
river banks. The main channel algorithm possesses the
ability to handle: natural channel cross-sections, variable
distance increments, tributary inflows, calibration with
both distance and stage, rating curve boundary conditions,
the formation and drowning of controls and the analysis
of controls. On completion of development trials the model
was used to assess the effect a new road embankment
would have on flood levels in the River Aire in Yorkshire.

The second, based on’ the two plan dimensional partial
differential equations, employs an alternating direction
application of the Preissmann finite difference scheme
to model tide and storm surge behaviour in estuaries
and coastal seas. Special consideration was given to

boundary conditions in the model and these 1include a
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moving shore line boundary condition permitting the flooding
and drying of sand flat areas to be modelled and a '"weir"
flow boundary condition, enabling the overtopping of
obstructions with a width considerably less than the grid
size of the model to be represented. A practical assessment
of the model's capabilities was accomplished by simulating

tide and storm surge propagation in the Firth of Clyde

and Humber Estuary.
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1, .
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DEFINITION

Cross-sectional flow area = perpendicular to
the flow direction.
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Body forces acting on a fluid element.
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Discharge coefficient for a submerged barrier.
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Total fluid energy.
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Right hand side of finite difference continuity
equation.

Acceleration due to gravity.

Head above flood banks

Right hand side of finite difference dynamic equation.

Water depth

Instantaneous variation from mean water

depth.

Riemann invariants

Computational Point index.
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DEFINITION
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Manning coefficient in empirical roughness laws;
time step index.

Wetted perimeter; pressure in a liquid.
Atmospheric pressure.
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Lateral flow.

Flow per unit breadth x-direction.

Flow per unit breadth y-direction.

Hydraulic radius.

Slope of energy line.

Slope of water surface.

Time.

Time between two computational intervals.

Depth averaged velocity in the direction of x-axis.
Velocity in direction of x-axis.

Depth averaged velocity in the direction of y-axXis.
Velocity in the direction of y-axis.

Wind speed above water surface.




SYMBOL

Wl

w
X

AX

zb

Z0

DEFINITION

Waterlevel.

Velocity in direction of z-axis.

Space co-ordinate in horizontal plane.
Distance between two computational points in
the x-direction.

Space co-ordinate in horizontal plane.
Distance between two computational points in
the y-direction.

Vertical space co-ordinate above datum.
Elevation of barrier.

Elevation of bed.

Energy gradient weighting coefficient.

Angle of wind measured from north.
Non-uniform velocity distribution coefficient.

Weighting coefficient in finite difference approx-

imations of functions and their space derivatives.

Wavelength; damping parameter.
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CHAPTER ONE

INTRODUCTION

1.1-

Recent technological advances have provided the
means to design and construct civil engineering works
of greater technical complexity and scale than were previously
possible. Such projects have the potential to affect the
environment over distances ranging from their immediate
vicinity to hundreds of miles. Parallel to this increasing
technical ability there has been a steady growth in society's
environmental conscience: awareness of man's increasing
potential to irreversibly damage his surroundings. Together
these have placed greater emphasis on the engineering
profession’s  responsibility to assess the environmental
impact of proposed engineering works long before the

construction phase.

Civil engineering hydraulics is one branch of engineering
to which the above statements are particularly applicable.
As, when proposed works influence flows in rivers and
seas there 1is considerable potential for economic and
environmental damage. Economic damage may result from
inundation of valuable land or adverse effects on shipping
lanes or the inshore fishing industry. Environmental
damage can occur through damage to wild life habitats

or the loss of a recreational amenity.

. To solve the complex problems of cause and effect



posed by alterations to hydraulic flow systems recourse
is made to physical or numerical modelling. Both of
these techniques have their own particular advantages
and disadvantages. In the case of numerical modelling
the advantages include: flexibility in the sense that
the structure of the model does not depend on data from
the prototype, and hence the same basic model can be
used for entirely different cases, also numerical models
can be store‘d easily with minimum costs. Although possessing
these advantages numerical models are not yet sufficiently
advanced to totally replace physical models; as only
by physical modelling can full three dimensional flow
behaviour and fine geometrical detail be included in a
study.

In the early days numerical modelling found application
only in projects with a 1large capital expenditure, as
in these projects the cost of numerical modelling research
and development are small compared with the overall
project cost. Today, however, numerical modelling is
used for projects with capital expenditure ranging from
tens of thousands to hundreds of millions of pounds.
This popularising of numerical modelling results from
two sources.  Firstly, the availability of published inform-
ation allowing numerical schemes to be developed with
a small budget by capitalising on research investments
made for the earlier projects and secondly the increased

availability and reduced costs of computing facilities.



One of the aims of this research project is to build
on current numerical modelling expertise to provide low
cost numerical models for the solution of tide émd flood
propagation problems in two plan dimensions. It is hoped
that the resulting models will be of wuse to hydraulic

engineers with access to standard office computing facilities.

1.2. ECONOMIC ASPECTS OF NUMERICAL HYDRAULIC MODELS

The commercial considerations governing the internal
operation of a numerical modelling organisation are presented
in detail both by Abbott (1979a) and Cunge, Holly and
Verway (1980). From the point of view of a practising
engineer the eccnomics can be viewed in a relatively
simple light. To him a numerical model is an engineering
tool which should provide reliable engineering information
at as low a cost as is possible. This applies if he purchases
a software system to operate on his ou;n inhouse computer
facilities or if he employs a numerical modelling organisation
to carry out a study for him.

The <costs incurred when using inhouse facilities

to solve a particular problem may be subdivided as follows:

i. The cost of basic surveying and field
measurement campaign. This cost exists
for all studies and its value depends

to a large extent on local conditions.

i The cost of purchasing or developing



the necessary software to solve the problem.
This can be significantly reduced if
the model is applicable to a number
of problems permitting initial development
cr purchasing costs to be discounted
over a number of applications. Such

is the economic reasoning behind the
design system approach Abbott (1976).

A design system consists of a main computational
algorithm for the solution of the mathematical

equations governing the physical problem

linked to subsidiary programmes for
data and result processing. The main
computational algorithm is developed

with a high degree of flexibility enabling
it to be applied to as wide a range
of problem types and geometrical configurations
as possible. The subsidiary programmes
lower costs Dby reducing the manhours
required fecr data and result processing.

A flow chart for a general design system

is shown in ligure 1.1

11i. The cost of computer time. This cost
exists for all studies. It can be minimised
firstly, by the use of efficient programming

techniques, secondly by careful assessment,
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at the planning stage, of exactly what

information is required from the study.

The advantage for a practicing engineer in adopting
a policy of wusing inhouse numerical modelling is that
after the initial development or purchasing outlay for
the numerical model has been met his organisation then
has direct control over charges for any modelling contract.
Autonoiny of this kind permits the strategic use of numerical
models where the engineering firm may choose to subsidise
numerical model studies for a client in the hope that
such a study will eventually lead to a much more valuable
contract.

If the practicing engineer employs a modelling organ-
isation to carry out a study on his behalf the cost of
the operation is outwith his control and will depend to
a large -extent on economic forces operating within the
numerical modelling market at that time.

In most engineering firms numerical modelling studies
will consist of a mixture of ‘inhouse studies and external

numerical modelling contracts.

1.3. SCOPE OF THE CURRENT RESEARCH

In the following chapters the development and applic-
ation of two numerical models 1is described. One for the
modelling of flood wave propagation in a natural river
channel and its associated washland areas and the other

for the modelling of tide and storm surge propagation



in coastal waters.

1.3.1. FLOOD ROUTING MODEL

The aim of the flood routing model, listed in Appendix
B, is to provide an estimate of variations in flows and
water levels during the passage of a flood through a
natural river system by solving the governing hydraulic
equations. This requires that the model take account
of flows both in the main river channel and into and
out of washland areas. To achieve this two algorithms
are employed within the model; one for the solution of
the continuity and dynamic equation in the main channel
and the other for volume conservation in washland areas.

