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This thesis is concerned with the optimum operating
conditions in a power system. The various aspects of the
Problem are modelled and solved as a number of
optimization Problems arplying linear programming
techniques. A generalized linear mathematical model has
been developed for this purpose. A two-stage formulation
is adopted to represent the various problems considered.
In each case one power system quantity is chosen as an
objective function to be optimized under a number of
constraints and operating limits relating to the power
system relationships and upper and lower bounds on the
variables. These include constraints derived from the
power flow equations and transmission network capacity.
Limits are also imposed on bus voltage magnitudes and
generator outputs.

With the appropriate selection of the combination of
objective function and constraints, the model can be used
to minimize the overall generation cost, the total system
losses or the total reactive power generation. The
two—-stage modelling of the problem also allows optimizing
two different objective functions at the same time. Two
such combinations are possible. In one case ¢the total
system losses can be minimized in the first stage and the
generation cost minimized in the second stage. The other
combination minimizes the total system reactive power
output and the active power generation cost.

Using the same model, the problem is then solved

- using decomposition technigques. These imply breaking up
the original problem into a number of smaller problems

that can be solved almost independently. The mathematical
model has been developed 1in general terms and the

agsociated computer program is written for a general
power system. A sample system of medium size has been
used to test the validity of the various aspects of the
suggested model and produce numerical results.
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MATHEMATICAL MODELLING
OF THE OPTIMAL POWER DISPATCH PROBLEM
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POWER _SYSTEM OPERATION HE, PROBLENM

The operation of a modern power system is a very
complicated and multifaceted problem that involves a
large number of interrelated variables. One aspect of the

Ny

problem 1s the complexity and various degrees of
nonlinearity of the mathematical equations that represent
the relationships among the various power system
quantities. Another aspect éhat contriﬁutes to the
complexity of the proglem.is the continuously expanding
sizes of systems with their large number of generaiors.
busbars and transmission lines, as well aé the wvarious
methods of generation and types of power station.J The
problem.*is further compounded by the intercénnection and
energy ;xchange among different séctions of thel system.
This applieé to small areas w{thin a large system: two or
more :ﬁﬁjof syétems or even the poﬁer systems of two
different countries. Also, Dbecause of the nature of the
gervice they prévide. poéer sfstems have to operate

continuously, and this involves an enormous amount of

monitoring, decision-making and control.



Obviously, the main objective when operating a power
gystem 18 to satisfy the load demand on the system. But
the 1load demand itself is a time-variant quantity and,

therefore, a more accurate statement is that the

objective 1s to satisfy the load demand on the system at
any specified moment in time. The consumer demand on the
system varies considerably from season to season during
the vear, from weekdays to weekends within a week, and
from hour to hour in one day. Special days of the vyear
such as Christmas day and other public holidays have
their own loading conditions which can be quite
unpredictable, in contrast with seasonal or hourly
variations. Also, load variaiions in a power system are
affected Dby a number of diverse factors, some of which
can be very unexpected. 1In recent years, these can range
from freak weather conditions to popular "television
programmes. For example, normal prevailing weather
conditions can be predicted to a fairly acceptable degree
of accuracy, such that the consumer demand on the system

can be met satisfactorily. However, & sudden- sharp drop

in temperatures can present the system operator with a

gserious problem. o

The load demand variations with time are given by

the daily load curve, and although the load varies slowly

and gradually, there is a considerable difference between
the peak load and the trough during a 24-hour period.

Obviously, this variation of load has to bé taken 1into

consideration.



The solution of the power system operation problem

is started Dby obtaining an estimate of <the expected
gystem demand for the specified period of time. This 1is

followed by determining the number and size of generating
units to be operated during fhat period, since,  as
mentioned above, the system demand varies widely between
its high and low extremes. The task of estimating the
required demand and 1its wvariations at various time
periods is referred to as load forecasting. The
systematic procedure of deciding which generating units
to be operated at the various time slots is the subject
of unit commitment. Both .load forecasting and unit
commitment are the subjects of continuous and extensive
research. They are, however, outside .the scope of this
thesis.

In addition to such basic requirements as safe
operation and reliability of supply, the.system load is
to be satisfied under a large number of conditions and,
sometimes conflicting, operating constraints. For example
there are the physical laws that govern power system
relationships- such as the energy.balance in the .system
and the mathematical relationships among bus voltages and
line currents. Apart from these, there is also a.number

of constraints based on operating limits and engineering

design  specifications. Examples .of these are . bus
voltages, which are to be kept within a specified range
around their nominal values, and upper and lower limits

on generator outputs.



Operating conditions imply real-time decision-making

and on—-line control, as opposed to other power system
activities such as long term 1load forecasting and
planning of maintenance schedules. This calls for fast,

efficient and reliable algorithms and computer programs

to tackle the various aspects of the problen.

» | § .!1!._

The 1mportance of the problem of power system
operation can be judged from the tremendous amount of
literature available on this vast subject, which 18 a
clear évidence, of the attention 1t receives from
researchers and power companies, as shown by Happ [1].
A large number of research papers has been publishedithat.
cover many of the varied facets of the problem and a wide
range of related topics. Also a variety of techniques
have Dbeen applied to solve particular aspects of the
problem, as 1illustrated by Lo and Brameller {2]. In a
general paper, Sasson and Merrill (3] discussed the
application of the various mathematical optimization
techniques, such as linear, nonlinear, quadratic, integer
and dynamic programming to various power system problems.
A review paper of a similar nature, by Stott, Marinho and
Alsac [4) discusses the application of linear programming

methods in particular to the solution of various power

system problems such as transmission planning, security

dispatch and emergency control.



Optimization methods have been used extensively to
tackle the various aspects of the power system operation
problem. Generally, these involve selecting one power
system quantity as an objective function to be minimized
or maximized subject to a number of constraints. Methods
of formulation and solution techniques can be broadly
classified into two main categories. These are linear and

nonlinear programming methods.

Among the early contrgﬁutions to the field 1s the
formulation, in 1968, of the optimal power flow problem
by Dommel and Tinney [S5]. Their method was based on the
Newton's algorithm, gradient adjustment for obtaining the
minimum and the use of penalty factors. Since then, there

has been a continuous flow of research papers 1in the

field.

Benthall [6]) described an algorithm for solving the

problem of secure economic load scheduling on a large

power system. However, no numerical results were

reported. The paper indicated that the computation time
involved is mostly suitable for off—line calculations and
that on-line application of the method calls for a more

complex computing system.



The problem of minimizing transmission line losses
was formulated by Peschon et al.[?].uThe:method was based
on the suitabie selection of reactive power productions
and transformef tap settings. Thehcompﬁtational procedufe
waé based on the Newton-Raphson method for solving the

poweY—f low equations and on the dual (Lagrangian)

variables of the Kuhn and Tucker Theorem. The economic

dispatch pProblem was formulated Dby El-Abiad and
Jaimes [8], ' also using Newton's method - and based on the

Lagrange multipliers and Kuhn-Tucker conditions.

Shen and Laughton [9] uséd a similar approach to
minimize the cost of realwpower géneration with ; more
comprehensive set of constraints including transmission
line -loading 'limits and transformer tap settings. 1In
another paper [10], they applied dual linear programming
techniques to soivelthe load scheduliﬁé Pf;blgm with
gecurity constraints. In referenc; llli.' néhlinear
programming was appPlied for the mdnimizati&ﬁ of the
hourly opef&ting cost constrained by area interchan}es,

using penalty function method and generalized reduced

gradients.

"'*1_ f v A 5?‘ - * E -""r
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Bonaert, ‘El—-Abiad 'and Koivo [12] addressed the
problem - of scheduling a hydro system. Their computation

takes into account hydro dynamics with variable heads,
cascaded plants, by-pass discharges, spilling, pump
storage plants and navigation requirements. Some emphasis

on hydro generation was also given in a relatively recent



paper by Shaw, Gendron and Bertsekas [13]. They
considered the problem of optimal unit commitment and
economic dispatch of a large hvydrothermal power gsystem.

Their work was concerned with scheduling the startup and

shut down of the thermal units and the power generation

of all units such that the fuel cost is minimized over T

time periods.

A number of methods were used that applied
decomposition techniques to reduce the size of the
problem and the associated matrices. Thése will Dbe

thoroughly discussed in a separate: chapter 1in this

thesis.

Assessment of Existing Methods

No doubt some excellent research work has been done
in the field. For -example, the paper of Dommel  and

Tinny [S] is “one of the publications that formed

important landmarks in the field. However, by studying
the literature and comparing the various formulations and
solution algorithms available, it has been concluded that
most of the mathematical models and methods of solution
used so far suffer from one or more of the fdllow&ng main

shortcomings.

| o
!

1. Because of the complexity of the mathematical
equations involved and as a simplifying step in the

modelling process, in some models ‘transmission line



resistance is ignored, thus neglecting system losses.
Although this 1is a convenient analytical tool, the
resulting models do not truly represent the actual power
gystems which are invariably lossy. Usually, this
simplifying assumption 1is explicitly mentioned. The
problem, however, 1is that in some cases it 1is not
mentioned and the following rather misleading statement
is encountered in the course of the analysis without any

explanation.
Total System Generation = Total System Load

2. Mathematical models used so far are inflexible. They
are designed to solve one aspect éf the power system
operation problem, with one objective function and a
specific set of constraiﬁts. Some of these models are
even designed for a particular powe} companyJor with one
particular Powér systeﬁ.in mind. For instance; a model
that minimizes system losses cannot be readily expanded
or modified such that it takes into consideration other

factors or achieve different objectives i1n addition to or

instead of -those for which it was originally set up.

3. Many linéar or linearized models are based on the
concept of incremental changes in system variables
starting from some initial iEonditions. One of the
drawbacks frequently encountered whén dealing with such

models is that the incremental change notation, such as

the symbol ( /\ ), 1is retained throughout the analysis



and appears jn all the mathematical expressions including

matrices. Although, in principle, this is not wrong it
does, however, tend to hinder the clarity of the

resulting model. In a real power system one is usually
inclined to deal with the actual values of the variables

such as V and P for voltage magnitudes and real powers,

rather than their incremental values, /\V and /\P.

