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Abstract	
	

Survival	outcomes	for	pancreatic	cancer	remain	poor.	Surgical	

resection	with	adjuvant	therapy	is	the	only	potentially	curative	

treatment,	but	for	many	people	surgery	is	of	limited	benefit.	

Neoadjuvant	therapy	has	emerged	as	an	alternative	treatment	

pathway	however	the	evidence	base	surrounding	the	treatment	of	

potentially	resectable	pancreatic	cancer	is	highly	heterogeneous	and	

fraught	with	uncertainty	and	controversy.		

	

This	research	seeks	to	engage	with	conjunctive	theorising	by	

avoiding	simplification	and	abstraction	to	draw	on	different	kinds	of	

data	from	multiple	sources	to	move	research	towards	a	theory	that	

can	build	a	rich	picture	of	pancreatic	cancer	management	pathways	

as	a	complex	system.	The	overall	aim	is	to	move	research	towards	

personalised	realistic	medicine	by	using	personalised	predictive	

modeling	to	facilitate	better	decision	making	to	achieve	the	

optimisation	of	outcomes.		

	

This	research	is	theory	driven	and	empirically	focused	from	a	

complexity	perspective.	Combining	operational	and	healthcare	

research	methodology,	and	drawing	on	influences	from	

complementary	paradigms	of	critical	realism	and	systems	theory,	

then	enhancing	their	impact	by	using	Cilliers’	complexity	theory	‘lean	

ontology’,	an	open-world	ontology	is	held	and	both	epistemic	reality	

and	judgmental	relativity	are	accepted.	The	use	of	imperfect	data	

within	statistical	simulation	models	is	explored	to	attempt	to	expand	

our	capabilities	for	handling	the	emergent	and	uncertainty	and	to	
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find	other	ways	of	relating	to	complexity	within	the	field	of	

pancreatic	cancer	research.		

	

Markov	and	discrete-event	simulation	modelling	uncovered	new	

insights	and	added	a	further	dimension	to	the	current	debate	by	

demonstrating	that	superior	treatment	pathway	selection	depended	

on	individual	patient	and	tumour	factors.	A	Bayesian	Belief	Network	

was	developed	that	modelled	the	dynamic	nature	of	this	complex	

system	to	make	personalised	prognostic	predictions	across	

competing	treatments	pathways	throughout	the	patient	journey	to	

facilitate	better	shared	clinical	decision	making	with	an	accuracy	

exceeding	existing	predictive	models.		
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Chapter	1	

	

Introduction	
	

Pancreatic	cancer	is	arguably	the	most	challenging	of	all	

gastrointestinal	tumours	with	10-year	survival	remaining	at	1%	and	

overall	5-year	survival	remaining	at	4%	despite	advancement	in	

surgical	technique	and	adjuvant	therapy	(Pancreatic	Cancer	United	

Kingdom	(PCUK),	2016).	Pancreatic	cancer	is	the	twelth	most	

common	cancer	worldwide	(World	Cancer	Research	Fund,	2018)	and	

the	fourth	and	fifth	most	common	cause	of	cancer	deaths	in	the	

United	States	of	America	(USA)	and	Europe	respectively	(Siegel	et	al.,	

2015;	Ferlay	et	al.,	2012).	Within	the	United	Kingdom	(UK)	9,400	

new	cases	of	pancreatic	cancer	were	diagnosed	in	2013,	accounting	

for	3%	of	all	cancer	diagnosis,	and	making	pancreatic	cancer	the	

tenth	most	common	cancer	and	fifth	most	common	cause	of	cancer	

death	in	the	UK	(PCUK,	2016).	Overall	this	represented	an	increased	

incidence	rate	of	10%	over	the	past	decade	(PCUK,	2016).		

	

In	the	UK	it	is	estimated	that	only	9.8%	of	cases	are	amenable	to	

surgical	resection	and	5-year	survival	for	resected	cases	is	reported	

at	between	7%	and	25%	despite	surgical	resection	being	the	only	

potentially	curative	treatment	(Cancer	Research	UK	(CRUK),	2019).	

For	cases	that	are	resectable	at	presentation	current	guidelines	

recommend	surgery	followed	by	adjuvant	therapy	(Khorana	et	al.,	

2019).	However,	up	to	50%	of	patients	do	not	receive	adjuvant	

therapy,	which	nullifies	any	potential	benefit	from	high-risk	costly	
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surgery	(Winter	et	al.,	2012).	Reasons	for	this	include	a	

combination	of	factors	such	as	early	disease	recurrence,	decline	in	

health	related	to	pre-existing	illnesses,	and/or	post-operative	

complications	rendering	the	patient	too	unwell	to	withstand	

further	treatment	(Evans	et	al.,	2018).	These	factors	have	

contributed	to	an	increasing	interest	in	neoadjuvant	therapy	as	an	

alternative	treatment	pathway	(Evans	et	al.,	2018;	Winter	et	al.,	

2012;	Bilimoria	et	al.,	2007a).	Postulated	benefits	of	neoadjuvant	

treatment	pathway	include:	increased	obtainment	of	multimodal	

treatment,	converting	borderline	resectable	disease	to	resectable,	

and	filtering	patients	with	more	aggressive	disease	away	from	

ultimately	futile	high-risk,	high-cost	surgery	(Evans	et	al.,	2018;	

Asare	et	al.,	2016;	Lee	et	al.,	2016;	Abbott	et	al.,	2013).		

	

However,	there	is	currently	a	lack	of	conclusive	level	I	evidence	

proving	superiority	of	either	treatment	pathway	for	resectable	

disease	(Versteijne	et	al.,	2018).	Neoadjuvant	therapy	for	resectable	

pancreatic	cancer	is	an	area	of	prime	controversy.	Ambiguity	reigns	

over	the	existing	body	of	research	comparing	neoadjuvant	and	

traditional	upfront	surgery	approach	for	resectable	cases.	Critics	

highlight	the	limitations	of	drawing	overly	optimistic	conclusions	

about	neoadjuvant	therapy	from	small,	underpowered	studies	with	a	

high	degree	of	heterogeneity	and	caution	against	potentially	losing	

the	window	of	resectability	for	cases	that	are	resectable	at	

presentation	(Asare	et	al.,	2016;	Lee	et	al.,	2016).	Currently	there	is	a	

lack	of	randomised	controlled	trials	(RCT)	offering	a	direct	

comparison	between	treatment	approaches	(Versteijne	et	al.,	2018)	

with	many	comparison	studies	including	borderline	resectable	and	
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locally	advanced	cases	in	the	neoadjuvant	cohort	hence	failing	to	

offer	a	true	like-for-like	comparison.	Preliminary	results	from	the	

Prep-02/JSAP-05	trial	(Unno	et	al.,	2019),	the	first	RCT	to	compare	

neoadjuvant	and	upfront	surgery	approach	for	resectable	cases	of	

pancreatic	cancer,	reported	no	statistically	significant	difference	in	

resection,	R0	resection	and	postoperative	complication	rates	

between	the	two	cohorts	with	an	overall	survival	time	of	

36.72months	in	the	neoadjuvant	arm	and	26.65months	in	the	

surgery-first	arm.	However,	the	PRODIGE	24/CCTG	PA.6	RCT	that	

compared	adjuvant	modified	(m)FOLFIRINOX	to	adjuvant	

gemcitabine	in	patients	who	have	had	their	tumour	resected	within	

an	upfront	surgery	pathway,	reported	overall	survival	times	of	

54months	and	35months	in	each	arm	respectively	(Conroy	et	al.,	

2018).	The	mFOLFIRINOX	arm	therefore	exceeded	the	survival	time	

reported	in	the	neoadjuvant	arm	of	the	Prep-02/JSAP-05	trial	(Unno	

et	al.,	2019).		

	

In	summary	current	guidelines	recommend	upfront	surgery	followed	

by	adjuvant	therapy	for	resectable	pancreatic	cancer	and	there	is	a	

growing	acceptance	for	the	use	of	neoadjuvant	therapy	for	cases	of	

pancreatic	cancer	that	are	borderline	resectable	or	locally	advanced	

at	presentation	with	the	aim	of	conversion	to	resectability	(Khorana	

et	al.,	2019;	Raufi	et	al.,	2019;	Evans	et	al.,	2018).	However,	to	achieve	

optimisation	of	individual	patient	outcomes	for	pancreatic	cancer	we	

must	go	beyond	adherence	to	guidelines	to	engage	with	the	

complexity	of	the	system	of	delivering	pancreatic	cancer	

management	for	the	reasons	that	will	now	be	outlined.		

	



	 41	

Firstly,	upfront	surgery	pathway	for	resectable	pancreatic	cancer	has	

not	produced	a	significant	change	in	survival	outcomes	over	the	past	

three	decades	and	the	majority	of	patients	who	undergo	surgical	

resection	of	their	tumour	with	or	without	adjuvant	therapy	will	

develop	metastatic	disease	(Evans	et	al.,	2018).	The	implications	of	

acknowledging	this	fact	have	contributed	to	a	growing	recognition	of	

pancreatic	cancer	as	a	systemic	disease,	hence	even	where	the	

tumour	is	localised	and	deemed	operable	micrometastsitc	disease	is	

likely	to	be	present	although	not	clinically	apparent	(Wolff	et	al.,	

2017).	Whilst	this	has	led	some	to	champion	a	move	towards	early	

systematic	therapy	through	neoadjuvant	therapy	and	the	application	

of	surgery	only	to	those	patients	most	likely	to	benefit	from	such	

major	operations	(Evans	et	al.,	2018),	the	evidence	base	for	such	a	

move,	particularly	for	cases	of	pancreatic	cancer	that	are	resectable	

at	presentation,	is	controversial	and	heavily	contested	as	previously	

discussed.	Furthermore	the	optimal	combination	of	treatment	agents	

used	within	either	the	neoadjuvant	or	upfront	surgery	pathways	is	

ever	evolving	and	contested.	This	demonstrates	that	even	by	framing	

the	question	as	how	to	best	optimise	patient	outcomes	from	

pancreatic	cancer	in	the	most	simplistic	terms	of	‘neoadjuvant	versus	

upfront	surgery’,	research	must	engage	with	a	high	degree	of	

uncertainty	and	complexity.		

	

This	brings	me	to	my	second	argument	in	favour	of	acknowledging	

and	engaging	with	complexity	in	order	to	move	research	forward,	

specifically	in	changing	the	narrative	surrounding	the	treatment	of	

potentially	resectable	pancreatic	cancer	to	reflect	the	evolution	of	

our	understanding	of	the	disease	and	improve	patient	counseling	and	
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shared	decision	making.	Theoretically	surgery	is	the	only	potentially	

curative	treatment	for	pancreatic	cancer.	However,	potentially	

resectable	disease	can	include	resectable,	borderline	resectable	and	

some	locally	advanced	stages	of	the	disease.	It	has	been	established	

that	the	delivery	of	multimodal	treatment	(surgery	in	combination	

with	either	chemotherapy	or	chemoradiotherapy)	within	either	a	

neoadjuvant	or	upfront	surgery	pathway	results	in	improved	survival	

time	(Neoptolemos	et	al.,	2018;	Khorana	et	al.,	2019;	Raufi	et	al.,	

2019;	Evans	et	al.,	2018).	Inherent	in	the	decision	to	deliver	

multimodal	treatment	therefore	is	first	the	identification	of	patients	

with	potentially	resectable	disease,	but	there	is	currently	incomplete	

consensus	about	the	working	definition	of	‘operable	pancreatic	

cancer’	in	terms	of	both	tumour	anatomy	and	patient	factors	

including	age	and	comorbidities	(Evans	et	al.,	2018).	The	reality	of	

the	narrative	therefore	becomes	much	more	complicated	as	each	of	

these	disease	stages	are	likely	to	have	different	anticipated	outcomes	

even	if	they	undergo	surgical	resection.	The	narrative	must	therefore	

evolve	beyond	surgery	being	the	only	potentially	curative	treatment	

to	an	understanding	that	for	some	patients	with	operable	disease	the	

potential	benefits	of	surgery	in	terms	of	disease	free	survival	may	be	

limited	(Evans	et	al.,	2018).	This	requires	a	move	towards	better	

patient	selection	across	competing	treatment	pathways	to	deliver	

individualised	treatment	sequencing	and	stage	specific	therapy	to	

optimise	individual	patient	outcomes	(Evans	et	al.,	2018;	McGuigan	

et	al.,	2018).		

	

There	is	a	growing	narrative	and	focus	within	pancreatic	cancer	

research	to	attempt	to	achieve	the	delivery	of	personalised,	targeted	
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treatment	sequencing	through	biomarker	driven	treatment	

sequencing	and/or	the	development	of	gene	targeted	therapies	

(Collisson	et	al.,	2019;	Amanam	&	Chung,	2018;	Sato-Dahlman	et	al.,	

2018).	The	widely	held	assumption	is	that	breakthroughs	in	such	

areas	will	result	in	a	move	away	from	uncertainty	towards	precision	

medicine.	The	third	point	being	made	is	that	this	current	direction	in	

pancreatic	cancer	research,	rather	than	resulting	in	the	diminution	of	

complexity,	could	result	in	its	augmentation.	As	our	knowledge	of	

disease	at	biomolecular	and	genomic	level	evolves	the	clinical	

decision	making	process	will	pullulate	with	varied	and	complex	

datasets	from	multiple	sources.	The	amalgamation	of	such	large	

complex	databases	and	the	meaningful	application	of	this	

information	to	the	individual	patient	to	optimise	treatment	outcomes	

will	be	beyond	the	capabilities	of	the	human	mind	to	handle	unaided	

(Obermeyer	&	Lee,	2017).	To	illustrate,	as	previously	discussed	the	

consensus	definition	of	resectability,	or	lack	there	of,	depends	not	

only	on	tumour	anatomy	but	also	patient	factors	such	as	age	and	

comorbidities	(Evans	et	al.,	2018).	It	follows	that	a	tumour	with	the	

same	anatomy,	genomics	and	biomarker	profile	would	not	

necessarily	follow	the	same	clinical	course	and	this	must	be	

acknowledged	in	order	to	optimise	individual	patient	outcomes.	To	

illustrate,	all	tumour	factors	being	equal	an	active	health	conscious	

patient	in	their	twenties	is	likely	to	have	a	different	risk	profile	and	

anticipated	clinical	course	following	major	surgery	compared	to	a	

morbidly	obese	chain-smoker	with	numerous	pre-existing	

comorbidities.	Biomarkers	and	genetic	profiles	therefore	provide	

only	some	of	the	picture	and	this	information	must	be	combined	and	

integrated	with	other	clinical	data	if	progress	is	to	be	made.	
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To	summarise,	the	challenge	of	optimising	outcomes	for	pancreatic	

cancer	goes	beyond	simply	choosing	between	neoadjuvant	therapy	

versus	upfront	surgery	approach.	The	narrative	surrounding	the	

management	of	pancreatic	cancer	must	also	move	away	from	the	

theoretically	possible	(surgery	is	the	potentially	curative	treatment)	

to	the	reality	for	many	patients	(surgery	may	be	of	limited	benefit).	

Whilst	this	move	will	in	part	be	driven	by	better	objective	definitions	

of	resectability	and	biomarker	and	gene	targeted	treatment	

sequencing,	such	anticipated	developments,	whilst	important,	will	

not	on	their	own	optimise	outcomes	for	pancreatic	cancer	and	could	

actually	serve	to	increase	uncertainty	and	complexity	in	clinical	

decision	making.	Therefore	if	the	optimisation	of	outcomes	for	

pancreatic	cancer	is	to	come	to	fruition	through	a	more	personalised	

approach	to	the	delivery	of	pancreatic	cancer	treatment	we	must	

develop	ways	to	engage	with	the	complexity,	handle	uncertainty	and	

the	emergent	when	examining	the	complex	system	of	delivering	

pancreatic	cancer	care	including	areas	of	debate,	ambiguity	and	

disagreement	(Law	&	Mol,	2002;	Fraser	&	Greenhalgh,	2001;	Star,	

2002;	Greenhalgh	&	Papoutsi,	2018).	As	both	a	demonstration	of	the	

much	broader	complexity	of	pancreatic	cancer	management	as	a	

complex	system,	as	well	as	providing	a	contextual	framework	for	

how	to	address	the	issue	of	optimising	treatment	outcomes,	the	

political	context	in	which	this	research	was	undertaken	will	now	be	

outlined.																
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1.1	Political	Context	of	This	Research:	The	Move	

Towards	Personalised	Realistic	Medicine	
	

In	March	2015	Scotland’s	Chief	Medical	Officer	(CMO)	launched	their	

annual	report:	‘Realistic	Medicine’.	This	set	out	six	key	challenges	

that	must	be	met	to	deliver	realistic	medicine	within	the	Scottish	

National	Health	Service	(The	Scottish	Government,	2016;	The	

Scottish	Government,	2017):	

	

1.	Build	a	personalised	approach	to	healthcare		

2.	Change	our	style	to	shared	decision	making		

3.	Reduce	unnecessary	variation	in	practice	and	outcomes		

4.	Reduce	harm	and	waste		

5.	Manage	risk	better		

6.	Become	improvers	and	innovators		

	

This	report	posed	some	key	questions	in	health	care	centering	on	

individualised	patient	care	to	achieve	realistic	medicine	by	asking:	

• how	can	we	reduce	the	burden,	both	financial	and	to	the	

patient	experience,	of	over	investigation	and	treatment?	

• 	How	can	we	reduce	risk	to	patients	and	variation	in	practice	to	

optimise	treatment	outcomes	for	all	patients?	

• How	can	we	improve	the	doctor-patient	relationship	and	

combine	both	patient	and	professional	expertise	to	focus	on	
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treatment	outcomes	that	matter	to	the	individual	patient?	(The	

Scottish	Government,	2016)	

Finally,	in	recognition	of	the	gravitas	of	the	task	ahead	and	the	need	

for	creative	solutions	the	report	asks:	

• How	can	doctors	become	creative	innovators	to	achieve	

improved	individualised	outcomes	for	their	patients?	(The	

Scottish	Government,	2016)	

More	recently	the	CMO	in	their	annual	report	rebranded	the	term	

‘Realistic	Medicine’	as	‘Personalised	Realistic	Medicine’	to	emphasise	

the	emerging	importance	placed	by	clinicians	and	patients	on	a	

personalised	approach	to	care	(The	Scottish	Government,	2019).	This	

reemphasis	on	the	personalisation	of	care	appeared	to	be	a	direct	

response	to	the	tendency	of	healthcare	delivery	towards	a	

reductionist	approach	to	care	(The	Scottish	Government,	2017)	with	

the	drive	for	efficiency	and	effectiveness	leading	to	the	

industrialisation	of	healthcare	with	the	patient	being	reduced	to	a	

statistic	or	an	object	on	a	conveyer	belt	(Montori,	2017).	Such	

concerns	echo	the	previously	expressed	concerns	regarding	the	

limitations	of	reducing	pancreatic	cancer	patients	to	mere	

biomarkers	and	genetic	codes	to	decide	treatment	delivery.	

‘Personalised	Realistic	Medicine’	still	aims	to	deliver	the	right	care	to	

the	right	patient	at	the	right	time	(The	Scottish	Government,	2019).	

However,	it	goes	further	in	calling	for	the	marrying-up	of	the	delivery	

of	better	value	healthcare	with	what	Professor	Victor	Montori	of	the	

Mayo	Clinic	has	termed	‘careful	and	kind	care’	(The	Scottish	

Government,	2019;	Montori,	2017).	Careful	care	encompasses	the	
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principles	of	quality,	safety	and	evidence	based	practice	and	

considers	the	patient’s	biology	in	the	context	of	their	biography;	that	

is	their	disease	and	comorbidities	in	the	context	of	their	life	situation	

and	priorities.	Kind	care	then	respects	the	patient’s	resources	of	time,	

energy	and	attention	and	seeks	to	minimise	the	impact	of	healthcare	

upon	these	(Montori,	2017).			

	

To	actually	achieve	this	the	focus	must	be	on	understanding	the	

patient	as	an	individual	with	their	own	preferences	and	values	as	

well	as	focusing	on	service	provision.	Therefore	questions	must	be	

asked	regarding	how	services	can	be	designed	and	practices	adapted	

to	engage	patients	in	their	care	without	overwhelming	them	(The	

Scottish	Government,	2019).	In	practical	terms	this	will	mean	

reviewing	how	resources	(physical,	monetary	and	time)	could	be	

better	distributed	and	more	effectively	targeted	to	support	such	a	

move.	Secondly	the	paternalistic	culture	of	communication	with	

patients	must	change	towards	a	collaborative	partnership	of	shared	

decision	making	that	fosters	a	trusting	relationship	through	a	

dialogue	of	openness	and	honesty	(The	Scottish	Government,	2019).	

This	will	provide	a	particular	challenge	as	to	how	complicated	and	

conflicting	information	based	on	population	level	data	can	be	clearly	

conveyed	and	discussed	with	patients	during	the	decision	making	

process	so	that	patients	can	ask	questions	and	be	provided	with	

honest,	realistic	answers	(The	Scottish	Government,	2019).	This	

means	taking	a	lead	from	the	House	of	Lords	Science	and	Technology	

Committee	report	in	2000	(UK	House	of	Lords,	2000)	in	rejecting	the	

‘deficit	model’	whereby	the	provision	of	information	by	experts	is	



	 48	

expected	to	make	the	patient,	or	public,	agree	with	the	expert.	This	

report	therefore	concluded	that	many	issues	faced	by	decision	

makers	and	treated	as	science	issues	may	in	fact	involve	many	other	

non-science	factors.	The	implication	for	delivering	realistic	medicine	

as	recognised	by	the	CMO	is	that:	

	“In	the	same	way,	we	must	accept	that,	to	deliver	Realistic	

Medicine,	we	need	to	consider	many	factors	besides	medicine”	(The	

Scottish	Government,	2019,	p.17).		

This	acknowledgement	by	both	the	House	of	Lords	Science	and	

Technology	Committee	and	the	CMO,	who	throughout	their	most	

recent	report	discusses	patients,	the	public	and	healthcare	systems	

as	complex	interacting	systems,	mirrors	that	of	recent	moves	by	the	

Medical	Research	Council	to	acknowledge	the	need	to	engage	with,	

rather	than	simplify	or	deny,	complexity	(Moore	et	al.,	2015).		

1.2	Using	Complexity	Theory	As	A	Lens	Through	Which	

To	Focus	The	Research	Question		

This	research	seeks	to	engage	with	what	Tsoukas	(2017)	called	

conjunctive	theorising	by	avoiding	simplification	and	abstraction	(or	

disjunctive	theorising)	and	instead	draws	on	different	kinds	of	data	

from	multiple	sources	to	move	research	towards	a	theory	that	can	

build	a	rich	picture	of	pancreatic	cancer	management	pathways	as	a	

complex	system.	Combining	operational	and	healthcare	research	and	

drawing	on	influences	from	complementary	paradigms	of	critical	

realism	and	systems	theory	then	enhancing	their	impact	by	using	

Cilliers’	complexity	theory	‘lean	ontology’,	an	open-world	ontology	is	

held	(Cilliers,	1998;	Kruger	et	al.,	2019).	This	posits	that	the	interplay	
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of	causal	powers	or	tendencies	of	domains	of	‘the	real’	leads	to	

particular	events,	‘the	actual’	(Mingers,	2005).		These	domains	may	

be	physical,	social	or	conceptual	and	these	events	may	be	observable	

or	experienced	by	people	and	therefore	become	empirical,	but	that	as	

a	whole	the	world	is	open	to	multiple	interacting	influences	and	to	

ignore	such	layers	of	influence	serves	no	analytical	benefit	(Cilliers,	

1998;	Cilliers,	2010;	Mingers,	2005).	Epistemologically	in	recognising	

that	all	knowledge,	whilst	provisional,	is	historically	and	culturally	

relative	both	epistemic	reality	(observer-independent	access	as	a	

fallacy)	and	judgmental	relativity	(rational	grounds	for	theory	

preference)	are	accepted	(Mingers,	2005).	By	amalgamating	

operational	and	healthcare	research	disciplines	in	this	way	this	

research	seeks	to	be	theory	driven	and	empirically	focused	from	a	

complexity	perspective.	Through	a	‘systems	mindset’	methodological	

pluralism	is	embraced	to	expand	the	methodological	repertoire	

(Cilliers,	1998;	Kruger	et	al.,	2019).	Specifically	how	imperfect	data	

can	be	better	utilised	within	statistical	simulation	models	will	be	

explored	so	that,	as	Long	et	al.	(2018)	have	suggested,	the	potential	

for	simulation	modelling	in	the	study	of	complexity	in	healthcare	can	

be	explored	to	attempt	to	expand	capabilities	for	handling	the	

emergent	and	uncertainty.	Methods	of	statistical	modeling	and	their	

ability	to	cope	with	uncertainty	and	capture	system	complexity	will	

also	be	explored.				

1.3	Research	Aims	and	Objectives		

The	aim	of	this	research	is	to	facilitate	the	advancement	of	

personalised	realistic	medicine	in	the	delivery	of	pancreatic	cancer	

services	through	statistical	modelling	that	will	facilitate	better	shared	
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decision	making	with	patients	and	the	entire	multi-disciplinary	team	

to	optimise	individual	patient	outcomes	as	determined	by	the	

individual	patient.		The	impact	of	this	research	in	reducing	

unnecessary	investigations	and	treatments	will	be	assessed	through	

cost-effectiveness	analysis	of	treatment	pathways.		

Particular	areas	of	interest	will	be:	

• Analysis	of	neoadjuvant	versus	upfront	surgery	pathways	for	

patients	presenting	with	potentially	resectable	pancreatic	

cancer	in	terms	of	quality-adjusted	health	outcomes	and	cost-

effectiveness	

• Improved	patient	selection	and	risk	stratification	of	patients	

for	pancreatic	cancer	surgery	in	both	the	pre	and	post-

operative	phases	of	the	patient	journey			

• Improved	individualised	prognostic	predictions	across	

competing	treatment	pathways		

	

Statistical	modelling,	offering	visualisation	within	a	logical	

framework	of	a	sequence	of	events	resulting	from	alternative	

treatment	decisions	and	associated	health	and	cost	outcomes,	could	

go	some	way	to	achieving	these	aims	(Kuntz	et	al.	2013).	Ultimately	

however	such	models	will	seek	to	assist	with	decision	making	rather	

than	make	statements	about	truth	(Kuntz	et	al.	2013).		

	

This	research	seeks	to	go	further	and	use	statistical	modelling	to	give	

individualised	predictions	of	outcome	so	that	the	care	delivered	to	
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pancreatic	cancer	patients	can	be	truly	‘realistic’	to	them	as	

individuals.		Perhaps	one	particular	goal	highlighted	by	the	CMO	

holds	the	key	to	achieving	this:	creativity	and	innovation	(The	

Scottish	Government,	2017).	The	specific	objectives	of	this	research	

are:		

1. Perform	detailed	decision-analysis	of	competing	treatment	

pathways:	upfront	surgery	versus	neoadjuvant	therapy,	to	

explore	thresholds	pertaining	to	individual	patient	and	tumour	

factors	that	could	determine	superiority	of	competing	

treatment	strategies	at	an	individualised	patient	level.	To	

achieve	this	various	approaches	to	statistical	modeling	

including	hybrid	modeling	approaches	will	be	employed		

2. Perform	cost-effectiveness	analysis	of	competing	treatment	

pathways	for	potentially	resectable	cases	of	pancreatic	cancer	

to	assess	the	wider	economic	impact	of	improved	

individualised	treatment	pathway	selection.	The	impact	of	

using	a	variety	of	modeling	techniques	in	addressing	this	issue	

will	also	be	assessed				

3. Perform	detailed	analysis	of	the	West	of	Scotland	Pancreatic	

Unit	20year	prospectively	maintained	database	to	identify	pre-

operative	variables	that	predict	survival	outcomes.	Within	this	

a	subgroup	analysis	of	resectable	only	cases	will	be	conducted	

to	offer	a	true	like-for-like	comparison	to	assess	the	impact	of	

pathway	selection	on	survival	outcomes	and	the	associated	

cost-effectiveness	impact		

4. Explore	whether	better	use	can	be	made	of	existing	data	and	

how	such	data	can	be	combined	with	available	institutional	

patient	level	data	within	a	variety	of	modeling	methods	to	
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develop	new	insights	into	the	ongoing	debate	and	areas	of	

uncertainty	concerning	pancreatic	cancer	management		

5. Create	predictive	prognostic	models	that	can	make	

personalised	predictions	of	survival	outcome	and	risk	of	

treatment	complications	or	failure	across	competing	treatment	

options,	based	on	individual	patient	and	tumour	factors,	at	the	

pre-operative	stage	of	the	patient	journey		

6. Expand	these	personalised	predictive	models	to	perform	

prognostic	updating	at	the	post-operative	stage	of	the	patient	

journey	across	alternative	post-operative	treatment	options	

and	potential	clinical	scenarios.		

1.4	Thesis	Overview	

The	thesis	will	be	arranged	as	follows.	Chapter	2	contains	the	

literature	review	which,	after	exploring	the	current	evidence	base	

surrounding	the	treatment	of	potentially	resectable	pancreatic	

cancer	and	outlining	the	existing	areas	of	debate	and	uncertainty,	

critically	analyses	how	and	to	what	degree	of	success	statistical	

modeling	has	been	applied	to	the	assessment	of	the	management	of	

pancreatic	cancer	in	terms	of	both	cost-effectiveness	analysis	and	

predictive	and	prognostic	modeling	including	the	role	of	emerging	

machine	learning	techniques	to	support	clinical	decision-making.	

This	chapter	concludes	by	demonstrating	that	overall	the	current	

application	of	statistical	modeling	to	support	decision	making	with	

regards	to	pancreatic	cancer	management	is	limited,	not	solely	by	the	

prevailing	flawed,	uncertain,	proximate	and	sparse	(FUPS)	data	

(Wolpert	&	Rutter,	2018),	but	by	a	failure	to	acknowledge	and	

attempt	to	engage	with	the	complexity	of	the	issue.	The	proceeding	
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methods	chapter	therefore	builds	the	case	for	why	and	how	the	

system	of	delivering	pancreatic	cancer	care	should	be	viewed	as	a	

complex	and	adaptive	system	in	order	to	gain	new	insights.	The	case	

is	made	that	by	using	complexity	theory	as	a	lens	through	which	to	

view	pancreatic	cancer	management,	the	existing	body	of	imperfect	

data	can	be	better	utilised	within	statistical	simulation	modeling	to	

expand	the	capabilities	of	modeling	techniques	to	handle	emergent	

and	uncertainty	and	gain	new	insights	that	will	facilitate	better	

shared	decision	making	and	go	some	way	to	making	personalised	

realistic	medicine	a	reality.		

The	results	chapter	opens	with	a	series	of	meta-analyses	of	the	

existing	body	of	published	data.	Conclusive	superiority	of	either	

upfront	surgery	or	neoadjuvant	pathway	could	not	be	established	

therefore	the	data	was	further	interrogated	through	Markov	

decision-analysis.	The	Markov	model	was	also	populated	with	patient	

level	data	from	the	West	of	Scotland	Pancreatic	Unit	database.	The	

sensitivity	analysis	as	part	of	these	analysis	demonstrated	

corroborating	thresholds	that	began	to	indicate	how	optimal	

treatment	pathway	selection	could	be	determined	by	individual	

patient	and	tumour	factors.	The	cost-effectiveness	implications	of	

such	factors	in	determining	treatment	pathway	selection	and	the	

impact	on	quality	as	well	as	quantity	of	survival	time	is	then	

explored.	This	analysis	adds	a	new	dimension	to	the	debate	

surrounding	the	treatment	of	potentially	resectable	pancreatic	

cancer	by	moving	the	focus	away	from	neoadjuvant	versus	upfront	

surgery	towards	the	planning	and	delivery	of	more	personalised	

care.	As	Markov	modeling	performs	cohort	level	analysis,	patient	

level	microsimulation	was	then	utilized	through	discrete	event	
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simulation	(DES)	modeling.	This	further	corroborated	individualised	

thresholds	for	optimal	pathway	selection	and	added	further	insight	

by	beginning	to	explore	‘what	if’	scenarios	had,	for	example,	those	

individual	patients	who	did	not	progress	to	surgery	within	the	

neoadjuvant	pathway	been	treated	within	an	upfront	surgery	

pathway.	This	form	of	patient-level	microsimulation	analysis	also	

proved	to	have	implications	for	cost-effectiveness	analysis	and	led	to	

the	exploration	of	the	implications	of	model	boundaries	on	the	

analysis	of	such	a	complex	system.	This	proved	to	be	an	important	

finding	as,	although	Markov	modeling	is	widely	used	as	a	modeling	

method	for	cost-effectiveness	analysis,	a	comparison	of	Markov	and	

DES	modeling	showed	that	the	latter	produced	survival	predictions	

closer	to	the	actual	survival	times	observed	within	the	institutional	

database.		

By	employing	statistical	modeling	techniques	that	engaged	with	

uncertainty	and	the	research	problem	as	a	complex	system,	

emergence	occurred	which	revealed	aspects	of	the	system	at	

individual	patient	level	that	impacted	upon	outcomes	and	could	

better	inform	decision	making,	but	that	had	previously	been	under	

appreciated.	Attention	therefore	turned	to	explore	how	such	

emergent	properties	could	be	better	used	to	facilitate	better	shared	

decision	making.	Specifically	the	application	of	Bayesian	network	

modeling	to	assess	risk	and	explore	the	potential	of	this	modeling	

technique	in	making	personalised	predictions	of	outcome	was	

explored.	A	Bayesian	belief	network	that	could	make	better	use	of	the	

existing	imperfect	data	to	engage	with	complexity	to	address	the	

limitations	of	pre-existing	prediction	models	to	provide	personalised	

predictions	of	outcomes	across	competing	treatment	strategies	pre-
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operatively	and	perform	prognostic	updating	at	the	post-operative	

stage	of	the	patient	journey	was	consequently	created	and	externally	

validated.		

This	thesis	then	concludes	with	a	discussion	regarding	the	impact	

and	future	direction	of	this	research.	This	centres	on	the	potential	of	

the	statistical	models	developed	here	to	encompass	anticipated	

future	breakthroughs	in	precision	medicine	by	offering	a	vehicle	to	

integrate	such	large	and	complex	genetic	databases	with	pre-existing	

clinical	data	to	make	individualised	predictions	of	outcomes	and	

clinically	deliver	personalised	precision	medicine.	This	potential	

however	is	also	discussed	within	the	context	of	the	need	for	further	

research	structured	around	the	Non-adoption,	Abandonment,	and	

challenges	to	the	Scale-up,	Spread	and	Sustainability	(NASSS)	

framework	of	health	an	care	technologies	(Greenhalgh	et	al.,	2017).													
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Chapter	2	

	

Literature	Review	
	

2.1	Current	Evidence-Base	Underpinning	The	

Management	of	Potentially	Resectable	Pancreatic	

Cancer	
		

Introduction		

	

Pancreatic	cancer	is	a	devastating	disease	associated	with	aggressive	

tumour	biology,	poor	survival	outcomes	and	increasing	incidence	

rates	(McGuigan	et	al.,	2018).	Globally	it	is	ranked	as	the	fourteenth	

most	common	cancer	with	an	estimated	458,918	new	diagnosis	made	

in	2018	(International	Agency	for	Research	on	Cancer,	World	Health	

Organisation	(WHO),	2018).	It	is	the	seventh	most	common	global	

cause	of	cancer	death	with	an	estimated	432,242	global	pancreatic	

cancer	deaths	in	2018	(International	Agency	for	Research	on	Cancer,	

WHO,	2018).	Age-standardised	incidence	rates	are	highest	in	Europe	

and	Northern	America	(Ilic	&	Ilic,	2016)	with	an	increasing	trend	in	

incidence	rates	most	marked	within	the	developed	Western	world	

(Wong	et	al.,	2017;	Saad	et	al.,	2018).	It	is	estimated	that	by	2030	

pancreatic	cancer	will	have	risen	from	being	the	fourth	to	the	second	

most	common	cause	of	cancer	related	death	in	the	USA	(Siegel	et	al.,	

2017;	Rahib	et	al.,	2014).		
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An	overview	of	the	treatment	pathway	options	for	pancreatic	cancer	

is	provided	in	Figure	1.	Surgery	is	the	only	potentially	curative	form	

of	treatment	but	an	estimated	80%	to	85%	of	patients	present	with	

inoperable	metastatic	disease	(Vincent	et	al.,	2011)	with	only	10%	to	

20%	of	cases	deemed	to	be	resectable	at	presentation	(Jemal	et	al.,	

2010;	Levy	et	al.,	2016).		The	most	recent	estimates	from	the	UK	

report	the	percentage	of	resectable	cases	to	be	at	only	9.8%	(CRUK,	

2019).	Surgery	remains	a	largely	morbid	endeavor	with	potential	

benefits	nullified	by	local-regional	recurrence	in	75%	of	cases,	with	

synchronous	distant	failure	in	50%	to	80%	of	cases,	within	months	of	

resection	(Papavasiliou	et	al.,	2014;	Iacobuzio-Donahue	et	al.,	2009;	

Hishinuma	et	al.,	2006).	The	reasons	for	this	are	multifactorial	and	

include	non-specific	symptoms	resulting	in	delayed	diagnosis	and	the	

close	anatomical	relationship	of	the	pancreas	to	major	blood	vessels	

making	tumour	invasions	and	spread	a	high	probability	(Evans	et	al.,	

2018;	McGuigan	et	al.,	2018;	Canto	et	al.,	2013).			

	

The	purpose	of	this	research	is	to	explore	ways	in	which	outcomes	in	

pancreatic	cancer	can	be	improved	through	the	delivery	of	more	

personalised	realistic	care	aided	by	the	application	of	statistical	

modeling.	Pertinent	breakthroughs	and	controversies	in	the	

management	of	pancreatic	cancer	will	now	be	explored	to	

contextualise	the	statistical	models	developed	through	the	research	

presented	in	this	thesis.	Specific	areas	that	will	be	covered	relate	to	

the	key	aspects	of	competing	treatment	pathways	(Figure	1)	and	

include	advances	and	controversies	in:	1)	the	staging	of	pancreatic	

cancer	and	its	implications	on	treatment	goals	and	predicted	
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outcomes,	2)	the	application	of	surgery,	3)	adjuvant	therapies	and	4)	

neoadjuvant	therapies.		

	

As	the	focus	is	on	management	pathways	following	diagnosis	early	

detection,	screening	and	modifiable	risk	factors	are	beyond	the	scope	

of	this	research.	This	discussion	opens	with	a	brief	summary	of	the	

current	understanding	of	the	pathology	of	pancreatic	cancer	and	is	

supported	by	an	expanded	discussion	in	appendix	A.	This	is	

presented	not	only	as	background	knowledge	but	also	provides	

context	for	the	discussion	within	the	methods	chapter	of	the	disease	

of	pancreatic	cancer	as	a	complex	system	acting	within	a	complex	

system,	the	patient,	who	forms	part	of	a	wider	complex	system,	the	

healthcare	system.	This	also	provides	context	for	the	discussions	

regarding	the	ongoing	research	focusing	on	biomarker	and	gene	

target	therapies.	Whilst	such	developments	are	in	their	infancy,	and	

therefore	beyond	the	current	scope	of	inclusion	within	the	statistical	

models	presented	within	this	thesis,	they	are	included	to	facilitate	

the	discussion	within	the	penultimate	chapter	of	this	thesis	regarding	

the	future	application	and	impact	of	the	research	presented	here.		
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Figure	1:	Overview	of	Treatment	Pathways	for	the	Management	of	

Pancreatic	Cancer		

	

	
	

2.1.1	Pathology	of	Pancreatic	Cancer	

	

Pancreatic	ductal	adenocarcinoma	(PDAC)	and	its	morphological	

variants	account	for	90%	of	all	exocrine	pancreatic	carcinomas	

(Feldman	et	al.,	2007;	Kloppel	et	al.,	2001;	Collisson	et	al.,	2019).	

These	variants,	recognised	by	the	World	Health	Organization	(WHO)	

classification	of	pancreatic	tumours,	the	main	ones	of	which	are	

outlined	in	table	1,	are	significant	in	that	they	have	different	

histological	features,	molecular	signatures	and	prognosis	(Luchini	et	
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al.,	2016;	Reid	et	al.,	2014;	Verbeke	et	al.,	2016;	Hong	et	al.,	Bosman	

et	al.,	2018).	However,	they	are	currently	uninformative	with	regards	

to	management	decisions	with	many	cases	of	PDAC	defined	as	‘not	

otherwise	specified’	(Collisson	et	al.,	2019).		

	

Table	1:	Summary	of	variants	of	PDAC	(Bosman	et	al.,	2018).		

PDAC	morphological	
variant	

Characteristics		 Prognosis	
compared	to	
classic	
pancreatic	
adenocarcinoma.	

Adenosquamous	
carcinoma	

At	least	30%	
component	ductal,	
glandular	and	
squamous	
differentiation.		

Worse	

Colloid/mucinous	
carcinoma	

Arise	in	association	
with	intraductal	
papillary	mucinous	
neoplasm.	Produce	
excess	amounts	of	
extracellular	stromal	
mucin.		

Better	

Undifferentiated/	
anaplastic		

Cells	appear	spindled	
or	sarcomatoid	with	
osteoclast-like	giant	
cells.	Very	aggressive	
form	with	very	poor	
prognosis	

Similar	

Signet	ring	cell	
carcinoma	

Very	rare.	Singularly	
invasive	cell	with	
intracytoplasmic	mucin.		

	

Medullary	carcinoma		 Pleomorphic	epithelial	
cells	with	intratumoral	
lymphoid	infiltrate.		

Slightly	better	

Hepatoid	carcinoma		 Morphology	similar	to	
hepatocellular	
carcinoma.	Very	rare.		

Similar	
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PDAC	develops	through	a	series	of	step-wise	mutations	from	normal	

mucosa	to	precursor	lesions	(the	best	characterised	of	which	are:	

pancreatic	intraepithelial	neoplasms	(the	most	common),	intraductal	

papillary	mucinous	neoplasms	and	mucinous	cystic	neoplasms)	

(Esposito	et	al.,	2014)	before	ultimately	becoming	invasive	

malignancy	(Mohammed	et	al.,	2014).	An	understanding	of	this	

process	at	molecular	level	is	only	just	beginning	to	emerge	(Appendix	

A).		

	

In	summary	the	burgeoning	deeper	understanding	of	pancreatic	

cancer,	even	when	more	specifically	defined	as	PDAC,	at	a	molecular	

level	sheds	light	on	the	complex	and	highly	heterogeneous	nature	of	

this	disease	(McGuigan	et	al.,	2018;	Collisson	et	al.,	2019).	However	

currently	histopathological	classifications	do	not	inform	clinical	

decisions	as	they	do	in	other	cancer	types	(Collisson	et	al.,	2019).	The	

purpose	of	this	section	and	appendix	A	is	firstly	to	demonstrate	how	

an	emerging	meaningful	and	clinically	applicable	molecular	

taxonomy	could	in	the	near	future	partly	inform	clinical	decision	

making	(McGuigan	et	al.,	2018;	Collisson	et	al.,	2019)	but,	as	will	later	

be	explained,	only	if	this	fits	within	a	wider	complex	system	that	is	

the	patient	within	the	complex	reality	of	the	healthcare	system	

delivering	pancreatic	cancer	care.	The	second	purpose	is	to	

demonstrate	how	the	complexity	and	heterogeneous	nature	of	the	

disease	at	molecular	level	is	intrinsically	linked	with,	and	contributes	

to,	the	uncertainty,	ambiguity	and	complexity	that	surrounds	other	

key	components	of	the	treatment	pathway	for	pancreatic	cancer	as	

will	now	be	explored.														
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2.1.2	Staging	Of	Pancreatic	Cancer		

	

Surgery	is	the	only	potentially	curative	treatment	for	pancreatic	

cancer.	Furthermore,	it	has	been	established	that	the	delivery	of	

multimodal	treatment	(surgery	in	combination	with	either	

chemotherapy	or	chemoradiotherapy)	within	either	a	neoadjuvant	or	

upfront	surgery	pathway	results	in	improved	survival	time	(Evans	et	

al.,	2018).	Inherent	in	the	decision	to	deliver	multimodal	treatment	is	

first	the	identification	of	patients	with	potentially	resectable	disease.	

	

Potentially	resectable	pancreatic	cancer	can	include	resectable,	

borderline	resectable	and	some	locally	advanced	stages	of	the	

disease.	Whilst	diagnostic	imaging	to	determine	the	tumour	

relationship	to	major	blood	vessels,	and	specifically	in	overcoming	

the	challenge	of	distinguishing	tumour	vascular	invasion	from	

inflammatory	changes,	has	been	assisted	by	structured	imaging	

protocols	centering	around	high	resolution	computerised	

tomography	(CT)	scanning	as	the	first	line	imaging	modality	(Al-

Hawary	et	al.,	2014),	staging	pancreatic	cancer	remains	problematic	

as	accurate	pathological	staging	can	only	truly	be	complete	after	

surgical	resection	(Wray	et	al.,	2005).	This	matters	because	the	

clinical	implications	of	how	the	staging	of	pancreatic	cancer	is	

defined	are	potentially	mastodonic	as	will	now	be	illustrated.		

	

An	objectively	defined	staging	system	allows	treatment	goals	to	be	

more	clearly	agreed	and	defined	between	clinicians	and	patients	

resulting	in	better	management	of	patient	expectations	(Evans	et	al.,	

2018).	The	American	Joint	Committee	on	Cancer	(AJCC)	in	
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cooperation	with	the	Tumour	Node	Metastases	(TNM)	committee	of	

the	International	Union	Against	Cancer	staging	system	(table	2)	is	

widely	used	and	is	prognostic	for	overall	survival	with	locally	

advanced	and	metastatic	disease	having	a	10	to	12	months	and	4	to	

6months	approximate	survival	times	respectively	(Wray	et	al.,	2005).	

However,	it	has	significant	limitations	in	guiding	treatment	decisions	

with	some,	but	importantly	not	all,	patients	with	AJCC	stage	IVA	

disease	being	found	to	be	candidates	for	surgical	resection	(Wary	et	

al.,	2005).	This	led	to	clinicians	grouping	disease	as	resectable,	locally	

advanced	or	metastatic	based	on	imaging	(Wray	et	al.,	2005).	As	

methods	of	preoperative	staging	and	the	understating	of	the	

interpretation	of	these	have	evolved,	a	grey	zone	emerged	between	

tumours	that	were	defined	as	resectable	at	presentation	and	those	

that	were	locally	advanced	(Evans	et	al.,	2010).	Specifically	tumours	

with	short	superior	mesenteric	vein-	portal	vein	(SMV-PV)	occlusion	

and	arterial	abutment,	that	were	previously	defined	as	locally	

advanced,	were	in	some	cases	found	to	respond	to	neoadjuvant	

therapy	and	therefore	considered	for	surgery.	A	new	definition	of	

borderline	resectable	disease	therefore	emerged	for	such	tumours	

(Evans	et	al.,	2010)	as	importantly	these	tumours	were	different	

from	resectable	tumours	as	they	carried	a	higher	risk	of	positive	

resection	margins,	required	a	more	complicated	surgical	resection	

involving	vascular	resection	and	reconstruction,	and	carried	a	higher	

risk	of	radiologically	occult	metastatic	disease	(Evans	et	al.,	2010).	In	

2010	the	National	Comprehensive	Cancer	Network	(NCCN)	adopted	a	

set	of	guidelines	that	was	established	through	an	expert	working	

group	to	attempt	to	establish	a	universal	criteria	for	resectable,	

borderline	resectable	and	locally	advanced	pancreatic	disease	
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(Tempero	et	al.,	2017;	Callery	et	al.,	2009).	Whilst	this	has	improved	

reporting,	inter-institutional	variations	regarding	how	resectability	is	

defined	still	exists	across	trials	and	continues	to	impact	on	decision	

making	(Raufi	et	al.,	2019).		

	

Table	2:	AJCC	Staging	and	Corresponding	TNM	Classification	

	

AJCC	Stage	 TNM	Classification	
IA	 T1	(tumour	limited	to	pancreas	

and	measures<2cm),	N0	(no	
regional	lymph	node	metastasis),	
M0	(no	distant	metastases)	
T1a:	≤0.5cm	&	<1cm	
T1b:	>0.5cm	&	<1cm	
T1c:	1-2cm	

IB	 T2	(tumour	limited	to	pancreas	
but	measures	≥2cm	&		≤4cm),	N0,	
M0	

II	 T3	(tumour	>	4cm	extends	into	
duodenum,	bile	duct	or	peri	
pancreatic	tissues),	N0,	M0	

III	 T1,	N1	(regional	lymph	node	
metastases),	M0;		
T2,	N1,	M0;		
T3,	N1,	M0	

IVA	 T4	(tumour	extends	in	to	
stomach,	spleen,	colon	or	celiac	
axis	vessels),	any	N,	M1	(distant	
metastasis)	

IVB	 Any	T,	any	N,	M1	
	

	

These	issues	are	further	compounded	in	the	neoadjuvant	setting	

where	recent	studies	have	called	into	question	the	accuracy	of	

current	imaging	techniques	in	predicting	disease	status	post	

neoadjuvant	therapy	(Katz	et	al.,	2012).	A	review	of	122	cases	of	
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borderline	resectable	pancreatic	cancer	imaged	after	neoadjuvant	

therapy	revealed	that	only	one	patient	had	their	disease	downstaged	

to	resectable	yet	85	of	these	patients	actually	underwent	resection	

with	81	achieving	R0	resection	(Katz	et	al.,	2012).	Although	

structured	reporting	strategies	have	been	established	in	an	attempt	

to	facilitate	patient	selection	and	mitigate	discrepancies,	these	have	

yet	to	be	widely	adopted	(Al-Hawary	et	al.,	2014;	Raufi	et	al.,	2019).	

More	recently	there	has	been	a	move	to	subdivide	locally	advanced	

tumours	into	type	A,	where	surgery	may	be	possible	after	

neoadjuvant	chemotherapy	or	chemoradiotherapy,	and	type	B	where	

surgery	is	unlikely	to	be	possible	(Evans	et	al.,	2015)	(table	3).	This	

has	corresponding	clinical	significance	as	the	likelihood	of	successful	

surgical	resection	following	neoadjuvant	therapy	for	resectable,	

borderline	resectable	and	locally	advanced	type	A	and	B	is	estimated	

as	being	90%,	75%,	60%	and	25%	respectively,	although	the	latter	

estimate	is	based	on	small	numbers	and	could	prove	to	be	overly	

optimistic	(Evans	et	al.,	2018).		
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Table	3:	Definitions	of	Resectable,	Borderline	Resectable	and	Locally	

Advanced	PDAC	Subdivided	into	Type	A	and	B	(Evans	et	al.,	2018).	

	
Tumour-Vascular	Anatomy	

	 Resectable	 Borderline	
Resectable	

Locally	Advanced	
Type	A	

Locally	Advanced	
Type	B	

Superior	
Mesenteric	
Artery	(SMA)		

No	
abutment	or	
encasement	

≤180°	(abutment)	 >180°	
(encasement)	but	
≤270°	

>270°	encasement	

Celiac	Artery	 No	
abutment	or	
encasement	

≤180°	(abutment)	 >180°	
(encasement),	does	
not	extend	to	
aorta,	amenable	to	
celiac	resection	

>180°	and	
abutment/	
encasement	of	aorta	

Hepatic	
Artery	

No	
abutment	or	
encasement	

Short-segment	
abutment	or	
encasement.	No	
extension	to	celiac	
artery	or	hepatic	
artery	bifurcation	

>180°	
(encasement),	
extends	to	celiac	
artery	and	
amenable	to	
vascular	
reconstruction	

>180°	encasement	
with	extension	
beyond	bifurcation	
of	hepatic	artery	
into	right	and	left	
hepatic	arteries		

Superior	
Mesenteric	
Vein-Portal	
Vein	(SMV-
PV)	

≤50%	
narrowing		

>50%	narrowing	
with	distal	and	
proximal	target	for	
reconstruction	

Occlusion	without	
option	for	
reconstruction	

Occlusion	without	
option	for	
reconstruction	

	

	

Even	where	surgery	is	anatomically	and	technically	possible	it	is	the	

achievement	of	microscopically	negative	surgical	margins,	R0	

resection,	which	determines	survival	outcome	(Kanda	et	al.,	2014).	

This	is	important	as	numerous	studies	have	shown	that	patients	who	

have	undergone	surgical	resection	but	with	microscopically	positive	

resection	margins	(R1	resection)	or	macroscopically	positive	

resection	margins	(R2	resection)	have	had,	outside	a	neoadjuvant	

setting,	similar	survival	outcomes	to	those	treated	non-operatively	

(Wray	et	al.,	2005).	This	again	highlights	the	importance	of	deciding	

treatment	pathway	selection	at	an	individual	patient	level	to	

optimise	outcomes.		
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The	survival	time	for	patients	with	borderline	or	locally	advanced	

disease	that	responds	to	neoadjuvant	therapy	has	improved,	as	will	

later	be	discussed	in	the	section	on	neoadjuvant	therapy.	However	

ambiguity	remains	across	these	studies	as	the	definition	of	R0	and	R1	

resection	is	contested	with	the	Union	for	International	Cancer	

Control	and	College	of	American	Pathologists	defining	R1	resection	

as	the	presence	of	microscopic	cancer	cells	at	the	definite	resection	

margin	whilst	the	Royal	College	of	Pathologists	define	R1	resection	as	

the	presence	of	tumour	within	1millimeter	of	the	resection	margin	

(Kim	et	al.,	2017).	Different	definitions	of	R0	and	R1	resection	have	

therefore	been	used	across	studies	and	the	precise	definition	being	

used	is	not	always	made	clear.	Despite	this	the	undisputed	aim	of	

surgery	continues	to	be	R0	resection	as	this	is	associated	with	

superior	survival	outcomes	(Kanda	et	al.,	2014).		

	

Ultimately	however	the	reality	of	the	narrative	becomes	much	more	

complicated	as	each	disease	stage	is	likely	to	have	different	

anticipated	outcomes	even	if	they	undergo	surgical	resection	with	

full	pathological	staging	not	being	possible	until	after	resection.	The	

narrative	that	surgical	resection	is	the	only	potentially	curative	

treatment	is	not	realistic	for	many	patients.		

	

There	is	currently	incomplete	consensus	about	the	working	

definition	of	operable	pancreatic	cancer	in	terms	of	both	tumour	

anatomy,	as	discussed,	and	also	patient	factors	(Evans	et	al.,	2018).	

To	illustrate,	increasing	age	brings	increased	co-morbidities	but	age	

alone	cannot	determine	operability	(Ansari	et	al.,	2016a).	Many	
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patients	are	malnourished	at	the	time	of	diagnosis,	which	has	

implications	of	an	impaired	immune	system	(Argiles,	2005)	and	low	

albumin	has	also	been	identified	as	a	risk	factor	for	post-operative	

complications	(La	Torre	et	al.,	2013).	More	recently	it	has	been	

recognised	that	25%	of	patients	with	resectable	disease	have	

sarcopenia	which	has	been	shown	to	predict	major	post-operative	

complications,	longer	hospital	stay	(including	intensive	care	unit	

stay),	and	increased	risk	of	infectious	and	cardiopulmonary	

complication	during	post-operative	recovery	resulting	in	impaired	

long-term	survival	(Joglekar	et	al.,	2015).	Cardio	pulmonary	exercise	

testing	(CPET)	is	widely	being	used	to	assist	pre-operative	

assessment	but	whilst	this	has	helped	to	identify	subgroups	at	higher	

operative	risk,	mortality	is	low	therefore	it	is	not	fully	adequate	as	a	

discriminatory	tool	(Junejo	et	al.,	2014).	Obstructive	jaundice	impairs	

outcomes	following	pancreatic	resection	but	more	recently	it	has	

been	discovered	that	surgery	within	one	week	of	the	diagnosis	of	

obstructive	jaundice	can	actually	reduce	the	overall	postoperative	

morbidity	rate	(Van	Der	Gaag	et	al.,	2010)	making	early	surgery	

without	biliary	drainage	the	treatment	of	choice	in	such	

circumstances	provided	serum	bilirubin	levels	are	below	300	μmol/l	

(Tol	et	al.,	2015;	Sauvanet	et	al.,	2015).										

	

In	summary	the	narrative	must	evolve	beyond	surgery	being	the	only	

potentially	curative	treatment	to	an	understanding	that	for	some	

patients	with	operable	disease	the	potential	benefits	of	surgery	in	

terms	of	disease	free	survival	may	be	at	best	limited	(Evans	et	al.,	

2018).	Furthermore	the	decision	to	operate	requires	a	

comprehensive	assessment	of	the	individual	patient’s	physical	and	
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mental	capacity	to	cope	with	the	insult	of	surgery,	as	well	as	their	

personal	preferences	and	treatment	goals,	to	reach	a	shared	decision	

based	on	risks	and	benefit	to	that	patient	(Ansari	et	al.,	2016a).	This	

requires	a	move	towards	better	patient	selection	across	competing	

treatment	pathways	to	deliver	individualised	treatment	sequencing	

and	stage	specific	therapy	to	optimise	individual	patient	outcomes.	

This	also	poses	the	challenge	as	how	best	to	use	and	then	convey	

such	complex	information	to	patients	to	facilitate	the	shared	decision	

making	process.	

	

2.1.3	Pancreatic	Cancer	Surgery	

	

In	recent	years	health	services	have	been	reorganised	so	that	

pancreatic	cancer	surgery	is	now	mainly	performed	at	high	volume	

centres	by	experienced	surgeons	with	the	resulting	increase	in	

surgical	expertise	being	reflected	in	improved	outcomes	and	

morbidity	and	mortality	rates	falling	to	22.7%	and	1.3%	respectively	

(Rohrmann	et	al.,	2009;	Bliss	et	al.,	2014;	Gall	et	al.,	2015;	Evans	et	

al.,	2018).	Enhanced	Recovery	After	Surgery	(ERAS)	programs	have	

also	become	part	of	routine	care	within	these	healthcare	settings,	

which	has	been	shown	to	reduce	complications,	length	of	hospital	

stay	and	costs	(Coolsen	et	al.,	2013;	Williamsson	et	al.,	2015;	Ansari	

et	al.,	2013).	However,	the	ambiguity	surrounding	disease	staging	

and	definitions	of	operability	also	permeate	decision	making	even	

when	the	decision	is	taken	to	proceed	with	surgical	resection	as	will	

now	be	explained.	
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The	majority	of	PDACs	(65%)	arise	in	the	head	of	the	pancreas	and	

their	removal	requires	a	pancreaticoduodenectomy	either	in	the	

form	of	a	Whipple	procedure	or	a	pylorus	preserving	

pancreaticoduodenectomy	(Artinyan	et	al.,	2014).	Distal	

Pancreatectomy	is	performed	with	splenectomy	for	PDACs	of	the	

body	and	tail	of	the	pancreas	(Gall	et	al.,	2015).	The	main	

postoperative	complications	for	each	procedure	are	outlined	in	table	

4.		

	

Table	4:	Summary	of	Postoperative	Complications		

	

Post-operative	Complications	of	
Pancreaticoduodenectomy		

Post-operative	Complications	of	
Distal	Pancreatectomy	

Delayed	gastric	emptying	(20-
50%)	(Lermite	et	al.,	2013)	
Postoperative	Pancreatic	Fistula	
(10-15%)	(Lermite	et	al.,	2013)	
Wound	infection	(11%)	
(Grobmyer	et	al.,	2007)	
Postoperative	bleeding	(4-16%)	
(Lermite	et	al.,	2013)	
Anastomotic	leaks	including	
biliary	fistulae	(1-5%)(Lermite	et	
al.,	2013)	
Intestinal	fistulae	(3-
8%)(Lermite	et	al.,	2013)	
Pancreatitis	(2-3%)	(Lermite	et	
al.,	2013)	
Ischemic	complications	(1%)	
(Lermite	et	al.,	2013)	

Postoperative	Pancreatic	Fistula	
(6-32%)	(Pericleous	et	al.,	2012)	
Pancreatic	insufficiency	with	
endocrine	failure	(23.4%)	
(Iacono	et	al.,	2013)	
Pancreatic	insufficiency	with	
exocrine	failure	(15.6%)(Iacono	
et	al.,	2013)	
Risk	of	sepsis	triggered	by	
Streptococcus	pneumonia,	
Neisseria	meningitides	and	
Haemophilus	influenza	35	times	
higher	than	general	population	
(Hansen	&	Singer,	2001)	with	
incidence	of	infection	3.2%	and	
mortality	1.4%(Bisharat	et	al.,	
2001)		
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As	previously	discussed	tumour	anatomy	in	relation	to	major	vessels	

determines	resectability.	The	International	Study	Group	of	Pancreatic	

Surgery	(ISGPS)	presented	a	consensus	statement	to	prevent	

borderline	resectable	tumours	being	classified	as	unresectable	

(Bockhorn	et	al.,	2014).	Specifically	borderline	tumours	of	the	head	

of	the	pancreas	can	have	venous	involvement	with	narrowing	and	

occlusion	of	the	SMV-PV	provided	there	are	no	distant	metastasis	and	

suitable	proximal	and	distal	vessels	to	allow	safe	vein	resection	and	

reconstruction.	The	gastroduodenal	artery	may	be	encased	and	there	

may	be	short	encasement	of	the	hepatic	artery	but	any	abutment	of	

the	SMA	must	be	bellow	50%	with	no	involvement	of	the	celiac	

artery	(National	Comprehensive	Cancer	Network	(NCCN),	2015;	

Bockhorn	et	al.,	2014).	For	tumours	of	the	body	and	tail	contact	with	

the	celiac	artery	is	permitted	but	only	if	encasement	is	less	than	50%	

(NCCN,	2015;	Bockhorn	et	al.,	2014).	Whilst	this	provides	clear	

guidance	on	what	tumours	are	now	deemed	to	be	technically	

resectable,	the	benefit	of	resecting	mesenteric	and	portal	vessels	that	

have	been	invaded	by	tumour	is	controversial	(Yu	et	al.,	2014;	Ansari	

et	al.,	2016b).	Appendix	B	provides	a	detailed	discussion	of	the	

developments	and	controversies	surrounding	pancreatic	cancer	

surgery.		

	

To	summarise	the	points	being	made	in	more	detail	in	appendix	B	

with	regards	to	optimising	outcomes	for	pancreatic	cancer	surgery,	

firstly	surgical	resection,	specifically	R0	resection,	performed	in	a	

high	volume	specialist	centre	by	experienced	surgeons	and	where	an	

ERAS	programme	is	in	place,	has	been	shown	to	optimise	operative	

outcomes	and	minimise	risk.	Secondly	arterial	resection	is	not	
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currently	recommended	due	to	the	associated	risks	of	morbidity	and	

mortality.	Thirdly	venous	resection	has	not	demonstrated	an	

increased	morbidity	and	mortality	risk	profile.	Whilst	venous	

involvement	is	not	a	contraindication	to	surgery,	the	impact	on	

survival	outcomes	of	routine	venous	resection	where	venous	

invasion	is	thought	to	be	probable	has	not	been	conclusively	

established	but	achieving	R0	resection	remains	the	goal	of	

performing	resection.	Fourthly	laparoscopic	approach	has	not	been	

conclusively	established	as	being	superior	to	open	approach.	

Modified	approaches	to	resection	have	reported	increased	R0	

resection	rates	but	often	with	higher	morbidity	and	mortality	profiles	

and	any	reported	survival	advantage	is	debatable.	The	evidence	base	

underpinning	these	areas	of	debate	(vascular	resection,	laparoscopic	

approach,	modified	techniques)	is	mainly	level	III	evidence	with	

observational	studies	potentiating	a	high	degree	of	selection	bias	

therefore	ambiguity	prevails.		

	

The	importance	of	establishing	this	in	moving	the	discussion	forward	

to	explore	the	evidence	base	underpinning	developments	in	adjuvant	

and	neoadjuvant	therapies	is	that	outcomes	for	such	therapeutic	

approaches	are	discussed	in	terms	of	corresponding	resection	rates	

and	complications	(when	the	definition	of	resectability	lacks	

complete	consensus	and	potentially	significant	exactitudes	of	the	

surgical	approach	are	seldom	given)	and	resection	margins	(the	

definition	of	which	are	debated),	all	of	which	impacts	on	the	

interpretation	of	reported	survival	outcomes.						
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2.1.4	Adjuvant	Therapy	

	

As	pancreatic	surgery	has	evolved	from	a	high-risk	procedure	to	a	

challenging	and	relatively	safe	procedure	in	high	volume	specialist	

centres	(Kleeff	et	al.,	2016;	Hartwig	et	al.,	2013)	it	has	become	

evident	that	surgery	alone	is	not	sufficient	treatment	as	greater	than	

90%	of	patients	who	undergo	potentially	curative	surgery	will	die	

from	disease	recurrence	without	additional	therapy	(Kleeff	et	al.,	

2016).	The	benefits	of	adjuvant	therapy	have	been	established	but	

until	recently	the	optimal	treatment	regime	and	modality	had	not	

been	established	with	the	role	of	adjuvant	chemoradiotherapy	

remaining	controversial	(Gall	et	al.,	2015;	Saif,	2013;	Conroy	et	al.,	

2018).	Furthermore	the	optimal	timing	and	duration	of	adjuvant	

therapy	has	not	been	established	(Gall	et	al.,	2015;	Saif,	2007;	Saif,	

2013).	

	

Adjuvant	Chemoradiotherapy	

	

Patients	with	stage	I	and	II	disease	who	undergo	surgical	resection	

alone	will	develop	local	reoccurrence	in	15%	of	cases	and	combined	

local	and	distal	recurrence	in	65%	of	cases	(Iacobuzio-Donahue	et	al.,	

2009).	Although	the	current	standard	of	care	is	adjuvant	

chemotherapy,	and	systematic	disease	remains	the	greatest	threat	to	

treatment	failure,	there	are	patients	who	could	benefit	from	localised	

treatment	in	the	form	of	inclusion	of	radiotherapy	with	the	rationale	



	 74	

of	preventing	local	recurrence	in	the	pancreatic	bed,	but	who	remain	

difficult	to	identify	(Saif,	2013;	Gall	et	al.,	2015).	Four	RTCs	have	

examined	the	role	of	adjuvant	chemoradiotherapy	in	cases	of	

resected	pancreatic	cancer	and	are	summarised	in	table	5	with	a	

supporting	discussion	in	appendix	C	critically	examining	the	strength	

and	limitations	of	these	trials.	

	

Table	5:	Summary	of	RCTs	of	Adjuvant	Chemoradiotherapy			

	

Trial	 Treatment	Arms	
(n=)	

Resection	
Margin	

Median	
Survival	in	
Months	(P	
value)	

GITSG	 Observation	(22)	 R0	 11	
5-FU	radiotherapy	
+	5-FU	(21)	

20	(P	=	0.035)	

EORTC	 Observation	(54)	 R0/R1	 12.6	
5-FU	
chemoradiation	
radiotherapy	(60)	

17.1	

ESPAC-1	 No	
chemoradiotherapy	
(178)	

R0/R1	 16.1	

Chemoradiotherapy	
(175)	

15.5	(P=	
0.235)	

No	chemotherapy	
(235)	

14.0	

Chemotherapy	
(238)	

19.7	(P=	
0.233)	

RTOG	97-04	 5-FU,	5-FU-based	
radiation	+	5-FU	
(230)	

R0/R1	 16.9	

Gemcitabine,	5-FU-
based	radiation	+	
gemcitabine	(221)	

20.5	(P=	0.9)	
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Adjuvant	Chemotherapy	

	

The	results	of	key	RCTs	of	adjuvant	chemotherapy	for	resected	

pancreatic	cancer	are	outlined	in	table	6	and	is	supported	by	a	

critical	analysis	of	these	trials	in	appendix	D.	Until	recently	what	had	

emerged	from	RCTs	was	a	preference	for	gemcitabine	based	adjuvant	

regimes	but	with	controversies	surrounding	toxicity	profiles	of	

regimes	and	variation	in	follow-up	strategies.	However,	the	

PRODIGE24/CCTG	trial	compared	gemcitabine	to	mFOLFIRINOX	(a	

combination	of	oxaliplatin,	irinotecan	and	leucovorin)	for	patients	

who	had	undergone	R0	and	R1	resection	(Conroy	et	al.,	2018).	

Interim	analysis	at	33.6months	has	demonstrated	that	mFOLFIRINOX	

was	associated	with	improved	disease-free	survival	(21.6months	

versus	12.8months)	and	overall	median	survival	(54.4months	v	

35month)	compared	to	gemcitabine	(Conroy	et	al.,	2018).	This	trial	

has	resulted	in	the	American	Society	of	Clinical	Oncology	(ASCO)	

Clinical	Practice	Guidelines	to	be	updated	to	recommend	the	

following:	

	

“all	patients	with	resected	pancreatic	adenocarcinoma	who	did	not	

receive	preoperative	therapy	should	be	offered	6	months	of	adjuvant	

chemotherapy	in	the	absence	of	medical	or	surgical	

contraindications.	The	modified	combination	regimen	mFOLFIRINOX	

as	used	in	the	latter	part	of	the	PRODIGE	24/CCTG	PA.6	trial	

(oxaliplatin	85	mg/m2,	leucovorin	400	mg/m2,	irinotecan	150	
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mg/m2	D1,	and	5-fluorouracil	2.4	g/m2over	46	hours	every	14	days	

for	12	cycles)	is	preferred	in	the	absence	of	concerns	for	toxicity	or	

tolerance;	alternatively,	doublet	therapy	with	gemcitabine	and	

capecitabine	or	monotherapy	with	gemcitabine	alone	or	fluorouracil	

plus	folinic	acid	alone	can	be	offered.”	(Conroy	et	al.,	2018,	p.1)	

								

Table	6:	Summary	of	RCTs	of	Adjuvant	Chemotherapy		

	

Trial	 Treatment	
Arms	(n=)	

Resection	
Margin	

Median	
Survival	in	
Months	(P	
value)	

CONKO-001	 Observation	
(175)	

R0/R1	 10.4	

Gemcitabine	
(179)	

20.7	(P=0.01)	

CONKO-005	 Gemcitabine	
(217)	

R0	 26.6	

	 Gemcitabine	+	
erlotinib	(219)	

	 24.6	

ESPAC-3	 Gemcitabine	
(539)	

R0/R1	 23.6	

5-FU	(551)	 23.0	(P=0.39)	
JASPAC-01	 Gemcitabine	

(190)	
R0	 25.5	

S-1	(187)	 46.5	
(P=<0.0001)	

ESPAC-4	 Gemcitabine	
(366)	

R0/R1	 25.5	

Gemcitabine	+	
capecitabine	
(365)	

28.0	(P=0.032)	

APACT	(n=866)	 Gemcitabine	
(NS)	

R0/R1	 36.2	

Gemcitabine	+	
nab-paclitaxel	
(NS)	

40.5	(P=0.045)	

PRODIGE24/CCTG	 mFOLFIRINOX	 R0/R1	 54.5	
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(247)	
Gemcitabine	
(246)	

35	(P=0.003)	

	

	

2.1.5	Neoadjuvant	Therapy	

	

Although	the	survival	benefit	of	adjuvant	therapy	has	been	

established,	between	71%	and	76%	of	patients	will	have	disease	

recurrence	within	2years	of	surgical	resection	(McGuigan	et	al.,	

2018).	Furthermore	up	to	50%	of	patients	will	not	be	suitable	to	

progress	to	adjuvant	therapy	postoperatively	due	to	early	disease	

recurrence	and/or	a	decline	in	physiological	function	following	the	

insult	of	major	surgery	with	or	without	treatment	complications	

(Winter	et	al.,	2012;	Ghosn	et	al.,	2016;	McGuigan	et	al,	2018).	Such	

figures,	coupled	with	the	evidence	of	the	success	of	neoadjuvant	

therapy	in	treating	other	forms	of	gastrointestinal	cancer	(primarily	

rectal,	esophageal	and	gastric	cancers)	has	resulted	in	neoadjuvant	

therapy	emerging	as	a	potential	strategy	for	the	treatment	of	

borderline	resectable	pancreatic	cancer	(Bockhorn	et	al.,	2014),	and	

also	cases	of	resectable	and	locally	advanced	disease	(Neoptolemos	

et	al.,	2019;	Gillen	et	al.,	2010;	Labori	et	al.,	2017).			

	

The	rationale	for	neoadjuvant	therapy	is	that	pancreatic	cancer	is	a	

systemic	disease	therefore	radiographic	imaging,	whilst	providing	

accurate	information	on	primary	tumour	to	vessel	relationship,	

underestimates	radiologically	occult	micrometastatic	disease	(Asare	

et	al.,	2016)	hence	systemic	treatment	should	be	initiated	earlier	in	

the	treatment	process.	It	follows	that	the	theoretical	benefit	of	
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neoadjuvant	therapy	is	the	elimination	of	micrometastases	and	

shrinkage	of	the	primary	tumour	which	reduces	the	incidence	of	

recurrence,	increases	conversion	to	resectability	of	borderline	and	

locally	advanced	cases	and	increases	R0	resection	rates	(Zhan	et	al.,	

2017).	However,	this	approach	also	carries	the	risks	that	patients	will	

experience	toxicities	that	could	delay	surgery,	or	the	tumour	may	

progress	making	previously	resectable	disease	unresectable	(Zhan	et	

al.,	2017;	Lopez	et	al.,	2014;	Asare	et	al.,	2016).	This	makes	

neoadjuvant	approach	for	resectable	pancreatic	cancer	an	area	of	

prime	controversy.	Further	concerns	have	been	raised	that	

neoadjuvant	chemoradiotherapy	could	cause	pancreatic	fibrosis	

which	may	increase	the	operative	complication	rate	(Lopez	et	al.,	

2014).		

	

One	of	largest	meta-analysis	of	111	neoadjuvant	studies,	comprising	

4,393	patients	with	PDAC,	was	undertaken	by	Gillen	et	al.	(2017)	and	

showed	that	amongst	patients	with	initially	unresectable	disease,	

46.6%	underwent	surgical	exploration	with	69.9%	having	their	

tumour	resected	and	79.2%	of	these	patients	having	R0	resection.	

The	median	overall	survival	was	20.5months,	which	was	comparable	

to	those	presenting	with	resectable	disease.	However,	this	analysis	

was	not	performed	on	an	intention-to-treat	basis,	which	potentiated	

bias	in	treatment	effect	as	not	all	patients	proceed	to	surgery	(Raufi	

et	al.,	2019).	Furthermore	the	studies	included	pre-dated	the	NCCN	

definition	of	resectability,	the	reporting	of	which	could	therefore	vary	

widely	across	trials.	D’Angelo	et	al.	(2017)	performed	one	of	the	first	

intention-to-treat	analysis	of	12	prospective	neoadjuvant	studies	that	

included	a	total	of	624	patients	with	resectable,	borderline	resectable	
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and	locally	advanced	PDAC.	It	reported	a	similar	median	overall	

survival	of	22.78months	and	a	resection	rate	of	65%.		

	

Neoadjuvant	FOLFIRINOX	has	recently	provided	some	hope	with	

studies	reporting	improved	conversion	rates	to	resectability	in	

borderline	resectable	and	locally	advanced	PDAC	(63.5%	and	22.5%	

respectively	of	all	those	patient	presenting	with	these	stages	of	

disease)	in	a	meta-analysis	of	13	studies	comprising	253	patients.	

(Petrelli	et	al.	2015).	Whilst	85%	of	the	43%	of	those	with	either	

borderline	resectable	or	locally	advanced	PDAC	who	underwent	

surgery	achieved	R0	resection,	this	meta-analysis,	based	on	available	

evidence,	could	not	yet	conclude	a	definite	improvement	in	overall	

survival	with	neoadjuvant	FOLFIRINOX.	Although	Suker	et	al.	(2016)	

focused	only	on	cases	of	locally	advanced	PDAC	in	their	meta-

analysis	of	11	studies,	comprising	315	patients	treated	with	

neoadjuvant	FOLFIRINOX,	they	reported	similar	resection	rates	of	

25%	but	a	median	overall	survival	of	24.2months.			

	

One	of	the	pivotal	unanswered	questions	is	whether	neoadjuvant	

therapy	offers	a	survival	advantage	over	traditional	upfront	surgery	

followed	by	adjuvant	therapy	for	cases	of	resectable	pancreatic	

cancer.	Meta-analysis	by	both	Xu	et	al.	(2014)	and	Andriulli	et	al.	

(2012)	reported	only	marginal	benefit	of	neoadjuvant	chemotherapy	

in	terms	of	overall	and	disease	free	survival	in	resectable	cases.		

However,	neither	of	these	reports	focused	solely	on	neoadjuvant	

therapy	therefore	omitted	significant	studies	from	their	meta-

analysis	(Lee	et	al.	2016).	More	recently	meta-analysis	by	Versteijine	

et	al.	(2018)	pooled	38	trials	comprising	3,484	patients	with	
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resectable	and	borderline	resectable	disease	in	an	intention-to-treat	

analysis.	Their	findings	also	reported	only	marginal	benefit	with	

neoadjuvant	approach	over	upfront	surgery	approach	for	resectable	

disease	(18.2months	versus	17.4months)	but	a	greater	survival	

advantage	with	borderline	resectable	disease	(19.2months	versus	

12.8months).	For	both	resectable	and	borderline	resectable	cases	the	

rates	of	R0	resection	were	higher	with	neoadjuvant	therapy	at	85%	

versus	71.4%	and	88.6%	versus	63.9%	respectively.	Mokdad	et	al.	

(2017)	also	reported	a	survival	advantage	with	neoadjuvant	

approach	in	their	retrospective	analysis	of	National	Cancer	Database	

using	propensity	score	matched	analysis	of	neoadjuvant	therapy	

used	to	treat	2,005	patients	with	stage	I	and	II	PDAC	compared	to	

6,015	patients	who	underwent	upfront	surgical	resection	of	PDAC	

(26months	versus	21months).	However,	this	analysis	is	heavily	

biased	as	only	those	who	tolerated	neoadjuvant	therapy	and	

underwent	resection	were	included	in	the	neoadjuvant	group.							

	

The	evidence	base	underpinning	neoadjuvant	therapy	lacks	high-

quality	phase	III	RCTs	and	is	currently	largely	based	on	phase	II	trials	

as	well	as	observational	cohort	studies	(which	are	mainly	small,	

prone	to	single	centre	bias,	underpowered	and	with	a	high	degree	of	

heterogeneity)	and	the	meta-analysis	of	these	studies	(Neoptolemos	

et	al.,	2019,	McGuigan	et	al.,	2018;	Versteijine	et	al.,	2018).	Treatment	

therapies	and	dosing	regimes	vary	widely	across	studies	as	do	

definitions	of	resectability	and	classification	of	resection	margins,	

despite	the	introduction	of	more	established	definitions.	These	

factors	in	addition	to	how	meta-analysis	studies	group	together	the	

analysis	of	outcomes	of	resectable,	borderline	resectable	and	locally	
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advanced	disease,	all	of	which	have	different	anticipated	outcomes	

that	could	affect	treatment	selection	and	decision	making,	place	

limitations	on	existing	data	synthesis	studies.	This	mandates	a	closer	

critical	look	at	the	existing	evidence	base	of	prospective	phase	II	drug	

trials	for	each	disease	stage	at	presentation	and	is	provided	in	

appendix	E.						

	

2.1.6	Conclusion:	The	Ongoing	Complexities	of	Neoadjuvant	

Therapy	for	Pancreatic	Cancer		

	

The	studies	discussed	in	this	section	and	the	corresponding	

appendicies	presents	the	current	state-of-play	in	pancreatic	cancer	

research	and	highlights	the	main	areas	of	debate	surrounding	the	

treatment	of	pancreatic	cancer.	As	the	disease	of	pancreatic	cancer	is	

beginning	to	be	understood	at	a	molecular	level	what	is	emerging	is	

an	understating	of	a	highly	complex	and	heterogeneous	disease	with	

overlapping	defects	in	genes	and	signaling	pathways	between	what	

was	previously	thought	to	be	clearly	defined	disease	subtypes	

(Collisson	et	al.,	2019).	As	a	molecular	taxonomy	emerges	it	is	hoped	

that	in	future	this	will	help	to	target	treatments.	However,	this	can	

only	ever	partly	inform	clinical	decision	making	and	currently	our	

understanding	of	the	disease	at	this	level	has	not	informed	clinical	

decision	making	in	the	way	an	understating	of	other	cancers	at	

molecular	level	has	(Collisson	et	al.,	2019).	Furthermore	it	is	not	

known	whether	aggressive	tumour	biology	or	anatomical	location	

close	to	major	vessels,	or	indeed	a	combination	of	both	factors,	

accounts	for	the	propensity	of	pancreatic	cancer	for	metastatic	
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spread.	This	has	implications	for	both	staging	of	the	disease	and	

surgery.		

	

Although	the	NCCN	provided	a	more	universal	definition	of	

resectable,	borderline	and	locally	advanced	disease	in	2010	there	

remains	a	high	degree	of	inter-institutional	discrepancy	(Evans	et	al.,	

2018).	This	definition	has	also	been	challenged	about	its	accuracy	in	

re-staging	disease	after	the	completion	of	neoadjuvant	therapy	(Katz	

et	al.,	2012).	More	recently	there	has	also	been	a	call	to	subdivide	

locally	advanced	disease	into	type	A	and	type	B	to	better	manage	

patient	expectations	surrounding	the	anticipated	outcomes	of	

neoadjuvant	therapy	(Evans	et	al.,	2018).	Operability	also	depends	

on	patient	factors	and	their	physical	and	mental	reserve	to	cope	with	

major	surgery	yet	despite	some	advances	in	patient	assessment	this	

aspect	of	decision	making	remains	largely	subjective	(Ansari	et	al.,	

2016).		

	

Staging	cannot	be	completed	until	after	pathological	assessment	of	

the	resected	specimen.	However,	discrepancies	also	exist	between	

definitions	of	R0	and	R1	resection	margins.	The	primary	goal	of	

surgery	is	an	R0	resection.	It	has	been	established	that	centralising	

services	so	that	pancreatic	cancer	surgery	is	only	performed	at	large	

volume	specialist	centres	by	experienced	surgeons	with	an	ERAS	

programme	in	place	improves	operative	outcomes.	However,	the	

decision	of	whether	to	perform	resection	of	the	veins,	when,	and	in	

which	patients	is	debated	(McGuigan	et	al.,	2018).						
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In	light	of	findings	from	the	PRODIGE	24/CCTG	PA.6	trial	guidelines	

have	recently	been	updated	regarding	adjuvant	therapy	to	

recommend	mFOLFIRINOX	or,	where	this	is	contraindicated,	

gemcitabine	and	capecitabine	or	monotherapy	with	gemcitabine	

alone	or	fluorouracil	plus	folinic	acid	alone	(Conroy	et	al.,	2018).	

However,	a	significant	proportion	of	patients	who	undergo	resection	

will	not	receive	adjuvant	therapy.	This	has	raised	the	possibility	of	

neoadjuvant	therapy	as	an	alternative	treatment	pathway.	This	is	

particularly	controversial	for	cases	of	disease	that	are	defined	as	

resectable	at	presentation.	Existing	trials	in	neoadjuvant	therapy	are	

mainly	small,	unpowered	and	based	on	single	institution	data	making	

comparison	of	data	between	trials	extremely	difficult	considering	

variability	in	treatment	regimes	and	dosing,	and	metrics	defining	

resectable,	borderline	resectable	and	locally	advanced	disease	as	well	

as	R0	and	R1	resection	(Neoptolemos	et	al.,	2018;	McGuigan	et	al.,	

2018).	These	factors	compound	the	challenge	of	trying	to	compare	

neoadjuvant	and	upfront	surgery	pathways	for	resectable	and	

borderline	resectable	disease	when	few	existing	studies	offer	such	a	

comparison	and	those	that	do	tend	to	combine	resectable	and	

borderline	resectable	cases	within	the	neoadjuvant	arm.	

	

Decision	making	within	this	arena	is	eminently	challenging,	as	is	the	

task	of	delivering	personlised	realistic	medicine.	Whilst	it	is	hoped	

that	on-going	genomic	and	drug	trials	will	provide	some	answers,	

they	alone	cannot	achieve	this.	It	could	be	argued	that	the	current	

problem	being	presented	is	that	of	a	complicated	system	with	a	high	

degree	of	uncertainty.	The	case	for	viewing	the	challenges	outlined	

here	in	terms	of	a	complex	system	will	be	made	further	in	the	
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methods	chapter.	In	order	to	build	such	a	case,	the	existing	body	of	

research	seeking	to	assist	clinical	decision	making	in	pancreatic	

cancer	management	will	now	be	examined	first	in	terms	of	health	

economics	modelling	and	then	in	terms	of	prognostic	and	predictive	

modelling.			
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2.2	Health	Economics	Modeling	To	Guide	Decision	

Making	In	The	Management	of	Potentially	Resectable	

Pancreatic	Cancer			
	

Introduction	

	

The	cost	of	cancer	care	has	risen	astronomically	over	recent	years	

(Greenberg	et	al.	2010).	Cancer	is	estimated	to	cost	the	European	

Union	economy	€126	billion	with	€51	billion	(40%)	spent	on	

healthcare	alone	(Luengo-Fernandez	et	al.	2013).	Within	the	UK	

estimated	annual	costs	of	cancer	range	from	£15.8	billion	to	£18.33	

billion	(£7.6billion	premature	death	and	work	absence,	£5.6billion	on	

healthcare,	£2.6billion	on	unpaid	care)	with	this	figure	predicted	to	

rise	to	£24.72	billion	by	2020	(Department	of	Health,	2015).	Given	

contemporary	financial	constraints	and	subsequent	limitations	on	

healthcare	resources,	it	is	therefore	unsurprising	that	cost-

effectiveness	analysis	of	new	treatment	approaches	is	beginning	to	

receive	increased	attention	in	medical	and	health	economics	

literature	(Greenberg	et	al.,	2010;	Russell,	2016).		

	

Over	two	decades	ago	Elixhauser	&	Halpern	(1999)	commented	on	a	

paucity	of	literature	on	the	economics	of	pancreatic	cancer.	

Unfortunately	little	has	changed	with	many	of	the	initial	subsequent	

studies	focusing	on	specific	interventions	such	as	surgery	(Lea	&	

Stahlgren,	1987;	Brandabur	et	al.,	1988;	Gudjonsson	et	al.,	1995;	

Holbrook	et	al.,	1996;	Raikar	et	al.,	1996;	Topal	et	al.,	2007;	

Enestvedt	et	al.,	2008;	Jeurnik	et	al.,	2010;	Waters	et	al.,	2010),	or	

chemotherapy	and	radiotherapy	(Glimelius	et	al.,	1995;	Ishii	et	al.,	
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2005;	Miksad	et	al.,	2007;	Danese	et	al.,	2008;	Krzyzanowska	et	al.,	

2007).	As	new	knowledge	of	the	disease	and	its	treatment	has	

emerged	many	of	these	studies	are	no	longer	clinically	relevant.	Of	

note,	disease	that	was	previously	thought	of	as	unresectable	now	has	

the	potential	of	conversion	to	resectability,	particularly	with	the	

emergence	of	neoadjuvant	therapy,	yet	surgery	has	not	been	

included	as	an	alternative	treatment	strategy	in	studies	involving	

what	would	now	be	classified	as	borderline	resectable	or	locally	

advanced	disease.	This	is	important	as	not	all	patients	who	undergo	

conversion	to	resectability	see	an	increased	effectiveness	in	terms	of	

post	resection	survival	time	whilst	others	experience	a	significant	

advantage	in	terms	of	postoperative	survival	time.	Previous	USA	

based	cost	analysis	have	shown	that	of	all	pancreatic	cancer	disease	

stages,	resectable	disease	carries	the	highest	costs	ranging	from	$65,	

335	(Du	et	al.,	2000)	to	$134,700	(O’Neill	et	al.,	2012)	with	the	latter	

study	including	all	costs	reimbursed	by	Medicare	as	well	as	an	older	

population.	Whilst	these	studies	have	several	limitations	(failure	to	

assess	which	health	services	were	specifically	related	to	pancreatic	

cancer,	exclusion	of	costs	not	covered	by	Medicare,	exclusion	of	

indirect	costs	and	the	latter	findings	only	being	applicable	to	an	older	

population)	they	did	provide	important	insights	into	the	impact	of	

the	underutilisation	of	surgery	to	their	findings.	Notably	Caucasian	

patients	and	those	in	affluent	urban	areas	were	more	likely	to	receive	

resection,	which	O’Neill	et	al.	(2012)	highlighted	as	suggesting	higher	

costs	if	all	eligible	candidates	received	a	resection	(Riall	&	Lillemoe,	

2007;	Bilimoria	et	al.,	2007b;	O’Neill	et	al.,	2012).	This	raises	several	

further	questions.	Firstly	how	applicable	are	cost	analysis	studies	

from	countries	with	privatised	healthcare	systems	to	countries	
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where	healthcare	is	free	at	the	point	of	delivery,	such	as	the	UK	

National	Health	Service(NHS)?	Secondly	when	synthesising	data	

from	drug	trials	from	countries	with	privatised	healthcare	systems	

the	inherent	bias	in	these	studies	must	be	acknowledged	as	many	

patients	with	pancreatic	cancer	will	never	present	to	such	

internationally	renowned	centres	due	to	socioeconomic	factors.	

Thirdly	what	impact	will	developments	that	are	aimed	at	increasing	

the	rate	of	pancreatic	cancer	resection	(the	development	of	screening	

programs	for	earlier	disease	detection,	targeted	therapies	and	the	

developments	of	more	effective	neoadjuvant	regimes)	have	on	both	

survival	outcomes	and	costs,	and	will	they	prove	to	be	cost	effective?	

Fourthly	where	disease	is	resectable	at	presentation,	is	it	more	

effective	and/or	cost	effective	to	adopt	a	neoadjuvant	or	traditional	

upfront	surgery	approach	to	treatment?				

	

Despite	the	fact	that	pancreatic	cancer	is	associated	with	a	short	life	

expectancy	the	costs	incurred	in	a	short	period	of	time	are	

substantial	(O’Neill	et	al.,	2012).	In	the	current	economic	climate	the	

ambiguity	surrounding	many	aspects	of	the	treatment	pathway	for	

potentially	resectable	pancreatic	cancer,	as	outlined	in	the	previous	

section,	mandates	cost-effectiveness	evaluation	of	treatment	choices,	

particularly	the	role	of	neoadjuvant	therapy	(Abbott	et	al.,	2013).	If	

however	value	in	healthcare	is	to	be	defined	as	value	relative	to	cost,	

then	it	must	be	acknowledged	that	outcomes	in	cancer	are	neither	

static	nor	universal	and	can	be	highly	individual	(Russell,	2016).	

Successful	outcomes	could	be	the	number	of	months	of	survival	

whilst	to	others	it	is	the	quality	and	not	quantity	of	survival	time	that	

defines	successful	outcome	(Russell,	2016).	Similarly	length	of	
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disease	free	survival	may	represent	successful	outcome	to	some	

whilst	others	define	success	as	overall	survival	time	regardless	of	

treatment	requirements	(Russell,	2016).	Costs	too	go	far	beyond	

costs	of	a	particular	treatment	option	but	include	emotional	and	

monetary	costs	to	patients	and	healthcare	systems	associated	with	

complications,	readmissions,	rehabilitation	etcetera,	as	well	as	wider	

societal	costs	in	terms	of	absence	from	work	for	both	patients	and	

those	undertaking	informal	caring	roles	(Russell,	2016).	Accepting	

these	complexities	and	challenges	this	begs	the	questions:	what	do	

we	know	about	the	overall	cost-effectiveness	of	the	treatment	of	

potentially	resectable	pancreatic	cancer,	how	have	we	measured	this,	

and	could	this	help	to	inform	clinical	decision	making	and/or	

methods	of	modeling	to	support	better	shared	clinical	decision	

making?			

	

This	section	is	structured	as	follows.	First	a	critical	analysis	of	cost-

effectiveness	studies	pertaining	to	the	management	of	potentially	

resectable	PDAC	is	presented.	Secondly,	a	wider	review	of	cost-

effectiveness	analysis	studies	of	neoadjuvant	versus	traditional	

upfront	surgery	for	other	solid	organ	malignancies	is	presented.	The	

rationale	for	this	is	that	the	evidence	base	underpinning	the	

management	of	these	malignancies	is	better	established.	Therefore	

the	impact	of	better	quality,	more	certain	data	on	modelling	

techniques	for	cost-effectiveness	analysis	will	be	critically	analysed	

to	ascertain	whether	this	results	in	better	quality	of	analysis	or	

whether	commonalities	in	flaws	prevail.	Finally	this	section	

concludes	with	a	summation	of	strengths	and	limitations	of	the	



	 89	

current	body	of	literature	and	how	methods	of	statistical	modeling	

could	be	improved	and	applied	to	the	research	question.					

	

2.2.1	Cost-Effectiveness	Analysis	of	the	Management	of	Potentially	

Resectable	PDAC	

	

Existing	cost-effectiveness	analysis	studies	that	have	relevance	to	

contemporary	clinical	practice	fall	into	key	areas	of	the	management	

pathway	that	include:	1)	staging	strategies,	2)	adjuvant	therapy,	3)	

post	resection	follow-up	strategies	and	4)	neoadjuvant	therapy	

versus	upfront	surgery	approach	(Figure	2).	
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Figure	2:	Overview	of	the	Treatment	Pathways	for	the	Management	

of	Potentially	Resectable	Pancreatic	Cancer	with	the	Focus	of	

Previous	Cost-Effectiveness	Analysis	Highlighted:	1:	cost-effectivness	

of	disease	staging	strategies,	2:	cost-effectivness	of	adjuvant	

therapies,	3:	cost-effectiveness	of	follow-up	strategies,	4:	cost-

effectivness	of	upfront	surgery	versus	neoadjuvant	approach			

		

	
	

Staging	

	

Current	guidelines	for	the	staging	of	pancreatic	cancer	recommend	

pancreatic	protocol	CT	scan	including	chest,	abdomen	and	pelvis	

(National	Institute	of	Clinical	Excellent	(NICE),	2018).	Where	disease	

is	found	to	be	localised	a	fluorodeoxyglucose-positron	emission	

tomography/CT	(FDG-PET/CT)	should	be	offered	to	patients	who	
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will	be	having	further	treatment	in	the	form	of	surgery,	systemic	

therapy	or	radiotherapy	(NICE,	2018).	If	more	information	is	then	

required	to	determine	an	individual’s	clinical	management	the	

following	are	recommended	in	specific	circumstances:	Magnetic	

Resonance	Imaging	(MRI)	scan	where	liver	metastases	are	suspect,	

endoscopic	ultrasound	scan	(EUS)	where	more	information	is	

required	for	tumour	and	node	staging,	and	diagnostic	laparoscopy	

with	laparoscopic	ultrasound	where	resectional	surgery	is	

considered	to	be	a	possibility	but	small	volume	peritoneal	and/or	

liver	metastases	are	suspected	(NICE,	2018).	Existing	economic	

analysis	studies	pertaining	to	the	staging	of	potentially	resectable	

PDAC	focus	on	FDG-PET/CT	and	diagnostic	laparoscopy.			

	

The	Role	of	FDG-PET/CT	

	

The	role	of	FDG-PET/CT	in	improving	patient	selection	and	being	

cost-effective	has	been	supported	by	two	key	economic	analysis	

(Heinrich	et	al.,	2005;	Ghaneh	et	al.,	2018).	Ghaneh	et	al.	(2018)	went	

further	by	not	only	providing	a	comprehensive	description	of	the	

competing	alternatives	but	also	in	including	relevant	costs	and	

consequences,	measured	accurately	and	in	appropriate	units,	for	

alternatives	identified	in	their	analysis.	Heinrich	et	al.	(2005)	

performed	a	cost-benefit	study	and	failed	to	perform	discounting.	

Incremental	analysis	of	costs	and	consequences	of	alternatives	was	

not	performed	and,	whilst	a	sensitivity	analysis	was	undertaken	this	

did	not	account	for	uncertainty	in	the	estimates	of	costs	and	

consequences.	Ghaneh	et	al.	(2018)	was	a	methodologically	superior	

study	using	Markov	modelling	to	perform	both	an	incremental	
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analysis	of	costs	and	consequences	of	alternatives	as	well	as	an	

extensive	deterministic	and	probabilistic	sensitivity	analysis	that	

included	measures	of	the	impact	of	uncertainty	in	the	estimates	of	

costs	and	consequences.	Both	studies	provided	corroborating	

findings	that	FDG-PET/CT	was	cost-effective	in	improving	patient	

selection	for	resection	surgery.		

	

The	Role	of	Diagnostic	Laparoscopy		

	

The	role	of	diagnostic	laparoscopy	is	more	ambiguous	and	

controversial.	As	the	NICE	guidelines	(2018)	state,	laparoscopy	with	

laparoscopic	ultrasound	should	be	performed	where	resectional	

surgery	is	considered	to	be	a	possibility	but	small	volume	peritoneal	

and/or	liver	metastases	are	suspected.	There	is	some	debated	

evidence	that	diagnostic	laparoscopy	could	avoid	unnecessary	

exploratory	laparotomy.	However,	ambiguity	exists	as	to	the	optimal	

timing	of	and	between	diagnostic	laparoscopy	and,	where	

appropriate,	exploratory	laparotomy	and	whether	there	is	any	

benefit	in	it	becoming	routine	practice	or	if	and	how	patient	selection	

for	this	procedure	could	be	improved.	These	issues	reflect	many	of	

the	broader	issue	and	ambiguities	concerning	the	management	of	

potentially	resectable	pancreatic	cancer:	how	to	improve	patient	

selection	and	more	effectively	target	interventions	to	optimise	

outcomes	in	the	face	of	uncertainty.		

	

A	detailed	critical	analysis	of	cost-effectiveness	analysis	studies	of	

staging	diagnostic	laparoscopy	for	pancreatic	cancer	is	provided	in	

appendix	F	to	assess	how	statistical	modeling	can	handle	such	issues.	
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In	summation	this	analysis	highlights	that	there	is	a	lack	of	high	

quality	studies	exploring	the	cost-effectiveness	of	staging	diagnostic	

laparoscopy.	Existing	studies	that	report	cost-benefit	from	diagnostic	

laparoscopy	do	so	only	if	diagnostic	yield	is	assumed	to	be	high.	In	an	

age	of	advanced	imaging	modalities	and	neoadjuvant	therapy	

presumably	making	occult	metastases	potentially	less	likely,	the	

assumption	on	which	these	results	are	made	must	be	questioned.	

Furthermore	based	on	existing	literature	there	is	not	clear	evidence	

as	to	the	cost-effectiveness	implications	of	the	timing	of	staging	

diagnostic	laparoscopy	(same	admission	versus	separate	day-case),	

and	its	application	to	patient	sub-groups	(routine	versus	only	

patients	at	high	risk	of	occult	metastatic	disease).		

		

Adjuvant	Therapy	

	

The	survival	benefits	of	adjuvant	therapy	have	long	been	established	

however	cost-effectiveness	analysis	of	competing	adjuvant	regimes	is	

limited.	Two	studies	were	found	that	provide	economic	assessment	

of	adjuvant	therapy.	Abbott	et	al.	(2012)	compared	surgery	and	

adjuvant	therapy	to:	no	treatment,	surgery	only,	radiotherapy	only,	

chemotherapy	only	and	chemotherapy	combined	with	radiotherapy	

for	resectable	pancreatic	head	adenocarcinoma	using	a	decision	tree	

approach.	This	study	demonstrated	what	was	already	known:	

surgery	and	adjuvant	therapy	is	more	expensive	but	yields	greater	

utility.	Neoadjuvant	therapy	was	not	considered	as	a	competing	

treatment	strategy	and	the	clinical	impact	of	such	a	study	is	limited	

as,	for	resectable	disease,	not	performing	surgery	would	only	be	

considered	as	a	viable	competing	treatment	option	if	the	patient	had	
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other	mitigating	circumstances,	such	as	extensive	comorbidities.	

However	such	factors	were	not	considered	within	the	model.	This	

study	was	also	further	limited	by	the	fact	that	it	populated	the	model	

with	data	from	multiple	databases	including	a	national	cancer	data	

registry.	Not	only	does	this	make	the	data	highly	heterogeneous	in	

terms	of	patients,	adjuvant	therapy	regimes	and	variations	in	

outcomes	between	high	and	low	volume	centres	but,	within	the	USA	

healthcare	system,	also	carries	the	potential	of	bias	due	to	

disadvantaged	patient	groups	either	not	presenting	to	such	

renowned	institutions	or	presenting	with	more	advanced	disease	

stages.	Costs	were	taken	from	Medicare	payments	yet	not	all	patients	

would	have	been	covered	by	public	payers,	which	means	such	

payment	data	is	not	generalisable	to	all	patients.	Furthermore,	

although	this	study	is	from	a	societal/payer	perspective,	indirect	

costs	were	excluded.	Other	significant	costs	that	were	excluded	

included:	readmission	after	surgery,	complications	of	treatment	and	

end-of-life	care.	Costs	and	benefits	were	not	discounted	and	quality	

adjusted	survival	outcomes	were	based	on	the	limited	published	

quality	of	life	data.	Such	limitations	are	compounded	by	the	fact	that	

only	one-way	deterministic	sensitivity	analysis	was	performed	with	

no	probabilistic	sensitivity	analyses	or	other	measure	of	impact	of	

uncertainty	surrounding	model	parameters	provided.	Willingness-to-

pay	(WtP)	and	other	such	thresholds	were	also	lacking	which	limits	

the	usefulness	of	this	study.		

	

The	second	study	utilised	data	from	the	ESPC-4	RCT	within	a	Markov	

model	to	compare	gemcitabine	monotherapy	with	gemcitabine	

combined	with	capecitabine	in	patients	who	had	undergone	
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complete	resection	of	pancreatic	cancer	(Huang	et	al.,	2018).	It	

concluded	that	although	gemcitabine	and	capecitabine	provided	1.23	

quality-adjusted-life-years	(QALYs)	compared	to	gemcitabine	

monotherapy,	which	provided	1.02	QALYs,	the	incremental	cost-

effeectivenss	ratio	(ICER)	was	$45,191.23,	which	surpassed	the	WtP	

threshold	for	that	country	(Huang	et	al.,	2018).	Both	direct	and	

indirect	costs	were	included	but	palliative	care	costs	were	excluded	

and	discounting	was	not	applied.	Quality-of-life	adjustments	for	

utility	outcomes	were	also	based	on	published	literature,	which	is	

limited	for	pancreatic	cancer.	However	this	study	did	perform	both	

deterministic	and	probabilistic	sensitivity	analysis	including	WtP	

thresholds	and	measurements	of	the	impact	of	uncertainty	within	the	

model.	This	study,	whilst	being	the	first	to	compare	adjuvant	

therapies,	used	data	from	patients	who	had	undergone	resection	and	

were	well	enough	to	meet	the	inclusion	criteria	for	adjuvant	therapy	

within	the	ESPAC-4	trial.	Real-world	events	such	as	the	discovery	of	

unresectable	disease	at	the	time	of	surgery,	or	impact	of	

postoperative	complications	and	their	impact	on	overall	pathway	

analysis	are	therefore	not	captured.	Furthermore,	in	light	of	the	

findings	of	the	PRODIGE	24/CCTG	PA.6	trial	(Conroy	et	al.,	2018),	

which	resulted	in	mFOLFIRINOX	becoming	the	first	line	adjuvant	

therapy	over	gemcitabine-based	alternatives,	this	study	has	limited	

impact.	What	has	yet	to	be	established	is	whether	the	increased	

toxicity	profile	associated	with	mFOLFIRINOX	has	any	affect	on	the	

cost-effectiveness	of	this	compared	to	gemcitabine	based	adjuvant	

therapy,	or	whether	better	patient	selection	between	these	

competing	regimes	could	maximise	cost-effectiveness.		
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Follow-up	Post	Resection	

	

Until	recently	surveillance	after	potentially	curative	resection	of	

pancreatic	cancer	was	not	considered	to	be	a	key	issue	due	to	poor	

survival	outcomes	and	the	lack	of	second	line	treatments.	One	study	

assessed	the	cost-effectiveness	of	competing	surveillance	strategies	

from	a	payer’s	(societal)	perspective	(Tzeng	et	al.,	2013).	It	used	a	

Markov	model	to	compare:	no	scheduled	surveillance,	6	monthly	

clinical	assessment	with	Ca	19-9	levels,	6	monthly	clinical	assessment	

with	Ca	19-9	levels	+	CT	+	Chest	x-ray,	3	monthly	clinical	assessment	

with	Ca	19-9	levels,	3	monthly	clinical	assessment	with	Ca	19-9	levels	

+	CT	+	Chest	x-ray.	This	study	reported	that	surveillance	beyond	6	

monthly	clinical	assessment	with	Ca	19-9	levels	increased	cost	but	

with	no	clinically	significant	survival	benefit	(Tzeng	et	al.,	2013).	

However,	the	model	was	populated	with	retrospective	data	from	a	

single	institution,	which	carries	a	risk	of	bias	and	limits	

generalisability	of	findings	particularly	as	this	database	only	included	

patients	treated	within	a	neoadjuvant	pathway.	Furthermore	costs	

were	taken	from	Medicare	data,	but	not	all	patients	would	have	been	

covered	by	public	payers	(Tzeng	et	al.,	2013),	and	discounting	was	

not	applied.	Outcomes	between	competing	strategies	may	have	been	

affected	by	lead	time	and	length	time	bias	related	to	surveillance	

intervals	and	the	diagnosis	of	indolent	asymptomatic	disease	versus	

symptomatic	aggressive	disease	(Tzeng	et	al.,	2012).	Only	

deterministic	sensitivity	was	performed	therefore	the	impact	

surrounding	the	degree	of	uncertainty	within	model	parameters	was	

not	fully	assessed.	Furthermore	sensitivity	analysis	did	not	account	
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for	the	fact	that	5-10%	of	patients	do	not	produce	Ca	19-9	

(Ballehaninna	et	al.,	2012).						

	

Neoadjuvant	Therapy	versus	Upfront	Surgery				

	

Two	studies	compared	neoadjuvant	and	upfront	surgery	pathways	

(Abbott	et	al.,	2013;	Choi	et	al.,	2018).	Both	pose	a	clearly	defined,	

answerable	question:	what	is	the	cost-effectiveness	of	neoadjuvant	

approach	compared	to	traditional	upfront	surgery	approach.	Abbott	

et	al.	(2013)	used	a	decision	analytic	model	with	utility	reported	as	

quality-adjusted-life-months	(QALMs)	whilst	Choi	et	al.	(2018)	used	

a	Markov	model	with	results	reported	in	QALYs.	Quality-of-life	

literature	related	specifically	to	pancreatic	cancer	is	limited	and	

therefore	in	both	studies	a	reliance	on	the	few	published	quality-of-

life	indices	was	not	ideal.			

		

In	both	studies	the	patient	populations	were	clearly	defined.	Abbott	

et	al.	(2013)	populated	the	upfront	surgery	arm	with	data	drawn	

from	American	College	of	Surgeons	National	Cancer	Database	(NCDB	

2003-2005)	and	National	Surgical	Quality	Improvement	Programme	

(NSQIP	2005-2009).	However,	the	neoadjuvant	group	was	drawn	

from	the	MD	Anderson	database	2002-2008.	Effectively	this	meant	

comparing	two	different	databases.	Data	from	literature	was	used	to	

populate	data	points	otherwise	unavailable	and	they	included	phase	

III	RCTs	for	the	upfront	surgery	arm.	Choi	et	al.	(2018)	synthesised	

data	from	published	literature	but	did	not	provide	details	of	the	

literature	search	strategy	or	quality	assessment	of	included	studies.	

The	neoadjuvant	arm	also	included	data	taken	from	a	single	
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institution	database.	In	both	studies	the	use	of	different	data	sources	

introduces	uncertainty	and	bias.	Furthermore	the	limitations	and	

ambiguities	in	existing	literature	have	already	been	explored	in	

section	2.1	and	the	supporting	appendicies.	Institutional	data	carries	

bias	as	patients	could	have	better	outcomes	due	to	referral	bias,	self	

selection,	receiving	superior	care	in	larger	specialist	centres	and	

furthermore,	a	key	subset	of	patients	may	never	present	to	these	

databases	due	to	socioeconomic	factors	and/or	co-morbidities	

(Abbott	et	al.	2013,	Choi	et	al.,	2018).	Overall	this	increases	the	level	

of	uncertainty	as	not	all	patients	within	these	various	data	sources	

received	uniform	care.				

	

	

In	both	studies	cost	data	was	taken	from	payer	perspective	with	

costs	based	on	Medicare	payment	estimates	and	technical	and	

professional	services	costed	from	Centers	for	Medicare	and	Medicaid	

Services	(CMS).		In	reality	not	all	costs	would	have	been	covered	by	

CMS	and	this	also	limits	transferability	of	findings	to	alternative	

healthcare	systems	(Abbott	et	al.,	2013).	Hospital	payments	were	

estimated	based	in	ICD-9	DRG	codes.	Costs	not	included	in	the	Abbott	

et	al.	(2013)	study	were:	readmission	post	surgery,	complications	

associated	with	chemotherapy	or	radiotherapy,	follow-up	

surveillance	and	hospice	costs.	The	latter	two	are	potentially	a	

significant	omission	considering	that	this	study	reported	significantly	

prolonged	survival	time	with	neoadjuvant	therapy.	Choi	et	al.	(2018)	

did	include	the	cost	of	palliative	care	and	treatment	complications.	

Neither	study	included	indirect	costs	and	Choi	et	al.	(2018)	did	not	

apply	discounting	of	either	costs	or	benefits.		
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One-way	deterministic	sensitivity	analysis	was	performed	in	both	

studies.	In	the	Abbott	et	al.	(2013)	study	sensitivity	analysis	was	only	

performed	on	the	upfront	surgery	group	and	included	adjustment	for	

alternative	billing,	cost	of	adjuvant	chemotherapy,	elimination	

radiotherapy,	survival	with	node	and	margin	negative	resections,	

rates	of	perioperative	mortality,	complications	and	finding	

unresectable	disease	at	surgery	with	justification	provided	for	each	

form	of	sensitivity	analysis.	Choi	et	al.	(2018)	examined	the	effect	of	

alterating	resection	rates,	surgical	mortality,	recurrence	rate,	cancer	

mortality	and	utility	values	across	both	treatment	strategies.	They	

also	performed	probabilistic	sensitivity	analysis	to	assess	the	impact	

of	uncertainty	across	model	parameters	on	model	output.	This	level	

of	analysis	was	lacking	in	the	Abbott	et	al.	(2013)	study.				

	

Abbott	et	al.	(2013)	included	three	possible	neoadjuvant	regimes	

within	the	neoadjuvant	arm	of	their	study	(gemcitabine	+	cisplatin	

+radiotherapy,	or	chemoradiotherapy	based	on	either	gemcitabine	or	

cisplatin,	or	capecitabine-based	chemoradiotherapy)	compared	to	

adjuvant	gemcitabine	in	the	upfront	surgery	arm.	Choi	et	al.	(2018)	

compared	neoadjuvant	FOLFIRINOX	to	adjuvant	gemcitabine	

monotherapy	or	gemcitabine/capeciabine	in	the	upfront	surgery	

arm.	The	conclusions	drawn	from	both	studies,	that	neoadjuvant	

therapy	is	more	cost-effective	than	upfront	surgery,	clearly	reflect	

the	results	of	the	studies	but,	particularly	with	the	Abbott	et	al.	

(2013)	study,	the	uncertainty	surrounding	these	conclusions	were	

not	assessed	considering	the	high	degree	of	heterogeneity	within	the	

neoadjuvant	arm	alone.	Furthermore	both	studies	are	limited	by	the	
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high	degree	of	uncertainty,	heterogeneity	and	quality	issues	

associated	with	the	existing	published	literature.	Neither	study	

examined	the	role	of	adjuvant	mFOLFIRINOX	which,	considering	the	

results	of	the	PRODIGE	24/CCTG	PA.6	trial	(Conroy	et	al.,	2018)	and	

subsequent	change	to	practice	guidelines	making	this	the	first	line	

adjuvant	therapy,	does	now	question	these	conclusions	particularly	

as	the	survival	times	reported	from	both	adjuvant	therapy	cohorts	

within	the	PRODIGE	24/CCTG	PA.6	trial	(Conroy	et	al.,	2018)	rivals	

those	reported	in	the	neoadjuvant	arm	of	both	of	these	studies.	

	

Conclusion	

	

In	the	introduction	to	this	section	several	questions	were	posed:	

what	do	we	know	about	the	overall	cost-effectiveness	of	

management	options	for	potentially	resectable	pancreatic	cancer,	

how	have	we	measured	this,	and	could	this	help	to	inform	clinical	

decision	making	and/or	methods	of	modeling	to	support	better	

shared	clinical	decision	making?			

	

Firstly	what	we	know	about	the	overall	cost-effectiveness	of	the	

management	of	potentially	resectable	pancreatic	cancer	is	limited	

and	permeated	with	ambiguity.	Issues	pertaining	to	methodological	

quality	and	the	relevance	of	findings,	as	new	evidence	emerges	of	

more	effective	interventions,	limit	many	existing	cost-effectiveness	

studies.	Whilst	it	is	established	that	pancreatic	surgery	is	expensive,	

and	that	improved	patient	selection	for	surgery	would	improve	both	

costs	and	quality	adjusted	outcomes,	both	the	most	effective	and	

cost-effective	way	of	achieving	this	is	widely	debated,	arguably	with	
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the	exception	of	FDG-PET/CT	for	staging.	Secondly	how	we	measure	

cost	and	effectiveness	is	also	a	contested	area	considering	that	

quality-of-life	data	for	pancreatic	cancer	is	limited.	The	dominant	

methods	of	analysis	are	decision	trees	and	Markov	models.	However	

the	quality	of	data	used	to	populate	such	models	was	found	to	be	an	

issue	across	many	studies	with	few	models	performing	a	full	

probabilistic	sensitivity	analysis	to	gauge	the	degree	and	impact	of	

uncertainty	across	model	parameters	on	outcomes.	Included	and	

excluded	costs	varied	widely	and	discounting	across	existing	studies	

was	sporadic.	Ultimately	therefore,	to	answer	the	third	question	

posed,	existing	cost-effectiveness	analysis	cannot	yet	be	said	to	

inform	shared	clinical	decision	making.	Many	of	the	issue	identified	

in	these	cost-effectiveness	analysis	studies	emanate	from	the	state	of	

the	current	evidence	base	underpinning	the	management	strategies	

for	potentially	resectable	pancreatic	cancer.	However	whilst	it	would	

be	convenient	to	believe	that	this	is	the	only	culprit,	the	question	

must	be	asked	as	to	whether	alternative	approaches	to	modeling	

could	better	handle	the	existing	data,	including	its	inherent	

uncertainties.	To	fully	explore	this	possibility	a	review	of	cost-

effectiveness	analysis	studies	of	neoadjuvant	approach	for	other	solid	

organ	malignancies,	which	have	a	more	established	evidence	base,	

must	first	be	undertaken.		
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2.2.2	Cost-Effectiveness	of	Neoadjuvant	Approach	to	Cancer	

Treatment:	what	have	we	really	learned	over	the	past	decade?		

	

The	purpose	of	this	section	is	to:	1)	to	establish	what	is	currently	

known	about	cost-effectiveness	analysis	of	neoadjuvant	therapy	

applied	to	all	solid	organ	malignancies	(SOM)	2)	critically	appraise	

research	methodology	of	existing	studies	and	3)	highlight	areas	and	

direction	for	future	cost-effectiveness	and	decision	analysis	research.	

	

In	total	13	studies	published	since	2000	were	identified	that	have	

performed	cost-effectiveness	analysis	of	neoadjuvant	therapy	for	

SOM	(pancreatic	cancer	(previously	discussed):	n=2,	upper	

gastrointestinal	(GI)	cancers	n=	3,	colorectal	cancer	n=3,	cervical	n=1,	

breast:	n=1,	ovarian:	n=2,	bladder:	n=1).		This	comprises	the	cost-

effectiveness	analysis	of	a	total	of	27	neoadjuvant	regimes	applied	to	

9	types	of	SOM	(pancreatic:	n=4,	esophageal:	n=1,	peritoneal	

carcinomatosis	from	gastric	cancer:	n=4,	hepatocellular	carcinoma:	

n=1,	colorectal:	n=4,	cervical:	n=1,	breast:	n=7,	ovarian:	n=2,	bladder:	

n=3)	(table	7).			
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Table	7:	Neoadjuvant	regimes	included	in	each	study.	

	
Study	 SOM	 NAT	Regime	 Alternative	
Gordon	et	al.,	2012	 Esophageal	 NAT	regime	not	specified	but	

separate	decision	arm	
included	adding	FDG-PET	to	
NAT	regime	

T2-T4	tumours:	
surgery	without	
NAT	or	no	surgery,	
treatment	with	
chemoradiation	
only	

Hultman	et	al.,	2012	 Peritoneal	carcinomatosis	from	
gastric	cancer	

Irinotecan	+	5-FU	+LV	or	
Irinotecan	+	deGramont	
schedule	or	decetaxel	+	5-
FU/LV	or	EOX	all	followed	by	
CRS	+	HIPEC	+EPIC	

Systemic	palliative	
chemotherapy	
alone	

Vitale	et	al.,	2010	 Hepatocellular	carcinoma	 Sorafenib	 No	bridging	
therapy	prior	to	
liver	transplant	

Ercolani	et	al.,	2011	 Colorectal	with	liver	metastases	 FOLFOX4	 Surgery	
(Hepatectomy)	first	

Poston	et	al.,	2001	 Colorectal	with	liver	metastases	 Oxaliplatin	+	5-FU/FA	or	5-
FU/FA	as	NAT	

Comparing	2	NAT	
regimes	

Van	der	Brink	et	al.,	2004	 Rectal		 5x5	Gy	 Surgery	(TME)	first	
Rocconi	et	al.,	2005	 Cervical	 Cisplatin,	bleomycin	and	

vincristine	
Surgery	first	or	
primary	
chemotherapy	

Attard	et	al.,	2015	 Breast	 Neosphere	NAT	regimes:	
(trastuzumab+	docetaxel	or	
Pertuzumab+	trastuzumab	+	
docetaxel	or	Pertuzumab	+	
trastuzumab	or	Pertuzumab	+	
docetaxel)	and	TRYPHAENA	
regimes	(FEC+	Docetaxel)	(6	
cycles	or	3	cycles)+	
Pertuzumab	(6	cycles	or	3	
cycles)	or	Docetaxel	+	
Carboplatin	+	Trastuzumab	+	
Pertuzumab		

Comparing		NAT	
regimes	from	two	
studies	

Poonawalla	et	al.,	2015	 Ovarian	 NAT	(regime	not	specified)	 Primary	debulking	
surgery	

Rowland	et	al.,	2015	 Ovarian	 NAT+	surgery	+	carboplatin	+	
paclitaxel	

Primary	debulking	
surgery	+	
carboplatin	+	
paclitaxel	

Stevenson	et	al.,	2014	 Bladder	 MVAC	or	gemcitabine	+	
cisplatin,	or	gemcitabine	+	
carboplatin		

Surgery	(radical	
cystectomy)	first	

					

		

Included	studies	and	their	methodologies	are	summarised	in	table	8.	

A	detailed	critical	appraisal	of	each	study	structured	according	to	the	

checklist	propose	by	Drummond	et	al.	(2015)	is	presented	in	

appendix	G.	
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Table	8:	Summary	of	cost-effectives	analysis	studies	of	neoadjuvant	

therapy	for	solid	organ	malignancies			

	
Study	 SOM	 Compara

tors	
Design/	
Methodo
logy	

Econom
ic	
Perspec
tive	

Data	
Source	

Benefit	
Measure
s	&	Time	
Horizon	

Cost	
Source	

Costs	
Excluded	

Sensitiv
ity	
Analysi
s		

Gordon	
et	al.	
(2012)	

Esopha
geal	

T2-T4	
non-
surgical	v	
SF	v	NAT	

Retrospe
ctive.	
Decision-
analytic	
model	

Payer	
perspec
tive	

ACS	
Adelaide	
&	
Brisbane	
database	

QALMs	
5	years	
post	
surgery	

National	
price	
schedule
s,	public	
hospital	
clinical	
costings	

Indirect	
costs		

Yes:	
Monte	
Carlo	
sensitivi
ty	
analysis	

Hultma
n	et	al.	
(2012)	

Esopha
geal	

NAT	+	
CRS	+	
HIPEC	+	
EPIC	v	
palliative	
systemic	
chemothe
rapy	

Retrospe
ctive.	
Kaplan-
Meir	+	
bootstrap	
sampling		

Treatme
nt	costs	

Patients	
identifie
d	in	unit	
(not	
randomi
zed)	and	
matched	
with	
patients	
from	
RCT	

QALYs	
2005-
2009	

Uppsala	
Unit	
Hospital	
data,	
Swedish	
National	
Pharmac
y	
pricelist	
2008	

Indirect	
costs	

Yes	

Vitale	
et	al.	
(2010)	

Hepatic	
cell	
carcino
ma		

NAT	pre	
LT	v	no	
bridging	
therapy	

Retrospe
ctive	
Markov	
Decision	
Model.	

Payer	
perspec
tive	

Literatur
e	review	

HR	for	
delay	to	
recurrenc
e,	QALDs,	
LT	
probabili
ty,	cost	
utility	
ratio,	
incremen
tal	health	
benefit.	
10	years		

Italian	
public	
healthca
re	
system	

Indirect	
costs	

Yes:	
Monte	
Carlo	
sensitivi
ty	
analysis		

Ercolan
i	et	al.	
(2011)	

Colorec
tal	liver	
metast
ases	

NAT	v	SF	 Retrospe
ctive	
Markov	
Decision	
Model	

Societal	
perspec
tive	

Literatur
e	review	

QALMs,	
ICER,	HR,	
WtP,	RFS.	
10	years	

Italian	
public	
healthca
re	
system	

Indirect	
costs	

Yes:	
Univaria
nt	and	
two-
way		

Van	der	
Brink	
et	al.	
(2004)	

Rectal	 NAT	v	SF	 Prospecti
ve	+	RCT.		
Markov	
Decision	
Model	

Provide
r	and	
societal	
perspec
tive	

RCT	 LE,	QALY,	
cost	per	
lifetime,	
ICER.	
1996-
1999	

Price	
index	
from	
Dutch	
Healthca
re	
Sector	

Nil	 Yes	

Poston	
et	al.	
(2001)		

Colorec
tal	liver	
metast
ases	

Oxaliplati
n	+	5-
FU/FA	v	
5-FU/FA		
as	NAT	

Decision-
analytic	
model.	
	

Provide
r	
perspec
tive	

Literatur
e	review	

Incremen
tal	cost	
per	life	
year	
gained.	
6	months	
follow-up	

NHS		 Drug	
administra
tion	costs,	
postsurgic
al	costs	
including	
palliative	
care.		

Yes	

Rocconi	
et	al.	
(2005)	

Cervica
l	

RHYST	v	
CTRT	v	
NAT	

Retrospe
ctive.	
Decision-
analytic	
model	

Third	
party	
payer	
perspec
tive		

Literatur
e	review	

Cost	per	
cure/	
survivor,	
5year	
DFS.	
5	years	

Local	
charges	

Indirect	
costs/	
reimburse
ments	

Yes:	
one-way		
sensitivi
ty	
analysis	

Attard	
et	al.	
(2015)	

Breast	 NAT:	
pertuzum
ab	and	
trastuzu

Retrospe
ctive	
cost-
utility	

Canadia
n	
healthca
re	payer	

NeoSphe
re	and	
TRYPHA
ENA	trial	

LYG,	
QALYs,	
ICER,		
28	years	

NeoSph
ere	and	
TRYPHA
ENA	

Not	stated.	
Indirect	
costs	

Yes:	
probabil
istic	
sensitivi



	 105	

NAT=	neoadjuvant	therapy;	SF=	surgery	first	

	

	

What	this	critical	analysis	showed	is	that	the	complexities	of	costs	

involved	in	cancer	care	mean	that	this	is	a	challenging	yet	essential	

area	of	health	economic	research.		Neoadjuvant	therapy	represents	

an	emerging	and	unique	area	for	cost-effectiveness	analysis	with	

implications	spanning	the	trajectory	of	patients’	journeys,	and	

impacting	far	beyond	the	neoadjuvant	phase	of	treatment.	Emerging	

challenges	brought	by	the	advent	of	neoadjuvant	approach	to	cancer	

mab	 analysis	
using	
Markov	
decision	
model.	

perspec
tive.	

data	 trial	
data,	
Hoffman
n-La	
Roche	
Unit	
costs,	
publishe
d	
sources	
or	
Ontario	
databas
es.		

ty	
analysis	
(PSA)	

Poona
walla	et	
al.	
(2015)	

Ovaria
n	

NAT	v	SF	 Retrospe
ctive	
cohort	
study	

Payer	
perspec
tive	

Surveilla
nce,	
Epidemi
ology	
and	End	
Result	
(SEER)-
Medicare	
linked	
database.		

Cumulati
ve	
treatmen
t	costs	
with	
phase-of-
care	
approach
,	ICER,	
OS,	
NMBs,	
LYG,		
2000-
2009	

Medicar
e	claims	

Indirect	
costs,		

No	

Roawla
nd	et	al.	
(2015)		

Ovaria
n	

NAT	v	SF	 Markov	
decision	
model	

Healthc
are	
system	
perspec
tive	

Literatur
e	review	

OS,	
surgical	
complicat
ions,	
probabili
ty	of	
initiation,	
treatmen
t	cost,	
QoL,		
5	yeats	

Medicar
e		+	
hospital	
costs	
estimate
s	from	
Agency	
for	
Healthca
re	Costs	
and	
Utilizati
on	
Project	
(HCUP)	
data.		

Surveillanc
e,	chronic		
complicati
ons	and	
indirect	
costs.		

Yes:	
Monte	
Carlo	
simulati
on		

Stevens
on	et	al.	
(2014)	

Bladde
r	

NAT	v	
NAT	

Kaplan-
Meir,	log-
rank	test,	
t	test.	

Third	
party	
payer	
perspec
tive	

Retrospe
ctive	
review	of	
institutio
nal	data		

QALY	
2004-
2011	

Local	
billing,	
publishe
d	
sources	

Indirect	
costs	

None	
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treatment	as	well	as	areas	where	cost-effectiveness	analysis	could	be	

improved	have	been	highlighted.	Firstly	comparability	of	studies	is	

inhibited	by	variation	in:	methods,	economic	perspective,	cost	

estimates,	and	sporadic	use	of	discounting.		Secondly,	neoadjuvant	

therapy	is	an	emerging	treatment	option	therefore	available	patient	

databases	and	existing	published	studies	regarding	its	effectiveness	

carry	limitations.	How	these	limitations	are	addressed	within	cost-

effectiveness	analysis	studies	relies	on	utilising	any	of	the	plethora	of	

techniques	of	evidence	synthesis	available	which	simultaneously	

raises	questions	regarding	uncertainty	and	bias	in	the	data	

undergoing	analysis	and	could	further	impede	comparability	of	

findings	for	decision	makers.	Thirdly,	although	widely	used,	

reporting	of	QALYs	is	also	shrouded	in	controversy	and	ambiguity	

surrounding	quality-of-life	measurement.	Each	of	these	areas	and	

how	future	research	could	be	improved	will	now	be	addressed.	

	

								

Comparability	of	cost-effectiveness	analysis	studies	is	essential	for	

decision	makers	to	evaluate	trade-offs	therefore	factors	impeding	

comparability	must	be	analysed.	All	studies	in	this	review	gave	

details	of	how	costs	were	arrived	at	but	few	studies	explicitly	

detailed	costs	that	were	excluded	(Appendix	G;	Table	8).	Costs	of	

cancer	care	are	multifactorial	involving	cost	of	treatment,	individual	

monetary	and	emotional	costs,	costs	to	healthcare	systems	and	costs	

to	wider	society	(Russell,	2016)	yet	only	one	study	did	not	exclude	

indirect	costs	(van	der	Brink	et	al.,	2004).		This	corroborates	findings	

that	despite	earlier	recommendations	(Gold	et	al.,	1996)	only	29%	of	

cost	per	QALY	analysis	since	2005	adopted	a	societal	perspective	
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(Neumann,	2009)	and	even	when	they	reported	to	do	so	important	

costs	were	omitted	(Sanders	et	al.,	2016).	Although	some	studies	

converted	costs	to	US	dollars,	it	must	be	remembered	that	changing	

currency	does	not	equate	with	conversion	of	actual	costs	within	

different	healthcare	systems	or	how	people	in	different	countries	

value	their	health	status	(Simunovic	et	al.,	2004).	Also,	cost-effectives	

ratios	and	WtP	thresholds	do	not	inform	decision	makers	on	

resources	required	to	implement	neoadjuvant	therapy	and	which	

other	interventions	should	be	abandoned	to	free	resources	to	enable	

this	(Simunovic	et	al.,	2004).	Therefore,	whilst	researchers	should	

compare	cost	and	benefits	of	treatment	approaches,	cost-

effectiveness	cannot	be	deduced	unless	opportunity	costs	of	selected	

treatments	(i.e	cost-efficient	use	of	redirected	resources)	are	also	

determined	(Simunovic	et	al.,	2004).		How	then	can	future	studies	

standardise	methodological	practices	to	improve	quality	and	

comparability,	whilst	addressing	the	theoretical	challenge	of	

aggregating	costs	and	effects	across	different	sectors	and	individual	

patients	and	their	carers,	in	a	way	that	reflects	consensus	position	at	

societal	level	(Drummond	et	al.,	2015;	Brouwer	et	al.,	2008)?	

	

One	recommended	solution	is	that	all	cost-effectiveness	studies	

should	include	as	standard	two	reference	cases:	one	from	health	

sector	perspective	and	one	from	societal	perspective	(Sanders	et	al.,	

2016).	From	health	sector	perspective	effects	would	be	measured	in	

QALYs	and	results	summarised	in	ICER,	net	monetary	benefit	(NMB)	

and	/or	net	health	benefit	with	a	range	of	cost-effectiveness	

thresholds	considered.		Costs	would	include	all	health	care	sector	

costs	reimbursed	by	third	party	payers	and	out-of-pocket	costs	paid	
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by	patients.	The	societal	reference	case	would	then	consider	

consequences	of	an	intervention	including	those	outside	formal	

healthcare	sector	therefore	would	include	indirect	costs	such	as	

transport,	patients’	and	carers’	time	costs	and	reduced	productivity	

etc.	In	practical	terms	for	cost-effectiveness	analysis	research	this	

would	involve	a	standardized	‘impact	inventory’	that	lists	all	direct	

and	indirect	costs	making	costings	more	transparent,	comprehensive	

and	rigorously	assessed	(Sanders	et	al.,	2016).	The	studies	included	

in	this	review	had	a	wide	variation	in	time	horizon	and	this	approach	

could	also	go	some	way	to	addressing	the	challenge	of	estimating	

future	direct	and	indirect	costs	during	any	additional	life	years	

gained,	although	this	is	an	area	some	would	argue	requires	further	

research	(Sanders	et	al.,	2016).		

	

A	further	source	of	variation	is	that	of	discounting.	Whilst	it	is	

recommended	that	costs	and	health	effects	be	discounted	at	the	same	

rate	ambiguity	surrounds	what	that	rate	should	be.	American	

recommendations	currently	stand	at	3%.	In	the	UK	NICE	

recommends	3.5%	for	both	costs	and	benefits	(NICE,	2013)	but	

previously	recommended	6%	for	costs	and	1.5%	for	benefits	(NICE,	

2011).	Sensitivity	analysis	accounting	for	a	range	of	discounting	rates	

is	therefore	recommended	whilst	further	research	in	this	area	

continues	(Sanders	et	al.,	2016).				

	

This	review	found	that	cost-effectiveness	analysis	of	neoadjuvant	

therapy	for	the	treatment	of	SOM	utilised	a	variety	of	methods	

although	Markov	decision	models	and	decision	analytic	models	

dominated.	Whilst	such	approaches	offer	methods	for	dealing	with	
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uncertainty	through	evidence	synthesis,	this	review	revealed	that	

there	was	limited	explanation	of	how,	or	indeed	if,	such	models	dealt	

with	heterogeneity	and	potential	bias	of	the	data	used	to	populate	

these	models	(Appendix	G).	Some	databases	lacked	important	details	

related	to	tumor	characteristics	or	specifics	of	interventions,	which	

could	potentiate	bias	as	could	the	application	of	survival	analysis,	

when	used	in	the	presence	of	censored	data.	Furthermore	the	

majority	of	studies	were	retrospective.	Future	studies	should	focus	

on	performing	economic	analysis	prospectively,	possibly	within	

clinical	trial,	to	ensure	high	internal	validity	(Drummond	et	al.,	1997;	

Simunovic	et	al.,	2004).	Where	evidence	is	synthesised	a	quantitative	

description	and	critique	of	the	evidence	base	must	be	offered	with	

explicit	detail	about	how	bias	within	and	across	studies	was	handled,	

bias	corrected	estimates	arrived	at,	and	how	estimates	were	adjusted	

for	transferability	(Sanders	et	al.,	2016).		As	was	the	case	with	most	

studies,	ambiguities	should	be	tested	through	sensitivity	analysis.	In	

studies	of	higher	quality	sensitivity	analysis	was	used	to	test	every	

assumption	or	estimate	used	in	the	decision	model	to	account	for	

potential	impact	of	such	variations	on	the	results	and	this	should	be	

standard	practice	across	future	studies.						

	

	

With	the	exception	of	one	study	in	this	review	(van	der	Brink	et	al.,	

2004)	quality-of-life	data	was	not	collected	as	part	of	the	analysis	

hence	introducing	limitations	in	accuracy	of	QALYs.	Whilst	some	

would	debate	the	ability	of	QALYs	to	capture	all-important	factors	

impacting	quality	of	life,	such	as	short	lived	but	intense	experiences,	

generic	preference-based	measures	would	enhance	comparability	of	
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findings	(Sanders	et	al.,	2016).	The	proviso	is	that	such	instruments	

exist	and	are	fit	for	the	purpose	of	measuring	differences	and	

changes	across	interventions	being	considered	(Sanders	et	al.,	2016).	

Where	such	instruments	do	not	yet	exist,	analysts	may	present	

quality-of-life	estimates	based	on	scores	from	patients	and/or	other	

sources	(Sanders	et	al.,	2016).									

	

In	summary,	current	cost-effectiveness	analysis	of	neoadjuvant	

therapy	are	limited	by	factors	impeding	comparability,	limitations	of	

available	evidence	supporting	effectiveness	of	treatment	options	and	

quality-of-life	measures	on	which	to	base	quality	adjusted	survival	

outcomes.	Reference	cases,	from	both	health	sector	and	societal	

perspectives,	introduced	as	standard	reporting	of	and	using	

standardised	methodological	practices	could	promote	comparability	

of	future	studies,	with	a	set	‘impact	inventory’	improving	

transparency	of	included	costs	(Sanders	et	al.,	2016).		The	evidence	

base	on	which	cost-effectiveness	analysis	is	based	must	also	be	

routinely	critiqued	with	quantitative	description	of	evidence	base,	

accounting	for	bias	within	and	between	studies,	offered	as	the	basis	

on	which	bias	adjusted	estimates	are	calculated	(Sanders	et	al.,	2016)	

and	each	assumption	tested	in	sensitivity	analysis.	Attention	to	

collecting	quality-of-life	data	would	enhance	future	studies	

particularly	if	included	in	prospective	studies.	

	

	

	

	

	



	 111	

2.2.3	Conclusion:	lessons	from	modeling	in	health	economics		

	

To	conclude,	the	flaws	highlighted	in	the	reviews	of	cost-

effectiveness	analysis	pertaining	to	pancreatic	cancer	surgery	

(methodological	flaws	and	heterogeneity	limiting	comparability	and	

generalisability	of	findings,	uncertainty	and	quality	issues	pertaining	

to	data	sources	and	how	effectiveness	is	measured	and	reported)	

prevail	and	permeate	through	cost-effectiveness	analysis	of	

neoadjuvant	therapy	applied	to	other	malignancies,	even	where	the	

underlying	evidence	base	for	neoadjuvant	approach	is	more	matured.	

This	challenges	the	erroneous	assumption	that	better	quality	data	

would	automatically	equate	with	better,	more	useful	statistical	

models	of	outcome	optimisation	in	pancreatic	cancer	treatment.	

However,	the	lessons	to	be	drawn	are	more	expansive	than	simply	

the	technicalities	of	how	to	improve	cost-effectiveness	studies	and	

could	have	much	more	latitudinous	connotations	for	future	research.		

	

Firstly,	the	limitations	of	current	cost-effectiveness	analysis	studies	

must	be	understood	within	the	context	of	the	limitations	of	the	

available	evidence-base	determining	the	degree	of	‘effectiveness’	of	

the	intervention,	which	is	after	all	the	‘driver’	for	cost-effectiveness	

analysis	(Ades	et	al.,	2006).	Whilst	it	is	widely	accepted	that	RCTs	

and	their	meta-analysis	provide	the	highest	form	of	evidence	(Garas	

et	al.,	2012;	Centre	of	Evidence	Based	Medicine,	2011),	the	fallibility	

of	this	perceived	hierarchy	must	be	acknowledged	(Ades	et	al.,	2006;	

Garas	et	al.,	2012).	Firstly,	RCTs	can	report	varied	outcomes	and	may	

not	provide	all	evidence	required.	Furthermore	the	inevitable	lack	of	

infallible,	appropriately	designed	RCTs	reflecting	real-life	patient	
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case-mix	and	complexities	of	decision	making	in	clinical	practice,	

does	not	equate	with	avoiding	or	improving	cost-effectiveness	

analysis	(Ades	et	al.,	2006).	Increasingly	decision	analysis	is	being	

used	as	a	framework	for	economic	evaluation	(Ades	et	al.,	2006).	

How	then	can	clinicians	and	researchers	best	make	use	of	the	

existing	imperfect	evidence	base	whilst	simultaneously	considering	

the	impact	of	such	weaknesses	on	uncertainty	of	decisions	and	for	

research	priorities?	(Ades	et	al.,	2006;	Claxton	et	al.,	2002)	

	

Rather	than	solely	seeking	to	address	the	gaps	in	current	literature	

with	further	RCTs	one	additional	solution	may	lie	in	evidence	

synthesis;	a	growing	area	of	interest	within	cost-effectiveness	

analysis	(Ades	et	al.,	2006;	Garas	et	al.,	2012;	Claxton	et	al.,	2002).	

Evidence	synthesis	is	a	collective	term	covering	the	diversity	of	

methods	and	mathematical	tools	utilised	for	integrating	data	from	a	

variety	of	sources	into	decision	and	cost-effectiveness	analysis	

models	(Ashrafian	et	al.,	2010).	This	approach	has	been	championed	

as	producing	evidence	with	greater	accuracy	and	less	uncertainty	by	

utilising	data	from	multiple	types	of	studies	(Ashrafian	et	al.,	2010).	

However,	as	demonstrated	by	the	previous	review	of	existing	cost-

effectiveness	analysis	studies,	challenges	arise	when	accounting	for	

heterogeneity,	degree	of	bias	and	uncertainty	when	combining	

multiple	sources	of	available	evidence	in	cost-effectiveness	analysis	

(Ades	et	al.,	2006).		

	

In	response	to	such	challenges	Bayesian	approach	to	meta-analytical	

methodology	is	gaining	precedence	(Ades	et	al.,	2006;	Garas	et	al.,	

2012;	Ashrafian	et	al.,	2010;	Felli	&	Hazen	et	al.,	1999).	Bayesian	
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approach	is	based	on	the	concept	of	using	available	evidence	to	

accurately	derive	the	probability	of	a	parameter	(Ashrafian	et	al.,	

2010).	It	therefore	provides	the	flexibility	to	incorporate	variable	

randomised	and	non-randomised	data	sources	in	a	hierarchical	

model	with	sources	individually	weighted	to	account	for	bias	and	

uncertainty	(Ades	et	al.,	2006;	Garas	et	al.,	2012;	Ashrafian	et	al.,	

2010;	Spiegellhalter	et	al.,	2004;	Sutton	&	Abrams,	2001).		