The main channel algorithm employs an implicit
finite difference methoed to solve the governing equations
as this permits wuse of the most economic combinations
of time and distance increments. In addition to solving
for flows and water levels along the main channel length
it was desirable that the model contain the facility for

handling the following features:

i. The ability to operate using the

geometry of the natural river channel.

ii. The ability to use variable distance
increments between solution nodes. This
enables easy inclusion of sections of hydraulic
interest such as Dbridges and weirs in

the numerical schematisation.
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Vie.

A facility for handling tributary
inflows as in many rivers a large percentage

of downstream main channel flow comes

from upstream tributary f{lows.

Be capable of detecting and analysing
control sections. This 1includes both man
made weirs and natural control sections
which may be present at low flows and
drowned out at high flows. An initial

survey of the technical literature indicated

that such a requirement may pose computational

difficulties especially in reaches with
relatively steep bed slopes, Price and

Samuels (1980).

Calibration with both distance and
stage allowing local energy losses at
meanders and bridge sections to be included

along with variations in channel roughness

with water level.

The wuse of a rating curve for the

downstream boundary condition. Through
this the influence of conditions downstream

of the model area are included in the

solution.

Washland areas ‘are represented by 2 number

of



storage pockets on both banks of the main channel. The
pockets are separated from each other and the main channel

by a system of flood banks. Flows between the main channel
and the washlands are calculated from a weir flow equation
of the form q o< H¥ . The degree of submergence is taken
into account by the use of a submergence factor. Within
each washland compartment waterlevel is calculated by
an explicit solution of the continuity equation. The use
of an explicit calculation allows the washland model to
be contained in a separate routine. This adds to programme
flexibility as the main channel model can be applied in
rivers where nc washland system exists. Since' individual
washland compartments may border an appreciable stretch
of river channel it was thought desirable to accommodate
the possibility of simultaneous inflow to and outflow from
a washland. Such a circumstance may develop, for example,
at a meander loop. Upstream of the meander the river

level is relatively high and a proportion of the river flow

enters the flrod plain within the loop of the river. Downstream
of the meander the river level is significantly lower due
to head losses within the meander and flow may take place
from the flood plain to the river at this point.

Programming of the numerical model was done in
such a way as to be compatible with an existing programme
library at the University of Strathclyde. The library provides
supplementary programmes for the generation of main channel

section properties from raw survey data, the calculation
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of starting conditions in the form of steady flow profiles

and calibration.

T’

Cn completion the flood routing model was wused for
a flood study of the River Aire in Yorkshire. The purpose
was to assess the effect of flood levels when a proportion

of the existing washland was lost due to the construction

of a new road embankment.

1.3.2. TIDAL MODEL

Intended applications of the model are the simulation
of tide and storm surge propagation in coastal areas.
The model, listed in Appendix C, employs an alternating
direction implicit finite difference scheme to solve the
long wave equations in two plan dimensions for flows
and water levels at every point in a numerical grid placed
over the study area. Solution at every point in & numerical
grid inevitably increases computational cost above those
for methods solving flows and water levels at alternate
grid points. However, it 1is hoped that the additional
computer costs incurred will be offset by grecater medel

flexibility particularly in the choice of boundary conditions.

Possible boundary conditions include:

i. Flow known as a function of time.

ii. Water level known as a function
of time.

iii. An expanding boundary  condition

wheie the solution area may expand over
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low-lying areas as water level increases.
Such 2 condition will be particularly
useful if it is required to assess the

extent of flooding resulting from a storm

surge.

iv. A weir flow boundary condition. This
condition is of wvalue 1in circumstances
where an assessment of flow over an
obstruction with a width considerably
less than the grid size is required.

Examples of such obstructions are

sand-bars or causeways.

For development purposes the model was used to simulate
tides and storm surges in the Firth of Clyde. The Firth
of Clyde was chosen because of its highly variable bathymetry
and the readily available data for both schematisation

and verification. After completion of testing and calibration

the opportunity was taken to obtain a direct comparison
between the adopted alternating direction implicit method
and a two-dimensional characteristic method. The results
of Donald (1981) were used as the basis for this comparison.
Following the  satisfactory conclusion of development
tests in the Firth of Clyde, the model was applied to the
Humber Estuary. Data for this estuary was available
to provide direct comparisons between computed and observed

water levels and velocities. The water level and velocity




observations were extracted from published works by the
Humber Estuary Research Committee and the Hydramnlics
Research Station. In addition the sand flat areas in the
Humber Estuary permitted testing of the expanding boundary

condition while the weir flow boundary was tested by simulating

the over topping of Spurn Head.




CHAPTER TWO

DERIVATION OF LONG WAVE EQUATIONS

2.1. WATER WAVES

Water waves are classified into three categories
according to their ‘'relative depth", which 1is the ratio .
of water depth to wave length. If the rlelative depth
is greater than a half, the waves are called '"deep-water
waves"” or 'short waves'", for which the wave celerity
is dependent on the wave length only.

For the '"shallow water waves', also called 'long
waves'”, the relative depth 1is 1less than one twentieth,
and the wave celerity is dependent on the water depth
only.

Waves having relative depths between these two
limits are called "intermediate-depth waves'", where the
wave celerity is dependent on both the wave length and

the water depth.
The present concern 1is with long waves as these

are the dominant wave form during flood wave, tide and

storm surge propagation.

2.2. GENERATION OF "LONG WAVES" IN SEAS

In sea areas long waves are generated by forces
acting on the body of water. The resulting waves can
be classified depending upon the generating forces. These

are: tidal, meteorological surge and tsunami.



2.2.1. TIDES

Tidali waves are a result of:

a) The attractive foice cf the moon;
b) The attractive force of the sun:

c) The attractive force of the earth;
d) The centrifugal force caused by the
earth about its axis.

Of these contributory forces, that of the m2on is
the greatest. If it were not for the effects of the shape
and depth of the oceans, and the position of islands therein,
and the <chare of the coastlines, the rise and fall of the
tides would closely follow the movement of the moon round
the earth, varied to some extent in accordance with the
momentary position of the moon, the earth and the sun
in relation to each other. In fact, however, the manner

in which the tides rise and fall in different seas and

oceans varies considerably; the period of oscillation of
the tide 1in one area differs from that in another, and
varies from about six to twenty-four hours.

The combined attractive forces of the moon and the
sun on the earth's large masses of water have their greatest
effect when they are in line with the earth, i.e. at new

moon and full moon, and their least effect when they are

approximately at right angles to each other, i.e. at the
first and last quarters of the moon.
These variations of this force affect the amplitude

of the wave they produce and hence the range of the tide,
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i.e. the difference in level between successive high and
low waters, is also affected. Shortly after full and new
moon a locality will experience its highcst high waters
and lowest low waters of that lunar month, and the tides
in this period are called ‘'spring tides'". Conversely,
around the times of first and last quarters of the moon,
the lowest high waters and highest low waters of that
lunar month will be experienced, at which pecricd the tides
are called 'neap tides'". Between these limits the height
of successive tides increases or diminishes progressively.
Spring tides around the British Isles occur from about
one to one and a half days after full or new moon, and
neaps occur at about the same interval after the [first
or last quarters of the moon. The time interval between
successive spring and neap tides is variable, but for practical
purposes 1t can be taken as being about seven and a half
days, 1i.e. about one quarter of an average lunar month

of twenty-nine and a half days.

2.2.2. METEOROLOGICAL SURGE

A meteorological surge wave is normally produced
by conditions associated with a depression. An area of
low pressure over an area of sea will set up a barometric
slope, by causing a relative rising of the sea surface
by about 10mm per mb. Appreciable surges are only likely
to develop on this account when a progressive wave is built

up by resonance which results from a depression travelling

1
at a speed approaching (gh)* . Associated strong winds con
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also act to increase water level. Amplitudes of surges
will only be small in deep water but will become magnified

on account of shoaling effect on entering shallow water.

