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ABSTRACT 

 

Metabolomics is the newest omics science which studies the chemical 

changes of small molecules (metabolites) within cells and tissues of a living 

organism. Thanks to the implementation of liquid chromatography-mass 

spectrometry (LC-MS) and mass spectrometry imaging (MSI) analytical 

technologies, and the integration of multiple omics tools, metabolomics 

provides insight into the mechanisms underlying physiological and 

pathological conditions including ageing and cancer. 

 

Time-dependent accumulation of DNA damage has been observed during 

senescence, the state of cell cycle arrest and resistance to death which has 

been recognised as a driver of the ageing process. Similarly, genomic 

instability can initiate cancer and influence the overall prognosis of affected 

patients. Metabolomics has shown that metabolic reprogramming is another 

key characteristic of both ageing and cancer, necessary to sustain their 

survival in adverse conditions. Genomic instability and metabolic 

reprogramming contribute to the highly heterogeneous and dynamic 

phenotype of ageing and cancer, therefore predisposing patients to inferior 

clinical outcomes and resistance to treatments. 

Due to their heterogeneous and dynamic nature, isolating and effectively 

analysing the different phenotypes of both ageing and cancer is still a 

challenge. Owing to the implementation of mass spectrometry and its 

combination with microscopy technologies it is now possible to identify and 

spatially localise the distribution of new reliable and specific biomarkers for 

each individual phenotype. 

 

In this thesis, molecular assays coupled to mass spectrometry-based global 

metabolomics and proteomics techniques were employed to examine the 

changes occurring during cellular senescence upon induction of DNA damage, 

brain ageing in mice, and different breast cancer subtypes in response to DDR 

inhibition. The results presented show that at the cellular level senescence can 

be induced through replication stress, irradiation and DNA damage-inducing 
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chemicals (hydroxyurea and etoposide), which share similar molecular 

features (growth arrest, flattened shape, expression of ß-galactosidase, DNA 

damage foci and cell cycle alteration), but different intra and extracellular 

metabolic components specific for each phenotype. At the tissue level, 

integration of global metabolomics and proteomics analysis allowed to design 

a putative metabolic map of the changes in the metabolites and proteins that 

were altered in the aged brain of mice. Moreover, the employment of mass 

spectrometry imaging (MSI) enabled the spatial localization of metabolites 

within specific regions of the brain. Finally, changes in cellular metabolism 

(glutamine and lipids metabolism) were observed in different breast cancer 

sub-phenotypes in response to DDR inhibition through Olaparib treatment. 

 

Overall, this thesis presents metabolomics – combined with molecular, 

proteomics studies and the high-resolution spatial determination of metabolites 

– as a powerful tool to reveal novel therapeutic targets for the treatment of 

ageing and age-related diseases (including cancer) and to comprehensively 

stratify different phenotypes relative to their tissue localization and based on 

their altered genetic alterations. When transferred into clinical diagnostics, this 

approach has future potential design personalised therapeutic approaches. 
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CHAPTER 1 
 

1.1. Introduction 

1.1.1. The central dogma  
 

The central dogma of molecular biology was introduced in the1927 by Francis 

Crick [1] who stated that in a living organism the information contained in the 

DNA is transcribed into RNA and translated into proteins, including enzymes 

(Figure 1. 1). In 2005, metabolites, the product of endogenous enzymatic 

reactions and processing of external sources (food, drugs, microbiome, 

environment), were described as a key missing link in the central dogma of 

biology [2]. 

 

 

Figure 1. 1 The central dogma of molecular biology. Biochemical information contained in a cell is 

translated from the DNA to the RNA and proteins, including enzymes. Enzymatic reactions lead to the 

production of metabolites which are the molecules closely associated with organism phenotype. 

Created in Biorender. 

For decades the unidirectionality of the central dogma has led to consider 

genes as the blueprint for life, and since the publication of the whole human 

genome sequence (2004) [3], genomics has represented the main tool 
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researchers have employed to understand the mechanisms of disease 

pathogenesis. However, it is now clear that information flows multi-directionally 

between the tiers (genomics, transcriptomics, proteomics, and metabolomics) 

of biological information, and that genes do not provide enough information to 

profile the whole phenotype of an organism. One gene can be translated into 

more than one protein which can in turn undergo a series of post-translational 

modifications (PTMs), therefore increasing the complexity of gene function. 

 

Proteomics is a postgenomic discipline (1990s) aiming not only at identifying 

and quantifying all the proteins in an organism, but also at studying their 

functions, localization, interactions, PTMs and turnover [4]. In humans, there 

are an estimated 80,000 proteins [5] encoded by approximately 20,000 – 

25,000 genes [6]. Following the PTMs the number of proteins is over 1 million 

[7]. Proteins have various functions in cell signalling, immune response, DNA 

replication and DNA repair, but also structural and mechanical functions. 

Importantly, many proteins are enzymes crucial to catalysing the set of life-

sustaining biochemical reactions referred to as metabolism. 

 

Metabolomics is the comprehensive study of metabolites – small molecules 

(50 – 1,500 Da) intermediate and end products of the metabolism. Metabolites 

are present in biofluids, cells and tissues at a specific time, therefore providing 

an immediate snapshot of the physiological state of a biological system. Of 

particular note, metabolites serve to generate the building blocks of 

macromolecules such as DNA, RNA and proteins, so that any changes 

occurring at the level of metabolites will reflect changes at the genomic, 

transcriptomic and proteomic levels. This peculiarity makes metabolomics a 

promising tool for understanding mechanisms driving the development of 

disease. Cells and tissues have unique metabolic features which are sensitive 

to various genetic and environmental stimuli and vary with time. This 

heterogeneous and dynamic nature of metabolism makes it difficult to 

characterise, but a powerful predictive, prognostic and diagnostic tool for 

precision medicine [8]. Considering their constitutive role in the metabolism of 

living organisms, metabolites are key regulators of energy production, 
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consumption and storage, signal transduction, inflammatory response, viability 

and death [9]. Therefore, regulating metabolic homeostasis is essential to 

guarantee the correct functionality of biological systems. Such homeostatic 

control can be compromised with age and diseases such as cancer, leading to 

chronic structural and functional dysfunctions [10]. Given these premises, it is 

not surprising that there is a growing interest in better understanding the 

specific functions of metabolites and identifying the pathways in which they are 

involved that associate with specific phenotypes.  

 

1.1.2. Technologies used in metabolomics and proteomics studies 
 

Analytical tools for metabolomics and proteomics research include nuclear 

magnetic resonance (NMR), gas chromatography – mass spectrometry (GC-

MS), liquid chromatography – mass spectrometry (LC-MS), and mass 

spectrometry imaging (MSI) [11]. Despite extensive NMR use in metabolomics 

for the identification of unknown compounds, its low sensitivity has led to the 

preferential use of MS-based techniques which allow tens of thousands of m/z 

features to be captured for each sample [12]. Among the MS technologies, LC-

MS is the preferred analytical tool used in metabolomics. The popularity of LC-

MS use is due to the rapid and efficient separation of species contained within 

samples [12]. One of the limitations of LC-MS is the inability to provide 

information on spatial metabolite distribution. This information is provided by 

MSI which has been successfully and extensively applied to various human 

and animal tissues.  

 

1.1.2.1. Liquid Chromatography – Mass Spectrometry 
 

In general, LC-MS is an analytical technique coupling the physical separation 

of the components present in a sample with their mass analysis by means of 

liquid chromatography and mass spectrometry devices, respectively. A 

schematic representation of LC-MS components is given in Figure 1. 2.  
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Figure 1. 2 Example of a Liquid Chromatography – Mass Spectrometry (LC-MS) system. Example 

of the Exploris 240 MS system. The LC apparatus consists of an autosampler, pump and column 

compartment. The samples held in the autosampler are injected into the column through the needle 

injector. The mobile phases flow through the column after being mixed in the pump system. Eluted 

analytes are then introduced in the ion source where the liquid phase is evaporated and the analyte is 

ionised. Ions in the gas-phase are transported through the MS apparatus from the low to high vacuum 

regions. Thus, they pass through a transfer and electrodynamic tube where the internal calibrant (IC) 

ion, fluoranthene (202.0777 m/z), is delivered to the sample by the EASY-IC component. Ions are then 

transported along the advanced active beam guide (AABG) to the quadrupole component (AQT) for an 

initial ion selection. Ions in a C-trap will be injected in to the orbitrap, the second mass analyser. During 

fragmentation, ions pass through the ion routing multipole before being re-introduced in the orbitrap 

analyser. Created in Biorender. 

 

The LC system separates the components of a sample in a liquid fluid known 

as the mobile phase, which is passed through a column filled with a stationary 

phase. In a high-pressure liquid chromatography (HPLC) apparatus, the 

mobile phase is pumped at high pressure (50 – 400 bar) through a column 

filled with a granular material (silica, polymers, etc.) of small particles (2-50 

µm), an internal diameter of 4.6 mm and a length of 50-250 mm [13]. In 2003, 

ultra-high-performance liquid chromatography (UHPLC) was introduced as an 

alternative to HPLC [14]. The UHPLC system is characterised by a shorter 

column (internal diameter <2.1 mm and length of ~100 mm) whose particle 

size is <2 µm. Consequently, the backpressure can go up to 1500 bar. 

Considering its features, UHPLC allows a faster separation, better peak 

resolution, and a relatively lower cost compared to HPLC. In addition to its 

technical advantages, UHPLC is environmental-friendly because of the 
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reduced solvent needed to run an analysis [15]. However, most methods have 

been developed for the HPLC system, thus a higher investment in time and 

resources should be considered when adapting those methods to UHPLC [16]. 

The mobile phase is generally a miscible combination of water and organic 

solvents (e.g., methanol, acetonitrile, IPA). Controlling the pH of the mobile 

phase is crucial when weak acids or bases are added like the polar molecules 

that constitute part of the human metabolome [17]. Weak acids and basis are 

ionizable analytes. Mobile phase pH affects the ionization of an analyte, and 

consequently its retention time on a stationary phase (time measured from the 

point of injection to the maximum point of retained peak), selectivity and peak 

shape [18]. Indeed, when the analyte is ionised, it becomes more polar and 

therefore it will be more likely to participate in hydrophilic rather than 

hydrophobic interactions [18]. Assuming a non-polar stationary phase, this 

translates into reduced retention of the ionised analyte and a faster elution 

through the hydrophilic mobile phase. If both ionised and neutral forms of an 

analyte are present within a sample, they will elute at different retention times 

thus resulting in asymmetric peaks and poor peak shape. To avoid this issue, 

the mobile phase pH can be controlled and adjusted by supplementation with 

additives which form neutral ion-pairs with the basic groups of the analyte 

therefore enhancing its hydrophobic properties. However, solely considering 

the chromatographic performance of an additive in not sufficient and its MS 

sensitivity should also be considered. For example, strong acids such as 

trifluoroacetic acids (TFA), used as a gold standard mobile phase additive, are 

also a strong suppressor of ion formation in the electrospray source. This is a 

result of ion-pair resistance to fragmentation, which prevents their detection in 

MS conditions [19]. Thus, weaker ion-pairing additives such as formic acid 

should be considered. Some known additives and their properties have been 

listed in Table 1. 1. 
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Table 1. 1 List of the most common additives used in HPLC and UHPLC analysis 

NAME pKa pKb Formula 

Acetic acid 4.7  CH3COOH 

Formic acid 3.7  HCOOH 

Trifluoroacetic acid 0.5  CF3COOH 

Triethylammonium acetate 4.7 11.0 (CH3CH2)3N:CH3COONH4 

Triethylammonium formate 3.7 11.0 (CH3CH2)3N:NH4COOH 

Ammonium acetate 4.7 9.2 CH3COONH4 

Ammonium formate 3.8 9.2 NH4COOH 

Ammonium bicarbonate 6.3 10.3 NH4HCO3 

 

Both water and organic solvents are combined in a mixing chamber before 

entering the column. During isocratic elution the composition of the mobile 

phase is maintained, while in gradient elution the mobile phase composition 

changes so that a weak elution solvent is used at the start of the run, and then 

increasing proportions of a strong elution solvent is added during separation. 

In a complex sample made of a mixture of polar and non-polar compounds, 

gradient elution is preferable as it allows the separation of a wider range of 

molecules.  

Mobile phase components are selected depending on the nature of the 

analytical column and the chemistry of the targets of interest. In turn, analytical 

columns are chosen based on the type of mixture being separated and the 

type of interaction with the stationary phase. To analyse polar mixtures, 

columns composed of polar stationary phase are used (normal phase 

chromatography), while non-polar mixtures require a non-polar stationary 

phase (reverse phase chromatography) [20]. The characteristics of the two 

types of chromatographic analyses are described in Table 1. 2. 

 

 

 

 

 

Table 1. 2 Strategies employed in chromatography during separation of analytes. 

  Normal phase Reverse phase 
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Mixture Polar Non-polar 

Stationary phase 
Polar (Silica, polymer, 
etc.) 

Non-polar (hydrocarbons: 
C8, C18) 

Mobile phase 

Non-polar or less polar Polar 

(Non-aqueous 
solvents, chloroform) 

(water, methanol, 
acetonitrile) 

Application 
Separation of polar 
compounds 

Separation of non-polar 
compounds 

Principle 
Analytes are eluted by 
increasing the polarity 
of the mobile phase 

Analytes are eluted by 
decreasing the polarity of 
the mobile phase 

 

At present most validated methods have been developed based on reverse 

phase chromatography because, in contrast to the normal phase approach it 

allows the analysis of a wider range of compounds and provides more 

reproducible retention times for most organic molecules. Thus, efforts have 

been attempted to adapt reverse phase chromatography to more polar 

(hydrophilic) and uncharged compounds. For example, hydrophilic interaction 

chromatography (HILIC) is a variant of both normal and reverse phase 

chromatography [21]. The mechanism of separation associated with HILIC is 

based on the differential distribution of the analyte between the organic mobile 

phase (typically acetonitrile) and the water layer that is adsorbed onto the polar 

stationary phase Figure 1. 3. 
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Figure 1. 3 Graphical representation of HILIC column composition and the general principle of 

separation. The column is composed of a solid polar stationary phase (e.g., silica). The mobile phase 

in generally ACN with a low percentage or water. During separation the analyte is partitioned between 

the mobile phase and a water enriched layer that forms on the hydrophilic stationary phase. The more 

hydrophilic the analyte is, the more its partitioned equilibrium is shifted towards the water layer in the 

stationary phase, resulting in more retention of the analyte. This principle of separation is only based 

on circumstantial evidence and is still debated. 

 

During HILIC separation, different surfaces can be used as stationary phases 

whose properties make them suitable for the separation of specific compounds 

[22]. Table 1. 3 Description of different HILIC column stationary phases, their 

base particles, functional groups and application for separation of specific 

compounds summarises some of the most common HILIC surfaces. 
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Table 1. 3 Description of different HILIC column stationary phases, their base particles, functional 

groups and application for separation of specific compounds 

Column 
Base 
particle 

Functional group Application 

ZIC-HILIC Silica Sulfobetaine 

Small polar compounds, 
metabolomes, 
glucosinolates, 
aminoglycosides, peptides, 
glycopeptides, purine and 
pyrimidine bases and 
nucleosides 

ZIC-cHILIC Silica Phosphorylcholine 
Peptides, amino acids, 
carboxylic acids 

ZIC-pHILIC Polymer Sulfobetaine Proteins, glycopeptides 

Amine Silica Aminopropyl 
Sugars, amino acids, 
peptides, carboxylic acids, 
nucleosides 

Hybrid 
Silica-
polymer 

Ethylene bridges Metabolomes 

Diol Silica 2,3-dihydroxypropyl Proteins 

Amide Silica Amide or carbamoyl 
Oligosaccharides, 
glycoproteins, glycosides 

Cyclodextrin Silica 
Cyclic 
oligosaccharides 

sugar alcohols, 
monosaccharides, 
oligosaccharides 

 

When selecting a column for liquid chromatography, it is important to evaluate 

its efficiency in the separation of sample components. This can be achieved 

through the Van Deemter equation [23, 24] that represents the relationship 

between peak height and linear velocity Figure 1. 4. 
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Figure 1. 4 Van Deemter equation and Theoretical plates. a) Plot of the Van Deemter equation 

describing the efficiency of the column in terms of plate height (equivalent to theoretical plate) in relation 

with linear velocity. A term indicates the particle size; B/u term is the axial diffusion, while the Cu is the 

molecular diffusion of the analyte between the mobile and stationary phase. At the lowest HETP (arrow) 

corresponds to the optimum plate count. HETP: Height Equivalent of a Theoretical Plate. A: Eddy 

diffusion factor. u: Speed. B/u: Longitudinal molecular diffusion term. Cu: Mass transfer term. b) 

Summary of the rationale behind the Van Deemter equation describing that the highest separation 

efficiency of a column is reached at the minimum plate heights (h). 

 

To explain the rationale behind the Van Deemter equation, one should imagine 

a column as divided into several sections known as theoretical plates. When a 

sample component is introduced into the column, it spends a finite time in each 

plate necessary to accomplish every adsorption-desorption step. This 

migration of a component from one plate to another across the column length 

is influenced by different parameters including the physicochemical properties 

of the stationary phase, the flow rate of the mobile phase, and the nature of 

the analyte. 

Columns are composed of particles of different sizes such that with larger 

particles, the path length of the sample component through the column will be 

longer. These properties influence the so-called Eddy diffusion based on the 

concept that big sample component will spend more time in the theoretical 
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plate and the resulting peak will be broader. Conversely, smaller particles will 

spend less time in the theoretical plate resulting in sharper/narrower peaks.  

To understand how flow rate affects the migration of a component, it is 

necessary to introduce the concept of molecular diffusion. It describes the 

migration of a molecule from a place of high concentration to a place of lower 

concentration. At the beginning of a chromatography run, all the particles 

contained within the sample are packed together (high concentration) and will 

separate throughout the elution process (low concentration) leading to peak 

broadening. Therefore, it is important to reduce the elution time to reduce 

molecular diffusion and sharpen the resulting peak. This can be achieved by 

increasing the flow rate of the mobile phase, which is then critical to increasing 

the separation efficiency of the column. There is not a defined flow rate optimal 

for all conditions. Thus, it should be optimised considering that the flow rate 

cannot be increased in excess because there are particles that – due to their 

physicochemical properties – interact and strongly adsorb to the column 

stationary phase requiring more time to re-enter the mobile phase. This last 

case is examined through the mass transfer factor which refers to the particles 

“left behind” during the run, ultimately leading to a phenomenon called tailing 

where a peak is smeared in the chromatogram with some analyte components 

of the peak eluting first while others have a longer retention time on the 

stationary phase. 

In summary, the Van Deemter equation states that to achieve the highest 

separation efficiency of a column, the plate heights should be minimised by 

reducing the column particle size and finding a balance between molecular 

diffusion and mass transfer factors [23, 24].  

 

Following the chromatographic separation of the analyte components, sample 

species are introduced to the MS system and measured based on their mass-

to-charge (m/z) ratio. 

Of note, LC and MS systems are incompatible because the high pressurised 

liquid mobile phase present in the LC device cannot be directly injected into 

the MS analyser that operates under a vacuum. The presence of a source 

interface helps bypass this issue. Thus, it dries the mobile phase before 
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entering the vacuum environment of the mass analyser. Different types of 

source interfaces exist including fast atom bombardment (FAB), chemical 

ionization (CI), atmospheric-pressure chemical ionization (APCI), 

atmospheric-pressure photoionization (APPI), electrospray ionization (ESI), 

desorption electrospray ionization (DESI), and matrix-assisted laser 

desorption/ionization (MALDI). The sources used in this thesis are ESI and 

MALDI. The mechanism of ESI is described in Figure 1. 5, while MALDI is 

described in the section dedicated to Mass spectrometry imaging (MSI). 

 

 

Figure 1. 5 The mechanism of electrospray ionization. Under high voltage, a current passes a wire 

filament to produce electrons for ionization. An electric field (i) is imposed into the liquid leading to an 

enrichment of positive ions at the meniscus of the spray needle. Consequently, a cone of positive ions 

(Taylor cone) is generated. The resulting droplets will have an excess of positive ions. During 

evaporation, the charges will get closer therefore increasing the Coulombic repulsion between charges 

of the same sign. This destabilises the droplets leading to the formation of free gas-phase ions. Created 

in Biorender. 

 

The main advantage of the ESI source interface is its ability to produce 

multiple-charged ions therefore amplifying the mass range of molecules that 

can be detected in the analyser (kDa-mDa) [25, 26]. Of note, ionization 
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depends on the pKa of the functional groups contained within each molecule 

and the pH of the solvent that they are contained within [18]. In general, if the 

molecule’s pKa is the same as the pH of the solvent it is dissolved in, then 50% 

of the molecule exists ionised and 50% exists non-ionised. This means that 

during a mass spectrometry analysis absolute ion currents do not linearly 

correlate with the absolute amount of the analyte. On this basis, absolute 

quantitative measurements of an ion of interest (or more ions) can be 

performed by monitoring the intensity of structurally similar compounds 

(standards) [27]. In practice, a calibration curve is designed from the 

relationship between the signal intensity observed for the standard compound 

and the amount introduced into the system. On the other hand, in an 

untargeted study – as the one presented in this thesis - relative peak areas are 

used to follow trends in metabolomics therefore providing a relative 

quantification of the detected metabolites. 

Considering these premises, ionization is easy on functional groups with pKa 

that is < or > than the pH of the solvent (polar compounds), and it is difficult on 

functional groups with a pKa similar to the pH of the solvent (low polar or 

neutral compounds). Ionised functional groups are easier to protonate or 

deprotonate therefore creating positively or negatively charged ions, 

respectively.  

The collection of multiple charged ions is helpful especially for high mass 

molecular species like proteins, where the phenomenon is referred as charge 

state distribution and is helpful for characterising intact proteins [28]. However, 

in metabolomics singly charged species are primarily observed, while neutral 

metabolites (those species that don’t ionize) are virtually impossible to detect 

using LC-MS. Moreover, ESI provides very little fragmentation (soft-ionization) 

which is useful for preserving the structure of the molecular ion – an ion formed 

by removing or adding one or more electrons from a molecule (M) to form a 

positive (M+) or negative ion (M-), respectively. The mass of this ion is the sum 

of the masses of the various isotopes of the atoms that make up the molecule, 

with a correction for the masses of the electron(s) lost or gained.  
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After ionization, ions are accelerated into the vacuum chamber of the mass 

spectrometer and directed towards the mass analysers. Different types of 

mass analysers exist such as quadrupole (Q), Ion Trap (IT), Time of Flight 

(TOF), Orbitrap, and Ion cyclotron resonance (ICR). Each mass analyzer has 

a different resolution and mass accuracy, which are the parameters commonly 

used to represent the efficiency of a mass analyser [29]. Resolution refers to 

the ability of a system to resolve/separate two m/z peaks and is generally 

indicated as Full Width at Half Maximum (FWHM). FWHM describes the width 

of a peak measured at half of its maximum amplitude Figure 1. 6a, thus it 

indicates the ability to distinguish ion peaks with a similar m/z [30]. Mass 

accuracy represents the deviation of an experimental mass measurement to 

the true or exact mass of an ion [31]. Given the very small deviation offered by 

modern instrumentation, this is usually expressed as parts-per-million (ppm). 

Based on its general formula Figure 1. 6b, mass accuracy can be defined as 

the difference between the observed and calculated m/z value as a fraction of 

the calculated m/z. 

 

 

Figure 1. 6 Resolution and mass accuracy in mass spectrometry. A) To determine peak resolution, 

the m/z value of an ion is related to its m/z (the difference between the first and second highest m/z 

value of that ion) at 50% intensity or width. B) Mass accuracy is the difference between the observed 

(experimental) and the calculated (exact) value of the mass, expressed in ppm. 

 

Among the mass analysers of interest there are the quadrupole, and the 

orbitrap analysers whose characteristics are shown inTable 1. 4. 
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Table 1. 4 Typical Features of the mass analysers, quadrupole and orbitrap. Compared to the 

quadrupole, the orbitrap mass analyser is characterised by higher resolution and mass accuracy. 

  Quadrupole Orbitrap 

  

 

 

Mass Range 10-2000 m/z 40-6000 m/z 

Resolution ≤0.1 FWHM >500K FWHM 

Scan speed 20 000 Da/s 22-40 Hz 

Mass accuracy <100 ppm <1 ppm 

 

A quadrupole consists of four cylindrical rods corresponding to electrodes 

positioned in parallel to each other and with opposite charges (two positives 

and two negatives) [32]. Its ability to scan ions of a certain m/z ratio depends 

on a direct current (DC) and radiofrequency (RF) potential that is applied to 

the quadrupole. When both potentials are combined, an electric field with 

rapidly varying phases is generated, which causes oscillation of ions as they 

pass through the quadrupole. Only ions with certain m/z values will have stable 

trajectories and pass through the mass analyser, while the ions with unstable 

trajectories will collide into the rods and be filtered out. The major advantages 

of quadrupoles are their low cost, fast duty cycle, and stability. Therefore, they 

are suitable for most laboratories and do not require continuous maintenance. 

However, they have a limited mass range and poor resolution, which makes it 

difficult to analyse ions with large and similar masses. In the Exploris 240, this 

limitation is bypassed by the presence of a second mass analyser, the orbitrap. 

The orbitrap mass analyser is characterised by an inner spindle electrode 

covered by two concave electrodes facing each other, which are separated by 

a thin ring of dielectric material [33]. Generally, mass spectrometers equipped 
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with an orbitrap mass analyser, use a curved linear trap (C-trap) for ion 

injection. Ions from the C-trap pass through a hole in one of the concave 

electrodes tangential to the inner spindle electrode. The electric field between 

the inner and outer electrodes creates a potential that allows the ions to 

continuously spin (back and forward) around the inner electrode. The outer 

electrodes detect the oscillation of the ions transforming their time domain into 

the frequency domain (Fourier transform). The frequencies of ions are 

proportional to the m/z of the ions.  

 

More than one analyser can be incorporated into a MS/MS instrument. In a 

MS/MS technology, the first mass analyser (MS1) separates the ions based 

on their m/z ratio, then selected and dissociated into smaller fragments (Figure 

1. 7). These fragments are further separated and detected in a second mass 

analyser (MS2), therefore allowing discrimination between ions with similar 

m/z ratios [34].  
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Figure 1. 7 MS1 and MS2 chromatogram. A) MS1 chromatogram with identified precursor ion of 

147.0764 m/z (z=1) corresponding to glutamine (mm=146.14 g/mol). B) MS2 chromatogram where the 

precursor ion (red arrow) has been fragmented into its smaller components are represented through 

the chemical structures. 

 

In the Exploris 240, the MS1 is represented by a first stage analysis for ion 

precursor detection involving ion filtering through the Q and mass analysis in 

the orbitrap. The MS2 is a second stage analysis involving the ion routing 

multipole where ions are fragmented and redirected to the orbitrap mass 

analyser. Other tandem instruments include the QQQ and a combination of Q-

TOF, IT-TOF, and FT-ICR-MS [35-37]. The advantage of combining multiple 

mass analysers is that they provide a high resolving power and a consequent 

high-quality data set because of the combination of high speed and high mass 

accuracy.  
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1.1.2.2. Mass spectrometry imaging (MSI) 
 

MSI is one of the recent advanced technologies in mass spectrometry that 

combines the analytical potential of mass spectrometry with the microscopic 

and spatial histologic information of the analyte [38]. With this regard, MSI aims 

to localise and visualise selected metabolites and proteins within a biological 

sample. This is not possible with the canonical mass spectrometry tools where 

the extraction process involves the disintegration of samples.  

 

The general principle for MSI on tissue samples is shown in Figure 1. 8, and 

can be generally divided into image acquisition, data analysis and data 

interpretation. During image acquisition, samples are first prepared by 

mounting frozen tissue sections on an indium tin oxide (ITO) slide and applying 

a matrix to the biological specimen. A pulsed laser is then applied which leads 

to the desorption and ionisation of the analyte into the gas-phase at each 

lasered spot [39]. A neodymium-doped yttrium aluminum garnet (Nd:YAG) 

laser or UV laser can be used which operate at different wavelength, 355 nm 

and 266 nm, respectively [40]. The resulting ionised molecules are transferred 

to the mass analyser where separation and fragmentation occur generating a 

mass spectrum for each spot. Through the process of rastering the laser 

across the area of a sample, an image can be generated. Data analysis and 

interpretation are subsequently performed through appropriate software. 
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Figure 1. 8 Workflow of MALDI-MSI analysis. Image acquisition involves sample preparation by 

mounting the tissue section on a conductive slide and matrix application. A laser beam is employed to 

allow the desorption/ionization of the analyte. Ions are transferred in the MS system for mass analysis 

and generation of MS spectra. After MS analysis, immunohistochemical analysis is performed 

visualising the distribution of multiple molecules within the tissue. Data analysis includes classification 

of the images and database searching for the identification of molecules. Adapted from Norris, JL., et 

al., 2013 [41]. 

Analyte detection by MSI is strongly affected by the application of the matrix, 

which is selected based on absorption characteristics at the wavelength of the 

irradiation laser, the class of analyte and spatial resolution required (Table 1. 

5) [42, 43]. The matrix is generally applied with an organic solvent at a 

concentration of 50-70%, which can be methanol, ethanol or acetonitrile. 

Adjusting the amount of solvent as well as the pH of the solution is fundamental 

to promoting the mixing of the matrix/analyte and recrystallization of the matrix. 
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Table 1. 5 MALDI matrices used for the analysis of specific classes of analytes. Adapted from Norris, 

JL., et al., 2013 [41]. 

MATRIX CLASS OF ANALYTE 
CHEMICAL 
STRUCTURE 

2,5-Dihydroxybenzoic acid 
(DHB) 

Peptides, proteins, 
lipids, drugs 

 

α-cyano-4-hydroxycinnamic 
acid (CHCA) 

Peptides, proteins, 
lipids, drugs  

3,5-Dimethoxy-4-
hydroxycinnamic acid (SA) 

Proteins 

 

3-hydroxypicolinic acid (3-
HPA) 

Peptides, 
oligonucleotides 

 

2,4-dinitrophenylhydrazine 
(2,4-DNPH) 

Peptides 
 

2,4,6-
trihydroxyacetophenone 
(THAP) 

Lipids, 
oligonucleotides, 
drugs 

 

 

2,6-dihydroxyacetophenone 
(DHA) 

Lipids 

 

1,5-Diaminonaphthalene 
(DAN) 

Lipids 

 

 

Similar to LC-MS, the choice of mass spectrometer for MALDI-MSI is mainly 

based on resolution, mass accuracy and scan speed. Among the most 

common mass analysers used in MALDI-MSI is MALDI-TOF [38], generally 

applied in tandem with a second mass analyser. High-resolution mass 

spectrometers include MALDI-FT-ICR [44]and MALDI-FT-Orbitrap [45]. In this 

thesis, the (MALDI)-Synapt-G2Si instrument, a tandem MALDI-Q-TOF system 
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(Figure 1. 9) was employed which is a good compromise between resolution 

(10K-60K FWHM), mass accuracy (1 ppm), and cost. 

