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0.4, N = 1000. Top: Exponential growth of the probe beam due

to the CARL instability. Middle: Growth of atomic bunching due

to the CARL instability. Bottom: Population remains, on average,

in the ground state during the instability. . . . . . . . . . . . . . . 69

2.9 Evolution of the momentum, pj of each atom for a case of weak-

excitation at (a)τ = 0.0(a)τ = 25.0 and (c)τ = 47.0. Parameters

used and equations solved are as in Figure 2.8. Over the course of

the simulation the particles acquire momentum, due to the dipole

force, which results in bunching. . . . . . . . . . . . . . . . . . . . 70

2.10 Evolution of the population inversion Dj of each atom for a case

of weak-excitation at (a)τ = 0.0(a)τ = 25.0 and (c)τ = 47.0.

Parameters used and equations solved are as in Figure 2.8. The

atoms can be seen to bunch as time progresses, however each atom

remains in the ground state due to the low pump intensity. . . . . 71

2.11 Diagram of the experimental setup of Kruse et al. [4] . . . . . . . 74

3.1 Simpli�ed Three Level "Ladder" Energy Level Diagram . . . . . . 78

V



LIST OF FIGURES

3.2 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of weak-excitation.

Produced by solving equations (3.1.8.9) - (3.1.8.4). Parameters

used are U0/ωr = 5 × 10−5, ∆ab = 10, αb = 100, N = 1000,

εµ = 0.1. Top: As was the case for two level CARL, in the three

level ladder system the probe beam experiences exponential growth

due to the CARL instability. Gainprobe ≈ 1. Middle: Growth of

atomic bunching due to the CARL instability. Bottom: Population

remains, on average, in the ground state throughout the evolution

of the instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 21ω−1

r , (c) t = 30ω−1
r in the

case of weak excitation. Parameters used and equations solved are

as in Figure 3.2. Similarly to the case of two level CARL, the

three level ladder particles acquire momentum due to the dipole

force which results in bunching. . . . . . . . . . . . . . . . . . . . 101

3.4 Snapshots of population di�erence distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 21ω−1

r , (c) t = 30ω−1
r

in the case of weak excitation. Parameters used and equations

solved are as in Figure 3.2. As was the case in the two level CARL

system the atoms bunch as time progresses with each atom remains

in the ground state due to the low intensity of the pump �eld αb. 102

VI



LIST OF FIGURES

3.5 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of weak-excitation.

Produced by solving equations (3.1.8.9) - (3.1.8.4). Parameters

used are U0/ωr = −5 × 10−5, ∆ab = −10, αb = 100, N = 1000,

εµ = 0.1. By changing the terms U0 and ∆ab from both being

positive to both being negative, the term U0

∆ab
in the equation for

the expected probe beam gain, equation (3.2.1.4), remains positive.

Equation (3.2.1.4) remains unchanged then and the gain in the

system should remain close to that of the case where both U0 and

∆ab are positive. This can be seen to be the case when this Figure

is compared with Figure 3.2. Gainprobe ≈ 1. . . . . . . . . . . . . 104

3.6 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of weak-excitation.

Produced by solving equations (3.1.8.9) - (3.1.8.4). Parameters

used are U0/ωr = −5 × 10−5, ∆ab = 10, αb = 100, N = 1000,

εµ = 0.1. Allowing U0 to be negative while ∆ab is positive means

that the term U0

∆ab
takes a negative value, reducing the resulting

value produced by the probe gain equation, equation (3.2.1.4).

Comparing this Figure with Figures 3.2 & 3.5 demonstrates this.

Gainprobe ≈ 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.7 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of weak-excitation.

Produced by solving equations (3.1.8.9) - (3.1.8.4). Parameters

used are U0/ωr = 5 × 10−5, ∆ab = −10, αb = 100, N = 1000,

εµ = 0.1. Allowing U0 to be positive while ∆ab is negative also

produces a reduced value from the probe gain equation, equation

(3.2.1.4), in a manner similar to Figure 3.6. It can be seen by

comparing this Figure to Figure 3.6 that the gain in the probe

beam is similar in both cases, as expected. Gainprobe ≈ 0.2. . . . . 106

VII



LIST OF FIGURES

3.8 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.1.8.9) - (3.1.8.4). Parameters

used are U0/ωr = 5 × 10−5, ∆ab = 1, αb = 100, N = 1000, εµ =

0.1. Top: Gain for the probe beam in a three level ladder atomic

system due to the CARL instability, despite the system operating

at a large value for the pump �eld amplitude. A similarly large

pump value in the two level CARL system would have resulted in

the CARL instability being "washed out". Middle: Bunching of

the three level atomic sample for a large value of the pump �eld

amplitude. Bottom: Rabi �opping due to the large value for the

pump �eld amplitude, which would have been severely detrimental

to the two level CARL process, can be seen here not to destroy the

three level ladder co�guration CARL instability. The Rabi �opping

becomes "quenched" when the probe �eld amplitude approaches

that of the pump �eld. The equal �elds result in a spread of

momentum, which then causes a spread in population as can be

seen in Figure 3.10. . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.9 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 24ω−1

r , (c) t = 30ω−1
r in the

case of strong excitation. Parameters used and equations solved

are as in Figure 3.8. The atoms in the system under the e�ects of

a strong pump �eld can be seen to acquire momentum and bunch

over time in a similar manner to the system under a weak pump

as seen in Figure 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . 110

VIII



LIST OF FIGURES

3.10 Snapshots of population di�erence distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 24ω−1

r , (c) t = 30ω−1
r

in the case of strong excitation. Parameters used and equations

solved are as in Figure 3.8. Unlike the case in which the system is

weakly pumped, shown in Figure 3.4, for a strong pump the pop-

ulation experiences signi�cant growth. It can also be seen that,

as time progresses, the the atoms experience a spread of popu-

lation. This spread is responsible for the apparent "quenching"

of the population oscillations evident in the bottommost plot of

Figure 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.11 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.1.8.9) - (3.1.8.4). Parameters

used are U0/ωr = −5 × 10−5, ∆ab = 1, αb = 100, N = 1000,

εµ = 0.1. When the value of U0 is allowed to become negative while

∆ab remains positive, the term U0

∆ab
in the equation for the expected

probe beam gain, equation (3.2.1.4), becomes negative. The value

of gain produced by the expression is therefore smaller than in the

cases where the signs of U0 & ∆ab match. The oscillations in the

probe �eld amplitude make it di�cult to produce an accurate value

for the probe beam gain, however visual comparison between this

Figure and Figures 3.10 and 3.13 shows the gain to be diminished. 113

3.12 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.1.8.9) - (3.1.8.4). Parameters

used are U0/ωr = 5 × 10−5, ∆ab = −1, αb = 100, N = 1000,

εµ = 0.1. Similarly to Figure 3.11, when the signs of U0 & ∆ab

are �ipped the term U0

∆ab
remains negative in the equation for the

expected probe beam gain, equation (3.2.1.4). Comparing this

Figure with Figure 3.11 shows that in each case the gains are similar.114

IX



LIST OF FIGURES

3.13 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.1.8.9) - (3.1.8.4). Parameters

used are U0/ωr = −5 × 10−5, ∆ab = −1, αb = 100, N = 1000,

εµ = 0.1. When the signs of U0 & ∆ab match once again, the term

U0

∆ab
in the equation for the expected probe beam gain, equation

(3.2.1.4), is once again positive, as in Figure 3.8. Comparing this

Figure with Figures 3.11 & 3.12 shows once again that matching

signs for U0 & ∆ab results in a larger gain in the probe beam that

di�ering signs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.14 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of weak-excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = 5 × 10−5, ∆ab = 10, αb = 100, N = 1000,

εµ = 0.0. Top: The probe beam experiencing gain due to the

CARL instability in a weakly pumped three level ladder atomic

system when the AC Stark shift term εµ is neglected. The gain

experienced by the probe �eld, Gainprobe ≈ 1, is nearly identical to

the case where the AC Stark shift term is included(shown in Figure

3.2). Middle: Bunching of the three level atomic sample due to

the CARL instability with εµ neglected. Bottom: The population

remains almost entirely in the ground state throughout the process. 119

3.15 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 21ω−1

r , (c) t = 30ω−1
r in the

case of weak excitation. Parameters used and equations solved are

as in Figure 3.14. By comparison with Figure 3.3 it can be seen

that when the AC Stark shift term is neglected the weakly pumped

atoms in the three level ladder system move almost identically as

to when the AC Stark term is included. . . . . . . . . . . . . . . . 120

X



LIST OF FIGURES

3.16 Snapshots of population di�erence distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 21ω−1

r , (c) t = 30ω−1
r

in the case of weak excitation. Parameters used and equations

solved are as in Figure 3.14. As was the case when the AC Stark

shift was included, the population remains almost entirely constant

in the ground state for the weakly pumped case when the AC Stark

shift term is neglected. . . . . . . . . . . . . . . . . . . . . . . . . 121

3.17 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of weak-excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = −5 × 10−5, ∆ab = −10, αb = 100, N = 1000,

εµ = 0.0. When the sign of both U0 & ∆ab are made negative,

the same behaviour repeats for the AC Stark neglected case as for

when it was included in Figure 3.5. The gain in the probe beam

(Gainprobe ≈ 1), remains similar to its value when U0 & ∆ab are

both positive, as in Figure 3.14. . . . . . . . . . . . . . . . . . . . 123

3.18 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of weak-excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = −5 × 10−5, ∆ab = 10, αb = 100, N = 1000,

εµ = 0.0. Allowing the sign of U0 to remain negative while changing

the sign of ∆ab to positive with the AC Stark shift term neglected

has the same e�ect as described in Figure 3.6 wherein the AC

Stark shift term is included. When U0 and ∆ab have opposite signs

the term U0

∆ab
takes a negative value, reducing the resulting value

produced by the probe gain equation, equation (3.2.1.4). This

can be seen by comparing this Figure with Figures 3.14 & 3.17.

Gainprobe ≈ 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

XI



LIST OF FIGURES

3.19 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of weak-excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = 5 × 10−5, ∆ab = −10, αb = 100, N = 1000,

εµ = 0.0. When U0 is positive and ∆ab is negative with the AC

Stark shift term neglected the system functions the same as when

U0 was negative and ∆ab was positive, as in Figure 3.18. This

is due to the term U0

∆ab
taking a negative value in the equation

for the probe beam gain, equation (3.2.1.4). When this Figure is

compared to Figure 3.7 it can be seen that neglecting the AC Stark

shift term has negligible e�ects upon the three level ladder CARL

system when the pumping is weak. Gainprobe ≈ 0.2. . . . . . . . . 126

XII



LIST OF FIGURES

3.20 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excita-

tion. Produced by solving equations (3.2.2.8) - (3.2.2.6). Param-

eters used are U0/ωr = 5 × 10−5, ∆ab = 1, αb = 100, N = 1000,

εµ = 0.0. Top: Gain for the probe beam in a three level ladder

atomic system due to the CARL instability with the AC Stark shift

term neglected, despite the system operating at a large value for

the pump �eld amplitude. Again, a large pump value in the two

level CARL system would have resulted in the CARL instability

being "washed out". The gain in the probe beam is once again

di�cult to produce an accurate value for due to the oscillations in

the plot. Comparison with Figure 3.8 shows good agreement, how-

ever. Middle: Bunching of the three level atomic sample for a large

value of the pump �eld amplitude with the AC Stark shift term

neglected. Bottom: Rabi �opping due to the large value for the

pump �eld amplitude, which would have been severely detrimen-

tal to the two level CARL process, can be seen here not to destroy

the three level ladder con�guration CARL instability, regardless

of whether the AC Stark shift term is neglected or not. The Rabi

�opping becomes "quenched" when the probe �eld amplitude ap-

proaches that of the pump �eld. The equal �elds result in a spread

of momentum, which then causes a spread in population as can be

seen in Figure 3.22. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.21 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 24ω−1

r , (c) t = 30ω−1
r in the

case of strong excitation. Parameters used and equations solved

are as in Figure 3.20. The atoms in the system under the e�ects

of a strong pump �eld with the AC Stark shift term neglected can

be seen to acquire momentum and bunch over time in the same

manner as Figure 3.21, in which the AC Stark shift term was not

neglected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

XIII



LIST OF FIGURES

3.22 Snapshots of population di�erence distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 24ω−1

r , (c) t = 30ω−1
r

in the case of strong excitation. Parameters used and equations

solved are as in Figure 3.20. As was the case for Figure 3.22 where

the AC Stark term was included, when it is neglected the popula-

tion undergoes signi�cant oscillation and as the probe and pump

�elds draw even with one another the spread of momentum results

in a spread of population and the population inversion oscillations

become "quenched". . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.23 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = −5 × 10−5, ∆ab = 1, αb = 100, N = 1000,

εµ = 0.0. As was the case in Figure 3.11 (where the AC Stark

term was included), when the AC Stark term is neglected and the

signs of U0 & ∆ab take negativ and positive signs respectively, term

U0

∆ab
in the equation for the expected probe beam gain, equation

(3.2.1.4), becomes negative. The gain produced by the expression

is therefore smaller than in Figure 3.20, where the signs of U0 &

∆ab match. The oscillations in the probe �eld amplitude make it

di�cult to produce an accurate value for the probe beam gain,

however visual comparison between this Figure and Figure 3.22

shows the gain to be diminished, as expected. . . . . . . . . . . . 132

XIV



LIST OF FIGURES

3.24 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excita-

tion. Produced by solving equations (3.2.2.8) - (3.2.2.6). Parame-

ters used are U0/ωr = 5 × 10−5, ∆ab = −1, αb = 100, N = 1000,

εµ = 0.0. As was the case for 3.23, when the signs of U0 & ∆ab do

not match, as in this Figure where on U0 is positive and ∆ab is neg-

ative, the overall gain of the probe beam is diminished. This is due

to the term U0

∆ab
in the equations for the probe beam gain, equa-

tion (3.2.1.4), being negative and thereby reducing the expected

gain. Once more, oscillations in the probe beam plot make calcu-

lation of a precise �gure for the gain produced di�cult. However,

comparison of this Figure with Figure 3.23 shows good agreement

and comparison with Figure 3.20 shows the expected reduction in

gain for the system. Comparing this Figure with Figure 3.12 also

shows little di�erence in the gain, once again suggesting that the

AC Stark term being neglected has little overall e�ect upon the

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.25 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = −5 × 10−5, ∆ab = −1, αb = 100, N = 1000,

εµ = 0.0. Equation (3.2.1.4) predicts that for the detuning signs

used in this Figure, U0 & ∆ab both negative, that the gain in the

probe beam should match that of the system shown in Figure 3.20.

This shows the point at which the assumptions used to produce

Equation (3.2.1.4) break down, as the gain in the probe beam

appears noticeably larger than that of Figure 3.20. . . . . . . . . . 134

XV



LIST OF FIGURES

3.26 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = 1 × 10−5, ∆ab = 0, αinit = 10, Na = 5 × 104,

εµ = 0, κ = 10−4, γ = 1.5×10−2, neglecting recoil. Demonstration

of Super�uorescent behaviour in the three level ladder system. . . 140

3.27 Dependence of the probe photon number, |αa|2 upon the number

of atoms, Na. Produced by solving equations (3.2.2.8) - (3.2.2.6).

Parameters used are U0/ωr = 1×10−5, ∆ab = 0, αinit = 10, εµ = 0,

κ = 10−4, γ = 1.5 × 10−2, neglecting recoil. As this plot shows

intensity plotted against the square of the number of atoms, the

straight line demonstrates an N2 depenence of the intensity upon

the number of atoms. . . . . . . . . . . . . . . . . . . . . . . . . 141

3.28 Evolution of probe photon number |αa|2 for the number of atoms

in the simulated cavity Na = (a) 2× 104, (b) 4× 104, (c) 6× 104,

(d) 8 × 104. Produced by solving equations (3.2.2.8) - (3.2.2.6).

Parameters used are U0/ωr = 1 × 10−5, ∆ab = 0, αinit = 10,

εµ = 0, κ = 10−4, γ = 1.5× 10−2, neglecting recoil. . . . . . . . . . 142

3.29 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = 1 × 10−5, ∆ab = 0, αinit = 10, Na = 5 × 104,

εµ = 0, κ = 2, γ = 1.5×10−2, neglecting recoil. With the condition

(3.3.1.20) violated, only ordinary �uorescent decay is evident. . . 143

3.30 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = −1 × 10−5, ∆ab = 0, αinit = 10, Na = 5 × 104,

εµ = 0, κ = 10−4, γ = 1.5×10−2, neglecting recoil. Demonstration

of Super�uorescent behaviour in the three level ladder system for

the alternate sign of the single photon optical detuning. . . . . . . 144

XVI



LIST OF FIGURES

3.31 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = 1 × 10−5, ∆ab = 0, αinit = 10, Na = 5 × 104,

εµ = 0, κ = 10−4, γ = 1.5× 10−2, including recoil. . . . . . . . . . 146

3.32 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 9.61ω−1

r , (c) t = 18.0ω−1
r in the

case of strong excitation. Parameters used and equations solved

are as in Figure 3.31. . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.33 Snapshots of population inversion distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 9.61ω−1

r , (c) t =

18.0ω−1
r in the case of strong excitation. Parameters used and

equations solved are as in Figure 3.31. . . . . . . . . . . . . . . . 148

3.34 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉 for a case of strong excitation.

Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters

used are U0/ωr = −1 × 10−5, ∆ab = 0, αinit = 10, Na = 5 × 104,

εµ = 0, κ = 10−4, γ = 1.5× 10−2, including recoil. . . . . . . . . . 150

3.35 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 11.61ω−1

r , (c) t = 20.4ω−1
r

in the case of strong excitation. Parameters used and equations

solved are as in Figure 3.34. . . . . . . . . . . . . . . . . . . . . . 151

3.36 Snapshots of population inversion distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 11.61ω−1

r , (c)

t = 20.4ω−1
r in the case of strong excitation. Parameters used

and equations solved are as in Figure 3.34. . . . . . . . . . . . . . 152

4.1 Simpli�ed Three level Λ Energy Level Diagram . . . . . . . . . . 153

XVII



LIST OF FIGURES

4.2 Simpli�ed Three Level Λ Energy Level Diagram: The Λ energy

level structure for the case where the two lower energy levels are

approximately degenerate, so the single transition detunings are

also approximately equal. . . . . . . . . . . . . . . . . . . . . . . . 168

4.3 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉, for the case where the two

transition detunings are equal, ∆a = ∆b, and the population of

the system is initially in state |1〉, D0 = 1/2. Produced by solving

equations (4.2.2.1) - (4.2.2.6). Parameters used are U0/ωr = 5 ×

10−5, αb = 100, N = 1000, εµ = 0. It can be seen that, for the

degenerate Λ con�guration, the probe beam experiences gain and

that the atoms bunch, both due to the CARL instability, despite

the presence of large Rabi oscillations in the population which

would be problematic in a two level system. . . . . . . . . . . . . 183

4.4 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r . Param-

eters used and equations solved are as in Figure 4.3. The atoms

aquire momentum and are bunched by the dipole forces. . . . . . 184

4.5 Snapshots of population di�erence distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r .

Parameters used and equations solved are as in Figure 4.3. The

population experiences almost uniform oscillations in the population.185

4.6 Evolution of probe photon number, |αa|2, bunching parameter,

|b|, and mean population di�erence, 〈D〉, for the case where the

two transition detunings are equal, ∆a = ∆b, and the popula-

tion of the system is initially in state |2〉, D0 = −1/2. Produced

by solving equations (4.2.2.1) - (4.2.2.6). Parameters used are

U0/ωr = 5 × 10−5, αb = 100, N = 1000, εµ = 0. When com-

pared with Figure 4.3 it can be seen that changing the initial value

of the population inversion from D = 1/2 to D = −1/2 has no e�ect

upon the evolution of the system or the gain in the probe beam. . 187

XVIII



LIST OF FIGURES

4.7 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r . Pa-

rameters used and equations solved are as in Figure 4.6. When

compared with 4.4 it can be seen that changing the initial value of

the population inversion from D = 1/2 to D = −1/2 has no e�ect

upon the evolution of each atom's momentum. . . . . . . . . . . . 188

4.8 Snapshots of population di�erence distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r .

Parameters used and equations solved are as in Figure 4.6. When

compared with 4.5 it can be seen that changing the initial value of

the population inversion from D = 1/2 to D = −1/2 simply mirrors

the behaviour of each atom's population inversion on the y axis. . 189

4.9 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉, for the case where the two

transition detunings are equal, ∆a = ∆b, and the population of

the system is initially equally distributed between states |1〉 and

|2〉, D0 = 0. Produced by solving equations (4.2.2.1) - (4.2.2.6).

Parameters used are U0/ωr = 5×10−5, αb = 100, N = 1000, εµ = 0.

When compared with Figures 4.3 & 4.6 it can again be seen that

changing the initial value of the population inversion from D = 1/2

or D = −1/2 to D = 0 has no e�ect upon the evolution of the

system or the gain in the probe beam. . . . . . . . . . . . . . . . 191

4.10 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r . Pa-

rameters used and equations solved are as in Figure 4.9. When

compared with Figures 4.4 & 4.7 it can again be seen that chang-

ing the initial value of the population inversion from D = 1/2 or

D = −1/2 to D = 0 has no e�ect upon the evolution of each atom's

momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

XIX



LIST OF FIGURES

4.11 Snapshots of population di�erence distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r .

Parameters used and equations solved are as in Figure 4.9. It can

be seen that without an initial value for the population inversion,

the oscillations observed in Figures 4.5 & 4.8 do not occur. If the

population inversion has an initial value of zero then it does not

evolve away from its initial value. . . . . . . . . . . . . . . . . . . 193

4.12 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉, for the case where the two

transition detunings are equal, ∆a = ∆b, and the population of

the system is initially in state |1〉, D0 = 1/2. Produced by solving

equations (4.2.2.1) - (4.2.2.6). Parameters used are U0/ωr = −5×

10−5, αb = 100, N = 1000, εµ = 0. When compared with Figure

4.3 it can be seen that the sign of U0 has no e�ect upon the output

of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.13 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉, for the case where the two

transition detunings are equal, ∆a = ∆b, and the population of the

system is initially in state |1〉, D0 = −1/2. Produced by solving

equations (4.2.2.1) - (4.2.2.6). Parameters used are U0/ωr = −5×

10−5, αb = 100, N = 1000, εµ = 0. When compared with Figure

4.6 it can be seen that the sign of U0 has no e�ect upon the output

of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

4.14 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉, for the case where the two

transition detunings are equal, ∆a = ∆b, and the population of

the system is initially in state |1〉, D0 = 0. Produced by solving

equations (4.2.2.1) - (4.2.2.6). Parameters used are U0/ωr = −5×

10−5, αb = 100, N = 1000, εµ = 0. When compared with Figure

4.9 it can be seen that the sign of U0 has no e�ect upon the output

of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

XX



LIST OF FIGURES

4.15 Simpli�ed Three Level Λ Energy Level Diagram: The Λ energy

level structure for the lower energy states are non-degenerate. . . 198

4.16 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉, for the case where the two

transition detunings are equal in magnutide but opposite in sign,

∆a = −∆b, and the population of the system is initially in state

|1〉, D0 = 1/2. Produced by solving equations (4.2.3.7) - (4.2.3.12).

Parameters used are U0/ωr = 5 × 10−5, ∆ab = 10, αb = 100,

N = 1000, εµ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4.17 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r . Param-

eters used and equations solved are as in Figure 4.16. . . . . . . . 209

4.18 Snapshots of population di�erence distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r .

Parameters used and equations solved are as in Figure 4.16. . . . 210

4.19 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉, for the case where the two

transition detunings are equal in magnutide but opposite in sign,

∆a = −∆b, and the population of the system is initially in state |2〉,

D0 = −1/2. Produced by solving equations (4.2.3.7) - (4.2.3.12).

Parameters used are U0/ωr = 5 × 10−5, ∆ab = 10, αb = 100,

N = 1000, εµ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

4.20 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r . Param-

eters used and equations solved are as in Figure 4.19. . . . . . . . 213

4.21 Snapshots of population di�erence distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r .

Parameters used and equations solved are as in Figure 4.19. . . . 214

XXI



LIST OF FIGURES

4.22 Evolution of probe photon number, |αa|2, bunching parameter,

|b|, and mean population di�erence, 〈D〉, for the case where the

two transition detunings are equal in magnutide but opposite in

sign, ∆a = −∆b, and the population of the system is initially

equally distributed between states |1〉 and |2〉, D0 = 0. Produced

by solving equations (4.2.3.7) - (4.2.3.12). Parameters used are

U0/ωr = 5× 10−5, ∆ab = 10, αb = 100, N = 1000, εµ = 0. . . . . . 216

4.23 Snapshots of momentum distribution (θj, pj) for each atom j =

1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r . Param-

eters used and equations solved are as in Figure 4.22. . . . . . . . 217

4.24 Snapshots of population di�erence distribution (θj, Dj) for each

atom j = 1..1000 when (a) t = 0ω−1
r , (b) t = 20ω−1

r , (c) t = 26ω−1
r .

Parameters used and equations solved are as in Figure 4.22. . . . 218

4.25 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉, for the case where the two

transition detunings are equal in magnutide but opposite in sign,

∆a = −∆b, and the population of the system is initially in state

|1〉, D0 = 1/2. Produced by solving equations (4.2.3.7) - (4.2.3.12).

Parameters used are U0/ωr = −5 × 10−5, ∆ab = 10, αb = 100,

N = 1000, εµ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

4.26 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉, for the case where the two

transition detunings are equal in magnutide but opposite in sign,

∆a = −∆b, and the population of the system is initially in state |1〉,

D0 = −1/2. Produced by solving equations (4.2.3.7) - (4.2.3.12).

Parameters used are U0/ωr = −5 × 10−5, ∆ab = 10, αb = 100,

N = 1000, εµ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

XXII



LIST OF FIGURES

4.27 Evolution of probe photon number, |αa|2, bunching parameter, |b|,

and mean population di�erence, 〈D〉, for the case where the two

transition detunings are equal in magnutide but opposite in sign,

∆a = −∆b, and the population of the system is initially in state

|1〉, D0 = 0. Produced by solving equations (4.2.3.7) - (4.2.3.12).

Parameters used are U0/ωr = −5 × 10−5, ∆ab = 10, αb = 100,

N = 1000, εµ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

XXIII



Published material

• J. A. McKelvie, and G. R. M. Robb, Two-Photon Collective Atomic Recoil

Lasing. Atoms, 3(4):495-508, 2015

• Enhancement of Collective Atomic Recoil Lasing by Electromagnetically

Induced Transparency, poster presented at the Institute of Physics (IOP)

Photon12 conference, Durham (UK), 2012

XXIV



Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Gordon

Robb, for his support, motivation, knowledge, and endless patience. I would also

like to thank my fellow Ph.D. students for the many stimulating discussions and

for all the fun we have had in the last few years. I would like to thank my

friends for helping keep me grounded and reminding me to step away from the

keyboard once in a while. Last but not the least, I would like to thank my parents,

Katrina and Michael Flaherty, for supporting me in more ways than I can count

throughout my studies, the writing of this thesis and my life in general.

XXV



Science is not about building a body of known 'facts'. It is a method

for asking awkward questions and subjecting them to a reality-check,

thus avoiding the human tendency to believe whatever makes us feel

good. Terry Pratchett



Abstract

In this thesis the Collective Atomic Recoil Laser (CARL) model of Bonifacio et

al., which described CARL by two-level atoms, is extended to describe three-level

atoms with ladder and Λ energy level con�gurations. It is shown that, in contrast

to the case of two-level atoms where the CARL instability is quenched at high

pump rates with signi�cant atomic excitation, CARL instabilities involving 3-level

atoms can persist at high pump rates due to transitions between the populated

states being dipole forbidden. It is also demonstrated for the ladder con�guration

that, when the system is operated in the two-photon super�uorescent regime,

introduction of centre of mass motion and atomic bunching result in symmetry

breaking in the sign of detuning from �eld-atom resonance. CARL instabilities

involving three-level atoms with Λ energy level con�gurations are investigated

for two distinct cases : in the �rst the two ground states are degenerate, whereas

in the second the ground states are non-degenerate. It is demonstrated that in

the degenerate case, it is possible to decouple the atomic centre of mass motion

from the internal atomic degrees of freedom. It is also demonstrated that for the

non-degenerate case it is possible for the the atomic motion to be decoupled from

the atomic coherence but not the atomic population. The population di�erence

remains constant throughout the interaction, so the population inversion acts as a

parameter in the equation for the force experienced by the atoms. Consequently,

for both the degenerate and non-degenerate Λ con�gurations, CARL instabilities

can occur at higher pump intensities than for the case of two-level atoms.



Chapter 1

Introduction

1.1 Background

1.1.1 Optical Forces

1.1.1.1 History

The idea that light may exert a force upon matter is by no means a recent one.

As early as the 17th Century, the noted mathematician and astronomer Johannes

Kepler was taken by the notion that the light of the sun may be responsible for the

direction of a comet's tail as it travels through the solar system. After observing

Halley's Comet in 1607 he wrote that

"The direct rays of the Sun strike upon it [the comet], penetrate its

substance, draw away with them a portion of this matter, and issue

thence to form the track of light we call the tail . . . In this manner

the comet is consumed by breathing out is own tail"

Almost a century later, in his 1704 book "Opticks: or, a treatise of the re�ex-

ions, refractions, in�exions and colours of light" [5], Newton posited that light

may consist of tiny masses travelling at incredible speed. He queried

"Are not the gross bodies and light convertible into one another, and

may not bodies receive much of their activity from the particles of

light which enter their composition?"

1
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In 1873 James Clerk Maxwell published his treatise on electricity and mag-

netism [6] in which he stated

"In a medium in which waves are propagated there is a pressure in

the direction normal to the wave, and numerically equal to the

energy contained in unit of volume."

Maxwell's treatise is one of a number of signposts on the path to understanding

not only light, but optical forces as well. Said understanding advanced another

step when, in 1889, Oliver Heaviside published a derivation for the force a�ecting

a charged particle moving through a �eld, referred to now as the Lorentz force.

Another step occurred in 1901 when Lebedev [7] published his observation of light

pressure on macroscopic objects.

By the twentieth century steps forward occurred at greater speed and by

only 1903 Nichols and Hull [8] provided understanding of how light could exert

force upon matter. Einstein's 1917 paper "The Quantum Theory of Radiation"

[9] introduced the concept that upon absorbing a photon of energy hf , an atom

experiences a matching momentum "kick" of hf
c
in the direction which the photon

was travelling.

The �rst experimental demonstration of light exerting force upon the motion

of atoms was made by O. R. Frisch in 1933 [10] when he de�ected a beam of

sodium atoms using light from a sodium lamp.

The invention of the laser in the 1960's greatly enhanced the intensity of op-

tical sources available. Coupled with cooling techniques which allowed for atoms

to remain in a vaporous state[11], radiation forces became a useful experimental

tool.

By 1970 Ashkin [12] had successfully used optical forces to trap micron sized

particles with a pair of counterpropagating, focussed beams of laser light. He con-

tinued research into trapping using optical forces, proposing and demonstrating

new trap geometries in 1978 [13] and in 1980 [14].

In 1975 Hänsch and Schawlow published a paper theorising that the same

forces responsible for optical trapping could, for certain optical frequency de-
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CHAPTER 1. INTRODUCTION

tunings, be repurposed for cooling atoms using laser light [15]. Such "Doppler

Cooling" as it would come to be known, was experimentally realised in 1985 by

Chu et al. [16].

In the years since, numerous papers have been published with results related

to optical forces. Topics covered by such papers range from new cooling schemes

[16, 17], methods for atomic clocks [18, 19], optically trapping and manipulating

bacteria & viruses without damage [20] and even measurement of the force gen-

erated by a single RNA polymerase enzyme pulling itself along a DNA molecule

[21].

More complete histories of the subject may be found in papers such as [22,

23, 24].

1.1.1.2 Optical scattering force

The optical scattering force can be easily understood by considering the small

momentum "kicks" which an atom receives when it absorbs or emits a photon.

As was mentioned previously with regards to Einstein's Quantum Theory of

Radiation, a photon has a momentum ~k, where ~ = h/2π, h is Planck's constant

and k is the wavenumber of the photon. If an atom absorbs a photon, it must

also absorb the "kick" of that photons momentum, i.e. a stationary atom would

be moved very slightly in the direction that the photon was travelling. Similarly,

when a photon is emitted from an excited atom, the photon leaves with the same

characteristic photonic momentum. From simple conservation of momentum, the

atom must experience a small momentum kick opposite to the direction of the

departing photon.

Figure 1.1 provides a simple visual interpretation of the optical scattering

force process. In the case of a laser incident upon a sample of atoms, where the

frequency of the laser is close to some resonant transition of the atoms, many pho-

tons may be absorbed and subsequently re-emitted as seen in Figure 1.1(a)&(b).

When absorbing, the atoms will always receive a momentum kick along the di-

rection of propagation for the laser beam. The photons spontaneously emitted

from the excited atoms may be ejected in any direction, giving corresponding

3



CHAPTER 1. INTRODUCTION

momentum kicks opposite to the direction of photonic ejection, as demonstrated

in Figure 1.1(c)&(d). Averaged over many absorption/emission events, the mo-

mentum kicks from spontaneous emission average out to zero. The momentum

kicks from the absorbed photons, however, will provide a net force in the direc-

tion of propagation for the laser beam. As the optical scattering force requires

that photons be absorbed by the atoms, it is a dissipative e�ect which results in

heating of the atoms[25].

(a) A photon is absorbed (b) The atom moves with the 
absorbed photonic momentum 

(c) A photon is emitted 
in a random direction 

(d) The atoms moves opposite to 
the direction of the emitted photon 

Figure 1.1: Simpli�ed Optical Scattering Force Diagram [1]. The basic steps of the
scattering force: (a) An atom absorbs a photon (b) When the atom absorbs the
photon, the photon's momentum is added to that of the atom (c) The absorbed
photon is re-emitted (d) The emitted photon gives the atom a momentum "kick"
in the direction opposite to the direction in which it was emitted.
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1.1.1.3 Optical dipole gradient force

The optical dipole gradient force, sometimes referred to as the "optical gradient

force", the "gradient force" or the "dipole force", is a coherent (dispersive) optical

force.

The force experienced by an atom due to the dipole force can be understood

through analogy with a simple lens [26]. If a laser beam with a gaussian intensity

distribution is red detuned relative to an energy level transition within an atom

upon which it is incident, then the lens in the analogy is convex. Such a situation

is shown in Figure 1.2(a).

In this analogy the "lens", initially some distance away from the intensity

maxima of the incident light beam, focusses the light and thereby changes the

direction in which the photons travel. By refracting the photons away from the

optical beam the lens must, by conservation of momentum, experience a force

towards the optical beam. When the lens reaches the central intensity peak

of the optical beam, as can be seen in Figure 1.2(b), the forces resulting from

changing the direction of the photons balance out.