2.2.3. TSUNAMI

Tsunamis have a seismic origin and will thus be
propagated from a faulted or orogenic area. Coastal
engineers are usually concerned with tsunami that have
degenerated into trains of long waves. On account of
their relative infrequency and unpredictability much remains
to be learned of their fundamental characteristics. As
with storm surges the amplitudes of tsunami waves are

also magnified on entering shallow water.

2.3. MODIFICATION OF LONG WAVES IN COASTAL AREAS

Long waves propagating 1in the open ocean generally
have an amplitude of 1less than a metre. On entering
coastal areas restrictions imposed by the surrounding
land and the shallower water cause the wave crest to
steepen and the wave amplitude to increase.

The steepening of the wave «crest is a result of
wave celerity depending on water depth. It can be shown,

Doodson & Warburg (1941), that the celerity of any point

in a wave is equal to:

C = [glh + 3n")j?

where h is the mean water depth and h' is the instantaneous
variation above and below this mean. Clearly in shallow

water high water will be accelerated and low water will
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be retarded, significantly steepening the wave crest.
Amplification of wave amplitude in gulfs and estuaries
results from two distinct causes:
i. By reason of tendency to resonance. It can Dbe
shown, Doodson and Warburg, (1941), that in estuaries
of length 1less than half a wave-length tidal <cscillations
at the closed end are greater than at the mouth.
ii. By reason of the changes in the area of the cross-
section of the channel. As the cross-sectional area diminishes
the stream must increase to convey the same amount of
volume and energy as Dbefore. This necessarily involves

an increase in the elevation also.

2.4. INTERACTION OF LONG WAVES

Unpredictable surge waves, such as meteorological
surges and tsunami, will be superimposed on any tide
that may be preszant and the two will build up tugether
in shallow water. If the crest of a surge coincides with
high water a phenomenal high water will be produced,
far above the predicted value. Disastrous effects may

be experienced 2shore, such as damage of man made structures

or the inundation of valuable arable land.

2.5. DERIVATION OF THE TWO-DIMENSIONAL LONG WAVE EQUATIONS

&

Using Newton's laws and the principle of conservation
of mass it is pocssible to derive the two-diisensiornal unsteady
flow equations; which given continuous sets of boundary

and geometrical data will describe the propagation of long
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waves in two space dimensions. In the subsequent
sections these equations are derived relative to a fixed
co-ordinate system, The Cartesian axes 'x' and 'y’

are taken —counter-clockwise in an arbitrary horizontal

plane, with the 'z' axis vertically upward.

2.5.1. ‘THE CONTINUITY EQUATION

The law of conservation of mass states that the
mass of fluid flowing across the boundaries into the fluid
element shown in Figure 2.1 in time 'aAt' must be equal
to the amount by which the mass of the element has increased

in the same time interval. Let the dimensions of the

element be aAx, a4y, and sz and velocities in the 'x’,
'y’ and 'z’ directions be given by 'u', 'v' and 'W¥'
respectively.

The inflow of mass across face ACGE in time 'at'
1s:
/ouazayat
where L is the mass per unit volume of the fluid. By

Taylor's theccemy, the inflow of mass across opposing face

BDHF in time 'At' is approximately:

~ [Puazayat + Bg?:)

axazayat ]

Adding the above pair of expressions yields the net inflow
of mass in the x-direction during 'at':

o{pu)

'ga-;— AX Az ay at
The net inflow of mass into the volume element is the

sum of the contributions of the three co-ordinate directions,

i.€.:
net fFlow across _  raleu)  3(Rv)  d(pw) |
all faces in at [ S x T oy To 2 JaxayazatEquation 2.1
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If the mass present at time 't' is ,ALOaxayaz then at time

't+at', from Taylor's formula, the mass present will be:

/QAXAYAZ + —%—/‘?{-Ax Avazat

Then,
net increase of mass _ yo,, ayazat Equation 2.2.
within element inaAt S5t

In the absence of ainy creation of mass within the element

this must be equal to the inflow of mass across the boundaries;

i.€, Equation 2.1. = Equation 2.2.
O - _ [3(/0”) R M +i(_p_"’l’.2. Equation 2.3.
Y O X oY O Z

Where a fluid may be considered incompressible equation

2.3. reduces to the volume conservation law of an incompressible

fluid:

oU _dV .ow _
5x Toy tsz = U

2.5.2. THE DYNAMIC EQUATION

Consider the forces shown acting, 1in the x-direction,

Equation 2.4

on the fluid element in figure 2.2, A double subscript
convention is used to identify shear stress components;
"the first subscript indicating the directicn of the normal
to the surface on which the shear stress acts, and the
second, the direction of the component. Assuming all pressures
to increase in the positive co-ordinate direction, the net

o P

pressure force on the element is: - Sx AxAayaz. Similarly

the net shear forces acting 1in the x-directions are:
S Tre 9 L .
%% Ay axaz and S5 Azax Ay. Body forces, in the
x~-direction, acting on the fluid as a whole, e.g. tide

generating forces and Coriolis force are represented by
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the term ay. Summating the above forces and applying
Newton's second law in the x-direction gives:

dU=1aP+1é(?‘x+1 8 )
gt A 5y p__yy TZL + Equation 2.5.

The acceleration term is provided by the differential equation

for the total change in velocity u,

- U ou Ju 3 u
du = dx +Wdy +6_dz+'b_'t' dt

Similar eguations can be derived for the y and 2z directions.

dv . =19P . 1 a_%&u_))‘ 1(C,,,) Equation 2.6.
it ~ 2oy A X A o % T :
P

_ 1D . 19 -
dt = 557 +/.5%_zxz "73—5&!)/2) + a, Equation 2.7.

For the problems considered in the present work,
(flow in rivers and estuaries), vertical compunents of local
mean velocity are small. 1In consequence, vertical components
of force due to changes of momentum and gradients of vertical
shearing stresses are negligible compared with the force
due to ’gravity.

Equations 2.5. to 2.7. can be simplified to:

du ., ou Lou _ =13P 193¢, Pl -

gt-:— +U —é-; 'H/ay = p Y /:, —S)Lx+ﬁ§§zg+ ax Equatlﬂn 2:8-

OV QY oY - Z1P L 193Gy 108 C -

ST U5 +VE§7 = 5 Sy * 5 ?J-Y % —5—131 ay Equation 2.9.
Pl g.z_ = -g - Equation 2.10.

It is assumed that the density is uniform and consequently
the pressure is hydrostatic and a linear function of depth,
l.e.

p(z) = ogh + Pa

where Pa is the atmospheric pressure. In tidal computations,
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atmospheric pressure 1is usually assumed to remain constant
over the problem area, however, pressure variations are
important in the generation of stcrm surges. The derivatives
of pressure in the horizontal directions now become a

function of water level and atmospheric pressure:

OP oWl  OPa
o X =/P85% * 3x

where oWl is the component of surface slope in the x-direction.

o X

Equation 2.8 becomes:

du du . Ju_ _ Wl 19Pa 1 1
t"'uax"'vay" &3 'p'ﬁ"'p atyx/C)y"'P
o t zx/f)z ta, Equation 2.11

Equation 2.12

2.5.3 DEPTH AVERACED EQUATIONS

If the bed 1is at elevation 2z, above the datum and

L

Wl-z , = stream depth h equations 2.11 and 2.12 can be

integrated thrcughout the depth:

Wl
1 Ju ou Ju _
= l (‘:)*-——-»t + us— 4+ vay)dz =
0

h X fPh X Ph
0 0 20
Wl Wl
1 do _oO¥1 _|OPa 1 ;Z’ 1
"h S; ¥ Box Box * ax+/~3h g C)z.yxk)x dz +Lsx =lox
o o

ou

ou _ |
¥— and v - ¢ | !
U 5% Sy are non linear terms and car only be integrated

over the vertical if their distributions are known. Fortunately

they are wusually much smaller in magnitude than du/dt
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and it is sufficient to assume that:

wl
1 g_ - oV
_ﬁjz(u +V )dz... ua—+52v
where U and V ars2 depth averaged velocities. Values

of coefficient B' have been found for typical variations
of velocity over the vertical B' seldom exceeds 1.05 in
real flows, Henderson (1966). Because of the smallness
of the terms, however, it 1is common practice to omit the
term completely or take B' = 1.