Also the -assumption of the availability of the set
of initial conditions is made without any suggestion as
to how they might be obtained. Therefore, when trying to
use such models or run a computer program based on them,
the first difficulty faced}wil} be obtaining a suitable
set of 1nitial operéting conditions such as an 1nitial
generation schedule. The availability and suitability of
such data is important as it provides the starting point

for the solution of the problem. Some of the initial data

can be assumed of course, but this can prove difficult
sometimes due to the large number and different types of

variables involved.

4. Most models used 36 far either include a load flow
routine in the optimization procedure or iterate between
an optimization routine and a load flow. In the first

category - of models, - for each iteration - of the

optimization process, a complete load flow is performed,
which .in itself is an iterative procedure that involves
the - lengthy process of inverting the -system Jacobian

matrix. This has ‘the disadvantage of considerably

10



increasing the -number of iterations and amount of
computat.ithm: involved as well-as the CPU time. Another
disadvantage 1is that the computer program based on such
models has to be specially written to solve the power

system problem, and no use can be made of any general
optimization software packages availlable. 1In the second
category of models, - although a general-purpose
optimization routine can be employed, the computer
program sStill has to iterate between the optimization
routine and a load flow routine to check for violation of

constraints and make necessary adjustments.

“ARCH PROJEC"

1,3 THE PRESEN"

In the present work, an attempt has been made to set
up a versatile and flexible mathematical model to
represent the power system for the purpose of obtaining
the optimum operating conditions, with emphasis on
generality of the -method: and -simplicity ‘of the
formulation. This section gives a general and brief

description of the mathematical model used in this-:thesis

and i1ts main characteristics and method of solution {14}].

A general power system is cénsidered under norm;l
steady-state oPefating conditions. The various aspects of
power system operation are represented by a numbér of
optimizﬁtion p}oblems 'using linear programming
formulation. For this purpose all relevant power system

equations are linearized. A two-stage mathematical model

11



has been developed to represent the power system and

solve the various optimization problems considered. The

first stage of the model is based on bus and 1line
quantities such as bus injections and line flows, whille

the second stage is based on generator quantities such as
generator : -hourly fuel cost. ' The system busbars are
classified- into two main categories. Buses at which
generators are connected are called " "Generating Buses"
and the rest- of the system buses are called
"Nongenerating -Buses". One .of the generating buses 1is
selected as the reference bus in a manner similar to that
used 1n Load Flow studies. Ihe individual generators
connected at each generating bus are replaced by a single

Equivalent Bus Generator. Generating buses correspond to

power stations in the actual system. Thus, each power
station 1in the physical system is represented by one
equivalent generator in the first stage of the
mathematical model. The parameters and quantities of this
equivalent bus generator relevaﬂt to the various
optimization problems considered, are deriVed ingerms of
the corresponding values éf all the individual gegerators
connected at the bus. Constraints and objective funéiions
based on bus and line quantities are then set up té
represent a numbef of different oétimization proble;sf In

each optimization problem the voltage magnitudes and

phase angles of all system buses, except those of the

reference bus, are used as the independent or decision

12



variables. The optimization problem is then solved by

linear Programming techniques and standard computer

gsubroutines.

The solution of the first stage of the model gives

the values of all system bus voltage magnitudes and phase

angles under optimum operating conditions. These can be

used to calculate all other relevant quantities such- as
bus injections and system losses. The solution of the
problem of optimum operating conditions can be terminated
at the end of the first stage of the model or continued
in the second stage if required. This depends on whether
the main objective of the problem is based on bus or line
quantities, or on generator quantities. It i1s to be
remembered here that the first stage of the model 1is

based on the concept of the equivalent bus generator and,

therefore, does not deal with individual generator

quantities.

The second stage of the model can be used to

determine the output of each individual generator in the
system. This can be achieved by formulating a new linear
programming optimization problem based on generator
quantities, with the objective of minimizing the hourly

fuel cost. The active power outputs of the individual

generators are used as the independent variables whose
values are to be determined, with appropriate upper and
lower operating 1limits. The constraints of the new

optimization problem are based on the energy balance 1in

13



the system and on the active power outputs of the
generating buses. The active and reactive outputs of the

equivalent bus generators can be obtained from the first
stage of-the model and they rerresent the contribution of
each generating bus towards the total system demand and
transmission loses. The outputs of the .individual
generators at a particular bus, on the other hand,
represent the contribution of these generators towards

the total output of that bhus.

The optimization problem of the second stage of the
model can then be solved using the s ame linear
programming techniques and computer subroutines used ¢to

solve the optimization problem of the first stage.

Finally, the project considers the application of
decomposition methods to the suggested mathematical
model. The aim of this is to reduce the size or
dimensionality of the various optimization problems
addressed so that the éuggested solution method can be
arPplied to large-scale power systems. Decomﬁosition has
been based on utilizing the special strﬁcture of the
power system problem and the spérsity of the associated

matrices.

14
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Apart from setting up a generalized and versatile
mathematical model to represent optimum operating

conditions 1in a power system, the present thesis also

endeavours to give a general overview and a comprehensive

study of the problem. In a way, as well as reporting on

the actual work, the thesis also relates the author's
"experience" throughout the various stages of the
research project from searching for literature and
reading on the subject to debugging computer programs and

obtaining numerical results. This experience is reported

in- terms-of .problems that.have been or are likely to Dbe

- — —r

encountered in connection with the various theoretical,
computational and practical aspects of the project as
well as wuseful  practical suggestions as to how these

problems can be avoided.

The thesis consists of seven chapters as well as
gsome additional material in the appendixXx. The present

chapter has introduced the problem of power system
operation, Section (1.1), and 1its reflectiontnin the

literﬁture. Section f1.2). over a period of about 20

vears of research in the field. Section (1.2) has also
presented a  general assessment of the various @ existing

mathematical models and solution methods. Section. (1.3)
gave a general summary of the present research project

and a brief description of the modelling framework.
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The modelling process on which the present work 1s
based, 18 explained in detail in Chapters 2 and 3. The
salient features and important characteristics qof the
mathematical model are detailed in Chapter 2, _while
Chapter 3 shows how the problem is translated into a

general linear programme.

Chapter 4 considers the inclusion of several other
aspects of the power system operation problem into the
suggested mathematical model. Examples of these
additional aspects are tap-changing transformers and
loading rates of generating units. fﬁ Chapter 5, specific
optimization problems are set up, hgnd the associated
numerical results obtained are given. Chapter 6 is
devoted to the application of decomposition methods to
solve the same optimization problems using the
mnthematicalj model dev§10ped in the present research
project. Discussion, conclusions, advantages of the
suggested method and its practical}appligation as well as
suggestions for future work are the?subject of Qhapter 7.

The appendix provides supplementary background material
. T ’:', -

of a mathematical nature.

Throughout the process of writing the thesis, the

reader has been kept constantly in mind. Considerable

attention has been paid and a lot of effort has: been made
in the writing and presentation of the material: The
justification for this stems from the fact that, 1in

research circles, the proper  reporting, ‘writing and
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presentation of a piece of research work is as important
as the work itself.< Therefore, an attempt has been made
to write and present a self-contained ‘'"reader-friendly"

thesis although, obviously, this is not always possible

in a work of this size and nature. This is particularly

relevant to the mathematical background of the work.

Obviously; this thesis is ‘not intended to be a
detailed treatise on optimization and related topics from
a purely mathematical point of view, as there 1is a large
number of good textbooks that cover these areas of
knowledge. However, mathematical programming in general,
and linear programming in particular have direct and
strong bearing on the mathematical formulation adopted in
the present work. Therefore, as well as the mathematical
topics discussed in the Appendix, similar material is
also 1ncluded 1n the main body of the thesis at- the
appropriate chapters or sections where the material is of
immediate relevance and where that material is necessary
for the comprehension: of the rest of the section or
chapter in question? All these additional topics  are’
given here to serve as background material,” supporting
and complementing®the rest of the thesis, and also  for
the general benefit of the readers, especially those who
intend to follow this line of research. The same argument
applies: to ~ some other specific ~ topics such as
linearization.” In each case, "the topic in question was

given the necessary amount of emphasis to clarify all the
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relevant pointB: In the context of mathematical
background of the work presented iﬁ this thesis, readers
with some basic knowledge of mathematical programming,
linear programming, the simplex method and other related
torpics have an obvious advantage in grasping the various
concepts 1introduced in the thesis. At the other end of
the spectrum, however, readers who do not possess any
knowledge in these topics might need to read the Appendix

as a prerequisite to reading the main text.

Having said that, however, an attempt has also been
made to strike a balance between comprehensiveness of
coverage and brevity of presentation. Wherever possible,
any undue details have been avoided. This applies in
particular to the mathematical derivations used in the
thesis. Where appropriate, the general method of
derivation is outlined and presented in a concise and
clear manner starting from fundamental mathematical
principles and relevant power system theory with the
final results listed or "stacked" together at the end of
the respective section or subsection. Thus, at various
places in the thesis the reader will encounter "blocks"
of mathematical expressions. For a first reading of the

thesis, these blocks of equations can be skipped without

affecting the understanding of the subject matter,
although the mathematical expressions themselves are

necessary for the rest of the theoretical analysis and

the mathematical modelling.
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Finally, the references given at the end of the
thesis represent rather a short but carefully selected
list from the overwhelmingly large amount of publications
available on the subject. A helpful guide is also given
on finding more .references and furthqr reading - on the

subject.
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CHAPTER 2
IN FEATURES OF THE MATHEMATICAL MODEL

2.1 INTRODUCTION

A general description of the mathematical model used
in the present work has already been given 1n
Section (1.3). The present chapter explains in detail the
central 1deas and underlying concepts that forms the
basis of the modelling philosophy adopted in this thesis.
The various aspects and particular features of the model
are discussed 1in detail 1in separate sections. The
material presented in these sections constitutes the
Building Blocks of the suggested modelling structure and
are treated here almost independently of each other. They
will Dbe put together in Chapter 3 to present a linear
programming formulation of the mathematical model that
represents - power system operation. In what~” follows a
general power system i1is considered, with NB Dbusbars
supplied by NG generators via a transmission ' network

of NL lines. - ~ .
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2.2 THE TWO-STAGE FORMULATION

Most of the equations used in power system analysis,
especilally those related to the power flow equations, are

based on bus quantities such as bus active and reactive
power 1injections and bus voltage magnitudes and phase
angles. In those equations no reference is made to the
individual generator quantities and in most cases they
are not explicitly needed in the analysais. There are
some situations, however, where the analysis is directly
based on individual generator quantities. An example of
such situations - is the calculation of the - system
generation -cost which involves the active power output
and fuel cost characteristics of individual generators.
Considered on their own, these problems can be handled
without major difficulties. There is:-a third category of
problems where both bus and generator quantities are
involved. When dealing with situations of this type, one
problem that soon becomes obvious is the lack of explicit
mathematical relationships between bus and - generator

quantities. An example of these situations 1s the
minimization of the total system generation cost under
constraints. At a éenerating bus, for instance, the total
bus generstion can be éxpressed in terms of the outputs

of the individual generators connected at the bus. On the

the other hand, it can be expressed as an explicit
function of voltage magnitudes and phase angles of all

other system Dbuses. However, there 1is no explicit
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mathematical expression that relates bus voltages and
individual generator outputs. This can be illustrated by

the following general mathematical expression.
F (X ) =G (Y ) (2.1)

i=1, 2, 3, ... , n

j=-1, 2, 3, ... ., m

In the above expression, F and G are general
multivariable functions of the two sets of 1independent
variables Xs and Y, respectively. In a mathematical
relationship of this type, it is impossible to express
any of the independent variables of one side of the

equation as an explicit function of the variables of the

other. As mentioned above. in terms of power system
quantities, '‘'such an expression can have generator
variables on one side and bus variables on the other. The

difficulty of the problem 1s 1increased by the
nonlinearity and complexity of these mathematical
relationships and the fact that they occur as sets, each

consisting of a large number of equations.