If the light �eld is instead blue detuned with respect to the atom upon which

it is incident, then the analogy can be repeated with a concave lens instead, as

in Figure 1.2(c). As before, the lens alters the path the light takes. However, for

a convex lens the photons are redirected towards the light beam, thus the lens

experiences a force counter to this and is ejected from the optical beam.

Being proportional to the gradient of optical intensity, hence the aforemen-

tioned name "gradient force", the dipole force can occur as a result of intensity

peaks in standing waves as well as the guassian beams described previously. Fig-

ure 1.3 illustrates how the intensity peaks of a standing wave result in periodic

bunching of vaporous atoms.

For the case of a laser with gaussian intensity pro�le acting upon a positive

(converging) lens, this means that the focussing of the beam moves the lens to

the region of highest intensity[24].

A more rigorous description of the dipole force can be found in Metcalf and

Van der Straten's "Laser Cooling and Trapping" (1999) [27] or in Gordon and
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Ashkin's "Motion of atoms in a radiation trap" (1980)[26],

In the event that the population becomes entirely inverted and the atom is

in the excited state, then the direction of the dipole force is reversed. For a red

detuned laser the dipole force acts to force atoms with inverted populations away

from regions of high intensity. Similarly, a blue detuned laser attracts inverted

population atoms into regions of high intensity[22].

Intensity 

X
 Po

sitio
n

 

For red detuned light the atom “lens” focuses the 
photons inwards. By “pushing” the photons, the lens 
experiences a force in the opposite direction, i.e. 
towards the area of high intensity 

Atom lens 

Intensity 

X
 Po

sitio
n

 

When the atom “lens” reaches the centre of 
the intensity gradient, the forces it experiences 
due to redirecting photons balance out. 

Atom lens 

Net force 
on lens 

Forces 
balance 

out 

(a) (b) 

Intensity 

X
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For blue detuned light the atom “lens” defocuses 
the photons outwards. Thus when the atom 
defocuses the light, it experiences a force pushing 
it away from regions of high intensity. 

Atom lens 

Net force 
on lens 

(c) 

Figure 1.2: Simpli�ed Dipole Force Atomic Lens Explanation
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(a) 

(b) 

Figure 1.3: Simpli�ed Dipole Force Diagram for (a) Positive "blue" detuning, in
which atoms are drawn to areas of minimum intensity and for (b) Negative "red"
detuning, in which atoms are drawn to areas of maximum intensity.
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1.1.1.4 Example applications of optical forces

For a laser with a Gaussian intensity pro�le incident upon an atom, the atom

will experience an intensity gradient orthogonal to the direction of propagation

of the optical beam. If the frequency of the laser is tuned below a transition

in the atom, then the optical dipole gradient force draws the atom towards the

centre of the beam. If the beam is then focussed so that there exists a minimum

"waist" for the beam, then there should exist a point where the pull of the optical

dipole gradient force towards the intensity maximum at the beam waist balances

against the scattering force of the laser. Such a system allows for the trapping

and movement of atoms with only a single laser beam and is commonly referred

to as "Optical tweezers".

Although the system described here uses atoms, optical tweezers have been

shown to work on a multitude of matter, ranging from simple atoms, to long chain

molecules, DNA chains all the way up to macrosized objects such as glass beads

suspended in liquid [14, 22]. In the case of larger objects the forces involved can

be understood more simply through ray diagrams.

When an atom travels towards an optical �eld, it "perceives" the frequency of

the light as being higher than if the atom was stationary. If such an optical �eld

is a laser source tuned below some resonance in the atom, then the atom is more

likely to undergo a scattering event. When the atom �rst absorbs a photon from

the optical �eld it receives a small momentum "kick" in the direction opposite its

travel path. The subsequently emitted photon may be sent o� in any direction,

averaging out the emission "kicks" over many scattering events to a net zero. The

result is a net force in the direction the laser travels. An atom travelling along

a single axis between two such lasers set counterpropagating with one another

would ultimately experience a loss of momentum, and thus kinetic energy, along

that axis. This process would be independent of the atom travelling in the co- or

counter-propagating direction as, due to Doppler shifting of the laser frequency,

scattering events would be more likely to occur in the direction the atom was

travelling. With three such paired counterpropagating lasers, one for each axis,

atoms could be cooled solely through such scattering events. This process is
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referred to as "Doppler Cooling".

1.1.2 Non-linear Optical E�ects

While optical forces and the e�ects resulting from them result from the external

degrees of freedom atoms possess, there are also many non-linear optical e�ects

which result from an atom's internal degrees of freedom.

1.1.2.1 Optical Bistability

If a system wherein light is incident upon matter possesses more than one stable

intensity value for the output optical �eld for a given input intensity of the optical

�eld then such a system may be described as being optically multistable. Optical

bistability is a subset of such nonlinear systems where there exist two possible

stable output intensities for the optical �eld for one given input intensity. It was

Szöke [28] who, in 1969, �rst considered that bistable states may be produced

using optical feedback. That research was later extended by Gibbs in 1976 [29].

Optical bistability may arise as a result of one of two processes. The �rst,

absorptive bistability, results from saturability of the absorbing material. The

equation for the absorption coe�cient for a two level saturable absorber can be

taken to be

α =
α0

1 + I
Is

(1.1.2.1)

where α is the absorption coe�cient, α0 is the unsaturated absorption coe�cient,

I is the intensity of the �eld in the material and Is is the saturation intensity

[30].

Considering a two level saturable absorber inside an optical cavity. It is easy

to see that as the intensity of the light being pumped into the cavity increases, the

value of the absorption coe�cient decreases. As a result, the intensity of the light

escaping the cavity increases. However, the process does not produce exactly the

same result in reverse. Consider the optical output intensity vs. optical input

intensity diagram shown in Figure 1.4. When the optical input intensity is slowly
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increased from zero to point (a), the output intensity shows a gradual increase

as a result. When the input intensity reaches point (b), the absorber becomes

saturated, the optical beam passes through the absorber almost unhindered and

the output intensity increases sharply. Increasing the input intensity further

produces a commensurate increase in the output �eld along the "upper branch"

of the system.

When the input intensity is lowered once again to the point (c) the material

does not immediately desaturate. Consequently the optical output intensity does

not decrease back to the same value it had at point (b). Instead, when the input

intensity is decreased the output intensity proceeds along the aforementioned

"upper branch" until it reaches point (d). At point (d) there is no longer su�cient

energy being put into the system for the absorber to remain saturated, thus the

output intensity drops to the point (a) once more as the absorber proceeds to

"block" the passage of the input optical beam. Figure 1.4 demonstrates then a

hysteresis curve where there exists a region in where the output intensity may

have one of two values for a given input intensity.

The second method for achieving bistability is known as dispersive bistability.

In this second process the system operates far detuned from resonance, so the

absorption coe�cient is typically considered to be negligibly small (α ≈ 0). In-

stead, the physical phenomena which causes bistability is a nonlinear dependence

of the refractive index n upon the input intensity of the optical �eld. Whilst the

underlying phenomena may be di�erent, the mechanism remains much the same.

It is the delay of the material responding to a diminishing input intensity which

results in a higher output intensity.

More thorough explanations of bistable processes may be found in Lugiato

1984 [31] or Collins & Wasmundt 1980 [2].
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(a)

(b)

(c)

(d)

Figure 1.4: Simpli�ed Optical Bistability Hysteresis Curve from [2].
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1.1.2.2 Two Photon Absorption

The next nonlinear optical e�ect to be considered, one which forms in part the

basis for a result in Chapter 3, is that of two photon absorption.

Consider the simpli�ed case wherein a laser of frequency ω interacts with a

cold atom which has internal energy levels |1〉, |2〉 & |3〉 in a ladder formation

and is initially in level |1〉, the ground state. Such a con�guration is shown in

Figure 1.5.

The frequencies associated with the transitions between each of the three

energy levels are given by ω21 = ω2 − ω1, ω32 = ω3 − ω2 and ω31 = ω3 − ω1. If

the frequency ω of the laser light is close to that of the transition frequency ω21

then the single photon atom-light detuning, de�ned as ∆a = ω − ω21, will have

a small value. In this case the atom can absorb the photon and become excited

from the ground state |1〉 to the intermediate state |2〉.

If, however, the single photon detuning is large then the photon is unlikely to

be absorbed and the population of state |2〉 will be negligible.

It is possible though for the single photon detunings ∆a and ∆b = ω − ω32

to be large but for the two photon detuning ∆ab = 2ω − ω31 to be small or,

as in Figure 1.5, zero. In such a scenario, the atom may absorb two photons

of frequency ω and acquire population in state |3〉. This process is known as

two-photon absorption. The two photon absorption rate is proportional to the

product of the photonic �ux for each photon [32]. For the degenerate scenario

described above the two photon absorption rate is therefore proportional to the

square of the photonic �ux.
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ω 

Figure 1.5: Simpli�ed Energy Level Diagram for Two-Photon Absorption
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1.1.2.3 Superradiance and Super�uorescence

The traditional picture of �uorescence from a gas of atoms assumes that each

atom radiates independently. The excited state population decays exponentially

by spontaneous emission with a characteristic timescale, τspontaneous, proportional

to the inverse of the the atomic transition's decay rate γ. The �eld emitted by

the �uorescing system is proportional to the number of atoms, N. This behaviour

is visualised in Figure 1.6(a). The typical argument made to justify this picture

is that the atoms are su�ciently distanced from each other that any e�ect a

neighbouring atom may have upon an atom's probability of emitting a photon

should be negligible.

This is not always the case, as Dicke describes in his 1954 paper [33]. He

argues that every atom is coupled to a common radiation �eld and thus may not

be treated as being independent. In his paper he describes, for the �rst time, the

nonlinear optical process known as Superradiance. Under certain conditions, a

sample of N atoms which have been coherently pumped to an excited state may

decay cooperatively. As the emission intensity is proportional to the square of

the emission amplitude, to which each atom contributes, the maximum intensity

of the superradiant pulse is proportional to the square of the number of atoms,

N2.

Super�uorescence is a similar but di�erentiable optical process �rst described

in [34], though some literature refers to the processes of superradiance and su-

per�uorescence interchangeably [3]. In a super�uorescent system the atoms are

again pumped to the excited state, their populations inverted, but there exists

no initial macroscopic dipole. Instead, ordinary �uorescent emission initiates the

process and the system of atoms "spontaneously creates correlations"[35]. The

spontaneously formed dipole then radiates a light pulse with maximum intensity

proportional to the square of the number of emitting atoms, N2, as in superradi-

ance.
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time 

detector 

(a) 

(b) 

time 

detector 

τsp 

τsp 
/N 

Figure 1.6: Radiated intensity vs. time for (a) Ordinary �uorescence (b) Super-
�uorescence. Adapted from an image in [3]
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1.2 Thesis layout

In Chapter 2 the Maxwell-Bloch equations for a cloud of cold two level atoms

are derived. First, equations are produced describing the evolution of the inter-

nal degrees of freedom of two level atoms as they respond to a single uniform

plane electromagnetic wave. Those equations are then used to demonstrate Rabi

oscillations in the atomic population and the variation of susceptibility with �eld-

atom detuning. Second, an equation is produced which governs the evolution of

a single applied �eld coupled to the internal degrees of freedom of the atom. It is

demonstrated that, for certain parameter values, the system is optically bistable.

Finally, the two level Maxwell-Bloch equations are expanded to describe the evo-

lution of the internal degrees of freedom of the atoms and their centre of mass

motion under the stimulus of two counterpropagating optical �elds which evolve

in time. In this form the equations are used to model an instability known as

Collective Atomic Recoil Lasing.

In Chapter 3 the Maxwell-Bloch equations are expanded to describe the in-

ternal and centre of mass motional degrees of freedom of a cloud of atoms with

a three level internal energy structure in a ladder con�guration. The three level

ladder equations are utilised to investigate two non-linear optical processes.

For the �rst of the two processes, two-photon CARL, two noteworthy expres-

sions are derived. The �rst expression describes the required pump intensity for

the population to saturate (i.e. for a signi�cant proportion of the population to

shift to the excited state). This relation allows for two regimes to be de�ned:

The weak pump limit, where the population remains unsaturated; and the strong

pump limit, wherein a signi�cant proportion of the atomic population is excited.

The second equation describes the expected gain in the probe beam in the weak

pump limit. The expressions are used to compare the system in the two pump

limits. It is demonstrated that, contrary to the case of two level CARL, in two-

photon CARL the instability survives the transition to the strong pump regime.

The second process investigated is that of two-photon super�uorescence. It is

demonstrated that, as was the case for single photon �uorescence [36], introduc-
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tion of centre of mass motion and atomic bunching results in symmetry breaking

in the sign of detuning from �eld-atom resonance. When the emitting atoms

are stationary, the two-photon SF pulse is independent of the sign of detuning.

When centre of mass motion is included, the atoms bunch at maxima (minima)

of intensity when the �eld is red (blue) detuned from �eld-atom resonance. When

the atoms bunch at the maxima of optical standing wave intensity, the optical

pulse is enhanced over the case in which the atoms bunch at the point of intensity

minima, wherein the optical pulse is retarded.

Chapter 4 contains a derivation of Maxwell-Bloch equations for the alternate

three level Λ (lambda) atomic energy level con�guration. Two variations of the

Λ con�guration are considered: a case where the two lower energy levels are

degenerate, referred to as the degenerate Λ con�guration, and a case where the

two lower energy levels are not degenerate, the non-degenerate Λ con�guration.

In the degenerate con�guration it is demonstrated that for certain �eld-atom

detunings it is possible to decouple the atomic centre of mass equations from

the internal atomic degrees of freedom. An expression is then produced for the

gain which may be expected of the system when operating in the degenerate Λ

con�guration.

In the non-degenerate con�guration it is shown that there exist values �eld-

atom detuning in which the atomic motion becomes decoupled from the atomic

coherence but not the atomic population. Although the population does not

decouple from the atomic motion, it remains constant at its initial value and acts

as a parameter more than a variable.

In both the energy level con�gurations described in Chapter 4, the bunching

force becomes divorced from the detrimental e�ects of the evolution of the atomic

population. Discussion is given to the advantages of operating CARL in a gas of

three level atoms with a Λ energy con�guration over CARL in a system of two

level atoms.

Chapter 5 summerises the results produced throughout the thesis and con-

cludes with possible future work which may stem from the results presented here.
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Two level Collective Atomic Recoil

Lasing

2.1 Collective Atomic Recoil Lasing

Collective Atomic Recoil Lasing (CARL), is a nonlinear e�ect which combines

both external and internal degrees of atomic freedom. In simplest terms, CARL

can be understood as follows: consider a gas of ultracold (microKelvin) ground

state atoms being illuminated by a laser light source. If the frequency ω of the

laser light is close to, but su�ciently detuned from, a transition between the

ground state |1〉 and an excited energy state |2〉 within the atom, then the light

may be scattered from the atomic sample.

If some of the light is scattered in the direction exactly opposing that of the

incoming laser light, then a weak standing wave exists. As has been explained

in Section 1.1.1.3, for a negative (red) detuning the dipole force results in atoms

moving towards areas of high light intensity, so the standing wave results in a

weak bunching of the atoms with a periodic spacing of λ/2.

The periodic bunching results in a cooperative backscattering of the incident

laser �eld, which in turn results in a stronger standing wave and even tighter

periodic bunching. This exponential bunching and backscattering is the heart of

the CARL gain mechanism. Figure 2.1 shows a simpli�ed representation of the

CARL mechanism and the backscattering described above.
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First suggested by Bonifacio and De Salvo[37], CARL has been described as

"unifying the physics of traditional lasers and Free Electron Lasers" (FEL)[38].

Though the theory for CARL was published in 1994 it was almost ten years later

that Kruse et al. [4] produced the �rst unambiguous experimental proof of the

CARL instability. While previous experiments into collective atomic recoil had

been undertaken, most notably by Hemmer et al. [39], Courtois et al. [40], and

Lippi et al. [41], the authors were unable to demonstrate conclusively that the

gain in the optical probe beam was due to an atomic density grating, the hallmark

of the CARL instability, or a population/coherence grating.

The optical forces described in Chapter 1 have an insigni�cant e�ect upon

thermal velocities of atoms around room temperature. Experiments involving

systems of high intensity light sources, such as lasers, incident upon ultracold (mi-

croKelvin) matter, allows for optical forces to have a signi�cant e�ect on atomic

motion. In such systems, the long coherence times of an atom's or molecule's

centre-of-mass motion may allow for interesting regimes of collective behaviour,

such as CARL.

Throughout this thesis, the term CARL is used as a shorthand label to de-

scribe collective atomic instabilities involving the simultaneous growth of periodic

atomic bunching on the scale of incident optical �elds with gain in an optical

output �eld. It should be noted, however, that in the literature there exist other

names for processes similar to that of CARL, such as Recoil-Induced Resonances

[40], or Superradiant Rayleigh Scattering [42, 25].

Many studies, both theoretical and experimental, have been performed on such

CARL-like interactions, involving the mechanical e�ect of light on cold atoms,

for example instabilities involving self-organisation [25, 38, 4, 42, 43, 44, 45, 46,

47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59], collective cooling [60, 61, 62],

and optomechanical transverse pattern formation [63, 64, 65, 66, 67].

CARL has been proposed for a number of applications, including a tunable

source of high frequency light [68, 69], or as a method for bunching atoms in a

particle beam [68, 69].
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Optical Pump Beam 

Backscattered 
optical beam 

Optical Pump Beam 

λ/2 λ/2 

Spontaneous emission and formation 
of a standing wave results in bunching 
of the atoms due to the dipole force   

Figure 2.1: Simpli�ed CARL Bunching and Backscattering Diagram
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2.2 Derivation of the Bloch Equations

The �rst step in producing equations to model the CARL instability is the deriva-

tion of the governing equations for the internal degrees of freedom of the atoms in

the system. These are referred to as the Bloch equations. The following derivation

is reproduced from [70] as a means of introducing the notation and terminology

used throughout this thesis.

The discrete states of quantised degrees of freedom in matter may be de-

scribed by the quantum mechanical wavefunction ψ and the Hamiltonian opera-

tor H. The Hamiltonian's discrete eigenvalues de�ne the set of energy levels. The

eigenfunctions corresponding to those energy levels are the basis states. For the

unperturbed state, the Hamiltonian may be written as H0. The energy levels Ej

are given by ~ωj with the assumption made that the eigenstate which corresponds

to that energy given by ψj, so that

H0ψj = ~ωjψj, j = 1, ..., N (2.2.0.1)

and the eigenstates {ψj} form a complete, orthonormal basis

∫
ψ∗jψk d

~R = δj,k , (2.2.0.2)

where δj,k is the Kronecker Delta,

δj,k =

 1, if j = k

0, if j 6= k
(2.2.0.3)

In cases where the photon �ux is su�ciently large the electric �eld may be treated

as being classical, and the system as a whole may be described semiclassically.

When a near chromatic light source of frequency ω is applied to a material

(in the unperturbed state) which has an energy level transition frequency of

ωjk =
Ej−Ek

~ which is close to that of the applied electric �eld, photons from the

light source striking the atoms may then be absorbed. Such photonic absorption

allows the electrons of those atoms to access higher energy states.
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If the atoms are considered to consist of an electron orbiting a nucleus, and

the electron coordinate with respect to the nucleus is denoted by ~R, then:

• In the unperturbed ground state, the wavefunction is spherically symmetric

and localized around a radius |~R| = R0.

• In the perturbed state, the electron cloud is distorted in the direction of

the electric �eld and an e�ective electric dipole is induced in the material.

The dipole induced by the applied light source oscillates and, as all classical

oscillating dipoles do, radiates electromagnetic waves. It can be expected then

that the induced dipoles (oscillating and emitting radiation), act to modify the

electric �eld.

The derivation of the Bloch equations begins with the calculation of the polar-

isation vector. The polarisation vector may be considered to be the sum of the

dipole moments of each atom in the system

~P =
∑
j

~djδ(r − rj) , (2.2.0.4)

where the dipole moment induced by the �eld in the jth atom, ~dj, is given by

~dj = e

∫
~Rψψ∗ d~R (2.2.0.5)

In the above, ~R is the radius, ~P is the polarization vector, and e is the charge of

an electron.
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2.2.1 Step 1: Schrödinger's Equation

It is assumed that the wavefunction ψ(~R, t) satis�es Schrödinger's Equation

i~
∂ψ

∂t
= Hψ , (2.2.1.1)

where the Hamiltonian H is the sum of the unperturbed Hamiltonian and the

perturbed vector potential

H = H0 + δV . (2.2.1.2)

The perturbation potential δV , ordinarily be given by δV = −e
∫
~E.d~R, may

instead be written as δV = −e ~E.~R as ~E(~r, t) changes very little over atomic

distances as measured by R. The Hamiltonian then takes the form

H = H0 − e ~E.~R (2.2.1.3)

where ~E is treated as approximately constant over interatomic distances |~R|. The

perturbation potential δV is considered to be much smaller than the potential

V0(~R) of the unperturbed HamiltonianH0 for the laser intensities considered here.

As the atoms are considered to possess no chemical bonds, neither vibrations nor

rotations around chemical bonds play any role within the system. As a result,

the potential V0(~R) due to the the unperturbed Hamiltonian is considered to be

simply the Coulomb potential.
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2.2.2 Step 2: The Unperturbed States

Schrödinger's equation can be solved by assuming that the wavefunction ψ(~R, t)

may be written as

ψ(~R, t) =
N∑
j=1

aj(t)ψj(~R) (2.2.2.1)

where the ψj(~R) terms are the unperturbed states and the aj(t) terms are time

dependent probability amplitudes. This equation simply describes how a time

dependence factor is applied to the wavefunction.

The unperturbed states can be arranged to have the properties that

∫
~Rψj(~R) d~R = 0 (2.2.2.2)

and

∫
~Rψj ψ

∗
j d~R = 0 (2.2.2.3)

Which means that the expectation value of the position is zero, the states are

spherically symmetric around the atomic centre of mass.

If H = H0, then it can be written that

aj(t) = aj(0)e−iωjt (2.2.2.4)
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2.2.3 Step 3: The Polarization

As previously stated, the polarization or dipole moment, for a single atom is given

by

~d = e

∫
~Rψ ψ∗d~R (2.2.3.1)

Using (2.2.2.1) to expand the wave functions gives

~d = e

∫
~R

(
N∑
j=1

aj(t)ψj(~R)

)(
N∑
k=1

a∗k(t)ψ
∗
k(~R)

)
d~R (2.2.3.2)

The probability amplitude terms aj,k(t) are independent of ~R and may therefore

be extracted from the integral leaving

~d =
N∑

j,k=1

aj(t)a
∗
k(t) e

∫
~Rψ∗k(~R)ψj(~R) d~R (2.2.3.3)

The time dependent density matrix elements are de�ned as

ρjk = aja
∗
k (2.2.3.4)

And the time independent dipole matrix terms are de�ned as

~pjk = e

∫
~R ψ∗j ψk d

~R (2.2.3.5)

So the dipole moment for a single atom is therefore

~d =
∑
j,k

ρjk ~pkj

= Trace(~pρ) (2.2.3.6)

i.e. the polarization per atom is given by the trace of the matrix multiplication

of ~p and ρ.
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It is preferable to work with density matrix elements ρjk(t) rather than probability

amplitudes aj(t) as density matrix elements may be directly tied to physical

observables.

The diagonal terms of the density matrix, ρ, (i.e., where j=k) give the occu-

pational probability of a particular quantum state. The o�-diagonal terms of the

density matrix relate directly to the coherence associated with a given transition.

In order for a particular dipole transition to occur, its corresponding dipole

transition matrix element must be nonzero (i.e. for a transition from level j to

level k, ~pjk must be nonzero). The strength of the transition is determined by

the magnitude of this quantity. As a result, all diagonal terms ~pjj are zero. O�-

diagonal terms may also be zero, indicating that direct transitions between those

two levels are forbidden. These transition restrictions are referred to as Selection

Rules. Having obtained equation (2.2.3.6) it can be seen that the next step to

obtaining the polarisation vector is to produce equations for the density matrix

elements ρjk for an atom [71].
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2.2.4 Step 4: The �Raw� Bloch Equations

The �rst step to deriving the raw Bloch equations is to produce an equation for

the probability amplitudes. Consider initially equation (2.2.1.1):

i~
∂ψ(~R, t)

∂t
= Hψ(~R, t) . (2.2.4.1)

Into this both equation (2.2.1.3) and (2.2.2.1) are substituted to produce

i~
∂

∂t

(
N∑
j=1

aj(t)ψj(~R)

)
=
(
H0 − e ~E.~R

)( N∑
j=1

aj(t)ψj(~R)

)
. (2.2.4.2)

Multiplying out the brackets on both sides, substituting in equation (2.2.0.1) and

then dividing through by i~ gives

N∑
j=1

ψj(~R)
∂aj(t)

∂t
=

N∑
j=1

(
−iωjψj(~R)aj(t) +

ie

~
~E · ~R aj(t)ψj(~R)

)
. (2.2.4.3)

Multiplying both sides by ψ∗k(
~R) gives

N∑
j=1

ψ∗k(~R)ψj(~R)
∂aj(t)

∂t
=

N∑
j=1

(
−iωjψ∗k(~R)ψj(~R)aj(t) +

ie

~
~E · ~Rψ∗k(~R)ψj(~R)aj(t)

)
,

(2.2.4.4)

for k = 1,...,N. Integrating this equation with respect to ~R throughout means

that, due to equation (2.2.0.2) the terms

∫
ψ∗j (~R)ψk(~R) d~R (2.2.4.5)

are equal to 1 when j = k and 0 when j 6= k. Therefore, any terms multiplied

by the above integral may have any j subscripts replaced by k subscripts. Addi-

tionally, as the initial k subscripts may take any value between 1 and N whereas

the j subscripts are being explicitly summed between 1 and N , any summations

over j containing the above integral vanish as they are the sum of only one term.
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Furthermore, (2.2.3.5) allows for the substitution of the dipole matrix element

~pkj into the equation to give

∂ak(t)

∂t
= −iωkak(t) +

i ~E

~
·
N∑
j=1

~pkjaj(t) , (2.2.4.6)

for k = 1,...,N. To avoid complications regarding subscripts in the formation of

the equation for the evolution of the dipole matrix elements, the subscript j is

replaced by l

∂ak(t)

∂t
= −iωkak(t) +

i ~E

~
·
N∑
l=1

~pklal(t) , (2.2.4.7)

for k = 1,...,N . Equation (2.2.4.7) is the equation for the evolution of the probabil-

ity amplitude. It can be seen from the de�nition of the density matrix elements,

given by equation (2.2.3.5), that

∂ρjk(t)

∂t
= a∗k(t)

∂aj(t)

∂t
+ aj(t)

∂a∗k(t)

∂t
. (2.2.4.8)

The equation for the evolution of the probability amplitudes can therefore be

manipulated to produce an equation for the density matrix elements. Taking

equation (2.2.4.7), replacing the subscript k with j and multiplying by a∗k(t)

gives

a∗k(t)
∂aj(t)

∂t
= −iωjaj(t)a∗k(t) +

i ~E

~
·
N∑
l=1

~pjlal(t)a
∗
k(t), (2.2.4.9)

for j = 1,...,N. Taking the complex conjugate of (2.2.4.7) and multiplying through

by aj(t)

aj(t)
∂a∗k(t)

∂t
= iωkaj(t)a

∗
k(t)−

i ~E

~
·
N∑
l=1

~pklaj(t)a
∗
l (t), (2.2.4.10)

for k = 1,...,N. Summing these two equations gives
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a∗k(t)
∂aj(t)

∂t
+ aj(t)

∂a∗k(t)

∂t
=− iωjaj(t)a∗k(t) +

i ~E

~
·
N∑
l=1

~pjlal(t)a
∗
k(t) (2.2.4.11)

+ iωkaj(t)a
∗
k(t)−

i ~E

~
·
N∑
l=1

~pklaj(t)a
∗
l (t) , (2.2.4.12)

for j,k = 1,...,N. Applying the product rule to the left hand side, grouping terms

on iaj(t)a
∗
k(t) and using the substitution from (2.2.3.4) produces

∂ρjk
∂t

= −i(ωj − ωk)ρjk +
i ~E

~
·
N∑
l=1

~pjlρlk −
i ~E

~
·
N∑
l=1

~plkρjl . (2.2.4.13)

The above equation describes the evolution of the atomic internal degrees of

freedom in response to an applied electric �eld. However, it does not yet describe

the decay of coherence between internal energy levels or the decay from upper

population levels to lower levels through spontaneous emission. Such processes

are encapsulated through the addition of homogeneous broadening terms −γjkρjk.

In warm atomic samples the homogeneous broadening terms additionally de-

scribe a gradual loss of energy from the levels of interest to an e�ective heat bath

of all other material states. The terms γjj in such a system would represent the

decay rates due to irreversible losses to the heat bath of lower-energy states and

terms γjk decay rates with additional contributions due to the elastic collisions

between the atoms. For an ultracold atomic sample (typically on the order of

a few microKelvins) as is considered here, however, losses due to collision are

reduced to levels considered negligible and the population is assumed conserved,

such that γjj & γjk represent only spontaneous emission and decay in the coher-

ence, as stated above. With the homogeneous broadening terms added, the Bloch

equations are given the form

∂ρjk
∂t

= −(γjk + iωjk)ρjk +
i ~E

~

(
N∑
l=1

~pjlρlk

)
− i ~E

~

(
N∑
l=1

~plkρjl

)
, (2.2.4.14)
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where ωjk = ωj − ωk. It is clear from the above equation that the density matrix

elements, as a result of their relation to ~E(~R, t), will likewise depend upon both

position ~R and time t. The time taken for energy to be coherently transfered

from an incident optical �eld to a system of atoms and back again is given by the

inverse of the Rabi frequency, TRabi = ω−1
Rabi, where

ωRabi =
Ep

~
(2.2.4.15)

is the Rabi frequency.

From equation (2.2.0.4) for the total polarisation of the system and equation

(2.2.3.6), describing the expected polarisation of a single atom, the polarization

�eld ~P is given by

~P =
∑
j

Trace(~pρ)δ(r − rj) , (2.2.4.16)

i.e. the sum of the diagonal terms of the matrix multiplication of ~p and ρ for all

the atoms in the system.

2.3 Stationary atoms interacting with a single static

�eld

Having computed the general Bloch equations, it is an easy matter to attain equa-

tions governing the reaction of the atomic system to an applied �eld. Easier still

as for this initially considered system it is assumed that the atoms are stationary,

uniformly spaced and that the �eld does not evolve spatially.

2.3.1 Bloch equations

The electric �eld can be taken to be simply

~E = ~Aae
−iωt + ~A∗ae

iωt (2.3.1.1)

where ω, the frequency of the optical �eld, is close to the energy level transition
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frequency ω21. It can be assumed, for simplicity's sake, that the electric �eld is

linearly polarised in the direction, ê, so that

~A(x, y, z) = êA(x, y, z) (2.3.1.2)

and that the direction of the dipole moment is parallel to that of the electric �eld.

The response of the dipole moment of an atom to such an applied �eld can then

be assumed to be of the form

~d = µ
(
σe−iωt + σ∗eiωt

)
ê (2.3.1.3)

From equation (2.2.3.6) the dipole moment for the system of two level atoms is

~d = Trace(~pρ)

= Trace

(~p11 ~p12

~p21 ~p22

ρ11 ρ12

ρ21 ρ22

) (2.3.1.4)

= (~p11ρ11 + ~p12ρ21 + ~p21ρ12 + ~p22ρ22) (2.3.1.5)

As has already been mentioned, the terms ~pjj are all zero, so the dipole moment

for a two level atom simpli�es to

~d = (~p12ρ21 + ~p21ρ12) (2.3.1.6)

As the phase of a complex ~p12 can be included in the density matrix element ρ12

there is no loss of generality in taking the dipole matrix element ~p21 to be real [70,

p. 165]. It has already been assumed that the dipole moment is linearly polarised

parallel to the �eld, so it may therefore be written that

~p12 = ~p21 = pê = µê (2.3.1.7)

Using the above in equation (2.3.1.6) leaves
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~d = µ(ρ12 + ρ21)ê (2.3.1.8)

Upon comparison with (2.3.1.3), consistency requires that

ρ21 = σ21e
−iωt (2.3.1.9)

It is also important to note that, by its de�nition in equation (2.2.3.4),

ρ21 = ρ∗12. (2.3.1.10)

To obtain an equation for the coherence between levels |2〉 and |1〉, ρ21, the

values j = 2 and k = 1 are substituted into equation (2.2.4.14) to produce

∂ρ21

∂t
=− (γ21 + iω21)ρ21

+
i ~E

~
· (~p21ρ11 + ~p22ρ21)

− i ~E

~
· (~p11ρ21 + ~p21ρ22)

Once again, the terms ~pjj are zero. Taking the dot product and making the

substitution (2.3.1.7) gives

∂ρ21

∂t
= −(γ21 + iω21)ρ21 +

iµE

~
(ρ11 − ρ22) . (2.3.1.11)

In a similar fashion, an expression for the population of the excited state, ρ22,

may be obtained by substituting j = 2 and k = 2 into (2.2.4.14), giving

∂ρ22

∂t
=− (γ22 + iω22)ρ22

+
i ~E

~
· (~p21ρ12 + ~p22ρ22)

− i ~E

~
· (~p12ρ21 + ~p22ρ22)
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From its de�nition as ωjk = ωj−ωk the frequency term ω22 must be zero. Taking

the dot product, the equation becomes

∂ρ22

∂t
= −γ22ρ22 +

iµE

~
(ρ12 − ρ21) (2.3.1.12)

Using the same method the equation for the ground state population, ρ11, can

be shown to be

∂ρ11

∂t
= −γ11ρ11 +

iµE

~
(ρ21 − ρ12) (2.3.1.13)

The above expression governs the evolution of the population of the ground

state, thus population cannot decay away from level |1〉 and γ11 is set to zero.