Consequently	this	approach	is	beginning	to	play	a	pivotal	role	in	

decision	modeling	(Tapper	et	al.,	2011;	Garas	et	al.,	2012;	

Spiegellhalter	et	al.,	2004;	Cooper	et	al.,	2002;	Cooper	et	al.,	2004;	

Parmigiani,	2002).	At	present	the	application	of	this	methodology	is	

stymied	by	the	complex	mathematical	expertise	it	demands	

(Ashrafian	et	al.,	2010).	Advances	in	software	supporting	Bayesian	

approach	juxtaposed	with	an	increasing	focus	on	cost-effectiveness	

analysis	of	health	interventions,	makes	this	is	a	rapidly	expanding	

area	of	research	with	Bayesian	methods	being	incorporated	into	the	

field	of	machine	learning	to	support	decision	making.	However,	the	

review	of	cost-effectiveness	analysis	studies	revealed	that	a	

significant	number	of	studies	used	Markov	modeling,	a	statistical	

model	derived	from	the	Bayesian	school	of	statistics,	and	yet	

significant	flaws	prevail.	If	research	is	to	advance	the	lessons	learned	

therefore	must	go	beyond	those	of	statistical	modeling	methodology	

to	consider	the	theory	driving	current	research	and	how	this	relates	

to	its	current	limitations.												

	

If	we	consider	the	basis	for	Ulrich’s	seminal	work	on	critical	systems	

thinking	(Ulrich,	1983)	which	was	that	the	definition	of	a	problem,	

proposals	for	improvement	and	outcome	are	all	dependent	on	the	
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whole	system	(Ulrich,	2002).	This	places	great	emphasis	on	how	

systems	boundaries	are	justified	and	the	implications	this	has	for	

what	modeling	a	system	defined	in	such	a	way	will,	and	importantly	

will	not,	tell	us.	The	implications	of	boundary	setting	across	the	

previously	discussed	cost-effectiveness	analysis	studies	relate	to	

their	limitations	and	manifest	as:	exclusion	of	important	alternative	

treatment	strategies,	the	exclusion	of	certain	costs	including	indirect	

costs	forfeited	by	the	patient,	exclusion	of	consideration	of	all	

relevant	potential	implications	of	a	treatment	strategy	including	

treatment	failure	and	side	effects,	a	lack	of	quality	adjusting	survival	

time	or	collecting	quality-of-life	data	to	more	accurately	do	so,	and	

the	setting	of	time	horizons	to	capture	all	necessary	events.	This	

enables	the	limitations	of	the	existing	body	of	cost-effectiveness	

studies	not	merely	to	be	seen	as	a	series	of	methodological	issues	to	

be	corrected,	but	rather	as	the	system	that	is	the	delivery	of	

healthcare	being	defined	in	simplistic	and	reductionist	terms	dictated	

by	the	researcher’s	agenda	which	therefore	not	only	defines	

effectiveness	in	their	terms	but	also	how	system	boundaries	are	set	

which	in	turn	determines	how	effectiveness	is	assessed.	If	a	move	

towards	personalised	realistic	medicine	is	to	be	achived	then	

outcomes	must	instead	be	defined	in	more	patientcentric	ways	with	

models	created	that	can	encompass	this	refocusing.			

	

Problem	structuring	thinkers,	such	as	Ulrich,	argue	that	systems	

boundaries	must	be	rationally	justified	through	dialogue	with	both	

the	involved	and	affected	(Ulrich,	2002;	Ulrich,	2012;	Ulrich,	1987).	

Cilliers	combined	thinking	about	boundaries	with	concerns	relating	

to	complexity	(Kruger	et	al.,	2019).	Both	he	and	problem	structuring	



	 115	

thinkers	such	as	Ulrich	agree	that	both	limited	knowledge	of	systems	

as	a	result	of	boundaries	and	complexity	exist	and	therefore	require	a	

critical	and	ethical	imperative	in	the	study	and	understanding	of	such	

systems	(Kruger	et	al.,	2019).	Although	this	work	predated	the	

concept	of	realistic	personalised	medicine	its	relevance	is	tangible.	

This	view	is	supported	by	a	growing	move	within	healthcare	

research	to	view	healthcare	systems	as	complex	adaptive	systems	

which	have	been	formally	defined	as	“a	collection	of	individual	agents	

with	freedom	to	act	in	ways	that	are	not	always	totally	predictable,	

and	whose	actions	are	interconnected	such	that	one	agent’s	actions	

change	the	context	for	other	agents”	(Plsek	&	Greenhalgh,	2001	

p.625).	

	

To	conclude,	it	is	not	without	coincidence	that	the	field	of	complex	

systems	developed	at	a	time	when	statistical	theory	began	to	

coalesce	with	machine	learning	to	reliably	infer	models	with	large	

numbers	of	variables	that	interact	in	complex,	non-linear	ways.	It	

would	therefore	seem	that	the	potential	of,	for	example,	Bayesian	

statistics	has	not	been	fully	explored	within	the	area	of	modeling	for	

cost-effectiveness	analysis	where	the	system	being	modeled	has	been	

so	reduced	and	simplified.	Therefore	the	next	section	will	assess	how	

predictive	models	to	support	clinical	decision	making	by	predicting	

outcomes	have	been	developed	and	used,	and	to	what	degree	of	

success.	After	a	critical	overview	of	existing	models	a	more	detailed	

examination	of	the	methodological	quality	of	prognostic	

development	studies	is	offered.	After	this	the	specific	use	of	machine	

learning	to	support	clinical	decision	making	in	the	management	of	

pancreatic	cancer	will	be	critically	analysed.						



	 116	

2.3	Predictive	Modeling	to	Support	Clinical	Decision	

Making	in	the	Management	of	Potentially	Resectable	

Pancreatic	Cancer.		
	

Publications	resulting	from	this	section:	

	

Bradley,	A.,	Van	Der	Meer,	R.	and	McKay,	C.J.	(2019)	‘A	systematic	

review	of	methodological	quality	of	model	development	studies	

predicting	prognostic	outcome	for	resectable	pancreatic	cancer’.	BMJ	

Open,	9:e027192.	doi:	10.1136/bmjopen-2018-027192	

	

Bradley,	A.,	Van	der	Meer,	R.	and	McKay,	C.	(2019)	‘Personalized	

pancreatic	cancer	management:	a	systematic	review	of	how	machine	

learning	is	supporting	decision-making’.	Pancreas,48	(5).	pp.	598-

604.	

	

Introduction	

	

Traditionally	assessment	of	operative	risk	has	been	the	domain	of	

surgeons’	judgment	gained	from	experience	(Lewis	&	Volmer,	2012).	

However,	there	exists	a	great	need	to	risk-stratify	surgical	patients	

pre-operatively	in	an	objective	and	standardised	way	(Lewis	&	

Volmer,	2012).	This	is	particularly	pertinent	in	the	high	precision	

field	of	pancreatic	cancer	surgery	where	surgical	volume	is	low,	with	

only	approximately	10%	of	cases	being	resectable	at	presentation,	

yet	operative	mortality	and	morbidity	rates	are	high	(Lewis	&	

Volmer,	2012).	Despite	advances	in	surgical	technique	and	adjuvant	

treatments,	the	potential	benefits	of	such	high-risk	surgery	are	often	
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nullified	by	early	disease	reoccurrence.	Effective	patient	selection	for	

surgery	is	therefore	paramount.	Furthermore	studies	have	shown	

high	discrepancies	between	surgical	and	survival	outcomes	in	favour	

of	large	volume	centres	(Birkmeyer	et	al.,	2002)	which	highlights	the	

need	for	accurate	methods	of	performance	adjustment	through	risk	

stratification	and	predictive	modeling	(Lewis	&	Volmer,	2012).	This	

makes	pancreatic	surgery	an	ideal	vector	through	which	to	deliver	

solutions	to	the	complex	challenges	encountered	in	prognostic	

modeling	in	organ	specific	surgery.		

	

Options	for	the	management	of	resectable	cases	of	pancreatic	cancer	

are	also	becoming	more	complex	with	the	advent	of	neoadjuvant	

therapy.	In	the	absence	of	large	RCTs	conclusively	proving	benefit	of	

either	upfront	surgery	or	neoadjuvant	approaches	to	treatment,	

there	exists	a	need	for	predictive	models	to	address	competing	

treatment	options.	These	changes	have	also	taken	place	within	a	

wider	socioeconomic	context.	Prognostic	models	and	risk	

stratification	tools	are	not	only	expected	to	guide	treatment	

approaches	but	also	guide	cost-effective	use	of	resources	by	diverting	

patients	away	from	unhelpful	treatments	and	investigations.	

Furthermore	there	is	a	move	within	contemporary	healthcare	

towards	personalised	predictive	medicine	whereby	probabilistic	

modeling	is	used	to	forecast	individual	patient	outcomes	(Velikova	et	

al.,	2014;	School	et	al.,	2013).		

	

In	summary,	risk	stratification	and	prognostication	are	vital	in	

empowering	informed	consent,	supporting	clinical	decision	making,	

guiding	treatment	options	and	patient	counseling	as	well	as	offering	
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powerful	research	tools	(Lewis	&	Volmer,	2012).	The	following	

section	is	structured	thus:	Section	2.3.1	begins	by	offering	an	

overview	of	the	role	of	predictive	models	in	contemporary	pancreatic	

surgery	practice	through	a	brief	outline	of	the	historical	perspective	

of	risks	stratification	and	prognostic	modeling	to	where	we	are	

today.	From	this	platform	a	critical	analysis	of	current	methods	of	

predictive	modeling	will	be	presented.	Section	2.3.2	then	takes	this	

discussion	further	through	a	systematic	critical	review	of	the	

methodological	quality	of	existing	prognostic	model	development	

studies.	From	this	basis	the	application	of	Bayesian	networks	as	an	

alternative	modeling	technique	is	discussed.	Bayesian	networks	have	

also	been	applied	within	the	wider	discipline	of	machine	learning	

therefore	section	2.3.3	critically	examines	how,	and	to	what	extent,	

the	application	of	the	emerging	discipline	of	machine	learning	has	

been,	and	could	be,	applied	to	the	issue	of	supporting	clinical	decision	

making	and	achieving	personalised	realistic	medicine	in	the	

management	of	potentially	resectable	pancreatic	cancer.	Importantly	

the	optimism	surrounding	this	approach	is	weighted	against	its	

current	limitations.	From	this	basis	the	case	is	made	that	if	research	

is	to	progress	what	is	required	is	not	merely	an	improvement	of	the	

application	of	statistical	modeling	techniques	but	rather	a	revolution	

in	the	prevailing	Weltanschauung	resulting	in	a	fundamental	shift	in	

the	philosophical	paradigm	underpinning	future	research.					
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2.3.1	Predictive	Models	For	The	Surgical	Management	of	

Pancreatic	Cancer	

	

Predictive	models	published	since	2000	pretainng	to	the	surgical	

management	of	pancreatic	cancer	fall	into	the	following	broad	

categories:	predicting	mortality	and	morbidity	from	pancreatic	

cancer	surgery,	complication	specific	predictions	following	

pancreatic	surgery	and	predicting	survival	time	following	pancreatic	

cancer	surgery.		

	

The	critical	analysis	of	existing	predictive	and	prognostic	models	

offered	in	appendix	H	shows	that	despite	a	growing	interest	in	

prediction	research	and	its	methodologies	(Altman	&	Riley,	2005;	

Altman,	2007;	Altman	&	Lyman	1998;	McShane	et	al.,	2005;	Rothwell,	

2008;	Moons	et	al.,	2009;	Bouwmeester	et	al.,	2012)	there	is	a	lack	of	

rigorous	application	within	surgical	centres	and	wider	surgical	

literature	of	predictive	and	prognostic	models	(Lewis	&	Volmer,	

2012).	This	is	in	part	due	to	methodological	issues:	the	inclusion	of	a	

wide	variety	of	variables	the	importance	of	which	clinicians	making	

the	decisions	may	dispute,	the	use	of	small	single	centre	data	which	

limits	generalisability	and	the	lack	of	external	validation.		

	

Currently	the	most	sophisticated	medical	predictive	models	are	

based	on	non-liner	regression	techniques;	primarily	logistic	

regression	and	Cox	regression	(Lewis	&	Volmer,	2012).	Conversely	

personalised	precision	medicine,	whereby	predictive	and	prognostic	

modelling	is	used	to	forecast	individual	patient	outcomes,	is	gaining	

precedence	within	contemporary	healthcare	(Velikova	et	al.,	2014;	
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School	et	al.,	2013)	and	creates	an	expectation	for	models	to	facilitate	

decision	making	and,	given	the	wider	socioeconomic	context,	also	

guide	cost-effective	use	of	resources.	A	disparity	between	

expectations	and	the	reality	of	currently	available	models	therefore	

exists.	Juxtapose	these	growing	expectations	with	the	advent	of	

neoadjuvant	therapy	making	treatment	options	for	resectable	

pancreatic	cancer	more	complex,	and	it	becomes	clear	that	methods	

of	predictive	and	prognostic	modelling	must	be	rigorously	assessed	if	

such	challenges	are	to	be	overcome,	as	poor	methods	can	result	in	

unreliable	and	biased	results	(Bouwmeester	et	al.,	2012).		

	

This	research	focuses	on	optimising	outcomes	for	patients	with	

potentially	resectable	pancreatic	cancer.	As	outcomes	are	most	often	

measured	in	terms	of	survival	time,	the	following	section	therefore	

analyses	the	methodological	quality	of	prognostic	model	

development	studies	applied	to	resectable	PDAC.	

	

2.3.2	Methodological	Quality	of	Prognostic	Development	Studies	

for	Resected	Pancreatic	Cancer		

	

An	overview	of	the	current	state	of	prognostic	model	development	

studies	relating	to	prognosis	following	resection	of	PDAC	is	

presented	in	appendix	I.		Areas	for	improvement	and	direction	for	

future	research	have	been	highlighted	by	assessing	each	domain	of	

the	Checklist	for	critical	Appraisal	and	data	extraction	for	systematic	

Reviews	of	prediction	Modeling	Studies	(CHARMS)	checklist	across	

the	15	included	studies	(Moons	et	al.,	2014).	Theses	areas	for	

improvement	related	to	general	aspects	of	model	development	and	
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reporting,	applicability	of	models	and	sources	of	bias	(Moons	et	al.,	

2014).		

	

General	Aspects	of	Models	Development	and	Reporting	

	

General	reporting	of	aspects	of	model	development	was	found	to	be	

clear	relating	to	participant	eligibility,	recruitment	and	description	as	

was	reporting	of	follow-up	period.	Definitions	of	outcome	and	

number	and	type	of	candidate	predictors	were	also	generally	clearly	

reported	across	included	studies.	Although	the	number	of	

participants	was	clearly	reported,	the	number	of	events	at	defined	

time	periods	of	prediction	should	be	more	clearly	reported	to	assist	

assessment	of	statistical	power.	Improvement	should	also	be	made	in	

the	reporting	of	missing	data.	The	majority	of	studies	used	complete	

case	analysis	but	only	2	of	the	remaining	studies	provided	details	of	

missing	data	per	variable	(Brennan	et	al.,	2004;	Botsis	et	al.,	2009).	

Across	all	15	studies	modeling	methods	were	clearly	reported.	

Alternative	presentations	of	models	were	also	offered	in	all	studies	to	

assist	application	to	clinical	practice	with	discussion	on	strengths,	

limitations	and	comparisons	also	offered.	

	

Applicability	

	

Generalisability	of	prognostic	models	is	an	area	for	improvement	as	

the	majority	of	models	were	based	in	single	centre	databases.	The	

applicability	of	these	models	to	patients	in	neoadjuvant	treatment	

pathways	has	also	not	been	assessed.		
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Methods	of	reporting	model	performance	showed	high	heterogeneity	

with	only	9	studies	providing	confidence	intervals	with	results	

making	comment	on	general	applicability	difficult	(Shen	et	al.,	2018;	

Balzano	et	al.,	2017;	Dasari	et	al.,	2016;	Pu	et	al.,	2018;	Brennan	et	al.,	

2004;	Xu	et	al.,	2017;	Botsis	et	al.,	2009;	Smith	&	Mezhir,	2014;	Pu	et	

al.,	2017).	Most	models	had	limited	discriminatory	performance	with	

area	under	the	curve	(AUC)	below	0.7	and	those	reporting	an	AUC	

nearing	0.9	being	based	on	small	sample	sizes	therefore	raising	the	

possibility	of	overfitting.	The	2	studies	employing	alternative	

methods	of	artificial	neural	network	(ANN)	(Walczak	&	Velonovich,	

2012)	and	Bayesian	modeling	(Smith	&	Mezhir,	2014)	did	not	report	

an	improved	AUC	(0.66	and	0.65	respectively).	Furthermore	

calibration,	a	crucial	aspect	of	model	development,	was	frequently	

missing	or	not	performed	adequately	with	the	calibration	curve	

based	on	the	derivation	dataset	(Xu	et	al.,	2017).	In	cases	of	poor	

validation	whether	the	model	was	adjusted	or	updated	was	also	

poorly	reported.	Only	3	studies	performed	external	validation	(Shen	

et	al.,	2018;	Balzano	et	al.,	2017;	Dasari	et	al.,	2016)	and	none	of	the	

studies	explored	impact	analysis	of	their	models	making	comment	on	

the	clinical	application	of	the	models	difficult.	Moving	forward	this	

could	be	addressed	through	access	to	datasets	from	meta-analyses	of	

individual	participant	data,	or	registry	databases	containing	

electronic	health	records	(Riley	et	al.,	2016).	Such	big	datasets	would	

allow	researchers	to	externally	validate,	and	where	needed	improve	

through	recalibration,	model	performance	across	different	settings,	

populations	and	subgroups	(Riley	et	al.,	2016).		
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Source	of	Bias	

	

Areas	for	improvement	were	also	found	in	limiting	sources	of	bias.	As	

previously	mentioned	overuse	of	single	centre	databases	is	one	area	

but	also	the	reporting	of	consecutive	sampling,	number	of	

participants	who	refused	participation,	and	whether	all	consecutive	

participants	were	included	should	be	more	clearly	reported.	

Although	handling	of	candidate	predictors,	and	predictors	in	

modeling,	were	generally	clearly	reported	including	statistical	

methods	for	handling	categorisation	and	non-binary	variables,	their	

assessment	generally	did	not	involve	blinding	to	outcome.	

Assessment	of	statistical	power	of	sample	size	was	also	not	well	

reported	and	only	2	studies	used	the	recommended	approach	of	

imputation	methods	to	handle	missing	data	with	the	majority	of	

studies	employing	complete	case	analysis	which	could	both	

potentiate	bias	and	reduce	statistical	power	(Moons	et	al.,	2014).	

None	of	the	included	studies	gave	details	on	how	candidate	

predictors	were	identified.	In	selecting	predictors	for	inclusion	in	the	

models	the	majority	of	studies	employed	pre-selection	through	

univariable	analysis	followed	by	multivariable	analysis.	Whilst	such	

an	approach	is	commonplace	it	does	potentiate	overfitting	of	models,	

an	issue	poorly	discussed	across	all	studies.	Only	3	studies	included	

external	evaluation	(Shen	et	al.,	2018;	Balzano	et	al.,	2017;	Pu	et	al.,	

2018)	and	classification	measures	(sensitivity,	specificity,	predictive	

value)	were	poorly	reported,	as	was	comparison	of	distribution	of	

predictors	including	missing	data.		
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In	summary,	at	a	time	when	an	increasing	focus	and	expectation	is	

being	placed	on	personalised	predictive	medicine,	this	review	

highlights	fundamental	aspects	of	the	methodological	quality	of	

models	that	must	be	improved	if	future	models	are	to	have	a	clinical	

impact	by	supporting	decision	making.	Whilst	many	of	the	models	

included	in	this	review	provided	alternative	presentations	to	assist	in	

their	clinical	application,	issues	of	methodological	quality	were	found	

that	inhibited	their	clinical	impact.	These	issues	included	how	

missing	data	is	handled,	the	assessment	of	statistical	power,	issues	of	

bias	associated	with	candidate	predictor	selection	and	a	lack	of	

blinding	during	their	assessment.	Such	issues	are	augmented	by	an	

over	reliance	on	single	centre	databases	which	also	limits	the	

generalisability	of	the	models.	The	reporting	of	model	performance	is	

also	a	key	area	for	improvement.	The	emerging	focus	on	precision	

medicine	means	that	the	future	application	of	predictive	modeling	

lies	in	combining	each	patient’s	genomic	and	clinical	data	in	a	

meaningful	way	that	will	support	clinical	decision	making	at	

individual	patient	level.	This	can	only	be	achieved	if	future	research	

focuses	on	improving	the	methodological	quality	of	model	

development,	regardless	of	whether	they	employ	traditional	or	

machine	learning	methods.		

	

2.3.3	Conclusion:	Lessons	Learned	and	Future	Direction	of	

Research	for	Predictive	Models	in	Pancreatic	Cancer	Surgery						

		

A	bamboozling	yet	flawed	array	of	predictive	models	and	risk	

stratification	tools	pertaining	to	pancreatic	surgery	exist	(Appendix	

H;	Appendix	I).	Predictive	models	and	risk	stratification	tools	are	
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widely	used	in	audit	and	research	in	many	other	areas	to	allow	case-

mix	adjustment	when	comparing	single	centre	outcomes	(Steyerberg	

et	al.,	2010)	and	in	defining	inclusion	and	exclusion	criteria	for	RCTs	

or	identifying	high	risk	participants	and	allowing	covariate	

adjustment	(Lewis	&	Volmer,	2012).	However,	this	review	has	

demonstrated	that	it	is	in	the	area	of	clinical	application	that	

predictive	modeling	arguably	holds	most	promise	yet	demonstrates	

most	limitation.		

	

Predictive	models	can	support	clinical	decision	making	and	assist	

patient	counseling	(Braitman	&	Davidoff,	1996)	hence	empowering	

informed	consent	processes	and	shared	decision	making.	In	the	

absence	of	clear	contraindications	to	surgery	but	where	surgeons	are	

faced	with	difficult	decisions	about	whether	to	operate	or	not,	

predictive	models	can	provide	objective	predictions	about	the	

patient’s	physiological	and	immunological	responses	to	surgery	

(Jarnagin	et	al.,	2011;	Christou,	1994).	Intra-operative	and	post-

operative	application	of	predictive	models	can	also	alter	the	course	of	

treatment	(Lewis	&	Volmer,	2012).	For	example	a	patient	identified	

as	being	at	high	risk	for	developing	a	pancreatic	fistulae	may	

therefore	receive	more	aggressive	prophylactic	measures	(Lewis	&	

Volmer,	2012).	Equally	lower	risk	surgical	patients	could	be	diverted	

away	from	unnecessary	referrals	or	investigations	allowing	better	

resource	utilisation	(Altman	&	Royston,	2000).	The	emerging	focus	

on	precision	medicine	means	that	there	will	be	a	demand	on	future	

applications	of	predictive	modeling	to	merge	patient’s	genomic	and	

clinical	data	to	assist	decision	making	on	a	more	individualised	basis	

(Lewis	&	Volmer,	2012).		
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The	reality	however	is	that	such	models	are	not	yet	in	existence	and	

current	predictive	models	are	limited	in	scope	and	value	with	most	

only	being	descriptive	in	probabilities	of	adverse	events	or	survival	

outcomes	(Lewis	&	Volmer,	2012).	Whilst	this	may	help	to	manage	

patient	expectations,	existing	models	fall	short	in	differentiating	

patients	who	would,	and	more	importantly	would	not,	benefit	from	

particular	treatment	options	(Lewis	&	Volmer,	2012).	Furthermore	

some	studies	have	shown	that	such	models	are	no	better	than	

experience	led	judgment	in	predicting	morbidity	(Markus	et	al.,	

2005;	Hartley	et	al.,	1994).	This	corroborates	conflicting	findings	

regarding	the	accuracy	of	widely	used	models	to	predict	post-

operative	morbidity	and	mortality	from	pancreatic	surgery	(Lewis	&	

Volmer,	2012).	This	is	also	reflected	in	the	limited	application	of	

predictive	models	within	surgical	centres	and	also	the	lack	of	

rigorous	application	of	predictive	modeling	in	surgical	literature	

(Lewis	&	Volmer,	2012).			

	

Whilst	the	plethora	of	available,	disease	specific	prognostic	and	risk	

prediction	models	may	infer	a	growing	interest	in	the	area	of	

predictive	modeling,	to	integrate	fully	into	clinical	practice	they	need	

to	provide	predictions	beyond	length	of	survival	or	risk	prediction	to	

include	fundamentals	such	as	quality	of	survival	time,	length	of	

hospital	stay,	resource	utilisation	and	predicted	benefits	of	

competing	treatment	options	available.	In	short,	and	echoing	the	

previous	conclusions	drawn	from	the	review	of	statistical	modeling	

for	cost-effectiveness	analysis,	predictive	models	must	develop	to	
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engage	with	the	complexity	of	the	system	they	are	attempting	to	

model.				

	

The	problem	with	existing	modeling	techniques	is	that	they	regard	

prognosis	as	an	isolated	event	at	a	pre-determined	time,	applying	

attribute	selection	prior	to	inducing	the	model	and	setting	fixed	roles	

of	input	and	output	variables	to	attributes	(Verduijn	et	al.,	2007).	

Variables	deemed	important	by	clinicians	may	therefore	be	excluded.	

Furthermore	this	neglects	the	dynamic	nature	of	care	processes	

where	outcomes	today	predict	those	of	tomorrow	hence	expected	

patient	outcomes	evolve,	as	more	information	becomes	available	

(Verduijn	et	al.,	2007).		

	

Bayesian	statistical	approach	offers	an	alternative	to	traditional	

frequentist	paradigm	of	null	hypothesis	testing	by	allowing	the	

integration	of	prior	qualitative	and	quantitative	knowledge	(Velikova	

et	al.,	2014;	School	et	al.,	2013;	Verduijn	et	al.,	2007).	In	this	way	

Bayesian	Networks	(BN)	allow	the	modeling	of	relationships	

between	variables	at	various	stages	of	the	healthcare	process,	with	

predictions	of	outcomes	evolving	throughout	the	process	by	utilising	

all	available	patient	data	at	that	time	(School	et	al.,	2013).	Predictions	

can	therefore	be	made	for	all	variables,	not	just	outcome	variables	

(Velikova	et	al.,	2014;	School	et	al.,	2013;	Lucas	et	al.,	2004).	

However,	despite	the	potential	of	BN	and	the	expanse	of	software	

supporting	their	application,	their	use	within	healthcare	remains	

under	utilised.		
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BN	are	based	on	graphical	formalism	of	a	joint	or	multivariate	

probability	distribution	over	a	random	set	of	variables	and	are	

sometimes	referred	to	as	acyclic	directed	graphs	(Velikova	et	al.,	

2014;	School	et	al.,	2013;	Stajduhar	&	Dalbelo-Basic,	2010).	In	plain	

language	the	structure	and	parameters	of	BN	are	nodes,	arcs	and	

conditional	probabilities.		Variables	in	a	BN	are	modeled	as	nodes	

and	directed	arcs	represent	causal	relationships	between	nodes.	

Each	node	has	a	conditional	probability	formula	or	table	that	

represents	the	probability	of	each	value	contained	within	that	node	

given	the	condition	of	all	its	parent	nodes.	Through	Bayes	theorem	

the	prior	distribution	and	observed	data	are	combined	to	update	

knowledge	in	the	form	of	the	posterior	distribution	(Velikova	et	al.,	

2014;	School	et	al.,	2013;	Stajduhar	&	Dalbelo-Basic,	2010).	Where	

patient	information	is	limited	probabilistic	inference	can	still	make	

predictions	based	on	global	averages	of	the	patient	population	

(Verduijn	et	al.,	2007;	Lucas	et	al.,	2004).	As	more	information	

becomes	available	the	predictions	become	more	patient	specific	

(Verduijn	et	al.,	2007).	

	

This	has	important	implications	as	treatment	selection	and	

prognostic	reasoning	at	its	very	core	concerns	making	predictions	of	

future	events	despite	inherent	uncertainties.	BN	have	the	capacity	to	

encompasses	exploitation	of	knowledge	of	evolution	of	processes	

over	time.	Prognostic	Bayesian	models	allow	for	incorporation	of	

individual	patient	data,	disease	progression	and	impact	of	different	

treatment	options	on	the	predicted	outcome	variable,	such	as	life	

expectancy	(Lucas	et	al.,	2004).	Therefore,	unlike	traditional	

prognostic	models	that	provide	predictions	of	a	single	outcome	
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variable,	BN	are	theoretically	better	equipped	to	handle	complexity,	

providing	information	on	process	variables	(conditions	that	occur	

during	the	process)	as	well	as	outcome	variables	(endpoints	of	that	

process)	(Verduijn	et	al.,	2007;	Lucas	et	al.,	2004).		

	

In	summary,	Bayesian	methods	underpin	BN	and	allow	prognosis	to	

be	seen	as	a	dynamic	notion	through	probability	updating	with	new	

and	emerging	information	(Verduijn	et	al.,	2007).	This	has	several	

important	benefits	when	considering	the	clinical	application	to	

support	decision	making.	Firstly	prognostic	updating	can	capture	the	

reality	that	as	the	healthcare	process	evolves	so	does	a	patient’s	

predicted	prognosis.	In	practice	this	means	clinicians	involved	at	the	

later	stages	of	care	can	use	the	same	model,	adjusted	for	the	events	of	

the	preceding	care	phases	(e.g.	complex	surgical	interventions)	to	

make	more	timely	and	personalised	predictions	(Verduijn	et	al.,	

2007).	This	further	highlights	an	aspect	of	predictive	medicine	not	

captured	in	traditional	prognostic	models;	prognostic	scenario	

analysis.	In	real	life	events	such	as	complications	and	hospital	stay	do	

not	happen	in	isolation	but	rather	as	scenarios	(Verduijn	et	al.,	2007).	

Algorithms	exist	within	prognostic	BN	that	can	perform	this	type	of	

probabilistic	inference	to	predict	a	most	likely	scenario	for	patients	

or	patient	groups	(Verduijn	et	al.,	2007).	This	advantage	links	

beneficially	to	a	further	aspect	faced	by	clinicians	and	patients;	the	

‘what	if	scenario’.		By	identifying	a	specific	event	the	prognostic	BN	

can	supply	a	risk	profile	of	the	most	likely	scenarios	leading	to	the	

stated	event	(Verduijn	et	al.,	2007).	Such	information	can	be	

incorporated	into	decision	making	regarding	treatment	options.	

Similarly	BN	can	be	used	to	perform	risk	factor	analysis	as	when	an	
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unfavorable	event	occurs,	such	as	post-operative	complication,	it	is	

important	to	identify	variables	that	may	have	predicted	occurrence	

or	nonoccurrence	of	said	event	and	quantify	this	in	terms	of	risk	

ratios	(Verduijn	et	al.,	2007;	Lucas	et	al.,	2004)	

	

Finally,	in	addition	to	the	clinical	application	of	BN,	an	emerging	

application	of	BN	is	in	molecular	biology	(Lucas	et	al.,	2004).	As	has	

been	explained	BN	can	be	understood	as	representation	of	uncertain	

interactions	amongst	variables.	Within	bioinformatics	BN	are	being	

used	to	explore	interactions	between	genes	based	on	experimentally	

obtained	data	in	microarrays	(Lucas	et	al.,	2004).	It	is	hoped	that	BN	

analysis	may	reveal	how	the	variables	interact	as	a	function	of	time	

(Lucas	et	al.,	2004).	It	is	possible	that	through	BN	the	future	role	of	

precision	medicine	within	personalised	realistic	medicine	could	lie	in	

amalgamating	clinically	observed	patient	data	with	genetic	profiling	

to	give	patients	and	clinicians	the	most	accurate	predictions	of	

patient	outcome	when	deciding	treatment	approaches	and	resource	

allocation.		

	

The	first	exciting	steps	in	this	path	are	starting	to	emerge	with	the	

recently	published	paper	by	Yamamoto	et	al.	(2017)	demonstrating	

that	a	mathematical	model	can	successfully	reproduced	clinical	

outcomes	using	a	predictive	signature	for	lower	propensity	to	

metastatic	disease	based	on	the	finding	that	these	primary	tumours	

contain	a	small	fraction	of	KRAS	and	CDKN2A,	TP53,	or	SMAD4	genes.	

Although	this	model	requires	prospective	validation	it	indicates	a	

future	direction	of	research	whereby	PDAC	treatment	can	be	

personalised	to	the	most	effective	therapeutic	modality.	The	next	
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phase	of	research	will	be	in	integrating	breakthroughs	in	genetic	

profiling	into	predictive	models	for	surgical	morbidity/	mortality	and	

long-term	survival	outcomes.		

	

To	conclude,	the	patient	with	a	favorable	genetic	profile	making	

metastatic	disease	from	their	primary	pancreatic	cancer	less	likely,	

but	with	other	pre-existing	comorbidities	will	still	want	to	know	how	

likely	they	are	to	survive	an	operation,	their	risk	of	complications	

from	all	proposed	treatments	and	their	implications	including	quality	

adjusted	survival	predictions	across	competing	treatment	strategies	

such	as	neoadjuvant	or	upfront	surgery	pathways.	This	is	the	future	

of	personalised	predictive	medicine	supporting	cost-effective	

healthcare.	However,	in	practical	terms	this	requires	the	integration	

of	large	complex	databases.		

	

Bayesian	statistics	has	been	offered	here	as	a	possible	way	forward.	

The	potential	for	the	application	of	this	branch	of	mathematics	is	

only	beginning	to	come	into	fruition	due	to	advances	in	the	ability	of	

computer	software	to	handle	such	computational	statistics.	

Bayesianism,	in	addition	to	other	novel	approaches	to	statistical	

modeling,	have	therefore	been	applied	within	the	wider	discipline	of	

machine	learning.	As	previously	mentioned	the	period	of	time	when	

statistical	theory	began	to	coalesce	with	machine	learning	was	also	

the	period	of	time	when	the	field	of	complex	systems	was	developing.	

This	demonstrated	the	gradual	realisation	in	some	fields	of	the	need	

to	develop	ways	of	engaging	with	complexity	including	a	large	

number	of	variables	that	interact	in	non-linear,	often	unpredictable,	

ways.	Yet,	based	on	the	existing	body	of	predictive	and	prognostic	
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modeling,	such	an	epiphany	has	yet	to	dawn	within	the	application	of	

decision	support	models	applied	to	pancreatic	cancer	management.	

Furthermore,	where	more	novel	statistical	approaches	have	been	

employed	for	prognostic	modeling,	BN	(Smith	&	Mezhir,	2014)	and	

ANN	(Walczak	&	Velanovich,	2012),	their	performances	did	not	rival	

that	of	models	based	on	traditional	regression	techniques.	However,	

in	both	cases	the	full	potential	of	these	techniques	were	not	fully	

explored	as	the	boundaries	of	the	models	failed	to	attempt	to	engage	

with	the	complexity	of	the	system	being	modeled.	The	BN	focused	

predominately	on	the	bearing	of	lymph	node	involvement	to	

prognosis	(Smith	&	Mezhir,	2014).	The	ANN	study	also	used	a	limited	

number	of	variables	to	predict	survival	at	7months	post	resection	

(Walczak	&	Velanovich,	2012).		

	

If	we	consider,	as	the	problem	structuring	thinkers	do,	that	the	

definition	of	a	problem,	proposals	for	improvement	and	outcome	are	

all	dependent	on	the	whole	system	(Ulrich,	2002)	and,	taking	this	

idea	further	as	Cilliers	did	in	combining	thinking	about	boundaries	

with	concerns	relating	to	complexity	(Kruger	et	al.,	2019),	the	

current	limitations	of	predictive	modeling,	whether	utilising	

traditional	or	newer	modeling	techniques,	reflect	the	limited	

knowledge	and	understanding	of	the	system	as	a	result	of	boundaries	

and	failure	to	engage	with	complexity	(Kruger	et	al.,	2019).		

	

Considering	that	methods	of	machine	learning	have	been	

championed	as	having	the	ability	to	engage	with	a	large	number	of	

variables	that	interact	in	a	complex,	non-linear	way,	several	

questions	remain.	Where,	how,	and	to	what	degree	of	success	has	
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machine	learning	been	applied	to	decision	making	in	the	

management	of	pancreatic	cancer	and	do	machine	learning	methods	

other	than	Bayesianism	offer	advantages?								

	

2.3.4	Personalised	Pancreatic	Cancer	Management:	how	Machine	

Learning	is	Supporting	Decision	Making		

	

Several	factors	have	aligned	making	decision	making	in	the	

management	of	pancreatic	cancer	more	complex.	In	addition	to	the	

pancreatic	cancer	management	pathway	issues	already	discussed,	

the	ageing	population	and	obesity	epidemic	means	patients	in	

general	are	amassing	a	greater	amount	of	clinical	data	to	be	consider	

when	making	clinical	decisions	(Obermeyer	&	Lee,	2017).	Treatment	

options	are	expanding	with	the	emergence	of	neoadjuvant	approach	

as	an	alternative	to	upfront	surgery.	While	some	are	optimistic	about	

the	role	of	neoadjuvant	therapy,	others	feel	the	current	body	of	

evidence	is	at	best	ambiguous	with	its	role	in	the	management	of	

resectable	pancreatic	cancer	being	particularly	controversial	

(Tempero	et	al.,	2014;	Asare	et	al.,	2016;	Lee	et	al.,	2016;	Xu	et	al.,	

2014;	Andrulli	et	al.,	2012;	Versteijne	et	al.,	2018).	This	is	

compounded	by	the	current	lack	of	RCTs	comparing	both	upfront	

surgery	and	neoadjuvant	treatment	pathways	(Versteijne	et	al.,	

2018).	Furthermore	with	a	research	move	towards	precision	

medicine	(gene	targeted	therapy)	databases	will	expand	to	reflect	

our	understanding	of	disease	at	genomic	level,	creating	a	further	

‘data	explosion’	(Tonelli	&	Shirts,	2017).	Patients	therefore	represent	

a	big	data	challenge	not	only	in	the	amount	of	data	amassed,	but	in	

being	extremely	complex	data	systems	with	multidimensional	



	 134	

problems	and	interacting	parameters	with	the	rules	governing	

behaviours	within	layers	of	these	systems	often	unclear	or	simply	

unknown	(Abbod	et	al.,	2014).	

	

Personalised	predictive	modeling	has	gained	precedence	as	a	means	

of	supporting	clinical	decision	making	(Velikova	et	al.,	2014).	

However,	as	previously	discussed	existing	predictive	models,	mainly	

based	on	non-liner	regression	techniques	are	limited	in	scope	and	

volume	regarding	prognosis	as	an	isolated	event	at	a	pre-determined	

time	(Velikova	et	al.,	2014;	Verduijn	et	al.,	2014).	In	isolation	the	

factors	outlined	as	contributing	to	the	complexity	of	decision	making	

may	not	be	unique	to	pancreatic	cancer.	However,	in	the	context	of	

being	one	of	the	most	challenging	malignancies	(Siegel	et	al.,	2015;	

Ferlay	et	al.,	2013),	with	comparatively	lower	resection	rates	

compared	to	other	gastrointestinal	malignancies	(Siegel	et	al.,	2015;	

Ferlay	et	al.,	2013;	PCUK,	2017),	pancreatic	cancer	is	the	ideal	vehicle	

to	critically	examine	how	successful	machine	learning	is	in	dealing	

with	complexity	and	uncertainty	to	support	clinical	decision	making.	

	

Machine	learning	methods	make	predictions	within	complex	systems	

against	a	background	of	competing	risks	and	events	(Abbod	et	al.,	

2014).	Machine	learning	achieves	this	in	one	of	three	ways.	Firstly	

supervised	learning,	where	the	computer	utilises	partial	labeling	of	

data	(Hashimoto	et	al.,	2018;	Deo,	2015).	Alternatively	unsupervised	

learning	allows	the	computer	to	make	predictions	or	explain	data	by	

utilising	structures	detected	within	the	data	itself	(Hashimoto	et	al.,	

2018;	Deo,	2015).	Thirdly	reinforcement	learning	whereby,	similar	to	

operant	conditioning	(Skinner,	1938),	the	computer	learns	from	its	
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mistakes	and	successes	to	achieve	a	task	(Hashimoto	et	al.,	2018;	

Sutton	&	Barto,	1998).		

	

Commonly	employed	methods	of	machine	learning	include,	but	are	

not	limited	to:	Bayesian	networks	(BN),	artificial	neural	networks	

(ANN)	and	Fuzzy-logic	(FL)	modeling	(Abbod	et	al.,	2014).	The	

definitions,	strengths	and	limitations	of	these	most	commonly	

employed	methods	of	machine	learning	are	further	discussed	in	

appendix	J	along	with	a	critical	analysis	of	machine	learning	for	

decision	analysis,	prognostic	and	predictive	purposes	to	support	

clinical	decision	making	in	the	management	of	potentially	resectable	

pancreatic	cancer,	based	on	the	CHARMS	checklist	(Moons	et	al.,	

2014).		

	

The	review	presented	in	appendix	J	found	that	machine	learning,	

although	in	its	infancy,	holds	great	potential	in	its	application	to	

decision	making	under	complexity	(Abbod	et	al.,	2014;	Bartosch-

Härlid	et	al.,	2008).	However	the	application	of	machine	learning	to	

predictive	modeling	pertaining	to	the	management	of	pancreatic	

cancer	is	currently	limited	in	number	therefore	no	conclusion	can	yet	

be	drawn	as	to	superiority	of	either	machine	learning	or	traditional	

modeling	approaches.	Only	one	study	directly	compared	machine	

learning	methods	with	traditional	approach	to	modeling	(Hayward	et	

al.,	2010).	The	accuracy	of	machine	learning	predictions,	particularly	

Bayesian	modeling,	were	found	to	be	superior	and	predictions	form	

log	regression	approach	were	improved	when	combined	with	

machine	learning	techniques	(Hayward	et	al.,	2010).	However,	it	is	

important	to	note	that	of	the	existing	predictive	studies	using	
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machine	learning,	limitations	in	methodological	approach	were	

identified	using	the	CHARMS	checklist	(Moons	et	al.,	2014).	These	

issues	are	similar	to	issues	highlighted	in	traditional	approaches	to	

predictive	modeling	and	include:	use	of	single	centre	database	

limiting	generalisability,	sample	size,	lack	of	blinding,	lack	of	

transparency	in	candidate	predictor	selection,	and	lack	of	external	

validation	(Moons	et	al.,	2014;	Moons	et	al.,	2009;	Bouwneester	et	al.,	

2012;	Altman,	2001;	Altman	et	al.,	2009).		

	

Whilst	much	optimism	surrounds	the	growing	use	for	artificial	

intelligence	(AI)	in	healthcare	delivery,	machine	learning	also	carries	

limitations	that	must	be	addressed	in	future	research.	Machine	

learning	usually	requires	large	amounts	of	data	(Marcus,	2018),	

which	in	the	case	of	potentially	resectable	pancreatic	cancer	can	be	

difficult	to	obtain	as	the	majority	of	patients	present	with	advanced,	

unresectable	disease	(Siegel	et	al.,	2015;	Ferlay	et	al.,	2013;	PCUK,	

2017).	Whilst	the	creation	of	national	shared	databases	may	be	one	

solution	to	increase	the	volume	of	data,	this	is	not	without	issue	

including	dimensionality,	missing	data	and	control	of	bias	(Lee	&	

Yoon,	2017;	Zhang	et	al.,	2017)	with	minority	groups	often	under	

represented	in	such	databases	(Zhang	et	al.,	2017).	Furthermore	

simply	increasing	volume	of	data	is	not	the	solution	as	machine	

learning	is	not	yet	at	a	stage	where	it	can	distinguish	correlation	and	

causation	(Marcus,	2018).	Future	research	should	focus	on	better	

integration	of	machine	learning	with	expert	knowledge	to	overcome	

this	challenge	(Marcus,	2018).		
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This	review	(Appendix	J)	found	little	evidence	of	machine	learning	

being	actively	integrated	into	clinical	practice.	Whilst	this	is	mainly	

due	to	such	techniques	being	in	their	infancy,	it	must	also	be	

acknowledged	that	some	machine	learning	techniques	are	not	yet	

sufficiently	transparent	which	breeds	distrust	and	resistance	to	their	

clinical	application	(Marcus,	2018).	Machine	learning	requires	high	

levels	of	technical	skill	and	can	be	difficult	to	engineer	with	experts	

from	medicine,	computing	and	data	sciences	often	speaking	in	

different	technical	language	and	coming	to	problems	from	different	

perspectives	which	can	inhibit	shared	understanding	and	limit	

achievement	of	its	full	potential	(Marcus,	2018).	The	beginning	of	a	

possible	solution	could	therefore	lie	with	clinicians	expanding	their	

view	of	the	multidisciplinary	team	to	include	professionals	from	

computing	and	data	science	backgrounds	with	algorithms	developed	

in	conjunction	with	clinicians	and	viewed	as	aids,	not	replacement,	to	

traditional	clinical	decision	making	(Obermeyer	&	Lee,	2017).					

	

Despite	these	challenges	the	study	by	Hayward	et	al.(2010)	does	

however	corroborate	other	studies	where	application	of	machine	

learning	methods	to:	breast,	prostate	and	bladder	cancers	have	

demonstrated	superiority	in	terms	of	accuracy	of	predictions	over	

traditional	logistic	regression	(Seker,	2003;	Catto	et	al.,	2003;	Abbod	

et	al.,	2006;	Catto	et	al.,	2009).	Artificial	Neural	Networks	(ANN)	have	

also	been	found	to	perform	as	well	as	or	better	than	traditional	log	

regression	models	and	also	improve	the	diagnosis	and	management	

of	pancreatitis	and	the	diagnosis	of	pancreatic	cancer	(Bartosch-

Härlid	et	al.,	2008).	Machine	learning	methods	have	also	been	shown	

to	out	perform	log	regression	in:	providing	individualised	prediction	
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of	the	need	for	neonatal	resuscitation	(Reis	et	al.,	2004),	predicting	

early	mortality	risk	in	coronary	artery	bypass	graft	surgery	(Ghavidel	

et	al.,	2014)	and	predicting	severely	depressed	left	ventricular	

ejection	fraction	following	admission	to	intensive	care	unit	(Pereira	

et	al.,	2015).	However,	the	studies	reporting	this	advantage	are	prone	

to	bias.	As	discussed	in	appendix	J	such	models	share	the	limitations	

of	more	traditional	predictive	models	that	where	highlighted	in	

appendix	I.			

	

Conclusion						

	

To	conclude	clinical	decision	making	is	going	to	become	increasingly	

complex	and	orientated	twards	uncovering	causal	structures	as	our	

understanding	of	disease	and	treatment	response	at	genomic	level	

grows,	resulting	in	a	further	‘data	explosion’(Obermeyer	&	Lee,	2017;	

Tonelli	&	Shirts,	2017;	Abbod	et	al.,	2014).	Utilising	this	expanse	of	

data	to	facilitate	decision	making	in	a	meaningful	way	for	individual	

patients	is	beyond	the	capabilities	of	the	human	mind	working	in	

isolation	(Obermeyer	&	Lee,	2017;	Abbod	et	al.,	2014;	Bartosch-

Härlid	et	al.,	2008).	It	is	in	this	context	that	machine	learning	holds	

the	greatest	potential	by	being	able	to	handle	large	amounts	of	data	

and	integrate	large,	complex	and	varied	databases	(Bartosch-Härlid	

et	al.,	2008).	However	machine	learning	also	carries	limitations	and,	

whilst	initial	studies	are	promising,	its	application	has	yet	to	be	

widely	tested	(Marcus,	2018).	The	future	direction	of	research	

therefore	relies	on	expanding	our	view	of	the	multidisciplinary	team	

to	include	professionals	from	computing	and	data	science	

backgrounds	with	algorithms	developed	in	conjunction	with	
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clinicians	and	viewed	as	aids,	not	replacement,	to	traditional	clinical	

decision	making	(Obermeyer	&	Lee,	2017).		

	

	

2.4	Chapter	Summary	and	Conclusion	
	

The	aim	of	this	research	is	to	facilitate	the	fruition	of	personalised	

realistic	medicine	in	the	delivery	of	pancreatic	cancer	services	

through	statistical	modelling	that	will	facilitate	better	shared	

decision	making	with	patients	and	the	entire	multi-disciplinary	team	

to	optimise	individual	patient	outcomes	as	determined	by	the	

individual	patient.		However,	this	chapter	has	demonstrated	that	the	

existing	body	of	research	pertaining	to	the	management	of	

potentially	resectable	pancreatic	cancer	is	highly	heterogeneous,	

limited	by	issues	of	small	sample	size	and	methodological	quality	

potentiating	bias,	and	therefore	is	permeated	by	ambiguity,	

controversy	and	uncertainty.		

	

Pancreatic	cancer	is	a	challenging	malignancy	associated	with	poor	

survival	outcomes.	In	the	United	Kingdom	only	9.8%	of	cases	are	

resectable	at	presentation	with	international	estimates	ranging	from	

10-20%	(CRUK,	2019).	Current	guidelines	for	resectable	pancreatic	

cancer	recommend	upfront	surgical	resection	followed	by	adjuvant	

therapy	in	the	form	of	mFOLFIRINOX	as	the	first	line	treatment	

sequence	(Khorana	et	al.,	2019).	However,	up	to	50%	of	patients	with	

resected	disease	fail	to	receive	adjuvant	therapy	due	a	combination	

of	factors	including	early	disease	recurrence,	post	operative	

complications	and	decline	in	physiological	function	related	to	pre-
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existing	comorbidities	(Winter	et	al.,	2012;	Evans	et	al.,	2018).	Five-

year	survival	rates	for	resected	cases	stands	at	between	7%	and	25%	

(CRUK,	2019).	This	has	resulted	in	a	renewed	research	interest	in	

neoadjuvant	therapy.	Postulated	benefits	of	this	approach	include	

elimination	of	micrometastases,	conversion	to	resectability	in	

borderline	and	locally	advanced	stages	of	the	disease,	increased	R0	

resection	rates,	increased	likelihood	of	delivery	of	multimodal	

treatment,	and	allowing	time	for	more	aggressive	tumours	to	declare	

themselves	by	progressing	despite	neoadjuvant	therapy	hence	

filtering	such	cases	away	from	costly	yet	futile	surgery	with	its	

associated	risks	of	morbidity	and	mortality	impacting	on	quality-of-

life	(Evans	et	al.,	2018;	Asare	et	al.,	2016;	Lee	et	al.,	2016;	Abbott	et	

al.,	2013).		

	

Whilst	the	role	of	neoadjuvant	therapy	has	been	widely	accepted	for	

cases	that	are	borderline	resectable	or	locally	advanced	at	the	time	of	

presentation	due	to	the	potential	for	conversion	to	resectability,	

particularly	R0	resection,	its	role	in	the	management	of	resectable	

pancreatic	cancer	is	controversial.	Critics	highlight	the	dangers	of	

loosing	the	window	of	resectability	and	caution	against	drawing	

overly	optimistic	conclusions	from	small,	non-randomised,	

underpowered	studies	that	display	a	high	degree	of	heterogeneity	

(Asare	et	al.,	2016;	Lee	et	al.,	2016).	Currently	there	is	a	lack	of	RCTs	

comparing	upfront	surgery	and	neoadjuvant	treatment	pathways	for	

resectable	pancreatic	cancer	with	many	comparison	studies	

including	borderline	or	locally	advanced	cases	in	the	neoadjuvant	

arm	hence	failing	to	offer	a	true	like-for-like	comparison	(Versteijne	

et	al.,	2018).		
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The	existing	body	of	research	on	neoadjuvant	therapy	for	resectable	

pancreatic	cancer	leaves	much	room	for	debate.	Preliminary	findings	

from	Prep-02/JSAP-05	trial,	the	first	RCT	comparing	upfront	surgery	

and	neoadjuvant	therapy	in	the	form	of	gemcitabine	and	S1	for	

resectable	pancreatic	cancer,	has	reported	improved	overall	survival	

outcomes	with	neoadjuvant	therapy	(Unno	et	al.,	2019).	However,	

another	RCT	comparing	mFOLFIRINOX	with	gemcitabine	in	the	

adjuvant	setting	within	the	upfront	surgery	pathway	has	reported	

improved	survival	outcomes	with	mFOLFIRINOX	that	rivals	the	

survival	outcomes	reported	in	the	neoadjuvant	arms	of	the	Prep-

02/JSAP-05	trial	(Conroy	et	al.,	2018).	This	highlights	key	challenges.	

Firstly	the	superior	treatment	pathway	for	resectable	pancreatic	

caner	has	not	been	conclusively	established.	Secondly	superior	

treatment	regime	combinations	within	competing	pathways	have	not	

been	conclusively	established.		

	

These	issues	exist	within	the	wider	political	context	of	a	drive	

towards	the	delivery	of	personalised	realistic	medicine	through	more	

personalised	treatment	selection	strategies	that	will	ensure	more	

cost-effective	resource	utilisation.	This	has	resulted	in	the	current	

research	focus	within	pancreatic	cancer	research	being	driven	in	two	

key	areas	where	trials	are	underway:	1)	the	drive	for	more	large	

multi-centre	RCTs	comparing	neoadjuvant	and	upfront	surgery	and	

2)	precision	medicine	with	the	focus	on	biomarker	driven	early	

diagnosis	and	treatment	sequencing	and	gene	targeted	therapies.		
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Precision	medicine	permeates	much	of	the	current	medical	literature	

and	has	been	championed	by	some	as	hailing	a	‘brave	new	world’	of	

future	medicine	bringing	the	end	of	uncertainty	in	clinical	decision-

making.	This	exciting	vision	of	a	brave	new	era	of	medicine	is	based	

on	a	few	impressive	studies	demonstrating	the	success	of	targeted	

therapies	predicted	by	genetic	biomarkers.	However,	whilst	such	

breakthroughs	are	both	impressive	and	exciting,	in	reality	the	

number	of	patients	benefitting	from	precision	medicine	currently	

remains	small	(MacConaill	et	al.,	2015).	Whilst	such	work	is	highly	

valuable	and	important,	the	ongoing	perpetuation	of	a	Newtonian	

world-view	can	only	ever	have	a	limited	impact	on	moving	research	

forward.	To	illustrate,	a	deeper	understanding	of	pancreatic	cancer	at	

a	molecular	level	has	not	influenced	clinical	decision	making	to	the	

extent	that	it	has	done	with	other	caners	(Collisson	et	al.,	2019).	

Instead	this	has	resulted	in	pancreatic	cancer	beginning	to	be	

understood	as	a	highly	heterogeneous	and	complex	disease	at	

molecular	level	(Collisson	et	al.,	2019).	It	follows	that	breakthroughs	

in	such	areas,	rather	than	solving	uncertainty	and	complexity	will	

simply	reveal	the	scale	of	the	challenge	particularly	when	the	impact	

of	additional,	often	ambiguous,	clinical	information	is	factored	into	

the	decision	making	process	across	the	trajectory	of	the	patient	

journey	as	has	been	discussed	within	this	chapter	that	has	

highlighted	the	degree	of	uncertainty	pertaining	to	key	aspects	of	the	

treatment	pathway.	Furthermore	the	enormity	of	the	challenge	of	

delivering	precision	medicine	has	become	the	proverbial	elephant	in	

the	room.	These	challenges	include:		

• Improving	infrastructure	for	data	integration:	previously	

unstructured,	large	scale,	detailed	datasets	must	be	integrated	
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into	knowledge	networks	(National	Research	Council,	2011).	

This	poses	questions	at	policy,	financial	and	technical	level	to	

regulate	data	access	and	security	(Dzau	&	Ginsberg,	2016).	

• Evidence	of	benefit:	a	barrier	to	adoption	of	precision	medicine	

is	the	limited	evidence	that	it	has	improved	outcomes	at	

population	level	or	carries	benefits	in	cost-effectiveness.	The	

latter	is	currently	being	addressed	by	collecting	data	alongside	

ongoing	clinical	trials	to	assess	cost-effectiveness	(Dzau	&	

Ginsberg,	2016;	Joyner	&	Paneth,	2015).	Other	options	include	

observational	research	to	identify	modifiers	of	effectiveness,	

dedicated	precision	medicine	RCTs	and	disciplined	subgroup	

analysis	and	interaction	testing	within	standard	RCTs	of	

intervention	effectiveness	(Pletcher	&	McCulloch,	2017).	Here	

lessons	could	be	learned	from	robust	methods	of	controlling	

type	I	errors	and	culture	of	replication	developed	from	

exploration	of	the	genome	to	protect	against	propagation	of	

spurious	findings	(Pletcher	&	McCulloch,	2017).								

• Evidence	generation:	the	traditional	hierarchy	of	population	

based	evidence	based	medicine	must	be	challenged	if	precision	

medicine	is	to	address	the	issue	of	variance	of	unknown	

significance	at	individual	level	(Tonelli	&	Shirts,	2017).		

• Incorporating	genomic	and	patient	data	into	clinical	care:	this	

includes	education,	training,	decision	support	and	

development	of	techniques	and	technology	to	support	

integration	of	genomic	and	patient	data	into	clinical	practice	

otherwise	precision	medicine	will	simply	be	genomic	medicine	

(Tonelli	&	Shirts,	2017;	Dzau	&	Ginsberg,	2016).												
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Rather	than	reducing	the	complexity	of	decision	making,	precision	

medicine	could	therefore	actually	increase	the	degree	complexity	and	

uncertainty	inherent	in	the	decision-making	process.	To	put	it	more	

simplistically:	we	are	more	than	our	genomes.	Furthermore	

outcomes	in	cancer	care	are	highly	complex	and	individualised.	It	

would	be	a	sad	irony	if	precision	medicine,	hailed	as	the	dawning	of	a	

‘brave	new	world’	actually	became	a	retrograde	step	dragging	

medicine	back	to	a	reductionist	view	of	health	and	disease.		

	

The	mapping	of	the	human	genome	was,	at	one	time,	postulated	to	

bring	about	a	‘silver	bullet’	cure	for	cancer.	What	it	actually	resulted	

in	was	a	data	explosion	that	eventually	has	resulted	in	some	

significant	and	impressive	breakthroughs	but	no	silver	bullet	cure.	

Lessons	can	be	drawn	from	this.	Precision	medicine,	rather	than	

‘curing’	the	uncertainty	and	complexity	inherent	in	clinical	decision-

making	will	bring	about	a	further	data	explosion	as	our	

understanding	of	disease	and	its	treatment	deepens.	Therefore	the	

actual	delivery	of	precision	medicine	will	entail	integrating	genomic	

data	with	behavioral,	clinical,	pathological,	physiological	and	

epidemiological	data.	Ultimately	clinicians	will	be	expected	to	make	

decisions	in	the	face	of	increased	complexity.	Practically	this	means	

being	able	to	integrate	information	from	large,	complex	databases	

drawn	from	different	disciples	and	sources	and	apply	them	to	an	

individual	patient	who	themselves	is	dynamic	with	an	ever	changing	

clinical	picture	along	the	trajectory	of	their	care	pathway.		

Fundamentally	the	complexity	of	the	challenge	of	integrating	

multiple	complex	databases	to	achieve	personalised	predictive	

medicine	is	simply	too	vast	for	the	human	mind	to	handle	
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unsupported	(Obermeyer	&	Lee,	2017).		Unless	techniques	are	

developed	to	use	the	expanding	amount	of	data	to	more	effectively	

support	decision	making,	clinicians	will	simply	drown	in	a	data	

tsunami.	We	have	already	seen	some	early	warning	signs	where	

electronic	data,	if	handled	badly,	can	overwhelm	clinicians	rather	

than	assist,	leading	to	the	“4000	keystrokes”	phenomenon	

contributing	to	burnout	(Hill	et	al.,	2013).			

	

The	enormity	of	this	task	is	compounded	when	we	consider	how	

patients	and	their	expectations	are	also	changing.	Firstly	an	ageing	

population	and	obesity	epidemic	means	patients	already	represent	a	

big	data	challenge,	seeing	more	specialists	and	therefore	amassing	

copious	amounts	of	information	in	their	electronic	health	records	

(Obermeyer	&	Lee,	2017).	Secondly	medicine	does	not	operate	in	a	

vacuum.	In	an	increasingly	high-tech	world	personalised	predictions	

from	targeted	advertisements	to	credit	ratings	are	commonplace.	

Therefore	it	is	no	surprise	that	there	is	a	growing	expectation	for	

personalised	predictive	medicine	at	patient	level	as	well	as	

organizational	and	political	level.		

	

Personalised	predictive	medicine	is	captured	within	the	broader	

term	personalised	realistic	medicine	which	at	its	core	seeks	to	

deliver	the	right	diagnosis	and	treatment	to	the	right	patient	at	the	

right	time	with	the	right	outcomes	determined	in	collaboration	with	

the	individual	patient	(Alexandrou	et	al.,	2011;	The	Scottish	

Government,	2016;	The	Scottish	Government,	2017).	Acknowledging	

the	gravitas	of	the	challenge	the	CMO	also	called	for	creative	and	

collaborative	working	to	make	this	a	reality	(The	Scottish	
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Government,	2016;	The	Scottish	Government,	2017).	Partially	in	

response	to	this	there	has	been	an	increasing	crossover	between	

healthcare	research	and	operational	research	as	the	latter	has	

traditionally	focused	on	the	use	of	mathematical	techniques	and	

modeling	to	support	decision	making	and	achieve	optimisation	of	

outcomes.		

	

Existing	predictive	models	for	pancreatic	cancer	prognosis,	surgical	

outcomes	and	cost-effectiveness	analysis	are	limited	with	most	only	

being	descriptive,	rather	than	predictive,	of	the	likelihood	of	adverse	

events	or	survival	outcomes	(Lewis	&	Volmer,	2012).	Like	the	

majority	of	predictive	models	in	medicine	they	focus	on	“risk”	at	a	

population	level	and	then	attempt	to	apply	this	at	individual	patient	

level	(Grossi,	2006).	Considering	the	ambiguity	permeating	the	

exiting	body	of	studies	into	the	treatment	of	pancreatic	cancer,	and	

the	bamboozlement	this	approach	potentially	creates	in	

communication	between	patient	and	healthcare	professional	at	

individual	patient	level	becomes	apparent	(Grossi,	2015).	If	the	full	

potential	of	predictive	models	are	to	be	realised	within	personalised	

realistic	medicine,	they	must	integrate	fully	into	clinical	practice.	To	

do	this	they	need	to	provide	individualised	predictions	beyond	

length	of	survival	or	risk	prediction	to	include	fundamentals	such	as	

quality	of	survival	time,	length	of	hospital	stay,	resource	utilisation	

and	associated	costs	and	predicted	benefits	of	competing	treatment	

options	available.		

	



	 147	

The	problem	with	existing	modeling	techniques	are	that	they	regard	

prognosis	as	an	isolated	event	at	a	pre-determined	time,	applying	

attribute	selection	prior	to	inducing	the	model	and	setting	fixed	roles	

of	input	and	output	variables	to	attributes	(Verduijn	et	al.,	2007).	

They	neglect	the	uncertain	and	dynamic	nature	of	care	processes	

where	outcomes	today	predict	those	of	tomorrow	hence	expected	

patient	outcomes	evolve	as	more	information	becomes	available	

(Verduijn	et	al.,	2007).		Put	simply,	traditional	decision	support	

models	integrate	data	and	knowledge	but	do	not	provide	reasoning	

(Muthurmama	&	Sankaran,	2014).		

	

To	achieve	personalised	predictive	medicine	statistical	models	

therefore	must	improve	both	knowledge	representation	and	

reasoning	facility,	with	ontologies	employed	acting	as	stepping-

stones	to	achieving	this,	and	ultimately	delivering	personalised	

realistic	medicine	(Muthurmama	&	Sankaran,	2014).	Embracing	the	

call	for	innovation	and	creativity	the	new	era	of	operational	research	

applied	to	medicine	must	encompass	novel	approaches	in	the	world	

of	mathematics,	statistics	and	computer	science.	Emerging	statistical	

modeling	techniques	applied	within	other	disciplines,	such	as	

engineering,	ecology,	astrophysics,	biomedical	sciences	and	business	

have	made	phenomenal	advances,	moving	beyond	data	explosions	

within	these	fields	through	the	application	of	soft	computing	

techniques	such	as:	Bayesian	networks,	fuzzy	logic	and	artificial	

neural	networks	(Bhatia	et	al.,	2014).	Recently	several	studies	have	

emerged	demonstrating	that	such	techniques	have	improved	

accuracy	of	prediction	compared	to	traditional	predictive	models	

within	medicine	(Seker	et	al.,	2003;	Catto	et	al.,	2006;	Abbod	et	al.,	
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2006;	Catto	et	al.,	2003;	Catto	et	al.,	2009).	However,	the	review	of	

cost-effectiveness	analysis	and	prediction	modeling	studies	revealed	

that	studies	using	newer	methods	of	statistical	modeling	techniques	

did	not	always	demonstrate	a	significant	performance	advantage	in	

their	accuracy	of	predictions	and	significant	flaws	still	prevailed.		

	

A	key	point	being	made	in	this	chapter	is	that	if	research	is	to	

advance,	and	the	narrative	surrounding	the	treatment	of	potentially	

resectable	pancreatic	cancer	is	to	evolve	towards	more	personalised	

medicine,	the	lessons	learned	from	the	existing	body	of	literature	

must	go	beyond	those	of	statistical	modeling	methodology	alone	to	

consider	the	theory	driving	current	research	and	how	this	relates	to	

its	current	limitations.	Existing	studies	utilising	statistical	modeling	

techniques	still	seek	to	establish	a	superior	treatment	pathway	at	

population	level	rather	than	engage	with	the	complex	adaptive	

nature	of	the	system	being	modeled	to	reveal	new	insights	that	could	

drive	future	research	towards	achieving	personalised	realistic	

medicine.	It	follows	that	where	the	systems	being	studied	and	

modeled	have	been	so	reduced	and	simplified,	the	potential	of	newer	

statistical	modeling	techniques	have	not	yet	been	fully	explored.		

	

There	is	a	growing	move	within	healthcare	research	to	view	

healthcare	systems	as	complex	adaptive	systems	whereby	a	

collection	of	individual	agents	have	the	freedom	to	act	in	ways	that	

are	not	always	predictable,	and	whose	actions	are	interconnected	

(Plsek	&	Greenhalgh,	2001).	However,	throughout	the	existing	body	

of	research	pertaining	to	the	management	of	potentially	resectable	

pancreatic	cancer	the	definition	of	the	research	problem,	proposals	
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for	improvement	and	outcome	are	not	recognised	as	being	

dependent	on	the	whole	system	(Ulrich,	2002).	Doing	so	would	place	

greater	emphasis	on	how	systems	boundaries	are	justified	and	the	

implications	this	has	for	what	modeling	a	system	defined	in	such	a	

way	will,	and	importantly	will	not,	reveal.	Recognising	this	issue	also	

reframes	how	the	limitations	of	the	current	body	of	research	are	

viewed	as	it	highlights	the	implications	of	boundary	setting	across	

the	previously	discussed	cost-effectiveness	and	prediction	modeling	

studies	which	relates	to	their	limitations	and	manifest	as,	for	

example:	exclusion	of	important	alternative	treatment	strategies,	the	

exclusion	of	certain	costs	including	indirect	costs	forfeited	by	the	

patient,	exclusion	of	consideration	of	all	relevant	potential	

implications	of	a	treatment	strategy	including	treatment	failure	and	

side	effects,	a	lack	of	quality	adjusting	survival	time	or	collecting	

quality-of-life	data	to	more	accurately	do	so.	Hence	the	limitations	of	

the	existing	body	of	research	is	not	merely	to	be	seen	as	a	series	of	

methodological	issues	to	be	corrected,	but	rather	as	the	system	that	

is	the	delivery	of	healthcare	being	defined	in	simplistic	and	

reductionist	terms	which	defines	how	system	boundaries	are	set	

which	in	turn	determines	how	outcomes	are	measured	and	assessed.	

It	follows	that	both	a	limited	knowledge	of	systems	as	a	result	of	

boundaries	and	a	failure	to	engage	with	complexity	exist	and	

therefore	require	a	critical	and	ethical	imperative	in	the	study	and	

understanding	of	such	systems	in	order	to	move	research	forward	

(Kruger	et	al.,	2019).	It	is	not	without	coincidence	that	the	field	of	

complex	systems	developed	at	a	time	when	statistical	theory	began	

to	coalesce	with	methods	encompassed	within	machine	learning	to	

reliably	infer	models	with	large	numbers	of	variables	that	interact	in	



	 150	

complex,	non-linear	ways.	However,	the	potential	for	advancement	

will	remain	untapped	unless	the	philosophy	driving	future	research	

also	evolves.			

	

Mirroring	the	misplaced	optimism	surrounding	precision	medicine	

as	a	‘cure’	to	complexity	and	uncertainty	in	decision	making,	such	

breakthroughs	have	resulted	in	some	seeing	AI	as	the	‘solution’	to	the	

challenges	of	complex	decision	making.	Such	developments	actually	

represent	an	expanse	in	the	capabilities	of	computational	statistics	

rather	than	the	man-made	creation	of	intelligence.	Therefore	while	

many	have	espoused	AI	and	machine	learning	as	the	solution	to	

delivering	personlised	medicine	with	the	associated	cost-

effectiveness	implications,	they	are	in	danger	of	creating	hollow	

sound-bites	by	failing	to	appreciate	what	lies	at	both	the	core	of	

achieving	its	potential	impact	and	simultaneously	also	at	the	core	of	

the	barriers	to	achieving	this	impact.		

	

At	their	core	these	methods	make	predictions	within	complex	

systems	against	a	background	of	competing	risks	and	events	(Abbod	

et	al.,	2014).	However,	a	‘black	box’	approach	to	machine	learning	

through	algorithms	alone	has	led	to	suspicion	regarding	its	clinical	

application	with	some	justification.	Algorithm	based	machine	

learning	from	databases	has	failed	to	consider	the	impact	of	clinical	

judgment	on	decision	making.	One	notorious	example	is	where	such	

an	approach	failed	to	account	for	the	successful	clinical	protocol	of	

admitting	patients	with	asthma	who	presented	with	pneumonia,	

which	resulted	in	fewer	complications	(Caruana	et	al.,	2015).	As	the	

data	consequently	did	not	show	an	increased	rate	of	complications	in	
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this	patient	group,	the	machine	learning	model	erroneously	advised	

no	admission	for	patients	with	asthma	who	presented	with	

pneumonia.		

	

The	successful	application	of	machine	learning	in	other	fields	

depended	on	seeking	experts	in	computer	science	to	develop	cutting-

edge	algorithms	required	for	complex	problems	(Obermeyer	&	Lee,	

2017).	However,	it	was	the	experts	within	these	fields	who	set	the	

research	agenda	and	ensured	its	relevant	application	to	their	

practice.	Rather	than	see	algorithms	as	a	replacement	to	human	

decision	making	processes,	the	algorithms	were	viewed	as	thinking	

partners,	supporting	decision	making	in	the	face	of	complexity	

(Obermeyer	&	Lee,	2017).			

	

The	point	being	made	here	is	that	the	simple	application	of	advances	

in	computational	statistics	to	the	research	problem	of	how	to	deliver	

realistic	medicine	through	personalised	predictive	medicine	is	

unlikely	to	provide	a	solution.	This	is	partly	because	any	such	

advances	themselves	would	have	to	be	accepted	within	a	wider	

complex	healthcare	system	(Greenhalgh	et	al.,	2017).	Despite	the	

expanse	of	technological	innovation	now	being	viewed	as	a	

significant	contributor	to	health	and	wealth,	the	integration	of	such	

technological	advances	into	the	healthcare	systems	and	daily	practice	

is	plagued	by	non-adoption	and	abandonment	particularly	where	

change	at	organisational	and	the	wider	systems	level	is	required	

(Garber	et	al.,	2014;	van	Limburg	et	al.,	2011;	Grin	et	al.,	2010;	

Greenhalgh	et	al.,	2017).	Even	where	initiatives,	such	as	telehealth,	

were	backed	by	policy-level	rhetoric	and	supported	by	small	scale	
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proof-of-concepts	studies,	non-adoption	and	abandonment	by	

intended	users	is	common	place	and	telehealth	services	are	rarely	

mainstreamed	or	maintained	(Greenhalgh	et	al.,	2017;	Greenhalgh	et	

al.,	2017;	Standing	et	al.,	2016;	Bentley	et	al.,	2014;	Clark	&	McGee-

Lennon,	2011;	Wade	et	al.,	2014).								

	

In	conclusion,	this	chapter	presents	a	review	of	the	current	body	of	

literature	and	has	revealed	that	at	the	core	of	achieving	the	aim	of	

evolving	research	towards	personalised	realistic	medicine	in	the	

delivery	of	pancreatic	cancer	services	through	statistical	modelling,	

lies	the	need	to	develop	ways	to	engage	with	the	complexity,	handle	

uncertainty	and	the	emergent	when	examining	the	complex	system	

of	delivering	pancreatic	cancer	care	including	areas	of	debate,	

ambiguity	and	disagreement	(Law	&	Mol,	2002;	Fraser	&	Greenhalgh,	

2001;	Star,	2002;	Greenhalgh	&	Papoutsi,	2018).	It	follows	that	

because	the	system	of	delivering	pancreatic	cancer	care	and	its	

outcomes	are	dynamic,	the	traditional	scientific	quest	for	certainty,	

predictability	and	linear	causality	through	a	focus	on	RCTs	and	

precision	medicine	will	only	answer	a	fraction	of	the	unanswered	

questions	as	the	effect	of	context	is	controlled	for	within	the	artificial	

setting	of	such	trials	(Cohn	et	al.,	2013;	Braithwaite	et	al.,	2017;	

Marchal	et	al.,	2013;	Greenhalgh	&	Papoutsi,	2018).		RCTs	with	their	

strict	inclusion	criteria	and	control	of	context	do	not	reflect	the	

complexities	of	a	real-life	patient	case	mix	and	therefore	cannot	alone	

provide	solutions	to	the	challenge	of	optimising	outcomes	on	an	

individual	patient	level.	Therefore	what	is	needed	is	research	that	

augments	such	studies	by	exploring	how	to	deal	with	uncertainty,	

unpredictability	and	general	causality	through	designs	and	methods	



	 153	

that	foreground	dynamic	interactions	and	emergence	to	understand	

how	systems	come	together	as	a	whole	from	different	perspectives	

(Cohn	et	al.,	2013;	Greenhalgh	&	Papoutsi,	2018;	Flyvbjerg,	2006).	

This	challenge	demands	more	than	simply	employing	different	

statistical	modeling	techniques	but	rather	a	novel	Weltanschauung	

(Sadegh-Zadeh,	2001)	to	bring	about	the	necessary	scientific	change	

to	tackle	this	problem	through	what	Khun	initially	termed	a	

‘paradigm-shift’	(Kuhn,	1962)	and	later	revised	as	a	shift	in	the	

‘disciplinary-matrix’	(Kuhn,	1977).		To	understand	the	gravitas	of	the	

revolution	in	scientific	thinking	required,	the	following	Methods	

chapter	will	critically	examine	the	prevailing	dominant	philosophy	

driving	medical	and	operational	research	before	an	alternative	

paradigm,	ontology,	epistemology	and	theoretical	framework	for	this	

research	is	offered.		
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Chapter	3	

	

Methods	

	
3.1	Research	Philosophy		

	
Introduction	

This	chapter	opens	with	a	critical	analysis	of	the	prevailing	dominant	

philosophy	driving	medical	and	operational	research	before	an	

alternative	paradigm,	ontology,	epistemology	and	theoretical	

framework	for	this	research	is	offered.	From	this	basis	the	strengths	

and	weakness	of	decision	models	in	handling	uncertainty	and	

complexity	will	be	examined	before	Bayesian	methods	are	discussed	

as	a	vehicle	for	taking	statistical	modeling	and	personalised	realistic	

medicine	to	a	new	level	of	insight	through	complexity	theory.		

	

3.1.1	The	Current	Philosophical	Direction	of	Research:	the	case	for	

a	new	roadmap	

	

Positivism	has	reigned	as	the	dominant	philosophy	across	much	of	

scientific	research	including	operational	research	and	medicine.	

Classic	reasoning,	for	over	two	millennium,	has	been	dominated	by	

the	Aristotelian	disciplinary	matrix,	which	gravitates	around	‘truth’	

and	‘falsehood’	hence	arguably	being	viewed	as	the	progenitor	of	

Tarski	semantics	of	classical	two-valued	logic	and	Cantor’s	two-

valued	set	theory	(Sadegh-Zadeh,	2001).	Aristotelian	ontology	
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postulates	that	classes	must	have	defined	sharp	boundaries	and	

rejects	any	intermediate	between	such	states,	or	a	‘doctrine	of	crisp	

existence’	(Sadegh-Zadeh,	2001;	Grossi,	2015).	Consequently	much	of	

the	existing	and	emerging	research	in	the	fields	of	operational	

research	and	medicine	take	a	mechanistic	world	view	inspired	by	a	

Newtonian	framework	that	postulates	an	understanding	of	the	

universe	through	a	process	of	reductionism	of	systems	and	an	

analysis	of	their	parts	to	understand	the	whole	with	the	

methodologies	and	practices	employed	in	this	research	further	

propagating	such	assumptions	(Kruger	et	al.,	2019).		

	

Comte	viewed	the	original	aim	of	positivism	as	providing	an	

unambiguous	and	accurate	knowledge	of	the	world	through	

application	of	methods	from	natural	science	to	social	science	

(Bridges,	2009;	Bisman,	2010).	The	Vienna	Circle	later	applied	

mathematical	exactitudes	to	philosophy	introducing	‘logical	

positivism’,	embracing	empiricism	and	rejecting	all	else	(Sahotra,	

1996;	Houghton,	2011).	Epistemologically	an	objective	view	of	

reality	is	held.	Through	quantitative	methods	of	statistical	modeling,	

this	view	is	juxtaposed	with	the	ontological	view	of	reality	

comprising	determined,	observable,	measurable	events	that	interact	

in	an	observable,	measurable	manner	(Houghton,	2011;	Smith,	2005;	

Bisman,	2010).	Statistical	models	are	populated	with	data	from	

patient	databases	and	clinical	trials	selected	in	a	hierarchical	order	

whereby	RCTs	reign	as	“gold-standard”	evidence.	Thus	natural	and	

social	sciences	amalgamate	in	a	shared	logic	of	enquiry	to	explain	

and	predict	treatment	outcomes	and	cost-effectiveness	based	on	
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factual,	value-free	judgment	with	reliability	evidenced	in	replicability	

(Houghton,	2011;	Bisman,	2010).		

	

However	in	the	previous	chapter	a	deeper	analysis	of	existing	

statistical	models	pertaining	to	the	management	of	potentially	

resectable	pancreatic	cancer	revealed	limitations	mirroring	the	

philosophical	criticisms	of	positivism.	Comte	warned	against	the	

danger	of	confusing	signs	for	ideas	when	blindly	introducing	

mathematics	to	investigation	of	social	science	(Houghton,	2011).	

Later	quantum	theory	usurped	the	perceived	infallibility	of	

positivism	by	questioning	both	the	human	ability	to	determine	true	

accuracy	of	information	and	maintain	complete	objectivity	

(Houghton,	2011).		

	

Complete	objectivity	within	statistical	modeling	is	highly	

questionable	(Mingers,	2004;	Mingers,	2005;	Zachariadis	et	al.,	

2010).	Results	cannot	be	described	or	classified	without	an	element	

of	interpretation	(Mingers,	2004;	Mingers,	2005;	Zachariadis	et	al.,	

2010).	Under	positivism	philosophy	and	the	associated	Aristotelian	

disciplinary	matrix	of	‘truth’	and	‘falsehood’	it	is	assumed	that	factors	

not	included	within	statistical	models	(because	they	are	unknown	or	

difficult	to	measure)	have	random	or	insignificant	effects	on	outcome	

(Mingers,	2004).	Through	positivism’s	‘naïve	realism’,	results	

incompatible	with	theory	are	dismissed	as	an	anomaly	(Mingers,	

2004;	Mingers,	2005;	Zachariadis	et	al.,	2010).	Furthermore	Kuhn	

postulates	that	use	of	a	paradigm	can	limit	the	questions	the	

researcher	asks	and	their	interpretation	of	results	therefore	the	

researcher	is	not	objective	(Mingers,	2004;	Mingers,	2005;	
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Zachariadis	et	al.,	2010;	Steele,	2005).	This	is	evidenced	within	

existing	statistical	models	through:	excluded	costs	including	indirect	

costs,	lack	of	quality-of-life	data,	exclusion	of	surveillance	data	and	

associated	costs,	and	utilisation	of	narrow	models.	Also	in	selecting	

between	competing	models	for	the	same	data,	despite	creation	of	

elaborate	methods,	statistical	models	are	often	selected	on	subjective	

grounds	including	‘best-fit’	with	the	researcher’s	view	(Mingers,	

2004;	Mingers,	2005).	Hendry	et	al.	(1990)	posit	that	by	maintaining	

a	solely	positivism	stance,	model	selection	can	become	adhoc	and	

atheoretical	(Mingers,	2005;	Zachariadis	et	al.,	2010).	Acknowledging	

these	limitations,	contemporary	positivism	maintains	emphasis	on	

empiricism	but	deals	in	partial	objectivity	and	probability	rather	

than	unquestionable	facts	(Bisman,	2010;	Houghton,	2011;	Smith,	

2005).	However	this	does	not	address	the	issue	of	distinguishing	

natural	and	social	sciences,	which	has	further	implications	for	

statistical	modeling.		

	

The	most	vehement	criticism	of	positivism	comes	from	interpretive	

view,	seeing	the	Humean	notion	underlying	empiricism	of	causality	

as	a	constant	conjunction	of	events	as	impoverished	(Mingers,	2004;	

Mingers,	2005;	Zachariadis	et	al.,	2010).		Statistical	modeling	is	

criticised	on	the	basis	that	material	and	social	worlds	are	different,	

and	human	social	construction	cannot	be	captured	or	understood	

within	statistical	models	(Mingers,	2005).	This	view	is	contested	by	

the	fact	that	computational	and	mathematical	models	are	necessary	

for	the	development	and	progress	of	operational	research	and	can	

and	will	continue	to	produce	important	results	in	many	areas	

(Kruger	et	al.,	2019).	However	the	interpretivism	view	is	important	
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as	it	highlights	two	key	issues.	Firstly	social	structures	are	a	product	

of,	and	shape,	activities	of	society,	but	are	not	independent	of	them	

(Houghton,	2011;	Marsh	&	Stoker,	2002).	To	illustrate,	statistical	

models	can	be	populated	with	databases	from	large	specialist	centres	

but	in	private	health-care	systems	patients	may	not	present	to	such	

institutions	due	to	socio-economic	reasons	(Abbott	et	al.,	2013).	

Secondly,	social	structures	are	not	independent	of	the	agent’s	view	

but	are	shaped	by	their	actions	and	may	change	(Houghton,	2011;	

Marsh	&	Stoker,	2002).	Statistical	models	must	be	able	to	adapt	to	

unforeseen	circumstances	such	as	unanticipated	complications	of	

treatment,	or	changes	in,	for	example	funding	and	costs,	political	

prioritisation	of	health-care	resources	and	society’s	willingness-to-

pay.		

	

Russel	Ackoff,	in	his	1979	paper	“The	future	of	operational	research	

is	past”	addressed	some	of	these	issues	by	highlighting	problems	

with	the	pursuit	of	objectivity	and	instead	argued	in	favour	of	

expansionism	over	reductionism	through	systems	thinking	(Ackoff,	

1979a).	Systems	thinking	is	central	to	the	methodological	pluralism	

view	in	operational	research	and	marked	a	move	away	from	the	

positivist	stance	within	operational	research	towards	what	Midgley	

termed	the	‘second	wave	systems	thinking’	(Midgley,	2000).	Rather	

than	dismiss	existing	mathematical	and	computational	models	Ackoff	

sought	to	develop,	enrich	and	complement	these	models	and	their	

underlying	theories	through	methodological	pluralism	(Ackoff,	

1979a;	Kruger	et	al.,	2019).	For	him	the	main	critique	of	existing	

methods	was	that	these	deterministic	models	assumed	the	problem	
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context	of	a	closed	system,	which	raised	six	deficiencies	in	the	

prevailing	epistemology:	

1. the	need	for	decision	making	systems	to	learn	to	adapt	

2. the	need	for	decision	making	systems	to	consider	quality-of-life	

values	

3. model	abstraction	of	systems	of	problems	as	problems	cannot	

be	treated	effectively	by	deconstructing	them	analytically	into	

separate	problems	

4. the	need	for	a	synthesising	planning	paradigm	rather	than	a	

problem-solving	paradigm		

5. interdisciplinary	interaction	is	required	to	deal	with	complex	

issues	

6. the	pursuit	of	complete	objectivity	when	in	reality	the	view	of	

all	those	affected	by	the	outcome	of	a	decision	making	process	

must	be	considered	(Ackoff,	1979a;	Kruger	et	al.,	2019).	

The	common	denominator	in	all	six	issues	is	a	human	characteristic	

that	requires	an	integrated,	holistic	approach	to	address	them	

(Kruger	et	al.,	2019).	Ackoff	was	proposing	a	move	away	from	

deterministic	statistical	models	towards	a	systems	thinking	approach	

whereby	“purposeful	systems	that	contain	purposeful	parts	with	

different	roles	or	functions	and	that	are	themselves	parts	of	larger	

purposeful	systems”	(Ackoff,	1979a,	p.96)	are	created	and	can	serve	

its	own	purpose	(self-control),	the	purpose	of	its	parts	

(humanisation)	and	the	purpose	of	the	larger	system	of	which	they	

are	a	part	(environmentalisation)	(Ackoff,	1979a;	Kruger	et	al.,	

2019).			
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In	summary,	existing	research	conceived	and	critiqued	within	the	

philosophy	of	positivism,	although	valuable,	are	not	infallible.	The	

argument	being	made	is	that	by	aligning	operational	research	

epistemologies	with	the	acknowledgement	of	the	complexity	

inherent	in	the	real-world,	new	methods	of	modeling	decision	

making	can	be	developed	(Kruger	et	al.,	2019).		

	

3.2	A	New	Philosophical	Direction	
	

A	refocusing	on	alternatives	to	positivism	has	aligned	with	a	greater	

use	and	acceptance	of	Bayesianism,	which	is	based	on	probability	

theory,	rather	than	solely	relying	on	classical	Frequentists	statistics.	

In	the	post-positivism	era	alternative	paradigms	have	emerged.	One	

of	the	most	prominent,	critical	realism,	has	been	closely	aligned	with	

the	shift	towards	Bayesian	statistics.		

	

Critical	realism	has	been	championed	as	a	half-way-house	between	

empiricism	and	positivism	on	one	hand	and	anti-naturalism	and	

interpretivism	on	the	other	(Mingers,	2004;	Mingers,	2005;	

Zachariadis	et	al.,	2010;	Steele,	2005).	This	is	a	disservice.	Critical	

realism	introduces	a	more	sophisticated	paradigm	simultaneously	

addressing	the	concerns	of	natural	science	(through	technological	

characteristics)	and	social	science	(by	applying	human	contexts)	

(Mingers,	2004;	Mingers,	2005;	Zachariadis	et	al.,	2010;	Steele,	2005;	

Smith,	2005).	Critical	realism	proports	better	understanding	of	

causal	forces,	underpinned	by	deep	social	structures	that	are	not	

always	identifiable	by	material	properties	or	outward	behaviours,	

through	retroduction:	analogy,	metaphor,	intuition	and	rhetoric	
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(Steele,	2005;	Bhaskar,	1975;	Bhaskar,	1979).	Tendency	to	extreme	

apriorism	therefore	traditionally	led	critical	realism	to	dismiss	closed	

statistical	models	as	merely	observed	“event	regularities”,	unable	to	

predict	how	isolated	variables	behave	when	exposed	to	‘real-world’	

exogenous	factors	(Steele,	2005).	Russell	(1929)	however	accounted	

for	exogenous	influence	whereby	causal	sequence	arises,	but	with	

probability	of	expected	outcome	less	than	I.	Yet	within	open	models,	

whereby	“no	constant	conjunction	of	events	prevail”,	critical	realism	

acknowledges,	but	dismisses	causality	of,	sequential	event	

regularities	(Steele,	2005;	Bhaskar,	1975;	Bhaskar,	1979).	Some	

conclude	that	critical	realism	therefore	dismisses	the	value	of	

statistical	analysis	completely,	replacing	mathematical	formulae	and	

statistical	inference	with	retroduction	(Steele,	2005).	Conversely	

retroduction	can	be	applied	to	any	science	scrutinising	complex	

phenomenon	(medicine	describes	the	heart	as	a	pump	after	all)	

hence	both	are	not	mutually	exclusive	(Steele,	2005).											

	

Ontologically	critical	realism	posits	that	the	interplay	of	causal	

powers	or	tendencies	of	domains	of	‘the	real’	(structures,	

mechanisms,	events	and	experiences)	leads	to	particular	events,	‘the	

actual’	(Mingers,	2005).	These	domains	may	be	physical,	social	or	

conceptual	(Mingers,	2005,	Zachariadis	et	al.,	2010).	Events	may	be	

observable	or	experienced	by	people	and	therefore	become	empirical	

(Mingers,	2005).	Epistemologically	in	recognising	that	all	knowledge,	

whilst	provisional,	is	historically	and	culturally	relative,	critical	

realism	also	accepts	both	epistemic	reality	(observer-independent	

access	as	a	fallacy)	and	judgmental	relativity	(rational	grounds	for	

theory	preference)	(Mingers,	2005;	Zachariadis	et	al.,	2010).	Both	
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quantitative	and	qualitative	methods	are	therefore	acceptable	within	

the	essence	of	science:	explanation,	understanding	and	interpretation	

(Mingers,	2005;	Zachariadis	et	al.,	2010).		

	

Critical	realism	suggests	that	statistical	models	can	be	developed	

from	a	plethora	of	resources:	experiments,	theoretical	work,	expert	

opinion	(Mingers,	2005).	However,	as	with	positivism,	the	challenge	

of	inferring	unknown	mechanisms	from	limited	observations	and	

experiences	remains	(Mingers,	2005;	Zachariadis	et	al.,	2010).	The	

argument	being	made	is	that	future	research	should	move	from	

solely	quantifiable	data	and	Humean	causality	to	incorporating	

complex,	multi-dimensional,	underlying	mechanisms	within	the	

empirical	domain	(Mingers,	2005).	In	practice	this	means	employing	

quantitative	statistical	methods	that	concern	themselves	with	

discovering	causal	mechanisms	(Mingers,	2005).		

	

3.2.1	Critical	Realism	and	Bayesian	Models	

	

Whilst	accepting	that	models	as	a	representation	of	reality	are	never	

truly	exact;	to	quote	Box:	

	“all	models	are	wrong,	but	some	are	useful”	(Box,	1979),		

a	continued	adherence	to	classical	Frequentists	mathematics,	

underpinned	by	Aristotelian	classical	reasoning,	in	a	complex	

environment	of	imprecision	and	uncertainty	has	resulted	in	decision	

support	models	that	fall	sadly	short,	leading	to	the	longstanding	

belief	that	decision	making	is	part	of	the	‘art	of	medicine’	as	opposed	

to	a	science	(Sadegh-Zadeh,	2001).	This	soporific	view	is	why,	despite	

advances	in	biomedicine	and	technology,	clinical	judgment	has	
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largely	remained	archaic	in	the	face	of	uncertainty	(Sadegh-Zadeh,	

2001;	Sadegh-Zadeh,	1981;		Sadegh-Zadeh,	1994;	Sadegh-Zadeh,	

1998;	Sadegh-Zadeh,	1999;	Sadegh-Zadeh,	2000).		This	also	

permeates	research	into	cost-effectiveness	analysis	in	healthcare.	

Despite	recommendation	that	such	reports	include	both	a	payer’s	

perspective	case	report	and	a	societal	case	report	(Sanders	et	al.,	

2016)	there	is	a	distinct	lack	in	the	current	literature	of	research	that	

includes	attempts	to	analyse	indirect	costs	to	patients,	their	carers	

and	wider	society.						

	

Bayesian	statistics	traditionally	takes	an	inductive	approach,	learning	

about	the	general	from	particulars	through	inverse	probability,	

starting	with	prior	distributions,	getting	data	and	moving	to	

posterior	distribution	(Gelman	&	Shalizi,	2013;	Bernardo	&	Smith,	

1994;	Earman,	1992;	Savage,	1954).	Frequentists	believe	probability	

must	reflect	repetitive,	objectively	measured	occurrences	and	the	

central	goal	is	computing	the	posterior	probabilities	of	hypothesis	

(Gelman	&	Shalizi,	2013;	Bernardo	&	Smith,	1994;	Earman,	1992;	

Savage,	1954).	Through	Bayes’	Theorem	probabilities	are	updated	as	

new	data	emerges.	Heavily	steeped	in	the	positivism	philosophy	of	

‘natural	science’	it	holds	that	anything	not	contained	in	the	posterior	

distribution	is	irrelevant	(Gelman	&	Shalizi,	2013;	Bernardo	&	Smith,	

1994;	Earman,	1992;	Savage,	1954).		

	

However,	there	is	a	move	towards	viewing	Bayesian	models	in	a	

deductive	light	with	greater	acceptance	of	subjective	probabilities	

(Gelman	&	Shalizi,	2013).	Bayesian	models	are	characterised	by	

subjective	and	objective	knowledge,	modeling	information	from	a	
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variety	of	sources	enabling	changes	in	held	beliefs	on	causal	

structures	in	light	of	occurrence,	or	absence	of,	events	and	

emergence	of	new	data	(Gelman	&	Shalizi,	2013).	This	has	attracted	

the	attention	of	critical	realists,	seeing	Bayesian	modeling	and	its	

wide-ranging	applications	as	a	means	of	operationalising	critical	

realism’s	retroductive	methods	(Mingers,	2005).	But	is	critical	

realism	masking	the	truth	of	contemporary	Bayesians’	argument?		

	

Bayesians	accepting	subjective	probabilities	and	postulating	a	

deductive	approach	to	modeling,	do	so	from	a	positivism	stance,	

using	Popper’s	ideas	of	falsification	to	argue	that	Bayesian	modeling	

is	better	understood	from	a	hypothetico-deductive	perspective	

(Gelman	&	Shalizim,	2013).	Gelman	&	Shalizi	(2013),	although	cited	

by	those	championing	critical	realism	(Mingers,	2005),	are	actually	

following	positivism	philosophy	of	traditional	statisticians	

emphasizing	the	importance	of	model	checking	and	frequency	

evaluation	to	guide	Bayesian	inference	and	obtain	statistical	methods	

with	good	frequency	properties	(Gelman	&	Shalizi,	2013;	Rubin,	

1984;	Wasserman,	2006).	Accepting	that	all	scientific	statements	

must	remain	eternally	tentative	(Popper,	1959),	Gelaman	&	Shalizi	

(2013)	argue	that	Bayesian	model	checking	must	go	beyond	

inductivist	view	of	comparing	posterior	odds	to	support	model	

selection.	Instead	models	should	be	compared	to	data	and,	if	falsified,	

rather	than	being	rejected,	aim	to	understand	cause	of	failure	to	

expand	and	evolve	the	model	(Gelman	&	Shalizi,	2013).	Therefore	

when	severe	testing	cannot	falsify	the	model,	the	inferences	drawn	

become	more	credible	(Gelman	&	Shalizi,	2013).		
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This	is	not	an	argument	against,	but	can	be	accommodated	within,	

critical	realism.	Importantly	this	highlights	the	danger	of	a	subjective	

view	of	Bayesian	statistics	leading	to	complacency	in	selecting	or	

averaging	over	existing	models	(Gelman	&	Shalizi,	2013).	Within	

critical	realism,	complex	models	can	and	should	be	rigorously	

checked	and	falsified	if	they,	and	the	credibility	of	their	findings,	are	

to	be	improved	(Mingers,	2005;	Gelman	&	Shalizi,	2013).				

			

However,	the	complexities	involved	in	the	research	question	must	

also	be	fully	appreciated.	Within	the	arena	of	ambiguity	regarding	

best	treatment	approach	for	potentially	resectable	pancreatic	cancer	

patients,	clinicians	and	policy	makers	are	expected	to	make	difficult	

treatment	choices	with	wide	ranging	implications	for	many	

stakeholders.	Juxtaposed	with	contemporary	economic	restraints	on	

healthcare	resources,	ambiguity	surrounding	treatment	benefits	

mandates	cost-effectiveness	analysis	of	treatment	selection	

(Greenberg	et	al.,	2010;	Luengo-Fernandez	et	al.,	2013;	Department	

of	Health,	2015;	Russell,	2016;	Abott	et	al.,	2013).	Challenges	include	

simultaneously	handling	ever-emerging	quantitative	data	from	drug	

trials	and	the	concept	of	value	outcomes	in	cancer,	which	are	neither	

static	nor	universal	(Russell,	2016).	Successful	outcomes	could	be	

defined	by	the	quantity	of	disease-free	and	overall	survival	time,	

regardless	of	treatment	requirements,	or	they	could	be	defined	by	

the	quality	of	survival	time	(Russell,	2016).	Costs	also	go	beyond	

costs	of	a	particular	treatment	and	include	indirect	costs	that	could	

be	emotional	as	well	as	monetary	costs	to	patients	and	healthcare	

systems	(associated	with	complications,	readmissions,	et	cetera)	and	
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wider	societal	costs	through	work	and	leisure	activities	absences	of	

patients	and	informal	carers	(Russell,	2016).			

	

How	then	can	such	complex	real-life	concepts	be	best	captured	

within	a	statistical	model?	Whilst	it	has	been	argued	that	such	an	

approach	can	be	accommodated	within	critical	realism,	Zadeh	in	

1969	proposed	that	a	“radically	different	kind	of	mathematics”	in	the	

form	of	Fuzzy	Logic	was	required	to	address	the	issues	of	uncertainty	

in	‘real-world’	problems.	Fuzzy	logic	can	be	seen	as	both	a	

mathematical	tool	and	an	overall	theory	that	could	encompass	

Bayesianism.	Fuzzy	logic	as	a	theory	will	now	be	discussed	to	

ascertain	what,	if	anything,	it	can	add	to	the	philosophy	driving	this	

research.		

	

3.2.2	Fuzzy	Logic:	a	new	map	or	a	fellow	traveller?		

	

Building	on	Bertrand	Russell	and	Max	Blacks’	analysis	of	the	

problems	of	uncertainty	and	vagueness	in	‘real-life’	problems	and	the	

challenge	this	posed	to	classical	logic	(Black,	1937;	Black,	1963;	

Russell,	1923),	Zadeh	in	conceiving	fuzzy	theory	offered	a	method	for	

dealing	with	uncertainty	(Sadegh-Zadeh,	2001).	Zadeh	hit	upon	what	

lies	at	the	core	of	limitations	of	current	approaches	to	statistical	

modeling	in	medicine	(Zadeh,	1965a;	Zadeh,	1965b).	Patients	are	

animate	systems,	therefore	orders	of	magnitude	much	more	complex	

than	man-made	systems	(Zadeh,	1962;	Zadeh,	1969).	Traditional	

mathematical	techniques	dealing	with	probability,	precisely	defined	

points	and	sets	et	cetera	are	therefore	simply	inadequate	(Zadeh,	

1962).	It	follows	that	medical	professionals,	in	research	practice	
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terms,	are	animate	systems	analysts	(Zadeh,	1969).	Decision	making	

in	pancreatic	cancer	surgery	is	complex	and	rife	with	uncertainty.	

Methods	equipped	to	deal	with	uncertainty	surrounding	complex	

animate	systems	(patients)	therefore	need,	as	Zadeh	put	it	a	

“radically	different	kind	of	mathematics”	(Zadeh,	1969).		

	

Although	fuzzy	logic	based	methods	for	decision	making	are	in	their	

infancy,	its	application	to:	breast,	prostate	and	bladder	cancers	have	

demonstrated	superiority	in	terms	of	accuracy	of	predictions	over	

traditional	log	regression	and	artificial	neural	networks	(Seker	et	al.,	

2003;	Catto	et	al.,	2006;	Abbod	et	al.,	2005;	Catto	et	al.,	2003;	Catto	et	

al.,	2009).	The	models	for	breast	and	prostate	cancer	prediction	were	

based	on	histopathology	and	molecular	data	only	and,	despite	small	

sample	sizes	(breast:	n=	100;	prostate	n=	41)	reported	greater	than	

80%	accuracy	of	prognostic	prediction	(Seker	et	al.,	2003).	Fuzzy	

models	dealing	with	bladder	cancer	combined	clinical,	

histopathological	and	molecular	data	(n=109	to	609)	and	reported	

model	prognostic	predictive	value	of	greater	than	88%	(Catto	et	al.,	

2006;	Abbod	et	al.,	2006;	Catto	et	al.,	2003;	Catto	et	al.,	2009).	

Individualised	risk	prediction	using	fuzzy	logic	has	been	

demonstrated	elsewhere.	Brand	et	al.	(2006)	used	fuzzy	modeling	to	

show	that	the	influence	of	smoking	on	development	of	colorectal	

cancer	in	hereditary	non-polyposis	was	dependent	on	gene	mutation,	

gender	and	age.	This	will	enable	the	development	of	clinical	risk	

scoring	and	individualised	prevention	strategies	(Brand	et	al.,	2006).		

A	fuzzy	expert	system	has	also	been	shown	to	provide	individualised	

prediction	of	the	need	for	neonatal	resuscitation	with	74%	sensitivity	

and	94.8%	specificity	enabling	streamlining	of	patients	and	planning	
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for	resource	availability	in	high	risk	cases	(Resi	et	al.,	2004).	Ghavidel	

et	al.	(2014)	found	that	a	fuzzy	decision	tree	model	was	slightly	more	

superior	to	a	crisp	decision	tree	model	(AUC	0.9	versus	0.86;	

accuracy	0.98	versus	0.95;	sensitivity	75%	versus	58.3%	and	

specificity	98.6%	versus	97.4%)	in	predicting	early	mortality	risk	in	

coronary	artery	bypass	graft	surgery.	Both	decision	trees	

outperformed	log	regression	models.		Furthermore,	fuzzy	modeling	

has	been	shown	to	out	perform	logistic	regression	in	predicting	

severely	depressed	left	ventricular	ejection	fraction	following	

admission	to	intensive	care	unit	based	on	variables	acquired	within	6	

hours	of	admission	(Pereira	et	al.,	2015).		

	

Impressive	as	some	of	these	results	might	be	perceived,	the	doctrine	

driving	the	logic	behind	fuzzy	method	is	that	of	approximate	

reasoning	based	on	inference,	therefore	validity	of	these	methods	

will	only	ever	be	approximate	(Haack,	1979;	Haack,	1980).	How	then	

can	such	a	method	ever	lead	the	researcher	on	a	path	to	personalised	

precision	medicine?	Such	an	approach	stands	accused	of	actually	

replacing	scientific	precision	with	scientific	permissiveness	resulting	

in	imprecise	thinking	(Zadeh,	1996a;	Zadeh,	1996b).	These	studies	

also	have	the	six	epistemological	deficiencies	as	outlined	by	Ackoff	in	

his	critique	of	classic	(positivist)	operational	research.	None	of	the	

models	displayed	a	learn	and	adapt	ability,	quality-of-life	values	were	

not	factored	in,	models	presented	an	abstraction	of	systems	

problems	with	a	predict	and	prepare	rather	than	synthesising	

planning	paradigm,	the	interdisciplinary	nature	of	healthcare	system	

was	neglected	and	finally	these	studies	seemed	to	value	objectivity	of	

their	predictions	rather	than	considering	all	stakeholder	affected	by	
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the	decision	making	process.	These	studies	did	not	explore	the	“what	

if”	scenarios	of	differing	treatment	options	or	individualised	risk	

predictions	associated	with	these	options	such	as	postoperative	

complications	or	treatment	side	effects.	If	fuzzy	logic	is	to	move	

research	beyond	Kantian’s	“What	can	I	know?”	to	“What	shall	I	do?”	

as	promised	(Sadegh-Zadeh,	1983),	it	can	be	seen	as	a	fellow	

traveller	on	the	journey	to	dealing	with	uncertainty	and	complexity	

rather	than	a	new	map	to	guide	the	way.		

	

Ackoff,	in	his	own	critique	of	the	second	wave	of	systems	thinking	in	

operational	research	introduced	one	of	the	first	examples	of	problem	

structuring	method	when	he	talked	about	replacing	the	problem-

solving	paradigm	with	an	interactive	planning	method	(Ackoff,	

1979b2).	A	key	epistemological	aspect	of	problem	structuring	

methods	is	the	aspect	of	multiple	perspectives	and	navigating	human	

relationships	(Midgley,	2000;	Checkland,	1981;	Checkland,	1987;	

Eden,	1987;	Friend,	2001;	Rosenhead,	1996;	Rosenhead,	2006;	

Mingers	&	Rosenhead,	2004;	Rosenhead	&	Mingers,	2001).	This	led	

to	the	third	wave	of	systems	thinking	within	operational	research	

known	as	critical	systems	thinking	which	Ulrich	formulated	in	his	

critical	systems	heuristics	framework	(Ulrich,	1983).	I	will	now	

present	critical	systems	thinking	as	a	complementary	and	

overlapping	field	with	critical	realism	that	can	have	a	symbiotic	

relationship	resulting	in	the	enhancement	of	both.	Furthermore,	

critical	systems	thinking	provides	a	framework	for	enhancing	

modeling	techniques.	I	will	then	outline	how	the	work	of	Cilliers	on	

complexity	theory	provides	a	framework	for	further	enhancing	and	
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enriching	these	fields	before	detailing	how	complexity	theory	will	

provide	a	theoretical	map	for	my	research.		

	

	3.2.3	Critical	Systems	Thinking	

	

Ulrich,	in	his	seminal	work	‘Critical	heuristics	of	social	planning’	

(Ulrich,	1983)	introduced	both	a	philosophical	foundation	and	a	

practical	framework,	termed	critical	systems	heuristics,	for	critical	

systems	thinking	(Kruger	et	al.,	2019).	The	basis	of	this	framework	

was	that	the	definition	of	a	problem,	proposals	for	improvement,	and	

outcome	are	all	dependent	on	the	whole	system	(Ulrich,	2002)	

therefore	systems	boundaries	must	be	rationally	justified	through	

dialog	with	both	the	involved	and	affected	(Ulrich,	2012;	Ulrich,	

1987;	Kruger	et	al.,	2019).	Therefore	Ulrich	argues	that	boundary	

judgments	cannot	be	separated	from	value	judgments	hence	

embedded	in	Ulrich’s	work	are	the	guiding	principles	of	rationality	

and	universalisation	(moral	judgments	are	applicable	to	everyone	

equally)	(Kruger	et	al.,	2019;	Midgley,	2000).		

	

In	a	practical	sense	his	work	provides	a	framework	for	the	ethical	

process	of	debating	systems	boundaries.	Set	around	four	categories	

of:	motivation,	control,	expertise	and	legitimacy	this	provides	12	

boundary	questions	that	have	been	used	in	a	heuristic	manner	to	

debate	what	the	system	in	question	is	and	what	is	ought	to	be	(Table	

25).	Midgley	extended	this	work	by	considering	situations	where	

conflict	arises	between	different	values	and	boundary	judgments	

(Midgley,	2000).	They	postulated	that	stabilisation	of	a	situation	

where	a	conflict	between	two	ethical	boundary	judgments	arise	can	
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be	achieved	by	imposing	a	‘sacred/valued’	or	‘profane/devalued’	

judgment	on	marginal	elements	(Midgley,	2000;	Midgley,	2007).	

Hence	where	the	marginal	element	is	deemed	profane	the	primary	

ethical	boundary	becomes	the	main	reference	for	decision	making.	

Where	the	marginal	element	is	deemed	sacred	the	secondary	ethical	

boundary	becomes	the	main	reference	for	decision	making.	Ulrich	

and	Reynolds	(2010)	later	built	on	this	earlier	work	by	focusing	on	

working	constructively	with	tensions	between	opposing	

perspectives.	Accordingly,	table	9	represents	boundary	critique	of	

this	research	not	as	an	expert-driven	process	of	boundary	setting	but	

rather	a	participatory	process	of	unfolding	and	questioning	boundary	

judgements	as	set	out	by	Ulrich	and	Reynolds	(2010)	by	addressing	

conflicts	including;	‘situation’	versus	‘system’,	‘is’	versus	‘ought’,	

concerns	of	‘those	involved’	versus	‘those	affected’,	stakeholders’	

‘stakes’	versus	‘stakeholding	issues’.	
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Table	9:	Boundary	Judgement	Applied	to	the	Management	of	

Potentially	Resectable	Pancreatic	Cancer	(Ulrich	&	Reynolds,	2010)	

	
Source	of	
Influence	

Boundary	Judgement	Informing	Pancreatic	Cancer	Management	as	
the	System	of	Interest	

	

Social	Roles	
(Stakeholders)	

Specific	Concerns	
(Stakes)	

Key	Problems	
(Stakeholding	
issues)	

Motivation	 1.Beneficiary:	who	
ought	to	be/is	the	
intended	beneficiary	
of	the	system?	

2.Purpose:	what	
ought	to	be/is	the	
purpose	of	the	
system?	

3.Measure	of	
Improvement:	what	
ought	to	be/is	the	
system’s	measure	of	
success?	

The	
Involved	

Patients,	clinicians	
and	policy	planners	

To	optimise	
outcomes	for	
patients	with	
potentially	
resectable	
pancreatic	cancer	by	
delivering	the	right	
treatment	to	the	
right	patient	at	the	
right	time	with	the	
right	outcomes	
determined	in	
collaboration	with	
the	individual	
patient.		
	
To	maximize	cost	
effectiveness	of	
service	delivery.	

Short	term:	
Accuracy	of	models’	
predictions	of	
individualised	
outcomes	across	
competing	
treatment	
strategies.	
	
Revealing	new	
insights	that	will	
direct	future	
research.	
	
Longer	term:		
Acceptance	and	
utilisation	of	
predictive	model	
into	clinical	
practice.	
	
Prospective	cost	
effectiveness	and	
cost	benefit	
analysis	of	the	
impact	of	model	
implementation.			

Control	 4.Decision	maker:	who	
is/	ought	to	be	in	
control	of	the	
conditions	of	success	
of	the	system?	

5.Resources:	what	
conditions	of	success	
are/ought	to	be	
under	the	control	of	
the	system?	

6.Decision	
Environment:	what	
conditions	
are/ought	to	be	out	
of	the	control	of	the	
decision	maker?	

Initially	health	
professionals	
involved	in	delivering	
the	service	with	
organisational	
backing	and	support.		

Research	project,	
financial	and	human	
resources,	wider	
professional	and	
social	network	to	
raise	awareness	of	
the	project.		

i)	Interested	groups	
affected	by	the	
outcomes	
(patients)	
ii)	Expertise	un	
beholden	to	the	
decision	maker		

	
Knowledge		 7.Expert:	who	ought	 8.Expertise:	what	 9.Guarantor:	who	
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to	be/is	providing	
relevant	knowledge	
and	skills	for	the	
system?	

ought	to	be	relevant	
new	knowledge	and	
skills	for	the	system?		

ought	to	be/are	
regarded	as	
assurances	for	
successful	
implementation?	

i)The	
multidisciplinary	
team	of	the	West	of	
Scotland	Pancreatic	
Unit.	
ii)Experts	in	decision-
making,	health	
technology	
assessment	and	cost-
effectiveness	analysis.		
The	above	informed	
by	natural	and	social	
sciences.			

Interdisciplinary	and	
intersectional	
facilitation	skills.	
Technical	skills	in	
computational	
statistics.	
	

Competent	and	
validated	
professional	and	
non-professional	
knowledge.		
Avoidance	of	
scientism	(sole	
reliance	on	
objectivity	and	
statistical	facts).	
Avoidance	of	
managerialism	
(sole	reliance	on	
facilitating	
communication).	

Legitimacy		 10.Witness:	who	ought	
to	be/	is	representing	
the	interests	of	those	
negatively	affected	by	
but	not	involved	with	
the	system?	

11.Emancipation:	
what	ought	to	be/are	
the	opportunities	for	
the	interests	of	those	
negatively	affected	to	
have	expression	and	
freedom	from	the	
worldview	of	the	
system?			

12.Worldview:	what	
space	ought	to	be/is	
available	for	
reconciling	differing	
worldviews	
regarding	the	
system	among	those	
involved	and	
affected?		

The	
affected	

Collective	
representation	of	
professionals	and	
patient	bodies	
through	liaisons	with	
Pancreatic	Cancer	
United	Kingdom	to	
gain	qualitative	
assessment	of	views	
of	all	affected.		

Open	to	challenge	
from	all	those	
potentially	affected	
including	patients,	
patient	advocacy	
groups,	
professionals	and	
funding	bodies		

Manage	conflicts	of	
interest	between	a	
political	drive	to	
effectively	manage	
resources	and	the	
needs	of	individual	
patients	affected	by	
changes	to	the	
system	

		

Much	of	Ulrich’s	work	in	problem	structuring	is	concerned	with	the	

socially	constructed	power	struggles	and	the	different	frameworks	of	

people	(Kruger	et	al.,	2019).	However	the	research	questions	being	

addressed	in	this	thesis	involves	a	system	that	includes	not	only	

frameworks	of	people	but	many	other	elements	as	well.		

	

Cilliers	combined	thinking	about	boundaries	with	concerns	relating	

to	complexity	(Kruger	et	al.,	2019).	Both	he	and	problem	structuring	

thinkers	such	as	Ulrich	agree	that	both	limited	knowledge	of	systems	



	 174	

as	a	result	of	boundaries	and	complexity	exist	and	therefore	require	a	

critical	and	ethical	imperative	in	the	study	and	understanding	of	such	

systems	(Kruger	et	al.,	2019).	However,	for	Cilliers	complexity	has	to	

do	with	the	interactions	and	relationships	amongst	elements	(Kruger	

et	al.,	2019).	By	combining	thinking	about	boundaries	with	concerns	

pertaining	to	complexity	and	uncertainty	Cilliers’	work	came	to	

represent	a	new	critical	complexity	paradigm	giving	a	philosophical	

perspective	on	complex	systems	by	taking	cognisance	of	the	insights	

from	the	field	of	post-structural	philosophy	(Midgley,	2007;	Kruger	et	

al.,	2019).	This	work	also	provides	an	opportunity	to	challenge	the	

role	of	operational	research	in	how	it	relates	to	bigger	societal	

questions	(Preiser	&	Woermann,	2016).			

	

This	mirrors	a	move	within	healthcare	research	to	view	healthcare	

systems	as	complex	adaptive	systems	which	have	been	formally	

defined	as	“a	collection	of	individual	agents	with	freedom	to	act	in	

ways	that	are	not	always	totally	predictable,	and	whose	actions	are	

interconnected	such	that	one	agent’s	actions	change	the	context	for	

other	agents”	(Plsek	&	Greenhalgh,	p.625).	Although	there	had	been	

some	debate	over	the	precise	terminology,	complex	adaptive	systems	

are	widely	accepted	to	include:	embeddedness,	fuzzy	boundaries,	

nested	systems,	self-organization,	distributed	control,	emergence,	

non-linearity,	unpredictability,	historicism,	change	phases,	sensitivity	

to	initial	conditions,	non-equilibrium,	adaptation	and	co-evolution	

(Kernick,	2006;	Litaker	et	al.,	2006;	Plsek,	2003;	Holland,	2014;	

Byrne,	1998;	Manson,	2001;	Long	et	al.,	2018).	Importantly	these	key	

features	of	healthcare	as	a	complex	adaptive	system	mirror	the	work	

of	Cilliers	who	provides	ten	propositions	that	represent	the	
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characteristics	of	a	complex	system	that	are	necessary	for	a	‘lean	

ontology’	of	complexity.		

	

Over	recent	decades	there	has	been	a	growing	appreciation	within	

healthcare	research	of	complexity	theory	(Long	et	al.,	2018).	The	

argument	supporting	this	move	amongst	healthcare	researchers	is	

that	healthcare	systems,	due	to	their	social	nature,	are	qualitatively	

different	from	other	systems	and	therefore	require	a	different	set	of	

methods	(Klein	&	Young,	2015;	Eldabi,	2009;	Tako	&	Robinson,	2015;	

Kernick,	2006).	The	argument	continues	that	by	continuing	to	hold	

the	traditional	and	dominating	Newtonian	mechanistic	conception	of	

healthcare	(Plsek	&	Greenhalgh,	2001;	Plsek	&	Wilson,	2001)	

implementation	of	evidence-based	medicine	and	healthcare	

innovations	is	being	stymied	(Kernick,	2006;	Plsek	&	Wilson,	2001;	

Sanderson,	2009;	Litaker	et	al.,	2006;	Plsek,	2003;	Anderson	et	al.,	

2005).	However,	classical	approaches	to	complex	theory	that	have	

included	agent-based	modeling,	simulation,	and	network	analysis	

have	made	limited	impact	on	healthcare	(Long	&	Meadows,	2018;	

Fone	et	al.,	2003;	Bailsford	et	al.,	2009;	Long	et	al.,	2018).	Such	a	

classic	approach	to	complexity	theory	involves	researchers	

identifying	rules	that	govern	behaviours	attributing	them	to	the	

agent	(local	rules)	or	the	environmental	pattern	(agents)	(Long	et	al.,	

2018).	A	theory	of	local	rules	are	then	built	into	a	statistical	model	

and	tested	against	reality	(Holland,	2014;	Manson,	2001;	Byrne	et	al.,	

2013;	McKelvey,	1999).	Low	implementation	rates	of	such	models	

have	been	attributed	to:	lack	of	good	quality	data	(Brailsford	et	al.,	

2013;	Brailsford,	2005;	Robinson	&	Pidd,	1998;	van	Lent	et	al.,	2012),	

complex	nature	of	healthcare	systems	with	multiple	intersecting	
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stakeholders	(Klein	&	Young,	2015;	Eldabi,	2009;	Brailsford	et	al.,	

2013;	Robinson	&	Pidd,	1998;	Brailsford	et	al.,	2009;	Kirchhof	&	

Meseth,	2012)	and	the	high	time	and	expertise	cost	required	to	build	

sufficiently	complex	models	that	are	ecologically	valid	(Brailsford	et	

al.,	2013;	Brailsford,	2005;	Robinson	&	Pidd,	1998;	van	Lent	et	al.,	

2012;	Brailsford	et	al.,	2009;	Tunnicliffe-Wilson,	1981;	Lane	et	al.,	

2003;	Barnes	et	al.,	1997).				

	

The	challenge	of	delivering	personalised	realistic	medicine	by	

optimising	outcomes	for	potentially	resectable	pancreatic	cancer	

through	personalised	predictive	medicine	is	framed	as	both	an	

operational	and	healthcare	research	problem.	The	next	step	will	be	to	

use	the	work	of	Cilliers	on	complexity	theory	as	a	lens	through	which	

to	view	this	problem	in	the	hope	that	this	will	provide	new	insights	

and	broaden	perspectives	for	informing	contemporary	practice	

(Kruger	et	al.,	2019).			

	

3.3	Complexity	Theory:	the	new	road	map		
	

A	prerequisite	for	this	section	is	defining	the	research	problem	as	

complex.	After	all	it	could	be	argued	that	superficially	many	

components	of	the	pancreatic	cancer	management	pathway	appear	

to	be	well	defined	and	protocol	driven	inferring	a	complicated,	rather	

than	complex	system.	Jackson	and	Keys	proposed	a	framework,	

known	as	a	system	of	systems	methodologies,	to	classify	a	problem	

context	as	either	simple	or	complex	reflecting	Ackoff’s	terminology	of	

‘mechanical’	and	‘systemic’	respectively	(Jackson	&	Keys,	1984).		

They	also	defined	the	relationship	between	stakeholder	and	
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participants	as	unitary	(when	all	agree	on	a	common	goal),	pluralistic	

(where	views	and	objectives	differ)	and	later	added	coercive	

(irreconcilable	differences	in	views	and	objectives).	However	this	

framework	creates	difficulties	when	defining	the	problem	context	of	

this	research.	Whilst	aspects	of	the	problem	can	are	unitary,	

everyone	wants	to	optimise	treatment	outcomes	and	ensure	the	most	

effective	use	of	resources	when	delivering	a	service,	other	aspects	are	

pluralistic,	the	most	obvious	example	being	the	debate	as	to	whether	

to	use	neoadjuvant	therapy	in	cases	where	pancreatic	cancer	is	

resectable	at	presentation.	There	are	also	differences	of	opinion	on	

the	definition	of	resectability	when	interpreting	imaging	scans	and	

the	definition	of	R0	resection.	Arguably	aspects	of	the	debate	tend	

towards	the	coercive	with	some	commentators	adamant	that	for	

those	who	present	with	resectable	disease	and	are	treated	with	

neoadjuvant	therapy	but	do	not	proceed	to	surgery,	the	window	of	

resectability	was	lost.	Conversely	others	believe	that	such	patients	

were	filtered	away	from	futile	surgery	with	the	associated	impact	on	

cost	and	quality-of-life.	This	reflects	wider	criticisms	of	the	

framework	related	to	problems	that	do	not	fit	unambiguously	into	

one	category,	and	where	participants	might	well	disagree	on	the	

unitary,	pluralistic	or	coercive	context	(Midgley,	2000;	Mingers,	

1992).		

	

Snowden	and	Boone	developed	the	Cynefin	framework	to	offer	

insight	into	how	problem	contexts	can	be	classified	in	a	way	that	

assists	decision	makers	in	understanding	the	context	in	which	they	

are	operating	(Snowden	&	Boone,	2007;	Kruger	et	al.,	2019).	This	

framework	centres	around	cause	and	effect	(Kruger	et	al.,	2019)	and	
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consists	of	five	difference	contexts:	simple	(stable	cause-and-effect	

relationships),	complicated	(known	unknowns),	complex	(no	

apparent	cause-and-effect	relationship	established),	chaotic	(the	

unknowable)	and	disorder	(simultaneous	multiple	opposing	

perspectives	that	compete	for	prominence)	(Snowden	&	Boone,	

2007).	As	table	10	shows	aspects	of	the	research	problem	belong	to	

the	first	two	contexts,	an	ordered	world	in	which	fact	based	decisions	

can	be	made	(Kruger	et	al.,	2019).	However,	on	deeper	analysis	many	

of	the	research	questions	move	into	the	complex	and	chaotic	

contexts,	an	unordered	world	where	patterns	are	used	to	make	

decisions	(Kruger	et	al.,	2019).	Overall	it	could	be	argued	that	we	are	

actually	dealing	with	the	context	of	disorder.	As	Kruger	et	al.	(2019)	

pointed	out	it	can	be	particularly	difficult	to	recognise	when	one	is	

operating	in	the	context	of	disorder.	Snowden	&	Boone		(2007)	

offered	a	way	out	of	this	realm	through	breaking	the	situation	down	

into	constituent	parts	(table	10).		
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Table	10:	Classification	of	Problem	Context	
Simple	(cause-
an-effect)		

Complicated	
(known	
unknowns)	

Complex	(no	
established	
cause-and-effect)	

Chaotic	(the	
unknowable)	

Disorder	
(simultaneous	
multiple	
perspectives)	

Outcomes	from	
pancreatic	
cancer	are	poor.	
Surgical	
resection	is	the	
only	potentially	
curative	
treatment	and	
adjuvant	therapy	
has	been	proven	
to	prolong	
survival	time.	
	
Neoadjuvant	
therapy	can	
convert	
borderline	
resectable	and	
locally	advanced	
cases	to	
resectability.	
	
Obtaining	
multimodal	
treatment	in	
either	upfront	
surgery	or	
neoadjuvant	
pathway	
prolongs	
survival	time.		

Up	to	50%	of	
patients	in	the	
upfront	surgery	
pathway	fail	to	
receive	adjuvant	
therapy	due	to	a	
combination	of	
early	disease	
recurrence,	post	
operative	
complications	
and	decline	in	
function.	Which	
patients	will	and	
will	not	receive	
adjuvant	therapy	
is	unknown	at	
the	time	of	
treatment	
pathway	
selection.	
	
Multimodal	
treatment	in	
either	pathway	
prolongs	
survival	but,	as	
with	the	above,	
the	pathway	in	
which	
multimodal	
treatment	is	
most	likely	is	
unknown	at	the	
time	of	
treatment	
pathway	
selection.	
	
Which	pathway	
is	more	cost	
effective?		
	

Patients	with	the	
same	tumour	
type,	location,	
stage,	resection	
margins	and	
postoperative	
course	have	
differing	survival	
outcomes	in	both	
pathways.	
	
Outcomes	from	
trials	of	
neoadjuvant	
therapy	for	
borderline	
resectable	and	
locally	advanced	
disease	cannot	
be	assumed	to	
apply	to	cases	of	
disease	that	is	
resectable	at	
presentation.			
	
Outcomes	from	a	
recent	RCT	
comparing	
adjuvant	
therapies	and	
establishing	the	
use	of	
mFOLFIRINOX	as	
the	first	line	
adjuvant	therapy	
agent	cannot	be	
assumed	to	
equate	with	
upfront	surgery	
pathway	being	
the	superior	
pathway	choice	
for	resectable	
pancreatic	
cancer.	Equally	
preliminary	
results	from	a	
RCT	reporting	
superior	survival	
outcomes	with	
neoadjuvant	
therapy	for	
resectable	

Would	patients	
with	resectable	
disease	treated	
in	the	
neoadjuvant	
pathway	and	
who	do	not	
proceed	to	
resection	have	
been	better	
served	in	the	
upfront	surgery	
pathway?	
	
Would	patients	
in	the	upfront	
surgery	pathway	
who	did	not	
receive	adjuvant	
therapy	have	
been	better	
served	in	the	
neoadjuvant	
pathway?		
	
Can	gene	
sequencing	lead	
to	better	patient	
selection	for	
available	
treatment	
pathways	(at	
present	
unknown)		
	
As	the	
percentage	of	
patients	
presenting	with	
resectable	
disease	is	small:	
1)	will	studies	
underway	to	
establish	earlier	
diagnosis	
through	
identification	of	
biomarkers	be	
successful		
2)	if	such	
breakthroughs	
are	made	how	
will	the	resulting	

Upfront	surgery	
for	resectable	
disease	is	proven	
to	prolong	
survival	
therefore	the	
research	focus	
should	be	on	
developing	more	
effective	
adjuvant	
therapies	and	
the	focus	at	
service	delivery	
level	should	be	
on	fast-tracking	
patients	with	
resectable	
disease	to	early	
surgery	followed	
by	measures	to	
increase	the	
percentage	of	
patients	
receiving	
adjuvant	
therapy.	
	
The	use	of	
neoadjuvant	
therapy	carries	
the	risk	of	
loosing	the	
window	of	
resectability	and	
optimistic	
assumptions	
about	its	use	are	
based	on	small,	
underpowered	
studies	with	a	
high	degree	of	
heterogeneity.	
	
Neoadjuvant	
therapy	has	an	
increasing	body	
of	evidence	
demonstrating	a	
survival	
advantage	over	
upfront	surgery.	
It	allows	time	to	
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pancreatic	
cancer	compared	
to	upfront	
surgery	cannot	
be	assumed	to	
equate	with	
neoadjuvant	
pathway	being	
the	superior	
pathway	choice	
for	resectable	
pancreatic	
cancer	in	light	of	
the	fact	that	the	
reported	
survival	times	in	
the	neoadjuvant	
arm	of	this	trial	
are	lower	than	
those	reported	in	
the	former	trial.			
	
The	impact	on	
quality-of-life	of	
different	
treatments	and	
interventions	
both	in	the	short	
and	long	term,	
and	how	this	
might	affect	
patients’	
decision-making.		

data	and	its	
analysis	affect	
pathway	
decision	making,	
i.e.	will	an	
increased	pool	of	
patients	with	
earlier	disease	
show	that	early	
resection	and	
adjuvant	therapy	
is	better	or	will	
the	marginal	
survival	
advantage	with	
neoadjuvant	
therapy	reported	
in	some	studies	
still	stand?		
	
Will	gene	
targeted	therapy	
come	to	fruition	
and	if	so	will	it	
be	cost-effective?	
Will	it	be	
delivered	pre	or	
postoperatively?		
Will	patients	
with	the	same	or	
similar	genetic	
profiles	still	have	
variation	in	their	
treatment	
outcomes	and	
what	other	
factors	will	
determine	this	
and	to	what	
extent?		
	
Will	biomarker	
driven	treatment	
sequencing	be	
established	and	
how	will	this	
affect	outcomes	
in,	and	
comparison	of,	
treatment	
pathways?		
	
Will	the	afore	
mentioned	
potential	
breakthroughs	
be	cost-effective	
and	how	will	
they	affect	the	

filter	more	
aggressive	
disease,	which	
progresses	
despite	
neoadjuvant	
therapy,	away	
from	costly,	high	
risk	yet	futile	
surgery	
therefore	has	a	
cost-
effectiveness	
advantage.			
	
Any	cost-
effectiveness	
advantage	
reported	with	
neoadjuvant	
therapy	must	be	
offset	against	
moving	costs	and	
resource	
utilisation	away	
from	a	surgical	
service	budget	to	
oncology	and	
palliative	care	
service	budget.	
Such	reports	
must	also	be	
reconsidered	in	
light	of	emerging	
improvements	
with	new	
adjuvant	
therapies.	
	
The	key	to	
optimisation	of	
outcomes	is	
better	patient	
selection.	The	
focus	should	
therefore	be	on	
precision	
medicine	
through	gene	
targeted	
therapies.		
	
The	key	to	
optimisation	of	
outcomes	is	
earlier	diagnosis	
followed	by	early	
surgery.	The	
focus	should	
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cost-
effectiveness	
analysis	of	
competing	
treatment	
pathways?	What	
impacts	will	this	
have	on	the	
wider	NHS	
budgeting	and	
the	structuring	
of	service	
delivery?	

therefore	be	on	
screening	and	
early	detection	
combined	with	
improvements	to	
the	upfront	
surgery	pathway.	
	
	
	
	
	
				

	

	

Such	unfolding	theorisation	within	operational	research	has	

particular	implications	for	research	that	seeks	to	use	complexity	

theory	as	a	lens	through	which	to	view	healthcare	systems.	On	a	daily	

basis	decisions	regarding	the	management	of	pancreatic	cancer,	and	

indeed	throughout	all	areas	of	healthcare,	are	being	made	based	on	

contested,	limited	and	incomplete	data	(Greenhalgh	&	Papoutsi,	

2018).	The	Newtonian	world-view	that	permeates	much	of	medical	

practice	(Waldrop,	1992;	Plsek	&	Greenhalgh,	2001)	assumes	that	

the	scientific	quest	for	certainty,	predictability	and	linear	causality	

will	be	achieved	through	ongoing	RCTs	(Greenhalgh	&	Papoutsi,	

2018).	Yet	there	is	growing	and	insurmountable	evidence	that	RCTs	

can	address	only	a	fraction	of	the	unanswered	questions	within	a	

healthcare	system	(Cohn	et	al.,	2013;	Braithwaite	et	al.,	2017;	

Marchal	et	al.,	2013;	Greenhalgh	&	Papoutsi,	2018).		To	illustrate,	

preliminary	results	from	the	first	RCT	reporting	superior	survival	

outcomes	with	neoadjuvant	therapy	for	resectable	pancreatic	cancer	

compared	to	upfront	surgery	cannot	be	assumed	to	equate	with	

neoadjuvant	pathway	being	the	superior	pathway	choice	for	

resectable	pancreatic	cancer	in	light	of	the	fact	that	the	reported	

survival	times	in	the	neoadjuvant	arm	of	this	trial	are	lower	than	
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those	reported	in	a	RCT	comparing	adjuvant	regimes	in	the	upfront	

surgery	pathway	(Unno	et	al.,	2019;	Conroy	et	al.,	2018).	But	how	do	

the	findings	of	the	latter	trial	affect	decision	making	when	up	to	50%	

of	patient	in	the	upfront	surgery	pathway	do	not	receive	adjuvant	

therapy?	How	do	the	findings	from	both	of	these	RCTs	apply	to	

patients	who	would	not	have	met	the	trail	inclusion	criteria?	RCTs	

rather	than	providing	clear	guidance	for	adaptive	behaviours	have	

actually	resulted	in	raising	more	questions.	

	

Langton	has	termed	circumstances	that	require	adaptive	behaviours,	

such	as	adopting	the	neoadjuvant	pathway	instead	of	the	traditional	

upfront	surgery	pathway	for	resectable	pancreatic,	“the	edge	of	

chaos”	(Langton,	1989).	The	centre	area	in	Figure	3	therefore	

represents	the	reality	of	daily	clinical	practice	where	adaptive	

solutions,	workarounds	and	general	muddling-through	(Greenhalgh	

&	Papoutsi,	2018)	are	deployed	in	a	reality	where	there	exists	

insufficient	agreement	and	centrality	to	make	the	correct	decision	or	

next	step	obvious	but	not	so	much	uncertainty	or	disagreement	to	

send	the	system	into	complete	chaos	(Stacey,	1996).		The	

implications	for	this	research	is	that	such	complexity	must	be	placed	

at	the	centre	of	the	unfolding	story	regarding	how	to	optimise	

outcomes	for	pancreatic	cancer	with	emerging	and	ongoing	RCTs	

being	augmented	by	the	study	of	how	we	can	best	deal	with	

unpredictability,	uncertainty	and	generative	causality	(Greenhalgh	&	

Papoutsi,	2018).	This	will	now	be	taken	forward	by	using	Cillier’s	ten	

point	‘lean’	ontology	of	complexity.	

	



	 183	

Figure	3:	Diagrammatic	depiction	of	the	relationship	between	

complexity	in	daily	clinical	practice	and	degree	of	agreement	and	

certainty	

	

	
	

3.3.1	The	Application	of	Cilliers’	‘Lean’	Ontology	of	Complexity		

	

Complex	Systems	Consist	of	a	Large	Number	of	Elements	

	

In	viewing	personalised	realistic	medicine	as	an	operational	research	

application,	it	must	be	acknowledged	that	the	discipline	of	

operational	research	constitutes	several	types	of	analytical	models,	

which	have	been	distinguished	as	classical	and	enhanced	operational	

research	(Jackson,	1988).	Enhanced	operational	research	

encompassed	newer	methodological	approaches	in	different	contexts	
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involving	a	large	number	of	conceptual	models	but	both	enhanced	

and	classical	disciples	encompass	a	large	number	of	concepts,	

elements	and	ideas	applied	to	an	even	larger	number	of	

combinations	(Kruger	et	al.,	2019).	This	implies	a	finite	number	of	

elements	that	will	impose	an	artificial	boundary	in	the	operational	

research	system	which	some	have	argued	is	necessary	from	the	

observer’s	perspective	to	study	a	complex	system	(Cilliers,	2008;	

Mowat	&	Davis,	2018).	However,	Merali	(2006)	goes	further	in	

conceptualising	the	world	as	a	networked	world.	Hence	it	stands	that	

a	collection	of	concepts	and	techniques	does	not	constitute	an	

operational	research	system	and	equally	an	operational	research	

application	does	not	exist	in	isolation	(Merali,	2006;	Kruger	et	al.,	

2019).	Therefore	whilst	elements,	such	as	society	and	the	economy	

for	example,	may	not	interact	with	the	application	in	a	deterministic	

way	they	will	interact	and	merge	with	the	application	(Kruger	et	al.,	

2019).		

	

The	Level	of	Interaction	Among	Elements	is	Fairly	Rich	and	there	are	

Loops	in	the	Interactions	Amongst	Elements			

	

The	implementation	of	an	operational	research	model	will	result	in	a	

multi-level,	cross-scale,	cross-sector	interaction	both	within	the	

boundaries	of	the	model	and	the	wider	economic	and	societal	

environment	in	which	it	operates.	The	relationships	between	these	

elements	are	both	mathematical	and	application	concepts,	and	it	is	

precisely	these	relationships	that	have	resulted	in	many	advances	in	

the	field	of	operational	research	(Kruger	et	al.,	2019).			
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To	illustrate	these	first	three	points,	at	a	biological	level	pancreatic	

cancer	begins	with	the	complex	process	of	carcinogenesis	which	

itself	depends	on	a	large	number	of	variables.	Indeed	it	has	been	

hypothesized	that	every	tumour	is	unique	and	that	the	spectrum	of	

biological	changes	that	determine	human	tumour	formation	and	

behaviours	is	infinitely	variable	and	regulated	at	multiple	spatial	and	

temporal	scales	(Grizzi	&	Chiriva-Internati,	2006).	It	follows	that	

different	treatment	sequences	will	have	infinite	variability	in	their	

impact	across	these	multiple	scales	on	a	biological	level.	Through	

multiple	processes	and	controls	that	involves	feedback	loops	within	

molecular	carcinogenic	pathways,	these	micro-scale	processes	have	

macro	scale	manifestations	(Grizzi	&	Chiriva-Internati,	2006).	This	

will	culminate	in	differences	in	how	the	tumour	behaves	at	organ,	

system	and	entire	organism	level,	which	will	determine	overall	and	

disease-free	survival	times.	Environmental,	societal	and	political	

elements	will	also	interact	either	in	a	deterministic	way	or	through	

mergence.	Such	factors	influence	diet	and	lifestyle	which	can	alter	

both	an	individual’s	risk	of	developing	cancer	as	well	as	their	general	

health	and	predisposition	to	other	comorbidities	which	will	affect	

their	physiological	reserve	to	withstand	chemotherapy	and/or	major	

surgery	with	any	associated	complications	that	might	occur.	Socio-

economic	factors	can	also	affect	access	to	health	care	services	with	

poorer	socioeconomic	conditions	having	been	proven	to	result	in	

poorer	outcomes	across	all	cancers.	At	politico-economic	level	

government	funding	and	the	setting	of	society’s	willingness-to-pay	

threshold	by	the	treasury,	which	is	directly	integrated	into	statistical	

models	to	perform	cost-effectiveness	analysis,	will	determine	which	

treatments	are	made	available	within	the	NHS.	Loops	in	the	
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interaction	amongst	elements	at	this	level	could	manifest	as	strong	

public	pressure	to	make	certain	cancer	treatments	available	on	the	

NHS.										

	

The	Elements	Interact	Dynamically	

	

An	operational	research	model	is	only	meaningful	within	the	real-life	

context	within	which	it	is	applied	therefore	any	such	model	will	be	

meaningless	unless	it	can	interact	with	the	environment	within	

which	it	operates	(Cilliers,	1998).	This	not	only	means	that	elements	

within	the	model	can	interact	mathematically	but	also	that	they	

represent	the	dynamic	interaction	with	the	wider	environment	

within	which	the	model	is	operating.	This	interaction	between	the	

operational	research	application	and	reality	could	be	either	physical	

or	transference	of	information	to	facilitate	shared	decision	making	

(Cilliers,	1998).		

	

Interactions	are	Non-Linear	

	

The	concept	of	non-linearity	within	an	operational	research	model	

means	that	small	causes	can	have	large	results,	as	previously	

illustrated	in	the	example	of	micro-scale	processes	having	macro-

scale	manifestations	in	the	process	of	carcinogenesis,	with	the	

converse	being	also	true	(Cilliers,	1998).	For	Cilliers	the	concepts	of	

non-linearity	is	closely	aligned	with	the	principle	of	asymmetry.	For	

example	personalised	realistic	medicine	within	the	context	of	this	

research	is	seeking	the	most	effective	delivery	of	treatment	for	

individual	patients.	Even	without	the	addition	of	considering	
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treatment	delivery	at	the	lowest	cost	this	already	introduces	an	

element	of	competition	that	also	introduces	asymmetry	because	if	

the	model	was	perfectly	symmetrical	there	would	be	no	need	for	an	

operational	research	model.	For	Cilliers	this	meant	that	non-linearity,	

asymmetry	and	competition	are	all	inevitable	components	of	

complex	systems	(Kruger	et	al.,	2019).		