Therefore, one of the considerations to be taken
into account when dealing with such problems is bridging
the gap Dbetween two almost separate sets of variables.
Many of the algorithms published in the field of

optimization tackle this problem by an iterative process
between - the two sets of mathematical relationships

involving the two separate sets of wvariables. Starting
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from some 1initial solution, these algorithms generally
involve calculating the functions from one set and
checking the accuracy of the solution using the other

gset. From the result of this comparison some way 18

devised to improve the present solution. The - - 1iterative
process 1s continued until the optimum solution 1is
reached depending on a specified tolerance as a
termination criterion. ‘Basically this 1s the essence of
the Newton-Raphson algorithm used to solve  the power flow
equations. The - incorporation-of the load flow into the
optimization process has already been discussed: 1n
Section (1.2), 1in the course of assessment of existing
power system optimization ' -methods: As : mentioned
previously, this has the disadvantages of long CPU times
and the need for algorithms and computer routines
specially aésigned for the solution of power system

optimization problems.

In the preseat thesis, the difficulty caused by the
lack of explicit mathematical expressions that relate
generator and bus variables is overcome Dby int;oducing
the concept of the equivalent bus generator and employing
the two-stage solution strategy. The first stage of the
model is based on bus and line quantities with Dbus

voltage magnitudes and phase angles as the principle

independent variables whose values are to be determined.
Specific values are assigned to the voltage magnitude and

rhase angle of the reference bus beforehand. Thus, the

24



first stage of the model has a total of 2N independent
variables. The second stage of the model is based on
individual generator quantities, with the NG generator
active power outputs as the ihdependent variables. No
iteration 1s needed between the two stages and the
solution of the overall problem proceeds sequentially
from OStage—-I to Stage-ll with obvious algorithmic and
computational advantages. As mentioned earlier, depending
on the main objective of the optimization probiem. the
solution can be terﬁinated at the end of the first stage
or carried on to theksecond staée. However, 1t must be
noted here that the second stage caﬁnot be solved on 1ts
own, as some of 1ts input parameters can only be obtainéd

after the solution of the first stage has been completed.

2.3 THERMAL GENERATOR COST CHARACTERISTICS

The relationship between the active power: output of
a thermal generator and its hourly input fuel cost 1is

represented by the generator cost function. This 1i1s a

nonlinear mathematical expression of the general from

of (2.2) below. -
FG = Co + C1 X PG + C2 X P& + G x PG (2.2)

where the C's are-constants and PG 1is the generator

active power output.

A typical graph of such a characteristics is shown 1n

FIG.(2.1).
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The constants C associated with the quadratic and
higher power terms of (2.2) are usually very small and
the value of the hourly generation cost is mainly
dictated by the first two terms. Therefore, (2.2) can be

approximated by:
FG = Co + C x PG (2.3)

Thilis 18 a straight line equation and is also shown 1in
FIG.(2.1), where the original nonlinear characteristic is
approxXximated by a straight line segment between operating
limits. This approximation is adequate for most practical
purposes and 1s useful where a linear mathematical model
is used to handle problems involving generation cost

calculations as in the present work.

Furthermorg. the fixed term GCo in (2.2) can be
ignored 1f FG or other ;uantities based on it are to be
used as objective functions for optimization purposés. A
fixed term in the objective function of an optimization
problem does not affect thejgptimiéation ‘process, i.e.,
the systematic mathematical search Ifor the optiﬁum
gsolution, or its outcome, namely, the set of values of
the iﬁdependent variliables thgt give the ;ptimum.solution.
Thus, for the purposes of the present mathematical model,

the generator fuel cost function (2.3) can be further

reduced to:
FG = CG X PG . | 1 (2.4)
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The constant CG = C; is usually referred to as the

Incremental Generation Cost.

-4

Generally, the reduction of the fuel cost

characteristics and the number of terms discarded or

retained depends on the required accuracy of calculations

and results, and also on the availability of the data,

i.e., the constants C:. of the cost characteristic.

The cost functién can also be approximated by a
number of successive straigﬁtfline segments ([(10). This 1s
shown in FIG. (2.2). The strﬁight line seg@ents used can
5e of equal or different lengths depending on the shape
and degree of ﬁonlinearity of the*original functién.When
using this method, the accuracy of the approximation
depends on the number of-line segments used. Increasing
the number of these line segments, thus decreasing the
length of each segment, gives a better fitting between
the original nonlinear characteristic and the resulting

linear approximation. Piecewise linear approximation of
this type 1is not confined to generator fuel cost
characteristics. It is a general method that can Dbe
applied to any smooth continuous nonlinear function. It
has the advantage of combining high accuracy and
applicability ¢to linear analysis at the same time. 1It,

however, has the disadvantage of increasing the required
amount of computation. The choice of this type of

linearization depends on the required degree of accuracy
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and also on whether it is worth the additional

computations involved [15]}.
2.4 PARAMETERS OF THE EQUIVALENT BUS GENERATOR

As mentioned earlier, the mathematical model used 1n
this work consists of two stages. In the first stage of

the model the generators connected at each generating bus
are replaced by a single Equivalent Bus Generator. 1In
this section the relevant parameters of this equivalent
bus generator are derived in terms of the corresponding
parameters of all the individual generators connected to
the bus. The relationships among the various bus and
generator quantities and the notation used are

illustrated in FIG. (2.3).

The active and reactive power. output. of  the
equivalent bus generator and 1its upper and lower
operating limits are given by the summation of all the
corresponding individual generator quantities, as shown

by Equations (2.5) to (2.10) below.

NGB.
PGBy = PN PGG_‘I (2.9)
J=1
NGB |
QGBt — 2 QGG_’ (2.6)
j=1
NGB,
PGBMX: = 2 PGGMX, (2.7)
J=1
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NGB.

PGBMN: = I PGGMN, . (2.8)
=1 .

NGB

QGBMX: = 2T QGGMX, (2.9)
i=1

NGB.
QGBMNi. = 2 QGGMN_: (2.10)
Jj=1
Another relevant parameter of ihe equivaiént bus
generator 1s the equivalent bus incremental cost. This

parameter cannot Dbe obtained by ' a gstraightforward

summation as shown above for the various active and

reactive power quantities. Its derivation proceeds as

follows. . -

The generation cost at the i'th bus 1s given by:

- NGB4 -
FBy, = 2 CG,y X PGG, (2.11)

J=1
From Equation (2.4), the incremental generation cost of

the j'th generator is given by:

FGj : t

CGy = ) (2.12)
PG, - ﬁ *
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Thus, CG, can be defined as:

ca Generation Cost of the j'th Generator
3 = :

Active Power Qutput of the Generator

(2.13)

Similarly, the incremental cost at the i'th bus can be

defined as:

Generation Cost at the Bus

Total Active Power Output of the Bus

(2.14)

From (2.5) and (2.11), this can be expressed as:

NGB.
p) CGJ X PGGJ
j=1
CBy = . | (2.15)
NGB,

2 PGG,
J=1

Theoretically, the cost characteristic.  of a
generating bus cannot be represented by an analytical
function as that of Equations (2.2) or (2.4). However, a

graph of the characteristic can be plotted by using a
suitably large number of operating points along the cost
characteristics "of all the individual generators. Since
straight line approximation is used to represent (2.2),
the resulting bus cost characteristic will, also, be a
straight line. Two Poin§3'will be sufficient to define

the required characteristic 'from which 'CB can be

evaluated. A good approximation of CB will be obtained 1if
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the selected two points are well spaced along the
characteristic. The extreme points of the characteristic
are chosen for this purpose and the incremental cost of

the ifth bus is evaluated as in (2.16).

CBMN: + CBMXi - "
CB=|, B osssssse———————— (2-16)

2

where CBMN: and CBMX: are the values of the 1incremental
costs calculated as in (2.15) above, corresponding to the
minimum and maximum active power outputs of all the

generators connected at the i'th bus respectively.

In full, CB: is given by (2.17) below.

NGB NGB,

2 CGs x PGGMN; ’ 3 CGy x PGGMX.
=1 Jj=1
4
NGB NGB,
2 PGGMN, N > PGGMX.,
Jm=1 =1
CB:. - .
) 2
‘ | Y : v (2.17)
2.5 LINEARIZATION
The equations that descraibe power system
relationships = are generally -nonlinear, involving

quadratic and-.- higher power terms and trigonometric

functions. The present work is based on formulating the
various aspects of the problem of power system optimum

operating conditions as a number of linear programming
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problems. Therefore, before the mathematical model of the

problem can be set up, all the relevant power system

equations must be linearized.

