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This thesis is concerned with the optimum operating 
conditions in a power system. The various aspects of the 
problem are modelled and solved as a number of 
optimization problems applying linear programming 
techniques. A generalized linear mathematical model has 
been developed for this purpose. A two-stage formulation 
is adopted to represent the various problems considered. 
In each case one power system quantity is chosen as an 
objective function to be optimized under a number of 
constraints and operating limits relating to the power 
system relationships and upper and lower bounds on the 
variables. These include constraints derived from the 
power flow equations and transmission network capacity. 
Limits are also imposed on bus voltage magnitudes and 
generator outputs. 

With the appropriate selection of the combination of 
objective function and constraints, the model can be used 
to minimize the overall generation cost, the total system 
losses or the total reactive power generation. The 
two-stage modelling of the problem also allows optimizing 
two different objective functions at the same time. Two 
such combinations are possible. In one case the total 
system losses can be minimized in the first stage and the 
generation cost minimized in the second stage. The other 
combination minimizes the total system reactive power 
output and the active power generation cost. 

Using the same model, the problem is then solved 
using decomposition techniques. These imply breaking up 
the original problem into a number of smaller problems 
that can be solved almost independently. The mathematical 
model has been developed in general terms and the 
associated computer program is written for a general 
power system. A sample system of medium size has been 
used to test the validity of the various aspects of the 
suggested model and produce numerical results. 
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CHAPTER 1 

INTRODUCTION 

1.1 POWER'SYSTEM OPERATION : THE PROBLEM ' 

The operation of a modern power system is a very 

complicated and multifaceted problem that involves a 

large number of interrelated variables. One aspect of the 

problem is the complexity and various degrees of 

nonlinearity of the mathematical equations that represent 

the relationships among the various power system 

quantities. Another aspect that contributes to the 

complexity of the problem is the continuously expanding 

sizes of systems with their large number of generators. 

busbars and transmission lines, as well as the various 

methods of generation and types of power station. The 

problem is further compounded by the interconnection and 

energy exchange among different sections of the system. 

This applies to small areas within a large system, two or 

more major systems or even the power systems of two 

different countries. Also, because of the nature of the 

service they provide, power systems have to operate 

continuously, and this involves an enormous amount of 

monitoring, decision-making and control. 
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Obviously, the main objective when-operating a power 

system is to satisfy the load demand on the system. But 

the load demand itself is a time-variant quantity and, 

therefore, a more accurate statement is that the 

objective is to satisfy the load demand on the system at 

any specified moment in time. The consumer demand on the 

system varies considerably from season to season during 

the year, from weekdays to weekends within a week, and 

from hour to hour in one day. Special days of the year 

such as Christmas day and other public holidays have 

their own loading conditions which can be quite 

unpredictable, in contrast with seasonal or hourly 

variations. Also, load variations in a power system are 

affected by a number of diverse factors, some of which 

can be very unexpected. In recent years, these can range 

from freak weather conditions to popular television 

programmes. For example, normal prevailing weather 

conditions can be predicted to a fairly acceptable degree 

of accuracy, such that the consumer demand on the'system 

can be met satisfactorily. However, a sudden sharp drop 

in temperatures can present the system operator with a 

serious problem. 

The load demand variations with time are given by 

the daily load curve, and although the load varies slowly 

and gradually, there is a considerable difference between 

the peak load and the trough during a 24-hour period. 

Obviously, this variation of load has to be taken into 

consideration. 
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The solution of the power system operation problem 

is started by obtaining an estimate of the expected 

system demand for the specified period of time. This is 

followed by determining the number and size of generating 

units to be operated during that period, since, - as 

mentioned above, the system demand varies widely between 

its high and, low extremes. The task of estimating the 

required demand and its variations at various time 

periods is referred to as load forecasting. The 

systematic procedure of deciding which generating units 

to be operated at the various time slots is the subject 

of unit commitment. Both load forecasting and unit 

commitment are the subjects of continuous and extensive 

research. They are, however, outside. the scope of this 

thesis. 

In addition to such basic requirements as safe 

operation and reliability of supply, the-system load is 

to be satisfied under a large number of conditions and, 

sometimes conflicting, operating constraints. For example 

there are the physical. laws that govern power system 

relationships- such as the energy, balance in the . system 

and the mathematical relationships among bus voltages and 

line currents. Apart from these, there is also_a, number 

of constraints based on operating limits and engineering 

design specifications. Examples . of these are bus 

voltages, which are to be kept within a specified range 

around their nominal values, and upper and lower, limits 

on generator outputs. 
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Operating conditions imply real-time decision-making 

and on-line control; as opposed'to other power system 

activities such" as long term load forecasting and 

planning of maintenance schedules. This calls for fast, 

efficient and reliable algorithms and computer programs 

to tackle the various aspects of"the problem. 

1.2 RESEARCH IN THE FIELD 

The importance of the problem of power system 

operation can be judged from the tremendous amount of 

literature available on this vast subject, which is a 

clear evidence of the attention it receives from 

researchers and power companies, as shown by Happ [1]. 

A large number of research papers has been published that 

cover many of the varied facets of the problem and a wide 

range of related topics. Also a variety of techniques 

have been applied to solve particular aspects of the 

problem, as illustrated'by Lo and Brameller [2]. In a 

general paper, Sasson ' and Merrill 131 discussed the 

application of the various mathematical optimization 

techniques, such as 'linear, nonlinear, quadratic'. integer 

and dynamic programming to various power system problems. 

A review paper of a similar nature, by Stott, Marinho and 

Alsac [4] discusses the application of linear programming 

methods in particular to the solution of various power 

system problems such as transmission planning, security 

dispatch and emergency control. 
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Optimization methods have been used extensively to 

tackle the various aspects of the power system operation 

problem. Generally, these involve selecting one power 

system quantity as an objective function to be minimized 

or maximized subject to a number of constraints. Methods 

of formulation and solution techniques can be broadly 

classified into two main categories. These are linear and 

nonlinear programming methods. 

Among the early contributions to the field is the 

formulation, in 1968, of the optimal power flow problem 

by Dommel and Tinney [5]. Their method was based on the 

Newton's-algorithm, gradient adjustment for-obtaining the 

minimum and the use of penalty factors. -Since then, there 

has been 'a continuous flow of research papers in the 

field. 

Benthall [6] described an algorithm for solving the 

problem of secure economic load scheduling on a large 

power system. However, no numerical results were 

reported. The paper indicated that the computation time 

involved is mostly suitable for off-line calculations and 

that on-line application of the method'calls for a- more 

complex computing system. ' 
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The problem of minimizing transmission line losses 

was formulated by Peschon et al. [7]. The method was based 

on the suitable selection of reactive power productions 

and transformer tap settings. The computational procedure 

was based on the Newton-Raphson method for solving the 

power-flow equations and on the dual (Lagrangian) 

variables of the Kuhn and Tucker Theorem. The economic 

dispatch problem was formulated by El-Abiad and 

Jaimes [8], also using Newton's method and based on the 

Lagrange multipliers and Kuhn-Tucker conditions. 

Shen and Laughton [9] used a similar approach to 

minimize the cost of real power generation with a more 

comprehensive set of constraints including transmission 

line -loading "`limits and transformer tap settings. In 

another paper [10], they applied dual linear programming 

techniques to solve the load scheduling problem with 

security constraints. In reference [11], nonlinear 

programming was applied for the minimization of the 

hourly operating cost constrained by area interchanges, 

using penalty function method and generalized reduced 

gradients. 

Bonaert. 'El-Abiad and Koivo [12] addressed the 

problem of scheduling a hydro system. Their computation 

takes into account hydro dynamics with variable heads, 

cascaded plants, by-pass discharges, spilling, pump 

storage plants and navigation requirements. Some emphasis 

on hydro generation was also given in a relatively recent 
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paper by Shaw, Gendron and Bertsekas 113]. They 

considered the problem of optimal unit commitment and 

economic dispatch of a large hydrothermal power system. 

Their work was concerned with scheduling the startup and 

shut down of the thermal units and the power generation 

of all units such that the fuel cost is minimized over T 

time periods. 

A number of methods were used that applied 

decomposition techniques to reduce the size of the 

problem and the associated matrices. These will be 

thoroughly discussed in a separate chapter in this 

thesis. 

Assessment of Existing Methods 

No doubt some excellent research work has been done 

in the field. For -, example, the paper of Dommel and 

Tinny [5] is one of the publications that formed 

important landmarks in the field. However, by studying 

the literature and comparing the various formulations and 

solution algorithms available, it has been concluded that 

most of the mathematical models and methods of solution 

used so far suffer from one or more of the following main 

shortcomings. 

1. Because ýof the complexity of the mathematical 

equations involved and as a simplifying step in the 

modelling process, in some models -transmission line 

8 



resistance is ignored, thus neglecting system losses. 

Although this is a convenient analytical tool, the 

resulting models do not truly represent the actual power 

systems which are invariably lossy. Usually, this 

simplifying assumption is explicitly mentioned. The 

problem, however, is that in some cases it is not 

mentioned and the following rather misleading statement 

is encountered in the course of the analysis without any 

explanation. 

Total System Generation - Total System Load 

2. Mathematical models used so far are inflexible. They 

are designed to solve one aspect of the power system 

operation problem, with one objective function and a 

specific set of constraints. Some of these models are 

even designed for a particular power company or with one 

particular power system in mind. For instance, a model 

that minimizes system losses cannot be readily expanded 

or modified such that it takes into consideration other 

factors or achieve different objectives in addition to or 

instead of, those for which it was originally set up. 

3. Many linear or linearized models are based on the 

concept of incremental changes in system variables 

starting from some initial conditions. One of the 

drawbacks frequently encountered when dealing with such 

models is that the incremental change notation, such as 

the symbol (V ), is retained throughout the analysis 
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and appears in all the mathematical expressions including 

matrices. Although. in principle, this is not wrong it 

does, however, tend to hinder the clarity of the 

resulting model. In a real power system one is usually 

inclined to deal with the actual values of the variables 

such as V and P for voltage magnitudes and real powers, 

rather than their incremental values, UV and P. 

Also the=assumption of the availability of the set 

of initial conditions is made without any suggestion as 

to how they might, be obtained. Therefore, when trying to 

use such models-or run a computer program based on them, 

the first difficulty faced will be obtaining a suitable 

set of initial operating conditions such as an initial 

generation schedule. The availability and suitability of 

such data is important as it provides the starting point 

for the'solution of the problem. Some of the initial data 

can be assumed, of course, but this can prove difficult 

sometimes due to the large number and different types of 

variables involved. 

4. Most models used so far either include a load flow 

routine in the optimization procedure or iterate between 

an optimization routine and a load flow. In the first 

category- of models, for each iteration - of the 

optimization process, a complete load flow is performed, 

which in itself. is an: iterative procedure that involves 

the -lengthy process of inverting the -. system Jacobian 

matrix. This has the disadvantage of -considerably 
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increasing the -number of iterations and amount of 

computation- involved as well-as the CPU time. Another 

disadvantage is that the computer program based on such 

models has to be specially written to solve the power 

system problem, and no use can be made of any general 

optimization software packages available. In the second 

category of models, - although a general-purpose 

optimization routine can be employed, the computer 

program still has to iterate between the optimization 

routine and a -load flow routine to check for violation of 

constraints and make necessary adjustments. 

1.3 THE PRESENT RESEARCH PROJECT 

In the present work, an attempt has been made to set 

up a versatile and flexible, mathematical model to 

represent the power system for the purpose of obtaining 

the optimum operating conditions, with emphasis on 

generality of the - method - and simplicity of the 

formulation. This section gives a general and brief 

description of the mathematical model used in this=thesis 

and its main characteristics and method of solution (141. 

A general power system is considered under normal 

steady-state operating conditions. The various aspects of 

power system operation are represented by a number of 

optimization problems using linear programming 

formulation. For this purpose all relevant power system 

equations are linearized. A two-stage mathematical model 
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has been developed to represent the power system and 

solve the various optimization problems considered. The 

first stage of the model is based on bus and line 

quantities such as bus injections and line flows, while 

the second stage is based on generator quantities such as 

generator 'hourly -fuel cost. - The system busbars are 

classified- into two main categories. Buses at which 

generators are connected are called -"Generating Buses" 

and the rest- of the system buses are called 

"Nongenerating =Buses". One of the generating buses is 

selected-as the reference bus in a manner similar to that 

used in Load Flow studies. The individual generators 

connected at each generating bus are replaced by a single 

Equivalent Bus Generator. Generating buses correspond to 

power stations in the actual system. - Thus, each power 

station in the physical system is represented by one 

equivalent generator in the first stage of the 

mathematical model. The parameters and quantities of this 

equivalent bus generator relevant to the various 

optimization problems considered, are derived in terms of 

the corresponding values of all the individual generators 

connected at the bus. Constraints and objective functions 

based on bus and line quantities are then set up to 

represent a number of different optimization problems. In 

each optimization problem the voltage magnitudes and 

phase angles of all system buses, except those of the 

reference bus, are used as the independent or decision 
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variables. The optimization problem is then solved by 

linear programming techniques and standard computer 

subroutines. 

The solution of the first stage of the model gives 

the values of all system bus voltage magnitudes and phase 

angles under optimum operating conditions. These can be 

used to calculate all other relevant quantities such- as 

bus injections and system losses. The solution of the 

problem of optimum operating conditions can be terminated 

at the end of the first stage of the model or continued 

in the second stage if required. This depends on whether 

the main objective of the problem is based on bus or line 

quantities, or on generator quantities. It is to be 

remembered here that the first stage of the model is 

based on the concept of the equivalent bus generator and, 

therefore, does not deal with individual generator 

quantities. 

The second stage of the model can be used to 

determine the output of each individual generator in the 

system. This can be achieved by formulating a new linear 

programming optimization problem based on generator 

quantities, with the objective of minimizing the hourly 

fuel cost. The active power outputs of the individual 

generators are used as the independent variables whose 

values are to be. determined, with appropriate upper and 

lower operating limits. The constraints of the new 

optimization problem are based on the energy balance in 
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the system and on the active power outputs of the 

generating buses. The active and reactive outputs-of the 

equivalent bus generators can be obtained from the first 

stage of-the model and they represent the contribution of 

each generating bus towards the total system demand and 

transmission loses. The outputs of the individual 

generators at a particular bus, on the other hand, 

represent the contribution of these generators towards 

the total output of that bus. 

The optimization problem of the second stage of the 

model can then be solved using the same linear 

programming techniques and computer subroutines used to 

solve the optimization problem of the first stage. 

Finally, the project considers the application of 

decomposition methods to the suggested mathematical 

model. The aim of this is to reduce the size or 

dimensionality of the various optimization problems 

addressed so that the suggested solution method can be 

applied to large-scale power systems. Decomposition has 

been based on utilizing the special structure of the 

power system problem and the sparsity of the associated 

matrices. 
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Apart from setting up a generalized and versatile 

mathematical model to represent optimum operating 

conditions in a power system, the present thesis also 

endeavours to give a general overview and a comprehensive 

study of the problem. In a way, as well as reporting on 

the actual work, the thesis also relates the author's 

"experience" throughout the various stages of the 

research project from searching- for literature and 

reading on the subject to debugging computer programs and 

obtaining numerical results. This experience is reported 

in. terms-of-problems that have-been or are likely to be 

encountered in connection with the various theoretical, 

computational and- practical aspects of the project as 

well as useful,, practical suggestions as to how these 

problems can be avoided. 

The thesis consists of seven chapters as well as 

some additional material in the appendix. The present 

chapter has introduced the problem of power system 

operation, Section (1.1), and its reflection in the 

literature, Section (1.2), over a period of about 20 

years of-research in the field. Section (1.2). has also 

presented a- general assessment of the various existing 

mathematical models and solution methods. Section. (1.3) 

gave a general summary of the present research 
-project 

and a brief description of the modelling framework. 
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The modelling process on which the present work is 

based, is explained in detail in Chapters 2 and 3. The 

salient features and important characteristics of the 

mathematical model are detailed in Chapter 2, while 

Chapter 3 shows how the problem is translated into a 

general linear programme. 

Chapter 4 considers the inclusion of several other 

aspects of the power system operation problem into the 

suggested mathematical model. Examples of these 

additional aspects are tap-changing transformers and 

loading rates of generating units. In Chapter 5, specific 

optimization problems are set up. and the associated 

numerical results obtained are given. Chapter 6 is 

devoted to the application of decomposition methods to 

solve the same optimization problems using the 

mathematical model developed in the present research 

project. Discussion, conclusions, advantages of the 

suggested method and its practical application as well as 

suggestions for future work are the subject of Chapter 7. 

The appendix provides supplementary background material 

of a mathematical nature. 

Throughout the-process of writing the thesis, the 

reader has been kept constantly in mind. Considerable 

attention has been-paid and a lot of effort has been made 

in the writing and presentation of the material,. The 

justification for this stems from the fact that, in 

research circles, the proper. reporting, 'writing and 
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presentation' of a piece of research work is as important 

as the work itse'lf., Therefore, an attempt has been made 

to write and present a self-contained "reader-friendly" 

thesis although, obviously, this is not'always possible 

in a work of this size and nature. This is particularly 

relevant to the mathematical background of the work. 

Obviously, this thesis is not intended to be a 

detailed treatise on optimization and related topics from 

a purely mathematical point of view, as there is a large 

number of good textbooks that cover these areas of 

knowledge. However, 'mathematical'programming in general, 

and linear programming in particular have direct and 

strong bearing on the mathematical formulation adopted in 

the present work. Therefore, as well as the mathematical 

topics discussed in'the Appendix, similar, material is 

also included in the main body'of the thesis 'at the 

appropriate chapters or'sections where'the material is of 

immediate relevance and where that material is necessary 

for the comprehension, of the rest of' the section -or 

chapter in question., - All these additional topics' are 

given here to-'serve as`background material. ' supporting 

and complementing'°the rest'of the thesis, and"also' for 

the general'benefit of the readers, especially those who 

intend to follow this line of research. The same argument 

applies` to"' some other specific ' topics- such as 

linearization. " In each case, 'the topic in question was 

given the necessary amount'of emphasis to clarify all the 
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relevant points. In the context of mathematical 

background of the work presented in this thesis, readers 

with some basic knowledge of mathematical programming, 

linear programming, the simplex method and other related 

topics have an obvious advantage in grasping the various 

concepts introduced in the thesis. At the other end of 

the spectrum, however, readers who do not possess any 

knowledge in these topics might need to read the Appendix 

as a prerequisite to reading the main text. 

Having said that, however, an attempt has also been 

made to strike a balance between comprehensiveness of 

coverage and brevity of presentation. Wherever possible, 

any undue details have been avoided. This applies in 

particular to the mathematical derivations used in the 

thesis. Where appropriate, the general method of 

derivation is outlined and presented in a concise and 

clear manner starting from fundamental mathematical 

principles and relevant power system theory with the 

final results listed or "stacked" together at the end of 

the respective section or subsection. Thus, at various 

places in the thesis the reader will encounter "blocks" 

of mathematical expressions. For a first reading of the 

thesis, these blocks of equations can be skipped without 

affecting the understanding of the subject matter, 

although the mathematical expressions themselves are 

necessary for the rest of the theoretical analysis and 

the mathematical modelling. 
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Finally, the references given at the end of the 

thesis represent rather a short but carefully selected 

list from the overwhelmingly large amount of publications 

available on the subject. A helpful guide is also given 

on finding more . references and further reading -on the 

subject. 
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CHAPTER 2 

MAIN FEATURES OF THE MATHEMATICAL MODEL 

2.1 INTRODUCTION 

A general description of the mathematical model used 

in the present work has already been given in 

Section (1.3). The present chapter explains in detail the 

central ideas and underlying concepts that forms the 

basis of the modelling philosophy adopted in this thesis. 

The various aspects and particular features of the model 

are discussed in detail in separate sections. The 

material presented in these sections constitutes the 

Building Blocks of the suggested modelling structure and 

are treated here almost independently of each other. They 

will be put together in Chapter 3 to present a linear 

programming formulation of the mathematical model that 

represents- power system operation. In what-' follows a 

general power system is considered, with NB busbars 

supplied by NG generators via a transmission network 

of NL lines. 
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2.2 THE TWO-STAGE FORMULATION 

Most of the equations used in power system analysis, 

especially those related to the power flow equations, are 

based on bus quantities such as bus active and reactive 

power injections and bus voltage magnitudes and phase 

angles. In those equations no reference is made to the 

individual generator quantities and in most cases they 

are not explicitly needed in the analysis. There are 

some situations, however, where the analysis is directly 

based on individual generator quantities. An example of 

such situations -is the calculation of the system 

generation -cost which involves the active power output 

and fuel cost characteristics of individual generators. 

Considered on their own, these problems can be handled 

without major difficulties. There isa third category of 

problems where both bus and generator quantities are 

involved. When dealing with situations of this type, one 

problem that soon becomes obvious is the lack of explicit 

mathematical relationships between bus and -generator 

quantities. An example of these situations is the 

minimization of the total system generation cost under 

constraints. At a generating bus, for instance, the total 

bus generation can be expressed in terms of the outputs 

of the individual generators connected at the bus. On the 

the other hand, it can be expressed as an explicit 

function of voltage magnitudes and phase angles of all 

other system buses. However, there is no explicit 
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mathematical expression that relates bus voltages and 

individual generator outputs. This can be illustrated by 

the following general mathematical expression. 

F( Xi )-G(Y, ) (2.1) 

i-1,2,3, ... ,n 
J-1,2,3, ... m 

In the above expression, F and G are general 

multivariable functions of the two sets of independent 

variables X, and Y, respectively. In a mathematical 

relationship of this type, it is impossible to express 

any of the independent variables of one side of the 

equation as an explicit function of the variables of the 

other. As mentioned above, in terms of power system 

quantities. "such an expression can have generator 

variables on one side and bus variables on the other. The 

difficulty of the problem is increased by the 

nonlinearity and complexity of these mathematical 

relationships and the fact that they occur as sets, each 

consisting of a large number of equations. 

Therefore, one of the considerations to be taken 

into account when dealing with such problems is bridging 

the gap between two almost separate sets of variables. 

Many of the algorithms published in the field of 

optimization tackle this problem by an iterative process 

between the two sets of mathematical relationships 

involving the two separate sets of variables. Starting 
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from some initial solution, these algorithms generally 

involve calculating the functions from one set and 

checking the accuracy of the solution using the other 

set. From the result of this comparison some way is 

devised to improve the present solution. The- iterative 

process is continued until the optimum solution is 

reached depending on a specified tolerance as a 

termination criterion. Basically this is the essence of 

the Newton-Raphson algorithm used to solve-the power flow 

equations. The -incorporation-of the load flow into the 

optimization process has already been discussedfl in 

Section (1.2). in the course of assessment of existing 

power system optimization -methods: As -mentioned 

previously, this has the disadvantages of long CPU times 

and the need for algorithms and computer routines 

specially designed for the solution of power system 

optimization problems. 

In the present thesis, the difficulty caused by the 

lack of explicit mathematical expressions that relate 

generator and bus variables is overcome by introducing 

the concept of the equivalent bus generator and employing 

the two-stage solution strategy. The first stage of the 

model is based on bus and line quantities with bus 

voltage magnitudes and phase angles as the principle 

independent variables whose values are to be determined. 

Specific values are assigned to the voltage magnitude and 

phase angle of the reference bus beforehand. Thus, the 
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first stage of the model has a total of 2N independent 

variables. The second stage of the model is based on 

individual generator quantities, with the NG generator 

active power outputs as the independent variables. No 

iteration is needed between the two stages and the 

solution of the overall problem proceeds sequentially 

from Stage-I to Stage-II with obvious algorithmic and 

computational advantages. As mentioned earlier, depending 

on the main objective of the optimization problem the 

solution can be terminated at the end of the first stage 

or carried on to the second stage. However, it must be 

noted here that the second stage cannot be solved on its 

own, as some of its input parameters can only be obtained 

after the solution of the first stage has been completed. 

2.3 THERMAL GENERATOR COST CHARACTERISTICS 

The relationship between the active power output of 

a thermal generator and its hourly input fuel cost is 

represented by the generator cost function. This is a 

nonlinear mathematical expression of the general from 

of (2.2) below. 

FG - Co + C, x PG + C. x PG2 + C3 x PG3 (2.2) 

where the C's areconstants and PG is the generator 

active power output. 

A typical graph of such a characteristics is shown in 

FIG. (2.1) . 
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The constants C associated with the quadratic and 

higher power terms of (2.2) are usually very small and 

the value of the hourly generation cost is mainly 

dictated by the first two terms. Therefore. (2.2) can be 

approximated by: 

FG s Co + C, x PG (2.3) 

This is a straight line equation and is also shown in 

FIG. (2.1), where the original nonlinear characteristic is 

approximated by a straight line segment between operating 

limits. This approximation is adequate for most practical 

purposes and is useful where a linear mathematical model 

is used to handle problems involving generation cost 

calculations as in the present work. 

Furthermore, the fixed term Co in (2.2) can be 

ignored if FG or other quantities based on it are to be 

used as objective functions for optimization purposes. A 

fixed term in the objective function of an optimization 

problem does not affect the optimization process, i. e., 

the systematic mathematical search for the optimum 

solution, or its outcome, namely, the set of values of 

the independent variables that give the optimum solution. 

Thus, for the purposes of the present mathematical model. 

the generator fuel cost function (2.3) can be further 

reduced to: 

FG - CG x PG (2.4) 
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The constant CG - Cs is usually referred to as the 

Incremental Generation Cost. 

Generally, the reduction of the fuel cost 

characteristics and the number of terms discarded or 

retained depends on the required accuracy of calculations 

and results, and-also on the-availability of the data, 

i. e., the constants Cj, of the cost characteristic. 

The cost function can also be approximated by a 

number of successive straight line segments [10). This is 

shown in FIG. (2.2). The straight line segments used can 

be of equal or different lengths depending on the shape 

and degree of nonlinearity of the original function. When 

using this method, the accuracy of the approximation 

depends on the number of-line segments used. Increasing 

the number of these line segments, thus decreasing the 

length of each segment, gives a better fitting between 

the original nonlinear characteristic and the resulting 

linear approximation. Piecewise linear approximation of 

this type is not confined to generator fuel cost 

characteristics. It is a general method that can be 

applied to any smooth continuous nonlinear function. It 

has the advantage of combining high accuracy and 

applicability to linear analysis at the same time. It. 

however, has the disadvantage of increasing the required 

amount of computation. The choice of this type of 

linearization depends on the required degree of accuracy 
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and also on whether it is worth the additional 

computations involved (151. 

2.4 PARAMETERS OF THE EQUIVALENT BUS GENERATOR 

As mentioned earlier, the mathematical model used in 

this work consists of two stages. In the first stage of 

the model the generators connected at each generating bus 

are replaced by a single Equivalent Bus Generator. In 

this section the relevant parameters of this equivalent 

bus generator are derived in terms of-the corresponding 

parameters of all the individual generators connected to 

the bus. The relationships among the various bus and 

generator quantities and the notation used are 

illustrated in FIG. (2.3). 

The active and reactive power., output of the 

equivalent bus generator and its upper and lower 

operating limits are given by the summation of all the 

corresponding individual generator quantities, as shown 

by Equations (2.5) to (2.10) below. 

NGBi 
PGB* -I PGG, (2.5) 

j-1 

NGBý 
QGB. -I QGG-i (2.6) 

j-i 

NGBt 
PGBMXi -I PGGMX, (2.7) 

J-1 

c 
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NGB,, 
PGBMNi -E PGGMNJ (2.8) 

i=1 

NGBL 
QGBMXi -I QGGMX, (2.9) 

J -1 

NGB, 
QGBMNt -I QGGMN, (2.10) 

J°1 

Another relevant parameter of the equivalent bus 

generator is the equivalent bus incremental cost. This 

parameter cannot be obtained by-'a straightforward 

summation as shown above for the various active and 

reactive power quantities. Its derivation proceeds as 

follows. 

The generation cost at the i'th bus is given by: 

NGBi 
FBA -I CG, x PGG, 

J-1 
(2.11) 

From Equation (2.4), the incremental generation cost of 

the J'th generator is given by: 

FG4 
CGa - (2.12) 

PG, 
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Thus, CGj can be defined as: 

Generation Cost of the j'th Generator 
CGj 

Active Power Output of the Generator 

(2.13) 

Similarly, the incremental cost at the i'th bus can be 

defined as: 

Generation Cost at the Bus 
CB, - 

Total Active Power Output of the Bus 

From (2.5) and (2.11). this can be expressed as: 

(2.14) 

NGBi 
E CG, X PGG, 

.i =1 
CB, (2.15) 

NGBt. 
I PGG, 

j=1 

Theoretically, the cost characteristic, of a 

generating bus cannot be represented by an analytical 

function as that of Equations (2.2) or (2.4). However, a 

graph of the characteristic can be plotted by using a 

suitably large number of operating points along the cost 

characteristics of all the individual generators. Since 

straight line approximation is used to represent (2.2). 

the resulting bus cost characteristic will, also, be a 

straight- line. Two points will be sufficient to define 

the required characteristic from which CB can be 

evaluated. A good approximation of CB will-be obtained if 
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the selected two points are well spaced along the 

characteristic. The extreme points of the characteristic 

are chosen for this purpose. and the incremental cost of 

the i'th bus is evaluated as in (2.16). 

CBMNi + CBMXi 
CBs - (2.16) 

2 

where CBMN, and CBMX, are the values of the incremental 

costs calculated as in (2.15) above, corresponding to the 

minimum and maximum active power outputs of all the 

generators connected at the i'th bus respectively. 

In full, CB. L is given by (2.17), below. 

CHF - 

NGBi NGBj. 
I CG, x PGGMN, I CG, x "PGGMX, 

j-1 j-i 

NGB j. NGBý 
I PGGMIda I PGGMX, 

j-1 j-1 

2 

I-_,, (2.17) 

2.5 LINEARIZATION 

The equations that describe power system 

relationships are generally nonlinear, involving 

quadratic and: higher power terms and trigonometric 

functions. The present work is based on formulating the 

various aspects of the problem of power system optimum 

operating conditions as a number of linear programming 
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problems. Therefore, before the mathematical model of the 

problem can be set up, all the relevant power system 

equations must be-linearized. 

There is a number of different linearization 

methods. Some of these have already been described in 

Section (2.3), in association with thermal generator cost 

functions. Other methods are discussed here. In complex 

mathematical-expressions, i. e., expressions that involve 

real and imaginary parts, some form of linearization and 

simplification of the analysis can be achieved by 

ignoring one of the constituent parts of the complex 

quantity, if its value or effect on the whole is very 

small compared to the other part. The justification for 

this depends on the given numerical data and on the 

nature of the physical problem. It also depends on 

whether a very accurate representation and rigorous 

analysis of the physical system is wanted or onlyýa fast 

approximate solution is-required.. Whichever part of the 

complex quantity is ignored, the rest of the analysis is 

carried out in terms of-real variables since, even when 

the remaining variables are imaginary, - the complex 

operator notation, i or j, is dropped. In power system 

analysis, the mathematical formulation can be simplified. 

and an approximate solution obtained, by neglecting the 

resistive part of the impedance of power system 

components, such as transmission lines and transformers. 

and treating them as pure reactances. As discussed in 
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Chapter 1, this has the disadvantage that the resulting 

mathematical expressions do not give true representation 

of the actual power system. 

Another widely used method of linearization, is based 

on the Taylor's series expansion of the given nonlinear 

function (16). Various degrees of accuracy can be 

obtained depending on the number of terms included. A 

linear expression is obtained by including only the first 

two terms of the series. This method involves the use of 

derivatives, and in multivariable functions partial 

derivatives have to be used. 

In this thesis linearization is an important aspect 

that plays a major role in the modelling and solution of 

the problem. Therefore, it is given some emphasis and is 

explained in some detail in this section. 

The linearization technique employed here, -is based 

on the concept of incremental change in the values of-the 

system independent and dependent variables around a known 

initial point. The term incremental change in this 

context is used to mean a change, positive or negative, 

in the value of a variable which is very small in 

comparison with the initial value of the variable. The 

step by step linearization procedure is given- below in 

general terms followed by an example [17]. 
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1. Consider the general nonlinear function Y- F(X) for 

which the data of an initial point is available; 

Yo ° F()! 0) . 

2. Assume that there is an incremental change [, \X in the 

value of the independent variable and substitute each X 

by ( Xo+UX ) in the original function Y. 

3. Expand the function Y- F( Xo+UX ). 

4. Ignore any terms that involve quadratic and higher 

powers of UX and any other functions of UX of 

negligible value. 

5. Substitute each UX back by (X-X). 

The resulting 

approximate linearize 

function Y. and is 

incremental changes 

variables are very 

values. 

equation from step (5) is an 

d version of the original nonlinear 

accurate enough as long as the 

in the values of the independent 

small compared with their initial 

It is to be emphasized at this point that the 

substitution of step (5) should be performed after the 

reduction of step (4). 

The generality of the method cannot be explained any 

further and is better illustrated by a specific example. 

The same steps 1 to 5 above are followed. 
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Example: 

1. Consider the function Y- X2, Yo a Xo2 . 
2. Y-( Xo+UX 

3. Y- Xo2 + 2Xo /\X + Ly X 

4. Y- X02 + 2Xo/ X 

5. Y- 2XoX - Xol 

The last form of the function is a straight line 

equation that can be rewritten as follows: 

Y AX +B (2.18) 

where, 

AQ2 X0 

and 

Be-, 2 

It is to be noted here that the resulting linear 

equation is expressed in terms of the original variables 

Y and X, not the incremental changes VY and UX as used 

in the literature [18). Also, both the constants A-and B 

are functions of the initial point Xo . 

The above is a rather simplified example for the 

purpose of illustration but the method can be extended to 

multivariable functions of any degree of complexity and 

nonlinearity. 
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Useful Results 

Below are some particular linearization results of 

general use for the derivation of the linearized versions 

of the various power system equations used in the thesis. 

1. For a function 

F- AF1 + BF2 (2.19) 

the following result can be deduced: 

FFo +AVF1 +BUF2 (2.20) 

2. Trigonometric functions, in particular, can be 

linearized by using the following approximations. 

For a small angle Ve measured in radians: 

sine V6 

cos V6 1 

(2.21) 

(2.22) 

Applying the linearization procedure explained above, the 

following results can be obtained. 

sin0- ( cosOc ) 6+sin Aa -8b cos ea (2.23) 

cos h- sine. )6+ cos eb +Q sin 66 (2.24) 

Both (2.23) and (2.24) can be expressed in the general 

form of the straight line equation (2.18) with 6 as the 

independent variable and: 

A-( cos % ), and B- sin %- 66 cos 6b , for the sine 

function and, 
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A--( sin eo ), and B- cos' Q, +% sin%, for the 

cosine function. 

3. Many mathematical expressions in power system theory 

have the following general form: 

F- XY (A sin 9+B cos 6) (2.25) 

The linearized version of F is given by: 

F-Yo ( A sinG, +BcosQ, )X 

+ Xa ( A sin Q, +B cos 6b )Y 

+ X0 Yo ( Acos Q, - BsinE) 6 

+ Xo Y. e. ( Bsin% -Acos66 ) -F0 

(2.26) 

This can serve as a good illustration of the 

linearization of a multivariable function using the 

linearization procedure described in this section. The 

nonlinear function F has three independent variables, 

namely, X. Y and 6. The linearized version shows the 

coefficients associated with each of the variables and 

the constant terms which are functions of the initial 

values of the dependent and independent variables. 
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2.6 THE LINEARIZED POWER SYSTEM EQUATIONS 

The first stage of the model is based on linearized 

versions of the mathematical equations that describe the 

relationships among the various bus and line quantities. 

There is a certain number of such power system equations 

which represent the core of power system theory and used 

in power system analysis. Collectively they give a 

complete picture of the power system steady-state normal 

operating conditions and, consequently they are used in 

the present work to represent the various optimization 

problems (19-22). These equations fall into three 

distinct sets. 

1. The net bus active and reactive power injections. 

These are defined below: 

PL - PGB, - PDT (2.27) 

- QGBi - QD, (2.28) 

i-1,2,3, ... , NB 

2. Active and reactive power line flows. 

For a line connecting node i to node j, these depend on 

whether the power flow is from node i to node .j or from 

node .i 
to node i. Therefore, for each line in the system 

there are four such quantities. namely, P, , P� 

and Qa s. 
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3. Active and reactive power losses. 

For the k'th line, connecting bus i to bus j, these are 

given by: 

PL.. - Pj.,, + P,,, (2.29) 

QLk - Q� + Q� (2.30) 

k-1.2.3. ... , NL - 

All the relevant mathematical equations have been 

linearized using the procedure described in Section (2.5) 

and the final results are given below. - Each equation is 

given first in its original nonlinear form, followed by 

the linearized version with both forms expressed as 

explicit functions of the independent variables V, 

and 6... 

The w-equivalent circuit is used to represent 

transmission lines, and the relationships among the 

various bus and line quantities are shown in FIG. (2.4). 

Net Bus Active Power Infection 

N 
ps -I Vi V, ( G1. cosea. + Bi, sin 6sß ) (2.31) 

j-1 

N 
PIL -[I Vs c, ( G., cos e, ,.. + B. L, si n eß, 0 ) V. 

j-1 
+ VDU ( Gý, cos 6�a + BL 

.a sin 6�a ) V, 
+ Via Via ( B1, cos 6� a - G1, sin e1, a ) e1 
+ Via Via ( G1, sin e1, a - Bi, cos 6., a ) 6, 
+ Via via e.,. ( Gs., sin e.,. 

- Bi, cos 6�0 ) l- Pia (2.32) 
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Net Bus-Reactive-Power Injection 

N 
Qi -I Vs V, ( G: L, sin 6., - Hs , cos e, 

., 
) (2.33) 

j-1 

N 
Qi -[I Vao ( Gi, si n e,,. - Bi, co s 6i, o ) Vi 

j-1 
+ Vio ( Gi, sin 6i, o - Bi, cos 6i, o ) V., 
+Vio Vi 

o 
(Gij cos e40 + Bij sin e 

i, O)ei 

- Vio V, o ( Ga, cos ei,,. + Bi, sin 8, o ) 6, 
- Vio V.:. o 6i, o ( Gi, cos 6i, o 

+ Bi, sin 6i, o ) l- Qio (2.34) 

Active Power Transfer Across Line (I-J) 

PI, - YL ,2 14 
.1V, 

2+ Ys, 2 V, V., ( X., sin 8,, 
- Rs 

., cos e, ) (2.35) 

Pi., - Yi. 
-j2 

I2 Ri j Via 

+ V, o ( Xt, 
+ Y,., 2 V, o 
+ Yi., a VLO 
- YL_$2 Via 
- Yß, 1 Vi e 

, sin 6j, 0 
( Xs, sin 
V. o ( Rim 
Via ( RL., 
V., o 6s. jo 

- RL, cos eß, 0 )]V, 
6s, o - R*, cos 6�0 ) V, 
sin 6., Q + X,, cos e,, 0 ) e. 
sin 6,, 0 + X,, cos 6,,. ) 6, 

( Ri, sin 6i 
.o } X. , cos 6., 0 )-P., o (2.36) 

Active Power Transfer Across Line (J-Il- 

Pas - Ys ,2 Rs 
.j 

Vj2 - Ys ,' Vs V_I ( Xs 
.I sin %-% 

+ Rsj cos 6s, ) (2.37) 

PJ1 -- YLJ2 V, o 
+ Ytja (2 

+ Yi J' V, o 
+ YtJ2 Vio 
+ Y. _j2 VLo 

( X,, sin 
Ri, a V, o - 

V. o ( Rsj 
Vj o( Xis 
V, j0 et, lo 

6�0 + R� cos 6j, 0 ) V, 
V, o ( Xj_, sin e.,.. 

