
Algorithmic Enhancements to Polynomial

Matrix Factorisations

PhD Thesis

Fraser Kenneth Coutts

Centre for Signal and Image Processing

Electronic and Electrical Engineering

University of Strathclyde, Glasgow

May 29, 2019

This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde

Regulation 3.50. Due acknowledgement must always be made of the use of

any material contained in, or derived from, this thesis.

Abstract

In broadband array processing applications, an extension of the eigenvalue decomposi-

tion (EVD) to parahermitian Laurent polynomial matrices — named the polynomial

matrix EVD (PEVD) — has proven to be a useful tool for the decomposition of space-

time covariance matrices and their associated cross-spectral density matrices. Existing

PEVD methods typically operate in the time domain and utilise iterative frameworks

established by the second-order sequential best rotation (SBR2) or sequential matrix

diagonalisation (SMD) algorithms. However, motivated by recent discoveries that es-

tablish the existence of an analytic PEVD — which is rarely recovered by SBR2 or

SMD — alternative algorithms that better meet analyticity by operating in the dis-

crete Fourier transform (DFT)-domain have received increasing attention.

While offering promising results in applications including broadband MIMO and

beamforming, the PEVD has seen limited deployment in hardware due to its high com-

putational complexity. If the PEVD is to be fully utilised, overcoming this bottleneck

is paramount. This thesis therefore seeks to reduce the computational cost of iterative

PEVD algorithms — with particular emphasis on SMD — through the development

of several novel algorithmic improvements. While these are effective, the complexity

of the optimised algorithms still grows rapidly with the spatial dimensions of the de-

composition. Steps are therefore taken to convert the sequential form of SMD to a

novel reduced dimensionality and partially parallelisable divide-and-conquer architec-

ture. The resulting algorithms are shown to converge an order of magnitude faster

than existing methods for large spatial dimensions, and are well-suited to application

scenarios with many sensors.

Further in this thesis, an investigation into DFT-based algorithms highlights their

potential to offer compact, analytic solutions to the PEVD. Subsequently, two novel

DFT-based algorithms improve upon an existing method by reducing decomposition

error and eliminating a priori knowledge requirements. Finally, an innovative strategy

is shown to be capable of extracting a minimum-order solution to the PEVD.

ii

Acknowledgements

I would like to begin by extending my sincere thanks to my supervisors, Professor

Stephan Weiss and Professor Stephen Marshall, who have kindly provided me with

their expert guidance, encouragement, and key insights throughout my time at the

University of Strathclyde. For their valuable advice and input to my research, I would

also like to thank Dr Keith Thompson, Professor Ian Proudler, Dr Jamie Corr, Dr

Jennifer Pestana, Professor John McWhirter, and Dr Paul Murray. I am also extremely

grateful to the Carnegie Trust, who funded my research.

Many thanks to Dr Louise Crockett and Dr Gaetano Di Caterina for trusting me

with their classes, and to Christine Bryson for her excellent administrative skills. For

their conversation and thoughts of the day, I would like to thank Dani, Kenny, Shawn,

Connor, Paul, David, Vianney, and the other Fraser.

I would like to extend my deepest gratitude to my parents, Karen and Kenny, for

always believing in me, for motivating me, and for being fantastic sources of inspira-

tion. At last, I’m no longer a student! Thanks should also go to Lauren, James, my

grandparents, and my extended family, for their encouragement.

For her invaluable support, input, and Oxford comma checking prowess during the

completion of this research, I would like to offer my profound gratitude to Elizabeth.

Merci beaucoup, ma chérie!

Fraser Kenneth Coutts

Glasgow, UK

May 29, 2019

iii

Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures x

List of Tables xiii

List of Publications xiv

Abbreviations and Mathematical Symbols xviii

1 Introduction 2

1.1 Polynomial Matrix Formulations . 2

1.2 Objective of Research . 4

1.3 Organisation of Thesis and Original Contributions 5

2 Background 7

2.1 Notations and Definitions . 7

2.2 Polynomial Matrix Formulations in Broadband Signal Processing . . . 8

2.2.1 Introduction . 8

2.2.2 Space-Time Covariance and Cross-Spectral Density Matrices . . 9

2.3 Polynomial Matrix Eigenvalue Decomposition 11

2.3.1 Definition . 11

iv

2.3.2 Existing PEVD Algorithms . 12

2.3.3 Implementations of PEVD Algorithms 15

2.4 Simulation Software and Hardware Platform 16

3 Computational Advances for the Iterative PEVD 17

3.1 Introduction . 17

3.2 Optimising Matrix Manipulations to Increase Algorithmic Efficiency . . 19

3.2.1 Product of a Matrix and Polynomial Matrix 19

3.2.2 Product of Two Polynomial Matrices 25

3.2.3 Implementation of Truncation Within PEVD Algorithms 28

3.2.4 Summary . 30

3.3 Parahermitian Matrix Symmetry and the Half-Matrix Approach 30

3.3.1 Half-Matrix Representation of a Parahermitian Matrix 31

3.3.2 Half-Matrix Sequential Matrix Diagonalisation Algorithm 32

3.3.3 Modified Parameter Search in HSMD 32

3.3.4 Modification of Shift Strategy in HSMD 34

3.3.5 Complexity and Memory Reduction 36

3.3.6 Results and Discussion . 38

3.3.7 Summary . 39

3.4 Increasing Efficiency within Cyclic-by-Row PEVD Implementations . . 40

3.4.1 Cyclic-by-Row SMD Algorithm 40

3.4.2 Concatenation of Rotations . 42

3.4.3 Thresholding of Rotations . 44

3.4.4 Results and Discussion . 44

3.4.5 Summary . 47

3.5 Restricting the Search Space of PEVD Algorithms 48

3.5.1 Limited Search Strategy . 48

3.5.2 Results and Discussion . 49

3.5.3 Summary . 51

3.6 Restricting the Update Space of PEVD Algorithms 53

3.6.1 Restricted Update SMD Algorithm 53

3.6.2 Restricted Update Step . 55

3.6.3 Complexity Reduction . 58

3.6.4 Results and Discussion . 59

3.6.5 Summary . 60

3.7 Multiple Shift Approach to the Polynomial Matrix QR Decomposition . 61

3.7.1 Multiple Shift Strategy . 62

3.7.2 Results and Discussion . 66

3.7.3 Summary . 67

3.8 Compensated Row-Shift Truncation of Paraunitary Matrices 68

3.8.1 Compensated Row-Shift Truncation Strategy 68

3.8.2 Truncating After Algorithm Completion 70

3.8.3 Truncating at Each Algorithm Iteration 73

3.8.4 Summary . 77

3.9 Conclusions . 78

4 Divide-and-Conquer Strategy for PEVD Algorithms 80

4.1 Introduction . 80

4.2 Divide-and-Conquer as a Methodology 81

4.3 Extending the Divide-and-Conquer Methodology to the PEVD 82

4.3.1 Problem Formulation . 82

4.3.2 Block Diagonalising a Parahermitian Matrix 85

4.4 Sequential Matrix Segmentation Algorithm 87

4.4.1 Algorithm Overview . 88

4.4.2 Algorithm Convergence . 92

4.4.3 Algorithm Complexity . 95

4.4.4 Results and Discussion . 95

4.5 Divide-and-Conquer Sequential Matrix Diagonalisation Algorithm . . . 101

4.5.1 Algorithm Overview . 101

4.5.2 ‘Dividing’ the Parahermitian Matrix 102

4.5.3 ‘Conquering’ the Independent Matrices 103

4.5.4 Algorithm Convergence . 103

4.5.5 Impact of Algorithm Parameters on Decomposition Error 104

4.5.6 Algorithm Complexity . 105

4.6 Parallel-Sequential Matrix Diagonalisation PEVD Algorithm 106

4.6.1 Algorithm Overview . 107

4.6.2 ‘Dividing’ the Parahermitian Matrix 109

4.6.3 ‘Conquering’ the Independent Matrices 116

4.6.4 Algorithm Convergence . 118

4.6.5 Impact of Algorithm Parameters on Decomposition Error 118

4.6.6 Algorithm Complexity . 118

4.7 Simulations and Results . 119

4.7.1 Source Model Simulation Scenario 1 120

4.7.2 Source Model Simulation Scenario 2 126

4.7.3 Broadband Angle of Arrival Estimation Simulation Scenario . . 133

4.8 Conclusions . 138

5 DFT-Based Alternatives for PEVD Algorithms 141

5.1 Introduction . 141

5.2 Comparison of Iterative and DFT-Based PEVDs 145

5.2.1 Algorithm Complexities . 145

5.2.2 Approximation of Eigenvalues 146

5.2.3 Paraunitarity of Polynomial Eigenvectors 147

5.2.4 Model Examples and Results . 148

5.2.5 Summary . 151

5.3 Development of a Novel DFT-Based PEVD Algorithm 152

5.3.1 Smoothness Metric . 152

5.3.2 Algorithm Overview . 155

5.3.3 Reordering the Eigenvectors and Eigenvalues 155

5.3.4 Adjusting the Phase of the Eigenvectors 156

5.3.5 Algorithm Complexity . 161

5.3.6 Source Model Simulation Scenarios and Results 161

5.3.7 Model Example with Repeated Eigenvalues 163

5.3.8 Summary . 164

5.4 An Order-Iterated Novel DFT-Based PEVD Algorithm 166

5.4.1 Algorithm Overview . 166

5.4.2 Algorithm Complexity . 169

5.4.3 Simulation Scenarios . 169

5.4.4 Results and Discussion . 171

5.4.5 Summary . 173

5.5 Eigenvector Ambiguity and Approximating a Minimum-Order Solution 174

5.5.1 Greatest Common Divisor of Multiple Polynomials 176

5.5.2 Results and Discussion . 177

5.5.3 Summary . 180

5.6 Conclusions . 180

6 Conclusions 183

6.1 Summary of Contributions . 183

6.2 Future Work . 185

A Existing PEVD Algorithms and Performance Metrics 187

A.1 Sequential Matrix Diagonalisation PEVD Algorithm 187

A.1.1 Algorithm Overview . 187

A.1.2 Algorithm Complexity . 190

A.2 Existing DFT-Based Approach to the PEVD 191

A.2.1 Algorithm Overview . 191

A.2.2 Reordering the Eigenvectors and Eigenvalues 193

A.2.3 Adjusting the Phase of the Eigenvectors 193

A.3 Performance Metrics . 195

A.3.1 Normalised Off-Diagonal Energy 195

A.3.2 Normalised Below-Diagonal Energy 196

A.3.3 Eigenvalue Resolution . 196

A.3.4 Decomposition Mean Square Error 197

A.3.5 Paraunitarity Error . 197

A.3.6 Paraunitary Filter Length . 197

B Broadband Randomised Source Model 198

C State-of-the-Art in Polynomial Matrix Truncation 199

D Spatio-Spectral MUSIC Algorithm 200

Bibliography 201

List of Figures

2.1 Visualisation of an M element broadband linear array 10

3.1 PEVD algorithm speed for high parahermitian matrix spatial dimension 18

3.2 Matrix multiplication speed comparison using SMD algorithm 23

3.3 Speed comparison of state-of-the-art iterative PEVD algorithms 25

3.4 Impact of truncation on parahermitian matrix length 29

3.5 Effect of novel placement of truncation on PEVD algorithm speed . . . 29

3.6 Half-matrix representation of a parahermitian matrix 32

3.7 Half-matrix row shift example . 35

3.8 Half-matrix column shift example . 35

3.9 Performance increase due to half-matrix approach 39

3.10 Illustration of Jacobi sweep . 42

3.11 PEVD convergence unaffected when using cyclic-by-row improvements . 46

3.12 Performance increase due to cyclic-by-row improvements for M = 5 . . . 46

3.13 Performance increase due to cyclic-by-row improvements for M = 9 . . . 46

3.14 Impact of thresholding Jacobi rotations in SMDCbR 47

3.15 Performance increase due to search space restriction 51

3.16 Impact of restricted search approach on delay operations 52

3.17 Impact of restricted search approach on parahermitian matrix length . . 52

3.18 Impact of restricted search approach on paraunitary matrix length . . . 52

3.19 Graphical demonstration of restricted update approach for the PEVD . 57

3.20 Algorithm complexity reduction due to restricted update approach . . . 60

3.21 Algorithm speed increase due to restricted update approach 60

3.22 Triangularisation speed of developed PQRD algorithm 66

x

3.23 PQRD algorithm triangularisation speed for increasing M 67

3.24 Impact of CRST post completion on paraunitary matrix length 71

3.25 Impact of CRST post completion on decomposition MSE 72

3.26 Impact of CRST post completion on paraunitarity error 73

3.27 Impact of CRST post completion on parahermitian matrix length 73

3.28 Impact of CRST at each iteration on diagonalisation speed 74

3.29 Impact of CRST at each iteration on paraunitary matrix length 75

3.30 Impact of CRST at each iteration on decomposition MSE 76

3.31 Impact of CRST at each iteration on paraunitarity error 76

3.32 Impact of CRST at each iteration on parahermitian matrix length . . . 77

4.1 Steps taken to block diagonalise a parahermitian matrix 87

4.2 Using SMS to block diagonalise a parahermitian matrix 88

4.3 Diagonalisation performance of SMS . 98

4.4 Block diagonalisation performance of SMS versus algorithm iteration . . 98

4.5 Paraunitary matrix length performance of SMS 98

4.6 Parahermitian matrix length performance of SMS 99

4.7 Block diagonalisation performance of SMS versus time for M = 10 . . . 99

4.8 Block diagonalisation performance of SMS versus time for M = 30 . . . 99

4.9 Relationship between SMS MSE and maximum iteration 100

4.10 Relationship between SMS MSE and block diagonalisation 100

4.11 State of parahermitian matrix at each stage of DC-SMD 103

4.12 State of parahermitian matrix at each stage of PSMD 107

4.13 Example of a half-matrix region shift in HRSMS 113

4.14 Graphical demonstration of restricted approach in HRSMS 115

4.15 Diagonalisation performance of DaC methods for M = 30 122

4.16 Eigenvalue resolution of divide-and-conquer methods 125

4.17 Ratio of SMD to PSMD algorithm execution time as M increases 129

4.18 Divide-and-conquer method decomposition error versus M 129

4.19 Impact of CRST on divide-and-conquer method decomposition error . . 129

4.20 Divide-and-conquer method paraunitary matrix length versus M 131

4.21 Impact of CRST on DaC method paraunitary matrix length 131

4.22 Divide-and-conquer method eigenvalue resolution versus M 131

4.23 Divide-and-conquer method paraunitarity error versus M 132

4.24 Impact of CRST on divide-and-conquer method paraunitarity error . . . 133

4.25 Single frequency AoA estimation performance of DaC algorithm 137

4.26 Full spectrum AoA estimation performance of DaC algorithm 138

5.1 Examples of spectrally majorised and analytic eigenvalues 143

5.2 PSDs of ground truth eigenvalues in non-finite order example. 149

5.3 Extraction of polynomial eigenvalues in presence of repeated eigenvalue 164

5.4 Ill-defined polynomial eigenvector in presence of repeated eigenvalue . . 165

5.5 Full spectrum AoA estimation performance of DFT-based algorithm . . 173

5.6 Single frequency AoA estimation performance of DFT-based algorithm . 174

5.7 Minimum-order approximation for PEVD of R(z) with low order 179

5.8 Minimum-order approximation for PEVD of R(z) with large M 179

5.9 Minimum-order approximation for PEVD of R(z) with high order . . . 179

List of Tables

3.1 Matrix multiplication speed for low order polynomial matrices 22

3.2 Matrix multiplication speed for high order polynomial matrices 22

3.3 Speed comparison for product of low order polynomial matrices 27

3.4 Speed comparison for product of high order polynomial matrices 27

3.5 Appproximate resource requirements of SMD and HSMD 37

4.1 DaC algorithm performance versus existing methods using source model 123

4.2 DaC algorithm performance versus existing methods for AoA estimation 139

5.1 DFT-based and SMD algorithm performance in finite order example . . 149

5.2 DFT-based and SMD algorithm performance in non-finite order example 150

5.3 Novel DFT-based algorithm performance versus existing algorithm . . . 163

5.4 Iterative DFT-based method performance using source model 172

5.5 Iterative DFT-based method performance for non-finite order problem . 172

xiii

List of Publications

Publications Relating to this Research as First Author

F. K. Coutts, J. Corr, K. Thompson, S. Weiss, I. K. Proudler, and J. G. McWhirter,

“Memory and Complexity Reduction in Parahermitian Matrix Manipulations of PEVD

Algorithms,” in Proceedings of the 24th European Signal Processing Conference, Au-

gust 2016, pp. 1633–1637.

F. K. Coutts, J. Corr, K. Thompson, S. Weiss, I. K. Proudler, and J. G. McWhirter,

“Complexity and Search Space Reduction in Cyclic-by-Row PEVD Algorithms,” in

Proceedings of the 50th Asilomar Conference on Signals, Systems and Computers,

November 2016, pp. 1349–1353.

F. K. Coutts, J. Corr, K. Thompson, S. Weiss, I. K. Proudler, and J. G. McWhirter,

“Multiple Shift QR Decomposition for Polynomial Matrices,” in Proceedings of the

11th IMA International Conference on Mathematics in Signal Processing, December

2016.

F. K. Coutts, K. Thompson, S. Weiss, and I. K. Proudler, “Analysing the Perfor-

mance of Divide-and-Conquer Sequential Matrix Diagonalisation for Large Broadband

Sensor Arrays,” in Proceedings of the 2017 IEEE International Workshop on Signal

Processing Systems, October 2017.

F. K. Coutts, J. Corr, K. Thompson, I. K. Proudler, and S. Weiss, “Divide-and-Conquer

xiv

Sequential Matrix Diagonalisation for Parahermitian Matrices,” in Proceedings of the

2017 Sensor Signal Processing for Defence Conference, December 2017.

F. K. Coutts, K. Thompson, S. Weiss, and I. K. Proudler, “Impact of Fast-Converging

PEVD algorithms on Broadband AoA Estimation,” in Proceedings of the 2017 Sensor

Signal Processing for Defence Conference, December 2017.

F. K. Coutts, K. Thompson, I. K. Proudler, and S. Weiss, “A Comparison of Iter-

ative and DFT-Based Polynomial Matrix Eigenvalue Decompositions,” in Proceedings

of the 7th IEEE International Workshop on Computational Advances in Multi-Sensor

Adaptive Processing, December 2017.

F. K. Coutts, K. Thompson, I. K. Proudler, and S. Weiss, “Restricted Update Se-

quential Matrix Diagonalisation for Parahermitian Matrices,” in Proceedings of the

7th IEEE International Workshop on Computational Advances in Multi-Sensor Adap-

tive Processing, December 2017.

F. K. Coutts, K. Thompson, J. Pestana, I. K. Proudler, and S. Weiss, “Enforcing Eigen-

vector Smoothness for a Compact DFT-Based Polynomial Eigenvalue Decomposition,”

in Proceedings of the 10th IEEE Sensor Array and Multichannel Signal Processing

Workshop, July 2018, pp. 159–163.

F. K. Coutts, K. Thompson, I. K. Proudler, and S. Weiss, “An Iterative DFT-Based

Approach to the Polynomial Matrix Eigenvalue Decomposition,” in Proceedings of the

52nd Asilomar Conference on Signals, Systems and Computers, October 2018, pp.

1011–1015.

F. K. Coutts, I. K. Proudler, and S. Weiss, “Efficient Implementation of Iterative

Polynomial Matrix EVD Algorithms Exploiting Structural Redundancy and Paralleli-

sation,” in IEEE Transactions on Circuits and Systems I, submitted March 2019.

Publications Relating to this Research as Co-author

S. Weiss, S. Bendoukha, A. Alzin, F. K. Coutts, I. K. Proudler, and J. Chambers,

“MVDR Broadband Beamforming Using Polynomial Matrix Techniques,” in Proceed-

ings of the 23rd European Signal Processing Conference, September 2015, pp. 839–843.

A. Alzin, F. K. Coutts, J. Corr, S. Weiss, I. K. Proudler, and J. A. Chambers, “Adap-

tive Broadband Beamforming with Arbitrary Array Geometry,” in Proceedings of the

2nd IET International Conference on Intelligent Signal Processing, December 2015.

A. Alzin, F. K. Coutts, J. Corr, S. Weiss, I. K. Proudler, and J. A. Chambers, “Polyno-

mial Matrix Formulation-Based Capon Beamformer,” in Proceedings of the 11th IMA

International Conference on Mathematics in Signal Processing, December 2016.

C. Delaosa, F. K. Coutts, J. Pestana, and S. Weiss, “Impact of Space-Time Covariance

Estimation Errors on a Parahermitian Matrix EVD,” in Proceedings of the 10th IEEE

Sensor Array and Multichannel Signal Processing Workshop, July 2018, pp. 164–168.

S. Weiss, J. Pestana, I. K. Proudler, and F. K. Coutts, “Corrections to “On the Exis-

tence and Uniqueness of the Eigenvalue Decomposition of a Parahermitian Matrix”,”

in IEEE Transactions on Signal Processing, vol. 66, no. 23, pp. 6325–6327, December

2018.

S. Weiss, I. K. Proudler, F. K. Coutts, and J. Pestana, “Iterative Approximation of

Analytic Eigenvalues of a Parahermitian Matrix EVD,” in Proceedings of the 44th

International Conference on Acoustics, Speech, and Signal Processing, May 2019.

Publications Relating to Other Research

F. K. Coutts, S. Marshall, and P. Murray, “Human Detection and Tracking Through

Temporal Feature Recognition,” in Proceedings of the 22nd European Signal Process-

ing Conference, September 2014, pp. 2180–2184.

D. Gaglione, C. Clemente, F. K. Coutts, G. Li, and J. J. Soraghan, “Model-Based

Sparse Recovery Method for Automatic Classification of Helicopters,” in Proceedings

of the IEEE Radar Conference, May 2015, pp. 1161–1165.

F. K. Coutts, D. Gaglione, C. Clemente, G. Li, I. K. Proudler, and J. J. Soraghan,

“Label Consistent K-SVD for Sparse Micro-Doppler Classification,” in Proceedings of

the IEEE International Conference on Digital Signal Processing, July 2015, pp. 90–94.

C. G. Manich, T. Kelman, F. K. Coutts, B. Qiu, P. Murray, C. Gonzalez-Longo, and

S. Marshall, “Exploring the Use of Image Processing to Survey and Quantitatively

Assess Historic Buildings,” in Proceedings of the 10th International Conference on

Structural Analysis of Historical Constructions, September 2016.

A. Polak, F. K. Coutts, P. Murray, and S. Marshall, “Use of Hyperspectral Imaging for

Cake Moisture and Hardness Prediction,” in IET Image Processing, March 2019.

Abbreviations and Mathematical

Symbols

Abbreviations

AEVD approximate eigenvalue decomposition

AoA angle of arrival

BC by columns

CbR cyclic-by-row

CRST compensated row-shift truncation

CSD cross-spectral density

DaC divide-and-conquer

DC-SMD divide-and-conquer sequential matrix diagonalisation

DFT discrete Fourier transform

EPGR elementary polynomial Givens rotation

EVD eigenvalue decomposition

FFT fast Fourier transform

FIR finite impulse response

GCD greatest common divisor

HRSMD half-matrix restricted update sequential matrix diagonalisation

HRSMS half-matrix restricted update sequential matrix segmentation

HSMD half-matrix sequential matrix diagonalisation

HSMS half-matrix sequential matrix segmentation

IDFT inverse discrete Fourier transform

xviii

IFB independent frequency bin

IFFT inverse fast Fourier transform

MAC multiply-accumulate

MIMO multiple-input multiple-output

MS multiple shift

MSE mean square error

MSME multiple shift maximum element

MUSIC multiple signal classification

PEVD polynomial matrix eigenvalue decomposition

PQRD polynomial matrix QR decomposition

PSD power spectral density

PSMD parallel-sequential matrix diagonalisation

PSVD polynomial matrix singular value decomposition

RS reduced search space

RSMD restricted update sequential matrix diagonalisation

RST row-shift truncation

SBR2 second-order sequential best rotation

SMD sequential matrix diagonalisation

SMS sequential matrix segmentation

SSP-MUSIC spatio-spectral polynomial multiple signal classification

SVD singular value decomposition

Mathematical Symbols

A Matrix of coefficients

a Vector of coefficients

a,A Scalar

A[τ] Matrix of coefficients dependent on a discrete time variable τ

a[τ] Vector of coefficients dependent on a discrete time variable τ

a[τ], A[τ] Scalar dependent on a discrete time variable τ

A[k] Matrix of coefficients dependent on a discrete frequency variable k

a[k] Vector of coefficients dependent on a discrete frequency variable k

a[k], A[k] Scalar dependent on a discrete frequency variable k

A(z) Matrix of polynomials dependent on a continuous variable z

a(z) Vector of polynomials dependent on a continuous variable z

a(z), A(z) Polynomial dependent on a continuous variable z

A(ejΩ) Polynomial matrix A(z) evaluated on the unit circle with z = ejΩ

a(ejΩ) Polynomial vector a(z) evaluated on the unit circle with z = ejΩ

a(ejΩ), A(ejΩ) Polynomial a(z), A(z) evaluated on the unit circle with z = ejΩ

R[τ] Space-time covariance matrix

R(z) Cross-spectral density matrix, parahermitian matrix

Q(z),F (z) Polynomial eigenvectors, paraunitary matrix

D(z) Polynomial eigenvalues, diagonal matrix

B(z) Block diagonal matrix

S(i)(z) Parahermitian matrix dependent on iteration variable i

H(i)(z) Paraunitary matrix dependent on iteration variable i

Λ(i)(z) Paraunitary shifting matrix dependent on iteration variable i

Q(i) Unitary rotation matrix dependent on iteration variable i

Ediag, E
(i)
diag Diagonalisation metric (dependent on iteration variable i)

Imax Maximum number of algorithm iterations

K DFT length, number of frequency bins

L Length (i.e., order + 1) of parahermitian matrix

M Spatial dimension, number of time series, number of sensors

OQ Order of ground truth polynomial eigenvectors

OD Order of ground truth polynomial eigenvalues

P Spatial dimension, parahermitian matrix ‘division’ parameter

T Maximum lag of parahermitian matrix

∆DR Dynamic range

ǫ Threshold used to cease algorithm iterations

η Paraunitarity error

θ Phase angle

ϑ Angle of arrival, azimuth

κ Threshold used to cease algorithm iterations

λres Eigenvalue resolution

µ Polynomial matrix truncation parameter

χ(n) Smoothness metric computed up the nth derivative

Ω Continuous frequency

Ωk Discrete frequency dependent on a discrete frequency variable k

IM M ×M identity matrix

0M M ×M matrix of zeroes

◦—• Forward z-transform

•—◦ Reverse z-transform

{·}T Transpose operator

{·}H Hermitian transpose operator

{̃·} Parahermitian conjugate operator

E{·} Expectation operator

‖ · ‖F Frobenius norm operator

{·} Operator to obtain half-matrix form of parahermitian matrix

L{·} Computes the length (i.e., order + 1) of a polynomial matrix

∗ Convolution operator

⊛ Circular convolution operator

1

Chapter 1

Introduction

1.1 Polynomial Matrix Formulations

The eigenvalue decomposition (EVD) is a useful tool for many narrowband problems

involving Hermitian instantaneous covariance matrices [1, 2]. In broadband array pro-

cessing or multichannel time series applications, an instantaneous covariance matrix is

not sufficient to measure correlation of signals across time delays. Instead, a space-time

covariance matrix — which is more suited to the capture of broadband information — is

used, which comprises the auto- and cross-correlation sequences obtained from multiple

time series. Its z-transform, the cross-spectral density (CSD) matrix, is a Laurent poly-

nomial matrix in z ∈ C, and inherits the symmetries of the auto- and cross-correlation

sequences, such that it exhibits parahermitian symmetry [3, 4].

A polynomial matrix eigenvalue decomposition (PEVD) has been defined as an

extension of the EVD to parahermitian polynomial matrices in [5, 6]. The PEVD uses

finite impulse response (FIR) paraunitary matrices [7] to approximately diagonalise and

typically spectrally majorise [8] a CSD matrix and its associated space-time covariance

matrix. Recent work in [9, 10] provides conditions for the existence and uniqueness of

eigenvalues and eigenvectors of a PEVD, such that these can be represented by a power

or Laurent series that is absolutely convergent, permitting a direct realisation in the

time domain. Further research in [11] studies the impact of estimation errors in the

sample space-time covariance matrix on its PEVD.

2

Chapter 1. Introduction

Once broadband multichannel problems have been expressed using polynomial ma-

trix formulations, solutions to these problems can be obtained via the PEVD. For

example, the PEVD has been successfully used in broadband multiple-input multiple-

output (MIMO) precoding and equalisation using linear [12–14] and non-linear [15,

16] approaches, broadband angle of arrival estimation [17–20], broadband beamform-

ing [21–24], optimal subband coding [8, 25], joint source-channel coding [26, 27], blind

source separation [28] via a polynomial matrix generalised EVD [29], and scene dis-

covery [30]. Several broadband MIMO problems [31–39] utilise the broadband singular

value decomposition (SVD). Such a decomposition can be computed using two PEVDs,

multiple polynomial matrix QR decompositions [40–43] or directly via a polynomial

matrix SVD [44].

Existing PEVD algorithms include second-order sequential best rotation (SBR2) [6],

sequential matrix diagonalisation (SMD) [45], and various evolutions of both algorithm

families [25, 46–50]. Different from the fixed order time domain schemes in [51, 52]

and discrete Fourier transform (DFT)-based approaches in [53, 54], SBR2 and SMD

have proven convergence. Both algorithms employ iterative time domain schemes to

approximately diagonalise a parahermitian matrix, and encourage spectral majorisation

such that the power spectral densities (PSDs) of the resulting eigenvalues are ordered

at all frequencies [8]; indeed, SBR2 has been shown to converge to this solution [55].

A DFT-based PEVD formulation, which transforms the problem into a pointwise-in-

frequency standard matrix decomposition, is provided in [53]. This algorithm has been

shown to perform well for finite order problems [56], but requires an a priori estimate

of the length of the paraunitary matrix in the decomposition. Such DFT-based PEVD

methods have received renewed interest in recent years [54], due to their ability to return

either a spectrally majorised decomposition, or attempt to approximate maximally

smooth, analytic eigenvalues, which are necessary for good eigenvector estimation [9,10].

While offering promising results, the PEVD has seen limited deployment in hard-

ware. A parallel form of SBR2 whose performance has little dependency on the

size of the input parahermitian matrix has been designed and implemented on an

FPGA [57–59], but the SMD algorithm, which can achieve superior levels of diagonal-

3

Chapter 1. Introduction

isation [45], has been restricted to software applications due to its high computational

complexity requirements and non-parallelisable architecture. Efforts to reduce the algo-

rithmic cost of iterative PEVD algorithms, including SMD, have mostly been focussed

on the trimming of polynomial matrices to curb growth in order [6, 60–62], which

translates directly into a growth of computational complexity. By applying a row-shift

truncation scheme for paraunitary matrices in [62–64], the polynomial order can be

reduced with little loss to paraunitarity of the eigenvectors. These efforts, alongside

a low-cost cyclic-by-row numerical approximation of the EVD [49] and methods that

operate over reduced parameter sets [48, 50] have nonetheless not been able to reduce

computational cost sufficiently to invite a hardware realisation. Given the many appli-

cations where these polynomial matrix techniques have the potential to make a great

impact, overcoming the bottleneck of computational complexity in the implementation

of PEVD algorithms is paramount.

1.2 Objective of Research

The fundamental aim of this research is to take note of existing methods for comput-

ing a PEVD, before developing improved and novel algorithms capable of achieving

a comparable or superior decomposition through alternative means. Within this aim,

the first — and most expansive — objective is to reduce the computational complexity

of PEVD algorithms. Of particular interest in this regard are SMD-based algorithms,

which have shown great promise in software simulations [45, 48–50] but are yet to be

implemented in hardware. If the cost of this family of algorithms is adequately reduced,

future work can create solutions for broadband signal processing applications that offer

superior performance to existing implementations [57–59].

As demonstrated in previous research [65, 66], the computational cost of PEVD

algorithms strongly depends on the dimensions of the parahermitian matrix in the

decomposition. Thus, a second objective is to investigate dimensionality reduction

techniques for the PEVD to create a technique that can be applicable to complex and

high-dimensional data sets, which might be created by, for example, large broadband

sensor arrays.

4

Chapter 1. Introduction

Finally, given the potential for DFT-based PEVD algorithms to approximate an

analytic decomposition [53, 54, 56], which would more closely satisfy the conditions

for a potentially minimum-order, absolutely convergent Laurent series solution than

iterative time domain algorithms [9, 10], a third objective relates to an investigation

into DFT-based approaches to the PEVD. This objective extends to the creation of

novel DFT-based PEVD algorithms with superior performance to existing methods.

1.3 Organisation of Thesis and Original Contributions

To set the scene for the contributions described in subsequent chapters, an overview of

the motivation behind the use of polynomial matrix formulations in broadband signal

processing is provided in Chapter 2. This chapter also introduces the PEVD and gives

a brief summary of the existing PEVD algorithms in the literature.

To satisfy the first of the objectives listed above, Chapter 3 discusses a number of

novel methods to lower the computational cost of existing iterative algorithms related

to the PEVD. The proposed methods conquer unexplored areas of PEVD algorithm

improvement by optimising matrix manipulations in software, exploiting parahermitian

matrix symmetry [67], minimising algorithmic redundancy [68], and reducing the search

and update space of iterative PEVD algorithms [68,69]. Since repeated application of

the polynomial matrix QR decomposition (PQRD) to a parahermitian matrix can be

used to form a PEVD, improvements are also made to an existing PQRD algorithm [70],

such that PEVD implementations that rely on the PQRD can also benefit. Further-

more, in research encompassed by the first two objectives, improvements to an existing

polynomial matrix truncation strategy yield a method capable of reducing polynomial

matrix order without significantly impacting on decomposition mean square error.

While each of the methods discussed in Chapter 3 decrease the implementation

costs of various PEVD approaches, the complexity of the algorithms grows rapidly

with the spatial dimensions of the parahermitian matrix, such that even the improved

PEVD algorithms are not well-suited for applications involving large broadband ar-

rays. Chapter 4 addresses this problem — and the second objective of this research —

by taking additional steps to convert the sequential form of existing PEVD algorithms

5

Chapter 1. Introduction

to a reduced dimensionality, partially parallelisable divide-and-conquer (DaC) architec-

ture [71,72]. In the proposed DaC approach, a large parahermitian matrix is segmented

into multiple independent parahermitian matrices of smaller spatial dimensions, which

are subsequently diagonalised independently. Through these efforts, PEVD algorithms

are created that exhibit convergence speeds an order of magnitude faster than existing

methods for parahermitian matrices with large spatial dimensions [64]. In contrast

to the current state-of-the-art approaches, the developed algorithms are shown to be

well-suited to deployment in application scenarios [20].

Of particular interest are DFT-based PEVD algorithms, which offer potentially

analytic and subsequently minimum-order solutions to the PEVD. In the process of

completing the third objective of this research, Chapter 5 briefly introduces the concept

of DFT-based PEVD algorithms before comparing an example of such an algorithm

with an iterative time-based PEVD algorithm [56]. A subsequent section then details

the formation of a novel DFT-based algorithm capable of outperforming an existing

method while requiring less a priori knowledge regarding the order of the paraunitary

matrices in the decomposition [73]. An extension of this algorithm, which uses an

iterative approach to remove all a priori knowledge requirements, is then found to

perform well relative to existing iterative PEVD algorithms [74].

Finally, Chapter 6 summarises the major novel contributions in this thesis, and

proposes a number of future directions for further research in this area.

6

Chapter 2

Background

Following an introduction to the notations and definitions used throughout this thesis

in Section 2.1, Section 2.2 provides a brief overview of the motivation behind the use

of polynomial matrix formulations in broadband signal processing. Subsequently, Sec-

tion 2.3 establishes the context for the contributions described in subsequent chapters

by defining the polynomial matrix eigenvalue decomposition and listing the existing

algorithms designed to compute such a decomposition. Finally, Section 2.4 defines the

software and hardware utilised for the majority of the simulations in this thesis.

2.1 Notations and Definitions

In this thesis, upper- and lower-case boldface variables, such as A and a, refer to

matrix- and vector-valued quantities, respectively. The mth element in a vector or

diagonal matrix is represented by a lower-case variable with subscript m, e.g., am, and

the element shared by the mth row and nth column of a matrix is similarly represented

with subscriptm,n— such as in am,n. Let IM and 0M denote identity and zero matrices

of dimension M×M , respectively. In addition, Z is the set of integers, N is the subset of

positive integers, R is the field of real numbers, and C is the field of complex numbers.

A dependency on a continuous and discrete variable is indicated via parentheses and

square brackets, respectively; examples of this are A(t), t ∈ R, and a[n], n ∈ Z.

Polynomial quantities, such as A(z), are denoted by their dependency on z and italic

font. To facilitate a distinction between the time and frequency domain, quantities

7

Chapter 2. Background

dependent on a discrete frequency variable are denoted by sans-serif notation; examples

of this are a[k], a[k], and A[k]. The expectation operator is denoted as E{·}, ‖ · ‖F
is the Frobenius norm, and {·}H indicates a Hermitian transpose. When applied to a

polynomial matrix, the latter is taken to mean the Hermitian transpose of all polynomial

coefficient matrices and z, i.e., RH(z) = RT
∗ (z

∗), where R∗(z) denotes conjugation of

the coefficients of R(z) without conjugating z and {·}T denotes the transpose. The

parahermitian conjugate operator {̃·} implies a Hermitian transpose of each coefficient

matrix and a replacement of z by z−1, such that R̃(z) = RT
∗ (z

−1) = RH(1/z∗) [4];

i.e., a Hermitian transposition and time reversal of the corresponding time domain

quantity. In this thesis, the order of a Laurent polynomial matrix A(z) =
∑b

n=aAnz
n

— for a, b ∈ Z, a ≤ b, An ∈ C
M×M , Aa 6= 0M , and Ab 6= 0M — is b−a [7]. The length

of a Laurent polynomial matrix is defined as its order plus one.

2.2 Polynomial Matrix Formulations in Broadband Signal

Processing

2.2.1 Introduction

The Hermitian instantaneous covariance matrix R = E{x[n]xH[n]}, which captures

the correlation and phase information present in a zero mean, multichannel signal

x[n] ∈ C
M , is the subject of matrix decompositions at the centre of many optimal

and robust solutions to narrowband array processing problems [1,2]. In particular, the

eigenvalue decomposition (EVD) of a positive semi-definite matrix R, which uses a

unitary matrix Q and diagonal matrix D to decompose R such that

R = QDQH , (2.1)

has proven to be a useful tool in such scenarios. For example, it is at the heart of

the Karhunen–Loève transform for optimal data compaction [75], the widely utilised

principal component analysis approach to dimensionality reduction [76], and the multi-

ple signal classification (MUSIC) algorithm for the estimation of source frequency and

8

Chapter 2. Background

location [77].

The above EVD applications are well suited to narrowband signal processing, where

matrices only consist of complex gain factors, or correlations are sufficiently defined by

instantaneous covariance matrices. This model only considers the instantaneous mixing

of signals, and is not necessarily suitable for all applications. For example, in the case

of a broadband sensor array, the propagation of signals from sources to sensors cannot

be modelled by a scalar mixing matrix; i.e., information relating to the angle of arrival

is embedded in the relative time delay of each signal rather than a simple phase shift.

A matrix of finite impulse response (FIR) filters is required instead. If each filter is

represented as a polynomial in z ∈ C, the propagation model takes the form of a

polynomial mixing (or convolutive mixing [78]) matrix. Convolutive mixing can also

be used to model the effects of multipath propagation, which constitutes an important

factor in many areas of sensor array signal processing.

2.2.2 Space-Time Covariance and Cross-Spectral Density Matrices

In the case of a broadband sensor array or convolutively mixed signals, the sensor

outputs will generally be correlated with one another across explicit delays instead

of phase shifts. If the second order statistics of broadband signals is to be captured

directly, the relative delays must be carried forward — ideally through space-time

covariance matrices R[τ], where each entry is not just a single correlation coefficient as

in R, but an entire auto- or cross-correlation sequence with a discrete lag parameter τ .

A space-time covariance matrix

R[τ] = E{x[n]xH[n− τ]} (2.2)

can be constructed from a vector-valued time series x[n] ∈ C
M , which depends on

the discrete time index n and is assumed to be zero mean. A visualisation of an

array collecting broadband data is provided in Figure 2.1. Auto-correlation functions

of the M measurements in x[n] reside along the main diagonal of R[τ], while cross-

correlation terms between the different entries of x[n] form the off-diagonal terms, such

that R[τ] = RH[−τ].

9

Chapter 2. Background

x1[n]

x2[n]

xM [n]

.

.

.

.

.

.

.

.

.

Figure 2.1: Visualisation of an M element broadband linear array collecting a vector-
valued time series x[n] ∈ C

M .

The z-transform of R[τ] ∈ C
M×M , known as a cross-spectral density (CSD) matrix

and denoted R(z) : C → C
M×M , has Laurent polynomial elements in z ∈ C and

therefore takes the form of a Laurent polynomial matrix1 [4, 79]:

R(z) =
T∑

τ=−T

R[τ]z−τ . (2.3)

Here, T is the maximum lag of R[τ]; i.e., R[τ] = 0 ∀ |τ | > T . Throughout this thesis,

the relationship between time domain and transform domain quantities is abbreviated

as R(z) •—◦ R[τ]. Since R[τ] = RH[−τ], R(z) is a parahermitian matrix, such that

R(z) = R̃(z) [4].

The space-time covariance matrix and corresponding CSD matrix can no longer be

decorrelated using the EVD, which only measures and removes instantaneous spatial

correlation; i.e., it eliminates correlation between pairs of signals sampled at the same

instant in time. Instead, it is necessary to impose decorrelation over a suitably cho-

sen range of relative time delays. This is referred to as strong decorrelation or total

decorrelation [8], and a matrix of suitably chosen filters is required to achieve it.

A relatively naive approach to decorrelating the broadband sensor signals is to use

the independent frequency bin (IFB) method, which splits the broadband spectrum into

a number of narrow frequency bands via the discrete Fourier transform (DFT). The

narrowband data in each band is then processed using the EVD. This scheme is also used

to achieve spatial multiplexing in wireless communications [80]. However, drawbacks

1In this thesis, usage of the term ‘polynomial’ generally refers to a Laurent polynomial.

10

Chapter 2. Background

with this method are that the relatively small but important correlations between

frequency bands are ignored, thus limiting the degree to which strong decorrelation

can be achieved. It can also lead to a lack of phase coherence across the bands, since

in each band the eigenvectors can experience an arbitrary phase shift and permutation

(alongside the eigenvalues) relative to neighboring bands. These features of the IFB

technique for space-time adaptive processing have previously been observed in phased

array radar applications [81].

2.3 Polynomial Matrix Eigenvalue Decomposition

2.3.1 Definition

Research in [6] generalises the EVD to the case of broadband sensor arrays and con-

volutive mixing by requiring the strong decorrelation to be implemented using an FIR

paraunitary polynomial matrix [7]. A paraunitary polynomial matrix represents a mul-

tichannel all-pass filter and, accordingly, it preserves the total signal power at every

frequency [4]. In order to achieve strong decorrelation, the paraunitary matrix seeks

to diagonalise a parahermitian polynomial matrix by means of a generalised similarity

transformation in what has become known as a polynomial matrix eigenvalue decom-

position (PEVD).

The PEVD [6] uses a paraunitary matrix F (z) or Q(z) to approximately diagonalise

a parahermitian CSD matrix R(z) such that

R(z) ≈ F̃ (z)D(z)F (z) = Q(z)D(z)Q̃(z) , (2.4)

where D(z) ≈ diag{d1(z), d2(z), . . . , dM (z)} approximates a diagonal matrix and

is typically spectrally majorised [8] with power spectral densities (PSDs) dm(ejΩ) ≥
dm+1(e

jΩ) ∀ Ω, m = 1 . . . (M − 1), where dm(ejΩ) = dm(z)|z=ejΩ . The diagonal of D(z)

contains approximate polynomial eigenvalues, and the rows and columns of F (z) and

Q(z), respectively, are approximate polynomial eigenvectors such that F (z) = Q̃(z).

While the definition of the PEVD in [6] generates polynomial eigenvectors of the form

of F (z), the PEVD formulations of [9, 10, 53, 54] utilise the form of Q(z). Both forms

11

Chapter 2. Background

are used in this thesis; thus, different variables are used for clarity. The paraunitary

property of the eigenvectors ensures that

F (z)F̃ (z) = F̃ (z)F (z) = Q(z)Q̃(z) = Q̃(z)Q(z) = IM , (2.5)

where IM is an M ×M identity matrix. Note that the decomposition in (2.4) is unique

up to permutations and arbitrary all-pass filters applied to the eigenvectors.

Equation (2.4) has only approximate equality, as the PEVD of a finite order poly-

nomial matrix is generally transcendental; i.e. it is not of finite order. However, the

approximation error can be shown to become arbitrarily small if the order of the ap-

proximation is selected sufficiently large [9]. A finite order approximation will therefore

lead to only approximate diagonality of D(z) in (2.4). Similarly, a finite order approx-

imation of F (z) or Q(z) through trimming will result in only approximate equality

in (2.5). A paraunitary matrix can be implemented as a lossless FIR filter bank that

conserves energy; as a result, the terms paraunitary matrix and paraunitary filter are

used interchangeably throughout this thesis.

Recent research in [9, 10] provides conditions for the existence and uniqueness of

eigenvalues and eigenvectors of a PEVD, such that these can be represented by a power

or Laurent series that is absolutely convergent, permitting a direct realisation in the

time domain. Further research in [11] studies the impact of estimation errors in the

sample space-time covariance matrix on its PEVD.

2.3.2 Existing PEVD Algorithms

Iterative Time Domain Algorithms

For the calculation of the PEVD, only very limited ideal cases permit an exact de-

composition. In general, PEVD algorithms have to rely on iterative approaches. The

algorithms in this section operate in the time domain; i.e., they directly manipulate

polynomial coefficients in an effort to diagonalise a parahermitian matrix. As such,

through the course of algorithm iterations, for iteration parameter i, the diagonalisa-

tion metric E
(i)
diag defined in Section A.3 and [45] is reduced.

12

Chapter 2. Background

An iterative gradient-based method to diagonalise a parahermitian matrix by means

of paraunitary factorisation is presented in [82], but is limited to 2 × 2 parahermitian

matrices with a specific structure found in subband coding. A fixed order approximate

EVD (AEVD) algorithm for parahermitian matrices, operating in the time domain,

was proposed in [52]. It applies a succession of first-order elementary paraunitary filter

stages but does not always compute a good approximation and does not have proven

convergence.

Second-order sequential best rotation (SBR2) [6], which has been proven to converge

to a good approximate PEVD [6,25,83], is the most well-established PEVD algorithm.

Following its implementation on an FPGA in [57–59], the algorithm has been further

developed to employ a multiple shift strategy (MS-SBR2) in [46]. Additional research

in [55] has confirmed that SBR2 converges to a spectrally majorised solution. In every

iteration, SBR2 eliminates the ‘dominant’ off-diagonal element with maximum magni-

tude of a parahermitian matrix by means of a paraunitary operation. The paraunitary

operation is not order-constrained, as in the AEVD [52], and applies a delay such that

the dominant off-diagonal element is transferred onto lag zero of the space-time covari-

ance matrix, R[0]. A Jacobi rotation [2] then eliminates that element and transfers its

energy onto the main diagonal.

In performing a delay operation, SBR2-based algorithms move an entire row and

column of the CSD matrix into the lag zero matrix, where the Jacobi rotation will

only eliminate the maximum element. The elimination of only a single element at each

iteration typically leads to slow diagonalisation performance over algorithm iterations

in practice, which the MS-SBR2 algorithm does not improve upon [66]. A second fam-

ily of algorithms based on the sequential matrix diagonalisation (SMD) algorithm [45]

advance this idea by transferring a greater quantity of energy to the diagonal of the

lag zero matrix at each iteration through the use of a direct EVD. Application of the

eigenvectors generated through an EVD of the lag zero matrix — following the shifting

of energy to lag zero — guarantees that all shifted energy is transferred to the diagonal.

Within a reasonable number of iterations, SMD is able to achieve levels of diagonali-

sation that cannot be obtained by SBR2 [45]. Particular focus is given to SMD in this

13

Chapter 2. Background

thesis for the reasons above, and those described later in Section 3.2.1, where SMD

is found to be the most computationally efficient iterative PEVD algorithm. Further

detail on the operation of SMD is therefore provided in Section A.1, as knowledge of

this algorithm may aid the reader’s understanding of subsequent chapters.

Although SMD has been shown to be able to achieve parahermitian matrix diago-

nalisation using lower order paraunitary matrices — which are beneficial for application

purposes [17–19,21–23,25] — in [45], a developed row-shift truncation strategy in [62]

is able to reduce the order of the paraunitary matrices from SBR2 but not SMD, such

that SBR2 is preferable for a low order decomposition [63].

While the original SMD algorithm transfers the energy of an entire row and column

pair [45], versions of SMD have been created that transfer the energy of multiple domi-

nant elements to the diagonal of the lag zero matrix at each iteration. The first of these,

which comes closest to matching the performance of an idealised maximum energy SMD

algorithm in [84], is denoted multiple shift maximum element SMD (MSME-SMD) [47],

with causality-constrained (C-MSME-SMD) [48] and reduced search space (RS-MSME-

SMD) [50] versions found in the respective papers. Of these multiple shift approaches,

the RS-MSME-SMD algorithm was identified as offering the fastest diagonalisation

speed of all SMD-based algorithms, while producing shorter polynomial matrices than

other multiple shift strategies [50].

Following the development of a ‘cyclic-by-row’ (CbR) approximation to the EVD

step in SMD in [49], which is able to outperform SMD with respect to diagonali-

sation speed without sacrificing performance elsewhere, low-cost CbR versions have

been created for all SMD-based algorithms. Using the CbR PEVD algorithms, the

computational cost to reach a specific level of diagonalisation is reduced below even

what is required for SBR2 [49]. Although multiple shift SMD algorithms were found

to outperform SMD in terms of diagonalisation speed in [47, 48, 50], the equivalent

CbR algorithms were found to be slower than a CbR implementation of SMD due to

the high cost of their search step [65, 66]. Therefore, when the research in this thesis

was initiated, the cyclic-by-row SMD (SMDCbR) algorithm was considered to be the

state-of-the-art iterative PEVD algorithm.

14

Chapter 2. Background

DFT-Based Frequency Domain Algorithms

A DFT-based PEVD formulation is performed in [85]; however, the order of the pa-

raunitary filter banks must be strictly limited. A second example, which transforms

the problem into a pointwise-in-frequency standard matrix decomposition and has been

shown to perform well for finite order problems [56], is provided in [53], but requires

an a priori estimate of the length of the paraunitary matrix in the decomposition.

This algorithm is summarised in Section A.2 for future reference. Such DFT-based

PEVD methods have received renewed interest in recent years [54], due to their abil-

ity to return either a spectrally majorised decomposition, or attempt to approximate

maximally smooth, analytic eigenvalues, which are necessary for good eigenvector esti-

mation [9, 10].

Given their particular relevance in Chapter 5 of this thesis, additional information

regarding the implementation of DFT-based algorithms is provided in Section 5.1.