	

Conditions	are	Far	From	Equilibrium	

	

Within	a	complex	system	non-linearity	between	components,	the	

environment	and	whole	systems	results	in	a	state	of	non-equilibrium	

(Capra,	2007;	Prigogine,	1987).	Interactions	with	the	world	are	

dynamic	therefore	systems	in	non-equilibrium	have	multiple	states	

of	states	and	become	more	robust	through	a	process	of	adaptation	

than	statical	systems	operating	in	a	state	of	equilibrium	(Kruger	et	

al.,	2019;	Capra,	2007;	De	Villiers-Botha	&	Cilliers,	2010).		

	

Each	Element	Is	Ignorant	to	the	Behaviour	of	the	Whole	System	

	

Although	there	are	mathematical	relationships	between	elements	

within	a	model,	each	element	only	reacts	to	information	available	to	

itself.	Cilliers	emphasises	that	this	characteristic	should	be	

considered	carefully	as	the	information	applied	to	the	individual	

element	may	be	rich	but	that	individual	element	cannot	contain	the	

complexity	of	the	whole	system	(Cilliers,	1998).			

	

The	complex	system	as	one	that	is	dynamic,	non-linear,	not	in	

equilibrium	and	with	elements	ignorant	of	the	whole	can	also	be	
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illustrated	through	the	example	of	pancreatic	cancer.		Mathematically	

a	dynamic	system	depends	on	either	a	set	of	different	states	or	

configuration	patterns	(z),	a	number	of	transition	steps	(ż)	from	one	

state	to	another	caused	by	a	generating	factor	(u),	over	a	period	of	

time	(t)	thus:	

Ż	=	f(z,u,t)	 	

where	f	is	a	non-linear	function	that	is	continuous	and	the	dot	

denotes	differentiation	in	time	(t)		(Grizzi	et	al.,	2004;	Abraham,	

1991;	Abraham	&	Shaw,	1992;	Grizzi	&	Chiriva-Internati,	2006).	

Therefore,	for	example,	time	(t)	to	disease	recurrence,	depends	on	a	

large	number	of	dynamic	elements	that	are	themselves	connected	

and	interact	in	non-linear	ways	(Grizzi	&	Chiriva-Internati,	2006).	

Therefore	the	time	to	disease	recurrence	depends	not	only	on	

treatment	received	but	highly	heterogeneous	tumour	factors	at	

molecular	level,	the	patient’s	physiological	reserve	to	cope	with	the	

insult	of	intervention	and	/	or	an	associated	complication	of	this	

(which	is	itself	affected	by	wider	societal,	environmental,	genetic	and	

lifestyle	factors),	and	whether	such	an	occurrence	results	in	

incompletion	of	intended	course	of	therapy	or	delay	in,	for	example,	

commencing	adjuvant	therapy	due	to	postoperative	complication.	

What	this	is	illustrating	is	that	treatment	pathways	for	pancreatic	

management	are	actually	systems	comprising	parts	that	show	

systematic	heterogeneity	and	have	non-linear	relationships	with	the	

variables	influencing	the	system	also	being	connected	in	a	complex	

manner,	therefore	small	alterations	in	variables	can	lead	to	very	

different	outcomes	(Grizzi	&	Chiriva-Internati,	2006).	Clinicians	will	

recognise	concepts	in	irregular	modes	of	carcinogenesis,	erratic	

tumour	growth,	poorly	understood	patters	of	metastatic	spread,	and	
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variations	in	the	response	of	similar	tumour	types	to	the	same	

chemotherapy	agents	(Grizzi	&	Chiriva-Internati,	2006).	The	

implications	for	this	in	moving	research	forward	is	that	cancer	does	

not	conform	to	simple	mathematical	principles	but	instead	classical	

notions	of	cause	and	effect	must	be	replaced	by	concepts	of	control,	

bifurcation	and	turbulence	(Grizzi	&	Chiriva-Internati,	2006)	which	

will	mean	expanding	the	repertoire	of	modeling	methods	and	further	

exploring	the	development	of	simulation	modeling	to	better	handle	

complexity	and	uncertainty	(Long	et	al.,	2018).		

	

Interactions	Have	a	Fairly	Short	Range	

	

Operational	research	models	have	the	aim	of	bringing	about	

improvement	with	changes	occurring	locally,	close	to	the	application	

(Kruger	et	al.,	2019)	although	interactions	can	also	be	wide	ranging	

(Cillers,	1998).	Wide-ranging	interactions	can	mean	that	changes	at	

local	level	and	have	regional	and	national	impact	(Kruger	et	al.,	

2019).		

	

An	Open	System	

	

When	an	operational	research	model	is	applied	to	a	specific	problem	

the	model	becomes	exposed	to	the	real	world	as	an	open	system	with	

a	large	number	of	elements	having	an	influence	on	its	formulation	

(Kruger	et	al.,	2019).	Therefore	to	properly	formulate	an	operational	

research	model	it	must	be	implemented	and	applied	to	a	specific	

problem	otherwise	the	model	itself	becomes	a	closed	system	with	



	 190	

results	confined	to	a	set	of	variables,	which	would	be	a	gross	

oversimplification	(Kruger	et	al.,	2019).				

	

Complex	Systems	Have	a	History	

	

Cilliers	viewed	the	history	of	a	complex	system	as	a	collection	of	

traces	left	distributed	over	the	system	open	to	multiple	

interpretations	(Cilliers,	1998).		Therefore	good	models	can	be	

reused	but	their	use	and	history	should	not	be	determined	by	the	

provision	of	an	optimal	answer	in	one	application	as	a	plethora	of	

other	factors	must	be	taken	into	account	such	as	the	influence	of	

different	stakeholders	and	unforeseen	developments	during	

implementation	(Kruger	et	al.,	2019).	This	also	means	that	the	

memory	of	the	model	will	vary	between	different	applications,	even	

when	the	same	type	of	model	is	applied,	hence	the	model	memory	

appears	to	be	contingent	and	dynamic	(Cilliers,	2010).		

	

In	summary	the	alignment	of	the	research	question	with	the	ten	

characteristic	of	complexity	thinking	as	a	‘lean’	ontology	means	that	

the	epistemological	questions	raised	by	Ackoff	can	be	addressed	

(table	11).	While	it	is	acknowledged	that	a	complex	world	cannot	be	

simplified	into	a	list	of	characteristics	this	allows	one	to	indicate	the	

complexity	in	the	context	of	the	reality	in	which	this	research	will	

operate	(Kruger	et	al.,	2019).	No	claim	is	being	made	that	existing	

mathematical	and	computational	models	are	wrong	or	of	little	use,	

but	rather	that	by	adopting	methodological	pluralism	and	using	

complexity	theory	as	a	lens	through	which	to	view	the	system	of	

pancreatic	cancer	management	new	methods	of	modelling	for	



	 191	

decision	making	could	be	developed	by	gaining	new	perspectives	in	

terms	of	emergence,	boundary	setting,	lack	of	complete	knowledge	

and	responsibility	or	ethics	for	the	consequences	regarding	

definitions	and	choices	of	boundaries	(Kruger	et	al.,	2019).						

	

Table	11:	Summary	of	how	complexity	theory	can	address	Ackoff’s	

epistemological	concerns	

	
Ackoff’s	Epistemological	Concern	 Complexity	Characteristics	Addressing	This	

Concern	
The	need	for	a	system	to	learn	and	adapt	 Non-equilibrium		

History	
Lack	of	quality	of	life	values	 Rich	interaction	between	elements	

Open	systems	
Systems	of	problems	 Large	number	of	elements		

Elements	interact	dynamically	
Synthesizing	Planning	Paradigm		 Large	number	of	elements		

Elements	interact	dynamically	
Open	system	

Interdisciplinary	interaction	 Loops	in	interactions	
Non-equilibrium	
Open	systems	

Pursuit	of	objectivity:	who	can	be	affected		 Dynamic	interaction	
Short	Range	
Open	system	

		

Emergence	

Checkland	(1999)	defined	emergence	as	the	principle	that	entities	

exhibit	properties,	which	are	meaningful	only	when	attributed	to	the	

whole,	and	not	its	parts.	This	corroborated	Cilliers	claim	that	one	of	

the	defining	characteristics	of	a	complex	system	is	its	emergent	

properties	which	cannot	be	reduced	to	the	system	component	

properties	(Cilliers,	2010).	Therefore	complexity	emerges	as	a	result	

of	the	dynamic	and	non-linear	interactions	between	elements	within	

the	system	(Cilliers,	1998).	Juxtapose	this	with	the	context	of	an	open	

system	and	the	magnitude	of	emergence	can	be	difficult	to	quantify	

(Paul	et	al.,	2014)	particularly	as	emergence	can	take	many	forms	
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including	deeper	understanding	or	raised	consciousness	about	issues	

(Kruger	et	al.,	2019).						

	

Boundary	Setting	

	

It	is	impossible	to	solve	a	real-world	problem	by	including	all	of	

reality	therefore	the	problem	must	be	framed	in	a	specific	way	and	

the	system	must	be	modeled	in	a	recognisable	way	which	requires	

that	it	be	bounded	(Cilliers,	2005a;	Kruger	et	al.,	2019).	The	setting	of	

boundaries	can	also	generate	knowledge	through	dialogue	with	

stakeholder	(Audouin	et	al.,	2013;	Kruger	et	al.,	2019).	Importantly	

however	the	setting	of	a	boundary	constitutes	that	which	is	bound	

rather	than	intended	to	separate	things	(Cilliers,	2008).	Furthermore	

boundary	setting	is	not	objective,	and	is	both	artificial	and	temporary	

(Kruger	et	al.,	2019).	As	emphasised	by	the	work	of	Cilliers,	

operational	research’s	epistemology,	through	complexity	theory,	can	

both	accommodate	and	be	broadened	by	this	(Kruger	et	al.,	2019).			

	

Lack	of	Complete	Knowledge	

	

Complete	knowledge	of	a	complex	system	is	not	possible	but	rather	

knowledge	in	terms	of	a	certain	framework	is	(Kruger	et	al.,	2019).	

As	Midgley	et	al.	stated	“	if	we	accept	the	systems	idea	that	

everything	is	ultimately	connected,	then	no	theoretical	knowledge,	

however	well	elaborated,	can	accurately	reflect	reality”	(Midgley	et	

al.,	1998,	p.160).	Hence	the	generation	of	knowledge	within	a	

complex	system	is	exploratory	and	temporary	(Cilliers,	2005b).	

Cilliers	(2005b)	and	Woermann	(2010)	argue	that	rather	than	this	
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being	an	excuse	for	relativism,	this	represents	a	challenge	to	develop	

a	new	kind	of	scientific	understanding	(Cilliers,	2007).	

			

Responsibility	(Ethics)	

	

Both	the	artificial	nature	of	boundary	setting	and	the	provisional	

nature	of	knowledge	means	that	a	level	of	uncertainty	will	prevail	in	

model	outputs	which	means	that	responsibility	must	be	taken	for	

intended	and	unintended	consequences	when	a	system	does	not	

reflect	reality	(Cilliers,	2008;	Woemann	&	Cilliers,	2012;	Ackoff,	

1974;	Gallo,	2004;	Ormerod	&	Ulrich,	2013)	particularly	as	boundary	

definitions	involve	a	value	based	judgment	(Audouin	et	al.,	2013;	

Ulrich,	1983;	Midgley,	2000).				

	

In	summary	as	Law	and	Mol	(2002)	have	suggested	other	ways	of	

relating	to,	accepting,	producing	or	performing	complexity	must	be	

developed.	Therefore	this	research	seeks	to	engage	with	what	

Tsoukas	called	conjunctive	theorising	by	avoiding	simplification	and	

abstraction	(or	disjunctive	theorising)	and	instead	drawing	on	

different	kinds	of	data	from	multiple	sources	to	move	research	

towards	a	theory	that	can	build	a	rich	picture	of	pancreatic	

management	pathways	as	a	complex	phenomenon	(Tsoukas,	2017).	

Combining	operational	and	healthcare	research	and	drawing	on	

influences	from	complementary	paradigms	of	critical	realism	and	

systems	theory	and	enhancing	their	impact	by	using	Cilliers’	

complexity	theory	‘lean	ontology’	an	open-world	ontology	is	held.	

This	posits	that	the	interplay	of	causal	powers	or	tendencies	of	

domains	of	‘the	real’	leads	to	particular	events,	‘the	actual’	(Mingers	
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2005).		These	domains	may	be	physical,	social	or	conceptual	

(Mingers	2005,	Zachariadis	et	al.,	2010)	and	these	events	may	be	

observable	or	experienced	by	people	and	therefore	become	empirical	

(Mingers	2005)	but	that	as	a	whole	the	world	is	open	to	multiple	

interacting	influences	and	to	ignore	such	layers	of	influence	serves	

no	analytical	benefit	(Tsoukas,	2017).	Epistemologically	in	

recognising	that	all	knowledge,	whilst	provisional,	is	historically	and	

culturally	relative	both	epistemic	reality	(observer-independent	

access	as	a	fallacy)	and	judgmental	relativity	(rational	grounds	for	

theory	preference)	are	accepted	(Mingers	2005,	Zachariadis	et	al.,	

2010).	By	amalgamating	operational	and	healthcare	research	

disciples	in	this	way	this	research	seeks	to	be	theory	driven	and	

empirically	focused	from	a	complexity	perspective.	Through	a	

‘systems	mindset’	methodological	pluralism	is	embraced	to	expand	

the	methodological	repertoire.	Specifically	how	imperfect	data	can	be	

better	utilised	within	statistical	simulation	models	will	be	explored	

so	that,	as	Long	et	al.	(2018)	have	suggested,	the	potential	for	

simulation	modelling	in	the	study	of	complexity	in	healthcare	can	be	

explored	to	attempt	to	expand	capabilities	for	handling	uncertainty,	

the	emergent	and	engage	in	disagreements	(Star,	2002;	Fraser	&	

Greenhalgh,	2001;	Greenhalgh	&	Papoutsi,	2018).	Methods	of	

modeling	and	their	ability	to	cope	with	uncertainty	and	capture	

system	complexity	will	now	be	explored.				
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3.4.	Methodology		
	

3.4.1	Methods:	Modeling	

	

The	term	‘model’	has	been	overused	recently	(National	Research	

Council,	1991)	which	mandates	clarification	of	the	use	of	the	term	

within	this	research,	first	in	relation	to	decision	analysis	then	in	

relation	to	predictive	modeling.	Although	several	definitions	of	a	

‘model’	exist	(Milton	et	al.,	2001)	Box	et	al.	(1978)	defined	two	types	

of	models:	empirical	and	theoretical.	Empirical	models	are	used	

when	the	mechanism	is	either	not	understood	or	too	complex	to	

allow	an	exact	model	postulated	from	theory	(Milton	et	al.,	2001;	Box	

et	al.,	1978).	An	example	would	be	drug	trials	as	here	data	speaks	for	

itself	in	connecting	cause	(inputs)	and	effect	(outputs).		Theoretical	

models	are	based	on	physical	or	mechanistic	theory	governing	the	

system.	Pertaining	to	predictive	models,	Box	et	al.	(1978)	would	

therefore	site	logistic	regression	models	as	examples	of	empirical	

models.	Considering	the	ambiguity	in	the	existing	body	of	research	

relating	to	the	best	treatment	pathway	for	potentially	resectable	

pancreatic	cancer,	and	the	complexity	of	factors	that	influence	

clinical	decisions	not	captured	in	drug	trials,	the	case	could	be	made	

for	moving	away	from	empirical	towards	theoretical	modeling	on	the	

basis	that	a	“basic	understanding	of	the	system	is	essential	to	

progress”	as	this	provides	a	better	basis	for	extrapolation	than	

empiricism	(Box	et	al.,	1978).	It	does	however	follow	that	with	any	

model	extrapolation	beyond	the	range	of	data	is	never	a	safe	option	

(Milton	et	al.,	2001).	This	leads	to	the	second	point	that	must	be	
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addressed	in	regards	to	modeling;	the	controversy	that	surrounds	its	

application	within	healthcare.		

	

Models	for	decision	analysis,	cost-effectives	and	prediction	have	been	

met	with	criticism.	Empiricists	have	emphasised	the	potential	

inaccuracies	of	input	data	whilst	epidemiologists	have	raised	

subsequent	concerns	that	logical	assumption	regarding	cause	and	

effect	are	wrong	(Milton	et	al.,	2001;	Henschke	&	Flehinger,	1967;	

Schwartz,	1979).	This	has	led	some	to	conclude	that	clinical	judgment	

is	an	‘art’	that	cannot	be	quantified	whilst	others	express	distrust	in	

the	hidden	nature	of	the	‘black	box’	of	modeling	software	that	can	

easily	be	manipulated	by	proponents	of	a	particular	treatment	option	

(Milton	et	al.,	2001;	Schwartz,	1979).		However,	the	basis	of	

explainable	AI	in	healthcare	is	being	able	to	sit	down	with	a	patient	

and	describe	the	basis	for	a	particular	course	of	action.	Furthermore	

all	bias	that	exists	in	data	cannot	be	adequately	addressed	if	

decisions	are	not	interpretable.		

	

At	the	core	of	this	cynicism	lies	disagreement	about	the	degree	of	

experimental	or	empirical	evidence	required	prior	to	modeling	

(Milton	et	al.,	2001;	Henschke	&	Flehinger,	1967;	Schwartz,	1979).		

Clearly	the	evidence	base	surrounding	the	best	treatment	approach	

to	pancreatic	cancer	is	inconclusive.	However,	to	simply	wait	until	

‘perfect’	evidence	exists	paralyses	progress	in	medicine,	stymies	the	

realisation	of	realistic	medicine,	and	is	negligent	in	light	of	the	fact	

that	decisions	must	be	made	on	a	daily	basis	despite	limited	data	and	

implicit	value	on	qualitative	outcomes	(Milton	et	al.,	2001;	Kuntz	et	

al,.	2013).	Furthermore	when	debating	the	quality	of	available	data	to	
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model	it	must	be	remembered	that	data	from	trials	themselves	are	

not	infallible	nor	generalisable	as	treatment	is	protocol	driven,	

context	is	controlled	for,	study	participants	are	a	selected	subset	of	

the	population,	and	late	outcomes	may	not	be	recorded	due	to	trial	

time	horizon	despite	this	potentially	being	a	key	factor	in	influencing	

clinical	decisions	(Kuntz	et	al.,	2013;	Milton	et	al.,	2001).	Therefore	

blinkered	reliance	on	‘perfect’	trial	data	can	actually	result	in	

cognitive	bias	when	making	these	daily	clinical	decisions	(Kuntz	et	

al.,	2013).		This	leads	to	the	second	misconception	underpinning	

cynicism	towards	modeling	in	medicine,	that	models	are	to	establish	

‘truth’	when	they	are	actually	meant	to	guide	clinical	decisions.		This	

also	counters	the	concern	by	some	that	models	may	produce	results	

that	conflict	with	the	decision	maker’s	view	(Kuntz	et	al.,	2013).	It	

follows	that	models	can	reduce	the	cognitive	bias	inherent	in	

decision	making	and	help	understanding	of	the	decision	process	and	

the	inherent	trade-offs	in	complex	decisions	with	sensitivity	analysis	

showing	effects	of	varying	model	parameters	(Kuntz	et	al.,	2013;	

Milton	et	al.,	2001).		

	

What	the	criticisms	of	modeling	within	health	care	have	done	is	focus	

attention	on	adhering	to	principles	of	good	modeling	practice:	

transparency,	verification	(outputs	being	consistent	with	observed	

data),	corroboration	(results	produced	are	similar	other	models),	

validation	(internal,	calibration,	face,	convergent	and	where	

appropriate,	predictive	validation)	and	accreditation	(peer	review	of	

models)	(Kuntz	et	al.,	2013;	Milton	et	al.,	2001).		This	highlights	the	

imperative	need	to	make	both	methods	and	goals	of	modeling	

transparent	(Kuntz	et	al.,	2013).		
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Wolpert	&	Rutter	(2018)	offered	a	potential	solution	to	these	issue	

when	they	developed	a	framework	for	using	flawed,	uncertain,	

proximate	and	sparse	(FUPS)	data	in	the	context	of	complexity.	This	

will	now	be	explored	followed	by	an	examination	of	models	for	

decision	analysis	of	neoadjuvant	versus	upfront	surgery	pathways	

and	then	methods	of	individualised	predictive	modeling	in	the	

context	of	complexity.	

	

Flawed	Uncertain	Proximate	and	Sparse	(FUPS)	Data	

	

Data	surrounding	the	treatment	of	pancreatic	cancer	is	currently	

flawed,	uncertain,	proximate	and	sparse	and	is	likely	to	remain	so	

even	with	the	emergence	of	further	RCTs	(Table	12).	A	healthcare	

system	delivering	pancreatic	cancer	management	is	therefore	faced	

with	the	challenge	of	dealing	with	the	gap	between	the	ideal	of	

comprehensive,	clear	data	used	in	complicated	contexts,	and	the	

reality	of	FUPS	data	used	within	the	context	of	complexity	(Wolpert	

&	Rutter,	2018).	Clinical	decision	making	therefore	moves	from	what	

the	urban	planner	and	philosopher	Donald	Schon	called	the	“high	

ground”	where	manageable	problems	lend	themselves	to	solutions	

through	the	use	of	research-based	theory	to	the	“swampy	lowlands”	

where	problems	are	more	confusing	and	messy	(Schon,	1984).		
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Table	12:	Summary	of	how	existing	data	on	the	management	of	

potentially	resectable	pancreatic	cancer	can	be	viewed	as	FUPS	data	

	
FUPS	Category		 State	of	Existing	Data	
Flawed	 Missing	data	from	institutional	data	base	

Erroneously	recorded	or	coded	data	on	
institutional	data	base	
Deviation	from	the	planned	treatment	
protocol,	the	impact	of	which	is	not	fully	
explored	through	solely	intention-to-treat	
analysis.	
High	degree	of	heterogeneity	across	study	
populations,	treatment	protocols	and	clinical	
practices.		
Many	existing	studies	are	small,	underpowered	
and	have	a	high	degree	of	bias.		

Uncertain	 How	data	is	rated	or	conceptualised	for	
example:	how	treatment	toxicities	are	
categorised	and	reported	(all	occurrences	
recorded,	worst	event	recorded,	total	number	
of	toxicities	in	population	versus	percentage	of	
population	experiencing	a	particular	grade	of	
toxicity),	how	post	operative	complications	are	
rated,	variations	in	the	definitions	of	resectable	
disease	and	R0	resection	across	studies	and	
variation	in	follow-up	practices	creating	
uncertainty	in	the	accuracy	of	disease	free	
survival	time.	

Proximate	 A	proxy	for	the	focus	of	interest:	overall	and	
disease	free	survival	commonly	reported	but	
quality	adjusted	survival	time	poorly	
understood.		

Sparse	 Only	an	estimated	10%	of	cases	are	resectable	
at	presentation.	
Drug	trails	comparing	upfront	surgery	and	
neoadjuvant	approach	often	include	borderline	
resectable	and	locally	advanced	cases	in	the	
neoadjuvant	arm.				

	

	

Lessons	drawn	from	cognitive	psychology	and	sociology	suggest	that	

the	use	of	findings	from	data	are	influenced	by	key	factors	including	

the	tendency	to	reject	that	which	challenges	the	prevailing	
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assumptions	and	the	tendency	for	power	elites	to	protect	their	

interests	(Currie	et	al.,	2012;	Raghupathi	&	Raghupathi,	2014).	Large	

multicenter	RCTs	are	costly	and	carry	a	high	level	of	prestige	for	the	

institutions	involved.	The	data	from	such	trials	are	therefore	held	in	

high	esteem	and	often	readily	accepted	within	medicine	with	limited	

criticism.	However,	the	reality	is	that	the	majority	of	daily	clinical	

decisions	are	made	based	on	FUPS	data	out-with	controlled	trial	

conditions	and	concerning	patients	who	are	not	selected	based	on	a	

strict	inclusion	criteria.	Yet	agents	in	the	system	are	more	likely	to	

apply	higher	standards	of	evidence	than	to	traditional	practice	

regardless	of	the	apparent	flaws	in	the	evidence	supporting	such	

traditional	approaches	(Muir,	2001).	This	highlights	the	need	for	

decision	support	models	not	only	to	pay	sophisticated	attention	to	

the	merits	and	detriments	of	using	FUPS	data	but	to	also	answer	the	

call	for	a	greater	consideration	of	the	implications	of	the	complexity	

of	the	healthcare	system	in	both	research	and	practice	(Plsek	&	

Greennalgh,	2001;	Rutter	et	al.,	2017).	This	means	paying	close	

attention	to	the	properties	of	the	complex	system	in	which	the	data	

will	be	used	(Wolpert	&	Rutter,	2018)	which	can	be	characterised	as	

a	collection	of	individual	but	interconnected	agents	with	the	freedom	

to	act	in	ways	that	are	not	completely	predictable,	and	whose	actions	

changes	the	context	for	other	agents	(Plsek	&	Greennalgh,	2001).		

	

Taking	a	lead	from	Wolpert	and	Rutter	(2018)	to	move	beyond	the	

biomedical	model	as	the	only	model	of	evidence	to	simultaneously	

acknowledge	the	dangers	of	both	over-interpretation	of	FUPS	data	as	

well	as	non-use,	the	aim	of	modeling	FUPS	data	pertaining	to	the	

management	of	pancreatic	cancer	will	be	to	open	up	conversations	
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on	findings	rather	than	treating	them	as	definitive	facts	(Wolpert	&	

Rutter,	2018).	In	this	way	findings	will	be	used	to	consider	the	

complex	reality	they	relate	to	but	cannot	fully	capture	so	that	

narrative	arguments	and	hypothesis	can	be	contested	and	debated	

within	the	system	rather	than	being	dismissed	due	to	FUPS-ness	of	

the	data	or	presented	as	definitive	facts	in	order	to	aid	decision	

making	in	the	“swampy	lowlands”	of	clinical	practice	(Wolpert	&	

Rutter,	2018).	In	practical	terms	this	means	instantiating	the	key	

principles	of	analysing	FUPS	data	within	statistical	models.	Firstly	all	

data	is	treated	as	a	partial	remnant	with	findings	presented	to	convey	

associated	limitations	to	interpretation.	Secondly	‘black	box’	

statistical	modeling	will	be	avoided	in	favour	of	transparency	and	

clarity.	Thirdly	triangulation	will	be	used	to	contextualise	findings	

from	models	based	on	FUPS	data	to	explore	how	other	information	

and	modeling	techniques	refute	or	support	these	findings	(Wolpert	&	

Rutter,	2018).	Specific	decision	analysis	modeling	methods	and	their	

ability	to	handle	uncertainty	will	now	be	explored.						

						

3.4.2	Decision-Analysis	Modeling					

	

With	its	roots	in	mathematics,	ethics,	game	theory	and	economics	

(Albert,	1978),	decision-analytical	models	are	designed	to	perform	

decision	analysis	in	a	systematic,	transparent	and	quantitative	way	

under	uncertainty	(Kuntz	et	al.	2013).		Von	Neumann	&	Morgensterm	

(1953)	first	provided	a	mathematical	framework,	based	on	the	

axioms	of	utility	theory,	and	synthesising	concepts	of	probability	and	

value,	for	‘rational’	decision	making	under	uncertainty.	Ledley	&	

Lusted	(1959)	then	attempted	to	apply	decision-analysis	to	medical	
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diagnostics,	focusing	on	probability,	logic	and	value	and	emphasizing	

the	importance	of	Bayesian	formulae	in	achieving	this.	However,	they	

then	drew	on	game	theory	when	deciding	upon	best	treatment	

selection,	discussing	what	a	physician	could	“win”	and	what	nature	

could	“lose”	with	various	treatment	options	(Ledley	&	Lusted,	1959).	

Later	Henschke	&	Hehingers	(1967)	in	‘Decision	Theory	in	Cancer	

Therapy’	attempted	to	tackle	decision	making	at	a	more	complex	

level	when	attempting	to	analyse	risk	and	benefits	of	prophylactic	

neck	dissection	for	head	and	cancer.	Neither	of	these	seminal	papers	

however	formalised	an	analytical	tool	to	analyse	decisions	(Kuntz	et	

al.,	2013).		It	was	not	until	the	1980s	that	the	first	textbook	on	

decision	analysis	introduced	the	decision	tree	(Weinstein	et	al.	1980)	

followed	by	the	first	application	of	a	Markov	model,	utilizing	markov	

chains,	in	medical	decision	making	(Beck	&	Pauker,	1983).	Despite	

postulations	in	1975	that	the	time	had	come	for	modeling	in	

decision-analysis	to	become	more	widely	used	and	accepted,	despite	

not	being	a	new	idea	then	(Inglefinger,	1975),	it	is	only	in	recent	

years	that	it	has	gained	precedence.	The	reason	for	this	is	two-fold;	

firstly	the	perception	of	decision-analysis	modeling	within	medicine	

(available	evidence	is	too	limited	to	model,	qualitative	factors	are	

important	in	decision	making	but	not	suitable	for	quantitative	

analysis,	and	doctors	could	not	be	expected	to	use	complex	and	

sophisticated	models	in	their	daily	practice)	and	secondly	the	

development	of	software	to	support	its	application	has	accelerated	

the	use	of	decision-analysis	modeling	(Ledley	&	Lusted,	1959;	

Henschke	&	Flehinger,	1967).		Models	for	decision-analysis	will	now	

be	explored	and	include:	decision-trees,	Markov,	micro	and	discrete	

event	simulation.		
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Decision	trees	use	utility	theory,	or	multiattribute	until	theory	is	

developed	to	attach	value	to	an	outcome,	even	qualitative	outcomes	

(Kuntz	et	al.	2013;	von	Neumann	&	Morgensterm,	1953).		This	type	

of	model	would	have	the	benefit	of	modeling	the	complex	and	

numerous	branches	involved	in	treatment	pathways	when	deciding	

between	treatments	for	pancreatic	cancer	in	a	logistical	and	linear	

manner	that	is	easy	to	follow	with	all	pathways	and	their	transiton	

probabilities	being	transparent	(Kuntz	et	al.,	2013).	However,	this	

model	does	not	capture	reoccurring	events	and	is	only	applicable	in	

decisions	with	short	time	horizons.	For	this	reason	I	contest	that	

Markov	modeling	would	be	a	more	appropriate	choice	of	model	as	

many	features	of	the	clinical	process	are	captured	taking	into	account	

the	timing	of	these	events,	such	as	changing	health	states	over	time.	

Furthermore	a	Markov	model	can	be	computed	analytically	to	give	

expected	values	such	as	life	expectancy,	or	stochastically	to	measure	

predicted	outcomes	in	addition	to	expected	values	(Kuntz	et	al.	

2013).		It	allows	both	decision	analysis	in	terms	of	health	outcomes	

as	well	as	cost-effectiveness	analysis.		

	

Markov	modeling	has	been	employed	for	decision	analysis	of	upfront	

surgery	versus	neoadjuvant	therapy	for	resectable	pancreatic	cancer	

(deGeus	et	al.,	2016;	Sharma	et	al.,	2015).	These	studies	were	based	

on	synthesised	data	from	published	trials	and	their	output	was	not	

validated	against	patient	level	data.	Whilst	this	approach	adds	

flexibility	in	sensitivity	analysis	by	incorporating	explicit	links	

between	end	points,	it	also	carries	methodological	limitations	that	

could	inhibit	its	future	application	(Caro	et	al.,	2010;	Miettinen	&	
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Caro	et	al.,	2010).	The	challenge	in	applying	the	Markov	model	is	in	

addressing	its	main	disadvantage;	the	Markov	property.	This	

property	means	that	transition	probabilities	within	the	model	are	

treated	as	independent	of	the	past	history.	However,	in	clinical	

practice	a	significant	past	medical	history	may	make	a	post	operative	

complication	more	likely	which	in	turn	could	reduce	the	probability	

of	a	patient	receiving	adjuvant	therapy.	One	strategy	to	deal	with	this	

would	be	to	define	health	states	according	to	past	events	(Kuntz	et	al.	

2013)	although	there	is	a	danger	that	the	model	could	grow	too	large	

to	manage	as	the	number	of	possible	health	states	could	increase	

exponentially	(Kuntz	et	al.	2013).	Given	the	anticipated	move	

towards	future	personalised	targeted	treatments	the	memory-less	

property	of	the	Markov	cohort	model	makes	it	less	well	equipped	to	

handle	individual	patient	data,	which	can	result	in	reduced	accuracy	

due	to	depletion	of	susceptibles	and	an	over	simplification	of	

assumptions	(Caro	et	al.,	2010;	Miettinen	&	Caro	et	al.,	2010).	

Furthermore	in	light	of	the	afore	mentioned	current	challenges	in	

pathway	assessment	for	resectable	pancreatic	cancer,	

implementation	of	time-dependent	transition	probabilities	when	

multiple	health	states	and	treatment	sequences	are	considered	

would	make	programming	and	utilising	such	a	model	difficult	(Caro	

et	al.,	2010;	Miettinen	&	Caro	et	al.,	2010).		

	

A	better	framework	for	modeling	treatment	pathways	for	resectable	

pancreatic	cancer	could	be	offered	through	discrete-event-simulation	

(DES)	approach	as	it	captures	a	patient’s	experience	in	terms	of	

events	and	also	has	the	ability	to	track	changes	in	patient	

characteristics,	health	status	and	treatment	history	in	relation	to	
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their	impact	on	outcomes	(Pan	et	al.,	2018;	Caro	et	al.,	2010).	By	

tracking	the	individual	patient’s	simulated	history,	including	multiple	

comorbidities	allowing	them	to	interact	and	effect	outcomes,	the	

number	of	health	states	could	be	reduced	within	the	model	(Kuntz	et	

al.	2013).	This	could	be	achieved	on	a	cycle-by-cycle	basis	or	by	using	

data	distributions	to	simulate	time-to-event	hence	allowing	flexibility	

in	how	data	is	modeled	(Kuntz	et	al.	2013).	This	potentially	makes	

this	approach	a	more	accurate	and	efficient	framework	with	the	

flexibility	to	incorporate	future	anticipated	breakthroughs	in	

personalised	targeted	treatments.	This	would	however	require	a	high	

number	of	simulations	to	reach	a	stable	expected	value	which	

amounts	to	high	costs	in	terms	of	time	and	computing	power.	

Debugging	such	a	model	would	be	difficult	compared	to	the	Markov	

model	which	has	a	Markov	trace	which	means	that	the	proportion	of	

the	cohort	in	each	health	state	can	be	given	per	cycle	time	which	

results	in	face	validity	of	the	model	and	good	accuracy	testing	(Kuntz	

et	al.	2013).	Furthermore,	the	proportion	of	disease	that	is	resectable	

at	presentation	is	small	considering	the	large	data	requirements	for	

such	a	modeling	framework.	DES	approach	has	not	yet	been	applied	

to	treatment	pathway	analysis	for	resectable	pancreatic	cancer	to	

assess	its	level	of	accuracy.	

	

Both	these	modeling	approaches	could	be	complementary.	The	

curiosity	is	whether	the	Bayesian	approach	could	be	taken	forward	

to	achieve	precision	medicine	with	a	model	that	can	give	

individualised	predictions	of	prognosis	as	well	as	failure	events	such	

as	the	risk	of	treatment	complications.		
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3.5	Bayesian	Theorem			
	

Pearl	(1990)	defined	Bayesianism	by	the	attributes	of:	willingness	to	

accept	subjective	belief	as	a	substitute	for	raw	data,	reliance	on	

coherent	probabilistic	models	of	beliefs	and	updating	belief	in	light	of	

new	information	through	adherence	to	Bayes’	conditionalisation.		

	

A	probability	distribution,	P	is	defined	on	a	proposition	space	S,	

which	contains	all	propositions	that	a	system	can	represent	and	

process	(Kolmogorov,	1950).	The	probability	evaluation	P(x),	comes	

from		P	being	defined	on	S	for	every	proposition	x	∈	S.	Both	x	and	y	

are	contained	within	S,	so	the	probability	of	x	under	the	condition	of	y	

is	a	conditional	probability	evaluation	from	which	we	get	Bayes’	

Theorem	(Kolmogorov,	1950;	Wang	2004):	

	 P(y|x)	=			P(y|x)	P(x)	/	P(y)	

	

Accordingly	the	probability	of	the	proposition	h	is	the	systems	belief	

in	h	according	to	background	knowledge	K	that	could	be	data,	

experience	evidence	et	cetera.		The	system	starts	with	determining	

prior	probability	P0		from	knowledge	K0	at	time	t0.	When	new	

knowledge,	e,	becomes	available	P0	becomes	a	posterior	distribution,	

P1	so:	

	 P1(h)	=	P0(h|e)=	P0(e|h)	P0(h)	/	P0(e)	

P1	is	based	on	K1	which	is	a	combination	of	previous	and	new	

knowledge,	K0	and	e.	Therefore	Bayes’	Theorem	when	repeatedly	

applied	in	this	fashion	is	known	as	conditioning	process	and	means	

that	the	system	can	learn	and	adjust	beliefs	according	to	this	new	



	 207	

knowledge	(Heckerman,	1999;	Pearl,	2000).	This	also	means	that	a	

probability	evaluation	P(h)	is	always	conditional	due	to	the	implicit	

condition	that	P(h)	is	conditional	on	the	relationship	between	h	and	K	

and	not	the	objective	property	of		h	(Wang,	2004):	

	 PK1(h)	=	PK0(h|e)=	PK0(e|h)	PK0(h)	/	PK0(e)	

	

Often	however	this	implicit	condition	on	which	the	dependency	of	a	

probability	is	dependent,	is	represented	as	a	conditional	probability	

or	‘explicit	condition’	(Cheeseman,	1985;	Heckerman,	1999;	,Pearl	

1988;	Pearl,	2000):	

	

	 P(h|K1)	=	P(h|e	∧K0)	=	P(e|h	∧K0)P(h|K0)/	P(e|K0)	

	

which	some	contest	is	improper	and	central	to	understanding	the	

often	under	reported	limitations	of	Bayesianism	(Wang,	2004)	as	will	

be	discussed	later.	First	I	will	discuss	the	application	of	Bayes’	

theorem	to	the	research	question	through	Bayesian	Networks	(BN)	

before	outlining	these	limitations	and	how	they	might	be	overcome.			

			

	Precision	Medicine	and	the	Role	of	Bayesian	Networks		

	

There	is	a	move	within	contemporary	healthcare	towards	precision	

medicine	whereby	probabilistic	modeling	is	used	to	predict	likely	

disease	progression	and/	or	treatment	outcomes	for	individual	

patients	based	on	interpretation	of	patient	data	(Velikova	et	al.	2014;	

School	et	al.	2013).	However,	decision	making	in	medicine	can	be	

fraught	with	difficulty	due	to	underling	uncertainties.		
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Treatment	selection	and	prognostic	reasoning	at	its	very	core	

concerns	making	predictions	of	future	events	despite	inherent	

uncertainties.	Traditionally	prognostic	models	utilise	supervised	data	

analysis	methods	based	on	frequentist	statistical	paradigm,	such	as	

multivariate	logistic	regression	analysis	(School	et	al.	2013;	Verduijn	

et	al.,	2007).	Limitations	of	this	approach	highlight	the	gap	between	

theory	and	practical	application	of	models.	Such	models	regard	

prognosis	as	an	isolated	event	at	a	pre-determined	time,	applying	

attribute	selection	prior	to	inducing	the	model	and	setting	fixed	roles	

of	input	and	output	variables	to	attributes	(Verduijn	et	al.,	2007).	

Variables	deemed	important	by	clinicians	may	therefore	be	excluded.	

Furthermore	this	neglects	the	dynamic	nature	of	care	processes	

where	outcomes	today	predict	those	of	tomorrow	hence	expected	

patient	outcomes	evolve	as	more	information	becomes	available	

(Verduijn	et	al.,	2007).		

	

Prognostic	Bayesian	models,	although	in	their	infancy,	allow	for	

incorporation	of	individual	patient	data,	disease	progression	and	

impact	of	different	treatment	options	on	the	predicted	outcome	

variable,	such	as	life	expectancy.	This	can	be	defined	very	simply	as	a	

probability	distribution:		

Pr(outcome/δ,ℑ)		

where	δ	denotes	available	patient	data	and	ℑ	denotes	sequence	of	

treatment	events	impacting	on	the	outcome	variable	(Lucas	et	al.,	

2004).			

	

Through	Bayes	theorem	the	prior	distribution	and	observed	data	are	

combined	to	update	knowledge	in	the	form	of	the	posterior	
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distribution.	Posterior	probability	intervals	(PPI),	or	credibility	

intervals,	represent	the	95%	probability	that	the	predicted	outcome	

lies	between	two	values.	This	is	often	erroneously	confused	with	

frequentist-based	95%	confidence	interval,	which	means	that	95%	of	

the	confidence	intervals	capture	the	true	outcome	under	the	null	

hypothesis	(School	et	al.,	2013).	Regarding	personalised	predictive	

outcomes	for	patients,	PPI	is	therefore	more	accurate	and	easier	to	

communicate	to	patients	the	predicted	probability	of	their	outcome	

lying	between	two	values	(School	et	al.,	2013).			

	

	

BN	are	based	on	graphical	formalism	of	a	joint	or	multivariate	

probability	distribution	over	a	random	set	of	variables	and	are	

sometimes	referred	to	as	acyclic	directed	graphs	(Velikova	et	al.,	

2014;	School	et	al.,	2013;	Stajduhar	&	Dalbelo-Basic,	2010).	BN	are	

based	on	the	following	set	of	formulisation.		

	

BN	are	defined	as	a	pair:		

BN=	(G,Pr)		

where	G	is	a	graphical	structure	and	Pr	is	the	probability	distribution.	

G	=	(V(G),	A(G),	where	V(G)	is	a	random	variable	taking	on	a	set	of	

values.	Variables	are	represented	as	nodes	within	BN	and	any	

number	of	nodes	can	be	included,	therefore:	

	V(G)=	{V1,	V2….Vn}		

where	n>1.	A(G)	represent	arcs	which	indicate	probabilistic	influence	

between	two	nodes:	Vi	èVj		where	Vi	is	termed	the	parent	node	and	Vj	

the	child	node.	The	joint	probability	distribution	(Pr)	respects	the	

dependence	and	independence	between	nodes	and	is	defined	as:		
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Pr(V1,	V2….Vn)=	Πni		1Pr(Vi/π(Vi))	

where	π(Vi)	represents	the	covariates	of	parent	nodes	to	Vi.		(Velikova	

et	al.,	2014,	Lucas	et	al.,	2004,	Verduijn	et	al.,	2007,	Stajduhar	&	

Dalbelo-Basic,	2010).		

	

	

Unlike	traditional	prognostic	models	that	provide	predictions	of	a	

single	outcome	variable,	BN	can	be	more	complex,	providing	

information	on	process	variables	(conditions	that	occur	during	the	

process)	as	well	as	outcome	variables	(endpoints	of	that	process)	

(Verduijn	et	al,.	2007;	Lucas	et	al.,	2004).	Therefore	in	practice	BN	

can	predict	outcomes	pertaining	to	quality	and	not	just	amount	of	

survival	time	(Lucas	et	al.,	2004).	Furthermore	predictions	from	

prognostic	BN	can	be	used	to	support	decision	making	in	resource	

allocation	as	well	as	individual	cases	or	case-mix	adjustment	or	

benchmarking	in	groups	or	populations	(Verduijn	et	al.,	2007).	

	

Where	patient	information	is	limited	probabilistic	inference	can	still	

make	predictions	based	on	global	averages	of	the	patient	population	

(Verduijn	et	al.,	2007;	Lucas	et	al,.	2004).	As	more	information	

becomes	available	the	predictions	become	more	patient	specific	

(Verduijn	et	al.,	2007).	This	highlights	a	further	key	benefit	of	

prognostic	BN;	prognosis	updating	(Verduijn	et	al.,	2007).	As	the	

healthcare	process	evolves	so	does	a	patient’s	predicted	prognosis.	

Bayesian	methods	underpin	BN,	which	allows	prognosis	to	be	seen	as	

a	dynamic	notion	through	probability	updating	with	new	and	

emerging	information	(Verduijn	et	al.,	2007).	In	practice	this	means	

clinicians	involved	at	the	later	stages	of	care	can	use	the	same	model,	
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adjusted	for	the	events	of	the	preceding	care	phases	(e.g.	complex	

surgical	interventions)	to	make	more	timely	and	personalised	

predictions	(Verduijn	et	al.,	2007).	This	further	highlights	an	aspect	

of	predictive	medicine	not	captured	in	traditional	prognostic	models;	

prognostic	scenario	analysis.	In	real	life	events	such	as	complications	

and	hospital	stay	do	not	happen	in	isolation	but	rather	as	scenarios	

(Verduijn	et	al.,	2007).	Algorithms	exist	within	prognostic	BN	that	

can	perform	this	type	of	probabilistic	inference	to	predict	a	most	

likely	scenario	for	patents	or	patient	groups	(Verduijn	et	al.,	2007).				

	

This	advantage	links	beneficially	to	a	further	aspect	practice	faced	by	

clinicians	and	patient;	the	‘what	if	scenario’.		By	identifying	a	specific	

event	the	prognostic	BN	can	supply	a	risk	profile	of	the	most	likely	

scenarios	leading	to	the	stated	event	(Verduijn	et	al.,	2007).	Such	

information	can	be	incorporated	into	decision	making	regarding	

treatment	options.	Similarly	BN	can	be	used	to	perform	risk	factor	

analysis.	When	an	unfavorable	event,	such	as	a	post-operative	

complication,	occurs	it	is	important	to	identify	variables	that	may	

have	predicted	occurrence	or	non-occurrence	of	said	event	and	

quantify	this	in	terms	of	risk	ratios	(Verduijn	et	al.,	2007;	Lucas	et	al.	

2004):	

	

RR(X1)	=						P(X1=x1/	X=x,ℑ)	

	 	 P(X1=x1/	X≠x,ℑ)	

	

X1	is	a	variable	that	precedes	the	adverse	event.	ℑ	is	the	background	

knowledge	of	the	patient,	or	patient	group.	A	high	value	for	risk	



	 212	

ration	means	that	X1	is	an	important	predictor	for	the	event,	X,	

occurring	in	that	patient	or	patient	group	(Verduijn	et	al.,	2007).		

	

In	summary,	BN	are	emerging	as	a	promising,	but	as	yet	under	

utilised,	solution	with	potentially	extensive	application	to	medicine	

owing	to	their	ability	to	model	uncertainty	and	causal	relationships	

between	variables.	Bayesian	statistical	approach	offers	an	alternative	

to	the	traditional	frequentist	paradigm	of	null	hypothesis	testing	by	

allowing	the	integration	of	prior	qualitative	and	quantitative	

knowledge	(Velikova	et	al.,	2014;	School	et	al.,	2013;	Verduijn	et	al.,	

2007).	In	this	way	BN	allow	the	modeling	of	relationships	between	

variables	at	various	stages	of	the	healthcare	process,	with	predictions	

of	outcomes	evolving	throughout	the	process	by	utilising	all	available	

patient	data	at	that	time	(School	et	al.,	2013).	Predictions	can	

therefore	be	made	for	all	variables,	not	just	outcome	variables	

(Velikova	et	al.,	2014;	School	et	al.,	2013;	Lucas	et	al.,	2004).	How	

then	can	BN	be	applied	to	guide	decision	making	through	the	

extensive,	but	inconclusive	and	arguably	ambiguous	body	of	evidence	

underpinning	the	treatment	of	resectable	pancreatic	cancer?		

	

Modeling	Under	Uncertainty:	the	unique	challenge	of	potentially	

resectable	pancreatic	cancer	and	the	application	of	Bayesian	Networks			

	

Arguably	one	if	the	most	controversial	aspects	of	Bayesian	statistics	

is	the	elicitation	of	priors	(Johnson	et	al.,	2010).	Where	considerable	

prior	knowledge	of	a	high	quality	exists,	prior	distribution	can	be	

objectively	derived	through	meta-analysis	(School	et	al.,	2013;	

Hampson	et	al.,	2014;	Johnson	et	al.,	2010).	Challenges	however	arise	
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in	cases	of	rare	disease	or	where	existing	prior	knowledge	is	limited	

or	ambiguous.	

	

The	evidence-base	underpinning	treatment	options	for	resectable	PC	

are	multifaceted	in	the	challenge	it	poses	to	predictive	modeling.	As	

outlined	in	previous	sections	trials	of	both	adjuvant	and	neoadjuvant	

therapy	are	inconclusive	in	proving	superiority	of	one	treatment	

approach	over	another.	Furthermore	large,	multi-centred	RCTs	

comparing	one	treatment	approach	over	another	do	not	yet	exist.		

The	extensive	body	of	research	thus	far	accumulated	in	this	field	

however	means	that	pancreatic	cancer	cannot	be	viewed	as	a	rare	

disease	where	no	prior	knowledge	exists.	In	addition	there	also	exists	

a	separate	body	of	research	identifying	predictive	variables	of	

survival	outcome	pertaining	to	pancreatic	cancer	(tumour	size,	

lymphovascular	invasion,	albumin:	CRP	ratio	et	cetera)	as	well	as	

extensive	work	from	other	disciplines	within	medicine	looking	at	

predictive	modeling	for	outcomes	of	major	surgery	based	on	pre-

existing	patient	factors	that	cannot	be	ignored.		To	summarise,	the	

challenge	of	uncertainty	with	regards	potentially	resectable	

pancreatic	cancer	is	not	a	lack	of	existing	knowledge,	as	with	rare	

diseases,	but	rather	uncertainty	permeates	the	extensive	existing	

body	of	research	in	addition	to	separate	but	highly	relevant	body	of	

prior	knowledge	accumulated	out-with	drug	trials.	How	then	can	

such	information	be	modeled	to	meaningfully	make	individualised	

predictions	of	outcome?			

	

In	cases	of	uncertainty	one	option	is	to	set	objective	priors,	or	

uninformed	prior	distributions,	which	assumes	ignorance	of	any	
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prior	knowledge	and	accepts	that	observed	value	can	lie	between	

minus	and	plus	infinity	(Lin	&	Haug,	2008).	Whilst	those	of	a	more	

objective,	or	even	frequentist,	stance	would	champion	this	approach	

as	letting	the	observed	data	speak	for	itself	free	from	bias,	subjective	

Bayesians	would	argue	that	this	neglects	existing	empirical	

knowledge	hence	stymying	the	progression	of	knowledge	(School	et	

al.,	2013;	Lin	&	Haug,	2008).	Instead	they	argue	in	favour	of	

informative	prior	distributions	where	knowledge	can	be	drawn	from	

quantitative	and	qualitative	sources,	including	expert	opinion,	where	

existing	knowledge	is	limited	(Hampson	et	al.,	2014).	If	this	approach	

is	adopted	it	is	essential	that	prior	precision,	the	degree	of	certainty	

in	the	prior	knowledge,	is	specified	with	low-informative	prior	

distribution	being	generally	accepted	as	having	limited	impact	on	

results	(School	et	al.,	2013;	Lucas	et	al.,	2004;	Lin	&	Haug,	2008).		

Furthermore	when	uncertainty	exists	regarding	prior	distribution,	

sensitivity	analysis	exploring	the	impact	of	different	prior	

distributions	on	the	results	is	required	(School	et	al.,	2013;	Lucas	et	

al.,	2004).			

	

Building	a	Bayesian	Network	

			

There	are	various	methods	for	implementing	the	afore	mentioned	

components	in	a	BN.	Firstly	in	a	naïve	or	uninformed	BN	parameters	

are	either	learned	from	data	or	expert	estimations,	with	all	

independent	variables	acting	as	child	nodes	of	dependent	variables	

(Velikova	et	al.,	2014;	School	et	al.,	2013;	Verduijn	et	al.,	2007;	Lucas	

et	al.,	2004,	Lin	&	Haug,	2008).		
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Alternatively	Bayesian	network	structure	algorithms	can	be	

employed	to	derive	machine-learned	network	structure	and	

parameters	from	data	(Lin	&	Haug,	2008).	Where	parameters	are	

learnt	from	data,	the	dataset	must	be	complete,	comprehensive,	and	

comprise	enough	data	to	reliably	identify	probabilistic	relationships	

between	variables	(Lin	&	Haug,	2008).	Biases	introduced	during	data	

collection	will	also	reflect	on	the	BN	(School	et	al.,	2013).	As	outlined	

in	the	previous	section	BN,	through	its	Markov	condition,	models	a	

collection	of	dependence	and	independence	statements	(Verduijn	et	

al.,	2007;	Lucas	et	al.,	2004).	An	alternative	approach	to	data	learning	

may	be	to	incorporate	dependence	analysis	such	as	information-

theoretical	algorithms	(Cheng	et	al.,	1997).	Here	mutual	information	

for	each	linked	variable	is	established	from	the	data	using	an	

algorithm.	Arcs	are	then	added	between	variables,	which	are	not	

conditionally	independent	given	a	conditioned	set	of	variables	(Lucas	

et	al.,	2004;	Cheng	et	al.,	1997).	Each	arc	is	then	tested	using	

conditional	independence	test	whereby	if	independence	is	proven	

the	arc	is	removed	(Lucas	et	al.,	2004;	Cheng	et	al.,	1997).	In	larger	

conditioning	sets	this	approach	however	can	become	infeasible	and	

less	reliable	(Lucas	et	al.,	2004).	A	hybrid	approach	of	constructing	

the	graph	from	data	using	lower-order	dependence	test	then	using	

this	graph	to	restrict	the	search	space	of	graphical	structures	in	the	

second	stage	which	is	to	use	an	algorithm	to	find	a	diagraph	that	best	

explains	the	data	(Lucas	et	al.,	2004).			

	

A	combination	of	both	approaches	can	also	be	utilised	with	human	

experts	defining	nodes	and	directed	arcs	to	create	network	structure,	

and	parameters	then	machine-learned	from	data.	This	approach	is	
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particularly	applicable	where	logical	constraints,	derived	from	

functional	relationships	between	variables,	and	qualitative	

probabilistic	constraints,	for	example	derived	from	stochastic	

dominance	of	distribution,	can	assess	and	verify	the	number	of	

probabilities	required	for	network	construction	(Lucas	et	al.,	2004).					

	

Judgmental	probabilities	can	be	obtained	through	rigorously	tested	

expert	opinion,	or	from	data.	To	begin	the	local	conditional	

probability	distributions	are	filled	in:		Pr(Vi/π(Vi)	(Lucas	et	al.,	2004).	

Network	conditional	probability	distributions	are	then	often	

computed	as	a	weighted	average	of	a	probability	estimate	based	on	

available	data	and	a	prior	multinonimal	distribution	defined	as:	

	

Pr(Vi/π(Vi),	D)	=	[n/n+n0]	PrD(Vi/π(Vi))+	[n0/n+n0]	Θ	Vi/π(Vi))	

	

D	is	the	dataset	from	which	the	probability	distribution,	PrD,	is	

estimated.	n	is	the	size	of	the	dataset,	D.	Θ	is	the	mulinomial	prior	

over	all	possible	values	of	Vi		and	n0	is	the	number	of	past	cases	that	

contribute	to	Θ	(Lucas	et	al.,	2004).		

	

Finally	the	quality	and	clinical	application	of	the	BN	must	be	tested	

before	its	use	in	practice.	There	are	a	number	of	methods	available	to	

do	this	including	using	the	patient	data	to	assess	robustness	BN	

output	to	inaccuracies	in	the	probability	distribution	(School	et	al.,	

2013;	Verduijn	et	al.,	2007;	Lucas	et	al.,	2004).		

	

Addressing	the	Limitations	of	Bayesianism	

	



	 217	

In	summary,	BN	can	be	understood	as	representation	of	uncertain	

interactions	amongst	variables.	Prior	probabilities	are	conditional	

upon	the	relationship	between	proposition	h	and	prior	knowledge	K	

and	are	therefore	more	accurately	termed	‘implicit	condition’:	

	 P1(h)	=	P0(h|e)=	P0(e|h)	P0(h)	/	P0(e)	

Bayesian	learning	is	carried	out	by	the	above	equation	therefore	the	

knowledge	the	system	can	learn	must	be	represented	as	an	‘explicit	

condition’.	This	however	carries	some	restrictions.	h	must	be	a	

binary	proposition	that	must	be	in	S	so	that	its	probability,	P0(e),		can	

be	defined	and	as	greater	than	0	otherwise	it	cannot	be	a	

denominator	(Diaconis	&	Zabel,	1983;	Pearl,	1990).		Furthermore	

these	restrictions	are	not	applied	to	the	implicit	conditions,	which	

need	only	be	related	to	S	and	can	include	non-binary	propositions	

such	as	subjective	probabilistic	estimates.	Also	a	proposition	

assigned	a	prior	probability	of	0	could	be	assigned	a	non-zero	prior	

probability	from	another	source	(Wang,	2004).	What	this	means	is	

that	not	all	implicit	conditions	can	be	represented	as	explicit	

conditions	and	that	knowledge	not	available	when	deciding	priors	

cannot	be	learned	or	acquired	in	the	system	through	Bayesian	

conditioning.	In	practical	terms	this	means	that	prior	knowledge	can	

be	probabilistic-valued	but	all	new	knowledge	must	be	binary	valued,	

propositions	given	a	value	of	0	or	1	cannot	have	this	belief	altered	in	

light	of	new	knowledge,	and	no	novel	concept	can	appear	in	new	

knowledge	(Wang,	2004).	This	counters	the	claim	by	some	that	

Bayes’	Theorem	is	a	generally	applicable	learning	rule	sufficient	for	

reasoning	in	uncertainty.	However	without	distinguishing	implicit	

and	explicit	conditioning	an	illusion	arises	that	knowledge	

supporting	a	probability	distribution	function	can	be	expressed	as	an	
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explicit	condition	therefore	learned	by	the	system	(Wang,	2004).	

How	then	can	the	model	learn	from	new	evidence	that	is	not	binary?		

	

If	there	is	a	prior	probability	distribution,	P0,	assigned	to	a	

proposition	space,	S,	and	new	evidence	shows	that	the	probability	of	

proposition	e	should	be	changed	to	p,	(P1	(e)	=	p),	assuming	that	the	

explicit	condition	is	unchanged	(P1(h|e)	=	P0	(h|e)),	then	using	

Jeffrey’s	rule	(Diaconis	&	Zabel,	1983,	Jeffry,	1965;	Kyburg,	1987;	

Pearl,	1988)	every	proposition	of	h	in	S	can	be	updated	resulting	in	a	

new	distribution	function:	

	

	 P1(h)	=	P0(h|e)	x	p	+	P0	(h|¬e)	x	(1-p)	

	

In	this	way,	if	new	evidence	shows	that	e	happens,	or	e’s	probability	

changes	to	1,	then	Bayes’	Theorem	becomes	a	special	function	of	

Jeffrey’s	rule:	p	=	1.2		

	

The	second	challenge	is	then	how	to	process	uncertain	evidence	e.	If	

a	similar	approach	is	taken	and	a	virtual	proposition	v	is	taken	to	

represent	new	knowledge	and:	

	P0(e⏐v)	=	p	(Cheeseman,	1986;	Pearl,	1988)		

Then	in	consideration	of	this	new	knowledge	a	new	probability	

calculation	can	be	offered	whereby	the	prior	probability	is	

conditonalised	to	v	rather	than	updated:	

P1(h)	=	P0(h⏐v)	=	P0(h⏐e∧v)	x	P0(e⏐v)	+	P0	(h⏐¬e∧v)	x	P0(¬e⏐v)			

	

In	this	way	Jeffrey’s	law	can	overcome	the	restriction	that	new	

evidence	must	be	binary	(Wang,	2004).	Furthermore	if	conditional	
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probability	is	defined	by	de	Finetti’s	coherent	(P	(x⏐y)	=	P	(x∧y)	/	

P(y))	events	with	a	prior	probability	of	0	can	also	be	conditioned	

(Coletti	et	al.,	1993).	Juxtapose	this	with	Pearl’s	Neo-Bayesianism	

which	adds	topological	structure	in	the	form	of	a	BN	to	traditional	

Bayesianism,	and	the	afore	mentioned	limitations	of	conditioning	can	

be	overcome	as	conditional	probability	can	be	introduced	

independent	of	absolute	probability	values	(Pearl,	1990;	Wang,	

2004).	However,	this	does	not	mean	that	the	system	has	a	general	

way	to	revise	implicit	conditions,	or	put	another	way	the	background	

knowledge	behind	probability	distribution.	This	means	that	if	BN	is	

to	be	applied	to	the	research	problem	a	choice	must	be	made	

between:	1)	accepting	that	the	implicit	condition,	or	domain	

knowledge	determining	probability	distribution,	is	immune	from	

modification	or	2)	all	modifications	of	implicit	condition	are	treated	

as	updating	therefore	when	new	knowledge	conflicts	with	old	

knowledge	the	old	knowledge	is	abandoned	(Wang,	2004).		

	

Even	though	the	distinction	between	implicit	and	explicit	conditions	

are	rarely	made,	this	serves	to	prove	that	Bayesianism	has	limitations	

in	handling	uncertainty.	This	is	because	probability	distribution	

function	alone	fails	to	show	the	degree	of	uncertainty	about	the	

function	itself	(Wang,	2004;	Diaconis	&	Zabel,	1983;	Demster,	1967).	

Although	some	contest	that	a	point	value	and	a	density	function	

produce	the	same	results	in	decision	making	(Cheeseman,	1985)	the	

counterargument	is	that	standard	deviation	cannot	capture	the	

change	in	expectations	(Wang,	2004).	To	illustrate,	if	a	proposition	is	

tested	n	times	and	produces	the	same	results	standard	deviation	

remains	independent	of	n	at	0.	However	our	confidence	that	the	
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results	will	remain	the	same	in	light	of	new	information	will	

obviously	increase,	which	would	not	be	captured	through	use	of	

standard	deviation	(Wang,	2004).	This	could	be	addressed	by	

replacing	precise	probability	values	with	either	a	probability	interval,	

with	width	of	the	interval	indicating	degree	of	certainty	of	the	system	

(Grosof,	1986;	Kyburg,	1988),	or	imprecise	probability,	where	upper	

and	lower	probability	values	are	used	(Walley,	1991;	Walley,	1996).		

Alternatively	high-order	probability	where	a	second	probability	

value	is	introduced	to	specify	accuracy	of	first-order	probability	

(Kyburg,	1988;	Paab,	1991)	could	be	considered.	A	belief	function	

and	a	plausibility	function	could	be	introduced	using	Dempster-

Shafer	theory	so	that	an	evidence	combination	rule	could	reduce	

ignorance	amount	uncertainty	(Dempster,	1967;	Shafer,	1976).	A	

frequency	value	and	a	confidence	value	could	also	be	employed	to	

represent	uncertainty	with	confidence	value	being	used	to	measure	

degree	of	ignorance	(Wang,	1993;	Wang,	2001).		Pearl	stated	that	

ignorance	was	the	lack	of	confidence	and	that	confidence	was	the	

measurement	of	the	extent	to	which	a	degree	of	belief	could	be	

modified	by	future	evidence	(Pearl,	1988;	Wang,	2001).	In	other	

words	an	assessment	of	P0(e)	measured	by	narrowness	of	

distribution	of	P0(e⏐c),	as	c	ranges	over	all	combinations	of	

contingencies	and	is	weighted	by	its	belief	in	P0(c)	(Wang,	2004).	

However	this	still	does	not	capture	ignorance	about	the	implicit	

conditions	leading	some,	like	Wang	(2004),	to	contest	that	whilst	

these	approaches	may	handle	representation	of	ignorance	or	

uncertainty,	Bayesianism	alone	cannot	truly	handle	uncertainty.		

	



	 221	

To	summarise	BN	are	a	powerful	tool	in	modeling	in	uncertainty	and	

have	shown	grate	promise	in	their	application	to	personalised	

realistic	medicine.	Bayesian	approach	enables	calculation	of	other	

values	from	values	in	the	same	probability	distribution	and	can	even	

update	previous	probability	distributions	given	some	values	in	a	new	

probability	distribution,	which	has	several	advantages	centering	on	

capturing	the	dynamic	nature	of	the	healthcare	process.	However	

caution	must	be	taken	when	appreciating	how	Bayesianism	handles	

uncertainty	in	the	knowledge	base	on	which	prior	probabilities	are	

calculated	and	updated	in	light	of	new	evidence	(Wang,	2004).	

Importantly	however	it	must	be	remembered	that	within	this	

research	the	aim	of	statistical	modeling,	and	the	exploration	of	the	

potential	benefits	of	Bayesianism,	is	to	facilitate	personalised	

realistic	medicine	through	better	shared	clinical	decision	making	by	

finding	new	ways	of	engaging	with	complexity,	including	uncertainty,	

not	to	attempt	to	“solve”	these	issues.		This	includes	using	FUPS	data	

pertaining	to	the	management	of	pancreatic	cancer	to	open	up	

conversations	on	findings	rather	than	treating	them	as	definitive	

facts	(Wolpert	&	Rutter,	2018).	In	this	way	findings	will	be	used	to	

consider	the	complex	reality	they	relate	to	but	cannot	fully	capture	so	

that	narrative	arguments	and	hypothesis	can	be	contested	and	

debated	within	the	complex	system	(Wolpert	&	Rutter,	2018).	In	

practical	terms	for	this	research	this	means	instantiating	the	key	

principles	of	analysing	FUPS	data	within	the	statistical	models	

developed.	Firstly	all	data	is	treated	as	a	partial	remnant	with	

findings	presented	to	convey	associated	limitations	to	interpretation.	

Secondly	‘black	box’	statistical	modeling	will	be	avoided	in	favour	of	

transparency	and	clarity.	Thirdly	triangulation	will	be	used	to	
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contextualise	findings	from	models	based	on	FUPS	data	to	explore	

how	other	information	and	modeling	techniques	refute	or	support	

these	findings	(Wolpert	&	Rutter,	2018).	
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Chapter	4	

	

Results	
	

Introduction	

	

The	purpose	of	this	research	is	to	view	the	management	pathways	

for	pancreatic	cancer	through	the	lens	of	complexity	theory	and	in	so	

doing	develop	and	expand	the	application	of	statistical	modeling	

techniques	to	engage	with	the	complexity	in	order	to	uncover	new	

insight	and	move	the	research	narrative	towards	the	goal	of	more	

personalised	realistic	medicine.		

	

As	outlined	in	previous	chapters	the	existing	data	fulfills	the	FUPS	

data	criteria.	Therefore	the	results	are	presented	following	the	key	

principles	for	analysing	FUPS	data	as	proposed	by	Wolpert	&	Rutter	

(2018).	This	means	that	all	reported	results	are	presented	as	partial	

remnants	with	the	limitations	of	interpretations	stemming	from	

FUPS	characteristics	clearly	conveyed	(Wolpert	&	Rutter,	2018).	This	

is	done	not	only	through	subjective	assessment	of	the	quality	and	

risk-of-bias	assessment	of	any	included	data,	but	also	through	an	

exploration	of	statistical	techniques	in	quantifying	such	an	

assessment.	Secondly	all	statistical	analysis	follows	the	principles	of	

transparency	and	clarity.	Thirdly	all	results	are	considered	within	the	

context	of	other	existing	information	to	explore	what	supports	and	

undermines	emerging	findings	(Wolpert	&	Rutter,	2018).	This	means	

that	through	the	principle	of	triangulation	findings	from	models	
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populated	with	the	West	of	Scotland	Pancreatic	Unit	database	are	

triangulated	with	outcomes	when	the	model	is	populated	with	

internationally	published	data	and	vice	versa.	Each	modeling	

approach	is	then	discussed	in	terms	of	emergence,	boundary	setting,	

lack	of	complete	knowledge	and	responsibility	before	moving	on	to	

assess	how	statistical	modeling	could	be	taken	forward	to	gain	

further	insights.	This	allows	for	a	further	layer	of	triangulation	

between	outcomes	form	different	statistical	modeling	approaches.		

	

The	rest	of	the	chapter	is	structured	as	follows.	Section	4.1	focuses	on	

meta-analysis	of	existing	studies	comparing	neoadjuvant	and	upfront	

surgery	approaches	for	the	treatment	of	potentially	resectable	

pancreatic	cancer.	This	section	begins	with	a	Bayesian	network	meta-

analysis	to	assess	overall	resection,	R0	resection	and	survival	

outcomes	between	neoadjuvant	and	upfront	surgery	pathways.	This	

approach	allows	a	synthesisation	of	phase	II	trials	and	observational	

studies	comparing	neoadjuvant	and	upfront	surgery,	as	well	as	RCTs	

comparing	upfront	surgery	and	surgery	alone.	This	means	that	an	

indirect	comparison	can	be	offered	between	neoadjuvant	outcomes	

and	surgery	only	outcomes.	This	also	offers	triangulation	of	findings	

between	only	including	neoadjuvant	phase	II	trials	and	then	

additionally	including	observational	comparison	studies.	

Furthermore	triangulation	of	outcomes	between	the	inclusion	of	

studies	exploring	neoadjuvant	therapy	in	all	potentially	resectable	

pancreatic	cancer	versus	studies	including	resectable	only	cases	is	

also	offered.	Bayesian	network	meta-analysis	also	offeres	a	more	

detailed	quantification	of	the	limitations	of	the	analysis	due	to	FUPS	

characteristics,	which	improves	the	transparency	of	the	analyses.	
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Overall	the	results	of	the	Bayesian	network	meta-analysis	again	

suggested	that	although	a	marginal	benefit	was	found	with	

neoadjuvant	approach	neither	pathway	could	be	considered	to	be	

conclusively	superior.	The	possibility	still	remained	that	optimal	

pathway	selection	could	still	depend	on	individualised	factors.	

	

Section	4.2	focused	on	Markov	decision-analysis	comparing	upfront	

surgery	and	neoadjuvant	pathways.	Firstly	the	pathways	are	

modeled	to	include	the	real-world	scenario	whereby	borderline	and	

locally	advanced	cases	are	treated	within	the	neoadjuvant	pathway.	A	

like-for-like	comparison	for	resectable	only	cases	treated	within	

upfront	surgery	and	neoadjuvant	pathways	is	then	performed.	

Through	deterministic	and	probabilistic	sensitivity	analysis	of	these	

Markov	models	not	only	is	a	transparent	assessment	of	the	degree	of	

model	uncertainty	offered,	but	this	allows	the	models	to	engage	with	

the	complexity	of	the	system	being	examined.	The	result	is	that	new	

insights	into	optimal	treatment	pathway	selection	begin	to	emerge.	

The	findings	corroborate	those	of	the	Bayesian	network	meta-

analysis	in	section	4.1	that	suggest	a	marginal	overall	survival	

advantage	with	neoadjuvant	therapy,	but	this	analysis	goes	further.	

Specifically	probability	thresholds	for	obtaining	multimodal	

treatment	in	either	pathway	emerge	as	determining	the	superior	

treatment	pathway.	This	further	challenges	the	current	narrative	

focusing	on	trying	to	prove	whether	upfront	surgery	or	neoadjuvant	

pathway	is	superior	for	all	patients	and	moves	the	research	narrative	

towards	a	more	personalised	approach.	The	results	of	the	Markov	

model	were	then	triangulated	by	populating	the	model	with	patient	
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data	from	the	West	of	Scotland	Pancreatic	Unit	database,	which	

corroborated	the	findings	of	the	model	using	synthesised	data.		

	

	

Markov	modeling	provided	some	important	insights	but	

methodological	issues	surrounding	its	memory-less	property	and	

attrition	of	susceptible	on	a	cycle-to-cycle	basis	mandated	the	further	

triangulation	of	these	findings	with	another	modeling	technique	that	

focused	on	micro	simulations	and	modeling	data	at	individualised	

patient	level	as	opposed	to	at	cohort	level.	Section	4.3	and	4.4	

therefore	centered	on	the	use	of	Discrete	Event	Simulation	(DES)	

modeling	for	decision	analysis.	Again	synthesised	data	was	

triangulated	against	patient	level	data	and	discrete	and	probabilistic	

sensitivity	analysis	transparently	quantified	the	degree	of	

uncertainty	raised	by	the	FUPS	characteristics	of	the	data	populating	

the	model.	This	form	of	modeling	corroborated	many	of	the	findings	

from	the	section	on	Markov	modeling	but	was	able	to	uncover	

further	new	insights	by	assigning	more	individualised	data	

distributions	to	patients	within	the	model	depending	on	their	disease	

stage	at	presentation.	Specifically	DES	modeling	had	the	flexibility	to	

simulate	the	results	of	emerging	RCTs	into	‘real-world’	scenarios	

where	not	all	context	was	controlled	for	when	delivering	pancreatic	

management	pathways.	This	produced	new	insights	into	individual	

thresholds	that	determined	how	and	to	what	extent	reported	

findings	from	RCTs	could	be	expected	to	apply	to	individual	patients	

in	a	system	where	the	complexity	was	not	controlled.	A	further	

emerging	insight	was	that	for	patients	who	did	not	progress	to	

surgery	within	the	neoadjuvant	pathway,	their	corresponding	
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maximum	benefit	from	being	treated	within	the	upfront	surgery	

pathway	was	less	than	5months	prior	to	quality	adjustment	of	

survival	time.	This	adds	a	further	dimension	to	the	debate	regarding	

the	criticism	that	neoadjuvant	approach	could	result	in	losing	the	

window	of	resectability	and	further	challenges	the	narrative	that	

resection	is	the	only	potential	cure	when	for	many	the	reality	is	that	

resection	may	be	of	limited	benefit.	Overall	Markov	and	DES	

modeling	approaches	corroborate	the	emerging	need	to	focus	on	

personalised	treatment	pathway	selection	to	optimise	individual	

patient	outcomes.		Section	4.4	offers	a	further	assessment	by	

triangulating	the	outcomes	of	both	Markov	and	DES	modeling	

approaches	by	comparing	their	accuracy	against	the	actual	patient	

outcomes	contained	within	the	West	of	Scotland	Pancreatic	Unit	

database.	This	additional	analysis	raises	the	possibility	that	whilst	

Markov	modeling	is	a	more	established	technique	for	cost-

effectiveness	analysis,	DES	modeling	could	actually	increase	the	

accuracy	of	such	models.		

	

The	Markov	and	DES	models	using	both	synthesised	and	actual	

patient	data	were	then	used	separately	to	perform	cost-effectiveness	

analysis	of	the	competing	treatment	pathways	in	Section	4.5.	Once	

again	by	using	complexity	theory	as	the	lens	through	which	to	focus	

this	research	new	insights	began	to	emerge	regarding	the	cost-

effectiveness	analysis	of	upfront	surgery	and	neoadjuvant	pathways.	

Uncertainty	surrounding	discounting	rates	of	costs	and	benefits	as	

well	as	debate	over	WtP	thresholds	were	transparently	incorporated	

into	the	analysis	and	both	deterministic	and	probabilistic	sensitivity	

analysis	not	only	assessed	the	degree	of	model	uncertainties	
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including	the	impact	of	altering	costs,	but	also	enabled	an	exploration	

of	the	impact	of	boundary	setting	on	model	outcomes.	Specifically	the	

inclusion	of	costs	of	palliative	care	and	follow-up	were	important	

additions	to	the	analysis.	Once	again,	rather	than	simplistically	

concluding	that	one	pathway	was	more	cost-effective	this	analysis	

suggested	that	cost-effective	delivery	of	treatment	actually	lay	in	

better	patient	selection	at	individual	patient	level.		

	

Although	the	insights	gained	through	Markov	and	DES	modeling	have	

provided	new	insights	and	attempted	to	engage	with	complexity	to	

change	the	research	narrative	from	a	“which	pathway	is	superior	for	

all”	narrative	towards	a	more	personalised	approach	to	patient	

selection,	the	question	still	remained	as	to	how	this	could	be	

achieved	on	a	practical	level.	In	section	4.5	lessons	are	drawn	form	

the	application	of	Bayesian	statistics	in	other	disciplines	that	use	

FUPS	data	within	high-risk,	complex	adaptive	systems	that	contain	

multiple	potential	points	of	risk	of	failure.	These	lessons	are	

combined	with	the	Bayesian	analysis	of	the	West	of	Scotland	

Pancreatic	Unit	database	presented	in	appendix	O	that	focuses	on	

identifying	individual	patient	factors	that	could	determine	whether	

patients	with	potentially	resectable	disease	are	likely	to	have	a	good	

or	poor	post	resection	prognosis.	A	prognostic	Bayesian	network	is	

created	and	validated	against	the	West	of	Scotland	Pancreatic	Unit	

database	that	makes	individualised	predictions	of	outcomes	pre-

operatively,	across	competing	treatment	pathways,	and	also	

performs	prognostic	updating	at	the	post-operative	phase	of	the	

patient	journey.						
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4.1	Bayesian	Network	Meta-Analysis	
	

Publications	resulting	from	this	analysis:	

	

Bradley,	A.	and	Van	Der	Meer,	R.	(2019).	‘Upfront	surgery	versus	

neoadjuvant	therapy	for	resectable	pancreatic	cancer:	systematic	

review	and	Bayesian	network	meta-analysis’.	Nature	Scientific	

Reports,	9(1):4354.	doi:10.1038/s41598-019-40951-6	

	

Bradley,	A.,	Van	Der	Meer,	R.,	McKay,	C.J.	(2020)	‘Bayesian	network	

meta-analysis	of	upfront	surgery	versus	neoadjuvant	therapy	for	

potentially	resectable	pancreatic	ductal	adenocarcinoma’.	British	

Journal	of	Surgery:	accepted	

	

Abstract	

	

Background:	Current	treatment	recommendations	for	resectable	

pancreatic	cancer	support	upfront	surgical	resection	and	adjuvant	

therapy.	RCTs	offering	comparison	with	the	emerging	neoadjuvant	

(NAT)	approach	are	lacking.	This	review	aims	to	compare	both	

treatment	strategies	first	for	potentially	resectable	pancreatic	cancer	

and	then	separately	for	only	disease	that	is	resectable	at	

presentation.		

	

Methods:	PubMed,	MEDLINE,	Embase,	Cochrane	Database	and	

Cochrane	Databases	were	searched	for	studies	comparing	

neoadjuvant	therapy	and	upfront	surgery	with	adjuvant	therapy	

pathways	for	potentially	resectable	pancreatic	cancer.	A	Bayesian	
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network	meta-analysis	was	conducted	using	the	Markov	chain	Monte	

Carlo	method.	Cochrane	Collaboration’s	risk-of-bias,	ROBINS-I	and	

GRADE	tools	were	used	to	assess	quality	and	risk-of-bias	of	included	

trials.	Convergence	was	assessed	using	the	Brooks-Gelman-Rubin	

method.	In	accordance	with	the	NICE	decision-support	

recommendations	inconsistency	was	measured	by	comparing	

deviance	residuals	and	deviance	information	criteria	statistic	in	fitted	

consistency	and	inconsistency	models.		

	

Results:	25	studies	comparing	neoadjuvant	and	upfront	surgery	

approaches	(n=32,921),	and	5	studies	comparing	upfront	surgery	

plus	adjuvant	therapy	and	surgery	only	(n=899)	were	included.	

Aggregate	rate	(AR)	of	R0	resection	was	marginally	higher,	but	not	

statistically	significant	according	to	95%	Credible	Intrvals	(CI),	with	

neoadjuvant	therapy	(0.7389	versus	0.7306,	Odds	Ratio	(O.R)	1.12,	

95%	CI	0.60-2.08).	AR	of	1,2,3,4	and	5-year	survival	were	higher	with	

neoadjuvant	therapy	(1-year	survival:	0.8109	versus	0.6403,	O.R:	

2.12,	95%	CI:	1.59-2.93;	2-year	survival:	0.5135	versus	0.3002,	O.R:	

1.65	95%,	CI:	1.16-2.34;	3-year	survival:	0.3151	versus	0.2147,	O.R:	

1.50,	95%	CI:	1.10-2.04;	4-year	survival:	0.2114	versus	0.1647	O.R:	

1.57,	95%	CI:	0.80-2.99;	5-year	survival:	0.2118	versus	0.1736,	O.R:	

1.65,	95%	CI:	0.68-3.73).		

	

For	cases	of	pancreatic	cancer	that	were	resectable	at	presentation	9	

studies	compared	neoadjuvant	therapy	and	upfront	surgery	with	

adjuvant	therapy	(n=22,285).	AR	of	R0	resection	for	neoadjuvant	

therapy	was	0.8008	(0.3636-0.9144)	versus	0.7515	(0.2026-0.8611),	

O.R.	1.27(95%	CI	0.60-1.96).	1-year	survival	AR	for	neoadjuvant	
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therapy	was	0.7969	(0.6061-0.9500)	versus	0.7481	(0.4848-0.8500)	

O.R.	1.38	(95%	CI	0.69-2.96).	2-year	survival	AR	for	neoadjuvant	

therapy	was	0.5178	(0.3000-0.5970)	versus	0.5131	(0.2727-0.5346)	

O.R.	1.26	(95%	CI	0.94-1.74).	5-year	AR	survival	for	neoadjuvant	

therapy	was	0.2069	(0.0323-0.3300)	versus	0.1783	(0.0606-0.2300)	

O.R.	1.19	(95%	CI	0.65-1.73).		

	

Conclusion:	Neoadjuvant	therapy	may	offer	benefit	over	surgery-first	

and	adjuvant	therapy	for	some	patients.	However,	further	RCTs	are	

needed	in	collaboration	with	research	developing	methods	of	

engaging	with	system	complexity	as	multimodal	treatment	in	either	

pathway	is	not	obtained	by	all	patients	yet	is	a	pivotal	factor	in	

achieving	optimal	patient	outcomes.		

	

	

	

Introduction	

Pancreatic	cancer	is	the	fourth	and	fifth	most	common	cause	of	

cancer	deaths	in	the	USA	and	Europe	respectively	(Ferlay	et	al.,	2013;	

Siegel	et	al.,	2015).	Despite	advances	in	surgical	technique	and	

adjuvant	treatment,	survival	rates	remain	poor	(Ferlay	et	al.,	2013;	

Siegel	et	al.,	2015).	Early	complete	surgical	resection	is	the	only	

potentially	curative	treatment	and	adjuvant	therapy	has	been	proven	

to	prolong	survival	leading	to	surgery	first	with	adjuvant	therapy	

becoming	the	standard	of	care	for	resectable	pancreatic	cancer	

(Neoptolemos	et	al.,	2001).	However	in	reality	most	patients	develop	

early	recurrence,	nullifying	the	potential	benefits	of	high-risk	surgery	

(Winter	et	al.,	2012)	with	up	to	50%	of	patients	failing	to	receive	
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adjuvant	therapy	due	to:	post-operative	complications,	early	

metastases,	reduced	performance	status	and	comorbidities	

(Bilimoria	et	al.,	2007a).	This	has	resulted	in	the	advent	of	

neoadjuvant	therapy	with	the	postulated	benefits	of:	identifying	

more	aggressive	tumours	hence	avoiding	futile	surgery,	elimination	

of	micrometastesis,	increased	feasibility	of	R0	resection	and	

completion	of	multimodal	treatment	(Asare	et	al.,	2016;	Lee	et	al.,	

2016).		

	

Neoadjuvant	therapy	for	resectable	pancreatic	cancer	is	an	area	of	

prime	controversy	and	ongoing	debate	with	a	lack	of	large	

prospective	RCTs	offering	direct	comparison	with	upfront	surgery	

and	adjuvant	therapy	pathway	(Tempero	et	al.,	2014).	Existing	

comparison	studies	often	include	borderline	resectable	and	locally	

advanced	cases	in	the	neoadjuvant	arm	hence	they	do	not	offer	a	true	

like-for-like	comparison.	Ambiguity	surrounding	the	existing	body	of	

research	has	led	critics	to	highlight	the	limitations	of	drawing	

optimistic	conclusions	from	small	studies	that	are	underpowered	and	

caution	against	losing	the	window	of	resectability	(Asare	et	al.,	2016;	

Lee	et	al.,	2016).	Previous	Markov	decision	analysis	studies	have	

reported	slight	survival	benefit	with	neoadjuvant	therapy	but	they	

only	focused	on	a	base-case	intention-to-treat	comparative	analysis	

(Sharma	et	al.,	2015;	de	Geus	et	al.,	2016;	Van	Houten	et	al.,	2012).		

	

In	the	clinical	setting	the	role	of	neoadjuvant	therapy	has	widely	been	

accepted	for	the	management	of	locally	advanced	and	borderline	

resectable	cases	of	pancreatic	cancer	to	increase	the	likelihood	of	

achieving	resection,	particularly	R0	resection	(Asare	et	al.,	2016;	Lee	
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et	al.,	2016;	Tempero	et	al.,	2014;	de	Geus	et	al.,	2016).	However,	

ambiguities	in	the	existing	body	of	research	concerning	the	

management	of	resectable	pancreatic	cancer	create	a	dilemma	in	

clinical	decision	making.	It	has	been	established	that	optimal	survival	

outcomes	are	not	obtained	by	resection	alone,	but	require	the	

delivery	of	additional	treatment	whether	delivered	as	neoadjuvant	or	

adjuvant	therapy	(Neoptolemos	et	al.,	2001;	Xu	et	al.,	2014;	Andriulli	

et	al.,	2012;	Sharma	et	al.,	2015;	de	Felice	et	al.,	2014;	de	Geus	et	al.,	

2016;	Versteijne	et	al.,	2018;	Van	Houten	et	al.,	2012).	Both	

treatment	pathways	carry	the	risk	of	failing	to	achieve	multimodal	

treatment	delivery.	Upfront	surgery	pathway	carries	the	risk	of	

failing	to	receive	adjuvant	therapy	despite	having	undergone	surgery	

with	its	associated	risks	of	morbidity	and	mortality	(Winter	et	al.,	

2012;	Bilimoria	et	al.,	2007a).	Neoadjuvant	approach	also	carries	the	

risk	of	disease	that	was	initially	resectable	at	presentation	

progressing	to	become	unresectable	which	makes	its	role	in	the	

management	of	resectable	pancreatic	cancer	controversial	(Asare	et	

al.,	2016;	Lee	et	al.,	2016).	The	question	therefore	arises	as	to	

whether	neoadjuvant	pathway	represents	a	less	superior	treatment	

approach,	or	if	it	has	the	advantage	of	identifying	aggressive	tumour	

types	that	would	have	resulted	in	early	disease	recurrence	

precluding	adjuvant	therapy,	being	identified	prior	to	patients	

undergoing	high-risk,	costly	yet	futile	surgery	(Asare	et	al.,	2016;	Lee	

et	al.,	2016).	The	aim	of	this	meta-analysis	is	to	compare	upfront	

surgery	and	neoadjuvant	approach	for	the	management	of	

potentially	resectable	pancreatic	cancer	and	then	separately	for	

resectable	pancreatic	cancer	on	an	intention-to-treat	basis.	
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Treatment	outcomes	include:	R0	resection	rates	and	1,2,3,4	and	5-

year	survival.		

	

Methods	

	

This	review	followed	the	PRISMA	checklist	(Moher	et	al.,	2009).	The	

protocols	for	this	review	and	analysis	are	published	on	the	

PROSPERO	online	database	of	systematic	reviews	

(CRD42018108676	and	CRD42018108673).	A	search	was	

undertaken	using	MEDLINE,	Embase,	PubMed	and	Cochrane	

database.	For	each	of	the	searches	the	entire	database	was	included	

since	2000	up	to	and	including	31st	August	2018,	with	no	further	date	

restrictions	or	limits	applied.		

	

Search	Strategy		

After	removal	of	duplicates,	manual	screening	was	carried	out	based	

on	the	title	and	abstract	of	articles	identified	in	the	database	

searches.	Articles	of	probable	or	possible	relevance	to	this	review	

based	on	the	title	and	abstract	were	reviewed	in	full.	Following	

screening,	reference	lists	and	citations	of	all	included	papers	were	

manually	searched	to	identify	any	additional	articles.	This	process	

was	repeated	until	no	new	articles	were	identified.	

Inclusion	Criteria	and	Outcomes	

RCTs	and	prospective	phase	II/III	studies	offering	comparison	of	

neoadjuvant	therapy	versus	upfront	surgery	plus	adjuvant	therapy	

for	pancreatic	cancer,	published	in	English	language	since	2000,	
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involving	chemo/radiotherapy-naive	human	subjects	over	18	years	

of	age	with	pancreatic	cancer	preoperatively	staged	as	being	

potentially	resectable	(i.e.	resectable,	borderline	resectable	and	

locally	advanced)	were	included.	RCTs	comparing	upfront	surgery	

plus	adjuvant	therapy	and	surgery	only	and	cohort	studies	

comparing	neoadjuvant	therapy	and	upfront	surgery	plus	adjuvant	

therapy,	with	the	same	participant	inclusion	criteria,	were	included	

for	separate	sensitivity-analysis.	Included	trials	had	to	report:	

protocol	design,	treatment	regimes,	number	per	arm,	median	age	and	

co-morbidities	of	subjects,	pre-treatment	disease	staging,	outcome	of	

post	neoadjuvant	therapy	re-staging,	surgical	outcomes	including	

resection	rates,	R0	resection	rates	and	survival	time.	Case	series	and	

case	reports,	studies	from	identical	patient	cohorts,	trials	involving	

intra-operative	radiotherapy	and	trials	including	disease	other	than	

pancreatic	cancer	were	excluded.	For	the	analysis	of	resectable	

pancreatic	cancer	the	same	inclusion	and	exclusion	criteria	was	

applied	but	studies	had	to	include	only	preoperatively	staged	

resectable	pancreatic	cancer,	or	report	outcomes	for	resectable	

pancreatic	cancer	separately.		

	

Data	Collection		

	

The	following	data	was	extracted	from	each	study:	study	details	

(country,	year,	design,	number	of	participants,	mean	age,	sex,	co-

morbidity	profile	and	presenting	disease	stage	of	participants	in	each	

arm),	details	of	treatment	protocols,	treatment	outcomes	(rates	of	

tumour	resection,	R0	resection	rates,	overall	survival	and	disease	
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free	survival	and	1,2,3,4	and	5	year	survival	rates)	and	risk-of-bias	

data.	

	

Statistical	Analysis	

Transparency	of	Analysis	

	

This	study	conducted	base-case	analysis	on	an	intention-to-treat	

basis.	Patients	who	dropped	out,	or	who	failed	to	receive	multimodal	

treatment	within	either	pathway	in	the	included	studies	were	

included	in	the	overall	and	disease	free	survival	analysis.	The	

number	of	patients	in	the	neoadjuvant	pathway	who	failed	to	

undergo	resection,	and	the	number	of	patients	who	underwent	

surgery	but	failed	to	receive	adjuvant	therapy,	were	analysed	using	

weighted	pooled	estimates	of	proportions	calculated	using	Freeman-

Tukey	arcsine	square	root	transformation	under	random	effects	

model	to	account	for	heterogeneity	(Freeman	&	Tukey,	1950).		

	

For	each	outcome	of	interest,	NetMetXl	was	used	to	draw	a	weighted	

network	for	all	treatments	assessed	for	the	specific	outcomes	that	

accounted	for	the	study	population	size	of	each	included	study	

(Brown	et	al.,	2014;	Brown	et	al.,	2018;	Chaimani	et	al.,	2013).	This	

ensured	that	larger	studies	carried	a	greater	weight	within	the	

network.	A	Bayesian	network	meta-analysis	was	conducted	using	the	

Markov	chain	Monte	Carlo	method	in	WinBUGS	1.4.3	(MRC	

Biostatistics	Unit,	Cambridge,	and	Imperial	College	School	of	

Medicine,	London,	UK).	To	account	for	the	inherent	heterogeneity	as	

a	result	of	the	different	chemotherapy	regimes,	variations	in	

multimodal	treatment	completion	rates	and	differences	in	reported	
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survival	outcomes,	analysis	was	run	using	a	random	effects	model,	in	

addition	to	a	fixed	effects	model,	using	vague	priors	as	outlined	in	

National	Institute	of	Clinical	Excellence	(NICE)	Evidence	Synthesis	

Series	(Brown	et	al.,	2014;	Dias	et	al.,	2013a).		Pairwise	comparisons	

between	interventions	were	also	summarised	to	provide	ranking	of	

impact	of	intervention	on	each	outcome	based	on	the	surface	under	

the	cumulative	ranking	(SUCRA)	and	were	summarised	in	

rankograms	(Brown	et	al.,	2014).		

	

Assessment	of	Limitations	of	Interpretation	Stemming	from	FUPS	

Characteristics	of	Data	

	

To	further	minimise	the	impact	of	heterogeneity	of	different	

chemotherapy	combinations,	treatment	completion	rates	and	

reported	survival	analysis	on	the	overall	analysis,	convergence	was	

assessed	using	the	Brooks-Gelman-Rubin	method	and	by	checking	

whether	the	Monte	Carlo	error	is	less	than	5%	of	the	standard	

deviation	of	the	effect	estimates	and	between-study	variance	(Brown	

et	al.,	2014).	The	Markov	chain	Monte	Carlo	(MCMC)	Bayesian	

network	meta-analysis	was	fitted	with	three	chains	as	a	means	of	

checking	MCMC	convergence	(Brown	et	al.,	2014).	The	Brooks-

Gelman-Rubin	method	compares	within-chain	and	between-chain	

variances	to	calculate	the	potential	scale	reduction	factor	with	a	

value	close	to	one	indicating	when	approximate	convergence	is	

reached	(Brown	et	al.,	2014;	Brooks	&	Gelman,	1998).		

	

Inconsistency	assessment,	the	conflict	between	direct	and	indirect	

evidence,	is	crucial	to	any	network	meta-analysis	(Dias	et	al.,	2013b).	
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In	accordance	with	the	NICE	decision-support	documents	

(Spiegelhalter	et	al.,	2002)	inconsistency	was	measured	by	

comparing	deviance	residuals	and	deviance	information	criteria	

(DIC)	statistic	in	fitted	consistency	and	inconsistency	models	(Brown	

et	al.,	2014;	Dias	et	al.,	2013b).	Posterior	mean	deviance	of	the	

individual	data	points	in	the	inconsistency	model	were	plotted	

against	their	posterior	mean	deviance	in	the	consistency	model	to	

identify	any	loops	in	the	treatment	network	where	inconsistency	is	

present	(Brown	et	al.,	2014).			

	

The	Cochrane	Collaboration’s	risk-of-bias	tool	(Higgins	et	al.,	2011)	

and	Risk	Of	Bias	In	Non-randomized	Studies	-	of	Interventions	

(ROBINS-I	tool)	(Sterne	et	al.,	2016)	were	also	used	to	assess	the	

quality	of	included	studies.	Grading	of	Recommendations	Assessment	

Development	and	Evaluation	(GRADE)	tool	was	used	to	provide	

additional	assessment	of	quality	of	evidence	and	rate	certainty	in	

estimates	from	the	network	meta-analysis	(Shunemann	et	al.,	2018;	

Brignardellu-Petersen	et	al.,	2018).		

	

Triangulation	

	

Sensitivity	network	meta-analyses	that	included	cohort	studies	for	

neoadjuvant	therapy	versus	upfront	surgery	plus	adjuvant	therapy	

and	RCTs	of	upfront	surgery	plus	adjuvant	therapy	versus	surgery	

only	were	also	performed	with	the	latter	offering	an	indirect	

comparison	between	neoadjuvant	therapy	and	surgery	only.			
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Results:	Bayesian	network	meta-analysis	of	treatment	options	for	

potentially	resectable	pancreatic	cancer	

	

Eligible	Studies	

	

A	total	of	14375	studies	were	identified	through	a	search	of	the	

electronic	databases.	452	studies	underwent	full	text	review.	25	

studies	were	identified	that	offered	comparison	between	

neoadjuvant	therapy	and	upfront	surgery	plus	adjuvant	therapy	

(Figure	4).	Nine	of	these	studies	were	phase	II/III	trials,	3	of	which	

were	randomised.	16	cohort	studies	comparing	neoadjuvant	therapy	

and	upfront	surgery	plus	adjuvant	therapy	were	also	included	in	a	

separate	network	for	sensitivity	analysis.	6	studies	were	prospective	

and	10	studies	were	retrospective	(Table	13).		
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Figure	4:	PRISMA	Flow	Chart	for	Neoadjuvant	Therapy	versus	

Upfront	Surgery	plus	Adjuvant	Therapy	studies	
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Table	13:	Summary	of	Included	Trials	of	Neoadjuvant	Therapy	versus	

Upfront	Surgery	Plus	Adjuvant	Therapy	in	Bayesian	Network	Meta-

analysis	for	Potentially	Resectable	Pancreatic	Cancer.		

	
Study	 Centre	 Randomisation	 Type	of	

Trial	
No.	
Neoa
djuva
nt	
arm	

Neoadjuvant	regime:		
CRT=	
chemoradiotherapy	
CT=chemotherapy	
NAT=	no	further	details	
given	about	regime	

Neoadjuv
ant	arm	
overall	
survival	in	
months	

No.	
surgery	
first	
arm	

Surgery	
first	arm	
overall	
survival	in	
months	

Al-Sukhum	
et	al.,	2003	

Single	 No	 Phase	II	 20	 CRT	 13.4	 21	 18.1	

Casadei	et	
al.,	2015	

Single	 Yes	 Phase	II	 18	 CRT	 28.3	 20	 27.5	

Golcher	et	
al.,	2008	

Single	 No	 Phase	II	 121	 CRT	 	 58	 21	

Golcher	et	
al.,	2015	

Single	 Yes	 Phase	II	 33	 CRT	 17.4	 33	 14.4	

Lind	et	al.,	
2008	

Multiple	 No	 Phase	II	 17	 CRT	 19	 35	 11	

Massucco	et	
al.,	2006	

Single	 No	 Phase	II	 28	 CRT	 15.4	 44	 14	

Satoi	et	al.,	
2009	

Single	 No	 Phase	II	 35	 CRT	 24.5	 41	 18.5	

Vento	et	al.,	
2007	

Single	 No	 Phase	II	 22	 CRT	 30.2	 25	 35.9	

Jang	et	al.,	
2018	

Single	 Yes	 Phase	
II/III	

27	 CRT	 21	 23	 12	

deGus	et	al.,	
2017a	

Multiple	 No	 Retrosp
ective	

1077	 NAT	 25.9	 6840	 24.2	

Mellon	et	
al.,	2016	

Multiple	 No	 Retrosp
ective	

159	 CRT	 17	 241	 22.1	

Nurmi	et	
al.,	2018	

Single	 No	 Retrosp
ective	

75	 CRT/CT	 35	 150	 26	

Shubert	et	
al.,	2016	

Multiple	 No	 Retrosp
ective	

377	 NAT	 20.7	 216	 13	

Artinya	et	
al.,	2011	

Multiple	 No	 Retrosp
ective	

39	 NAT	 33.8	 419	 19	

Ielop	et	al.,	
2016	

Multiple	 No	 Prospec
tive		

45	 CRT	 21.65	 36	 22.1	

Roland	et	
al.,	2015	

Single	 No	 Prospec
tive	

222	 CRT	 	 85	 	

deGus	et	al.,	
2017b	

Single	 No	 Retrosp
ective	

1541	 NAT	 Resectabl
e:	26.2	
Borderlin
e:	23.5	
Locally	
Advanced:	
23.5		

11316	 Resectable
:	24.5	
Borderline
:	20.0	
Locally	
advanced:	
15.5	

Mokdad	et	
al.,	2017	

Multiple	 No	 Retrosp
ective	

2005	 NAT	 26	 6015	 21	

Chen	et	al.,	
2017	

Multiple	 No	 Retrosp
ective	

98	 NAT	 25	 98	 17	

Tzeng	et	al.,	
2014	

Single	 No	 Prospec
tive	

115	 NAT	 28	 52	 25.3	

Fujii	et	al.,	
2015	

Single	 No	 Prospec
tive	

21	 CRT	 29.1	 71	 13.1	

Fujii	et	al.,	
2017	

Single	 No	 Prospec
tive	

88	 CRT	 Resectabl
e:	24.9	
Borderlin
e:	28.4	

416	 Resectable
:	23.5	
Borderline
:	20.1	

Papalezova	
et	al.,	2012	

Single	 No	 Retrosp
ective	

144	 CRT	 15	 92	 13	

Hirono	et	
al.,	2016	

Single	 No	 Prospec
tive	

46	 CRT	 19.3	 124	 13.7	

Murkakami	
et	al.,	2017	

Single	 No	 Retrosp
ective	

52	 CT	 27.1	 25	 11.6	

	

For	further	sensitivity	analysis,	RCTs	offering	comparison	between	

upfront	surgery	plus	adjuvant	therapy	and	surgery	only	were	also	
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included	in	a	separate	network	meta-analysis	(Figure	5).	Five	RCTs	

offered	comparison	between	upfront	surgery	plus	adjuvant	therapy	

and	surgery	only	and	were	included	in	the	sensitivity	analysis	(table	

14).		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 243	

Figure	5:	PRISMA	Flow	Chart	for	Randomised	Controlled	Trials	of	

Upfront	Surgery	plus	Adjuvant	Therapy	versus	Surgery	Only	
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Table	14:	Summary	of	Randomised	Controlled	Trials	comparing	

Upfront	Surgery	plus	Adjuvant	Therapy	versus	Surgery	Only	

	
Study	 No.	in	

Upfront	
surgery	and	
adjuvant	
therapy	arm	

Adjuvant	
Regime	

Upfront	
surgery	and	
adjuvant	
therapy	
Overall	
Survival	in	
months	

No.	Surgery	
Only	arm	

Surgery	Only	
Overall	
Survival	in	
months		

Ueno	et	al.,	
2009	

58	 Gemcitabine	 22.3	 50	 18.4	

Oettle	et	al.,	
2013	

179	 Gemcitabine	 22.8	 175	 20.2	

Kosuge	et	al.,	
2006	

45	 Cisplatin	+	5-
FU	

12.5	 44	 15.8	

Smeenk	et	al.,	
2007	

110	 5-FU	
+radiotherapy	

21.6	 108	 19.2	

Morak	et	al.,	
2008	

59	 5-FU+folic	
acid+	
mitocantrone	
+	cisplatinur	+	
radiotherapy	

19	 61	 18	

	

	

A	summary	of	overall	findings	for	each	outcome	measure	is	provided	

in	Figures	6	and	7.				
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Figure	6:	Summary	of	Findings	of	Network	Meta-analysis	of	Phase	

II/III	trials	comparing	Neoadjuvant	Therapy	versus	Upfront	Surgery	

and	Adjuvant	Therapy	

	

*The	risk	in	the	intervention	group	(and	its	95%	CI)	is	based	on	the	assumed	risk	in	the	
comparison	group	and	the	relative	effect	of	the	intervention	(and	its	95%	CI).		‘Risk’	is	the	risk	of	

the	event	occurring	i.e	‘risk’	of	being	alive	at	the	set	time	interval.		
Figure	7:	Summary	of	Findings	of	Network	Meta-analysis	of	

Neoadjuvant	Therapy	versus	Upfront	Surgery	and	Adjuvant	Therapy	

with	inclusion	of	cohort	studies	

	

*	The	risk	in	the	intervention	group	(and	its	95%	CI)	is	based	on	the	assumed	risk	in	the	
comparison	group	and	the	relative	effect	of	the	intervention	(and	its	95%	CI).	‘Risk’	is	the	risk	of	

the	event	occurring	i.e	‘risk’	of	being	alive	at	the	set	time	interval.		
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Resection	Rates	

	

Pairwise	comparison	of	surgical	resection	rates	was	based	on	a	

network	constructed	from	9	phase	II/III	studies	(n=621;	neoadjuvant	

therapy:	n=321;	upfront	surgery	plus	adjuvant	therapy	n=300).	

Upfront	surgery	plus	adjuvant	therapy	approach	was	found	to	be	

superior	with	aggregate	rate	0.8767	(0.6970-1.000)	versus	0.3489	

(0.1500-0.6818).	Fixed	and	random	effects	models	supported	this	

finding	with	Odds	Ratio	(O.R)	0.07	(95%	CI:	0.04-0.11)	and	O.R	0.04	

(95%	CI	0.01-0.15)	respectively	(Appendix	K).		

	

Inclusion	of	cohort	studies	created	a	network	analysis	based	on	18	

studies	(neoadjuvant	therapy:	n=1368,	upfront	surgery	plus	adjuvant	

therapy	n=1573)	and	did	not	alter	overall	outcome.	Aggregate	rate	

was	superior	for	upfront	surgery	plus	adjuvant	therapy	0.8843	

(0.6970-1.0000)	versus	0.6060	(0.1500-0.9038).	Both	fixed	and	

random	effects	models	supported	this	finding	with	O.R	0.16	(95%	CI:	

0.13-0.20)	and	O.R.	0.08	(95%	CI	0.03-0.21)	respectively	(Figure	8;	

Appendix	K).	
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Figure	8:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	
	

	

R0	Resection	Rates	

	

Network	analysis	based	on	8	phase	II/III	trials	(neoadjuvant	therapy	

n=301;	upfront	surgery	plus	adjuvant	therapy	n=279)	gave	R0	

aggregate	rate	0.5090	(0.1707-0.7759)	for	upfront	surgery	plus	

adjuvant	therapy	versus	0.2957	(0.1570-0.5185).	Fixed	and	random	

effects	models	favoured	upfront	surgery	plus	adjuvant	therapy	(O.R	

0.40;	95%	CI	0.28-0.57	and	O.R	0.61;	95%	0.21-1.85	respectively)	

(Figure	9;	Appendix	K).	
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Figure	9:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

	

When	cohort	studies	were	included	in	the	network	(21	studies;	

neoadjuvant	therapy	n=	4727;	upfront	surgery	plus	adjuvant	therapy	

n=14642)	neoadjuvant	therapy	was	superior	with	aggregate	rate	

0.7389	(0.1570-0.9144)	versus	0.7306	(0.1600-0.8611).	Both	fixed	

and	random	effects	models	favoured	neoadjuvant	therapy	(O.R	1.33;	

95%	CI	1.22-1.45	and	O.R	1.12;	95%	CI	0.60-2.08	respectively)	

(Appendix	K).			

	

1-year	Survival	

	

Pairwise	comparison	of	neoadjuvant	therapy	versus	upfront	surgery	

plus	adjuvant	therapy	through	network	meta-analysis	based	on	6	

phase	II/III	trials	(neoadjuvant	therapy	n=	154;	upfront	surgery	plus	

adjuvant	therapy	n=178)	favoured	neoadjuvant	therapy	with	

aggregate	rate	0.7466	(0.5200-1.0000)	versus	0.6137	(0.4778-

0.7200).	Fixed	and	random	effects	models	favoured	neoadjuvant	
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therapy	(O.R	2.12;	95%CI	1.30-3.49	and	O.R	2.26;	95%	CI	0.90-7.23	

respectively)	(Appendix	K).		

	

With	inclusion	of	cohort	studies	in	the	network	(21	studies;	

neoadjuvant	therapy	n=5988;	upfront	surgery	plus	adjuvant	therapy	

n=26106)	results	did	not	alter	with	aggregate	rate	0.8109	(0.5200-

1.0000)	versus	0.6403	(0.4400-0.8500).	Fixed	and	random	effects	

models	continued	to	favour	neoadjuvant	therapy	(O.R	2.37;	95%	CI	

2.19-2.55	and	O.R.	2.12;	95%	CI	1.59-2.93	respectively)	(Appendix	

K).	

		

A	sensitivity	network	analysis	including	phase	II/III	trials	comparing	

neoadjuvant	therapy	and	upfront	surgery	plus	adjuvant	therapy	and	

RCTs	comparing	upfront	surgery	plus	adjuvant	therapy	and	surgery	

only	(8	studies;	neoadjuvant	therapy	n=154;	upfront	surgery	plus	

adjuvant	therapy	n=415,	surgery	only	n=235)	(Figure	10)	favoured	

neoadjuvant	therapy	with	aggregate	rate	0.7466	(0.5200-1.0000)	

versus	0.7314	(0.7250-0.7500)	for	surgery	only	and	0.6845	(0.4778-

0.7760)	for	upfront	surgery	plus	adjuvant	therapy.	Neoadjuvant	

therapy	was	found	to	be	superior	in	both	fixed	and	random	effects	

models	(Figure	11;	Appendix	K).	
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Figure	10:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	therapy	

versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	only		
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Figure	11:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

	

	

Cohort	studies	comparing	neoadjuvant	therapy	and	upfront	surgery	

plus	adjuvant	therapy	were	then	included	in	the	sensitivity	network	

analysis	(23	studies;	neoadjuvant	therapy	n=5988;	upfront	surgery	

plus	adjuvant	therapy	n=26343;	surgery	only	n=235).	This	supported	

superiority	of	neoadjuvant	therapy	with	aggregate	rate	0.8109	

(0.5200-1.0000)	versus	0.7314	(0.7250-0.7500)	for	surgery	only	and	

0.6413	(0.4400-0.8500)	for	upfront	surgery	plus	adjuvant	therapy	

(Appendix	K).				

			

2-year	Survival	

	

Pairwise	comparison	of	2-year	survival	from	6	phase	II/III	trials	

(neoadjuvant	therapy	n=246;	upfront	surgery	plus	adjuvant	therapy	
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n=214)	showed	superiority	of	neoadjuvant	therapy	with	aggregate	

rate	0.4454	(0.0600-0.7500)	versus	0.3475	(0.2609-0.4660).		Fixed	

effects	(O.R.	1.32;	95%	CI	0.87-1.97)	and	random	effects	model	(O.R	

1.16;	95%CI		0.34-3.72)	favoured	neoadjuvant	therapy	(Figure	12;	

Appendix	K).	

	

Figure	12:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

	

Inclusion	of	cohort	studies	within	the	network	(20	studies;	NAT	

n=4199;	SFadj	n=20114)	produced	corroborating	results	with	NAT	

aggregate	rate	0.5135	(0.0600-0.7500)	versus	0.3002(0.1268-

0.5800)	and	fixed	and	random	effects	models	supporting	NAT	(O.R	

2.58;	95%	CI	2.40-2.78	and	O.R.	1.65;	95%CI	1.16-2.34	respectively)	

(Appendix	K).	

	

Network	sensitivity	analysis	including	phase	II/III	trials	comparing	

neoadjuvant	therapy	and	upfront	surgery	plus	adjuvant	therapy	(6	

studies)	and	RCTs	comparing	upfront	surgery	plus	adjuvant	therapy	

and	surgery	only	(2	studies)	(neoadjuvant	therapy	n=246;	upfront	
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surgery	plus	adjuvant	therapy	n=451;	surgery	only	n=235)	showed	

marginal	superiority	of	neoadjuvant	therapy	with	aggregate	rate	

0.4454	(0.0600-0.7500)	versus	0.4155	(0.2609-0.4829)	for	upfront	

surgery	plus	adjuvant	therapy	and	0.4149	(0.4000-0.4200)	for	

surgery	only.	Fixed	and	random	effects	models	favoured	neoadjuvant	

therapy	(Appendix	K).		

	

Cohort	studies	were	then	included	in	network	sensitivity	analysis	(22	

studies;	neoadjuvant	therapy	n=	4199;	upfront	surgery	plus	adjuvant	

therapy	n=20351;	surgery	only	n=235).	Neadjuvant	therapy	

remained	superior	with	aggregate	rate	0.5135	(0.0600-0.7500)	but	

upfront	surgery	lus	adjuvant	therapy	aggregate	rate	dropped	to	

0.3025	(0.1268-0.5800)	with	surgery	only	aggregate	rate	0.4149	

(0.4000-0.4200).		Fixed	and	random	effects	models	corroborated	

overall	treatment	ranking	favouring	neoadjuvant	therapy	(Figure	13;	

Appendix	K).	
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Figure	13:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

	

3-year	survival	

	

Pairwise	comparison	within	a	network	based	on	4	phase	II/III	trials	

(neoadjuvant	therapy	n=107;	upfront	surgery	plus	adjuvant	therapy	

n=134)	marginally	favoured	neoadjuvant	therapy	but	this	was	not	

statistically	significant	with	aggregate	rate	0.2642	(0.1212-0.3900)	

versus	0.2530	(0.1100-0.4700).	Fixed	and	random	effects	models	

demonstrated	no	significant	difference	between	treatment	pathways	

(O.R.	1.00;	95%	CI	0.54-1.86	and	O.R	0.99;	95%	CI	0.34-2.89	

respectively)	(Appendix	K).	

	

Inclusion	of	cohort	studies	increased	the	network	to	18	studies	

(neoadjuvant	therapy	n=	5889;	upfront	surgery	plus	adjuvant	

therapy	n=26037)	and	favoured	neoadjuvant	therapy	with	aggregate	
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rate	0.3151	(0.1212-0.4800)	compared	to	0.2147	(0.0563-0.4700).	

Fixed	and	random	effects	models	favoured	neoadjuvant	therapy	with	

O.R	increasing	to	1.61	(95%CI	1.51-1.72)	and	1.50	(95%	CI	1.10-

2.04)	respectively	(Appendix	K).		

	

RCTs	comparing	upfront	surgery	plus	adjuvant	therapy	and	surgery	

only	(1	study)	were	combined	with	the	4	phase	II/III	studies	

comparing	neoadjuvant	therapy	and	upfront	surgery	plus	adjuvant	

therapy	(neoadjuvant	therapy	n=	107;	upfront	surgery	plus	adjuvant	

therapy	n=313;	surgery	only	n=	175)	in	a	network	sensitivity	

analysis.	Upfront	surgery	plus	adjuvant	therapy	was	superior	with	

aggregate	rate	0.3463	(0.1100-0.6329),	followed	by	0.2709	(0.1212-

0.3900)	for	neoadjuvant	therapy	and	0.2050	(0.2050-0.2050)	for	

surgery	only	with	this	ranking	corroborated	in	fixed	and	random	

effects	models	(Appendix	K).		

	

Inclusion	of	cohort	studies	comparing	neoadjuvant	therapy	and	

upfront	surgery	plus	adjuvant	therapy	in	further	sensitivity	analysis	

produced	a	network	of	19	studies	(neoadjuvant	therapy	n=58899;	

upfront	surgery	plus	adjuvant	therapy	n=26216;	surgery	only	

n=175).	Superiority	altered	from	upfront	surgery	plus	adjuvant	

therapy	with	aggregate	rate	0.2160	(0.0563-0.6329)	to	neoadjuvant	

therapy	with	aggregate	rate	0.3151	(0.1212-0.4800).		Surgery	only	

still	held	lowest	ranking	with	aggregate	rate	0.2050	(0.2050-0.2050).	

Ranking	order	was	corroborated	in	fixed	and	random	effects	models	

(Figure	14;	Appendix	K).		

	



	 256	

Figure	14:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

4-year	survival	

	

Two	phase	II/III	trials	(n=118)	reported	data	on	4-year	survival	

(neoadjuvant	therapy	n=50;	upfront	surgery	plus	adjuvant	therapy	

n=68).		Neoadjuvant	therapy	was	superior	with	aggregate	rate	

0.1016	(0.0303-0.2400)	compared	to	0.0860	(0.0606-0.1100)	and	

O.R	1.56	(95%	CI:	0.39-6.01)	and	1.35(95%CI:	0.13-10.82)	in	fixed	

and	random	effects	models	respectively	(Appendix	K)		

	

Inclusion	of	cohort	studies	increased	the	network	to	8	studies	

(neoadjuvant	therapy	414;	upfront	surgery	plus	adjuvant	therapy	

n=1069).	Neoadjuvant	therapy	maintained	superiority	with	

aggregate	rate	0.2114	(0.0303-0.4000)	versus	0.1647	(0.0423-

0.3200)	and	O.R	1.59	(95%	CI	1.14-2.21)	and	1.57	(95%CI	0.80-2.99)	

in	fixed	and	random	effects	models	respectively.	RCTs	comparing	
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upfront	surgery	plus	adjuvant	therapy	and	surgery	only	did	not	

report	4-year	survival	(Appendix	K).		

	

	

5-year	survival	

	

Three	phase	II/III	trials	(neoadjuvant	therapy	n=90;	upfront	surgery	

plus	adjuvant	therapy	n=99)	reported	5-year	survival	and	were	

included	in	network	meta-analysis.	Neoadjuvant	therapy	held	

superiority	with	aggregate	rate	0.2240	(0.0303-0.3400)	versus	

0.1156	(0.0606-0.2300)	and	O.R	2.50	(95%CI	1.10-5.95)	and	2.20	

(95%CI	0.38-10.06)	in	fixed	and	random	effects	models	respectively	

(Appendix	K).	

		

Inclusion	of	cohort	studies	increased	the	network	to	12	studies	

(neoadjuvant	therapy	n=2885;	upfront	suregry	plus	adjuvant	therapy	

n=7071)	and	neoadjuvant	therapy	held	superiority	with	aggregate	

rate	0.2118	(0.0303-0.7692)	compared	to	0.1736	(0.0500-0.2300)	

and	O.R	1.32	(95%	CI	1.18-1.48)	and	1.65	(95%	CI	0.68-3.73)	in	fixed	

and	random	effects	models	respectively	(Appendix	K).				

	

RCTs	comparing	upfront	surgery	plus	adjuvant	therapy	and	surgery	

only	(4	studies)	and	phase	II/III	trials	comparing	neoadjuvant	

therapy	and	upfront	surgery	pluc	adjuvant	therapy	(3	studies)	

created	a	sensitivity	network	analysis	of	7	studies	(neoadjuvant	

therapy	n=90;	upfront	surgery	plus	adjuvant	therapy	n=491;	surgery	

only	n=387).	This	did	not	alter	the	ranking	of	treatment	pathways	

with	neoadjuvant	therapy	aggrgate	rate	0.2240	(0.0303-0.3400)	
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versus	0.2072	(0.0606-0.2640)	for	upfront	surgery	plus	adjuvant	

therapy	and	0.1418	(0.1040-0.2200)	for	surgery	only.	This	was	also	

the	case	in	both	fixed	and	random	effects	models	(Figure	15;	

Appendix	K).			

	

Figure	15:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	

	
	

	

	

Cohort	sudies	were	then	included	increasing	the	sensitivity	network	

analysis	to	16	studies	(neoadjuvant	thaerpy	n=2885;	upfront	surgery	

plus	adjuvant	therapy	n=7463;	surgery	only	n=387).	This	did	not	

alter	the	ranking	of	treatments	with	aggregate	rates	for	neoadjuvant	

therapy	0.2054	(0.0303-0.3400)	versus	0.1779	(0.0500-0.3200)	for	

upfront	surergy	plus	adjuvant	threapy	and	0.1418	(0.1040-0.220)	for	

surgery	only	(Appendix	K).		
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Assessment	of	Impact	of	FUPS	characteristics	of	Data	

	

Using	the	GRADE	assessment	criteria	the	certainty	of	

recommendations	from	the	network	analysis	showed	that	although	

neoadjuvant	therapy	was	marginally	favoured	overall,	this	was	not	

always	statistically	signifinat	and	uncertainty	was	identified	in	the	

evidence	synthesised	(Figure	16).		

	

Figure	16:	GRADE	assessment	of	certainty	of	network	

recommendations	

	

	

	

This	degree	of	uncertainty	in	the	synthesised	evidence	was	further	

highlighted	in	the	assessment	of	risk-of-bias	of	each	included	study	

(Figure	17;	Figure	18;	Appendix	K).	
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Figure	17:	Overall	Assessment	of	Risk	of	Bias	of	included	trials	of	

neoadjuvant	versus	upfront	surgery	plus	adjuvant	therapy	

	

	

Figure	18:	Overall	Assessment	of	Risk	of	Bias	of	Randomised	

Controlled	Trials	comparing	Upfront	Surgery	plus	Adjuvant	Therapy	

versus	Surgery	Only.	

	

	
	

To	further	assess	the	impact	of	FUPS	characteristics	of	the	data	

consistency	and	inconsistency	assessment	was	undertaken.	Overall	

consistency	was	achieved	across	all	Bayesian	network	meta-analysis	



	 261	

survival	year	models	with	no	issues	of	inconsistency	identified	

(Appendix	K).		

	

	

Results:	Bayesian	network	meta-analysis	of	treatment	options	

for	resectable	pancreatic	cancer	

	

Eligible	Studies		

	

Nine	studies	were	identified	that	offered	comparison	between	

neoadjuvant	therapy	and	upfront	surgery	plus	adjuvant	therapy	for	

the	treatment	of	resectable	pancreatic	cancer	(Figure	19).	As	only	2	

of	these	studies	were	phase	II	trials,	one	of	which	was	randomised	all	

studies	were	therefore	included	in	the	network	meta-analysis.	4	

studies	were	prospective	and	3	studies	were	retrospective	(Table	

15).	
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Figure	19:	PRISMA	flow	chart	for	neoadjuvant	therapy	versus	

upfront	surgery	plus	adjuvant	therapy		
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Table	15:	Summary	of	Studies	Comparing	Neoadjuvant	Therapy	

versus	Upfront	Surgery	plus	Adjuvant	Therapy	for	Resectable	

Pancreatic	Cancer.	

	
Study	 Study	

Type	
Randomis
ed	

Centre	 Neoadjuvant	
treatment	
Regime	in	
addition	to	
radiotherapy	

Total	No.	
patient	in	
Neoadjuvant	
arm	

Neoadju
vant	
arm	
Overall	
Survival	
in	
months	
for	RPC	

Total	No.	
patients	
Upfront	
surgery	
lus	
adjuvant	
therapy	
arm	

Upfront	
surgery	
lus	
adjuvan
t	
therapy	
arm	
Overall	
Survival	
in	
months	

ROBINS-
I	risk	of	
bias	
assessm
ent	

Golche
r	et	al.,	
2015	

Phase	II	 Yes	 Multiple	 Gemcitabine/	
cisplatin	

31	 17.4	 33	 14.4	 Low	

Vento	
et	al.,	
2007	

Phase	II	 No	 Single	 Gemcitabine	 22	 30.2	 25	 35.9	 Moderat
e	

Ielpo	
et	al.,	
2017	

Prospect
ive	

No	 Single		 Gemcitabine	
+Nabpaclitaxel	

19	 21.65	 36	 22.1	 Moderat
e	

Roland	
et	al.,	
2015	

Prospect
ive	

No	 Single	 Gemcitabine,	
5-FU	or	
capecitabine	

222	 	 85	 	 Moderat
e	

DeGus	
et	al.,	
2017a	

Retrospe
ctive	

No	 Multiple	
(cancer	
registry)	

NAT:	no	
further	details	
given		

332	 26		 11316	 24.5	 Moderat
e/Seriou
s	

Mokda
d	et	al.,	
2017	

Retrospe
ctive	

No	 Multiple	
(cancer	
registry)	

NAT:	no	
further	details	
given	

2005	 26	 6015	 21	 Moderat
e/Seriou
s	

Tzeng	
et	al.,	
2014	

Prospect
ive	

No	 Single	 NAT:	no	
further	details	
given	

115	 28	 62	 25.3	 Moderat
e/Seriou
s	

Fujii	et	
al.,	
2016	

Prospect
ive	

No	 Single	 S1+5-
FU+oteracil	
and	gimeracil	

40	 24	 416	 23	 Moderat
e/Seriou
s	

Papale
zova	et	
al.,	
2012	

Retrospe
ctive	

No	 Single	 5-FU	 144	 15	 92	 13	 Moderat
e/Seriou
s	

	

	

6	studies	(n=371)	reported	the	number	of	cases	of	resectable	

pancreatic	canncer	who	received	neoadjuvant	therapy	and	

progressed	to	surgery	(Golcher	et	al.,	2015;	Vento	et	al.,	2007;	Ielpo	

et	al.,	2017;	Tzeng	et	al.,	2014;	Fuijii	et	al,	2016;	Papalezova	et	al.,	

2012)	giving	a	pooled	proportion	of	76.08%	(95%	Confidence	

Interval:	60.826-88.509).	Two	studies	reported	response	to	

neoadjuvant	therapy	(Golcher	et	al.,	2015;	Ielpo	et	al.,	2017).	One	
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study	reported	responses	for	resectable	cases	(complete	response:	0;	

partial	response:	4/31;	stable	disease	8/31;	disease	progress	12/31;	

7	unrecorded)	(Golcher	et	al.,	2015).	The	study	by	Ielop	et	al.	(2017)	

did	not	report	this	outcome	separately	for	resectable	only	cases	but	

included	borderline	cases	also	in	reporting	the	outcomes	of	response	

to	neoadjuvant	therapy	(complete	response:	5/45;	partial	response:	

13/45;	stable	disease	5/45).	6	studies	(n=	17596)	reported	the	

number	of	patients	in	the	upfront	surgery	plus	adjuvant	therapy	

pathway	who	received	adjuvant	therapy	(Ielpo	et	al.,	2017;	Roland	et	

al.,	2015;	Tzeng	et	al.,	2014;	DeGus	et	al.,	2017a;	Mokdad	et	al.,	2017;	

Papalezova	et	al.,	2012)	giving	a	pooled	proportion	of	63.01%	(95%	

Confidence	Interval:	59.452-66.489).							

	

For	sensitivity	analysis,	RCTs	offering	comparison	between	upfront	

surgery	plus	adjuvant	therapy	versus	surgery	alone	were	also	

included	in	a	separate	network	meta-analysis.	Electronic	database	

search	identified	25332	studies	(Figure	20).	15	studies	were	RCTs,	5	

of	which	offered	comparison	between	adjuvant	therapy	and	surgery	

alone	and	were	included	in	the	sensitivity	analysis	(Table	16).	
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Figure	20:	PRISMA	flow	chart	of	upfront	surgery	plus	adjuvant	
therapy	versus	surgery	only	
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Table	16:	Summary	of	included	studies.	Summary	of	randomised	

controlled	trials	comparing	upfront	and	adjuvant	therapy	versus	

surgery	only.	

	
Study	 Adjuvant	Regime	

*CT=chemotherapy	
CRT=chemoradiotheapy	

Adjuvant	
chemotherapy	
agents	

No.	
Upfront	
surgery	
plus	
adjuvant	
arm	

Overall	
survival	
in	
Upfront	
surgery	
plus	
adjuvant	
arm	in	
months		

No.	
Surgery	
Only	
arm	

Overall	
survival	
in	
surgery	
only	
arm	

Ueno	et	
al.,	
2009	

CT	 Gemcitabine		 58	 22.3	 60	 18.4	

Oettle	
et	al.,	
2013	

CT	 Gemcitabine	 179	 22.8	 175	 20.2	

Kosuge	
et	al.,	
2006	

CT	 Cisplatin	+	5-
FU	

45	 12.5	 44	 15.8	

Smeenk	
et	al.,	
2007	

CRT	 5-FU	 110	 21.6	 108	 19.2	

Morak	
et	al.,	
2008	

CRT	 5-FU+folic	
acid+	
mitoxantrone	
+	cisplatin		

59	 19	 61	 18	

	

	

A	summary	of	overall	findings	for	each	outcome	measure	is	provided	

in	Figure	21.		

	

	

Figure	21:	Summary	of	results	of	Bayesian	network	meta-analysis	

comparing	upfront	surgery	plus	adjuvant	therapy	with	neoadjuvant	

therapy	for	the	management	of	resectable	pancreatic	cancer.	
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*	The	risk	in	the	intervention	group	(and	its	95%	CI)	is	based	on	the	assumed	risk	in	the	
comparison	group	and	the	relative	effect	of	the	intervention	(and	its	95%	CI).	‘Risk’	is	the	risk	of	

the	event	occurring	i.e	‘risk’	of	being	alive	at	the	set	time	interval.		
	

	

R0	Resection	Rates	

	

The	network	offering	pairwise	comparison	of	rates	of	R0	resection	

between	neoadjuvant	therapy	and	upfront	surgery	plus	adjuvant	

therapy	included	8	studies	and	9197	participant	(neoadjuvant	

therapy:	n=2626;	Upfront	surgery	plus	adjuvant	therapy:	n=6571).		

The	aggregate	rate	of	R0	resection	for	neoadjuvant	therapy	was	

0.8008	(0.3636-0.9144)	compared	to	0.7515	(0.2826-0.8611)	for	

upfront	surgery	plus	adjuvant	therapy.	Both	fixed	effects	(O.R.	1.49;	

95%	CI	1.32-1.68)	and	random	effects	(O.R.	1.27;	95%	CI	0.60-1.96)	

models	favoured	neoadjuvant	therapy.	Neoadjuvant	therapy	was	

found	to	have	superior	positive	impact	on	outcome	of	R0	resection	

(SUCRA:	0.8124	versus	0.1876).		

	

1-year	Survival	
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Pairwise	comparison	for	1-year	survival	of	neoadjuvant	therapy	

versus	upfront	surgery	plus	adjuvant	therapy	was	based	on	8	studies	

and	12011	participants	(neoadjuvant	therapy:	n=2708;	upfront	

surgery	plus	adjuvant	therapy:	n=9303).	Aggregate	rate	of	1-year	

survival	was	higher	in	neoadjuvant	therapy	at	0.7969	(0.6061-

0.9500)	versus	0.7481	(0.4848-0.8500).	Both	fixed	effects	(O.R.	1.46;	

95%	CI:	1.31-1.63)	and	random	effects	(O.R.	1.38	95%;	CI:	0.69-2.96)	

models	favoured	neoadjuvant	therapy.	Neoadjuvant	therapy	also	has	

a	stronger	positive	impact	on	the	outcome	of	1-year	survival	(SUCRA:	

0.84	v	0.16)	(Appendix	L).		

	

For	sensitivity	analysis	a	network	also	including	RCTs	of	upfront	

surgery	plus	adjuvant	therapy	versus	surgery	only	was	constructed	

based	on	a	total	of	10	studies	and	12483	patients	(neoadjuvant	

therapy:	n=2708;	upfront	surgery	plus	adjuvant	therapy:	n=9540;	

surgery	only:	n=235)	(Figure	22).	8	studies	compared	neoadjuvant	

therapy	and	upfront	surgery	plus	adjuvant	therapy	(n=12011)	and	2	

studies	compared	upfront	surgery	plus	adjuvant	therapy	and	surgery	

only	(n=472).		
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Figure	22:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	therapy	

versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	only	
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Neoadjuvant	therapy	was	found	to	be	superior	in	both	fixed	and	

random	effects	models.		Aggregate	rate	of	1-year	survival	was	highest	

in	neoadjuvant	therapy	(0.7957;	range	0.6205-0.9500)	followed	by	

upfront	surgery	plus	adjuvant	therapy	(0.7478;	range	0.4848-

0.8500)	then	surgery	only	(0.7314;	range	0.7250-0.7500).	Again	

neoadjuvant	therapy	was	found	to	have	strongest	positive	impact	on	

outcome	of	1-year	survival	(Figure	23;	Appendix	L).		

	

Figure	23:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

	

2-year	Survival	

	

Network	pairwise	comparison	of	neoadjuvant	therapy	and	upfront	

surgery	plus	adjuvant	therapy	for	2-year	survival	was	based	on	7	

studies	(n=4251;	neoadjuvant	therapy	n=903;	upfront	surgery	plus	

adjuvant	therapy	n=	3348).	Aggregate	rate	of	2-year	survival	was	
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0.5178	(0.3000-0.5970)	versus	0.5131	(0.2727-0.5346)	in	favour	of	

neoadjuvant	therapy.	Both	fixed	effects	(O.R.	1.22;	95%	CI	1.02-1.46)	

and	random	effects	model	(O.R.	1.26;	95%	CI	0.94-1.74)	favoured	

neoadjuvant	therapy	with	SUCRA	0.95	for	neoadjuvant	therapy	

(Appendix	L).	

	

Inclusion	of	upfront	surgery	plus	adjuvant	therapy	versus	surgery	

only	RCTs	in	a	network	based	on	9	studies	(n=4723;	neoadjuvant	

therapy:	n=903;	upfront	surgery	plus	adjuvant:	n=3585;	surgery	

only:	n=235)	also	demonstrated	superiority	of	neoadjuvant	therapy	

for	2-year	survival	in	both	fixed	and	random	effects	model.	Aggregate	

of	2-year	survival	was	0.5217	(0.3000-0.5970)	for	neoadjuvant	

therapy	compared	to	0.5107	(0.2727-0.5346)	for	upfront	surgery	

plus	adjuvant	therapy	and	0.4149	(0.4000-0.4200)	for	surgery	only	

(Figure	24;	Appendix	L).	

	

Figure	24:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	
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3-year	Survival	

	

Pairwise	comparison	of	neoadjuvant	therapy	versus	upfront	surgery	

plus	adjuvant	therapy	was	based	on	a	network	comprising	8	studies	

(n=	12011;	neoadjuvant	therapy:	n=2708;	upfront	surgery	plus	

adjuvant	therapy:	n=9303)	and	demonstrated	superiority	of	

neoadjuvant	therapy	with	aggregate	rate	of	0.3367	(0.1212-0.3900)	

to	0.2943	(0.1800-0.4700).	Again	both	fixed	effect	(O.R.	1.25	95%	CI	

1.14-1.38)	and	random	effects	(O.R.	1.19	9%	CI	0.86-1.51)	models	

favored	neoadjuvant	therapy	with	SUCRA	0.9	demonstrating	

stronger	positive	effect	with	neoadjuvant	therapy	on	outcomes	of	3-

year	survival	(Appendix	L).	

	

Inclusion	of	upfront	surgery	plus	adjuvant	therapy	versus	surgery	

only	RCTs	in	a	network	produced	comparisons	based	on	9	studies	

(n=12365;	neoadjuvant	therapy:	2708;	upfront	surgery	plus	adjuvant	

therapy:	n=9482;	surgery	only:	n=	175).	Neoadjuvant	therapy	was	

superior	in	both	fixed	and	random	effects	models	with	aggregate	rate	

0.3400	(0.2000-0.4194)	compared	to	0.2951	(0.1800-0.4700)	for	

upfront	surgery	plus	adjuvant	therapy	and	0.2050	(0.2050-0.2050)	

for	surgery	only	(Figure	25;	Appendix	L).	
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Figure	25:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	

	
	

	

4-year	Survival	

	

Only	pairwise	comparison	of	neoadjuvant	therapy	and	upfront	

surgery	plus	adjuvant	therapy	could	be	offered,	as	upfront	surgery	

plus	adjuvant	therapy	versus	surgery	only	RCTs	did	not	report	4-year	

survival	rates.	This	network	was	based	on	4	studies	(n=656).	

Neoadjuvant	therapy	was	superior	with	aggregate	rate	0.1416	

(0.0303-0.2500)	compared	to	0.1269	(0.0606-0.2000).	Fixed	effects	

(O.R.	1.16;	95%	CI	0.69-1.94)	and	random	effects	model	(O.R	1.03;	

95%	CI	0.27-3.13)	favoured	neoadjuvant	therapy	(Appendix	L).	
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5-year	Survival	

	

Network	pairwise	comparison	of	5-year	survival	for	neoadjuvant	

therapy	and	upfront	surgery	plus	adjuvant	therapy	was	based	on	7	

studies	(n=8896;	neoadjuvant	therapy	n=2558;	upfront	surgery	plus	

adjuvant	therapy	n=6338).		Aggregate	rate	for	neoadjuvant	therapy	

was	0.2069	(0.0323-0.3300)	compared	to	0.1783	(0.0606-0.2300).	

Fixed	effects	(O.R	2.21;	95%	CI	1.07-1.37)	and	random	effects	(O.R.	

1.19;	95%	0.65-1.73)	favoured	neoadjuvant	therapy	with	SUCRA	0.82	

for	neoadjuvant	therapy	(Appendix	L).		

	

Inclusion	of	upfront	surgery	plus	adjuvant	therapy	versus	surgery	

only	RCTs	was	based	on	11	studies	(n=9675;	neoadjuvant	therapy	

n=2558;	upfront	surgery	plus	adjuvant	therapy	n=6730;	surgery	only	

n=387).	Neoadjuvant	therapy	was	superior	across	fixed	effects	and	

random	effects	models	with	aggregate	rate	0.2069	(0.0323-0.3300)	

followed	by	0.1814	(0.0606-0.2640)	for	upfront	surgery	plus	

adjuvant	therapy	and	0.1418	(0.1040-0.2200)	for	surgery	only	

(Figure	26;	Appendix	L).	
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Figure	26:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Assessment	of	Impact	of	FUPS	characteristics	of	Data	

	

Using	the	GRADE	assessment	criteria	again	the	certainty	of	

recommendations	from	the	network	analysis	showed	that	although	

neoadjuvant	therapy	was	marginally	favoured	overall,	uncertainty	

was	identified	in	the	evidence	synthesised	(Figure	27).	This	was	

corroborated	by	the	risk-of-bias	assessment	of	included	trials	(Table	

15;	Appendix	K).		
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Figure	27:	An	assessment	of	the	strength	of	overall	recommendations	

from	the	network	meta-analysis	according	to	the	GRADE	assessment	

criteria.				

	

	

	
	

	

	

Convergence	was	achieved	across	all	models	and	no	issues	were	

identified	with	inconsistency.	In	2-year	survival	analysis	and	5-year	

survival	analysis	there	was	a	marginal	preference	towards	fixed	

effects	model	as	determined	by	the	DIC	statistic	(Appendix	L).		
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Discussion	

	

Data	as	a	Partial	Remnant		

	

Upfront	surgery	plus	adjuvant	therapy	is	a	well	established	

treatment	pathway	for	resectable	pancreatic	cancer	(Neoptolemos	et	

al.,	2001).	Neoadjuvant	therapy	is	supported	by	current	guidelines	

for	borderline	resectable	and	locally	advanced	pancreatic	cancer	but	

its	role	in	the	management	of	resectable	pancreatic	cancer	remains	

controversial	(Tempero	et	al.,	2014;	de	Geus	et	al.,	2016).	In	the	

absence	of	conclusive	results	from	large	multi-centered	RCTs	this	

study,	the	first	of	its	kind,	utilises	existing	studies	comparing	

neoadjuvant	therapy	and	upfront	surgery	plus	adjuvant	therapy	for	

the	treatment	of	potentially	resectable,	and	separately	resectable	

pancreatic	cancer,	in	a	Bayesian	network	meta-analysis	to	offer	an	

important	interim	analysis	to	inform	the	ongoing	debate	regarding	

the	best	treatment	for	potentially	resectable,	and	in	particular	

resectable,	pancreatic	cancer.		

	

Overall	this	analysis	marginally	favours	neoadjuvant	therapy.		When	

analysing	its	use	in	all	potentially	resectable	pancreatic	cancer	

neoadjuvant	therapy	compared	favourably	with	traditional	upfront	

surgery	plus	adjuvant	therapy	approach	and	demonstrated	survival	

benefit	across	1,2,4	and	5-year	survival	outcomes.	There	was	no	

difference	in	3-year	survival	but	inclusion	of	cohort	studies	and	RCTs	

demonstrated	benefit	with	neoadjuvant	therapy.	For	the	treatment	of	

resectable	pancreatic	cancer	a	marginal	benefit	was	found	with	

neoadjuvant	therapy	across	outcomes	of	R0	resection,	1,2,3,4	and	5-
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year	survival.	This	is	based	on	the	best	available	studies	and	did	not	

alter	on	sensitivity	analysis.	However,	issues	pertaining	to	quality	

and	level	of	bias	of	available	studies	are	an	issue	that	weakens	the	

strength	and	level	of	certainty	of	any	such	recommendations.		

	

Transparency	of	Analysis		

	

A	strength	of	this	study	is	that	it	included	a	separate	analysis	of	only	

studies	of	resectable	pancreatic	cancer,	identified	through	

comprehensive	literature	search,	to	offer	a	true	like-for-like	

comparison	based	on	currently	available	evidence.	Analysis	of	

neoadjuvant	therapy	versus	upfront	surgery	plus	adjuvant	therapy	

were	based	on	direct	comparisons	to	strengthen	certainty	of	findings	

with	indirect	comparisons	drawn	from	inclusion	of	upfront	surgery	

plus	adjuvant	therapy	versus	surgery	only	trials,	and	the	inclusion	of	

cohort	observational	studies	only	in	sensitivity	analysis	which	did	

not	alter	network	findings.	However,	this	study	also	shares	the	

limitations	of	the	existing	body	of	evidence	pertaining	to	the	

treatment	of	potentially	resectable	pancreatic	cancer:	heterogeneity	

and	small	underpowered	sample	size	(Andriulli	et	al.,	2012).	