There is a number of different linearization
methods. Some of these have already been described 1in

Section (2.3), in association with thermal generator cost

functions. Other methods are discussed here. In complex
mathematical expressions, 1i.e., expressions that involve
real and imaginary parts, some form of linearization and
simplification of the analysis can be achieved by
ignoring one of the constituent parts of the complex
quantity, 1f 1its value or effect on the whole 1s very
small “compared to the other part. The jJustification for
this depends on the‘given numerical data and on the
nature of the physical problem4+ It also depends on
whethe; a ver? accﬁrate representation and rigorous
analysis of the physical system is wanted or only.-a fast
approximate solution is required.. Whichever part of the
complex quantity is ignored, the rest of the analysis 1is
carried out in terms of-real variables since, even when
the remaining variables are 1imaginary, - the .complex
operator notation, 31 or j, is droppred. 1In power system
analysis, the mathematical formulation can be simplified,
and an approximate solution obtained, .by neglecting the
regsistive part of the impedance of power system

components, such as transmission lines and transformers,

and treating them as pure reactances. As discussed 1n
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Chapter 1, this has the disadvantage that the resulting

mathematical expressions do not give true representation

of the actual power system.

Another widely used method of linearization is based

on the Taylor's series expansion of the given nonlinear
function [16]. Various degrees of accuracy can be
obtained depending on the number of terms 1included. A
linear expression is obtained b& including only the first
two terms of the series. This method involves the use of

derivatives, and° in multivariable functions partial

derivatives have to be used.

In this thesis linearization is an important aspect
that plays a major role in the modelling and solution of

the problem. Therefore, it is given some emphasis and 1s

explained in some detail in this section.

"The linearization technique employed here- is based
on the concept of incremental change in the values of the
system independent and dependent variables around a Known
initial point. The term incremental change 1in this
context 1is used tomeank;‘change. positive or negative,
in the value of ea variable whi;h is very small 1n
comparison with the initial value of the variable. The

step by step linearization procedure is given Dbelow 1n

general terms followed by an example [17].
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1. Consider the general nonlinear function Y = F(X) for

which the data of an initial point is available:

Yo = F(X).

2. Assume that there is an incremental change /\X in the

value of the independent variable and substitute each X

by ( Xo+/\X ) in the original function Y.
3. Expand the function Y = F( Xo+/\X ).

4. Ignore any terms that involve quadratic and higher
powers of /\X and any other functions of /\X of

negligible value.
5. Substitute each /\X back by (X-X).

The resulting equation from step (35) 1s an
approximate linearized version of the original nonlinear
function Y, and 1is accurate enough as long as the
incremental changes in thehvalues of the 1ndependent

variables are very small compared with their initial

values.

It 18 to Dbe emphasized at this point that the
substitution of step (5) should be performed after the

reduction of step (4).

The generality of the method cannot be explained any

further and is better illustrated by a specific example.

The same steps 1 to 5 above are followed.
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a e

1. Consider the function Y = X2, Y, = X,2,
. Y= ( Xo + /\X )= 1

. Y = Xo? + 2Xo/\X + /\2X

. Y = Xo? + 2Xo/\X

o S W N

. Y = 2XOX — XOz

The last form of the function is a straight line

equation that can be rewritten as follows:

Y = AX + B (2.18)
where,

A= 2%
and

B=-X?

It 18 to be noted here that the resulting linear
equation 1s éxpressed in terms of the original variables
Y and X, not the incremental changes /\Y and /\X as used
in the literature [18]. Also. both the constants A.and B

are functions of the initial point Xo.

The above 1is a rather simplified example for the
purpose of 1i1llustration but the method can be extended to

multivariable functions of any degree of complexity and

nonlinearity.
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Usef Results

Below are some particular linearization results of

general use for the derivation of the linearized versions

of the various power system equations used in the thesis.
1. For a fuhction *

F = AF1 + BF2 (2.19)

the following result can be deduced:
F = Fo + A/\F1 + B/\F2 (2.20)

2. Trigonometric functions, in particular, can be

linearized by using the following approximations.

For a small angle /\6 measured in radians:

sin /\& = /\6 (2.21)
cos /\© = 1 (2.22)

Applying the linearization procedure explained above, the

following results can be obtained.

sin © = ( cos 6 ) 6 + 8in 6 - 6 Cco0s 6o (2.23)
cos O = — ((8in 6o ) © + cos 6 + & s81n 6o (2.24)

Both (2.23) and (2.24) can be expressed in the general
form of the straight line equation (2.18) with © as the
independent variable and:

A= (cos & ), and B = sin & - 6> cos &, for the sine

function and,
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A=—-(81n6 ), and B = cos & + 6, s8in6,, for the

cosine function.

3. Many mathematical expressions in power system theory

have the following general form:

F=XY (A sin © + B cos 6 ) (2.25)

The linearized version of F is given by:

F";[c: (Asina;. +Bcosa:.)xlu
+ Xo ( A sin & + B cos & )kY
+ Xo Yo ( A cos & - B sin éa ) ©
+ Xo Yo 6o (Bsin&.—hcos&.)—F‘;
(2.26)

This can serve as a good iilustration of the
linearization of a multivariable function using the
linearization procedure described in this section. .The
nonlinear function F has three independent variables,
namely, X, ‘Y and ©. The linearized version shows the
coefficients associated with each of the variables and
the constant terms which are functions of the initial

values of the dependent and independent variables.
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2,6 THE LINEARIZED POWER SYSTEM EQUAT]IONS

The first stage of the model is based on linearized
versions of the mathematical equations that describe the
relationships among the various bus and line quantities.
There 1s a certain number of such power system equations
which represent the core of power system theory and used
1n power system analysis. Collectively they give a
complete picture of the power system steady—-state normal
operating conditions and, consequently they are used in
the present work to represent the various optimization

problems [19-22]. These equations fall into three

distinct sets.

l. The net bus active and reactive power injections.

These are defined below:
P = PGB, - PD: | (2.27)

Qs = QGB: - QD (2.28)
i =1, 2, 3., ... ., NB

2. Active and reactive power line flows.

For a line connecting node i to node j, these depend on
whether the power flow is from node 1 to node jJ or from
node j to node i. Therefore, for each line in the system
there are four such éuantities. namely, Pis, Psa, Qs

and QJ:.
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3. Active and reactive power losses.

For the k'th line, connecting bus i1 to bus j, these are

given by:
Plec = Piy + Pgys (2.29)
QL = Qus + Qus (2.30)

k=1, 2, 3, ... ., NL

All the relevant mathematical equations have been
linearized using the procedure described in Section (2.5)
and the final results are given below. Each equation is
given first in its original nonlinear form, followed by
the linearized version with both forms expressed as

explicat functions of ¢the independent variables V,

and 6. .

The T—equivalent circuit 1i1s used to represent

transmigssion 1lines, and the relationships among the

various bus and line quantities are shown in FIG.(2.4).

Net Bus Active Power Injection

N
m F Vs Vi ( Gis Cc0OSBs 4 + Bis 8sin 914 ) (2.31)

=1

Pi

N : ~ +
Ps = [ 2 Vs ( Gu s CcO8 B440  + B:is 8in Bi40 ) Vi
j=1
+ Vi ( Gz,s CO8 Oiia0o + B, . sin 6Gi40 ) v.:l
+ Vio VJO ( BiJ CO8 ea;o -~ Gis sin 914o ) O,
+ Vio VJO ( GtJ sin etJo - Bi sy C€OS e:Jo ) O,
+ Vio Viso G450 ( Gis 8in Bis0
- Bis €cO0s Bi40 ) ] —- P:io (2.32)
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Net Bus Reactive Power Injection

N . , ,
Q:l. = 3 Vi V_'l ( Gi._;l sin Os s — Byss cCcOS 91.:! ) (2.33)
j=1
N
Qi = [ 2 Vuo ( Giys 8in Bs40 — Briys €08 6140 ) Vi
j=1

+ Vioe ( Gis sin G140 — Biy €08 6Bi40 ) Vi
+ Vio Vio ( Giys €08 B140 + Biy 81n Bi 450 ) O
- Vio V10 ( GtJ cOS 614¢ + BLJ sSin enﬂ: ) QJ
— Vta Vio G140 ( Gi s cOS Bi40
* | + Bisy s81n BGi40 ) 1 = Qio (2.34)

ctive Power Transf Across lLine -J)

Pig = Yi..:l2 RLJ Vi2 + YlJz Vs Vj ( XLJ'Sin ahg
— Rsys CcOS Bs4 ) (2.3D)

Pi._j - Yi..jz [ 2 R:l,j Vio
VJD ( Xa; sin 9:;@ — RtJ coS 6440 ) ] V.
YiJ Vio ( XIJ sin eaJa - Ris COS Ois0 ) VJ
YiJ Vio VJG ( RiJ sin etJa + XiJ COS 9140 ) S
Yi Vio Vio ( RiJ sin 911a + X1 co8 Bi40 ) eJ
YiJ Vio VJG B;Ja ( RiJ sin 91;@

+ X143 €08 G140 ) = Pigo (2.36)

| + + +
nNN W

ctive Power Transfer Across J=

Pss = Yis? Riy V32 - Ye 42 Vs Vs ( ) O sin 6,
+ Riy COS B:14 ) (2.37)

Pss = — Y42 VJO ( X14 sin 0140 + R:s:s COS 614a ) Vi
+ Yes?2 [ 2 Rey Vao = Vio ( Xi s sin B6i40.
+ Riy cos Bis0 ) ] Vg,
+ Yi;’ Vio VJQ ( Ra; sin Q41430 - XaJ co8 Ois0 ) O
+ Yt;’ Vio VJD ( X413 cO08 BG4 40 — Rtﬁ sin G140 ) O
+ Yi32 Vio Vyo 6130 ( Ris 8in Bi40

—- X144 COS Oi 40 ) = Pssio
(2.38)
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Reactive Power Transfer Across Line (I-J)

s = (Yas?2 Xiy-Tiy) Vi 2
— YiJz Vi VJ ( RiJ sin 614 + X14 CcCOS eiJ ) (2-39)

Qs = [ 2 (Yas?2 Xas-Tis) Vio
2 VJ@ ( RiJ sin Oi 0o + X143 COS Bis0 ) ] Vu
2 Vio ( RiJ sin O1450 + X1JtCOS Bi 40 ) VJ
Yias?2 Vio Viyo ( Xs 4 81N B1490 — Ris co08 G140 ) O
2
2

Vio VJO ( RtJ COS e;;m - X1J sin eaJo ) 94
Vio VJO Ois30 ( Riy cos Oi 0

- X;_, sin ei..:ub ) — Q:l_:la (2.40)

Reactive Power Transfer Across Line (J-I1)

Qis = (Yas? Xos-Tigs) V,2
+ Yi42 V, V_:l ( Ri_:l sin ©:4 - X1y COS Oi ) (2.41)