The population of the system is considered to be closed, thus ρ11 + ρ22 = 1. Any

population decaying from level |2〉 must therefore be introduced to level |1〉. This

population growth is expressed in the above equation through the addition of the

term +γ22ρ22. Equation (2.3.1.13) then becomes

∂ρ11

∂t
= γ22ρ22 +

iµE

~
(ρ21 − ρ12) (2.3.1.14)

The equations for the two population terms may then be combined to form

one equation governing the evolution of the population as a whole, rather than

solving two separate population rate equations. The term D is de�ned as

D =
1

2
(ρ11 − ρ22) (2.3.1.15)

When the value of ρ22 exceeds that of ρ11, i.e. the atom is most likely found

in the excited state, the population is considered to be inverted. The term D

is therefore referred to as the population inversion. When population inversion

occurs, D takes a negative value. From the above de�nition of the D, the equation

for the evolution of the population inversion is simply
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∂D

∂t
=

1

2

(
∂ρ11

∂t
− ∂ρ22

∂t

)
= γ22ρ22 +

iµE

~
(ρ21 − ρ12) (2.3.1.16)

As has already been stated, the system does not decay from the ground state

ρ11. Furthermore, the system only decays from ρ22 to the ground. It is said

that the system is closed, i.e. ρ11 + ρ22 = 1. Since it has already been de�ned

that the relation between the population levels and the population inversion is

D = 1
2
(ρ11 − ρ22), it can be shown that

ρ11 =
1

2
+D, ρ22 =

1

2
−D (2.3.1.17)

Using these substitutions in equation (2.3.1.16) produces

∂D

∂t
= −γ22

(
D − 1

2

)
+
iµE

~
(ρ21 − ρ12) (2.3.1.18)

Owing to its de�nition, and the fact that the system is closed, the value of D may

only vary between −1/2 and 1/2. The term −γ22

(
D − 1

2

)
results in a constant

loss of population from the excited state to the ground state. To keep the system

active, energy must be supplied to it so that there exists some proportion of the

population in the excited state. The constant energy supply pumping the system

towards the excited state ( towards a negative value of D ) is captured in the

equation by changing the term γ22
1
2
to the term γ22D

eq, where Deq represents

the term which the population tends towards at equilibrium. When Deq is set

to 1
2
then the population in the system experiences no population pumping and

relaxes to the ground state. The expression for the population then takes the

form,

∂D

∂t
= −γ22 (D −Deq) +

iµE

~
(ρ21 − ρ12) (2.3.1.19)

Into the above equation are substituted the expression for the optical �eld (2.3.1.1)
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and the expression for the coherences (2.3.1.9), leaving

∂D

∂t
= −γ22 (D −Deq) +

iµ

~
(
σ21e

−iωt − σ12e
iωt
) (
Aae

−iωt + A∗ae
iωt
)
. (2.3.1.20)

Multiplying out the brackets results in terms containing e±2iωt. The use of the

Rotating Wave Approximation allows terms which vary as e±niωt (for n ≥ 2), to

be neglected under the assumption that such rapidly oscillating terms average

themselves out. Equation (2.3.1.20) is then left in the form

∂D

∂t
= −γ22 (D −Deq) +

iµ

~
(A∗aσ21 − Aaσ12) (2.3.1.21)

Using (2.3.1.9) and (2.3.1.15) in equation (2.3.1.11) gives it the form

∂

∂t

(
σ21e

−iωt) = −(γ21 + iω21)σ21e
−iωt +

2iµE

~
D . (2.3.1.22)

The product rule may be applied to the left of this equation to give

∂σ21

∂t
e−iωt − iωσ21e

−iωt = −(γ21 + iω21)σ21e
−iωt +

2iµE

~
D (2.3.1.23)

Multiplying both sides of the equation by eiωt then moving the term −iωσ21 to

group together terms with iσ21 leaves

∂σ21

∂t
= − (γ21 − i (ω − ω21))σ21 +

2iµE

~
Deiωt . (2.3.1.24)

De�ning the frequency di�erence between the optical �eld and the transition

frequency between levels 2 and 1 as

∆a = ω − ω21 (2.3.1.25)

and substituting the equation (2.3.1.1) for the optical �eld E, gives
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∂σ21

∂t
= − (γ21 − i∆a)σ21 +

2iµ

~
D
(
Aae

−iωt + A∗ae
iωt
)
eiωt . (2.3.1.26)

Multiplying out the bracket and applying the Rotating Wave Approximation,

which once again allows for the neglection of terms containing exponentials of

the form e±niωt (for n ≥ 2), gives

∂σ21

∂t
= − (γ21 − i∆a)σ21 +

2iµ

~
DAa . (2.3.1.27)

While the above equations can be numerically solved in their current form,

it is convenient to utilize a series of scaling terms to rewrite the Maxwell-Bloch

equations in a dimensionless scaled form. For this reason, and for consistency

with later equations and results, the scaling terms

τ = ωrρt (2.3.1.28)

Āa = −i
√

2ε0
n~ωρ

Aa,b (2.3.1.29)

Γ =
γ

ωrρ
(2.3.1.30)

∆̄ =
∆

ωrρ
(2.3.1.31)

ωr =
2~k2

m
(2.3.1.32)

ρ =

(
ωµ2n

2ε0ω2
r~

) 1
3

(2.3.1.33)

are introduced. The term τ is the scaled time variable, Āa is the scaled �eld

variable, Γ is the scaled decay parameter, and ∆̄ is the scaled �eld-atom detuning.

The scaling terms ωr & ρ are the recoil frequency, which is related to the recoil

temperature by the relation Tr = ~ωr
kB

, and the dimensionless scaling parameter

ρ, which may be regarded as the number of photons per atom in the cavity

respectively. In the above expressionsm is the atomic mass, k is the wave number,

and n = N
AL is the density of atoms in the cavity, where A is the cross sectional
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sample area and L is the cavity length. One of the immediate advantages of

the dimensionless form is that the parameter ρ may be related to the gain in

the probe beam produced by the CARL instability. Applying the scaling terms

(2.3.1.28) - (2.3.1.33) to equations (2.3.1.21) and (2.3.1.27) gives

∂D

∂τ
= −Γ22 (D −Deq) + ρ

(
Ā∗aσ21 + Āaσ12

)
(2.3.1.34)

∂σ21

∂τ
= −

(
Γ21 − i∆̄a

)
σ21 − 2ρDĀa . (2.3.1.35)

Equations (2.3.1.34) and (2.3.1.35) describe the evolution of a system of pumped

two level atoms under the e�ect of a constant, nondepleting optical �eld, Āa.
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Figure 2.3: Simpli�ed Two Level Energy Level Diagram

38



CHAPTER 2. TWO LEVEL COLLECTIVE ATOMIC RECOIL LASING

2.3.2 Rabi oscillations

As a step towards producing more complex simulations and verifying the accuracy

of the computational methods chosen, a number of phenomena associated with a

single �eld incident upon a sample of ultracold atoms will now be demonstrated.

The �rst of these phenomena is that of Rabi oscillations.

2.3.2.1 Rabi oscillations at �eld-atom resonance

As previously stated in Section 2.2.4, the inverse of the Rabi frequency measures

the time taken for energy to transfer from the �eld to the atoms and back. The

population inversion, D, being a measure of atomic excitation, should therefore

show correlation with the Rabi frequency. The oscillations in the population of a

system such as the one being described currently are described as Rabi oscillations

or Rabi �opping. Taking the governing equations (2.3.1.34) and (2.3.1.35), and

setting Γ21 = 0, Γ22 = 0, ∆̄a = 0, and σ21(t = 0) = 0 reduces them to

∂D

∂τ
= ρ

(
Ā∗aσ21 + Āaσ12

)
(2.3.2.1)

∂σ21

∂τ
= −2ρDĀa (2.3.2.2)

Taking ∂
∂τ

of equation (2.3.2.1) gives

∂2D

∂τ 2
= ρ

(
Ā∗a
∂σ21

∂τ
+ Āa

∂σ12

∂τ

)
, (2.3.2.3)

into which (2.3.2.2) may be substituted to give

∂2D

∂τ 2
= −4ρ2|Āa|2D . (2.3.2.4)

The above, using the substitution α = 4ρ2|Āa|2, can be arranged to take the form

∂2D

∂τ 2
+ α2D = 0 (2.3.2.5)

which is that of a simple harmonic oscillator of frequency α. As this equation
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was obtained by neglecting and pumping or dampening terms for the system, the

frequency of the oscillator should correspond to the undamped Rabi frequency,

ωRabi, with a period given by

TRabi =
2π

ωRabi
=

π

ρĀa
. (2.3.2.6)

For a simple set of input values ( ρĀa = 3) the expected period was π/3, which

compares favourably to the output curve (a) in Figure 2.4.
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Figure 2.4: Population inversion vs. time for �eld-atom detunings, as described
in (2.3.1.25), of (a) ∆̄a=0 (No mismatch between frequencies), (b) ∆̄a= 4, (c)
∆̄a= 9.
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2.3.2.2 Rabi oscillations including �eld-atom detuning

Relaxing the previous assumptions to allow for a mismatch between the frequency

of the incident �eld and the atomic transition ( i.e. ω and ω21 may possess di�erent

values, so that ∆a 6= 0 ) gives equation (2.3.1.35) the form

∂σ21

∂τ
= i∆̄aσ21 − 2ρDĀa . (2.3.2.7)

An expression for the evolution of D may be obtained by following a similar

process as that for used in the previous section (i.e. di�erentiating the equation

for the population inversion and substituting in for σ until the expression relies

solely upon D). Including a detuning ∆a, the expression for D may be shown to

be

∂3D

∂τ 3
= −

(
∆̄2
a + 4ρ2Ā2

a

) ∂D
∂τ

. (2.3.2.8)

The period of a single Rabi oscillation should then be given by the expression

TRabi =
2π

ωRabi
=

2π√
∆̄2
a + 4ρ2Ā2

a

. (2.3.2.9)

Keeping the value of the undampened Rabi frequency the same as for the resonant

case, i.e. ρĀa = 3 but allowing the frequency to become detuned gives detuned

Rabi periods of

TRabi =
2π√

∆2
a + 4µ

2ARa
2

~2

=
2π√

(6)2 + 4(3)2
≈ 0.74 for ∆̄a = 6

TRabi =
2π√

∆2
a + 4µ

2ARa
2

~2

=
2π√

(9)2 + 4(3)2
≈ 0.58 for ∆̄a = 9 .

These value sare consistent with the curves (b) and (c) in Figure 2.4, which were

produced by numerically solving equations (2.3.1.34) and (2.3.1.35) for the values

used above. As can be observed from Figure 2.4(c), even a small change in the

value of the scaled detuning, ∆̄a (less than one order of magnitude) produces a

signi�cant decrease in the peak value of the population inversion.

41



CHAPTER 2. TWO LEVEL COLLECTIVE ATOMIC RECOIL LASING

2.3.3 Linear Susceptibility: Absorption and Dispersion

The next phenomenon to be demonstrated is that of the linear susceptibility of

the atomic sample. The electric susceptibility, χe, is a quantity which indicates

the degree of polarization which can be expected from a dielectric material in

response to an applied electric �eld. The linear susceptibility is given by the

equation

~P = ε0χe ~E (2.3.3.1)

[70, p. 167]. As the polarisation is given as the sum of the individual atomic

coherence terms, the assumption is made that the susceptibility for a single atom

may be written in scaled variables as

σ21 = iχ̄Āa . (2.3.3.2)

When the equation governing the evolution of the coherence, (2.3.1.35), reaches

steady state, the derivative ∂σ21
∂τ

is zero. When the equation is then adiabatically

eliminated, then

σ21 =
−2ρĀaD(Γ21 + i∆̄a)

(Γ2
21 + ∆̄2

a)
(2.3.3.3)

is obtained, where the �eld Aa has been assumed purely real. In a similar manner,

the equation for the population di�erence may be adiabatically eliminated to give

a steady state expression for D of

D = Deq − ρ

Γ22

(Ā∗aσ21 + Āaσ12) . (2.3.3.4)

By substituting the above expression for σ21 into the equation for the population

inversion, an expression for D is obtained which no longer depends upon any

other variables.

D =
Deq

1 + 4ρ2|Āa|2Γ21

Γ22(Γ2
21+∆̄2

a)

(2.3.3.5)
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When the above expression for D at steady state is substituted back into the

equation for the coherence, then a similar expression for σ21 is obtained which

does not depend upon other variables.

σ21 =
−2ρΓ22ĀaD

eq(Γ21 + i∆a)

(Γ22(Γ2
21 + ∆̄2

a) + 4ρ2Ā2
aΓ21)

(2.3.3.6)

From the above and (2.3.3.2), it is trivial to obtain an expression for the scaled

susceptibility of a single atom of

χ̄ =
2ρΓ22D

eq(−∆a + iΓ21)

(Γ22(Γ2
21 + ∆̄2

a) + 4ρ2Ā2
aΓ21)

, (2.3.3.7)

where the real and imaginary components of the susceptibility correspond respec-

tively to the dispersive and absorptive properties of the atom.

Figure 2.5 was produced using the same computation model as for section

2.3.2, i.e. numerically solving equations (2.3.1.21) and (2.3.1.27). Each point on

the curves (a) and (b) was produced by running the model for a particular value

of ∆a until the system reached steady state, then plotting the imaginary and

real components, respectively, of χ̄ = σ21
iAa

. The values used for Figure 2.5 were

chosen solely to demonstrate the general shape of the absorptive and dispersive

susceptibility curves, not to be representative of any particular atomic transition.

As can be clearly seen, peak absorption occurs when there is zero detuning, i.e.

the �eld is absorbed most readily when the frequency of the applied electric �eld

exactly matches that of the energy level transition.
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Figure 2.5: The (a) imaginary and (b) real components of χ̄ vs. ∆̄a
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2.4 Stationary atoms interacting with a single evolv-

ing �eld

The next advancement made to the model was to allow for temporal evolution

of the optical �eld. In doing so it is shown that the model may become optically

bistable for certain parameter values.

2.4.1 The Maxwell-Bloch equations

The governing equation for a singly polarized electric �eld is

∇2 ~E − 1

c2

∂2 ~E

∂t2
=

1

ε0c2

∂2 ~P

∂t2
, (2.4.1.1)

that is Maxwell's wave equation in a nonlinear optical medium. Considering the

optical �eld to be a mode of an optical cavity, such as the cavity shown in �gure

2.2, then the electric �eld ~E can be written as

~E = ~Aa(t)e
i(kz−ωt) + ~A∗a(t)e

−i(kz−ωt) . (2.4.1.2)

It is assumed that any spatial variation of Aa or its complex conjugate are negli-

gible and such may be described by the cavity mode rather than by terms in the

wave equation. For the polarisation, ~P , given by (2.2.0.4) to show consistency

between (2.3.1.3) and (2.3.1.8) it must have the form

~P =
∑
j

(
µ
(
σ21e

i(kz−ωt) + σ12e
−i(kz−ωt)) ê) δ(r − rj) . (2.4.1.3)

Substituting (2.4.1.2) into the second term of 2.4.1.1 produces

∂2 ~E

∂t2
=

(
∂2 ~Aa
∂t2

− 2iω
∂ ~Aa
∂t
− ω2 ~Aa

)
ei(kz−ωt) + c.c. . (2.4.1.4)

Since the only evolution of the �eld which is of concern is that which takes place

in the z direction, the simpli�cation of ∇2 ≈ ∂2

∂z2
gives the spatial derivative of

the �eld to be
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∂2 ~E

∂z2
= −k2 ~Aae

i(kz−ωt) + c.c. (2.4.1.5)

Substituting (2.4.1.4) and (2.4.1.5) into the wave equation (2.4.1.1) results in the

left hand of the equation taking the form

−k2 ~Aae
i(kz−ωt) − 1

c2

(
∂2 ~Aa
∂t2

− 2iω
∂ ~Aa
∂t
− ω2 ~Aa

)
ei(kz−ωt) + c.c. (2.4.1.6)

From the dispersion relation, k = ω
c
, so the terms −k2 ~Aa and +ω2

c2
~Aa cancel,

leaving

− 1

c2

(
∂2 ~Aa
∂t2

− 2iω
∂ ~Aa
∂t

)
ei(kz−ωt) + c.c. (2.4.1.7)

The Slowly Vary Envelope Approximation (SVEA) is the assumption that the

wave packet evolves spatially and temporally slowly, so that ∂2 ~Aa
∂t2

<< ω ∂ ~Aa
∂t

<<

ω2 ~Aa, thus only the largest such term is considered. When this is applied, the

left hand side of the equation reduces to

2i
ω

c2

∂ ~Aa
∂t

ei(kz−ωt) + c.c. . (2.4.1.8)

Substituting (2.4.1.3) into the right hand side of the wave equation gives

1

ε0c2

∂2 ~P

∂t2
=

1

ε0c2

∂2

∂t2

∑
j

~djδ(r − rj(t))

=
1

ε0c2

∑
j

∂2~dj
∂t2

δ(r − rj(t)) . (2.4.1.9)

Substituting ~dj = µ
(
σ21e

i(kz−ωt) + σ12e
−i(kz−ωt)) ê into ∂2 ~dj

∂t2
gives
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∂2~dj
∂t2

=
∂2

∂t2
(
µ
(
σ21e

i(kz−ωt) + σ12e
−i(kz−ωt)) ê)

= µ

((
∂2σ21

∂t2
− 2iω

∂σ21

∂t
− ω2σ21

)
ei(kz−ωt) + c.c.

)
ê (2.4.1.10)

which, upon application of the SVEA, reduces to

∂2~dj
∂t2

= −µω2
(
σ21e

i(kz−ωt) + σ12e
−i(kz−ωt)) ê . (2.4.1.11)

Substituting this, equation (2.4.1.9) and (2.4.1.8) into the wave equation (2.4.1.1)

gives

2i
ω

c2

∂ ~Aa
∂t

ei(kz−ωt) + c.c.

=
1

ε0c2

∑
j

(
− µω2

(
σ21e

i(kz−ωt) + σ12e
−i(kz−ωt)) ê)δ(r − rj(t)) . (2.4.1.12)

To obtain an equation solely for the evolution of Aa, the above is multiplied by

ei(kz−ωt) and the Rotating Wave Approximation is applied, so that terms multi-

plied by e±inωt (for n ≥ 2) may be neglected. Doing so reduces the above equation

to

2i
ω

c2

∂ ~Aa
∂t

= − 1

ε0c2

∑
j

(
µω2σ21ê

)
δ(r − rj(t)) . (2.4.1.13)

Integrating the above over the length, L, and incident area, A, of the atomic

sample applies the Dirac delta function to the right hand side of the equation,

giving

2i
ω

c2

∂Aa
∂t

ê = −µω
2n

ε0c2
〈σ21〉 ê . (2.4.1.14)

The right of the above has been multiplied by N/N , so that n = N/AL and

47



CHAPTER 2. TWO LEVEL COLLECTIVE ATOMIC RECOIL LASING

〈· · · 〉 = 1
N

∑
j (· · · ) could be applied. When the dot product by ê of both sides

of the above expression is taken, the equation becomes

∂Aa
∂t

=
iµωan

2ε0
〈σ21〉 . (2.4.1.15)

This equation describes the evolution of an idealized �eld, i.e. a �eld without

losses due to mirror imperfections in the cavity. By assuming that the �eld

amplitude Aa evolves on a timescale much longer than the time taken for a cavity

round-trip (L
c
), the �eld losses can be represented by the introduction of a loss

rate of −TAa per round trip, where T = 1− R is the mirror transmissivity [72].

The losses are described by

∂Aa
∂t

∣∣∣∣
losses

= −TAa
L /c

= −cT
L
Aa = −κAa , (2.4.1.16)

the detuning of the �eld from exact cavity resonance is described by

∂Aa
∂t

∣∣∣∣
detuning

= i(ω − ωc)Aa = iδcAa , (2.4.1.17)

and the injection/pumping of the �eld is described by

∂Aa
∂t

∣∣∣∣
injection

=

√
TAINa
L /c

=
c
√
T

L
AINa =

cT

L

AINa√
T

= κAeqa . (2.4.1.18)

Including these terms in (2.4.1.15) produces a more robust and realistic equation

to govern the evolution of the �eld amplitude

∂Aa
∂t

=
iµωan

2ε0
〈σ21〉+ (iδc − κ)Aa + κAeqa . (2.4.1.19)

To be consistent with the scaling for the equations for the population inversion
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and the coherence, equations (2.3.1.34) and (2.3.1.35), the scaling terms

δ̄c =
δc
ωrρ

(2.4.1.20)

κ̄ =
κ

ωrρ
, (2.4.1.21)

along with those described in equations (2.3.1.28) - (2.3.1.33) are applied to equa-

tion (2.4.1.19) to give the scaled form of the equation for the probe �eld

∂Āa
∂τ

= 〈σ21〉+ (iδ̄c − κ̄)Āa + κ̄Āeqa . (2.4.1.22)
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2.4.2 Optical Bistability

Purely in the interest of demonstrating the evolution of the internal degrees of

atomic freedom when the atoms are coupled to the cavity �eld, a simple bistability

result is produced. By using the �nal values (i.e. the �nal values for a single

iteration of the code, run for a su�cient length of time for the system to reach

a steady state) for each variable in the computational model as the initial values

for the next iteration, excepting the �eld amplitude, the bistability of the system

was investigated.

While operating close to resonance, the input amplitude was increased incre-

mentally from a low initial value. The output intensity of the system during this

phase of operation proceeded along the lower transmission branch until reaching

the critical turning point. Increasing the input amplitude beyond that critical

point resulted in the transmitted intensity of the system to jump to the upper

transmission branch as the system reached saturation point. When the input �eld

was then gradually decreased, the output intensity remained in the upper branch

even below the threshold value at which the output �eld had switched transmis-

sion branch. Tuning the �eld amplitude down further, it eventually reached a sec-

ond critical turning point at which the system could no longer remain saturated,

at which point the output �eld dropped once again to the lower transmissivity

branch. Figure 2.6 demonstrates the results of this process.

By considering the �eld to be tuned to cavity resonance, δ̄c = 0 and adiabat-

ically eliminating equation (2.4.1.22) an expression is obtained for the value the

optical �eld assumes at steady state,

Āa =
1

κ̄
〈σ21〉+ Āeqa . (2.4.2.1)

It is assumed that the term 〈σ21〉 may be replaced by simply σ21 due to stationary

atoms behaving in a similar manner. Into the above expression the previously

obtained expression for the steady state value of the coherence, equation (2.3.3.6),

is substituted to give
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Āa =
1

κ̄

(
−2ρΓ22ĀaD

eq(Γ21 + i∆a)

(Γ22(Γ2
21 + ∆̄2

a) + 4ρ2Ā2
aΓ21)

)
+ Āeqa , (2.4.2.2)

where Aa, as in the derivation for (2.3.3.6), is again assumed to be purely real.

Rearranging the above equation for the pump term Aeqa using ∆a = 0 gives

Āeqa = Āa +
2ρDeqĀa

κ̄Γ21(1 + 4ρ2Ā2
a

Γ22Γ21
)
. (2.4.2.3)

Making a comparison with equation (32) of [31] for the bistability coe�cient or

"cooperativity parameter", C, with equation (2.4.2.3) above, the approximation

can be made that

C ≈ 2ρDeq

κ̄Γ21

. (2.4.2.4)

As can be seen from Figure 2.6, even a small increase in the value of the bistability

coe�cient gives rise to vast increase in the area over which bistability can occur.

It can also be seen that there exists no bistability in Figure 2.6(a), indicating

that there exists a threshold value of C which must be exceeded for bistability to

occur. This behaviour matches well with the absorptive bistability described in

[73], where the threshold value for bistability was C > 4. In terms of the above

expression for C, this translates to a threshold for bistability of C > 2, which

matches well with Figure 2.6.
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Figure 2.6: The output �eld for the cooperativity co-e�cient C= (a) 2, (b) 4, (c)
8 and (d) 16
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2.5 Moving atoms interacting with two counter-

propagating, evolving �elds

To fully describe the CARL model a second optical �eld must be added to the

computational model, the �elds must be allowed to evolve over time and the

atoms, which until now have been considered as stationary, must be allowed to

move in response to the incident optical �elds. The probe beam, which may arise

unseeded from noise within an experimental system, is considered to propagate

in the forward direction. The pump beam is taken to run counterpropagating to

the probe beam. A schematic diagram of this arrangement is shown in Figure

2.7. The total optical electric �eld in this system may be written as

~E =
(
Aa(t)e

i(kz−ωt) + Ab(t)e
i(−kz−ωt) + c.c.

)
ê . (2.5.0.1)

The response of the dipole moment of a two level atom to such an applied �eld

can be assumed to be of the form

~d = µ
(
σ21e

−iωt + c.c.
)
ê . (2.5.0.2)

For this to be consistent with equation (2.3.1.6) then the slowly varying co-

herence terms σ1,2 are de�ned as

ρ21 = σ21e
−iωt

ρ12 = σ12e
iωt . (2.5.0.3)

With this taken into consideration the Maxwell-Bloch equations may be derived

in much the same manner as before.
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Figure 2.7: Simpli�ed Counter-Propagating Cavity Structure Diagram

2.5.1 The Maxwell-Bloch equations

2.5.1.1 Population inversion

Substituting the expression for the coherence, (2.5.0.3), and the new expression

for the �eld, (2.5.0.1), into (2.3.1.19) gives

∂D

∂t
=− γ22 (D −Deq)

+
iµ

~
(
Aa(t)e

i(kz−ωt) + Ab(t)e
i(−kz−ωt) + c.c.

)
(
σ21e

−iωt − σ12e
iωt
)
, (2.5.1.1)
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where the dot product between the terms with polarisations ê has been taken.

Multiplying out the brackets and applying the RWA so that terms with oscil-

lations of the order e±niωt (for n ≥ 2) may be neglected, the equation for the

population inversion of an atom under two optical beams takes the form

∂D

∂t
=− γ22 (D −Deq)

+
iµ

~

(
σ21

(
A∗ae

−ikz + A∗be
ikz
)
− σ12

(
Aae

ikz + Abe
−ikz)) . (2.5.1.2)

2.5.1.2 Coherences

In a similar fashion the equation for the coherence due to the two applied �elds

may be obtained by substituting the coherence expression (2.5.0.3), the expression

for the total �eld (2.5.0.1) and the de�nition of the population inversion (2.3.1.17)

into equation (2.3.1.11). By doing so, the equation

∂

∂t

(
σ21e

−iωt) =− (γ21 + iω21)
(
σ21e

−iωt)
+
i2µD

~
(
Aae

i(kz−ωt) + Abe
i(−kz−ωt) + c.c.

)
(2.5.1.3)

was obtained. The left hand side of this equation may be expanded out using the

product rule to give

∂σ21

∂t
e−iωt − iωσ21e

−iωt

=− (γ21 + iω21)σ21e
−iωt

+
i2µD

~
(
Aae

i(kz−ωt) + Abe
i(−kz−ωt) + c.c.

)
. (2.5.1.4)

The above equation can be rearranging so that the term −iωσ21e
−iωt is moved

to the right and subsumed into the term ∆a = ω − ω21. By then multiplying

through by eiωt and applying the RWA as before, the equation for the slowly

varying coherence variable, σ12 becomes
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∂σ21

∂t
= −(γ21 − i∆a)σ21 +

i2µD

~
(
Aae

ikz + Abe
−ikz) (2.5.1.5)

2.5.1.3 Optical �elds

The equation for the evolution of the �eld in the cavity is still given by the wave

equation (2.4.1.1), though using the new expression for the total �eld (2.5.0.1)

and (2.5.0.3) produces a more complex result than previously,

∂2 ~E

∂t2
=

[(
∂2Aa
∂t2

− 2iω
∂Aa
∂t
− ω2Aa

)
ei(kz−ωt)

(
∂2Ab
∂t2

− 2iω
∂Ab
∂t
− ω2Ab

)
ei(−kz−ωt) + c.c.

]
ê . (2.5.1.6)

As was assumed in the case of a single beam, any spatial variations in Aa,b or

their complex conjugates are negligible and thus may be described by the cavity

mode rather than by terms in the wave equation. As was also stated previously,

the only evolution of the �eld which is of concern is that which takes place in the

z direction, thus the simpli�cation of ∇2 ≈ ∂2

∂z2
gives the spatial derivative of the

�eld to be

∂2 ~E

∂z2
=
(
−k2Aae

i(kz−ωt) − k2Abe
i(−kz−ωt) + c.c.

)
ê . (2.5.1.7)

By substituting the two derivative expressions (2.5.1.6) and (2.5.1.7) into the

wave equation, (2.4.1.1), the following is produced.

(
−k2Aae

i(kz−ωt) − k2Abe
i(−kz−ωt) + c.c.

)
ê

− 1

c2

[(
∂2Aa
∂t2

− 2iω
∂Aa
∂t
− ω2Aa

)
ei(kz−ωt)

(
∂2Ab
∂t2

− 2iω
∂Ab
∂t
− ω2Ab

)
ei(−kz−ωt) + c.c.

]
ê

=
1

ε0c2

∂2 ~P

∂t2
(2.5.1.8)
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As the terms −k2A and −ω2

c2
A cancel due to the dispersion relation, the terms

remaining after subsequent application of the SVEA are

(
2iω

c2

∂Aa
∂t

ei(kz−ωt) +
2iω

c2

∂Ab
∂t

ei(−kz−ωt) + c.c.

)
ê =

1

ε0c2

∂2 ~P

∂t2
. (2.5.1.9)

As for the single evolving �eld case, the right hand side of the wave equation may

be expanded as

1

ε0c2

∂2 ~P

∂t2
=

1

ε0c2

∂2

∂t2

∑
j

djδ(r − rj(t))

=
1

ε0c2

∑
j

∂2dj
∂t2

δ(r − rj(t)) , (2.5.1.10)

into which may be substituted the expression for the dipole moment, ~d = µ (σ21e
−iωt + c.c) ê.

When the derivative is taken and the SVEA subsequently applied, the wave equa-

tion takes the form

(
2iω

c2

∂Aa
∂t

ei(kz−ωt) +
2iω

c2

∂Ab
∂t

ei(−kz−ωt) + c.c.

)
ê

=
1

ε0c2

∑
j

µ
(
−ω2σ21e

−iωt − ω2σ12e
iωt
)
ê δ(r − rj(t)) . (2.5.1.11)

By taking the dot product of both sides with ê, collecting terms and cancelling

down where appropriate, the equation is reduced to

(
∂Aa
∂t

ei(kz−ωt) +
∂Ab
∂t

ei(−kz−ωt) − c.c.

)
=
iωµ

2ε0

∑
j

(
σ21e

−iωt + σ12e
iωt
)
δ(r − rj(t)) . (2.5.1.12)

In this form the evolution of any one individual �eld may not be easily de-

termined, so the equation must be split in two, one equation for each �eld. Mul-
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tiplying through equation (2.5.1.12) by ei(−kz+ωt) and applying the RWA results

produces

(
∂Aa
∂t

+
∂Ab
∂t

e−2ikz

)
=
iωµ

2ε0

∑
j

(
σ21e

−ikz) δ(r − rj(t)) . (2.5.1.13)

Once again the application of the rotating wave approximation has allowed

terms which varied as e±niωt for n ≥ 2 to be considered to average to zero. Inte-

grating this equation over the cavity area A and the cavity length L eliminates

the terms on the left hand side containing e±2ikz and applies the Dirac delta

function on the right hand side.

∂Aa
∂t

=
iωµ

2ε0

1

A L

∑
j

(
σ21e

−ikzj
)

(2.5.1.14)

By multiplying the right hand side by N
N
, substituting for the atomic density

n =
N

A L
(2.5.1.15)

and de�ning the average

1

N

N∑
j

(· · · ) =< · · · > , (2.5.1.16)

and lastly adding detuning, loss and pumping terms as derived for the one �eld

case, then equation (2.5.1.14) takes the form

∂Aa
∂t

=
iωµn

2ε0

〈
σ21e

−ikzj
〉

+ (iδc − κ)Aa + κAeqa , (2.5.1.17)

i.e. the equation describing the evolution of the optical probe beam. By mul-

tiplying equation (2.5.1.12) instead by ei(kz+ωt) and following a similar series of
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steps, the equation for the evolution of the optical pump beam is found to be

∂Ab
∂t

=
iωµn

2ε0

〈
σ21e

ikzj
〉

+ (iδc − κ)Ab + κAeqb . (2.5.1.18)

2.5.1.4 Optical force acting on each atom

The rate of change of momentum, i.e. the force, experienced by an atom as a

result of the optical �elds incident upon it is given simply by

∂pj
∂t

= Fzj = ~dj ·
∂ ~E

∂z
. (2.5.1.19)

By substituting the term for the total �eld, (2.5.0.1) and the term for the jth

atoms dipole moment, (2.5.0.2) into the above and taking the derivative, the

equation becomes

∂pj
∂t

=µ
(
σ21e

−iωt + σ12e
iωt
)
ê

·
(
ikAae

i(kz−ωt) − ikAbei(−kz−ωt) + c.c.
)
ê . (2.5.1.20)

Upon taking the dot product and applying the RWA, the equation for the force

experienced by the jth atom is shown to be

∂pj
∂t

= ikµ
(
σ12

(
Aae

ikz − Abe−ikz
)
− σ21

(
A∗ae

−ikz − A∗beikz
) )

(2.5.1.21)

2.5.1.5 Evolution of atomic position

The rate of change of position for each atom is simply the velocity at which it is

travelling, or rather its momentum divided by its mass

∂zj
∂t

= νzj

=
pj
m

(2.5.1.22)
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2.5.2 Scaled Maxwell-Bloch equations

Equations (2.5.1.2), (2.5.1.5), (2.5.1.17), (2.5.1.18), (2.5.1.21) and (2.5.1.19) form

the Maxwell-Bloch equations for a cold atomic gas interacting with two counter-

propagating optical �elds. As was the case for stationary atoms, these equations

can be numerically solved in their current form, however it is convenient to utilize

the scaling terms to rewrite the Maxwell-Bloch equations in a dimensionless scaled

form. The dimensionless scaling terms

p̄j =
pj
~kρ

(2.5.2.1)

Āb = −i
√

2ε0
n~ωρ

Aa,b (2.5.2.2)

θ = 2kz (2.5.2.3)

are added to those previously de�ned in equations (2.3.1.28) - (2.3.1.33), (2.4.1.20),

and (2.4.1.21).
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When scaled, equations (2.5.1.2), (2.5.1.5), (2.5.1.17), (2.5.1.18), (2.5.1.21) &

(2.5.1.22) take the form

∂D

∂t
= −Γ22 (D −Deq)+ ρ

(
σ21

(
Ā∗ae

−i θ
2 + Ā∗be

i θ
2

)
+ σ12

(
Āae

i θ
2 + Ābe

−i θ
2

))
(2.5.2.4)

∂σ21

∂τ
= −(Γ21 − i∆̄)σ21 − 2ρD

(
Āae

i θ
2 + Ābe

−i θ
2

)
(2.5.2.5)

∂Āa
∂τ

=
〈
σ21e

−i
θj
2

〉
+ (iδ̄c − κ̄)Āa + κ̄Āeqa (2.5.2.6)

∂Āb
∂τ

=
〈
σ21e

i
θj
2

〉
+ (iδ̄c − κ̄)Ab + κ̄Aeqb (2.5.2.7)

∂p̄j
∂τ

= −
(
σ12

(
Āae

i
θj
2 − Ābe−i

θj
2

)
+ σ21

(
Ā∗ae

−i
θj
2 − Ā∗bei

θj
2

))
(2.5.2.8)

∂θj
∂τ

= p̄j (2.5.2.9)
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2.5.3 Collective atomic recoil lasing

With the Maxwell-Bloch equations in a scaled notation it is now possible to

investigate CARL by solving equations (2.5.2.4), (2.5.2.5), (2.5.2.6), (2.5.2.7),

(2.5.2.8) and (2.5.2.9).

On inspection of equations (2.5.2.4) and (2.5.2.5) in particular, it can be seen

that when the pump intensity is large, the value of the coherence increases. When

the coherence grows, the population inversion moves from its initial ground state

value of 1/2 towards zero. The growth of the excited state population and thus

the decrease of the population inversion is troublesome for two reasons. Firstly,

population in the excited state leads to an increase in spontaneous emission and

thus heating of the atomic sample. Secondly, the optical force responsible for the

atomic bunching is dependent upon the coherence, which is in turn dependent

upon the value of the population inversion. As the population inversion tends

towards zero, so too will the coherence and thus the bunching force.