Most estuaries are wider by an order of magnitude
than they are deep, and shear stresses on the vertical
planes are small except near steep banks and vertical
walls. Z‘ yX and Z‘ xy are thus wusualy small and can
be omitted from equations 2.11. and 2.12.

Dividing by g and rearranging equations 2.11. and

2.12. become:

1oU__UgU _ VaU _ oWl _13Pa [sx _,_z'bx = &, Equation 2.15

19V, UV VoV oWl  19Pa _ Csy 4+ (by - ay Equation 2.14
gdt gd gO Oy egdy ,ogh ogh

The continuity equation can also be integrated over

the depth of the stream:

Wi
ou oV oW -
i(ax +c3y + a?)dz = 0
1 1
: = udz and V = vdz
Putting U RV I

and noting that W3¢ = dWl/dt and Wy, = O we get:

olhll) _a_(ghV_) = 0 Equation 2.15

The foregoing is based on the discussion presented

by McDowell and O'Connor (1977).
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2.5.4. REPRESENTATION OF SURFACE AND BOTTOM SHEAR STRESSES

Conwon practice is that shear stress at the sea
bed be expressed in terms of the well known Chezy friction
coefficient 'C' as used 1in steady open channel flow.

Equilibrium between gravitational and resistance forces

can be expressed as

- -
(.br - /:)ghso

where tbr is the resultant chear stress propertional to
1

the resultant depth averaged velocity (U* + V2 )2 and

S0 is the slope of the water surface. The resultant velocity

may Dbe deduced from De Chezy's empirical relationship
namely:

(U + V*) = c(§ h)?
since h corresponds to the hydraulic radius in a very
wide channel. From the previous pair of equations, it
follows that the resultant frictional stress at the sea

bed is given by:

= (U* + Vv?¥) /C?
(o =18
Also, the components of the resultant frictional stress

which oppcses fluid motion are expressed as follows:

1
Cbx = /78 Uu(u* + v*)z /c Equation 2.16
1
'z'by =8 V(U* + V*)2 /C* Equation 2.17

The frictional resistance factor 'C', which 1is used
to establish these relationships betwecn sguared velocity
and the bottom stress) can be found only by observation.

This coefficient depends on the roughness of the bottom,

the bottom material and depth.
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The horizontal shear force at the free surface of
the fluid as a result of wind stress, Z':r may be determined
from an empirical approach similar to that for investigation
of bottom stress, Muir Wood and Fleming (1981). However,
for wind stress the medium of flow 1is air not water.

, whe~ e x-axis fien ta o Nedn-Saui clirtchm’
The components of wind stressAare expressed as:

-Z‘sx = K/Da W W cos B Equation 2.18
Coy=K o, W W sin B Equation 2.19
where K is the wind stress coefficient,pa is the density

of air and W is the wind speed above the water surface.

2.5.5. EXTERNAL BODY FORCES
Body forces a and ay include the effects of the
earth’s rotation and tide generating forces. Tide generating
forces are negligibly small compared to other terms and
are generally omitted from actual computations. Consequently,
the only external force requiring consideration is that
due to the earth's rotation. The Coriolis acceleration
components, and the associated inertia forces are induced
by the rotation of the earth with angular velocity & and
therefore depend on the latitude \/' of the body of fluid.
The inertia forces 1in the positive x and vy directions
are /)Q v and -,{2 u respectively, where {2 = 2® SinY".
When these forces are integrated with respect to 2z and

divided by the total depth h, the final form can be equated

to the external forces as follows:
Qe = 2V W Sin\/’ Equation 2.20

a_ =-2U W Si Equation 2.21
y iny” quation
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A comprehensive discussion of the coriolis force
is given by Doodson and Warburg (1941), while a rigorous

mathematical derivation of the term is presented by Raudkivi

and Callander (19759).

2.5.6 THE COMPLETE EQUATIONS

The equations for long wave motion 1in two-plan

dimensions can now be written as:

13U U JU V 20U 3wl 1 oPa
got g Sox g 3yt ox tgh ox W+
tbx C sx .
g 2 h- __"""g A h = O Equation 2.22

1 U V
g-é—'c—+gé_f+§'"§y+—c)—‘y+gp—a—y+ﬂU+

g NP h g A h = O Equation 2.23

ot T ox * Sy = O Equation 2.24
or setting q, = Uh and qy = Vh
1 9lgx/h) | (gx/h) Jdlgu/h) | (qy/h) 3(qe/h) . W1
: ot ' w Sx  * g Sy T ox’
1 oPa -O(q /h) + Cor _ Cox_ = 0O

— E ti 2.2
g/oﬁ v gph ~ g oh quation 5

1 9(gu/h)  (gx/h) o(gy/h) | (gy/h) d(gy/h) . QWi

g o t g o X g oY o

1 oPa _ Coy Gy L
g QoY Q(qx/h) ¥ O Equation 2.

g,rh gpoh -

= 0 Equation 2.27
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Z:‘,x = K/JaWWCosB

A
<

KO W W Sin P

2.6 ONE DIMENSIONAL LONG WAVE EQUATIONS

In systems such as that shown in Figure 2.3 the
lateral boundaries effectively restrict flow to one space
dimension. Here the two-dimensional unsteady flow equations
can be reduced to their one-dimensional form through certain
simplifying assumptions. These one-dimensional long wave

equations, also known as the de St Venant equations, are

presented in the following.

2.6.1 ONE DIMENSIONAL CONTINUITY EQUATION

Under the conditions shown in Figure 2.3 the continuity

equation becomes:

B oWl + 29 _ ql = O Equation 2.28

where 'B' is the section breadth, 'Q’' is the average flow
rate over the section area and 'q' is the average inflow

or outflow per unit length,

2.6.2 ONE DIMENSIONAL DYRAMIC EQUATION

In one dimensional unsteady flow calculations the

Coriolis acceleration, wind shear stress and wvariations
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in barometric pressure are negligibly small, further the

total change in velocity of time 'dt' is now provided by:

_ ou Qu
du-ax dx+3?dt

giving the one dimensional dynamic equation as:

a_‘;l_ CBWI éu 2-\:-::
ot T 8 5% +”'E)_x"'/oh O

1
s >t * Sx*m o x— * yorite 0 Equation 2.29

2.7 THE METHOD OF CHARACTERISTICS

Equations 2.25, 2,26 and 2.27 and equations 2.28
and 2.29 are sets of hyperbolic partial differential equétions.
Such equations can be combined linearly to produce character-
istic equations. These equations have the property that

they involve differentiation in one less direction than
the original equations. For example, 1in one-dimensional
unsteady flow, the characteristic equations become ordinary
differential equations. Further, the characteristic equations
define paths or surfaces in the solution domain along
which disturbances propagate. It is this feature which
provides the analogy between the physical system and
its characteristic representation. The domain of dependence

and region of influence for any point are rigorously defined



by the method of characteristics and correspond

to

those

of the physical prototype. This feature 1is often quoted

as being a major attraction when applying the

of characteristics to unsteady flow problems.

method

30
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CHAPTER THREE

A NUMERICAL MODEL FOR LONG WAVE PROPAGATION IN A
NATURAL RIVER CHANNEL

3.1 INTRODUCTION

Man's interest in river flow stems from his need
to protect human life, property, and economic systems
from the capriciousness of natural flow events and to
exploit their potential benefits in terms of energy, agriculture,
and navigation. In this overall context, mathematical
modelling provides a tool by means of which man can
study and gain an understanding of hydraulic flow phenomena,
select and design sound engineering projects and predict
extreme situations so as to be able to provide advanced
warning of their occurrence and importance.