Although	random	effects	modeling	was	employed	to	counter	

heterogeneity,	overall	there	is	a	lack	of	RCTs	comparing	neoadjuvant	

therapy	and	upfront	surgery	plus	adjuvant	therapy	(Lee	et	al.,	2016;	

Andriulli	et	al.,	2012;	Sharma	et	al.,	2015;	de	Geus	et	al.,	2016).	Only	

one	of	the	two	phase	II	trials	for	resectable	pancreatic	cancer	were	

randomised	(Golcher	et	al.,	2015)	with	the	remaining	studies	being	

either	prospective	or	retrospective	studies	which	raises	serous	
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concerns	about	bias	and	reduced	certainty	in	the	recommendations	

drawn	from	the	network	meta-analysis.		

	

Unlike	the	majority	of	existing	network	meta-analysis	(Bafeta	et	al.,	

2013;	Hutton	et	al.,	2014;	Zarin	et	al.,	2017),	this	study	went	beyond	

only	assessing	bias	of	included	trials	to	utilise	GRADE	approach	to	

rate	the	certainty	in	estimates	from	our	network	meta-analysis	

(Brown	et	al.,	2014;	Faltinsen	et	al.,	2018;	Guyatt	et	al.,	2008;	Puhan	

et	al.,	2014;	Salanti	et	al.,	2014).	Rather	than	dismiss	the	entirety	of	

the	existing	body	of	research	on	the	basis	of	its	FUPS	characteristics	

and	simply	conclude	that	RCTs	are	awaited,	statistical	techniques	

were	utilised	to	quantify	the	perceived	limitations	of	the	existing	

data.	This	included	assessing	convergence	using	the	Brooks-Gelman-

Rubin	method	and	by	checking	whether	the	Monte	Carlo	error	is	less	

than	5%	of	the	standard	deviation	of	the	effect	estimates	and	

between-study	variance	(Brown	et	al.,	2014).	Furthermore,	the	

MCMC	Bayesian	network	meta-analysis	was	fitted	with	three	chains	

as	a	means	of	checking	MCMC	convergence	(Brown	et	al.,	2014).	

Inconsistency	assessment,	the	conflict	between	direct	and	indirect	

evidence,	is	crucial	to	any	network	meta-analysis	(Dias	et	al.,	2013)	

and	was	measured	by	comparing	deviance	residuals	and	DIC	statistic	

in	fitted	consistency	and	inconsistency	models	(Brown	et	al.,	2014;	

Dias	et	al.,	2013;	Spiegelhater	et	al.,	2002).		

	

This	means	that	this	study	can	go	further	than	existing	studies	to	

provide	an	important	interim	analysis	that	adds	a	further	dimension	

to	the	debate	regarding	the	best	treatment	approach	for	potentially	

resectable	pancreatic	cancer.	Firstly	it	offers	an	indirect	comparison	
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of	outcomes	between	neoadjuvant	treatment	pathway	and	outcomes	

for	those	who	receive	surgery	only.	Therefore	rather	than	only	

comparing	upfront	surgery	plus	adjuvant	therapy	and	neoadjuvant	

pathways	this	helps	to	explore	more	individualised	outcomes	for	

those	patients	who	do	not	progress	to	receiving	adjuvant	therapy	in	

the	upfront	surgery	pathway	and	therefore	are	treated	with	surgery	

only.	Secondly	by	transparently	quantifying	the	impact	of	FUPS	

characteristics	on	the	study	outcomes,	this	study	both	highlights	and	

assesses	the	impact	of	the	limitations	of	the	existing	body	of	evidence	

on	which	current	assumptions	and	beliefs	regarding	treatment	

approaches	are	based.		

	

Triangulation	

	

These	findings	are	corroborated	by	previous	attempts	to	synthesise	

existing	evidence	comparing	upfront	surgery	plus	adjuvant	therapy	

and	neoadjuvant	therapy	for	resectable	pancreatic	cancer.		Meta-

analysis	by	both	Xu	et	al.	(2014)	and	Andriulli	et	al.	(2012)	reported	

marginal	benefit	of	neoadjuvant	therapy	for	resectable	pancreatic	

cancer	in	terms	of	overall	survival	and	disease	free	survival	for	

resectable	cases.		However,	neither	of	these	reports	focused	solely	on	

neoadjuvant	therapy	and	therefore	omitted	significant	studies	from	

their	meta-analysis	(Lee	et	al.,	2016).	Sharma	et	al.	(2015)	and	de	

Geus	et	al.	(2016)	synthesised	published	data	in	a	Markov	decision-

analysis	model	to	compared	neoadjuvant	therapy	and	upfront	

surgery	plus	adjuvant	therapy	for	the	treatment	of	resectable	

pancreatic	cancer	and	also	reported	marginal	benefit	of	neoadjuvant	

therapy.	More	recently	Versteijne	et	al.	(2018)	reported	more	
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significant	survival	benefit	with	neoadjuvant	therapy	in	their	meta-

analysis	but	the	reported	weighted	mean	overall	survival	time	

included	borderline	resectable	cases	therefore	captured	the	effect	of	

conversion	to	resectability	affecting	overall	survival	time	in	

neoadjuvant	therapy	pathway.	The	reported	weighted	mean	overall	

survival	time	for	resectable	only	cases	was	lower	although	still	

superior	to	upfront	surgery	plus	adjuvant	therapy	(Versteijne	et	

al.,2018).			

	

The	second	key	outcome	explored	through	direct	and	indirect	

comparison	was	the	rate	of	R0	resection,	which	is	known	to	impact	

survival	time	(Howard	et	al.,	2006).	Once	again	neoadjuvant	therapy	

was	found	to	be	superior	to	upfront	surgery	plus	adjuvant	therapy	

which	is	in	keeping	with	the	hypothesis	that	neoadjuvant	therapy	

results	in	higher	rates	of	R0	resection	(Asare	et	al.,	2016;	Lee	et	al.,	

2016;	Chua	et	al.,	2011).	However,	definitions	of	R0	resection	can	

vary	between	studies,	which	could	potentially	impact	reported	

outcomes	(Versteijne	et	al.,2018).	In	this	study	convergence	was	

achieved	across	all	models	comparing	this	outcome	and	no	issues	

with	inconsistency	were	identified	in	our	analysis.		

	

A	key	clinical	concern	when	selecting	a	treatment	pathway	for	is	the	

delivery	of	multimodal	treatment:	resection	in	the	neoadjuvant	

therapy	pathway	and	receipt	of	adjuvant	therapy	in	the	upfront	

surgery	pathway.	Our	analysis	of	pooled	proportions	found	that	for	

resectable	pancreatic	cancer	63%	of	patients	in	the	upfront	surgery	

plus	adjuvant	therapy	pathway	received	adjuvant	therapy,	and	76%	

in	the	neoadjuvant	therapy	pathway	underwent	resection.	These	
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findings	are	in	keeping	with	the	results	of	a	recent	meta-analysis	of	

pooled	proportions	that	reported	68.6%	of	patients	in	upfront	

surgery	pathway	received	adjuvant	therapy	and	76.8%	of	resectable	

cases	in	neoadjuvant	therapy	pathways	underwent	resection	

(Versteijne	et	al.,2018).		

	

Conclusion:	emergence,	boundary	setting,	lack	of	complete	

knowledge,	ethics	and	future	direction	of	research	

	

To	conclude	our	Bayesian	network	meta-analysis	shows	that	

neoadjuvant	therapy	is	no	worse	than	traditional	upfront	surgery	

plus	adjuvant	therapy	approach	and	may	even	hold	benefit	across	

outcomes	of:	R0	resection,	1,2,3,4,and	5-year	survival	for	potentially	

resectable	and	resectable	cases	of	pancreatic	cancer.		This	finding	in	

the	context	of	the	limitations	of	existing	studies	means	that	

conclusive	superiority	of	one	approach	over	another	cannot	be	

determined	without	a	degree	of	uncertainty.	Furthermore	the	

boundaries	of	this	meta-analysis	are	determined	by	how	outcomes	

are	reported	in	studies	and	therefore	emergence	as	multiple	factors	

dynamically	interact	within	the	complex	system	of	pancreatic	cancer	

management	delivery	has	not	yet	been	explored.	A	lack	of	complete	

knowledge	regarding	the	system	therefore	remains	and	it	would	be	

unethical	to	conclude	that	either	pathway	has	superiority.	In	light	of	

these	findings	the	possibility	is	raised	that	superior	pathway	

selection	may	be	determined	at	individual	patient	level.	The	potential	

of	Bayesian	statistical	approach	in	testing	this	hypothesis	through	

Markov	decision	analysis	was	therefore	undertaken.	
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4.2	Markov	Decision	Analysis			
	

Publications	resulting	from	this	analysis:	

	

Bradley,	A.	et	al.	(2018).	‘Markov	decision	analysis	of	neoadjuvant	

treatment	pathway	versus	surgery	first	pathway	for	resectable	

pancreatic	cancer’.	Journal	of	Clinical	Oncology,	36	(4).	pp.	456-456		

	

Bradley,	A.	and	Van	Der	Meer,	R.	(2019).	‘Neoadjuvant	therapy	versus	

upfront	surgery	for	potentially	resectable	pancreatic	cancer:	a	

Markov	decision	analysis’.	PLoS	One,	14(2):e0212805.	

doi:10.1371/journal.pone.0212805	

	

Abstract	

	

Background:	Neoadjuvant	therapy	has	emerged	as	an	alternative	

treatment	strategy	for	potentially	resectable	pancreatic	cancer.	In	the	

absence	of	large	RCTs	offering	a	direct	comparison,	this	study	aims	to	

use	Markov	decision	analysis	to	compare	efficacy	of	traditional	

upfront	surgery	plus	adjuvant	therapy	(which	will	be	referred	to	as	

surgery	first	pathway	(SF)	within	this	model)	and	neoadjuvant	

treatment	pathways	(which	will	be	referred	to	as	NAT	within	this	

model)	for	potentially	resectable	pancreatic	cancer.	Competing	

pathways	will	then	also	be	compared	solely	for	cases	that	are	

resectable	at	presentation	and	the	results	of	this	analysis	will	be	

triangulated	with	the	results	of	a	Markov	decision-analysis	based	on	

a	prospectively	maintained	patient	database	from	a	tertiary	referral	

centre	pancreatic	unit.		
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Methods:	An	advanced	Markov	decision	analysis	model	was	

constructed	to	compare	SF	and	NAT	pathways.	Transition	

probabilities	were	first	calculated	from	RCTs	and	phase	II/III	trials	

after	comprehensive	literature	search.	The	model	was	then	

populated	with	data	from	a	prospectively	maintained	tertiary	

referral	centre	database.	Utility	outcomes	were	measured	in	overall	

and	quality-adjusted-life	months	(QALMs)	on	an	intention-to-treat	

basis	as	the	primary	outcome.	Markov	cohort	analysis	of	treatment	

received	was	the	secondary	outcome.	Model	uncertainties	were	

tested	with	one	and	two-way	deterministic	and	probabilistic	Monte	

Carlo	sensitivity	analysis.		

	

Results	Using	Synthesised	Data	from	Published	Studies	for	

Potentially	Resectable	Pancreatic	Cancer:	SF	gave	23.72	months	

(18.51	QALMs)	versus	20.22	months	(16.26	QALMs).	Markov	cohort	

analysis	showed	that	where	all	treatment	modalities	were	received	

NAT	gave	35.05	months	(29.87	QALMs)	versus	30.96	months	

(24.86QALMs)	for	R0	resection	and	34.08	months	(29.87	QALMs)	

versus	25.85months	(20.72	QALMs)	for	R1	resection.		One-way	

deterministic	sensitivity	analysis	showed	that	NAT	was	superior	if	

the	resection	rate	was	greater	than	51.04%	or	below	75.68%	in	SF	

pathway.	Two-way	sensitivity	analysis	showed	that	pathway	

superiority	depended	on	obtaining	multimodal	treatment	in	either	

pathway.		

	

Results	Using	Synthesised	Data	from	Published	Studies	for	

Resectable	Pancreatic	Cancer:	NAT	pathway	yielded	26.41	months	

(22.54	QALMs)	compared	to	23.72	months	(18.51	QALMs).	Markov	
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cohort	analysis	showed	that	in	patients	who	received	all	treatment	

modalities	NAT	pathway	yielded	39.34	months	(34.63	QALMs)	

compared	to	30.96	months	(24.86	QALMs)	for	R0	resection	and	

34.94	months	(31.07	QALMs)	compared	to	25.85	months	(20.72	

QALMs)	for	R1	resection.	Deterministic	sensitivity	analysis	

demonstrated	that	pathway	superiority	depended	on	the	probability	

of	receiving	multimodal	treatment	in	either	pathway.		

	

Results	Using	Institutional	Patient	Database	for	Resectable	

Pancreatic	Cancer:	NAT	yielded	32.90	months	(28.51	QALMs)	

compared	to	24.68	months	(19.23	QALMs).	Deterministic	sensitivity	

analysis	demonstrated	the	importance	of	receiving	multimodal	

treatment	in	determining	pathway	superiority.	Probabilistic	Monte	

Carlo	analysis	reported	NAT	pathway	superiority.	Markov	cohort	

analysis	showed	that	greatest	utility	was	achieved	in	the	subgroup	of	

patients	in	the	SF	pathway	who	received	R0	resection	and	adjuvant	

therapy	(42.38	QALMs).	

	

Conclusion:	Whilst	NAT	is	a	viable	alternative	to	traditional	SF	

approach,	even	for	cases	that	are	resectable	at	presentation,	superior	

pathway	selection	depends	on	the	individual	patient’s	likelihood	of	

receiving	multimodal	treatment	in	either	pathway.	Careful	

consideration	must	be	given	to	patient	selection	pertaining	to	

likelihood	of	receiving	all	treatment	modalities	and	achieving	R0	

resection	in	either	pathway.	Future	research	must	therefore	focus	on	

developing	ways	of	engaging	with	the	complexity	to	move	towards	

personalised	predictive	modeling	to	support	individualised	

treatment	selection.		
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Introduction	

	

Surgical	resection	followed	by	adjuvant	therapy	has	become	the	

standard	of	care	for	resectable	pancreatic	cancer	(Neoptolemos	et	al.,	

2001).	However,	despite	advances	in	surgical	techniques	and	

adjuvant	therapies,	5-year	survival	for	resected	pancreatic	cancer	

has	been	reported	at	between	7%	and	25%	(CRUK,	2019).	

Furthermore,	up	to	50%	of	patients	do	not	actually	receive	adjuvant	

therapy	post	resection	due	to	a	combination	of	factors	including:	

post-operative	complications,	early	metastases	nullifying	the	

potential	benefits	of	high-risk	surgery	(Winter	et	al.,	2012)	and	

reduced	performance	status	due	to	pre-existing	medical	conditions	

(Bilimoria	et	al.,	2007).	This	has	resulted	in	a	growing	interest	in	

neoadjuvant	therapy	(Asare	et	al.,	2016;	Lee	et	al.,	2016).		

	

There	is	currently	a	lack	of	RCTs	comparing	upfront	surgery	and	

neoadjuvant	therapy	treatment	pathways	(Versteijne	et	al.,	2018).	

Despite	promising	results	from	cohort	studies	and	phase	II	trials,	

existing	meta-analysis	corroborate	the	findings	from	section	4.1	in	

reporting	only	marginal	benefit	of	NAT	in	terms	of	overall	and	

disease-free	survival	(Lee	et	al.,	2016;	Sharma	et	al.,	2015;	Xu	et	al.,	

2014;	Andriulli	et	al.,	2012;	Petrelli	et	al.,	2015).	Whilst	the	a	role	for	

NAT	has	been	broadly	accepted	for	cases	that	are	borderline	

resectable	or	locally	advanced,	neoadjuvant	therapy	for	resectable	

pancreatic	cancer	therefore	remains	an	area	of	prime	controversy.		

	

Two	previous	Markov	decision-analysis	found	marginal	benefit	with	

neoadjuvant	therapy	for	resectable	only	cases	(Sharma	et	al.,	2015;	
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DeGus	et	al.,	2016).	Sharma	et	al.	(2015)	used	data	drawn	from	

prospective	phase	II	and	III	trials.	De	Gus	et	al.	(2016)	also	included	

data	from	retrospective	studies	compiled	from	a	literature	search	

from	a	single	search	engine.	Only	one	previous	Markov	decision	

analysis	compared	efficacy	of	both	pathways	for	potentially	

resectable	disease	and	found	no	conclusively	superior	pathway	

(VanHouten	et	al.,	2012).	These	studies	share	the	limitations	of	the	

existing	body	of	evidence:	heterogeneity	and	small	underpowered	

sample	size.		

	

The	aim	of	this	section	is	to	compare	upfront	surgery	(SF)	versus	

neoadjuvant	therapy	(NAT)	for	the	treatment	of	potentially	

resectable	pancreatic	cancer	(including	resectable,	borderline	

resectable	and	locally	advanced	cases)	through	Markov	decision-

analysis	(Section	4.2.1).	These	competing	treatment	pathways	will	

then	be	compared	for	only	cases	that	are	resectable	at	presentation	

(Section	4.2.2)	with	the	results	from	the	Markov	decision-analysis	

using	synthesised	data	triangulated	against	those	from	a	Markov	

decision-analysis	using	patient	data	form	a	tertiary	referral	centre	

(Section	4.2.3).	The	objectives	are	to	compare	predicted	outcomes	

between	both	pathways	on	an	intention-to-treat	basis.	However,	this	

research	aims	to	go	further	by	using	the	FUPS	data	in	the	context	of	

complexity	to	attempt	to	uncover	whether,	by	developing	more	

transparent	ways	of	statistically	engaging	with	the	complexity	of	the	

system,	more	individualised	ways	of	determining	treatment	pathway	

superiority	at	a	personalised	level	could	emerge.			

Materials	and	methods	
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Markov	model	

	

TreeAge	Pro	2017	(TreeAge	Software	Ins.,	Williamstown,	MA)	was	

used	to	construct	a	Markov	cohort	decision	analysis	model	in	an	

advanced	decision-tree	format	comparing	base	case,	SF	(with	

adjuvant	therapy	including	chemotherapy,	chemoradiotherapy,	or	

both),	to	NAT	(which	included	chemotherapy	and/or	

chemoradiotherapy)	followed	by	re-staging	and,	if	possible,	surgical	

resection	(Figure	28).	Upon	completion	of	treatment,	cohorts	entered	

the	Markov	health-state	transition	model	with	possible	survival	

states	including:	alive	without	disease,	alive	with	disease	and	dead.	

Each	Markov	cycles	equated	to	1	month	with	maximum	follow-up	of	

60-cycles	or	until	death.		
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Figure	28:	Overview	of	the	structure	of	the	Markov	decision-tree.		

	

	

	
	

	

	

Outcome	Measures	

	

Cumulative	payoffs	were	calculated	in	life	months	and	QALMs,	which	

scaled	survival	from	0	(equivalent	to	death)	to	1	(Sharma	et	al.,	2015;	

DeGus	et	al.,	2015)	based	on	indicies	taken	from	published	literature	

(Ljungman	et	al.,	2011;	Murphy	et	al.,	2012)	and	World	Health	

Organization	and	European	Quality	of	Life	Survey	(Eshuis	et	al.,	

2015;	Romanus	et	al.,	2012;	Tam	et	al.,	2013).		
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Transparency	of	Analysis	

	

Data	sources	and	transition	probabilities		

	

Source	data	was	identified	through	comprehensive	literature	search	

of	MEDLINE,	Embase,	PubMed	and	Cochrane	database	and	Cochrane	

database	of	Clinical	Trials	following	the	PRISMA	checklist	(Moher	et	

al.,	2009).	For	each	of	the	searches,	the	entire	database	was	included	

from	the	year	2000	up	to	and	including	31st	October	2018,	with	no	

further	date	restrictions	or	limits	applied.	Following	screening,	

reference	lists	and	citations	of	all	included	papers	were	manually	

searched	to	identify	any	additional	articles	until	no	new	articles	were	

identified.	The	following	data	was	extracted	from	each	study:	study	

details	(country,	year,	design,	number,	mean	age,	sex,	co-morbidity	

profile	and	presenting	disease	stage	of	participants),	details	of	

treatment	protocols,	treatment	outcomes	(treatment	completion	

rates,	rates	of	tumour	resection,	R0	resection	rates,	drug	toxicity	

data,	post-operative	complication	rates,	overall	survival	and	disease-

free	survival)	and	risk-of-bias	data.			

	

The	inclusion	criteria	was	RCTs	and	prospective	phase	II	and	III	

studies	of	neoadjuvant	therapy	for	the	treatment	of	pancreatic	

cancer,	published	in	English	language	since	2000,	involving	

chemo/radiotherapy-naive	human	subjects	over	18	years	of	age	with	

preoperatively	staged	pancreatic	cancer	as	potentially	resectable.	

Included	trials	had	to	report:	protocol	design,	number	of	participants	

per	arm,	median	age	and	co-morbidities	of	subjects,	pre-treatment	

staging	of	pancreatic	cancer,	toxicity	profile,	results	of	post	
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neoadjuvant	re-staging,	resection	rates,	post-operative	complications	

defined	by	Clavien-Dindo	system,	and	survival	data.	Retrospective	

and	cohort	studies,	case	series	and	case	reports	were	excluded	as	

were	studies	from	identical	patient	cohorts	and	trials	involving	intra-

operative	radiotherapy	and	trials	including	disease	other	than	

pancreatic	cancer.	Trials	matching	this	inclusion	criteria	that	

reported	only	outcomes	for	cases	of	pancreatic	cancer	that	were	

resectable	at	presentation,	or	that	reported	the	outcomes	for	

resectable	only	cases	separately,	were	also	included	in	a	separate	

Markov	decision-analysis	for	the	treatment	of	resectable	pancreatic	

cancer.			

	

As	the	majority	of	trials	were	single	arm,	to	populate	the	upfront	

surgery	pathway	the	same	databases	were	searched	for	RCTs	of	

surgery	and	adjuvant	therapy,	with	the	same	inclusion	and	data	

reporting	criteria.	The	outcomes	of	this	group	could	introduce	bias	

because	by	definition	these	patients	have	survived	surgery	and	not	

developed	early	metastatic	disease	and	also	had	to	have	adequate	

performance	status	to	be	randomised	to	adjuvant	therapy	even	if	

they	did	not	receive	adjuvant	therapy.	To	overcome	this	issue	cohort	

studies	comparing	neoadjuvant	therapy	and	upfront	surgery,	with	

the	otherwise	same	inclusion	criteria	and	data	reporting	

requirements,	were	also	included	in	the	upfront	surgery	arm	and	

solely	used	to	offer	comparison	across	outcomes	of	resection,	R0	

resection	rates	and	receipt	of	adjuvant	therapy.		
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Statistical	analysis	

	

Markov	model	transition	probabilities	were	based	on	weighted	

pooled	estimates	of	proportions	from	included	studies,	calculated	

using	Freeman-Tukey	(1950)	arcsine	square	root	transformation	

under	random	effects	model	to	account	for	heterogeneity.	Survival	

time	was	based	on	time	from	diagnosis.	Gillen	et	al.	(2010)	approach	

to	calculating	weighted	median	survival	time	was	used	as	evidence	

has	shown	that	weighted	averaging	of	medians	cannot	achieve	

unbiased	pooled	estimates	of	survival	time	(Rouder	et	al.,	2004).	This	

approach	is	based	on	averaging	parameter	estimates	of	a	presumed	

density	function	of	survival.		The	pooled	distribution	parameter	is	

used	to	recalculate	the	estimate	of	the	median	from	the	pooled	

distribution	parameter	(Gillen	et	al.,	2010).	In	this	case	the	pooled	

distribution	parameter	is	the	exponential	distribution,	which	implies	

a	time	constant	hazard	rate	corresponding	to	the	sole	distribution	

parameter	λ.	From	this	the	weighted	estimate	of	median	survival	

(mp)	is	derived	from	the	formula	(Gillen	et	al.,	2010):	

	

𝑚𝑝 = !"
!"

!
!!!

-1				

	

where	mi	is	median	survival	within	the	study	population	i	(with	i	

being	1	to	k	where	k	is	the	number	of	included	studies)	(Gillen	et	al.,	

2010	).	wi	is	the	study	specific	weight	function	derived	from	number	

of	study	participants	divided	by	total	number	of	evaluable	patients	

(Gillen	et	al.,	2010).		
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Quantifying	the	Limitations	Stemming	from	FUPS	Characteristics	of	

Data	

	

The	Cochrane	Collaboration’s	risk	of	bias	tool	(Higgins	et	al.,	2011)	

and	ROBINS-I	tool	(Sterne	et	al.,	2016)	were	used	to	assess	the	

quality	and	risk-of-bias	of	each	included	trial.	Furthermore	the	

potential	impact	of	bias	and	uncertainty	on	all	variables	within	the	

model	were	extensively	tested	through	deterministic	and	

probabilistic	sensitivity	analysis.			

	

Model	uncertainties	for	all	included	components	were	tested	with	

one	and	two-way	deterministic	sensitivity	analysis	with	baseline	

transition	probabilities	for	each	variable	altered	between	highest	and	

lowest	reported	values.	Probabilistic	Monte	Carlo	sensitivity	analysis	

was	set	to	10000	iterations	with	model	probabilities	sampled	from	

the	entirety	of	the	data	distribution	of	each	variable	contained	within	

the	Markov	models.	Data	for	each	variable	was	fitted	against	55	

possible	distributions	with	the	best	fit	determined	by	the	Anderson	

Darling	statistic.			

	

	

4.2.1	Results:	Markov	Decision-Analysis	for	Potentially	Resectable	

Pancreatic	Cancer	

	

Eligible	Studies	

	

50	phase	II/III	studies	met	the	inclusion	criteria	and	were	included	in	

the	neoadjuvant	therapy	arm	of	the	model,	4	of	which	were	
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randomised.	9	of	these	studies	offered	comparison	with	upfront	

surgery	(Appendix	M).		

	

	
	
For	the	upfront	surgery	pathway	15	studies	were	RCTs,	10	of	which	

offered	comparison	between	adjuvant	regimes,	5	of	which	offered	

comparison	between	adjuvant	therapy	and	surgery	only	(Appendix	

M).	16	cohort	studies	were	also	included	in	the	upfront	surgery	

pathway	to	offer	comparison	across	outcomes	of	resection	rates,	R0	

resection,	and	rates	of	receiving	adjuvant	therapy	(Appenidx	M).	

Probability	estimates	and	ranges	and	quality-of-life	utilities	are	

displayed	in	Table	17.	
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Table	17:	Summary	of	transition	probabilities,	parameters	of	data	

distribution	and	payoff	utilities	for	quality	adjusted	life	months	

(QALMs).	
Variable	 Baseline	

Transition	
Probability	
(95%	
Confidence	
Interval)	

Range		 Standard	
Deviation	

Variance	 Data	
Distribution:	
parameters	
(Anderson	
Darling	
Statistic)	

Grade	3+	
toxicity	with	
NAT	

0.35	(0.28-
0.43)	

0-1.0	 0.03799	 0.00144	 Generalised	
Extreme	Value:	
k=0.45856	
σ=0.01111	
μ=0.00904	
(0.55904)	

Resection	in	
NAT	pathway	

0.41	(0.33-
0.49)	

0-0.86	 0.00848	 7.1972E-5	 Generalised	
Extreme	Value:	
k=0.15727	
σ=0.00545	
μ=0.00618		
(0.36129)	

Exploratory	
Laparoscopy
/Laparotomy	

0.1	(0.07-
0.13)	

0-0.36	 0.00349	 1.2182E-5	 Generalised	
Pareto:	
k=0.06879	
σ=0.00306		
μ=	-5.1223E-4		
(1.3525)	

R0	resection	
NAT	pathway	

0.29	(0.21-
0.36)	

0-0.74	 0.0068	 4.6303E-5	 Johnson	SB:	
γ=1.7195	
δ=1.0417	
λ=0.04849		
ξ=-0.00113	
(0.35896)	

Grade	3-4	
post-
operative	
complication	
NAT	pathway	

0.35	(0.19-
0.53)	

0.11-
0.64	

0.02702	 7.3021E-4	 Generalised	
Extreme	Value:	
k=-0.45505	
σ=0.03128	
μ=0.04101			
(0.1996)	

Grade	5	post-
operative	
complication	
NAT	pathway	

0.02	(0.01-
0.03)	

0-0.36	 0.00097	 9.4387E-7	 Pareto	2:	
α=0.34207	
β=1.3899E-13	
(-13.983)		

Resection	SF	
pathway	

0.94	(0.90-
0.96)	

0.70-
1.0	

0.1219	 0.01486	 Burr:		
k=0.0595	
α=10.327	
β=0.00112	
(0.12818)	

R0	resection	
SF	pathway	

0.56	(0.51-
0.62)	

0.16-
0.86	

0.09869	 0.00974	 Pearson	5:	
α=0.61636	
β=7.0460E-4	
(0.18259)	

Grade	3-4	
post-
operative	

0.22	(0.13-
0.33)	

0.04-
0.54	

0.01297	 0.0002	 Log-Pearson	3:		
α=66.845	
β=-0.09425	
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complication	
SF	pathway	

γ=2.0838	
(0.29235)	

Grade	5	post-
operative	
complication	
SF	pathway	

0.07(0.02-
0.13)	

0-0.36	 0.00948	 8.9795E-5	 Cauchy:	
σ=0.00373	
μ=	0.00639	
(0.38658)	

Receiving	
adjuvant	
therapy	

0.61(0.57-
0.66)	

0.26-
0.94	

0.10088	 0.01018	 Burr:	
k=0.26048	
α=2.145	
β=9.2071E-4	
(0.18949)	

Adjuvant	
toxicity	
grade	3+	

0.43(0.25-
0.62)	

0.09-
0.98	

0.02753	 0.00076	 Log-Pearson	3:	
α=1916.0	
β=-0.02672	
γ=47.081	
(0.34508)	

Survival	
State		

Utility	for	
QALM	

Living	with	
stable	
pancreatic	
cancer	

0.81	

Undergoing	
chemo/radio
therapy	

0.81	

Experiencing	
chemo/radio
therapy	
complication
s	

0.53	

Recovering	
from	
pancreatic	
surgery	

0.59	

Experiencing	
surgical	
complication
s	

0.48	

Living	with	
unresectable	
disease	and	
pre-
operative	
quality-of-life	

0.65	

	

*NAT=	Neoadjuvant	Pathway;	SF	=	Surgery	First	(or	Upfront	Surgery)	Pathway		
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Results	of	Markov	decision-analysis	

	

Intention-to-treat	analysis	of	the	treatment	pathways,	based	on	

baseline	transition	probabilities,	showed	that	upfront	surgery	

pathway	gave	23.72	months	(18.51	QALMs)	compared	to	20.22	

months	(16.26	QALMs)	for	neoadjuvant	therapy	pathway.	The	results	

of	Markov	cohort	analysis	are	outlined	in	Table	18	and	demonstrate	

superiority	of	the	NAT	pathway	for	patients	who	received	all	

treatment	modalities.		

	

Table	18:	Results	from	Markov	cohort	analysis	

	
	

NAT	Pathway	 SF	Pathway	

R0	Resection	
35.05	months	(29.87	QALMs;	
POC	=29.76	QALMs)	

Received	Adjuvant	Therapy:	
30.96	months	(24.86	QALMs;	
POC=	24.75	QALMs;	AT=	
21.82	QALMs;	POC	and	
AT=21.71	QALMs)	
No	Adjuvant	Therapy:	
24.03	months	(20.12	QALMs;	
POC=20.01QALMs)	

R1	Resection	
34.08	months	(29.87	QALMs;	
POC=29.76	QALMs)		

Received	Adjuvant	Therapy:	
25.85	months	(20.72	QALMs;	
POC=	20.61	QALMs;	AT=	
18.20	QALMs;	POC	and	
AT=18.09	QALMs)	
No	Adjuvant	Therapy:	
21.26	months	(17.56	QALMs;	
POC=17.45	QALMs)	

Exploratory	Laparoscopy	or	
Laparotomy		

10.86	months	(7.22QALMs)	 	10.48	months	(6.97QALMs)	

No	Surgery		
10.86	months	(7.06	QALMs)	 	

	
POC=	post-operative	complication	grade	3	or	4;	AT=	adjuvant	therapy	resulting	in	grade	3	or	4	

toxicity		
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Deterministic	sensitivity	analysis	

	

Deterministic	sensitivity	analysis	tested	the	sensitivity	of	the	results	

of	the	model	to	variations	in	parameters	of	specific	model	variables	

by	altering	the	parameters	between	highest	and	lowest	reported	

values.		One-way	deterministic	sensitivity	analysis	determined	the	

effect	on	the	overall	results	of	the	model	by	varying	the	parameter	of	

each	variable	individually.	Two-way	deterministic	sensitivity	

analysis	determined	the	effect	on	the	model	of	altering	the	

parameters	of	two	variables	simultaneous.			

	

One-way	deterministic	sensitivity	analysis	showed	that	NAT	was	the	

superior	treatment	pathway	if	the	probability	of	achieving	resection	

in	this	pathway	was	greater	than	51.04%	(Figure	29)	or	the	

probability	of	achieving	resection	in	the	SF	pathway	was	less	than	

75.68%	(Figure	30).	
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Figure	29:	One-way	deterministic	sensitivity	analysis	of	the	

probability	of	resection	in	Neoadjuvant	pathway.	This	figure	shows	

the	effect	of	altering	the	baseline	probability	of	resection	in	the	

neoadjuvant	pathway	on	overall	model	outcome.	
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Figure	30:	One-way	deterministic	sensitivity	analysis	of	the	

probability	of	resection	in	the	surgery	first	pathway.	This	figure	

shows	the	effect	of	altering	the	baseline	probability	of	resection	in	

the	surgery	first	pathway	on	overall	model	outcome.	

	

	

	
	

Two-way	deterministic	sensitivity	analysis	demonstrated	that	

treatment	superiority	depended	on	receiving	multimodal	treatment	

(resection	in	the	NAT	pathway	and	adjuvant	therapy	in	the	SF	

pathway).	Fig	31a	shows	the	thresholds	at	which	competing	

pathways	offer	superior	outcomes	with	Figure	31b	providing	

corresponding	probability	thresholds	and	predicted	resulting	

quality-adjusted	survival	time.					
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Fig	31a.	Two-way	sensitivity	analysis.	Y-axis	shows	probability	of	

receiving	adjuvant	therapy	in	surgery	first	(SF)	pathway	and	x-axis	

shows	probability	of	receiving	resection	in	neoadjuvant	(NAT)	

pathway.	The	red	area	represents	where	patients,	given	competing	

probability	of	receiving	multimodal	treatment	in	competing	

pathways,	would	benefit	from	surgery	first	approach.	The	blue	area	

represents	where	neoadjuvant	therapy	would	be	the	superior	

treatment	pathway	in	terms	of	quality-adjusted	survival.		
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Fig	31b.	Corresponding	predicted	survival	time	in	QALMs.	X	and	Y-

axis	provide	altering	probabilities	of	multimodal	treatment	in	each	

pathway	with	corresponding	survival	time	given	in	QALMs.		

	

	
	

Probabilistic	sensitivity	analysis	

	

Probabilistic	sensitivity	analysis	tested	the	level	of	confidence	in	the	

model	output	in	relation	to	uncertainty	in	model	input	by	

determining	the	distribution	of	the	input	data	for	each	variable	from	

the	median,	standard	deviation	and	variance	of	the	input	data	(Table	

17).	All	possible	parameter	values	for	each	variable	within	the	model	

were	therefore	tested	by	drawing	probabilities	from	the	data	

distribution	when	probabilistic	Monte	Carlo	sensitivity	analysis	was	

set	to	simulate	10000	patients	cycling	through	the	model.		

	

The	results	of	probabilistic	Monte	Carlo	sensitivity	analysis	showed	

that	SF	gave	a	mean	survival	time	of	19.72	months	(range	5.57-



	 303	

22.95)	compared	to	17.16	months	(range	16.50-17.38)	for	NAT	with	

standard	deviation	2.68	and	0.19,	and	variance	7.17	and	0.04	in	SF	

and	NAT	pathways	respectively.	When	minimum	significant	

difference	was	set	at	3.65	months	or	greater,	the	model	reported	

indifference	in	superior	pathway	selection	frequency.					

	

	

4.2.2	Results:	Markov	Decision-Analysis	for	Resectable	Pancreatic	

Cancer	

	

Eligible	Studies		

	

A	total	of	18825	studies	on	neoadjuvant	therapy	for	pancreatic	

cancer	were	identified,	of	which	452	underwent	full	screening.		50	

phase	II/III	studies	were	identified,	9	of	which	offered	comparison	

with	upfront	surgery	and	were	included	in	the	SF	pathway.	18	of	the	

50	studies	reported	outcomes	either	solely	for	resectable	cases,	or	

reported	outcomes	for	resectable	cases	separately	and	were	included	

in	the	NAT	arm	of	the	Markov	model	(Appendix	M).		

	

15	out	of	these	18	studies	used	neoadjuvant	chemoradiotherapy.	12	

neoadjuvant	chemotherapy	regimes	were	reported	across	the	18	

studies	with	3	studies	offering	comparison	between	neoadjuvant	

regimes.	Gemcitabine	featured	in	9	neoadjuvant	chemotherapy	

regimes	either	used	in	isolation	(n=1	study)	or	combined	with:	

radiotherapy	only	(n=6	studies),	cisplatin	(n=3	studies;	cisplatin	and	

radiation	n=1	study),	oxaliplatin	(n=1	study;	oxaliplatin	and	radiation	

n=1	study),	capecitabine	(and	radiation	n=1	study;	capecitabine	and	
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docetaxel	n=1	study)	or	cetuximab	and	radiation	(n=1	study).	The	

remaining	3	neoadjuvant	chemotherapy	regimes	consisted	of	

capecitabine	and	radiation	(n=1	study),	fluorouracil,	cisplatin	and	

radiation	(n=3	studies)	and	paclitaxel	and	radiation	(n=1	study).	4	of	

the	18	studies	stated	that	patients	who	underwent	resection	in	the	

NAT	pathway	also	received	adjuvant	therapy	post	resection	

(Appenidx	M).			

	

For	comparative	analysis	RCTs	reporting	outcomes	of	adjuvant	

therapy	following	surgery	were	included.	Electronic	database	search	

identified	25332	studies.	15	studies	were	RCTs,	10	of	which	offered	

comparison	between	adjuvant	regimes,	5	of	which	offered	

comparison	between	adjuvant	therapy	and	surgery	only	(Appendix	

M).	

	

For	comparison	of	outcomes	of	resection	rates,	R0	resection	rates,	

and	rates	of	receiving	adjuvant	therapy	a	search	was	undertaken	of	

studies	offering	comparison	between	upfront	surgery	and	

neoadjuvant	therapy.	A	total	of	14375	studies	were	identified	

through	search	of	electronic	databases,	452	of	which	underwent	full	

text	review	(Appendix	M).	25	studies	were	identified	that	offered	

comparison	between	neoadjuvant	therapy	and	upfront	surgery.	In	

addition	to	the	9	phase	II/III	trials	already	identified	that	compared	

neoadjuvant	therapy	and	upfront	surgery,	16	cohort	studies	were	

identified	and	outcomes	included	in	the	SF	arm.	6	of	these	studies	

were	prospective	and	10	of	these	studies	were	retrospective		

(Appendix	M).			
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Model	Evidence	

	

Markov	Model	structure	is	shown	in	Figure	28.	Table	19	outlines	

transition	probabilities	within	the	model	derived	from	weighted	

pooled	estimates	of	proportions	calculated	using	Freeman-Tukey	

arcsine	square	root	transformation	under	random	effects	model	with	

corresponding	95%	Confidence	Intervals	(Freeman	&	Tukey,	1950).	

The	ranges	in	reported	literature,	standard	deviation	and	variance	

were	used	to	test	uncertainty	in	model	output	through	both	

deterministic	and	probabilistic	sensitivity	analysis.			
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Table	19:	Transition	Probabilities	and	Payoff	Utility	for	Quality-

Adjusted-Life-Months	(QALMs)		
Variable	 Transition	

Probability	
(95%	
Confidence	
Interval)	

Range		 Standard	
Deviation;	
Variance	

Data	
distribution;	
Parameters;	
(Anderson	
Darling	
Statistic)	

Grade	3+	toxicity	with	
NAT	

0.41	(0.90-
0.97)	

0.70-
1.00	

0.09037;	
0.00817	

Gen.	Pareto;	
k=0.16131	
σ=0.06585		
μ=-0.00512	
(0.37908)	

Resection	in	NAT	pathway	 0.63	(0.57-
0.69)	

0.32-
0.85	

0.02102;	
4.4190E-4	

Gen.	Extreme	
Value;		
k=0.07104	
σ=0.01585	
μ=0.03134	
(0.30431)	

Exploratory	
Laparoscopy/Laparotomy	

0.12	(0.08-
0.17)	

0-0.36	 0.00633;	
4.0057E-5		

Johnson	SB;	
γ=2.0682	
δ=1.7897	
λ=0.0624		
ζ=-0.00855	
(0.56039)	

R0	resection	NAT	pathway	 0.49	(0.36-
0.62)	

0.06-
0.71	

0.03079;		
9.4797E-4	

Cauchy;	
σ=0.013	
μ=0.05608;	
(0.21049)	

Grade	3-4	post-operative	
complication	NAT	
pathway	

0.19(0.13-
0.26)	

0.06-
0.64	

0.00457;	
2.0931E-5	

Gen.	
Extreme.	
Value;		
k=-0.32622	
σ=0.0048	
μ=0.01075	
(0.27029)	

Grade	5	post-operative	
complication	NAT	
pathway	

0.02(0.01-
0.04)	

0-0.12	 0.00217;	
4.7206E-6		

Pareto	2;	
α=0.22134	
β=4.0418E-
13	
(-6.8426)	

Resection	SF	pathway	 0.94	(0.90-
0.96)	

0.70-1.0	 0.1219;	
0.01486	

Burr:		
k=0.0595	
α=10.327	
β=0.00112	
(0.12818)	

R0	resection	SF	pathway	 0.56	(0.51-
0.62)	

0.16-
0.86	

0.09869;	
0.00974	

Pearson	5:	
α=0.61636	
β=7.0460E-4	
(0.18259)	

Grade	3-4	post-operative	
complication	SF	pathway	

0.22	(0.13-
0.33)	

0.04-
0.54	

0.01297;	
0.0002	

Log-Pearson	
3:		
α=66.845	
β=-0.09425	
γ=2.0838	
(0.29235)	
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Grade	5	post-operative	
complication	SF	pathway	

0.07(0.02-
0.13)	

0-0.36	 0.00948;	
0.0002	

Cauchy:	
σ=0.00373	
μ=	0.00639	
(0.38658)	

Receiving	adjuvant	
therapy	

0.61(0.57-
0.66)	

0.26-
0.94	

0.10088;	
0.01018	

Burr:	
k=0.26048	
α=2.145	
β=9.2071E-4	
(0.18949)	

Adjuvant	toxicity	grade	3+	 0.43(0.25-
0.62)	

0.09-
0.98	

0.02753;	
0.00076		

Log-Pearson	
3:	
α=1916.0	
β=-0.02672	
γ=47.081	
(0.34508)	

Survival	State		 Utility	for	
QALM	

Living	with	stable	
pancreatic	cancer	

0.81	

Undergoing	
chemo/radiotherapy	

0.81	

Experiencing	
chemo/radiotherapy	
complications	

0.53	

Recovering	from	
pancreatic	surgery	

0.59	

Experiencing	surgical	
complications	

0.48	

Living	with	unresectable	
disease	and	pre-operative	
quality-of-life	

0.65	

	

	

Results	of	Markov	Decision-Analysis	

	

Intention-to-treat	analysis	of	the	treatment	pathways	showed	that	

NAT	pathway	gave	26.41	months	and	22.54	QALMs,	compared	to	

23.72	months	(18.51	QALMs)	for	SF	pathway.	The	results	of	Markov	

cohort	analysis	are	outlined	in	Table	20	and	demonstrate	superiority	

of	NAT	pathway	for	patients	who	received	all	treatment	modalities.		
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Table	20:	Results	from	Markov	Cohort	Analysis	

	
	 NAT	Pathway	 SF	Pathway	
R0	Resection	 39.34	months	(34.63	QALMs;	

POC	=34.52	QALMs)	
Received	Adjuvant	Therapy:	
30.96	months	(24.86	QALMs;	
POC=	24.75	QALMs;	AT=	
21.82	QALMs;	POC	and	
AT=21.71	QALMs)	
No	Adjuvant	Therapy:	
24.03	months	(20.12	QALMs;	
POC=20.01QALMs)	

R1	Resection	 34.94	months	(31.07	QALMs;	
POC=30.96QALMs)		

Received	Adjuvant	Therapy:	
25.85	months	(20.72	QALMs;	
POC=	20.61	QALMs;	AT=	
18.20	QALMs;	POC	and	
AT=18.09	QALMs)	
No	Adjuvant	Therapy:	
21.26	months	(17.56	QALMs;	
POC=17.45	QALMs)	

Exploratory	Laparoscopy	or	
Laparotomy		

9.47	months	(6.32QALMs)	 	10.48	months	(6.97QALMs)	

No	Surgery		 9.47	months	(6.16	QALMs)	 	
	
NAT=	Neoadjuvant	Pathway;	SF	=	surgery	first/upfront	surgery	pathway;	POC=	post-operative	

complication	grade	3	or	4;	AT=	adjuvant	therapy	resulting	in	grade	3	or	4	toxicity		

	

Deterministic	Sensitivity	Analysis	

	

One-way	deterministic	sensitivity	analysis	showed	that	NAT	

maintained	superiority	when	all	variables	were	individually	altered	

between	highest	and	lowest	reported	values	with	the	exception	of	

the	probability	of	resection	in	NAT	pathway,	which	had	to	be	greater	

than	47.48%	to	maintain	superiority	(Figure	32).		
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Figure	32:	One-way	sensitivity	analysis.	Expected	value	on	y-axis	

relates	to	months	survival,	pNATresection	on	x-axis	refers	to	

probability	of	undergoing	surgical	resection	in	NAT	pathway.			

	

	
Two-way	deterministic	sensitivity	analysis	demonstrated	that	

treatment	superiority	depended	on	receiving	multimodal	treatment	

(surgical	resection	in	the	NAT	pathway	and	adjuvant	therapy	in	SF	

pathway).	Figure	33a	shows	thresholds	at	which	competing	

pathways	offer	superior	outcomes	with	Figure	33b	providing	

corresponding	probability	thresholds	and	predicted	resulting	

quality-adjusted	survival	time.		
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Figure	33a:	Two-way	sensitivity	analysis.	Y-axis	shows	probability	of	

receiving	adjuvant	therapy	in	the	surgery	first	(SF)	pathway	and	x-

axis	shows	probability	of	receiving	resection	in	the	neoadjuvant	

(NAT)	pathway		
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Figure	33b:	predicted	QALMs	given	altering	probabilities	of	receiving	

adjuvant	therapy	in	SF	pathway	(y-axis)	and	resection	in	NAT	

pathway	(x-axis).	

	

	
	

Monte	Carlo	Probabilistic	Sensitivity	Analysis	

	

To	test	the	level	of	confidence	in	the	Markov	model	output,	Monte	

Carlo	probabilistic	sensitivity	analysis	was	performed	to	simulate	

10000	patients	cycling	through	the	model,	with	input	data	for	each	

model	variable	drawn	from	the	data	distribution	of	that	individual	

variable	(Table	19).		

	

The	results	of	probabilistic	Monte	Carlo	sensitivity	analysis	showed	

that	NAT	pathway	gave	a	mean	survival	time	of	22.54	months	(range	

20.25-24.55months)	compared	to	18.50	months	(range	7.24-

20.58months)	for	SF	pathway.	Standard	deviation	was	0.56	and	

variance	0.31	for	the	NAT	arm	of	the	model.	Standard	deviation	was	
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1.56	and	variance	2.45	for	the	SF	arm	of	the	model.	When	minimum	

significant	difference	threshold	between	treatment	pathways	was	set	

to	3months,	the	model	reported	that	NAT	was	the	superior	pathway	

with	a	superior	pathway	selection	frequency	of	78%,	and	22%	

frequency	of	indifference	between	pathways.					

	

4.2.3	Triangulation	of	Findings:	Surgery	first	versus	neoadjuvant	

pathway	for	resectable	pancreatic	ductal	adenocarcinoma	

(PDAC):	a	Markov	decision	analysis	based	on	a	tertiary	referral	

center’s	7-year	experience	

	

	

Patients	and	Treatment	Strategies	

	

Probabilities	of	interventions,	clinical	outcomes,	and	survival	in	both	

SF	and	NAT	cohorts	were	calculated	from	the	West	of	Scotland	

Pancreatic	Unit	database	which	recorded	data	prospectively	for	a	

cohort	of	200	sequential	patients	diagnosed	with	non-metastatic	

pancreatic	cancer	and	who	were	deemed	fit	for	surgery.	All	patients	

underwent	surgery	in	the	West	of	Scotland	Pancreatic	Unit.	SF	

pathway	was	exclusively	performed	from	January	2008	to	July	2012.		

From	1st	August	2012-30th	December	2015	100	patients	with	non-

metastatic	PDAC	were	treated	in	the	NAT	pathway.	For	this	model,	

only	those	patients	with	resectable	PDAC	on	completion	of	initial	

staging	prior	to	commencing	NAT	were	included.	Borderline	and	

locally	advanced	PDAC,	as	determined	according	to	

AHPBA/SSO/SSAT	guidelines	(Callery	et	al.,	2009a)	were	excluded.	

From	August	2012	working	backwards,	100	sequential	patients	in	SF	
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pathway	who	had	resectable	PDAC,	and	were	deemed	fit	for	surgery	

based	on	performance	status	score	and	formal	cardiovascular	fitness	

testing	(CPET),	populated	the	SF	arm	of	the	model.		No	patients	were	

lost	to	follow-up	(Table	21).				

	

Table	21:	Baseline	Patient	Characteristics	

	

	 Neoadjuvant	Cohort	
(n=59)	

Surgery	First	Cohort	
(n=100)	

Age	 64	(range	49-80)	 63	(range	38-86)	
Gender	
Male	
Female	

	
33	(55.9%)	
26	(44.1%)	

	
58	(58%)	
42	(42%)	

ASA	Grade		
1	
2	
3	

	
4	(6.8%)	
37	(62.7%)	
18	(30.5%)	

	
10	(10%)	
66	(66%)	
24	(24%)	

Tumor	Site	
Head	
Neck/Body/Tail	

	
51	(86.4%)	
8	(13.6%)	

	
87	(87%)	
13	(135)	

Resection	 39	(66.1%)	
R0:	19	(48.7%)	

78	(78%)	
R0:	16	(20.5%)	

Exploratory	
Laparotomy	or	
Bypass	Surgery	

6	(10.2%)	 22	(22%)	

Completed	Adjuvant	
Therapy	

	 50	(50%)	

	

Transition	nodes	were	based	on	outcomes	of	response	to	

neoadjuvant	therapy	on	re-staging	CT	scan	(for	NAT	cohort	only),	

operative	intervention	and	outcome,	post-operative	complications,	

and	receipt	of	adjuvant	therapy.	Pathological	stage	was	defined	by	

AJCC	staging	system	7th	edition	and	complications	were	graded	

according	to	the	Clavien-Dindo	system	and	categorised	as	grade	3	or	

above	or	grade	2	and	below.	Utility	was	defined	as	QALMs	and	was	
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calculated	from	the	time	spent	in	each	of	the	Markov	states	based	on	

overall	and	disease	free	survival	calculated	from	median	survival	

time	taken	from	Kaplan-Meir	survival	analysis	based	on	treatment	

received	(Figure	34;	Table	22).		

		

Figure	34:	Kaplan-Meir	Survival	Analysis:	a)	overall	survival	time	b)	

disease-free	survival	

	

a)	

	
	

	
NAT=	neoadjuvant	pathway;	NATno=	no	surgery	in	neoadjuvant	

pathway;	SF=	surgery	first	pathway;	No	su=	no	surgery/exploratory	

laparotomy	or	laparoscopy	in	surgery	first	pathway;	noa=	no	

adjuvant	therapy	received;	adj=	adjuvant	therapy	received	
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b)		

	
	

	

	
	
NAT=	neoadjuvant	pathway;	NATno=	no	surgery	in	neoadjuvant	pathway;	SF=	surgery	first	

pathway;	No	su=	no	surgery/exploratory	laparotomy	or	laparoscopy	in	surgery	first	pathway;	

noa=	no	adjuvant	therapy	received;	adj=	adjuvant	therapy	received	

	

	

The	neoadjuvant	regimen,	previously	described	by	Grose	et	al.	

(2017),	was	modified	FOLFIRINOX	which	consisted	of:	Oxaliplatin	

85mg/m2,	Irinotecan	180mg/m2	and	5-Flurouracil	400mg/m2	on	day	

1	and	5-Flurouracil	2,400mg/m2	on	days	1-2.		If	patients	had:	poor	

performance	status,	or	were	aged	over	70	years,	or	FOLFIRINOX	was	

poorly	tolerated,	they	received	Gemcitabine	1,000	mg/m2	on	days	1,8	

and	15	and	Capcitabine	830	mg/m2	BD	(GemCap)	on	days	1	to	21.		A	

re-staging	CT	of	the	chest,	abdomen	and	pelvis	was	performed	3	

months	post	chemotherapy	(6	cycles	FOLFIRINOX	or	3	cycles	
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GemCap).	For	patients	who	had	response	or	stable	disease	on	re-

staging	CT	approximately	4	weeks	post	completion	of	chemotherapy,	

chemoradiation	(CRT)	comprising	Volumetric	Modulated	Arc	

Therapy	was	given	at	a	dose	of	50.4Gy	in	28	fractions	over	5.5	weeks	

with	concurrent	Capecitabine.	Adjuvant	therapy	regime	in	the	SF	

group	was	Gemcitabine	monotherapy.			

	

Ethical	approval	for	data	collection	was	granted	by	the	West	of	

Scotland	Local	Research	Ethics	Committee.		

	

Quantifying	the	Limitations	Stemming	from	FUPS	Characteristics	

of	Data	

	

One	and	two-way	deterministic	sensitivity	analysis	determined	

which	variables	had	the	greatest	potential	to	affect	model	outcomes	

by	altering	values	between	highest	lowest	observed	values.	Monte	

Carlo	probabilistic	sensitivity	analysis	set	to	10000	cycles	assessed	

the	overall	effect	of	uncertainty	within	the	model.	For	this	analysis	

the	model	probabilities	were	sampled	from	the	data	distribution	of	

each	variable	contained	within	the	model	(Table	22).		
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Table	22:	Transition	Probabilities	and	Payoff	Utility	for	Quality-

Adjusted-Life-Months	(QALMs)		
Variable	 Transition	

Probability		
Variance	 Standard	

Deviation	
Data	
Distribution:	
parameters	
(Anderson	
Darling	
Statistic)	

Grade	3+	toxicity	with	NAT	 0.22	 0.21607	
	

0.0046483	
	

D.	Uniform:	
a=0	b=1	
(34.26)	

Resection	in	NAT	pathway	 0.66	 0.29876	
	

0.0054659	
	

Poisson:	
λ=0.84746	
(23.333)	

Exploratory	
Laparoscopy/Laparotomy	

0.10	 0.29876	
	

0.0054659	
	

Poisson:	
λ=0.84746	
(23.333)	

No	surgery	 0.24	 0.29876	
	

0.0054659	
	

Poisson:	
λ=0.84746	
(23.333)	

R0	resection	NAT	pathway	 0.49	 0.24984	
	

0.0049984	
	

Poisson:	
λ=0.	51282	
(19.177)	

Grade	3-4	post-operative	
complication	NAT	pathway	

0.18	 0.25895	
	

0.0050887	
	

D.	Uniform:	
a=0	b=1	
(19.928)	

Grade	5	post-operative	
complication	NAT	pathway	

0.03	 0.25895	
	

0.0050887	
	

D.	Uniform:	
a=0	b=1	
(19.928)	

Resection	SF	pathway	 0.78	 0.1716	
	

0.0041425	
	

Poisson:	
λ=1.22	
(42.381)	

R0	resection	SF	pathway	 0.21	 0.16305	
	

0.004038	
	

Bernoulli:	
p=0.79487	
(16.14)	

Grade	3-4	post-operative	
complication	SF	pathway	

0.27	 0.29692	
	

0.005449	
	

Poisson:	
λ=	0.34884	
(50.791)	

Grade	5	post-operative	
complication	SF	pathway	

0.04	 0.29692	
	

0.005449	
	

Poisson:	
λ=	0.34884	
(50.791)	

Receiving	adjuvant	therapy	 0.50	 0.25	
	

0.005	 Poisson:	
λ=0.5	
(38.757)	

Adjuvant	toxicity	grade	3+	 0.36	 0.24377	
	

0.0049373	
	

Bernoulli:	
p=0.57895	
(33.585)	

Survival	State		 Utility	for	
QALM	

Living	with	stable	pancreatic	
cancer	

0.81	

Undergoing	
chemo/radiotherapy	

0.81	

Experiencing	
chemo/radiotherapy	
complications	

0.53	
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Recovering	from	pancreatic	
surgery	

0.59	

Experiencing	surgical	
complications	

0.48	

Living	with	unresectable	
disease	and	pre-operative	
quality-of-life	

0.65	

	

	

Results	

	

In	total	100	patients	were	included	in	the	SF	arm	and	59	patients	

were	included	in	the	NAT	arm	of	the	Markov	model.	Baseline	

characteristics	of	both	patient	groups	are	described	in	Table	21.	The	

median	age	was	64	years	(range	38-86).	The	majority	were	male	(n=	

91;	57.2%).	Most	had	an	American	Society	of	Anesthesiology	(ASA)	

grade	2	(n=	103;	64.8%).	8	patients	in	the	SF	arm	achieved	R0	

resection	and	completed	adjuvant	therapy.			

	

Markov	Decision-Analysis		

	

On	an	intention-to-treat	basis,	analysis	of	the	treatment	pathways	

showed	NAT	pathway	gave	32.90	months	(28.51	QALMs)	compared	

to	24.68	months	(19.23	QALMs)	for	SF	pathway.	Markov	cohort	

analysis	examines	the	utility	outcomes	when	cohorts	are	determined	

by	the	treatments	received	by	patients.	The	results	of	Markov	cohort	

analysis	are	outlined	in	Table	23	and	demonstrate	that	greatest	

utility	was	achieved	in	the	small	subgroup	of	patients	who	received	

early	R0	resection	and	adjuvant	therapy.		
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Table	23:	Results	from	Markov	Cohort	Analysis	

	
	 NAT	Pathway	 SF	Pathway	
R0	Resection	 45.36	months	(40.86	QALMs;	

POC	=40.75	QALMs)	
Received	Adjuvant	Therapy:	
52.59	months	(42.38	QALMs;	
POC=	42.27	QALMs;	AT=	
32.59	QALMs;	POC	and	AT=	
32.48	QALMs)	
No	Adjuvant	Therapy:	
22.31	months	(19.06	QALMs;	
POC=18.95	QALMs)	

R1	Resection	 42.29	months	(38.38	QALMs;	
POC=38.27	QALMs)		

Received	Adjuvant	Therapy:	
33.37	months	(26.81	QALMs;	
POC=	26.70	QALMs;	AT=	
22.81	QALMs;	POC	and	
AT=22.70	QALMs)	
No	Adjuvant	Therapy:	
20.93	months	(18.20	QALMs;	
POC=18.09	QALMs)	

Exploratory	Laparoscopy	or	
Laparotomy		

14.31	months	(9.46	QALMs)	 	12.42	months	(8.23	QALMs)	

No	Surgery		 14.31	months	(9.30	QALMs)	 	
	
POC=	post-operative	complication	grade	3	or	4;	AT=	adjuvant	therapy	resulting	in	grade	3	or	4	

toxicity		

	

	

Deterministic	Sensitivity	Analysis:	

	

To	test	the	sensitivity	of	the	model’s	results	to	variations	in	

parameters	of	specific	variables,	deterministic	sensitivity	analysis	

was	performed	by	altering	the	variable	parameters	between	highest	

and	lowest	reported	values.	

	

One-way	deterministic	sensitivity	analysis	showed	that	when	all	

variables	were	altered	between	highest	and	lowest	reported	values,	

NAT	maintained	superiority	with	the	exception	of	the	probability	of	

undergoing	resection	in	the	NAT	pathway,	which	had	to	be	above	

34%	to	maintain	superiority	(Figure	35).		
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Figure	35:	One-way	sensitivity	analysis.	Y-axis	relates	to	expected	

survival	time	in	months.	X-axis	refers	to	probability	of	undergoing	

surgical	resection	in	NAT	pathway.			

	

	

	
	

Two-way	deterministic	sensitivity	analysis	demonstrated	that	

treatment	superiority	depended	on	receiving	multimodal	treatment	

(resection	in	NAT	pathway	and	adjuvant	therapy	in	SF	pathway)	

(Figure	36)	and	on	achieving	R0	resection	in	SF	pathway	(Figure	37).	

3-way	deterministic	sensitivity	analysis	was	therefore	undertaken	to	

test	the	hypothesis	that	SF	was	the	superior	pathway	for	patients	

most	likely	to	achieve	R0	resection	and	receive	adjuvant	therapy.	

This	involved	assessing	the	probability	of	receiving	adjuvant	therapy	

in	SF	pathway	against	the	probability	of	receiving	resection	in	NAT	
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pathway,	then	increasingly	the	probability	of	R0	resection	in	SF	

pathway	from	0	to	100%	in	quartiles.	This	demonstrated	that	whilst	

NAT	pathway	was	superior	for	most	patients	likely	to	receive	

resection	within	this	pathway,	as	the	probability	of	R0	resection	

increased	within	SF	pathway,	particularly	for	those	most	likely	to	

receive	adjuvant	therapy,	so	too	did	the	likelihood	of	SF	pathway	

being	the	superior	pathway	choice.		

	

Figure	36	a):	Markov	Two-way	sensitivity	analysis.	Y-axis	shows	

probability	of	receiving	adjuvant	therapy	in	surgery	first	(SF)	

pathway	and	x-axis	shows	probability	of	receiving	resection	in	

neoadjuvant	(NAT)	pathway.	The	red	area	depicts	the	range	whereby	

SF	pathway	would	be	the	superior	pathway.	The	blue	area	depicts	

the	range	over	which	NAT	pathway	would	be	the	superior	pathway.		
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Figure	36b):	predicted	QALMs	given	altering	probabilities	of	

receiving	adjuvant	therapy	in	SF	pathway	(y-axis)	and	resection	in	

NAT	pathway	(x-axis).	
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Figure	37	a):	Two-way	sensitivity	analysis.	Y-axis	shows	probability	

of	receiving	R0	resection	in	surgery	first	(SF)	pathway	and	x-axis	

shows	probability	of	receiving	resection	in	neoadjuvant	(NAT)	

pathway.	The	red	area	depicts	the	range	whereby	SF	pathway	would	

be	the	superior	pathway.	The	blue	area	depicts	the	range	over	which	

NAT	pathway	would	be	the	superior	pathway.	
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Figure	37	b):	predicted	QALMs	given	altering	probabilities	of	

receiving	R0	resection	in	SF	pathway	(y-axis)	and	resection	in	NAT	

pathway	(x-axis).	

	

	

	
	

	

Probabilistic	Monte	Carlo	Sensitivity	Analysis	

	

Probabilistic	Monte	Carlo	sensitivity	analysis	was	set	to	simulate	

10000	patients	cycling	through	the	model.	This	analysis	was	

performed	to	test	the	level	of	confidence	in	the	model’s	output.	

(Table	22).	During	Monte	Carlo	simulation	probabilities	were	

therefore	drawn	from	the	data	distribution	of	each	variable,	which	

meant	that	all	possible	parameter	values	for	each	variable	within	the	

model	was	tested.		

	



	 325	

The	results	of	probabilistic	Monte	Carlo	sensitivity	analysis	showed	

that	NAT	pathway	gave	a	mean	survival	time	of	27.21	QALMs	

(range:26.43-27.70	QALMs)	compared	to	20.37	QALMs	(range:11.41-

30.62	QALMs)	for	SF	pathway	with	standard	deviation		0.21	and	2.74,	

and	variance	0.04	and	7.51	in	NAT	and	SF	pathways	respectively.	

Strategy	selection	frequency	was	99.41%	for	NAT	pathway	and	

0.59%	for	SF	pathway	when	no	minimum	significant	difference	

between	pathways	was	set.	When	minimum	significant	difference	

was	set	at	6months,	the	model	reported	a	selection	frequency	of	

62.35%	for	NAT	pathway	and	indifference	between	pathways	

selected	with	a	frequency	of	37.65%.		

	

Discussion	

	

Data	As	A	Partial	Remnant		

	

The	role	of	NAT	in	treatment	of	pancreatic	cancer	is	an	ongoing	area	

of	debate	(Tempero	et	al.,	2014).	Although	NAT	is	supported	by	

current	guidelines	for	borderline	resectable	and	locally	advanced	

pancreatic	cancer,	optimal	treatment	of	resectable	pancreatic	cancer	

remains	controversial	(deGeus	et	al.,	2016;	Tempero	et	al.,	2014).	

Markov	decision	analysis	is	a	powerful	tool	offering	analysis	of	

complex	medical	decisions	therefore	this	study	utilises	current	

evidence	in	a	Markov	decision-analysis	model,	and	triangulates	

findings	with	an	institutional	database	to	offer	an	important	interim	

source	of	information	to	inform	the	ongoing	debate	regarding	the	

best	treatment	approach	for	resectable	pancreatic	cancer	(deGeus	et	

al.,	2016;	VanHouten	et	al.,	2012).	Importantly	by	utilising	FUPS	data	
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within	the	context	of	complexity	this	research	adds	a	further	

dimension	to	this	debate	by	demonstrating	for	the	first	time	that	

optimal	treatment	selection	depends	on	individual	patient	and	tumor	

factors.		

	

The	Markov	decision-analysis	based	on	synthesised	data	from	trials	

including	all	cases	of	potentially	resectable	pancreatic	cancer	showed	

that	SF	pathway	gave	an	additional	3.5	months	(2.25	QALMs)	but	

neither	pathway	was	conclusively	superior.	When	the	Markov	

decision-analysis	model	was	populated	with	synthesised	data	from	

trials	that	included	only	cases	that	were	resectable	at	presentation	

NAT	pathway	gave	an	additional	4.03	QALMs	(26.41	months	(22.54	

QALMs)	versus	23.72	months	(18.51	QALMs)	for	SF	pathway.	When	

these	findings	were	triangulated	by	populating	the	model	with	data	

from	an	institutional	patient	database	containing	only	cases	that	

presented	with	resectable	disease	the	tendency	towards	superiority	

of	NAT	pathway	was	upheld.	NAT	pathway	gave	an	additional	9.29	

QALMs	(32.90	months	versus	24.68	months	and	28.51	QALMs	versus	

19.23	QALMs).	Markov	cohort	analysis	of	outcomes	where	

multimodal	treatment	was	received	in	both	pathways	(resection	in	

NAT	pathway	and	adjuvant	therapy	in	SF	pathway)	demonstrated	

superior	outcomes	with	NAT	pathway	when	populating	the	model	

with	synthesised	data.	Yet	the	base	case	probability	of	undergoing	

resection	in	the	NAT	pathway	was	consistently	lower	than	in	the	SF	

pathway	across	all	Markov	decision	analysis	models.		This	could	

demonstrate	that	NAT	allowed	a	period	of	time	for	more	aggressive	

tumors,	for	which	surgery	would	be	ultimately	futile,	to	declare	

themselves	(Asare	et	al.,	2016;	Lee	et	al.,	2016).	Conversely	
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opponents	of	NAT	would	argue	that	this	demonstrates	losing	the	

window	of	resectability	(Asare	et	al.,	2016;	Lee	et	al.,	2016).	

	

	

Deterministic	and	Monte	Carlo	probabilistic	sensitivity	analysis	

allowed	a	deeper	level	of	engagement	with	the	decision-making	

process	being	modeled	as	well	as	a	more	detailed	analysis	of	the	

impact	of	uncertainty	associated	with	the	FUPS	characteristics	of	the	

data.	This	revealed	that	superior	pathway	selection	was	actually	

determined	by	individual	patient	and	tumour	factors	affecting	the	

probability	of	receiving	multimodal	treatment.	This	raised	the	

possibility	that	although	NAT	would	benefit	most	patients	with	

potentially	resectable	as	well	as	resectable	pancreatic	cancer,	SF	

pathway	could	have	maximum	utility	for	those	patients	with	the	

earliest	stages	of	the	disease	who	had	the	highest	probability	of	

receiving	adjuvant	therapy.		

	

This	hypothesis	was	tested	further	when	modeling	institutional	data	

for	resectable	only	cases.	This	revealed	that	cumulative	utility	was	

greatest	for	the	minority	subgroup	of	patients	who	received	R0	

resection	followed	by	adjuvant	therapy	in	the	SF	pathway.	

Furthermore,	this	is	the	first	study	that	has	been	able	to	

mathematically	demonstrate	the	degree	to	which	altering	the	

probabilities	of	receiving	multimodal	treatment	in	competing	

pathways,	whilst	simultaneously	altering	the	probability	of	achieving	

R0	resection	in	the	SF	pathway,	affects	selection	of	superior	

treatment	pathway	at	an	individualised	level.	This	marks	an	

important	step	in	widening	the	current	debate	beyond	SF	versus	NAT	
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management	pathways	towards	achieving	personalised	predictive	

medicine	and	delivering	personalised	pancreatic	cancer	care	with	the	

associated	benefits	to	patients	and	for	resource	allocation	and	

utilisation.		

	

		

Triangulation		

	

These	findings	are	in	keeping	with	the	few	existing	meta-analysis	

comparing	NAT	and	SF	treatment	approaches,	which	report	modest	

superior	survival	benefit	with	NAT	pathway	(Versteijne	et	al.,	2018).	

The	results	of	our	Markov	cohort	analysis	corroborate	findings	of	

prospective	and	retrospective	experiences	of	NAT,	which	have	

demonstrated	favorable	survival	outcomes	ranging	from	26	to	45	

months	(deGeus	et	al.,	2016;	Talamonti	et	al.,	2006;	Faith	et	al.,	2015;	

Kharofa	et	al.,	2014).		Three	Markov	Decision-Analysis	studies	

comparing	NAT	and	SF	pathways	for	pancreatic	cancer	exist	(Sharma	

et	al.,	2015;	deGeus	et	al.,	2016;	VanHouten	et	al.,	2012).	One	of	these	

studies	focuses	on	potentially	resectable	pancreatic	cancer,	therefore	

including	borderline	and	locally	advanced	cases	in	the	NAT	pathway	

to	capture	the	effect	of	conversion	to	resectability	on	overall	pathway	

analysis	(VanHouten	et	al.,	2012).	As	with	this	study’s	findings	it	did	

not	demonstrate	an	overall	conclusively	superior	pathway	on	an	

intention-to-treat	basis	(NAT	18.6	months	versus	17.1	months)	

(VanHouten	et	al.,	2012).	Two	other	Markov	decision	analysis	studies	

have	reported	superiority	of	NAT	pathway	but	they	focus	on	

resectable	only	cases	and	based	their	model	on	literature	from	a	

single	search	engine	(deGeus	et	al.,	2016;	Sharma	et	al.,	2015).	One	
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study,	based	on	phase	I/II	trials,	reported	22	months	for	NAT	versus	

20	months	for	SF	(Sharma	et	al.,	2015).	De	Geus	et	al.	(2016)	

demonstrated	larger	survival	gain	with	NAT	(32.2	versus	26.7	

months)	but	their	analysis	mostly	included	retrospective	studies.	

Preliminary	results	from	the	PREOPANC-1	trial,	a	multicenter	phase	

III	RCT	comparing	NAT	and	SF	for	borderline	resectable	pancreatic	

cancer,	had	reported	improved	survival	with	NAT	on	an	intention-to-

treat	basis	(17.1	months	versus	13.5	months)	but	full	results	have	

demonstrated	no	statistically	significant	difference	in	terms	of	

overall	survival	(Van	Tienhoven	et	al.,	2018).	Although	PREOPANC-1	

is	a	very	different	study	to	the	one	presented	here	in	terms	of	design	

and	statistical	methodology,	the	results	do	echo	our	findings	in	

reporting	that	higher	reported	resection	rates	in	the	SF	pathway	do	

not	equate	with	superior	overall	survival	time	for	patients	treated	in	

a	SF	pathway.	Furthermore	the	subgroup	analysis	of	resected	cases	

in	the	PREOPANC-1	trial	reported	superior	survival	time	with	NAT	

(29.9months	versus	16.6months),	which	further	corroborates	the	

results	our	Markov	cohort	analysis.	Preliminary	results	from	the	

Prep-02/JSAP-05	randomised	phase	II/III	trial	comparing	NAT	versus	

SF	for	resectable	pancreatic	cancer	also	corroborate	our	findings,	

reporting	an	overall	survival	time	of	36.7months	with	NAT	compared	

to	26.6months	for	SF	approach	(Unno	et	al.,	2019).			

	

	

Transparency	of	Analysis		

	

Like	existing	Markov	decision	analysis	based	on	data	from	published	

studies,	this	study	also	shares	the	limitations	of	the	existing	body	of	
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evidence:	heterogeneity,	lack	of	randomisation,	potential	bias,	small	

and	underpowered	studies	(Asare	et	al.,	2016;	Lee	et	al.,	2016).	

Furthermore	definitions	of	radiological	and	surgical	resectability,	R0	

resection	and	staging	protocol	can	vary	across	trials	further	

confounding	the	issues	of	heterogeneity	of	synthesised	data	

(Versteijne	et	al.,	2018).	Such	heterogeneity	could	account	for	why,	at	

base-case	analysis,	the	probability	of	R0	resection	in	the	NAT	

pathway	was	smaller	than	anticipated	particularly	when	considering	

that	the	PREOPANC-1	trial	has	reported	higher	rates	of	R0	resection	

(65%)	in	the	NAT	arm	of	their	trial	(Versteijne	et	al.,	2018;	

VanTienhoven	et	al.,	2018).	Although	the	uncertainty	of	this	variable	

was	extensively	tested	through	sensitivity	analysis	and	found	not	to	

affect	the	overall	model	outcomes,	this	highlights	the	potential	

impact	of	heterogeneity	of	data	on	model	output.	To	address	the	

issue	of	heterogeneity,	this	study	based	transition	probabilities	on	

weighted	pooled	proportion	estimates	calculated	using	Freeman-

Tukey	arcsine	square	root	transformation	under	random	effects	

model	(Freeman	&	Tukey,	1950).	Furthermore	probabilistic	Monte	

Carlo	sensitivity	analysis	sampled	model	probabilities	from	the	

entire	range	of	the	data	distribution	and	provided	assessment	of	the	

extent	of	variance	and	standard	deviation	within	the	model.	Unlike	

previous	Markov	decision-analysis,	weighted	survival	times	were	

based	on	the	Gillen	et	al.	(2010)	formulae	as	evidence	has	shown	that	

unbiased	pooled	estimates	of	median	survival	times	cannot	be	

achieved	by	weighted	averaging	of	medians	(Gillen	et	al.,	2010;	

Rouder	et	al.,	2004).		Quality	adjusted	survival	time	is	limited	by	the	

lack	of	studies	measuring	quality-of-life	across	the	treatment	

trajectory	for	pancreatic	cancer.	This	study	utilised	best	available	
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data	that	was	shared	with	existing	decision-analysis	studies,	which	

enhanced	comparability.	Our	model	did	not	assume	return	to	full	

health	after	an	intervention	or	event	but	accounted	for	the	impact	of	

therapy,	surgery,	complications	and	disease	recurrence	when	

calculating	quality-adjusted	survival.	For	both	survival	and	quality-

adjusted	survival,	uncertainty	was	rigorously	tested	across	every	

variable	in	the	model	through	probabilistic	and	deterministic	

sensitivity	analysis.		

	

The	majority	of	studies	meeting	the	inclusion	criteria	for	the	NAT	

arm	of	the	model	were	gemcitabine	based.	Neoadjuvant	

mFOLFIRINOX	is	increasingly	being	used	therefore,	accepting	this	

study	as	providing	important	interim	analysis,	we	envisage	that	as	

the	body	of	evidence	surrounding	mFOLFIRINOX	matures	it	would	be	

pertinent	in	the	future	to	repeat	this	study	to	assess	the	impact	of	

both	efficacy	and	toxicity	of	emerging	neoadjuvant	regimes.	

	

Conclusion	

	

In	conclusion	the	Markov	decision	analysis	of	SF	and	NAT	pathways	

for	the	management	of	potentially	resectable	and	resectable	

pancreatic	cancer	demonstrated	marginal	superiority	of	NAT	

pathway	on	an	intention-to-treat	basis.	However,	patients	with	early	

resectable	disease	who	are	most	likely	to	receive	adjuvant	therapy	

could	benefit	from	SF	pathway.	By	engaging	with	the	complexity	of	

the	systems	being	modeled,	these	findings	have	helped	to	evolved	the	

contemporary	narrative	beyond	SF	versus	NAT.	Optimal	treatment	

selection	depends	on	receiving	all	treatment	modalities	(resection	in	
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both	pathways	and	adjuvant	therapy	in	SF	pathway).	Yet,	on	an	

intention-to-treat	basis	a	significant	number	in	each	pathway	failed	

to	receive	all	intended	treatment	modalities.	What	has	begun	to	

emerge	from	these	findings	is	that	individual	patient	and	tumour	

factors	interact	in	a	dynamic	way	that	determines	the	probability	of	

receiving	multimodal	treatment	hence	determining	the	selection	of	

the	optimal	treatment	pathway	at	an	individual	level.		

	

This	highlights	two	important	directions	for	future	research	based	on	

our	Markov	decision	analysis:	1)	exploring	methods	of	predictive	

statistical	modeling	to	identify	patients	who	are	more	likely	to	

receive	and	benefit	from	differing	treatment	modalities	and	2)	cost-

effectiveness	analysis	of	neoadjuvant	versus	upfront	surgery.	The	

following	sections	will	therefore	take	the	analysis	further	through	

DES	modeling	to	determine	whether	microsimulation	can	uncover	

what	anticipated	outcomes	individuals	who	did	not	receive	

multimodal	treatment	could	have	expected	if	they	were	treated	in	the	

competing	pathway.	Specifically	this	will	seek	to	explore	whether	

those	who	failed	to	undergo	resection	in	the	NAT	pathway	lost	the	

window	of	resectability	or	were	successfully	filtered	away	from	futile	

surgery.	This	will	also	allow	the	results	of	Markov	modeling	to	be	

further	triangulated	with	DES	modeling	methods.	Section	4.2	and	4.3	

therefore	will	pave	the	way	for	cost-effectiveness	analysis	of	SF	

versus	NAT	for	resectable	pancreatic	cancer	using	both	the	Markov	

and	DES	models	developed	in	these	sections.		
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4.3.	Discrete	Event	Simulation	Decision	(DES)	Analysis	
	

Publication	resulting	from	this	analysis:	

	

Bradley,	A.,	Van	Der	Meer,	R.,	McKay,	C.J.	(2020)	‘Computer	simulated	

comparison	of	neoadjuvant	versus	upfront	surgery	for	resectable	

pancreatic	cancer:	the	application	of	machine-learning	algorithms	to	

support	personalised	decision-making’.	British	Journal	of	Surgery:	

accepted	

	

	

Abstract		

	

Background:	Pancreatic	cancer	is	a	challenging	malignancy	with	poor	

survival	outcomes.		Markov	decision-analysis	modeling	has	

previously	suggested	that	superior	treatment	pathway	selection	

depends	on	individual	patient	and	tumour	factors.	However	this	

approach	carries	methodological	limitations	due	to	the	memory-less	

property	of	Markov	models	and	the	depletion	of	susceptibles	that	

could	affect	the	accuracy	of	model	output.	The	aim	of	this	study	was	

to	triangulate	the	results	of	Markov	decision	analysis	with	that	of	DES	

decision	analysis	and	test	the	hypothesis	that	this	approach	to	

microsimulation	modeling	could	reveal	new	insights	regarding	

individualised	treatment	pathway	selection.		

Methods:	A	combined	systems	level	approach	and	DES	model	was	

created	to	established	how	alternative	options	for	treatment	

pathway	delivery	affects	outcomes	at	individual	patient	level	



	 334	

depending	on	disease	stage	at	presentation.	Model	delivery	options	

included:	1)	surgery	first	pathway	for	resectable	cases	and	

neoadjuvant	pathway	for	borderline	resectable/	locally	advanced	

cases	2)	neoadjuvant	pathway	for	resectable	and	borderline	

resectable/	locally	advanced	cases	3)	surgery	first	pathway	for	

resectable	cases	and	palliative	pathway	for	all	other	stages	of	disease	

and	4)	subgroup	analysis	of	surgery	first	versus	neoadjuvant	

pathway	for	resectable	only	cases.	The	model	was	populated	with	

data	from	randomised	controlled	and	prospective	phase	II/III	trials.	

Model	uncertainties	were	tested	through	probabilistic	sensitivity	

analysis	whereby	transition	probabilities	were	drawn	from	the	

entirety	of	data	distribution	for	each	parameter	contained	within	the	

model	over	10000	iterations.	The	data	distributions	were	varied	

reflect	the	disease	stage	of	each	simulated	patient	entering	the	

model.				

	

Results:	Overall	the	greatest	benefit	was	seen	in	borderline	cases	

treated	in	the	neoadjuvant	pathway	(13.92months	(10.98	QALMs)	or	

13.93	months	(10.89	QALMs)	in	options	1	and	2	respectively)	

compared	to	the	palliative	chemotherapy	pathway	modeled	in	option	

3	(8.50months;	6.41	QALMs).	For	resectable	cases	there	was	a	

marginal	overall	survival	advantage	with	option	2,	the	neoadjuvant	

pathway	(20.02months;	17.16	QALMs	versus	17.49months;	13.11	

QALMs	in	options	1	and	3).	Subgroup	analysis	showed	that	for	

resectable	only	cases	the	neoadjuvant	pathway	gave	a	mean	survival	

time	of	20.01months	(18.45	QLAMs)	compared	to	16.55months	

(14.19	QALMs)	in	the	upfront	surgery	pathway.	A	minimum	

significant	difference	threshold	of	below	3.5months	favoured	
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neoadjuvant	therapy	but	at	this	threshold	or	above	the	selection	

frequency	was	40.6%	for	neoadjuvant	pathway	and	59.4%	for	

indifference	between	pathways	demonstrating	minimal	difference	

between	pathways.	Furthermore	within	the	subgroup	analysis	

unresected	cases	in	the	neoadjuvant	pathway	had	an	expected	

incremental	value	of	between	1.5	to	5.5months	over	a	resection	

probability	range	of	47-94%	had	they	been	treated	in	the	upfront	

surgery	pathway.	Threshold	analysis	showed	that	for	cases	that	are	

either	resectable	or	borderline	resectable	at	presentation	and	for	

whom	upfront	surgery	is	a	feasible	alternative,	the	superior	pathway	

selection	was	determined	by	the	individual	patient’s	probability	of	

receiving	multimodal	treatment	(neoadjuvant	therapy	and	resection	

or	resection	and	adjuvant	therapy)	in	either	pathway.	These	findings	

held	strong	even	when	results	from	emerging	RCTs	that	have	

reported	advances	in	treatments	within	both	pathways	were	

integrated	within	the	simulation	model.	This	also	provided	predicted	

thresholds	that	must	be	achieved	in	real	life,	where	complexity	is	not	

controlled	for,	in	order	that	the	reported	positive	findings	of	such	

RCTs	are	applicable	at	individual	patient	level.				

	

Conclusion:	The	methods	presented	in	this	paper	adds	a	further	

dimension	to	the	debate	surrounding	the	treatment	of	pancreatic	

cancer	and	has	a	potential	role	in	future	cost-effectiveness	analysis.	

These	findings	challenge	the	main	criticism	of	neoadjuvant	therapy	

for	resectable	disease,	mainly	that	patients	who	do	not	undergo	

resection	have	lost	their	window	of	resectability,	by	quantifying	the	

potential	survival	gains	achieved	with	upfront	resection,	which	are	

limited.	Importantly	it	moves	future	research	towards	supporting	
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better	clinical	decision	making	through	personalised	predictive	

medicine	and	highlights	the	need	to	develop	ways	of	statistically	

engaging	with	complexity	to	achieve	this.			

	

Introduction	

	

Previous	Markov	decision-analysis	studies	have	reported	a	slight	

survival	benefit	with	neoadjuvant	approach	(de	Geus	et	al.,	2016;	

Sharma	et	al.,	2015;	Van	Houton	et	al,	2012).	The	results	presented	in	

the	previous	section	have	taken	the	application	of	such	a	modeling	

approach	even	further	through	Markov	cohort	analysis,	which	

suggested	that	superior	treatment	pathway	selection	should	actually	

be	determined	at	individual	patient	level,	depending	on	individual	

patient	and	tumour	factors	such	as	tumour	resectability	and	

probability	of	the	individual	patient	being	able	to	physiologically	

cope	with	interventions	inorder	that	they	receive	multimodal	theapy	

(Bradley	et	al.,	2018;	Bradley	&	Van	der	Meer,	2019).	The	problem	is	

that	the	majority	of	existing	observational	and	cohort	studies	

comparing	neoadjuvant	and	surgery	first	approaches	combine	

resectable	and	borderline	resectable	cases	of	pancreatic	cancer	

within	the	neoadjuvant	arm,	therefore	they	fail	to	offer	a	true	like-

for-like	comparison	for	the	treatment	of	resectable	disease.	

Therefore	what	has	not	yet	been	established	is	how	alternative	

options	for	treatment	pathway	delivery	affects	outcomes	at	

individual	patient	level	depending	on	the	stage	of	their	disease	at	

presentation.	Consequently	key	areas	for	targeted	pathway	

improvement	could	be	overlooked.		
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In	this	section	a	systems	level	approach	combined	with	DES	

modeling	is	used	to	model	the	treatment	pathway	of	people	

presenting	to	tertiary	level	care	with	resectable,	borderline	

resectable	and	unresectable	pancreatic	cancer.	The	approach	

combines	statistically	and	clinically	meaningful	risk	groups,	

determined	by	the	disease	stage	of	their	pancreatic	cancer	at	

presentation,	with	a	simulation	model	that	captures	the	natural	

history	of	the	disease	across	competing	treatment	pathways.	These	

individual	patients	are	simulated	as	they	progress	through	the	

pancreatic	cancer	natural	history.	Transition	times	and	transition	

probabilities	are	used	to	capture	the	variability	between	groups	with	

different	stages	of	the	disease,	and	intervention	and	treatment	

programmes	are	modelled	through	changes	to	the	nature	of	these	

parameters.	For	example,	a	particular	treatment	might	delay	

recurrence	or	progression	of	pancreatic	cancer,	modeled	by	

increasing	the	individual’s	dwelling	times	in	natural	history	states,	

with	survival	time	quality	adjusted	accordingly,	or	by	changing	their	

transition	probabilities.	The	approach	is	illustrated	through	a	

synthesisation	of	data	from	randomised	controlled	and	phase	II/III	

drug	trials.	This	allows	the	model	to	capture	best	quality	data	across	

all	treatment	pathways	on	a	global	scale	hence	avoiding	limitations	

and	bias	inherent	in	institutional	databases	and	the	lack	of	necessary	

details	regarding	treatment	inherent	in	national	databases.		

	

Operational	research	techniques,	many	utilising	computer	simulation	

including	DES,	have	been	widely	applied	to	healthcare	primarily	in	

the	areas	of	healthcare	systems	operations,	disease	progression	

modelling,	screening	modelling	and	health	behaviour	modeling	
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(Zhang	et	al.,	2018)	with	their	application	in	cancer	services	mainly	

centring	around	screening,	planning	and	scheduling	care	(Saville	et	

al.,	2019).	Few	studies	however	exist	that	explore	the	application	of	

operational	research	techniques	to	pancreatic	cancer	as	a	

particularly	challenging	malignancy.	Furthermore	techniques	of	

operational	research	have	not	yet	been	fully	utilised	to	support	

better	individualised	patient	selection	across	competing	treatment	

pathways	in	this	field.	This	work	differs	from	published	work	in	this	

area,	not	only	in	its	uniqueness	of	application	to	pancreatic	cancer,	

but	also	in	incorporating	a	systems	modelling	approach,	using	

patient	classification	techniques	based	on	cancer	staging,	coupled	

with	DES.	The	approach	lends	itself	well	to	disease	modelling	

incorporating	different	treatment	strategies	targeted	at	different	risk	

groups	(Harper	et	al.,	2003).	It	also	offers	an	advantage	over	previous	

decision	analysis	studies	on	the	management	of	pancreatic	cancer	

that	have	relied	on	Markov	modelling	which	can	have	reduced	

accuracy	due	to	lack	of	memory	within	the	Markov	model,	the	effect	

of	depletion	of	susceptibles,	and	the	timing	of	transitioning	within	

the	model	being	dependent	on	a	per	cycle,	as	opposed	to	time-to-

event,	basis	(Caro	et	al.,	2010).	The	wider	application	of	this	research	

will	not	only	be	in	supporting	better	decision	making	and	treatment	

pathway	selection	at	individual	patient	level,	but	also	in	identifying	

priority	areas	for	future	research	and	investment	by	identifying	key	

components	of	treatment	pathways	where	making	improvements	

could	stand	to	have	the	highest	beneficial	impact.				

	

The	rest	of	this	section	is	structured	as	follows.	Section	4.3.1	

discusses	the	model	development	and	section	4.3.2	reports	the	
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results	of	the	model	in	terms	of	predicted	survival	outcomes	across	

alternative	treatment	pathways	depending	on	disease	stage	at	

presentation.	Section	4.3.3	reports	the	results	of	subgroup	analysis	of	

resectable	only	cases	treated	in	competing	treatment	pathways.	

Section	4.3.4	reports	the	results	of	scenario	testing	to	assess	the	

potential	impact	of	emerging	findings	from	RCTs	to	assess	the	

potential	impact	of	such	findings	when	the	complexity	of	real-world	

application	is	not	controlled	for.	Section	4.4	then	triangulates	the	

accuracy	of	output	from	the	Markov	model	and	DES	model	decision-

analysis	using	data	from	the	West	of	Scotland	Pancreatic	Unit	

database	for	resectable	pancreatic	cancer.			

	

4.3.1	Model	development:	transparency	of	analyses		

	

A	combined	systems	and	DES	model	was	designed	using	TreeAge	Pro	

2019	(TreeAge	Software	Ins.,	Williamstown,	MA)	to	assess	all	

pathway	options	for	treatment	delivery	for	each	category	of	disease	

stage.	Option	1	reflects	current	guidelines	with	all	resectable	cases	

treated	in	the	surgery	first	pathway	and	borderline	resectable	cases	

treated	in	the	neoadjuvant	pathway.	In	option	2	both	resectable	and	

borderline	resectable	cases	are	treated	in	the	neoadjuvant	pathway.	

In	option	3	resectable	cases	are	treated	in	the	surgery-first	pathway	

and	the	borderline	resectable	cases	are	treated	in	the	palliative	

chemotherapy	pathway.	In	all	three	options	unresectable	disease	is	

treated	with	palliative	chemotherapy	or	supportive	care	(Figure	38).	
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Figure	38:	Discrete	Event	Simulation	Model	Structure		

	

	
	

The	benefit	of	each	option	was	calculated	in	terms	of	life	months	and	

QALMs	gained.	The	latter	is	a	generic	health	utility	measure	based	on	

duration	and	quality-of-life.	Utilities	were	based	on	quality-of-life	

indicies	taken	from	published	literature	(Ljungman	et	al.,	2011;	

Murphy	et	al.,	2012)	and	also	based	on	World	Health	Organization	

and	European	Quality	of	Life	Survey	(Eshuis	et	al.,	2015;	Romanus	et	

al.,	2012;	Tam	et	al.,	2013).	This	scaled	survival	from	0	(equivalent	to	

death)	to	1	(equivalent	to	perfect	health)	(deGeus	et	al.,	2016).	
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Data	Source			

	

To	determine	transition	probabilities	within	the	model	for	each	

disease	stage	category	across	competing	treatment	pathway	options	

a	thorough	search	of	the	literature	was	undertaken	across	MEDLINE,	

Embase,	PubMed	and	Cochrane	database	and	Cochrane	database	of	

Clinical	Trials	and	strictly	adhered	to	PRISMA	guidelines	(Moher	et	

al.,	2009).	The	inclusion	criteria	was	RCTs	and	prospective	phase	II	

and	III	studies	of	neoadjuvant	therapy	for	the	treatment	of	PDAC,	

published	in	English	language	since	2000,	involving	

chemo/radiotherapy-naive	human	subjects	over	18	years	of	age	with	

preoperatively	staged	pancreatic	cancer.	Retrospective	and	cohort	

studies,	case	series	and	case	reports	were	excluded.	Data	on	

resectable	and	borderline	resectable/	locally	advanced	stages	of	

disease	were	separated	to	populate	the	respective	pathways.	As	the	

majority	of	trials	were	single	arm,	to	populate	the	surgery-first	

pathway,	the	same	electronic	databases	were	searched	for	RCTs	of	

surgery	and	adjuvant	therapy,	with	the	same	inclusion	criteria.		

	

By	definition	these	patients	have	adequate	performance	status	to	

survive	surgery,	be	randomised	to	adjuvant	therapy	and	therefore	

had	not	developed	early	metastatic	disease.	To	overcome	this	bias	

cohort	studies	comparing	neoadjuvant	and	surgery	first	pathways	

were	included	in	the	surgery	first	pathway	to	offer	comparison	

across	outcomes	of	resection,	R0	resection	rates,	receipt	of	adjuvant	

therapy	and	corresponding	survival	times.		
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A	comprehensive	literature	searches	was	performed	to	populate	the	

model	(Appendix	N).	Risk-of-bias	of	all	included	studies	was	assessed	

using	the	Cochrane	Collaboration’s	risk	of	bias	tool	(Higgins	et	al.,	

2011)	and	ROBINS-I	tool	(Sterne	et	al.,	2016)	and	these	results	are	

provided	along	with	a	summary	of	included	studies	in	appendix	N	to	

help	guide	judgement	on	the	certainty	and	reliability	of	findings.	

	

Transition	Probabilities	and	Time	to	Event	Data	

	

Transition	probabilities	are	displayed	in	table	45	and	were	calculated	

based	on	weighted	pooled	estimates	of	proportions	from	included	

studies,	calculated	using	Freeman-Tukey	arcsine	square	root	

transformation	under	random	effects	model	to	account	for	

heterogeneity	across	studies	(Freeman	&	Tukey,1950).	As	evidence	

has	shown	that	unbiased	pooled	estimates	of	median	survival	times	

cannot	be	achieved	by	weighted	averaging	of	medians	(Gillen	et	al.,	

2010;	Rounder	&	Speckman	2004),	we	used	Gillen	et	al.	(2010)	

approach	to	calculate	weighted	time-to-event	data.	As	previously	

explained	this	approach	is	based	on	averaging	parameter	estimates	

of	a	presumed	density	function	of	survival	time,	or	in	this	case	time-

to-event,	then	using	the	pooled	distribution	parameter,	in	this	case	

the	exponential	distribution	which	implies	a	time	constant	hazard	

rate	corresponding	to	the	sole	distribution	parameter	λ,	to	

recalculate	the	estimate	of	the	median	from	the	pooled	distribution	

parameter	(Gillen	et	al.,	2010).	The	data	distribution	for	each	model	

variable	was	determined	by	the	mean,	standard	deviation	and	

variance	of	the	input	data	and	fitted	against	55	possible	data	
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distributions	with	the	best	fit	determined	by	the	Anderson	Darling	

statistic	(Table	24).		

	

Table	24:	DES	model	transition	probabilities	
Variable	 Transition	

Probability	
(95%	
Confidence	
Interval)	

Range		 Standard	
Deviation;	
Variance	

Data	
distribution;	
Parameters;	
(Anderson	
Darling	
Statistic)	

Neoadjuvant	Pathway	for	Resectable	Pancreatic	Cancer	
Grade	3+	toxicity	 0.41	(0.90-

0.97)	
0.70-
1.00	

0.09037;	
0.00817	

Gen.	Pareto;	
k=0.16131	
σ=0.06585		
μ=-0.00512	
(0.37908)	

Resection	 0.63	(0.57-
0.69)	

0.32-
0.85	

0.02102;	
4.4190E-4	

Gen.	Extreme	
Value;		
k=0.07104	
σ=0.01585	
μ=0.03134	
(0.30431)	

Exploratory	
Laparoscopy/Laparotomy	
Only	

0.16	(0.09-
0.25)	

0-1.00	 0.00633;	
4.0057E-5		

Johnson	SB;	
γ=2.0682	
δ=1.7897	
λ=0.0624		
ζ=-0.00855	
(0.56039)	

R0	resection	 0.63	(0.49-
0.76)	

0.53-
0.92)	

0.03079;		
9.4797E-4	

Cauchy;	
σ=0.013	
μ=0.05608;	
(0.21049)	

Grade	3+	post-operative	
complication	

0.19(0.13-
0.26)	

0.06-
0.64	

0.00457;	
2.0931E-5	

Gen.	
Extreme.	
Value;		
k=-0.32622	
σ=0.0048	
μ=0.01075	
(0.27029)	

Die	from	post-operative	
complication	

0.16(0.07-
0.27)	

0-0.57	 0.00217;	
4.7206E-6		

Pareto	2;	
α=0.22134	
β=4.0418E-
13	
(-6.8426)	

	 Time	in	
months		

Standard	
Deviation;	
Variance	

Data	
distribution;	
Parameters;	
(Anderson	
Darling	
Statistic)	

Time	to	disease	
recurrence	following	R0	
resection	

16.68	months	 7.604;	
57.821	

Normal;	
σ=7.604	
μ=17.314	
(0.21707)	
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Time	from	disease	
recurrence	to	death	after	
R0	resection	

14.55	months	 12.594;	
158.6	

Gamma;	
α=6.7752	
β=4.8382	
ϒ=0	
(0.46345)	

Time	to	disease	
recurrence	following	R1	
resection	

16.68	months	 7.604;	
57.821	

Normal;	
σ=7.604	
μ=17.314	
(0.21707)	

Time	from	disease	
recurrence	to	death	
following	R1	resection	

5.25	months	 6.7752;	
45.904	

Normal;	
σ=6.7752	
μ=23.525	
(0.51294)	

Time	to	death	for	no	
surgery,	or	following	
Exploratory	Laparoscopy/	
Laparotomy	only	

11	months	 	 	

Neoadjuvant	Pathway	for	Borderline	Resectable	Disease		
	 Transition	

Probability	
(95%	
Confidence	
Interval)	

Range		 Standard	
Deviation;	
Variance	

Data	
distribution;	
Parameters;	
(Anderson	
Darling	
Statistic)	

Grade	3+	toxicity	 0.47	(0.35-
0.0.61)	

0.11-
1.00	

0.39317;	
15.458	

Frechet	(3P);	
α=1.0622	
β=16.652	
γ=6.5416	
(0.92678)	

Resection	 0.26	(0.20-
0.32)	

0-0.83	 0.18283;	
3.3426	

General	
Extreme	
Value;	
k=0.08754	
σ=0.13054	
μ=19.251	
(0.20875)	

Exploratory	
Laparoscopy/Laparotomy	
Only	

0.17	(0.08-
0.27)	

0-1.00	 0.28376;	
8.052	

Pareto	2;	
α=0.27763	
β=7.1795E-
12	
(-9.9894)	

R0	resection	 0.68(0.57-
0.79)	

0-1.00	 0.29291;	
8.5795	

Johnson	SB;	
γ=0.81833	
δ=0.75289	
λ=130.76		
ζ=-22.571	
(0.33527)	

Grade	3+	post-operative	
complication	

0.22(0.08-
0.40)	

0-0.88	 0.30851;	
9.5178	

General	
Extreme	
Value;	
k=0.31817	
σ=16.032	
μ=9.6341	
(0.41599)	

Die	from	post-operative	
complication	

0.12(0.03-
0.26)	

0-0.50	 0.19149;	
3.6667	

Chi-squared;	
ν	=	32	

	 Time	in	
months		

Standard	
Deviation;	

Data	
distribution;	
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Variance	 Parameters;	
(Anderson	
Darling	
Statistic)	

Time	to	disease	
recurrence	following	R0	
resection	

13.8	months	 6.9555;	
48.38	

Gamma;	
α=5.2708	
β=3.0296	
ϒ=0	
(0.29205)	

Time	from	disease	
recurrence	to	death	
following	R0	resection	

11.73	months	 12.594;	
158.6	

Gamma;	
α=6.7752	
β=4.8382	
ϒ=0	
(0.46345)	

Time	to	disease	
recurrence	following	R1	
resection	

13.8	months	 6.9555;	
48.38	

Gamma;	
α=5.2708	
β=3.0296	
ϒ=0	
(0.29205)	

Time	from	disease	
recurrence	to	death	
following	R1	resection	

9.91	months	 9.4044;	
88.444	

Gamma;	
α=7.6629	
β=3.3973	
ϒ=0	
(0.43885)	

Time	to	death	for	no	
surgery,	or	following	
Exploratory	Laparoscopy/	
Laparotomy	only	

11	months	 	 	

Unresectable	Disease	
	 Transition	

Probability	
(95%	
Confidence	
Interval)	

Data	
distribution;	
Parameters;	
(Anderson	
Darling	
Statistic)	

Palliative	Chemotherapy	
for	stage	III	disease	at	
presentation		

0.50	 Normal	

Palliative	Chemotherapy	
for	stage	IV	disease	at	
presentation	

0.28	 Normal	

Supportive	Care	Only	 0.72	 Normal	
Toxicity	with	palliative	
chemotherapy	

0.52	 Normal	

Surgery	First	Pathway	for	Resectable	Disease	
	 Transition	

Probability	
(95%	
Confidence	
Interval)	

Range		 Standard	
Deviation;	
Variance	

Data	
distribution;	
Parameters;	
(Anderson	
Darling	
Statistic)	

Resection		 0.94	(0.90-
0.96)	

0.70-
1.0	

0.1219;	
0.01486	

Burr:		
k=0.0595	
α=10.327	
β=0.00112	
(0.12818)	

R0	resection	 0.56	(0.51-
0.62)	

0.16-
0.86	

0.09869;	
0.00974	

Pearson	5:	
α=0.61636	
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β=7.0460E-4	
(0.18259)	

Grade	3+	post-operative	
complication	

0.22	(0.13-
0.33)	

0.04-
0.54	

0.01297;	
0.0002	

Log-Pearson	
3:		
α=66.845	
β=-0.09425	
γ=2.0838	
(0.29235)	

Die	from	post-operative	
complication	

0.07(0.02-
0.13)	

0-0.36	 0.00948;	
0.0002	

Cauchy:	
σ=0.00373	
μ=	0.00639	
(0.38658)	

Receiving	adjuvant	
therapy	

0.61(0.57-
0.66)	

0.26-
0.94	

0.10088;	
0.01018	

Burr:	
k=0.26048	
α=2.145	
β=9.2071E-4	
(0.18949)	

Adjuvant	toxicity	grade	3+	 0.43(0.25-
0.62)	

0.09-
0.98	

0.02753;	
0.00076		

Log-Pearson	
3:	
α=1916.0	
β=-0.02672	
γ=47.081	
(0.34508)	

	 Time	in	
months		

Standard	
Deviation;	
Variance	

Data	
distribution;	
Parameters;	
(Anderson	
Darling	
Statistic)	

Time	to	disease	
recurrence	flowing	R0	
resection	and	adjuvant	
therapy	

11.4	months		 3.0732;	
9.4446	

Gamma	
α=18.994	
β=0.70515	
ϒ=0	
(0.8653)	

Time	to	disease	
recurrence	following	R0	
resection	but	no	adjuvant	
therapy	

5.1	months		 3.7186;	
13.828	

Gamma	
α=5.4235	
β=1.5968	
ϒ=0	
(0.23772)	

Time	from	disease	
recurrence	to	death	
following	R0	resection	
and	adjuvant	therapy	

9.97	months	 7.1312;	
50.854	

Gamma	
α=12.033	
β=2.0557	
ϒ=0	
(0.21824)	

Time	from	disease	
recurrence	to	death	
following	R0	resection	but	
no	adjuvant	therapy	

14	months		 1.6407;	
2.692	

Normal	
σ=1.6407	
μ=18.32	
(0.22305)	

Time	to	disease	
recurrence	following	R1	
resection	and	adjuvant	
therapy	

9.5	months	 3.0732;	
9.4446	

Gamma	
α=18.994	
β=0.70515	
ϒ=0	
(0.8653)	

Time	to	disease	
recurrence	following	R1	
resection	but	no	adjuvant	
therapy	

3.4	months	 3.7186;	
13.828	

Gamma	
α=5.4235	
β=1.5968	
ϒ=0	
(0.23772)	
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Time	from	disease	
recurrence	to	death	
following	R1	resection	
and	adjuvant	therapy	

6.87	months	 3.6622;	
13.412	

Normal	
(0.21954)	

Time	from	disease	
recurrence	to	death	
following	R1resection	but	
no	adjuvant	therapy	

11.25	months	 1.6407;	
2.692	

Normal	
(0.22305)	

Survival	State		 Utility	for	
QALM	

Living	with	stable	
pancreatic	cancer	

0.81	

Undergoing	
chemo/radiotherapy	

0.81	

Experiencing	
chemo/radiotherapy	
complications	

0.53	

Recovering	from	
pancreatic	surgery	

0.59	

Experiencing	surgical	
complications	

0.48	

Living	with	unresectable	
disease	and	pre-operative	
quality-of-life	

0.65	

	

Dealing	with	Uncertainty	and	Validation:	treating	data	analysis	as	a	

partial	remnant	

	

A	cohort	of	10000	patients	was	modeled	through	Monte	Carlo	first	

order	microsimulation.	Distributions	were	applied	around	all	model	

parameters	and	the	simulation	run	over	10000	iterations	to	capture	

the	possible	range	and	frequency	of	possible	values	and	describe	

first-order	uncertainty.	Second	order	uncertainty	was	captured	

through	probabilistic	sensitivity	analysis.		Each	trial	was	run	1000	

times	with	the	possible	mean	of	each	parameter	drawn	from	the	data	

distribution	hence	capturing	uncertainty	surrounding	the	sample	

mean.		

Black	box	validation	was	employed	to	check	that	inputs	and	outputs	

were	as	expected	(Pidd,	2004).		Input	and	output	data	on	survival	

time,	disease-free	survival	time,	and	resection	rates	et	cetera	was	
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compared	with	results	from	published	data.		To	assess	the	internal	

workings	of	the	model	white	box	validation	was	employed	through	

validation	of	input	parameters	to	ensure	outputs	resulting	from	

different	distribution	inputs	provided	a	reasonable	fit	to	empirical	

data	(Pidd,	2004).		Further	applications	of	white	box	validation	

included	both	static	logic	validation	and	dynamic	logic	validation.	

Face	validity	was	tested	by	consultation	with	clinical	experts	to	agree	

the	model	structure	throughout	the	process.	

4.3.2	Results	

Overall	the	greatest	benefit	was	seen	in	borderline	cases	treated	in	

the	neoadjuvant	pathway	(13.92months	(10.98	QALMs)	or	13.93	

months	(10.89	QALMs)	in	options	1	and	2	respectively)	compared	to	

the	palliative	chemotherapy	pathway	modelled	in	option	3	

(8.50months;	6.41	QALMs)	(Table	25).	For	resectable	cases	there	was	

a	marginal	overall	survival	advantage	with	option	2,	the	neoadjuvant	

pathway	(20.02months	(17.16	QALMs)	versus	17.49months	(13.11	

QALMs)	in	options	1	and	3),	which	was	explored	further	in	subgroup	

analysis	directly	comparing	surgery	first	and	neoadjuvant	pathways	

for	resectable	only	cases.	Outcomes	for	resected	disease	varied	

across	model	options	with	a	survival	advantage	demonstrate	for	both	

resectable	and	borderline	resectable	disease	category	treated	in	the	

neoadjuvant	pathway	with	conversion	to	resectability	for	the	latter	

disease	category	producing	almost	equivocal	survival	outcomes	to	

disease	that	is	resectable	at	presentation	and	treated	in	the	same	

pathway	(Table	26).	
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Table	25:	Summary	of	Overall	Pathway	Analysis	Results	

	

Disease	
Stage	
Category	

Option	1:	Surgery	first	
pathway	for	resectable	
disease,	neoadjuvant	
pathway	for	borderline/	
locally	advanced	disease	

Option	2:	Neoadjuvant	
pathway	for	resectable	
and	borderline/	locally	
advanced	disease	

Option	3:	Surgery	first	
for	resectable	disease,	
palliative	chemotherapy	
pathway	for	borderline/	
locally	advanced	disease	

Resectable	 Mean	 17.49months	
(13.11	
QALMs)	

Mean	 20.02months	
(17.16	
QLAMs)	

Mean	 17.49month
s	(13.11	
QALMs)	

Range	 17.24-
17.71months	
(12.93-13.28	
QALMs)	

Range	 19.65-
20.47months	
(16.87-17.52	
QLAMs)	

Range	 17.27-
17.69month
s	(12.94-
13.29	
QALMs)	

Standard	
deviatio
n	

0.07		 Standard	
deviatio
n	

0.13		 Standard	
deviatio
n	

0.07		

Median	 17.50months	
(13.11	
QLAMs)	

Median	 20.02months	
(17.16	
QLAMs)	

Median	 17.50month
s	(13.11	
QALMs)	

Borderline/	
Locally	
Advanced		

Mean	 13.92months	
(10.89	
QALMs)	

Mean	 13.93months	
(10.89	
QLAMs)	

Mean	 8.50months	
(6.41	
QALMs)	

Range	 13.60-
14.19months	
(10.62-11.14	
QALMs)	

Range	 13.65-
14.625month
s	(10.66-
11.17	QALMs)	

Range	 8.38-
8.65months	
(6.33-6.52	
QALMs)	

Standard	
deviatio
n	

0.09	 Standard	
deviatio
n	

0.09	 Standard	
deviatio
n	

0.02	

Median	 13.92months	
(10.89	
QALMs)	

Median	 13.93months	
(10.89QALMs
)	

Median	 8.50months	
(6.41	
QALMs)	

Unresectabl
e	

Mean	 3.12months	
(2.70QALMs)	

Mean	 3.12months	
(2.70QLAMs)	

Mean	 3.12months	
(2.70	
QALMs)	

Range	 3.05-
3.19months	
(2.66-
2.75QALMs)	

Range	 3.07-
3.23months	
(2.67-
2.78QALMs)	

Range	 3.03-
3.19months	
(2.64-2.75	
QALMs)	

Standard	
deviatio
n	

0.02		 Standard	
deviatio
n	

0.02	 Standard	
deviatio
n	

0.02	

Median	 3.12months	
(2.70QALMS
)	

Median	 3.12months	
(2.70QALMs)	

Median	 3.12months	
(2.70	
QALMs)	
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Table	26:	Pathway	results	for	disease	that	was	resected	

Disease	stage	
category	

Option	1:	Surgery	first	
pathway	for	
resectable	disease,	
neoadjuvant	pathway	
for	borderline/	locally	
advanced	disease	

Option	2:	
Neoadjuvant	pathway	
for	resectable	and	
borderline/	locally	
advanced	disease	

Option	3:	Surgery	first	
for	resectable	disease,	
palliative	
chemotherapy	
pathway	for	
borderline/	locally	
advanced	disease	

Resectable		 18.07	months	(13.94	
QALMs)	

25.30	months	(22.52	
QALMs)	

18.07	months	(13.94	
QALMs)	

Borderline/	Locally	
Advanced	

22.24	months	(19.23	
QALMs)	

25.31	months	(22.62	
QALMs)	

	

	

4.3.3	Subgroup	Analysis	of	Resectable	Only	Cases	

	

The	Monte	Carlo	microsimulation	of	10000	patients	treated	in	

surgery	first	and	neoadjuvant	pathways	found	that	the	neoadjuvant	

pathway	gave	a	mean	survival	time	of	20.01months	(18.45	QLAMs)	

compared	to	16.55months	(14.19	QALMs)	in	the	surgery	first	

pathway	(Table	27).	When	minimum	significant	difference	threshold	

for	determining	the	superior	pathway	was	set	to	3.5months	the	

selection	frequency	was	40.6%	for	neoadjuvant	pathway	and	59.4%	

for	indifference	between	pathways	(Figure	39).		
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Table	27:	Summary	of	Subgroup	Analysis	Results		

	 Surgery	First	 Neoadjuvant	Therapy	
Mean	 16.55months	(14.19	

QALMs)	
20.01months	(18.45	QALMs)	

Median	 16.65months	 20.02months	
Minimum	 16.26months	 19.44months	
Maximum	 16.80months	 20.48months	
Standard	
Deviation	

0.07	 0.14	

Variance	 0.01	 0.02	
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Figure	39:	Monte	Carlo	Strategy	Selection	Frequency.	The	y-axis	

depicts	the	probability	that	each	treatment	option	along	the	x-

axis	is	selected	as	the	optimal	treatment	pathway	after	

10000patients	are	simulated	through	the	model.	NAT	means	

neoadjuvant	pathway	and	SF	means	upfront	surgery	pathway.		

	

	

	
	

In	the	upfront	surgery	pathway	achieving	R0	resection	and	adjuvant	

therapy	gave	21.27months	(17.34QALMs)	(range	21.13	to	

21.59months;	standard	deviation	0.08;	variance	0.01).	R0	resection	

without	adjuvant	therapy	gave	19.10months	(17.84QALMs)	(range	

18.96	to	19.22months;	standard	deviation	0.04;	variance	0.00).	In	the	

neoadjuvant	pathway	R0	resection	gave	29.04months	(27.79QALMs)	

(range	28.55	to	29.57months;	standard	deviation	0.17;	variance	

0.03).	R1	resection	in	the	upfront	surgery	pathway	gave	
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16.26months	(13.47QALMs)	(range	16.10	to	16.43months;	standard	

deviation	0.05;	variance	0.00)	with	adjuvant	therapy	and	

14.65months	(13.91QALMs)	(range	14.51	to	14.79months;	standard	

deviation	0.04;	variance	0.00)	without	adjuvant	therapy.	R1	resection	

in	the	neoadjuvant	pathway	gave	20.39months	(21.42QALMs)	(range	

19.92	to	20.76months;	standard	deviation	0.11;	variance	0.01).	

Sensitivity	Analysis:		Threshold	analysis	

All	possible	probabilities	for	variables	and	time	to	event	data	within	

the	simulation	model	were	sampled	from	the	data	distribution	of	

each	individual	variable	over	10000	iterations	of	the	microsimulation	

to	establish	thresholds	that	determined	pathway	superiority.	The	

probability	of	resection	in	the	neoadjuvant	pathway	had	to	be	greater	

than	38%	for	neoadjuvant	pathway	to	be	superior	(Figure	40).	

Furthermore	the	probability	of	R0	resection	in	the	neoadjuvant	

pathway	had	to	be	greater	than	15.4%	(Figure	41).	
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Figure	40.	Threshold	Analysis.	This	figure	shows	the	probability	

threshold	for	resection	in	the	neoadjuvant	pathway	displayed	on	the	

x-axis	that	must	be	reached	for	this	pathway	to	be	superior.	NAT	

means	neoadjuvant	therapy.	SF	means	surgery	first	pathway.	

Expected	value	on	y-axis	is	in	life	months.	
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Figure	41:	Threshold	analysis.	Probability	of	resection	in	

neoadjuvant	pathway	(x-axis)	against	expected	outcome	in	months	

(y-axis).	NAT	is	neoadjuvant	pathway.	SF	is	surgery	first	pathway.	

	

	

	

Although	the	probability	of	R0	resection	in	the	neoadjuvant	pathway	

did	not	produce	a	threshold	to	alter	overall	pathway	superiority	from	

neoadjuvant	to	surgery	first,	the	incremental	value	for	patients	with	

a	low	probability	of	achieving	R0	resection	in	the	neoadjuvant	

pathway	remained	below	3months	when	compared	to	the	expected	

value	in	the	surgery	first	pathway	(Table	28).		
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Table	28:	Sensitivity	analysis	of	R0	resection	in	neoadjuvant	

pathway			

Probability	of	
R0	Resection	

in	
Neoadjuvant	
Pathway	

Value	in	
Surgery	First	
Pathway	

Value	in	
Neoadjuvant	
Therapy	

Incremental	
Value	in	

Neoadjuvant	
Pathway	

0.0	 16.48months	 16.72montns	 0.24months	
0.1225	 16.48months	 17.39months	 0.91months	
0.245	 16.48months	 18.04months	 1.56months	
0.3675	 16.48months	 18.65months	 2.17months	
0.49	 16.49months	 19.32months	 2.84months	

	

Furthermore	for	patients	with	the	highest	chance	of	R0	resection	in	

the	surgery	first	pathway	the	expected	incremental	value	with	

neoadjuvant	pathway	was	only	2months	(Table	29).	For	patients	

with	the	highest	probability	of	receiving	adjuvant	therapy	in	the	

surgery	first	pathway	the	expected	incremental	value	in	the	

neoadjuvant	pathway	was	3months	(Table	30).	This	raises	the	

possibility	that	although	neoadjuvant	pathway	is	likely	to	benefit	

most	patients	with	resectable	pancreatic	cancer,	those	patients	with	

a	combination	of	the	highest	probabilities	of	an	early	R0	resection	

and	receiving	adjuvant	therapy	could	potentially	benefit	from	the	

upfront	surgery	pathway.		
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Table	29.	Sensitivity	analysis	of	R0	resection	in	surgery	first	

pathway			

Probability	of	
Probability	of	
R0	Resection	
in	Surgery	

First	Pathway	

Value	in	
Surgery	First	
Pathway	

Value	in	
Neoadjuvant	
Therapy	

Incremental	
Value	in	

Neoadjuvant	
Pathway	

0.0	 14.15months	 20.06months	 5.91months	
0.225	 15.09months	 20.06months	 4.97months	
0.45	 16.03months	 20.06months	 4.03months	
0.675	 16.98months	 20.06months	 3.08months	
0.9	 17.97months	 20.06months	 2.09months	

	

Table	30.	Sensitivity	analysis	of	receiving	adjuvant	therapy	in	the	

surgery	first	pathway			

Probability	of	
Adjuvant	
Therapy	in	
Surgery	First	
Pathway	

Value	in	
Surgery	First		
Pathway	

Value	in	
Neoadjuvant	
Therapy	

Incremental	
Value	in	

Neoadjuvant	
Pathway	

0.0	 15.53months	 20.06months	 4.53months	
0.225	 15.86months	 20.06months	 4.20months	
0.45	 16.22months	 20.06months	 3.84months	
0.675	 16.54months	 20.06months	 3.52months	
0.9	 16.89months	 20.06months	 3.17months	

	

For	patients	in	the	surgery	first	pathway	who	were	found	to	have	

unresectable	disease	the	mean	survival	time	was	8.50months	

(6.41QALMs).	Patients	in	the	neoadjuvant	pathway	who	did	not	

undergo	surgery	had	a	mean	survival	time	of	11months	

(8.04QALMs).	These	patients	are	at	the	centre	of	the	controversy	

surrounding	the	use	of	neoadjuvant	therapy	for	cases	of	pancreatic	

caner	that	are	resectable	at	presentation	as	critics	of	this	approach	

highlight	the	dangers	of	losing	the	window	of	resectability.	For	this	

group	of	patients	their	probability	of	resection	in	the	surgery	first	

pathway	had	to	be	greater	than	29%	for	the	surgery	first	pathway	to	

be	the	superior	choice	(Figure	42).	As	these	patients	are	presenting	



	 358	

with	resectable	disease	it	seems	likely	that	such	a	threshold	would	be	

reached,	making	surgery	first	the	superior	pathway	choice	for	them.	

However,	proponents	of	the	neoadjuvant	approach	for	resectable	

pancreatic	cancer	have	argued	that	this	particular	group	of	patients	

represents	more	aggressive	tumour	types	that	are	successfully	

filtered	away	from	futile	surgery	through	neoadjuvant	approach.	As	

Figure	42	demonstrates,	the	expected	incremental	value	in	terms	of	

months	survival	for	patients	who	did	not	undergo	surgery	in	the	

neoadjuvant	pathway,	if	treated	in	the	surgery	first	pathway,	were	

1.5months	(-0.86QALMs),	3.5months	(1.14QALMs)	and	5.5months	

(3.14QALMs)	corresponding	to	a	probability	of	resection	in	the	

surgery	first	pathway	of	47%,	70.5%	and	94%	respectively.				
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Figure	42.	Threshold	Analysis	for	Unresectable	Disease	in	the	

Neoadjuvant	Pathway.	This	figure	shows	the	probability	

threshold	for	resection	in	the	surgery	first	pathway,	displayed	on	

the	x-axis,	that	must	be	reached	for	this	pathway	to	be	superior.	

NAT	means	neoadjuvant	therapy.	SF	means	upfront	surgery	

pathway.	Expected	value	on	y-axis	is	in	life	months.	

	

	

Section	4.3.4	Scenario	Testing	

As	the	model	was	based	on	synthesised	data	from	pre-existing	trials	

the	scenarios	outlined	in	table	31	were	introduced	to	the	model	to	

assess	the	effect	of	emerging	research	findings	on	model	outputs.	In	

particular	these	scenarios	account	for	preliminary	findings	from	

RCTs	of	neoadjuvant	therapy	for	borderline	and	resectable	

pancreatic	cancer	compared	to	surgery	first	approach	as	well	as	
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emerging	evidence	of	improved	outcomes	with	more	effective	

adjuvant	therapy	in	the	surgery	first	treatment	pathway.		

	

Table	31:	Scenario	Testing	

Scenario	 Description	and	
implementation	within	the	
model	

Results	

Preliminary	results	from	
PREOPANC-1	trial	comparing	
upfront	surgery	and	
neoadjuvant	therapy	for	
borderline	resectable	cases	
have	reported	improved	
outcomes	with	neoadjuvant	
therapy	(Van	Tienhoven	et	al.,	
2018).	

Model	option	1	adapted	to	
reflect	findings	from	
PREOPANC-1	trial.	Resection	
rate	set	to	72%	in	surgery-
first	pathway	and	60%	in	
neoadjuvant	pathway.	R0	
resection	rate	set	to	31%	in	
surgery	first	pathway	and	
63%	in	neoadjuvant	pathway.	
Overall	and	disease-free	
survival	set	at	13.5months	and	
7.9	months	respectively	in	
surgery-first	pathway.	Overall	
and	disease	free	survival	set	at	
17.1	and	11.2	months	
respectively	in	neoadjuvant	
pathway	for	borderline	cases.	
For	resected	cases	overall	
survival	set	at	18.8months	and	
42.2months	in	surgery-first	
and	neoadjuvant	pathways.			

Based	on	intention-to-treat	
overall	and	disease-free	
survival	for	cohort:	

Neoadjuvant	Pathway:	
13.81months	(11.79	QALMs);	
range	13.48-14.17months	
(11.49-12.08	QALMs);	
standard	deviation	0.11.	

Surgery	First	Pathway:	
11.75months	(7.92	QALMs);	
range	11.57-11.93	months	
(7.69-8.11	QALMs);	standard	
deviation	0.05	

Based	on	overall	survival	time	
for	resected	cases:	

Neoadjuvant	Pathway:	25.97	
months	(19.69	QALMs);	range	
25.40-26.58	months	(19.28-
20.14	QALMs);	standard	
deviation	0.19.		

Surgery	First	Pathway:	
15.71months	(10.54	QALMs);	
range	15.51-15.94	months	
(10.29-10.81	QALMs);	
standard	deviation	0.07		

Meta-analysis	by	Janssen	et	al.	
(2018)	report	improved	
resection	and	R0	resection	
rates	with	neoadjuvant	
FOLFIRINOX	for	borderline	
cases.			

Model	option	1,	neoadjuvant	
pathway	for	borderline	
resectable	cases	adapted	to	
implement:	resection	rates	
78.4%;	R0	resection	rates	
87.4%;	grade	3-4	toxicity	set	
at	49%	

Borderline	cases:	19.80	
months	(16.80	QALMs);	range	
19.45-20.20	months	(16.58-
17.27	QALMs);	standard	
deviation:	0.13	

Randomised	controlled	trail	
comparing	adjuvant	modified	
FOLFIRINOX	with	adjuvant	
gemcitabine	reports	improved	
survival	outcomes	with	
modified	FOLFIRINOX	but	an	

Model	option	4	(subgroup	
analysis)	adapted	implement:	
disease-free	and	overall	
survival	in	the	upfront	surgery	
pathway	21.6	months	and	
54.4	months	respectively	for	

Surgery	First	Pathway:	
38.43months	(31.19QALMs)	
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increased	toxicity	profile	
(Conroy	et	al.,	2018)	

resected	cases	that	received	
adjuvant	therapy.	Adjuvant	
therapy	toxicity	rate	set	to	
75.9%.	

Preliminary	findings	from	
Prep-02/JSAP-05	trial	
comparing	upfront	surgery	
and	neoadjuvant	therapy	for	
resectable	pancreatic	cancer	
reports	improved	survival	
outcomes	with	neoadjuvant	
therapy	(Unno	et	al.,	2019).		

Model	option	4	(subgroup	
analysis)	adapted	to	
implement	Prep-02/JSAP-05	
trial:	no	statistically	
significant	difference	in	
resection,	R0	resection	and	
postoperative	complications	
rates;	neoadjuvant	grade	3-4	
toxicity	rate:	72.8%;	overall	
survival	36.72months	in	
neoadjuvant	pathway	and	
26.65months	in	surgery-first	
pathway.	

Surgery	First	Pathway:	
23.80months	(20.06QALMs)	
Neoadjuvant	Pathway:	
28.69months	(25.92QALMs)	

Preliminary	results	from	the	PREOPANC-1	trial	(Van	Tienhoven	et	al.,	

2018)	were	incorporated	into	the	structure	of	model	option	1	to	

compare	outcomes	for	borderline	resectable	cases	treated	in	both	the	

surgery	first	and	neoadjuvant	pathways.	For	those	treated	in	the	

neoadjuvant	pathway	the	expected	survival	time	altered	very	little	

when	compared	the	original	output	from	model	option	1	for	

borderline	resectable	cases	treated	in	the	neoadjuvant	pathway	

(13.92months	to	13.81months).	Neoadjuvant	pathway	was	superior	

compared	to	surgery	first	pathway,	which	gave	11.75months.	This	

however	was	dependent	on	the	probability	of	resection	in	the	

neoadjuvant	pathway	being	greater	than	18.9%	(Figure	43).	When	

survival	time	was	altered	to	reflect	that	reported	for	resected	cases	

this	produced	similar	findings	(25.97months)	to	those	reported	in	

the	original	model	option	2	for	borderline	resectable	cases	that	

underwent	resection	(25.31months)	(Table	31).		

As	the	majority	of	trials	meeting	the	inclusion	criteria	for	our	study	

were	gemcitabine	based	scenario	testing	was	used	to	explore	the	

impact	of	the	growing	use	of	neoadjuvant	FOLFIRINOX.	This	showed	

that	the	use	of	neoadjuvant	FOLFIRINOX	for	borderline	resectable	
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disease	improved	the	expected	outcome	from	13.81months	to	

19.80months.		

	

Figure	43:	Threshold	analysis	for	borderline	resectable	cases	treated	

in	neoadjuvant	and	surgery-first	pathways.	Probability	of	resection	

in	neoadjuvant	pathway	(x-axis)	against	expected	outcome	in	months	

(y-axis).	Red	line	represents	surgery	first	pathway,	blue	line	

represents	neoadjuvant	pathway,	and	yellow	line	represents	

unresectable	disease.		

	

The	improved	outcomes	reported	with	mFOLFIRINOX	in	the	

adjuvant	setting	of	the	surgery	first	pathway	increased	the	overall	

outcome	from	the	surgery	first	pathway	from	16.56months	to	
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38.43months.	However,	the	apparent	benefit	of	adjuvant	therapy	

only	applied	to	those	who	underwent	resection	and	receive	adjuvant	

therapy	therefore	threshold	analysis	showed	that	the	probability	of	

resection	in	the	surgery	first	pathway	had	to	be	greater	than	54%	

and	that	the	probability	of	receiving	adjuvant	therapy	also	had	to	be	

greater	than	8%	for	the	surgery	first	pathway	to	be	the	superior	

option	for	cases	of	resectable	pancreatic	cancer.	Inclusion	of	the	

preliminary	results	from	the	Prep-02/JSAP-05	randomised	control	

trials	increased	the	expected	survival	time	for	both	pathways	but	

neoadjuvant	pathway	demonstrated	an	increased	survival	advantage	

from	2.06months	to	4.89months.			

	

Discussion	

Data	as	a	partial	remnant	and	triangulation	

The	analysis	presented	here	combines	systems	modeling	with	DES	to	

combine	mathematical	techniques	with	clinically	meaningful	data.	

This	provides	a	useful	tool	that	complements	more	traditional	forms	

of	treatment	analysis,	such	as	randomised	controlled	and	cohort	

studies,	to	model	anticipated	outcomes	across	competing	treatment	

strategies	at	a	more	individualised	patient	level.	This	gives	a	useful	

tool	to	assist	both	clinical	decision	making	and	future	cost-

effectiveness	analysis.	Importantly	this	study	demonstrates	how	the	

novel	application	of	operational	research	methods	to	the	analysis	of	

treatment	pathways	for	pancreatic	cancer,	an	area	surrounded	by	

ambiguity	and	debate,	not	only	adds	a	further	dimension	to	the	on-

going	debate	but	drives	future	research	in	the	direction	of	more	

personalised	treatment	selection	strategies.		



	 364	

This	analysis	found	that	for	cases	that	were	borderline	resectable	or	

locally	advanced	the	overall	anticipated	survival	time	if	treated	in	the	

neoadjuvant	pathway	was	13.92months	(10.98	QALMs)	or	13.93	

months	(10.89	QALMs)	in	options	1	and	2	respectively.	The	Markov	

analysis	that	included	all	potentially	resectable	cases	gave	an	overall	

survival	outcome	of	23.72	months	(18.51	QALMs)	in	the	surgery	first	

pathway	versus	20.22	months	(16.26	QALMs)	in	the	neoadjuvant	

pathway.	The	increased	survival	times	in	both	arms	of	the	Markov	

model	can	be	explained	by	the	fact	that	resectable	cases	were	also	

included	in	this	cohort	whereas	DES	modeling	allowed	the	fitting	of	

different	data	distributions	for	resectable	and	borderline	resectable	

cases.	However	as	with	the	Markov	cohort	analysis	the	DES	analysis	

also	showed	that	where	all	treatment	modalities	were	received	

neoadjuvant	pathway	gave	superior	survival	outcomes.		

The	results	of	our	analysis	corroborate	a	growing	body	of	evidence	

reporting	survival	advantage	with	neoadjuvant	approach	for	

borderline	resectable	and	locally	advanced	cases	of	pancreatic	cancer	

(Janssen	et	al.,	2018;	Versteijne	et	al.,	2018).	Conversion	to	

resectability	produced	anticipated	outcomes	similar	to	those	cases	

that	are	resectable	at	presentation	and	undergo	resection.	However,	

this	analysis	goes	further	by	integrating	preliminary	results	from	the	

PREOPANC-1	randomised	controlled	trial,	which	compared	surgery	

first	and	neoadjuvant	treatment	for	borderline	resectable	cases,	into	

the	simulation	model	(Van	Tienhoven	et	al.,	2018).	By	placing	these	

preliminary	results	in	a	real-world	context,	where	complexity	is	not	

controlled,	we	demonstrated	that	for	borderline	resectable	cases	

where	surgery	first	pathway	is	a	viable	alternative,	the	probability	of	

resection	after	receiving	neoadjuvant	therapy	would	have	to	be	



	 365	

greater	than	18.9%	for	neoadjuvant	pathway	to	be	the	superior	

choice.		

	

Both	Markov	and	DES	analysis	for	resectable	cases	highlighted	the	

importance	of	more	personlised	treatment	selection	strategies.	

Although	overall	neither	pathway	was	found	to	be	conclusively	

superior,	there	appeared	to	be	a	marginal	advantage	with	

neoadjuvant	pathway.	This	raises	the	possibility	that	for	a	subgroup	

of	patients	with	resectable	disease	who	have	the	highest	probability	

of	undergoing	an	early	R0	resection	and	receiving	adjuvant	therapy,	

surgery	first	could	the	superior	pathway.	In	the	DES	analysis	there	

was	a	marginal	overall	survival	advantage	with	option	2,	the	

neoadjuvant	pathway	(20.02months;	17.16	QALMs	versus	

17.49months;	13.11	QALMs	in	options	1	and	3).	Subgroup	analysis	

showed	that	for	resectable	only	cases	the	neoadjuvant	pathway	gave	

a	mean	survival	time	of	20.01months	(18.45	QLAMs)	compared	to	

16.55months	(14.19	QALMs)	in	the	surgery	first	pathway.	When	

minimum	significant	difference	threshold	was	set	to	3.5months	the	

selection	frequency	was	40.6%	for	neoadjuvant	pathway	and	59.4%	

for	indifference	between	pathways.	The	Markov	analysis	of	

resectable	only	cases	also	reported	a	survival	advantage	with	

neoadjuvant	therapy	(26.41	months;	22.54	QALMs)	compared	to	

surgery	first	approach	(23.72	months;	18.51	QALMs).	Sensitivity	

analysis	of	both	Markov	and	DES	models	supported	the	importance	

of	individual	patient	and	tumour	factors	determining	superior	

pathway	selection.	Within	the	DES	model	this	was	this	was	found	to	

depend	on	the	individual’s	probability	of	resection	being	greater	than	

38%	and	the	probability	of	R0	resection	being	greater	than	15.4%	
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within	the	neoadjuvant	pathway.	In	the	Markov	analysis	the	

probability	of	resection	in	the	neoadjuvant	pathway	had	to	be	greater	

than	47.48%	to	maintain	superiority.		

	

This	analysis	however	went	further	to	provide	new	insights	and	add	

a	further	dimension	to	the	ongoing	debate	regarding	the	treatment	of	

resectable	pancreatic	cancer,	which	remains	controversial.	For	

patients	who	do	not	receive	surgery	in	the	neoadjuvant	pathway	it	is	

either	assumed	that	they	missed	their	window	of	resectability,	and	

therefore	would	have	had	vastly	better	survival	outcomes	in	the	

surgery	first	pathway,	or	that	they	had	more	aggressive	disease	and	

were	successfully	filtered	away	from	futile	surgery.	This	analysis	

demonstrated	that	the	maximum	expected	value	for	these	patients	in	

the	surgery	first	pathway	was	only	5.5months	(3.14QALMs).	

	

Preliminary	results	from	the	Prep-02/JSAP-05	trial	favour	

neoadjuvant	treatment	for	resectable	pancreatic	cancer	(Unno	et	al.,	

2019)	yet	these	results	are	challenged	by	RCTs	comparing	adjuvant	

regimes	that	report	survival	outcomes	exceeding	those	reported	in	

the	neoadjuvant	arms	of	the	former	(Conroy	et	al.,	2018).	Both	RCTs	

focus	on	outcomes	for	cases	where	all	treatment	modalities	are	

received.	Our	study	places	these	findings	in	a	real	world	context	

where	complexity	is	no	longer	controlled	and	demonstrates	that	

rather	than	one	pathway	being	conclusively	superior	for	all,	superior	

pathway	selection	actually	could	depend	on	individual	patient	and	

tumour	factors.	When	the	results	of	a	RCT	that	reported	improved	

survival	time	with	adjuvant	mFOLFIRINOX	(Conroy	et	al.,	2018)	that	
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exceeded	the	survival	time	reported	in	the	neoadjuvant	arm	of	the	

Prep-02/JSAP-05	trial	(Unno	et	al.,	2019)	was	implemented	within	

the	model	and	showed	surgery	first	pathway	to	be	superior,	the	

importance	of	personalised	selection	was	again	demonstrated.	When	

this	scenario	was	tested	within	the	simulation,	surgery	first	pathway	

was	only	the	superior	pathway	provided	the	individual	patient	had	a	

probability	of	resection	greater	than	54%	and	a	probability	of	

receiving	adjuvant	therapy	greater	than	8%	within	the	surgery	first	

pathway.		

	

These	findings	have	important	implications	for	the	future	direction	of	

research.	It	is	widely	assumed	that	through	further	RCTs	one	

superior	pathway	for	the	treatment	of	all	cases	of	resectable	

pancreatic	cancer	will	be	conclusively	established.	Theses	results	

show	that	the	future	direction	of	research	must	not	only	be	on	

seeking	to	address	these	issues	through	large	multicentre	RCTs	

offering	a	true	head-to-head	comparison	of	upfront	surgery	versus	

neoadjuvant	approach	for	resectable	pancreatic	cancer,	but	also	on	

embracing	the	advances	in	computational	statistics	to	engage	with	

the	reality	of	the	complex	systems	in	which	clinical	decision	making	

takes	place	and	where	complexity	is	not	controlled	for.	Only	in	this	

way	can	we	hope	to	use	emerging	data	to	support	better	patient	

selection	through	personalised	predictions	of	outcomes	across	

competing	treatment	strategies.	Not	only	will	this	facilitate	better	

shared	decision	making	but	also	the	more	effective	allocation	of	

resources.	Therefore	to	further	explore	the	potential	advantages	of	

the	modeling	approach	presented	here	over	the	more	established	
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Markov	modeling	technique,	the	following	section	will	triangulate	

these	findings	with	those	produced	when	the	DES	model	is	populated	

with	data	from	the	West	of	Scotland	Pancreatic	Unit	database	to	

compare	the	accuracy	of	both	Markov	and	DES	model	outputs	against	

the	survival	times	actually	observed.			
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4.4	Triangulation	of	Markov	and	DES	Modeling	

Techniques	Using	West	of	Scotland	Pancreatic	Unit	

Database		

Abstract		

Background:	The	role	of	neoadjuvant	therapy	as	an	alternative	

treatment	pathway	to	upfront	surgery	followed	by	adjuvant	therapy	

for	resectable	pancreatic	cancer	remains	controversial	and	there	is	a	

lack	of	RCTs	offering	conclusive	superiority	of	either	pathway.	With	

trials	commencing	to	develop	targeted	treatment	sequencing	and	

earlier	disease	detection,	data	is	set	to	become	more	complex.	It	is	

imperative	that	accurate	modeling	frameworks	are	developed	now	to	

facilitate	decision	making.	Markov	modeling	has	previously	been	

utilised	but	concerns	have	been	raised	about	the	accuracy	of	this	

method	and	outputs	have	not	yet	been	directly	compared	to	patient	

level	data.	This	section	aims	to	introduce	and	assess	the	accuracy	of	

Markov	and	DES	models	for	predicting	likely	survival	outcomes	for	

patients	diagnosed	with	resectable	pancreatic	cancer	treated	in	

either	neoadjuvant	or	upfront	surgery	pathways.		

	

Methods:	A	disease	model	mapping	upfront	surgery	and	neoadjuvant	

pathways	was	created.	Survival	time	was	then	modeled	as	transitions	

between	health	states	within	a	Markov	model	and	alternatively	as	

time-to-event	within	a	DES	model.	Both	models	were	populated	with	

data	from	a	prospectively	maintained	tertiary	referral	centre	

database	and	expected	value	outputs	compared	against	actual	

survival	times	outcomes	across	all	treatment	sequences	received.		
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Results:	There	was	no	statistically	significant	difference	between	

observed	and	expected	value	survival	times	produced	by	the	DES	

model	(P	value	0.122,	95%	CI	-0.09-	-0.58).		The	difference	was	

statistically	significant	with	the	Markov	model	(P	value	0.007;	95%	CI	

l	-13.49	-	-3.46).		