 

Figure 1. 9 QTOF-MS. Ions from the ion source are first focused into a beam and transmitted into the 

quadrupole (Q). Then they are accelerated by a high-voltage field – via a pusher pulse. The kinetic 

energy associated with each ion is converted into unidirectional velocity or time-of-flight. The mass of 

each ion is then assigned based on its “flight time”. Created in Biorender. 

MALDI-MSI systems are generally accompanied by software designed for the 

acquisition, visualization and analysis of imaging data [46, 47]. Through these 

software, m/z intensities are visualised as colour signals therefore providing 

information on the spatial distribution of the molecule of interest within 

samples. The advantage of this method – in comparison to traditional 

immunohistochemistry – is that the spatial location of a huge range of 

molecules can be examined at the same time in one single measurement. 

 

1.1.3. Study design for metabolomics and proteomics 
 

Untargeted and targeted mass spectrometry-based metabolomics and 

proteomics are the main methods employed for the identification and study of 

the metabolome and proteome of biological systems, respectively (Table 1. 6).  

 
Table 1. 6 Key features of untargeted and targeted approaches in metabolomics and proteomics 

 Untargeted Targeted 

Features 

Biomarker discovery, 
hypothesis generating, 
global 
metabolomics/proteomics 
profiling, 
qualitative analysis, 

Validation, 
Hypothesis driven, 
Absolute quantification, 
Chemical standard 
required 
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relative quantification, 
>1000s metabolites 
measured 

Sample 
preparation 

Global metabolites/proteins 
extraction, 
derivatization (optional) 

Extraction procedure for 
specific 
metabolites/proteins 

Data 
acquisition 

Chromatographic 
separation, 
MS ionization (negative and 
positive), 
mass detection 

Chromatographic 
separation, 
MS ionization (negative 
and positive), 
Mass detection 

Data 
processing 

Noise filtering, 
retention time correction, 
peak detection, 
chromatogram alignment, 
unknown features 
identification, 
data preparation: data 
integrity checking, 
normalization, 
compound name 
identification, 
statistical analysis 

Data processing, 
Statistical analysis, 
Absolute quantification of 
metabolite/protein 
concentration 

Data 
interpretation 

Bioinformatics, 
integrative OMICS, 
enrichment analysis, 
pathway analysis, 
metabolic network 

Bioinformatics, 
Integrative OMICS, 
Enrichment analysis, 
Pathway analysis, 
Metabolic network 

 

 

 

1.1.3.1. Untargeted and targeted proteomics and metabolomics 
 

Untargeted metabolomics and proteomics aim to comprehensively investigate 

the near-complete set of metabolites or proteins present in a biological sample 

without a priori knowledge of its content [48]. The main advantage of this 

method is its unbiased strategy to identify metabolites/proteins (known and 

unknown) from different biomolecular pathways. However, the identification 

process is one of its main limitations because there are no existing instruments 

and methods capable of identifying and quantifying all the metabolites and 

proteins present in a biological sample [48]. In MS/MS analysis there are 

currently two mass spectrometry based approaches employed to identify 

features in a sample, and they are known as data-dependent acquisition (DDA) 
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and data-independent acquisition (DIA) [49]. DDA selects the ions with the 

highest signal intensity (generally the top-5 precursors) in the first MS stage. 

The selected ions are further fragmented in the second MS stage, and the 

resulting data are used to search an existing database (online or in-house). On 

the other hand, in DIA there is no prior selection of ions, instead they are 

selected and fragmented in the second MS stage. The resulting data are much 

larger than DDA, thus more difficult to process and interpret.  

Relative quantification of metabolites/proteins is available for untargeted 

metabolomics/proteomics which may limit precision and accuracy. Hence, the 

implementation of quality control (QC) measures in the analytical workflow is 

essential to increase the quality of data and reliability of this technology [50]. 

A complex data set is generated from untargeted metabolomics that requires 

downstream computational tools for data post-processing and analysis. 

In proteomics the untargeted approach is also referred to as “Bottom-up” or 

“Shotgun” proteomics where a mixture of peptides is digested in solution and 

the resulting fragments are analysed by mass spectrometry [51].  

 

Targeted metabolomics and proteomics aim to investigate the selected 

metabolites/proteins based on a priori information [52]. Methods and analysis 

are optimised for the detection of specific metabolites/proteins of interest that 

have been chemically characterised and biochemically annotated. For this 

reason, DDA is more generally applied to targeted analyses than DIA, making 

it more selective and sensitive than the untargeted method. Targeted analysis 

is hypothesis-driven – compared to untargeted analysis which is hypothesis 

generating – and generally follows untargeted analysis to validate its results. 

Accurate absolute quantification of specific features can be obtained using 

internal and chemical standards to generate a standard curve for a 

concentration range of the metabolite or protein of interest. 

In proteomics the targeted approach is referred to as “Top-Down” proteomics, 

where intact proteins of interest are readily fragmented in the MS providing a 

complete description of their primary structure and modifications [53]. 

DDA has been also utilised to acquire MS/MS data in untargeted 

metabolomics/proteomics to enhance the confidence of compounds 
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identification [54]. Specifically, a list of target precursor ions can be generated 

and used as inclusion (or exclusion) list for subsequent DDA analysis, 

therefore increasing selectivity and experimental efficiency. If using different 

injection volumes of the selected precursor ions, then a calibration curve can 

be generated and embedded onto the untargeted data [55].  

 

1.1.3.2. Sample preparation for LC-MS and MALDI-MSI analysis 
 

Sample preparation is a crucial and challenging step to generate high-quality 

data [56]. For both proteomics and metabolomics sample preparation is time 

critical, thus a quick handling procedure must be adopted to avoid altering the 

chemistry of the analytical sample. For both metabolomics and proteomics, 

sample preparation varies depending on the strategy employed including 

untargeted and targeted, the instrumentation (LC-MS or MALDI-MSI), and the 

sample type (urine, blood, faeces, tissues or cells) [57]. In this thesis, we 

optimize cell and tissue sample preparation for downstream metabolomics and 

proteomics analysis as described below. In both cases, prior to 

metabolite/protein collection, the number of cells and tissues amount need to 

be optimised to obtain enough signal in MS to be able to detect low abundance 

small metabolites. Depending on the purpose of the study, the composition of 

cell culture media is also important to consider. Cell culture media used during 

experiment incubations can be aspirated from cells and stored at -80 ⁰C 

following cellular debris removal for future analyses. 

 

1.1.3.3. Sample preparation in metabolomics  
 

As previously stated, timings for sample preparation is a limiting factor in 

metabolomics analysis, because metabolic processes are rapidly-occurring (< 

1 s), thus rapid inhibition of enzymatic processes is required by freeze 

quenching metabolism before extraction [58]. For LC-MS analysis, this 

procedure is performed through liquid nitrogen or ice-cold extraction solvents 

followed by cell scraping (or tissue homogenization) and metabolite extraction 

(Figure 1. 10). 
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Figure 1. 10 Sample preparation workflow for metabolomics. 1) washing and solvent extraction, 2) 

scraping and transfer into an Eppendorf tube, 3) quenching in liquid nitrogen, 4) three cycles of liquid 

nitrogen, vortex and sonication, 5) centrifugation, 6) separation of supernatant and pelleting, 7) drying 

of the supernatant and reconstitution. The pellet is retained for protein quantification. Created in 

Biorender. 

 

The solvents used for metabolite extraction vary depending on the class of 

metabolites of interest (polar e.g., nucleotides, some amino acids and peptides 

versus non-polar e.g., lipids, certain amino acids and peptides) (Table 1. 7).  

 

Table 1. 7 Extraction solvents commonly used for the extraction of metabolites. 

Extraction solvent (ratio) Metabolic classes Reference 

CH3OH (100%, v/v) 
Sugars, sugar alcohols, 
organic acids, fatty acids, 
few amino acids 

[59] 

CH3OH:H2O (80:20, v/v) 
Nucleotides, few amino 
acids, sugar alcohols, 
carboxylic acids 

[60] 

CH3OH:CHCl3 (50:50, v/v) 
Nucleotides, amino acids, 
phospholipids 

[61, 62] 

CH3OH:CH3CN:H2O (50:30:20, v/v) 
Amino acids, fatty acids, 
nucleotides, sugars 

[63-65] 

CH3CN:H2O (70:30, v/v) Amines, amino acids [66] 

CH3OH:CHCl3 (50:50, v/v) + 
CHCl3: CH3OH: H2O (57:23:20, v/v) 

Lipids 
Folch 
extraction 
[67, 68] 

CHCl3: CH3OH: H2O (26:53:21, v/v) + 
CHCl3: CH3OH: H2O (34:34:32, v/v) 

Lipids 
Bligh and 
Dyer 
[69] 

 

In this study, for metabolomics extraction we employed the use of methanol, 

acetonitrile and water (50:30:20, v/v), as it has been documented to increase 

the efficiency of extracting a large range of metabolites [63-65]. Following 

quenching and extraction, samples are centrifuged, and the supernatant is 

lyophilized to preserve the quality of metabolites and increase their shelf-life 

for subsequent analyses. Metabolite samples are reconstituted in solvents 
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suitable for LC-MS analysis that include acetonitrile, methanol or water, or 

combinations at different ratios, depending on the column and mobile phase 

selection.  

 

In MALDI-MSI, cryo-sectioning is used to prepare tissue sections and quench 

their metabolism. The thickness of the specimen is 5-20 µm [70], and tissue 

slices are mounted onto a conductive surface slide that can be a metal or a 

glass slide. A matrix is then applied manually (through a nebuliser or airbrush), 

or with automated strategies [41]. The strategy employed in this thesis for 

matrix application is the manual method of sublimation described in Figure 1. 

11. In metabolomics and proteomics, the matrix is homogenously applied to 

the entire surface of the specimen. For targeted analysis, the matrix can be 

applied to the specimen regions of interest [44]. In order to maximise 

information on the spatial distribution of molecules within a tissue with MALDI-

MSI, the same tissue section can be stained for histological inspection with 

hematoxylin for visualising the nuclei and eosin for the extracellular matrix and 

cytoplasm [71]. 

 

Figure 1. 11 Sample preparation for MALDI-MSI analysis. Frozen tissues are cryo-sectioned and 

tissue slides deposited onto an indium-tin oxide (ITO) coated metal slide. Next, a matrix is applied 

through sublimation gradually progressing upon heat application from the bottom and condensation 

onto the tissue. After equilibration at room temperature, the MALDI slide is ready for MS analysis. 

Created in Biorender. 

 

1.1.3.4. Sample preparation for proteomics 
 

In contrast to metabolomics, sample preparation for untargeted proteomics 

(Bottom-Up) requires multiple sample-preparation steps prior to mass analysis 

[72] (Figure 1. 12). During sample preparation, proteins need to be extracted, 

denatured, digested and cleaned from readily ionizable lipids, detergent and 
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salts which may compete for charge with proteins and ultimately affect their 

detection [73].  

 
Figure 1. 12 Sample preparation workflow for proteomics. 1) lysis, 2) reduction/alkylation, 3) 

digestion, 4) washing hydrophilic contaminants, 5) washing hydrophobic contaminants, 6) clean-up of 

the peptide solution, 7) drying and reconstitution. Created in Biorender. 

 

Cell lysis is generally the first step, which can be accomplished mechanically 

or using pre-formulated lysis buffers. These last are generally preferred as they 

are more reproducible and time effective. These lysis buffer usually contain 

protease and phosphatase inhibitors to prevent protein degradation. Next, 

proteins are reduced into peptides. Thus, they are denatured through reduction 

of disulfide bridges, and alkylated to modify cysteine SH-groups, therefore 

preventing free cysteines to form novel disulfide bonds and loss of cysteine 

containing peptides [74]. Different reagents can be used for protein 

denaturation/alkylation. For in solution denaturation, dithiothreitol (DTT) and 

acrylamide (AA) give the best yield of protein denaturation [75]. In shotgun 

proteomics, proteins are digested into peptides by a protease enzyme (e.g., 

trypsin). Trypsin is one of the most used digest proteins for MS-based 

proteomics as it generates a positively charged C-terminus by cleaving the 

protein arginine and lysine residues  [76]. Following digestion, peptides have 

been isolated but salts and buffers removal, and peptide concentration steps 

are required for sample preparation. An efficient strategy for peptide clean-up 

is using spin columns [77]. Briefly, the peptides bind to the column, while salts 

and buffer are washed off. In the last step, peptides are eluted with a high 

organic mobile phase, and concentration is achieved by drying the eluted 

peptides. 

Such purified peptides can then be separated and analysed using LC-MS, or 

spatially detected on tissues through MALDI-MSI. Top-Down proteomics does 

not require protein digestion as intact proteins are required for structural 

composition analysis [78]. 
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In untargeted and targeted LC-MS based metabolomics, QC samples need to 

be applied prior to sample analysis and data processing to demonstrate 

analytical accuracy, precision and data repeatability [50]. For cellular and 

tissue samples, pooled QC samples can be prepared by combining equal 

aliquots of the extracted samples before the drying process or after the 

reconstitution of dried extracts [50]. Of notice, the pooled QC samples and the 

biological samples must be identically processed. Moreover, it is important to 

consider how many times each QC sample is analysed and at which position 

in the run they are placed. An example of sample ordering for LC-MS analysis 

is shown in Figure 1. 13. Generally, it is recommended i) to analyse a pooled 

QC no more than every 10 samples, ii) that at least five QCs are evenly 

distributed across the batch, iii) to have at least two QCs at the beginning and 

the end of the batch [50]. 

 

Figure 1. 13 An example sequence order for a LC-MS analysis run. 

 

1.1.3.5. Data processing and analysis in metabolomics and proteomics  
 

Following MS analysis, the output data for each sample is an ion 

chromatogram containing thousands of features that require reliable 

identification and quantification. Therefore, a common metabolomics data 

processing workflow includes baseline correction, noise reduction, alignment, 

integration, and peak normalization steps (Figure 1. 14) [79]. 
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Figure 1. 14 An example of a MS metabolomics workflow analysis. 

 

Several open-source software packages are available for the analysis of LC-

MS metabolomics data [80-84], which follow a general stepwise processing 

workflow starting with the conversion of raw files from the proprietary vendor 

formats into open file formats (i.e., mzXML, mzData).  

Subsequent data analysis and post-processing steps are summarized as 

follows: 

Peak picking identifies legible m/z peaks within a mass spectrum. Thus, 

baseline correction and noise reduction of data are performed to filter out 

background ions and solvent impurities. A further challenge in LC-MS is the 

elution of two or more analytes with similar retention times resulting in 

overlapping chromatographic peaks. Deconvolution is necessary to separate 

these ions based on different features (e.g. peak shape) [85]. At this stage, for 

each sample there is a data file with independent lists of ions. To determine 

among individual ions, which are the same across different samples, peak 

grouping and alignment are performed. This aligns ions extracted with close 

retention times and close m/z values in the different classes of samples [86]. 

Therefore, it is important to establish a priori what kind of classes are present 
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in the sample. This grouping step is important because the data matrix that is 

generated is used for statistical analyses.  

Gap filling can be performed on the aligned features to cope with missing 

features that are absent in the given sample, or that might be an artifact of the 

features-detection process [87]. The fill gaps algorithm used in this work can 

search for the missing ion with the expected m/z and retention time parameters 

against all detected ions while ignoring the assigned adduct type (filling by 

matching ion); or it can detect the peak at a lower intensity threshold then using 

the integrated peak area to fill the gap (Re-detected peak); or it can fit a 

Gaussian peak for the expected m/z range (filled by simulated peak).  

The detected peaks are integrated to enable the comparison of relative 

metabolite or peptide abundances and enable the identification of differences 

between sample groups. Generally, peak integration is performed by peak 

area or peak height. Normalization is used to reduce the systematic errors 

arising from technical or analytical variations (sample type or size, column 

composition and instrumentation), therefore improving the performance of 

downstream statistical analysis [88]. Normalization applies prior and/or post 

data acquisition. In this thesis, both pre- and post-acquisition normalization 

have been used. Pre-acquisition normalization allows to equalize the total 

sample concentration for all samples. As a result, similar instrumental 

responses can be obtained from all samples and more accurate quantitative 

analysis of changes in metabolites concentrations can be evaluated. 

Strategies to perform pre-acquisition normalization of cell extracts include cell 

count, measurement of total protein content, and dry weight [89].  

Post-acquisition normalization is applied during data processing, and it can be 

performed through the utilization of QC samples or internal/external standard 

(known) metabolites. In this work QC samples have been used to create a 

regression curve of area versus acquisition time for each detected compound 

to compensate for time-dependent batch effect. Alternatively, the intensity drift 

of specific metabolites in the QC samples can be used to build a regression 

model and correct the peak intensities of the same metabolite in the sample of 

interest [90].  
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Another post-acquisition normalization strategy is the addition of internal or 

external standards (known metabolites) prior or after extraction, respectively 

[91]. Through this method normalization can be obtained by subtracting the 

average abundance of internal/external standards from the abundance of the 

metabolites in each sample. After normalization, and before statistical 

analysis, data should be centered and scaled. Centering means that the 

averages of concentrations are subtracted from the data to centre it on 0, thus 

only the relevant variations between the samples are considered. Not scaled 

data focus on metabolite features with high intensities which are likely to show 

higher variance than variables with low intensities. However, relevant 

metabolites are not necessarily the most abundant, thus scaling can be 

advantageous as it gives equal weights to the variables. Scaling can be 

performed by dividing each variable by a factor which can be the standard 

deviation, the square root of the standard deviation (Pareto scaling), or the 

average concentration of metabolites. 

From data post-processing, the output result is a large data matrix containing 

information on thousands of m/z features (variables) that can be correlated or 

anti-correlated against each other. For this reason, multivariate statistical 

analyses are applied to metabolomics and proteomics data to analyse multiple 

variables simultaneously. Multivariate techniques can be divided into 

unsupervised and supervised approaches. Unsupervised multivariate analysis 

does not require prior knowledge of the features representing each sample 

group, providing a robust tool to identify group clustering in datasets. Principal 

component analysis (PCA) is among the common unsupervised approaches 

used in metabolomics, but principal coordinate analysis (PCoA) can also be 

used for proteomics. PCA and PCoA are similar in representing similarities and 

differences between sample groups, but PCoA geometrically visualises the 

distance between two groups through a vector line [92]. In this thesis we focus 

on PCA analysis as it is extensively used in the metabolomics and proteomics 

analyses.  

PCA is a useful tool that allows data dimensionality reduction by approximating 

the complex data matrix to a few orthogonal principal components (PCs) [93]. 

These components are a combination of the original variables and the weights 
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of their contributions to explain the maximum amount of variance possible 

(Figure 1. 15a). PCA serves to better visualise large datasets and detect 

similarities/differences in the features characterising different sample groups. 

Upon conversion of data according to PCs, the results can be represented by 

score and loading plots. The score plot represents the coordinates of the 

samples in the PCA model (Figure 1. 15b), where variables distant from the 

origin are relevant to the model, while variables proximal to the origin have little 

effect on the model. Moreover, PCA score plots can be useful for investigating 

the presence of either analytical or technical variation. In this regard, QCs are 

extremely helpful as clustering of the last QC injection with periodical QC 

injections during the run ensures that the system has achieved stability. The 

loading plot shows the contribution of the original variables to generate the 

scores (Figure 1. 15c). Thus, following the vectors from the origin (PC1=0, 

PC2=0), their Cartesian coordinates reveal how much weight they have on the 

PC1 or PC2 component. The angles between the vectors represent the 

correlation between features. The combination of the score and loading plot 

can be useful to understand how strongly each vector (feature) influences the 

separation (Figure 1. 15d).  

As aforementioned, PCA separates sample groups based on their principal 

components, but does not give information about the specific contribution of 

features to separation. The supervised multivariate analysis can be used to 

obtain this type of information because knowledge of the features within a 

dataset, allows models to be developed to predict latent variables (i.e., 

information that is not included in the initial data matrix). The most commonly 

used supervised tool is the Partial Least Square (PLS- Figure 1. 15e) [94]. 

PLS is based on one latent variable (F) that influences the known variables 

(Y). The weight of this contribution (b) is different for each known variable Y 

that, in the original data matrix, corresponds to the identified 

metabolite/protein. In a complex dataset there are multiple latent variables 

affecting metabolites/proteins, and a new algorithm suitable for their multiple 

measurement is the PLS-discriminant analysis (PLS-DA). Thus, PLS-DA – 

within each PC – measures the correlation of the different metabolites/proteins 
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as a function of their covariation (Figure 1. 15f), which is derived from their 

differential response to multiple latent variables. 

 

Figure 1. 15 Graphical representation of Principal Component Analysis (PCA) and Partial Least 

Square (PLS) analysis. a) PCA theoretical model, b) PCA score plot, c) PCA loading plot, d) 

combination of PCA score and loading plot, e) PLS analysis, and f) plot of PLS– Discriminant Analysis 

(PLS-DA). Y= known variable. W=weight contribution of the known variable. C=component. F=latent 

variable. b=weight contribution of the latent variable. u=error terms. The theoretical models of PCA and 

PLS analysis are adapted from https://www.theanalysisfactor.com. Created in Biorender. 

 

1.1.4. Metabolomics and proteomics in ageing and cancer research 
 

https://www.theanalysisfactor.com/
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Ageing is a progressive dysfunctional process generated from the gradual 

accumulation of cellular damage [95]. Some of this damage (e.g., somatic 

mutations on oncogene or tumour suppressor genes) confer a selective 

advantage to cells which may ultimately result in carcinogenesis [96]. On this 

basis, estimates present a burden in the incidence of cancer (> 50%) in people 

aged over 65 which is not only driven by the passage of time, but also defined 

biomolecular mechanisms [97]. Emerging evidences shows that the 

accumulation of senescent cells – the gold standard model of cellular ageing 

[98-100]– establishes a microenvironment that promotes tumorigenesis 

because of the dramatic increase in the recruitment of inflammatory cells and 

extracellular matrix deposition [101]. Age-associated chronic inflammation (or 

inflammageing) is at present a widely accepted risk factor for cancer 

development [102-104].  

 

The senescent state is an adaptive mechanism that cells activate to prevent 

the proliferation of damaged cells and promote their recognition and removal 

by the immune system [105]. Some senescent cells may prevent cancer 

development through the activation of the immune surveillance [106-108]. The 

role of senescence in cancer has not yet been elucidated, thus these enigmas 

remain unsolved. Campisi, et al. (2014) have hypothesised that the pro- or 

anti-tumour activity of senescent cells may depend on when and where they 

develop and accumulate [109]. The senescent state [110] and cancer [111] are 

dynamic and heterogeneous processes harbouring different features that 

determine their aggressivity and resistance to therapies. 

 

Assessing senescence and tumour heterogeneity is currently based on the 

detection of a specific biomarker that by definition is a “biological molecule 

found in blood, other body fluids, or tissues that is a sign of […] a condition or 

disease” [112].  

Metabolites and proteins can be used as biomarkers in living organisms, such 

that they can be helpful targets in developing new diagnostics and guiding the 

drug discovery and development process.  
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Prior to the growth of proteomics and metabolomics, genomics has been 

extensively applied to biomarker discovery and the drug developmental 

process [113, 114]. Proteomics has since expanded the knowledge on protein 

function, modification, regulation, and interaction [115]. Metabolomics has 

gained attention in biomarker discovery in recent years as it has revealed 

significant biochemical changes influencing the state and activity of genes and 

proteins. Additionally, thanks to the increased sensitivity of the modern 

technologies (e.g., MS), untargeted metabolomics has enabled a more 

comprehensive understanding of the metabolic composition of living 

organisms [116, 117]. Hence, a wider number of small molecules has been 

revealed which are not catalogued in databases. 

Despite the great efforts of these “omics” tools in the field of biomarker 

discovery, the number of markers approved by the Food and Drug 

Administration (FDA) in current clinical use remains limited in scope (Table 1. 

8), and metabolic targets are scarcely represented [118]. This can be attributed 

to several factors such as the small number of metabolic samples analysed to-

date, the lack of information on the background of the sample, lack of age and 

gender-match between cases and controls, the low number of metabolites 

included within metabolite databases [119], and importantly the absence of 

clear harmonized and standardised operating procedures in metabolomics for 

sample collection, storage, handling, analysis, and data interpretation [117].  

 

Table 1. 8 List of FDA approved biomarkers for clinical use. In bold are indicated the metabolic targets 
[120]. 

Therapeutic Area Biomarker 

Gastroenterology 
ABCB11, CPOX, HMBS, PPOX, CYB5R, CYP2C19, 
CYP2D6, G6PD, IL12A, IL12B, IL23A, JAG1 

Inborn Errors of 
Metabolism 

ACADVL, CPT2, HADHA, HADHB, AMACR, AKR1D1, 
CYP7A1, CYP27A1, DHCR7, HSD3B2, ASS1, CPS1, OTC, 
CASR, CYP2D6, GAA, GALNS, GLA, LMNA, NAGS, TPP1, 
ZMPSTE24 

Neurology 
ACHR, ALDH5A1, APOE, AQP4, CYP2C19, CYP2D6, DMD, 
HLA-A, HLA-B, MOCS1, NAT2, POLG, SMN1, SMN2, TTR 

Urology AGXT, CYP2D6 

Oncology 

ALK, BCR-ABL1, BRAF, BRCA, CCDC6-RET, KIF5B-
RET,  RET, CD19, CD274 (PD-L1), CD33, Chromosome 
11q, Chromosome 14q;16q, Chromosome 17p, 
Chromosome 4p;14q, CYB5R, CYP1A2, CYP2C19, 
CYP2D6, DPYD, EGFR, ERBB2 (HER2), ESR, PGR, F2, 
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FCGR2A (CD32A), FGFR, FGFR2, FIP1L1-PDGFRA, FLT3, 
G6PD, HLA-A, HLA-B, HLA-DQA1, HLA-DRB1, IDH1, IDH2, 
IGH, IL2RA, KIT, KRAS, MET, MKI67, MS4A1, MYCN, 
MYD88, NECTIN4, NPM1, NTRK, NUDT15, PDGFRA, 
PDGFRB, PIK3CA, PML-RARA, PPP2R2A, RAS, RET, 
ROS1, SSTR, TNFRSF8 (CD30), TP53, TPMT, UGT2B17, 
UGT1A1, VHL 

Anesthesiology BCHE, CYP2C9, CYP2D6, G6PD, RYR1 

Pulmonary CFTR, CYP2C19, UGT1A1 

Hematology 

Chromosome 13, Chromosome 5q, Chromosome 7, 
CYP2C9, F2, G6PD, HBB, JAK2, PRF1, RAB27A, SH2D1A, 
STXBP2, STX11, UNC13D, XIAP, PROC, PROS1, 
SERPINC1, VKORC1 

Cardiology CYB5R, CYP2B6, CYP2C19, CYP2D6, CYP3A5, TTR 

Infectious Diseases 
CYB5R, CYP2B6, CYP2C19, CYP2D6, G6PD, HLA-B, 
IFNL3 (IL28B), UGT1A1 

Gynecology 
CYP2B6, CYP2C19, CYP2D6, PROC, PROS1, SERPINC1, 
SLCO1B1 

Psychiatry CYP2C19, CYP2D6, SLCO1B1 

Rheumatology CYP2C19, CYP2D6, G6PD, NLRP3, NUDT15, TPMT 

Endocrinology 
CYP2C9, G6PD, LDLR, LEP, LEPR, PCSK1, POMC, 
SLCO1B1 

Dental CYP2D6 

Dermatology DPYD, G6PD, IL12A, IL12B, IL23A 

Toxicology G6PD 

Transplantation HPRT1 

 

 

Referring to Table 1. 8, not all the listed therapeutic areas refer to diseases 

with a genetic basis and most have a strong metabolic basis. Moreover, 

several biomarkers are genes and enzymes regulating key metabolic 

pathways. This suggests that abnormal metabolite levels lie beneath altered 

gene expression and function, signal transduction pathways, epigenetic 

modifications, and other hallmark alterations observed in chronic conditions. 

For example, genomic instability and metabolic reprogramming are among the 

most prominent hallmarks of many chronic age-related disabilities including 

neurologic diseases, diabetes, cardiovascular diseases and cancer [121, 122]. 

The mutual dependencies of these two hallmarks are described in subsequent 

sections. 
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1.1.5. Genomic instability 
 

Genomic instability represents the accumulation of DNA damage and 

mutations. These abnormalities play a significant role in ageing and cancer as 

they are responsible for genomic alterations [123], aberrant protein synthesis 

and activity [124], increased levels of reactive oxygen species (ROS) [125] and 

altered cell cycle activity, which is blocked in ageing [126] and increased in 

cancer eventually leading to metastatic burden [127]. 

 

Genomic instability can be caused by endogenous and exogenous factors. 

Among endogenous factors there are DNA replication errors such as base 

substitutions, single base insertions, and deletions which are introduced at a 

frequency of 10-6 to 10-8 per cell cycle [128, 129]. Endogenous DNA damage 

is also a consequence of aberrant functions of topoisomerase enzymes – 

nuclear enzymes that catalyse changes in the topological structure of DNA, 

therefore regulating its replication and transcription [130]. Other endogenous 

sources of DNA damage include spontaneous base deamination [131], 

formation of abasic sites [132], lesions (or modifications) induced by reactive 

oxygen species (ROS) [133], and DNA methylation [134]. Exogenous agents 

responsible for DNA damage include ionization radiation (IR) [135], chemicals 

[136], toxins [137], and environmental stresses[138].  

Different types of genetic lesions exist including point mutations, 

translocations, chromosome gain or loss, and telomere shortening [139, 140]. 

They affect gene expression and their transcriptional pathways, consequently 

leading to the synthesis of dysfunctional proteins (Table 1. 9).  

 

Table 1. 9 Class of gene mutations and their association with abnormal protein synthesis and age-

related diseases including cancer. 