A numerical model to predict flow conditions in
the main channel of a natural river system 1is developed
in the following chapter. The main channel, shown
in Figure 3.1, 1s considered to be the channel through
which direct drainage from the system takes place. Particular
atténtion is paid to the numerical representation of the
lateral flow term in the continuity equation as this is

He

of importance when linkingAmodel to the washland algorithm
presented in Chapter Four.

When applied to real problems the following numerical
model will be the main constituent of a suite of programmes.
The complementary programmes are designed to generate
data, suitable for use by the main numerical model, from

raw survey data. This facility will considerably reduce

the total number of man hours required for the analysis
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of flood routing problems. The complementary programmes

and their interdependence are discussed in Section 5.6

and illustrated in Figure 5.5.

3.2 DIS,CRETIZATION OF THE ONE-DIMENSIONAL LONG WAVE
EQUATIONS
The  one-dimensional long wave equations define
values of dependent variables, i.e. flow and water level,
throughout a continuous flow field. For practical engineering
purposes it 1is necessary to solve equations 2.28 and 2.29

for these variables at predetermined points in space and

time. As these equations cannot be solved analytically
approximate methods must be used. Approximate methods
proceed through the process of discretization, where

the continuous flow field is described in terms of discrete
values at a finite numbe~ of points. These points at which
variables are computed are called "grid points" or 'nodal
points'’, Discretized flow 1laws can then be solved to
furnish approximate engineering solutions to the equations.
Of the discrete . methods available the finite difference:
approach is adopted in the present work, this being
that most commonly used in engineering practice, see Cunge,
Holly and Verwey (1980). The method requires the replacement
of the ©partial differential operators in the continuum
equations by finite difference operators, to give a finite

difference analogue of the differential equations. The
finite difference equations are then solved by numerical

methods.

At the grid points geometrical information is given
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to the calculation; rendering their position of considerable
importance in natural river flood routing computations.
As, if numerical computations are to include all aspects
of energy loss by flow passing through a channel, irregularities
and constrictions such as meanders, weirs and bridges
must be defined in addition to typical channel cross-sections.
Inclusion of such features generally requires that irregular

distance increments be used to position grid points.

3.3 CHOICE OF FINITE DIFFERENCE SCHEME

Of the host of available finite difference schemes
a variation of the Preissman scheme, described by Abbott
(1979b) was considered the most appropriate in the present
circumstances. The reasons ar two fold.

Firstly, the rate of rise of a flood may be said
to be relatively slow in the majority of circumstances.
Thus, from the point of view of representing the time
dependent behaviour of a flood wave, a relatively large
time increment may be selected in any step-by-step numerical
computation. Large time steps are desirable from an
economic standpoint in that a reduced computer time is
employed. However, modelling of the spatial variations
of flow parameters requires that relatively close distance
intervals be chosen between adjacent solution points within
the computational scheme. Such considerations militated
against rthe use of an explicit method of solution of the
equations of motion and accordingly, for the calculations
of time dependent variables in the river channel, an

implicit technique is desirable.,.
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Secondly, the scheme solves for both dependent variables
at every grid point throughout the solution domain.
This means that no weighting of differences is required
for local centering to second-order accuracy with non-
equidistant grid points, Price (1974) and Abbott and Isonescu
(1967). Special conditions that relate dependent variables
at discrete points, such as weir flow and stage discharge

curves can be conveniently introduced.

3.4 IMPLICIT FINITE DIFFERENCE SCHEME

The following variation of the Preissmann finite

scheme

differenceAis applied, see Figure 3.2 Let it be assumed

that all variables are known at all points of the network

n,

on the row 't which 1is at time step 'n' and that it

is desired to find the values of the variables on the

lt n + 1 ’ .
row » that 1is the computations are advanced 1o

. n + 1
the time step t = t '+ At. Choosing a four point

grid identified by the intersections of the vertical lines

x . and X1 with the horizontal lines t" and t ™1, the

J
equations of unsteady flow are applied in the finite difference
form within the four point grid. At the point m, the

average values and the partial derivatives of a function

f are represented by:

(1-6) (f7 4 (7 )+ © (gl pntly

V4 ] j+1 ? ] + j+l Equation 3.1

f(m) =

b§f($) ] El_x [ (1-9) (f?+1 - f?) + 6 (f?:% ~ f;.”l)] Equation 3.2

of(m) _ 1 n+l n+l n n .
ot 2at [(fj + fj+1) - (fj + fj+1)] Equation 3.3
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In equations 3.1 through 3.3 f may represent Q, WIl, 5f

, at the point m are

Q0  9Q/A W1 JWl
so that Q, WI, Sx' ST %x_’ 5t

presented in terms of the values of the variables at the

four corner grid points.

With © = 0.5 this scheme 1is similar to that used
successfully by Amein and Fang (1970). More recently
Price and Samuels (1980) developed a numerical model
based on the scheme and applied it to the River Lagan

in Northern Ireland.

3.5 CONSISTENCY, CONVERGENCE AND STABILITY

Before a finite difference analogue of the continuum
equations can be considered of value its properties of

consistency, convergence and stability must be examined.

3.5.1 CONSISTENCY

Consistency can be defined in terms of the local
truncation error, as defined by Smith (1978). That is,
if the value of the finite difference terms tends to the
true value of the partial differential terms as the grid
lengths tend to zero then the finite difference scheme
is consistent with the partial differential equations.

The consistency of the Preissmann scheme described
in the previous section can be investigated by taking

Taylor series expansions about the point m to give:




df 2 f 2)2
fl; = f?:_g - 5;(‘ (‘éz")'(' ) + -3—;(—2- _(._A.EZQ-— - 0 ( (AX/Z)S )

2 2
- 5T ©at) + _3_78 { (Q;t) - 0((®@ at)® )

il

f]+1 B ]+% + 5?(- 2 5)(2 2

n+l gn+e of (4Xy2 o7 f (8X/2)° + O ( (6925_)3 )

+ %ti ( (l-e)ﬁt) -+ g{-z-
+0(((1-8)at) )

9’ f ((1-8)at )
2

el 8 of AX 3°f (ax/2)? X
§= 6 8 (5 ) * 5% ——SES— -0 (537

Sf O:f ( (1-0)at)?
* 3T ( (1-9)at) + ST T

of (m) of + 0 (ax?)

0 X T OX

Equation 3.4

or equation 3.3 gives:

_b_fé_%."_‘_). = g—{- + O (at ) Equa-tion 3.5

Clearly, the finite difference operators tend to the partial
differential operators as ax and At tend to zero. Further,
equations 3.4 and 3.5 show the scheme to be of second

order accuracy 1n space and first order accuracy in time.

3.5.2 CONVERGENCE AND STABILITY

The mathematical foundations for the questions of

convergence and stability of numerical schemes are well-




developed only for linear systems. The results from
linear theory are used as guidelines to non-linear problems,
the justification depending on numerical experiments.

A convergent finite difference scheme 1s defined
mathematically as one in which all wvalues of the finite
difference  solution approach the continuum differential
equation solution as the finite difference mesh size approach
Zero. This condition is linked to stability of a linear
scheme through the equivalence theorem of Lax:

Given a properly posed initial-value problem and
a finite difference approximation to it that satisfies the
consistency condition, stability is the necessary and sufficient
condition for convergence.