	

Conclusion:	A	DES	model	with	appropriate	risk	equations	capturing	

patient	characteristics	and	treatment	history	presents	improvements	

over	Markov	modeling.				

	

Introduction	

There	are	several	ongoing	key	challenges	in	the	management	of	

resectable	pancreatic	cancer	as	previously	discussed.	Firstly	the	

superior	treatment	pathway	for	resectable	pancreatic	caner	has	not	

been	conclusively	established.	Secondly	superior	treatment	regime	

combinations	within	competing	pathways	have	not	been	conclusively	

established.	Furthermore	the	narrative	regarding	future	research	has	

increasingly	turned	to	developing	more	individualised	selection	of	

treatment	strategies	either	determined	through	biomarkers	or	gene	

targeted	therapies	(Amanam	&	Chung,	2018).						

	

Novel	treatment	developments	typically	come	with	cost	implications.	

Cost-effectiveness	analysis	of	neoadjuvant	versus	upfront	surgery	is	

lacking	and,	more	widely,	oncology	economic	models	rarely	capture	

the	entire	treatment	pathway.	Both	from	the	clinician	and	payer’s	

perspective	it	is	essential	that	an	accurate	framework	for	modeling	

pathway	outcomes	for	resectable	pancreatic	cancer	be	developed	

now	so	that	accurate	economic	evaluation	of	emerging	treatment	
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outcomes	can	be	assessed.	Such	a	framework	must	also	have	the	

flexibility	to	incorporate	the	anticipated	move	within	cancer	research	

towards	more	individualised	targeted	treatments.	Although	the	

majority	of	recent	appraisals	for	oncology	treatments	use	a	survival	

partition	model	(Woods	et	al.,	2019),	this	is	limited	by	the	

fundamental	structural	assumption	that	disease-free	endpoints	and	

overall	survival	endpoints	are	independent	which	creates	

uncertainty	when	extrapolating	survival	time	beyond	the	trial	period	

when	overall	survival	data	is	immature	(Pan	et	al.,	2018).	Such	an	

approach	would	also	be	too	simplistic	to	capture	the	potential	

emerging	treatment	paradigms	of	more	personalised	targeted	

treatments	that	could	have	significant	impact	on	clinical	outcomes,	

costs	and	resource	utilisation.		

	

An	alternative	approach	in	the	form	of	Markov	modeling	has	been	

employed	for	decision	analysis	of	upfront	surgery	versus	neoadjuvant	

therapy	for	resectable	pancreatic	cancer	(de	Geus	et	al.,	2016;	

Sharma	et	al.,	2015).	These	studies	were	based	on	synthesised	data	

from	published	trials	and	their	output	was	not	validated	against	

patient	level	data.	Whilst	this	approach	adds	flexibility	in	sensitivity	

analysis	by	incorporating	explicit	links	between	end	points,	it	also	

carries	methodological	limitations	that	could	inhibit	its	future	

application	(Caro	et	al.,	2010;	Miettinen	&	Caro,	1989).	Given	the	

anticipated	move	towards	future	personalised	targeted	treatments	

the	memory-less	property	of	the	Markov	cohort	model	makes	it	less	

well	equipped	to	handle	individual	patient	data,	which	can	result	in	

reduced	accuracy	due	to	depletion	of	susceptibles	and	an	over	

simplification	of	assumptions	(Caro	et	al.,	2010;	Miettinen	&	Caro,	
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1989).	Furthermore	in	light	of	the	afore	mentioned	current	

challenges	in	pathway	assessment	for	resectable	pancreatic	cancer,	

the	implementation	of	time-dependent	transition	probabilities	when	

multiple	health	states	and	treatment	sequences	are	considered,	

would	make	programming	and	utilising	such	a	model	complex	(Caro	

et	al.,	2010;	Miettinen	&	Caro,	1989).		

	

A	better	framework	for	modeling	treatment	pathways	for	resectable	

pancreatic	cancer	could	be	offered	through	DES	approach	as	it	

captures	a	patient’s	experience	in	terms	of	events	and	also	has	the	

ability	to	track	changes	in	patient	characteristics,	health	status	and	

treatment	history	in	relation	to	their	impact	on	outcomes	(Pan	et	al.,	

2018;	Caro	et	al.,	2010).	This	potentially	makes	this	approach	a	more	

accurate	and	efficient	framework	with	the	flexibility	to	incorporate	

future	anticipated	breakthroughs	in	personalised	targeted	

treatments.	However,	the	proportion	of	disease	that	is	resectable	at	

presentation	is	small	considering	the	data	requirements	for	such	a	

modeling	framework	and	the	accuracy	of	DES	approach	has	not	yet	

been	applied	to	treatment	pathway	analysis	for	resectable	pancreatic	

cancer	to	assess	its	level	of	accuracy.	

	

The	objective	of	this	study	is	to	compare	the	accuracy	of	

implementation	of	Markov	modeling	and	DES	modeling	within	a	

disease	model	reflecting	the	treatment	pathways	of	upfront	surgery	

and	neoadjuvant	therapy	for	resectable	pancreatic	cancer	to	

establish	whether	either	modeling	framework	displays	an	advantage	

in	terms	of	accuracy	of	output	that	could	be	applied	to	future	

economic	and	decision	analysis.		
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Methods	

Data	Source	

A	prospectively	maintained	database	for	a	pancreatic	cancer	tertiary	

referral	centre	contained	a	cohort	of	200	sequential	patients	

diagnosed	with	non-metastatic	pancreatic	ductal	adenocarcinoma	

(PDAC).	Upfront	surgery	pathway	was	performed	for	all	patients	

from	January	2008	to	July	2012.		From	1st	August	2012	to	30th	

December	2015	100	patients	with	non-metastatic	PDAC	were	treated	

in	the	neoadjuvant	pathway,	provided	multi-disciplinary-team	

consensus	was	that	R1	resection	was	likely	(tumour	extending	to	any	

pancreatic	margin	on	CT	or	EUS	evaluation).	For	this	model	only	

those	patients	with	resectable	PDAC	on	initial	staging,	prior	to	

commencing	neoadjuvant	therapy,	and	who	were	deemed	fit	for	

surgery	by	multidisciplinary	team	consensus	based	on	performance	

status	score	and	cardio	pulmonary	exercise	test	(CPET),	were	

included	(n	=	59).	Borderline	and	locally	advanced	PDAC,	as	defined	

by	AHPBA/SSO/SSAT	guidelines	(Callery	et	al.,	2009)	were	excluded.	

From	August	2012	working	backwards,	100	sequential	patients	in	

the	upfront	surgery	pathway	who	had	resectable	PDAC	at	

presentation,	and	were	deemed	fit	for	surgery	based	on	performance	

status	score	and	CPET,	populated	the	upfront	surgery	arm	of	the	

model.		The	neoadjuvant	regimen,	previously	described	by	Grose	et	

al.	(2017),	was	mFOLFIRINOX.	Adjuvant	therapy	regime	in	the	

upfront	surgery	pathway	was	Gemcitabine	monotherapy.	All	patients	

underwent	surgery	in	the	same	unit	and	no	patients	were	lost	to	

follow-up.		
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Model	Development	

A	disease	model	was	created	using	TreeAge	Pro	2019	software	to	

reflect	the	natural	history	of	the	disease	process	across	the	entirety	

of	both	upfront	surgery	and	neoadjuvant	treatment	pathways	

including	the	probabilities	of	treatment	toxicities	and	operative	

complications	(Figure	44).	The	model	structure	was	agreed	with	a	

panel	of	experts	from	a	tertiary	pancreatic	surgical	center.		

	

Figure	44:	Overview	of	disease	model	

	

	
	

The	probabilities	at	chance	nodes	within	the	disease	model	were	

based	on	the	mean	probability	and	the	data	distribution	of	the	input	

data	for	each	chance	node	was	fitted	against	55	possible	data	

distributions	with	best	fit	of	empirical	data	determined	by	Anderson	
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Darling	statistic	(Table	32).	A	Markov	cycle	was	then	implemented	

within	the	disease	model	to	model	time	to	transition	between	health	

states	of:	alive	without	disease,	alive	with	disease	and	dead.	For	

comparison	a	DES	model	was	implemented	within	the	same	disease	

model	to	model	time-to-event	with	events	defined	as	disease	

recurrence	and	death	(Figure	44).		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 376	

Table	32:	Transition	probabilities	within	disease	model.		

	
Variable	 Transition	

Probability		
Variance	 Standard	

Deviation	
Data	
Distribution:	
parameters	
(Anderson	
Darling	
Statistic)	

Grade	3+	toxicity	with	NAT	 0.22	 0.21607	
	

0.0046483	
	

D.	Uniform:	
a=0	b=1	
(34.26)	

Resection	in	NAT	pathway	 0.66	 0.29876	
	

0.0054659	
	

Poisson:	
λ=0.84746	
(23.333)	

Exploratory	
Laparoscopy/Laparotomy	

0.10	 0.29876	
	

0.0054659	
	

Poisson:	
λ=0.84746	
(23.333)	

No	surgery	 0.24	 0.29876	
	

0.0054659	
	

Poisson:	
λ=0.84746	
(23.333)	

R0	resection	NAT	pathway	 0.49	 0.24984	
	

0.0049984	
	

Poisson:	
λ=0.	51282	
(19.177)	

Grade	3-4	post-operative	
complication	NAT	pathway	

0.18	 0.25895	
	

0.0050887	
	

D.	Uniform:	
a=0	b=1	
(19.928)	

Grade	5	post-operative	
complication	NAT	pathway	

0.03	 0.25895	
	

0.0050887	
	

D.	Uniform:	
a=0	b=1	
(19.928)	

Resection	SF	pathway	 0.78	 0.1716	
	

0.0041425	
	

Poisson:	
λ=1.22	
(42.381)	

R0	resection	SF	pathway	 0.21	 0.16305	
	

0.004038	
	

Bernoulli:	
p=0.79487	
(16.14)	

Grade	3-4	post-operative	
complication	SF	pathway	

0.27	 0.29692	
	

0.005449	
	

Poisson:	
λ=	0.34884	
(50.791)	

Grade	5	post-operative	
complication	SF	pathway	

0.04	 0.29692	
	

0.005449	
	

Poisson:	
λ=	0.34884	
(50.791)	

Receiving	adjuvant	therapy	 0.50	 0.25	
	

0.005	 Poisson:	
λ=0.5	
(38.757)	

Adjuvant	toxicity	grade	3+	 0.36	 0.24377	
	

0.0049373	
	

Bernoulli:	
p=0.57895	
(33.585)	
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Statistical	Analysis	

Bayesian	statistical	package	in	SPSS	version	25.0.0	was	used	to	

conduct	Bayesian	ANOVA	analysis	of	each	variable	contained	within	

the	database	against	the	dependent	variable	of	survival	time.	

Bayesian	inference	about	Pearson	correlation	coefficient	was	then	

performed	to	assess	the	linear	relation	between	each	variable	and	

survival	time	to	draw	Bayesian	inference	by	estimating	Bayes	factors	

and	characterising	posterior	distributions.	Linear	regression	analysis	

within	the	context	of	Bayesian	inference	was	undertaken	with	

variables	assessed	for	their	ability	to	explain	and	predict	values	of	

survival	time	as	a	scaled	outcome.	Log-linear	regression	was	then	

performed	to	test	the	independence	of	each	variable	against	the	

outcome	of	survival	time.	A	default	setting	of	least	informed	prior	

was	used.	Bayesian	statistical	approach	was	employed	as	Bayesian	

estimation	can	not	only	obtain	otherwise	impossible	parameters	

estimates	but	produce	more	accurate	parameter	estimates	(Kim	et	

al.,	3013c;	Depaoli,	2013),	even	in	situations	of	small	sample	sizes	

(Zhang	et	al.,	2007).		

	

Receiving	multimodal	treatment	(P	value	<	0.01)	and	R0	resection	(P	

value	0.025)	were	found	to	be	statistically	significant	in	determining	

survival	time.	Different	equations	were	therefore	used	to	determine	

survival	time	for	different	treatment	sequences	to	capture	the	full	

patient	experience:	R0	resection	with	and	without	adjuvant	therapy,	

R1	resection	with	and	without	adjuvant	therapy,	neoadjuvant	

therapy	and	R0	resection	and	neoadjuvant	therapy	and	R1	resection.	
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Within	the	Markov	model	survival	time	was	estimated	based	on	

transition	probability	from	one	health	state	to	another:		

• Probability	of	transitioning	from	alive	without	disease	to	alive	

with	disease	(varies	by	treatment	received	and	resection	

status)		

• Probability	of	transitioning	from	alive	with	disease	to	death	

(varies	by	treatment	received,	resection	status	and	time	in	

alive	without	disease	state)	

Within	the	DES	model	survival	time	was	estimated	based	on	time-to-

event	data	distribution:	

• Time	from	alive	without	disease	to	event	disease	recurrence	

(varies	by	treatment	received	and	resection	status)	

• Time	from	disease	recurrence	to	event	death	(varies	by	

treatment	received,	resection	status,	and	time	to	event	

recurrence)	

In	both	the	Markov	and	DES	models	the	patient	is	subject	to	the	

competing	risk	of	death	defined	in	the	transition	to	death	state	

probability	equation	and	the	time	to	death	equation	respectively.	

Where	death	is	the	next	state	within	the	Markov	model	or	the	next	

event	within	the	DES	model	the	patient	exits	the	model.	The	

probability	of	death	occurring	from	postoperative	complication	was	

included	in	the	transition	probability	and	time	to	death	equations	

based	on	the	probability	distribution	of	experiencing	a	grade	5	

complication	as	defined	by	the	Clavien	dindo	classification.	As	all	

patients	within	the	database	were	already	assessed	to	have	

European	Cooperative	Oncology	Group	(ECOG)	score	between	0-1,	

hence	deeming	them	fit	to	undergo	surgery,	ECOG	score	was	not	

included	in	this	equation.	
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Simulation	cohort	

	

Analysis	of	all	PDAC	patients	contained	within	the	institution	

database,	regardless	of	disease	stage,	performance	status	or	

treatment	pathway	(n=418),	revealed	that	tumour	size	(P	value	

0.005),	ECOG	score	(P	value	0.002)	and	American	Joint	Committee	

Cancer	(AJCC)	stage	(P	value	<0.001)	were	statistically	significant	

factors	in	determining	survival	time.	As	this	study	was	comparing	

outcomes	for	treatment	pathways	for	resectable	only	disease	the	

models	were	based	on	data	where	patients	in	both	cohorts	were	

matched	for	these	factors.	Individual	patient	profiles	from	this	study	

population	of	resectable	disease	were	cloned	and	run	through	each	

arm	of	the	models	to	simulate	perfect	patient	randomisation.	

Attributes	or	profiles	updated	during	the	simulation	included	

treatment	actually	received,	resection	status	and	impact	of	

treatment	complications.								

	

Markov	Model	

	

The	Markov	model	was	set	to	60	cycles	with	each	cycle	representing	

1	month.	The	number	of	cycles	ensured	that	all	patients	were	

followed-up	within	the	model	until	time	of	death.	Transition	

probabilities	within	the	model	were	based	on	the	cohort	mean.	To	

assess	the	degree	of	uncertainty	surrounding	input	data	for	each	

variable	contained	within	the	model	Monte	Carlo	probabilistic	

sensitivity	analysis	was	performed	and	set	to	10000	iterations	with	

data	for	each	variable	sampled	from	the	entirety	of	the	data	
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distribution	for	each	variable.	Markov	states	included:	alive	without	

disease,	alive	with	disease	and	dead.			

	

Discrete	Event	Simulation	Model	

	

The	DES	model	simulated	10000	patients	with	resectable	pancreatic	

cancer	treated	in	upfront	surgery	or	neoadjuvant	pathways	that	were	

followed-up	until	time	of	death.	Events	in	time-to-event	analysis	

included	time	to	disease	recurrence	and	time	from	disease	

recurrence	to	death.	To	capture	first-order	uncertainty	distributions	

were	applied	around	all	model	parameters.	The	simulation	was	ran	

over	10000	iterations.	Second	order	uncertainty	was	captured	

through	probabilistic	sensitivity	analysis	by	running	each	trial	1000	

times	with	the	possible	mean	of	each	parameter	drawn	from	the	data	

distribution	hence	capturing	uncertainty	surrounding	the	sample	

mean.		

	

Black	box	validation	was	applied	by	comparing	input	and	output	data	

with	data	in	the	literature	(Pidd,	2004).	White	box	validation	was	

carried	out	through	validation	of	input	parameters	to	ensure	outputs	

resulting	from	different	distribution	inputs	provided	a	reasonable	fit	

to	empirical	data	and	through	both	static	logic	validation	and	

dynamic	logic	validation	(Pidd,	2004).		

	

Validation	and	analysis	of	model	outcomes	

	

Both	Markov	and	DES	model	outcomes	were	survival	time	in	months	

for	each	treatment	sequence	within	both	upfront	surgery	and	
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neoadjuvant	pathways.	These	outcomes	were	compared	to	the	

survival	time	taken	from	the	Kaplan-Meir	survival	curve	of	the	study	

population	for	each	treatment	sequence	within	each	pathway	(Figure	

21).		

		

	

Results	

	

Overall	the	Markov	analysis	showed	neoadjuvant	pathway	gave	

32.90	months	(28.51	QALMs)	compared	to	24.68	months	(19.23	

QALMs)	for	upfront	surgery	pathway.	The	DES	analysis	showed	that	

the	neoadjuvant	pathway	gave	23.74	months	(22.69	QALMs)	

compared	to	16.91	months	(14.39	QALMs)	for	upfront	surgery	

pathway.	The	results	of	model	outputs	across	all	treatment	

sequences	with	both	treatment	pathways	are	summarised	in	table	33	

with	the	observed	survival	time	taken	from	the	Kaplan-Meir	survival	

graph.			
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Table	33:	Summary	of	results.	Comparison	of	expected	outcomes	

from	Markov	and	discrete-event	simulation	models	with	observed	

survival	times	from	study	population.				

	
Treatment	Sequence	 Observed	survival	

time	in	months	
Markov	model	
expected	survival	
time	in	months		

Discrete-event	
simulation	model	
expected	survival	
time	in	months	

R0	resection	+	
adjuvant	therapy	

52	 52.59	 52.05	

R0	resection	+	no	
adjuvant	therapy	

15	 22.31	 14.84	

Neoadjuvant	
Therapy	+	R0	
Resection		

38	 45.36	 37.14	

R1	resection	+	
adjuvant	therapy	

21	 33.37	 20.75	

R1	resection	+	no	
adjuvant	therapy	

12	 20.93	 11.91	

Neoadjuvant	
Therapy	+	R1	
Resection	

28	 28	 27.86	

	

The	upfront	surgery	pathway	in	the	Markov	model	had	a	standard	

deviation	of	2.75	and	variance	of	7.51	and	the	neoadjuvant	pathway	

had	a	standard	deviation	of	0.21	and	a	variance	of	0.04.	The	DES	

model	had	a	standard	deviation	of	0.08	and	variance	of	0.01	for	the	

upfront	surgery	pathway	and	the	neoadjuvant	pathway	had	a	

standard	deviation	of	0.12	and	a	variance	of	0.01.	

	

Sensitivity	analysis	for	both	models	showed	that	the	probability	of	

receipt	of	multimodal	treatment	determined	superior	pathway	

selection.	In	the	Markov	model	neoadjuvant	pathway	was	expected	

to	be	superior	if	the	probability	of	resection	in	the	neoadjuvant	

pathway	was	greater	than	34%	and	in	the	DES	model	this	threshold	

was	30.35%.	In	the	DES	model	where	the	probability	of	upfront	R0	

resection	was	greater	than	74.55%	the	upfront	surgery	pathway	was	
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superior.	Two-way	deterministic	sensitivity	analysis	in	the	Markov	

model	corroborated	this	finding	by	demonstrating	that	superior	

pathway	selection	depended	on	the	probability	of	receiving	resection	

in	the	neoadjuvant	pathway	and	R0	resection	and	adjuvant	therapy	

in	the	upfront	surgery	pathway	(Figure	45).							

	

Figure	45a:	Markov	Two-way	sensitivity	analysis.	Y-axis	shows	

probability	of	receiving	adjuvant	therapy	in	upfront	surgery	(SF)	

pathway	and	x-axis	shows	probability	of	receiving	resection	in	

neoadjuvant	(NAT)	pathway.	The	red	area	depicts	the	range	whereby	

upfront	surgery	pathway	would	be	the	superior	pathway.	The	blue	

area	depicts	the	range	over	which	neoadjuvant	pathway	would	be	the	

superior	pathway.		
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Figure	45b:	Markov	Two-way	sensitivity	analysis.	Y-axis	shows	

probability	of	receiving	R0	resection	in	upfront	surgery	(SF)	pathway	

and	x-axis	shows	probability	of	receiving	resection	in	neoadjuvant	

(NAT)	pathway.	The	red	area	depicts	the	range	whereby	upfront	

surgery	pathway	would	be	the	superior	pathway.	The	blue	area	

depicts	the	range	over	which	neoadjuvant	(NAT)	pathway	would	be	

the	superior	pathway.	

	
	

The	DES	model	produced	expected	values	closer	to	the	study	

population	survival	data	across	all	treatment	sequences	(Table	33;	

Figure	46).	Paired	T-Test	showed	that	there	was	a	mean	difference	of	

-8.48	months	in	the	study	population	survival	times	when	compared	

to	the	expected	value	of	the	Markov	model	with	a	standard	deviation	

of	4.77	and	standard	error	of	1.95.	The	difference	between	expected	

values	from	the	Markov	model	and	the	study	population	was	

statistically	significant	(P	value	0.007;	95%	confidence	interval	-

13.49	-	-3.46).	When	the	study	population	data	was	compared	to	the	
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expected	values	from	the	DES	model	the	mean	difference	was	0.24,	

standard	deviation	0.32,	standard	error	0.13.	There	was	no	

statistically	significant	difference	found	between	the	study	

population	data	and	the	expected	values	from	the	DES	model	(P	value	

0.122,	95%	CI	-0.09-	-0.58).		

	

Figure	46:	Results	of	Paired	T-test.	Comparison	of	expected	outcomes	

from	Markov	and	discrete-event	simulation	models	with	observed	

survival	times	from	study	population.	NT=	neoadjuvant	therapy.	Adj	

=	adjuvant	therapy.			
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Discussion	

	

DES	modeling	has	previously	been	applied	to	chronic	conditions	(Pan	

et	al.,	2018;	Barton	et	al.,	2004;	Chen	et	al.,	2006;	Jobanputra	et	al.,	

2002;	Kobelt	et	al.,	2009;	Lindgren	et	al.,	2009;	Malottki	et	al.,	2011;	

Tran-Duy	et	al.,	2011;	Wu	et	al.,	2015)	but	its	application	to	oncology	

has	largely	been	limited	to	screening,	planning	and	scheduling	care	

(Saville	et	al.,	2019).	Markov	modeling	is	growing	in	popularity	and	is	

a	widely	used	method	within	cost-effectiveness	analysis	but	concerns	

have	been	raised	regarding	its	level	of	accuracy	(Caro	et	al.,	2010;	

Miettinen	&	Caro,	1989).	This	study	compared	the	feasibility,	validity	

and	potential	benefits	of	Markov	and	DES	modeling	frameworks	for	

modeling	outcomes	for	resectable	pancreatic	cancer.		

	

Expected	outcomes	from	DES	modeling	were	found	to	be	more	

accurate	than	those	from	Markov	modeling	when	compared	to	study	

population	data	across	all	treatment	sequences	within	both	upfront	

surgery	and	neoadjuvant	pathways.	The	Markov	model	

overestimated	expected	values	with	a	mean	difference	of	8.48months	

when	compared	to	observed	outcomes	within	the	study	population.	

This	finding	corroborates	concerns	regarding	the	assumptions	made	

within	Markov	models	resulting	in	overestimations	as	they	are	based	

on	modeling	the	cohort	population	and	therefore	become	less	

accurate	due	to	depletion	of	susceptibles	and	lack	of	memory	making	

it	difficult	for	the	model	to	characterise	how	complications	or	events	

may	be	determinants	of	future	events	and	outcomes	(Caro	et	al.,	

2010;	Miettinen	&	Caro,	1989).			
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DES	and	Markov	modeling	have	the	disadvantage	of	being	potentially	

complex	with	substantial	data	requirements	and	are	subject	to	

structural	and	parameter	uncertainty	(Pan	et	al.,	2018).		This	study	is	

based	on	a	small,	non-randomised	cohort	from	a	single	centre	

database	and	therefore	the	model	outputs	have	limited	

generalisability.	However,	DES	modeling	displayed	a	high	degree	of	

accuracy	over	Markov	modeling	in	modeling	the	study	data.	Overall	

both	models	suggested	a	marginal	advantage	with	the	neoadjuvant	

pathway	but	sensitivity	analysis	from	both	Markov	and	DES	models	

showed	that	superior	pathway	selection	depended	on	individual	

probability	of	receiving	multimodal	treatment	within	either	pathway	

with	the	small	subgroup	of	patients	who	received	early	R0	resection	

and	adjuvant	therapy	having	the	greatest	survival	time.	These	

findings	demonstrate	the	insights	gained	from	both	modeling	

approaches	having	the	flexibility	to	test	parameter	uncertainty	

through	sensitivity	analysis.	Furthermore	these	findings	support	a	

growing	move	within	research	towards	more	personalised	targeting	

of	treatments.	Due	to	its	increased	flexibility	the	DES	modeling	

framework	stands	to	become	an	increasingly	important	tool.	Large	

multicenter	RCTs	comparing	upfront	surgery	and	neoadjuvant	

approach	for	resectable	pancreatic	cancer	are	currently	lacking	but	

are	anticipated	to	increase	in	number	and	explore	different	

treatment	regimes	within	both	pathways.	By	accounting	for	

individual	patient	characteristics	and	treatment	history	at	individual	

patient	level	the	DES	modeling	framework	presented	here	displayed	

a	high	level	of	accuracy.	Using	DES	modeling	to	model	individual	

patient	data	could	be	used	to	accommodate	deviation	from	trial	

protocols	when,	for	example,	patients	have	to	switch	to	second	line	
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treatment	regimes	or	where	more	individualised	targeted	treatments	

are	being	trialed	(Pan	et	al.,	2018).	Furthermore	trails	are	beginning	

within	pancreatic	cancer	research	that	will	aim	to	discover	methods	

of	earlier	disease	detection	(UCL,	2019).	As	results	from	these	trials	

begin	to	emerge	the	initial	follow-up	time	could	be	shorter	than	the	

clinical	course	of	the	disease,	particularly	if	earlier	disease	detection	

comes	to	fruition.	In	such	cases	DES	modeling	can	make	projections	

of	survival	time	to	provide	valuable	insight	(Pan	et	al.,	2018).	

			

Conclusion	

Considering	the	emergence	of	neoadjuvant	therapy	as	an	alternative	

treatment	pathway	to	upfront	surgery	for	resectable	pancreatic	

cancer	and	the	ever	increasing	complexity	of	competing	treatment	

pathways,	with	current	trials	underway	to	explore	earlier	disease	

detection	and	targeted	therapies,	this	study	set	out	to	explore	the	

feasibility,	validity	and	benefit	of	Markov	and	DES	modeling	

frameworks.	Our	study	showed	that	a	DES	model	with	properly	

developed	risk	equations	to	capture	individual	patient	characteristics	

and	treatment	history	could	accurately	simulate	real-world	outcomes	

for	resectable	pancreatic	cancer	treated	in	both	upfront	surgery	and	

neoadjuvant	pathways.	As	data	begins	to	emerge	from	large	

multicenter	RCTs	and	more	complex	data	emerges	from	

developments	in	early	detection	and	biomarker	and	gene	targeted	

therapies,	DES	modeling	stands	to	become	an	important	tool	in	the	

development	and	assessment	of	more	personalised	pancreatic	cancer	

treatment	with	the	associated	impact	on	survival	outcomes,	resource	

planning	and	utilisation.		
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4.5	Cost-Effectiveness	Analysis		
Abstract	

	

Background:	The	aim	of	this	section	is	to	analyse	the	cost-

effectiveness	of	neoadjuvant	therapy	(NAT)	versus	surgery-first	(SF)	

treatment	pathways	for	resectable	pancreatic	cancer.		

	

Methods:	The	study	was	conducted	from	a	National	Health	Service	

(UK)	perspective	with	discounting	of	costs	and	benefits	set	at	3.5%	

and	willingness-to-pay	set	(WtP)	at	£2,500	per	quality-adjusted-life-

month	(QALM)	(£30,000	per	quality-adjusted-life-year).	A	Markov	

model	with	1-month	cycle	length	set	to	a	maximum	follow-up	time	of	

60-cycles	was	created	to	estimate	incremental	lifetime	costs	and	

benefits.	Deterministic	and	probabilistic	sensitivity	analysis	were	

undertaken	to	test	model	uncertainties	including	alternative	

discounting	rates.	A	DES	model	was	also	designed	to	perform	Monte	

Carlo	first	order	microsimulation	over	10000	iterations.	Second	

order	uncertainty	was	captured	through	probabilistic	sensitivity	

analysis.		Each	trial	was	run	1000	times	with	the	possible	mean	of	

each	parameter	drawn	from	the	data	distribution	hence	capturing	

uncertainty	surrounding	the	sample	mean.	Costs	across	tertiary	and	

primary	level	care,	including	end-of-life	care,	were	included.		

	

The	models	were	populated	from	synthesised	data	form	RCTs	and	

phase	II/III	trials.	Populating	the	models	with	data	from	the	West	of	

Scotland	Pancreatic	Unit	database	then	triangulated	these	results.		

Benefits	were	measured	as	QALMs	with	cost-effectiveness	presented	

as	incremental	costs,	incremental	effectiveness,	incremental	cost-
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effectiveness	ratio	(ICER)	and	incremental	net	monetary	benefit	

(NMB).		

Markov	Model	Results:		Using	synthesised	data	NAT	gave	21.27	

QALMs	at	a	cost	of	£109879.65.	SF	gave	17.59	QALMs	at	a	cost	of	

£101251.75.	NAT	therefore	had	an	incremental	cost	of	£8627.90	

more	than	SF	for	an	incremental	effectiveness	of	3.68	QALMs	and	an	

ICER	of	£2344.16.	Using	West	of	Scotland	Pancreatic	Unit	data	NAT	

gave	26.71	QALMs	at	a	cost	of	£117426.89.	SF	gave	21.27	QALMs	at	a	

cost	of	£109879.65.	NAT	therefore	had	an	incremental	cost	of	

£29126.08	more	than	SF	for	an	incremental	effectiveness	of	8.48	

QALMs	and	an	ICER	of	£3433.07.		

DES	Model	Results:	Using	synthesised	data	NAT	gave	16.45	QALMs	at	

a	cost	of	£81934.19.	SF	gave	13.84	QALMs	at	a	cost	of	£69630.42.	

NAT	therefore	had	an	incremental	cost	of	£12303.77	more	than	SF	

for	an	incremental	effectiveness	of	2.61	QALMs	and	an	ICER	of	

£4708.51.	Based	on	West	of	Scotland	Pancreatic	Unit	data	NAT	gave	

21.60	QALMs	at	a	cost	of	£72083.26.	SF	gave	13.87	QALMs	at	a	cost	of	

£45813.65.	NAT	therefore	had	an	incremental	cost	of	£26219.61	

more	than	SF	for	an	incremental	effectiveness	of	7.73	QALMs	and	an	

ICER	of	£3390.51.		

In	both	Markov	and	DES	models	using	synthesised	and	institutional	

data	the	main	driver	of	the	ICER	was	receipt	of	multimodal	treatment	

in	the	NAT	pathway.				

Conclusions:	When	end-of-life	care	was	included	NAT	pathway	was	

found	to	cost	more	than	SF	pathway	but	with	greater	effectiveness.	

NAT	could	be	considered	a	cost-effective	alternative	for	the	
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management	of	resectable	pancreatic	cancer	when	WtP	was	altered	

to	account	for	the	inclusion	of	end-of-life	care.	This	analysis	also	

suggests	that	individualised	treatment	pathway	selection	could	result	

in	a	more	cost-effective	delivery	of	care.			

	

Introduction	

	

The	significant	morbidity	associated	with	pancreatic	cancer	carries	

substantial	costs	to	society	(Tingstedt	et	al.,	2011).	Contemporary	

financial	constraints	and	subsequent	limitations	on	healthcare	

resources	mandate	the	cost-effectiveness	evaluation	of	competing	

treatment	choices.	This,	juxtaposed	with	the	lack	of	level	I	evidence	

guiding	treatment	sequencing,	presents	an	opportunity	to	evaluate	

treatment	in	alternative	ways	(Drummond	et	al.,	2015).	Currently	

only	one	cost-effectiveness	analysis	of	NAT	versus	SF	approach	for	

resectable	pancreatic	cancer	exists	and	is	limited	by	drawing	data	for	

competing	treatments	from	different	databases	which	increases	bias	

and	limits	generalisability	of	findings	(Abbott	et	al.,	2013).			

	

This	aims	of	this	study	is	to	synthesise	best	available	international	

published	data	to	perform	cost-effectiveness	analysis	of	SF	versus	

NAT	approach	to	the	management	of	resectable	pancreatic	cancer.	

First	this	will	be	performed	using	Markov	modeling	before	

triangulating	these	findings	with	DES	modeling	for	cost-effectiveness	

analysis.	Using	both	modeling	approaches	the	findings	based	on	

synthesised	data	will	also	be	triangulated	with	findings	from	analysis	

of	a	tertiary	referral	centres	prospectively	maintained	database.	

Specifically	this	study	aims	to	explore	the	existing	hypothesis	that	
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NAT	is	more	cost-effective	by	filtering	patients	with	more	aggressive	

tumours	away	from	futile	yet	costly	surgery	(Abbott	et	al.,	2013).	The	

alternative	hypothesis	that	the	Markov	models	developed	in	section	

4.2	and	the	DES	model	developed	in	section	4.3	will	more	effectively	

engage	with	the	complexity	of	the	healthcare	system	being	modeled	

to	reveal	new	insights	supporting	a	cost-effectiveness	argument	for	a	

move	towards	better	individualised	treatment	selection	strategies	

will	also	be	tested.			

	

Methods	

Analytical	Overview	

Following	guidelines	from	Consolidated	Health	Economic	Evaluation	

Reporting	Standards	(CHEERS)	(Husereau	et	al.,	2013)	and	NICE	

(NICE,	2011;	NICE	2013),	the	cost-effectiveness	of	SF	and	NAT	for	the	

management	of	resectable	pancreatic	cancer	was	compared	using	a	

Markov	model	and	then	triangulated	with	results	from	analysis	using	

a	DES	modeling	technique	(Figure	47).	Both	models	were	designed	in	

an	advanced	decision-tree	format	constructed	using	TreeAge	Pro	

2017	(TreeAge	Software	Ins.,	Williamstown,	MA).	The	development	

of	the	Markov	and	DES	models	has	been	previously	described	in	

section	4.2	and	4.3	respectively.		
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Figure	47:	Overview	of	models	

	

	

	
	

Study	Population	

The	base	case,	surgery	first	followed	by	adjuvant	therapy	(which	

included	chemotherapy,	chemoradiotherapy,	or	both),	was	compared	

to	NAT	(which	included	chemotherapy	and/or	chemoradiotherapy)	

followed	by	re-staging	and,	if	appropriate,	by	surgical	resection	on	an	

intention-to-treat	basis.	The	transition	probabilities	from	

syntnesised	data	within	both	Markov	and	DES	models	were	derived	

from	weighted	pooled	estimates	of	proportions	calculated	using	

Freeman-Tukey	arcsine	square	root	transformation	under	random	

effects	model	with	corresponding	95%	Confidence	Intervals	

(Freeman	&	Tukey,	1950).	The	selection	process	for	included	trials	
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has	previously	been	outlined	in	section	4.2.	The	ranges	in	reported	

literature,	standard	deviation	and	variance	were	used	to	test	

uncertainty	in	model	output	through	both	deterministic	and	

probabilistic	sensitivity	analysis.	For	further	triangulation	the	

Markov	and	DES	models	were	also	populated	with	data	from	the	

West	of	Scotland	Pancreatic	Unit	database.	This	study	population	has	

been	previously	described	in	sections	4.2	and	4.4.	Transition	

probabilities	are	summarised	again	in	table	34	for	the	Markov	model	

using	synthesised	data.	Table	35	summarises	transition	probabilities	

for	the	disease	based	on	the	West	of	Scotland	Pancreatic	Unit	

database	used	in	both	Markov	and	DES	modeling	with	the	time	to	

event	data	for	the	latter	taken	from	the	Kaplan	Meir	survival	curve	

(figure	34).			
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Table	34:	Transition	Probabilities	and	Payoff	Utility	for	Quality-

Adjusted-Life-Months	(QALMs)		
Variable	 Transition	

Probability	
(95%	
Confidence	
Interval)	

Range		 Standard	
Deviation;	
Variance	

Data	
distribution;	
Parameters;	
(Anderson	
Darling	
Statistic)	

Grade	3+	toxicity	with	
NAT	

0.41	(0.90-
0.97)	

0.70-
1.00	

0.09037;	
0.00817	

Gen.	Pareto;	
k=0.16131	
σ=0.06585		
μ=-0.00512	
(0.37908)	

Resection	in	NAT	pathway	 0.63	(0.57-
0.69)	

0.32-
0.85	

0.02102;	
4.4190E-4	

Gen.	Extreme	
Value;		
k=0.07104	
σ=0.01585	
μ=0.03134	
(0.30431)	

Exploratory	
Laparoscopy/Laparotomy	

0.12	(0.08-
0.17)	

0-0.36	 0.00633;	
4.0057E-5		

Johnson	SB;	
γ=2.0682	
δ=1.7897	
λ=0.0624		
ζ=-0.00855	
(0.56039)	

R0	resection	NAT	pathway	 0.49	(0.36-
0.62)	

0.06-
0.71	

0.03079;		
9.4797E-4	

Cauchy;	
σ=0.013	
μ=0.05608;	
(0.21049)	

Grade	3-4	post-operative	
complication	NAT	
pathway	

0.19(0.13-
0.26)	

0.06-
0.64	

0.00457;	
2.0931E-5	

Gen.	
Extreme.	
Value;		
k=-0.32622	
σ=0.0048	
μ=0.01075	
(0.27029)	

Grade	5	post-operative	
complication	NAT	
pathway	

0.02(0.01-
0.04)	

0-0.12	 0.00217;	
4.7206E-6		

Pareto	2;	
α=0.22134	
β=4.0418E-
13	
(-6.8426)	

Resection	SF	pathway	 0.94	(0.90-
0.96)	

0.70-1.0	 0.1219;	
0.01486	

Burr:		
k=0.0595	
α=10.327	
β=0.00112	
(0.12818)	

R0	resection	SF	pathway	 0.56	(0.51-
0.62)	

0.16-
0.86	

0.09869;	
0.00974	

Pearson	5:	
α=0.61636	
β=7.0460E-4	
(0.18259)	

Grade	3-4	post-operative	
complication	SF	pathway	

0.22	(0.13-
0.33)	

0.04-
0.54	

0.01297;	
0.0002	

Log-Pearson	
3:		
α=66.845	
β=-0.09425	
γ=2.0838	
(0.29235)	
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Grade	5	post-operative	
complication	SF	pathway	

0.07(0.02-
0.13)	

0-0.36	 0.00948;	
0.0002	

Cauchy:	
σ=0.00373	
μ=	0.00639	
(0.38658)	

Receiving	adjuvant	
therapy	

0.61(0.57-
0.66)	

0.26-
0.94	

0.10088;	
0.01018	

Burr:	
k=0.26048	
α=2.145	
β=9.2071E-4	
(0.18949)	

Adjuvant	toxicity	grade	3+	 0.43(0.25-
0.62)	

0.09-
0.98	

0.02753;	
0.00076		

Log-Pearson	
3:	
α=1916.0	
β=-0.02672	
γ=47.081	
(0.34508)	

Survival	State		 Utility	for	
QALM	

Living	with	stable	
pancreatic	cancer	

0.81	

Undergoing	
chemo/radiotherapy	

0.81	

Experiencing	
chemo/radiotherapy	
complications	

0.53	

Recovering	from	
pancreatic	surgery	

0.59	

Experiencing	surgical	
complications	

0.48	

Living	with	unresectable	
disease	and	pre-operative	
quality-of-life	

0.65	
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Table	35:	Transition	probabilities	based	on	West	of	Scotland	

Pancreatic	Unit	Database		
Variable	 Transition	

Probability		
Variance	 Standard	

Deviation	
Data	
Distribution:	
parameters	
(Anderson	
Darling	
Statistic)	

Grade	3+	toxicity	with	NAT	 0.22	 0.21607	
	

0.0046483	
	

D.	Uniform:	
a=0	b=1	
(34.26)	

Resection	in	NAT	pathway	 0.66	 0.29876	
	

0.0054659	
	

Poisson:	
λ=0.84746	
(23.333)	

Exploratory	
Laparoscopy/Laparotomy	

0.10	 0.29876	
	

0.0054659	
	

Poisson:	
λ=0.84746	
(23.333)	

No	surgery	 0.24	 0.29876	
	

0.0054659	
	

Poisson:	
λ=0.84746	
(23.333)	

R0	resection	NAT	pathway	 0.49	 0.24984	
	

0.0049984	
	

Poisson:	
λ=0.	51282	
(19.177)	

Grade	3-4	post-operative	
complication	NAT	pathway	

0.18	 0.25895	
	

0.0050887	
	

D.	Uniform:	
a=0	b=1	
(19.928)	

Grade	5	post-operative	
complication	NAT	pathway	

0.03	 0.25895	
	

0.0050887	
	

D.	Uniform:	
a=0	b=1	
(19.928)	

Resection	SF	pathway	 0.78	 0.1716	
	

0.0041425	
	

Poisson:	
λ=1.22	
(42.381)	

R0	resection	SF	pathway	 0.21	 0.16305	
	

0.004038	
	

Bernoulli:	
p=0.79487	
(16.14)	

Grade	3-4	post-operative	
complication	SF	pathway	

0.27	 0.29692	
	

0.005449	
	

Poisson:	
λ=	0.34884	
(50.791)	

Grade	5	post-operative	
complication	SF	pathway	

0.04	 0.29692	
	

0.005449	
	

Poisson:	
λ=	0.34884	
(50.791)	

Receiving	adjuvant	therapy	 0.50	 0.25	
	

0.005	 Poisson:	
λ=0.5	
(38.757)	

Adjuvant	toxicity	grade	3+	 0.36	 0.24377	
	

0.0049373	
	

Bernoulli:	
p=0.57895	
(33.585)	

	

As	DES	modeling	allows	microsimulation	of	patient	level	data	and	

more	specific	time-to-event	data,	further	details	could	be	included	in	

this	analysis	such	as	the	effect	of	palliative	chemotherapy	(table	36).		



	 398	

	

Table	36:	DES	Model	transition	probabilities	
Variable	 Transition	

Probability	
(95%	
Confidence	
Interval)	

Range		 Standard	
Deviation;	
Variance	

Data	
distribution;	
Parameters;	
(Anderson	
Darling	
Statistic)	

Neoadjuvant	Pathway	for	Resectable	Pancreatic	Cancer	
Grade	3+	toxicity	 0.41	(0.90-

0.97)	
0.70-
1.00	

0.09037;	
0.00817	

Gen.	Pareto;	
k=0.16131	
σ=0.06585		
μ=-0.00512	
(0.37908)	

Resection	 0.63	(0.57-
0.69)	

0.32-
0.85	

0.02102;	
4.4190E-4	

Gen.	Extreme	
Value;		
k=0.07104	
σ=0.01585	
μ=0.03134	
(0.30431)	

Exploratory	
Laparoscopy/Laparotomy	
Only	

0.16	(0.09-
0.25)	

0-1.00	 0.00633;	
4.0057E-5		

Johnson	SB;	
γ=2.0682	
δ=1.7897	
λ=0.0624		
ζ=-0.00855	
(0.56039)	

R0	resection	 0.63	(0.49-
0.76)	

0.53-
0.92)	

0.03079;		
9.4797E-4	

Cauchy;	
σ=0.013	
μ=0.05608;	
(0.21049)	

Grade	3+	post-operative	
complication	

0.19(0.13-
0.26)	

0.06-
0.64	

0.00457;	
2.0931E-5	

Gen.	
Extreme.	
Value;		
k=-0.32622	
σ=0.0048	
μ=0.01075	
(0.27029)	

Die	from	post-operative	
complication	

0.16(0.07-
0.27)	

0-0.57	 0.00217;	
4.7206E-6		

Pareto	2;	
α=0.22134	
β=4.0418E-
13	
(-6.8426)	

Time	to	disease	
recurrence	following	R0	
resection	

16.68	months	 	 7.604;	
57.821	

Normal;	
σ=7.604	
μ=17.314	
(0.21707)	

Time	from	disease	
recurrence	to	death	after	
R0	resection	

14.55	months	 	 12.594;	
158.6	

Gamma;	
α=6.7752	
β=4.8382	
ϒ=0	
(0.46345)	

Time	to	disease	
recurrence	following	R1	
resection	

16.68	months	 	 7.604;	
57.821	

Normal;	
σ=7.604	
μ=17.314	
(0.21707)	

Time	from	disease	 5.25	months	 	 6.7752;	 Normal;	
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recurrence	to	death	
following	R1	resection	

45.904	 σ=6.7752	
μ=23.525	
(0.51294)	

Time	to	death	for	no	
surgery,	or	following	
Exploratory	Laparoscopy/	
Laparotomy	only	

11	months	 	 	 	

Unresectable	Disease	
Palliative	Chemotherapy	
(Source:	Cancer	Research	
UK,	2019)			

0.50	 	 	 Normal	

Supportive	Care	Only	
(Source:	Cancer	Research	
UK,	2019)			

0.72	 	 	 Normal	

Toxicity	with	palliative	
chemotherapy	
(Source:	Cancer	Research	
UK,	2019)			

0.52	 	 	 Normal	

Surgery	First	Pathway	for	Resectable	Disease	
Resection		 0.94	(0.90-

0.96)	
0.70-
1.0	

0.1219;	
0.01486	

Burr:		
k=0.0595	
α=10.327	
β=0.00112	
(0.12818)	

R0	resection	 0.56	(0.51-
0.62)	

0.16-
0.86	

0.09869;	
0.00974	

Pearson	5:	
α=0.61636	
β=7.0460E-4	
(0.18259)	

Grade	3+	post-operative	
complication	

0.22	(0.13-
0.33)	

0.04-
0.54	

0.01297;	
0.0002	

Log-Pearson	
3:		
α=66.845	
β=-0.09425	
γ=2.0838	
(0.29235)	

Die	from	post-operative	
complication	

0.07(0.02-
0.13)	

0-0.36	 0.00948;	
0.0002	

Cauchy:	
σ=0.00373	
μ=	0.00639	
(0.38658)	

Receiving	adjuvant	
therapy	

0.61(0.57-
0.66)	

0.26-
0.94	

0.10088;	
0.01018	

Burr:	
k=0.26048	
α=2.145	
β=9.2071E-4	
(0.18949)	

Adjuvant	toxicity	grade	3+	 0.43(0.25-
0.62)	

0.09-
0.98	

0.02753;	
0.00076		

Log-Pearson	
3:	
α=1916.0	
β=-0.02672	
γ=47.081	
(0.34508)	

Time	to	disease	
recurrence	flowing	R0	
resection	and	adjuvant	
therapy	

11.4	months		 	 3.0732;	
9.4446	

Gamma	
α=18.994	
β=0.70515	
ϒ=0	
(0.8653)	

Time	to	disease	
recurrence	following	R0	
resection	but	no	adjuvant	
therapy	

5.1	months		 	 3.7186;	
13.828	

Gamma	
α=5.4235	
β=1.5968	
ϒ=0	
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(0.23772)	
Time	from	disease	
recurrence	to	death	
following	R0	resection	
and	adjuvant	therapy	

9.97	months	 	 7.1312;	
50.854	

Gamma	
α=12.033	
β=2.0557	
ϒ=0	
(0.21824)	

Time	from	disease	
recurrence	to	death	
following	R0	resection	but	
no	adjuvant	therapy	

14	months		 	 1.6407;	
2.692	

Normal	
σ=1.6407	
μ=18.32	
(0.22305)	

Time	to	disease	
recurrence	following	R1	
resection	and	adjuvant	
therapy	

9.5	months	 	 3.0732;	
9.4446	

Gamma	
α=18.994	
β=0.70515	
ϒ=0	
(0.8653)	

Time	to	disease	
recurrence	following	R1	
resection	but	no	adjuvant	
therapy	

3.4	months	 	 3.7186;	
13.828	

Gamma	
α=5.4235	
β=1.5968	
ϒ=0	
(0.23772)	

Time	from	disease	
recurrence	to	death	
following	R1	resection	
and	adjuvant	therapy	

6.87	months	 	 3.6622;	
13.412	

Normal	
(0.21954)	

Time	from	disease	
recurrence	to	death	
following	R1resection	but	
no	adjuvant	therapy	

11.25	months	 	 1.6407;	
2.692	

Normal	
(0.22305)	

Survival	State		 Utility	for	
QALM	

Living	with	stable	
pancreatic	cancer	

0.81	

Undergoing	
chemo/radiotherapy	

0.81	

Experiencing	
chemo/radiotherapy	
complications	

0.53	

Recovering	from	
pancreatic	surgery	

0.59	

Experiencing	surgical	
complications	

0.48	

Living	with	unresectable	
disease	and	pre-operative	
quality-of-life	

0.65	

	

	

	

	

Costs	and	Effectiveness	

This	study	was	undertaken	from	the	UK	NHS	payer’s	perspective.	

Costs	included	in	the	SF	arm	were:	initial	consultant	surgeon	led	
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clinic	appointment,	multidisciplinary	pre-operative	assessment	

clinic,	cost	of	surgery	with	occurrence	of	significant	post-operative	

complications	counted	as	extra	bed	days,	histopathology	assessment	

of	resected	specimen,	cancer	multidisciplinary	team	meetings,	

surgical	and	oncology	follow-up	clinic	appointments,	adjuvant	

therapy	with	occurrence	of	significant	toxicity	counted	as	extra	bed	

days,	and	cost	of	palliative	care	input	from	time	of	disease	

reoccurrence.	In	the	NAT	arm	costs	included:	initial	consultant	

oncologist	led	clinic,	NAT	with	significant	toxicity	counted	as	extra	

bed	days,	re-staging	outpatient	CT	scan,	cancer	multidisciplinary	

team	meetings,	initial	consultant	surgeon	led	clinic	appointment,	

multidisciplinary	pre-operative	assessment	clinic,	cost	of	surgery	

with	occurrence	of	significant	post-operative	complications	counted	

as	extra	bed	days,	histopathology	assessment	of	resected	specimen,	

surgical	and	oncology	follow-up	clinic	appointments	and	cost	of	

palliative	care	input	from	time	of	disease	reoccurrence.	Productivity	

losses	were	excluded	and	it	is	assumed	that	these	costs,	including	

inactivity	in	terms	of	work,	are	comparable	across	NAT	and	SF	arms.		

	

Cost	data	was	taken	from	NHS	Reference	Costs	2017/2018	(NHS,	

2017),	which	provides	patient	level	costs	as	an	average	unit	cost	to	

the	NHS.	Discount	for	both	cost	and	benefit	were	set	at	3.5%	with	

WtP	set	at	£30,000	per	quality-adjusted-life-year	(QALY),	or	£2,500	

per	QALM	as	per	NICE	guidelines	(NICE,	2011;	NICE	2013).			

	

The	model’s	follow-up	time	was	set	to	60	Markov	cycles	(equivalent	

to	60	months)	or	until	death.	The	DES	model	was	set	to	10000	

iterations	with	all	patients	followed	up	until	time	of	death.	
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Incremental	pay-offs	were	calculated	in	terms	of	life	months	and	

QALMs.	Within	the	Markov	model	cumulative	payoffs	were	calculated	

as	a	sum	of	weighted	median	survival	time	in	months	adjusted	to	

quality	of	survival	time	spent	in	each	Markov	health	state	which	

included:	alive	without	disease,	alive	with	disease,	and	dead.	For	the	

DES	model	the	cumulative	payoffs	were	calculated	according	to	time	

to	event,	with	model	events	corresponding	to	time	to	disease	

recurrence	and	time	from	disease	recurrence	to	death.	For	the	

analysis	using	synthesised	data	median	survival	time	was	used	as	a	

better	measure	of	centrality	than	mean	survival	time	for	the	

following	reasons	(Dudley	et	al.,	2016).	Firstly	the	majority	of	studies	

report	median	survival	time	due	to	the	fact	that	survival	data	is	often	

skewed	(Dudley	et	al.,	2016;	Jager	et	al.,	2008).	Secondly	the	mean	

survival	time	cannot	be	truly	calculated	where	patients	have	not	

been	censored	by	the	end	of	study	follow-up	time	period	therefore	it	

remains	unknown	if	or	when	they	will	experience	an	event	(Dudley	

et	al.,	2016;	Jager	et	al.,	2008).	Furthermore,	as	evidence	has	shown	

that	unbiased	pooled	estimates	of	median	survival	times	cannot	be	

achieved	by	weighted	averaging	of	medians,	Gillen	et	al.	(2010)	

approach	to	calculate	weighted	median	survival	times	was	adopted	

to	minimise	bias	and	increase	accuracy	(Rouder	&	Speckman,	2004).		

	

For	triangulation	a	cost-effectiveness	analysis	was	then	performed	by	

calculating	Markov	and	DES	model	transition	probabilities	of	

interventions,	clinical	outcomes,	and	survival	in	both	SF	and	NAT	

pathways	from	the	West	of	Scotland	Pancreatic	Unit	database	as	

described	in	section	4.2	and	4.3	with	overall	and	disease-free-
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survival	calculated	from	median	survival	time	taken	from	Kaplan-

Meir	survival	analysis	based	on	treatment	received	(Figure	21).		

	

As	previously	described	utilities	were	based	on	quality-of-life	

indicies	which	scaled	survival	from	0	(equivalent	to	death)	to	1	(in	

complete	health)	(Sharma	et	al.,	2015;	deGeus	et	al.,	2016).	These	

indicies	were	taken	from	published	literature	(Ljungman	et	al.,	2011;	

Murphy	et	al.,	2012)	and	also	analysed	based	on	World	Health	

Organization	and	European	Quality	of	Life	Survey	(Eshuis	et	al.,	

2015;	Romanus	et	al.,	2012;	Tam	et	al.,	2013).		

	

Sensitivity	Analysis	

	

Markov	Model	uncertainties	were	extensively	tested	through	one	and	

two-way	deterministic	analysis	with	baseline	transition	probabilities	

and	costs	altered	between	highest	and	lowest	reported	values.	The	

level	of	confidence	in	the	model	output	in	relation	to	uncertainty	in	

model	input	was	assessed	through	Monte	Carlo	probabilistic	

sensitivity	analysis	set	to	10000	iterations.		Data	distributions	of	the	

input	data	for	each	variable	was	determined	from	the	median,	

standard	deviation	and	variance	of	the	input	data	and	fitted	against	

55	possible	data	distributions	with	the	best	fit	determined	by	the	

Anderson	Darling	statistic.		

	

For	the	DES	model	first-order	uncertainty	was	captured	by	the	data	

distributions	being	applied	around	all	model	parameters	and	

simulation	being	ran	over	10000	iterations.	Second	order	uncertainty	

was	captured	through	probabilistic	sensitivity	analysis	by	running	
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each	trial	1000	times	with	the	possible	mean	of	each	parameter	

drawn	from	the	data	distribution	hence	capturing	uncertainty	

surrounding	the	sample	mean.	Black	box	validation	was	applied	by	

comparing	input	and	output	data	with	data	in	the	literature	(Pidd,	

2004).	White	box	validation	was	carried	out	through	validation	of	

input	parameters	to	ensure	outputs	resulting	from	different	

distribution	inputs	provided	a	reasonable	fit	to	empirical	data	and	

through	both	static	logic	validation	and	dynamic	logic	validation	

(Pidd,	2004).		

	

As	there	is	ongoing	debate	about	whether	discount	should	be	applied	

at	the	same	rate	for	both	cost	and	benefits,	model	outcomes	for	both	

the	Markov	and	DES	models	were	also	reported	at	a	discount	rate	of	

6%	for	costs	and	1.5%	for	benefits	(NICE,	2011).		

	

4.5.1	Results:	Markov	Model	

	

Using	synthesised	data	NAT	gave	21.27	QALMs	at	a	cost	of	

£109879.65.	SF	gave	17.59	QALMs	at	a	cost	of	£101251.75.	NAT	

therefore	had	an	incremental	cost	of	£8627.90	more	than	SF	for	an	

incremental	effectiveness	of	3.68	QALMs	and	an	ICER	of	£2344.16.	

NAT	was	therefore	found	not	to	breach	the	WtP	threshold	set	at	

£2,500	per	QALM	and	could	be	considered	a	cost-effective	alternative	

to	the	traditional	SF	pathway	(Figure	48a	and	Figure	49a).	When	

these	results	were	triangulated	with	the	cost-effectiveness	analysis	of	

the	West	of	Scotland	Pancreatic	Unit,	NAT	gave	26.71	QALMs	at	a	cost	

of	£117426.89.	SF	gave	21.27	QALMs	at	a	cost	of	£109879.65.	NAT	

therefore	had	an	incremental	cost	of	£29126.08	more	than	SF	for	an	
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incremental	effectiveness	of	8.48	QALMs	and	an	ICER	of	£3433.07	

(table	37).	In	this	analysis	NAT	was	therefore	found	to	breach	the	

WtP	threshold	set	at	£2,500	per	QALM	and	a	WtP	threshold	of	£3,500	

per	QALM	was	required	for	NAT	to	be	cost-effective	(Figure	48b;	

Figure	49b).		

	

Table	37:	Summary	of	Results	of	Cost-Effectiveness	Analysis		

	a)	Using	Synthesised	Data	
Strate
gy	

Cost	 Increme
ntal	cost		

Effectiven
ess	
(QALMs)	

Incremen
tal	
Effectiven
ess	

Incremen
tal	cost	
effectiven
ess	ratio	

Net	
Moneta
ry	
Benefit	

Cost/	
effectiven
ess	

NAT	 £109879
.65	

£8627.90	 21.27		 3.68	 £2344.16	 -
£56709.
34	

£5166.40	

SF	 £101251
.75	

	 17.59	 	 	 -
£57282.
91	

£5757.02	

	

b)	Using	West	of	Scotland	Pancreatic	Unit	Data	
Strate
gy	

Cost	 Incremen
tal	cost		

Effectiven
ess	
(QALMs)	

Incremen
tal	
Effectiven
ess	

Incremen
tal	cost	
effectiven
ess	ratio	

Net	
Moneta
ry	
Benefit	

Cost/	
effectiven
ess	

NAT	 £117426.
89	

£29126.0
8	

26.71	 8.48	 £3433.07	 -
50652.
80	

£4396.42	

SF	 £88300.8
1	

	 18.23	 	 	 -
42736.
66	

£4844.86	
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Figure	48:	Results	of	cost-effectiveness	analysis	of	NAT	versus	SF	for	

resectable	pancreatic	cancer	based	on	Willingness-to-Pay	(WtP)	set	

at	£2500	per	QALM.		

a)	Using	Synthesised	Data		
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b)	Using	West	of	Scotland	Pancreatic	Unit	Data	
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Figure	49:	Results	of	cost-effectiveness	analysis	of	NAT	versus	SF	for	

resectable	pancreatic	cancer	across	range	of	Net	Monetary	Benefit	

(NMB)	and	Willingness-to-Pay	(WtP)	

a)	Using	Synthesised	Data		
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b)	Using	West	of	Scotland	Pancreatic	Unit	Data	

	
	

	

Sensitivity	Analysis	

	

Altering	discounting	to	6%	for	costs	and	1.5%	for	benefits	did	not	

alter	the	overall	findings	summarised	in	figure	108.	At	these	rates	of	

discounting	using	synthesised	data	NAT	gave	21.98	QALMs	at	a	cost	

of	£106059.25	with	a	cost-effectiveness	ratio	of	£4825.88	per	QALM.	

SF	gave	18.10	QALMs	at	a	cost	of	£97746.32	and	a	cost-effectiveness	

ratio	of	£5399.69	per	QALM.	NAT	therefore	had	an	incremental	cost	

of	£8312.93	more	than	SF	for	an	incremental	effectiveness	of	3.87	

QALMs	and	an	ICER	of	£2145.29.	Triangulating	these	results	with	the	

West	of	Scotland	Pancreatic	Unit	database	analysis,	NAT	gave	27.72	

QALMs	at	a	cost	of	£112907.32	with	a	cost-effectiveness	ratio	of	

£4074.42	per	QALM.	SF	gave	18.78	QALMs	at	a	cost	of	£85226.37	and	

a	cost-effectiveness	ratio	of	£4537.45	per	QALM.	NAT	therefore	had	
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an	incremental	cost	of	£27680.96	more	than	SF	for	an	incremental	

effectiveness	of	8.93	QALMs	and	an	ICER	of	£3100.34.			

	

Deterministic	sensitivity	analysis	of	both	synthesised	and	patient	

data	showed	that	the	main	driver	of	ICER	was	the	receipt	of	

multimodal	treatment.	In	particular	deterministic	sensitivity	

threshold	analysis	of	synthesised	data	demonstrated	a	probability	of	

resection	greater	than	48%	in	the	NAT	pathway	was	required	for	this	

treatment	pathway	to	be	the	more	effective	option.	For	West	of	

Scotland	Pancreatic	Unit	database	this	threshold	was	34%.	The	main	

driver	of	the	ICER	was	found	to	be	the	probability	of	undergoing	

resection	in	the	NAT	pathway	(figure	50).		

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 411	

Figure	50:	Incremental	cost-effectiveness	ratio	(ICER)	for	NAT	and	SF	

pathways	across	range	of	probabilities	for	receiving	resection	in	NAT	

pathway.	

a)	Using	Synthesised	Data		
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b)	Using	West	of	Scotland	Pancreatic	Unit	Data	

	

	

	
	

	The	results	of	probabilistic	Monte	Carlo	sensitivity	analysis	set	to	

10000	iterations	are	summarised	in	table	38	and	Figure	51.	Optimal	

pathway	selection	with	WtP	set	at	£2,500	per	QALM	showed	a	

selection	frequency	of	77%	for	NAT	with	synthesised	data	and	72%	

with	West	of	Scotland	Pancreatic	Unit	data.	Furthermore	during	

probabilistic	sensitivity	analyses	of	the	West	of	Scotland	Pancreatic	

Unit	database	NAT	pathway	was	found	not	to	breech	the	WtP	

threshold	and	therefore,	as	with	synthesised	data	analysis,	could	be	

considered	a	cost-effective	alternative	to	traditional	SF	pathway	

(Figure	52).					
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Table	38:	Summary	of	Monte	Carlo	Probabilistic	Sensitivity	Analysis		

a)	Using	Synthesised	Data		
	 Mean	 Range	 Standard	

Deviation	
Pathway	 SF	 NAT	 SF	 NAT	 SF	 NAT	
Cost	 £101256.83	 £109882.63	 £60142.62	to	

£107681.66	
£103899.41	
to	
£116363.85	

5814.60	 1599.27	

Effectiveness	
(QALMs)		

17.59	 21.27	 7.70	to	19.66	 19.32	to	
23.36	

1.42	 0.51	

	

b)	Using	West	of	Scotland	Pancreatic	Unit	Data	
	 Mean	 Range	 Standard	

Deviation	
Pathway	 SF	 NAT	 SF	 NAT	 SF	 NAT	
Cost	 £92713.52	 £112809.03	 £74229.24to	

£108324.92	
£107483.79	
to	
£116207.52	

4960.33	 1426.96	

Effectiveness	
(QALMs)		

20.38	 27.21	 11.16	to	
30.07	

26.44	to	
27.71	

2.74	 0.21	
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Figure	51:	Cost	Effectiveness	acceptability	curve	

	

a)	Using	Synthesised	Data		
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b)	Using	West	of	Scotland	Pancreatic	Unit	Data	
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Figure	52:	Results	of	cost-effectiveness	analysis	of	NAT	versus	SF	for	

resectable	pancreatic	cancer	based	on	Willingness-to-Pay	(WtP)	set	

at	£2500	per	QALM.		

	
	

4.5.2	Results:	DES	Model	

	

Using	synthesised	data	NAT	gave	16.45	QALMs	at	a	cost	of	

£81934.19.	SF	gave	13.84	QALMs	at	a	cost	of	£69630.42.	NAT	

therefore	had	an	incremental	cost	of	£12303.77	more	than	SF	for	an	

incremental	effectiveness	of	2.61	QALMs	and	an	ICER	of	£4708.51	

(table	39).	NAT	was	therefore	found	to	exceed	WtP	threshold	set	at	

£2,500	per	QALM	(Figure	53).	However,	as	this	model	included	

palliative	care	costs	including	palliative	chemotherapy,	a	WtP	

threshold	of	up	to	£5833.33	per	QALM	(£70,000	per	QALY)	can	be	

acceptable	and	would	deem	NAT	a	cost-effective	alternative	to	

traditional	SF	pathway	(Figure	54	and	Figure	55).		
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Figure	53:	Results	of	cost-effectiveness	analysis	of	NAT	versus	SF	for	

resectable	pancreatic	cancer	based	on	Willingness-to-Pay	(WtP)	set	

at	£2500	per	QALM.		
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Figure	54:	Results	of	cost-effectiveness	analysis	of	NAT	versus	SF	for	

resectable	pancreatic	cancer	based	on	Willingness-to-Pay	(WtP)	set	

at	5833.33	per	QALM.		
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Figure	55:	Cost	Effectiveness	acceptability	curve	

	

	
	

As	with	the	cost-effectiveness	analysis	using	Markov	modeling	the	

main	driver	of	the	ICER	was	found	to	be	the	probability	of	receiving	

resection	in	the	NAT	pathway	(Figure	56).	Altering	the	discount	rate	

for	cost	to	6%	and	1.5%	for	benefits	did	not	alter	these	overall	

findings.		At	these	rates	of	discounting	NAT	gave	16.82	QALMs	at	a	

cost	of	£81941.17	with	a	cost-effectiveness	ratio	of	£4870.61	per	

QALM	and	an	ICER	£4434.25.	SF	gave	14.05QALMs	at	a	cost	of	

£69656.57	and	a	cost-effectiveness	ratio	of	£4956.63	per	QALM.	NAT	

therefore	had	an	incremental	cost	of	£12284.60	more	than	SF	for	an	

incremental	effectiveness	of	2.77QALMs.	
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Figure	56:	Incremental	cost-effectiveness	ratio	(ICER)	for	NAT	and	SF	

pathways	across	range	of	probabilities	for	receiving	resection	in	NAT	

pathway.	

	

	
	

When	these	results	were	triangulated	with	the	cost-effectiveness	

analysis	of	the	West	of	Scotland	Pancreatic	Unit	NAT	gave	21.60	

QALMs	at	a	cost	of	£72083.26.	SF	gave	13.87	QALMs	at	a	cost	of	

£45813.65.	NAT	therefore	had	an	incremental	cost	of	£26219.61	

more	than	SF	for	an	incremental	effectiveness	of	7.73	QALMs	and	an	

incremental	cost-effectiveness	ratio	of	£3390.51	(table	39;	table	40).	

In	this	analysis	NAT	was	therefore	found	to	exceed	the	WtP	threshold	

set	at	£2,500	per	QALM	but	when	the	WtP	was	increased	to	reflect	

the	inclusion	of	palliative	interventions	NAT	pathway	could	be	

considered	a	cost-effective	alternative	to	SF	pathway	(Figure	57;	

Figure	58).			
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Table	39:	Summary	of	Results	of	Cost-Effectiveness	Analysis		

	a)	Using	Synthesised	Data	
Strate
gy	

Cost	 Incremen
tal	cost		

Effectiven
ess	
(QALMs)	

Incremen
tal	
Effectiven
ess	

Incremen
tal	cost	
effectiven
ess	ratio	

Net	
Moneta
ry	
Benefit	

Cost/	
effectiven
ess	

NAT	 £81934.
19	

£12303.7
7	

16.45		 2.61	 £4708.51	 -
£13377.
86	

£4979.74	

SF	 £69630.
42	

	 13.84	 	 	 -
£11961.
97	

£5030.95	

	

b)	Using	West	of	Scotland	Pancreatic	Unit	Data	
Strate
gy	

Cost	 Incremen
tal	cost		

Effectiven
ess	
(QALMs)	

Incremen
tal	
Effectiven
ess	

Incremen
tal	cost	
effectiven
ess	ratio	

Net	
Moneta
ry	
Benefit	

Cost/	
effectiven
ess	

NAT	 £72083.
26	

£26219.6
1	

21.60	 7.73	 £3390.51	 -
£17936.
73	

£3336.45	

SF	 £45813.
65	

	 13.87	 	 	 -
11934.5
0	

£3306.31	

	

Table	40:	Summary	of	Results	of	Probabilistic	Sensitivity	Analysis		

	

a)	Using	Synthesised	Data		
	 Mean	 Range	 Standard	

Deviation	
Pathway	 SF	 NAT	 SF	 NAT	 SF	 NAT	
Cost	 £69614.34	 £81913.62	 £68672.42	to	

£70729.69		
£80174.64	to	
£83586.57	

297.98	 436.35	

Effectiveness	
(QALMs)		

13.84	 16.44	 13.65	to	14.07	 15.96	to	16.88	 0.06	 0.13	

	

b)	Using	West	of	Scotland	Pancreatic	Unit	Data	
	 Mean	 Range	 Standard	

Deviation	
Pathway	 SF	 NAT	 SF	 NAT	 SF	 NAT	
Cost	 £45240.89	 £70512.02	 £44722.85	to	

£45664.73	
£69824.18	to	
£71130.15	

133.28	 191.01	

Effectiveness	
(QALMs)		

13.88	 21.60	 13.64	to	14.17	 21.10	to	22.10	 0.08	 0.13	
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Figure	57:	Results	of	cost-effectiveness	analysis	of	NAT	versus	SF	for	

resectable	pancreatic	cancer	based	on	Willingness-to-Pay	(WtP)	set	

at	£2500	per	QALM.		
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Figure	58:	Results	of	cost-effectiveness	analysis	of	NAT	versus	SF	for	

resectable	pancreatic	cancer	based	on	Willingness-to-Pay	(WtP)	set	

at	5833.33	per	QALM.		
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Figure	59:	Cost	Effectiveness	acceptability	curve	

	

	
	

Once	again	in	sensitivity	analysis	the	main	driver	of	the	ICER	was	

found	to	be	the	probability	of	resection	in	the	NAT	pathway	(Figure	

60).	Altering	the	discount	rates	to	6%	for	costs	and	1.5%	for	benefits	

did	not	alter	these	overall	findings.		At	these	rates	of	discounting	NAT	

gave	22.09	QALMs	at	a	cost	of	£70510.14	with	a	cost-effectiveness	

ratio	of	£3191.53	per	QALM	and	an	ICER	£3169.15.	SF	gave	14.12	

QALMs	at	a	cost	of	£45238.94	and	a	cost-effectiveness	ratio	of	

£3204.17	per	QALM.	NAT	therefore	had	an	incremental	cost	of	

£25271.20	more	than	SF	for	an	incremental	effectiveness	of	7.97	

QALMs.	
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Figure	60:	Incremental	cost-effectiveness	ratio	(ICER)	for	NAT	and	SF	

pathways	across	range	of	probabilities	for	receiving	resection	in	NAT	

pathway.	

	

	
	

Discussion		

	

The	limitations	stemming	from	the	FUPS	characteristics	of	the	data	

used	within	the	Markov	and	DES	models	have	been	discussed	in	

sections	4.2	to	4.4	and	once	again	the	cost-effectiveness	analysis	

presented	here	is	presented	as	a	partial	remnant.	Our	Markov	cost-

effectiveness	analysis	study	found	that	NAT	gave	21.27	QALMs	

compared	to	17.59	QALMs	in	the	SF	pathway	with	an	ICER	of	

£2344.16.	The	robustness	of	these	findings	was	substantiated	by	

extensive	sensitivity	analysis	whereby	every	variable,	treatment	

probability,	cost	and	outcome	was	altered	between	highest	and	

lowest	observed	value	and	all	model	probabilities	were	sampled	
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from	the	entire	data	distribution	through	probabilistic	sensitivity	

analysis.	Repeating	the	cost-effectiveness	analysis	using	data	from	

the	West	of	Scotland	Pancreatic	Unit	Database	then	provided	

triangulation	of	these	results.	This	analysis	also	showed	that	NAT	

pathway	was	more	effective	(26.71	QALMs	versus	18.23	QALMs)	with	

an	ICER	of	£3433.07.	Monte	Carlo	probabilistic	sensitivity	analysis	of	

the	Markov	models	modeling	both	synthesised	and	patient	data	

showed	that	NAT	pathway	was	cost-effective	77%	and	72%	of	the	

time	respectively	over	10000	iterations.		

	

The	DES	cost-effectiveness	analysis	corroborated	the	findings	from	

the	Markov	analysis	that	NAT	pathway	was	more	effective	giving	but	

cost	more.	Using	synthesised	data	NAT	gave	16.45	QALMs	at	a	cost	of	

£81934.19	whereas	SF	gave	13.84	QALMs	at	a	cost	of	£69630.42.	

NAT	therefore	had	an	ICER	of	£4708.51.	Using	the	West	of	Scotland	

Pancreatic	Unit	database	NAT	gave	21.60	QALMs	at	a	cost	of	

£72083.26	whereas	SF	gave	13.87	QALMs	at	a	cost	of	£45813.65.	

NAT	therefore	had	an	ICER	of	£3390.51.	The	variation	between	

outcomes	of	effectiveness	between	models	can	be	explained	by	the	

fact	that	the	memory-less	property	of	the	Markov	model	makes	it	less	

well	equipped	to	handle	individual	patient	data,	which	can	result	in	

reduced	accuracy	due	to	depletion	of	susceptibles	and	an	over	

simplification	of	assumptions	(Caro	et	al.,	2010;	Miettinen	&	Caro,	

1989).	DES	modeling	allows	the	model	to	capture	a	patient’s	

experience	in	terms	of	events	and	also	to	track	changes	in	patient	

characteristics,	health	status	and	treatment	history	in	relation	to	

their	impact	on	outcomes	(Pan	et	al.,	2018;	Caro	et	al.,	2010).	This	

flexibility	has	led	some	to	conclude	that	DES	modeling	is	a	more	
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efficient	method	for	engaging	with	complexity	by	modeling	patient	

level	data	to	perform	micro	simulation.	The	results	from	section	4.4	

go	some	way	to	supporting	this	assumption.	For	the	purposes	of	this	

cost-effectiveness	analysis	study	DES	modeling	allowed	a	more	

detailed	analysis	of	palliative	interventions	including	the	impact	of	

second	line	palliative	chemotherapy	when	disease	reoccurred,	or	

progressed	despite	NAT,	or	was	found	to	have	progressed	at	the	time	

of	attempted	resection	in	the	SF	pathway.		

	

Deterministic	sensitivity	analysis	showed	that	the	main	driver	of	the	

ICER	when	modeling	both	synthesised	data	and	the	West	of	Scotland	

Pancreatic	Unit	database	in	both	the	Markov	and	DES	models	was	the	

receipt	of	multimodal	treatment,	with	resection	in	the	NAT	pathway	

being	the	most	significant	driver	of	ICER.			

	

As	previously	discussed	the	survival	findings	from	our	study	are	in	

keeping	with	the	few	existing	RCTs,	meta-analysis	and	Markov	

decision	analysis	studies	comparing	NAT	and	SF	which	have	report	

some	survival	benefit	with	NAT.	Comparison	of	our	findings	with	the	

only	other	existing	cost-effectiveness	analysis	of	NAT	versus	SF	for	

the	treatment	of	resectable	pancreatic	cancer	is	unfeasible	due	to	the	

lack	of	reporting	of	ICER	in	this	study	(Abbott	et	al.,	2013).	Our	study	

findings	also	suggested	a	benefit	in	terms	of	effectiveness	with	NAT	

and	highlight	the	importance	of	patient	selection	and	embracing	

multidisciplinary	approach	in	aiming	to	deliver	multimodal	

treatment	(Abbott	et	al.,	2013).	However	the	conclusions	drawn	from	

our	study	are	more	cautious.	Whilst	Abbott	et	al.	(2013)	suggested	

that	the	benefit	of	NAT	approach	is	in	filtering	out	patients	with	more	
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aggressive	tumours,	in	whom	surgery	would	be	ultimately	futile,	

hence	avoiding	unnecessary	associated	risks	and	costs	of	surgery,	

opponents	of	NAT	would	argue	that	this	demonstrates	losing	the	

window	of	resectability	(Asare	et	al.,	2016;	Lee	et	al.,	2016).	

Furthermore	unlike	the	existing	cost-effectiveness	study	by	Abbott	et	

al.	(2013)	our	study	also	included	costs	associated	with	follow-up	

and	palliative	care	input	from	the	time	of	disease	recurrence	which	is	

significant	considering	the	survival	benefit	reported	with	NAT,	which	

was	more	significant	in	their	study	therefore	could	have	affected	

overall	results	(Abbott	et	al.,	2013)	particularly	as	it	has	been	

reported	that	costs	of	care	escalate	during	end-of-life	care.				

		

The	inclusion	of	palliative	care	input	also	raises	an	important	issue	

regarding	boundary	setting	when	modeling	a	complex	system	for	

cost-effectiveness	analysis	that	echo	the	discussion	from	previous	

work	by	Cilliers	(2005a;	2008).	As	highlighted	in	these	works	this	

also	has	ethical	implications	concerning	the	drawing	of	conclusions	

from	this	analysis	particularly	considering	the	lack	of	complete	

knowledge	surrounding	the	management	of	pancreatic	cancer.	In	the	

UK	NICE	have	set	the	WtP	threshold	for	curative	treatments	at	

between	£20,000	and	£30,000	per	QALY.	However,	for	palliative	

cases	a	WtP	of	up	to	£70,000	(£5833.33	per	QALM)	is	accepted.	For	

many	who	have	their	pancreatic	cancer	resected	survival	outcomes	

remain	poor	and	this	raises	the	question	as	to	whether	the	lower	WtP	

threshold	set	for	curative	procedures	is	acceptable	for	resectable	

pancreatic	cancer.	The	analysis	presented	here	used	the	WtP	

threshold	of	£30,000	per	QLAY	or	£2,500	per	QALM	as	baseline	

analysis.	When	the	Markov	model	was	populated	with	West	of	



	 429	

Scotland	Pancreatic	Unit	data	it	was	found	that	a	WtP	of	£42,000	per	

QALY	(£3,500	per	QLAM)	was	required	for	NAT	pathway	to	be	cost	

effective.	Within	the	DES	model	the	WtP	had	to	be	£57000	per	QALY	

(£4750	per	QALM)	in	the	model	using	synthesised	data	and	£42,000	

per	QALY	(£3500	per	QALM)	in	the	model	using	West	of	Scotland	

Pancreatic	Unit	data.	This	highlights	not	only	the	implications	of	WtP	

threshold	for	pancreatic	cancer,	but	also	the	impact	of	boundary	

setting	when	modeling	complex	systems	for	the	purposes	of	cost	

effectiveness	analysis	and	the	potentially	detrimental	impact	of	

drawing	overly	simplistic	conclusions	from	analysis	of	FUPS	data.	

The	West	of	Scotland	Pancreatic	Unit	database	was	small	and	did	not	

include	details	of	follow-up	or	administration	of	palliative	

chemotherapy	at	the	time	of	disease	recurrence	for	those	with	

resected	disease	or	those	who	failed	to	proceed	to	resection	in	either	

pathway.	It	therefore	had	the	potential	for	bias,	which	limited	the	

generalisability	of	findings.			

	

In	conclusion	the	management	of	resectable	pancreatic	cancer	is	

challenging	and	the	role	of	NAT	remains	controversial.	Rather	than	

seeking	to	prove	that	one	pathway	is	more	cost-effective	than	the	

other,	by	engaging	with	the	FUPS	characteristics	of	the	available	data	

and	the	complexity	of	the	system	being	modeled,	this	analysis	shows	

that	NAT	could	be	considered	a	cost	effective	alternative	to	the	

traditional	SF	pathway	for	resectable	pancreatic	cancer	when	the	

entirety	of	the	patient	pathway	including	palliative	treatments	were	

modeled	and	the	WtP	threshold	was	adapted	to	reflect	this.	However,	

the	significant	finding	that	was	beginning	to	emerge	is	that	the	key	

driver	of	the	ICER	was	receipt	of	multimodal	treatment	therefore	
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better	personalised	patient	selection	could	result	in	more	cost-

effective	care	delivery.	The	next	section	therefore	explores	how	

statistical	modeling,	viewed	through	the	lens	of	complexity	theory,	

can	be	taken	even	further	to	facilitate	better	patient	selection	

through	individualised	patient	prediction	of	outcomes	across	

competing	treatment	strategies.			
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Section	4.6	Bayesian	belief	network	(BBN)	to	select	

optimal	treatment	pathway	for	resectable	pancreatic	

cancer	
	

Publications	resulting	from	this	analysis:	

	

Bradley,	A.,	Van	der	Meer,	R.	and	McKay,	C.J.	(2019).	‘A	prognostic	

Bayesian	network	that	makes	personalized	predictions	of	poor	

prognostic	outcome	post	resection	of	pancreatic	ductal	

adenocarcinoma’.	PLoS	One,	14(9):	
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Abstract	

	

Background:	Survival	outcomes	for	pancreatic	cancer	remain	poor.	

Surgical	resection	is	the	only	potentially	curative	treatment	but	

approximately	10%	present	with	resectable	disease	with	5year	

survival	for	resected	cases	between	only	7%	and	25%.	Adjuvant	

therapy	after	surgery	is	required	to	prolong	survival	but	up	to	50%	

of	patients	fail	to	receive	adjuvant	therapy.	Neoadjuvant	therapy	has	

emerged	as	an	alternative	treatment	strategy	but	carries	the	risk	of	

losing	the	window	of	resectability.	Risks	of	failure	therefore	exist	

throughout	both	treatment	pathways.	Thus	far	in	this	thesis	decision-

analysis	modeling	has	suggested	that	the	selection	of	the	optimal	

treatment	pathway	depends	on	individual	patient	and	tumour	

factors.		

	

Methods:	This	section	presents	a	Bayesian	Belief	Network	(BBN)	

model	that	evaluates	the	risk	of	failure	and	consequence	factors	

across	surgery-first	and	neoadjuvant	treatment	pathways	for	

potentially	resectable	PDAC.		

	

Results:	To	demonstrate	the	application	of	BBN	it	was	applied	to	the	

database	of	a	tertiary	referral	pancreatic	unit.	Area	Under	the	Curve	

(AUC)	of	the	Receiver	Operating	Characteristic	Curve	(ROC)	for	pre-

operative	prognostic	predictions	ranged	from	60%	to	70%	and	74%	

to	94%	for	poor	and	good	prognosis	respectively	with	ranges	

reflecting	the	models’	ability	to	cope	with	missing	data.	AUC	for	

prognostic	updating	ranged	from	70%	to	80%	and	75%	to	97%	for	

poor	and	good	prognosis	respectively	again	with	ranges	reflecting	
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the	impact	of	missing	data	points.		

Conclusion:	BBN	is	capable	of	providing	personalised	predictions	of	

poor	and	good	prognosis	post	resection	of	PDAC.	This	can	support	

clinical	decision	action	and	patient	counseling	by	identifying	superior	

pathway	selection	at	individualised	level,	and	justify	resource	

allocation	by	identifying	patients	at	higher	risk	of	failure	who	require	

additional	actions	to	reduce	risk	respectively.										

	

Introduction	

	

The	decision-analysis	presented	in	this	thesis	have	broadened	the	

current	debate	surrounding	the	treatment	of	potentially	resectable	

pancreatic	cancer	by	suggesting	that	superior	pathway	selection	is	

more	complex	and	depends	on	the	interactions	of	multiple	individual	

patient	and	tumour	factors	rather	than	simply	whether	the	tumour	is	

technically	resectable	(Bradley	et	al.,	2018;	Bradley	&	Van	Der	Meer,	

2019a).		

	

Cancer	is	estimated	to	cost	the	European	Union	economy	€126	

billion	with	40%	spent	on	healthcare	alone	(Luengo-Fernandez	et	al.,	

2013).	It	is	therefore	imperative	that	lessons	drawn	from	the	

application	of	operational	research	be	applied	to	the	management	of	

pancreatic	cancer.	In	congruence	with	Lawrence’s	(1976)	definition,	

failure	risk	has	been	defined	as	the	combination	of	probability	and	

impact	severity	of	a	particular	situation	that	negatively	impacts	the	

ability	of	infrastructure	to	obtain	objectives.	Such	outcomes	result	

from	multiple	complex	interactions	between	a	plethora	of	variables.	

The	challenges	involved	in	the	management	of	pancreatic	cancer	can	
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be	viewed	as	the	evaluation	of	risk	and	prediction	of	outcome	within	

a	complex	and	dynamic	system.	Lessons	can	therefore	be	drawn	from	

the	innovative	application	of	operational	research	in	other	fields.	To	

illustrate,	when	assessing	the	risk	of	water	mains	failure,	failure	

could	manifest	as	structural	integrity,	hydraulic	capacity	and	water	

quality	(Kabir	et	al.,	2015).	With	pancreatic	cancer	failure	can	

manifest	as	non-completion	of	multimodal	therapy,	complications,	or	

a	short	post-operative	survival	time.	What	both	examples	have	in	

common	is	the	importance	of	determining	the	cause	and	effect	of	

probability	of	failure.	Furthermore,	a	successful	risk	assessment	

programme	provides	predictive	tools	to	assess	the	causes	and	

consequences	of	failure,	recommend	prioritisation	and	enable	the	

development	of	long	and	short	term	management	plans	(Moustafa,	

2010).	This	was	achieved	with	water	mains	failure	by	using	a	

Bayesian	Belief	Network	(BBN)	to	identify	vulnerabilities	and	justify	

decision	action	(Kabir	et	al.,	2015).	Multiple	points	of	vulnerability	

exist	across	pancreatic	management	pathways	concerning	patient,	

disease	and	treatment	factors.	A	similar	approach	could	help	to	

better	guide	decision	actions	to	reduce	risks	prior	to	undergoing	

interventions.	Parallels	can	also	be	drawn	with	areas	of	military	

operational	planning	and	banking.	With	the	former	Bayesian	network	

analysis	modeled	existing	planning	process	concepts,	with	

uncertainties	and	subjective	judgments	clearly	represented,	to	

perform	impact	analysis	and	determine	which	course	of	action	is	

most	likely	to	achieve	a	desired	outcome	(Falzon,	2004).	For	

pancreatic	cancer	management	the	‘plan-of-attack’	is	either	a	surgery	

first	or	neoadjuvant	pathway.	Modeling	these	existing	planning	

processes,	including	uncertainty	and	subjective	judgments,	could	
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determine	the	best	course	of	action	through	impact	analysis	on	

survival	outcome.	Bayesian	networks	to	predict	bankruptcy	could	

offer	another	important	parallel.	Bankruptcy	samples	are	usually	

small	and	bankrupt	firms	tend	to	have	missing	data	(Sun	&	Shenoy,	

2007)	therefore	share	many	of	the	FUPS	characteristics.	Only	a	small	

percentage	of	pancreatic	cancer	cases	are	resectable	and	clinicians	

often	make	decisions	despite	missing	data	and	uncertainty	

permeating	the	existing	body	of	evidence	pertaining	to	conclusive	

pathway	superiority.			

	

The	objective	of	this	study	is	to	develop	a	new	and	effective	BBN	

model	to	evaluate	the	risk	of	poor	prognosis	(1year	or	less)	and	

predict	good	prognosis	(3-years	or	more)	post	resection	of	PDAC.	In	

this	research	risk	factors	that	lead	to	failure	events,	or	factors	that	

lead	to	risk	reduction	or	positive	events,	and	the	consequence	factors	

that	result	from	either,	are	studied.		It	is	hoped	that	the	BBN	will	aid	

health	professionals	to	better	assess	and	address	vulnerability	

factors	proactively,	plan	service	resource	allocation,	and	achieve	best	

possible	survival	outcomes	for	each	individual	patient.	The	

remainder	of	this	section	is	organised	as	follows.	Section	4.6.1	

discusses	the	application	of	probabilistic	concepts	underlying	the	

BBN.	In	Section	4.6.2	the	structure	of	the	BBN	is	explained	and	

results	of	the	BBN	models’	performances	when	validated	against	the	

West	of	Scotland	Pancreatic	Unit	database	is	presented	in	Section	

4.6.3.	Section	4.6.4	then	concludes	by	summarising	and	discussing	

the	findings	from	the	assessment	and	validation	of	the	BBNs’	

performances.		
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4.6.1	Application	of	Probabilistic	Concepts	Underlying	the	BBN		

	

Background	

	

Several	model	development	studies	have	attempted	to	predict	post	

resection	survival	for	PDAC	using	a	variety	of	variables	(Appendix	P).	

As	previously	discussed	in	chapter	2	their	clinical	application	is	

limited,	relying	primarily	on	post-operative	data,	failing	to	

encompass	the	emerging	role	of	neoadjuvant	therapy	and	lacking	the	

ability	to	determine	patients	who	would,	or	would	not,	benefit	from	

competing	treatment	pathways.	The	majority	lack	validation	and	are	

based	on	single	institution	databases,	which	limits	generalisability	

and	potentiates	bias.	Mainly	based	on	logistic	regression	techniques	

they	fundamentally	regard	prognosis	as	an	isolated	event	at	a	pre-

determined	time	hence	neglecting	the	dynamic	nature	of	the	care	

processes	reflected	in	the	unfolding	relationships	between	variables	

with	expected	patient	outcomes	evolving	as	more	information	

becomes	available	(Verduijn	et	al.,	2007).	A	review	of	machine-

learning	to	support	decision-making	in	the	management	of	

pancreatic	cancer	in	chapter	2	revealed	limitations	including:	use	of	

small	single	centre	databases	limiting	generalisability,	lack	of	

transparency,	and	lack	of	external	validation	(Bradley	et	al.,	2019b).		

	

BBNs	have	been	proven	to	perform	well	across	a	plethora	of	domains	

as	both	classification	and	predictions	models	(Sun	&	Shenoy,	2007).	

They	have	the	ability	to	model	complex	relationships	between	

variables,	update	predictions	when	new	information	is	learned,	and	
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incorporate	subjective	human	knowledge	therefore	are	easily	

interpreted	by	clinicians	(Verduijn	et	al.,	2007;	Lewis	&	Vollmer,	

2012;	School	et	al.,	2013;Velikova	et	al.,	2014).	Unlike	most	

regression	techniques	they	do	not	depend	on	the	underlying	

distribution	of	variables	(Pearl,	1988;	Sun	&	Shenoy,	2007).	

Furthermore	they	represent	the	relationship	between	variables	by	

the	direct	acyclic	graph,	which	makes	them	more	transparent	and	

intuitive	than	other	machine-learning	techniques	(Pearl,	1988;	Kabir	

et	al.,	2015).	

	

To	allow	BBN	to	become	a	useful	decision	aid	for	PDAC	management	

challenges	of	variable	selection,	generalisability,	missing	data	and	

pre-operative	application	must	be	addressed.	Within	a	BBN	missing	

data	is	handled	through	probabilistic	inference,	with	predictions	

being	made	based	on	global	averages	of	the	patient	population.		

Previous	BBNs	in	healthcare	have	relied	on	expert	judgment	to	

quantify	the	required	probability	relationships.	However,	for	

complex	problems	it	is	difficult	to	establish	mutual	relationships	

among	nodes	considering	that	the	number	of	conditional	

probabilities	increase	exponentially	to	the	number	states	of	the	

parent	and	child	nodes	(Nadkarni	&	Shenoy,	2001;	Tang	&	McCabe,	

2007).	Under	such	complex	and	large	conditional	probability	tables	

(CPT)	expert	derived	conditional	probabilities	can	become	

inconsistent	and	it	has	been	found	to	be	more	reliable	to	construct	

CPTs	from	data	(Tang	&	McCabe,	2007;	Hager	&	Andersen,	2010;	

Kabir	et	al.,	2015).	To	address	these	challenges	we	propose	a	novel	

two	stage	weighting	process,	adapted	from	Zhao	&	Weng	(2011)	to	

synthesise	PubMed	survival	analysis	data.		
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Bayesian	Network	Construction	

	

BBNs,	also	referred	to	as	acyclic	directed	graphs,	are	based	on	

probability	theory	and	models	relationships	between	variables,	know	

as	nodes,	with	arcs	depicting	informational	or	causal	relationships	

from	parent	to	child	nodes	(Pearl,	1988;	Hager	&	Andersen,	2010).	

Each	node	has	a	defined	and	exclusive	set	of	states	and	the	

dependencies	between	nodes	are	quantified	through	a	set	of	CPTs	

whereby	the	conditional	probability	of	a	child	node	is	defined	by	the	

state	of	each	of	its	parent	nodes	(Kabir	et	al.,	2015).	Nodes	that	do	

not	have	parent	nodes	are	reduced	to	the	unconditional	probability	

(UP)	structure.	Where	the	UPs	of	a	basic	input	parameter	is	not	

known	a	priori,	equal	weight	are	applied	to	states	through	the	

principle	of	insufficient	reasoning	(Kabir	et	al.,	2015).			

	

Through	Bayes’	theorem,	BBNs	can	explicitly	represent	the	

conditional	probability	dependencies	between	variables,	which	has	

been	proven	to	be	an	effective	way	of	handling	uncertainty	(Ismail	et	

al.,	2011;	Sun	&	Shenoy,	2007).	In	a	BBN,	the	updated	probability	for	

n	number	of	mutually	exclusive	parameters	Xi,	where	(i=	1,2,3…n),	and	

given	observed	data,	Y,	can	be	computed	as:	

	

p(Xi|Y)=	 ! ! !" ! !(!")
∑!" ! !" !(!")

	 	 	 	 	 	 	 	 	

	

(i)	 	
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where	the	posterior	probability	of	X	given	the	condition	that	Y	occurs	

is	represented	by	p(X|Y),	the	posterior	probability	of	Y	given	the	

condition	that	X	occurs	is	represented	by	p(Y|X),	the	prior	occurrence	

probability	of	X	is	denoted	by	p(X)	and	the	marginal	occurrence	of	Y	

is	denoted	as	p(Y)	(Pearl,	1988).	In	this	sense	this	is	often	viewed	as	

the	likelihood	distribution	(Pearl,	1988).		

	

This	holds	several	advantages	when	modeling	treatment	pathways	

for	potentially	resectable	PDAC.	Through	Bayes	theorem	the	prior	

distribution	and	observed	data	are	combined	to	update	knowledge	in	

the	form	of	the	posterior	distribution	(Pearl,	1988;	Fenton	&	Neil,	

2019).	Therefore	BBNs	allow	the	modeling	of	relationships	between	

variables	at	various	stages	of	the	healthcare	process,	with	predictions	

of	outcomes	evolving	throughout	the	process	by	utilising	all	available	

patient	data	at	that	time	(School	et	al.,	2013).	This	means	that	the	

model	could	not	only	make	predictions	of	outcome	pre-operatively	

but	also	perform	prognostic	updating	at	the	post-operative	stage	of	

the	patient	journey.	Where	patient	information	is	limited	

probabilistic	inference	can	still	make	predictions	based	on	global	

averages	of	the	patient	population	(Verduijn	et	al.,	2007;	Lucas	et	al.,	

2004).	As	more	information	becomes	available	the	predictions	

become	more	patient	specific	(Verduijn	et	al.,	2007).	Furthermore,	

BBN	have	the	flexibility	to	perform	bottom-up	inference	(inferring	

the	state	of	the	parent	node	from	the	observed	state	of	the	child	

node)	and	top-down	inference	(inferring	the	state	of	the	child	node	

given	the	observed	state	of	the	parent	node)	(Cockburn	&	

Tesfamariam,	2012;	Ismail	et	al.,	2012).	This	is	also	known	as	
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diagnostic	and	decision-analysis	respectively	and	is	called	

marginalisation,	which	is	employed	to	compute	the	reliability	of	

networks	based	on	statistical	data	(Cai	et	al.,	2013;	Nadkarni	&	

Shenoy,	2001;	Poropudas	&	Virtanen,	2011).	For	the	pancreatic	

cancer	model	this	process	will	also	allow	the	testing	of	the	model	to	

perform	scenario,	or	“what	if”	testing	to	anticipate	cause	and	impact	

of	failure	events	such	as	developing	side	effects	from	therapy	or	

complications	from	surgery.		

	

BBN	for	potentially	resectable	PDAC	

	

The	conditional	probabilities	used	in	equation	(i)	can	be	obtained	

from	expert	opinion.	However,	as	previously	explained,	such	an	

approach	can	loss	reliability	in	a	larger,	more	complex	BBN	(Tang	&	

McCabe,	2007;	Hager	&	Andersen,	2010;	Kabir	et	al.,	2015).	The	other	

traditional	approach	is	to	acquire	conditional	probabilities	from	

training	data	(Kabir	et	al.,	2015).	However,	the	percentage	of	patients	

presenting	with	resectable	disease	is	low,	the	acquisition	of	

sufficiently	large	and	detailed	databases	is	therefore	difficult.	This	

has	resulted	in	previous	prediction	models	being	limited	by	small,	

biased	datasets	and	lacking	generalisability.	Larger	databases	such	as	

cancer	registry	do	not	contain	sufficient	enough	patient	level	detail.					

	

Evidence	Synthesis	for	Conditional	Probabilities	

	

PubMed	is	an	online	database	containing	over	29million	citations	for	

biomedical	literature.	It	was	searched	for	all	papers	published	since	

2000	that	reported	survival	analysis	of	patients	with	poor	(1-year	or	
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less)	and	good	(3years	or	more)	post	PDAC	resection	survival	time.	

This	yielded	77	papers	(n	=	31,214)	and	67	papers	(n=48691)	from	

which	the	BBNs	predicting	poor	and	good	prognosis	respectively	

were	constructed.	Survival	analysis	studies	mainly	study	factors	

associated	with	either	good	or	poor	prognosis,	and	the	variables	and	

their	categorisation	were	therefore	independent.	BBNs	were	

therefore	created	separately	to	predict	poor	and	good	prognosis.		

	

Adapting	methods	from	Zhao	and	Weng	(2011),	information	was	

extracted	on	all	variables	analysed	for	their	association	with	post	

PDAC	resection	prognostic	outcome.	The	original	weight	for	each	

variable	(woi	)	was	calculated	as:	

	 woi	=	Pi/Ni	 	 	 	 	 	 	 																																													

where	Pi		represents	the	number	of	studies	where	the	variable	was	

found	through	multivariate	analysis	to	have	a	statistically	significant	

association	with	prognostic	outcome.	Ni	represents	the	total	number	

of	studies	in	the	body	of	evidence	where	the	variable	underwent	

statistical	analysis	for	its	association	with	prognostic	outcome	(Zhao	

&	Weng,	2011).	This	placed	each	variable	on	a	scale	from	0	to	1.	In	

this	way	Pi	and	Ni	ratio	summarise	the	collective	evidence,	including	

conflicting	findings,	for	the	variables	association	with	post	PDAC	

resection	prognosis	(Zhao	&	Weng,	2011).	The	original	weight,	woi,	

then	underwent	a	secondary	process	of	normalisation	to	more	

accurately	reflect	its	weighting	within	the	existing	body	of	evidence.	

Normalised	weights,	wi,	were	defined	as:	

	 wi=	woi	(max(pwo1,	pwo2,	….	pwon/	max(ps1,	ps2,…psn	)		 	 																													

whereby	max(pwo1,	pwo2,	….	pwon)	is	the	sum	of	the	study	populations	

(pw0)	reporting	on	the	variable,	and	max(ps1,	ps2,…psn	)	is	the	sum	of	
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the	study	populations	of	all	included	studies	(Zhao	&	Weng,	2011).	

The	original	weights	and	the	normalised	weight,	wi	is	in	the	range	of	

0	to	1	and	therefore	reflects	both	conflicting	findings	of	the	

significance	of	each	variable	in	relation	to	the	prognostic	outcome	in	

question,	and	the	weight	of	significance	of	the	body	of	evidence	

pertaining	to	each	individual	variable	in	relation	to	the	entire	

existing	body	of	evidence	relating	to	the	prognostic	outcome	in	

question	(Zhao	&	Weng,	2011)	(Table	41).		
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Table	41:	Weighted	ranked	variables	from	PubMed	studies		
Ranked	
Order	

Variable/	Node	associated	with	good	
prognosis	

Variable/	Node	associated	with	poor	
prognosis	

1	 Lymph	Node	Negative	for	cancer	cells	 Lymph	Node	Positive	for	cancer	cells	
2	 Clear	resection	margins	on	removed	

tumour	(R0	resection)		
Lymph	node	ratio	of	positive	to	
negative	lymph	nodes	for	cancer	cells	

3	 Albumin	blood	test	level	 Tumour	Grade	
4	 Adjuvant	Treatment	Completed	 Tumour	Size	
5	 American	Joint	Committee	on	Cancer	

(AJCC)	Stage:	staging	system	for	
describing	extent	of	disease	progression		

Evidence	of	disease	at	margins	of	
resected	tumour		

6	 Neoadjuvant	treatment	response	 Adjuvant	Therapy	not	received	
7	 Tumour	Size	 T	stage:	disease	staging	determined	by	

size	and	extent	of	the	tumor		
8	 Tumour	Grade:	grade	determined	by	

degree	of	abnormality	identified	within	
cells	of	the	tumour	

Pre	treatment	tumour	marker	blood	
test	Ca	19-9	

9	 Lymph	node	ratio	of	positive	to	negative	
lymph	nodes	for	cancer	cells	

American	Joint	Committee	on	Cancer	
(AJCC)	Stage:	staging	system	for	
describing	extent	of	disease	
progression	

10	 T	stage:	disease	staging	determined	by	
size	and	extent	of	the	tumor	

Vascular	Involvement:	tumour	has	
invaded	vessels	

11	 Pre	treatment	tumour	marker	blood	test	
Ca	19-9	

Peri	Neural	Involvement	(PNI):	tumour	
has	invaded	peri	neural	structures	

12	 Tumour	Location	on	the	pancreas:	head	
of	pancreas,	body	of	pancreas,	tail	of	
pancreas		

Age	

13	 Age	 Modified	Glasgow	prognostic	score:	
scoring	system	based	on	blood	results	
giving	levels	of	inflammation		

14	 Peri	Neural	Involvement	(PNI):	tumour	
has	invaded	peri	neural	structures	

Tumour	marker	blood	test	CEA>5	

15	 Vascular	Involvement:	tumour	has	
invaded	vessels	

Performance	Status:	assessment	of	
how	well	the	patient	is	such	as	amount	
of	pre-existing	co-morbidities		

16	 Post-operative	blood	test	of	tumour	level	
Ca19-9	

Tumour	Location	on	the	pancreas:	
head	of	pancreas,	body	of	pancreas,	tail	
of	pancreas	

17	 Tumour	marker	blood	test	CEA>5	 Post-operative	blood	test	of	tumour	
level	Ca19-9	

18	 Blood	transfusion	required	during	
operation		

Blood	Transfusion	required	during	
operation	

19	 Modified	Glasgow	prognostic	score:	
scoring	system	based	on	blood	results	
giving	levels	of	inflammation	

Albumin	blood	test	level	

20	 Jaundice:	whether	the	patient’s	bilirubin	
level	is	raised	on	blood	test	

Neutrophil	Lymphocyte	Ratio	(NLR)	
>2:	ratio	of	blood	test	results		

21	 Neutrophil	lymphocyte	ratio	(NLR):	ratio	
of	blood	test	results	

Jaundice:	Bilirubin	>	40	

22	 Performance	Status:	assessment	of	how	
well	the	patient	is	such	as	amount	of	pre-
existing	co-morbidities	

Diabetes	

23	 Smoking	History	 Smoking	History	
24	 Lymphocytes	raised	on	blood	test	 Response	to	Neoadjuvant	Treatment		
25	 Diabetes	 Body	Mass	Index	(BMI)	
26	 White	Cell	Count	(WCC)	raised	 CRP:	inflammatory	marker	blood	test	
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27	 Pre-operative	biliary	stenting	performed	 Post-operative	complication	
28	 Post-operative	complication	 LDH:	blood	test	
29	 Body	Mass	Index	(BMI)	 Hypercalcaemia:	high	calcium	level	on	

blood	test	
30	 CRP:	inflammatory	marker	blood	test	 Other	hematological	abnormalities:	

Elevated	Leucocytes,	neutrophils,	
lymphocytes.	Thrombocytopenia.	Low	
hemoglobin,		

31	 LDH:	blood	test		
32	 Neutrophils	raised	
33	 Anaemia	
	

3.6.2	BBN	Structure	

	

Variables	that	were	ranked	within	the	top	25	were	extracted	from	

the	list	displayed	in	Table	41	and	used	to	structure	the	BBN	using	

AgenaRisk	version	7.0	software.	Each	variable	was	treated	as	a	

ranked	parent	node	and	linked	through	causative	arcs	to	their	

respective	child	nodes.	Variables	known	pre-operatively	were	used	

to	construct	the	pre-operative	models	(Figure	61)	and	post-

operatively	known	variables	were	added	to	construct	the	BBN	for	

prognostic	updating	(Figure	62).		
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Figure	61:	Structure	of	pre-operative	BBNs.		

a)	Predicting	poor	prognosis	

	
	
	
	
Parent	nodes	in	white.	Child	nodes	in	green	are	ranked	based	on	weighted	mean	
of	weighted	parent	nodes.	Output	node	in	purple.			
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b)	Predicting	good	prognosis		

	
	
Parent	nodes	in	white.	Child	nodes	in	red	are	ranked	based	on	weighted	mean	of	
weighted	parent	nodes.	Output	node	in	blue.			
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Figure	62:	Structure	of	post-operative	BBNs.	

a)	Predicting	poor	prognosis	

	
	
	
	
Parent	nodes	in	white.	Pre-operative	child	nodes	in	green,	and	post-operative	
child	nodes	in	blue.	Output	node	in	purple.	NLR=	neutrophil	lymphocyte	ratio;	
AJCC	stage=	American	Joint	Committee	on	Cancer	stage		
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b)	Predicting	good	prognosis		

	

	

	
	
	
Parent	nodes	in	white.	Pre-operative	child	nodes	in	red,	and	post-operative	child	
nodes	in	green.	Output	node	in	blue.	NLR=	neutrophil	lymphocyte	ratio;	AJCC	
stage=	American	Joint	Committee	on	Cancer	stage		
	

	

The	node	probability	table	for	each	child	node	was	calculated	using	

the	truncated	Normal	(TNormal)	statistical	distribution	as	this	

provides	finite	end	points	between	0	and	1	and	has	been	proven	to	

generate	accurate	node	probability	tables	for	BBNs	involving	ranked	

nodes	with	ranked	parent	nodes	(Fenton	&	Neil,	2019).	The	

normalised	weighting	of	each	parent	node	was	used	as	the	weighted	
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mean	of	the	TNomal	distribution	from	which	to	calculate	the	node	

probability	tables.	The	definitions	and	categorisation	of	input	data	

for	each	node	within	the	BBNs	are	outlined	in	Table	42	and	Table	43	

and	were	determined	by	how	values	were	reported	in	the	PubMed	

studies.	They	and	the	overall	model	structure	were	also	approved	by	

a	panel	of	experts	from	a	pancreatic	tertiary	referral	centre.		
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Table	42:	Definition	and	categorisation	of	input	data	for	each	node	in	

the	BBN	predicting	good	prognostic	outcome	
Node	 Node	States	 Definition	
Albumin	 Normal	

Low	
=/>	35	g/l	
<	35	g/l	

mGPS	(modified	Glasgow	
Prognostic	Score)	

0	
1	
2	

0=	CRP</=	10mg/L	and	
albumin	>/=	35	g/L	
1=	CRP	>	10mg/L	
2=	CRP>	10mg/L	and	albumin	
<35	g/L	

NLR	(Neutrophil	Lymphocyte	
Ratio)	

<2	
>2	

	

Location	 HOP	
Body/Tail	

Head	of	Pancreas	
Location	other	than	HOP	

Size	 <	2cm	
>2cm	

	

T	stage	 Tis/T1/T2	
T3/T4	

	

AJCC	Stage	 0	
1	
2	
3	
4	

As	per	American	Joint	
Committee	on	Cancer	
definition	[19]	

Ca19-9		 <50	
50-999		
>1000		

<50	U/mL	
50-999	U/mL	
>1000	U/	mL	

CEA	 <5	
>5	

<5	ng/mL	
>5	ng/mL	

Age	 <	70	
>70	

Under	70	years	
Equal	to	or	over	70	years	

Performance	Status	 Good	
Moderate	
Poor	

ASA	1	
ASA2	
ASA	3	or	worse	

Jaundice		 No	
Yes	

Bilirubin	<	40µmol/l	
Bilirubin	>40µmol/l	

Diabetes		 No	
Yes	

	

Smoking	History	 Non-smoker	
Smoker	

	

Neoadjuvant	Response	 Response/stable	resectable	
	
	
Progression/	Unresectable	

Radiological	response	or	
stable	disease	that	is	still	
resectable	
	
Radiological	evidence	of	stable	
disease	that	is	still	borderline	
resectable	or	locally	
advanced/progression/	
unresectable	disease		

Lymph	nodes	negative	 Yes	
No	

	

R0	resection	 Yes	
No	

	

Tumour	Grade	 	
	
	
G1/G2	

As	per	American	Joint	
Committee	on	Cancer	
definition	[19]:	
Well/moderate	
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G3/G4	

differentiation,	
low/intermediate	grade		
	
Poorly	differentiated,	high	
grade		

Lymph	Node	Ratio	(LNR)	 <0.2	
>0.2	

	

Perineural	Involvement	(PNI)	 No	
Yes	

	

Vascular	Involvement		 No	
Yes	

	

Adjuvant	Therapy	 Yes	
No	

	

Post-operative	Ca19-9	 Normal	
Raised	
	

<37	U/mL	
>37	U/mL	
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Table	43:	Definition	and	categorisation	of	input	data	for	each	node	in	

the	BBN	predicting	poor	prognostic	outcome	
Variable/	Node	 Node	Status	 Definition	
Lymph	Node	Positive	 Yes	

No	
	

Lymph	node	ratio	 <0.3	
>0.3	

Ratio	of	the	number	of	
positive	lymph	nodes	to	the	
total	number	of	lymph	nodes	
removed	

Tumour	Grade	 	
	
	
G1/G2	
	
	
	
	
G3/G4	

As	per	American	Joint	
Committee	on	Cancer	
definition	[19]:	
Well/moderate	
differentiation,	
low/intermediate	grade		
	
Poorly	differentiated,	high	
grade		

Tumour	Size	 <	2cm	
>2cm	

	

R0	Resection	 No	
Yes	

No	microscopic	evidence	of	
any	residual	tumour	

Adjuvant	Therapy		 No	
Yes	

	

T	stage	 T1	
T2	
T3	
T4	

	

Pre	treatment	Ca	19-9	 <50	
50-999		
>1000		

<50	U/mL	
50-999	U/mL	
>1000	U/	mL	

AJCC	(American	Joint	
Committee	on	Cancer)	Stage	

0	
1	
2	
3	
4	

As	per	AJCC	definition		

Vascular	Involvement	 Yes	
No	

	

Perineural	Involvement	(PNI)	 Yes	
No	

	

Age	 <	70	
>70	

Under	70	years	
Equal	to	or	over	70	years	

mGPS	(modified	Glasgow	
Prognostic	Score)	

0	
1	
2	

0=	CRP</=	10mg/L	and	
albumin	>/=	35	g/L	
1=	CRP	>	10mg/L	
2=	CRP>	10mg/L	and	
albumin	<35	g/L	

CEA>5	 <5	
>5	

<5	ng/mL	
>5	ng/mL	

Performance	Status	 	
	
	
Good	
Moderate	
Poor	

As	defined	by	American	
Society	of	Anaestheologits	
(ASA)	classification	
ASA	1-2	
ASA	2-3	
ASA	>3	

Tumour	Location	 HOP	 Head	of	Pancreas	(HOP)	
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Body/Tail	

Location	other	than	HOP	

Post	treatment	Ca19-9	 <120	
>120	

<120	U/mL	
>120	U/mL	

Prei	operative	Blood	
Transfusion	

Yes	
No	

	

Albumin	 Normal	
Low	

=/>	35	g/l	
<	35	g/l	

Neutrophil	Lymphocyte	Ratio		 <5	
>5	

	

Jaundice	 No	
Yes	

Bilirubin	<	40µmol/l	
Bilirubin	>40µmol/l	

Diabetes	 No	
Yes	

	

Smoking	 Non-smoker	
Smoker	

	

Response	to	Neoadjuvant	
Treatment		

Stable	
	
	
Progression/	Unresectable	

Radiological	response	or	
stable	disease	that	is	still	
resectable	
Radiological	evidence	of	
progression/	unresectable	
disease		

BMI	 Normal	
	
Low	

Body	Mass	Index	(BMI)	above	
18	
BMI	equal	or	under	18	

	

Implementation	of	BBNs	

	

The	pre-operative	BBN	output	nodes	were	defined	using	the	states:	

inflammatory	markers,	tumour	factors,	tumour	markers,	patient	

factors	and	response	to	neoadjuvant	treatment,	each	of	which	was	

defined	as	high,	medium	and	low	risk	and	were	defined	by	different	

parent	nodes	depending	on	whether	the	BBN	was	predicting	poor	or	

good	prognosis.	When	performing	prognostic	updating	the	output	

node	was	additionally	defined	by	post-operative	factors	which	was	

based	on	surgical	pathology	from	the	resected	tumour	and	post-

operative	factors	which	included	events	during	recovery	from	

surgery.	Again	post-operative	factors	were	defined	as	high,	medium	

and	low	risk	for	the	given	prognostic	outcome.	Using	the	algorithm	

provided	by	commercially	available	software	AgenaRisk	version	7.0	

conditional	probabilities	are	generated	for	the	BBNs.	
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Scenario	analysis	

	

Proposed	BBN	models	presented	here	have	been	checked	with	three	

hypothetical	scenarios	for	each	of	the	pre	and	post-operative	

applications	of	the	BBNs.	The	states	of	the	criteria	for	the	scenarios	

are	summarised	in	Figure	63	and	Figure	64.	Scenario	1	reflects	a	

patient	where	all	the	criteria	are	in	the	worst	possible	state.	Scenario	

2	reflects	a	patient	where	all	criteria	are	in	medium	or	moderate	

states.	Scenario	3	reflects	a	patient	where	all	criteria	are	in	the	most	

favourable	state	for	a	good	prognostic	outcome.		

	

For	the	BBN	that	pre-operatively	predicts	poor	prognosis	scenario	1	

corresponded	with	a	99.989%	probability	that	the	patient	will	have	a	

poor	prognosis	post	resection.	Scenario	2	corresponds	with	a	

56.091%	probability	of	a	poor	post	resection	prognosis.	Scenario	3	

corresponded	with	a	99.989%	probability	that	the	patient	will	not	

have	a	poor	prognosis	post	resection.	The	BBN	that	incorporates	

post-operative	data	to	perform	prognostic	updating	showed	scenario	

1	corresponds	with	a	99.984%	probability	and	scenario	2	a	55.089%	

probability	of	the	patient	having	a	poor	post	resection	prognosis.	

Scenario	3	corresponded	with	a	99.984%	probability	of	not	having	a	

poor	post	resection	prognosis.		

	

For	the	BBN	predicting	good	prognosis	based	on	pre-operative	data	

scenario	1	corresponded	with	a	99.806%	probability	of	not	achieving	

a	good	prognosis	post	resection.	Scenario	2	and	3	gave	a	56.695%	

and	99.806%	probability	of	achieving	a	good	post	resection	

prognosis	respectively.	The	BBN	that	incorporated	post-operative	
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data	to	predict	good	prognosis	found	that	for	scenario	1	the	

probability	of	not	achieving	good	prognosis	was	99.869%.	For	

scenario	2	and	3	the	probability	of	achieving	a	good	post	resection	

prognosis	is	48.959%	and	99.869%	respectively.					

	

Figure	63:	Scenario	testing	for	BBN	predicting	poor	prognosis	

Prognostic	Updating	

	
Figure	64:	Scenario	testing	for	BBN	predicting	good	prognosis	

	
Prognostic	Updating	
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Sensitivity	analysis	

	

Sensitivity	analysis	assumes	all	input	parameters	in	the	model	are	

uncertain	and	therefore	determines	how	sensitive	results	are	in	

relation	to	changes	in	observable	variables	(Yang	et	al.,	2009).		Given	

that	BBN	output	relies	on	a	priori	assigned	probabilities,	sensitivity	

analysis	identifies	critical	input	parameters	that	significantly	impact	

on	BBN	results	(Ismail	et	al.,	2011).	Therefore	sensitivity	analysis	can	

serve	as	an	adjunct	to	decision-analysis	or	value	of	information	

analysis	to	identify	uncertainties	and	prioritise	data	collection	

(Fenton	&	Neil,	2019).	

	

Various	methods	have	been	proposed	to	carry	out	sensitivity	

analysis.	This	BBNs	used	discreet	variables,	as	variables	in	PubMed	

published	survival	analysis	studies	reported	discretised	variables,	

therefore	Pearl’s	inwards	analysis	and	broadcasting	analysis	were	

used	to	perform	sensitivity	analysis	(Pearl,	1988;	Fenton	&	Neil,	

2019).	Hence	sensitivity	was	defined	as	S(𝑋=𝑥,	T=t)	and	determined	

by	setting	values	for	all	source	variables,	𝑋,	and	assessing	the	impact	

on	the	target	node,	T,	then	changing	only	the	target	node,	T,	and	

assessing	the	changes	on	the	source	set,	𝑋,	respectively	with	joint	

sensitivity	of	T	to	perturbations	in	source	nodes	defined	as:	

S(X=x,T=t)	=	!(!!!|!,!!!)
!(!!!|!)

			 	 	 	 	 	 	 																

where	p(T=t|e)	is	the	current	probability	value	for	T,	given	evidence	e	

and	p(T=t|e,	X=x)	is	the	new	value	of	T	for	the	set	of	source	variable,	X	

(Pearl,	1988;	Fenton	&	Neil,	2019).	Hence	inwards	analysis	and	

broadcasting	results	were	equivocal	as	(Fenton	&	Neil,	2019):	
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!(!!!|!,!!!)
!(!!!|!)

		=	!(!!!|!!!,!)
!(!!!|!)

	 	 	 	 	 	 	

	 			

The	results	of	BBN	sensitivity	analysis	showed	that	for	the	pre-

operative	BBNs	tumour	factors	had	the	greatest	impact	on	outcomes,	

followed	by	patient	factors	(Appendix	Q).	When	post-operative	data	

was	incorporated	into	the	BBN	post-operative	factors	and	surgical	

pathology	had	greatest	impact	on	output	followed	by	tumour	factors	

and	patient	factors	(Appendix	Q).	This	corroborates	numerous	

previous	studies	that	have	established	that	detecting	disease	early	

improves	survival,	hence	the	importance	of	tumour	factors	(Winter	

et	al.,	2012).	Furthermore	it	has	been	established	that	the	best	

chance	of	good	survival	outcomes	depend	upon	achieving	R0	

resection	whereby	all	tumour	is	completely	removed	(Versteijne	et	

al.,	2018),	which	supports	the	importance	of	surgical	pathology	on	

impacting	on	BBN	outcome.	Receipt	of	multimodal	treatment	has	also	

been	established	as	key	to	achieving	best	possible	survival	outcomes	

in	numerous	studies	(Bradley	et	al.,	2018;	Bradley	et	al.,	2019a;	

Versteijne	et	al.,	2018;	Neoptolemos	et	al.,	2001)	which	supports	the	

findings	from	sensitivity	analysis	that	post-operative	factors	have	

significant	impact	on	BBN	output	as	this	includes	post-operative	

complications,	which	in	turn	affects	the	recovery	time	and	time	to,	or	

indeed	whether,	patients	receive	adjuvant	therapy	which	is	also	

included	in	post-operative	factors	(Winter	et	al.,	2012).	Interestingly	

patient	factors	were	found	to	have	more	of	an	impact	on	predicting	

poor	prognosis	than	good	prognosis.	This	could	be	explained	by	the	

fact	that	in	practice	clinicians	are	less	likely	to	operate	on	frail	and	

unfit	patients	therefore	the	data	for	such	patients	is	less	likely	to	

form	part	of	post	resection	survival	analysis.	This	finding	makes	a	
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case	for	better	patient	selection	at	the	pre-operative	stage	of	the	

patient	journey.	Importantly	through	the	novel	application	of	

methods	in	this	paper	we	were	able	to	quantify	the	cumulative	

impact	of	patient	factors,	which	had	previously	been	the	domain	of	

subjective	judgment.		

	

	

4.6.3	BBN	Performance	Validation	

		

Strict	methodological	rigor	was	adhered	to	when	creating	this	BBN	

by	strictly	following	TRIPOD	guidelines	as	outlined	in	appendix	R.	

The	West	of	Scotland	Pancreatic	Unit	has	been	selected	to	

demonstrate	the	application	of	the	BBN	models.		This	tertiary	referral	

centre	has	a	20year	prospectively	maintained	database	that	contains	

all	patients	referred	to	the	unit	with	potentially	resectable	PDAC.	

Between	January	2008	and	July	2012	this	unit	performed	surgery	

first	pathway	on	all	cases	of	potentially	resectable	PDAC	if	patients	

were	deemed	fit	for	surgery.	From	August	2012	onwards	

neoadjuvant	approach	became	the	standard-of-care	for	all	cases	of	

potentially	resectable	PDAC.	This	database	therefore	allowed	the	

opportunity	to	demonstrate	the	application	of	BBNs	across	both	

neoadjuvant	and	surgery	first	treatment	pathways.	

	

Model	Validation	Dataset	

	

The	performance	of	BBN	was	assessed	using	the	area	under	the	

curve	(AUC)	of	the	received	operated	curve	(ROC)	using	SPSS	

Statistics	version	24	software.	Individual	patient	data	was	entered	
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into	the	BBNs	and	the	personalised	pre	and	post-operative	

predictions	of	poor	prognosis	and	good	prognosis	were	recorded.	A	

prediction	of	50%	or	greater	probability	of	the	prognostic	output	in	

question	was	assessed	against	that	individual’s	actual	post	resection	

survival	time	and	the	BBN	prediction	deemed	‘True’	or	‘False’.	All	

patients	who	had	undergone	resection	of	PDAC,	had	survival	data	

recorded,	had	died,	or	if	still	alive	had	a	survival	time	below	or	

exceeding	that	being	predicted	were	included.	Patients	who	were	

found	to	have	non-resectable	disease	at	operation,	or	who	were	

treated	in	a	neoadjuvant	pathway	and	were	found	to	have	non-

resectable	disease	at	re-staging,	were	included	to	reduce	the	risk	of	

bias	in	assessing	the	pre-operative	performance	of	BBN	as	in	the	

clinical	setting	the	intention	would	be	delivery	of	multimodal	

treatment.	This	gave	a	pool	of	387	patients	against	which	the	

predictive	performance	of	the	pre-operative	BBN	was	validated	for	

predicting	poor	prognosis	and	a	pool	of	365	against	which	the	

performance	of	the	pre-operative	BBN	predicting	good	prognosis	

was	validated.	The	predictive	performance	of	the	post-operative	

BBNs	in	performing	prognostic	updating	was	assessed	against	all	

patients	for	whom	postoperative	data	was	available	and	who	had	

survival	data	recorded,	had	died,	or	if	still	alive	had	a	survival	time	

exceeding	that	being	predicted.	This	gave	a	pool	of	251	and	230	

patients	against	which	the	BBNs	for	poor	and	good	prognosis	were	

validated	respectively.	The	amount	of	missing	data	did	not	determine	

either	inclusion	or	exclusion	in	order	to	test	how	the	model	coped	

with	missing	data.	This	database	did	not	contain	data	on	tumour	

markers	Ca19-9	and	CEA.		
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Results:	Pre-operative	Performance	

	

BBN	predicting	poor	prognosis	pre-operatively	achieved	an	AUC	of	

0.70	(P	value	0.001;	95%	CI	0.589-0.801)	where	data	on	all	other	

nodes,	apart	from	tumour	markers,	were	available.	With	an	

additional	one	and	two	data	points	missing	a	statistically	significant	

AUC	of	0.70	was	maintained.	When	an	additional	three	data	points	

were	missing	the	AUC	remained	above	0.60	but	lost	statistical	

significance	(Table	44).		

	

Table	44:	Results	of	BBN	pre-operatively	predicting	poor	prognosis.	

PPV	is	positive	predictive	value;	NPV	is	negative	predictive	value		
	 Sensitivity		 Specificity	 PPV	 NPV	 AUC	
2	data	points	
missing		
(n=123)	

0.84	 0.64	 0.45	 0.92	 0.	70	(P	value	
0.001;	95%	CI	
0.589-0.801)	
Std.	Error:	
0.54		

3	data	point	
missing	
(n=139)	

0.82	 0.65	 0.43	 0.92	 0.	70	(P	value	
0.001;	95%	CI	
0.578	-0.786)	
Std.	Error:	
0.53			

4	data	points	
missing	
(n=144)	

0.83	 0.65	 0.44	 0.92	 0.70	(P	value	
0.001;	95%	CI	
0.591	-0.791)	
Std.	Error:	
0.51		

5	data	points	
missing	
(n=176)	

0.64	 0.66	 0.45	 0.81	 0.	65	(P	value	
0.009;	95%	CI	
0.537	-0.711)	
Std.	Error:	
0.44			

6	data	points	
missing	
(n=189)	

0.66	 0.63	 0.43	 0.82	 0.64	(P	value	
0.024;	95%	CI	
0.518	-0.690)	
Std.	Error:	
0.44	

6+	data	
points	
missing	
(n=387)	

0.64	 0.54	 0.46	 0.72	 0.60	(P	value	
0.559;	95%	CI	
0.502-0.617)	
Std.	Error:	
0.29		
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BBN	pre-operative	predicting	good	prognosis	achieved	an	AUC	that	

ranged	from	0.94	(P-value	0.002;	95%	CI	0.859-1.000)	for	0	missing	

data	points	in	addition	to	the	missing	tumour	marker	data	(n=33)	to	

AUC	0.74	(P-value	0.000;	95%	CI	0.660-0.809)	accepting	more	than	4	

additional	missing	data	points	(n=365)	(Table	45).		

	

Table	45:	Results	of	BBN	pre-operatively	predicting	good	prognosis.	

PPV	is	positive	predictive	value;	NPV	is	negative	predictive	value		

	
	 Sensitivity		 Specificity	 PPV	 NPV	 AUC	
2	missing	
data	points		
(n=32)	

1	 0.93	 0.71	 1	 0.94	(P	value	
0.002;	95%	CI	
0.856-1.0)	
Std.	Error	
0.043		

2-3	data	
points	
missing	
(n=119)	

0.85	 0.90	 0.71	 0.95	 0.868	(P	
value	0.000;	
95%	CI	
0.780-0.956)	
Std.	Error	
0.045	

2-4data	
points	
missing	
(n=132)	

0.83	 0.92	 0.75	 0.95	 0.873	(P	
value	0.000;	
95%	CI	
0.793-0.953)	
Std.	Error	
0.041	

2-5	data	
points	
missing	
(n=135)	

0.83	 0.92	 0.73	 0.95	 0.871	(P	
value	0.000;	
95%	CI	
0.790-0.951)	
Std.	Error	
0.041	

2-6	data	
points	
missing	
(n=175)	

0.83	 0.89	 0.61	 0.96	 0.831	(P	
value	0.000;	
95%	CI	
0.746-0.917)	
Std.	Error	
0.044	

6+	data	
points	
missing	
(n=365)	

0.62	 0.86	 0.42	 0.93	 0.735	(P	
value	0.000;	
95%	CI	
0.660-0.809)	
Std.	Error	
0.038	
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Prognostic	Updating	Performance	

BBN	performance	in	prognostic	updating	where	the	outcome	

predicted	was	poor	prognosis	achieved	an	AUC	of	0.80	(P	value:	

0.000;	95%	CI:	0.678-0.862)	when	all	other	data,	apart	from	tumour	

markers,	was	available.	An	AUC	of	0.80	was	maintained	until	more	

than	6	pre-operative	data	points,	and	up	to	and	including	2	post-

operative	data	points,	were	missing.	At	this	point	the	BBN	achieved	

an	AUC	of	0.70	(P	value:	0.000;	95%	CI:0.667-0.818)	which	was	

maintained	with	over	6	missing	pre-operative	data	points	and	up	to	

and	including	4	missing	post-operative	data	points	(P	value:	0.000;	

95%	CI:	0.660-0.788)	(Table	46).		
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Table	46:	Results	of	BBN	performing	prognostic	updating	for	poor	

prognosis.		
	 1	Missing	Post-

operative	Data	
point	
	
	

1-2	Missing	Post-
operative	Data	
Point	
	
	

1-3	Missing	Post-
operative	Data	
Points	
	
	

1-4	Missing	Post-
operative	Data	
Points	
	
	

2	Missing	Pre-
operative	Data	
Points	

Sensitivity:	
0.97;		
Specificity:		
0.62;		
PPV:	0.44;		
NPV:	0.98;		
AUC	0.80;		
Standard	
Error:0.47;		
P	value:	0.000;		
95%	CI:	0.678-
0.862	
(n=117)	

Sensitivity:		
0.93;		
Specificity:		
0.63;		
PPV:	0.44;		
NPV:0.97;		
AUC:	0.80;		
Standard	
Error:0.51;		
P	value:		
0.000;		
95%	CI:		
0.651-0.850	
(n=120)	

	 	

2-3	Missing	Pre-
operative	Data	
Point	

Sensitivity:	
0.94;	Specificity:	
0.63;		
PPV:	0.45;		
NPV:	0.97;		
AUC:	0.80;		
Standard	
Error:0.045;		
P	value:	0.000;		
95%	CI:	0.685-
0.862	
(n=138)	

Sensitivity:		
0.94;		
Specificity:		
0.63;		
PPV:	0.45;		
NPV:	0.97;		
AUC:	0.80;		
Standard	
Error:0.045;	P	
value:	
0.000;		
95%	CI:	0.685-
0.862	
(n=139)	

	 	

2-4	Missing	Pre-
operative	Data	
Points	

Sensitivity:	
0.94;	Specificity:	
0.62;		
PPV:	0.45;		
NPV:	0.98;		
AUC:	0.80;		
Standard	Error:	
0.042;		
P	value:	
0.000;		
95%	CI:	0.708-
0.872	
(n=135)	

Sensitivity:	0.94;	
Specificity:	0.62;		
PPV:	0.44;		
NPV:	0.97;		
AUC:	0.80;		
Standard	Error:	
0.045;		
P	value:	0.000;		
95%	CI:	0.681-
0.858	
(n=140)	

	 	

2-5	
Missing	Pre-
operative	Data	
Points	

Sensitivity:	
0.97;	Specificity:	
0.62;		
PPV:	0.45;		
NPV:	0.98;		
AUC:	0.80;		
Standard	Error:	
0.041;		
P	value:	

Sensitivity:	0.95;	
Specificity:	0.61;		
PPV:	0.45;		
NPV:	0.97;		
AUC:	0.80;		
Standard	Error:	
0.043;		
P	value:	
0.000;		
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0.000;		
95%	CI:	0.708-
0.869	
(n=137)	

95%	CI:	0.681-
0.849	
(n=146)	

2-6Missing	Pre-
operative	Data	
Points	

Sensitivity:	
0.97;	Specificity:	
0.61;		
PPV:	0.45;		
NPV:	0.98;		
AUC:	0.80;		
Standard	
Error:0.041;		
P	value:	
0.000;		
95%	CI:	0.707-
0.869	
(n=138)	

Sensitivity:	0.95;	
Specificity:	0.59;		
PPV:	0.43;		
NPV:	0.97;		
AUC:	0.80;		
Standard	
Error:0.043;		
P	value:	0.000;		
95%	CI:	0.665-
0.832	
(n=155)	

Sensitivity:	0.95;	
Specificity:	0.59;		
PPV:	0.44;		
NPV:	0.97;		
AUC:	0.80;		
Standard	
Error:0.042;		
P	value:	
0.000;		
95%	CI:	
0.672-0.835	
(n=157)	

	

>6	Missing	Pre-
operative	Data	
Points	

Sensitivity:	
0.97;	Specificity:	
0.61;		
PPV:	0.45;		
NPV:	0.98;		
AUC:	0.80;		
Standard	
Error:0.041;		
P	value:	
0.000;		
95%	CI:	0.710-
0.870	
(n=139)	

Sensitivity:	0.94;	
Specificity:	0.55;		
PPV:	0.41;		
NPV:	0.96;		
AUC:	0.70;		
Standard	
Error:0.039;		
P	value:	
0.000;		
95%	CI:	
0.667-0.818	
(n=195)	
	

Sensitivity:	0.94;	
Specificity:	0.54;		
PPV:	0.41;		
NPV:	0.96;		
AUC:	0.70;		
Standard	Error:	
0.037;		
P	value:	0.000;		
95%	CI:	
0.667-0.814	
(n=205)	
	

Sensitivity:	0.96;	
Specificity:	0.49;		
PPV:	0.44;		
NPV:	0.97;		
AUC:	0.70;		
Standard	
Error:0.033;		
P	value:	
0.000;		
95%	CI:	0.660-
0.788	
(n=251)	

	

The	prognostic	updating	performance	of	BBN	predicting	good	

prognosis	achieved	AUC	0.97	(P-value	0.000;	95%	CI	0.908-1.000)	

for	3	missing	data	points	in	pre	and	post-operative	validation	dataset	

(n=33)	to	AUC	0.75	(P-value	0.000;	95%	CI	0.655-0.838)	accepting	

more	than	6	missing	data	points	in	the	pre	and	up	to	and	including	3	

missing	data	points	in	the	post-operative	validation	dataset	(n=230).	

The	latter	was	the	only	point	at	which	BBN	performance	had	an	AUC	

under	0.80.	Validated	against	every	other	combination	of	missing	pre	

and	post-operative	data	points	BBN	maintained	an	AUC	greater	than	

0.8	(range	0.97-0.80)	with	P-value	consistently	below	0.001	(Table	

47).	
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Table	47:	Results	of	BBN	performing	prognostic	updating	for	good	

prognosis.	
	 1	Missing	

Post-
operative	
Data	points	
	
	

1-2	Missing	
Post-operative	
Data	Point	
	
	

1-3	Missing	
Post-operative	
Data	Points	
	
	

1-4	Missing	
Post-
operative	
Data	Points	
	
	

1-5	Missing	
Post-
operative	
Data	Points	
	
	

2	Missing	
Pre-
operative	
Data	
Points	

Sensitivity:	1	
Specificity:	
0.96	
PPV:	0.86	
NPV:	1	
AUC	0.97;	P-
value	0.000	
(95%	CI	
0.908-1.000)		
(n=33)	
	

	 	 	 	

2-3	
Missing	
Pre-
operative	
Data	Point	

Sensitivity:	
0.62	
Specificity:	
0.96	
PPV:	0.64	
NPV:	0.89	
AUC	0.81;	P-
value	0.000	
(95%	CI	
0.705-0.910)		
(n=113)	
	

	 	 Sensitivity:	
0.62	
Specificity:	
0.96	
PPV:	0.64	
NPV:	0.89	
AUC	0.81;	P-
value	0.000	
(95%	CI	
0.706-0.911)		
(n=114)	
	

	

2-4	
Missing	
Pre-
operative	
Data	
Points	

Sensitivity:	
0.62	
Specificity:	
0.90	
PPV:	0.67	
NPV:	0.88	
AUC	0.80;	P-
value	0.000	
(95%	CI	
0.699-0.900)		
(n=121)	

Sensitivity:	0.84	
Specificity:	0.63	
PPV:	0.90	
NPV:	0.68	
AUC	0.0.80;	P-
value	0.000	
(95%	CI	0.702-
0.901)		
(n=122)	
	
	

Sensitivity:	0.62	
Specificity:	0.91	
PPV:	0.67	
NPV:	0.89	
AUC	0.80;	P-
value	0.000	
(95%	CI	0.701-
0.901)		
(n=126)	
	

	 Sensitivity:	
0.62	
Specificity:	
0.91	
PPV:	0.67	
NPV:	0.89	
AUC	0.80;	P-
value	0.000	
(95%	CI	
0.704-0.902)		
(n=127)	
	

2-5	
Missing	
Pre-
operative	
Data	
Points	

Sensitivity:	
0.62	
Specificity:	
0.91	
PPV:	0.67	
NPV:	0.89	
AUC	0.81;	P-
value	0.000	
(95%	CI	
0.708-0.904)		
(n=130)	
	

	 	
	

Sensitivity:	
0.62	
Specificity:		
0.90	
PPV:	0.64		
NPV:	0.83	
AUC	0.81;	P-
value	0.000	
(95%	CI	
0.705-0.902)		
(n=131)	
	

	
	

2-6	
Missing	

Sensitivity:	
0.62	

Sensitivity:	0.62	
Specificity:	0.91	

	 	 Sensitivity:	
0.62	
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Pre-
operative	
Data	
Points	

Specificity:	
0.91	
PPV:	0.67	
NPV:	0.89	
AUC	0.81;	P-
value	0.000	
(95%	CI	
0.711-0.905)		
(n=131)	
	

PPV:	0.64	
NPV:	0.90	
AUC	0.81;	P-
value	0.000	
(95%	CI	0.709-
0.905)		
(n=138)	
	
	

Specificity:	
0.91		
PPV:	0.64		
NPV:	0.90	
AUC	0.80;	P-
value	0.000	
(95%	CI	
0.705-0.903)		
(n=140)	
	

>6	Missing	
Pre-
operative	
Data	
Points	

Sensitivity:	
0.63	
Specificity:	
0.92		
PPV:	0.70	
NPV:	0.90	
AUC	0.82;	P-
value	0.000	
(95%	CI	
0.721-0.909)		
(n=136)	

Sensitivity:	0.66	
Specificity:	0.92	
PPV:	0.68	
NPV:	0.91	
AUC	0.82;	P-
value	0.000	
(95%	CI	0.736-
0.910)	(n=172)	
	
	

Sensitivity:	0.54	
Specificity:	0.93	
PPV:	0.68	
NPV:	0.87	
AUC	0.75;	P-
value	0.000	
(95%	CI	0.655-
0.838)	(n=230)	
	

	 	

							

	

4.6.4.	Discussion		

	

In	this	section	BBN	models	to	predict	poor	and	good	post-resection	

prognosis	for	PDAC	have	been	proposed.	The	BBNs	demonstrated	

applicability	and	high	performance	level,	which	compares	favorably	

with	previous	prognostic	models	(Appendix	P),	even	when	data	is	

missing,	enhancing	its	clinical	applicability.	The	BBNs	developed	here	

not	only	view	the	process	of	delivering	pancreatic	cancer	

management	as	a	complex	system,	but	also	engage	with	the	FUPS	

characteristics	of	the	available	data	to	make	personalised	prognostic	

predictions.		

	

Engaging	With	FUPS	Characteristics		

	

The	framework	proposed	by	Wolpert	&	Rutter	(2018)	for	dealing	

with	FUPS	data	has	been	utilised	with	the	development	of	these	
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BBNs.	Firstly	the	predictions	made	by	the	models	are	presented	as	a	

partial	remnants	with	the	intention	that	as	patient	databases	mature	

globally,	the	anticipated	next	step	will	be	to	incorporate	patient	level	

data	into	the	BBN	so	that,	through	Bayes	theorem	the	prior	

distribution	and	observed	data	are	combined	to	update	the	posterior	

distribution	and	further	improve	the	accuracy	of	predictions	(Pearl,	

1988;	Fenton	&	Neil,	2019).		This	proposed	method	for	creating	a	

BBN	is	flexible	to	include	more	contributing	factors	and	consequence	

factors	as	new	information	begins	to	emerge	such	as	a	better	

understanding	of	the	role	of	neoadjuvant	therapies.	The	current	

focus	on	precision	medicine	carries	the	potential	for	gene-targeted	

therapies	(Tonelli	&	Shirts,	2017;	MacConaill	et	al.,	2015).	Future	

clinical	decision	making	will	therefore	require	the	amalgamation	of	

clinical	and	genomic	data,	which	could	easily	be	incorporated	into	the	

BBN,	making	our	model	a	vehicle	for	delivering	precision	gene-

targeted	medicine	(Tonelli	&	Shirts,	2017;	MacConaill	et	al.,	2015;	

Dzau	&	Ginsburg,	2016).		