Gene 
mutation 

Protein mutation Disease 

Point mutation 

Missense mutation (change in one 
amino acid - protein variant). 
Non-sense mutation (a codon is 
changed with a premature stop 
codon - shorter protein). 
Non-stop mutation (lack of a stop 
codon - longer protein) 

Breast and ovarian 
cancer [141], 
neurological diseases 
[142, 143], Progeroid 
syndrome [144], Werner 
syndrome [145] 
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Chromosomal 
mutation 

Inversion (a region of a 
chromosome is flipped and 
reinserted). 
Deletion (loss of a chromosome 
region). 
Duplication (a region of a 
chromosome is repeated). 
Translocation (a region of a 
chromosome is moved onto another 
region or another chromosome) 

Turner syndrome [146], 
Down syndrome [147], 
solid tumours [148] 

Copy number 
variation 

Gene amplification (several copies 
of a gene on a locus). 
Expanding trinucleotide repeat 
(several repeated trinucleotide 
sequences) 

Ageing[149, 150], cancer 
[151, 152], spinal 
muscular atrophy [153]  

 

Cells have evolved various DNA damage repair (DDR) strategies to repair 

these lesions and ensure the structural and functional integrity of DNA (Figure 

1. 16). Homologous recombination (HR) and non-homologous end joining 

(NHEJ) are only two of the various repair mechanisms activated upon DNA 

damage and refer specifically to double-strand breaks (DSBs) which are 

responsible for several human disorders and cancer. Upon DSB formation, a 

cascade of events occur, including activation of the Ataxia telangiectasia 

mutated gene (ATM), phosphorylation of the histone H2AX, chromatin Poly-

ADP-Ribosylation (PARylation), recruitment of the Mediator of DNA Damage 

Checkpoint 1 (MDC1), Tumour Protein P53 Binding Protein 1 (TP53BP1) and 

finally the Breast Cancer 1 encoded protein BRCA1 [154]. 
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Figure 1. 16 Representation of different DNA repair mechanisms. 8-Oxoguanine DNA Glycosylase 

(OGG1), Poly(ADP-Ribose) Polymerase (PARP), X-Ray Repair Cross Complementing 1 (XRCC1), 

polymerase (Pol), Proliferating cell nuclear antigen (PCNA), Flap Structure-Specific Endonuclease 1 

(FEN1), Xeroderma pigmentosum (XP), DNA damage-binding (DDB), Cockayne syndrome (CS), MutS 

Homolog (MSH), MutL Homologous (MLH), Exonuclease 1 (EXO1), Replication factor C (RCF), Ataxia 

telangiectasia mutated (ATM), Mre11-Rad50-Nbs1 (MRN) complex, Replication protein (RPA), Breast 

cancer gene (BRCA), FA Complementation group (FANC). 

 

Of notice, DDR proteins such as ATM, poly (ADP-Ribose) polymerase (PARP), 

and BRCA1, have important roles in maintaining telomere functionality. Hence, 

their defect is responsible for telomere shortening and dysfunction in ageing 

[155]. In cancer cells where these DDR proteins are enhanced, telomer length 

is maintained supporting proliferation. Telomere shortening occurs at each cell 

division until the telomeres reach a limited length when they are recognised as 

DSBs and lead to the chronic activation of DDR [156]. At this stage cells can 

enter the programmed cell death (apoptosis), or senescence which is a state 

of cell cycle arrest and resistance to apoptosis. In addition to short telomeres, 

the increased expression of DBSs markers has been reported in senescent 

cells [157]. ATM has a key role in the sensing and signalling of DSBs, 

mediating their repair mechanisms through the recruitment of DNA-repair 
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proteins onto the site of damage [158]. Among its targets, ATM cascade 

response involves activation of p53, p21 and p16 which are inhibitors of the 

cell cycle and markers of senescence. 

Activated oncogenes and DNA replication stress with DSB formation are 

responsible for chromosomal instability that has been observed in several solid 

tumours [159]. Carcinogens and hereditary DDR defects also contribute to 

cancer development and may induce an adaptive response that promotes 

tumour survival and proliferation despite the accumulation of mutations.  

 

Although genomic instability is associated with genetic alterations at the DNA 

level, there is increasing evidence linking genomic instability to cellular 

metabolism. For example, a feature of patients lacking ATM expression (Ataxia 

telangiectasia patients) is a reduced activity of the insulin-signalling pathway 

that regulates protein synthesis through the activation of the components of 

the translational machinery (e.g., eIFs and eEFs) [160], since insulin is known 

to regulate the levels of the energy metabolite glucose in cells [161], this 

suggests a role for ATM in the regulation of cellular energy metabolism. 

Another example is increased histone and DNA methylation associated with 

high levels of S-adenosylmethionine (SAM) and serine [162].  

Conversely, metabolites can also influence gene expression and the DNA 

status. As in the case of -ketoglutarate, a key metabolite in several metabolic 

and cellular pathways including hydroxylation reactions, where it serves as a 

substrate for specific dioxygenases like Lysine demethylase (KDMs) and ten-

eleven translocation (TET) responsible for DNA demethylation [163-165]. In 

certain cancer types, the overexpression of 2-hydroxyglutarate – an antagonist 

of a-ketoglutarate [166] – inhibits the activity of -ketoglutarate-dependent 

dioxygenases, promoting hypermethylation of the DNA and regulation of gene 

expression [167, 168]. A recent study reported that in people aged over 60 

years, high levels of glycerophospholipids, and low levels of methionine, and 

tyrosine, are associated with reduced leukocyte telomere length, therefore 

suggesting a role for lipid metabolism in the regulation of genome stability 

[169]. 
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In conclusion, the focus of this section was on the genomic alterations 

representing key features of disrupted cells. We explored some connections 

between DNA lesions and cellular metabolism, showing the impact that 

metabolic changes may have on the regulation of gene expression. The focus 

of the next section will be on the metabolic alterations that influence cellular 

growth and functionality. 

 

1.1.6. Metabolic reprogramming 
 

Metabolic reprogramming refers to the ability of cells to alter their normal 

metabolism in order to adapt to adverse conditions and support their growth 

and survival [170]. Metabolic reprogramming is a key hallmark of both cancer 

and senescence (Figure 1. 17). 
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Figure 1. 17 Key metabolic changes occurring in cancer and senescent cells. The picture 

describes key metabolic pathways known to be rewired in cancer (blue arrows) and senescent cells 

(red arrows). Altered metabolic pathways include glycolysis (green), amino acids (purple), nucleotides 

(orange), and lipids metabolism (light blue). Glucose transporter 1 (GLUT1), Monocarboxylate 

transporter 4 (MCT4), Fatty acid binding protein (FABP), Peroxisome proliferator-activated receptor 

(PPAR), Lactate dehydrogenase A (LDHA), Pyruvate dehydrogenase (PDH), Isocitrate dehydrogenase 

(IDH), Succinate dehydrogenase (SDH), Carnitine palmitoyl transferase 1 (CPT1). 

 

Cellular metabolism is the sum of biochemical reactions that occur in a living 

organism. They are described by two opposing processes: catabolism and 

anabolism. Catabolism is the oxidative degradation of molecules aimed to 

produce adenosine triphosphate (ATP), whereas anabolism refers to the 

reductive and energy-consuming reactions triggering the synthesis of 

biomolecules such as proteins, lipids, nucleic acids and carbohydrates. The 
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activity of both processes is generally regulated in such a way that they can 

supply the bioenergetic requirement of cells, underpinning their proliferation 

rate.  

 

Cellular proliferation requires a source of nutrients supporting energy and 

biomass production. Glucose is the major energy source for ATP production 

through the concerted activity of glycolysis, the tricarboxylic acid (TCA) cycle, 

and oxidative phosphorylation (OXPHOS). About 89% of ATP is produced 

through OXPHOS, while the remaining 11% derives from substrate-level 

phosphorylation (SLP) reactions occurring either in the cytosol or in 

mitochondria [171]. The latter involves the transfer of a phosphate to ADP from 

a metabolic substrate to form ATP. Glutamine is the second critical nutrient in 

cells as it represents an alternative source of carbon for the TCA cycle 

(anaplerotic reactions), plays a role in several signal transduction pathways 

and is a required precursor for the synthesis of amino acids, proteins, 

nucleotides and lipids. Moreover, glutamine is required for the synthesis of 

glutathione (GSH), an important antioxidant molecule protecting cells from 

oxidative stress. 

 

In cancer and senescent cells, glucose metabolism is one of the key 

reprogrammed metabolic pathways [172]. In both cases there is a high rate of 

glucose uptake, which is then converted into lactate (fermentation) despite the 

presence of oxygen. Consequently, senescent cells present low levels of ATP. 

In addition to glucose, reduced NAD+/NADH ratios that inhibit the glycolytic 

enzyme GDPH are also impacted in senescent cells [173]. 

Conversely, cancer cells keep a balanced ATP turnover despite glucose 

fermentation. Of notice, fermentation does not provide sufficient ATP 

molecules to satisfy the energy demand of cancer cells for their high 

proliferation rate [171]. Thus, it remains to be established which alternate 

energy sources are used by cancer cells to generate ATP. A potential ATP 

compensatory pathway has been proposed, which is based on SLP reactions 

driven by glutamine metabolism through α-ketoglutarate [174]. Glucose 

metabolism also has a role in apoptosis resistance which is a common feature 
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of both cancer and senescent cells [175]. Considering that cancer and 

senescent cells are in sub-optimal oxygen conditions, they are both 

characterised by increased expression of Hypoxia-inducible factor (HIF) [176, 

177]. In addition to enhancing glycolytic factors, HIF directly suppresses the 

pro-apoptotic protein, B cell lymphoma 2 (BCL-2) [178]. Enhanced glycolysis 

has also been demonstrated to activate Nuclear Factor Kappa B (NF-kB) 

pathways as a response to DNA damage, therefore promoting pro-

inflammatory changes as observed during senescence [179].  

 

As anticipated, glutamine is an essential metabolite for tumour cell growth, and 

several cancers exhibit glutamine action- evidenced by their inability to survive 

under glutamine-deprived conditions [180]. DDR activation diminishes 

glutamine anaplerosis while favouring glutamine redirection toward 

biosynthetic pathways [181]. Thus, glutamine metabolic rewiring exhibits a 

significant influence on the DNA damage response. Glutamine utilization in de 

novo biosynthetic pathways is a feature of cancer and senescent cells [182]. 

As for the biosynthesis of nucleotides where glutamine metabolism, through α-

KG, sustain branched-chain amino acids (BCAA) as nitrogen donors [183]. 

Moreover, in senescent cells, the elevated glutaminolysis processes lead to 

high production of nitrogen, which has the potential to neutralise the cytosolic 

acidity caused by lysosomal dysfunction represented by -galactosidase 

enzyme (-gal) [184]. 

 

In addition to amino acid and glucose metabolism, metabolic reprogramming 

is also associated with changes in lipid metabolism. Lipids (sterols, 

mono/di/triglycerides, phospholipids and glycolipids) serve as an energy 

source, membrane components and signalling molecules under homeostatic 

conditions. In senescent cells phospholipids, triglycerides and polyunsaturated 

fatty acids (PUFA) accumulate due to their increased extracellular uptake 

[185]. The sphingomyelin-ceramide pathways have been found to be 

upregulated in senescent and cancer cells [186, 187]. These pathways 

upregulate p21, therefore inducing cell cycle arrest [188]. Moreover, the 
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upregulation of ceramide metabolism promotes the production of sphingolipids 

that protect cells against apoptosis therefore promoting their survival [189]. 

A consequence of lipid de novo lipogenesis and internalisation is their 

accumulation in lipid droplets where they serve as an energy source, and 

maintenance of lipid and membrane homeostasis. Accumulation of lipid 

droplets has been observed in both senescent and cancer cells [190, 191].  

Similar to the TCA cycle, lipids are intracellularly oxidised via -oxidation which 

is a source of NADH reducing power for the synthesis of the OXPHOS-derived 

ATP. Whether -oxidation is relevant to produce ATP in senescent and cancer 

cells still needs to be established as very few studies have focused on this 

area of research. However, the increased expression of -oxidation enzymes 

has been reported in both senescent and cancer cells [192, 193].  

β-oxidation is also responsible for the accumulation of ROS, therefore its 

altered activity creates a redox imbalance that consequently leads to lipid 

peroxidation [194]. This is a biological process whose primary products are 

unstable lipid peroxides (LPOs) that easily decompose into more stable but 

reactive secondary compounds such as Malondialdehyde (MDA), 4-hydroxy-

2nonenal (HNE), 4-hydroxy-2-hexenal (HHE), 4-hydroperoxy-2-nonenal 

(HPNE), 4-oxo-2-nonenal (ONE), 4-oxo-2-hexenal (OHE), 4,5-epoxy-2-

decenal (EDE), 9,12-dioxo-10-dodecenoic acid (DODE) [195]. These are 

highly toxic compounds since they exert mutagenic activity by directly 

interacting with guanine in DNA [196]. They also have epigenetic effects by 

binding histones regulating chromatin condensation [197]. LPOs are 

responsible for the oxidative modifications of proteins and membrane 

phospholipids, therefore affecting protein function and membrane stability, 

respectively [198]. Lipid peroxidation also potentiates cellular damage at 

distant sites, thereby propagating the response and injury initiated by ROS, 

including the induction of cell senescence in neighbouring cells [199].  

 

This thesis presents different studies where, through the combined application 

of molecular biology approaches, and LC-MS based metabolomics, 

proteomics and MSI, we explored the metabolic changes occurring during 

ageing and cancer development. Thanks to the advent of highly sensitive 
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instruments in the field of mass spectrometry, it is now possible to collect new 

and more accurate information on the molecular and metabolic composition of 

biological systems (cells and tissues). However, alone these data are not 

sufficient to understand the genetic, physiologic and metabolic complexity of 

ageing and cancer. Thus, the integration of all the “omics” information of the 

central dogma (genomics, transcriptomics, proteomics and metabolomics) is 

required to uncover the pathways and regulatory networks that are at the basis 

of ageing and cancer development and/or progression. 
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1.3.  Aims 

 

Mass spectrometry-based metabolomics and proteomics represent efficient 

technologies to characterise biochemical events that underpin physiological 

and pathological processes. Ageing and cancer research are two scientific 

areas that are benefitting from the utilisation of these high throughput 

approaches as there is an evolving demand for appropriate and sensitive 

diagnostic strategies to predict and identify new biomarkers specific for 

different pathological phenotypes. 
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The overall aim of this thesis is to advance the application of mass 

spectrometry-based metabolomics/proteomics methods to give more insights 

into pathological mechanisms such as ageing and cancer. By coupling 

molecular, proteomics and metabolomics approaches alongside the 

determination of the spatial distribution of metabolites, we hope that the 

methods proposed in this research can contribute to improve the current 

clinical diagnostic strategies. 

The specific aim of this thesis is to: 

- Apply combined analysis of senescence associated ß-galactosidase 

expression, DNA damage foci formation and cell cycle impairment with 

untargeted mass-spectrometry-based metabolomics to determine the 

intra- and extracellular metabolic changes occurring following induction 

of senescence (Chapter 2); 

- Apply combined global mass-spectrometry-based metabolomics and 

proteomics analysis to design a putative map of the metabolic pathways 

that change during ageing of murine brain tissues. In this context we 

also aimed to determine the spatial localization of metabolites within the 

same tissue section through mass-spectrometry imaging (Chapter 3); 

Apply combined analysis of DNA damage foci formation with global mass-

spectrometry-based global metabolomics to profile the molecular and 

metabolic changes of different breast cancer cell lines in response to various 

DDR inhibition treatment doses of olaparib (Chapter 4). 
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CHAPTER 2 
 

Measurement of molecular, metabolic, and inflammatory changes in 

different cellular senescence phenotypes 

Domenica Berardi1, Gillian Farrell1, Ashley McCulloch1, Zahra Rattray1*, and Nicholas 
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2.1. Abstract 
 
Cellular senescence has been widely accepted as a key driver of ageing, 

poorly ageing phenotypes and age-related disease. Thus, targeting and 

eliminating senescent cells to predict and/or ameliorate age-related malady is 

a major focus in biogerontological research. Targeting senescent cells is aided 

by the identification of novel biomarkers of cellular senescence. While many 

studies have focused on the identification of molecular biomarkers of 

senescence, there remains a baseline biomolecular profiling of senescence 

and its diverse phenotypes. Here we report the development of a model of 

replicative, chemical and x-ray induced senescence with assessment of DNA 

damage, ROS production, and metabolic profile. 

Following induction of senescence, we measured the extent of DNA damage 

and replication index through detection of H2AX and Ki-67 molecular markers 

in the different senescence-like phenotypes. We subsequently evaluated intra- 

and extracellular metabolism using untargeted mass spectrometry-based 

metabolomics analysis. Altered metabolic changes were identified followed by 

pathway and metabolite enrichment analysis in cells and their growth media. 

We found that key intracellular metabolic changes predominantly in amino acid 

metabolism (histidine, arginine, alanine, aspartate and glutamate), occurring 

upon induction of senescence which was dependent on the stress stimulus 

type. The intracellular metabolic changes that we observed were consistent 

mailto:nicholas.rattray@strath.ac.uk
mailto:zahra.rattray@strath.ac.uk
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with the presence of pro-inflammatory metabolites in the senescent cell growth 

media of each specific phenotype. 

Our work shows the advantage of combining phenotypic, molecular and 

metabolomics studies for the detailed analysis of senescence and its 

heterogeneous phenotypes. Future studies are required to further validate the 

senescence-induced changes in metabolic pathways. Integration with 

genomics, transcriptomics and proteomics data will help understand the 

mechanisms that underpin ageing, providing insights into the pathophysiology 

of many age-related diseases. 

 

KEYWORDS: Ageing, senescence, biomarker, metabolic reprogramming, 

mass spectrometry 

 

2.2. Introduction 
 

Currently, more than 12% (900 million) of the global population are over 60 

years old and by 2050 this estimate will raise up to 22% (2 billion) [1]. This 

demographic change will lead to increased medical care and social needs, 

therefore having a radical impact on the structure and function of society, the 

global economy and health systems [2].  

 

Human ageing is a temporal process of structural and functional accruement 

of damage at the molecular, cellular and tissue level which leads to the state 

of disease development, that can turn into a chronic condition and ultimately 

leading to death [3]. Accordingly, ageing represents the primary risk factor in 

the majority of diseases like diabetes, cancer [4], neurological [5], 

cardiovascular, and immune disorders [6]. For this reason, strategies to 

improve human health span, through the prevention and amelioration of age-

related disease, have been extensively studied [7]. A better understanding of 

the biology of ageing is needed to develop diagnostics and therapies capable 

of tracking and targeting features of ageing. 
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Among the primary feature of ageing there is the accumulation of senescent 

cells, which have been observed in several age-related diseases and in the 

elderly [8]. Senescence is a hallmark of ageing characterised by the arrest of 

cell proliferation and resistance to death [9]. At present, induction of the 

senescence phenotype in normal human cells is the widest accepted strategy 

in ageing research to better understand its biological mechanisms and role in 

pathological conditions [10-12]. 

Cellular senescence was first reported in normal human fibroblasts where 

replication-associated telomere shortening was observed, which has widely 

been used as a prototype model for senescence known as replicative 

senescence [13, 14]. Stress-induced premature senescence (SIPS) is another 

type of senescence which includes DNA damage-induced senescence, 

Oncogene induced senescence, mitochondrial dysfunction-induced 

senescence, epigenetically induced senescence, and reactive oxygen species 

(ROS) induced senescence [15-17] (Figure 2. 1). 

 

Figure 2. 1 Subtypes of senescence based on their method of induction. The general features of 

senescence include: high lysosomal activity through increased ß-galactosidase (ß-Gal) expression, 

high expression of p16, p21 and p53 and consequent cell cycle arrest and decreased proliferation, 

telomere shortening, generation of senescence associated heterochromatin foci (SAHF), increased 

ROS, reduced energy production, metabolic reprogramming, and the senescence associated 

secretory phenotype (SASP). 
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Several SIPS have been reported that differ based on the expression of 

specific senescence features, which include DNA damage, telomere attrition, 

cell cycle arrest, resistance to apoptosis, endoplasmic reticulum stress, 

increased lysosomal content of ß-galactosidase (ß-Gal), mitochondrial 

dysfunction, senescence-associated heterochromatin foci (SAHF), flattened 

morphology, larger cell surface, senescence-associated secretory phenotype 

(SASP), and metabolic reprogramming [17, 18] However, these features are 

facultative in the senescence phenotype and dependent on senescence-

inducing stimuli and the cell type impacted.  

 

Ionizing radiation (including X-rays) induce DNA damage and mutations 

directly by secondary electrons emission and/or indirectly by ROS formation 

[19], therefore resulting in DNA breaks (single or double stranded), DNA-

protein crosslinks, oxidation of bases, and formation of abasic sites [20]. 

Hydroxyurea is an inhibitor of ribonucleotide reductase [21] by removing 

tyrosine free radicals that are required for the reduction of nucleoside 

diphosphates and DNA synthesis, consequently resulting in DNA single -

strand breaks [22]. Etoposide is a chemotherapy agent that inhibits DNA 

topoisomerase II (TopII) therefore preventing the re-ligation of broken DNA 

strands [23].  

 

The heterogeneity of the senescence phenotype and lack of sensitive selective 

markers of senescence pose a significant challenge for the identification of 

senescent cells in culture, tissues and in vivo [24]. Combining the 

measurement of multiple molecular biomarkers is the current strategy used for 

the identification of senescent cells.  

 

Metabolomics is the comprehensive analysis of small molecule metabolites, 

which are downstream by-products of gene, RNA, and protein function [25]. 

Metabolomics can provide an integrated portrayal of biological pathways and 

how changes in biochemistry are associated with human disorders and 

disease. Considering that the application of metabolomics to ageing research 
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is relatively new, it is still lacking an exhaustive annotated metabolic dataset 

describing the complexity of senescence phenotypes. 

 

Here we report the study of molecular and metabolic markers of different 

senescence phenotypes through measuring the expression of ß-Gal, DNA 

damage foci, cell cycle activity, morphology, and global intracellular and 

extracellular metabolites to analyse changes in the phenotype of senescent 

cells in response to different methods of induction in normal human fibroblasts. 
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2.3. Materials 

2.3.1. Cell line, chemical and treatment 
 

All cell culture reagents were obtained from Gibco (Thermo Fisher Scientific). 

Human Foreskin Fibroblasts cell line (HFF-1, ATCC® SCRC-1041) was 

purchased and maintained in Dulbecco’s Modified Eagle’s Medium (DMEM, 

high glucose) supplemented with 10% v/v FBS (high glucose, Invitrogen), 1% 

v/v non-essential amino acids (NEAA), and 1% v/v penicillin-streptomycin 

(Invitrogen). Cells were maintained in a pre-humidified atmosphere containing 

5% v/v CO2 at 37°C. 

 

Hydroxyurea (Sigma Fisher Scientific) was prepared as a 10 mM stock in 

water. Etoposide was prepared as a 1 mM stock solution in DMSO. All drug 

stocks were aliquoted and stored at -20°C until use.  

Crystal violet (Sigma Fisher Scientific) stain was prepared with 20% methanol 

(Alfa Aesar by Fisher Scientific) and 2% sucrose (VWR Life science) and 

stored at ambient temperature. Primary antibodies for H2AX and Ki67 (Cell 

Signalling Technologies) were used for foci immunostaining alongside Alexa 

Fluor® 488-conjugated secondary antibody (Fisher Scientific). 

 

Cells were passaged multiple times in culture (up to 20 passages) and were 

either treated with ascending doses of irradiation (1-12 Gy for 1 week), 

hydroxyurea (0-1,000 µM for 2 weeks), or etoposide (0-50 µM for 1 week) until 

markers of senescence appeared (growth arrest, increase in cell size, ß-Gal 

expression). 
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2.4. Methods 

2.4.1. Senescence associated ß-galactosidase staining 
 

Cells were seeded in a 96-well plate at a density of 4,000 per well and 

incubated for a pre-defined period for each specific treatment type. Following 

incubation, senescence associate ß-Gal activity was assessed using a 

senescence detection kit (ab65351, Abcam) as per the manufacturer’s 

recommendations. Subsequently cells were counterstained with DAPI to stain 

their nuclei. Image acquisition was carried out using an Invitrogen EVOS Auto 

Imaging System (AMAFD1000-Thermo Fisher Scientific) with a minimum of 

100 cells imaged per treatment condition. ß-Gal-stained cells were manually 

counted with ImageJ software. The number of ß-Gal-stained cells was 

normalized with the number of counted nuclei. 

 

2.4.2. Cell viability assay 
 
The crystal violet assay was used to determine the viability of human 

fibroblasts following the induction of senescence. HFF-1 cells were plated in 

96 well plates at 4,000 cells per well, treated and incubated for pre-defined 

times depending on the mechanism of senescence. Following treatment, the 

culture medium was removed, and the treated cells were washed once with 

PBS and stained with the crystal violet staining solution for 30 min at ambient 

temperature. Subsequently, the staining solution was removed, cells were 

gently rinsed with tap water and left to dry for 24 hours at ambient temperature. 

Subsequently, the stain was solubilized with 100% Ethanol and quantified at 

600 nm using a GM3500 Glomax® Explorer Multimode Microplate Reader 

(Promega).  

 

2.4.3. Immunostaining for H2AX and Ki67 
 

Foci immunodetection for H2AX and Ki67 was performed in low and high 

passage cells seven days after seeding for non-irradiated cells and for cells 

irradiated at 12Gy for seven days, in non-treated and treated cells with 

hydroxyurea (800 µM) and etoposide (10 µM) for 14 and seven days, 

respectively. Briefly, cell monolayers were fixed in chilled 4% w/v 
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formaldehyde containing 2% w/v sucrose in PBS, followed by fixation in ice-

cold methanol (100% v/v). Subsequently, cells were permeabilized in 0.25% 

v/v Triton X-100 in PBS, blocked with 5% v/v goat serum/5% w/v BSA, 

immunoprobed with either a primary rabbit anti- H2AX (1:1000) or primary 

mouse anti-Ki67 (1:1000) antibody overnight at 4°C. Cell monolayers were 

treated with goat, anti-rabbit and anti-mouse Alexa Fluor® 488 conjugated 

secondary antibody and counterstained with DAPI. Image acquisition was 

carried out using an Invitrogen EVOS Auto Imaging System (AMAFD1000-

Thermo Fisher Scientific) with a minimum of 100 cells imaged per treatment 

condition. Resultant H2AX foci and Ki-67 labelled nuclei images were 

analysed in Cell Profiler (v.4.2.1.) using a modified version of the “speckle 

counting” and “percent positive” pipeline, respectively. Further thresholding 

setting for nuclei, H2AX foci and Ki-67 labelled nuclei are indicated in Table 

2. 1. 

 

Table 2. 1 Thresholding parameters applied in Cell Profiler for the detection of foci and labelled nuclei. 

 DAPI H2AX Ki-67 

Diameter of objects (in 
pixel units) 

Min: 8 
Max:80 

Min: 1 
Max: 40 

Min: 5 
Max:200 

Distinguish objects by Shape Intensity Intensity 
Thresholding method Minimum 

Cross-
Entropy 

Minimum 
Cross-
Entropy 

Minimum 
Cross-
Entropy 

Lower and upper bounds 
on threshold 

0.05, 
1.00 

0.00, 1.00 0.00, 
1.00 

 

2.4.4. Sample preparation and metabolite extraction 
 
HFF-1 cells were seeded at a density of 2x106 cells per well in 6-well plates, 

at passage 20 and before exposure to either 12 Gy irradiation, or growth 

medium containing 800 µM hydroxyurea or 10 µM etoposide. Following 

senescence induction, the growth medium was aspirated from each well, 

centrifuged to remove cell debris, aliquoted and stored at -80°C. Next, treated 

cells were washed with pre-chilled PBS, with the metabolites quenched and 

extracted in a final volume of 1.5 ml pre-chilled (-80°C) 

methanol:acetonitrile:water solvent (50:30:20, v/v). Resultant cell pellets were 
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collected, and flash frozen in liquid nitrogen, vortexed and sonicated for three 

min in an ice-water bath. This process was performed in triplicate. Resultant 

extracts were centrifuged at 13,000 x g for 10 min at 4°C and the pellets 

retained for protein quantification using the Bradford assay (PierceTM 

Coomassie Plus Bradford assay kit, Thermo ScientificTM). The resultant 

supernatant was collected, and dried with a Speed vac centrifuge for 10 h 

(Savant-SPD121P). Dried metabolite pellets were subsequently reconstituted 

in acetonitrile:water (50:50, v/v) at volumes normalised to the relative protein 

content. Quality control (QC) samples were prepared by pooling samples 

across all control and treatment groups. Solvent blank (reconstitution buffer) 

and QC samples were inserted in the analytical batch (Figure S1. 1). 

 

2.4.5. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) 
 
Metabolite separation was performed on a binary Thermo Vanquish ultra-high-

performance liquid chromatography system where 10 µl of the reconstituted 

cellular extract was injected onto a Thermo Accucore HILIC column (100 mm 

x 2.1 mm, particle size 2.6 µm). QC samples were injected after every five 

samples to assess the stability of the detecting system. The temperature of the 

column oven was maintained at 50°C while the autosampler temperature was 

set at 5°C. For chromatographic separation, a consistent flow rate of 500 

µl/min was used where the mobile phase in positive and negative heated 

electrospray ionisation mode (HESI+/-) was composed of buffer A (100% 

acetonitrile with 0.1% formic acid) and buffer B (20 mM ammonium acetate in 

water with 0.1% formic acid). The elution gradient used for the 

chromatographic separation of metabolites is included in supplementary 

information (Table S1. 1). 

 

A high-resolution Exploris 240-Orbitrap mass spectrometer (Thermo Fisher 

Scientific) was used to perform a full scan and fragmentation analyses. Global 

operating parameters were set as follows: spray voltages of 3900V in HESI 

+ve mode, and 2500V in HESI –ve mode. The temperature of the transfer tube 

was set at 320°C with a vaporiser temperature of 300°C. Sheath, aux gas and 

sheath gas flow rates were set at 40, 10 and 1 Arb, respectively. A top-5 Data-
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dependent acquisition (DDA) was performed using the following parameter: 

survey scan range was 50-750 m/z with MS1 resolution of 60,000. Subsequent 

MS/MS scans were processed with a resolution of 15,000. High-purity nitrogen 

was used as nebulising and as the collision gas for higher energy collisional 

dissociation. Further details are included in the supplementary information 

(Table S1. 2). 

