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Abstract

Survival outcomes for pancreatic cancer remain poor. Surgical
resection with adjuvant therapy is the only potentially curative
treatment, but for many people surgery is of limited benefit.
Neoadjuvant therapy has emerged as an alternative treatment
pathway however the evidence base surrounding the treatment of
potentially resectable pancreatic cancer is highly heterogeneous and

fraught with uncertainty and controversy.

This research seeks to engage with conjunctive theorising by
avoiding simplification and abstraction to draw on different kinds of
data from multiple sources to move research towards a theory that
can build a rich picture of pancreatic cancer management pathways
as a complex system. The overall aim is to move research towards
personalised realistic medicine by using personalised predictive
modeling to facilitate better decision making to achieve the

optimisation of outcomes.

This research is theory driven and empirically focused from a
complexity perspective. Combining operational and healthcare
research methodology, and drawing on influences from
complementary paradigms of critical realism and systems theory,
then enhancing their impact by using Cilliers’ complexity theory ‘lean
ontology’, an open-world ontology is held and both epistemic reality
and judgmental relativity are accepted. The use of imperfect data
within statistical simulation models is explored to attempt to expand

our capabilities for handling the emergent and uncertainty and to



find other ways of relating to complexity within the field of

pancreatic cancer research.

Markov and discrete-event simulation modelling uncovered new
insights and added a further dimension to the current debate by
demonstrating that superior treatment pathway selection depended
on individual patient and tumour factors. A Bayesian Belief Network
was developed that modelled the dynamic nature of this complex
system to make personalised prognostic predictions across
competing treatments pathways throughout the patient journey to
facilitate better shared clinical decision making with an accuracy

exceeding existing predictive models.
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Chapter 1

Introduction

Pancreatic cancer is arguably the most challenging of all
gastrointestinal tumours with 10-year survival remaining at 1% and
overall 5-year survival remaining at 4% despite advancement in
surgical technique and adjuvant therapy (Pancreatic Cancer United
Kingdom (PCUK), 2016). Pancreatic cancer is the twelth most
common cancer worldwide (World Cancer Research Fund, 2018) and
the fourth and fifth most common cause of cancer deaths in the
United States of America (USA) and Europe respectively (Siegel et al,
2015; Ferlay et al,, 2012). Within the United Kingdom (UK) 9,400
new cases of pancreatic cancer were diagnosed in 2013, accounting
for 3% of all cancer diagnosis, and making pancreatic cancer the
tenth most common cancer and fifth most common cause of cancer
death in the UK (PCUK, 2016). Overall this represented an increased
incidence rate of 10% over the past decade (PCUK, 2016).

In the UK it is estimated that only 9.8% of cases are amenable to
surgical resection and 5-year survival for resected cases is reported
at between 7% and 25% despite surgical resection being the only
potentially curative treatment (Cancer Research UK (CRUK), 2019).
For cases that are resectable at presentation current guidelines
recommend surgery followed by adjuvant therapy (Khorana et al.,
2019). However, up to 50% of patients do not receive adjuvant

therapy, which nullifies any potential benefit from high-risk costly
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surgery (Winter et al., 2012). Reasons for this include a
combination of factors such as early disease recurrence, decline in
health related to pre-existing illnesses, and/or post-operative
complications rendering the patient too unwell to withstand
further treatment (Evans et al., 2018). These factors have
contributed to an increasing interest in neoadjuvant therapy as an
alternative treatment pathway (Evans et al., 2018; Winter et al.,
2012; Bilimoria et al., 2007a). Postulated benefits of neoadjuvant
treatment pathway include: increased obtainment of multimodal
treatment, converting borderline resectable disease to resectable,
and filtering patients with more aggressive disease away from
ultimately futile high-risk, high-cost surgery (Evans et al., 2018;
Asare et al., 2016; Lee et al., 2016; Abbott et al., 2013).

However, there is currently a lack of conclusive level I evidence
proving superiority of either treatment pathway for resectable
disease (Versteijne et al., 2018). Neoadjuvant therapy for resectable
pancreatic cancer is an area of prime controversy. Ambiguity reigns
over the existing body of research comparing neoadjuvant and
traditional upfront surgery approach for resectable cases. Critics
highlight the limitations of drawing overly optimistic conclusions
about neoadjuvant therapy from small, underpowered studies with a
high degree of heterogeneity and caution against potentially losing
the window of resectability for cases that are resectable at
presentation (Asare et al.,, 2016; Lee et al., 2016). Currently there is a
lack of randomised controlled trials (RCT) offering a direct
comparison between treatment approaches (Versteijne et al., 2018)

with many comparison studies including borderline resectable and
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locally advanced cases in the neoadjuvant cohort hence failing to
offer a true like-for-like comparison. Preliminary results from the
Prep-02/JSAP-05 trial (Unno et al., 2019), the first RCT to compare
neoadjuvant and upfront surgery approach for resectable cases of
pancreatic cancer, reported no statistically significant difference in
resection, RO resection and postoperative complication rates
between the two cohorts with an overall survival time of
36.72months in the neoadjuvant arm and 26.65months in the
surgery-first arm. However, the PRODIGE 24 /CCTG PA.6 RCT that
compared adjuvant modified (m)FOLFIRINOX to adjuvant
gemcitabine in patients who have had their tumour resected within
an upfront surgery pathway, reported overall survival times of
54months and 35months in each arm respectively (Conroy et al.,
2018). The mFOLFIRINOX arm therefore exceeded the survival time
reported in the neoadjuvant arm of the Prep-02/JSAP-05 trial (Unno
etal., 2019).

In summary current guidelines recommend upfront surgery followed
by adjuvant therapy for resectable pancreatic cancer and there is a
growing acceptance for the use of neoadjuvant therapy for cases of
pancreatic cancer that are borderline resectable or locally advanced
at presentation with the aim of conversion to resectability (Khorana
etal.,, 2019; Raufi et al, 2019; Evans et al., 2018). However, to achieve
optimisation of individual patient outcomes for pancreatic cancer we
must go beyond adherence to guidelines to engage with the
complexity of the system of delivering pancreatic cancer

management for the reasons that will now be outlined.
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Firstly, upfront surgery pathway for resectable pancreatic cancer has
not produced a significant change in survival outcomes over the past
three decades and the majority of patients who undergo surgical
resection of their tumour with or without adjuvant therapy will
develop metastatic disease (Evans et al, 2018). The implications of
acknowledging this fact have contributed to a growing recognition of
pancreatic cancer as a systemic disease, hence even where the
tumour is localised and deemed operable micrometastsitc disease is
likely to be present although not clinically apparent (Wolff et al.,
2017). Whilst this has led some to champion a move towards early
systematic therapy through neoadjuvant therapy and the application
of surgery only to those patients most likely to benefit from such
major operations (Evans et al., 2018), the evidence base for such a
move, particularly for cases of pancreatic cancer that are resectable
at presentation, is controversial and heavily contested as previously
discussed. Furthermore the optimal combination of treatment agents
used within either the neoadjuvant or upfront surgery pathways is
ever evolving and contested. This demonstrates that even by framing
the question as how to best optimise patient outcomes from
pancreatic cancer in the most simplistic terms of ‘neoadjuvant versus
upfront surgery’, research must engage with a high degree of

uncertainty and complexity.

This brings me to my second argument in favour of acknowledging
and engaging with complexity in order to move research forward,
specifically in changing the narrative surrounding the treatment of
potentially resectable pancreatic cancer to reflect the evolution of

our understanding of the disease and improve patient counseling and
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shared decision making. Theoretically surgery is the only potentially
curative treatment for pancreatic cancer. However, potentially
resectable disease can include resectable, borderline resectable and
some locally advanced stages of the disease. It has been established
that the delivery of multimodal treatment (surgery in combination
with either chemotherapy or chemoradiotherapy) within either a
neoadjuvant or upfront surgery pathway results in improved survival
time (Neoptolemos et al, 2018; Khorana et al., 2019; Raufi et al,
2019; Evans et al., 2018). Inherent in the decision to deliver
multimodal treatment therefore is first the identification of patients
with potentially resectable disease, but there is currently incomplete
consensus about the working definition of ‘operable pancreatic
cancer’ in terms of both tumour anatomy and patient factors
including age and comorbidities (Evans et al., 2018). The reality of
the narrative therefore becomes much more complicated as each of
these disease stages are likely to have different anticipated outcomes
even if they undergo surgical resection. The narrative must therefore
evolve beyond surgery being the only potentially curative treatment
to an understanding that for some patients with operable disease the
potential benefits of surgery in terms of disease free survival may be
limited (Evans et al., 2018). This requires a move towards better
patient selection across competing treatment pathways to deliver
individualised treatment sequencing and stage specific therapy to
optimise individual patient outcomes (Evans et al., 2018; McGuigan

etal, 2018).

There is a growing narrative and focus within pancreatic cancer

research to attempt to achieve the delivery of personalised, targeted
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treatment sequencing through biomarker driven treatment
sequencing and/or the development of gene targeted therapies
(Collisson et al., 2019; Amanam & Chung, 2018; Sato-Dahlman et al.,
2018). The widely held assumption is that breakthroughs in such
areas will result in a move away from uncertainty towards precision
medicine. The third point being made is that this current direction in
pancreatic cancer research, rather than resulting in the diminution of
complexity, could result in its augmentation. As our knowledge of
disease at biomolecular and genomic level evolves the clinical
decision making process will pullulate with varied and complex
datasets from multiple sources. The amalgamation of such large
complex databases and the meaningful application of this
information to the individual patient to optimise treatment outcomes
will be beyond the capabilities of the human mind to handle unaided
(Obermeyer & Lee, 2017). To illustrate, as previously discussed the
consensus definition of resectability, or lack there of, depends not
only on tumour anatomy but also patient factors such as age and
comorbidities (Evans et al., 2018). It follows that a tumour with the
same anatomy, genomics and biomarker profile would not
necessarily follow the same clinical course and this must be
acknowledged in order to optimise individual patient outcomes. To
illustrate, all tumour factors being equal an active health conscious
patient in their twenties is likely to have a different risk profile and
anticipated clinical course following major surgery compared to a
morbidly obese chain-smoker with numerous pre-existing
comorbidities. Biomarkers and genetic profiles therefore provide
only some of the picture and this information must be combined and

integrated with other clinical data if progress is to be made.
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To summarise, the challenge of optimising outcomes for pancreatic
cancer goes beyond simply choosing between neoadjuvant therapy
versus upfront surgery approach. The narrative surrounding the
management of pancreatic cancer must also move away from the
theoretically possible (surgery is the potentially curative treatment)
to the reality for many patients (surgery may be of limited benefit).
Whilst this move will in part be driven by better objective definitions
of resectability and biomarker and gene targeted treatment
sequencing, such anticipated developments, whilst important, will
not on their own optimise outcomes for pancreatic cancer and could
actually serve to increase uncertainty and complexity in clinical
decision making. Therefore if the optimisation of outcomes for
pancreatic cancer is to come to fruition through a more personalised
approach to the delivery of pancreatic cancer treatment we must
develop ways to engage with the complexity, handle uncertainty and
the emergent when examining the complex system of delivering
pancreatic cancer care including areas of debate, ambiguity and
disagreement (Law & Mol, 2002; Fraser & Greenhalgh, 2001; Star,
2002; Greenhalgh & Papoutsi, 2018). As both a demonstration of the
much broader complexity of pancreatic cancer management as a
complex system, as well as providing a contextual framework for
how to address the issue of optimising treatment outcomes, the
political context in which this research was undertaken will now be

outlined.
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1.1 Political Context of This Research: The Move

Towards Personalised Realistic Medicine

In March 2015 Scotland’s Chief Medical Officer (CMO) launched their
annual report: ‘Realistic Medicine’. This set out six key challenges
that must be met to deliver realistic medicine within the Scottish
National Health Service (The Scottish Government, 2016; The

Scottish Government, 2017):

1. Build a personalised approach to healthcare

2. Change our style to shared decision making

3. Reduce unnecessary variation in practice and outcomes
4. Reduce harm and waste

5. Manage risk better

6. Become improvers and innovators

This report posed some key questions in health care centering on

individualised patient care to achieve realistic medicine by asking:

* how can we reduce the burden, both financial and to the
patient experience, of over investigation and treatment?

* How can we reduce risk to patients and variation in practice to
optimise treatment outcomes for all patients?

* How can we improve the doctor-patient relationship and

combine both patient and professional expertise to focus on

45



treatment outcomes that matter to the individual patient? (The

Scottish Government, 2016)

Finally, in recognition of the gravitas of the task ahead and the need

for creative solutions the report asks:

e How can doctors become creative innovators to achieve
improved individualised outcomes for their patients? (The

Scottish Government, 2016)

More recently the CMO in their annual report rebranded the term
‘Realistic Medicine’ as ‘Personalised Realistic Medicine’ to emphasise
the emerging importance placed by clinicians and patients on a
personalised approach to care (The Scottish Government, 2019). This
reemphasis on the personalisation of care appeared to be a direct
response to the tendency of healthcare delivery towards a
reductionist approach to care (The Scottish Government, 2017) with
the drive for efficiency and effectiveness leading to the
industrialisation of healthcare with the patient being reduced to a
statistic or an object on a conveyer belt (Montori, 2017). Such
concerns echo the previously expressed concerns regarding the
limitations of reducing pancreatic cancer patients to mere

biomarkers and genetic codes to decide treatment delivery.

‘Personalised Realistic Medicine’ still aims to deliver the right care to
the right patient at the right time (The Scottish Government, 2019).
However, it goes further in calling for the marrying-up of the delivery
of better value healthcare with what Professor Victor Montori of the
Mayo Clinic has termed ‘careful and kind care’ (The Scottish

Government, 2019; Montori, 2017). Careful care encompasses the
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principles of quality, safety and evidence based practice and
considers the patient’s biology in the context of their biography; that
is their disease and comorbidities in the context of their life situation
and priorities. Kind care then respects the patient’s resources of time,
energy and attention and seeks to minimise the impact of healthcare

upon these (Montori, 2017).

To actually achieve this the focus must be on understanding the
patient as an individual with their own preferences and values as
well as focusing on service provision. Therefore questions must be
asked regarding how services can be designed and practices adapted
to engage patients in their care without overwhelming them (The
Scottish Government, 2019). In practical terms this will mean
reviewing how resources (physical, monetary and time) could be
better distributed and more effectively targeted to support such a
move. Secondly the paternalistic culture of communication with
patients must change towards a collaborative partnership of shared
decision making that fosters a trusting relationship through a
dialogue of openness and honesty (The Scottish Government, 2019).
This will provide a particular challenge as to how complicated and
conflicting information based on population level data can be clearly
conveyed and discussed with patients during the decision making
process so that patients can ask questions and be provided with
honest, realistic answers (The Scottish Government, 2019). This
means taking a lead from the House of Lords Science and Technology
Committee report in 2000 (UK House of Lords, 2000) in rejecting the

‘deficit model’ whereby the provision of information by experts is
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expected to make the patient, or public, agree with the expert. This
report therefore concluded that many issues faced by decision
makers and treated as science issues may in fact involve many other
non-science factors. The implication for delivering realistic medicine

as recognised by the CMO is that:

“In the same way, we must accept that, to deliver Realistic
Medicine, we need to consider many factors besides medicine” (The

Scottish Government, 2019, p.17).

This acknowledgement by both the House of Lords Science and
Technology Committee and the CMO, who throughout their most
recent report discusses patients, the public and healthcare systems
as complex interacting systems, mirrors that of recent moves by the
Medical Research Council to acknowledge the need to engage with,

rather than simplify or deny, complexity (Moore et al., 2015).

1.2 Using Complexity Theory As A Lens Through Which

To Focus The Research Question

This research seeks to engage with what Tsoukas (2017) called
conjunctive theorising by avoiding simplification and abstraction (or
disjunctive theorising) and instead draws on different kinds of data
from multiple sources to move research towards a theory that can
build a rich picture of pancreatic cancer management pathways as a
complex system. Combining operational and healthcare research and
drawing on influences from complementary paradigms of critical
realism and systems theory then enhancing their impact by using
Cilliers’ complexity theory ‘lean ontology’, an open-world ontology is

held (Cilliers, 1998; Kruger et al., 2019). This posits that the interplay
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of causal powers or tendencies of domains of ‘the real’ leads to
particular events, ‘the actual’ (Mingers, 2005). These domains may
be physical, social or conceptual and these events may be observable
or experienced by people and therefore become empirical, but that as
a whole the world is open to multiple interacting influences and to
ignore such layers of influence serves no analytical benefit (Cilliers,
1998; Cilliers, 2010; Mingers, 2005). Epistemologically in recognising
that all knowledge, whilst provisional, is historically and culturally
relative both epistemic reality (observer-independent access as a
fallacy) and judgmental relativity (rational grounds for theory
preference) are accepted (Mingers, 2005). By amalgamating
operational and healthcare research disciplines in this way this
research seeks to be theory driven and empirically focused from a
complexity perspective. Through a ‘systems mindset’ methodological
pluralism is embraced to expand the methodological repertoire
(Cilliers, 1998; Kruger et al., 2019). Specifically how imperfect data
can be better utilised within statistical simulation models will be
explored so that, as Long et al. (2018) have suggested, the potential
for simulation modelling in the study of complexity in healthcare can
be explored to attempt to expand capabilities for handling the
emergent and uncertainty. Methods of statistical modeling and their
ability to cope with uncertainty and capture system complexity will

also be explored.
1.3 Research Aims and Objectives

The aim of this research is to facilitate the advancement of
personalised realistic medicine in the delivery of pancreatic cancer

services through statistical modelling that will facilitate better shared
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decision making with patients and the entire multi-disciplinary team
to optimise individual patient outcomes as determined by the
individual patient. The impact of this research in reducing
unnecessary investigations and treatments will be assessed through

cost-effectiveness analysis of treatment pathways.
Particular areas of interest will be:

* Analysis of neoadjuvant versus upfront surgery pathways for
patients presenting with potentially resectable pancreatic
cancer in terms of quality-adjusted health outcomes and cost-
effectiveness

* Improved patient selection and risk stratification of patients
for pancreatic cancer surgery in both the pre and post-
operative phases of the patient journey

* Improved individualised prognostic predictions across

competing treatment pathways

Statistical modelling, offering visualisation within a logical
framework of a sequence of events resulting from alternative
treatment decisions and associated health and cost outcomes, could
go some way to achieving these aims (Kuntz et al. 2013). Ultimately
however such models will seek to assist with decision making rather

than make statements about truth (Kuntz et al. 2013).

This research seeks to go further and use statistical modelling to give

individualised predictions of outcome so that the care delivered to
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pancreatic cancer patients can be truly ‘realistic’ to them as
individuals. Perhaps one particular goal highlighted by the CMO
holds the key to achieving this: creativity and innovation (The
Scottish Government, 2017). The specific objectives of this research

are:

1. Perform detailed decision-analysis of competing treatment
pathways: upfront surgery versus neoadjuvant therapy, to
explore thresholds pertaining to individual patient and tumour
factors that could determine superiority of competing
treatment strategies at an individualised patient level. To
achieve this various approaches to statistical modeling
including hybrid modeling approaches will be employed

2. Perform cost-effectiveness analysis of competing treatment
pathways for potentially resectable cases of pancreatic cancer
to assess the wider economic impact of improved
individualised treatment pathway selection. The impact of
using a variety of modeling techniques in addressing this issue
will also be assessed

3. Perform detailed analysis of the West of Scotland Pancreatic
Unit 20year prospectively maintained database to identify pre-
operative variables that predict survival outcomes. Within this
a subgroup analysis of resectable only cases will be conducted
to offer a true like-for-like comparison to assess the impact of
pathway selection on survival outcomes and the associated
cost-effectiveness impact

4. Explore whether better use can be made of existing data and
how such data can be combined with available institutional

patient level data within a variety of modeling methods to
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develop new insights into the ongoing debate and areas of
uncertainty concerning pancreatic cancer management

5. Create predictive prognostic models that can make
personalised predictions of survival outcome and risk of
treatment complications or failure across competing treatment
options, based on individual patient and tumour factors, at the
pre-operative stage of the patient journey

6. Expand these personalised predictive models to perform
prognostic updating at the post-operative stage of the patient
journey across alternative post-operative treatment options

and potential clinical scenarios.

1.4 Thesis Overview

The thesis will be arranged as follows. Chapter 2 contains the
literature review which, after exploring the current evidence base
surrounding the treatment of potentially resectable pancreatic
cancer and outlining the existing areas of debate and uncertainty,
critically analyses how and to what degree of success statistical
modeling has been applied to the assessment of the management of
pancreatic cancer in terms of both cost-effectiveness analysis and
predictive and prognostic modeling including the role of emerging
machine learning techniques to support clinical decision-making.
This chapter concludes by demonstrating that overall the current
application of statistical modeling to support decision making with
regards to pancreatic cancer management is limited, not solely by the
prevailing flawed, uncertain, proximate and sparse (FUPS) data
(Wolpert & Rutter, 2018), but by a failure to acknowledge and

attempt to engage with the complexity of the issue. The proceeding

52



methods chapter therefore builds the case for why and how the
system of delivering pancreatic cancer care should be viewed as a
complex and adaptive system in order to gain new insights. The case
is made that by using complexity theory as a lens through which to
view pancreatic cancer management, the existing body of imperfect
data can be better utilised within statistical simulation modeling to
expand the capabilities of modeling techniques to handle emergent
and uncertainty and gain new insights that will facilitate better
shared decision making and go some way to making personalised

realistic medicine a reality.

The results chapter opens with a series of meta-analyses of the
existing body of published data. Conclusive superiority of either
upfront surgery or neoadjuvant pathway could not be established
therefore the data was further interrogated through Markov
decision-analysis. The Markov model was also populated with patient
level data from the West of Scotland Pancreatic Unit database. The
sensitivity analysis as part of these analysis demonstrated
corroborating thresholds that began to indicate how optimal
treatment pathway selection could be determined by individual
patient and tumour factors. The cost-effectiveness implications of
such factors in determining treatment pathway selection and the
impact on quality as well as quantity of survival time is then
explored. This analysis adds a new dimension to the debate
surrounding the treatment of potentially resectable pancreatic
cancer by moving the focus away from neoadjuvant versus upfront
surgery towards the planning and delivery of more personalised
care. As Markov modeling performs cohort level analysis, patient

level microsimulation was then utilized through discrete event
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simulation (DES) modeling. This further corroborated individualised
thresholds for optimal pathway selection and added further insight
by beginning to explore ‘what if’ scenarios had, for example, those
individual patients who did not progress to surgery within the
neoadjuvant pathway been treated within an upfront surgery
pathway. This form of patient-level microsimulation analysis also
proved to have implications for cost-effectiveness analysis and led to
the exploration of the implications of model boundaries on the
analysis of such a complex system. This proved to be an important
finding as, although Markov modeling is widely used as a modeling
method for cost-effectiveness analysis, a comparison of Markov and
DES modeling showed that the latter produced survival predictions
closer to the actual survival times observed within the institutional

database.

By employing statistical modeling techniques that engaged with
uncertainty and the research problem as a complex system,
emergence occurred which revealed aspects of the system at
individual patient level that impacted upon outcomes and could
better inform decision making, but that had previously been under
appreciated. Attention therefore turned to explore how such
emergent properties could be better used to facilitate better shared
decision making. Specifically the application of Bayesian network
modeling to assess risk and explore the potential of this modeling
technique in making personalised predictions of outcome was
explored. A Bayesian belief network that could make better use of the
existing imperfect data to engage with complexity to address the
limitations of pre-existing prediction models to provide personalised

predictions of outcomes across competing treatment strategies pre-
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operatively and perform prognostic updating at the post-operative
stage of the patient journey was consequently created and externally

validated.

This thesis then concludes with a discussion regarding the impact
and future direction of this research. This centres on the potential of
the statistical models developed here to encompass anticipated
future breakthroughs in precision medicine by offering a vehicle to
integrate such large and complex genetic databases with pre-existing
clinical data to make individualised predictions of outcomes and
clinically deliver personalised precision medicine. This potential
however is also discussed within the context of the need for further
research structured around the Non-adoption, Abandonment, and
challenges to the Scale-up, Spread and Sustainability (NASSS)

framework of health an care technologies (Greenhalgh et al,, 2017).
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Chapter 2

Literature Review

2.1 Current Evidence-Base Underpinning The
Management of Potentially Resectable Pancreatic

Cancer

Introduction

Pancreatic cancer is a devastating disease associated with aggressive
tumour biology, poor survival outcomes and increasing incidence
rates (McGuigan et al., 2018). Globally it is ranked as the fourteenth
most common cancer with an estimated 458,918 new diagnosis made
in 2018 (International Agency for Research on Cancer, World Health
Organisation (WHO), 2018). It is the seventh most common global
cause of cancer death with an estimated 432,242 global pancreatic
cancer deaths in 2018 (International Agency for Research on Cancer,
WHO, 2018). Age-standardised incidence rates are highest in Europe
and Northern America (Ilic & Ilic, 2016) with an increasing trend in
incidence rates most marked within the developed Western world
(Wongetal., 2017; Saad et al., 2018). It is estimated that by 2030
pancreatic cancer will have risen from being the fourth to the second
most common cause of cancer related death in the USA (Siegel et al,,

2017; Rahib et al,, 2014).
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An overview of the treatment pathway options for pancreatic cancer
is provided in Figure 1. Surgery is the only potentially curative form
of treatment but an estimated 80% to 85% of patients present with
inoperable metastatic disease (Vincent et al., 2011) with only 10% to
20% of cases deemed to be resectable at presentation (Jemal et al.,
2010; Levy et al., 2016). The most recent estimates from the UK
report the percentage of resectable cases to be at only 9.8% (CRUK,
2019). Surgery remains a largely morbid endeavor with potential
benefits nullified by local-regional recurrence in 75% of cases, with
synchronous distant failure in 50% to 80% of cases, within months of
resection (Papavasiliou et al., 2014; lacobuzio-Donahue et al., 2009;
Hishinuma et al., 2006). The reasons for this are multifactorial and
include non-specific symptoms resulting in delayed diagnosis and the
close anatomical relationship of the pancreas to major blood vessels
making tumour invasions and spread a high probability (Evans et al.,

2018; McGuigan et al, 2018; Canto et al., 2013).

The purpose of this research is to explore ways in which outcomes in
pancreatic cancer can be improved through the delivery of more
personalised realistic care aided by the application of statistical
modeling. Pertinent breakthroughs and controversies in the
management of pancreatic cancer will now be explored to
contextualise the statistical models developed through the research
presented in this thesis. Specific areas that will be covered relate to
the key aspects of competing treatment pathways (Figure 1) and
include advances and controversies in: 1) the staging of pancreatic

cancer and its implications on treatment goals and predicted
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outcomes, 2) the application of surgery, 3) adjuvant therapies and 4)

neoadjuvant therapies.

As the focus is on management pathways following diagnosis early
detection, screening and modifiable risk factors are beyond the scope
of this research. This discussion opens with a brief summary of the
current understanding of the pathology of pancreatic cancer and is
supported by an expanded discussion in appendix A. This is
presented not only as background knowledge but also provides
context for the discussion within the methods chapter of the disease
of pancreatic cancer as a complex system acting within a complex
system, the patient, who forms part of a wider complex system, the
healthcare system. This also provides context for the discussions
regarding the ongoing research focusing on biomarker and gene
target therapies. Whilst such developments are in their infancy, and
therefore beyond the current scope of inclusion within the statistical
models presented within this thesis, they are included to facilitate
the discussion within the penultimate chapter of this thesis regarding

the future application and impact of the research presented here.
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Figure 1: Overview of Treatment Pathways for the Management of

Pancreatic Cancer
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2.1.1 Pathology of Pancreatic Cancer

Pancreatic ductal adenocarcinoma (PDAC) and its morphological
variants account for 90% of all exocrine pancreatic carcinomas
(Feldman et al., 2007; Kloppel et al., 2001; Collisson et al., 2019).
These variants, recognised by the World Health Organization (WHO)
classification of pancreatic tumours, the main ones of which are
outlined in table 1, are significant in that they have different

histological features, molecular signatures and prognosis (Luchini et
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al.,, 2016; Reid et al., 2014; Verbeke et al., 2016; Hong et al., Bosman

et al, 2018). However, they are currently uninformative with regards

to management decisions with many cases of PDAC defined as ‘not

otherwise specified’ (Collisson et al., 2019).

Table 1: Summary of variants of PDAC (Bosman et al., 2018).

PDAC morphological
variant

Characteristics

Prognosis
compared to
classic
pancreatic
adenocarcinoma.

Adenosquamous
carcinoma

At least 30%
component ductal,
glandular and
squamous
differentiation.

Worse

Colloid/mucinous
carcinoma

Arise in association
with intraductal
papillary mucinous
neoplasm. Produce
excess amounts of
extracellular stromal
mucin.

Better

Undifferentiated/
anaplastic

Cells appear spindled
or sarcomatoid with
osteoclast-like giant
cells. Very aggressive
form with very poor
prognosis

Similar

Signet ring cell
carcinoma

Very rare. Singularly
invasive cell with
intracytoplasmic mucin.

Medullary carcinoma

Pleomorphic epithelial
cells with intratumoral
lymphoid infiltrate.

Slightly better

Hepatoid carcinoma

Morphology similar to
hepatocellular
carcinoma. Very rare.

Similar
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PDAC develops through a series of step-wise mutations from normal
mucosa to precursor lesions (the best characterised of which are:
pancreatic intraepithelial neoplasms (the most common), intraductal
papillary mucinous neoplasms and mucinous cystic neoplasms)
(Esposito et al., 2014) before ultimately becoming invasive
malignancy (Mohammed et al., 2014). An understanding of this
process at molecular level is only just beginning to emerge (Appendix

A).

In summary the burgeoning deeper understanding of pancreatic
cancer, even when more specifically defined as PDAC, at a molecular
level sheds light on the complex and highly heterogeneous nature of
this disease (McGuigan et al., 2018; Collisson et al., 2019). However
currently histopathological classifications do not inform clinical
decisions as they do in other cancer types (Collisson et al., 2019). The
purpose of this section and appendix A is firstly to demonstrate how
an emerging meaningful and clinically applicable molecular
taxonomy could in the near future partly inform clinical decision
making (McGuigan et al., 2018; Collisson et al., 2019) but, as will later
be explained, only if this fits within a wider complex system that is
the patient within the complex reality of the healthcare system
delivering pancreatic cancer care. The second purpose is to
demonstrate how the complexity and heterogeneous nature of the
disease at molecular level is intrinsically linked with, and contributes
to, the uncertainty, ambiguity and complexity that surrounds other
key components of the treatment pathway for pancreatic cancer as

will now be explored.
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2.1.2 Staging Of Pancreatic Cancer

Surgery is the only potentially curative treatment for pancreatic
cancer. Furthermore, it has been established that the delivery of
multimodal treatment (surgery in combination with either
chemotherapy or chemoradiotherapy) within either a neoadjuvant or
upfront surgery pathway results in improved survival time (Evans et
al., 2018). Inherent in the decision to deliver multimodal treatment is

first the identification of patients with potentially resectable disease.

Potentially resectable pancreatic cancer can include resectable,
borderline resectable and some locally advanced stages of the
disease. Whilst diagnostic imaging to determine the tumour
relationship to major blood vessels, and specifically in overcoming
the challenge of distinguishing tumour vascular invasion from
inflammatory changes, has been assisted by structured imaging
protocols centering around high resolution computerised
tomography (CT) scanning as the first line imaging modality (Al-
Hawary et al., 2014), staging pancreatic cancer remains problematic
as accurate pathological staging can only truly be complete after
surgical resection (Wray et al., 2005). This matters because the
clinical implications of how the staging of pancreatic cancer is

defined are potentially mastodonic as will now be illustrated.

An objectively defined staging system allows treatment goals to be
more clearly agreed and defined between clinicians and patients
resulting in better management of patient expectations (Evans et al,

2018). The American Joint Committee on Cancer (AJCC) in
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cooperation with the Tumour Node Metastases (TNM) committee of
the International Union Against Cancer staging system (table 2) is
widely used and is prognostic for overall survival with locally
advanced and metastatic disease having a 10 to 12 months and 4 to
6months approximate survival times respectively (Wray et al., 2005).
However, it has significant limitations in guiding treatment decisions
with some, but importantly not all, patients with AJCC stage IVA
disease being found to be candidates for surgical resection (Wary et
al., 2005). This led to clinicians grouping disease as resectable, locally
advanced or metastatic based on imaging (Wray et al., 2005). As
methods of preoperative staging and the understating of the
interpretation of these have evolved, a grey zone emerged between
tumours that were defined as resectable at presentation and those
that were locally advanced (Evans et al., 2010). Specifically tumours
with short superior mesenteric vein- portal vein (SMV-PV) occlusion
and arterial abutment, that were previously defined as locally
advanced, were in some cases found to respond to neoadjuvant
therapy and therefore considered for surgery. A new definition of
borderline resectable disease therefore emerged for such tumours
(Evans et al., 2010) as importantly these tumours were different
from resectable tumours as they carried a higher risk of positive
resection margins, required a more complicated surgical resection
involving vascular resection and reconstruction, and carried a higher
risk of radiologically occult metastatic disease (Evans et al., 2010). In
2010 the National Comprehensive Cancer Network (NCCN) adopted a
set of guidelines that was established through an expert working
group to attempt to establish a universal criteria for resectable,

borderline resectable and locally advanced pancreatic disease
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(Tempero et al., 2017; Callery et al., 2009). Whilst this has improved

reporting, inter-institutional variations regarding how resectability is

defined still exists across trials and continues to impact on decision

making (Raufi et al., 2019).

Table 2: AJCC Staging and Corresponding TNM Classification

AJCC Stage

TNM Classification

IA

T1 (tumour limited to pancreas
and measures<2cm), NO (no
regional lymph node metastasis),
MO (no distant metastases)

Tla: <0.5cm & <1cm

T1b: >0.5cm & <1cm

T1lc:1-2cm

IB

T2 (tumour limited to pancreas
but measures 22cm & <4cm), NO,
MO

I1

T3 (tumour > 4cm extends into
duodenum, bile duct or peri
pancreatic tissues), NO, MO

I11

T1, N1 (regional lymph node
metastases), MO;

T2, N1, MO;

T3,N1, MO

IVA

T4 (tumour extends in to
stomach, spleen, colon or celiac
axis vessels), any N, M1 (distant
metastasis)

IVB

Any T, any N, M1

These issues are further compounded in the neoadjuvant setting

where recent studies have called into question the accuracy of

current imaging techniques in predicting disease status post

neoadjuvant therapy (Katz et al., 2012). A review of 122 cases of

64




borderline resectable pancreatic cancer imaged after neoadjuvant
therapy revealed that only one patient had their disease downstaged
to resectable yet 85 of these patients actually underwent resection
with 81 achieving RO resection (Katz et al., 2012). Although
structured reporting strategies have been established in an attempt
to facilitate patient selection and mitigate discrepancies, these have
yet to be widely adopted (Al-Hawary et al., 2014; Raufi et al., 2019).
More recently there has been a move to subdivide locally advanced
tumours into type A, where surgery may be possible after
neoadjuvant chemotherapy or chemoradiotherapy, and type B where
surgery is unlikely to be possible (Evans et al., 2015) (table 3). This
has corresponding clinical significance as the likelihood of successful
surgical resection following neoadjuvant therapy for resectable,
borderline resectable and locally advanced type A and B is estimated
as being 90%, 75%, 60% and 25% respectively, although the latter
estimate is based on small numbers and could prove to be overly

optimistic (Evans et al., 2018).
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Table 3: Definitions of Resectable, Borderline Resectable and Locally

Advanced PDAC Subdivided into Type A and B (Evans et al., 2018).

Tumour-Vascular Anatomy

Resectable Borderline Locally Advanced Locally Advanced
Resectable Type A Type B
Superior No <180° (abutment) >180° >270° encasement
Mesenteric abutment or (encasement) but
Artery (SMA) | encasement <270°
Celiac Artery | No <180° (abutment) >180° >180° and
abutment or (encasement), does | abutment/
encasement not extend to encasement of aorta
aorta, amenable to
celiac resection
Hepatic No Short-segment >180° >180° encasement
Artery abutment or | abutment or (encasement), with extension
encasement | encasement. No extends to celiac beyond bifurcation
extension to celiac artery and of hepatic artery
artery or hepatic amenable to into right and left
artery bifurcation vascular hepatic arteries
reconstruction
Superior <50% >50% narrowing Occlusion without | Occlusion without
Mesenteric narrowing with distal and option for option for
Vein-Portal proximal target for | reconstruction reconstruction
Vein (SMV- reconstruction
PV)

Even where surgery is anatomically and technically possible it is the

achievement of microscopically negative surgical margins, RO

resection, which determines survival outcome (Kanda et al., 2014).

This is important as numerous studies have shown that patients who

have undergone surgical resection but with microscopically positive

resection margins (R1 resection) or macroscopically positive

resection margins (R2 resection) have had, outside a neoadjuvant

setting, similar survival outcomes to those treated non-operatively

(Wray et al., 2005). This again highlights the importance of deciding

treatment pathway selection at an individual patient level to

optimise outcomes.
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The survival time for patients with borderline or locally advanced
disease that responds to neoadjuvant therapy has improved, as will
later be discussed in the section on neoadjuvant therapy. However
ambiguity remains across these studies as the definition of RO and R1
resection is contested with the Union for International Cancer
Control and College of American Pathologists defining R1 resection
as the presence of microscopic cancer cells at the definite resection
margin whilst the Royal College of Pathologists define R1 resection as
the presence of tumour within 1millimeter of the resection margin
(Kim et al., 2017). Different definitions of RO and R1 resection have
therefore been used across studies and the precise definition being
used is not always made clear. Despite this the undisputed aim of
surgery continues to be RO resection as this is associated with

superior survival outcomes (Kanda et al., 2014).

Ultimately however the reality of the narrative becomes much more
complicated as each disease stage is likely to have different
anticipated outcomes even if they undergo surgical resection with
full pathological staging not being possible until after resection. The
narrative that surgical resection is the only potentially curative

treatment is not realistic for many patients.

There is currently incomplete consensus about the working
definition of operable pancreatic cancer in terms of both tumour
anatomy, as discussed, and also patient factors (Evans et al., 2018).
To illustrate, increasing age brings increased co-morbidities but age

alone cannot determine operability (Ansari et al., 2016a). Many
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patients are malnourished at the time of diagnosis, which has
implications of an impaired immune system (Argiles, 2005) and low
albumin has also been identified as a risk factor for post-operative
complications (La Torre et al., 2013). More recently it has been
recognised that 25% of patients with resectable disease have
sarcopenia which has been shown to predict major post-operative
complications, longer hospital stay (including intensive care unit
stay), and increased risk of infectious and cardiopulmonary
complication during post-operative recovery resulting in impaired
long-term survival (Joglekar et al., 2015). Cardio pulmonary exercise
testing (CPET) is widely being used to assist pre-operative
assessment but whilst this has helped to identify subgroups at higher
operative risk, mortality is low therefore it is not fully adequate as a
discriminatory tool (Junejo et al., 2014). Obstructive jaundice impairs
outcomes following pancreatic resection but more recently it has
been discovered that surgery within one week of the diagnosis of
obstructive jaundice can actually reduce the overall postoperative
morbidity rate (Van Der Gaag et al., 2010) making early surgery
without biliary drainage the treatment of choice in such
circumstances provided serum bilirubin levels are below 300 umol/I

(Tol et al., 2015; Sauvanet et al., 2015).

In summary the narrative must evolve beyond surgery being the only
potentially curative treatment to an understanding that for some
patients with operable disease the potential benefits of surgery in
terms of disease free survival may be at best limited (Evans et al,,
2018). Furthermore the decision to operate requires a

comprehensive assessment of the individual patient’s physical and
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mental capacity to cope with the insult of surgery, as well as their
personal preferences and treatment goals, to reach a shared decision
based on risks and benefit to that patient (Ansari et al., 2016a). This
requires a move towards better patient selection across competing
treatment pathways to deliver individualised treatment sequencing
and stage specific therapy to optimise individual patient outcomes.
This also poses the challenge as how best to use and then convey
such complex information to patients to facilitate the shared decision

making process.

2.1.3 Pancreatic Cancer Surgery

In recent years health services have been reorganised so that
pancreatic cancer surgery is now mainly performed at high volume
centres by experienced surgeons with the resulting increase in
surgical expertise being reflected in improved outcomes and
morbidity and mortality rates falling to 22.7% and 1.3% respectively
(Rohrmann et al., 2009; Bliss et al., 2014; Gall et al., 2015; Evans et
al., 2018). Enhanced Recovery After Surgery (ERAS) programs have
also become part of routine care within these healthcare settings,
which has been shown to reduce complications, length of hospital
stay and costs (Coolsen et al., 2013; Williamsson et al., 2015; Ansari
etal, 2013). However, the ambiguity surrounding disease staging
and definitions of operability also permeate decision making even
when the decision is taken to proceed with surgical resection as will

now be explained.
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The majority of PDACs (65%) arise in the head of the pancreas and

their removal requires a pancreaticoduodenectomy either in the

form of a Whipple procedure or a pylorus preserving

pancreaticoduodenectomy (Artinyan et al., 2014). Distal

Pancreatectomy is performed with splenectomy for PDACs of the

body and tail of the pancreas (Gall et al., 2015). The main

postoperative complications for each procedure are outlined in table

4,

Table 4: Summary of Postoperative Complications

Post-operative Complications of
Pancreaticoduodenectomy

Post-operative Complications of
Distal Pancreatectomy

Delayed gastric emptying (20-
50%) (Lermite et al., 2013)
Postoperative Pancreatic Fistula
(10-15%) (Lermite et al., 2013)
Wound infection (11%)
(Grobmyer et al., 2007)
Postoperative bleeding (4-16%)
(Lermite et al., 2013)
Anastomotic leaks including
biliary fistulae (1-5%)(Lermite et
al., 2013)

Intestinal fistulae (3-
8%)(Lermite et al., 2013)
Pancreatitis (2-3%) (Lermite et
al., 2013)

Ischemic complications (1%)
(Lermite et al., 2013)

Postoperative Pancreatic Fistula
(6-32%) (Pericleous et al., 2012)
Pancreatic insufficiency with
endocrine failure (23.4%)
(Iacono etal., 2013)

Pancreatic insufficiency with
exocrine failure (15.6%)(Iacono
etal., 2013)

Risk of sepsis triggered by
Streptococcus pneumonia,
Neisseria meningitides and
Haemophilus influenza 35 times
higher than general population
(Hansen & Singer, 2001) with
incidence of infection 3.2% and
mortality 1.4%(Bisharat et al.,
2001)
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As previously discussed tumour anatomy in relation to major vessels
determines resectability. The International Study Group of Pancreatic
Surgery (ISGPS) presented a consensus statement to prevent
borderline resectable tumours being classified as unresectable
(Bockhorn et al., 2014). Specifically borderline tumours of the head
of the pancreas can have venous involvement with narrowing and
occlusion of the SMV-PV provided there are no distant metastasis and
suitable proximal and distal vessels to allow safe vein resection and
reconstruction. The gastroduodenal artery may be encased and there
may be short encasement of the hepatic artery but any abutment of
the SMA must be bellow 50% with no involvement of the celiac
artery (National Comprehensive Cancer Network (NCCN), 2015;
Bockhorn et al., 2014). For tumours of the body and tail contact with
the celiac artery is permitted but only if encasement is less than 50%
(NCCN, 2015; Bockhorn et al., 2014). Whilst this provides clear
guidance on what tumours are now deemed to be technically
resectable, the benefit of resecting mesenteric and portal vessels that
have been invaded by tumour is controversial (Yu et al., 2014; Ansari
etal., 2016b). Appendix B provides a detailed discussion of the
developments and controversies surrounding pancreatic cancer

surgery.