These two factors present good reason for operating CARL with parameter

choices which result in negligible growth of the excited state population. To that

end it is useful to obtain an expression for the value of pump �eld amplitude at

which a given "saturation" value of the population inversion could be expected.

2.5.3.1 Pump beam saturation value

An equation for the saturation pump amplitude can be obtained by solving the

equations for D and σ21 in the idealised situation where γ21 = γ22 = 0, Āa = 0

and
∂(Ābe−ikz)

∂τ
= 0. In this idealized state, equations (2.5.2.4) and (2.5.2.5) take

the form

∂D

∂τ
= ρ (σ21F

∗ + σ12F ) (2.5.3.1)

∂σ21

∂τ
= i∆̄aσ21 − 2ρDF (2.5.3.2)

where F = Ābe
−ikz.
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Di�erentiating the equation for the population di�erence, (2.5.3.1), produces

∂2D

∂τ 2
= ρ

(
∂σ21

∂τ
F ∗ +

∂σ12

∂τ
F

)
= ρ

(
i∆̄a(σ21F

∗ − σ12F )− 4ρD|F |2
)
, (2.5.3.3)

then when it is di�erentiated a second time it gives

∂3D

∂τ 3
= ρ

(
i∆̄a

(
∂σ21

∂τ
F ∗ − ∂σ12

∂τ
F

)
− 4ρ

∂D

∂τ
|F |2

)
= −∆̄2

a (ρ (σ21F
∗ + σ12F ))− 4ρ2∂D

∂τ
|F |2

= −
(
∆̄2
a + 4ρ2|F |2

) ∂D
∂τ

. (2.5.3.4)

Looking for solutions to the above equation of the form D ∝ eλτ gives

λ3 = −
(
∆̄2
a + 4ρ2|F |2

)
λ . (2.5.3.5)

It is easy to see then that λ = 0 or λ = ±i
√

∆̄2
a + 4ρ2|F |2. Using these to solve

for an equation for D

D = Ae0τ +Bcos(ωrτ) + Csin(ωrτ) , (2.5.3.6)

where ωr =
√

∆̄2
a + 4ρ2|F |2. It follows that at τ = 0 the above expression is

D|τ=0 = A+Bcos(0) + Csin(0) , (2.5.3.7)

so then

A = D0 −B . (2.5.3.8)
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By di�erentiating (2.5.3.6), the equation takes the form

∂D

∂τ
|τ=0 = −ωrBsin(0) + ωrCcos(0) . (2.5.3.9)

However, as the initial coherence is considered to be zero, σ21|τ=0 = 0, from

(2.5.3.1) it follows that ∂D
∂τ
|τ=0 = 0. Using that value in the above expression it

becomes clear that C = 0. Di�erentiating (2.5.3.6) a second time gives

∂2D

∂τ 2
|τ=0 = −ω2

rBcos(0) . (2.5.3.10)

From equation (2.5.3.3), using σ21|τ=0 = 0 it follows that

∂2D

∂τ 2
|τ=0 = −4ρ2|F |2D0 (2.5.3.11)

By equating (2.5.3.10) and (2.5.3.10) the value for B is therefore

B =
4ρ2|F |2D0

ω2
r

. (2.5.3.12)

Collating the values for A and B in (2.5.3.6) gives

D = D0 −
4ρ2|F |2D0

ω2
r

+
4ρ2|F |2D0

ω2
r

cos(ωrτ) (2.5.3.13)

By averaging out in τ the term cos(ωrτ) disappears, so in substituting for ωr in

the above an expression is obtained for the value of the population as a function

of the �eld, namely

D = D0

[
1− 4ρ2|F |2

∆̄2
a + 4ρ2|F |2

]
(2.5.3.14)
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Setting D0 = 1
2
and de�ning the "saturation" population inversion value as D = 1

4

then

1

4
=

1

2

[
1− 4ρ2|F |2

∆̄2
a + 4ρ2|F |2

]
(2.5.3.15)

Rearranging the above for the pump �eld, remembering that F = Ābe
−ikz,

produces

|Āsatb | =
|∆a|
2|ρ|

, (2.5.3.16)

where it has been taken that although the term e−ikz may oscillate, considering

it as constant at its highest value produces a more useful expression for the

saturation value for the pump �eld. Operating with parameter choices which

result in a scaled pump �eld su�ciently lower than the corresponding saturation

pump �eld value should therefore avoid the risks associated with growth of the

excited state population.

2.5.3.2 CARL in the weak pump limit

For a system operating with ρ = 1 and ∆̄a = 10, the saturation condition in

equation (2.5.3.16) gives a value for |Āsatb |, as de�ned in (2.5.3.16), of 5. A pump

�eld amplitude of Āb = 0.4 means that the system is operating more than an

order of magnitude less than the saturation pump �eld value. Operating below

the pump saturation value in such a manner will be referred to as operating in

the weak pump limit.

Numerically solving equations (2.5.2.4), (2.5.2.5), (2.5.2.6), (2.5.2.8) and (2.5.2.9),

using the above values, produced Figures 2.8 , 2.9 and 2.10.

The computational model was run with initial values approximating condi-

tions typical for collective atomic recoil lasing. It was assumed that the atoms

were initially unexcited, so that the population inversion, D, of each atom was

1/2 at τ = 0. Furthermore the pump �eld Ab was taken to be considerably
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stronger than Aa initially, and the pump �eld was assumed to remain undepleted

throughout the time the CARL instability took to occur. Operating under those

assumptions, the equation for the evolution of the pump beam was set to zero,

ensuring that the pump amplitude remained constant throughout the length of

the run. The atoms were assumed to be evenly spread in the z direction over a

distance λ/2, the period of the optical potential formed by the counterpropagating

optical �elds. This corresponds to the position variable θ ranging from 0 → 2π,

so that the magnitude of the bunching parameter, de�ned as

|b| = |
〈
e−iθ

〉
| , (2.5.3.17)

was initially zero. As the force experienced by the atoms are periodic over the

range 0 - 2π it was taken that any atom travelling forward past θ = 2π could

be accounted for by an identical atom travelling forward past the point θ = 0.

Similarly any atom travelling backwards past θ = 0 could be accounted for by

an atom travelling backwards from the point θ = 2π. Thus the computational

model needed only simulate the region between θ = 0 and θ = 2π and could place

any atom passing these two limits at the other boundary with its momentum

unchanged. The coherence, σ21 was taken to be initially zero.

As was explained previously in Section 2.1, in a system which is capable of

experiencing the CARL instability the initially stationary atoms �rst interact

with the �eld through random scattering events. When a photon is scattered

counterpropagating with the pump beam, then a weak standing �eld emerges.

This weak standing �eld, through the action of the dipole force, resulted in the

atoms experiencing a push towards the peaks (troughs) of intensity when the �eld

was tuned below (above) atomic resonance [74].

Being the result of a standing �eld, the peaks and troughs of intensity are

periodic over λ
2
, thus the atoms bunch on the same scale. In so bunching, the

atoms form a spatial density grating and act in a manner similar to that of a

Bragg re�ector thus scattering more pump beam photons into the probe beam
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[75]. The increased number of photons in the probe beam strengthen the standing

wave, which increases the atomic bunching, resulting in a yet stronger "re�ection"

and more backscattered photons.

This e�ect can be readily observed in Figure 2.8, in which the probe beam

intensity, shown on a log scale in the uppermost graph, experienced gain as a

result of the bunching term b, also shown on a log scale in the middle graph,

increasing. In Figure 2.9 the graphs shown are phase space plots i.e. atomic

momentum against atomic position at three points during the evolution of the

CARL instability. It can be seen that atoms to the left of the bunching point

gain momentum in the positive direction and atoms on the right of the bunching

point gain momentum in the negative direction. The end result being a tendency

towards areas of highly bunched atoms with a distinct periodicity.

It is important to note that a similar e�ect exists where the atoms remain

mostly stationary and it is instead the population which varies on a λ
2
spatial

period. This is known as an electromagnetically induced grating (EIG) [76, 77].

As this e�ect exists, the average population inversion 〈D〉 has been plotted in

Figure 2.10 at the same time points as the graphs shown in Figure 2.9. It can

be seen that the scatter plots of atomic population inversion vs. atomic position

display no periodic excitation of the population. It can be safely said then that

the gain in the probe beam is the result of the CARL instability and not due to

an EIG.

Furthermore, it is important to be aware of the population di�erence experi-

enced by atoms in the system to avoid "washout" of the CARL result. From the

de�nition of D given by (2.3.1.15) it can clearly be seen that when the population

in levels 1 and 2 are equal, that D becomes 0. When D experiences a value of zero,

the equation for the coherence, σ21, given by equation (2.5.2.5), tends towards

zero. As a result, the equation for the probe �eld, Āa, equation (2.5.2.6), also

tends towards zero.

Figure 2.9 is a scatter plot which shows the momentum of each individual atom

plotted against its z-position. In this respect, the number of simulated particles

can be thought of as a sampling of the phase space. Running the simulation
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with too few particles can introduce numerical noise into the system due to the

averaging term 〈...〉 = 1
n

∑N
j=1 in equations (2.5.2.6) and (2.5.2.7), which describe

the pump and probe �eld respectively. Running the simulation with too many

particles results in runtimes which are prohibitively long. The value of N =

1000 was chosen for the number of simulated particles as it was deemed to be

su�ciently high to mitigate numerical noise without run times becoming severely

protracted.
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Figure 2.8: Evolution of the magnitude squared of the scaled probe amplitude,
|Āa|2, bunching parameter, |b|, and mean population di�erence, 〈D〉 for a case of
weak-excitation. Produced by solving equations (2.5.2.4) - (2.5.2.9). Parameters
used are ρ = 1, ∆21 = 10, Āb = 0.4, N = 1000. Top: Exponential growth of the
probe beam due to the CARL instability. Middle: Growth of atomic bunching
due to the CARL instability. Bottom: Population remains, on average, in the
ground state during the instability.
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Figure 2.9: Evolution of the momentum, pj of each atom for a case of weak-
excitation at (a)τ = 0.0(a)τ = 25.0 and (c)τ = 47.0. Parameters used and
equations solved are as in Figure 2.8. Over the course of the simulation the
particles acquire momentum, due to the dipole force, which results in bunching.
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Figure 2.10: Evolution of the population inversion Dj of each atom for a case of
weak-excitation at (a)τ = 0.0(a)τ = 25.0 and (c)τ = 47.0. Parameters used and
equations solved are as in Figure 2.8. The atoms can be seen to bunch as time
progresses, however each atom remains in the ground state due to the low pump
intensity.
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2.5.3.3 The FEL Limit

It may be shown that, for carefully selected parameter values and through the

use of dimensionless scaling terms, the CARL equations take on a form similar

to those of a Free Electron Laser [37, 78].

In the limit in which |Ab|2 � |Asat
b |2, each atom experiences only a weak

internal excitation and the population remains almost exclusively in the ground

state |1〉 i.e. D → 1
2
. In this limit the coherence may be taken to act as a

parameter, rather than a variable. With the pump �eld Ab taken as undepleted

with reference to the much weaker probe beam Aa and thus taken as constant,

the three remaining unscaled equations governing the system take the form

∂zj
∂t

=
pj
m

(2.5.3.18)

∂pj
∂t

= ikµ
(
σ12

(
Aae

ikz − Abe−ikz
)
− σ21

(
A∗ae

−ikz − A∗beikz
))

(2.5.3.19)

∂Aa
∂t

=
iωµn

2ε0

〈
σ21e

−ikzj
〉
− κAa , (2.5.3.20)

where the �eld has been assumed to be su�cient well tuned to the cavity such

that the cavity detuning term may be neglected, δc ≈ 0. Furthermore, the probe

beam is not pumped so Aeqa = 0. Following a process similar to [78], equations

(2.5.3.18) - (2.5.3.20), when written in terms of the scaling variables:

θ = 2kz (2.5.3.21)

p̄ =
p

~kρ
(2.5.3.22)

τ = ωrρt (2.5.3.23)

Ā = iAa

√
2ε0
n~ωρ

(2.5.3.24)

ωr =
2~k2

m
(2.5.3.25)

ρ3 =
ωµ4nA2

b

2~3ε0∆2
aωr

(2.5.3.26)
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become the CARL equations in the so-called Free-Electron-Laser (FEL) limit

[79]:

dθj
dτ

= p̄j (2.5.3.27)

dp̄j
dτ

= −
(
Āeiθj + c.c.

)
(2.5.3.28)

dā

dτ
=

〈
e−iθ

〉
− κ̄Ā . (2.5.3.29)

It has been assumed in the above that the system is operating in the far detuned

limit, such that ∆a >> γ21). In the scaling terms, θ is the scaled position variable,

p̄ is the scaled momentum variable, Ā is the scaled probe �eld variable, τ is the

dimensionless time coordinate, κ̄ is the scaled cavity decay rate, ωr is the recoil

frequency, and lastly ρ is the CARL scaling parameter.

It has been shown in e.g. [37, 80, 79] that equations (2.5.3.27) - (2.5.3.29)

display the collective instability described in section 2.5.3.2 in which the initially

homogeneous distribution of atomic positions is unstable and the resulting insta-

bility involves exponential growth of both the probe �eld intensity (|Ā|2) and the

previously mentioned bunching parameter |b| = |
〈
e−iθ

〉
|, sometimes referred to

as the density modulation amplitude or spatial order parameter.

A collective atomic recoil laser is a system of cold, neutral atoms illuminated

by a pump beam. A free electron laser is a completely distinct and separate

physical system in which a relativistic beam of electrons moves through a magne-

tostatic undulator. Given the di�erence between the two systems it is interesting

that they both display similar types of self-organising instability when interacting

with optical �elds.
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2.5.3.4 Experimental Setup

As was stated in Section 2.1, in 2003 Kruse et al. [4] produced the �rst unam-

biguous experimental proof of the CARL instability. A simple diagram of the

experimental setup used in [4] can be seen in Figure 2.11.

Figure 2.11: Diagram of the experimental setup of Kruse et al. [4]

The experiment consisted of a titanium-sapphire laser (operating at λ =

797nm) split to form a pump and probe mode, α+ & α− respectively, within

a high Q ring cavity. The pump and probe modes from [4] correspond closely to

the pump and probe beams, αb & αa respectively, used in this thesis. The light

power exiting the cavity was measured via the �elds leaking through one of the

cavity mirrors. The power of the light �eld exciting the cavity was related to the

intracavity power by the expression P
(out)
± = TP

(cav)
± = T~ωδ|α±|2.

A frequency di�erence between the two cavity modes ∆ω ≡ ω+ − ω− was

taken to correspond to a shift in the position of the standing wave node within

the cavity. Such a propagation of the standing waves nodes was translated into

a variation in the amplitude of the interference signal Pbeat = T~ωδ|α+ + α−|2

exiting the cavity. The beat signal was used to monitor the phase dynamics of

the pump and probe cavity modes while time-of-�ight absorption imaging was

used to monitor the density distribution of the atomic sample.

The system was operated initially with no atoms in the cavity. The shutter,

shown in Figure 2.11, was used to quickly "switch o�" the probe beam (α−).

When the probe beam was switched o� the beat signal dropped to T~ωδ|α+|2
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within 10µs, a time attributed to the �nite closing speed of the shutter.

When atoms were then loaded into the cavity and the experiment repeated,

oscillations appeared on the beat signal shortly after the switching o� of the probe

beam. While the amplitude of the beat signal oscillations dampened rapidly, they

continued for a time far in excess of the cavity decay time. Time-of-�ight imaging

of the atomic sample showed that the atomic cloud's center-of-mass was shifted

along the propagation direction of the standing wave.

The experiment was performed again with the �nesse of the cavity severely

decreased by rotating the polarization of the uncoupled lasers from s to p polar-

ization. In doing so it was veri�ed that the oscillations do not occur in the low

�nesse limit.

A number of deductions were made based on the above observations. First,

the probe mode was fed with light in the presence of the atomic sample, resulting

in a standing wave with the pump mode. Second, as the oscillations in the beat

signal are due to the relative phase shift of the pump and probe modes, the

standing wave was displaced and accelerated by the presence of atoms. Third,

the amplitude of the beat signal oscillations reduces in time, fading out after 1.5

ms. And fourth, the atoms were displaced by the moving standing wave.

The above deductions and observations were explained by Kruse et al. as

being indications of Collective Atomic Recoil Lasing. The system starts with

both pump and probe modes acting upon the atoms, thus the atoms are initially

bunched at the anti-nodes of the standing wave cavity �eld. When the probe �eld

is switched o� the atoms which take part in the CARL process scatter photons

from the pump mode into the probe mode. In doing so their momentum is shifted

by mv, in direction of the pump. The di�erence in frequency between the two

modes is then equal to twice the Doppler shift, ∆ω = 2kv.

This picture agrees with the experimental observations above where the in-

creasingly Doppler detuned probe beam experiences a decrease in its intensity as

its frequency shifts out of cavity resonance by an amount corresponding to ∆ω.

Kruse et al. then go on to expand the experiment to include a friction force (in

the form of optical molasses). This friction force acts upon the atoms to prevent
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them being accelerated and frequency shifted from resonance with the pump and

probe modes due to the Doppler shift.

The inclusion of the optical molasses has two noteworthy e�ects. First, it

results in the beat signal reaching a steady operating frequency ranging between

100 and 170 kHz. This corresponds to an atomic velocity ranging between 7 and

13 cm/s. The beat signal persist for times longer than 100 ms, with this time

mainly limited by the �nite size of the molasses region.

The second e�ect to note is that, as described by von. Cube et al in [38], the

optical molasses creates a threshold value for the optical intensity. If the optical

modes have intensities below this threshold then the optical dipole force which is

responsible for the atomic bunching will be too small to overcome the debunching

e�ect of the �nite temperature of the atomic cloud. Without the dipole force

forming periodic atomic bunching within the sample, the CARL process cannot

take place.

76



Chapter 3

Three level atoms: ladder

con�guration

The behaviour of the CARL instability in two-level atoms has been well docu-

mented [80, 37, 79, 78, 69]. However, the behaviour of the CARL instability in

atoms with three energy levels has not been quite so thoroughly researched.

In this chapter equations are derived which model three level atoms in a ladder

con�guration. These equations are then used to model two-photon collective

atomic recoil lasing and two-photon super�uorescence including recoil.
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Figure 3.1: Simpli�ed Three Level "Ladder" Energy Level Diagram
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3.1 Maxwell-Bloch equations for three-level atoms

in ladder con�guration

With two counterpropagating �elds of degenerate frequency, a pump and a probe

beam, the substitution for the �eld term ~E can be written as

~E =
(
Aa(t)e

i(kz−ωt) + Ab(t)e
i(−kz−ωt) + c.c.

)
ê . (3.1.0.1)

The response of each atom's dipole moment to the above �eld would be expected,

therefore, to be of the form

~d = µ
(
σei(kz−ωt) + σei(−kz−ωt) + c.c.

)
ê . (3.1.0.2)

The dipole moment for the three level system, as it was for the two level system

in equation (2.3.1.4), is given by

~d = Trace(~pρ)

= Trace

(
~p11 ~p12 ~p13

~p21 ~p22 ~p23

~p31 ~p32 ~p33



ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33


)

= ~p11ρ11 + ~p12ρ21 + ~p13ρ31 + ~p21ρ12 + ~p22ρ22 + ~p23ρ32 + ~p31ρ13 + ~p23ρ32 + ~p33ρ33

(3.1.0.3)

As was the case with a two level atom, the dipole matrix elements with match-

ing indices are always zero as transitions may not occur between the same level,

so ~pjj = 0. Furthermore, it is assumed that direct transitions between the ground

state and the highest energy level are also forbidden, i.e. p31 = p13 = 0. And

it has already been assumed that ρ22 = 0. The dipole moment for a three level

atom can therefore be written as
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~d =
(
~p12ρ21 + ~p21ρ12 + ~p32ρ23 + ~p23ρ32

)
=
(
p12ρ21 + p21ρ12 + p32ρ23 + p23ρ32

)
ê (3.1.0.4)

It is assumed that the �elds are far detuned, i.e. |∆a| = |(ω − ω21)| > 0 &

|∆b| = |(ω − ω32)| > 0, so that the population of the intermediate level, ρ22, can

be taken to be approximately zero. By making such an assumption, an e�ective

two level population di�erence, D, may be de�ned between the remaining levels

in the three level ladder setup. De�ning

D =
1

2
(ρ11 − ρ33) (3.1.0.5)

and remembering that as the system is closed, i.e. ρ11 + ρ33 = 1, the population

terms may be replaced by the following terms involving the e�ective population

inversion

ρ11 =
1

2
+D, ρ33 =

1

2
−D . (3.1.0.6)

As in the case of two level atoms, the equations governing the evolution of the

coherence and population terms for each atom may be obtained from equation

(2.2.4.14). Substituting for j, k = 1, 2, 3, j 6= k in (2.2.4.14) gives the equations

for the three coherence terms ρ21, ρ32 and ρ31 for a three level atom.

3.1.1 Single photon coherences

Using j = 2, k = 1 in (2.2.4.14) gives
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∂ρ21

∂t
= −(γ21 + iω21)ρ21+

i ~E

~
· (~p21ρ11 + ~p22ρ21 + ~p23ρ31)

−i
~E

~
· (~p11ρ21 + ~p21ρ22 + ~p31ρ23) . (3.1.1.1)

Remembering that ~pjj = 0, p31 = p13 = 0 and ρ22 = 0, a number of the terms in

the above equation vanish. As was also the case in the two level CARL derivation,

the �eld and dipole matrix elements are assumed for simplicity to have parallel

polarizations, such that

~p21 = ~p12 = µaê (3.1.1.2)

~p32 = ~p23 = µbê . (3.1.1.3)

Grouping the terms in equation (3.1.1.1) which remain after applying the above

substitutions and using equation (3.1.0.1) to substitute for the �eld term ~E gives

∂ρ21

∂t
=− (γ21 + iω21)ρ21

+
i

~
(
Aae

i(kz−ωt) + Abe
i(−kz−ωt) + c.c.

)
ê · (µaρ11 + µbρ31) ê . (3.1.1.4)

When equations (3.1.0.4) and (3.1.0.2) are compared, consistancy requires that

the coherence terms may be expressed as

ρ21 = σ21e
−iωt (3.1.1.5)

ρ32 = σ32e
−iωt (3.1.1.6)

ρ31 = σ31e
−2iωt , (3.1.1.7)

i.e. the coherence may be expressed as a slowly evolving amplitude multiplied

by a oscillating term. Substituting the above expressions for the coherences,

substituting for the e�ective population inversion, (3.1.0.6), and taking the dot
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product produces

∂

∂t

(
σ21e

−iωt) =− (γ21 + iω21)
(
σ21e

−iωt)
+
i

~
(
Aae

i(kz−ωt) + Abe
i(−kz−ωt) + c.c.

)(
µa

(
1

2
+D

)
+ µbσ31e

−2iωt

)
.

(3.1.1.8)

So

∂σ21

∂t
=− (γ21 − i (ω − ω21))σ21

+
i

~
(
Aae

i(kz−ωt) + Abe
i(−kz−ωt) + c.c.

)(
µa

(
1

2
+D

)
eiωt + µbσ31e

−iωt
)
.

(3.1.1.9)

Substituting ∆a = ω − ω21 and applying the RWA gives

∂σ21

∂t
=− (γ21 − i∆a)σ21

+
i

~

(
µa

(
1

2
+D

)(
Aae

ikz + Abe
−ikz)+ µbσ31

(
A∗ae

−ikz + A∗be
ikz
))

.

(3.1.1.10)

In a similar manner to the above, the equations for the other single photon

coherence may be shown to be

∂σ32

∂t
=− (γ32 − i∆b)σ32

− i

~

(
µb

(
1

2
−D

)(
Aae

ikz + Abe
−ikz)+ µaσ31

(
A∗ae

−ikz + A∗be
ikz
))

(3.1.1.11)

where, as was stated before, ∆b = ω−ω32. As the �elds are assumed far-detuned

from one-photon resonance, it is assumed that the coherence terms between the
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intermediate level and the excited and ground states may be adiabatically elimi-

nated. Taking equation (3.1.1.10) and adiabatically eliminating, so that ∂σ21
∂t

= 0,

then

σ21 =
i

~(γ21 − i∆a)

(
µa

(
1

2
+D

)(
Aae

ikz + Abe
−ikz)+ µbσ31

(
A∗ae

−ikz + A∗be
ikz
))

.

(3.1.1.12)

The assumption is made that the system operates with single photon detunings

much larger than the single photon decay rates, ∆a,b >> γ21,32. Operating in

such a regime allows the single photon decay rate terms to be neglected, leaving

the above equation with the form

σ21 = − 1

~∆a

(
µa

(
1

2
+D

)(
Aae

ikz + Abe
−ikz)+ µbσ31

(
A∗ae

−ikz + A∗be
ikz
))

.

(3.1.1.13)

In a similar manner equation (3.1.1.11) may be adiabatically eliminated to

give

σ32 =
1

~∆b

(
µb

(
1

2
−D

)(
Aae

ikz + Abe
−ikz)+ µaσ31

(
A∗ae

−ikz + A∗be
ikz
))

.

(3.1.1.14)

The two photon detuning term is de�ned as
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∆ab = ∆a + ∆b

= (ω − ω21) + (ω − ω32)

= 2ω − (ω2 − ω1)− (ω3 − ω2)

= 2ω − (ω3 − ω1)

= 2ω − ω31 . (3.1.1.15)

It can be seen then that if the one photon detunings are much larger than the two

photon detuning, ∆a,∆a >> ∆ab, then (3.1.1.15) results in the approximation

∆b ≈ −∆a. Using this in the above equation for the steady state value of σ32

gives

σ32 = − 1

~∆a

(
µb

(
1

2
−D

)(
Aae

ikz + Abe
−ikz)+ µaσ31

(
A∗ae

−ikz + A∗be
ikz
))

.

(3.1.1.16)

3.1.2 Two-photon coherence

By following the same procedure as for the one photon coherence, σ21, the equa-

tion for the coherence between the ground state, |1〉, and the uppermost state,

|3〉, σ31 can be shown to be

∂σ31

∂t
=− (γ31 − i∆ab)σ31

+
i

~
(
µbσ21

(
Aae

ikz + Abe
−ikz)− µaσ32

(
Aae

ikz + Abe
−ikz)) . (3.1.2.1)

By substituting the equations for the single photon coherences, (3.1.1.13) &

(3.1.1.16), into the above expression, the expression may be written as
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∂σ31

∂t
=− (γ31 − i∆ab)σ31

+
i (µ2

a − µ2
b)

~2∆a

σ31

(
Aae

2ikz + Ab
) (
A∗ae

−2ikz + A∗b
)

− i2µaµb
~2∆a

D
(
Aae

2ikz + Ab
) (
Aa + Abe

−2ikz
)

(3.1.2.2)

3.1.3 Population terms

By following the same derivation procedure as that which produced equations

(3.1.1.10), (3.1.1.11) and (3.1.2.1) for the coherence variables, the equations for

the populations of the excited and ground states of the three level system may

be found to be

∂ρ11

∂t
= γ33

(
1

2
−D

)
+
iµa
~
(
σ21

(
A∗ae

−ikz + A∗be
ikz
)
− σ12

(
Aae

ikz + Abe
−ikz))
(3.1.3.1)

∂ρ33

∂t
= −γ33

(
1

2
−D

)
+
iµb
~
(
σ23

(
Aae

ikz + Abe
−ikz)− σ32

(
A∗ae

−ikz + A∗be
ikz
))
,

(3.1.3.2)

where it has been assumed that as the population for ρ22 is negligible, all popu-

lation from level |3〉 decays to level |1〉 and thus the term γ33

(
1
2
−D

)
has been

added to the equation for the population of the ground state. From (3.1.0.5) it

can be seen that

∂ρ11

∂t
− ∂ρ33

∂t
=

∂

∂t
(ρ11 − ρ33) = 2

∂D

∂t
. (3.1.3.3)

Substituting (3.1.3.1) and (3.1.3.2) into the above gives
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2
∂D

∂t
=

(
γ33

(
1

2
−D

)
+
iµa
~
(
σ21

(
A∗ae

−ikz + A∗be
ikz
)
− σ12

(
Aae

ikz + Abe
−ikz)))

−
(
−γ33

(
1

2
−D

)
+
iµb
~
(
σ23

(
Aae

ikz + Abe
−ikz)− σ32

(
A∗ae

−ikz + A∗be
ikz
)))

.

(3.1.3.4)

Substituting for the one-photon coherences σ21 and σ32 using equation (3.1.1.13)

and (3.1.1.16) respectively , then

∂D

∂t
= −γ33 (D −Deq) +

iµaµb
~2∆a

(
σ13

(
Aa + Abe

−2ikz
) (
Aae

2ikz + Ab
)

−σ31

(
A∗a + A∗be

2ikz
) (
A∗ae

−2ikz + A∗b
) )

.

(3.1.3.5)

3.1.4 Force equation

As for the two level atom case, the dipole force experienced by an atom is given by

(2.5.1.19). Substituting (3.1.0.1) for the �eld and (3.1.0.4) for the dipole moment

gives

∂pj
∂t

=~dj ·
∂ ~E

∂z

= (p12ρ21 + p21ρ12 + p32ρ23 + p23ρ32) ê ·
∂

∂z

(
Aa(t)e

i(kz−ωt) + Ab(t)e
i(−kz−ωt) + c.c.

)
ê . (3.1.4.1)

Substituting for the dipole matrix elements (3.1.1.2) and (3.1.1.3) using equa-

tion (3.1.1.5), along with equation (3.1.1.5) for the coherence, the equation for

the force experienced by an atom becomes
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∂pj
∂t

=
(
µaσ21e

−iωt + µaσ12e
iωt + µbσ23e

iωt + µbσ32e
−iωt)

(
ikAae

i(kz−ωt) − ikAbei(−kz−ωt) − ikA∗aei(−kz+ωt) + ikA∗be
i(kz+ωt)

)
.

(3.1.4.2)

Substituting for the one-photon coherence variables, σ21 and σ32 using equa-

tion (3.1.1.13) and (3.1.1.16), then

∂pj
∂t

=
i2kµaµb
~∆a

[
σ31

(
A∗a

2e−2ikz − A∗b
2e2ikz

)
− σ13

(
A2
ae

2ikz − A2
be
−2ikz

)]
+

i2k

~∆a

(
A∗aAbe

−2ikz − AaA∗be2ikz
) [1

2

(
µ2
a + µ2

b

)
+D

(
µ2
a − µ2

b

)]
.

(3.1.4.3)

3.1.5 Position equation

The equation for the position of the jth atom is given again by simply

∂zj
∂t

=
pj
m
. (3.1.5.1)

3.1.6 Field equations

The equations for the �eld amplitudes can be derived once again from the wave

equation (2.4.1.1) by substituting for the polarisation using equations (3.1.0.1)

& (3.1.0.4). Substituting equation (3.1.0.1) into the left hand side of the wave

equation produces the same result as for the two level case, namely

∇2 ~E − 1

c2

∂2 ~E

∂t2
=

(
2iω

c2

∂Aa
∂t

ei(kz−ωt) +
2iω

c2

∂Ab
∂t

ei(−kz−ωt) + c.c.

)
ê . (3.1.6.1)

Substituting equation (3.1.0.4) into the right hand side of the wave equation,

using equations (3.1.1.2), (3.1.1.3), (3.1.1.5), (3.1.1.6) and (3.1.1.7), produces
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∂2 ~P

∂t2
=

∂2

∂t2

(
n∑
j

~djδ(r − rj(t))

)

=
n∑
j

∂2~dj
∂t2

δ(r − rj(t))

=
n∑
j

∂2

∂t2

(
µaσ21e

−iωt + µaσ32e
−iωt + c.c

)
ê δ(r − rj(t)) . (3.1.6.2)

Expanding the term
∂2 ~dj
∂t2

gives

∂2~dj
∂t2

=
∂2

∂t2

(
µaσ21e

−iωt + µaσ32e
−iωt + c.c

)
ê

=
∂

∂t

(
µa

(
∂σ21

∂t
− iωσ21

)
e−iωt + µb

(
∂σ32

∂t
− iωσ32

)
e−iωt + c.c

)
ê

=
(
µa

(
∂2σ21

∂t2
− 2iω

∂σ21

∂t
− ω2σ21

)
e−iωt

+ µb

(
∂2σ32

∂t2
− 2iω

∂σ32

∂t
− ω2σ32

)
e−iωt + c.c

)
ê . (3.1.6.3)

Applying the SVEA to the above and substituting into the right hand side of the

wave equation gives

(
2iω

c2

∂Aa
∂t

ei(kz−ωt) +
2iω

c2

∂Ab
∂t

ei(−kz−ωt) + c.c.

)
ê

=
1

ε0c2

n∑
j

(
−µaω2σ21e

−iωt − µbω2σ32e
−iωt + c.c

)
ê δ(r − rj(t)) . (3.1.6.4)

From the above, an equation for the temporal evolution of Aa can be acquired

by �rst multiplying through by ei(−kz+ωt) and applying the RWA to produce
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(
2iω

c2

∂Aa
∂t

+
2iω

c2

∂Ab
∂t

e−2ikz

)
ê

=
1

ε0c2

n∑
j

(
−µaω2σ21e

−ikz − µbω2σ32e
−ikz) ê δ(r − rj(t)) . (3.1.6.5)

Integrating the above over the cavity area A and the cavity length L, any terms

containing e±2ikz on the left hand side are averaged out and eliminated and the

Dirac delta function on the right hand side produces

A L
2iω

c2

∂Aa
∂t

ê =
1

ε0c2

n∑
j

(
−µaω2σ21e

−ikzj − µbω2σ32e
−ikzj

)
ê . (3.1.6.6)

By rearranging the constants to the right hand side and cancelling down terms

the equation becomes

∂Aa
∂t

ê =
iω

A L2ε0

n∑
j

(
µaσ21e

−ikzj + µbσ32e
−ikzj

)
ê . (3.1.6.7)

Multiplying the right hand side by N
N
, using (2.5.1.16) & (2.5.1.15) and taking

the dot product of the equation with ê the expression for the evolution of the

probe beam Aa can be rewritten as

∂Aa
∂t

=
iωn

2ε0

〈
µaσ21e

−ikzj + µbσ32e
−ikzj

〉
. (3.1.6.8)

Substituting for σ21 and σ23 using eq. (3.1.1.13) and (3.1.1.16) then
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∂Aa
∂t

=
iωn

2ε0

〈
µae

−ikzj
[
− 1

~∆a

(
µa

(
1

2
+D

)(
Aae

ikz + Abe
−ikz)

+ µbσ31

(
A∗ae

−ikz + A∗be
ikz
))]

+µbe
−ikzj

[
− 1

~∆a

(
µb

(
1

2
−D

)(
Aae

ikz + Abe
−ikz)

+ µaσ31

(
A∗ae

−ikz + A∗be
ikz
))]〉

. (3.1.6.9)

Collecting terms and adding the detuning, loss and pumping terms derived in

Section 2.5.1.3 gives the �nal form of the equation for the probe �eld amplitude

Aa,

∂Aa
∂t

=
−iωn

2~ε0∆a

〈
2µaµbσ31

(
A∗ae

−2ikz + A∗b
)

+
1

2

(
µ2
a + µ2

b

) (
Aa + Abe

−2ikz
)

+
(
µ2
a − µ2

b

)
D
(
Aa + Abe

−2ikz
) 〉

+ (iδc − κ)Aa + κAeqa .