+ R., cos e-, - )IV, 
sin 6.., 0 - Xtj cos 6s, a ) 8, 
cosý6., o - Ri; sin 6., 0 ) 6, 

( Ri, sin 6., a 
- Xs, cos 6., o) (2.38) 
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Reactive Power Transfer Across Line (I-J) 

(Y,., ' ), -T,, ) Vt2 
- Yt., 2 Vi Va ( Ria sin O+ Xsa cos 8) (2.39) 

Qii -[2 (Yi, 2 XL X 
-j -T,.., ) Vio 

- YLJ2 V, a 
- Y,,, 2 VL. o 
+ Yi_12 Vio 
+ Y., 2 VLF, 
+ Yi.: 2 Vs0 

( R: L, sin 
( Ri, sin 
V, c, ( Xx, 
Vo(R, , 
Vao e0 

6ý ,o+ Xi, cos 
6ý, 0 + X,, ' cos 
sin 6i., a - Ri, 
cos 6', o - X� 

Ri, cos 6L, o 
X� sin 6,,. 

ei, 
0 

)]v 

ei, 
0 

) V. 

cos 61,. ) 6,. 
sin 6s, a ) 6, 

- Qý, ý (2.40) 

Reactive PowerýTransfer Across Line (J-I) 

tL. - (Y., 2 XLj-TT.. j) V, z 
+ Y,, 2 V, V, ( Rt, sine. - X-L , cos 6� ) (2.41) 

Y. L, 2 V, o ( RL, sin 6s, o - X., cos 6L, 0 ) V. 
+[2 (Yi, 2 X, -Ti, ) V, o 
+ Yi, 2 Vso ( Ra, sin Ai, o - Xi, cos 6a, o )]V, 

- Yi, 2 Vio V, o ( Xi, sin 6i, o + Ri, cos 6i, o ) 6i 
+ YI, s VIQ Via ( Xi, sin 6�0 + Ri, cos 6s ,. ) 6, 

- Yß, 2 Vio V, o 6., 0 ( Ra, cos 6,, o 
+ Xj, sin 6�0 )-Q, ao 

(2.42) 

Active Power Loss In A Transmission Line 

PIA. -Yi. j' Ri Vi 1+ YL ,2 RL i Vi 2 

-2Y: L a2 y Ri., V. V., cos 6., (2.43) 

PLk -2 YLa' R. a ( V,. 0 - via cos 6sao ) V, 
+2 Yaa2 Rsa ( Via - Via cos ea. ) V. 
+(2 Yaa2 Raa Via Via sin 6aao ) 6s 

-(2Y, a2 Ria Via Vao sin 6sao ) 8a 

-2 Yýa2 Rya Va'Vao 6iao sin 6sao - PLko (2.44) 

Reactive Power Loes in a Transmission Line 

QL - (Y. L i2 Xi i -T, i) V. 2 
+ (Y,, 2 Xii-Ti., ) Vaa -2 Y1., 2 Xis Vi V, a cos O 

(2.45) 
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QLk -2f (Ysi2 X, -TTa) V,. o 
- Y12 Xi-j Vaa cos 61_io J Vi 
+2( (Y1. j2 X1. s-Ti., ) V, o 
- Ya 

ja X1.! Vio cos ei. 
}tom 

I Vj 

+(2 Yi. $2 Xij Via V jo sin, 61 0) 61 
-(2 Yia2 X1j Vio Vac, sin 61,0 )e 
-2 Y1., 2 Xi. s Via V., a 61aa sin 61 0- QLko (2.46) 

Complex and Apparent Power Relationships 

In the analysis so far, the two components of the 

complex power have been dealt with separately. The main 

relationships among the three quantities, P, Q and S are 

summarized by (2.47) to (2.50) below. 

Sa P+ jQ (2.47) 

S2 s P2 + Q2 (2.48) 

S- T( P2 + Q2 ) (2.49) 

Pd 
S-P+Q (2.50) 

So 

Equation (2.50) is the linearized version of (2.49). 

The derivation of (2.50) can be started by expressing 

Equation (2.48) in terms of the incremental values of its 

variables as in (2.51). 

( S� + US )2=( po + UP )' +(Q, + VQ )2 (2.51) 

Equation (2.51) is then fully expanded and terms 

involving quadratic incremental changes are ignored. The 

rest of the derivation proceeds as explained in 

Section (2.5). 
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The general apparent power relationships (2.47) 

to (2.50) apply to load, generation, bus injections, 

power transfer` and transmission losses. The expanded 

forms of these` equations in terms of system voltage 

magnitudes and phase angles can be obtained by 

substituting for P and Q from the appropriate equations 

(2.31-2.46) above. 

Finally, it is to be mentioned here, in the context 

of linearization, that the equation of one power system 

quantity, namely, the hourly generation cost, has already 

been linearized in Section (2.3). However, the 

linearization principle used in that particular case is 

different from the procedure explained in this section. 

The linearization of the cost function was based on the 

small values of the constants associated with the 

variables rather than the incremental changes in the 

values of the variables themselves. 

2.7 THE REFERENCE BUS 

The two general equations (2.27) and (2.28) that 

define the bus injections apply to all system buses 

including the reference. It is to be noticed, however, 

that the expanded forms (2.31) and (2.33). which give the 

power injections in terms of system voltages, apply to 

all system buses except the reference. Therefore, special 

attention has to be paid to the reference bus when 

deriving the power injection equations corresponding 
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to (2.31) and (2.33). The derivation proceeds as follows. 

The total system active and reactive power 

generation, demand, and losses are given by Equations 

(2.52) to (2.57) below. 

NB 
PGT -I PG& (2.52) 

i-1 

NB 
PDT -I PD, (2.53) 

i-1 

NL 
PLT -I PLk (2.54) 

k-i 

NB 
QGT -I QGB, (2.55) 

1-1 

NB 
QDT -I QDi (2.56) 

i-1 

NL 
QLT -I QLk (2.57) 

k-1 

The generation and demand= quantities, Equations 

(2.52), (2.53), (2.55) and (2.56). can alternatively be 

written as shown in the corresponding equations (2.58) 

to (2.61) below, where each total system quantity is 

written as the sum of two separate parts. One part 

corresponds to the reference bus while the - other 

corresponds to the rest of the system buses collectively. 
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N 
PGT - PGB, - +E PGB1 (2.58) 

i-i 

N 
PDT - PD. - +I PD, (2.59) 

i-i 

N 
QGT - QGB, - +I QGB i (2.60) 

i-1 

N 
QDT - QDr +E QDi (2.61) 

i-1 

The energy balance equations in the system are given 

by: 

PGT - PDT + PLT (2.62) 

QGT - QDT + QLT (2.63) 

Substituting from (2.54), (2.58) and (2.59) into (2.62) 

and rearranging give: ' 

N NL 
PGBS - PD, - -I( PD, - PGB t)+I PLk (2.64) 

i-1 k-1 

Similarly, the corresponding reactive power equation is 

given by: 

N NL 
QGB. - - QD, - -I( OD, - QGBi )+I QLk (2.65) 

i-1 k-1 

Using the defining equations of the active and reactive 

power injections, (2.27) and (2.28) respectively, (2.64) 

and (2.65) can be written as follows: 
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NL N 
Pr- -(I PLk )-EP,. (2.66) 

k-1 i-i 

NL N 
I QLk )-E QL 

k=1 i=i 
(2.67) 

The above two expressions give the net power 

injections at the reference bus in terms of the net power 

injections of the rest of the system buses and the total 

system losses. The full nonlinear and linear versions 

of (2.66) and (2.67) in terms of system voltage 

magnitudes and phase angles can be obtained by 

substituting from the appropriate expanded equations of 

Section (2.6). 

An alternative method of obtaining the same results 

is by introducing two new quantities. PT and QT. These 

are the net active and reactive power` injections into the 

whole power system and are-defined-as equal to the 

difference between the total system generation and the 

total system=--demand. -ýIn mathematical terms these are 

given by: 

PT PGT - PDT (2.68) 

QT - QGT - QDT (2.69) 

The rest of the derivation proceeds, as before, by 

substituting from the appropriate equations (2.58) 

to (2.61). 
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It is interesting to note that the net total power 

injection into the system is equal to the system losses. 

which is already stated mathematically in Equations 

(2.62) and (2.63). 

Taking the reference bus into account, there is, 

thus, a total of 2NB power injection equations in 

contrast with the 2N equations used in load flow studies. 

In the latter case the reference bus injections are 

obtained after a complete run of the load flow and the 

calculation of all transmission losses. In the present 

work the effect of the reference bus and transmission 

losses are incorporated as constituent parts in the 

problem model. 

2.8 THE INITIAL OPERATING POINT 

As explained earlier, the relevant power system 

equations have been linearized using the concept of 

incremental changes around a given initial operating 

point. The data involved includes the initial values of 

all bus voltage magnitudes and phase angles, active and 

reactive power injections, active and reactive power 

losses and power transfers in all transmission lines. The 

availability of all these data is essential as a starting 

point for the setting up of the linear mathematical 

model. An approximate initial operating point can be 

estimated as follows. 
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The given total system active and reactive load is 

divided among all system generators in proportion to 

their capacities, measured by the corresponding upper 

limits on their outputs. Thus, the initial active and 

reactive outputs of the j'th generator are given by: 

Output Power of the -( 
Capacity, of. the j' th Generator 

) 
j'th Generator Total System Capacity 

x Total Load on the System 

(2.70) 

For this purpose, the total active and reactive system 

capacities are defined by: 

NG 
PGTMX -I PGGMX, 

i-i 
(2.71) 

NG 
QGTMX -I QGGMX, (2.72) 

i-i 

Alternatively, in terms of generating bus quantities, 

PGTMX and QGTMX are given by: 

NS 
PGTMX -1 PGBMX, 

i-i 
(2.73) 

NS 
QGTMX -E QGBMXJ (2.74) 

i-i 

Using these definitions, the initial active and reactive 

power generations can be expressed as. follows: 
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PGGMX_, 
PGG, o- ---- x PDT (2.75) 

PGTMX 

QGGMX,, 
QGGj0 - ---ý x QDT (2.76) 

QGTMX 

These are used to calculate the initial active and 

reactive power outputs of the bus equivalent generators 

from Equations (2.5) and (2.6). Alternatively these can 

be obtained using the following two equations: 

PGBMXL 
PGB, L r, - -- xY PDT 

PGTMX 
(2.77) 

QGBMX, 
QGBi o- ----ý x QDT (2.78) 

QGTMX 

In (2.77) and (2.78), the initial values of the 

active and reactive power outputs ofýthe generating buses 

are obtained by dividing the total system demand amongst 

these buses in propörtion to their capacities measured by 

their maximum generation, in a similar way to that of 

expression (2.70). The active and reactive bus injections 

can then be obtained using Equations (2.27) and (2.28) 

respectively. 

All initial values of bus- voltage magnitudes and 

phase angles can then be computed by performing a load 

flow. Finally all initial line flows and transmission 

losses can be calculated using the appropriate nonlinear 

equations from Section (2.6). 
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2.9 SUMMARY 

This chapter has presented the main features and 

fundamental ideas that form the basis of the mathematical 

model developed in the present research project. These 

can be summarised as follows. 

1. A two-stage formulation is adopted to represent the 

interrelationships among the various power system 

quantities. The first stage is based on bus and line 

quantities such as bus injections and line flows. The 

second stage is based on individual generator quantities 

such as generator outputs and generation costs. 

2. The two stages of the model are linked by the concept 

of the equivalent bus generator which replaces the 

individual generators at each generating node. The 

respective section details the process of obtaining the 

relevant parameters of these lumped generators in terms 

of the corresponding quantities of the individual 

generators. 

3. The concept of incremental modelling is used to 

linearize the various mathematical relationships 

involved. The linearization procedure is explained first 

and then the final linearized power system equations are 

given. 
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4. A method is suggested to obtain the data of an initial 

operating point on which the concept of incremental 

modelling is based. 
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Vi - Vt cos et +j Vt. sin 6, Ys -1/(R+iX) 

V. - V, cos 6, +jV, sin O Yp -jT 

ij 
----------------------------; 

FIG. (2.4) 

TRANSMISSION LINE EQUIVALENT CIRCUIT 
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CHAPTER 3 

THE LINEAR PROGRAMMING FORMULATION 

3.1 INTRODUCTIO 

Mathematical modelling is one of the important 

stages in the course of solution of a large number of 

practical engineering problems. It is also one of the 

earliest stages, as it usually follows the initial 

general descriptive statement of the problem. 

Mathematical' modelling implies translating the various 

aspects of the physical problem into mathematical 

expressions. This is followed by devising an algorithm 

for solving the problem and then obtaining the actual 

numerical solution. 

In many real life situations one is often faced with 

the need of not only solving a given practical problem, 

but of deciding on which solution is to be chosen from a 

number of alternatives available. Generally, in such 

cases, each alternative has its own advantages and 

disadvantages and it is difficult to assess all the 

relevant, and often conflicting factors, against one 

another and come up with the required solution. Choosing 

a solution which satisfies certain conditions may be 

attractive, considering those conditions alone, but might 

bring about severe disadvantages when taking into 
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consideration other relevant factors. Trying to comply 

with the new conditions, on the other hand, might violate 

the first set of constraints and so on. 

Such difficult decision-making is of commonplace 

occurrence in project planning, the operation and process 

control of large' industrial systems, the manufacturing of 

goods, the allocation of resources, and in the provision 

and distribution of supplies and services. The operation 

of a large modern power system is an example of this 

category of complicated problems and is characterized by 

many of the above-mentioned features. 

3.2 THE CONCEPT OF OPTIMIZATION 

The field that deals with the type of problem 

described in the previous section is that of Operations 

Research [23-341. In the general sense, operations 

research can be defined as the application of systematic 

scientific methods and techniques and quantitative tools 

to solve problems involving planning, decision-making and 

operation of systems such that optimal solutions are 

reached. Although problems with alternative solutions 

that involve difficult decision-making are not entirely 

new, it is only during the last 50 years or so that such 

problems, their impact and the need for their solutions 

have become so pronounced. It was at the beginning of 

that period that the ideas of the field of operations 

research started to take shape, and keen interest in 

related research disciplines was witnessed [23]. 
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Operations research is a vast field which 

encompasses a wide range of practical problems and 

solution techniques. Among the various fields of 

operations research is that of Mathematical Programming, 

which is also the field that is most prominent and which 

received a lot of attention from researchers and, 

therefore. developed steadily and rapidly. Mathematical 

Programming is defined as a technique for determining the 

value of a set of decision variables that optimize a 

mathematical objective function and conform to a given 

set of mathematical constraints. 

Mathematical programming, itself, consists of a 

large number and wide variety of methods and techniques 

for solving optimization problems. These include linear, 

nonlinear, quadratic and integer programming, binary or 

zero-one programming, static & dynamic programming, 

continuous & discrete programming, deterministic & 

probabilistic or stochastic programming, heuristic 

programming, geometric programming, separable programming 

and parametric programming. Each of these fields is 

concerned with a particular aspect of the mathematical 

programming problem, and the various solution techniques 

are suitable for different physical problems, depending 

on the nature of these problems and their mathematical 

representations, and also on the nature of the data and 

required results. 
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A relatively old category of problems which have 

some bearing on mathematical programming problems is that 

of finding the minimum or maximum of functions. These 

types of problem are collectively known as Extremum Point 

Problems. In their simplest form extremum point problems 

consist of a single function to be minimized or maximized 

in terms of one variable. This category of problem can be 

handled and has been successfully solved by the classical 

methods of calculus for a long time. However, these 

methods cannot handle additional constraints on the 

problem and the bounds on the variables which 

characterize optimization problems. The ability to deal 

with constrains is one of the main differences between 

the optimization methods of mathematical programming and 

those of classical calculus. Optimization is the, 

technical or mathematical term equivalent to the concept 

of finding the "best solution", i. e., a solution that 

satisfies a number of conflicting conditions and imposed 

constraints. 

One of the earliest techniques of mathematical 

programming`is that of linear programming. This is-now a 

well-established field and,,. has received a wide range of 

practical applications (24,25). In a linear programming 

problem the objective function and all the constraints 

are linear algebraic functions of the independent or 

decision variables. ' Linear Programming is the technique 

used in the present work to formulate the problem of 

power system optimum operating conditions. 
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3.3 GENERALIZED FORMULATION OF THE PROBLEM 

The constrained linear optimization problem can be 

mathematically stated in a number of different forms. The 

various aspects of the original physical problem are 

handled differently by the various mathematical 

formulations and each one of these is suitable for a 

different solution algorithm or a different computer 

optimization subroutine. However, the various 

representations are equivalent and carry the same amount 

of information that describes the original physical 

problem. Also, transformation from one representation to 

another, when the need arises, is possible as explained 

below. 

In the present work the following general 

representation of the linear programming problem is 

adopted. 

Optimize Z-C, X1 + COX= + CZX5 +... +G, X, 

(3.1) 
Subject to 

BUi 2 Ai s Xi + Ai a Xz + Ai a X"3 +... + Ai., X-. 2 BL, 

BU2 2 A2 sXs+ A=ýXý + Aa3X3 +... + 16,, X, BLz 

BU3 2 A=, Xs + AmmX=' + A3mX3 +... +, A3.., %, BLs 

BUn '2 A., i Xi +J X2 + A..,: s Xs +... +A.,,, X, 2 BI.., 

(3.2) 

and XU, 2 X, 2 XL,, j-1,2,3, ... ', n (3.3) 
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This formulation can be written in the following 

compact form. 

Optimize Z-IC, X, 

Subject to BU,. 2EA. L, Xa _> BLi 

and XU, 2 Xj 2 XL, 

i-1,2,3, ... ", m 

j-1,2,3, ... n 
(3.4) 

It can also be represented using vector and matrix 

notation. 

The function Z tobe optimized, i. e., maximized or 

minimized is called the Objective Function and the 

inequalities (3.2) and (3.3) are the Constraints to be 

satisfied. These consist of two distinct sets. The first 

set consists of the general constraints which are based 

on the functional relationships amongst the variables. 

Each constraint has a lower and upper limit given by BL 

and BU respectively. The second set represents the lower 

and upper bounds, XL and XU; on the individual variables 

themselves. The vectors XL and XU can be-considered as 

subsets of the vectors BL and BU respectively. The bounds 

on each individual variable X, can be treated as the 

(m+j)'th general constraint, with the value of the 

coefficient A., equal to 1 at the j'th column and zero 

elsewhere.. The Coefficients AU,, Bº ( BLS and BUS ) and 

C. are given Constants and X, are the Unknown Variables 
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whose values are to be determined within the lower and 

upper bounds imposed. The linear programming problem is 

fully defined by its A-B-C Parameters, which is the term 

used in this thesis to describe the constants matrix A. 

and the vectors B and C collectively. The matrix A is 

also known as the Constraints Coefficients Matrix and the 

elements of the vector C as the Coefficients of the 

Objective Function. 

The general-purpose formulation above should not be 

confused with two specific formulations used in 

association with the Simplex Method of solving linear 

programming problems, and which are known as the Standard 

and Canonical formulations [26). 

3.4 VARIATIONS AND TRANSFORMATIONS 

In the previous section a generalized form of the 

linear programming problem is given. In general, however. 

practical problems do not always occur in this particular 

form and the initial mathematical representation-of the 

physical problem may, need to be modified. The various 

possible representations and transformations are 

discussed below. 

63 



Maximization and Minimization 

A maximization problem can be represented and solved 

as a minimization problem and vice versa. -For example, if 

the objective function is to be minimized the problem can 

be solved by maximizing the negative of the objective 

function. This can be mathematically stated as 

Minimum (Z) -- Maximum (-Z) (3.5) 

and is graphically illustrated by FIG. (3.1). 

Equality and Inequality Constraints 

The constraints of the problem can be equalities, 

i. e., equations instead of inequalities or a mixture of 

both. Equality and inequality constraints can be 

transformed from one form to the other. Also 

transformation from one type of, inequality constraint to 

another is possible. - 

An inequality of the less than or equal type (i) can 

be transformed into an equation by the use of a Slack 

variable. On the other hand, an inequality constraint of 

the greater than or equal type (2) can be transformed 

into an equality by the use ofýa negative slack variable 

which is also known sometimes as aSurplus variable. A 

general constraint with upper and lower bounds can be 

split into -two-separate inequalities or two separate 

equations. If, however, the original constraint is an 

equality and it is required that it is represented as an 
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inequality for a specific purpose, then it can be written 

as an inequality with upper and lower bounds or two 

separate inequalities. The upper and lower bound in this 

case are equal. An inequality constraint of one type can 

be transformed to another type by reversing and 

multiplying both sides of the inequality by (-1). 

If required, nonnegative variables can be taken into 

account in the general formulation above. This is 

achieved by assigning a value of zero to the lower limit 

of (3.3). It is to be noted here that the term 

"Nonnegative" is specially used in this context to 

include zero values of the variables, and to avoid 

confusion with the term "positive" which might be taken 

to mean only values of the variable greater then zero. 

Finally, two or more inequalities can be added 

together, in a similar manner to the addition of 

equations. However, subtraction of inequalities can 

produce inconsistent and, therefore, unpredictable 

results. 

It is to be noted that some of the transformations 

explained above might change the dimentionality of the 

linear programming problem concerned by -increasing or 

decreasing the number of its decision variables or 

constraints or both. 
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3.5 STAGE-1 : THE CONSTRAINTS 

The constraints used in the first stage of the model 

are based on the various power system bus and line 

quantities. In this section, all these constraints are 

derived and set up to conform to the general linear 

format of (3.2). The constraints are presented here 

without referring to any particular optimization problem. 

Specific optimization problems, each with a defined 

objective function and sets of constraints, will be 

presented in Chapter 5, as well as the corresponding 

numerical results obtained for a small test system. 

The method of derivation is presented first in general 

terms. Then the elements of the constraints coefficient 

matrix X,, and the upper and lower bounds BU, and BLS, 

associated with the various power system quantities, are 

derived from the appropriate linearized equations of 

Section (2.6). 

Each of the linearized power system equations of 

Section (2.6) can be written as a function of the general 

form: 

FY, - FY. ( V., , O. )+ KY1 (3.6) 

Each equation consists of two parts. The first is a 

variable quantity which is a function of the independent 

variables V. and, e,. The second is a fixed constant whose 

value depends on the data of the initial operating point. 

The variable part is a function of the following form: 
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NN 
FY, ( Vý , 8, )-Z AM, a V, +E ANS 

-, 
e-, (3.7) 

i-i i-i 

The constant part of (3.6). in turn, consists of two 

parts as in (3.8) below: 

KYi - Ki o- FYi o (3.8) 

The general form of each constraint is an inequality of 

the form: 

YMXt 2 FYI 2 YMNi (3.9) 

Substituting from (3.6) and (3.8) into (3.9) and 

rearranging gives: 

YMX, + FYs o- KiG 2 FYi ( Va , 6. a )2 YMNi + Ma - Ks o 

(3.10) 

Further, the last form of the constraint can be written 

as: 

BMX 2 FY, ( Va, 6, )2 BMN, (3.11) 

The upper and lower bounds of the constraint. BMX, and 

BMNi respectively, are given-by . 

BMXi - YMXL + FYio - Kto 

BMNt - YMNa + FYio - Kto 

(3.12) 

(3.13) 
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Below are some important points relevant to the 

derivation of the coefficients associated with the 

various system quantities. 

1. The minimum and maximum bus generations are expressed 

by the following inequalities: 

PGBMXi 2 PGBi 2 PGBMN, (3.14) 

QGBMXi 2 QGBi _> QGBMNt (3.15) 

From Equations (2.27) and (2.28), the bus generations are 

given as in (3.16) and (3.17). 

PGBi - Pi + PDi 

QGBi - Q1 + QDa 

(3.16) 

(3.17) 

Substituting from (3.14) and (3.15) into (3.16) and 

(3.17) respectively, and rearranging: 

PGBMX, - PDt 2 PL 2 PGBMNt - PDi (3.18) 

QGBMX, - OD, 2 Q, 2 QGBMNi - QD, (3.19) 

Although developed and expressed in terms of 

generating buses, the constraints (3.18) and (3.19) are 

valid for nongenerating buses as well. The constraints on 

the power injections corresponding to nongenerating buses 

are a special case of (3.18) and (3.19) above, with the 

upper and lower limits on the bus active and reactive 

power generation assigned a value of zero. This reduces 

the two constraints to (3.20) and (3.21) below. 
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- PD, 2 Ps 2- PD, 

- QDi 2 Qi 2- QDs 

(3.20) 

(3.21) 

The last two expressions are in fact just another way of 

writing the following two simple equalities which give 

the net power injections at the nongenerating buses. 

PD, (3.22) 

Qý -- QD, (3.23) 

These can be directly obtained from (3.16) and (3.17) 

respectively by substituting PGB, and QGB, by zero. 

2. A maximum limit is imposed on the active power loss in 

a transmission line given by: 

PLk i PLMXk (3.24) 

A similar upper limit is imposed on the apparent power 

transmitted across each line given by: 

STk <_ STMXk (3.25) 

Each of these inequalities represent a special case of 

the general expression (3.11) with the lower limit 

implied to be zero. 

3. The coefficients associated with the apparent power 

are derived by using Equation (2.50) and the appropriate 

expanded linearized active and reactive power 

expressions. 
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The coefficients AM,, and ANS, of (3.7), and the 

upper and lower bounds BMX, and BMN, of (3.11) associated 

with the various constraints have been derived as 

outlined above and the final expressions are listed below 

under the appropriate headings. It is to be noticed that 

they are all functions of system parameters and initial 

operating point-data. Therefore, each will be returned as 

a single numerical value by the computer program in the 

course of the solution of the problem. 

Elemente of the Constraints Coefficients Matrix 

and Upper and Lower Bounds Vectors 

Elements Associated with the Net Bus 
Active Power Injection 

AM 2 G1 
1( Ul 

0)2+ 

N 
I V-, o ( Gi b cos ei. io + Bt sine,,. 

j-i 
j{. i (3.26) 

AM: L-4 Vß. 0 ( Gs j cos 6i, o + Bi m sin e.,. 

j-1,2,3, ... ,N 
j+i (3.27) 

N 
AN� -I Vso Vjo (B cos ei, o - Gi., Sin 6ijo ) 

i-i 
j+i (3.28) 

AN� Vs a' Vao ( Gý sill, 6a, o - Bim cos 6,. 40 

j-1.2,3, ... .N 
#. 

(3.29) 
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BMX, PGBMXL + A. 0- PD, 
N 

+I Vera V, o 8t, 0 ( B*, cos 6i, o - Gi, sin %jo 
j-1 

(3.30) 

BMNa PGBMNL + Pi o, - PD,. 
N 

+I Vio Vio 6,,, a ( B., cos O . io - Gý, sin 6�U 

(3.31) 

Elements Associated with the Net Bus 
Reactive Power Injection 

Mt --2 Bii ( Vin )2 + 

N 
I Vjo ( Gi., sin 6ij o-B i. a cos e 

. j. j-1 
j4i (3.32) 

Ami, - Vio 
,( 

Gi., sin 6i ,o Bia cos 6i, o ) 

j - 1, 2, 3, ... , N 
j + 

(3.33) 
N. 

ANii -E Vi0 V, o ( Gi, cos 6,, a + Bt-s sin e, 
-, c. 

. i-1. 
j+i 

(3.34) 

AN,, -- Vi o V., c1 ( Gi, cos 6i, o + BL, sin Oo 

j - 1, 2, 3. ... , N 
j +i (3.35) 

BMX,. - QGBMX, + Qt o- QDM 
N 

+I Vao V, o 6,., 0 ( Gi, cos 8i, o + B� sin 6�0 
j-1 

(3.36) 

BMN, s QGBMNi + QL o- QDt 
N 

+I Vio V, o 6�0 ( Cn, cos 6i, o + B� sin 6�o 

j-1 
(3.37) 
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Elemente Associated with Active Power Loee 
in a Tranemieeion Line 

(3.43) 

Elements Associated with Apparent Power Transfer 
Acroee a Tranemieeion Line (I-J) 

1 
AMa a- --- (2 Vao [ Pa, o Y,, 2 Ra, + 

Sa, o Qijo ( Y&, 3 Xa, - Ta, )I 

+ Y,. 
-j2 

V, o [( Pa, o Xa, - (2a, o Ra., ) sin 9a, o 
-( Pa, o Ra, + Qa, o Xa, ) cos e1, o ))) 

(3.44) 
Yaj2 Vio 

AMj. j -(( Pa, o X., Qt jo Rº, ) sin 6.,. 
Ss Jo 

-(P. jo Ra., + Qtjo X� ) cos 6., o )I 

(3.45) 

Ya, = Vto V, o 
ANa i-(( Pa so Xs, - Qs, o R,., ) cos 6t 

St, o 
+(P, oo Ri, + Q�o Xa, ) sin 6s, o I 

AM� -2 Yz, 2 R� ( Výo - V, o cos 6., 0 ) (3.38) 

AM� -2 Yt j2 Rs, ( V, o - Vto cos 8,, o ) (3.39) 

ANia -2 Y., = Ra4 Vao Vjo in O,. jo (3.40) 

(3.42) 

BMN - PL, ko +2Y,., = Ra., Vao Vo 6.., o ßifl 6ajo 

AN, 
.s--2 

Y1., ' Raj Va o V- , c. sin 6a, o (3.41) 

( ANa j- ÄA11 aI 

BMXk - PLMXk + PISo +2 Ya. j 2 Rº., Vao V., 0 6a, o sin 6a., o 

(3.46) 

ÄN, 
Yt, ' V10 Via 

[( Q+, o R� - Pi, o X., ) cos 6., 0 
SIJo 

-(P., o Ra, + Q�o X., ) sin 6i, o i 

(3.47) 
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( AN,., -- AN,. I 

BMXk - STMXk + STk o 

Yi, l 
Y10 YýO 

O 
o- 

+[( Pi. jo Xi,! - Qiio Rtj ) cos eijo 
Silo 

+( Pi, o R� + Qi jo Xi, ) sin 81-, o] 

(3.48) 

BMNK - STko 

Ya 
-ia 

Vt o Vi o 6i 
«s0 

Si 
-9 o 

(( Pt-so Xi-, - Qa 
.so 

Rt j) cos 6i jo 

+( Pi, o Ri, + Q�o Xa, ) sin A�o ) 

(3.49) 

Elements Associated with Apparent Power Transfer 
Across a Transmission Line (J-I) 

Ys, = V. o 
ANL. -(( Qi jo R., - P, 

-s 
X., ) sine..,. 

Si, o 
-( Pa, o R� + Q�o XLJ ) cos 8�0 )j 

(3.50) 
1 

AMi, --(2V. jo I Ps, o Yi, = Raj + 
Ss, o Qa, o ( Ya, 1 Xi, - Ta, )) 

+ Yi, a Vio I( Qa, o Raj - Pajo X1, ) sin 9a, o 
+( Ps, o Ri, - Q, 

-jo 
Xi, ) cos 9�0 ))) 

(3.51) 

ANL 
L 

AN., 

Ys., ' Vao V. o 

St, o 

Y,, s Vao Vjo 

Si . 1o 

PtJo R,. - Q, jo X,. j ) sin 6�0 

-(P, -j 
Xa., + Quo Rs., ) cos 0, j0 ) 

(3.52) 

I(Q. i, o Xt j- Ps, o Rij ) sine.,,,, 

+( P�o XL-1 + Q., o Ra, ) cos 6t, o l 

(3.53) 
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[ ANa4 -- ANss I 

BMXk - STMXK + STko 

Ys, 2 Vso V, o e,,. 
+[( Qs, o Xs, - Ps, o Ra, ) Sin 6s,. 

Ss, o 
+( Ps, 4 X+ Qº, o RL, ) cos 6', 

(3.54) 

BMNk -S kO 

Y12 2 
Y10 

V, 
6 

ei, 
0 

+(( Qi, o P1, o Ri, ) sin 6i, ß 
Si, o 

+( Pi, o )(L, + Qi, o aj) cos %, K 

(3.55) 

The 
_Independent 

Variables 

In a real power system the magnitudes of all bus 

voltages have to be kept within a specified operating 

range around their nominal values. For the i'th bus this 

is expressed by: 

VMX. 2 Vi 2 VMN1 (3.56) 

Lý 

f L 

No bounds are imposed on the individual phase angles and 

they are used as unconstrained variables that can assume 

any real values. However, for stability considerations, 

the difference between the phase angles across any 

transmission line should not exceed a, certain limit. - But 

this is taken into account when specifying the 

constraints on the transmission line quantities, 

especially the upper limits on the apparent power 

transfers across the lines. 
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3.6 STAGE-I : THE OBJECTIVE FUNCTIONS 

The objective functions used in the first stage of 

the various optimization problems are also based on bus 

or line quantities and derived from the linearized power 

system equations of Section (2.6). Again the derivation 

will be presented here in general terms with the 

objective function presented in the general format 

of (3.1). The specific objective functions will be 

discussed in more detail in Chapter 5. 

The objective function based on the general power 

system quantity FYi is given by: 

NF 
Z-I(C, x FYI ) (3.57) 

i-i 

where NF is the number of functions involved. 

Substituting from (3.6) and (3.7) into (3.57) gives: 

NF N NF 
Z-(ICiE( AM , V, + AN. 6, )j+ Cs KYD 

i-i j-1 i-1 
(3.58) 

This can be rewritten as in (3.59) below: 

NF N- 
Z-{E(I Ci ( AM&., Va + ANS, 6., )]1+Z, 

i-i j-1 

(3.59) 
where Zo is a constant given by, 

NF 
Zo -EC, KY, (3.60) 

i-1 
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As explained 'in Section (2.3), a"constant term in the 

objective function of an optimization problem can be 

neglected without affecting the optimization process. 

Thus (3.59) can be reduced to (3.61) below. 

N 
Z-E( CM, V, + CN, 6, ) (3.61) 

i-1 

The coefficients CM, and CI', of (3.61) are given 

by (3.62) and (3.63). 

NF 
CMj -IC,. AMA (3.62) 

NF 
CN, -I CL AN� (3.63) 

i-i 

By selecting the appropriate objective function and 

a set or sets of constraints, a number of different 

optimization problems can be set up to represent 

particular aspects of the power system operating 

conditions. The various objective functions used will be 

derived in Chapter 5. The various particular optimization 

problems will also be presented and formulated along with 

numerical results obtained for a small test system. Each 

optimization problem is formulated as a linear 

programming problem. The solution of any of these 

problems yields the values of all bus voltage magnitudes 

and phase angles under optimum operating conditions. As 

these are the principle variables in terms of which all 
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other bus and line quantities are expressed,. once their 

values are known, the values of all other dependent 

quantities can be computed using the appropriate extended 

nonlinear equations from Section (2.6) 

3.7 THE SECOND STAGE OF THE MODEL 

From the solution of the linear programming problem 

of stage-I, the active and reactive power outputs of the 

equivalent bus generators under optimum operating 

conditions can be obtained. However, these equivalent bus 

generators and their generation costs are rather 

"artificial", and they have been introduced mainly as a 

modelling aid. They give the collective outputs at each 

generating bus, but not the outputs of the individual 

generators. To obtain the outputs of the individual 

generators in the system, which constitute the actual 

generating schedule, a new linear programming problem is 

formulated. The objective of this problem is to minimize 

the hourly fuel cost, with the active power outputs of 

the individual generators used as the independent 

variables. The new problem has NG independent variables 

and (NS + 1) constraints, as well as the upper and lower 

limits on the independent variables. One constraint is 

based on the active power balance in the whole system. 

and the other NS constraints correspond to the outputs of 

the generating buses as obtained from stage-I. The 

complete mathematical representation of this linear 
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programming problem is given in Equations (3.64) to 

(3.67) below. 

NG 
Minimize Z-E CG, x PGG., (3.64) 

j-1 

Subject to 

NG 
I PGG, - PGT (3.65) 

j-1 

NGB: L 
I PGGh, - PGB,. (3.66) 

h-1 

PGGMXJ 2 PGG,, 2 PGGMI J (3.67) 

i-1,2,3, ... , NS 

j-1,2,3, ... , NG 

In the above formulation the objective function 

represents the total instantaneous generation cost. The 

single constraint of (3.65) represents the active power 

balance equation in the system, and the NS constraints 

of (3.66) give the total active-power output of the 

generating buses in terms of the active power outputs of 

their individual generators. The active power outputs of 

the generating buses represent the transition link 

between the two stages of the model. The upper and lower 

operating limits on the, NG generators are given 

by (3.67). 
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It is to be noticed that the new problem is already 

linear and in a much simpler form than that of stage-I. 

Therefore, no initial conditions are required to obtain 

the solution of stage-II whose formulation is based on 

the values of the independent variables themselves rather 

than their incremental values. Consequently, most of the 

modelling, mathematical formulation and computational 

effort involved in the present work is directed towards 

the first stage of the model, especially the 

linearization of the relevant power system equations and 

the derivation of the A-B-C coefficients of-the linear 

programming problem. 

3.8 SUMMARY 

This chapter has explained the formulation of a 

linear programming model to represent power system 

optimization problems. The concept of optimization is 

introduced first. followed by a generalized form of the 

linear programming model. Variations and transformations 

of the generalized formulation are also explained. The 

constraints of the first stage of the mathematical model 

are developed as well as a general objective function. 

The detailed mathematical expressions that represent the 

elements of the coefficients constraints matrix are then 

given. Finally, a complete formulation of the' second 

stage of the model is presented. 
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-Z 

FIG. (3.1) 

MINIMIZATION AND MAXIMIZATION 

THE POINT M) CORRESPONDS TO THE MINIMUM 
OF THE FUNCTION (Z) AND THE MAXIMUM OF (-Z) 
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Many aspects of the power system operation problem 

have been introduced and discussed in the previous 

chapters. It has been shown that power system quantities, 

such as generation cost, system losses and reactive power 

production, can be used as objective functions, 

constraints or both. These by no means constitute an 

exclusive set of the many factors that affect power 

system operation. Many other factors can be taken into 

account in addition to, or instead of, the ones used in 

the mathematical model so far. The generality of the 

method used to set up the model developed in this thesis 

allows for these factors to be taken into consideration. 