 

2.4.6. Mass Spectrometry Data Processing 
 
Raw data files obtained from Thermo Scientific Xcalibur TM software v4.2 were 

imported into Compound DiscovererTM 3.3 software where the “Untargeted 

Metabolomics with Statistics Detect Unknowns with ID Using Online 

Databases and mzLogic” feature was selected (all settings are provided in 

Table S1. 2). The workflow analysis performed retention time alignment, 

unknown compound detection, predicted elemental compositions for all 

compounds, hid chemical background (using Blank samples). For the 

detection of compounds, mass and retention time (RT) tolerance were set to 3 

ppm and 0.3 min, respectively. The library search was conducted against the 

mzCloud, Human Metabolome Database (HMDB) and Chemical Entities of 

Biological Interest (ChEBI) database. A compound table was generated with a 

list of MSI2 level putative metabolites (known and unknown). Among them, we 

selected all the known compounds fully matching at least two of the annotation 

sources and with MS2 data (DDA for preferred ion). The selected metabolites 

were then used to perform pathway and statistical analysis. 

 

2.4.7. Pathway Analysis with MetaboAnalyst  
 
Prior to the analysis of the intracellular and extracellular metabolic pathways 

with MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/), a HMDB identification 

code was assigned to each MSI2 annotated metabolite. For intracellular 

metabolites, pathway analysis was performed by mapping the significant 

altered metabolic features and their associated Log2 Fold change values. The 

pathway analysis parameters included a scatter plot visualization method and  

enrichment analysis based on a hypergeometric test. The hypergeometric test 

http://www.metaboanalyst.ca/
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allows to define the significance of the association between two sets of data 

(genes and metabolites) [26]. Finally, important nodes (compounds) were 

scored based on their betweenness centrality, and pathway analysis results 

were generated. Homo sapiens (KEGG) metabolome was used as reference. 

For the extracellular metabolites Metabolite Set Enrichment Analysis (MSEA) 

was applied by uploading a list of ID metabolites entered as one-column data 

followed by a hypergeometric test to evaluate whether a particular metabolite 

set is represented more than expected by chance within the given compound 

list.  

 

2.4.8. Statistical analysis 
 
All data are presented as mean ± standard deviation (n≥5). For metabolomics 

analysis, Principal Component Analysis (PCA) (score plot and loading plot) 

was performed to test the analytical reproducibility of QC injections, reduce the 

dimensionality of data, and visualise the presence of any clustering differences 

between sample groups. Differential analysis was used to compare differences 

between control and treatment groups and plotted as a Volcano plot (log2-fold 

change vs. -log10 p-value). Peak areas were log10 transformed. P values 

were calculated by two-tailed t-test in the pairwise analysis between control 

and treatment. A p value<0.05 and a fold-change >1.5 was deemed to be 

statistically significant.  
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2.5. Results 

2.5.1. Induction of senescence in normal human fibroblasts 
 

The initial focus of this work was to design and classify the biomolecular 

differences of functional models of replicative and stress-induced senescence. 

To achieve this, we passaged cells multiple times in culture and treated them 

with different doses of X-rays, hydroxyurea and etoposide as previously 

outlined (see methods). The state of senescence was optimised for each 

condition with a target cell viability of ~ 50% (Figure S1. 2), > 50%  β-

galactosidase (β-Gal) expression in sub-optimal conditions (pH<6) (Figure S1. 

3;Figure 2. 2), and an increased surface area of treated cells compared to 

their relative controls (Figure S1. 4). The rationale behind this optimisation, 

was to ensure an adequate number of cells (biomass) for subsequent imaging 

and metabolomics experiments.  
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Figure 2. 2 β-Gal in senescence-induced HFF-1 cells. Representative phase contrast images of β-

Gal staining (grey), DAPI (blue) and composite (β-Gal (grey) and DAPI (blue)) in cells at passage 20,1 

week post irradiation at 12 Gy, 800 µM hydroxyurea for two weeks and 10 µM etoposide for one week 

(a). Corresponding β-Gal levels expressed as a percentage of cell count relative to the number of nuclei 

counted using ImageJ (b). 9 repeats from 3 independent replicates  with on average >50 cells per each 

sample. p-values have been determined through t-test and represented as ≤0.00005=****. 

 

Based on our results, senescence was induced across all the conditions 

examined at a late passage (P=20) and higher ionizing radiation dose and 

chemical treatment compared to control. We observed ~ 80% of cells were β-



- 69 - 
 

Gal-positive after 20 passages and treatment with 800 µM hydroxyurea, while 

cells treated with 12 Gy IR and 10 µM etoposide resulted in >60% β-Gal-

positive cells. Of notice, the control samples for each condition (passage 3, 0 

Gy IR, and 0 µM of hydroxyurea and etoposide) had a baseline percentage of 

β-Gal-positive cells which corresponds to <20% in the passaged, irradiated 

and etoposide-treated cells after a one week incubation, while ~30% in the 

hydroxyurea-treated cells following a two week incubation. These results show 

a baseline number of senescent cells exist under normal cell culture conditions 

and that β-Gal expression is influenced also by the experiment incubation time. 

 

2.5.2. Senescence results in the formation of H2AX and Ki-67 foci  
 
Senescent cells are characterised by accumulation of DNA damage and cell 

cycle arrest [27]. Therefore, we next analysed the extent to which late 

passages in culture (P=20), exposure to 12 Gy IR, 800 µM hydroxyurea and 

10 µM etoposide promotes the accumulation of DNA double-strand breaks 

(DSBs) and cell cycle arrest. Phosphorylated histone H2 variant H2AX 

(H2AX) is a key marker of DNA DSBs [28], while Ki-67- a marker of cellular 

proliferation- is progressively expressed during the S phase of the cell cycle 

(replication phase) [29]. To measure the formation of DNA DSBs and cell cycle 

arrest in senescence-induced cells we performed H2AX (Figure 2. 3). 
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Figure 2. 3 H2AX foci immunodetection in senescence-induced HFF-1 cells. Representative 

images of H2AX immunostaining (green), DAPI (blue) and composite (H2AX (green) and DAPI 

(blue)) in cells at passage 20, 12 Gy IR for 1 week, 800 µM hydroxyurea for two weeks and 10 µM 

etoposide for one week (a). Corresponding H2AX foci count per cell as measured in Cell Profiler. 9 

repeats from 3 independent replicates with on average >50 cells per each sample. Pairwise comparison 

was performed, and p-values have been determined using a t-test and represented as: 0.0005=***, 

≤0.00005=****. 

Based on our results, H2AX foci levels increased in HFF-1 cells at later 

passages (i.e., P=20) and following treatment with 12 Gy IR, 800 µM 

hydroxyurea and 10 µM etoposide (Figure 2. 3a,b). Next, cell cycle activity 

was analysed via Ki-67 immunochemistry (Figure 2. 4). 
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Figure 2. 4 Ki-67 positive nuclei immunodetection in senescence-induced normal human 

fibroblasts. Representative images of Ki-67 immunostaining (red), DAPI (blue) and composite (Ki-67 

(red) and DAPI (blue)) in cells at passage 20, 12 Gy IR for one week, 800 µM hydroxyurea for two 

weeks and 10 µM etoposide for one week (a). Corresponding Ki-67 expression levels representative 

of positive nuclei count (b). 9 repeats from 3 independent replicates with on average >50 cells per each 

sample. p-values have been determined through t-test and represented as: 0.0005=***, ≤0.00005=****, 

and non-significant=ns. 

Regarding Ki-67 expression, we observed that the number of Ki-67-positive 

nuclei were reduced in all our samples with a significant reduction in the late 

passaged, irradiated and etoposide treated cells (Figure 2. 4a,b). An increase 
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of H2AX foci is consistent with the accumulation of DNA damage in 

senescence cells both in vitro and in vivo. Reduced levels of Ki-67 foci in the 

senescence-induced cells reflect their reduced proliferation. 

 

2.5.3. Senescence-associated metabolic changes vary depending on the 
method of induction  

 
To investigate the variation among different senescence models, their 

metabolic content was profiled using the untargeted liquid chromatography-

mass spectrometry pipeline illustrated in Figure S1. 5a. Briefly, after data 

acquisition, data were processed and analysed in Compound Discoverer 3.3. 

Principal component analysis (PCA) was performed to reduce the global 

dataset of features from all the conditions, and to cluster and easily visualise 

the differences between the senescent models (Figure S1. 5b). Pairwise PCA 

analysis allowed to better discriminate the differences in the components 

between controls and treated samples (see score plot in Figure 2. 5a), and 

highlight the features mostly contributing to the separations between the two 

conditions (see loading plot in Figure 2. 5b). Differential analysis through 

volcano plot provided information on the differential number of significant 

metabolites altered (enriched or depleted) upon induction of senescence 

through multiple passages, ionizing radiation, and incubation with drugs (i.e., 

hydroxyurea, and etoposide) (Figure 2. 5c). 
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Figure 2. 5 Statistical analysis of the metabolic features identified in HFF-1 cells. Cells at passage 

20, and following 12 Gy IR for one week, 800 µM hydroxyurea for two weeks and 10 µM etoposide for 

one week. A) PCA score plots and B) PCA loading plots for pairwise analysis of metabolites altered in 

the different senescence-induced cells. For each treatment group, five replicates were used. Data 

points in the two-dimensional PCA score plot were central scaled. C) volcano plots displaying enriched 

(gray) and depleted (blue) metabolic features by representing the log2 fold change in altered features 

and the -log10 adjusted p-values (two-tailed t-test) with cut off values selected at >1.5 and <0.05, 

respectively. The first 20 features mostly contributing to the separation between non-treated and 

treated samples correspond to the PLS-DA components (Figure S1. 6, and Table S1. 3),and have 

been highlighted in orange. 

Pooled quality control (QC) data confirmed the stability of data acquisition 

across all the measurements performed in positive/negative switching mode 

(Figure S1. 5b). Feature separation was observed between treated samples 

and their controls (Figure 2. 5a,b). Volcano plots indicate the differential 

number of metabolic features that are significantly altered following 

senescence induction (Figure 2. 5c, Table S1. 3). From our results, we 

observed that in cells at late passage (p=20) and cells treated with irradiation 

(12 Gy), and hydroxyurea (800 µM) most of the metabolic features were 
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enriched with respect to their relative control. Conversely, in the etoposide-

treated cells (10 µM) the number of depleted metabolic features was higher 

(n.=19) compared to the enriched features (n.=2) (Figure 2. 5c). Together, 

these findings show a differential metabolic response of normal human 

fibroblasts to different stress stimuli inducing different senescence 

phenotypes. 

 

2.5.4. Altered amino acid, lipids and carbohydrate metabolism in different 
senescence-induced cells 

 
To analyse the chemical and biomolecular changes in response to the 

induction of senescence, we used MetaboAnalyst to identify specific metabolic 

pathways altered at later passages in culture (P=20), following 12 Gy IR, and 

treatment with 800 µM hydroxyurea and 10 µM etoposide. Thus, we performed 

pathway analysis for all the conditions (Figure 2. 6). Among the pathways 

ranked in the top 10, we selected altered pathways with a corresponding 

pathway impact >0.1, and FDR p-value <0.05 (Table S1. 4). Mummichog 

software was also employed to putatively design metabolic pathways. Based 

on our results, only a few pathways matched the ones revealed from 

MetaboAnalyst. Considering that our data have a MSI2 level of metabolites 

annotation, while Mummichog is better suited for MSI level 3 putative IDs, we 

decided to continue the analysis using MetaboAnalyst. 
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Figure 2. 6 Pathway enrichment analysis of HFF-1 cells. Cells at passage 20 in culture, following 

12 Gy IR for one week, 800 µM hydroxyurea for two weeks and 10 µM etoposide for one week. 

Numbering for each metabolic pathway is kept consistent across the different plots. Pathway analysis 

was based on the hypergeometric test. Topological analysis was based on betweenness centrality. A 

FDR p<0.05, and pathway impact >0.1 were deemed significant. Asterisks (*) indicate non-significant 

pathways for FDR>0.05, but Fisher’s p-value <0.05. 

 

Across the senescence model examined, the top putative pathways 

significantly altered in MetaboAnalyst were based on amino acid, lipids and 



- 76 - 
 

carbohydrates metabolism for replicative senescence (histidine, arginine, 

alanine, aspartate, glutamate, glutamine, taurine and butanoate), irradiation-

induced senescence (Taurine, starch, sucrose, amino and nucleotide sugars), 

hydroxyurea (alanine, butanoate, pentose phosphate and glutathione), and 

etoposide (taurine, glycerophospholipids and pentose phosphate). Following 

the identification of metabolic pathways altered upon senescence induction, 

we constructed a Venn diagram (Figure S1. 7) to outline common altered 

metabolic features. 

 

Alteration in taurine metabolism is common to passaged cells and cells treated 

with irradiation and etoposide. Butanoate, alanine, aspartate and glutamate 

pathways are common to late passaged and hydroxyurea-treated cells. 

Changes in pentose phosphate metabolism are relevant for hydroxyurea and 

etoposide treated cells. Peculiar metabolic pathways were also identified for 

late passaged cells (glutamine, arginine and histidine), irradiated cells (starch, 

sucrose, amino and nucleotide sugar metabolism), hydroxyurea (glutathione) 

and etoposide treated cells (glycerophospholipids).  

 

Next, we evaluated the relative changes in the levels of the individual 

metabolites that are representative of the altered metabolic pathways in the 

different senescence-induced models. The results were presented through a 

heatmap clustering analysis (Figure 2. 7). A wider list of compounds specific 

to each model of senescence is provided in Table S1. 5. 
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Figure 2. 7 Heatmap cluster analysis. Study of relevant metabolites associated with the pathways 

altered upon the induction of senescence through multiple passages (P=20), irradiation (12 Gy), 

hydroxyurea (800 µM) and etoposide (10 µM). Column dendogram (Euclidean distance function) 

reflects the separation of the different senescent models. 
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Analysis of the heatmap cluster (Figure 2. 7) indicates significantly high levels 

of serine and hypoxanthine were detected in cells at late passage in culture 

and following treatment with 12 Gy IR. High levels of serine were detected also 

in the hydroxyurea and etoposide-treated cells although the enrichment was 

not significant relative to the control. Significant depletion of taurine and 

hypotaurine was a commonly observed feature of all the senescent cells in this 

study, accompanied by a high ratio of GSSG/GSH calculated for replicative 

senescent cells (0.64), hydroxyurea (1.34) and etoposide-treated cells (1.25). 

Enrichment of alpha-ketoglutarate (-KG) was a common feature of late 

passaged cells and hydroxyurea treated cells. Enriched methionine was also 

a feature of cells treated with ionizing radiation. These features were depleted 

in cells treated with etoposide. Depletion of proline, glutamate and aspartate 

have been observed in all the senescence-induced cells although not at 

significant levels. Significantly depleted levels of acetylcholine have been 

shown in cells treated with irradiation and etoposide, except in cells at late 

passage and irradiated.  

Taken together, these results highlight the prevalence of depleted metabolites 

upon treatment with etoposide compared to the passaged, irradiated and 

hydroxyurea-treated cells.  

 

An overview of the metabolic features altered in response to senescence 

induction is provided in Figure 2. 8, where we mapped the differences in 

metabolite levels of the various senescence models using the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) database.  
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Figure 2. 8 Summary of putatively identified metabolic pathways altered upon induction of 

senescence. Enriched metabolic pathways are represented in the coloured boxes: 

Glycerophospholipids (red), Pentose phosphate pathway (PPP) and histidine (green), glutamine, 

glutamate aspartate and glutathione (blue), amino/nucleotide sugar (yellow), arginine biosynthesis 

(purple), and taurine, butanoate metabolism (grey). 

 

The enzymatic genes associated with the metabolic reactions have been 

represented in the map, followed by network analysis with relevant 

senescence genes (Figure S1. 8). We distinguished among the metabolic 

changes occurring for each different senescence-induced phenotype. In the 

replicative senescence model we observed the enrichment of glutamine 

metabolism paralleled by enriched metabolites associated with TCA cycle (-

ketoglutarate) and urea cycle (arginine). In the senescence model induced 
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through irradiation, enriched glucose-1phosphate and uridine monophosphate 

was detected indicating a redirection of glucose metabolism towards the 

pentose phosphate pathway. Regarding hydroxyurea-induced senescence, 

we identified enhanced expression of methionine and succinate semialdehyde 

involved in glutathione metabolism. Common to all the senescence models 

was the high ratio of oxidised/reduced glutathione. Finally, in the etoposide-

induced senescence phenotype, most of the metabolic pathways were 

depleted but we measured enrichment of serine and saturated fatty acids 

similarly to the other senescence phenotypes.  

Overall, through the joint metabolic study of the different senescence-induced 

models we computed similarities and differences in their intracellular metabolic 

response to different stress stimuli. 

 

2.5.5. Detection of extracellular inflammatory metabolites in different 
senescence-induced phenotypes  

 
To analyse the extracellular composition of metabolites, we next applied the 

metabolomics pipeline to the study of growth media collected from all the 

senescence-induced cells of this study. We used PCA analysis and volcano 

plots to examine the differences between growth media aspirated from 

senescence-induced cells and their relative controls (Figure 2. 9).  



- 81 - 
 

 

Figure 2. 9 Statistical analysis of the metabolic features identified in the growth media of HFF-

1 cells. Cells at passage 20, and following 12 Gy IR for one week, 800 µM hydroxyurea for two weeks 

and 10 µM etoposide for one week. A) PCA score plots and B) PCA loading plots for pairwise analysis 

of metabolites altered in the different senescence-induced cells. For each treatment group, five 

replicates were used. Data points in the two-dimensional PCA score plot were central scaled. C) 

volcano plots displaying enriched (brown) and depleted (blue) metabolic features by representing the 

log2 fold change in altered features and the -log10 adjusted p-values (two-tailed t-test) with cut off 

values selected at >1.5 and <0.05, respectively. The first 10 features mostly contributing to the 

separation between non-treated and treated samples correspond to the PLS-DA components (Figure 

S1. 10and Table S1. 6), and have been highlighted in orange. 

 

LC-MS stability was confirmed by the analysis of QC samples (Figure S1. 9). 

Grouping of different features was observed across all the conditions (Figure 

2. 9a,b). Using volcano plots we analysed the differential expression between 

the metabolites significantly altered in the senescence-induced cells 

(enrichment and depletion) relative to their controls (Figure 2. 9c). 

Next, we performed enrichment analysis through MetaboAnalyst with the 

global list of metabolites and ranked them based on their class (Table S1. 7). 
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Through a Venn diagram we presented the differences between the enriched 

metabolites within the growth media and cells of the late passaged cells and 

those treated with IR, hydroxyurea and etoposide (Figure 2. 10). 

 

Figure 2. 10 Venn diagram. The diagram represents the enriched class of extracellular and 

intracellular metabolites in late passaged, irradiated, hydrozyurea and etoposide treated cells.Data 

have been processed in MetaboAnalyst 5.0. 

From analysis of metabolic features altered in the growth media of 

senescence-induced models (passage, IR and chemically-induced) we 

observed that amino acids represented the most commonly enriched class of 

metabolite across the senescence-induced models. Amino alcohols and 

pyridoxals were mostly enriched in the replicative senescence model (high 

passage). ß-ketoacids were enriched in irradiated samples, and cells treated 

with etoposide. In the hydroxyurea-treated cells, we detected an enrichment of 

quinolines. Of notice, in the media of the late passaged cells we detected 

significant high levels of prostaglandin E1, in the irradiated cells we observed 

enrichment of phenylalanine while in the hydroxyurea treated cells we detected 

depleted levels of threonine-phenylalanine, although not at significant levels 

(Table S1. 7).  

Regarding the intracellularly detected metabolites, among the different 

senescence-induced models we identified common classes of amino acids. 

Unsaturated and saturated fatty acids were representative of cells at late 

passage (P=20). Acyl carnitines and dipeptides were also measures in the 

hydroxyurea-treated cells. While pyrimidine ribonucleotides diphosphates 

were representative of cells treated with etoposide. 
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2.6.  Discussion 
 

Identifying senescent cells for the treatment of age-related disease is a primary 

unresolved challenge in ageing research. Thus, the development of cell 

models to understand senescent phenotypes with the aim of developing 

biomarkers is of huge importance. Heterogeneity of the senescence 

phenotype represents a significant barrier to studying the mechanisms 

underpinning the phenotypes of ageing, the consequences of which include 

the lack of a universal model of senescence and a universal marker for the 

identification of senescent cells [30].  

 

In this study we generated different models of senescence based on 

replication stress (replicative senescence), genotoxic and oxidative stress 

(stress-induced senescence) stimuli. The rationale behind the selection of 

these models was to explore how different stress stimuli influence the 

development of senescence through the accumulation of various biomolecular 

and metabolic alterations.  

 

High ß-Gal expression, reduced proliferation, cell enlargement and flattening 

are primary characteristics of senescent cells. Initially we evaluated the 

presence of those phenotypic markers in cells at multiple passages and 

treated them with multiple dosages of irradiation, hydroxyurea or etoposide 

(Figure 2. 2, Figure 2. 3, Figure 2. 4). From our results, cells at a late passage 

(P = 20) showed a higher level of ß-Gal expression , in line with other studies 

[8]. Ionizing radiation (IR)-induced senescence has been extensively studied 

showing induction by exposure to moderate IR doses [31]. Our study further 

confirms this evidence of senescence induction at 12 Gy irradiation. 

Hydroxyurea induced senescence-like changes in normal human fibroblasts 

after long-term treatment with higher drug concentrations (400-800 µM) [32]. 

Conversely, etoposide is known to induce senescence at a low dosage (<50 

µM) [33]. Accordingly, our results showed a global increase of ß-Gal 

expression at 800 µM of hydroxyurea and 10 µM of etoposide. At the 

morphological level, senescent cells present a characteristic enlarged and 

flattened morphology [34]. According to this, the human fibroblasts of this study 
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at late passage (p=20), and at dosage of 12 Gy irradiation, 800 µM 

hydroxyurea and 10 µM etoposide, increased their length and width compared 

to the early passaged cells and cells treated at lower radiation and chemical 

dosage (Figure S1. 4). Of notice, in the chemical treated cells higher 

concentrations of hydroxyurea (1000 µM) and etoposide (25-50 µM) resulted 

in reduction of the cell size (width and length) which might be associated with 

the treatment toxicity and the induction of programmed cell death or apoptosis. 

Shrinkage of the cell is indeed a hallmark of apoptosis [35], however, specific 

molecular markers are needed to verify this assumption. 

 

From analysis of H2AX foci DSB immunolabelled foci (Figure 2. 3), higher 

DNA damage foci were observed in drug-treated cells (hydroxyurea and 

etoposide) compared to cells undergoing replication-induced senescence and 

treatment with IR. While the analysis of the Ki-67 replication marker showed a 

significant reduction of Ki-67-positive cells in the late passaged and etoposide 

treated cells (Figure 2. 4). This reduction was not significant in cells exposed 

to IR or absent in hydroxyurea-treated cells. Based on these results we 

observed that accumulation of DNA damage and reduction of proliferation 

index are common traits of the stress-induced phenotypes of this study, 

therefore confirming their effective senescence-like phenotype.  

 

Genetic and molecular biomarkers – including proteins – have been 

extensively used for the identification of senescent cells both in vitro and in 

vivo. They have been useful in underlying key biological features of 

senescence and identifying its major drivers during natural ageing and in age-

related diseases. However, genetic and molecular biomarkers are generally 

nonspecific and non-reproducible across all cell/tissue types [36]. These 

limitations represent an obstacle for the effective detection of senescence and 

a proper understanding of its mechanisms and role in living organisms. 

 

Metabolic reprogramming is another hallmark of senescent cells and adaptive 

response to maintain their viability in a growth-arrested state [17]. Metabolic 

changes are highly susceptible to the type of stress stimuli, contributing to the 



- 85 - 
 

heterogeneity of the senescence phenotypes. On this basis, metabolomics has 

recently emerged in ageing research as a fundamental tool to depict the 

complexity of senescence, ageing, and the correlation with the accumulation 

of damages [37]. 

 

Our goal in the present study was to apply a combined analysis of senescence 

molecular biomarkers with global untargeted mass-spectrometry-based 

metabolomics to map the metabolic changes occurring in response to different 

senescence-inducing stimuli. We examined the metabolic differences across 

the different models of senescence including replicative senescence and 

SIPS. A general enrichment of intracellular metabolites was computed for the 

senescence model induced by replication, irradiation and hydroxyurea stress, 

while depletion of metabolites was observed upon etoposide treatment (Figure 

2. 5). We found overlapping intracellular metabolic pathways (taurine, alanine, 

glutamate, aspartate and butanoate) across the four senescent models 

(Figure 2. 6). We then investigated intracellular metabolic pathways that were 

unique to specific senescence phenotypes (late passage: glutamine, arginine 

and histidine; irradiation: sucrose, amino and nucleotide sugars; hydroxyurea: 

glutathione; etoposide: glycerophospholipids) (Figure 2. 6).  

Regarding the extracellular metabolome, we detected a general trend towards 

the enrichment of metabolites in all the senescence-induced models (Figure 

2. 9). The analysis of the class of metabolites that were mainly affected by 

metabolic changes upon induction of senescence, revealed that amino acids 

were the most susceptible to these changes both in the intracellular and 

extracellular metabolome of all the senescence-induced cells (Figure 2. 10).  

 

Below, we will discuss the level of the most relevant metabolic changes 

affecting amino acids and some of the derived metabolic pathways (Figure 2. 

8), and the role they might play in the context of senescence associated 

pathogenesis. 

 

Regarding histidine metabolism we found this to be representative of the 

replicative senescence phenotype. From the analysis of intracellular 
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metabolites in cells at late passage (P20) we observed a significant increase 

of the histidine-derived catabolic product, 1-methylhistidine, indicative of  

enhanced proteolysis of histidine which is a marker of frailty [38]. Depletion of 

ergothioneine, another histidine-derived metabolite, was observed in late 

passaged cells and cells treated with 12 Gy irradiation and 10 µM etoposide. 

Ergothioneine is a powerful scavenger of hydroxyl radicals, thus it plays an 

important role against oxidative damage [39]. Low levels of ergothioneine have 

been found in patients with Parkinson’s disease [40] and the elderly [41]. 

 

Accumulation of the alanine derivate phenylalanine was observed in the 

replicative senescence model in line with the study of James EL., et al 2015 

[42]. However, in the cells exposed to IR and chemical-treated cells 

phenylalanine was depleted, which might be attributed to its higher 

consumption or secretion. Elevated serum phenylalanine has been linked to 

telomere loss in men [43], inflammatory diseases [44], and type 2 diabetes 

[45]. Of notice, phenylalanine is a precursor for the synthesis of 

catecholamines including tyramine, dopamine, epinephrine and 

norepinephrine. High levels of phenylalanine were observed specifically in the 

media of hydroxyurea cells. Catecholamines are hormones involved in the 

immune response [46] with roles in cellular proliferation and apoptosis [47]. 

Catecholamines act as anti-inflammatory molecules decreasing the levels of 

TNF, CCL2, IL-6 and IFN [48]. Considering that, based on our findings, 

alanine metabolism is relevant for late passaged and hydroxyurea treated 

cells, this is suggesting that for these phenotypes, alanine metabolism might 

play a role in the pro-inflammatory mechanisms associated with senescence. 

 

In agreement with previous studies we observed increased arginine 

biosynthesis through the urea cycle across all senescence conditions, except 

for etoposide-treated cells [42]. Changes in arginine biosynthesis were found 

to be relevant specifically for the replicative senescence model where 

metabolites responsible for the synthesis of arginine through the urea cycle 

were observed to be enriched. They include aspartate, arginine-succinate and 

citrulline. Relatively recently, prolonged exposure of endothelial cells to 
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arginine has been observed to induce senescence and the increased 

production of pro-inflammatory prostaglandins [49]. This might provide a 

possible explanation to the high levels of prostaglandin E1 detected in the late 

passaged cells, however further investigation and verification are required to 

validate our findings.  

 

Increased glutaminolysis due to overexpression of GLS1 in senescent cells 

has been observed in previous studies [50]. High levels of glutamine were 

observed at later passages, together with decreased levels of glutamate, high 

levels of -KG, malate and aspartate which are intermediate of the TCA cycle. 

This suggests a role of glutamine in sustaining the TCA cycle activity in 

replicative senescent cells. 

Previous work has found that ATP is generally depleted in senescent cells [42]. 

In line with these findings, we found that the ratio ATP/ADP was decreased in 

cells at late passage and after irradiation, while it was increased upon chemical 

treatment with hydroxyurea and etoposide. With regard to energy metabolism, 

it is well known that in senescent cells aerobic glycolysis is the preferential 

route for glucose catabolism leading to the production of lactic acid [51]. In this 

study, high levels of lactic acid were observed for late passaged and 

hydroxyurea treated cells, but not upon irradiation and treatment with 

etoposide. Based on the enrichment pathway analysis of this study, in 

irradiated cells it was relevant the redirection of glucose metabolism towards 

the pentose phosphate pathway (PPP) for the synthesis of nucleotides. While 

in the etoposide-treated cells relevant changes were detected in the synthesis 

of glycerophospholipids whose levels were generally depleted. The PPP is an 

important route in cells supporting the regeneration of NADPH, regulation of 

redox homeostasis and biosynthesis [52]. Despite the PPP pathway has been 

poorly investigated relative to senescence, here we show that it might have a 

role in defining specific senescence phenotypes. In general, further analyses 

are needed to investigate the mechanisms of energy metabolism in 

senescence-induced HFF-1 cells also in comparison with other cell lines.  
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Elevated levels of serine were observed in all the senescent phenotypes 

induced in the present work paralleled by the depletion of serine-derived 

cystathionine and taurine which is a product of cysteine metabolism [53]. 

Several studies associated reduced levels of taurine to senescence [54] and 

age-related diseases [55, 56] where taurine plays as an antioxidant and 

inhibitor of pro-inflammatory molecules [57]. Methionine, a product of 

cystathionine catabolism, have been seen to accumulate in cells at late 

passage and treated with irradiation and hydroxyurea. Numerous studies on 

methionine restriction (MetR) in diet have revealed that methionine regulates 

the ageing process partially through the induction of oxidative stress via 

regulation of glutathione synthesis and production of hydrogen sulphide (H2S) 

[58]. This seems to be the case of hydroxyurea treated cells showing increased 

levels of oxidised glutathione (GSSG) accompanied by relevant changes in 

glutathione metabolism as revealed by the pathway analysis. 