2.3.3 Implementations of PEVD Algorithms

The PEVD has been successfully used in broadband multiple-input multiple-output

(MIMO) precoding and equalisation using linear [12–14] and non-linear [15, 16] ap-

proaches, broadband angle of arrival estimation [17–20], broadband beamforming [21–

23], optimal subband coding [8,25], joint source-channel coding [27], and scene discov-

ery [30].

A number of successful efforts to reduce the algorithmic cost of iterative PEVD

algorithms have focussed on the trimming of polynomial matrices to curb growth in

order [6, 60–62], which translates directly into a growth of computational complexity.

However, while offering promising results, the PEVD has seen limited deployment in

hardware. A parallel form of SBR2 whose performance has little dependency on the

size of the input parahermitian matrix has been designed and implemented on an

FPGA [57–59], but the SMD algorithm and its cyclic-by-row approximation, which

can achieve superior levels of diagonalisation [45, 49], have been restricted to software

applications — perhaps due to their dramatic increase in computational complexity

with parahermitian matrix spatial dimension [65,66] and non-parallelisable architecture.

15

Chapter 2. Background

For the interested reader, versions of the original SMD and SBR2 algorithms can

be found in the PEVD toolbox [86].

2.4 Simulation Software and Hardware Platform

Unless otherwise stated, all simulations in this thesis are performed within MATLABR©

R2014a under Ubuntu R© 16.04 on an MSIR© GE60-2OE with IntelR© CoreTM i7-4700MQ

2.40GHz × 8 cores, NVIDIAR© GeForceR© GTX 765M, and 8GB RAM.

16

Chapter 3

Computational Advances for the

Iterative PEVD

3.1 Introduction

As evidenced by the contents of Section 2.3.2, a number of iterative PEVD algorithms

have been developed. Despite this, the PEVD has seen limited deployment for applica-

tion purposes due to the high computational cost of these algorithms. This is especially

true for scenarios involving a large number of broadband sensors, which require the de-

composition of parahermitian matrices with a large spatial dimension, M . For example,

as M is increased, the plot of Figure 3.1 from [65] demonstrates the increasingly poor

diagonalisation versus execution time performance of the recent multiple shift maxi-

mum element SMD (MSME-SMD) algorithm. Here, the diagonalisation metric E
(i)
diag

defined in Section A.3 and [45] is used. For the case of a parahermitian matrix with

spatial dimensions of 20 × 20, which in practice might be generated using data from

20 sensors, MSME-SMD requires hundreds of seconds to achieve even a moderate level

of diagonalisation. Clearly, for application purposes, the required execution time of

PEVD algorithms must be reduced.

This chapter therefore details a number of novel methods to lower the computational

cost of existing iterative algorithms related to the PEVD. These methods conquer

unexplored areas of PEVD algorithm improvement by optimising matrix manipulations

17

Chapter 3. Computational Advances for the Iterative PEVD

MSME-SMD

SMD

ME-SMD

M = 4
M = 10

M = 20

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E{

E
(i
)

d
ia
g
}
/
[d
B
]

Figure 3.1: MSME-SMD, SMD [45], and maximum element SMD (ME-SMD) [45]
diagonalisation speed for increasing spatial dimension M [65].

in software in Section 3.2, exploiting parahermitian matrix symmetry in Section 3.3,

minimising algorithmic redundancy in Section 3.4, and reducing the search and update

space of iterative PEVD algorithms in Sections 3.5 and 3.6. Repeated application of

the polynomial matrix QR decomposition (PQRD) to a parahermitian matrix in a

manner analogous to the QR algorithm [87] can be used to form a PEVD. A similar

application of the PQRD has been explored for the polynomial matrix singular value

decomposition (PSVD) in [43]. Improvements are therefore made to an existing PQRD

algorithm in Section 3.7, such that both PEVD and PSVD implementations that rely

on the PQRD can also benefit. Finally, improvements to an existing polynomial matrix

truncation strategy yield benefits in Section 3.8, such that polynomial matrix length

can be reduced without significantly impacting on decomposition mean square error.

18

Chapter 3. Computational Advances for the Iterative PEVD

3.2 Optimising Matrix Manipulations to Increase Algo-

rithmic Efficiency

For application purposes, PEVD algorithms inevitably have to be implemented in soft-

ware and subsequently deployed to hardware. A number of algorithmic improvements

have been made to increase the performance of several iterative PEVD algorithm ar-

chitectures [46–50,88]; however, specifics regarding the algorithms’ efficient implemen-

tation in software have not been addressed. This section therefore discusses a number

of novel, significant ways to increase the algorithmic efficiency of iterative PEVD al-

gorithms and polynomial matrix implementations without impacting accuracy. Meth-

ods to compute the product of a matrix and polynomial matrix are discussed in Sec-

tion 3.2.1. Furthermore, efficient techniques to compute the product of two polynomial

matrices are detailed in Section 3.2.2. The optimal point at which to integrate poly-

nomial matrix truncation into iterative PEVD algorithms is explored in Section 3.2.3.

Conclusions for this section are drawn in Section 3.2.4.

Elements of the work on polynomial matrix truncation in this section can be found

published in the proceedings of the 24th European Signal Processing Conference in a

paper titled ‘Memory and Complexity Reduction in Parahermitian Matrix Manipula-

tions of PEVD Algorithms’ [67].

3.2.1 Product of a Matrix and Polynomial Matrix

In a number of iterative PEVD algorithms [45,47,48,50], the product of a matrix and

polynomial matrix is computed at least once per iteration. An example of this product

can be seen in (A.5); here, it is required to transfer off-diagonal energy in the lag zero

matrix of a parahermitian matrix onto the diagonal. Given that a significant number

of iterations are typically required for convergence of a PEVD algorithm, this matrix

multiplication step quickly forms a significant portion of the computational cost of such

algorithms [45].

19

Chapter 3. Computational Advances for the Iterative PEVD

Matrix Multiplication Methods

Existing implementations of the algorithms in [45, 47, 48, 50] in MATLABR© typi-

cally make use of a polynomial matrix convolution function denoted PolyMatConv(·)
from [86], whereby S(z) = PolyMatConv(Q(z),R(z)) computes the product S(z) =

Q(z)R(z), where S(z),R(z),Q(z) : C → C
M×M . This function is implemented such

that the polynomial element in the mth row and nth column of S(z) is found via

sm,n(z) •—◦ sm,n[τ] = qm,1[τ]∗r1,n[τ]+qm,2[τ]∗r2,n[τ]+ . . .+qm,M [τ]∗rM,n[τ] . (3.1)

If Q(z) is instead replaced with a simple matrix of coefficients Q as in (A.5), the

implementation in (3.1) ∀ m,n — which involves a large number (M3) of convolution

operations — is not efficient. An alternative implementation for a parahermitian R(z)

can instead compute

S[τ] = QR[τ] , ∀ τ , (3.2)

which requires L M × M matrix multiplications, where L = 2T + 1 is the length

of R[τ] and T is its maximum lag. Given that MATLABR© is optimised for matrix

multiplication [89], (3.2) is more efficient than (3.1) in this case. In essence, a choice is

made to interpret R(z) as a single polynomial with matrix valued coefficients in (3.2),

rather than a matrix of polynomials as in (3.1).

The formulation in (3.2) is highly parallelisable, as matrix multiplications for each

τ are independent. This work therefore proposes the following novel approach, which

enables the simultaneous computation of all lags of S[τ]. In this approach, by placing

coefficient matrices of R[τ] side-by-side in a horizontally concatenated matrix Rh ∈
C
M×ML,

Rh = [R[−T] R[−T + 1] · · · R[T]] , (3.3)

one can compute

Sh = [S[−T] S[−T + 1] · · · S[T]] = QRh , (3.4)

which can be rearranged with little effort to obtain S[τ].

The product in (A.5) also requires application of QH from the right — i.e., a formu-

20

Chapter 3. Computational Advances for the Iterative PEVD

lation where S′(z) = S(z)QH. Equations (3.1) and (3.2) can be very easily modified to

accommodate this; however, the approach of (3.4) must be considered further, as the

dimensionalities of Sh ∈ C
M×ML and QH ∈ C

M×M are incompatible. Instead, one can

compute S′
v ∈ C

ML×M using a vertically concatenated matrix Sv ∈ C
ML×M :

S′
v =











S′[−T]
S′[−T + 1]

...

S′[T]











= SvQ
H =











S[−T]
S[−T + 1]

...

S[T]











QH , (3.5)

which can again be rearranged to obtain S′[τ]. A combination of (3.4) and (3.5)

therefore enables computation of the productQR(z)QH using a mixture of horizontally

and vertically concatenated matrices.

Matrix Multiplication Performance Comparison

To compare the computational costs of each of the three matrix multiplication methods,

the simulations below record the average time taken for 103 instances of each method

to compute S′(z) = QR(z)QH in MATLABR© for M ∈ {5; 10; 20} and T ∈ {50; 100},
with parahermitian matrix R(z) = A(z)Ã(z) of length L = 2T + 1. Matrices A(z) :

C → C
M×M and Q ∈ C

M×M contain coefficients drawn from a randomised complex

Gaussian source with unit variance and zero mean.

In Table 3.1, it can be seen that the combined approach utilising (3.4) and (3.5)

is faster than other methods for T = 50, while the PolyMatConv(·) function that is

widespread in existing PEVD algorithms is by far the slowest. The latter experiences

a significant slowdown as M increases, while the remaining methods decrease in speed

more gradually.

Similar results can be found in Table 3.2 for T = 100, where the increase in tem-

poral dimension has universally increased execution time requirements. Note that the

approach using PolyMatConv(·) is less affected than the other methods, but is still

significantly slower.

From these results, it can be concluded that the proposed two-dimensional concate-

21

Chapter 3. Computational Advances for the Iterative PEVD

Table 3.1: Average time taken for each matrix multiplication method with T = 50.

Method Average execution time / s

M = 5 M = 10 M = 20

(3.1) 2.655 × 10−2 2.086 × 10−1 1.811

(3.2) 5.432 × 10−4 8.582 × 10−4 1.862 × 10−3

(3.4) & (3.5) 1.178 × 10−4 4.816 × 10−4 9.986 × 10−4

Table 3.2: Average time taken for each matrix multiplication method with T = 100.

Method Average execution time / s

M = 5 M = 10 M = 20

(3.1) 2.786 × 10−2 2.207 × 10−1 1.890

(3.2) 1.038 × 10−3 1.687 × 10−3 3.598 × 10−3

(3.4) & (3.5) 4.466 × 10−4 6.249 × 10−4 1.632 × 10−3

nated matrix multiplication approach is most suitable for implementation purposes.

Each algorithm in [45,47,48,50] can be easily modified to adopt this strategy without

affecting PEVD accuracy. For example, convergence speed results for various forms

of SMD adapted to incorporate each matrix multiplication strategy are shown in Fig-

ure 3.2. In this plot, SMD represents the standard SMD algorithm [45] from [86] —

which uses the PolyMatConv(·) function — implemented in MATLABR©; SMD† and

SMD‡ have been adapted to use the approach of (3.2) and the combined approach

of (3.4) and (3.5), respectively; and SMD∗ is a further modified form of SMD‡ that

maintains only concatenated two-dimensional matrices throughout, and recovers the

true three-dimensional representation upon completion. Note that all versions of SMD

produce identical PEVDs. Simulations were performed over an ensemble of 103 in-

stantiations of R(z) : C → C
M×M obtained from the randomised source model in

Appendix B [45] with M = 5, OD = 118, OQ = 60, and ∆DR = 30. During 200 itera-

tions of each version of SMD — which uses the polynomial matrix truncation scheme

of Appendix C — truncation parameters of µ = µt = 10−12 and a stopping threshold of

ǫ = 0 were used. At each iteration of the algorithms, the elapsed simulation time and

the diagonalisation metric E
(i)
diag from Section A.3 — which is an indicator of PEVD

algorithm convergence [45] — were recorded.

22

Chapter 3. Computational Advances for the Iterative PEVD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−15

−10

−5

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

SMD

SMD†

SMD‡

SMD∗
7.6 7.8 8

−14

−13.5

−13

Figure 3.2: Matrix multiplication speed comparison using SMD algorithm.

In Figure 3.2, it can be observed that SMD‡, and the closely related SMD∗, are

quickest to converge, while the version of the algorithm available from [86] is signifi-

cantly slower. Given sufficient development time, the purely two-dimensional imple-

mentation of SMD∗ can be transported to lower-level — potentially faster — software

languages, such as C, with relative ease.

Extension of Matrix Multiplication Strategy to Existing Algorithms

It has been noted in the literature that while PEVD algorithms in the SMD fam-

ily [45,47–50] offer greater diagonalisation of a parahermitian matrix per iteration than

alternative methods — such as those in the SBR2 family [6,46] — their execution time

requirements are significantly higher, and can be of the order of hundreds of seconds as

in Figure 3.1. Fortunately, if these algorithms are modified to use the same matrix mul-

tiplication strategy as SMD‡, their speed can be dramatically increased. To convey this,

all existing state-of-the-art PEVD algorithms are compared in a single simulation, which

was performed over an ensemble of 103 instantiations of R(z) : C → C
M×M obtained

from the randomised source model in Appendix B [45] with M ∈ 5; 10, OD = 118,

OQ = 60, and ∆DR = 30. The scenario inputs R(z) : C → C
M×M to instances of

the MSME-SMD‡ [47], restricted search MSME-SMD (RS-MSME-SMD‡) [50], SMD‡,

cyclic-by-row SMD (SMDCbR) [49], SBR2 [6], and multiple shift SBR2 (MS-SBR2) [46]

algorithms, which are each allowed a total of 200 iterations. The notation ‡ indi-

cates that an algorithm has been modified to use the combined matrix multiplication

23

Chapter 3. Computational Advances for the Iterative PEVD

approach of (3.4) and (3.5). Each algorithm utilised the truncation strategy of Ap-

pendix C with polynomial matrix truncation parameters of µ = µt = 10−6. At each

iteration of the algorithms, the elapsed simulation time and diagonalisation metric E
(i)
diag

from Section A.3 were recorded.

Figure 3.3 shows the diagonalisation speed of each algorithm. It can be seen that

within 200 iterations, the multiple shift SMD strategies achieve the highest level of

diagonalisation. As has been noted in [66], when optimised, the SBR2 algorithm out-

performs its multiple shift variant in terms of speed, but offers the lowest diagonalisation

per iteration of any PEVD algorithm. However, its simplicity has led to SBR2 being

used for implementation purposes [57–59]. The cyclic-by-row implementation of SMD

is suited for implementations where direct EVD computation is not possible; it achieves

a similar level of diagonalisation to SMD‡, but is significantly slower. Indeed, SMD‡

achieves a respectable level of diagonalisation within the 200 iterations, and offers the

fastest performance overall.

If the results of Figures 3.1 and 3.3 are compared, it is clear that by optimising

the matrix multiplication strategy used by the most computationally costly component

of the SMD-based algorithms [45], significant performance gains have been made. Im-

portantly, these gains have arisen without impacting on the numerical accuracy of the

PEVDs produced. Since the SMD‡ algorithm offers the fastest — i.e., lowest complex-

ity — PEVD, it is considered to be the state-of-the-art PEVD algorithm; it is therefore

the predominant benchmark algorithm used throughout this thesis for comparison pur-

poses. Of course, there are other aspects to the PEVD that can not be measured by

diagonalisation speed alone. However, for brevity, the reader is referred to the literature

for information regarding the efficacy of each algorithm with respect to other PEVD

performance metrics.

Note that, when comparing algorithm modifications in subsequent sections, the

matrix multiplication strategy in all SMD-based algorithms matches the procedure in

SMD‡. If desired, any of these algorithms could be further modified to utilise a purely

two-dimensional implementation.

24

Chapter 3. Computational Advances for the Iterative PEVD

10
−2

10
−1

10
0

−15

−10

−5

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

MSME-SMD‡

RS-MSME-SMD‡

SMD‡

SMDCbR
SBR2
MS-SBR2
M = 5
M = 10

Figure 3.3: Diagonalisation speed comparison of state-of-the-art iterative PEVD algo-
rithms when using optimised matrix multiplication strategies.

3.2.2 Product of Two Polynomial Matrices

The function PolyMatConv(·) [86] described in Section 3.2.1 employs convolution in

the time domain to find the product of two polynomial matrices. For polynomial

matrices of spatial dimension M ×M , this requires the convolution of M time series

per polynomial element, and therefore M3 convolutions for the computation of all

elements. Linear convolution of a series of length L1 and a series of length L2 in the

discrete time domain is equivalent to multiplication of their Fourier coefficients in the

discrete frequency domain, provided that the number of frequency bins used is equal

to K = L1 + L2 − 1. In the field of digital signal processing, it is well established that

the linear convolution of two time series can be computed significantly faster in the

frequency domain if the fast Fourier transform (FFT) is utilised [90]. In this section,

this principle is extended to the computation of the product of two polynomial matrices,

resulting in a decrease in the required computation time.

25

Chapter 3. Computational Advances for the Iterative PEVD

Moving to the Frequency Domain

The product S(z) = Q(z)R(z) computed by S(z) = PolyMatConv(Q(z),R(z)), where

S(z) : C→ C
M×N , Q(z) : C→ C

M×P , and R(z) : C→ C
P×N , is found via

sm,n(z) •—◦ sm,n[τ] =

P∑

p=1

qm,p[τ] ∗ rp,n[τ] . (3.6)

Here, S(z) has length LS = LQ + LR − 1, where LQ and LR are the lengths of Q(z)

and R(z), respectively.

The same product can be computed in the frequency domain if Q(z) and R(z) are

evaluated at K = LS points on the unit circle (z = ejΩk , Ωk = 2πk/K) using the FFT.

Here, S[k] = S(z)|z=ejΩk is obtained via matrix multiplication:

S[k] = Q[k]R[k] , k = 0 . . . K − 1 . (3.7)

The inverse FFT (IFFT) then recovers S(z).

In MATLABR© — which is often the software of choice for the implementation

of DSP algorithms — FFT, IFFT, and matrix multiplication operations are highly

optimised [89,91–93]. An alternative implementation of PolyMatConv(·) that computes

the product of two polynomial matrices in the frequency domain as described above

is therefore well-suited to this platform. Such an implementation is introduced in this

work, and is named PolyMatConvFreq(·). A particular third-party MATLABR© library

named MTIMESX [94] is optimised for computing the product of multi-dimensional

matrices, and can therefore facilitate fast computation of S[k].

Results and Discussion

Below, the computational cost of PolyMatConv(·) is compared with the costs of two

frequency-based implementations. The first of these, encapsulated in a function denoted

PolyMatConvFreq1(·) employs the matrix multiplication routines native to MATLABR©,

while the second, denoted PolyMatConvFreq2(·) uses the MTIMESX library.

To compare the computational costs of each of the three methods, in the simulations

26

Chapter 3. Computational Advances for the Iterative PEVD

Table 3.3: Average time taken for methods to compute the product of polynomial
matrices with T = 50.

Method Average execution time / s

M = 5 M = 10 M = 20

PolyMatConv(·) 1.389 × 10−2 1.070 × 10−1 8.705 × 10−1

PolyMatConvFreq1(·) 9.438 × 10−4 2.125 × 10−3 3.365 × 10−3

PolyMatConvFreq2(·) 7.064 × 10−4 1.672 × 10−3 2.598 × 10−3

Table 3.4: Average time taken for methods to compute the product of polynomial
matrices with T = 100.

Method Average execution time / s

M = 5 M = 10 M = 20

PolyMatConv(·) 1.504 × 10−2 1.183 × 10−1 9.800 × 10−1

PolyMatConvFreq1(·) 1.587 × 10−3 2.344 × 10−3 6.352 × 10−3

PolyMatConvFreq2(·) 8.272 × 10−4 1.462 × 10−3 4.779 × 10−3

below, the average time taken for 103 instances of each method to compute S(z) =

Q(z)R(z) in MATLABR© is calculated for M ∈ {5; 10; 20}, M = P , and T ∈ {50; 100}.
Matrices Q(z) : C → C

M×P and R(z) : C → C
P×M are of order T and contain

coefficients drawn from a randomised complex Gaussian source with unit variance and

zero mean.

In Table 3.3, it can be seen that the frequency-based approaches are faster than

the PolyMatConv(·) function, which is widespread in existing PEVD implementations,

for T = 50. The latter experiences a significant slowdown as M increases, while the

remaining methods decrease in speed more gradually.

Similar results can be found in Table 3.4 for T = 100, where the increase in temporal

dimension has almost universally increased execution time requirements. Surprisingly,

the PolyMatConvFreq2(·) method actually becomes slightly faster for M = 10 with this

larger T ; while the reason why this occurs is not known, a reasonable guess could assume

that theMTIMESX library is particularly well-optimised for this specific dimensionality

of three-dimensional matrices.

From these results, it can be concluded that the proposed PolyMatConvFreq2(·)
frequency-based approach to computing the product of two polynomial matrices is

27

Chapter 3. Computational Advances for the Iterative PEVD

most suitable for implementation purposes. Any polynomial matrix implementation in

MATLABR© can be easily modified to adopt this strategy without affecting accuracy.

3.2.3 Implementation of Truncation Within PEVD Algorithms

Truncation of outer lags of the iteratively updated polynomial matrices internal to

PEVD algorithms is typically required to constrain computational complexity and

memory costs [6,45,60]. For example, in the SMD algorithm described in Section A.1,

this usually involves truncation of the parahermitian and paraunitary matrices at the

end of each algorithm iteration. If the product of a unitary matrix Q and a polynomial

matrix R(z) produces a polynomial matrix S(z) = QR(z), the total energy in lag τ of

S[τ] ◦—• S(z), ‖S[τ]‖2F, is the same as the total energy inR[τ]; i.e., ‖S[τ]‖2F = ‖R[τ]‖2F.
As a result, for the example of SMD, truncation can actually be performed on S(i)′(z)

and H(i)′(z) prior to the computationally expensive rotation to create S(i)(z) and

H(i)(z) in (A.5). This section therefore proposes trimming of the parahermitian and

paraunitary matrices prior to such rotation stages in a given iteration of any PEVD

algorithm, such that no rotation operations are executed on terms that will subse-

quently be discarded. It is shown, for the case of the SMD algorithm, that this novel

approach to truncation can reduce algorithm execution time without affecting PEVD

performance.

Results and Discussion

Efforts to test the benefit of the novel truncation strategy described above led to the

execution of the simulations below, which are performed over an ensemble of 103 in-

stantiations of R(z) : C → C
M×M obtained from the randomised source model in

Appendix B [45] with M = {5; 10}, OD = 118, OQ = 60, and ∆DR = 30. Two versions

of the SMD algorithm are tested: the first performs truncation after rotation, and the

second — denoted SMD§ — performs truncation before rotation. For 200 iterations of

the algorithms, polynomial matrix truncation parameters of µ = µt = 10−6 and a stop-

ping threshold of ǫ = 0 are used, and the diagonalisation metric E
(i)
diag from Section A.3

and parahermitian matrix length are recorded.

28

Chapter 3. Computational Advances for the Iterative PEVD

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

Algorithm iteration, iP
ar
ah
er
m
it
ia
n
m
at
ri
x
le
n
gt
h

before truncation, M = 5

after truncation, M = 5

before truncation, M = 10

after truncation, M = 10

Figure 3.4: Parahermitian matrix length before and after truncation versus algorithm
iteration for SMD for M ∈ {5; 10}.

0 0.05 0.1 0.15 0.2 0.25
−15

−10

−5

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

SMD, M = 5

SMD§, M = 5

SMD, M = 10

SMD§, M = 10

Figure 3.5: Diagonalisation metric versus algorithm execution time for SMD and SMD§

for M ∈ {5; 10}.

The impact of parahermitian matrix truncation according to Appendix C on the

length of the parahermitian matrix internal to SMD can be seen in Figure 3.4. Note,

the first two SMD algorithm iterations have been omitted for clarity. It is clear that

the truncation process trims a significant number of lags of the parahermitian matrix

at each iteration; thus, a significant number of matrix multiplication operations can

been avoided if the truncation step is moved to before the rotation stage of (A.5).

The plot of Figure 3.5 confirms the assumption made above by demonstrating that

the modified SMD§ converges slightly faster than the original SMD algorithm for both

values of M . While this performance increase is not large, the modifications required

to obtain it are minimal, and can be extended to any iterative PEVD algorithm.

29

Chapter 3. Computational Advances for the Iterative PEVD

Note that, when comparing algorithm modifications directly in subsequent sections,

the implementation of truncation in any modified algorithms matches the truncation

procedure in the original algorithm to avoid bias in any algorithm performance results.

3.2.4 Summary

This section has discussed a number of novel, significant ways to increase the algorith-

mic efficiency of iterative PEVD algorithms and polynomial matrix implementations.

An efficient, two-dimensional approach to computing the product of a matrix and poly-

nomial matrix has been introduced; when integrated with existing SMD-based PEVD

algorithms, this has been shown to dramatically increase their speed. In fact, the speed

of the improved SMD algorithm has been increased to the point where SMD can now be

considered to be the most efficient, state-of-the-art iterative PEVD algorithm. Further-

more, it has been shown that the execution time of polynomial matrix implementations

can be reduced by evaluating the product of two polynomial matrices in the frequency

domain. Finally, the optimal point at which to integrate polynomial matrix truncation

into iterative PEVD algorithms has been explored.

Importantly, the algorithmic efficiency improvements discussed in this section can

be extended to any number of PEVD-based implementations without loss of accuracy.

3.3 Parahermitian Matrix Symmetry and the Half-Matrix

Approach

This section addresses savings — in terms of both computational complexity and mem-

ory use — that exploit the natural symmetry of the parahermitian structure of the

matrix being decomposed in PEVD algorithms, such that only one half of its elements

are stored and processed. A demonstration of how this approach can be implemented

within existing PEVD algorithms is shown through the modification of the SMD algo-

rithm [45] described in Section A.1. The modified form of SMD is named half-matrix

SMD (HSMD).

Based on the half-matrix representation of a parahermitian matrix defined in

30

Chapter 3. Computational Advances for the Iterative PEVD

Section 3.3.1, Section 3.3.2 provides an overview of the HSMD algorithm, Section 3.3.3

outlines the parameter search of HSMD, and Section 3.3.4 details the implementation of

column- and row-shifts in HSMD. The resource requirements and performances of SMD

and HSMD are compared in Section 3.3.5 and Section 3.3.6, respectively. Subsequently,

conclusions are provided in Section 3.3.7.

Elements of the work in this section can be found published in the proceedings of the

24th European Signal Processing Conference in a paper titled ‘Memory and Complexity

Reduction in Parahermitian Matrix Manipulations of PEVD Algorithms’ [67].

3.3.1 Half-Matrix Representation of a Parahermitian Matrix

By partitioning a parahermitian matrix R(z), it is possible to write

R(z) = R(−)(z) +R[0] +R(+)(z) , (3.8)

where R[0] is the lag zero matrix of R(z), R(+)(z) contains terms for positive lag

(τ > 0) elements only, and R(−)(z) = R̃(+)(z). It is therefore sufficient to record half

of R(z), which here without loss of generality is R[0] +R(+)(z). For the remainder of

this thesis, the notation {·} is used to represent the recorded half of a parahermitian

matrix; i.e., R(z) = R[0] +R(+)(z) and R(z) •—◦ R[τ], where

R[τ] =







R[τ], 0 ≤ τ ≤ T

0, otherwise
. (3.9)

If one possesses knowledge of R(z), one has all the information required to obtain R(z),

R[τ], and R[τ]. Given this relationship, R(z) is therefore referred to as a parahermitian

matrix throughout the remainder of this thesis for brevity. In addition, R(z) and R[τ]

are referred to as the ‘half-matrix’ versions of the ‘full-matrix’ representations R(z) and

R[τ], respectively. As an example, Figure 3.6 demonstrates both half- and full-matrix

representations of a 5× 5 matrix with maximum lag T = 3.

31

Chapter 3. Computational Advances for the Iterative PEVD

�a)

� = 3

� = 2

� = 1

� = 0

� = �1

� = �2

� = �3

� = 3

� = 2

� = 1

� = 0

�b)

Figure 3.6: (a) Full-matrix and (b) half-matrix representation of a parahermitian matrix
R(z) : C→ C

5×5 for T = 3.

3.3.2 Half-Matrix Sequential Matrix Diagonalisation Algorithm

While SMD — which is detailed in Section A.1 — seeks to diagonalise R(z), HSMD

diagonalises R(z) by iteratively updating S(i)(z). Using a half-matrix representation

naturally reduces computational costs and memory requirements; however, there are

two main disadvantages to discarding S(i)(−)(z). As a first disadvantage, the parameter

search space of (A.6) is not guaranteed to identify the column with maximum off-

diagonal energy, as columns for τ < 0 are ignored. Secondly, columns and rows cannot

be shifted in the direction of positive τ without the introduction of invalid polynomial

coefficients. Sections 3.3.3 and 3.3.4 describe how these problems are tackled such that

HSMD is able to mimic the results of SMD exactly.

The HSMD algorithm is functionally very similar to SMD; thus, only the differences

between HSMD and SMD are described in the sections below, while pseudocode for

HSMD is provided in Algorithm 1 for reference.

3.3.3 Modified Parameter Search in HSMD

To find the correct shift parameters for the HSMD algorithm, (A.6) can be used directly

but with a restriction of the search space for column norms to τ ≥ 0, such that τ (i) ≥ 0

is also imposed as a constraint. This requires only half the search space of the standard

SMD approach, but neglects to search column norms for negative time lags, hence

yielding a solution that is equivalent to the causally-constrained SMD algorithm [48].

32

Chapter 3. Computational Advances for the Iterative PEVD

Input: R(z), Imax, ǫ, µ, µt

Output: D(z), F (z)
Find eigenvectors Q(0) that diagonalise R[0] ∈ C

M×M

S(0)(z)← Q(0)R(z)Q(0)H; H(0)(z)← Q(0); i← 0; stop ← 0
do

i← i+ 1

Find {k(i), τ (i)} from (3.12); generate Λ(i)(z) from (3.13)

S(i)′(z)← shiftHSMD(S
(i−1)(z), k(i), τ (i),Λ(i)(z), T (i−1),M)

H(i)′(z)← Λ(i)(z)H (i−1)(z)

Find eigenvectors Q(i) that diagonalise S(i)′[0]

S(i)(z)← Q(i)S(i)′(z)Q(i)H

H(i)(z)← Q(i)H(i)′(z)
if i > Imax or (3.14) satisfied then

stop ← 1;
end

Truncate H(i)(z) using threshold µt according to Appendix C

Truncate S(i)(z) using threshold µ according to Appendix C

while stop = 0

F (z)←H(i)(z)

D(z)← S(i)(z)

Algorithm 1: HSMD algorithm

If column norms for negative lags values τ < 0 are to be included in the search,

then due to the parahermitian structure of S(i−1)(z), searching the unobtainable column

norms of S(i−1)[τ] for τ < 0 is equivalent to searching row norms for τ ≥ 0. If a modified

row norm for the kth row is defined as

‖ŝ(i−1)
(r),k

[τ]‖2 =

√
∑M

m=1,m6=k|s̄
(i−1)
k,m [τ]|2 . (3.10)

and a modified column norm for the kth column is defined as

‖ŝ(i−1)
k [τ]‖2 =

√
∑M

m=1,m6=k|s̄
(i−1)
m,k [τ]|2 , (3.11)

then the modified parameter search is

{k(i), τ (i)} = argmax
k,τ

{

‖ŝ(i−1)
k [τ]‖2 , ‖ŝ(i−1)

(r),k [−τ]‖2
}

. (3.12)

33

Chapter 3. Computational Advances for the Iterative PEVD

Here, s̄
(i−1)
m,k [τ] is the element in the mth row and kth column of S(i−1)[τ]. If (3.12)

returns τ (i) > 0, then the k(i)th column of S(i−1)(z) is to be shifted by τ (i) lags towards

lag zero. If τ (i) < 0, it is the k(i)th row that requires shifting by −τ (i) towards lag zero.

3.3.4 Modification of Shift Strategy in HSMD

The delay step in the SMD algorithm, which is implemented via equation (A.4) in

Section A.1, can be performed with the reduced parahermitian matrix representation in

the ith iteration by shifting either the k(i)th column or row — whichever has the greater

modified norm according to (3.11) or (3.10) — by |τ (i)| coefficients to lag zero. To

preserve the half-matrix representation, elements that are shifted beyond lag zero — i.e.,

outside the recorded half-matrix — have to be stored as their parahermitian conjugate

and appended onto the k(i)th row (for τ (i) > 0) or column (for τ (i) < 0) of the shifted

matrix at lag zero. The concatenated row or column is then shifted by |τ (i)| elements

towards increasing τ . Note that the combination of row- and column-shifts effectively

shifts the polynomial in the k(i)th position along the diagonal of S(i−1)(z) in opposite

directions, such that this polynomial remains unaffected. An efficient implementation

of HSMD can therefore exclude this element from shifting operations.

An efficient example of the shift operation is depicted in Figure 3.7 for the case of

S(i−1)(z) : C → C
5×5 with parameters k(i) = 2 and τ (i) = −3. Owing to the negative

sign of τ (i), it is here the 2nd row that has to be shifted first, followed by the 2nd

column shifted in the opposite direction. Another example of the shift operation is

depicted in Figure 3.8 with parameters k(i) = 5 and τ (i) = 3. Owing to the positive

sign of τ (i), it is here the 5th column that has to be shifted first, followed by the 5th

row shifted in the opposite direction.

While the product in (A.2) is used to implement row- and column-shift operations

in SMD, a function shiftHSMD(·) — which is described in Algorithm 2 — implements

the delays encapsulated in the matrix Λ(i)(z) for a half-matrix representation. Here,

paraunitary delay matrix

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i) 1 . . . 1
︸ ︷︷ ︸

M−k(i)

} (3.13)

34

Chapter 3. Computational Advances for the Iterative PEVD

�b)

�d)

�e)

�a)

� = 3

� = 2

� = 1

� = 0

� = 3

� = 2

� = 1

� = 0

� = 3

� = 2

� = 1

� = 0

�c)

Figure 3.7: Example for a parahermitian matrix where in the ith iteration a row norm
is maximum: (a) the row is shifted, with non-diagonal elements in the k(i)th row
past lag zero (b) extracted and (c) parahermitian conjugated. (d) These elements are
appended to the k(i)th column at lag zero and (e) shifted in the opposite direction with
all off-diagonal column elements.

�b)

�d)

�e)

�a)

� = 3

� = 2

� = 1

� = 0

�c)

� = 3

� = 2

� = 1

� = 0

� = 3

� = 2

� = 1

� = 0

Figure 3.8: Example for a parahermitian matrix where in the ith iteration a column
norm is maximum: (a) the column is shifted, with non-diagonal elements in the k(i)th
column past lag zero (b) extracted and (c) parahermitian conjugated. (d) These ele-
ments are appended to the k(i)th row at lag zero and (e) shifted in the opposite direction
with all off-diagonal row elements.

35

Chapter 3. Computational Advances for the Iterative PEVD

Input: S(z), ks, τs, Λ(z), T , M
Output: S′(z)

Γ(z)←






γ1,1(z) . . . γ1,M (z)
...

. . .
...

γM,1(z) . . . γM,M (z)






if τs > 0 then

L(z)← S(z)Λ̃(z)

γm,k(z)←
{ ∑0

τ=−τs+1 Lm,k[τ]z
−τ , k = ks, m 6= ks

0, otherwise

L(z)← L(z) + zτsΓ̃(z)
L(z)← Λ(z)L(z)

else if τs < 0 then

L(z)← Λ(z)S(z)

γm,k(z)←
{ ∑0

τ=τs+1 Lm,k[τ]z
−τ , m = ks, k 6= ks

0, otherwise

L(z)← L(z) + z−τsΓ̃(z)

L(z)← L(z)Λ̃(z)

else

L(z)← S(z)
end

S′(z)←∑T+|τs|
τ=0 L[τ]z−τ

Algorithm 2: shiftHSMD(·) function

is selected based on the parameter set from (3.12), and T (i−1) is the maximum lag of

S(i−1)[τ].

Iterations of HSMD continue for a maximum of Imax steps, or until S(I)(z) is suffi-

ciently diagonalised — for some I — with dominant off-diagonal column or row norm

max
k,τ

{

‖ŝ(I)k [τ]‖2 , ‖ŝ(I)(r),k[−τ]‖2
}

≤ ǫ , (3.14)

where the value of ǫ is chosen to be arbitrarily small.

3.3.5 Complexity and Memory Reduction

SMD Algorithm Complexity and Memory Requirements

If at the ith iteration of SMD S(i−1)[τ] = 0 ∀ |τ | > T (i−1), the memory to store

S(i−1)(z) : C→ C
M×M must hold (2T (i−1) +1)M2 coefficients. The maximum column

36

Chapter 3. Computational Advances for the Iterative PEVD

Table 3.5: Appproximate resource requirements of SMD and HSMD if T (i) ≫ 1.

Method Complexity Storage Memory Moves

SMD 4T (i)M3 2T (i)M2 4T (i−1)(M − 1)

HSMD 2T (i)M3 T (i)M2 2T (i−1)(M − 1)

search requires the calculation of (M−1)M(2T (i−1)+1) multiply-accumulates (MACs)

for the modified column norms according to (A.7).

During the ith iteration, the polynomial order growth leads to T (i) = T (i−1)+ |τ (i)|,
and the calculation of (A.4) is implemented as a combination of two block memory

moves: one for the rows of S(i−1)[τ], and one for the columns. If diagonal elements

are excluded, the number of coefficients of S(i−1)[τ] to be moved can therefore be

approximated by 2(2T (i−1) + 1)(M − 1) ≈ 4T (i−1)(M − 1), assuming T (i−1) is large.

For (A.5), every matrix-valued coefficient in S(i)′(z) must be left- and right-

multiplied with a unitary matrix. Accounting for a multiplication of 2 M×M matrices

by M3 MACs [2, 95], a total of (2(2T (i) + 1)M3) ≈ 4T (i)M3 MACs arise to generate

S(i)(z) from S(i)′(z). It is therefore the cost of this update step that dominates the

computational cost of the ith iteration [45].

HSMD Algorithm Complexity and Memory Requirements

The memory required to store S(i)(z) at the ith iteration of HSMD is equal to (T (i) +

1)M2 coefficients, and is therefore approximately half of what SMD needs. During the

ith iteration, the first delay step of HSMD involves 2(T (i−1)+1)(M−1) coefficients to be

shifted in memory, as opposed to 2(2T (i−1)+1)(M −1) for a full matrix representation.

Therefore, the number of coefficient moves during the shift step is also halved using

the proposed approach.

In terms of multiply-accumulates, the rotation operation with Q(i) during the ith

iteration requires 2M3(T (i) + 1) MACs, saving approximately half of the operations

executed during the standard approach outlined above. The various aspects of re-

source requirements for the maintenance of the parahermitian matrix are summarised

in Table 3.5.

Of course, the paraunitary matrix must also be obtained during iterations, which

37

Chapter 3. Computational Advances for the Iterative PEVD

requires further resources; however, the requirements are the same for both SMD and

HSMD, so this aspect is omitted for brevity.

3.3.6 Results and Discussion

Simulation Scenario

The simulations below are performed over an ensemble of 103 instantiations of R(z) :

C → C
M×M obtained from the randomised source model in Appendix B [45] with

M ∈ {5; 10}, OD = 118, OQ = 60, and ∆DR = 30.

During PEVD algorithm iterations, a truncation parameter of µ = 10−15 and a

stopping threshold of ǫ = 0 are used. The SMD and HSMD implementations are run

until the iteratively updated parahermitian matrix is diagonalised such that diagonali-

sation metric 5 log10 E
(i)
diag = −15 dB, and at every iteration step the metrics defined in

Section A.3 are recorded together with the elapsed execution time.

Diagonalisation

The ensemble-averaged diagonalisation E
(i)
diag was calculated for both SMD and HSMD.

While both algorithms are functionally identical and exhibit the same diagonalisation

performance over algorithm iterations, the diagonalisation speed for both methods is

shown in Figure 3.9. The curves demonstrate that for M ∈ {5; 10}, the lower complex-

ity associated with the HSMD implementation translates to a faster diagonalisation

than observed for the standard SMD realisation. Using a matrix with a larger spa-

tial dimension of M = 10 versus M = 5 results in slower diagonalisation for both

algorithms, but the same relative performance increase is still seen for the proposed

reduced approach.

Simulated in MATLABR©, the results in Figure 3.9 are not as impressive as the

computational savings suggested by Table 3.5. This is partly due to the requirement

of both algorithms to maintain H(i)(z). The MATLABR© profiler indicates that the

execution time for matrix multiplications (i.e., the number of matrix multiplications)

has been substantially reduced by the proposed method; however, while MATLABR©

is optimised for the employed matrix multiplication strategy from Section 3.2.1, its

38

Chapter 3. Computational Advances for the Iterative PEVD

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−15

−10

−5

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

SMD, M = 5

HSMD, M = 5

SMD, M = 10

HSMD, M = 10

Figure 3.9: Diagonalisation metric versus algorithm execution time for SMD and HSMD
for M ∈ {5; 10}.

shifting of memory is as not efficient and dominates the execution time. Despite this,

Figure 3.9 indicates a 20% reduction in cost when using the proposed over the standard

SMD implementation.

3.3.7 Summary

The symmetry in the parahermitian matrix has been exploited when calculating a poly-

nomial matrix EVD, which has been exemplified here by a focus on the SMD algorithm.

A reduced parahermitian matrix representation has been proposed that only records

its causal part; this approach can produce the same accuracy of decomposition as a

standard matrix representation in the SMD algorithm, but with increased efficiency

with respect to memory use and computational complexity. Simulation results under-

line that the same diagonalisation performance can be achieved by both methods, but

within a shorter execution time for the approach based on a reduced representation.

When designing PEVD implementations for real applications, the potential for the

proposed techniques to reduce complexity and memory requirements therefore offers

benefits without deficits with respect to important performance metrics such as the

diagonalisation of the SMD algorithm. The reduced representation of parahermitian

matrices proposed here can be extended to any PEVD algorithm in [6,46–50] by adapt-

ing the shift and rotation operations accordingly.

39

Chapter 3. Computational Advances for the Iterative PEVD

3.4 Increasing Efficiency within Cyclic-by-Row PEVD Im-

plementations

This work addresses potential computational savings that can be applied to exist-

ing so-called ‘cyclic-by-row’ (CbR) approaches for the PEVD. An SMD cyclic-by-row

(SMDCbR) approach [49] has been introduced as a low-cost variant of SMD, which

approximates the EVD step inside the SMD algorithm by a cyclic-by-row implemen-

tation of the Jacobi algorithm [2]. In this work, a method to concatenate the Jacobi

rotations in SMDCbR to reduce the computational cost of the algorithm is described,

and thresholding to the rotation process to eliminate the rotation of near-zero elements

is introduced. It is demonstrated that with the proposed techniques, computations can

be reduced without significantly impacting on algorithm convergence. The proposed

methods are advantageous for application purposes, where the SMDCbR algorithm’s

avoidance of a direct EVD computation may be useful.

Aspects of the iterative PEVD algorithm SMDCbR [49] are reviewed in Section 3.4.1,

alongside an assessment of the main algorithmic cost. To reduce the complexity of

the SMDCbR algorithm, Section 3.4.2 and Section 3.4.3 outline modifications to the

rotation step of the algorithm to concatenate and threshold the Jacobi rotations, re-

spectively. The performances of SMDCbR and its modified versions are compared in

Section 3.4.4. Conclusions for this section are drawn in Section 3.4.5.

Elements of the work in this section can be found published in the proceedings of

the 50th Asilomar Conference on Signals, Systems and Computers in a paper titled

‘Complexity and Search Space Reduction in Cyclic-by-Row PEVD Algorithms’ [68].

3.4.1 Cyclic-by-Row SMD Algorithm

Overview

The SMDCbR algorithm operates almost identically to SMD; thus, much of its descrip-

tion can be found in Section A.1. The only difference between SMDCbR and SMD arises

during the rotation stage. In iteration i of SMD, this involves the computation of a

unitary matrix Q(i) from the EVD of lag zero, S(i)′[0], and the subsequent computation

40

Chapter 3. Computational Advances for the Iterative PEVD

of Q(i)S(i)′(z)Q(i)H and Q(i)H(i)′(z). At the ith iteration, SMDCbR instead calculates

an approximation to the EVD of S(i)′[0] using a sequence of n = 1 . . . P Jacobi rotations

Q(i,n) ∈ C
M×M . Each rotation takes the form of an M ×M identity matrix, but with

the four elements at the intersections of rows and columns {m(i,n), k(i,n)} defined such

that

Q(i,n) =














I(1,n)

cosφ(i,n) · · · ejθ
(i,n)

sinφ(i,n)

... I(2,n)
...

−e−jθ(i,n)
sinφ(i,n) · · · cosφ(i,n)

I(3,n)














. (3.15)

The rotation angles φ(i,n) and θ(i,n) in (3.15) are determined by the target element

at row m(i,n) and column k(i,n) in the slice [49]. The identity matrices I(j,n), j =

1, 2, 3, have spatial dimensions of (min{m(i,n), k(i,n)} − 1), (|m(i,n) − k(i,n)| − 1), and

(M −max{m(i,n), k(i,n)} + 1), respectively. Each Jacobi rotation transfers the energy

of two off-diagonal elements onto the diagonal via the product Q(i,n)S(i)′(z)Q(i,n)H,

which zeroes elements S
(i)′

m(i,n),k(i,n)[0] and S
(i)′

k(i,n),m(i,n) [0] and places their energy on the

diagonal.

The process used in SMDCbR can be described as a cyclic-by-row implementation

of the Jacobi algorithm [2]. The term CbR refers to the ordering of the rotations in a

sequence like that of Figure 3.10, referred to as a Jacobi sweep. While in a standard

EVD these might be repeated until off-diagonal elements are suppressed below a given

threshold, SMDCbR employs only one Jacobi sweep at each iteration. This equates to

a fixed number of P = M(M − 1)/2 Jacobi rotations for a matrix of size M ×M to

provide the unitary Q(i),

Q(i) = Q(i,P)Q(i,P−1) · · ·Q(i,2)Q(i,1) =

P∏

n=1

Q(i,n) . (3.16)

Each rotation is applied in sequence to the parahermitian matrix, as computation

of Q(i,2) requires knowledge of lag zero of the product Q(i,1)S(i)′(z)Q(i,1)H. That is,

41

Chapter 3. Computational Advances for the Iterative PEVD

n = 1 2 3 4

5 6 7

8 9

10

Figure 3.10: Values of n used for cyclic-by-row sequence of Jacobi rotations in one
Jacobi sweep for a 5× 5 matrix with start s and end point ❝ .

Q(i,1) is computed from S(i,1)′[0] = S(i)′[0], Q(i,2) is computed from S(i,2)′[0] where

S(i,2)′(z) = Q(i,1)S(i,1)′(z)Q(i,1)H, and so on. Rotations are also applied in sequence to

the paraunitary matrix, H(i)′(z).

Algorithm Complexity

For each Jacobi rotation during iteration i of SMDCbR, of which there areM(M−1)/2,
every matrix-valued coefficient in S(i)′(z) must be left- and right-multiplied with a

sparse unitary matrix. Accounting for the multiplication of a 4-sparse M ×M matrix

with a non-sparse M ×M matrix by 4M MACs, a total of 4L{S(i)′(z)}M2(M − 1)

MACs arise to generate S(i)(z) from S(i)′(z), where operator L{·} measures the

length of a polynomial matrix. Every matrix-valued coefficient in H(i)′(z) must

also be left-multiplied with a sparse unitary matrix for each rotation. A total of

2L{H(i)′(z)}M2(M − 1) MACs arise to generate H(i)(z) from H(i)′(z).

The total number of MACs dedicated towards the rotation step of the algorithm at

each iteration is therefore given by 4L{S(i)′(z)}M2(M−1)+2L{H (i)′(z)}M2(M−1) ≈
2M3(2L{S(i)′(z)} + L{H(i)′(z)}).

3.4.2 Concatenation of Rotations

In the approach detailed here, Jacobi rotations are performed on the lag zero matrix

only, before a ‘concatenated’ unitary matrix Q(i) is applied to every lag of the para-

42

Chapter 3. Computational Advances for the Iterative PEVD

hermitian and paraunitary matrices. This unitary matrix is equal to the product of all

the sparse rotation matrices applied to lag zero, and is equivalent to (3.16). The direct

application of sparse rotations to the polynomial matrices is therefore avoided, which

results in a reduction in complexity.

Each rotation is still applied in sequence, but to lag zero of the parahermitian

matrix only. That is, Q(i,1) is computed from S(i,1)′[0] = S(i)′[0], Q(i,2) is computed

from S(i,2)′[0] where S(i,2)′[0] = Q(i,1)S(i,1)′[0]Q(i,1)H, and so on. A record of the previous

n rotations is maintained in a unitary matrix Q̂(i,n), such that Q̂(i,1) = Q(i,1), Q̂(i,2) =

Q(i,2)Q̂(i,1), Q̂(i,3) = Q(i,3)Q̂(i,2), and so on. Matrix Q(i) = Q̂(i,P) is then applied to

the parahermitian and paraunitary matrices in the same manner as in (A.5).

For each of the M(M − 1)/2 sparse rotations, the lag zero and unitary matrices

must be updated. Updating the lag zero matrix for each rotation involves left- and

right-multiplication with a sparse unitary matrix, costing 8M MACs; thus, a full sweep

requires 4M2(M − 1) MACs. Left-multiplying the unitary matrix for each rotation

requires 4M MACs; thus, a full sweep encompasses 2M2(M − 1) MACs. Both steps

combined therefore require 6M2(M − 1) MACs.

At each iteration, as in the SMD algorithm [45], every matrix-valued coefficient

in S(i)′(z) must be left- and right-multiplied with a non-sparse unitary matrix. Ac-

counting for the multiplication of 2 M × M matrices by M3 MACs [2, 95], a total

of 2L{S(i)′(z)}M3 MACs arise to generate S(i)(z) from S(i)′(z). In addition, every

matrix-valued coefficient in H(i)′(z) must be left-multiplied with a non-sparse unitary

matrix at each iteration; thus, L{H(i)′(z)}M3 MACs are required to generate H(i)(z)

from H(i)′(z).

The total number of MACs dedicated to the rotation stage per iteration is therefore

2L{S(i)′(z)}M3 + L{H(i)′(z)}M3 + 6M2(M − 1) ≈M3(2L{S(i)′(z)}+L{H(i)′(z)}) if
min{L{S(i)′(z)}, L{H (i)′(z)}} ≫ 6. This is approximately equal to half of the MACs

required for the standard SMDCbR algorithm.

43

Chapter 3. Computational Advances for the Iterative PEVD

3.4.3 Thresholding of Rotations

As the lag zero matrix is approximately diagonalised at each iteration of SMDCbR, the

off-diagonal elements of S(i)′[0] for i≫ 0 only contain significant values from the shifted

dominant row and column found via the same parameter search as SMD in (A.6), with

the remaining elements being approximately zero. As these elements possess very small

values, there is little merit in applying a Jacobi rotation to transfer their energy onto

the diagonal. By incorporating a threshold ν during execution of the cyclic-by-row

Jacobi algorithm in SMDCbR, any element with an absolute value that falls below this

threshold can be ignored.