Some of these additional considerations are discussed in 

the following sections. In each case, the new aspect is 

introduced, defined and discussed. This is followed by 

mathematical representation of the concept and the 

derivation of the necessary mathematical expressions. 

Where appropriate, the corresponding parameters of the 

equivalent bus generator are also derived. Finally. the 

method of incorporating the new quantity into the 

optimization model of the system is explained, as well as 
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its effect on either or both of the stages of the model 

and their A-B-C parameters. The various additional 

factors considered below affect the mathematical model of 

the power system optimization problem and its numerical 

solution to various extents. Some of them involve major 

modifications to the mathematical 'formulation of the 

problem and all its parameters while, in the other 

extreme., some cases only produce minor changes in the 

associated numerical results. 

E 

C 

4.2 TAP-CHANGING TRANSFORMERS 

The power transformer is one of the major pieces of 

equipment in a power system. Its main function is to 

change the voltage level in various sections of the 

system for various purposes. Transformers are used to 

step up bus voltages at the generation end of the system 

for transmission purposes, and-to step it down again at 

the distribution or -load end for consumer use. The 

transformation between the various voltage levels is 

sometimes accompanied by a relative phase shift, 

depending on the connection of the primary and secondary 

windings of the transformers. There are certain "nominal" 

transformations of the voltage level for transmission and 

distribution purposes such as 11/132 kV or 33/11 kV. 

Phase shifts are usually multiples (positive or negative) 

of 30 degrees, resulting from star/delta connections. 
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Transformers can also be used for voltage control 

purposes. Off-nominal voltage taps can be used to improve 

the voltage profile and compensate for voltage drops 

along transmission lines. The additional off-nominal 

voltage changes are normally in the range of t 10 5K. 

Usually, this type of voltage magnitude control is 

performed at'-local buses on the high voltage side. 

Additional" phase shifts can also be induced to control' 

the reactive power flow in the system. Transformers that 

can perform both of these control functions have 'complex 

transformation ratios. The additional--changes in the 

nominal voltage magnitude and phase angle 'can be 

administered under no-load or loaded conditions. The' 

following discussion is concerned with on-load 

off-nominal tap-changing transformers. Henceforth, in 

this thesis, these will be variably referred to as 

tap-changing transformers or simply transformers, for the 

obvious reason of brevity. 

Generally, any form of power system analysis is not 

considered complete' unless it takes into consideration 

the of f ect of the presence of transformers in the' system, 
E or at`least discusses the subject or touches on it. In` 

many cases, however, the' practice is to present the 

analysis, first, neglecting the effect of the 

transformers. - Tap-changing transformers are then 

introduced, `discussed and dealt with separately, with the 

t method of incorporating them into the mathematical model 
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explained. This method is followed in the present thesis. 

One of the reasons for this practice is that including 

the transformers into the problem model complicates the 

analysis to a considerable extent. At the early stages of 

a research work, the immediate aim is to set up a 

"working" mathematical framework based on the conceived 

ideas and theoretical concepts. This is then translated 

into a computer program which is tested on a study case 

or cases. Only when that stage of the work is completed. 

satisfactory results are obtained, and confidence is 

gained, that additional considerations such as 

tap-changing transformers are taken into account and 

included in the analysis, as a further stage of the 

research work. The above argument is particularly true in 

the case of the present work. 

In the optimization model used so far in'this thesis 

the effect of tap-changing transformers has not been 

taken into account. They were assumed to have fixed tap 

settings. A more comprehensive optimization model can be 

formulated by considering the complex transformation 

ratios of the tap-changing transformers as additional 

independent or control variables. This will cause 

considerable changes to the original mathematical model 

and the associated computer program. Unlike other 

additional considerations discussed in the rest of this 

chapter, taking the effect of these transformers into 

consideration alters the very equations that describe the 
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relationships among the various power system quantities. 

It also adds to the dimensionality of the problem. 

However, the same fundamental ideas on which the original 

mathematical model is based and the same method of 

derivation can be applied to formulate the new 

"augmented" model. 

First, the nonlinear equations of Section (2.6), 

that describe the relationships among the various power 

system quantities have to be modified to take into 

account the effect of the turn ratios and angular 

settings of the tap-changing transformers [7,9). The 

resulting equations should then be linearized, applying 

the procedure of Section (2.5)°. The new linearized 

equations are then used to set up the objective functions 

and the constraints of the new model. Also, lower and 

upper bounds are imposed on the two new sets of 

independent variables constituting the complex 

transformation ratios of the tap-changing transformers. 

Instead of each of the single power system equations 

of Section (2.6), there, are three equations. These 

correspond to lines where'no transformer is connected. 

lines where a transformer is connected at the near end, 

and lines where a transformer is connected at the far 

end. The three different situations are shown in 

FIG. (4.1). The descriptions "near" and "far" are in 

reference to node i in the figure. The designations 

sending and receiving ends are deliberately avoided in 

't 
E_ 

,_ 
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this context, as either end of any transmission can be 

described as sending or receiving with respect to the 

other end. The case where no transformer is used has 

already been fully discussed and analysed in this thesis. 

The two other cases are discussed in the rest of this 

section. 

The relevant points in the analysis of the 

tap-changing transformer for the purposes of the present 

work are highlighted below. - 

1. The complex transformation ratio of the transformer is 

represented by tL. Each tap-changing transformer is 

replaced by an ideal transformer° of turn ratio t 

connected in series with a phase-shifter of pure angular 

shift a. 

2. The impedance or reactance of the transformer is 

included with the impedance of the transmission line to 

which the transformer' is connected. The- combined 

impedance of the-line and the transformer can still be 

represented by the ir-equivalent'circuit of FIG. (2.4). The 

new equivalent circuit and the values of its elements are 

affected also by the tap positions. However, these 

changes are very small and can be ignored in the 

analysis. 
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3. The system admittance matrix has to be modified to 

take into account the modification in the transmission 

network. Apart from the changes in the resulting 

numerical values of the parameters of the new 

transmission line equivalent circuit and the system 

admittance matrix, both the equivalent circuit and the 

admittance matrix are no longer symmetrical. The analysis 

of the new equivalent circuit and the method of obtaining 

its parameters and the elements of the associated 

admittance matrix - are covered adequately in the 

literature [21,35,36]. 

4. In the modified versions of the various power system 

equations, the effect of the tap-changing transformers 

appears as a multiplier of t per unit associated with the 

voltage magnitude of the bus at which the transformer is 

connected, and as an angle a added to the phase angle of 

the bus. 

The modified nonlinear equations corresponding to 

bus injections and line flows are given below. Under each 

category there are two equations corresponding to cases B 

and C of FIG. (4.1) respectively. 
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The Modified Power System Equatione 

Bus Injected Active Power 

N 
PL -Et Vt V, I Gý, cos ( 6,, +a) 

j-1 
+ B� sin (O, +a)] (4.1) 

N 
P, aEtV, V, ( Gs., cos ( 6ý ,-a 

ßs1 
+" B., sin ( Os, -a) I (4.2) 

Bus Injected Reactive Power 

N 
Q, - 7. t V, V, ( Gz , sin ( 6� +a 

j-1 
- BL , cos ( 6� +a (4.3) 

N 
Q, -XtV. L V, [, G� sin ( 6� - (x) 

j-i 
- &, cos ( OL j-a] (4.4) 

Active Power Transfer Across Line (I-J) 

PI, - Y., 2 R., t2 V12 

+ Y., 2 t VL Va [(X., sin ( 6� +a) 
- R., cos ( e,, +a)] (4.5) 

PI. ý - Y., 2 R1 , Vs2 

+ Y-L, 2 t V, V, [(X., sin ( 6� -a) 
- RL, cos ( 6., -a)] (4.6) 
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Active Power Transfer Across Line (3-I) 

I- -- 

Pji Ys, j R&-j V, = 

- Y,, 2 t V. V, (( XL., sin ( 6: L, +a) 
+ Ri., cos ( 6,, +a] (4.7) 

P,: L - Ys, 2 R, 
-s 

t2 V, z 

- Y:, 2 t V, Va (( X� sin ( 6,. -a) 
+ Raj cos ( eia -a)] 

Reactive Power Transfer Across Line (I-J) 

(Yi, 2 )G., -M ,) t2 V, 2 
- Yß, 2 t V, V, [( Ri, sin ( 6,, +, a ) 

+ Xi, cos ( ei ,+a)j 

Q, - (Yi. ja Xi 
-s-T. j) V, ' 

- Yý, ' t V: L V, [( R., in (. e., - a ) 
+ Xi, cos ( 61, - a )] 

Reactive Power Transfer Across Li n e (J-I) 

Qa, - (Yt, ' )(i, -Ta, ) V, ' 
+ Y., 2 t V, V, [( R� sin ( et, + a ) 

- X!, cos ( 61.! + a )) 

Q� - (YI, = Xs, -T�) is V, 2 
+ Y., 2 t V. V, [( Ri, sin ( 6,, - a ) 

- Xs, Cos ( 6., - a )I 

Active Power Lose 
-in a Transmission Line 

PL. - Yß, 1 &, t' V, _+Y,, 2 R.., V, ' 
-2 Yi, 2 R. j t V. V. cos ( ) 6,, +a 

PL, - Y., 2 R, j V. 2 + Y: L, a Ri, t2 V, ' 
-2 Y,, 2 Rs, t Vi V, cos ( ) 6i, -, a 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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Reactive Power Loss in a Transmission Line 

QLk (Yij2 Xii-Ti i) t1 Vs2 + (YL 2 Xi. ' -T.. ) Vj2 

-2 Y2 X: L., ;tv. V., cos ( 61., +a) (4.15) 

QLk - (Yj., 2 Xi, -Ti, ) Viz + (Y�2 Xt, -Ti, ) t2 V, 2 
-2Y,, 2 X. tV, V, cos ( 6.., -a) (4.16) 

Notice that the original power system equations are 

a special case of the modified equations and can be 

readily obtained by substituting the values t-1 and a-0. 

Also transformers with only voltage magnitude or angular 

control can be represented by substituting a-0 or t-1 

respectively. 

The complex transformation ratios of the 

transformers are "Bus Quantities", and taking them into 

account, therefore, only affects the general mathematical 

formulation of the first stage of the mathematical model. 

All the three parameters, namely, A. B and C of the 

linear programming problem of the first stage of the 

mathematical model, are affected when the transformers 

are included in the analysis. The second stage of the 

model need not be modified, although adding the effect of 

the transformers in the first stage affects the 

"numerical results" obtained from both stages. 

The number of the general constraints in the 

modified model is the same as that of the original model. 

The number of the independent variables, however, is 

increased by 2NR. There is also a set of upper and lower 
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bounds on the new variables. For the k'th transformer, 

these are given by: 

tML 2 tk 2 tMNk (4.17) 

aMXk 1 aK 2 aMN (4.18) 

4.3 ENERGY EXCHANGE AND TIE-LINE FLOWS 

The optimization model has been constructed so far 

considering a single isolated power system well-defined 

in terms of its boundaries. Many small power systems are 

nowadays connected to each other through tie-lines to 

form one large system for the purpose of exchange of 

energy, the advantageous use of resources, and to insure 

the continuity and reliability of supply to customers. 

Based on the same reasoning, the modern practice is to 

integrate all the power generation and transmission 

networks of an entire country into one "National Grid". 

In recent years this practice has even been extended to 

the connection of the national grids of more than one 

country. The constituent parts of a large interconnected 

system are usually operated autonomously, but can 

exchange energy depending on their load requirements. 

Two systems connected through a tie-line are shown 

in FIG. (4.2), which also illustrates the nomenclature and 

notation used. The system under consideration is called 

the internal system and any of the other systems is 

called the external system. In any of the interconnected 
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systems, the bus at which the tie-line is connected is 

called the boundary bus. When analysing any system the 

effect of all neighbouring external systems must be taken 

into account one way or another. This applies generally 

to any form of analysis such as load flow or security 

considerations and not only for optimization purposes as 

in the present work. One important aspect to be taken 

into account in this respect is the power flow through 

the tie-line. This, of course is just one aspect among 

several others to be considered concerning the 

interconnection between two power systems. Another 

aspect, for example, is the question of stability 

associated with the transmission of large amounts of 

electric power through very long transmission lines. This 

particular aspect, however, is beyond the scope of this 

thesis. 

The exchange of energy between two interconnected 

systems depends to a large extent on the contractual 

agreements between the two individual systems, and this 

fact is relevant to the problem of optimum operating 

conditions considered in this thesis. Various situations 

and other relevant points are discussed briefly below. 

1. In terms of the direction of the tie-line flow, there 

are two distinct cases depending on the capacities of the 

two systems involved, their loading conditions and also 

on the time of day or season of the year. In one case the 

energy exchange between system A and system B is 
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consistently either import 

tie-line power flow is a 

case is when the loading 

change such that system A 

one time or season, and 

time or another season. 

or export which means that the 

lways unidirectional. Another 

patterns of the two systems 

buys energy from system B at 

sells energy to it at another 

Apart from these two cases there is the situation 

where the two connected systems do not normally exchange 

energy because the generating capacity of either system 

is generally sufficient to- satisfy its own load 

requirements. However, energy exchange takes place in 

cases of emergency or unexpectedly high demands. 

2. In any of the cases above, usually the energy transfer 

agreement specifies that the amount of energy transferred 

should fall within two. upper and lower, limits. 

3. In terms of utilization of resources, there are also 

two different cases. In one, the importing company 

decides that energy should only be imported from a 

neighbouring system when all the internal system 

generating capacity has been used. In this case provision 

has to be made in the optimization algorithm, and the 

associated computer routine, to insure that this 

condition is satisfied. Otherwise, if unaltered, the 

optimization program will "see" the power available for 

import across the tie-line as just another generator and, 

therefore, depending on the associated cost, it can be 
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included in the resulting generating schedule. Thus, 

energy might be imported even when there is enough 

internal generating capacity to satisfy the local demand 

at the time. 

On the. other hand, the internal system may allow the 

import of energy even when it still has enough generation 

capacity available to satisfy its load requirements. This 

is possible when the loading conditions necessitates the 

operation of the less efficient or the costlier sets of 

the system in terms of input fuel, and when the imported 

energy proves cheaper than that produced by the internal 

systems own resources. This is also advantageous to the 

exporting system, since, although this energy is usually 

sold cheaply, it is sold in bulk. Also, it means that the 

external system resources are utilized, especially when 

its own loading conditions permits this energy transfer, 

since, otherwise the system will have unused-generation 

capacity. 

4. Imported power can be considered simply as generation 

at the boundary bus with the associated "buying cost" and 

therefore, for the specific period of energy transfer, it 

is treated like any other generator within the internal 

system. In a similar manner, exported power can be 

considered as load. However, this is rather a "special" 

type of load for two reasons. It is a load that has upper 

and lower limits as mentioned in (2) above. Also, the 
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energy exchange agreement between the two systems might 

involve imposing penalties when this load is not 

satisfied. Thus, this load can be looked upon as a 

"negative generator" with associated upper and lower 

operating limits and generation cost and this can then be 

incorporated into the optimization model. Of course in 

power system analysis any load can be treated as negative 

generation, but for optimization problems this is more 

than -just a sign convention because of the presence of 

the operating limits and the associated generation cost 

or contract penalties. 

5. If a boundary bus of a system is normally a 

nongenerating bus, then when energy is imported this bus 

must be reclassified as a generating bus for optimization 

purposes in the present mathematical model. 

The above has introduced the various factors that 

affect the exchange of energy between two power -systems. 

However, including this into the mathematical analysis 

and the optimization model is not, -as complicated as it 

sounds! 

At the specific moment in time when the optimization 

program is required, the tie-line flow can be considered 

as a net generation or load depending on whether the 

power is being imported from or exported to the external 

system. The state of the tie-line flow can be decided or 

predicted from a (short-term) load forecast which is a 

96 



prerequisite to the. running of the optimization program. 

The active and reactive power injections at the boundary 

bus are then modified as-follows: 

Pi - PG& - PD, ± PT, 

Qi - QGBa - QDi ±-QTi 

(4.19) 

(4.20) 

These additional terms in the power injection 

equations will affect the upper and lower limits of the 

corresponding constraints in the first stage of the 

mathematical model. Thus, the corresponding B-parameters 

have to be modified; but only slightly. The coefficients 

A. of the constraint matrix will not be affected. The 

effect on the C-parameters depends on the choice of the 

objective function. In the case of energy import from an 

external system, an extra generator-will be'added to-the 

second stage of the model. This increases the number of 

independent variables and the-corresponding A-parameters: 

as well as the number of terms of the objective function. 

Also, the upper and lower limits of the constraints, 

i. e., the B-parameters have to be modified. The export of 

energy has no effect on the formulation of the second 

stage of the mathematical model although it affects the 

numerical results. 
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4.4 SPINNING RESERVE AND AREA RESERVE 

For a generator connected on line and which is 

already loaded, the spinning reserve or spare capacity of 

the generator can be defined as the amount of extra 

output that can be made available within a short time 

period to cater for load increase on the system [37]. In 

mathematical terms this is given by the difference 

between the maximum capacity of the generator and its 

actual output at a given time, as shown in (4.21) below: 

RG, - PGGMXj - PGG, (4.21) 

This also defines the maximum spinning reserve of the 

generator. 

In a power system, the generators are usually loaded 

such that there is an-adequate operating margin to take 

into account the possibility of additional load on the 

system: A minimum margin is specified for this purpose 

given by the following inequality: 

RG, _> RGMN, (4.22) 

Substituting from (4.21), this can be written as: 

PGGMXJ - PGG, 2 RGMNj (4.23) 

This means that generators are loaded not only such that 

their maximum operating limits are not exceeded, but also 

within a -specified operating margin below that. The 

immediate effect of this, is that it reduces the actual 
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upper operating limits of the generators. The new 

modified upper limit constraint on the generator output 

will now be given by: 

PGG, " s. PGGMX, - RGMN, (4.24) 

This is illustrated in FIG. (4.3) 

aA similar argument applies to a generating bus where 

several generators are connected. The spinning reserve of 

the equivalent bus generator is given by: 

RB, - PGBMX: L, - PGBi (4.25) 

where, 

NGB, 
RHG -E RG, (4.26) 

i-i 

The upper bound on the bus output can be obtained by the 

summation of the Inequalities (4.24) corresponding to all 

the individual generators connected at the bus. This is 

given by (4.27) below: 

PGB, <_ PGBMXi - RBMN, 

where, 

(4.27) 

NGBi 
RBMNt -I RGMN, (4.28) 

j-1 

The other two quantities in (4.25) and (4.27), namely 

PGB, and PGBM)G, have already been defined in Chapter (2) 

in a similar way to (4.26) and (4.28). 
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The inequality (4.27) can be incorporated into the 

first stage of the linearized model by following the same 

method of derivation used in Sections (3.5) and (3.6). 

The coefficients of the constraint matrix, i. e., the 

A-parameters, will not be affected by the new term 

in (4.27). The B-parameters have to be modified, while 

the effect on the C-parameters depends on the choice of 

the objective function. In the second stage of the model 

only the B-parameters. are affected. 

Sometimes, spinning reserve specifications are 

imposed on a group of buses in the system constituting an 

"area", or on a group of areas constituting a subsystem 

and so on. The area spinning reserve can be defined and 

treated in the same way as discussed above. The 

relationships between the various quantities of the area 

and those of the individual buses are similar to the 

relationships between the quantities of the generating 

buses and those of the individual generators. 

4.5 LOADING AND DELOADING RATES OF GENERATORS 

When the 
, 
load on the system changes, the outputs of 

some or all of the system generators have to be adjusted 

to satisfy the new loading conditions. However, a 

generator output cannot be changed instantly. A certain 

finite time TM must elapse. before a specified required 

change in the active power output of a given generator 

can be effected. This time response of the generator 
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depends on the generator design, and is measured by the 

loading and deloading rates of the generator. These 

correspond to `increasing and decreasing loads 

respectively and are measured by units of power per unit 

of time (381. 

The relationship between the change in the generator 

output and its time response is expressed as in `(4.29) 

and (4.30) below, corresponding to increasing and 

decreasing outputs respectively. 

[, PGG, - LR,, x TM 

UPGG, - DR, x TM 

(4.29) 

(4.30) 

These two equations can be rewritten as in (4.30) 

and (4.31) below: 

PGG., - PGG, Q - LRj x TM (4.31) 

PGG. jo - PGGj - DRj X TM (4.32) 

It. is to be noted here that both. LR, and DR, are positive 

quantities. 

To take into account the loading and deloading 

rates, the upper and lower operating limits on the 

generator output are modified as follows; 

PGGao + LRj x TM 2 PGGs 2 PGG-jo - DR1 x TM (4.33) 

Recall that, without these modifications, these limits 

are given by: 

PGGMX, 2 PGG, 2 PGGMN, (4.34) 
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The Inequalities (4.33) and (4.34) represent a set of 

"overlapping" constraints, i. e., two upper limits and two 

lower limits on the same quantity. This has the effect of 

reducing the overall operating range of the generator as 

illustrated by FIG. (4.3). In the figure, one set of lower 

and upper constraints. PL1 and PU1 overlaps another set, 

PL2 and PU2. The resulting operating region is defined by 

the least of the two upper limits and the greatest of the 

two lower limits. A similar situation may occur when 

spinning., reserve. and time response considerations are 

combined. 

Loading and deloading rates are Generator 

Quantities. They affect the parameters of the equivalent 

bus generator and the corresponding constraints in both 

stages of the model. This effect appears as a 

modification in the B-parameters of the optimization 

problem. In both stages of the model, the A and C 

parameters are not affected. 

In terms of loading and deloading rates, a 

generating bus. where several generators are connected, 

is as fast as its slowest responding generator. For a 

certain required change in the demand UPD, this 

generator will slow down the overall time response of the 

bus, no matter how fast the rest of the bus generators 

are. On the other hand, for a given period of time UTM, 

the change in the bus output is given by (4.35) 
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and (4.36) below, for increasing and decreasing outputs 

respectively. 

NGB, 
UPGB, -I( LR, x UTM) (4.35) 

]-1 

NGB. 
UPGB, -I( DR, x% TM) (4.36) 

i-1 

Finally, the loading and deloading rates affect the 

"dynamics" of power system operation. -In other words, 

they are only relevant when the optimization is performed 

in several successive short time steps. Usually the time 

intervals and frequency of performing the optimization 

procedure presented here are such that there is 

sufficient time for the various generators to respond to 

changes in the loading conditions. '" 
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i: NEAR END 

J: FAR END 

FIG. (4.1) 

TAP-CHANGING TRANSFORMERS 

(A) A LINE WHERE NO TRANSFORMER IS CONNECTED 

(B) TRANSFORMER CONNECTED AT THE NEAR END 

(C) TRANSFORMER CONNECTED AT THE FAR END 

3 

J 

104' 



-------------g ti 

PGB, i 

O1 

PD. 

------------ 

THE REST OF 
THE SYSTEM 
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---------- 

THE REST OF 
THE SYSTEM 

A: INTERNAL SYSTEM 

B: EXTERNAL SYSTEM 

i&j: BOUNDARY BUSES 

IMPORT - BUYING, ENERGY - GENERATION 

EXPORT - SELLING ENERGY - LOAD 

FIG. (4.2) 

INTERCONNECTION OF TWO POWER SYSTEMS 
THROUGH A TIE-LINE 
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(A) 

ý(B) 

THE UNSHADED AREAS REPRESENT THE OPERATING REGIONS 

FIG. (4.3) 

MODIFICATION OF GENERATOR OPERATING LIMITS 

(A) SPINNING RESERVE OPERATIONAL MARGIN 
( REPRESENTED BY THE SHADED AREA ) 

(B) OVERLAPPING CONSTRAINTS 
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C HAPTER 5 

OPTIMIZ ATION PROBL EMS AND NUMERICAL RESULTS 

5.1 INTRODUCTION 

The methodology of translating the operation of a 

general power system into a two-stage linearized 

mathematical -model for optimization purposes has been 

explained in Chapters 2 and 3. The various "ingredients" 

of the modelling process were introduced in Chapter 2, 

while in Chapter 3a generalized mathematical model has 

been developed, using the large number of 

interrelationships amongst the various generator, bus and 

transmission line quantities. The derivation of the 

constraints imposed on the various power system 

quantities as well as 'a general objective function- were 

presented. So far, the presentation has been kept in 

general terms, in the sense that no particular set of 

constraints was chosen and no specific quantity was 

optimized. This is the subject of the present chapter. 

A number of optimization problems will be addressed, 

each with a specific objective function and a selected 

set of constraints. Again, the formulation will be 

introduced, first, for a general power system of NG 

generators. NB nodes, including NS generating buses, and 

NL transmission lines. The A-B-C representation of each 
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problem will then be set up and numerical results 

obtained by application to an actual sample system. 

5.2 OPTIMIZATION PROBLEMS AND TEST SYSTEM 

Before a detailed discussion of the optimization 

problems presented in the chapter, and the procedure of 

setting them up and obtaining the numerical solutions, 

this section briefly introduces these problems and gives 

a general description of the sample power system used in 

testing the various concepts introduced in the thesis. 
11 

The - Opt 

Three different optimization problems will be 

considered in this chapter and they will be discussed in 

detail in respective sections. In each case the problem 

is introduced, the objective function defined and 

derived, and the constraints are specified. Only the 

objective function is discussed with some detail in these 

sections. The derivation of the various constraints has 

already been thoroughly covered in Chapter 3. The three 

problems considered are listed below. 

109 



Problem 1. "Minimization of the Total System Hourly 

Generation Cost. 

Problem 2. Minimization of the Total System Transmission 

Losses. 

Problem 3. Minimization of the Total System Reactive 

Power Production 

These optimization problems refer to the first stage 

of the-mathematical model. Henceforth, the respective 

problems will be referred to as Problems 1,2 and 3 for 

short. The optimization problem of the second stage in 

each case is the same and is concerned with the 

minimization of the instantaneous generation cost. The 

complete formulation of this problem has already been 

presented in Section (3.7). 

The Test System 

For- test purposes, a system of medium size is'used 

which represents part of the British 132/275 - kV 

Grid [9,101: The system-has 24 generators, 23--buses 

and 30 lines. The-same-system-is used throughout, so that 

results from the various optimization Problems-can, be 

compared, the effect of changes and variations in the 

mathematical model on the numerical results monitored, 

and the merits of the various methods assessed. A 

one-line diagram, of the test system is shown in FIG. -(5.4) 

and the relevant data is given in Tables (5.1) to (5.5). 
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5.3 THE INPUT DATA 

This section introduces the various input data 

required to run the computer programs associated with the 

various optimization problems. For each optimization 

problem . the necessary input data consists of two main 

parts as described below. 

1. System Data 

This consists of the following 

General System Data 

This gives the number 

buses and lines in the 

generating capacity of 

and the Base MVA which 

line parameters given i; 

of power stations, generators, 

system. It also gives the total 

the system, its nominal voltages 

is relevant to the transmission 

n per-unit values. 

Generator Data 

This specifies upper and lower operating limits on 

generator outputs, and gives the incremental cost as well 

as the number of the bus at which the generator is 

connected. For each generator, the original data of the 

test system specifies the following four operating limits 

only: 

PGGMNJ , PGGMX, , QGGMIQj and SGGMXJ . 

To obtain the other two quantities, namely QGGMX, 

and SGGMN , the following two equations are used: 
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QGGMX, -- SGGND(J 2- PGGMNJ 2 (5.1) 

SGGMN, - -f PGGMN, 2+ QGGMN, 2 (5.2) 

While, the second of'these equations is self-explanatory, 

the first needs' some clarification. For -a specified 

maximum apparent power output capacity of-the generator, 

there are two extreme. cases. One is when the generator 

delivers maximum active power and minimum reactive power 

and the other when it delivers minimum active power and 

maximum reactive power. This is illustrated in FIG. (5.1). 

Transmission Line Data 

This consists of the three parameters of the 7r-equivalent 

circuit of each transmission line, namely the equivalent 

series resistance, the equivalent series reactance and 

the equivalent shunt susceptance. The data also includes 

upper limits on the thermal power loss in the lines and 

the line apparent power transfer capacities. 

2. Demand Data 

This gives the loading schedule of the system, i. e., the 

active and reactive load on each bus in the system. 

From the demand data two different-loading schedules 

are available. These are referred to as Schedules A and B 

and were both used in performing the numerical tests. 
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5.4 SUMMARY ' OF THE MEMOD 

The general method of setting up and solving the 

various optimization problems of this chapter is 

summarized below. Generally, the various steps described 

also correspond to the computer program associated with 

each optimization problem. Detailed explanation of these 

steps as well as the necessary theoretical background and 

the associated mathematical expressions are given in 

Chapters 2 and 3. Reference to these is given here where 

appropriate. 

The setting up of each optimization problem is 

started by obtaining the parameters of the equivalent bus 

generators using, the corresponding parameters of the 

individual generators connected at the bus in question. 

This basically means that each power station in the 

system is replaced by one generator. For the test system 

considered, the parameters of the various generating 

buses thus obtained are given in Table (5.3). In a 

similar manner to load flow studies, one of the 

generating buses is chosen as the reference or slack bus 

of the system for which the voltage magnitude and phase 

angle are assigned fixed values beforehand. From the line 

data, the system admittance matrix is set up. 

The next step is to obtain an estimated initial 

generating schedule, i. e., the initial set of active and 

reactive power outputs of all the generators in the 
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system. From these, the-active and reactive power outputs 

of the generating buses can be obtained. Using the demand 

data, the net bus injections can be determined. The 

initial values of all bus voltage magnitudes and phase 

angles can then be obtained by performing a load flow. 

Using the appropriate equations, all initial line flows 

can be computed. 

From the initial operating quantities, the first 

stage of--the incremental mathematical model of the 

problem is set up. This implies computing the A-B-C 

parameters of the corresponding linear programming 

problem. These are given below: 

A: Elements of the constraints coefficients matrix. This 

is>a matrix of dimension (NC XýNV), where 

NC is the number of constraints, and 

NV is the number of independent variables. 

The voltage magnitudes and phase angles of the system 

buses are used as the independent variables in the first 

stage of each optimization problem. Thus, NV - 2N and for 

the test system used, NV-44. The number of-constraints 

depends -on the particular optimization problem 

considered. 

B: Lower and upper bounds on the constraints. These form 

a vector of NC elements. 
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C Vector of coefficients of the objective function. 

This vector consists of NV elements. 

" 
The resulting linear programming problem is then 

solved to obtain the values of the independent variables 

under optimum operating conditions. Any method and any 

computer routine available which are suitable for the 

solution of linear programming problems can be used to 

obtain the numerical solution. 'Alternatively, a computer 

program can be written for this purpose. - 

Using the values of the bus voltages obtained from 

the first stage, all other dependent power system 

quantities are computed. These quantities include all 

active and reactive power bus injections, line flows and 

transmission losses. The active and reactive power 

outputs of the generating buses can then be obtained 

using the corresponding injections and demands. These 

outputs form part of the parameters required for the 

formulation of the optimization problem of the second 

stage of the mathematical model. 

As mentioned previously, the first stage of the 

mathematical model of the problem is based on bus and 

line quantities. Therefore, it does not deal with 

individual generator variables. These are obtained by 

solving the second stage of the Problem. The A-B-C 

parameters of this problem are set up and the solution 

can be obtained by using the same linear programming 
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method and computer subroutine as that used in Stage-I. 

As explained in Section (3.7), the linear programming 

problem of Stage-Il. of the mathematical model has NV - NG 

variables and NC - (NS+1) constraints. For the particular 

sample system used, these are given by NV - 24 and NC -7 

respectively. 

Both stages of all the optimization problems 

discussed in this chapter can be represented by the 

general matrix format of Fig. (5.2). This also represents 

the generalized formulation of the linear programming 

problem of Section (3.3). The constraints coefficient 

matrix of the first stage of the model is shown in more 

detail in`FIG. (5.3). As shown in the figure, this matrix 

consists of a number of submatrices which reflect the 

nature of the corresponding constraints, such as bus 

injections, line losses and so on. The number of rows in 

each submatrix block depends on the power system 

quantities it represents. Generally they are in sets of 

NB or NL constraints, depending on whether they are based 

on bus or line quantities. 

Also, the constraints coefficients matrix. and each 

of its constituent blocks, consists of two distinct sets 

of columns. One set of columns consists of elements 

associated with the bus voltage magnitudes and the other 

consists of matrix elements associated with the bus phase 

angles. The number of columns in each set is equal to N. 

which, in the case of the test system is equal to 22. 
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5.5 THE TABULATED NUMERICAL RESULTS 

Each of the three optimization problems has been 

tested on-the two load schedules available from the input 

data. The two corresponding-study cases are referred to 

as Case A and Case B respectively. This gives a total of 

six study cases. The final output results of all the 

problems are given in Tables (5.6) to (5.35) at the end 

of the chapter. 

Apart from the following notes, the tables 

themselves are self-explanatory. For each study case the 

tabulated numerical results give a complete picture that 

defines the overall : steady state of the power system 

under optimum operating conditions, in terms of all its 

dependent and independent variables and other related 

quantities. The output results are arranged as follows. 

1. Generator Results 

These are the active, reactive and apparent power outputs 

of each generator as well as its hourly generation cost. 

2. Bus Results 

These consist of three tables. The first two tables give 

results of all busses in the system while the third is 

particular to the generating buses. The first table gives 

the voltage magnitude and phase angle of each bus in the 

system. The voltage magnitudes are given in per-unit 

values as this is more meaningful in power system 
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analysis and it shows the deviation of the actual 

voltages from their nominal values. The phase angles are 

given in degrees to give a clearer impression than units 

of radians which are used in the computer programs. The 

second table gives the active, reactive and apparent 

power injections at the buses. In a similar manner to 

generator results, the third table gives the total 

station active, reactive and apparent power outputs as 

well as the generation cost. It also gives the number of 

generators at each power station. This has already been 

given amongst the , system data, Table (5.2), but is 

repeated here for completeness. 

3. Transmission Line Results 

These consist of three tables giving the active, reactive 

and apparent power flows in each line. Each table gives 

the corresponding power transfer across the line, in both 

directions, as well as the associated power loss. 

4. Overall System Results- 

These give the total system active, reactive and apparent 

power generations, and total transmission losses. They 

also include the total hourly generation cost of the 

system, the overall system cost per MWhr and the hourly 

cost associated with the total transmission losses, as 

well as the cost associated with the net active power. 

This is the part of the total active power generation 

needed to meet the demand on the system. The last 

row in the table gives the overall system power factor. 
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The total system active and reactive power 

generation and losses are obtained by the summation of 

the corresponding individual quantities from the 

respective tables. This also applies to the total system 

generation cost. The various apparent power quantities 

are obtained from Equation (2.49). 

The cost per unit active power generation is then 

obtained using the following equation: 

CGT 
SPC - (5.3) 

PGT 

The total cost associated with the transmission losses is 

obtained form (5.4) below. 

CLT - SPC x PLT (5.4) 

The total cost associated with the net active power 

generation is obtained, as in Equation (5.6) below. 

CGD - CGT T CLT (5.5) 

The overall system power factor is obtained from (5.5) 

PGT 
PF 

SGT 
(5.6) 

All the numerical results obtained will be compared 

and thoroughly discussed in Section (5.11). 
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5.6 MINIMIZATION OF GENERATION COST 

Generation cost is . one of the very important aspects 

to be considered when operating apower system. The cost 

incurred by the`' continuous running of a large power 

system is enormous. This has been further escalated by 

increasing fuel prices, especially during the last two 

decades. Therefore, methods have to be devised to 

minimize the overall generation cost of the system. 

The need for the economic operation of power systems 

has been recognized and emphasized since the very early 

days of the power industry. It started by the economic 

division of load between two generators and the economic 

operation of small systems with few generators or few 

generating stations, followed by the economic dispatch of 

larger systems. As power systems grew larger and their 

operation and control became more demanding, optimal load 

flows and optimization methods came into use. More 

specifically, the cost of active power generation has 

been used in recent years as the objective function to be 

minimized under constraints- by applying mathematical 

programming techniques [9,10,11,15). 

In this thesis, the hourly fuel cost of the power 

system is minimized by formulating the problem as a 

linear programme and using the two-stage mathematical 

model. In the first stage the hourly generation cost, 
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based on bus outputs, is used as the objective function 

with four sets of constraints. 

The objective function is given by the sum of the 

hourly fuel cost at all the generating buses, i. e., power 

stations, -in the system. This is expressed by: 

NS 
Z-E( CBS X PGBi ) (5.7) 

1-1 

Substituting from Equation (3.16) gives: 

NS 
Z-E CBs X(P. + PD1 ) (5.8) 

i-1 

By using the expanded linearized expression of P. from 

Section (2.6), and ignoring any constant terms as 

explained in Section (3.6), Z can be expressed as: 

NS N 
Z-E CHF I( AMs, V, + ANi, 8, ) (5.9) 

i-1 j-1 

The coefficients ANI1, and AN� of (5.9) are given by the 

expanded expressions of (3.26) to (3.29). 

The final form of . the objective function Z can be 

written as: 

N 
z-I°( CM, V, + CN, e, ) 

j-1 
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where, 

NS 
CBi AMi 

! 

1-1 

and 

(5.11) 

NS 
CN, -I CBi ANs, (5.12) 

i-1 

In this optimization problem, four sets of 

constraints have been used. These are listed below: 

1. Upper and lower-limits on the bus-active power outputs 

2. Upper and lower limits on the bus reactive power 

outputs 

3. Upper limit on the active power loss in each 

transmission line, and 

4. Upper limit on the apparent power transfer across each 

transmission line. 

The first two sets of constraints are based on bus 

quantities while the last two sets are based on line 

quantities. Each of, the constraints sets 1 and 2 have NB 

constraints, while sets 3 and 4 have NL constraints each. 

Thus, the total number of constraints in this problem is 

NC r- 2(NB + NL).. For the test system used this is equal 

to-106. 

This optimization problem can be viewed from a 

different angle. Under the given loading conditions and 

introducing electricity selling prices as well as input 

fuel cost, the problem of minimizing the generation cost 

can be used to maximize the profit. This will only 
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involve minor modifications to the objective function and 

the corresponding computer program. If required, 

additional, consumer and load-related, constraints can 

also be incorporated in the formulation of the problem. 

The numerical results of this problem are given in 

Tables (5.6) to (5.10) for Case A, and Tables (5.11) 

to (5.15) for Case B. 