Qje = YiJz VJG ({ Riy 81N Bi1350 — X144 COS i 40 ) Vi
+ [ 2 (Yis?2 Xis-Ti14) Viyo :
+ Yi42 Vi ( Ri sin 9140 - X1 4 COS OiL 40 ) ] VJ
- Y33? Vio Vso ( X415 8in G440 + Ris €08 O4350 ) O
+ Yis?2 Vio VJO ( X1J Ssin Bi30 + Riys c08 G140 ) O
- Yt_‘l: Vio V_u.:» Q150 ( Ri s coOS Ois0
+ X4 81N Ois0 ) — Qis0
(2.42)

Active Power lLoss

A\ Transmissio

? -

Plee = Ya3? Ry V2 4+ Yy 42 R4 Vy?
- 2 YiJzFRiJ Vi VJ cos 64 R 0 (2.43)

PL = 2 YiJz RlJ ( Vio - Vdo co8s Bi40 ) Vi

2 Yth RiJ ( VJO - Vi COS etJD ) VJ

( 2 Y42 Ris Vio Viso 81in BO450 ) O

( 2 Yss? Reys Vio Vso 8in 6540 ) O,

2 Yis? Ra Vio Viyo Oi50 sin 6i40 - Pleo (2.44)

| | + +

Reactive Power loss a Transmission Line

QLH - (YLJ’ XLJ—ilJ) V, 2
+ (Yi32 Xe4=Tey) Vi? = 2 Ye42 X3 Vo V4 cO8 Os

(2.45)
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QLic = 2 [ (Yas? Xis-Tiy) Vi :

132 X133 Viyo cos Oi 40 ] Va

[ (Yas?2 Xsi3-Ti1s) Vio

K Xi._j Vio CcoOs O 50 ] Vg

2 YiJz X1J Vio Vaio Sin .Bi350 )06,

2 Y143 X149 Vio Vio 8Sin G140 ) O 4

Y132 X155 Vio Viso Bijo Sin 601450 - QLue (2.46)

Complex and Apparent Power Relationships

In the analysis so far, the two components of the
complexXx power have been dealt with separately. The main

relationships among the three quantities, P, Q and 8 are

summarized by (2.47) to (2.50) below.

4

s =P +30Q | (2.47)

52 = P2 4 (2 - 5 (2.48)

S = (P2 + Q2 ) (2.49)
Po Qo - |

5 = P + 0 (2.50)
So So |

Equation (2{50)~is the linearized version of (2.49).
The derivation of (2.50) can be started by expressing

Equation (2.48) in ferms of the incremental valués of its

variables as in (2.51).

(( So + /NS )2 = ((Po + /\P )2 4+ ( Q + /\Q )2 . (2.51)

Equation (2.51) His then fully expanded and terms

involving quadratic incremental changes are ignored. The

rest of the derivation proceeds as explained in

Section (2.5).
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The general apparent power relationships (2.47)
to (2.50) apply to load, generation, Dbus injections,
power transfer  and transmission losses. The expanded
forms of these equations in terms of system voltage
magnitudes and phase angles can be obtained Dby
gsubstituting for P and Q from the appropriate equations
(2.31-2.46) above.

Finally, it is to be mentioned here, in the context
of linearization, that the equation of one power system
quantity, namely, the hourly generation cost, has already
been linearized in Section (2.3). However, the
linearization principle used in that particular case 1is
different from the procedure explained in this section.
The linearization of the cost function was based on the
small values of the constants associated with the
variables rather than the incremental changes in the

values of the variables themselves.

2.7 THE REFERENCE BUS

The two general equations'(2:27) and}j(2.28) that
define the bus injections apply to ali system buses_
including the reference. It is to be noticed, however,
that the exPandedmforms (2.31) and (2.33)., which give the
power injections in terms of systemavoltaggs{ apply Lto
all system buses except the reference. Therefore, special

attention has to be paid to the reference bus when

deriving the power injection equations corresponding
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to (2.31) and (2.33). The derivation proceeds as follows.

The total system active and reactive power

generation, demand, and losses are given by Equations

(2.52) to (2.57) below.

PGT = £ PGB (2.52)
PDT = X PD. (2.53)
PLT = X PL. r (2.54)
QGT = X QGB. (2.55)

QDT = Z QD4 - - (2.56)

1=1]1

NL |
QLT - 2 QLu (2.57)

k=1
The generation and demand:- quantities, Equations
(2.92), (2.393), (2.55) and (2.56), can alternatively be
written as shown‘in the corresponding equations (2.58)
to (2.61) Dbelow, where each total system quantity is
written as the sum of two separate parts. One part

corresponds to ‘'the reference bus while the - other

corresponds to the rest of the system buses collectively.
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PGT = PGB- + I PGB, (2.58)
1=1
N
PDT = PD. + Z PD;, (2.59)
1=1
N
QGT = QGB.- + X QGB. (2.60)
1=1 |
N
QDT = QD~ + 3 QD. - (2.61)
1=]1

The energy balance equations in the system are given

PGT = PDT + PLT | (2.62)
QGT = QDT + QLT (2.63)

Substituting from (2.54), (2.58) and (2.59) into (2.62)

and rearranging give:

N L NL
PGB~ — PD, = p) ( PD:. - PGB: ) + 2 Pl (2.64)
1=1] k=1

Similarly, the corresponding reactive power equation 1s

given by:

N NL
QGB- — QD~ = 3 ( QDy, - QGB: ) + I QL. (2.65)
im] k=1

Using the defining equations of the active and reactive
power injections, (2.27) and (2.28) respectively, (2.64)

and (2.65) can be written as follows:
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NL , N

P- = ( 2 PL. ) - 3 P, (2.66)
k=] im=1 , .
NL N
Q- = ( 2 QL ) = Z Qs (2.67)
k=1 i=1

The above two exXpressions give the net power
injections at the reference bus in terms of the net power
injections of the rest of the system buses and the total
system losses. The full nonlinear and linear versions
of (2.66) and (2.67) in terms of system voltage
magnitudes and phase angles can Dbe ocbtained by
substituting rfromthe approp}i;te expanded equations of

Section (2.6).

An alternative method of obtaining the same results
1s by introducing two new quantities, PT and QT. These
are the net active and reactive power ‘injections into the
whole power system and are defined as equal to the
difference between the total system generation and - the

total system:- demand. : In mathematical terms these are

given by:
PT = PGT - PDT (2.68)
QT = QGT - QDT | ; (2.69)

The rest of the derivation proceeds, as before, Dby
substituting from the appropriate equations (2.958)

to (2.61).
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It 1s interesting to note that the net total power

injection into the system is equal to the system losses,

which 1s already stated mathematically in Equations

(2.62) and (2.63).

Taking the reference bus into account, there is,
thus, a total of 2NB power injection equations - in
contrast with the 2N equations used in load flow studies.
In the latter case the reference bus injections are
obtained after a complete run of the load flow and the
calculation of all transmission losses. In the present
work the effect of the reference bus and transmission

losses are incorporated as constituent parts in the

problem model.

2.8 THE INITIAL OPERATING POINT

As explained earlier, the relevant power system
equations have been linearized using the concept of
incremental changes around a given initial operating
point. The data involved includes the initial values of
all bus voltage magnitudes and phase angles, active and
reactive power injections, active and reactive power
losses and power transfers in all transmission lines. The
availability of all these data is essential as a starting
point for the setting up of the linear mathematical

model. An approximate initial operating point can be

estimated as follows.
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The given total system active and reactive load 1s

divided among all system generators in proportion to
their capacities, measured by the corresponding upper
limits on their outputs. Thus, the initial active and

reactive outputs of the j'th generator are given by:

=

- Capacity of the j'th Generator
Output Power of the =(

)
j'th Generator Total System Capacaty

x Total Load on the System

(2.70)
For this purpoée. the total active and reactive system

capacities are defined by:

NG

PGTMX = X PGGMX, (2.71)
J=1

NG

QGTMX = 2 QGGMX, +. (2.72)
=1

Alternatively, in terms of generating bus quantities,

PGTMX and QGTMX are given by:

NS

PGTMX = X PGBMX, ﬂ (2.73)
j=1

NS
QGTMX = 2 QGBMX, | ﬂ, - (2.74)
=1

Using these definitions, the initial active and reactive

power generations can be expressed as follows:
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PGGMX,

PGGso = x PDT (2.79)
PGTMX
QGGMX,

QGG 0 = x QDT . (2.76)
QGTMX

These are used to calculate the initial active and
reactive power outputs of the bus equivalent generators
from Equations (2.5) and (2.6). Alternatively these can

be obtained using the following two equations:

PGBMX, | |

PGBio = x PDT (2.77)
PGTMX
QGBMX:

QGBio ™ x QDT (2.78)
QGTMX

In (2.77) and (2.78), the initial values of the
active and reactive power outputs of the generating buses
are obtained by dividing the total system demand amongst
these buses in proportion to their capacities measured by
their maximum generation, in a similar way to that of

expression (2.70). The active and reactive bus injections
can then Dbe obtained using Equations (2.27) and (2.28)

respectively.

All initial values of bus voltage magnitudes and
phase Langles can then be computed by pérforﬁing a load
flow. Finally all initial line flows and transmission
losses can be calculated using the appropriate nonlinear

equations from Section (2.6).
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2,9 S RY

This chapter has presented the main features and
fundamental ideas that form the basis of the mathematical

model developed in the present research project. These

can be summarised as follows.

1. A two—-stage formulation is adopted to represent the
interrelationships among the various power system
quantities. The first stage is based on bus and line
quantities such as bus injections and 1line flows. The
second stage is based on individual generator quantities

such as generator outputs and generation costs.

2. The two stages of the model are linked by the concept
of the equivalent bus generator which replaces the
individual generators at each generating node. The
respective section details the process of obtaining the
relevant parameters of these lumped generators in terms

of the corresponding quantities of the individual

generators.