(3.1.6.10)

In a similar manner, the equation for the amplitude of the pump beam Ab is

found to be

∂Ab
∂t

=
−iωn

2~ε0∆a

〈
2µaµbσ31

(
A∗a + A∗be

2ikz
)

+
1

2

(
µ2
a + µ2

b

) (
Aae

2ikz + Ab
)

+
(
µ2
a − µ2

b

)
D
(
Aae

2ikz + Ab
) 〉

+ (iδc − κ)Ab + κAeqb .

(3.1.6.11)
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3.1.7 Describing the AC Stark shift

The AC Stark shift terms within the three level ladder equations derived above

result from the small di�erence between the dipole matrix elements µa and µb.

Prior to scaling, it is convenient to �rst rearrange the equations to a form where

the e�ects of the AC Stark shift can be easily recognised.

The terms µa and µb appear in three con�gurations in the three level ladder

equations. Setting µa = µ and µb = µ + ∆µ, where ∆µ = µa − µb in each of the

three con�gurations gives

µaµb = µ(µ+ ∆µ) = µ2(1 +
∆µ

µ
)

µ2
a + µ2

b = µ2 + (µ+ ∆µ)2 = 2µ2 + 2µ∆µ + ∆2
µ = µ2

(
2 + 2

∆µ

µ
+

(
∆µ

µ

)2
)

µ2
a − µ2

b = µ2 − (µ+ ∆µ)2 = −2µ∆µ −∆2
µ = −µ2

(
∆µ

µ
+

(
∆µ

µ

)2
)
.

De�ning

εµ =
∆µ

µ
(3.1.7.1)

gives

µaµb = µ2(1 + εµ)

µ2
a + µ2

b = µ2
(
2 + 2εµ + ε2µ

)
µ2
a − µ2

b = −µ2
(
εµ + ε2µ

)
.

As the dipole matrix terms µa and µb are of a similar magnitude, by its very

de�nition, ∆µ < µ, so from (3.1.7.1) it must therefore be true that εµ << 1.

Likewise ε2µ << εµ. Keeping only the terms with the most signi�cant in�uence,

the AC Stark shift terms above become
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µaµb = µ2 (3.1.7.2)

µ2
a + µ2

b = 2µ2 (3.1.7.3)

µ2
a − µ2

b = −µ2εµ . (3.1.7.4)

Substituting equations (3.1.7.2) - (3.1.7.4) into equations (3.1.3.5), (3.1.2.2), (3.1.4.3),

(3.1.5.1), (3.1.6.10) & (3.1.6.11) produces the closed set of equations for three-

level atoms interacting with two optical �elds:

∂D

∂t
= −γ33 (D −Deq) +

iµ2

~2∆a

(
σ13

(
Aa + Abe

−2ikz
) (
Aae

2ikz + Ab
)

−σ31

(
A∗a + A∗be

2ikz
) (
A∗ae

−2ikz + A∗b
) )
(3.1.7.5)

∂σ31

∂t
=− (γ31 − i∆ab)σ31

− iµ2εµ
~2∆a

σ31

(
Aae

2ikz + Ab
) (
A∗ae

−2ikz + A∗b
)

− i2µ2

~2∆a

D
(
Aae

2ikz + Ab
) (
Aa + Abe

−2ikz
)

(3.1.7.6)

∂pj
∂t

=
i2kµ2

~∆a

[
σ31

(
A∗a

2e−2ikz − A∗b
2e2ikz

)
− σ13

(
A2
ae

2ikz − A2
be
−2ikz

)]
+
i2kµ2

~∆a

(
A∗aAbe

−2ikz − AaA∗be2ikz
)

(3.1.7.7)

∂zj
∂t

=
pj
m

(3.1.7.8)
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∂Aa
∂t

=
−iωµ2n

2~ε0∆a

〈
2σ31

(
A∗ae

−2ikz + A∗b
)

+
(
Aa + Abe

−2ikz
)〉

+ (iδc − κ)Aa + κAeqa

(3.1.7.9)

∂Ab
∂t

=
−iωµ2n

2~ε0∆a

〈
2σ31

(
A∗a + A∗be

2ikz
)

+
(
Aae

2ikz + Ab
)〉

+ (iδc − κ)Ab + κAeqb

(3.1.7.10)

The terms − iµ2εµ
~2∆a

σ31

(
Aae

2ikz + Ab
) (
A∗ae

−2ikz + A∗b
)
and i∆abσ31 from the equa-

tion for the coherence, equation (3.1.7.6), may be grouped together to produce

the term i
(

∆ab − µ2εµ
~2∆a

(
|Aa|2 + AaA

∗
be

2ikz + A∗aAbe
−2ikz + |Ab|2

))
σ31. In such a

form it is easy to see the the terms dependent upon the term εµ act to modify

the detuning of the �eld from atomic resonance. The AC Stark shift may then

be thought of as an intensity dependent detuning, or (when multiplied by ~) as

an intensity dependent energy shift.

3.1.8 Scaling the 3 level ladder equations

The equations derived in the above section, (3.1.7.5) - (3.1.7.10), can be rewritten

in a manner which more easily lends itself to exploring CARL with three energy

levels through use of the common [81, 44, 38, 42, 53] substitution terms

αa,b = Aa,b

√
2ε0V

~ω
(3.1.8.1)

g = µ

√
ω

2ε0~V
(3.1.8.2)

U0 =
g2

∆a

, (3.1.8.3)

where U0 is the dispersive frequency shift due to a single atom, g is the single

photon Rabi frequency and |αa,b|2 represents the number of photons in the probe

(a) or pump (b) beam.
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Substituting the scaling terms (3.1.8.1) - (3.1.8.3) into the closed set of equa-

tions for three-level atoms interacting with two optical �elds (3.1.7.5) - (3.1.7.10)

gives the scaled, two-photon CARL equations

∂D

∂t
= −γ33 (D −Deq) + iU0

(
σ13

(
αa + αbe

−2ikz
) (
αae

2ikz + αb
)

−σ31

(
α∗a + α∗be

2ikz
) (
α∗ae

−2ikz + α∗b
) )

(3.1.8.4)

∂σ31

∂t
=− (γ31 − i∆ab)σ31

− i2U0D
(
αae

2ikz + αb
) (
αa + αbe

−2ikz
)

− iU0εµσ31

(
αae

2ikz + αb
) (
α∗ae

−2ikz + α∗b
)

(3.1.8.5)

∂pj
∂t

= i2~kU0

[
σ31

(
α∗a

2e−2ikz − α∗b
2e2ikz

)
− σ13

(
α2
ae

2ikz − α2
be
−2ikz

)]
+ i2~kU0

(
α∗aαbe

−2ikz − αaα∗be2ikz
)

(3.1.8.6)

∂zj
∂t

=
pj
m

(3.1.8.7)

∂αa
∂t

= −iNU0

〈
2σ31

(
α∗ae

−2ikz + α∗b
)

+
(
αa + αbe

−2ikz
) 〉

+ (iδc − κ)αa + καeqa (3.1.8.8)
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∂αb
∂t

= −iNU0

〈
2σ31

(
α∗a + α∗be

2ikz
)

+
(
αae

2ikz + αb
) 〉

+ (iδc − κ)αb + καeqb (3.1.8.9)
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3.2 Two-photon collective atomic recoil lasing

In what follows, two regimes for two-photon CARL are investigated. A regime

of low pump intensity, referred to as the weak pump limit, and a regime of high

pump intensity, referred to as the strong pump limit. Both pumping limits are

considered for the case where the AC Stark e�ect is included and neglected. To

better highlight the e�ect being investigated, we will consider an idealised case

where there is no incoherent decay of the two-photon coherence or excited state

population, i.e. γ31 = γ33 = 0. It is also assumed that cavity losses are negligible

on the timescales considered here (κ→ 0), that the atoms are initially uniformly

distributed in space, and that the atoms are initially su�ciently cold that any

thermal dephasing occurs on timescales much longer than the development of the

instability (pj = 0 ∀ j).

3.2.1 Including the AC Stark shift

The �rst step to investigating how the two-photon CARL instability varies with

population excitation is to de�ne a reference or "saturation" pump intensity. This

can be achieved by solving the equation for the two-photon coherence, (3.1.8.4)

and the equation for the population inversion, (3.1.8.5) in the same manner as in

section (2.5.3). Solving for D in the limit where αa = 0 we obtain

D =
1

2

∆2
ab

∆2
ab + 4U2

0 |αb|4
+

2U2
0 |αb|4

∆2
ab + 4U2

0 |αb|4
cos

(√
∆2
ab + 4U2

0 |αb|4t
)
. (3.2.1.1)

By averaging over an oscillation period, this becomes

D =
1

2

∆2
ab

∆2
ab + 4U2

0 |αb|4
. (3.2.1.2)

De�ning a "saturation" pump intensity as being that for which the average

excited-state population, 〈ρ33〉, is 1/4 i.e. 〈D〉 = 1/4, we can see from the above

equation that this occurs when the pump photon number is
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|αb|2 ≡ |αb|2sat =

∣∣∣∣∆ab

2U0

∣∣∣∣ . (3.2.1.3)

3.2.1.1 Gain in the weak pump limit

A more thorough derivation of the response of the system to the pump and probe

beams is performed in Appendix A. It is shown that when the system operates

in the weak pump limit and is su�ciently detuned that ∆ab >> γ31, the expected

gain for the system is approximately

Gain =

√
3

2
3

√
2N~k2|αb|2

m

(
U2

0 +
3U3

0 |αb|2
∆ab

+
2U4

0 |αb|4
∆2
ab

)
. (3.2.1.4)

The term
3U3

0 |αb|2
∆ab

, being of an odd power of both U0 (which is proportional to
1/∆a)

and ∆ab, is positive when both the single and two photon detuning terms have

the same sign. However, for opposing signs of detuning, it should be expected

that this term would detract from the gain experienced by the system.

3.2.1.2 The weak excitation limit

We consider �rst the limit |αb|2 � |αb|2sat such that each atom experiences only

a weak internal excitation and the population remains almost exclusively in the

ground state |1〉 i.e. D → 1
2
and σ31 → 0. In this limit equations (3.1.8.4) -

(3.1.8.9) reduce to

dzj
dt

=
pj
m

(3.2.1.5)

dpj
dt

= −i2~kU0

(
αaα

∗
be

2ikzj − c.c.
)

(3.2.1.6)

dαa(t)

dt
= −iNU0

(
αa + αb

〈
e−2ikz

〉)
+ (iδc − κ)αa , (3.2.1.7)

where there is no �eld for αa injected into the system, so αeqa = 0. The above,

when written in terms of the dimensionless variables:
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θ = 2kz , p̄ =
2

ρ
p , ā =

√
2

ρN
αa ,

in a similar manner as to section 2.5.3.3, become the CARL equations originally

derived for two-level atoms [37, 80] in what is referred to as the Free-Electron-

Laser (FEL) limit [79]:

dθj
dτ

= p̄j (3.2.1.8)

dp̄j
dτ

= −
(
āeiθj + c.c.

)
(3.2.1.9)

dā

dτ
=

〈
e−iθ

〉
− κ̄ā , (3.2.1.10)

where it has been assumed that αb = −i|αb| and δc = NU0, that the dimensionless

time coordinate τ = ωrρt, that the cavity decay rate κ̄ = κ
ωrρ

, that ωr = 2~k2
m

is

the recoil frequency and lastly that the scaling parameter ρ can be de�ned as

ρ =

(
2NU2

0 |αb|4

ω2
r

)1/3

.

As was described previously, in section 2.5.3.3, equations (3.2.1.8)-(3.2.1.10)

exhibit a collective instability. The case in which the atoms are equally distributed

in the z direction proves to be unstable after spontaneous emission in a direction

counter to the pump beam produces a weak standing wave and produces a bunch-

ing force. The instability results in exponential growth of the backscattered probe

beam |ā|2 and the bunching parameter |b| = |
〈
e−iθ

〉
|.

Figures 3.2, 3.3 and 3.4 demonstrate the evolution of the system in the weak-

excitation regime. Figure 3.2 detail the evolution of the magnitude squared of

the probe photon number |αa|2, bunching parameter |b|, and average population

di�erence 〈D〉 in descending order.

From Figure 3.2 it can be seen that an exponential growth of the number

of photons in the probe beam occurs in unison with the growth of the bunching

parameter. This behaviour is indicative of a modulation in the atomic density

with spacial period λ/2 occurring within the atomic sample. The same behaviour
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in two-level systems is described as the CARL instability [37, 80, 79]. Figure 3.3

provides a clearer look at the development of this density modulation through

snapshots of the phase space (θ, p) evolving in time. The behaviour of the atomic

motion contrasts with that of the atomic population as can be seen in Figure 3.4

through its snapshots on the atomic population distribution (θ,D) evolving in

time. In the snapshots the population di�erences vary only a tiny amount from

their original values, meaning that as the system evolves temporally the popula-

tion remains almost entirely spatially uniform in the ground state.

Comparing Figure 3.2 back to Figure 2.8 from section 2.5.3.2 shows a high

degree of similarity, as would be expected as it has been shown the three level

ladder equations can be scaled to match the two level CARL equations in the

FEL limit.
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Figure 3.2: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of weak-excitation. Produced by
solving equations (3.1.8.9) - (3.1.8.4). Parameters used are U0/ωr = 5 × 10−5,
∆ab = 10, αb = 100, N = 1000, εµ = 0.1. Top: As was the case for two level
CARL, in the three level ladder system the probe beam experiences exponential
growth due to the CARL instability. Gainprobe ≈ 1. Middle: Growth of atomic
bunching due to the CARL instability. Bottom: Population remains, on average,
in the ground state throughout the evolution of the instability.
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Figure 3.3: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 21ω−1
r , (c) t = 30ω−1

r in the case of weak
excitation. Parameters used and equations solved are as in Figure 3.2. Similarly
to the case of two level CARL, the three level ladder particles acquire momentum
due to the dipole force which results in bunching.
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Figure 3.4: Snapshots of population di�erence distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 21ω−1
r , (c) t = 30ω−1

r in the case of weak
excitation. Parameters used and equations solved are as in Figure 3.2. As was
the case in the two level CARL system the atoms bunch as time progresses with
each atom remains in the ground state due to the low intensity of the pump �eld
αb.
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Figure 3.2 displays the CARL instability for the case where both the single

photon detuning ∆a (and consequently U0) and the two photon detuning ∆ab

both have positive values and the system is operating in the weak pump regime.

As both U0 and ∆ab are positive, so too is the term U0

∆ab
in equation (3.2.1.4)

in section 3.2.1.1. As the expression U0

∆ab
is also positive when both U0 and ∆ab

are negative, it is to be expected that the when the system operates with those

signs the resulting gain should closely match that of Figure 3.2. This prediction

is shown to be accurate when the comparison is made between Figures 3.2 and

3.5.

However, when only one of the two detuning terms is negative and the other

takes a positive value, the term
3U3

0 |αb|2
∆ab

in equation (3.2.1.4) takes a negative value

and acts to counter the gain expected in the system. This loss of gain is shown

to take place regardless of which detuning is negative when comparing Figures

3.2 and 3.5 to Figures 3.5 and 3.7.
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Figure 3.5: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of weak-excitation. Produced by
solving equations (3.1.8.9) - (3.1.8.4). Parameters used are U0/ωr = −5 × 10−5,
∆ab = −10, αb = 100, N = 1000, εµ = 0.1. By changing the terms U0 and ∆ab

from both being positive to both being negative, the term U0

∆ab
in the equation

for the expected probe beam gain, equation (3.2.1.4), remains positive. Equation
(3.2.1.4) remains unchanged then and the gain in the system should remain close
to that of the case where both U0 and ∆ab are positive. This can be seen to be
the case when this Figure is compared with Figure 3.2. Gainprobe ≈ 1.
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Figure 3.6: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of weak-excitation. Produced by
solving equations (3.1.8.9) - (3.1.8.4). Parameters used are U0/ωr = −5 × 10−5,
∆ab = 10, αb = 100, N = 1000, εµ = 0.1. Allowing U0 to be negative while ∆ab is
positive means that the term U0

∆ab
takes a negative value, reducing the resulting

value produced by the probe gain equation, equation (3.2.1.4). Comparing this
Figure with Figures 3.2 & 3.5 demonstrates this. Gainprobe ≈ 0.2.
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Figure 3.7: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of weak-excitation. Produced by
solving equations (3.1.8.9) - (3.1.8.4). Parameters used are U0/ωr = 5 × 10−5,
∆ab = −10, αb = 100, N = 1000, εµ = 0.1. Allowing U0 to be positive while ∆ab

is negative also produces a reduced value from the probe gain equation, equation
(3.2.1.4), in a manner similar to Figure 3.6. It can be seen by comparing this
Figure to Figure 3.6 that the gain in the probe beam is similar in both cases, as
expected. Gainprobe ≈ 0.2.
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3.2.1.3 The strong excitation limit

Figures 3.8, 3.9 and 3.10 show the evolution of the system in the strong-pump

limit. It can be seen from Figure 3.8 that once again growth occurs in the cavity

�eld intensity synchronously with the growth of the bunching parameter.

However, from the snapshots of the atomic population distribution (θ,D)

shown in Figure 3.10 and the evolution of the average population di�erence shown

in the bottommost graph of Figure 3.8 it can be noted that, in this strong-pump

limit, the atomic population di�erence undergoes a signi�cant deviation from its

initial value of 1/2 during the evolution of the instability. This is in stark contrast

to the weak-pump limit where the atomic population di�erence hardly changes

from its initial value at all.

In the strong pumping regime the system undergoes initial, rapid, two-photon

Rabi oscillations which result in a strongly periodic distribution of atomic popula-

tion as well as the expected periodic distribution of atomic density. The evolution

of the two-photon Rabi oscillations can be seen in Figure 3.8 and the periodic dis-

tribution of atomic population can be seen in the snapshots of atomic population

distribution (θ,D) in Figure 3.10.

From these �gures it can clearly be noted that a signi�cant number of atoms

have a value for their population di�erence in the negative, i.e. their internal

population is inverted. In a system of two level atoms, such as that described

in Chapter 2, an inversion of the atomic population would result in signi�cant

amounts of spontaneous emission. Owing to its stochastic nature, the recoil as-

sociated with spontaneous emission would result in a source of heat into the sys-

tem, however the two-photon/three-level con�guration considered in this chapter

avoids this, allowing a signi�cant population in the upper state without jeopar-

dizing the coherence of the system.

Additionally, a strong pump value and the resulting population of the upper

state would result in D → 0 on average [79], which for a system of two-level

atoms would cause the force which bunches the atoms (the dipole force) to vanish.

Studying Figure 3.8 it can be observed that the dipole force does not vanish in

this three-level case as it contains contributions one-photon coherences ρ21, ρ32,
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which do not vanish when D → 0, in addition to the two-photon coherence term,

σ21. When the value of the probe intensity becomes comparable to the value for

the pump intensity the Rabi oscillations begin to dampen, this can be seen in

Figure 3.8(c). It is at this point that the position (θ) dependence of the total

�eld which drives the atomic populations becomes signi�cant (see eq. (3.1.8.4) &

(3.1.8.5)). As a consequence of this, the spread of momentum which is induced

by the CARL instability results in the atoms experiencing di�erent �eld and thus

dephases the Rabi oscillations.

At t/ωr ≈ 10 in the uppermost plot of Figure 3.8 it may be noted that there is a

signi�cant dip in the intensity of the probe beam intensity. At t/ωr = 0 the probe

�eld has some initial phase (i.e. αa = αreala eiφ). The bunching instability may,

however, require a di�erent probe beam phase. As the rate of change of the probe

beam phase is proportional to the inverse of the probe beam amplitude (∂φ
∂t
∝

1
αreala

), the phase changes more rapidly for smaller values of the �eld amplitude.

The dip in probe �eld intensity observed at t/ωr ≈ 10 corresponds then to a rapid

shift of the probe �eld phase to facilitate the growth of the bunching instability.

It may be noted that, in Figure 3.9, the particles all evolve to have a negative

momentum, i.e. all the particles are moving in the negative z-direction. The

particles are pushed in the negative z-direction by the optical scattering force as

described in Section 1.1.1.2. The terms i2~kU0

(
α∗aαbe

−2ikz − αaα∗be2ikz
)
in the

equation for the atomic momentum, equation (3.1.8.6), are responsible for the

optical scattering force. As the intensity of the pump �eld, αb is initially much

larger than the probe beam, αa, the terms i2~kU0

(
α∗aαbe

−2ikz − αaα∗be2ikz
)
result

in a net force in the negative z-direction.
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Figure 3.8: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced
by solving equations (3.1.8.9) - (3.1.8.4). Parameters used are U0/ωr = 5× 10−5,
∆ab = 1, αb = 100, N = 1000, εµ = 0.1. Top: Gain for the probe beam in a
three level ladder atomic system due to the CARL instability, despite the system
operating at a large value for the pump �eld amplitude. A similarly large pump
value in the two level CARL system would have resulted in the CARL instability
being "washed out". Middle: Bunching of the three level atomic sample for a
large value of the pump �eld amplitude. Bottom: Rabi �opping due to the large
value for the pump �eld amplitude, which would have been severely detrimental
to the two level CARL process, can be seen here not to destroy the three level
ladder co�guration CARL instability. The Rabi �opping becomes "quenched"
when the probe �eld amplitude approaches that of the pump �eld. The equal
�elds result in a spread of momentum, which then causes a spread in population
as can be seen in Figure 3.10.
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Figure 3.9: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 24ω−1
r , (c) t = 30ω−1

r in the case of strong ex-
citation. Parameters used and equations solved are as in Figure 3.8. The atoms
in the system under the e�ects of a strong pump �eld can be seen to acquire
momentum and bunch over time in a similar manner to the system under a weak
pump as seen in Figure 3.3.
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Figure 3.10: Snapshots of population di�erence distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 24ω−1
r , (c) t = 30ω−1

r in the case of strong
excitation. Parameters used and equations solved are as in Figure 3.8. Unlike
the case in which the system is weakly pumped, shown in Figure 3.4, for a strong
pump the population experiences signi�cant growth. It can also be seen that, as
time progresses, the the atoms experience a spread of population. This spread is
responsible for the apparent "quenching" of the population oscillations evident
in the bottommost plot of Figure 3.8.
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Whilst the gain predicted in section 3.2.1.1 in equation (3.2.1.4) is valid for

the weak pump case, it may at least be instructive of what to expect in the

strong pump regime. In Figure 3.8 the signs of the detuning terms match, so

the gain term
3U3

0 |αb|2
∆ab

predicted for the weak pump case is positive. For Figures

3.11 and 3.12 the detuning terms have opposite signs. Thus the term
3U3

0 |αb|2
∆ab

is negative and reduces the value of the gain predicted by equation (3.2.1.4).

Comparing Figure 3.8 with Figures 3.11 and 3.12 provides good agreement with

the predictions for the weak pump gain, though the curves themselves appear less

smooth due to the strong pump producing stronger nonlinear e�ects.

The predictions of the weak pump gain equation (3.2.1.4) break down, how-

ever, in Figure 3.13, where the gain of the system is unexpectedly enhanced for

the strong excitation limit case in which both detuning terms are negative. As

Figure 3.13 demonstrates the gain for the strong excitation limit and equation

(3.2.1.4) determines the gain for the weak excitation limit, one does not invalidate

the other. A more detailed study of the response of the gain to the detuning in

the strong excitation limit will be needed to understand fully the origins of the

apparent enhancement seen.

It can be seen that Figure 3.12 shows the same sudden dip in probe �eld

intensity as was seen in Figure 3.8 which marks a rapid change in the probe �eld

phase and the beginning of the CARL bunching instability.
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Figure 3.11: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced by
solving equations (3.1.8.9) - (3.1.8.4). Parameters used are U0/ωr = −5 × 10−5,
∆ab = 1, αb = 100, N = 1000, εµ = 0.1. When the value of U0 is allowed to
become negative while ∆ab remains positive, the term U0

∆ab
in the equation for the

expected probe beam gain, equation (3.2.1.4), becomes negative. The value of
gain produced by the expression is therefore smaller than in the cases where the
signs of U0 & ∆ab match. The oscillations in the probe �eld amplitude make it
di�cult to produce an accurate value for the probe beam gain, however visual
comparison between this Figure and Figures 3.10 and 3.13 shows the gain to be
diminished.
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Figure 3.12: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced
by solving equations (3.1.8.9) - (3.1.8.4). Parameters used are U0/ωr = 5× 10−5,
∆ab = −1, αb = 100, N = 1000, εµ = 0.1. Similarly to Figure 3.11, when the
signs of U0 & ∆ab are �ipped the term U0

∆ab
remains negative in the equation for

the expected probe beam gain, equation (3.2.1.4). Comparing this Figure with
Figure 3.11 shows that in each case the gains are similar.
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Figure 3.13: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced by
solving equations (3.1.8.9) - (3.1.8.4). Parameters used are U0/ωr = −5 × 10−5,
∆ab = −1, αb = 100, N = 1000, εµ = 0.1. When the signs of U0 & ∆ab match once
again, the term U0

∆ab
in the equation for the expected probe beam gain, equation

(3.2.1.4), is once again positive, as in Figure 3.8. Comparing this Figure with
Figures 3.11 & 3.12 shows once again that matching signs for U0 & ∆ab results
in a larger gain in the probe beam that di�ering signs.
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3.2.2 Neglecting the AC Stark shift

If the assumption is made that µa = µb, then the term ∆u0 in the scaled two-

photon CARL equations vanishes, ie the position and intensity dependent AC

Stark shift is neglected. With such an assumption made, the scaled two-photon

CARL equations take the form

∂D

∂t
=
γ33

2

(
1

2
−D

)
+ iU0

(
σ13

(
αa + αbe

−2ikz
) (
αae

2ikz + αb
)

−σ31

(
α∗a + α∗be

2ikz
) (
α∗ae

−2ikz + α∗b
) )

(3.2.2.1)

∂σ31

∂t
= −(γ31 − i∆ab)σ31 − i2U0D

(
αae

2ikz + αb
) (
αa + αbe

−2ikz
)
(3.2.2.2)

∂pj
∂t

= i2~kU0

[
σ31

(
α∗a

2e−2ikz − α∗b
2e2ikz

)
− σ13

(
α2
ae

2ikz − α2
be
−2ikz

)]
+ i2~kU0

(
α∗aαbe

−2ikz − αaα∗be2ikz
)

(3.2.2.3)

∂zj
∂t

=
pj
m

(3.2.2.4)

∂αa
∂t

= −iN
〈

2U0σ31

(
α∗ae

−2ikz + α∗b
)

+ U0

(
αa + αbe

−2ikz
)〉
− κa(αa − αeqa )

(3.2.2.5)
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∂αb
∂t

= −iN
〈

2U0σ31

(
α∗a + α∗be

2ikz
)

+ U0

(
αae

2ikz + αb
)〉
− κb(αb − αeqb )

(3.2.2.6)

As before, the "saturation" pump intensity is derived by solving the equations

for the population inversion D and the coherence σ31. For the case where the

AC Stark shift is neglected that means solving equations (3.2.2.8) and (3.2.2.2).

Following the same procedure as previously, where "saturation" is de�ned to

occur when the average excited-state population, ρ33 is 1
4
, i.e. D = 1

4
, it can be

easily seen that "saturation" occurs when the photon pump number is

|αb| ≡ |αb|sat =

√∣∣∣∣∆ab

2U0

∣∣∣∣. (3.2.2.7)

3.2.2.1 The weak excitation limit

Again the limit |αb|2 � |αb|2sat is considered �rst, such that each atom is only

weakly excited internally and almost all the atomic population remains in the

ground state, |1〉 i.e. D → 1
2
and σ31 → 0. In this limit, equations (3.2.2.8)..(3.2.2.6)

can be shown to reduce to be identical to (3.2.1.5)..(3.2.1.7).

In the weak-pump limit then, there should be no di�erence between the case

where the AC Stark shift is considered and where it is neglected. This can be

con�rmed by solving equations (3.1.8.4) - (3.1.8.9) using the same input values

as were used to create Figures 3.2 through 3.7 save for the value of the AC Stark

shift term reduced to zero (εµ = 0). By doing so, Figures 3.14 through 3.18 were

created.

Figures 3.2 - 3.7 show plots produced by solving equations (3.1.8.4) - (3.1.8.9)

with the AC Stark shift term included (εµ = 0.1). Figures 3.14 - 3.18 show plots

produced by solving the same equations, using the same input values, with the

AC Stark shift term neglected (εµ = 0).

By comparing these two sets of �gures it can be easily noted that there is
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almost no di�erence between them, i.e. in the weak pump limit the AC Stark

shift has little to no e�ect upon the system. This is to be expected both from the

equations in the weak pump limit becoming identical and from the description of

the AC Stark shift given in section 3.1.7, wherein the AC Stark shift was described

as "an intensity dependent detuning". If the pump �eld has a low intensity then

the AC Stark shift "detuning" will likewise be small.
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Figure 3.14: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of weak-excitation. Produced by
solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = 5 × 10−5,
∆ab = 10, αb = 100, N = 1000, εµ = 0.0. Top: The probe beam experiencing
gain due to the CARL instability in a weakly pumped three level ladder atomic
system when the AC Stark shift term εµ is neglected. The gain experienced by
the probe �eld, Gainprobe ≈ 1, is nearly identical to the case where the AC Stark
shift term is included(shown in Figure 3.2). Middle: Bunching of the three level
atomic sample due to the CARL instability with εµ neglected. Bottom: The
population remains almost entirely in the ground state throughout the process.
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Figure 3.15: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 21ω−1
r , (c) t = 30ω−1

r in the case of weak
excitation. Parameters used and equations solved are as in Figure 3.14. By
comparison with Figure 3.3 it can be seen that when the AC Stark shift term is
neglected the weakly pumped atoms in the three level ladder system move almost
identically as to when the AC Stark term is included.
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Figure 3.16: Snapshots of population di�erence distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 21ω−1
r , (c) t = 30ω−1

r in the case of weak
excitation. Parameters used and equations solved are as in Figure 3.14. As was
the case when the AC Stark shift was included, the population remains almost
entirely constant in the ground state for the weakly pumped case when the AC
Stark shift term is neglected.
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As was stated previously in section 3.2.1.2, equation (3.2.1.4) allows for the

prediction to be made that the gain experienced by the system will not change

when the signs of the terms U0 and ∆ab are exchanged, as doing so leaves their

product, U0∆ab, unchanged.

Such a prediction is proven to be true when Figure 3.14, in which both U0 &

∆ab are positive, is compared to Figure 3.17, where the same values have been

used but both U0 & ∆ab are negative. It can easily be seen that Figures 3.14 and

3.17 are identical, con�rming the prediction for the case in which the AC Stark

shift is neglected.
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Figure 3.17: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of weak-excitation. Produced by
solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = −5 × 10−5,
∆ab = −10, αb = 100, N = 1000, εµ = 0.0. When the sign of both U0 & ∆ab are
made negative, the same behaviour repeats for the AC Stark neglected case as for
when it was included in Figure 3.5. The gain in the probe beam (Gainprobe ≈ 1),
remains similar to its value when U0 & ∆ab are both positive, as in Figure 3.14.
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It was explained previously in section 3.2.1.2, wherein the AC Stark shift term

was taken to be non zero (εµ 6= 0), that when the detuning terms do not share

the same sign, i.e. the product U0∆ab is negative, the gain decreases as a result

of the term
3U3

0 |αb|2
∆ab

in equation (3.2.1.4) being negative.

This is once again the case when the AC Stark shift term is neglected, εµ = 0.

Figure 3.18 is produced using the same values as in Figures 3.14 and 3.17, only

with the signs of the detunings changed so that U0 has a negative value and ∆ab

has a positive value. Consequently, it can be seen that the gain experienced by

the system is diminished, as predicted.

Figure 3.19 was produced using the same values as in Figure 3.18, except the

signs of U0 and ∆ab are reversed, so U0 has a positive value and ∆ab has a negative

value.

As stated in section 3.2.1.2, equation (3.2.1.4) should produce an identical

value for gain for the case where U0 < 0 & ∆ab > 0 as for the case where

U0 > 0 & ∆ab < 0. It should be expected then that Figures 3.19 and 3.18 closely

match one another. When compared, it can be seen that the two �gures match

identically, con�rming the prediction of equation (3.2.1.4).

124



CHAPTER 3. THREE LEVEL ATOMS: LADDER CONFIGURATION

0 10 20 30 40 50 60 70

t/ωr

10-4
10-3
10-2
10-1
100
101
102

|α
a
|2

0 10 20 30 40 50 60 70

t/ωr

10-5
10-4
10-3
10-2
10-1
100

|b|

0 10 20 30 40 50 60 70

t/ωr

0.4

0.2

0.0

0.2

0.4

<
D
>

Figure 3.18: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of weak-excitation. Produced by
solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = −5 × 10−5,
∆ab = 10, αb = 100, N = 1000, εµ = 0.0. Allowing the sign of U0 to remain
negative while changing the sign of ∆ab to positive with the AC Stark shift term
neglected has the same e�ect as described in Figure 3.6 wherein the AC Stark
shift term is included. When U0 and ∆ab have opposite signs the term

U0

∆ab
takes a

negative value, reducing the resulting value produced by the probe gain equation,
equation (3.2.1.4). This can be seen by comparing this Figure with Figures 3.14
& 3.17. Gainprobe ≈ 0.2.
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Figure 3.19: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of weak-excitation. Produced by
solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = 5 × 10−5,
∆ab = −10, αb = 100, N = 1000, εµ = 0.0. When U0 is positive and ∆ab is
negative with the AC Stark shift term neglected the system functions the same
as when U0 was negative and ∆ab was positive, as in Figure 3.18. This is due to
the term U0

∆ab
taking a negative value in the equation for the probe beam gain,

equation (3.2.1.4). When this Figure is compared to Figure 3.7 it can be seen
that neglecting the AC Stark shift term has negligible e�ects upon the three level
ladder CARL system when the pumping is weak. Gainprobe ≈ 0.2.
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3.2.2.2 The strong excitation limit

Figures 3.20, 3.21 and 3.22 show the evolution of the system in the strong-pump

limit when the AC Stark shift term εµ is neglected.

It can be seen from Figure 3.20 that same synchronous growth takes place in

the probe �eld intensity and bunching parameter as in the AC Stark case. The

absence of the AC Stark term εµ seems to have very little e�ect at all in either

the weak or strong excitation regimes. The small di�erences which do exist seem

con�ned to the highly nonlinear oscillatory region after the probe gain has become

equal in magnitude to that of the pump beam.