It should be noted that ignoring Jacobi rotations in this way reduces the diagonali-

sation per iteration of the algorithm; however, if ν is kept sufficiently low, this approach

can reduce computation time with only a minor impact on diagonalisation. Further-

more, the approach described in Section 3.4.2 does not benefit as significantly as the

original SMDCbR algorithm would when employing a threshold for Jacobi rotations,

as savings in the former would only be made during the lag zero and unitary matrix

update step; that is, only 12M MACs would be avoided for each missed rotation. The

latter would instead experience significant complexity reduction, as each skipped Jacobi

rotation would equate to the avoidance of 8ML{S(i)′(z)} + 4ML{H(i)′(z)} MACs.

3.4.4 Results and Discussion

Simulation Scenario

The simulations below are performed over an ensemble of 103 instantiations of R(z) :

C → C
M×M obtained from the randomised source model in Appendix B [45] with

M ∈ {3; 5; 7; 9; 11; 13; 15}, OD = 118, OQ = 60, and ∆DR = 30.

The SMDCbR algorithm is below referred to as standard, and is compared to the

following three proposed variations:

• method 1: SMDCbR with thresholding of Jacobi rotations;

• method 2: SMDCbR with concatenation of Jacobi rotations;

• method 3: SMDCbR with concatenation and thresholding of Jacobi rotations.

44

Chapter 3. Computational Advances for the Iterative PEVD

During iterations, polynomial matrix truncation parameters of µ = µt = 10−6,

a stopping threshold of ǫ = 10−6, and a Jacobi rotation threshold of ν ∈
{0; 10−4; 10−3; 10−2} are used. The standard and proposed SMDCbR implementations

are run over Imax = 200 iterations, and at every iteration step the metrics defined in

Section A.3 are recorded together with the elapsed execution time.

Diagonalisation

The ensemble-averaged diagonalisation, E
(i)
diag, was calculated for the standard and

proposed implementations. The algorithms incorporating a threshold ν during diag-

onalisation (methods 1 and 3) are functionally different to those without this step,

but very similar diagonalisation performance over algorithm iterations can be seen in

Figure 3.11 for M = 5 and ν = 10−3. For the same parameters, the diagonalisation

versus ensemble-averaged algorithm execution time for all methods is shown in Fig-

ure 3.12. The curves demonstrate that for M = 5, the lower complexity associated

with the reduced implementations translates to a faster diagonalisation than observed

for the standard realisation. An increase in performance is also evident for M = 9 and

ν = 10−3 in Figure 3.13. In fact, the difference in diagonalisation performance between

method 3 and method 1 has increased for this larger spatial dimension.

Thresholding of the Jacobi rotations in method 1 has a significant impact on its

performance versus the standard algorithm; however, thresholding the same rotations

in method 3 does not have such a high impact versus method 2. This is as a result

of the thresholding in method 1 eliminating sparse rotations that would have been

applied to all lags, while the thresholding in method 3 only eliminates sparse rotations

from the lag zero and unitary matrix update step. Despite the small relative impact

of thresholding in method 3, this algorithm performs marginally better than all other

versions of the algorithm.

Figure 3.14 demonstrates that method 3 becomes more effective relative to method

1 as the spatial dimension M increases, for various values of threshold ν. It can be seen

that the benefits of the proposed rotation concatenation approach exceed what could

be expected from the calculated complexity reduction, owing to the well-suited nature

45

Chapter 3. Computational Advances for the Iterative PEVD

0 50 100 150 200 250
−15

−10

−5

0

Algorithm iteration, i

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

standard

method 1

method 2

method 3

Figure 3.11: Diagonalisation metric versus algorithm iteration for the proposed and
standard implementations for M = 5 and ν = 10−3.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−15

−10

−5

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

standard

method 1

method 2

method 3

Figure 3.12: Diagonalisation metric versus algorithm execution time for the proposed
and standard implementations for M = 5 and ν = 10−3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−12

−10

−8

−6

−4

−2

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

standard

method 1

method 2

method 3

Figure 3.13: Diagonalisation metric versus algorithm execution time for the proposed
and standard implementations for M = 9 and ν = 10−3.

46

Chapter 3. Computational Advances for the Iterative PEVD

2 4 6 8 10 12 14 16
0

2

4

6

8

Spatial dimension, M

E
{t

m
et
h
o
d
1}
/E

{t
m
et
h
o
d
3}

ν = 0

ν = 10−4

ν = 10−3

ν = 10−2

Figure 3.14: Ratio of method 1 to method 3 total execution time for different spatial
dimension M .

of the utilised MATLABR© software for the matrix multiplication strategy introduced

in Section 3.2.1. Increasing the value of ν decreases the diagonalisation per iteration

of both methods, but also reduces the total execution time of method 1 such that it

approaches the execution time of method 3. It should be noted that using a threshold

of ν = 0 in method 1 is equivalent to using the standard SMDCbR algorithm.

3.4.5 Summary

In this section, a series of steps to reduce the complexity of an existing cyclic-by-row

SMD algorithm have been proposed. It has been shown through simulation that this

reduction in complexity translates to an increase in the diagonalisation speed of the al-

gorithm, with minimal impact on its convergence. The proposed methods are therefore

advantageous for application purposes, where the SMDCbR algorithm’s avoidance of a

direct EVD computation may be useful. Of course, applying an approximate EVD at

each iteration is less effective than a full EVD [49]; thus, if an efficient method for com-

puting the EVD is present, the SMD algorithm will offer slightly superior convergence

speed.

47

Chapter 3. Computational Advances for the Iterative PEVD

3.5 Restricting the Search Space of PEVD Algorithms

Research in [50, 88] has shown that restricting the search space of iterative PEVD

algorithms to a subset of lags around lag zero of a parahermitian matrix can bring

performance gains with little impact on algorithm convergence. In this section, a

further cost reduction technique for all iterative PEVD algorithms is introduced, and

is shown to improve the diagonalisation performance of the SMDCbR algorithm [49].

The proposed SMDCbR version is modified to limit the search of maximum off-diagonal

energy in columns to a particular range of lags surrounding lag zero. It is shown that

the size of this search segment can be determined by estimating the energy distribution

in the parahermitian matrix prior to its decomposition.

The proposed technique to limit the search space of iterative PEVD algorithms is

reviewed in Section 3.5.1. The performances of SMDCbR and a version of SMDCbR

incorporating a restricted search space approach are then compared in Section 3.5.2.

Subsequently, conclusions for this section are drawn in Section 3.5.3.

Elements of the work in this section can be found published in the proceedings of

the 50th Asilomar Conference on Signals, Systems and Computers in a paper titled

‘Complexity and Search Space Reduction in Cyclic-by-Row PEVD Algorithms’ [68].

3.5.1 Limited Search Strategy

The search step of the SMDCbR algorithm — equivalent to that of SMD and described

by (A.6) — evaluates modified column norms for all lags of the coefficient matrix

S(i−1)[τ] ∈ C
M×M . If at the ith iteration S(i−1)[τ] = 0 ∀ |τ | > T (i−1), for some

maximum lag T (i−1) ∈ N, the search space encompasses ML
(i−1)
S elements, where

L
(i−1)
S = (2T (i−1) + 1) is the length of the parahermitian matrix.

The search step at each iteration of the modified SMDCbR algorithm uses the

column norms of the off-diagonal elements for a reduced set of the lags of the coefficient

matrix S(i−1)[τ]. At the ith iteration, the search step is applied to a secondary matrix

Ŝ(i−1)[τ] = 0 ∀ |τ | > δ(i−1), which is generated using the L
(i−1)

Ŝ
= (2δ(i−1) + 1) centre

lags of S(i−1)[τ]; thus, the search space encompasses only ML
(i−1)

Ŝ
elements. If this

reduced search space can adequately contain most of the energy from the original

48

Chapter 3. Computational Advances for the Iterative PEVD

parahermitian matrix, then searching for a maximum within this search space can

reduce computation time with little impact on algorithm performance.

A narrow distribution of energy around the lag zero can therefore lead to a large

decrease in search space. As the algorithm progresses, the lags closest to lag zero become

increasingly diagonalised, and therefore the average delay applied at each iteration

increases; i.e., |τ (i)| tends to increase for increasing i. This can be accounted for by

gradually widening the search space around lag zero as the iteration number increases.

To accommodate this widening of the search space, δ(i) can be described as an increasing

function of i.

The delay magnitude, |τ (i)|, at each iteration can be considered a measure of the

concentration of energy in the parahermitian matrix. For example, if |τ (i)| increases
quickly for a small increase in i, this indicates that there is a low concentration of

energy in the lags surrounding lag zero. In the following, Xi is the random variable

that describes the |τ (i)| seen in previous instances of a PEVD algorithm. In an appli-

cation that requires a continuously updated estimate and PEVD of a parahermitian

matrix R(z), the distribution of Xi can serve as a measure of the energy distribution

in R(z) without the requirement of direct computation. Here, the search space δ(i) in

future instances of the PEVD algorithm can be controlled such that it encapsulates

the majority of Xi in prior instances. Consider the simplistic example where Xi is dis-

tributed normally; in this case, choosing δ(i) = E{Xi}+ 1.96 std {Xi} — where std {·}
computes the standard deviation — should allow for approximately 95% of |τ (i)| in
future instances of the PEVD algorithm to be unchanged relative to an instance of the

algorithm without search space restriction. In practice, Xi is unlikely to be normally

distributed; however, the above serves as a computationally cheap method for roughly

approximating δ(i).

3.5.2 Results and Discussion

Simulation Scenario

The simulations below are performed over an ensemble of 103 instantiations of R(z) :

C → C
M×M obtained from the randomised source model in Appendix B [45] with

49

Chapter 3. Computational Advances for the Iterative PEVD

M = 5, OD = 118, OQ = 60, and ∆DR = 30.

During iterations, polynomial matrix truncation parameters of µ = µt = 10−6 and

a stopping threshold of ǫ = 10−6 are used. A standard SMDCbR implementation and a

version of SMDCbR utilising the proposed limited search strategy are each allowed to

run for Imax = 200 iterations. At every iteration step the metrics defined in Section A.3

are recorded together with the elapsed execution time, the absolute delay |τ (i)| applied
to a column in the parahermitian matrix, and the lengths of the parahermitian and

paraunitary matrices, L
(i)
S and L

(i)
H .

In this simulation scenario, the search space in the proposed implementation of

SMDCbR has been reduced to approximate the 95% confidence interval of absolute

delays applied in a previous ensemble of 103 instances of R(z), following the assumption

that these values were normally distributed. Using this information, the search space

reduction parameter evolution was identified as δ(i) = 0.15i + 24.

Diagonalisation

Figure 3.15 indicates the potential performance gain when limiting the search space

to those lags deemed likely to contain high energy. As the algorithm’s search step

is a relatively inexpensive process compared with the shifting and rotation stages,

the performance gain observed is small but significant. Time profiling in MATLABR©

indicated that the use of the limited search strategy reduces the search time by 50.6%

for the simulation used to generate Figure 3.15.

Impact on Order of Parahermitian Matrix

The impact of search space reduction on algorithm operation was investigated for the

modified SMDCbR algorithm. Figures 3.16 and 3.17 show the ensemble-averaged abso-

lute delay |τ (i)| applied to a column in iteration i of SMDCbR and its modified version,

and the length L
(i)
S of the parahermitian matrix in both algorithms, respectively. From

these figures, it is clear that the reduction in search space does not significantly impact

the average delay applied — and thus the order of the parahermitian matrix — at

each iteration of the proposed algorithm. In fact, since the proposed method typically

50

Chapter 3. Computational Advances for the Iterative PEVD

0 0.1 0.2 0.3 0.4 0.5 0.6
−15

−10

−5

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

standard
proposed

Figure 3.15: Diagonalisation metric versus algorithm execution time for the standard
SMDCbR implementation and a version of SMDCbR utilising the proposed limited
search strategy.

employs delays of smaller magnitude in this simulation scenario, it actually outputs

a shorter parahermitian matrix. Interestingly, this does not translate to a shorter

paraunitary matrix, as evidenced by Figure 3.18, which plots the ensemble-averaged

paraunitary matrix length, L
(i)
H , over algorithm iterations.

3.5.3 Summary

The work in this section has demonstrated that a reduction in the search space can

slightly improve the diagonalisation performance of an existing PEVD algorithm with-

out significantly impacting convergence or the rate of growth of the parahermitian or

paraunitary matrices. The technique proposed here can be extended to any PEVD

algorithm in [6, 45–48]. However, given the relatively small performance gain achieved

through the implementation of this method, it is likely that if the additional compu-

tations required to estimate the evolution of the search space reduction parameter δ(i)

are considered, the overall result is a small, or perhaps even negative, net reduction in

computation time.

51

Chapter 3. Computational Advances for the Iterative PEVD

0 20 40 60 80 100 120 140 160 180 200
2

4

6

8

10

12

Algorithm iteration, i

E
{|
τ
(i
) |
}

standard
proposed

Figure 3.16: Absolute applied delay, |τ (i)|, versus iteration number for the proposed
and standard implementations.

0 20 40 60 80 100 120 140 160 180 200
50

100

150

200

250

300

Algorithm iteration, i

E
{L

(i
)

S
}

standard
proposed

Figure 3.17: Length of parahermitian matrix S(i)(z), L
(i)
S , versus iteration number for

the proposed and standard implementations.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Algorithm iteration, i

E
{L

(i
)

H
}

standard
proposed

Figure 3.18: Length of paraunitary matrix H(i)(z), L
(i)
H , versus iteration number for

the proposed and standard implementations.

52

Chapter 3. Computational Advances for the Iterative PEVD

3.6 Restricting the Update Space of PEVD Algorithms

The research conducted in the previous section has bolstered the results of [50, 88] by

confirming that restricting the search space of iterative PEVD algorithms can improve

convergence speed. However, despite focussing on only a small portion of the para-

hermitian matrix during the search step, the entire matrix must still be updated at

each iteration in these approaches. Using SMD as an example of an iterative PEVD

algorithm, the work in this section expands upon this restricted search space idea by

introducing a novel restricted update approach for the PEVD. The techniques involved

are implemented within a restricted update SMD (RSMD) algorithm, which calculates

the paraunitary matrix while restricting the search space of the algorithm and the

portion of the parahermitian matrix that is updated at each iteration. As with the

majority of iterative PEVD algorithms, the update step of SMD is its most computa-

tionally costly operation [45]; thus, a reduction in the complexity of this step is useful.

It is demonstrated that by using the proposed RSMD algorithm instead of SMD, PEVD

complexity and execution time can be significantly reduced with minimal impact on

algorithm convergence.

An overview of the method is given in Section 3.6.1, with a more detailed description

of the novel functionality in Section 3.6.2. Section 3.6.3 describes the algorithmic

complexity of the approach. Simulation results comparing the performances of SMD

and RSMD are presented in Section 3.6.4, and conclusions for this section are drawn

in Section 3.6.5.

Elements of the work in this section can be found published in the proceedings of the

7th IEEE International Workshop on Computational Advances in Multi-Sensor Adap-

tive Processing in a paper titled ‘Restricted Update Sequential Matrix Diagonalisation

for Parahermitian Matrices’ [69].

3.6.1 Restricted Update SMD Algorithm

Similarly to SMD, which is described in Section A.1, the RSMD algorithm approxi-

mates a PEVD by iteratively diagonalising a parahermitian matrix R(z) : C→ C
M×M

over i = 0 . . . Î iteration steps. Over the course of these iterations, the update space

53

Chapter 3. Computational Advances for the Iterative PEVD

contracts piecewise strictly monotonically. The term ‘update space’ here refers to the

number of lags in the parahermitian matrix that are updated at each iteration of the

algorithm. This restriction limits the number of search operations, but also reduces the

computations required to update the increasingly diagonalised parahermitian matrix.

The update space contracts until order zero is reached and the update space only in-

cludes the lag zero matrix. After this, in a so-called ‘regeneration’ step, the calculated

paraunitary matrix is applied to the input matrix to construct the full-sized paraher-

mitian factor. The update space is then maximised and thereafter again contracts

monotonically over the following iterations. The maximum β of index α = 0, 1, . . . , β

— where α counts the number of regenerations — is not known a priori.

Following the αth regeneration step, in the ith iteration of RSMD, S(i)(z) =

R(α)(z). Note, R(0)(z) = Q(0)R(z)Q(0)H, where Q(0) diagonalises coefficient matrix

R[0]. The restricted update stage of RSMD restricts the search and update steps typi-

cally used in the SMD algorithm to only consider an iteratively decreasing selection of

lags of S(i)(z) around lag zero at the ith iteration. When the update space of S(i)(z)

reaches zero, the restricted update stage has produced a paraunitary matrix F (α)(z)

such that matrix R(α+1)(z) = F (α)(z)R(α)(z)F̃ (α)(z) — which is generated during the

matrix regeneration stage — is more diagonal that R(α)(z).

If the total number of algorithm iterations i exceeds a user-defined Imax, or if the

stopping criterion from SMD, (A.8), is satisfied, the RSMD algorithm ends withD(z) =

R(α+1)(z) and F (z) = F ′
(α+1)(z) following the truncation of each matrix according to

Appendix C. Here, F ′
(α+1)(z) is a concatenation of the paraunitary matrices generated

for indices 0 . . . α and initial matrix Q(0):

F ′
(α+1)(z) = F (α)(z) · · ·F (0)(z)Q

(0) =

(
α∏

x=0

F (α−x)(z)

)

Q(0) .

Algorithm 3 gives the pseudocode for RSMD. Output matrices F (z) and D(z) con-

tain polynomial eigenvectors and eigenvalues, respectively. More detail of the restricted

update component of the algorithm’s operation is provided in Section 3.6.2. Proof of

convergence of SMD — which focusses on the monotonic increase of on-diagonal en-

54

Chapter 3. Computational Advances for the Iterative PEVD

Input: R(z), µ, µt, ǫ, Imax

Output: D(z), F (z)
Find eigenvectors Q(0) that diagonalise R[0]

R(0)(z)← Q(0)R(z)Q(0)H; F ′
(0)(z)← Q(0); α← 0; i← 0; stop ← 0

while stop = 0 do

[F (α)(z), i, stop] ← restrictedUpdate(R(α)(z), µt, ǫ, Imax, i)

Regenerate matrix:
F ′

(α+1)(z)← F (α)(z)F
′
(α)(z)

R(α+1)(z)← F (α)(z)R(α)(z)F̃ (α)(z)

Truncate F ′
(α+1)(z) using threshold µt according to Appendix C

Truncate R(α+1)(z) using threshold µ according to Appendix C

α← α+ 1

end

F (z)← F ′
(α)(z); D(z)← R(α)(z)

Algorithm 3: RSMD Algorithm

ergy enforced by the algorithm — has been established in [45]; this proof also holds for

RSMD.

3.6.2 Restricted Update Step

The restricted update step of RSMD functions similarly to the update step of SMD

in Section A.1; however, the key difference is that RSMD increasingly restricts the

number of lags of S(i)(z) that are updated at each iteration i. Algorithm 4 provides

pseudocode for the restrictedUpdate(·) function, whose operation is discussed below.

From a parahermitian matrixR(α)(z) : C→ C
M×M input to the restrictedUpdate(·)

function for index α, during the ith iteration of RSMD, a matrix S(i−1)(z) = R(α)(z)

with maximum lag T (i−1) is formed. As in the standard SMD algorithm, the k(i)th

column and row with maximum energy are found and shifted by |τ (i)| to lag zero using

a delay matrix Λ(i)(z) to produce S(i)′(z).

A unitary matrix Q(i) is generated from an EVD of lag zero S(i)′[0], but is only

applied to an ‘update region’ matrix S(i)′′(z), which contains the central (2(T (i−1) −
|τ (i)|) + 1) lags of S(i)′(z). Thus, matrix S(i)(z) = Q(i)S(i)′′(z)Q(i)H is formed, which

has maximum lag T (i) = T (i−1) − |τ (i)|.
The coefficients of S(i)[τ] at lags |τ | > T (i), which are zero by definition — and not

55

Chapter 3. Computational Advances for the Iterative PEVD

Input: R(α)(z), µt, ǫ, Imax, i
Output: F (α)(z), i, stop

S(i)(z)← R(α)(z); H
(i)(z)← IM×M ; stop ← 0

do

i← i+ 1

Find {k(i), τ (i)} from (A.6); generate Λ(i)(z) from (A.3)

S(i)′(z)← Λ(i)(z)S(i−1)(z)Λ̃
(i)
(z)

H(i)′(z)← Λ(i)(z)H (i−1)(z)

Find eigenvectors Q(i) that diagonalise S(i)′[0]

T (i−1) is maximum lag of S(i−1)(z)

S(i)′′(z)←
T (i−1)−|τ (i)|∑

τ=−T (i−1)+|τ (i)|

S(i)′[τ]z−τ

S(i)(z)← Q(i)S(i)′′(z)Q(i)H

H(i)(z)← Q(i)H(i)′(z)

Truncate H(i)(z) using threshold µt according to Appendix C
if i > Imax or (A.8) satisfied then

stop ← 1
end

while stop = 0 and (T (i−1) − |τ (i)|) > 0

F (α)(z)←H(i)(z)

Algorithm 4: restrictedUpdate(·) Function

obtained from the transformation of S(i−1)(z) — must be kept outside of the update

region in the next iteration, S(i+1)′′(z), if the accuracy of the decomposition is to be

maintained. To guarantee that these coefficients are excluded, the update region must

shrink by the maximum possible distance that the coefficients can travel towards lag

zero, |τ (i+1)|. That is, S(i+1)′′(z) should only contain the central 2(T (i) − |τ (i+1)|) + 1

lags of S(i+1)′(z).

Iterations of this process continue in the same manner until the end of some it-

eration I(α), when the maximum lag of matrix S(I(α))(z) = Q(I(α))S(I(α))′′(z)Q(I(α))H

is T (I(α)−1) − |τ (I(α))| = 0, or when S(I(α))(z) is sufficiently diagonalised with dom-

inant off-diagonal column norm below a threshold ǫ as in (A.8). Alternatively, the

restricted update process ends if the total number of iterations of RSMD exceeds some

user-defined value, Imax.

Figure 3.19 demonstrates the restricted update step for M = 5 and T (i−1) = 3. As

56

Chapter 3. Computational Advances for the Iterative PEVD

�a)

� = 3

� = 2

� = 1

� = �

� = �1

� = �2

� = �3

� = 3

� = 2

� = 1

� = �

� = �1

� = �2

� = �3

� = 2

� = 1

� = �

� = �1

� = �2

�b) �c)
� = 4

� = �4

� = 2

� = 1

� = �

� = �1

� = �2

�d)

� = 2

� = 1

� = �

� = �1

� = �2

� = 1

� = �

� = �1

�e) �f)

� = 1

� = �

� = �1

�g)

� = 1

� = �

� = �1

�h)

� = �

�i)

Figure 3.19: (a) Original matrix S(i−1)(z) = R(α)(z) : C → C
5×5 with maximum lag

T (i−1) = 3 is input to restrictedUpdate(·); (b) shifting of row and column energy to lag
zero (k(i) = 2, τ (i) = −1); (c) central matrix with maximum lag (T (i−1) − |τ (i)|) = 2,
S(i)′′(z), is extracted. (d) S(i)(z) = Q(i)S(i)′′(z)Q(i)H; (e) k(i+1) = 3, τ (i+1) = −1;
(f) S(i+1)′′(z) extracted. (g) S(i+1)(z); (h) k(i+2) = 4, τ (i+2) = −1; (i) S(i+2)′′(z) is
extracted.

can be seen, after three iterations, the maximum lag of the matrix in Figure 3.19(i) is

equal to zero; thus, I(α) = 3.

Note that S(i)(z) will typically have fewer lags than the equivalent matrix in the

ith iteration of the traditional SMD algorithm; thus, the search to identify the k(i)th

column and row in the proposed approach may produce an inferior result to the search

in SMD. However, it is demonstrated that this does not significantly affect algorithm

convergence in Section 3.6.4.

57

Chapter 3. Computational Advances for the Iterative PEVD

3.6.3 Complexity Reduction

Following the methodology of the complexity calculations for SMD in Section A.1.2,

at iteration i of restrictedUpdate(·) within RSMD, the number of MACs required to

generate S(i)(z) = Q(i)S(i)′′(z)Q(i)H can be approximated by 2L{S(i)′′(z)}M3. Here,

operator L{·} computes the length of a polynomial matrix and the multiplication

of 2 M × M matrices is assumed to require M3 MACs [2, 95]. To update H(i)(z),

L{H(i)′(z)}M3 MACs are required. Note that L{H(i)(z)} is reset to one following ma-

trix regeneration. Assuming ǫ = 0, the cumulative complexity of restrictedUpdate(·) is
therefore approximately

CRU(Imax) = M3
Imax∑

i=1

(2L{S(i)′′(z)} + L{H(i)′(z)}) . (3.17)

During matrix regeneration, F ′
(α+1)(z) = F (α(z)F

′
(α)(z) and R(α+1)(z) =

F (α)(z)R(α)(z)F̃ (α)(z) are computed. If these are computed in the frequency do-

main as recommended in Section 3.2.2 — and if the MACs required to com-

pute the FFT and IFFT are ignored — the former requires approximately

(L{F (α)(z)} + L{F ′
(α)(z)} − 1)M3 MACs, and the latter requires approximately

(2L{F (α)(z)} + L{R(α)(z)} − 2)M3 MACs; thus, the cumulative complexity of ma-

trix regeneration for β total regenerations in RSMD is approximately

CMR(β) = M3
β−1
∑

α=0

(3L{F (α)(z)} + L{F ′
(α)(z)} + L{R(α)(z)} − 3) .

The total cumulative complexity of RSMD can therefore be approximated as

CRSMD(Imax, β) = CRU(Imax) + CMR(β) . (3.18)

If the savings made during the restricted update step are larger than the overheads

added by the matrix regeneration step — i.e., if (CSMD(Imax)−CRU(Imax)) > CMR(β)),

where CSMD(Imax) is obtained from (A.11) — the total cumulative complexity of RSMD

will be lower than SMD.

58

Chapter 3. Computational Advances for the Iterative PEVD

3.6.4 Results and Discussion

Simulation Scenario

The simulations below are performed over an ensemble of 103 instantiations of R(z) :

C → C
M×M obtained from the randomised source model in Appendix B [45] with

M ∈ {10; 20}, OD = 118, OQ = 60, and ∆DR = 30.

Each algorithm is executed for a maximum of Imax = 200 iterations with a stopping

threshold of ǫ = 0 and polynomial matrix truncation parameters of µ = µt = 10−6.

At every iteration of both implementations, the diagonalisation metric defined in Sec-

tion A.3 is recorded alongside the elapsed execution time and the estimated cumulative

complexities from the equations of Sections A.1.2 and 3.6.3. The length of F (z) is

recorded upon each algorithm’s completion.

Diagonalisation

The ensemble-averaged diagonalisation was calculated for the standard SMD and pro-

posed RSMD implementations. The diagonalisation performance versus cumulative

complexity and time for both methods are shown in Figures 3.20 and 3.21, respec-

tively. The curves of Figure 3.20 demonstrate that for M ∈ {10; 20}, the proposed im-

plementation operates with a lower estimated cumulative complexity than the standard

realisation, and is able to achieve a similar degree of diagonalisation — indicating that

convergence is not affected by the use of a restricted update procedure. In addition,

Figure 3.21 shows that the lower complexity associated with the proposed approach

translates to a faster diagonalisation than observed for SMD. Note that the translation

from cumulative complexity to execution time is not linear, as other processes — such

as shifting operations — contribute to the algorithm run-time that are not accounted

for in Figure 3.20.

Paraunitary Filter Length

The ensemble-averaged paraunitary filter lengths were calculated for both algorithms.

For M = 10, F (z) from SMD and RSMD was of length 84.4 and 87.1, respectively.

59

Chapter 3. Computational Advances for the Iterative PEVD

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
8

−10

−8

−6

−4

−2

Ensemble-averaged approximate cumulative complexity

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

standard, M = 10

proposed, M = 10

standard, M = 20

proposed, M = 20

Figure 3.20: Diagonalisation metric versus cumulative algorithm complexity for the
proposed and standard implementations for M ∈ {10; 20}.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−10

−8

−6

−4

−2

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

standard, M = 10

proposed, M = 10

standard, M = 20

proposed, M = 20

Figure 3.21: Diagonalisation metric versus algorithm execution time for the proposed
and standard implementations for M ∈ {10; 20}.

Similarly for M = 20, lengths of 70.9 and 73.0 were observed for SMD and RSMD. The

paraunitary filters generated by RSMD were therefore slightly longer than those from

SMD. While the exact reason for this discrepancy is not known, a reasonable guess

could assume that it arises as an accumulation of slight differences between the shifting

and truncation operations used to generate the paraunitary matrices in each algorithm.

3.6.5 Summary

In this section, a novel restricted update sequential matrix diagonalisation algorithm

has been introduced. This algorithm can produce the same quality of decomposition

as SMD, but with decreased computational complexity. Simulation results underline

that the same diagonalisation performance can be achieved by both methods, but

within a shorter execution time for RSMD. While RSMD gives a slight increase in

paraunitary filter length, it is not significant enough to negate the performance gains

made elsewhere.

60

Chapter 3. Computational Advances for the Iterative PEVD

The proposed RSMD algorithm therefore has the potential to reduce time and

complexity requirements in application scenarios involving the PEVD. In addition, the

restricted update approach proposed here can be extended to any iterative PEVD

algorithm in [6,46–50] by adapting the restricted update and matrix regeneration steps

accordingly.

3.7 Multiple Shift Approach to the Polynomial Matrix

QR Decomposition

In recent years, several algorithms for the iterative calculation of a polynomial matrix

QR decomposition (PQRD) have been introduced [40–42]. The PQRD is a generali-

sation of the ordinary QR decomposition and uses paraunitary operations to upper-

triangularise a polynomial matrix. Analogously to the QR decomposition, which can

be used to generate an EVD of a Hermitian matrix via the QR algorithm [87], the

PQRD can be used to find the PEVD of a parahermitian matrix. The PQRD has also

been used to generate a polynomial matrix SVD algorithm in [43].

Applying a multiple shift approach to the SMD algorithm for the PEVD of para-

hermitian matrices has been proven to be beneficial in [46,47]. This section addresses

a multiple shift strategy that can be applied to existing PQRD algorithms. As an ex-

ample, the polynomial matrix QR decomposition by columns (PQRD-BC) algorithm,

defined as an improvement to the PQRD by steps algorithm from [40, 41] in [42], is

modified to incorporate these techniques. It is demonstrated that with the proposed

strategy, the computation time of the resulting multiple shift PQRD-BC (MS-PQRD-

BC) algorithm is lower than PQRD-BC.

An overview of the proposed approach is given in Section 3.7.1. Simulation re-

sults comparing the performances of PQRD-BC and MS-PQRD-BC are presented in

Section 3.7.2, and conclusions for this section are drawn in Section 3.7.3.

Elements of the work in this section can be found published in the proceedings of

the 11th IMA International Conference on Mathematics in Signal Processing in a paper

titled ‘Multiple Shift QR Decomposition for Polynomial Matrices’ [70].

61

Chapter 3. Computational Advances for the Iterative PEVD

3.7.1 Multiple Shift Strategy

The MS-PQRD-BC algorithm approximates the PQRD using a series of elementary

paraunitary operations to iteratively upper-triangularise a polynomial matrix A(z) :

C→ C
P×Q. The algorithm calculates a paraunitary matrix Q(z) ∈ C

P×P such that

Q(z)A(z) ≈ R(z) , (3.19)

where R(z) : C → C
P×Q is an upper-triangular polynomial matrix. The series of

paraunitary operations used to compute the polynomial matrix Q(z) in (3.19) can be

broken down into elementary delay and rotation matrices similar to those described

by [4]. These matrices can be used to formulate an elementary polynomial Givens

rotation (EPGR).

Elementary Polynomial Givens Rotation

An EPGR is a polynomial matrix that can be applied to a polynomial matrix A(z) :

C→ C
P×Q to zero one coefficient of a polynomial element. For example, if the polyno-

mial coefficient in the jth row and kth column of A[τ], aj,k[τ], for j > k is to be made

equal to zero, the required EPGR takes the form of

G(j,k,τ,α,θ,φ)(z) =














Ik−1

ejα cos θ · · · ejφzτ sin θ
... Ij−k−1

...

−e−jφ sin θ · · · e−jαzτ cos θ

IP−j














, (3.20)

where Ik−1 denotes a (k − 1) × (k − 1) identity matrix. The rotation angles θ, α, and

φ are chosen such that

θ =







tan−1

(|aj,k[τ]|
|ak,k[0]|

)

, if ak,k[0] 6= 0

π/2, if ak,k[0] = 0

(3.21)

62

Chapter 3. Computational Advances for the Iterative PEVD

α = −arg(ak,k[0]) and φ = −arg(aj,k[τ]) ; (3.22)

thus resulting in a′j,k[0] = 0, where A′(z) = G(j,k,τ,α,θ,φ)(z)A(z). Furthermore, follow-

ing the application of the EPGR, the coefficient a′k,k[0] is real and has increased in

magnitude such that |a′k,k[0]|2 = |ak,k[0]|2 + |aj,k[τ]|2.

MS-PQRD-BC Algorithm

Using the work of [46,47] as inspiration, this section describes a multiple shift approach

to the PQRD-BC algorithm. By applying a number of row shifts at each iteration of

the developed MS-PQRD-BC algorithm, the largest polynomial coefficient in each row

beneath the diagonal in a single column can be transferred to lag zero at once. A series

of Givens rotations can then be applied to approximately zero each shifted coefficient.

This process can be repeated for each column of the matrix until a similar stopping

criterion to PQRD-BC is reached.

The MS-PQRD-BC algorithm operates as a series of ordered column-steps where

at each step, all coefficients relating to all polynomial elements beneath the diagonal

in one column of the matrix are driven sufficiently small by applying a series of EPGR

matrices interspersed with paraunitary delay matrices. The term ‘column-step’ is used,

as the columns of A(z) ∈ C
P×Q are visited in sequence according to the ordering

k = 1, 2, . . . ,min{(P − 1), Q}.
Noting that A(0,1)(z) = A(z), at iteration i, i = 1 . . . I(k), of column-step k the

search step of MS-PQRD-BC locates n = (P−k) coefficients with maximum magnitude

from the n rows beneath the diagonal in column k; i.e., a dominant coefficient is found

for each row according to

τ (i,k) = argmax
τ1,...,τn

{|a(i−1,k)
(k+1),k[τ1]|+ · · ·+ |a

(i−1,k)
P,k [τn]|} , (3.23)

where τ (i,k) = [τ
(i,k)
1 , . . . , τ

(i,k)
n]T contains the lags of the dominant coefficients for rows

j = k+1 . . . P and a
(i−1,k)
j,k [τ] represents the element in the jth row and kth column of

the coefficient matrix A(i−1,k)[τ].

Following the identification of τ (i,k) in (3.23), a delay matrix Λ(i,k)(z) : C→ C
P×P ,

63

Chapter 3. Computational Advances for the Iterative PEVD

which takes the form

Λ(i,k)(z) =











Ik

zτ
(i,k)
1

. . .

zτ
(i,k)
n











, (3.24)

can be applied to A(i−1,k)(z) to induce a τ
(i,k)
m -fold delay to the mth row beneath the

diagonal in column k, wherem = 1 . . . n. Lag zero of the resulting matrix A(i−1,k)′(z) =

Λ(i,k)(z)A(i−1,k)(z) will contain the dominant coefficients from column k.

EPGRs are then applied to A(i−1,k)′[0] in sequence to drive elements

a
(i−1,k)′
(k+1),k [0] . . . a

(i−1,k)′
P,k [0] to zero according to

A(i−1,k)′′[0] =
(

G(k+1,k,γ1) · · ·G(P,k,γn)
)

A(i−1,k)′[0]

= H(i,k)A(i−1,k)′[0] , (3.25)

where the elements beneath the diagonal in the kth column of A(i−1,k)′′[0] are zero,

and G(j,k,γ) represents the EPGR required to zero element a
(i−1,k)′
j,k [0] of A(i−1,k)′[0].

Vector γ = [α, θ, φ]T contains the calculated rotation angles from (3.21) and (3.22) for

the targeted element. Note that G(j,k,γ) is an EPGR without shift parameter τ , and is

therefore a simple unitary matrix.

The matrix H(i,k) in (3.25) is the product of EPGRs required to drive the dominant

coefficients in iteration i of MS-PQRD-BC to zero. This unitary matrix is applied to

all lags of A(i−1,k)′(z) to generate A(i−1,k)′′(z) = H(i,k)A(i−1,k)′(z).

For stability reasons [42, 43], the final step of an iteration of MS-PQRD-BC is to

apply an inverse delay matrix Λ̃(i,k)(z) to produce the overall transformation

A(i,k)(z) = Λ̃(i,k)(z)H(i,k)Λ(i,k)(z)A(i−1,k)(z)

= Q(i,k)(z)A(i−1,k)(z) . (3.26)

This iterative process is repeated for a maximum of I(k) iterations or until all co-

64

Chapter 3. Computational Advances for the Iterative PEVD

efficients associated with polynomial elements beneath the diagonal in the kth column

of the matrix are sufficiently small in magnitude and therefore satisfy the stopping

condition

|a(i,k)j,k [τ]| < ǫ (3.27)

for j > k and ∀ τ ∈ Z where ǫ > 0 is a prespecified small value. The overall transfor-

mation performed in the kth column-step of the algorithm is of the form

A(k)(z) = Q(k)(z)A(z) (3.28)

whereQ(k)(z) : C→ C
P×P is the paraunitary product of all EPGRs and delay matrices

applied during iterations i = 1 . . . I(k) within column-steps 1 . . . k:

Q(k)(z) =

I(k)
∏

i=1

Q(i,k)(z) · · ·
I(1)
∏

i=1

Q(i,1)(z) , (3.29)

where
I(k)
∏

i=1

Q(i,k)(z) = Q(I(k),k)(z)Q(I(k)−1,k)(z) · · ·Q(2,k)(z)Q(1,k)(z) (3.30)

is the product of all EPGRs and delay matrices applied during iterations i = 1 . . . I(k)

and I(k) is the maximum number of iterations within column-step k, with I(k) = ⌈ I
P−k ⌉

for some I ∈ N.

Following the kth column-step, all coefficients relating to all polynomial elements

beneath the diagonal in the kth column of the matrix A(z) will be sufficiently small.

After ℓ = min{(P − 1), Q} column-steps of the algorithm, all columns of the matrix

have been visited, and the transformation is of the form

R̂(z) = Q(z)A(z) (3.31)

where Q(z) = Q(ℓ)(z) is the paraunitary product of all EPGRs and delay matrices

applied during column-steps 1 . . . ℓ and R̂(z) is approximately upper-triangular.

65

Chapter 3. Computational Advances for the Iterative PEVD

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−7

−6

−5

−4

−3

−2

−1

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(î
)

tr
i}

/
[d
B
]

PQRD-BC

MS-PQRD-BC
1
0
lo
g
1
0
E{

E
(̂i
)

tr
i
}
/
[d
B
]

Figure 3.22: Upper-triangularisation metric versus algorithm execution time for the
proposed and standard implementations for A(z) : C → C

5×5 with polynomial order
14.

3.7.2 Results and Discussion

Simulation Scenario

Simulations are performed over an ensemble of 103 instantiations of A(z) : C→ C
M×M ,

M ∈ {5; 7; 9; 11; 13}, with a polynomial order of 14, ǫ = 10−6, and I = 50. The

polynomial coefficients of A(z) are drawn from a complex Gaussian source with unit

variance and zero mean.

A suitable normalised upper-triangularisation metric E
(̂i)
tri defined in Section A.3 is

used for evaluating the standard PQRD-BC and proposed MS-PQRD-BC implementa-

tions, which divides the lower-triangular energy in A(z) at the îth algorithm iteration

— ignoring column-steps — by the total energy.

Upper-Triangularisation

The ensemble-averaged upper-triangularisation versus algorithm execution time for

both methods with M = 5 is shown in Figure 3.22. The curves demonstrate that the

multiple shift implementation obtains a faster upper-triangularisation than the stan-

dard realisation. The stepped characteristic of both curves is a natural outcome of the

column-step approach of both algorithms; each step corresponds to the minimisation

of below-diagonal energy in a single column. For the 5 × 5 matrix, four columns are

targeted; thus, four steps are seen in the curves.

66

Chapter 3. Computational Advances for the Iterative PEVD

5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

Spatial dimension, M

T
im

e
u
nt
il
−
3
d
B

p
oi
nt

/
s

PQRD-BC

MS-PQRD-BC

Figure 3.23: Algorithm execution time required to achieve 10 log10 E
(̂i)
tri = −3 dB for

the proposed and standard implementations for M ∈ {5; 7; 9; 11; 13}.

The ensemble-averaged time taken for both algorithms to attain an upper-

triangularisation of 10 log10 E
(̂i)
tri = −3 dB is plotted versus spatial dimension M in

Figure 3.23. The widening gap between the two curves indicates that MS-PQRD-BC

increasingly outperforms PQRD-BC for increasing M .

3.7.3 Summary

In this work, a multiple shift approach for an existing polynomial QR decomposition

algorithm has been proposed. It has been shown through simulation that the imple-

mentation of this approach translates to an increase in upper-triangularisation speed of

the created MS-PQRD-BC algorithm. Through an extension of the QR algorithm [87]

to the case of polynomial matrices, successive applications of the PQRD can generate

a PEVD. The improvements made to an existing PQRD algorithm in this section can

therefore be extended to the PEVD; however, the standalone PEVD algorithms of Sec-

tion 2.3.2 are likely to converge more quickly than an approach using multiple instances

of the PQRD. This is especially true if the PEVD algorithm improvements discussed

in this chapter are utilised.

67

Chapter 3. Computational Advances for the Iterative PEVD

3.8 Compensated Row-Shift Truncation of Paraunitary

Matrices

A number of applications [17–19, 21–23, 25] utilise the PEVD’s paraunitary matrix of

polynomial eigenvectors, which can be considered to be a lossless FIR filter bank. Given

that low implementation costs are desirable, minimising the order of this matrix is of

importance.

As an extension of the traditional polynomial matrix truncation strategies in [60,61],

work in [62,63] has shown that by employing a row-shift truncation (RST) scheme for

paraunitary matrices from the SBR2 [6] PEVD algorithm, filter order can be reduced

with little loss to paraunitarity of the eigenvectors. This strategy requires a diagonal

D(z) to be effective without introducing decomposition error. In this section, a novel

variation of row-shift truncation titled compensated row-shift truncation (CRST) is

introduced; this method is able to reduce paraunitary matrix order without significantly

affecting decomposition error for even non-diagonal D(z).

An overview of the proposed approach is given in Section 3.8.1. Simulation results

comparing the performances of traditional, row-shift, and compensated row-shift trun-

cation when applied after SBR2 algorithm completion are presented in Section 3.8.2.

Further performance comparisons when using each truncation strategy at each itera-

tion of the SBR2 algorithm are given in Section 3.8.3. Conclusions for this section are

drawn in Section 3.8.4.

3.8.1 Compensated Row-Shift Truncation Strategy

The RST method [62,63] exploits ambiguity in the paraunitary matrices [62,96]. This

arises as a generalisation of a phase ambiguity inherent to eigenvectors from a standard

EVD [2], which in the polynomial case extends to arbitrary phase responses or all-pass

filters. The simplest manifestation of such filters can form an integer number of unit

delays. For a diagonal D(z), this ambiguity permits eigenvectors F (z) to be replaced

by a lower order F̂ (z), where F̂ (z) = Γ(z)F (z) and Γ(z) is a paraunitary diagonal

68

Chapter 3. Computational Advances for the Iterative PEVD

matrix. In this case, since diagonal matrices commute,

R(z) ≈ F̃ (z)D(z)F (z) = ˜̂
F (z)Γ(z)D(z)Γ̃(z)F̂ (z)

= ˜̂
F (z)D(z)F̂ (z) , (3.32)

and D(z) in unaffected. If, however, D(z) is not diagonal — as is often the case

for a reasonable number of PEVD algorithm iterations when spatial dimension M is

large — Γ(z) does not cancel as in (3.32). In a novel variation of row-shift truncation

from [62] titled compensated row-shift truncation, this matrix Γ(z) is incorporated into

the parahermitian matrix to avoid negatively impacting the decomposition error. Since

one is typically only interested in the approximate polynomial eigenvalues stored on the

diagonal of D(z), the augmented parahermitian matrix D̂(z) = Γ(z)D(z)Γ̃(z) is used,

which has the same approximate polynomial eigenvalues. The decomposition accuracy

can now be maintained while using the lower order F̂ (z):

R(z) ≈ ˜̂
F (z)D̂(z)F̂ (z) . (3.33)

While D̂(z) has a higher polynomial order than D(z), the order of the paraunitary

matrix is typically more important for application purposes [17–19,21–23,25].

From the original RST approach of [62], Γ(z) takes the form

Γ(z) = diag{zτ1 , zτ2 , . . . , zτM } . (3.34)

The delay matrix Γ(z) has the effect of shifting the mth row of the paraunitary matrix

F (z) by τm. These row shifts can be used to align the first polynomial coefficients in

each row of the paraunitary matrix following the independent truncation of each row

via the process below.

The matrix F (z) can be subdivided into its M row vectors fm(z) : C → C
1×M ,

69

Chapter 3. Computational Advances for the Iterative PEVD

m = 1 . . .M ,

F (z) =








f1(z)
...

fM (z)








. (3.35)

Each row — which has minimum lag T1,m and maximum lag T2,m — is then truncated

individually according to ftrim(fm[τ], µ) from (C.1) in Appendix C. The row shifts, τm,

in (3.34) are then set equal to (T1,m + T3,m(µ)), m = 1 . . .M , such that the minimum

lag of each shifted row f̂m(z) is zero. Here, T3,m(µ) is the T3(µ) obtained via (C.1)

in Appendix C for the mth row. Following row-shift truncation, each row of F̂ (z)

has order Tm(µ), and the order of the paraunitary matrix is max
m=1...M

{Tm(µ)}, where
Tm(µ) = T2,m − (T3,m(µ) + T4,m(µ)) and T4,m(µ) is the T4(µ) obtained via (C.1).

When applying CRST to a matrix F (z), one therefore obtains

[F̂ (z), D̂(z)]← fcrst(F (z),D(z), µ) , (3.36)

where

f̂m[τ] ◦—• f̂m(z) = zτm
T2,m∑

τ=T1,m

ftrim(fm[τ], µ)z−τ . (3.37)

3.8.2 Truncating After Algorithm Completion

Simulation Scenario

The simulations below are performed over an ensemble of 103 instantiations of R(z) :

C → C
M×M obtained from the randomised source model in Appendix B [45] with

M = 5, OD = 118, OQ = 60, and ∆DR = 30.

Three instances of SBR2 are implemented; the first uses the standard SBR2 pa-

raunitary matrix truncation strategy of Appendix C with threshold µtrad = 10−6,

the second uses the RST strategy of [62] with µRST = 10−6, and the third uses

CRST with µCRST = 10−6. Each instance of SBR2 is executed for a maximum of

Imax ∈ {1; 2; . . . ; 200} iterations with a stopping threshold of ǫ = 0 and parahermitian

matrix truncation parameter of µ = 10−12. Parahermitian matrix truncation is exe-

cuted at the end of each algorithm iteration, and immediately following CRST, but

70

Chapter 3. Computational Advances for the Iterative PEVD

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

Maximum number of algorithm iterations, Imax

P
ar
au
n
it
ar
y
m
at
ri
x
le
n
gt
h

SBR2
SBR2 RST
SBR2 CRST

Figure 3.24: Paraunitary matrix length versus maximum number of algorithm iterations
for SBR2 with paraunitary matrix truncation after algorithm completion.

paraunitary matrix truncation is only executed after Imax iterations have passed, i.e.,

after completion of each instance of SBR2. Following Imax iterations of each implemen-

tation, the reconstruction error and paraunitarity error metrics defined in Section A.3

are recorded alongside the lengths of F (z) and D(z).

Paraunitary Matrix Length

The ensemble-averaged output paraunitary matrix lengths were calculated for each

implementation of SBR2, and can be seen plotted against Imax in Figure 3.24. As

expected, the CRST method performs identical paraunitary matrix truncation to the

RST method in this scenario. Both CRST and RST offer superior truncation to the

traditional truncation method implemented by default in SBR2.

Decomposition MSE

The ensemble-averaged decomposition MSEs were calculated for each implementation

of SBR2, and can be seen plotted against Imax in Figure 3.25. As described in Sec-

tion 3.8.1, the RST method introduces decomposition error if the parahermitian matrix

is not diagonal. This is the case for a low number of algorithm iterations, but as the

maximum number of allowed iterations increases, the parahermitian matrix output by

SBR2 is more diagonal, and the error introduced by RST decreases slightly. While the

71

Chapter 3. Computational Advances for the Iterative PEVD

0 20 40 60 80 100 120 140 160 180 200
10

−10

10
−5

10
0

Maximum number of algorithm iterations, Imax

E
{M

S
E
}

SBR2
SBR2 RST
SBR2 CRST

Figure 3.25: MSE versus maximum number of algorithm iterations for SBR2 with
paraunitary matrix truncation after algorithm completion.

CRST method performs identical paraunitary matrix truncation to the RST method,

by ‘compensating’ the delays applied to the paraunitary matrix, a level of decomposi-

tion MSE similar to that of the traditional truncation method is obtained.

Paraunitarity Error

The ensemble-averaged paraunitarity errors were calculated for each implementation

of SBR2, and can be seen plotted against Imax in Figure 3.26. As the CRST method

performs identical paraunitary matrix truncation to the RST method, the resulting

paraunitarity error is the same. The traditional truncation method implemented by

default in SBR2 offers slightly superior paraunitarity error at the cost of higher parau-

nitary matrix order.

Parahermitian Matrix Length

The ensemble-averaged output parahermitian matrix lengths were calculated for each

implementation of SBR2, and can be seen plotted against Imax in Figure 3.27. Sur-

prisingly, despite applying delays to the parahermitian matrix to counteract the delays

applied to the paraunitary matrix, the CRST method is able to reduce output paraher-

mitian matrix length. Combined with the results above, this outcome is significant, as

the proposed CRST approach seems to be able to reduce paraunitary and parahermi-

72

Chapter 3. Computational Advances for the Iterative PEVD

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5
x 10

−9

Maximum number of algorithm iterations, Imax

P
ar
au
n
it
ar
it
y
er
ro
r,

η

SBR2
SBR2 RST
SBR2 CRST

Figure 3.26: Paraunitarity error η versus maximum number of algorithm iterations for
SBR2 with paraunitary matrix truncation after algorithm completion.

0 20 40 60 80 100 120 140 160 180 200
50

100

150

200

250

Maximum number of algorithm iterations, Imax

P
ar
ah
er
m
it
ia
n
m
at
ri
x
le
n
gt
h

SBR2
SBR2 RST
SBR2 CRST

Figure 3.27: Parahermitian matrix length versus maximum number of algorithm iter-
ations for SBR2 with paraunitary matrix truncation after algorithm completion.

tian matrix length with only a minor impact on decomposition MSE and paraunitarity

error. Note, the traditional and RST methods of paraunitary matrix truncation do not

have any impact on parahermitian matrix length.

3.8.3 Truncating at Each Algorithm Iteration

Simulation Scenario

The simulations below are performed over an ensemble of 103 instantiations of R(z) :

C → C
M×M obtained from the randomised source model in Appendix B [45] with

73

Chapter 3. Computational Advances for the Iterative PEVD

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−10

−8

−6

−4

−2

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

SBR2
SBR2 RST
SBR2 CRST

Figure 3.28: Diagonalisation metric versus algorithm execution time for SBR2 with
paraunitary matrix truncation at each iteration.

M = 5, OD = 118, OQ = 60, and ∆DR = 30.