	

These	potential	benefits	and	future	impact	of	the	BBNs	also	link	to	

the	two	other	key	factors	in	the	framework	for	engaging	with	FUPS	

data:	transparency	and	triangulation.		The	two-stage	weighting	

process	synthesised	published	survival	analysis	studies	to	identify	

major	predictive	and	consequence	factors	that	represent	nodes	

within	a	weighted	ranked	BBN.	The	transparent	methods	of	

weighting	the	nodes	within	the	network	also	triangulates	the	

importance	of	variables	with	conflicting	findings	and	their	

significance	within	the	entirety	of	the	existing	body	of	research	

available	on	the	PubMed	database.	This	approach	provides	a	method	
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for	utilising	population	based	survival	analysis	data	to	make	

personalised	predictions	of	outcomes	across	competing	treatment	

strategies,	importantly	at	the	pre-operative	stage,	therefore	

supporting	shared	patient-clinician	decision	making	at	individual	

patient	level	and	planning	resource	allocation.	The	intuitive	nature	of	

BBNs	and	the	transparency	of	the	methods	used	builds	trust	with	

clinicians.	The	methods	presented	in	this	section	also	overcome	the	

limitations	of	previous	models	applied	in	this	field	including	the	over	

reliance	on	post-operative	data	from	small,	biased	databases	limiting	

generalisability.		
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Chapter	5	

	

Discussion	
	

Introduction	

	

The	aim	of	this	research	was	to	facilitate	the	fruition	of	personalised	

realistic	medicine	for	cases	of	potentially	resectable	pancreatic	

cancer	through	statistical	modeling	that	can	facilitate	better	shared	

decision	making	to	optimise	individual	patient	outcomes.	From	early	

on	in	the	literature	review	what	began	to	emerge	was	a	rich	and	

complicated	tapestry	of	the	current	body	of	research	pertaining	to	

the	management	of	potentially	resectable	pancreatic	cancer.	This	

body	of	research	is	permeated	with	uncertainty,	ambiguity,	and	often	

conflicting	and	heavily	contested	findings	and	opinions	across	the	

entirety	of	the	treatment	pathway	including:	1)	the	staging	of	

pancreatic	cancer	and	its	implications	on	treatment	goals	and	

predicted	outcomes,	2)	the	application	of	surgery,	3)	adjuvant	

therapies	and	4)	neoadjuvant	therapies.			

	

These	issues	exist	within	the	wider	political	context	of	a	drive	

towards	the	delivery	of	personalised	realistic	medicine	through	more	

personalised	treatment	selection	strategies	that	will	ensure	more	

cost-effective	resource	utilisation.	This	has	resulted	in	the	wider	

contemporary	research	focus	within	pancreatic	cancer	research	

being	driven	in	two	key	directions:	1)	the	drive	for	more	large	multi-

centre	RCTs	comparing	neoadjuvant	and	upfront	surgery	and	2)	
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precision	medicine	with	the	focus	on	biomarker	driven	early	

diagnosis	and	treatment	sequencing	and	gene	targeted	therapies.		

	

The	widely	held	assumption	is	that	breakthroughs	in	these	areas	will	

result	in	a	move	away	from	ambiguity	towards	certainty.	This	thesis,	

whilst	acknowledging	the	importance	of	such	breakthroughs,	

contests	this	view.		Firstly	the	challenge	of	optimising	outcomes	for	

potentially	resectable	pancreatic	cancer	goes	far	beyond	simply	

choosing	between	neoadjuvant	versus	upfront	surgery	approach.	

Preliminary	findings	from	Prep-02/JSAP-05	trial,	the	first	RCT	

comparing	upfront	surgery	and	neoadjuvant	therapy	in	the	form	of	

gemcitabine	and	S1	for	resectable	pancreatic	cancer,	has	reported	

improved	overall	survival	outcomes	with	neoadjuvant	therapy	(Unno	

et	al.,	2019).	However,	another	RCT	comparing	mFOLFIRINOX	with	

gemcitabine	in	the	adjuvant	setting	within	the	upfront	surgery	

pathway	has	reported	improved	survival	outcomes	with	

mFOLFIRINOX	that	rivals	the	survival	outcomes	reported	in	the	

neoadjuvant	arms	of	the	Prep-02/JSAP-05	trial	(Conroy	et	al.,	2018).	

Therefore	the	superior	treatment	pathway	for	resectable	pancreatic	

caner	has	not	been	conclusively	established	and	remains	

controversial.	Furthermore	superior	treatment	regime	combinations	

within	competing	pathways	have	also	not	been	conclusively	

established.	Secondly	with	regard	to	gene	targeted	therapy	and	the	

focus	on	precision	medicine,	as	our	knowledge	of	disease	at	

biomolecular	and	genomic	level	evolves,	the	clinical	decision	making	

process	will	pullulate	with	varied	and	complex	datasets	from	

multiple	sources.	Put	simply	humans	are,	and	always	will	be,	more	

than	their	genomes.	This	current	direction	in	pancreatic	cancer	
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research,	rather	than	resulting	in	the	diminution	of	complexity,	could	

result	in	its	augmentation	considering	the	challenge	of	amalgamating	

such	large	complex	databases	and	the	meaningful	application	of	this	

information	to	the	individual	patient	to	optimise	individual	

treatment	outcomes.		

	

The	argument	being	put	forward	in	this	thesis	is	that	complexity	will	

not	be	‘solved’	but,	if	the	optimisation	of	outcomes	for	pancreatic	

cancer	is	to	come	to	fruition,	research	must	focus	on	developing	ways	

to	engage	with	the	complexity,	handle	uncertainty	and	the	emergent	

when	examining	the	complex	system	of	delivering	pancreatic	cancer	

care	including	areas	of	debate,	ambiguity	and	disagreement	(Law	&	

Mol,	2002;	Fraser	&	Greenhalgh,	2001;	Star,	2002;	Greenhalgh	&	

Papoutsi,	2018).	It	follows	that	because	the	system	of	delivering	

pancreatic	cancer	care	and	its	outcomes	are	dynamic,	the	traditional	

scientific	quest	for	certainty,	predictability	and	linear	causality	

through	a	focus	on	RCTs	and	precision	medicine	will	only	answer	a	

fraction	of	the	unanswered	questions	as	the	effect	of	context	is	

controlled	for	within	the	artificial	setting	of	such	trials	(Cohn	et	al.,	

2013;	Braithwaite	et	al.,	2017;	Marchal	et	al.,	2013;	Greenhalgh	&	

Papoutsi,	2018).		RCTs	with	their	strict	inclusion	criteria	and	control	

of	context	do	not	reflect	the	complexities	of	a	real-life	patient	case	

mix	and	therefore	cannot	alone	provide	solutions	to	the	challenge	of	

optimising	outcomes	on	an	individual	patient	level.	Therefore	a	key	

aim	of	this	research	was	to	augment	such	studies	by	exploring	the	

application	of	statistical	modeling	methods	that	deal	with	

uncertainty,	unpredictability	and	general	causality	through	methods	

that	foreground	dynamic	interactions	and	emergence	to	understand	
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how	complex	systems	come	together	as	a	whole	(Cohn	et	al.,	2013;	

Greenhalgh	&	Papoutsi,	2018;	Flyvbjerg,	2006).	

	

Existing	modeling	techniques	regard	prognosis	as	an	isolated	event	

at	a	pre-determined	time,	applying	attribute	selection	prior	to	

inducing	the	model	and	setting	fixed	roles	of	input	and	output	

variables	to	attributes	(Verduijn	et	al.,	2007).	They	neglect	the	

uncertain	and	dynamic	nature	of	care	processes	where	outcomes	

today	predict	those	of	tomorrow	hence	expected	patient	outcomes	

evolve	as	more	information	becomes	available	(Verduijn	et	al.,	2007).		

Put	simply,	traditional	decision	support	models	integrate	data	and	

knowledge	but	do	not	provide	reasoning	(Muthurmama	&	Sankaran,	

2014).	To	achieve	personalised	predictive	medicine	statistical	

models	therefore	must	improve	both	knowledge	representation	and	

reasoning	facility,	with	ontologies	employed	acting	as	stepping-

stones	to	achieving	this,	and	ultimately	delivering	personalised	

realistic	medicine	(Muthurmama	&	Sankaran,	2014).		

	

It	is	not	without	coincidence	that	the	field	of	complex	systems	

developed	at	a	time	when	statistical	theory	began	to	coalesce	with	

methods	encompassed	within	machine	learning	to	reliably	infer	

models	with	large	numbers	of	variables	that	interact	in	complex,	

non-linear	ways.	At	their	core	these	methods	make	predictions	

within	complex	systems	against	a	background	of	competing	risks	and	

events	(Abbod	et	al.,	2014).	However,	across	the	existing	body	of	

research	pertaining	to	the	management	of	potentially	resectable	

pancreatic	cancer	the	definition	of	the	research	problem,	proposals	

for	improvement	and	outcome	are	not	recognised	as	being	
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dependent	on	the	whole	system	(Ulrich,	2002).	Existing	studies	

utilising	machine	learning	methods	are	not	exempt	from	this	

criticism	(Bradley	et	al.,	2019b;	Bradley	et	al.,	2019c)	which	means	

that	the	potential	of	their	application	is	mainly	untapped	as	doing	so	

would	place	greater	emphasis	on	how	systems	boundaries	are	

justified	and	the	implications	this	has	for	what	modeling	a	system	

defined	in	such	a	way	will,	and	importantly	will	not,	reveal.	Hence	the	

limitations	of	the	existing	body	of	research	is	not	merely	to	be	seen	as	

a	series	of	methodological	issues	to	be	corrected,	but	rather	as	the	

system	that	is	the	delivery	of	healthcare	being	defined	in	simplistic	

and	reductionist	terms	which	defines	how	system	boundaries	are	set	

which	in	turn	determines	and	limits	how	outcomes	are	measured	and	

assessed.	It	follows	that	both	a	limited	knowledge	of	systems	as	a	

result	of	boundaries	and	a	failure	to	engage	with	complexity	exist	and	

therefore	require	a	critical	and	ethical	imperative	in	the	study	and	

understanding	of	such	systems	in	order	to	move	research	forward	

(Kruger	et	al.,	2019).		

	

To	achieve	this,	this	research	engaged	with	what	Tsoukas	(2017)	

called	conjunctive	theorising	by	avoiding	simplification	and	

abstraction	(or	disjunctive	theorising)	and	instead	draws	on	different	

kinds	of	data	from	multiple	sources	to	move	research	towards	a	

theory	that	can	build	a	rich	picture	of	pancreatic	cancer	management	

pathways	as	a	complex	system.	Combining	operational	and	

healthcare	research	and	drawing	on	influences	from	complementary	

paradigms	of	critical	realism	and	systems	theory	then	enhancing	

their	impact	by	using	Cilliers’	complexity	theory	‘lean	ontology’,	an	

open-world	ontology	was	held	(Cilliers,	1998;	Kruger	et	al.,	2019).		



	 474	

Specifically	the	framework	offered	by	Wolpert	&	Rutter	(2018)	for	

using	FUPS	data	was	expanded	within	the	context	of	simulation	

modeling	in	the	study	of	complexity	in	healthcare	to	attempt	to	

expand	its	capabilities	for	handling	the	emergent	and	uncertainty	

(Long	et	al.,	2018).		

	

Several	themes	began	to	emerge	in	the	findings	of	this	research	and	

frame	the	structure	of	the	rest	of	this	chapter.	Firstly	the	

optimisation	of	outcomes	for	potentially	resectable	pancreatic	cancer	

can	be	seen	as	the	benefit	of	marginal	gains	at	individual	patient	level	

rather	than	proving	conclusive	superiority	of	any	single	treatment	

pathway.	This	challenges	the	current	narrative	surrounding	the	

management	of	pancreatic	cancer	to	move	away	from	the	

theoretically	possible	(surgery	is	the	only	potentially	curative	

treatment)	to	engage	with	the	reality	for	many	patients	that	surgery	

may	be	of	limited	benefit.	Secondly	the	importance	of	the	emerging	

narrative	being	uncovered	within	the	‘unseen	data’	that	has	

previously	been	dismissed	due	its	FUPS	characteristics	reveals	key	

findings	that	add	a	new	dimension	to	the	ongoing	debate	regarding	

the	treatment	of	potentially	resectable	pancreatic	cancer	and	moves	

research	closer	to	realising	personalised	realistic	medicine.	Thirdly	

the	application	of	Cillier’s	complexity	theory	‘lean	ontology’	reveals	

new	insights	into	the	management	of	potentially	resectable	

pancreatic	cancer	by	engaging	with	treatment	pathways	as	complex	

systems.			
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5.1	Optimising	Outcomes	in	Pancreatic	Cancer:	the	aggregate	of	

marginal	gains	

	

Outcomes	for	pancreatic	cancer	are	poor	with	overall	10year	survival	

standing	at	less	than	1%	and	5year	survival	for	resected	cases	

between	only	7%	and	25%	(Cancer	Research	UK,	2019).	Despite	

advances	in	adjuvant	therapies	and	advances	in	surgical	techniques	

overall	survival	outcomes	have	improved	very	little	over	several	

decades.	Furthermore	although	the	survival	benefit	of	adjuvant	

therapy	has	been	established	through	randomised	RCTs	between	

71%	and	76%	of	patients	will	have	disease	recurrence	within	2-years	

of	surgical	resection	(McGuigan	et	al.,	2018).	

	

In	this	research	the	Bayesian	network	meta-analysis	that	included	all	

stages	of	potentially	resectable	disease	found	the	aggregate	rate	(AR)	

of	1,2,3,4	and	5-year	survival	to	be	marginally	higher	with	

neoadjuvant	therapy	(1-year	survival:	0.8109	versus	0.6403,	O.R:	

2.12,	95%	CI:	1.59-2.93;	2-year	survival:	0.5135	versus	0.3002,	O.R:	

1.65	95%,	CI:	1.16-2.34;	3-year	survival:	0.3151	versus	0.2147,	O.R:	

1.50,	95%	CI:	1.10-2.04;	4-year	survival:	0.2114	versus	0.1647	O.R:	

1.57,	95%	CI:	0.80-2.99;	5-year	survival:	0.2118	versus	0.1736,	O.R:	

1.65,	95%	CI:	0.68-3.73).	This	marginal	survival	benefit	was	also	

reflected	in	the	AR	of	1,	2,	and	5year	survival	for	cases	that	were	

resectable	at	presentation	(1-year	survival:	0.7969	versus	0.7481,	

O.R:	1.38,	95%	CI:	0.69-2.96;	2-year	survival:	0.5178	versus	0.5131,	

O.R:	1.26,	95%	CI	0.94-1.74;	5-year	0.2069	versus	0.1783,	O.R:	1.19	

95%	CI	0.65-1.73).	These	findings	corroborate	the	few	existing	

attempts	at	meta-analysis	comparing	neoadjuvant	and	upfront	
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surgery	approaches.	Meta-analysis	by	both	Xu	et	al.	(2014)	and	

Andriulli	et	al.	(2012)	reported	only	marginal	benefit	of	neoadjuvant	

chemotherapy	in	terms	of	overall	and	disease-free	survival	in	

resectable	cases.		However,	neither	of	these	reports	focused	solely	on	

neoadjuvant	therapy	therefore	omitted	significant	studies	from	their	

meta-analysis	(Lee	et	al.	2016).	More	recently	meta-analysis	by	

Versteijine	et	al.	(2018)	pooled	38	trials	comprising	3484	patients	

with	resectable	and	borderline	resectable	disease	in	an	intention-to-

treat	analysis.	Their	findings	also	reported	only	marginal	benefit	with	

neoadjuvant	approach	over	upfront	surgery	approach	for	resectable	

disease	(18.2months	versus	17.4months)	but	a	greater	survival	

advantage	with	borderline	resectable	disease	(19.2months	versus	

12.8months).	Mokdad	et	al.	(2017)	also	reported	a	survival	

advantage	with	neoadjuvant	approach	in	their	retrospective	analysis	

of	National	Cancer	Database	using	propensity	score	matched	analysis	

of	neoadjuvant	therapy	used	to	treat	2005	patients	with	stage	I	and	II	

PDAC	compared	to	6,015	patients	who	underwent	upfront	surgical	

resection	of	PDAC	(26months	versus	21months).	However,	this	

analysis	is	heavily	biased	as	only	those	who	tolerated	neoadjuvant	

therapy	and	underwent	resection	were	included	in	the	neoadjuvant	

group.			

	

The	tendency	towards	a	marginal	survival	benefit	with	neoadjuvant	

approach	continued	to	be	demonstrated	in	the	results	of	the	Markov	

decision-analysis	studies.	Populating	the	Markov	decision	analysis	

model	with	data	on	resectable	disease	at	the	time	of	presentation,	

from	both	synthesisation	of	results	from	published	trials	and	

institutional	data,	demonstrated	a	survival	advantage	of	2.69months	
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(26.41	months/	22.54	QALMs	versus	23.72	months/18.51	QALMs)	

and	8.22months	(32.90	months/28.51	QALMs	versus	24.68	

months/19.23	QALMs)	respectively	for	neoadjuvant	therapy	

pathway.	These	findings	were	reiterated	in	the	results	of	the	DES	

analysis	which	showed	that	for	resectable	only	cases	the	neoadjuvant	

pathway	gave	a	mean	survival	time	of	20.01months	(18.45	QLAMs)	

compared	to	16.55months	(14.19	QALMs)	in	the	upfront	surgery	

pathway.	However,	when	minimum	significant	difference	threshold	

was	set	to	3.5months	the	selection	frequency	was	40.6%	for	

neoadjuvant	pathway	and	59.4%	for	indifference	between	pathways.	

DES	analysis	has	never	before	been	applied	to	the	question	of	

neoadjuvant	pathway	versus	upfront	surgery	pathway	for	pancreatic	

cancer	but	two	previous	Markov	decision-analysis	studies	that	have	

focused	on	resectable	only	cases	and	utilised	synthesised	data	have	

similarly	reported	marginal	survival	benefit	of	neoadjuvant	pathway	

(deGeus	et	al.,	2016;	Sharma	et	al.,	2015).	One	study,	based	on	phase	

I/II	trials,	reported	a	2month	survival	advantage	(22	months	versus	

20months)	(Sharma	et	al.,	2015)	whilst	the	second	study	reported	a	

5.5month	advantage	(32.2	versus	26.7	months)	but	their	analysis	

mostly	included	retrospective	studies	from	a	single	search	engine	

(deGeus	et	al.,	2016).		These,	and	the	findings	of	this	research	are	

corroborated	by	the	preliminary	findings	from	Prep-02/JSAP-05,	the	

first	RCT	comparing	upfront	surgery	and	neoadjuvant	therapy	for	

resectable	pancreatic	cancer.	However	this	trial	reports	an	overall	

survival	advantage	of	10.01months	(36.72months	versus	

26.65months).		
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Based	on	synthesised	data	from	published	trials	that	included	all	

stages	of	potentially	resectable	pancreatic	cancer	upfront	surgery	

was	found	to	give	23.72	months	(18.51	QALMs)	versus	20.22	months	

(16.26	QALMs).	One	existing	Markov	decision	analysis	focuses	on	

potentially	resectable	pancreatic	cancer,	therefore	including	

borderline	and	locally	advanced	cases	in	the	neoadjuvant	pathway	to	

capture	the	effect	of	conversion	to	resectability	on	overall	pathway	

analysis	(VanHouten	et	al.,	2012).	As	with	this	study’s	findings	it	did	

not	demonstrate	an	overall	conclusively	superior	pathway	on	an	

intention-to-treat	basis	(neoadjuvant	pathway	18.6	months	versus	

17.1	months)	(VanHouten	et	al.,	2012).	Yet	preliminary	results	from	

the	PREOPANC-1	trial,	a	multicenter	phase	III	RCT	comparing	

neoadjuvant	therapy	and	upfront	surgery	for	borderline	resectable	

cases,	have	reported	improved	survival	with	neoadjuvant	therapy	on	

an	intention-to-treat	basis	(17.1	months	versus	13.5	months)	(Van	

Tienhoven	et	al.,	2018).	

	

At	this	level	of	analysis	the	results	of	this	research	appear	to	

corroborate	the	overall	narrative	emerging	from	the	existing	body	of	

research:	that	neither	pathway	is	conclusively	superior	but	there	

may	be	a	marginal	advantage	with	neoadjuvant	approach.	However,	

this	conclusion	is	contested	considering	the	issues	of	quality	

surrounding	existing	studies.	Therefore	although	the	potential	

benefits	appear	to	be	marginal	what	is	not	made	clear	by	simply	

looking	at	survival	outcomes	alone	is	where	marginal	gains	can	be	

made	in	either	pathway	and	what	the	aggregate	effect	on	overall	

outcome	might	be.		
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This	point	is	illustrated	best	when	considering	the	importance	of	

achieving	R0	resection,	which	has	been	long	thought	of	as	the	only	

potentially	curable	treatment	for	pancreatic	cancer.	The	Bayesian	

Network	meta-analysis	conducted	in	this	research	showed	that	the	

aggregate	rate	of	R0	resection	was	marginally	higher	in	the	

neoadjuvant	pathway	for	cases	that	were	resectable	at	presentation	

(0.8008	versus	0.7515,	O.R.	1.27,	95%	CI	0.60-1.96)	with	this	margin	

reducing	when	all	stages	of	potentially	resectable	pancreatic	caner	

were	included	in	the	neoadjuvant	arm	(0.7389	versus	0.7306,	O.R	

1.12,	95%	CI	0.60-2.08).	The	corresponding	survival	benefits	were	

also	marginal	as	previously	discussed.	This	corroborates	the	findings	

of	a	meta-analysis	of	pooled	proportions	conducted	by	Versteijine	et	

al.	(2018).	Here	R0	resection	rates	were	also	higher	in	the	

neoadjuvant	compared	to	upfront	surgery	group	for	both	resectable	

(85%	versus	71.4%)	and	borderline	resectable	(88.6%	versus	63.9%)	

cases.	However,	as	with	the	Bayesian	network	meta-analysis	

performed	in	this	research	the	corresponding	survival	benefits	were	

relatively	small	at	0.8months	and	6.4months	for	resectable	and	

borderline	resectable	cases	respectively.		Furthermore	preliminary	

results	from	the	PREOPANC-1	trial	(Van	Tienhoven	et	al.,	2018)	

reported	R0	resection	rates	of	31%	in	the	surgery	first	pathway	and	

63%	in	neoadjuvant	pathway	but	overall	and	disease-free	survival	

difference	was	only	3.6months	and	3.3months	respectively	in	favour	

of	neoadjuvant	pathway.	However	the	Prep-02/JSAP-05	trial	

reported	no	statistically	significant	difference	in	R0	resection	rates	

but	a	greater	survival	advantage	of	10.1months.		
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Whilst	the	impact	of	variations	in	definitions	of	R0	resection	across	

studies	must	be	acknowledged	(Versteijine	et	al.,	2018),	the	

possibility	of	surgical	resection,	even	achieving	R0	resection,	rather	

than	being	curative	is	only	one	aspect	within	both	treatment	

pathways	where	marginal	gains	may	be	made.	It	follows	that	even	

where	decision	analysis	studies	suggested	an	overall	marginal	

benefit	with	neoadjuvant	therapy	the	possibility	remains	that	for	a	

subset	of	patients	with	early	resectable	disease	with	the	highest	

chance	of	R0	resection	and	receiving	multimodal	therapy,	upfront	

surgery	may	be	the	superior	treatment	pathway	for	them.	

Furthermore	this	also	raises	the	possibility	that	for	some	patients	

surgical	resection	may	be	of	limited	benefit.	This	in	turn	questions	

how	we	define	‘success’	in	the	treatment	of	potentially	resectable	

pancreatic	cancer	and	begs	the	question	how	we	define	the	degree	of	

success.	Is	this	based	on	quantity	or	quality	of	survival	time?	Is	

achieving	R0	resection	in	itself	a	success	or	is	it	the	delivery	of	

multimodal	treatment	that	determines	success?	Therefore	is	not	

proceeding	to	surgery	in	the	neoadjuvant	pathway	a	failure	or	does	

this	represent	the	successful	filtering	of	patients	away	from	futile	

surgery?	To	truly	make	inroads	to	achieving	personalised	realistic	

medicine	these	are	just	some	of	the	questions	that	this	research	

attempted	to	answer.		

	

To	date	research	has	focused	on	neoadjuvant	versus	upfront	surgery	

pathway	to	attempt	to	establish	a	definitively	superior	treatment	

pathway	in	terms	of	survival	outcomes	but	to	limited	avail.	Instead	

this	thesis	contests	that	to	date	we	have	been	asking	the	wrong	

question	in	the	wrong	way	whilst	looking	at	the	wrong	data	(or	at	
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least	ignoring	other	useful	data).	Using	marginal	gains	at	individual	

patient	level	to	maximise	outcomes	and	move	pancreatic	cancer	

research	towards	personalised	medicine	allows	parallels	to	be	drawn	

from	the	work	of	the	mathematician	Abraham	Wald	who	changed	the	

course	of	history	in	World	War	II	by	simply	asking	different	

questions	in	different	ways	using	probability	theory	to	look	at	

different,	and	often	ignored	data	(Wald,	1980;	Mangel	&	Samaniego,	

1984).		

	

5.2	Wald’s	Lessons:	the	importance	of	the	unseen	data	and	

making	better	use	of	FUPS	data	

	

During	World	War	II	bomber	aircrafts	flying	over	Europe	sustained	

enemy	fire	from	both	land	and	air,	resulting	in	high	rates	of	pilot	

mortality.	In	response	the	air	force	collected	vast	amounts	of	data	

and	employed	mathematicians,	including	Wald,	to	work	on	

establishing	a	pattern	of	where	bullet	holes	lay	on	returning	aircrafts.	

Consequently	they	began	to	reinforce	aircrafts	in	these	areas	to	

increase	the	probability	of	bomber	aircrafts	returning	safely	from	

missions.	

	

Parallels	can	be	drawn	with	the	results	in	this	research.	Markov	

cohort	analysis	established	that,	based	on	synthesised	data	form	

trials	including	all	potentially	resectable	stages	of	disease,	where	all	

treatment	modalities	were	received,	neoadjuvant	therapy	gave	35.05	

months	(29.87	QALMs)	versus	30.96	months	(24.86QALMs)	for	R0	

resection	and	34.08	months	(29.87	QALMs)	versus	25.85months	

(20.72	QALMs)	for	R1	resection.		For	only	cases	of	pancreatic	cancer	
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that	were	resectable	at	presentation	this	pattern	continued	with	

Markov	cohort	analysis	based	on	synthesised	data	showing	that	for	

patients	that	received	all	treatment	modalities	neoadjuvant	pathway	

yielded	39.34	months	(34.63	QALMs)	compared	to	30.96	months	

(24.86	QALMs)	for	R0	resection	and	34.94	months	(31.07	QALMs)	

compared	to	25.85	months	(20.72	QALMs)	for	R1	resection.	These	

findings	were	also	corroborated	in	the	DES	analysis	which	showed	

that	patients	with	resectable	pancreatic	cancer	who	underwent	

resection	had	a	survival	time	of	25.30months	(22.52QALMs)	in	the	

neoadjuvant	pathway	versus	18.07months	(13.94QALMs)	in	the	

upfront	surgery	pathway,	and	that	those	patients	in	the	neoadjuvant	

pathway	who	presented	with	borderline	resectable	disease	but	

underwent	resection	had	comparable	survival	to	those	presenting	

with	resectable	disease	treated	within	the	neoadjuvant	pathway	

(25.31months/22.62QALMs).		The	Markov	cohort	analysis	

performed	using	institutional	data	of	resectable	only	cases,	despite	

reporting	an	overall	marginal	advantage	with	neoadjuvant	pathway,	

showed	that	in	patients	who	received	all	treatment	modalities	

neoadjuvant	pathway	yielded	45.36	months	(40.86	QALMs)	

compared	to	52.59	months	(42.38	QALMs)	for	R0	resection	and	

42.29	months	(30.38	QALMs)	compared	to	33.37	months	(26.81	

QALMs)	for	R1	resection.	DES	analysis	of	this	same	study	population	

showed	that	in	patients	who	received	all	treatment	modalities	

neoadjuvant	pathway	yielded	37.40	months	compared	to	52.05	

months	for	R0	resection	and	27.86	months	compared	to	

20.75months	for	R1	resection.	
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Across	these	analysis	based	on	synthesised	data	the	reported	

survival	times	for	resection	and	adjuvant	therapy	within	the	upfront	

surgery	pathway	ranged	from	18.07months	to	30.96months.	This	

range	is	very	close	to	that	reported	in	existing	RCTs	where,	until	the	

JASPAC-4	trial	(Uesaka	et	al.,	2016),	reported	survival	time	had	not	

exceeded	30months	(Table	5;	Table	6).	More	recently	the	PRODIGE	

24/CCTG	trial	(Conroy	et	al.,	2018)	reported	survival	time	of	

54.5months	with	adjuvant	mFOLFIRINOX.	The	synthesised	data	used	

within	the	afore	mentioned	Markov	and	DES	analysis	would	have	

largely	pre-dated	this	trial.	However	the	Markov	and	DES	analysis	

based	on	institutional	data	reported	similar	survival	times	for	R0	

resection	and	adjuvant	therapy	(52.59months	and	52.05months	

respectively)	within	the	upfront	surgery	arm	as	the	PRODIGE	

24/CCTG	trial	(54.5months)	(Conroy	et	al.,	2018).		

	

The	range	of	reported	survival	times	across	Markov	cohort	and	DES	

analysis	in	this	research	was	25.30months	to	45.36months.	Again	

this	is	similar	to	the	range	reported	across	existing	prospective	phase	

II	trials	(Appendix	E	table	Ei).	More	recently	the	Prep-02/JSAP-05	

trial	(Unno	et	al.,	2019)	reported	an	overall	survival	time	within	the	

neoadjuvant	arm	of	36.72months	which	is	similar	to	that	reported	

with	the	Markov	analysis	in	this	research.	Furthermore	the	

PREOPANC-1	trial	reported	a	survival	time	specifically	for	resected	

cases	treated	within	the	neoadjuvant	pathway	of	42.2months	(Van	

Tienhoven	et	al.,	2018)	which	is	remarkably	similar	to	that	reported	

in	these	analysis,	particularly	that	using	institutional	data	in	a	

Markov	cohort	analysis	where	survival	time	for	multimodal	
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treatment	within	the	neoadjuvant	pathway	was	reported	at	

45.36months	and	42.29months	for	R0	and	R1	resection	respectively.			

	

As	with	the	analysis	of	the	returning	bomber	planes	a	pattern	has	

been	further	established	with	these	research	findings:	multimodal	

treatment	in	either	treatment	pathway	(neoadjuvant	therapy	and	

resection	or	resection	and	adjuvant	therapy)	optimises	survival	

outcomes	with	R0	resection	having	a	benefit	over	R1	resection.	Just	

as	the	air	force	reacted	to	this	emerging	pattern	by	reinforcing	the	

parts	of	the	plane	where	the	bullet	holes	were	found,	so	too	has	much	

of	research	in	pancreatic	cancer	focused	in	improving	the	efficacy	of	

neoadjuvant	and	adjuvant	therapies.	In	both	cases	the	results	have	

been	limited.	Although	impressive	findings	from	the	PRODIGE	

24/CCTG	trial	(Conroy	et	al.,	2018)	have	altered	guidelines	and	will	

lead	to	improved	survival	for	those	who	undergo	resection	and	

receive	adjuvant	therapy,	this	will	not	resolve	the	fact	that	up	to	50%	

of	patients	fail	to	progress	to	adjuvant	therapy	(Winter	et	al.,	2012).	

Furthermore,	the	results	of	the	Markov	and	DES	analysis	using	

patient	level	institutional	data	shows	that	whilst	overall	neoadjuvant	

pathway	may	have	a	slight	survival	advantage,	for	a	small	subsection	

of	patients	who	have	the	highest	probability	of	receiving	early	R0	

resection	and	receiving	adjuvant	therapy,	upfront	surgery	may	

optimise	their	individual	outcomes.	This	raises	the	question	as	to	

how	we	can	therefore	identify	this	subgroup.	Furthermore	this	begs	

the	question	as	to	whether	those	patients	who	do	not	undergo	

resection	in	the	neoadjuvant	pathway	would	have	significantly	

improved	survival	times	had	they	been	treated	within	the	upfront	

surgery	pathway.		
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The	returning	bomber	planes	are	therefore	like	the	RCTs	and	other	

study	populations	involving	only	patients	who	have	received	

multimodal	treatment:	a	self-selecting	group.	Just	as	the	planes	

returned	despite	sustaining	attacks	resulting	in	multiple	bullet	holes	

so	too	does	study	populations	who	received	multimodal	therapy	in	

either	pathway	represent	a	self	selecting	group	who	can	withstand	

the	insult	of	surgery	and	adjuvant	therapy,	whether	delivered	pre	or	

post-operatively.	Studying	only	this	data	will	not	provide	the	

answers	about	how	to	deliver	personalised	realistic	medicine	and	

optimise	outcomes	for	all	patients	presenting	with	potentially	

resectable	pancreatic	cancer	through	personalised	treatment	

pathway	selection.	Wald	instead	asked	what	the	narrative	was	

contained	within	the	unseen	data.	In	other	words	he	recognised	that	

they	needed	to	study	the	pattern	of	bullet	holes	in	the	planes	that	did	

not	return	and	reinforce	the	planes	in	these	places	(Wald,	1980;	

Mangel	&	Samaniego,	1984).	In	order	to	take	research	further	and	

develop	the	narrative	surrounding	the	treatment	of	potentially	

resectable	pancreatic	this	research	therefore	set	about	engaging	with	

the	“unseen”	data	that	is	often	ignored	due	to	being	flawed,	

uncertain,	proximate	and	sparse.	

	

The	Narrative	Within	Flawed	Uncertain	Proximate	and	Sparse	(FUPS)	

Data:	

	

A	key	aim	of	this	research	was	to	address	the	gap	that	exists	between	

the	ideal	of	comprehensive,	clear	data	used	in	complicated	contexts,	

and	the	reality	of	decision	making	within	pancreatic	cancer	
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management	pathways	that	relies	on	FUPS	data	used	within	the	

context	of	complexity	(Wolpert	&	Rutter,	2018).	Although	data	from	

large	multicenter	RCTs	are	held	in	high	esteem	and	often	readily	

accepted	within	medicine	with	limited	criticism,	the	reality	is	that	the	

majority	of	daily	clinical	decisions	are	made	based	on	FUPS	data	out	

with	controlled	trial	conditions	and	concerning	patients	who	are	not	

selected	based	on	a	strict	inclusion	criteria.		

	

The	challenge	therefore	was	to	develop	decision	support	models	that	

not	only	pay	sophisticated	attention	to	the	merits	but	also	the	

potential	detriments	of	using	FUPS	data	as	well	as	considering	the	

implications	of	the	complexity	of	the	healthcare	system	in	both	

research	and	practice	(Plsek	&	Greennalgh,	2001;	Rutter	et	al.,	2017;	

Wolpert	&	Rutter,	2018).	To	move	beyond	the	biomedical	model	as	

the	only	model	of	evidence	and	also	acknowledge	the	dangers	of	both	

over-interpretation	of	FUPS	data	as	well	as	non-use,	the	aim	of	the	

modeling	methods	using	FUPS	data	within	this	research	was	to	open	

up	conversations	on	findings	rather	than	treating	them	as	definitive	

facts	(Wolpert	&	Rutter,	2018).	Therefore	the	key	principles	and	

framework	developed	by	Wolpert	&	Rutter	(2018)	for	analysing	

FUPS	data	within	statistical	models	were	applied.	This	included	

treating	data	as	a	partial	remnant	with	findings	presented	to	convey	

associated	limitations	to	interpretation,	avoidance	of	‘black	box’	

statistical	modeling	in	favour	of	transparency	and	clarity,	and	

triangulation	to	contextualise	findings	from	models	based	on	FUPS	

data	to	explore	how	other	information	and	modeling	techniques	

refute	or	support	these	findings	(Wolpert	&	Rutter,	2018).		
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Towards	Personalised	Realistic	Medicine:	the	narrative	on	marginal	

gains	emerging	from	FUPS	data	

	

As	previously	discussed	the	analysis	within	this	research	looking	at	

overall	survival	times	in	both	neoadjuvant	and	upfront	surgery	

pathways	showed	a	picture	whereby	neither	pathway	was	

conclusively	superior.	Triangulation	with	Bayesian	One-way	ANOVA	

and	log-linear	regression	analysis	of	the	West	of	Scotland	Pancreatic	

Unit	institutional	database	of	both	surgery	first	versus	neoadjuvant	

therapy	treatment	pathways	for	resectable	PDAC,	did	not	

demonstrate	statistically	significant	superiority	of	one	pathway	(one-

way	ANOVA	P	value:	0.808	and	0.163	respectively;	log-linear	

regression	P	value:	0.87	and	0.871	respectively)	(Appendix	O).	

Surgery	first	pathway	did	demonstrate	superiority	in	achieving	R0	

resection	(one-way	ANOVA	P	value:	0.025;	log-linear	regression	P	

value:	0.025;	surgery	first	posterior	mean:	0.795;	95%	CI	0.698-0.891	

versus	neoadjuvant	posterior	mean:	0.550;	95%	CI	0.360-0.740).	

However	receipt	of	multimodal	treatment	within	either	pathway	was	

found	to	be	statistically	significant	in	determining	whether	survival	

outcomes	fell	within	the	good	(36months	or	more)	or	poor	(12	

months	or	less)	post	resection	survival	time	categories	(one-way	

ANOVA	P	value:	0.000;	linear	regression	and	log-linear	regression	P	

value:	0.00)	although	there	was	no	statistically	significant	difference	

between	pathways	in	achieving	multimodal	treatment	(one-way	

ANOVA	and	linear	regression	P	value:	0.150)	(Appendix	O).		

	

Markov	cohort	analysis	was	able	to	go	further	than	previous	studies	

in	exploring	the	impact	on	survival	outcomes	of	R0	and	R1	resection	
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in	either	pathway.	In	itself	the	benefits	of	multimodal	treatment	and	

R0	resection	in	either	pathway	are	not	new	findings.	However,	by	

engaging	with	FUPS	data	Markov	cohort	analysis	was	able	to	go	

further	to	provide	further	insights	into	the	impact	of	other	aspects	of,	

and	events	within,	the	system	on	overall	survival	outcomes.		

	

The	results	from	the	Markov	cohort	analysis	demonstrate	that	grade	

3-4	post-operative	complications	marginally	affect	quality	adjusted	

survival	time.	Experiencing	toxicity	from	adjuvant	therapy	however	

has	a	more	noticeable	impact	on	quality	adjusted	survival	time.	

However	where	both	post-operative	complications	and	toxicity	from	

adjuvant	therapy	are	experienced	the	quality-adjusted	survival	

outcomes	were	closer	to	that	of	cases	with	the	same	resection	margin	

that	did	not	progress	to	receiving	adjuvant	therapy	in	models	

populated	with	synthesised	data	for	all	potentially	resectable	cases	

and	resectable	only	cases	at	presentation.	An	exception	to	this	was	

observed	in	the	Markov	cohort	analysis	where	the	model	was	

populated	with	institutional	data	on	resectable	only	cases.	Here	R0	

resection	and	adjuvant	therapy,	even	where	both	post-operative	

complications	and	toxicity	from	adjuvant	therapy	were	experienced,	

had	superior	survival	outcomes.		

	

This	analysis	was	therefore	beginning	to	build	a	richer	picture	of	the	

management	of	pancreatic	cancer	beyond	the	established	benefits	of	

multimodal	treatment	and	R0	resection.	Opportunities	for	marginal	

gains	in	avoiding	postoperative	complications	and	toxicity	from	

adjuvant	therapy	were	beginning	to	emerge.	However,	accepting	all	

such	findings	as	a	partial	remnant	and	employing	the	principle	of	
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transparency	of	analysis	to	convey	the	limitations	of	interpretation	

stemming	from	the	FUPS	characteristics	of	data	(Wolpert	&	Rutter,	

2018)	both	deterministic	and	probabilistic	analysis	were	undertaken	

which	revealed	further	key	aspects	of	the	system	that	could	guide	

more	personalised	treatment	selection.		

	

For	the	Markov	model	based	on	synthesised	data	of	potentially	

resectable	cases	one-way	deterministic	sensitivity	analysis	showed	

that	neoadjuvant	pathway	was	superior	only	if	the	probability	of	

resection	was	greater	than	51.04%	or	below	75.68%	in	surgery	first	

pathway.		For	the	Markov	model	based	on	synthesised	data	of	

resectable	only	cases	the	probability	of	resection	in	the	neoadjuvant	

pathway	had	to	be	greater	than	47.48%	for	neoadjuvant	therapy	to	

maintain	superiority.	When	the	model	was	populated	with	

institutional	data	for	resectable	only	cases	the	probability	of	

undergoing	resection	in	the	neoadjuvant	pathway	had	to	be	above	

34%	to	maintain	superiority.	Furthermore	two-way	sensitivity	

analysis	showed	that	pathway	superiority	depended	the	individual	

patient’s	probability	of	obtaining	multimodal	treatment	in	either	

pathway.		

	

The	theme	of	the	importance	of	obtaining	multimodal	treatment	was	

further	echoed	in	the	results	of	the	cost-effectiveness	analysis.	

Markov	Model	results	using	synthesised	data	reported	neoadjuvant	

therapy	pathway	gave	21.27	QALMs	at	a	cost	of	£109879.65.	Surgery	

first	gave	17.59	QALMs	at	a	cost	of	£101251.75.	Neoadjuvant	therapy	

therefore	had	an	incremental	cost	of	£8627.90	more	than	surgery	

first	for	an	incremental	effectiveness	of	3.68	QALMs	and	an	ICER	of	
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£2344.16.	Using	West	of	Scotland	Pancreatic	Unit	data	neoadjuvant	

therapy	gave	26.71	QALMs	at	a	cost	of	£117426.89.	Surgery	first	gave	

21.27	QALMs	at	a	cost	of	£109879.65.	Neoadjuvant	therapy	therefore	

had	an	incremental	cost	of	£29126.08	more	than	surgery	first	for	an	

incremental	effectiveness	of	8.48	QALMs	and	an	ICER	of	£3433.07.	

DES	model	results	using	synthesised	data	reported	neoadjuvant	

pathway	gave	16.45	QALMs	at	a	cost	of	£81934.19.	Surgery	first	gave	

13.84	QALMs	at	a	cost	of	£69630.42.	Neoadjuvant	therapy	therefore	

had	an	incremental	cost	of	£12303.77	more	than	surgery	first	for	an	

incremental	effectiveness	of	2.61	QALMs	and	an	ICER	of	£4708.51.	

Based	on	West	of	Scotland	Pancreatic	Unit	data	neoadjuvant	therapy	

gave	21.60	QALMs	at	a	cost	of	£72083.26.	Surgery	first	gave	13.87	

QALMs	at	a	cost	of	£45813.65.	Neoadjuvant	therapy	therefore	had	an	

incremental	cost	of	£26219.61	more	than	surgery	first	for	an	

incremental	effectiveness	of	7.73	QALMs	and	an	ICER	of	£3390.51.	In	

both	Markov	and	DES	models	using	synthesised	and	institutional	

data	the	main	driver	of	the	ICER	was	receipt	of	multimodal	treatment	

in	the	neoadjuvant	pathway.				

	

The	emergence	of	the	impact	on	outcomes	of	individual	probability	

thresholds	across	competing	treatment	pathways	continued	in	the	

DES	analysis,	which	corroborated	the	findings	from	the	Markov	

decision-analysis.	For	resectable	cases	of	pancreatic	cancer	the	

probability	of	resection	in	the	neoadjuvant	pathway	had	to	be	greater	

than	38%	for	neoadjuvant	pathway	to	be	superior.	Furthermore	the	

probability	of	R0	resection	in	the	neoadjuvant	pathway	had	to	be	

greater	than	15.4%.	This	analysis	however	used	FUPS	data	to	go	

further	than	existing	studies	to	analyse	the	outcomes	for	patients	
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who	failed	to	undergo	resection.		For	patients	in	the	upfront	surgery	

pathway	who	were	found	to	have	unresectable	disease	the	mean	

survival	time	was	8.50months	(6.41QALMs).	Patients	in	the	

neoadjuvant	pathway	who	did	not	undergo	surgery	had	a	mean	

survival	time	of	11months	(8.04QALMs).	These	patients	are	at	the	

centre	of	the	controversy	surrounding	the	use	of	neoadjuvant	

therapy	for	cases	of	pancreatic	cancer	that	are	resectable	at	

presentation	as	critics	of	this	approach	highlight	the	dangers	of	

losing	the	window	of	resectability.	For	this	group	of	patients	their	

probability	of	resection	in	the	upfront	surgery	pathway	had	to	be	

greater	than	29%	for	the	upfront	surgery	pathway	to	be	the	superior	

choice.	As	these	patients	are	presenting	with	resectable	disease	it	

seems	likely	that	such	a	threshold	would	be	reached,	making	upfront	

surgery	the	superior	pathway	choice	for	them.	However,	proponents	

of	the	neoadjuvant	approach	for	resectable	pancreatic	cancer	have	

argued	that	this	particular	group	of	patients	represents	more	

aggressive	tumour	types	that	are	successfully	filtered	away	from	

futile	surgery	through	neoadjuvant	approach.	The	expected	

incremental	value	in	terms	of	months	survival	time	for	patients	who	

did	not	undergo	surgery	in	the	neoadjuvant	pathway,	if	treated	in	the	

upfront	surgery	pathway,	were	1.5months	(-0.86QALMs),	3.5months	

(1.14QALMs)	and	5.5months	(3.14QALMs)	corresponding	to	a	

probability	of	resection	in	the	surgery	first	pathway	of	47%,	70.5%	

and	94%	respectively.	This	adds	a	new	dimension	to	the	current	

research	narrative	and	begins	to	quantify	in	more	personalised	terms	

the	realistic	potential	survival	benefit	from	surgery.		
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The	use	of	FUPS	data	to	create	a	simulation	model	that	more	

accurately	reflects	the	complex	systems	of	care	delivery	whereby,	

unlike	RCTs	complexity	is	not	controlled	for,	allowed	this	

breakthrough	in	quantifying	the	potential	survival	benefit	from	

surgery	in	personlised	terms	to	be	taken	forward.	When	the	results	

from	recent	RCTs	were	incorporated	into	the	DES	models	interesting	

thresholds	emerged.	

	

Preliminary	results	from	the	PREOPANC-1	trial	(Van	Tienhoven	et	al.,	

2018)	were	incorporated	to	compare	outcomes	for	borderline	

resectable	cases	treated	in	both	the	surgery	first	and	neoadjuvant	

pathways.	Although	this	trial	reported	superiority	of	neoadjuvant	

therapy	this	was	found	to	be	dependent	on	the	patient’s	probability	

of	resection	in	the	neoadjuvant	pathway	being	greater	than	18.9%	

within	the	DES	model.	The	improved	outcomes	reported	by	Conroy	et	

al.	(2018)	with	mFOLFIRINOX	in	the	adjuvant	setting	of	the	surgery	

first	pathway	were	significant	and	their	incorporation	within	the	

model	increased	the	overall	outcome	from	the	surgery	first	pathway	

from	16.56months	to	38.43months.	However,	the	apparent	benefit	of	

adjuvant	therapy	only	applied	to	those	who	underwent	resection	and	

receive	adjuvant	therapy	therefore	threshold	analysis	within	the	DES	

models	incorporating	these	findings	showed	that	the	probability	of	

resection	in	the	surgery	first	pathway	had	to	be	greater	than	54%	

and	that	the	probability	of	receiving	adjuvant	therapy	also	had	to	be	

greater	than	8%	for	the	surgery	first	pathway	to	be	the	superior	

option	for	cases	of	resectable	pancreatic	cancer.		
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Overall	both	the	Markov	and	DES	models	were	going	beyond	

previous	studies	to	provide	predicted	thresholds	that	must	be	

achieved	in	real	life,	where	complexity	is	not	controlled	for,	in	order	

that	the	reported	positive	findings	of	emerging	trials	be	applicable	at	

individual	patient	level.	The	next	challenge	was	to	explore	how	

complexity	theory	could	drive	research	even	further	to	pre-

operatively	make	individual	predictions	of	outcomes	across	

competing	treatment	strategies.		

	

Engaging	With	Complexity:	what	has	been	learned	through	the	

application	of	Cillier’s	Lean	Ontology?	

	

Bayesian	One-way	ANOVA	and	log-linear	regression	analysis	of	the	

West	of	Scotland	Pancreatic	Unit	institutional	database	identified	

AJCC	stage	(P	value:	0.000),	tumour	size	above	or	below	3	

centimeters	(P	value:	0.005),	ASA	grade	(P	value:	0.002),	albumin(P	

value:	0.047)	and	modified	Glasgow	Prognostic	Score	(P	value:	0.031)	

as	being	statistically	significant	in	predicting	survival	of	36	months	or	

more	post	resection	of	PDAC	(Appendix	O).		Bayesian	one-way	

ANOVA	and	log-linear	regression	analysis	identified	modified	

Glasgow	prognostic	score	and	tumour	size	greater	than	3	centimeters	

as	being	significant	in	predicting	survival	of	12	months	or	less	(P	

value	0.505	and	0.037)	(Appendix	O).	

	

This	Bayesian	linear	regression	analysis	of	all	pre-operative	factors	

produced	a	model	of	good	fit	to	the	regression	line	(R:	0.955;	R	

squared	0.912;	P	value	0.006)	and	further	built	the	case	for	focusing	

on	individual	pre-operative	factors	to	make	more	clinically	relevant	
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prediction	to	help	decide	best	treatment	pathway.	However	it	shares	

a	key	limitation	of	existing	studies,	mainly	based	on	log	linear	

regression	techniques,	that	fundamentally	regard	prognosis	as	an	

isolated	event	at	a	pre-determined	time	hence	neglecting	the	

dynamic	nature	of	the	care	processes	reflected	in	the	unfolding	

relationships	between	variables	with	expected	patient	outcomes	

evolving	as	more	information	becomes	available	(Verduijn	et	al.,	

2007).		To	attempt	to	address	this	BBN	models	were	created	to	make	

pre	and	post	operative	predictions	of	prognosis	post	resection	of	

PDAC	across	competing	treatment	strategies.		

	

BBNs	Models	Performance.	

	

The	creation	of	a	BBN	allowed	the	novel	utilisation	of	knowledge	

from	existing	PubMed	studies	in	a	clinically	more	meaningful	way	for	

individual	patients	and	their	clinicians.	This	also	means	that	the	

model,	based	on	the	wider	collective	body	of	existing	evidence,	

overcomes	the	limitations	of	many	existing	models	that	lack	

generalisability	as	they	are	largely	based	on	single	institutional	

database	analysis	with	the	potential	for	inherent	bias	that	this	

creates.	This	also	allows	the	BBN	to	make	predictions	even	when	

data	is	missing	through	probabilistic	inference	with	predictions	

made	based	on	global	averages	of	the	patient	population.	Secondly	

this	model	goes	beyond	the	few	existing	nomograms	and	prognostic	

models	by	providing	personalised	predictions	based	on	pre-

operative	information	therefore	being	of	more	value	in	patient	

counseling	and	decision	making	throughout	the	patient	journey.	

Thirdly	this	model	is	unique	in	its	ability	to	make	personalised	
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predictions	of	outcome	across	the	competing	treatment	strategies	of	

upfront	surgery	and	neoadjuvant	therapy.		

	

BBN	predicting	poor	prognosis	pre-operatively	achieved	an	AUC	of	

0.70	(P	value	0.001;	95%	CI	0.589-0.801)	where	data	on	all	other	

nodes,	apart	from	tumour	markers,	were	available.	With	an	

additional	one	and	two	data	points	missing	a	statistically	significant	

AUC	of	0.70	was	maintained.	BBN	performance	in	prognostic	

updating	where	the	outcome	predicted	was	poor	prognosis	achieved	

an	AUC	of	0.80	(P	value:	0.000;	95%	CI:	0.678-0.862)	when	all	other	

data,	apart	from	tumour	markers,	was	available.	An	AUC	of	0.80	was	

maintained	until	more	than	6	pre-operative	data	points,	and	up	to	

and	including	2	post-operative	data	points,	were	missing.	At	this	

point	the	BBN	achieved	an	AUC	of	0.70	(P	value:	0.000;	95%	CI:0.667-

0.818)	which	was	maintained	with	over	6	missing	pre-operative	data	

points	and	up	to	and	including	4	missing	post-operative	data	points	

(P	value:	0.000;	95%	CI:	0.660-0.788).	This	performance	compares	

favorably	to	existing	predictive	model	development	studies	aiming	to	

predict	poor	post	pancreatic	cancer	resection	prognosis.	Existing	

models	based	on	multivariate	cox	proportional	hazard	regression	

techniques	report	an	AUC	of	between	0.7	and	0.887	(Kanda	et	al.,	

2014b;	Hsu	et	al.,	2012;	Shen	et	al.,	2018;	Balzano	et	al.,	2017;	

Walczak	&	Velanovich	2017).	However	many	are	based	on	single	

institution	databases	(Kanda	et	al.,	2014b;	Hsu	et	al.,	2012;	Balzano	et	

al.,	2017)	and	failed	to	undergo	external	validation	(Kanda	et	al.,	

2014b;	Hsu	et	al.,	2012)	One	study,	based	on	single	institution	data,	

used	artificial	neural	network	technique	to	predict	7month	mortality	

post-resection	and	reported	an	AUC	of	0.6576	but	did	not	perform	
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external	validation	(Walczak	&	Velanovich	2017).	One	study	used	

Bayesian	modeling	techniques	and	National	Registry	data	to	predict	

6month,	1,3	and	5year	survival	and	achieved	a	c-statistic	of	0.65	

(Smith	&	Mezhir,	2014).					

	

BBN	pre-operative	predicting	good	prognosis	achieved	an	AUC	that	

ranged	from	0.94	(P	value	0.002;	95%	CI	0.859-1.000)	for	0	missing	

data	points	in	addition	to	the	missing	tumour	marker	data	to	AUC	

0.74	(P	value	0.000;	95%	CI	0.660-0.809)	accepting	more	than	4	

additional	missing	data	points.	The	prognostic	updating	performance	

of	BBN	predicting	good	prognosis	achieved	AUC	0.97	(P	value	0.000;	

95%	CI	0.908-1.000)	for	3	missing	data	points	in	pre	and	post-

operative	validation	dataset	to	AUC	0.75	(P	value	0.000;	95%	CI	

0.655-0.838)	accepting	more	than	6	missing	data	points	in	the	pre	

and	up	to	and	including	3	missing	data	points	in	the	post-operative	

validation	dataset.	The	latter	was	the	only	point	at	which	BBN	

performance	had	an	AUC	under	0.80.	The	BBN	model’s	performance	

again	compared	favorably	with	findings	from	previous	studies.	

Existing	model	development	studies	that	aimed	to	predict	post	

resection	survival	time	of	3-years	or	more	for	resected	PDAC	report	

an	AUC	between	0.63	and	0.884	with	all	relying	on	post-operative	

information	and	only	one	of	these	studies	having	undergone	external	

validation	(Dasari	et	al.,	2016;	Pu	et	al.,	2018;	Brennan	et	al.,	2004;	

Miura	et	al.,	2014;	Xu	et	al.,	2017;	Botsis	et	al.,	2009;	Liu	et	al.,	2018;	

Smith	&	Mezhir,	2014;	Pu	et	al.,	2017;	Katz	et	al.,	2012b).	
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5.3	Embracing	Cilliers’	Lean	Ontology	of	Complexity:	an	

assessment	of	the	strengths	and	limitations	of	this	research	

		

Clinical	decision	making	in	the	management	of	pancreatic	cancer	is	

challenging	and	complex	and	therefore	requires	a	more	sophisticated	

process	to	represent	the	dynamic	and	evolving	relationship	between	

variables	in	determining	outcomes	as	more	information	becomes	

available	(Kabir	et	al.,	2015;	Verduijn	et	al.,	2007;	Lucas	et	al.,	2004;	

Velikova	et	al.,	2014;	Lewis	&	Vollmer,	2012).	In	keeping	with	Cillier’s	

lean	ontology	of	complexity	the	BBNs	developed	here	contained	a	

large	number	of	elements	with	a	rich	level	of	interaction.	By	

encompassing	a	large	number	of	concepts,	elements	and	ideas	

applied	to	an	even	larger	number	of	combinations	implies	a	finite	

number	of	elements	that	will	impose	an	artificial	boundary	in	the	

operational	research	system	(Kruger	et	al.,	2019).		

	

Some	have	argued	that	this	is	necessary	from	the	observer’s	

perspective	to	study	a	complex	system	(Cilliers,	2008;	Mowat	&	

Davis,	2018).	In	a	practical	sense	however	this	means	that	the	models	

developed	within	this	research	therefore	have	an	artificial	boundary	

imposed	by	the	limitations	of	the	currently	available	data	and	the	

limitations	this	imposes	on	this	research	must	be	acknowledged.	In	

particular	information	regarding	the	quality-of-life	throughout	the	

patient	journey	is	limited	for	pancreatic	cancer.	Although	the	best	

available	quality-of-life	indicies	in	keeping	with	the	few	existing	

decision	analysis	model	studies	was	used	to	maximise	accuracy	and	

facilitate	comparability	of	findings	further	research	into	this	vital	

area	must	be	progressed	and	findings	incorporated	into	the	
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statistical	models.	Another	area	where	data	was	limited	was	indirect	

costs	accumulated	by	both	the	patients	and	their	carers,	which	meant	

that	this	was	lacking	in	the	cost	effectiveness	analysis	models.	

Moving	forward	the	integration	of	such	qualitative	data	into	

statistical	models	will	be	as	pertinent	as	the	integration	of	emerging	

breakthroughs	in	biomarker	and	gene	targeted	treatment	

sequencing.	Accepting	Merali’s	(2006)	conceptualisation	of	the	world	

as	a	networked	world	it	stands	that	a	collection	of	concepts	and	

techniques	does	not	constitute	an	operational	research	system	and	

equally	an	operational	research	application	does	not	exist	in	isolation	

(Merali,	2006;	Kruger	et	al.,	2019).	This	perspective	contained	within	

the	broader	lens	of	complexity	theory	means	that	the	future	

application	of	this	research	can	be	viewed	in	a	much	richer	sense.	

Whilst	elements,	such	as	society	and	the	economy	for	example,	may	

not	interact	with	the	application	in	a	deterministic	way	they	will	

interact	and	merge	with	the	application	(Kruger	et	al.,	2019).	This	

has	been	witness	in	the	cost-effectiveness	analysis	of	upfront	surgery	

versus	neoadjuvant	therapy	where	the	WtP	threshold	acceptability	

curves	demonstrated	how	defining	the	treatment	intention	as	

realistically	curative	or	palliative,	and	therefore	determining	the	

currently	acceptable	WtP	threshold,	had	significant	impact	on	

deciding	which	treatment	pathway	was	cost-effective.	It	follows	that	

as	future	developments	in	biomarker	and	gene	targeted	therapy	for	

earlier	disease	detection	and	targeted	treatment	sequencing	emerge	

and	become	incorporated	within	the	future	artificial	boundary	of	the	

operational	research	system,	elements	outside	this	boundary	will	

continue	to	interact	and	merge	with	the	application	to	determine	

cost-effective	resource	allocation.					
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Accepting	that	an	operational	research	model	is	only	meaningful	

within	the	real-life	context	within	which	it	is	applied	it	therefore	

follows	that	any	such	model	will	be	meaningless	unless	it	can	interact	

with	the	environment	within	which	it	operates	(Cilliers,	1998).	This	

not	only	means	that	elements	within	the	model	can	interact	

mathematically	but	also	that	they	represent	the	dynamic	interaction	

with	the	wider	environment	within	which	the	model	is	operating.	

This	interaction	between	the	operational	research	application	and	

reality	in	this	case	was	transference	of	information	to	facilitate	better	

shared	decision	making	(Cilliers,	1998).	The	impact	of	the	previously	

outlined	uncertainties	and	limitations	in	the	quality	of	the	existing	

body	of	research	must	therefore	be	acknowledged.	There	is	a	

tendency	to	publish	positive	findings,	which	could	mean	that	the	

ability	of	models	to	support	decisions	where	the	outcomes	will	never	

be	favourable	are	weaker,	or	that	models	could	produce	overly	

optimistic	predicted	survival	outcomes.	However,	the	aim	of	the	

modeling	methods	using	FUPS	data	within	this	research	was	to	move	

beyond	the	biomedical	model	as	the	only	model	of	evidence	to	open	

up	conversations	on	findings	rather	than	treating	them	as	definitive	

facts	whilst	acknowledging	the	dangers	of	both	over-interpretation	of	

FUPS	data	as	well	as	non-use	(Wolpert	&	Rutter,	2018).	This	included	

treating	data	as	a	partial	remnant	with	findings	presented	to	convey	

associated	limitations	to	interpretation,	avoidance	of	‘black	box’	

statistical	modeling	in	favour	of	transparency	and	clarity,	and	

triangulation	to	contextualise	findings	from	models	based	on	FUPS	

data	to	explore	how	other	information	and	modeling	techniques	

refute	or	support	these	findings	(Wolpert	&	Rutter,	2018).	Overall	
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model	outputs	were	in	keeping	with	findings	from	the	existing	body	

of	research	but	were	able	to	go	beyond	this	and	add	a	further	

dimension	to	the	current	debate	as	will	now	be	explored.			

	

The	BBN	was	developed	with	the	appreciation	that	the	relationships	

amongst	the	elements	were	dynamic,	far	from	equilibrium,	and	did	

not	always	have	a	linear	relationship.	Within	a	complex	system	non-

linearity	between	components,	the	environment	and	whole	systems	

results	in	a	state	of	non-equilibrium	(Capra,	2007;	Prigogine,	1987).	

For	Cilliers	the	concepts	of	non-linearity	is	closely	aligned	with	the	

principle	of	asymmetry.	Personalised	realistic	medicine	within	the	

context	of	this	research	was	seeking	the	most	effective	delivery	of	

treatment	for	individual	patients.	This	introduces	an	element	of	

competition	hence	introduces	asymmetry.	For	Cilliers	non-linearity,	

asymmetry	and	competition	are	all	inevitable	components	of	

complex	systems	(Kruger	et	al.,	2019).	The	concept	of	non-linearity	

within	an	operational	research	model	means	that	small	causes	can	

have	large	results	(Cilliers,	1998).	Interactions	with	the	world	are	

dynamic	therefore	systems	in	non-equilibrium	have	multiple	states	

of	states	and	become	more	robust	through	a	process	of	adaptation	

than	static	systems	operating	in	a	state	of	equilibrium	(Kruger	et	al.,	

2019;	Capra,	2007;	De	Villiers-Botha	&	Cilliers,	2010).	Furthermore	

within	the	BBN	models	each	element	was	ignorant	of	the	behaviour	

of	the	system	as	a	whole	but	the	system	was	allowed	to	have	a	

history.	Together	this	meant	that	the	impact	of	even	small	isolated	

adverse	events,	such	as	postoperative	complications,	could	be	

assessed	for	their	potential	impact	on	other	aspects	of	the	system	
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such	as	the	probability	of	receiving	adjuvant	therapy	and	the	

subsequent	impact	on	overall	prognostic	prediction.	

	

Employing	Cillier’s	ontology	of	complexity	meant	that	statistical	

techniques	had	to	be	developed	to	engage	not	only	with	the	

complexity	of	the	system	but	also	to	cope	with	uncertainty.	As	the	

existing	data	fulfills	the	FUPS	criteria	the	principles	of	using	FUPS	

data	were	incorporated	within	this	ontology	of	complexity.		For	

complex	problems	it	is	difficult	to	establish	mutual	relationships	

among	nodes	considering	that	the	number	of	conditional	

probabilities	increase	exponentially	to	the	number	states	of	the	

parent	and	child	nodes	(Nadkarni	&	Shenoy,	2001;	Tang	&	McCabe,	

2007).	Previous	BBNs	in	healthcare	have	relied	on	expert	judgment	

to	quantify	the	required	probability	relationships.	However,	under	

such	complex	and	large	conditional	probability	tables	(CPT)	expert	

derived	conditional	probabilities	can	become	inconsistent	and	it	has	

been	found	to	be	more	reliable	to	construct	CPTs	from	data	(Tang	&	

McCabe,	2007;	Hager	&	Andersen,	2010;	Kabir	et	al.,	2015).	

Therefore	to	engage	with	FUPS	data	and	address	challenges	of	

variable	selection,	generalisability,	missing	data	and	pre-operative	

application	that	limit	existing	predictive	models,	principles	of	

triangulation	and	transparency	were	employed	(Wolpert	&	Rutter,	

2018).	This	was	done	through	a	two	stage	weighting	process,	

adapted	from	Zhao	&	Weng	(2011)	to	synthesise	PubMed	survival	

analysis	data	by	placing	existing,	even	contradictory	data,	within	the	

context	of	the	wider	body	of	existing	data	through	a	second	stage	

normalisation	weighting	process.	The	conditional	probability	

dependencies	between	variables	were	then	represented	through	
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Bayes	theorem,	which	has	been	proven	to	be	an	effective	way	of	

handling	uncertainty	(Ismail	et	al.,	2011;	Sun	&	Shenoy,	2007).			

	

This	holds	several	advantages	when	modeling	treatment	pathways	

for	potentially	resectable	PDAC.	Through	Bayes	theorem	the	prior	

distribution	and	observed	data	are	combined	to	update	knowledge	in	

the	form	of	the	posterior	distribution	(Pearl,	1988;	Fenton	&	Neil,	

2019).	Therefore	BBNs	allow	the	modeling	of	relationships	between	

variables	at	various	stages	of	the	healthcare	process,	with	predictions	

of	outcomes	evolving	throughout	the	process	by	utilizing	all	available	

patient	data	at	that	time	(School	et	al.,	2013).	This	means	that	the	

model	could	not	only	make	predictions	of	outcome	pre-operatively	

but	also	perform	prognostic	updating	at	the	post-operative	stage	of	

the	patient	journey.	It	also	means	that	this	modeling	technique	

overcomes	limitations	of	existing	predictive	models	including:	lack	of	

generalisability,	bias	inherent	in	overreliance	on	single	institutional	

databases	and	dependence	on	post-operative	information	to	make	

predictions.	Where	patient	information	is	limited	probabilistic	

inference	can	still	make	predictions	based	on	global	averages	of	the	

patient	population	making	the	model	better	able	to	cope	with	

missing	data	(Verduijn	et	al.,	2007;	Lucas	et	al.,	2004).	As	more	

information	becomes	available	the	predictions	become	more	patient	

specific	(Verduijn	et	al.,	2007).		

	

This	also	means	that	the	BBN	allows	the	management	of	PDAC	to	be	

modeled	as	an	open	system,	another	key	aspect	of	Cillier’s	‘lean	

ontology’	of	complexity.	When	an	operational	research	model	is	

applied	to	a	specific	problem	the	model	becomes	exposed	to	the	real	
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world	as	an	open	system	with	a	large	number	of	elements	having	an	

influence	on	its	formulation	(Kruger	et	al.,	2019).	In	practical	terms	

this	means	that	as	the	BBN	is	used	in	clinical	practice,	and	further	

patient	level	data	is	amassed,	through	Bayes	theorem	the	posterior	

distribution	can	be	constantly	updated	with	predictions	becoming	

increasingly	accurate.	This	prevents	the	model	itself	from	becoming	a	

closed	system	with	results	confined	to	a	set	of	variables,	which	would	

be	a	gross	oversimplification	of	the	system	being	modeled	(Kruger	et	

al.,	2019).				

	

This	links	to	defining	characteristics	of	a	complex	system:	boundary	

setting,	lack	of	complete	knowledge	and	responsibility.	Complete	

knowledge	of	a	complex	system	is	not	possible	but	rather	knowledge	

in	terms	of	a	certain	framework	is	(Kruger	et	al.,	2019).	Hence	the	

generation	of	knowledge	within	a	complex	system	is	exploratory	and	

temporary	(Cilliers,	2005b)	which	complements	Wolpert	&	Rutter’s	

(2018)	framework	for	using	FUPS	data	that	also	contests	that	all	

findings	be	treated	as	partial	remnants	with	limitations	stemming	

from	FUPS	characteristics	conveyed.	Both	the	artificial	nature	of	

boundary	setting	and	the	provisional	nature	of	knowledge	means	

that	a	level	of	uncertainty	will	prevail	in	model	outputs	which	means	

that	responsibility	must	be	taken	for	intended	and	unintended	

consequences	when	a	system	does	not	reflect	reality	(Cilliers,	2008;	

Woemann	&	Cilliers,	2012;	Ackoff,	1974;	Gallo,	2004;	Ormerod	&	

Ulrich,	2013)	particularly	as	boundary	definitions	involve	a	value	

based	judgment	(Audouin	et	al.,	2013;	Ulrich,	1983;	Midgley,	2000).		
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Cilliers	(2005b)	and	Woermann	(2010)	argue	that	this	represents	a	

challenge	to	develop	a	new	kind	of	scientific	understanding	(Cilliers,	

2007).	Cilliers	postulated	that	one	of	the	defining	characteristics	of	a	

complex	system	is	its	emergent	properties,	which	cannot	be	reduced	

to	the	system	component	properties	(Cilliers,	2010).	Therefore	

complexity	emerges	as	a	result	of	the	dynamic	and	non-linear	

interactions	between	elements	within	an	open	system	(Cilliers,	

1998).	The	magnitude	of	emergence	can	be	difficult	to	quantify	(Paul	

et	al.,	2014)	particularly	as	emergence	can	take	many	forms	including	

deeper	understanding	(Kruger	et	al.,	2019).						

	

By	viewing	the	management	of	potentially	resectable	pancreatic	

cancer	through	the	lens	of	complexity	theory	and	applying	the	

methods	presented	here	to	develop	a	more	sophisticated	process	of	

engaging	with	FUPS	data	to	represent	the	relationship	of	interacting	

elements	in	determining	outcomes	(Kabir	et	al.,	2015)	other	findings	

and	insights	began	to	emerge.	In	keeping	with	Wolpert	&	Rutter’s	

(2018)	framework	for	using	FUPS	data	Pearl’s	inwards	analysis	and	

broadcasting	analysis	were	used	to	perform	sensitivity	analysis	of	

the	BBN	models	(Pearl,	1988;	Fenton	&	Neil,	2019).	Sensitivity	

analysis	assumed	all	input	parameters	in	the	model	are	uncertain	

and	therefore	determines	how	sensitive	results	are	in	relation	to	

changes	in	observable	variables	(Yang	et	al.,	2009;	Ismail	et	al.,	

2011).	Therefore	sensitivity	analysis	served	as	an	adjunct	to	

decision-analysis	(Fenton	&	Neil,	2019)	and	allowed	for	the	

exploration	of	emergence.	
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The	results	of	BBN	sensitivity	analysis	showed	that	for	the	pre-

operative	BBNs	tumour	factors	had	the	greatest	impact	on	outcomes,	

followed	by	patient	factors.	When	post-operative	data	was	

incorporated	into	the	BBN	post-operative	factors	and	surgical	

pathology	had	greatest	impact	on	output	followed	by	tumour	factors	

and	patient	factors.	This	corroborates	numerous	previous	studies	

that	have	established	that	detecting	disease	early	improves	survival,	

hence	the	importance	of	tumour	factors	(Winter	et	al.,	2012).	

Furthermore	it	has	been	established	that	the	best	chance	of	good	

survival	outcomes	depends	upon	achieving	R0	resection	whereby	all	

tumour	is	completely	removed	(Versteijne	et	al.,	2018),	which	

supports	the	importance	of	surgical	pathology	on	impacting	on	BBN	

outcome.	Receipt	of	multimodal	treatment	has	also	been	established	

as	key	to	achieving	best	possible	survival	outcomes	in	numerous	

studies	(Bradley	et	al.,	2018;	Bradley	et	al.,	2019a;	Versteijne	et	al.,	

2018;	Neoptolemos	et	al.,	2001)	which	supports	the	findings	from	

sensitivity	analysis	that	post-operative	factors	have	significant	

impact	on	BBN	output	as	this	includes	post-operative	complications,	

which	in	turn	affects	the	recovery	time	and	time	to,	or	indeed	

whether,	patients	receive	adjuvant	therapy	which	is	also	included	in	

post-operative	factors	(Winter	et	al.,	2012).		

	

Emergence	as	a	key	characteristic	of	modeling	PDAC	management	as	

a	complex	system	meant	that	for	the	first	time	a	prognostic	model	

could	quantify	the	significant	impact	of	cumulative	patient	factors	on	

survival	outcome.	Previously	these	individual	variables	were	found	

to	play	a	limited	role	in	survival	analysis	yet	formed	a	significant	

component	of	subjective	clinical	judgment	on	a	regular	basis	in	
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clinical	practice.	In	the	BBN	predicting	poor	prognosis	sensitivity	

analysis	showed	that	patient	factors	were	the	second	most	significant	

determinant	for	pre-operatively	predicting	a	poor	prognostic	

outcome	and	the	fourth	most	significant	in	the	post-operative	setting	

when	performing	prognostic	updating.	The	BBN	predicting	good	

prognostic	outcome	found	that	patient	factors	were	the	third	most	

important	factor	in	predicting	outcome	in	the	pre-operative	setting.		

Interestingly	patient	factors	were	found	to	have	more	of	an	impact	on	

predicting	poor	prognosis	than	good	prognosis.	This	could	be	

explained	by	the	fact	that	in	practice	clinicians	are	less	likely	to	

operate	on	frail	and	unfit	patients	therefore	the	data	for	such	patients	

is	less	likely	to	form	part	of	post	resection	survival	analysis.	This	

finding	makes	a	case	not	only	for	better	patient	selection	at	the	pre-

operative	stage	of	the	patient	journey	but	also	emphasises	the	

importance	of	developing	statistical	models	that	can	handle	a	variety	

of	FUPS	data	and	deal	with	uncertainty	to	assist	decision	making	at	

an	individual	patient	level.		

	

5.4	Conclusion:	Future	Direction	of	Research	

	

Building	on	Markov	and	DES	models,	the	BBN	models	developed	

through	this	research	marks	a	significant	step	towards	the	delivery	of	

personalised	realistic	medicine	in	pancreatic	cancer	management.	

The	methods	proposed	could	be	applied	to	other	forms	of	cancer	

where	barriers	exist	to	developing	large	detailed	patient	databases,	

where	FUPS	characteristics	apply	to	the	available	data,	and	where	

pathway	complexity	makes	expert	elicitation	for	large	CPTs	less	

reliable.	Given	the	scarcity	and	FUPS	characteristics	of	data,	lack	of	



	 507	

technical	and	financial	resources	and	limited	experience	of	many	

clinicians	in	Bayesian	statistics,	the	proposed	BBN	could	in	future	

help	to	guide	cost-effective	resource	allocation	and	prioritisation,	

perform	risk-benefit	analysis	and	support	rational	decision	making	in	

a	way	that	is	both	intuitive	and	transparent	to	clinicians.		

	

The	next	phase	of	this	research	will	be	to	integrate	larger	

international	patient	databases	into	the	BBN	models	and	

prospectively	validate	the	models’	performances	against	other	

institutional	databases.	This	however	will	form	only	one	aspect	of	the	

BBN	models’	ongoing	assessment	and	development.	Any	such	

decision	support	model	will	have	to	be	integrated	into	the	much	

wider	complex	system	of	clinical	healthcare	delivery.	Whilst	

technological	innovations	have	moved	apace	and	are	widely	

postulated	as	contributing	to	health	(Garber	et	al.,	2014),	there	is	a	

scarcity	of	literature	exploring	the	sustainability	of	technology-

supported	change	within	healthcare	(Grin	et	al.,	2010).	Furthermore	

many	such	innovations	have	been	plagued	by	non-adoption,	

abandonment	and	difficulties	in	scale-up	(van	Limburg	et	al.,	2011).	

This	is	thought	to	be	due	to	dynamic	interactions	between	multiple	

factors	at	multiple	organisational	levels	(Greenhalgh	et	al.,	2017a).	

Therefore	a	vital	next	step	in	this	research	will	be	to	attempt	to	

identify,	understand,	and	address	these	interacting	challenges	using	

the	Non-adoption	abandonment	Scale-up	Spread	and	Sustainability	

(NASS)	framework	to	design	future	studies	that	are	interdisciplinary,	

nondeterministic	and	designed	to	examine	the	relationship	between	

human	action	(both	patient	and	clinician)	and	the	wider	

organisational	and	system	context	(Greenhalgh	et	al.,	2016).		
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The	future	application	of	this	research	will	be	in	integrating	

breakthroughs	in	biomarker	and	genomic	trials	for	early	detection	

and	targeted	treatment	sequencing	with	clinical	data	to	make	

increasingly	precise,	personalised	predictions	of	outcomes	

throughout	the	trajectory	of	the	individual	patient’s	journey.	This	

stands	to	accelerate	the	clinical	application	of	our	ever	expanding	

knowledge	base.	However,	as	previously	discussed,	such	

breakthroughs	will	only	ever	expand	the	artificial	borders	of	

statistical	models	and	therefore	be	of	limited	impact	unless	the	

statistical	models	developed	continue	to	be	viewed	as	open	complex	

systems.	This	means	that	future	research	focus	must	be	on	

continuing	to	develop	methods	of	engaging	with	complexity	and	

developing	these	alongside	RCTs	and	genomic	research	as	well	as	

more	qualitative	studies	seeking	to	establish	the	impact	on	individual	

patient	quality-of-life	(Obermeyer	&	Lee,	2017,	Star,	2002;	Fraser	&	

Greenhalgh,	2001;	Greenhalgh	&	Papoutsi,	2018;	Long	et	al.,	2018;	

Law	&	Mol,	2002;	Tsouka,	2017).		
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Chapter	6	

	

Conclusion	
	

Pancreatic	cancer	is	one	of	the	most	challenging	malignancies,	

characterised	by	increasing	incidence	rates	globally	and	poor	

survival	outcomes	despite	advances	in	treatment	modalities.	Over	

80%	of	cases	present	at	an	advanced	disease	stage.	For	cases	that	are	

amenable	to	surgical	resection	the	current	standard	of	treatment	is	

surgical	resection	followed	by	adjuvant	mFOLFIRINOX	(Khorana	et	

al.,	2019).	However,	despite	a	growing	number	of	RCTs	reporting	

increased	survival	outcomes	with	adjuvant	therapy,	up	to	50%	of	

patients	who	undergo	resection	fail	to	progress	to	receiving	adjuvant	

therapy	due	to	a	combination	of	factors	that	include	early	disease	

recurrence	and	a	delay	in	commencing	treatment	due	to	post-

operative	complications	and	the	impact	of	pre-existing	comorbidities	

(Winter	et	al.,	2012).		Consequently	the	potential	benefits	of	costly	

and	high-risk	surgery	are	nullified.	Furthermore	this	challenges	the	

prevailing	narrative	that	surgical	resection	is	the	only	curative	

treatment	as	for	many	patients	the	reality	is	that	surgery	is	of	limited	

benefit.		

	

This	has	resulted	in	a	renewed	interest	in	neoadjuvant	therapy	as	a	

means	of	increasing	the	delivery	of	multimodal	treatment	and	

diverting	patients	with	more	aggressive	disease	away	from	futile	

surgery.	However,	critics	have	highlighted	the	potential	for	losing	the	

window	of	resectability	with	this	approach.	The	current	evidence	
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base	underpinning	the	management	of	potentially	resectable	

pancreatic	cancer	is	highly	heterogeneous,	widely	contested	and	

permeated	with	uncertainty,	ambiguity	and	controversy.	In	response	

the	prevailing	narrative	regarding	the	current	focus	within	

pancreatic	cancer	research	is	to	seek	clarity	through	biomarker	and	

gene	targeted	diagnosis	and	treatment	sequencing	as	well	more	large	

multicentre	RCTs	to	determine	treatment	pathway	superiority	for	

potentially	resectable	pancreatic	cancer.	However,	recent	RCTs	

involving	both	upfront	surgery	and	neoadjuvant	approaches,	rather	

than	provide	such	clarity,	have	produced	contradictory	findings.	

Given	the	afore	mentioned	facts	surrounding	the	reality	of	receiving	

multimodal	therapy	this	calls	into	question	the	extent	to	which	the	

results	of	such	RCTs,	where	real-world	complexity	is	controlled	for,	

are	applicable	in	the	real-life	clinical	setting	where	clinical	decisions	

have	to	be	made.	The	same	argument	applies	to	the	much-anticipated	

results	from	genomic	and	biomarker	studies	as	the	reality	is	that	

patients	are,	and	always	will	be,	more	than	their	genomes.	Therefore	

the	reality	is	that	clinical	decision	making	will	require	that	such	

emerging	data	be	integrated	with	the	ever	expanding	amounts	of	pre-

existing	clinical	data.	Clinicians	will	therefore	continue	to	be	

expected	to	make	decisions	based	on	FUPS	data.	Furthermore	this	

ongoing	challenge	exists	within	the	wider	political	context	of	a	move	

towards	personalised	realistic	medicine	with	the	associated	

expectation	of	personalised	shared	clinical	decision-making.			

	

The	aim	of	this	research	was	to	facilitate	a	shift	in	pancreatic	

research	focus	towards	personalised	realistic	medicine	through	

statistical	modelling	that	will	facilitate	better	shared	decision	making	
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with	patients	to	optimise	individual	patient	outcomes.	By	

amalgamating	operational	and	healthcare	research	disciplines	this	

research	sought	to	be	theory	driven	and	empirically	focused	from	a	

complexity	perspective.	Specifically	the	potential	for	simulation	

modelling	in	the	study	of	complexity	in	healthcare	was	explored	to	

attempt	to	expand	capabilities	for	handling	uncertainty,	the	

emergent	and	engage	in	disagreements	through	the	use	of	FUPS	data.		

	

Key	points	and	novel	findings	began	to	emerged	from	this	research	

that	added	a	further	dimension	to	the	current	debate	surrounding	

the	treatment	of	potentially	resectable	pancreatic	cancer.	

Synthesisation	of	existing	trials	could	not	conclude	that	either	

upfront	surgery	or	neoadjuvant	treatment	pathway	was	conclusively	

superior	for	the	management	of	potentially	resectable	pancreatic	

cancer.	Both	Markov	and	DES	modelling	for	decision-analysis	

emphasised	the	importance	of	multimodal	treatment	in	optimising	

patient	outcomes.		This	was	corroborated	in	cost-effectiveness	

analysis	of	both	pathways	where	once	again	neither	pathway	was	

conclusively	superior	but	the	main	driver	of	the	ICER	was	

multimodal	treatment.		

	

Markov	and	DES	simulation	modeling	for	decision-analysis	went	

further	to	reveal	that	superior	pathway	selection	is	determined	by	

individual	patient	and	tumour	factors.	DES	modeling	also,	for	the	first	

time,	quantified	the	modest	anticipated	survival	outcomes	for	

patients	who	did	not	proceed	to	surgery	in	the	neoadjuvant	pathway	

has	they	been	treated	in	the	upfront	surgery	pathway.	Due	to	the	

prevailing	narrative	that	surgery	was	the	only	potential	cure	for	
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pancreatic	cancer	it	had	been	assumed	by	critics	of	neoadjuvant	

therapy	that	such	patients	would	have	had	significantly	superior	

survival	outcomes	in	the	upfront	surgery	pathway.	New	insights	

were	also	gained	through	DES	modeling	by	integrating	the	results	of	

recent	RCTs	into	a	simulation	model	that	reflected	a	system	where	

complexity	was	not	controlled.	This	revealed	individualised	

probability	thresholds	within	each	pathway	that	must	be	obtained	

for	the	results	of	such	trials	to	be	applicable	within	a	real-life	clinical	

setting.		

	

BBNs	were	then	constructed	to	model	the	decision	making	process	

for	individual	patients	with	potentially	resectable	pancreatic	cancer.	

This	process	was	modeled	as	an	open	complex	adaptive	system	with	

multiple	variables	displaying	a	high	level	of	rich,	dynamic,	non-linear	

interactions	whilst	each	variable	was	simultaneously	ignorant	of	the	

behaviour	of	the	whole	system.	The	result	was	the	first	BBN	that	

could	make	individual	pre-operative	predictions	of	post	resection	

prognosis	across	competing	treatment	strategies	and	that	had	the	

ability	to	perform	prognostic	updating	when	more	information	

became	available.	When	validated	against	a	prospective	patient	

database	the	model	performed	with	a	level	of	predictive	accuracy	

rivaling	existing	predictive	models,	even	when	only	based	on	pre-

operative	data.		

	

The	impact	of	this	research	is	that	it	offers	new	insights	and	adds	a	

further	dimension	to	the	current	debate	and	narrative	surrounding	

pancreatic	cancer	management,	which	moves	the	focus	towards	

personalised	realistic	medicine.	This	study	marks	a	potentially	
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significant	step	towards	achieving	the	delivery	of	personalised	

cancer	care.	In	the	clinical	setting	the	BBNs,	by	engaging	with	

complexity	and	handling	the	emergent,	have	the	potential	to	have	an	

immediate	impact	on	improving	patient	counseling	and	facilitating	

better	shared	decision	making	by	providing	a	mechanism	to	

communicate	and	transmit	the	complex	and	data	rich	empirical	

narrative	surrounding	a	diagnosis	of	potentially	resectable	

pancreatic	cancer	on	a	personalised	level	that	includes	being	better	

able	to	explain	the	impact	of	“what	if”	scenarios	on	anticipated	

prognosis.		

	

As	patient	databases	mature	and	develop	in	complexity	globally,	so	

too	should	predictive	modeling	become	more	sophisticated	at	

integrating	multiple	complex	databases	to	make	individualised	

patient	predictions	and	support	clinical	decision	making	even	under	

uncertainty.	The	methods	developed	for	using	FUPS	data	to	construct	

the	BBNs	offer	a	potential	vehicle	to	incorporate	anticipated	

breakthroughs	from	the	wider	area	of	precision	medicine	by	

integrating	complex	genomic	and	clinical	databases	to	deliver	

personalised	realistic	medicine	for	other	types	of	cancer,	as	well	as	

pancreatic	cancer,	by	facilitating	better	shared	decision	making	

through	personalised	predictive	modeling.	This	could	serve	to	

accelerate	the	clinical	application	of	our	ever	expanding	knowledge-

base.	However,	to	achieve	this	goal	future	research	must	focus	on	

further	development	and	testing	of	the	BBNs.	This	includes	

investigating	issues	surrounding	the	integration	of	such	decision	

support	models	within	the	complex	system	that	is	the	clinical	setting.							
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Healthcare	is	both	an	art	and	a	science.	Patients	will	always	be	more	

than	their	disease	regardless	of	how	deep	our	understanding	of	that	

disease	develops	at	a	genomic	level.	How	then	can	advances	in	

pancreatic	cancer	research	ever	be	made	unless	methods	of	engaging	

with	the	complex	tapestry	of	the	real-world	clinical	setting	are	

developed	alongside	RCTs	and	genomic	studies?		

	

This	thesis	used	complexity	theory	as	a	lens	through	which	to	focus	

the	question	about	how	to	optimise	outcomes	for	potentially	

resectable	pancreatic	cancer.	In	so	doing	it	marked	a	paradigm	shift	

away	from	the	prevailing	Newtonian	quest	within	pancreatic	cancer	

research	to	either	deny	or	solve	complexity.	Instead	the	journey	

taken	throughout	this	thesis	has	demonstrated	that	by	developing	

ways	of	engaging	with	complexity,	including	uncertainty,	debate	and	

the	emergent,	new	insights	can	be	gained	and	inroads	made	into	

improving	care	delivery	through	the	clinical	application	of	our	ever	

expanding	knowledge	base	where	its	impacts	matters	most;	

supporting	the	individual	patient	through	out	their	personal	journey.									
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Appendix	A	

	

An	Overview	of	the	Current	Genomic	Understanding	of	

Pancreatic	Cancer	

	

This	appendix	provides	further	detailed	context	for	section	2.1.1	

where	the	pathology	of	pancreatic	cancer	is	discussed.	The	purpose	

of	this	appendix	is	to	provide	context	for	the	later	discussions	

surrounding	precision	medicine	(gene	targeted	therapy)	by	

demonstrating	that	in	the	near	future	a	molecular	taxonomy	could	

help	to	partly	inform	clinical	decision	making	(McGuigan	et	al.,	2018;	

Collisson	et	al.,	2019).		

	

Mutations	in	the	KRAS	oncogene	and	telomere	shortening	have	been	

identified	in	low	grade	pancreatic	intraepithelial	neoplasms	

suggesting	that	these	are	early	changes	within	the	pathway	

(Feldmann	et	al.,	2007;	Hruban	et	al.,	2008)	with	mutation	in	p16,	

CDNK27,	p53	and	SMAD4	appearing	later	in	both	high	grade	

pancreatic	intraepithelial	neoplasms	and	pancreatic	adenocarcinoma	

where	the	rate	of	KRAS	mutation	was	also	been	found	to	increase	

(Mohammed	et	al.,	2014;	Löhr	et	al.,	2005).	Additionally	

abnormalities	in	sonic	hedgehog	pathway	and	notch	signaling	have	

been	implicated	in	the	development	of	PDAC	with	80%	of	these	

mutations	thought	to	be	sporadic	(Midha	et	al.,	2016;	Vincent	et	al.,	

2011).	Over	recent	years	our	understanding	of	the	genomic	

aberrations	characteristic	of	pancreatic	cancer	has	expanded	and	is	

summarised	in	table	Ai.		
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Table	Ai:	Summary	of	genomic	aberrations	characteristic	of	

pancreatic	cancer	(Bailey	et	al.,	2016).		

Pathway	/	Process		 Gene	Mutated	
SWI/SNF	 ARID1A,	SMARCA4,	ARID1B,	

PBRM1	
Chromatin	 KDM6A,	MLL3,	MLL2,	SETD2	
WNT	signalling	 RNF43,	TLE4,	MARK2	
NOTCH	signalling	 JAG1,	BCORL1,	NF2,	FBXW7	
TGFβ	signalling	 SMAD3,	TGFBR1,	ACVR1B,	

SMAD4,	TGFBR2,	ACVR2A	
KRAS	 KRAS,	MAPK4	
ROBO	SLIT	pathway	 ROBO1,	SLIT2,	ROBO2,	MYCBP2	
RNA	processing	 RBM10,	U2AF1,	SF3B1	
Cell	cycle	 CDKN2A,	TP53BP2,	TP53	
DNA	repair	 BRCA1,	ATM,	ATF2,	BRCA2,	

PALB2	
	

Gene	analysis	has	also	revealed	32	genetic	mutations	associated	with	

PDAC	that	resulted	in	the	recognition	of	4	subgroups:	squamous,	

pancreatic	progenitor,	immunogenic	and	aberrantly	differentiated	

endocrine	exocrine	(ADEX)		(Bailey	et	al.,	2016).	Each	sub-type	was	

associated	with	different	genomic	signatures,	histopathological	

findings	and	associated	prognosis	(Bailey	et	al.,	2016).	However,	

further	large-scale	analysis	of	the	molecular	characteristic	of	PDAC	

revealed	that	previously	histopathologically	indistinguishable	

tumours,	and	even	their	subtypes,	harbored	substantial	molecular	

differences	and	overlaps	that	could	have	biological	and	clinical	

relevance	(Collission	et	al.,	2019)	as	summarised	in	table	Aii.				
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Table	Aii:	Molecular	subtyping	of	PDAC	

Subtypes	 Biological	Insight	 Clinical	Relevance	
Classical		
Quasi-mesenchymal	
Exocrine-like	
(Collisson	et	al.,	
2011;	Collission	et	al.,	
2019)	

ATCC	PDAC	cell	lines	
have	an	absence	of	
Exocrine-like	subtype	
	
GATA6	and	KRAS	
have	a	specific	
function	in	Classical	
subtype			

Quasi-mesenchymal	
subtype	have	poorer	
survival	compared	to	
Classical	subtype	but	
are	more	sensitive	to	
gemcitabine.	Classical	
subtype	is	more	
sensitive	to	erlotinib	

Epithelial	
Basal-like	
Classical	
Stromal	subtypes:	
active	and	normal	
(Moffitt	et	al.,	2015;	
Collission	et	al.,	
2019)	

Subtype	signature	is	
maintained	in	
metastases	with	
Basal-like	subtype	in	
the	majority	of	
metastases	while	
lung	metastases	are	
associated	with	
Classical	subtype					
	

Basal-like	subtype	
and	active	stroma	in	
Classical	type	
associated	with	poor	
survival.	
Basal-like	subtype	
benefits	from	
adjuvant	
chemotherapy.	
	
		

Squamous	
Immunogenic		
Pancreatic	Progenitor	
ADEX	(Bailey	et	al.,	
2016;	Collission	et	al.,	
2019)	

Squamous	subtype	
enriched	for	
inflammation,	cell	
proliferation,	
metabolic	
reprogramming	and	
epigenic	
downregulation	of	
endodermal	genes.	
Squamous	and	
Immunogenic	
subtypes	both	
enriched	for	immune	
signalling		
Squamous	subtype	
associated	with	
adenosquamous	
histology	
Pancreatic	Progenitor	
subtype	associated	

Poor	survival	in	
squamous	subtype	
	
Subtype-specific	
therapeutic	targets	
including:	cell	cycle	
and	metabolic	
inhibitors	and	
immunomodulation.				
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with	colloid	in	IPMN			
Multiple	subtypes	
overlapping	
Integrated	classifier	
(The	Cancer	Genome	
Atlas	Research	
Network,	2017;	
Collission	et	al.,	
2019)	

Overlap	amongst	
previously	defined	
subtypes	
mTOR	signalling	
elevated	in	KRAS-
wild	type	tumours	
Multiple	different	
KRAS	mutations	
identified	within	
individual	tumours	

Treatment	targets	for	
KRAS-wild	type	
tumours		

Hedgehog	(associated	
with:	Quasi-
mesenchymal,	Basal	
and	activated	stromal	
or	squamous)	
NOTCH	(associated	
with	Endocrine-like,	
normal	stroma	or	
ADEX	subtypes)	
Cell	Cycle	(associated	
with	Classical	or	
Pancreatic	
Progenitor)	
(Sivakumar	et	al.,	
2017;	de	Santiago	et	
al.,	2017;	Collission	et	
al.,	2019)	

Strong	
immunological	
differences	between	
subtypes	

Hedgehog	associated	
with	poor	prognosis.	
	
Hedgehog	and	cell	
cycle	subtype	
associated	targets	for	
immunotherapy	
	
Cell	cycle	subtype	a	
potential	target	for	
metabolic	therapy		

Classical	
Quasi-mesenchymal	
Exocrine-like	(Noll	et	
al,	2016;	Collission	et	
al.,	2019)	

CYP450	gene	
expression	in	
Exocrine-like	
tumours		

Potential	clinical	
relevance	of	gene	
CYP450		

High	cellularity	(Pure	
Classical,	Immune	
Classical,	Pure	Basal-
like)	
All	cellularities	(Pure	
Classical,	Immune	
Classical,	Pure	Basal-
like,	Stromal	active	
and	Desmoplastic)	

	 Pure	Basal-like	
associated	with	poor	
prognosis.		
Hypothetical	subtype	
specific	therapies	
that	target	immune	
avoidance.		
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(Puleo	et	al.,	2018;	
Collission	et	al.,	
2019).	
	

However,	as	is	discussed	in	section	2.1.1,	this	burgeoning	deeper	

understanding	of	pancreatic	cancer	at	a	molecular	level	has	not	yet	

resulted	in	histopathological	classifications	to	inform	clinical	

decisions	as	they	do	in	other	cancer	types	(Collisson	et	al.,	2019).	

Instead	what	this	knowledge	has	highlighted	is	the	complex	and	

highly	heterogeneous	nature	of	this	disease	at	molecular	level	

(McGuigan	et	al.,	2018;	Collisson	et	al.,	2019)	that	is	intrinsically	

linked	with	uncertainty,	ambiguity	and	complexity	that	surrounds	

the	management	of	pancreatic	cancer.	
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Appendix	B	

	

Overview	and	Critical	Analysis	of	the	Evidence	Base	for	Surgical	

Practices	

	

This	appendix	provides	further	detail	to	the	discussion	in	section	

2.1.3.	Surgery	is	the	only	potentially	curative	treatment	for	

pancreatic	cancer	and	studies	often	report	resection	rates	as	well	as	

rates	of	R0	resection.	The	purpose	of	this	appendix	is	to	add	further	

context	and	strengthen	the	points	being	made	in	section	2.1.3	that	

even	when	the	decision	to	operate	is	made,	a	sequence	of	subsequent	

intra-operative	decisions	are	required	within	a	context	of	

uncertainty.		

			

Arterial	invasion	is	seen	as	a	contraindication	to	surgery	(Gall	et	al.,	

2015)	but	several	observational	studies	have	demonstrated	that	this	

is	not	only	technically	possible	in	cases	of	locally	advanced	disease	

but	is	also	associated	with	better	survival	outcomes	compared	to	

those	who	did	not	undergo	resection	(Mollberg	et	al.,	2015).	

However,	a	pancreaticoduodenectomy	with	arterial	resection	has	

greater	than	5times	the	risk	of	perioperative	mortality	and	poorer	

survival	outcomes	at	1	and	3years	compared	to	

pancreaticoduodenectomy	without	arterial	resection	(Yu	et	al.,	2014;	

Mollberg	et	al.,	2015).	Therefore	the	International	Study	Group	for	

Pancreatic	Surgery	(ISGPS)	does	not	recommend	arterial	resection	

on	a	routine	basis	(Bockhorn	et	al.,	2014)	with	others	advocating	

surgical	exploration	where	arterial	involvement	is	suspected	on	

imaging	and	palliative	pathway	where	this	is	verified.		
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Venous	resection	of	the	Superior	Mesenteric	Vein-Portal	Vein	(SMV-

PV)	is	now	often	performed	in	specialist	high	volume	pancreatic	

centres	where	venous	invasion	is	deemed	probable	(McGuigan	et	al.,	

2018).	The	original	hypothesis	underpinning	this	operative	approach	

was	that	disease	recurrence	was	caused	by	inadequate	local	therapy	

and	that	outcomes	could	be	improved	with	better	tumour	clearance	

(Wray	et	al.,	2005).	What	is	contested	is	whether	SMV-PV	invasion,	

and	poor	outcomes,	represents	more	aggressive	tumour	biology	or,	

in	light	of	the	accepted	fact	that	positive	margins	result	in	poor	

outcomes	comparable	to	those	treated	non-operatively,	SMV-PV	

invasion	reflects	location	rather	than	biology	(Wray	et	al.,	2005).	It	

follows	that	SMV-PV	resection	would	improve	survival	outcomes.		

	

No	difference	has	been	demonstrated	in	terms	of	operative	morbidity	

and	mortality	when	Pancreatoduodenectomy	with	venous	resection	

is	compared	to	standard	Pancreatoduodenectomy	(Fuhrman	et	al.,	

1996;	Leach	et	al.,	1998;	Bachellier	et	al.,	2001;	Nakagohri	et	al.,	

2003;	Howard	et	al.,	2003;	Nakano	et	al.,	2002;	Tseng	et	al.,	2004;	

Oettle	et	al.,	2013;	Chakravarty	et	al.,	2010;	Murakami	et	al.,	2013;	

Moldovan	et	al.,	2012;	Muller	et	al.,	2009;	Kaneoka	et	al.,	2009;	van	

Geenen	et	al.,	2001;	Riediger	et	al.,	2006;	Toomey	et	al.,	2009;	Chau	et	

al.,	2010).	Although	the	former	has	been	associated	with	prolonged	

operative	time	and	blood	loss	(Oettle	et	al.,	2013).	However	

retrospective	and	observational	studies	have	not	concluded	a	

survival	advantage	at	1	and	3years	with	venous	resection	although	

outcomes	are	no	worse	(Fuhrman	et	al.,	1996;	Leach	et	al.,	1998;	

Bachellier	et	al.,	2001;	Nakagohri	et	al.,	2003;	Howard	et	al.,	2003;	
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Nakano	et	al.,	2002;	Tseng	et	al.,	2004;	Oettle	et	al.,	2013)	whilst	a	

more	recent	French	study	reported	improved	survival	outcomes	with	

venous	resection	(Turrini	et	al.,	2013).	The	lack	of	RCTs	mean	that	

such	studies	are	at	risk	of	selection	bias	(McGuigan	et	al.,	2018).	

What	is	not	contested	is	that	SMV-PV	involvement	is	no	longer	a	

contraindication	to	resection	and	the	ultimate	goal	of	surgery	is	to	

achieve	negative	resection	margins.				

	

The	benefits	of	modified	surgical	techniques	are	also	ambiguous.	

Laparoscopic	pancreatoduodenectomy	and	laparoscopic	distal	

pancreatectomy	have	been	shown	to	have	comparable	morbidity	and	

mortality	with	open	procedures	but	have	not	been	proven	to	be	

conclusively	superior	(Asbun	et	al.,	2012;	Pericleous	et	al.,	2012;	

Venkat	et	al.,	2012).	Meta-analysis	have	reported	no	difference	in	R0	

resection	rates	between	open	and	laparoscopic	approach	(Pericleous	

et	al.,	2012)	although	one	meta-analysis	has	reported	reduced	blood	

loss	and	length	of	hospital	stay	(Pericleous	et	al.,	2012).	Once	again	

however	such	observational	studies	are	subject	to	selection	bias	(Gall	

et	al.,	2015).	A	modified	technique	for	distal	pancreatectomy	to	

include	radical	antegrade	modular	pancreatosplenectomy	reported	

R0	resection	rates	of	81%	(Strasberg	et	al.,	2012)	and	radical	distal	

pancreatectomy	with	coeliac	axis	resection	reported	R0	resection	

rates	up	to	91%	(Jing	et	al.,	2013;	Hirano	et	al.,	2007).	However	this	

was	associated	with	a	48%	to	54%	morbidity	rate	and	median	

survival	times	reported	with	this	approach	ranged	from	21months	

(Hirano	et	al.,	2007)	to	only	9.25months	(Jing	et	al.,	2013).				
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Appendix	C	

	

Overview	and	Critical	Analysis	of	the	Evidence	Base	for	Adjuvant	

Chemoradiotherapy		

		

This	section	provides	a	more	detailed	critical	analysis	of	the	main	

studies	underpinning	the	evidence	base	for	adjuvant	

chemoradiotherapy	as	discussed	in	section	2.1.4.		

	

5-FU	was	first	established	as	the	standard	of	adjuvant	therapy	in	

1980s	when	the	Gastrointestinal	Tumour	Study	Group	(GITSG)	

reported	improved	overall	survival	(21	versus	11	months;	p	value	

=0.03)	and	2	year	survival	(43%	versus	18%)	for	patients	receiving	

adjuvant	therapy	compared	to	observation	alone	(Kalser	&	Ellenberg,	

1985).	However,	the	results	of	this	small	(n=43),	unpowered	study	

where	25%	of	participants	did	not	receive	treatment	for	10	or	more	

weeks	post-operatively,	were	not	replicated	in	the	larger	European	

Organisation	for	Research	and	Treatment	of	Cancer	(EORTC)	trial	

(n=218)	which	demonstrated	no	improvement	in	overall	or	5-year	

survival	(Klinkenbijl	et	al.,	1999).	However,	both	studies	were	

criticised	for	using	sub-optimal	dose	of	radiotherapy	with	EORTC	

trial	administering	split	dose	radiotherapy,	potentiating	tumour	

regrowth	(Saif,	2013;	Neoptolemos	et	al.,	2019).	This	trial	offered	no	

prospective	assessment	of	surgical	margins	or	maintenance	dose	of	

chemotherapy.		Furthermore,	20%	in	the	treatment	arm	did	not	

receive	treatment	and	the	study	population	included	peri-ampullary	

cancer	with	no	subset	analysis	of	PDAC	(Wray	et	al.,	2005;	Saif,	

2013).		
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ESPAC-1	(n=289)	championed	chemotherapy	alone,	demonstrating	

improved	overall	survival	compared	to	no	adjuvant	therapy	(20.1	v	

15.5	months,	p=0.009)	but	worse	overall	survival	with	

chemoradiotherapy	(15.9	versus	17.9	months,	p	value=0.05)	

(Neoptolemos	et	al.,	2004;	Regine	et	al.,	2008).	Again	this	trial	has	

been	criticised	for	sub-optimal	dose	and	delivery	of	radiotherapy	as	

62%	of	patients	experienced	local	recurrence	with	35%	of	these	

experiencing	local	recurrence	as	the	only	site	of	initial	failure	(Wray	

et	al.,	2005).		There	has	also	been	criticism	of	the	methods	of	

randomisation	used,	confusing	a	2x2	fractional	design,	bias	in	longer	

time-to-treatment	and	the	inclusion	of	R1	patients	in	the	

chemoradiotherapy	group	(Saif,	2013;	Neoptolemos	et	al.,	2019)	with	

lack	of	quality	assurance	for	radiotherapy	planning,	imaging	and	

pathology	assessment	of	resection	margins	(Wray	et	al.,	2005).	

Despite	this	these	findings	were	comparable	with	the	Radiation	

Therapy	Oncology	Group	(RTOG)	9704	trial	which	demonstrated	the	

benefit	of	adding	gemcitabine	to	5-FU	based	chemoradiotherapy	

compared	to	5-FU	based	chemoradiotherapy	plus	5-FU-FA	

chemotherapy	which	gave	a	median	survival	of	20.5months	and	

16.8months	respectively	(Regine	et	al.,	2008)	but	at	a	cost	of	more	

hematological	grade	4	toxicities	(Safi,	2013).	This	trial	however	

lacked	surgical	and	pathological	standardisation.			
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Appendix	D	

	

Overview	and	Critical	Analysis	of	the	Evidence	Base	for	Adjuvant	

Chemotherapy		

	

This	section	provides	a	more	detailed	critical	analysis	of	the	main	

studies	underpinning	the	evidence	base	for	adjuvant	chemotherapy	

as	discussed	in	section	2.1.4.		

	

The	landmark	CONKO-001	trial	(n=368)	demonstrated	improved	

survival	outcomes	with	adjuvant	gemcitabine	compared	to	

observation	alone	following	surgical	resection	(Neoptolemos	et	al.,	

2010).	However,	although	disease	free	survival	improved	from	6.9	

months	to	13.4	months,	overall	survival	only	improved	slightly	from	

20.2months	to	22.8months	with	adjuvant	gemcitabine	(McGuigan	et	

al.,	2018).	The	CONKO-005	trial	compared	adjuvant	gemcitabine	

following	R0	resection	with	and	without	the	addition	of	erlotinib	but	

this	was	not	found	to	improve	survival	time	further	(Sinn	et	al.,	

2017).		

	

The	larger	ESPAC-3	trial	(Neoptolemos	et	al.,	2010)	showed	that	

adjuvant	gemcitabine	was	not	superior	to	adjuvant	5-FU	in	terms	of	

survival	but	gemcitabine	had	a	lower	toxicity	profile	(Neoptolemos	et	

al.,	2017).		The	superiority	of	gemcitabine	was	further	challenged	by	

the	Japanese	Adjuvant	Study	Group	of	Pancreatic	Cancer	(JASPAC-01)	

trial	(n=385)	which	introduced	S1	(a	combination	of	tegafur,	

gimeracil	and	oteracil)	as	an	alternative	to	gemcitabine.	S1	

demonstrated	improved	2year	overall	and	disease	free	survival	(70%	
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versus	53%;	49%	versus	29%	respectively)	(Uesaka	et	al.,	2016).	

Although	R0	resection	was	stated	as	the	inclusion	criteria,	13%	of	the	

included	cases	were	R1	(Neoptolemos	et	al.,	2019).	The	application	of	

these	findings	to	Caucasian	patients	has	been	questioned	due	to	the	

possibility	that	polymorphisms	in	cytochrome	CYP2A6	could	result	

in	higher	plasma	concentrations	of	5-FU	causing	more	severe	

gastrointestinal	side	effects	(Saif	et	al.,	2009).	

	

	

Drawing	on	the	success	of	dual	therapy	with	gemcitabine	and	

capecitabine	in	treating	advanced	and	metastatic	pancreatic	cancer,	

the	ESPAC-4	trial	compared	gemcitabine	monotherapy	to	this	dual-

therapy	combination	in	patients	who	had	undergone	R0	and	R1	

resection	(Neoptolemos	et	al.,	2017).	This	was	an	important	trial	as	it	

was	more	inclusive	with	60%	of	the	study	population	having	R1	

resection,	80%	of	tumours	were	lymph	node	positive,	and	only	42%	

had	a	performance	status	of	0.	Non	post-operative	CT	scans	and	

CA19-9	levels	were	also	considered	as	part	of	the	patient	assessment.	

Results	demonstrated	that	dual	therapy	had	an	improved	overall	

median	survival	of	28months	compared	to	25.5months	with	5year	

survival	of	30%.	Although	grade3	or	4	neutropenia	was	more	

common	in	the	dual	therapy	arm	(38%	versus	24%)	there	were	fewer	

overall	infective	manifestations	(3%	versus	7%).	Gemcitabine-

capecitabine	was	therefore	recommended	over	other	adjuvant	

regimes	in	the	2017	American	Society	of	Clinical	Oncology	(ASCO)	

Clinical	Practice	Guidelines	for	potentially	curable	pancreatic	cancer	

(Khorana	et	al.,	2017).		
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Interim	analysis	has	recently	been	reported	of	the	APACT	trial	

comparing	adjuvant	gemcitabine	and	adjuvant	gemcitabine	with	nab-

paclitaxel	(Tempero	et	al.,	2019).	Although	there	was	no	difference	in	

disease	free	survival,	overall	survival	supported	the	latter	but	at	the	

cost	of	a	higher	toxicity	profile.		
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Appendix	E	

	

Overview	and	Critical	Analysis	of	the	Evidence	Base	for	

Neoadjuvant	Therapy			

	

This	appendix	supports	section	2.1.5	by	providing	a	more	detailed	

critical	analysis	of	existing	prospective	phase	II	neoadjuvant	therapy	

drug	trials	for	resectable,	borderline	resectable	and	locally	advanced	

disease.	Each	disease	stage	has	different	anticipated	outcomes	that	

could	affect	treatment	selection	and	decision	making.	The	existing	

body	of	evidence	will	therefore	be	explored	for	each	disease	stage	

separately.			

	

Evans	et	al.	(1992)	undertook	one	of	the	earliest	feasibility	studies	of	

neoadjuvant	approach	using	50.4Gy	of	radiation	with	5-fluorouracil	

(5-FU).	They	demonstrated	that	11	of	the	28	participants	did	not	go	

on	to	have	resection	due	to	disease	progression	on	re-staging.	The	

Eastern	Cooperative	Oncology	Group	(ECOG)	trial	used	mitomycin	

and	5-FU	chemoradiation	on	53	patients,	only	24	of	whom	went	on	to	

have	resection	(Hoffman	et	al.,	1998).	The	median	survival	of	those	

who	underwent	neoadjuvant	approach	followed	by	resection	was	

15.7	months	and	the	median	overall	survival	of	all	participants	was	

9.7	months	(Hoffman	et	al.,	1998).	Therefore,	by	intention	to	treat	

analysis,	neoadjuvant	approach	had	questionable	benefit	(Hoffman	et	

al.,	1998;	Royall	et	al.,	2015).		

	

Between	1998	and	2001	a	phase	II	study	undertaken	at	the	M.D.	

Anderson	Cancer	Centre	used	systemic	gemcitabine	and	external-
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beam	radiation	as	neoadjuvant	approach	on	86	patients	with	

potentially	resectable	pancreatic	cancer	(Evans	et	al.,	2008).		64	

patients	underwent	surgical	resection	after	neoadjuvant	treatment	

with	overall	survival	of	34	months	and	disease	free	survival	of	28.6	

months	compared	to	7.1	months	overall	survival	and	13.2months	

disease	free	survival	in	those	deemed	unfit	for	surgery	at	re-staging	

(Evans	et	al.,	2008).		A	follow-up	trial	at	the	same	institution	using	

adjuvant	gemcitabine	and	cisplatin,	followed	by	gemcitabine	and	

radiotherapy	on	90	patients	reported	28.3	month	disease	free	

survival	and	35months	overall	survival	in	the	52	patients	who	

underwent	neoadjuvant	therapy	followed	by	surgery	(Varadhachary	

et	al.,	2008).	This	study	demonstrated	no	increase	in	surgical	

complications	in	the	neoadjuvant	group	and	also	highlighted	that	

19%	of	participants	were	spared	costly	and	potentially	morbid	

surgery	due	to	identification	of	more	aggressive	tumour	biology	

demonstrated	by	disease	progression	at	restaging	and/or	declining	

performance	status	(Asare	et	al.,	2016;	Royall	et	al.,	2015;	

Varadhachary	et	al.,	2008).	However,	others	have	contested	this	

interpretation	arguing	instead	that	neoadjuvant	approach	delayed	

surgery	resulting	in	loosing	the	window	of	resectability.				

	

Estrella	et	al.	(2012)	summarised	the	M.D.	Anderson	experience	

between	1999-2007	and	reported	33.5	month	overall	survival	for	

patients	who	underwent	neoadjuvant	therapy	prior	to	surgery	

compared	to	26.5	month	overall	survival	for	those	who	underwent	

upfront	surgery.	However,	this	summary	failed	to	incorporate	

patients	who	underwent	neoadjuvant	therapy	but	did	not	undergo	

resection	in	an	intention-to-treat	analysis	(Royall	et	al.,	2015).	
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Furthermore	resection	rate	varied	from	57%	to	74%	reflecting	a	high	

drop-out	rate	(Royall	et	al.,	2012;	Estrella	et	al.,	2012).	The	time	

frame	also	covers	a	period	where	the	neoadjuvant	regime	and	

protocol	determining	timing	from	diagnosis	to	preoperative	

restaging	changed	(Royall	et	al.,	2012).	Therefore	the	summary	study	

from	which	these	conclusions	are	drawn	covers	a	highly	

heterogeneous,	non-randomised	patient	population	(Royall	et	al.,	

2012).	Furthermore,	a	universal	definition	of	borderline	and	locally	

advanced	disease	was	only	adopted	in	2010,	which	impacts	the	

interpretation	of	studies	prior	to	this	date	(Tempero	et	al.,	2017;	

Callery	et	al.,	2009;	Raufi	et	al.,	2019).	Whilst	this	has	helped	to	

improve	reporting	there	still	exists	inter-institutional	variation	

impacting	decisions	regarding	resectability	(Raufi	et	al.,	2019)	and	

many	studies	combine	resectable,	borderline	and	locally	advanced	

cases	within	the	neoadjuvant	treatment	arm.						

	

Neoadjuvant	therapy	for	resectable	pancreatic	cancer	

	

Neoadjuvant	therapy	for	resectable	pancreatic	cancer	remains	highly	

controversial	(Raufi	et	al.,	2019).	No	completed	prospective	phase	III	

RCTs	have	yet	compared	neoadjuvant	therapy	to	traditional	upfront	

surgery	and	adjuvant	therapy.	However,	preliminary	results	from	the	

Prep-02/JSAP05	trial,	which	compared	neoadjuvant	gemcitabine	and	

S1	(n=182)	with	upfront	surgery	followed	by	S1	(n=180),	have	

recently	been	presented	in	abstract	form	and	report	a	median	overall	

survival	of	36.7months	and	26.6months	respectively	(P=0.015)	

(Unno	et	al.,	2019).	However	grade	3	and	4	toxicities	were	higher	in	

the	neoadjuvant	arm	(78%)	but	there	was	no	statistically	significant	
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difference	between	resection,	R0	or	morbidity	rates.	As	with	the	

JASPAC-01	trial	exploring	S1	and	gemcitabine	monotherapy	(Uesaka	

et	al.,	2016),	considering	the	potentially	increased	risk	of	toxicity	in	

Caucasians	(Saif	et	al.,	2009),	the	application	of	these	findings	to	this	

ethnic	group	remains	to	be	seen.		

	

The	NCCN	recommends	neoadjuvant	chemotherapy	for	patients	with	

resectable	PDAC	if	they	have	high-risk	features	that	include:	elevated	

Ca19-9,	large	tumours,	large	regional	nodes	and	disease-related	

symptoms	that	are	rated	as	being	severe	(NCCN,	2018).	ASCO	

guidelines	recommend	neoadjuvant	therapy	for	patients	with	

resectable	PDAC	only	in	the	presence	of	reversible	comorbidities	that	

would	delay	surgery	(Khorana	et	al.,	2016).	The	main	prospective	

phase	II	trials	are	outlined	in	table	Ei.	These	small,	mainly	non-

randomised	trials	seem	to	suggest	a	benefit	with	neoadjuvant	

strategy	with	improved	overall	median	survival	even	where	

resection	rates	are	reported	as	being	lower	when	compared	to	

upfront	surgery	strategy.	A	further	unresolved	question	regarding	

neoadjuvant	therapy	for	resectable	pancreatic	cancer	is	the	role	of	

chemoradiotherapy	(Raufi	et	al.,	2019).	Thus	far	chemoradiotherapy	

does	not	appear	to	outperform	chemotherapy	(Raufi	et	al.,	2019).	

However,	as	previously	mentioned	patient	populations	are	small	and	

non-comparable	across	these	studies	therefore	much	of	the	debate	

surrounding	the	role	of	neoadjuvant	therapy	for	resectable	

pancreatic	cancer	remains	unsettled.								
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Table	Ei:	Summary	of	Prospective	Phase	II	Trials	of	Neoadjuvant	

Therapy	for	Resectable	Pancreatic	Cancer	

	
Trial	 n=	 Single	or	

Multicentre	
trial		

Randomisation	 Neoadjuvant	Treatment	
Regime:	CRT=	
chemoradiotherapy;	
CT=	chemotherapy		

Resection	
Rate	(%)	

R0	
Resection	
Rate	(%)	

Median	
Overall	
Survival	
in	
months	

Evans	 et	 al.	
(2008)	

86	 Single	 No	 CRT:	7	weekly	
intravenous	infusions	of	
gemcitabine	400	mg/m2	
plus	radiation	therapy	
(30	Gy	in	10	fractions	
over	2	weeks).	

64/86	
(74)	

60/64	
(94)	

22.7	

Golcher	 et	
al.	(2015)	

66	 Multicentre	 Yes	 	CRT:	
300	mg/m2	gemcitabine	
and	30	mg/m2	cisplatin	
on	days	1,	8,	22,	and	29	
of	radiotherapy	(1.8	Gy	
to	55.8	Gy	(tumor)	or	
50.4	Gy	(regional	lymph	
nodes),	planning	target	
volume	≤ 800	ml).		

19/33	
(58)	

17/19(89
)	

17.4	

Upfront	surgery.	
Adjuvant	chemotherapy	
also	given	as	per	
CONKO-001	study	
protocol.	

23/33	
(70)	

16/23	
(70)	

14.4	

Heinrich	 et	
al.	(2008)	

28	 Single	 No	 CT:	four	biweekly	cycles	
of	gemcitabine	1,000	
mg/m2	and	cisplatin	50	
mg/m2	

25/28	
(89)	

20/25	
(80)	

26.5	

Hong	 et	 al.	
(2014)	

50	 Multicentre	 No	
CRT:	Proton	beam	
therapy	240-MeV	
protons	generated	from	
a	cyclotron	delivered	
using	3D	passively	
scattered	protons.	Most	
commonly,	3	fields	were	
used,	with	2	fields	being	
treated	per	day.	
Capecitabine	(1650	
mg/m2	divided	twice	
daily)	given	Monday	to	
Friday	for	2	weeks	for	
each	dose	level.	
Adjuvant	gemcitabine	
chemotherapy	for	6	
months	starting	4	to	10	
weeks	post	surgery.	

37/50	
(74)	

31/37	
(84)	

17	

Joensuu	 et	
al.	(2004)	

33	 Single	 No	 CRT:	Gemcitabine	
intravenous	infusion	
twice	weekly	was	tested	
at	3	dose	levels:	20,	50,	
and	100	mg/m2.	
Radiation	dose	50.4	Gy	
in	28	fractions.	

21/28	 	 25	

LeScodan	 et	
al.	(2009)	

41	 Multicentre	 No	 CRT:	concurrent	
radiotherapy	(50	Gy	
within	5	weeks)	and	
chemotherapy	5-
fluorouracil	(300	
mg/m2/day,	5	
days/week,	weeks	1-5)	
and	cisplatin	(20	
mg/m2/day,	days	1-5	

26/41	
(63)	

21/26	
(80.7)	

9.4	
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and	29-33).	
O’Reilly	 et	
al.	(2014)	

38	 Single	 No	 CT:	four	cycles	of	
intravenous	infusion	
gemcitabine	
1000mg/m2and	
oxaliplatin	80	mg/m2,	
every	2	weeks.		
Adjuvant	gemcitabine	
intravenous	infusion:	5	
cycles	(1000	mg/m2	day	
1,	8,	15	every	4	weeks).		

27/38	
(71)	

20/27	
(74%)	

27.2	

Palmer	 et	al.	
(2007)	

50	 Single	 Yes	 CT:	gemcitabine	(1000	
mg/m2)	every	7	days	for	
43	days	(n=24)	

9/24	(38)	 6/9	
(75%)	

9.9	

CT:	gemcitabine	(1000	
mg/m2)	and	cisplatin	
(25	mg/m2)	(n=26)	

18/26	
(70)	

12/18	
(75)	

16.6	

Pister	 et	 al.	
(2002)	

37	 Single	 No	 CRT:	30	Gy	external-
beam	radiation	therapy	
and	concomitant	weekly	
3-hour	infusions	of	
paclitaxel	(60	mg/m2)	

20/37	
(54)	

	 12	

Talamonti	et	
al.	(2006)	

20	 Multicentre	 No	 CRT:	three	cycles	of	
gemcitabine	(1000	
mg/m2	intravenously),	
with	radiation	during	
the	second	cycle	(36	Gy	
in	daily	2.4-Gy	fractions)	

17/20	
(85)	

	 24	

Turrini	et	al.	
(2009)	

34	 Multicentre	 No	 CRT:	radiation	therapy	
(45	Gy)	with	continuous	
infusion	of	5-
fluorouracil	
accompanied	by	a	
cisplatin	bolus.	

17/34	
(50)	

17/17	
(100)	

15.5	

Varadhachar
y	 et	 al.	
(2008)	

90	 Single	 No	 CT:	gemcitabine	(750	
mg/m2)	and	cisplatin	
(30	mg/m2)	every	2	
weeks	for	4	doses.	CRT:	
4	weekly	infusions	of	
gemcitabine	(400	
mg/m2)	combined	with	
radiation	therapy	(30	Gy	
in	10	fractions	
administered	over	2	
weeks)	delivered	5	days	
per	week.		

52/90	
(69)	

50/52	
(96)	

17.4	

Vento	 et	 al.	
(2007)	

22	 Single	 No	 CRT:	gemcitabine	
intravenous	infusion	
twice	weekly	before	
irradiation	at	three	dose	
levels,	which	were	20,	
50	and	100	mg/m2	for	
an	average	of	10	cycles.	
Tumour	radiation	dose	
50.4	Gy	given	in	28	
fractions	of	1.8	Gy	per	
day,	five	days	per	week.	

15/22	
(68)	

8/15	(53)	 27	

	

Neoadjuvant	therapy	for	borderline	resectable	pancreatic	cancer	

	

The	role	of	neoadjuvant	therapy	in	the	treatment	of	borderline	and	

locally	advanced	pancreatic	cancer	has	been	much	more	widely	

accepted	and	has	been	explored	in	several	phase	II	trials	(table	Eii).	
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The	majority	of	these	trials	are	based	on	gemcitabine	based	

chemotherapy	regimes,	with	or	without	radiotherapy.	In	2018	the	

role	of	gemcitabine	based	chemoradiotherapy	was	supported	by	the	

results	of	the	phase	III	randomised	PREOPANC	trial	presented	at	the	

2018	ASCO	meeting	(Van	Tienhoven	et	al.,	2018).	This	trial	compared	

combination	gemcitabine	and	radiotherapy	with	upfront	surgery	for	

cases	of	resectable	and	borderline	resectable	disease	and	reported	

superior	survival	outcomes	with	neoadjuvant	therapy	(17.1	months	

versus	13.5	months;	p	value	=	0.074)	despite	the	resection	rate	being	

higher	in	the	upfront	surgery	arm	(60%	versus	72%),	although	the	R0	

resection	rate	was	higher	in	the	neoadjuvant	arm	(63%	versus	31%).	

This	is	corroborated	by	interim	analysis	published	in	abstract	form	of	

the	NCT01458717	phase	II/III	RCT	comparing	gemcitabine	based	

neoadjuvant	chemoradiotherapy	with	adjuvant	gemcitabine	based	

chemoradiotherapy	in	borderline	resectable	cases	(n=55)	that	

reported	a	median	overall	survival	of	23months	versus	11months	

respectively	(p	value	=	0.011)	(Kwon	et	al.,	2017).	However,	it	is	

worth	noting	that	the	reported	survival	time	in	the	upfront	surgery	

group	is	much	lower	than	expected	and	even	lower	than	that	

reported	for	locally	advanced	and	metastatic	disease	that	received	

neoadjuvant	therapy	in	other	trials	(Hackert	et	al.,	2016).						

	

Neoadjuvant	FOLFIRINOX	has	also	received	much	recent	attention	

following	its	success	in	the	palliative	context	of	treating	metastatic	

disease.	The	landmark	trial	by	Conroy	et	al.	(2011)	found	that	in	the	

setting	of	metastatic	disease	FOLFIRINOX	had	a	median	overall	

survival	of	11.1	months	compared	to	6.8	months	with	gemcitabine	

but	at	the	cost	of	higher	rates	of	toxicity.	This	resulted	in	the	
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preferential	use	of	mFOLFIRINOX	regimes	that	contained	altered	

dosing	of	components	to	reduce	toxicity.	However	to	date	

mFOLFIRINOX	has	not	been	directly	compared	to	the	original	

FOLFIRINOX	in	the	setting	of	metastatic	disease	(Raufi	et	al.,	2019;	

Stein	et	al.,	2016;	Hosein	et	al.,	2012;	Blazer	et	al.,	2015).	This	is	

important	as	the	aims	of	treatment	in	the	metastatic	setting,	to	slow	

and	control	disease,	are	different	from	those	in	the	neoadjuvant	

setting,	to	shrink	disease	and	eradicate	micrometastases	(Raufi	et	al.,	

2019).	Therefore	it	cannot	be	assumed	that	mFOLFIRINOX	in	the	

neoadjuvant	setting	will	have	comparable	success.					

	

A	single	arm	multicenter	phase	II	trial	by	Katz	et	al.	(2016)	found	

that	mFOLFIRINOX	with	radiotherapy	for	the	treatment	of	borderline	

resectable	disease,	as	defined	by	the	NCCN	guidelines,	gave	a	median	

overall	survival	time	of	21.7months	with	a	resection	rate	of	68%	and	

an	R0	resection	rate	of	93%.	However	this	was	a	small	trial	(n=22)	

and	although	the	definition	of	borderline	resectable	was	clear	the	

study	population	contained	some	cases	of	resectable	disease.	

Furthermore	the	rate	of	grade	3	or	above	toxicities	was	significant	at	

64%.	A	larger	single	arm	phase	II	trial	(n=48)	showed	an	overall	

survival	time	of	37.7months	with	FOLFIRINOX	and	radiotherapy	with	

a	comparable	resection	rate	(66%)	and	R0	resection	rate	(97%).												

	

Whilst	both	these	studies	corroborate	a	growing	optimism	

surrounding	the	use	of	FOLFIRINOX	based	regimes	in	the	

neoadjuvant	setting	questions	still	remain	as	to	which	specific	regime	

combination	provides	optimal	outcomes	and	whether	mFOLFIRINOX	

sufficiently	addressed	concerns	about	toxicity	levels	and	at	what	cost	
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to	survival	outcomes.	Also	the	specific	benefit	of	the	addition	of	

radiotherapy	to	neoadjuvant	regimes,	or	whether	radiotherapy	

should	be	reserved	for	specific	cases,	has	been	difficult	to	discern	

(Raufi	et	al.,	2019).	A	follow-up	Alliance	A021501	study	randomising	

134	patients	with	borderline	resectable	disease	to	receive	

FOLFIRINOX	with	and	without	stereotactic	body	frame	radiotherapy	

has	been	recently	suspended	following	interim	analysis	(Raufi	et	al.,	

2019).	The	ESPAC-5FU	trial	is	a	four	arm	trial	comparing	upfront	

surgery	and	neoadjuvant	chemoradiotherapy,	gemcitabine-

capecitabine	and	FOLFIRINOX	for	borderline	resectable	pancreatic	

cancer	(ISCRTN	registry,	2014)	and	may	shed	some	light	on	some	of	

these	issues.								
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Table	Eii:	Summary	of	Prospective	Phase	II/III	trials	of	Neoadjuvant	

Therapy	for	Borderline	Resectable	Pancreatic	Cancer	

	
Trial	 n=	 Single	or	

Multicentre	
trial		

Randomisation	 Neoadjuvant	
Treatment	Regime:	
CRT=	
chemoradiotherapy;	
CT=	chemotherapy		

Resection	
Rate	(%)	

R0	Resection	
Rate	(%)	

Median	
Overall	
Survival	
in	
months	

Borderline	Resectable	Cases	In	Neoadjuvant	Arm		

Chakr
aborty	
et	 al.	
(2014
)	

13	 Single	 No	 CRT:	50Gy	in	2.5	Gy	
fractions	plus	
capecitabine	
825mg/m2	twice	on	
radiation	days	

5/13	(38)	 4/5	(80)	 9.1	

Murp
hy	 et	
al.	
(2018
)	

48	 Single	 No	 FOLFIRINOX	8	cycles,	
re-staging	and	if	
vascular	resolution	
radiotherapy	5Gy	x5	
with	capecitabine.	If	
persistent	vascular	
involvement	
radiotherapy	with	5-FU	
or	capecitabine	

32/48	(66)	 31/32	(97)	 37.7	

Jang	
et	 al.	
(2018
)	

50	 Multicentre	 Yes	 CRT:	45	Gy	in	2.5	
fractions	and	9	Gy	in	5	
fractions	5	times	a	
week	for	6	weeks	plus	
gemcitabine	at	
400mg/m2.	Adjuvant	
chemotherapy	
gemcitabine	100mg/m2	

every	4	weeks	for	4	
cycles	(n=27)	

24/27	(89)	 14/24	(58)	 21	

Upfront	surgery	plus	
adjuvant	chemotherapy	
gemcitabine	100mg/m2	

every	4	weeks	for	4	
cycles	(n=23)	

23/23	
(100)	

6/23	(26)	 12	

Kim	et	
al.	
(2013
)	

68	 Multicentre	 No	 CRT:	Gemcitabine	
1g/m2	on	days	1,8,	15	+	
oxaliplatin	85mg/m2	
on	days	1,	15	every	21	
days	for	2	cycles	with	
30	Gy	radiation	

43/68	(63)	 36/43	(84)	 18.2	

Mixed	Resectable	and	Borderline	Resectable	in	the	neoadjuvant	arm	
PREOPAN
C	 (Van	
Tienhoven	
et	 al.,	
2018)	

246	 Multicentre	 Yes	
Upfront	surgery	and	
adjuvant	gemcitabine	
(n=127)	

91/127	 31%	(only	
per	cent	
given;	
unknown	of	
calculated	
from	study	
population	
or	number	
resected)	

13.5	

CRT:	15	x	2.4	Gy	with	
gemcitabine	100mg/m2	
on	days	1,	8,	ad	15.	
Adjuvant	gemcitabine	
(n=119)	

74/119	 65%	(only	
per	cent	
given;	
unknown	of	
calculated	
from	study	
population	
or	number	
resected)	

17.1	
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Motoi	 et	
al.(2013)	

35	 Multicentre	 No	
CT:	Gemcitabine	1000	
mg/m2	days	1	and	8	
with	S-1	40mg/m2	BID	
for	14	days	every	21	
days	x	2	cycles	

30/35	(86)	 26/30	(87)	 19.7	

Katz	 et	
al.(2016)	

22	 Multicentre	 No	 CRT:	Modified	
FOLFIRINOX	plus	5.5	
weeks	of	50.4Gy	
radiotherapy	with	
concurrent	825	mg/m2	

BID	

15/22	(68)	 14/15	(93)	 21.7	

Magnin	 et	
al.(2003)		

32	 Single	 No	 CRT:	either	split-course	
therapy	(two	courses	of	
15	Gy)	or	standard-
fractionation	therapy	
(45	Gy	during	5	weeks)	
+	concurrent	5-
fluorouracil	and	a	
cisplatin	bolus.	
	

19/32	(59)	 Not	stated	 16	

Moutardie
r	 et	
al.(2002)	

19	 Single	 No	 CRT:	5-FU	650mg/m	
days	1-5	and	days	21-
25	+	cisplatin	80mg/m	
bolus	day	2	and	day	22	
with	radiotherapy	
30Gy	split	course	or	
standard	45Gy	

15/19	(79)	 Not	reported		 20	

Satio	 et	
al.(2009)	

68	 Single	 No	 CRT:	radiotherapy	plus	
5-FU	or	gemcitabine	
(n=27)	

18/27	(67)	 9/18	(50)	 24.5	

Upfront	surgery	plus	
adjuvant	therapy	
(n=41)	

30/41	(73)	 7/30	(23)	 18.5	

Van	Buren	
et	
al.(2013)	

59	 Single	 No	 CRT:	fixed	dose	rate	
gemcitabine	1500	
mg/m2	+	bevacizumab	
10mg/kg	for	3	cycles	
plus	radiotherapy	30	
gy	in	10	fractions	plus	
bevacizumab	

43/59	(73)	 38/41(93)	 16.8	

Mornex	 et	
al.	(2006)	

41	 Multiple	 No	 CRT:	radiotherapy	
50Gy	plus	5-FU	(300	
mg/m2/day,	5	
days/week,	5	
consecutive	weeks)	
and	cisplatin	(20	
mg/m2/day,	Days	1-5	
and	29-33)	

26/41	(63)	 Not	stated	 9.4	

Casadei	 et	
al.	(2015)		

38	 Single	 Yes	 Upfront	surgery	(n=20)	 15/20	(75)	 5/15	(33)	 19.5	
CRT:	gemcitabine	
1g/m2	days	1,	8,	every	
21	days	for	2cucles	
followed	by	
gemcitabine	50mg/m2	
twice	weekly	for	6	
weeks	(n=18)	

11/18	(61)	 7/11	(64)	 27.5	

Borderline	and	Locally	Advanced	Pancreatic	Cancer	in	Neoadjuvant	Arm	
Cardenes	
et	
al.(2011)	

28	 Single		 No	 CRT:	gemcitabine	
600mg/m2	and	
radiotherapy	50.4Gy	in	
28	fractions	1.8Gy/day	
5	days	per	week.	If	no	
progression	weekly	
gemcitabine	100mg/m2	
on	days	1,	8,	16	for	6	
cycles	

4/28	(14)	 2/4	(50)	 10.3	

Esnaola	 et	
al.(2014)	

37	 Single	 No	
CRT:	gemcitabine	
(1000	mg/m2)	+	
oxaliplatin	(100	
mg/m2)	repeated	every	
14	days	for	6	cycles	

11/37	(30)	 11/11	(100)	 11.8	
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combined	with	weekly	
cetuximab	(400	
mg/m2)	on	day	1	of	
week	1,	followed	by	11	
weekly	infusions	of	250	
mg/m2		on	day	1	of	
each	subsequent	week.	
Re-staged	at	2-4	weeks.	
Patients	with	
resectable	disease	went	
on	to	surgery.	Patients	
with	stable	disease	
went	on	to	
chemoradiation	with	
concurrent	weekly	
capecitabine	(800	
mg/m2	orally	twice	
daily).	

Fiore	et	al.	
(2017)	

34	 Single	 No	 CRT:	gemcitabine	
1000 mg/m2	and	
oxaliplatin	100 mg/m2	
every	14	days	for	four	
doses.	For	patients	
without	disease	
progression	radiation	
therapy	and	
concurrent	
gemcitabine	
600 mg/m2	weekly.		

19/34	(56)	 15/19	(79)	 19.2	

Lee	 et	
al.(2012)	

43	 Single	 No	 CT:	gemcitabine	1,250	
mg/m2	days	1	and	8,	
and	capecitabine	at	950	
mg/m2	b.i.d.	days	1–14	
every	3	weeks.	
Adjuvant	CRT	for	R1	
resection	and	
unresectable	disease	
post	neoadjuvant	
therapy.		

17/43	(40)	 14/17	(82)	 16.6	

Leone	 et	
al.	(2013)	

39	 Single	 No	 CRT:	GEMOX	
(gemcitabine	
1000mg/m2	+	
oxaliplatin	100mg/m2).	
If	no	disease	
progression	
gemcitabine	50mg/m2	
plus	radiotherapy	50.4	
Gy.			

11/39	(28)	 9/11	(82)	 16.7	

Marti	 et	
al.(2008)		

26	 Multiple	 No	 Gemcitabine	(GEM)	
(1000	mg/m(2))	or	
CDDP	(30	g/m(2)).	
Patients	without	
progression	of	disease	
then	underwent	
surgery	or	escalating	
GEM/CDDP	doses	
combined	with	full-
dose	radiotherapy.	If	
unresectable	disease	at	
restaging	patients	had	
further	GEM/CDDP.			

4/26	(15)	 3/4(75)	 13	

Massucco	
et	 al.	
(2006)	

72	 Single		 No		 CRT	(n=28):	
Radiotherapy	45	Gy.	
Chemotherapy:	
gemcitabine	twice	
weekly	for	5	weeks	at	
dose	100	mg/m2	twice	
weekly	(n=15)	or	Dose	
reduced	to	50	
mg/m2	twice	weekly	
(n=8)	or	two	courses	of	
induction	gemcitabine	
and	oxaliplatin-based	

8/28	(29)	 7/8	(88)	 15.4	
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chemotherapy	before	
chemoradiation	(n=5).		
Upfront	surgery	with	
or	without	gemcitabine	
based	adjuvant	
chemotherapy	or	
chemoradiotherapy	
(n=44)	

44/44	
(100)	

30/44	(68)	 14	

Small	et	al.	
(2011)	

32	 Single	 No	 CRT:	gemcitabine,	
1,000	mg/m2,	every	1	
to	2	weeks	+	
bevacizumab,	10	
mg/kg	every	2	weeks,	
and	36	Gy	of	
radiotherapy	(2.4-Gy	
fractions	during	cycle	
two).		

10/29	(34)	 Not	stated	 11.07	

	

Neoadjuvant	therapy	for	locally	advanced	pancreatic	cancer	

	

Cases	of	locally	advanced	pancreatic	cancer	have,	by	definition,	no	

evidence	of	metastatic	spread	but	their	conversion	to	resectability	

has	traditionally	been	a	rare	occurrence.	However,	a	growing	number	

of	prospective	phase	II	trials	have	reported	some	promising	results	

with	neoadjuvant	chemotherapy	and	chemoradiotherapy	(table	Eiii).	