The same result exist in the case of the AC Stark term being neglected, then.

Namely that the two photon terms in the momentum equation remain even when

the population tends to zero, D → 0. The CARL instability persists then in

regimes with higher pumping intensities than for that of the two level case.

In the lowermost plot of Figure 3.20 it can be seen that the large oscillations

population diminish once the optical probe beam amplitude reaches a "satura-

tion" level approximately equal to that of the optical pump beam. From the

equation for the evolution of the population inversion, equation (3.2.2.8), it can

be seen that when the optical pump and probe beams become approximately

equal

∂D

∂t
=
γ33

2

(
1

2
−D

)
+ iU0

(
σ13

(
αa + αbe

−2ikz
) (
αae

2ikz + αb
)

−σ31

(
α∗a + α∗be

2ikz
) (
α∗ae

−2ikz + α∗b
) )

(3.2.2.8)

It may be noted that in Figures 3.21(b) and 3.22(c) that, in bunching, the

atoms in the system may take the same z-position with di�erent momentum/population

inversion value combinations.
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Figure 3.20: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced
by solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = 5× 10−5,
∆ab = 1, αb = 100, N = 1000, εµ = 0.0. Top: Gain for the probe beam in
a three level ladder atomic system due to the CARL instability with the AC
Stark shift term neglected, despite the system operating at a large value for the
pump �eld amplitude. Again, a large pump value in the two level CARL system
would have resulted in the CARL instability being "washed out". The gain in
the probe beam is once again di�cult to produce an accurate value for due to
the oscillations in the plot. Comparison with Figure 3.8 shows good agreement,
however. Middle: Bunching of the three level atomic sample for a large value
of the pump �eld amplitude with the AC Stark shift term neglected. Bottom:
Rabi �opping due to the large value for the pump �eld amplitude, which would
have been severely detrimental to the two level CARL process, can be seen here
not to destroy the three level ladder con�guration CARL instability, regardless of
whether the AC Stark shift term is neglected or not. The Rabi �opping becomes
"quenched" when the probe �eld amplitude approaches that of the pump �eld.
The equal �elds result in a spread of momentum, which then causes a spread in
population as can be seen in Figure 3.22.
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Figure 3.21: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 24ω−1
r , (c) t = 30ω−1

r in the case of strong
excitation. Parameters used and equations solved are as in Figure 3.20. The
atoms in the system under the e�ects of a strong pump �eld with the AC Stark
shift term neglected can be seen to acquire momentum and bunch over time in the
same manner as Figure 3.21, in which the AC Stark shift term was not neglected.
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Figure 3.22: Snapshots of population di�erence distribution (θj, Dj) for each
atom j = 1..1000 when (a) t = 0ω−1

r , (b) t = 24ω−1
r , (c) t = 30ω−1

r in the
case of strong excitation. Parameters used and equations solved are as in Fig-
ure 3.20. As was the case for Figure 3.22 where the AC Stark term was included,
when it is neglected the population undergoes signi�cant oscillation and as the
probe and pump �elds draw even with one another the spread of momentum re-
sults in a spread of population and the population inversion oscillations become
"quenched".
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Once again comparison is made between the varying detuning regimes and,

as was the case for strong pumping with the AC Stark term εµ included, there

exists a decrease in the gain experienced by the system when the two detuning

terms have opposite signs when compared against the case where both detunings

have positive sign.

Comparing Figure 3.20, for which both U0 and ∆ab have positive values, to

Figure 3.23, wherein U0 < 0, ∆ab > 0, and Figure 3.24, wherein U0 > 0, ∆ab < 0,

it can be seen once more that when the signs of the detunings are opposite one

another, that the term
3U3

0 |αb|2
∆ab

from equation (3.2.1.4) becomes negative and

reduces the gain.

As was also the case in section 3.2.1.3 where the AC Stark term was included,

equation (3.2.1.4) predicts that, in the weak pump limit, the gain should be the

same for the case where both U0 & ∆ab are positive and where they are both

negative. Comparing Figure 3.20, in which U0 & ∆ab are both positive, to Figure

3.25, in which U0 & ∆ab are both negative, shows that in the strong pumping

limit the gains do not match. It can be seen that the probe �eld gain for Figure

3.25 is larger than the gain in the probe beam shown in 3.20. As was stated in

section 3.2.1.3, further analysis will be required to better understand the causes

for this unexpected enhancement.

By comparing the strong excitation results where the AC Stark term has been

neglected to those from section 3.2.1.3 in which the AC Stark term was included,

it can easily be noted that the results are almost identical save for in the highly

nonlinear region which occurs after the probe beam has reached equal magnitude

to that of the pump.
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Figure 3.23: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced by
solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = −5 × 10−5,
∆ab = 1, αb = 100, N = 1000, εµ = 0.0. As was the case in Figure 3.11 (where the
AC Stark term was included), when the AC Stark term is neglected and the signs
of U0 & ∆ab take negativ and positive signs respectively, term U0

∆ab
in the equation

for the expected probe beam gain, equation (3.2.1.4), becomes negative. The
gain produced by the expression is therefore smaller than in Figure 3.20, where
the signs of U0 & ∆ab match. The oscillations in the probe �eld amplitude make
it di�cult to produce an accurate value for the probe beam gain, however visual
comparison between this Figure and Figure 3.22 shows the gain to be diminished,
as expected.
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Figure 3.24: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced
by solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = 5× 10−5,
∆ab = −1, αb = 100, N = 1000, εµ = 0.0. As was the case for 3.23, when the signs
of U0 & ∆ab do not match, as in this Figure where on U0 is positive and ∆ab is
negative, the overall gain of the probe beam is diminished. This is due to the term
U0

∆ab
in the equations for the probe beam gain, equation (3.2.1.4), being negative

and thereby reducing the expected gain. Once more, oscillations in the probe
beam plot make calculation of a precise �gure for the gain produced di�cult.
However, comparison of this Figure with Figure 3.23 shows good agreement and
comparison with Figure 3.20 shows the expected reduction in gain for the system.
Comparing this Figure with Figure 3.12 also shows little di�erence in the gain,
once again suggesting that the AC Stark term being neglected has little overall
e�ect upon the system.
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Figure 3.25: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced by
solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = −5 × 10−5,
∆ab = −1, αb = 100, N = 1000, εµ = 0.0. Equation (3.2.1.4) predicts that for
the detuning signs used in this Figure, U0 & ∆ab both negative, that the gain
in the probe beam should match that of the system shown in Figure 3.20. This
shows the point at which the assumptions used to produce Equation (3.2.1.4)
break down, as the gain in the probe beam appears noticeably larger than that
of Figure 3.20.
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3.3 Two-Photon super�uorescence

It was noted that with careful parameter choice for the cavity detuning δc, equa-

tions (3.2.2.8) - (3.2.2.6) could be used to investigate a nonlinear optical process

very close to that of two-photon super�uorescence ( henceforth referred to as

simply SF) and e�ects arising from the inclusion of atomic recoil upon the SF

instability.

3.3.1 Linear analysis

To determine the best parameter choices for the investigation of the SF instability

a linear analysis was performed. It was very quickly noted, however, that in the

case of counterpropagating �elds the linear analysis would take a prohibitively

large amount of time and e�ort for the small return in time saved in selecting input

parameters. It was subsequently observed that the two-photon CARL equations

for the co-propagating case were much easier to perform linear analysis upon and

are su�ciently similar to the counter-propagating case to provide at least a �rst

approximation of suitable input parameters.

Using the same scaling as for the counterpropagating case, with the additional

assumptions that the decay terms are zero ( γ33 = γ31 = 0), the detuning terms

are zero ( ∆ab = ∆a = 0 ), the AC Stark shift term is zero ( εµ = 0 ), the �elds

are considered to be equal ( αa = αb = α
2
), there is no pumping of the �eld

term (αeq = 0), the coherence is scaled as S = σ31e
−2ikz and recoil is neglected

( pj = 0, θj = θj0 ), the equations for the coherence,(3.2.2.2), the population

inversion, (3.2.2.8), and the optical (3.2.2.4) �eld are given by

∂D

∂t
= iU0

(
α2S∗ − α∗2S

)
(3.3.1.1)

∂S

∂t
= −i2U0α

2D (3.3.1.2)

135



CHAPTER 3. THREE LEVEL ATOMS: LADDER CONFIGURATION

∂αb
∂t

= −i2NU0α
∗S − κα (3.3.1.3)

3.3.1.1 Rabi oscillations

Di�erentiating the equation for the evolution of D, (3.3.1.1), gives

∂2D

∂t2
= iU0

(
α2∂S

∗

∂t
− α∗2∂S

∂t

)
. (3.3.1.4)

Substituting into the above the equation for the coherence, (3.3.1.2) and rear-

ranging produces

∂2D

∂t2
= iU0

(
α2[i2U0α

∗2D]− α∗2[−i2U0α
2D]
)

= −4U2
0 |α|4D

= −
(
2U0|α|2

)2
D . (3.3.1.5)

The two-photon Rabi frequency is therefore 2U0|α|2. The rate of change of the

magnitude squared of the �eld is given by

∂|α|2

∂t
=
∂α∗α

∂t

= α∗
∂α

∂t
+ α

∂α∗

∂t

= α∗ [−i2NU0α
∗S − κα] + α [i2NU0αS

∗ − κα∗]

= 2N
[
iU0

(
α2S∗ − α∗2S

)]
− 2κ|α|2 . (3.3.1.6)

Into the above equation may be substituted (3.3.1.1) to produce

∂|α|2

∂t
= 2N

∂D

∂t
− 2κ|α|2 (3.3.1.7)
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3.3.1.2 Two-photon area theorem

The two-photon area is de�ned as

φ =

∫ t

0

2U0|α(t)|2dt , (3.3.1.8)

based on solving (3.3.1.5) for the angle on the Bloch sphere. Expressed in terms

of the above term φ, the population inversion may be given by

D = −1

2
cos(φ) , (3.3.1.9)

and consequently

∂D

∂t
=

1

2
sin(φ)

∂φ

∂t
. (3.3.1.10)

From its de�nition in (3.3.1.8), the �rst and second derivatives of φ are

∂φ

∂t
= 2U0|α|2 (3.3.1.11)

and

∂2φ

∂t2
= 2U0

∂|α|2

∂t
(3.3.1.12)

respectively. The expression in equation (3.3.1.7) followed by equation (3.3.1.10)

and (3.3.1.11) may then be substituted into the above expression to produce an

equation in terms of φ alone,
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∂2φ

∂t2
= 2U0

[
2N

∂D

∂t
− 2κ|α|2

]
= 4NU0

[
1

2
sin(φ)

∂φ

∂t

]
− 4U0κ|α|2

= 2NU0 sin(φ)
∂φ

∂t
− 2κ

[
2U0|α|2

]
= 2NU0 sin(φ)

∂φ

∂t
− 2κ

∂φ

∂t
. (3.3.1.13)

3.3.1.3 Stability Analysis

Using the term I = ∂φ
∂t

in equation (3.3.1.13) gives it the form

∂I

∂t
= 2NU0 sin(φ)I − 2κI , (3.3.1.14)

from which it is easy to see that the system is stable when I=0. Expanding the

two-photon area out as φ = φ0 + φ1 in (3.3.1.13)

∂2(φ0 + φ1)

∂t2
= 2NU0 sin(φ0 + φ1)

∂(φ0 + φ1)

∂t
− 2κ

∂(φ0 + φ1)

∂t
. (3.3.1.15)

The term φ0 is the initial phase, so time derivatives of this term are zero, leaving

only time derivatives of φ1. The term sin(φ0 + φ1)∂φ1
∂t

expands out to

sin(φ0 + φ1)
∂φ1

∂t
= (sin(φ0)cos(φ1) + sin(φ1)cos(φ0))

∂φ1

∂t
. (3.3.1.16)

To �rst order, cos(φ1) ≈ 1− φ21
2
, however when multiplied by the term ∂φ1

∂t
there

are two �rst order terms multiplied. Such terms may be neglected. Likewise, to

�rst order sin(φ1) ≈ φ1 − φ31
6
, which when multiplied by ∂φ1

∂t
may be neglected

entirely. The equation is then left as
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∂2φ1

∂t2
= 2NU0 sin(φ0)

∂φ1

∂t
− 2κ

∂φ1

∂t
, (3.3.1.17)

an expression purely in ∂φ1
∂t
. Assuming solutions to the above expression may be

taken to have the form φ1 ∝ eλt then the system has solutions of

λ = 0 or λ = 2NU0 sin(φ0)− 2κ . (3.3.1.18)

The SF instability exists when λ > 0, for this expression to be true then the

condition

NU0 sin(φ0) > κ (3.3.1.19)

must be satis�ed. The maximum value of the term 2NU0 sin(φ0) occurs at

sin(φ0) = 1, so the condition above becomes

NU0 > κ , (3.3.1.20)

i.e. the SF instability is to be expected in the good cavity limit. This contrasts

with, for instance, the case of Superradiant Rayleigh Scattering (SRyS) wherein

superradiance is expected in the bad-cavity limit [82][42].

It must also be noted that the term U0 may be negative, owing to its depen-

dence upon the single photon detuning ∆a. However, when U0 takes a negative

value, the maximum value of NU0 sin(φ0) occurs at sin(φ0) = −1, so the condition

described above holds true for both red and blue detuned optical �elds.
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3.3.2 Two-photon Super�uorescence from stationary atoms

When atoms are stationary and optical forces are neglected it can be seen below

in Fig. 3.26 that input parameters which satisfy the SF instability condition

described in (3.3.1.20) result in the system producing an optical pulse which

closely resembles that of SF.
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Figure 3.26: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced
by solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = 1× 10−5,
∆ab = 0, αinit = 10, Na = 5 × 104, εµ = 0, κ = 10−4, γ = 1.5 × 10−2, neglecting
recoil. Demonstration of Super�uorescent behaviour in the three level ladder
system.

One of the characteristic properties of Super�uorescence, and indeed all su-

peremissive e�ects, is that the peak intensity of the SF pulse is proportional to

the square of the number of emitting atoms. Such a proportionality was inves-

tigated by running the code for increasing values of Na and plotting the peak

intensity values of the SF curve from each simulation. In doing so, Figure 3.27

was produced and the N2 dependence of Ipeak demonstrated.
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Figure 3.27: Dependence of the probe photon number, |αa|2 upon the number of
atoms, Na. Produced by solving equations (3.2.2.8) - (3.2.2.6). Parameters used
are U0/ωr = 1 × 10−5, ∆ab = 0, αinit = 10, εµ = 0, κ = 10−4, γ = 1.5 × 10−2,
neglecting recoil. As this plot shows intensity plotted against the square of the
number of atoms, the straight line demonstrates an N2 depenence of the intensity
upon the number of atoms.
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Another characteristic of superemissive behaviour is that as the number of

atoms emitting increases the width of the emitted pulse decreases. Figure 3.28

shows the curves of intensity evolving with time for increasing numbers of atoms.

As can be seen, the width of each pulse grows steadily narrower with increasing

number of emitters.
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Figure 3.28: Evolution of probe photon number |αa|2 for the number of atoms in
the simulated cavity Na = (a) 2×104, (b) 4×104, (c) 6×104, (d) 8×104. Produced
by solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = 1× 10−5,
∆ab = 0, αinit = 10, εµ = 0, κ = 10−4, γ = 1.5× 10−2, neglecting recoil.
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The prediction that two-photon super�uorescence is to be expected only in

the good cavity regime is veri�ed when the value for the �eld losses, κ, is given a

value which violated the SF condition described in (3.3.1.20). Running the code

with κ = 2 > NU0 = 0.5 produced Figure 3.29, which visually demonstrates

ordinary �uorescence in the bad cavity limit.
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Figure 3.29: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced
by solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = 1× 10−5,
∆ab = 0, αinit = 10, Na = 5 × 104, εµ = 0, κ = 2, γ = 1.5 × 10−2, neglecting
recoil. With the condition (3.3.1.20) violated, only ordinary �uorescent decay is
evident.
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The SF condition (3.3.1.20), predicted that the super�uorescent pulses would

exist for both signs of the single photon detuning. This expected behaviour is

met when the sign of U0 is set negative using otherwise identical parameters as to

Fig 3.26. The resulting output is shown in Figure 3.30, where the SF instability

can not only be easily observed, but matches perfectly with the previous result

and con�rms the expectation of the SF instability being symmetric in terms of

single photon optical detuning.
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Figure 3.30: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced by
solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = −1 × 10−5,
∆ab = 0, αinit = 10, Na = 5 × 104, εµ = 0, κ = 10−4, γ = 1.5 × 10−2, neglecting
recoil. Demonstration of Super�uorescent behaviour in the three level ladder
system for the alternate sign of the single photon optical detuning.
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3.3.3 Two-photon Super�uorescence including recoil

When centre of mass atomic motion is considered, however, the behaviour of the

system during emission of light changes.

It can be seen in Figure 3.31 that when recoil is considered for U0 > 0,

i.e, ∆a > 0 that the SF process is retarded both in time and in the value of the

intensity peak. This retardation is the result of the atoms in the system bunching

at the minima of the standing wave of optical intensity.

It has been shown [36] that for super�uorescence in a gas of cold two level

atoms that considering the centre-of-mass atomic recoil results in the detuning

symmetry breaking. For a laser which is blue detuned from resonance (∆a >

0) the addition of recoil to the two level system lead to enhancement of the

super�uorescent pulse, when the laser was red detuned the pulse was diminished.

The explanation for the apparent di�erence here is that in Section 3.1.1 the

assumption was made that, for a su�ciently small two photon detuning ∆ab, the

single photon detunings are approximately the same magnitude but of opposite

sign ∆a = −∆b. So when considering the single photon detuning for the lower

level transition (|1〉 → |2〉) ∆a to be positive, the detuning for the upper level

transition (|2〉 → |3〉) ∆b is negative. It is the sign of the upper level detun-

ing which must be considered when investigating the SF instability, where the

population is initially entirely inverted (D = −1
2
).

Figure 3.31 then displays "red" detuning (∆b < 0) and the consequent hin-

drance of the SF instability as the atoms bunch at optical intensity minima. It

can be seen in in Figure 3.32 that the atoms move and bunch at approximately

θ = nπ, n = 1, 3, 5, .... Observing Figure 3.33 it can be noted that the atoms

bunch but the population remains in the uppermost state until the SF pulse

begins.
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Figure 3.31: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced
by solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = 1× 10−5,
∆ab = 0, αinit = 10, Na = 5 × 104, εµ = 0, κ = 10−4, γ = 1.5 × 10−2, including
recoil.
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Figure 3.32: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 9.61ω−1
r , (c) t = 18.0ω−1

r in the case of strong
excitation. Parameters used and equations solved are as in Figure 3.31.
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Figure 3.33: Snapshots of population inversion distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 9.61ω−1
r , (c) t = 18.0ω−1

r in the case of
strong excitation. Parameters used and equations solved are as in Figure 3.31.
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When the detuning for the upper transition is "blue" (∆b > 0), the situa-

tion described above is reversed. The atoms bunch at optical �eld standing wave

intensity maxima instead. At optical intensity maxima the optical pulse is en-

hanced over the red detuned case, achieving a larger a larger intensity peak. This

enhancement e�ect can be observed in Figure 3.34 where the initial optical pulse

intensity peak value is greater than that of the opposite detuning sign.

Figure 3.35 shows that the atoms bunch approximately at θ = 2nπ, n =

0, 1, 2, 3, ..., a shift of π from the "red" detuned regime i.e. at the optical �eld

intensity maximum. As before, the population remains in the excited state until

decaying and producing the optical pulse.

It should be noted that the intensity of the optical pulses emitted in the recoil

included cases cease to exhibit the N2 dependence, so may not strictly be referred

to as super�uorescent. It was discovered that by decreasing the value of the decay

term γ that the recoil case could be made super�uorescent. However in such a

limit the non recoil case ceased to exhibit super�uorescence. It is possible that this

behaviour is due to the narrow linewidth resulting from the condition in equation

(3.3.1.20). With further investigation of parameter space it may be possible to

uncover conditions under which super�uorescence occurs simultaneously in the

cases where atomic centre of mass recoil is both included and neglected.

149



CHAPTER 3. THREE LEVEL ATOMS: LADDER CONFIGURATION

0 50 100 150 200

t/ωr

0

50

100

150

200

250

|α
a
|2

0 50 100 150 200

t/ωr

10-5

10-4

10-3

10-2

10-1

100

|b|

0 50 100 150 200

t/ωr

0.6
0.4
0.2
0.0
0.2
0.4
0.6

<
D
>

Figure 3.34: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉 for a case of strong excitation. Produced by
solving equations (3.2.2.8) - (3.2.2.6). Parameters used are U0/ωr = −1 × 10−5,
∆ab = 0, αinit = 10, Na = 5 × 104, εµ = 0, κ = 10−4, γ = 1.5 × 10−2, including
recoil.
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Figure 3.35: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 11.61ω−1
r , (c) t = 20.4ω−1

r in the case of
strong excitation. Parameters used and equations solved are as in Figure 3.34.
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Figure 3.36: Snapshots of population inversion distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 11.61ω−1
r , (c) t = 20.4ω−1

r in the case of
strong excitation. Parameters used and equations solved are as in Figure 3.34.
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Chapter 4

Three level atoms: Λ con�guration

The ladder con�guration considered in Chapter 3 is not the only energy level

schema for three level atoms which may yield interesting results when the e�ects

of atomic motion are considered. There exist interesting results also for the case

of a three level "Lambda" (Λ) con�guration, wherein there exist two relatively

close energy levels which share a common transition to a third much higher en-

ergy level, as shown schematically in Figure 4.1.

|3> 

|2> 

|1> 

ω31 

ω32 

Figure 4.1: Simpli�ed Three level Λ Energy Level Diagram
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4.1 Three level Maxwell-Bloch equations in a Λ

con�guration

As was the case for the ladder con�guration, two counterpropagating �elds of

degenerate frequency are used in the Λ system as well. The optical electric �eld,

~E can once again be written as

~E =
(
Aa(t)e

i(kz−ωt) + Ab(t)e
i(−kz−ωt) + c.c.

)
ê , (4.1.0.1)

to which the response of each atom's dipole moment to the above �eld would to

be of the form

~d =
(
µaσ31e

i(kz−ωt) + µbσ32e
i(−kz−ωt) + c.c.

)
ê. (4.1.0.2)

The dipole moment for the Λ three level system is given once again by equation

(3.1.0.3). As was the case with both two level atoms and three level ladder

con�guration atoms, the dipole matrix terms with matching indices are always

zero, so ~pjj = 0. It is also assumed that direct transitions between |1〉 and |2〉

are also forbidden, i.e. p21 = p12 = 0. Furthermore, it has been assumed that

the pump and probe optical beams are both su�ciently detuned from resonance

that the highest energy level |3〉 has negligible population, so that we may write

ρ33 = 0. Lastly, it is once again assumed that the dipole matrix terms may be

taken to be real, with any complex quantity absorbed into the density matrix

elements. We may then write

~p13 = ~p31 = µaê & ~p23 = ~p32 = µbê , (4.1.0.3)

where the polarisation of the dipole moment has been taken to be parallel to that

of the optical pump and probe beams, i.e. ê. The dipole moment for a three level

atom can therefore be rewritten as

~d = (µaρ31 + µbρ32 + c.c.) ê (4.1.0.4)

154



CHAPTER 4. THREE LEVEL ATOMS: Λ CONFIGURATION

Again, as was the case in both the two level atom and three level ladder

con�guration, substituting integer values into (2.2.4.14) produces equations for

the coherence and population terms for the system.

4.1.1 Coherence terms

Substituting j = 3 & k = 1 into (2.2.4.14) produces the �rst of the three level, Λ

con�guration coherence equations

∂ρ31

∂t
= −(γ31 + iω31)ρ31+

i ~E

~
· (~p31ρ11 + ~p32ρ21 + ~p33ρ31)

−i
~E

~
· (~p11ρ31 + ~p21ρ32 + ~p31ρ33) . (4.1.1.1)

Remembering our previous statements that ρjj = ρ21 = ρ12 = 0, ~p13 = ~p31 = µaê

& ~p23 = ~p32 = µbê the above simpli�es to

∂ρ31

∂t
= −(γ31 + iω31)ρ31 +

i ~E

~
· (µaρ11 + µbρ21) ê . (4.1.1.2)

In comparing (4.1.0.4) to (4.1.0.2) we see that for both conditions to hold

true, we must be able to equate terms such that

ρ31 = σ31e
−iωt (4.1.1.3)

ρ32 = σ32e
−iωt (4.1.1.4)

ρ21 = σ21 . (4.1.1.5)

Substituting for ρ in the above using (4.1.1.3) gives

∂ (σ31e
−iωt)

∂t
= −(γ31 + iω31)σ31e

−iωt +
i ~E

~
· (µaρ11 + µbσ21) ê (4.1.1.6)
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and consequently

∂σ31

∂t
= −(γ31 − i(ω − ω31))σ31 +

i ~E

~
·
(
µaρ11e

iωt + µbσ21e
iωt
)
ê . (4.1.1.7)

De�ning the detuning as ∆a = ω − ω31 and substituting for ~E using (4.1.0.1)

gives

∂σ31

∂t
=− (γ31 − i∆a)σ31

+
i

~
(
Aae

i(kz−ωt) + Abe
i(−kz−ωt) + c.c.

)
ê ·
(
µaρ11e

iωt + µbσ21e
iωt
)
ê ,

(4.1.1.8)

which, after applying the RWA (which once again eliminates terms which vary as

±einωt for n > 1), reduces to

∂σ31

∂t
=− (γ31 − i∆a)σ31

+
i

~
(
Aae

ikz + Abe
−ikz) (µaρ11 + µbσ21) . (4.1.1.9)

As the system is assumed to be closed, i.e. ρ11 + ρ22 = 1 (where we have

already stated that the population of the highest energy level is taken to be

approximately zero, ρ33 ≈ 0), we can de�ne the population di�erence of the three

level Λ con�guration system to be

D =
1

2
(ρ11 − ρ22) . (4.1.1.10)

From this de�nition substitutions for the two population terms may be produced,

i.e.
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ρ11 =
1

2
+D & ρ22 =

1

2
−D . (4.1.1.11)

Substituting the above into (4.1.1.12) gives the equation for the evolution of the

coherence between level |1〉 and |3〉

∂σ31

∂t
=− (γ31 − i∆a)σ31

+
i

~
(
Aae

ikz + Abe
−ikz)(µa(1

2
+D

)
+ µbσ21

)
. (4.1.1.12)

Following the same derivation steps, the equations for the coherences between

levels |2〉 and |3〉 and |1〉 and |2〉 can be shown to be

∂σ32

∂t
=− (γ32 − i∆b)σ31

+
i

~
(
Aae

ikz + Abe
−ikz)(µaσ12 + µb

(
1

2
−D

))
(4.1.1.13)

and

∂σ21

∂t
=− (γ21 − i∆ab)σ21

+
i

~
((
A∗ae

−ikz + A∗be
ikz
)
µbσ31 −

(
Aae

ikz + Abe
−ikz)µaσ23

)
. (4.1.1.14)

In the three level ladder con�guration the intermediate level |2〉 was assumed

to have negligible population, thus coherence terms for transitions involving that

level were adiabatically eliminated under the assumption that such coherences

would respond rapidly to changes in the two-photon coherence. A similar situa-

tion is assumed to be the case here, where coherences for transitions involving the

highest energy level |3〉, which has negligible population, are assumed to respond

rapidly to the coherence term σ21 and thus may be adiabatically eliminated to
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produce

σ31 =
−1

~∆a

(
Aae

ikz + Abe
−ikz)(µa(1

2
+D

)
+ µbσ21

)
(4.1.1.15)

σ32 =
−1

~∆b

(
Aae

ikz + Abe
−ikz)(µaσ12 + µb

(
1

2
−D

))
. (4.1.1.16)

Where, as we are operating in the far detuned regime, we have neglected the

coherence decay terms as ∆a >> γ31 & ∆b >> γ32. Substituting the two adia-

batically eliminated coherence terms into the equation for the coherence term σ21

gives

∂σ21

∂t
=− (γ21 − i∆ab)σ21

+
iµb
~
(
A∗ae

−ikz + A∗be
ikz
)[ −1

~∆a

(
Aae

ikz + Abe
−ikz)(µa(1

2
+D

)
+ µbσ21

)]
− iµa

~
(
Aae

ikz + Abe
−ikz)[ −1

~∆b

(
Aae

ikz + Abe
−ikz)(µaσ12 + µb

(
1

2
−D

))]
,

(4.1.1.17)

which may be rearranged and simpli�ed to

∂σ21

∂t
=− (γ21 − i∆ab)σ21

− i

~2∆a∆b

|
(
Aae

ikz + Abe
−ikz) |2µaµb(D (∆a + ∆b)−

1

2
∆ab

)
− i

~2∆a∆b

|
(
Aae

ikz + Abe
−ikz) |2 (∆bµ

2
b −∆aµ

2
a

)
σ21 . (4.1.1.18)

4.1.2 Population terms

Substituting j& k = 1 and j& k = 2 into (2.2.4.14) and following a similar

procedure to that used for the coherence terms produces the equations governing
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the evolution of the two population terms ρ11 & ρ22

∂ρ11

∂t
=
iµa
~
((
A∗ae

−ikz + A∗be
ikz
)
σ31 −

(
Aae

ikz + Abe
−ikz)σ13

)
(4.1.2.1)

∂ρ22

∂t
=
iµb
~
((
A∗ae

−ikz + A∗be
ikz
)
σ32 −

(
Aae

ikz + Abe
−ikz)σ23

)
. (4.1.2.2)

It may be noted that population decay terms γ33,22,11 are absent from the above

expressions. In Chapter 2 the population can decay from the excited state |2〉 to

the ground state |1〉 directly through spontaneous emission. This is encapsulated

by the term γ22ρ22. In Chapter 3, the population may decay from the excited

state |3〉 through the intermediate state |2〉 to the ground state |1〉, a process

described by inclusion of the term γ33ρ33 in the population equations. Direct

decay from level |3〉 to level |1〉 in the ladder con�guration is forbidden under

the selection rules. So it is with direct transitions from level |2〉 to level |1〉 in

the three level Λ con�guration. As it is assumed that the system is far enough

detuned from �eld atom resonance that the upper state population ρ33 remains

e�ectively zero, no spontaneous emission or associated decay in population may

take place, thus γ33,22,11 = 0.

From the de�nition of the population di�erence for the three level Λ con�gu-

ration given in (4.1.1.10) it can easily be seen that ∂D
∂t

= 1
2

(
∂ρ11
∂t
− ∂ρ22

∂t

)
. Plugging

(4.1.2.1) and (4.1.2.2) into this relation gives

∂D

∂t
=

1

2

(
iµa
~
((
A∗ae

−ikz + A∗be
ikz
)
σ31 −

(
Aae

ikz + Abe
−ikz)σ13

)
−iµb

~
((
A∗ae

−ikz + A∗be
ikz
)
σ32 −

(
Aae

ikz + Abe
−ikz)σ23

) )
(4.1.2.3)

which, after substitution of the one-photon coherence terms σ32, σ31 gives
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∂D

∂t
=
iµa
2~
(
A∗ae

−ikz + A∗be
ikz
) [ −1

~∆a

(
Aae

ikz + Abe
−ikz)(µa(1

2
+D

)
+ µbσ21

)]
−iµa

2~
(
Aae

ikz + Abe
−ikz) [ −1

~∆a

(
A∗ae

−ikz + A∗be
ikz
)(
µa

(
1

2
+D

)
+ µbσ12

)]
−iµb

2~
(
A∗ae

−ikz + A∗be
ikz
) [ −1

~∆b

(
Aae

ikz + Abe
−ikz)(µb(1

2
−D

)
+ µaσ12

)]
+
iµb
2~
(
Aae

ikz + Abe
−ikz) [ −1

~∆b

(
A∗ae

−ikz + A∗be
ikz
)(
µb

(
1

2
−D

)
+ µaσ21

)]
,

(4.1.2.4)

which can be further simpli�ed to the form

∂D

∂t
=
−iµaµb
2~∆a∆b

(∆a + ∆b)|
(
Aae

ikz + Abe
−ikz) |2(σ21 − σ12). (4.1.2.5)

4.1.3 Momentum and position equations

The force experienced by the jth atom is once more given by

∂pj
∂t

= ~d · ∂
~E

∂z
. (4.1.3.1)

Substituting for ρ in equation (4.1.0.4) using (4.1.1.3) allows the equation for an

atom's dipole moment to be written as

~d =
(
µaσ31e

−iωt + µbρ32e
−iωt + c.c.

)
ê . (4.1.3.2)

Substituting for the optical electric �eld, ~E, using equation (4.1.0.1), and the

atomic dipole, ~dj, using equation (4.1.3.2), in the above equation for the force,

equation (4.1.3.1), and applying the RWA gives
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∂pj
∂t

= −ik
(

µa
(
A∗ae

−ikz − A∗beikz
)
σ31 − µa

(
Aae

ikz − Abe−ikz
)
σ13

+µb
(
A∗ae

−ikz − A∗beikz
)
σ32 − µb

(
Aae

ikz − Abe−ikz
)
σ23

)
.

(4.1.3.3)

By substituting for the coherence terms, σ32 & σ31, the equation for the momen-

tum of the jth atom becomes

∂pj
∂t

=
ik

~∆a∆b

(
− µaµb∆ab

(
|Aa|2 − |Ab|2

)
( σ21 − σ12)

+
(
A∗aAbe

−2ikz − AaA∗be2ikz
)[

∆bµ
2
a + ∆aµ

2
b + 2D

(
∆bµ

2
a −∆aµ

2
b

)
+ µaµb (∆a + ∆b) (σ21 + σ12)

] )
.

(4.1.3.4)

The position equation is given by the same equation as for the three level

ladder con�guration

∂zj
∂t

=
pj
m

. (4.1.3.5)

4.1.4 Field equations

The equations describing the evolution of the �eld amplitudes for the optical

pump and probe beams are derived in the same manner as for the three level

ladder con�guration, by solving the wave equation

∇2 ~E − 1

c2

∂2 ~E

∂t2
=

1

ε0c2

∂2 ~P

∂t2
. (4.1.4.1)

As the expression for ~E, i.e. equation (4.1.0.1) for the three level Λ con�guration
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is identical to that of both the two level and three level ladder terms (equations

(2.4.1.2) and (3.1.0.1) respectively), the left hand of the wave equation produces

the same result as before, namely

∇2 ~E − 1

c2

∂2 ~E

∂t2
=

(
2iω

c2

∂Aa
∂t

ei(kz−ωt) +
2iω

c2

∂Ab
∂t

ei(−kz−ωt) + c.c.