 

A targeted metabolomics analysis of these senescence-induced phenotypes 

is required to validate our findings. This could allow the further validation and 

development of metabolic markers of senescence, informing future studies into 

the mechanism underpinning senescence induction in response to different 

stimuli. In medicine, the identification of new and specific biomarkers of 

senescence will be beneficial in the measurement of senescence burden 

within an individual to prevent age-related dysfunction and diseases, and 

predict response to treatment/surgery. Encouraging studies and clinical trials 

are showing the therapeutic effects of the pharmacological elimination of 

senescent cells through compounds called senolytics (inducers of senescent 

cell death) and senomorphics (SASP inhibitors) [59]. Hence, biomarkers of 

senescence will also help to assess the dosing of senolytic/senomorphic drugs 

in the clinical assessment of senescence burden specific for each individual.  

Moreover, a limitation of the present work was analysis of senescence 

induction in a single cell type. Future studies require the assessment of cellular 

response to senescence induction in a panel of cell lines for a more 

comprehensive analysis of various senescence phenotypes and their 

manifestation in cell lines originating from different tissue types. Understanding 
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the mechanisms of senescence induction in different tissue types will Aid in 

cataloguing the specific intra- and extracellular features associated with 

cellular senescence. 

 

2.7.  Conclusion 
 

Our results have shown intra- and extracellular metabolomics profiles of 

different models of senescence including replicative and stress-induced 

senescence through DNA damage and ROS induction. We presented 

metabolomics as a powerful strategy for the identification of human cellular 

senescence biomarkers which characterise a wide variety of human 

pathologies including ageing, frailty, inflammation, cardiovascular, 

neurodegenerative diseases, and cancer. Moreover, these findings may 

provide potential therapeutic targets for preventing the development of age-

related diseases, or as adjuvant therapies to improve patients’ response to 

treatments. 
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3.1. Abstract 
 
Metabolic reprogramming is a primary hallmark of ageing. Due to its high 

complexity, the metabolic changes that occur in the mammalian brain, as a 

consequence of the ageing process, are poorly understood. We conducted 

untargeted metabolomics and shot-gun proteomics analysis on brain tissues 

from adult (5 months) and old (10 months) wild-type mice using liquid 

chromatography-mass spectrometry. We found differences in the metabolic 

and protein fingerprints of aged brain tissues and distinguished several 

metabolites and proteins of the amino acid, TCA cycle, glucose, fatty acid and 

immune metabolism that were altered, delineating a putative metabolic map of 

the aged murine brain. Additionally, we performed spatial analysis of 

metabolite distribution in the brain of wild-type and Glcm (-/-) mice using 

matrix-assisted laser desorption/ionization mass spectrometric imaging 

(MALDI-MSI), revealing regional distribution of metabolites in specific brain 

regions. The integrated metabolic and protein age-associated changes hold 

potential to reveal novel therapeutic targets for the treatment of ageing and 

age-related diseases. Moreover, the advancement of mass spectrometry-

based high spatial resolution technologies will launch a new era of analytical 

chemistry and biomedical research where we can begin to stratify out new 

ageing phenotypes relative to different tissues/organ types. 

 

mailto:nicholas.rattray@strath.ac.uk
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- 94 - 
 

KEYWORDS: Ageing, brain, biomarker, metabolic reprogramming, mass 
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3.2. Introduction 
 

Ageing is associated with temporally acquired biomolecular dysregulation 

underpinning the declining function in many organs that ultimately leads to 

chronic disability and morbidity. For example frailty, the decline of cognitive 

function, cardiovascular disease, diabetes, kidney failure, sarcopenia and 

osteoporosis are common age-related ailments in human [1]. Although these 

are well-known clinical conditions, the complex biochemistry, and molecular 

and cellular networks contributing to their age-related degeneration are only 

beginning to be emerge [2]. Emerging evidence suggests that metabolic 

reprogramming plays a central role in age-related disease, and is affected by 

proteins implicated in the regulation of metabolic reactions [3-5]. 

 

In order to  understand the fundamental mechanisms underpinning age-related 

disease, several studies have developed preclinical murine models to 

investigate aspects of ageing research [6] due to their relatively short lifespan, 

and minimal environmental confounders [7]. Aged mice are considered reliable 

models of ageing as they represent the closest phenotype to the physiological 

ageing process caused by the time-dependent accumulation of cellular 

damage [8, 9]. However, to further optimise the time cost of ageing research 

from model organisms, genetically modified murine models have significantly 

contributed to understanding the pathogenesis of age-related disabilities. For 

example, glutamate-cysteine ligase modifier (Gclm -/-) mice knockouts 

represent a model of stress-induced ageing because of their induced 

decreased levels of glutathione (GSH) [10]. Since these mice are more 

susceptible to oxidative stress [11, 12], they are prone to develop an early 

ageing phenotype through ROS accrued damage [13]. 

 

The brain and, particularly the hippocampus and cerebral cortex, are sensitive 

to the effects of ageing. In humans aged 30-90 years, a volume loss of 14% 
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and 35% has been reported for these regions of the brain, respectively [14]. 

Structural changes in these brain regions are accompanied by genetic 

alterations [15] and downstream protein expression [16] during the course of 

ageing, which has served to map a genetic and protein profile of the adult 

mouse brain [17-19]. Recently, a metabolic portrait of different brain regions 

has been defined by Fiehn et al (2021) [20]. They developed a metabolome 

atlas of the ageing mouse brain dissected as a function of its anatomic regions 

(cerebral cortex, olfactory bulb, hippocampus, hypothalamus, basal ganglia, 

thalamus, midbrain, pons, medulla, and cerebellum), and subsequently 

analysed the metabolome using gas and liquid chromatography–mass 

spectrometry (GC and LC-MS) therefore identifying over 1,547 metabolites in 

the mouse brain. 

 

Considering the strong correlation between genes, proteins and metabolites 

[21], examining the variation of each alone cannot provide a complete picture 

of the molecular mechanisms driving the ageing phenotype. Moreover, new 

technologies exemplified by Matrix-Assisted Laser Desorption Ionization – 

Mass Spectrometry Imaging (MALDI-MSI) are emerging in ageing research as 

powerful technologies allowing a comprehensive spatial-specific 

characterization of molecular species (proteins, metabolites and lipid) without 

the need for tissue disintegration [22, 23]. Additionally, MALDI-MSI enables 

the identification of multiple molecular markers directly from a single tissue 

sample, which is a valuable advantage to accurately distinguish biological 

samples based on their molecular differences [24]. In this regard, MALDI-MSI 

can help develop more accurate understanding of how the ageing process 

affects various tissues, therefore providing more insights into the different 

ageing phenotypes. 

 

In this study, we provide a network study between proteomics (acting as a 

proxy for functional genomics) and metabolomics on murine brain tissue using 

LC-MS and the application of MALDI-MSI to the brain tissues of aged mice. 

Accordingly, the aims of this study are to elucidate the underlying metabolic 

mechanisms of brain ageing and to determine the spatial distribution of 
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metabolites in aged murine brain tissue sections. Moreover, this work 

demonstrates the potential of mass spectrometry technologies that can enable 

the rapid and accurate identification and classification of pathological samples. 
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3.3. Materials 

3.3.1. Animals 

 

All experiments involving mice were conducted at Yale University (US) in 

accordance with the National Institutes of Health standards for care and use 

of experimental animals as stated in Principles of Laboratory Animal Care (NIH 

Publication No. 85-23, revised 1985). Gclm (-/-) mice and WT controls were 

bred from a line previously generated and backcrossed into a >99.8% 

C57BL/6J background. Mice were kept in a controlled environment (ambient 

temperature of 20-25°C, 12-hour light/dark cycle). A regular chow diet was 

provided (proteins, minerals, vitamins, and fat providing 16.12 kJ/g) and water 

were supplied ad libitum. Mice were euthanized by isoflurane asphyxiation at 

5-month-old (young mice) and 10-month-old (old mice). All animal procedures 

were approved by and conducted in compliance with the Institutional Animal 

Care and Use Committee (IACUC) of Yale University. 

 

3.3.2. Reagents 

 

Reagents for LC-MS analysis – including methanol, acetonitrile and water – 

were purchased from Thermo Fisher Scientific. Conductive indium tin oxide 

(ITO)-coated microscope glass slides were purchased from Sigma Aldrich.  

MALDI matrix 1,5-diaminonapthalene was purchased from Sigma-Aldrich.  
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3.4. Methods 

3.4.1. Tissue collection 

 

Upon isoflurane sacrifice, murine tissue samples were washed in 0.9% saline 

solution and frozen using the liquid nitrogen vapor flash freezing technique. 

This involved floating a weighing boat above the surface of the N2(l) and 

placing the tissue in a weighing boat for 60 s. This process rapidly freezes the 

tissue but minimizes the chance of tissue fracture caused by direct flash 

freezing in liquid nitrogen. Samples were then stored at -80°C until further 

analysis. 

 

3.4.2. Sample preparation for liquid chromatography – mass spectrometry 

(LC-MS)  

 

Murine tissue was dissected on a metal block placed on dry ice, obtaining 

sections of 50mg +/- 1mg in weight taken from the forebrain. Subsequently, for 

metabolite extraction each brain section was homogenised with 500 µl of 

methanol:water (50:50, v/v). Following homogenization, metabolites were 

extracted by sonication for 10 min on ice. The brain tissue homogenates were 

centrifuged at 12,000 x g for 10 min at 4°C. Supernatants were collected and 

dried with a Speed vac centrifuge for 10 h (Savant-SPD121P). Dried 

metabolites were reconstituted in 100 µl of acetonitrile:water (50:50, v/v). 

Solvent blank samples were inserted in the analytical batch after every five 

samples (Figure S2. 1). Considering the low number of samples, QCs have 

not been inserted in the sequence run. Consequently, normalization was 

assumed based on the similar weighted tissue sections.    

After tissue dissection, Label-Free sample preparation for proteomics was 

carried out according to the EasyPep™ MS Sample Prep Kits (Thermo Fisher 

Scientific). Briefly, tissue samples were lysed in 100 µl of lysis solution, 

homogenized and centrifuged at 16,000 x g for 10 min (see pages 26-27 for 

sample preparation workflow for proteomics). Following protein quantification, 

100 µg of protein sample was reduced, alkylated, and digested with 

trypsin/Lys-C protease mix. Subsequently, peptides were cleaned through spin 
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columns and clean-up solutions provided by the vendor to remove hydrophilic 

and hydrophobic contaminants. The clean peptide solution was then dried with 

a Speed vac centrifuge for 10 h. Dried protein extracts were reconstituted in 

100 µl of 0.1% formic acid in water for LC-MS analysis. 

 

3.4.3. Liquid Chromatography tandem mass spectrometry (LC-MS/MS) 

 

Metabolite and protein separation was performed on a binary Thermo 

Vanquish ultra-high performance liquid chromatography system. 5 µl of 

metabolic extract and 10 µl of protein extract were respectively injected on to 

a Thermo Accucore HILIC column (100 mm x 2.1 mm, particle size 2.6 µm) for 

metabolomics and Acclaim PepMapTM 100 (1.0 mm x 15cm, particle size 3 µm) 

for proteomics. The temperature of the column oven was maintained at 50°C 

for metabolomics and 40°C for proteomics analysis, respectively, while the 

autosampler temperature was set at 5°C. For chromatographic separation of 

metabolic extracts, a consistent flow rate of 300 µl/min was used where the 

mobile phase in positive/negative heated electrospray ionisation mode (HESI 

+/-) was composed of buffer A (acetonitrile with 0.1% formic acid) and buffer 

B (20 mM Ammonium formate in water with 0.1% formic acid). For 

chromatographic separation of protein extracts, a consistent flow rate of 50 

µl/min was used where the mobile phase in positive heated electrospray 

ionisation mode (HESI+) was composed of buffer A (Water with 0.1% formic 

acid) and buffer B (acetonitrile with 0.1% formic acid). The elution gradient 

used for the chromatographic separation of metabolites and proteins is 

included in supplementary information (Error! Reference source not found.). 

 

A high-resolution Exploris 240-Orbitrap mass spectrometer (ThermoFisher 

Scientific) was used to perform full scan and fragmentation analyses. Global 

operating parameters for metabolomics analysis were set as follows: spray 

voltages of 3900 V in HESI+ mode, and 2500 V in HESI- mode. The 

temperature of the transfer tube was set at 250°C with a vaporiser temperature 

of 250°C. Sheath, aux gas and sweep gas flow rates were set at 40, 10, 1 Arb, 

respectively. Data dependent acquisitions (DDA) were performed using the 
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following parameters: survey scan range was 50-750 m/z with a MS1 

resolution of 120,000. Subsequent MS/MS scans were processed with a 

resolution of 15,000.  

Global operating parameters for proteomics analysis were set as follows: spray 

voltages of 3400V in HESI+ mode and 3000 in HESI- mode. The temperature 

of the transfer tube was set as 320°C with a vaporiser temperature of 75°C. 

Sheath, aux gas and sweep gas flow rates were set at 25, 5 and 0 Arb, 

respectively. DDA were performed using the following parameters: full scan 

range was 275 – 1500 m/z with a MS1 resolution of 120,000. Subsequent 

MS/MS scans were processed with a resolution of 15,000. Further details are 

included in supplementary information (Error! Reference source not found.). 

 

3.4.4. Mass spectrometry data processing for metabolomics and proteomics 

 

Raw data files obtained from Thermo Scientific XcaliburTM 4.2 software were 

imported into Compound DiscovererTM 3.2 for metabolomics analysis and 

Proteome DiscovererTM 3.0 for proteomics study. Untargeted metabolomics 

analysis and label-free top-down proteomics was applied. Details of both 

metabolomics and proteomics studies are included in supplementary 

information (Error! Reference source not found., Error! Reference source 

not found.). 

 

3.4.5. Pathway Analysis with MetaboAnalyst  

 

Prior to analysis of metabolic pathways with MetaboAnalyst 5.0 

(https://www.metaboanalyst.ca/), the HMDB identifier and gene symbol was 

assigned to each selected metabolite and identified protein, respectively. For 

the individual metabolomics data, an enrichment analysis was performed with 

the MSI2 ID list of metabolites classified based on their chemical structure. 

Subsequently, joint pathway analysis was performed by integrating the genes 

relative to identified proteins with the list of ID compounds and their associated 

Log2 Fold change values. The integration method combined both genes and 

metabolites into a single query, then used to perform enrichment analysis 

https://www.metaboanalyst.ca/
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through a hypergeometric test. The hypergeometric test allows to define the 

significance of the association between two sets of data (genes and 

metabolites) [25]. Finally, important nodes (compounds) were scored based 

on their betweenness centrality, and pathway analysis results were generated. 

 

3.4.6. Statistical Analysis  

 

For metabolomics and proteomics analysis, Principal Component Analysis 

(PCA) was performed to reduce data dimensionality and determine the 

clustering of each sample group. Differential analysis was used to compare 

differences between control and treatment groups and plotted as a Volcano 

plot (log2-fold change vs. -log10 p-value). Peak areas were log10 transformed 

and p values calculated for the sample group by two-tailed t-test test assuming 

that all data were normally distributed. A p-value <0.05 and a fold-change of 

1.5 was deemed to be statistically significant. 

 

3.4.7. Tissue preparation for MALDI Mass Spectrometry Imaging 

 

Tissue sections were prepared by mounting individually frozen brain samples 

on a small aliquot of optimal cutting medium and sectioned to 12 µm using a 

Leica CM1950 Cryostat. Sagittal sections were taken. Each tissue section was 

then thaw mounted onto a pre-chilled (-15°C) and pre-weighed ITO 

microscope glass slide. ITO-coated slides were used as target mounts as they 

are suitable for high voltage applications and afford a more regulated and 

higher level of energy transfer. 

 

3.4.8. MALDI Matrix Application 

 

Recrystallized 1,5-diaminonapthalene (DAN) was sublimated to previously 

prepared tissue sections on ITO slides (288 µg/cm2 for brain samples and 218 

µg/cm2 for kidney). Bespoke sublimation apparatus was purchased from 

Chemglass Life Sciences and was designed to fit standard 70x25 mm ITO 

slide geometry [26]. The apparatus was coupled to an Edwards EM18 
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roughing pump alongside a digital thermocouple vacuum gauge controller to 

monitor the vacuum generated within the system (25 mTor being the target 

value). The base of the sublimation equipment was subsequently placed on a 

sand bath heated to 120°C for 6.5 min. Samples were immediately put forward 

for analysis.  

 

3.4.9. MALDI Mass Spectrometry Imaging 

 

Imaging mass spectrometry analysis was performed using a matrix assisted 

laser desorption ionization (MALDI)-Synapt-G2Si quadrupole time of flight 

(QtoF) mass spectrometer (Waters Corporation, Milford Massachusetts). The 

orthogonal QtoF mass analyzer was calibrated using red phosphorous clusters 

and operated in sensitivity mode. The equipped 1KHz solid state Nd:YAG laser 

was operated at a wavelength of 355 nm, with a 200Hz firing rate. Spectra 

were acquired in negative ionization modes with the QtoF analyzer operating 

in V-reflectron mode. An over-sampling raster technique was used to ablate 

the sample and matrix and obtain a highly resolved image using a scan 

duration of 1s. Spectra were digitally smoothed and baseline-corrected using 

MassLynx 4.2 software and sent to the HDI v1.4 software for processing, 

image analysis and generation of ion intensity maps. 
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3.5. Results 

3.5.1. Altered metabolic pathways in aged murine brain tissue 

 

To investigate the metabolic differences between old and young mice, we 

profiled their metabolome using an in-house untargeted liquid 

chromatography-mass spectrometry-based metabolomics pipeline (Figure 

S2. 2). After data acquisition, data processing and analysis were performed in 

Compound Discoverer 3.3. First, we used principal component analysis (PCA 

score and loading plots) to visualise and interpret the clustering of quantified 

metabolic data to examine global differences between old and young mice 

(Figure 3. 1). 

 

 

Figure 3. 1 Statistical analysis of the metabolic content of aged murine brain tissues. Graphical 

representation of the PCA statistical analysis and differentially expressed metabolites in aged murine 

brain tissue relative to control. For each sample group, five biological replicates were used. a) Data 

points in the two-dimensional PCA score plot and b) loading plot were central scaled. Ellipses are 

indicators of the clustered samples. C) Volcano plots display enriched (blue) and depleted (yellow) 

metabolic features by representing the log2 fold change in altered features and the -log10 adjusted p-

values (two-tailed t-test) with cut off values selected at >1.5 and <0.05, respectively. The first 20 

features mostly contributing to the separation between young and old samples correspond to the PLS-

DA components (Figure S2. 3),and have been highlighted as orange data points. 

 

From the results, a clear separation was observed between the metabolic 

profile of aged (10-month-old) murine brain tissue in comparison to the young 

control (5-month-old) (Figure 3. 1a). The loading plot show the features mainly 

contributing to this separation (Figure 3. 1b), and the volcano plot represents 

the differential number of metabolic features that are significantly altered in 
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aged mice relative to control (Figure 3. 1c). Together, these findings show a 

differential age-dependent metabolic phenotype in aged and younger murine 

brain tissue. 

  

3.5.2. Amino acid metabolism is significantly altered in aged murine brain 

tissue 

 

Next, we investigated which metabolite classes were altered in aged murine 

brain tissue relative to young mice, and ranked the most significantly altered 

metabolites (Figure 3. 2).  

 

 

Figure 3. 2 Pathway enrichment analysis of metabolites occurring the aged murine brain tissue. 

A) Metabolite enrichment analysis of aged murine brain tissue. Enrichment analysis was based on a 

hypergeometric test. Topological analysis was based on betweenness centrality. B) The list of 

significant metabolites (p-≤0.05) altered in murine brain tissue with ageing. Variance of metabolite 

expression levels between old and young murine tissue is expressed as a Log2 fold change. 
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From the enrichment study we observed that among the putatively identified 

metabolites, amino acids were the most significantly enriched followed by 

pyrimidine ribonucleoside diphosphates, unsaturated fatty acids, TCA acids, 

glycosylamines and lysophosphatidylcholines (LPC) (Figure 3. 2a;). Looking 

at the individual metabolites within the class of amino acids (Figure 3. 2b; 

Table S2. 6), we observed upregulation of glutamic acid and asparagine both 

involved in the TCA cycle and derived from glutamine metabolism. Among the 

pyrimidines high levels of UDP-N-acetyl glucosamine and Cytidine 

diphosphate were observed together with the downregulation of Glucosamine-

6-phosphate and Uridine. Together, these observations suggest a rewiring of 

glutamine metabolism, in aged brain tissues, towards a higher synthesis of 

nucleotides together with its anaplerotic role in TCA cycle.  

 

Furthermore, in aged brain tissues we measured an accumulation of 

unsaturated and saturated fatty acids (arachidonic acid, oleic acid, linoelaidic 

acid, stearic acid, margaric acid), decreased levels of phospholipids 

(LysoPC(22:1), LysoPC(24:1)), and enrichment of C18-sphingomyelin. Low 

levels of free carnitine and C14-carnitine was also detected, while enrichment 

of C18-carnitine was detected in the old brain tissues.  

 

Mummichog software was also employed for the enrichment analysis (Table 

S2. 6). Both software tools showed similar results. However, considering that 

our data have a MSI2 level of metabolites annotation, while Mummichog is 

better suited for MSI level 3 putative IDs, we decided to continue the analysis 

using MetaboAnalyst. 

 

3.5.3. Altered protein content in murine brain tissue 

 

To analyse the global protein content variation in old murine brains compared 

to young mice brains, we profiled their proteome using a Bottom-up liquid 

chromatography–mass spectrometry–based proteomics pipeline (Figure S2. 

4). After data acquisition, data processing and analysis were performed in 

Proteome Discoverer 3.0. We used PCA and differential analysis to visualise 
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and interpret the clustering of quantified protein data and ranked the most 

significant putatively identified proteins (Figure 3. 3). 

 

 

Figure 3. 3 Proteins altered in murine brain tissue as a function of age. A) PCA statistical analysis 

score plot and b) loading plot. Data points in the two-dimensional PCA plots were central scaled. c) 

volcano plot-based differential study of proteins in old vs young mice. Data display enriched (blue) and 

depleted (yellow) protein features by representing the log2 fold change in altered features and the -
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log10 adjusted p-values (two-tailed t-test) with cut off values selected at >1.5 and <0.05, respectively. 

For each sample group, five biological replicates were used. d) Significantly altered protein genes in 

old mice relative to the young controls. Variance of the expression levels of proteins is represented 

with the Log2Fold change. 

 

We observed clustering of protein-related features in old and young mice 

(Figure 3. 3a,b). Differential analysis using the volcano plot showed the 

number of enriched and depleted features in old mice relative to the young 

controls (Figure 3. 3c). Similar to the metabolomics study, proteomics analysis 

also showed age-dependent protein content alteration in murine brain tissues. 

For the analysis of the proteins significantly altered in the brain tissues of aged 

mice, we first converted protein annotation codes into gene symbols through 

UniProt (https://www.uniprot.org) by selecting the mus musculus taxonomy 

database (Figure 3. 3d).  

Based on the results, we observed a significant upregulation of proteins 

involved in the TCA cycle (Dlst, Sucla2, Fh, Mdh2, Dlat, Cs, Aco2, Sdha), 

gluconeogenesis (Mdh1, Aldoc), branched chain amino acids (Aldh6a1, Bcat1, 

Auh, Hibch), glycolysis (Pkm, Gnpda2, Pfkm), pyruvate metabolism (Hagh, 

Ldhb, Glo1), phenylalanine metabolism (Asrgl1, Qdpr), fatty acid β-oxidation 

(Acat1, Acaa2, Hadhb, Hadh, Acsf2, Hadha, Acadm, Acot7, Echs1, Acadl), 

and IL-2 signalling (Crkl). Downregulated proteins included the ones involved 

in nucleotide metabolism (Pde2a), IL-9 and IL-3 signalling pathways (Mapk1, 

PrKca), dopamine metabolism (Stx1a, Syt1, Cask), and proteins contributing 

to cell adhesion and communication (Actn1, Wasf1, Cadm2, Abi2, Cdc37). The 

role and location of the aforementioned proteins and enzymes have been 

described in Table S2. 8. 

 

3.5.4. Combined metabolomics/proteomics network analysis of old murine 

brain tissues 

 

Next, we performed a pathway level integrative analysis of proteomics and 

metabolomics data. A list of significant proteins and the complete peak list of 

metabolites, putatively identified in the brain tissues of aged and young mice, 

were integrated through MetaboAnalyst 5.0 (Figure 3. 4). 

https://www.uniprot.org/
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Figure 3. 4 Enriched metabolic pathways altered in aged murine brain tissue. Enrichment analysis 

resulted from the integration of identified putative protein genes and metabolites. 

Among the top ten significant (FDR <0.05) and relevant (Impact factor >0.1) 

enriched pathways we found pyruvate metabolism, valine, leucine and 

isoleucine metabolism, TCA cycle, propanoate, glyoxylate and dicarboxylate 

metabolism, ß-alanine, butanoate, lysine, cysteine and methionine, alanine, 

aspartate and glutamate metabolism, glycolysis and fatty acid degradation 

(Figure 3. 4;Table S2. 9). 

  

Altered metabolic and protein features were mapped (Figure 3. 5) using the 

Encyclopaedia of Genes and Genomes (KEGG) database to map enriched 

pathways. 
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Figure 3. 5 Graphical summary representation of the putatively identified metabolic pathways 

in the brain tissues of old mice. Enriched and depleted metabolic/protein features are in green and 

red, respectively. In bold are represented significant metabolites. 

 

3.5.5. MALDI MSI reveals spatial localisation of putative lipids in the aged 

murine brain tissue 

 

Considering the high lipid content in the brain, we investigated their spatial 

distribution in aged and young mice through the application of MALDI MSI in 

negative acquisition mode. A similar analysis was applied to glutamate-

cysteine ligase modifier subunit gene (Gclm -/-) knockout murine models 

(Figure 3. 6). This genetic modification is responsible for a 70-80% decrease 
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in GSH levels across various tissues including the brain, liver, kidney and lung 

[12].  

 

Figure 3. 6 MALDI-MSI analysis of the left-brain hemisphere of aged (10-months) and young (5-

months) mice. a) Frontal and temporal lobe of wild type (WT) old and young mice. Fatty acid (FA) 

16:0 (m/z 255.231), FA 18:1 (m/z 281.246), FA 18:0 (m/z 283.261), and FA 20:4 (m/z 303.231). b) 

Frontal, temporal and parietal lobe of young (5-months) mice wild-type (WT) and deficient in glutathione 

(GSH) synthesis (Gclm -/-). FA 16:0 (m/z 255.231), FA 18:1 (m/z 281.246), FA 18:0 (m/z 283.261), 

phosphatidylinositol (PI) 38:4 (m/z 885.543), and phosphatidylethanolamine (PE) 46:7;0 (m/z 888.616). 

From the analysis of MSI images, we observed spatial localization of 

metabolites in the brains of both young (5 months) and old mice (10 months) 

(Figure 3. 6a). For example, FA 16:0 is mainly localised in the cerebral cortex 



- 111 - 
 

and hippocampus, FA 18:1 is present in the thalamus and hypothalamus, FA 

18:0 is expressed over the entire area of the left-brain hemisphere. While no 

expression of FA 20:4 was detected in the cerebral cortex of neither old nor 

young mice. 

 

Similarly, in the pairwise analysis of young and aged Gclm -/- mice, we 

detected FA 16:0 predominantly in the cerebral cortex, FA 18:1 in the thalamus 

and hypothalamus, and FA 18:0 is widely expressed in the whole brain. 

Additionally, WT and Glcm -/- mice expressed PI 38:4 particularly in the 

cerebellum, and PE 46:7,O especially in the midbrain, hypothalamus and 

thalamus (Figure 3. 6b).  

The whole brain sections of these samples allowed us to observe that FA 16:0, 

FA 18:1, FA 18:0, PI 38:4 and PE 46:7;O are expressed in the cerebellum of 

both Glcm -/- and the WT phenotype.  

Details on other identified peaks are reported in supplementary materials 

(Table S2. 10). 
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3.6. Discussion 
 
Tissue metabolomics and proteomics offer the opportunity to study aberrant 

changes in metabolites and proteins occurring at the site of disease 

pathogenesis [27-30]. The implementation of mass spectrometry technologies 

in ageing research has shown the potential to provide a more holistic 

understanding of the mechanisms underpinning ageing-related 

pathophysiology. Moreover, the ongoing implementation of mass 

spectrometry-based technologies with a high spatial resolution of molecular 

classes is starting to be an attractive tool in histological studies of ageing with 

promising advantages for clinical applications [31-33]. 

 

In this work, we applied mass spectrometry–based metabolomics and 

proteomics techniques to study brain tissue derived from old and young mice. 

The goal of this study was to perform a comprehensive analysis of the global 

metabolic changes occurring in murine brain tissue during ageing, and the 

relative spatial localization of their differential expression. First, we examined 

the individual metabolic and protein content of old and young murine brain 

tissue through tandem LC-MS analysis (Figure 3. 2,Figure 3. 3). Then we 

integrated these findings into a network analysis to design a comprehensive 

map of the age-based metabolic pathways constituted by metabolites and 

proteins involved in metabolic reactions (Figure 3. 4).  

 

In line with other studies [34], from our results, we observed a high content of 

organic molecules like amino acids, carboxylic acids, TCA acids and peptides. 

In particular, we detected elevated levels of glutamate, aspartic acid and 

homocysteine in the brain tissue of old mice when compared to younger 

subjects. These were accompanied by high levels of enzymes such as 

glutamate dehydrogenase 1 (Glud1), aspartate aminotransferase (Got1/2), 

and adenosylhomocysteine hydrolase-like protein 1 (Ahcyl1) for glutamate 

metabolism, aspartate and homocysteine synthesis, suggesting that these 

metabolic pathways were upregulated. These metabolites are central in the 

regulation of neuronal membrane potential, and their alterations may affect the 

regular function of neurological signalling [35]. Guanine nucleotide-binding 
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proteins (G proteins) play a key role in neurotransmission signalling [36] and it 

is interesting to observe that in old murine brain tissue the majority of G protein 

classes were found to be downregulated. This is suggesting that altered 

glutamate, aspartate and homocysteine metabolism may be a key target in the 

regulation of excitation/inhibition of neuronal imbalance as observed in 

Alzheimer’s patients [37].  

 

Similar to previous work [34], aged murine brain tissue is characterised by a 

metabolic shift towards the synthesis and accumulation of nucleotides. 