3. The concept of incremental modelling is wused to
linearize the various mathematical relationships
involved. The linearization procedure 1s explained first
and then the final linearized power system equations are

given.
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4. A method is suggested to obtain the data of an initial

operating point on which the concept of incremental

modelling is based.
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PIECEWISE APPROXIMATION OF A NONLINEAR COST

CHARACTERISTIC USING SEVERAL STRAIGHT LINE
SEGMENTS

(A) THE ORIGINAL NONLINEAR FUNCTION
(B) APPROXIMATION BY THREE STRAIGHT LINE SEGMENTS
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SYSTEM SHOWING THE NOTATION USED

(A) THE ORIGINAL DETAILED NETWORK

(B) THE GENERATING BUS LUMPED
EQUIVALENT GENERATOR

(C) BUS NET POWER INJECTIONS
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Vi = V. cos 6, + j V. sin 6, Ys =1/ (R+3X)

Vy, = Vs, cos 6 + 3 Vs, s8in O, ~ ?P = 3 T
i J
1. : - ' 1,
— ' Ys ' -
S4 H . Sy
V: ' ?P -Y-P ' -V_J
FIG.(2.4)

TRANSMISSION LINE EQUIVALENT CIRCUIT
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CHAPTER_ 3

INEAR PROGRAMMING FOR ATION

3.1 INTRODUCTION

Mathematical modelling is one of the important
stages 1n the course of solution of a large numbér of
practical engineering problems. It is also ;ne of the
earliest stages, as it usuallf foilows the' initial
general descriptive statement of the problem.
Mathematical® modelling implies translating the various
aspects of the physical problem into mathematical
expressions. This 1is followed by devising an algorithm
for solving the problem and then obtaining the actual
numerical solution. o

In many real life situations one 18 often faced'Qith
the need of not only solving a given practical problem,
but of deciding on which solution 18 to be chosen from a
number of alternatives availaﬁle: Generally, ig such
cases, each alternative has its owﬁ advantages and
disadvaﬁtages and it 1s difficuit to assess all the
relevant, and often conflicting factors: against one
another and come up with the required solution. Choosiné
a solutién which satisfies cerﬁain conditions may Dbe

attractive, considering those conditions alone, but might

bring about severe disadvantages when taking into
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consideration other relevant factors. Trying to comply
with the new conditions, on the other hand, might violate
the first set of constraints and so on.

Such difficult decision-making is of commonplace
occurrence 1in project planning, the operation and process
control of large ‘industrial systems, the manufacturing of
goods, the allocation of resources, and in the provision
and distribution of supplies and services. The operation
of a large modern power system is an example of this
category of complicated problems and is characterized by

many of the above—-mentioned features.

3.2 THE CONCEPT OF OPTIMIZATION

The field that deals with the type of problem
described 1n the previous section is that of Operations
Research [23-34]). In the‘ general sense, operations
research can be defined as the application of systematic
scientific methoas and techniques and gquantitative ¢tools
to solve problems involving planning, decision-making and
operation of systems such that optimal solutions are
reached. Although problemé with alternative solutions
fhat invoive difficult decision—-making are not entirely
new, 1t 1s only dur{hg the iast 50 years or so that such
problems, theilr impaét and the need for theilr solutions
have become so pronounced. It was at the beginning of
that period that the ideas of the field of operations

research started to take shape, and keen 1interest 1in

related research disciplines was witnessed [23].
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Operations research is a vast field which

encompasses a wide range of practical problems and
solution techniques. Among the various fields of
operations research is that of Mathematical Programming,
which 18 also the field that is most prominent and which
received a lot of attention from researchers and,
therefore, developed steadily and rapidly. Mathematical
Programming 1s defined as a technique for determining the
value of a set of decision variables that optimize a
mathematical objective function and conform to a given

set of mathematical constraints.

Mathematical programming, 1itself, consists of a
large number and wide variety of methéds and techniques
for solving optimization problems. These include iinear.
nonlinear, quadratic and integer programming, binary or
Zero—one programming, static & dynamic prqgramming.
continuous &I discrete programming, deterministic &
probabilistic or stochastic programming, heuristic
programming, geometric programming, separable programmiﬁg
and parametric programming. Eacﬁ of thesek fields 1is
concernedﬁ‘with a particﬁlar aspect of the mathematical
programming problem, and the various solution techniques
are suitable for diféerent rhysical problems, depending
on fhe nature of these problems and their mathematical

representations, and also on the nature of the data and

required results.

29



A relatively old category of problems which have
some bearing on mathematical programming problems is that
of finding the minimum or maximum of functions. These
types of prob&em.are colléétively Known as Extremum Point

Problems. In their simplest form extremum point problems

=

consist of a single function to be minimized or maximized
in terms of one variable. This éategéry of problem can 53
handled and has been successfully solved by the classical
methods of calculus for a 1long time. However, these
methods cannot handle additional constraints 05 the
problem and the bounds on the variables which
characterize optimization problems. The ability to deél
with constrains is oné of the main differences between
the optimization methods of mathematical programming and
those of classical calculus. Optimization 1is the
technical or mathematical term equivalent to the conce;t
of finding the '"best solution", 1i.e., a solutionb that
satisfies a number of conflicting conditions and imposed
constraints.

One 'of the earliest techniques of mathematical
programming '1s that of linear programming. This 18 now a
well-established field and:has received a wide range of
practical applications [24,25]. In a linear programming
problem the objective function and all the constraints
are linear algebraic functions of the 1independent or
decision variables. Linear Programming is the technique

used in the present work to formulate the problem of

power system optimum operating conditions.
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3.3 GENERALIZED FORMULATION OF THE PROBLEM

The constrained linear optimization problem can Dbe

mathematically stated in a number of different forms. The

various aspects of the original physical problem are
handled differently by the various mathematical
formulations and each one of these is suitable for a
different solution algorithm or a different computer
optimization subroutine. However, the various
representations are equivalent and carry the same amount
of 1information that describes the original physical
problem. Also, transformation from one representation to

another, when the need arises, 18 possible as explained

below.

e

In the present work the following general
representation of the linear programming problem 1s

adopted.

2

Optimize Z = C:X1 + Ca2Xz + CsX= + . . . + G X

(3.1)
Subject to ‘
BU: 2 A11 Xy 4+ As=zXe + AisXs + .+« + AsnXs 2 BLa
BU= 2 Az31Xs + AzzXa + Aszé + « « « + AnrX 2 Ble

‘* BUs 2 Ax1X:1 + As=2Xz2 + AasXzs + . . « + AsnX 2 Bls

BUn 2 An1Xs + AnzXe + AnsXs + . . « + AnnXs 2" Blm
(3.2)

and XU, 2 X5 2 XLy, j =1,2, 3, ... . n - (3.3)
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This formulation can be written in the following

compact form.

Optimize Z = % CyX,
Subject to BU: 2 2 A.4Xs 2 BL:
and XUs 2 X4 2 XL
1=1, 2, 3, ... ., m
j =1, 2, 3, ... ., n
(3.4)
It can also be represented using vector and matrix

notation.

The function Z to be optimized, i.e., maximized or
minimized 1s called the Objective Function and the
inequalities (3.2) and (3.3) are the Constraints to be
satisfied. These consist of two distinct sets. The first
set consists of the general constraints which are based
on the functional relationships amongst the wvariables.
Each constraint has a lower and uprer limit given by BL
and BU respectively. The second set represents the lower
and upper bounds, - XL and XU, on the individual variables
themselves. The vectors XL and XU can be considered as
subsets of the vectors BL and BU respectively. The bounds
on each 1individual variable X, can be treated as the
(m+3) 'th general constraint, with the wvalue of the
coefficient Ay equal to 1 at the j'th column and =zero
elsewhere. The Coefficients A.,, B: ( BL. and BU. ) and

Cs are given Constants and X, are the Unknown Variables
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whose values‘*are to be defermined within the lower and
uppPer bounds imposed. The ‘linear programming problem is
fully defined by its A-B-C Parameters, which is the term
used 1n this thesis to describe the constants matrix A.
and the vectors B and C collectively. The matrix A is

also known as the Constraints Coefficients Matrix and the
elements of the wvector C as the Coefficients of the

Objective Function.

The general—-purpose formulation above should not be
confused with- two specific formulations used in
assoclation with the Simplex Method of solving linear

programming problems, and which are known as the Standard

and Canonical formulations [26]}.

3

3.4 VARIATIONS AND TRANSFORMATIONS

In the previous section a generalized form of the
linear programming problem is given. In general, however,
practical problems do not always occur in this particular
form and the initial mathematical representation-of the
physical problem may-need to be modified. The various
possible  representations and transformations are

discussed below.
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ax zation and Minimizatic

‘A maximization problem can be represented and solved
as a minimization problem and vice versa. For example, if
the objective function is to be minimized the problem can
be solved by maximizing the negative of the objective

function. This can be mathematically stated as :
Minimum (Z2) = - Maximum (-2Z) | (3.5)

and 18 graprhically illustrated by FIG.(3.1).

Constrai

FEquality and Inequali

The 6onstraints of the ﬁroblem can be equalities,’
i.e., equations instead of inequalities or a mixture of
both. Equality and inequality constraints can be
transformed from one form to the other. Also
transformation from one type of inequality constraint to

another 1is possible.

An-inequality of the less than or equai type (<) can
be transformed into an equation by the use of a Slack
variable. On the other hand, an inequality constraint of
the greater than or equal type (2) can be' :transformed
into an equality by the use of’ a negative slack variable
which is also known sometimes as a Surplus variable. A
general constraint with upper and lower bounds can be
gplit into "two separate inequalities or two separate

equations. If, however, the original constraint 1s an

equality and it is required that it is represented as an
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inequality for a specific purpose, then it can be written

as an 1nequality with upper and lower bounds or two
separate 1nequalities. The upper and lower bound in this
case are equal. An inequality constraint of one type can
be transformed to another type by reversing and

multiplying both sides of the inequality by (-1).

If required, nonnegative variables can be taken into
account 1in the general formulation above. This 18

’

achieved by assigning a value of zero to the lower limit

of (3.3). It is to be noted here that the term
"Nonnegative" is specially usedh in this context to
include zero values of the variables, and to avoid
confusion with the term "“positive" which Qight be taken

to mean only values of the variable greater then zero.