To summarise the points being made in more detail in appendix B
with regards to optimising outcomes for pancreatic cancer surgery,
firstly surgical resection, specifically RO resection, performed in a
high volume specialist centre by experienced surgeons and where an
ERAS programme is in place, has been shown to optimise operative

outcomes and minimise risk. Secondly arterial resection is not
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currently recommended due to the associated risks of morbidity and
mortality. Thirdly venous resection has not demonstrated an
increased morbidity and mortality risk profile. Whilst venous
involvement is not a contraindication to surgery, the impact on
survival outcomes of routine venous resection where venous
invasion is thought to be probable has not been conclusively
established but achieving RO resection remains the goal of
performing resection. Fourthly laparoscopic approach has not been
conclusively established as being superior to open approach.
Modified approaches to resection have reported increased RO
resection rates but often with higher morbidity and mortality profiles
and any reported survival advantage is debatable. The evidence base
underpinning these areas of debate (vascular resection, laparoscopic
approach, modified techniques) is mainly level IIl evidence with
observational studies potentiating a high degree of selection bias

therefore ambiguity prevails.

The importance of establishing this in moving the discussion forward
to explore the evidence base underpinning developments in adjuvant
and neoadjuvant therapies is that outcomes for such therapeutic
approaches are discussed in terms of corresponding resection rates
and complications (when the definition of resectability lacks
complete consensus and potentially significant exactitudes of the
surgical approach are seldom given) and resection margins (the
definition of which are debated), all of which impacts on the

interpretation of reported survival outcomes.
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2.1.4 Adjuvant Therapy

As pancreatic surgery has evolved from a high-risk procedure to a
challenging and relatively safe procedure in high volume specialist
centres (Kleeff et al., 2016; Hartwig et al., 2013) it has become
evident that surgery alone is not sufficient treatment as greater than
90% of patients who undergo potentially curative surgery will die
from disease recurrence without additional therapy (Kleeff et al.,
2016). The benefits of adjuvant therapy have been established but
until recently the optimal treatment regime and modality had not
been established with the role of adjuvant chemoradiotherapy
remaining controversial (Gall et al., 2015; Saif, 2013; Conroy et al.,
2018). Furthermore the optimal timing and duration of adjuvant
therapy has not been established (Gall et al., 2015; Saif, 2007; Saif,
2013).

Adjuvant Chemoradiotherapy

Patients with stage I and II disease who undergo surgical resection
alone will develop local reoccurrence in 15% of cases and combined
local and distal recurrence in 65% of cases (Iacobuzio-Donahue et al.,
2009). Although the current standard of care is adjuvant
chemotherapy, and systematic disease remains the greatest threat to
treatment failure, there are patients who could benefit from localised

treatment in the form of inclusion of radiotherapy with the rationale
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of preventing local recurrence in the pancreatic bed, but who remain

difficult to identify (Saif, 2013; Gall et al., 2015). Four RTCs have

examined the role of adjuvant chemoradiotherapy in cases of

resected pancreatic cancer and are summarised in table 5 with a

supporting discussion in appendix C critically examining the strength

and limitations of these trials.

Table 5: Summary of RCTs of Adjuvant Chemoradiotherapy

Trial Treatment Arms Resection Median
(n=) Margin Survival in
Months (P
value)
GITSG Observation (22) RO 11
5-FU radiotherapy 20 (P =0.035)
+ 5-FU (21)
EORTC Observation (54) RO/R1 12.6
5-FU 171
chemoradiation
radiotherapy (60)
ESPAC-1 No RO/R1 16.1
chemoradiotherapy
(178)
Chemoradiotherapy 15.5 (P=
(175) 0.235)
No chemotherapy 14.0
(235)
Chemotherapy 19.7 (P=
(238) 0.233)
RTOG 97-04 5-FU, 5-FU-based RO/R1 16.9
radiation + 5-FU
(230)
Gemcitabine, 5-FU- 20.5 (P=0.9)

based radiation +
gemcitabine (221)
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Adjuvant Chemotherapy

The results of key RCTs of adjuvant chemotherapy for resected
pancreatic cancer are outlined in table 6 and is supported by a
critical analysis of these trials in appendix D. Until recently what had
emerged from RCTs was a preference for gemcitabine based adjuvant
regimes but with controversies surrounding toxicity profiles of
regimes and variation in follow-up strategies. However, the
PRODIGE24/CCTG trial compared gemcitabine to mFOLFIRINOX (a
combination of oxaliplatin, irinotecan and leucovorin) for patients
who had undergone RO and R1 resection (Conroy et al., 2018).
Interim analysis at 33.6months has demonstrated that mFOLFIRINOX
was associated with improved disease-free survival (21.6months
versus 12.8months) and overall median survival (54.4months v
35month) compared to gemcitabine (Conroy et al., 2018). This trial
has resulted in the American Society of Clinical Oncology (ASCO)
Clinical Practice Guidelines to be updated to recommend the

following:

“all patients with resected pancreatic adenocarcinoma who did not
receive preoperative therapy should be offered 6 months of adjuvant
chemotherapy in the absence of medical or surgical
contraindications. The modified combination regimen mFOLFIRINOX
as used in the latter part of the PRODIGE 24 /CCTG PA.6 trial

(oxaliplatin 85 mg/m?, leucovorin 400 mg/m?, irinotecan 150
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mg/m? D1, and 5-fluorouracil 2.4 g/m2over 46 hours every 14 days

for 12 cycles) is preferred in the absence of concerns for toxicity or

tolerance; alternatively, doublet therapy with gemcitabine and

capecitabine or monotherapy with gemcitabine alone or fluorouracil

plus folinic acid alone can be offered.” (Conroy et al., 2018, p.1)

Table 6: Summary of RCTs of Adjuvant Chemotherapy

Trial Treatment Resection Median
Arms (n=) Margin Survival in
Months (P
value)
CONKO-001 Observation RO/R1 10.4
(175)
Gemcitabine 20.7 (P=0.01)
(179)
CONKO-005 Gemcitabine RO 26.6
(217)
Gemcitabine + 24.6
erlotinib (219)
ESPAC-3 Gemcitabine RO/R1 23.6
(539)
5-FU (551) 23.0 (P=0.39)
JASPAC-01 Gemcitabine RO 25.5
(190)
S-1(187) 46.5
(P=<0.0001)
ESPAC-4 Gemcitabine RO/R1 25.5
(366)
Gemcitabine + 28.0 (P=0.032)
capecitabine
(365)
APACT (n=866) Gemcitabine RO/R1 36.2
(NS)
Gemcitabine + 40.5 (P=0.045)
nab-paclitaxel
(NS)
PRODIGE24/CCTG | mFOLFIRINOX | RO/R1 54.5
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(247)

Gemcitabine 35 (P=0.003)
(246)

2.1.5 Neoadjuvant Therapy

Although the survival benefit of adjuvant therapy has been
established, between 71% and 76% of patients will have disease
recurrence within 2years of surgical resection (McGuigan et al.,
2018). Furthermore up to 50% of patients will not be suitable to
progress to adjuvant therapy postoperatively due to early disease
recurrence and/or a decline in physiological function following the
insult of major surgery with or without treatment complications
(Winter et al,, 2012; Ghosn et al., 2016; McGuigan et al, 2018). Such
figures, coupled with the evidence of the success of neoadjuvant
therapy in treating other forms of gastrointestinal cancer (primarily
rectal, esophageal and gastric cancers) has resulted in neoadjuvant
therapy emerging as a potential strategy for the treatment of
borderline resectable pancreatic cancer (Bockhorn et al., 2014), and
also cases of resectable and locally advanced disease (Neoptolemos

etal., 2019; Gillen et al., 2010; Labori et al., 2017).

The rationale for neoadjuvant therapy is that pancreatic cancer is a
systemic disease therefore radiographic imaging, whilst providing
accurate information on primary tumour to vessel relationship,
underestimates radiologically occult micrometastatic disease (Asare
etal, 2016) hence systemic treatment should be initiated earlier in

the treatment process. It follows that the theoretical benefit of
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neoadjuvant therapy is the elimination of micrometastases and
shrinkage of the primary tumour which reduces the incidence of
recurrence, increases conversion to resectability of borderline and
locally advanced cases and increases RO resection rates (Zhan et al.,
2017). However, this approach also carries the risks that patients will
experience toxicities that could delay surgery, or the tumour may
progress making previously resectable disease unresectable (Zhan et
al., 2017; Lopez et al., 2014; Asare et al., 2016). This makes
neoadjuvant approach for resectable pancreatic cancer an area of
prime controversy. Further concerns have been raised that
neoadjuvant chemoradiotherapy could cause pancreatic fibrosis
which may increase the operative complication rate (Lopez et al.,

2014).

One of largest meta-analysis of 111 neoadjuvant studies, comprising
4,393 patients with PDAC, was undertaken by Gillen et al. (2017) and
showed that amongst patients with initially unresectable disease,
46.6% underwent surgical exploration with 69.9% having their
tumour resected and 79.2% of these patients having RO resection.
The median overall survival was 20.5months, which was comparable
to those presenting with resectable disease. However, this analysis
was not performed on an intention-to-treat basis, which potentiated
bias in treatment effect as not all patients proceed to surgery (Raufi
et al, 2019). Furthermore the studies included pre-dated the NCCN
definition of resectability, the reporting of which could therefore vary
widely across trials. D’Angelo et al. (2017) performed one of the first
intention-to-treat analysis of 12 prospective neoadjuvant studies that

included a total of 624 patients with resectable, borderline resectable

78



and locally advanced PDAC. It reported a similar median overall

survival of 22.78months and a resection rate of 65%.

Neoadjuvant FOLFIRINOX has recently provided some hope with
studies reporting improved conversion rates to resectability in
borderline resectable and locally advanced PDAC (63.5% and 22.5%
respectively of all those patient presenting with these stages of
disease) in a meta-analysis of 13 studies comprising 253 patients.
(Petrelli et al. 2015). Whilst 85% of the 43% of those with either
borderline resectable or locally advanced PDAC who underwent
surgery achieved RO resection, this meta-analysis, based on available
evidence, could not yet conclude a definite improvement in overall
survival with neoadjuvant FOLFIRINOX. Although Suker et al. (2016)
focused only on cases of locally advanced PDAC in their meta-
analysis of 11 studies, comprising 315 patients treated with
neoadjuvant FOLFIRINOX, they reported similar resection rates of

25% but a median overall survival of 24.2months.

One of the pivotal unanswered questions is whether neoadjuvant
therapy offers a survival advantage over traditional upfront surgery
followed by adjuvant therapy for cases of resectable pancreatic
cancer. Meta-analysis by both Xu et al. (2014) and Andriulli et al.
(2012) reported only marginal benefit of neoadjuvant chemotherapy
in terms of overall and disease free survival in resectable cases.
However, neither of these reports focused solely on neoadjuvant
therapy therefore omitted significant studies from their meta-
analysis (Lee et al. 2016). More recently meta-analysis by Versteijine

et al. (2018) pooled 38 trials comprising 3,484 patients with
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resectable and borderline resectable disease in an intention-to-treat
analysis. Their findings also reported only marginal benefit with
neoadjuvant approach over upfront surgery approach for resectable
disease (18.2months versus 17.4months) but a greater survival
advantage with borderline resectable disease (19.2months versus
12.8months). For both resectable and borderline resectable cases the
rates of RO resection were higher with neoadjuvant therapy at 85%
versus 71.4% and 88.6% versus 63.9% respectively. Mokdad et al.
(2017) also reported a survival advantage with neoadjuvant
approach in their retrospective analysis of National Cancer Database
using propensity score matched analysis of neoadjuvant therapy
used to treat 2,005 patients with stage [ and II PDAC compared to
6,015 patients who underwent upfront surgical resection of PDAC
(26months versus 21months). However, this analysis is heavily
biased as only those who tolerated neoadjuvant therapy and

underwent resection were included in the neoadjuvant group.

The evidence base underpinning neoadjuvant therapy lacks high-
quality phase III RCTs and is currently largely based on phase II trials
as well as observational cohort studies (which are mainly small,
prone to single centre bias, underpowered and with a high degree of
heterogeneity) and the meta-analysis of these studies (Neoptolemos
etal, 2019, McGuigan et al., 2018; Versteijine et al., 2018). Treatment
therapies and dosing regimes vary widely across studies as do
definitions of resectability and classification of resection margins,
despite the introduction of more established definitions. These
factors in addition to how meta-analysis studies group together the

analysis of outcomes of resectable, borderline resectable and locally
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advanced disease, all of which have different anticipated outcomes
that could affect treatment selection and decision making, place
limitations on existing data synthesis studies. This mandates a closer
critical look at the existing evidence base of prospective phase II drug
trials for each disease stage at presentation and is provided in

appendix E.

2.1.6 Conclusion: The Ongoing Complexities of Neoadjuvant

Therapy for Pancreatic Cancer

The studies discussed in this section and the corresponding
appendicies presents the current state-of-play in pancreatic cancer
research and highlights the main areas of debate surrounding the
treatment of pancreatic cancer. As the disease of pancreatic cancer is
beginning to be understood at a molecular level what is emerging is
an understating of a highly complex and heterogeneous disease with
overlapping defects in genes and signaling pathways between what
was previously thought to be clearly defined disease subtypes
(Collisson et al., 2019). As a molecular taxonomy emerges it is hoped
that in future this will help to target treatments. However, this can
only ever partly inform clinical decision making and currently our
understanding of the disease at this level has not informed clinical
decision making in the way an understating of other cancers at
molecular level has (Collisson et al., 2019). Furthermore it is not
known whether aggressive tumour biology or anatomical location
close to major vessels, or indeed a combination of both factors,

accounts for the propensity of pancreatic cancer for metastatic
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spread. This has implications for both staging of the disease and

surgery.

Although the NCCN provided a more universal definition of
resectable, borderline and locally advanced disease in 2010 there
remains a high degree of inter-institutional discrepancy (Evans et al,
2018). This definition has also been challenged about its accuracy in
re-staging disease after the completion of neoadjuvant therapy (Katz
etal, 2012). More recently there has also been a call to subdivide
locally advanced disease into type A and type B to better manage
patient expectations surrounding the anticipated outcomes of
neoadjuvant therapy (Evans et al., 2018). Operability also depends
on patient factors and their physical and mental reserve to cope with
major surgery yet despite some advances in patient assessment this
aspect of decision making remains largely subjective (Ansari et al.,

2016).

Staging cannot be completed until after pathological assessment of
the resected specimen. However, discrepancies also exist between
definitions of RO and R1 resection margins. The primary goal of
surgery is an RO resection. It has been established that centralising
services so that pancreatic cancer surgery is only performed at large
volume specialist centres by experienced surgeons with an ERAS
programme in place improves operative outcomes. However, the
decision of whether to perform resection of the veins, when, and in

which patients is debated (McGuigan et al., 2018).
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In light of findings from the PRODIGE 24 /CCTG PA.6 trial guidelines
have recently been updated regarding adjuvant therapy to
recommend mFOLFIRINOX or, where this is contraindicated,
gemcitabine and capecitabine or monotherapy with gemcitabine
alone or fluorouracil plus folinic acid alone (Conroy et al., 2018).
However, a significant proportion of patients who undergo resection
will not receive adjuvant therapy. This has raised the possibility of
neoadjuvant therapy as an alternative treatment pathway. This is
particularly controversial for cases of disease that are defined as
resectable at presentation. Existing trials in neoadjuvant therapy are
mainly small, unpowered and based on single institution data making
comparison of data between trials extremely difficult considering
variability in treatment regimes and dosing, and metrics defining
resectable, borderline resectable and locally advanced disease as well
as RO and R1 resection (Neoptolemos et al., 2018; McGuigan et al.,
2018). These factors compound the challenge of trying to compare
neoadjuvant and upfront surgery pathways for resectable and
borderline resectable disease when few existing studies offer such a
comparison and those that do tend to combine resectable and

borderline resectable cases within the neoadjuvant arm.

Decision making within this arena is eminently challenging, as is the
task of delivering personlised realistic medicine. Whilst it is hoped
that on-going genomic and drug trials will provide some answers,
they alone cannot achieve this. It could be argued that the current
problem being presented is that of a complicated system with a high
degree of uncertainty. The case for viewing the challenges outlined

here in terms of a complex system will be made further in the
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methods chapter. In order to build such a case, the existing body of
research seeking to assist clinical decision making in pancreatic
cancer management will now be examined first in terms of health
economics modelling and then in terms of prognostic and predictive

modelling.
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2.2 Health Economics Modeling To Guide Decision
Making In The Management of Potentially Resectable

Pancreatic Cancer

Introduction

The cost of cancer care has risen astronomically over recent years
(Greenberg et al. 2010). Cancer is estimated to cost the European
Union economy €126 billion with €51 billion (40%) spent on
healthcare alone (Luengo-Fernandez et al. 2013). Within the UK
estimated annual costs of cancer range from £15.8 billion to £18.33
billion (£7.6billion premature death and work absence, £5.6billion on
healthcare, £2.6billion on unpaid care) with this figure predicted to
rise to £24.72 billion by 2020 (Department of Health, 2015). Given
contemporary financial constraints and subsequent limitations on
healthcare resources, it is therefore unsurprising that cost-
effectiveness analysis of new treatment approaches is beginning to
receive increased attention in medical and health economics

literature (Greenberg et al,, 2010; Russell, 2016).

Over two decades ago Elixhauser & Halpern (1999) commented on a
paucity of literature on the economics of pancreatic cancer.
Unfortunately little has changed with many of the initial subsequent
studies focusing on specific interventions such as surgery (Lea &
Stahlgren, 1987; Brandabur et al., 1988; Gudjonsson et al., 1995;
Holbrook et al., 1996; Raikar et al., 1996; Topal et al., 2007;
Enestvedt et al., 2008; Jeurnik et al., 2010; Waters et al., 2010), or
chemotherapy and radiotherapy (Glimelius et al., 1995; Ishii et al,
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2005; Miksad et al., 2007; Danese et al., 2008; Krzyzanowska et al.,
2007). As new knowledge of the disease and its treatment has
emerged many of these studies are no longer clinically relevant. Of
note, disease that was previously thought of as unresectable now has
the potential of conversion to resectability, particularly with the
emergence of neoadjuvant therapy, yet surgery has not been
included as an alternative treatment strategy in studies involving
what would now be classified as borderline resectable or locally
advanced disease. This is important as not all patients who undergo
conversion to resectability see an increased effectiveness in terms of
post resection survival time whilst others experience a significant
advantage in terms of postoperative survival time. Previous USA
based cost analysis have shown that of all pancreatic cancer disease
stages, resectable disease carries the highest costs ranging from $65,
335 (Du et al., 2000) to $134,700 (O’Neill et al., 2012) with the latter
study including all costs reimbursed by Medicare as well as an older
population. Whilst these studies have several limitations (failure to
assess which health services were specifically related to pancreatic
cancer, exclusion of costs not covered by Medicare, exclusion of
indirect costs and the latter findings only being applicable to an older
population) they did provide important insights into the impact of
the underutilisation of surgery to their findings. Notably Caucasian
patients and those in affluent urban areas were more likely to receive
resection, which O’Neill et al. (2012) highlighted as suggesting higher
costs if all eligible candidates received a resection (Riall & Lillemoe,
2007; Bilimoria et al., 2007b; O’Neill et al., 2012). This raises several
further questions. Firstly how applicable are cost analysis studies

from countries with privatised healthcare systems to countries
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where healthcare is free at the point of delivery, such as the UK
National Health Service(NHS)? Secondly when synthesising data
from drug trials from countries with privatised healthcare systems
the inherent bias in these studies must be acknowledged as many
patients with pancreatic cancer will never present to such
internationally renowned centres due to socioeconomic factors.
Thirdly what impact will developments that are aimed at increasing
the rate of pancreatic cancer resection (the development of screening
programs for earlier disease detection, targeted therapies and the
developments of more effective neoadjuvant regimes) have on both
survival outcomes and costs, and will they prove to be cost effective?
Fourthly where disease is resectable at presentation, is it more
effective and/or cost effective to adopt a neoadjuvant or traditional

upfront surgery approach to treatment?

Despite the fact that pancreatic cancer is associated with a short life
expectancy the costs incurred in a short period of time are
substantial (O’Neill et al., 2012). In the current economic climate the
ambiguity surrounding many aspects of the treatment pathway for
potentially resectable pancreatic cancer, as outlined in the previous
section, mandates cost-effectiveness evaluation of treatment choices,
particularly the role of neoadjuvant therapy (Abbott et al,, 2013). If
however value in healthcare is to be defined as value relative to cost,
then it must be acknowledged that outcomes in cancer are neither
static nor universal and can be highly individual (Russell, 2016).
Successful outcomes could be the number of months of survival
whilst to others it is the quality and not quantity of survival time that

defines successful outcome (Russell, 2016). Similarly length of
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disease free survival may represent successful outcome to some
whilst others define success as overall survival time regardless of
treatment requirements (Russell, 2016). Costs too go far beyond
costs of a particular treatment option but include emotional and
monetary costs to patients and healthcare systems associated with
complications, readmissions, rehabilitation etcetera, as well as wider
societal costs in terms of absence from work for both patients and
those undertaking informal caring roles (Russell, 2016). Accepting
these complexities and challenges this begs the questions: what do
we know about the overall cost-effectiveness of the treatment of
potentially resectable pancreatic cancer, how have we measured this,
and could this help to inform clinical decision making and/or
methods of modeling to support better shared clinical decision

making?

This section is structured as follows. First a critical analysis of cost-
effectiveness studies pertaining to the management of potentially
resectable PDAC is presented. Secondly, a wider review of cost-
effectiveness analysis studies of neoadjuvant versus traditional
upfront surgery for other solid organ malignancies is presented. The
rationale for this is that the evidence base underpinning the
management of these malignancies is better established. Therefore
the impact of better quality, more certain data on modelling
techniques for cost-effectiveness analysis will be critically analysed
to ascertain whether this results in better quality of analysis or
whether commonalities in flaws prevail. Finally this section

concludes with a summation of strengths and limitations of the
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current body of literature and how methods of statistical modeling

could be improved and applied to the research question.

2.2.1 Cost-Effectiveness Analysis of the Management of Potentially
Resectable PDAC

Existing cost-effectiveness analysis studies that have relevance to
contemporary clinical practice fall into key areas of the management
pathway that include: 1) staging strategies, 2) adjuvant therapy, 3)
post resection follow-up strategies and 4) neoadjuvant therapy

versus upfront surgery approach (Figure 2).
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Figure 2: Overview of the Treatment Pathways for the Management
of Potentially Resectable Pancreatic Cancer with the Focus of
Previous Cost-Effectiveness Analysis Highlighted: 1: cost-effectivness
of disease staging strategies, 2: cost-effectivness of adjuvant
therapies, 3: cost-effectiveness of follow-up strategies, 4: cost-

effectivness of upfront surgery versus neoadjuvant approach

Neoadjuvant Therapy
Toxicity Yes/No

Staging

Current guidelines for the staging of pancreatic cancer recommend
pancreatic protocol CT scan including chest, abdomen and pelvis
(National Institute of Clinical Excellent (NICE), 2018). Where disease
is found to be localised a fluorodeoxyglucose-positron emission

tomography/CT (FDG-PET/CT) should be offered to patients who
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will be having further treatment in the form of surgery, systemic
therapy or radiotherapy (NICE, 2018). If more information is then
required to determine an individual’s clinical management the
following are recommended in specific circumstances: Magnetic
Resonance Imaging (MRI) scan where liver metastases are suspect,
endoscopic ultrasound scan (EUS) where more information is
required for tumour and node staging, and diagnostic laparoscopy
with laparoscopic ultrasound where resectional surgery is
considered to be a possibility but small volume peritoneal and/or
liver metastases are suspected (NICE, 2018). Existing economic
analysis studies pertaining to the staging of potentially resectable

PDAC focus on FDG-PET/CT and diagnostic laparoscopy.

The Role of FDG-PET/CT

The role of FDG-PET/CT in improving patient selection and being
cost-effective has been supported by two key economic analysis
(Heinrich et al., 2005; Ghaneh et al., 2018). Ghaneh et al. (2018) went
further by not only providing a comprehensive description of the
competing alternatives but also in including relevant costs and
consequences, measured accurately and in appropriate units, for
alternatives identified in their analysis. Heinrich et al. (2005)
performed a cost-benefit study and failed to perform discounting.
Incremental analysis of costs and consequences of alternatives was
not performed and, whilst a sensitivity analysis was undertaken this
did not account for uncertainty in the estimates of costs and
consequences. Ghaneh et al. (2018) was a methodologically superior

study using Markov modelling to perform both an incremental
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analysis of costs and consequences of alternatives as well as an
extensive deterministic and probabilistic sensitivity analysis that
included measures of the impact of uncertainty in the estimates of
costs and consequences. Both studies provided corroborating
findings that FDG-PET/CT was cost-effective in improving patient

selection for resection surgery.

The Role of Diagnostic Laparoscopy

The role of diagnostic laparoscopy is more ambiguous and
controversial. As the NICE guidelines (2018) state, laparoscopy with
laparoscopic ultrasound should be performed where resectional
surgery is considered to be a possibility but small volume peritoneal
and/or liver metastases are suspected. There is some debated
evidence that diagnostic laparoscopy could avoid unnecessary
exploratory laparotomy. However, ambiguity exists as to the optimal
timing of and between diagnostic laparoscopy and, where
appropriate, exploratory laparotomy and whether there is any
benefit in it becoming routine practice or if and how patient selection
for this procedure could be improved. These issues reflect many of
the broader issue and ambiguities concerning the management of
potentially resectable pancreatic cancer: how to improve patient
selection and more effectively target interventions to optimise

outcomes in the face of uncertainty.
A detailed critical analysis of cost-effectiveness analysis studies of

staging diagnostic laparoscopy for pancreatic cancer is provided in

appendix F to assess how statistical modeling can handle such issues.
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In summation this analysis highlights that there is a lack of high
quality studies exploring the cost-effectiveness of staging diagnostic
laparoscopy. Existing studies that report cost-benefit from diagnostic
laparoscopy do so only if diagnostic yield is assumed to be high. In an
age of advanced imaging modalities and neoadjuvant therapy
presumably making occult metastases potentially less likely, the
assumption on which these results are made must be questioned.
Furthermore based on existing literature there is not clear evidence
as to the cost-effectiveness implications of the timing of staging
diagnostic laparoscopy (same admission versus separate day-case),
and its application to patient sub-groups (routine versus only

patients at high risk of occult metastatic disease).

Adjuvant Therapy

The survival benefits of adjuvant therapy have long been established
however cost-effectiveness analysis of competing adjuvant regimes is
limited. Two studies were found that provide economic assessment
of adjuvant therapy. Abbott et al. (2012) compared surgery and
adjuvant therapy to: no treatment, surgery only, radiotherapy only,
chemotherapy only and chemotherapy combined with radiotherapy
for resectable pancreatic head adenocarcinoma using a decision tree
approach. This study demonstrated what was already known:
surgery and adjuvant therapy is more expensive but yields greater
utility. Neoadjuvant therapy was not considered as a competing
treatment strategy and the clinical impact of such a study is limited
as, for resectable disease, not performing surgery would only be

considered as a viable competing treatment option if the patient had
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other mitigating circumstances, such as extensive comorbidities.
However such factors were not considered within the model. This
study was also further limited by the fact that it populated the model
with data from multiple databases including a national cancer data
registry. Not only does this make the data highly heterogeneous in
terms of patients, adjuvant therapy regimes and variations in
outcomes between high and low volume centres but, within the USA
healthcare system, also carries the potential of bias due to
disadvantaged patient groups either not presenting to such
renowned institutions or presenting with more advanced disease
stages. Costs were taken from Medicare payments yet not all patients
would have been covered by public payers, which means such
payment data is not generalisable to all patients. Furthermore,
although this study is from a societal /payer perspective, indirect
costs were excluded. Other significant costs that were excluded
included: readmission after surgery, complications of treatment and
end-of-life care. Costs and benefits were not discounted and quality
adjusted survival outcomes were based on the limited published
quality of life data. Such limitations are compounded by the fact that
only one-way deterministic sensitivity analysis was performed with
no probabilistic sensitivity analyses or other measure of impact of
uncertainty surrounding model parameters provided. Willingness-to-
pay (WtP) and other such thresholds were also lacking which limits

the usefulness of this study.
The second study utilised data from the ESPC-4 RCT within a Markov

model to compare gemcitabine monotherapy with gemcitabine

combined with capecitabine in patients who had undergone
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complete resection of pancreatic cancer (Huang et al.,, 2018). It
concluded that although gemcitabine and capecitabine provided 1.23
quality-adjusted-life-years (QALYs) compared to gemcitabine
monotherapy, which provided 1.02 QALYs, the incremental cost-
effeectivenss ratio (ICER) was $45,191.23, which surpassed the WtP
threshold for that country (Huang et al., 2018). Both direct and
indirect costs were included but palliative care costs were excluded
and discounting was not applied. Quality-of-life adjustments for
utility outcomes were also based on published literature, which is
limited for pancreatic cancer. However this study did perform both
deterministic and probabilistic sensitivity analysis including WtP
thresholds and measurements of the impact of uncertainty within the
model. This study, whilst being the first to compare adjuvant
therapies, used data from patients who had undergone resection and
were well enough to meet the inclusion criteria for adjuvant therapy
within the ESPAC-4 trial. Real-world events such as the discovery of
unresectable disease at the time of surgery, or impact of
postoperative complications and their impact on overall pathway
analysis are therefore not captured. Furthermore, in light of the
findings of the PRODIGE 24 /CCTG PA.6 trial (Conroy et al., 2018),
which resulted in mFOLFIRINOX becoming the first line adjuvant
therapy over gemcitabine-based alternatives, this study has limited
impact. What has yet to be established is whether the increased
toxicity profile associated with mFOLFIRINOX has any affect on the
cost-effectiveness of this compared to gemcitabine based adjuvant
therapy, or whether better patient selection between these

competing regimes could maximise cost-effectiveness.
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Follow-up Post Resection

Until recently surveillance after potentially curative resection of
pancreatic cancer was not considered to be a key issue due to poor
survival outcomes and the lack of second line treatments. One study
assessed the cost-effectiveness of competing surveillance strategies
from a payer’s (societal) perspective (Tzeng et al., 2013). [t used a
Markov model to compare: no scheduled surveillance, 6 monthly
clinical assessment with Ca 19-9 levels, 6 monthly clinical assessment
with Ca 19-9 levels + CT + Chest x-ray, 3 monthly clinical assessment
with Ca 19-9 levels, 3 monthly clinical assessment with Ca 19-9 levels
+ CT + Chest x-ray. This study reported that surveillance beyond 6
monthly clinical assessment with Ca 19-9 levels increased cost but
with no clinically significant survival benefit (Tzeng et al., 2013).
However, the model was populated with retrospective data from a
single institution, which carries a risk of bias and limits
generalisability of findings particularly as this database only included
patients treated within a neoadjuvant pathway. Furthermore costs
were taken from Medicare data, but not all patients would have been
covered by public payers (Tzeng et al., 2013), and discounting was
not applied. Outcomes between competing strategies may have been
affected by lead time and length time bias related to surveillance
intervals and the diagnosis of indolent asymptomatic disease versus
symptomatic aggressive disease (Tzeng et al, 2012). Only
deterministic sensitivity was performed therefore the impact
surrounding the degree of uncertainty within model parameters was

not fully assessed. Furthermore sensitivity analysis did not account
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for the fact that 5-10% of patients do not produce Ca 19-9
(Ballehaninna et al., 2012).

Neoadjuvant Therapy versus Upfront Surgery

Two studies compared neoadjuvant and upfront surgery pathways
(Abbott et al., 2013; Choi et al., 2018). Both pose a clearly defined,
answerable question: what is the cost-effectiveness of neoadjuvant
approach compared to traditional upfront surgery approach. Abbott
etal (2013) used a decision analytic model with utility reported as
quality-adjusted-life-months (QALMs) whilst Choi et al. (2018) used
a Markov model with results reported in QALYs. Quality-of-life
literature related specifically to pancreatic cancer is limited and
therefore in both studies a reliance on the few published quality-of-

life indices was not ideal.

In both studies the patient populations were clearly defined. Abbott
et al. (2013) populated the upfront surgery arm with data drawn
from American College of Surgeons National Cancer Database (NCDB
2003-2005) and National Surgical Quality Improvement Programme
(NSQIP 2005-2009). However, the neoadjuvant group was drawn
from the MD Anderson database 2002-2008. Effectively this meant
comparing two different databases. Data from literature was used to
populate data points otherwise unavailable and they included phase
[II RCTs for the upfront surgery arm. Choi et al. (2018) synthesised
data from published literature but did not provide details of the
literature search strategy or quality assessment of included studies.

The neoadjuvant arm also included data taken from a single
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institution database. In both studies the use of different data sources
introduces uncertainty and bias. Furthermore the limitations and
ambiguities in existing literature have already been explored in
section 2.1 and the supporting appendicies. Institutional data carries
bias as patients could have better outcomes due to referral bias, self
selection, receiving superior care in larger specialist centres and
furthermore, a key subset of patients may never present to these
databases due to socioeconomic factors and/or co-morbidities
(Abbott et al. 2013, Choi et al,, 2018). Overall this increases the level
of uncertainty as not all patients within these various data sources

received uniform care.

In both studies cost data was taken from payer perspective with
costs based on Medicare payment estimates and technical and
professional services costed from Centers for Medicare and Medicaid
Services (CMS). In reality not all costs would have been covered by
CMS and this also limits transferability of findings to alternative
healthcare systems (Abbott et al, 2013). Hospital payments were
estimated based in ICD-9 DRG codes. Costs not included in the Abbott
et al. (2013) study were: readmission post surgery, complications
associated with chemotherapy or radiotherapy, follow-up
surveillance and hospice costs. The latter two are potentially a
significant omission considering that this study reported significantly
prolonged survival time with neoadjuvant therapy. Choi et al. (2018)
did include the cost of palliative care and treatment complications.
Neither study included indirect costs and Choi et al. (2018) did not

apply discounting of either costs or benefits.
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One-way deterministic sensitivity analysis was performed in both
studies. In the Abbott et al. (2013) study sensitivity analysis was only
performed on the upfront surgery group and included adjustment for
alternative billing, cost of adjuvant chemotherapy, elimination
radiotherapy, survival with node and margin negative resections,
rates of perioperative mortality, complications and finding
unresectable disease at surgery with justification provided for each
form of sensitivity analysis. Choi et al. (2018) examined the effect of
alterating resection rates, surgical mortality, recurrence rate, cancer
mortality and utility values across both treatment strategies. They
also performed probabilistic sensitivity analysis to assess the impact
of uncertainty across model parameters on model output. This level

of analysis was lacking in the Abbott et al. (2013) study.

Abbott et al. (2013) included three possible neoadjuvant regimes
within the neoadjuvant arm of their study (gemcitabine + cisplatin
+radiotherapy, or chemoradiotherapy based on either gemcitabine or
cisplatin, or capecitabine-based chemoradiotherapy) compared to
adjuvant gemcitabine in the upfront surgery arm. Choi et al. (2018)
compared neoadjuvant FOLFIRINOX to adjuvant gemcitabine
monotherapy or gemcitabine/capeciabine in the upfront surgery
arm. The conclusions drawn from both studies, that neoadjuvant
therapy is more cost-effective than upfront surgery, clearly reflect
the results of the studies but, particularly with the Abbott et al.
(2013) study, the uncertainty surrounding these conclusions were
not assessed considering the high degree of heterogeneity within the

neoadjuvant arm alone. Furthermore both studies are limited by the
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high degree of uncertainty, heterogeneity and quality issues
associated with the existing published literature. Neither study
examined the role of adjuvant mFOLFIRINOX which, considering the
results of the PRODIGE 24 /CCTG PA.6 trial (Conroy et al., 2018) and
subsequent change to practice guidelines making this the first line
adjuvant therapy, does now question these conclusions particularly
as the survival times reported from both adjuvant therapy cohorts
within the PRODIGE 24 /CCTG PA.6 trial (Conroy et al., 2018) rivals

those reported in the neoadjuvant arm of both of these studies.

Conclusion

In the introduction to this section several questions were posed:
what do we know about the overall cost-effectiveness of
management options for potentially resectable pancreatic cancer,
how have we measured this, and could this help to inform clinical
decision making and/or methods of modeling to support better

shared clinical decision making?

Firstly what we know about the overall cost-effectiveness of the
management of potentially resectable pancreatic cancer is limited
and permeated with ambiguity. Issues pertaining to methodological
quality and the relevance of findings, as new evidence emerges of
more effective interventions, limit many existing cost-effectiveness
studies. Whilst it is established that pancreatic surgery is expensive,
and that improved patient selection for surgery would improve both
costs and quality adjusted outcomes, both the most effective and

cost-effective way of achieving this is widely debated, arguably with
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the exception of FDG-PET/CT for staging. Secondly how we measure
cost and effectiveness is also a contested area considering that
quality-of-life data for pancreatic cancer is limited. The dominant
methods of analysis are decision trees and Markov models. However
the quality of data used to populate such models was found to be an
issue across many studies with few models performing a full
probabilistic sensitivity analysis to gauge the degree and impact of
uncertainty across model parameters on outcomes. Included and
excluded costs varied widely and discounting across existing studies
was sporadic. Ultimately therefore, to answer the third question
posed, existing cost-effectiveness analysis cannot yet be said to
inform shared clinical decision making. Many of the issue identified
in these cost-effectiveness analysis studies emanate from the state of
the current evidence base underpinning the management strategies
for potentially resectable pancreatic cancer. However whilst it would
be convenient to believe that this is the only culprit, the question
must be asked as to whether alternative approaches to modeling
could better handle the existing data, including its inherent
uncertainties. To fully explore this possibility a review of cost-
effectiveness analysis studies of neoadjuvant approach for other solid
organ malignancies, which have a more established evidence base,

must first be undertaken.
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2.2.2 Cost-Effectiveness of Neoadjuvant Approach to Cancer

Treatment: what have we really learned over the past decade?

The purpose of this section is to: 1) to establish what is currently
known about cost-effectiveness analysis of neoadjuvant therapy
applied to all solid organ malignancies (SOM) 2) critically appraise
research methodology of existing studies and 3) highlight areas and

direction for future cost-effectiveness and decision analysis research.

In total 13 studies published since 2000 were identified that have
performed cost-effectiveness analysis of neoadjuvant therapy for
SOM (pancreatic cancer (previously discussed): n=2, upper
gastrointestinal (GI) cancers n= 3, colorectal cancer n=3, cervical n=1,
breast: n=1, ovarian: n=2, bladder: n=1). This comprises the cost-
effectiveness analysis of a total of 27 neoadjuvant regimes applied to
9 types of SOM (pancreatic: n=4, esophageal: n=1, peritoneal
carcinomatosis from gastric cancer: n=4, hepatocellular carcinoma:
n=1, colorectal: n=4, cervical: n=1, breast: n=7, ovarian: n=2, bladder:

n=3) (table 7).
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Table 7: Neoadjuvant regimes included in each study.

| Study lsom | NAT Regime

Gordon et al., 2012

Hultman et al., 2012

Vitale et al, 2010
Ercolani et 2011

Poston et al., 2001

Van der Brink et al., 2004

Rocconi et al., 2005

Attard et al,, 2015

Poonawalla et al., 2015

Rowland et al,, 2015

Stevenson et al., 2014

Esophageal

Peritoneal carcinomatosis from
gastric cancer

Hepatocellular carcinoma

Colorectal with liver metastases
Colorectal with liver metastases

Rectal
Cervical

Breast

Ovarian

Ovarian

Bladder

NAT regime not specified but
separate decision arm
included adding FDG-PET to
NAT regime

Irinotecan + 5-FU +LV or
Irinotecan + deGramont
schedule or decetaxel + 5-
FU/LV or EOX all followed by
CRS + HIPEC +EPIC
Sorafenib

FOLFOX4

Oxaliplatin + 5-FU/FA or 5-
FU/FA as NAT

5x5 Gy

Cisplatin, bleomycin and
vincristine

Neosphere NAT regimes:
(trastuzumab+ docetaxel or
Pertuzumab+ trastuzumab +
docetaxel or Pertuzumab +
trastuzumab or Pertuzumab +
docetaxel) and TRYPHAENA
regimes (FEC+ Docetaxel) (6
cycles or 3 cycles)+
Pertuzumab (6 cycles or 3
cycles) or Docetaxel +
Carboplatin + Trastuzumab +
Pertuzumab

NAT (regime not specified)

NAT+ surgery + carboplatin +
paclitaxel

MVAC or gemcitabine +
cisplatin, or gemcitabine +
carboplatin

T2-T4 tumours:
surgery without
NAT or no surgery,
treatment with
chemoradiation
only

Systemic palliative
chemotherapy
alone

No bridging
therapy prior to
liver transplant
Surgery
(Hepatectomy) first
Comparing 2 NAT
regimes

Surgery (TME) first
Surgery first or
primary
chemotherapy
Comparing NAT
regimes from two
studies

Primary debulking
surgery

Primary debulking
surgery +
carboplatin +
paclitaxel

Surgery (radical
cystectomy) first

Included studies and their methodologies are summarised in table 8.