Accordingly, an enrichment of purine and pyrimidine levels was observed in 

this study. Nucleotides can be produced through the redirection of glucose 

metabolism towards the pentose phosphate pathway (PPP), or by directing the 

TCA acids towards biosynthetic pathways rather than being utilised for energy 

production [38]. Based on our results, PPP-derived histidine metabolites were 

upregulated together with molecules constituting the TCA cycle (-KG, citrate, 

fumarate, malate, and succinate). Depleted energy status in the old (10 month) 

brains reflected the absence of peaks for adenosine triphosphate (ATP) and 

the accumulation of adenosine monophosphate (AMP) suggesting an 

increased AMP/ATP ratio in our samples. This hypothesis was further 

confirmed by proteomics data showing significantly depleted levels of 

Atp6v0d1, which is a subunit of the H+-ATPase enzyme responsible for ATP 

production through proton exchange [39].  

 

Lipids are an alternative source of energy. Upon their ß-oxidation NADH and 

FADH2 cofactors are used by the electron transport chain to produce ATP. 

However, in the brain, where lipids constitute almost 50% of the dry weight, 

they predominantly serve as structural components of cell membranes and 

neuro-signalling molecules [40]. Moreover, compared to other tissue, the brain 

contains the largest diversity of lipids [41]. Based on our results different 

classes of fatty acids were detected including glycerolipids, 

glycerophospholipids, and sphingolipids. Among the glycerolipids, 

triacylglycerols (TAGs) represent only 0.2% of the total lipid content in normal 

conditions, however their level increase in pathological conditions [42]. In the 
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aged murine brain tissue, we detected increased levels of TGAs including 

stearic acid, oleic acid, and linoelaidic acid. Gycerophospholipids 

(phosphocholines and phosphoethanolamines) represent 50-60% of the total 

membrane mass [43]. They are precursors of arachidonic acid, docohexaenoic 

acid, and ceramide which represent second messengers in pro-inflammatory 

signalling pathways [44]. In this study, elevated arachidonic acid and ceramide 

levels were detected in aged murine brain tissues together with upregulation 

of other sphingolipids. Sphingolipids play an essential role in the induction of 

senescence [45], as well as the pathogenesis of Alzheimer’s disease [46]. 

Together, with elevated levels of different lipid classes in aged murine brain 

tissue, we also observed an enrichment of lipid oxidative products, ketone 

bodies, and enzymes involved in lipid ß-oxidation. These are responsible for 

the generation of oxidative stress in age-related neurodegenerative diseases 

[47]. 

 

In addition to the high abundance and heterogeneity of lipids in the brain, their 

spatial and regional composition in the brain determine their role in neuronal 

functionality under homeostatic conditions. Differences in lipid classes have 

been determined for the different cell types of the central nervous system [48]. 

More recently, the regional lipid composition in the brain was mapped using 

LC-MS analysis [20], which involves tissue lysis and extraction approaches for 

downstream analysis. Here we investigated the spatial distribution of lipids in 

murine brains while preserving their structure. This approach is similar to the 

tissue preservation seen in immunohistochemistry, with the ability to 

simultaneously detect hundreds of molecules and their relative abundance at 

the same time. This method was applied to naturally aged mice and early 

ageing mice through the depletion of glutathione and induction of oxidative 

stress. A qualitative analysis has only been considered in this study therefore 

determining the spatial expression of lipids (Figure 3. 6). For each analyte, 

peak intensities have been reported (Table S2. 10), however they have not 

been used for a quantification analysis as utilization of internal standards and 

a calibration curve is needed [49], which will be considered in future 

applications of the technique. In line with previous studies [20], we observed 
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that FA 16:0 (palmitic acid) is predominantly concentrated in the hippocampus, 

cerebral cortex and cerebellum. FA 18:0 (stearic acid) is distributed throughout 

the brain, while FA 18:1 (Oleic acid) is present only in the cerebellum and 

middle brain. Phosphatidylinositol (PI) 38:4 expression was detected 

predominantly in the olfactory bulb and cerebellum. Phosphoethanolamine 

(PE) 46:7;O levels were elevated in the medulla, midbrain and hypothalamus.  

 

Applying MSI to the investigation of murine aged tissue provides a 

comprehensive map metabolome and proteome profile, which can in the long 

term be implemented for understanding the population-based heterogeneity of 

biomolecules and translatability of pre-clinical findings to humans. A targeted 

approach in the investigation of the age-dependent metabolic changes of mice 

tissues will allow a better understanding of the direction of these alterations. 

Of notice, we did not account for protein post-translational modifications 

(PTMs), the downstream response of which defines the phenotype of an 

organism and requires detailed analysis using a targeted approach. Finally, 

optimization of MALDI-MSI for the spatial identification and quantification of 

biomolecules is necessary for a more accurate determination of their tissue 

localization. 

 

3.7. Conclusion 
 

Our data show the existence of a different metabolome and proteome profile 

in aged murine brain tissue. Data derived from both metabolomics and 

proteomics analysis can be combined through a network analysis, providing a 

more detailed, albeit putative picture of the molecular and chemical changes 

occurring during ageing. In our study, metabolites of the energy metabolism 

(TCA acids and lipids) were mainly altered in the aged brain tissues. These 

results will drive future targeted analysis for an in-depth characterization of the 

energy metabolic alterations during ageing. Moreover, we presented mass 

spectrometry imaging systems as a powerful too allowing the high-resolution 

spatial mapping of multiple molecules in one single experiment thus 

overcoming the limitations of the traditional histochemical analysis.  
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This is a preliminary example of multi-omics analysis integrated with a spatial 

investigation of the composition of tissues. Although method application needs 

to be improved, here we show the great potential of mass spectrometry–based 

technology in the design of advanced diagnostic studies that can be ultimately 

applied to clinical medicine.   
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4.1. Abstract 

 

Metabolic reprogramming and genomic instability are key hallmarks of cancer, 

the combined analysis of which has gained recent popularity. Given the 

emerging evidence indicating the role of oncometabolites in DNA damage 

repair and its routine use in breast cancer treatment, it is timely to fingerprint 

the impact of olaparib treatment in cellular metabolism. Here, we report the 

biomolecular response of breast cancer cell lines with DNA damage repair 

defects to olaparib exposure. 

Following evaluation of olaparib sensitivity in breast cancer cell lines, we 

immunoprobed DNA double strand break foci and evaluated changes in 

cellular metabolism at various olaparib treatment doses using untargeted mass 

spectrometry-based metabolomics analysis. Following identification of altered 

features, we performed pathway enrichment analysis to measure key 

metabolic changes occurring in response to olaparib treatment. 

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.3390%2Fcancers14153661&data=05%7C01%7Cdomenica.berardi%40strath.ac.uk%7C23f400e216ef4d79460208da957eb218%7C631e0763153347eba5cd0457bee5944e%7C0%7C0%7C637986668620465928%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=w9ydM1nuOcFO0S%2BjDmX86Gsac0iMbN8l8wpO8jgeMeM%3D&reserved=0
mailto:nicholas.rattray@strath.ac.uk
mailto:zahra.rattray@strath.ac.uk
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We show a cell-line dependent response to olaparib exposure, and an 

increased susceptibility to DNA damage foci accumulation in triple-negative 

breast cancer cell lines. Metabolic changes in response to olaparib treatment 

were cell-line and dose- dependent, where we predominantly observed 

metabolic reprogramming of glutamine-derived amino acids and lipids 

metabolism. 

Our work demonstrates the effectiveness of combining molecular biology and 

metabolomics studies for the comprehensive characterisation of cell lines with 

different genetic profiles. Follow-on studies are needed to map the baseline 

metabolism of breast cancer cells and their unique response to drug treatment. 

Fused with genomic and transcriptomics data, such readout can be used to 

identify key oncometabolites and inform the rationale for the design of novel 

drugs or chemotherapy combinations. 

 

KEYWORDS: Breast cancer, triple-negative, oncometabolites, DNA damage, 

precision medicine, metabolic reprogramming 

 

4.2. Introduction 

 

In a bid to develop new therapies against various cancer types, genomic 

instability, its underpinning mechanisms and contribution to 

tumorigenesis have been extensively investigated over the past few 

decades. Genomic instability, a well-known contributor to cancer, 

presents a therapeutic vulnerability that can be targeted in the 

development of novel chemotherapy agents [1]. 

 

To maintain their genomic integrity, cells are equipped with a range of 

DNA damage repair (DDR) pathways and responses to counteract DNA 

lesions formed in response to endogenous and exogenous insults [2]. 

Hereditary mutations in these pathways have been correlated with 

increased cancer susceptibility, such that defects in homologous 

recombination contribute to approximately 10% of all breast cancers. 
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These defects in DDR machinery result in the loss of function for genes 

implicated in DNA repair (i.e. breast cancer susceptibility gene 1/2- 

BRCA1/BRCA2) or dysregulation of cell cycle phases [3-5]. While these 

genetic alterations increase the susceptibility to oncogenesis- they serve 

as therapeutic vulnerabilities- such that in the presence of a defective 

DNA repair pathway the inhibition of an alternate DDR mechanism will 

lead to cell death. This concept is referred to as synthetic lethality, which 

has formed the rationale for existing DDR inhibitors [6, 7]. One such 

class of drugs, poly(ADP-ribose) polymerase (PARP) inhibitors, targets 

vulnerabilities in the homologous recombination DDR pathway [8]. 

 

PARP inhibitors as a class of DDR inhibitors block the activity of PARP 

enzymes involved in DNA damage repair; therefore, leading to 

accumulation of DNA double-strand breaks that gives rise to genomic 

instability and subsequent apoptosis [9]. Several PARP inhibitors are 

currently approved as monotherapies for the treatment of locally 

advanced or metastatic breast cancer for patients with breast cancer 

harboring germline BRCA1/2 mutations or HER2-negative receptor 

status [8]. In 2022, olaparib was approved by the FDA as an adjuvant 

treatment for patients with human epidermal growth factor receptor 2 

(HER2)-negative and germline BRCA-mutated breast cancers following 

readout from the OlympiA trial [10].  

 

While PARP inhibitors present a therapeutic opportunity for targeting 

DDR defects in breast and ovarian cancers, emerging evidence has 

shown a role for oncometabolites- small molecule intermediates of 

cellular metabolism- in determining the response to these 

chemotherapies. The biology of oncometabolites and their role in 

modulating DDR has been increasingly studied over the past few years, 

guiding new combination therapies and novel biological targets for drug 

discovery [1]. 
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Metabolic reprogramming- a key feature of all cancers [11]- gives rise to 

chemoresistance in both treatment-naïve and treatment-resistant breast 

cancers [12]. As with genomic instability, drivers of metabolic 

reprogramming can be broadly classified as intrinsic and extrinsic in 

origin [13]. Intrinsic stimuli such as oncogenes and tumour suppressor 

genes, modulate cellular metabolism in breast cancer with several 

regulators including BRCA1/2, MYC, phosphatidylinositol-4,5-

bisphosphate 3-kinase (PI3K) and p53 as examples. The functional 

interplay between these regulators of cellular metabolism, mediates 

DNA damage repair pathways and subsequent response to DDR 

chemotherapies. Recent evidence has shown that the upregulation of 

glucose utilization and glutamine metabolism are required to sustain 

increased tumour bioenergetic and biosynthetic demand, which vary 

according to the cellular genetic makeup [14]. Intermediates from 

glucose and glutamine metabolism have been identified as key 

oncometabolites regulating the response to chemotherapy drugs, 

presenting novel biomarkers and potential actionable targets for novel 

drug discovery [13].  

 

DDR mechanisms induce cellular metabolic changes through 

interference with purine and pyrimidine biosynthetic pathways, amino 

acid metabolism, protein biosynthesis and energy metabolism, 

impacting several metabolic routes [15]. Mediators of DDR pathways, 

including PARP regulate several pathways exemplified by the pentose-

phosphatase pathway, the TCA cycle and glycolysis. In breast cancer, 

PARP inhibition reduces glucose consumption and alters amino acid and 

nucleotide metabolism depending on the different cellular subtypes [16]. 

Moreover, BRCA-1 deficient breast tumors appear to rely on glucose 

consumption through enhanced glycolysis [17]. Differences in the 

metabolic signature between cell lines harboring different DNA repair 
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mutations and measuring their response to PARP inhibitors can inform 

the rationale for selecting PARP inhibitors in certain breast cancer types 

and explore potential additional vulnerabilities as druggable targets [18].  

 

DNA repair and regulation of metabolism are critical for maintaining 

homeostasis in normal human cells. However, the extensive 

dysregulation and aberrant function of both these pathways promotes 

tumorigenesis. Until recent, DNA repair and metabolic pathways have 

routinely been researched as distinct fields within their own right, but 

emerging research evidence an intrinsic inter-dependency between 

these pathways. Here, we report the differential cellular response of 

breast cancer cell line models with different mutational signatures (see  

Table S3. 2 Cell lines used in this study and their corresponding 

clinicopathologic profiles (ER: estrogen receptor, PR: progesterone receptor, 

and HER2: Human epidermal growth factor 2 receptor) 

Cell Line Histology Subtype Immunoprofile Genetic 
alterations 

MCF-7 Metastatic 
Adenocarcinoma 

Luminal A ER+, PR+, 
HER2- 

PIK3CA, 
CDKN2A, 
GATA3, 
PIK3CA, TP53 

MDA-MB-
231 

Metastatic 
Adenocarcinoma 

Basal ER-, PR-, HER2- BRAF, 
CDKN2A, 
KRAS,  
NF2,  
TP53 

HCC1937 Primary 
Ductalcarcinoma 

Basal-like ER-, PR-, HER2- BRCA1, TP53 
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Figure S3. 2 Sample batch order. 2 blanks were injected at the beginning and at the end of the run. 
10 QCs were injected before injections of the samples. Then QCs were injected after every 5 samples. 
QCs have been prepared by pooling together all the sample after drying and reconstitution with 
water:acetonitrile (50:50, v/v). 

Elution Gradient used for LC-MS  
 
Buffer A composition:10 mM ammonium acetate in 95% acetonitrile, 5% water with 
0.1% acetic acid  
Buffer B composition: 10 mM ammonium acetate in 50% acetonitrile, 50% water 
with 0.1% acetic acid 
 
Table S3. 3 Corresponding elution gradient used for the chromatographic separation of metabolite 
extracts 

Retention 
(min) 

Flow (ml/min) %A %B Curve 

0.000 0.500 99.0 1.0 5 

1.000 0.500 99.0 1.0 5 

3.000 0.500 85.0 15.0 5 

6.000 0.500 50.0 50.0 5 

9.000 0.500 5.0 95.0 5 

10.000 0.500 5.0 95.0 5 

10.500 0.500 99.0 1.0 5 

14.000 0.500 99.0 1.0 5 
 

Table S3. 4 Normality test for cell viability and immunofluorescence quantification data. The 
Shapiro-Wilk test has been performed with R software. p-values of >0.05 were considered as normally 
distributed. P-value (p). 

Cell viability   Immunofluorescence   
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Cell line p  Cell line 
p 
p53 

p 

H2AX 

MCF7  0.5  MCF7  0.7 0.1 

MDA-MB-231 0.3  MDA-MB-231 0.3 0.9 

HCC1937 0.3  HCC1937 0.7 0.1 

 
 
Table S3. 5 Setting for LC-MS data analysis and processing 

Method settings  

Application mode Small molecule 

Method duration 14 min 

Global parameter  

Ion source type H-ESI 

Spray voltage Static 

Positive Ion (V) 3900 
Negative Ion (V) 2700 

Gas Mode Static 

Sheath Gas (Arb) 40 
Aux Gas (Arb) 10 

Sweep Gas (Arb) 1 

Ion Transfer Tube Temp (°C) 320 
Vaporizer Temp (°C) 300 

APPI Lamp Not in use 

MS Global Settings  

Infusion Mode Liquid Chromatography 
Expected LC Peak Width (s) 6 

Advanced Peak Determination False 

Mild Trapping True 
Default Charge State 1 

Internal Mass Calibration EASY-ICTM 

Mode Run Start 

 

Experiment 

 
Start time 0 min 

End time 14 min 
Full Scan  

Orbitrap resolution 60,000 

Scan range (m/z) 70-1050 
RF Lens (%) 50 

AGC Target Standard 

Maximum Injection Time Mode Custom 

Microscans 1 
Data Type Profile 
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Polarity +/- 

Source Fragmentation Disabled 

Use EASY-CMTM On 

Apex Detection  

Desired Apex Window (%) 50 

Intensity  

Intensity threshold 5.0e4 
Data Dependent Mode Number of scans 

Number of Dependent Scans 5 

ddMS2 Scan  

Multiplex Ions False 

Isolation Window (m/z) 2 

Isolation Offset Off 
Collision Energy Type Normalised 

HCD Collision Energies (%) 15,30,45 

Orbitrap Resolution 15,000 
Scan Range Mode Auto 

AGC Target Standard 

Maximum Injection Time Mode Auto 

Microscans 1 
Data Type Profile 

Use EASY-ICTM On 
 Data processing 

 

 

Input Files .raw data 

Select Spectra  

Lower RT Limit 0 
Upper RT Limit 0 

First Scan 0 

Last Scan 0 
Lowest charge state 0 

Highest charge state 0 

Min. precursor mass 0 Da 
Max precursor Mass 5000 Da 

Total intensity threshold 0 

Minimum peak count 1 

Scan event filters  
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Mass analyzer Not specified 

MS Order Any 

Activation type Not specified 

Min collision energy 0 
Max collision energy 1000 

Scan type Any 

Polarity mode is +/- 
Peak Filters  

S/N threshold (FT-only) 1.5 

General settings  

Precursor selection Use MS(n-1) precursor 

Use isotope pattern in precursor reevaluation True 

Provide profile spectra Automatic 
Store chromatograms False 

Align retention times  

Alignment model Adaptive curve 
Alignment fallback None 

Maximum shift 0.3 min 

Shift reference file True 

Mass tolerance 3 ppm 
Remove outlier True 

Detect compounds  

Mass tolerance 3 ppm 
Intensity tolerance (%) 30 

S/N threshold 3 

Min. peak intensity 500,000 
Base ions [M+H]+1; [M-H]-1 

Peak detection  

Filter peaks True 
Max peak width 0.5 min 

Remove singlets True 

Min #scans per peak 5 
Min #isotopes 1 

Isotope grouping  

Min spectral distance score 0 

Remove potentially false positive isotopes True 
Group compounds  

Mass tolerance 5 ppm 

RT tolerance 0.2 min 

Preferred ions 

[M+H]+1; [M-H]-1  
+ 2nd analysis: 
[M+H]+1; [M-H]-1; [M+ACN+H]+1; 
[M+FA-H]-1; [M+ACN+Na]+1; 
[M+H+Na]+2; [M+H+NH4]+2; 
[M+Na]+1; [M+NH4]+1 

Fill gaps  

Mass tolerance 5 ppm 

S/N threshold 1.5 

Use real peak detection 
True (re-detected low-intensity 
peaks) 

Apply QC correction  

Regression model Linear 
Min QC coverage [%] 30 

Max QC area RSD [%] 30 

Max corrected QC area RSD [%] 25 
Max #files between QC files 15 

Max background compounds  



- 129 - 
 

Max sample/blank 5 

Max blank/sample 0 

Hide background True 

Search ChemSpider  

Database(s) 
CheBI, Human Metabolome 
Database 

Search mode By formula mass 
Mass tolerance 5 ppm 

Max # of results per compound 100 

Max # of predicted composition per compound 3 
Apply mzLogic  

FT Fragment mass tolerance 10 ppm 

IT Fragment mass tolerance 0.4 Da 
Max # compounds 0 

Max # mzCloud similarity results to consider per 
compound 

10 

Match factor threshold 30 + 2nd analysis at 70 

Predict compositions  

Mass tolerance 5 ppm 

Pattern matching  
Intensity tolerance (%) 30 

Intensity threshold (%) 0.1 

S/N threshold 3 
Min spectral fit (%) 30 

Min pattern Cov (%) 90 

Use dynamic recalibration True 
Use fragments matching True 

Mass tolerance 5 ppm 

S/N threshold 3 
Assign compound annotations  

Mass tolerance 5 pmm 

Data source 1 mzCloud search 
Data source 2 Predicted compositions 

Data source 3 massList search 

Data source 4 ChemSpider search 

Data source 5 Metabolika search 
Search mzCloud  

Compound classes All 

Precursor mass tolerance 10 ppm 
FT fragment mass tolerance 10 ppm 

IT fragment mass tolerance 0.4 Da 

Library Autoprocessed; reference 
Post processing Recalibrated 

Max # results 10 

Annotate matching fragments True 
DDA Search  

Identity search Cosine 

Match activation type True 
Match activation energy Match with tolerance 

Activation energy tolerance 20 

Apply intensity threshold True 

Similarity search None 
Match factor threshold 60 

Differential analysis  

Log10 transform values True 
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Figure S3. 3 The formation of p53BP1 foci in response to treatment with either growth medium or 
medium containing olaparib. Representative images of immunolabelled P53BP1 foci (red), DAPI 
(blue) nuclear counterstain and composite (p53BP1 (red) and DAPI (blue)) in MCF-7, MDA-MB-231, 
and HCC1937 cells treated with olaparib for seven days (a-c). 

 

 
Figure S3. 4 The formation of γH2AX foci formation in response to treatment with either growth 
medium or medium containing olaparib. Representative images of immunolabelled γH2AX foci 
(green), DAPI (blue) nuclear counterstain and composite (γH2AX and DAPI) in MCF-7, MDA-MB-
231, and HCC1937 cells treated with for seven days (a-c). 

 
Table S3. 6 ANOVA analysis of olaparib dose-dependent DNA DSB immunofoci formation 

Cell line Foci p-value 

MCF-7 53BP1 

γH2AX 

0.011 
 

4.876 x 10-10 

MDA-MB-231 53BP1 

γH2AX 

0.0009 

4.096 x 10-10 

HCC1937 53BP1 

γH2AX 

1.204 x 10-6 
 

1.441 x 10-5 

 

 
Figure S3. 5 Global metabolic features identified in MCF7, MDA-MB-231 and HCC1937 upon exposure 
to IC10, IC25 and IC50 olaparib doses for seven days acquired in positive and negative ionization mode. 
a) Workflow used in this study to perform pathway analysis from metabolomics analyses. b) Global 
PCA score plots of the analysed breast cancer cell lines for data acquired in positive and negative 
ionization mode. For each treatment group, five replicates were used. Data points in the two-
dimensional PCA score plot were central scaled. Ellipses represent 95% confidence interval. 
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Figure S3. 6 PCA pairwise analysis of untargeted metabolomics data collected, in both positive and 
negative mode, from MCF7, MDA-MB-231, and HCC1937 cells treated with IC10, IC25 and IC50 olaparib 
treatment doses. Data points in the two-dimensional PCA score plot were central scaled. The plot was 
designed on R through the ggplot2 graphical package (n=5). Ellipses represent 95% confidence 
interval. 

 
Figure S3. 7 Volcano plots showing the log2 fold change and the -log10 adjusted p-values in metabolite 
levels induced by treatment with different doses of Olaparib (IC10, IC25, and IC50) in MCF7, MDA-MB-
231 and HCC1937 cells. Data were selected at the cut off values adjusted p<0.05 and fold change 
>1.5. Blue and grey boxes indicate metabolites significantly enriched and depleted in the different 
samples, respectively. 
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Figure S3. 8 Statistical analysis with new data processing method using 70% of annotation threshold 
and more ion adducts ([M+H]+1; [M-H]-1; [M+ACN+H]+1; [M+FA-H]-1; [M+ACN+Na]+1; [M+H+Na]+2; 
[M+H+NH4]+2; [M+Na]+1; [M+NH4]+1). A) PCA pairwise analysis of untargeted metabolomics data 
collected, in both positive and negative mode, from MCF7, MDA-MB-231, and HCC1937 cells treated 
with IC10, IC25 and IC50 olaparib treatment doses. Data points in the two-dimensional PCA score plot 
were central scaled. The plot was designed on R through the ggplot2 graphical package (n=5). Ellipses 
represent 95% confidence interval. B) Volcano plots showing the log2 fold change and the -log10 
adjusted p-values in metabolite levels induced by treatment with different doses of Olaparib (IC10, IC25, 
and IC50) in MCF7, MDA-MB-231 and HCC1937 cells. Data were selected at the cut off values adjusted 
p<0.05 and fold change >1.5. Blue and grey boxes indicate metabolites significantly enriched and 
depleted in the different samples, respectively. The first 20 features mostly contributing to the 
separation between young and old samples are indicated as orange data points and correspond to the 
PLS-DA components highlighted in the c) loading plot and d) PLS-DA analysis. 

 
Table S3. 7 Global differential number of altered metabolites for samples treated with IC10, IC25 and 
IC50 of Olaparib and their relative control (non-treated) samples. Metabolites identified in both positive 
and negative mode with p-value = <0.05 and Log2 Fold Change = >1.5. 

Sample HESI + HESI - 

MCF7 IC10/Ctrl 41 10 

MCF7 IC25/Ctrl 111 62 

MCF7 IC50/Ctrl 41 15 

MDA231 IC10/Ctrl 2 1 

MDA231 IC25/Ctrl 12 1 

MDA231 IC50/Ctrl 34 9 

HCC1937 IC10/Ctrl 36 2 

HCC1937 IC25/Ctrl 107 13 

HCC1937 IC50/Ctrl 134 43 

 

 
Figure S3. 9 Enrichment analysis of non-treated MCF7, MDA-MB-231 and HCC1937 cells. 
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Table S3. 8 Metabolic pathways in different breast cancer cells (MCF7, MDA-MB-231, and HCC1937) 
before and after treatment with IC50 dose of Olaparib. FDR = False Discovery Rate. 

 
 

 
Figure S3. 10 Venn diagram representing the metabolic pathways in MCF7, MDA-MB-231 and 
HCC1937 cells .a) Baseline metabolic pathways and b) following a seven day treatment with olaparib 
at IC50 doses. 

 
Table S3. 9 Comparison analysis between MetaboAnalyst and Mummichog software. FDR = False 
discovery rate. Gamma = Gamma p-value. FET = Fisher’s Exact test. 
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Table S3. 10 Classification of the metabolites identified in MCF7, MDA-MB-231 and HCC1937 at all Olaparib doses (IC10, IC25 and IC50) after seven days treatment. 
Class, name, Log2 fold change, and the p-value (p) is represented for each compound. PC: phosphocholine; PE: phosphoethanolamine; PUFA: poly unsaturated fatty 
acid; SM: Sfingomyelin. 