Three instances of SBR2 are implemented; the first uses the standard SBR2 pa-

raunitary matrix truncation strategy of Appendix C with threshold µtrad = 10−6, the

second uses RST with µRST = 10−6, and the third uses CRST with µCRST = 10−6. Each

instance of SBR2 is executed for a maximum of Imax = 200 iterations with a stopping

threshold of ǫ = 0 and parahermitian matrix truncation parameter of µ = 10−12. Both

parahermitian and paraunitary matrix truncation are implemented at the end of each

algorithm iteration. At each iteration of the implementations, the reconstruction error,

paraunitarity error, and diagonalisation metrics defined in Section A.3 are recorded

alongside the lengths of the internal polynomial matrices and the elapsed execution

time.

Diagonalisation

The ensemble-averaged diagonalisation was calculated for each implementation of SBR2,

and can be seen plotted against ensemble-averaged algorithm execution time in Fig-

ure 3.28. Here it can be seen that the higher complexity associated with the proposed

CRST strategy translates to a slightly slower diagonalisation than observed for SBR2

using the RST strategy. Both CRST and RST decrease diagonalisation speed relative

to an instance of SBR2 utilising standard paraunitary matrix truncation.

74

Chapter 3. Computational Advances for the Iterative PEVD

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

Algorithm iteration, i

P
ar
au
n
it
ar
y
m
at
ri
x
le
n
gt
h

SBR2
SBR2 RST
SBR2 CRST

Figure 3.29: Paraunitary matrix length versus algorithm iteration for SBR2 with pa-
raunitary matrix truncation at each iteration.

Paraunitary Matrix Length

The ensemble-averaged output paraunitary matrix lengths were calculated for each

implementation of SBR2, and can be seen plotted against algorithm iteration in Fig-

ure 3.29. As an unexpected side-effect of the error RST introduces into the decom-

position, the paraunitary matrix is not well truncated at each iteration, and instead

increases in length with algorithm iteration in an approximately linear relationship.

For this scenario, it can be concluded that RST does not provide adequate truncation

of the paraunitary matrix. In the same figure, it can be observed that CRST obtains

shorter paraunitary matrices and therefore offers superior truncation to the traditional

truncation method implemented by default in SBR2.

Decomposition MSE

The ensemble-averaged decomposition MSEs were calculated for each implementation

of SBR2, and can be seen plotted against algorithm iteration in Figure 3.30. The

RST method again introduces significant decomposition error, as the parahermitian

matrix is not diagonal; indeed, the error introduced is even higher than in Figure 3.25.

This error stays relatively constant with increasing algorithm iteration, and is too high

for an accurate reconstruction of the original parahermitian matrix to be obtained.

The CRST method again obtains a similar level of decomposition MSE to that of the

traditional truncation method.

75

Chapter 3. Computational Advances for the Iterative PEVD

0 20 40 60 80 100 120 140 160 180 200
10

−10

10
−5

10
0

Algorithm iteration, i

E
{M

S
E
}

SBR2
SBR2 RST
SBR2 CRST

Figure 3.30: MSE versus algorithm iteration for SBR2 with paraunitary matrix trun-
cation at each iteration.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1
x 10

−7

Algorithm iteration, i

P
ar
au
n
it
ar
it
y
er
ro
r,

η

SBR2
SBR2 RST
SBR2 CRST

Figure 3.31: Paraunitarity error η versus algorithm iteration for SBR2 with paraunitary
matrix truncation at each iteration.

Paraunitarity Error

The ensemble-averaged paraunitarity errors were calculated for each implementation

of SBR2, and can be seen plotted against algorithm iteration in Figure 3.31. Inter-

estingly, despite offering poorer truncation and decomposition MSE performance, the

RST method has the lowest paraunitarity error. This is likely a result of the RST

method’s inability to adequately truncate — and therefore introduce error into — the

paraunitary matrix. The CRST method offers superior paraunitarity error performance

to the traditional method while obtaining lower order paraunitary matrices.

76

Chapter 3. Computational Advances for the Iterative PEVD

0 20 40 60 80 100 120 140 160 180 200
50

100

150

200

250

Algorithm iteration, iP
ar
ah
er
m
it
ia
n
m
at
ri
x
le
n
gt
h

SBR2
SBR2 RST
SBR2 CRST

Figure 3.32: Parahermitian matrix length versus algorithm iteration for SBR2 with
paraunitary matrix truncation at each iteration.

Parahermitian Matrix Length

The ensemble-averaged output parahermitian matrix lengths were calculated for each

implementation of SBR2, and can be seen plotted against algorithm iteration in Fig-

ure 3.32. As in Figure 3.27, the CRST method is able to reduce parahermitian matrix

length. The proposed CRST approach reliably reduces paraunitarity error and parau-

nitary and parahermitian matrix length with only a minor impact on decomposition

MSE and diagonalisation speed. Note, the traditional and RST methods of paraunitary

matrix truncation again have no impact on parahermitian matrix length.

3.8.4 Summary

A novel variation of row-shift truncation (RST) titled compensated row-shift trunca-

tion (CRST) has been introduced. When used on the paraunitary matrices output

by the SBR2 PEVD algorithm, it has been shown that this method is able to out-

perform traditional truncation and RST by reducing paraunitary matrix order without

significantly affecting paraunitarity error or decomposition error for non-diagonal D(z).

Furthermore, simulation results have demonstrated that unlike RST, CRST can be im-

plemented at each iteration of the SBR2 algorithm to reduce paraunitary matrix length

and paraunitarity error relative to traditional truncation, with only a slight decrease

to diagonalisation speed. An unforeseen advantage of the CRST method is its ability

77

Chapter 3. Computational Advances for the Iterative PEVD

to reduce the length of the polynomial eigenvalues in the parahermitian matrix output

by SBR2. Given the results in this section, it can be concluded that CRST is a viable

alternative to traditional paraunitary matrix truncation methods.

3.9 Conclusions

This chapter has detailed a number of novel methods to lower the computational cost

of existing iterative algorithms related to the PEVD. The first section discussed a

number of novel, significant ways to increase the algorithmic efficiency of iterative

PEVD algorithms and polynomial matrix implementations without impacting accuracy.

Most significantly, an efficient, two-dimensional approach to computing the product of

a matrix and polynomial matrix was introduced. When utilising this approach, the

SMD algorithm was identified as the most computationally efficient, state-of-the-art

iterative PEVD algorithm.

The symmetry in the parahermitian matrix was then exploited to reduce com-

putational costs and memory requirements when calculating a PEVD. The reduced,

half-matrix representation — which can be utilised in any PEVD algorithm — records

only the causal part of a parahermitian matrix, and can be used to produce the same

accuracy of decomposition as a standard, full-matrix representation.

The subsequent section detailed a series of steps to reduce the complexity of an

existing cyclic-by-row SMD algorithm, and used simulations to demonstrate that the

obtained reduction in complexity translates to an increase in the diagonalisation speed

of the algorithm — with minimal impact on its convergence. While the cyclic-by-row

SMD algorithm’s avoidance of a direct EVD computation may be useful in applications,

applying an approximate EVD at each iteration is less effective than a full EVD [49].

If an efficient method for computing the EVD is present, the SMD algorithm will offer

superior convergence speed.

Further research demonstrated that a reduction in the search space can slightly im-

prove the diagonalisation performance of an existing PEVD algorithm without signifi-

cantly impacting convergence or the rate of growth of the parahermitian or paraunitary

matrices. The proposed technique can be extended to any iterative PEVD algorithm;

78

Chapter 3. Computational Advances for the Iterative PEVD

however, given the relatively small performance gains achieved through the implemen-

tation of this method, it is likely that the additional effort required to estimate the

search space reduction negates any gains made.

A more promising restricted update approach to the PEVD was then introduced.

A version of the SMD algorithm modified to incorporate this method was found to

produce the same quality of decomposition as SMD, but with decreased computational

complexity and execution time requirements. Importantly, the restricted update ap-

proach can be extended to any iterative PEVD algorithm to increase diagonalisation

speed.

With the knowledge that successive applications of the polynomial matrix QR de-

composition can generate a PEVD, improvements were then made to an existing poly-

nomial matrix QR decomposition algorithm. The resulting multiple shift approach

demonstrated superior triangularisation speed to the original method; however, exist-

ing PEVD algorithms are likely to be more efficient than using multiple instances of

the PQRD.

Finally, a novel compensated row-shift truncation approach was introduced as an

alternative to existing truncation methods. When used on the paraunitary matrices

output by the SBR2 PEVD algorithm, it was demonstrated that this approach is able to

outperform existing truncation strategies by reducing paraunitary matrix order with-

out significantly affecting paraunitarity error or decomposition error for non-diagonal

D(z). Furthermore, simulation results demonstrated that the developed method can

potentially be used to reduce the lengths of the polynomial matrices internal to PEVD

algorithms with only a slight decrease to diagonalisation speed.

While each of the methods discussed in this chapter decrease the implementation

costs of various PEVD approaches, the complexity of the algorithms grows rapidly

with the spatial dimensions of the parahermitian matrix, such that even the improved

PEVD algorithms are not well-suited for applications involving large broadband arrays.

The next chapter addresses this problem by taking additional steps to convert the

sequential form of existing PEVD algorithms to a partially parallelisable divide-and-

conquer architecture.

79

Chapter 4

Divide-and-Conquer Strategy for

PEVD Algorithms

4.1 Introduction

While the contents of Chapter 3 addressed computational advances applicable to a

number of the existing iterative PEVD algorithms discussed in Section 2.3.2, the com-

plexities of the improved algorithms are still highly dependent on the spatial dimension

of the parahermitian matrix. As discussed in the previous chapter, parahermitian ma-

trices with a large spatial dimension M — which dictates the number of rows and

columns in the matrix — can occur in scenarios involving a large number of broadband

sensors. In addition, due to the current reliance of PEVD algorithms on sequential pro-

cessing — i.e., requiring iteration i to be fully complete prior to iteration (i+1) — the

explosion in the availability of parallel processing capable hardware [97–101] has not

yet been fully exploited during the implementation of PEVD algorithms. This chapter

therefore introduces a novel methodology for the PEVD that takes inspiration from

existing so-called divide-and-conquer (DaC) solutions to eigenproblems to ‘divide’ the

PEVD of a parahermitian matrix with large spatial dimension into a number of compo-

nents involving smaller spatial dimensions, before ‘conquering’ each element separately

— and potentially simultaneously.

Below, Section 4.2 provides a brief introduction to DaC methods and their applica-

80

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

tion to eigenproblems, before Section 4.3 describes how DaC strategies can be extended

to the PEVD by incorporating a transformation of the input parahermitian matrix to

block diagonal form. Section 4.4 then details a novel algorithm, named sequential ma-

trix segmentation (SMS), capable of carrying out such a transformation. Based on

the framework of Section 4.3, a further novel algorithm in Section 4.5 utilises SMS to

enforce the transformation of a parahermitian matrix with large spatial dimension to

block diagonal form, before employing an existing PEVD algorithm to diagonalise each

block independently. This algorithm is suitably named divide-and-conquer SMD (DC-

SMD), owing to its use of the SMD algorithm [45] for diagonalisation purposes. In a

final effort to produce the most computationally efficient PEVD algorithm, Section 4.6

incorporates several of the computational schemes discussed in Chapter 3 within DC-

SMD and introduces parallelisation to the ‘conquer’ stage of the resulting algorithm,

which is named parallel-SMD (PSMD). Broadband source model and angle of arrival

estimation simulation results are used to compare the performances of the developed

DaC approaches with existing PEVD algorithms in Section 4.7, and conclusions for

this chapter are provided in Section 4.8.

Elements of the work in this chapter can be found published in the proceedings

of the 2017 IEEE International Workshop on Signal Processing Systems [64], and the

2017 IEEE Sensor Signal Processing for Defence Conference [20, 71]. A further paper

has been submitted to IEEE Transactions on Circuits and Systems I [72].

4.2 Divide-and-Conquer as a Methodology

In the realm of algorithm design, DaC strategies typically decompose a large prob-

lem to be solved into a number of smaller, independent subproblems; the solutions

to these subproblems are then combined to form an overall solution to the original

problem [102]. Such approaches can be extended to any number of large scale sig-

nal processing problems, and can be found in efficient sorting [103] and fast Fourier

transform algorithms [93], for example. Specifically in relation to eigenproblems, re-

search in [104] introduces a DaC method for the symmetric tridiagonal eigenproblem,

while [105] extends this approach to create a fully parallel algorithm for the symmet-

81

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

ric eigenvalue problem. Furthermore, in [106], a low-complexity version of the DaC

approach in [104] is presented.

While the PEVD does not explicitly involve tridiagonal matrices, there is clearly

precedent for the utilisation of DaC algorithms to obtain eigenvalues. The compu-

tational complexity of current PEVD algorithms is strongly influenced by the spatial

dimensions of the parahermitian matrix; devising a similar strategy to above that re-

duces the dimensionality of the problem is therefore of great interest. Furthermore,

if such a strategy can be developed, the parallelised and low-complexity algorithms

of [105] and [106], respectively, suggest that a low-complexity, parallelised DaC PEVD

algorithm may be obtainable.

4.3 Extending the Divide-and-Conquer Methodology to

the PEVD

4.3.1 Problem Formulation

The existing iterative PEVD algorithms discussed in Section 2.3.2 all take a purely

sequential approach. That is, the computations in iteration i + 1 of existing algo-

rithms cannot be commenced before finalising the computations in iteration i. This

is problematic for the development of a parallelised PEVD algorithm. An implicit as-

sumption within these algorithms is that the entirety of the parahermitian matrix must

be updated at each iteration to avoid the introduction of error to the decomposition;

however, this is not always the case. For example, consider the parahermitian matrix

R(z) : C→ C
M×M , which can be thought of as four matrices arranged as shown:

R(z) =




R11(z) R12(z)

R21(z) R22(z)



 . (4.1)

Here, R(z) is represented using parahermitian submatrices R11(z) : C →
C
(M−P)×(M−P) and R22(z) : C→ C

P×P , and non-parahermitian submatrices R21(z) :

C → C
P×(M−P) and R12(z) : C → C

(M−P)×P , with R21(z) = R̃12(z) by definition. If

R21(z) = 0, R(z) is block diagonal, and submatrices R11(z) and R22(z) can each ex-

82

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

perience paraunitary operations without influencing the other; i.e., R11(z) and R22(z)

are independent parahermitian matrices. In this scenario, the PEVD of R(z) can be

computed by inputting R11(z) and R22(z) to two separate instances of a PEVD algo-

rithm. If F 11(z) and D11(z), and F 22(z) and D22(z) are the polynomial eigenvectors

and eigenvalues of R11(z) and R22(z) obtained from two PEVDs, respectively,

F (z) =




F 11(z) 0

0 F 22(z)



 (4.2)

and

D(z) =




D11(z) 0

0 D22(z)



 (4.3)

are polynomial eigenvectors and eigenvalues of R(z). Analogously to the divide-and-

conquer methodologies discussed previously, the natural ‘divided’ structure of R(z) has

facilitated the independent ‘conquering’ of the two constituent matrices in this scenario.

As an extension of the above, consider the case that R11(z) is itself block diagonal,

and can be represented by two independent parahermitian matrices of even smaller

spatial dimension. Matrix R(z) is now ‘divided’ into three components, which can

again be ‘conquered’ independently.

If R[τ] is a space-time covariance matrix computed according to (2.2), the resulting

R(z) can be block diagonal if two or more groups of time series in x[n] ∈ C
M exist that

have zero correlation with each other for all τ . Of course, naturally obtaining a block

diagonal R(z) in an application scenario is unlikely. It is therefore important to find

some means to enforce such a block diagonal structure for a general case parahermitian

matrix R(z) without introducing significant error to the decomposition. This approach

would ideally use paraunitary operations, as they preserve energy and are therefore

reversible. Furthermore, if the ultimate goal is a PEVD of R(z), the overall similarity

transformation to achieve diagonalisation should be paraunitary, and therefore has to

consist of paraunitary operations.

If they exist, the sequence of paraunitary operations that transform R(z) into a

block diagonal B(z) — composed of N blocks — can be combined into a single parau-

83

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

nitary matrix T (z) such that

B(z) = T (z)R(z)T̃ (z) ≈











B11(z) 0 . . . 0

0 B22(z) . . .
...

...
...

. . .
...

0 BNN (z)











. (4.4)

As in equation (2.4), (4.4) has only approximate equality, as it is likely that the de-

composition to obtain a block diagonal matrix from a finite order polynomial matrix

is not of finite order. However, as found with the PEVD [9], it is assumed that the

approximation error will become arbitrarily small if the order of the approximation is

selected to be sufficiently large. As above, the PEVDs of each Bnn(z), n = 1 . . . N , can

be conducted in parallel to produce polynomial eigenvectors

F̂ (z) =











F̂ 11(z) 0 . . . 0

0 F̂ 22(z) . . .
...

...
...

. . .
...

0 F̂NN (z)











(4.5)

and polynomial eigenvalues

D(z) =











D11(z) 0 . . . 0

0 D22(z) . . .
...

...
...

. . .
...

0 DNN (z)











, (4.6)

such that Bnn(z) ≈ ˜̂
F nn(z)Dnn(z)F̂ nn(z) and

R(z) ≈ T̃ (z) ˜̂F (z)D(z)F̂ (z)T (z) = F̃ (z)D(z)F (z) , (4.7)

where F (z) = F̂ (z)T (z). Matrix F (z), which is the product of two paraunitary ma-

trices and is therefore paraunitary by construction, decomposes R(z) to a diagonal

84

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

matrix D(z) containing polynomial eigenvalues, and can therefore be considered to

contain polynomial eigenvectors.

4.3.2 Block Diagonalising a Parahermitian Matrix

The paraunitary matrix T (z) that ‘divides’ a parahermitian matrix into block diagonal

form cannot be immediately ascertained from observation of R(z). However, using an

approach akin to iterative PEVD algorithms — which seek to iteratively diagonalise a

parahermitian matrix via paraunitary operations — an algorithm can be developed that

uses paraunitary operations to iteratively block diagonalise a parahermitian matrix.

One approach, which is described below, is to block diagonalise the parahermitian

matrix in stages.

For some user-specified P , with P < M , the first stage of the iterative process to

block diagonalise a parahermitian matrix B(0)(z) = R(z) : C→ C
M×M seeks to obtain

a paraunitary matrix T (1)(z) : C→ C
M×M such that

B(1)(z) = T (1)(z)B(0)(z)T̃ (1)(z) ≈




B

(1)
11 (z) 0

0 B
(1)
22 (z)



 (4.8)

is block diagonal with two parahermitian submatrices B
(1)
11 (z) : C → C

(M−P)×(M−P)

and B
(1)
22 (z) : C → C

P×P . Note that, as in equation (4.4), this transformation is

unlikely to be achievable using finite order polynomial matrices; thus, (4.8) has only

approximate equality.

Provided that P < (M −P), the second stage seeks to obtain a further paraunitary

matrix

T (2)(z) =




T̂ (2)(z) 0

0 IP



 , (4.9)

that operates on B
(1)
11 (z) such that

B(2)(z) = T (2)(z)B(1)(z)T̃ (2)(z) ≈








B
(2)
11 (z) 0 0

0 B
(2)
22 (z) 0

0 0 B
(1)
22 (z)








(4.10)

85

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

is block diagonal with two parahermitian submatrices B
(2)
11 (z) : C→ C

(M−2P)×(M−2P)

and B
(2)
22 (z) : C → C

P×P , plus parahermitian submatrix B
(1)
22 (z) from before. Here,

T̂ (2)(z) : C→ C
(M−P)×(M−P) has transformed B

(1)
11 (z) into block diagonal form, while

B
(1)
22 (z) is influenced by identity matrix IP and is therefore unaffected.

The above process repeats a total of β times, i.e., until P ≥ (M − βP) and

some B(β)(z) has been obtained with parahermitian submatrices B
(β)
11 (z) : C →

C
(M−βP)×(M−βP) and B

(β)
22 (z) : C→ C

P×P , alongside a ‘dividing’ matrix

T (β)(z) =




T̂ (β)(z) 0

0 I(β−1)P



 . (4.11)

The final block diagonal parahermitian matrix can be written as

B(z) = T (z)R(z)T̃ (z) ≈















B
(β)
11 (z) 0 0

0 B
(β)
22 (z)

...
... B

(β−1)
22 (z)

...
...

. . .
...

0 B
(1)
22 (z)















. (4.12)

Note that matrices B
(b)
22 (z), b = 1 . . . β, have spatial dimensions of P ×P , while B

(β)
11 (z)

is of spatial dimension (M − βP) × (M − βP). The overall paraunitary ‘dividing’

matrix T (z) that transforms R(z) to block diagonal form can be found by computing

the product of all T (b)(z), b = 1 . . . β, according to

T (z) = T (β)(z)T (β−1)(z) · · ·T (1)(z)

=




T̂ (β)(z) 0

0 I(β−1)P








T̂ (β−1)(z) 0

0 I(β−2)P



 · · ·T (1)(z) , (4.13)

where the insertion of identity matrices has ensured an overall spatial dimension of

M ×M .

Once R(z) has been transformed to block diagonal form, each parahermitian sub-

matrix can be diagonalised independently through the use of a PEVD algorithm.

86

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

�a) �c)

� = �

TR

�TR

� = �

T��1)

�T��1)

� = �

T��2)

�T��2)

�b)

�e)

� = �

T��3)

�T��3)

� = �

TD

�TD

�d)

Figure 4.1: Steps taken to block diagonalise a parahermitian matrix with M = 20 and
P = 5. (a) Original matrix R[τ] ∈ C

20×20; (b) block diagonal B(1)[τ] with parahermi-

tian submatrices B
(1)
11 [τ] ∈ C

15×15 and B
(1)
22 [τ] ∈ C

5×5; (c) block diagonal B(2)[τ] with

parahermitian submatrices B
(2)
11 [τ] ∈ C

10×10, B
(2)
22 [τ] ∈ C

5×5, and B
(1)
22 [τ] ∈ C

5×5; (d)

block diagonal B(3)[τ] with parahermitian submatrices B
(3)
11 [τ] ∈ C

5×5, B
(3)
22 [τ] ∈ C

5×5,

B
(2)
22 [τ] ∈ C

5×5, and B
(1)
22 [τ] ∈ C

5×5; and (e) diagonal D[τ], which contains polynomial
eigenvalues obtained from independent diagonalisation of each submatrix. TR, TB(1) ,
TB(2) , TB(3) , and TD are the maximum lags for matrices R[τ], B(1)[τ], B(2)[τ], B(3)[τ],
and D[τ], respectively. Blank regions indicate regions containing only zeroes.

The diagram of Figure 4.1 illustrates the use of the above iterative block diagonal-

isation process for the diagonalisation of a parahermitian matrix R(z) : C → C
20×20

for P = 5.

4.4 Sequential Matrix Segmentation Algorithm

The sequential matrix segmentation (SMS) algorithm is a novel variant of SMD [45] de-

signed to approximately block diagonalise a parahermitian matrix R(z) : C→ C
M×M .

The algorithm outputs are a block diagonal matrix B(z) with independent paraher-

mitian submatrices B11(z) : C → C
(M−P)×(M−P) and B22(z) : C → C

P×P , and a

87

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

�TB�TR

�a)

� = 0

TR

� = 0

�b)

�����]

�22��]

TB

Figure 4.2: (a) Original matrix R[τ] ∈ C
20×20 with regions to be driven to zero in

SMS, and (b) block diagonal result for P = 5. TR and TB are the maximum lags for
the original and block diagonal matrices, respectively.

paraunitary matrix T (z) : C→ C
M×M that satisfies

B(z) ≈ T (z)R(z)T̃ (z) . (4.14)

The parameter P , which determines the dimensions of the matrices produced during

block diagonalisation, must satisfy P < M .

Figure 4.2 illustrates the block diagonalisation process of SMS for M = 20 and

P = 5. Note that this could be the first of three ‘division’ steps during the block

diagonalisation of R(z) as in Figure 4.1(b).

Below, Section 4.4.1 provides an overview of the SMS algorithm, while proof of

convergence is given in Section 4.4.2 and a brief derivation of algorithm complexity is

supplied in Section 4.4.3. Some results that confirm the SMS algorithm’s ability to

block diagonalise a parahermitian matrix are shown in Section 4.4.4.

4.4.1 Algorithm Overview

The SMS algorithm is initialised and operates in a similar manner to the SMD algorithm

in Section A.1, but with a few key differences. Instead of iteratively shifting single row-

column pairs in an effort to diagonalise a parahermitian matrix S(i)(z), SMS iteratively

minimises the energy in select regions of S(i)(z) in an attempt to block diagonalise the

88

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

matrix over Î iterations; i.e., for i = 1 . . . Î. If

S(i)(z) =




S

(i)
11 (z) S

(i)
12 (z)

S
(i)
21 (z) S

(i)
22 (z)



 (4.15)

is represented using four polynomial matrices as shown, the regions to experience energy

reduction are denoted S
(i)
12 (z) : C → C

(M−P)×P and S
(i)
21 (z) : C → C

P×(M−P), and

are located to the top-right and bottom-left of S(i)(z), such that S
(i)
12 (z) = S̃

(i)
21 (z).

These regions are highlighted in red for the example of Figure 4.2. The energy from

these regions is iteratively transferred to parahermitian submatrices S
(i)
11 (z) : C →

C
(M−P)×(M−P) and S

(i)
22 (z) : C → C

P×P on the diagonal of S(i)(z); this results in

S(i)(z) more closely approximating a block diagonal matrix as i increases. That is, in

an ideal scenario, SMS enables the following:

lim
i→∞

∑

τ

∥
∥
∥S

(i)
12 [τ]

∥
∥
∥

2

F
= lim

i→∞

∑

τ

∥
∥
∥S

(i)
21 [τ]

∥
∥
∥

2

F
= 0 ; (4.16)

however, in reality this may require an infeasible number of iterations. A discussion on

SMS convergence in practice is provided in Section 4.4.2.

Alongside the parameter P , each instance of SMS is provided with a parameter Imax

— which defines the maximum possible number of algorithm iterations — a stopping

threshold κ, and truncation parameters µ and µt.

To achieve matrix block diagonalisation, the SMS algorithm uses a series of elemen-

tary paraunitary operations to iteratively minimise the energy in S
(i)
12 (z) and S

(i)
21 (z).

Each elementary paraunitary operation consists of two steps: first, a delay step is

used to move the bottom-left and top-right regions with the largest energy to lag zero;

then, an EVD diagonalises the lag zero matrix, transferring the shifted energy onto the

diagonal.

Upon initialisation, the algorithm diagonalises the lag zero coefficient matrix R[0]

by means of its modal matrix Q(0), which is obtained from the ordered EVD of R[0],

such that S(0)(z) = Q(0)R(z)Q(0)H. The unitary Q(0) is applied to all coefficient

matrices R[τ] ∀ τ , and initialises H(0)(z) = Q(0).

89

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

The SMS algorithm then computes

S(i)(z) = U (i)(z)S(i−1)(z)Ũ (i)(z)

H(i)(z) = U (i)(z)H (i−1)(z) (4.17)

in the ith step, i = 1, 2, . . . Î, in which

U (i)(z) = Q(i)Λ(i)(z) . (4.18)

The product in (4.18) consists of a paraunitary delay matrix

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

M−P

zτ
(i)

. . . zτ
(i)

︸ ︷︷ ︸

P

} (4.19)

and a unitary matrix Q(i), such that U (i)(z) in (4.18) is paraunitary. For subsequent

discussion, it is convenient to define intermediate variables S(i)′(z) and H(i)′(z) where

S(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃(i)(z)

H(i)′(z) = Λ(i)(z)H (i−1)(z) . (4.20)

Matrix Λ(i)(z) is selected based on the lag position of the dominant region in the

bottom-left of S(i−1)(z) •—◦ S(i−1)[τ], which is identified by

τ (i) = argmax
τ

∥
∥
∥S

(i−1)
21 [τ]

∥
∥
∥

2

F
, (4.21)

where
∥
∥
∥S

(i−1)
21 [τ]

∥
∥
∥

2

F
=

M∑

m=M−P+1

M−P∑

k=1

∣
∣
∣s

(i−1)
m,k [τ]

∣
∣
∣

2
. (4.22)

Here, s
(i−1)
m,k [τ] represents the element in the mth row and kth column of the coefficient

matrix S(i−1)[τ].

The shifting process in (4.20) moves the dominant bottom-left region S
(i−1)
21 [τ (i)]

and dominant top-right region S
(i−1)
12 [−τ (i)] = S

(i−1)H
21 [τ (i)] in S(i−1)[τ] into the lag zero

coefficient matrix S(i)′[0]. The energy in the shifted regions is then transferred onto the

90

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

diagonal of S(i)′[0] by a unitary matrix Q(i) — which diagonalises S(i)′[0] by means of

an ordered EVD — in

S(i)(z) = Q(i)S(i)′(z)Q(i)H

H(i)(z) = Q(i)H(i)′(z) . (4.23)

The use of an ordered EVD ensures that the eigenvalues in S(i)[0] — and therefore

the polynomial eigenvalues of S(i)(z) — are sorted in descending order of power. This

results in spectral majorisation, such that the polynomial eigenvalues of B11(z) are

always greater in power that the polynomial eigenvalues of B22(z).

Note that the application of Λ(i)(z) via similarity transform shifts the bottom-right

P×P region of S(i−1)(z) in opposite directions, such that this region remains unaffected.

An efficient implementation of this similarity transform can therefore exclude this region

from shifting operations.

The orders of S(i)(z) and H(i)(z) increase at each iteration; to constrain computa-

tional complexity, truncation according to Appendix C is typically required. Parame-

ters µ and µt are used for parahermitian and paraunitary matrix truncation, respec-

tively.

After Imax iterations — for a user-defined Imax — or when the energy in S
(i)
21 (z) =

S̃
(i)
12 (z) has been sufficiently minimised such that

∥
∥
∥S

(I)
21 [τ]

∥
∥
∥

2

F
≤ κ

∑

τ

‖R[τ]‖2F (4.24)

at some iteration I — where κ is chosen to be arbitrarily small — the SMS algorithm

returns matrices B(z) and T (z). The latter is constructed from the concatenation of

the elementary paraunitary matrices:

T (z) = H(Î)(z) = U (Î)(z) · · ·U (0)(z) =

Î∏

i=0

U (Î−i)(z) , (4.25)

where Î = min{Imax, I}. The parahermitian submatrices of B(z), B11(z) and B22(z),

are the top-left (M − P) × (M − P) and the bottom-right P × P blocks of S(Î)(z),

91

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Input: R(z), Imax, P , µ, µt, κ
Output: B(z), T (z)
Find eigenvectors Q(0) that diagonalise R[0] ∈ C

M×M

S(0)(z)← Q(0)R(z)Q(0)H; H(0)(z)← Q(0); i← 0; stop ← 0
do

i← i+ 1

Find τ (i) from (4.21); generate Λ(i)(z) from (4.19)

S(i)′(z)← Λ(i)(z)S(i−1)(z)Λ̃(i)(z)

H(i)′(z)← Λ(i)(z)H (i−1)(z)

Find eigenvectors Q(i) that diagonalise S(i)′[0]

S(i)(z)← Q(i)S(i)′(z)Q(i)H

H(i)(z)← Q(i)H(i)′(z)
if i > Imax or (4.24) satisfied then

stop ← 1;
end

Truncate H(i)(z) using threshold µt according to Appendix C

Truncate S(i)(z) using threshold µ according to Appendix C

while stop = 0

T (z)←H(i)(z)

B11(z) is top-left (M − P)× (M − P) block of S(i)(z)

B22(z) is bottom-right P × P block of S(i)(z)

Algorithm 5: SMS algorithm

S
(Î)
11 (z) and S

(Î)
22 (z), respectively.

Note that while the relationship R(z) = T̃ (z)S(Î)(z)T (z) is true if no truncation is

used — owing to the paraunitary nature of T (z) — discarding S
(Î)
12 (z) and S

(Î)
21 (z) upon

algorithm completion results in only approximate equality for R(z) ≈ T̃ (z)B(z)T (z).

As Î increases, the energy in these discarded regions tends to zero; thus, the mean

square reconstruction error of the decomposition produced by SMS also tends to zero.

The above steps of SMS are summarised in Algorithm 5.

4.4.2 Algorithm Convergence

To show that the SMS algorithm outlined above converges to an approximate block

diagonalisation (in the absence of polynomial matrix truncation) of an input paraher-

mitian matrix R(z), the following theorem — which is very similar to the theorem for

convergence of the SMD algorithm in [45] — is used:

92

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Theorem 1 (Convergence of the SMS algorithm). With a sufficiently large number

of iterations, the sequential matrix segmentation algorithm approximately block diago-

nalises R(z) : C → C
M×M and decreases the energy in the bottom-left P × (M − P)

and top-right (M −P)×P regions to an arbitrarily low threshold ρ > 0 for any P that

fulfils P < M .

Proof: To prove Theorem 1, a number of norms need to be defined:

N1

{

S(i)(z)
}

,

M∑

m=1

∣
∣
∣s(i)m,m[0]

∣
∣
∣

2
(4.26)

N2

{

S(i)(z)
}

,
∥
∥
∥S

(i)[0]
∥
∥
∥

2

F
(4.27)

N3

{

S(i)(z)
}

, N2

{

S(i)(z)
}

−N1

{

S(i)(z)
}

(4.28)

N4

{

S(i)(z)
}

,
∑

τ

∥
∥
∥S

(i)[τ]
∥
∥
∥

2

F
. (4.29)

Note that N1 {·} is invariant under a delay matrix as in (4.20), i.e.,

N1

{

S(i)′(z)
}

= N1

{

Λ(i)(z)S(i−1)(z)Λ̃(i)(z)
}

= N1

{

S(i−1)(z)
}

, (4.30)

and that N2 {·} is invariant under a unitary operation, i.e.,

N2

{

S(i)(z)
}

= N2

{

Q(i)S(i)′(z)Q(i)H
}

= N2

{

S(i)′(z)
}

. (4.31)

Furthermore, N4 {·} is invariant under the application of a paraunitary U (i)(z) such

that

N4

{

S(i)(z)
}

= N4

{

U (i)(z)S(i−1)(z)Ũ (i)(z)
}

= N4

{

S(i−1)(z)
}

. (4.32)

93

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

The squared norm of the bottom-left P × (M −P) region of S(i−1)[τ (i)] is given by

ζ(i) =
∥
∥
∥S

(i−1)
21 [τ (i)]

∥
∥
∥

2

F
. (4.33)

With step (4.20), this energy is transferred onto both the bottom-left P × (M −P) and

top-right (M−P)×P regions of the lag zero slice S(i)′[0], such that its total off-diagonal

energy is

N3

{

S(i)′(z)
}

= 2ζ(i) . (4.34)

In the subsequent rotation step with Q(i), this energy is transferred onto the main

diagonal such that N3

{

S(i)(z)
}

= 0 and therefore

N1

{

S(i)(z)
}

= N1

{

S(i)′(z)
}

+ 2ζ(i)

= N1

{

S(i−1)(z)
}

+ 2ζ(i) , (4.35)

exploiting (4.30), while the overall energyN4

{

S(i)(z)
}

remains constant. Due to (4.35),

N1

{

S(i)(z)
}

increases monotonically with iteration index i. Since N4

{

S(i)(z)
}

is in-

variant over iterations due to (4.32) and forms an upper bound

N1

{

S(i)(z)
}

≤ N4

{

S(i)(z)
}

∀ i , (4.36)

N1

{

S(i)(z)
}

must have a supremum S,

S = sup
i
N1

{

S(i)(z)
}

. (4.37)

It follows that for any ρ > 0, there must be an iteration number I for which
∣
∣
∣S −N1

{

S(I)(z)
}∣
∣
∣ < ρ, and so the increase 2ζ(I+i), i > 0, at any subsequent stage

must satisfy

2ζ(I+i) ≤
∣
∣
∣S −N1

{

S(I)(z)
}∣
∣
∣ < ρ . (4.38)

Hence, for any ρ > 0, there must be an iteration I by which ζ(I) is bounded by ρ.

94

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

4.4.3 Algorithm Complexity

At the ith iteration, the length of S(i)′(z) is equal to L{S(i)′(z)}, where L{·} com-

putes the length of a polynomial matrix. For (4.23), every matrix-valued coefficient

in S(i)′(z) must be left- and right-multiplied with a unitary matrix. Accounting for

a multiplication of 2 M ×M matrices by M3 multiply-accumulates (MACs) [2, 95], a

total of 2L{S(i)′(z)}M3 MACs arise to generate S(i)(z). Every matrix-valued coeffi-

cient in H(i)′(z) must also be left-multiplied with a unitary matrix; thus, a total of

L{H(i)′(z)}M3 MACs arise to generate H(i)(z). If κ = 0, the cumulative complexity

of the SMS algorithm over Imax iterations can therefore be approximated as

CSMS(Imax) = M3
Imax∑

i=0

(2L{S(i)′(z)}+ L{H(i)′(z)}) , (4.39)

which is equivalent to the approximate complexity of the SMD algorithm in Sec-

tion A.1.2.

4.4.4 Results and Discussion

Block Diagonalisation Performance Metric

Iterative PEVD algorithms progressively minimise off-diagonal energy and therefore

use the metric E
(i)
diag — defined in Section A.3 and [45] — to measure diagonalisation

performance; this metric divides the off-diagonal energy in the parahermitian matrix

at the ith iteration by the total energy. The SMS algorithm seeks to iteratively block

diagonalise a parahermitian matrix R(z) : C→ C
M×M by progressively minimising the

energy in the bottom-left P × (M −P) and top-right (M −P)×P regions. A suitable

metric for block diagonalisation, derived from E
(i)
diag, is therefore

E
(i)
b.diag =

2
∑

τ

∥
∥
∥S

(i)
21 [τ]

∥
∥
∥

2

F
∑

τ ‖R[τ]‖2F
, (4.40)

which divides the sum of the energy in the bottom-left P ×(M−P) and top-right (M−
P)× P regions of the iteratively updated matrix by the total energy. Here,

∥
∥
∥S

(i)
21 [τ]

∥
∥
∥

2

F

95

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

can be found using (4.22). Computation of E
(i)
b.diag generates squared covariance terms;

therefore a logarithmic notation of 5 log10 E
(i)
b.diag is employed during testing.

Simulation Scenarios

The simulations below have been performed over an ensemble of 103 instantiations of

R(z) : C → C
M×M obtained from the randomised source model in Appendix B [45]

with M ∈ {10; 30}, OD = 118, OQ = 60, and ∆DR = 30.

An initial simulation scenario is designed to measure the block diagonalisation per-

formance of the novel SMS algorithm relative to the SMD algorithm. During 200

iterations of SMD and SMS, truncation parameters of µ = µt = 10−6 and stopping

thresholds of ǫ = κ = 0 are used. SMS is executed with P = 5. At every iteration step,

the metrics defined in Section A.3 are recorded together with the elapsed execution

time and E
(i)
b.diag.

A second simulation scenario is designed to measure the error introduced to the

decomposition produced by SMS by discarding non-zero S
(Î)
12 (z) and S

(Î)
21 (z) upon al-

gorithm completion. To ensure no error is introduced by polynomial matrix truncation,

truncation parameters of µ = µt = 0 are used. Each instance of SMS is executed for

Imax ∈ {1; 2; . . . ; 4000} iterations (κ = 0) with P = 5. Following Î = Imax iterations of

each instance of SMS, the decomposition MSE metric defined in Section A.3 is recorded

alongside E
(Imax)
b.diag .

Performance of SMS Relative to SMD

Out of interest, the ensemble-averaged diagonalisation E
(i)
diag was calculated for both

SMD and SMS for the first simulation scenario for M = 10, and can be seen plotted

against algorithm iteration in Figure 4.3. Clearly, SMD outperforms SMS with respect

to parahermitian matrix diagonalisation; however, this is to be expected, as SMS only

enforces block diagonalisation.

For M = 10, Figure 4.4 confirms that SMS offers far superior block diagonalisation

per algorithm iteration to SMD. As a result of the different search strategy used by SMS,

both the iteratively updated paraunitary and parahermitian matrices, H(i)(z) and

96

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

S(i)(z), are shorter in SMS than in SMD, as shown by Figures 4.5 and 4.6, respectively.

As evidenced by Figure 4.7, shorter polynomial matrices directly translate to improved

algorithm speed.

Figure 4.8 shows that for constant P , the performance gap between SMS and SMD

for M = 30 has increased relative to the gap in Figure 4.7. This indicates that SMS be-

comes more effective as the ratio M/P increases, as SMS is able to focus on minimising

the energy in an increasingly small percentage of the parahermitian matrix.

Decomposition Error Introduced by SMS

In the absence of truncation, the SMD algorithm — on which SMS is based — offers a

PEVD with zero reconstruction error. However, even for µ = µt = 0, the decomposition

offered by SMS is typically not without error, as true block diagonalisation is not

normally achieved. For the second simulation scenario, Figure 4.9 demonstrates that for

M ∈ {10; 30}, as the maximum number of SMS iterations increases, the decomposition

MSE decreases. This decrease is rapid in the range Imax ∈ [0, 500], but becomes notably

slower in the range Imax ∈ [3500, 4000]. For M = 30, which has a larger ratio M/P ,

the relative area of the regions whose energy is minimised is smaller; thus, the energy

contained within these regions has less impact on the decomposition MSE.

Given that both the block diagonalisation metric and decomposition MSE effectively

measure the energy in S
(Î)
12 (z) upon completion of the SMS algorithm, it is perhaps

intuitive that an approximately linear relationship — as observed in Figure 4.10 —

exists between 5 log10 E{E(Imax)
b.diag } and 10 log10 E{MSE}.

Values of Imax for application purposes must therefore be given strong considera-

tion, as direct links exist between Imax, decomposition MSE, and block diagonalisation

performance.

97

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

0 20 40 60 80 100 120 140 160 180 200
−15

−10

−5

0

Algorithm iteration, i

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

SMD
SMS

Figure 4.3: Diagonalisation metric versus algorithm iteration for SMD and SMS for
M = 10.

0 20 40 60 80 100 120 140 160 180 200
−20

−15

−10

−5

0

Algorithm iteration, i

5l
og

1
0
E
{E

(i
)

b
.d
ia
g}

/
[d
B
]

SMD
SMS

Figure 4.4: Block diagonalisation metric versus algorithm iteration for SMD and SMS
for M = 10.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Algorithm iteration, i

P
ar
au
n
it
ar
y
m
at
ri
x
le
n
gt
h

SMD
SMS

Figure 4.5: Paraunitary matrix length versus algorithm iteration for SMD and SMS for
M = 10.

98

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

0 20 40 60 80 100 120 140 160 180 200
40

60

80

100

120

140

Algorithm iteration, iP
ar
ah
er
m
it
ia
n
m
at
ri
x
le
n
gt
h

SMD
SMS

Figure 4.6: Parahermitian matrix S(i)(z) length versus algorithm iteration for SMD
and SMS for M = 10.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−20

−15

−10

−5

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

b
.d
ia
g}

/
[d
B
]

SMD
SMS

Figure 4.7: Block diagonalisation metric versus algorithm execution time for SMD and
SMS for M = 10.

0 0.2 0.4 0.6 0.8 1 1.2
−20

−15

−10

−5

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

b
.d
ia
g}

/
[d
B
]

SMD
SMS

Figure 4.8: Block diagonalisation metric versus algorithm execution time for SMD and
SMS for M = 30.

99

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

0 500 1000 1500 2000 2500 3000 3500 4000
−100

−80

−60

−40

−20

Maximum number of algorithm iterations, Imax

10
lo
g
1
0
E
{M

S
E
}
/
[d
B
]

M = 10
M = 30

Figure 4.9: Maximum number of algorithm iterations versus decomposition MSE for
SMS for M ∈ {10; 30}.

−35−30−25−20−15−10−50
−100

−80

−60

−40

−20

5log10E{E
(Imax)
b.diag} / [dB]

10
lo
g
1
0
E
{M

S
E
}
/
[d
B
]

M = 10
M = 30

Figure 4.10: Block diagonalisation metric versus decomposition MSE for SMS for M ∈
{10; 30}.

100

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

4.5 Divide-and-Conquer Sequential Matrix Diagonalisa-

tion PEVD Algorithm

Inspired by the development of divide-and-conquer solutions to eigenproblems in [104–

106], this section outlines the components of a novel divide-and-conquer sequential

matrix diagonalisation (DC-SMD) PEVD algorithm — which is summarised in Sec-

tion 4.5.1. The ‘divide’ stage of this algorithm, which utilises the iterative block di-

agonalisation approaches of Sections 4.3 and 4.4, is described in Section 4.5.2, and

Section 4.5.3 details the ‘conquer’ stage. Some comments on algorithm convergence, de-

composition error, and computational complexity are provided in Sections 4.5.4, 4.5.5,

and 4.5.6, respectively.

4.5.1 Algorithm Overview

The DC-SMD algorithm diagonalises a parahermitian matrix R(z) : C→ C
M×M via a

number of paraunitary operations. The algorithm outputs an approximately diagonal

matrix D(z), which contains approximate polynomial eigenvalues, and an approxi-

mately paraunitary F (z), which contains the corresponding approximate polynomial

eigenvectors, such that (2.4) is satisfied.

While all existing iterative PEVD algorithms, such as SMD — described in Sec-

tion A.1 — attempt to diagonalise an entire M ×M parahermitian matrix at once, the

DC-SMD algorithm first transforms the matrix into block diagonal form in a ‘divide’

stage before diagonalising — or ‘conquering’ — each of the smaller, now independent,

matrices on the diagonal separately. For example, a matrix R(z) : C → C
20×20 might

be ‘divided’ into four 5× 5 parahermitian matrices, each of which can be diagonalised

independently. Figure 4.11, which is a condensed form of Figure 4.1, shows the state

of the parahermitian matrix at each stage of the process for this example.

If matrix R(z) is of large spatial dimension, the SMS algorithm from Section 4.4 is

repeatedly used to ‘divide’ the matrix into multiple independent parahermitian matri-

ces. Using the block diagonalisation approach of Section 4.3.2, this function generates

a paraunitary matrix T (b)(z) that ‘divides’ the top-left (M− (b−1)P)× (M − (b−1)P)

101

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

block of an input matrix B(b−1)(z) into two independent parahermitian matrices,

B
(b)
11 (z) and B

(b)
22 (z), of smaller spatial dimension. B

(b)
11 (z) is then subject to further

division if it still has sufficiently large spatial dimension. Note that B(0)(z) = R(z).

Following β =
⌈
M−M̂

P

⌉

‘division’ steps, for b = 1 . . . β and user-defined M̂ and P , a

block diagonal B(z) has been obtained as in (4.12). In the alternative notation of (4.4),

B(z) comprises N = (β+1) blocks, which are denoted Bnn(z), n = 1 . . . N . The matri-

ces T (b)(z) — which SMS generates to ‘divide’ each B(b)(z) — are concatenated to form

an overall dividing matrix T (z). It is therefore possible to approximately reconstruct

R(z) from the product T̃ (z)B(z)T (z).

As in the strategy of Section 4.3.1, each block Bnn(z), n = 1 . . . N , on the diagonal

of matrixB(z) is then diagonalised in sequence through the use of a PEVD algorithm; in

this case, SMD is used. The diagonalised outputs, Dnn(z), are placed on the diagonal

of matrix D(z), and the corresponding paraunitary matrices, F̂ nn(z), are stored on

the diagonal of matrix F̂ (z). Matrix B(z) can be approximately reconstructed from

˜̂
F (z)D(z)F (z); by extension, it is possible to approximately reconstruct R(z) from the

product T̃ (z) ˜̂F (z)D(z)F̂ (z)T (z) = F̃ (z)D(z)F (z), where F (z) = F̂ (z)T (z).

Algorithm 6 summarises the above steps of DC-SMD in more detail. Of the pa-

rameters passed to DC-SMD, µ and µt are truncation parameters, and κ and ǫ are the

stopping thresholds for SMS and SMD, which are allowed a maximum of ID and IC

iterations. Matrices of spatial dimension greater than M̂ × M̂ will be subject to the

‘dividing’ process. Parameter P is an input to SMS as in Section 4.4. Matrices IM and

0M are identity and zero matrices of spatial dimensions M ×M , respectively.

4.5.2 ‘Dividing’ the Parahermitian Matrix

If R(z) is measured to have spatial dimension M > M̂ , the ‘divide’ stage of DC-SMD

comes into effect. This stage repeatedly applies the SMS algorithm of Section 4.4 to

‘divide’ R(z) into multiple independent parahermitian matrices, and can therefore be

considered to operate in a recursive fashion. In the first recursion, the matrix B(0)(z)

input to SMS is equal to R(z) and M ′ = M . The output matrix B
(1)
22 (z) is stored

and subsequently diagonalised during the ‘conquer’ stage. If the second output matrix

102

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

� = �

TR

�TR

� = �

T�

�T�

� = �

TD

�TD

�a) �b) �c)

Figure 4.11: (a) Original matrix R[τ] ∈ C
20×20, (b) block diagonal B[τ], and (c)

diagonalised output D[τ]. TR, TB, and TD are the maximum lags for matrices R[τ],
B[τ], and D[τ], respectively.

B
(1)
11 (z) is of a spatial dimension greater than M̂×M̂ , the second recursion of the ‘divide’

stage uses B
(1)
11 (z) as the input to SMS, and M ′ is set equal to M − P . Recursions

continue in this fashion until (M ′ − P) ≤ M̂ .

All matrices input to the ‘conquer’ stage should have spatial dimensions of at most

M̂ × M̂ , therefore P , which determines the dimensions of the smaller matrix produced

during each ‘divide’ step, is forced to satisfy P ≤ M̂ .

4.5.3 ‘Conquering’ the Independent Matrices

At this stage of DC-SMD, R(z) : C → C
M×M has been ‘divided’ into multiple inde-

pendent parahermitian matrices, which are stored as blocks on the diagonal of B(z).

Each matrix can now be diagonalised individually through the use of a PEVD algo-

rithm; here, the SMD algorithm — which is described in detail in Section A.1 — is

chosen. Upon completion, the SMD algorithm returns matrices F̂ nn(z) and Dnn(z),

which contain the polynomial eigenvectors and eigenvalues for input matrix Bnn(z),

respectively. At iteration n of this stage, Bnn(z) contains the nth block of B(z) from

the top-left.

4.5.4 Algorithm Convergence

The SMD and SMS algorithms have been shown to converge in [45] and Section 4.4.2,

respectively. Given that SMD and SMS form the only active, iterative components of

103

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Input: R(z), µ, µt, κ, ǫ, ID, IC , M̂ , P
Output: D(z), F (z)
Determine if input matrix is large:

if M > M̂ then

Large matrix — divide-and-conquer:

M ′ ←M ; B(0)(z)← R(z); T (z) ← IM ; B(z), F̂ (z),D(z)← 0M ; b← 0

‘Divide’ matrix:

while M ′ > M̂ do

b← b+ 1

[B(b)(z), T̂ (b)(z)] ← SMS(B(b−1)(z), ID, P, µ, µt, κ)

T (b)(z)← diag
{

T̂ (b)(z), IM−M ′

}

Store B
(b)
22 (z) on diagonal of B(z) in bth P × P block from bottom-right

T (z)← T (b)(z)T (z); B(b)(z)← B
(b)
11 (z); M

′ ←M ′ − P

end

Store B(b)(z) on diagonal of B(z) in top-left M ′ ×M ′ block

‘Conquer’ independent matrices:
for n← 1 to (b + 1) do

Bnn(z) is nth block of B(z) from top-left

[Dnn(z), F̂ nn(z)] ← SMD(Bnn(z), IC , ǫ, µ, µt)

Store (Dnn(z), F̂ nn(z)) in nth block of (D(z), F̂ (z)) from top-left

end

F (z)← F̂ (z)T (z)

else

Small matrix — perform ‘conquer’ stage only:
[D(z),F (z)] ← SMD(R(z), IC , ǫ, µ, µt)

end

Algorithm 6: DC-SMD Algorithm

DC-SMD, it can therefore be concluded that DC-SMD must also converge for a suitable

combination of ID and IC .