A detailed critical appraisal of each study structured according to the

checklist propose by Drummond et al. (2015) is presented in

appendix G.
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Table 8: Summary of cost-effectives analysis studies of neoadjuvant

therapy for solid organ malignancies

Study SOM Compara | Design/ Econom | Data Benefit Cost Costs Sensitiv
tors Methodo | ic Source Measure | Source Excluded ity
logy Perspec s & Time LVEIVS
tive Horizon S

Gordon
etal
(2012)

0iEES  Esopha  NAT + Retrospe  Treatme Patients QALYs Uppsala  Indirect Yes
netal geal CRS + ctive. ntcosts  identifie = 2005- Unit costs
(2012) HIPEC + Kaplan- dinunit 2009 Hospital
EPICv Meir + (not data,
palliative  bootstrap randomi Swedish
systemic sampling zed) and National
chemothe matched Pharmac
rapy with y
patients pricelist
from 2008
RCT
1y Colorec NAT v SF Retrospe Societal Literatur ~ QALMs, Italian Indirect Yes:
ietal tal liver ctive perspec e review ICER, HR, public costs Univaria
(2011) metast Markov tive WtP, RFS.  healthca nt and
ases Decision 10 years re two-
Model system way
Van der
Brink
etal
(2004)
Poston Colorec  Oxaliplati  Decision-  Provide Literatur  Incremen NHS Drug Yes
etal talliver n+5- analytic r ereview  tal cost administra
(2001) metast FU/FAv model. perspec per life tion costs,
ases 5-FU/FA tive year postsurgic
as NAT gained. al costs
6 months including
follow-up palliative
care.
Rocconi
etal
(2005)

Breast NAT: Retrospe  Canadia  NeoSphe LYG, NeoSph Not stated.  Yes:
pertuzum  ctive n re and QALYs, ere and Indirect probabil
ab and cost- healthca  TRYPHA ICER, TRYPHA  costs istic
trastuzu utility re payer ENAtrial 28years ENA sensitivi
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mab

Poona Ovaria NAT v SF
wallaet il
al.
(2015)
Ovaria NAT v SF
n
Wi | Bladde NAT v
onetal §s NAT

(2014)

analysis
using
Markov
decision
model.

Retrospe
ctive
cohort
study

Markov
decision
model

Kaplan-
Meir, log-
rank test,
ttest.

perspec
tive.

Payer
perspec
tive

Healthc
are
system
perspec
tive

Third
party
payer
perspec
tive

NAT= neoadjuvant therapy; SF= surgery first

data

Surveilla
nce,
Epidemi
ology
and End
Result
(SEER)-
Medicare
linked
database.

Literatur
e review

Retrospe
ctive
review of
institutio
nal data

Cumulati
ve
treatmen
t costs
with
phase-of-
care
approach
, ICER,
oS,
NMBEs,
LYG,
2000-
2009

oS,
surgical
complicat
ions,
probabili
ty of
initiation,
treatmen
t cost,
QoL,

5 yeats

QALY
2004-
2011

trial
data,
Hoffman
n-La
Roche
Unit
costs,
publishe
d
sources
or
Ontario
databas
es.
Medicar
e claims

Medicar
e +
hospital
costs
estimate
s from
Agency
for
Healthca
re Costs
and
Utilizati
on
Project
(HCUP)
data.
Local
billing,
publishe
d
sources

Indirect
costs,

Surveillanc
e, chronic
complicati
ons and
indirect
costs.

Indirect
costs

ty
analysis
(PSA)

No

Yes:
Monte
Carlo
simulati
on

None

What this critical analysis showed is that the complexities of costs

involved in cancer care mean that this is a challenging yet essential

area of health economic research. Neoadjuvant therapy represents

an emerging and unique area for cost-effectiveness analysis with

implications spanning the trajectory of patients’ journeys, and

impacting far beyond the neoadjuvant phase of treatment. Emerging

challenges brought by the advent of neoadjuvant approach to cancer
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treatment as well as areas where cost-effectiveness analysis could be
improved have been highlighted. Firstly comparability of studies is
inhibited by variation in: methods, economic perspective, cost
estimates, and sporadic use of discounting. Secondly, neoadjuvant
therapy is an emerging treatment option therefore available patient
databases and existing published studies regarding its effectiveness
carry limitations. How these limitations are addressed within cost-
effectiveness analysis studies relies on utilising any of the plethora of
techniques of evidence synthesis available which simultaneously
raises questions regarding uncertainty and bias in the data
undergoing analysis and could further impede comparability of
findings for decision makers. Thirdly, although widely used,
reporting of QALYs is also shrouded in controversy and ambiguity
surrounding quality-of-life measurement. Each of these areas and

how future research could be improved will now be addressed.

Comparability of cost-effectiveness analysis studies is essential for
decision makers to evaluate trade-offs therefore factors impeding
comparability must be analysed. All studies in this review gave
details of how costs were arrived at but few studies explicitly
detailed costs that were excluded (Appendix G; Table 8). Costs of
cancer care are multifactorial involving cost of treatment, individual
monetary and emotional costs, costs to healthcare systems and costs
to wider society (Russell, 2016) yet only one study did not exclude
indirect costs (van der Brink et al,, 2004). This corroborates findings
that despite earlier recommendations (Gold et al, 1996) only 29% of

cost per QALY analysis since 2005 adopted a societal perspective
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(Neumann, 2009) and even when they reported to do so important
costs were omitted (Sanders et al, 2016). Although some studies
converted costs to US dollars, it must be remembered that changing
currency does not equate with conversion of actual costs within
different healthcare systems or how people in different countries
value their health status (Simunovic et al, 2004). Also, cost-effectives
ratios and WtP thresholds do not inform decision makers on
resources required to implement neoadjuvant therapy and which
other interventions should be abandoned to free resources to enable
this (Simunovic et al, 2004). Therefore, whilst researchers should
compare cost and benefits of treatment approaches, cost-
effectiveness cannot be deduced unless opportunity costs of selected
treatments (i.e cost-efficient use of redirected resources) are also
determined (Simunovic et al, 2004). How then can future studies
standardise methodological practices to improve quality and
comparability, whilst addressing the theoretical challenge of
aggregating costs and effects across different sectors and individual
patients and their carers, in a way that reflects consensus position at

societal level (Drummond et al, 2015; Brouwer et al, 2008)?

One recommended solution is that all cost-effectiveness studies
should include as standard two reference cases: one from health
sector perspective and one from societal perspective (Sanders et al,
2016). From health sector perspective effects would be measured in
QALYs and results summarised in ICER, net monetary benefit (NMB)
and /or net health benefit with a range of cost-effectiveness
thresholds considered. Costs would include all health care sector

costs reimbursed by third party payers and out-of-pocket costs paid
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by patients. The societal reference case would then consider
consequences of an intervention including those outside formal
healthcare sector therefore would include indirect costs such as
transport, patients’ and carers’ time costs and reduced productivity
etc. In practical terms for cost-effectiveness analysis research this
would involve a standardized ‘impact inventory’ that lists all direct
and indirect costs making costings more transparent, comprehensive
and rigorously assessed (Sanders et al,, 2016). The studies included
in this review had a wide variation in time horizon and this approach
could also go some way to addressing the challenge of estimating
future direct and indirect costs during any additional life years
gained, although this is an area some would argue requires further

research (Sanders et al, 2016).

A further source of variation is that of discounting. Whilst it is
recommended that costs and health effects be discounted at the same
rate ambiguity surrounds what that rate should be. American
recommendations currently stand at 3%. In the UK NICE
recommends 3.5% for both costs and benefits (NICE, 2013) but
previously recommended 6% for costs and 1.5% for benefits (NICE,
2011). Sensitivity analysis accounting for a range of discounting rates
is therefore recommended whilst further research in this area

continues (Sanders et al.,, 2016).

This review found that cost-effectiveness analysis of neoadjuvant
therapy for the treatment of SOM utilised a variety of methods
although Markov decision models and decision analytic models

dominated. Whilst such approaches offer methods for dealing with
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uncertainty through evidence synthesis, this review revealed that
there was limited explanation of how, or indeed if, such models dealt
with heterogeneity and potential bias of the data used to populate
these models (Appendix G). Some databases lacked important details
related to tumor characteristics or specifics of interventions, which
could potentiate bias as could the application of survival analysis,
when used in the presence of censored data. Furthermore the
majority of studies were retrospective. Future studies should focus
on performing economic analysis prospectively, possibly within
clinical trial, to ensure high internal validity (Drummond et al,, 1997;
Simunovic et al,, 2004). Where evidence is synthesised a quantitative
description and critique of the evidence base must be offered with
explicit detail about how bias within and across studies was handled,
bias corrected estimates arrived at, and how estimates were adjusted
for transferability (Sanders et al, 2016). As was the case with most
studies, ambiguities should be tested through sensitivity analysis. In
studies of higher quality sensitivity analysis was used to test every
assumption or estimate used in the decision model to account for
potential impact of such variations on the results and this should be

standard practice across future studies.

With the exception of one study in this review (van der Brink et al,
2004) quality-of-life data was not collected as part of the analysis
hence introducing limitations in accuracy of QALYs. Whilst some
would debate the ability of QALYs to capture all-important factors
impacting quality of life, such as short lived but intense experiences,

generic preference-based measures would enhance comparability of
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findings (Sanders et al,, 2016). The proviso is that such instruments
exist and are fit for the purpose of measuring differences and
changes across interventions being considered (Sanders et al., 2016).
Where such instruments do not yet exist, analysts may present
quality-of-life estimates based on scores from patients and/or other

sources (Sanders et al., 2016).

In summary, current cost-effectiveness analysis of neoadjuvant
therapy are limited by factors impeding comparability, limitations of
available evidence supporting effectiveness of treatment options and
quality-of-life measures on which to base quality adjusted survival
outcomes. Reference cases, from both health sector and societal
perspectives, introduced as standard reporting of and using
standardised methodological practices could promote comparability
of future studies, with a set ‘impact inventory’ improving
transparency of included costs (Sanders et al, 2016). The evidence
base on which cost-effectiveness analysis is based must also be
routinely critiqued with quantitative description of evidence base,
accounting for bias within and between studies, offered as the basis
on which bias adjusted estimates are calculated (Sanders et al., 2016)
and each assumption tested in sensitivity analysis. Attention to
collecting quality-of-life data would enhance future studies

particularly if included in prospective studies.
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2.2.3 Conclusion: lessons from modeling in health economics

To conclude, the flaws highlighted in the reviews of cost-
effectiveness analysis pertaining to pancreatic cancer surgery
(methodological flaws and heterogeneity limiting comparability and
generalisability of findings, uncertainty and quality issues pertaining
to data sources and how effectiveness is measured and reported)
prevail and permeate through cost-effectiveness analysis of
neoadjuvant therapy applied to other malignancies, even where the
underlying evidence base for neoadjuvant approach is more matured.
This challenges the erroneous assumption that better quality data
would automatically equate with better, more useful statistical
models of outcome optimisation in pancreatic cancer treatment.
However, the lessons to be drawn are more expansive than simply
the technicalities of how to improve cost-effectiveness studies and

could have much more latitudinous connotations for future research.

Firstly, the limitations of current cost-effectiveness analysis studies
must be understood within the context of the limitations of the
available evidence-base determining the degree of ‘effectiveness’ of
the intervention, which is after all the ‘driver’ for cost-effectiveness
analysis (Ades et al., 2006). Whilst it is widely accepted that RCTs
and their meta-analysis provide the highest form of evidence (Garas
etal.,, 2012; Centre of Evidence Based Medicine, 2011), the fallibility
of this perceived hierarchy must be acknowledged (Ades et al., 2006;
Garas et al., 2012). Firstly, RCTs can report varied outcomes and may
not provide all evidence required. Furthermore the inevitable lack of

infallible, appropriately designed RCTs reflecting real-life patient
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case-mix and complexities of decision making in clinical practice,
does not equate with avoiding or improving cost-effectiveness
analysis (Ades et al., 2006). Increasingly decision analysis is being
used as a framework for economic evaluation (Ades et al., 2006).
How then can clinicians and researchers best make use of the
existing imperfect evidence base whilst simultaneously considering
the impact of such weaknesses on uncertainty of decisions and for

research priorities? (Ades et al., 2006; Claxton et al., 2002)

Rather than solely seeking to address the gaps in current literature
with further RCTs one additional solution may lie in evidence
synthesis; a growing area of interest within cost-effectiveness
analysis (Ades et al., 2006; Garas et al., 2012; Claxton et al., 2002).
Evidence synthesis is a collective term covering the diversity of
methods and mathematical tools utilised for integrating data from a
variety of sources into decision and cost-effectiveness analysis
models (Ashrafian et al., 2010). This approach has been championed
as producing evidence with greater accuracy and less uncertainty by
utilising data from multiple types of studies (Ashrafian et al., 2010).
However, as demonstrated by the previous review of existing cost-
effectiveness analysis studies, challenges arise when accounting for
heterogeneity, degree of bias and uncertainty when combining
multiple sources of available evidence in cost-effectiveness analysis

(Ades et al., 2006).

In response to such challenges Bayesian approach to meta-analytical
methodology is gaining precedence (Ades et al., 2006; Garas et al.,
2012; Ashrafian et al., 2010; Felli & Hazen et al., 1999). Bayesian
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approach is based on the concept of using available evidence to
accurately derive the probability of a parameter (Ashrafian et al.,
2010). It therefore provides the flexibility to incorporate variable
randomised and non-randomised data sources in a hierarchical
model with sources individually weighted to account for bias and
uncertainty (Ades et al., 2006; Garas et al., 2012; Ashrafian et al,,
2010; Spiegellhalter et al., 2004; Sutton & Abrams, 2001).
Consequently this approach is beginning to play a pivotal role in
decision modeling (Tapper et al., 2011; Garas et al., 2012;
Spiegellhalter et al., 2004; Cooper et al., 2002; Cooper et al., 2004;
Parmigiani, 2002). At present the application of this methodology is
stymied by the complex mathematical expertise it demands
(Ashrafian et al., 2010). Advances in software supporting Bayesian
approach juxtaposed with an increasing focus on cost-effectiveness
analysis of health interventions, makes this is a rapidly expanding
area of research with Bayesian methods being incorporated into the
field of machine learning to support decision making. However, the
review of cost-effectiveness analysis studies revealed that a
significant number of studies used Markov modeling, a statistical
model derived from the Bayesian school of statistics, and yet
significant flaws prevail. If research is to advance the lessons learned
therefore must go beyond those of statistical modeling methodology
to consider the theory driving current research and how this relates

to its current limitations.
If we consider the basis for Ulrich’s seminal work on critical systems

thinking (Ulrich, 1983) which was that the definition of a problem,

proposals for improvement and outcome are all dependent on the
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whole system (Ulrich, 2002). This places great emphasis on how
systems boundaries are justified and the implications this has for
what modeling a system defined in such a way will, and importantly
will not, tell us. The implications of boundary setting across the
previously discussed cost-effectiveness analysis studies relate to
their limitations and manifest as: exclusion of important alternative
treatment strategies, the exclusion of certain costs including indirect
costs forfeited by the patient, exclusion of consideration of all
relevant potential implications of a treatment strategy including
treatment failure and side effects, a lack of quality adjusting survival
time or collecting quality-of-life data to more accurately do so, and
the setting of time horizons to capture all necessary events. This
enables the limitations of the existing body of cost-effectiveness
studies not merely to be seen as a series of methodological issues to
be corrected, but rather as the system that is the delivery of
healthcare being defined in simplistic and reductionist terms dictated
by the researcher’s agenda which therefore not only defines
effectiveness in their terms but also how system boundaries are set
which in turn determines how effectiveness is assessed. If a move
towards personalised realistic medicine is to be achived then
outcomes must instead be defined in more patientcentric ways with

models created that can encompass this refocusing.

Problem structuring thinkers, such as Ulrich, argue that systems
boundaries must be rationally justified through dialogue with both
the involved and affected (Ulrich, 2002; Ulrich, 2012; Ulrich, 1987).
Cilliers combined thinking about boundaries with concerns relating

to complexity (Kruger et al., 2019). Both he and problem structuring

114



thinkers such as Ulrich agree that both limited knowledge of systems
as a result of boundaries and complexity exist and therefore require a
critical and ethical imperative in the study and understanding of such
systems (Kruger et al., 2019). Although this work predated the
concept of realistic personalised medicine its relevance is tangible.
This view is supported by a growing move within healthcare
research to view healthcare systems as complex adaptive systems
which have been formally defined as “a collection of individual agents
with freedom to act in ways that are not always totally predictable,
and whose actions are interconnected such that one agent’s actions
change the context for other agents” (Plsek & Greenhalgh, 2001
p.625).

To conclude, it is not without coincidence that the field of complex
systems developed at a time when statistical theory began to
coalesce with machine learning to reliably infer models with large
numbers of variables that interact in complex, non-linear ways. It
would therefore seem that the potential of, for example, Bayesian
statistics has not been fully explored within the area of modeling for
cost-effectiveness analysis where the system being modeled has been
so reduced and simplified. Therefore the next section will assess how
predictive models to support clinical decision making by predicting
outcomes have been developed and used, and to what degree of
success. After a critical overview of existing models a more detailed
examination of the methodological quality of prognostic
development studies is offered. After this the specific use of machine
learning to support clinical decision making in the management of

pancreatic cancer will be critically analysed.
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2.3 Predictive Modeling to Support Clinical Decision
Making in the Management of Potentially Resectable

Pancreatic Cancer.

Publications resulting from this section:

Bradley, A., Van Der Meer, R. and McKay, C.]. (2019) ‘A systematic
review of methodological quality of model development studies

predicting prognostic outcome for resectable pancreatic cancer’. BM]

Open, 9:e027192. doi: 10.1136/bmjopen-2018-027192

Bradley, A., Van der Meer, R. and McKay, C. (2019) ‘Personalized
pancreatic cancer management: a systematic review of how machine
learning is supporting decision-making’. Pancreas,48 (5). pp. 598-

604.

Introduction

Traditionally assessment of operative risk has been the domain of
surgeons’ judgment gained from experience (Lewis & Volmer, 2012).
However, there exists a great need to risk-stratify surgical patients
pre-operatively in an objective and standardised way (Lewis &
Volmer, 2012). This is particularly pertinent in the high precision
field of pancreatic cancer surgery where surgical volume is low, with
only approximately 10% of cases being resectable at presentation,
yet operative mortality and morbidity rates are high (Lewis &
Volmer, 2012). Despite advances in surgical technique and adjuvant

treatments, the potential benefits of such high-risk surgery are often
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nullified by early disease reoccurrence. Effective patient selection for
surgery is therefore paramount. Furthermore studies have shown
high discrepancies between surgical and survival outcomes in favour
of large volume centres (Birkmeyer et al, 2002) which highlights the
need for accurate methods of performance adjustment through risk
stratification and predictive modeling (Lewis & Volmer, 2012). This
makes pancreatic surgery an ideal vector through which to deliver
solutions to the complex challenges encountered in prognostic

modeling in organ specific surgery.

Options for the management of resectable cases of pancreatic cancer
are also becoming more complex with the advent of neoadjuvant
therapy. In the absence of large RCTs conclusively proving benefit of
either upfront surgery or neoadjuvant approaches to treatment,
there exists a need for predictive models to address competing
treatment options. These changes have also taken place within a
wider socioeconomic context. Prognostic models and risk
stratification tools are not only expected to guide treatment
approaches but also guide cost-effective use of resources by diverting
patients away from unhelpful treatments and investigations.
Furthermore there is a move within contemporary healthcare
towards personalised predictive medicine whereby probabilistic
modeling is used to forecast individual patient outcomes (Velikova et

al, 2014; School et al,, 2013).

In summary, risk stratification and prognostication are vital in
empowering informed consent, supporting clinical decision making,

guiding treatment options and patient counseling as well as offering

117



powerful research tools (Lewis & Volmer, 2012). The following
section is structured thus: Section 2.3.1 begins by offering an
overview of the role of predictive models in contemporary pancreatic
surgery practice through a brief outline of the historical perspective
of risks stratification and prognostic modeling to where we are
today. From this platform a critical analysis of current methods of
predictive modeling will be presented. Section 2.3.2 then takes this
discussion further through a systematic critical review of the
methodological quality of existing prognostic model development
studies. From this basis the application of Bayesian networks as an
alternative modeling technique is discussed. Bayesian networks have
also been applied within the wider discipline of machine learning
therefore section 2.3.3 critically examines how, and to what extent,
the application of the emerging discipline of machine learning has
been, and could be, applied to the issue of supporting clinical decision
making and achieving personalised realistic medicine in the
management of potentially resectable pancreatic cancer. Importantly
the optimism surrounding this approach is weighted against its
current limitations. From this basis the case is made that if research
is to progress what is required is not merely an improvement of the
application of statistical modeling techniques but rather a revolution
in the prevailing Weltanschauung resulting in a fundamental shift in

the philosophical paradigm underpinning future research.
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2.3.1 Predictive Models For The Surgical Management of

Pancreatic Cancer

Predictive models published since 2000 pretainng to the surgical
management of pancreatic cancer fall into the following broad
categories: predicting mortality and morbidity from pancreatic
cancer surgery, complication specific predictions following
pancreatic surgery and predicting survival time following pancreatic

cancer surgery.

The critical analysis of existing predictive and prognostic models
offered in appendix H shows that despite a growing interest in
prediction research and its methodologies (Altman & Riley, 2005;
Altman, 2007; Altman & Lyman 1998; McShane et al., 2005; Rothwell,
2008; Moons et al, 2009; Bouwmeester et al,, 2012) there is a lack of
rigorous application within surgical centres and wider surgical
literature of predictive and prognostic models (Lewis & Volmer,
2012). This is in part due to methodological issues: the inclusion of a
wide variety of variables the importance of which clinicians making
the decisions may dispute, the use of small single centre data which

limits generalisability and the lack of external validation.

Currently the most sophisticated medical predictive models are
based on non-liner regression techniques; primarily logistic
regression and Cox regression (Lewis & Volmer, 2012). Conversely
personalised precision medicine, whereby predictive and prognostic
modelling is used to forecast individual patient outcomes, is gaining

precedence within contemporary healthcare (Velikova et al,, 2014;
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School et al.,, 2013) and creates an expectation for models to facilitate
decision making and, given the wider socioeconomic context, also
guide cost-effective use of resources. A disparity between
expectations and the reality of currently available models therefore
exists. Juxtapose these growing expectations with the advent of
neoadjuvant therapy making treatment options for resectable
pancreatic cancer more complex, and it becomes clear that methods
of predictive and prognostic modelling must be rigorously assessed if
such challenges are to be overcome, as poor methods can result in

unreliable and biased results (Bouwmeester et al., 2012).

This research focuses on optimising outcomes for patients with
potentially resectable pancreatic cancer. As outcomes are most often
measured in terms of survival time, the following section therefore
analyses the methodological quality of prognostic model

development studies applied to resectable PDAC.

2.3.2 Methodological Quality of Prognostic Development Studies

for Resected Pancreatic Cancer

An overview of the current state of prognostic model development
studies relating to prognosis following resection of PDAC is
presented in appendix I. Areas for improvement and direction for
future research have been highlighted by assessing each domain of
the ChecKklist for critical Appraisal and data extraction for systematic
Reviews of prediction Modeling Studies (CHARMS) checklist across
the 15 included studies (Moons et al., 2014). Theses areas for

improvement related to general aspects of model development and
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reporting, applicability of models and sources of bias (Moons et al.,

2014).

General Aspects of Models Development and Reporting

General reporting of aspects of model development was found to be
clear relating to participant eligibility, recruitment and description as
was reporting of follow-up period. Definitions of outcome and
number and type of candidate predictors were also generally clearly
reported across included studies. Although the number of
participants was clearly reported, the number of events at defined
time periods of prediction should be more clearly reported to assist
assessment of statistical power. Improvement should also be made in
the reporting of missing data. The majority of studies used complete
case analysis but only 2 of the remaining studies provided details of
missing data per variable (Brennan et al., 2004; Botsis et al., 2009).
Across all 15 studies modeling methods were clearly reported.
Alternative presentations of models were also offered in all studies to
assist application to clinical practice with discussion on strengths,

limitations and comparisons also offered.

Applicability

Generalisability of prognostic models is an area for improvement as
the majority of models were based in single centre databases. The

applicability of these models to patients in neoadjuvant treatment

pathways has also not been assessed.
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Methods of reporting model performance showed high heterogeneity
with only 9 studies providing confidence intervals with results
making comment on general applicability difficult (Shen et al., 2018;
Balzano etal, 2017; Dasari et al,, 2016; Puetal, 2018; Brennan et al,,
2004; Xu etal., 2017; Botsis et al., 2009; Smith & Mezhir, 2014; Pu et
al., 2017). Most models had limited discriminatory performance with
area under the curve (AUC) below 0.7 and those reporting an AUC
nearing 0.9 being based on small sample sizes therefore raising the
possibility of overfitting. The 2 studies employing alternative
methods of artificial neural network (ANN) (Walczak & Velonovich,
2012) and Bayesian modeling (Smith & Mezhir, 2014) did not report
an improved AUC (0.66 and 0.65 respectively). Furthermore
calibration, a crucial aspect of model development, was frequently
missing or not performed adequately with the calibration curve
based on the derivation dataset (Xu et al., 2017). In cases of poor
validation whether the model was adjusted or updated was also
poorly reported. Only 3 studies performed external validation (Shen
etal., 2018; Balzano et al., 2017; Dasari et al., 2016) and none of the
studies explored impact analysis of their models making comment on
the clinical application of the models difficult. Moving forward this
could be addressed through access to datasets from meta-analyses of
individual participant data, or registry databases containing
electronic health records (Riley et al., 2016). Such big datasets would
allow researchers to externally validate, and where needed improve
through recalibration, model performance across different settings,

populations and subgroups (Riley et al., 2016).
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Source of Bias

Areas for improvement were also found in limiting sources of bias. As
previously mentioned overuse of single centre databases is one area
but also the reporting of consecutive sampling, number of
participants who refused participation, and whether all consecutive
participants were included should be more clearly reported.
Although handling of candidate predictors, and predictors in
modeling, were generally clearly reported including statistical
methods for handling categorisation and non-binary variables, their
assessment generally did not involve blinding to outcome.
Assessment of statistical power of sample size was also not well
reported and only 2 studies used the recommended approach of
imputation methods to handle missing data with the majority of
studies employing complete case analysis which could both
potentiate bias and reduce statistical power (Moons et al., 2014).
None of the included studies gave details on how candidate
predictors were identified. In selecting predictors for inclusion in the
models the majority of studies employed pre-selection through
univariable analysis followed by multivariable analysis. Whilst such
an approach is commonplace it does potentiate overfitting of models,
an issue poorly discussed across all studies. Only 3 studies included
external evaluation (Shen et al., 2018; Balzano et al., 2017; Pu et al,,
2018) and classification measures (sensitivity, specificity, predictive
value) were poorly reported, as was comparison of distribution of

predictors including missing data.
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In summary, at a time when an increasing focus and expectation is
being placed on personalised predictive medicine, this review
highlights fundamental aspects of the methodological quality of
models that must be improved if future models are to have a clinical
impact by supporting decision making. Whilst many of the models
included in this review provided alternative presentations to assist in
their clinical application, issues of methodological quality were found
that inhibited their clinical impact. These issues included how
missing data is handled, the assessment of statistical power, issues of
bias associated with candidate predictor selection and a lack of
blinding during their assessment. Such issues are augmented by an
over reliance on single centre databases which also limits the
generalisability of the models. The reporting of model performance is
also a key area for improvement. The emerging focus on precision
medicine means that the future application of predictive modeling
lies in combining each patient’s genomic and clinical data in a
meaningful way that will support clinical decision making at
individual patient level. This can only be achieved if future research
focuses on improving the methodological quality of model
development, regardless of whether they employ traditional or

machine learning methods.

2.3.3 Conclusion: Lessons Learned and Future Direction of

Research for Predictive Models in Pancreatic Cancer Surgery
A bamboozling yet flawed array of predictive models and risk

stratification tools pertaining to pancreatic surgery exist (Appendix

H; Appendix I). Predictive models and risk stratification tools are
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widely used in audit and research in many other areas to allow case-
mix adjustment when comparing single centre outcomes (Steyerberg
etal, 2010) and in defining inclusion and exclusion criteria for RCTs
or identifying high risk participants and allowing covariate
adjustment (Lewis & Volmer, 2012). However, this review has
demonstrated that it is in the area of clinical application that
predictive modeling arguably holds most promise yet demonstrates

most limitation.

Predictive models can support clinical decision making and assist
patient counseling (Braitman & Davidoff, 1996) hence empowering
informed consent processes and shared decision making. In the
absence of clear contraindications to surgery but where surgeons are
faced with difficult decisions about whether to operate or not,
predictive models can provide objective predictions about the
patient’s physiological and immunological responses to surgery
(Jarnagin et al, 2011; Christou, 1994). Intra-operative and post-
operative application of predictive models can also alter the course of
treatment (Lewis & Volmer, 2012). For example a patient identified
as being at high risk for developing a pancreatic fistulae may
therefore receive more aggressive prophylactic measures (Lewis &
Volmer, 2012). Equally lower risk surgical patients could be diverted
away from unnecessary referrals or investigations allowing better
resource utilisation (Altman & Royston, 2000). The emerging focus
on precision medicine means that there will be a demand on future
applications of predictive modeling to merge patient’s genomic and
clinical data to assist decision making on a more individualised basis

(Lewis & Volmer, 2012).
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The reality however is that such models are not yet in existence and
current predictive models are limited in scope and value with most
only being descriptive in probabilities of adverse events or survival
outcomes (Lewis & Volmer, 2012). Whilst this may help to manage
patient expectations, existing models fall short in differentiating
patients who would, and more importantly would not, benefit from
particular treatment options (Lewis & Volmer, 2012). Furthermore
some studies have shown that such models are no better than
experience led judgment in predicting morbidity (Markus et al,
2005; Hartley et al, 1994). This corroborates conflicting findings
regarding the accuracy of widely used models to predict post-
operative morbidity and mortality from pancreatic surgery (Lewis &
Volmer, 2012). This is also reflected in the limited application of
predictive models within surgical centres and also the lack of
rigorous application of predictive modeling in surgical literature

(Lewis & Volmer, 2012).

Whilst the plethora of available, disease specific prognostic and risk
prediction models may infer a growing interest in the area of
predictive modeling, to integrate fully into clinical practice they need
to provide predictions beyond length of survival or risk prediction to
include fundamentals such as quality of survival time, length of
hospital stay, resource utilisation and predicted benefits of
competing treatment options available. In short, and echoing the
previous conclusions drawn from the review of statistical modeling

for cost-effectiveness analysis, predictive models must develop to
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engage with the complexity of the system they are attempting to

model.

The problem with existing modeling techniques is that they regard
prognosis as an isolated event at a pre-determined time, applying
attribute selection prior to inducing the model and setting fixed roles
of input and output variables to attributes (Verduijn et al,, 2007).
Variables deemed important by clinicians may therefore be excluded.
Furthermore this neglects the dynamic nature of care processes
where outcomes today predict those of tomorrow hence expected
patient outcomes evolve, as more information becomes available

(Verduijn et al,, 2007).

Bayesian statistical approach offers an alternative to traditional
frequentist paradigm of null hypothesis testing by allowing the
integration of prior qualitative and quantitative knowledge (Velikova
et al, 2014; School et al,, 2013; Verduijn et al, 2007). In this way
Bayesian Networks (BN) allow the modeling of relationships
between variables at various stages of the healthcare process, with
predictions of outcomes evolving throughout the process by utilising
all available patient data at that time (School et al,, 2013). Predictions
can therefore be made for all variables, not just outcome variables
(Velikova et al.,, 2014; School et al,, 2013; Lucas et al., 2004).
However, despite the potential of BN and the expanse of software
supporting their application, their use within healthcare remains

under utilised.
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BN are based on graphical formalism of a joint or multivariate
probability distribution over a random set of variables and are
sometimes referred to as acyclic directed graphs (Velikova et al,
2014; School et al.,, 2013; Stajduhar & Dalbelo-Basic, 2010). In plain
language the structure and parameters of BN are nodes, arcs and
conditional probabilities. Variables in a BN are modeled as nodes
and directed arcs represent causal relationships between nodes.
Each node has a conditional probability formula or table that
represents the probability of each value contained within that node
given the condition of all its parent nodes. Through Bayes theorem
the prior distribution and observed data are combined to update
knowledge in the form of the posterior distribution (Velikova et al,
2014; School et al.,, 2013; Stajduhar & Dalbelo-Basic, 2010). Where
patient information is limited probabilistic inference can still make
predictions based on global averages of the patient population
(Verduijn et al,, 2007; Lucas et al, 2004). As more information
becomes available the predictions become more patient specific

(Verduijn et al,, 2007).

This has important implications as treatment selection and
prognostic reasoning at its very core concerns making predictions of
future events despite inherent uncertainties. BN have the capacity to
encompasses exploitation of knowledge of evolution of processes
over time. Prognostic Bayesian models allow for incorporation of
individual patient data, disease progression and impact of different
treatment options on the predicted outcome variable, such as life
expectancy (Lucas et al, 2004). Therefore, unlike traditional

prognostic models that provide predictions of a single outcome
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variable, BN are theoretically better equipped to handle complexity,
providing information on process variables (conditions that occur
during the process) as well as outcome variables (endpoints of that

process) (Verduijn et al, 2007; Lucas et al., 2004).

In summary, Bayesian methods underpin BN and allow prognosis to
be seen as a dynamic notion through probability updating with new
and emerging information (Verduijn et al, 2007). This has several
important benefits when considering the clinical application to
support decision making. Firstly prognostic updating can capture the
reality that as the healthcare process evolves so does a patient’s
predicted prognosis. In practice this means clinicians involved at the
later stages of care can use the same model, adjusted for the events of
the preceding care phases (e.g. complex surgical interventions) to
make more timely and personalised predictions (Verduijn et al,
2007). This further highlights an aspect of predictive medicine not
captured in traditional prognostic models; prognostic scenario
analysis. In real life events such as complications and hospital stay do
not happen in isolation but rather as scenarios (Verduijn et al,, 2007).
Algorithms exist within prognostic BN that can perform this type of
probabilistic inference to predict a most likely scenario for patients
or patient groups (Verduijn et al, 2007). This advantage links
beneficially to a further aspect faced by clinicians and patients; the
‘what if scenario’. By identifying a specific event the prognostic BN
can supply a risk profile of the most likely scenarios leading to the
stated event (Verduijn et al,, 2007). Such information can be
incorporated into decision making regarding treatment options.

Similarly BN can be used to perform risk factor analysis as when an
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unfavorable event occurs, such as post-operative complication, it is
important to identify variables that may have predicted occurrence
or nonoccurrence of said event and quantify this in terms of risk

ratios (Verduijn et al, 2007; Lucas et al,, 2004)

Finally, in addition to the clinical application of BN, an emerging
application of BN is in molecular biology (Lucas et al, 2004). As has
been explained BN can be understood as representation of uncertain
interactions amongst variables. Within bioinformatics BN are being
used to explore interactions between genes based on experimentally
obtained data in microarrays (Lucas et al, 2004). It is hoped that BN
analysis may reveal how the variables interact as a function of time
(Lucas et al, 2004). It is possible that through BN the future role of
precision medicine within personalised realistic medicine could lie in
amalgamating clinically observed patient data with genetic profiling
to give patients and clinicians the most accurate predictions of
patient outcome when deciding treatment approaches and resource

allocation.

The first exciting steps in this path are starting to emerge with the
recently published paper by Yamamoto et al. (2017) demonstrating
that a mathematical model can successfully reproduced clinical
outcomes using a predictive signature for lower propensity to
metastatic disease based on the finding that these primary tumours
contain a small fraction of KRAS and CDKNZ2A, TP53, or SMAD4 genes.
Although this model requires prospective validation it indicates a
future direction of research whereby PDAC treatment can be

personalised to the most effective therapeutic modality. The next
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phase of research will be in integrating breakthroughs in genetic
profiling into predictive models for surgical morbidity/ mortality and

long-term survival outcomes.

To conclude, the patient with a favorable genetic profile making
metastatic disease from their primary pancreatic cancer less likely,
but with other pre-existing comorbidities will still want to know how
likely they are to survive an operation, their risk of complications
from all proposed treatments and their implications including quality
adjusted survival predictions across competing treatment strategies
such as neoadjuvant or upfront surgery pathways. This is the future
of personalised predictive medicine supporting cost-effective
healthcare. However, in practical terms this requires the integration

of large complex databases.

Bayesian statistics has been offered here as a possible way forward.
The potential for the application of this branch of mathematics is
only beginning to come into fruition due to advances in the ability of
computer software to handle such computational statistics.
Bayesianism, in addition to other novel approaches to statistical
modeling, have therefore been applied within the wider discipline of
machine learning. As previously mentioned the period of time when
statistical theory began to coalesce with machine learning was also
the period of time when the field of complex systems was developing.
This demonstrated the gradual realisation in some fields of the need
to develop ways of engaging with complexity including a large
number of variables that interact in non-linear, often unpredictable,

ways. Yet, based on the existing body of predictive and prognostic
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modeling, such an epiphany has yet to dawn within the application of
decision support models applied to pancreatic cancer management.
Furthermore, where more novel statistical approaches have been
employed for prognostic modeling, BN (Smith & Mezhir, 2014) and
ANN (Walczak & Velanovich, 2012), their performances did not rival
that of models based on traditional regression techniques. However,
in both cases the full potential of these techniques were not fully
explored as the boundaries of the models failed to attempt to engage
with the complexity of the system being modeled. The BN focused
predominately on the bearing of lymph node involvement to
prognosis (Smith & Mezhir, 2014). The ANN study also used a limited
number of variables to predict survival at 7months post resection

(Walczak & Velanovich, 2012).

If we consider, as the problem structuring thinkers do, that the
definition of a problem, proposals for improvement and outcome are
all dependent on the whole system (Ulrich, 2002) and, taking this
idea further as Cilliers did in combining thinking about boundaries
with concerns relating to complexity (Kruger et al., 2019), the
current limitations of predictive modeling, whether utilising
traditional or newer modeling techniques, reflect the limited
knowledge and understanding of the system as a result of boundaries

and failure to engage with complexity (Kruger et al., 2019).

Considering that methods of machine learning have been
championed as having the ability to engage with a large number of
variables that interact in a complex, non-linear way, several

questions remain. Where, how, and to what degree of success has
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machine learning been applied to decision making in the
management of pancreatic cancer and do machine learning methods

other than Bayesianism offer advantages?

2.3.4 Personalised Pancreatic Cancer Management: how Machine

Learning is Supporting Decision Making

Several factors have aligned making decision making in the
management of pancreatic cancer more complex. In addition to the
pancreatic cancer management pathway issues already discussed,
the ageing population and obesity epidemic means patients in
general are amassing a greater amount of clinical data to be consider
when making clinical decisions (Obermeyer & Lee, 2017). Treatment
options are expanding with the emergence of neoadjuvant approach
as an alternative to upfront surgery. While some are optimistic about
the role of neoadjuvant therapy, others feel the current body of
evidence is at best ambiguous with its role in the management of
resectable pancreatic cancer being particularly controversial
(Tempero et al., 2014; Asare et al., 2016; Lee et al., 2016; Xu et al.,
2014; Andrulli et al., 2012; Versteijne et al., 2018). This is
compounded by the current lack of RCTs comparing both upfront
surgery and neoadjuvant treatment pathways (Versteijne et al.,
2018). Furthermore with a research move towards precision
medicine (gene targeted therapy) databases will expand to reflect
our understanding of disease at genomic level, creating a further
‘data explosion’ (Tonelli & Shirts, 2017). Patients therefore represent
a big data challenge not only in the amount of data amassed, but in

being extremely complex data systems with multidimensional
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problems and interacting parameters with the rules governing
behaviours within layers of these systems often unclear or simply

unknown (Abbod et al., 2014).

Personalised predictive modeling has gained precedence as a means
of supporting clinical decision making (Velikova et al., 2014).
However, as previously discussed existing predictive models, mainly
based on non-liner regression techniques are limited in scope and
volume regarding prognosis as an isolated event at a pre-determined
time (Velikova et al., 2014; Verduijn et al., 2014). In isolation the
factors outlined as contributing to the complexity of decision making
may not be unique to pancreatic cancer. However, in the context of
being one of the most challenging malignancies (Siegel et al., 2015;
Ferlay et al., 2013), with comparatively lower resection rates
compared to other gastrointestinal malignancies (Siegel et al.,, 2015;
Ferlay et al., 2013; PCUK, 2017), pancreatic cancer is the ideal vehicle
to critically examine how successful machine learning is in dealing

with complexity and uncertainty to support clinical decision making.

Machine learning methods make predictions within complex systems
against a background of competing risks and events (Abbod et al.,
2014). Machine learning achieves this in one of three ways. Firstly
supervised learning, where the computer utilises partial labeling of
data (Hashimoto et al., 2018; Deo, 2015). Alternatively unsupervised
learning allows the computer to make predictions or explain data by
utilising structures detected within the data itself (Hashimoto et al.,
2018; Deo, 2015). Thirdly reinforcement learning whereby, similar to

operant conditioning (Skinner, 1938), the computer learns from its
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mistakes and successes to achieve a task (Hashimoto et al., 2018;

Sutton & Barto, 1998).

Commonly employed methods of machine learning include, but are
not limited to: Bayesian networks (BN), artificial neural networks
(ANN) and Fuzzy-logic (FL) modeling (Abbod et al., 2014). The
definitions, strengths and limitations of these most commonly
employed methods of machine learning are further discussed in
appendix | along with a critical analysis of machine learning for
decision analysis, prognostic and predictive purposes to support
clinical decision making in the management of potentially resectable
pancreatic cancer, based on the CHARMS checklist (Moons et al.,
2014).