The	majority	of	these	neoadjuvant	regimes	are	gemcitabine	based	

but	it	is	also	worth	noting	that	there	is	a	growing	body	of	

observational	studies	that	are	reporting	similarly	positive	findings	

with	mFOLFIRINOX.	In	2012	Hosein	et	al.	published	their	

retrospective	series	evaluating	neoadjuvant	FOLFIRINOX	for	locally	

advanced	PDAC	and	reported	that	7	out	of	18	patients	(39%)	were	

converted	to	resectable	disease.	However,	this	was	a	small	

retrospective	study	that	actually	also	included	some	borderline	cases	

of	disease	by	NCCN	definition.	A	larger	retrospective	study	of	43	

patients	that	included	25	cases	of	locally	advanced	disease,	as	

defined	by	NCCN	definition,	reported	that	mFOLFIRINOX	resulted	in	

11/25	(44%)	undergoing	resection	with	10/11	(91%)	achieving	R0	

resection	with	median	overall	survival	not	reached	at	time	of	

reporting	(Blazer	et	al.,	2015).	These	findings	were	corroborated	by	a	
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further	retrospective	study	of	29	patients	with	local	advanced	PDAC	

treated	with	neoadjuvant	FOLFIRINOX	which	resulted	in	41.3%	

undergoing	resection	and	of	those	resected	83%	had	R0	resection	

with	an	overall	cohort	median	survival	time	of	18.6months	(Nanda	et	

al.,	2015).	Interim	analysis	of	the	randomised	phase	III	trial	CONKO-

007	that	explores	induction	chemotherapy	of	FOLFIRINOX	or	

gemcitabine	with	and	without	the	addition	of	radiotherapy	of	locally	

advanced	pancreatic	cancer	has	also	reported	positive	preliminary	

results	(Lee	et	al.,	2016,	Brunner	et	al.,	2019).	Out	of	126	patients	36	

underwent	surgery.	Of	the	25	who	had	R0	resection	overall	survival	

was	26.5months	with	non-R0	surgery	giving	an	overall	survival	of	

16.9months,	which	was	comparable	to	the	overall	survival	in	the	

non-operative	group	of	16.5months	(Brunner	et	al.,	2019).	This	trial	

is	expected	to	conclude	in	2020	and	will	hopefully	help	to	clarify	the	

role	of	the	addition	of	radiotherapy	to	neoadjuvant	regimes.		

		

In	summary,	whilst	the	current	body	of	evidence	surrounding	the	

treatment	of	locally	advanced	PDAC	is	plagued	by	the	same	issues	of	

mainly	small,	underpowered	studies	with	a	high	degree	of	

heterogeneity	due	to	variations	in	definitions	of	staging	and	

treatment	regimes,	it	does	appear	to	show	that	whilst	not	all	cases	

will	be	converted	to	resectability,	when	conversion	is	achieved	such	a	

response	to	neoadjuvant	therapy	can	have	a	profound	impact	on	

survival	time	as	evidenced	by	the	R0	resection	rates	amongst	

resected	cases	(Raufi	et	al.,	2019).	However,	as	table	Eiv	shows	the	

optimal	combination	and	dosing	regimes	of	mFOLFIRINOX	still	has	to	

be	established	with	variation	between	studies	making	comparison	

difficult.	
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Table	Eiii:	Summary	of	Trials	of	Neoadjuvant	Therapy	for	Locally	

Advanced	Pancreatic	Cancer	

	
Trial	 n=	 Single	or	

Multicentre	
trial		

Randomisati
on	

Neoadjuvant	
Treatment	Regime:	
CRT=	
chemoradiotherapy;	
CT=	chemotherapy		

Resection	
Rate	(%)	

R0	Resection	
Rate	(%)	

Medina	
Overall	
Survival	
in	
months	

Jensen	 et	
al.	(2014)	

23	 Single	 No	 CRT:	Virginia	Mason	
Protocol:	5-FU,	
cisplatin,	interferon-
alpha	and	
radiotherapy	

7/23	(30)	 6/7	(86)	 11.5	

Landry	 et	
al.	(2010)	

21	 Multiple		 Yes	 CRT:	gemcitabine	
500mg/m2	for	6	
weeks	with	
radiotherapy	(n=10)	

3/10	(30)	 Not	reported	 19.4	

CRT:	gemcitabine	
175	mg/m2	days	1,	5,	
29	and	33	plus	
cisplatin	20mg/m2	on	
days	1-5	and	29-32,	
plus	5-FU	600	mg/m2	
on	days	1-5	and	29-
32	plus	radiation	
with	5-FU	225	mg/m2	
for	6	weeks	(n=	

2/11	(18)	 Not	reported	 13.4	

Herman	 et	
al.	(2015)	

49	 Multiple		 No	 CRT:	gemcitabine	
1000mg/m2	x	3	doses	
plus	radiotherapy	
33.0	Gy	

4/49	(8)	 4/4	(100)	 13.9	

Ikeda	 et	
al.(2013)	

60	 Multiple	 No	 CRT:	S-1	80mg/m2	
BID	plus	
radiotherapy	50.4	Gy	

2/60	(3)	 Not	reported	 16.2	

Sherman	
et	
al.(2015)	

45	 Single		 No		
CT	(CRT	in	arterial	
involvement):	GTX	
capecitabine	(1500	
mg/m2	days	1-14,	
gemcitabine	
750mg/m2	days	4	
and	11,	docetaxel	30	
mg/m2	days	4	and11.		

40/45	(89)	 28/40	(70)	 29	

Crane	 et	
al.(2011)	

69	 Single		 No	 CRT:	gemcitabine	
(1,000	mg/m2)	and	
oxaliplatin	(100	
mg/m2)	every	2	
weeks	for	four	doses	
+	radiation	(50.4	Gy	
to	the	gross	tumor	
only)	with	
concurrent	
capecitabine	(825	
mg/m2	twice	daily	on	
radiation	treatment	
days).	Cetuximab	
(500	mg/m2)	was	on	
day	1	of	
chemotherapy	and	
continued	every	2	
weeks	during	
chemotherapy	and	
chemoradiotherapy.		

9/69	(13)	 9/9	(100)	 19.2	

Laurent	 et	 22	 Multiple	 No	 CRT:	
Gemcitabine/oxalipla

4/22	(18)	 3/4(75)	 17	
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al.	(2009)	 tin	2	cycles	followed	
by	5	weeks	of	
radiotherapy	plus	a	
weekly	fixed	dose	
gemcitabine	and	an	
escalating	dose	of	
oxaliplatin	from	40	
up	to	70	mg/m(2).	

Lin	 et	
al.(2005)	

42	 Single	 No	 CRT:	3x	6	week	
courses	gemcitabine	
1000	mg/m2	
gemcitabine	once	
weekly	x	2	weeks;	1	
week	break;	and	
radiotherapy	total	
dose	Gy.		

6/42	(14)	 3/6	(50)	 10.3	

Lind	 et	 al.	
(2008)	

17	 Single	 No	 CRT:	2	x	courses	
Xelox	(oxaliplatin	
130	mg/m2	day	1;	
capecitabine	2000	
mg/m2	day	1-14)	
plus	3-D	conformal	
radiotherapy	(50.4	
Gy;	1.8	Gy	fractions)	
with	reduced	Xelox	
(days	1-5).	

8/17	(47)	 8/8	(100)	 19	

Magnino	
et	 al.	
(2005)		

23	 Single		 No	 CRT:	gemcitabine	
100mg/m2	(n=15)	or	
50mg/m2	(n=8)	plus	
radiotherapy	45	Gy	in	
1.8	Gy	fractions.		

6/23	(26)	 5/6	(83)	 14	

Mattiucci	
et	 al.	
(2010)	

40	 Single	 No	 CRT:	Weekly	
gemcitabine	(100	
mg/m2)	and	
radiotherapy	50.4	Gy.	
Then	5	cycles	
gemcitabine	(1000	
mg/m2.	

4/40	(10)	 4/4	(100)	 15.5	

Sahora	 et	
al.	(2011)	

25	 Single		 No	 CT:	gemcitabine	(900	
mg/m2)	and	
docetaxel	(35	
mg/m2)	on	days	1,	8,	
and	15	of	a	28-day	
cycle.	

12/33	(36)	 9/12	(75)	 16	

Wilkowski	
et	
al.(2009)	

95	 Multiple	 Yes	 CRT:	5-fluorouracil	
350	mg	m(-2)	per	day	
+	radiotherapy	50.4	
Gy	(n=31)	

4/31	(13)	 8/18	(44)	 9.6	

CRT:	gemcitabine	
300	mg	m(-2),	and	
cisplatin	(30	mg	m(-
2)	+	radiotherapy	
50.4	Gy	(n=32)	

8/32	(25)	 9.3	

CRT:	as	above	then	
followed	by	
gemcitabine	1000	mg	
m(-2)	and	cisplatin	
50	mg	m(-2)	every	2	
weeks	(n=31)	

6/31	(19)	 7.3	

Maximous	
et	 al.	
(2009)	

25	 Single	 No	 CRT:	Gemcitabine	
(300	mg/m2)	plus	
radiotherapy	50.4	Gy	

6/25	(24)	 Not	stated	 12	

Al-Sakhun	
et	 al.	
(2003)	

20	 Single	 No	 CRT:	PACE	(cisplatin	
100	mg/m2	day	1,	
cytarabine	2	g/m2	12	
hours	x	2	doses,	and	
caffeine	400	mg/m2		
each	after	cytarabine	
dose;	and	days	3	to	
21,	5-FU	250	mg/m2.	
Followed	by	
radiotherapy	50.4	Gy.		

3/20	 Not	stated	 13.4	



	 647	

	

Table	Eiv:	Summary	of	mFOLFIRINOX	studies	

	
Study	 Type	of	Study	 Study	

Population	
Size	

Stage	of	
Pancreatic	
Cancer	

Modified	
FOLFIRINOX	
dosing	
regime	

Resection	
Rate	(%)	

R0	
resection	
Rate	(%)	

Median	
Overall	
Survival	in	
months	

Mahaseth	
et	al.	
(2013)	

Retrospective	 24	 Borderline	
resectable/	
Locally	
Advanced	
and	
Metastatic	

Oxaliplatin	
(85mg/m2)	
Irinotecan	
(180mg/m2)	
5-FU	infusion	
(2,400	
mg/m2)	

42	 83	 17.8	

Marthey	et	
al.	(2015)	

Retrospective	 77	 Locally	
advanced	

Oxaliplatin	
(85mg/m2)	
Irinotecan	
(180mg/m2)	
5-FU	bolus	
(400	mg/m2)	
5-FU	infusion	
(2,400	
mg/m2)	

36	 89	 22	

Nada	et	al.	
(2015)	

Retrospective	 29	 Locally	
advanced	

Oxaliplatin	
(85mg/m2)	
Irinotecan	
(180mg/m2)	
5-FU	infusion	
(2,400	
mg/m2)	

41.3	 83	 18.6	

Sadot	et	al.	
(2015)	

Retrospective	 101	 Locally	
advanced	

Oxaliplatin	
(68mg/m2)	
Irinotecan	
(144mg/m2)	
5-FU	bolus	
(320	mg/m2)	
5-FU	infusion	
(1,920	
mg/m2)	

31	 55	 25	

Blazer	et	al.	
(2015)	

Retrospective	 39	 Locally	
advanced	

Oxaliplatin	
(85mg/m2)	
Irinotecan	
(165mg/m2)	
5-FU	infusion	
(2,400	
mg/m2)	

51.1	 86	 18	

Stein	et	al.	
(2016)	

Retrospective	 31	 Borderline	
resectable	/	
Locally	
advanced		

Oxaliplatin	
(85mg/m2)	
Irinotecan	
(135mg/m2)	
5-FU	bolus	
(300	mg/m2)	
5-FU	infusion	
(2,400	
mg/m2)	

41.9	 100	 26.6	
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Appendix	F	

	

Critical	Analysis	of	Diagnostic	Laparoscopy	Cost	Effectiveness	

Studies		

	

This	appendix	supports	section	2.2.1.	The	reason	for	focusing	on	this	

aspect	of	the	pancreatic	cancer	management	pathway	is	because	the	

evidence	base	surrounding	diagnostic	laparoscopy	is	debated	and	

clinical	practice	varies	yet	several	cost	effectiveness	and	cost	analysis	

studies	exist.	The	purpose	of	this	appendix	is	to	explore	the	quality	of	

methods	used	to	assess	the	cost	effectiveness	of	diagnostic	

laparoscopy	for	staging	pancreatic	cancer	to	ascertain	whether	

lessons	can	be	learned	regarding	modeling	under	uncertainty.	

	

The	role	of	diagnostic	laparoscopy	is	more	ambiguous	and	

controversial.	As	the	NICE	guidelines	(2018)	state,	laparoscopy	with	

laparoscopic	ultrasound	should	be	performed	where	resectional	

surgery	is	considered	to	be	a	possibility	but	small	volume	peritoneal	

and/or	liver	metastases	are	suspected.	Given	the	current	

understanding	of	pancreatic	cancer	as	a	systemic	disease,	some	

would	argue	that	micrometastatic	disease	should	be	suspected	in	all	

cases	of	potentially	resectable	PDAC.	Diagnostic	laparoscopy	has	a	

mortality	rate	less	than	0.1%	and	has	been	championed	as	a	safe	

means	of	detecting	small-volume	metastatic	disease,	not	visible	on	

pre-operative	scanning,	prior	to	proceeding	with	exploratory	

laparotomy	(Boyd	&	Nord	et	al.,	2000;	Garcea	et	al.,	2012).	However,	

with	advances	in	imaging	techniques,	the	role	of	diagnostic	

laparoscopy	has	become	controversial	with	some	arguing	that	this	
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should	no	longer	have	a	place	in	routine	practice	(Evans,	2018).	

Single-center	studies	have	reported	a	reduced	diagnostic	yield	in	

avoiding	unnecessary	exploratory	laparotomy	from	19%	to	9.5%	

(Tilleman	et	al.,	2004)	with	others	reporting	the	numbers	benefiting	

from	diagnostic	laparoscopy	over	the	past	decade	falling	to	between	

6%	and16%	(Garcea	et	al.,	2012).	Conversely	estimates	of	patients	

who	undergo	exploratory	laparotomy	but	are	found	to	have	non-

resectable	disease	have	been	reported	at	25%	to	40%	(Mayo	et	al.,	

2009),	despite	advances	in	preoperative	imaging	techniques	(Morris	

et	al.,	2015).	Detection	of	metastatic	disease	is	essential	in	preventing	

patients	from	undergoing	unnecessary	exploratory	laparotomy,	with	

associated	morbidity,	longer	hospital	stay	and	delay	in	commencing	

palliative	chemotherapy	(Jayakrisshnan	et	al.,	2015).	Furthermore,	

costs	associated	with	unnecessary	surgery	are	significant.	Resection	

with	and	without	complication	costs	£12006	and	£7083	respectively	

(Morris	et	al.,	2015;	NHS,	2012).	Exploratory	laparotomy	without	

resection	costs	£5378	and	£4487	with	and	without	complication	

respectively	(Morris	et	al.,	2015;	NHS,	2012).	Diagnostic	laparoscopy,	

including	histological	testing	of	tissue,	costs	£955	(Morris	et	al.,	

2015;	NHS,	2012).	In	a	setting	of	increasingly	limited	resources,	

optimisation	of	treatment	must	be	considered	in	both	terms	of	

patient	benefit	and	cost-effectiveness	(Jayakrisshnan	et	al.,	2015).		

	

A	recent	Cochrane	review,	whilst	concluding	that	diagnostic	

laparoscopy	could	reduce	unnecessary	exploratory	laparotomy	from	

40%	to	18%,	called	for	further	research	into	cost-effectiveness	of	

staging	diagnostic	laparoscopy	(Allen	et	al.,	2013).	Only	one	of	the	

studies	in	this	review	had	a	low	risk	of	bias	and	overall	the	quality	of	
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the	studies	was	low,	covering	a	time	frame	when	advances	were	

being	made	in	the	quality	of	CT	imaging	(Allen	et	al.,	2013).	None	of	

the	studies	included	patients	who	had	received	neoadjuvant	therapy.	

One	of	the	postulated	benefits	of	neoadjuvant	therapy	is	that	it	

eliminates	micrometastesis	(Asare	et	al.,	2016;	Lee	et	al.,	2016).	This	

raises	the	question	as	to	whether	diagnostic	laparoscopy	still	has	a	

role	in	the	neoadjuvant	context.	Recently	there	has	been	an	interest	

in	identifying	patients	whose	radiology	or	serology	places	them	at	

higher	risk	of	developing	occult	metastatic	disease	(Garcea	et	al.,	

2012).	Increased	diagnostic	yield	from	diagnostic	laparoscopy	has	

been	associated	with:	tumor	size	and	location	(Callery	et	al.,	2009;	

Stefandis	et	al.,	2006),	high	Ca	19-9	levels	(Alexakis	et	al.,	2015)	and	

pro-inflammatory	markers	(C-reactive	protein,	neutrophil-

lymphocyte	ratio,	platelet-lymphocyte	ratio,	hypoalbuminaemia)	

(Garcea	et	al.,	2012;	Smith	et	al.,	2008).		

	

A	total	of	four	papers	exploring	cost-effectives	of	diagnostic	

laparoscopy	for	staging	pancreatic	cancer	prior	to	exploratory	

laparotomy	were	identified,	one	of	which	explored	the	subject	matter	

in	relation	to	patients	receiving	neoadjuvant	therapy	(table	Fi).		
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Table	Fi:	Summary	of	Cost-Effectiveness	Studies	for	Staging	

Diagnostic	Laparoscopy	
Author/	
Country		

Study	
Population	

Costing	 Utility	and	time	
horizon	for	
outcomes	

Payments	
Excluded	

Methodology		

Jayakrisshnan	
et	al.	(2015)	
USA	

Included	
patients	
treated	in	
both	upfront	
surgery	and	
neoadjuvant	
pathways		
Single	Centre	

Third	party	
payer’s	
perspective	
based	on	
Medicare		
payments	
using	ICD-9	
codes	

Cost	per	QALMs.	
6	months	

Readmission	
post	surgery,	
complications	
chemo	and	
radiotherapy,	
end-of-life	care	

Decision	tree.	
ICER	calculated	per	
QALM.	WtP	set	at	
US$4166	per	QALM.	
Sensitivity	analysis		

Morris	et	al.	
(2015)	
UK		

Upfront	
surgery	
pathway	only:	
resectable	
PDAC	or	peri	
ampullary	
cancer	on	CT	
scan	
Single	Centre	

From	
National	
Schedule	of	
Reference	
Costs	2011-
12-	NHS	
trusts	and	
NHS	
foundation	
trusts:	NHS	
own	costs.		

Cost	per	QALYs.	
2	weeks,	3	
months	and	6	
months	

End-of-life-care,	
re-admission	

Decision	tree.	
MNBs:	mean	QALY	per	
patent	treated	x	decision	
maker’s	maximum	WtP	–	
net	cost	per	patient	of	
treatment.	
WtP	set	at	£20	000	–	£30	
000	per	QALYs.	
Sensitivity	analysis:	PSA.		

Enestvedt	et	al.	
(2008)	
USA	

Upfront	
surgery		
pathway:	
included	only		
resectable	
PDAC	defined	
by	CT	scan.		
Data	drawn	
from	OSCaR.		

OHSU	billing	
data,	fiscal	
year	2005-6	
using	CPT	
codes.	
Physician	
charges	from	
Medicare	and	
Medicaid	
Services	fees	
using	CPT	
code.		

Mean	charge	per	
patient	per	
ultization	
strategy	for	DL.	
Retrospective:	
1996-2003	

Subsequent	PC-
related	
procedures:	re-
operation,	
endoscopic	
interventions.	
End-of-life-care,	
complications.		

Analytic	charge	measure	
per	patient	per	
diagnostic	laparoscopy	
utilization	strategy	of	1)	
routine	2)	case-specific	
3)	no	utilization.	
No	sensitivity	analysis	
performed.		

Tapper	et	al.	
(2011)	
USA	

Resectable	or	
borderline	
resectable	
disease	on	
MRI	scan.		
Single	Centre	

Cost	incurred	
by	hospital	
based	on	ICD-
9	codes	and	
Emroy	
University	
Hospital	
financial	
department	
data.		

Cost	of	
procedure	/	total	
cost	of	
hospitalization	
US$	
Retrospective:	
2004-2008	

Assumed	no	
false	negatives	
or	complications	
from	DL.	Out	
patient	end-of-
life	care,	
readmission/	
complications.				

Formulae	to	determine	
number	of	metastases	
required	for	diagnostic	
laparoscopy	to	be	cost-
effective.		
No	sensitivity	analysis	
performed.		

QALMs	=	quality	adjusted	life	months,	QALYs	=	quality	adjusted	life	years,	ICER	=	incremental	cost-effectiveness	ratio,	

WtP=	Willingness	to	pay,	MNBs	=	monetary	net	benefits,	PSA=	Probabilistic	analysis,	OSCaR=	Oregon	State	Cancer	

Registry,	OHSU	=	Oregon	Health	and	Science	University		

	

Three	of	the	four	studies	recommended	routine	diagnostic	

laparoscopy	prior	to	exploratory	laparoscopy	(Morris	et	al.,	2015;	

Jayakrisshnan	et	al.,	2015;	Enestvedt	et	al.	(2008).	One	study	

concluded	that	diagnostic	yield	from	diagnostic	laparoscopy	was	

marginal	and	cost-effectiveness	was	poor	(Tapper	et	al.,	2011).	

However	these	conclusions	must	be	interpreted	with	some	caution.	
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Whist	Jayakrisshann	et	al.	(2015)	reported	savings	of	$10695	and	

$4158	per	quality	adjusted	life	months	(QALM)	in	upfront	surgery	

and	neoadjuvant	groups	respectively,	this	was	based	on	the	

probability	that	30-60%	of	patients	were	found	to	have	un-resectable	

disease	at	diagnostic	laparoscopy	(Jayakrisshnan	et	al.,	2015).	

However,	the	payer	perspective	used	in	this	study	fails	to	capture	

other	costs	and	factors	such	as	operating	room	time	and	equipment	

with	added	human	resources	and	disruption	to	efficacy	of	process	in	

the	operating	room	with	routine	setting	up	of	laparoscopic	

equipment	prior	to	exploratory	laparotomy	(Jayakrisshnan	et	al.,	

2015).	Furthermore,	when	sensitivity	analysis	was	performed	

diagnostic	laparoscopy	did	not	prove	cost	effective	at	a	diagnostic	

yield	of	less	than16%	(Jayakrisshnan	et	al.,	2015).	Juxtapose	this	with	

advances	in	pre-operative	imaging	and	neoadjuvant	therapy	and	the	

likelihood	of	advanced	disease	being	detected	at	diagnostic	

laparoscopy	seems	more	likely	to	continue	to	fall.		

	

This	point	is	also	valid	when	interpreting	the	results	of	Tapper	et	al.	

(2011)	who,	having	identified	that	palliative	procedures	were	less	

costly	(open	palliative	bypass:	$21957.18;	endoscopic	palliative	

procedure:	$11304.00)	than	pancreaticoduodenectomy	($26122.43),	

found	that	routine	diagnostic	laparoscopy	increased	costs	by	3.6%	

hence	cost-effectiveness	of	this	approach	depended	on	the	number	of	

patients	converting	to	endoscopic	palliation	(Tapper	et	al.,	2011).	

However,	this	study	did	not	perform	any	sensitivity	analysis	and	

failed	to	set	a	figure	at	which	diagnostic	laparoscopy	would	become	

cost-effective.	Instead	this	study	calculated	the	number	of	metastases	

that	would	need	to	be	identified	at	diagnostic	laparoscopy	to	justify	
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costs.	The	benefit	of	this	approach	in	relation	to	cost-effectiveness	is	

questionable	given	the	role	of	vascular	invasion	and	metastatic	

spread,	as	opposed	to	a	set	number	of	metastases,	determining	

resectability.	Although	this	study	did	conclude	that	diagnostic	

laparoscopy	held	minimal	diagnostic	yield	and	marginal	cost-

effectives	(Tapper	et	al.,	2011),	any	presumed	cost-effectives	of	

diagnostic	laparoscopy	drawn	from	these	results	would	be	

questioned	as	analysis	was	biased	towards	over	estimating	cost-

effectiveness	of	diagnostic	laparoscopy.	Several	arguably	incorrect	

assumptions	were	made.	Firstly	that	diagnostic	laparoscopy	detected	

all	metastatic	disease	when	7%-35%	of	negative	diagnostic	

laparoscopies	have	been	reported	to	have	metastatic	disease	at	

exploratory	laparotomy	(Tapper	et	al.,	2011;	Vargas	et	al.,	1995).	

Secondly,	diagnostic	laparoscopy	was	assumed	to	have	a	

complication	rate	of	0%	and	did	not	prolong	hospital	stay	when	

minor	and	major	complication	rates	have	been	reported	at	1.7%-

5.1%	and	6.7%	and	2.3%	respectively	(Tapper	et	al.,	2011;	Vargas	et	

al.,	1995).	Further	potential	bias	lies	in	the	assumption	that	all	non-

diagnostic	laparoscopy	patients	who	received	palliative	endoscopic	

intervention	did	so	as	inpatient	whilst	all	patients	who	underwent	

diagnostic	laparoscopy	received	palliative	interventions	as	

outpatients	(Tapper	et	al.,	2011).	Finally	the	generalisability	of	

findings	from	this	retrospective	study	are	questionable	as,	although	

this	was	population	based,	costs	were	based	on	single	center	data	

(Tapper	et	al.,	2011).			

	

Morris	et	al.	(2015)	reported	that	although	diagnostic	laparoscopy	

and	direct	exploratory	laparotomy	had	similar	costs	(£7470	versus	
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£7480),	the	cost	of	diagnostic	laparoscopy	(£995)	was	offset	by	

avoiding	negative	exploratory	laparotomy.	Diagnostic	laparoscopy	

also	had	improved	quality-adjusted-life-years	(QALYs)	(0.346	versus	

0.337)	with	63-66%	cost-effectiveness	with	willingness-to-pay	set	at	

between	£20000	and	£30000	per	QALY	(Morris	et	al.,	2015).	

However,	this	could	be	misinterpreted	as	the	mean	QALY	gain	

(0.346-0.337=0.0009),	although	statistically	significant,	is	small	and	

less	than	the	minimal	clinically	important	difference	which,	in	health	

state	utility	values,	ranges	from	0.010	to	0.048	(Morris	et	al.,	2015).	

Furthermore,	when	diagnostic	laparoscopy	took	place	on	the	same	

admission	as	planned	exploratory	laparotomy,	the	cost	increased	to	

£8224	as,	although	cost	of	hospital	stay	was	avoided	if	un-resectable	

disease	was	found,	the	cost	associated	with	booked	theatre	time	was	

not	(Morris	et	al.,	2015).		

	

Enestvedt	et	al.	(2008)	supported	either	case-specific	or	routine	

diagnostic	laparoscopy	as	they	found	it	did	not	add	significant	

expense	based	on	resource	utilisation.	However,	the	generalisability	

of	these	findings	are	limited	by	costs	drawn	from	a	single	center	that	

do	not	represent	either	incurred	or	reimbursed	costs	(Enestvedt	et	

al.,	2008).	Furthermore	no	sensitivity	analysis	was	performed	to	

prove	their	cost-effectiveness	argument	considering	that	whilst	

diagnostic	laparoscopy	avoided	exploratory	laparotomy	in	28%	of	

patients,	only	8%	of	those	who	had	exploratory	laparotomy,	and	

none	who	had	diagnostic	laparoscopy,	had	un-resectable	disease,	

whilst	26%	of	cases	deemed	resectable	at	diagnostic	laparoscopy	

were	found	to	have	metastatic	disease	at	exploratory	laparotomy	

(Enestvedt	et	al.,	2008).	This	questions	both	diagnostic	yield	and	
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cost-effectiveness	of	diagnostic	laparoscopy	in	this	study	population.	

Furthermore	additional	costs	such	as	human	resources,	additional	

theatre	time	etcetera	were	not	factored	into	their	analysis.							

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 656	

Appendix	G		

	

Critical	Analysis	of	Cost-Effectiveness	Studies	of	Neoadjuvant	

Therapy	for	Solid	Organ	Malignancies.		

		

This	appendix	supports	section	2.2.2	and	provides	a	detailed	critical	

analysis	of	each	cost-effectiveness	analysis	study	for	neoadjuvant	

therapy	for	solid	organ	malignancies.	As	the	existing	body	of	

evidence	for	the	management	of	pancreatic	cancer	is	so	limited	this	

broader	critical	analysis	was	undertaken	to	assess	whether	the	

quality	of	modeling	improved	where	the	evidence	base	surrounding	

neoadjuvant	therapy	for	other	malignancies	was	better	established.		

	

Gordon	et	al.	(2012).	Modeling	the	Cost-Effectiveness	of	Strategies	for	

treating	Oesophageal	Adenocarcinoma	and	High-grade	Dysplasia.		

	

Gordon	et	al.	(2012)	aimed	to	establish	cost-effectiveness	of	current	

strategies	for	treating	oesophageal	adenocarcinoma	and	high-grade	

dysplasia	using	a	decision-analytic	model	with	results	reported	in	

QALYs.	For	T2-T4	cancers	decision	arms	included	no	surgery,	

surgery	without	neoadjuvant	therapy	and	surgery	after	neoadjuvant	

therapy.	The	numbers	in	the	non-surgery	group	who	received	

chemoradiotherpy	or	no	treatment	were	not	made	clear.	The	

neoadjuvant	therapy	and	chemoradiotherapy	regimes	used	were	also	

not	clearly	defined.	Adjuvant	therapy	post	surgery	was	also	not	

included	as	a	separate	treatment	arm.		
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Data	used	to	populate	the	model	was	based	on	Australian	Cancer	

Study	Clinical	Follow-up	Study	(ACS)	and	prospectively	collected	

databases	from	major	oesophageal	cancer	units	on	Adelaide	and	

Brisbane.	Overall	2000	patients	were	included	with	1000	having	

undergone	oesophagectomy.	However	ACS	only	included	patients	

with	invasive	tumors,	potentially	biasing	data	(Gordon	et	al.,	2012).	

Treatment	probabilities	were	calculated	from	literature	and	

Australian	all	cause	mortality	data.	However,	literature	search	

criteria	and	inclusion	criteria	for	studies	on	which	these	were	based	

were	not	stated.	Remaining	gaps	in	evidence	were	populated	by	

expert	opinion	from	five	surgeons	therefore	introducing	potential	

bias.	

	

Costs	were	calculated	from	patient-level	resource	data	and	priced	

using	national	price	schedules	and	public	hospital	clinical	costings.	

Costs	included	all	follow-up	costs	and	mean	cost	of	oesophagectomy	

included	intensive	care	unit	admission	and	in	hospital	adverse	

events.		Costs	excluded	were	not	stated	but	readmission	and	adverse	

events	associated	with	chemo/radiotherapy	and	palliative	care	and	

indirect	costs	were	not	presented	in	the	results.	Utility	scores	were	

obtained	from	literature	review	and	used	to	adjust	estimates.	

Sensitivity	analysis	was	then	undertaken	to	address	potential	

uncertainty	in	these	estimates.		Incremental	net	benefit	was	

calculated	over	a	5year	period	for	each	alternative	management	

scenario,	one	of	which	related	to	neoadjuvant	therapy	with	FDG-

PET/CT	to	assess	response	to	neoadjuvant	therapy.		
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Results	regarding	the	role	of	neoadjuvant	therapy	compared	to	

surgery	first	were	ambiguous.	Net	benefit	of	adding	FDG-PET/CT	is	

highlighted	at	$805;	95%	UI	$59-$1,596.	However,	the	focus	was	on	

benefit	of	earlier	detection	with	no	assessment	of	costs	associated	

with	this	strategy.	There	was	no	assessment	of	the	possibility	of	

neoadjuvant	therapy	avoiding	unnecessary	surgery	or	impacting	on	

adverse	events	post	operatively	et	cetera.	No	conclusion	can	

therefore	be	drawn	from	this	paper	on	cost-effectiveness	analysis	of	

neoadjuvant	therapy.	

	

Hultman	et	al.	(2012).	Costs	and	clinical	outcome	of	neoadjuvant	

systemic	chemotherapy	followed	by	cytoreductive	surgery	and	

hyperthermic	intraperitoneal	chemotherapy	in	peritoneal	

carcinomatosis	from	gastric	cancer.		

	

This	study	set	out	to	evaluate	cost	and	clinical-effectiveness	of	

neoadjuvant	therapy	prior	to	cytoreductive	surgery	followed	by	

hyperthermic	intraperitoneal	chemotherapy	and/or	early	

postoperative	intraperitoneal	chemotherapy	compared	to	palliative	

systemic	chemotherapy	alone.	Survival	was	calculated	by	Kaplan-

Meir	method	with	costs	estimated	with	Bootstrap	resampling	

method	and	presented	in	US	$	for	QALYs	gained.	All	interventions	

were	comprehensively	described.		

	

Neoadjuvant	therapy	study	population	was	small	(n=10)	and	drawn	

from	a	single	center	without	randomisation	or	blinding.	Systemic	

chemotherapy	group	(n=10)	were	selected	as	matched	control	

patients	from	an	ongoing	randomised	control	trial	(GATAC	trial).	
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Selection	was	blinded	to	response	and	survival	time.	This	meant	that	

within	this	group	patients	were	randomized	to	one	of	two	systemic	

chemotherapy	regimes	under	GATAC	trial	protocol,	which	could	

potentially	skew	data	of	this	study.	Both	groups	were	matched	for	

age,	gender,	performance	status,	tumor	extent	and	ASA	grade.		

	

Costs	were	based	on	Uppsala	University	Hospital	data	and	Swedish	

National	Pharmacy	2008	pricelist	and	a	detailed	list	of	all	pre-

treatment,	treatment,	and	post-treatment	costs	were	taken	from	

retrospective	review	of	medical	records	for	each	patient.	No	details	

were	given	about	costs	excluded	but	costs	of	palliative/	hospice	care	

and	indirect	costs	are	not	detailed.	No	discounting	of	costs	was	

undertaken	due	to	short	survival	times	of	these	patients.		

	

No	data	was	available	on	quality-of-life	or	health	utility,	therefore	

Health	Utility	Weights	(HUW)	were	estimated	on	World	Health	

Organisation	(WHO)	performance	status	or	Karnofsky	Performance	

Score	(KPS).	No	quality	of	life	data	was	collected	during	this	study.		

	

Results	from	this	study	reported	costs	per	life-year-gained	$166,716	

and	QALY	gained	$	175,164.	However,	sensitivity	analysis	showed	

that	if	complication	rates	from	surgery	fell	by	50%	then	cost	of	

treatment	in	neoadjuvant	therapy	group	would	fall	to	$12400	

(Hultman	et	al.,	2012).	This	highlights	a	fundamental	limitation	of	

this	study	in	its	small	sample	size	as	one	patient	alone	in	the	

neoadjuvant	therapy	group	had	very	high	treatment	costs	($487,	

756)	due	to	complications	hence	skewing	results	(Hultman	et	al.,	

2012).		
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Vitale	et	al.	(2010).	Use	of	Sorafenib	in	Patients	with	Hepatocellular	

Carcinoma	Before	Liver	Transplantation:	a	cost-benefit	analysis	while	

awaiting	data	on	Sorafenib	safety.	

	

This	study	used	Markov	decision	model	to	assess	cost-effectiveness	

of	Sorafenib	prior	to	liver	transplant	for	patients	with	Hepatocellular	

Carcinoma	(HCC)	compared	to	no	bridging	therapy.	Endpoints	were:	

delay	in	HCC	progression	as	hazard	ration	(HR),	survival	in	quality-

adjusted-life-days	(QALDs),	transplant	probability,	cost	utility	ratio,	

willingness-to-pay	and	incremental	net	health	benefit	(INHB).		

	

The	model	was	populated	with	data	from	major	studies	and	

randomised	controlled	trials	although	search	and	inclusion	criteria	

were	not	given.	Costs,	in	euros,	were	taken	from	current	payments	

within	Italian	public	healthcare	system.	Indirect	costs	were	reported	

as	being	excluded.	Given	that	this	study	was	undertaken	whilst	

awaiting	data	on	Sorafenib	safety	potential	costs	of	adverse	events	

associated	with	this	drug	were	not	considered.	Equally	the	impact	of	

recurrence	rates	post	liver	transplant	was	not	considered.	Where	

assumptions	were	made	in	the	model	they	were	all	justified	on	best	

available	evidence	in	the	literature.	No	robust	data	was	available	on	

tumor	stage	of	waiting	list	patients	at	time	of	drop	out.	Assumptions	

were	therefore	made	based	on	current	guidelines.	This,	and	all	other	

assumptions	made,	were	included	in	the	Monte	Carlo	probabilistic	

sensitivity	analysis.	
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Results	reported	cost-utility	ratio	€197	per	QALD	with	INHB	37	

QALDs,	assuming	willingness-to-pay	(WtP)	was	€346	per	QALD	

(Vitale	et	al.,	2010).	INHB	continued	to	rise	most	significantly	over	

the	first	6	months	on	waiting	list.	The	report	therefore	concluded	

that	neoadjuvant	therapy	is	cost-effective	compared	to	no	treatment	

for	T2-HCC	patients	awaiting	LT	for	up	to	6	months	(Vitale	et	al.,	

2010).	However,	in	some	ways	this	study	is	premature	in	its	

conclusions.	Benefits	of	neoadjuvant	therapy	with	Sorafenib	could	be	

underestimated	as	more	contemporary	studies	have	shown	declining	

HR	on	time	to	progression	therefore	the	HR	in	this	study	may	be	

lower	than	assumed	(Vitale	et	al.,	2010;	Gubanski	et	al.,	2010).	This	

model	did	not	consider	potentially	beneficial	effects	of	neoadjuvant	

therapy	on	biological	tumor	aggressiveness	thus	post	LT	

reoccurrence	rate.	Conversely	as	little	was	know	about	the	negative	

impact	of	Sorafenib	on	postoperative	complications	or	its	toxic	

effects,	particularly	pertinent	in	transplant	patients	who	will	be	

immunocompromised,	costs	could	have	been	underestimated	and	

benefits	over	estimated	(Vitale	et	al.,	2010).		

	

Ercolani	et	al.	(2011).	Effectiveness	and	cost-effectiveness	of	peri-

operative	versus	post-operative	chemotherapy	for	resectable	colorectal	

liver	metastases.		

	

A	Markov	decision	model,	populated	with	data	from	a	detailed	

literature	search	with	specified	inclusion	criteria	spanning	10years,	

was	used	to	determine	cost-effectiveness	of	neoadjuvant	therapy	

compared	to	upfront	surgery	followed	by	adjuvant	chemotherapy	for	

resectable	colorectal	liver	metastases.	Interventions	were	clearly	
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detailed	and	outcomes	reported	in	quality-adjusted-life-months	

(QALMs),	incremental	cost-effectiveness	ratio	(ICER),	HR	of	

reoccurrence,	willingness-to-pay,	and	recurrence-free-survival	(RFS).	

	

Costs	were	in	euros	and	taken	from	the	Italian	public	healthcare	

system	2010	and	drug	costs	were	based	on	wholesale	costs	as	

recommended	by	pharmoco-economic	analysis.	Costs	excluded	were	

not	stated	but	indirect	costs	were	not	included	in	analyses.	However,	

potential	complications	of	both	treatment	approaches	and	palliative	

treatments	were	included.	In	particular	literature	has	highlighted	

increased	post-operative	complications	with	neoadjuvant	therapy	

and	this	was	factored	into	the	model	in	the	form	of	morbidity	

occurrence	and	post-operative	hospital	stay	for	the	neoadjuvant	

therapy	group	(Ercolani	et	al.,	2011).			

	

Univariant	sensitivity	analysis	showed	that	3-year	RFS	and	cost	of	

hepatectomy	were	main	determinants	of	cost-effectiveness	of	

neoadjuvant	therapy.	3-year	RFS	of	36.8%	=	ICER	€448.1/QALM	and	

3-year	RFS	of	31.5%	=	ICER	€8075/QALM	(Ercolani	et	al.,	2011).	

Two-way	sensitivity	analysis	showed	that	neoadjuvant	therapy	was	

cost-effective	if	RFS	was	equal	to	or	less	than	25%	(Ercolani	et	al.,	

2011).	Overall	neoadjuvant	therapy	was	deemed	cost-effective	as,	

although	increased	life	expectancy	was	small,	costs	of	neoadjuvant	

therapy	were	also	small	with	ICER	below	WtP.	Furthermore	the	costs	

of	neoadjuvant	therapy	were	offset	by	savings	from	patients	

becoming	unresectable	hence	avoiding	costs	of	hepatectomy	

(Ercolani	et	al.,	2011).	However	in	subgroups	with	favorable	tumor	

behaviour	savings	were	minimal	which	highlights	an	area	were	
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further	research	is	needed	(Ercolani	et	al.,	2011).	As	with	all	

modeling	studies	results	are	limited	by	the	quality	of	literature	

available.						

	

Poston	et	al.	(2001).	Costs	of	neoadjuvant	chemotherapy	and	surgery	in	

patients	with	liver	metastases	from	advanced	colorectal	cancer.		

	

This	study	used	a	simple	decision	model	to	compare	a	theoretical	

cohort	of	2000	patients	with	advanced	colorectal	cancer	and	

unresectable	liver	metastases	being	treated	with	oxaliplatin	+	5-

FU/FA	versus	5-FU/FA	alone.		Outcomes	measure	included:	mean	

overall	survival	estimates,	drug	acquisition	costs,	costs	associated	

with	surgery	and	health-benefits	measured	as	LYG.		

	

Resectability	rates	were	taken	from	the	de	Garmont	RCT	and	set	at	

11.4%	and	4.1%	for	the	oxaliplatin	+	5-FU/FA	and	5-FU/FA	arms	

respectively.	Mean	post-surgical	survival	was	estimated	from	Kaplan-

Meier	survival	curves	taken	from	a	single	retrospective	study	on	

reduction	of	tumour	size	in	patients	treated	with	oxaliplatin	+	5-

FU/FA.	Patients	who	were	still	alive	at	the	end	of	the	follow-up	

period	were	given	an	over	all	survival	assumed	to	be	the	same	as	that	

of	age	matched	normal	population.	Whilst	this	may	represent	an	

overestimate	in	survival,	given	recurrence	rates,	this	assumption	was	

tested	in	sensitivity	analysis	by	reducing	length	of	survival	by	25%	

(Poston	et	al.,	2001).	Again	however,	this	was	not	calculated	based	on	

best	available	evidence	on	reoccurrence	rates.		
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Costs	were	gathered	from	a	variety	of	sources.	6-month	

chemotherapy	costs	were	taken	from	unpublished	economic	

evaluation	of	the	de	Garmont	data.	Costs	of	surgery	came	from	The	

Royal	Liverpool	University	Hospital.	Costs	of	surgery	included:	pre-

operative	assessment,	surgery,	post-operative	intensive	care,	

inpatient	hospital	stay,	and	out-patient	clinical	appointments.	Costs	

excluded	were:	drug	administration	costs,	all	other	post-operative	

costs	including	further	chemotherapy/surgery,	palliative	care	and	

indirect	costs.	Costs	were	not	discounted	in	cost-effectiveness	

analysis.	However,	given	that	mean	survival	was	estimated	at	9.0	and	

1.7	years	for	each	arm,	yet	the	study	used	a	6-month	time	horizon,	

overall	cost	for	each	arm	could	be	over	estimated	(Poston	et	al.,	

2001).		

	

Results	from	this	study	showed	that	ICER	of	oxaliplatin	+	5-FU/FA	

compared	to	5-FU/FA	alone	of	£11,985	with	sensitivity	analysis	

giving	an	ICER	of	£5489-£15,624	per	LYG	with	combination	

treatment	increasing	resectability	to	7.3%	to	17.5%	(Poston	et	al.,	

2001).		

	

Van	der	Brink	et	al.	(2004).	Cost-Utility	Analysis	of	Preoperative	

Radiotherapy	in	Patients	with	Rectal	Cancer	Undergoing	Total	

Mesorectal	Excision	(TME):	a	study	of	the	Dutch	Colorectal	Cancer	

Group.		

	

Markov	model	populated	with	data	obtained	from	multicentre	RCT	

(Kapiteljn	et	al.,	1999)	was	used	to	compare	cost	and	QALY	of	

patients	undergoing	TME	with	and	without	neoadjuvant	therapy.	
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Outcomes	were:	life	expectancy,	lifetime	costs	per	patient,	QALY	and	

ICER.		

	

Probabilities	and	transition	rates	for	the	model	were	established	

using	Gompertz	distribution	to	allow	increases	and	decreases	with	

time.	For	mortality	rates	proportional	hazards	for	neoadjuvant	

therapy	and	age	were	considered.	Non-significant	proportional	

hazards	(PH)	were	only	excluded	if	P	value	>	0.05	and	sensitivity	

analysis	was	performed	on	all	included	and	excluded	estimated	PH	

and	on	PH	of	neoadjuvant	therapy	for	local	reoccurrence	rate.	

Sensitivity	analysis,	covering	a	wide	range	of	possible	outcomes,	was	

also	performed	by	R-status	to	investigate	benefit	of	improved	

diagnostics.		

	

One	potential	source	of	bias	was	the	fact	that	patients	with	co-

morbidities	were	excluded	from	the	RCT	(van	der	Brink	et	al.,	2004;	

Kapiteljn	et	al.,	1999).	This	was	reflected	in	mortality	in	the	study	

population	being	lower	than	average	Dutch	mortality	(van	der	Brink	

et	al.,	2004).	However,	to	counter	this,	long-term	mortality	rates	

were	taken	from	Dutch-life	tables.	Reoccurrence	rates	were	also	

varied	over	both	groups	to	assess	all	potential	outcomes	in	QALY	and	

cost-effectiveness.		

	

This	was	the	only	study	that	used	quality	of	life	data	collected	from	

the	study	population	at	3,6,9,	12,	18	and	24	months	post	surgery	by	

questionnaire	as	well	as	additional	qualitative	interviews	with	112	

patients	in	the	cost-utility	analysis	(CUA)	group,	although	selection	to	

this	group	was	not	detailed.			
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Costs	were	taken	from	price	index	rate	for	Dutch	healthcare	sector	

and	included,	from	health	care	perspective:	primary	treatment,	

continued	care	and	recurrence	treatment.	For	societal	perspective	

they	included:	informal	care	costs,	travel	costs,	time	costs	and	out-of-

pocket	costs	calculated	from	diaries	from	the	CUA	population.	Time	

and	travel	costs	were	based	on	average	duration	and	distances	for	

different	types	of	healthcare	in	Netherlands.	Hospital	time	costs	were	

based	on	8hours/day	and	valuation	of	time	was	assessed	in	CUA	

sample	using	WtP	model.		

	

Results	showed	that	loss	of	quality-of-life	due	to	NAT	was	

outweighed	by	increased	life	expectancy	(0.67	years,	0.39	QALYs	

costing	$9800	per	patient)	(van	der	Brink	et	al.,	2004).		

	

The	strengths	of	this	study	are	that	it	collects	prospective	data	

alongside	a	RCT	with	a	large	sample	population,	and	sensitivity	

analysis	covers	a	wide	range	of	probabilities	and	possible	outcomes.	

However,	generalisation,	as	with	all	studies	is	a	potential	issue.	Also	

cost-effectiveness	was	measured	within	clinical	trial	and	so	may	be	

different	if	applied	routinely,	considering	co-morbidities	were	

excluded	from	the	RCT	(van	der	Brink	et	al.,	2004).	Whilst	exclusion	

of	non-significant	PH	avoided	a	type	1	error,	this	could	have	

potentiated	a	type	2	error	(van	der	Brink	et	al.,	2004).	However,	as	all	

PH	were	included	in	sensitivity	analysis	ICER	remained	within	

acceptable	limits.		
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Rocconi	et	al.	(2005).	Management	strategies	for	stage	IB2	cervical	

cancer:	a	cost-effectiveness	analysis.		

	

Decision	analysis	model,	populated	by	data	from	literature	review,	

was	created	to	compare	cost-effectiveness	of	three	management	

strategies	of	stage	1B2	cervical	cancer:	1)	radical	hysterectomy	with	

pelvic	and	para-aortic	lymphadenectomy	plus	tailored	adjuvant	

chemoradiotherapy	(RHYST)	2)	primary	chemoradiotherapy	for	all	

patients	(CTRT)	and	3)	neoadjuvant	therapy	followed	by	radical	

hysterectomy	and	tailored	adjuvant	chemoradiation	(NAC).	

Outcomes	were	measured	in	5year	disease	free	survival	and	cost	per	

cure/	survivor.	Chemotherapy	regimes	were	not	clearly	specified	but	

presumed	to	be	the	same	in	this	theoretical	model.		

	

Literature	review	search	terms	and	inclusion	criteria	were	not	stated	

but	where	possible	phase	III	and	II	trials	were	used.	However,	

estimates	from	literature	varied	widely	and	it	was	not	made	clear	

how	this	study	decided	upon	estimates	used	given	such	variations.	

For	example,	it	was	estimated	that	40%	needed	adjuvant	therapy	

post	surgery	when	literature	reports	this	percentage	to	range	from	

34	to	84%	(Rocconi	et	al.,	2005;	Namkoong	et	al.,	1995;	Landoni	et	

al.,	1997;	Delgado	et	al.,	1989;	Rettenmaier	et	al.,	1989).	In	particular	

5year	DFS	was	used,	yet	in	the	literature	for	NAC,	few	studies	have	

follow-up	beyond	2	years	(Rocconi	et	al.,	2005;	Landoni	et	al.,	1997;	

Serur	et	al.,1997;	Eddy	et	al.,	1995;	Kim	et	al.,	1988).	5year	disease	

free	survival	was	estimated	at	70%	on	the	basis	that	existing	

literature	reported	5year	disease	free	survival	to	as	good	as	RHYST	

and	CTRT	which	was	therefore	also	estimated	at	70%	to	avoid	bias	
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(Rocconi	et	al.,	2005).	Similarly	it	was	estimated	that	25%	of	NAC	

received	adjuvant	therapy,	based	on	the	assumption	that	NAC	

downstages	tumors,	and	that	65%	in	NAC	would	need	no	further	

treatment.	However	no	reference	is	given	to	justify	these	estimates.	

Also	to	avoid	bias,	probability	of	aborted	surgery	and	positive	para-

aortic	nodes	were	considered	equal	to	RHYST	strategy	but	these	

estimates	were	not	references	to	best	available	data.	These	estimates	

were	however	included	in	one-way	sensitivity	analysis.	Only	grade	3	

and	4	complications	were	included	in	this	model	and	costs	related	to	

treatment-associated	complications	were	excluded	from	analysis.	

	

Laboratory	and	procedure	costs	were	derived	from	consultation	with	

University	of	Alabama	at	Birmingham	Pharmacy	department.	All	

other	charges	were	estimates	from	adjusting	local	charges	using	cost-

to-charge	ration	of	60%.	Excluded	costs	were	indirect	costs	and	

reimbursements.	Analysis	was	from	a	third	party	payer	perspective.	

	

This	study	concluded	that	cost	per	cure	was	reasonable	but	policy	

makers	would	need	accept	WtP	$500,000	per	survivor	for	NAC	or	

$2.2million	per	survivor	in	CTRT.	Calculations	of	WtP	were	not	given	

in	this	study	but	these	figures	are	higher	than	widely	reported	limits	

of	WtP.			

	

This	model	was	narrow	in	its	scope	and	cost	to	diagnose	and	treat	

complications	were	not	included	(Rocconi	et	al.,	2005).	Each	cohort	

was	assumed	to	have	node-negative	disease	as	all	patients	had	pre-

operative	CT	scans	which	neglects	estimates	on	accuracy	of	CT	

scanning.	Also	patients	with	intermediate	risk	factors	were	not	
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included	as	the	role	of	chemoradiation	in	these	patients	has	been	

debated	(Rocconi	et	al.,	2005).	Quality	of	life	was	also	not	considered	

in	this	analysis.		

	

Attard	et	al.	(2015).		Cost-effectiveness	analysis	of	neoadjuvant	

pertuzumab	and	trastuzumab	therapy	for	locally	advanced,	

inflammatory,	or	early	HER2-positive	breast	cancer	in	Canada.	

	

A	three	health	state	Markov	model	(event-free,	relapse	free	and	

dead)	was	used	to	conduct	a	cost-utility	analysis	of	data	separately	

from	the	Neosphere	trail	(Glannl	et	al.,	2012)	and	TRYPHAENA	trial	

(Schneeweiss	et	al.,	2013)	to	assess	cost-effectiveness	of	neoadjuvant	

pertuzumab	and	trastuzumab	for	locally	advanced,	inflammatory	or	

early	HER2-positive	breast	cancer.	All	interventions	were	described	

in	full.		

	

The	model	was	populated	with	data	from	NeoSphere	and	

TRYPHAENA	(Schneeweiss	et	al.,	2013)	trials.	However,	the	

Neosphere	trial	was	conducted	to	isolate	the	treatment	effect	of	

pertuzumab	as	pre-operative	agent.	Yet	in	the	FEC	arm	of	this	trail	

patients	were	meant	to	receive	this	agent	post-operatively	but	in	

clinical	practice	received	the	agent	pre-operatively.	This	questions	

applicability	of	findings	to	clinical	practice.	Also	the	TRYPHAENA	

data	is	limited	by	the	lack	of	a	comparator	arm	without	pertuzumab	

(Attard	et	al.,	2015).	Data	was	not	available	on	event-free-survival	

and	overall	for	those	who	did	not	achieve	complete	pathological	

response	with	neoadjuvant	pertuzumab,	for	the	entirety	of	the	28-

year	time	horizon	(Attard	et	al.,	2015).	This	data	was	taken	from	a	
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single	retrospective	study	analysing	HER-2	patients	treated	with	

neoadjuvant	trastuzumab	and	chemotherapy.	Hence	the	model	

assumed	that	for	this	group,	events	free	and	overall	survival	were	

dependent	on	achieving	complete	pathological	response	or	not	

(Attard	et	al.,	2015).		Survival	beyond	a	10year	period	was	

extrapolated	from	survival	study	published	by	Kim	et	al.	(1988)	Once	

again	reliance	on	a	single	study	on	which	to	base	model	estimates	

introduced	potential	bias.	Quality	of	life	data	used	adjusted	health	

utilities	from	breast	cancer	specific	systematic	review	but	utility	

decrements	for	adverse	events	were	not	included	(Attard	et	al.,	

2015).	

	

Costs	included	direct	medical	costs:	all	drugs,	administration,	

adverse	event	management,	supportive	care	and	subsequent	therapy.	

Costs	were	taken	from	published	literature	and	Ontario	cost	database	

and	were	inflated	to	2014	Canadian	dollars.	Costs	were	discounted	at	

a	rate	of	5%	per	anum.	Analysis	was	from	the	payer’s	perspective.			

	

Results	from	the	NeoSphere	trial	showed	the	addition	of	neoadjuvant	

pertuzumab	had	an	incremental	cost	$23,658	per	LYG	and	$25,388	

per	QALY	while	TRYPHAENA	analysis	predicted	incremental	cost	of	

$43,047	per	LYG	and	$46,196	per	QALY	(Attard	et	al.,	2015).							

	

Poonawalla	et	al.	(2015).	Cost-effectiveness	of	neoadjuvant	

chemotherapy	versus	primary	surgery	in	elderly	patients	with	

advanced	ovarian	cancer.	
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This	retrospective	cohort	study	analysed	data	from	the	Surveillance,	

Epidemiology	and	End	Results	(SEER)-Medicare	linked	database	to	

establish	cost-effectiveness	of	NAT	versus	primary	debulking	surgery	

for	patients	aged	over	65	years	with	advanced	stage	III/IV	epithelial	

ovarian	cancer.	Analysis	was	from	payer	perspective	using	Medicare	

costs.	Total	healthcare	costs	were	included.	Excluded	costs	were:	

indirect	costs	and	out-of-pocket	costs	(deductibles	or	co-payments)	

hence	this	study	lacked	an	overall	societal	evaluation.	A	phase-of-

care	approach	was	used	to	estimate	cumulative	treatment	costs,	and	

effectiveness	was	measured	as	years	of	survival,	ICER	and	

propensity-score-adjusted	net	monetary	benefit	regression	to	

estimate	cost-effectiveness	per	life	year	gained.		

	

Within	the	study	population	12%	(n=591)	received	neoadjuvant	

therapy	and	88%	(n=4252)	received	primary	debulking	surgery	with	

or	without	adjuvant	therapy.	There	was	no	randomisation	between	

treatment	groups.	Although	propensity	score	was	used	to	adjust	for	

baseline	characteristics	differences	between	the	two	groups	

(Poonawalla	et	al.,	2015),	there	was	clearly	a	significant	variation	in	

the	population	size.	Neoadjuvant	therapy	regimes	were	not	stated	

and	the	study’s	definition	of	primary	debulking	surgery	was	not	

made	clear.				

	

Analysis	did	not	further	divide	the	upfront	surgery	group	into	those	

receiving	adjuvant	therapy.		This	introduces	bias	considering	years	of	

survival	was	a	key	outcome	and	the	potential	impact	complications	of	

adjuvant	treatment	might	have	had	on	cumulative	costs.	Survival	

analysis	was	used	to	reweight	estimates	for	mean	healthcare	costs.		
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This	could	have	introduced	bias	in	the	presence	of	censored	data	

(Poonawalla	et	al.,	2015).	Interestingly	mean	costs	in	both	groups	

increased	when	weighting	with	survival,	indicating	observed	costs	

were	underestimated	(Poonawalla	et	al.,	2015).	Specifically	there	

was	an	increase	in	continuing-phase	costs,	which	could	be	explained	

by	high	recurrence	rates	(Poonawalla	et	al.,	2015).		

	

Results	showed	that	neoadjuvant	therapy	had	an	ICER	of	$174,173	

for	0.1	LYG	(Poonawalla	et	al.,	2015).	In	high-risk	patients	ICER	for	

neoadjuvant	therapy	was	$42,987	and	0.8	LYG.	No	adjustment	for	

quality-of-life	was	made.	Results	are	limited	in	their	generalisability	

based	on	the	study	inclusion	criteria	(Poonawalla	et	al.,	2015).	The	

study	also	carries	limitation	from	the	database	such	as:	missing	

claims	and	incomplete	data	reporting	(Poonawalla	et	al.,	2015).	Key	

information	missing	from	the	database	included	tumor	distribution	

and	extent	of	resection,	which	has	a	significant	impact	on	prognosis.		

	

Rowland	et	al.	(2015).	Cost-utility	comparison	of	neoadjuvant	

chemotherapy	versus	primary	debulking	surgery	for	treatment	of	

advanced-stage	ovarian	cancer	in	patients	65	years	old	or	older.	

	

A	5-year	Markov	Model	was	populated	with	data	from	randomised	

controlled	trials,	EORTC	55971(Vergote	et	al.,	2010)	and	GOG	152	

(Ozols	et	al.,	2003)	trials,	to	evaluate	cost-effectiveness	of	NAT	

relative	to	SF	for	stage	III/IV	ovarian	cancer	in	patients	aged	65	years	

and	over.	Outcome	measures	included:	overall	survival,	surgical	

complications,	probability	of	treatment	cost	and	quality-of-life.	

Treatment	costs	were	taken	from	Medicare	with	hospital	costs	
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estimated	from	Agency	for	Healthcare	Quality	and	Research’s	

Healthcare	Cost	and	Utilisation	Project.	CEA	was	from	healthcare	

system	perspective.	Excluded	costs	included	surveillance	costs,	

chronic	complications	and	indirect	costs.	All	interventions	were	

clearly	detailed.		

	

Complication	estimates	rates	were	based	on	Medicare	data	and	not	

on	RCTs.	This	introduces	bias	as	complication	rates	of	surgery	could	

be	underestimated	and	patients	with	more	co-morbidities	or	disease	

burden	may	have	preferentially	received	neoadjuvant	therapy.	

Chronic	complications	were	assumed	to	be	equal	across	both	groups	

therefore	were	excluded.	No	evidence	was	referenced	to	support	this	

assumption.	This	introduces	further	bias	as	cost	associated	with	

increased	chronic	complications	being	more	prevalent	could	affect	

overall	results.	Therefore	overall	cost	assumptions	are	likely	to	

underestimate	cost	difference	and	underestimate	neoadjuvant	

therapy	savings	(Rowland	et	al.,	2015).	However,	1	and	2-way	

sensitivity	analysis	in	addition	to	probabilistic	sensitivity	analysis	

using	Monte	Carlo	simulation	was	performed	to	address	uncertainty	

associated	with	all	model	parameters.		

	

Results	reported	a	cost	saving	of	$5616	per	patient	treated	with	

neoadjuvant	therapy,	assuming	equal	survival	(Rowland	et	al.,	2015).	

However,	upfront	surgery	improved	overall	survival	by	1.5	months	

or	3.2	months	or	longer,	this	would	be	cost-effective	at	

$100,000/QALY	and	$50,000/QALY	threshold	respectively	(Rowland	

et	al.,	2015).	This	highlights	some	key	limitations	of	this	study.	The	

model	was	based	on	one	RCT.	Overall	survival	has	the	strongest	
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influence	on	variability	of	model	outcomes	yet	overall	survival	was	

the	aspect	of	the	RCT	that	was	most	heavily	criticized	with	a	

subsequent	study	questioning	the	overall	survival	reported	in	the	

EORTC	trial	(Dewdney	et	al.,	2010).	Reliance	on	a	single	trial	also	

questions	the	generalisability	of	findings	to	clinical	setting	as	

alternative	treatment	options,	such	as	intraperitoneal	chemotherapy,	

was	not	included	in	the	model	(Rowland	et	al.,	2015).				

	

Stevenson	et	al.	(2014).	Cost-effectiveness	of	neoadjuvant	

chemotherapy	before	radical	cystectomy	for	muscle-invasive	bladder	

cancer.	

	

This	study	compared	cost	of	treatment,	duration	of	survival	and	

adjusted	quality-of-life	survival	for	patients	with	muscle-invasive	

bladder	cancer	treated	with	radical	cystectomy	(RC)	or	with	

neoadjuvant	therapy.	Outcomes	were	measured	cost	per	QALY,	and	

all	interventions	were	clearly	defined	in	this	retrospective	review.		

	

Costs	were	obtained	from	nationwide	2009	Healthcare	Costs	and	

Utilisation	Project.	Chemotherapy	costs	were	established	from	

international	sources.	Indirect	costs	were	not	included.	Quality-of-life		

literature	was	lacking	for	bladder	cancer	so	adjustment	for	QALYs	

was	based	on	studies	involving	similar	conditions.	

	

Differences	in	total	mean	costs	were	analysed	using	in	dependent	

variable	t	tests.	QALYs	were	assessed	using	Kaplan-Meier	analyses	

and	compared	using	stratified	log-rank	test	with	two-tailed	P	values	

also	used.	Costs	per	QALY	were	calculated	using	the	formulae:	(mean	
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cost	of	treatment	for	NAT	cohort	–	mean	cost	of	treatment	for	

upfront	surgery	cohort)/	(median	survival	for	neoadjuvant	therapy	

cohort	–	media	survival	for	upfront	surgery	cohort).	Ratios	derived	

were	compared	using	t	test.		

	

Assessment	in	this	way	did	not	allow	sensitivity	analysis	given	that	

estimates	of	quality-of-life	and	complications	were	made	from	

limited	available	research	(Stevenson	et	al.,	2014).	It	also	did	not	

allow	for	assessment	of	all	possible	scenarios	in	each	cohort	with	

corresponding	sensitivity	analysis.	No	multivariate	analysis	was	

performed	to	validate	differences	in	survival	between	the	two	

cohorts.	Also	patients	who	received	neoadjuvant	therapy	but	not	

surgery	were	included	in	an	intention	to	treat	analysis	as	part	of	the	

neoadjuvant	therapy	cohort.	This	could	have	reduced	mean	total	cost	

for	neoadjuvant	therapy	as	they	did	not	incur	cost	of	radical	

cystectomy	and	also	may	have	increased	QALY	survival	as	quality	of	

life	would	not	have	been	affected	by	surgery	(Stevenson	et	al.,	2014).	

Data	was	also	not	available	on	randomisation	of	patients	to	upfront	

surgery	or	neoadjuvant	therapy	group	and	there	were	significant	

differences	between	the	two	cohorts	(age	and	race),	which	were	not	

considered	in	the	analysis	(Stevenson	et	al.,	2014).	This	study	was	

also	limited	by	being	retrospective	and	cohorts	were	drawn	from	a	

single	center.	Also	some	costs	were	estimated	from	published	

sources,	others	were	based	in	billing,	and	chemotherapy	prices	came	

from	international	literature,	which	could	limit	accuracy	of	total	costs	

(Stevenson	et	al.,	2014).	
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Appendix	H	

	

A	Critical	Analysis	of	Existing	Risk	Stratification	and	Predictive	

Models	for	Pancreatic	Cancer	Surgery	

	

This	appendix	supports	section	2.3.1	by	providing	a	historical	

background	to	predictive	modeling	and	risk	stratification	in	

medicine.	This	helps	to	establish	good	modeling	practice,	which	is	

then	used	as	a	basis	to	critically	evaluate	existing	predictive	models	

applied	to	pancreatic	cancer	surgical	patients.				

	

One	of	the	earliest	surgical	risk	stratification	tools	was	the	American	

Society	of	Anesthesiologists	(ASA)	grading	system	(Saklad,	1941)	

which	offered	a	subjective	pre-operative	assessment	of	physical	

status	without	any	statistically	rigorous	underpinnings.	During	the	

1960s	and	70s	however	advancements	in	fields	of	computing	and	

statistics	led	to	multivariate	log	regression	analysis	taking	a	leading	

role	in	predictive	medicine	(Lewis	&	Volmer,	2012).	Its	application	to	

the	Framington	Heart	Study	data	(Truett	et	al.,	1967),	although	not	

the	first	of	its	kind,	proved	to	be	a	seminal	paper	resulting	the	

increased	application	of	log	regression	analysis	to	medical	problems	

(Hosmer	&Lemeshow,	1989).	This,	juxtaposed	with	advances	in	

cardiac	surgery	(Lewis	&	Volmer,	2012),	led	Goldmann	et	al.	(1977)	

to	produce	the	cardiac	risk	index	(CRI)	to	assess	the	risk	of	cardiac	

events	from	non-cardiac	surgery.	This	marked	an	increased	focus	on	

preoperative	risk	assessment	(Lewis	&	Volmer,	2012).	In	the	same	

decade	Cox	developed	his	Cox	Regression	model	enabling	



	 677	

proportional	hazard	modeling	to	analyze	censored	data	and	allow	

multivariate	modeling	of	survival	data	(Cox,	1972).		

	

Throughout	the	1970s	and	80s	there	was	a	focus	on	using	pre-

operative	nutritional	indexes	to	assess	operative	risk	to	general	

surgical	patients	(Buzby	et	al.,	1980;	Harvery	et	al.,	1981).	The	

development	of	the	Fong	Score	(Fong	et	al.,	1999)	to	predict	

recurrence	after	liver	resection	for	metastatic	colorectal	cancer	

however	demonstrated	that	risk	scores	and	predictive	modeling	

could	be	applied	to	highly	targeted	clinical	questions	which	marked	a	

focus	on	organ/disease	specific	predictive	modeling	(Lewis	&	

Volmer,	2012)	as	exemplified	by	the	Model	for	End-Stage	Liver	

Disease	used	to	determine	organ	allocation	in	transplant	surgery	

(Malinchoc	et	al.,	2000;	Kamath	et	al.,	2007).	There	then	followed	two	

key	developments:	a	growth	in	cancer	specific	prognostic	models	

(Kattan	et	al.,	2001;	Peeters	et	al.,	2005;	Bochner	et	al.,	2006;	

Brennan	et	al.,	2004;	Stephenson	et	al.,	2006;	Weiser	et	al.,	2008;	

Prediction	Tools,	2012)	and	standardisation	of	definition	of	post-

operative	complications	(Lewis	&	Volmer,	2012).	This	resulted	in	a	

focus	initially	on	predicting	post-operative	morbidity	and	mortality,	

which	has	more	recently	expanded	to	also	include	the	readmission	

and	resource	utilisation	with	subsequent	cost-effectiveness	analysis	

(Lewis	&	Volmer,	2012).	In	the	United	States	large	administrative	

databases,	such	as	the	National	Surgical	Quality	Improvement	

Program	(NSQIP)	(Khuri,	2005),	are	maturing	and	becoming	

increasingly	accessible.	This	should	enable	modeling	of	more	specific	

and	rare	disease	and	surgical	outcomes	(Lewis	&	Volmer,	2012).	This	

also	raises	some	pertinent	questions	about	the	current	and	future	
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applications	of	predictive	modeling	to	pancreatic	surgery	that	will	

now	be	explored.			

	

In	its	most	simplistic	form	regression	analysis	predicts	an	outcome	

(Y)	from	line-of-best-fit	to	input	data.	Therefore	‘a’	estimates	

outcome	(Y)	and	‘b’	estimates	the	alteration	in	Y	associated	with	an	

alteration	in	measurement	X:	

	

Y=a+bX	

	

Applied	to	multiple	variables	the	co-efficients	(β0-3)	estimate	the	

increase	in	outcome	‘Y’	corresponding	to	per	unit	increase	in	input	

variables	(X,W,Z).	Hence	larger	coefficients	result	in	greater	impact	

on	outcome:	

	

Y=	β0+	β1X+β2W+β3Z	

	

This	technique	may	be	adequate	to	model	continuous	variables	but	

not	dichotomous	outcomes,	therefore	are	unable	to	provide	surgeons	

with	the	type	of	yes/no	answers	they	often	seek:	will	my	patient	

survive	this	operation,	will	they	develop	a	post-operative	

complication,	will	they	be	alive	1year,	2years	or	5years	post	

operatively?	(Lewis	&	Volmer,	2012)	

	

In	univariate	cases	linear	modeling	is	simply	inadequate.	To	

illustrate,	using	linear	regression	to	model	CA	19-9	levels	as	a	

predictor	of	malignancy	would	provide	the	nonsensical	probability	of	

malignancy	as	greater	than	1	for	any	CA	19-9	level	above	700	(Lewis	
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&	Volmer,	2012).	One	method	of	addressing	this	is	to	model	data	to	a	

logistic	curve	by	grouping	CA	19-9	levels	so	that	the	probability	of	

malignancy	lies	between	0%	and	100%,	providing	more	information	

from	input	data	to	show	that	as	CA	19-9	levels	increase,	so	does	the	

likelihood	of	malignancy	(Lewis	&	Volmer,	2012).	This	approach	has	

the	benefit	of	being	adaptable	to	multivariate	analysis	and	can	fit	

data	to	a	function:		

	

f(z)=e2	/	ez+1	=	1/1+e-z		

where	z=	β0+	β1X+β2W+β3Z….	

	

An	advantage	of	logistic	regression	is	that	it	can	utilize	the	intuitive	

interpretation	of	odds	ratios	(OR)	as	coefficients	can	easily	be	

converted:	OR	=eβ	(Hosmer	&	Lemeshow,	1989).	To	illustrate,	the	

risk	of	a	smoker	undergoing	pancreaticoduodenectomy	procedure	

developing	a	post	operative	myocardial	infarction	could	be	

represented	with	an	OR	greater	than	1,	hence	increased	risk.	Equally	

continuous	variables	can	be	modeled	in	a	similar	way	so	that	

smokers	undergoing	pancreaticoduodenectomy	could	have	their	

increase	in	risk	of	post-operative	myocardial	infarction	predicted	per	

unit	increase	in	age	(Lewis	&	Volmer,	2012).		

	

Cox	Proportional	Hazard	Models	are	widely	used	to	model	censored	

survival	and	disease	free	survival	in	time	series	data	(Cox	et	al.,	

1984)	by	plotting	survival	as	well	as	hazard,	with	hazard	ratios	(HR)	

derived	from	βcoefficients	of	regression	(Lewis	&	Volmer	2012).	

Therefore	this	method	of	modeling	may	be	able	to	predict,	for	

example,	that	smokers	are	three	times	more	likely	to	die	within	



	 680	

30days	pancreaticoduodenectomy	(HR=3.00)	(Lewis	&	Volmer,	

2012).					

	

				

Linear	regression	is	therefore	good	for	predicting	one-time	events	

such	as	death	at	30	days	post	operatively,	surgical	mortality,	

readmission	etcetera,	and	is	used	to	predict	near	time	surgical	

outcomes	(Lewis	&	Volmer,	2012).	Cox	proportional	hazard	models	

predict	survival	at	any	desired	length	of	time	(Lewis	&	Volmer	2012).		

	

Models,	particularly	those	used	in	decision	making	must	report	

decision	analytic	measures	(Steyerberg	et	al.,	2010;	Lewis	&	Volmer,	

2012).	This	involves	both	discrimination,	measure	of	sensitivity	and	

specificity	graphically	represented	by	receiver	operating	

characteristic	(ROC)	curve,	and	calibration,	the	observed-to-expected	

(O/E)	ratio	(Steyerberg	et	al.,	2010;	Lewis	&	Volmer,	2012).	

Regarding	the	latter,	concordance	statistic	(c-statistic)	is	important	

in	indicating	the	level	of	discrimination	with	a	value	of	1	depicting	

perfection	but	greater	than	0.7	deemed	reasonable.	The	c-statistic	is	

important	where	models	are	found	to	have	errors	in	calibration,	such	

as	overestimating	mortality,	as	a	high	c-statistic	means	that	the	

model	can	still	be	useful	in	stratifying	patients	at	higher	risk	of	

mortality	(Lewis	&	Volmer,	2012).	Such	an	error	in	calibration	may	

be	depicted	with	a	slope	of	less	than	1,	indicating	that	the	model	is	

over	fitted	(Lewis	&	Volmer,	2012)	hence	requiring	correction	

through	shrinkage	of	the	regression	coefficient	(Miller	et	al.,	1993).	

Alternatively	the	Hosiner-Lemeshow	test	is	a	more	rigorous	test	of	

calibration,	comparing	O/E	rates	deciles	and	uses	X2	distribution	to	
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test	the	null	hypothesis	that	O	and	E	are	equivocal,	hence	a	P	value	

<0.005	would	indicate	poor	calibration	(Lewis	&	Volmer,	2012).	

Pearson’s	R	statistic	is	better	applied	to	continuous	variables	and,	

similar	to	the	Brier	Score,	measures	the	percentage	variation	

between	observed	and	expected	that	can	be	explained	by	the	model	

(Lewis	&	Volmer,	2012;	Bland	et	al.,	1995).	Decision-analysis	

techniques	are	pertinent	in	models	used	for	decision	making	to	

assess	the	impact	of	false	positives	and	false	negatives	with	decision	

curve	analysis	(Bland	et	al.,	1995)	used	to	assess	the	model’s	clinical	

impact	(Lewis	&	Volmer,	2012).		

	

Validation	confirms	the	predictive	performance	of	the	model	as	well	

as	its	generalisability	(Miller	et	al.,	1993).	It	also	identifies	over	

fitting,	a	risk	with	a	high	numbers	of	variables,	as	well	as	deficiencies	

due	to	inappropriate	study	techniques	(Altman	et	al.,	2000).		This	

involves	testing	discrimination	and	calibration	on	novel	data.	Such	

novel	data	may	be	acquired	through	split	sample	validation	(Lewis	&	

Volmer,	2012).	However,	this	approach	can	destabilise	the	model	by	

reducing	the	amount	of	data	it	is	built	on	whilst	also	meaning	that	the	

model	is	being	internally	validated	on	a	data	set	that	is	too	small	

hence	inadequate	assessment.	Bootstrapping,	where	the	model	is	

developed	from	all	data	and	assessed	on	bootstrap	samples	of	the	

original	data	with	replacement,	is	instead	recommended	(Steyerberg	

et	al.,	2009).	This	has	the	advantage	of	assessing	discrimination	and	

calibration	as	well	as	confidence	intervals	(Steyerberg	et	al.,	2009)	

with	the	element	of	randomness	in	repeated	bootstrapping	

overcoming	overoptimistic	conclusions	(Lewis	&	Volmer,	2012).	

Temporal	validation	also	allows	the	model	to	be	constructed	from	all	
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available	data	and	validated	against	novel	data	prospectively	

collected	within	the	same	centre	(Lewis	&	Volmer,	2012).	This	

however	fails	to	properly	assess	generalisability	of	the	model	

(Altman	et	al.,	2000)	therefore	external	validation	on	novel	data	from	

a	different	centre	is	the	most	stringent	method	of	validation	(Altman	

et	al.,	2000)	although	issues	with	case-mix	and	timing	must	be	

considered	as	models	developed	on	retrospective	data	may	not	apply	

to	more	contemporary,	novel	or	refined	treatment	pathways	(Lewis	

&	Volmer,	2012).		

	

A	good	model	therefore	will	have	been	recently	externally	validated	

as	well	as	internally	validated	and	demonstrate	excellent	

discrimination,	segregating	patients	according	to	risk,	as	well	as	

calibration.	The	model	will	also	only	focus	on	variables	that	impact	

on	outcomes.	With	this	framework	in	mind	a	critical	analysis	of	

existing	predictive	models	in	pancreatic	surgery	is	presented.							

	

Predicting	Mortality	and	Morbidity	following	Pancreatic	Cancer	

Surgery	

	

Nebraska	Nomogram	

	

In	2009	the	Nebraska	Nomogram	(Are	et	al.,	2009),	using	a	

conceptual	framework	based	on	the	MSKCC	survival	nomogram	

(Brennan	et	al.,	2004),	aimed	to	predict	post-operative	mortality	

based	on	pre-operative	factors	only.	Data	was	taken	from	the	

National	Inpatient	Sample	(NIS)	(n=	4482).	15	variables	were	

assigned	a	point	value	from	coefficients	of	a	multivariate	regression	
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model.	Whilst	it	could	be	argued	that	the	number	of	variables	is	

excessive,	a	strength	of	this	model	is	its	use	of	ICD-9	procedure	and	

diagnostic	codes	and	the	Elixhauer	system	of	comorbidity	

classification	which,	in	conjunction	with	the	use	of	a	national	

database,	enhances	generalisability	of	the	model.	However,	this	

model	does	not	account	for	pathological	or	intraoperative	data.	

Whilst	this	can	be	justified	on	the	basis	that	it	is	a	preoperative	

predictive	tool,	the	influence	of	intra	and	post-operative	care	can	

influence	in-hospital	mortality.	The	true	clinical	value	of	this	model	is	

also	yet	to	be	established	as	the	model	has	not	yet	been	externally	

validated	by	other	studies	(Lewis	&	Volmer,	2012).			

	

Surgical	Outcomes	Analysis	and	Research	Pancreatic	Resection	

Mortality	Score	(SOAR)		

	

Similar	to	the	Nebraska	Nomogram,	the	SOAR	model	aims	to	predict	

post-operative	inpatient	mortality	based	on	pre-operative	factors	

only	(Hill	et	al.,	2010).	Like	the	Nebraska	Nomogram	its	use	of	the	

NIS	database	enhances	generalisability	and	its	availability	online	

facilitates	wider	clinical	use.	However,	it	too	awaits	external	

validation	through	further	studies	and	does	not	account	for	the	

influence	of	factors	such	as	intra-operative	and	post-operative	care	

on	mortality.	This	model	uses	log	regression	methods	to	create	an	

integer	risk	score	to	identify	low,	moderate	and	high-risk	patients.	A	

strength	of	this	model	over	the	Nebraska	model	is	that	this	risk	score	

is	then	further	adjusted	for	hospital	specific	risk	therefore	accounting	

for	the	positive	influence	of	high-volume	specialist	centres	on	better	

surgical	outcomes	(Lewis	&	Volmer,	2012).		
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Johns	Hopkins	Pancreaticoduodenectomy	Mortality	Model	

	

This	model	specifically	predicted	30	and	90-day	mortality	post	

pancreaticoduodenectomy	(Venkat	et	al.,	2011).	The	specialist	

institution’s	database	underwent	multivariate	logistic	regression	to	

identify	predictive	factors	that	were	converted	to	integer	score	for	

mortality.	The	strength	of	this	model	lies	in	the	large,	detailed	

database	form	an	institution	with	considerable	reputation	in	

pancreatic	surgery.	However,	this	model	lacks	external	validation	

and	has	limited	generalisability	as	distal	pancreatectomies	were	

excluded	as	authors	felt	mortality	from	this	type	of	surgery	was	so	

low	in	their	experience	that	it	would	not	allow	adequate	statistical	

power.	The	use	of	single-centre	data	to	build	the	model	also	

potentially	limits	the	generalisability	as	it	does	not	allow	adjustment	

for	institution	associated	risk	factors	such	as	high	versus	low	volume	

settings	(Venkat	et	al.,	2011).							

	

	

Wisconsin	NSQIP	Mortality	and	Morbidity	Calculators	for	

Pancreaticoduodenectomy	and	Distal	Pancreatectomy	

	

NSQIP	database	underwent	multivariate	regression	analysis	to	

identify	variables	influencing	outcome	(Greenblatt	et	al.,	2011).	The	

variables	did	not	include	peri	or	post-operative	factors	that	might	

have	influenced	morbidity	and	mortality	outcomes.	There	was	also	

no	adjustment	for	hospital	specific	risk	factors	although	large	sample	

size	and	use	of	national	database	does	give	good	generalisability.	This	



	 685	

model	also	lacks	external	validation.	However,	recognising	that	type	

of	pancreaticoduodenectomy	may	affect	outcomes,	the	authors	used	

the	same	methods	to	construct	a	second	model	specifically	for	distal	

pancreatectomy	using	NSQIP	database	(n=1797),	which	also	

underwent	internal	validation	(c-statistic=0.79)	but	again	lacks	

external	validation.		

	

HPB	Risk	Calculator				

	

Log	regression	analysis	of	ASC-NSQIP	database	of	all	patients	

undergoing	pancreatectomy	was	used	to	identify	variables	affecting	

mortality,	serious	morbidity	and	overall	morbidity	(Parikh	et	al.,	

2010).	Again	the	use	of	a	large	national	database	enhances	

generalisability	although	external	validation	has	not	taken	place	and	

there	was	no	adjustment	of	risk	of	hospital	specific	risk	factors.		

Although	all	types	of	pancreatectomy	were	included,	outcomes	did	

not	give	frequency	and	morbidity	related	to	operation	specific	

complications.	However,	further	prospective	validation	and	work	on	

updating	this	calculator	is	ongoing.				

	

	

Physiological	and	Operative	Severity	Score	for	the	enumeration	of	

Mortality	and	Morbidity	(POSSUM)	

	

Although	widely	used	in	clinical	settings	the	POSSUM	model	was	

based	on	a	single	institution’s	retrospective	database	with	the	

number	of	pancreatic	resections	included	being	small,	although	the	

model	has	undergone	external	validation.		The	model	also	
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incorporates	both	pre-operative	patient	factors	and	operative	

factors.	Whilst	this	is	clinically	relevant	this	might	also	make	it	

difficult	to	identify	the	impact	of	poor	surgical	performance	(Lewis	&	

Volmer,	2012).	To	illustrate,	high	blood	loss	and	multiple	procedures	

predict	increased	risk	of	morbidity	and	mortality	but	this	could	be	a	

result	of	poor	surgical	technique	(Sutton	et	al.,	2002).	The	finding	

that	POSSUM	and	P-POSSUM	(Goffi	et	al.,	1999;	Prytherch	et	al.,	

1998)	has	been	shown	to	predict	mortality	but	not	morbidity	

accurately	(Pratt	et	al.,	2008)	was	based	on	a	study	evaluating	the	

model’s	calibration	not	discrimination.	However	subsequent	similar	

studies	have	shown	conflicting	results	with	one	reporting	poor	

calibration	(n=652;	O/E	=	0.88)	(de	Castro	et	al.,	2009)	and	another	

reporting	good	calibration	(n=265;	O/E	=	0.90).	This	highlights	the	

need	for	standardised	reporting	systems	and	coding	of	relevant	

factors	such	as	post-operative	complications	(Strasberg	et	al.,	2009;	

Dindo	et	al.,	2004;	Lewis	&	Volmer,	2012).	Furthermore	univariate	

and	multivariate	analysis	of	the	variables	included	in	the	model	has	

shown	that	over	half	are	not	significant	predictors	of	morbidity	

which	suggests	that	a	future	direction	of	the	model	would	also	be	in	

its	simplification	for	pancreatic	resections	(Lewis	&	Volmer,	2012).	

However,	this	model	has	the	advantage	of	including	both	pre-

operative	patient	data	as	well	as	operative	factors	(Goffi	et	al.,	

1999;Lewis	&	Volmer,	2012)	and	has	been	shown	to	accurately	

predict	economic	outcomes	with	higher	POSSUM	scores	associated	

with	increased	costs	(Pratt	et	al.,	2008).				

	

Surgical	Apgar	Score	
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The	Surgical	Apgar	Score	(Gawande	et	al.,	2007)	was	designed	as	a	

simple	risk	score	for	post-operative	complications.	Based	on	a	

national	database	the	model	had	potential	for	good	generalisability	

but	lacked	external	validation.	It	was	later	adapted	to	predict	

perioperative	morbidity,	as	defined	by	the	Clavien-Dindo	scale,	for	

pancreaticoduodenectomy	patients.	It	was	fond	that	this	model	could	

predict	grade	2	or	above	complications	but	not	necessarily	mortality	

(Assifi	et	al.,	2012).	Using	only	intraoperative	data	the	proposed	use	

of	this	model	was	in	deciding	whether	patients	should	go	to	intensive	

care	unit	or	a	step-down	unit	post	operatively	if	they	were	deemed	to	

be	at	lower	risk	of	complications	(Assifi	et	al.,	2012).	

	

Milan	Pancreatic	Morbidity	Score	

	

This	model	aimed	to	predict	major	post-operative	morbidity,	as	

defined	by	Clavien-Dindo	classification	(Dindo	et	al.,	2004),	post	

pancreaticoduodenectomy	(Braga	et	al.,	2011).	The	model	is	based	

on	operative	factors	and	therefore	is	not	intended	for	preoperative	

use	(Lewis	&	Volmer,	2012).	Generalisability	of	the	model	is	limited	

by	use	of	single	institutional	data	and	the	lack	of	external	validation	

but	a	strength	of	this	model	is	the	use	of	standardised	coding	and	

classification	of	complications	although	use	of	ASA	grading	

potentiates	a	degree	of	subjectivity	in	this	variable	(Lewis	&	Volmer,	

2012).					

	

	

Balzano	et	al.	(2017):	Preoperative	score	to	predict	early	death	after	

pancreatic	resection.	
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Based	on	a	comparatively	smaller	single	centre	database,	this	model	

identified	preoperative	factors	predicting	early	mortality	through	log	

regression,	multi	and	univariate	analysis.	There	is	the	potential	in	

small	databases	to	miss	additional	significant	risk	factors.	Although	

this	limits	generalisability,	the	model	did	undergo	external	validation	

(n=182).	Discrimination	was	quantified	by	area	under	the	curve	

(AUC)	of	the	receiver	operating	characteristic	(ROC)	curve	of	88.7%	

and	calibration	tested	with	Hosmer-Lemeshow	test	(P	value=0.043).	

Standardised	score	was	used	for	variables	such	as	Geriatric	

Nutritional	Risk	Index	although	ASA	score	introduces	an	element	of	

subjectivity.	There	is	also	selection	bias	in	the	database	as	this	only	

included	patients	deemed	well	enough	to	be	admitted	for	surgery	

(Balzano	et	al.,	2017).	Furthermore	the	definition	of	non-metastatic	

liver	disease	was	ever/never	and	only	included	cirrhosis	and	chronic	

hepatitis	when	type	and	severity	of	liver	disease	can	potentially	

impact	mortality	(Balzano	et	al.,	2017).			

	

Velez-Serrano	et	al.	(2017):	Prediction	of	in-hospital	mortality	after	

pancreatic	resection	for	pancreatic	cancer	

	

The	approach	in	this	model	is	unique	amongst	other	models	in	

employing	machine	learning	through	boosting	method	which	the	

authors	state	allows	them	to	broaden	their	framework	and	include	

hundreds	of	variables.	Whilst	this	means	that	satisfactory	AUC	and	

Brier	scores	are	reported	even	when	only	preoperative	variables	are	

included,	inferring	better	classification	power,	research	into	optimal	

tree	depth	is	limited	(Velez-Serrano	et	al.,	2017).	Data	mining	of	large	
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databases	and	inclusion	of	many	variables	also	does	not	equate	with	

a	more	accurate	model.	The	large	national	database	on	which	this	

model	is	based,	although	enhancing	generalisability	and	including	

adjustment	for	hospital	volume,	did	not	include	all	important	clinical	

information	such	as	stage	of	metastases	or	treatment	with	

chemotherapy	or	radiotherapy.	Furthermore	this	model	lacks	

external	validation.		
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Table	Hi:	Summary	of	models	predicting	postoperative	morbidity	

and	mortality		

	
Model	 Database	 Outcome	

Measures	
Variables	 Validation	 Strengths	&	

Weaknesses	
Nebraska	
Nomogram	

National	Inpatient	
Sample	(n=4482):	
all	patients	
undergoing	
pancreatic	
resection	for	
pancreatic	
malignancy	

Post	operative	
hospital	
mortality	

Renal	
failure,	
neurological	
disorders,	
hypothyroid
ism,	heart	
failure,	liver	
disease,	
hypertensio
n,	cardiac	
arrhythmias
,	diabetes,	
chronic	
obstructive	
pulmonary	
disease	
(COPD),	
degree	of	
resection,	
age,	
admission	
type,	
hospital	
size.	

Internal,	
temporal	
(n=999)	(c=	
0.76)	

• Generalis
ability		

• Use	of	
standardi
zed	
coding	

• Arguably	
too	many	
variables	

• Negates	
influence	
of	intra	
and	post	
operative	
care	
mortality	

• Lacks	
external	
validatio
n	

• 	No	
adjustme
nt	for	
hospital	
specific	
risk	
factors	

	
	

Surgical	
Outcome	
Analysis	and	
Research	(SOAR)	
Pancreatic	
Resection	
Mortality	Score	
2010	

National	Inpatient	
Sample	(n=	5715)	

Post-operative	
hospital	
mortality		

Modified	
Charlson	
Score,	
gender,	age,		
degree	of	
resection,	
hospital	
volume		

Internal	split-
sample	n=1428)	
(c=0.71)	

• Generalis
ability		

• Risk	of	
mortality	
adjusted	
for	
hospital	
specific	
risk		

• Negates	
influence	
of	intra	
and	post	
operative	
care	
mortality	

• Lacks	
external	
validatio
n		

	
John	Hopkins	
Pancreaticoduod
enectomy	
Mortality	Model	
2011	

Institutional	
database	(n=1383)	

30	and	90	day	
mortality	post	
pancreaticoduod
enectomy	for	
total	

Age,	gender,	
albumin,	
tumor	size,	
procedure	
type	

Internal-split	
sample	(n=593;	
30	day	c=0.74;	
90	day	c=0.73).	
Hosme-

• Detailed	
database	
from	high	
volume	
specialist	
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pancreatectomy	 Lemeshow	test,	
P=0.36	and	0.09		

centre	
• Integer	

score	
• Online	

availabilit
y	

• Limited	
generalis
ability	

• No	
external	
validatio
n	

Wisconsin	NSQIP	
Mortality	and	
Morbidity	
Calculators	for	
Pancreaticoduod
enectomy	and	
Distal	
Pancreatectomy	
2011	

NSQIP	(n=	4945)	 30	day	morbidity	
and	mortality	
after	
pancreaticoduod
enectomy		

COPD,	
hypertensio
n,	
neoadjuvant	
radio	
therapy,	
serum	
creatinine	
and	
hypoalbumi
nemia	

Internal-split	
sample	(n=1254,	
c=0.69)	

• Generaliz
ability		

• Negates	
influence	
of	intra	
and	post	
operative	
care	
mortality	

• No	
adjustme
nt	for	
hospital	
specific	
risk	
factors	

• Online	
availabilit
y	

• No	
external	
validatio
n	

HPB	Risk	
Calculator	2010	

ACS-NSQIP	
(n=13558)	

30-day	mortality	
from	all	major	
HPB	surgical	
procedures	

Age,	BMI,	
ASA	status,	
ffccardiac	
disease,	
bleeding	
disorder,	
shortness	of	
breath,	
ventilator	
dependence
,	ascites,	
steroid	use,	
sepsis,	
emergency	
admission,	
procedure	
type	

Internal	
validation	
(n=13558,	
c=0.75).	Hosmer-
Lemeshow	test	
P=NS	

• Generalis
ability	

• Use	as	
comparis
on	tool	
between	
centres		

• No	
external	
validatio
n	

• No	
adjustme
nt	for	
hospital	
specific	
risk	
factors	
	

Possum	1991	 Single	institution	
database	(n=1372	
all	procedures;	
pancreaticoduode
nectomyies	
n=326)	

Morbidity	 Age,	
cardiovascu
lar	disease,	
vital	signs,	
Glasgow	
coma	score,	
haemoglobi
ng,	WCC,	
BUN,	serum	
sodium	and	
potassium,	
operative	
mode	and	
severity,	
number	of	
procedures,	
blood	loss,	
peritoneal	

External	
validation	for	
post	pancreatic	
resection	
morbidity	
(n=326;	O/E	=	
0.96)	

• External	
validatio
n	and	
calibratio
n	

• Wide	
spread	
clinical	
use	

• Used	in	
economic	
evaluatio
n	

• Includes	
preoperat
ive	and	
operative	
factors	
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contaminati
on,	
malignancy.		

• Data	
points	
not	easily	
accrued	

• Single	
institutio
nal	data,	
number	
of	
pancreati
c	
resection
s	small.	

Surgical	Apgar	
Score	2007	

ACS-NSQIP:	
general	and	
vascular	surgical	
patients	(n=303)	

Morbidity	and	
mortality:	major	
post	operative	
complications	
and	30-day	
mortality	

Blood	loss,	
lowest	
mean	
arterial	
pressure,	
lowest	
pulse		

External	
validation	for	
Clavien	grade	2+	
complications	
post	
pancreaticoduod
enectomy	

• Generalis
ability	
due	to	
national	
database	

• Integer	
score	

• Only	
based	on	
operative	
factors	
therefore	
provides	
immediat
e	post-
operative	
assessme
nt	of	risk	

Milan	Pancreatic	
Morbidity	Risk	
Score	

Single	institution	
database	(all	
pancreatic	
resections;	n=469)	

Major	morbidity	 Pancreatic	
texture,	
pancreatic	
duct	
diameter,	
blood	loss,	
ASA	score	

Internal	split-
sample	
validation	
(n=231;	c=0.743;	
O/E	=	1.11;	
Hosmer-
Lemeshow	test,	
P=0.937)	

• Based	on	
operative	
factors	
therefore	
provides	
immediat
e	post-
operative	
assessme
nt	of	risk	

• Uses	
defined	
method	
of	
grading	
complicat
ions	

• ASA	
introduce
s	source	
of	
subjectivi
ty	

• No	
external	
validatio
n	

Balzan	et	al.	
(2017)	

Single	institution:	
all	pancreatic	
ductal	
adenocarcinoma	
resections	(n=296)	

One	year	
mortality	post	
resection	

Nutritional	
status,	
American	
Society	of	
Anaesthesio
logists’	
score,	pain	
at	
presentatio
n,	non-
metastatic	
liver	
disease,		

External	
validation	
(n=182;	OR	7.1;	
p<0.0001;	
Hosmer-
Lemeshow	test,	
P=0.403)	

• Single	
centre	
limits	
generalis
ability	
but	
externall
y	
validated	

• No	
adjustme
nt	for	
hospital	
specific	
risk	
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factors	
• ASA	score	

introduce
s	
subjectivi
ty	

Velez-Serrano	et	
al.	(2017)	

Minimum	Basic	
Data	Set	of	the	
National	
Surveillance	
System	for	
Hospital	Data	in	
Spain	(n=4,088)	

In-hospital	
mortality	

Age,	
location	of	
tumour,	
type	of	
resection,	
hospital	
surgical	
volume,	
comorbid	
conditions:	
hypertensio
n,	cardiac	
disease,	
vascular	
disease,	
COPD,	
dementia,	
connective	
tissue	
disease,	
peptic	ulcer	
disease,	
liver	
disease,	
diabetes,	
renal	
disease,	
HIV,	
metastatic	
carcinoma	

Internal	
validation,	
sensitivity	
analysis	(AUC	
0.91;	Brier	Score	
0.09).		

• Generalis
ability	
given	
national	
database	

• Large	
number	
of	
variables	
but	
potential	
for	
relevant	
variables	
to	be	
excluded	
due	to	
limitation
s	of	
dtabase	

• Use	of	
standardi
zed	
coding	
systems	

• Adjustme
nt	for	
hospital	
specific	
risk	
factors		

• More	
research	
needed	
on	
optimal	
tree	
depth	

	

	

			

Models	Predicting	Specific	Complications	from	Pancreatic	Surgery	

	

The	International	Study	Group	for	Pancreatic	Fistula	(Bassi	et	al.,	

2005)	standardised	the	definition	of	post-operative	pancreatic	

fistulae	(POPF),	resulting	in	the	advent	of	models	predicting	this	

specific	complication	that	occurs	in	15%-30%	of	all	proximal	and	

distal	pancreatic	resections	(Pratt	et	al.,	2007;	Callery	et	al.,	2009b).		
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The	Freibug	Fistula	Model	

	

The	Freibug	Fistula	Model	(Wellner	et	al.,	2010)	was	based	on	62	

consecutive	pancreaticoduodenectomies	from	a	single	institution.	

The	aim	of	the	model	was	to	predict	risk	of	POPF	in	the	pre-operative	

phase	so	that	treatment	strategies	could	be	adjusted	for	high-risk	

patients.	The	small	dataset	and	single	centre	reduces	generalisability	

and	does	not	account	for	hospital	or	surgeon	associated	risk	factors.	

Furthermore	the	model	lacks	external	validation.	The	importance	

however	was	to	highlight	a	move	towards	specific	predictive	

modeling	to	target	therapy	more	effectively	to	individual	patients	

which	could	have	a	cost-effectiveness	impact.	To	illustrate,	high-risk	

patients	would	undergo	more	prophylactic	measures	whereas	low	

risk	patients	could	forego	such	additional	treatments.				

	

Fistula	Risk	Score	

	

This	model	sought	to	go	further	and	incorporate	impact	of	operative	

factors	combined	with	pre-operative	findings	(Callery	et	al.,	2009b).	

In	this	was	this	model	predicts	POPF	risk	pre-operatively	and	also	

supports	the	surgeon’s	decision	making	for	high-risk	patients	intra-

operatively	(Lewis	&	Volmer,	2012).	However	this	model	is	based	on	

a	small	database	from	a	single	institution.	It	so	far	lacks	external	

validation	and	does	not	adjust	for	hospital	or	surgeon	associated	risk	

factors.	It	does	however	highlight	that	as	databases	mature	and	

definitions	of	complications	become	more	rigorously	defined,	

complication	specific	predictive	models	should	become	more	

sophisticated	(Lewis	&	Volmer,	2012).						
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Korean	Model	for	Predicting	Pancreatic	Leakage	(Kim	et	al.,	2013b)	

	

Bivariate	and	univariate	logistic	regression	analysis	on	a	single	

institution	database	of	only	100	patients	defined	variables	for	

inclusion	in	this	model	which	lacks	external	validation.	

Generalisability	of	this	model	is	therefore	limited	particularly	as	all	

operations	were	conducted	by	a	single	surgeon	and	POPF	rates	are	

higher	than	reported	in	the	wider	literature.	Furthermore	the	model	

does	not	predict	grade	A	POPF	therefore	overall	risk	prediction	of	

POPF	may	be	underestimated.				

	

Clinical	Risk	Score	to	Predict	Pancreatic	Fistula	after	

Pancreatoduodenectomy	(Callery	et	al.,	2013)	

	

Multivariable	analysis	of	a	single	institution	database	identified	

variables	for	inclusion	of	this	model	that	was	internally,	

prospectively	validated.	However	the	model	lacks	external	validation	

and	the	single	institution	database	limits	generalisability	considering	

potential	impact	of	hospital	and	surgeon	associate	risk	factors	on	

outcome.	Furthermore	during	validation	the	operating	surgeons	

were	aware	of	the	model	which	cold	have	influenced	their	practice	

(Callery	et	al.,	2013).	A	key	variable,	pancreatic	texture,	was	defined	

subjectively	and	not	cross-referenced	with	histopathology	reports.	

However	this	is	the	case	with	other	existing	models	predicting	POPF	

also.	This	model	went	further	in	predicting	the	economic	impact	of	

POPF,	which	is	an	important	step	in	fully	realising	the	potential	of	
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such	predictive	models	although	a	full	economic	analysis	of	the	

impact	of	implementing	such	a	model	is	awaited.		

	

Predictive	Model	for	Pancreatic	Fistula	Based	on	Amylase	value	in	

drains	(AVD-based	model).		

	

Partelli	et	al.	(2014)	took	a	different	approach	to	predicting	POPF	

based	on	amylase	value	in	drains	(AVD)	on	day	one	post	surgery.	

This	identified	patients	who	require	closer	monitoring	in	the	

immediate	postoperative	period.	This	interesting	model	was	based	

on	single	institution	data	and	lacks	external	validation.	Also	low	

specificity	is	reported.	Furthermore	findings	could	have	been	

influenced	by	the	lack	of	protocol	determining	removal	of	

postoperative	drain,	potentiating	the	occurrence	of	POPF	due	to	

pressure	gradient	of	the	drain	across	the	anastomoses	where	drains	

were	left	for	a	prolonged	period.	Further	work	is	also	needed	to	

determine	the	value	of	AVD	in	predicting	POPF	for	specific	types	of	

resection	and	in	the	context	of	other	pre	and	intra-operative	findings	

to	determine	AVD	level	cut-off	for	making	predictions	(Hackert	et	al.,	

2014).						
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Table	Hii:	Summary	of	Models	predicting	POPF	

	
Model	 Database	 Outcome	

Measures	
Variables	 Validation	 Strengths	&	

Weaknesses	
Freiburg	Fistula	Model	 Single	

centre	
(n=62)	

POPF	 Age,	
preoperative	
diagnosis	
other	than	
pancreatic	
carcinoma/	
chronic	
pancreatitis,	
smoking	
history,	
weight	loss,	
history	acute	
pancreatitis,	
high/	
medium	and	
low	risk	
defined	by	
pancreatic	
texture		

Internally	
validated	

• Not	externally	
validated	

• Based	on	single	
centre	data	and	
small	sample	
size	

• Limited	
generalisability		

• No	adjustment	
for	hospital	and	
surgeon	
associated	risk	

Fistula	Risk	Score	 Single	
centre		
(n=233)	

POPF	 Texture,	
disease	
pathology,	
small	
pancreatic	
duct	
diameter,	
blood	loss,		

Internally	
validated	
(n=212)	

• Combines	pre-
operative	and	
intraoperative	
findings	
therefore	also	
providing	
decision	
support	during	
high-risk	intra	
operative	
scenarios	

• Single	
institution	
retrospective	
data		

• Small	number	
in	dataset	

• Limited	
generalisability		

• No	adjustment	
for	hospital	and	
surgeon	
associated	risk	

Korean	Pancreatic	
Leakage	Model	

Single	
centre	
database	
(n=100)	

POPF	 Age,	gender,	
operation,	
texture,	
pancreatic	
duct	size,	
combined	
superior	
mesenteric	
and	portal	
vein	
resection,	
pathology	of	
origin,	blood	
loss	

Internal	
validation	
(n=29)	AUC=	
0.714	(95%	CI	
0.517	to	0.865)	

• Small	single	
centre	
database	

• Limited	
generalisability	

• Surgery	
performed	by	a	
single	surgeon	

• High	
institutional	
leakage	rate	
(41%)		

• Does	not	
predict	grade	A	
POPF	therefore	
does	not	
accurately	
predict	overall	
risk	of	POPF	

• No	external	
validation	

Clinical	Risk	Score	for	
Pancreatic	Fistula	after	

Single	
institution	

POPF	 Pancreatic	
duct	size,	

Internal	
Validation	

• Evaluates	
economic	
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Pancreatoduodenectomy	 (n=233)	 pancreatic	
texture,	high-
risk	
pathology,	
excessive	
blood	loss)	

(prospectively)	
(n=212)	
(AUC=0.942)	

impact	of	
model	

• Single	centre	
database	and	
sample	size	
limits	
generalisability		

• Pancreatic	
texture	
subjective	
judgment	not	
correlated	with	
histopathology	

• No	external	
validation	

• Surgeons	in	
validation	
study	were	
aware	of	model	
being	validated	
so	may	have	
influenced	
practice	

AVD-based	Model		 Single	
Centre	
database	
(n=231)	

POPF	 Amylase	
value	in	
drains	(AVD)	
day	1	post-
operatively,	
operation,	
pancreatic	
texture	

Internally	
validated.	AVD	
day	1	post-
operation	
>5000:	
Sensitivity	
71%	and	
specificity	
90%,		day	5	
post	operation	
AVD	>200:	
93%	and	83%	
Day	1	AVD;	
AUC	0.876	
(p<0.00001)	

• Single	centre	
• No	external	

validation	
• Low	specificity	

reported	
• No	protocol	for	

standardizing	
drain	removal	
potentiating	
some	POPF	
resulting	from	
drain	pressure	
gradient	across	
anastomosis.			

	

	

Models	Predicting	Long-Term	Survival	

	

In	pancreatic	cancer	long-term	survival	is	poor	but	risk	of	operative	

morbidity	and	mortality	remains	relatively	high.	Therefore	although,	

the	majority	of	predictive	models	focus	on	immediate	surgical	

outcomes,	long-term	survival	predictions	are	key	in	patient	

counseling	and	clinical	decision	making	(Lewis	&	Volmer,	2012).		

	

Memorial	Sloan-Kettering	Cancer	Centre	(MSKCC)	Nomogram	for	

pancreatic	adenocarcinoma	survival	
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Brennan	et	al.	(2004)	created	their	model	based	on	single	centre	data	

of	resected	pancreatic	ductal	adenocarcinoma	(PDAC)	(n=555)	using	

Cox	regression	analysis.	Although	use	of	single	centre	data	and	

relatively	small	patient	numbers	could	limit	generalisability,	the	

model	was	externally	validated	(Ferrone	et	al.,	2005)	and	combined	

demographic,	pathological	and	operative	data	meaning	that	the	

model	can	support	individualised	patient	counseling	by	both	

surgeons	and	oncologists	(Lewis	&	Volmer,	2012).	Variables	found	

not	to	be	significant	in	the	Cox	regression	analysis	were	however	still	

included	in	the	final	model	although	this	enhanced	predictive	ability	

of	the	model	(Lewis	&	Volmer,	2012).	The	database	pre	dated	

neoadjuvant	therapy	and	adjuvant	treatment	was	not	included	as	a	

variable.			

	

Pancreatoduodenectomy	Prognostic	Index	(PPI)	

	

Dasari	et	al.	(2016)	performed	univariate	and	multivariate	Cox	

regression	analysis	on	a	single	institution	database	of	patients	who	

had	undergone	pancreaticoduodenectomy	for	malignancy	between	

2004	and	2014.	This	analysis	revealed	tumour	site,	stage	and	lymph	

node	ratio	as	being	significant	for	predicting	1	year	and	3	year	

survival.	The	generalisability	of	this	model	is	limited	by	the	small,	

retrospective,	single	institution	database	and	lack	of	external	

validation.	In	particular	the	number	of	duodenal	carcinomas	was	

sub-optimal	and	further	validation	of	the	model	for	this	particular	

sub-group	is	required.	Also	adjuvant	therapy	was	not	included	in	the	

final	model	as	it	was	found	to	be	significant	at	1	year	but	not	3year	

survival.	This	however	could	be	due	to	inconsistencies	in	the	
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indications	and	type	of	adjuvant	therapy	offered	over	the	study	time	

period	and	between	subtypes	of	tumour.	Timing	and	number	of	

cycles	of	adjuvant	therapy	received	also	varied	introducing	further	

inconsistencies.	To	assume	that	adjuvant	therapy	therefore	does	not	

have	a	bearing	on	prognosis	may	therefore	not	be	an	accurate	

assumption.			

	

Interactive	Bayesian	SEER	model	for	predicting	lymph	node	ratio	and	

survival	

	

Smith	et	al.	(2014)	used	a	novel	interactive	Bayesian	approach	to	

model	true	but	unobservable	lymph	node	ratio	(LNR)	and	overall	

survival	for	patients	with	resected	PDAC.	The	use	of	a	large	national	

database	and	rigorous	coding	enhances	generalisability.	Although	the	

model	underwent	extensive	satisfactory	split	internal	evaluation	and	

sensitivity	analysis	it	has	not	yet	undergone	external	validation.	The	

clinical	impact	of	this	model	is	primarily	in	guiding	pathological	

examination	of	resected	specimens	to	determine	how	many	lymph	

nodes	should	be	examined	before	determining	lymph	node	

involvement.	Although	the	model	may	predict	survival	in	light	of	

LNR,	it	does	not	consider	impact	of	adjuvant	treatment	on	survival	

therefore	has	limited	clinical	application	to	patient	counseling.	

However,	this	model	is	important	in	its	novel	method	of	predictive	

model	particularly	when	considering	its	future	application	to	

modeling	individual	patient	genomic	data.												
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	Table	Hiii:	Summary	of	models	predicting	long-term	survival	

	
Model	 Database	 Outcome	

Measures	
Variables	 Validation	 Strengths	&	

Weaknesses	
MSKCC	
Nomogram	

Single	centre	
(n=555)	

1,2,3	year	
mortality	for	
resected	PDAC	

Tumour	size,	
tumour	location,	
posterior	
margin,	T-stage,	
positive	lymph	
node	count,	
splenectomy,	
differentiation,	
portal	vein	
resection,	
gender,	margin	
resection,	age,	
weight	loss,	
back	pain	

Externally	
validated	

• Combines	
preoperative,	
tumour	factors	
and	operative	
factors	

• Can	be	used	by	
surgeons	and	
oncologists	

• Externally	
validated	

• Based	on	single	
centre	data	and	
relatively	small	
sample	size	

PPI	 Single	centre		
(n=567)	

1	and	3	year	
survival	

Tumour	site,	
stage	and	lymph	
node	ratio	

Validated	on	
institutional	
prospective	
database	
(n=194;	AUROC	
score:	0.74)	

• Single	
institution	
retrospective	
data		

• Small	number	
in	dataset	

• Limited	
generalisability	
particularly	in	
institutions	
with	differing	
adjuvant	
therapy	
protocols	

SEER		Model	 NCI	SEER	
cancer	registry	
(n=6400)	

Lymph	node	
ratio	and	
overall	
survival	for	
PDAC	
following	
resection	

Age,	gender,	
marital	status,	
grade,	histology,	
T	and	M	stages,	
tumour	size,	
radiation	
therapy		

Internal	split-
sample	
validation	
(n=2133;	
concordance	
index=0.65	
(95%	CI	0.63-
0.66);	posterior	
p	values	(lymph	
node	ration:	
p=0.3300;	
survival:	
p=0.4847)	

• Large,	national	
database	
enhances	
generalisability	

• Limited	patient	
specific	
information	
available	on	
SEER	database	

• No	external	
validation	

• Focus	on	
guiding	
pathological	
assessment	of	
resected	
specimen	

• Use	in	post	
operative	
prediction	of	
survival	but	as	
does	not	
include	
adjuvant	
treatment	has	
limited	use	in	
patient	
counseling		
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Appendix	I		

	

A	Review	and	Critical	Analysis	of	Methodological	Quality	of	

Prognostic	Development	Studies	for	Resectable	Pancreatic	

Cancer		

	

The	aim	of	this	appendix	is	to	support	the	discussion	in	section	2.3.2	

regarding	the	methodological	quality	of	prognostic	development	

studies	for	resectable	pancreatic	cancer.	The	body	of	this	appendix	

and	the	discussion	in	section	2.3.2	has	been	published	in	the	review	

article	written	by	the	autor	of	this	thesis:	

	

Bradley,	A.,	Van	Der	Meer,	R.	and	McKay,	C.J.	(2019)	‘A	systematic	

review	of	methodological	quality	of	model	development	studies	

predicting	prognostic	outcome	for	resectable	pancreatic	cancer’.	BMJ	

Open,	9:e027192.	doi:	10.1136/bmjopen-2018-027192	

	

The	purpose	is	to	describe	and	assess	the	methodological	quality	of	

prediction	research	pertaining	to	model	development	studies	that	

predict	post	resection	prognosis	of	PDAC	published	since	2000.	As	no	

prognostic	model	has	yet	been	established	for	use	in	routine	clinical	

practice,	this	date	restriction	was	intended	to	capture	the	possibility	

of	newer	models	incorporating	latest	developments	in	the	

management	of	potentially	resectable	pancreatic	cancer	including	the	

use	of	neoadjuvant	therapy.	Prognostic	modelling	studies	in	this	

context	included	prognostic	model	development	studies	with	and	

without	external	validation	and	external	validation	studies	with	

model	updating.	This	included	only	prognostic	multivariable	
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prediction	studies	where	the	aim	was	to	identify	a	relationship	

between	two	or	more	independent	variables	and	the	outcome	of	

interest	to	predict	prognosis.	Predictor	finding	studies	and	studies	

that	investigated	a	single	predictor,	test,	or	marker	were	not	

included.	Studies	investigating	only	causality	between	variables	and	

an	outcome	were	excluded.	Model	impact	studies	and	external	

validation	studies	without	model	updating	were	excluded	as	the	

focus	was	on	assessing	the	methodological	quality	of	prognostic	

model	development.		

	

All	methodological	issues	that	are	considered	to	be	important	in	

prediction	research	were	critically	analysed	according	to	the	

Checklist	for	critical	Appraisal	and	data	extraction	for	systematic	

Reviews	of	prediction	Modeling	Studies	(CHARMS)	checklist	(Moons	

et	al.,	2014).	This	checklist	is	designed	for	appraisal	of	all	types	of	

primary	prediction	modeling	studies	including	emerging	methods	of	

neural	network	and	vector	machine	learning	(Moons	et	al.,	2014).	

Data	pertaining	to	the	domains	outlined	in	the	CHARMS	checklist	are	

analysed	and	presented.	These	domains	include:	data	sources,	

sample	size,	missing	data,	candidate	predictors,	and	model	

development,	performance	and	evaluation	(Table	Ii).	Risk	of	bias	

assessment	of	included	studies	was	performed	according	to	the	

Prediction	model	Risk	of	Bias	Assessment	Tool	(PROBAST)(Wolff	et	

al.,	2014).				

	

Table	Ii:	Summary	of	Classification	of	Domains	from	CHARMS	

Checklist	(Moons	et	al.,	2014).	
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Domain		 Key	Information		
Data	Source	 Registry	data,	randomized-

controlled-trial	data,	case-control	
data,	cohort	data		

Participant	Selection	 Participant	eligibility	(inclusion/	
exclusion	criteria,	description	of	
participants,	treatment	received)	
Recruitment	methods	(setting,	
location,	number	of	centres,	
consecutive	participants,	study	
dates)		

Model	Outcomes	 Definition	of	outcomes:	type	
(single	or	combined	endpoints),	
was	the	same	definition	used	in	
all	participants?		
Definition	of	methods	for	
measuring	outcomes:	same	in	all	
participants,	blinding,	were	
candidate	predictors	part	of	the	
outcome?		
Duration	of	follow-up	or	time	of	
outcome	occurrence	reported	

Candidate	Predictors	 Number,	type,	definition,	method	
and	timing	of	measurement,	was	
assessment	blinded,	how	were	
candidate	predictors	handled	
within	the	model?			

Sample	Size	 Number	of	participants	and	
number	of	outcomes	or	events.	
Event	per	variable	(number	of	
outcomes	/	number	of	candidate	
predictors)	

Missing	Data	 Number	of	participants	with	any	
missing	data,	number	of	
participants	with	missing	data	for	
each	predictor	variable,	methods	
for	handling	missing	data	

Model	Development	 Modelling	methods,	methods	for	
selecting	predictors	to	include	in	
multivariable	analysis,	methods	
and	criteria	for	selection	of	
predictors	during	multivariable	
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analysis,	shrinking	of	predictors	
or	regression	co-efficients		

Performance	and	Evaluation	 Calibration	and	discrimination	
with	confidence	intervals,	
classification	measures	
(sensitivity,	specificity,	predictive	
value	etc.),	methods	for	testing	
performance,	comparison	of	data	
distribution	of	predictors	for	
development	and	validation	
datasets,	in	poor	validation	was	
model	updating	performed,	
alternative	presentations	of	the	
model	(nomogram,	calculator,	
score	etc.)	

Presentation	of	Results	and	
Discussion	

Comparison	with	other	studies,	
generalizability,	strengths	and	
limitations	

	

This	review	included	a	total	of	15	model	development	studies,	based	

on	a	total	of	20,510	patients,	published	between	2004	and	2018.	A	

full	summary	of	included	studies	is	provided	in	Table	Iii	with	risk	of	

bias	assessment	provided	in	Table	Iiii.		
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Table	Iii:	Summary	of	included	model	development	studies	

	
Study	 Data	

Source	
and	
Study	
Populat
ion	Size	
(n=205
10)	

Model	
Outco
me	

Candid
ate	
Variabl
es		

Method	
of	
Predicto
r	
Selection	

Included	
Predictor	
Variables		

Missing	
Data	

Modeling	
Method	

Model	
Performan
ce	and	
Validation	

Presenta
tion	

Brenna
n	et	al.	
(2004)	

Single	
instituti
on	
databas
e	
(n=555
)	

1,2,3	
year	
surviv
al	

n=14		 Cox	
multivar
aite	
analysis;	
p-value	
but	non	
significa
nt	
variables	
included	

age,	sex,	
portal	vein	
inclusion,	
splenectomy,	
margin,	
location,	
differentiatio
n,	posterior	
margin,	nodes	
positive,	
nodes	
negative,	back	
pain,	T	stage,	
weight	loss,	
maximum	
pathological	
axis	(n=14)	

Predict
ed	
using	
regress
ion	
models	

Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration	
plot:	good	
fit	
Discrimina
tion:	c-
statistic	
0.64	
External	
Evaluation:	
absent;	
internal	
validation	
by	
bootstrap	
method	

Nomogra
m	

Kanda	
et	al.	
(2014b
)	

Single	
instituti
on	
databas
e	
(n=324
)	

Death	
within	
12	
month
s	of	
surger
y	

n=19		 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<	0.1	

CEA,	CA19-9	
(n=2)	

Comple
te	case	
analysi
s	

Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration
:	absent	
Discrimina
tion:	AUC	
0.702	
External	
Evaluation:	
absent			

Index	

Miura	
et	al.	
(2014)	

Single	
instituti
on	
databas
e	
(n=50)	

1,3,5	
year	
surviv
al	

n=50		 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Platelet	count,	
CRP,	CA19-9	
(n=3)	

Comple
te	case	
analysi
s	

Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration
:	none	
Discrimina
tion:	none	
External	
Evaluation:	
absent	

Score	

Shen	et	
al.	
(2018)	

Multi-
centre	
databas
es	
(n=239
)	

6,12,1
8	
month	
surviv
al	

n=17		 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

age,	length	of	
tumour	
contact,	
peripancreati
c	venous	
abnormality,	
lymph	node	
staging	(n=4)	

	 Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration	
plot:	good	
fit	
Discrimina
tion:	c-
statistic	
0.824	
External	
Evaluation:	
performed	

Nomogra
m	

Xu	et	al.	
(2017)	

Single	
instituti
on	
databas
e	
(n=265
)	

1,3,5	
year	
surviv
al	

n=14	 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	

Tumour	
grade,	
pathological	
stage,	neural	
invasion,	
vascular	
invasion,	

	 Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration
:	
calibration	
curve	
Discrimina
tion:	1yr:	c-
index	0.86,	

Nomogra
m	
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multivar
aite	
analysis.	
P-value	
<0.05	

Neutrophil	
Lymphocyte	
Ratio,	Platelet	
to	
Lymphocyte	
Ratio,	
Albumin	
Globulin	Ratio	
(n=7)	

AUC:	
0.938.	3yr:	
c-index	
0.837,	AUC	
0.844,	5yr:	
c-index:	
0.809,	AUC	
0.884	
External	
Evaluation:	
absent	

Walcza
k	&	
Velanov
ich	
(2017)	

Single	
instituti
on	
databas
e	
(n=219
)	

7	
month	
surviv
al	post	
surger
y	

n=7	 Single	
hidden	
layer	
back	
propogat
ion	
trained	
ANN.		

age,	sex,	
stage,	survival	
time,	quality	
of	life,	
adjuvant	
therapy,	
resection	
details	(n=7)	

Comple
te	case	
analysi
s	

Artificial	
Neural	
Network	

Calibration
:	absent	
Discrimina
tion:	AUC:	
0.6576,	
sensitivity	
91.30%,	
specificity	
38.27%	
External	
Validation:	
absent;	
internal	
validation	
by	random	
split	
method	

Calculato
r	

Hsu	et	
al.	
(2012)	

Single	
instituti
on	
databas
e	
(n=740
)	

Death	
at	9	
and	12	
month
s	

n=15	 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

age,	tumour	
size,	
comorbidities
,	tumour	
grade	(n=4)	

Comple
te	case	
analysi
s	

Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration
:	none	
Discrimina
tion:	none	
External	
Validation:	
absent;	
internal	
validation	
with	p-
value	
<0.05	

Score	

Botsis	
et	al.	
(2009)	

Single	
instituti
on	
databas
e	
(n=218
)	

Surviv
al	time	

n=26	 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Age,	
differentiatio
n,	tumour	
size,	Alk	Phos,	
Albumin,	
Ca19-9	(n=6)	

MICE	
presum
ing	data	
missing	
at	
random	

Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration
:	absent	
Discrimina
tion:	c-
statistic	
0.73	
External	
Validation:	
absent;	
internal	
validation	
by	
bootstrap	
method			

Score	

Liu	et	
al.	
(2018)	

Multi-
centre	
databas
es	
(n=122
3)	

Surviv
al	time	

n=10	 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

American	
Joint	
Commission	
on	Cancer	
stage,	tumour	
grade,	post-
operative	
Ca19-9	(n=3)	

	 Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration
:	absent	
Discrimina
tion:	c-
statistic	
0.70,	AIC:	
2406.37	
External	
Validation:	
absent;	
internal	
validation	
by	random	
split	
method				

Score	

Balzano	
et	al.	
(2017)	

Single	
instituti
on	
databas
e	

1	year	
mortal
ity	

n=56	 Pre-
selection	
by	
Univarai
ate	

American	
Society	of	
Anaesthesiolo
gists’	score,	
Geriatric	

	 Multivar
aite	Cox	
proporti
onal	
hazards	

Calibration
:	Hosmer-
Lemeshow	
0.403.	
Discrimina

Score	
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(n=296
)	

analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.2	for	
univariat
e	
analysis	
and	<0.1	
for	
multivar
iate	
analysis	

Nutritional	
Risk	Index,	
abdominal/ba
ck	pain,	non	
metastatic	
liver	disease	
or	insulin	
resistance	
(n=4)	

regressio
n	

tion:	R2	
53.5%,	
AUC:	
88.7%.		
External	
Validation	
performed	

Smith	&	
Mezhir	
(2014)	

Nationa
l	
Registr
y	
Databas
e	
(n=640
0)		

6	
month
s,	1,3,5	
year	
surviv
al	

n=12	 Backwar
d	
stepdow
n	
selection	
process	

Survival:	age,	
gender,	
marital	
status,	race,	
grade,	
histology,	
T&M,	size,	
radiation,	
Lymph	Node	
Ratio	(n=11).	
Lymph	node	
ratio:	grade	
T&M	stage,	
size	(n=4)		

Comple
te	case	
analysi
s	

Bayesian	
Model	

Calibration	
curve:	
goodness-
of-fit	
statistic	
0.4847	
Discrimina
tion:	c-
statistic:	
0.65	
External	
Validation:	
absent;	
internal	
validation	
by	random	
split	
method		

Calculato
r	

Pu	et	al.	
(2017)	

Single	
instituti
on	
databas
e	
(n=220
)	

1,2,3	
year	
surviv
al	

n=20	 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Differentiatio
n,	American	
Joint	
Commission	
on	Cancer	
stage,	
Alkaline	
Phosphate	to	
Albumin	
Ratio	(n=3)	

Comple
te	case	
analysi
s	

Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration	
curve:	
optimal	
consistenc
y	
Discrimina
tion:		
training:	
0.673	
validation:	
0.693		
External	
validation:	
absent;	
internal	
validation	
by	random	
split	
method	

Nomogra
m	

Dasari	
et	al.	
(2015)	

Single	
instituti
on	
databas
e	
(n=567
)	

1,3	
year	
surviv
al	

n=13	 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Tumour	site,	
T	stage,	
Lymph	Node	
Ratio	(n=3)	

Comple
te	case	
analysi
s	

Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration
:	none	
Discrimina
tion:	AUC	
1yr	&3yr:	
0.66	&	0.74	
External	
Validation	
performed	

Index	

Pu	et	al.	
(2018)	

Nationa
l	
Registr
y	
Databas
e	
(n=345
8)	

1,3,5	
year	
surviv
al	

n=12	 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	

Age,	grade,	T	
stage	(n=3)	

Comple
te	case	
analysi
s	

Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration	
curve:	
optimal	fit	
Discrimina
tion:	c-
statistic	
0.63	
External	
and	
internal	

Nomogra
m	
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P-value	
<0.05	

validation	
performed	
using	
bootstrap	
method	

Katz	et	
al.	
(2012b
)	

Nationa
l	
Registr
y	
Databas
e	
(n=573
6)	

3	year	
surviv
al	

n=7	 Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Age,	gender,	
race,	site,	
grade,	stage,	
radiotherapy	
(n=7)	

Comple
te	case	
analysi
s	

Multivar
aite	Cox	
proporti
onal	
hazards	
regressio
n	

Calibration	
curve:	
results	not	
reported	
Discrimina
tion:	
absent	
External	
Validation:	
absent	

Calculato
r	
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Table	Iiii:	Assessment	of	Risk	of	Bias	of	Included	Studies	Using	

Prediction	model	Risk	of	Bias	Assessment	Tool	(PROBAST)	(Wolff	et	

al.,	2014)	

	
Study	 Risk	of	Bias	 Applicability	 Overall	

Participa
nts	

Predictor
s*	

Outcom
e*	

Analys
is	

Participa
nts	

Predicto
rs	

Outco
me	

Ris
k	of	
Bia
s	

Applicabili
ty	

Brennan	
et	al.	
(2004)	

+	 -	 -	 +	 ?	 +	 +	 +	 +	

Kanda	et	
al.	
(2014b)	

?	 -	 -	 -	 ?	 +	 +	 -	 +	

Miura	et	
al.	
(2014)	

?	 -	 -	 -	 ?	 +	 +	 -	 +	

Shen	et	
al.	
(2018)	

?	 -	 -	 -	 +	 +	 +	 -	 +	

Xu	et	al.	
(2017)	

?	 -	 -	 -	 ?	 +	 +	 -	 +	

Walczak	
&	
Velanovi
ch	
(2017)	

?	 ?	 -	 -	 ?	 +	 +	 ?	 +	

Hsu	et	al.	
(2012)	

+	 -	 -	 ?	 ?	 +	 +	 +/?	 +	

Botsis	et	
al.	
(2009)	

?	 -	 -	 -	 ?	 +	 +	 -	 +	

Liu	et	al.	
(2018)	

+	 ?	 -	 ?	 +	 +	 +	 ?	 +	

Balzano	
et	al.	
(2017)	

+	 -	 -	 -	 ?	 +	 +	 -	 +	

Smith	&	
Mezhir	
(2014)	

+	 -	 -	 -	 +	 +	 +	 -	 +	

Pu	et	al.	
(2017)	

?	 -	 -	 -	 ?	 +	 +	 -	 +	

Dasari	et	
al.	
(2015)	

+	 -	 -	 -	 ?	 +	 +	 -	 +	

Pu	et	al.	
(2018)	

+	 -	 -	 ?	 +	 +	 +	 +	 +	

Katz	et	
al.	
(2012b)	

+	 ?	 -	 ?	 +	 +	 +	 +/?	 +	

+	=	low	risk	of	bias/	low	concern	regarding	applicability;	-	=	high	risk	of	bias/	high	level	of	concern	regarding	
applicability;	?	=	unclear	level	of	risk	of	bias	/	concern	regarding	applicability;	*blinding	was	an	issue	across	all	studies	
even	where	risk	and	concern	were	low	in	other	areas	
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The	number	of	model	development	studies,	with	(n=3)	(Shen	et	al.,	

2018;	Balzano	et	al.,	2017;	Dasari	et	al.,	2016)	and	without	(n=12)	

external	validation	(Pu	et	al.,	2018;	Brennan	et	al.,	2004;	Kanda	et	al.,	

2014b;	Miura	et	al.,	2014;	Xu	et	al.,	2017;	Walczak	&	Velanovich,	

2012;	Hsu	et	al.,	2012;	Botsis	et	al.,	2009;	Liu	et	al.,	2018;	Smith	&	

Mezhir,	2014;	Pu	et	al.,	2017;	Katz	et	al.,	2012b),	increased	sharply	in	

recent	years.	Multivariable	Cox	regression	proportional	hazard	

regression	was	the	most	commonly	employed	modeling	method	

(n=13)	with	2	studies	employing	alternative	techniques	(Bayesian	

model:	n=1(Smith	&	Mezhir,	2014);	Artificial	Neural	Network	(ANN):	

n=1	(Walczak	&	Velanovich,	2012)	(Table	Iii).	6	models	could	be	

applied	preoperatively	(Balzano	et	al.,	2017;	Kanda	et	al.,	2014b;	

Miura	et	al.,	2014;	Hsu	et	al.,	2012;	Botsis	et	al.,	2009;	Pu	et	al.,	2017).	

5	studies	focused	on	predicting	poor	prognosis	(survival	time	under	

7	months	n=1,	under	9	months	n=1,	under	12	months	n=2,	6,12	and	

18months	survival	n=	1)	and	one	model	predicted	prognosis	of	3	

years	or	more	(Table	Iii).	7	models	predicted	prognosis	at	set	time	

intervals	(6months,	1,	3	and	5	years	n=1;	1,2,3	years	n=2;	1,3	years	

n=1;	and	1,3	and	5	years	n=3)	and	2	studies	did	not	categories	

survival	time	(Table	Iii).		

	

Source	of	data,	participant	selection	and	follow-up	

	

A	cohort	design,	commonly	recommended	for	prognostic	model	

development	(Moons	et	al.,	2009),	was	used	across	all	15	models.	5	

studies	used	data	from	prospectively	maintained	databases	(Balzano	

et	al.,	2017;	Dasari	et	al.,	2016;	Brennan	et	al.,	2004;	Hsu	et	al.,	2012;	

Liu	et	al.,	2018),	with	1	of	these	studies	collecting	data	prospectively	
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alongside	clinical	trials	(Liu	et	al.,	2018).	7	studies	used	retrospective	

data	(Shen	et	al.,	2018;	Kanda	et	al.,	2014b;	Miura	et	al.,	2014;	Xu	et	

al.,	2017;	Walczak	&	Velancovich,	2012;	Botsis	et	al.,	2009;	Pu	et	al.,	

2017).	3	studies	used	data	from	the	cancer	data	registry	(Pu	et	al.,	

2018;	Smith	&	Mezhir,	2014;	Katz	et	al.,	2012b).	Prospective	cohort	

designed	is	recommended	as	it	enables	optimal	measurement	of	

predictors	and	outcome	(Bouwmeester	et	al.,	2012).	Retrospective	

cohorts	are	thought	to	yield	poorer	quality	data	(Moons	et	al.,	2009)	

but	do	enable	longer	follow-up	time	(Bouwmeester	et	al.,	2012).					

Participant	recruitment	was	well	described	with	inclusion	criteria	

and	description	of	cohort	characteristics	as	well	as	study	dates	

reported	in	all	15	studies.	Length	of	follow-up	time	was	clear	in	14	

studies	(Shen	et	al.,	2018;	Balzano	et	al.,	2017;	Dasari	et	al.,	2016;	

Brennan	et	al.	2004;	Kanda	et	al.,	2014b;	Miura	et	al.,	2014;	Xu	et	al.,	

2017;	Walczak	&	Velanovich	2012;	Hsu	et	al.,	2012;	Botsis	et	al.,	

2009;	Liu	et	al.,	2018;	Smith	&	Mezhir,	2014;	Pu	et	al.,	2017;	Katz	et	

al.,	2012b).	Consecutive	sampling	was	reported	in	3	studies	(Shen	et	

al.,	2018;	Miura	et	al.,	2014;	Walczak	&	Velanovich,	2012)	but	

whether	all	consecutive	participants	were	included,	or	number	of	

participants	who	refused	to	participate,	could	not	be	evaluated	as	

this	was	rarely	reported	across	all	studies.	Non-consecutive	sampling	

can	introduce	a	risk	of	bias	(Altman,	2001;	Altman	et	al.,	2009;	

Altman	et	al.,	2001).	The	majority	of	models	were	developed	using	

single	centre	databases	(n=10)	(Balzano	et	al.,	2017;	Dasari	et	al.,	

2016;	Brennan	et	al.,	2004;	Kanda	et	al.,	2014b;	Miura	et	al.,	2014;	Xu	

et	al.,	2017;	Walczak	&	Velanovich,	2012;	Hsu	et	al.,	2012;	Botsis	et	

al.,	2009;	Pu	et	al.,	2017)	which	can	limit	the	generalisability	of	the	

model.	This	was	followed	by	use	of	cancer	registry	database	(n=3)	
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(Pu	et	al.,	2018;	Smith	&	Mezhir,	2014;	Katz	et	al.,	2012b)	and	

multicentre	databases	(n=2)	(Shen	et	al.,	2018;	Liu	et	al.,	2018).					

Model	Outcomes	

In	all	15	studies	outcomes	were	clearly	defined	with	the	same	

outcome	definition	and	method	of	measurement	applied	at	all	

patients.	However	none	of	the	studies	reported	blinding	the	outcome	

measurement	for	predictor	values.	Best	practice	dictates	that	

assessor	of	the	outcome	occurrence	should	be	blinded	to	

ascertainment	of	the	predictor	(Moons	et	al.,	2009;	Laupacis	et	al.,	

1997)	so	as	not	to	bias	estimation	of	predictor	effects	for	the	

outcome	(Moons	et	al.,	2009;	Bouwmeester	et	al.,	2012).	Although	

such	a	bias	would	not	be	a	major	factor	in	prediction	of	all	cause	

mortality	(Bouwmeester	et	al.,	2012;	Moons	et	al.,	2014),	the	

majority	of	studies	predicted	disease-specific	prognosis,	whereby	

bias	could	come	into	play	in	variables	requiring	subjective	

interpretation,	such	as	results	from	imaging	(Moons	et	al.,	2014).				

	

Candidate	Predictors	

	

A	variety	of	candidate	predictors	were	considered	across	all	15	

model	development	studies	(Table	Iiv).	The	mean	number	of	

candidate	predictors	was	19.47	(range	7	to	50).	The	definition,	

method	and	timing	of	measurement	of	candidate	predictors	were	

clear	across	all	15	studies	although,	as	previously	discussed	lack	of	

blinding	was	an	issue.	3	studies	reported	categorisation	of	candidate	

predictor	variables	prior	to	model	development	(Shen	et	al.,	2018;	
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Dasari	et	al.,	2016;	Brennan	et	al.,	2004).	10	studies	specifically	

detailed	how	categorical	data	was	analysed	as	non-binary	(Shen	et	

al.,	2018;	Balzano	et	al.,	2017;	Brennan	et	al.,	2004;	Kanda	et	al.,	

2014b;	Miura	et	al.,	2014;	Xu	et	al.,	2017;	Hsu	et	al.,	2012;	Botsis	et	

al.,	2009;	Smith	&	Mezhir,	2014;	Pu	et	al.,	2017).	13	studies	detailed	

how	time-to-event	data	was	analysed	as	non-binary	(Shen	et	al.,	

2018;	Balzano	et	al.,	2017;	Dasari	et	al.,	2016;	Pu	et	al.,	2018;	Kanda	

et	al.,	2014b;	Miura	et	al.,	2014;	Xu	et	al.,	2017;	Hsu	et	al.,	2012;	

Botsis	et	al.,	2009;	Liu	et	al.,	2018;	Smith	&	Mezhir,	2014;	Pu	et	al.,	

2017;	Katz	et	al.,	2012b).	Handling	such	data	as	binary	is	not	

recommended	practice	as	this	can	result	in	less	accurate	predictions,	

as	with	dichotomizing	predictor	variables	(Royston	et	al.,	2006).			
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Table	Iiv:	Summary	of	frequency	of	included	variables	in	prognostic	

model	development	studies	

	

Variable		 Number	of	Models	
Variable	is	Included	
in	

Combined	study	
population	of	all	
models	in	which	the	
variable	is	included	

Tumour	grade	 9	 18,815	
Age	 8	 17,565	
Tumour	Stage	 7	 14,630	
Tumour	size	 5	 8,154	
Gender	 4	 12,910	
Ca19-9	 4	 1,815	
Vascular	Involvement	 3	 1,059	
Tumour	location	 3	 6,858	
T	stage	 3	 10,433	
Margin	status	 2	 774	
Lymph	node	
involvement	

2	 794	

Back	pain	 2	 851	
CEA	 2	 374	
Lymph	node	ratio	 2	 6,967	
Co-morbidities	 2	 1,036	
Race	 2	 12,136	
Splenectomy	 1	 555	
Posterior	margin	
positive	

1	 555	

Weight	loss	 1	 555	
Platelet	count	 1	 50	
Neural	Involvement		 1	 265	
Neutrophil	
Lymphocyte	Ratio	

1	 265	

Platelet	to	
lymphocyte	ratio	

1	 265	

Albumin	to	globulin	
ratio	

1	 265	

Quality	of	Life	 1	 219	
Adjuvant	therapy	 1	 219	
Radiotherapy	 1	 12,136	
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Alkaline	Phosphate	 1	 218	
Albumin	 1	 218	
Alkaline	phosphate	to	
albumin	ratio	

1	 220	

Geriatric	Nutritional	
Index	

1	 296	

Non	metastatic	liver	
disease	or	insulin	
resistance		

1	 296	

Marital	status	 1	 6400	
	

	

Statistical	Power:	sample	size	and	missing	data	

	

Mean	sample	size	was	1367	(range	50-6400).	Event	per	variable	

(EPV)	is	the	number	of	predictors	assessed	compared	to	the	number	

of	events.	Statistical	power	of	10	studies	(Shen	et	al.,	2018;	Balzano	et	

al.,	2017;	Pu	et	al.,	2018;	Brennan	et	al.,	2004;	Miura	et	al.,	2014;	

Walczak	&	Velanovich,	2012;	Hsu	et	al.,	2012;	Liu	et	al.,	2018;	Pu	et	

al.,	2017;	Katz	et	al.,	2012b)	could	be	assessed	using	the	

recommended	EPV	rule	of	statistical	power	for	Cox	regression	

models	of	10	events	per	candidate	predictor,	as	determined	by	the	

smallest	group	(Harrell,	2001;	Peduzzi	et	al.,	1996;	Peduzzi	et	al.,	

1995;	Steyerberg	et	al.,	1999;	Vittinghoff	&	mcCulloch,	2007).	Of	

these	studies	5	did	not	achieve	statistical	power	according	to	this	

rule	(Shen	et	al.,	2018;	Balzano	et	al.,	2017;	Miura	et	al.,	2014;	

Walczak	&	Velanovich,	2012;	Pu	et	al.,	2017).	Recently	an	EPV	of	10	

has	been	criticised	as	being	too	simplistic	for	calculating	minimum	

sample	size	required	for	models	predicting	binary	and	time-to-event	

outcomes	(Riley	et	al.,	2019).	Instead	there	is	a	move	toward	

applying	the	following	three	criteria	to	determine	the	minimum	
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sample	size	required	for	such	models:	(i)	predictor	effect	estimates	

defined	by	a	global	shrinkage	factor	of	≥0.9,	(ii)	small	absolute	

difference	in	the	model's	apparent	and	adjusted	Nagelkerke's	R2	

(≤	0.05),	and	(iii)	precise	estimation	of	the	overall	risk	in	the	

population.	Initial	testing	of	this	approach	suggests	that	it	will	

minimise	overfitting	and	ensure	precise	estimates	of	overall	risk	

(Riley	et	al.,	2019).			