4.5.5 Impact of Algorithm Parameters on Decomposition Error

Imperfect transformation of the parahermitian matrix to block diagonal form can be

observed if SMS is not executed with a sufficient number of iterations; i.e., if ID is

too low or κ is too high. A result of this is that matrices S
(Î)
21 (z) and S

(Î)
12 (z) internal

to SMS contain non-zero energy when iterations end. Given that these matrices are

discarded upon completion of an instance of SMS, an error can be introduced to the

PEVD produced by the DC-SMD algorithm. To reduce this error, which worsens the

approximation given by (2.4), the parameter ID can be increased, or κ can be decreased;

104

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

however, both of these changes will reduce the speed and increase the complexity of

the algorithm, as more effort will be contributed to the ‘divide’ stage.

Parahermitian and paraunitary matrix truncation (for non-zero truncation param-

eters µ and µt) both introduce an error to the resulting PEVD. Larger truncation

parameter values introduce a higher degree of error. Any error from truncation both

worsens the approximation given by (2.4) and weakens the paraunitary property of

eigenvectors F (z); i.e., equality in (2.5) is no longer guaranteed if truncation is em-

ployed during generation of F (z). This problem is not unique to DC-SMD, however,

as all iterative PEVD algorithms typically employ polynomial matrix truncation to

constrain computational complexity and memory requirements [6, 60–62].

4.5.6 Algorithm Complexity

The majority of the computational cost of the DC-SMD algorithm arises from multiple

instances of SMS and SMD. The instantaneous complexity of DC-SMD therefore varies

as the algorithm progresses, due to the changing spatial dimensions of the matrices

being processed by SMS and SMD. The main cost of these internal algorithms can

be attributed to the matrix multiplication steps in (4.23) and (A.5). As mentioned

previously, multiplying twoM×M matrices together requires approximatelyM3 MAC

operations [2, 95]. Here, M captures the different spatial dimensions used throughout

DC-SMD and satisfies min{M − βP, P} ≤ M ≤ M . If the number of MACs required

to complete an operation is used as an estimation of computational complexity, the

computational complexity of a single matrix multiplication step in either algorithm at

iteration i for S(i)′(z) : C → C
M×M and H(i)′(z) : C → C

M×M can be approximated

as

C
(i)
DC−SMD,M =M3(2L{S(i)′(z)} + L{H(i)′(z)}) , (4.41)

where operator L{·} computes the length of a polynomial matrix.

From the description of DC-SMD in Algorithm 6, it can be seen that an M ×M

matrix is only ever processed in the first recursion of the ‘divide’ stage; at all other

points in the DC-SMD algorithm, the processed matrices are of lower spatial dimen-

sion. For example, typically all but one of the parahermitian matrices in the ‘conquer’

105

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

stage are of spatial dimension P × P . Given that the complexity is approximately

proportional to the cube of the spatial dimension, significantly lower complexity will be

observed beyond the first recursion of DC-SMD. Simulations demonstrating how this

lower complexity, divide-and-conquer approach translates to lower algorithm execution

times are provided in Section 4.7.

4.6 Parallel-Sequential Matrix Diagonalisation PEVD Al-

gorithm

Motivated by the development of the DC-SMD algorithm in Section 4.5, here a low com-

plexity, partially parallelisable DaC approach for the PEVD— titled parallel-sequential

matrix diagonalisation (PSMD) — that improves upon the DC-SMD algorithm is de-

scribed. This algorithm achieves novelty by being the only PEVD algorithm to com-

bine the complexity reduction techniques of Sections 3.2, 3.3, 3.6, and 3.8. Following

a sequential, matrix ‘divide’ stage, which segments a large parahermitian matrix into

multiple independent parahermitian matrices, a parallelised ‘conquer’ stage is used to

diagonalise each independent matrix simultaneously. Both the ‘divide’ and ‘conquer’

stages make use of the algorithmic optimisations in Section 3.2 and the half-matrix and

restricted update algorithmic improvements from Sections 3.3 and 3.6, respectively, to

minimise algorithm complexity. The final stage of the algorithm employs the compen-

sated row-shift truncation scheme of Section 3.8 to reduce the polynomial order of the

paraunitary matrix.

The PSMD algorithm is summarised in Section 4.6.1. The implementation of com-

plexity reduction techniques within the ‘divide’ and ‘conquer’ stages of this algorithm

is described in Sections 4.6.2 and 4.6.3. Some comments on algorithm convergence, de-

composition error, and computational complexity are provided in Sections 4.6.4, 4.6.5,

and 4.6.6, respectively.

106

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

�a)

� = 0

TR

� = 0

T�

�b) �c)

� = 0

TD

Figure 4.12: (a) Original matrix R[τ] ∈ C
20×20, (b) block diagonal B[τ], and (c)

diagonalised output D[τ]. TR, TB, and TD are the maximum lags for matrices R[τ],
B[τ], and D[τ], respectively.

4.6.1 Algorithm Overview

The PSMD algorithm diagonalises a parahermitian matrix R(z) : C → C
M×M via

a number of paraunitary operations. The algorithm returns an approximately diago-

nal matrix D(z), which contains the approximate eigenvalues, and an approximately

paraunitary matrix F (z), which contains the corresponding approximate eigenvectors,

such that (2.4) is satisfied.

Similarly to DC-SMD, the PSMD algorithm first transforms an input parahermitian

matrix into block diagonal form in a ‘divide’ stage before diagonalising or ‘conquering’

each of the smaller, now independent, matrices on the diagonal separately. The ‘divide’

stage is a sequential process, while the ‘conquer’ stage is parallelised. For example, a

matrix R(z) : C → C
20×20 might be ‘divided’ into four 5 × 5 parahermitian matrices,

each of which can be diagonalised independently and simultaneously. Figure 4.12 shows

the state of the parahermitian matrix at each stage of the process for this example.

As in Section 3.3, here the natural symmetry of the parahermitian matrix structure is

exploited and only one half of its elements are stored; i.e., the algorithm diagonalises

R(z). Given the demonstration of its ability to reduce the complexity of PEVD al-

gorithms in Section 3.6, the restricted update method is employed in the ‘divide’ and

‘conquer’ stages of PSMD. This method restricts both the search and update spaces of

the algorithms used in each stage of PSMD.

If matrix R(z) is of large spatial dimension, a novel half-matrix, restricted update

version of the SMS algorithm from Section 4.4 — denoted HRSMS— is repeatedly used

107

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

to ‘divide’ the matrix into multiple independent parahermitian matrices. Using the

block diagonalisation approach of Section 4.3.2, this function generates a paraunitary

matrix T (b)(z) that ‘divides’ the top-left (M − (b − 1)P) × (M − (b − 1)P) block of

an input matrix B(b−1)(z) into two independent parahermitian matrices, B
(b)
11 (z) and

B
(b)
22 (z), of smaller spatial dimension. B

(b)
11 (z) is then subject to further division if it

still has sufficiently large spatial dimension. Note that B
(0)

(z) = R(z). Following

β =
⌈
M−M̂

P

⌉

‘division’ steps, b = 1 . . . β, a block diagonal B(z) has been obtained as

in (4.12). In the alternative notation of (4.4), B(z) comprises N = (β+1) blocks, which

are denoted Bnn(z), n = 1 . . . N . The matrices T (b)(z) — which HRSMS generates

to ‘divide’ each B(b)(z) — are concatenated to form an overall dividing matrix T (z).

With a full-matrix representation, it is therefore possible to approximately reconstruct

R(z) from the product T̃ (z)B(z)T (z).

Using the strategy of Section 4.3.1, each block Bnn(z), n = 1 . . . N , on the diagonal

of matrix B(z) is then diagonalised in parallel through the use of a novel half-matrix,

restricted update version of the SMD algorithm named HRSMD. The diagonalised

outputs, Dnn(z), are placed on the diagonal of matrix D(z), and the corresponding

paraunitary matrices, F̂ nn(z), are stored on the diagonal of matrix F̂ (z). Full-matrix

B(z) can be approximately reconstructed from ˜̂
F (z)D(z)F (z); by extension, it is pos-

sible to approximately reconstruct R(z) from the product T̃ (z) ˜̂F (z)D(z)F̂ (z)T (z) =

F̃ (z)D(z)F (z), where F (z) = F̂ (z)T (z).

The polynomial matrix truncation scheme of Appendix C is implemented within

HRSMS and HRSMD. While the paraunitary matrix compensated row-shift truncation

(CRST) scheme of Section 3.8 has outperformed traditional truncation strategies when

paired with the SBR2 PEVD algorithm, it is more computationally costly than the

method of Appendix C. Furthermore, a row-shift truncation (RST) scheme has been

shown not to provide an increase in truncation performance when implemented within

the SMD algorithm [63], which serves as the foundation of HRSMS and HRSMD.

However, the RST scheme has been found to be effective when truncating the output

paraunitary matrix of a DaC PEVD scheme in [64]. Similarly, the CRST scheme is

employed to truncate the final paraunitary matrix in PSMD. Subsequent use of function

108

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

ftrim(·), which implements the truncation scheme of Appendix C, truncates the final

parahermitian matrix.

The optimisations for polynomial matrix multiplication and truncation discussed in

Section 3.2 are employed throughout PSMD; however, specifics regarding their imple-

mentation on each occasion are omitted for brevity.

Algorithm 7 summarises the above steps of PSMD in more detail. Of the parameters

input to PSMD, µ, µt, and µs are truncation parameters, and κ and ǫ are stopping

thresholds for HRSMS and HRSMD, which are allowed a maximum of ID and IC

iterations. Matrices of spatial dimension greater than M̂ × M̂ will be subject to the

‘dividing’ process. Parameter P is an input to HRSMS, and is used in the same capacity

as for SMS in Section 4.4. Matrices IM and 0M are identity and zero matrices of spatial

dimensions M ×M , respectively.

4.6.2 ‘Dividing’ the Parahermitian Matrix

IfR(z) is measured to have spatial dimensionM > M̂ , the ‘divide’ stage of PSMD comes

into effect. This stage functions in the same manner as the ‘divide’ stage of DC-SMD

in Section 4.5.2, but maintains only half-matrix representations for all parahermitian

matrices and uses HRSMS instead of SMS.

The restricted update method of Section 3.6 is employed in HRSMS; this facilitates

calculation of the paraunitary matrix while restricting the search space of the algorithm

and the portion of the parahermitian matrix that is updated at each iteration. This

restriction limits both the number of search operations and the computations required

to update the increasingly block diagonalised parahermitian matrix. Over the course

of algorithm iterations, the update space contracts piecewise strictly monotonically.

That is, the update space contracts until order zero is reached; after this, in a so-called

regeneration step, the calculated paraunitary matrix is applied to the input matrix to

construct the full-sized parahermitian factor. The update space is then maximised and

thereafter again contracts monotonically over the following iterations.

109

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Input: R(z), µ, µt, µs κ, ǫ, ID, IC , M̂ , P
Output: D(z), F (z)
Determine if input matrix is large:

if M > M̂ then

Large matrix — divide-and-conquer:

M ′ ←M ; B(0)(z)← R(z); T (z) ← IM ; B(z), F̂ (z),D(z)← 0M ; b← 0

‘Divide’ matrix:

while M ′ > M̂ do

b← b+ 1

[B(b)(z), T̂ (b)(z)] ← HRSMS(B(b−1)(z), ID, P, µ, µt, κ)

T (b)(z)← diag
{

T̂ (b)(z), IM−M ′

}

Store B
(b)
22 (z) on diagonal of B(z) in bth P × P block from bottom-right

T (z)← T (b)(z)T (z); B(b)(z)← B
(b)
11 (z); M

′ ←M ′ − P

end

Store B(b)(z) on diagonal of B(z) in top-left M ′ ×M ′ block

‘Conquer’ independent matrices in parallel:
for n← 1 to (b + 1) do

Bnn(z) is nth block of B(z) from top-left

[Dnn(z), F̂ nn(z)] ← HRSMD(Bnn(z), IC , ǫ, µ, µt)

Store (Dnn(z), F̂ nn(z)) in nth block of (D(z), F̂ (z)) from top-left

end

F (z)← F̂ (z)T (z)

else

Small matrix — perform ‘conquer’ stage only:

[D(z),F (z)] ← HRSMD(R(z), IC , ǫ, µ, µt)

end

Apply compensated row-shift truncation:
[F (z),D(z)]← fcrst(F (z),D(z), µs)
D[τ]← ftrim(D[τ], µ)

Algorithm 7: PSMD Algorithm

HRSMS Algorithm

As the HRSMS algorithm functions very similarly to the SMS algorithm described in

Section 4.4, only the main differences between the two will be described below.

Upon initialisation, the HRSMS algorithm diagonalises the lag zero coefficient ma-

trix R[0] of the half-matrix representation of parahermitian matrix R(z) by means

of its modal matrix Q(0), which is obtained from the ordered EVD of R[0], such

that S(0)(z) = Q(0)R(z)Q(0)H. The unitary Q(0) is applied to all coefficient matri-

ces R[τ] ∀ τ ≥ 0, and initialises H(0)(z) = Q(0).

Although it actually operates on S(i)(z), the HRSMS algorithm effectively mimics

110

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Input: S(z), τs, Λ(z), T , M , P
Output: S′(z)

Γ(z)←






γ1,1(z) . . . γ1,M (z)
...

. . .
...

γM,1(z) . . . γM,M (z)






if τs > 0 then

L(z)← Λ(z)S(z)

γm,k(z)←
{ ∑0

τ=−τs+1 Lm,k[τ]z
−τ , k < (M − P + 1) ≤ m

0, otherwise

L(z)← L(z) + zτsΓ̃(z)

L(z)← L(z)Λ̃(z)

else if τs < 0 then

L(z)← S(z)Λ̃(z)

γm,k(z)←
{ ∑0

τ=τs+1 Lm,k[τ]z
−τ , m < (M − P + 1) ≤ k

0, otherwise

L(z)← L(z) + z−τsΓ̃(z)
L(z)← Λ(z)L(z)

else

L(z)← S(z)
end

S′(z)←∑T+|τs|
τ=0 L[τ]z−τ

Algorithm 8: shiftHSMS(·) function

SMS by computing (4.17) in the ith step, i = 1, 2, . . . Î. Paraunitary delay matrix

Λ(i)(z) is as defined in (4.19); however, it cannot be directly used to shift energy in

S(i)(z) due to the latter’s half-matrix form. Instead, the intermediate variables S(i)′(z)

and H(i)′(z) are obtained according to

S(i)′(z) = shiftHSMS(S
(i−1)(z), τ (i),Λ(i)(z), T (i−1),M,P)

H(i)′(z) = Λ(i)(z)H (i−1)(z) , (4.42)

where shiftHSMS(·) — which is very similar to shiftHSMD(·) from Section 3.3, and

is described in Algorithm 8 — implements the delays encapsulated in the matrix

Λ(i)(z) for a half-matrix representation and T (i−1) is the maximum lag of S(i−1)[τ].

The matrix Λ(i)(z) is selected based on the lag position of the dominant region in

111

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

S(i−1)(z) •—◦ S(i−1)[τ], which is identified by

τ (i) = argmax
τ

{∥
∥
∥S

(i−1)
21 [τ]

∥
∥
∥

2

F
,
∥
∥
∥S

(i−1)
12 [−τ]

∥
∥
∥

2

F

}

, (4.43)

where
∥
∥
∥S

(i−1)
21 [τ]

∥
∥
∥

2

F
=

M∑

m=M−P+1

M−P∑

k=1

∣
∣
∣s̄

(i−1)
m,k [τ]

∣
∣
∣

2
, (4.44)

and
∥
∥
∥S

(i−1)
12 [τ]

∥
∥
∥

2

F
=

M−P∑

m=1

M∑

k=M−P+1

∣
∣
∣s̄

(i−1)
m,k [τ]

∣
∣
∣

2
. (4.45)

Here, s̄
(i−1)
m,k [τ] represents the element in the mth row and kth column of the coefficient

matrix S(i−1)[τ].

According to the shiftHSMS(·) function: if (4.43) returns τ (i) > 0, then the bottom-

left P × (M − P) region of S(i−1)(z) is to be shifted by τ (i) lags towards lag zero. If

τ (i) < 0, it is the top-right (M − P) × P region that requires shifting by −τ (i) lags

towards lag zero. To preserve the half-matrix representation, elements that are shifted

beyond lag zero — i.e., outside the recorded half-matrix — have to be stored as their

parahermitian conjugate and appended onto the bottom-left P × (M−P) (for τ (i) < 0)

or top-right (M − P) × P (for τ (i) > 0) region of the shifted matrix at lag zero. The

concatenated region is then shifted by |τ (i)| lags towards increasing τ . Note that the

shiftHSMS(·) function shifts the bottom-right P × P region of S(i−1)(z) in opposite

directions, such that this region remains unaffected. An efficient implementation of

shiftHSMS(·) can therefore exclude this region from shifting operations.

An efficient example of the shift operation is depicted in Figure 4.13 for the case of

S(i−1)(z) : C→ C
5×5 with parameters τ (i) = −3, T (i−1) = 3, and P = 2. Owing to the

negative sign of τ (i), it is here the top-right (M −P)×P region that has to be shifted

first, followed by the bottom-left P × (M − P) region, which is shifted in the opposite

direction.

The shifting process in (4.42) moves the dominant bottom-left region S
(i−1)
21 [τ (i)] or

dominant top-right region S
(i−1)
12 [−τ (i)] in S(i−1)[τ] into the lag zero coefficient matrix

S(i)′[0]. Note that the shiftHSMS(·) function ensures that the Hermitian symmetry of

112

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

�b)

�d)

�e)

�a)

� = 3

� = 2

� = 1

� = 0

�c)

� = 3

� = 2

� = 0

� = 1

� = 3

� = 2

� = 0

� = 1

Figure 4.13: Example for a matrix where in the ith iteration the Frobenius norm of
a region in the top-right of the matrix is maximum: (a) the region is shifted, with
elements in the region past lag zero (b) extracted and (c) parahermitian conjugated;
(d) these elements are appended to the bottom-left region at lag zero and (e) shifted
in the opposite direction.

S(i)′[0] is maintained such that the relationship S(i)′[0] = S(i)′H[0] holds; i.e., the shifted

bottom-left or top-right region also exists as its Hermitian transpose in the top-right

or bottom-left region of S(i)′[0].

Following shifting, in accordance with the restricted update scheme of Section 3.6,

a matrix

S(i)′′(z) =

T (i−1)−|τ (i)|
∑

τ=0

S̄(i)′[τ]z−τ (4.46)

is obtained, which is of lower order than S(i)′(z), and is therefore less computationally

costly to update in the subsequent rotation step. Applying (4.46) at each iteration

enforces a monotonic contraction of the update space of the algorithm. Truncation of

S(i)′′(z) at each iteration can therefore be avoided, as its order is not increasing. As a

result of this, the search space of (4.43) is also limited, which negatively impacts the

convergence of HRSMS, as the same τ (i) as an unrestricted version of the algorithm

may not be identified. Despite this, the proof of convergence for SMS in Section 4.4.2

113

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

— which focusses on the monotonic increase of on-diagonal energy enforced by the

algorithm — still holds for HRSMS.

The order of the paraunitary matrix H(i)′(z) does increase at each iteration; to

constrain computational complexity, a truncated paraunitary matrix

H(i)′′[τ] = ftrim(H
(i)′[τ], µt) (4.47)

is obtained using the ftrim(·) function from Appendix C.

The energy in the shifted regions is then transferred onto the diagonal of S(i)′′[0] by

a unitary matrix Q(i) — which diagonalises S(i)′′[0] by means of an ordered EVD — in

S(i)(z) = Q(i)S(i)′′(z)Q(i)H

H(i)(z) = Q(i)H(i)′′(z) . (4.48)

If at this point the order of S(i)(z) is zero, a regenerated parahermitian matrix

S(i)(z)←H(i)(z)R(z)H̃ (i)(z) (4.49)

is obtained; this is then truncated to minimise future computational complexity:

S(i)[τ]← ftrim(S
(i)[τ], µ) . (4.50)

Note that obtaining the regenerated matrix requires the use of a full-matrix repre-

sentation. Following regeneration, algorithm iterations continue with a half-matrix

representation.

Figure 4.14 demonstrates the progression of several iterations of the HRSMS algo-

rithm for M = 5, T (i−1) = 3, and P = 2. As can be seen, after three iterations, the

maximum lag of the matrix in Figure 4.14(i) is equal to zero; at this point, parahermi-

tian matrix regeneration must occur.

After a user-defined Imax iterations, or when the energy in S
(i)
21 (z) and S

(i)
12 (z) has

114

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

� = 3

� = 2

� = 1

� = �

� = 3

� = 2

� = 1

� = �

� = 2

� = 1

� = �

� = 2

� = 1

� = �

� = 2

� = 1

� = �

� = 1

� = �

� = 1

� = �

� = 1

� = � � = �

�a) �c)

�d) �e) �f)

�g) �h) �i)

�b)

Figure 4.14: (a) Matrix S(i−1)(z) : C → C
5×5 with maximum lag T (i−1) = 3 and

P = 2; (b) shifting of region with maximum energy to lag zero (τ (i) = −1); (c)
central matrix with maximum lag (T (i−1) − |τ (i)|) = 2, S(i)′′(z), is extracted. (d)
S(i)(z) = Q(i)S(i)′′(z)Q(i)H; (e) τ (i+1) = 1; (f) S(i+1)′′(z) extracted. (g) S(i+1)(z); (h)
τ (i+2) = −1; (i) S(i+2)′′(z) is extracted.

been sufficiently minimised such that

max
τ

{∥
∥
∥S

(I)
21 [τ]

∥
∥
∥

2

F
,
∥
∥
∥S

(I)
12 [−τ]

∥
∥
∥

2

F

}

≤ κ
∑

τ

‖R[τ]‖2F (4.51)

at some iteration I —where κ is chosen to be arbitrarily small — the HRSMS algorithm

returns matrices B(z) and T (z). The latter is constructed from the concatenation of

the elementary paraunitary matrices as in (4.25). The parahermitian submatrices of

B(z), B11(z) and B22(z), are the top-left (M − P) × (M − P) and the bottom-right

P × P blocks of S(Î)(z), S
(Î)
11 (z) and S

(Î)
22 (z), respectively, where Î = min{Imax, I}.

115

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Input: R(z), Imax, P , µ, µt, κ
Output: B, T (z)
Find eigenvectors Q(0) that diagonalise R[0] ∈ C

M×M

S(0)(z)← Q(0)R(z)Q(0)H; H(0)(z)← Q(0); i← 0; stop ← 0
do

i← i+ 1

Find τ (i) from (4.43); generate Λ(i)(z) from (4.19)

S(i)′(z)← shiftHSMS(S
(i−1)(z), τ (i),Λ(i)(z), T (i−1),M,P)

H(i)′(z)← Λ(i)(z)H (i−1)(z)

S(i)′′(z)←∑T (i−1)−|τ (i)|
τ=0 S̄(i)′[τ]z−τ

H(i)′′[τ]← ftrim(H
(i)′[τ], µt)

Find eigenvectors Q(i) that diagonalise S(i)′′[0]

S(i)(z)← Q(i)S(i)′′(z)Q(i)H

H(i)(z)← Q(i)H(i)′′(z)

if T (i) = 0 or i > Imax or (4.51) satisfied then

S(i)(z)←H(i)(z)R(z)H̃ (i)(z)

S(i)[τ]← ftrim(S
(i)[τ], µ)

end

if i > Imax or (4.51) satisfied then

stop ← 1
end

while stop = 0

T (z)←H(i)(z)

B11(z) is top-left (M − P)× (M − P) block of S(i)(z)

B22(z) is bottom-right P × P block of S(i)(z)

Algorithm 9: HRSMS algorithm

The above steps of HRSMS are summarised in Algorithm 9.

4.6.3 ‘Conquering’ the Independent Matrices

At this stage of PSMD,R(z) : C→ C
M×M has been ‘divided’ into multiple independent

parahermitian matrices, which are stored as blocks on the diagonal of B(z). Each

matrix can now be diagonalised individually through the use of a PEVD algorithm;

here, HRSMD is chosen. Upon completion, the HRSMD algorithm returns matrices

F̂ nn(z) and Dnn(z), which contain the polynomial eigenvectors and eigenvalues for

input matrix Bnn(z), respectively. At iteration n of this stage, Bnn(z) contains the

nth block of B(z) from the top-left.

116

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Input: R(z), Imax, ǫ, µ, µt

Output: D(z), F (z)
Find eigenvectors Q(0) that diagonalise R[0] ∈ C

M×M

S(0)(z)← Q(0)R(z)Q(0)H; H(0)(z)← Q(0); i← 0; stop ← 0
do

i← i+ 1

Find {k(i), τ (i)} from (3.12); generate Λ(i)(z) from (3.13)

S(i)′(z)← shiftHSMD(S
(i−1)(z), k(i), τ (i),Λ(i)(z), T (i−1),M)

H(i)′(z)← Λ(i)(z)H (i−1)(z)

S(i)′′(z)←∑T (i−1)−|τ (i)|
τ=0 S̄(i)′[τ]z−τ

H(i)′′[τ]← ftrim(H
(i)′[τ], µt)

Find eigenvectors Q(i) that diagonalise S(i)′′[0]

S(i)(z)← Q(i)S(i)′′(z)Q(i)H

H(i)(z)← Q(i)H(i)′′(z)

if T (i) = 0 or i > Imax or (3.14) satisfied then

S(i)(z)←H(i)(z)R(z)H̃ (i)(z)

S(i)[τ]← ftrim(S
(i)[τ], µ)

end

if i > Imax or (3.14) satisfied then
stop ← 1;

end

while stop = 0

F (z)←H(i)(z)

D(z)← S(i)(z)

Algorithm 10: HRSMD algorithm

With relative ease, the HRSMD algorithm can be derived from the definitions of

half-matrix SMD and shiftHSMD(·) in Section 3.3, restricted update SMD in Section 3.6,

HRSMS in Section 4.6.2, and ftrim(·) in Appendix C. For this reason, only the pseu-

docode of Algorithm 10 is provided to describe the implementation of HRSMD.

For the parallel implementation of the ‘conquer’ stage in MATLABR©, the Parallel

Computing ToolboxTM can be used. This software package allows the processing re-

quired by multiple instances of the HRSMD algorithm to be spread across a maximum

of 768 CUDAR© cores in the NVIDIAR© GeForceR© GTX 765M graphics card present

on the simulation platform defined in Section 2.4. Note that, to within machine preci-

sion, a version of PSMD that does not utilise parallelisation will have identical PEVD

performance to a parallelised version, though the former will typically require a longer

117

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

execution time.

4.6.4 Algorithm Convergence

The SMD and SMS algorithms have been shown to converge in [45] and Section 4.4.2,

respectively. Half-matrix versions of each are functionally identical and therefore also

converge. Furthermore, employing a restricted update strategy for either algorithm

does not impact the proofs of convergence provided in [45] and Section 4.4.2. Given

that HRSMD and HRSMS form the only active, iterative components of PSMD, it can

therefore be concluded that PSMD must also converge for a suitable combination of ID

and IC .

4.6.5 Impact of Algorithm Parameters on Decomposition Error

The comments made in Section 4.5.5 with respect to the introduction of error to the

decomposition produced by the DC-SMD algorithm can also be extended to PSMD.

4.6.6 Algorithm Complexity

The majority of the computational cost of the PSMD algorithm arises from multiple

instances of HRSMS and HRSMD. The instantaneous complexity of PSMD therefore

varies as the algorithm progresses, due to the changing spatial dimensions of the ma-

trices being processed by HRSMS and HRSMD, and the parallel implementation of

HRSMD. The main cost of these internal algorithms can be attributed to the matrix

multiplication step in (4.48) shared by both algorithms. UsingM to capture the differ-

ent spatial dimensions used throughout PSMD — with min{M −βP, P} ≤ M ≤M —

and the same assumptions as in Section 4.5.6, the computational complexity of a single

matrix multiplication step in either algorithm at iteration i for S(i)′′(z) : C→ C
M×M

and H(i)′′(z) : C→ C
M×M can be approximated as

C
(i)
PSMD,M =M3(2L{S(i)′′(z)}+ L{H(i)′′(z)}) . (4.52)

118

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Note that while the process of matrix regeneration in HRSMS and HRSMD does con-

tribute towards computational complexity, the results of Section 3.6.4 have demon-

strated that savings made during the aforementioned matrix multiplication steps out-

weigh the cost of matrix regeneration over the course of algorithm iterations. The

complexity of matrix regeneration is therefore considered to be negligible.

When compared with (4.41), which estimates the complexity of an equivalent step

in DC-SMD, (4.52) will typically return a lower value. This disparity arises as a result

of the length of the restricted, half-matrix form of S(i)′′(z) being lower than the length

of the full-matrix form of S(i)′(z) in DC-SMD.

In PSMD, an M ×M matrix is only ever processed in the first recursion of the

‘divide’ stage; at all other points in the algorithm, the processed matrices are of lower

spatial dimension. Given that the complexity is approximately proportional to the cube

of the spatial dimension, significantly lower complexity will be observed beyond the first

recursion of PSMD. Simulation results that confirm the low complexity of PSMD are

provided in the subsequent section.

4.7 Simulations and Results

This section demonstrates that by employing the DaC techniques proposed in previous

sections, PEVD complexity and therefore run-time can be significantly reduced when

compared with existing iterative PEVD methods. Through the use of the broadband

source model of Appendix B [45] in Sections 4.7.1 and 4.7.2, it is possible to evaluate

the performance of DaC methods for the decomposition of parahermitian matrices of

increasingly large spatial dimension — corresponding to the acquisition of data from an

increasingly large number of broadband sensors. Furthermore, to confirm the efficacy

of the DaC methods for application purposes, the broadband angle of arrival estima-

tion simulation scenario of Section 4.7.3 couples a number of PEVD algorithms with

the spatio-spectral polynomial multiple signal classification (SSP-MUSIC) algorithm

from [18].

119

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

4.7.1 Source Model Simulation Scenario 1

This scenario provides an introduction to the performance of DaC methods, which do

not converge in the same manner as existing PEVD algorithms. A relatively large

spatial dimension, M , is used to demonstrate the failings of existing methods and the

suitability of DC-SMD and PSMD for applications involving large arrays of sensors.

Simulations for this scenario are performed over an ensemble of 103 instantiations

of R(z) : C→ C
M×M obtained from the randomised source model in Appendix B [45]

with M = 30, OD = 118, OQ = 60, and ∆DR = 30. The performances of the exist-

ing SBR2 [6] and SMD [45] PEVD algorithms are compared with the novel DC-SMD

and PSMD algorithms. To demonstrate the flexibility of the PSMD algorithm, three

variants are tested; these are denoted PSMD1, PSMD2, and PSMD3. SBR2 and SMD

are allowed to run for 1800 and 1400 iterations, respectively, with polynomial matrix

truncation parameters µSBR2 = µSMD = 10−6. DC-SMD and PSMD1 are provided

with parameters µ = µt = µs = 10−12, κ = ǫ = 0, ID = 100, IC = 200, M̂ = 8,

and P = 8. The remaining two variants of PSMD use identical parameters bar some

small differences: PSMD2 employs more significant polynomial matrix truncation and

is supplied with µ = µt = µs = 10−6, and PSMD3 is supplied with ID = 400. At every

iteration step of each algorithm, the performance metrics defined in Section A.3 are

recorded together with the elapsed execution time.

The multiple shift maximum element SMD (MSME-SMD) of [47] and its deriva-

tives in [48, 50] have been shown to outperform SMD in terms of diagonalisation per

algorithm iteration. However, the work of [49] demonstrates that if the update step of

each method is replaced with a lower-cost cyclic-by-row approximation, the multiple

shift class of algorithms is inferior to SMD with respect to diagonalisation per unit

of time. Given that the update steps of all SMD-based algorithms — including those

incorporating multiple shift strategies — have been updated to use the efficient ma-

trix multiplication approach of Section 3.2.1, the SMD algorithm now behaves as its

approximation in [49] and outperforms all multiple shift methods. This degradation of

multiple shift algorithm performance is due to the methods’ reliance on a more costly

search step, which has a complexity proportional to M3 [65]. For high M — as in the

120

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

simulation scenario here — the cost of this search step prohibits the algorithms’ im-

plementation. The multiple shift algorithms are therefore omitted from testing. Note

that the search step of SMD has a complexity proportional to only M2 [65].

A cyclic-by-row approximation to SMD from [49] was to be tested for the above

scenario, but was found to take in excess of 500 seconds to complete the same number

of iterations as SMD — when using identical algorithm parameters — for the decom-

position of one instance of R(z). Thus, this algorithm was excluded from testing.

Diagonalisation

The ensemble-averaged diagonalisation metric at each iteration for each of the tested

PEVD algorithms is plotted against the ensemble-averaged elapsed system time at each

iteration in Figure 4.15. The curves demonstrate that the proposed implementation

achieves a similar degree of diagonalisation to most of the other algorithms, but in a

shorter time. The SBR2 algorithm exhibits relatively low diagonalisation with respect

to time, and would require a great deal of additional simulation time to attain a diago-

nalisation performance similar to the other algorithms. By utilising a restricted update

approach, PSMD1 has sacrificed a small amount of diagonalisation performance to de-

crease algorithm run-time versus the DC-SMD algorithm. Increased levels of truncation

within PSMD2 have decreased algorithm run-time but have also decreased diagonalisa-

tion performance slightly. The increase in ID within PSMD3 has increased the run-time

of the ‘divide’ stage and marginally improved diagonalisation.

The ‘stepped’ characteristics of the curves for the DaC strategies of DC-SMD and

PSMD are a result of the algorithms’ two-stage implementation. The ‘divide’ steps of

the algorithms exhibit low diagonalisation for a large increase in execution time. In the

‘conquer’ steps, high diagonalisation is seen for a small increase in execution time. Note

that the data points in the curve corresponding to the parallelised ‘conquer’ stage of

PSMD could not be acquired directly, as the processing for this stage was distributed

across a number of CUDAR© cores. The missing data points were instead obtained

using knowledge of the time and diagonalisation metric values at the start and end

points of the curve, and a ground truth convergence curve for the ‘conquer’ stage of a

121

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

0 2 4 6 8 10 12 14 16 18 20
−14

−12

−10

−8

−6

−4

−2

0

Ensemble-averaged algorithm execution time / s

5l
og

1
0
E
{E

(i
)

d
ia
g}

/
[d
B
]

SBR2

SMD

DC-SMD

PSMD1

PSMD2

PSMD3

1 2 3 4

−13.6

−13.4

Figure 4.15: Execution time of DC-SMD, PSMD1, PSMD2, and PSMD3 relative to
SBR2 [6] and SMD [45] for the decomposition of a 30× 30 parahermitian matrix.

non-parallelised version of PSMD.

From Figure 4.15, the average run-time for the PSMD1 algorithm for the given

simulation scenario is 1.075 seconds. If the MATLABR© Parallel Computing ToolboxTM

is not used to parallelise the ‘conquer’ step of PSMD1 by spreading four instances of

HRSMD across a maximum of 768 CUDAR© cores, the average run-time increases by

38.1% to 1.485 seconds. The performance of PSMD1 is otherwise identical. In this

case, the use of parallelisation has dramatically reduced the run-time of the ‘conquer’

stage to the point where it is almost negligible when compared with the run-time of

the ‘divide’ stage. Unfortunately, as the ‘divide’ stage has to process matrices with

larger spatial dimensions, it tends to be slower, and ultimately provides a relatively

high lower bound for the overall run-time.

Decomposition Mean Square Error

The ensemble-averaged mean square reconstruction error for each algorithm can be seen

in column two of Table 4.1. In agreement with the comments of Section 4.5.5, the DaC

methods can be seen to introduce error to the PEVD, and produce a decomposition

with higher MSE than SBR2 and SMD. By decreasing truncation levels, the MSE

of all PEVD algorithms can be reduced at the expense of longer algorithm run-time

and paraunitary matrices of higher order. Conversely, the higher truncation within

122

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Table 4.1: Performance metric comparison for DaC and traditional PEVD methods.
Metrics used are: decomposition mean square error, MSE; length of paraunitary matrix
F (z), LF ; eigenvalue resolution, λres; and paraunitarity error, η.

Method MSE LF λres η

SBR2 [6] 1.577 × 10−6 149.5 1.1305 2.910 × 10−8

SMD [45] 3.514 × 10−6 165.5 0.0773 6.579 × 10−8

DC-SMD 6.785 × 10−6 360.5 0.0644 1.226 × 10−14

PSMD1 6.918 × 10−6 279.0 0.0658 4.401 × 10−15

PSMD2 8.346 × 10−6 155.6 0.0661 1.303 × 10−8

PSMD3 7.618 × 10−7 307.6 0.0245 1.307 × 10−14

PSMD2 has resulted in marginally higher MSE. To reduce the MSE of DC-SMD and

PSMD in this scenario, ID can be increased or κ can be decreased; however, this will

reduce the speed of each algorithm, as more effort will be contributed to the ‘divide’

stage. This can be observed in the results of PSMD3, which has the lowest MSE of any

of the tested algorithms.

Paraunitary Matrix Length

Paraunitary matrix length, LF , refers to the number of lags for which the energy in

F[τ] is non-zero; i.e., the number of coefficient matrices required to implement F (z) as

a finite impulse response filter bank. From column three of Table 4.1, it can be observed

that a disadvantage of DaC strategies is their tendency to produce longer paraunitary

matrices. However, it can be seen that the use of CRST in PSMD1 has successfully

reduced LF relative to DC-SMD. Using higher levels of paraunitary matrix truncation

in any algorithm would reduce paraunitary matrix length and algorithm run-time at

the expense of higher MSE and paraunitarity error; this relationship is observed in the

results of PSMD2, which is able to provide significantly shorter paraunitary matrices

than PSMD1. Indeed, the matrices produced are actually shorter than those given by

SMD. Increasing ID in PSMD3 has resulted in an increase in LF .

123

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Polynomial Eigenvalue Resolution

The ensemble-averaged eigenvalue resolution, λres, was calculated for each algorithm

and can be seen in column four of Table 4.1. A lower λres indicates a lower error be-

tween a spectrally majorised version of the ground truth polynomial eigenvalues and

those obtained from a PEVD. From this, it can be observed that the DaC approaches

to the PEVD offer superior eigenvalue resolution versus SMD, despite the fact that all

algorithms bar SBR2 achieve similar levels of diagonalisation. The slightly inferior di-

agonalisation performance of PSMD1 relative to DC-SMD has translated to marginally

higher λres. The poor diagonalisation performance of SBR2 has resulted in significantly

worse resolution of the eigenvalues. Paired with its degraded diagonalisation perfor-

mance, PSMD2 has slightly higher λres than PSMD1. While PSMD3 achieves a similar

level of diagonalisation to PSMD1, the additional effort contributed towards the ‘di-

vide’ stage has dramatically improved λres. For applications where resolution of the

eigenvalues is of critical importance, it is clear that care must be taken to ensure that

sufficient effort is spent block diagonalising an input parahermitian matrix R(z) prior

to the ‘conquer’ stage in PSMD.

Experimental results indicate that SMD prioritises resolution of isolated eigenval-

ues with high power, and requires a high number of iterations to satisfactorily resolve

closely spaced eigenvalues with low power, while the DaC methods attempt to resolve

the eigenvalues more equally. This property of SMD has also been observed in [45] and

can perhaps be explained by research in [11], which has noted that isolated eigenval-

ues are more easily estimated than closely spaced eigenvalues. Examples of eigenvalue

resolution are demonstrated by Figure 4.16, which shows the on-diagonal PSDs of

D(z)|z=ejΩ from SMD and PSMD1 when applied to a single instance of the simulation

scenario. For simplicity, only the first and last four of the 30 eigenvalues are shown,

with a spectrally majorised version of the ground truth shown with dotted lines. The

spectral majorisation of the polynomial eigenvalues output by iterative PEVD algo-

rithms has been discussed in Section 2.3.2. A comparison of Figure 4.16(a) and (b)

indicates that SMD offers slightly better resolution of the first four eigenvalues, while

Figure 4.16(c) and (d) show that PSMD is more able to resolve the last four eigen-

124

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

0 0.5 1
4

6

8

10

12

14

16

0 0.5 1
4

6

8

10

12

14

16

10
lo
g
1
0
|d

ℓ(
ej
Ω
)|
|
/
[d
B
]

normalised angular frequency, Ω/2π

ℓ = 1
ℓ = 2
ℓ = 3
ℓ = 4

(b)(a)

0 0.5 1
−18

−16

−14

−12

−10

−8

−6

−4

0 0.5 1
−18

−16

−14

−12

−10

−8

−6

−4

10
lo
g
1
0
|d

ℓ(
ej
Ω
)|
|
/
[d
B
]

normalised angular frequency, Ω/2π

ℓ = 27
ℓ = 28
ℓ = 29
ℓ = 30 (d)(c)

Figure 4.16: PSDs of the (a,b) first and (c,d) last four on-diagonal polynomials of D(z)
obtained from (a,c) SMD and (b,d) PSMD1 when applied to a single instance of the
specified scenario, with ideal PSDs underlaid with dotted lines.

values. More accurately resolving eigenvalues of low power may be advantageous in

some applications; for example, when attempting to estimate the noise-only subspace

in broadband angle of arrival estimation scenarios.

Paraunitarity Error

The ensemble-averaged paraunitarity error for each algorithm can be seen in column

five of Table 4.1. A lower η indicates that the product F (z)F̃ (z) closely approximates

an identity matrix. Owing to their short run-time, low levels of truncation can be used

for the DaC algorithms; this directly translates to low paraunitarity error. Conversely,

high truncation is typically required to allow SBR2 and SMD to provide feasible run-

times, resulting in higher η. The use of larger truncation parameters in PSMD2 has

125

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

resulted in a significant increase in paraunitarity error, such that η is only slightly

lower for PSMD2 than SMD. Increasing ID in PSMD3 has slightly increased η, as

more iterations of each ‘divide’ step — and therefore more truncation operations —

are completed.

4.7.2 Source Model Simulation Scenario 2

This scenario provides additional evidence to confirm the ability of DaC methods to

outperform existing PEVD algorithms as the spatial dimension of the input paraher-

mitian matrix increases. Simulations for this scenario are performed over an ensemble

of 102 instantiations of R(z) : C→ C
M×M obtained from the randomised source model

in Appendix B [45] with M ∈ {10; 20; 30; 40; 50; 60; 70}, OD = 118, OQ = 60, and

∆DR = 30.

The performance of the existing SMD [45] PEVD algorithm is compared with the

novel PSMD algorithm. For performance metrics other than execution time, the per-

formance of PSMD is representative of the performance of DC-SMD, so the latter is

omitted from simulations for brevity. Using a polynomial matrix truncation parameter

of µSMD = 10−6, SMD is executed until an input matrix is sufficiently diagonalised such

that the off-diagonal energy in the output matrix equals one-tenth of the total energy

in the matrix. PSMD is executed with input parameters µs ∈ {0; 10−6; 10−9; 10−12},
µ = µt = 10−12, κ ∈ {2.5 × 10−6; 10−5; 5 × 10−5; 10−4}, ǫ = 0, ID = 1000, IC = 200,

P = 10, and M̂ = 10. These PSMD input parameters are deliberately chosen such that

the algorithm achieves a diagonalisation level similar to that of SMD for all M . Note

that the level of diagonalisation obtained by an instance of PSMD is mostly determined

by the choice of ‘conquer’ stage parameters IC and ǫ, as the amount of effort devoted

to the ‘divide’ stage does not significantly impact diagonalisation performance — as

seen in Figure 4.15.

At every iteration step of both algorithms, the performance metrics defined in Sec-

tion A.3 are recorded together with the elapsed execution time.

126

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Diagonalisation

The ensemble-averaged diagonalisation was calculated for the SMD and PSMD imple-

mentations. By evaluating the execution times required for both algorithms to achieve

a diagonalisation level of 5 log10 E
(i)
diag ≈ −10 dB, it is possible to directly compare the

performance of both algorithms. Figure 4.17 uses the ratio of the execution times to

demonstrate algorithm performance for various spatial dimensions, where

tratio(M,κ) =
E{tSMD(−10 dB,M)}
E{tPSMD(−10 dB,M, κ)} (4.53)

and tPSMD(−10 dB,M, κ) denotes the time taken for one instance of PSMD to achieve

a diagonalisation level of approximately −10 dB for some combination of M and κ. The

value of tSMD(−10 dB,M) similarly denotes the time taken for SMD.

From Figure 4.17, it is clear that tratio(M,κ) increases with increasing spatial di-

mension M for all κ; i.e., the use of PSMD over SMD becomes more important the

larger the matrix to be factorised. Indeed, tratio(M,κ = 10−4) reaches a value of 64.4

for M = 70, signifying that PSMD is 64.4 times faster than SMD on average for this

dimensionality and κ.

In Figure 4.17, it can be seen that the PSMD algorithm run-time increases with

decreasing κ. Smaller values of κ lead to additional time being spent in the ‘divide’

stage of the algorithm and a more accurate block diagonalisation of the parahermitian

matrix. Note that even for κ = 2.5 × 10−6, the PSMD algorithm is still faster than

SMD.

Decomposition Mean Square Error

The ensemble-averaged decomposition mean square error was calculated for each

algorithm, according to Section A.3. Figure 4.18 shows the results for M ∈
{10; 20; 30; 40; 50; 60; 70}, κ ∈ {2.5 × 10−6; 10−5; 5 × 10−5; 10−4}, and µs = 0.

This plot confirms the results of Section 4.7.1 by indicating that the increased diago-

nalisation speed of PSMD typically comes at the cost of a higher decomposition error;

however, for κ = 2.5 × 10−6, the decomposition MSE has fallen below that of SMD.

127

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Of course, as evidenced by Figure 4.17, this lower threshold κ reduces the speed of the

algorithm, as more effort is contributed to the ‘divide’ stage; however, PSMD is still

faster than SMD for this choice of κ. Note that the relative difference in average MSE

remains reasonably constant for increasing M . However, for M = 10, PSMD does not

employ a ‘divide’ stage; without the requirement of a transformation of the input para-

hermitian matrix to block diagonal form, the low levels of truncation in PSMD lead

to low MSE. The decomposition MSE of SMD can be decreased by decreasing polyno-

mial matrix truncation parameter µSMD at the expense of even greater execution time

requirements.

For PSMD, the decomposition MSE was recorded before and after the utilisation

of CRST to estimate the method’s impact. Figure 4.19 shows the results for M ∈
{10; 20; 30; 40; 50; 60; 70}, µs ∈ {0; 10−6; 10−9; 10−12}, and κ = 10−4; from this,

it is clear that — as seen in Section 3.8.2 — the CRST method has little impact on

reconstruction error.

Paraunitary Matrix Length

The ensemble-averaged paraunitary matrix length was calculated for each algorithm.

Figure 4.20 shows the results for M ∈ {10; 20; 30; 40; 50; 60; 70} and κ ∈ {2.5 ×
10−6; 10−5; 5× 10−5; 10−4} without the use of CRST (µs = 0). This plot indicates that

the increased diagonalisation speed of PSMD typically comes at the cost of a higher

paraunitary matrix length for all M . It can also be seen that decreasing threshold

κ increases the length of the paraunitary matrix output by the algorithm. Note that

the paraunitary matrix length increases with M for all algorithms. While PSMD is

functionally very similar to SMD for the case of M = 10, as no ‘division’ occurs, the

lower truncation parameter used in PSMD results in less significant truncation of the

polynomial matrices internal to the algorithm and therefore a longer paraunitary matrix

at the output.

For PSMD, the paraunitary matrix length was recorded before and after the util-

isation of CRST to estimate the method’s impact. Figure 4.21 shows the results for

M ∈ {10; 20; 30; 40; 50; 60; 70}, µs ∈ {0; 10−6; 10−9; 10−12}, and κ = 10−4. It can

128

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

10 20 30 40 50 60 70
0

20

40

60

80

Spatial dimension, M

E
x
ec
u
ti
on

ti
m
e
p
er
fo
rm

an
ce

tratio(M, κ = 2.5× 10−6)

tratio(M, κ = 10−5)

tratio(M, κ = 5× 10−5)

tratio(M, κ = 10−4)

Figure 4.17: Ratio of SMD to PSMD algorithm execution time required to achieve
5 log10 Ediag ≈ −10 dB for M ∈ {10; 20; 30; 40; 50; 60; 70}, κ ∈ {2.5×10−6; 10−5; 5×
10−5; 10−4}, and µs = 0.

10 20 30 40 50 60 70
−120

−100

−80

−60

−40

Spatial dimension, M

10
lo
g
1
0
E
{M

S
E
}

SMD

PSMD, κ = 2.5 × 10−6

PSMD, κ = 10−5

PSMD, κ = 5 × 10−5

PSMD, κ = 10−4

Figure 4.18: Decomposition mean square error versus spatial dimension M for SMD
and PSMD forM ∈ {10; 20; 30; 40; 50; 60; 70}, κ ∈ {2.5×10−6; 10−5; 5×10−5; 10−4},
and µs = 0.

10 20 30 40 50 60 70
−120

−100

−80

−60

−40

Spatial dimension, M

10
lo
g
1
0
E
{M

S
E
}

SMD
PSMD, µs = 0

PSMD, µs = 10−12

PSMD, µs = 10−9

PSMD, µs = 10−6

Figure 4.19: Decomposition mean square error versus spatial dimension M for SMD
and PSMD for M ∈ {10; 20; 30; 40; 50; 60; 70}, µs ∈ {0; 10−6; 10−9; 10−12}, and
κ = 10−4.

129

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

be seen from this graph that while the average paraunitary matrix length is still larger

for PSMD than SMD for all M , the use of CRST has successfully reduced parauni-

tary matrix length. Increasing µs for the CRST method of truncation barely affected

decomposition error in Figure 4.19; however, in Figure 4.21, a significant decrease in

paraunitary matrix length is observed as µs is increased.

While larger paraunitary matrices are disadvantageous for application purposes, the

increased performance of PSMD in other areas may be of greater importance.

Note that — as was found for a different row-shift truncation strategy in [63] —

CRST was found to have minimal impact when applied to the paraunitary matrices

generated by SMD.

Polynomial Eigenvalue Resolution

The ensemble-averaged eigenvalue resolution, λres, was calculated for each algorithm.

Figure 4.22 shows the results for M ∈ {10; 20; 30; 40; 50; 60; 70}, κ ∈ {2.5 ×
10−6; 10−5; 5× 10−5; 10−4}, and µs = 0. This plot indicates that while PSMD tends to

introduce a greater degree of error to the decomposition, it is more able to resolve the

polynomial eigenvalues for all M . As κ is decreased, the decomposition MSE decreases

and the energy that would be thrown away during the ‘divide’ stage for larger κ is

instead transferred to the polynomial eigenvalues, and λres decreases as a result. While

SMD is functionally very similar to PSMD for M = 10 — since PSMD does not use a

‘divide’ stage for M ≤ M̂ — the increased level of polynomial matrix truncation in the

former has resulted in significantly poorer eigenvalue resolution for this dimensionality.