T 

Apart from the generation cost required to meet the 

actual consumer electricity demand on the system, a 

certain amount of cost is also incurred by energy loss in 

the various components of the power system. A significant 

part of this energy loss is caused by the resistance of 

the transmission lines in the system. Although 

transmission losses generally constitute a small 

percentage- of the total system output or demand, in the 

long run they incur a substantial cost due to the 

continuous operation of the power system. Therefore, as 

in the case of generation cost, transmission losses have 

received a considerable attention from researchers in the 

field of optimization [7,171. The problem of transmission 

losses is usually tackled by formulating the optimization 

problem such that these losses are minimized. As in other 

optimization problems various numbers and types of 

constraint are imposed to take into account other 

relevant power system quantities. 
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In the present work, the first stage of the 

mathematical model can be used for this purpose, while 

the second stage can still be used to minimize the 

generation cost. This useful attribute of the two-stage 

formulation will be discussed further in Chapter 7. 

Minimization of the total system transmission losses 

can be expressed by the following objective function: 

NL 
Z: - I PLk (5.13) 

k-1 

Again, this can be expressed in terms of the independent 

variables, i. e., the system bus voltage magnitudes and 

phase angles, by using the expanded linearized 

expressions of PLk from Chapter 3 and neglecting the 

constant terms. This gives: 

NL N 
Z-1 E( ANk, V, +AN*», 6, ) (5.14) 

The coefficients AM., and AN� in this case are those 

given by Equations (3.38) to (3.41). 

The final form of Z can be written=as follows: 

N 
Z-I( CMj Vj + CNj 6, ) (5.15 ) 

j-1 

with the coefficients CM, and CN, given by: 
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NL 
CM+ (5.16) 

i-1 

and, ' 

NL 
CN, -E ANS, (5.17) 

i-1 

The constraints used in this problem are similar to 

those, used in the previous one. The corresponding 

computer results for the two study cases are presented in 

Tables (5.16) to (5.25). 

ZATION OF REACTIVE P 

In a power system, the generation of reactive power 

does not result in a running cost once the required 

apparatus' of the appropriate rating is installed. 

However, with reactive power, the question is that of 

control. Reactive power flows affect system currents 

which in turn affect transmission losses and bus 

voltages. For a given amount of active power generation 

in the system the rest of the system quantities are 

functions of the reactive power flow. Examples of 

quantities affected in this manner are apparent power in 

the system, current magnitudes and the overall system 

power, factor. Since all power system variables are 

interrelated. the control of reactive power flow 

virtually affects many other system variables, either 

directly or indirectly. Therefore, correct decisions have 

to be made in this regard to insure the proper operation 

of the system. 

125 



Reducing or minimizing the amount of reactive power 

production-in the system can be used as a means of 

reducing transmission losses and improving the voltage 

profile of the system. Obviously, reduction of 

transmission losses also reduces the associated cost. 

With a given amount of active power generation, reducing 

the total reactive power production also improves the 

system power factor. 

Minimization ý of the total-reactive powere production 

in the system is expressed by the -following objective 

function: II 

NB 
Z-E QGBj. (5.18) 

i-1 

Following the derivation steps of the two previous 

optimization problems, the final form of (5.18) can be 

written as in (5.19) below: 

N4 
z- c cM, V, +cx, e, 

i-i 
(5.19) 

The coefficients CM, and-CN, in this case are given by: 

NB 
CMS -EAM .1 

i-1 

and. 

NB 
CN, -I ANa 

i-1 

(5.20) 

(5.21) 
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The expanded forms of the coefficients AM� and ANS,, in 

the two expressions above, are given by Equations (3.32) 

to (3.35). 

In this problem, an expanded version of the 

mathematical model has been used in which the constraints 

consist of five sets. The first three sets are similar to 

those used in the first two problems. However, the fourth 

set,:. -concerned with the apparent power transfer across 

transmission lines, is replaced for each line by two 

constraints. For the k'th line, ' connecting the i'th and 

j'th nodes, these two constraints are given by: 

(a) Upper limit on S,,, the apparent power transfer 

across the line from node i to node j, and 

(b) Upper limit, on S, the apparent power transfer 

across the line from node j to node i. 

Thus, the total number of constraints of this 

optimization problem is given by NC - 2NB. + 3NL, which, 

for the present test system, is equal to 136. 

It is to be recalled that the above objective 

function and five sets of, constraints belong to the first 

stage of the model. Again, the second stage of the 

solution can be used to determine the minimum-cost 

generating schedule of the system, under minimum reactive 

power production as determined from Stage-I above. 
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The numerical results associated with this 

optimization problem are shown in Tables (5.26) 

to (5.35). 

ýS ,9 SUPPLEMENTARY CO? '2' NTS AND USEFUL POINTERS 

This section gives some complementary remarks 

relevant to the optimization'problems discussed above and 

the associated computer programs. It also introduces and 

discusses an additional number of points concerning 

various related general, special and computational 

aspects under appropriate subheadings. 

The Choice of the Reference Bue 

The power station with the highest generating 

capacity has been chosen as the reference bus in all the 

optimization problems discussed above. This is more or 

less similar to the practice used in load flow studies. 

The reason for such 'a choice is to insure that there is 

enough generation to take the total system transmission 

losses into account and to satisfy the -overall system 

energy balance equation.. Otherwise, this may lead to 

infeasibility of the optimization problem of Stage-I of 

the model'and erroneous results from Stage-II. 
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Numbering of Buses 

Unlike the cases of generators and transmission 

lines, the serial numbering of buses in a computer 

program based on power system analysis is significant. 

Usually, in load flow studies, after the reference bus 

has been chosen, the buses are numbered such that the 

reference bus is considered as either the first or the 

last bus in the system; in most cases the last. Although 

in principal any order of numbering is acceptable, giving 

the reference bus any number between the two extreme 

cases mentioned, renders the associated computer program 

lengthy, difficult to handle and unnecessarily 

cumbersome. I have tried it! 

The, Reference Bus Voltage 

In all the optimization problems discussed above, 

the voltage magnitude and phase angle of the reference 

bus were fixed at 1.05 p. u. and 0 degrees, respectively. 

The choice, of the voltage magnitude is significant. While 

experimenting with the computer program in the early 

stages of the work, it has been found that at a certain 

minimum value, say 1.03 p. u., the optimization problem in 

question might become infeasible. This is due to the fact 

that at a certain low voltage level the reference bus 

fails to "drive", or "push" power into, the system. The 

choice of the reference phase angle, however, is 

completely arbitrary. The value of zero is selected here 
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merely because- it is generally customary to do so in 

power system analysis. For example, as they stand, the 

bus phase angles of Problem 1, given in Table (5.7), are 

almost all negative, with a minimum value of about -230. 

As a test, the associated computer program was run with 

the value of 25' assigned to the phase angle of the 

reference bus. The resulting phase angles were all 

positive with the minimum being just a few degrees above 

zero, and there was no change in the rest of the 

numerical results. 

the Bue V 

The available data does not specify particular 

limits on the bus voltage magnitudes. This is mainly 

because constraints specifications on bus voltages are 

operational rather than design limits, in contrast with 

generator ratings and line loadings for instance. Voltage 

magnitudes of about ± 10 % around the nominal value are 

generally acceptable, in power'system operation. In this 

particular work a- range of ± -5 ý% has been used 

throughout. Ranges of 4 or 6% are equally acceptable and 

have also been tried, the emphasis here being on the 

general method rather on the specific numerical values. 
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Generally, the data of the initial operating point 

needed to set up the incremental linearized mathematical 

model were obtained by the method outlined in 

Section (2.8). Some minor variations were also used. In 

Problems 1 and 2. the active power schedules were 

obtained by roughly dividing the total system load 

amongst the system generators in proportion to their 

output capacities. Since only an estimate of the initial 

operating point is required in the first place, 

approximate round figures were used instead of the exact 

ones according to Equation (2.70), before entry to the 

computer program. From the total reactive load on the 

system, the reactive power output of each generator was 

estimated at 20 MVAR. 

In Problem 3. on the other hand, the estimation 

process of both the initial active and reactive 

generation schedules was embedded in the computer 

program. The active part was strictly according to 

Equation (2.75), while the reactive part was obtained 

simply by sharing the total system reactive load equally 

among the system generators. 

ty- 
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Limits on Reactive Power Generation 

At the beginning of the project, a reduced set of 

the test system data was used in which no bounds were 

specified on the reactive power outputs of the 

generators. To keep the generality of the problem 

formulation, the following assumptions were made. 

QGGMXj - PGGMX, 

QGGMN,, -- QGGMX, 

Although these limits are not genuine, the corresponding 

results obtained from the problem of minimization of 

total system generation cost were not very different from 

those obtained at a later stage of the work which are 

reported here. 

The Reactive Power Generation Schedule 

The reactive power generation schedule on the 

generator level, in contrast with that on the bus level, 

has not been given much emphasis. The main reason for 

this is that reactive power generation affects the power 

system operation mostly on the bus level because of its 

relationship with bus voltages and line flows. Another 

reason is that very small, if any, fuel cost is 

associated with reactive generation in comparison with 

active power dispatch. In the present work, the bus 

reactive power outputs under optimum operating conditions 

are determined from the first stage of the problem model. 
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The "reactive power contribution of the individual 

generators towards the respective bus outputs are 

determined simply by sharing the bus outputs among the 

generators in proportion to their reactive power 

capacity, in a similar way to that used to obtain the 

initial operating schedule. This is the very last step in 

the solution of the problem and, thus, will not affect 

any other quantity. Recall that the corresponding active 

power generation schedule is obtained by formulating the 

second stage of the model as another optimization problem 

based on generator active power outputs. The reactive 

power problem can be formulated in a similar way with a 

suitable objective function. For this purpose incremental 

costs similar to those of the active power problem can be 

used if required and if the corresponding data is 

available. However, as discussed above, this is not 

really necessary. 

The computer programs associated with the various 

optimization problems addressed in the thesis have all 

been written in FORTRAN. They were run on the mainframe 

machines of the VAX Computer Cluster of the University of 

Strathclyde and- the Micro-Vax Computer of the Power 

Systems Research Group where the project was conducted. 
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The basic 

write the load 

some of the data 

of the'computat 

on "a Base 1KVA of 

Newton-Raphson method has been used to 

flow computer routine needed to obtain 

of the initial operating point. The bulk 

ions are performed using per-unit values 

100. 

Routines from the NAG ( Numerical Algorithms Group. ) 

Library were employed to obtain the actual numerical 

solutions of the linear programming problems of the two 

stages of the mathematical model. Two such routines 

designed to solve general linear programming problems 

were considered (39,40). In most cases the routine E04MBF 

has been used. In the course of testing the suggested 

method and the associated computer programs, the routine 

H01ADF was also used to solve the linear programming 

problem of Stage-II of the model instead of E04MBF. 

Identical results were obtained. 

Finally, it is possible to use these subroutines to 

determine the reactive power generation schedule on the 

generator level. As discussed above no optimization is 

required in this case and, therefore, no objective 

function is involved. The NAG optimization routines 

mentioned above are designed such that,, when no, objective 

function- is- specified for the given linear programming 

problem, they can determine a feasible, point of the 

problem instead of the optimum solution. One of, the input 

parameters of the routines is set-to indicate the 

existence or nonexistence of the objective function. 
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5.11 COMPARISON AND DISCUSSION OF THE NUMERICAL RESULTS 

In the present chapter three main optimization 

problems relating to power system operation have been 

introduced, formulated and solved, and the numerical 

results obtained have been reported. Relevant comments on 

the formulation and solution of these problems have also 

been given as well as useful remarks concerning the 

computational aspect of the work. In the present section 

all these numerical results will be analysed and 

discussed. They will also be compared among themselves as 

well as with similar--results published by other 

contributors to the field. t- 

Comparison with Published Results 

In the early stages of the project, the numerical 

results obtained from Problem 1 were extensively compared 

with those published by Shen and Laughton [9]. The reason 

for this comparison is that these authors used the same 

sample system in their work with a similar objective 

function. This gives an agreeable basis for the 

comparison, although, of course, their formulation and 

method of solution are different. After accounting for 

system losses which were ignored in the cited work, the 

results obtained here were almost identical to the 

published ones, apart -from the many advantages of the 

present method. These-will-be discussed in` detail in 

Section (7.2). 
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To compare the results obtained from the three 

different problems two comparative tables are constructed 

corresponding to the two study cases. These are given in 

Tables (5.36-A) and (5.36-B) respectively. The two tables 

basically represent a summary of the total system results 

which are shown in six separate tables, each one at the 

end of the respective study case under the title of 

"Overall System Results". 

Studying the results presented in Tables (5.36-A) 

and (5.36-B), the following main conclusions and comments 

can be made: 

1. The results are consistent among themselves. The same 

conclusions that can be obtained from Case A can be 

obtained from Case B. For example. the tendency of one 

system quantity to decrease from Problem 1 to Problem 2 

occurs in both Cases A and B. In a similar manner 

quantities that tend to increase from Problem 2 to 

Problem 3 do so in both study cases. Any of the entries 

of Table (5.36) can be used to confirm this. 

2. Apart from being consistent among themselves as 

explained above, the results are consistent with the 

background theory. Problem 1 produces the least 

generation cost among the three problems, while Problem 2 

shows the least transmission losses. 
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3. -,, The- results- of problems 2 and 3 are very similar. 

Basically these two problems achieve the same final 

objective in the physical system -using --different 

mathematical objective functions. Problem 2 minimizes the 

total transmission losses directly by explicitly using 

this -Quantity, as the objective function in the linear 

programming formulation. The same aim is achieved 

indirectly in Problem 3 by minimizing the total reactive 

power generation in the system. This leads to reduced 

current magnitudes through the transmission network and 

consequently reduces the associated I2R or thermal 

losses. This confirms the reasoning behind the use of 

reactive power control as a means for reducing system 

losses. It also confirms the work presented by various 

researchers who used only one or the other of the -two 

different objective functions' of Problems 2 and 3. In'the 

various published works, confirmation of this was not 

possible because of: the inflexibility of the mathematical 

models used., which did not allow--the use of 'a different 

objective function. 

However, there are slight differences between the 

results of Problem 2 and those of Problem 3. These are 

mainly caused by the considerable difference in the 

number of constraints between the two problems. In 

Problem 3 there is a total of 136 constraints. i. e., 30 

constraints more than those of problem 2 which has 
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only 106. These extra constraints are based on the 

transmission of apparent power across the lines. 

Problem 3 considered the transmission of apparent power 

in both directions across the line, while problem 2 was 

concerned with the transmission of apparent power across 

the line in one direction only. This particular point 

will be discussed in more detail in Section (7.3). 

4. Although the total system transmission losses and 

their associated cost were kept at a minimum in 

Problem 2, the overall generation cost is noticeably 

higher than that of Problem 1. This does not represent 

any discrepancy in the numerical results or in the 

mathematical formulations of the problems as discussed 

below. 

In problem 1. the linear program is concerned with 

the selection of the least expensive generators, in terms 

of their fuel consumption, to supply the required system 

demand under the imposed constraints. In Problem 2, on 

the other hand, the optimization process is concerned 

with the "routing" of the generated power so that it is 

transmitted across the lines with the least thermal loss, 

i. e., the lowest resistance. This is done regardless of 

the generating units that produced the power in the first 

place. Also, the total transmission losses are supplied 

by the system generators collectively and it is not 

possible to know which generator supplies which part of 

the losses. Therefore, minimization of the total losses 
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does not necessarily mean minimization of their 

associated cost. 

This can be further clarified by considering the 

total energy balance equation in the system which gives 

the total generation as the sum of the total demand and 

the total transmission losses: 

PGT - PDT + PLT 

In general, PLT represents a small percentage of PGT. In 

the particular system considered, the ratio of PLT to PGT 

is less than 2 %. Problem 2 minimizes this small 

percentage without considering the cost associated with 

the production of the whole. 

5. It can be concluded from the above that the best way 

to operate the system is under minimum generation cost as 

obtained from the solution of Problem 1. Obviously, this 

conclusion is based on numerical results of the sample 

system. However, it can be safely extended to power 

system operation in general. It is quite possible that 

the ratio of the total transmission losses of other 

systems to their total generation is not very different 

from those obtained here, especially since the sample 

system used is an actual one. Apart from that, even when 

the problem is concerned with the minimization of the 

generation cost, the constraints on transmission losses 

and line loading are satisfied. 
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6. In parallel with the minimum total system generation 

cost in Problem 1, the cost per unit of active power 

generation is also minimized although the associated 

transmission losses are higher than those associated with 

the two other problems. 

7. The tables show a noticeable improvement in the 

overall system power factor in Problems 2 and 3, as 

compared to Problem 1. This is due to the reduction of 

the reactive power generation associated with these two 

problems. Again this is consistent with the underlying 

theory. 
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SGGMN - .f PGGMN2 + QGGMN2 

FIG. (5.1) 

LIMITS ON APPARENT POWER GENERATION 
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FIG. (5.4) 

DIAGRAM OF THE TEST POWER SYSTEM 
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TABLE (5.1) 

GENERAL SYSTEM DATA 

NUMBER OF POWER STATIONS 6 

NUMBER OF GENERATORS 24 

NUMBER OF BUSES 23 

NUMBER OF TRANSMISSION 
LINES 30 

TOTAL ACTIVE POWER 
CAPACITY ( MW ) 2930 

TOTAL REACTIVE POWER 
CAPACITY ( MVAR ) 3277.953 

TOTAL APPARENT POWER 
CAPACITY ( MVA ) 4396.576 

BASE APPARENT POWER 
( MVA ) 100 

NOMINAL. VOLTAGES kV 

BUSES 1- 11 132 
BUSES 12 - 23 275 
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TABLE (5.2-A)_ 

GENERATOR DATA 

ACTIVE POWER OUTPUT. 

CG_, 
GENERATOR BUS PGGMN, PGGMXJ 

POUNDS 
j i MW MW PER MWhr 

1 15.000 61.000 3.220 
2 1 15.000 61.000 3.220 
3 15.000 61.000 3.220 

4 15.000 61.000 3.220 
5 2 30.000 61.000 2.200 
6 30.000 61.000 2.200 

7 43.000 58.000 2.160 
8 11 43.000 59.000 2.190 
9 43.000 59.000 2.170 

10 43.000 59.000 2.140 

11 83.000 83.000 0.850 
12 83.000 83.000 0.850 
13 14 83.000 83.000 0.850 
14 83.000 83.000 0.850 
15 83.000 83.000 0.850 

, 16 83.000 83.000 0.850 

17 22.000 112.000 1.710 
18 20 135.000 334.000 1.420 
19 143.000 357.000 1.210 

20 22.000 112.000 1.670 
21 22.000 112.000 1.710 
22 23 22.000 112.000 1.670 
23 135.000 334.000 1.350 
24 143.000 358.000 1.150 
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TABLE (5.2-B) 

GENERATOR DATA 

REACTIVE AND APPARENT POWER OUTPUTS 

GENERATOR 

j 

QGGMN_a 

MVAR 

QGGMXJ 

MVAR 

SGGMN, 

MVA 

SGGMX, 

MVA 

1 -10.000 78.581 18.028 80.000 
2 -10.000 78.581' 18.028 80. '000 
3 -10.000 78.581 18.028 80.000 
4 -10.000 78.581 18.028 80.000 
5 -10.000 74.162 31.623 80.000 
6 -10.000 74.162 31.623 80.000 
7 -10.000 61.449 44.147 75.000 
8 -10.000 61.449 44.147 75.000 
9 -10.000 61.449 44.147 75-. 000 

10 -10.000 61.449 44.147 75.000 
11 -20.000 72.187 85.376 110.000 
12 -20.000 72.187 85.376 110.000 
13 -20.000 72.187 85.376 110.000 
14 -20.000 72.187 85.376 110.000 
15 -20.000'- 72}. 187" 85.376 110.000 
16 -20.000 72.187 85.376 110.000 
17 -25.000 148.378' 33.302 150.000 
18 -65.000 376.530 . 149.833 400.000 
19 -65.000- ' 394'. 906 157.080 420.000 
20 -25.000 148.378 33.302 150.000 
21 -25.000 '148.378 '33.302 150. '000'- 
22 -25.000 148.378 33.302 150.000 
23 -65.000 376.530 149.833 400.000 
24 -65.000 394.906 157.080 420.000 

. 
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CBi 
BUS NGB: L PGBMNL PGBMXi 

POUNDS 
i MW, MW PER MWhr 

1 3 45.000 183.000 3.220 
2 3 75.000 183.000 2.472 

11 4 172.000 235.000 2.165 
14 6 498.000 498.000 0.850 
20 3 300.000 803.000 1.354 
23 5 344.000 1028.000 1.360 

REACTIVE AND APPARENT POWER OUTPUTS 

BUS QGBMNi QGBMX. SGBMNt SGBMX, 

L MVAR MVAR MVA MVA 

1 -30.000 235.744, 54.083 298.436 
2 -30.000 226.905 80.777 291.505 

11 -40.000 245.797 176.590 340.060 
14 -120.000 433.124 512.254 660.000 
20 -155.000 919.814 337.676 1221.011 
23 -205.000 1216.570 400.451 1592.742 
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TABLE (5.4-A) 

TRANSMISSION LINE DATA 

LINE PARAMETERS 

LINE 

k 

R, < 

PER UNIT 

Xk 

PER UNIT 

SSk 

PER UNIT 

1 0.0242 0.0540 0.0118 
2 0.0309 0.0693 0.0151 
3 0.0404 0.0888 0.0197 
4 0.0325 0.0709 0.0157 
5 0.0615 0.1620 0.0342 
6 0.0576 0.1520 0.0320 
7 0.0266 0.0700 0.0148 
8 0.0229 0.0504 0.0112 
9 0.0446 0.1003 0.0218 

10 0.0233 0.0514 0.0456 
11' 0.0597 0.1315 0.0291 
12 0.0597 0.1315 0.0291 
13 0.0043 0.0351 0.2373 
14 0.0043 0.0351 0.2373 
15 0.0038 0.0307 0.2078 
16 0.0035 0.0288 0.1951 
17 0.0089 0.0720 0.4871 
18 0.0010 0.0080 0.0543 
19 0.0021 0.0167 0.1133 
20 0.0016 0.0127 0.0862 
21 0.0045 0.0362 0.2451 
22 0.0024 0.0192 0.1298 
23 0.0019 0.0156 0.1056 
24 0.0014 0.0114 0.0770 
25 0.0020 0.0164 0.1109 
26 0.0023 0.0839 0 
27 0.0023 0.0839 0 
28 0.00185 0.1300 0 
29 0.0023 0.0839 0 
30 0.0025 0.2000 0 
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TABLE (5.4-B) 

TRANSMISSION LINE DATA 

LINE LOADING-LIMITS 

LINE 

k 

BUSBARS 
CONNECTED 

i-j 

STMXk 

MVA 

PLMXk 

MW 

1 1-3 100 2.42 
2 1-4 100 3.09 
3 2-5 100 4.04 
4 8-5 100 3.25 
5 2-7 100 6.15 
6 3-6 100 5.76 
7 4-9 100 2.66 
8 9-7 100 2.29 
9 8-6 100 4.46 

10 11 - 10 200 9.32 
11 8- 10 100 5.97 
12 9- 10 100 5.97 
13 13 - 14 620 16.53 
14 14 - 12 620 16.53 
15 15 - 12 620 14.61 
16 18 - 15 620 13.45 
17 23 - 13 620 34.21 
18 16 - 17 620 3.84 
19 17 - 18 620 8.07 
20 19 - 18 620 6.15 
21 20 - 19 620 17.30 
22 22 - 18 620 9.23 
23 20 - 21 620 7.30 
24 21 -22 620 5.38 
25 23 - 16 620 7.69 
26 12 -8 155 0.55- 
27 13 -8- 155 0.55 
28 12 -9 180 0.60 
29 13 -9 155 0.55 
30 1-2 90 0.20 
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TABLE (5.5) 

SYSTEM DEMAND DATA 

SCHEDULE 'A SCHEDULE B 
BUS 

i PD, QDi PD± QD, 

MW MVAr MW MVAr 

1 64 16 56 14 
2 101 25 88 22 
3 

.0 0 .0 0 
4 47 12 41 10 
5 51 13 45 11 
6 41 10 36 9 
7 48 12 42 10 
8 1 0 1 0 
9 150 38 133 33 

10 177 44 157 39 
11 130 32 115 29 
12 6 0 6 0 
13 -4 0 -4 0 
14 480 120 425 106 
15 201 50 177 44 
16 132 33 117 29 
17 344 86 304 76 
18 104 26 92 23 
19 376 94 333 83 
20 -100 -25 -100 -25 
21 375 94 332 83 
22 -210 -52 -210 -52 
23 129 32 114 28 

TOTAL 2643 660 2300 572 
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MINIMIZATION OF GENERATION COST 

OPTIMUM GENERATION SCHEDULE 

GENERATOR PGG., 

MW 

. "- 

QGG, t 

MVAR 

_ 

SGG,, 

MVA 

GENERATION 
COST 

POUNDS 
PER HOUR 

1 61.000 20.195 64.256 196.420 
2 54.837 20.195 58.437 176.575 
3 61.000 20.195 64.256 196.420 
4 15.000 22.280 26.859 48.300 
5 30.000 21.027 36.635 66.000 
6 30.277 21.027 36.862 66.609 
7 51.240 28.193 58.484 110.676 
8 43.000 28.193 51.418 94.170 
9 43.000 28.193 51.418 93.310 

10 59.000 28.193 65.390 126.260 
11 83.000 5.107 83.157 70.550 
12 83.000 5.107 83.157 70.550 
13 83.000 5.107 83.157 70.550 
14 83.000 5.107 83.157 70.550 
15 83.000 5.107 83.157 70.550 
16 83.000 5.107 83.157 70.550 
17 64.606 20.164 67.680 110.477 
18 334.000 51.169 337.897 474.280 
19 357.000 53.666 361.011 431.970 
20 112.000 45.305 120.816 187.040 
21 72.860 45.305 85.797 124.590 
22 112.000 45.305 120.816 187.040 
23 334.000 114.968 353.233 450.900 
24 358.000 120.579 377.761 411.700 
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TABLE (5.7-A) 

MINIMIZATION OF GENERATION COST 

CASE 
-A 

OPTIMUM BUS VOLTAGES 

BUS 

i 

V. 

PER UNIT 

e 

DEGREES 

1 1.005 -16.612 
2 0.989 -20.251 3 0.995 -17.011 
4 0.968 -18.722 
5 0.965 -19.326 
6 0.966 -18.165 
7 0.950 -20.510 
8 0.973 -16.588 
9 0.955 -19.162 

10 0.950 -23.216 
11 1.008 -22.337 
12 0.954 -13.614 
13 0.971 -11.466 
14 0.950 -12.242 
15 0.950 -12.183 
16 1.002 -4.760 
17 0.983 -6.633 
18 0.967 -7.313 
19 0.960 -7.224 
20 0.996 0.987 
21 0.976 -3.228 
22 0.978 -3.871 
23 1.050 0.000 
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MINIMIZATION OF GENERATION COST 

OPTIMAL BUS INJECTIONS 

BUS 

i 

P: L 

MW ° MVAR 

Si 

° 'MVA 

1 112.837 `44.586" '121.326 
2 -25.723 39.333 46.998 
3 0.000 0.124 0.124 
4 -47.007 -11.673 48.435 
5 -50.960 -12.909 52.570 
6 -41.000 -9.847 42.166 
7 -47.968 -11.902 49.422 
8 -0.844 0.111 0.851 
9 -149.852 -37.802 154.547 

10 -176.273 -44.095 181.705 
11 66.240, 80.773 104.460 
12 -6.021 0.015 6.021 
13 4.371 0.092 4.372 
14 17.843 -89.358 91.122 
15 -201.086 -49.981 207.205 
16 -132.382 -32.718 136.365 
17 -344.256 -85.716` 354.766 
18 -104.285 -25.716 107.409 
19 -375.688 -93.920 387.250 
20 855.606 150.000 868.655 
21 -374.301- -93.964 385.916 
22 209.589 52.081 215.963 
23 859.860 339.463 924.443 
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MINIMIZATION OF GENERATION COST 

OPTIMUM STATION OUTPUTS 

GENERATION 
BUS PGB; L QGBt SGBi COST 

NGBi 
i MW MVAR MVA POUNDS 

PER HOUR 

1 3 176.837 60.586 186.928 569.415 

2 3 75.277 64.333 99.022 180.909 

11 4 196.240 112.773 226.336 424.418 

14 6 498.000 30.642 498.942 423.300 

20 3 755.606 125.000 765.876 1016.727 

23 5 988.860 3711463 1056.328 1361.270 
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MINIMIZATION OF GENERATION COST 

OPTIMUM ACTIVE POWER LINE FLOWS 

LINE 

k 

PL, 

MW 

P. 1, 

MW 

PL$. 

MW 

1 17.639 -17.537 0.101 
2 63.543 -62.093 1.450 
3 -4.279 4.627 0.348 
4 56.762 -55.587 1.175 
5 10.184 -9.869 0.315 
6 17.538 -17.266 0.272 
7 15.085 -14.972 0.113 
8 38.489 -38.098 0.390 
9 24.013 -23.734 0.279 

10 66.240 -63.649 2.591 
11 75.305 -71.623 3.682 
12 42.306 -41.001 1.305 
13 42.072 -41.865 0.208 
14 59.708 -59.524 0.183 
15 71.250 -71.020 0.230 
16 275.218 -272.336 2.882 
17 294.703 -286.763 7.940 
18 424.864 -422.739 2.125 
19 78.483 -78.188 0.295 
20 4.168 -4.111 0.056 
21 386.928 -379.856 7.072 
22 299.473 -297.204 2.269 
23 468.678 -464.320 4.357 
24 90.019 -89.884 0.135 
25 564.277 -557.246 7.031 
26 56.790 -56.697 0.093 
27 100.474 -100.228 0.246 
28 67.734 -67.640 0.093 
29 148.588 -148.035 0.554 
30 31.655 -31.628 0.027 
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CASE A 

OPTIMUM REACTIVE POWER LINE FLOWS 

LINE 

k 

R: L 

MVAR 

Q. 1 

MVAR 

01.4 

MVAR 

1 9.989 -10.944 -0.955 
2 25.800 -24.017 1.782 
3 27.750 -28.865 -1.115 
4 -14.865 15.956 1.091 
5 18.244 -20.631 -2.387 
6 11.068 -13.428 -2.361 
7 12.344 -13.415 -1.. 071 
8 -9.031 8.729 -0.302 
9 -5.002 3.582 -1.420 

10 80.773 -79.429 1.344 
11 -14.145 19.565 5.420 
12 -15.533 15.768 0.236 
13 41.579 -61.775 -20.196 
14 -27.583 7.578 -20.005 
15 -29.052 12.082 -16.971 
16 26.714 -20.929 5.785 
17 80.400 -65.977 14.423 
18 178.189 -166.535 11.654 
19 80.820 -89.249 -8.429 
20 -60.770 53.215 -7.555 
21 66.597 -33.150 33.448 
22 22.264 -16.397 5.867 
23 83.402 -57.891 25.511 
24 -36.073 29.817 -6.256 
25 256.883 -210.907 45.977 
26 -21.445 24.843 3.398 
27 -0.294 9.280 8.986 
28 1.799 4.761 6.561 
29 24.784 -4.585 20.200 
30 8.797 -6.660 2.136 
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MINIMIZATION OF GENERATION COST 

OPTIMUM APPARENT POWER LINE FLOWS 

LINE' 

k 

Si'. i 

MVA 

S-01 

MVA 

SL.. 

MVA 

-1 20.271 20.672 0.960 
2 68.581 66.576 2.298 
3 28.078 29.234 1.169 
4 58.677" 57.832 1.604 
5 20.894 '22.870 2.408 
6 20.738 21.873 2.376 

-7. 19.492 20.103 1.077" 
8 39.534 39.086 0.493 
9 24.529 24.003 1.447 

10 -104.460 101.784 2.919 
11 76.622 74.247 6.552 
12 45.068 43.929 1.326 
13- 59.152 74.624 20.197--, 
14 65.771 60.005 20.006 
15 76.945 72.040 16.972 
16 = 276.512 273.139 6.463 
17 305.473 294.255 16.464 
18 460.718 454.359 11.846 
19 112.656 118.654 8.434 
20 60.913 53.374 7.555 
21 392.618 381.300 34.187 

-22 300.300 297.656 6.291 
23 476.041 467.916 25.880 
24 96.978 94.701 6.257 
25 619.998 595.823 46.511- 
26 60.704 61.901 3.400 
27 100.474 100.656 8.989 
28 67.758- 67.808 6.561. -- 
29 150.641 148.106 20.207 
30 32.854 32.322 2.137 
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TABLE (5.10) 

MINIMIZATION OF GENERATION COST 

CASE A 

OVERALL SYSTEM RESULTS 

TOTAL ACTIVE POWER GENERATION 
( MW ), PGT 2690.820 

TOTAL REACTIVE POWER GENERATION 
( MVAR ), QGT 764.797 

TOTAL APPARENT POWER GENERATION 
MVA ), SGT 2797.396 

TOTAL ACTIVE POWER TRANSMISSION 
LOSSES ( MW ), PLT 47.820 

TOTAL REACTIVE POWER TRANSMISSION 
LOSSES ( MVAR ), QLT 104.797 

TOTAL APPARENT POWER TRANSMISSION 
LOSSES ( MVA ), SLT 115.192 

TOTAL ACTIVE POWER GENERATION 
COST ( POUNDS PER HOUR ), CGT 3976.040 

SYSTEM COST PER UNIT GENERATION 
( POUNDS PER MWhr ), SPC 1.478 

COST ASSOCIATED WITH TRANSMISSION 

. -LOSSES ( POUNDS PER HOUR ), CLT 70.660 

COST ASSOCIATED WITH NET ACTIVE 
POWER ( POUNDS PER HOUR ), CGD 3905.380 

OVERALL SYSTEM POWER FACTOR, PF 0.962 
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MINIMIZATION OF GENERATION COST 

OPTIMUM GENERATION SCHEDULE 

GENERATOR 

j 

PGG. j 

MW 

QGGa 

MVAR 

SGG. 

MVA 

GENERATION 
COST 

POUNDS 
PER HOUR 

1 15.000 19.937 24.949 48.300 
2 15.000 19.937 24.949 48.300 
3 48.474 19.937 52.413 156.085 
4 15.000 15.421 21.513 48.300 
5 30.000 14.554 33.344 66.000 
6 41.519 14.554 43.996 91.342 
7 43.000 12.837 44.875 92.880 
8 43.000 12.837 44.875 94.170 
9 43.000 12.837 44.875 93.310 

10 45.098 12.837 46.889 96.509 
11 83.000 22.831 86.083 70.550 
12 83.000 22.831 86.083 70.550 
13 83.000 22.831 86.083 70.550 
14 83.000 22.831 86.083 70.550 
15 83.000 22.831 86.083 70.550 
16 83.000 22.831 86.083 70.550 
17 22.000 -1.898 22.082 37.620 
18 276.900 -4.815 276.942 393.198 
19 357.000 -5.050 357.036 431.970 
20 22.000 38.616 44.444 36.740 
21 22.000 38.616 44.444 37.620 
22 106.856 38.616 113.620 178.450 
23 334.000 97.995 348.079 450.900 
24 358.000 . 102.777 372.461 411.700 
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TABLE (5.12-A) 

MINIMIZATION OF GENERATION COST 

BUS 

i 

Vi 

PER UNIT 

91 

DEGREES 

1 1.017 -17.586 
2 1.002 -17.713 
3 1.011 -17.386 
4 0.991 -17.985" 
5 0.988 -16.825 
6 0.989 -16.800 
7 0.977 -18.013 
8 0.999 -14.435 
9 0.983 -16.931 

10 0.950 -19.329 
11 0.977 -17.806 
12 0.988 -11.383 
13 1.008 -9.808 
14 1.009 -9.931 
15 0.967 -10.042 
16 1.003 -3.927 
17 0.984 -5.426 
18 0.963 -5.686 
19 0.950 -5.500 
20 0.962 2.344 
21 0.954 -1.627 
22 0.963 -2.255 
23 1.050 0.000 
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BUS 

i 

P, 

MW - 

QL 

MVAR 

S, 

MVA 

1 22.474 45.810- 51.025 
2 -1.481 22.529 22.578 
3 0.012 -. 0.192 0.192 
4 -40.577 -9.605 41.698 
5 -44.796 -10.624 46.039 
6 -35.752 -8.849 36.831 
7 -41.738 -9.887 42.893 
8 -1.324 2.351 2.698 
9 -132.057 -30.591 135.553 

10 -154.842 -39.034 159.686 
'11 59.098 22.349 . r. 63.182. 
12 -6.648 0.471 6.665 
13 -0.715 2.849 2.937 
14 72.591 30.986 78.927 
15 -175.939 -43.489 181.234 
16 -119.016 -28.141 122.298 
17 -305.061 -75.255 314.206 
18 -92.534 -22.311 95.186 
19 -329.969' -83.112 340.275 
20 755.900 13.236 756.016 
21 -328.443 -83.040 338.778 
22 208.509 51.943 214.881 
23 728.856 288.621 783.922 

. _it,: 
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TABLE (5.13) 

MINIMIZATION OF GENERATION COST 

GENERATION 
BUS PGB: L QGBL SGBt COST 

NGB; L 
MW MVAR MVA POUNDS 

PER HOUR 

1 3 78.474 59.810 98.668 252.685 

2 3 86.519 44.529 97.306 205.642 

11 4 174.098 51.349 181.512 376.869 

14 6 498.000 136.986 516.497 423.300 

20 3 655.900 -11.764 656.005 862.788 

23 5 842.856 316.621 900.364 1115.410 
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OPTIMUM ACTIVE POWER LINE FLOWS 

LINE 

k 

Pt, 

MW' 

P. 1, 

MW 

PIA. 