The review presented in appendix ] found that machine learning,
although in its infancy, holds great potential in its application to
decision making under complexity (Abbod et al., 2014; Bartosch-
Harlid et al., 2008). However the application of machine learning to
predictive modeling pertaining to the management of pancreatic
cancer is currently limited in number therefore no conclusion can yet
be drawn as to superiority of either machine learning or traditional
modeling approaches. Only one study directly compared machine
learning methods with traditional approach to modeling (Hayward et
al., 2010). The accuracy of machine learning predictions, particularly
Bayesian modeling, were found to be superior and predictions form
log regression approach were improved when combined with
machine learning techniques (Hayward et al., 2010). However, it is

important to note that of the existing predictive studies using
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machine learning, limitations in methodological approach were
identified using the CHARMS checklist (Moons et al., 2014). These
issues are similar to issues highlighted in traditional approaches to
predictive modeling and include: use of single centre database
limiting generalisability, sample size, lack of blinding, lack of
transparency in candidate predictor selection, and lack of external
validation (Moons et al., 2014; Moons et al., 2009; Bouwneester et al.,

2012; Altman, 2001; Altman et al., 2009).

Whilst much optimism surrounds the growing use for artificial
intelligence (Al) in healthcare delivery, machine learning also carries
limitations that must be addressed in future research. Machine
learning usually requires large amounts of data (Marcus, 2018),
which in the case of potentially resectable pancreatic cancer can be
difficult to obtain as the majority of patients present with advanced,
unresectable disease (Siegel et al., 2015; Ferlay et al., 2013; PCUK,
2017). Whilst the creation of national shared databases may be one
solution to increase the volume of data, this is not without issue
including dimensionality, missing data and control of bias (Lee &
Yoon, 2017; Zhang et al., 2017) with minority groups often under
represented in such databases (Zhang et al., 2017). Furthermore
simply increasing volume of data is not the solution as machine
learning is not yet at a stage where it can distinguish correlation and
causation (Marcus, 2018). Future research should focus on better
integration of machine learning with expert knowledge to overcome

this challenge (Marcus, 2018).
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This review (Appendix J) found little evidence of machine learning
being actively integrated into clinical practice. Whilst this is mainly
due to such techniques being in their infancy, it must also be
acknowledged that some machine learning techniques are not yet
sufficiently transparent which breeds distrust and resistance to their
clinical application (Marcus, 2018). Machine learning requires high
levels of technical skill and can be difficult to engineer with experts
from medicine, computing and data sciences often speaking in
different technical language and coming to problems from different
perspectives which can inhibit shared understanding and limit
achievement of its full potential (Marcus, 2018). The beginning of a
possible solution could therefore lie with clinicians expanding their
view of the multidisciplinary team to include professionals from
computing and data science backgrounds with algorithms developed
in conjunction with clinicians and viewed as aids, not replacement, to

traditional clinical decision making (Obermeyer & Lee, 2017).

Despite these challenges the study by Hayward et al.(2010) does
however corroborate other studies where application of machine
learning methods to: breast, prostate and bladder cancers have
demonstrated superiority in terms of accuracy of predictions over
traditional logistic regression (Seker, 2003; Catto et al., 2003; Abbod
etal., 2006; Catto et al., 2009). Artificial Neural Networks (ANN) have
also been found to perform as well as or better than traditional log
regression models and also improve the diagnosis and management
of pancreatitis and the diagnosis of pancreatic cancer (Bartosch-
Harlid et al., 2008). Machine learning methods have also been shown

to out perform log regression in: providing individualised prediction

137



of the need for neonatal resuscitation (Reis et al., 2004 ), predicting
early mortality risk in coronary artery bypass graft surgery (Ghavidel
et al, 2014) and predicting severely depressed left ventricular
ejection fraction following admission to intensive care unit (Pereira
etal, 2015). However, the studies reporting this advantage are prone
to bias. As discussed in appendix ] such models share the limitations
of more traditional predictive models that where highlighted in

appendix L.

Conclusion

To conclude clinical decision making is going to become increasingly
complex and orientated twards uncovering causal structures as our
understanding of disease and treatment response at genomic level
grows, resulting in a further ‘data explosion’(Obermeyer & Lee, 2017;
Tonelli & Shirts, 2017; Abbod et al., 2014). Utilising this expanse of
data to facilitate decision making in a meaningful way for individual
patients is beyond the capabilities of the human mind working in
isolation (Obermeyer & Lee, 2017; Abbod et al., 2014; Bartosch-
Harlid et al., 2008). It is in this context that machine learning holds
the greatest potential by being able to handle large amounts of data
and integrate large, complex and varied databases (Bartosch-Harlid
et al, 2008). However machine learning also carries limitations and,
whilst initial studies are promising, its application has yet to be
widely tested (Marcus, 2018). The future direction of research
therefore relies on expanding our view of the multidisciplinary team
to include professionals from computing and data science

backgrounds with algorithms developed in conjunction with
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clinicians and viewed as aids, not replacement, to traditional clinical

decision making (Obermeyer & Lee, 2017).

2.4 Chapter Summary and Conclusion

The aim of this research is to facilitate the fruition of personalised
realistic medicine in the delivery of pancreatic cancer services
through statistical modelling that will facilitate better shared
decision making with patients and the entire multi-disciplinary team
to optimise individual patient outcomes as determined by the
individual patient. However, this chapter has demonstrated that the
existing body of research pertaining to the management of
potentially resectable pancreatic cancer is highly heterogeneous,
limited by issues of small sample size and methodological quality
potentiating bias, and therefore is permeated by ambiguity,

controversy and uncertainty.

Pancreatic cancer is a challenging malignancy associated with poor
survival outcomes. In the United Kingdom only 9.8% of cases are
resectable at presentation with international estimates ranging from
10-20% (CRUK, 2019). Current guidelines for resectable pancreatic
cancer recommend upfront surgical resection followed by adjuvant
therapy in the form of mFOLFIRINOX as the first line treatment
sequence (Khorana et al., 2019). However, up to 50% of patients with
resected disease fail to receive adjuvant therapy due a combination
of factors including early disease recurrence, post operative

complications and decline in physiological function related to pre-
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existing comorbidities (Winter et al., 2012; Evans et al., 2018). Five-
year survival rates for resected cases stands at between 7% and 25%
(CRUK, 2019). This has resulted in a renewed research interest in
neoadjuvant therapy. Postulated benefits of this approach include
elimination of micrometastases, conversion to resectability in
borderline and locally advanced stages of the disease, increased RO
resection rates, increased likelihood of delivery of multimodal
treatment, and allowing time for more aggressive tumours to declare
themselves by progressing despite neoadjuvant therapy hence
filtering such cases away from costly yet futile surgery with its
associated risks of morbidity and mortality impacting on quality-of-
life (Evans et al., 2018; Asare et al., 2016; Lee et al., 2016; Abbott et
al., 2013).

Whilst the role of neoadjuvant therapy has been widely accepted for
cases that are borderline resectable or locally advanced at the time of
presentation due to the potential for conversion to resectability,
particularly RO resection, its role in the management of resectable
pancreatic cancer is controversial. Critics highlight the dangers of
loosing the window of resectability and caution against drawing
overly optimistic conclusions from small, non-randomised,
underpowered studies that display a high degree of heterogeneity
(Asare etal., 2016; Lee et al., 2016). Currently there is a lack of RCTs
comparing upfront surgery and neoadjuvant treatment pathways for
resectable pancreatic cancer with many comparison studies
including borderline or locally advanced cases in the neoadjuvant
arm hence failing to offer a true like-for-like comparison (Versteijne

etal., 2018).
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The existing body of research on neoadjuvant therapy for resectable
pancreatic cancer leaves much room for debate. Preliminary findings
from Prep-02/JSAP-05 trial, the first RCT comparing upfront surgery
and neoadjuvant therapy in the form of gemcitabine and S1 for
resectable pancreatic cancer, has reported improved overall survival
outcomes with neoadjuvant therapy (Unno et al., 2019). However,
another RCT comparing mFOLFIRINOX with gemcitabine in the
adjuvant setting within the upfront surgery pathway has reported
improved survival outcomes with mFOLFIRINOX that rivals the
survival outcomes reported in the neoadjuvant arms of the Prep-
02/]SAP-05 trial (Conroy et al., 2018). This highlights key challenges.
Firstly the superior treatment pathway for resectable pancreatic
caner has not been conclusively established. Secondly superior
treatment regime combinations within competing pathways have not

been conclusively established.

These issues exist within the wider political context of a drive
towards the delivery of personalised realistic medicine through more
personalised treatment selection strategies that will ensure more
cost-effective resource utilisation. This has resulted in the current
research focus within pancreatic cancer research being driven in two
key areas where trials are underway: 1) the drive for more large
multi-centre RCTs comparing neoadjuvant and upfront surgery and
2) precision medicine with the focus on biomarker driven early

diagnosis and treatment sequencing and gene targeted therapies.
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Precision medicine permeates much of the current medical literature
and has been championed by some as hailing a ‘brave new world’ of
future medicine bringing the end of uncertainty in clinical decision-
making. This exciting vision of a brave new era of medicine is based
on a few impressive studies demonstrating the success of targeted
therapies predicted by genetic biomarkers. However, whilst such
breakthroughs are both impressive and exciting, in reality the
number of patients benefitting from precision medicine currently
remains small (MacConaill et al., 2015). Whilst such work is highly
valuable and important, the ongoing perpetuation of a Newtonian
world-view can only ever have a limited impact on moving research
forward. To illustrate, a deeper understanding of pancreatic cancer at
a molecular level has not influenced clinical decision making to the
extent that it has done with other caners (Collisson et al., 2019).
Instead this has resulted in pancreatic cancer beginning to be
understood as a highly heterogeneous and complex disease at
molecular level (Collisson et al., 2019). It follows that breakthroughs
in such areas, rather than solving uncertainty and complexity will
simply reveal the scale of the challenge particularly when the impact
of additional, often ambiguous, clinical information is factored into
the decision making process across the trajectory of the patient
journey as has been discussed within this chapter that has
highlighted the degree of uncertainty pertaining to key aspects of the
treatment pathway. Furthermore the enormity of the challenge of
delivering precision medicine has become the proverbial elephant in
the room. These challenges include:

* Improving infrastructure for data integration: previously

unstructured, large scale, detailed datasets must be integrated
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into knowledge networks (National Research Council, 2011).
This poses questions at policy, financial and technical level to
regulate data access and security (Dzau & Ginsberg, 2016).
Evidence of benefit: a barrier to adoption of precision medicine
is the limited evidence that it has improved outcomes at
population level or carries benefits in cost-effectiveness. The
latter is currently being addressed by collecting data alongside
ongoing clinical trials to assess cost-effectiveness (Dzau &
Ginsberg, 2016; Joyner & Paneth, 2015). Other options include
observational research to identify modifiers of effectiveness,
dedicated precision medicine RCTs and disciplined subgroup
analysis and interaction testing within standard RCTs of
intervention effectiveness (Pletcher & McCulloch, 2017). Here
lessons could be learned from robust methods of controlling
type I errors and culture of replication developed from
exploration of the genome to protect against propagation of
spurious findings (Pletcher & McCulloch, 2017).

Evidence generation: the traditional hierarchy of population
based evidence based medicine must be challenged if precision
medicine is to address the issue of variance of unknown
significance at individual level (Tonelli & Shirts, 2017).
Incorporating genomic and patient data into clinical care: this
includes education, training, decision support and
development of techniques and technology to support
integration of genomic and patient data into clinical practice
otherwise precision medicine will simply be genomic medicine

(Tonelli & Shirts, 2017; Dzau & Ginsberg, 2016).
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Rather than reducing the complexity of decision making, precision
medicine could therefore actually increase the degree complexity and
uncertainty inherent in the decision-making process. To put it more
simplistically: we are more than our genomes. Furthermore
outcomes in cancer care are highly complex and individualised. It
would be a sad irony if precision medicine, hailed as the dawning of a
‘brave new world’ actually became a retrograde step dragging

medicine back to a reductionist view of health and disease.

The mapping of the human genome was, at one time, postulated to
bring about a ‘silver bullet’ cure for cancer. What it actually resulted
in was a data explosion that eventually has resulted in some
significant and impressive breakthroughs but no silver bullet cure.
Lessons can be drawn from this. Precision medicine, rather than
‘curing’ the uncertainty and complexity inherent in clinical decision-
making will bring about a further data explosion as our
understanding of disease and its treatment deepens. Therefore the
actual delivery of precision medicine will entail integrating genomic
data with behavioral, clinical, pathological, physiological and
epidemiological data. Ultimately clinicians will be expected to make
decisions in the face of increased complexity. Practically this means
being able to integrate information from large, complex databases
drawn from different disciples and sources and apply them to an
individual patient who themselves is dynamic with an ever changing
clinical picture along the trajectory of their care pathway.
Fundamentally the complexity of the challenge of integrating
multiple complex databases to achieve personalised predictive

medicine is simply too vast for the human mind to handle
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unsupported (Obermeyer & Lee, 2017). Unless techniques are
developed to use the expanding amount of data to more effectively
support decision making, clinicians will simply drown in a data
tsunami. We have already seen some early warning signs where
electronic data, if handled badly, can overwhelm clinicians rather
than assist, leading to the “4000 keystrokes” phenomenon

contributing to burnout (Hill et al., 2013).

The enormity of this task is compounded when we consider how
patients and their expectations are also changing. Firstly an ageing
population and obesity epidemic means patients already represent a
big data challenge, seeing more specialists and therefore amassing
copious amounts of information in their electronic health records
(Obermeyer & Lee, 2017). Secondly medicine does not operate in a
vacuum. In an increasingly high-tech world personalised predictions
from targeted advertisements to credit ratings are commonplace.
Therefore it is no surprise that there is a growing expectation for
personalised predictive medicine at patient level as well as

organizational and political level.

Personalised predictive medicine is captured within the broader
term personalised realistic medicine which at its core seeks to
deliver the right diagnosis and treatment to the right patient at the
right time with the right outcomes determined in collaboration with
the individual patient (Alexandrou et al, 2011; The Scottish
Government, 2016; The Scottish Government, 2017). Acknowledging
the gravitas of the challenge the CMO also called for creative and

collaborative working to make this a reality (The Scottish
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Government, 2016; The Scottish Government, 2017). Partially in
response to this there has been an increasing crossover between
healthcare research and operational research as the latter has
traditionally focused on the use of mathematical techniques and
modeling to support decision making and achieve optimisation of

outcomes.

Existing predictive models for pancreatic cancer prognosis, surgical
outcomes and cost-effectiveness analysis are limited with most only
being descriptive, rather than predictive, of the likelihood of adverse
events or survival outcomes (Lewis & Volmer, 2012). Like the
majority of predictive models in medicine they focus on “risk” at a
population level and then attempt to apply this at individual patient
level (Grossi, 2006). Considering the ambiguity permeating the
exiting body of studies into the treatment of pancreatic cancer, and
the bamboozlement this approach potentially creates in
communication between patient and healthcare professional at
individual patient level becomes apparent (Grossi, 2015). If the full
potential of predictive models are to be realised within personalised
realistic medicine, they must integrate fully into clinical practice. To
do this they need to provide individualised predictions beyond
length of survival or risk prediction to include fundamentals such as
quality of survival time, length of hospital stay, resource utilisation
and associated costs and predicted benefits of competing treatment

options available.
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The problem with existing modeling techniques are that they regard
prognosis as an isolated event at a pre-determined time, applying
attribute selection prior to inducing the model and setting fixed roles
of input and output variables to attributes (Verduijn et al.,, 2007).
They neglect the uncertain and dynamic nature of care processes
where outcomes today predict those of tomorrow hence expected
patient outcomes evolve as more information becomes available
(Verduijn et al, 2007). Put simply, traditional decision support
models integrate data and knowledge but do not provide reasoning

(Muthurmama & Sankaran, 2014).

To achieve personalised predictive medicine statistical models
therefore must improve both knowledge representation and
reasoning facility, with ontologies employed acting as stepping-
stones to achieving this, and ultimately delivering personalised
realistic medicine (Muthurmama & Sankaran, 2014). Embracing the
call for innovation and creativity the new era of operational research
applied to medicine must encompass novel approaches in the world
of mathematics, statistics and computer science. Emerging statistical
modeling techniques applied within other disciplines, such as
engineering, ecology, astrophysics, biomedical sciences and business
have made phenomenal advances, moving beyond data explosions
within these fields through the application of soft computing
techniques such as: Bayesian networks, fuzzy logic and artificial
neural networks (Bhatia et al, 2014). Recently several studies have
emerged demonstrating that such techniques have improved
accuracy of prediction compared to traditional predictive models

within medicine (Seker et al,, 2003; Catto et al, 2006; Abbod et al,
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2006; Catto et al, 2003; Catto et al,, 2009). However, the review of
cost-effectiveness analysis and prediction modeling studies revealed
that studies using newer methods of statistical modeling techniques
did not always demonstrate a significant performance advantage in

their accuracy of predictions and significant flaws still prevailed.

A key point being made in this chapter is that if research is to
advance, and the narrative surrounding the treatment of potentially
resectable pancreatic cancer is to evolve towards more personalised
medicine, the lessons learned from the existing body of literature
must go beyond those of statistical modeling methodology alone to
consider the theory driving current research and how this relates to
its current limitations. Existing studies utilising statistical modeling
techniques still seek to establish a superior treatment pathway at
population level rather than engage with the complex adaptive
nature of the system being modeled to reveal new insights that could
drive future research towards achieving personalised realistic
medicine. It follows that where the systems being studied and
modeled have been so reduced and simplified, the potential of newer

statistical modeling techniques have not yet been fully explored.

There is a growing move within healthcare research to view
healthcare systems as complex adaptive systems whereby a
collection of individual agents have the freedom to act in ways that
are not always predictable, and whose actions are interconnected
(Plsek & Greenhalgh, 2001). However, throughout the existing body
of research pertaining to the management of potentially resectable

pancreatic cancer the definition of the research problem, proposals
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for improvement and outcome are not recognised as being
dependent on the whole system (Ulrich, 2002). Doing so would place
greater emphasis on how systems boundaries are justified and the
implications this has for what modeling a system defined in such a
way will, and importantly will not, reveal. Recognising this issue also
reframes how the limitations of the current body of research are
viewed as it highlights the implications of boundary setting across
the previously discussed cost-effectiveness and prediction modeling
studies which relates to their limitations and manifest as, for
example: exclusion of important alternative treatment strategies, the
exclusion of certain costs including indirect costs forfeited by the
patient, exclusion of consideration of all relevant potential
implications of a treatment strategy including treatment failure and
side effects, a lack of quality adjusting survival time or collecting
quality-of-life data to more accurately do so. Hence the limitations of
the existing body of research is not merely to be seen as a series of
methodological issues to be corrected, but rather as the system that
is the delivery of healthcare being defined in simplistic and
reductionist terms which defines how system boundaries are set
which in turn determines how outcomes are measured and assessed.
It follows that both a limited knowledge of systems as a result of
boundaries and a failure to engage with complexity exist and
therefore require a critical and ethical imperative in the study and
understanding of such systems in order to move research forward
(Kruger et al,, 2019). It is not without coincidence that the field of
complex systems developed at a time when statistical theory began
to coalesce with methods encompassed within machine learning to

reliably infer models with large numbers of variables that interact in
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complex, non-linear ways. However, the potential for advancement
will remain untapped unless the philosophy driving future research

also evolves.

Mirroring the misplaced optimism surrounding precision medicine
as a ‘cure’ to complexity and uncertainty in decision making, such
breakthroughs have resulted in some seeing Al as the ‘solution’ to the
challenges of complex decision making. Such developments actually
represent an expanse in the capabilities of computational statistics
rather than the man-made creation of intelligence. Therefore while
many have espoused Al and machine learning as the solution to
delivering personlised medicine with the associated cost-
effectiveness implications, they are in danger of creating hollow
sound-bites by failing to appreciate what lies at both the core of
achieving its potential impact and simultaneously also at the core of

the barriers to achieving this impact.

At their core these methods make predictions within complex
systems against a background of competing risks and events (Abbod
etal, 2014). However, a ‘black box’ approach to machine learning
through algorithms alone has led to suspicion regarding its clinical
application with some justification. Algorithm based machine
learning from databases has failed to consider the impact of clinical
judgment on decision making. One notorious example is where such
an approach failed to account for the successful clinical protocol of
admitting patients with asthma who presented with pneumonia,
which resulted in fewer complications (Caruana et al., 2015). As the

data consequently did not show an increased rate of complications in
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this patient group, the machine learning model erroneously advised
no admission for patients with asthma who presented with

pneumonia.

The successful application of machine learning in other fields
depended on seeking experts in computer science to develop cutting-
edge algorithms required for complex problems (Obermeyer & Lee,
2017). However, it was the experts within these fields who set the
research agenda and ensured its relevant application to their
practice. Rather than see algorithms as a replacement to human
decision making processes, the algorithms were viewed as thinking
partners, supporting decision making in the face of complexity

(Obermeyer & Lee, 2017).

The point being made here is that the simple application of advances
in computational statistics to the research problem of how to deliver
realistic medicine through personalised predictive medicine is
unlikely to provide a solution. This is partly because any such
advances themselves would have to be accepted within a wider
complex healthcare system (Greenhalgh et al., 2017). Despite the
expanse of technological innovation now being viewed as a
significant contributor to health and wealth, the integration of such
technological advances into the healthcare systems and daily practice
is plagued by non-adoption and abandonment particularly where
change at organisational and the wider systems level is required
(Garber et al, 2014; van Limburg et al, 2011; Grin et al, 2010;
Greenhalgh et al., 2017). Even where initiatives, such as telehealth,

were backed by policy-level rhetoric and supported by small scale
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proof-of-concepts studies, non-adoption and abandonment by
intended users is common place and telehealth services are rarely
mainstreamed or maintained (Greenhalgh et al., 2017; Greenhalgh et
al, 2017; Standing et al, 2016; Bentley et al., 2014; Clark & McGee-
Lennon, 2011; Wade et al, 2014).

In conclusion, this chapter presents a review of the current body of
literature and has revealed that at the core of achieving the aim of
evolving research towards personalised realistic medicine in the
delivery of pancreatic cancer services through statistical modelling,
lies the need to develop ways to engage with the complexity, handle
uncertainty and the emergent when examining the complex system
of delivering pancreatic cancer care including areas of debate,
ambiguity and disagreement (Law & Mol, 2002; Fraser & Greenhalgh,
2001; Star, 2002; Greenhalgh & Papoutsi, 2018). It follows that
because the system of delivering pancreatic cancer care and its
outcomes are dynamic, the traditional scientific quest for certainty,
predictability and linear causality through a focus on RCTs and
precision medicine will only answer a fraction of the unanswered
questions as the effect of context is controlled for within the artificial
setting of such trials (Cohn et al., 2013; Braithwaite et al., 2017;
Marchal et al., 2013; Greenhalgh & Papoutsi, 2018). RCTs with their
strict inclusion criteria and control of context do not reflect the
complexities of a real-life patient case mix and therefore cannot alone
provide solutions to the challenge of optimising outcomes on an
individual patient level. Therefore what is needed is research that
augments such studies by exploring how to deal with uncertainty,

unpredictability and general causality through designs and methods
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that foreground dynamic interactions and emergence to understand
how systems come together as a whole from different perspectives
(Cohn et al.,, 2013; Greenhalgh & Papoutsi, 2018; Flyvbjerg, 2006).
This challenge demands more than simply employing different
statistical modeling techniques but rather a novel Weltanschauung
(Sadegh-Zadeh, 2001) to bring about the necessary scientific change
to tackle this problem through what Khun initially termed a
‘paradigm-shift’ (Kuhn, 1962) and later revised as a shift in the
‘disciplinary-matrix’ (Kuhn, 1977). To understand the gravitas of the
revolution in scientific thinking required, the following Methods
chapter will critically examine the prevailing dominant philosophy
driving medical and operational research before an alternative
paradigm, ontology, epistemology and theoretical framework for this

research is offered.
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Chapter 3

Methods

3.1 Research Philosophy

Introduction

This chapter opens with a critical analysis of the prevailing dominant
philosophy driving medical and operational research before an
alternative paradigm, ontology, epistemology and theoretical
framework for this research is offered. From this basis the strengths
and weakness of decision models in handling uncertainty and
complexity will be examined before Bayesian methods are discussed
as a vehicle for taking statistical modeling and personalised realistic

medicine to a new level of insight through complexity theory.

3.1.1 The Current Philosophical Direction of Research: the case for

a new roadmap

Positivism has reigned as the dominant philosophy across much of
scientific research including operational research and medicine.
Classic reasoning, for over two millennium, has been dominated by
the Aristotelian disciplinary matrix, which gravitates around ‘truth’
and ‘falsehood’ hence arguably being viewed as the progenitor of
Tarski semantics of classical two-valued logic and Cantor’s two-

valued set theory (Sadegh-Zadeh, 2001). Aristotelian ontology
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postulates that classes must have defined sharp boundaries and
rejects any intermediate between such states, or a ‘doctrine of crisp
existence’ (Sadegh-Zadeh, 2001; Grossi, 2015). Consequently much of
the existing and emerging research in the fields of operational
research and medicine take a mechanistic world view inspired by a
Newtonian framework that postulates an understanding of the
universe through a process of reductionism of systems and an
analysis of their parts to understand the whole with the
methodologies and practices employed in this research further

propagating such assumptions (Kruger et al, 2019).

Comte viewed the original aim of positivism as providing an
unambiguous and accurate knowledge of the world through
application of methods from natural science to social science
(Bridges, 2009; Bisman, 2010). The Vienna Circle later applied
mathematical exactitudes to philosophy introducing ‘logical
positivism’, embracing empiricism and rejecting all else (Sahotra,
1996; Houghton, 2011). Epistemologically an objective view of
reality is held. Through quantitative methods of statistical modeling,
this view is juxtaposed with the ontological view of reality
comprising determined, observable, measurable events that interact
in an observable, measurable manner (Houghton, 2011; Smith, 2005;
Bisman, 2010). Statistical models are populated with data from
patient databases and clinical trials selected in a hierarchical order
whereby RCTs reign as “gold-standard” evidence. Thus natural and
social sciences amalgamate in a shared logic of enquiry to explain

and predict treatment outcomes and cost-effectiveness based on

155



factual, value-free judgment with reliability evidenced in replicability

(Houghton, 2011; Bisman, 2010).

However in the previous chapter a deeper analysis of existing
statistical models pertaining to the management of potentially
resectable pancreatic cancer revealed limitations mirroring the
philosophical criticisms of positivism. Comte warned against the
danger of confusing signs for ideas when blindly introducing
mathematics to investigation of social science (Houghton, 2011).
Later quantum theory usurped the perceived infallibility of
positivism by questioning both the human ability to determine true
accuracy of information and maintain complete objectivity

(Houghton, 2011).

Complete objectivity within statistical modeling is highly
questionable (Mingers, 2004; Mingers, 2005; Zachariadis et al,
2010). Results cannot be described or classified without an element
of interpretation (Mingers, 2004; Mingers, 2005; Zachariadis et al,
2010). Under positivism philosophy and the associated Aristotelian
disciplinary matrix of ‘truth’ and ‘falsehood’ it is assumed that factors
not included within statistical models (because they are unknown or
difficult to measure) have random or insignificant effects on outcome
(Mingers, 2004). Through positivism’s ‘naive realism’, results
incompatible with theory are dismissed as an anomaly (Mingers,
2004; Mingers, 2005; Zachariadis et al,, 2010). Furthermore Kuhn
postulates that use of a paradigm can limit the questions the
researcher asks and their interpretation of results therefore the

researcher is not objective (Mingers, 2004; Mingers, 2005;
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Zachariadis et al., 2010; Steele, 2005). This is evidenced within
existing statistical models through: excluded costs including indirect
costs, lack of quality-of-life data, exclusion of surveillance data and
associated costs, and utilisation of narrow models. Also in selecting
between competing models for the same data, despite creation of
elaborate methods, statistical models are often selected on subjective
grounds including ‘best-fit’ with the researcher’s view (Mingers,
2004; Mingers, 2005). Hendry et al. (1990) posit that by maintaining
a solely positivism stance, model selection can become adhoc and
atheoretical (Mingers, 2005; Zachariadis et al, 2010). Acknowledging
these limitations, contemporary positivism maintains emphasis on
empiricism but deals in partial objectivity and probability rather
than unquestionable facts (Bisman, 2010; Houghton, 2011; Smith,
2005). However this does not address the issue of distinguishing
natural and social sciences, which has further implications for

statistical modeling.

The most vehement criticism of positivism comes from interpretive
view, seeing the Humean notion underlying empiricism of causality
as a constant conjunction of events as impoverished (Mingers, 2004;
Mingers, 2005; Zachariadis et al, 2010). Statistical modeling is
criticised on the basis that material and social worlds are different,
and human social construction cannot be captured or understood
within statistical models (Mingers, 2005). This view is contested by
the fact that computational and mathematical models are necessary
for the development and progress of operational research and can
and will continue to produce important results in many areas

(Kruger et al., 2019). However the interpretivism view is important
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as it highlights two key issues. Firstly social structures are a product
of, and shape, activities of society, but are not independent of them
(Houghton, 2011; Marsh & Stoker, 2002). To illustrate, statistical
models can be populated with databases from large specialist centres
but in private health-care systems patients may not present to such
institutions due to socio-economic reasons (Abbott et al., 2013).
Secondly, social structures are not independent of the agent’s view
but are shaped by their actions and may change (Houghton, 2011;
Marsh & Stoker, 2002). Statistical models must be able to adapt to
unforeseen circumstances such as unanticipated complications of
treatment, or changes in, for example funding and costs, political

prioritisation of health-care resources and society’s willingness-to-

pay.

Russel Ackoff, in his 1979 paper “The future of operational research
is past” addressed some of these issues by highlighting problems
with the pursuit of objectivity and instead argued in favour of
expansionism over reductionism through systems thinking (Ackoff,
1979a). Systems thinking is central to the methodological pluralism
view in operational research and marked a move away from the
positivist stance within operational research towards what Midgley
termed the ‘second wave systems thinking’ (Midgley, 2000). Rather
than dismiss existing mathematical and computational models Ackoff
sought to develop, enrich and complement these models and their
underlying theories through methodological pluralism (Ackoff,
1979a; Kruger et al., 2019). For him the main critique of existing

methods was that these deterministic models assumed the problem
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context of a closed system, which raised six deficiencies in the
prevailing epistemology:
1. the need for decision making systems to learn to adapt
2. the need for decision making systems to consider quality-of-life
values
3. model abstraction of systems of problems as problems cannot
be treated effectively by deconstructing them analytically into
separate problems
4. the need for a synthesising planning paradigm rather than a
problem-solving paradigm
5. interdisciplinary interaction is required to deal with complex
issues
6. the pursuit of complete objectivity when in reality the view of
all those affected by the outcome of a decision making process
must be considered (Ackoff, 1979a; Kruger et al., 2019).
The common denominator in all six issues is a human characteristic
that requires an integrated, holistic approach to address them
(Kruger et al.,, 2019). Ackoff was proposing a move away from
deterministic statistical models towards a systems thinking approach
whereby “purposeful systems that contain purposeful parts with
different roles or functions and that are themselves parts of larger
purposeful systems” (Ackoff, 1979a, p.96) are created and can serve
its own purpose (self-control), the purpose of its parts
(humanisation) and the purpose of the larger system of which they
are a part (environmentalisation) (Ackoff, 1979a; Kruger et al.,

2019).
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In summary, existing research conceived and critiqued within the
philosophy of positivism, although valuable, are not infallible. The
argument being made is that by aligning operational research
epistemologies with the acknowledgement of the complexity
inherent in the real-world, new methods of modeling decision

making can be developed (Kruger et al.,, 2019).

3.2 A New Philosophical Direction

A refocusing on alternatives to positivism has aligned with a greater
use and acceptance of Bayesianism, which is based on probability

theory, rather than solely relying on classical Frequentists statistics.
In the post-positivism era alternative paradigms have emerged. One
of the most prominent, critical realism, has been closely aligned with

the shift towards Bayesian statistics.

Critical realism has been championed as a half-way-house between
empiricism and positivism on one hand and anti-naturalism and
interpretivism on the other (Mingers, 2004; Mingers, 2005;
Zachariadis et al., 2010; Steele, 2005). This is a disservice. Critical
realism introduces a more sophisticated paradigm simultaneously
addressing the concerns of natural science (through technological
characteristics) and social science (by applying human contexts)
(Mingers, 2004; Mingers, 2005; Zachariadis et al., 2010; Steele, 2005;
Smith, 2005). Critical realism proports better understanding of
causal forces, underpinned by deep social structures that are not
always identifiable by material properties or outward behaviours,

through retroduction: analogy, metaphor, intuition and rhetoric
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(Steele, 2005; Bhaskar, 1975; Bhaskar, 1979). Tendency to extreme
apriorism therefore traditionally led critical realism to dismiss closed
statistical models as merely observed “event regularities”, unable to
predict how isolated variables behave when exposed to ‘real-world’
exogenous factors (Steele, 2005). Russell (1929) however accounted
for exogenous influence whereby causal sequence arises, but with
probability of expected outcome less than 1. Yet within open models,
whereby “no constant conjunction of events prevail”, critical realism
acknowledges, but dismisses causality of, sequential event
regularities (Steele, 2005; Bhaskar, 1975; Bhaskar, 1979). Some
conclude that critical realism therefore dismisses the value of
statistical analysis completely, replacing mathematical formulae and
statistical inference with retroduction (Steele, 2005). Conversely
retroduction can be applied to any science scrutinising complex
phenomenon (medicine describes the heart as a pump after all)

hence both are not mutually exclusive (Steele, 2005).

Ontologically critical realism posits that the interplay of causal
powers or tendencies of domains of ‘the real’ (structures,
mechanisms, events and experiences) leads to particular events, ‘the
actual’ (Mingers, 2005). These domains may be physical, social or
conceptual (Mingers, 2005, Zachariadis et al., 2010). Events may be
observable or experienced by people and therefore become empirical
(Mingers, 2005). Epistemologically in recognising that all knowledge,
whilst provisional, is historically and culturally relative, critical
realism also accepts both epistemic reality (observer-independent
access as a fallacy) and judgmental relativity (rational grounds for

theory preference) (Mingers, 2005; Zachariadis et al,, 2010). Both
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quantitative and qualitative methods are therefore acceptable within
the essence of science: explanation, understanding and interpretation

(Mingers, 2005; Zachariadis et al., 2010).

Critical realism suggests that statistical models can be developed
from a plethora of resources: experiments, theoretical work, expert
opinion (Mingers, 2005). However, as with positivism, the challenge
of inferring unknown mechanisms from limited observations and
experiences remains (Mingers, 2005; Zachariadis et al,, 2010). The
argument being made is that future research should move from
solely quantifiable data and Humean causality to incorporating
complex, multi-dimensional, underlying mechanisms within the
empirical domain (Mingers, 2005). In practice this means employing
quantitative statistical methods that concern themselves with

discovering causal mechanisms (Mingers, 2005).

3.2.1 Critical Realism and Bayesian Models

Whilst accepting that models as a representation of reality are never
truly exact; to quote Box:

“all models are wrong, but some are useful” (Box, 1979),

a continued adherence to classical Frequentists mathematics,
underpinned by Aristotelian classical reasoning, in a complex
environment of imprecision and uncertainty has resulted in decision
support models that fall sadly short, leading to the longstanding
belief that decision making is part of the ‘art of medicine’ as opposed
to a science (Sadegh-Zadeh, 2001). This soporific view is why, despite

advances in biomedicine and technology, clinical judgment has
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largely remained archaic in the face of uncertainty (Sadegh-Zadeh,
2001; Sadegh-Zadeh, 1981; Sadegh-Zadeh, 1994; Sadegh-Zadeh,
1998; Sadegh-Zadeh, 1999; Sadegh-Zadeh, 2000). This also
permeates research into cost-effectiveness analysis in healthcare.
Despite recommendation that such reports include both a payer’s
perspective case report and a societal case report (Sanders et al.,
2016) there is a distinct lack in the current literature of research that
includes attempts to analyse indirect costs to patients, their carers

and wider society.

Bayesian statistics traditionally takes an inductive approach, learning
about the general from particulars through inverse probability,
starting with prior distributions, getting data and moving to
posterior distribution (Gelman & Shalizi, 2013; Bernardo & Smith,
1994; Earman, 1992; Savage, 1954). Frequentists believe probability
must reflect repetitive, objectively measured occurrences and the
central goal is computing the posterior probabilities of hypothesis
(Gelman & Shalizi, 2013; Bernardo & Smith, 1994; Earman, 1992;
Savage, 1954). Through Bayes’ Theorem probabilities are updated as
new data emerges. Heavily steeped in the positivism philosophy of
‘natural science’ it holds that anything not contained in the posterior
distribution is irrelevant (Gelman & Shalizi, 2013; Bernardo & Smith,

1994; Earman, 1992; Savage, 1954).

However, there is a move towards viewing Bayesian models in a
deductive light with greater acceptance of subjective probabilities
(Gelman & Shalizi, 2013). Bayesian models are characterised by

subjective and objective knowledge, modeling information from a
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variety of sources enabling changes in held beliefs on causal
structures in light of occurrence, or absence of, events and
emergence of new data (Gelman & Shalizi, 2013). This has attracted
the attention of critical realists, seeing Bayesian modeling and its
wide-ranging applications as a means of operationalising critical
realism’s retroductive methods (Mingers, 2005). But is critical

realism masking the truth of contemporary Bayesians’ argument?

Bayesians accepting subjective probabilities and postulating a
deductive approach to modeling, do so from a positivism stance,
using Popper’s ideas of falsification to argue that Bayesian modeling
is better understood from a hypothetico-deductive perspective
(Gelman & Shalizim, 2013). Gelman & Shalizi (2013), although cited
by those championing critical realism (Mingers, 2005), are actually
following positivism philosophy of traditional statisticians
emphasizing the importance of model checking and frequency
evaluation to guide Bayesian inference and obtain statistical methods
with good frequency properties (Gelman & Shalizi, 2013; Rubin,
1984; Wasserman, 2006). Accepting that all scientific statements
must remain eternally tentative (Popper, 1959), Gelaman & Shalizi
(2013) argue that Bayesian model checking must go beyond
inductivist view of comparing posterior odds to support model
selection. Instead models should be compared to data and, if falsified,
rather than being rejected, aim to understand cause of failure to
expand and evolve the model (Gelman & Shalizi, 2013). Therefore
when severe testing cannot falsify the model, the inferences drawn

become more credible (Gelman & Shalizi, 2013).
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This is not an argument against, but can be accommodated within,
critical realism. Importantly this highlights the danger of a subjective
view of Bayesian statistics leading to complacency in selecting or
averaging over existing models (Gelman & Shalizi, 2013). Within
critical realism, complex models can and should be rigorously
checked and falsified if they, and the credibility of their findings, are
to be improved (Mingers, 2005; Gelman & Shalizi, 2013).

However, the complexities involved in the research question must
also be fully appreciated. Within the arena of ambiguity regarding
best treatment approach for potentially resectable pancreatic cancer
patients, clinicians and policy makers are expected to make difficult
treatment choices with wide ranging implications for many
stakeholders. Juxtaposed with contemporary economic restraints on
healthcare resources, ambiguity surrounding treatment benefits
mandates cost-effectiveness analysis of treatment selection
(Greenberg et al., 2010; Luengo-Fernandez et al, 2013; Department
of Health, 2015; Russell, 2016; Abott et al,, 2013). Challenges include
simultaneously handling ever-emerging quantitative data from drug
trials and the concept of value outcomes in cancer, which are neither
static nor universal (Russell, 2016). Successful outcomes could be
defined by the quantity of disease-free and overall survival time,
regardless of treatment requirements, or they could be defined by
the quality of survival time (Russell, 2016). Costs also go beyond
costs of a particular treatment and include indirect costs that could
be emotional as well as monetary costs to patients and healthcare

systems (associated with complications, readmissions, et cetera) and
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wider societal costs through work and leisure activities absences of

patients and informal carers (Russell, 2016).

How then can such complex real-life concepts be best captured
within a statistical model? Whilst it has been argued that such an
approach can be accommodated within critical realism, Zadeh in
1969 proposed that a “radically different kind of mathematics” in the
form of Fuzzy Logic was required to address the issues of uncertainty
in ‘real-world’ problems. Fuzzy logic can be seen as both a
mathematical tool and an overall theory that could encompass
Bayesianism. Fuzzy logic as a theory will now be discussed to
ascertain what, if anything, it can add to the philosophy driving this

research.

3.2.2 Fuzzy Logic: a new map or a fellow traveller?

Building on Bertrand Russell and Max Blacks’ analysis of the
problems of uncertainty and vagueness in ‘real-life’ problems and the
challenge this posed to classical logic (Black, 1937; Black, 1963;
Russell, 1923), Zadeh in conceiving fuzzy theory offered a method for
dealing with uncertainty (Sadegh-Zadeh, 2001). Zadeh hit upon what
lies at the core of limitations of current approaches to statistical
modeling in medicine (Zadeh, 1965a; Zadeh, 1965b). Patients are
animate systems, therefore orders of magnitude much more complex
than man-made systems (Zadeh, 1962; Zadeh, 1969). Traditional
mathematical techniques dealing with probability, precisely defined
points and sets et cetera are therefore simply inadequate (Zadeh,

1962). It follows that medical professionals, in research practice
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terms, are animate systems analysts (Zadeh, 1969). Decision making
in pancreatic cancer surgery is complex and rife with uncertainty.
Methods equipped to deal with uncertainty surrounding complex
animate systems (patients) therefore need, as Zadeh put it a

“radically different kind of mathematics” (Zadeh, 1969).