Interestingly, λres for the SMD algorithm decreases with M , becoming similar to

that obtained for PSMD with κ = 10−4. However, the time required for SMD to

achieve this level of performance — which is of the order of 150 seconds — suggests

that PSMD is more suitable if low eigenvalue resolution is required within a reasonable

time frame.

130

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

10 20 30 40 50 60 70
0

200

400

600

800

Spatial dimension, M

P
ar
au
n
it
ar
y
m
at
ri
x
le
n
gt
h

SMD

PSMD, κ = 2.5 × 10−6

PSMD, κ = 10−5

PSMD, κ = 5 × 10−5

PSMD, κ = 10−4

Figure 4.20: Paraunitary matrix length versus spatial dimension M for SMD and
PSMD for M ∈ {10; 20; 30; 40; 50; 60; 70}, κ ∈ {2.5 × 10−6; 10−5; 5 × 10−5; 10−4},
and µs = 0.

10 20 30 40 50 60 70
0

100

200

300

400

500

Spatial dimension, M

P
ar
au
n
it
ar
y
m
at
ri
x
le
n
gt
h

SMD
PSMD, µs = 0

PSMD, µs = 10−12

PSMD, µs = 10−9

PSMD, µs = 10−6

Figure 4.21: Paraunitary matrix length versus spatial dimension M for SMD and
PSMD for M ∈ {10; 20; 30; 40; 50; 60; 70}, µs ∈ {0; 10−6; 10−9; 10−12}, and
κ = 10−4.

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Spatial dimension, M

E
ig
en
va
lu
e
re
so
lu
ti
on
,
λ
re
s

SMD

PSMD, κ = 2.5 × 10−6

PSMD, κ = 10−5

PSMD, κ = 5 × 10−5

PSMD, κ = 10−4

Figure 4.22: Eigenvalue resolution versus spatial dimension M for SMD and PSMD for
M ∈ {10; 20; 30; 40; 50; 60; 70}, κ ∈ {2.5× 10−6; 10−5; 5× 10−5; 10−4}, and µs = 0.

131

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

10 20 30 40 50 60 70
−160

−140

−120

−100

−80

−60

Spatial dimension, M

10
lo
g
1
0
E
{η
}

SMD

PSMD, κ = 2.5 × 10−6

PSMD, κ = 10−5

PSMD, κ = 5 × 10−5

PSMD, κ = 10−4

Figure 4.23: Paraunitarity error versus spatial dimension M for SMD and PSMD for
M ∈ {10; 20; 30; 40; 50; 60; 70}, κ ∈ {2.5× 10−6; 10−5; 5× 10−5; 10−4}, and µs = 0.

Paraunitarity Error

The ensemble-averaged decomposition paraunitarity error, η, was calculated for each

algorithm, according to Section A.3. Figure 4.23 shows the results for M ∈
{10; 20; 30; 40; 50; 60; 70}, κ ∈ {2.5 × 10−6; 10−5; 5 × 10−5; 10−4}, and µs = 0.

The increased diagonalisation speed of PSMD means that lower levels of polynomial

matrix truncation can be used and the resulting η is low. SMD requires high trunca-

tion to converge within a reasonable time frame — especially when M is large; thus

the resulting η is significantly higher.

For PSMD, the decomposition η was recorded before and after the utilisation of

CRST to estimate the method’s impact. Figure 4.24 shows the results for M ∈
{10; 20; 30; 40; 50; 60; 70}, µs ∈ {0; 10−6; 10−9; 10−12}, and κ = 10−4. Increas-

ing µs has a clear detrimental impact on η; however, this increase may be worthwhile

when considering the paraunitary matrix length reduction offered by CRST in Fig-

ure 4.21. Even for µs = 10−6, the decomposition paraunitarity error of SMD is still

higher than PSMD for all M .

132

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

10 20 30 40 50 60 70
−160

−140

−120

−100

−80

−60

Spatial dimension, M

10
lo
g
1
0
E
{η
}

SMD

PSMD, µs = 0

PSMD, µs = 10−12

PSMD, µs = 10−9

PSMD, µs = 10−6

Figure 4.24: Paraunitarity error η versus spatial dimension M for SMD and PSMD for
M ∈ {10; 20; 30; 40; 50; 60; 70}, µs ∈ {0; 10−6; 10−9; 10−12}, and κ = 10−4.

4.7.3 Broadband Angle of Arrival Estimation Simulation Scenario

Problem Formulation

For broadband angle of arrival (AoA) estimation, powerful narrowband methods such

as the multiple signal classification (MUSIC) algorithm [77] are not directly applica-

ble. In [18], the PEVD is used to generalise MUSIC to the case of polynomial space-

time covariance matrices, resulting in the development of the spatio-spectral polyno-

mial MUSIC (SSP-MUSIC) algorithm. A comparison in [17] of SSP-MUSIC with an

auto-focussing coherent signal subspace AoA estimation approach [107] has found that

SSP-MUSIC provides lower AoA estimation performance, but has the advantage of

not relying on a priori spectral information of the sources. Further work in [19] has

shown that the accuracy of SSP-MUSIC depends strongly on the efficacy of the PEVD

algorithm used.

For a parahermitian matrix R(z) with polynomial eigenvalues D(z) =

diag{d1(z), d2(z), . . . , dM (z)}, thresholding the polynomial eigenvalues — e.g., extract-

ing eigenvalues with energy
∑

τ |di[τ]|2 > λ for some λ — reveals the number of

independent broadband sources R contributing to R(z). This permits a distinc-

tion between signal-plus-noise and noise-only subspaces F s(z) : C → C
R×M and

133

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

F n(z) : C→ C
(M−R)×M ,

R(z) ≈
[

F̃ s(z) F̃ n(z)
]




Ds(z) 0

0 Dn(z)








F s(z)

F n(z)



 , (4.54)

where R < M , Ds(z) : C→ C
R×R and Dn(z) : C→ C

(M−R)×(M−R). The SSP-MUSIC

algorithm seeks to scan the noise-only subspace F n(z) of R(z), which is spanned by

eigenvectors corresponding to eigenvalues close to the noise floor. The steering vectors

of sources that contribute to R(z) will define the signal-plus-noise subspace F s(z) and

therefore lie in the nullspace of F n(z). More detail on how the SSP-MUSIC algorithm

operates can be found in Appendix D.

Note that the structure of (4.54) is very similar to the block diagonal decomposition

of a parahermitian matrix in (4.4); i.e., consider the form

R(z) ≈
[

T̃ s(z) T̃ n(z)
]




Bs(z) 0

0 Bn(z)








T s(z)

T n(z)



 , (4.55)

where paraunitary matrix T̃ (z) =
[

T̃ s(z) T̃ n(z)
]

does not contain the eigenvectors of

R(z), but instead contains the orthonormal basis that transforms R(z) into the block

diagonal B(z) = diag{Bs(z),Bn(z)}. If an algorithm that enforces spectral majorisa-

tion of the underlying polynomial eigenvalues is used, such as SMS in Section 4.4, the

eigenvalues of Bs(z) : C → C
R×R should be those corresponding to signal-plus-noise,

and the eigenvalues of Bn(z) : C → C
(M−R)×(M−R) should be those corresponding

to noise. Since Bs(z) and Bn(z) are independent parahermitian matrices and T (z)

is paraunitary, the signal-plus-noise subspace T s(z), which also contains the steering

vectors of sources that contribute to R(z), lies in the nullspace of T n(z). The SSP-

MUSIC algorithm can therefore instead scan the noise-only subspace T n(z) to identify

the presence of source steering vectors in R(z). The results of Section 4.4.4 have shown

that the iterative block diagonalisation of a parahermitian matrix is possible. If, in

practice, the block diagonalisation of some R(z) is less computationally expensive or

faster than its diagonalisation through the use of the PEVD, then a decomposition of

134

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

the form in (4.55) may be preferable for applications involving AoA estimation. Note

that eigenvalues Ds(z) and Dn(z) can be obtained from Bs(z) and Bn(z) if desired;

however, this is not always required for the purposes of AoA estimation.

For a parahermitian matrix with large spatial dimensions, which traditional PEVD

algorithms would typically struggle to diagonalise, PSMD can be used (with IC = 0)

to transform the matrix into block diagonal form. Through smart choice of input

parameters M̂ and P , the signal-plus-noise subspace can be isolated, and the noise-

only subspace can be used in SSP-MUSIC. For example, if 10 sources are known to

contribute to a parahermitian matrix R(z) : C→ C
20×20, then PSMD can be executed

using parameters M̂ = 10, P = 5, and IC = 0 such that the first and last 10 rows

of output matrix F (z) correspond to the signal-plus-noise and noise-only subspaces,

respectively. Given the relatively low cost of the ‘conquer’ stage of the PSMD algorithm,

and the low likelihood that a block diagonal form will perfectly separate signal-plus-

noise and noise-only subspaces, it is typically worthwhile to provide PSMD with at

least a small value for IC . Using a relatively large stopping threshold ǫ for the ‘conquer’

stage would then prevent the PSMD from spending time diagonalising parahermitian

matrices containing only noise.

Simulation Scenario

In this simulation scenario, the AoA estimation performance that PSMD offers when

paired with SSP-MUSIC is compared with the performance that SBR2 and SMD pro-

vide in a broadband AoA estimation scenario. Again, DC-SMD is omitted for brevity.

Performance of each PEVD algorithm is measured in terms of AoA estimation accuracy

and with the metrics of Section A.3. AoA estimation accuracy is measured through

a visual assessment of metric PSSP(ϑ,Ω) ∈ R>0 output by the SSP-MUSIC algorithm

in [18], which is evaluated at a range of angles of arrival, ϑ, and frequencies, Ω. A high

value of PSSP(ϑ,Ω) indicates the presence of a source at a specific angle of arrival and

frequency, while a low value indicates that no source is present.

In the simulations below, an M = 20 element array is illuminated by six broadband

sources active over a frequency range Ωj ∈ [0.1π, 0.9π], j = 1 . . . 6, and different angles

135

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

of arrival ϑj ∈ {±22.5◦;±45◦;±63◦}. For simplicity, the elevation angles of the sources

are equal to zero. The array signals are corrupted by uncorrelated independent and

identically distributed complex Gaussian noise at a signal-to-noise ratio of 20 dB. To

exclude error sources other than inaccuracies in the subspace identification, the source

data is modelled as a sum of closely spaced sinusoids, with randomised phases, of

length 64000 samples, for which highly accurate narrowband steering vectors can be

used. Space-time covariance matrix R[τ] is estimated for |τ | ≤ 20. The broadband

steering vectors that the SSP-MUSIC algorithm uses to scan the noise-only subspace

are based on fractional delay filters constructed from truncated sinc functions [108,109].

One instance of PSMD, denoted PSMD1, is executed with input parameters µ =

µt = 10−12, µs = 10−6, κ = 5× 10−6, ǫ = 10−2, ID = 1000, IC = 0, M̂ = 6, and P = 7.

For the above simulation scenario, this choice of P and M̂ will exactly isolate the

signal-plus-noise subspace through block diagonalisation of the parahermitian matrix;

thus, no iterations of the ‘conquer’ stage are necessary. A second instance of PSMD,

denoted PSMD2, is executed with input parameters µ = µt = 10−12, µs = 10−6,

κ = 10−5, ǫ = 10−2, ID = 1000, IC = 250, and M̂ = P = 10. This choice of algorithm

parameters is more suitable for an unknown AoA estimation scenario. For the above

scenario, the block diagonalisation process will not adequately isolate the signal-plus-

noise subspace, but the allocation of 250 iterations to each component of the ‘conquer’

stage will facilitate the identification of the noise-only subspace. A relatively high ǫ

will prevent the algorithm from spending time diagonalising parahermitian matrices

containing only noise. Both instances of PSMD are provided with a high value of ID,

such that convergence parameter κ determines the length of each ‘divide’ step.

During iterations of SMD and SBR2, convergence parameters of ǫSMD = ǫSBR2 = 0

and polynomial matrix truncation parameters of µSMD = µSBR2 = 10−6 are used. SMD

and SBR2 are run until their execution times match the time taken for the completion

of each instance of PSMD, which is designed to be approximately one second. At every

iteration step of each PEVD algorithm, the performance metrics defined in Section A.3

are recorded together with the elapsed execution time.

136

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

−80 −60 −40 −20 0 20 40 60 80

−10

0

10

20

angle of arrival, ϑ

10
lo
g
1
0
P
S
S
P
(ϑ
,π

/2
)

SBR2
SMD
PSMD1

PSMD2

Figure 4.25: Performance of SSP-MUSIC at Ω = π/2 based on PSMD1, PSMD2, SBR2,
and SMD for a scenario with six independent broadband sources.

PEVD Algorithm Comparison

The plot of Figure 4.25 shows the SSP-MUSIC performance at a frequency of Ω = π/2;

from this, it can be observed that PSMD1 offers superior localisation of the sources.

Since PSMD1 does not require any computational effort to be spent on the diago-

nalisation of parahermitian matrices, additional time can be allocated to the block

diagonalisation process. The result is a superior isolation of the signal-plus-noise sub-

space, and therefore a better identification of the orthonormal basis corresponding to

noise used by the SSP-MUSIC algorithm. Of course, the parameters of PSMD1 have

been specifically chosen for this simulation scenario, which is not realistic. The more

general purpose approach of PSMD2 is still able to significantly outperform SBR2 and

SMD for the localisation of sources at this frequency.

The results of Figure 4.26 reiterate the above by demonstrating that the PSMD1 al-

gorithm is capable of outperforming all other methods at most frequencies when each is

paired with SSP-MUSIC. Clearly, for time-limited AoA estimation scenarios with large

M , divide-and conquer methods can produce superior results.

Table 4.2 compares the metrics attributed to each decomposition for this simulation

scenario. It can be observed that while SMD and PSMD2 obtain superior diagonalisa-

tion to PSMD1, this does not translate to better AoA estimation performance. Both

instances of PSMD result in higher decomposition MSE than SMD and SBR2; how-

ever, the instances of PSMD — which utilise lower levels of truncation — provide

slightly lower paraunitarity error. PSMD1 outputs the shortest paraunitary matrix,

137

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

(a) (b)

(c) (d)

angle of arrival, ϑ

n
o
rm

a
li
se
d
a
n
g
u
la
r
fr
eq

u
en

cy
,
Ω
/
π

1
0
lo
g
1
0 P

S
S
P
(ϑ

,Ω
)

Figure 4.26: Performance of SSP-MUSIC based on: (a) SBR2; (b) SMD; (c) PSMD with
κ = 5× 10−6, M̂ = 6, P = 7, and IC = 0; and (d) PSMD with κ = 10−5, M̂ = P = 10,
and IC = 250 for a scenario with six independent broadband sources.

but PSMD2, which utilises both ‘divide’ and ‘conquer’ stages, produces a paraunitary

matrix of greater length than the other methods.

4.8 Conclusions

This chapter has proposed an alternative, divide-and-conquer (DaC) strategy for com-

puting the polynomial matrix EVD of a parahermitian matrix. By embracing this

methodology, the historically sequential nature of PEVD algorithms has been converted

to a partially parallelisable one. Following the introduction of a structured approach to

the block diagonalisation of a parahermitian matrix, a novel iterative algorithm named

sequential matrix segmentation (SMS) has been shown to be capable of facilitating this

goal.

Two further novel algorithms developed in this chapter — named divide-and-conquer

sequential matrix diagonalisation (DC-SMD) and parallel-sequential matrix diagonali-

138

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

Table 4.2: Performance metric comparison for PSMD1, PSMD2, SBR2, and SMD in
AoA estimation scenario. Metrics used: final algorithm diagonalisation, Ediag; length
of paraunitary matrix F (z), LF ; decomposition mean square error, MSE; and η.

Algorithm 5 log10 Ediag LF MSE η

PSMD1 −7.76 dB 140 1.58 × 10−6 2.94 × 10−10

PSMD2 −12.2 dB 285 1.44 × 10−6 1.59 × 10−10

SBR2 [6] −5.61 dB 148 2.01 × 10−9 2.77 × 10−9

SMD [45] −9.49 dB 184 9.86 × 10−9 2.00 × 10−8

sation (PSMD)—make use of SMS within a DaC approach to the PEVD, and have been

shown to offer several advantages over existing iterative PEVD algorithms. When com-

pared with the SBR2 [6] and SMD [45] algorithms, PSMD offers a significant decrease

in run-time and paraunitarity error — and provides superior eigenvalue resolution —

but typically results in higher mean square reconstruction error and paraunitary matrix

length. However, the latter can be reduced at the expense of higher paraunitarity er-

ror. Simulation results have also demonstrated that when paired with the SSP-MUSIC

broadband AoA estimation algorithm, PSMD offers significant performance gains over

traditional PEVD algorithms at the expense of increased paraunitary matrix length

and decomposition error.

Further simulation results have demonstrated that the low algorithmic complexity

and parallelised nature of PSMD results in lower algorithm run-time than DC-SMD,

with the advantage of decreasing the paraunitary matrix length. The range of input

parameters of both algorithms imbues them with a large degree of operational flexibil-

ity. An investigation into the performance trade-offs of PSMD has shown that through

careful choice of algorithm input parameters, a balance can be obtained between de-

composition MSE, algorithm execution time, matrix paraunitarity, paraunitary matrix

length, and eigenvalue resolution. The presence of these trade-offs is important for the

implementation of PSMD in broadband multichannel applications.

When designing PEVD implementations for such applications — particularly those

involving a large number of sensors — the potential for the proposed DaC approach to

increase diagonalisation speed while reducing complexity requirements offers benefits.

139

Chapter 4. Divide-and-Conquer Strategy for PEVD Algorithms

In addition, the parallelisable nature of PSMD, which has been exploited here to re-

duce algorithm run-time, is well suited to hardware implementation. For applications

involving broadband angle of arrival estimation, the short run-time of PSMD will de-

crease the time between estimations of source locations and bandwidths; similarly, use

of PSMD will allow for signal of interest and interferer locations and bandwidths to

be updated more quickly in broadband beamforming applications. Furthermore, the

low paraunitarity error of PSMD, which facilitates the implementation of near-lossless

filter banks, is advantageous for communications applications.

140

Chapter 5

DFT-Based Alternatives for

PEVD Algorithms

5.1 Introduction

The previous chapters have dealt with a number of iterative PEVD algorithms that ma-

nipulate polynomial coefficients directly to diagonalise a parahermitian matrix. Such

algorithms — represented in [6,45–50] — form a significant proportion of the available

methods for computing the PEVD. This chapter instead investigates the less-explored

area of PEVD algorithms based on the discrete Fourier transform (DFT). Following the

introduction of a capable DFT-based PEVD (and PSVD) algorithm in [53], there has

been little research in this field; indeed, only very brief relative comparisons between

iterative and DFT-based methods had been conducted prior to the research discussed

in this chapter. While the algorithm of [53] has in almost all cases been demonstrated

to produce a compact, accurate PEVD, it requires a priori knowledge of the order of

the polynomial eigenvectors in the decomposition, and employs an eigenvalue reorder-

ing scheme that is susceptible to errors in the presence of eigenvalues with algebraic

multiplicities greater than one.

For future reference, the general structure of a DFT-based PEVD algorithm is

provided below. If the PEVD equation of (2.4) is evaluated at K discrete points on

141

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

the unit circle, the following formulation can be obtained:

R[k] = Q[k]D[k]QH[k] , k = 0 . . . K − 1 , (5.1)

where R[k] = R(z)|z=ejΩk and Ωk = 2πk/K. In (5.1), Q[k] is a unitary matrix contain-

ing eigenvectors in its columns, D[k] is a diagonal matrix containing eigenvalues, and

R[k] is obtained from the K-point DFT of R[τ] ∈ C
M×M ,

R[k] = R(z)|z=ejΩk =
∑

τ
R[τ]e−jΩkτ , k = 0 . . . K − 1 , (5.2)

where K ≥ L and L is the length of R(z). Since each frequency bin k contains an

independent Hermitian matrix R[k], an approximate PEVD is therefore obtained via

K independent EVDs.

Noting that the decompositions in (2.4) and (5.1) are only unique up to permu-

tations and phase shifts [9], an advantage of DFT-based approaches is the option to

rearrange the eigenvalues and eigenvectors at each frequency bin if desired. If the eigen-

values in D[k] are arranged in descending order, approximate spectral majorisation of

the resulting polynomial eigenvalues occurs [53]. An analytic decomposition, whereby

both eigenvalues and eigenvectors are continuous in frequency, typically produces a

more compact decomposition, but requires additional effort. Spectral majorisation is

preferable to an analytic decomposition in only a limited number of applications, e.g.,

when the extraction of multiple-input multiple-output (MIMO) subchannels of ordered

quality [110] matters. Figure 5.1 shows the PSDs of analytic and spectrally majorised

eigenvalues for an example parahermitian matrix R(z) : C→ C
2×2.

A disadvantage of DFT-based algorithms involves the inherent lack of phase coher-

ence between independent frequency bins [81]. Each eigenvector at each frequency bin

can be influenced by an arbitrary scalar phase angle and still be valid. Discontinuities

in phase between adjacent frequency bins can arise due to this ambiguity in eigen-

vector phase. To obtain a short paraunitary matrix Q(z), these discontinuities must

be smoothed by enforcing phase coherence between frequency bins [9]. In [53], this

is achieved through the use of a phase alignment function, described in Section A.2.3,

142

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

0 0.5 1
0

1

2

3

4

|d
1
(e

jΩ
)|
,
|d

2
(e

jΩ
)|

Normalised frequency, Ω/(2π)

(a)

0 0.5 1
0

1

2

3

4

Normalised frequency, Ω/(2π)

(b)

Figure 5.1: Example forD(z) : C→ C
2×2 with (a) analytic and (b) spectrally majorised

eigenvalues.

which uses Powell’s ‘dogleg’ algorithm [111,112] to solve an unconstrained optimisation

problem.

Following the permutation (if desired) and phase alignment of Q[k], Q[τ] is com-

puted via the inverse DFT (IDFT) as

Q[τ] =
1

K

∑K−1

k=0
Q[k]ejΩkτ , τ = 0 . . . K − 1 , (5.3)

and D[τ] is found in a similar fashion or by extracting the diagonal elements of the

product Q̃(z)R(z)Q(z). Matrix Q(z) therefore contains polynomial eigenvectors in its

columns, and D(z) contains polynomial eigenvalues on its diagonal.

While analytic polynomial eigenvalues and eigenvectors have been shown to exist

as absolutely convergent Laurent series in [9], there is currently no way of knowing the

length of the series a priori. When converting D[k] and Q[k] to the lag domain, the

order of the IDFT restricts the series’ length to K. For an insufficient length K, this

can result in time domain aliasing, whereby energy from ignored high order polynomial

coefficients is wrapped around an internal period of length K. This introduces an error

into the decomposition, and effectively limits the range of applications in which DFT-

based PEVD algorithms can be used to those of known order; i.e., a suitably high K

must be known a priori.

Algorithm 11 summarises the above steps of a generic DFT-based PEVD algorithm.

143

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Input: R(z), K, υ
Output: D(z), Q(z)
for k ← K − 1, . . . , 1, 0 do

Compute R[k] according to DFT in (5.2)
Compute Q[k] and D[k] via ordered EVD of R[k]

end

if υ = 1 then

Permute Q[k] and D[k] to approximate an analytic decomposition
end

Use phase alignment strategy to promote coherence between frequency bins in
Q[k]
Obtain Q[τ] from IDFT of Q[k]

Obtain D[τ] from IDFT of D[k] or via D(z)← diag
{

diag
{

Q̃(z)R(z)Q(z)
}}

Algorithm 11: General structure of a DFT-based PEVD algorithm

Here, a user-input parameter υ determines if the algorithm approximates an analytic

decomposition.

Below, Section 5.2 provides a qualitative and quantitative comparison of the DFT-

based PEVD algorithm of [53] with the well-established SMD algorithm of [45]. Using

knowledge gained during this analysis, Section 5.3 introduces a novel DFT-based al-

gorithm that requires less a priori information than the algorithm of [53], while still

providing an accurate PEVD. This algorithm also utilises a modified eigenvalue re-

ordering scheme that is less susceptible to errors in the presence of eigenvalues with

an algebraic multiplicity greater than one at a particular frequency bin. In an effort

to remove the requirement of any a priori information and increase the applicability of

the DFT-based PEVD, Section 5.4 formulates a second novel algorithm that uses an

iterative DFT-based approach to the PEVD that is able to decompose any parahermi-

tian matrix without prior knowledge of K. Section 5.5 demonstrates that DFT-based

approaches can facilitate the acquisition of the minimum-order solution of a PEVD,

which has maximally short polynomial eigenvectors. Such a solution, which is not cur-

rently obtainable for any of the existing iterative PEVD algorithms, would be ideal

for implementation purposes, where limitations are often placed on paraunitary matrix

length for storage and complexity reasons. Conclusions for this chapter are provided

in Section 5.6.

144

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

5.2 Comparison of Iterative and DFT-Based PEVDs

This section compares the decomposition accuracies of two fundamentally different

methods capable of computing an approximate PEVD. The first of these — sequential

matrix diagonalisation (SMD) [45] — iteratively decomposes a parahermitian matrix

by directly manipulating polynomial coefficients and is described in Section A.1, while

a second algorithm introduced in [53] and summarised in Section A.2 computes a DFT-

based decomposition using the formulation in (5.1).

Following a comparison of the algorithmic complexities of each decomposition in

Section 5.2.1, the accuracies of the polynomial eigenvalues generated by each is dis-

cussed in Section 5.2.2. The paraunitarity error induced by each algorithm is then

reviewed in Section 5.2.3, and simulations in Section 5.2.4 are used to compare the

performance of each strategy with respect to the metrics of Section A.3. From the

comparisons conducted in these sections, Section 5.2.5 is able to provide concluding

remarks that indicate the type of broadband multichannel problems that are better

suited to each algorithm.

Elements of the work in this section can be found in a paper titled ‘A Comparison

of Iterative and DFT-Based Polynomial Matrix Eigenvalue Decompositions’ [56] pub-

lished in the proceedings of the 7th IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing, and in a paper titled “Correction to

‘On the Uniqueness and Existence of the Eigenvalue Decomposition of a Parahermitian

Matrix’ ” [10] published in IEEE Transactions on Signal Processing.

5.2.1 Algorithm Complexities

At the ith iteration of SMD, every matrix-valued coefficient in S(i)′(z) : C → C
M×M

must be left- and right-multiplied with unitary matrixQ(i) ∈ C
M×M ; similarlyH(i)′(z) :

C → C
M×M is left-multiplied with Q(i). A total of 2L{S(i)′(z)} and L{H(i)′(z)} ma-

trix multiplications are therefore required to update S(i)′(z) and H(i)′(z), respectively,

where operator L{·} measures the length of a polynomial matrix. While potentially

lower complexity matrix multiplication methods have been derived with complexi-

ties of, e.g., O(M2.807) [2, 113] and O(M2.3728639) [114] for the multiplication of two

145

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

square matrices with spatial dimension M , these often require very large M to out-

perform more traditional methods [95]. A simpler, naive assumption estimates that

the complexity of the multiplication of two M ×M matrices is of order O(M3) [2,95];

thus, it can be approximated that the complexity of one SMD iteration is of order

O(M3(2L{S(i)′(z)}+L{H (i)′(z)})) ≈ O(M3L) — if it is also assumed that the lengths

of these internal matrices are ultimately proportional to the length, L, of the input

parahermitian matrix R(z). The update step dominates the complexity of SMD [45];

thus, for a constant number of algorithm iterations, the algorithm complexity is of

order O(M3L).

In the DFT-based algorithm, for a constant number of optimisation steps, the

complexity of each of the M instantiations of the phase alignment method is O(K3)

due to matrix inversion [53,95]; thus, the total complexity of the phase alignment step

is of order O(MK3). Given that K is bounded from below by L in (A.15) for constant

N , O(MK3) can be expressed as O(ML3). The computation of the frequency domain

representation of R(z), the execution of K EVDs, and the reordering of the eigenvalues

and eigenvectors are of lower complexity than this step; thus, the total complexity of

the algorithm is approximately O(ML3).

5.2.2 Approximation of Eigenvalues

The SMD algorithm iteratively diagonalises a parahermitian matrix R(z); thus, the

approximation of the polynomial eigenvalues becomes better with each algorithm it-

eration. Almost exact diagonalisation of R(z) typically requires a large number of

iterations; this can be problematic, as the parahermitian matrix grows in order at each

iteration of SMD [45]. Truncation of the outer lags of the matrix containing lower

energy can help mitigate this growth, but risks the introduction of error into the poly-

nomial eigenvalues and resulting PEVD. The polynomial eigenvalues produced by SMD

are approximately spectrally majorised [45], and cannot be reordered. As mentioned

in Section 5.1, this is only beneficial for a subset of applications.

Matrix D(z) is computed via the product Q̃(z)R(z)Q(z) and is set to be exactly

diagonal in the final step of the DFT-based approach [53]; thus, diagonalisation metric

146

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Ediag = 0 for all instances of the algorithm. However, for insufficiently accurate eigen-

vectors that do not completely diagonalise R(z), directly setting off-diagonal elements

equal to zero in this way negatively impacts the decomposition MSE. The eigenvalue

approximation ultimately depends upon the accuracy of the eigenvectors, which typ-

ically increases for increasing parameters N and K, where the latter is dictated by

K ≥ 2N +L− 2. Here, N is a user-defined estimate of the output paraunitary matrix

length, and is not known a priori. The DFT-based algorithm naturally produces an

approximately spectrally majorised decomposition, but as described in Section A.2.2,

the eigenvalues can be reordered to approximate an analytic decomposition. The latter

avoids discontinuities at the intersection of eigenvalues in the frequency domain, and

typically leads to a more compact (lower order) decomposition.

5.2.3 Paraunitarity of Polynomial Eigenvectors

The eigenvectors Q(z) = F̃ (z) generated by SMD are strictly paraunitary, as they are

created as the product of a series of elementary paraunitary matrices. While this is ad-

vantageous for some applications, some loss of paraunitarity may be acceptable if other

performance gains are made. For example, the truncation strategy of Appendix C —

which is used to truncate the paraunitary matrices within the SMD update step —

introduces a trade-off between paraunitarity error, η, and diagonalisation, Ediag, for a

given paraunitary matrix length; i.e., a larger truncation value, µ, sacrifices paraunitar-

ity to reduce the paraunitary matrix order required to achieve a certain diagonalisation.

The eigenvectors generated by the DFT-based PEVD are only approximately pa-

raunitary [53]. For increasing N , the approximation typically improves; thus, to achieve

a desired level of paraunitarity in an application, an adequate value of N must be de-

termined through experimentation. The required value of N is likely to be lower if

an analytic decomposition is sought, as discontinuities at eigenvalue intersections are

avoided. To represent such discontinuities requires infinitely long polynomials, which

do not fit well into the fixed order model of the DFT-based algorithm, as energy from

ignored high order polynomial coefficients may corrupt the extracted coefficients from

lags τ = 0 . . . N − 1 via time domain aliasing.

147

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

5.2.4 Model Examples and Results

Finite Order Example

Consider the parahermitian matrix

R(z) =




.5z2 + 3 + .5z−2 −.5z2 + .5z−2

.5z2 − .5z−2 −.5z2 + 1− .5z−2



 , (5.4)

which has an exact finite order analytic decomposition with

Q̃(z) =
1

2




z + 1 −z + 1

−z + 1 z + 1



 D(z) =




z + 2 + z−1 0

0 −z + 2− z−1





whereQ(z) contains eigenvectors in its columns, andD(z) contains analytic eigenvalues

on its diagonal. When evaluated on the unit circle, these eigenvalues match the power

spectral densities given in Figure 5.1(a).

The metrics of Section A.3 were calculated for the decomposition of (5.4) by the

DFT-based and SMD algorithms, and can be seen in Table 5.1. Here, LQ is the length

of the computed paraunitarity matrix. For the DFT-based algorithm, both majorised

and analytic decompositions were generated to approximate the solutions given in Fig-

ure 5.1(b) and (a), respectively. SMD paraunitary matrix truncation parameters of

µ1 = 10−16 and µ2 = 10−8 were used to demonstrate the trade-off between parauni-

tarity error and diagonalisation for the algorithm. Both instances of SMD were run

until the parahermitian matrix was approximately diagonalised with Ediag = 10−6. For

the majorised DFT-based decomposition, N was set equal to 165 (K = 333) to allow

comparison with SMD when utilising µ2. The phase alignment function used in the

DFT-based algorithm was allowed a maximum of 50 optimisation steps.

Given its ability to approximate an analytic decomposition, the DFT-based ap-

proach is able to almost perfectly approximate the finite order Q(z) and D(z) for

N = 3, K = 9. In contrast, the SMD algorithm is able to produce a spectrally ma-

jorised, approximately diagonal D(z), but the eigenvector matrices are of significantly

higher order for both µ1 and µ2. The spectrally majorised DFT-based decomposition

148

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Table 5.1: Mean square error, paraunitarity error, diagonalisation, and paraunitary
matrix length comparison for finite order example.

Method MSE η Ediag LQ

DFT-based, analytic 7.1×10−9 4.9×10−9 0 3

DFT-based, majorised 8.8×10−7 2.4×10−3 0 165

SMD, µ1 2.6×10−25 1.2×10−16 1×10−6 689

SMD, µ2 1.7×10−10 4.8×10−8 1×10−6 165

0 0.2 0.4 0.6 0.8 1
0

2

4

Normalised frequency, Ω/(2π)

|d
1
(e

jΩ
)|
,
|d

2
(e

jΩ
)|

Figure 5.2: PSDs of ground truth eigenvalues in non-finite order example.

has significantly higher MSE and η for the same LQ as SMD with µ2. By utilising a

higher truncation within SMD, it can been seen that MSE and η have increased, but

LQ has decreased.

Non-finite Order Example

As a second example, consider the parahermitian matrix

R(z) =




2 z−1 + 1

z + 1 2



 . (5.5)

The eigenvectors

Q(z) =
1√
2




(z−1 + 1)(z−1 + 2 + z)−1/2 z−1

1 −(z−1 + 1)(z−1 + 2 + z)−1/2





and eigenvalues (which are visualised in Figure 5.2)

149

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Table 5.2: Mean square error, paraunitarity error, diagonalisation, and paraunitary
matrix length comparison for non-finite order example.

Method MSE η Ediag LQ

DFT-based, analytic 2.1×10−5 2.3×10−3 0 83

DFT-based, majorised 1.4×10−6 2.2×10−3 0 83

SMD, µ1 4.4×10−25 2.5×10−16 1×10−6 345

SMD, µ2 2.9×10−10 9.5×10−8 1×10−6 83

D(z) =




2 + (z−1 + 2 + z)1/2 0

0 2− (z−1 + 2 + z)1/2





of R(z) are neither of finite order nor rational. An analytic EVD does not exist for this

matrix [9, 10]; to decompose R(z) via an exact PEVD would require polynomial ma-

trices of infinite length for both analytic and majorised decompositions. Note that the

ground truth polynomial eigenvalues are actually spectrally majorised in this example.

The metrics of Section A.3 were calculated for the decomposition of (5.5) by the

DFT-based and SMD algorithms, and can be seen in Table 5.2. Again, SMD truncation

parameters of µ1 = 10−16 and µ2 = 10−8 were used, and both instances of SMD were

run until Ediag = 10−6. For both DFT-based decompositions, N was set equal to 83

(K = 167) to allow comparison with SMD when utilising µ2. The phase alignment

function used in the DFT-based algorithm was allowed a maximum of 50 optimisation

steps.

The values of MSE and η for both DFT-based PEVDs are significantly higher

for this example, while the eigenvectors generated by SMD are of lower order than in

Table 5.1. This indicates that the DFT-based approach may suffer for similarly complex

problems, while SMD is relatively unaffected. For this example, there is actually a slight

disadvantage to approximating an analytic decomposition; this is an indication that the

eigenvalue and eigenvector reordering scheme has failed at Ω = π, where an eigenvalue

with algebraic multiplicity of two is present. Using a higher truncation within SMD

has again increased MSE and η, but LQ has decreased.

150

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

5.2.5 Summary

This section has compared the decomposition accuracies of two recent PEVD algo-

rithms. The iterative SMD algorithm has been shown to exhibit significantly lower

decomposition mean square error and paraunitarity error than a DFT-based approach;

however, SMD does not achieve exact diagonalisation, and its enforcement of spec-

tral majorisation can lead to high polynomial eigenvector orders unless truncation is

employed. The ability of the DFT-based method to approximate an analytic decompo-

sition can produce extremely compact eigenvectors, but the algorithm’s reliance on a

fixed eigenvector order can introduce significant paraunitarity error for decompositions

where the ground truth is of infinite order.

From an analysis of both algorithms’ complexities, it can be determined that SMD

becomes significantly more complex for increasing spatial dimensionM , while the DFT-

based approach becomes significantly more complex for increasing parahermitian ma-

trix length L. Typically, L > M for a parahermitian matrix input to a PEVD algorithm;

thus, in general, SMD is likely to offer a lower complexity solution. A further advan-

tage of SMD in this regard is that it can be executed for any number of iterations and

therefore its complexity is flexible and can be adjusted to suit different applications.

The DFT-based algorithm offers less flexibility in terms of PEVD complexity; however,

if desired, the number of optimisation steps in the phase alignment function can be

reduced at the expense of increased eigenvector error.

When designing PEVD implementations for real applications, both of the algorithms

described in this section could be extremely useful. As a relatively stable algorithm,

with typically low decomposition error, potentially paraunitary eigenvectors, and cus-

tomisable diagonalisation and eigenvector length, SMD can be deployed in any scenario

with reasonably low M . For problems of fixed, finite order, or situations in which an

analytic decomposition is preferable or paraunitarity is not required, the DFT-based

approach can be used to great effect, provided that L is not too large. However, N not

being known a priori is a disadvantage of this method for application purposes.

151

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

5.3 Development of a Novel DFT-Based PEVD Algorithm

The DFT-based PEVD formulation of [53] — which is summarised in Section A.2

— has been shown to perform well for finite order problems in the previous section,

but requires an a priori estimate of the length of the paraunitary matrix Q(z) in the

decomposition. In this section, a novel DFT-based PEVD algorithm that can compute

an accurate PEVD without requiring an estimate of the paraunitary matrix length is

presented. This algorithm utilises a modified eigenvalue reordering scheme that is less

susceptible to errors in the presence of eigenvalues with an algebraic multiplicity greater

than one. It has been demonstrated in [9] that the lowest order approximation to (2.4)

is possible if one attempts to approximate analytic eigenvectors which — on the unit

circle — are characterised by being infinitely differentiable. Here, a cost function that

measures the power in the derivatives of a function based on the Fourier coefficients

of their discrete samples on the unit circle is utilised. This permits an approach that

maximises eigenvector smoothness for a low order decomposition.

Below, Section 5.3.1 and Section 5.3.2 will introduce the smoothness metric and

the proposed algorithm, respectively, before Section 5.3.3 details the novel method for

eigenvalue and eigenvector reordering. Section 5.3.4 then describes how the smoothness

metric is used to align the phase of the eigenvectors, and Section 5.3.5 briefly outlines

the complexity of the algorithm. A comparison of the algorithm’s performance relative

to the method in [53] is presented in Section 5.3.6. Section 5.3.7 then provides a model

example to demonstrate the advantages of the proposed eigenvalue and eigenvector

reordering approach. Conclusions for this section are drawn in Section 5.3.8.

Elements of the work in this section can be found published in the proceedings

of the 10th IEEE Sensor Array and Multichannel Signal Processing Workshop in a

paper titled ‘Enforcing Eigenvector Smoothness for a Compact DFT-Based Polynomial

Eigenvalue Decomposition’ [73].

5.3.1 Smoothness Metric

A PEVD produces eigenvalues dm(ejΩ) and eigenvectors qm(ejΩ), where dm(ejΩ) is the

mth diagonal element of D(z)|z=ejΩ and qm(ejΩ) is the mth column of Q(z)|z=ejΩ . For

152

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

the eigenvectors qm(ejΩ) to be compact in the time domain, they must be maximally

smooth on the unit circle; tied to this is the requirement for analytic eigenvectors to be

infinitely differentiable [9]. In this section, a novel metric to measure the smoothness

of eigenvectors is proposed.

If K is sufficiently large and odd, the samples F[k] = F (ejΩk), Ωk = 2πk/K, k =

0 . . . (K − 1), of a function F (ejΩ) permit its reconstruction via the Dirichlet kernel

P (ejΩ):

F (ejΩ) =

K−1∑

k=0

F[k]P (ej(Ω−Ωk)) , (5.6)

where

P (ejΩ) =
1

K
· sin(

K
2 Ω)

sin(12Ω)
=

1

K

K−1∑

ℓ=0

e−jΩ(ℓ−K−1
2

) . (5.7)

Thus,

F (ejΩ) =
1

K

K−1∑

k=0

F[k]

K−1∑

ℓ=0

e−j(Ω−Ωk)(ℓ−
K−1

2
) . (5.8)

The pth derivative of F (ejΩ) can be written as

dp

dΩp
F (ejΩ) =

1

K

K−1∑

k=0

F[k]

(K−1)/2
∑

ℓ=−(K−1)/2

(−jℓ)pe−j(Ω−Ωk)ℓ . (5.9)

Of interest is the power contained within the pth derivative of F (ejΩ),

χ(p) =
1

2π

∫ π

−π

∣
∣
∣
∣

dp

dΩp
F (ejΩ)

∣
∣
∣
∣

2

dΩ , (5.10)

which provides some measure of the smoothness of F (ejΩ).

Note that due to orthogonality of the complex exponential terms and integration

over an integer number of fundamental periods, for a Fourier series with arbitrary

coefficients aℓ,

1

2π

∫ π

−π

∣
∣
∣
∣
∣

∑

ℓ

aℓe
jΩℓ

∣
∣
∣
∣
∣

2

dΩ =
∑

ℓ

1

2π

∫ π

−π

∣
∣
∣aℓe

jΩℓ
∣
∣
∣

2
dΩ =

∑

ℓ

|aℓ|2 . (5.11)

153

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Therefore, (5.10) can be written as

χ(p) =
1

K2

(K−1)/2
∑

ℓ=−(K−1)/2

∣
∣
∣
∣
∣
(−jℓ)p

K−1∑

k=0

F[k]ejΩkℓ

∣
∣
∣
∣
∣

2

(5.12)

=
1

K2

(K−1)/2
∑

ℓ=−(K−1)/2

ℓ2pfHCℓf = fHC(p)f , (5.13)

where f = [F[0],F[1], · · · ,F[K − 1]]T contains K frequency samples F[k] = F (ejΩk),

k = 0 . . . (K − 1),

Cℓ =











1 ej
2π
K

ℓ · · · ej
2π
K

(K−1)ℓ

e−j 2π
K

ℓ 1
...

...
. . .

...

e−j 2π
K

(K−1)ℓ · · · · · · 1











, (5.14)

and

C(p) =
1

K2

(K−1)/2
∑

ℓ=−(K−1)/2

ℓ2pCℓ . (5.15)

To consider smoothness up to the P th derivative, the metric

χ(P) =

P∑

p=1

χ(p) = fH





P∑

p=1

C(p)



 f

= fH




1

K2

(K−1)/2
∑

ℓ=−(K−1)/2

Cℓ

P∑

p=1

ℓ2p



 f = fHC(P)f (5.16)

can be formed, which calculates the sum of all powers of derivatives of f up to and in-

cluding the P th derivative. For even K, the derivation is similar to above and produces

χ(P) = fH






1

K2

K
2
−1
∑

ℓ=−K
2

Cℓ

P∑

p=1

ℓ2p




 f = fHC(P)f . (5.17)

Thus, the metric can be evaluated via a simple weighted inner product [2].

154

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

5.3.2 Algorithm Overview

The PEVD approach presented here uses a DFT-based scheme with a similar structure

to Algorithm 11 to obtain a solution to the PEVD equation of (2.4). Section 5.3.3 dis-

cusses the method used within this scheme to approximate an analytic decomposition,

which utilises a novel, modified version of the method in [53].

As discussed in Section 5.1, discontinuities in phase between adjacent frequency

bins can arise due to ambiguity in eigenvector phase. When assessed via the metric

of Section 5.3.1, eigenvectors containing such phase discontinuities are not smooth and

return high values of χ(P). For a short paraunitary matrix Q(z), these discontinu-

ities must be smoothed [9] and χ(P) decreased. This is achieved through the use of a

phase alignment function, described in Section 5.3.4, which uses Powell’s ‘dogleg’ algo-

rithm [111,112] to maximise eigenvector smoothness. Contrary to the phase alignment

approach of [53], this function does not require a restriction of the paraunitary matrix

length to an a priori estimate.

Following the reordering (if desired) and phase alignment of Q[k], Q[τ] and D[τ]

are computed via the IDFT as in (5.3).

5.3.3 Novel Method for Reordering the Eigenvectors and Eigenvalues

In an analytic decomposition, the eigenvalues — and their eigenvectors — are arranged

such that discontinuities between adjacent frequency bins are minimised. Even for an

arrangement that provides continuous eigenvalues, such discontinuities can occur when

the eigenvalues intersect at some frequencies. The DFT-based PEVD method of [53]

uses the eigenvalue and eigenvector reordering approach described in Section A.2.2,

which is of relatively low complexity, but relies entirely on the eigenvectors. Since in

and near an eigenvalue with J-fold algebraic multiplicity the eigenvectors are ill-defined

within a J-dimensional subspace [2], the reliance of this method on eigenvectors only

is not ideal. A scheme that uses the smoothness of the eigenvalues for reordering

purposes has been shown to be robust in the presence of multiplicities in [54]; however,

this method is currently prohibitively expensive to implement.

For implementation in the proposed DFT-based PEVD algorithm, the following

155

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

modification is made to the function in Section A.2.2, which has a small impact on

complexity, but improves the accuracy of the reordering procedure around a frequency

bin with eigenvalues that exhibit an algebraic multiplicity greater than one. The re-

ordering approach described in Section A.2.2 occurs as normal for k = 1, 2, . . . ,K − 1,

unless (for k > 1) an eigenvalue dm[k − 1] in D[k − 1] = diag{d1[k − 1], . . . , dM [k − 1]}
is identified that satisfies the criterion

|dm[k − 1]− dn[k − 1]| < λ (5.18)

for some eigenvalues dn[k− 1], n ∈ Nm ⊆ {1 . . . M}\{m}, and arbitrarily low threshold

λ. Here, the eigenvectors qm[k−1] and qn[k−1] correspond to repeated eigenvalues and

are therefore ill-defined; thus (A.18) may not identify the best ordering of eigenvectors

and eigenvalues in the kth frequency bin. For a continuous PSD, the repeated eigenvalue

dn̂[k−1], n̂ ∈ {m}∪Nm, that follows dn̂[k−2] is arbitrary, while the ordering of dn̂[k−1]
and qn̂[k−1] is ambiguous since the eigenvectors are ill-defined. Therefore, to maintain

the ordering established prior to the eigenvalue intersection point, each eigenvector

qn̂[k − 1] is set equal to its immediate predecessor qn̂[k − 2] for reordering purposes

only. Following the reordering of the kth frequency bin according to Section A.2.2,

eigenvectors qn̂[k − 1] are returned to their previous values.

5.3.4 Adjusting the Phase of the Eigenvectors to Promote Phase

Alignment

Employing a method to align the phase of eigenvectors in adjacent frequency bins

is vital for a compact, low order decomposition; i.e., for a short output paraunitary

matrix that introduces little error to the PEVD. Phase alignment can be achieved by

finding the phase changes required for each eigenvector qm[k] ∀ m,k to be maximally

smooth according to metric χ(P). The phase of the mth eigenvector at frequency

bin k can be adjusted by an angle θ[k] according to qm[k] ← ejθ[k]qm[k]. Below, an

objective function is defined which, when minimised via an unconstrained non-linear

optimisation algorithm, can be used to determine the optimal θ[k] ∀ k to maximise the

mth eigenvector’s smoothness.

156

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Objective Function Formulation

The smoothness metric defined for odd K in (5.16) and even K in (5.17) is able to

measure the smoothness of a single function. The goal here is to compute a vector

of phases θ = [θ[0], θ[1], · · · , θ[K − 1]]T ∈ R
K×1 such that all elements of the mth

eigenvector qm[k] ∀ k are maximally smooth. The objective function therefore measures

the smoothness of all elements of qm[k] and takes the form

f(θ) = R

{
M∑

n=1

fHn C(P)fn

}

, (5.19)

where fHn = vndiag
{[

ejθ[0], · · · , ejθ[K−1]
]}

and vn = [qm,n[0], · · · , qm,n[K − 1]], where

qm,n[k] denotes the nth element (row) of eigenvector qm[k]. Only the real component

of the sum in the above equation is taken, as the imaginary component should be zero.

The above equation can be rearranged to form

f(θ) = R

{

uH

(
M∑

n=1

diag{vn}C(P)diag{vH
n }
)

u

}

, (5.20)

where uH =
[
ejθ[0], · · · , ejθ[K−1]

]
. Setting Γ =

∑M
n=1 diag{vn}C(P)diag{vH

n }, for Γ ∈
C
K×K, allows for the following compact representation:

f(θ) = R{uHΓu} . (5.21)

One can therefore obtain θ by solving

θ = argmin
θ′ ∈RK×1

f(θ′) . (5.22)

Minimising the Objective Function

Given its simplicity and relatively low cost [112], Powell’s iterative ‘dogleg’ trust region

strategy [111] is employed for the unconstrained minimisation of (5.21). In iteration j,

a trust region strategy uses the gradient vector g and approximate Hessian matrix Ĥ

157

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

of the objective function to construct a second-order Taylor series expansion:

mj(ϕ
(j)) = f(θ(j)) +ϕ(j)Tg +ϕ(j)TĤϕ(j) . (5.23)

This model approximates f(θ(j) + ϕ(j)) within a trusted region of radius ∆(j) around

the current point θ(j) for some step ϕ(j), which is identified according to

ϕ(j) ← argmin
{ϕ(j)∈RK×1 | ‖ϕ(j)‖<∆(j)}

mj(ϕ
(j)) . (5.24)

The selected method first finds the minimiser of (5.23) along the steepest descent

direction:

ϕ(j)
c = − gTg

gTĤg
g . (5.25)

If this point lies outside of the trusted region, the intersection of the line from the origin

to ϕ
(j)
c with the trust region boundary is used for ϕ(j). Otherwise, the quasi-Newton

point is found:

ϕ(j)
qn = −Ĥ−1g . (5.26)

If this point lies within the trust region, ϕ(j) ← ϕ
(j)
qn , and the method moves to the

next iteration. Otherwise, a solution is found at the intersection of the trust region

boundary with the line from ϕ
(j)
c to ϕ

(j)
qn .

A parameter ρ, which compares the predicted reduction in the objective function

with the actual reduction, is used to measure the strength of the approximation given

by (5.23):

ρ =
f(θ(j))− f(θ(j) +ϕ(j))

mj(0)−mj(ϕ(j))
. (5.27)

In practice, if ρ > 0.75, the approximation is good and the trust region is expanded

such that ∆(j+1) = min
{
2∆(j),∆max

}
, where ∆max is a user-defined maximum. If

ρ < 0.25, the approximation is poor and the trust region is decreased in size such that

∆(j+1) = ∆(j)/4. Furthermore, if ρ > 0, θ(j+1) = θ(j) +ϕ(j); otherwise, θ(j+1) = θ(j).

The employed unconstrained minimisation strategy requires an initial guess of θ;

here, the initial guess is chosen to be a vector of zeroes for simplicity. Note that

158

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

the initial trust region size, ∆(0), is user-defined; however, choosing ∆(0) ← ∆max is

typically valid.