MW 

1 -1.173 1.209 0.035 
2 22.433 -22.055 0.378 
3 -8.178 8.365 0.187 
4 54.140 -53.161 0.979 
5 7.910 -7.776 0.134 
6 -1.197 1.317 0.121 
7 -18.522 18.709 0.187 
8 34.243 -33.962 0.281 
9 37.725 -37.069 0.656 

10 59.098 -58.098 1.000 
11 65.976 -63.315 2.662 
12 34.213 -33.430 0.783 
13 5.817 -5.815 0.002 
14 78.405 -78.031 0.374 
15 63.629 -63.240 0.390 
16 241.810 -239.569 2.242 
17 256.756 -251.229 5.526 
18 347.132 -345.550 1.582 
19 40.489 -40.159 0.331 
20 10.579 -10.394 0.185 
21 346.387 -340.549 5.838 
22 285.925 -283.791 2.133 
23 409.513 -406.068 3.445 
24 77.625 -77.416 0.209 
25 471.400 -466.149 5.252 
26 62.285 -62.190 0.095 
27 97.193 -96.976 0.217 
28 72.338 -72.238 0.100 
29 147.504 -146.984 0.521 
30 1.214 -1.213 0.001 
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TABLE (5.14-B) 

MINIMIZATION OF GENERATION COST 

CASE B 

OPTIMUM REACTIVE POWER LINE FLOWS 

LINE 

k MVAR MVAR MVAR 

1 11.633 -12.767 -1.134 
2 26.843 -27.517 -0.674 
3 18.990 -20.530 -1.539 
4 -9.320 9.906 0.586 
5 10.765 -13.764 -2.999 
6 12.959 -15.840 -2.881 
7 17.912 -18.862 -0.950 
8 -4.488 3.877 -0.611 
9 -7.671 6.991 -0.680 

10 22.349 -24.375 -2.027 
11 8.277 -5.179 3.098 
12 8.486 -9.480 -0.994 
13 -15.129 -9.009 -24.138 
14 39.995 -60.614 -20.619 
15 -84.096 67.387 -16.709 
16 -40.331 40.606 0.276 
17 23.476 -30.391 -6.914 
18 193.763 -186.466 7.297 
19 111.211 "-119.324 -8.113 
20 -105.450 99.027 -6.423 
21 2.216 22.338 24.554 
22 -33.297 38.317 5.020 
23 11.020 7.571 18.591 
24 -90.611 85.239 -5.372 
25 253.278 -221.904 31.374 
26 -12.557 16.026 3.469 
27 12.891 -4.961 7.930 
28 6.255 0.764 7.019 
29 35.478 -16.491 18.988 
30 7.333 -7.226 0.107 
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TABLE (5.14-C) 

MINIMIZATION OF GENERATION COST 

CASE B 

OPTIMUM APPARENT POWER LINE FLOWS 

LINE 

k 

5:, 

MVA 

S-41 

MVA 

SLW 

MVA 

1 11.692 12.824 1.134 
2 34.983 35.264 0.773 
3 20.676 22.169 1.551 
4 54.937 54.076 1.141 
5 13.358 15.809 3.002 
6 13.014 15.895 2.884 
7 25.766 26.567 0.969 
8 34.536 34.183 0.672 
9 38.497 37.723 0.944 

10 63.182 63.004 2.260 
11 66.494 63.526 4.085 
12 35.250 34.748 -1.266 
13 16.209 10.723 24.138 
14 88.017 98.808 20.622 
15 105.455 92.414 16.713 
16 245.151 242.986 2.259 
17 257.827 253.061 8.851 
18 397.549 392.651 7.466 
19 118.353 125.900 8.119 
20 105.979 99.571 6.426 
21 346.394 341.280 25.239 
22 287.857 286.366 5.455 
23 409.661 406.139 18.908 
24 119.315 115.147 5.376 
25 535.134 516.271 31.811 
26 63.538 64.222 3.470 
27 98.044 97.103 7.933 
28 72.608 72.242 7.020 
29 151.711 147.906 18.995 
30 7.433 7.327 0.107 
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TABLE (5.15) 

TOTAL ACTIVE POWER GENERATION 
( MW ), PGT 2335.847 

TOTAL REACTIVE POWER GENERATION 
( MVAR ). QGT 597.531 

TOTAL APPARENT POWER GENERATION 
( MVA ), SGT 2411.063 

TOTAL ACTIVE POWER TRANSMISSION 
LOSSES ( MW ), PLT 35.847 

TOTAL REACTIVE POWER TRANSMISSION 
LOSSES ( MVAR ), QLT 25.531 

TOTAL APPARENT POWER TRANSMISSION 
LOSSES ( MVA ), SLT 44.010 

TOTAL ACTIVE POWER GENERATION 
COST ( POUNDS PER HOUR ), CGT 3236.695 

SYSTEM COST PER UNIT GENERATION 
( POUNDS PER MWhr ), SPC 1.386 

COST ASSOCIATED WITH TRANSMISSION 
LOSSES ( POUNDS PER HOUR ), CLT 49.672 

COST ASSOCIATED WITH NET ACTIVE 
POWER ( POUNDS PER HOUR ), CGD 3187.023 

OVERALL SYSTEM POWER FACTOR. PF 0.969 
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.: is tsi Li 

GENERATOR 

j 

PGGa 

MW 

QGGa 

MVAR 

SGG, o 

MVA 

GENERATION 
COST 

POUNDS 
PER HOUR 

1 55.421 18.038 58.283 178.456 
2 15.000 18.038 23.460 48.300 
3 61.000 18.038 63.611 196.420 
4 33.812 12.282 35.974 108.875 
5 61.000 11.591 62.092 134.200 
6 61.000 11.591 62.092 134.200 
7 58.000 13.546 59.561 125.280 
8 59.000 13.546 60.535 129.210 
9 59.000 13.546 60.535 128.030 

10 59.000 13.546 60.535 126.260 
11 83.000 33.759 89.603 70.550 
12 83.000 33.759 89.603 70.550 
13 83.000 33.759 89.603 70.550 
14 83.000 33.759 89.603 70.550 
15 83.000 33.759 89.603 70.550 
16 83.000 33.759 -89.603 70.550 
17 22.000 18.143 28.516 37.620 
18 264.823 46.042 268.796 376.049 
19 357.000 48.289 360.251 431.970 
20 112.000 23.410 114.420 187.040 
21 98.100 23.410 100.854 167.751 
22 112.000 23.410 114.420 187.040 
23 334.000- - 59.407 339.242 450.900 
24 358.000 62.306 363.381 411.700 
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TABLE (5.17-A) 

CASE A 

OPTIMUM BUS VOLTAGES's 

BUS 

i 

Vi 

PER UNIT 

ei 

DEGREES 

1 "1.050 -14.045 
2 1.036 -13.851 
3 1.042 -14.327 
4 1.019 -15.706 
5 1.018 -14.668 
6 1.019 -15.125 
7 1.004 -16.304 
8 1.028 -13.565 
9 1.009 -15.842 

10 0.983 -16.956 
11 1.019 -14.093 
12 1.026 -12.259 
13 1.037 -10.023 
14 1.050 -11.101 
15, 1.006 -11.866 
16 1.016 -5.131 
17 1.005 -7.161 
18 1.003 -8.283 
19 0.997 -8.551 
20 1.031 -1.988 
21 1.012 -5.417 
22 1.015 -5.675 
23 1.050 -0.000 
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rwil l4a". -V IMORKSAMORIF-I wy 1 C-44 LORE COIF4413*1 

CASE-A 

OPTIMAL BUS INJECTIONS 

.. tý. ý, 

BUS 

i 

P, 

MW 

Q., 

MVAR 

S, º 

MVA 

1 67.421 38.114 77.449 
2 54.812 10.464 55.802 
3 0.053 0.057 0.078 
4 -46.577 -11.930 48.080 
5 -50.309 -12.768 51.904 
6 -40.658 -10.003 41.870 
7 -47.456 -11.950 48.938 
8 -0.016 2.745 2.745 
9 -147.898 . -35.512 152.102 

10 -174.713 -43.021 179.932 
ý11 108.502 22.183 110.746 

12 -5.126 0.604 5.162 
13 0.380 1.913 1.950 
14 17.080 82.556 84.304 
15 -199.552 -49.019 205.484 
16 -132.379 -32.939 136.415 
17 -343.390 -85.955 353.984 
18 -103.369 -25.323 106.426 
19 -371.073 -93.755 382.734 
20 743.823 137.473 756.421 
21 -369.792 -93.788 381.500 
22 208.484 52.161 214.910 
23 885.100 159.944 899.435 
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TABLE (5.18) 

MINIMIZATION OF TRANSMISSION LOSSES 

CASE A,,,,, 

OPTIMUM STATION OUTPUTS 

GENERATION 
BUS PGB: L QGBi SGBa COST 

NGBi 
i MW MVAR MVA POUNDS 

PER HOUR 

1 3 131.421 54.114 142.126 423.176 

2 3 155.812 35.464 159.797 377.275 

11 4 235.000 54.183 241.166 508.780 

14 6 498.000 202.556 537.618 423.300 

20 3 643.823 112.473 653.574 845.639 

23 5 1014.100 191.944 1032.105 1404.431 
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MINIMIZATION OF TRANSMISSION LOSSES 

LINE 

k 

P*, 

MW 

P.,, 

MW 

PLw 

MW 

1 13.911 -13.851 0.059 
2 55.260 -54.247 1.012 
3 22.046 -21.815 0.230 
4 28.748 -28.493 0.255 
5 31.016 -30.416 0.600 
6 13.904 -13.737 0.167 
7 7.671 -7.625 0.046 
8 17.107 -17.041 0.067 
9 27.237 -26.921 0.316 

10 108.502 -105.726 2.776 
11 51.200 -49.627 1.573 
12 19.658 -19.360 0.298 
13 52.862 -52.671 0.191 
14 69.751 -69.409 0.342 
15 14.495 -14.306 0.189 
16 215.690 -214.047 1.643 
17 264.362 -258.713 5.649 
18 463.047 -460.892 2.155 
19 117.502 -117.214 0.288 
20 -42.433 42.494 0.060 
21 333.578 -328.640 4.938 
22 245.775 -244.339 1.437 
23 410.246 -407.113 3.133 
24 37.320 -37.292 0.029 
25 602.548 -595.425 7.122 
26 28.589 -28.571 0.018 
27 78.766 -78.630 0.136 
28 50.000 -49.952 0.048 
29 127.464 -127.087 0.377 
30 -1.749 1.750 0.001 
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MINIMIZATION OF TRANSMISSION LOSSES 

OPTIMUM REACTIVE POWER LINE FLOWS 

LINE 

k 

QA°. j 

MVAR 

(L 'i 

MVAR 

i2I*. 

MVAR 

1 8.070 -9.229 -1.159 
2 22.776 -22.122 0.654 
3 10.180 -11.752 -1.572 
4 -0.071 -1.016 -1.087 
5 7.452 -9.431 -1.979 
6 9.286 -12.244 -2.958 
7 10.192 -11.593 -1.400 
8 1.369 -2.519 -1.150 
9 -3.812 2.241 -1.570 

10 22.183 -20.632 1.551 
11 11.145 -10.622 0.523 
12 9.534 -11.766 -2.232 
13 -57.355 33.078 -24.277 
14 49.477 -72.264 -22.787 
15 -79.984 60.056 -19.928 
16 -37.136 30.965 -6.172 
17 -17.360 10.022 -7.338 
18 86.280 -74.581 11.698 
19 -11.374 2.239 -9.135 
20 -48.386 40.239 -8.147 
21 59.883 -45.369 14.514 
22 28.937 -30.664 -1.727 
23 77.591 -62.887 14.703 
24 -30.901 23.224 -7.677 
25 165.787 -119.219 46.568 
26 -1.763 2.416 0.653 
27 11.885 -6.934 4.952 
-28 14.575 -11.229 3.347 
29 37.361 -23.594 13.767 
30 7.269 -7.167 0.101 
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LINE 

k MVA 

s. 0 I 

MVA 

sI. k 

MVA 

1u_ 16.082 16.644 1.161 
2 59.769 58.585 1.205 
3 24.283 24.779 1.589 
4- 28.748 28.512 1.116 
5 31.899 `31.844 2.068 
6 16.720 18.402 2.963 
-7 12.756- 13.875 1.401- 
8 17.162 17.226 1.152 
9 27.503 27.014 1.602 

10 110.746 107.721 3.180 
11 52.399 50.751 1.658 
12 21.848 22.655 2.252 
13 78.000 62.197 -24.277 14 85.517 100.198 22.790 
15 81.287 61.736 19.929 
16 218.864 216.275 6.386V 
17 264.931 258.907 9.261 
18 471.016 466.887 11.895 
19- 118.051- 117.235 9.139 
20 64.357 58.523 8.147 
21 338.910 331.757 15". 331 
22 247.473, 246.255- 2.246 
23 417.519 411.941 15.033 
24 48.453 43.932 7.677 
25 624.939 607.243 47.109, 
26`: 28.643 28.673 0.654 

`27 79.658 78.936 4.953 
28 - 52.081« .. 51.199 3.347 
29 132.827 129.258 13.773 
30 7.476 7.378 0.101 
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MINIMIZATION OF TRANSMISSION LOSSES 

OVERALL SYSTEM RESULTS 

TOTAL ACTIVE POWER GENERATION 
( MW ), PGT 2678.156 

TOTAL REACTIVE POWER GENERATION 
( MVAR ), QGT 650.735 

TOTAL APPARENT POWER GENERATION 
( MVA ), SGT 2756.080 

TOTAL ACTIVE POWER TRANSMISSION 
LOSSES ( MW ), PLT 35.156 

TOTAL REACTIVE POWER TRANSMISSION 
LOSSES ( MVAR ), QLT -9.265 

TOTAL APPARENT POWER TRANSMISSION 
LOSSES ( MVA ), SLT 36.356 

TOTAL ACTIVE POWER GENERATION 
COST ( POUNDS PER HOUR ), CGT 3982.600 

SYSTEM COST PER UNIT GENERATION 
( POUNDS PER MWhr ), SPC 1.487 

COST ASSOCIATED WITH TRANSMISSION 
LOSSES ( POUNDS PER HOUR ), CLT 52.279 

COST ASSOCIATED WITH NET ACTIVE 
POWER ( POUNDS PER HOUR ), CGD 3930.321 

OVERALL SYSTEM POWER FACTOR, PF 0.972 
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TABLE (5.21) 

MINIMIZATION OF TRANSMISSION LOSSES 

CASE 
OPTIMUM GENERATION SCHEDULE 

GENERATOR 

j 

PGG, 

MW 

QGG, 

MVAR 

SGGa 

MVA 

GENERATION 
COST 

POUNDS 
PER HOUR 

1 54.367 14.931 56.380 175.061 
2 15.000 14.931 21.165 48.300 
3 61.000 14.931 62.801 196.420 
4 15.000 6.971 16.541 48.300 
5 57.743 6.579 58.116 127.034 
6 61.000 6.579 61.354 134.200 
7 58.000 11.704 59.169 125.280 
8 43.000 11.704 44.564 94.170 
9 56.880 11.704 58.072 123.430 

10 59.000 11.704 60.150 126.260 
11 83.000 24.028 86.408 70.550 
12 83.000 24.028 86.408 70.550 
13 83.000 24.028 86.408 70.550 
14 83.000 24.028 86.408 70.550 
15 83.000 24.028 86.408 70.550 
16 83.000 24.028 86.408 70.550 
17 22.000 17.068 27.845 37.620 
18 285.159 43.313 288.430 404.926 
19 357.000 45.427 359.879 431.970 
20 22.000 13.249 25.682 36.740 
21 22.000 13.249 25.682 37.620 
22 22.000 13.249 25.682 36.740 
23 256.926 33.622 259.116 346.850 
24 358.000 35.263 359.733 411.700 
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MINIMIZATION OF TRANSMISSION LOSSES 

CASES 

OPTIMUM BUS VOLTAGES 

BUS 

i 

V, 

PER UNIT 

O. 

DEGREES 

1 1.050 '-8.357 
2 1.032 -8.623 
3 1.043 -8.731 
4 1.023 -10.141 
5 1.020 -9.497 
6 1.023 -9.773 
7 1.009 -10.945 
8 1.031 -8.639 
9 1.014 -10.595 

10 0.993 -11.364 
11 1.025 -8.678 
12 1.033 -7.382 
13 1.041 -6.015 
14 1.049 -6.093 
15 1.020 -7.213 
16 1.027 -3.354 
17 1.019 -4.536 
18 1.021 -4.301 
19 1.017 -4.177 
20 1.050 2.481 
21 1.033 -0.849 
22 1.034 -1.346 
23 1.050 0.000 

177 



TABLE (5.22-B) 

MINIMIZATION OF TRANSMISSION LOSSES 

CASE 

OPTIMAL BUS INJECTIONS 

BUS 

i 

Pi 

MW 

Mi 

MVAR 

Si 

MVA 

1 74.367 30.794 80.490 
2 45.743 -1.872 45.781 
3 . 0.076 0.005 0.076 
4 -40.682 -9.989 41.891 
5 -44.469 -11.000 45.809 
6 -35.823 -8.973 36.929 
7' -41.631 -9.968 42.808 
8 0.127 -0.218 0.252 
9 -131.666 -33.236 135.796 

10 -155.310 -38.931 160.115 
11 101.880 17.816 103.426 
12 -5.350 0.223 5.354 
13 4.581 0.296 4.590 
14 73.033 38.169 82.406 
15 -176.385 -43.818 181.746 
16 -116.952 -28.996 120.493 
17 -303.907 -75.996 313.265 
18 -91.373 -22.842 94.185 
19 -332.450 -82.918 342.635 
20 764.159 130.808 775.274 
21 -331.466 -82.932 341.683 
22 210.096 52.061 216.450 
23 566.926 80.633 572.631 
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TABLE (5.23) 

MINIMIZATION OF TRANSMISSION LOSSES 

CASE B 

OPTIMUM STATION OUTPUTS 

GENERATION 
BUS PGBL QGBi SGB. COST 

NGB± 
i MW MVAR MVA POUNDS 

PER HOUR 

1 3 130.367 44.794 137.848 419.781 

2 3 133.743 20.128 135.249 309.534 

11 4 216.880 46.816 221.875 469.140 

14 6 498.000 144.169 518.448 423.300 

20 3 664.159 105.808 672.534 874.516 

23 5 680.926 108.633 689.537 869.650 
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TABLE (5.24-A) 

MINIMIZATION OF TRANSMISSION LOSSES 

CASE B 

OPTIMUM ACTIVE POWER LINE FLOWS 

LINE 

k 

Pt, 

MW 

P-i IL 

MW 

PLk 

MW 

1 15.820 -15.758 0.062 
2 55.920 -54.960 0.960 
3 20.508 -20.338 0.170 
4 24.318 -24.130 0.187 
5 27.859 -27.398 0.461 
6 15.834 -15.667 0.167 
7 14.278 -14.215 0.063 
8 14.283 -14.233 0.049 
9 20.330 -20.156 0.174 

10 101.880 -99.487 2.393 
11 42.210 -41.134 1.076 
12 14.878 -14.689 0.188 
13 1.394 -1.372 0.022 
14 74.405 -74.124 0.281 
15 4.591 -4.518 0.073 
16 182.095 -180.976 1.119 
17 159.289 -157.241 2.048 
18 278.134 -277.359 0.775 
19 -26.548 26.563 0.015 
20 13.271 -13.249 0.022 
21 350.965 -345.721 5.243 
22 288.692 -286.782 1.910 
23 413.194 -410.149 3.046 
24 78.682 -78.595 0.087 
25 398.188 -395.086 3.102 
26' 27.898 -27.881 0.017 
27 58.926 -58.849 0.077 
28 45.394 -45.355 0.040 
29 101.501 -101.257 0.244 
30 2.627 -2.625 0.002 
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TABLE (5.24-B) 

MINIMIZATION OF TRANSMISSION LOSSES 

CASE B 

OPTIMUM REACTIVE POWER LINE FLOWS 

LINE 

k 

Q1 
-j 

MVAR 

Qj i. . 

MVAR 

QLk 

MVAR 

1 5.162 -6.316 -1.154 
2 16.403 -15.873 0.530 
3 4.268 -5.968 -1.700 
4 3.790 -5.031 -1.241 
5 2.922 -5.272 -2.350 
6 6.321 -9.296 -2.976 
7 5.884 -7.253 -1.369 
8 3.493 -4.695 -1.202 
9 -2.231 0.323 -1.907 

10 17.816 -17.177 0.639 
11 9.973 -10.582 -0.609 
12 8.655 -11.172 -2.516 
13 -36.242 10.493 -25.749 
14 27.675 -51.096 -23.421 
15 -55.278 33.987 -21.291 
16 -22.563 11.460 -11.103 
17 -25.553 -11.137 -36.691 
18 62.944 -62.427 0.517 
19 -13.569 1.903 -11.666 
20 -39.727 30.953 -8.774 
21 59.191 -43.191 16.000 
22 34.708 -33.134 1.574 
23 71.617 -58.064 13.553 
24 -24.868 17.353 -7.515 
25 105.417 -91.940 13.477 
26 2.155 -1.539 0.616 
27 13.029 -10.211 2.818 
28 15.177 -12.385 2.792 
29 34.647 -25.747 8.900 
30 9.229 -9.062 0.167 
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TABLE (5.24-C) 

MINIMIZATION OF TRANSMISSION LOSSES 

CASE B 

OPTIMUM APPARENT POWER LINE FLOWS 

LINE 

k 

5:, 

MVA 

SaA. 

MVA 

SLM 

MVA 

1 16.641 16.976 1.155 
2 58.276 57.206 1.096 
3 20.948 21.196 1.709 
4 24.611. 24.649 1.255 
5 28.012 27.901 2.395 
6 17.049 18.217 2.980 
7 15.443 15.958 1.371 
8 14.704 14.988 1.203 
9 20.452 20.158 1.915 

10 103.426 100.959 2.477 
11 43.372 42.474 1.236 
12 17.212 18.455 2.523 
13 36.269 10.583 25.749 
14 79.386 90.029 23.422 
15 55.468 34.286 21.291 
16 183.487 181.338 11.160 
17 161.326 157.635 36.748 
18 285.167 284.298 0.931 
19 29.814 26.631 11.666 
20 41.885 33.669 8.774 
21 355.921 348.409 16.837 
22- 290.771 288.690 2.474 
23- 419.355 414.238 13.891 
24 82.519 80.488 7.516 
25 - 411.905 405.642 13.829 
26 27.981 27.924 0.616 
27 60.349 59.728 2.819 
28 47.864 47.015 2.793 
29 107.252 104.479 8.903 
30 9.596 9.435 0.167 
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TABLE (5.25) 

MINIMIZATION OF TRANSMISSION LOSSES 

CASE B 
OVERALL SYSTEM RESULTS 

TOTAL ACTIVE POWER GENERATION 
( MW ), PGT 2324.074 

TOTAL REACTIVE POWER GENERATION 
MVAR ), QGT 470.348 

TOTAL APPARENT POWER GENERATION 
( MVA ), SGT 2371.191 

TOTAL ACTIVE POWER TRANSMISSION 
LOSSES ( MW ), PLT 24.074 

TOTAL REACTIVE POWER TRANSMISSION 
LOSSES ( MVAR ), QLT -101.652 

TOTAL APPARENT POWER TRANSMISSION 
LOSSES ( MVA ), SLT 104.464 

TOTAL ACTIVE POWER GENERATION 
COST ( POUNDS PER HOUR ), CGT 3365.920 

SYSTEM COST PER UNIT GENERATION 
( POUNDS PER MWhr ), SPC 1.448 

COST ASSOCIATED WITH TRANSMISSION 
LOSSES ( POUNDS PER HOUR ). CLT 34.866 

COST ASSOCIATED WITH NET ACTIVE 
POWER ( POUNDS PER HOUR ). CGD 3331.054 

OVERALL SYSTEM POWER FACTOR. PF 0.980 
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TABLE (5.26) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE A 

OPTIMUM GENERATION"SCHEDULE 

GENERATOR 

j 

PGG, 

MW 

QGGj 

MVAR 

SGG, 

MVA 

GENERATION 
COST 

POUNDS 
PER HOUR 

1 61.000 11.130 62.007 196.420 
2 53.939 11.130 55.075 173.684 
3 61.000 11.130 "62.007 196.420 
4 29.057 17.647 33.996 93.564 
5 61.000 16.654 63.233 134.200 
6 61.000 16.654 63.233 134.200 
7 58.000 18.071 60.750 125.280 
8 52.265 18.071 55.301 114.461 
9 59.000 18.071 61.705 128.030 

10 59.000 18.071 61.705 126.260 
11 83.000 23.671 86.309 70.550 
12 83.000 23.671 86.309 70.550 
13 83.000 23.671 86.309 70.550 
14 83.000 23.671 86.309 70.550 
15 83.000 23.671 86.309 70.550 
16 83.000 23.671 86.309 70.550 
17 49.062 13.513 50.889 83.897 
18 334.000 34.291 335.756 474.280 
19 357.000 35.964 358.807 431.970 
20 60.305 34.513 69.483 100.709 
21 22.000 34.513 40.929 37.620 
22 112.000 34.513 117.197 187.040 
23 334.000- . 87.582 345.292 450.900 
24 358.000 91.857 369.597 411.700 
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TABLE (5.27-A) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE A 

OPTIMUM BUS VOLTAGES 

BUS 

i 

Vi 

PER UNIT 

81 

DEGREES 

1 1.016 -10.086 
2 1.016 -11.579 
3 1.009 -10.749 
4 0.985 -12.792 
5 0.992 -12.683 
6 0.987 -12.644 
7 0.975 -14.360 
8 0.997 -11.742 
9 0.977 -13.943 

10 0.960 -15.844 
11 1.004 -13.430 
12 0.992 -10.516 
13 1.009 -8.529 
14 1.009 -9.439 
15 0.975 -10.073 
16 1.006 -4.346 
17 0.990 -5.999 
18 0.977 -6.255 
19 0.967 -6.205 
20 0.996 1.828 
21 0.979 -2.324 
22 0.984 -2.926 
23 1.050 0.000 
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TABLE (5.27-B) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE A 

OPTIMAL BUS INJECTIONS 

BUS P: L 

MW 

QI 

MAR 

St. 

MV A 

1 111.939 17.389 113.282 
2 50.057 25.955 56.386 
3- 0.247 --0.081 0.260 
4 -45.364 -12.283 46.997 
5 -49.988 -13.155 51.690 
6 -40.083 -10.046 41.323 
7 -47.069 -12.096 48.599 
8 0.491 -0.530 0.723 
9 -146.040 -38.675 151.074 

10 -172.584 -44.217 178.158 
11 -898.265. 40.284 106.202 
12 -5.949 0.184 5.952 
13 5.370 0.725 5.419 
14 13.146 22.023 25.649 
15 -199.576 -49.835 205.704 
16 -131.322 -32.803 135.357 
17 -343.056 -85.782 353.618 
18 -103.086 -25.745 106.252 
19 -375.271 -93.936 386.850 
20 840.062 108.768 847.075 
21 -374.308 -93.951 385.919 
22 209.628 52.025 215.988 
23 757.305 250.978 797.810 
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TABLE (5.28) 

MINIMIZATION OF REACTIVE'POWER GENERATION 

CASE :..... 

OPTIMUM STATION OUTPUTS 

GENERATION 
BUS PGB. L QGBt SGBt COST 

NGB:. 
i MW MVAR MVA POUNDS 

PER HOUR 

1 3 175.939 33.389 179.079 566.524 

2 3 151.057 50.955 159.420 361.964 

11 4 228.265 72.284 `239.437 494.031 

14 6 498.000 142.023 517.856 423.300 

20 3 740.062 83.768 744.788 990.147 

23 5 886.305 282.978 930.383 1187.969 
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TABLE (5.29-A) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE A 

OPTIMUM ACTIVE-POWER-LINE FLOWS 

LINE 

k 

Ps. , 

MW 

P-i I 

MW 

PLk 

. MW 

1 23.734 -23.598 0.136 
2 74.753 -73.016 1.736 
3 28.736 -28.324 0.412 
4 21.821 -21.663 0.157 
5 34.769 -33.942 0.827 
6 23.846 -23.505 0.341 
7 27.653 -27.443 0.210 
8 13.169 -13.127 0.042 
9 16.707 -16.578 0.129 

10 98.265 -95.613 2.652 
11 54.496 -52.696 1.800 
12 24.658 -24.275 0.383 
13 45.650 -45.562 0.088 
14 58.708 -58.488 0.220 
15 17.358 -17.218 0.140 
16 218.693 -216.934 1.759 
17 224.208 -219.964 4.244 
18 379.729 -378.040 1.689 
19 34.984 -34.845 0.139 
20 -2.795 2.888 0.093 
21 379.152 -372.476 6.676 
22 291.936 -289.822 2.114 
23 460.910 -456.754 4.156 
24 82.446 -82.308 0.138 
25 516.909 -511.051 5.858 
26 25.023 -25.007 0.016 
27 67.633 -67.525 0.108 
28 44.734 -44.694 0.040 
29 112.050 -111.730 0.320 
30 13.452 -13.448 0.004 
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TABLE (5.29-B) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE A 

OPTIMUM REACTIVE POWER LINE FLOWS 

LINE 

k 

Q,., 

MVAR 

Q,, 

MVAR 

QLk 

MVAR 

1 3.325 -4.232 -0.907 
2 13.988 -11.606 2.382 
3 14.040 -15.122 -1.082 
4 -3.177 1.967 -1.209 
5 11.641 -12.855 -1.214 
6 4.151 -6.439 -2.288 
7 -0.678 -0.195 -0.873 
8 -1.887 0.759 -1.128 
9 1.751 -3.607 -1.856 

10 40.284 -38.831 1.453 
11 3.888 -2.711 1.177 
12 0.788 -2.675 -1.888 
13 -15.568 -7.864 -23.432 
14 29.887 -51.828 -21.941 
15 -66.392 47.437 -18.954 
16 -20.655 16.557 -4.098 
17 21.209 -38.528 -17.319 
18 160.859 -152.758 8.101 
19 66.976 -76.826 -9.850 
20 -77.654 70.247 -7.407 
21 46.368 -16.282 30.085 
22 2.946 1.490 4.435 
23 62.401 -38.577 23.824 
24 -55.374 49.080 -6.294 
25 229.972 -193.662 36.310 
26 -6.958 7.534 0.576 
27 14.467 -10.526 3.941 
28 11.533 -8.711 2.821 
29 40.354 -28.670 11.684 
30 0.076 0.274 0.350 
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TABLE (5.29-C) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASEA 

OPTIMUM APPARENT POWER LINE FLOWS 

LINE 

k 

St, 

MVA 

S, 1 "' 

MVA 

SLie 

MVA 

1 23.966 23.975 0.918 
2 76.050 73.933 2.948 
3 31.982 32.108 1.157 
4 22.051 21.753 1.220- 
5 36.666 36.295 1.469 
6 24.204 24.371 2.313 
7, - 27.661 27.444 0.898 
8 13.303 13.149 1.128 
9 16.798 16.966 1.861 

10 106.202 103.197 3.024 
11 54.635 52.766 2.151 
12 24.670 24.422 1.926 

-_13. 48.232 46.236 23.432 
14 65.878 78.147 21.942 
15 68.623 50.466 18.955 

-16 219.666 217.564 4.460 

. 17 225.209 223.312 17.832 
18 412.395 407.737 8.275 

- 19 75.562. - -84.359 9.851 
20 77.704 70.306 7.407 
21 381.977 372.832 30.817 
22 291.951 289.826. 4.913 
23 465.115 458.380' 24.183 
24 99.316 95.830 6.296 
25 "565.758 546.515 36.780 
26 25.973 26.118 0.576 
27 69.163 68.341 3.942 
28 46.197 45.535 2.821 
29 119.095 115.349 11.688 
30 13.453 13.451 0.350 
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-TABLE (5.30) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE A 

OVERALL SYSTEM RESULTS 

TOTAL ACTIVE POWER GENERATION 
MW ). PGT 2679.628 

TOTAL REACTIVE POWER GENERATION 
( MVAR ), QGT 665.398 

TOTAL APPARENT POWER GENERATION 
MVA ). SGT 2761.007 

TOTAL ACTIVE POWER TRANSMISSION 
LOSSES ( MW ), PLT 36.628 

TOTAL REACTIVE POWER TRANSMISSION 
LOSSES ( MVAR ), QLT 5.398 

TOTAL APPARENT POWER TRANSMISSION 
LOSSES ( MVA ). SLT 37.024 

TOTAL ACTIVE POWER GENERATION 
COST ( POUNDS PER HOUR ), CGT 4023.934 

SYSTEM COST PER UNIT GENERATION 
( POUNDS PER MWhr ). SPC 1.502, 

COST ASSOCIATED WITH TRANSMISSION 
LOSSES ( POUNDS PER HOUR ), CLT 55.003 

COST ASSOCIATED WITH NET ACTIVE 
POWER ( POUNDS PER HOUR ), CGD 3968.931 

OVERALL SYSTEM POWER FACTOR, PF 0.971 
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TABLE (5.31) 

MINIMIZATION OF REACTIVE POWER GENERATION 

C 

OPTIMUM GENERATION SCHEDULE 

GENERATOR 

j 

PGG. a 

MW 

QGGj 

MVAR 

SGG, 

MVA 

GENERATION 
COST 

POUNDS 
PER HOUR 

1 60.395 15.468 62.345 194.473 
2 15.000 15.468 21.547 48.300 
3 61.000 15.468 62.931 196.420 
4 15.000 10.613 18.375 48.300 
5 47.977 10.016 49.012 105.550 
6 61.000 10.016 61.817 134.200 
7 54.206 11.525 55.417 117.084 
8 43.000 11.525 44.518 94.170 
9 43.000 11.525 44.518 93.310 

10 59.000 11.525 60.115 126.260 
11 83.000 30.085 88.284 70.550 
12 83.000 30.085 88.284 70.550 
13 83.000 30.085 88.284 70.550 
14 83.000 30.085 88.284 70.550 
15 83.000 30.085 88.284 70.550 
16 83.000 30.085 88.284 70.550 
17 22.000 0.094 22.000 37.620 
18 135.000 0.239 135.000 191.700 
19 352.267 0.251 352.267 426.243 
20 33.651 24.032 41.352 56.198 
21 22.000 24.032 32.582 37.620 
22 112.000 24.032 114.549 187.040 
23 334.000 60.986 339.522 450.900 
24 358.000 63.962 363.669 411.700 
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TABLE (5.32-A) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE 

OPTIMUM BUS VOLTAGES 

BUS 

i 

Vs 

PER UNIT 

6, 

DEGREES 

1 1.050 -10.739 
2 1.035 -11.494 
3 1.043 -11.118 
4 1.021 -12.520 
5 1.019 -12.125 
6 1.021 -12.186 
7 1.007 -13.460 
8 1.027 -11.069 
9 1.011 -12.992 

10 0.984 -14.358 
11 1.013 -12.131 
12 1.024 -9.939 
13 1.039 -7.869 
14 1.049 -8.392 
15 1.000 -10.052 
16 1.013 -4.525 
17 1.000 -6.317 
18 0.991 -7.279 
19 0.980 -7.658 
20 0.994 -1.837 
21 0.986 -4.858 
22 0.994 -4.922 
23 1.050 0.000 

. «.,.... 

193 



TABLE (5.32-B) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE B 

OPTIMAL BUS INJECTIONS 

BUS 

i- 

PI 

MW' 
_ 
MVAR ° 

Si 

MVA 

1 80.395 ''32.405 86.680 
2 35.977 8.645 37.002 

0.069 -0.038 Y" 0.079 
4 -40.333 -10.154 41.591 
5 -44.485 -11.073 45.842 
6 -35.632 -9.040 36.761 
7 -41.531 -10.063 42.733 
8 0.118 -0.185 0.219 
9 -130.736 -33.234 134.894 

10 -153.072 -39.210 158.015 
11 84.206 17.100 - 85.924 
12 -6.545 1.258 6.665 
13 3.830 0.504 3.863 
14 66.609 74.511 99.943 
15 -175.916 -42.878 181.066 
16 -118.078 -28.571 121.485 
17 -304.599 -75.621 313.846 
18 -92.526 -21.788 95.056 
19 -331.973 -82.474 342.064 
20 609.267 25.585 609.804 
21 -330.369 -82.683' 340.558 
22 208.674 52.405 215.153 
23 745.651 169.045. 764,573 
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TABLE (5.33) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE 

OPTIMUM STATION OUTPUTS 

GENERATION 
BUS PGBý QGB, SGB, COST 

NGBi 
1 MW MVAR MVA POUNDS 

PER HOUR 

1 3 136.395 46.405 144.073 439.193 

2 3 123.977 30.645 127.709 288.050 

11 4 199.206 46.100 204.470 430.824 

14 6 498.000 180.511 529.706 423.300 

20 3 509.267 0.585 509.267 655.563 

23 5 859.651 197.045 881.945 1143.458 
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TABLE (5.34-A) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE B 

OPTIMUM ACTIVE POWER LINE FLOWS 

LINE 

k 

Pl, 

MW 

P� 

MW 

PLk 

MW 

1 16.476 -16.406 0.070 
2 56.667 -55.663 1.004 
3 17.934 -17.770 0.164 
4 26.938 -26.714 0.224 
5 25.292 -24.884 0.408 
6 16.475 -16.288 0.187 
7 15.331 -15.253 0.078 
8 16.710 -16.647 0.063 
9 19.506 -19.344 0.163 

10 84.206 -82.510 1.696 
11 49.551 -48.080 1.471 
12 22.853 -22.483 0.370 
13 24.162 -24.092 0.070 
14 90.700 -90.211 0.490 
15 -16.225 16.465 0.240 
16 160.690 -159.691 0.999 
17 208.009 -204.514 3.495 
18 411.196 -409.399 1.797 
19 104.800 -104.531 0.268 
20 -60.050 60.203 0.153 
21 275.392 -271.923 3.469 
22 209.960 -208.887 1.073 
23 333.874 -331.722 2.152 
24 1.353 -1.286 0.067 
25 535.137 -529.274 5.864 
26 24.618 -24.605 0.014 
27 71.386 -71.273 0.113 
28 42.582 -42.548 0.034 
29 112.796 -112.498 0.299 
30 7.252 -7.249 0.003 
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MINIMIZATION OF REACTIVE POWER GENERATION 

CASE B 

OPTIMUM REACTIVE POWER LINE FLOWS 

LINE 

k 

Qi , 

MVAR 

Q, S. 