)
ê . (4.1.4.2)

Substituting the dipole moment (4.1.3.2) into the right hand side of this wave

equation produces

∂2 ~P

∂t2
=

∂2

∂t2

(
n∑
j

~djδ(r − rj(t))

)

=
n∑
j

∂2~dj
∂t2

δ(r − rj(t))

=
n∑
j

∂2

∂t2

(
µaσ31e

−iωt + µbσ32e
−iωt + c.c

)
ê δ(r − rj(t)) , (4.1.4.3)

and expanding the term
∂2 ~dj
∂t2

gives

∂2~dj
∂t2

=
∂2

∂t2

(
µaσ31e

−iωt + µaσ32e
−iωt + c.c

)
ê

=
∂

∂t

(
µa

(
∂σ31

∂t
− iωσ31

)
e−iωt + µb

(
∂σ32

∂t
− iωσ32

)
e−iωt + c.c

)
ê

=

(
µa

(
∂2σ31

∂t2
− 2iω

∂σ31

∂t
− ω2σ31

)
e−iωt

+ µb

(
∂2σ32

∂t2
− 2iω

∂σ32

∂t
− ω2σ32

)
e−iωt + c.c

)
ê . (4.1.4.4)

Applying the SVEA to the above and substituting it in to the right hand side of

(4.1.4.1) gives
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(
2iω

c2

∂Aa
∂t

ei(kz−ωt) +
2iω

c2

∂Ab
∂t

ei(−kz−ωt) + c.c.

)
ê

= − 1

ε0c2

n∑
j

(
µaω

2σ31e
−iωt + µbω

2σ32e
−iωt + c.c

)
δ(r − rj(t)) ê . (4.1.4.5)

Taking the dot product of both sides with ê, multiplying through by ei(−kz+ωt),

rearranging constant terms to the right hand side and applying the RWA leaves

(
∂Aa
∂t

+
∂Ab
∂t

e−2ikz

)
=

iω

2ε0

n∑
j

(
µaω

2σ31e
−ikz + µbω

2σ32e
−ikz) δ(r − rj(t)) .

(4.1.4.6)

By integrating this expression over the length L and area A of the atomic sample,

then the Dirac delta function on the right hand side is applied, the expression

∂Ab
∂t
e−2ikz averages out to zero and the term ∂Aa

∂t
, which has been assumed not to

vary, becomes A L∂Aa
∂t

. By then multiplying the right hand side by N
N
, using the

de�nitions n = N
A L

, 1
N

∑n
j and rearranging terms an expression for the evolution

of the probe amplitude is given

∂Aa
∂t

=
iωn

2ε0

〈
µaω

2σ31e
−ikz + µbω

2σ32e
−ikz〉 . (4.1.4.7)

The steady state values for the coherence terms σ31 and σ32, equations (4.1.1.15)

and (4.1.1.16) respectively, are then substituted into the above expression. By re-

organising terms and extracting common factors, the expression for the evolution

of the probe beam becomes
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∂Aa
∂t

= − iωn

2~ε0∆a∆b

〈(
Aa + Abe

−2ikz
)( 1

2

(
∆bµ

2
a + ∆aµ

2
b

)
+D

(
∆bµ

2
a −∆aµ

2
b

)
+µaµb (∆bσ21 + ∆aσ12)

)〉
. (4.1.4.8)

As was done for the the two level and three level ladder cases, the assumption

is made that the �eld amplitudes evolve on a timescale much longer than the

time taken for a cavity round-trip so that the e�ects of losses, �eld injection and

detuning from cavity resonance can be represented by introduction of the terms

+(iδc − κ)Aa + κAeqa . With these terms added to (4.1.4.9), the equation for the

evolution of the probe beam �eld becomes

∂Aa
∂t

= − iωn

2~ε0∆a∆b

〈(
Aa + Abe

−2ikz
)( 1

2

(
∆bµ

2
a + ∆aµ

2
b

)
+D

(
∆bµ

2
a −∆aµ

2
b

)
+µaµb (∆bσ21 + ∆aσ12)

)〉
+ (iδc − κ)Aa + κAeqa (4.1.4.9)

By multiplying equation (4.1.4.5) through by ei(kz+ωt) and following a similar

process to the once just described an expression for the evolution of the pump

amplitude can also be found

∂Ab
∂t

= − iωn

2~ε0∆a∆b

〈(
Aae

2ikz + Ab
)( 1

2

(
∆bµ

2
a + ∆aµ

2
b

)
+D

(
∆bµ

2
a −∆aµ

2
b

)
+µaµb (∆bσ21 −∆aσ12)

)〉
+ (iδc − κ)Ab + κAeqb (4.1.4.10)
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4.2 CARL in a three level Λ con�guration

So as to make the results for the three level Λ con�guration consistent with those

of the three level ladder con�guration, it is convenient to use the same scaling.

However, the equations derived above contain the term 1
∆b
, a term which was

taken to be approximately equal to −1
∆a

in the ladder equations. There exist two

detuning regimes for which it is simple to substitute the detuning term ∆b for an

approximately equivalent expression in terms of ∆a.

The �rst of these regimes is where the two lower state energy levels |1〉 & |2〉

are su�ciently close together and the detunings ∆a and ∆a are su�ciently large

that the assumption is made that ω21 = −∆ab = ∆b −∆a ≈ 0 and so ∆b ≈ ∆a.

A simpli�ed energy level diagram for such a system is displayed in Figure 4.2.

This detuning schema will be referred to as the degenerate Λ con�guration.

The second detuning regime in which it is simple to substitute out for ∆b,

is that in which the two ground state energy levels are split relativly far apart

from one another. If the magnitude of the detuning of the degenerate pump and

probe �elds from the transition frequencies ω31 & ω32 are equal, i.e. |∆a| ≈ |∆b|,

then it can be assumed that ∆b ≈ −∆a and ∆ab ≈ 2∆a. A simpli�ed energy

level diagram for this second detuning system is displayed in Figure 4.15. This

detuning schema will be referred to as the non-degenerate Λ con�guration.

Both the degenerate and non-degenerate Λ con�gurations allow for the de-

tuning term to be substituted out, leaving only one additional hurdle before the

scaling terms (3.1.8.1) - (3.1.8.3) may be applied. In the three level ladder model,

the terms µa and µb were expressed in the form µaµb = µ2, µ2
a + µ2

b = 2µ2 and

µ2
a − µ2

b = −µ2εµ. In doing so the governing equations for the ladder model were

given a form where the scaling terms in equations (3.1.8.1) - (3.1.8.3) could be

applied. Performing similar substitutions for µa and µb in the Λ three level equa-

tions (4.2.1.2), (4.1.2.5), (4.1.3.4), (4.1.3.5), (4.1.4.9), & (4.1.4.10) allows them to

be scaled in the same manner.
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4.2.1 Accounting for the AC Stark Shift

De�ning

µa = µ+
1

2
∆µ & µb = µ− 1

2
∆µ , (4.2.1.1)

then for the Λ CARL equations the AC Stark shift term is

εµ =
∆µ

µ
. (4.2.1.2)

Substituting the above expressions into the three level Λ equations (4.2.1.2),

(4.1.2.5), (4.1.3.4), (4.1.3.5), (4.1.4.9), & (4.1.4.10) with the assumption that

εµ << 1 gives them the form

∂σ21

∂t
=− (γ21 − i∆ab)σ21

− iµ2

~2∆a∆b

|
(
Aae

ikz + Abe
−ikz) |2(D (∆a + ∆b)−

1

2
∆ab

)
− iµ2

~2∆a∆b

|
(
Aae

ikz + Abe
−ikz) |2(∆ab + εµ (∆a + ∆b)

)
σ21 (4.2.1.3)

∂D

∂t
=
−iµ2

2~∆a∆b

(∆a + ∆b)|
(
Aae

ikz + Abe
−ikz) |2(σ21 − σ12) (4.2.1.4)

∂pj
∂t

=
iµ2k

~∆a∆b

(
−∆ab

(
|Aa|2 − |Ab|2

)
(σ21 − σ12)

+
(
A∗aAbe

−2ikz − AaA∗be2ikz
) [

(∆a + ∆b)(1 + 2Dεµ + σ21 + σ12)

−∆ab(2D + εµ)
] )

(4.2.1.5)
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∂zj
∂t

=
pj
m

(4.2.1.6)

∂Aa
∂t

= − iωµ2n

2~ε0∆a∆b

〈(
Aa + Abe

−2ikz
)( 1

2
((∆b + ∆a)−∆abεµ)

+D ((∆b + ∆a) εµ −∆ab)

+ (∆bσ21 + ∆aσ12)

)〉
+ (iδc − κ)Aa + κAeqa (4.2.1.7)

∂Ab
∂t

= − iωµ2n

2~ε0∆a∆b

〈(
Aae

2ikz + Ab
)( 1

2
((∆b + ∆a)−∆abεµ)

+D ((∆b + ∆a) εµ −∆ab)

+ (∆bσ21 + ∆aσ12)

)〉
+ (iδc − κ)Ab + κAeqb (4.2.1.8)
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4.2.2 Degenerate Λ con�guration

The �rst con�guration considered is that in which the two energy levels |1〉 and

|2〉 are approximately degenerate, i.e. ~ω31 ≈ ~ω32. In such a system ω21 =

−∆ab ≈ 0, ω31 ≈ ω32 and thus by de�nition ∆b ≈ ∆a. In this con�guration the

Λ three level equations take the form

Δ b 

|3> 

|2> |1> 

Δ    ≈ 0 ab 

ω 

Δ   ≈ ∆ a b 

Figure 4.2: Simpli�ed Three Level Λ Energy Level Diagram: The Λ energy level
structure for the case where the two lower energy levels are approximately degen-
erate, so the single transition detunings are also approximately equal.
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∂σ21

∂t
= −γ21σ21 −

i2µ2

~2∆a

|
(
Aae

ikz + Abe
−ikz) |2 (D − εµσ21) (4.2.2.1)

∂D

∂t
= − iµ2

~∆a

|
(
Aae

ikz + Abe
−ikz) |2(σ21 − σ12) (4.2.2.2)

∂pj
∂t

=
i2µ2k

~∆a

(
A∗aAbe

−2ikz − AaA∗be2ikz
)

(1 + 2εµD + σ21 + σ12) (4.2.2.3)

∂zj
∂t

=
pj
m

(4.2.2.4)

∂Aa
∂t

=− iωµ2n

2~ε0∆a

〈(
Aa + Abe

−2ikz
)

(1 + 2εµD + σ21 + σ12)

〉
+ (iδc − κ)Aa + κAeqa (4.2.2.5)

∂Ab
∂t

=− iωµ2n

2~ε0∆a∆b

〈(
Aae

2ikz + Ab
)

(1 + 2εµD + σ21 + σ12)

〉
+ (iδc − κ)Ab + κAeqb (4.2.2.6)
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4.2.2.1 Scaling the three level Λ equations

In the above form, the Λ equations can now be scaled using the same method as

for the three level ladder con�guration. Substituting the scaling terms (3.1.8.1) -

(3.1.8.3) into the above equations (4.2.2.1) - (4.2.2.6) gives them the form

∂σ21

∂t
= −γ21σ21 − iU0|

(
αae

ikz + αbe
−ikz) |2 (D − εµσ21) (4.2.2.7)

∂D

∂t
= −iU0|

(
αae

ikz + αbe
−ikz) |2(σ21 − σ12) (4.2.2.8)

∂pj
∂t

= i2~kU0

(
α∗aαbe

−2ikz − αaα∗be2ikz
)

(1 + 2εµD + σ21 + σ12) (4.2.2.9)

∂zj
∂t

=
pj
m

(4.2.2.10)

∂αa
∂t

= −iNU0

〈(
αa + αbe

−2ikz
)

(1 + 2εµD + σ21 + σ12)

〉
+ (iδc − κ)αa + καeqa

(4.2.2.11)

∂αb
∂t

= −iNU0

〈(
αae

2ikz + αb
)

(1 + 2εµD + σ21 + σ12)

〉
+ (iδc − κ)αb + καeqb

(4.2.2.12)

170



CHAPTER 4. THREE LEVEL ATOMS: Λ CONFIGURATION

4.2.2.2 Solving for the population inversion

By following the same procedure as for the two level and three level ladder con�g-

uration, an expression can be produced for the value of the population inversion,

D, for a given pump �eld by solving equations (4.2.2.7) and (4.2.2.8). Assuming

idealised conditions where γ21 = 0, αa = 0 and ∂αb
∂t

= 0, the equations become

∂σ21

∂t
= −iU0|αb|2 (D − εµσ21) (4.2.2.13)

∂D

∂t
= −iU0|αb|2(σ21 − σ12) . (4.2.2.14)

Di�erentiating this equation for D gives

∂2D

∂t2
= −iU0|αb|2

(
∂σ21

∂t
− ∂σ12

∂t

)
= −iU0|αb|2

([
− iU0|αb|2 (D − εµσ21)

]
−
[
iU0|αb|2 (D − εµσ12)

])
= −iU2

0 |αb|4
(

2D − εµ(σ21 + σ12)
)
. (4.2.2.15)

Di�erentiating this again yields

∂3D

∂t3
= −iU2

0 |αb|4
(

2
∂D

∂t
− εµ

(
∂σ21

∂t
+
∂σ12

∂t

))
= −iU2

0 |αb|4
(

2
∂D

∂t
− εµ

([
− iU0|αb|2 (D − εµσ21)

]
+
[
iU0|αb|2 (D − εµσ12)

]))
= −iU2

0 |αb|4
(

2
∂D

∂t
− iU0|αb|2(σ21 − σ12)ε2µ

)
= −iU2

0 |αb|4
(

2
∂D

∂t
+ ε2µ

∂D

∂t

)
= −iU2

0 |αb|4
(
2 + ε2µ

) ∂D
∂t

. (4.2.2.16)
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Assuming a solution for the above of the form D ∝ eλt it can be seen that

either

λ = 0

or

λ = ±i
√
U2

0 |αb|4 (2 + εµ) , (4.2.2.17)

so,

D = Ae0 +B cos(ωrt) + c sin(ωrt) , (4.2.2.18)

where ωr =
√
U2

0 |αb|4 (2 + εµ). At t = 0,

D = D0 ⇒ D0 = A+B ⇒ A = D0 −B . (4.2.2.19)

Furthermore, σ21|t=0 = 0, so ∂D
∂t

∣∣
t=0

= 0. Therefore

∂D

∂t
= −ωrB sin(ωrt) + ωrC cos(ωrt)

∂D

∂t

∣∣∣∣
t=0

= ωrC = 0

⇒ C = 0 . (4.2.2.20)

Using C = 0 in the second derivative of D, it can be seen that

∂2D

∂t2
= −ω2

rB cos(ωrt)

∂2D

∂t2

∣∣∣∣
t=0

= −ω2
rB . (4.2.2.21)
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Equating the above with equation (4.2.2.15) at t = 0 it can then be seen that

−ω2
rB = −2U2

0 |αb|4D0

B =
2U2

0 |αb|4

ω2
r

D0 . (4.2.2.22)

The solution for D is therefore

D = D0 −
2U2

0 |αb|4

ω2
r

D0 +
2U2

0 |αb|4

ω2
r

D0 cos(ωrt) . (4.2.2.23)

Averaging over t, the term cos(ωrt) vanishes, reducing the expression to

D =

(
1− 2U2

0 |αb|4

ω2
r

)
D0

=

(
1− 2U2

0 |αb|4

U2
0 |αb|4 (2 + εµ)

)
D0

=

(
1− 2

(2 + εµ)

)
D0

=

(
1− 1(

1 + εµ
2

))D0

=

(
1−

(
1 +

εµ
2

)−1
)
D0 . (4.2.2.24)

The term
(
1 + εµ

2

)−1
may be expanded using (1 + x)n ≈ 1 + xn. This means

that the above expression may be written as

D =
(

1−
(

1− εµ
2

))
D0

=
εµ
2
D0 . (4.2.2.25)

From this equation it can be seen that, for the limit described above, the

population inversion, D, is not dependent upon the intensity of the pump �eld.
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4.2.2.3 Decoupling of internal and external degrees of freedom

In the somewhat idealised case wherein γ21 = 0 & εµ = 0, the equation for the

evolution σ21 (4.2.2.7) simpli�es to

∂σ21

∂t
= −iU0|

(
αae

ikz + αbe
−ikz) |2D . (4.2.2.26)

The terms U0, |
(
αae

ikz + αbe
−ikz) |2 and D are all real at every point in time. As

a consequence of this the coherence, σ21, will be purely imaginary at all points in

time (Re(σ21) = 0). Equations (4.2.2.9), (4.2.2.11) and (4.2.2.12) contain terms

σ21 + σ12 = 2Re(σ21), which will be zero in this limit as a result of the coherence

being always imaginary. These equations then take the form

∂pj
∂t

= i2~kU0

(
α∗aαbe

−2ikz − αaα∗be2ikz
)

(4.2.2.27)

∂αa
∂t

= −iNU0

〈(
αa + αbe

−2ikz
)〉

+ (iδc − κ)αa + καeqa (4.2.2.28)

∂αb
∂t

= −iNU0

〈(
αae

2ikz + αb
)〉

+ (iδc − κ)αb + καeqb (4.2.2.29)

Looking at the equation for the atomic momentum, equation (4.2.2.27), it can

be seen that for this con�guration the evolution of both the position and momen-

tum of each atom has been decoupled from the internal degrees of freedom, i.e.

the coherence and population di�erence variables D & σ21. As a consequence of

this, when the atoms become excited to the point that the population inversion

(and as a consequence the coherence) approaches zero, the bunching force expe-

rienced by the atoms does not similarly tend towards zero, in contrast to the case

of two-level atoms described in Chapter 2.
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Furthermore, in section 4.2.2.2 it was predicted that the population inver-

sion, and consequently the coherence, would experience oscillations as the system

evolved. The decoupling of the momentum from D & σ21 prevents oscillations

from in�uencing the evolution of the atomic momentum.

Figures 4.3 - 4.8 display the CARL instability in the Λ con�guration for initial

values of the population inversion of D0 = 1/2 and D0 = −1/2, which correspond

to initial population entirely in level |1〉 and |2〉 respectively. Figures 4.4 and 4.7

display the evolution of the atomic momentum, once again demonstrating the

atomic bunching which is at the heart of the CARL instability. The oscillations

predicted in section 4.2.2.2 can be observed in Figures 4.5(c) and 4.8(c)

However, the result of most interest for this con�guration is shown in Figures

4.9, 4.10 and 4.11. It can be seen clearly in Figures 4.9 and 4.10 that for an initial

value for the population inversion ofD0, the population does not evolve away from

the initial value. More importantly, and in contrast to two level CARL, it can

be seen from Fig. 4.9 that even with a constant value of zero for the population

inversion the system still experiences the CARL instability.

4.2.2.4 Linear analysis

In the limit discussed in the last section where the terms γ21 = εµ = κ = 0, the

equations for the atomic position, atomic momentum and probe �eld are given

by equations (4.2.2.27) (4.2.2.10) and (4.2.2.28) respectively. The stability of the

system can be understood better through the consideration of the growth of small

perturbation terms. Substituting the perturbation terms

z = z0 + δz(t) (4.2.2.30)

p = δp(t) (4.2.2.31)

αa = δαa(t) (4.2.2.32)

into the aforementioned equations gives:
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For the equation for atomic position

∂ (z0 + δz)

∂t
=
δp

m
, (4.2.2.33)

which simpli�es to

∂δz

∂t
=
δp

m
(4.2.2.34)

as z0 is constant.

For the equation for atomic momentum

∂δp

∂t
= i2~kU0

(
δα∗aαbe

−2ik(z0+δz) − δαaα∗be2ik(z0+δz)
)

(4.2.2.35)

= i2~kU0

(
δα∗aαbe

−2ikz0e−2ikδz − δαaα∗be2ikz0e2ikδz
)
. (4.2.2.36)

As the perturbation term δz is small, 1 >> δz , when the terms e±2ikδz are

expanded out using the Maclaurin series, only the �rst term need be retained, so

that e±2ikδz ≈ 1± 2ikδz. The above equation therefore becomes

∂δp

∂t
= i2~kU0

(
δα∗aαbe

−2ikz0 (1− 2ikδz)− δαaα∗be2ikz0 (1 + 2ikδz)
)
. (4.2.2.37)

Retaining only terms linear in the perturbation variables, the linear equation for

the evolution of the momentum perturbation term becomes

∂δp

∂t
= i2~kU0

(
δα∗aαbe

−2ikz0 − δαaα∗be2ikz0
)
. (4.2.2.38)
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For the equation for the probe �eld

∂δαa
∂t

= −iNU0

〈
δαa + αbe

−2ik(z0+δz)
〉

+ iδcδαa (4.2.2.39)

= −iNU0

(
δαa + αb

〈
e−2ikz0e−2ikδz

〉 )
+ iδcδαa . (4.2.2.40)

Making the same expansion of the term e−2ikδz as before gives

∂δαa
∂t

= −iNU0

(
δαa + αb

〈
e−2ikz0

〉
− i2kαb

〈
δze−2ikz0

〉 )
+ iδcδαa . (4.2.2.41)

As the atoms are initially uniformly spaced, the term αb〈e−2ikz0〉 averages to zero,

leaving

∂δαa
∂t

= −iNU0

(
δαa − i2kαb

〈
δze−2ikz0

〉 )
+ iδcδαa . (4.2.2.42)

The equations for the three perturbation terms are then (4.2.2.34), (4.2.2.38)

and (4.2.2.42). The evolution of the probe �eld perturbation term can be more

readily understood through de�ning two additional terms describing bunching

and momentum �uctuations respectively i.e.

b = −i〈δze−2ikz0〉 (4.2.2.43)

and

P =

〈
δp

m
e−2ikz0

〉
. (4.2.2.44)

Substituting for b in (4.2.2.42) leaves
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∂δαa
∂t

= −iNU0

(
δαa + 2kαbb

)
+ iδcδαa . (4.2.2.45)

Di�erentiating the equation for b produces

∂b

∂t
= −i

〈
∂δz

∂t
e−2ikz0

〉
(4.2.2.46)

into which may then be substituted the equation for the spatial perturbation

term, equation (4.2.2.34), to give

∂b

∂t
= −i

〈
δp

m
e−2ikz0

〉
. (4.2.2.47)

Substituting for P using equation (4.2.2.44) simpli�es the equation to

∂b

∂t
= −iP . (4.2.2.48)

The evolution of P is then described by

∂P

∂t
=

1

m

〈
∂δp

∂t
e−2ikz0

〉
. (4.2.2.49)

The term ∂δp
∂t

is then substituted for using equation (4.2.2.38) to give

∂P

∂t
=

1

m

〈(
i2~kU0

(
δα∗aαbe

−2ikz0 − δαaα∗be2ikz0
))
e−2ikz0

〉
=
i2~kU0

m

(
δα∗aαb

〈
e−4ikz0

〉
− δαaα∗b

)
. (4.2.2.50)
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The term e−4ikz0 averages out to zero as the atoms are initially evenly spaced, so

the equation simpli�es to

∂P

∂t
= −i2~kU0α

∗
b

m
δαa . (4.2.2.51)

To investigate the growth of the probe �eld perturbation term, other pertur-

bation terms must �rst be eliminated and an equation produced depending only

upon δαa. To accomplish this, it is assumed that the cavity detuning term may

be set such that δc = NU0 so that the term −iNU0δαa is cancelled out, as in [4].

The equation for the probe �eld perturbation term, equation (4.2.2.45), is then

di�erentiated to produce

∂2δαa
∂t2

= −i2kNU0αb
∂b

∂t
. (4.2.2.52)

Substituting for ∂b
∂t

using equation (4.2.2.48) in the above produces

∂2δαa
∂t2

= −2kNU0αbP , (4.2.2.53)

which, after further di�erentiation and substitution using equation (4.2.2.51),

produces

∂3δαa
∂t3

=
i4N~k2U2

0 |αb|2

m
δαa . (4.2.2.54)

Looking for solutions of the form δαa ∝ eλt it can be seen that

λ3 =
i4N~k2U2

0 |αb|2

m
, (4.2.2.55)

or,
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λ =
3

√
i4N~k2U2

0 |αb|2
m

. (4.2.2.56)

The system experiences gain when the real component of λ is both nonzero

and positive. The cube root of i, 3
√
i, has three possible solutions: −i, e5π/6 and

eπ/6. The �rst solution, −i, has no real component, it is purely imaginary and will

thus not result in gain. The second solution, e5π/6, does have a real component

as e5π/6 = cos(5π/6) + i sin(5π/6). However, as cos(5π/6) = −
√

3/2 this yields a

negative value for the real component and will also not produce gain. The third

solution eπ/6 may be expanded out as cos(π/6)+ i sin(π/6), the real part of which

takes the value cos(π/6) =
√

3/2. As a real, nonzero, positive value, this term

will result in gain for the system. The gain experienced by the system should

then be given by the expression

Gain =

√
3

2

3

√
4N~k2U2

0 |αb|2
m

(4.2.2.57)
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4.2.2.5 Degenerate Λ Con�guration Results

Equation (4.2.2.57) predicts a very similar gain as to that for the two-photon

CARL gain equation (3.2.1.4), from Chapter 3. The key di�erence in need of

highlighting between the two-photon CARL gain equation and the degenerate

Λ CARL equation, is how the evolution of the population inversion a�ects each

system, which becomes important in the nonlinear regime of the interaction.

For the case of two level CARL, a signi�cant increase in the population in-

version leads to spontaneous emission and the subsequent heating of the sample

which results due to the stochastic nature of spontaneous emission events. Heat-

ing of the atomic sample reduces the e�ectiveness of the dipole force at bunching

the atoms and inhibits the gain mechanism as a result. Furthermore, for a strong

pump, the population inversion will average out to zero, resulting in decay of the

coherence and a drop in the bunching force itself, as shown in the force equation

for a two-level atom (equation (2.5.2.8)).

As was stated previously, in the case of the two-photon CARL system, the

growth of the population inversion poses less of a concern than in 2 level CARL

because the dipole force contains contributions from the single-photon coherences

σladder32 and σladder21 in addition to the two-photon coherence σladder31 . Thus, even

if the two-photon population inversion averages to zero, the dipole force which

bunches the atoms may be diminished but will not tend to zero.

For the degenerate Λ three level con�guration the population inversion does

not de�ne a di�erence in population between an excited state energy level and

a ground state energy level, but rather the di�erence in population between two

approximately degenerate ground state levels. The heating associated with spon-

taneous emission should therefore be greatly reduced. Furthermore, as discussed

in section 4.2.2.3, the equation for internal and external degrees of freedom have

become decoupled. With the equation for the atomic bunching no longer depen-

dent upon the coherence of the system, and by extension the population inversion,

even if D does tend towards zero, the force on the atoms (and consequently the

atomic bunching) will remain una�ected.

The lack of dependence of the CARL gain instability upon the population
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inversion is demonstrated by numerically solving equations (4.2.2.7) - (4.2.2.12)

and plotting the results for initial values of the population inversion of D0 = 1/2,

D0 = 0 and D0 = −1/2, which correspond to the atomic population being initially

entirely in level |1>, initially entirely in level |2>, and initially equally distributed

between levels |1〉 and |2〉, respectively.

Figure 4.3 plots (a) the pump intensity, |α|2, (b) the bunching term, |b|, and

(c) the average population inversion, 〈D〉 for the case of D0 = 1/2. As expected,

the bunching parameter and �eld intensity grow smoothly despite large Rabi

oscillations in the population inversion.

Figure 4.4 shows snapshots of the momentum vs position of each atom at

various times throughout the evolution of the instability. Comparing it with

Figure 4.3 illustrates the bunching e�ect responsible for the CARL instability.

Figure 4.5 displays snapshots of the population inversion vs. position of each

atom. It can be clearly seen that the Rabi oscillations shown in Figure 4.3 are the

result of each atoms population oscillating almost in unison, i.e. no substantial

population grating forms and the atoms experience identical evolution of the

population until the system reaches the oscillatory region following the initial

gain curve.
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Figure 4.3: Evolution of probe photon number, |αa|2, bunching parameter, |b|, and
mean population di�erence, 〈D〉, for the case where the two transition detunings
are equal, ∆a = ∆b, and the population of the system is initially in state |1〉,
D0 = 1/2. Produced by solving equations (4.2.2.1) - (4.2.2.6). Parameters used
are U0/ωr = 5 × 10−5, αb = 100, N = 1000, εµ = 0. It can be seen that, for
the degenerate Λ con�guration, the probe beam experiences gain and that the
atoms bunch, both due to the CARL instability, despite the presence of large
Rabi oscillations in the population which would be problematic in a two level
system.
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Figure 4.4: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used
and equations solved are as in Figure 4.3. The atoms aquire momentum and are
bunched by the dipole forces.

184



CHAPTER 4. THREE LEVEL ATOMS: Λ CONFIGURATION

0 1 2 3 4 5 6

θ

0.6
0.4
0.2
0.0
0.2
0.4
0.6

D

(a) : t/ωr=0.0

0 1 2 3 4 5 6

θ

0.6
0.4
0.2
0.0
0.2
0.4
0.6

D

(b) : t/ωr=20.0

0 1 2 3 4 5 6

θ

0.6
0.4
0.2
0.0
0.2
0.4
0.6

D

(c) : t/ωr=26.0

Figure 4.5: Snapshots of population di�erence distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used
and equations solved are as in Figure 4.3. The population experiences almost
uniform oscillations in the population.
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Figures 4.3, 4.4 and 4.5 shows the evolution of the system when the population

inversion has an initial value of one half (D0 = 1/2), i.e. initially the population

is uniformly in the |1〉 ground state as de�ned by Figure 4.2.

The equation for the gain in the probe beam which may be expected from the

system, equation (4.2.2.57), has no dependence upon the population inversion, D.

The system should then show no change in probe gain even when the simulation

is run for the same values but for the population entirely in ground state |2〉 (as

de�ned by Figure 4.2).

Figure 4.6 shows the evolution of (a) the pump intensity, |α|2, (b) the bunching

term, |b|, and (c) the average population inversion, 〈D〉 for the case of D0 = −1/2.

Comparing Figure 4.6, for which the population is initially entirely in state |2〉,

with Figure 4.3, for which the population is initially entirely in state |1〉, it can

be seen that the probe �elds behave identically, as expected. Furthermore, as

was the case for the system when D0 = 1/2, for D0 = −1/2 the �eld intensity and

bunching parameter once again grow smoothly despite the presence of large Rabi

oscillations in the population inversion.

Figure 4.7 displays the snapshots of the momentum vs. position of each atom

at various times throughout the evolution of the instability. By comparing Figure

4.7, for which D0 = −1/2, with Figure 4.6, for which D0 = −1/2, it can be seen

that the atoms move in an identical manner when only the initial value of the

population inversion is altered.

Figure 4.8 displays snapshots of the population inversion vs. position of each

atom. Although the population begins exclusively in level |2〉, it undergoes similar

oscillations to the case where the population begins exclusively in state |1〉, shown

in Figure 4.5. Again it can be seen that the atomic populations oscillate almost

in unison, so that no population grating forms.
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Figure 4.6: Evolution of probe photon number, |αa|2, bunching parameter, |b|, and
mean population di�erence, 〈D〉, for the case where the two transition detunings
are equal, ∆a = ∆b, and the population of the system is initially in state |2〉,
D0 = −1/2. Produced by solving equations (4.2.2.1) - (4.2.2.6). Parameters used
are U0/ωr = 5× 10−5, αb = 100, N = 1000, εµ = 0. When compared with Figure
4.3 it can be seen that changing the initial value of the population inversion from
D = 1/2 to D = −1/2 has no e�ect upon the evolution of the system or the gain
in the probe beam.
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Figure 4.7: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used
and equations solved are as in Figure 4.6. When compared with 4.4 it can be
seen that changing the initial value of the population inversion from D = 1/2 to
D = −1/2 has no e�ect upon the evolution of each atom's momentum.
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Figure 4.8: Snapshots of population di�erence distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used
and equations solved are as in Figure 4.6. When compared with 4.5 it can be
seen that changing the initial value of the population inversion from D = 1/2 to
D = −1/2 simply mirrors the behaviour of each atom's population inversion on
the y axis.
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Figure 4.9 plots (a) the pump intensity, |α|2, (b) the bunching term, |b|, and

(c) the average population inversion, 〈D〉 for the case of D0 = 0. Once again the

bunching parameter and �eld intensity grow smoothly, however in this instance

the population does not display Rabi oscillations. Instead the average population

inversion remains constant at zero and never evolves.

This behaviour is easily understood when equations (4.2.2.13) and (4.2.2.14)

are taken into consideration for εµ. For an initial value of D0, equation (4.2.2.13)

at t=0 is equal to zero itself. If the coherence is also initially zero, then (4.2.2.14)

never evolves from zero itself, hence no Rabi-oscillations.

Figure 4.10 then displays snapshots of momentum vs position for each atom

at various times throughout the evolution of the instability. Comparison between

Figure 4.7 and Figure 4.6 shows the bunching e�ect responsible for the CARL

instability once more.

Figure 4.11 displays snapshots of the population inversion vs. position for

each atom. As was explained above, not one of the atoms experiences any change

in population. The population remains equally spread across the two ground

state levels |1〉 and |2〉.

Figures 4.9, 4.10 and 4.11 demonstrate most clearly the decoupling of the

internal and external degrees of freedom for the degenerate Λ three level con�g-

uration, as the CARL gain instability proceeds with absolutely no evolution of

the population.
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Figure 4.9: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉, for the case where the two transition de-
tunings are equal, ∆a = ∆b, and the population of the system is initially equally
distributed between states |1〉 and |2〉, D0 = 0. Produced by solving equations
(4.2.2.1) - (4.2.2.6). Parameters used are U0/ωr = 5× 10−5, αb = 100, N = 1000,
εµ = 0. When compared with Figures 4.3 & 4.6 it can again be seen that changing
the initial value of the population inversion from D = 1/2 or D = −1/2 to D = 0
has no e�ect upon the evolution of the system or the gain in the probe beam.
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Figure 4.10: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used and
equations solved are as in Figure 4.9. When compared with Figures 4.4 & 4.7 it
can again be seen that changing the initial value of the population inversion from
D = 1/2 or D = −1/2 to D = 0 has no e�ect upon the evolution of each atom's
momentum.
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Figure 4.11: Snapshots of population di�erence distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used
and equations solved are as in Figure 4.9. It can be seen that without an initial
value for the population inversion, the oscillations observed in Figures 4.5 & 4.8
do not occur. If the population inversion has an initial value of zero then it does
not evolve away from its initial value.
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The preceding Figures, 4.3 - 4.11, demonstrate results for positive values of

the detuning ∆a. Equation (4.2.2.57), which describes the gain which may be

expected in the probe beam, varies as 3
√
U2

0 . As a result, the gain for the optical

probe beam should be symmetric in the sign of the detuning term ∆a, due to

U0 ∝ 1
∆a

.