Lax and Richtmyer (1956) define stability by requiring
a bounded extent to which any component of the initial .

data can be amplified in the numerical procedure.

A local stability analysis for the scheme applied
to the linearized long-wave equations was undertaken
by Evans (1977), who concluded that for 6 = 0.5 the

scheme has no amplitude error, but does have phase error
and 1is thus dispersive. For 0.5 < 8 = 1.0 the scheme
is stable and damping of short-period waves occurs, the
degree of damping depending on the number of grid points
per wave length and moves up the wave spectrum as the
Courant number 1is 1increased. In practical terms none
of this 1is relevant to river modelling where the number
of grid points per wave length is very large, and even

with high Courant numbers there is little phase error. Indeed,
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Abbott  (1974) suggests that ‘"accuracy may actually be

increased by operating at high Courant numbers, due

to the solution being continually "refreshed" by the "boundary

conditions

3.6 FINITE DIFFERENCE CONTINUITY EQUATION

Leaving aside the lateral flow term for the present,

replacing the differential operators by the following difference

operators:
d Wl n+l 1
B—:B/ZAt(Wl -Wl n+ _ wh

0Q _ 1 n+l n+l
ox “zax (Ya1 T Q) Zax (Q]+1 ) Q?)

gives the finite difference continuity equation:

B, /2at (Wl;Hl - Wl ) + BJ+1/2M: (Wl?ﬁ - WI?H) + 2—61_X
@7} - O™ + 5 @, - Q) = 0
Rearranging:
(8%/2at) T - = QI 4 J+1/280 W77 4 Q,:;G,
Equation 3.6
where

Equation 3.7

3.6.1 LATERAL FLOW TERM

In the present study the lateral flow term at any
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section may consist of two components:
a) a tributary inflow (Ql)

In finite difference form this 1is the average of the known

tributary flows at times n and nmL1 within a reach between

two nodal points,

) _ 0.5 (Ql?"l . Ql‘]f.‘)

mearm

b) an overbank lateral flow (ql)
This is a complicated term to formulate in finite difference
form, as the lateral overbank flow is a function of both
channel water level and washland water level. During
a time increment variations in both of these water levels
may be large enough to significantly influence the lateral

flow. Therefore, the finite difference term has two components.

. -, & n
An initial lateral flow qu and a gradient term compensating
for variation of lateral flow with river water level,

aql/aWl (\*ﬂt.’?*'1 - Wl?)- The total lateral flow term then becomes:

In

1 n+l
Qltj = A% (Ql.

n n 1 ni n 1
j QA+ (@1 + 0.5 AL wiSwij )iy

Equation 3.8

The influence of the washland water 1level is modelled
using a submergence factor. Details of this are described

in the following chapter.

3.6.2 FINITE DIFFERENCE CONTINUITY EQUATION INCLUDING
LATERAL FLOW
Inserting equation 3.8 in equation 3.6 provides

the complete finite difference continuity equation,




n 1 n+l 1 n+l
(Bj/ZMZ T DA% aql/aWl) WIj = Dax QJ +

B /2any w1t o L ontl | |
( ]+1/ at) 1]+1 * 2ax Q]+1 Gj Equation 3.9

with G; modified to:

G}":G +---1---(Qn+1 + QY

n
j T o2x (¥ awWly -2a1))

Equation 3.10

3.7 FINITE DIFFERENCE DYNAMIC EQUATION

Ignoring energy losses due to friction for the present

and replacing the differential operators by the following

difference operators:

n+l,,. n n,.n 1
/A - ' _ n+ n A n

1 9(Q/A) _ 1
g ot 2g at j+1 J+1)

oWl S, n+l n+l (1-0)
= A WI o _— w1 . n
5}( X ( J+1 J ) + X (W1J+1 - WIJ)

1 J(0*/A%) © ,._.n+l

< o =y (@4 © Jﬂ/zgm?“) - Q" Q/2g (A7 P

n 1—
((Q]+1)/2 (A]‘l'l) (Q]) /Zg(A?) ) (6)(9)

gives the finite difference dynamic equation:

n+l n,.n n+l,.n n n
. - 0. /A" . _ -
E (Q /Ay ) QJ/ ] * QJ+1/A]+1 Qj+1/Aj+1) *

_@_ n+tl ., n+l (1+0)
(W1J+1 le ) + — (WI]+1

~ Wl?) +

B _(ant!- - n+l -0
ZgAX(QJ+1 Qj+1 (A]+1) - Q Q 3/ ) )+ é;ax)

n L 1 onx
((Q} 1)/0"3»,1) ~Q; /A, )=0
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Rearranging:
-8 n+ n+l n,, 1 n,.n 3, n+l
(AX) le (Q /ZgAj )(at —~ er/AJ-Ax) * WI].+1 +

n+1 AD 1 n .
(Q]+1 ]+1)(ﬁ + er+1/ _'|+1‘5 X) = Hj Equation 3.1lla
where

. -(1-8) n n 1 n,,n n n
Hj B A X (WIj+1 WIj) T 2g At (Qj/AJ ¥ Qj+1/Aj+1) -

(19) (", ya" )-(Qn) nd

2gax J+17 Y j+1 /m ) ) Equation 3.11b
3.7.1 ENERGY GRADIENT

In this study an estimate of the energy gradient
is obtained from Mannings equation for the flow, Q, in
an open channel under wuniform conditions, i.e. the total
energy line has a constant gradient and 1is parallel to
the invert level,
Y
Q = = R? So?

where A is the channel cross-sectional area, R is the
hydraulic radius, n 1is Mannings constant and So is the

invert or energy gradient.

gradient, Sf, is

the energy

the above equation:

Sf = n? Q*/A? R™®)

or,
Sf = Q*/k?
where k, the conveyance is given by

2
k = A R3/n

estimated by

In the non-uniform flow case

rearranging

Equation 3.12

Equation 3.13
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With reference to Figure 3.2, it 1is desirable that
the finite difference term be representative of conditions
within the region bounded by the lines j , j+l, n and

Sf n+l

n+l. That 1is, some average of Sf? > of ?+1 > j and
Sf ?:i This creates two problems. Firstly, the question

of calculating an average energy gradient through the
reach. Secondly how to obtain a realistic representation

of the unknown friction gradients at time n+l.

3.7.2 VARIATION OF ENERGY GRADIENT WITH TIME

The problem created here is that the friction gradients

Sf ;Hl and Sf?ﬂ are quadratic functions of the unknown

n+l .
flow Q and conveyance K+ , Which in turn is a function

of the unknown water level w1l . A variety of alternative

formulations s possible to overcome this impasse. Three
possibilities are discussed below.
a) The simplest formulation is based on the assumption

that conveyance will not wvary significantly during a

time increment, so that kIJ:Hl may be replaced by kr}t
4hen linearising the problem in Q?"'l by considering
Q?H. Q? to be representative of (Q ?H)’.
Resulting in:

Sf?+1 - Qg““IQ‘;‘/(k‘j‘)2 Equation 3.1/

Application of this approximation is limited to channels
where the above assumptions are justifiable. Namely,

where cross-sectional properties vary gradually with water
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level and where flow and water level vary little within

the implicit time increment.

b) As above, assume conveyance to vary slowly

with time and replace k IJ.HI by k .