MVAR 

QL,.; 

MVAR 

1 6,204 -7.340 -1.136 
2 18.418 -17.786 0.632 
3 9.598 -11.316 -1.718 
4 -1.398 0.243 -1.155 
5 6.624 -9.116 -2.492 
6 7.302 -10.215 -2.912 
7 7.632 -8.956 -1.323 
8 -0.220 -0.947 -1.167 
9 -3.094 1.175 -1.920 

10 17.100 -17.908 -0.808 
11 10.444 -10.148 0.296 
12 9.071 -11.154 -2.084 
13 -47.138 21.841 -25.298 
14 52.670 -74.183 -21.513 
15 -88.142 68.801 -19.341 
16 -56.360 45.264 -11.096 
17 -21.974 -2.887 -24.861 
18 121.016 -112.138 8.878 
19 36.518 -45.604 -9.086 
20 -78.992 71.844 -7.148 
21 7.506 -3.482 4.024 
22 -12.526 8.332 -4.193 
23 18.079 -10.757 7.322 
24 -71.926 64.930 -6.996 
25 185.865 -149.588 36.278 
26 -3.913 4.410 0.497 
27 14.676 -10.547 4.129 
28 10.553 -8.168 2.386 
29 35.853 -24.962 10.891 
30 7.782 -7.577 0.205 

197 



TABLE (5.34-C) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE B 

OPTIMUM APPARENT POWER LINE FLOWS 

LINE 

k 

Si., 

MVA 

S. 
31. 

MVA 

Si+M 

MVA 

1 17.606 -17.974 1.138 
2 59.585 58.436 1.186 
3 20.341 21.067 1.725 
4- 26.974 26.716 1.176 
5 26.145 26.501 2.525 
6 18.021 19.226 2.918 
7 17.125 17.687 1.326 
8 16.711 16.674 1.168 
9 19.750 19.379 1.926 

10 85.924 84.431 1.878 
11 50.640 49.139 1.500 
12 24.587 25.098 2.116 
13 52.970 --32.518- 25.298 
14 104.884 116.795 21.518 
15 89.623 70.744 19.342 
16 170.287- ---165.982 11.141 
17 209.166 204.534 25.106 
18 428.634 424.479 9.058 
19 110.980 -114.046 9.090 
20 99.225 93.733 7.150 
21 275.495 271.946 5.313 
22 210.333- 209.053 4.328 
23 334.364 331.896 7.632 
24 71.939 64.943 6.996 
25 566.496- 550.007- 36.749 
26 24.928 24.997 0.497 
27 72.879 72.049 4.131 
28 43.870 43.325 2.386 
29 118.357 115.234 10.895 
30 10.637 10.486 0.205 
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TABLE (5.35) 

MINIMIZATION OF REACTIVE POWER GENERATION 

CASE B 

OVERALL SYSTEM RESULTS 

TOTAL ACTIVE POWER GENERATION 
( MW ), PGT 2326.496 

TOTAL REACTIVE POWER GENERATION 
( MVAR ), QGT 501.291 

TOTAL APPARENT POWER GENERATION 
( MVA ), SGT 2379.890 

TOTAL ACTIVE POWER TRANSMISSION 
LOSSES ( MW ), PLT 26.496 

TOTAL REACTIVE POWER TRANSMISSION 
LOSSES ( MVAR ), QLT -70.709 

TOTAL APPARENT POWER TRANSMISSION 
LOSSES ( MVA ), SLT 75.510 

TOTAL ACTIVE POWER GENERATION 
COST ( POUNDS PER HOUR ), CGT 3380.388 

SYSTEM COST PER UNIT GENERATION 
( POUNDS PER MWhr ). SPC 1.453 

COST ASSOCIATED WITH TRANSMISSION 
LOSSES ( POUNDS PER HOUR ), CLT 38.499 

COST ASSOCIATED WITH NET ACTIVE 
POWER ( POUNDS PER HOUR ). CGD 3341.889 

OVERALL SYSTEM-POWER FACTOR, PF- 0.978 
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TABLE (5.36-A) 

COMPARATIVE TABLE OF NUMERICAL RESULTS 

CASE A 

QUANTITY PROBLEM 1 PROBLEM 2 PROBLEM 3 

PGT 2690.820 2678.156 2679.628 

QGT 764.797 650.735 665.398 

SGT 2797.396 2756.080 2761.007 

PLT 47.820 35.156 36.628 

QLT 104.797 -9.265 5.398 

SLT 115.192 36.356 37.024 

CGT 3976.040 3982.600 4023.934 

SPC 1.478 1.487 1.502 

CLT 70.667 52.279 55.003 

CGD 3905.380 3930.321 3968.931 

PF 0.962 0.972 0.971 

TOTAL SYSTEM DEMAND 

ACTIVE POWER 2643 MW 
REACTIVE POWER 660 MVAR 
APPARENT POWER 2724.160 MVA 

FOR DEFINITIONS OF ALL QUANTITIES IN THIS TABLE 
AND THEIR UNITS, SEE TABLE (5.35) ABOVE. 
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COMPARATIVE TABLE OF NUMERICAL RESULTS 

CASE 

QUANTITY PROBLEM 1 PROBLEM 2 PROBLEM 3 

PGT 2335.847 2324.074 2326.496 

QGT 597.531 470.348 501.291 

SGT 2411.063 2371.191 2379.890 

PLT 35.847 24.074 26.496 

QLT 25.531 -101.652 -70.709 

SLT 44.010 104.464 75.510 

CGT 3236.695 3365.920 3380.388 

SPC 1.386 1.448 1.453 

CLT 49.672 34.866 38.499 

CGD 3187.023 3331. Q54 3341.889 

PF 0.969 0.980 0.978 

TOTAL SYSTEM DEMAND 

ACTIVE POWER 2300 MW 
REACTIVE POWER 572 MVAR 
APPARENT POWER 2370.056 MVA 

FOR DEFINITIONS OF ALL QUANTITIES IN THIS TABLE 
AND THEIR UNITS, SEE TABLE (5.35) ABOVE. 
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6.1 INTRODUCTION 

As in many other practical engineering research 

fields, one of the notorious problems that face the power 

system analyst is that of, dimensionality. The general 

problem of dimensionality is usually superimposed on the 

particular complexity - of the problem in - hand. 

Dimensionality is an indication of the size of the 

problem in terms of the number of its unknown° variables 

and the associated matrices involved in its mathematical 

representation. The, problem of dimensionality can-be so 

serious in systems analysis that it has been described as 

a "curse" in some publications (41). In the present work, 

the various Stage-I optimization problems presented in 

Chapter 5 can be used to illustrate this point. ' For a 

system defined- by NB buses and NL lines, the linear 

programming representation of each of optimization 

Problems 1 and 2 involved 2N variables and '2(NB+NL) 

constraints. These represent the dimensions of the 

constraints coefficients matrix. For a system as small as 

the one used for test purposes in the present work, the 

dimension of this matrix is ( 106 X 44 ). Many other 

matrices of similar, range of dimension have to °be 
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processed and stored by the computer during the course of 

solution of the problem, which only worsen the situation, 

especially if the solution algorithm involves matrix 

inversion. 

Initially, solution methods and computer programs 

are usually designed and developed irrespective of 

problem sizes. This means that, in principle at least, an 

algorithm, and the corresponding computer program, that 

can solve a small problem, in terms of dimensionality, 

can also solve a large one. However, the problem of 

dimensionality manifests itself in terms of the storage 

requirements of the computer memory and is usually 

accompanied by longer CPU times to perform the required 

computations. Because of these difficulties, solution 

algorithms have to be modified to take problem sizes into 

account. 

6.2 METHODS OF DECOMPOSITION 

In the literature, a number of methods and 

decomposition techniques have been used to reduce the 

sizes of optimization problems and their associated 

matrices. Decomposition implies breaking up the large 

problem into a number of smaller problems that can be 

handled and solved almost independently, with obvious 

reduction in the computer storage requirements. 

Decomposition methods, as applied to power system 

optimization problems, usually fall in one of two main 
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categories. In the first category, sometimes referred to 

as P-R decomposition, the problem is divided into two 

subproblems. One subproblem is known as the active power 

problem or P-problem, and the other as the reactive power 

problem or Q-problem. This category of decomposition 

method is based on the weak coupling between two sets of 

power system variables on one hand, and the strong ti 

coupling among the variables of each set on the other. 

One of these two sets of variables consists of the bus 

real power outputs and phase angles. The variables of the 

other set are the bus 'reactive powers and voltage 

magnitudes. In the strict sense of the word, therefore, 

this is some form of decoupling rather than 

decomposition. Basically, it is the same as the 

decoupling technique applied in load flow studies, based 

on the Newton-Raphson method, which is used to produce a 

reduced form of the system Jacobian matrix. One of the 

papers that fall into this category is that of Sjelvgren 

and Bubenko [42), which presented a method of solving the 

optimal power flow problem taking into consideration 

transmission line outage contingencies in addition to 

normal operating constraints. Another paper, that 

utilized the same decoupling principle, was published by 

Shoults and Sun [43). Their method was based on first 

order gradient method and nonlinear minimization 

technique. The P-problem is used to minimize the hourly 

production cost by controlling generator real power 

outputs and tap settings on phase-shifting transformers. 
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The Q-problem is used to minimize the real power 

transmission losses by controlling generator terminal 

voltages, transformer tap settings and shunt 

capacitor/reactor outputs. 

The second category of decomposition techniques 

utilizes the special: -structure of the power system 

problem. One way of achieving this is by dividing the 

physical system into smaller areas and solving a number 

of smaller optimization problems such that some overall 

objective is achieved. Another way is to formulate the 

mathematical model of the whole system and then exploit 

the special structure and sparsity of the resulting 

matrix. 

In some research papers the decomposition is 

directed towards hierarchical or multilevel control 144]. 

This is based on control functions performed by separate 

areas of the power system which are independent of each 

other, but are coordinated by-a, central area control. In 

the same way the required computations are performed by 

separate lower level area computers coordinated by a 

central higher level-computer. 

.. -ý 
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Another method of decomposition applies tearing or 

diakoptics techniques [45,46,47). These are procedures by 

which networks are solved piecewise. Happ and Young (461 

described the logic of tearing algorithms and their 

embedding into the Newton-Raphson load flow. They also 

presented the implementation of the method for both load 

flow and stability programs. 

Benders decomposition method is useful for mixed 

integer programming problems. These are linear 

programming problems in which some of the variables are 

continuous and some of them are constrained to be 

integers. Benders method decomposes the problem into two 

parts. One part deals with the integer variables while 

the other deals with the continuous variables. Based on 

this method, a relatively recent paper by Habibollahzadeh 

and Bubenko 1481 described a decomposition technique in a 

model for short-term operation planning of a large-scale 

hydrothermal power system with high share of hydro 

generation. The-problem was divided into a Master problem 

and a Subproblem. The master problem considered the 

integer variables of the unit commitment of thermal 

plants. The subproblem dealt with the continuous 

variables of the economic dispatch- problem. 'Further 

decomposition was also achieved by dividing the master 

problem with respect to different plants and the 

subproblem with respect to hydro and thermal generation: 
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"A relevant topic. in the context of dimensionality, 

is that of Sparsity. This is a property of a matrix, 

especially a large one, where most of the elements have 

zero values. Usually, in such case, the number of zero 

elements is much larger than the number of non-zero 

elements. The property itself is a reflection of the 

nature of the physical system which the matrix 

represents. Sparsity techniques are solution methods 

directed towards exploiting this property of matrices. 

They are based on the efficient storage and handling of 

these matrices such that only non-zero elements- are 

used [49-52] . 

Another topic in this context, particularly relevant 

to linear programming optimization problems. is Duality. 

Computational experience has shown that the difficulty of 

a linear programming problem depends mostly on the number 

of constraints involved rather than on the number of 

variables (241. Duality allows representing the original 

linear programming problem, called the Primal, by an 

equivalent problem. called the Dual, such that the 

solution of either problem can be readily obtained from 

the solution of the other. Generally, one of the two 

equivalent formulations is less demanding than the other 

in terms of- its memory storage and computation time 

requirements. Thus, it can be advantageous to-solve one 

of the problems and obtain the solution of , the other 

indirectly. Among other properties of duality isthat the 
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number of constraints in the dual is equal-to the number 

of variables in the Primal and vice versa. Considering 

the number of constraints-of each-problem, the one with 

the least number. of constraints is solved [34)- The 

concept of duality is treated in more detail in Section 

(A. 4) of the Appendix. " 

6.3 SPECIAL MATRIX STRUCTURES 

As mentioned above, some decomposition methods are 

based on exploiting-the sparsity of, the problem matrix'. 

Apart from being sparse, the matrix representations of 

many, practical systems have a'special structure in the 

sense that the non-zero elements of the matrix-tend to 

form a particular,, -pattern that gives the matrix a 

noticeable shape. The particular shape of, the sparse 

matrix can be very helpful in finding a suitable 

decomposition, or solution method. Sparse-matrices in 

which the, non-zero elements are randomly scattered are 

not very "useful'intthis respect, and they need more 

effort in devising 'the sparsity-orientated method of 

solution and the preparation'of'-the associated computer 

program. 

In the context of applying decomposition methods to 

the solution of, linear programming optimization problems, 

the relevant matrix- is that of -, the constraints 

coefficients. Among' the, various , special-structure 

matrices, of particular interest is the one 'shown in 
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FIG. (6.1). This is known as the Block-diagonal' or 

Block-angular" structure. This 'particular shape of the 

constraints coefficients 'matrix, characterizes many 

practical optimization problems' where the decision 

variables' of the problem appear in a number of separate 

sets combined by a few coupling constraints. In different 

publications on the subject, these coupling constraints 

are also referred to as the combining, common, linking or 

simply general constraints. It is to be mentioned 'that, 

in general, the blocks of-non-zero elements, that define 

the particular shape or structure of the matrix, can also 

contain zero elements. However, these are usually much 

fewerý: than the non-zero elements and their occurrence in 

the block has no particular tendency. Before'proceeding 

with this discussion, it is to be mentioned that' block 

diagonal matrices should not be-confused' with diagonal 

matrices. The latter are square matrices where all 

off-diagonal elements are zero, i. e., for a matrix A. the 

value of the element a� -0 for all i+i 153). Block 

diagonal matrices are not necessarily square and the 

reference here is to groups of elements rather than to 

individual elements. 

I'll, Matrices that possess the special structure 

described above; - usually result from the nature of the 

physical system that the mathematical problem represents. 

Physical systems of this nature consist of a number of 

"islands" that represent decentralized activities of a 
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large organization, connected: by a few distribution 

routes or communication links. Apart from electric power 

systems which are addressed here, practical examples 

include a', number of various industries where items or 

goods are manufactured in a small number of factories 

sparsely located in a large geographical area that covers 

the market' or the area of consumer demand. The 

optimization problem in these cases involves determining 

the 'best way , of operating these factories or 

"production centres" collectively such that some global 

objective is accomplished. The aim can , be the 

minimization of the total production cost, maximization 

of profit or selecting the least-cost routes for 

transporting the manufactured goods. This has to be 

achieved under constraints of available resources such as 

machinery or manpower as well as meeting the consumer 

demand in terms of quantities and deadlines. 

The physical structure- of a power system is 

characterized by many of the propertiesfdescribed above. 

Electricity is , generated °in" sparsely-placed power 

stations and- transmitted to remote load-, centres. The 

general structure of the whole system, is such that it 

consists,. of a number of areas or subsystems, the 

mathematical representation °of which has the block 

diagonal matrix form described above. 
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This property can be exploited to reduce the 

dimensionality of the problem by solving a number of 

small subproblems corresponding to the blocks of the 

constraints matrix, with the solutions of the individual 

subproblems coordinated by a combining algorithm designed 

to take into account the effect of the common constraints 

and achieve the main objective of the whole problem. This 

has also been found advantageous in tackling large scale 

problems which are, otherwise, computationally difficult 

to solve (281. Another advantage of this principle is 

that it automatically makes use of the sparsity of the 

constraint matrix, resulting in a reduction in the 

associated computer storage requirements. 

As discussed above, the block diagonal structure of 

the constraints coefficients matrix virtually presents a 

mathematical image of the physical problem which, in our 

case, is the-electric power system. However, in many 

cases, the shape of the constraints coefficients matrix 

is not readily predictable from the power system network 

configuration and a considerable effort is needed, to 

decompose the system starting, for example, from its 

network diagram. One reason is that the boundaries 

between subareas of the system are not always very clear. 

Also, decomposing the system network will involve taking 

into consideration the power or current flows or 

injections at the division points. The correct values of 

these are only obtainable after the problem has been 
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solved. In this case, the solution of the overall 

problem, in turn, depends on its decomposition which 

brings us back to the starting point. It might be 

possible to overcome this difficulty by some elaborate 

iterative procedure but then this might cancel out the 

very objective of the decomposition process. 

In this thesis, -rather than dividing the actual 

physical power system into smaller areas, decomposition 

of the linear programming: Problem is achieved through the 

constraints coefficients matrix of the problem. The 

decomposition method applied here, is the Dantzig-Wolfe 

Decomposition Principle. This is a solution algorithm 

particularly designed to solve optimization problems 

whose constraints coefficients matrix is of the block 

diagonal structure discussed above. Often. in the 

literature, this particular technique is simply referred 

to as The Decomposition Principle, although decomposition 

is a term of a more general nature as discussed earlier. 

In the rest of this chapter both long and short versions 

of the name will be encountered. The technique is based 

upon the simplex method of solving linear programming 

optimization problems. 

A number of recent publications have shown some 

interest in applying this decomposition method to power 

system optimization problems [15]. However, as the main 

mathematical models- used suffer from the, shortcomings 

discussed in Chapter-1, such as the complexity of 
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formulation and iterative nature of the suggested 

solution method, the application of the Dantzig-Wolfe 

decomposition- principle does not seem very beneficial. 

The mathematical model developed in this thesis, on the 

other hand, offers a simple generalized linear 

representation of power system optimization problems the 

solutions of which can be obtained by straightforward 

application of standard computer routines. Reducing the 

dimensionality of these problems by applying the 

above-mentioned-'decomposition principle can, therefore, 

be of great advantage. The application of the 

Dantzig-Wolfe decomposition principle to the linearized 

mathematical model developed in this project will be 

discussed in Section (6.5). 

A' general " description and a summary of the 

Decomposition Principle will be given in Section (6.4). 

Both the Dantzig-Wolfe decomposition principle and the 

Simplex method upon which it is based are well documented 

in mathematical programming literature (34,54,55]. As 

mentioned in Chapter 1. this thesis is concerned with the 

application of linear programming methods to the 

formulation and solution of power system optimization 

problems rather than with linear programming as an 

abstract mathematical topic. However, to understand the 

decomposition principle and the related terminology, it 

is necessary to know at least the main theme of the 

Simplex method. Therefore, for the purpose of 
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completeness, a general descriptive introduction to the 

solution of the general linear programming problem and 

the Simplex method is given in the Appendix. Otherwise, 

the explanation of the Dantzig-Wolfe decomposition 
aF 

principle becomes ambiguous and out of context. For the 

same reason some other relevant Definitions and Theorems 

are also given. Only the necessary minimum of this 

supporting mathematical background material will be 

presented, and only briefly. No attempt will be made to 

go into the details of the "mechanics" of the simplex 

method or such related aspects as optimality conditions. 

The relevant theorems will be mentioned without proofs. 

These can be found in the cited literature along with 

detailed treatment of many other related topics. 

Based on the simplex method, the Dantzig-Wolfe 

Decomposition Principle, published in 1960. is an 

efficient procedure designed to solve linear programming 

problems whose constraints coefficients matrix is of the 

special structure discussed in Section (6.3) and shown in 

FIG. (6.1). A complete mathematical representation of this 

type of decomposable linear programming problem is given 

in (6.1) to (6.3). 
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Minimize 

Z -'Cs-Xs- + C2X2 + C3X3 +... + CHXH (6.1) 

Subject to 

At Xi + A2X2 + A, X3 +... + AHXH - B0 

DiXt - Bz - 
D2Xm - B. 2 

DSX3 - B3 

Dºý ýL. - HN (6.2) 

A. X, 0 (6.3) 

In the above representation A, and D, are matrices. 

and Bi, Ci and XL'are vectors. This is in contrast with 

the usual representation of= the linear programming 

problem where the symbols stand for single elements. In 

general, the number of elements of each vector or matrix 

of the various independent blocks-in the decomposable 

problem are not necessarily equal., The number of 

constraints and variables-of the-i'th, block are given by 

Ni and Ns respectively. Thus, the total- number of 

constraints MT, and variables NT in the decomposable 

problem are given below by (6.4) and (6.5) respectively. 

H 
MT - Mo +IM, (6.4) 

i-1 

H 
NT INS 

i-i 
(6.5) 
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The first Ma constraints in. (6.4) are associated with the 

general constraints A and the-rest correspond to the H 

independent blocks D. 

The important "feature to be noted in the matrix 

structure of the above problem is that X,, the subsets of 

the matrix X which represents the independent variables 

of the problem, do not overlap. In fact, without A, 

rightly called the complicating constraints by some 

authors [27], the solution of the whole problem can be 

obtained by solving H independent linear programming 

problems corresponding to the separate blocks of 

constraints. 

The Dantzig-Wolfe decomposition principle divides 

the original problem into a Master Program based on the 

common or coupling constraints and a number of 

Subproblems corresponding to the independent blocks. - The 

decomposition algorithm solves the overall problem by 

iterating between the master program and the subproblems 

and passing information forward and backward between the 

the two levels. To understand how the decomposition 

principle works let us first introduce the concept of 

convex combinations. 
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Convex Combinations : 

A convex combination of a number of points 

X1, XX , X3. ... X, ( written as vectors ) 

is defined as: 

Xs iý3Xý + i1ýt42 + i13A3 +.. 'ý ýM (6.6) 

Mi+ 11 iä3 +... + 1än -1 

lit, Um. u3, 
""" 

Un 20 

For the two-dimensional case this can be reduced to (6.7) 

below: 

)X2 (6.7) 

1uo 

Basically. (6.7) means that on a straight line segment 

between the points X, and Xm, any other point X can be 

represented as a convex combination of the coordinates of 

these two points. This is illustrated in FIG. (6.2). The 

coordinates of the point X(8.6) can be expressed in terms 

of the points Xi(2,12) and X2(10.4) with u 0.25. This 

can be verified by using the equation of the straight 

line segment between X1 and X2. 

Before applying the Dantzig-Wolfe decomposition 

principle, the original decomposable linear programning 

problem of (6.1) to (6.3) is reformulated such that the 

independent variables of each subproblem are expressed in 

terms of the extreme Points- of that subproblem. - The 

equivalent new representation of the', problem is given in 

(6.8) to (6.11): 
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H CE, 
Minimize Z-II( CtEPi, )uia (6.8) 

i-1 j-1 

H CES 
Subject to II( AiEPi, )usj - Bt (6.9) 

i-1 j-1 

CES 
°'Eu1, -1 
i-1 

i-1,2,3, 
... ,H (6.10) 

uaj 2 0° 

i-1,2,3, ... ,H 
j --1.2, - 3, ... , CE, (6.11) 

In the transformed representation above, CE, 

represents the number of the extreme point solutions 

associated with the i'th independent block of 

constraints. This is defined in terms of the number of 

variables N, and constraints M,. The numerical values of 

these solutions are given by EP.,. In the new 

representation, the independent variables are now given 

by u instead of X. The total number of constraints and 

variables of the new problem are given by: 

ME'- N6, +H (6.12)- 

H 
NE ICE. (6.13) 

i-i 

Again the number of constraints consists of two---parts. 

The first part corresponds to-. the general constraints and 

represents the master program. The second part correspond 
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to the H separable blocks of the original problem. Each 

of these represent a subproblem in the new formulation. 

The new representation of (6.8) to (6.11) is 

completely equivalent to that of (6.1) to (6.3). However. 

the number of variables has been increased from NT to NE 

and the number of constraints reduced from MT to ME. The 

main advantage of this transformation is the great 

reduction in the number of constraints which, from the 

computational point of view, facilitates, the'solution of 

the problem as discussed in Section (6.2) in connection 

with duality. - Thus, we have a new linear programming 

problem with its own constraints and ' independent 

variables. This can be solved by the same methods that 

are used-to solve the original problem such as exhaustive 

enumeration or the simplex algorithm. The total number of 

extreme points corresponding to the new formulation of 

the problem is given by the total number of possible 

combinations given by (6.14) below: 

NTE(NE. NE) - (NE! )/(ME! ( NE - ME )! ) (6.14) 

Even for small problems, this number can be so large 

that it requires a formidable amount of computational 

effort to enumerate all the possible extreme point 

solutions and solve the problem. Direct application of 

the simplex method to the transformed problem will 

involve a large number of iterations and will be 

accompanied by high computer storage requirements and 
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long computation time. It is, therefore, doubtful that by 

mere reformulation, using the transformation above is of 

any value in easing the computational burden of the 

original problem. However, by using this formulation and 

applying the Dantzig-Wolfe decomposition algorithm, the 

solution of the problem can be obtained quickly and 

efficiently. 

The Dantzig-Wolfe decomposition= principle is based 

on the-, -notion that the solution of the overall problem 

consists of the convex combination of a small selection 

of all the possible-solutions of the subproblems. The 

decomposition-, principle-recognizes-and-selects from the 

solution of the subproblems only those which also satisfy 

the general or common constraints. The decomposition 

algorithm is a step-by-step procedure of this recognition 

and selection process. 

In, the'Dantzig-Wolfe decomposition algorithm, rather 

than explicitly tabulating all the columns of the 

constraints coefficients matrix, the solution of the 

master program is started by using a very small basis of 

the master program. This is solved to yield the values of 

an initial small number of the independent variables of 

the problem. This starting solution can be. ýobtained in a 

similar manner to obtaining the initial solution in the 

simplex method such as the use of artificial variables. 

New columns are created by a special process called 
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"Column Generation" and these are appended to the basis. 

These new columns, corresponding to new independent 

variables of the problem, are only generated when they 

are needed in the course of the solution and added to the 

existing basis. It is to be remarked here that in the 

simplex method, on the other hand, the size of the basis 

is fixed and only two variables are interchanged in each 

iteration. The decomposition algorithm continues by using 

the simplex multipliers corresponding to the present 

basis of the master program to formulate and solve the 

subproblems. The solution of these are then used to form 

a new column to enter the-basis of the master problem. 

The new master problem is solved and the whole process is 

repeated. Similar to the simplex method, the 

decomposition algorithm has a criterion for the selection 

of the new columns to enter the basis and for terminating 

the process when the optimal solution is obtained. 

Summary of the Decomposition A1Qorithm 

The iterative procedure of the Dantzig-Wolfe 

decomposition principle can be summarized in the 

following concise steps. 

1. Assume that there is an initial basic feasible 

solution for the master program. Let B and r be the 

corresponding basis matrix and vector of simplex 

multipliers. 
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2. Partition the simplex multipliers vector into two 

parts, it -( wo, Ts). The first part jr. consists of Mo 

elements corresponding to the common constraints 

of (6.9) and, the second part Ti has H elements 

corresponding to the constraints of (6.10). 

3. Formulate and solve the following H linear programming 

problems. 

Minimize 

Subject to 

Zi -( Cs - 7ro Ai ) Xs ( 6.15 ) 

Di Xi - Hi 

Xi _> 0 

i-1,2,3, ..., H (6.16) 

4. Let the optimal solutions of the above problems be 

denoted by X. (pro) and the corresponding value of the 

objective function by ZO L. Calculate the following 

coefficients: 

Fi - ZOt - Vi . (6.17) 

and determine the minimum of these coefficients FM. 

5. If FM 20 then the process is terminated and the 

optimum solution to the overall problem is given by: 

XO -IM, _j 
EPL, 

i-1,2,3, ..., H 

with all values of j 

variables. 

(6.18) 

corresponding to basic 

223 



6. If-FM <'0, form the_co lümn: 

Ai X*. (era ) 

PM -- (6.19)-, 

UTt 

where- UT, is a vector of-H-elements. with 1 at the i'th 

position and zero elsewhere. 

7. Update the master problem. Transform the column 

of (6.19) by multiplying it by B-' and append to the 

current basis of the master program. 

Obtain a new basis inverse and a new vector of simplex 

multipliers. 

Go to step52 above. 

It is to be appreciated that the above is only a 

brief presentation of the decomposition algorithm. It 

mainly shows the steps that can be translated into, a 

computer program. ýDetailed explanation of these steps and 

general analysis, r of the method as well as step-by-step 

solution of numerical-examples can be found in the 'cited 

references. 

n 

.-'ý.... 
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This section considers the possibility of applying 

the Dantzig-Wolfe decomposition principle to the solution 

of power-'system optimization problems, using' the 

two-stage generalized mathematical model developed in the 

present work. To do this, we need to examine the 

structures of the constraints-coefficients matrices of 

the optimization problems of the two stages of the model. 

We are mainly concerned here with the handling and 

manipulation of these matrices such that they are 

presented in'. the block-diagonal structure, suitable for 

the application of the Decomposition Principle. This is 

achieved through an example from one of the optimization 

problems of Chapter 5, using the sample test system. 

As discussed in Section (6.3). decomposition is 

applicable to certain linear programming problems whose 

constraints coefficients matrix posses a particular 

structure. The possibility of applying some form of 

decomposition to the solution of the power system 

optimization problem becomes obvious whether considering 

the physical system itself or its mathematical 

representation. In a large system, utilizing this 

property becomes more attractive because of the 

associated computational advantages such as the 

improvement in convergence properties and lower storage 

requirements. In very large systems, decomposition might 

become necessary as a need rather than an alternative 
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solution technique. 

Pictorial Representation of Matrix Structures 

As discussed earlier, a practical power system 

consists of a number of segregated parts connected to 

each other by few transmission links. This physical 

property appears as a very sparse admittance matrix with 

the small number of non-zero elements forming a narrow 

"band" around the diagonal. To clarify this fact, a 

pictorial representation of the structure of the 

admittance matrix of the sample power system used in this 

thesis is shown in FIG. (6.3). This is done by computing 

the elements of the admittance matrix of the given system 

and then substituting each non-zero element by an X and 

each zero element by a space. The specific numerical 

values of the non-zero elements are immaterial for this 

purpose. For a system with NB buses the dimension of the 

admittance matrix is given by (NB x NB), i. e., the total 

number of elements in the matrix is NB2. For the sample 

system which has 23 buses this number is 529. From the 

matrix structure of FIG. (6.3), it is obvious that the 

number of the non-zero elements is much smaller than the 

total number of elements. Also, apart from being highly 

sparse, the general shape of the matrix is encouraging in 

terms of-application of the decomposition principle., 
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However. the matrix to be used for linear 

programming decomposition purposes is that of the 

constraints coefficients of the system. The same 

procedure is used to obtain a pictorial representation of 

this matrix. Application of decomposition to the two 

stages of the mathematical model will be discussed below 

using Problem 1 of Chapter 5 as an illustrative example. 

A pictorial representation of the structure of the 

constraints coefficients matrix for the sample system is 

shown in FIG. (6.4). Due to the large size of the matrix, 

it is not possible to fit the figure on one page and, 

therefore, it is continued on the following two pages. 

However, 'the-division-of the matrix among the pages was 

not done arbitrarily. The figure was divided such that 

the whole pictorial effect, in terms of the particular 

structure of the matrix, is not spoiled. This will be 

made clear by the rest of the discussion below. The 

sequential numbers of-the rows of the matrix are given to 

the left. 

As can be seen from the figure, this matrix 

possesses a very distinctive structure. After carefully 

studying this structure, the various attributes that 

characterize the matrix and their interpretation in terms 

of- the formulation of the optimization problem and the 

configuration of the' power system are summarized` in 'the 
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following points. Again, it should be kept in mind that, 

in the following discussion, we are not concerned with 

the specific numerical values of the non-zero elements. 

What we are interested in here is the distribution of 

these elements within the matrix. 

1. The matrix consists of 106 rows and 44 columns 

corresponding to the number of the constraints and 

independent variables, of the° optimization problem 

respectively. Obviously the matrix is very sparse. The 

total number of elements of this matrix is more than 

4000. However, the number of the non-zero elements is 

about 600, which means that approximately 85 % of the 

elements have zero values. 

2. It consists of four distinctive blocks of elements 

corresponding to the four sets of constraints of the 

problem. The first and second blocks are identical, in 

terms of the row-column positions of their individual 

elements, although, obviously, the numerical values of 

the corresponding elements in the two blocks are 

different. The same observation applies to the third and 

fourth blocks, which are identical to each other although 

they are different from the first two blocks. 

3. Each of the first two blocks of elements consists 

of 23 rows corresponding to the system buses. In 

particular, the "full" row in each block corresponds to 

the reference bus. Similarly, the third and fourth blocks 
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each consists of 30 rows of-elements corresponding to the 

transmission lines in the system. 

4. In addition, each single row consists of two identical 

parts, each consisting of 22 columns. The elements of the 

first half of each row correspond to the bus voltage 

magnitudes while the elements of the second half 

correspond to the bus phase angles. Thus, the whole 

constraints coefficients matrix consists of eight 

"Sub-blocks" 

5. : -In-general, the matrix of FIG. (6.4) is a special case 

of FIG. (5.3) with the number of blocks W-4. Thus, this 

matrix can be alternatively-represented as shown in 

FIG. (6.5). The difference in size among the various 

blocks is also reflected in the figure. 

6. The submatrix consisting of the first 22x22, elements 

of each of-the-first four sub-blocks, is identical to the 

first 22x22- elements of the admittance matrix of the 

system shown-in FIG. (6.3). This can be generalized for a 

system of NB buses in which case each of these sub-blocks 

has NxN elements, thus representing a submatrix that does 

not include the reference bus. 

7. The non-zero elements of each of the eight individual 

blocks tend to form a band around its own principle 

diagonal. 
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The above has been a description of the constraints 

coefficients matrix of the first stage of Problem 1. The 

corresponding matrix of Problem 2 has exactly the same 

structure. The -matrix-of Problem 3. on the other hand. 

has 136 rows. The matrix structure of this problem can be 

predicted from the formulation of the problem and the 

discussion above--f The matrix will be consisting of five 

blocks of rows. The first 106" rows have the same 

structure as that of problems 1 and 2. The structure of 

the last block of 30 rows will be similar to that of the 

third and fourth blocks of problems 1 and 2. as these are 

all based on line constraints. 

It can be seen from FIG. (6.4) that the general 

structure of the constraints coefficients matrix is even 

more encouraging in, terms of application of 

decomposition. However, the whole matrix structure does 

not look similar to that of FIG. (6.1) and; "therefore, the 

Dantzig-Wolfe decomposition principle cannot be readily 

applied. -! First, the matrix-has to be manipulated and the 

repeated blocks need-to be rearranged to form one large 

block with a single "string" of separable diagonal blocks 

of non-zero elements. The first two blocks of constraints 

can be merged to form one large block. The same can be 

done with the third and fourth blocks. Moreover, the two 

right-to-left parts of each block, can be merged to form 

one wide= band of non-zero elements. This process of 

"reshuffling" the matrix is equivalent to changing the 
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order of the constraints and variables in the original 

problem. The same effect can be achieved by reformulating 

the problem or changing the computer program if this 

particular shape of the matrix has been anticipated. 

However, this is not necessary and rearranging the matrix 

elements can be done after they have all been calculated 

and the . pictorial structure of the matrix has been 

obtained. The structure of the resulting matrix, modified 

as suggested above, is shown in FIG. (6.6). - 

The new matrix consists of two main blocks of 

non-zero elements. The first block contains 46 rows 

corresponding to the combined bus constraints associated 

with the 23 system buses. Similarly, the second block 

contains 60 rows corresponding to line constraints. In 

general. the matrix now consists of two main bands of 

non-zero elements in addition to some full rows, and a 

number of scattered elements at the end of the matrix, 

namely, rows 95 to 106. Obviously, the process can be 

continued such that the two main bands of non-zero 

elements can be combined to form one long band. However, 

it should be noted that each of the two individual bands 

form a "Staircase" rather than a block diagonal 

structure. Consequently. this will also be the structure 

of the resulting combined band. A matrix of a general 

staircase structure is shown in FIG. (6.7). The required 

block diagonal structure can be obtained by dividing this 

matrix into a number of horizontal bands and then 
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selectively-moving-some of these bands to form part of 

the set of the constraints of the master program leaving 

the rest of the matrix as individual blocks. An example 

of such at process is performed along the broken lines of 

FIG. (6.7). The resulting rearranged matrix is shown in 

FIG. (6.8). In both figures, the various parts of the 

matrix are given the same identification, Al, D2, and so 

on. As can be seen from FIG. (6.8). the modified matrix is 

in the block diagonal structure of FIG. (6.1). Note that 

the resulting block of common constraints A is also 

sparse, but the distribution of its non-zero elements is 

such that it cannot be decomposed into independent 

well-defined blocks as in D. 

The same process of division into bands can be 

applied to the actual matrix of the sample system of 

FIG. (6.6) such that the final form of the resulting 

matrix is suitable for the application of the 

Dantzig-Wolfe decomposition principle. It is to be 

emphasized that all these transformations of the matrix 

structure from its original to the final form are 

performed by the computer. 
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The general shape of the-constraints coefficients 

matrix of the first stage of the mathematical model is 

predictable although the exact values of the non-zero 

elements are not. In the second stage of the model, 

however. both-the structure of the coefficient matrix and 

the values of its non-zero elements are predictable. The 

values of the elements of this matrix are either zero or 

one. For the 24-generator sample system the constraints 

coefficients matrix of stage-II is shown in FIG. (6.9). As 

can be seen from the figure, the matrix is already in a 

block diagonal form ideal for the application of the 

Dantzig-Wolfe decomposition principle. 

This stage has been chosen to-illustrate the 

application of the Dantzig-Wolfe decomposition 'principle 

to the solution of power system optimization°problems. A 

FORTRAN computer program has been written to- implement 

the algorithm outlined in Section '(6.4) 'above. The 

numerical results are based on Problem l of Chapter 5: 

After solving the first stage of - the problem in the'usual 

way, i. e., without decomposition. the second stage was 

solved by applying the decomposition technique. The 

linear programming problem of Stage-II` was decomposed 

into six subproblems °corresponding to the six' power 

stations. The- numerical results obtained were identical 

to those reported in Chapter 5. It is possible to 

decompose the problem into two or three subproblems 
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instead-of six. In'this case each subproblem represents 

the combination of more than one station, with the number 

of stations divided equally or unequally among the 

subproblems. 

6.6 STAGE-II': AN ALTERNATIVE DECOMPOSITION METHOD 

It is to be reiterated here that the Dantzig-Wolfe 

decomposition principle is primarily designed to solve 

linear programming problems whose constraints 

coefficients matrix consists ofa number of independent 

blocks coupled by a few combining constraints. Without 

these combining constraints, the linear programming 

subproblems corresponding to the diagonal blocks can be 

solved independently. This suggests an alternative method 

to decompose and solve the linear programming problem of 

Stage-II of the mathematical model. As shown in 

FIG. (6.9), there is only one full-row , constraint-in the 

problem. This constraint which, in fact, is the-sum of 

the other NS constraints, can be= removed from the 

formulation of the problem leaving NS separate equations. 

An objective function can then be added to each of these 

equations forming, a small linear -mprogramming problem 

of NGB, variables and one constraint:, This results in NS 

such - linear "programming problems., -The- general 

mathematical formulation of the NS problems is'; presented 

by (6.20) to-(6.22). 
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NGB, 
Minimize Z-I CG, x PGGj (6.20) 

,.,, j-1 

Subject to 

NGBi 
E PGGj - PGB, (6.21) 

i=1 

PGGMXj 2 PGG, 2 PGGMN, (6.22) 

i-1,2,3, ..., NS. 

i-1,2,3, ... , NGB, 

The above mathematical formulation simply states 

that, at each generating bus, the active power output is 

equal to the sum of the active power outputs of the 

individual generators connected at the bus, and that the 

generating cost at the bus is to be minimized satisfying 

the operating limits of the generators. 