Although fuzzy logic based methods for decision making are in their
infancy, its application to: breast, prostate and bladder cancers have
demonstrated superiority in terms of accuracy of predictions over
traditional log regression and artificial neural networks (Seker et al,
2003; Catto et al, 2006; Abbod et al,, 2005; Catto et al.,, 2003; Catto et
al, 2009). The models for breast and prostate cancer prediction were
based on histopathology and molecular data only and, despite small
sample sizes (breast: n= 100; prostate n=41) reported greater than
80% accuracy of prognostic prediction (Seker et al, 2003). Fuzzy
models dealing with bladder cancer combined clinical,
histopathological and molecular data (n=109 to 609) and reported
model prognostic predictive value of greater than 88% (Catto et al,
2006; Abbod et al., 2006; Catto et al,, 2003; Catto et al, 2009).
Individualised risk prediction using fuzzy logic has been
demonstrated elsewhere. Brand et al. (2006) used fuzzy modeling to
show that the influence of smoking on development of colorectal
cancer in hereditary non-polyposis was dependent on gene mutation,
gender and age. This will enable the development of clinical risk
scoring and individualised prevention strategies (Brand et al, 2006).
A fuzzy expert system has also been shown to provide individualised
prediction of the need for neonatal resuscitation with 74% sensitivity

and 94.8% specificity enabling streamlining of patients and planning
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for resource availability in high risk cases (Resi et al, 2004). Ghavidel
et al. (2014) found that a fuzzy decision tree model was slightly more
superior to a crisp decision tree model (AUC 0.9 versus 0.86;
accuracy 0.98 versus 0.95; sensitivity 75% versus 58.3% and
specificity 98.6% versus 97.4%) in predicting early mortality risk in
coronary artery bypass graft surgery. Both decision trees
outperformed log regression models. Furthermore, fuzzy modeling
has been shown to out perform logistic regression in predicting
severely depressed left ventricular ejection fraction following
admission to intensive care unit based on variables acquired within 6

hours of admission (Pereira et al,, 2015).

Impressive as some of these results might be perceived, the doctrine
driving the logic behind fuzzy method is that of approximate
reasoning based on inference, therefore validity of these methods
will only ever be approximate (Haack, 1979; Haack, 1980). How then
can such a method ever lead the researcher on a path to personalised
precision medicine? Such an approach stands accused of actually
replacing scientific precision with scientific permissiveness resulting
in imprecise thinking (Zadeh, 1996a; Zadeh, 1996b). These studies
also have the six epistemological deficiencies as outlined by Ackoff in
his critique of classic (positivist) operational research. None of the
models displayed a learn and adapt ability, quality-of-life values were
not factored in, models presented an abstraction of systems
problems with a predict and prepare rather than synthesising
planning paradigm, the interdisciplinary nature of healthcare system
was neglected and finally these studies seemed to value objectivity of

their predictions rather than considering all stakeholder affected by
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the decision making process. These studies did not explore the “what
if” scenarios of differing treatment options or individualised risk
predictions associated with these options such as postoperative
complications or treatment side effects. If fuzzy logic is to move
research beyond Kantian’s “What can [ know?” to “What shall [ do?”
as promised (Sadegh-Zadeh, 1983), it can be seen as a fellow
traveller on the journey to dealing with uncertainty and complexity

rather than a new map to guide the way.

Ackoff, in his own critique of the second wave of systems thinking in
operational research introduced one of the first examples of problem
structuring method when he talked about replacing the problem-
solving paradigm with an interactive planning method (Ackoff,
1979b2). A key epistemological aspect of problem structuring
methods is the aspect of multiple perspectives and navigating human
relationships (Midgley, 2000; Checkland, 1981; Checkland, 1987;
Eden, 1987; Friend, 2001; Rosenhead, 1996; Rosenhead, 2006;
Mingers & Rosenhead, 2004; Rosenhead & Mingers, 2001). This led
to the third wave of systems thinking within operational research
known as critical systems thinking which Ulrich formulated in his
critical systems heuristics framework (Ulrich, 1983). I will now
present critical systems thinking as a complementary and
overlapping field with critical realism that can have a symbiotic
relationship resulting in the enhancement of both. Furthermore,
critical systems thinking provides a framework for enhancing
modeling techniques. I will then outline how the work of Cilliers on

complexity theory provides a framework for further enhancing and
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enriching these fields before detailing how complexity theory will

provide a theoretical map for my research.

3.2.3 Critical Systems Thinking

Ulrich, in his seminal work ‘Critical heuristics of social planning’
(Ulrich, 1983) introduced both a philosophical foundation and a
practical framework, termed critical systems heuristics, for critical
systems thinking (Kruger et al., 2019). The basis of this framework
was that the definition of a problem, proposals for improvement, and
outcome are all dependent on the whole system (Ulrich, 2002)
therefore systems boundaries must be rationally justified through
dialog with both the involved and affected (Ulrich, 2012; Ulrich,
1987; Kruger et al., 2019). Therefore Ulrich argues that boundary
judgments cannot be separated from value judgments hence
embedded in Ulrich’s work are the guiding principles of rationality
and universalisation (moral judgments are applicable to everyone

equally) (Kruger et al., 2019; Midgley, 2000).

In a practical sense his work provides a framework for the ethical
process of debating systems boundaries. Set around four categories
of: motivation, control, expertise and legitimacy this provides 12
boundary questions that have been used in a heuristic manner to
debate what the system in question is and what is ought to be (Table
25). Midgley extended this work by considering situations where
conflict arises between different values and boundary judgments
(Midgley, 2000). They postulated that stabilisation of a situation

where a conflict between two ethical boundary judgments arise can
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be achieved by imposing a ‘sacred/valued’ or ‘profane/devalued’
judgment on marginal elements (Midgley, 2000; Midgley, 2007).
Hence where the marginal element is deemed profane the primary
ethical boundary becomes the main reference for decision making.
Where the marginal element is deemed sacred the secondary ethical
boundary becomes the main reference for decision making. Ulrich
and Reynolds (2010) later built on this earlier work by focusing on
working constructively with tensions between opposing
perspectives. Accordingly, table 9 represents boundary critique of
this research not as an expert-driven process of boundary setting but
rather a participatory process of unfolding and questioning boundary
judgements as set out by Ulrich and Reynolds (2010) by addressing
conflicts including; ‘situation’ versus ‘system’, ‘is’ versus ‘ought’,
concerns of ‘those involved’ versus ‘those affected’, stakeholders’

‘stakes’ versus ‘stakeholding issues’.
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Table 9: Boundary Judgement Applied to the Management of

Potentially Resectable Pancreatic Cancer (Ulrich & Reynolds, 2010)

Source of Boundary Judgement Informing Pancreatic Cancer Management as

Influence the System of Interest
Social Roles Specific Concerns Key Problems
(Stakeholders) (Stakes) (Stakeholding

issues)

Motivation 1.Beneficiary: who 2.Purpose: what 3.Measure of The
ought to be/is the ought to be/is the Improvement: what | Involved
intended beneficiary purpose of the ought to be/is the
of the system? system? system’s measure of

success?
Patients, clinicians To optimise Short term:
and policy planners outcomes for Accuracy of models’

patients with predictions of

potentially individualised

resectable outcomes across

pancreatic cancer by | competing

delivering the right treatment

treatment to the strategies.

right patient at the

right time with the Revealing new

right outcomes insights that will

determined in direct future

collaboration with research.

the individual

patient. Longer term:
Acceptance and

To maximize cost utilisation of

effectiveness of predictive model

service delivery. into clinical
practice.
Prospective cost
effectiveness and
cost benefit
analysis of the
impact of model
implementation.

Control 4.Decision maker: who | 5.Resources: what 6.Decision
is/ ought to be in conditions of success | Environment: what
control of the are/ought to be conditions
conditions of success under the control of | are/ought to be out
of the system? the system? of the control of the

decision maker?

Initially health Research project, i) Interested groups
professionals financial and human | affected by the
involved in delivering | resources, wider outcomes
the service with professional and (patients)
organisational social network to ii) Expertise un
backing and support. | raise awareness of beholden to the

the project. decision maker

Knowledge 7.Expert: who ought 8.Expertise: what 9.Guarantor: who
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to be/is providing ought to be relevant | ought to be/are

relevant knowledge new knowledge and regarded as

and skills for the skills for the system? | assurances for

system? successful
implementation?

i)The Interdisciplinary and | Competent and

multidisciplinary intersectional validated

team of the West of
Scotland Pancreatic
Unit.

ii)Experts in decision-
making, health
technology
assessment and cost-
effectiveness analysis.
The above informed

facilitation skills.
Technical skills in
computational
statistics.

professional and
non-professional
knowledge.
Avoidance of
scientism (sole
reliance on
objectivity and
statistical facts).
Avoidance of

by natural and social managerialism
sciences. (sole reliance on
facilitating
communication).
Legitimacy 10.Witness: who ought | 11.Emancipation: 12.Worldview: what | The
to be/ is representing | what ought to be/are | space ought to be/is | affected
the interests of those the opportunities for | available for
negatively affected by | the interests of those | reconciling differing
but not involved with negatively affected to | worldviews

the system?

have expression and
freedom from the
worldview of the
system?

regarding the
system among those
involved and
affected?

Collective
representation of
professionals and
patient bodies
through liaisons with

Open to challenge
from all those
potentially affected
including patients,
patient advocacy

Manage conflicts of
interest between a
political drive to
effectively manage
resources and the

Pancreatic Cancer groups, needs of individual
United Kingdom to professionals and patients affected by
gain qualitative funding bodies changes to the

assessment of views
of all affected.

system

Much of Ulrich’s work in problem structuring is concerned with the

socially constructed power struggles and the different frameworks of

people (Kruger et al., 2019). However the research questions being

addressed in this thesis involves a system that includes not only

frameworks of people but many other elements as well.

Cilliers combined thinking about boundaries with concerns relating
to complexity (Kruger et al., 2019). Both he and problem structuring

thinkers such as Ulrich agree that both limited knowledge of systems
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as a result of boundaries and complexity exist and therefore require a
critical and ethical imperative in the study and understanding of such
systems (Kruger et al., 2019). However, for Cilliers complexity has to
do with the interactions and relationships amongst elements (Kruger
etal, 2019). By combining thinking about boundaries with concerns
pertaining to complexity and uncertainty Cilliers’ work came to
represent a new critical complexity paradigm giving a philosophical
perspective on complex systems by taking cognisance of the insights
from the field of post-structural philosophy (Midgley, 2007; Kruger et
al., 2019). This work also provides an opportunity to challenge the
role of operational research in how it relates to bigger societal

questions (Preiser & Woermann, 2016).

This mirrors a move within healthcare research to view healthcare
systems as complex adaptive systems which have been formally
defined as “a collection of individual agents with freedom to act in
ways that are not always totally predictable, and whose actions are
interconnected such that one agent’s actions change the context for
other agents” (Plsek & Greenhalgh, p.625). Although there had been
some debate over the precise terminology, complex adaptive systems
are widely accepted to include: embeddedness, fuzzy boundaries,
nested systems, self-organization, distributed control, emergence,
non-linearity, unpredictability, historicism, change phases, sensitivity
to initial conditions, non-equilibrium, adaptation and co-evolution
(Kernick, 2006; Litaker et al., 2006; Plsek, 2003; Holland, 2014;
Byrne, 1998; Manson, 2001; Long et al,, 2018). Importantly these key
features of healthcare as a complex adaptive system mirror the work

of Cilliers who provides ten propositions that represent the
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characteristics of a complex system that are necessary for a ‘lean

ontology’ of complexity.

Over recent decades there has been a growing appreciation within
healthcare research of complexity theory (Long et al, 2018). The
argument supporting this move amongst healthcare researchers is
that healthcare systems, due to their social nature, are qualitatively
different from other systems and therefore require a different set of
methods (Klein & Young, 2015; Eldabi, 2009; Tako & Robinson, 2015;
Kernick, 2006). The argument continues that by continuing to hold
the traditional and dominating Newtonian mechanistic conception of
healthcare (Plsek & Greenhalgh, 2001; Plsek & Wilson, 2001)
implementation of evidence-based medicine and healthcare
innovations is being stymied (Kernick, 2006; Plsek & Wilson, 2001;
Sanderson, 2009; Litaker et al., 2006; Plsek, 2003; Anderson et al.,
2005). However, classical approaches to complex theory that have
included agent-based modeling, simulation, and network analysis
have made limited impact on healthcare (Long & Meadows, 2018;
Fone et al., 2003; Bailsford et al., 2009; Long et al,, 2018). Such a
classic approach to complexity theory involves researchers
identifying rules that govern behaviours attributing them to the
agent (local rules) or the environmental pattern (agents) (Long et al,
2018). A theory of local rules are then built into a statistical model
and tested against reality (Holland, 2014; Manson, 2001; Byrne et al,
2013; McKelvey, 1999). Low implementation rates of such models
have been attributed to: lack of good quality data (Brailsford et al.,
2013; Brailsford, 2005; Robinson & Pidd, 1998; van Lent et al., 2012),

complex nature of healthcare systems with multiple intersecting
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stakeholders (Klein & Young, 2015; Eldabi, 2009; Brailsford et al.,
2013; Robinson & Pidd, 1998; Brailsford et al., 2009; Kirchhof &
Meseth, 2012) and the high time and expertise cost required to build
sufficiently complex models that are ecologically valid (Brailsford et
al., 2013; Brailsford, 2005; Robinson & Pidd, 1998; van Lent et al.,
2012; Brailsford et al., 2009; Tunnicliffe-Wilson, 1981; Lane et al.,
2003; Barnes et al., 1997).

The challenge of delivering personalised realistic medicine by
optimising outcomes for potentially resectable pancreatic cancer
through personalised predictive medicine is framed as both an
operational and healthcare research problem. The next step will be to
use the work of Cilliers on complexity theory as a lens through which
to view this problem in the hope that this will provide new insights
and broaden perspectives for informing contemporary practice

(Kruger etal., 2019).

3.3 Complexity Theory: the new road map

A prerequisite for this section is defining the research problem as
complex. After all it could be argued that superficially many
components of the pancreatic cancer management pathway appear
to be well defined and protocol driven inferring a complicated, rather
than complex system. Jackson and Keys proposed a framework,
known as a system of systems methodologies, to classify a problem
context as either simple or complex reflecting Ackoff’s terminology of
‘mechanical’ and ‘systemic’ respectively (Jackson & Keys, 1984).

They also defined the relationship between stakeholder and
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participants as unitary (when all agree on a common goal), pluralistic
(where views and objectives differ) and later added coercive
(irreconcilable differences in views and objectives). However this
framework creates difficulties when defining the problem context of
this research. Whilst aspects of the problem can are unitary,
everyone wants to optimise treatment outcomes and ensure the most
effective use of resources when delivering a service, other aspects are
pluralistic, the most obvious example being the debate as to whether
to use neoadjuvant therapy in cases where pancreatic cancer is
resectable at presentation. There are also differences of opinion on
the definition of resectability when interpreting imaging scans and
the definition of RO resection. Arguably aspects of the debate tend
towards the coercive with some commentators adamant that for
those who present with resectable disease and are treated with
neoadjuvant therapy but do not proceed to surgery, the window of
resectability was lost. Conversely others believe that such patients
were filtered away from futile surgery with the associated impact on
cost and quality-of-life. This reflects wider criticisms of the
framework related to problems that do not fit unambiguously into
one category, and where participants might well disagree on the
unitary, pluralistic or coercive context (Midgley, 2000; Mingers,

1992).

Snowden and Boone developed the Cynefin framework to offer
insight into how problem contexts can be classified in a way that
assists decision makers in understanding the context in which they
are operating (Snowden & Boone, 2007; Kruger et al., 2019). This

framework centres around cause and effect (Kruger et al., 2019) and
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consists of five difference contexts: simple (stable cause-and-effect
relationships), complicated (known unknowns), complex (no
apparent cause-and-effect relationship established), chaotic (the
unknowable) and disorder (simultaneous multiple opposing
perspectives that compete for prominence) (Snowden & Boone,
2007). As table 10 shows aspects of the research problem belong to
the first two contexts, an ordered world in which fact based decisions
can be made (Kruger et al., 2019). However, on deeper analysis many
of the research questions move into the complex and chaotic
contexts, an unordered world where patterns are used to make
decisions (Kruger et al., 2019). Overall it could be argued that we are
actually dealing with the context of disorder. As Kruger et al. (2019)
pointed out it can be particularly difficult to recognise when one is
operating in the context of disorder. Snowden & Boone (2007)
offered a way out of this realm through breaking the situation down

into constituent parts (table 10).
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Table 10: Classification of Problem Context

Simple (cause- Complicated Complex (no Chaotic (the Disorder
an-effect) (known established unknowable) (simultaneous
unknowns) cause-and-effect) multiple
perspectives)
Outcomes from Up to 50% of Patients with the | Would patients Upfront surgery

pancreatic
cancer are poor.
Surgical
resection is the
only potentially
curative
treatment and
adjuvant therapy
has been proven
to prolong
survival time.

Neoadjuvant
therapy can
convert
borderline
resectable and
locally advanced
cases to
resectability.

Obtaining
multimodal
treatment in
either upfront
surgery or
neoadjuvant
pathway
prolongs
survival time.

patients in the
upfront surgery
pathway fail to
receive adjuvant
therapy due to a
combination of
early disease
recurrence, post
operative
complications
and decline in
function. Which
patients will and
will not receive
adjuvant therapy
is unknown at
the time of
treatment
pathway
selection.

Multimodal
treatment in
either pathway
prolongs
survival but, as
with the above,
the pathway in
which
multimodal
treatment is
most likely is
unknown at the
time of
treatment
pathway
selection.

Which pathway
is more cost
effective?

same tumour
type, location,
stage, resection
margins and
postoperative
course have
differing survival
outcomes in both
pathways.

Outcomes from
trials of
neoadjuvant
therapy for
borderline
resectable and
locally advanced
disease cannot
be assumed to
apply to cases of
disease that is
resectable at
presentation.

Outcomes from a
recent RCT
comparing
adjuvant
therapies and
establishing the
use of
mFOLFIRINOX as
the first line
adjuvant therapy
agent cannot be
assumed to
equate with
upfront surgery
pathway being
the superior
pathway choice
for resectable
pancreatic
cancer. Equally
preliminary
results from a
RCT reporting
superior survival
outcomes with
neoadjuvant
therapy for
resectable

with resectable
disease treated
in the
neoadjuvant
pathway and
who do not
proceed to
resection have
been better
served in the
upfront surgery
pathway?

Would patients
in the upfront
surgery pathway
who did not
receive adjuvant
therapy have
been better
served in the
neoadjuvant
pathway?

Can gene
sequencing lead
to better patient
selection for
available
treatment
pathways (at
present
unknown)

As the
percentage of
patients
presenting with
resectable
disease is small:
1) will studies
underway to
establish earlier
diagnosis
through
identification of
biomarkers be
successful

2) if such
breakthroughs
are made how
will the resulting

for resectable
disease is proven
to prolong
survival
therefore the
research focus
should be on
developing more
effective
adjuvant
therapies and
the focus at
service delivery
level should be
on fast-tracking
patients with
resectable
disease to early
surgery followed
by measures to
increase the
percentage of
patients
receiving
adjuvant
therapy.

The use of
neoadjuvant
therapy carries
the risk of
loosing the
window of
resectability and
optimistic
assumptions
about its use are
based on small,
underpowered
studies with a
high degree of
heterogeneity.

Neoadjuvant
therapy has an
increasing body
of evidence
demonstrating a
survival
advantage over
upfront surgery.
It allows time to
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pancreatic
cancer compared
to upfront
surgery cannot
be assumed to
equate with
neoadjuvant
pathway being
the superior
pathway choice
for resectable
pancreatic
cancer in light of
the fact that the
reported
survival times in
the neoadjuvant
arm of this trial
are lower than
those reported in
the former trial.

The impact on
quality-of-life of
different
treatments and
interventions
both in the short
and long term,
and how this
might affect
patients’
decision-making.

data and its
analysis affect
pathway
decision making,
i.e. will an
increased pool of
patients with
earlier disease
show that early
resection and
adjuvant therapy
is better or will
the marginal
survival
advantage with
neoadjuvant
therapy reported
in some studies
still stand?

Will gene
targeted therapy
come to fruition
and if so will it
be cost-effective?
Will it be
delivered pre or
postoperatively?
Will patients
with the same or
similar genetic
profiles still have
variation in their
treatment
outcomes and
what other
factors will
determine this
and to what
extent?

Will biomarker
driven treatment
sequencing be
established and
how will this
affect outcomes
in, and
comparison of,
treatment
pathways?

Will the afore
mentioned
potential
breakthroughs
be cost-effective
and how will
they affect the

filter more
aggressive
disease, which
progresses
despite
neoadjuvant
therapy, away
from costly, high
risk yet futile
surgery
therefore has a
cost-
effectiveness
advantage.

Any cost-
effectiveness
advantage
reported with
neoadjuvant
therapy must be
offset against
moving costs and
resource
utilisation away
from a surgical
service budget to
oncology and
palliative care
service budget.
Such reports
must also be
reconsidered in
light of emerging
improvements
with new
adjuvant
therapies.

The key to
optimisation of
outcomes is
better patient
selection. The
focus should
therefore be on
precision
medicine
through gene
targeted
therapies.

The key to
optimisation of
outcomes is
earlier diagnosis
followed by early
surgery. The
focus should
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cost- therefore be on

effectiveness screening and
analysis of early detection
competing combined with
treatment improvements to

pathways? What | the upfront
impacts will this | surgery pathway.
have on the
wider NHS
budgeting and
the structuring
of service
delivery?

Such unfolding theorisation within operational research has
particular implications for research that seeks to use complexity
theory as a lens through which to view healthcare systems. On a daily
basis decisions regarding the management of pancreatic cancer, and
indeed throughout all areas of healthcare, are being made based on
contested, limited and incomplete data (Greenhalgh & Papoutsi,
2018). The Newtonian world-view that permeates much of medical
practice (Waldrop, 1992; Plsek & Greenhalgh, 2001) assumes that
the scientific quest for certainty, predictability and linear causality
will be achieved through ongoing RCTs (Greenhalgh & Papoutsi,
2018). Yet there is growing and insurmountable evidence that RCTs
can address only a fraction of the unanswered questions within a
healthcare system (Cohn et al., 2013; Braithwaite et al., 2017;
Marchal et al., 2013; Greenhalgh & Papoutsi, 2018). To illustrate,
preliminary results from the first RCT reporting superior survival
outcomes with neoadjuvant therapy for resectable pancreatic cancer
compared to upfront surgery cannot be assumed to equate with
neoadjuvant pathway being the superior pathway choice for
resectable pancreatic cancer in light of the fact that the reported

survival times in the neoadjuvant arm of this trial are lower than
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those reported in a RCT comparing adjuvant regimes in the upfront
surgery pathway (Unno et al., 2019; Conroy et al., 2018). But how do
the findings of the latter trial affect decision making when up to 50%
of patient in the upfront surgery pathway do not receive adjuvant
therapy? How do the findings from both of these RCTs apply to
patients who would not have met the trail inclusion criteria? RCTs
rather than providing clear guidance for adaptive behaviours have

actually resulted in raising more questions.

Langton has termed circumstances that require adaptive behaviours,
such as adopting the neoadjuvant pathway instead of the traditional
upfront surgery pathway for resectable pancreatic, “the edge of
chaos” (Langton, 1989). The centre area in Figure 3 therefore
represents the reality of daily clinical practice where adaptive
solutions, workarounds and general muddling-through (Greenhalgh
& Papoutsi, 2018) are deployed in a reality where there exists
insufficient agreement and centrality to make the correct decision or
next step obvious but not so much uncertainty or disagreement to
send the system into complete chaos (Stacey, 1996). The
implications for this research is that such complexity must be placed
at the centre of the unfolding story regarding how to optimise
outcomes for pancreatic cancer with emerging and ongoing RCTs
being augmented by the study of how we can best deal with
unpredictability, uncertainty and generative causality (Greenhalgh &
Papoutsi, 2018). This will now be taken forward by using Cillier’s ten

point ‘lean’ ontology of complexity.
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Figure 3: Diagrammatic depiction of the relationship between
complexity in daily clinical practice and degree of agreement and

certainty

|
3;

Degree of Certainty

3.3.1 The Application of Cilliers’ ‘Lean’ Ontology of Complexity

Complex Systems Consist of a Large Number of Elements

In viewing personalised realistic medicine as an operational research
application, it must be acknowledged that the discipline of
operational research constitutes several types of analytical models,
which have been distinguished as classical and enhanced operational
research (Jackson, 1988). Enhanced operational research

encompassed newer methodological approaches in different contexts
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involving a large number of conceptual models but both enhanced
and classical disciples encompass a large number of concepts,
elements and ideas applied to an even larger number of
combinations (Kruger et al., 2019). This implies a finite number of
elements that will impose an artificial boundary in the operational
research system which some have argued is necessary from the
observer’s perspective to study a complex system (Cilliers, 2008;
Mowat & Davis, 2018). However, Merali (2006) goes further in
conceptualising the world as a networked world. Hence it stands that
a collection of concepts and techniques does not constitute an
operational research system and equally an operational research
application does not exist in isolation (Merali, 2006; Kruger et al.,
2019). Therefore whilst elements, such as society and the economy
for example, may not interact with the application in a deterministic
way they will interact and merge with the application (Kruger et al.,

2019).

The Level of Interaction Among Elements is Fairly Rich and there are

Loops in the Interactions Amongst Elements

The implementation of an operational research model will result in a
multi-level, cross-scale, cross-sector interaction both within the
boundaries of the model and the wider economic and societal
environment in which it operates. The relationships between these
elements are both mathematical and application concepts, and it is
precisely these relationships that have resulted in many advances in

the field of operational research (Kruger et al., 2019).
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To illustrate these first three points, at a biological level pancreatic
cancer begins with the complex process of carcinogenesis which
itself depends on a large number of variables. Indeed it has been
hypothesized that every tumour is unique and that the spectrum of
biological changes that determine human tumour formation and
behaviours is infinitely variable and regulated at multiple spatial and
temporal scales (Grizzi & Chiriva-Internati, 2006). It follows that
different treatment sequences will have infinite variability in their
impact across these multiple scales on a biological level. Through
multiple processes and controls that involves feedback loops within
molecular carcinogenic pathways, these micro-scale processes have
macro scale manifestations (Grizzi & Chiriva-Internati, 2006). This
will culminate in differences in how the tumour behaves at organ,
system and entire organism level, which will determine overall and
disease-free survival times. Environmental, societal and political
elements will also interact either in a deterministic way or through
mergence. Such factors influence diet and lifestyle which can alter
both an individual’s risk of developing cancer as well as their general
health and predisposition to other comorbidities which will affect
their physiological reserve to withstand chemotherapy and/or major
surgery with any associated complications that might occur. Socio-
economic factors can also affect access to health care services with
poorer socioeconomic conditions having been proven to result in
poorer outcomes across all cancers. At politico-economic level
government funding and the setting of society’s willingness-to-pay
threshold by the treasury, which is directly integrated into statistical
models to perform cost-effectiveness analysis, will determine which

treatments are made available within the NHS. Loops in the
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interaction amongst elements at this level could manifest as strong

public pressure to make certain cancer treatments available on the

NHS.

The Elements Interact Dynamically

An operational research model is only meaningful within the real-life
context within which it is applied therefore any such model will be
meaningless unless it can interact with the environment within
which it operates (Cilliers, 1998). This not only means that elements
within the model can interact mathematically but also that they
represent the dynamic interaction with the wider environment
within which the model is operating. This interaction between the
operational research application and reality could be either physical
or transference of information to facilitate shared decision making

(Cilliers, 1998).

Interactions are Non-Linear

The concept of non-linearity within an operational research model
means that small causes can have large results, as previously
illustrated in the example of micro-scale processes having macro-
scale manifestations in the process of carcinogenesis, with the
converse being also true (Cilliers, 1998). For Cilliers the concepts of
non-linearity is closely aligned with the principle of asymmetry. For
example personalised realistic medicine within the context of this
research is seeking the most effective delivery of treatment for

individual patients. Even without the addition of considering
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treatment delivery at the lowest cost this already introduces an
element of competition that also introduces asymmetry because if
the model was perfectly symmetrical there would be no need for an
operational research model. For Cilliers this meant that non-linearity,
asymmetry and competition are all inevitable components of

complex systems (Kruger et al., 2019).

Conditions are Far From Equilibrium

Within a complex system non-linearity between components, the
environment and whole systems results in a state of non-equilibrium
(Capra, 2007; Prigogine, 1987). Interactions with the world are
dynamic therefore systems in non-equilibrium have multiple states
of states and become more robust through a process of adaptation
than statical systems operating in a state of equilibrium (Kruger et

al., 2019; Capra, 2007; De Villiers-Botha & Cilliers, 2010).

Each Element Is Ignorant to the Behaviour of the Whole System

Although there are mathematical relationships between elements
within a model, each element only reacts to information available to
itself. Cilliers emphasises that this characteristic should be
considered carefully as the information applied to the individual
element may be rich but that individual element cannot contain the

complexity of the whole system (Cilliers, 1998).

The complex system as one that is dynamic, non-linear, not in

equilibrium and with elements ignorant of the whole can also be
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illustrated through the example of pancreatic cancer. Mathematically
a dynamic system depends on either a set of different states or
configuration patterns (z), a number of transition steps (z) from one
state to another caused by a generating factor (u), over a period of
time (t) thus:

Z = flzu,t)

where fis a non-linear function that is continuous and the dot
denotes differentiation in time (t) (Grizzi et al., 2004; Abraham,
1991; Abraham & Shaw, 1992; Grizzi & Chiriva-Internati, 2006).
Therefore, for example, time (t) to disease recurrence, depends on a
large number of dynamic elements that are themselves connected
and interact in non-linear ways (Grizzi & Chiriva-Internati, 2006).
Therefore the time to disease recurrence depends not only on
treatment received but highly heterogeneous tumour factors at
molecular level, the patient’s physiological reserve to cope with the
insult of intervention and / or an associated complication of this
(which is itself affected by wider societal, environmental, genetic and
lifestyle factors), and whether such an occurrence results in
incompletion of intended course of therapy or delay in, for example,
commencing adjuvant therapy due to postoperative complication.
What this is illustrating is that treatment pathways for pancreatic
management are actually systems comprising parts that show
systematic heterogeneity and have non-linear relationships with the
variables influencing the system also being connected in a complex
manner, therefore small alterations in variables can lead to very
different outcomes (Grizzi & Chiriva-Internati, 2006). Clinicians will
recognise concepts in irregular modes of carcinogenesis, erratic

tumour growth, poorly understood patters of metastatic spread, and
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variations in the response of similar tumour types to the same
chemotherapy agents (Grizzi & Chiriva-Internati, 2006). The
implications for this in moving research forward is that cancer does
not conform to simple mathematical principles but instead classical
notions of cause and effect must be replaced by concepts of control,
bifurcation and turbulence (Grizzi & Chiriva-Internati, 2006) which
will mean expanding the repertoire of modeling methods and further
exploring the development of simulation modeling to better handle

complexity and uncertainty (Long et al., 2018).

Interactions Have a Fairly Short Range

Operational research models have the aim of bringing about
improvement with changes occurring locally, close to the application
(Kruger et al., 2019) although interactions can also be wide ranging
(Cillers, 1998). Wide-ranging interactions can mean that changes at
local level and have regional and national impact (Kruger et al.,

2019).

An Open System

When an operational research model is applied to a specific problem
the model becomes exposed to the real world as an open system with
a large number of elements having an influence on its formulation
(Kruger et al,, 2019). Therefore to properly formulate an operational
research model it must be implemented and applied to a specific

problem otherwise the model itself becomes a closed system with
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results confined to a set of variables, which would be a gross

oversimplification (Kruger et al., 2019).

Complex Systems Have a History

Cilliers viewed the history of a complex system as a collection of
traces left distributed over the system open to multiple
interpretations (Cilliers, 1998). Therefore good models can be
reused but their use and history should not be determined by the
provision of an optimal answer in one application as a plethora of
other factors must be taken into account such as the influence of
different stakeholders and unforeseen developments during
implementation (Kruger et al., 2019). This also means that the
memory of the model will vary between different applications, even
when the same type of model is applied, hence the model memory

appears to be contingent and dynamic (Cilliers, 2010).

In summary the alignment of the research question with the ten
characteristic of complexity thinking as a ‘lean’ ontology means that
the epistemological questions raised by Ackoff can be addressed
(table 11). While it is acknowledged that a complex world cannot be
simplified into a list of characteristics this allows one to indicate the
complexity in the context of the reality in which this research will
operate (Kruger et al., 2019). No claim is being made that existing
mathematical and computational models are wrong or of little use,
but rather that by adopting methodological pluralism and using
complexity theory as a lens through which to view the system of

pancreatic cancer management new methods of modelling for
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decision making could be developed by gaining new perspectives in
terms of emergence, boundary setting, lack of complete knowledge
and responsibility or ethics for the consequences regarding

definitions and choices of boundaries (Kruger et al., 2019).

Table 11: Summary of how complexity theory can address Ackoff’s

epistemological concerns

Ackoff’s Epistemological Concern Complexity Characteristics Addressing This
Concern
The need for a system to learn and adapt Non-equilibrium
History
Lack of quality of life values Rich interaction between elements
Open systems
Systems of problems Large number of elements
Elements interact dynamically
Synthesizing Planning Paradigm Large number of elements

Elements interact dynamically
Open system

Interdisciplinary interaction Loops in interactions
Non-equilibrium
Open systems

Pursuit of objectivity: who can be affected Dynamic interaction
Short Range
Open system

Emergence

Checkland (1999) defined emergence as the principle that entities
exhibit properties, which are meaningful only when attributed to the
whole, and not its parts. This corroborated Cilliers claim that one of
the defining characteristics of a complex system is its emergent
properties which cannot be reduced to the system component
properties (Cilliers, 2010). Therefore complexity emerges as a result
of the dynamic and non-linear interactions between elements within
the system (Cilliers, 1998). Juxtapose this with the context of an open
system and the magnitude of emergence can be difficult to quantify

(Paul et al., 2014) particularly as emergence can take many forms
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including deeper understanding or raised consciousness about issues

(Kruger etal., 2019).

Boundary Setting

It is impossible to solve a real-world problem by including all of
reality therefore the problem must be framed in a specific way and
the system must be modeled in a recognisable way which requires
that it be bounded (Cilliers, 2005a; Kruger et al., 2019). The setting of
boundaries can also generate knowledge through dialogue with
stakeholder (Audouin et al, 2013; Kruger et al., 2019). Importantly
however the setting of a boundary constitutes that which is bound
rather than intended to separate things (Cilliers, 2008). Furthermore
boundary setting is not objective, and is both artificial and temporary
(Kruger et al,, 2019). As emphasised by the work of Cilliers,
operational research’s epistemology, through complexity theory, can

both accommodate and be broadened by this (Kruger et al., 2019).

Lack of Complete Knowledge

Complete knowledge of a complex system is not possible but rather
knowledge in terms of a certain framework is (Kruger et al., 2019).
As Midgley et al. stated “ if we accept the systems idea that
everything is ultimately connected, then no theoretical knowledge,
however well elaborated, can accurately reflect reality” (Midgley et
al., 1998, p.160). Hence the generation of knowledge within a
complex system is exploratory and temporary (Cilliers, 2005b).

Cilliers (2005b) and Woermann (2010) argue that rather than this
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being an excuse for relativism, this represents a challenge to develop

a new kind of scientific understanding (Cilliers, 2007).

Responsibility (Ethics)

Both the artificial nature of boundary setting and the provisional
nature of knowledge means that a level of uncertainty will prevail in
model outputs which means that responsibility must be taken for
intended and unintended consequences when a system does not
reflect reality (Cilliers, 2008; Woemann & Cilliers, 2012; Ackoff,
1974; Gallo, 2004; Ormerod & Ulrich, 2013) particularly as boundary
definitions involve a value based judgment (Audouin et al., 2013;

Ulrich, 1983; Midgley, 2000).

In summary as Law and Mol (2002) have suggested other ways of
relating to, accepting, producing or performing complexity must be
developed. Therefore this research seeks to engage with what
Tsoukas called conjunctive theorising by avoiding simplification and
abstraction (or disjunctive theorising) and instead drawing on
different kinds of data from multiple sources to move research
towards a theory that can build a rich picture of pancreatic
management pathways as a complex phenomenon (Tsoukas, 2017).
Combining operational and healthcare research and drawing on
influences from complementary paradigms of critical realism and
systems theory and enhancing their impact by using Cilliers’
complexity theory ‘lean ontology’ an open-world ontology is held.
This posits that the interplay of causal powers or tendencies of

domains of ‘the real’ leads to particular events, ‘the actual’ (Mingers
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2005). These domains may be physical, social or conceptual
(Mingers 2005, Zachariadis et al, 2010) and these events may be
observable or experienced by people and therefore become empirical
(Mingers 2005) but that as a whole the world is open to multiple
interacting influences and to ignore such layers of influence serves
no analytical benefit (Tsoukas, 2017). Epistemologically in
recognising that all knowledge, whilst provisional, is historically and
culturally relative both epistemic reality (observer-independent
access as a fallacy) and judgmental relativity (rational grounds for
theory preference) are accepted (Mingers 2005, Zachariadis et al.,
2010). By amalgamating operational and healthcare research
disciples in this way this research seeks to be theory driven and
empirically focused from a complexity perspective. Through a
‘systems mindset’ methodological pluralism is embraced to expand
the methodological repertoire. Specifically how imperfect data can be
better utilised within statistical simulation models will be explored
so that, as Long et al. (2018) have suggested, the potential for
simulation modelling in the study of complexity in healthcare can be
explored to attempt to expand capabilities for handling uncertainty,
the emergent and engage in disagreements (Star, 2002; Fraser &
Greenhalgh, 2001; Greenhalgh & Papoutsi, 2018). Methods of
modeling and their ability to cope with uncertainty and capture

system complexity will now be explored.
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3.4. Methodology

3.4.1 Methods: Modeling

The term ‘model’ has been overused recently (National Research
Council, 1991) which mandates clarification of the use of the term
within this research, first in relation to decision analysis then in
relation to predictive modeling. Although several definitions of a
‘model’ exist (Milton et al,, 2001) Box et al. (1978) defined two types
of models: empirical and theoretical. Empirical models are used
when the mechanism is either not understood or too complex to
allow an exact model postulated from theory (Milton et al, 2001; Box
etal, 1978). An example would be drug trials as here data speaks for
itself in connecting cause (inputs) and effect (outputs). Theoretical
models are based on physical or mechanistic theory governing the
system. Pertaining to predictive models, Box et al. (1978) would
therefore site logistic regression models as examples of empirical
models. Considering the ambiguity in the existing body of research
relating to the best treatment pathway for potentially resectable
pancreatic cancer, and the complexity of factors that influence
clinical decisions not captured in drug trials, the case could be made
for moving away from empirical towards theoretical modeling on the
basis that a “basic understanding of the system is essential to
progress” as this provides a better basis for extrapolation than
empiricism (Box et al, 1978). It does however follow that with any
model extrapolation beyond the range of data is never a safe option

(Milton et al, 2001). This leads to the second point that must be
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addressed in regards to modeling; the controversy that surrounds its

application within healthcare.

Models for decision analysis, cost-effectives and prediction have been
met with criticism. Empiricists have emphasised the potential
inaccuracies of input data whilst epidemiologists have raised
subsequent concerns that logical assumption regarding cause and
effect are wrong (Milton et al, 2001; Henschke & Flehinger, 1967;
Schwartz, 1979). This has led some to conclude that clinical judgment
is an ‘art’ that cannot be quantified whilst others express distrust in
the hidden nature of the ‘black box’ of modeling software that can
easily be manipulated by proponents of a particular treatment option
(Milton et al, 2001; Schwartz, 1979). However, the basis of
explainable Al in healthcare is being able to sit down with a patient
and describe the basis for a particular course of action. Furthermore
all bias that exists in data cannot be adequately addressed if

decisions are not interpretable.

At the core of this cynicism lies disagreement about the degree of
experimental or empirical evidence required prior to modeling
(Milton et al, 2001; Henschke & Flehinger, 1967; Schwartz, 1979).
Clearly the evidence base surrounding the best treatment approach
to pancreatic cancer is inconclusive. However, to simply wait until
‘perfect’ evidence exists paralyses progress in medicine, stymies the
realisation of realistic medicine, and is negligent in light of the fact
that decisions must be made on a daily basis despite limited data and
implicit value on qualitative outcomes (Milton et al, 2001; Kuntz et

al. 2013). Furthermore when debating the quality of available data to
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model it must be remembered that data from trials themselves are
not infallible nor generalisable as treatment is protocol driven,
context is controlled for, study participants are a selected subset of
the population, and late outcomes may not be recorded due to trial
time horizon despite this potentially being a key factor in influencing
clinical decisions (Kuntz et al., 2013; Milton et al,, 2001). Therefore
blinkered reliance on ‘perfect’ trial data can actually result in
cognitive bias when making these daily clinical decisions (Kuntz et
al, 2013). This leads to the second misconception underpinning
cynicism towards modeling in medicine, that models are to establish
‘truth’ when they are actually meant to guide clinical decisions. This
also counters the concern by some that models may produce results
that conflict with the decision maker’s view (Kuntz et al, 2013). It
follows that models can reduce the cognitive bias inherent in
decision making and help understanding of the decision process and
the inherent trade-offs in complex decisions with sensitivity analysis
showing effects of varying model parameters (Kuntz et al, 2013;

Milton et al., 2001).

What the criticisms of modeling within health care have done is focus
attention on adhering to principles of good modeling practice:
transparency, verification (outputs being consistent with observed
data), corroboration (results produced are similar other models),
validation (internal, calibration, face, convergent and where
appropriate, predictive validation) and accreditation (peer review of
models) (Kuntz et al, 2013; Milton et al, 2001). This highlights the
imperative need to make both methods and goals of modeling

transparent (Kuntz et al,, 2013).
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Wolpert & Rutter (2018) offered a potential solution to these issue
when they developed a framework for using flawed, uncertain,
proximate and sparse (FUPS) data in the context of complexity. This
will now be explored followed by an examination of models for
decision analysis of neoadjuvant versus upfront surgery pathways
and then methods of individualised predictive modeling in the

context of complexity.

Flawed Uncertain Proximate and Sparse (FUPS) Data

Data surrounding the treatment of pancreatic cancer is currently
flawed, uncertain, proximate and sparse and is likely to remain so
even with the emergence of further RCTs (Table 12). A healthcare
system delivering pancreatic cancer management is therefore faced
with the challenge of dealing with the gap between the ideal of
comprehensive, clear data used in complicated contexts, and the
reality of FUPS data used within the context of complexity (Wolpert
& Rutter, 2018). Clinical decision making therefore moves from what
the urban planner and philosopher Donald Schon called the “high
ground” where manageable problems lend themselves to solutions
through the use of research-based theory to the “swampy lowlands”

where problems are more confusing and messy (Schon, 1984).
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Table 12: Summary of how existing data on the management of

potentially resectable pancreatic cancer can be viewed as FUPS data

FUPS Category

State of Existing Data

Flawed

Missing data from institutional data base
Erroneously recorded or coded data on
institutional data base

Deviation from the planned treatment
protocol, the impact of which is not fully
explored through solely intention-to-treat
analysis.