Finally, two or more inequalities can .be added

together, in a similar manner to the addition of
equations. However, subtraction of 1inequalities can
produce 1nconsistent and, therefore, unpredictable
results. | |

It 1s to be noted that some of the transformations
explained above migﬁt change the dimentionality of the
linear programming probiem.concerned by -increasing or
decreasing the number of its decision variables or

constraints or both.
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3.5 _STAGE~-1 CONSTR? S

The constraints used in the first stage of the model
are based on the various power system bus and line
quantities. 1In this section, all these constraints are
derived and set up to conform to the general linear
format of (3.2). The constraints are presented here
*withoué referring to any particular optimization problem.
Specific optimization problems, each with a defined
objective function and sets of constraints, will Dbe
presented 1n Chapter 5, as well as the corresponding
numerical results obtained for a small test system.
The method of derivation is presented first in general
terms. Then the elements of the constraints coefficient
matrix Ais, and the upper and lower bounds BU. and Bl ,
associated withlﬁhe various power system quantities, are

derived from the appropriate linearized equations of

Section (2.6).

Each of the linearized power system equations of

Section (2.6) can be written as a function of the general

form:

PY: = FYt( V_“ 8, ) + KY, (3.6)

Each equation consists of two parts. The first 18 a

variable quantity which is a function of the independent
variables V5 and 6,4. The second is a fixed constant whose
value depends on the data of the initial operating point.

The variable part is a function of the following form:
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N N

FY: ( Vs, O, ) = X AM. Vi + 2 AN1y 6By (3.7)
j=1 =1

The constant part of (3.6), in turn, consists of two

parts as in (3.8) below:
KYs = Kio - FVYio ‘ (3.8)

The general form of each constraint is an inequality of

the form:
YMX:i 2 FY: 2 YMN, (3.9)

Substituting from (3.6) and (3.8) 1into (3.9) and

rearranging gives:

YMX: + FYio = Kio 2 FY: ( Vi, 64 ) 2 YMN: 4+ FYi0 - Kio

(3.10)
Further, the last form of the constraint can be written

as.:

BMX: 2 FY«( V., 65 ) 2 BMN: (3.11)

The upper and lower bounds of the constraint, BMX:. and

BMN: respectively, are given by ,

BMX: = YMX: 4+ FYi0o - Kio (3.12)
BMN: = YMN: + FYio - Kso (3.13)
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Below are some important points relevant to the

derivation of the coefficients associated with the

various system quantities.

1. The minimum and maximum bus generations are expressed

by the following inequalities:

PGBMX: 2 PGBi 2 PGBMN, (3.14)

QGBMX: 2 QGB: 2 QGBMN. (3.15)

From Equations (2.27) and (2.28), the bus generations are

given as in (3.16) and (3.17).

PGB: = P, 4+ PD, (3.16)
QGB: = Q. + QD ' (3.17)

Substituting from (3.14) and (3.15) into (3.16) and

(3.17) respectively, and rearranging:

PGBMX, - PDy 2 P:. 2 PGBMN:. - PD. (3.18)

QGBMX:s - QDs 2 Qi 2 QGBMN: - QD. (3.19)

Although developed and expressed 1n terms of
generating buses, the constraints (3.18) and (3.19) are
valid for nongenerating buses as well. The constraints on

the power 1njections corresponding to nongenerating buses
are a special case of (3.18) and (3.19) above, with the
upper and lower limits on the bus active and reactive

power generation assigned a value of zero. This reduces

the two constraints to (3.20) and (3.21) be low.
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- PD, > P, > - PD, | (3.20)

- QDs 2 Q. 2 - QD (3.21)

The last two expressions are in fact just another way of
writing the following two simple equalities which give

the net power injections at the nongenerating buses.

Py = ~ PD; | (3.22)
Qs = - QD4 (3.23)

These can be directly obtained from (3.16) and (3.17)

regspectively by substituting PGB:. and QGB. by zero.

2. A maximum limit is imposed on the active power loss in

a transmission line given by:

PLx & PLMX. (3.24)

A similar upper limit is imposed on the apparent power

transmitted across each line given by:
ST & STMX. N (3.25)

Each of these inequalities represent a special case of
the general expression (3.11) with the lower 1limit

implied to be zZero.

3. The coefficients associated with the apparent power
are derived by using Equation (2.50) and the appropriate

expanded linearized active and reactive power

exXpressions.
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The coefficients AM,, and AN.s of (3.7), and the
upper and lower bounds BMX: and BMN: of (3.11) associated
with the various constraints have been derived — as
outlined above and the final expressions are listed below
under the appropriate headings. It is to be noticed that
they are all functions of system parameters and initial
operating point -data. Therefore, each will be returned as
a single numerical value by the computer program in the

course of the solution of the problem.

lements of the Constraints Coeffijcients Matrix

and Upper and Lower Bounds Vectors

b 4

T

Elements Associated with the Net Bus
Active Power Injection

AMiy = 2 Gis ( Vio )? +
. i N *
21V4¢ ( GiJ cos Bis0 + Bis sin O;: 40 )

ij=1
3 i (3.26)

AMiJ = Vio ( GiJ cos Oi 30 + Bi s sin etJa )

j - 1: 2: 3# ¢ o0 N .
3 +=i (3.27)
N .
ANis = Z Vio Vso ( Biy co08 G130 — Gis s8in 6140 )
j=1 | }
j-l:i 'i (3.28)

ANi4 = Vio Vyo ( Gis 8in. G130 — Bis €08 Bi40 )
1, 2, 3, ... » N
i
(3.29)
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BMX, = PGBMX. + P.o - PD,

+_l;:1vm Vio G140 ( Biy €08 61350 — Gy 8in Giso )
’ (3.30)
BMN. = PGBMN. + Pio. — PDi
+_§1Vu—, Vio G150 ( Bis €08 Biso -~ Gy Sin Gis0 )
: (3.31)
Elements Associated with the Ne us
Reactive Power Injection
AMy+ = - 2 Bis ( Vio )2 +
g Vso ( Gis 8in Biso = Bsis CcOS 64,40 )
fl;ﬁ (3.32)
AM:I.I..:I - JVu;.:ln( Gi.s s81in 61,,.;;-;— Biy co0s8 G130 )
j =1, <, 3, ... » N
,. | i (3.33)
N
‘ AN: s -jflv:l.c:: Vio ( Gss €08 6530 + Bis 8in Gi40 )
¥ (3.34)

ANi.j = - Vu:: V_:ICI ( Gi._j cos ©Oi 30 + B!.J sin 61*40 )

-1. 2,3, ... .N
g i . (3.35)

BMX: = QGBMX: + Qio - QDa

+_§ Vie Vio 610 ( Giss Cosiet-m + By 81n Si40 )

=t |  (3.36)
BMN, = QGBMN: + Qio — QD:

+_g Vio Vio 6140 ( Gy €08 6140 + Bis 81in Gis0 )

= (3.37)
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AM":. - 2 Ya...s’ Rl._'l ( Vio - VJQ co8 6140 ) (3-38)

AM, 4 = 2 Ys..s’m‘Ri..j ( Vio = Vio €08 6140 ) (3.39)
ANis = 2 Ye 4?2 Rag Vio Vso 8in 6: 30 (3.40)
ANi gy = - 2 Y342 Riys Veo Vso 8in Bis0 (3.41)

[ ANas = — ANss 1|

BMX« = PLMX. + Pluo + 2 Yas? Ris Vio Vso 6150 8in 640
(3.42)

BMN. = PLuo + 2 Yis® Ris Vio Vio Gis0 8in 6iso
(3.43)

. “' '
al-2-A% *12-1° i OrYyal O ). A YTane
T ansmisslor '{- -

1

{ 2 Vio [ Piso Y132 Ry +
Si 40 Qiso ( Yas? Xay = Tas ) 1

+ Yes3?2 Vso [ ( Piso Xi1s — Quso Raeys ) 8in BG40
- Pg_so Rs g + Q50 Xt.s ) cos 9140 ) ] )

(3.44)
Yas? Vo

[ ( Piso Xes = Qiso R;J ) 8in B:40
Si1s0 '

- ( Piso Rey + Qiyo Xa s )aCOtB Oi40 ) )
(3.45)

YlJI Vao VJC}

ANtt .- [ ( Puaso Xo g - Qiso Ris ) co8 Bi40
Sis0
+ ( Paso Riy + Qiao Xss ) 8in 6440 |}
(3.46)
Yis? Vio Vyo
ANy 4 = [ ( Qiso Ris = Piso Xies ) €08 Oiu0

SSJG

— ( Psso Res + Qiso Xas ) 8in Biu0 ]
(3.47)
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[AN;.J = = AN, ]

BMXi = STMXk + STko

Yes? Vio Vio G140

+ [ ( Piso Xis = Qiso Ris ) coOs Oi 40
Sis0 |
+ ( Pigo Ris + Qiao Xay ) 8in 6440 ]
(3.48)
BMNH = STko
Yis?2 Vio Vio G140 :
+ [ ( Piso Xis — Qiso Ris ) €08 6440

Sl..io

+ ( Pigo Riy + Quyo Xas ) 81in 6Gi40 )

(3.49)
Yiis?2 Vyo ‘
AM:.:L B crme—— [ ( Quso Rt.’ - Ps_’o Xu ) sin B: 40
Sz;o -
- P:._ao R:._’ + Qo Xs14 ) co8 1490 ) ]
(3.50)
1
AMy 4 = { 2 Vio [ Piso Yas? Ry +
Sis0 Q:l..io ( Yt.sa x:._1 - T ) ]

+ Yt.sa Vio [ ( Qiso Riy - Piso X143 ) 8in B:i40
+ ( Piso Riys - Qiso X4y ) €08 G150 ) ] )

(3.951)

Yi.” V£O VJO

A-Nti - [ ( Px.:o R;_s - Qi 90 xi...i ) 8in et.ﬂb

SiJG

- ( Pijo Xey + Qiso Ris ) €08 640 ]
(3.52)
Ys 32 Vio Vso

[ Qiso Xiy - Piso Ris ) 8in Bi450
S;I..JO )

+ ( Pigo X2y + Quuio Riy ) co8 61450 ]
(3.53)
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[ AN!._:I m — ANisa ]

BMX. "' STMXw + STuo

Yl_jz Vi.CJ V_:H:) e:l...:ll:i

+ [ ( Qiseo Xiy - P:I..:lcs Ra.._i ) 81n B4 4
Ois0
+ ( Piso Xiy + QUso Riy ) cos 614«
(3.54)
BMNw.. = STwo
Y142 Vio Viyo Oig0
+

[ QiJo X113 — Piso Ras ) 81in Oi1 4«
Si140 "

+ ( Piso Xia + Quo Riys ) cos 6 4¢

(3.55)

The Independent Variables

In a real power system the magnitudes of all bus

voltages have to be kept within a specified operating

range around their nominal values. For the i‘'th bus this

ig expressed by:

r;-.