It is to be noted, however, that the presence of the 

single combining constraint is necessary if the original 

problem is to be solved- as a whole, i. e., without 

decomposition. Attempts to remove this constraints, while 

experimenting with the computer program, resulted in 

infeasibility of the problem. 

- This alternative way of solving the second stage of 

the problem has been tested on the sample system and the 

results obtained were identical to those obtained by the 

previous two methods; namely, solving the problem without 

decomposition and solution by application of the 

Dantzig-Wolfe decomposition principle. 
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An interesting practical interpretation can be 

associated with these results. " The first stage of'-the 

model' can be considered as Systemror "Global" problem, 

while-the decomposed generating bus problems constituting 

the second stage can be looked upon, as Bus or "Local" 

problems. It is possible, 'thus, to solve the, complete 

optimization` problem on two different levels with their 

corresponding control computers. A higher level Central 

system `computer can be used to obtain all system 

voltages, line flows, and bus generations. The global 

operation of the system can be optimized according to 

some criterion as illustrated by the various optimization 

problems of Chapterý5. Information is then sent to, the 

various power stations about the amount of output they 

are expected to contribute towards the system total 

demand and losses. Then, it is up to the individual power 

stations to fulfil their commitment towards the system by 

operating their, generators under optimum operating 

conditions, measured for instance by minimum input fuel 

cost. Communication is needed only in one direction from 

the main computer to the'local. computers,, in the sense 

that the individual stations-do-not need to -communicate 

among themselves and they can operate completely 

independently of each other. They only need to receive 

information about their power allocation from the central 

computer. This is illustrated in FIG. (6.10). 
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On the other hand, two or more stations can operate 

together to satisfy their collective commitment toward 

the system. Thus, they may form subareas of the system 

depending on their geographical proximity and location 

within the whole'ýsystem as well as their individual and 

total loading conditions. This is shown in FIG. (6.11). In 

this case, apart-from-the central system computer and the 

individual station computers, there are medium-level 

subarea computers. The information is first passed from 

the central computer of the system to the various 

subareas. From these, information is then passed down to 

the individual stations in each subarea. Situations 

similar to those discussed above and illustrated in 

FIG. (6.10) and FIG. (6.11). can also arise in a number of 

other industries. 

6 .7 COMPUTATION TIME CONSIDERATIONS 

One of the aspects to be considered when solving 

practical problems on digital computers is the time 

required to run the associated computer program. This is 

especially important when the solution method is to be 

considered for on-line applications where results are to 

be presented in real time. This section looks into this 

aspect of the problem. 
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The computation time of a computer program is 

affected by many factors. Two relevant factors are 

discussed here. On a particular machine and with a given 

solution algorithm, the computation time depends on-the 

problem size. On the other hand, for a problem of a given 

size and using a specific solution method; the 

computation time depends on the type of computer- used; 

more-specifically. its processor or Central Processing 

Unit (CPU)., 

The various optimization problems addressed in this 

thesis are based on the real-time operation of., electric 

power systems which involves on-line application of the 

associated computer programs. The two =aforementioned 

cases, namely,. °problem size and processor type-will be 

discussed in relation to these problems. To run the 

various FORTRAN programs associated with the project, 

there is a total, - of five computers at the author's 

disposal. One is the Power Systems Micro-Vax Computer 

known as PSMV. The other four are the machines of the VAX 

Computer Cluster of the Computer Centre of the University 

of Strathclyde, identified as VAXA, VAXB, VAXD and VAXE. 

The proper Model names of the five machines are shown at 

the end of Table (6.1). 

Each of the, five computers mentioned above ist used 

on a time-sharing basis., However, it is possible; by a 

special' computer , library routine to find the CPU time 

allocated for a particular user, a particular program or 
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any part or'parts of a program. - The name of the routine 

is CPUTIM and, can be called by the user's program (56). 

Comparison of computation times based on processor 

type is given in Table (6.1). The computer programs 

associated with the three optimization problems of 

Chapter 5 have been used for this purpose. Two entries 

are associated with each machine corresponding to the two 

test cases. Each numerical value represents the average 

of several runs. 11 1 

There is obvious differences among the running times 

on the various machines. The PSMV, being an old version 

of the VAX, is the slowest and VAXE with the most 

advanced and powerful processor among the five machines 

is the fastest. The fact that VAXA and VAXB are identical 

is also reflected in the table where the corresponding 

CPU times are very close. 

Using one machine, the PSMV, a comparison based on 

problem size is shown in Table (6.2). For each problem 

the table gives the number of constraints. NC, and 

variables, NV. The product of these, which gives the 

total" number of elements of the constraints coefficients 

matrix, 'is also shown in the table. Again. for each 

problem two values corresponding to test casesA and B 

are''shown, with each value, in turn, being the average 

obtained from'several runs-of the'Fcomputer program. The 

psiv is deliberately chosen to obtain the results of 
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Table (6.2) because, as indicated by Table (6.1), it is 

the slowest of the five machines which makes it possible 

to monitor the differences in the values of the CPU time 

associated with the various optimization problems. 

Otherwise, using a fast processor, these differences can 

be too small to detect, especially in optimization 

problems of very small size. - 

The connection between the running time of the 

computer program and the size of the corresponding linear 

programming problem is obvious from the table. The first 

three entries in the table correspond to the three main 

optimization problems of Chapter 5. The 'fourth entry 

represents the linear programming problem of Stage-II of 

the mathematical model. This problem has- seven 

constraints. One 'of these is a general constraint based 

on the total energy balance in the system and the other 

six correspond to the six generating buses in the system. 

The 24 variables of the problem correspond to the number 

of generators in the system. The rest of the table 

consists of six small problems, each with a single 

constraint and few variables. Collectively, these 

problems represents the decomposed solution of Stage-II. 

They correspond to the power stations in the system with 

the number of variables corresponding to the number of 

generators of each station. The solutions of these have 

been obtained by the alternative decomposition method 

suggested in the Section (6.6). It should be noted that. 
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because of the very small sizes of these six problems, 
times 

the associated CPU are not very accurate. Therefore, they 

should not be compared among themselves and should not be 

taken as the °basis to establish firm ° conclusions. 

However, when compared with the first four larger 

problems they clearly reflect the relation between the 

size of the problem and the corresponding computation 

time. 

In general, this also apply in a way to the results 

presented in Tables (6.1) and (6.2). Mainly, both tables 

are intended to give a general indication of the 

computation times associated with the various problems 

addressed in the thesis. It is possible to produce more 

detailed results in this respect and apply more rigorous 

analysis. However, only the more important and relevant 

points have been selected and discussed here. 

The one main-conclusion of"all this is that the 

suggested mathematical formulation and the corresponding 

computer programs are suitable for on-line application in 

the operation of an actual power system. This point will 

be discussed in more detail in Chapter 7. 
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6.8 DISCUSSION 

The problem of dimensionality in power system 

optimization problems and the application of 

decomposition techniques have been extensively dealt with 

in this chapter. The following relevant comments and 

conclusions are worth mentioning. 

1. Generally. decomposable optimization problems can be 

solved by the usual methods, the main aim of 

decomposition being the reduction of the problem size and 

overcoming the problem of dimensionality. 

2. The real benefits of decomposition, can only be 

appreciated when it is applied to optimization problems 

of very large systems involving very large number of 

variables' and constraints. The application - of 

decomposition methods and the preparation of the 

associated computer programs requires special additional 

effort which is not worthwhile when applied to small 

problems. 

3. The descriptions of problems as small and large are 

rather relative terms that depend on the computing 

facilities available. What used to be considered as large 

problems, say 20 Years ago, are now only moderate, and 

problems which required special computing systems in the 

past can now be solved on available computing facilities 

of general access. In this respect, the problem of 

dimensionality in recent years is not as severe as it 
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used to be in the past due to the great development in 

computer technology. 

4. Having said that, however, there is always a 

continuous and parallel expansion in the size of system 

problems and in the available computer facilities. 

5. Decomposition of a large-scale problem does not 

necessarily reduce the total computation time. In 

general, the sum of the computation times needed to solve 

the individual small subproblems constituting the large 

problem. is approximately equal to the computation time 

needed to solve the original problem without 

decomposition. Again, "" the__' main advantage of the 

decomposition is the considerable reduction in the 

problem size, and the corresponding computer memory 

storage requirements, not the total computation time. 
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FIG. (6.1) 

GENERAL STRUCTURE OF TIE CONSTRAINTS COEFFICIENTS 
MATRIX OF A DECOMPOSABLE OPTIMIZATION PROBLEM 

OF THE BLOCK DIAGONAL TYPE 
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FIG. (6.2) 

ILLUSTRATION OF CONVEX COMBINATIONS 
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1 X X X X 
2 X X X X 
3 X , X" X 
4 X X X 
5 X X X 
6 X X X 
7 X X X 
8 X X X X X X 
9 X X X X X X 

10 X X X X 
11 X X 
12 X X X X X 
13 X X X X X 
14 X X X 
15 X X X 
16 X X X 
17 X X X 
18 X X X X X 
19 X X X 
20 X X X 
20 X X X 
22 X X X 
23 X X x 

FIG. (6.3) 

STRUCTURE OF THE ADMITTANCE MATRIX OF THE 
SAMPLE POWER SYSTEM 

246 



FIG. (6.4) 

STRUCTURE OF THE CONSTRAINTS COEFFICIENTS MATRIX 
OF THE SAMPLE POWER SYSTEM 

The figure is continued on the 
following two pages 

1 XXXX XXXX 
2 XX XX XX XX 
3XXXXXX 
4XXXXXX 
5XXXXXX 
6XXXXXX 
7XXXXXX 
8 XXXXXX XXXXXX 
9XX XX XX xX XX xx 

10 XXXX XXXX 
11 XX XX 
12 XX X XX XX X XX 
13 XX XX XX XX 
14 XXX XXX 
15 XXXXXX 
16 XX XX 
17 XXX XXX 
18 X XXX xX XXX x 
19 XXX XXX 
20 XXX XXX 
21 XXX XXX 
22 X XX X XX 
23 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
24 XXXX XXXX 
25 XX XX XX XX 
26 XX X XX X 
27 XXXXXX 
28 XXXXXX 
29 X XX X XX 
30 XXXXXX 
31 XX XX XX XX XX XX 
32 XX XX XX XX XX XX 
33 XXXX XXXX 
34 XX XX 
35 XX X XX XX X XX 
36 XX XX XX XX 
37 XXX XXX 
38 XXXXXX 
39 XX XX 
40 XXX XXX 
41 X XXX XX XXX X 
42 XXX XXX 
43 XXX XXX 
44 XXX XXX 
45 X XX X XX 
46 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
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,,. Continued from previous page 

47 XX XX 
48 XX XX 
49 XX X X 
50 XX XX 
51 XX X X 
52 XX X X 
53 XX X X 
54 XX XX 
55 XX XX 
56 XX XX 
57 XX XX 
58 XX XX 
59 XX XX 
60 XX XX 
61 XX X X 
62 X X XX 
63 X X 
64 XX XX 
65 XX XX 
66 XX 

, 
XX 

67 XX XX 
68 XX XX 
69 XX XX 
70 XX XX 
71 X X 
72 X X X X 
73 X X X X 
74 X X X X. 
75 X X X X 
76 XX XX 

Continued on the next page ... 

248 



... Continued from previous page 

77 XX xx 
78 XXxx 
79 XXXX 
80 XX_Xx 

. -u 81 XXxx 
82 XXXX 
83 XXXX 
84 XX XX 
85 XX XX 
86 XX XX 
87 XX XX 
88 XX XX 
89 XX XX 
90 XX XX 
91 XXXX 
92 XXXX 
93 XX 
94 XX XX 
95 XX XX 
96 XX XX 
97 XX XX 
98 XXXX 
99 XX XX 

100 XX XX 
101 XX 
102 XXXX 
103 XXXX 
104 XXXX 
105 XXXX 
106 XX XX 
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FIG. (6.5) 

GENERAL STRUCTURE OF 
THE CONSTRAINTS COEFFICIENTS MATRIX 

OF THE SAMPLE SYSTEM 
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FIG. (6.6) 

STRUCTURE OF THE MODIFIED 
CONSTRAINTS COEFFICIENTS MATRIX 

OF THE SAMPLE POWER SYSTEM 

The figure is continued on the 
following two pages 
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... Continued from previous page 
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FIG. (6.7) 

GENERAL STRUCTURE. OF A STAIRCASE MATRIX 
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FIG. (6.8) 

TIC MATRIX OF FIG (6.7), MODIFIED 
TO CONFORM TO THE DECOMPOSABLE 

BLOCK DIAGONAL STRUCTURE 
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FIG. (6.9) 

THE CONSTRAINTS COEFFICIENTS MATRIX OF 
THE SECOND STAGE OF THE MATHEMATICAL MODEL 
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FIG. (6.10) 

TWO LEVEL COMPUTING AND CONTROL 

LC : LOCAL ( STATION ) COMPUTER 
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" POWER - SYSTEM 

------------------------. 
S1 S2 

S3 
S4 

------------------------ 
SUBAREA 1, 

,. -----------. 
S5 

' S6 
, 

S7 

", -- ------------ 

SUBAREA 2 

------------------------------ 
S8 S9 
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`"---------------------------". 
SUBAREA 3 

FIG. (6.11) 

A SCHEMATIC REPRESENTATION OF A LARGE POWER 
SYSTEM DECOMPOSED INTO A NUMBER OF SUBAREAS, 

EACH CONSISTING OF A SMALL NUMBER OF POWER STATIONS 

S: POWER STATION 
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TABLE (6.1) 

COMPARISON OF COMPUTATION TIMES 
BASED ON TYPE OF PROCESSOR 

ALL CPU TIME VALUES ARE IN SECONDS 

PROBLEM 
& CASE 

PSMV VAXA VAXB VAXD VAXE 

1 

A 33.150 7.780 7.610 19.770 5.650 

L B I 25.840 5.970 5.970 14.960 4.640 

. 

2 

A 35.040 8.200 7.950 19.980 6.230 

B 25.820 5.890 5.780 14.730 4.450 

3 

A 34.940 7.480 7.350 18.960 5.860 

B 32.830 7.400 7.300 18.900 5.720 

COMPUTER MODELS 

VAXA VAX 6330 

VAXB VAX 6330 

VAXD VAX 11/785 

VAXE VAX 8650 

PSMV Micro VAX II 
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COMPARISON OF COMPUTATION TI? BASED ON PROBLEM SIeE 

ALL CPU TIME VALUES ARE IN SECONDS 

CPU TIME 
LINEAR 

PROGRAMMING '. NC NV"-' 'NC x NV 
PROBLEM 

A B 

PROBLEM 1 
STAGE -I 106 44 4664 11.500 8.500 

PROBLEM 2 
STAGE - I. 106 44 4664 13.590 8.425 

PROBLEM 3 
STAGE -I 136 44 5984 15.470 15.470 

PROBLEM 1 
STAGE - II 7 24 168 0.9 0.9 

PROBLEM 1 
STAGE - II 1 3 3 0.115 0.075 
BUS 1 

PROBLEM 1 
STAGE - II 1 3 3 0.075 0.075 
BUS 2 

PROBLEM 1 
STAGE - II 1 4 4 0.105 0.090 
BUS 11 

PROBLEM 1 
STAGE - II 1 6 6 0.090 0.095 
BUS 14 

PROBLEM 1 
STAGE - II 1 3 3 0.130 0.155 
BUS 20 

PROBLEM 1 
STAGE - II 1 5 5 0.160 0.185 
BUS 23 
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

The present thesis has developed a generalized and 

versatile two-stage mathematical model to represent 

optimum operating conditions in electric power systems. A 

unified approach has been adopted to represent the 

various aspects of power system operation, the main aim 

being the development of a comprehensive mathematical 

model suitable for the application of linear programming 

methods, with emphasis on clarity, simplicity and 

flexibility throughout. The various concepts on which the 

model is based were all introduced and thoroughly 

explained, with the relevant mathematical expressions 

derived starting from basic power system theory. This was 

then supported by numerical results obtained by applying 

the suggested method to the solution of a number of 

optimization problems using an actual test system. The 

numerical results were compared and extensively analysed. 

This was followed by a thorough discussion of the problem 

of dimensionality and the introduction of decomposition 

methods. Application to the present project was -then 

considered and discussed in detail. 
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Concise, but adequate, theoretical background has 

been presented to explain the various constituent parts 

of the model. This included supplementary material of a 

mathematical nature mostly related to linear programming 

which plays a major role in the development of the 

suggested method. The theoretical analysis was also 

supported by argument related to the practical side of 

power system operation. Useful "tips" gained from 

computer programming experience were also given in 

connection with the computational part of the work. 

However, the presentation so far has been given in a 

factual manner, in the sense that the mathematical model 

in general has been presented without mentioning its 

advantages over existing methods, or pointing out how its 

various aspects are different from those of available 

publications on the subject and how the whole work fits 

among similar research in the field. 

This will all be done in the course of the present 

chapter which gives an extensive discussion of the 

various general and particular aspects of the 

mathematical model, its advantages and practical 

application as well as suggestions for future work. Some 

questions that might arise in connection with the various 

aspects of the research project were not only anticipated 

but asked and answered. In answering some of these 

questions, the various, and sometimes conflicting, points 

of view and different sides of the argument are 

presented. 
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S AND 

The present method of formulation and solution of 

the problem of optimum operating conditions in a power 

system has several advantages over existing methods. The 

various advantageous features of the suggested model are 

discussed below. Some of these advantages can also be 

considered as the contributions of the present work to 

this field of research. 

nera 1 itty a 

The method developed here is very general in the 

sense that it can be applied to a power system of any 

size and configuration. This follows from the fact that 

the work is mainly based on linear mathematical 

programming which is now a well-established field that 

can be applied to a wide range of practical problems. One 

general mathematical model has been used to solve power 

system optimization problems that involve minimization of 

generation cost, transmission losses or reactive power 

generation. Even these have been presented here in the 

way of illustrative examples rather than an exclusive 

set, and the mathematical model can be applied to the 

solution of other power system optimization problems if 

required. This important feature of the model offers the 

possibility of comparison so that the best way of 

operating a power system can be chosen using a common 
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criterion. This is'-in"-contrast with many available models 

which are designed `to solve particular 'optimization 

problems with a limited set of constraints. Most of the 

published work is usually concerned with-one or very few 

aspects of the power-system optimization- problem. For 

instance, whole works have been devoted to the problem of 

minimizing generation cost. Others are only concerned 

with the minimization of transmission losses. The 

associated mathematical models and computer programs are 

limited, inflexible; and do not offer much choice which 

limits-their applicability. Also, comparison of results 

obtained from different optimization problems solved by 

different existing methods is'very difficult because of 

the lack of a common basis for the comparison. This is 

not the case with the present work. The same general 

method, can be used to optimize different objective 

functions with as many different constraints as required. 

Three main optimization problems have already been 

formulated and solved in Chapter 5 of the thesis with 

various number and types of constraints. These problems 

have been chosen because they are widely and frequently 

used in power systems research work. Detailed as they 

are, the numerical results produced are but examples of 

the possibilities this project can Present. A number of 

additional aspects were also considered in Chapter 4 and 

their inclusion in the mathematical model was explained. 
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Apart from electric power systems, the-various ideas 

and concepts presented in the thesis can be applied to 

other systems which have-similar structure to that of 

electric power networks or can be represented by similar 

mathematical expressions. This will be discussed further 

in Section (7.5). 

Simplicity and Clarity 

Simplicity of, the structure of the solution 

algorithm and clarity of presentation are two important 

factors in mathematical modelling of practical 

engineering problems which seem to have been, overlooked 

by many researchers. It- is the author's opinion and 

belief that when two methods of solution to a given 

problem are presented, and when all other factors kept 

unaltered. then it is preferable to choose the one with 

the simpler and clearer presentation. No real advantage 

is gained by choosing unnecessary complication. 

Two of the-powerful attributes of the present model 

are its simplicity and clarity. It solves a complicated 

power system optimization problem involving a large 

number of variables and different sets of constraints 

without the use of B-Coefficients or penalty factors. 

Also, apart from applying the concept of incremental 

modelling, it does not involve sensitivity factors or 

derivatives. 
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When representing any complex system problem, there 

is no simpler way than expressing the various 

relationships amongst the system variables by linear 

algebraic equations. This has been accomplished in the 

present project by the systematic and comprehensive 

application of the linearization procedure discussed in 

Section (2.5). As a result of this formulation it has 

been possible to use linear programming to represent and 

solve the various optimization problems. Linear 

programming, itself, is probably the simplest and most 

straightforward technique for presenting and solving 

optimization problems. All these factors add to the 

simplicity and clarity of the model. 

Another simplifying aspect of the suggested 

mathematical model is the classification of the system 

buses. In contrast with many published methods, 

especially those based on load flow solutions. the 

present approach divides the system buses into two main 

categories, namely. Generating and Nongenerating Buses 

with clear distinction between the two. -This reduces, or 

indeed eliminates, any confusion that might be 

experienced in this respect. 

Also, although the linearization of the model is 

based on the concept of incremental changes in the system 

variables, this is used only as an analytical tool. The 

final model is formulated in terms of the actual values 

of the variables rather than their incremental values. 
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which further enhances the clarity of the model. 

Completeness and Accuracy 

Apart from the conceptual use of the incremental 

modelling, no other approximations are used in developing 

the mathematical model. A full representation of the 

power system, including transmission line resistance, is 

used throughout the model. This has the advantage of 

producing more accurate results in general. as well as 

taking system losses into account. Also, once the values 

of the independent variables are obtained by solving the 

linear programming problems of the two stages- of the 

model, the rest of the system quantities and all output 

results are calculated by using the exact nonlinear 

formulas. 

The Two-etage Formulation 

The two stages of the mathematical model use two 

different sets of independent variables. In the first 

stage, the bus voltage magnitudes and phase angles are 

used as the independent variables of the optimization 

problem while the second stage is based on the active 

power outputs of the system generators. This important 

feature of the mathematical model has the following 

advantages: 
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1. Since the two stages of the model are solved almost 

independently, this presents a simple way of handling the 

two different sets of variables which can, otherwise, be 

cumbersome. This, in turn, simplifies the overall 

solution algorithm. 

2. It eliminates the need for iteration between an 

optimization program and a load flow routine. This, in 

itself, presents several advantages. It means that% the 

optimization program does not need to be written 

specifically to solve the power system problem, thus 

allowing the use of standard linear programming computer 

routines and, therefore, saving programming time and 

effort. Also, by avoiding the iteration , between an 

optimization program and a load flow routine, a large 

reduction is effected in the required computation time. 

This will. otherwise, be very high due to the iterative 

nature of both routines, especially the load flow which 

involves the inversion of the system Jacobian matrix in 

every iteration. 

3. This two-stage formulation allows the use of two 

different objective functions at `the two levels of the 

solution of the overall problem. Thus, two different 

power system quantities can be optimized at the same 

time. Also, when using the same objective function in 

both stages, as illustrated by Problem 1 of Chapter' 5, 

minimum generation cost was obtained on both overall 

system and power station levels. 
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It is to be admitted that some of the concepts 

presented in this -thesis are not totally new,, which 

might, at first, be considered as a -disadvantage. 

However, this is not the case as discussed below. Two 

such concepts are linear programming and incremental 

modelling. The author did not invent these concepts or 

introduce their application for the first time. There is 

a certain number of well-established mathematical 

techniques that are widely used by a large number of 

contributors to the field. Yet, the various published 

models and suggested methods are different from one 

another. This comes from the way of employing these 

techniques and incorporating them into the various models 

and solution methods, and depends on the rest of the 

formulation of the problem in question. 

The- two examples mentioned above, i. e.. linear 

programming formulation and incremental modelling, and 

few- other existing techniques-have been used in the 

present- work to their fullest advantage and combined in 

such a way that their full potential is utilized. For 

example. linearization by incremental modelling has been 

applied in a systematic. consistent and very clear and 

simplified manner. The technique was, first, clearly 

explained in a number of well-defined steps. Then, it was 

applied to a large number of equations that represent the 
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core of mathematical relationships amongst power system 

quantities relevant to the entire problem of power system 

steady-state operation. In many available published 

methods, the advantages of- this useful technique- have 

been overshadowed-by the complexity of the rest of the 

model and ambiguity. of the various other aspects of the 

method. 

A similar argument applies to the application of 

linear programming techniques. Because of the nature of 

the mathematical formulations used so far, the advantage 

of the application of linear programming to power system 

optimization problems has been only partial. By virtue of 

the combination of the various advantageous features of 

the present mathematical model, it has been possible to 

apply linear programming techniques to the whole problem 

without recourse to other iterative procedures such that 

the total computational burden of the problem is 

alleviated. Apart from the simplicity of its formulation 

and clarity of its Presentation, the attractiveness of 

linear programming comes from the fact that it lends 

itself easily to be translated into a computer program. 
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Initial Operating Conditions 

Similar to the present work, many existing methods 

apply the concept of incremental modelling. This involves 

finding the solution of a problem based on some initial 

conditions. In this respect, the theoretical development 

of these mathematical models is generally acceptable. 

However, obtaining the required initial operating 

conditions might prove difficult. In contrast, the 

present method includes a complete procedure for 

obtaining the initial operating conditions from the 

minimum amount of information. This makes using the 

present method easier and more practical. 

The Use Of Available Computer Routine! 

One of the important facts that have been kept in 

mind while formulating the problem in the present work is 

the existence, nowadays, of standard linear programming 

routines of a , general nature that can be applied to a 

large number and a wide variety of practical -problems. 

Parallel to the rapid and-continuous progress in computer 

technology, there is now a host of "ready-made" or 

"canned" computer routines and software packages that 

perform a wide range of mathematical tasks. In recent 

years, solving practical problems has been reduced to the 

art of modelling and presenting these problems such that 

they can fit in these moulds. Engineers are well advised 

to make use of these instead of wasting valuable time in 
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writing and testing computer programs the equivalent of 

which already exist and can be readily obtained and 

applied. Standard computer routines, based on 

well-established mathematical algorithms, are usually 

developed over long periods of time that can extend to 

several Years. They are written by experts in computer 

programming and operation and extensively tested which 

gives them a very high standard of reliability. Those who 

are involved in research work that requires computer 

programming know only-too well the amount of time and 

effort spent in preparing, testing and debugging a new 

computer program; even a very short one. 

As mentioned in Section (5.10). * some library 

routines were used in the computer programs associated 

with the work. However, they were included in the 

programs at certain clearly-defined stages such that they 

can be replaced by other routines without affecting the 

formulation of the problem and with the minimum amount of 

alteration to the existing computer program. This offers 

the option of writing a special optimization program to 

solve the problem if required by the user, when necessary 

and justifiable as discussed above, for example because 

of the unavailability of the suitable optimization 

routine. Another instance which calls for the replacement 

of such routines occurs sometimes when a certain library 

routine is withdrawn by the copyright owners and replaced 

by a new improved one. This happens as part of the 
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continuous development of software libraries and computer 

facilities., } 

Application of Decomposition 

In the present work decomposition is based on the 

constraints coefficients matrix of the system rather than 

on the physical system itself or its network 

representation. This makes possible and facilitates the 

application of the Dantzig-Wolfe decomposition principle, 

whose applicability to the power system problem is, 

otherwise, not very obvious. Working on the system matrix 

is much easier than'ý'working on the system network for the 

following reasons: 

1. It eliminates the need to account for and deal with 

the - problem of boundary conditions at the various 

division points such as bus injections and line flows. 

Otherwise, when dividing the system network into smaller 

subsystems or subareas, each of these must be treated as 

an internal system with the neighbouring subdivisions of 

the system considered as external systems that have to be 

accounted for in terms of their equivalent circuits and 

effect on - the internal system. This entails- a 

considerable additional amountýof analytical and computer 

programming work. This aspect has previously been 

discussed in Section (4.3) in the context of tie-lines 

and system interconnection. 
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2. It also has the added advantage that the decomposition 

can be achieved by a computer algorithm. -Otherwise, the 

system network . topology would have to be split into 

subsystems by inspection. 

3. The analysis and computation are simplified by 

constructing an admittance matrix for the whole system 

instead of several matrices corresponding to the 

individual areas. This in turn simplifies the rest of the 

analysis, including the initial load flow, and eliminates 

the need to select several "local" reference buses. 

7.3 PARTIC 

This section elaborates on and discusses a number of 

miscellaneous specific points concerning the problem of 

power system operation and its presentation in this 

thesis. 

Hard and Soft Conatrainta 

In practical optimization problems, of which the 

operation of power systems considered here is an example, 

there are two main types of constraint in terms of their 

"rigidity" or "bindingness". These are "hard" and -"soft" 

constraints. Hard constraints are usually based on 

equalities and must be strictly satisfied. An example of 

these is the total energy balance equation in the system. 

The total power generation in the system must be equal to 

the sum of the total system demand and the total 
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transmission losses, as shown in Equations (2.62) 

and (2.63). Soft constraints, on the other hand, are not 

very binding and can be violated to a certain extent. 

These are usually constraints of the inequality type such 

as operating limits. Upper and lower limits on bus 

voltage magnitudes can be used as examples. Specifying 

operating tolerance margins on this basis might actually 

facilitate the solution and enhance the feasibility of 

some optimization problems, especially those with high 

number of constraints. Problems which are infeasible 

under the specified constraints can be rendered feasible 

when some of these constraints are slightly relaxed. This 

is permissible if the constraints involved are of the 

soft type described. 

The numerical results have shown that the suggested 

method can deal- with strictly binding equality 

constraints as well as inequality constraints which are 

less binding. In particular, the generating sets at one 

of the power stations in the test system have their 

operating limits given by PGGMN. - PGGMX, as shown by the 

generator data of Table'(5.2-A). The station involved is 

that of bus (14). and the reason for these operating 

restrictions is? that this is a nuclear station where the 

operating requirements specify that the station should'be 

operated at full . output. - 
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Number of Constraints I 

The number of constraints ( or sets of constraints ) 

of an optimization problem can be increased or decreased 

as required to take into account various factors that 

affect the problem of power system operation. Increasing 

the number of constraints has already been illustrated by 

using 136 constraints in the third optimization problem, 

as compared to the two other problems which have 106 

constraints each. Decreasing the number of constraints 

can be achieved in two different ways. In one method, 

they are not taken into account in the formulation of the 

problem at°all. Another approach is based on including 

them in the general formulation of the problem but 

relaxing them when running the computer program and 

obtaining the actual numerical solution. Relaxation of 

the constraints for this purpose is" accomplished by 

assigning unrealistically high and'-low values' to their 

upper and lower bounds respectively. This gives more 

flexibility than the first method and can be used for 

both increasing and decreasing the number of constraints. 

For instance, the problem can be formulated with a very 

large number of constraints, taking into account as many 

aspects of the power system operation problem as 

possible. Proper values are then assigned only to the 

lower and upper bounds of the constrains which are 

required to be included in a particular run of the 

computer program. For example, the problem of 
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minimization of instantaneous input fuel cost is mainly 

based on active power generation. The constraints on the 

reactive power generation can be included in the 

formulation of the problem, to keep its generality, but 

they can be "numerically" relaxed when running the 

computer program. 

To illustrate the above discussion, consider a 

generator which, by design, has the following operating 

limits on its reactive power output in units of MVAR: 

75.0 1 QGG., 2 -15.0 

The constraints on this generator can be relaxed by 

assigning them the following limits instead: 

1000.0 1 QGG, 1 -1000.0 

Under the new- conditions, the generator is 

practically unconstrained -in terms of reactive power 

production. Ideally or theoretically, the relaxed 

constraints should be given bounds of - cD and + m. On the 

computer, the lowest and highest negative and positive 

numbers that can be handled by the computer should be 

used. Care should be taken, --however, as this might lead 

to numerical overflow if these values are used in further 

calculations. 
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A situation of this nature has been encountered in 

the debugging stage of the computer programs while 

specifying the bounds on the phase angles. These, as 

mentioned before, are used as free. i. e., unconstrained 

variables that can assume any positive or negative 

values. aTo reflect this fact in the computer- program, 

extremely high absolute values of the bounds were used. 

It was found that the highest value that can be used 

without causing overflow was around 1.0E+18. although 

the value of 1.0E+20 is recommended by the instructions 

in the NAG Library routines documentation. Obviously the 

final actual values are those that optimize the objective 

function and satisfy the problem constraints and are 

determined by the solution of the linear programme. 

Finally, the above discussion should not be confused 

with Constraints Relaxation as a method for solving 

optimization problems with relatively large number of 

constraints as published by Irving and Sterling (38]. 

constraints on Transmission Line Quantities 

The imposing of constraints on both the line losses 

and line power transfer is not redundant as might be 

thought at first. Although mathematically related to some 

extent, these two quantities represent two different 

physical properties of power system transmission lines. 

Constraints based on active power losses in the lines are 

indications ° of the "thermal" or current-carrying 
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capacities of the lines-as measured by their IPR loss. 

Thus, they are included in the optimization problem to 

take account of the heating effect of the current passing 

through the distributed resistance of the 'transmission 

line conductors. Power`-transfer constraints, on the other 

hand, are related to the amount of maximum power that can 

be transferred from one end of the line to the other, 

which is the principle function of the line in the system 

in the first place. More or less, the specification of 

these is independent of the accompanied power loss. This 

power transfer is a function of the voltage magnitudes at 

both ends of the line and of the phase angle difference 

between them. This phase angle difference, in turn, is a 

measure of the stability of the transmission line and the 

power transfer process. 

Effectively, the bounds on line losses and power 

transfer quantities might form, overlapping sets of 

constraints, which means that some of them should be 

ignored as discussed in Section (4-5)'. --However, these two 

quantities are represented by interrelated and 

complicated multivariable functions, as given by 

Equations (2.35) to (2.50). It is, therefore, impossible 

to compare the two quantities directly to decide as to 

which one is to be included in the optimization problem 

by sheer mathematical manipulation or theoretical 

algebraic analysis. Even when such analytical solution is 

possible, no generalization can be applied and the 
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selection of the final set of constraints has to be made 

on a line to line bases. The overlapping of the two sets 

of the constraints for the individual lines can be such 

that the line loss constraints must be used for one line 

while the power transfer for another. Obviously, this 

will also differ from system to system. 

It might be possible to obtain the solution to this 

problem by applying some elaborate numerical technique, 

as in the solution of the power flow equations. But this 

is lengthy. time-consuming and iterative in nature. 

Besides, it is one of the disadvantages the present 

thesis has set out to avoid in the first place. Also, 

even when successful. it will not solve the optimization 

problem or even part of it. What it achieves is merely 

the selection of the line constraints to be included in 

the formulation of the optimization problem concerned. 

This is a very small gain considering the price paid in 

terms of programming effort and computation time. 

Selection of line constraints on these basis-is only 

worthwhile if results have already been obtained and 

supplied with the line data. 

Therefore, the best way, in the absence of such 

information. is to include both constraints for each line 

in the system and let the optimizing routine take care of 

the selection process. The handling of constraints, in 

any case, is one of the inherent features of optimization 

algorithms. 
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A similar situation can arise in connection with the 

specification of upper limits on the apparent Power 

transfer across transmission lines in both-directions as 

in Problem 3. 

Lower Limits on Generator Outputs 

The reason for imposing upper limits on generator 

outputs, or line quantities-for that matter, is obvious. 

BY design, each power system component has an upper limit 

on the amount of power it can handle. Power being 

generally given by-the product of current and voltage, 

the upper limit on power quantities is a function of the 

electrical endurance of the component in question in 

terms of its insulation properties and heat dissipation, 

and, consequently, cooling method. These factors, 

incidentally, affect, and are affected by, the actual 

physical size of the component. 

Less obvious, however. is the reason for specifying 

a lower limit on the'generator output. For example, one 

would think that a generator with a maximum capacity 

of 60 MW would be able to deliver any load from nought 

to 60 MW. and the question arises as to why a lower limit 

of, say 20 MW is imposed on the generator, output. The 

issue- in this case is not that of output capacity. The 

reasons behind the specification of lower limits on 

generation are related to the Procedures- and, costs 
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associated with the start up and shutdown of generating 

sets. Apart from spinning reserve considerations, 

generating units should be operated-only when it is 

"worthwhile" to do so from an economical point of view. 

7.4 OPTIMIZATION OF COMBINED OBJECTIVE FUNCTIONS 

While experimenting with the computer programs, the 

possibility of using a combined objective function of the 

following form was investigated: 

Z° Zi + Z2 (7.1) 

where Z1 and Z2 are two different objective functions. 

In particular, an attempt was made to minimize both 

generation cost and transmission losses in the first 

stage of the model at the same time. However, the 

numerical results obtained had to be discarded for two 

reasons. Firstly, generation cost and transmission losses 

are two different quantities which are measured by 

different units. The quantity formed by direct summation 

of these two quantities does not have a meaningful 

physical interpretation-. Secondly. even if the two 

quantities are measured- by the same units, from a 

mathematical point of view the minimum of Z as defined by 

Equation (7.1) above does not necessarily correspond --to 

the minimum of the individual functions Z1 and Z2. The 

same argument applies if the objective functions Z is to 

be maximized. The resultant function Z is a different 
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quantity that represents neither of its two constituent 

parts. This argument can be easily proved by considering 

the case where Z1 - sin 6 and Z2 - cos 6 in the range 0 

to 180 degrees. The maximum of Z1 is equal to 1 and 

occurs at 0- 90' and the maximum of Z2 is also equal to 

1 but occurs at 6-0. The combined function Z has a 

maximum value of 1.414 at 6- 45'. The maximum of Z can 

be obtained by using the usual calculus methods based on 

first and second derivatives. 

It might be asked here, "If this concept of combined 

objective functions is not valid and the corresponding 

results are wrong, then why mention them in the first 

place ?" The answer to this rightly asked question is 

that the discussion above is included here as a 

cautionary tale, for the following reasons: 

1. The very idea of optimizing-two objective functions at 

the same time, is attractive and it is tempting for the 

user to try it on the computer program. 

2. The computer program works without any warning or 

indication of errors, giving the false impression that 

the combination of two objective functions in the manner 

described above is valid. Computer programs cannot check 

the validity of the theoretical and analytical concepts 

upon which the numerical results are based. 
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3. It is not possible to detect any errors in the 

numerical results obtained even by the user of the 

program because they do not look very different from 

those obtained in the three optimization problems of 

Chapter 5 which are based on valid theoretical and 

practical concepts. Also the results obtained seem quite 

acceptable and satisfactory especially since all the 

problem constraints are satisfied. 