  MCF7 MDA-MB-231 HCC1937 

Class Name 
FC 

IC10 
p 

FC 
IC25 

p 
FC 

IC50 
p 

FC 
IC10 

p 
FC 

IC25 
p 

FC 
IC50 

p 
FC 

IC10 
p 

FC 
IC25 

p 
FC 

IC50 
p 

Amide Nicotinamide -0.5 0.1 -0.5 0.3 -0.1 0.3 -0.1 0.5 -0.2 0.1 -0.5 0 0.4 0.1 0.3 0 -0.1 0.3 

Amine N-Oleoylethanolamine -1.5 0.1 -0.8 0.6 -0.1 0.6 -0.5 0.3 -3.2 0 -0.6 0.3 -1.6 0.2 -2.5 0 -1.2 0 

Amine Triethanolamine 1 0.6 -0.6 0 0.1 0.2 2.9 0.4 0.6 0.8 3.1 0.4 -0.5 0.5 0.4 0.1 0.4 0.5 

Amino acid 3-Sulfinoalanine -1.1 0.5 -1.8 0 -1.1 0.2 - - -0.7 0.3 - - 0.3 0.7 -0.4 0.6 -0.7 0 

Amino acid 4-Guanidinobutanoic acid -1.3 0 -2 0 -1.1 0 -0.2 0.5 -0.3 0.6 -0.5 0.2 -1 0.1 -1.8 0 -1.8 0 

Amino acid 4-Hydroxyproline -1 0 -2.1 0 -1.1 0 -0.4 0.2 - - -0.4 0.1 -0.3 0.4 -0.3 0.3 -0.9 0 

Amino acid 4-Oxoproline -0.7 0.3 0.9 0 0.2 0.2 0.4 0.6 -0.3 0 0.8 0.1 0.6 0 1 0 1.5 0 

Amino acid Betaine - - -0.8 0 0 0.7 0 0.3 -0.2 0.1 -0.4 0 -0.1 0.7 0 0.5 -0.4 0 

Amino acid Choline -3.7 0.1 -2.1 0 -2.1 0.1 0.1 0.5 -1.3 0 -1.5 0 -2.1 0 -2.9 0 -3.7 0 

Amino acid Citrulline -0.3 0.6 1.8 0 -0.4 0 -0.3 0.2 -0.3 0.1 -0.3 0 -0.1 0.5 0.3 0.5 0.1 0.9 

Amino acid Creatine -0.3 0.6 -1.7 0 -0.5 0.1 -0.8 0 -0.4 0.2 -1.1 0 0.1 0.3 -0.4 0 -0.7 0 

Amino acid Creatinine - - -0.1 0.2 0.1 0.7 -0.5 0 -0.4 0.1 -0.4 0.2 -0.1 0.4 0.3 0.4 -0.2 0.3 

Amino acid Gamma-Aminobutyric acid -0.9 0 -1.8 0 -0.7 0 -0.2 0.1 -0.1 0.2 -0.2 0.1 -0.2 0.7 0 0.9 -0.5 0 

Amino acid Glycine -1.3 0 -2.1 0 -1 0 - - - - - - - - - - - - 

Amino acid Hypotaurine 0.3 0.3 -0.4 0.1 -0.6 0 0.3 0.6 -0.2 0.1 -0.5 0 -0.7 0 -0.6 0 -1.3 0 

Amino acid L-Alanine -0.8 0 -1.7 0 -0.9 0 - - - - - - - - - - - - 

Amino acid L-Arginine 6.7 0 -0.5 0 -0.1 0.6 -0.1 0.6 -0.1 0.7 0.3 0.4 0 0.5 0.3 0.1 -0.2 0.1 

Amino acid L-Asparagine 0.3 0.3 -0.4 0.2 1 0 - - - - - - 0.9 0.2 1.1 0.1 1.3 0.1 

Amino acid L-Aspartic acid -0.6 0 -2.2 0 -1.4 0 0.3 0.1 0.3 0.3 0.8 0 -0.1 0.9 -0.5 0 -1.6 0 

Amino acid L-Cystathionine 5.2 0 -2.1 0 -0.3 0.1 -0.1 0.9 1.2 0.4 0.8 0.6 -1.7 0 -2.2 0 -3.8 0 

Amino acid L-Glutamic acid -1.3 0 -2.1 0 -1.3 0 -0.4 0.5 -0.7 0 -1.1 0 -0.4 0.1 -0.5 0 -2.1 0 

Amino acid L-Glutamine -11.4 0 -1 0 -0.4 0.1 -0.1 0.2 0.2 0.4 -0.1 0.7 -0.2 0 -0.3 0 -0.5 0 

Amino acid L-Isoleucine - - -1.5 0.3 -0.6 1 -1.4 1 1.5 0.3 -0.3 0.7 0.1 0.2 -0.6 0.7 0.1 1 

Amino acid L-Leucine - - -1.4 0 -0.4 0.1 0.2 0.4 - - -0.5 0.1 - - -0.6 0 -1.3 0 

Amino acid L-Lysine -1.1 0 -1 0 -0.4 0.3 -0.3 0.1 -0.4 0.1 0.1 0.5 0.2 0.3 0.3 0 -0.4 0 

Amino acid L-Methionine -0.9 0 -2.3 0 -1 0 -0.1 0.2 -0.3 0 -0.4 0.1 0.1 1 -0.1 0.2 -0.9 0 

Amino acid L-Ornithine - - - - - - - - - - - - 0.2 0.6 0.3 0.1 -0.1 0.7 
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Amino acid L-Phenylalanine -1.3 0.7 - - - - -0.1 0.4 -0.4 0 -0.3 0.1 -0.2 0.9 -0.3 0.2 -0.7 0 

Amino acid L-Proline -1.3 0 2 0.1 -0.3 0.5 0.1 0.6 -0.3 0.4 -0.4 0.1 - - - - - - 

Amino acid L-Serine 2.2 0 2.5 0 2.1 0 0.3 0.2 0.3 0.5 0.9 0 -0.1 0.7 -0.3 0 -1 0 

Amino acid L-Tryptophan -1.6 0 -2.4 0 -1.3 0 -0.3 0.1 -0.8 0 -0.9 0 -0.3 0.5 -0.8 0 -0.8 0 

Amino acid L-Tyrosine 0.1 0.7 -2.3 0 -1.3 0 -0.4 0 -0.5 0 -0.6 0 0.1 0 -0.4 0.1 -1 0 

Amino acid L-Valine -1.2 0 -1.4 0 -0.6 0 0.1 0.6 0.1 0.9 0.4 1 0.1 0.8 0.2 1 0.6 0.4 

Amino acid N-a-Acetyl-L-arginine - - -1.6 0 -0.6 0 0.5 0.5 -0.2 0.4 -0.6 0.1 -0.3 0.2 0 0.5 -0.4 0 

Amino acid N-Acetylaspartylglutamic acid -0.5 0.1 -1.5 0 -0.7 0.1 0.2 0.7 -0.3 0.4 -0.1 0.2 -1.3 0 -0.8 0 -2.9 0 

Amino acid N-Acetylisoleucine -0.1 0 0.3 0.1 -0.1 0.5 2.4 0.4 0.4 0.8 1.4 0.5 0 0.6 0.1 0 0.1 0.2 

Amino acid N-Acetylleucine - - 0.9 0.7 0.4 0.7 - - 0.4 0.6 - - - - - - 0.7 0.5 

Amino acid N-Acetyltaurine -0.4 0.1 -0.8 0 -0.7 0 0.1 0.9 -0.2 0.2 -5.9 0 -0.7 0.1 -0.7 0 -1.1 0 

Amino acid Ornithine 4.8 0 -0.4 0.3 -0.2 0.2 -0.5 0.1 -0.6 0 -0.3 0.2 0.2 0.6 0.3 0.1 -0.1 0.7 

Amino acid Pyroglutamic acid -10.3 0 -0.7 0 -0.2 0.5 -0.1 0.2 0.2 0.4 -0.3 0.6 -0.3 0 -0.3 0 -0.6 0 

Amino acid Taurine -0.4 0.1 -0.8 0 -0.7 0 0.1 0.9 -0.2 0.2 -5.9 0 -0.7 0.1 -0.7 0 -1.1 0 

Amino acid Thiamine 5.4 0.4 -1.2 0 -0.9 0 -1.2 0 -0.4 0.1 -0.3 0.3 -0.3 0.5 -0.2 0.4 -1.1 0 

Amino acid Threonine 0.1 0.4 1.4 0.5 0.6 0.9 -1.9 0.6 -0.5 0.1 0.6 0.5 -0.2 0.7 -0.3 0.1 0.7 0.3 

Benzenoid Benzoic acid 0.6 0.9 0.3 0.4 0.1 0.4 0.4 0 0.1 0.6 0.3 0.4 -0.2 0.3 -0.2 0 0.8 0 

Carbohydrate D-Glucose -0.2 0.9 1 0 0.2 0.2 -0.2 0.4 -0.4 0 0.1 0.2 1.1 0 0.9 0 0.8 0 

Carbohydrate Glyceraldehyde3-phosphate -1.5 0 -2.3 0 -1.4 0 0.2 0.3 -0.2 0.2 -1.3 0 0.2 0.9 -0.3 0.3 -1.7 0 

Carbohydrate Mannose6-phosphate -0.3 0.2 -0.7 0.1 -0.2 0.3 0.8 0 0 0.9 0.2 0.3 0.3 0 0.7 0 0.5 0 

Carbohydrate N-Acetyl-glucosamine 1-phosphate -1.3 0 -2.4 0 -1.6 0 -0.1 0.1 -0.6 0 -1.2 0 - - - - - - 

Carbohydrate Threonic acid -0.7 0 -0.9 0 -0.3 0.7 -0.5 0 -0.3 0.1 -0.8 0 -0.5 0 -0.6 0 -1.6 0 

Carboxylic 
acid 

5-L-Glutamyl-taurine 2.2 0 1.2 0 2.1 0 - - - - - - - - - - - - 

Carboxylic 
acid 

Citric acid -0.4 0.1 -1.3 0 -0.3 0.2 0.1 0.8 -0.2 0.9 - - - - - - -0.9 0 

Carboxylic 
acid 

Dodecanedioic acid 0.4 0.7 0.7 0.1 0.5 0.1 1.8 0.4 0.1 0.7 -1.1 0.6 0.3 0.3 0.3 0.2 0.4 0.1 

Carboxylic 
acid 

Fumaric acid - - - - - - - - - - - - 0.3 0.2 0.1 0.1 -2.3 0 

Carboxylic 
acid 

L-Lactic acid -0.6 0 -0.5 0.1 0.4 0.3 0.1 0.7 -0.4 0 -0.5 0.1 -0.1 0.8 0.1 0.3 -0.9 0 
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Carboxylic 
acid 

Phthalic acid - - -1.6 0 -0.7 0.5 -0.5 0.7 0.7 0.3 - - - - - - - - 

Carboxylic 
acid 

Pyruvic acid -0.7 0 -1 0 -0.6 0 1.7 0.5 -0.3 1 0 0.1 -0.5 0 -0.6 0 -1.2 0 

Carboxylic 
acid 

Succinic acid -0.9 0.1 -1.2 0.1 -0.6 0.3 - - - - - - - - - - - - 

Carboxylic 
acid 

Tetradecanedioic acid -0.4 0.1 -0.2 0.3 -0.6 0 - - - - - - 0.2 0.4 0.1 0.5 0.2 0.1 

Carnitine 2-Methylbutyroyl -0.7 0 -2 0 -1.2 0 0.1 1 -0.4 0 -0.9 0 -0.3 0.1 -1.2 0 -3.3 0 

Carnitine Butenylcarnitine - - 1.1 0.3 -0.2 0.6 1.2 0 1.9 0 2.9 0 1.1 0.3 1.5 0 1.2 0 

Carnitine Decanoylcarnitine 0.4 0.8 -0.1 1 0.2 1 0 0.9 -1.4 0.3 1 0.9 -1.5 0.6 -0.9 0.6 -0.7 1 

Carnitine Dodecanedioyl carnitine -1.3 0.4 0.6 0.1 0 1 2.9 0.5 0.9 0.6 - - 1.2 0 1.1 0 1.8 0 

Carnitine Heptadecanoyl carnitine - - -1.8 0.4 1.3 0 0.2 0.7 -1 0.1 -0.4 0.3 0.7 0.7 0.2 0.8 1.2 0 

Carnitine L-Carnitine -0.2 0.8 0 0.5 -0.4 0.1 -0.4 0.4 0.4 0.8 1.7 0.6 1.1 0.1 0.5 0.1 1 0 

Carnitine L-Hexanoylcarnitine 0.6 0.6 1.4 0.3 0 1 -0.4 0.1 -1.3 0 -1.6 0 -0.9 0 1.8 0 1.7 0 

Carnitine L-Palmitoylcarnitine -8.5 0.2 0.3 0.5 0.5 0.5 0.1 0.9 -0.9 0.1 -0.9 0.1 0.1 0.7 1.2 0.1 1.6 0 

Carnitine Pentadecanoyl carnitine -1.6 0.2 -0.5 0.1 0 0.9 0.7 0.2 - - -1.2 0.8 -1.1 0.1 -2.7 0 -1.4 0 

Carnitine Propionylcarnitine -15.4 0 -1.4 0.2 -0.7 0.6 0.1 0.9 0.2 0.9 -0.9 0 0.1 0.6 -0.9 0 -2.8 0 

Carnitine Stearoylcarnitine -1.2 0.9 2 0 2.4 0.1 -0.4 0.9 -1 0.2 -0.7 0.2 1.1 0.2 1.6 0 2.1 0 

Carnitine Tiglylcarnitine -0.4 0.1 -0.3 0 0.2 0.4 0 0.9 -0.2 0.1 -0.5 0 0.1 0.3 0.1 0.3 -1.9 0 

Carnitine trans-2-Dodecenoylcarnitine -1 0.6 0.8 0.8 -0.5 0.2 -0.6 0.8 -0.4 0.1 0.3 0.3 -0.9 0 -0.5 0.1 -0.8 0 

Carnitine trans-Hexadec-2-enoyl carnitine - - -0.7 0.1 0.4 0.9 0.2 0.8 -0.9 0.2 -0.5 0.3 -0.8 0.1 -1.2 0 -1.2 0 

Ceramide Cer(d18:1/16:0) -0.6 0.2 -2.4 0 -0.7 0.1 0.4 0.9 -1.7 0.1 -1.3 0.2 -1.5 0 - - -2.7 0 

Ceramide Cer(d18:1/24:1(15Z)) -2.3 0.1 -2.7 0 -3 0.1 - - - - - - -1.5 0.1 -3.6 0 -3.7 0 

Cholesterol 
ester 

Cholesteryl acetate -1.4 0.6 -0.9 0 -0.8 0.2 -0.1 0.2 -0.4 0.1 -1.3 0 - - - - - - 

Fatty acid Glycerol 3-phosphate -1 0 -1.6 0 -0.7 0 -0.6 0.1 -0.8 0.1 -2 0 -0.1 0.6 0 0.9 -0.8 0 

Fatty acid Linoleamide -2.8 0.1 -1.5 0.6 -0.1 1 -0.1 0.6 -3 0 0 0.7 -1.2 0.4 -0.8 0.4 -1.2 0.3 

Fatty acid Stearic acid -0.4 0.5 0.4 0.4 -0.3 0.6 0.2 0.8 0.7 0.8 0.7 0.7 0.3 0.5 0.3 0.1 0.7 0 

Fatty acid Stearoylethanolamide - - - - - - - - -1.2 0 -1.3 0 -0.8 0.6 -1.3 0.2 -1.4 0.1 

Fatty acid Tetraglyme - - 0.7 0.1 -2 0 0.8 0.4 0.7 0.8 2.4 0.2 0.7 0.1 0.4 0 0.9 0 

Fatty amide Oleamide -2.8 0.1 -1.5 0.6 -0.1 1 -0.1 0.6 -3 0 0 0.7 -1.2 0.4 -0.8 0.4 -1.2 0.3 

Furanone Ascorbic acid 0 1 -0.8 0 -0.2 0.2 1.3 0.5 - - 1.4 0.3 -2.2 0 -1.6 0 -0.3 0.1 
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Inorganic 
compound 

Pyrophosphate 0 0.3 0.9 0 0.5 0.2 0.6 0.3 0.6 0.2 0.9 0 0.9 0.1 1.5 0 1.7 0 

Keto acid Acetoacetic acid 7.7 0 -0.5 0 0 0.2 -0.1 0.4 -0.2 0.1 -0.7 0 -0.2 0.3 -0.4 0 -1.5 0 

Keto acid alpha-Ketoglutaric acid -0.4 0 -1.4 0 0.4 0 0.5 0 0.1 0.2 -0.3 0.1 -0.6 0 -0.4 0 -0.6 0 

Keto acid Levulinic acid - - - - - - - - -1.1 0 -0.6 0 -1.1 0.1 -0.8 0 -2.4 0 

Nucleobase Adenine -1.2 0 -1.9 0 -0.8 0 - - - - - - -0.3 0.2 -1.6 0 -5.2 0 

Nucleoside 2'-Deoxycytidine - - - - - - - - - - - - -0.4 0.5 -0.1 0.7 -0.9 0 

Nucleoside 5'-Methylthioadenosine -1 0.2 -1.4 0 -0.8 0 -1.5 0.2 -0.4 0.6 -0.8 0.8 -0.6 0.1 -0.7 0 -0.9 0 

Nucleoside Adenosine -1 0.2 0.9 0 1.1 0.1 -1.5 0.2 -0.4 0.6 -0.8 0.8 -0.6 0.1 -0.7 0 -0.9 0 

Nucleoside Thymidine - - - - - - - - - - - - -0.3 0.2 0.2 0.9 -2.1 0 

Nucleotide 3'-AMP - - 0.9 0 1.1 0.1 - - - - - - - - - - 0.4 0.9 

Nucleotide CDP-ethanolamine - - - - - - - - - - - - 2.5 0 - - 2.9 0 

Nucleotide Cytidine 5'-diphosphocholine - - - - - - - - - - - - 1.4 0 1.7 0 1.3 0 

Nucleotide NAD 4.7 0.3 -1.5 0 -0.6 0 0.5 0.2 0 0.2 -0.5 0 -0.3 0.2 -0.6 0 -1 0 

Nucleotide NADH -0.5 0 -1.2 0 -0.5 0.1 - - - - -4.7 0 - - - - - - 

Nucleotide Uridine -0.8 0 -1.9 0 -1 0 0.4 0.4 -1.1 0.4 -2 0 -0.6 0.1 -0.7 0 -1 0 

Nucleotide Uridine 5'-diphosphogalactose - - - - - - -0.1 0.2 -0.2 0.1 -0.8 0 - - - - - - 

Nucleotide Uridine 5'- diphosphoglucuronic acid -0.6 0 -1.4 0 -1 0 0.1 0.8 - - - - -0.5 0 -0.9 0 -1.9 0 

Nucleotide Uridine diphosphate-N-acetylglucosamine -0.5 0 -2 0 -1.4 0 -0.9 0 -0.7 0 -1.7 0 -0.5 0 -1 0 -2 0 

Nucleotide Uridine diphosphategalactose -0.9 0 -1.4 0 -0.6 0 - - - - - - -0.7 0 -1.1 0 -2.7 0 

PC 1,2-Dipalmitoleoyl-sn-glycero-3-phosphocholine - - -3.1 0 -2.8 0 0.5 0.3 -1.8 0.1 -1.3 0.1 - - - - - - 

PC LysoPC(14:1(9Z)/0:0) -1.7 0.6 -3.7 0 -2.4 0 - - - - - - - - - - - - 

PC LysoPC(24:1(15Z)) -2.4 0.5 -2.1 0 -1.8 0.2 0.8 0.3 -1.4 0.2 -2.1 0.1 -2.6 0 -4.2 0 -4 0 

PC LysoPC(P-16:0/0:0) -1.9 0.3 -1 0.1 -1.3 0.2 - - - - - - -1.9 0.1 -3.3 0 -3.3 0 

PC PC(16:0/18:1(9Z)) - - -0.8 0.2 -0.7 0.8 0.4 0.3 -1.5 0.3 -1.2 0.1 -0.6 0.1 -2.8 0 -2.9 0 

PC PC(16:0/18:3(9Z,12Z,15Z)) -4.2 0.3 -0.5 0.1 -1.2 0.1 0.5 0.2 - - - - -0.5 0.3 -1.3 0 -1.5 0 

PC PC(18:1(9Z)e/2:0) - - -0.5 0.1 -1.5 0.1 0.5 0.5 -1.4 0.1 -1.9 0 -2.8 0 -4 0 -3.3 0 

PE 
1-oleoyl-2-linoleyl-sn-glycero-3-

phosphoethanolamine 
-0.8 0.1 -2.5 0 -1.8 0 - - - - - - -0.6 0.3 -1.6 0 -3.2 0 

PE 1-Palmitoyl-2-linoleoyl PE -0.8 0.1 -2.7 0 -1.6 0 0 0.9 -0.9 0.3 -0.3 0.5 - - - - - - 

PE LysoPE(18:0/0:0) - - -1.9 0.3 -1 0.4 - - - - -1.2 0.2 -2.1 0 -2.8 0 -1.4 0.1 

PE LysoPE(18:1(9Z)/0:0) -1.2 0 -2.1 0 -1.1 0 0.8 0.1 - - - - - - - - - - 

PE PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) -0.1 0.7 -0.7 0 -0.1 0.3 - - -1.3 0.6 - - - - - - - - 
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PE PE(18:0/20:4(5Z,8Z,11Z,14Z)) - - -0.1 0.1 0.2 0.1 1.4 0.3 -0.5 0.4 0.2 0.6 2.1 0.4 1.7 0.7 1.6 0.4 

PE PE(P-16:0/20:4(5Z,8Z,11Z,14Z)) 0.5 0.7 0 0.5 0.6 0.5 - - -0.3 0.2 - - - - - - - - 

Peptide Carnosine 5.2 0 -0.2 0.4 0 0.8 -0.2 0.3 -0.4 0 -0.4 0 -0.9 0 -1.2 0 -1.5 0 

Peptide L-Glutathione(reduced) -1 0 -3.3 0 -1.4 0 0 0.4 -0.3 0.1 -1.7 0 -0.6 0 -1.2 0 -1.7 0 

Peptide L-Glutathione(oxidized) - - 1.5 0 - - 1.2 0.1 - - - - -0.2 0.6 - - - - 

Peptide Ophthalmic acid 5.9 0.1 -2.2 0 0.2 0.4 0.4 0 0.5 0 0.8 0 1.6 0 1.6 0 1.5 0 

Peptide Pro-leu 8.4 0 -1 0 0.1 1 1 0 1.2 0 1.3 0 -0.2 0.7 -0.1 0.7 -0.5 0 

Phenylketone Kynurenine -1.7 0.3 - - - - - - -0.3 0.4 1.2 0.1 - - - - - - 

Polyamine N-Acetylputrescine -1.3 0 -2.8 0 -2.4 0 - - - - - - - - - - - - 

Polyamine N1,N12-Diacetyl spermine 1.8 0.4 3.1 0 5.7 0 3 0 3.7 0 4.5 0 4.8 0 4.4 0 5.4 0 

Polyamine N1,N8-Diacetyl spermidine 1 0 0.5 0 2.2 0 1.1 0 1.4 0 0.7 0 1.3 0 0.5 0 0.5 0 

Polyamine N8-Acetyl spermidine 8.4 0 0.7 0 2.7 0 1 0.3 1.2 0 0.8 0 1 0 0.6 0 0 0.8 

PUFA Alpha-Linolenic acid - - 0.6 0.9 2 0.4 -0.3 0.6 -1 0.8 0.3 0.6 -1.3 0.5 -1.3 0.6 -1.5 0.5 

PUFA Linolenelaidic acid - - 2.3 1 -1.9 0 0.1 0.5 -1.7 0.2 1 0.3 -1.4 0.6 -2.7 0.2 0 0.5 

Pyridine Pyridoxal - - 0.8 0.1 0.2 0.9 1.3 0.5 1 0.7 1 0.6 0.2 0.6 0.2 0.4 0.2 0.8 

Pyridine Pyridoxamine -1.4 0.2 -2 0 -0.3 0.8 1.8 0.4 0 0.8 0.5 0.7 -0.1 0.4 0.1 0.7 -0.5 0.2 

Pyridine Pyridoxine -0.7 0 -1.5 0 7 0 - - - - -1.1 0.7 0.6 0.9 1.4 0 - - 

Pyrrolidine 1-Methyl pyrrolidine - - 2.1 0 0.9 0.1 -0.3 0.2 0.9 0.6 0.2 0.9 0.9 0 1 0 1.5 0 

Pyrrolidine Pyrrolidine -0.6 0.3 -0.9 0.6 -0.8 0.3 -1 0.7 -2.6 0.1 1.9 0.5 -2.1 0 -0.1 0.6 -0.3 0.2 

SM SM(d18:0/14:0) -3.1 0.1 -2.3 0 -3.1 0.1 - - - - - - -2.3 0 -3.9 0 -4.1 0 

SM SM(d18:1/16:0) -4 0.1 -5.2 0 -3.9 0 1.1 0.3 -1.3 0.3 -1.2 0.1 -2.3 0 -3.4 0 -4.3 0 
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Figure S3. 11 Pearson’s correlation analysis between the relevant metabolites identified within each 
different breast cancer cell line. Pearson’s coefficient is set in a range of 1 to -1, indicative of a 
positive and negative correlation, respectively. 
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Table S3. 11 Effect scores of enriched metabolic genes in MCF-7, MDA-MB-231 and HCC1937 cells 
evaluated through the Dependency Map Portal (DepMap) database. Fitness effect score is based on 
the Chronos algorithm. Fitness Effect Score (FES). 

PATHWAYS   MCF
7 

MDA
-MB-
231 

HCC193
7 

 FULL NAME GENE FES FES FES 

Arginine biosynthesis      
 Glutamine synthetase GLUL -0.13 -0.05 -0.02 
 Glutaminase 2 GLS2 -0.05 -0.11 -0.05 

 Glutamic-oxaloacetic 
transaminase 1 

GOT1 0.03 -0.06 -0.07 

 Glutamic-Pyruvic 
Transaminase 

GPT 0.04 0.11 -0.22 

 Ornithine 
transcarbamylase 

OTC 0.15 0.1 0.14 

 Arginase 1 ARG1 0.23 0.09 0.02 

 Nitric Oxide Synthase 
1 

NOS1 -0.02 -0.14 0 

 Argininosuccinate 
Synthase 1 

ASS1 -0.18 -0.4 -0.56 

 Argininosuccinate 
Lyase 

ASL -0.11 -0.12 -0.05 

Alanine, aspartate and 
glutamate metabolism 

     

 
Succinate-
semialdehyde 
dehydrogenase 

SSDH -0.15 -0.09 -0.24 

 Aminobutyrate 
aminotransferase 

ABAT -0.05 -0.08 0.01 

 Glutamate 
Decarboxylase 1 

GAD1 -0.04 0 -0.1 

 Glutamate 
Dehydrogenase 1 

GLUD1 -0.02 -0.07 0.08 

 Asparagine Synthetase ASNS -0.37 -0.56 -0.4 

 Glycine 
Amidinotransferase 

GATM -0.05 -0.12 -0.18 

Arginine and proline 
metabolism 

     

 Ornithine 
Decarboxylase 1 

ODC1 -0.05 0.05 0.11 

 Spermidine/Spermine 
N1-Acetyltransferase 

SAT2 -0.19 0 -0.18 

Taurine and 
hypotaurine 

     

 Glutamate 
Decarboxylase 1 

GAD1 -0.04 0 -0.1 

 Glutamate 
Decarboxylase Like 1 

GADL1 0.08 -0.12 0.05 

 Gamma-
Glutamyltransferase 6 

GGT6 -0.05 -0.09 -0.01 

Glycine, serine and 
threonine metabolism 

     

 Serine Dehydratase SDS 0.21 0.01 0.02 

 
Serine 
Hydroxymethyltransfer
ase 

SHMT 0.09 -0.11 -0.17 
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 Alanine-Glyoxylate 
Aminotransferase 

AGXT 0 0.06 -0.09 

 Guanidinoacetate 
Methyltransferase 

GAMT -0.07 0.02 0.04 

 Antiquitin 1 ATQ1 -0.15 -0.08 0.02 

 Arginine:glycine 
amidinotransferase 

AGAT -0.05 -0.12 -0.18 

Vitamin B6 metabolism      

 Pyridoxine 5-prime-
phosphate oxidase 

PNPO 0 -0.06 0.04 

Cysteine and 
methionine metabolism 

     

 Betaine-homocysteine 
methyltransferase 

BHMT -0.1 -0.08 0.04 

 Glutathione Synthetase GSS -0.09 -0.01 0.17 

 

ChaC Glutathione 
Specific Gamma-
Glutamylcyclotransfera
se 1 

CHAC 0.1 -0.12 -0.19 

) and DDR defects to olaparib exposure through combined analysis of 

DNA damage and metabolomics profiling. Combined evaluation of the 

DNA damage response and metabolic reprogramming offers new 

opportunities in the development of novel chemotherapies against 

cancer. 

 

4.3. Materials  

4.3.1. Cell lines and chemicals 

 

All cell lines used in this study were purchased from the vendor and 

maintained in accordance with manufacturer instructions. All cell culture 

reagents were obtained from Gibco (Thermo Fisher Scientific). MCF7 

(RRID:CVCL_0031, Sigma, EACC collection) and MDA-MB-231 cells 

(RRID:CVCL_0062, ATCC) were purchased and maintained in 

Dulbecco’s Modified Eagle Medium (DMEM, high glucose) 

supplemented with 10% v/v FBS (high glucose, Invitrogen), 1% v/v non-

essential amino acids (NEAA) and 1% v/v penicillin-streptomycin 

(Invitrogen). Corresponding cell line origins, hormone receptor status 

and mutational profiles are included in Table S3. 2. HCC1937 cells 

obtained from ATCC (RRID:CVCL_0290) were maintained in RPMI 

supplemented with 10% v/v FBS and 1% v/v penicillin-streptomycin. All 
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cell lines were maintained at 37°C in a pre-humidified atmosphere 

containing 5% v/v CO2 and used within ten passages for the purposes 

of this work (passage 2-10). Olaparib (SantaCruz Biotechnology Inc.) 

was prepared as a 100 mM stock solution in DMSO, aliquoted and stored 

at -20°C until use. γH2AX, p53BP1 primary antibodies (Cell Signalling 

Technologies) were used for foci immunostaining alongside the Alexa 

Fluor® 488-conjugated secondary antibody (Fisher Scientific). 

 

4.4. Methods 

4.4.1. Cell Viability Assays 

 

MCF-7, MDA-MB-231 and HCC1937 cells undergoing exponential 

growth were seeded at a density of 4,000 cells/well in 96 well plates and 

incubated overnight to facilitate cell attachment. On the following day, 

cells were exposed to either blank growth medium (control) or growth 

medium containing different concentrations of olaparib (treatment 

medium) ranging from 0.01-500 µM for seven days at 37°C and 5% v/v 

CO2. Treatment media were replaced every three days with treatment 

medium. Following a seven-day incubation, cell viability was measured 

using CellTiter 96® Aqueous Non-Radioactive Cell Proliferation Assay 

(Promega) (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetrazolium (MTS) reagent. The resultant 

absorbance at 490 nm was measured using a GM3500 Glomax® 

Explorer Multimode Microplate Reader (Promega).  

 

Growth curves represent percentage cell growth following treatment with 

different concentrations of olaparib and are plotted as a semi-log dose-

response curve. The half maximal inhibitory concentration (IC50) was 

determined using a linear regression model. Statistical analysis was 

performed using GraphPad Prism (RRID:SCR_002798, v.9.0.1). Three 
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independent biological replicates (five wells per treatment concentration) 

were performed for each cell line. 

 

4.4.2. Immunostaining for γH2AX and p53BP1 

 

Foci immunodetection for γH2AX and p53BP1 was performed in both 

control (growth medium) and for cells treated with olaparib (IC10, IC25 and 

IC50 doses) for seven days. Briefly, cell monolayers were fixed in chilled 

4% w/v formaldehyde containing 2% w/v sucrose in PBS, followed by 

fixation in ice-cold methanol (100% v/v). Subsequently, cells were 

permeabilized in 0.25% v/v Triton X-100 in PBS, blocked with 5% v/v 

goat serum/5% w/v BSA, immunoprobed with either a primary rabbit anti- 

γH2AX antibody (RRID:AB_420030) (1:1000) or primary rabbit anti-

P53BP1 (1:200) antibody (RRID:AB_11211252, CST #2675 for p53BP1) 

overnight at 4°C. Cell monolayers were treated with goat, anti-rabbit 

Alexa Fluor® 488 conjugated secondary antibody and counterstained 

with DAPI. Image acquisition was carried out using an Invitrogen EVOS 

Auto Imaging System (AMAFD1000-Thermo Fisher Scientific) with a 

minimum of 100 cells imaged per treatment condition. Resultant foci 

images were analysed in Cell Profiler (v.4.2.1.) using a modified version 

of the speckle counting pipeline. 

 

4.4.3. Sample preparation and metabolite extraction 

 

MCF-7, MDA-MB-231 and HCC1937 cells were seeded at a density of 2 

x 106 cells per well in 6-well plates, and exposed to growth medium 

containing olaparib at IC10, IC25 and IC50 doses, as determined from the 

MTS assay (n=5 per treatment concentration). Following exposure to 

olaparib, the growth medium was aspirated from each well, centrifuged 

to remove cell debris, and stored at -80°C. Next, treated cells were 

washed with pre-chilled PBS, with the metabolites quenched and 
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extracted in a final volume of 1.5 ml pre-chilled (-80°C) mixed solvent 

(methanol:acetonitrile:water=50:30:20, v/v). Resultant cell pellets were 

collected, and submerged in liquid nitrogen, vortexed and sonicated for 

3 min in an ice-water bath. This procedure was performed in triplicate. 

Resultant extracts were centrifuged at 13,000x g for 10 min at 4°C and 

the pellets were retained for protein quantification using the Bradford 

assay. The resultant supernatant was collected, and dried with a Speed 

vac centrifuge (Savant-SPD121P). Dried metabolite pellets were 

reconstituted in acetonitrile:water (50:50, v/v) at volumes normalized to 

the relative protein content. Quality control (QC) samples were prepared 

by pooling samples across all control and treatment groups. Solvent 

blank and QC samples were inserted in analytical batch after every five 

samples to assess the stability of detecting system (Figure S3. 2). 