VMX: 2 Vi 2 VMN; (3.956)

No Dbounds are imposed on the individual phase angles and

they are used as unconstrained variables that can assume

any real values. ‘'However, for stability considerations,

the difference Dbetween the phase angles across any
transmission line should not exceed a certain limit,. But
this is taken into account when specifying the
constraints  on the transmission line quantities,

especially the upper limits on the apparent power

transfers across the lines.
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3.6 STAGE-1 :; THE JECTIVE FUNCTIONS

The objective functions used in the first stage of
the various optimization problems are also based on bus
or line quantities and derived from the linearized power
system equations of Section (2.6). Again the derivation
will be presented here in general terms with the
objective function presented in the general format
of (3.1). The specific objective functions will Se

discussed in more detail in Chapter 5.

The objective function based on the general power
system gquantity FY:. 1is given by:
NF

Z =2 (C X FYy ) (3.97)
1=1

where NI 1s the number of functions involved.

Substituting from (3.6) and (3.7) into (3.57) gives:

NF N - - NF '
Z = [ 2 Cs 2 ( AMs Vy, + ANy 65 ) ) + 2 C KY.
1=1 =1 i=1
(3.58)
This can be rewritten as in (3.59) below:
NEF N-
2-{E[EC4(AM;_,V_,+AN1_;6_:)]}+Z:
i-l j-]_ ,
ﬁ (3.959)
where Z2o0 18 a constant given by,
NF
o = % C KY. S (3.60)
i=]
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As explained in Section (2.3), a constant term in the

objective function of an optimization problem can be

neglected without affecting the optimization process.

Thus (3.99) can be reduced to (3.61) below.

N , - |
Z= 2 (CMy Vs, + CNy, 65 ) (3.61)
i=1

The coefficients CMy and CNy of (3.61) are given
by (3.62) and (3.63).

NF

"CMs = 2 C4 AMy, - : (3.62)
1=1

NF o . |
CNy = 2 C. AN:._; (3.63)

J=1

'By selecting tﬂe appropriate objective function and
a set or sets of constraints. a number of different
optimization Problems éan be 8et up to represent
particular aspects ofq the power system orerating
conditions. The various objective functioné used will be
derived in Chapter 5. The various particular optimization
problems will also”be present;d and formulated al&ng'with
numerical results obtained Eor a small test system. Each
optimization problem is formulated as a lingar
programming problem. fhe gsolution of any of thege
problems vYields the values of all bus voltage magnitudes

and phase angles under optimum operating conditions. As

these are the principle variables in terms of which all
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other bus and line quantities are expressed,. once their

values are Kknown, the values of all other dependent

quantities can be computed using the appropriate extended

nonlinear equations from Section (2.6)

3.7 THE SECOND STAGE OF THE MODEL

From the solution of the linear programming problem
of stage-I1, the active and reactive power outputs of the
equivalent bus generators under optimum operating
conditions can be obtained. However, these equivalent bus
generators and their “generation costs are rather
"artificial"”, and they have been introduced mainly as a
modelling aid. They give the collective outputs at each
generating bus, Dbut not the outputs of the 1i1ndividual
generators. To obtain the.outputs of the 1individual
generators 1n the system, which constitute the actual
generating schedule, a new linear programming problem is
formulated. The objective of this problem 1s to minimize
the hourly fuel cost, with the active power outputé of
the individual generators used as the independent
variables. Thetnew preblem.has NG inde;endéﬁt variables
and (NS + 1) constr;ints. as well as theﬂuﬁper and lower
limits on the independent variables. Oné constraint is
based on the active power balance in the whole systéh.

and the other NS constraints correspond to the outputs of

the generating buses as obtained from stage-I. The

complete mathematical representation of this linear
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programming problem 1is given in Egquations (3.64) to

(3.67) below.

NG
Minimize Z = I CGy X PGG, (3.64)
=1
Subject to
NG *
2 PGGs; = PGT (3.65)
j=1 *
NGB,
2 PGGn = PGB:, | (3.66)
h=1
PGGMX;s 2 PGG; ' 2 PGGMN, (3.67)

1 =1, 2, 3, » NS

=1, 2, 3, ... , NG

In the above formulation the objective function
represents the total instantaneous generation cost. The
single constraint of (3.65) represents the active power
balance equation in the system, and the NS constraints
of (3.66) give the total active-power output of the
generating buses in terms of the active power outputs of
their individual generators. The active power outputs of
the generating buses represent the transition link

between the two stages of the model. The upper and lower

operating limits on the: NG generators are given

by (3.67).
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It 18 to be noticed that the new problem is already

linear and 1n a much simpler form than that of stage-I.
Therefore, no initial conditions are required to obtain
the solution of stage-Il whose formulation is based on
the values of the independent variables themselves rather

than their incremental values. Consequently, most of the
modelling, mathematical formulation and computational
effort 1nvolved in the present work is directed towards
the first stage of the model, especially the
linearization of the relevant power system equations and
the derivation of the A-B-C coefficients of -the linear

programming problem,
3.8 S RY

This chapter has explained the formulation of a
linear programming model to represent power system
optimization problems. The concept of optimization 1s
introduced first, followed by a generalized form of the
linear programming model. Variations and transformations
of the generalized formulation are also explained. The
constraints of the first stage of the mathematical model
are developed as well as a general objective function.
The detailed mathematical expressions ;hat represent the

elements of the coefficients constraints matrix are then

given. Finally, a complete formulation of the' second

stage of the model is presented.
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FIG. (3.1)
MINIMIZATION AND MAXIMIZATION

THE POINT (X>) CORRESPONDS TO THE MINIMUM
OF THE FUNCTION (Z) AND THE MAXIMUM OF (-2)
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CHAPTER 4

ADDITIONAL CONSIDERATIONS

4.1 INTRODUCTION

4.2 TAP-CHANGING TRANSFORMERS

4.3 ENERGY EXCHANGE AND TIE-LINE FLOWS
4.4 SPINNING RESERVE AND AREA RESERVE

4.5 LOADING AND DELOADING RATES OF GENERATORS
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4.1 INTRODUCTION

Many aspects ofdthe ﬁgwer sysfem.operation problem
have been 1ntroduced and discussed in the previous
chapters. It has been shown that power system quantities,
such as generation cost, system losses and reactive power
production, can Dbe used as objective functions,
constraints or boﬁh. These by no means constituté an
exclusive set of tﬁe manf factors that affect power
system operation. Many other factors can be taken 1into
account in addition to, or instead of, the ones uéed in
the mathematical model so}far. The generality of the
method used to set up the model developred in this thesis
allows for these#faEtors to be taken into consideration.
Some of these addi£iona1 considerations are diseussed in
the following sections. In each caée. the new aspect is
introduced, defined and discussed. This 1is followed by
mathematical represeniation of the concept and the
derivation of the necessary mathematical expressions.
Where appropriate, the corresponding paraméters of thé
equivalent bus generator are also deriQed. EFinally. the

method of incorporating the new quantity into the

optimization model of the system is explained, as well as
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its effect on either or both of the stages of the model

and their A-B-C parameters. The various additional

factors considered below affect the mathematical model of

the power system optimization problem and its numerical

gsolution to various extents. Some of them involve major

modifications to the mathematical "formulation of the

problem and all 'its parameters while, in the other

extreme,: Some cases only produce minor changes in the

associated numerical results.

g

—u

o V] |
| L bl ed & 1

AP—-CHANGING TRANS

The power transformer is one of the major pieces of

equipment: in a power system. Its main function 1s ¢to

change the voltage 1level in various 8sections of the

gsystem for various purposes. Transformers are ' used to

step up bus voltages at the generation end of the system

for transmission purposes, and-to step it down again at

the distribution or load end for consumer use. The

transformation between the various voltage levels 1is

sometimes accompanied by a relative Pphase shift,

depending on the connection of the primary and secondary

windings of the transformers. There are certain "nominal"®
transforﬁationé of the voltage level for transmission and
distribution purposes such as 11/132 kV or 33/11 XkV.
Phase shifts are uspally;multiples (positive or negative)

of 30 degrees, resulting from star/delta connections.
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Transformers can also be used for voltage control

purposes. Off-nominal voltage taps can be used to improve
the voltage profile and compensate for voltage drops
along "transmission lines. The additional off-nominal
voltage changes are normally in the range of + 10 %.
Usually, this type of voltage magnitude control is
performed at "local "'buses on the high voltage side.
Additional " phase shifts can also be induced to control
the reactive power flow in the system. Transformers that
can perform both of these control functions have ' complex
transformation ratios. The additional ‘changes in the
nominal voltage magnitude and phase angle can Dbe
administered under no—-load or 1loaded <conditions. The:
following discussion is concerned with 'on-load
of f-nominal tap—-changing transformers. Henceforth, in
this thesis, these will bDbe variably referred to as

tap-changing transformers or simply transformers. for the

obvious reason of brevity.

Generally, any form of power system analysis is not
considered complete unless it takes into consideration
the effect of the presence of transformers in the system,

or at least discusses the subject or touches on it. In’
many cases, however, the  practice is to present the
analysis, first, neglecting " the effect - of the

transformers. ' Tap-changing transformers - are then
introduced, discussed and dealt with separately., with the

method of incorporating them into the mathematical model
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explained. This method is followed in the present thesis.
One of the reasons for this practice is that including

the transformers into the problem model complicates the
analysis to a considerable extent. At the early stages of
a research work, the immediate aim is ‘'to set up a
"working"” mathematical framework based on the conceived
ideas and theoretical concepts. This is then translated

into a computer program which is tested on a study case

or cases. Only when that stage of the work is completed,
gsatisfactory results are obtainéd. and confidence 1s
gained, that additional considerations such as
tap—-changing transformers are taken into account and
included 1i1n the analysis, as a further stage of the

research work. The above argument is particularly true in

the case of the present work.

In the optimization model used so far in this thesis
the effect of tap-changing transformers has not Dbeen
taken into account. They were assumed to have fixed tap
settings. A more comprehensive optimization model can be
formu1a£ed by considering the complex transformation
ratios of the tap-changing transformers as additional
independent or control variables. This will cause
considerable changes to the original mathematical model
and the associated computer program. Unlike wother
additional considera£ions discussed in the rest of this

chapter, taking the effect of these transformers 1into

consideration alters the very equations that describe the

o
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