Gradient Vector and Hessian Matrix Formulation

If θi = θ[i], ui is the ith element of u, and γik is the element shared by the ith row and

kth column of Γ, the objective function in (5.21) can also be written as

f(θ) =

K−1∑

i=0

K−1∑

k=0

u∗i γikuk =

K−1∑

i=0

K−1∑

k=0

γike
j(θi−θk) . (5.28)

Taking the derivative with respect to θℓ yields

∂f

∂θℓ
= −j

K−1∑

i=0,i 6=ℓ

γiℓe
j(θi−θℓ) + j

K−1∑

k=0,k 6=ℓ

γℓke
j(θℓ−θk)

= −j
K−1∑

i=0

γiℓe
j(θi−θℓ) + j

K−1∑

k=0

γ∗kℓe
−j(θk−θℓ) . (5.29)

Note that γℓk = γ∗kℓ, as Γ is Hermitian by construction. Converting to matrix notation,

the gradient vector is

g =
∂f

∂θ
= −jdiag {u}ΓTu∗ + jdiag

{
uH
}
ΓHu

= 2R
{
jdiag

{
uH
}
ΓHu

}
= −2I

{
diag

{
uH
}
Γu
}

. (5.30)

Taking the derivative of (5.29) with respect to θp, with θℓ now fixed, one acquires

the equation for the off-diagonal elements of the Hessian matrix:

∂f

∂θℓ∂θp
= −j2γpℓej(θp−θℓ) − j2γ∗pℓe

−j(θp−θℓ)

= γpℓe
j(θp−θℓ) + γ∗pℓe

−j(θp−θℓ) . (5.31)

159

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

So the off-diagonal (OD) terms of the Hessian matrix are:

HOD = diag {u}ΓTdiag {u∗}+ diag
{
uH
}
ΓHdiag {u}

= 2R
{
diag

{
uH
}
Γdiag {u}

}
. (5.32)

Taking the derivative of (5.29) with respect to θℓ, one acquires the equation for the

diagonal elements of the Hessian matrix:

∂2f

∂θ2ℓ
= −

K−1∑

i=0,i 6=ℓ

γiℓe
j(θi−θℓ) −

K−1∑

k=0,k 6=ℓ

γℓke
j(θℓ−θk) . (5.33)

In matrix form, this equates to

HD = diag
{

−diag {u} Γ̂Tu∗ − diag
{
uH
}
Γ̂Hu

}

= −2R
{

diag
{

diag {u} Γ̂Tu∗
}}

, (5.34)

where Γ̂ = Γ − diag{diag{Γ}} contains zeroes on its diagonal. The Hessian matrix is

then given by

H = HOD − diag{diag{HOD}}+HD

= 2R
{
diag

{
uH
}
Γdiag {u}

}

− diag
{
diag

{
2R
{
diag

{
uH
}
Γdiag {u}

}}}

− 2R
{

diag
{

diag {u} Γ̂Tu∗
}}

= 2R
{
diag

{
uH
}
Γdiag {u}

}

− 2R
{

diag
{

diag{Γ}+ diag {u} Γ̂Tu∗
}}

= 2R
{
diag

{
uH
}
Γdiag {u}

}
− 2R

{
diag

{
diag {u}ΓTu∗

}}
, (5.35)

since diag
{
diag

{
uH
}
Γdiag{u}

}
= diag{Γ}.

The second part of (5.35) is often less significant when compared to the first part;

160

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

e.g., simulations typically find that

∥
∥2R

{
diag

{
diag {u}ΓTu∗

}}∥
∥
F

‖2R {diag {uH}Γdiag {u}}‖F
≈ 10−3 . (5.36)

In numerical experiments, (5.35) is not always positive definite, which is a requirement

for this method of minimisation [112]; however, 2R
{
diag

{
uH
}
Γdiag {u}

}
is positive

semi-definite, as C(P) and Γ are positive semi-definite. The following approximation

to the Hessian matrix is proposed, which is guaranteed to be positive definite and

eliminates unnecessary computation:

Ĥ = 2R
{
diag

{
uH
}
Γdiag {u}

}
+ αIK , (5.37)

where α is very small and IK is a K ×K identity matrix.

5.3.5 Algorithm Complexity

For a constant number of optimisation steps, the complexity of the phase alignment

step for a single eigenvector is O(K3) due to matrix inversion [53, 95]; thus, the total

complexity of the phase alignment step for M eigenvectors is of order O(MK3). The

computation of the frequency domain representation of R(z), the execution of K EVDs,

and the reordering of the eigenvalues and eigenvectors are of lower complexity than this

step; thus, the total complexity of the proposed algorithm is approximately O(MK3).

5.3.6 Source Model Simulation Scenarios and Results

The simulations below have been performed over an ensemble of 103 instantiations of

R(z) : C → C
M×M obtained from the randomised source model in Appendix B [45]

with M = 5, OD = 18, OQ = 10, and ∆DR = 50.

The proposed algorithm considers smoothness up to the third derivative; i.e., the

metric χ(3) is used. A maximum of 50 minimisation steps according to Section 5.3.4

are allowed for both algorithms, and a parameter of α = 10−14 is used. Each algorithm

is instructed to approximate an analytic decomposition.

161

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Simulation Scenario 1

The method in [53], henceforth referred to as the ‘existing’ algorithm, requires knowl-

edge of the length of Q(z), LQ, prior to execution, and typically chooses a number of

frequency bins Ke = 2LQ + L − 2, where L is the length of the input matrix R(z).

The method proposed in this section, referred to as the ‘proposed’ algorithm, does

not require an input value of LQ, but instead outputs Q(z) with length equal to the

number of frequency bins Kp used in the decomposition. Note that outer lags of Q[τ]

may contain negligible energy and can be trimmed using a threshold µt in a process

detailed in Appendix C. The first scenario provides the existing method with values of

LQ ∈ {5; 10}, and uses the same generated values of Ke = Kp ∈ {47; 57} for both

algorithms.

Simulation Scenario 2

To test the case where both algorithms produce Q(z) of the same length, the second

scenario provides the proposed method with values of Kp ∈ {47; 57}, and provides the

existing method with LQ = Kp such that Ke ∈ {131; 151}.

Results and Discussion

The ensemble-averaged mean square reconstruction error, paraunitarity error, and LQ

were calculated for both of the algorithms and simulation scenarios, and can be seen

in Table 5.3. The table demonstrates that the proposed approach is able to provide

extremely low decomposition MSE and paraunitarity error, η. Furthermore, the exist-

ing method is not capable of achieving such performance even when using significantly

more frequency bins and generating paraunitary matrices of the same length. The algo-

rithmic complexity of both algorithms is approximately O(MK3) [53]; thus the choice

of DFT length K is extremely significant. Also shown is the impact of truncation on

performance: if paraunitary matrix length is of critical importance, then MSE and η

can be sacrificed to generate shorter matrices. Typically, increasing K is shown to

improve MSE and η at the expense of higher LQ.

162

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Table 5.3: Average mean square error, paraunitarity error, and a posteriori paraunitary
matrix length comparison.

Method MSE η LQ

existing1, Ke = 47 0.2139 0.03696 5

existing1, Ke = 57 6.923 × 10−6 2.319 × 10−6 10

existing2, Ke = 131 1.251 × 10−9 8.596 × 10−10 47

existing2, Ke = 151 5.854 × 10−9 3.296 × 10−9 57

proposed1,2, Kp = 47 9.648 × 10−18 1.011 × 10−15 47

proposed1,2, Kp = 57 1.197 × 10−22 6.179 × 10−19 57

proposed1,2,‡, Kp = 47 2.341 × 10−10 8.116 × 10−11 23.35

proposed1,2,‡, Kp = 57 3.278 × 10−10 8.211 × 10−11 23.22

1 Simulation scenario 1 2 Simulation scenario 2
‡ Q[τ] truncated using µt = 10−10 and scheme from Appendix C

5.3.7 Model Example with Repeated Eigenvalues

As mentioned in Section 5.3.3, the eigenvalue and eigenvector reordering strategy in [53]

can encounter problems if, at some frequency bin k, there exists an eigenvalue with

an algebraic multiplicity greater than one. Such an eigenvalue is present in D(z) =

diag{d1(z), d2(z), d3(z)},

d1(z) = −j0.25z−1 + 1 + j0.25z

d2(z) = 0.25z−2 + 0.5 + 0.25z2

d3(z) = −0.25z−1 + 0.5 − 0.25z , (5.38)

which — when evaluated at z = ejπ — possesses the eigenvalue d1(e
jπ) = d2(e

jπ) =

d3(e
jπ) = 1 with an algebraic multiplicity of 3. The crossing of the eigenvalues at this

point is illustrated in Figure 5.3(a). Figure 5.3(b) and Figure 5.3(c) show the PSDs of

the resulting eigenvalues from an instance of the proposed algorithm when using the

reordering approach of [53] and the novel method of Section 5.3.3, respectively, for K =

92. Note that K has been chosen carefully for this example, to ensure that the repeated

eigenvalue coincides with a frequency bin exactly; as such, this example is somewhat

unrealistic. Random paraunitary eigenvectors Q(z) of order 4 — generated from the

163

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

0 0.5 1
0

0.5

1

1.5

2

|d
m
(e

jΩ
)|

m = 1
m = 2
m = 3

0 0.5 1
0

0.5

1

1.5

2

Normalised frequency, Ω/(2π)

0 0.5 1
0

0.5

1

1.5

2
(a) (b) (c)

Figure 5.3: PSDs of (a) ground truth eigenvalues with algebraic multiplicity of three
at Ω = π, and eigenvalues obtained for reordering schemes of (b) Section A.2.2 and (c)
Section 5.3.3.

concatenation of arbitrary paraunitary first order components according to the scheme

in [4] — were used to generate input parahermitian matrix R(z) = Q(z)D(z)Q̃(z).

In Figure 5.3(b), it can be observed that the second and third eigenvalues are

identified incorrectly, resulting in discontinuities at Ω = 0 and Ω = 2π. Consequently,

error is introduced to this decomposition, as K is insufficiently large to provide the large

time domain support required to describe these discontinuities; i.e., error is present in

the polynomial eigenvalues, which impacts on the decomposition MSE. The modified

reordering approach has successfully recovered the original eigenvalues without error.

Despite the successful reordering of the eigenvalues to a continuous form, the eigen-

vectors are still ill-defined in the presence of repeated eigenvalues. To demonstrate the

problems this can cause, Figure 5.4(a) shows the ground truth PSDs of the first eigen-

vector, while Figure 5.4(b) shows the PSDs of the equivalent eigenvector output by the

proposed algorithm. Clearly, the ill-defined nature of eigenvector q1(e
jπ) has resulted

in q1(e
jΩ) being discontinuous around Ω = π. As for the case above with discontinuous

eigenvalues, such a discontinuity introduces error to the decomposition; however, this

time the error is present in the output polynomial eigenvectors and impacts on both

decomposition MSE and paraunitarity error.

5.3.8 Summary

In this section, a novel frequency-based algorithm capable of computing a compact

PEVD has been introduced. This algorithm makes use of a newly developed metric for

164

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalised frequency, Ω/(2π)

n = 1
n = 2
n = 3

0 0.5 1
0

0.2

0.4

0.6

0.8

1
(b)(a)

|q
1
,n
(e

jΩ
)|

Figure 5.4: PSDs of (a) ground truth first eigenvector and (b) first eigenvector obtained
from proposed method.

measuring the smoothness of a function evaluated on the unit circle. By minimising

this metric for the eigenvectors produced by the algorithm, the phase responses of the

eigenvectors have been successfully modified and their compactness in the time domain

has been enforced as a result.

Simulation results have demonstrated that the proposed algorithm offers superior

performance to an existing frequency-based PEVD algorithm, with the advantage of not

requiring a priori information regarding the paraunitary matrix length. Furthermore,

the introduction of a modified eigenvalue and eigenvector reordering scheme has been

shown to enable the extraction of a ground truth D(z) in the presence of eigenvalues

with algebraic multiplicity greater than one. However, error can still be introduced to

the resulting PEVD via the polynomial eigenvectors, which are required to describe

discontinuities in the frequency domain due to the ill-defined nature of the eigenvectors

corresponding to repeated eigenvalues.

When designing PEVD implementations for real applications, the algorithm de-

scribed in this section could be extremely useful, provided that K is not prohibitively

large — as algorithm complexity is approximately proportional to K3. For an in-

put parahermitian matrix R(z) : C → C
M×M , existing iterative methods often have

complexities proportional to M3, while the proposed algorithm has a complexity pro-

portional to M ; thus, the latter can offer advantages when decomposing parahermitian

matrices with large spatial dimensions.

165

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

5.4 An Order-Iterated Novel DFT-Based PEVD Algo-

rithm

The novel algorithm of the previous section, which does not require a priori information

regarding the paraunitary matrix order, improved upon the algorithm of [53] in terms

of PEVD performance. However, the algorithm still requires a priori knowledge of the

DFT length, K, to be used in the decomposition. To address this problem, this section

details a novel iterative frequency-based PEVD algorithm — based on the algorithm

in Section 5.3 — which can compute an accurate PEVD without requiring paraunitary

matrix order or decomposition length information. Instead, the decomposition length

is increased within the set K ∈ {2j | j ∈ N} until the decomposition error falls below

a user-specified threshold. By restricting the decomposition length to powers of two,

the computations in a given algorithm iteration can be carried forward to subsequent

iterations to reduce redundancy.

Below, Section 5.4.1 will introduce the proposed algorithm and Section 5.4.2 will

briefly outline its complexity. Using the simulation scenarios of Section 5.4.3, a com-

parison of the algorithm’s performance relative to existing iterative PEVD methods is

presented in Section 5.4.4, and conclusions are drawn in Section 5.4.5.

Elements of the work in this section can be found published in the proceedings of

the 52nd Asilomar Conference on Signals, Systems and Computers in a paper titled

‘An Iterative DFT-based Approach to the Polynomial Matrix Eigenvalue Decomposi-

tion’ [74], and in the proceedings of the 44th International Conference on Acoustics,

Speech, and Signal Processing in a paper titled ‘Iterative Approximation of Analytic

Eigenvalues of a Parahermitian Matrix EVD’ [54].

5.4.1 Algorithm Overview

The PEVD approach presented here uses an iterative DFT-based scheme with a sim-

ilar underlying structure to Algorithm 11 to obtain a solution to the PEVD equation

166

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

of (2.4). In this iterative approach, equation (5.1) is adapted to

R[k] = Q[k]D[k]QH[k] , k = 0 . . . Ki − 1 , (5.39)

which uses an increasing number of frequency bins, Ki, until the decomposition MSE

falls below a user-defined threshold. Here, Ki is restricted to powers of two such that

Ki ∈ {2⌈log2L⌉+i}, where L is the length of R(z), and i = 0, 1, . . . , Imax − 1 records the

current iteration. Parameter Imax is a user-defined maximum number of iterations for

the algorithm. As in other DFT-based PEVD algorithms, R[k] is obtained from the

Ki-point DFT of R[τ],

R[k] = R(z)|z=ejΩk =
∑

τ
R[τ]e−jΩkτ , k = 0 . . . Ki − 1 , (5.40)

where Ωk = 2πk/Ki. Note that in iteration i, R[k] in (5.40) for k = 0, 1, . . . ,Ki − 1 is

identical to R[k] for k = 0, 2, 4, . . . ,Ki+1 − 2 in the (i + 1)th iteration. By extension,

Q[k] and D[k] from (5.39) are also the same for these k. The calculation of half of the

eigenvectors and eigenvalues can therefore be avoided at each iteration beyond the first.

Similarly, the phase alignment step can exploit this redundancy to aid optimisation.

The eigenvalue and eigenvector reordering scheme of Section 5.3.3 is employed in this

algorithm to facilitate the approximation of an analytic decomposition. If i > 0, Q[k] for

k = 0, 2, 4, . . . ,Ki − 2 can be carried through from the previous iteration; however, the

eigenvector ordering in these matrices can change, as the inner products of eigenvectors

in subsequent frequency bins have changed. The process of Section 5.3.3 must therefore

be completed as normal for k = 1, 2, . . . ,Ki − 1 at each algorithm iteration.

Phase alignment of eigenvectors in adjacent frequency bins is vital for a compact, low

order decomposition. The phase alignment strategy of Section 5.3.4 is also used here;

however, a slight modification is made to aid the optimisation process by exploiting the

iterative nature of the algorithm. The employed unconstrained minimisation strategy

requires an initial guess of θ. For i = 0, the initial guess is chosen to be a vector

of zeroes; however, in subsequent iterations of the algorithm, values of θ[k] for k =

0, 2, 4, . . . ,Ki − 2 can be carried through from the previous iteration and used to form

167

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Input: R(z), ǫ, Imax, υ
Output: D(z), Q(z)
i← 0; L is the length of R(z)
do

Ki ← 2⌈log2L⌉+i

for k ← Ki − 1, . . . , 1, 0 do

if i > 0 and k mod 2 = 0 then

(Q[k],D[k])← (Q[k/2],D[k/2])
else

Compute R[k] according to DFT in (5.40)
Compute Q[k] and D[k] via ordered EVD of R[k]

end

end

if υ = 1 then
Permute Q[k] and D[k] to approximate an analytic decomposition
according to Section 5.3.3

end

Use phase alignment strategy of Section 5.3.4 to maximise smoothness of
Q[k]
Obtain (Q[τ],D[τ]) from IDFT of (Q[k],D[k])

Find MSE from (A.28) with R̂(z)← Q(z)D(z)Q̃(z)
i← i+ 1

while MSE > ǫ and i < Imax

Algorithm 12: Proposed iterative DFT-based PEVD algorithm

the initial guess alongside zeroes for k = 1, 3, 5, . . . ,Ki − 1.

Following the permutation (if desired) and phase alignment of Q[k], Q[τ] is com-

puted via the IDFT as

Q[τ] =
1

Ki

∑Ki−1

k=0
Q[k]ejΩkτ , τ = 0 . . . Ki − 1 , (5.41)

and D[τ] is found in a similar fashion. If the mean square reconstruction error of the

decomposition is above a user-defined threshold ǫ, algorithm iterations continue; oth-

erwise, the algorithm ends. The MSE is computed according to (A.28) in Section A.3.

Algorithm 12 summarises the above steps of the proposed method. Here, a user-

input parameter υ determines if the algorithm approximates an analytic decomposition.

168

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

5.4.2 Algorithm Complexity

For a constant number of optimisation steps, the complexity of the phase alignment step

for a single eigenvector in iteration i is O(K3
i) due to the execution of matrix inversion

in the optimisation algorithm [53,95]; thus, the total complexity of the phase alignment

step for M eigenvectors is of order O(MK3
i). All other components of the algorithm

have lower complexity; thus, the total complexity of one iteration of the proposed algo-

rithm is approximately O(MK3
i). If I iterations of the algorithm are completed before

it ceases operations, the overall complexity of the proposed algorithm is determined by

the complexity of the inversion of the largest matrix and is approximately O(MK3
I−1).

For fixed I, KI−1 is proportional to L; thus, the complexity can be estimated to be of

order O(ML3).

5.4.3 Simulation Scenarios

To benchmark the proposed approach, its performance is compared against the iterative

coefficient domain methods of SMD [45] and SBR2 [6]. For the proposed method, an an-

alytic (permuted) decomposition is approximated (υ = 1), and eigenvector smoothness

is measured using χ(3); i.e., up to the third derivative. To cease iterations, a decomposi-

tion MSE threshold of ǫ = 10−8 and Imax = 5 are used. A maximum of 50 minimisation

steps according to Section 5.3.4 were allowed and a parameter of α = 10−14 is employed.

Polynomial matrix truncation parameters of µ1 = 10−16 and µ2 = 10−8 are used for

SMD and a truncation parameter of µ2 is used for SBR2. Iterations of the algorithms

other than the one proposed cease if Ediag ≤ 10−6. Note that Ediag for the proposed

method is always zero, as D[τ] is diagonal.

Simulation Scenario 1

This scenario utilises the above PEVD algorithms to decompose an ensemble of 103

instantiations of R(z) : C → C
M×M obtained from the randomised source model in

Appendix B [45] with M = 5, OD = 18, OQ = 10, and ∆DR = 50. Following the

completion of each algorithm, the metrics defined in Section A.3 are recorded alongside

the lengths of the output paraunitary matrices, LQ.

169

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Simulation Scenario 2

This scenario utilises the above algorithms to decompose the theoretical parahermitian

matrix

R(z) =




2 z−1 + 1

z + 1 2



 , (5.42)

which has eigenvectors and eigenvalues (which are visualised in Figure 5.2) that are

neither of finite order nor rational. An analytic EVD does not exist for this matrix [9,

10]; to decompose R(z) via an exact PEVD would require polynomial matrices of

infinite length. Execution time measurements are averaged over 103 instances of the

simulation scenario.

Simulation Scenario 3

For broadband angle of arrival (AoA) estimation, powerful narrowband methods such

as the multiple signal classification (MUSIC) algorithm [77] are not directly applicable.

In [18], the PEVD is used to generalise MUSIC to the case of polynomial matrices, re-

sulting in the development of the spatio-spectral polynomial MUSIC (SSP-MUSIC) al-

gorithm. Work in [19] demonstrates that the accuracy of SSP-MUSIC depends strongly

on the efficacy of the PEVD algorithm used. Here, the AoA estimation performances

that the above algorithms offer when paired with SSP-MUSIC are compared. For

brevity, the reader is referred to Appendix D and [18, 19] for details regarding the

implementation of SSP-MUSIC. Performance of each PEVD algorithm is measured in

terms of AoA estimation accuracy; this is determined through a visual assessment of

metric PSSP(ϑ,Ω) ∈ R>0 output by the SSP-MUSIC algorithm in [18], which is evalu-

ated at a range of angles of arrival, ϑ, and frequencies, Ω. A high value of PSSP(ϑ,Ω)

indicates the presence of a source at a specific angle of arrival and frequency, while a

low value indicates that no source is present.

In this simulation scenario, an M = 6 element array collecting broadband data in

a vector x[n] ∈ C
6 is illuminated by three broadband sources characterised as follows:

• source 1 — located at ϑ1 = −45◦, active over a frequency range Ω′
1 ∈ [0.5π, 0.9π];

170

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

• source 2 — located at ϑ2 = −30◦, active over a frequency range Ω′
2 ∈ [0.1π, 0.9π];

• source 3 — located at ϑ3 = −10◦, active over a frequency range Ω′
3 ∈ [0.4π, 0.9π].

For simplicity, the elevation angles of the sources are equal to zero. The array sig-

nals are corrupted by uncorrelated independent and identically distributed complex

Gaussian noise at an SNR of 20 dB. To exclude error sources other than inaccuracies

in the subspace identification, the source data is modelled as a sum of closely spaced

sinusoids with randomised phases and lengths of 96000 samples, for which highly accu-

rate narrowband steering vectors can be used to simulate incidence on the array. The

broadband steering vectors that the SSP-MUSIC algorithm uses to scan the noise-only

subspace are based on fractional delay filters constructed from truncated sinc func-

tions [108, 109]. Space-time covariance matrix R[τ] = E{x[n]xH[n − τ]} is estimated

for |τ | ≤ 20. Metric PSSP(ϑ,Ω) is averaged over 103 instances of the scenario. In each

instance, SMD and SBR2 are allowed the same execution time as the proposed method.

5.4.4 Results and Discussion

Simulation Scenario 1

It is clear from Table 5.4 that the proposed method outperforms SMD and SBR2 with

respect to all performance metrics. The good performance of the proposed algorithm for

this scenario is to be expected, as DFT-based PEVD algorithms were observed to per-

form well for finite order problems in Sections 5.2.4 and 5.3.6. The tendency of iterative

time-based PEVD algorithms to encourage spectral majorisation of the eigenvalues re-

sults in slow convergence and paraunitary matrices of high order. The proposed method

can instead opt to approximate an analytic decomposition, and converges quickly to a

low order solution.

Simulation Scenario 2

In Table 5.5, the proposed method does not perform as well for the non-finite matrix

in (5.42). As discussed in Section 5.1, limiting the decomposition to a finite number of

frequency bins (and subsequently the same number of polynomial coefficients) can result

171

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Table 5.4: Simulation Scenario 1: MSE, paraunitarity error, diagonalisation, execution
time, and paraunitary matrix length comparison.

Method MSE η Ediag Time / s LQ

proposed 5.750 × 10−29 2.887 × 10−22 0 0.08854 64

SMD, µ1 2.791 × 10−16 1.702 × 10−16 10−6 29.47 1296

SMD, µ2 9.321 × 10−7 3.847 × 10−8 10−6 11.34 357.9

SBR2 1.815 × 10−6 3.303 × 10−8 10−6 37.64 600.0

Table 5.5: Simulation Scenario 2: MSE, paraunitarity error, diagonalisation, execution
time, and paraunitary matrix length comparison.

Method MSE η Ediag Time / s LQ

proposed 7.077 × 10−9 1.381 × 10−4 0 0.1196 64

SMD, µ1 4.362 × 10−25 2.466 × 10−16 10−6 0.6256 345

SMD, µ2 2.909 × 10−10 9.546 × 10−8 10−6 0.1995 83

SBR2 2.909 × 10−10 9.546 × 10−8 10−6 0.1724 83

in time domain aliasing. The paraunitarity error of the proposed method is very high,

indicating that the majority of the decomposition error arises in the eigenvectors. Given

that the ground truth eigenvalues are spectrally majorised, the iterative time-based

PEVD strategies can converge quickly to a relatively low order solution if moderate

truncation is employed.

Simulation Scenario 3

Obtained for Scenario 3, the results of Figure 5.5 demonstrate that the proposed al-

gorithm is capable of outperforming SMD and SBR2 at most frequencies when each is

paired with SSP-MUSIC. However, the proposed method is not as capable when iden-

tifying the absence of sources for frequencies in the intervals Ω ∈ {[0, 0.1π); (0.9π, π]}.
The presence of noise in the decomposition results in poor phase alignment for those

eigenvectors that correspond to the noise-only subspace. Furthermore, the ill-defined

eigenvectors associated with noise-only cause the eigenvector and eigenvalue reordering

scheme to fail for this subspace. Both of these aspects result in increased error in the

eigenvectors and poorer isolation of the source frequency ranges. The plot of Figure 5.6

172

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

(a) (b)

(c) (d)

angle of arrival, ϑ

n
o
rm

a
li
se
d
a
n
g
u
la
r
fr
eq

u
en

cy
,
Ω
/
π

1
0
lo
g
1
0 P

S
S
P
(ϑ

,Ω
)

Figure 5.5: Performance of SSP-MUSIC based on (a) proposed method, (b) SMD, µ1,
(c) SMD, µ2, and (d) SBR2 for simulation scenario 3.

shows SSP-MUSIC performance at a frequency of Ω = 2π/3, where all sources are ac-

tive; from this, it can be seen that the proposed method offers superior angle of arrival

localisation of the sources at this frequency.

5.4.5 Summary

In this section, a novel iterative frequency-based algorithm capable of computing a com-

pact and accurate PEVD has been introduced. Simulation results have demonstrated

that when decomposing empirically constructed matrices, the proposed algorithm can

offer superior performance to existing iterative PEVD algorithms. While the proposed

173

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

−80 −60 −40 −20 0 20 40 60 80

0

20

40

angle of arrival, ϑ

10
lo
g
1
0
P
S
S
P
(ϑ
,2
π
/3
)
/
[d
B
]

proposed

SMD, µ1

SMD, µ2

SBR2

−40 −30 −20 −10

30

35

40

Figure 5.6: Performance of SSP-MUSIC at Ω = 2π/3 based on proposed method, SMD,
and SBR2 for simulation scenario 3.

method does not perform as well for a difficult, non-finite order decomposition, an AoA

estimation simulation scenario has demonstrated the superior source angle of arrival

localisation enabled by the developed algorithm. The evidence presented suggests that

the method is suitable for application-based scenarios — particularly those with a high

number of sensors, as algorithm complexity only grows linearly with spatial dimension

M .

5.5 Eigenvector Ambiguity and Approximating a

Minimum-Order Solution

Using the DFT-based PEVD approaches of Sections 5.3 or 5.4, it is possible to approx-

imate analytic eigenvectors Q(z) and eigenvalues D(z) that satisfy

R(z) ≈ Q(z)D(z)Q̃(z) . (5.43)

In a simulation scenario, a parahermitian matrix R(z) input to the algorithm can be

constructed using a randomised source model — such as the one described in Ap-

pendix B [45] — with ground truth eigenvectors V (z) and eigenvalues Λ(z) according

to

R(z) = V (z)Λ(z)Ṽ (z) . (5.44)

174

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Typically, D(z) is a very good approximation to Λ(z) and is of comparable order;

however, Q(z) typically has greater order than V (z) even after moderate truncation,

as seen in the results of Section 5.3.6.

With the knowledge that each eigenvector in V (z) or Q(z) may be influenced by

an arbitrary all-pass filter and still be valid, this section investigates a method to find

some diagonal matrix U(z) with all-pass filters on its diagonal that satisfies

Q(z) = H(z)U (z) , (5.45)

whereH(z) is the paraunitary matrix that can fulfil the same purpose as Q(z) in (5.43)

with minimum-order; thus, H(z) should be of order less than or equal to the order of

V (z).

For the decomposition of R(z) : C → C
M×M , the above paraunitary matrices can

be described according to U(z) = diag{u1(z), u2(z), . . . , uM (z)},

Q(z) =
[

q1(z), q2(z), . . . , qM (z)
]

=











q1,1(z) q1,2(z) . . . q1,M(z)

q2,1(z) q2,2(z) . . . q2,M(z)
...

...
. . .

...

qM,1(z) qM,2(z) . . . qM,M(z)











,

(5.46)

and

H(z) =
[

h1(z), h2(z), . . . , hM (z)
]

=











h1,1(z) h1,2(z) . . . h1,M (z)

h2,1(z) h2,2(z) . . . h2,M (z)
...

...
. . .

...

hM,1(z) hM,2(z) . . . hM,M (z)











.

(5.47)

Here, um(z)ũm(z) = 1 ∀ m and q1(z) = [q1,1(z), q2,1(z), . . . , qM,1(z)]
T is the first eigen-

175

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

vector in Q(z). For this eigenvector, the following series of equations exist:

q1,1(z) = h1,1(z)u1(z)

q2,1(z) = h2,1(z)u1(z)
...

qM,1(z) = hM,1(z)u1(z)

. (5.48)

If ũ1(z) = u∗1(1/z
∗) is defined as the all-pass filter

ũ1(z) =
ã1(z)

a1(z)
, (5.49)

its parahermitian conjugate is

u1(z) =
a1(z)

ã1(z)
(5.50)

and u1(z)ũ1(z) = 1 as desired.

Below, Section 5.5.1 discusses a method to approximate U(z) via the identification

of the greatest common divisor of multiple polynomials, and Section 5.5.2 confirms the

viability of this method.

5.5.1 Greatest Common Divisor of Multiple Polynomials

One can find a suitable polynomial for a1(z) by identifying the shared greatest common

divisor (GCD) of pairs of polynomials in the set {q1,1(z); . . . ; qM,1(z)}. For this, the

monic polynomial subtraction technique implemented by [115] can be used. It has been

found through experimentation that this method is capable of computing approximately

equivalent GCDs for all pairs of polynomials; a1(z) can then be assigned such that it

is equal to the average of all GCDs.

Once a1(z) has been identified, an FIR approximation, ˜̂a−1
1 (z), to ã−1

1 (z) can be

obtained by evaluating 1/ã1(z)|z=ejΩk , Ωk = 2πk/K, at K discrete points on the unit

circle and computing the IDFT of the result. Subsequently, û1(z) = a1(z)˜̂a
−1
1 (z) is

computed, and a shortened representation for the eigenvector q1(z) is obtained:

ĥ1(z) = q1(z)
˜̂u1(z) . (5.51)

176

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

Repeating the above for all eigenvectors yields an overall lower order paraunitary matrix

Ĥ(z) =
[

ĥ1(z), ĥ2(z), . . . , ĥM (z)
]

(5.52)

that serves as an approximation to the minimum-order solution and replaces Q(z)

in (5.43).

5.5.2 Results and Discussion

To test the efficacy of the above method for attaining a minimum-order solution, three

simulation scenarios are used. Each scenario utilises an instantiation of R(z) : C →
C
M×M obtained from the randomised source model in Appendix B [45] with ∆DR =

30. PEVDs for each scenario are obtained using the DFT-based PEVD approach of

Section 5.3, which is instructed to approximate an analytic decomposition. The length,

K, of each decomposition is selected to be suitably high, such that the decomposition

MSE and paraunitarity error are negligible.

The first scenario uses a matrix Q(z) of order 15 obtained from the PEVD of

R(z) : C → C
3×3 of order 6, which is generated using a ground truth paraunitary

matrix V (z) of order 2. A second simulation scenario is designed to test the method

for the decomposition of R(z) of larger spatial dimension and slightly higher polynomial

order. Here, a matrixQ(z) of order 63 is obtained from the PEVD ofR(z) : C→ C
10×10

of order 38, which is generated using a ground truth paraunitary matrix V (z) of order

10. To test the method for the decomposition of R(z) of high polynomial order, a

third simulation scenario uses a matrix Q(z) of order 127 obtained from the PEVD of

R(z) : C → C
3×3 of order 118, which is generated using a ground truth paraunitary

matrix V (z) of order 30.

For the first simulation scenario, Figure 5.7 compares the average power at each lag

of Q[τ], Ĥ[τ], and ground truth V[τ]. From this, it can be seen that by approximately

cancelling the effects of paraunitary matrix U(z), a more compact matrix Ĥ(z) can be

obtained. A compact paraunitary matrix in this sense has its energy contained within a

small number of contiguous lags. Unexpectedly, in lags with low power, the distribution

of power is not uniform and roughly trends upwards towards the start and end lags of

177

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

the matrix. However, if lags with power below −75 dB are ignored, it can be observed

that Ĥ(z) has the same polynomial order as the ground truth V (z), indicating that

either V (z) is close to the minimum-order solution, or that the approach of Section 5.5.1

is insufficient for its desired purpose. Nevertheless, the reduction in order of Q(z) is

beneficial for application purposes. Importantly, it was found that using Ĥ(z) instead

of Q(z) resulted in negligible differences in decomposition MSE and paraunitarity error.

Obtained following the acquisition of Ĥ(z) for the second simulation scenario, Fig-

ure 5.8 compares the average power at each lag of the different paraunitary matrices.

From this, it would appear that increasing the spatial dimension does not significantly

impact performance. Interestingly, in lags with low power, the distribution of power is

more uniform than observed in Figure 5.7. Again, negligible differences in decomposi-

tion MSE and paraunitarity error were observed when using Ĥ(z) instead of Q(z).

Similarly to above, the third simulation scenario provided Figure 5.9. From this,

it would appear that increasing the polynomial order does significantly impact perfor-

mance. Indeed, the computation of all GCDs was not always possible for this simulation

scenario, and the results of Figure 5.9 can be considered the best-case scenario. An

unsuccessful instance of the method finds at least one GCD of a pair of polynomials to

be equal to 1. If this occurs for some m, as long as a non-zero number of GCDs are not

equal to 1, the average of these GCDs is used to generate am(z). If all GCDs are equal

to 1, Ĥ(z) = Q(z) and no order reduction occurs. If lags with power below approx-

imately −75 dB are ignored, it can be observed that Ĥ(z) has the same polynomial

order as the ground truth V (z); however, the ignored lags contain higher power than in

Figures 5.7 and 5.8 — indicating that the average of the GCDs is not quite as accurate

as in the other simulation scenarios. When computation of a reduced-order Ĥ(z) was

successful for this scenario, there was again negligible differences in decomposition MSE

and paraunitarity error when using Ĥ(z) instead of Q(z).

The accuracy of each of the polynomial coefficients of Q(z) is limited by the choice

of numerical representation in the employed MATLABR© simulation software; i.e., the

true polynomial coefficient values are quantised to the nearest possible double-precision

floating-point value. In this scenario, matrix Q(z) has many low-valued polynomial

178

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

0 5 10 15
−200

−150

−100

−50

0

Lag of paraunitary matrix, τ

A
ve
ra
ge

p
ow

er
at

la
g
τ
/
d
B

Q[τ]

Ĥ[τ]

V[τ]

Figure 5.7: Average power at lag τ of original Q[τ], shortened Ĥ[τ], and ground truth
V[τ] paraunitary matrices for Q(z) : C→ C

3×3 of order 15 and V (z) of order 2.

0 10 20 30 40 50 60
−200

−150

−100

−50

0

Lag of paraunitary matrix, τ

A
ve
ra
ge

p
ow

er
at

la
g
τ
/
d
B

Q[τ]

Ĥ[τ]

V[τ]

Figure 5.8: Average power at lag τ of original Q[τ], shortened Ĥ[τ], and ground truth
V[τ] paraunitary matrices for Q(z) : C→ C

10×10 of order 63 and V (z) of order 10.

0 20 40 60 80 100 120
−200

−150

−100

−50

0

Lag of paraunitary matrix, τ

A
ve
ra
ge

p
ow

er
at

la
g
τ
/
d
B

Q[τ]

Ĥ[τ]

V[τ]

Figure 5.9: Average power at lag τ of original Q[τ], shortened Ĥ[τ], and ground truth
V[τ] paraunitary matrices for Q(z) : C→ C

3×3 of order 127 and V (z) of order 30.

179

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

coefficients that can be easily corrupted by quantisation error. In the presence of too

many coefficient values with a high degree of error, the monic polynomial subtraction

technique can fail to identify the GCDs for all pairs of polynomials. If the polynomial

coefficients of Q(z) were represented with higher accuracy, the reliability of the method

might increase for paraunitary matrices with high polynomial order. Alternatively, a

more robust method for computing the GCD might give better results.

5.5.3 Summary

This section has discussed a method to approximate a minimum-order solution to the

PEVD via the identification of the greatest common divisor of multiple polynomials.

The GCD identification approach utilised in this work — which employs the monic

polynomial subtraction method of [115] — is well-behaved for short polynomials (Q(z)

of order less than 100), but sometimes fails to find accurate GCDs for all pairs of

longer polynomials. It might therefore be worthwhile to find a more robust method

for computing the GCD of polynomials of high order. Despite the shortcomings of this

approach for Q(z) of high polynomial order, it is clear that coupling a method capa-

ble of approximating a minimum-order solution with the paraunitary matrix output

by a DFT-based PEVD algorithm can yield shorter paraunitary matrices without any

disadvantages other than the time taken to approximate and utilise U(z). For applica-

tions where short paraunitary matrices are more important than increased algorithm

execution time, the method described in this section could be useful.

5.6 Conclusions

In contrast to previous chapters, which discussed modified and novel coefficient domain

PEVD algorithms, this chapter has investigated DFT-based alternatives for the PEVD.

Following an introduction of the general structure and merits of DFT-based PEVD al-

gorithms, a comparison of the characteristics of an example DFT-based algorithm with

a coefficient domain algorithm was provided. Through this comparison, it was estab-

lished that the DFT-based algorithm is particularly suited to problems of relatively

low, finite order, or situations in which an analytic decomposition is preferable or only

180

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

approximate paraunitarity is required. In contrast, the SMD algorithm attained re-

liably low decomposition error and potentially paraunitary eigenvectors, and offered

customisable diagonalisation and eigenvector length. Furthermore, it was concluded

that the DFT-based approach offers a viable alternative to SMD for the decomposition

of parahermitian matrices with large spatial dimensions. However, the former algo-

rithm’s reliance on an a priori estimate of paraunitary matrix length was considered to

be disadvantageous for application purposes.

A subsequent section overcame this final point by developing a novel DFT-based

PEVD algorithm that is able to perform well without requiring a priori knowledge of

the paraunitary matrix length. By minimising a newly developed metric capable of

measuring the smoothness of the eigenvectors produced by the algorithm, the phase

responses of the eigenvectors were adjusted until phase alignment was achieved. The

resulting polynomial eigenvectors were shown to be both compact and more accurate

than those obtained by an existing DFT-based PEVD algorithm. Furthermore, the

introduction of a modified eigenvalue and eigenvector reordering scheme was shown to

enable the extraction of ground truth polynomial eigenvalues despite the presence of

eigenvalues with algebraic multiplicity greater than one.

This algorithm formed the basis of a novel iterative DFT-based algorithm capable of

adapting to any dimensionality of parahermitian matrix without an a priori estimate of

the DFT length. Simulation results demonstrated that when decomposing empirically

constructed matrices, the proposed algorithm can offer superior performance to existing

iterative PEVD algorithms. Furthermore, an angle of arrival estimation simulation

scenario demonstrated that the developed algorithm is capable of superior source angle

of arrival localisation; however, it was noted that the presence of noise hinders the

phase alignment and eigenvector and eigenvalue reordering elements of the DFT-based

approach. The evidence presented throughout this chapter suggests that frequency-

based PEVD methods are suitable for application-based scenarios — particularly those

with a high number of sensors, as algorithm complexity only grows linearly with spatial

dimension M .

Finally, a method to approximate a minimum-order solution to the PEVD was

181

Chapter 5. DFT-Based Alternatives for PEVD Algorithms

introduced. If a DFT-based algorithm is able to approximate analytic polynomial

eigenvectors of relatively low order, and if processing time is not of critical importance,

applying this method to the polynomial eigenvectors can decrease their length without

introducing error. However, it might be worthwhile to find a more robust method for

reducing the order of polynomial eigenvectors of relatively high order.

182

Chapter 6

Conclusions

6.1 Summary of Contributions

By introducing a number of novel methods to lower the computational cost of existing

iterative algorithms related to the PEVD, the research of Chapter 3 has successfully

accomplished the first of the objectives listed in Section 1.2. The proposed methods in

this chapter conquered unexplored areas of PEVD algorithm improvement by optimis-

ing matrix manipulations in software, exploiting parahermitian matrix symmetry [67],

minimising algorithmic redundancy [68], and reducing the search and update space

of iterative PEVD algorithms [68, 69]. Importantly, the significant performance gains

made possible by the half-matrix parahermitian matrix representation, restricted up-

date strategy, and matrix multiplication optimisations can be used simultaneously and

extended to any number of iterative PEVD algorithms without impacting accuracy.

Improvements were also made to an existing polynomial matrix QR decomposition al-

gorithm [70] and a polynomial matrix truncation strategy. While the latter enforced a

degree of polynomial matrix order reduction, and therefore made some steps towards

satisfying the second objective in Section 1.2, each of the improved PEVD approaches

still exhibited algorithmic complexity that grew rapidly with the spatial dimensions of

the parahermitian matrix. Some form of spatial dimension reduction was therefore re-

quired if the algorithms were to be suitable for applications involving large broadband

arrays, and by extension large parahermitian matrices.

183

Chapter 6. Conclusions

Chapter 4 addressed the problem of spatial dimension reduction — and therefore

the second objective of this research — by taking additional steps to convert the se-

quential form of existing PEVD algorithms to a reduced dimensionality, partially par-

allelisable divide-and-conquer (DaC) architecture. Simulations utilising the proposed

DaC approach demonstrated that a recursive block diagonalisation strategy can be

used to segment a large parahermitian matrix into multiple independent parahermitian

matrices of smaller spatial dimensions. These matrices were subsequently diagonalised

independently and in parallel using a PEVD algorithm that incorporated the most well-

performing complexity reduction strategies of Chapter 3. The divide-and-conquer se-

quential matrix diagonalisation [71] and parallel-sequential matrix diagonalisation [72]

algorithms created using this DaC framework exhibited convergence speeds an order of

magnitude faster than existing methods for parahermitian matrices with large spatial

dimensions [64]. In contrast to the current state-of-the-art approaches, the developed

algorithms were shown to be well-suited to deployment in application scenarios [20].

In the process of completing the third objective of this research, Chapter 5 intro-

duced the concept of DFT-based PEVD algorithms, which offer potentially analytic

and subsequently minimum-order solutions to the PEVD. A comparison of such an

algorithm with an iterative time-based PEVD algorithm established that DFT-based

algorithms are particularly suited to the generation of approximately analytic decom-

positions of relatively low, finite order, provided that only approximate paraunitarity

of the polynomial eigenvectors is required [56]. However, the DFT-based algorithm’s

reliance on an a priori estimate of the paraunitary matrix length was considered to be

disadvantageous for application purposes. A novel DFT-based PEVD algorithm over-

came this problem by utilising an alternative phase alignment strategy that relied on

the smoothness of the eigenvectors and not on a priori knowledge of the paraunitary

matrix length. The resulting polynomial eigenvectors were shown to be both compact

and more accurate than those obtained from the previously tested existing DFT-based

PEVD algorithm [73]. An extension of this algorithm, which uses an iterative approach

to remove all a priori knowledge requirements, was then found to perform well relative

to existing iterative PEVD algorithms [74]. The evidence presented throughout Chap-

184

Chapter 6. Conclusions

ter 5 has indicated that DFT-based PEVD methods are suitable for application-based

scenarios — particularly those with a high number of sensors, as their algorithmic com-

plexity only grows linearly with parahermitian matrix spatial dimension. A method to

approximate a minimum-order solution to the PEVD was then introduced. Applying

this method to the polynomial eigenvectors from an analytic PEVD successfully de-

creased their length without introducing error; however, a more robust method would

perhaps have more success when reducing the order of polynomial eigenvectors of rel-

atively high order.

In brief, the objectives set out in Section 1.2 were to reduce the computational

complexity of PEVD algorithms, to investigate dimensionality reduction of the para-

hermitian matrix, and to investigate DFT-based approaches to the PEVD. Given the

above contributions, it can be concluded that these objectives have been met. Most im-

portantly, the work in this thesis has demonstrated the flexibility of PEVD algorithms,

and has investigated, illuminated, and improved upon various aspects of these algo-

rithms to the point where they are now potentially suitable for real-time application

purposes.

6.2 Future Work

While reductions in the computational complexity of iterative PEVD algorithms have

been comprehensively discussed in this thesis, all implementations of these algorithms

— excepting SBR2 [57–59] — are currently restricted to MATLABR©. Moving to a

lower-level software language such as C would require an extended period of devel-

opment time, but would increase algorithm speed and portability substantially. In

addition, proof of convergence for the DaC algorithms of Chapter 4 would certainly be

of interest. Tied to this is the potential for an investigation into the enforcement of

spectral majorisation of the polynomial eigenvalues from the sequential matrix diago-

nalisation algorithm and by extension, the sequential matrix segmentation algorithm

(SMS). It would be useful to identify if the enforcement of block diagonalisation of a

parahermitian matrix via SMS aids or hinders spectral majorisation. Related to these

sources of future work is the potential to detect which channels contributing to a space-

185

Chapter 6. Conclusions

time covariance matrix are already weakly correlated; these channels could perhaps help

to create a ‘natural’ block diagonalisation of the resulting parahermitian matrix. The

‘divide’ scheme of a DaC algorithm might then be able to suppress any remaining small

or sparse coefficients with greater ease, and therefore reach the ‘conquer’ or subsequent

‘divide’ stages faster than a brute-force approach.

Future work in DFT-based PEVD algorithm development includes the utilisation

of alternative optimisation strategies for phase alignment of the eigenvectors. Ideally,

these would avoid the costly matrix inversion required by the novel algorithms discussed

in this thesis. Currently, the DFT-based algorithms do not scale well in terms of

parahermitian matrix order. For emerging DFT-based PEVD algorithms, lower-cost

schemes should be considered. These could utilise smoothness metrics that are less

costly than the one used in Section 5.3.1 and [54,73,74] — which has order K3 [116,117]

— and could perhaps take inspiration from the lost-cost interpolation schemes in [118],

which are of order K log2 K. A final algorithmic source of future work could involve

the identification of a more robust method for computing the greatest common divisor

of multiple polynomials; this would aid the acquisition of minimum-order solutions to

the PEVD despite the presence of polynomial eigenvectors of large order.

Of course, actually applying the new and improved PEVD algorithms discussed in

this thesis in real-world application scenarios is perhaps the largest task for future work.

For this, any of the applications detailed in Chapter 1 could be targeted. On a related

note, the greatest common divisor extraction approach of [115] used in Section 5.5 could

be extended to help with the scene recovery task in [30]. While this could facilitate the

recovery of the magnitude of any transfer functions between an unknown source and

an array of sensors, the phase information would have to be obtained from elsewhere.

With this phase information, future work could continue the efforts of [119, 120] and

attempt to estimate a room’s geometry from its impulse response.

186

Appendix A

Existing PEVD Algorithms and

Performance Metrics

A.1 Sequential Matrix Diagonalisation PEVD Algorithm

Within a reasonable number of iterations, the sequential matrix diagonalisation (SMD)

polynomial matrix eigenvalue decomposition (PEVD) algorithm defined in [45] and

its derivatives [47–50] are able to achieve superior levels of diagonalisation to other

iterative PEVD methods. Given that Section 3.2.1 also identifies that SMD is the most

computationally efficient iterative PEVD algorithm, particular focus is therefore given

to SMD in this thesis. Further detail on the operation of SMD is therefore provided

below, as knowledge of this algorithm may aid the reader’s understanding of the novel

contributions detailed in this thesis.

Below, Section A.1.1 provides a brief summary of the operations used in each iter-

ation of SMD, and Section A.1.2 evaluates the computational complexity of the algo-

rithm.

A.1.1 Algorithm Overview

The SMD algorithm approximates the PEVD using a series of elementary paraunitary

operations to iteratively diagonalise a parahermitian matrix R(z) : C → C
M×M and

its associated coefficient matrix, R[τ].

187

Appendix A. Existing PEVD Algorithms and Performance Metrics

Upon initialisation, the algorithm diagonalises the lag zero coefficient matrix R[0]

by means of its modal matrix Q(0); i.e., S(0)(z) = Q(0)R(z)Q(0)H. The unitary Q(0) —

obtained from the EVD of the lag zero slice R[0] — is applied to all coefficient matrices

R[τ] ∀ τ , and initialises H(0)(z) = Q(0).

In the ith step, i = 1, 2, . . . Î, the SMD algorithm computes

S(i)(z) = U (i)(z)S(i−1)(z)Ũ
(i)
(z)

H(i)(z) = U (i)(z)H (i−1)(z) , (A.1)

in which

U (i)(z) = Q(i)Λ(i)(z) . (A.2)

The product in (A.2) consists of a paraunitary delay matrix

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i) 1 . . . 1
︸ ︷︷ ︸

M−k(i)

} , (A.3)

and a unitary matrix Q(i), with the result that U (i)(z) in (A.2) is paraunitary.

For subsequent discussion, it is convenient to define intermediate variables S(i)′(z)

and H(i)′(z) as the outputs of a ‘shifting’ step, where

S(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃
(i)
(z)

H(i)′(z) = Λ(i)(z)H (i−1)(z) . (A.4)

A further ‘rotation’ (or ‘update’) step obtains the updated polynomial matrices

S(i)(z) = Q(i)S(i)′(z)Q(i)H

H(i)(z) = Q(i)H(i)′(z) . (A.5)

Matrices Λ(i)(z) andQ(i) are selected based on the position of the dominant off-diagonal

188

Appendix A. Existing PEVD Algorithms and Performance Metrics

column in S(i−1)(z) •—◦ S(i−1)[τ], as identified by the parameter set

{k(i), τ (i)} = argmax
k,τ

‖ŝ(i−1)
k [τ]‖2 , (A.6)

where

‖ŝ(i−1)
k [τ]‖2 =

√
√
√
√

M∑

m=1,m6=k

|s(i−1)
m,k [τ]|2 (A.7)

and s
(i−1)
m,k [τ] represents the element in the mth row and kth column of the coefficient

matrix S(i−1)[τ].