High degree of heterogeneity across study
populations, treatment protocols and clinical
practices.

Many existing studies are small, underpowered
and have a high degree of bias.

Uncertain

How data is rated or conceptualised for
example: how treatment toxicities are
categorised and reported (all occurrences
recorded, worst event recorded, total number
of toxicities in population versus percentage of
population experiencing a particular grade of
toxicity), how post operative complications are
rated, variations in the definitions of resectable
disease and RO resection across studies and
variation in follow-up practices creating
uncertainty in the accuracy of disease free
survival time.

Proximate

A proxy for the focus of interest: overall and
disease free survival commonly reported but
quality adjusted survival time poorly
understood.

Sparse

Only an estimated 10% of cases are resectable
at presentation.

Drug trails comparing upfront surgery and
neoadjuvant approach often include borderline
resectable and locally advanced cases in the
neoadjuvant arm.

Lessons drawn from cognitive psychology and sociology suggest that

the use of findings from data are influenced by key factors including

the tendency to reject that which challenges the prevailing
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assumptions and the tendency for power elites to protect their
interests (Currie et al., 2012; Raghupathi & Raghupathi, 2014). Large
multicenter RCTs are costly and carry a high level of prestige for the
institutions involved. The data from such trials are therefore held in
high esteem and often readily accepted within medicine with limited
criticism. However, the reality is that the majority of daily clinical
decisions are made based on FUPS data out-with controlled trial
conditions and concerning patients who are not selected based on a
strict inclusion criteria. Yet agents in the system are more likely to
apply higher standards of evidence than to traditional practice
regardless of the apparent flaws in the evidence supporting such
traditional approaches (Muir, 2001). This highlights the need for
decision support models not only to pay sophisticated attention to
the merits and detriments of using FUPS data but to also answer the
call for a greater consideration of the implications of the complexity
of the healthcare system in both research and practice (Plsek &
Greennalgh, 2001; Rutter et al., 2017). This means paying close
attention to the properties of the complex system in which the data
will be used (Wolpert & Rutter, 2018) which can be characterised as
a collection of individual but interconnected agents with the freedom
to act in ways that are not completely predictable, and whose actions

changes the context for other agents (Plsek & Greennalgh, 2001).

Taking a lead from Wolpert and Rutter (2018) to move beyond the
biomedical model as the only model of evidence to simultaneously
acknowledge the dangers of both over-interpretation of FUPS data as
well as non-use, the aim of modeling FUPS data pertaining to the

management of pancreatic cancer will be to open up conversations
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on findings rather than treating them as definitive facts (Wolpert &
Rutter, 2018). In this way findings will be used to consider the
complex reality they relate to but cannot fully capture so that
narrative arguments and hypothesis can be contested and debated
within the system rather than being dismissed due to FUPS-ness of
the data or presented as definitive facts in order to aid decision
making in the “swampy lowlands” of clinical practice (Wolpert &
Rutter, 2018). In practical terms this means instantiating the key
principles of analysing FUPS data within statistical models. Firstly all
data is treated as a partial remnant with findings presented to convey
associated limitations to interpretation. Secondly ‘black box’
statistical modeling will be avoided in favour of transparency and
clarity. Thirdly triangulation will be used to contextualise findings
from models based on FUPS data to explore how other information
and modeling techniques refute or support these findings (Wolpert &
Rutter, 2018). Specific decision analysis modeling methods and their

ability to handle uncertainty will now be explored.

3.4.2 Decision-Analysis Modeling

With its roots in mathematics, ethics, game theory and economics
(Albert, 1978), decision-analytical models are designed to perform
decision analysis in a systematic, transparent and quantitative way
under uncertainty (Kuntz et al. 2013). Von Neumann & Morgensterm
(1953) first provided a mathematical framework, based on the
axioms of utility theory, and synthesising concepts of probability and
value, for ‘rational’ decision making under uncertainty. Ledley &

Lusted (1959) then attempted to apply decision-analysis to medical
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diagnostics, focusing on probability, logic and value and emphasizing
the importance of Bayesian formulae in achieving this. However, they
then drew on game theory when deciding upon best treatment
selection, discussing what a physician could “win” and what nature
could “lose” with various treatment options (Ledley & Lusted, 1959).
Later Henschke & Hehingers (1967) in ‘Decision Theory in Cancer
Therapy’ attempted to tackle decision making at a more complex
level when attempting to analyse risk and benefits of prophylactic
neck dissection for head and cancer. Neither of these seminal papers
however formalised an analytical tool to analyse decisions (Kuntz et
al, 2013). It was not until the 1980s that the first textbook on
decision analysis introduced the decision tree (Weinstein et al. 1980)
followed by the first application of a Markov model, utilizing markov
chains, in medical decision making (Beck & Pauker, 1983). Despite
postulations in 1975 that the time had come for modeling in
decision-analysis to become more widely used and accepted, despite
not being a new idea then (Inglefinger, 1975), it is only in recent
years that it has gained precedence. The reason for this is two-fold;
firstly the perception of decision-analysis modeling within medicine
(available evidence is too limited to model, qualitative factors are
important in decision making but not suitable for quantitative
analysis, and doctors could not be expected to use complex and
sophisticated models in their daily practice) and secondly the
development of software to support its application has accelerated
the use of decision-analysis modeling (Ledley & Lusted, 1959;
Henschke & Flehinger, 1967). Models for decision-analysis will now
be explored and include: decision-trees, Markov, micro and discrete

event simulation.
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Decision trees use utility theory, or multiattribute until theory is
developed to attach value to an outcome, even qualitative outcomes
(Kuntz et al. 2013; von Neumann & Morgensterm, 1953). This type
of model would have the benefit of modeling the complex and
numerous branches involved in treatment pathways when deciding
between treatments for pancreatic cancer in a logistical and linear
manner that is easy to follow with all pathways and their transiton
probabilities being transparent (Kuntz et al, 2013). However, this
model does not capture reoccurring events and is only applicable in
decisions with short time horizons. For this reason I contest that
Markov modeling would be a more appropriate choice of model as
many features of the clinical process are captured taking into account
the timing of these events, such as changing health states over time.
Furthermore a Markov model can be computed analytically to give
expected values such as life expectancy, or stochastically to measure
predicted outcomes in addition to expected values (Kuntz et al.
2013). It allows both decision analysis in terms of health outcomes

as well as cost-effectiveness analysis.

Markov modeling has been employed for decision analysis of upfront
surgery versus neoadjuvant therapy for resectable pancreatic cancer
(deGeus et al., 2016; Sharma et al., 2015). These studies were based
on synthesised data from published trials and their output was not
validated against patient level data. Whilst this approach adds
flexibility in sensitivity analysis by incorporating explicit links
between end points, it also carries methodological limitations that

could inhibit its future application (Caro et al., 2010; Miettinen &
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Caro et al.,, 2010). The challenge in applying the Markov model is in
addressing its main disadvantage; the Markov property. This
property means that transition probabilities within the model are
treated as independent of the past history. However, in clinical
practice a significant past medical history may make a post operative
complication more likely which in turn could reduce the probability
of a patient receiving adjuvant therapy. One strategy to deal with this
would be to define health states according to past events (Kuntz et al.
2013) although there is a danger that the model could grow too large
to manage as the number of possible health states could increase
exponentially (Kuntz et al. 2013). Given the anticipated move
towards future personalised targeted treatments the memory-less
property of the Markov cohort model makes it less well equipped to
handle individual patient data, which can result in reduced accuracy
due to depletion of susceptibles and an over simplification of
assumptions (Caro et al., 2010; Miettinen & Caro et al., 2010).
Furthermore in light of the afore mentioned current challenges in
pathway assessment for resectable pancreatic cancer,
implementation of time-dependent transition probabilities when
multiple health states and treatment sequences are considered
would make programming and utilising such a model difficult (Caro

etal., 2010; Miettinen & Caro et al., 2010).

A better framework for modeling treatment pathways for resectable
pancreatic cancer could be offered through discrete-event-simulation
(DES) approach as it captures a patient’s experience in terms of
events and also has the ability to track changes in patient

characteristics, health status and treatment history in relation to
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their impact on outcomes (Pan et al., 2018; Caro et al., 2010). By
tracking the individual patient’s simulated history, including multiple
comorbidities allowing them to interact and effect outcomes, the
number of health states could be reduced within the model (Kuntz et
al. 2013). This could be achieved on a cycle-by-cycle basis or by using
data distributions to simulate time-to-event hence allowing flexibility
in how data is modeled (Kuntz et al. 2013). This potentially makes
this approach a more accurate and efficient framework with the
flexibility to incorporate future anticipated breakthroughs in
personalised targeted treatments. This would however require a high
number of simulations to reach a stable expected value which
amounts to high costs in terms of time and computing power.
Debugging such a model would be difficult compared to the Markov
model which has a Markov trace which means that the proportion of
the cohort in each health state can be given per cycle time which
results in face validity of the model and good accuracy testing (Kuntz
et al. 2013). Furthermore, the proportion of disease that is resectable
at presentation is small considering the large data requirements for
such a modeling framework. DES approach has not yet been applied
to treatment pathway analysis for resectable pancreatic cancer to

assess its level of accuracy.

Both these modeling approaches could be complementary. The
curiosity is whether the Bayesian approach could be taken forward
to achieve precision medicine with a model that can give
individualised predictions of prognosis as well as failure events such

as the risk of treatment complications.
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3.5 Bayesian Theorem

Pearl (1990) defined Bayesianism by the attributes of: willingness to
accept subjective belief as a substitute for raw data, reliance on
coherent probabilistic models of beliefs and updating belief in light of

new information through adherence to Bayes’ conditionalisation.

A probability distribution, P is defined on a proposition space S,
which contains all propositions that a system can represent and
process (Kolmogorov, 1950). The probability evaluation P(x), comes
from P being defined on S for every proposition x € S. Both x and y
are contained within §, so the probability of x under the condition of y
is a conditional probability evaluation from which we get Bayes’

Theorem (Kolmogorov, 1950; Wang 2004):
Pylx) = P(ylx) P(x) / P(y)

Accordingly the probability of the proposition h is the systems belief
in h according to background knowledge K that could be data,
experience evidence et cetera. The system starts with determining
prior probability Po from knowledge Ko at time to. When new
knowledge, e, becomes available Pp becomes a posterior distribution,
P1 so:

P1(h) = Po(h|e)= Po(e|h) Po(h) / Po(e)
P; is based on K1 which is a combination of previous and new
knowledge, Ko and e. Therefore Bayes’ Theorem when repeatedly
applied in this fashion is known as conditioning process and means

that the system can learn and adjust beliefs according to this new
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knowledge (Heckerman, 1999; Pearl, 2000). This also means that a
probability evaluation P(h) is always conditional due to the implicit
condition that P(h) is conditional on the relationship between h and K
and not the objective property of h (Wang, 2004):

Pk1(h) = Pxo(h|e)= Pxo(e|h) Pxo(h) / Pxo(e)

Often however this implicit condition on which the dependency of a
probability is dependent, is represented as a conditional probability
or ‘explicit condition’ (Cheeseman, 1985; Heckerman, 1999; ,Pearl

1988; Pearl, 2000):

P(h|K1) = P(h|e AKo) = P(e|h AKo)P(h|Ko)/ P(e|Ko)

which some contest is improper and central to understanding the
often under reported limitations of Bayesianism (Wang, 2004) as will
be discussed later. First [ will discuss the application of Bayes’
theorem to the research question through Bayesian Networks (BN)

before outlining these limitations and how they might be overcome.

Precision Medicine and the Role of Bayesian Networks

There is a move within contemporary healthcare towards precision
medicine whereby probabilistic modeling is used to predict likely
disease progression and/ or treatment outcomes for individual
patients based on interpretation of patient data (Velikova et al. 2014;
School et al. 2013). However, decision making in medicine can be

fraught with difficulty due to underling uncertainties.
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Treatment selection and prognostic reasoning at its very core
concerns making predictions of future events despite inherent
uncertainties. Traditionally prognostic models utilise supervised data
analysis methods based on frequentist statistical paradigm, such as
multivariate logistic regression analysis (School et al. 2013; Verduijn
et al, 2007). Limitations of this approach highlight the gap between
theory and practical application of models. Such models regard
prognosis as an isolated event at a pre-determined time, applying
attribute selection prior to inducing the model and setting fixed roles
of input and output variables to attributes (Verduijn et al.,, 2007).
Variables deemed important by clinicians may therefore be excluded.
Furthermore this neglects the dynamic nature of care processes
where outcomes today predict those of tomorrow hence expected
patient outcomes evolve as more information becomes available

(Verduijn et al,, 2007).

Prognostic Bayesian models, although in their infancy, allow for
incorporation of individual patient data, disease progression and
impact of different treatment options on the predicted outcome
variable, such as life expectancy. This can be defined very simply as a
probability distribution:

Pr(outcome/9,3)
where 8 denotes available patient data and J denotes sequence of

treatment events impacting on the outcome variable (Lucas et al,

2004).

Through Bayes theorem the prior distribution and observed data are

combined to update knowledge in the form of the posterior
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distribution. Posterior probability intervals (PPI), or credibility
intervals, represent the 95% probability that the predicted outcome
lies between two values. This is often erroneously confused with
frequentist-based 95% confidence interval, which means that 95% of
the confidence intervals capture the true outcome under the null
hypothesis (School et al, 2013). Regarding personalised predictive
outcomes for patients, PPI is therefore more accurate and easier to
communicate to patients the predicted probability of their outcome

lying between two values (School et al,, 2013).

BN are based on graphical formalism of a joint or multivariate
probability distribution over a random set of variables and are
sometimes referred to as acyclic directed graphs (Velikova et al,
2014; School et al.,, 2013; Stajduhar & Dalbelo-Basic, 2010). BN are

based on the following set of formulisation.

BN are defined as a pair:

BN= (G,Pr)
where G is a graphical structure and Pr is the probability distribution.
G = (V(G), A(G), where V(G) is a random variable taking on a set of
values. Variables are represented as nodes within BN and any
number of nodes can be included, therefore:

V(G)={VyV2...Vy}
where n>1. A(G) represent arcs which indicate probabilistic influence
between two nodes: Vi eéV; where Viis termed the parent node and V;
the child node. The joint probability distribution (Pr) respects the

dependence and independence between nodes and is defined as:
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Pr(Vy, V2...Vn)=1I" 1Pr(Vi/m(Vi))
where (Vi) represents the covariates of parent nodes to V;. (Velikova
etal, 2014, Lucas et al,, 2004, Verduijn et al, 2007, Stajduhar &
Dalbelo-Basic, 2010).

Unlike traditional prognostic models that provide predictions of a
single outcome variable, BN can be more complex, providing
information on process variables (conditions that occur during the
process) as well as outcome variables (endpoints of that process)
(Verduijn et al,. 2007; Lucas et al, 2004). Therefore in practice BN
can predict outcomes pertaining to quality and not just amount of
survival time (Lucas et al,, 2004). Furthermore predictions from
prognostic BN can be used to support decision making in resource
allocation as well as individual cases or case-mix adjustment or

benchmarking in groups or populations (Verduijn et al, 2007).

Where patient information is limited probabilistic inference can still
make predictions based on global averages of the patient population
(Verduijn et al,, 2007; Lucas et al,. 2004). As more information
becomes available the predictions become more patient specific
(Verduijn et al,, 2007). This highlights a further key benefit of
prognostic BN; prognosis updating (Verduijn et al, 2007). As the
healthcare process evolves so does a patient’s predicted prognosis.
Bayesian methods underpin BN, which allows prognosis to be seen as
a dynamic notion through probability updating with new and
emerging information (Verduijn et al,, 2007). In practice this means

clinicians involved at the later stages of care can use the same model,
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adjusted for the events of the preceding care phases (e.g. complex
surgical interventions) to make more timely and personalised
predictions (Verduijn et al, 2007). This further highlights an aspect
of predictive medicine not captured in traditional prognostic models;
prognostic scenario analysis. In real life events such as complications
and hospital stay do not happen in isolation but rather as scenarios
(Verduijn et al, 2007). Algorithms exist within prognostic BN that
can perform this type of probabilistic inference to predict a most

likely scenario for patents or patient groups (Verduijn et al, 2007).

This advantage links beneficially to a further aspect practice faced by
clinicians and patient; the ‘what if scenario’. By identifying a specific
event the prognostic BN can supply a risk profile of the most likely
scenarios leading to the stated event (Verduijn et al, 2007). Such
information can be incorporated into decision making regarding
treatment options. Similarly BN can be used to perform risk factor
analysis. When an unfavorable event, such as a post-operative
complication, occurs it is important to identify variables that may
have predicted occurrence or non-occurrence of said event and
quantify this in terms of risk ratios (Verduijn et al,, 2007; Lucas et al.

2004):

RR(X1) = P(X!=x!/ X=x,3)
P(X1=x1/ X=x,3J)

X1is a variable that precedes the adverse event. J is the background

knowledge of the patient, or patient group. A high value for risk

211



ration means that X! is an important predictor for the event, X,

occurring in that patient or patient group (Verduijn et al, 2007).

In summary, BN are emerging as a promising, but as yet under
utilised, solution with potentially extensive application to medicine
owing to their ability to model uncertainty and causal relationships
between variables. Bayesian statistical approach offers an alternative
to the traditional frequentist paradigm of null hypothesis testing by
allowing the integration of prior qualitative and quantitative
knowledge (Velikova et al., 2014; School et al,, 2013; Verduijn et al,
2007). In this way BN allow the modeling of relationships between
variables at various stages of the healthcare process, with predictions
of outcomes evolving throughout the process by utilising all available
patient data at that time (School et al,, 2013). Predictions can
therefore be made for all variables, not just outcome variables
(Velikova et al.,, 2014; School et al.,, 2013; Lucas et al, 2004). How
then can BN be applied to guide decision making through the
extensive, but inconclusive and arguably ambiguous body of evidence

underpinning the treatment of resectable pancreatic cancer?

Modeling Under Uncertainty: the unique challenge of potentially

resectable pancreatic cancer and the application of Bayesian Networks

Arguably one if the most controversial aspects of Bayesian statistics
is the elicitation of priors (Johnson et al, 2010). Where considerable
prior knowledge of a high quality exists, prior distribution can be
objectively derived through meta-analysis (School et al., 2013;

Hampson et al, 2014; Johnson et al,, 2010). Challenges however arise
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in cases of rare disease or where existing prior knowledge is limited

or ambiguous.

The evidence-base underpinning treatment options for resectable PC
are multifaceted in the challenge it poses to predictive modeling. As
outlined in previous sections trials of both adjuvant and neoadjuvant
therapy are inconclusive in proving superiority of one treatment
approach over another. Furthermore large, multi-centred RCTs
comparing one treatment approach over another do not yet exist.
The extensive body of research thus far accumulated in this field
however means that pancreatic cancer cannot be viewed as a rare
disease where no prior knowledge exists. In addition there also exists
a separate body of research identifying predictive variables of
survival outcome pertaining to pancreatic cancer (tumour size,
lymphovascular invasion, albumin: CRP ratio et cetera) as well as
extensive work from other disciplines within medicine looking at
predictive modeling for outcomes of major surgery based on pre-
existing patient factors that cannot be ignored. To summarise, the
challenge of uncertainty with regards potentially resectable
pancreatic cancer is not a lack of existing knowledge, as with rare
diseases, but rather uncertainty permeates the extensive existing
body of research in addition to separate but highly relevant body of
prior knowledge accumulated out-with drug trials. How then can
such information be modeled to meaningfully make individualised

predictions of outcome?

In cases of uncertainty one option is to set objective priors, or

uninformed prior distributions, which assumes ignorance of any
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prior knowledge and accepts that observed value can lie between
minus and plus infinity (Lin & Haug, 2008). Whilst those of a more
objective, or even frequentist, stance would champion this approach
as letting the observed data speak for itself free from bias, subjective
Bayesians would argue that this neglects existing empirical
knowledge hence stymying the progression of knowledge (School et
al, 2013; Lin & Haug, 2008). Instead they argue in favour of
informative prior distributions where knowledge can be drawn from
quantitative and qualitative sources, including expert opinion, where
existing knowledge is limited (Hampson et al., 2014). If this approach
is adopted it is essential that prior precision, the degree of certainty
in the prior knowledge, is specified with low-informative prior
distribution being generally accepted as having limited impact on
results (School et al,, 2013; Lucas et al,, 2004; Lin & Haug, 2008).
Furthermore when uncertainty exists regarding prior distribution,
sensitivity analysis exploring the impact of different prior
distributions on the results is required (School et al, 2013; Lucas et

al, 2004).

Building a Bayesian Network

There are various methods for implementing the afore mentioned
components in a BN. Firstly in a naive or uninformed BN parameters
are either learned from data or expert estimations, with all
independent variables acting as child nodes of dependent variables
(Velikova et al.,, 2014; School et al.,, 2013; Verduijn et al,, 2007; Lucas
etal, 2004, Lin & Haug, 2008).
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Alternatively Bayesian network structure algorithms can be
employed to derive machine-learned network structure and
parameters from data (Lin & Haug, 2008). Where parameters are
learnt from data, the dataset must be complete, comprehensive, and
comprise enough data to reliably identify probabilistic relationships
between variables (Lin & Haug, 2008). Biases introduced during data
collection will also reflect on the BN (School et al, 2013). As outlined
in the previous section BN, through its Markov condition, models a
collection of dependence and independence statements (Verduijn et
al, 2007; Lucas et al, 2004). An alternative approach to data learning
may be to incorporate dependence analysis such as information-
theoretical algorithms (Cheng et al, 1997). Here mutual information
for each linked variable is established from the data using an
algorithm. Arcs are then added between variables, which are not
conditionally independent given a conditioned set of variables (Lucas
et al, 2004; Cheng et al, 1997). Each arc is then tested using
conditional independence test whereby if independence is proven
the arc is removed (Lucas et al, 2004; Cheng et al, 1997). In larger
conditioning sets this approach however can become infeasible and
less reliable (Lucas et al, 2004). A hybrid approach of constructing
the graph from data using lower-order dependence test then using
this graph to restrict the search space of graphical structures in the
second stage which is to use an algorithm to find a diagraph that best

explains the data (Lucas et al., 2004).
A combination of both approaches can also be utilised with human

experts defining nodes and directed arcs to create network structure,

and parameters then machine-learned from data. This approach is
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particularly applicable where logical constraints, derived from
functional relationships between variables, and qualitative
probabilistic constraints, for example derived from stochastic
dominance of distribution, can assess and verify the number of

probabilities required for network construction (Lucas et al, 2004).

Judgmental probabilities can be obtained through rigorously tested
expert opinion, or from data. To begin the local conditional
probability distributions are filled in: Pr(Vi/m(V;) (Lucas et al, 2004).
Network conditional probability distributions are then often
computed as a weighted average of a probability estimate based on

available data and a prior multinonimal distribution defined as:

Pr(Vi/m(Vi), D) = [n/n+n0] Prp(Vi/m(Vi))+ [no/n+no] © Vi/m(Vi))

D is the dataset from which the probability distribution, Prp,is
estimated. n is the size of the dataset, D. © is the mulinomial prior
over all possible values of Vi and ny is the number of past cases that

contribute to ® (Lucas et al, 2004).

Finally the quality and clinical application of the BN must be tested
before its use in practice. There are a number of methods available to
do this including using the patient data to assess robustness BN
output to inaccuracies in the probability distribution (School et al,

2013; Verduijn et al,, 2007; Lucas et al., 2004).

Addressing the Limitations of Bayesianism
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In summary, BN can be understood as representation of uncertain
interactions amongst variables. Prior probabilities are conditional
upon the relationship between proposition h and prior knowledge K
and are therefore more accurately termed ‘implicit condition’:

P1(h) = Po(h|e)= Po(e|h) Po(h) / Po(e)
Bayesian learning is carried out by the above equation therefore the
knowledge the system can learn must be represented as an ‘explicit
condition’. This however carries some restrictions. h must be a
binary proposition that must be in S so that its probability, Po(e), can
be defined and as greater than 0 otherwise it cannot be a
denominator (Diaconis & Zabel, 1983; Pearl, 1990). Furthermore
these restrictions are not applied to the implicit conditions, which
need only be related to S and can include non-binary propositions
such as subjective probabilistic estimates. Also a proposition
assigned a prior probability of 0 could be assigned a non-zero prior
probability from another source (Wang, 2004). What this means is
that not all implicit conditions can be represented as explicit
conditions and that knowledge not available when deciding priors
cannot be learned or acquired in the system through Bayesian
conditioning. In practical terms this means that prior knowledge can
be probabilistic-valued but all new knowledge must be binary valued,
propositions given a value of 0 or 1 cannot have this belief altered in
light of new knowledge, and no novel concept can appear in new
knowledge (Wang, 2004). This counters the claim by some that
Bayes’ Theorem is a generally applicable learning rule sufficient for
reasoning in uncertainty. However without distinguishing implicit
and explicit conditioning an illusion arises that knowledge

supporting a probability distribution function can be expressed as an
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explicit condition therefore learned by the system (Wang, 2004).

How then can the model learn from new evidence that is not binary?

If there is a prior probability distribution, Py, assigned to a
proposition space, S, and new evidence shows that the probability of
proposition e should be changed to p, (P: (e) = p), assuming that the
explicit condition is unchanged (P:(h|e) = Po (h|e)), then using
Jeffrey’s rule (Diaconis & Zabel, 1983, Jeffry, 1965; Kyburg, 1987;
Pearl, 1988) every proposition of h in S can be updated resulting in a

new distribution function:

P1(h) = Po(hle) x p + Po (h|-e) x (1-p)

In this way, if new evidence shows that e happens, or e’s probability
changes to 1, then Bayes’ Theorem becomes a special function of

Jeffrey’s rule: p = 1.2

The second challenge is then how to process uncertain evidence e. If
a similar approach is taken and a virtual proposition v is taken to
represent new knowledge and:

Po(e | v) = p (Cheeseman, 1986; Pearl, 1988)
Then in consideration of this new knowledge a new probability
calculation can be offered whereby the prior probability is
conditonalised to v rather than updated:

Pi(h) = Po(h |v) = Po(h | eav) x Po(e| V) + Po (h| =eAv) x Po(=e | V)

In this way Jeffrey’s law can overcome the restriction that new

evidence must be binary (Wang, 2004). Furthermore if conditional
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probability is defined by de Finetti’s coherent (P (x |y) = P (xAy) /
P(y)) events with a prior probability of 0 can also be conditioned
(Coletti et al,, 1993). Juxtapose this with Pearl’s Neo-Bayesianism
which adds topological structure in the form of a BN to traditional
Bayesianism, and the afore mentioned limitations of conditioning can
be overcome as conditional probability can be introduced
independent of absolute probability values (Pearl, 1990; Wang,
2004). However, this does not mean that the system has a general
way to revise implicit conditions, or put another way the background
knowledge behind probability distribution. This means that if BN is
to be applied to the research problem a choice must be made
between: 1) accepting that the implicit condition, or domain
knowledge determining probability distribution, is immune from
modification or 2) all modifications of implicit condition are treated
as updating therefore when new knowledge conflicts with old

knowledge the old knowledge is abandoned (Wang, 2004).

Even though the distinction between implicit and explicit conditions
are rarely made, this serves to prove that Bayesianism has limitations
in handling uncertainty. This is because probability distribution
function alone fails to show the degree of uncertainty about the
function itself (Wang, 2004; Diaconis & Zabel, 1983; Demster, 1967).
Although some contest that a point value and a density function
produce the same results in decision making (Cheeseman, 1985) the
counterargument is that standard deviation cannot capture the
change in expectations (Wang, 2004). To illustrate, if a proposition is
tested n times and produces the same results standard deviation

remains independent of n at 0. However our confidence that the
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results will remain the same in light of new information will
obviously increase, which would not be captured through use of
standard deviation (Wang, 2004). This could be addressed by
replacing precise probability values with either a probability interval,
with width of the interval indicating degree of certainty of the system
(Grosof, 1986; Kyburg, 1988), or imprecise probability, where upper
and lower probability values are used (Walley, 1991; Walley, 1996).
Alternatively high-order probability where a second probability
value is introduced to specify accuracy of first-order probability
(Kyburg, 1988; Paab, 1991) could be considered. A belief function
and a plausibility function could be introduced using Dempster-
Shafer theory so that an evidence combination rule could reduce
ignorance amount uncertainty (Dempster, 1967; Shafer, 1976). A
frequency value and a confidence value could also be employed to
represent uncertainty with confidence value being used to measure
degree of ignorance (Wang, 1993; Wang, 2001). Pearl stated that
ignorance was the lack of confidence and that confidence was the
measurement of the extent to which a degree of belief could be
modified by future evidence (Pearl, 1988; Wang, 2001). In other
words an assessment of Po(e) measured by narrowness of
distribution of Po(e | ¢), as ¢ ranges over all combinations of
contingencies and is weighted by its belief in Po(c) (Wang, 2004).
However this still does not capture ignorance about the implicit
conditions leading some, like Wang (2004), to contest that whilst
these approaches may handle representation of ignorance or

uncertainty, Bayesianism alone cannot truly handle uncertainty.

220



To summarise BN are a powerful tool in modeling in uncertainty and
have shown grate promise in their application to personalised
realistic medicine. Bayesian approach enables calculation of other
values from values in the same probability distribution and can even
update previous probability distributions given some values in a new
probability distribution, which has several advantages centering on
capturing the dynamic nature of the healthcare process. However
caution must be taken when appreciating how Bayesianism handles
uncertainty in the knowledge base on which prior probabilities are
calculated and updated in light of new evidence (Wang, 2004).
Importantly however it must be remembered that within this
research the aim of statistical modeling, and the exploration of the
potential benefits of Bayesianism, is to facilitate personalised
realistic medicine through better shared clinical decision making by
finding new ways of engaging with complexity, including uncertainty,
not to attempt to “solve” these issues. This includes using FUPS data
pertaining to the management of pancreatic cancer to open up
conversations on findings rather than treating them as definitive
facts (Wolpert & Rutter, 2018). In this way findings will be used to
consider the complex reality they relate to but cannot fully capture so
that narrative arguments and hypothesis can be contested and
debated within the complex system (Wolpert & Rutter, 2018). In
practical terms for this research this means instantiating the key
principles of analysing FUPS data within the statistical models
developed. Firstly all data is treated as a partial remnant with
findings presented to convey associated limitations to interpretation.
Secondly ‘black box’ statistical modeling will be avoided in favour of

transparency and clarity. Thirdly triangulation will be used to
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contextualise findings from models based on FUPS data to explore
how other information and modeling techniques refute or support

these findings (Wolpert & Rutter, 2018).
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Chapter 4

Results

Introduction

The purpose of this research is to view the management pathways
for pancreatic cancer through the lens of complexity theory and in so
doing develop and expand the application of statistical modeling
techniques to engage with the complexity in order to uncover new
insight and move the research narrative towards the goal of more

personalised realistic medicine.

As outlined in previous chapters the existing data fulfills the FUPS
data criteria. Therefore the results are presented following the key
principles for analysing FUPS data as proposed by Wolpert & Rutter
(2018). This means that all reported results are presented as partial
remnants with the limitations of interpretations stemming from
FUPS characteristics clearly conveyed (Wolpert & Rutter, 2018). This
is done not only through subjective assessment of the quality and
risk-of-bias assessment of any included data, but also through an
exploration of statistical techniques in quantifying such an
assessment. Secondly all statistical analysis follows the principles of
transparency and clarity. Thirdly all results are considered within the
context of other existing information to explore what supports and
undermines emerging findings (Wolpert & Rutter, 2018). This means

that through the principle of triangulation findings from models
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populated with the West of Scotland Pancreatic Unit database are
triangulated with outcomes when the model is populated with
internationally published data and vice versa. Each modeling
approach is then discussed in terms of emergence, boundary setting,
lack of complete knowledge and responsibility before moving on to
assess how statistical modeling could be taken forward to gain
further insights. This allows for a further layer of triangulation

between outcomes form different statistical modeling approaches.

The rest of the chapter is structured as follows. Section 4.1 focuses on
meta-analysis of existing studies comparing neoadjuvant and upfront
surgery approaches for the treatment of potentially resectable
pancreatic cancer. This section begins with a Bayesian network meta-
analysis to assess overall resection, RO resection and survival
outcomes between neoadjuvant and upfront surgery pathways. This
approach allows a synthesisation of phase II trials and observational
studies comparing neoadjuvant and upfront surgery, as well as RCTs
comparing upfront surgery and surgery alone. This means that an
indirect comparison can be offered between neoadjuvant outcomes
and surgery only outcomes. This also offers triangulation of findings
between only including neoadjuvant phase Il trials and then
additionally including observational comparison studies.
Furthermore triangulation of outcomes between the inclusion of
studies exploring neoadjuvant therapy in all potentially resectable
pancreatic cancer versus studies including resectable only cases is
also offered. Bayesian network meta-analysis also offeres a more
detailed quantification of the limitations of the analysis due to FUPS

characteristics, which improves the transparency of the analyses.
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Overall the results of the Bayesian network meta-analysis again
suggested that although a marginal benefit was found with
neoadjuvant approach neither pathway could be considered to be
conclusively superior. The possibility still remained that optimal

pathway selection could still depend on individualised factors.

Section 4.2 focused on Markov decision-analysis comparing upfront
surgery and neoadjuvant pathways. Firstly the pathways are
modeled to include the real-world scenario whereby borderline and
locally advanced cases are treated within the neoadjuvant pathway. A
like-for-like comparison for resectable only cases treated within
upfront surgery and neoadjuvant pathways is then performed.
Through deterministic and probabilistic sensitivity analysis of these
Markov models not only is a transparent assessment of the degree of
model uncertainty offered, but this allows the models to engage with
the complexity of the system being examined. The result is that new
insights into optimal treatment pathway selection begin to emerge.
The findings corroborate those of the Bayesian network meta-
analysis in section 4.1 that suggest a marginal overall survival
advantage with neoadjuvant therapy, but this analysis goes further.
Specifically probability thresholds for obtaining multimodal
treatment in either pathway emerge as determining the superior
treatment pathway. This further challenges the current narrative
focusing on trying to prove whether upfront surgery or neoadjuvant
pathway is superior for all patients and moves the research narrative
towards a more personalised approach. The results of the Markov

model were then triangulated by populating the model with patient
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data from the West of Scotland Pancreatic Unit database, which

corroborated the findings of the model using synthesised data.

Markov modeling provided some important insights but
methodological issues surrounding its memory-less property and
attrition of susceptible on a cycle-to-cycle basis mandated the further
triangulation of these findings with another modeling technique that
focused on micro simulations and modeling data at individualised
patient level as opposed to at cohort level. Section 4.3 and 4.4
therefore centered on the use of Discrete Event Simulation (DES)
modeling for decision analysis. Again synthesised data was
triangulated against patient level data and discrete and probabilistic
sensitivity analysis transparently quantified the degree of
uncertainty raised by the FUPS characteristics of the data populating
the model. This form of modeling corroborated many of the findings
from the section on Markov modeling but was able to uncover
further new insights by assigning more individualised data
distributions to patients within the model depending on their disease
stage at presentation. Specifically DES modeling had the flexibility to
simulate the results of emerging RCTs into ‘real-world’ scenarios
where not all context was controlled for when delivering pancreatic
management pathways. This produced new insights into individual
thresholds that determined how and to what extent reported
findings from RCTs could be expected to apply to individual patients
in a system where the complexity was not controlled. A further
emerging insight was that for patients who did not progress to

surgery within the neoadjuvant pathway, their corresponding
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maximum benefit from being treated within the upfront surgery
pathway was less than 5months prior to quality adjustment of
survival time. This adds a further dimension to the debate regarding
the criticism that neoadjuvant approach could result in losing the
window of resectability and further challenges the narrative that
resection is the only potential cure when for many the reality is that
resection may be of limited benefit. Overall Markov and DES
modeling approaches corroborate the emerging need to focus on
personalised treatment pathway selection to optimise individual
patient outcomes. Section 4.4 offers a further assessment by
triangulating the outcomes of both Markov and DES modeling
approaches by comparing their accuracy against the actual patient
outcomes contained within the West of Scotland Pancreatic Unit
database. This additional analysis raises the possibility that whilst
Markov modeling is a more established technique for cost-
effectiveness analysis, DES modeling could actually increase the

accuracy of such models.

The Markov and DES models using both synthesised and actual
patient data were then used separately to perform cost-effectiveness
analysis of the competing treatment pathways in Section 4.5. Once
again by using complexity theory as the lens through which to focus
this research new insights began to emerge regarding the cost-
effectiveness analysis of upfront surgery and neoadjuvant pathways.
Uncertainty surrounding discounting rates of costs and benefits as
well as debate over WtP thresholds were transparently incorporated
into the analysis and both deterministic and probabilistic sensitivity

analysis not only assessed the degree of model uncertainties
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including the impact of altering costs, but also enabled an exploration
of the impact of boundary setting on model outcomes. Specifically the
inclusion of costs of palliative care and follow-up were important
additions to the analysis. Once again, rather than simplistically
concluding that one pathway was more cost-effective this analysis
suggested that cost-effective delivery of treatment actually lay in

better patient selection at individual patient level.

Although the insights gained through Markov and DES modeling have
provided new insights and attempted to engage with complexity to
change the research narrative from a “which pathway is superior for
all” narrative towards a more personalised approach to patient
selection, the question still remained as to how this could be
achieved on a practical level. In section 4.5 lessons are drawn form
the application of Bayesian statistics in other disciplines that use
FUPS data within high-risk, complex adaptive systems that contain
multiple potential points of risk of failure. These lessons are
combined with the Bayesian analysis of the West of Scotland
Pancreatic Unit database presented in appendix O that focuses on
identifying individual patient factors that could determine whether
patients with potentially resectable disease are likely to have a good
or poor post resection prognosis. A prognostic Bayesian network is
created and validated against the West of Scotland Pancreatic Unit
database that makes individualised predictions of outcomes pre-
operatively, across competing treatment pathways, and also
performs prognostic updating at the post-operative phase of the

patient journey.
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4.1 Bayesian Network Meta-Analysis

Publications resulting from this analysis:

Bradley, A. and Van Der Meer, R. (2019). ‘Upfront surgery versus
neoadjuvant therapy for resectable pancreatic cancer: systematic
review and Bayesian network meta-analysis’. Nature Scientific

Reports, 9(1):4354. doi:10.1038/s41598-019-40951-6

Bradley, A., Van Der Meer, R., McKay, C.J. (2020) ‘Bayesian network
meta-analysis of upfront surgery versus neoadjuvant therapy for
potentially resectable pancreatic ductal adenocarcinoma’. British

Journal of Surgery: accepted

Abstract

Background: Current treatment recommendations for resectable
pancreatic cancer support upfront surgical resection and adjuvant
therapy. RCTs offering comparison with the emerging neoadjuvant
(NAT) approach are lacking. This review aims to compare both
treatment strategies first for potentially resectable pancreatic cancer
and then separately for only disease that is resectable at

presentation.

Methods: PubMed, MEDLINE, Embase, Cochrane Database and
Cochrane Databases were searched for studies comparing
neoadjuvant therapy and upfront surgery with adjuvant therapy

pathways for potentially resectable pancreatic cancer. A Bayesian
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network meta-analysis was conducted using the Markov chain Monte
Carlo method. Cochrane Collaboration’s risk-of-bias, ROBINS-I and
GRADE tools were used to assess quality and risk-of-bias of included
trials. Convergence was assessed using the Brooks-Gelman-Rubin
method. In accordance with the NICE decision-support
recommendations inconsistency was measured by comparing
deviance residuals and deviance information criteria statistic in fitted

consistency and inconsistency models.

Results: 25 studies comparing neoadjuvant and upfront surgery
approaches (n=32,921), and 5 studies comparing upfront surgery
plus adjuvant therapy and surgery only (n=899) were included.
Aggregate rate (AR) of RO resection was marginally higher, but not
statistically significant according to 95% Credible Intrvals (CI), with
neoadjuvant therapy (0.7389 versus 0.7306, Odds Ratio (0.R) 1.12,
95% CI 0.60-2.08). AR of 1,2,3,4 and 5-year survival were higher with
neoadjuvant therapy (1-year survival: 0.8109 versus 0.6403, O.R:
2.12,95% CI: 1.59-2.93; 2-year survival: 0.5135 versus 0.3002, O.R:
1.65 95%, CI: 1.16-2.34; 3-year survival: 0.3151 versus 0.2147, O.R:
1.50,95% CI: 1.10-2.04; 4-year survival: 0.2114 versus 0.1647 O.R:
1.57,95% CI: 0.80-2.99; 5-year survival: 0.2118 versus 0.1736, O.R:
1.65,95% CI: 0.68-3.73).

For cases of pancreatic cancer that were resectable at presentation 9
studies compared neoadjuvant therapy and upfront surgery with
adjuvant therapy (n=22,285). AR of R0 resection for neoadjuvant
therapy was 0.8008 (0.3636-0.9144) versus 0.7515 (0.2026-0.8611),
0.R. 1.27(95% CI 0.60-1.96). 1-year survival AR for neoadjuvant
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therapy was 0.7969 (0.6061-0.9500) versus 0.7481 (0.4848-0.8500)
O.R. 1.38 (95% CI 0.69-2.96). 2-year survival AR for neoadjuvant
therapy was 0.5178 (0.3000-0.5970) versus 0.5131 (0.2727-0.5346)
O.R. 1.26 (95% CI 0.94-1.74). 5-year AR survival for neoadjuvant
therapy was 0.2069 (0.0323-0.3300) versus 0.1783 (0.0606-0.2300)
O.R. 1.19 (95% CI 0.65-1.73).

Conclusion: Neoadjuvant therapy may offer benefit over surgery-first
and adjuvant therapy for some patients. However, further RCTs are
needed in collaboration with research developing methods of
engaging with system complexity as multimodal treatment in either
pathway is not obtained by all patients yet is a pivotal factor in

achieving optimal patient outcomes.