7.5 PRACTICAL APPLICATIONS 

_- A load flow or power flow is probably the most 

frequently performed routine among power system 

calculations (57]. Another routine which is run on a 

repetitive basis-is that of economic dispatch [1]. This 

is the routine that determines the generation schedule of 

the system that minimizes the -, operating cost while 

satisfying the imposed operating constraints,.,, Generally, 

depending on the daily load curve. this has to be run at 

intervals of 15 to 30 minutes, which means that it may be 

performed a minimum of 48 times in a 24-hour period. A 

load flow routine is much inferior to'-the present method 

as its main purpose is to determine the bus voltages from 

a given generation schedule. Basically, it solves a set 

of nonlinear equations using iterative numerical 

techniques. Therefore, a, load flow routine cannot be 

performed if -the exact' generation schedule on the- bus 

level is not available., Also, it-does not-deal with the 

individual generator outputsi and ý consequently any 
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quantities dependent on them such as generation cost. 

Economic dispatch, on the other hand, deals mainly with 

the power output of system generators, with the bus 

voltages to be obtained from a load flow. This means 

that, to get the overall steady state condition of the 

power system, both routines must be performed 

iteratively. Even then, the only quantity that can be 

optimized is the generation cost. 

An operational schedule based on the method 

presented here can replace the two routines mentioned 

above in addition to several other advantages and useful 

potential possibilities. The computer programs associated 

with the various optimization problems give all 

generator, bus and line quantities as well as overall 

system results at the optimum operating conditions. These 

also include Load-flow results. Thus, the practical value 

and the field of application of the suggested 

mathematical model is obvious. Apart from fulfilling the 

objectives of both routines, the present method is 

straightforward, the associated computer program is 

shorter and faster and the method offers more choice. 

From the CPU time results presented in Section (6.8), it 

can be seen that the suggested optimization method is 

suitable for on-line applications. Considering the CPU 

time requirements indicated by the three optimization 

problems addressed, and comparing these with the actual 

interval quoted above, there is ample time for running 
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the three optimization programs of Chapter 5 before 

taking any operational decision or control action in 

response to the expected change in loading conditions. It 

is possible to devise an algorithm and a criterion such 

that the three programs are run, the results compared and 

a decision is made as to whether to operate the system 

under minimum generation cost, minimum transmission 

losses or minimum reactive power production. ' Thus, 

depending on the particular system in question and the 

loading conditions during the time-period of interest, 

the optimum- operating conditions of the system can be 

achieved with different objective functions at different 

times. 

A "feeling" of the sort of results that can be 

obtained from applying the method on an actual system has 

already been given in Chapter 5. The test system used 

does not possess any particular features and, therefore, 

gives a fair and typical representation of a general 

power system. Also, since this system includes six power 

stations, one of which is nuclear, it covers a 

considerably large geographical-area which -gives the 

presented work applicability on a practical level. 
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Application to Nonelectrical Systeme 

Many problems from other engineering disciplines can 

be solved by transforming the problem into an electrical 

one using analogies. In mechanics, for example, problems 

can be solved using electrical analogues where forces are 

replaced by voltages, velocity by current, friction by 

resistance and so on. More complicated problems of 

mechanical engineering such as vibration in springs and 

undesirable vibrations in mechanical equipment can also 

be solved in this manner (58). This practice can be 

extended to a larger and more general scale such that the 

operation of nonelectrical systems can be represented and 

solved by simulation to electric power systems. 

In 1971, Lo and Brameller [593 showed that the 

operation of a gas distribution system can be optimized 

using electrical network methods. Gas systems and other 

similar systems that can benefit from power system 

analysis, in general, can also benefit from the 

optimization method presented here. There is a number of 

other systems and industries whose structures bear some 

resemblance to that of electric power systems. As the 

suggested method offers many advantages to the solution 

of optimum operation of power systems, which is a problem 

of recognized complexity, then it is quite feasible that 

other systems can benefit in the same manner after their 

operation problem has been transformed into an equivalent 

electrical one and represented by an electric network. 
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7.6 CONTINUATION OF THE PROJECT 

AND SUGGESTIONS FOR FUTURE WORK 

It goes without-saying that there is always room for 

improvement. In a research project of this nature, this 

expression is particularly true. Research projects that 

cannot or need not be improved on or developed fall 

mainly into one of two categories. They are either 

projects that have achieved the stage of perfection, or 

they have reached a dead end. While the present project 

is far from being perfect, it does not belong to the 

second category. Of course, good satisfactory results are 

a valuable incentive for the continuation of any research 

project. However, incompletenesses and shortcomings can 

be an important motivation for improvement of the work 

which may, otherwise; come to a halt. In this respect, 

the present project possesses a great potential for 

development and continuation. Two main possibilities are 

discussed below. 

The majority of optimization methods used in 

power systems and many other fields are based on 

single-objective programming. This means that the 

mathematical formulation of the problem specifies only 

one objective function to°be minimized or maximized under 

a number of constraints. ' Representation of optimization 
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problems of this-type has been given in various places of 

this thesis and can be summarized by the following 

statement: 

Optimize the Objective Function Z, 

Subject to the Constraints Cl. C2, C3 ... CM. 

Even in published methods where two different quantities 

were optimized, the method basically involved two 

separate single-objective mathematical programming 

problems. In the present work, it has been possible to 

optimize two different power system quantities using the 

two-stage formulation of the mathematical model. Again, 

this basically meant the solution of two different 

single-objective linear programming problems at the two 

different levels of the mathematical model. 

The definition of Multiple-objective Programming can 

be summarized as follows: 

Optimize the Objective Functions: 

Z1, Z2, Z3, ... ZL, 

Subject to the Constraints 

Cl. C2, C3, ... CM. 

In this sense, multiple-objective programming is 

almost a neglected topic. Most of those who work in the 

field of optimization, with a reasonably adequate 

knowledge of its various techniques including 

decomposition, are not aware that the topic of multiple 
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objective programming even exists. ° One of the reasons for 

this is the fact that in most literature on optimization 

it is implied that linear programming or mathematical 

programming. in general, means single-objective 

programming. In publications of this category, no hint is 

given about the topic of multiple-objective programming 

and it is not even mentioned. 
M 

An interesting future research project will, 

therefore, be the application of -Multiple-objective 

mathematical programming techniques to the solution of 

power system optimization problems. The versatile 

linearized optimization model of the power system 

developed in the present thesis can be used as the basis. 

For a start, two different objective. functions can be 

optimized simultaneously. For example both the generation 

cost and transmission losses can be minimized. After 

developing and testing the technique, it can then be 

extended to three and more objective functions. The final 

aim will be developing the technique such that any number 

of objective functions can be optimized under any number 

of constraints, , which is the essence of multiple 

objective programming [25]. 

f, 
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Basically. the suggested mathematical model can deal 

with any type of generation as long as the corresponding 

operational aspects are represented by linear or 

linearized mathematical expressions. Nevertheless, at the 

moment the work is mainly inclined towards the operation 

of a thermal power system. Within this inclination. 

however, the method can deal with the various types of 

thermal generation such as gas, coal and nuclear. Apart 

from their output capacities and dynamic responses, the 

main differences between these are their cost functions. 

However, since a linear approximation has been used to 

represent the various cost functions, the general 

formulation of the problem will not be affected by these 

differences. Another difference, particular to nuclear 

generation, is the inflexibility of the power output of 

the generating units. For economical and operational 

reasons, these have to be operated at full capacity as 

discussed previously but, as already mentioned, this can 

be easily accommodated by the suggested formulation and 

the associated computer routines. 

Of particular interest are Hydro generation and 

mixed hydrothermal systems. Although the same formulation 

strategy Presented in the thesis can be applied. hydro, 

systems have their own set of operating conditions and 

constraints. These are considerably different from many 

of the aspects of power system operation pertaining to 
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thermal systems discussed so far. Considerations to be 

taken into account when dealing with hydro systems 

include such factors as reservoir volume, water levels 

and effect on irrigation. 

A possible extension of the project can, therefore, 

be the comprehensive formulation of the problem of 

optimum operating -conditions of hydro and hydrothermal 

power systems using the modelling framework developed in 

the present thesis. "The initial stage of the project 

would involve an extensive study of these systems, the 

various relevant factors affecting their operation and 

the necessary data. - 

7.7 POWER SYSTEM OPERATION : THE SOLUTION 

In Chapter 3 of this thesis it has been mentioned 

that optimization is the mathematical equivalent to 

finding the best- solution of a given problem. This 

implies that it is possible to have many solutions to a 

problem, several of which are good. with some better than 

others, but there is only one "best" solution. So far the 

argument sounds consistent'. However, in Chapter 5. it has 

been found that'for the same problem. namely. power 

system operation, three different solutions were found 

each of which has been described as the "optimum"! The 

obvious question that follows is which one of these is 

the real optimum? 
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To answer this, question it should be realized first 

that power system operation is. a complicated problem that 

involves a large number of variables and even a larger 

number of constraints. The formulation and solution of 

the problem is affected by various conflicting factors 

some of which depend on the policy of the power company. 

A mathematical model, however- comprehensive and 

sophisticated, represents a limited set of these factors. 

Apart from that, as the situation stands at present, 

optimization of power system operation inevitably implies 

selecting one quantity as-the objective function to be 

maximized or minimized. Therefore, although the optimum 

solution is the best, at least from a mathematical-point 

of view, the selection of the quantity to be optimized is 

rather a "subjective" matter that depends to some extent 

on the various policies of different power companies. For 

example, one company may decide, obviously after a lot of 

careful deliberation, that the best way to operate their 

system is under minimum running cost. For this power 

company, the numerical solution obtained by the 

corresponding optimization problem and the associated 

computer program is the optimum. On the other hand, the 

policy of another company is to reduce the transmission 

losses to a minimum. In this case, a different optimum 

applies. This further accentuates the need for 

multiple-objective programming as discussed in the 

previous section. 
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In conclusion, no-one can claim that he has 

developed or can develop the ideal, flawless and 

all-inclusive mathematical model to represent the 

operation of a power system. To make such a serious claim 

one has to be either a boasting novice or a genius of 

unlimited resources. The author is neither. The fact 

still stands, as stated in the opening sentence of the 

very first chapter of this thesis, that-the operation of 

a large modern power system is a very complicated and 

multifaceted problem. However, what has been presented in 

this volume is but a modest attempt, hopefully in the 

right direction. Achieving the final goal requires a lot 

of hard work and continuous research on the subject. As 

far as the author is concerned, this is not the end 

but only 

THE BEGINNING 
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One of the well-known facts about scientific and 

engineering research is that a considerable part of the 

time and effort allocated to any research project is 

spent on collecting, reading and comparing a large number 

of publications on the research topic in question. This 

also involves selecting and arranging these references in 

different ways for various purposes. This process 

continues and takes different directions throughout the 

research project, as does the research project itself for 

that matter. This has two main purposes. One is to give 

the researcher a general overview and an insight into the 

problem he intends to tackle. The other is to make him 

aware of previous and contemporary work in the same or 

related areas of research so that repetition of ideas and 

duplication of work are avoided, thus avoiding wastage of 

time and effort which can, otherwise, be exploited in 

developing new ideas and tackling fresh problems. 

As one is expected to report on the results of his 

experimental or computational work in the form of a 

thesis or a technical paper, it is equally justifiable to 

report on one's findings in terms of literature available 

on the subject. In fact some publications, such as review 
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papers and bibliographies, are devoted to this particular 

aspect of technical research. 

Usually some form of reporting of this kind is 

included in theses as a "Literature Survey" either under 

that particular title or included one way or another in 

the introductory chapter of the thesis. Different authors 

have different ways of addressing the subject. Some use 

one section for this purpose and others devote a complete 

chapter for it. In the present thesis this part of the 

work was fulfilled by two separate sections. In 

Section (1.2), a concise and to-the-point literature 

survey was given, with discerning selection of references 

avoiding a lengthy listing of methods and publications as 

mentioned at the end of Chapter 1. This was concerned 

with the general problem of power system operation and 

its various facets. A similar survey on the particular 

aspect of dimensionality and decomposition methods was 

given in Section (6.2). 

Many research projects combine two or more related 

or different disciplines of knowledge. For example 

research projects on power system stability require a 

considerable knowledge of control theory, and modelling 

of steam turbines depends heavily on thermodynamics. The 

present project involves two main disciplines. It is 

based on the application of Optimization methods to the 

problem of Power System operation. This interdisciplinary 

feature is reflected in the list of references. Most of 
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the references from the power system side of the work are 

research papers while publications used here that belong 

to optimization and related mathematical topics are in 

the form of books. 

The following two main points are found worth 

mentioning here in the context of the bibliographical 

side of the project. 

1. When starting a 

know the keywords 

find publications 

question. In the 

given in the fo 

starting Point. 

research project it is very helpful to 

or indexing terms under which one can 

related to the research topic in 

present work the keywords or phrases 

llowing short list represent a good 

Algorithms 
Computer Applications 
Decomposition 
Economic Operation 
Electrical-Engineering Applications of Computers 
Generators 
Linear Programming 
Load and Voltage Regulation 
Load Dispatching 
Mathematical Programming 
Mathematical Techniques 
Optimisation 
Power System and Plant 
Power Systems 
Power-Systems Control, 
Power Transmission and Distribution 
Steam Power Plants 
Transmission and Distribution 
Unit Commitment 
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Most of the entries in the above list are the 

recognized indexing terms of various papers published in 

the Proceedings of the IEE°and cited in the thesis. 

It is advisable, where appropriate, to look under 

the various spellings of certain words. In this 

particular work, one should be aware of the z/s spelling 

of such words as optimization and minimization. The 

relevant publications are usually classified under one or 

the other of the alternative spellings. 

2. The usual way of finding publications in any field is 

to start with very few references and then try to use the 

list of references given by these publications to find 

more references, and continuing the process in a snowball 

fashion. In this respect; there are certain publications 

which are more useful than others. Some authors provide 

exceptionally long lists of references at the end of 

their written work which can be used as a very good 

source of references in the field. This is especially 

true in the case of surveys, review papers and papers of 

general nature. The majority-of such papers are usually 

published by well-known and experienced contributors. 

This-- makes these publications very useful for a newcomer 

to a field of research-who needs to have a general idea 

and a report of a general descriptive nature about the 

research topic and related practical problems of 

interest, rather than the specific details of a highly 

specialized technique used to solve a very particular 
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problem, or a very narrow area of the field. 

In the case of the present project the following 

publications are very useful in this respect. These are 

discussed briefly below. The numbers in brackets refer to 

their place in the reference list of this thesis. 

Happ [1], listed 112 references from 1922 to the time of 

publication of the paper in 1975. 

Stott et al. [4] included a list of 51 references. 

Sasson [31, listed a total of 101 references arranged in 

categories such as Optimal Load Flow and Capacitor 

Optimization. 

Bazaraa and Jarvis (27): This book contains a 

Bibliography of 490 references arranged alphabetically. 

Garvin [261 contains a list of 59 reference arranged 

alphabetically. 

Gass [24] appended a Bibliography of Linear-Programming 

Applications. The bibliography is divided into 12 

Categories such as Industrial Applications and Economic 

Analysis. Some of the categories are further divided into 

subcategories. The entries of each category or 

subcategory are arranged alphabetically. This is followed 

by a separate alphabetical list of 105 References. 
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Minoux 1231 included long lists of references after each 

of its ten chapters. In this case, one should be aware of 

repetition of references, a fact which also applies to 

the whole process of search for publications. 

Zionts [34] has an alphabetical list of 316 References. 
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MATHEMATICAL BACKGROUND 

A. 1 INTRODUCTION 

A. 2 HISTORICAL BACKGROUND 

A. 3 THE SIMPLEX METHOD AND RELATED TOPICS 

A. 4 DUALITY IN LINEAR PROGRAMMING 

___________ * 



The optimization model developed in the present 

thesis is based on mathematical programming techniques. 

The various power system problems addressed have been 

formulated and solved asplinear programmes. There is--a 

large number of good textbooks that cover the general 

field of optimization and the various related topics such 

as linear programming. However, in an attempt to write , 'a 

self-contained thesis, supplementary material of a 

mathematical nature has been selected from these fields 

and presented in this appendix. Only the necessary 

minimum of this background material is presented here. 

The various concepts discussed are mainly those related 

to the formulation and solution of the general linear 

programming problem with some emphasis on the simplex 

method. A number of related concepts are defined and some 

theorems are presented. The discussion is presented in a 

general, simplified and descriptive manner avoiding 

rigorous mathematical analysis. The two theorems in 

relation with the simplex method are stated without 

proof. Readers who wish to know more details about the 

various concepts presented are advised to consult the 
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references cited in the thesis [23-34]. 

Finally, while. the material in Section (A. 3) is 

essential for the comprehension of the related concepts 

presented in the main body of the thesis, the historical 

introduction of Section (A. 2) is mainly included for the 

general interest of the reader. 

From ancient times, the human race has always 

endeavoured to achieve the best in its varied activities. 

However, optimization in its present sense and related 

mathematical disciplines are relatively recent terms. In 

particular, the word "optimum" was first coined in 1710, 

by the German mathematician and philosopher Gottfried 

Wilhelm Leibniz (1646-1716). 

One of the main branches of the more general field 

of optimization is that of mathematical programming. The 

use` of the term mathematical programming is rather 

unfortunate -nowadays. Newcomers to the field tend to 

confuse it with the modern term of computer programming. 

Mathematical programming and computer programming are two 

totally different concepts. In the early days of 

mathematical programming, researchers in the field were 

literally embarking on completely new areas of knowledge 

and had to invent new terminology to describe the various 

concepts introduced. In those days computers were not as 

widely used as they are now. What we now know as computer 
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programming, which means a set of instructions to be 

executed by the computer, used to be known then as 

Computer Coding. In this sense, this is a more suitable 

term. Mathematical programming, on the other hand, is a 

mathematical technique that solves a particular category 

of specifically defined problems. The reason for this 

confusion is that nowadays scholars are introduced to 

computers for a wide range of applications well before 

acquiring any knowledge about the rather specialized 

field of mathematical programming., 

The various fields of mathematical programming were 

developed almost in parallel in a relatively short period 

of time extending from the late 1940's to the 

early 1960's. The most significant contribution in the 

field of linear programming was by George B. Dantzig 

in 1947, while the foundation of nonlinear programming 

was laid by Kuhn and Tucker in 1951. Significant 

contributions to the fields of Dynamic programming and 

Integer programming were due to Richard E. Hellman in 

1957 and Ralph Gomory in 1958. 

Because of , his- numerous and outstanding 

contributions to the field, it can be safely said that 

George B. Dantzig, is the founder of Linear programming as 

it is known today. It is almost impossible to find any 

publication on the subject that does not mention Dantzig 

or his famous Simplex Method. Detailed account of the 
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method and its variations is found in many references. 

The development of the simplex method by Dantzig 

initiated an avalanche of research in the field of 

linear programming and mathematical programming in 

general. 

The simplex method was developed by Dantzig in 1947. 

At the time he was working for the U. S. Air Force among a 

team called SCOOP (Scientific Computation of Optimum 

Programs). Dantzig's work unified the representation and 

solution of a large number of linear programming 

problems. Around the period when Dantzig published his 

work, linear programming and mathematical programming 

problems were tackled and formulated individually and 

given special names. Such names included the 

Transportation Problem, Transshipment problem, Travelling 

Salesman Problem, Diet or Dietitian problem, Warehouse 

problem, Caterer problem, Assignment problem, Knapsack 

problem and even the Marriage Problem! The various 

problems were formulated by different contributors to the 

field. The transportation problem was formulated by F. L. 

Hitchcock in 1941 and also independently in 1947 by 

Tjalling C. Koopmans. In 1945, G. J. Stigler formulated 

the Diet problem. A. S. Cahn. Jr. formulated the 

warehouse problem in 1948 and W. W Jacobs formulated the 

Caterer problem in 1954. The first Solution of a linear 

programming problem on a High Speed Electronic Computer 

was obtained in January 1952. 
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A. 3 THE SIMPLEX METHOD AND RELATED TOPICS 

The simplex method has been devised to solve a 

linear programming problem of the following form: 

Minimize -- 

Z-C, X, + C2 X2+C3 X3 +... +G, X, (A. 1) 

Subject to 

A11 Xi + Ai9 X2 + A, 3 X= +... + Az� X� - Bý 

A2 s Xi + A2zz X2 -+ Ami X6 +.. '. + Az., X, "- 16 

Aas Xi + Aas X= + A3= X= +... + As� x, - Bm 

Mn 1 Al 
+ Ln2 X2 + A. 

3 n3 
+... + 

Amn M- Lin 

and X, 20 for all j 

n>m 

(A. 2) 

(A. 3) 

A more general form of the linear programming 

problem has already been presented in Section (3.3). 

Conversion between the two forms is possible as explained 

previously. The particular form given above is more 

relevant to the Simplex method and the rest of the 

discussion below. This form is based on the minimization 

of the objective function under equality constraints and 

nonnegativity conditions. In the context of the simplex 
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method, the nonnegativity conditions are sometimes called 

the implicit constraints as they are understood to apply 

even when they are not explicitly mentioned. 

Ignoring the objective function and the 

nonnegativity conditions, the general constraints 

represent a set of simultaneous linear equations. 

However, the problem cannot be solved by the usual 

methods of linear algebra such as direct matrix 

inversion. The reason is mainly due to the fact that the 

number of equations m is not equal to the number of 

unknown variables n. Even when the number of equations 

matches the number of<variables, -there is still the 

problem of the nonnegativity conditions on the individual 

variables. Also, the solution of the set of simultaneous 

linear equations does not necessarily minimize the 

objective function. 

The Simplex method is an iterative procedure to 

solve the linear programming problem defined above. 

However, =before presenting the simplex method it is 

necessary to introduce the definitions-and theorems 

presented below. -It, can be clearly seen that some of 

these are rather elementary , but they are mentioned here 

because of the dependence of other, more important, 

concepts on them. 
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Definitions 

Basic Solution : 

A solution of (A. 2) obtained by setting n-m variables 

equal to zero and solving for the remaining m variables. 

Basis : 

The collection of m variables which are not set equal to 

zero in the construction of a basic solution. 

Basic and Nonbaeic Variables 

A basic variable is any of the variables which are in the 

basis of a basic solution. A nonbasic variable is any of 

the variables which are set equal to zero in the 

construction of a basic solution. 

Basic Feasible Solution : 

A basic solution of (A. 2) which also satisfies (A. 3). 

Optimal Basic Solution : 

A basic feasible solution which minimizes (A. 1). 

Simplex Multipliers 

A vector of simplex multipliers v associated with a basis 

B is defined by the equation: 

T- (Ta 
. 

TZ, Ta. 
..., 

Tw. ) - Cm B'1 (A. 4) 

The basis B in (A. 4) above represents the partial 

constraints matrix of (A. 2) containing only coefficients 

associated with the basic variables. Similarly. C. is a 

partial vector that contains coefficients of the 
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objective function associated with the basic variables. 

For historical reasons, associated with the 

economic interpretation of the linear programming 

problem, the simplex multipliers are also called 

Shadow Prices. This follows from the practice of using 

the objective function coefficients C, to denote costs or 

prices. In general, this designation is not necessary, 

especially nowadays, as the objective function can be 

used to represent various other quantities. For example, 

in the present work, the objective function is used to 

represent power system transmission losses in one of the 

optimization problems. In a situation like this, although 

the mathematical definition of the simplex multipliers as 

given- by (A. 4) above is still relevant and significant. 

the term Shadow "Prices" is not very meaningful. The 

Lagrange Multipliers, mostly associated with nonlinear 

optimization problems, are also described by the same 

term of shadow prices for the same reason of economic 

interpretation [60). = 

Convex Set : 

A collection of points such that if P1 and P2 are any two 

points in the collection, the straight line segment 

joining them is also in the collection. 

An illustration of Convex and Nonconvex Sets is shown in 

FIG. (A. 1) 
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Extreme Point-or Vertex: 

A point in a convex set which does not lie on a segment 

joining two other points of the set. This is also shown 

in FIG. (A. 1) 

Feasible Region : 

The space enclosed by the constraints. 

Theorem 1 

The collection of feasible solutions of a linear 

programming problem constitutes a convex set whose 

extreme points correspond to basic feasible solutions. 

Theorem 2: 

The objective function assumes its minimum at an extreme 

point of the constraint set. 

Solution by Exhaustive Enumeration 

Since, according to Theorem 2, the optimum solution 

of a linear programming problem occurs at one of the 

extreme points of-the feasible region. one obvious method 

of solving the problem is to evaluate the- objective 

function at all the extreme points and select the one 

that gives the minimum value. -For a-general multivariable 

problem with n variables and m constraints, -the number of 

such extreme point solutions is given by the number of 

combinations CE(n, m) defined as follows: 
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CE(n, m) - (n! ) / (m! (n-m) !) (A. 5) 

However, even for the smallest of practical multivariable 

problems, the number of extreme points CE is very large 

and the process of determining these points and 

evaluating the objective function at each one of them can 

be a very lengthy, time-consuming and daunting exercise. 

al'Solution and Geometrical Inter 

Linear programming problems of small sizes can be 

represented and solved graphically. In problems of two 

variables, the constraints are: ': represented by, straight 

lines with the feasible region, - formed by their 

intersection, represented by a polygon whose vertices 

represent the basic feasible solutions. Various values of 

the objective function-are represented by a number °of 

parallel straight lines: Problems with three variables 

can be visualized in three-dimensional space although 

their graphical-representation and solution can beirather 

cumbersome. In this case, the constraints are represented 

by` planes- whose intersections form a polyhedron that 

encloses the, feasible region. The basic- feasible 

solutions- are. given by the vertices, of the polyhedron. 

Linear programming problems of higher dimension cannot be 

visualized, let alone represented or solved by graphical 

means. Unfortunately, problems of two or three variables 

are too small to have any significant practical value, 

and most practical linear programming problems have much 

higher number of variables. 
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The Simplex Algorithm 

The simplex method is a systematic step-by-step 

procedure for finding the minimum of the objective 

function in a linear programming problem based on 

Theorem 2. The main advantage of the method is that it 

avoids the need to go through all the possible solutions 

of the linear programming problem. 

The algorithm starts by an initial feasible basis at 

which the objective function is evaluated. Two of the 

variables of the basis are then interchanged. This means 

that one of the basic variables leaves the basis, thus 

taking the value of zero and, one of the originally 

nonbasic variables enters the basis by taking a non-zero 

value. The objective function is evaluated again and a 

new basis is then generated by the same process depending 

on the new value of the objective function. The method is 

designed such that the new move is towards a basis that 

reduces the value of the objective function. This 

directed minimum-seeking process of forming the new bases 

is continued until no further reduction of the objective 

function can be achieved. The method also includes a 

systematic procedure to obtain an initial or starting 

feasible solution. 
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-This introductory summarization- of the simplex 

method is the necessary amount required as a background 

to the Dantzig-Wolfe decomposition principle introduced 

in Section (6.4). The detailed description of the simplex 

algorithm is beyond the scope of this thesis. 

Based on the simplex method there is a faster and 

more efficient solution algorithm called the Revised 

Simplex Method. 

An interesting, and important concept in linear 

programming is that of duality. Associated with any 

linear programming problem, called the Primal, there is 

another linear programming problem called the Dual. There 

is a useful one-to-one correspondence among the various 

attributes of the two problems. A general primal-dual 

pair is represented below. 

Primal 

Dual 

Minimize ZP - CTX 

Subject to AX 2B 

X20 

", 

Maximize ZD - BTY 

Subject to ATY iC 

Yo 
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In the above formulation the superscript T denotes matrix 

and vector transposition. 

It is to be noted that any of these two problems can 

be called the primal and the other the dual. Also by 

formulating the dual of the dual problem, the original 

primal is obtained. 

The various properties of duality are summarized in 

Table (A. 1). Two other important relationships between 

the primal and dual are the following: 

1. The minimum value of the primal objective function is 

equal to the maximum value of the dual objective 

function. 

2. At the- optimal solution the values of the simplex 

multipliers of the primal are equal to the values of the 

basic variables of the dual and vice versa. 

There is also a number of theorems that relates the 

various` aspects-of the solutions of the two problems such 

as feasibility and optimality. The'simplex and revised 

simplex methods of solution of-the linear programming 

problem are modified such that the-dual problem-can be 

solved directly. The two resulting methods of solution 

are called The Dual Simplex Method and The Revised Dual 

Simplex Method. A combined Primal-Dual solution algorithm 

also exists. Duality in linear programming is 

well documented in linear programming textbooks. 
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PROPERTIES OF DUALITY IN LINEAR PROGRAMMING 

PRIMAL DUAL 

Minimization Maximization 

Number of Variables Number of Constraints 

Coefficient Matrix A Coefficient Matrix AT 

Constraints Bounds Constraints Bounds 
Vector B Vector C 

Objective Function Objective Function 
Coefficients Vector C Coefficient Vector B 

Variable X, i0 Constraint AY, S C, 

Variable X. 10 Constraint AY, C, 

Variable X, Unrestricted Constraint AY, - C, 

Constraint AX, B, Variable Y, 20 

Constraint AX, B, Variable Y, 0 

Constraint AX, - B, Variable Y, Unrestricted 
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CONVEX SET 

FIG. (A. 1) 

CONVEX AND NONCONVEX SETS 

NONCONVEX SET 

323 

VERTEX 



INDEXES 



ALPHABETICAL INDEX OF AUTHORS 

NOTE 

The list of References following Chapter 7 is 
arranged according to the first mention of the 
references in the thesis. Names of all authors 
and co-authors are given in the following list 
in alphabetical order. The numbers after the 
entries refer to those in the above-mentioned 
reference list. 

ALI. H. K. 14 
ALLAN, R. N. 49 
ALSAC, 0.4 
ANDERSON. P. M. 17 

BAZARAA, MOKHTAR 27 
BEALE, E. M. L. 29 
BEIGHTLER, CHARLES S. 33 
BENTHALL, T. P. 6 
BERTSEKAS, DIMITRI P. 13 
BEYER, WILLIAM H. (EDITOR) 15 
BONAERT. AXEL P. 12 
BRAMELLER, A. 2.49,59 
BREE. JR., DONALD W. 11 
BUBENKO, J. A. 42,48 

CHAN, S. M. 51 
CHATTERGY. R. 60 
CUENO, MICHAEL 7 

DANTZIG, GEORGE B. 30 
DECHAMPS. CLAUDE 41 
DOMMEL, HERMANN W. 5.11 

EL-AB I AD , ARMED H. 8.12.53 
ELGERD, OLLE I. 19,58 

FOUAD. A. A. 17 
FRERIS, L. L. 37 

325 



GARVIN, WALTER W. 
GASS. SAUL I. 
GENDRON, ROBERT F. 
GROSS. CHARLES A. 
GUILE, A. E. 

HABIBOLLAHZADEH. H. 
HAMAM, Y. M. 
HAPP, H. H. 
HARIHARAN, S. 

IGNIZIO, JAMES P. 
IRVING, M. R. 
IYER, S. RAMA 

JAIMES, FERNANDO J. 
JARVIS, JOHN J. 

KOIVO, ANTTI J. 
KRISHNA. LAKSHMI 
KRON. GABRIEL 

LAITHWAITE. E. R. 
LASDON, LEON S. 
LAUGHTON, M. A. 
LO, K. L. 
LOPEZ, R. 

MCMILLAN, JR., CLAUDE, 
MAKANI, KALPANA 
MARINHO. J. L. 
MERRILL. HYDE M. 
MINOUX, M. 
MOTA-PALOMINO. R. 
MURTAGH, BRUCE A. 

PATERSON, W. 
PESCHON, JOHN 
PIERCY. D. S. 
POWELL, W. 

QUINTANA. V. H. 

RAMACHANDRAN, K. 
RAO. S. S. 
ROMANO. R. 

26 
24 
13 
20 

35,36 

48 
49 

1,45,46 
18 

25 
38,44 

18 

8 
27 

12 
50 
47 

37 
54 

9.10 
2.14,59 

15 

31 
50 

4 
4 

23 
52 
55 

35,36 
7,11 

7 
11 

15.52 

18 
28 
15 

326 



SASSON, ALBERT M. 3 
SHAW JOHN J. 13 
SHEN. C. M. 9,10 
SHOULTS, RAYMOND R. 43 
SJELVGREN. D. V. 42 
SMITH, OTTO J. M. 50 
STAGG, GLENN W. 53 
STERLING. M. J. H. 38, '44 
STEVENSON, JR., WILLIAM D. 21 
STOTT. B. 4,57 
SUN. D. T. 43 

TINNEY, WILLIAM F. 5,7 
TVEIT, ODD J. 7 

VAJDA, S. 32 
VALADEZ. V. 15 

WEEDY, B. M. 22 
WILDE, DOUGLAS J. 33 
WISMER, DAVID A. 60 

YIP, E. 51 
YOUNG, C. C. 46 

ZIONTS, STANLEY 34 

327 



R! M 

Each entry in this index is followed by a set of two 
numbers referring to the section and page respectively. 
Section numbers denoted by the letter A refer to the 
Appendix. 

A 

A-B-C Parameters 3.3 63 
5.4 114 

Advantages of the Model 7.2 263 
Application to Nonelectrical Systems 7.5 287 
Area Reserve 4.4 100 
Artificial Variables 6.4 221 
Assessment of Existing Methods 1.2 8 

B 

Basic Feasible Solution A. 3 315 
Basic Solution A. 3 315 
Basic Variables A. 3 315 
Basis A. 3 315 
Benders Decomposition 6.2 207 
Block Diagonal Structure 6.3 210 

C 

Canonical Formulation 3.3 63 
Column Generation 6.4 222 
Combined Objective Functions 7.4 282 
Comparison of Results 5.11 135 
Computation Time 6.7 237 
Computer Coding A. 2 311 
Computer Programs 5.10 133 
Constraints. 3.3 62 

- on the Independent Variables. 3,5 74 
- of Stage-I. 3.5 66 
- on Transmission Line Quantities 7.3 278 

Continuation of the Project 7.6 288 
Convex Combinations 6.4 218 

328 



D 

Daily Load Curve 1.1 3 
Dantzig, George B. A. 2 311 
Dantzig-Wolfe Decomposition Principle, The 6.3 213 

6.4 215 
Decision-making 3.1 58 

3.2 58 
Decomposition 1.3 14 

6.2 204 
- of Stage-I 6.5 227 
- of Stage-II 6.5 233 

Decomposition Algorithm, The 6.4 222 
Decomposition Principle, The 6.3 213 
Decoupling 6.2 205 
Deloading Rates of Generators 4.5 101 
Diagonal Matrices 6.3 210 
Diakoptics 6.2 207 
Dimensionality 6.1 203 
Dual Linear Programming Problem, The A. 4 320 
Duality 6.2 208 

A. 4 320 
- Properties of, A. 4 321 

Dynamic Programming 3.2 59 
A. 2 311 

E 

Economic Dispatch 1.2 7 
1.2 8 
5.6 120 
7.5 284 

Energy Exchange 4.3 92 
Equality Constraints 3.4 64 
Equivalent Bus Generator. 1.3 12 

- Parameters of, 2.4 28 
Exhaustive Enumeration A. 3 317 
External System 4.3 92 
Extreme Point A. 3 317 
Extreme Point Solutions A. 3 317 
Extremum Point Problems' 3.2 60 

F 

Feasible Region A. 3 317 

0 

Generating Buses 1.3 12 
Generator Cost Characteristics 2.3 25 
Geometrical Interpretation A. 3 318 
Graphical Solution A. 3 318 

329 



H 

Hard Constraints 7.3 274 
Hydrothermal Power Systems 7.6 291 

I 

Implicit Constraints A. 3 314 
Incremental Modelling 7.2 269 
Independent-Variables 1.3 12 

1.3 13 
Inequality Constraints 3.4 64 
Initial Generation Schedule 5.9 131 
Initial Operating Conditions 7.2 271 
Initial Operating Point. The 2.8 47 
Input Data 5.3 111 
Integer Programming 3.2 59 

A. 2 311 
Internal System 4.3 92 

J 

Jacobs, W. W. A. 2 312 

K 

Koopmans. C. Tialling A. 2 312 
Kuhn and Tucker A. 2 311 

L 

Lagrange Multipliers A. 3 316 
Linear Programming 3.2 60 

7.2 269 
Linearization 2.5 31 

- By Taylor's Series 2.5 33 
- Example 2.5 35 
- Procedure 2.5 34 
- of Apparent Power Relationships 2.6 42 
- of Power System Equations 2.6 38 
- Useful Results 2.5 36 

Load Forecasting 1.1 4 
Loading Rates of Generators 4.5 101 

M 

Master Program 6.4 217 
Mathematical Modelling 3.1 57 
Mathematical Programming 3.2 59 

A. 2 311 

330 



Minimization A. 3 313 
- of Generation Cost 5.6 120 
- of Reactive Power Production 5.8 123 
- of Transmission Losses 5.7 125 

Multiple-Objective Programming 7.6 288 
7.7 293 

N 

NAG Library Routines 5.10 134 
Nonbasic Variables A. 3 315 
Nongenerating Buses 1.3 12 
Nonnegative Variables 3.4 65 
Nonnegativity Conditions A. 3 313 
Numbering of Buses 5.9 129 
Numerical Results 5.5 117 

0 
Objective Function 3.3 62 
Operation Research 3.2 58 

3.2 59 
Optimal Basic Solution A. 3 315 
Optimization 3.2 58 
Optimization Problems 5.2 110 
Overall System Results 5.5 118 

5.5 119 

P 

Pictorial Representation of Matrices 
. 6.5 226 

Piecewise Approximation 2.3 27 
Power System Equations 2.6 38 
P-problem 6.2 205 
P-Q Decomposition 6.2 205 
Practical Applications 7.5 284 
Primal Linear Programming Problem, The A. 4 320 

Q 
0-problem 6.2 205 
Quadratic Programming 3.2 59 

R 

Reactive Power Generation Schedule 5.9 132 
- Initial, 5.9 131 

Reference Bus. The 1.3 12 
2.7 43 

- Choice of. 5.9 128 
- Voltage 5.9 129 

331 



S 
Shadow Prices A. 3 316 
Simplex Algorithm, The A. 3 319 
Simplex Multipliers A. 3 315 
Slack Variables 3.3 64 
Soft Constraints 7.3 274 
Sparsity 6.2 208 
Special Matrix Structures 6.3 209 
Spinning Reserve 4.4 98 
Staircase Matrix Structure 6.5 231 
Subproblems 6.4 217 
Suggestions for Future Work 7.6 288 
Surplus Variables 3.4 64 

T 

Tap-changing Transformers 4.2 83 
- Complex transformation Ratios of, 4.2 87 

Taylor's Series 2.5 33 
Test System 5.2 110 
Thermal Generator Cost Characteristics 2.3 25 

- Lineraization of. 2.3 26 
Tie-line flows 4.3 92 

- Direction of, 4.3 93 
4.3 97 

Two-stage Formulation. The 7.2 267 

U 
Unit Commitment 1.1 4 

V 

Vertex A. 3 317 

W 

Warehouse Problem. The A. 2 312 

2 

Zero-one Programming 3.2 59 

332 