The ‘shifting’ process in (A.4) moves the dominant off-diagonal row and column

into the lag zero coefficient matrix S(i)′[0]. The off-diagonal energy in the shifted row

and column is then transferred onto the diagonal by the unitary matrix Q(i) in the

‘rotation’ (or ‘update’) step of (A.5). This matrix Q(i) contains the eigenvectors that

diagonalise S(i)′[0] by means of an ordered EVD.

Truncation of outer coefficients of S(i)(z) and H(i)(z) with small Frobenius norm

is used to limit growth in order. The SMD algoithm uses the truncation approach

detailed in Appendix C.

Iterations of SMD — which has been shown to converge in [45] — continue for

a maximum of Imax steps, or until S(I)(z) is sufficiently diagonalised with dominant

off-diagonal column norm

max
k,τ
‖ŝ(I)k [τ]‖2 ≤ ǫ , (A.8)

where the value of ǫ is chosen to be arbitrarily small. On completion, SMD generates

an approximate PEVD given by

D(z) = S(Î)(z) = F (z)R(z)F̃ (z) , (A.9)

where the parahermitian matrix D(z) approximates a diagonal matrix of polynomial

eigenvalues, Î = min{I, Imax}, and a paraunitary matrix F (z) contains approximate

189

Appendix A. Existing PEVD Algorithms and Performance Metrics

Input: R(z), Imax, ǫ, µ, µt

Output: D(z), F (z)
If µt not specified, µt ← µ

Find eigenvectors Q(0) that diagonalise R[0] ∈ C
M×M

S(0)(z)← Q(0)R(z)Q(0)H; H(0)(z)← Q(0); i← 0; stop ← 0
do

i← i+ 1

Find {k(i), τ (i)} from (A.6); generate Λ(i)(z) from (A.3)

S(i)′(z)← Λ(i)(z)S(i−1)(z)Λ̃(i)(z)

H(i)′(z)← Λ(i)(z)H (i−1)(z)

Find eigenvectors Q(i) that diagonalise S(i)′[0]

S(i)(z)← Q(i)S(i)′(z)Q(i)H

H(i)(z)← Q(i)H(i)′(z)
if i > Imax or (A.8) satisfied then

stop ← 1;
end

Truncate H(i)(z) using threshold µt according to Appendix C

Truncate S(i)(z) using threshold µ according to Appendix C

while stop = 0

F (z)←H(i)(z)

D(z)← S(i)(z)

Algorithm 13: SMD algorithm

polynomial eigenvectors and is a concatenation of the paraunitary matrices:

F (z) = H(Î)(z) = U (Î)(z) · · ·U (0)(z) =
Î∏

i=0

U (Î−i)(z) . (A.10)

For reference purposes, pseudocode for the SMD algorithm is provided in Algorithm 13.

A.1.2 Algorithm Complexity

At the ith iteration, the length of S(i)′(z) is equal to L{S(i)′(z)}, where L{·} com-

putes the length of a polynomial matrix. For (A.5), every matrix-valued coefficient

in S(i)′(z) must be left- and right-multiplied with a unitary matrix. Accounting for

a multiplication of 2 M ×M matrices by M3 multiply-accumulates (MACs) [2, 95], a

total of 2L{S(i)′(z)}M3 MACs arise to generate S(i)(z). Every matrix-valued coeffi-

cient in H(i)′(z) must also be left-multiplied with a unitary matrix; thus, a total of

190

Appendix A. Existing PEVD Algorithms and Performance Metrics

L{H(i)′(z)}M3 MACs arise to generate H(i)(z). If ǫ = 0, the cumulative complexity

of the SMD algorithm over Imax iterations can therefore be approximated as

CSMD(Imax) = M3
Imax∑

i=0

(2L{S(i)′(z)} + L{H (i)′(z)}) . (A.11)

A.2 Existing DFT-Based Approach to the PEVD

A discrete Fourier transform (DFT)-based PEVD formulation, which transforms the

problem into a pointwise in frequency standard matrix decomposition, is provided

in [53]. The method can either return a spectrally majorised decomposition, or at-

tempt to compute smooth, approximately analytic, eigenvalues. The inherent drawback

of a lack of phase-coherence between independent frequency bins [81] is solved via a

quadratic non-linear minimisation problem, which encourages phase alignment between

adjacent bins. A comparison between the characteristics of this approach versus the

SMD algorithm — which is summarised in Section A.1 — is given in Section 5.2; a

description of the former is therefore provided below for reference purposes.

Section A.2.1 gives a brief overview of the DFT-based approach defined in [53], while

Sections A.2.2 and A.2.3 describe methods used within the algorithm to approximate

analytic eigenvalues and adjust eigenvector phase.

A.2.1 Algorithm Overview

The approach in [53] uses a decomposition of the form

R[k] = Q[k]D[k]QH[k] , k = 0, 1, . . . ,K − 1 , (A.12)

where Q[k] contains the eigenvectors and D[k] contains the eigenvalues obtained from

the K-point DFT of R[τ],

R[k] = R(z)|z=ejΩk =
∑

τ

R[τ]e−jΩkτ , k = 0, 1, . . . ,K − 1 . (A.13)

191

Appendix A. Existing PEVD Algorithms and Performance Metrics

An approximate PEVD is therefore obtained via K EVDs that are pointwise in fre-

quency.

The PEVD in (2.4) corresponds to a linear convolution in the coefficient domain;

however, the DFT-based decomposition here corresponds to the circular convolution

R[((τ))K] = Q[((τ))K]⊛D[((τ))K]⊛QH[−((τ))K] , (A.14)

where⊛ is the circular convolution operator, and ((τ))K denotes τ moduloK. For (A.14)

to be equivalent to (2.4), the number of frequency bins must satisfy

K ≥ (2N + L− 2) , (A.15)

where L = (2T + 1) is the length of input parahermitian matrix R(z), which has

maximum lag T , and N is the assumed length of the paraunitary matrix. That is,

Q[τ] = 0 for τ ≥ N and τ < 0. Typically, choosing K = (2N + L − 2) is valid, as

decomposition accuracy does not increase significantly for largerK [53], but algorithmic

computational complexity does.

At each frequency bin, eigenvalues are typically arranged in descending order;

this results in approximate spectral majorisation of the polynomial eigenvalues. Sec-

tion A.2.2 discusses the rearrangement of eigenvalues to approximate an analytic de-

composition.

Each eigenvector in a conventional EVD may be influenced by an arbitrary scalar

phase angle and still be valid. This ambiguity in phase of each eigenvector can lead

to discontinuities in phase between adjacent frequency bins. For a short paraunitary

matrix Q(z), these discontinuities must be smoothed. This is achieved through the

use of a phase alignment function, described in Section A.2.3, which uses the ‘dogleg’

algorithm [111] to solve an unconstrained optimisation problem.

Following phase alignment, Q[τ] is computed as

Q[τ] =
1

K

K−1∑

k=0

Q[k]ejΩkτ , τ = 0, 1, . . . , N − 1 , (A.16)

192

Appendix A. Existing PEVD Algorithms and Performance Metrics

and D(z) is a diagonal parahermitian matrix with diagonal elements equal to the

diagonal elements of Q̃(z)R(z)Q(z). Any energy in lags τ = N . . .K − 1 of Q[τ] is

ignored.

A.2.2 Reordering the Eigenvectors and Eigenvalues to Approximate

an Analytic Decomposition

If strong decorrelation is required for an application, but spectral majorisation is not,

then an analytic decomposition may be preferable. In an analytic decomposition, the

eigenvalues and their eigenvectors are arranged such that non-differentiabilities and

discontinuities, respectively, between adjacent frequency bins are minimised. Even for

an arrangement that provides continuous eigenvalues, such discontinuities can occur

when the eigenvalues intersect at some frequencies.

To approximate an analytic decomposition, the eigenvectors in adjacent frequency

bins are rearranged using the inner product

cmn[k] = qHm[k − 1]qn[k] , (A.17)

where, qm[k] is the mth column of Q[k]. For each eigenvector qm[k−1], m = 1 . . .M , a

subsequent eigenvector qm′ [k] is chosen from an initial set S = {1 . . .M} of the columns

of Q[k] such that

m′ = argmax
n∈S

{|cmn[k]|} . (A.18)

Once m′ is identified, it is removed from the set: S ← S\{m′}, and the next eigenvector

is chosen. The selected eigenvectors are combined in a rearranged matrix Q′[k] =

[q1′ [k], · · · ,qM ′ [k]], and Q[k] is set equal to Q′[k]. The eigenvalues D[k] are rearranged

according to the reordering of the eigenvectors.

A.2.3 Adjusting the Phase of the Eigenvectors via Unconstrained Op-

timisation

Phase alignment of eigenvectors in adjacent frequency bins is vital for a compact, low

order decomposition. Thus, if such a decomposition is sought (e.g., here it is desired

193

Appendix A. Existing PEVD Algorithms and Performance Metrics

that only lags τ = 0 . . . N − 1 are non-zero), then phase alignment can be achieved

by finding the phase changes required for each eigenvector qm[k] ∀ m,k such that the

resulting eigenvectors are of low order.

The phase of the mth eigenvector at frequency bin k can be adjusted by an angle

θ[k] according to qm[k]← ejθ[k]qm[k]. For the mth polynomial eigenvector qm[τ] to be

compact, it is required to find angles θ = [θ[1] . . . θ[K − 1]]T, that satisfy

qm[τ] =
1

K

K−1∑

k=0

qm[k]ejθ[k]ejΩkτ = 0 , (A.19)

for τ = N . . . K − 1. Without loss of generality, let θ[0] = 0. Note that θ does not

include θ[0]. Equation (A.19) can be expressed as

FNx(θ) + fN = 0 , (A.20)

where x(θ) = [ejθ[1], ejθ[2], . . . , ejθ[K−1]]T, fN = [qTm[0],qTm[0], . . . ,qTm[0]]T is a M(K −
N)× 1 vector, and

FN =











qm[1]w−N
K qm[2]w−2N

K . . . qm[K − 1]w
−(K−1)N
K

qm[1]w
−(N+1)
K qm[2]w

−2(N+1)
K . . . qm[K − 1]w

−(K−1)(N+1)
K

...
...

. . .
...

qm[1]w
−(K−1)
K qm[2]w

−2(K−1)
K . . . qm[K − 1]w

−(K−1)2

K











(A.21)

is a M(K −N)× (K − 1) matrix, with wK = ej2π/K .

In general, there may exist no phase vector θ which satisfies (A.20). However, by

minimising the energy in the coefficients for τ = N, . . . ,K−1, some θ can be obtained.

The energy in these coefficients,

J(θ) = ‖FNx(θ) + fN‖22 , (A.22)

is therefore used as the objective of an unconstrained minimisation problem. In [53], it

was found that the ‘dogleg’ trust-region strategy for unconstrained minimisation [111]

was able to satisfactorily identify the θ that minimised J(θ) for m = 1 . . .M .

194

Appendix A. Existing PEVD Algorithms and Performance Metrics

Of course, a disadvantage of this method is that it requires an estimate of N prior

to execution. If N is not sufficiently high, convergence of the ‘dogleg’ algorithm can

be poor, resulting in insufficient eigenvector phase alignment and a PEVD with a high

degree of decomposition error.

A.3 Performance Metrics

This section defines several metrics used throughout this thesis to evaluate the quality of

a PEVD. Section A.3.1 defines the well-established diagonalisation metric from [45] and

Section A.3.2 adapts this metric to the case of polynomial matrix upper-triangularisation.

Subsequently, Section A.3.3 establishes a metric to measure the accuracy of the polyno-

mial eigenvalues obtained from a PEVD, Section A.3.4 defines a metric for evaluating

the decomposition mean square error of a PEVD, and Section A.3.5 describes a parau-

nitarity metric for the polynomial eigenvectors from a PEVD. Finally, Section A.3.6

defines an intuitive metric that records paraunitary matrix length.

A.3.1 Normalised Off-Diagonal Energy

Polynomial matrix eigenvalue decomposition algorithms iteratively minimise off-

diagonal energy. To measure their performance, a suitable normalised metric E
(i)
diag [45]

is used, which divides the off-diagonal energy in the iteratively updated parahermitian

matrix S(i)(z) •—◦ S(i)[τ] ∈ C
M×M at the ith algorithm iteration by the total energy

in the original parahermitian matrix R(z). The metric is defined as

E
(i)
diag =

∑

τ

∑M
k=1 ‖ŝ

(i)
k [τ]‖22

∑

τ ‖R[τ]‖2F
, (A.23)

with

‖ŝ(i)k [τ]‖22 =

P∑

m=1,m6=k

|s(i)m,k[τ]|2 (A.24)

where s
(i)
m,k[τ] represents the element in the mth row and kth column of S(i)[τ].

Computation of E
(i)
diag generates squared covariance terms; therefore a logarithmic

notation of 5 log10 E
(i)
diag is employed. Note that diagonalisation metric Ediag, which

195

Appendix A. Existing PEVD Algorithms and Performance Metrics

omits the iteration parameter i, measures the diagonalisation obtained by a PEVD

algorithm following the completion of all iterations.

A.3.2 Normalised Below-Diagonal Energy

Polynomial matrix QR decomposition algorithms iteratively minimise lower-triangular

energy. To measure their performance, a suitable normalised metric E
(i)
tri is used,

which divides the lower-triangular energy in the iteratively updated polynomial ma-

trix A(i)(z) •—◦ A(i)[τ] ∈ C
P×Q at the ith algorithm iteration by the total energy in

the original matrix A(z). The metric is defined as

E
(i)
tri =

∑

τ

∑min{(P−1),Q}
k=1 ‖â(i)k [τ]‖22
∑

τ ‖A[τ]‖2F
, (A.25)

with

‖â(i)k [τ]‖22 =
P∑

j=k+1

|a(i)j,k[τ]|2 , (A.26)

where a
(i)
j,k[τ] represents the element in the jth row and kth column of A(i)[τ].

Note that for demonstration purposes, the iteration parameter i describes the run-

ning total of iterations, and is not reset, e.g., at the beginning of each column step of

the polynomial matrix QR decomposition by columns algorithm from [42].

Unlike the computation in (A.23), (A.25) does not necessarily square covariance

terms, therefore a logarithmic metric of 10 log10 E
(i)
tri is used.

A.3.3 Eigenvalue Resolution

The eigenvalue resolution is defined as the mean normalised absolute error between the

ground truth and measured eigenvalue PSDs:

λres =
1

MK

M∑

m=1

K−1∑

k=0

∣
∣
∣
∣
∣

Dm,m[k]− Ŵm,m[k]

Ŵm,m[k]

∣
∣
∣
∣
∣
, (A.27)

where D[k] is obtained from the K-point DFT of eigenvalues D[τ] ∈ C
M×M computed

by a PEVD and Ŵ[k] is found by appropriately associating values of the K-point DFT

196

Appendix A. Existing PEVD Algorithms and Performance Metrics

of ground truth eigenvalues W[τ]. For example, if D[k] is obtained from an iterative

time domain PEVD algorithm and therefore approximately spectrally majorised for all

k, the eigenvalues in Ŵ[k] will be ordered such that they are also spectrally majorised.

A suitable K is identified as the smallest power of two greater than the lengths of D(z)

and W (z). The normalisation in (A.27) will give emphasis to the correct extraction of

small eigenvalues in the presence of stronger ones, and is therefore similar to the coding

gain metric in [25].

A.3.4 Decomposition Mean Square Error

Denote the mean square reconstruction error for an approximate PEVD as

MSE =
1

M2L′

∑

τ
‖ER[τ]‖2F , (A.28)

where ER[τ] = R̂[τ] − R[τ], R[τ] ∈ C
M×M , R̂(z) = F̃ (z)D(z)F (z), and L′ is the

length of ER(z). Matrices D(z) and F (z) = Q̃(z) are polynomial eigenvalues and

eigenvectors computed by a PEVD.

A.3.5 Paraunitarity Error

The paraunitarity error for polynomial eigenvectors F (z) = Q̃(z) : C → C
M×M ob-

tained by a PEVD is defined as

η =
1

M

∑

τ
‖EF [τ]− IM[τ]‖2F , (A.29)

where EF (z) = F (z)F̃ (z), IM[0] is an M ×M identity matrix, and IM[τ] for τ 6= 0 is

an M ×M matrix of zeroes.

A.3.6 Paraunitary Filter Length

The paraunitary matrix F (z) = Q̃(z) output by a PEVD algorithm can be implemented

as a lossless bank of finite impulse response filters in signal processing applications; a

useful metric for gauging the implementation cost of this matrix is its length, LF = LQ,

which — via the definitions in Section 2.1 — directly relates to the order of the filters.

197

Appendix B

Broadband Randomised Source

Model

A randomised source model from [45] generates a parahermitian matrix R(z) =

Q̃(z)D(z)Q(z), where D(z) : C → C
M×M is a diagonal parahermitian matrix con-

taining the PSDs of M independent sources. These sources are spectrally shaped by

innovation filters such thatD(z) has an order of OD, with a restriction on the placement

of zeros to limit the dynamic range of the PSDs to about ∆DR dB. A random parau-

nitary matrix Q(z) : C → C
M×M of order OQ performs a convolutive mixing of these

sources, such that R(z) has a full polynomial rank and an order of OR = 2OQ + OD.

Assuming that Q(z) is of minimum order — i.e., it cannot be reduced to the product of

a paraunitary matrix and a diagonal paraunitary matrix — an ideal PEVD algorithm

will recover D(z) and Q(z) (or equivalently, F (z) = Q̃(z)) given R(z).

198

Appendix C

State-of-the-Art in Polynomial

Matrix Truncation

The polynomial matrix truncation method from [61] is described here. This approach

reduces the order of a polynomial matrix Y (z) — which has minimum lag T1 and

maximum lag T2 — by removing the T3(µ) leading and T4(µ) trailing lags using a trim

function

ftrim(Y[τ], µ) =







Y[τ], T1 + T3(µ) ≤ τ ≤ T2 − T4(µ)

0, otherwise .
(C.1)

The amount of energy lost by removing the T3(µ) leading and T4(µ) trailing lags of

Y[τ] via the ftrim(·) operation is measured by

γtrim = 1−
∑

τ ‖ftrim(Y[τ], µ)‖2F
∑

τ ‖Y[τ]‖2F
, (C.2)

where ‖ · ‖F is the Frobenius norm. A parameter µ is used to provide an upper bound

for γtrim. The truncation procedure can be expressed as the constrained optimisation

problem:

maximise {T3(µ) + T4(µ)} , s.t. γtrim ≤ µ . (C.3)

This is implemented by removing the outermost matrix coefficients of matrix Y (z)

until γtrim approaches µ from below. Note that if Y (z) is parahermitian, T1 = −T2

and T3(µ) = T4(µ) due to symmetry.

199

Appendix D

Spatio-Spectral MUSIC

Algorithm

The spatio-spectral polynomial MUSIC (SSP-MUSIC) algorithm [18] is an extension

of narrowband MUSIC [77] to the broadband case. The idea of the SSP-MUSIC al-

gorithm is to scan the noise-only subspace Qn(z) = F̃ n(z) = [qR+1(z) . . . qM (z)] :

C → C
M×(M−R), which is spanned by eigenvectors corresponding to eigenvalues close

to the noise floor, Dn(z) ≈ σ2
vIM−R. The steering vectors of the R sources that con-

tribute to R(z) : C→ C
M×M will define the signal-plus-noise subspace Qs(z) = F̃ s(z)

and therefore lie in the nullspace of its complement Qn(z). As a result, the vector

Q̃n(e
jΩ)aϑ,ϕ(e

jΩ) has to be close to the origin for aϑ,ϕ(e
jΩ) to be a steering vector of

a contributing source at frequency Ω, where Q̃n(e
jΩ) = Q̃n(z)|z=ejΩ and aϑ,ϕ(e

jΩ) =

aϑ,ϕ(z)|z=ejΩ . Thus, the SSP-MUSIC algorithm evaluates the reciprocal of the norm of

this vector,

PSSP(ϑ,ϕ,Ω) =
1

ãϑ,ϕ(z)Qn(z)Q̃n(z)aϑ,ϕ(z)

∣
∣
∣
z=ejΩ

, (D.1)

which is large when aϑ,ϕ(e
jΩ) is a steering vector of a contributing source. In addition

to estimating the spatial direction of sources in terms of azimuth, ϑ, and elevation,

ϕ, PSSP(ϑ,ϕ,Ω) can determine over which frequency range sources in the direction

defined by the steering vector aϑ,ϕ(z) are active. If ϕ is assumed or known to be zero,

the notation PSSP(ϑ,Ω) is used.

200

Bibliography

[1] G. W. Stewart, “The decompositional approach to matrix computation,” Com-

puting in Science & Engineering, vol. 2, no. 1, pp. 50–59, 2000.

[2] G. Golub and C. V. Loan, Matrix computations, 4th ed. Baltimore, Maryland:

John Hopkins University Press, 2013.

[3] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials. New York:

Academic Press, 1982.

[4] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs:

Prentice Hall, 1993.

[5] J. G. McWhirter and P. D. Baxter, “A Novel Technqiue for Broadband SVD,” in

12th Annual Workshop on Adaptive Sensor Array Processing, MIT Lincoln Labs,

Cambridge, MA, 2004.

[6] J. G. McWhirter, P. D. Baxter, T. Cooper, S. Redif, and J. Foster, “An EVD Al-

gorithm for Para-Hermitian Polynomial Matrices,” IEEE Transactions on Signal

Processing, vol. 55, no. 5, pp. 2158–2169, May 2007.

[7] S. Icart and P. Comon, “Some properties of Laurent polynomial matrices,” in

IMA International Conference on Signal Processing in Mathematics, December

2012.

[8] P. P. Vaidyanathan, “Theory of optimal orthonormal subband coders,” IEEE

Transactions on Signal Processing, vol. 46, no. 6, pp. 1528–1543, June 1998.

201

Bibliography

[9] S. Weiss, J. Pestana, and I. K. Proudler, “On the existence and uniqueness of

the eigenvalue decomposition of a parahermitian matrix,” IEEE Transactions on

Signal Processing, vol. 66, no. 10, pp. 2659–2672, May 2018.

[10] S. Weiss, J. Pestana, I. K. Proudler, and F. K. Coutts, “Corrections to ‘On

the existence and uniqueness of the eigenvalue decomposition of a parahermitian

matrix’,” IEEE Transactions on Signal Processing, vol. 66, no. 23, pp. 6325–6327,

December 2018.

[11] C. Delaosa, F. K. Coutts, J. Pestana, and S. Weiss, “Impact of space-time co-

variance estimation errors on a parahermitian matrix EVD,” in IEEE Workshop

on Sensor Array and Multichannel Signal Processing, July 2018, pp. 164–168.

[12] C. H. Ta and S. Weiss, “A design of precoding and equalisation for broad-

band MIMO systems,” in Proc. Asilomar Conf. Signals, Systems and Computers,

November 2007, pp. 1616–1620.

[13] R. Brandt and M. Bengtsson, “Wideband MIMO channel diagonalization in

the time domain,” in Proc. Int. Symp. Pers., Indoor, Mobile Radio Commun.,

September 2011, pp. 1958–1962.

[14] N. Moret, A. Tonello, and S. Weiss, “MIMO precoding for filter bank modulation

systems based on PSVD,” in Proc. IEEE 73rd Veh. Technol. Conf., May 2011.

[15] C. H. Ta and S. Weiss, “A jointly optimal precoder and block decision feed-

back equaliser design with low redundancy,” in 15th European Signal Processing

Conference, September 2007, pp. 489–492.

[16] J. Foster, J. G. McWhirter, S. Lambotharan, I. K. Proudler, M. Davies, and

J. Chambers, “Polynomial matrix QR decomposition for the decoding of fre-

quency selective multiple-input multiple-output communication channels,” IET

Signal Processing, vol. 6, no. 7, pp. 704–712, September 2012.

[17] S. Weiss, M. Alrmah, S. Lambotharan, J. McWhirter, and M. Kaveh, “Broadband

angle of arrival estimation methods in a polynomial matrix decomposition frame-

202

Bibliography

work,” in IEEE 5th Int. Workshop Comp. Advances in Multi-Sensor Adaptive

Process., December 2013, pp. 109–112.

[18] M. Alrmah, S. Weiss, and S. Lambotharan, “An extension of the MUSIC al-

gorithm to broadband scenarios using polynomial eigenvalue decomposition,” in

19th European Signal Processing Conference, August 2011, pp. 629–633.

[19] M. Alrmah, J. Corr, A. Alzin, K. Thompson, and S. Weiss, “Polynomial sub-

space decomposition for broadband angle of arrival estimation,” in Sensor Signal

Processing for Defence Conference, September 2014.

[20] F. K. Coutts, K. Thompson, S. Weiss, and I. K. Proudler, “Impact of fast-

converging PEVD algorithms on broadband AoA estimation,” in Sensor Signal

Processing for Defence Conference, December 2017.

[21] S. Redif, J. G. McWhirter, P. D. Baxter, and T. Cooper, “Robust broad-

band adaptive beamforming via polynomial eigenvalues,” in Proc. IEEE/MTS

OCEANS, September 2006.

[22] S. Weiss, S. Bendoukha, A. Alzin, F. K. Coutts, I. K. Proudler, and J. Chambers,

“MVDR broadband beamforming using polynomial matrix techniques,” in 23rd

European Signal Processing Conference, September 2015, pp. 839–843.

[23] A. Alzin, F. K. Coutts, J. Corr, S. Weiss, I. K. Proudler, and J. A. Cham-

bers, “Adaptive broadband beamforming with arbitrary array geometry,” in

IET/EURASIP ISP, December 2015.

[24] ——, “Polynomial matrix formulation-based Capon beamformer,” in IMA Inter-

national Conference on Signal Processing in Mathematics, December 2016.

[25] S. Redif, J. McWhirter, and S. Weiss, “Design of FIR paraunitary filter banks

for subband coding using a polynomial eigenvalue decomposition,” IEEE Trans-

actions on Signal Processing, vol. 59, no. 11, pp. 5253–5264, November 2011.

203

Bibliography

[26] S. Weiss, “On the design of oversampled filter banks for channel coding,” in 12th

European Signal Processing Conference, September 2004, pp. 885–888, invited

paper.

[27] S. Weiss, S. Redif, T. Cooper, C. Liu, P. D. Baxter, and J. G. McWhirter, “Pa-

raunitary oversampled filter bank design for channel coding,” EURASIP Journal

of Applied Signal Processing.

[28] S. Redif, “Convolutive blind signal separation via polynomial matrix generalised

eigenvalue decomposition,” Electronics Letters, vol. 53, no. 2, pp. 87–89, 2017.

[29] J. Corr, J. Pestana, S. Weiss, I. K. Proudler, S. Redif, and M. Moonen, “In-

vestigation of a polynomial matrix generalised EVD for multi-channel Wiener

filtering,” in Proc. Asilomar Conf. Signals, Systems and Computers, November

2016, pp. 1354–1358.

[30] S. Weiss, N. J. Goddard, S. Somasundaram, I. K. Proudler, and P. A. Nay-

lor, “Identification of broadband source-array responses from sensor second order

statistics,” in Sensor Signal Processing for Defence Conference, December 2017.

[31] C. H. Ta and S. Weiss, “Design of precoding and equalisation for broad-

band MIMO transmission,” in IEE/EURASIP Conference on DSPenabledRadio,

September 2005.

[32] W. Al-Hanafy, A. P. Millar, C. H. Ta, and S. Weiss, “Broadband SVD and

non-linear precoding applied to broadband MIMO channels,” in Proc. Asilomar

Conf. Signals, Systems and Computers, October 2008, pp. 2053–2057.

[33] W. Al-Hanafy and S. Weiss, “Comparison of precoding methods for broadband

MIMO systems,” in IEEE 3rd Int. Workshop Comp. Advances in Multi-Sensor

Adaptive Process., 2009.

[34] S. Weiss, P. Yarr, W. Al-Hanafy, A. Millar, and C.-H. Ta, “An oversampled

modulated filter bank transmultiplexer with precoding and equalisation,” in 3rd

Workshop on Power Line Communications, October 2009.

204

Bibliography

[35] A. Sandmann, A. Ahrens, and S. Lochmann, “Resource allocation in SVD-

assisted optical MIMO systems using polynomial matrix factorization,” in Proc.

16. ITG Symp. Photon. Netw., May 2015.

[36] A. Ahrens, A. Sandmann, E. Auer, and S. Lochmann, “Optimal power allocation

in zero-forcing assisted PMSVD-based optical MIMO systems,” in Sensor Signal

Processing for Defence Conference, December 2017.

[37] A. A. Nagy and S. Weiss, “Channel equalisation of a MIMO FBMC/OQAM

system using a polynomial matrix pseudo-inverse,” in 10th IEEE Workshop on

Sensor Array and Multichannel Signal Processing, July 2018, pp. 568–572.

[38] X. Mestre and D. Gregoratti, “A parallel processing approach to filterbank mul-

ticarrier MIMO transmission under strong frequency selectivity,” in IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, May 2014, pp.

8078–8082.

[39] A. I. Prez-Neira, M. Caus, R. Zakaria, D. L. Ruyet, E. Kofidis, M. Haardt,

X. Mestre, and Y. Cheng, “MIMO signal processing in offset-QAM based filter

bank multicarrier systems,” IEEE Transactions on Signal Processing, vol. 64,

no. 21, pp. 5733–5762, November 2016.

[40] J. A. Foster, J. G. McWhirter, and J. A. Chambers, “An algorithm for computing

the QR decomposition of a polynomial matrix,” in Proc. 15th Int. Conf. Digital

Signal Process., July 2007, pp. 71–74.

[41] ——, “A polynomial matrix QR decomposition with application to MIMO chan-

nel equalisation,” in Proc. Asilomar Conf. Signals, Systems and Computers,

November 2007, pp. 1379–1383.

[42] ——, “A novel algorithm for calculating the QR decomposition of a polynomial

matrix,” in IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing, April 2009, pp. 3177–3180.

205

Bibliography

[43] J. A. Foster, J. G. McWhirter, M. R. Davies, and J. A. Chambers, “An algorithm

for calculating the QR and singular value decompositions of polynomial matrices,”

IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1263–1274, March

2010.

[44] J. G. McWhirter, “An algorithm for polynomial matrix SVD based on generalised

Kogbetliantz transformations,” in 18th European Signal Processing Conference,

August 2010, pp. 457–461.

[45] S. Redif, S. Weiss, and J. McWhirter, “Sequential matrix diagonalization algo-

rithms for polynomial EVD of parahermitian matrices,” IEEE Transactions on

Signal Processing, vol. 63, no. 1, pp. 81–89, January 2015.

[46] Z. Wang, J. G. McWhirter, J. Corr, and S. Weiss, “Multiple shift second order

sequential best rotation algorithm for polynomial matrix EVD,” in 23rd European

Signal Processing Conference, September 2015, pp. 844–848.

[47] J. Corr, K. Thompson, S. Weiss, J. McWhirter, S. Redif, and I. K. Proudler,

“Multiple shift maximum element sequential matrix diagonalisation for paraher-

mitian matrices,” in IEEE Workshop on Statistical Signal Processing, June 2014,

pp. 312–315.

[48] J. Corr, K. Thompson, S. Weiss, J. G. McWhirter, and I. K. Proudler, “Causality-

Constrained multiple shift sequential matrix diagonalisation for parahermitian

matrices,” in 22nd European Signal Processing Conference, September 2014, pp.

1277–1281.

[49] J. Corr, K. Thompson, S. Weiss, J. McWhirter, and I. K. Proudler, “Cyclic-by-

row approximation of iterative polynomial EVD algorithms,” in Sensor Signal

Processing for Defence Conference, September 2014.

[50] J. Corr, K. Thompson, S. Weiss, I. K. Proudler, and J. G. McWhirter, “Reduced

search space multiple shift maximum element sequential matrix diagonalisation

algorithm,” in IET Int. Conf. Intelligent Sig. Process., December 2015.

206

Bibliography

[51] A. Tkacenko and P. P. Vaidyanathan, “Iterative greedy algorithm for solving the

FIR paraunitary approximation problem,” IEEE Transactions on Signal Process-

ing, vol. 54, no. 1, pp. 146–160, January 2006.

[52] A. Tkacenko, “Approximate eigenvalue decomposition of para-Hermitian sys-

tems through successive FIR paraunitary transformations,” in IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, March 2010, pp.

4074–4077.

[53] M. Tohidian, H. Amindavar, and A. M. Reza, “A DFT-based approximate eigen-

value and singular value decomposition of polynomial matrices,” EURASIP J.

Adv. Signal Process., vol. 93, December 2013.

[54] S. Weiss, I. K. Proudler, F. K. Coutts, and J. Pestana, “Iterative approximation

of analytic eigenvalues of a parahermitian matrix EVD,” in IEEE International

Conference on Acoustics, Speech, and Signal Processing, May 2019.

[55] J. G. McWhirter and Z. Wang, “A novel insight to the SBR2 algorithm for diag-

onalising para-Hermitian matrices,” in IMA International Conference on Signal

Processing in Mathematics, December 2016.

[56] F. K. Coutts, K. Thompson, I. Proudler, and S. Weiss, “A comparison of it-

erative and DFT-based polynomial matrix eigenvalue decompositions,” in IEEE

7th Int. Workshop Comp. Advances in Multi-Sensor Adaptive Process., December

2017.

[57] S. Kasap and S. Redif, “FPGA-based design and implementation of an approx-

imate polynomial matrix EVD algorithm,” in 2012 International Conference on

Field-Programmable Technology, Dec 2012, pp. 135–140.

[58] ——, “FPGA implementation of a second-order convolutive blind signal separa-

tion algorithm,” in 2013 21st Signal Processing and Communications Applications

Conference, April 2013.

207

Bibliography

[59] ——, “Novel field-programmable gate array architecture for computing the eigen-

value decomposition of para-hermitian polynomial matrices,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 3, pp. 522–536,

March 2014.

[60] J. Foster, J. G. McWhirter, and J. Chambers, “Limiting the order of polynomial

matrices within the SBR2 algorithm,” in IMA International Conference on Signal

Processing in Mathematics, December 2006.

[61] C. H. Ta and S. Weiss, “Shortening the order of paraunitary matrices in SBR2

algorithm,” in Int. Conf. Information, Comm. and Sig. Process., December 2007.

[62] J. Corr, K. Thompson, S. Weiss, I. K. Proudler, and J. McWhirter, “Row-shift

corrected truncation of paraunitary matrices for PEVD algorithms,” in 23rd Eu-

ropean Signal Processing Conference, September 2015, pp. 849–853.

[63] ——, “Shortening of paraunitary matrices obtained by polynomial eigenvalue

decomposition algorithms,” in Sensor Signal Processing for Defence Conference,

September 2015.

[64] F. K. Coutts, K. Thompson, S. Weiss, and I. K. Proudler, “Analysing the perfor-

mance of divide-and-conquer sequential matrix diagonalisation for large broad-

band sensor arrays,” in IEEE International Workshop on Signal Processing Sys-

tems, October 2017.

[65] J. Corr, K. Thompson, S. Weiss, J. McWhirter, and I. K. Proudler, “Performance

trade-offs in sequential matrix diagonalisation search strategies,” in IEEE 6th

Int. Workshop Comp. Advances in Multi-Sensor Adaptive Process., December

2015.

[66] J. Corr, Advanced Algorithms for Polynomial Matrix Eigenvalue Decomposition.

Glasgow, UK: Ph.D. dissertation, Univ. of Strathclyde, 2017.

[67] F. K. Coutts, J. Corr, K. Thompson, S. Weiss, I. K. Proudler, and J. G.

McWhirter, “Memory and complexity reduction in parahermitian matrix manip-

208

Bibliography

ulations of PEVD algorithms,” in 24th European Signal Processing Conference,

August 2016, pp. 1633–1637.

[68] ——, “Complexity and search space reduction in cyclic-by-row PEVD algo-

rithms,” in Proc. Asilomar Conf. Signals, Systems and Computers, November

2016, pp. 1349–1353.

[69] F. K. Coutts, K. Thompson, I. Proudler, and S. Weiss, “Restricted update sequen-

tial matrix diagonalisation for parahermitian matrices,” in IEEE 7th Int. Work-

shop Comp. Advances in Multi-Sensor Adaptive Process., December 2017.

[70] F. K. Coutts, J. Corr, K. Thompson, S. Weiss, I. K. Proudler, and J. McWhirter,

“Multiple shift QR decomposition for polynomial matrices,” in IMA International

Conference on Signal Processing in Mathematics, December 2016.

[71] F. K. Coutts, J. Corr, K. Thompson, I. K. Proudler, and S. Weiss, “Divide-and-

conquer sequential matrix diagonalisation for parahermitian matrices,” in Sensor

Signal Processing for Defence Conference, December 2017.

[72] F. K. Coutts, I. K. Proudler, and S. Weiss, “Efficient implementation of iter-

ative polynomial matrix EVD algorithms exploiting structural redundancy and

parallelisation,” IEEE Transactions on Circuits and Systems I, Submitted March

2019.

[73] F. K. Coutts, K. Thompson, J. Pestana, I. K. Proudler, and S. Weiss, “En-

forcing eigenvector smoothness for a compact DFT-based polynomial eigenvalue

decomposition,” in IEEE Workshop on Sensor Array and Multichannel Signal

Processing, July 2018, pp. 159–163.

[74] F. K. Coutts, K. Thompson, I. K. Proudler, and S. Weiss, “An iterative DFT-

based approach to the polynomial matrix eigenvalue decomposition,” in Proc.

Asilomar Conf. Signals, Systems and Computers, October 2018, pp. 1011–1015.

[75] S. Haykin, Adaptive Filter Theory. Englewood Cliffs: Prentice Hall, 2002.

[76] I. T. Jolliffe, Principal Component Analysis. New York: Springer, 2002.

209

Bibliography

[77] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,”

IEEE Transactions Ant. Prop., vol. 34, no. 3, pp. 276–280, Mar. 1986.

[78] K. J. Pope and R. E. Bogner, “Blind signal separation II: Linear, convolutive

combinations,” Digital Signal Processing, vol. 6, no. 1, pp. 17–28, January 1996.

[79] T. Kailath, Linear Systems. Englewood Cliffs: Prentice Hall, 1980.

[80] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Com-

munications. Cambridge, UK: Cambridge University Press, 2003.

[81] R. Klemm, Space-time Adaptive Processing Principles and Applications. Insti-

tution of Electrical Engineers, 1998.

[82] P. A. Regalia and D.-Y. Huang, “Attainable error bounds in multirate adaptive

lossless FIR filters,” in IEEE International Conference on Acoustics, Speech, and

Signal Processing, vol. 2, May 1995, pp. 1460–1463.

[83] S. Redif, S. Weiss, and J. G. McWhirter, “An approximate polynomial matrix

eigenvalue decomposition algorithm for para-Hermitian matrices,” in Proc. 11th

IEEE Int. Symp. Signal Process. Inf. Technol., December 2011, pp. 421–425.

[84] J. Corr, K. Thompson, S. Weiss, J. G. McWhirter, and I. K. Proudler, “Maximum

energy sequential matrix diagonalisation for parahermitian matrices,” in Proc.

Asilomar Conf. Signals, Systems and Computers, November 2014, pp. 470–474.

[85] R. H. Lambert, M. Joho, and H. Mathis, “Polynomial singular values for number

of wideband source estimation and principal component analysis,” in Proc. Int.

Conf. Independ. Compon. Analysis, December 2001, pp. 379–383.

[86] “Polynomial matrix EVD toolbox.” [Online]. Available:

pevd-toolbox.eee.strath.ac.uk (Date last accessed May 29, 2019).

[87] J. G. F. Francis, “The QR transformation a unitary analogue to the LR trans-

formation – part 1,” The Computer Journal, vol. 4, no. 3, pp. 265–271, January

1961.

210

pevd-toolbox.eee.strath.ac.uk

Bibliography

[88] Z. Wang, J. McWhirter, J. Corr, and S. Weiss, “Order-controlled multiple shift

SBR2 algorithm for para-hermitian polynomial matrices,” in IEEE Workshop on

Sensor Array and Multichannel Signal Processing, July 2016.

[89] MathWorksR©, “Matlab R© vectorization.” [Online]. Available:

uk.mathworks.com/help/matlab/matlab prog/vectorization.html (Date last ac-

cessed May 29, 2019).

[90] S. W. Smith, The Scientist & Engineer’s Guide to Digital Signal Processing.

California Technical Pub, 1997.

[91] MathWorksR©, “Matlab R© FFT functionality.” [Online]. Available:

https://uk.mathworks.com/help/matlab/ref/fft.html (Date last accessed May

29, 2019).

[92] M. Frigo and S. G. Johnson, “FFTW web page.” [Online]. Available:

http://www.fftw.org/ (Date last accessed May 29, 2019).

[93] ——, “The design and implementation of FFTW3,” Proceedings of the IEEE,

vol. 93, no. 2, pp. 216–231, February 2005, special issue on “Program Generation,

Optimization, and Platform Adaptation”.

[94] J. Tursa, “MTIMESX - fast matrix multi-

ply with multi-dimensional support.” [Online]. Available:

https://uk.mathworks.com/matlabcentral/fileexchange/25977 (Date last ac-

cessed May 29, 2019).

[95] S. S. Skiena, The Algorithm Design Manual. London: Springer, 2008.

[96] A. Jafarian and J. McWhirter, “A novel method for multichannel spectral fac-

torization,” in 20th European Signal Processing Conference, August 2012, pp.

1069–1073.

[97] C. Grozea, Z. Bankovic, and P. Laskov, “Facing the multicore-challenge.” Berlin,

Heidelberg: Springer-Verlag, 2010, ch. FPGA vs. Multi-core CPUs vs. GPUs:

Hands-on Experience with a Sorting Application, pp. 105–117.

211

uk.mathworks.com/help/matlab/matlab_prog/vectorization.html
https://uk.mathworks.com/help/matlab/ref/fft.html
http://www.fftw.org/
https://uk.mathworks.com/matlabcentral/fileexchange/25977

Bibliography

[98] B. Betkaoui, D. B. Thomas, and W. Luk, “Comparing performance and energy

efficiency of FPGAs and GPUs for high productivity computing,” in 2010 In-

ternational Conference on Field-Programmable Technology, December 2010, pp.

94–101.

[99] Victor Eijkhout with Robert van de Geijn and Edmond Chow, Intro-

duction to High Performance Scientific Computing. lulu.com, 2011,

http://www.tacc.utexas.edu/∼eijkhout/istc/istc.html.

[100] J. Fowers, G. Brown, J. Wernsing, and G. Stitt, “A performance and energy

comparison of convolution on GPUs, FPGAs, and Multicore Processors,” ACM

Trans. Archit. Code Optim., vol. 9, no. 4, pp. 25:1–25:21, 2013.

[101] U. I. Minhas, S. Bayliss, and G. A. Constantinides, “GPU vs FPGA: A compar-

ative analysis for non-standard precision,” in Reconfigurable Computing: Archi-

tectures, Tools, and Applications. Springer International Publishing, 2014, pp.

298–305.

[102] G. Brassard and P. Bratley, Fundamental of Algorithmics. Prentice-Hall, 1996.

[103] C. A. R. Hoare, “Algorithm 64: Quicksort,” Commun. ACM, vol. 4, no. 7, p.

321, Jul. 1961.

[104] J. J. M. Cuppen, “A divide and conquer method for the symmetric tridiagonal

eigenproblem,” Numerische Mathematik, vol. 36, no. 2, pp. 177–195, Jun 1980.

[105] J. J. Dongarra and D. C. Sorensen, “A fully parallel algorithm for the symmet-

ric eigenvalue problem,” SIAM Journal on Scientific and Statistical Computing,

vol. 8, no. 2, pp. 139–154, 1987.

[106] D. Gill and E. Tadmor, “An O(N2) method for computing the eigensystem of

N × N symmetric tridiagonal matrices by the divide and conquer approach,”

SIAM Journal on Scientific and Statistical Computing, vol. 11, no. 1, pp. 161–

173, 1990.

212

http://www.tacc.utexas.edu/~eijkhout/istc/istc.html

Bibliography

[107] P. Pal and P. P. Vaidyanathan, “A novel autofocusing approach for estimating

directions-of-arrival of wideband signals,” in Proc. Asilomar Conf. Signals, Sys-

tems and Computers, November 2009, pp. 1663–1667.

[108] T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine, “Splitting the Unit

Delay,” IEEE Signal Processing Magazine, vol. 13, no. 1, pp. 30–60, January

1996.

[109] J. Selva, “An efficient structure for the design of variable fractional delay fil-

ters based on the windowing method,” IEEE Transactions on Signal Processing,

vol. 56, no. 8, pp. 3770–3775, August 2008.

[110] C. H. Ta and S. Weiss, “A design of precoding and equalisation for broadband

MIMO systems,” in Proc. 15th Int. Conf. Digital Signal Process., July 2007, pp.

571–574.

[111] M. J. D. Powell, “A new algorithm for unconstrained optimization,” Nonlinear

programming, pp. 31–65, 1970.

[112] J. Nocedal and S. Wright, Numerical Optimization. NY: Springer, 1999.

[113] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., vol. 13, no. 4,

pp. 354–356, Aug. 1969.

[114] F. L. Gall, “Powers of tensors and fast matrix multiplication,” in Proceedings

of the 39th International Symposium on Symbolic and Algebraic Computation.

ACM, 2014, pp. 296–303.

[115] F. C. Chang, “Polynomial GCD derived through monic polynomial subtractions,”

ISRN Applied Mathematics, vol. 2011, 2011.

[116] S. Weiss and M. D. Macleod, “Maximally smooth dirichlet interpolation from

complete and incomplete sample points on the unit circle,” in IEEE International

Conference on Acoustics, Speech, and Signal Processing, May 2019.

213

Bibliography

[117] S. Weiss, I. K. Proudler, and M. D. Macleod, “Measuring smoothness of real-

valued functions defined by sample points on the unit circle,” in Sensor Signal

Processing for Defence Conference, May 2019.

[118] J. Selva, “FFT interpolation from nonuniform samples lying in a regular grid,”

IEEE Transactions on Signal Processing, vol. 63, no. 11, pp. 2826–2834, June

2015.

[119] I. Dokmanić, Y. Lu, and M. Vetterli, “Can one hear the shape of a room: the

2-D polygonal case,” in IEEE International Conference on Acoustics, Speech, and

Signal Processing, May 2011, pp. 321–324.

[120] A. H. Moore, M. Brookes, and P. A. Naylor, “Room geometry estimation from

a single channel acoustic impulse response,” in 21st European Signal Processing

Conference, September 2013.

214

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Publications
	Abbreviations and Mathematical Symbols
	Introduction
	Polynomial Matrix Formulations
	Objective of Research
	Organisation of Thesis and Original Contributions

	Background
	Notations and Definitions
	Polynomial Matrix Formulations in Broadband Signal Processing
	Introduction
	Space-Time Covariance and Cross-Spectral Density Matrices

	Polynomial Matrix Eigenvalue Decomposition
	Definition
	Existing PEVD Algorithms
	Implementations of PEVD Algorithms

	Simulation Software and Hardware Platform

	Computational Advances for the Iterative PEVD
	Introduction
	Optimising Matrix Manipulations to Increase Algorithmic Efficiency
	Product of a Matrix and Polynomial Matrix
	Product of Two Polynomial Matrices
	Implementation of Truncation Within PEVD Algorithms
	Summary

	Parahermitian Matrix Symmetry and the Half-Matrix Approach
	Half-Matrix Representation of a Parahermitian Matrix
	Half-Matrix Sequential Matrix Diagonalisation Algorithm
	Modified Parameter Search in HSMD
	Modification of Shift Strategy in HSMD
	Complexity and Memory Reduction
	Results and Discussion
	Summary

	Increasing Efficiency within Cyclic-by-Row PEVD Implementations
	Cyclic-by-Row SMD Algorithm
	Concatenation of Rotations
	Thresholding of Rotations
	Results and Discussion
	Summary

	Restricting the Search Space of PEVD Algorithms
	Limited Search Strategy
	Results and Discussion
	Summary

	Restricting the Update Space of PEVD Algorithms
	Restricted Update SMD Algorithm
	Restricted Update Step
	Complexity Reduction
	Results and Discussion
	Summary

	Multiple Shift Approach to the Polynomial Matrix QR Decomposition
	Multiple Shift Strategy
	Results and Discussion
	Summary

	Compensated Row-Shift Truncation of Paraunitary Matrices
	Compensated Row-Shift Truncation Strategy
	Truncating After Algorithm Completion
	Truncating at Each Algorithm Iteration
	Summary

	Conclusions

	Divide-and-Conquer Strategy for PEVD Algorithms
	Introduction
	Divide-and-Conquer as a Methodology
	Extending the Divide-and-Conquer Methodology to the PEVD
	Problem Formulation
	Block Diagonalising a Parahermitian Matrix

	Sequential Matrix Segmentation Algorithm
	Algorithm Overview
	Algorithm Convergence
	Algorithm Complexity
	Results and Discussion

	Divide-and-Conquer Sequential Matrix Diagonalisation Algorithm
	Algorithm Overview
	`Dividing' the Parahermitian Matrix
	`Conquering' the Independent Matrices
	Algorithm Convergence
	Impact of Algorithm Parameters on Decomposition Error
	Algorithm Complexity

	Parallel-Sequential Matrix Diagonalisation PEVD Algorithm
	Algorithm Overview
	`Dividing' the Parahermitian Matrix
	`Conquering' the Independent Matrices
	Algorithm Convergence
	Impact of Algorithm Parameters on Decomposition Error
	Algorithm Complexity

	Simulations and Results
	Source Model Simulation Scenario 1
	Source Model Simulation Scenario 2
	Broadband Angle of Arrival Estimation Simulation Scenario

	Conclusions

	DFT-Based Alternatives for PEVD Algorithms
	Introduction
	Comparison of Iterative and DFT-Based PEVDs
	Algorithm Complexities
	Approximation of Eigenvalues
	Paraunitarity of Polynomial Eigenvectors
	Model Examples and Results
	Summary

	Development of a Novel DFT-Based PEVD Algorithm
	Smoothness Metric
	Algorithm Overview
	Reordering the Eigenvectors and Eigenvalues
	Adjusting the Phase of the Eigenvectors
	Algorithm Complexity
	Source Model Simulation Scenarios and Results
	Model Example with Repeated Eigenvalues
	Summary

	An Order-Iterated Novel DFT-Based PEVD Algorithm
	Algorithm Overview
	Algorithm Complexity
	Simulation Scenarios
	Results and Discussion
	Summary

	Eigenvector Ambiguity and Approximating a Minimum-Order Solution
	Greatest Common Divisor of Multiple Polynomials
	Results and Discussion
	Summary

	Conclusions

	Conclusions
	Summary of Contributions
	Future Work

	Existing PEVD Algorithms and Performance Metrics
	Sequential Matrix Diagonalisation PEVD Algorithm
	Algorithm Overview
	Algorithm Complexity

	Existing DFT-Based Approach to the PEVD
	Algorithm Overview
	Reordering the Eigenvectors and Eigenvalues
	Adjusting the Phase of the Eigenvectors

	Performance Metrics
	Normalised Off-Diagonal Energy
	Normalised Below-Diagonal Energy
	Eigenvalue Resolution
	Decomposition Mean Square Error
	Paraunitarity Error
	Paraunitary Filter Length

	Broadband Randomised Source Model
	State-of-the-Art in Polynomial Matrix Truncation
	Spatio-Spectral MUSIC Algorithm
	Bibliography