Introduction

Pancreatic cancer is the fourth and fifth most common cause of
cancer deaths in the USA and Europe respectively (Ferlay et al., 2013;
Siegel et al.,, 2015). Despite advances in surgical technique and
adjuvant treatment, survival rates remain poor (Ferlay et al., 2013;
Siegel et al., 2015). Early complete surgical resection is the only
potentially curative treatment and adjuvant therapy has been proven
to prolong survival leading to surgery first with adjuvant therapy
becoming the standard of care for resectable pancreatic cancer
(Neoptolemos et al., 2001). However in reality most patients develop
early recurrence, nullifying the potential benefits of high-risk surgery

Winter et al., 2012) with up to 50% of patients failing to receive
p p g
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adjuvant therapy due to: post-operative complications, early
metastases, reduced performance status and comorbidities
(Bilimoria et al., 2007a). This has resulted in the advent of
neoadjuvant therapy with the postulated benefits of: identifying
more aggressive tumours hence avoiding futile surgery, elimination
of micrometastesis, increased feasibility of RO resection and
completion of multimodal treatment (Asare et al., 2016; Lee et al,,

2016).

Neoadjuvant therapy for resectable pancreatic cancer is an area of
prime controversy and ongoing debate with a lack of large
prospective RCTs offering direct comparison with upfront surgery
and adjuvant therapy pathway (Tempero et al., 2014). Existing
comparison studies often include borderline resectable and locally
advanced casesin the neoadjuvant arm hence they do not offer a true
like-for-like comparison. Ambiguity surrounding the existing body of
research has led critics to highlight the limitations of drawing
optimistic conclusions from small studies that are underpowered and
caution against losing the window of resectability (Asare et al., 2016;
Lee et al,, 2016). Previous Markov decision analysis studies have
reported slight survival benefit with neoadjuvant therapy but they
only focused on a base-case intention-to-treat comparative analysis

(Sharma et al,, 2015; de Geus et al., 2016; Van Houten et al., 2012).

In the clinical setting the role of neoadjuvant therapy has widely been
accepted for the management of locally advanced and borderline
resectable cases of pancreatic cancer to increase the likelihood of

achieving resection, particularly RO resection (Asare et al., 2016; Lee
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etal.,, 2016; Tempero et al., 2014; de Geus et al., 2016). However,
ambiguities in the existing body of research concerning the
management of resectable pancreatic cancer create a dilemma in
clinical decision making. It has been established that optimal survival
outcomes are not obtained by resection alone, but require the
delivery of additional treatment whether delivered as neoadjuvant or
adjuvant therapy (Neoptolemos et al., 2001; Xu et al., 2014; Andriulli
etal.,, 2012; Sharma et al., 2015; de Felice et al,, 2014; de Geus et al.,,
2016; Versteijne et al., 2018; Van Houten et al., 2012). Both
treatment pathways carry the risk of failing to achieve multimodal
treatment delivery. Upfront surgery pathway carries the risk of
failing to receive adjuvant therapy despite having undergone surgery
with its associated risks of morbidity and mortality (Winter et al.,
2012; Bilimoria et al., 2007a). Neoadjuvant approach also carries the
risk of disease that was initially resectable at presentation
progressing to become unresectable which makes its role in the
management of resectable pancreatic cancer controversial (Asare et
al., 2016; Lee et al,, 2016). The question therefore arises as to
whether neoadjuvant pathway represents a less superior treatment
approach, or if it has the advantage of identifying aggressive tumour
types that would have resulted in early disease recurrence
precluding adjuvant therapy, being identified prior to patients
undergoing high-risk, costly yet futile surgery (Asare et al., 2016; Lee
et al, 2016). The aim of this meta-analysis is to compare upfront
surgery and neoadjuvant approach for the management of
potentially resectable pancreatic cancer and then separately for

resectable pancreatic cancer on an intention-to-treat basis.
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Treatment outcomes include: RO resection rates and 1,2,3,4 and 5-

year survival.

Methods

This review followed the PRISMA checklist (Moher et al., 2009). The
protocols for this review and analysis are published on the
PROSPERO online database of systematic reviews
(CRD42018108676 and CRD42018108673). A search was
undertaken using MEDLINE, Embase, PubMed and Cochrane
database. For each of the searches the entire database was included
since 2000 up to and including 31st August 2018, with no further date

restrictions or limits applied.

Search Strategy

After removal of duplicates, manual screening was carried out based
on the title and abstract of articles identified in the database
searches. Articles of probable or possible relevance to this review
based on the title and abstract were reviewed in full. Following
screening, reference lists and citations of all included papers were
manually searched to identify any additional articles. This process

was repeated until no new articles were identified.
Inclusion Criteria and Outcomes

RCTs and prospective phase II/III studies offering comparison of
neoadjuvant therapy versus upfront surgery plus adjuvant therapy

for pancreatic cancer, published in English language since 2000,
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involving chemo/radiotherapy-naive human subjects over 18 years
of age with pancreatic cancer preoperatively staged as being
potentially resectable (i.e. resectable, borderline resectable and
locally advanced) were included. RCTs comparing upfront surgery
plus adjuvant therapy and surgery only and cohort studies
comparing neoadjuvant therapy and upfront surgery plus adjuvant
therapy, with the same participant inclusion criteria, were included
for separate sensitivity-analysis. Included trials had to report:
protocol design, treatment regimes, number per arm, median age and
co-morbidities of subjects, pre-treatment disease staging, outcome of
post neoadjuvant therapy re-staging, surgical outcomes including
resection rates, RO resection rates and survival time. Case series and
case reports, studies from identical patient cohorts, trials involving
intra-operative radiotherapy and trials including disease other than
pancreatic cancer were excluded. For the analysis of resectable
pancreatic cancer the same inclusion and exclusion criteria was
applied but studies had to include only preoperatively staged
resectable pancreatic cancer, or report outcomes for resectable

pancreatic cancer separately.

Data Collection

The following data was extracted from each study: study details
(country, year, design, number of participants, mean age, sex, co-
morbidity profile and presenting disease stage of participants in each
arm), details of treatment protocols, treatment outcomes (rates of

tumour resection, RO resection rates, overall survival and disease
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free survival and 1,2,3,4 and 5 year survival rates) and risk-of-bias

data.

Statistical Analysis

Transparency of Analysis

This study conducted base-case analysis on an intention-to-treat
basis. Patients who dropped out, or who failed to receive multimodal
treatment within either pathway in the included studies were
included in the overall and disease free survival analysis. The
number of patients in the neoadjuvant pathway who failed to
undergo resection, and the number of patients who underwent
surgery but failed to receive adjuvant therapy, were analysed using
weighted pooled estimates of proportions calculated using Freeman-
Tukey arcsine square root transformation under random effects

model to account for heterogeneity (Freeman & Tukey, 1950).

For each outcome of interest, NetMetXl was used to draw a weighted
network for all treatments assessed for the specific outcomes that
accounted for the study population size of each included study
(Brown et al., 2014; Brown et al., 2018; Chaimani et al., 2013). This
ensured that larger studies carried a greater weight within the
network. A Bayesian network meta-analysis was conducted using the
Markov chain Monte Carlo method in WinBUGS 1.4.3 (MRC
Biostatistics Unit, Cambridge, and Imperial College School of
Medicine, London, UK). To account for the inherent heterogeneity as
a result of the different chemotherapy regimes, variations in

multimodal treatment completion rates and differences in reported
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survival outcomes, analysis was run using a random effects model, in
addition to a fixed effects model, using vague priors as outlined in
National Institute of Clinical Excellence (NICE) Evidence Synthesis
Series (Brown et al,, 2014; Dias et al., 2013a). Pairwise comparisons
between interventions were also summarised to provide ranking of
impact of intervention on each outcome based on the surface under
the cumulative ranking (SUCRA) and were summarised in

rankograms (Brown et al., 2014).

Assessment of Limitations of Interpretation Stemming from FUPS

Characteristics of Data

To further minimise the impact of heterogeneity of different
chemotherapy combinations, treatment completion rates and
reported survival analysis on the overall analysis, convergence was
assessed using the Brooks-Gelman-Rubin method and by checking
whether the Monte Carlo error is less than 5% of the standard
deviation of the effect estimates and between-study variance (Brown
et al., 2014). The Markov chain Monte Carlo (MCMC) Bayesian
network meta-analysis was fitted with three chains as a means of
checking MCMC convergence (Brown et al., 2014). The Brooks-
Gelman-Rubin method compares within-chain and between-chain
variances to calculate the potential scale reduction factor with a
value close to one indicating when approximate convergence is

reached (Brown et al., 2014; Brooks & Gelman, 1998).

Inconsistency assessment, the conflict between direct and indirect

evidence, is crucial to any network meta-analysis (Dias et al., 2013b).

237



In accordance with the NICE decision-support documents
(Spiegelhalter et al.,, 2002) inconsistency was measured by
comparing deviance residuals and deviance information criteria
(DIC) statistic in fitted consistency and inconsistency models (Brown
etal., 2014; Dias et al., 2013b). Posterior mean deviance of the
individual data points in the inconsistency model were plotted
against their posterior mean deviance in the consistency model to
identify any loops in the treatment network where inconsistency is

present (Brown et al., 2014).

The Cochrane Collaboration’s risk-of-bias tool (Higgins et al., 2011)
and Risk Of Bias In Non-randomized Studies - of Interventions
(ROBINS-I tool) (Sterne et al., 2016) were also used to assess the
quality of included studies. Grading of Recommendations Assessment
Development and Evaluation (GRADE) tool was used to provide
additional assessment of quality of evidence and rate certainty in
estimates from the network meta-analysis (Shunemann et al., 2018;

Brignardellu-Petersen et al., 2018).

Triangulation

Sensitivity network meta-analyses that included cohort studies for
neoadjuvant therapy versus upfront surgery plus adjuvant therapy
and RCTs of upfront surgery plus adjuvant therapy versus surgery

only were also performed with the latter offering an indirect

comparison between neoadjuvant therapy and surgery only.
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Results: Bayesian network meta-analysis of treatment options for

potentially resectable pancreatic cancer

Eligible Studies

A total of 14375 studies were identified through a search of the
electronic databases. 452 studies underwent full text review. 25
studies were identified that offered comparison between
neoadjuvant therapy and upfront surgery plus adjuvant therapy
(Figure 4). Nine of these studies were phase II/III trials, 3 of which
were randomised. 16 cohort studies comparing neoadjuvant therapy
and upfront surgery plus adjuvant therapy were also included in a
separate network for sensitivity analysis. 6 studies were prospective

and 10 studies were retrospective (Table 13).
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Figure 4: PRISMA Flow Chart for Neoadjuvant Therapy versus

Upfront Surgery plus Adjuvant Therapy studies

Embase: n=14032
Cochrane Database: n=1
Cochrane Trial Registry: n=43

Records identified through database searching Additional records identified
(n=14224)
Medline/PubMed: n=148 through other sources

(n=151)

Records after duplicates removed
(n=10554)

A 4

Records screened

(n=10554)

A 4

Full-text articles assessed

(n=452)

A 4

Studies included in
qualitative synthesis
(n=25)

l

Studies included in
quantitative synthesis
(n=25)

(Phase II/1I1: n=9
Cohort studies n=16)

A\ 4

Records excluded
(n=10102)

for eligibility —

Full-text articles excluded,
with reasons:
duplicates/not relevant
n=366
did not meet inclusion
criteria n=36
did not offer comparison
between neoadjuvant and
surgery with adjuvant
therapy n=25
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Table 13: Summary of Included Trials of Neoadjuvant Therapy versus

Upfront Surgery Plus Adjuvant Therapy in Bayesian Network Meta-

analysis for Potentially Resectable Pancreatic Cancer.

Study Centre Randomisation Type of No. Neoadjuvant regime: Neoadjuv No. Surgery
Trial Neoa CRT= antarm surgery first arm
djuva | chemoradiotherapy overall first overall
nt CT=chemotherapy survivalin | arm survival in
arm NAT= no further details months months
given about regime
Al-Sukhum Single No Phase II 20 | CRT 13.4 21 18.1
etal, 2003
Casadei et Single Yes Phase II 18 | CRT 283 20 27.5
al, 2015
Golcher et Single No Phase II 121 | CRT 58 21
al, 2008
Golcher et Single Yes Phase II 33 | CRT 17.4 33 14.4
al, 2015
Lind et al, Multiple No Phase 11 17 CRT 19 35 11
2008
Massucco et | Single No Phase II 28 | CRT 15.4 44 14
al, 2006
Satoi et al, Single No Phase 11 35 CRT 24.5 41 18.5
2009
Vento et al., Single No Phase 11 22 CRT 30.2 25 35.9
2007
Jang et al, Single Yes Phase 27 | CRT 21 23 12
2018 11/111
deGus etal, | Multiple No Retrosp 1077 | NAT 259 6840 24.2
2017a ective
Mellon et Multiple No Retrosp 159 | CRT 17 241 221
al., 2016 ective
Nurmi et Single No Retrosp 75 | CRT/CT 35 150 26
al, 2018 ective
Shubert et Multiple No Retrosp 377 | NAT 20.7 216 13
al., 2016 ective
Artinya et Multiple No Retrosp 39 | NAT 33.8 419 19
al, 2011 ective
lelop et al,, Multiple No Prospec 45 | CRT 21.65 36 221
2016 tive
Roland et Single No Prospec 222 | CRT 85
al., 2015 tive
deGusetal, | Single No Retrosp 1541 | NAT Resectabl 11316 | Resectable
2017b ective e:26.2 :24.5
Borderlin Borderline
e:23.5 :20.0
Locally Locally
Advanced: advanced:
23.5 15.5
Mokdad et Multiple No Retrosp 2005 | NAT 26 6015 21
al., 2017 ective
Chenetal, Multiple No Retrosp 98 | NAT 25 98 17
2017 ective
Tzengetal., Single No Prospec 115 | NAT 28 52 25.3
2014 tive
Fujii et al, Single No Prospec 21 | CRT 29.1 71 13.1
2015 tive
Fujii et al, Single No Prospec 88 | CRT Resectabl 416 Resectable
2017 tive e:24.9 :23.5
Borderlin Borderline
e: 284 :20.1
Papalezova Single No Retrosp 144 | CRT 15 92 13
etal, 2012 ective
Hirono et Single No Prospec 46 | CRT 19.3 124 13.7
al., 2016 tive
Murkakami Single No Retrosp 52 | CT 27.1 25 11.6
etal, 2017 ective

For further sensitivity analysis, RCTs offering comparison between

upfront surgery plus adjuvant therapy and surgery only were also
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included in a separate network meta-analysis (Figure 5). Five RCTs
offered comparison between upfront surgery plus adjuvant therapy

and surgery only and were included in the sensitivity analysis (table

14).
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Figure 5: PRISMA Flow Chart for Randomised Controlled Trials of

Upfront Surgery plus Adjuvant Therapy versus Surgery Only

(n=25332)
Medline/PubMed: n=3165
Embase: n=21810
Cochrane Database: n=1
Cochrane Trial Registry: n=356

Records identified through database searching Additional records identified
through other sources
(n=152)

Records after duplicates removed
(n=16500)

A 4

Records screened

(n=16500)

A 4

Full-text articles assessed

(n=1055)

A 4

Studies included in
qualitative synthesis
(n=5)

A 4

Studies included in
quantitative synthesis
(n=5)

A\ 4

Records excluded
(n=15445)

for eligibility —

Full-text articles excluded,
with reasons:
duplicates/not relevant:
n= 850
not RCTs: n= 190
did not compare adjuvant
with surgery only: n=10
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Table 14: Summary of Randomised Controlled Trials comparing

Upfront Surgery plus Adjuvant Therapy versus Surgery Only

Study No. in Adjuvant Upfront No. Surgery Surgery Only
Upfront Regime surgery and Only arm Overall
surgery and adjuvant Survival in
adjuvant therapy months
therapy arm Overall

Survival in
months

Ueno et al, 58 Gemcitabine 22.3 50 18.4

2009

Oettle et al., 179 Gemcitabine 22.8 175 20.2

2013

Kosuge et al, | 45 Cisplatin + 5- | 12.5 44 15.8

2006 FU

Smeenketal, | 110 5-FU 21.6 108 19.2

2007 +radiotherapy

Morak et al., 59 5-FU+folic 19 61 18

2008 acid+

mitocantrone
+ cisplatinur +
radiotherapy

A summary of overall findings for each outcome measure is provided

in Figures 6 and 7.
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Figure 6: Summary of Findings of Network Meta-analysis of Phase

[1/1II trials comparing Neoadjuvant Therapy versus Upfront Surgery

and Adjuvant Therapy
Outcomes Anticipated absolute effects” (5% Cl) ?bofpa;ﬁdpants
Risk with Surgery First + Risk with Neoadjuvant
adjuvant therapy
Resection Rate 877 per 1,000 332 per 1,000 OR 0.07 621 ) )
’ (22110 439) (0.04 10 0.11) (9 observational studies)
RO resection 293 per 1,000 OR 0.40 580
509 per 1,000 (22510 371) (0.28100.57) (8 observational studies)
1-year survival 771 per 1,000 OR212 332
i 614 per 1,000 (674 10847) (13010 3.49) (6 observational studies)
2-year survival 413 per 1,000 OR1.32 460
347 per 1,000 (31710512) {08710 1.97) (6 observational studies)
3-year survival 253 per 1,000 OR 1.00 241
253 per 1,000 (15510 386) {0.54 10 1.86) {4 observational studies)
4-year survival 128 per 1,000 OR 1.56 18
86 per 1,000 (35 10 361) {0.33108.01) {2 observational studies)
S-year survival 246 per 1,000 OR 2.50 189
116 per 1,000 (12610 43’7) {11010 5.95) (3 observational studies)

*The risk in the intervention group (and its 95% CI) is based on the assumed risk in the

comparison group and the relative effect of the intervention (and its 95% CI). ‘Risk’ is the risk of

the event occurring i.e ‘risk’ of being alive at the set time interval.

Figure 7: Summary of Findings of Network Meta-analysis of

Neoadjuvant Therapy versus Upfront Surgery and Adjuvant Therapy

with inclusion of cohort studies

Outcomes Anticipated absolute effects’ (35% CI) Relative effect e of participants
(95% CI) (studies)

Risk with SFadj Phas Risk with Neoadjuvant

Wili+proiretro
Resection Rate 5§50 per 1,000 OR0.16 2941

884 per 1,000 (498 to 605) 0.13100.20) (18 observational studies)
RO reaction rate 783 per 1,000 OR1.33 18369

731 per 1,000 (76910 797) (1.2310 1.45) (21 observational studies)
1-year survival 808 per 1,000 OR2.37 32094

640 per 1,000 (79610 819) (21910 2.55) {21 cbservational studies)
2-year survival 525 per 1,000 OR2.58 24313

300 per 1,000 (507 to 544) (240102.78) (20 observational studies)
3-year survival 306 per 1,000 OR 1.61 31926

215 per 1,000 (29210 319) (15110 1.71) (18 observational studies)
4-year survival 238 per 1,000 OR1.58 1483

165 per 1,000 (184 t0 304) (1.14102.21) (8 observational studies)
5-year survival 174 217 per 1,000 OR1.32 2956

per 1,000 (199 10 237) (11810 1.48) {12 cbservational studies)

* The risk in the intervention group (and its 95% CI) is based on the assumed risk in the

comparison group and the relative effect of the intervention (and its 95% CI). ‘Risk’ is the risk of

the event occurring i.e ‘risk’ of being alive at the set time interval.
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Resection Rates

Pairwise comparison of surgical resection rates was based on a
network constructed from 9 phase II/IIl studies (n=621; neoadjuvant
therapy: n=321; upfront surgery plus adjuvant therapy n=300).
Upfront surgery plus adjuvant therapy approach was found to be
superior with aggregate rate 0.8767 (0.6970-1.000) versus 0.3489
(0.1500-0.6818). Fixed and random effects models supported this
finding with Odds Ratio (O.R) 0.07 (95% CI: 0.04-0.11) and O.R 0.04
(95% CI 0.01-0.15) respectively (Appendix K).

Inclusion of cohort studies created a network analysis based on 18
studies (neoadjuvant therapy: n=1368, upfront surgery plus adjuvant
therapy n=1573) and did not alter overall outcome. Aggregate rate
was superior for upfront surgery plus adjuvant therapy 0.8843
(0.6970-1.0000) versus 0.6060 (0.1500-0.9038). Both fixed and
random effects models supported this finding with 0.R 0.16 (95% CI:
0.13-0.20) and O.R. 0.08 (95% CI 0.03-0.21) respectively (Figure 8;
Appendix K).
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Figure 8: Results of fixed effects and random effects (vague prior)

models
Treatment 1 vs. Treatment 2 0.R. (95% Cr.l.)
NAT versus SF = =, B:46 (6.53=6:39)
0.01 0.1 1
Heterogeneity (Vague) =1.906 Favours Treatment 2 Favours Treatment 1
95% Crl (1.602 —1.997)
—<O— FixedEffects —&— Random Effects (Vague Prior)

RO Resection Rates

Network analysis based on 8 phase II/III trials (neoadjuvant therapy
n=301; upfront surgery plus adjuvant therapy n=279) gave R0
aggregate rate 0.5090 (0.1707-0.7759) for upfront surgery plus
adjuvant therapy versus 0.2957 (0.1570-0.5185). Fixed and random
effects models favoured upfront surgery plus adjuvant therapy (0.R
0.40; 95% CI1 0.28-0.57 and O.R 0.61; 95% 0.21-1.85 respectively)
(Figure 9; Appendix K).
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Figure 9: Results of fixed effects and random effects (vague prior)

models
Treatment 1 vs. Treatment 2 0.R. (95% Cr.l.)
NAT versus SF } < Y j ‘ g8.89 (9%%:9@%)
0.1 1 10
Heterogeneity (Vague) =1.394 Favours Treatment 2 Favours Treatment 1
95% Crl (0.8174~ 1.954)
—O— FixedEffects —&— Random Effects (Vague Prior)

When cohort studies were included in the network (21 studies;
neoadjuvant therapy n=4727; upfront surgery plus adjuvant therapy
n=14642) neoadjuvant therapy was superior with aggregate rate
0.7389 (0.1570-0.9144) versus 0.7306 (0.1600-0.8611). Both fixed
and random effects models favoured neoadjuvant therapy (O.R 1.33;
95% CI 1.22-1.45 and O.R 1.12; 95% CI 0.60-2.08 respectively)
(Appendix K).

1-year Survival

Pairwise comparison of neoadjuvant therapy versus upfront surgery
plus adjuvant therapy through network meta-analysis based on 6
phase II/III trials (neoadjuvant therapy n= 154; upfront surgery plus
adjuvant therapy n=178) favoured neoadjuvant therapy with
aggregate rate 0.7466 (0.5200-1.0000) versus 0.6137 (0.4778-

0.7200). Fixed and random effects models favoured neoadjuvant

248



therapy (O.R 2.12; 95%CI 1.30-3.49 and O.R 2.26; 95% CI 0.90-7.23
respectively) (Appendix K).

With inclusion of cohort studies in the network (21 studies;
neoadjuvant therapy n=5988; upfront surgery plus adjuvant therapy
n=26106) results did not alter with aggregate rate 0.8109 (0.5200-
1.0000) versus 0.6403 (0.4400-0.8500). Fixed and random effects
models continued to favour neoadjuvant therapy (0.R 2.37; 95% CI
2.19-2.55 and O.R. 2.12; 95% CI 1.59-2.93 respectively) (Appendix
K).

A sensitivity network analysis including phase II/III trials comparing
neoadjuvant therapy and upfront surgery plus adjuvant therapy and
RCTs comparing upfront surgery plus adjuvant therapy and surgery
only (8 studies; neoadjuvant therapy n=154; upfront surgery plus
adjuvant therapy n=415, surgery only n=235) (Figure 10) favoured
neoadjuvant therapy with aggregate rate 0.7466 (0.5200-1.0000)
versus 0.7314 (0.7250-0.7500) for surgery only and 0.6845 (0.4778-
0.7760) for upfront surgery plus adjuvant therapy. Neoadjuvant
therapy was found to be superior in both fixed and random effects

models (Figure 11; Appendix K).
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Figure 10: Bayesian Network Meta-analysis of Neoadjuvant therapy

versus Upfront surgery plus adjuvant therapy versus surgery only

Drug Abbreviation
NAT A
SF+adj B
Surgery Only C
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Figure 11: Results of fixed effects and random effects (vague prior)

models

Treatment 1 vs. Treatment 2 O.R. (95% Cr.l.)
SF+adj versus Surgery Only % %8% {8?8 :%38;
NAT versus SF+adj —e— 2.11(1.29-3.50

. —— 223 }1.03—5.73;
NAT versus Surgery Only = : 2.18(1.14-4.18)

- 4 . 2.36(0.55-12.40)
0.1 1 10 100
Heterogeneity (Vague) =0.5526 Favours Treatment 2 Favours Treatment 1
95% Crl (0.02402 - 1.743)
—<O— Fixed Effects —&— Random Effects (Vague Prior)

Cohort studies comparing neoadjuvant therapy and upfront surgery
plus adjuvant therapy were then included in the sensitivity network
analysis (23 studies; neoadjuvant therapy n=5988; upfront surgery
plus adjuvant therapy n=26343; surgery only n=235). This supported
superiority of neoadjuvant therapy with aggregate rate 0.8109
(0.5200-1.0000) versus 0.7314 (0.7250-0.7500) for surgery only and
0.6413 (0.4400-0.8500) for upfront surgery plus adjuvant therapy
(Appendix K).

2-year Survival

Pairwise comparison of 2-year survival from 6 phase II/III trials

(neoadjuvant therapy n=246; upfront surgery plus adjuvant therapy
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n=214) showed superiority of neoadjuvant therapy with aggregate
rate 0.4454 (0.0600-0.7500) versus 0.3475 (0.2609-0.4660). Fixed
effects (0.R. 1.32; 95% CI 0.87-1.97) and random effects model (O.R
1.16; 95%CI 0.34-3.72) favoured neoadjuvant therapy (Figure 12;
Appendix K).

Figure 12: Results of fixed effects and random effects (vague prior)

models
Treatment 1 vs. Treatment 2 0.R. (95% Cr.l.)
NAT versus SF b ‘QC i 138 (@§Z:§9§j
0.1 1 10
Heterogeneity (Vague) =1.251 Favours Treatment 2 Favours Treatment 1
95% Crl (0.4583 - 1.95)
—O— Fixed Effects —&— Random Effects (Vague Prior)

Inclusion of cohort studies within the network (20 studies; NAT
n=4199; SFadj n=20114) produced corroborating results with NAT
aggregate rate 0.5135 (0.0600-0.7500) versus 0.3002(0.1268-
0.5800) and fixed and random effects models supporting NAT (O.R
2.58; 95% CI 2.40-2.78 and O.R. 1.65; 95%CI 1.16-2.34 respectively)
(Appendix K).

Network sensitivity analysis including phase II/III trials comparing
neoadjuvant therapy and upfront surgery plus adjuvant therapy (6
studies) and RCTs comparing upfront surgery plus adjuvant therapy

and surgery only (2 studies) (neoadjuvant therapy n=246; upfront
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surgery plus adjuvant therapy n=451; surgery only n=235) showed
marginal superiority of neoadjuvant therapy with aggregate rate
0.4454 (0.0600-0.7500) versus 0.4155 (0.2609-0.4829) for upfront
surgery plus adjuvant therapy and 0.4149 (0.4000-0.4200) for
surgery only. Fixed and random effects models favoured neoadjuvant

therapy (Appendix K).

Cohort studies were then included in network sensitivity analysis (22
studies; neoadjuvant therapy n= 4199; upfront surgery plus adjuvant
therapy n=20351; surgery only n=235). Neadjuvant therapy
remained superior with aggregate rate 0.5135 (0.0600-0.7500) but
upfront surgery lus adjuvant therapy aggregate rate dropped to
0.3025 (0.1268-0.5800) with surgery only aggregate rate 0.4149
(0.4000-0.4200). Fixed and random effects models corroborated
overall treatment ranking favouring neoadjuvant therapy (Figure 13;

Appendix K).
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Figure 13: Results of fixed effects and random effects (vague prior)

models
Treatment 1 vs. Treatment 2 0.R. (95% Cr.l.)
SF+adj versus Surgery Only | H C‘ | i%% i828:%§§]
NAT versus SF+adj Kt 2.58(2
) ——i 165(1 ;

NAT versus Surgery Onl —— 3(2.30-4.83

i = * = 7(0.75-6.20

0.1 1 10
Heterogeneity (Vague) =0.6079 Favours Treatment 2 Favours Treatment 1
95% Crl (0.3766— 0.9969)
—<O— Fixed Effects —&— Random Effects (Vague Prior)

3-year survival

Pairwise comparison within a network based on 4 phase II/III trials
(neoadjuvant therapy n=107; upfront surgery plus adjuvant therapy
n=134) marginally favoured neoadjuvant therapy but this was not
statistically significant with aggregate rate 0.2642 (0.1212-0.3900)
versus 0.2530 (0.1100-0.4700). Fixed and random effects models
demonstrated no significant difference between treatment pathways
(O.R.1.00; 95% CI 0.54-1.86 and 0O.R 0.99; 95% CI 0.34-2.89
respectively) (Appendix K).

Inclusion of cohort studies increased the network to 18 studies
(neoadjuvant therapy n= 5889; upfront surgery plus adjuvant

therapy n=26037) and favoured neoadjuvant therapy with aggregate
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rate 0.3151 (0.1212-0.4800) compared to 0.2147 (0.0563-0.4700).
Fixed and random effects models favoured neoadjuvant therapy with
O.Rincreasing to 1.61 (95%CI 1.51-1.72) and 1.50 (95% CI 1.10-
2.04) respectively (Appendix K).

RCTs comparing upfront surgery plus adjuvant therapy and surgery
only (1 study) were combined with the 4 phase II/III studies
comparing neoadjuvant therapy and upfront surgery plus adjuvant
therapy (neoadjuvant therapy n= 107; upfront surgery plus adjuvant
therapy n=313; surgery only n= 175) in a network sensitivity
analysis. Upfront surgery plus adjuvant therapy was superior with
aggregate rate 0.3463 (0.1100-0.6329), followed by 0.2709 (0.1212-
0.3900) for neoadjuvant therapy and 0.2050 (0.2050-0.2050) for
surgery only with this ranking corroborated in fixed and random

effects models (Appendix K).

Inclusion of cohort studies comparing neoadjuvant therapy and
upfront surgery plus adjuvant therapy in further sensitivity analysis
produced a network of 19 studies (neoadjuvant therapy n=58899;
upfront surgery plus adjuvant therapy n=26216; surgery only
n=175). Superiority altered from upfront surgery plus adjuvant
therapy with aggregate rate 0.2160 (0.0563-0.6329) to neoadjuvant
therapy with aggregate rate 0.3151 (0.1212-0.4800). Surgery only
still held lowest ranking with aggregate rate 0.2050 (0.2050-0.2050).
Ranking order was corroborated in fixed and random effects models

(Figure 14; Appendix K).
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Figure 14: Results of fixed effects and random effects (vague prior)

models
Treatment 1 vs. Treatment 2 0.R. (95% Cr.l.)
NAT versus SF+adj .<> 148 18'38 - MJ/,]
SF+adj versus Surgery Onl ‘ ’:2:‘ 2.01(1.25-3.28
‘ SR 1.98 }0.52—7.58]
NAT versus Surgery Only =0 3.21(1.98 ~5.27£
e 2.78(0.70-11.03)
0.1 1 10 100
Heterogeneity (Vague) =0.5833 Favours Treatment 2 Favours Treatment 1
95% Crl (0.3453 - 0.9949)
—O— Fixed Effects —&#— Random Effects (Vague Prior)
4-year survival

Two phase II/1III trials (n=118) reported data on 4-year survival
(neoadjuvant therapy n=50; upfront surgery plus adjuvant therapy
n=68). Neoadjuvant therapy was superior with aggregate rate
0.1016 (0.0303-0.2400) compared to 0.0860 (0.0606-0.1100) and
0.R 1.56 (95% CI: 0.39-6.01) and 1.35(95%CI: 0.13-10.82) in fixed

and random effects models respectively (Appendix K)

Inclusion of cohort studies increased the network to 8 studies
(neoadjuvant therapy 414; upfront surgery plus adjuvant therapy
n=1069). Neoadjuvant therapy maintained superiority with
aggregate rate 0.2114 (0.0303-0.4000) versus 0.1647 (0.0423-
0.3200) and O.R 1.59 (95% CI 1.14-2.21) and 1.57 (95%CI 0.80-2.99)

in fixed and random effects models respectively. RCTs comparing
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upfront surgery plus adjuvant therapy and surgery only did not

report 4-year survival (Appendix K).

5-year survival

Three phase I1/11I trials (neoadjuvant therapy n=90; upfront surgery
plus adjuvant therapy n=99) reported 5-year survival and were
included in network meta-analysis. Neoadjuvant therapy held
superiority with aggregate rate 0.2240 (0.0303-0.3400) versus
0.1156 (0.0606-0.2300) and O.R 2.50 (95%CI 1.10-5.95) and 2.20
(95%CI 0.38-10.06) in fixed and random effects models respectively
(Appendix K).

Inclusion of cohort studies increased the network to 12 studies
(neoadjuvant therapy n=2885; upfront suregry plus adjuvant therapy
n=7071) and neoadjuvant therapy held superiority with aggregate
rate 0.2118 (0.0303-0.7692) compared to 0.1736 (0.0500-0.2300)
and O.R 1.32 (95% CI 1.18-1.48) and 1.65 (95% CI 0.68-3.73) in fixed

and random effects models respectively (Appendix K).

RCTs comparing upfront surgery plus adjuvant therapy and surgery
only (4 studies) and phase II/III trials comparing neoadjuvant
therapy and upfront surgery pluc adjuvant therapy (3 studies)
created a sensitivity network analysis of 7 studies (neoadjuvant
therapy n=90; upfront surgery plus adjuvant therapy n=491; surgery
only n=387). This did not alter the ranking of treatment pathways
with neoadjuvant therapy aggrgate rate 0.2240 (0.0303-0.3400)
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versus 0.2072 (0.0606-0.2640) for upfront surgery plus adjuvant
therapy and 0.1418 (0.1040-0.2200) for surgery only. This was also
the case in both fixed and random effects models (Figure 15;

Appendix K).

Figure 15: Results of fixed effects and random effects (vague prior)

models
Treatment 1 vs. Treatment 2 0.R. (95% Cr.l.)
SF+adj versus Surgery Onl 1.83(1.26-2.67
) SRAAT >_’_2L 187 f0.90—4.17
NAT versus SF+adj ——— 2.49 }1.10—5.85
‘ ¢ 2.39(0.70-7.12
NAT versus Surgery Only $ 4.56{1.86—11.54]
4.48(1.07-16.90
0.1 1 10 100
Heterogeneity (Vague) =0.3913 Favours Treatment 2 Favours Treatment 1
95% Crl (0.01801 - 1.533)
—<O— Fixed Effects —&— Random Effects (Vague Prior)

Cohort sudies were then included increasing the sensitivity network
analysis to 16 studies (neoadjuvant thaerpy n=2885; upfront surgery
plus adjuvant therapy n=7463; surgery only n=387). This did not
alter the ranking of treatments with aggregate rates for neoadjuvant
therapy 0.2054 (0.0303-0.3400) versus 0.1779 (0.0500-0.3200) for
upfront surergy plus adjuvant threapy and 0.1418 (0.1040-0.220) for
surgery only (Appendix K).
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Assessment of Impact of FUPS characteristics of Data

Using the GRADE assessment criteria the certainty of
recommendations from the network analysis showed that although
neoadjuvant therapy was marginally favoured overall, this was not
always statistically signifinat and uncertainty was identified in the

evidence synthesised (Figure 16).

Figure 16: GRADE assessment of certainty of network

recommendations
CRITERIA SUMMARY OF JUDGEMENTS
PROBLEM No Probably no Probably yes Yes
DESIRABLE EFFECTS Trivial Small Large
UNDESIRABLE EFFECTS Large Moderate “ Trivial
CERTAINTY OF EVIDENCE Very low “ Moderate High
Important uncertainty Possmlyirf‘pmnt S novlmportant No important
VALUES uncertainty or uncertainty or

or variability uncertainty or variability

variability variability

Does not favor

Favors the Probably favors either the Probably favors Favors the

BALANCE OF EFFECTS comparison the comparison intervention or the the intervention intervention
comparison

ACCEPTABILITY No Probably no Probably yes

FEASIBILITY No Probably no Probably yes

This degree of uncertainty in the synthesised evidence was further
highlighted in the assessment of risk-of-bias of each included study
(Figure 17; Figure 18; Appendix K).
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Figure 17: Overall Assessment of Risk of Bias of included trials of

neoadjuvant versus upfront surgery plus adjuvant therapy
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Figure 18: Overall Assessment of Risk of Bias of Randomised
Controlled Trials comparing Upfront Surgery plus Adjuvant Therapy

versus Surgery Only.
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To further assess the impact of FUPS characteristics of the data
consistency and inconsistency assessment was undertaken. Overall

consistency was achieved across all Bayesian network meta-analysis

2

(o))
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survival year models with no issues of inconsistency identified

(Appendix K).

Results: Bayesian network meta-analysis of treatment options

for resectable pancreatic cancer

Eligible Studies

Nine studies were identified that offered comparison between
neoadjuvant therapy and upfront surgery plus adjuvant therapy for
the treatment of resectable pancreatic cancer (Figure 19). As only 2
of these studies were phase II trials, one of which was randomised all
studies were therefore included in the network meta-analysis. 4

studies were prospective and 3 studies were retrospective (Table

15).
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Figure 19: PRISMA flow chart for neoadjuvant therapy versus

upfront surgery plus adjuvant therapy

Records identified through Additional records identified through
database searching other sources
(n=14224) (n =151)

Records after duplicates removed

(n=10,554)
v
Records screened Records excluded
(n=10,554) > (n=10102)
v
Full-text articles excluded,
Full-text articles assessed with reasons:
for eligibility —— 5| duplicates/not relevant
(n=452) n=366
did not meet inclusion
criteria n=56
v did not report on
o _ resectable only cases of
Studies included in pancreatic cancer n=21
qualitative synthesis
(n=9)

A 4

Studies included in
quantitative synthesis
(n=9)

262



Table 15: Summary of Studies Comparing Neoadjuvant Therapy

versus Upfront Surgery plus Adjuvant Therapy for Resectable

Pancreatic Cancer.

Study Study Randomis | Centre Neoadjuvant Total No. Neoadju | Total No. Upfront | ROBINS-
Type ed treatment patient in vant patients surgery | Irisk of
Regime in Neoadjuvant arm Upfront lus bias
addition to arm Overall surgery adjuvan | assessm
radiotherapy Survival | lus t ent
in adjuvant therapy
months therapy arm
for RPC arm Overall
Survival
in
months
Golche | Phasell Yes Multiple Gemcitabine/ 31 17.4 33 14.4 Low
retal, cisplatin
2015
Vento Phase II No Single Gemcitabine 22 30.2 25 35.9 Moderat
etal, e
2007
Ielpo Prospect | No Single Gemcitabine 19 21.65 36 22.1 Moderat
etal, ive +Nabpaclitaxel e
2017
Roland | Prospect | No Single Gemcitabine, 222 85 Moderat
etal, ive 5-FU or e
2015 capecitabine
DeGus Retrospe | No Multiple NAT: no 332 26 11316 24.5 Moderat
etal, ctive (cancer further details e/Seriou
2017a registry) | given s
Mokda | Retrospe | No Multiple NAT: no 2005 26 6015 21 Moderat
detal, | ctive (cancer further details e/Seriou
2017 registry) | given s
Tzeng Prospect | No Single NAT: no 115 28 62 25.3 Moderat
etal, ive further details e/Seriou
2014 given s
Fujiiet | Prospect | No Single S1+5- 40 24 416 23 Moderat
al, ive FU+oteracil e/Seriou
2016 and gimeracil s
Papale | Retrospe | No Single 5-FU 144 15 92 13 Moderat
zovaet | ctive e/Seriou
al, S
2012

6 studies (n=371) reported the number of cases of resectable
pancreatic canncer who received neoadjuvant therapy and

progressed to surgery (Golcher et al., 2015; Vento et al., 2007; Ielpo

etal,2017; Tzeng et al., 2014; Fuijii et al, 2016; Papalezova et al.,

2012) giving a pooled proportion of 76.08% (95% Confidence

Interval: 60.826-88.509). Two studies reported response to

neoadjuvant therapy (Golcher et al,, 2015; lelpo et al., 2017). One
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study reported responses for resectable cases (complete response: 0;
partial response: 4/31; stable disease 8/31; disease progress 12/31;
7 unrecorded) (Golcher et al., 2015). The study by Ielop et al.(2017)
did not report this outcome separately for resectable only cases but
included borderline cases also in reporting the outcomes of response
to neoadjuvant therapy (complete response: 5/45; partial response:
13/45; stable disease 5/45). 6 studies (n= 17596) reported the
number of patients in the upfront surgery plus adjuvant therapy
pathway who received adjuvant therapy (lelpo et al., 2017; Roland et
al.,, 2015; Tzeng et al., 2014; DeGus et al., 2017a; Mokdad et al., 2017;
Papalezova et al.,, 2012) giving a pooled proportion of 63.01% (95%
Confidence Interval: 59.452-66.489).

For sensitivity analysis, RCTs offering comparison between upfront
surgery plus adjuvant therapy versus surgery alone were also
included in a separate network meta-analysis. Electronic database
search identified 25332 studies (Figure 20). 15 studies were RCTs, 5
of which offered comparison between adjuvant therapy and surgery

alone and were included in the sensitivity analysis (Table 16).
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Figure 20: PRISMA flow chart of upfront surgery plus adjuvant
therapy versus surgery only
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Table 16: Summary of included studies. Summary of randomised

controlled trials comparing upfront and adjuvant therapy versus

surgery only.

Study Adjuvant Regime Adjuvant No. Overall No. Overall
*CT=chemotherapy chemotherapy | Upfront | survival | Surgery | survival
CRT=chemoradiotheapy | agents surgery | in Only in

plus Upfront | arm surgery
adjuvant | surgery only
arm plus arm

adjuvant

arm in

months

Uenoet | CT Gemcitabine 58 22.3 60 18.4

al,

2009

Oettle CT Gemcitabine 179 22.8 175 20.2

etal,

2013

Kosuge | CT Cisplatin + 5- | 45 12.5 44 15.8

etal, FU

2006

Smeenk | CRT 5-FU 110 21.6 108 19.2

etal,

2007

Morak CRT 5-FU+folic 59 19 61 18

etal, acid+

2008 mitoxantrone

+ cisplatin

A summary of overall findings for each outcome measure is provided

in Figure 21.