It may be expected then that using the same values as in Figures 4.3, 4.6 and

4.9 save for a change in the sign of U0 should produce identical results. This is

seen to be the case when the aforementioned Figures 4.3, 4.6 and 4.9 are compared

to Figures 4.12, 4.13 and 4.14 respectively.
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Figure 4.12: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉, for the case where the two transition de-
tunings are equal, ∆a = ∆b, and the population of the system is initially in state
|1〉, D0 = 1/2. Produced by solving equations (4.2.2.1) - (4.2.2.6). Parameters
used are U0/ωr = −5× 10−5, αb = 100, N = 1000, εµ = 0. When compared with
Figure 4.3 it can be seen that the sign of U0 has no e�ect upon the output of the
system.
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Figure 4.13: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉, for the case where the two transition de-
tunings are equal, ∆a = ∆b, and the population of the system is initially in state
|1〉, D0 = −1/2. Produced by solving equations (4.2.2.1) - (4.2.2.6). Parameters
used are U0/ωr = −5× 10−5, αb = 100, N = 1000, εµ = 0. When compared with
Figure 4.6 it can be seen that the sign of U0 has no e�ect upon the output of the
system.
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Figure 4.14: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉, for the case where the two transition de-
tunings are equal, ∆a = ∆b, and the population of the system is initially in state
|1〉, D0 = 0. Produced by solving equations (4.2.2.1) - (4.2.2.6). Parameters used
are U0/ωr = −5 × 10−5, αb = 100, N = 1000, εµ = 0. When compared with
Figure 4.9 it can be seen that the sign of U0 has no e�ect upon the output of the
system.
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4.2.3 Non-degenerate Λ con�guration

The second con�guration considered is that in which the energy levels |1〉 and

|2〉 are non-degenerate. Instead the levels are separated and the optical pump

and probe �eld frequencies are tuned half way between the two levels, such that

∆b = −∆a and ∆ab = 2∆a. Using these substitutions in equations (4.2.1.3) -

(4.2.1.8) gives them the form

Δ b 

|3> 

|2> 

Δ a 
|1> 

-Δ ab 

ω 

Figure 4.15: Simpli�ed Three Level Λ Energy Level Diagram: The Λ energy level
structure for the lower energy states are non-degenerate.
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∂σ21

∂t
= −(γ21 − i2∆a)σ21 −

iµ2

~2∆a

|
(
Aae

ikz + Abe
−ikz) |2 (1− 2σ21) (4.2.3.1)

∂D

∂t
= 0 (4.2.3.2)

∂pj
∂t

=
i2µ2k

~∆a

( (
|Aa|2 − |Ab|2

)
(σ21 − σ12) +

(
A∗aAbe

−2ikz − AaA∗be2ikz
)

(εµ + 2D)
)

(4.2.3.3)

∂zj
∂t

=
pj
m

(4.2.3.4)

∂Aa
∂t

=− iωµ2n

2~ε0∆a

〈 (
Aa + Abe

−2ikz
)

(εµ + 2D + σ21 − σ12)
〉

+(iδc − κ)Aa + κAeqa

(4.2.3.5)

∂Ab
∂t

=− iωµ2n

2~ε0∆a

〈 (
Aae

2ikz + Ab
)

(εµ + 2D + σ21 − σ12)
〉

+(iδc − κ)Ab + κAeqb

(4.2.3.6)
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4.2.3.1 Scaling the three level Λ equations

With the term ∆b substituted for −∆a, equations 4.2.3.1 can be scaled in a

similar manner to Section 4.2.2.1, by substituting the terms (3.1.8.1) - (3.1.8.3)

to produce

∂σ21

∂t
= −(γ21 − i2∆a)σ21 − iU0|

(
αae

ikz + αbe
−ikz) |2 (1− 2σ21) (4.2.3.7)

∂D

∂t
= 0 (4.2.3.8)

∂pj
∂t

= i2~kU0

( (
|αa|2 − |αb|2

)
(σ21 − σ12) +

(
α∗aαbe

−2ikz − αaα∗be2ikz
)

(εµ + 2D)
)

(4.2.3.9)

∂zj
∂t

=
pj
m

(4.2.3.10)

∂αa
∂t

= −iNU0

〈 (
αa + αbe

−2ikz
)

(εµ + 2D + σ21 − σ12)
〉

+ (iδc − κ)αa + καeqa

(4.2.3.11)

∂αb
∂t

= −iNU0

〈 (
αae

2ikz + αb
)

(εµ + 2D + σ21 − σ12)
〉

+ (iδc − κ)αb + καeqb

(4.2.3.12)
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4.2.3.2 Decoupling the coherence from the momentum and �eld equa-

tions

In Section 4.2.2.3 it was shown that the internal and external degrees of freedom

may become decoupled for certain parameter choices. Making the assumption

that the detuning is su�ciently larger than the decay rate, 2∆a >> γ21, so that

the decay may be neglected in equation (4.2.3.7), which gives it the form

∂σ21

∂t
= i2∆aσ21 − iU0|

(
αae

ikz + αbe
−ikz) |2 (1− 2σ21) . (4.2.3.13)

By adiabatically eliminating σ21 from the above equation it can be seen that the

coherence takes the value

σ21 =
1

2

(
1 + ∆a

U0|(αaeikz+αbe−ikz)|2

) , (4.2.3.14)

which will always be real. As a result, it may be expected that in the limit

2∆a >> γ21 any terms σ21 − σ12 = i2Im(σ21) ≈ 0. The equations for the atomic

momentum and the two �elds in this limit are

∂pj
∂t

= i2~kU0

(
α∗aαbe

−2ikz − αaα∗be2ikz
)

(εµ + 2D) (4.2.3.15)

∂αa
∂t

= −iNU0

〈 (
αa + αbe

−2ikz
)

(εµ + 2D)
〉

+ (iδc − κ)αa + καeqa (4.2.3.16)

∂αb
∂t

= −iNU0

〈 (
αae

2ikz + αb
)

(εµ + 2D)
〉

+ (iδc − κ)αb + καeqb . (4.2.3.17)

In a similar turn of events to the degenerate Λ con�guration, the equations for
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atomic motion have been decoupled from the coherence. In contrast to the previ-

ous con�guration however, for the non-degenerate con�guration the atomic move-

ment still has a dependence upon the population inversion D. As can be seen from

equation (4.2.3.8), the population will never evolve away from its initial value D0,

so in this schema the population inversion acts more as a parameter than a vari-

able.

4.2.3.3 Linear stability analysis

To determine the gain to be expected for this con�guration it is useful to under-

take a linear analysis of the system. Assuming that κ = εµ = 0, the equations for

the atomic momentum, atomic position and probe �eld amplitude take the form

∂pj
∂t

= i4~kU0D0

(
α∗aαbe

−2ikz − αaα∗be2ikz
)

(4.2.3.18)

∂zj
∂t

=
pj
m

(4.2.3.19)

∂αa
∂t

= −i2NU0

〈 (
αa + αbe

−2ikz
)
D0

〉
+ iδcαa (4.2.3.20)

To study the stability of the system, the perturbation terms

z = z0 + δz(t) (4.2.3.21)

p = δp(t) (4.2.3.22)

αa = δαa(t) (4.2.3.23)

are introduced.
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Substituting the perturbation terms into equations (4.2.3.18) - (4.2.3.18) gives:

First

∂ (z0 + δz)

∂t
=
δp

m
, (4.2.3.24)

which as z0 is constant simpli�es to

∂δz

∂t
=
δp

m
. (4.2.3.25)

Second,

∂δp

∂t
= i4~kU0D0

(
δα∗aαbe

−2ik(z0+δz) − δαaα∗be2ik(z0+δz)
)

(4.2.3.26)

= i4~kU0D0

(
δα∗aαbe

−2ikz0e−2ikδz − δαaα∗be2ikz0e2ikδz
)
. (4.2.3.27)

As the perturbation term δz is small, 1 >> δz, then e±2ikδz ≈ 1 ± 2ikδz. The

above equation therefore becomes

∂δp

∂t
= i4~kU0D0

(
δα∗aαbe

−2ikz0 (1− 2ikδz)− δαaα∗be2ikz0 (1 + 2ikδz)
)
.

(4.2.3.28)

Retaining only terms which are linear in the perturbation variables, the equation

for the evolution of the momentum perturbation term becomes

∂δp

∂t
= i4~kU0D0

(
δα∗aαbe

−2ikz0 − δαaα∗be2ikz0
)
. (4.2.3.29)

Third, the equation for the �eld perturbation term becomes
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∂δαa
∂t

= −i2NU0

〈 (
δαa + αbe

−2ik(z0+δz)
)
D0

〉
+ iδcδαa (4.2.3.30)

= −i2NU0

〈 (
δαa + αbe

−2ikz0e−2ikδz
)
D0

〉
+ iδcδαa . (4.2.3.31)

Making the same expansion of the term e−2ikδz as before gives

∂δαa
∂t

= −i2NU0

〈 (
δαa + αbe

−2ikz0 − i2kδzαbe−2ikz0
)
D0

〉
+ iδcδαa . (4.2.3.32)

As the atoms are initially uniformly spaced, the term 〈αbe−2ikz0〉 averages to zero,

leaving

∂δαa
∂t

= −i2NU0

〈 (
δαa − i2kδzαbe−2ikz0

)
D0

〉
+ iδcδαa . (4.2.3.33)

De�ning b = −i〈δze−2ikz0〉 so that

∂b

∂t
= −i

〈
∂δz

∂t
e−2ikz0

〉
(4.2.3.34)

into which may then be substituted the equation for the spacial perturbation

term, equation (4.2.3.25), to give

∂b

∂t
= −i

〈
δp

m
e−2ikz0

〉
. (4.2.3.35)

The probe �eld perturbation equation may then be written as

∂δαa
∂t

= −i2NU0D0

(
δαa + 2kαbb

)
+ iδcδαa . (4.2.3.36)

Going on then to de�ne P =
〈
δp
m
e−2ikz0

〉
means that the equation for the
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evolution of the bunching parameter b simpli�es to

∂b

∂t
= −iP . (4.2.3.37)

The equation for P is then given by

∂P

∂t
=

1

m

〈
∂δp

∂t
e−2ikz0

〉
, (4.2.3.38)

into which is then substituted equation (4.2.3.29) to give

∂P

∂t
=

1

m

〈(
i4~kU0D0

(
δα∗aαbe

−2ikz0 − δαaα∗be2ikz0
))
e−2ikz0

〉
(4.2.3.39)

=
1

m

〈(
i4~kU0D0

(
δα∗aαbe

−4ikz0 − δαaα∗b
))〉

. (4.2.3.40)

The term e−4ikz0 averages out to zero as the atoms were initially evenly spaced,

so the equation simpli�es to

∂P

∂t
= −i4~kU0D0α

∗
b

m
δαa . (4.2.3.41)

To investigate the growth of the probe �eld perturbation term, other pertur-

bation terms must �rst be eliminated and an equation produced depending only

upon δαa. To accomplish this, it is assumed that the cavity detuning term may

be set such that δc = 2NU0D0 so that the term −2iNU0D0δαa is cancelled out,

as in [4]. The equation for the probe �eld perturbation term, equation (4.2.3.36),

is then di�erentiated and equation (4.2.3.37) is substituted into it to produce

∂2δαa
∂t2

= −4kNU0D0αbP . (4.2.3.42)
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Di�erentiating a second time and substituting equation (4.2.3.41) for ∂P
∂t

produces

∂3δαa
∂t3

=
i16N~k2U2

0D
2
0|αb|2

m
δαa . (4.2.3.43)

The end result is an equation solely dependent upon δαa. Looking for solutions

to this equation of the form δαa ∝ eλt it can be seen that

λ3 =
i16N~k2U2

0 |αb|2D2
0

m
, (4.2.3.44)

or simply

λ =
3

√
i16N~k2U2

0 |αb|2D2
0

m
. (4.2.3.45)

As was stated in Section 4.2.2.4 , the system experiences gain when the real

component of λ is both nonzero and positive. Once again 3
√
i has three possible

solutions: −i, e5π/6 and eπ/6, with only the third expression possessing a positive

nonzero real component of Re(eπ/6) =
√

3/2. The gain for the system is then

given by the expression

Gain =

√
3

2

3

√
16N~k2U2

0 |αb|2D2
0

m
(4.2.3.46)
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4.2.3.4 Non-degenerate Λ Con�guration Results

It may be noted that in the instance whereD0 = ±1/2 the above solution matches

that of the gain for the degenerate Λ con�guration given by equation (4.2.2.57).

It would be expected, then, that for those values of D the gain curves for αa in

the degenerate and non-degenerate con�gurations would match exactly. This is

shown to be the case when Figures 4.16(a) and 4.19(a) are compared to their

counterparts from the degenerate Λ con�guration, 4.3(a) and 4.6(a).
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Figure 4.16: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉, for the case where the two transition detun-
ings are equal in magnutide but opposite in sign, ∆a = −∆b, and the population
of the system is initially in state |1〉, D0 = 1/2. Produced by solving equations
(4.2.3.7) - (4.2.3.12). Parameters used are U0/ωr = 5×10−5, ∆ab = 10, αb = 100,
N = 1000, εµ = 0.
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Figure 4.17: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used and
equations solved are as in Figure 4.16.

209



CHAPTER 4. THREE LEVEL ATOMS: Λ CONFIGURATION

0 1 2 3 4 5 6

θ

0.6
0.4
0.2
0.0
0.2
0.4
0.6

D

(a) : t/ωr=0.0

0 1 2 3 4 5 6

θ

0.6
0.4
0.2
0.0
0.2
0.4
0.6

D

(b) : t/ωr=20.0

0 1 2 3 4 5 6

θ

0.6
0.4
0.2
0.0
0.2
0.4
0.6

D

(c) : t/ωr=26.0

Figure 4.18: Snapshots of population di�erence distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used
and equations solved are as in Figure 4.16.
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As was also the case for the degenerate Λ con�guration, equation (4.2.3.46)

predicts equal gain for both signs of the population inversion in the non-degenerate

con�guration. This is shown to be true in comparing Figures 4.16 and 4.19.
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Figure 4.19: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉, for the case where the two transition detun-
ings are equal in magnutide but opposite in sign, ∆a = −∆b, and the population
of the system is initially in state |2〉, D0 = −1/2. Produced by solving equations
(4.2.3.7) - (4.2.3.12). Parameters used are U0/ωr = 5×10−5, ∆ab = 10, αb = 100,
N = 1000, εµ = 0.
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Figure 4.20: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used and
equations solved are as in Figure 4.19.
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Figure 4.21: Snapshots of population di�erence distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used
and equations solved are as in Figure 4.19.
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The previously mentioned similarities between the non-degenerate Λ and de-

generate Λ con�gurations break down, however, when comparisons are made

between the results for the D0 = 0 case. Comparing 4.22(a) to 4.9(a) shows that

although the degenerate Λ con�guration case allows the CARL gain mechanism

to continue even with equally distributed population between the two lower levels,

the non-degenerate Λ con�guration does not.

As was the case in Figures 4.16 & 4.19, (where the initial values for the

population inversion, D0 were 1/2 and −1/2 respectively), when the population

is equally split between levels |1〉 and |2〉, i.e. D0 = 0, the population remains

constant at its initial value, as can be seen from Figure 4.24.

However, contrary to the cases where D0 6= 0, when the initial value is D0 =

0, equation (4.2.3.18) for the force experience by an atom experiences a zero

value. With zero force acting upon the atoms they remain uniformly spread and

stationary, i.e. no atomic bunching takes place, as can be seen in Figure 4.23.

As atomic bunching is the root cause of the CARL instability, the probe �eld

remains at its initial seed value.
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Figure 4.22: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉, for the case where the two transition de-
tunings are equal in magnutide but opposite in sign, ∆a = −∆b, and the pop-
ulation of the system is initially equally distributed between states |1〉 and |2〉,
D0 = 0. Produced by solving equations (4.2.3.7) - (4.2.3.12). Parameters used
are U0/ωr = 5× 10−5, ∆ab = 10, αb = 100, N = 1000, εµ = 0.
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Figure 4.23: Snapshots of momentum distribution (θj, pj) for each atom j =
1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used and
equations solved are as in Figure 4.22.
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Figure 4.24: Snapshots of population di�erence distribution (θj, Dj) for each atom
j = 1..1000 when (a) t = 0ω−1

r , (b) t = 20ω−1
r , (c) t = 26ω−1

r . Parameters used
and equations solved are as in Figure 4.22.
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Equation (4.2.3.46) also suggests that the gain in the optical probe beam,

|αa|2, should be identical regardless of the sign of the detuning used. This is shown

to be true when comparison is made between Figures 4.16, 4.19 and 4.22 above,

in which U0 = g2

∆a
> 0, to Figures 4.25, 4.26 and 4.27, in which U0 = g2

∆a
< 0.

It can be seen that the gain curves experience little to no change when the sign

of the detuning is inverted, as well as very little change when the sign of the

population inversion is altered.
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Figure 4.25: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉, for the case where the two transition detun-
ings are equal in magnutide but opposite in sign, ∆a = −∆b, and the population
of the system is initially in state |1〉, D0 = 1/2. Produced by solving equa-
tions (4.2.3.7) - (4.2.3.12). Parameters used are U0/ωr = −5 × 10−5, ∆ab = 10,
αb = 100, N = 1000, εµ = 0.
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Figure 4.26: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉, for the case where the two transition detun-
ings are equal in magnutide but opposite in sign, ∆a = −∆b, and the population
of the system is initially in state |1〉, D0 = −1/2. Produced by solving equa-
tions (4.2.3.7) - (4.2.3.12). Parameters used are U0/ωr = −5 × 10−5, ∆ab = 10,
αb = 100, N = 1000, εµ = 0.
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Figure 4.27: Evolution of probe photon number, |αa|2, bunching parameter, |b|,
and mean population di�erence, 〈D〉, for the case where the two transition de-
tunings are equal in magnutide but opposite in sign, ∆a = −∆b, and the popu-
lation of the system is initially in state |1〉, D0 = 0. Produced by solving equa-
tions (4.2.3.7) - (4.2.3.12). Parameters used are U0/ωr = −5 × 10−5, ∆ab = 10,
αb = 100, N = 1000, εµ = 0.
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Chapter 5

Conclusion

5.1 Summary

This thesis has presented numerical results related to the study of centre of mass

atomic motion in multilevel cold atomic gases of various internal energy level

con�gurations. Below I give a brief summary of the main results from each

chapter followed by an overall summary of the work described in the thesis.

5.1.1 Chapter 2 Summary

In Chapter 2 the Maxwell-Bloch equations for a cloud of cold two level atoms

were derived over three stages. Firstly, equations were produced which described

the evolution of the internal degrees of freedom of two level atoms in response

to a single incident static �eld. Those equations were used to demonstrate Rabi

oscillations in the atomic population and the variation of susceptibility with �eld-

atom detuning.

The equations were then extended to allow the incident �eld to evolve with

time. In doing so it was shown that the system exhibited bistable properties.

Further extending the model to include atomic centre of mass motion produced

Maxwell-Bloch equations for an ultracold cloud of two level atoms interacting

with two counterpropagating, temporally evolving optical �elds. It was shown

that such equations could demonstrate the CARL instability. In CARL it was

223



CHAPTER 5. CONCLUSION

shown that the initial homogeneous spread of atomic positions was unstable and

the atoms in the system were induced to bunch by formation of a standing wave

between the pump and probe beams. The growth of the atomic bunching term

|b| = |〈eiθ〉| was shown to proceed synchronously with the probe beam, as the

bunching of atoms resulted in backscattering of the pump �eld into the probe

�eld.

It was shown that when the pump amplitude exceeded a saturation thresh-

old, the population within the atoms could become su�ciently excited that the

population inversion approached zero, which in turn caused the forces bunching

the atoms to quench and tend towards zero.

5.1.2 Chapter 3 Summary

In Chapter 3 the model from Chapter 2 was extended to describe a system of

three level atoms in a ladder con�guration. Two nonlinear optical processes were

investigated using the three level ladder equations:

In the �rst process, two photon CARL, two expressions of note were derived;

a condition for when the three level ladder system was in the high or low pump

regime, and an expression for the gain expected from the system in the low pump

regime.

Those two expressions were employed to compare the system in the low and

high pump intensity regimes. It was demonstrated, when both including and

neglecting the AC Stark shift term εµ, that in contrast with the two level CARL

system of chapter 2, the three level CARL instability persisted into the high pump

intensity regime. This was due to terms in the force equation which did not tend

to zero with the population inversion term.

The second process investigated was that of two-photon super�uorescence. It

was demonstrated that, as was the case for single photon �uorescence[36], intro-

duction of centre of mass movement and atomic bunching resulted in symmetry

breaking in the sign of detuning from �eld-atom resonance.

When the emitting atoms were set stationary, the two-photon SF pulse showed

no dependence upon the sign of detuning. When centre of mass motion was
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included, the atoms bunched at maxima (minima) of intensity when the �eld

was red (blue) detuned from �eld-atom resonance. When the atoms bunched

at the maxima of optical standing wave intensity, the emitted optical pulse was

enhanced over the case in which the atoms bunched at the point of intensity

minima, wherein the optical pulse was suppressed.

5.1.3 Chapter 4 Summary

In Chapter 4 Maxwell-Bloch equations were derived which modelled the evolution

of a cloud of atoms with a three level "lambda" atomic energy level con�guration.

Two subcategories of the Λ con�guration were investigated: one in which the two

lower energy levels were degenerate, the degenerate Λ con�guration, and one

where the two lower energy levels were non-degenerate, the non-degenerate Λ

con�guration.

It was demonstrated in the degenerate con�guration that, for particular values

of �eld-atom detuning, it was possible to decouple the atomic centre of mass

equations from the internal atomic degrees of freedom.

It was then shown that in the non-degenerate con�guration that there exists a

�eld-atom detuning regime in which the atomic motion becomes decoupled from

the atomic coherence but not the atomic population. The population di�erence

remained constant throughout the interaction, so the population inversion D(t =

0) acted instead as a parameter in the equation for the force experienced by the

atoms.

It was therefore demonstrated that both the degenerate and non-degenerate

Λ con�gurations lend themselves towards operation of the CARL instabilities at

higher pump intensities than for the case of two-level atoms. In particular the non-

degenerate Λ con�guration o�ered a particularly attractive prospect for CARL

gain, as the apparent trapping of the population at its initial state, D(t = 0),

o�ered a system in which spontaneous emission may be impeded.
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5.2 Overall Summary

In this thesis the theory of CARL has been extended from 2-level atoms to 3-

level atoms with ladder and Λ con�gurations. It has been demonstrated that

the additional internal energy level allows a variety of schemes involving CARL.

Some of these new schemes have features which appear promising for enhancing

CARL instabilities.

5.3 Future Work

A number of potential avenues may be explored following the work described in

this thesis.

5.3.1 E�ects of centre of mass atomic recoil on non-linear

optical processes in three and four level atoms

Numerous non-linear processes occur in multi-level atomic systems. Continuing

from the research presented here many of these processes may produce interesting

results when centre of mass atomic recoil is introduced.

For example, [72] demonstrates that a system of light on a cloud of cold

atoms can produce dispersive bistability for properly chosen parameters. With

centre of mass movement included in the model, it is shown that blue detuned

light results in the formation of an atomic density grating. The density grating

leads to a change in the dispersive properties of the cloud and causes the pump

transmission to jump from the lower transmission state to the upper transmission

state.

Studies could be undertaken investigating dispersive optical bistability in a

three level system, such as that described in Chapter 3. Similar changes to the

dispersive properties of a cloud of three level atoms which exhibit two-photon

bistability may occur, leading to the pump transmission to change transmission

state.
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5.3.2 Enhancement of CARL through use of EIT in three

and four level atoms

Electromagnetically Induced Transparency (EIT) [83, 84] is a coherent nonlin-

ear optical process in which destructive quantum interference between transition

probability amplitudes results in the creation of a "window" of reduced, or even

negated, absorption within the susceptibility pro�le of a physical media. In ad-

dition to the window created in the absorption portion of the atomic sample's

susceptibility curve, a large value for the dispersive portion of the susceptibility

is also formed as a result of EIT. EIT can take place in atoms with ladder, Λ or

"V" three level energy level structures[85].

As has been explained in this thesis, collective atomic recoil lasing is dependent

upon the dispersive properties of an atomic sample for the bunching force which

is the root cause of the CARL instability. Furthermore, atomic absorption can

hinder the CARL instability. The window of reduced absorption and enhanced

dispersion may then prove to be a useful method of enhancing CARL.

5.3.3 Sum-frequency generation from CARL using four level

ladder con�guration atoms

It has been predicted in [86] that four wave mixing and frequency up conversion

are possible in four level ladder con�guration CARL. The bene�t of using CARL

for frequency up conversion is that the complicated phase matching required

by traditional methods, which utilise nonlinear crystals, is handled as a natural

consequence of the bunching process.

In [86] assumptions are made which reduce the complete four level Maxwell-

Bloch equations describing the system to the CARL equations in the FEL limit,

similar to the reductions made in sections 2.5.3.3 and 3.2.1.2 of this thesis. Inves-

tigations may be made into the behaviour of such a system outside of the FEL

limit.
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5.3.4 Investigation of parameter space for two-photon su-

per�uorescence including recoil

As was stated in section 3.3.3, when recoil is introduced to the super�uorescent

system, for the parameters selected, the emitted optical pulse ceases to be super-

�uorescent. As it is possible to create super�uorescent pulses where recoil has

been included, for su�ciently small values of the decay rate γ, it may be possible

to discover parameters in which the super�uorescent behaviour exists in both the

recoil included and recoil neglected cases for otherwise identical input values.

5.3.5 Proposed experimental test of results from this thesis

In Section 2.5.3.4 an experimental setup used by Kruse et al. [4] and von. Cube

et al. [38] to investigate CARL in the laboratory using samples of two level atoms

was described. A diagram of the experimental setup used by these experiments

is shown in Figure 2.11. A similar laboratory setup could be used to investigate

the results shown in this thesis.

For the case of three level atoms in a ladder con�guration, either 87Sr [18] or

171Y b [19] may be useful as a replacement for the 85Rb used in [4, 38].

For investigating the results shown for three level atoms with a Λ energy

level con�guration, the 87Rb D1 line including magnetic sublevels has been used,

for example in [87], as an atom with a Λ energy level con�guration. A tunable

magnetic �eld may be used to split the ground state energy energy levels via the

Zeeman e�ect, allowing for the creation of an energy level structure which may

be used to investigate the non-degenerate Λ energy level con�guration discussed

in Section 4.2.3.

Other alkali metals such as sodium or caesium may also be suitable for use as

three level Λ con�guration atom samples through use of similar methods.
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Three level CARL Linear Analysis

Performing a linear analysis upon equations (3.2.2.8), (3.2.2.2), (3.2.2.3), (3.2.2.4),

(3.2.2.5) and (3.2.2.6). It is assumed that the pump �eld αb remains undepleted

throughout the course of the instability and thus may be treated as a constant,

with (3.2.2.6) set equal to zero. At steady state the equations for the population

and coherence of the system are given by

D = 1/2 + iU0

(
σ13

(
αa + αbe

−2ikz
) (
αae

2ikz + αb
)

−σ31

(
α∗a + α∗be

2ikz
) (
α∗ae

−2ikz + α∗b
) )

(A.0.0.1)

σ31 =
2U0D(∆ab − iγ31)

(γ2
31 + ∆2

ab)

(
αae

2ikz + αb
) (
αa + αbe

−2ikz
)

(A.0.0.2)

By substituting the above expression for the coherence, σ21, into the steady

state expression for the population inversion and de�ning the terms

F =
(
αa + αbe

−2ikz
) (
αae

2ikz + αb
)

= α2
ae

2ikz + 2αaαb + α2
be
−2ikz (A.0.0.3)
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and

H =
4γ31U

2
0

γ33(γ2
31 + ∆2

ab)
(A.0.0.4)

gives a expression for D devoid of any other varying terms, namely

D =
1

2(1 +H|F |2)
. (A.0.0.5)

Substituting the expressions for the population inversion, (A.0.0.5) into the

expression for the steady state coherence produces

σ31 =
U0F (∆ab − iγ31)

(1 +H|F |2)(γ2
31 + ∆2

ab)
. (A.0.0.6)

Substituting the above expression for the value the coherence takes in the

weak regime into the remaining equations of the system gives

dpj
dt

= i2~kU0

[
U0

(1 +H|F |2)(γ2
31 + ∆2

ab)

(
∆ab

(
2
(
α∗a

2α2
be
−4ikz − α2

aα
∗
b

2e4ikz
)

+
(
|αa|2 + |αb|2

) (
α∗aαbe

−2ikz − αaα∗be2ikz
) )

− γ31

(
|αa|4 − |αb|4 +

(
|αa|2 − |αb|2

) (
α∗aαbe

−2ikz + αaα
∗
be

2ikz
) ))]

+ i2~kU0

(
α∗aαbe

−2ikz − αaα∗be2ikz
)

(A.0.0.7)

dzj
dt

=
pj
m

(A.0.0.8)
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∂αa
∂t

= −iNU0

(
2U0(∆ab − iγ31)

(γ2
31 + ∆2

ab)

〈
(|αa|2αa + 2|αa|2αbe−2ikz + α∗aα

2
be
−4ikz)

(1 +H|F |2)

〉
+

2U0(∆ab − iγ31)

(γ2
31 + ∆2

ab)

〈
(α2

aα
∗
be

2ikz + 2αa|αb|2 + |αb|2αbe−2ikz)

(1 +H|F |2)

〉
+ αa + αb〈e−2ikz〉

)
+ (iδc − κ)αa + καeqa (A.0.0.9)

By studying the evolution of small perturbation terms, de�ned as

z = z0 + δz(t) (A.0.0.10)

p = δp(t) (A.0.0.11)

αa = δαa(t) , (A.0.0.12)

the gain response of the system may be investigated. The assumption is made

that the �eld is well tuned with the cavity and that there are minimal losses from

the �eld, so that δc = κ = 0. Substituting the above perturbation terms into the

equations for the system (A.0.0.7) - (A.0.0.9), keeping only those terms which

remain linear in perturbation terms gives equations

∂δpj
∂t

= i2~kU0

[(
1 +

∆abU0|αb|2

(γ2
31 + ∆2

ab)(1 +H|αb|4)

)(
δα∗aαbe

−2ikz0 − δαaα∗be2ikz0
)

+
iγ31U0|αb|2

(γ2
31 + ∆2

ab)(1 +H|αb|4)

(
|αb|2 + δα∗aαbe

−2ikz0 + δαaα
∗
be

2ikz0
) ]

(A.0.0.13)

∂δzj
∂t

=
δpj
m

(A.0.0.14)
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∂δαa
∂t

= −iNU0

(
δαa

(
1 +

4U0|αb|2(∆ab − iγ31)

(γ2
31 + ∆2

ab)(1 +H|αb|4)

)
− i2kαb

(
1 +

2U0|αb|2(∆ab − iγ31)

(γ2
31 + ∆2

ab)(1 +H|αb|4)

)
〈δze−2ikz0〉

)
(A.0.0.15)

where it has been assumed that as δz is small, 1 >> δz , when the terms e±2ikδz

are expanded out using the Maclaurin series, only the �rst term need be retained,

so that e±2ikδz ≈ 1 ± 2ikδz. Further to this, as the atoms are initially equally

distributed any terms 〈e±ikz〉 are assumed to average out to zero. Considering the

system to be running su�ciently detuned that ∆ab >> γ31, the approximation

may be made that γ31 ≈ 0. Under this assumption the term H in the above

equations is also approximately zero, so the equations take the form

∂δpj
∂t

= i2~kU0

(
1 +

U0|αb|2

∆ab

)(
δα∗aαbe

−2ikz0 − δαaα∗be2ikz0
)

(A.0.0.16)

∂δzj
∂t

=
δpj
m

(A.0.0.17)

∂δαa
∂t

= −iNU0

(
δαa

(
1 +

4U0|αb|2

∆ab

)
− i2kαb

(
1 +

2U0|αb|2

∆ab

)
〈δze−2ikz0〉

)
(A.0.0.18)

It is convenient to de�ne

b = −i〈δze−2ikz0〉 (A.0.0.19)

and

P =

〈
δpj
m
e−2ikz0

〉
(A.0.0.20)
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as intermediate variables for substitution into the �eld equation. From the above

de�nitions it is easy to see that

db

dt
= −i

〈
∂δzj
∂t

e−2ikz0

〉
= −i

〈
δpj
m
e−2ikz0

〉
= −iP (A.0.0.21)

and

dP

dt
=

〈
1

m

∂δpj
∂t

e−2ikz0

〉
= −i2~kU0

m

(
1 +

U0|αb|2

∆ab

)
α∗bδαa , (A.0.0.22)

where once again it has been taken that the initial even distribution of the atoms

means that terms 〈e±ikz〉 may be assumed to average to zero. Substituting for

the term b using (A.0.0.19) in (A.0.0.18) and di�erentiating gives

d2δαa
dt2

= −iNU0

((
1 +

4U0|αb|2

∆ab

)
dδαa
dt

+ 2kαb

(
1 +

2U0|αb|2

∆ab

)
db

dt

)
.

(A.0.0.23)

Substituting for ∂b
∂t

using (A.0.0.21) then di�erentiating a second time gives

d3δαa
dt3

= −iNU0

((
1 +

4U0|αb|2

∆ab

)
d2δαa
dt2

− i2kαb
(

1 +
2U0|αb|2

∆ab

)
dP

dt

)
.

(A.0.0.24)

By substituting for dP
dt

using (A.0.0.22) and grouping terms, an expression purely

in terms of �eld variables is obtained, namely
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d3δαa
dt3

= −iNU0

((
1 +

4U0|αb|2

∆ab

)
d2δαa
dt2

− 2~k2U0|αb|2

m

(
1 +

3U0|αb|2

∆ab

+
2U2

0 |αb|4

∆2
ab

)
δαa

)
(A.0.0.25)

At this point it is convenient to reintroduce a detuning between the �eld and

cavity of δc ≈ iNU0

(
1 + 4U0|αb|2

∆ab

)
. In doing so it is possible to cancel the �rst

term in the above equation, making the solution far simpler. Looking for solutions

of the form δαa ∝ eλt gives

λ3 =
i2N~k2U2

0 |αb|2

m

(
1 +

3U0|αb|2

∆ab

+
2U2

0 |αb|4

∆2
ab

)
. (A.0.0.26)

Gain is to be expected where the real component of λ is both nonzero and

positive. The cubed root of i, 3
√
i, has three possible solutions: −i, e5π/6 and eπ/6.

The �rst solution, −i, has no real component, it is purely imaginary and will

thus not result in gain. The second solution, e5π/6, does have a real component

as e5π/6 = cos(5π/6) + i sin(5π/6). However, as cos(5π/6) = −
√

3/2 this yields a

negative value for the real component and will also not produce gain. The third

solution eπ/6 may be expanded out as cos(π/6)+ i sin(π/6), the real part of which

takes the value cos(π/6) =
√

3/2. As a real, nonzero, positive value, this term

will result in gain for the system. The gain experienced by the system should

then be given by the expression

Gain =

√
3

2
3

√
2N~k2|αb|2

m

(
U2

0 +
3U3

0 |αb|2
∆ab

+
2U4

0 |αb|4
∆2
ab

)
. (A.0.0.27)
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