To linearise the

problem in Q;.Hl assume Q;.Hl = Q? +4Q. Then,

QP2

j (Q?+AQV

= Q?2+ ZQ?AQ +a Q°

Considering 4Q® to be negligibly small and HP"H;*S

6Q = Q7 - Qf

gives
'n+12 ] z
| ~ 2000 (0™
Q] QY QT -(Q]

1
sj‘J:H may then be represented by

sf; 2 (270! ...(Q‘JZ,‘)z ) /(k?f Equation 3.15

This approximation is applicable where flow  varies
significantly during a time increment, but is limited

as variations in section properties with water level must
be gradual.

c) The following representation of energy gradient
at time n+l is linearised in unknowns by the wuse of
the differential expression for total change 1in Sf from

changes in both flow and conveyance.
Sf = Q/k’

dSf =(2er]/(krj1;) dQ -(2Q?§/G<?§) dk

= 252 (0™ _ oMol (kM k) /i
j 49 QJ /QJ (k] kJ)/ ] )
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= 25f™ (QHlQR - kP Dy Equation 3.16
) ] J J J
Utilizing
ntl . n Ak n+l n .
kj = kj + (le —~ le) Equation 3.17

equation 3.16 expands to

dsf = 25t (QPHlQn . 1 - ak/aWL i+l ypny
) ) ] ek ] ]
J
Sfr.l"'1 may be written as
Sfl:l+1 — Sfr:l - In N n.+1 N . Ak/&WI el n
j ] + dSf Sfj + ZSfj (Q] /Q] _I?.T_(W[j ..W(j)_'|)
J

Equation 3.18

This representation 1is applicable in channels where both

flow and conveyance vary significantly <during a time

increment.

3.7.3 YVARIATION OF ENERGY GRADIENT WITH DISTANCE

Since S5f is expressed in the form
Sf = Q*/k?
and flows Q and conveyance k are known only at the
solution nodes, the problem arises as to how to interpolate
between them in expressing 5f. Cunge, Holly and Verwey

(1980) outline a number of methods developed by different

Sf, = Q° /(xk] + (l-n)k?) (weighted average of k?)

il
D
N
R
™~
N
-~
+
—
|
E
~
W
Y

Sf, (weighted average of Sf)

Sf, = Q'/k% k™™ (weighted geometric mean of k?)

Sf, = Q*/(xk, + (1-)k,)* (weighted average of k)

in which a steady flow situation has been assumed, whee
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o¢=a weighting coefficient. Cunge, H_olly and Verwey show
how with a factor of two difference in conveyance between
two adjacent points and o« = 0.5, the friction slope for
each reach could vary by some 50% depending on the
conveyance interpolation scheme chosen.

During the development of the current scheme it
was noted that 1if equal weighting 1is given to energy
gradients at both ends of a reach, i.e. ot = 0.5, steep
local energy gradients at sections where c¢ross sectional
area 1s restricted, see Figure 3.3, have an excessive
influence on the calculations. In order to reduce this.

influence to proportions similar to those found in the

physical system a flexible weighting coefficient is used

in the numerical model.

Sf =0¢¢.5f., +oc.

m ] ] ]+18fj+1 Equation J3.19a

where
oL j = Sfj+1/(5fj + Sfj+1) Equation 3.19b
OLiy) = Sfj /(Sfj + Sfj+1) Equation 3.19c

Here the weighting coefficient varies from reach to reach
depending on the relative magnitude of the energy gradients.
Adoption of such a scheme is justified by the following
example:
The equation for total energy E:
E =2+ h + ul/gg

can be differentiated with respect to x to give
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2
-2—5 =aclx(z +h+ v*/2g) = -Sf =" / CR
or,

d

4z (h + v*/2g) = So-Sf

The above equation can be written in finite difference

form as:
aH a(h + v/2g) |
Ax " = So0-5f Equation 3.20

When flow conditions are known at a point equation
3.20 can be ir;tegrated back up the channel in a stepwrise
manner. Although not providing an exact solution this
technique will furnish a reasonable approximation to the

profile of the energy line in the physical system.

Consider the case of a trapezoidal channel with
a base width of 6m and side slopes of 1iH : 1V laid
on a bed slope of 1/1000 and carrying a discharge of
30m®/s. The channel terminates in a free overfall and
has a Mannings' roughness coefficient of n = 0.025,

Section properties can be calculated from:

A = h(6 + 1.5h)

P=6+2/3.25n

B =6+ 3h
The critical depth h_ existing at the free overfall can
be calculated from:

QB
gA?

or on substituting the above section properties

30* (6+3h) = gh:’: (6+1.5hc)3
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whence by trial

h = 1.226m
C

The numerical integration to a distance of 410m upstream
of the control 1is carried out in Table 3.1. The energy

line profile from this table is plotted in Figure 3.4.

Consider a reach bounded by j 200m before the free
overfall to j+1 at the free overfall. The friction gradients -
at j and j+l1 are 0.0016 and 0.0068 respectively., Calculating

the factors from equations 3.19b and 3.19¢ gives

ot g = (0.0016) - 0.19

(0.0016 + 0.0068)

_ ___(0.0068) _ o.81

X3+l ~ (0.0016 + 0.0068)

The total gain in specific energy in passing from j to

j+1 calculated from equation 3.19a is:

H=- (0.0068 x 0.19 + 0.0016 x 0.81) x 200 + 0.001
x 200 = -0.32m
This can be compared with the loss measured from Figure
3.4 H .= -0.3m. If an arithmetic mean were used the
calculated specific energy 1loss through the reach would
be:
H = - (0.0068 + 0.0016) x 0.5 x 200 + 0.001 x 200
==0.64m
It is obvious that 1in areas where locally steep
energy gradients occur use of an arithmetic mean will
cause considerable errors in computed energy gradients.
Adoption of the flexible weighting coefficients brings the

computed energy gradients closer to those of the physical
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system in this circumstance.

3.7.4. ENERGY GRADIENT REPRESENTATION

From an economic view point, within the bounds
of required accuracy, it is desirable to have representation
of all terms as simple as possible. Greater complexity
means greater computational effort. Each of the representations
given in section 3.7.2 a, b and ¢ and section 3.7.3.
is of wuse; the choice depends wupon the rate of change
of boundary conditions and the variation of the channel
geometry.

Trial runs showed that for the case of flood propagation
through a natural channel with steep bed slopes (1:500
and greater) the energy gradient representation is particularly
important during the formation and operation of control
sections as constrictions of area both natural and manmade
create large local values of energy -gradient.

A similar problem prevented Price and Samuels (1980)
applying their unsteady flow model to the River Rhymney
in Wales. The average bed slope of this river is 1:250.
Later they successfully modelled unsteady flow conditions
in the middle portion of the River Lagan 1in Northern
Ireland with a bed slope of 1:1700. Although not mentioning
problems with control sections they relied on a back water
curve analysis of the upstream and downstream sections
with bed slopes of 1:400 and 1:500 respectively.

The finite difference form of the energy gradient
used in the present model is that derived in section 3.7.2.c,

modified by the factors of section 3.7.3. The complete
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term is therefore:

= (1-8) (x. Sf' +oc,
( mJ ] +

n+l n+l
J+1 ) + e(chSf] +, .S, 7)

j+1 7 j+1

with Sf;.”l and Sf?:% defined by equation 3.18 giving:

n n
Sf = (1-9) (W-ijj +dj+15fj+l) +

n n ' n . - !
Ole<; (S'+25f; (Q]'/0; - LWL (yiZiwi] 1))+
1

X (SE”+25f; (o,“/o AlﬁlaWI (WEWLE ) -1))]

FEVERAL )+

J+I :
Equation J3.21

3.7.5 FINITE DIFFERENCE DYNAMIC EQUATION INCLUDING
ENERGY GRADIENT

Introducing the energy gradient term from section

3.7.4 into equation 3.11 gives the complete one-dimensicnal

finite difference dyniamic equation:

6 N n+l n 1
— = (20005 ak/a : : - -
( A x ( i1 5 / WIJ)/kJ) le + (l/ngj (At
n,,n ) n, ~n+ ?) n Pot
. 20,51, . —_— - oL
er/A]ax) + 20, fJ)Q] + (== -(26 54150541 AK/AWL, 1)/kJ+1)WlJ,,
1 Al n+1
20A" — -
r 128 j+1 at eQJ"’1 J+ 418%) + 2% i+ 1 J+1/Q]+1) Q]+1
- X
] Equation 3.22a
where
H, = H. -%¢SfT (1 + 20 ( (ak/awl, /kM)wiP=1 ) —of,  Sf"
) ) I N J 1) j+17 )+l
(1 +20 ( ARZWL n oy Equation 3.22b
kn J+1

j+1
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3.8 BOUNDARY CONDITIONS

3.8.1 EXTERNAL BOUNDARY CONDITIONS

When the finite difference scheme described previously
is applied between each of the jj solution nodes defining
the solution domain, a total of 2(jj-1) simultaneous equations
are obtained. To solve for the 2jj dependent variables
necessitates that additional boundary equations are available
at the external tcundaries.