Figure 21: Summary of results of Bayesian network meta-analysis

comparing upfront surgery plus adjuvant therapy with neoadjuvant

therapy for the management of resectable pancreatic cancer.
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Outcomes Anticipated absolute effects’ (35% C! Relative efiect Ns of partipants
Risk with Upfront Surgery ( Rhl:]wm\ Neoadjuvant — _—
plus adjuvant therapy
RO resection 751 per 1,000 ?g&’l:'ag;n ?Ra; f-. 8) ?91 :g);sem:ona shudes)
T-year sunival 748 per 1,000 (871936’;';2'3;” ?Ra: o 8) (32 ol shudes)
2year sunvival 513 per 1,000 ?;zgpl;reg)w m;f 1.46) ?72 Z)gbson'aaona‘ swudies)
S-year sunvival 204 per 1,000 ?;2:’2’[;’315'2?0 m:.:sﬂ ) (82 gg:cnam' studies)
4-year sunvival 127 per 1,000 (19‘1‘.:' 2'2:,',000 8’}3‘,‘& ) ?:gbsemm' sudes)
Syear survival 178 per 1,000 (Zr:apl:vzg;n ﬁ%;fo'-. an ?;gebsemm‘ shudies)

* The risk in the intervention group (and its 95% CI) is based on the assumed risk in the

comparison group and the relative effect of the intervention (and its 95% CI). ‘Risk’ is the risk of

the event occurring i.e ‘risk’ of being alive at the set time interval.

RO Resection Rates

The network offering pairwise comparison of rates of RO resection
between neoadjuvant therapy and upfront surgery plus adjuvant
therapy included 8 studies and 9197 participant (neoadjuvant
therapy: n=2626; Upfront surgery plus adjuvant therapy: n=6571).
The aggregate rate of RO resection for neoadjuvant therapy was
0.8008 (0.3636-0.9144) compared to 0.7515 (0.2826-0.8611) for
upfront surgery plus adjuvant therapy. Both fixed effects (0.R. 1.49;
95% CI 1.32-1.68) and random effects (O.R. 1.27; 95% CI 0.60-1.96)
models favoured neoadjuvant therapy. Neoadjuvant therapy was
found to have superior positive impact on outcome of R0 resection

(SUCRA: 0.8124 versus 0.1876).

1-year Survival
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Pairwise comparison for 1-year survival of neoadjuvant therapy
versus upfront surgery plus adjuvant therapy was based on 8 studies
and 12011 participants (neoadjuvant therapy: n=2708; upfront
surgery plus adjuvant therapy: n=9303). Aggregate rate of 1-year
survival was higher in neoadjuvant therapy at 0.7969 (0.6061-
0.9500) versus 0.7481 (0.4848-0.8500). Both fixed effects (O.R. 1.46;
95% CI: 1.31-1.63) and random effects (O.R. 1.38 95%; CI: 0.69-2.96)
models favoured neoadjuvant therapy. Neoadjuvant therapy also has
a stronger positive impact on the outcome of 1-year survival (SUCRA:

0.84 v 0.16) (Appendix L).

For sensitivity analysis a network also including RCTs of upfront
surgery plus adjuvant therapy versus surgery only was constructed
based on a total of 10 studies and 12483 patients (neoadjuvant
therapy: n=2708; upfront surgery plus adjuvant therapy: n=9540;
surgery only: n=235) (Figure 22). 8 studies compared neoadjuvant
therapy and upfront surgery plus adjuvant therapy (n=12011) and 2
studies compared upfront surgery plus adjuvant therapy and surgery

only (n=472).
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Figure 22: Bayesian Network Meta-analysis of Neoadjuvant therapy

versus Upfront surgery plus adjuvant therapy versus surgery only

Drug Abbreviation
NAT A
SF+adj B
Surgery Only C
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Neoadjuvant therapy was found to be superior in both fixed and
random effects models. Aggregate rate of 1-year survival was highest
in neoadjuvant therapy (0.7957; range 0.6205-0.9500) followed by
upfront surgery plus adjuvant therapy (0.7478; range 0.4848-
0.8500) then surgery only (0.7314; range 0.7250-0.7500). Again
neoadjuvant therapy was found to have strongest positive impact on

outcome of 1-year survival (Figure 23; Appendix L).

Figure 23: Results of fixed effects and random effects (vague prior)

models
Treatment 1 vs. Treatment 2 O.R. (95% Cr.l.)
SF+adj versus Surgery Onl ; ’?_‘ y 1.04(0.69-1.56
) BRI - ' 0.94 $0.26—3.43]
NAT versus SF+adj % 1.46(1.32-1.63
J P 1.38(0.72-2.84
NAT versus Surgery Onl —— 1.52(0.99-2.31
BERY = + | 123{932-22
0.1 1 10
Heterogeneity (Vague) =0.7522 Favours Treatment 2 Favours Treatment 1
95% Crl1(0.4371- 1.494)
—O— FixedEffects —&— Random Effects (Vague Prior)
2-year Survival

Network pairwise comparison of neoadjuvant therapy and upfront
surgery plus adjuvant therapy for 2-year survival was based on 7
studies (n=4251; neoadjuvant therapy n=903; upfront surgery plus

adjuvant therapy n= 3348). Aggregate rate of 2-year survival was
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0.5178 (0.3000-0.5970) versus 0.5131 (0.2727-0.5346) in favour of
neoadjuvant therapy. Both fixed effects (0.R. 1.22; 95% CI 1.02-1.46)
and random effects model (0.R. 1.26; 95% CI 0.94-1.74) favoured
neoadjuvant therapy with SUCRA 0.95 for neoadjuvant therapy
(Appendix L).

Inclusion of upfront surgery plus adjuvant therapy versus surgery
only RCTs in a network based on 9 studies (n=4723; neoadjuvant
therapy: n=903; upfront surgery plus adjuvant: n=3585; surgery
only: n=235) also demonstrated superiority of neoadjuvant therapy
for 2-year survival in both fixed and random effects model. Aggregate
of 2-year survival was 0.5217 (0.3000-0.5970) for neoadjuvant
therapy compared to 0.5107 (0.2727-0.5346) for upfront surgery
plus adjuvant therapy and 0.4149 (0.4000-0.4200) for surgery only
(Figure 24; Appendix L).

Figure 24: Results of fixed effects and random effects (vague prior)

models
Treatment 1 vs. Treatment 2 0.R. (95% Cr.1.)
NAT versus SF+adj R 1.23(1.03-1.46
J —— 126 10.98—1.73]
SF+adj versus Surgery Only ’:g: 1.29(0.89-1.85
1.3010.79—2.17
NAT versus Surgery Onl = 1.58(1.06-2.37
L H——— 1231693330
0.1 1 10
Heterogeneity (Vague) =0.1457 Favours Treatment 2 Favours Treatment 1
95% Crl (0.009866 - 0.5621)
—O— Fixed Effects —&— Random Effects (Vague Prior)
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3-year Survival

Pairwise comparison of neoadjuvant therapy versus upfront surgery
plus adjuvant therapy was based on a network comprising 8 studies
(n=12011; neoadjuvant therapy: n=2708; upfront surgery plus
adjuvant therapy: n=9303) and demonstrated superiority of
neoadjuvant therapy with aggregate rate of 0.3367 (0.1212-0.3900)
to 0.2943 (0.1800-0.4700). Again both fixed effect (O.R. 1.25 95% CI
1.14-1.38) and random effects (0.R. 1.19 9% CI 0.86-1.51) models
favored neoadjuvant therapy with SUCRA 0.9 demonstrating
stronger positive effect with neoadjuvant therapy on outcomes of 3-

year survival (Appendix L).

Inclusion of upfront surgery plus adjuvant therapy versus surgery
only RCTs in a network produced comparisons based on 9 studies
(n=12365; neoadjuvant therapy: 2708; upfront surgery plus adjuvant
therapy: n=9482; surgery only: n= 175). Neoadjuvant therapy was
superior in both fixed and random effects models with aggregate rate
0.3400 (0.2000-0.4194) compared to 0.2951 (0.1800-0.4700) for
upfront surgery plus adjuvant therapy and 0.2050 (0.2050-0.2050)
for surgery only (Figure 25; Appendix L).
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Figure 25: Results of fixed effects and random effects (vague prior)

models
Treatment 1 vs. Treatment 2 0O.R. (95% Cr.l.)
NAT versus SF+adj 1.27(1.15-1.39
! '--9—‘ 1.25 *0.93 = 1.73]
SF+adj versus Surgery Only $ 2.01(1.24-3.26
' B H 2.01*0.90—4.57
NAT versus Surgery Onl ) ) 2.55(1.56-4.17
BEDE RO, - * | 523 {188 -&14)
0.1 1 10
Heterogeneity (Vague) =0.2021 Favours Treatment 2 Favours Treatment 1
95% Crl(0.01718— 0.7945)
—<O— Fixed Effects —&— Random Effects (Vague Prior)
4-year Survival

Only pairwise comparison of neoadjuvant therapy and upfront
surgery plus adjuvant therapy could be offered, as upfront surgery
plus adjuvant therapy versus surgery only RCTs did not report 4-year
survival rates. This network was based on 4 studies (n=656).
Neoadjuvant therapy was superior with aggregate rate 0.1416
(0.0303-0.2500) compared to 0.1269 (0.0606-0.2000). Fixed effects
(0O.R. 1.16; 95% CI 0.69-1.94) and random effects model (O.R 1.03;
95% CI 0.27-3.13) favoured neoadjuvant therapy (Appendix L).
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5-year Survival

Network pairwise comparison of 5-year survival for neoadjuvant
therapy and upfront surgery plus adjuvant therapy was based on 7
studies (n=8896; neoadjuvant therapy n=2558; upfront surgery plus
adjuvant therapy n=6338). Aggregate rate for neoadjuvant therapy
was 0.2069 (0.0323-0.3300) compared to 0.1783 (0.0606-0.2300).
Fixed effects (0.R 2.21; 95% CI 1.07-1.37) and random effects (O.R.
1.19; 95% 0.65-1.73) favoured neoadjuvant therapy with SUCRA 0.82
for neoadjuvant therapy (Appendix L).

Inclusion of upfront surgery plus adjuvant therapy versus surgery
only RCTs was based on 11 studies (n=9675; neoadjuvant therapy
n=2558; upfront surgery plus adjuvant therapy n=6730; surgery only
n=387). Neoadjuvant therapy was superior across fixed effects and
random effects models with aggregate rate 0.2069 (0.0323-0.3300)
followed by 0.1814 (0.0606-0.2640) for upfront surgery plus
adjuvant therapy and 0.1418 (0.1040-0.2200) for surgery only
(Figure 26; Appendix L).
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Figure 26: Results of fixed effects and random effects (vague prior)

models
Treatment 1 vs. Treatment 2 0.R. (95% Cr.l.
NAT versus SF+adj 1.21(1.07-1.36
: - 16912
SF+adj versus Surgery Onl 2 1.83(1.27-2.67
] Y 1.85(1.18-3.01
NAT versus Surgery Onl 2.22(1.50-3.30
SRR, :2: 2.2411.25-3.94]
0.1 1 10
Heterogeneity (Vague) =0.1582 Favours Treatment 2 Favours Treatment 1
95% Crl (0.007193 - 0.6888)
—O— FixedEffects —&— Random Effects (Vague Prior)

Assessment of Impact of FUPS characteristics of Data

Using the GRADE assessment criteria again the certainty of
recommendations from the network analysis showed that although
neoadjuvant therapy was marginally favoured overall, uncertainty
was identified in the evidence synthesised (Figure 27). This was
corroborated by the risk-of-bias assessment of included trials (Table

15; Appendix K).
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Figure 27: An assessment of the strength of overall recommendations

from the network meta-analysis according to the GRADE assessment

criteria.
CRITERIA SUMMARY OF JUDGEMENTS
PROBLEM No
DESIRABLE EFFECTS
UNDESIRABLE EFFECTS Large
CERTAINTY OF EVIDENCE
S Possibly important
VALUES o L( ) uncertainty or
e variability
avors the
BALANCE OF EFFECTS comparison
ACCEPTABILITY No
FEASIBILITY No Probably no Probably yes

Convergence was achieved across all models and no issues were
identified with inconsistency. In 2-year survival analysis and 5-year
survival analysis there was a marginal preference towards fixed

effects model as determined by the DIC statistic (Appendix L).
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Discussion

Data as a Partial Remnant

Upfront surgery plus adjuvant therapy is a well established
treatment pathway for resectable pancreatic cancer (Neoptolemos et
al., 2001). Neoadjuvant therapy is supported by current guidelines
for borderline resectable and locally advanced pancreatic cancer but
its role in the management of resectable pancreatic cancer remains
controversial (Tempero et al., 2014; de Geus et al., 2016). In the
absence of conclusive results from large multi-centered RCTs this
study, the first of its kind, utilises existing studies comparing
neoadjuvant therapy and upfront surgery plus adjuvant therapy for
the treatment of potentially resectable, and separately resectable
pancreatic cancer, in a Bayesian network meta-analysis to offer an
important interim analysis to inform the ongoing debate regarding
the best treatment for potentially resectable, and in particular

resectable, pancreatic cancer.

Overall this analysis marginally favours neoadjuvant therapy. When
analysing its use in all potentially resectable pancreatic cancer
neoadjuvant therapy compared favourably with traditional upfront
surgery plus adjuvant therapy approach and demonstrated survival
benefit across 1,2,4 and 5-year survival outcomes. There was no
difference in 3-year survival but inclusion of cohort studies and RCTs
demonstrated benefit with neoadjuvant therapy. For the treatment of
resectable pancreatic cancer a marginal benefit was found with

neoadjuvant therapy across outcomes of RO resection, 1,2,3,4 and 5-
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year survival. This is based on the best available studies and did not
alter on sensitivity analysis. However, issues pertaining to quality
and level of bias of available studies are an issue that weakens the

strength and level of certainty of any such recommendations.

Transparency of Analysis

A strength of this study is that it included a separate analysis of only
studies of resectable pancreatic cancer, identified through
comprehensive literature search, to offer a true like-for-like
comparison based on currently available evidence. Analysis of
neoadjuvant therapy versus upfront surgery plus adjuvant therapy
were based on direct comparisons to strengthen certainty of findings
with indirect comparisons drawn from inclusion of upfront surgery
plus adjuvant therapy versus surgery only trials, and the inclusion of
cohort observational studies only in sensitivity analysis which did
not alter network findings. However, this study also shares the
limitations of the existing body of evidence pertaining to the
treatment of potentially resectable pancreatic cancer: heterogeneity
and small underpowered sample size (Andriulli et al., 2012).
Although random effects modeling was employed to counter
heterogeneity, overall there is a lack of RCTs comparing neoadjuvant
therapy and upfront surgery plus adjuvant therapy (Lee et al., 2016;
Andriulli et al., 2012; Sharma et al., 2015; de Geus et al., 2016). Only
one of the two phase Il trials for resectable pancreatic cancer were
randomised (Golcher et al., 2015) with the remaining studies being

either prospective or retrospective studies which raises serous
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concerns about bias and reduced certainty in the recommendations

drawn from the network meta-analysis.

Unlike the majority of existing network meta-analysis (Bafeta et al.,
2013; Hutton et al., 2014; Zarin et al., 2017), this study went beyond
only assessing bias of included trials to utilise GRADE approach to
rate the certainty in estimates from our network meta-analysis
(Brown et al., 2014; Faltinsen et al., 2018; Guyatt et al., 2008; Puhan
et al., 2014; Salanti et al., 2014). Rather than dismiss the entirety of
the existing body of research on the basis of its FUPS characteristics
and simply conclude that RCTs are awaited, statistical techniques
were utilised to quantify the perceived limitations of the existing
data. This included assessing convergence using the Brooks-Gelman-
Rubin method and by checking whether the Monte Carlo error is less
than 5% of the standard deviation of the effect estimates and
between-study variance (Brown et al., 2014). Furthermore, the
MCMC Bayesian network meta-analysis was fitted with three chains
as a means of checking MCMC convergence (Brown et al., 2014).
Inconsistency assessment, the conflict between direct and indirect
evidence, is crucial to any network meta-analysis (Dias et al., 2013)
and was measured by comparing deviance residuals and DIC statistic
in fitted consistency and inconsistency models (Brown et al., 2014;

Dias et al., 2013; Spiegelhater et al., 2002).

This means that this study can go further than existing studies to
provide an important interim analysis that adds a further dimension
to the debate regarding the best treatment approach for potentially

resectable pancreatic cancer. Firstly it offers an indirect comparison
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of outcomes between neoadjuvant treatment pathway and outcomes
for those who receive surgery only. Therefore rather than only
comparing upfront surgery plus adjuvant therapy and neoadjuvant
pathways this helps to explore more individualised outcomes for
those patients who do not progress to receiving adjuvant therapy in
the upfront surgery pathway and therefore are treated with surgery
only. Secondly by transparently quantifying the impact of FUPS
characteristics on the study outcomes, this study both highlights and
assesses the impact of the limitations of the existing body of evidence
on which current assumptions and beliefs regarding treatment

approaches are based.

Triangulation

These findings are corroborated by previous attempts to synthesise
existing evidence comparing upfront surgery plus adjuvant therapy
and neoadjuvant therapy for resectable pancreatic cancer. Meta-
analysis by both Xu et al. (2014) and Andriulli et al. (2012) reported
marginal benefit of neoadjuvant therapy for resectable pancreatic
cancer in terms of overall survival and disease free survival for
resectable cases. However, neither of these reports focused solely on
neoadjuvant therapy and therefore omitted significant studies from
their meta-analysis (Lee et al., 2016). Sharma et al. (2015) and de
Geus et al. (2016) synthesised published data in a Markov decision-
analysis model to compared neoadjuvant therapy and upfront
surgery plus adjuvant therapy for the treatment of resectable
pancreatic cancer and also reported marginal benefit of neoadjuvant

therapy. More recently Versteijne et al. (2018) reported more
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significant survival benefit with neoadjuvant therapy in their meta-
analysis but the reported weighted mean overall survival time
included borderline resectable cases therefore captured the effect of
conversion to resectability affecting overall survival time in
neoadjuvant therapy pathway. The reported weighted mean overall
survival time for resectable only cases was lower although still
superior to upfront surgery plus adjuvant therapy (Versteijne et

al.2018).

The second key outcome explored through direct and indirect
comparison was the rate of RO resection, which is known to impact
survival time (Howard et al., 2006). Once again neoadjuvant therapy
was found to be superior to upfront surgery plus adjuvant therapy
which is in keeping with the hypothesis that neoadjuvant therapy
results in higher rates of RO resection (Asare et al., 2016; Lee et al,
2016; Chua et al,, 2011). However, definitions of RO resection can
vary between studies, which could potentially impact reported
outcomes (Versteijne et al.,2018). In this study convergence was
achieved across all models comparing this outcome and no issues

with inconsistency were identified in our analysis.

A key clinical concern when selecting a treatment pathway for is the
delivery of multimodal treatment: resection in the neoadjuvant
therapy pathway and receipt of adjuvant therapy in the upfront
surgery pathway. Our analysis of pooled proportions found that for
resectable pancreatic cancer 63% of patients in the upfront surgery
plus adjuvant therapy pathway received adjuvant therapy, and 76%

in the neoadjuvant therapy pathway underwent resection. These
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findings are in keeping with the results of a recent meta-analysis of
pooled proportions that reported 68.6% of patients in upfront
surgery pathway received adjuvant therapy and 76.8% of resectable
cases in neoadjuvant therapy pathways underwent resection

(Versteijne et al.,2018).

Conclusion: emergence, boundary setting, lack of complete

knowledge, ethics and future direction of research

To conclude our Bayesian network meta-analysis shows that
neoadjuvant therapy is no worse than traditional upfront surgery
plus adjuvant therapy approach and may even hold benefit across
outcomes of: RO resection, 1,2,3,4,and 5-year survival for potentially
resectable and resectable cases of pancreatic cancer. This finding in
the context of the limitations of existing studies means that
conclusive superiority of one approach over another cannot be
determined without a degree of uncertainty. Furthermore the
boundaries of this meta-analysis are determined by how outcomes
are reported in studies and therefore emergence as multiple factors
dynamically interact within the complex system of pancreatic cancer
management delivery has not yet been explored. A lack of complete
knowledge regarding the system therefore remains and it would be
unethical to conclude that either pathway has superiority. In light of
these findings the possibility is raised that superior pathway
selection may be determined at individual patient level. The potential
of Bayesian statistical approach in testing this hypothesis through

Markov decision analysis was therefore undertaken.
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4.2 Markov Decision Analysis

Publications resulting from this analysis:

Bradley, A. et al. (2018). ‘Markov decision analysis of neoadjuvant
treatment pathway versus surgery first pathway for resectable

pancreatic cancer’. Journal of Clinical Oncology, 36 (4). pp. 456-456

Bradley, A. and Van Der Meer, R. (2019). ‘Neoadjuvant therapy versus
upfront surgery for potentially resectable pancreatic cancer: a
Markov decision analysis’. PLoS One, 14(2):e0212805.
doi:10.1371/journal.pone.0212805

Abstract

Background: Neoadjuvant therapy has emerged as an alternative
treatment strategy for potentially resectable pancreatic cancer. In the
absence of large RCTs offering a direct comparison, this study aims to
use Markov decision analysis to compare efficacy of traditional
upfront surgery plus adjuvant therapy (which will be referred to as
surgery first pathway (SF) within this model) and neoadjuvant
treatment pathways (which will be referred to as NAT within this
model) for potentially resectable pancreatic cancer. Competing
pathways will then also be compared solely for cases that are
resectable at presentation and the results of this analysis will be
triangulated with the results of a Markov decision-analysis based on
a prospectively maintained patient database from a tertiary referral

centre pancreatic unit.
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Methods: An advanced Markov decision analysis model was
constructed to compare SF and NAT pathways. Transition
probabilities were first calculated from RCTs and phase II/III trials
after comprehensive literature search. The model was then
populated with data from a prospectively maintained tertiary
referral centre database. Utility outcomes were measured in overall
and quality-adjusted-life months (QALMs) on an intention-to-treat
basis as the primary outcome. Markov cohort analysis of treatment
received was the secondary outcome. Model uncertainties were
tested with one and two-way deterministic and probabilistic Monte

Carlo sensitivity analysis.

Results Using Synthesised Data from Published Studies for
Potentially Resectable Pancreatic Cancer: SF gave 23.72 months
(18.51 QALMs) versus 20.22 months (16.26 QALMs). Markov cohort
analysis showed that where all treatment modalities were received
NAT gave 35.05 months (29.87 QALMs) versus 30.96 months
(24.86QALMs) for RO resection and 34.08 months (29.87 QALMs)
versus 25.85months (20.72 QALMs) for R1 resection. One-way
deterministic sensitivity analysis showed that NAT was superior if
the resection rate was greater than 51.04% or below 75.68% in SF
pathway. Two-way sensitivity analysis showed that pathway
superiority depended on obtaining multimodal treatment in either

pathway.
Results Using Synthesised Data from Published Studies for

Resectable Pancreatic Cancer: NAT pathway yielded 26.41 months
(22.54 QALMs) compared to 23.72 months (18.51 QALMs). Markov
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cohort analysis showed that in patients who received all treatment
modalities NAT pathway yielded 39.34 months (34.63 QALMs)
compared to 30.96 months (24.86 QALMs) for RO resection and
34.94 months (31.07 QALMs) compared to 25.85 months (20.72
QALMSs) for R1 resection. Deterministic sensitivity analysis
demonstrated that pathway superiority depended on the probability

of receiving multimodal treatment in either pathway.

Results Using Institutional Patient Database for Resectable
Pancreatic Cancer: NAT yielded 32.90 months (28.51 QALMs)
compared to 24.68 months (19.23 QALMSs). Deterministic sensitivity
analysis demonstrated the importance of receiving multimodal
treatment in determining pathway superiority. Probabilistic Monte
Carlo analysis reported NAT pathway superiority. Markov cohort
analysis showed that greatest utility was achieved in the subgroup of
patients in the SF pathway who received RO resection and adjuvant

therapy (42.38 QALMs).

Conclusion: Whilst NAT is a viable alternative to traditional SF
approach, even for cases that are resectable at presentation, superior
pathway selection depends on the individual patient’s likelihood of
receiving multimodal treatment in either pathway. Careful
consideration must be given to patient selection pertaining to
likelihood of receiving all treatment modalities and achieving R0
resection in either pathway. Future research must therefore focus on
developing ways of engaging with the complexity to move towards
personalised predictive modeling to support individualised

treatment selection.
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Introduction

Surgical resection followed by adjuvant therapy has become the
standard of care for resectable pancreatic cancer (Neoptolemos et al.,
2001). However, despite advances in surgical techniques and
adjuvant therapies, 5-year survival for resected pancreatic cancer
has been reported at between 7% and 25% (CRUK, 2019).
Furthermore, up to 50% of patients do not actually receive adjuvant
therapy post resection due to a combination of factors including:
post-operative complications, early metastases nullifying the
potential benefits of high-risk surgery (Winter et al., 2012) and
reduced performance status due to pre-existing medical conditions
(Bilimoria et al., 2007). This has resulted in a growing interest in

neoadjuvant therapy (Asare et al., 2016; Lee et al., 2016).

There is currently a lack of RCTs comparing upfront surgery and
neoadjuvant therapy treatment pathways (Versteijne et al., 2018).
Despite promising results from cohort studies and phase Il trials,
existing meta-analysis corroborate the findings from section 4.1 in
reporting only marginal benefit of NAT in terms of overall and
disease-free survival (Lee et al., 2016; Sharma et al., 2015; Xu et al.,
2014; Andriulli et al., 2012; Petrelli et al., 2015). Whilst the a role for
NAT has been broadly accepted for cases that are borderline
resectable or locally advanced, neoadjuvant therapy for resectable

pancreatic cancer therefore remains an area of prime controversy.

Two previous Markov decision-analysis found marginal benefit with

neoadjuvant therapy for resectable only cases (Sharma et al., 2015;
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DeGus et al., 2016). Sharma et al. (2015) used data drawn from
prospective phase Il and III trials. De Gus et al. (2016) also included
data from retrospective studies compiled from a literature search
from a single search engine. Only one previous Markov decision
analysis compared efficacy of both pathways for potentially
resectable disease and found no conclusively superior pathway
(VanHouten et al., 2012). These studies share the limitations of the
existing body of evidence: heterogeneity and small underpowered

sample size.

The aim of this section is to compare upfront surgery (SF) versus
neoadjuvant therapy (NAT) for the treatment of potentially
resectable pancreatic cancer (including resectable, borderline
resectable and locally advanced cases) through Markov decision-
analysis (Section 4.2.1). These competing treatment pathways will
then be compared for only cases that are resectable at presentation
(Section 4.2.2) with the results from the Markov decision-analysis
using synthesised data triangulated against those from a Markov
decision-analysis using patient data form a tertiary referral centre
(Section 4.2.3). The objectives are to compare predicted outcomes
between both pathways on an intention-to-treat basis. However, this
research aims to go further by using the FUPS data in the context of
complexity to attempt to uncover whether, by developing more
transparent ways of statistically engaging with the complexity of the
system, more individualised ways of determining treatment pathway
superiority at a personalised level could emerge.

Materials and methods
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Markov model

TreeAge Pro 2017 (TreeAge Software Ins., Williamstown, MA) was
used to construct a Markov cohort decision analysis model in an
advanced decision-tree format comparing base case, SF (with
adjuvant therapy including chemotherapy, chemoradiotherapy, or
both), to NAT (which included chemotherapy and/or
chemoradiotherapy) followed by re-staging and, if possible, surgical
resection (Figure 28). Upon completion of treatment, cohorts entered
the Markov health-state transition model with possible survival
states including: alive without disease, alive with disease and dead.
Each Markov cycles equated to 1 month with maximum follow-up of

60-cycles or until death.
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Figure 28: Overview of the structure of the Markov decision-tree.
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Outcome Measures

Cumulative payoffs were calculated in life months and QALMs, which
scaled survival from 0 (equivalent to death) to 1 (Sharma et al., 2015;
DeGus et al., 2015) based on indicies taken from published literature
(Ljungman et al., 2011; Murphy et al., 2012) and World Health
Organization and European Quality of Life Survey (Eshuis et al.,

2015; Romanus et al., 2012; Tam et al., 2013).
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Transparency of Analysis

Data sources and transition probabilities

Source data was identified through comprehensive literature search
of MEDLINE, Embase, PubMed and Cochrane database and Cochrane
database of Clinical Trials following the PRISMA checklist (Moher et
al., 2009). For each of the searches, the entire database was included
from the year 2000 up to and including 31st October 2018, with no
further date restrictions or limits applied. Following screening,
reference lists and citations of all included papers were manually
searched to identify any additional articles until no new articles were
identified. The following data was extracted from each study: study
details (country, year, design, number, mean age, sex, co-morbidity
profile and presenting disease stage of participants), details of
treatment protocols, treatment outcomes (treatment completion
rates, rates of tumour resection, RO resection rates, drug toxicity
data, post-operative complication rates, overall survival and disease-

free survival) and risk-of-bias data.

The inclusion criteria was RCTs and prospective phase I and III
studies of neoadjuvant therapy for the treatment of pancreatic
cancer, published in English language since 2000, involving
chemo/radiotherapy-naive human subjects over 18 years of age with
preoperatively staged pancreatic cancer as potentially resectable.
Included trials had to report: protocol design, number of participants
per arm, median age and co-morbidities of subjects, pre-treatment

staging of pancreatic cancer, toxicity profile, results of post
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neoadjuvant re-staging, resection rates, post-operative complications
defined by Clavien-Dindo system, and survival data. Retrospective
and cohort studies, case series and case reports were excluded as
were studies from identical patient cohorts and trials involving intra-
operative radiotherapy and trials including disease other than
pancreatic cancer. Trials matching this inclusion criteria that
reported only outcomes for cases of pancreatic cancer that were
resectable at presentation, or that reported the outcomes for
resectable only cases separately, were also included in a separate
Markov decision-analysis for the treatment of resectable pancreatic

cancer.

As the majority of trials were single arm, to populate the upfront
surgery pathway the same databases were searched for RCTs of
surgery and adjuvant therapy, with the same inclusion and data
reporting criteria. The outcomes of this group could introduce bias
because by definition these patients have survived surgery and not
developed early metastatic disease and also had to have adequate
performance status to be randomised to adjuvant therapy even if
they did not receive adjuvant therapy. To overcome this issue cohort
studies comparing neoadjuvant therapy and upfront surgery, with
the otherwise same inclusion criteria and data reporting
requirements, were also included in the upfront surgery arm and
solely used to offer comparison across outcomes of resection, RO

resection rates and receipt of adjuvant therapy.
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Statistical analysis

Markov model transition probabilities were based on weighted
pooled estimates of proportions from included studies, calculated
using Freeman-Tukey (1950) arcsine square root transformation
under random effects model to account for heterogeneity. Survival
time was based on time from diagnosis. Gillen et al. (2010) approach
to calculating weighted median survival time was used as evidence
has shown that weighted averaging of medians cannot achieve
unbiased pooled estimates of survival time (Rouder et al., 2004). This
approach is based on averaging parameter estimates of a presumed
density function of survival. The pooled distribution parameter is
used to recalculate the estimate of the median from the pooled
distribution parameter (Gillen et al., 2010). In this case the pooled
distribution parameter is the exponential distribution, which implies
a time constant hazard rate corresponding to the sole distribution
parameter A. From this the weighted estimate of median survival

(mp) is derived from the formula (Gillen et al., 2010):

where m; is median survival within the study population i (with i
being 1 to k where k is the number of included studies) (Gillen et al.,
2010 ). w; is the study specific weight function derived from number
of study participants divided by total number of evaluable patients

(Gillen et al,, 2010).
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Quantifying the Limitations Stemming from FUPS Characteristics of

Data

The Cochrane Collaboration’s risk of bias tool (Higgins et al., 2011)
and ROBINS-I tool (Sterne et al., 2016) were used to assess the
quality and risk-of-bias of each included trial. Furthermore the
potential impact of bias and uncertainty on all variables within the
model were extensively tested through deterministic and

probabilistic sensitivity analysis.

Model uncertainties for all included components were tested with
one and two-way deterministic sensitivity analysis with baseline
transition probabilities for each variable altered between highest and
lowest reported values. Probabilistic Monte Carlo sensitivity analysis
was set to 10000 iterations with model probabilities sampled from
the entirety of the data distribution of each variable contained within
the Markov models. Data for each variable was fitted against 55
possible distributions with the best fit determined by the Anderson

Darling statistic.

4.2.1 Results: Markov Decision-Analysis for Potentially Resectable
Pancreatic Cancer

Eligible Studies

50 phase II/III studies met the inclusion criteria and were included in

the neoadjuvant therapy arm of the model, 4 of which were
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randomised. 9 of these studies offered comparison with upfront

surgery (Appendix M).

For the upfront surgery pathway 15 studies were RCTs, 10 of which
offered comparison between adjuvant regimes, 5 of which offered
comparison between adjuvant therapy and surgery only (Appendix
M). 16 cohort studies were also included in the upfront surgery
pathway to offer comparison across outcomes of resection rates, R0
resection, and rates of receiving adjuvant therapy (Appenidx M).
Probability estimates and ranges and quality-of-life utilities are

displayed in Table 17.
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Table 17: Summary of transition probabilities, parameters of data

distribution and payoff utilities for quality adjusted life months

(QALMs).
Variable Baseline Range | Standard | Variance | Data
Transition Deviation Distribution:
Probability parameters
(95% (Anderson
Confidence Darling
Interval) Statistic)
Grade 3+ 0.35 (0.28- 0-1.0 0.03799 0.00144 Generalised
toxicity with | 0.43) Extreme Value:
NAT k=0.45856
0=0.01111
n=0.00904
(0.55904)
Resectionin | 0.41 (0.33- 0-0.86 | 0.00848 7.1972E-5 | Generalised
NAT pathway | 0.49) Extreme Value:
k=0.15727
0=0.00545
n=0.00618
(0.36129)
Exploratory 0.1 (0.07- 0-0.36 | 0.00349 1.2182E-5 | Generalised
Laparoscopy | 0.13) Pareto:
/Laparotomy k=0.06879
0=0.00306
pu=-5.1223E-4
(1.3525)
RO resection | 0.29 (0.21- 0-0.74 | 0.0068 4.6303E-5 | Johnson SB:
NAT pathway | 0.36) y=1.7195
6=1.0417
2=0.04849
§€=-0.00113
(0.35896)
Grade 3-4 0.35 (0.19- 0.11- 0.02702 7.3021E-4 | Generalised
post- 0.53) 0.64 Extreme Value:
operative k=-0.45505
complication 0=0.03128
NAT pathway n=0.04101
(0.1996)
Grade 5 post- | 0.02 (0.01- 0-0.36 | 0.00097 9.4387E-7 | Pareto 2:
operative 0.03) a=0.34207
complication 3=1.3899E-13
NAT pathway (-13.983)
Resection SF | 0.94 (0.90- 0.70- 0.1219 0.01486 Burr:
pathway 0.96) 1.0 k=0.0595
a=10.327
$=0.00112
(0.12818)
RO resection | 0.56 (0.51- 0.16- 0.09869 0.00974 Pearson 5:
SF pathway 0.62) 0.86 a=0.61636
=7.0460E-4
(0.18259)
Grade 3-4 0.22 (0.13- 0.04- 0.01297 0.0002 Log-Pearson 3:
post- 0.33) 0.54 a=66.845
operative =-0.09425
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complication
SF pathway

y=2.0838
(0.29235)

Grade 5 post-
operative
complication
SF pathway

0.07(0.02-
0.13)

0-0.36

0.00948

8.9795E-5

Cauchy:
0=0.00373
p=0.00639
(0.38658)

Receiving
adjuvant
therapy

0.61(0.57-
0.66)

0.26-
0.94

0.10088

0.01018

Burr:
k=0.26048
a=2.145
=9.2071E-4
(0.18949)

Adjuvant
toxicity
grade 3+

0.43(0.25-
0.62)

0.09-
0.98

0.02753

0.00076

Log-Pearson 3:

a=1916.0
B=-0.02672
y=47.081
(0.34508)

Survival
State

Utility for
QALM

Living with
stable
pancreatic
cancer

0.81

Undergoing
chemo/radio
therapy

0.81

Experiencing
chemo/radio
therapy
complication
s

0.53

Recovering
from
pancreatic
surgery

0.59

Experiencing
surgical
complication
s

0.48

Living with
unresectable
disease and
pre-
operative
quality-of-life

0.65

*NAT= Neoadjuvant Pathway; SF = Surgery First (or Upfront Surgery) Pathway
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Results of Markov decision-analysis

Intention-to-treat analysis of the treatment pathways, based on

baseline transition probabilities, showed that upfront surgery

pathway gave 23.72 months (18.51 QALMs) compared to 20.22

months (16.26 QALMSs) for neoadjuvant therapy pathway. The results

of Markov cohort analysis are outlined in Table 18 and demonstrate

superiority of the NAT pathway for patients who received all

treatment modalities.

Table 18: Results from Markov cohort analysis

NAT Pathway

SF Pathway

RO Resection

35.05 months (29.87 QALMs;
POC =29.76 QALMs)

Received Adjuvant Therapy:
30.96 months (24.86 QALMs;
POC=24.75 QALMs; AT=
21.82 QALMs; POC and
AT=21.71 QALMs)

No Adjuvant Therapy:

24.03 months (20.12 QALMs;
P0OC=20.01QALMs)

R1 Resection

34.08 months (29.87 QALMs;
P0C=29.76 QALMs)

Received Adjuvant Therapy:
25.85 months (20.72 QALMs;
POC=20.61 QALMs; AT=
18.20 QALMs; POC and
AT=18.09 QALMs)

No Adjuvant Therapy:

21.26 months (17.56 QALMs;
P0OC=17.45 QALMs)

Exploratory Laparoscopy or
Laparotomy

10.86 months (7.22QALMs)

10.48 months (6.97QALMs)

No Surgery

10.86 months (7.06 QALMs)

POC= post-operative complication grade 3 or 4; AT= adjuvant therapy resulting in grade 3 or 4

toxicity
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Deterministic sensitivity analysis

Deterministic sensitivity analysis tested the sensitivity of the results
of the model to variations in parameters of specific model variables
by altering the parameters between highest and lowest reported
values. One-way deterministic sensitivity analysis determined the
effect on the overall results of the model by varying the parameter of
each variable individually. Two-way deterministic sensitivity
analysis determined the effect on the model of altering the

parameters of two variables simultaneous.

One-way deterministic sensitivity analysis showed that NAT was the
superior treatment pathway if the probability of achieving resection
in this pathway was greater than 51.04% (Figure 29) or the
probability of achieving resection in the SF pathway was less than

75.68% (Figure 30).
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Figure 29: One-way deterministic sensitivity analysis of the
probability of resection in Neoadjuvant pathway. This figure shows
the effect of altering the baseline probability of resection in the

neoadjuvant pathway on overall model outcome.
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Figure 30: One-way deterministic sensitivity analysis of the
probability of resection in the surgery first pathway. This figure
shows the effect of altering the baseline probability of resection in

the surgery first pathway on overall model outcome.
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Two-way deterministic sensitivity analysis demonstrated that
treatment superiority depended on receiving multimodal treatment
(resection in the NAT pathway and adjuvant therapy in the SF
pathway). Fig 31a shows the thresholds at which competing
pathways offer superior outcomes with Figure 31b providing
corresponding probability thresholds and predicted resulting

quality-adjusted survival time.
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Fig 31a. Two-way sensitivity analysis. Y-axis shows probability of
receiving adjuvant therapy in surgery first (SF) pathway and x-axis
shows probability of receiving resection in neoadjuvant (NAT)
pathway. The red area represents where patients, given competing
probability of receiving multimodal treatment in competing
pathways, would benefit from surgery first approach. The blue area
represents where neoadjuvant therapy would be the superior

treatment pathway in terms of quality-adjusted survival.
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Fig 31b. Corresponding predicted survival time in QALMs. X and Y-
axis provide altering probabilities of multimodal treatment in each

pathway with corresponding survival time given in QALMs.

p getting adjuvant therapy \ presection NAT 0.287 0.369 0.451 0.533 0.615
¥0.305

SF 17.76 17.76 17.76 17.76 17.76

NAT 13.51 15.34 17.18 19.02 20.85
v0.4575

SF 18.13 18.13 18.13 18.13 18.13

NAT 13.51 15.34 17.18 19.02 20.85
v0.61

SF 18.51 18.51 18.51 18.51 18.51

NAT 13.51 15.34 17.18 19.02 20.85
¥0.7625

SF 18.89 18.89 18.89 18.89 18.89

NAT 13.51 15.34 17.18 19.02 20.85
v0.915

SF 19.27 19.27 19.27 19.27 19.27

NAT 13.51 15.34 17.18 19.02 20.85

Probabilistic sensitivity analysis

Probabilistic sensitivity analysis tested the level of confidence in the
model output in relation to uncertainty in model input by
determining the distribution of the input data for each variable from
the median, standard deviation and variance of the input data (Table
17). All possible parameter values for each variable within the model
were therefore tested by drawing probabilities from the data
distribution when probabilistic Monte Carlo sensitivity analysis was

set to simulate 10000 patients cycling through the model.

The results of probabilistic Monte Carlo sensitivity analysis showed

that SF gave a mean survival time of 19.72 months (range 5.57-
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22.95) compared to 17.16 months (range 16.50-17.38) for NAT with
standard deviation 2.68 and 0.19, and variance 7.17 and 0.04 in SF
and NAT pathways respectively. When minimum significant
difference was set at 3.65 months or greater, the model reported

indifference in superior pathway selection frequency.

4.2.2 Results: Markov Decision-Analysis for Resectable Pancreatic

Cancer

Eligible Studies

A total of 18825 studies on neoadjuvant therapy for pancreatic
cancer were identified, of which 452 underwent full screening. 50
phase II/III studies were identified, 9 of which offered comparison
with upfront surgery and were included in the SF pathway. 18 of the
50 studies reported outcomes either solely for resectable cases, or
reported outcomes for resectable cases separately and were included

in the NAT arm of the Markov model (Appendix M).

15 out of these 18 studie