	

Most	studies	(n=9)	used	complete	case	analysis	(Balzano	et	al.,	2017;	

Dasari	et	al.,	2016;	Pu	et	al.,	2018;	Kanda	et	al.,	2014b;	Miura	et	al.,	

2014;	Walczak	&	Velanovich,	2012;	Hsu	et	al.,	2012;	Botsis	et	al.,	

2009;	Liu	et	al.,	2018;	Smith	&	Mezhir,	2014;	Pu	et	al.,	2017;	Katz	et	

al.,	2012b).	This	approach	results	in	loss	of	statistical	power	and	can	

introduce	bias	as	missing	data	rarely	occurs	randomly	and	often	

pertains	to	participant	or	disease	characteristics	(Bouwmeester	et	al.,	

2012).	2	studies	reported	missing	data	per	candidate	variable	

(Brennan	et	al.,	2004;	Botsis	et	al.,	2009).	1	of	these	studies	handled	

missing	data	by	predicting	input	using	regression	modelling	

(Brennan	et	al.,	2004).	The	other	study	handled	missing	data	by	

applying	the	Multivariate	Imputation	by	Chained	Equations	(MICE)	

method	assuming	data	were	missing	at	random	(MAR)	(Botsis	et	al.,	

2009).	Imputation,	particularly	multiple	imputation,	of	missing	data	

is	advocated	to	reduce	bias	and	maintain	statistical	power	(Harrell	et	

al.,	1996;	Donders	et	al.,	2006;	Marshall	et	al.,	2010).	4	studies	did	not	

give	details	of	missing	data	(Shen	et	al.,	2018;	Balzano	et	al.,	2017;	Xu	

et	al.,	2017;	Liu	et	al.,	2018).	
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Model	development	

	

All	15	studies	detailed	how	many	candidate	predictors	were	

considered	but	none	of	the	studies	detailed	how	candidate	predictors	

were	selected	with	prior	expert	knowledge	of	disease	inferred.	1	

study	selected	predictors	on	multivariable	analysis	(Brennan	et	al.,	

2004).	Most	studies	(n=12)	employed	pre-selection	by	univariable	

analysis	of	predictors	for	inclusion	in	multivariable	analysis	(Shen	et	

al.,	2018;	Balzano	et	al.,	2017;	Dasari	et	al.,	2016;	Pu	et	al.,	2018;	

Kanda	et	al.,	2014b;	Miura	et	al.,	2014;	Xu	et	al.,	2017;	Hsu	et	al.,	

2012;	Botsis	et	al.,	2009;	Liu	et	al.,	2018;	Pu	et	al.,	2017;	Katz	et	al.,	

2012b).	Although	this	method	is	commonly	employed	it	is	not	

recommended	as	it	carries	a	greater	risk	of	predictor	selection	bias,	

particularly	in	smaller	sample	sizes	(Collins	et	al.,	2015).	Predictors	

not	significant	in	univariable	analysis	may	become	significantly	

associated	with	outcome	following	adjustment	for	other	predictors	

(Moons	et	al.,	2014).	Predictors	pre-selected	due	to	large	but	

spurious	association	with	outcome	can	result	in	increased	risk	of	

overfitting	(Moons	et	al.,	2014).	Furthermore	multivariable	analysis	

for	predictor	selection	can	result	in	overfitting	and	unstable	models	

(Bouwmeester	et	al.,	2012).	This	is	a	particular	risk	when	outcomes	

are	few	but	many	predictors	are	analysed	(Bouwmeester	et	al.,	

2012).	None	of	the	studies	described	shrinkage	technique	as	a	

method	for	addressing	possible	overfitting	(Moons	et	al.,	2014).	In	

the	case	of	low	EPV,	shrinkage	methods	could	not	account	for	all	bias	

(Moons	et	al.,	2014).		
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14	studies	used	backward	elimination	methods	(Shen	et	al.,	2018;	

Balzano	et	al.,	2017;	Dasari	et	al.,	2016;	Pu	et	al.,	2018;	Kanda	et	al.,	

2014b;	Miura	et	al.,	2014;	Xu	et	al.,	2017;	Walczak	&	Velanovich	

2012;	Hsu	et	al.,	2012;	Botsis	et	al.,	2009;	Liu	et	al.,	2018;	Smith	&	

Mezhir,	2014;	Pu	et	al.,	2017;	Katz	et	al.,	2012b).	This	included	an	

ANN	that	used	single	hidden	layer	back	propagation	to	train	the	

model	(Walczak	&	Velanovich,	2012),	and	a	Bayesian	model	that	

employed	backward	step	down	selection	process	(Smith	&	Mezhir,	

2014).	Of	the	remaining	12	studies	employing	this	method	nominal	

P-value	was	used	as	the	criteria	for	predictor	inclusion.	10	of	these	

studies	used	P-value	<0.05	(Shen	et	al.,	Dasari	et	al.,	2016;	Pu	et	al.,	

2018;	Miura	et	al.,	2014;	Xu	et	al.,	2017;	Hsu	et	al.,	2012;	Botsis	et	al.,	

2009;	Liu	et	al.,	2018;	Pu	et	al.,	2017;	Katz	et	al.,	2012b),	2	of	which	

also	reported	additionally	using	Akaike	Information	Criteria	(Botsis	

et	al.,	2009;	Liu	et	al.,	2018).1	study	used	P-value	<	0.1	(Kanda	et	al.,	

2014b),	and	1	study	used	P-value	<	0.2	for	univariate	analysis	and	P-

value	<	0.1	for	multivariate	analysis	(Balzano	et	al.,	2017).	The	use	of	

a	small	P-value	has	the	benefit	generating	a	model	from	fewer	

predictors	but	carries	the	risk	of	missing	potentially	important	

variables	whilst	the	use	of	larger	P-values	potentiates	inclusion	of	

predictors	of	less	importance	(Moons	et	al.,	2014).	1	study	reported	

using	multivariable	analysis	for	predictor	selection	determined	by	P-

value	but	then	included	non-significant	factors	in	the	final	model	to	

include	all	7	candidate	variables,	therefore	effectively	employing	full	

model	approach	(Brennan	et	al.,	2004).	Whilst	full	model	approach	

can	avoid	selection	bias	(Moons	et	al.,	2014),	the	potential	for	

selection	bias	still	remained	in	this	study,	as	details	were	not	given	

on	how	candidate	predictors	were	decided.	
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Predictor	selection	can	also	incur	bias	when	continuous	predictors	

are	categorised	(Moons	et	al.,	2014).	12	studies	reported	

categorisation	(Shen	et	al.,	2018;	Balzano	et	al.,	2017;	Dasari	et	al.,	

2016;	Pu	et	al.,	2018;	Brennan	et	al.,	2004;	Kanda	et	al.,	2014b;	Miura	

et	al.,	2014;	Xu	et	al.,	2017;	Hsu	et	al.,	2012;	Botsis	et	al.,	2009;	Smith	

&	Mezhir,	2014;	Pu	et	al.,	2017).	3	studies	specifically	stated	that	

categorization	was	performed	prior	to	modelling	(Shen	et	al.,	2018;	

Dasari	et	al.,	2016;	Brennan	et	al.,	2004).	All	12	studies	described	

appropriate	statistical	techniques	for	handling	continuous	variables.										

	

Model	performance	and	evaluation	

8	studies	reported	calibration	of	their	model	(Shen	et	al.,	2018;	

Balzano	et	al.,	2017;	Pu	et	al.,	2018;	Brennan	et	al.,	2004;	Xu	et	al.,	

2017;	Smith	&	Mezhir,	2014;	Pu	et	al.,	2017;	Katz	et	al.,	2012b),	most	

commonly	presented	as	calibration	curve.	1	study	reported	Hosmer-

Lemeshow	test	(Balzano	et	al.,	2017),	a	test	sometimes	criticised	for	

limited	statistical	power	to	assess	poor	calibration	and	failure	to	

indicate	magnitude	or	direction	of	miscalibration	(Moons	et	al.,	

2014).	12	studies	reported	discrimination	measured	as	either	c-

statistic	(n=4)	(Shen	et	al.,	2018;	Brennan	et	al.,	2004;	Botsis	et	al.,	

2009;	Smith	&	Mezhir,2014)	or	area-under-the-curve	(AUC)	of	the	

receiver	operated	curve	(n=4)	(Balzano	et	al.,	2017;	Dasari	et	al.,	

2016;	Kanda	et	al.,	2014b;	Walczak	&	Velanovich,	2012)	or	both	

(n=4)	(Pu	et	al.,	2018;	Xu	et	al.,	2017;	Liu	et	al.,	2018;	Pu	et	al.,	2017).	

Although	commonly	used,	the	c-statistic	can	be	influenced	by	

predictor	value	distribution	and	be	insensitive	to	inclusion	of	

additional	predictors	(Moons	et	al.,	2014).	9	studies	reported	
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confidence	intervals	with	discrimination	measures	(Brennan	et	al.,	

2004;	Shen	et	al.,	2018;	Balzano	et	al.,	2017;	Dasari	et	al.,	2016;	Pu	et	

al.,	2018;	Xu	et	al.,	2017;	Botsis	et	al.,	2009;	Smith	&	Mezhir,	2014;	Pu	

et	al.,	2017).	R2	was	reported	in	1	study	(Balzano	et	al.,	2017).	

Sensitivity	and	specificity	were	also	poorly	reported	(n=2)	(Walczak	

&	Velanovich,	2012;	Liu	et	al.,	2018).	Internal	validation	was	rarely	

performed.	3	studies	used	bootstrapping	(Pu	et	al.,	2018;	Brennan	et	

al.,	2004;	Botsis	et	al.,	2009)	and	4	studies	used	random	split	method	

(Walczak	&	Velanovich,	2012;	Liu	et	al.,	2018;	Smith	&	Mezhir,	2014;	

Pu	et	al.,	2017).		3	studies	included	external	validation	as	part	of	

model	development	(Shen	et	al.,	2018;	Balzano	et	al.,	2017;	Dasari	et	

al.,	2016).	However,	the	external	validation	datasets	were	small.	Shen	

et	al.	(2018)	used	17	variables	and	the	external	validation	dataset	

contained	only	61	patients.	Balzano	et	al.	(2017)	used	56	variables,	

using	univariable	analysis	to	select	for	multivariable	analysis,	but	the	

derivation	set	had	only	78	patients	and	the	external	validation	

dataset	had	only	43	patients.		In	one	of	these	studies	it	was	unclear	

how	many	events	occurred	in	the	external	validation	cohort	(Dasari	

et	al.,	2016).	None	of	the	studies	described	external	validation	of	

their	models	separate	to	the	derivation	authors	and	none	of	the	

studies	described	impact	analysis	of	their	models.						

	

Presentation	of	Results	and	Discussion	

12	studies	presented	both	unadjusted	and	adjusted	results	of	the	full	

model	with	all	candidate	predictors	considered	(Shen	et	al.,	2018;	

Balzano	et	al.,	2017;	Dasari	et	al.,	2016;	Pu	et	al.,	2018;	Kanda	et	al.,	
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2014b;	Miura	et	al.,	2014;	Xu	et	al.,	2017;	Hsu	et	al.,	2012;	Botsis	et	

al.,	2009;	Liu	et	al.,	2018;	Pu	et	al.,	2017;	Katz	et	al.,	2012b)	and	1	

study	presented	adjusted	results	only	(Brennan	et	al.,	2004).	All	15	

studies	offered	alternative	presentation	of	the	model.	The	most	

common	form	of	presentation	of	prognostic	models	was	nomograms	

(n=5)	and	prognostic	scores	(n=5)	followed	by	prognostic	calculators	

(n=3)	and	prognostic	index	(n=2)	(Table	20).	All	15	studies	reported	

interpretation	of	models	as	being	for	application	to	clinical	practice	

and	all	studies	discussed	comparison,	generalisability,	strengths	and	

weaknesses	of	their	model	as	recommended	by	several	guidelines	

including	PRISMA	statement	(Moher	et	al.,	2009).			

	

The	results	of	this	critical	review	and	discussion	of	the	overall	

findings	are	further	discussed	in	section	2.3.2.				
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Appendix	J	

	

A	Review	and	Critical	Analysis	of	Machine	Learning	Methods	

Applied	to	Decision	Making	in	Pancreatic	Cancer	Management	

	

The	body	of	this	appendix	and	the	discussion	in	section	2.3.4	has	

been	published	in	the	review	article	written	by	the	autor	of	this	

thesis:	

	

Bradley,	A.,	Van	der	Meer,	R.	and	McKay,	C.	(2019)	‘Personalized	

pancreatic	cancer	management:	a	systematic	review	of	how	machine	

learning	is	supporting	decision-making’.	Pancreas,48	(5).	pp.	598-

604.	

	

The	aim	of	this	appendix	is	to	support	the	discussion	in	section	2.3.4	

regarding	the	current	use	of	machine	learning	techniques	to	support	

clinical	decision	making	in	pancreatic	cancer	management.	Machine	

learning	has	grown	in	popularilty	in	recent	years	as	a	means	of	

modeling	complex	adaptive	systems	containing	a	large	number	of	

variables	with	a	high	degree	of	uncertainty.	Some	of	the	most	

commonly	used	machine	learning	methods	are	summarised	in	table	

Ji.		
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Table	Ji:	Summary	of	Common	Methods	of	Machine	Learning	
Method	 Application	 Strengths	 Limitations	
Bayesian	Network	
(BN)	

Decision	support	

Risk	Assessment	

Prediction	(Abbod	et	
al.,	2014;	Velikova	et	
al.,	2014;	Verduijn	et	
al.,	2017;	Lucas	et	al.,	
2004)	

Allows	for	
incorporation	of	
individual	patient	
data,	disease	
progression	and	
impact	of	different	
treatment	options	on	
the	predicted	
outcome	(Velikova	et	
al.,	2014;	Verduijn	et	
al.,	2017).	
		
Facilitates	prognosis	
updating	and	scenario	
testing	(Verduijn	et	
al.,	2017).		
	
Provides	information	
on	process	and	
outcome	variables	
therefore	predict	
outcomes	pertaining	
to	quality	and	not	just	
amount	of	survival	
time	(Verduijn	et	al.,	
2017;	Lucas	et	al.,	
2004).	
	
Uses	probabilistic	
inference	when	data	
is	limited	and	can	still	
make	predictions	
based	on	global	
averages	of	the	
patient	population	
(Verduijn	et	al.,	2017;	
Lucas	et	al.,	2004).	

Accurate	use	of	data	
in	elicitation	of	priors	
is	an	area	of	ongoing	
investigation	and	
debate	(Lucas	et	al.,	
School	et	al.,	2013;	
Hampson	et	al.,	2014;	
Johnson	et	al.,	2010).	
	
An	over	reliance	on	
machine-learned	
network	structures,	
could	mean	
fundamental	causal	
relationships	well	
established	in	medical	
knowledge	are	lost	
hence	limiting	the	
applicability	(Lucas	et	
al.,	School	et	al.,	2013;	
Hampson	et	al.,	2014;	
Johnson	et	al.,	2010).	
		
Can	only	model	linear	
dependencies	(Abbod	
et	al.,	2014).	

	

Artificial	Neural	
Network	(ANN)	

Modeling		

Prediction	

Image	interpretation	

Classification(Abbod	
et	al.,	2014)		

Models	non-linearity	
and	complex	
relationships	(Abbod	
et	al.,	2014;	Bartosch-
Härlid	et	al.,	2008).	

Handles	high-
dimension		
problems(Abbod	et	
al.,	2014;	Bartosch-
Härlid	et	al.,	2008).	

Can	generalize	
(Bartosch-Härlid	et	
al.,	2008).	

Heavy	data	
requirements	with	
long	training	times	
requiring	many	
design	decisions	
(Abbod	et	al.,	2014;	
Bartosch-Härlid	et	al.,	
2008).	

May	not	generalize	
well	to	other	data	sets	
(Abbod	et	al.,	2014;	
Bartosch-Härlid	et	al.,	
2008).	

Lacks	
transparency(Abbod	
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Does	not	impose	any	
restrictions	on	the	
input	variables	
(Abbod	et	al.,	2014;	
Bartosch-Härlid	et	al.,	
2008).		

et	al.,	2014;	Bartosch-
Härlid	et	al.,	2008).	

	

	
Fuzzy	Logic	(FL)	 Modeling		

Prediction	

Classification	(Abbod	
et	al.,	2014)	

Models	non-linearity	
(Abbod	et	al.,	2014).		
	
Handles	uncertainty	
and	complexity	
(Johnson	et	al.,	2010;	
Gursel,	2016;	Barro	&	
Marín,	2002;	Dweiri	&	
Kablan,	2006).		
	
Enables	prediction	to	
move	from	
probability	to	
plausibility	(Grossi,	
2015).		
	
Transition	to	a	
contiguous	value	is	
gradual	rather	than	
abrupt	reflecting	
human	decision-
making	processes	
(Gursel,	2016;	McNeill	
&Thro,	1994;	
Bouchon-Meunier	&	
Zadeh,	1995).		
	
Can	assess	more	
observed	variables	
yet	fewer	values	are	
required	(McNeill	
&Thro,	1994;	
Bouchon-Meunier	&	
Zadeh,	1995).		

Transparent	(Abbod	
et	al.,	2014).	

	

Extensive	expert	
knowledge	of	the	
system	to	be	modeled	
is	required	
(Roychowdhury	et	al.,	
2004).		
	
Requires	more	fine-
tuning	and	simulation	
prior	to	being	
operational	(Pratihar	
et	al.,	1999).		
	
Cannot	model	high-
dimension	problems	
(Abbod	et	al.,	2014).	
	

	

	

Following	a	comprehensive	search	of	MEDLINE,	Embase,	PubMed	

and	Cochrane	databases	only	6	studies	were	identified	that	met	the	

inclusion	criteria	of	machine	learning	methods	applied	to	predictive	

modeling	and	decision-analysis	related	to	pancreatic	cancer	

management.	Three	studies	were	Markov	decision-analysis	models	
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comparing	two	competing	treatment	options:	neoadjuvant	therapy	

versus	upfront	surgery	(deGus	et	al.,	2016;	Sharma	et	al.,	2015;	Van	

Houten	et	al.,	2012).	Three	studies	focused	on	predicting	survival	

time	(Smith	&	Mezhir,	2014;	Hayward	et	al.,	2010;	Walczak	&	

Velanovich,	2017).	One	of	these	studies	also	predicted	lymph	node	

ratio	(Smith	&	Mezhir,	2014).	One	of	these	studies	additionally	

explored	prediction	of	Eastern	Cooperative	Oncology	Group	(ECOG)	

quality-of-life	scores,	surgical	outcomes	and	tumour	characteristics	

(Hayward	et	al.,	2010).	One	study	performed	direct	comparison	

between	predictive	accuracy	of	machine	learning	techniques	and	

linear	and	logistic	regression	(Hayward	et	al.,	2010).		

	

Three	studies	used	Marko	decision	tree	models	(deGeus	et	al.,	2016;	

Sharma	et	al.,	2015;	Van	Houten	et	al.,	2012),	1	study	used	Bayesian	

modeling	(Smith	&	Mezhir,	2014)	1	study	used	ANN	(Walczak	&	

Velanovich,	2017)	and	1	study	explored	machine	learning	algorithms	

including:	BN,	decision	trees,	k-nearest	neighbor,	and	ANN	(Hayward	

et	al.,	2010)(Table	Jii).		
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Table	Jii:	Summary	of	Included	Machine	Learning	Studies		
Study	 Participant	

Population	
Method	 Outcome	

Measure	
Main	
Limitations	

deGeus	et	al.	
(2016)	

Synthesised	data	
from	phase	II	
trials	and	cohort	
studies	

Markov	decision-
analysis	

Survival	in	
months	and	
quality	adjusted	
life	months	for	
upfront	surgery	
versus	
neoadjuvant	
therapy	

Use	of	single	
electronic	
database	of	
journals	
Synthesised	
small	
underpowered	
studies	with	high	
level	if	
heterogeneity		
Relied	heavily	on	
retrospective	
cohort	studies	

Sharma	et	al.	
(2015)	

Synthesised	data	
from	phase	II	
trials	

Markov	decision-
analysis	

Survival	in	
months	and	
quality	adjusted	
life	months	for	
upfront	surgery	
versus	
neoadjuvant	
therapy	

Use	of	single	
electronic	
database	of	
journals	
Synthesised	
small	
underpowered	
studies	with	high	
level	if	
heterogeneity	

Van	Houten	et	al.	
(2012)	

Synthesised	data	
from	phase	II	
trials	and	cohort	
studies	

Markov	decision-
analysis	

Survival	in	
months	and	
quality	adjusted	
life	months	for	
upfront	surgery	
versus	
neoadjuvant	
therapy	

Use	of	single	
electronic	
database	of	
journals	
Synthesised	
small	
underpowered	
studies	with	high	
level	if	
heterogeneity	
Included	
borderline	
resectable	cases	
in	neoadjuvant	
cohort	
Relied	heavily	on	
retrospective	
cohort	studies	

Smith	&	Mezhir	
(2014)	

Cancer	Registry	
(n	=	6400)	

Interactive	
Bayesian	Model	

Survival	at	6	
months,	1,3	and	
5-year	survival	

Follow-up	time	
unclear	
Unclear	if	
consecutive	
sampling	used	
Selection	method	
of	candidate	
predictors	not	
clear	
Complete	base	
analysis	used	
No	external	
validation	
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Walczak	
&Velanovich	
(2017)	

Retrospective	
single	institution	
database	(n	=	
219)	

Artificial	Neural	
Network	

Death	at	7	
months	post	
resection	

Consecutive	
sampling	used	
but	unclear	all	
consecutive	
participants	
included	
Selection	method	
of	candidate	
predictors	not	
clear	
Complete	base	
analysis	used	
No	external	
validation	
No	calibration	

Hayward	et	al.	
(2010)		

Retrospective	
single	institution	
database	(n	=	
91)	

Machine	learning	
algorithms	
including:	
Bayesian	
Network,	
decision	trees,	k-
nearest	
neighbor,	and	
ANN	

Survival	as	time	
dependent	event,	
Eastern	
Cooperative	
Oncology	Group	
(ECOG)	quality-
of-life	scores	
measured	at	6	
months	

Unclear	if	
consecutive	
sampling	used	
Complete	base	
analysis	used	
No	external	
validation	
No	calibration	

	

	

Decision-analysis	Models	

	

Three	studies	attempted	to	employ	Markov	decision	analysis	to	

compare	upfront	surgery	and	neoadjuvant	approach	(deGeus	et	al.,	

2016;	Sharma	et	al.,	2015;	Van	Houten	et	al.,	2012).	Sharma	et	al.	

(2015)	used	data	drawn	from	21	prospective	phase	II	and	III	trials.	

De	Gus	et	al.	(2016)	also	included	data	from	retrospective	studies	

compiled	from	a	literature	search	from	a	single	search	engine.	Both	

these	studies,	although	reportedly	analysing	strategies	for	resectable	

pancreatic	cancer	used	studies	that	included	borderline	resectable	

and	locally	advanced	pancreatic	cancer	in	an	intention-to-treat	

analysis	(deGus	et	al.,	2016;	Sharma	et	al.,	2015).	All	3	studies	used	

an	intention-to-treat	approach	to	analysis	and,	although	they	

reported	a	slight	benefit	from	neoadjuvant	approach,	neither	strategy	

was	conclusively	superior	(deGus	et	al.,	2016;	Sharma	et	al.,	2015;	
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Van	Houten	et	al.,	2012).	All	3	existing	studies	were	solely	based	on	

synthesised	evidence	from	published	trials	therefore	share	the	

limitations	of	the	existing	body	of	evidence	mainly:	heterogeneity	

and	small	underpowered	sample	size.		

	

Prediction	Models	

A	cohort	design,	commonly	recommended	for	prognostic	model	

development	(Moons	et	al.,	2009),	was	used	for	all	three	predictive	

models	(Smith	&	Mezhir,	2014;	Hayward	et	al.,	2010;	Walczak	&	

Velanovich,	2017).	Two	studies	used	retrospective	single	centre	

databases	(ANN	n	=	219	(Walczak	&	Velanovich,	2017);	comparison	

study	n	=	91	Hayward	et	al.,	2010)),	which	can	limit	generalisability,	

and	1	study	used	cancer	data	registry	(BN	n	=	6,400)	(Smith	&	

Mezhir,	2014).	Prospective	cohort	designed	is	recommended	as	it	

enables	optimal	measurement	of	predictors	and	outcome	

(Bouwneester	et	al.,	2012).	Retrospective	cohorts	are	thought	to	

yield	poorer	quality	data	but	do	enable	longer	follow-up	time	(Moons	

et	al.,	2009).					

Participant	recruitment	with	inclusion	criteria	and	description	of	

cohort	characteristics	were	well	reported,	as	were	study	dates	in	all	3	

studies	(Smith	&	Mezhir,	2014;	Hayward	et	al.,	2010;	Walczak	&	

Velanovich,	2017).	Length	of	follow-up	time	was	clear	in	2	studies	

(Smith	&	Mezhir,	2014;	Walczak	&	Velanovich,	2017).	Consecutive	

sampling	was	reported	in	1	study	(Walczak	&	Velanovich,	2017)	but	

whether	all	consecutive	participants	were	included,	or	number	of	

participants	who	refused	to	participate,	could	not	be	evaluated	in	any	

of	the	3	studies	(Smith	&	Mezhir,	2014;	Hayward	et	al.,	2010;	

Walczak	&	Velanovich,	2017).	Non-consecutive	sampling	can	
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introduce	a	risk	of	bias	(Altman,	2001;	Altman	et	al.,	2009;	Altman	et	

al.,	2001).		

	

In	all	3	studies	outcomes	were	clearly	defined	with	the	same	outcome	

definition	and	method	of	measurement	applied	to	all	patients	(Smith	

&	Mezhir,	2014;	Hayward	et	al.,	2010;	Walczak	&	Velanovich,	2017).	

The	interactive	Bayesian	model	predicted	6month,	1,3	and	5year	

survival	post	resection	and	lymph	node	ratio	(Smith	&	Mezhir,	2014).	

The	ANN	predicted	7-month	mortality	after	resection	(Walczak	&	

Velanovich,	2017).	Hayward	et	al.	(2010)	focused	on	data	mining	

techniques	but	treated	survival	outcome	as	a	time-dependent-event	

for	resected	and	un-resected	patients,	with	ECOG	measured	at	6	

months	post-resection.	Number	of	candidate	variables	ranged	from	7	

to	19.	The	definition,	method	and	timing	of	measurement	of	

candidate	predictors	were	clear	in	all	3	studies	(Smith	&	Mezhir,	

2014;	Hayward	et	al.,	2010;	Walczak	&	Velanovich,	2017).		How	

candidate	predictors	were	selected	were	not	made	clear	in	2	studies	

(Smith	&	Mezhir,	2014;	Walczak	&	Velanovich,	2017)	which	may	be	

illustrative	of	the	non-transparent	‘black-box’	analysis	sometimes	

employed	by	forms	of	artificial	intelligence	(AI).	One	study	

extensively	explored	algorithms	for	data	mining	and	categorisation	

of	the	datasets	(Hayward	et	al.,	2010).	The	other	2	studies	used	

backward	elimination	methods	(Smith	&	Mezhir,	2014;	Walczak	&	

Velanovich,	2017).	The	ANN	used	single	hidden	layer	back	

propagation	to	train	the	model	(Walczak	&	Velanovich,	2017),	and	

the	Bayesian	model	employed	backward	step	down	selection	process	

(Smith	&	Mezhir,	2014).	All	3	studies	used	complete	case	analysis	

(Smith	&	Mezhir,	2014;	Hayward	et	al.,	2010;	Walczak	&	Velanovich,	
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2017).	This	approach	results	in	loss	of	statistical	power	and	can	

introduce	bias	as	missing	data	rarely	occurs	randomly	and	often	

pertains	to	participant	or	disease	characteristics	(Bouwneester	et	al.,	

2012).		

	

None	of	the	studies	underwent	external	validation.	The	interactive	

Bayesian	model	(Smith	&	Mezhir,	2014)	and	ANN	(Walczak	&	

Velanovich,	2017)	employed	random	split	technique	between	

training	and	validation	datasets.	This	points	to	a	potential	key	

weakness	in	the	application	of	machine	learning	techniques	as	

random	split	technique	can	result	in	over	and	under	fitting	of	the	

model,	particularly	as	details	of	cross	validation	were	not	given	

(Reitermanov	́a,	2010).	Techniques	of	data	splitting	are	poorly	

described	and	can	result	in	a	high	degree	of	variance	of	model	

performance	(Reitermanov	́a,	2010).	More	sophisticated	techniques	

of	data	splitting	that	exploit	the	structure	of	the	data	exist	and	

provide	more	confident	results,	but	at	higher	computational	cost	

(Reitermanov	́a,	2010).	Only	the	interactive	Bayesian	model	reported	

calibration	with	goodness-of-fit	statistic	(P	=	0.300	for	prediction	of	

lymph-node-ratio;	P	=	0.4847	for	survival	prediction)	(Smith	&	

Mezhir,	2014).	The	ANN	reported	discrimination	as	area	under	curve	

(AUC)	of	the	receiver	operated	curve	(ROC)	(AUC,	0.6576;	sensitivity,	

91.30%;	specificity,	38.27%)	(Walczak	&	Velanovich,	2017).	The	

interactive	Bayesian	model	reported	discrimination	as	c-statistic	

(0.65;	95%	CI,	0.63-0.66)	(Smith	&	Mezhir,	2014).	Although	

commonly	used,	the	c-statistic	can	be	influenced	by	predictor	value	

distribution	and	be	insensitive	to	inclusion	of	additional	predictors	

(Moons	et	al.,	2014).	The	study	by	Hayward	et	al.	(2010)	compared	
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machine	learning	to	log	regression	and	found	that	for	survival	

prediction	Bayesian	modeling	out	performed	log	regression	

(accuracy	0.60	versus	0.42).	Furthermore	in	predicting	outcome	for	

ECOG	at	6	months	post-resection	log	regression	performance	

improved	from	r-squared	value,	0.26	to	0.32	when	modified	with	

machine	learning	algorithm	‘linear	regression	with	

bagging’(Hayward	et	al.,	2010).	

	

Conclusion		

	

Of	the	6	existing	studies	that	apply	machine	learning	techniques	to	

support	clinical	decision	making	in	the	management	of	pancreatic	

cancer	3	studies	used	Markov	decision	tree	models	to	perform	

decision	analysis	(deGus	et	al.,	2016;	Sharma	et	al.,	2015;	Van	Houten	

et	al.,	2012).	Three	studies	used	machine	learning	methods	for	

predictive	modeling:	1	study	used	Bayesian	modeling	(Smith	&	

Mezhir,	2014),	1	study	used	ANN	(Walczak	&	Velanovich,	2017)	and	

1	study	explored	machine	learning	algorithms	including:	BN,	decision	

trees,	k-nearest	neighbor,	and	ANN	(Hayward	et	al.,	2010).		

	

The	main	issues	identified	with	decision-analysis	studies	were	

reliance	on	data	from	a	single	database	search	and	the	quality	of	the	

existing	studies	pertaining	to	the	treatment	of	potentially	resectable	

pancreatic	cancer	being	mainly	small	and	underpowered	with	a	high	

degree	of	heterogeneity	(Tempero	et	al.,	2014;	Asare	et	al.,	2016).	

The	issues	identified	with	the	predictive	models	were	overreliance	

on	single	institution	retrospective	databases,	which	could	affect	

generalisability.	There	was	also	a	lack	of	clarity	as	to	whether	
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consecutive	sampling	was	employed	and	how	candidate	predictors	

were	selected.	A	major	issue	identified	was	the	lack	of	external	

validation	across	all	3	predictive	models.	Although	2	studies	used	

random-split	technique,	details	of	cross-validation	were	not	provided	

which	potentiates	issues	of	over	or	under	fitting.	Only	one	study	

reported	calibration	of	their	model.		
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Appendix	K	

	

Bayesian	Network	Meta-analysis:	Potentially	Resectable	

Pancreatic	Cancer		

*SF=	surgery	first	pathway;	NAT	=	neoadjuvant	therapy;	SF+adj	=	

surgery	first	plus	adjuvant	therapy;	surgery	only=	surgical	resection	no	

adjuvant	therapy	

Resection	Rates:	Phase	II/III	Studies			

	

Figure	Ki:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	
	

Figure	Kii:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	

	

NAT	
	

0.07	

(0.04	–	0.11)	
SF	

	

	

	

1	 10	

NAT	versus	SF	 0.07	(0.04	–	0.11)	0.04	(0.01	–	0.15)	

Treatment	1	vs.	
Treatment	2	

O.R.	(95%	
Cr.I.)	

Favours	Treatment	2	Favours	Treatment	1	

Fixed	Effects	
Random	Effects	(Vague	
Prior)	

Heterogeneity	(Vague)	=	
1.813		
95%	CrI	(1.304	–	1.992)	
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Figure	Kiii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Resection	Rates:	Phase	II/III	plus	Cohort	studies	

	

Figure	Kiv:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	

	

	
	

	

Figure	Kv:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		

	
	

NAT

0.16
(0.13	–	0.20)

SF
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R0	Resection	Rates:	Phase	II/III	Studies	

	

	

Figure	Kvi:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

NAT

0.40
(0.28	–	0.57)

SF
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Figure	Kvii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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R0	Resection	Rates:	Phase	II/III	plus	Cohort	studies	

	

Figure	Kviii:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Kix:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

	

	

	

NAT

1.33
(1.23	–	1.45)

SF
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Figure	Kx:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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1-year	Survival:	Phase	II/III	Studies		

	

Figure	Kxi:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Kxii:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

	

NAT

2.12
(1.30	–	3.49)

SF
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Figure	Kxiii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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1-year	Survival:	Phase	II/III	plus	Cohort	studies	

	

Figure	Kxiv:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Kxv:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

	

	

	

	

NAT

2.37
(2.19	–	2.55)

SF
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Figure	Kxvi:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Sensitivity	Network:	1-year	Survival:	Phase	II/III	plus	RCTs		

	

Figure	Kxvii:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

NAT

2.23
(1.03	–	5.73)

SF+adj

2.36
(0.55	–	12.40)

1.05
(0.29	–	3.90)

Surgery	Only
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Figure	Kxviii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Sensitivity	Network:	1-year	Survival:	Phase	II/III	plus	RCTs	plus	

cohort	studies		

	

Figure	Kxix:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	therapy	

versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	only	

	

	

A

B

C

Drug Abbreviation
NAT A
SF+adj B
Surgery	Only C
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Figure	Kxx:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Kxxi:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

NAT

2.08
(1.57	–	2.84)

SF+adj

2.20
(0.87	–	5.78)

1.06
(0.44	–	2.62)

Surgery	Only
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Figure	Kxxii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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2-year	Survival:	Phase	II/III	Studies		

	

Figure	Kxxiii:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

NAT

1.32
(0.87	–	1.97)

SF
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Figure	Kxxiv:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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2-year	Survival:	Phase	II/III	Studies	plus	Cohort	Studies			

	

Figure	Kxxv:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Kxxvi:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

	

	

	

	

NAT

2.58
(2.40	–	2.78)

SF
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Figure	Kxxvii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Sensitivity	Network:	2-year	Survival:	Phase	II/III	plus	RCTs		

	

Figure	Kxxviii:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	

therapy	versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	

only	

	

	

	
	

A

B

C

Drug Abbreviation
NAT A
SF+adj B
Surgery	Only C
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Figure	Kxxix:	Results	of	fixed	effects	and	random	effects	(vague	

prior)	models	

	

	
	

Figure	Kxxx:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

NAT

1.32
(0.87	–	1.96)

SF+adj

1.69
(0.98	–	2.90)

1.29
(0.89	–	1.85)

Surgery	Only
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Figure	Kxxxi:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Sensitivity	Network:	2-year	Survival:	Phase	II/III	plus	RCTs	plus	

cohort	studies		

	

Figure	Kxxxii:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	

therapy	versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	

only	

	

	
	

	
	

	

and	updated	the	treatment	legend	(below)	before		running	the	

the	shapes	are	too	crowded,	decrease	the	zoom	level	and	re-
generate	the	graph.		Conversely,	if	the	diagram	is	too	spread	

is	based	on	the	total	number	of	patients	

A

B

C

Drug Abbreviation
NAT A
SF+adj B
Surgery	Only C
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Figure	Kxxxiii:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

NAT

2.58
(2.40	–	2.78)

SF+adj

3.33
(2.30	–	4.83)

1.29
(0.90	–	1.85)

Surgery	Only
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Figure	Kxxxivl:	Rankogram	summarising	surface	under	the	

cumulative	ranking	(SUCRA).		
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3-year	Survival:	Phase	II/III	Studies		

	

Figure	Kxxxv:	Results	of	fixed	effects	and	random	effects	(vague	

prior)	models	

	

	
	

Figure	Kxxxvi:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	
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1.00
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Figure	Kxxxvii:	Rankogram	summarising	surface	under	the	

cumulative	ranking	(SUCRA).		

	

	
	

	

	

	

	

	

	

	

	

	

	

	



	 762	

	

3-year	Survival:	Phase	II/III	Studies	plus	Cohort	Studies			

	

Figure	Kxxxviii:	Results	of	fixed	effects	and	random	effects	(vague	

prior)	models	

	

	
	

Figure	Kxxxix:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

	

	

NAT

1.61
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Figure	Kxl:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Sensitivity	Network:	3-year	Survival:	Phase	II/III	plus	RCTs		

	

Figure	Kxli:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	therapy	

versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	only	
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Figure	Kxlii:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	

	
	

Figure	Kxliii:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	

	

	

	
	

SF+adj

1.72
(0.95	–	3.16)

NAT

2.00
(1.24	–	3.26)

1.17
(0.54	–	2.53)

Surgery	Only
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Figure	Kxliv:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Sensitivity	Network:	3-year	Survival:	Phase	II/III	plus	RCTs	plus	

cohort	studies		

	

	

Figure	Kxlv:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	therapy	

versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	only	
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Figure	Kxlvi:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	
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Figure	Kxlvii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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4-year	Survival:	Phase	II/III	studies		

	

	

Figure	Kxlviii:	Results	of	fixed	effects	and	random	effects	(vague	

prior)	models	

	
	

Figure	Kxlix:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	

	

	

	
	

	

	

	

	

	

NAT

1.56
(0.39	–	6.01)

SF



	 771	

Figure	Kl:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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4-year	Survival:	Phase	II/III	plus	cohort	studies		

	

Figure	Kli:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Klii:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	
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Figure	Kliii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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5-year	Survival:	Phase	II/III	studies		

	

Figure	Kliv:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Klv:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	
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Figure	Klvi:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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5-year	Survival:	Phase	II/III	plus	cohort	studies		

	

Figure	Klvii:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Klviii:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	
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Figure	Klix:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Sensitivity	Network:	5-year	Survival:	Phase	II/III	plus	RCTs		

Figure	Klx:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	therapy	

versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	only	
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Figure	Klxi:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	
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Figure	Klxii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Sensitivity	Network:	5-year	Survival:	Phase	II/III	plus	RCTs	plus	

cohort	studies		

	

Figure	Klxiii:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	

therapy	versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	

only	
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Figure	Klxiv:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	

	
	

	

Figure	Klxv:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	
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Figure	Klxvi:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Risk-of-Bias	Assessment		

Figure	Klxvii:	Assessment	of	Risk	of	Bias	for	each	included	trials	of	

neoadjuvant	versus	upfront	surgery	plus	adjuvant	therapy	
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Figure	Klxxvi:	Assessment	of	Risk	of	Bias	of	Randomised	Controlled	

Trials	comparing	Upfront	Surgery	plus	Adjuvant	Therapy	versus	

Surgery	Only.	
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Assessment	of	Convergence	and	Inconsistency	

	

Figure	Klxviii:	1-year	Survival	Model	Including	Phase	II/III	Trials	and	

Randomised	Controlled	Trials	

	

	
	

	

	
	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.5679 0.5689
OR[1,3] Surgery	Only	versus	NAT 0.5493 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.9674 0.9695

Fixed	Effects	Odds	Ratios
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Gelman	Rubin	statistic	

	
OR[1,2] chains 1:3

iteration
10001 15000

    0.0
    0.5
    1.0
    1.5

	
OR[1,3] chains 1:3

iteration
10001 15000

    0.0
    0.5
    1.0
    1.5

	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.5568 0.5332
OR[1,3] Surgery	Only	versus	NAT 0.524 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.9421 0.9374

Random	Effects	Odds	Ratios
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OR[2,3] chains 1:3

iteration
10001 15000

    0.0

    0.5

    1.0

	
	

Figure	Klxix:	1-year	Survival	Model	Including	Phase	II/III	Trials,	

Randomised	Controlled	Trials	and	Cohort	Studies	

	

	
	

	
	

	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.4263 0.4269
OR[1,3] Surgery	Only	versus	NAT 0.4125 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.9674 0.9644

Fixed	Effects	Odds	Ratios
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Gelman	Rubin	statistic	

	
OR[1,2] chains 1:3

iteration
10001 15000
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    0.5

    1.0

	
OR[1,3] chains 1:3

iteration
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Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.509 0.5091
OR[1,3] Surgery	Only	versus	NAT 0.4815 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.9457 0.9426

Random	Effects	Odds	Ratios
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OR[2,3] chains 1:3

iteration
10001 15000

    0.0

    0.5

    1.0

	
	

Figure	Klxx:	2-year	Survival	Model	Including	Phase	II/III	Trials	and	

Randomised	Controlled	Trials	

	
	

	

	
	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.7607 0.7635
OR[1,3] Surgery	Only	versus	NAT 0.5911 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.7771 0.7766

Fixed	Effects	Odds	Ratios
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Gelman	Rubin	statistic	

	
OR[1,2] chains 1:3

iteration
10001 15000

    0.0
    0.5
    1.0
    1.5

	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.8498 0.8450
OR[1,3] Surgery	Only	versus	NAT 0.6415 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.758 0.7498

Random	Effects	Odds	Ratios
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OR[1,3] chains 1:3

iteration
10001 15000
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OR[2,3] chains 1:3

iteration
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Figure	Klxxi:	2-year	Survival	Model	Including	Phase	II/III	Trials,	

Randomised	Controlled	Trials	and	Cohort	Studies	
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Gelman	Rubin	statistic	

	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.3871 0.3877
OR[1,3] Surgery	Only	versus	NAT 0.2997 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.775 0.7769

Fixed	Effects	Odds	Ratios

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.6073 0.6065
OR[1,3] Surgery	Only	versus	NAT 0.4595 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.7591 0.7604

Random	Effects	Odds	Ratios
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OR[1,2] chains 1:3
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Figure	Klxxii:	3-year	Survival	Model	Including	Phase	II/III	Trials	and	

Randomised	Controlled	Trials	
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Gelman	Rubin	statistic	

	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] Sfadj	versus	NAT 1.761 1.7372
OR[1,3] Surgery	Only	versus	NAT 0.875 N/A
OR[2,3] Surgery	Only	versus	Sfadj 0.4976 0.4977

Fixed	Effects	Odds	Ratios

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] Sfadj	versus	NAT 1.737 1.7565
OR[1,3] Surgery	Only	versus	NAT 0.8592 N/A
OR[2,3] Surgery	Only	versus	Sfadj 0.4984 0.5002

Random	Effects	Odds	Ratios
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OR[1,2] chains 1:3

iteration
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    1.0
    1.5
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Figure	Klxxiii:	3-year	Survival	Model	Including	Phase	II/III	Trials,	

Randomised	Controlled	Trials	and	Cohort	Studies	

	

	
	

	
	

	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] Sfadj	versus	NAT 0.6204 0.6211
OR[1,3] Surgery	Only	versus	NAT 0.3085 N/A
OR[2,3] Surgery	Only	versus	Sfadj 0.4968 0.4980

Fixed	Effects	Odds	Ratios
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Gelman	Rubin	statistic	

	

	
OR[1,2] chains 1:3

iteration
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    1.5

	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] Sfadj	versus	NAT 0.6669 0.6673
OR[1,3] Surgery	Only	versus	NAT 0.3326 N/A
OR[2,3] Surgery	Only	versus	Sfadj 0.4973 0.4989

Random	Effects	Odds	Ratios
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OR[1,3] chains 1:3
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Figure	Klxxiva:	5-year	Survival	Model	Including	Phase	II/III	Trials	

and	Randomised	Controlled	Trials	
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Gelman	Rubin	statistic	
OR[1,2] chains 1:3

iteration
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Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.3943 0.4011
OR[1,3] Surgery	Only	versus	NAT 0.1876 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.4747 0.4742

Fixed	Effects	Odds	Ratios

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.5083 0.5230
OR[1,3] Surgery	Only	versus	NAT 0.1796 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.3545 0.3542

Random	Effects	Odds	Ratios
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OR[1,3] chains 1:3

iteration
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Figure	Klxxivb:	5-year	Survival	Model	Including	Phase	II/III	Trials,	

Randomised	Controlled	Trials	and	Cohort	Studies	

	

	

	
	

	
	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.8124 0.8129
OR[1,3] Surgery	Only	versus	NAT 0.3874 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.4763 0.4758

Fixed	Effects	Odds	Ratios



	 803	

	
	

	
	

Gelman	Rubin	statistic	

	
OR[1,2] chains 1:3

iteration
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    1.0

	
OR[1,3] chains 1:3

iteration
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Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.7595 0.7639
OR[1,3] Surgery	Only	versus	NAT 0.2743 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.3643 0.3628

Random	Effects	Odds	Ratios
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Appendix	L		

	

Bayesian	Network	Meta-analysis:	Resectable	Pancreatic	Cancer		

	

*	SF=	surgery	first	pathway;	NAT	=	neoadjuvant	therapy;	SF+adj	=	

surgery	first	plus	adjuvant	therapy;	surgery	only=	surgical	resection	no	

adjuvant	therapy	

	

1-year	Survival	

	

Figure	Li:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Lii:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	
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1.46
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SF+adj
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Figure	Liii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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1-year	survival:	inclusion	of	RCTs	

Figure	Liv:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	
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Figure	Lv:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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2-year	Survival	Rates	

	

	

	Figure	Lvi:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	
	

Figure	Lvii:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	
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Figure	Lviii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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2-year	survival:	inclusion	of	RCTs	

	

Figure	Lix:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	therapy	

versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	only	
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Figure	Lx:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	
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Figure	Lxi:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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3-year	Survival	Rates	

	

	

Figure	Lxii:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Lxiii:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	
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Figure	Lxviv:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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3-year	survival:	inclusion	of	RCTs	

	

Figure	Lxv:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	therapy	

versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	only	
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Figure	Lxvi:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	
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Figure	Lxvii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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4-year	Survival	Rates	

	

Figure	Lxviii:	Results	of	fixed	effects	and	random	effects	(vague	

prior)	models	

	

	
	

Figure	Lxix:	League	table	based	on	results	of	fixed	effects	and	random	

effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	greater	than	

1	treatment	at	top	left	is	superior	
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Figure	Lxx:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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5-year	Survival	Rates	

	

Figure	Lxxi:	Results	of	fixed	effects	and	random	effects	(vague	prior)	

models	

	

	
	

Figure	Lxxii:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	
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Figure	Lxxiii:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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5-year	survival:	inclusion	of	RCTs	

	

	

Figure	Lxxiv:	Bayesian	Network	Meta-analysis	of	Neoadjuvant	

therapy	versus	Upfront	surgery	plus	adjuvant	therapy	versus	surgery	

only	
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Figure	Lxxv:	League	table	based	on	results	of	fixed	effects	and	

random	effects	(vague	prior)	models.	Where	odds	ratio	(O.R.)	is	

greater	than	1	treatment	at	top	left	is	superior	
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Figure	Lxxvi:	Rankogram	summarising	surface	under	the	cumulative	

ranking	(SUCRA).		
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Convergence	and	Inconsistency		

	

Figure	Lxxvii:	1-year	Survival	Model		

	

	
	

	

	
	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.4077 0.4086
OR[1,3] Surgery	Only	versus	NAT 0.3946 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.9681 0.9636

Fixed	Effects	Odds	Ratios
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Gelman	Rubin	statistic	

	
OR[1,2] chains 1:3

iteration
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    1.5

	
OR[1,3] chains 1:3

iteration
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Model

OR[1,2] SF+adj	versus	NAT 0.4777 0.4774
OR[1,3] Surgery	Only	versus	NAT 0.4519 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.9471 0.9401

Random	Effects	Odds	Ratios
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Figure	Lxxviii:	2-year	Survival	Model	
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Model
InConsistency	

Model

OR[1,2] Sfadj	versus	NAT 0.3036 0.3042
OR[1,3] Surgery	Only	versus	NAT 0.2356 N/A
OR[2,3] Surgery	Only	versus	Sfadj 0.7764 0.7756

Fixed	Effects	Odds	Ratios
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Gelman	Rubin	statistic	
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OR[1,2] Sfadj	versus	NAT 0.604 0.6030
OR[1,3] Surgery	Only	versus	NAT 0.4596 N/A
OR[2,3] Surgery	Only	versus	Sfadj 0.7613 0.7612

Random	Effects	Odds	Ratios
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Figure	Lxxix:	3-year	Survival	Model		
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Gelman	Rubin	statistic	

	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] Sfadj	versus	NAT 0.6204 0.6211
OR[1,3] Surgery	Only	versus	NAT 0.3085 N/A
OR[2,3] Surgery	Only	versus	Sfadj 0.4968 0.4980

Fixed	Effects	Odds	Ratios

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] Sfadj	versus	NAT 0.6669 0.6673
OR[1,3] Surgery	Only	versus	NAT 0.3326 N/A
OR[2,3] Surgery	Only	versus	Sfadj 0.4973 0.4989

Random	Effects	Odds	Ratios
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Figure	Lxxx:	5-year	Survival		

	

	

	
	

	
	

Treatment	Comparisons
Consistency	

Model
InConsistency	

Model

OR[1,2] SF+adj	versus	NAT 0.8275 0.8284
OR[1,3] Surgery	Only	versus	NAT 0.3935 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.4756 0.4752

Fixed	Effects	Odds	Ratios
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Gelman	Rubin	statistic	
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OR[1,2] SF+adj	versus	NAT 1.081 1.1117
OR[1,3] Surgery	Only	versus	NAT 0.3917 N/A
OR[2,3] Surgery	Only	versus	SF+adj 0.363 0.3620

Random	Effects	Odds	Ratios
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Appendix	M	

	

Markov	Decision	Analysis	

	
Figure	Mi:	PRISMA	flowchart	for	phase	II/III	Neoadjuvant	Therpy	
trials.		
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Records identified through 
database searching 

(n =18,825) 

Sc
re
en

in
g	

In
cl
ud

ed
	

El
ig
ib
ili
ty
	

Id
en

tif
ic
at
io
n	 Additional records identified through 

other sources 
(n =151) 

Records after duplicates removed 
(n = 14,510) 

Records screened 
(n = 10,051) 

Records excluded after 
title screening  
(n = 4,459 ) 

Full-text articles assessed 
for eligibility 

(n =452) 

Full-text articles excluded, 
with reasons 

Not phase II/III trials n=382 
Full text not available in 

English n= 3 
Overlapping data n=6 
Did not meet inclusion 

criteria n= 11 
 

Studies included in 
qualitative synthesis 

(n=50) 

Studies included in 
quantitative synthesis  

(n=50) 
	



	 837	

	

Figure	Mii:	PRISMA	flowchart	for	RCT	trials	of	Upfront	Surgery	

approach.	
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Figure	Miii:	PRISMA	flow	chart	for	non-RCT	trials	used	in	Upfront	

Sugrgery	arm	of	the	Markov	model.		
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Table	Mi:	Summary	of	included	trials.	

	
Reference	 Type	of	Study	 Treatment	

Regime	
N=	 Disease	Free	

Survival	in	
months	

Overall	
Survival	in	
months	

Al-Sukhun	et	al.,	
2003	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

20	 	 13.4	

Cardenes	et	al.,	
2011	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

28	 	 10.3	

Casadei	et	al.,	
2015	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

18	 	 28.3	

Cetin	et	al.,	
2013		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

11	 	 	

Chakraborty	et	
al.,	2014	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

13	 2.4	 9.1	

Crane	et	al.,	
2011	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

69	 	 19.2	

Epelbaum	et	al.,	
2002		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

20	 	 8	

Esnaola	et	al.,	
2014	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

37	 10.4	 11.8	

Evans	et	al.,	
2008	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

86	 15.4	 22.7	

Fiore	et	al.,	
2017	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

34	 20	 19.2	

Golcher		et	al.,	
2008	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

121	 	 	

Golcher	et	al.,	
2015	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

33	 8.4	 17.4	

Heinrich	et	al.,	
2008	

Prospective	
Phase	II	Trial	

CT	+	
surgery	

28	 9.2	 26.5	

Herman	et	al.,	
2015	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

49	 7.8	 13.9	

Hong	et	al.,	
2014	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

50	 10.4	 17.3	

Jang	et	al.,	2018	 Prospective	
Phase	II	Trial	

CRT	+	
surgery	

27	 	 21	

Jensen	et	al.,	
2014	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

23	 	 11.5	

Joensuu	et	al.,	
2004	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

33	 18	 25	

Kim	et	al.,	
2013a		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

68	 	 18.2	

Landry	et	al.,	
2010		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

21	 14.2	 19.4	

Laurent	et	al.,	
2009		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

22	 8	 17	

Le	Scodan	et	al.,	
2009	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

41	 	 9.4	

Lee	et	al.,	2012	 Prospective	
Phase	II	Trial	

CT	+	
surgery	

43	 10	 16.6	

Leone	et	al.,	
2013		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

39	 10.2	 16.7	

Lin	et	al.,	2005		 Prospective	
Phase	II	Trial	

CRT	+	
surgery	

42	 	 10.3	

Lind	et	al.,	2008	 Prospective	 CRT	+	 17	 	 19	
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Phase	II	Trial	 surgery	
Magnin	et	al.,	
2003	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

32	 	 16	

Magnino	et	al.,	
2005	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

23	 	 14	

Marti	et	al.,	
2008		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

26	 7	 13	

Mattiucci	et	al.,	
2010		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

40	 	 15.5	

Massucco	et	al.,	
2006		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

28	 10	 15.4	

Maximous	et	al.,	
2009	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

25	 	 12	

Mornex	et	al.,	
2006	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

41	 	 9.4	

Motoi	et	al.,	
2013		

Prospective	
Phase	II	Trial	

CT+	surgery	 35	 	 19.7	

Moutardier	et	
al.,	2002	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

19	 	 20	

O’Reilly	et	al.,	
2014	

Prospective	
Phase	II	Trial	

CT	+	
surgery	

38	 	 27.2	

Palmer	et	al.,	
2007	

Prospective	
Phase	II	Trial	

CT	+	
surgery		

50	 	 13.6	

Pipas	et	al.,	
2012		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

37	 	 17.3	

Pister	et	al.,	
2002		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

37	 	 12	

Sahora	et	al.,	
2011	

Prospective	
Phase	II	Trial	

CT	+	
surgery	

25	 	 16	

Satoi	et	al.,	
2009	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

35	 	 24.5	

Sherman	et	al.,	
2015	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	v	
CT	+	
surgery	

45	 34	 29/42	

Small	et	al.,	
2011		

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

29	 9.9	 11.8	

Talamonti	et	al.,	
2006	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

20	 	 	

Tinchon	et	al.,	
2013	

Prospective	
Phase	II	Trial	

CT	+	
surgery	

12	 	 	

Turrini	et	al.,	
2009	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

34	 	 15.5	

Van	Buren	et	
al.,	2013	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

59	 6.6	 16.8	

Varadhachary	
et	al.,	2008	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

90	 13.2	 17.4	

Vento	et	al.,	
2007	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

22	 	 30.2	

Wilkowski	et	
al.,	2009	

Prospective	
Phase	II	Trial	

CRT	+	
surgery	

93	 5.6	 9.3	

Regine	et	al.,	
2011		

RCT	 Surgery	+	
CRT	

230	
	
	

	

17.1	
	

Neoptolemos	et	
al.,	2010		

RCT	 Surgery	+CT	 551	 14.1	 23	

VanLaethem	et	
al.,	2010	

RCT	 Surgery	
+CRT	

45	 11.8	 24.3	
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Schmidt	et	al.,	
2012	

RCT	 Surgery	
+CRT	

53	 15.2	 26.5	

Reni	et	al.,	2012	 RCT	 Surgery	
+CRT	

51	 11.7	 26.2	

Yoshitomi	et	al.,	
2008	

RCT	 Surgery	+CT	 49	 12	 29.8	

Shimoda	et	al.,	
2015	

RCT	 Surgery	+CT	 29	 14.6	 21.5	

Uesaka	et	al.,	
2016	

RCT	 Surgery	+CT	 187	 22.9	 46.5	

Neoptolemos	et	
al.,	2004	

RCT	 Surgery	
+CRT	

145	 10.7	 15.9	

Ueno	et	al.,	
2009	

RCT	 Surgery	+CT	 58	 11.4	 22.3	

Oettle	et	al.,	
2013	

RCT	 Surgery	+CT	 179	 13.4	 22.8	

Kosuge	et	al.,	
2006	

RCT	 Surgery	+CT	 45	 8.6	 12.5	

Smeenk	et	al.,	
2007	

RCT	 Surgery	
+CRT	

110	 18	 21.6	

Morak	et	al.,	
2008	

RCT	 Surgery	+CR	 59	 12	 19	

Neoptolemo	et	
al.,	2017	

RCT	 Surgery	+	
CT	

366	 	 25.5	

Regine	et	al.,	
2011		

RCT	 Surgery	
+CRT	

221	 	 20.5	

Neoptolemos	et	
al.,	2010	

RCT	 Surgery	+CT	 537	 14.3	 23.6	

VanLaethem	et	
al.,	2010	

RCT	 Surgery	+CT	 45	 10.9	 24.4	

Schmidt	et	al.,	
2012		

RCT	 Surgery	+CT	 57	 11.5	 28.5	

Reni	et	al.,	2012	 RCT	 Surgery	+	
CT	

49	 15.2	 31.6	

Yoshitomi	et	al.,	
2008	

RCT	 Surgery	+	
CT	

50	 2.3	 21.2	

Shimoda	et	al.,	
2015	

RCT	 Surgery	+CT	 28	 10.5	 18	

Uesaka	et	al.,	
2016	

RCT	 Surgery	+	
CT	

190	 11.3	 25.5	

Neoptolemos	et	
al.,	2004	

RCT	 Surgery	+CT	 147	 15.3	 20.1	

Ueno	et	al.,	
2009	

RCT	 Surgery	
Only		

60	 5	 18.4	

Oettle	et	al.,	
2013	

RCT	 Surgery	
Only	

175	 6.7	 20.2	

Kosuge	et	al.,	
2006	

RCT	 Surgery	
Only	

44	 10.2	 15.8	

Smeenk	et	al.,	
2007	

RCT	 Surgery	
Only		

108	 14.4	 19.2	

Morak	et	al.,	
2008	

RCT	 Surgery	
Only	

61	 7	 18	

Neoptolemo	et	
al.,	2017	

RCT	 Surgery	+	
CT	

364	 	 28	

Al-Sukhun	et	al.,	
2003	

Prospective	
Phase	II	Trial	

Surgery	+	
adjuvant	
therapy	

21	 	 18.1	
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Casadei	et	al.,	
2015	

Prospective	
Phase	II	Trial	

Surgery	+	
adjuvant	
therapy	

20	 	 27.5	

Golcher		et	al.,	
2008		

Prospective	
Phase	II	Trial	

Surgery	+	
adjuvant	
therapy	

58	 	 21	

Golcher	et	al.,	
2015	

Prospective	
Phase	II	Trial	

Surgery	+	
adjuvant	
therapy	

33	 8.7	 14.4	

Lind	et	al.,	2008	 Prospective	
Phase	II	Trial	

Surgery	+	
adjuvant	
therapy	

35	 	 11	

Massucco	et	al.,	
2006		

Prospective	
Phase	II	Trial	

Surgery	+	
adjuvant	
therapy	

44	 8	 14	

Satoi	et	al.,	
2009	

Prospective	
Phase	II	Trial	

Surgery	+	
adjuvant	
therapy	

41	 	 18.5	

Vento	et	al.,	
2007	

Prospective	
Phase	II	Trial	

Surgery	+	
adjuvant	
therapy	

25	 	 35.9	

Jang	et	al.,	2018	 Prospective	
Phase	II	Trial	

Surgery	+	
adjuvant	
therapy	

23	 	 12	

DeGus	et	al.,	
2017a	

Retrospective	
Cohort		

Surgery	+	
adjuvant	
therapy	

6840	 	 24.2	

Mellon	et	al.,	
2016		

Retrospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

241	 	 22.1	

Nurmi	et	al.,	
2018	

Retrospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

150	 13	 26	

Shubert	et	al.,	
2016	

Retrospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

216	 	 13	

Artinya	et	al.,	
2011	

Retrospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

419	 	 19	

Ielpo	et	al.,	
2016	

Prospective	
Cohort		

Surgery	+	
adjuvant	
therapy	

36	 	 22.1	

Roland	et	al.,	
2015	

Prospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

85	 	 	

DeGus	et	al.,	
2017b		

Retrospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

11316	 	 Resectable:	
24.5	
Borderline:	
20.0	
Locally	
advanced:	15.5	

Mokdad	et	al.,	
2017	

Retrospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

6015	 	 21	

Chen	et	al.,	
2017	

Retrospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

98	 	 17	

Tzeng	et	al.,	 Prospective	 Surgery	+	 52	 	 25.3	



	 843	

2014	 Cohort	 adjuvant	
therapy	

Fujii	et	al.,	2015	 Prospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

71	 	 13.1	

Fujii	et	al.,	2017	 Prospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

416	 	 Resectable:	
23.5	
Borderline:	
20.1	

Papalezova	et	
al.,	2012	

Retrospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

92	 	 13	

Hirono	et	al.,	
2016	

Prospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

124	 	 13.7	

Murakami	et	al.	
2017	

Retrospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

25	 	 11.6	

CRT=	chemoradiotherapy	CT=	chemotherapy	
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Markov	Decision	Analysis:	Resectable	Only	Casaes		

	

Figure	Miv:	PRISMA	Flowchart	for	Phase	II/III	Trials	of	Neoadjuvant	

Therapy	for	Resectable	Pancreatic	Cancer		
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Table	Mii:	Summary	of	included	trials	in	neoadjuvant	arm	of	Markov	

model	
Reference	 No.	 Single	or	

Multicentre	
trial		

Randomiza
tion	

NAT	Treatment	
Regime:	CRT=	
chemoradiothera
py;	CT=	
chemotherapy		

ROBINS
-I	risk	of	
bias	
assessm
ent22	

Evans	et	al.,	2008	 86	 Single	 No	 CRT:	7	weekly	
intravenous	
infusions	of	
gemcitabine	400	
mg/m2	plus	
radiation	therapy	
(30	Gy	in	10	
fractions	over	2	
weeks).	

Moderat
e	

Golcher	et	al.,	2015	 33	 Multicentre	 Yes	 CRT:	
300	mg/m2	gemcit
abine	and	
30	mg/m2	cisplati
n	on	days	1,	8,	22,	
and	29	of	
radiotherapy	
(1.8	Gy	to	55.8	Gy	
(tumor)	or	50.4	Gy	
(regional	lymph	
nodes),	planning	
target	volume	
≤ 800	ml).		
Adjuvant	
chemotherapy	also	
given	as	per	
CONKO-001	study	
protocol.		

Low	

Heinrich	et	al.,	2008	 28	 Single	 No	 CT:	four	biweekly	
cycles	of	
gemcitabine	1,000	
mg/m2	and	
cisplatin	50	
mg/m2	

Moderat
e	

Hong	et	al.,	2014	 50	 Multicentre	 No	
CRT:	Proton	beam	
therapy	240-MeV	
protons	generated	
from	a	cyclotron	
delivered	using	3D	
passively	
scattered	protons.	
Most	commonly,	3	
fields	were	used,	
with	2	fields	being	
treated	per	day.	
Capecitabine	
(1650	

Moderat
e	
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mg/m2	divided	
twice	daily)	given	
Monday	to	Friday	
for	2	weeks	for	
each	dose	level.		

Adjuvant	
gemcitabine	
chemotherapy	for	
6	months	starting	
4	to	10	weeks	post	
surgery.	

Joensuu	et	al.,	2004	 33	 Single	 No	 CRT:	Gemcitabine	
intravenous	
infusion	twice	
weekly	was	tested	
at	3	dose	levels:	
20,	50,	and	100	
mg/m2.	Radiation	
dose	50.4	Gy	in	28	
fractions.	

Moderat
e	

Kim	et	al.,	2013a	 68	 Multicentre	 No	 CRT:	two	28-day	
cycles	of	
gemcitabine	(1	
g/m2	on	days	1,	8,	
and	15)	and	
oxaliplatin	(85	
mg/m2	on	days	1	
and	15)	with	
raditaion	during	
cycle	1	(30	Gy	in	2-
Gy	fractions).	
Adjuvant	
chemotherapy	
within	12	weeks	of	
surgery;	further	
regime	details	not	
provided.		

Low/Mo
derate	

LeScodan	et	al.,	2009	 41	 Multicentre	 No	 CRT:	concurrent	
radiotherapy	(50	
Gy	within	5	
weeks)	and	
chemotherapy	5-
fluorouracil	(300	
mg/m2/day,	5	
days/week,	weeks	
1-5)	and	cisplatin	
(20	mg/m2/day,	
days	1-5	and	29-
33).	

Low/Mo
derate	

Maximous	et	al.,	2009	 25	 Single	 No	 CRT:	54	Gy	in	30	
fractions	over	6	
weeks.	
Gemcitabine	
intravenous	
infusion	(300	
mg/m2)	given	
prior	to	radiation	
on	a	weekly	basis.	

Moderat
e	
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Mornex	et	al.,	2006	 41	 Multicentre	 No	 CRT:	concurrent	
radiotherapy	(50	
Gy	within	5	
weeks),	and	
chemotherapy:	5-
fluorouracil	(300	
mg/m2/day,	5	
days/week,	5	
consecutive	
weeks)	and	
cisplatin	(20	
mg/m2/day,	Days	
1-5	and	29-33)	

Low/Mo
derate	

O’Reilly	et	al.,	2014	 38	 Single	 No	 CT:	four	cycles	of	
intravenous	
infusion	
gemcitabine	
1000mg/m2and	
oxaliplatin	80	
mg/m2,	every	2	
weeks.		
Adjuvant	
gemcitabine	
intravenous	
infusion:	5	cycles	
(1000	mg/m2	day	
1,	8,	15	every	4	
weeks).		

Moderat
e	

Palmer	et	al.,	2007	 50	 Single	 Yes	 CT:	24	patients	
were	randomized	
to	gemcitabine	
(1000	mg/m2)	
every	7	days	for	
43	days;	26	
patients	were	
randomized	to	
gemcitabine	(1000	
mg/m2)	and	
cisplatin	(25	
mg/m2)	

Low	

Pipas	et	al.,	2012	
	

37	 Single	 No	 CRT:	cetuximab	
load	at	400	
mg/m2	followed	
by	cetuximab	250	
mg/m2	weekly	and	
gemcitabine	50	
mg/m2	twice-
weekly	given	
concurrently	with	
IMRT	to	54	Gy.	

Moderat
e	

Pister	et	al.,	2002	 37	 Single	 No	 CRT:	30	Gy	
external-beam	
radiation	therapy	
and	concomitant	
weekly	3-hour	
infusions	of	
paclitaxel	(60	
mg/m2)	

Moderat
e	
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Sherman	et	al.,	2015	 45	 Single	 No	 CRT	versus	CT:	
CRT:	IMRT	5040	
cGy	along	with	
capecitabine	1000	
mg	twice	daily	for	
5	days	and	
gemcitabine	750	
mg/m2	on	day	5	of	
weeks	1,	2,	4,	and	
5	of	radiotherapy.	
CT:	6-cycles:	
Capecitabine	
(1500	mg/m2,	
days	1-14)	plus	
gemcitabine	(750	
mg/m2,	days	4	and	
11)	plus	Docetaxel	
(30	mg/m2,	days	4	
and	11)	

Moderat
e	

Talamonti	et	al.,	2006	 20	 Multicentre	 No	 CRT:	three	cycles	
of	gemcitabine	
(1000	mg/m2	
intravenously),	
with	radiation	
during	the	second	
cycle	(36	Gy	in	
daily	2.4-Gy	
fractions)	

Moderat
e	

Turrini	et	al.,	2009	 34	 Multicentre	 No	 CRT:	radiation	
therapy	(45	Gy)	
with	continuous	
infusion	of	5-
fluorouracil	
accompanied	by	a	
cisplatin	bolus.	

Moderat
e	

Varadhachary	et	al.,	2008	 90	 Single	 No	 CT:	gemcitabine	
(750	mg/m2)	and	
cisplatin	(30	
mg/m2)	every	2	
weeks	for	4	doses.	
CRT:	4	weekly	
infusions	of	
gemcitabine	(400	
mg/m2)	combined	
with	radiation	
therapy	(30	Gy	in	
10	fractions	
administered	over	
2	weeks)	delivered	
5	days	per	week.		

Moderat
e	

Vento	et	al.,	2007	 22	 Single	 No	 CRT:	gemcitabine	
intravenous	
infusion	twice	
weekly	before	
irradiation	at	
three	dose	levels,	
which	were	20,	50	
and	100	mg/m2	

Moderat
e	
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for	an	average	of	
10	cycles.	Tumour	
radiation	dose	
50.4	Gy	given	in	28	
fractions	of	1.8	Gy	
per	day,	five	days	
per	week.	

*NAT=	Neoadjuvant	therapy	
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Table	Miii:	Summary	of	included	Randomised	Controlled	Trials	in	

Upfront	Surgery	pathway		

Reference	 Adjuvant	Regime:	
CRT	=	
chemoradiotherpy;	
CT=	chemotherapy	

No.	in	Upfront	
Surgery	and	
Adjuvant		
Arm	

Comparison	
Arm		

No.	in	
Comparison	
Arm	

Regine	 et	 al.,	
2011		

CRT	 230	 Adjuvant	CRT	 221	

Neoptolemos	 et	
al.,	2010	

CT	 551	 Adjuvant	CT	 537	

Van	 Laethem	 et	
al.,	2010	

CRT	 45	 Adjuvant	CT	 45	

Schmidt	 et	 al.,	
2012	

CRT	 53	 Adjuvant	CT	 57	

Reni	et	al.,	2012	 CRT	 51	 Adjuvant	CT	 49	

Yoshitomi	 et	 al.,	
2008	

CT	 49	 Adjuvant	CT	 50	

Shimoda	 et	 al.,	
2015	

CT	 29	 Adjuvant	CT	 28	

Uesaka	 et	 al.,	
2016	

CT	 187	 Adjuvant	CT	 190	

Neoptolemos	 et	
al.,	2004	

CRT	 145	 Adjuvant	CT	 147	

Ueno	et	al.,	2009	 CT	 58	 Surgery	Only		 60	

Oettle	 et	 al.,	
2013	

CT	 179	 Surgery	Only	 175	

Kosuge	 et	 al.,	
2006	

CT	 45	 Surgery	Only	 44	

Smeenk	 et	 al.,	
2007	

CRT	 110	 Surgery	Only		 108	

Morak	 et	 al.,	
2008		

CR	 59	 Surgery	Only	 61	

Neoptolemo	 et	
al.,	2017	

CT	 366	 Adjuvant	CT	 364	
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Table	Miv:	Summary	of	included	cohort	studies	in	Upfront	Surgery/	

Surgery	First	(SF)	pathway		

Reference	 Study	Type	 Multi	or	
Single	
Centre	

Randomization	 NAT	
cohort	

No.	SF	
cohort	

ROBINS-I	risk	of	
bias	
assessment21	

Al-Sukhun	
et	al.	2003	

Phase	II	Trial	 Single		 No	 20	 21	 Moderate	

Casadei	et	
al.,	2015	

Phase	II	Trial	 Single		 Yes	 18	 20	 Moderate	

Golcher		et	
al.,	2008	

Phase	II	Trial	 Single	 No	 121	 58	 Moderate	

Golcher	et	
al.,	2015	

Phase	II	Trial	 Multiple		 Yes	 33	 33	 Low	

Lind	et	al.,	
2008	

Phase	II	Trial	 Single		 No		 17	 35	 Moderate	

Massucco	
et	al.,	2006	

Phase	II	Trial	 Single		 No	 28	 44	 Moderate	

Satoi	et	al.,	
2009	

Phase	II	Trial	 Single		 No		 35	 41	 Moderate	

Vento	et	
al.,	2007	

Phase	II	Trial	 Single		 No	 22	 25	 Moderate	

Jang	et	al.,	
2018	

Phase	 II/III	
Trial	

Multiple	 Yes	 27	 23	 Low	

DeGus	 et	
al.	2017a	

Retrospective	 Multicentre	 No		 1077	 6840	 Serious	

Mellon	 et	
al.,	2016	

Retrospective	 Single	
centre	

No	 159	 241	 Moderate/Serious	

Nurmi	 et	
al.,	2018	

Retrospective	 Single	
centre	

No		 75	 150	 Serious	

Shubert	 et	
al.,	2016	

Retrospective	 Multicentre	 No	 377	 216	 Moderate/Serious	

Artinya	 et	
al.,	2011	

Retrospective	 Multicentre	 No		 39	 419	 Serious	

Ielpo	 et	al.,	
2016	

Prospective		 Single	
centre	

No	 45	 36	 Serious	

Roland	 et	
al.,	2015	

Prospective	 Single	
centre	

No		 222	 85	 Moderate/Serious	

DeGus	 et	
al.,	2017b	

Retrospective	 Multicentre	 No	 1541	 11316	 Moderate/Serious	

Mokdad	 et	
al.,	2017	

Retrospective	 Multicentre	 No		 2005	 6015	 Moderate/Serious	

Chen	 et	al.,	
2017b	

Retrospective	 Multicentre	 No	 98	 98	 Moderate/Serious	

Tzeng	 et	
al.,	2014	

Prospective	 Single	
centre	

No		 115	 52	 Moderate	

Fujii	 et	 al.,	 Prospective	 Single	 No	 21	 71	 Moderate/Serious	
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2015	 centre	

Fujii	 et	 al.,	
2017	

Prospective	 Single	
centre	

No		 88	 416	 Moderate/Serious	

Papalezova	
et	al.,	2012	

Retrospective	 Single	
centre	

No	 144	 92	 Moderate/Serious	

Hirono	 et	
al.,	2016	

Prospective	 Single	
centre	

No		 46	 124	 Moderate/Serious	

Murakami	
et	al.,	2017	

Retrospective	 Single	
centre	

No	 52	 25	 Serious	
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Appendix	N	

	

Discrete	Event	Simulation	(DES)	Modeling		

	

Figure	Ni:	PRISMA	Flow	chart	for	neoadjuvant	papers	included	in	
DES	model		
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Figure	Nii:	PRISMA	Flow	chart	for	randomised	controlled	trials	

included	in	surgery-first	pathway	of	DES	model			
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Figure	Niii:	PRISMA	Flow	chart	for	cohort	studies	included	in	the	

surgery-first	pathway	of	DES	model		
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Table	Ni:	Summary	of	included	studies	within	the	DES	model		

	
Study	 Type	of	

Study	
Treatme
nt	
Regime	

N=	 Disease	
Free	
Survival	in	
months	

Overall	
Survival	in	
months	

ROBINS-I	risk	
of	bias	
assessment	

Al-Sukhun	
et	al.,	2003		

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

20	 	 13.4	 Moderate	

Cardenes	et	
al.,	2011	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

28	 	 10.3	 Moderate	

Casadei	et	
al.,	2015	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

18	 	 28.3	 Low/Moderate	

Cetin	et	al.,	
2013		

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

11	 	 	 Moderate	

Chakrabort
y	et	al.,	
2014	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

13	 2.4	 9.1	 Moderate	

Crane	et	al.,	
2011	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

69	 	 19.2	 Low/Moderate		

Epelbaum	
et	al.,	2002	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

20	 	 8	 Moderate	

Esnaola	et	
al.,	2014	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

37	 10.4	 11.8	 Moderate	

Evans	et	al.,	
2008	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

86	 15.4	 22.7	 Moderate	

Fiore	et	al.,	
2017		

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

34	 20	 19.2	 Moderate	

Golcher		et	
al.,	2008	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

121	 	 	 Low	

Golcher	et	
al.,	2015	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

33	 8.4	 17.4	 Moderate	

Heinrich	et	
al.,	2008		

Prospective	
Phase	II	
Trial	

CT	+	
surgery	

28	 9.2	 26.5	 Moderate	

Herman	et	
al.,	2015	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

49	 7.8	 13.9	 Low/Moderate	

Hong	et	al.,	
2014	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

50	 10.4	 17.3	 Moderate	

Jang	et	al.,	 Prospective	 CRT	+	 27	 	 21	 Low	
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2018	 Phase	II	
Trial	

surgery	

Jensen	et	
al.,	2014	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

23	 	 11.5	 Moderate	

Joensuu	et	
al.,	2004	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

33	 18	 25	 Moderate	

Kim	et	al.,	
2013a	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

68	 	 18.2	 Low/Moderate	

Landry	et	
al.,	2010	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

21	 14.2	 19.4	 Low	

Laurent	et	
al.,	2009		

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

22	 8	 17	 Moderate	

Le	Scodan	
et	al.,	2009	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

41	 	 9.4	 Low/Moderate	

Lee	et	al.,	
2012	

Prospective	
Phase	II	
Trial	

CT	+	
surgery	

43	 10	 16.6	 Moderate	

Leone	et	al.,	
2013	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

39	 10.2	 16.7	 Moderate	

Lin	et	al.,	
2005	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

42	 	 10.3	 Moderate	

Lind	et	al.,	
2008	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

17	 	 19	 Moderate	

Magnin	et	
al.,	2003	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

32	 	 16	 Moderate	

Magnino	et	
al.,	2005	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

23	 	 14	 Moderate	

Marti	et	al.,	
2008	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

26	 7	 13	 Moderate	

Mattiucci	et	
al.,	2010	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

40	 	 15.5	 Moderate	

Massucco	
et	al.,	2006	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

28	 10	 15.4	 Moderate	

Maximous	
et	al.,	2009	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

25	 	 12	 Moderate	

Mornex	et	
al.,	2006	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

41	 	 9.4	 Low/Moderate	

Motoi	et	al.,	
2013		

Prospective	
Phase	II	
Trial	

CT+	
surgery	

35	 	 19.7	 Low/Moderate	

Moutardier	
et	al.,	2002	

Prospective	
Phase	II	

CRT	+	
surgery	

19	 	 20	 Moderate	
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Trial	
O’Reilly	et	
al.,	2014	

Prospective	
Phase	II	
Trial	

CT	+	
surgery	

38	 	 27.2	 Moderate	

Palmer	et	
al.,	2007		

Prospective	
Phase	II	
Trial	

CT	+	
surgery		

50	 	 13.6	 Low	

Pipas	et	al.,	
2012		

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

37	 	 17.3	 Moderate	

Pister	et	al.,	
2002	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

37	 	 12	 Moderate	

Sahora	et	
al.,	2011	

Prospective	
Phase	II	
Trial	

CT	+	
surgery	

25	 	 16	 Moderate	

Satoi	et	al.,	
2009	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

35	 	 24.5	 Moderate	

Sherman	et	
al.,	2015	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	v	
CT	+	
surgery	

45	 34	 29/42	 Moderate	

Small	et	al.,	
2011)	
	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

29	 9.9	 11.8	 Moderate	

Talamonti	
et	al.,	2006	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

20	 	 	 Moderate	

Tinchon	et	
al.,	2013	

Prospective	
Phase	II	
Trial	

CT	+	
surgery	

12	 	 	 Moderate	

Turrini	et	
al.,	2009	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

34	 	 15.5	 Moderate	

Van	Buren	
et	al.,	2013	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

59	 6.6	 16.8	 Moderate	

Varadhacha
ry	et	al.,	
2008	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

90	 13.2	 17.4	 Moderate	

Vento	et	al.,	
2007	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

22	 	 30.2	 Moderate	

Wilkowski	
et	al.,	2009	

Prospective	
Phase	II	
Trial	

CRT	+	
surgery	

93	 5.6	 9.3	 Low	

Regine	et	
al.,	2011	

RCT	 Surgery	+	
CRT	

230	
	
	

	

17.1	
	

See	figure	
below	

Neoptolem
os	et	al.,	
2010	

RCT	 Surgery	
+CT	

551	 14.1	 23	

VanLaethe
m	et	al.,	
2010	

RCT	 Surgery	
+CRT	

45	 11.8	 24.3	

Schmidt	et	
al.,	2012	

RCT	 Surgery	
+CRT	

53	 15.2	 26.5	

Reni	et	al.,	 RCT	 Surgery	 51	 11.7	 26.2	
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2012	 +CRT	
Yoshitomi	
et	al.,	2008	

RCT	 Surgery	
+CT	

49	 12	 29.8	

Shimoda	et	
al.,	2015	

RCT	 Surgery	
+CT	

29	 14.6	 21.5	

Uesaka	et	
al.,	2016	

RCT	 Surgery	
+CT	

187	 22.9	 46.5	

Neoptolem
os	et	al.,	
2004	

RCT	 Surgery	
+CRT	

145	 10.7	 15.9	

Ueno	et	al.,	
2009	

RCT	 Surgery	
+CT	

58	 11.4	 22.3	

Oettle	et	al.,	
2013	

RCT	 Surgery	
+CT	

179	 13.4	 22.8	

Kosuge	et	
al.,	2006	

RCT	 Surgery	
+CT	

45	 8.6	 12.5	

Smeenk	et	
al.,	2007	

RCT	 Surgery	
+CRT	

110	 18	 21.6	

Morak	et	
al.,	2008	

RCT	 Surgery	
+CR	

59	 12	 19	

Neoptolem
o	et	al.,	
2017	

RCT	 Surgery	+	
CT	

366	 	 25.5	

Regine	et	
al.,	2011	

RCT	 Surgery	
+CRT	

221	 	 20.5	

Neoptolem
os	et	al.,	
2010	

RCT	 Surgery	
+CT	

537	 14.3	 23.6	

VanLaethe
m	et	al.,	
2010	

RCT	 Surgery	
+CT	

45	 10.9	 24.4	

Schmidt	et	
al.,	2012	

RCT	 Surgery	
+CT	

57	 11.5	 28.5	

Reni	et	al.,	
2012	

RCT	 Surgery	+	
CT	

49	 15.2	 31.6	

Yoshitomi	
et	al.,	2008	

RCT	 Surgery	+	
CT	

50	 2.3	 21.2	

Shimoda	et	
al.,	2015	

RCT	 Surgery	
+CT	

28	 10.5	 18	

Uesaka	et	
al.,	2016	

RCT	 Surgery	+	
CT	

190	 11.3	 25.5	

Neoptolem
os	et	al.,	
2004	

RCT	 Surgery	
+CT	

147	 15.3	 20.1	

Ueno	et	al.,	
2009		

RCT	 Surgery	
Only		

60	 5	 18.4	

Oettle	et	al.,	
2013	

RCT	 Surgery	
Only	

175	 6.7	 20.2	

Kosuge	et	
al.,	2006	

RCT	 Surgery	
Only	

44	 10.2	 15.8	

Smeenk	et	
al.,	2007	

RCT	 Surgery	
Only		

108	 14.4	 19.2	

Morak	et	
al.,	2008	

RCT	 Surgery	
Only	

61	 7	 18	

Neoptolem
o	et	al.,	
2017	

RCT	 Surgery	+	
CT	

364	 	 28	
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Al-Sukhun	
et	al.,	2003	

Prospective	
Phase	II	
Trial	

Surgery	+	
adjuvant	
therapy	

21	 	 18.1	 Moderate	

Casadei	et	
al.,	2015	

Prospective	
Phase	II	
Trial	

Surgery	+	
adjuvant	
therapy	

20	 	 27.5	 Moderate	

Golcher		et	
al.,	2008	

Prospective	
Phase	II	
Trial	

Surgery	+	
adjuvant	
therapy	

58	 	 21	 Moderate	

Golcher	et	
al.,	2015	

Prospective	
Phase	II	
Trial	

Surgery	+	
adjuvant	
therapy	

33	 8.7	 14.4	 Low	

Lind	et	al.,	
2008	

Prospective	
Phase	II	
Trial	

Surgery	+	
adjuvant	
therapy	

35	 	 11	 Moderate	

Massucco	
et	al.,	2006	

Prospective	
Phase	II	
Trial	

Surgery	+	
adjuvant	
therapy	

44	 8	 14	 Moderate	

Satoi	et	al.,	
2009	

Prospective	
Phase	II	
Trial	

Surgery	+	
adjuvant	
therapy	

41	 	 18.5	 Moderate	

Vento	et	al.,	
2007	

Prospective	
Phase	II	
Trial	

Surgery	+	
adjuvant	
therapy	

25	 	 35.9	 Moderate	

Jang	et	al.,	
2018	

Prospective	
Phase	II	
Trial	

Surgery	+	
adjuvant	
therapy	

23	 	 12	 Low	

DeGus	et	
al.,	2017a	

Retrospecti
ve	Cohort		

Surgery	+	
adjuvant	
therapy	

6840	 	 24.2	 Moderate/Seri
ous	

Mellon	et	
al.,	2016	

Retrospecti
ve	Cohort	

Surgery	+	
adjuvant	
therapy	

241	 	 22.1	 Moderate/Seri
ous	

Nurmi	et	
al.,	2018	

Retrospecti
ve	Cohort	

Surgery	+	
adjuvant	
therapy	

150	 13	 26	 Serious	

Shubert	et	
al.,	2016	

Retrospecti
ve	Cohort	

Surgery	+	
adjuvant	
therapy	

216	 	 13	 Moderate/Seri
ous	

Artinya	et	
al.,	2011	

Retrospecti
ve	Cohort	

Surgery	+	
adjuvant	
therapy	

419	 	 19	 Serious	

Ielpo	et	al.,	
2016	

Prospective	
Cohort		

Surgery	+	
adjuvant	
therapy	

36	 	 22.1	 Serious	

Roland	et	
al.,	2015	

Prospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

85	 	 	 Moderate/Seri
ous	

DeGus	et	
al.,	2017b	

Retrospecti
ve	Cohort	

Surgery	+	
adjuvant	
therapy	

1131
6	

	 Resectable:	
24.5	
Borderline:	
20.0	
Locally	
advanced:	
15.5	

Moderate/Seri
ous	

Mokdad	et	
al.,	2017	

Retrospecti
ve	Cohort	

Surgery	+	
adjuvant	
therapy	

6015	 	 21	 Moderate/Seri
ous	
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Chen	et	al.,	
2017	

Retrospecti
ve	Cohort	

Surgery	+	
adjuvant	
therapy	

98	 	 17	 Moderate/Seri
ous	

Tzeng	et	al.,	
2014	

Prospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

52	 	 25.3	 Moderate	

Fujii	et	al.,	
2015	

Prospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

71	 	 13.1	 Moderate/Seri
ous	

Fujii	et	al.,	
2017	

Prospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

416	 	 Resectable:	
23.5	
Borderline:	
20.1	

Moderate/Seri
ous	

Papalezova	
et	al.,	2012	

Retrospecti
ve	Cohort	

Surgery	+	
adjuvant	
therapy	

92	 	 13	 Moderate/Seri
ous	

Hirono	et	
al.,	2016	

Prospective	
Cohort	

Surgery	+	
adjuvant	
therapy	

124	 	 13.7	 Moderate/Seri
ous	

Murakami	
et	al.,	2017	

Retrospecti
ve	Cohort	

Surgery	+	
adjuvant	
therapy	

25	 	 11.6	 Serious	

CRT=	chemoradiotherapy	CT=	chemotherapy	

	

Figure	Niv:	Risk	of	Bias	of	randomised	controlled	trials	in	DES	model	
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Appendix	O	

	

Engaging	with	FUPS	Data	to	Improve	Individualised	

Treatment	Pathway	Selection			
	

Introduction	

	

Early	complete	surgical	resection	is	the	only	potentially	curative	

treatment	for	pancreatic	cancer	but	in	reality	most	patients	will	

develop	recurrence	(Winter	et	al.,	2012).	In	the	face	of	such	

challenges	the	need	to	risk-stratify	potential	surgical	patients	pre-

operatively	in	an	objective	and	standardised	way	is	paramount	to	

effective	patient	counseling	(Lewis	&	Volmer,	2012).	This	is	

particularly	pertinent	in	the	high	precision	field	of	pancreatic	cancer	

surgery	where	surgical	volume	is	low,	with	only	10%	of	cases	being	

resectable	at	presentation,	yet	operative	mortality	and	morbidity	

rates	are	high	(Lewis	&	Volmer,	2012).		

	

The	analysis	thus	far	in	this	thesis	presents	an	emerging	picture	

whereby	rather	than	a	conclusively	superior	pathway	beginning	to	

emerge,	the	superior	treatment	pathway	selection	is	dependent	on	

individual	patient	and	tumour	factors.	However,	existing	prognostic	

models	are	limited	in	scope	and	volume,	falling	short	of	

differentiating	patients	who	would,	and	importantly	would	not,	

benefit	from	competing	treatment	options	(Lewis	&	Volmer,	2012)	

with	most	relying	on	post-operative	factors	to	make	predictions.		
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In	summary	decision	making	in	the	high-risk	field	of	pancreatic	

cancer	surgery	is	complex,	involving	uncertainty,	and	compounded	

by	the	fact	that	few	cases	are	resectable	at	presentation.	Unlike	

conventional	statistics	Bayesian	statistical	approach	offers	an	

opportunity	to	model	this	complexity	in	a	way	that	conventional	

statistical	analysis	cannot.	Such	conventional	models	rely	on	

maximum	likelihood	estimation	with	high	dimensional	integration	

needed	to	achieve	this.	Consequently	conventional	estimation	is	not	

available	for	many	multilevel	latent	variable	models.		Bayesian	

estimation	can	obtain	otherwise	impossible	parameters	estimates	

(Kim	et	al.,	2013),	and	produce	more	accurate	parameter	estimates	

(Depaoli,	2013),	even	in	situations	of	small	sample	sizes	(Zhang	et	al.,	

2007).	Furthermore	the	Bayesian	interpretation	of	95%	Cl	is	

intuitively	appealing	within	a	clinical	context	whereby	it	represents	

the	upper	and	lower	limits	where	there	is	a	95%	probability	that	the	

regression	coefficient	lies	(Kim	et	al.,	2013).	Finally,	as	previously	

discussed,	there	is	a	degree	of	uncertainty	within	the	existing	body	of	

literature	regarding	the	treatment	of	potentially	resectable	PDAC	

stemming	from	its	previously	discussed	FUPS	characteristics.	

Bayesian	statistics	allows	existing	certainty,	and	uncertainty,	to	be	

incorporated	and	update	this	knowledge.					

	

The	aim	of	this	section	is	use	Bayesian	statistical	approach	to	further	

more	effectively	engage	with	available	FUPS	data	to	better	risk	

stratify	patients	with	potentially	resectable	disease	into	those	with	

anticipated	prognostic	outcomes	of	12months	or	less,	or	36months	

or	more,	post	resection.	This	will	first	be	undertaken	through	a	

Bayesian	analysis	of	the	West	of	Scotland	Pancreatic	Unit	database.	
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These	results	will	then	be	triangulated	with	internationally	available	

data	from	post	resection	survival	analysis.	Unlike	previous	sections	

this	triangulation	will	not	only	be	performed	for	comparison	but	

taken	further	in	section	4.6	to	create	prognostic	Bayesian	Belief	

Networks	that	can	engage	with	the	complexity	of	the	dynamic	

adaptive	system	being	modeled	and	utilise	FUPS	data	to	perform	

personalised	predictions	of	prognostic	outcome	across	the	entire	

trajectory	of	the	patient	journey.	This	section	will	test	the	hypothesis	

that	by	viewing	pancreatic	management	through	the	lens	of	

complexity	theory	and	utilising	Bayesian	statistical	approach	to	more	

openly	engage	with	FUPS	data	the	limitations	of	existing	predictive	

models	can	be	addressed	and	a	significant	step	towards	the	delivery	

of	personalised	realistic	medicine	for	pancreatic	cancer	be	achieved.												

	

A	Bayesian	Analysis	of	the	West	of	Scotland	Pancreatic	Unit	

Pancreatic	Ductal	Adenocarcinoma	Database	Identifying	Pre-

operative	Factors	Predicting	Survival	of	36	Months	or	More	and	

12	months	or	less.	

	

Abstract	

	

Background:	Pancreatic	cancer	surgery	carries	high	risks	with	

potential	benefits	nullified	by	high	rates	of	early	disease	

reoccurrence.	The	growing	interest	in	personalised	predictive	

medicine	means	that	there	is	a	growing	mandate	to	pre-operatively	

risk	stratify	patients	to	facilitate	better	patient	counseling	and	

support	clinical	decision	making.		
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Methods:	Bayesian	statistical	analysis	was	undertaken	of	the	West	of	

Scotland	Pancreatic	unit	database	of	all	potentially	resectable	cases	

of	PDAC	referred	to	the	unit	(n=418).	Separate	subgroup	analysis	of	

resectable	only	cases	of	PDAC	(RPDAC)	treated	in	surgery-first	

(n=100)	and	neoadjuvant	(n=56)	treatment	pathways	was	also	

undertaken.	The	aims	of	this	study	were	to	1)	identify	pre-operative	

variables	that	may	predict	good	prognosis	defined	as	36	months	or	

more	2)	identify	pre-operative	variables	that	predict	poor	prognosis	

defined	as	12	months	or	less	and	3)	assess	whether	one	treatment	

pathway	had	superiority	in	treatment	of	RPDAC.		

	

Results:	Bayesian	One-way	ANOVA	and	log-linear	regression	analysis	

identified	AJCC	stage	(P	value:	0.000),	tumour	size	above	or	below	3	

centimeters	(P	value:	0.005),	ASA	grade	(P	value:	0.002),	albumin(P	

value:	0.047)	and	modified	Glasgow	Prognostic	Score	(P	value:	0.031)	

as	statistically	significant	in	predicting	survival	of	36	months	or	

more.	Bayesian	linear	regression	analysis	of	all	pre-operative	factors	

produced	a	model	of	good	fit	to	the	regression	line	(R:	0.955;	R	

squared	0.912;	P	value:	0.006).		

Bayesian	one-way	ANOVA	and	log-linear	regression	analysis	

identified	modified	Glasgow	prognostic	score	and	tumour	size	

greater	than	3	centimeters	as	being	significant	in	predicting	survival	

of	12	months	or	less	(P	value	0.505	and	0.037).		

	

Subgroup	analysis	of	treatment	pathways	surgery-first	versus	

neoadjuvant	therapy	for	RPDAC,	did	not	demonstrate	statistically	

significant	superiority	of	one	pathway	(one-way	ANOVA	p	value:	

0.808	and	0.163	respectively;	log-linear	regression	P	value:	0.87	and	
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0.871	respectively).	Surgery-first	pathway	did	demonstrate	

superiority	in	achieving	R0	resection	(one-way	ANOVA	P	value:	

0.025;	log-linear	regression	P	value:	0.025;		surgery-first	posterior	

mean:	0.795;	95%	CI	0.698-0.891	v	neoadjuvant	posterior	mean:	

0.550;	95%	CI	0.360-0.740).	However	receipt	of	multimodal	

treatment	within	either	pathway	was	found	to	be	statistically	

significant	in	determining	survival	outcome	(one-way	ANOVA	P	

value:	0.000;	linear	regression	and	log-linear	regression	P	value:	

0.00)	although	there	was	no	statistically	significant	difference	

between	pathways	in	achieving	multimodal	treatment	(one-way	

ANOVA	and	linear	regression	P	value:	0.150).	Further	analysis	

showed	that	in	the	surgery-first	pathway	completing	adjuvant	

therapy	was	statistically	significant	to	overall	survival	(one-way	

ANOVA,	linear	regression	and	log-linear	regression	P	value:	0.003),	

but	61%	of	patients	in	the	surgery-first	pathway	failed	to	complete	

adjuvant	therapy.			

	

Conclusion:	This	study	shows	that	Bayesian	statistical	approach	

offers	an	opportunity	to	model	the	complexity	and	uncertainty	

surrounding	the	management	of	PDAC	in	a	way	that	conventional	

statistical	analysis	cannot.	Furthermore	it	has	highlighted	factors	that	

can	be	identified	at	the	pre-operative	stage	of	patient	counseling	to	

predict	chances	of	a	favorable	and	unfavorable	prognosis.	Whilst	

neoadjuvant	pathway	compared	favorably	to	the	traditional	surgery-

first	pathway	for	RPDAC	the	most	appropriate	treatment	pathway	

depends	on	individual	patient	and	tumour	factors	in	determining	

receipt	of	multimodal	treatment.		
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Introduction	

	

	

The	aims	of	this	study	are	to:	

	

	1)	identify	pre-operative	variables	that	may	predict	good	post	

resection	prognosis	defined	as	36	months	or	more	survival	time		

	

2)	identify	pre-operative	variables	that	predict	poor	post	resection	

prognosis	defined	as	12	months	or	less	survival	time	

	

3)	perform	subgroup	analysis	of	all	patients	in	the	neoadjuvant	

treatment	pathway	to	assess	impact	of	response	to	neoadjuvant	

therapy	in	predicting	survival	outcomes	

	

4)	for	RPDAC	cases	only	assess	whether	surgery-first	or	neoadjuvant	

treatment	pathway	is	superior	in	terms	of	overall	survival.		

	

Methods	

	

Patient	Population	

	

West	of	Scotland	Pancreatic	Centre	Glasgow	Royal	Infirmary	is	a	

tertiary	referral	centre	serving	a	population	of	2.2-2.5	million.	The	

unit	has	a	prospectively	maintained	clinical	database.	The	unit’s	

retrospective	database	contains	20	years	worth	of	patient	data.	This	

includes	418	PDAC	patients	referred	to	the	unit	with	potentially	
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resectable	PDAC.	Until	2012,	patients	received	a	conventional	

“surgery	first”	approach	with	adjuvant	chemotherapy	as	standard	of	

care	(n=312).	From	2013-2015	patients	received	a	neoadjuvant	

treatment	protocol	as	standard	(n=108).		

	

For	subgroup	analysis	of	RPDAC	cases,	those	included	in	the	

neoadjuvant	pathway	were	patients	with	RPDAC	on	completion	of	

initial	staging	prior	to	commencing	NAT	(n=56).		Borderline	and	

locally	advanced	PDAC	were	determined	according	to	

AHPBA/SSO/SSAT	guidelines	(Caller	et	al.	2009).	Neoadjuvant	

regime	was	FOLFIRINOX	unless	patients	had:	poor	performance	

status,	or	were	aged	over	70	years,	or	FOLFIRINOX	was	poorly	

tolerated,	whereby	they	received	Gemcitabine+Capcitabine	

(GEMCAP).	Where	the	subgroup	analysis	performed	assessment	

between	resectable	PDAC	in	neoadjuvant	and	surgery	first	arm	the	

surgery	first	cohort	was	selected	from	August	2012	working	

backwards,	100	sequential	patients	in	SF	pathway	who	had	RPDAC,	

and	were	deemed	fit	for	surgery	based	on	performance	status	score	

and	CPET	populated	the	SF	arm	of	the	model.		No	patients	were	lost	

to	follow-up.	All	data	was	analysed	on	an	intention-to-treat	basis.			

	

Statistical	Methods:	transparency	of	analyses	

	

Bayesian	statistical	package	in	SPSS	version	25.0.0	was	used	to	

conduct	Bayesian	one-way	ANOVA	analysis	of	each	pre-operative	

variable	against	the	dependent	variable	of	survival	time.		
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Analysis	of	variance	(ANOVA)	is	an	important	method	in	

confirmatory	and	exploratory	data	analysis	(Gelman,	2005).	Bayesian	

one-way	ANOVA	analysis	of	each	pre-operative	variable	against	the	

dependent	variable	of	survival	time	was	therefore	undertaken.	In	

clinical	practice	all	pre-operative	variables	are	considered	to	some	

extent	in	the	pre-operative	phase	of	decision-making,	sometimes	

informally	with	their	impact	gauged	by	clinical	judgment,	not	

quantification.	Here	one-way	ANOVA	was	performed	assuming	

survival	outcome	was	observed	according	to	the	full	model,	MF,	of	

pre-operative	factors	(Solari	et	al.	2008).	

	

In	classical	Frequentists	analysis	of	variance	hypotheses	testing	is	

based	on	the	statistic:	

	

	 F=								∑k	i=1	ni(Ãi-Ã)2/(k-1)	

	 	 ∑ki=1	∑nij=1(Aij-Ãi)2/(n-k)	

	

where	n=∑ki=1	ni,	Ãi=n-1i	∑nij=1	Aij	and	Ã=n-1	∑kj=1		Yij			

and	hypothesis	testing	for	a	pair	of	variables	(i,j),	null	hypothesis	M0,	

tested	against	hypothesis,	M1:	

	 M0:	µ1=…=µk	versus	M1:	µi	≠	µj		

	

Under	this	approach	nuisance	parameters	are	eliminated	and	the	full	

model	MF	has	k+1	parameters,	with	a	scalar	test	statistic	constructed	

to	compare	different	values	of	the	scalar	non-centrality	parameter.	In	
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this	sense	the	classical	Frequentists	approach	acts	as	if	only	the	

marginal	experiment	is	observed,	disregarding	information	about	the	

single	mean	treatments	Ã1,…Ãk	but	it	is	not	clear	how	much	

information	is	lost	(Solari	et	al.	2008).		

	

Bayesian	inference	about	Pearson	correlation	coefficient	was	then	

performed	to	assess	the	linear	relation	between	each	pre-operative	

variable	and	survival	time	to	draw	Bayesian	inference	by	estimating	

Bayes	factors	and	characterising	posterior	distributions.		

	

Linear	regression	analysis	within	the	context	of	Bayesian	inference	

(Bayesian	univariate	linear	regression)	was	undertaken	with	pre-

operative	variables	assessed	for	their	ability	to	explain	and	predict	

values	of	survival	time	as	a	scaled	outcome.	Log-linear	regression	

was	then	performed	to	test	the	independence	of	each	pre-operative	

variable	against	the	outcome	of	survival	time.	

	

For	all	the	statistical	analysis	a	default	setting	of	least	informed	prior	

was	used.	Inferential	statements	therefore	depend	only	on	the	

available	data	and	the	assumed	model.			

	

	

Results:	Pre-Operative	Variables	Predicting	Survival	Time	of	36	

months	or	More	

	

One-way	ANOVA	analysis	(table	Oi)	identified	statistically	significant	

variance	between	the	means	of	the	groups	contained	within	the	

following	variables	pertaining	to	36	months	or	more:	AJCC	stage	(P	
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value:	0.000),	tumour	size	above	or	below	3	centimeters	(P	value:	

0.005),	ASA	grade	(P	value:	0.002),	albumin	level	above	or	below	

35(P	value:	0.047)	and	modified	Glasgow	Prognostic	Score	(P	value:	

0.031).		

	

	

Table	Oi:	One-Way	ANOVA	Analysis:	Results	of	overall	survival	time	

equal	or	greater	than	36months	between	groups	contained	within	

each	pre-operative	variable.	

	
Variable	 F	statistic	 .Sig	 Bayes	Factor	
Albumin	(<or=	to	35	v	
>35)	

3.99	 0.047	 0.352	

Modified	Glasgow	
Prognostic	Score	
(mGPS)	

3.534	 0.031	 0.151	

Neutrophil	
Lymphocyte	Ratio	
(NLR):	(<2	v	>2)		

0.076	 0.784	 0.136	

Neutrophil	
Lymphocyte	Ratio	
(NLR):	(<3	v	>3)	

0.920	 0.344	 0.205	

Neutrophil	
Lymphocyte	Ratio	
(NLR):	(<5	v	>5)	

0.905	 0.348	 0.203	

AJCC	Stage	 6.282	 0.000	 4.850	
Tumour	size	</>	2cm	 2.521	 0.113	 0.155	
Tumour	size	</>	3cm	 7.913	 0.005	 2.179	
T	stage	grouped	
T1/T2	v	T3/T4	

0.393	 0.531	 0.054	

T	stage	 1.013	 0.387	 0.001	
Location:	HOP	v	
Body/Tail	

0.780	 0.378	 0.074	

Age	</>70	 2.298	 0.130	 0.123	
Jaundice	</>	40	 0.334	 0.564	 0.057	
ASA	 5.051	 0.002	 0.644	
Diabetes	 0.006	 0.937	 0.061	
Smoking	 0.721	 0.397	 0.075	
BMI	 0.534	 0.660	 0.001	
	

	

Bayesian	Log	Regression	analysis	(table	Oii)	produced	Pearson	Chi	

squared	scores	that	corroborated	statistical	significance	of	these	



	 872	

variables	in	independently	predicting	36	months	survival	or	more	

(AJCC	stage:	P	value:	0.00;	tumour	size	above	or	below	3	centimeters:	

P	value:	0.005;	ASA	grade:	P	value:	0.002;	albumin	level	above	or	

below	35:	P	value:	0.046;	modified	Glasgow	Prognostic	Score:	P	value:	

0.031).		

	

Table	Oii:	Bayesian	Log	Linear	Regression:	Pre-operative	Variables:	

overall	survival	grouped	as	36months	or	above	or	not	

	

	
Variable	 Bayes	factor	 Pearson	Chi-

Squared	(.Sig	in	
parenthesis)	

Continuity	
Correction	(.Sig	
in	parenthesis)	

Fishers	Exact	
Test	(Exat	sig.	-2	
sided/	Exact	Sig	-
1sided)	

Albumin	</>	35	 0.855	 3.970	(0.046)	 3.314	(0.069)	 0.058/0.033	
mGPS	 0.644	 6.932	(0.031)	 	 	
NLR	</>	2	 2.283	 0.080	(0.777)	 0.001	(1.000)	 1.000/0.564	
NLR	</>3	 1.460	 0.949	(0.330)	 0.276	(0.599)	 0.402/0.301	
NLR	</>5	 2.953	 0.934	(0.334)	 0.069	(0.793)	 1.000/0.454	
AJCC	Stage	 0.243	 23.651	(0.000)	 	 	
Tumour	size	</>	
2cm	

2.286	 2.517	(0.113)	 1.959	(0.162)	 0.135/0.084	

Tumour	size	
</>3	cm	

0.119	 7.771	(0.005)	 6.992	(0.008)	 0.006/0.004	

T	stage	½	v	3/4	 6.948	 0.395	(0.530)	 0.179	(0.672)	 0.539/0.327	
T	stage		 257.139	 3.049	(0.384)	 	 	
Location;	HOP	v	
Body/Tail	

6.158	 0.784	(0.376)	 0.411	(0.521)	 0.470/0.269	

Age	</>	70	years	 2.668	 2.297	(0.130)	 1.853	(0.173)	 0.164/0.089	
Jaundice	 4.656	 0.336	(0.562)	 0.183	(0.669)	 0.648/0.334	
ASA	 0.511	 14.469	(0.002)	 	 	
Diabetes	 6.202	 0.006	(0.936)	 0.001	(1.000)	 1.000/0.588	
Smoking	 4.390	 0.725	(0.395)	 0.431	(0.511)	 0.442/0.259	
BMI	 89.930	 1.621	(0.655)	 	 	
Pathway:	
neoadjuvant	v	
surgery	first	

0.580	 5.214	(0.22)	 4.523	(0.33)	 0.027/0.014	

	

	

Although	Pearson	Correlation	did	not	produce	any	significant	

correlations	between	any	of	the	pre-operative	variables	and	overall	

survival	time	in	months	or	categorized	as	36	months	or	more	(table	
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Oiii),	Bayesian	linear	regression	analysis	of	all	pre-operative	factors	

(table	Oiv)	produced	a	model	of	good	fit	to	the	regression	line	(R:	

0.955;	R	squared	0.912;	p	value	0.006).		

	

Table	Oiii:	Pearson	Correlation	Coefficient:	results	of	each	variable	

assessed	against	overall	survival	defined	as	36	months	or	more	

(column	2)	and	overall	survival	time	in	months	(column	3)	



	 874	
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Table	Oiv:	Bayesian	Linear	Regression	

	

		
	

This	finding	is	supported	in	part	by	the	Bayes	Factors	produced	by	

one-way	ANOVA	analysis	whereby	the	other	pre-operative	variables	

that	did	not	reach	statistical	significance	in	terms	of	P	value	produced	

Bayes	Factors	that	supported	rejecting	the	null	hypothesis	(table	Oi).	

Interestingly	conflict	arose	between	P	value	and	Bayes	Factor	for	the	

variables	AJCC	stage	and	tumour	size	(when	defined	as	either	above	

or	below	3	centimeters).	However	under	Pearson	Correlation	

coefficient	and	Bayesian	log	linear	regression,	the	Bayes	Factor	
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returned	for	both	variables	supported	rejecting	the	null	hypothesis	

(table	Oii,	table	Oiii).		

	

Some	variables	that	did	not	reach	statistical	significance	determined	

by	P	value	in	any	of	the	analysis	offered	here,	but	had	Bayes	Factors	

supporting	rejecting	the	null	hypothesis	in	one-way	ANOVA	analysis	

(table	Oi),	went	on	to	produced	Bayes	Factors	under	Pearson	

correlation	and	Bayesian	log-linear	regression	that	supported	the	

null	hypothesis.	These	included:	tumour	location,	age,	jaundice,	

diabetes,	smoking	history	and	BMI	(table	Oii;	table	Oiii).	Tumour	size	

when	categorized	as	less	or	greater	than	2	centimeters	supported	the	

null	hypotheses,	but	when	categorized	as	less	or	greater	than	3	

centimeters	rejected	the	null	hypotheses	(table	Oii;	table	Oiii).	

Pearson	correlation	for	T	stage	produced	Bayes	Factors	that	seemed	

to	strongly	support	the	null	hypotheses	but	this	finding	is	likely	to	be	

skewed	by	the	fact	that	most	patients	in	the	database	had	T	stage	

falling	into	the	T3/T4	category.	Neutrophil	lymphocyte	ration	(NLR),	

although	having	Bayes	Factors	that	moderately	supported	rejecting	

the	null	hypothesis	in	one-way	ANOVA	and	Pearson	correlation,	

produced	Bayes	Factors	that	anecdotally	supported	the	null	

hypothesis.				
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Pre-Operative	Variables	Predicting	Survival	Time	of	12	months	or	

Less.	

	

Pre-operative	factors	were	less	strong	in	predicting	survival	time	of	

12	months	or	less.	Although	linear	regression	suggested	good	fit	of	

modeling	all	pre-operative	variables	against	survival	outcome	(R	and	

R	squared:	1.000)	(table	Ov),	significance	defined	by	P	value	was	not	

reached.		

	

Table	Ov:	Bayesian	Linear	Regression	
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One-way	ANOVA	and	log-linear	regression	identified	modified	

Glasgow	Prognostic	Score	and	tumour	size	less	than	or	greater	than	3	

centimeters	as	significant	(P	value:	0.050	and	0.037	respectively)	

(table	Ovi	and	table	Ovii).	One-way	ANOVA	analysis	produced	Bayes	

Factors	for	each	variable	that	weakly	supported	rejecting	the	null	

hypothesis	(table	Ovi).	However,	in	both	Pearson	correlation	and	log-

linear	analysis	Bayes	Factors	produced	were	found	to	support	

accepting	the	null	hypothesis	with	the	exception	of	tumour	size	

greater	or	less	than	3	centimeters	and	BMI	in	log-linear	analysis.	

Pearson	correlation	also	did	not	identify	and	significant	correlation	

between	pre-operative	variables	and	the	overall	survival	time	or	

survival	categorized	as	12	months	or	less	versus	greater	than	12	

months	(table	Oviii).							
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Table	Ovi:	One-Way	ANOVA	Analysis:	Results	of	overall	survival	time	

equal	or	less	than	12months	between	groups	contained	within	each	

pre-operative	variable.	

	
Variable	 F	statistic	 .Sig	 Bayes	Factor	
Albumin	(<or=	to	35	v	
>35)	

2.610	 0.108	 0.202	

Modified	Glasgow	
Prognostic	Score	
(mGPS)	

2.415	 0.050	 0.009	

Neutrophil	
Lymphocyte	Ratio	
(NLR):	(<3	v	>3)		

0.237	 0.789	 0.007	

Neutrophil	
Lymphocyte	Ratio	
(NLR):	(<5	v	>5)	

0.843	 0.360	 0.088	

AJCC	Stage	 1.406	 0.232	 0.000	
Tumour	size	</>	2cm	 1.911	 0.168	 0.115	
Tumour	size	</>	3cm	 4.381	 0.037	 0.388	
T	stage	grouped	
T1/T2	v	T3/T4	

3.335	 0.069	 0.232	

Location:	HOP	v	
Body/Tail	

0.652	 0.420	 0.069	

Age	</>70	 1.703	 0.193	 0.92	
Jaundice		 2.010	 0.157	 0.132	
ASA	 1.619	 0.186	 0.005	
Diabetes	 0.534	 0.446	 0.079	
Smoking	 0.001	 0.970	 0.052	
BMI	 0.939	 0.631	 0.000	
Pathway	 0.097	 0.755	 0.041	
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Table	Ovii:	Bayesian	Log	Linear	Regression:	Pre-operative	Variable:	

Overall	survival	grouped	as	12	months	or	less	or	greater	than	12	

months	

	
Variable	 Bayes	factor	 Pearson	Chi-

Squared	(.Sig	in	
parenthesis)	

Continuity	
Correction	(.Sig	
in	parenthesis)	

Fishers	Exact	
Test	(Exat	sig.	-2	
sided/	Exact	Sig	-
1sided)	

Albumin	</>	35	 1.147	 2.602	(0.107)	 2.136	(0.144)	 0.103/0.072	
mGPS	 14.504	 9.432	(0.050)	 	 	
NLR	</>3	 53.156	 0.480	(0.786)	 	 	
NLR	</>5	 3.603	 0.849	(0.357)	 0.508	(0.476)	 0.411/0.241	
AJCC	Stage	 245.374	 5.612	(0.230)	 	 	
Tumour	size	</>	
2cm	

2.859	 1.911	(0.167)	 1.478	(0.224)	 0.185/0.111	

Tumour	size	
</>3	cm	

0.580	 4.348	(0.037)	 3.873	(0.049)	 0.046-0.024	

T	stage	½	v	3/4	 1.406	 3.321	(0.068)	 2.729	(0.99)	 0.088/0.046	
Location;	HOP	v	
Body/Tail	

4.514	 0.656	(0.418)	 0.398	(0.518)	 0.477/0.267	

Age	</>	70	years	 2.700	 1.704	(0.192)	 1.419	(0.234)	 0.210/0.116	
Jaundice	 1.736	 2.101	(0.156)	 1.656	(0.198)	 0.191/0.099	
ASA	 30.260	 4.839	(0.184)	 	 	
Diabetes	 4.146	 0.539	(0.463)	 0.260	(0.610)	 0.510/0.311	
Smoking	 4.782	 0.001	(0.970)	 0.000	(1.000)	 1.000/0.544	
BMI	 0.000	 174.842	(0.532)	 	 	
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Table	Oviii:	Pearson	Correlation	Coefficient:	results	of	each	variable	

assessed	against	overall	survival	defined	as	12	months	or	less	
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Subgroup	Analysis	of	Response	to	Neoadjuvant	Therapy	in	

Neoadjuvant	Pathway	Related	to	Survival	Time			

	

	

Analysis	of	CT	response	to	neoadjuvant	therapy	was	not	able	to	

produce	any	statistically	significant	relationship	with	survival	time	

(table	Oix-Oxi).				

	

Table	Oix:	One-way	ANOVA	Neoadjuvant	Sub-Group	Analysis:	

Assessment	of	response	to	neoadjuvant	treatment	for	all	patients	

treated	in	neoadjuvant	pathway	

	

Variable	 F	statistic	 .Sig	 Bayes	Factor	

Response	to	

NAT	

2.766	 0.68	 0.140	
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Table	Ox:	Pearson	Correlation	co-efficient	Neoadjuvant	Sub-Group	

Analysis	

	

	
	

Table	Oxi:	Bayesian	Log	Linear	Regression	Neoadjuvant	Sub-Group	

Analysis		
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Bayesian	Subgroup	Analysis	Comparing	Neoadjuvant	and	

Surgery-First	Treatment	Pathways	for	Resectable	Pancreatic	

Ductal	Adenocarcinoma.					

	

For	cases	of	RPDAC	Bayesian	one-way	ANOVA	and	Bayesian	log-

linear	regression	analysis	of	the	treatment	pathways	surgery-first	

versus	neoadjuvant	therapy,	did	not	demonstrate	statistically	

significant	superiority	of	one	pathway	related	to	survival	time	

whether	categorized	as	36	months	or	more,	or	overall	survival	time	

in	months	(one-way	ANOVA	P	value:	0.808	and	0.163	respectively;	

log-linear	regression	P	value:	0.87	and	0.871	respectively)	(table	Oxii;	

table	Oxiii).	Pearson	correlation	coefficient	also	failed	to	produce	and	

significant	correlation	between	survival	and	treatment	pathways	and	

Bayes	Factor	supported	the	null	hypothesis	that	there	was	no	

statistically	significant	difference	in	outcome	between	treatment	

pathways	(table	Oxiv).		

	

Statistical	significance	was	found	between	treatment	pathways	

pertaining	to	achievement	of	R0	resection	(table	Oxii	iii	and	table	

Oxiii	iii)	in	favour	of	surgery-first	pathway	(one-way	ANOVA	P	value:	

0.025;	log-linear	regression	P	value:	0.025;	surgery-first	posterior	

mean:	0.795;	95%	CI	0.698-0.891	v	neoadjuvant	posterior	mean:	

0.550;	95%	CI	0.360-0.740).			

	

Achievement	of	multimodal	treatment	(either	neoadjuvant	therapy	

and	resection	or	upfront	surgical	resection	and	adjuvant	therapy)	

was	found	to	be	statistically	significant	to	overall	survival	time	(one-

way	ANOVA	P	value:	0.000;	linear	regression	and	log-linear	
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regression	P	value:	0.00).	There	was	no	statistically	significant	

difference	between	pathways	in	achieving	multimodal	treatment	

(one-way	ANOVA	and	linear	regression	P	value:	0.150).			

	

Within	the	surgery-first	pathway	completing	adjuvant	therapy	was	

statistically	significant	to	overall	survival	(one-way	ANOVA,	linear	

regression	and	log-linear	regression	P	value:	0.003).	However,	61%	

of	patients	within	this	pathway	did	not	complete	adjuvant	therapy	of	

which	53	out	of	77	lived	under	36	months.	8	out	of	23	patients	did	

not	complete	adjuvant	therapy	but	achieved	survival	time	of	36	

months	or	more.				

	

Table	Oxii:	One-way	ANOVA	RPDAC	Sub-Group	Analysis	

	

i)	pathway	related	to	overall	survival	time	of	36months	or	more	

	
	

ii)	pathway	related	to	overall	survival	time	in	months		
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iii)	pathway	related	to	achieving	R0	resection		
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Table	Oxiii:	Bayesian	Log	Linear	Regression	RPDAC	Sub-Group	

Analysis	

	

i)	Pathway	compared	to	survival	of	36	months	or	more	

	

	
	

	

ii)	Pathway	compared	to	survival	in	months	

	

	
	

iii)	Pathway	compared	to	R0	resection	
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Table	Oxiv:	Pearson	Correlation	co-efficient	RPDAC	Sub-Group	

Analysis	

	

	
	

Discussion	

	

Findings	as	a	partial	remnant	and	triangulation	

	

Bayesian	One-way	ANOVA	and	log-linear	regression	analysis	

identified	AJCC	stage,	tumour	size	above	or	below	3	centimeters,	ASA	

grade,	albumin	and	modified	Glasgow	Prognostic	Score	as	

statistically	significant	in	predicting	post	resection	survival	time	of	

36	months	or	more.	These	findings	corroborate	an	existing	body	of	

studies	that	have	also	identified	these	pre-operative	factors	in	

predicting	favorable	survival	time	(Section	4.6).	Pre-operative	factors	

identified	in	previous	studies	as	being	statistical	significant,	but	not	

in	this	study,	for	predicting	prolonged	survival	included:	NLR,	

tumour	location,	T	stage,	jaundice,	and	history	of	smoking	and	
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diabetes	(Section	4.6).	However	the	advantage	of	Bayesian	analysis	

showed	that	these	variables	were	found	to	have	Bayes	Factors	

supporting	rejection	of	the	null	hypothesis	in	this	study	also,	hence	

corroborating	their	link,	although	to	a	lesser	extent,	in	predicting	

prolonged	survival	time.					

	

Bayesian	one-way	ANOVA	and	log-linear	regression	analysis	

identified	modified	Glasgow	prognostic	score	and	tumour	size	

greater	than	3	centimeters	as	being	significant	in	predicting	survival	

of	12	months	or	less	which	supports	the	findings	the	existing	body	of	

studies	reporting	the	predictive	significance	of	these	factors	

pertaining	to	poor	prognostic	outcome	(Section	4.6).	Overall	

modeling	of	pre-operative	variables	to	predict	poor	prognosis	

performed	less	well	than	modeling	post-operative	factors	to	predict	

prolonged	prognosis.	This	corroborates	the	existing	body	of	evidence	

exploring	factors	to	predict	poor	outcome	with	existing	models	

focusing	more	on	post-operatively	available	data	to	make	meaningful	

predictions	(Bradley	et	al.,	2019b;	Bradley	et	al.,	2019c).		

	

Response	to	neoadjuvant	treatment	was	not	found	to	significantly	

predict	survival	time	of	greater	than	or	equal	to	36	months	or	12	

months	or	less.		This	finding	is	not	surprising	considering	ambiguity	

surrounding	the	existing	body	of	research	on	neoadjuvant	therapy	

particularly	for	RPC.	Although	NAT	is	supported	by	current	

guidelines	for	borderline	RPC,	optimal	treatment	of	RPDAC	remains	

controversial	(Tempero	et	al.	2014;	deGeus	2016).		
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Subgroup	analysis	of	treatment	pathways	surgery-first	versus	

neoadjuvant	therapy	for	RPDAC,	did	not	demonstrate	statistically	

significant	superiority	of	one	pathway.	These	findings	are	in	keeping	

with	the	few	existing	RCTs	and	meta-analysis	comparing	

neoadjuvant	therapy	and	surgery	first	which	have	failed	to	

demonstrate	conclusively	superior	survival	benefit	of	either	

pathway.		

	

Surgery-first	pathway	did	demonstrate	superiority	in	achieving	R0	

resection.		This	could	demonstrate	that	NAT	allowed	a	period	of	time	

for	more	aggressive	tumours,	in	which	surgery	would	be	ultimately	

futile,	to	declare	themselves.	Conversely	it	could	be	argued	that	this	

demonstrates	losing	the	window	of	resectability.	However,	receipt	of	

multimodal	treatment	within	either	pathway	was	again	found	to	be	

statistically	significant	in	determining	survival	outcome.	Although	

there	was	no	statistically	significant	difference	between	pathways	in	

achieving	multimodal	treatment,	analysis	showed	that	in	the	surgery-

first	pathway	completing	adjuvant	therapy	was	statistically	

significant	to	overall	survival	time	but	61%	of	patients	in	the	

surgery-first	pathway	failed	to	complete	adjuvant	therapy.	

Considering	that	on	an	intention-to-treat	basis,	a	significant	number	

in	each	pathway	failed	to	receive	all	intended	treatment	modalities		

this	study	adds	an	important	dimension	to	the	ongoing	debate	

regarding	treatment	selection	for	RPDAC.		This	highlights	the	need	to	

work	towards	better,	personalised	predictive	medicine	to	assist	in	

selecting	the	most	appropriate	treatment	strategy	for	individual	

patients.					
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Conclusion	

	

This	study	shows	that	Bayesian	statistical	approach	offers	an	

opportunity	to	model	the	complexity	and	uncertainty	surrounding	

management	of	PDAC,	and	in	particular	RPDAC,	in	a	way	that	

conventional	statistical	analysis	cannot.	Furthermore	it	has	

highlighted	factors	that	can	be	identified	at	the	pre-operative	stage	of	

patient	counseling	to	predict	chances	of	a	favorable	and	unfavorable	

prognosis.		Whilst	neither	treatment	pathway	demonstrated	

superiority	for	management	of	RPDAC,	this	study	shows	that	the	

most	appropriate	treatment	pathway	therefore	depends	on	

individual	patient	and	tumour	factors	in	determining	receipt	of	

multimodal	treatment.	This	highlights	the	important	step	this	study	

makes	towards	achieving	personalised	predictive	medicine	in	

research	and	clinical	practice.	Section	4.6	will	therefore	focus	on	

exploring	whether	Bayesian	statistical	approach	can	be	taken	further	

to	engage	with	complexity	of	handle	FUPS	data	to	deliver	

personalised	realistic	medicine	by	supporting	better	decision	making	

and	patient	selection	through	personalised	predictive	medicine.					
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Appendix	P		

	

Post-resection	Prognostic	Models		

Table	Pi.	Summary	of	existing	model	development	studies	predicting	

post-resection	prognosis	for	PDAC	
Study	 Data	

Source	
(n=205
10)	

Model	
Outco
me	

Predictor	
Selection	

Included	
Variables		

Missing	
Data	

Modeling	
Method	

Model	
Performanc
e	and	
Validation	

Brenna
n	et	al.,		
(2004)	

Single	
instituti
on	
databas
e	
(n=555)	

1,2,3	
year	
surviv
al	

Cox	
multivar
aite	
analysis;	
p-value	
but	non	
significan
t	
variables	
included	

age,	sex,	portal	
vein	inclusion,	
splenectomy,	
margin,	
location,	
differentiation
,	posterior	
margin,	nodes	
positive,	nodes	
negative,	back	
pain,	T	stage,	
weight	loss,	
maximum	
pathological	
axis	(n=14)	

Predicte
d	using	
regressi
on	
models	

Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration	
plot:	good	
fit	
Discriminat
ion:	c-
statistic	
0.64	
External	
Evaluation:	
absent;	
internal	
validation	
by	
bootstrap	
method	

Kanda	
et	al.,	
(2014)	

Single	
instituti
on	
databas
e	
(n=324)	

Death	
within	
12	
month
s	of	
surger
y	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	<	
0.1	

CEA,	CA19-9	
(n=2)	

Complet
e	case	
analysis	

Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration:	
absent	
Discriminat
ion:	AUC	
0.702	
External	
Evaluation:	
absent			

Miura	et	
al.,	
(2014)	

Single	
instituti
on	
databas
e	
(n=50)	

1,3,5	
year	
surviv
al	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Platelet	count,	
CRP,	CA19-9	
(n=3)	

Complet
e	case	
analysis	

Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration:	
none	
Discriminat
ion:	none	
External	
Evaluation:	
absent	

Shen	et	
al.,	
(2018)	

Multi-
centre	
databas
es	
(n=239)	

6,12,1
8	
month	
surviv
al	

Pre-
selection	
by	
Univarai
ate	

age,	length	of	
tumour	
contact,	
peripancreatic	
venous	

	 Multivara
ite	Cox	
proportio
nal	
hazards	

Calibration	
plot:	good	
fit	
Discriminat
ion:	c-
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analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

abnormality,	
lymph	node	
staging	(n=4)	

regressio
n	

statistic	
0.824	
External	
Evaluation:	
performed	

Xu	et	al.,	
(2017)	

Single	
instituti
on	
databas
e	
(n=265)	

1,3,5	
year	
surviv
al	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Tumour	grade,	
pathological	
stage,	neural	
invasion,	
vascular	
invasion,	
Neutrophil	
Lymphocyte	
Ratio,	Platelet	
to	Lymphocyte	
Ratio,	Albumin	
Globulin	Ratio	
(n=7)	

	 Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration:	
calibration	
curve	
Discriminat
ion:	1yr:	c-
index	0.86,	
AUC:	0.938.	
3yr:	c-index	
0.837,	AUC	
0.844,	5yr:	
c-index:	
0.809,	AUC	
0.884	
External	
Evaluation:	
absent	

Walczak	
&	
Velanov
ich	
(2017)	

Single	
instituti
on	
databas
e	
(n=219)	

7	
month	
surviv
al	post	
surger
y	

Single	
hidden	
layer	
back	
propogat
ion	
trained	
ANN.		

age,	sex,	stage,	
survival	time,	
quality	of	life,	
adjuvant	
therapy,	
resection	
details	(n=7)	

Complet
e	case	
analysis	

Artificial	
Neural	
Network	

Calibration:	
absent	
Discriminat
ion:	AUC:	
0.6576,	
sensitivity	
91.30%,	
specificity	
38.27%	
External	
Validation:	
absent;	
internal	
validation	
by	random	
split	
method	

Hsu	et	
al.,	
(2012)	

Single	
instituti
on	
databas
e	
(n=740)	

Death	
at	9	
and	12	
month
s	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

age,	tumour	
size,	
comorbidities,	
tumour	grade	
(n=4)	

Complet
e	case	
analysis	

Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration:	
none	
Discriminat
ion:	none	
External	
Validation:	
absent;	
internal	
validation	
with	p-
value	<0.05	

Botsis	et	
al.,	
(2009)	

Single	
instituti
on	
databas
e	
(n=218)	

Surviv
al	time	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	

Age,	
differentiation
,	tumour	size,	
Alk	Phos,	
Albumin,	
Ca19-9	(n=6)	

MICE	
presumi
ng	data	
missing	
at	
random	

Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration:	
absent	
Discriminat
ion:	c-
statistic	
0.73	
External	
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multivar
aite	
analysis.	
P-value	
<0.05	

Validation:	
absent;	
internal	
validation	
by	
bootstrap	
method			

Liu	et	
al.,	
(2018)	

Multi-
centre	
databas
es	
(n=122
3)	

Surviv
al	time	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

American	Joint	
Commission	
on	Cancer	
stage,	tumour	
grade,	post-
operative	
Ca19-9	(n=3)	

	 Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration:	
absent	
Discriminat
ion:	c-
statistic	
0.70,	AIC:	
2406.37	
External	
Validation:	
absent;	
internal	
validation	
by	random	
split	
method				

Balzano	
et	al.,	
(2017)	

Single	
instituti
on	
databas
e	
(n=296)	

1	year	
mortal
ity	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.2	for	
univariat
e	
analysis	
and	<0.1	
for	
multivari
ate	
analysis	

American	
Society	of	
Anaesthesiolo
gists’	score,	
Geriatric	
Nutritional	
Risk	Index,	
abdominal/ba
ck	pain,	non	
metastatic	
liver	disease	
or	insulin	
resistance	
(n=4)	

	 Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration:	
Hosmer-
Lemeshow	
0.403.	
Discriminat
ion:	R2	
53.5%,	
AUC:	
88.7%.		
External	
Validation	
performed	

Smith	&	
Mezhir	
(2014)	

Nationa
l	
Registry	
Databas
e	
(n=640
0)		

6	
month
s,	1,3,5	
year	
surviv
al	

Backwar
d	
stepdow
n	
selection	
process	

Survival:	age,	
gender,	
marital	status,	
race,	grade,	
histology,	
T&M,	size,	
radiation,	
Lymph	Node	
Ratio	(n=11).	
Lymph	node	
ratio:	grade	
T&M	stage,	
size	(n=4)		

Complet
e	case	
analysis	

Bayesian	
Model	

Calibration	
curve:	
goodness-
of-fit	
statistic	
0.4847	
Discriminat
ion:	c-
statistic:	
0.65	
External	
Validation:	
absent;	
internal	
validation	
by	random	
split	
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method		
Pu	et	al.,	
(2017)	

Single	
instituti
on	
databas
e	
(n=220)	

1,2,3	
year	
surviv
al	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Differentiation
,	American	
Joint	
Commission	
on	Cancer	
stage,	Alkaline	
Phosphate	to	
Albumin	Ratio	
(n=3)	

Complet
e	case	
analysis	

Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration	
curve:	
optimal	
consistency	
Discriminat
ion:		
training:	
0.673	
validation:	
0.693		
External	
validation:	
absent;	
internal	
validation	
by	random	
split	
method	

Dasari	
et	al.,	
(2015)	

Single	
instituti
on	
databas
e	
(n=567)	

1,3	
year	
surviv
al	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Tumour	site,	T	
stage,	Lymph	
Node	Ratio	
(n=3)	

Complet
e	case	
analysis	

Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration:	
none	
Discriminat
ion:	AUC	
1yr	&3yr:	
0.66	&	0.74	
External	
Validation	
performed	

Pu	et	al.,	
(2018)	

Nationa
l	
Registry	
Databas
e	
(n=345
8)	

1,3,5	
year	
surviv
al	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Age,	grade,	T	
stage	(n=3)	

Complet
e	case	
analysis	

Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration	
curve:	
optimal	fit	
Discriminat
ion:	c-
statistic	
0.63	
External	
and	
internal	
validation	
performed	
using	
bootstrap	
method	

Katz	et	
al.,	
(2012b)	

Nationa
l	
Registry	
Databas
e	
(n=573
6)	

3	year	
surviv
al	

Pre-
selection	
by	
Univarai
ate	
analysis	
then	Cox	
multivar
aite	
analysis.	
P-value	
<0.05	

Age,	gender,	
race,	site,	
grade,	stage,	
radiotherapy	
(n=7)	

Complet
e	case	
analysis	

Multivara
ite	Cox	
proportio
nal	
hazards	
regressio
n	

Calibration	
curve:	
results	not	
reported	
Discriminat
ion:	absent	
External	
Validation:	
absent	
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Appendix	Q	

	

Bayesian	Belief	Network	Sensitivity	Analysis		

	

Figure	Qi:	Sensitivity	Analysis	

	

a)	Pre-operative	poor	prognosis:	Scenario	2	
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b)	Pre-operative	poor	prognosis:	Scenario	3	
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c)	Post-operative	poor	prognosis:	Scenario	1	
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d)	Post-operative	poor	prognosis:	Scenario	2	
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e)	Post-operative	poor	prognosis:	Scenario	3	
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f)	Pre-operative	good	prognosis:	Scenario	1	
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g)	Pre-operative	good	prognosis:	Scenario	2	
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h)	Post-operative	good	prognosis:	Scenario	1	
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i)	Post-operative	good	prognosis:	Scenario	2	
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j)	Post-operative	good	prognosis:	Scenario	3	
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Appendix	R	

	

TRIPOD	Checklist	for	Bayesian	Belief	Network	

	
Section/Topic	Item	 	 Checklist	Item	 Page	
Title	and	abstract	

Title	 1	 D;V	 Identify	the	study	as	developing	and/or	validating	a	multivariable	prediction	model,	the	
target	population,	and	the	outcome	to	be	predicted.	 430	

Abstract	 2	 D;V	 Provide	a	summary	of	objectives,	study	design,	setting,	participants,	sample	size,	
predictors,	outcome,	statistical	analysis,	results,	and	conclusions.	

430-
432	

Introduction	

Background	
and	objectives	

3a	 D;V	
Explain the medical context (including whether diagnostic or prognostic) and rationale 
for developing or validating the multivariable prediction model, including references to 
existing models. 

432-
438	

3b	 D;V	 Specify the objectives, including whether the study describes the development or 
validation of the model or both. 

432-
438	

Methods	

Source	of	data	
4a	 D;V	 Describe the study design or source of data (e.g., randomized trial, cohort, or registry 

data), separately for the development and validation data sets, if applicable. 
439-
440	

4b	 D;V	 Specify the key study dates, including start of accrual; end of accrual; and, if applicable, 
end of follow-up.  

439-
442	

Participants	

5a	 D;V	 Specify key elements of the study setting (e.g., primary care, secondary care, general 
population) including number and location of centres. 

439-
440	

5b	 D;V	 Describe eligibility criteria for participants.  439-
440	

5c	 D;V	 Give details of treatments received, if relevant.  430-
440	

Outcome	 6a	 D;V	 Clearly define the outcome that is predicted by the prediction model, including how and 
when assessed.  

430-
440	

6b	 D;V	 Report any actions to blind assessment of the outcome to be predicted.  NA	

Predictors	
7a	 D;V	 Clearly define all predictors used in developing or validating the multivariable prediction 

model, including how and when they were measured. 
440-
452	

7b	 D;V	 Report any actions to blind assessment of predictors for the outcome and other 
predictors.  NA	

Sample	size	 8	 D;V	 Explain how the study size was arrived at. 440-
452	

Missing	data	 9	 D;V	 Describe how missing data were handled (e.g., complete-case analysis, single 
imputation, multiple imputation) with details of any imputation method.  442	

Statistical	
analysis	
methods	

10a	 D	 Describe how predictors were handled in the analyses.  440-
452	

10b	 D	 Specify type of model, all model-building procedures (including any predictor selection), 
and method for internal validation. 

430-
452 

10c	 V	 For validation, describe how the predictions were calculated.  440-
456 

10d	 D;V	 Specify all measures used to assess model performance and, if relevant, to compare 
multiple models.  

465-
458	

10e	 V	 Describe any model updating (e.g., recalibration) arising from the validation, if done. NA	
Risk	groups	 11	 D;V	 Provide	details	on	how	risk	groups	were	created,	if	done.		 NA	
Development	
vs.	validation	 12	 V	 For	validation,	identify	any	differences	from	the	development	data	in	setting,	eligibility	

criteria,	outcome,	and	predictors.		
465-
458	

Results	

Participants	

13a	 D;V	
Describe the flow of participants through the study, including the number of participants 
with and without the outcome and, if applicable, a summary of the follow-up time. A 
diagram may be helpful.  

459-
465	

13b	 D;V	
Describe the characteristics of the participants (basic demographics, clinical features, 
available predictors), including the number of participants with missing data for 
predictors and outcome.  

459-
465	
	

13c	 V	 For validation, show a comparison with the development data of the distribution of 
important variables (demographics, predictors and outcome).  NA 

Model	
development		

14a	 D	 Specify the number of participants and outcome events in each analysis.  459-
465 

14b	 D	 If done, report the unadjusted association between each candidate predictor and 
outcome. 

459-
465 

Model	
specification	

15a	 D	 Present the full prediction model to allow predictions for individuals (i.e., all regression 
coefficients, and model intercept or baseline survival at a given time point). 

440-
465 

15b	 D	 Explain how to the use the prediction model. 440-
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465 
Model	
performance	 16	 D;V	 Report performance measures (with CIs) for the prediction model. 459-

465	

Model-updating	 17	 V	 If	done,	report	the	results	from	any	model	updating	(i.e.,	model	specification,	model	
performance).	 NA 

Discussion	

Limitations	 18	 D;V	 Discuss	any	limitations	of	the	study	(such	as	nonrepresentative	sample,	few	events	per	
predictor,	missing	data).		

465-
467	
Chapt
er	5	

Interpretation	
19a	 V	 For validation, discuss the results with reference to performance in the development 

data, and any other validation data.  
459-
467 

19b	 D;V	 Give an overall interpretation of the results, considering objectives, limitations, results 
from similar studies, and other relevant evidence.  

465-
467	

Implications	 20	 D;V	 Discuss	the	potential	clinical	use	of	the	model	and	implications	for	future	research.		

465-
467,	
Chapt
er	5	
&6	

Other	information	
Supplementary	
information	 21	 D;V	 Provide	information	about	the	availability	of	supplementary	resources,	such	as	study	

protocol,	Web	calculator,	and	data	sets.		

Appen
dix	P,	
Q,	R	

Funding	 22	 D;V	 Give	the	source	of	funding	and	the	role	of	the	funders	for	the	present	study.		 NA	

	

	

	