As the type «f appropriate boundary conditions may
vary from application to application the ability of the
model to operate with a variety of boundary conditions
is an 1mportant conside:ation from the point of view of
flexibility. Hence during the development of the present
model care was taken to provide facilities for handling
all foreseeable upstream and downstream conditicns.
For the upstream bcundary these are:

i Water level as a function of time WL = @(t)

d(t)

ii Flow as a function of time Q

Possible downstream boundary conditions are:

i Water level as a function of time W1 = @(t)
ii Flow as a function of time Q = dt)
iii Flow as a function of water level Q = @(W1)

Any combination of these upstream and downstream boundary
conditions can be used to provide an additional pair
of equeations giving a total of 2jj simultaneous equations.
These are solved for the 2jj dependent variables wusing

the modified Gaussian elimination routine described 1in

Appendix A.




3.8.2 OCCURRENCE OF CRITICAL FLOW

Before proceeding with the implicit calculations
to advance the river solution forward to time (n+l)a't
a check 1is made to determine if critical flow conditions
exist at any solution node within the model. Existence
of critical flow is determined by comparing conditions

+\<
of flow,* at each node, with N corresponding relationship
between water level and discharge for a control section.
The occurrence of critical flow indicates that the flow
contains the minimum specific energy necessary for it
to pass through the section. The cendition provides an
urnique relationship between flow and water level and
it 1is essential that subsequent solutions adhere to this

relationship as failure to do so implies a violaticn of

Newton's second law.

3.8.3 OPERATION OF CONTROLS

Once the existence of a control section has been
determined adherence of subsequent solutions to the minimum
energy condition is ensured by linserting an internal boundary
at this section. For example, if a control is found at
section 'i' 1in Figure 3.5b then the channel is divided
into two reaches 1 to i and i + 1 to jj, +the new Loundary
conditon at 1 being the relationship between wealer level
and critical flow, 1i.e. Dboundary type (iii). For the
new upstream boundary condition at section i+l the computed
flow through the control sec*ion is used i.e. a boundary
of type lii).

It is noteworthy that in subsequent solutions controls
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may form in reaches 1 to i or i1 to jj. In this case the

reaches are subdivided further and more internal bcundaries

introduced.

3.8.4 DROWNING OF CONTROLS

During the propagation of a flood wave ‘hrough
th: main channel it is possible that conditions at a control
section will cease to be critical. This circumstance arises
when the influence of a downstream control extends up
the charnel and raises the energy at the upstream control
above the critical value. The mathematical model tests
for this occurrence by comparing the total energy at the
control with the total energy downstream plus the friction
losses occurring 1in the reach between the two. If the
downstream energy plus the friction 1loss is found to be
greater than the critical energy at the contrcl then the
ccntrol is drowned arnd the two reaches are joired as shown
in Figure 3.5a. The implicit solution now takes place

along the reach from 1 to jj.
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CHAPTER FOUR

A NUMERICAL MODEL OF WASHLAND AREAS

4.1 INTRODUCTION

In general, engineering flood routing problems require
that conditions in both the river and its associated washland
areas be modelled. Many rivers and adjoining washlands
can be considered to respond to flood discharges in a
fashion similar to a complex run-of-river regulating reservoir.
The river channel 1is segregated from the washlands by
a system of flood-banks. Interaction between the river
and its washland areas results from lateral over bank
flows, which depend on both the main channel and the
washland water levels.

Within each washland, individual compartments are
separated from their neighbours by a complex system of

cross—-banks.

L.2 DESCRIPTION OF WASHLAND ALGORITHM
The primary requirements of the washland algorithm
is that 1t accurately represents lateral over-bank flows

and washland water levels.

L.2.1 CALCULATION OF WASHLAND WATER LEVELS

Computation of changes in the water level of a washland
are based upon an explicit solution of the equation of
conservation of volume. An explicit solution was chosen
as it was considered that rates of change in the washland
would be modest compared to those in the main channel.

Further, an explicit solution can be contained in a separate
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routine and need only be included 1in the model when
topographical features warrant it. An implicit solution
on the other hand would require modification of the main
channel finite difference equations.

The volume conservation equation for a washland
area can be written as:

ql = As =7 Equation 4.1
where ql is the total lateral flow to or from the washland
and As is the surface area of the washland. Equation
4.1 can be written in finite difference form as:
Finish

i qlj At/As = AWl, Equation 4.2

j= JStart
where qﬁ is the average lateral flow from reach j during
a time increment. The sumation is required as the washland
can be fed from more than one main channel reach, see
Figure 4.la. Indeed, the reaches feeding a washland

need not be consecutive, Figure 4.1b; in this case the

sumation reads:

Finishl JFinish2
qlj + 2 -qlj
j=]Startl j=]Start2

4.2.2 CALCULATION OF LATERAL FLOWS

Flows entering or leaving the main channel to or
from the washland are dependent upon the level of water
in the river and in the washlands. Figure 4.2 illustrates
the types of behaviour which may develop during a flood
event which exceeds the bank full stage.

i. Flood level rising in the river with no flow

into the washland:
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Overbank flow = 0.0

The washland may contain water from

a previous flood.

ii. River level exceeds Dbank full level,
"weir"" flow occurs to the washlands and
the water level in the washland starts
to rise:

Overbank flow = @ (river level).

iii. River level rising; washland level exceeds
bank level and ‘'submerged weir" flow
occurs:

Overbank flow = @ (river level, washland level).

1v. River level starts to fall but 1is still
above bank full stage. Then 'submerged

weir"” flow to the river occurs:

Overbank flow = @ (washland level, river level).
Ve River level below Dbank level; was;hland

level exceeds bank level and “weir"

flow from the washland occurs:

Overbank flow = @ (washland level).

Calculation of the magnitude of overbank flows 1is

based upon a weir flow equation of the form:

%72
ql o< H X submergence factor
Bank data 1is processed to yield tables of lateral flow

versus water level above bank level. These are stored
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by the main programme and lateral flows are interpolated
using the appropriate water levels. Where submerged
weir flow 1is anticipated to occur the submergence ratio
(Head downstream/Head upstream) is calculated and a
submergence coefficient interpolated from a set of stored
values. The actual flow is therefore established from
the product of free weir flow and submergence coefficient.
Since individual washland compartments may border
an appreciable stretch of river channel it 1is necessary
to be able to accommodate the possibility of simultaneous
inflow to and outflow from the washland. Such a circumstance
may develop, for example,. at a meander loop (Figure
4.3). Upstream of the meander the riverh level is relatively
high and a proportion of the river flow enters the flood
plain within the loop of the river. Downstream of the
meander the river level is significantly lower due to head
losses within the river meander. and flow may take place

from the flood plain into the river at this point.

bed DEVELOPMENT OF A WASHLAND ALGORITHM

Initially, the explicit washland algorithm shown
in flow chart 4.1 - was tried. This caiculates the lateral
flows to and from the washland and interpolates the existing
washland surface area from stored data. Assuming these
to represent average conditions, over the time increment,
equation 4.2 1is solved for the change in washland water
level during the t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>