 

4.4.4. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) 

 

Metabolite separation was performed on a binary Thermo Vanquish 

ultra-high-performance liquid chromatography system where 5 µl of 

reconstituted cellular extract was injected on to a Thermo Accucore 

HILIC column (100 mm x 2.1 mm, particle size 2.6 µm). The temperature 

of the column oven was maintained at 35°C while the autosampler 

temperature was set at 5°C. For chromatographic separation, a 

consistent flow rate of 500 µl/min was used where the mobile phase in 

positive heated electrospray ionisation mode (HESI+) was composed of 

buffer A (10 mM ammonium formate in 95% acetonitrile, 5% water with 

0.1% formic acid) and buffer B (10 mM ammonium formate in 50% 

acetonitrile, 50% water in 0.1% formic acid). Likewise, in negative 

ionisation mode (HESI-) buffer A (10 mM ammonium acetate in 95% 

acetonitrile, 5% water with 0.1% acetic acid) and buffer B (10 mM 

ammonium acetate in 50% acetonitrile, 50% water with 0.1% acetic 
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acid). The elution gradient used for the chromatographic separation of 

metabolites is included in supplementary information (Table S3. 3). 

 

A high-resolution Exploris 240-Orbitrap mass spectrometer 

(ThermoFisher Scientific) was used to perform full scan and 

fragmentation analyses. Global operating parameters were set as 

follows: spray voltages of 3900 V in HESI+ mode, and 2700 V in HESI- 

mode. The temperature of the transfer tube was set as 320°C with a 

vaporiser temperature of 300°C. Sheath, aux gas and sheath gas flow 

rates were set at 40, 10 and 1 Arb, respectively. Top-5 Data dependent 

acquisitions (DDA) were performed using the following parameters: full 

scan range was 70 – 1050 m/z with a MS1 resolution of 60,000. 

Subsequent MS/MS scans were processed with a resolution of 15,000. 

High-purity nitrogen was used as nebulising and as the collision gas for 

higher energy collisional dissociation. Further details are included in 

supplementary information (Table S3. 5). 

 

4.4.5. Mass Spectrometry Data Processing 

 

Raw data files obtained from Thermo Scientific XcaliburTM software 4.2 

were imported into Compound DiscovererTM 3.2 software where the 

“Untargeted Metabolomics with Statistics Detect Unknowns with ID 

Using Online Databases and mzLogic” feature was selected (Table S3. 

5Error! Reference source not found.). The workflow analysis performs 

retention time alignment, unknown compound detection, predicts 

elemental compositions for all compounds, and hides chemical 

background (using Blank samples). For the detection of compounds, 

mass and retention time (RT) tolerance were set to 3 ppm and 0.3 min, 

respectively. The library search was conducted against the mzCloud, 

Human Metabolome Database (HMDB) and Chemical Entities of 

Biological Interest (ChEBI) database. A compound table was generated 
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with a list of MSI2 level putative metabolites (known and unknown). 

Among them, we selected all the known compounds fully matching at 

least two of the annotation sources. The selected metabolites were then 

used to perform pathway and statistical analysis. 

 

4.4.6. Pathway Analysis with MetaboAnalyst  

 

Prior to analysis of the metabolic pathways with MetaboAnalyst 5.0 

(https://www.metaboanalyst.ca/), a HMDB identification code was 

assigned to each selected metabolite. A joint pathway analysis was 

performed by integrating the genes relative to each cell line (Table S3. 2) 

with the list of ID compounds and their associated Log2 Fold change 

values. The integration method combined both genes and metabolites 

into a single query, then used to perform the enrichment analysis. This 

latter was based on a hypergeometric test. Finally, important nodes 

(compounds) were scored based on their betweenness centrality, and 

pathway analysis results were generated. 

 

4.4.7. Statistical Analysis  

 

All data are presented as mean ± standard deviation (n≥5). For cell 

viability and immunofluorescence quantification data, the Shapiro 

normality test was performed (Table S3. 4). For metabolomics analysis, 

Principal Component Analysis (PCA) was performed to test analytical 

reproducibility of QC injections, reduce the dimensionality of our data 

and determine the metabolic profiles of the different sample groups. 

Differential analysis was used to compare differences between control 

and treatment groups and plotted as a Volcano plot (log-fold change vs. 

-log10 p-value). Peak areas were log10 transformed and p values 

calculated for the sample group by two-tailed t-test test assuming that all 
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data were normally distributed. A p value<0.05 and fold-change of 1.5 

was deemed to be statistically significant.  

 

4.5. Results 

4.5.1. Olaparib sensitivity analysis 

 

To determine the olaparib dose range for subsequent foci and 

metabolomics experiments, we measured the sensitivity of MCF7, MDA-

MB-231 and HCC1937 cell lines to olaparib exposure over a seven day 

treatment duration. The rationale behind exploring sensitivity to olaparib 

in these cell lines, was to perform a comparison between two triple-

negative (MDA-MB-231 and HCC1937) and a non-triple-negative (MCF-

7) cell line. 

 

 

 

Figure 4. 1 Corresponding MTS dose-response curves for MCF7, HCC1937 and MDA-MB-231 

cells treated with ascending doses of olaparib (0.1-500 µM) for seven days. The corresponding 

R2 values for fitted dose-response curves in MCF7 (IC50= 10 µM), MDA-MB-231 (IC50= 14 µM), and 

HCC1937 (IC50= 150 µM) cells were 0.89, 0.91 and 0.85, respectively. The equation for the non-linear 

regression curve is Y= Bottom – (Top – Bottom)/(1+(X/IC50)). IC50 is the concentration of drug that 

gives a response halfway between Bottom and Top. This is not the same as the response at Y=50. 

 

Our results show that exposure to olaparib caused a reduction in cell 

viability in all cell lines in a dose-dependent manner (Figure 4. 1). We 

observed superior efficacy of olaparib in reducing cell viability in both 

MCF7 and MDA-MB-231 cells, with a calculated half maximal inhibitory 

concentration (IC50) of 10 µM and 14 µM, respectively. However, in the 
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case of HCC1937 cells, a higher concentration of olaparib was required 

to achieve the same reduction in cell viability (150 µM), indicating a lower 

efficacy of response to olaparib in this cell line. 

 

4.5.2. Exposure to olaparib induces dose-dependent formation of γH2AX and 

53BP1 foci in breast cancer cells  

 

PARP inhibition induced by olaparib exposure results in the 

accumulation of DNA damage in cells by compromising their DDR 

mechanisms. Therefore, we next investigated the extent to which 

olaparib exposure at various doses (IC10, IC25 and IC50- determined from 

MTS assays) promotes the accumulation of DNA double strand breaks 

(DSBs) in MCF-7, MDA-MB-231 and HCC1937 cell lines. Key markers 

for DNA DSB formation include phosphorylated histone H2 variant H2AX 

(γH2AX) [19] and the damage sensor p53-binding protein 1 (p53BP1), 

which are rapidly recruited to sites of DNA damage and their 

accumulation is directly proportional to the number of DSB lesions [20]. 

To measure the extent of DNA DSB formation, we performed 

immunofluorescence of p53BP1 and γH2AX foci. 
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Figure 4. 2 The formation of p53BP1 foci in response to treatment with either growth medium 

or medium containing olaparib. Representative images of immunolabelled P53BP1 foci (red), DAPI 

(blue) nuclear counterstain and composite (p53BP1 (red) and DAPI (blue)) in MCF-7, MDA-MB-231, 

and HCC1937 cells treated with olaparib for seven days (a, c, e). Corresponding p53BP1 foci counts 

determined using Cell Profiler (b, d, f). 9 repeats with on average >100 cells per each sample. p-values 

have been determined through ANOVA test. Dunnett’s multiple comparison test was used as a follow 

up to ANOVA test and the p-values were represented as: non-significant=ns, 0.05=*, 0.005=**, 

0.0005=***, >0.00005=****. 
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Figure 4. 3 The formation of γH2AX foci formation in response to treatment with either growth 

medium or medium containing olaparib. Representative images of immunolabelled γH2AX foci 

(green), DAPI (blue) nuclear counterstain and composite (γH2AX and DAPI) in MCF-7, MDA-MB-231, 

and HCC1937 cells treated with for seven days (a, c, e). Corresponding γH2AX foci counts determined 

using Cell Profiler (b, d, f). (>100 cells per sample). Dunnett’s multiple comparison test was used as a 

follow up to ANOVA and corresponding p-values were represented as: non-significant=ns, 0.05=*, 

0.005=**, 0.0005=***, >0.00005=****. 

 

 

Based on our results, p53BP1 and γH2AX foci levels increased in a 

dose-dependent manner in both MCF7 and MDA-MB-231 cells in 
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response to ascending doses of olaparib (Figure 4. 2a,b,d,e; Figure 4. 

3a,b,d,e). However, in HCC1937 cells, a significant increase in foci 

numbers was not observed in comparison to increased foci numbers with 

ascending olaparib doses for MCF-7 and MDA-MB-231 cells (Figure S3. 

3c; Figure S3. 4c). Generally, a higher number of both p53BP1 (mean 

>10 foci per cell) and γH2AX (mean > 20 foci per cell) foci were observed 

in the HCC1937 cell line, compared to the MCF7 and MDA-MB-231 cells, 

where a mean of <10 foci per cell were measured for both markers. 

These results are consistent with the dose-dependent sensitivity of 

MCF7 and MDA-MB-231 cells in response to olaparib exposure, further 

confirming cell-line dependent response to olaparib exposure. 

 

4.5.3. Biomolecular pathways altered in response to olaparib exposure vary 

across different cell lines 

 

To comprehensively measure the extent of variation induced by olaparib 

exposure in MCF-7, MDA-MB-231 and HCC1937 cell lines, we profiled 

their metabolome using an in-house untargeted liquid chromatography-

mass spectrometry-based metabolomics pipeline (Figure S3. 5a). After 

data acquisition, data processing and analysis were performed in 

Compound Discoverer 3.2. First, we used principal component analysis 

(PCA) to visualise and interpret the clustering of quantified metabolite 

data to examine global differences between treatment groups and cell 

lines examined, which was followed by pairwise PCA between control 

and treated groups across positive and negative analysis modes (Figure 

4. 4).  
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Figure 4. 4 Statistical analyses of global metabolic features identified in MCF7, MDA-MB-231 

and HCC1937 upon exposure to IC10, IC25 and IC50 olaparib doses for seven days. Data acquired 

in positive and negative ionization mode. For each treatment group, five replicates were used. Data 

points in the two-dimensional PCA score plot were central scaled. a) PCA pairwise analysis and 

differential analysis of metabolites altered in IC50-treated cells, ellipses represent the 95% confidence 

interval. b) Volcano plots displaying enriched (blue) and depleted (grey) metabolic features by 

representing the log2 fold change in altered features and the -log10 adjusted p-values with cut off 

values selected at >1.5 and <0.05, respectively. 

 

 

Pooled quality control (QC) data confirm the stability of the data 

acquisition system across all the measurements performed in positive 

and negative ionization acquisition modes (Figure S3. 5b). Distinct 
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clustering patterns were observed, with better separation for the IC50 

olaparib treatment dose across all cell lines (Figure 4. 4a,Figure S3. 6). 

Volcano plots indicate the differential number of metabolic features that 

are significantly altered following exposure to olaparib, relative to control 

(Figure 4. 4b,Figure S3. 7). From a metabolic perspective, we observed 

that HCC1937 (BRCA1-mutated) cells were the most susceptible to 

exposure at the IC50 olaparib treatment dose, while the MCF7 cells 

showed a higher number of significantly altered metabolic features at the 

IC25 olaparib treatment concentration. Together, these findings show a 

differential dose- and cell line- dependent metabolic response to olaparib 

exposure. Similar results were obtained by processing the data with 70% 

annotation threshold and increasing the number of adduct ions (Figure 

S3. 8). 

 

4.5.4. Amino acid and lipid metabolism are significantly altered in response to 

olaparib exposure  

 

To analyse specific biomolecular pathways altered by olaparib exposure, 

we used MetaboAnalyst to identify key metabolic pathways significantly 

perturbed by olaparib treatment, and performed enrichment analysis for 

both control and treated samples (Figure 4. 5,Figure S3. 9). Among the 

pathways ranked in the top ten, we selected altered pathways with a 

corresponding pathway impact >0.1, and a p-value <0.05. 
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Figure 4. 5 Pathway enrichment analysis of MCF7 (10 µM), MDA-MB-231 (14 µM) and HCC1937 

(150 µM) cells following a seven-day exposure to olaparib. Enrichment analysis was based on the 

hypergeometric test. Topological analysis was based on betweenness centrality. The tight integration 

method was used by combining genes and metabolites into a single query. A p<0.05, and pathway 

impact >0.1 were deemed significant. 

Across all cell lines examined, the top ten putative pathways significantly 

altered in Metaboanalyst (see Figure 4. 5) were based on amino acid 

(arginine biosynthesis, glutamine, glycine, serine and threonine 

metabolism) and lipid metabolism (butanoate metabolism). Following the 

identification of metabolic pathways altered by olaparib exposure, we 

constructed a Venn diagram (Figure S3. 10) to outline common 

overlapping and cell line-specific altered metabolic features.  

 

Overlapping pathways are mostly represented by amino acid 

metabolism (glutamine, glutamate, aspartate, alanine, arginine and 

proline), suggesting a strong reliance of breast cancer cell metabolism 

on amino acids under baseline conditions (control samples). Upon 

olaparib exposure, the same pathways (amino acid metabolism) were 

among the most significantly-altered across all cell lines, while fatty acid 

(butanoate metabolism) and vitamin B6 metabolism were only 

significantly perturbed in MCF-7 cells. 
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Mummichog software was also employed to putatively design metabolic 

pathways. Based on our results, only a few pathways matched the ones 

revealed from MetaboAnalyst (Table S3. 9). Considering that our data 

have a MSI2 level of metabolites annotation, while Mummichog is better 

suited for MSI level 3 putative IDs, we decided to continue the analysis 

using MetaboAnalyst. 

 

Next, we explored individual metabolites that were associated with 

significantly altered metabolic pathways in response to olaparib 

exposure and evaluated relative changes in their levels between control 

and treatment samples. These results are presented through a heatmap 

clustering analysis (Figure 4. 6). A correlation analysis between each 

metabolite is shown in Figure S3. 11, and a wider list of compounds 

specific for each cell type is provided in Table S3. 10. 
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Figure 4. 6 Heatmap cluster analysis of relevant metabolites associated with the pathways 

altered upon exposure to olaparib in MCF7 (10 µM), MDA-MB-231 (14 µM) and HCC1937 (150 µM) 

cells for seven days. Clustering and distance function are Ward and Canberra, respectively. 

Normalised areas indicate chromatographic peaks areas that have been normalised based on the QC 

samples to compensate for batch effects. 

 

Multiple amino acids (glutamine, glutamate, arginine, proline, 

methionine, glycine, threonine, taurine, and hypotaurine) were found to 

be depleted following olaparib exposure (relative to control) in all cell 

lines examined. Arginine and proline metabolism were significantly 

depleted by olaparib exposure, with depletion of their derived 

polyamines detected in all cell lines examined. Conversely, catabolic 

products of arginine and proline metabolism (N8-Acetylspermidine, N1-

N8-Diacetylspermidine, and N1-N12-Diacetylspermine) were enriched. 



- 159 - 
 

Elevated levels of serine were observed in MCF7 and MDA-MB-231 

cells, while depletion of serine levels was seen in HCC1937 cells.  

 

Alpha-ketoglutarate (α-KG- glutamine-derived intermediate of the TCA 

cycle) was enriched in MCF7 and depleted in MDA-MB-231 and 

HCC1937 cells. A negative correlation was observed between α-KG and 

glutamine levels, and a positive correlation between α-KG, and citric and 

fumaric acid (TCA cycle intermediates). Aspartate (a TCA cycle product), 

accumulated in the KRAS-mutant MDA-MB-231 cells, while aspartate 

depletion was observed in MCF7 and HCC1937 cells. Glucose levels 

were significantly elevated relative to control samples in HCC1937 cells. 

Asparagine (a byproduct of aspartate) was absent in MDA-MB-231 cells, 

while its enrichment was detected in MCF7 and HCC1937 cells. In 

parallel, accumulation of AMP was observed in both MCF7 and 

HCC1937 cell lines, while it was absent in MDA-MB-231 cells and 

enrichment of PPi was detected in all cell lines examined following 

olaparib exposure. 

 

In the case of lipid metabolism, we observed a global depletion of 

phosphocholines (PC) and phosphoethanolamines (PE) in all cell lines 

following olaparib treatment. Acylcarnitine levels varied across the cell 

lines, with an overall enrichment of long (C14 – C21) and very-long chain 

acylcarnitines (>C22) in all cell lines treated with olaparib. Moreover, we 

observed enriched alpha-linoleic acid (a polyunsaturated fatty acid-

PUFA) levels in MCF7 and MDA-MB-231 cells, which was absent in 

HCC1937 cells. 

 

Compared to non-treated cells, elevated levels of glucose were detected 

in all cell lines studied following olaparib treatment, while downregulation 

of most nucleobases was observed. Finally, NAD+ downregulation was 

detected in all cell lines treated with olaparib. 
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An overview of the metabolic features altered in response to olaparib 

exposure is given in Figure 4. 7, where we mapped cell line differences 

in metabolite levels through the Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) database. Moreover, in the figure we represented the 

fitness effect score of metabolic enzymes relative to each Olaparib-

treated cell, which have been obtained through a cross comparison with 

the Dependency Map Portal (DepMap; Table S3. 11). The fitness effect 

score measures the effect of knocking out a gene on cell proliferation. A 

negative score indicates that the knocked-out gene causes a slower cell 

proliferation, while a positive score is indicative of a consequent 

enhanced proliferation [21]. 

 

 

Figure 4. 7 A summary of putatively identified metabolic pathways altered in response to 

olaparib exposure. Significantly altered features with a Log2 fold change of >1.5 (blue-enriched and 

grey-depleted). Fitness effect score of metabolic enzymes (light-blue boxes) in relation to PARP 

expression in each cell line. Positive and negative scores are in green and red, respectively. MCF-7 (

), MDA-MB-231 ( ), and HCC1937 ( ). Fitness effect score is based on the Chronos algorithm. 
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4.6. Discussion 

 

PARP inhibitors have shown promising results in the treatment of 

metastatic breast cancers harbouring germline BRCA1/2 mutations [22, 

23]. Recent clinical studies have shown evidence of PARP inhibitor 

efficacy in the management of breast cancer, irrespective of tumour 

BRCAness [24]. Prior work has shown that BRCA1-mutated cells 

carrying a TP53 mutation are resistant to treatment with PARP inhibitors 

[25]. Therefore, additional factors beyond BRCAness may govern 

sensitivity to PARP inhibition.  

 

In this study we analyzed the sensitivity of two triple-negative (MDA-MB-

231 and HCC1937) and MCF-7 (ER+, PR-, HER2-) cell lines to olaparib 

PARP inhibition (PARP1/2). The rationale for selecting these cell lines 

was to explore how their different genetic profiles (see Table S3. 2) define 

the observed differential biomolecular perturbations in response to 

olaparib treatment. Initially, we examined the responsiveness of MCF-7, 

MDA-MB-231 and HCC1937 cell lines to olaparib exposure using the 

MTS cell viability assay (Figure 4. 1). Our results show differential 

sensitivity to olaparib exposure across the cell lines examined, with 

MCF-7 and MDA-MB-231 showing sensitivity to olaparib treatment at 

lower micromolar concentrations, and the BRCA1-mutant HCC1937 cell 

line showing less sensitivity (IC50- 150 µM). These findings are in 

agreement with previous reports of HCC1937 resistance to PARP 

inhibition, where the identification of predictive biomarkers of response 

to PARP inhibitor treatments was recommended beyond BRCA1/2 

status [25].  

 

Our analysis of γH2AX and p53BP1 DNA DSB immunolabelled foci 

(Figure 4. 2, Figure 4. 3) showed a higher occurrence of DNA damage 



- 162 - 
 

foci in HCC1937 cells in comparison with MCF-7 and MDA-MB-231 cells 

with wild-type BRCA status. These observations suggest that BRCA 

status does not necessarily translate to olaparib sensitivity, and 

additional DDR components may define responsiveness. At present, 

routine clinical decision making surrounding the selection of treatment 

interventions are based on BRCA status, anatomical location, hormone 

receptor status and tumour stage, with very limited attention given to 

other mediators of DDR- namely homologous recombination- known to 

confer a BRCAness phenotype similar to BRCA 1 or 2 loss. Several 

recent studies have used whole-genome sequencing or the integration 

of homologous recombination panel scoring systems to provide an 

additional framework for predicting responders to PARP inhibitor 

treatment [26, 27].  

 

Genetic biomarkers are routinely used in the clinical stratification of 

breast cancers and predicting treatment-emergent resistance [28]. While 

genome-wide studies have improved patient stratification efforts, they 

lack the potential to account for functional phenotypic effects resulting 

from protein expression levels, or gain- or loss of function effects. 

Metabolomics has emerged in the past decade as an additional research 

toolbox for studying potential biomarkers of breast cancer with a range 

of applications ranging from early detection to the discovery of new 

metabolites and prognostic classification of patients with breast cancer 

[29].  

 

Our goal in the present study was to apply combined analysis of DNA 

damage foci formation with global untargeted mass-spectrometry based 

metabolomics to map the metabolic changes occurring following 

exposure to olaparib. We examined the baseline differences in cellular 

metabolism across the cell line panel and extended this evaluation to 

examine cell line dependent response to olaparib treatment. From the 
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pathway enrichment analysis of baseline cells non-treated with Olaparib 

we found overlapping metabolic pathways (alanine, aspartate, 

glutamine, arginine, proline, glycine, serine, and threonine metabolism) 

enriched across all three breast cancer cell lines studies, and metabolic 

pathways that were unique to specific cell lines (MCF7: sphingolipid and 

glycerophospholipid metabolism; MDA-MB-231: taurine and hypotaurine 

metabolism; HCC1937: glyoxylate and dicarboxylate metabolism) 

(Figure S3. 1, Table S3. 1). 

 

Our analysis of metabolites significantly altered in response to olaparib 

treatment correlate with reports from Bhute et al, where metabolic 

markers of PARP inhibition were reported as changes in amino acid 

metabolism (glutamine and alanine), downregulation of osmolyte levels 

(taurine, and GPC), phosphocreatine, lactate and pyruvate in MCF7 cells 

[30]. We reported downregulation of those metabolites also in the MDA-

MB-231 and HCC1937 cells, while low levels of fumarate were observed 

only in the HCC1937 cells (Figure 4. 6). Bhute et al. also reported 

increased NAD+ levels for cells treated with veliparib. In our results 

NAD+ levels increased in the MCF7 cells treated with olaparib at the IC10 

treatment concentration, accompanied by a decrease in NAD+ levels at 

ascending concentrations of olaparib. Reduced levels of NAD+ were 

also detected in the MDA-MB-231 and HCC1937 cells at all treatment 

concentrations. Recent studies have shown that in Triple Negative 

Breast Cancer (TNBC) cells, olaparib enhances the signalling pathways 

of other NAD+-dependent deacetylase (i.e., sirtuins) [30, 31]. These 

findings are in agreement with our observation of depleted acetyl-amino 

acid levels and enrichment of methyl-pyridines, -pyrrolidines, and -

nucleosides. Further studies are needed to confirm the divergence of 

NAD+ flow towards alternative pathways and its association with specific 

breast cancer subphenotypes. 
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Glutamine- a precursor for protein, nucleotide, and lipid biosynthesis- is 

a fundamental amino acid in breast cancer cell metabolism, playing a 

pivotal role in providing anaplerotic intermediates for the tricarboxylic 

acid (TCA) cycle [32]. Previous reports have indicated a reduction of 

glutamine levels only for the TNBC cells after treatment with veliparib, 

and in the MCF7 cells only in combination with other DDR inhibitors [16]. 

Our results show reduced glutamine levels in all cell lines treated with 

olaparib, suggesting increased glutamine utilisation. Once internalised 

by cells, glutamine can be converted to glutamate and alpha-

ketoglutarate (α-KG). α-KG- a by-product of isocitrate- is oxidised in the 

TCA cycle through a reaction catalysed by isocitrate dehydrogenase 

(IDH), which is frequently mutated in cancer. Several studies have 

studied α-KG as an oncometabolite, where elevated levels induce the 

reversal of enhanced glycolysis through downregulation of the Hypoxia-

inducible factor (HIF1), which following PARP inhibition leads to cell 

death [33, 34]. Recent findings have shown that mutant IDH - and the 

consequent synthesis of aberrant α-KG forms - confers a BRCAness 

phenotype [35], downregulating the expression of the DNA repair 

enzyme Ataxia-telangiectasia mutated (ATM) kinase [36], altering the 

methylation status of loci surrounding DNA breaks [37]. Together, these 

alterations lead to homology-dependent repair (HDR) impairment and 

increase susceptibility to PARP inhibition. On this basis, the reduced α-

KG levels observed in olaparib-treated MDA-MB-231 and HCC1937 

cells shows the basis for potential resistance to the anti-proliferative 

effects of olaparib. The increased utilisation of α-KG by HCC1937 cells, 

is paralleled by an increased consumption of serine at ascending doses 

of Olaparib. These observations are consistent with reports that in 

BRCA1-mutated TNBC cell lines, approximately 50% of α-KG results 

from the flux of serine metabolism [38].  
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Glutamine is also a source of nitrogen groups for the synthesis of 

nucleobases and nucleotides, either directly or through a process 

involving the transamination of glutamate and the TCA cycle-derived 

oxaloacetate that generates aspartate [39-41]. Our results show low 

levels of glutamine are associated with overall reduction in nucleobase 

and nucleotide levels. MCF7 and HCC1937 cells showed accumulation 

of adenosine monophosphate (AMP), which represents a depleted 

energy and nutrient status of the cells known to activate the metabolic 

sensor AMP-activated protein kinase (AMPK) leading to cell growth 

inhibition [42]. Different studies have considered activation of AMPK a 

metabolic cancer suppressor and an attractive therapeutic target for 

TNBC [43], however, its signalling network in response to PARP 

inhibition in different breast cancer cells needs to be established. 

Opposite to what observed by Bhute et al, Aspartate, a byproduct of the 

TCA cycle, accumulated in the MDA-MB-231 cells after PARP inhibition 

compared to its reduction in the MCF7 and HC1937 cells. Lowered 

plasma aspartate levels have been diagnosed in breast cancer patients 

suggesting an increased tumour utilisation of this metabolite [44]. 

Moreover, we observed that aspartate metabolism is relevant both in the 

baseline model and in response to olaparib, which suggests a role of this 

metabolite in regulating the different metabolic phenotypes of breast 

cancer cells. However, its role has been poorly investigated and little is 

known about its association with PARP inhibition.  

Among the pathways of aspartate utilisation, asparagine is converted 

through the enzyme asparagine synthetase (ASNS). The reaction 

requires glutamine as a substrate and consumption of adenosine 

triphosphate (ATP) to produce adenosine monophosphate (AMP) and 

pyrophosphate (PPi). Physiological levels of asparagine occur at levels 

of <0.05 mM in human plasma [45]. Cancer cells harbouring mutant 

KRAS (e.g. MDA-MB-231), possess lower ASNS expression levels, 

leading to lower baseline aspartate levels explaining the rationale for the 



- 166 - 
 

lack of aspartate detection in MDA-MB-231 lines [46]. In breast cancer 

cells the increased bioavailability of asparagine promotes metastatic 

progression [47], due to its role in protein synthesis and regulation of 

amino acid homeostasis [48]. We found elevated asparagine levels in 

olaparib-treated MCF7 and HCC1937 cells, suggesting a role for 

asparagine in the observed responses to exposure to PARP inhibitor.  

 

Beyond asparagine synthesis, aspartate amidation through ASNS 

presents a source of amino building blocks for the synthesis of arginine 

in the urea cycle, which is in turn responsible for the synthesis of 

polyamines catalysed by ornithine decarboxylase (ODC). Polyamine 

accumulation previously has been correlated with the increased 

proliferation of both hormone-dependent and independent breast cancer 

cells [49], and recently found to contribute to BRCA1-mediated DNA 

repair [50]. Moreover, metabolic profiling of plasma samples from 

patients with TNBC revealed an increase of diacetyl spermines 

associated with elevated expression of MYC, a well-known oncogene 

driving TNBC development and proliferation. Here, we found elevated 

diacetyl spermine levels following olaparib treatment in both TNBC and 

non-TNBC cells, suggesting an upregulation of polyamine catabolism, 

irrespective of cell line BRCA- and hormone receptor- status. Parallel to 

their relevance in cellular metabolism, amino acids serve also as 

biological buffers through regulation of cellular pH. Low extracellular pH 

is associated with positively charged amino acids and a known hallmark 

of cancer arising from enhanced glycolysis, production and altered 

lactate metabolism, resulting in altered mTOR pathway activation, 

ultimately regulating cancer cell metabolism [51, 52].  

 

Glutathione (GSH), is involved in the protection against ROS and 

regulation of intracellular redox homeostasis. Elevated GSH levels have 

previously been reported in TNBC compared to luminal breast cancers, 
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suggesting the relevance of GSH to our observations of lower sensitivity 

to olaparib in TNBC cell lines [17, 53].  

 

Lipids mediate various cellular biological functions, including energy 

storage, cell membrane structural composition and signal transduction, 

the increased biosynthesis of which is a marker of metabolic rewiring 

observed in malignant breast cancers [54, 55]. Our findings show 

downregulation of fatty acid biosynthesis following olaparib treatment, 

with a reduction in phospholipid levels including 

lysophosphatidylcholines and glycerolphosphocholines in all cell lines. 

Poly-unsaturated fatty acids (PUFAs), have previously been implicated 

in MCF7 and MDA-MB-231 cell apoptosis through the induction of lipid 

peroxidation and altered cellular redox state [56]. Moreover, elevated 

PUFA levels have been associated with the proteolytic cleavage of 

PARP and its inhibition, leading to cell death [57]. On this basis, the 

reduced PUFA levels observed in HCC1937 cells may indicate their 

resistance to olaparib treatment. Only a limited number of studies have 

reported a correlation between PUFAs and breast cancer 

subphenotypes, requiring further validation by additional studies. 

 

Future targeted metabolomics studies using additional TNBC cell lines 

and clinical tumour clinical specimens are required to validate our 

observations. Validation of our findings could define prognostic 

biomarkers that will aid diagnose and enable the implementation of 

precision medicine in the management of breast cancer. 

 

4.7. Conclusion 

 

Our data show differential sensitivity of breast cancer cell lines to 

olaparib treatment that was dose-dependent and demonstrated the 

increased sensitivity of TNBC cells to DNA damage foci accumulation. 
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The application of metabolomics to the study of breast cancer remains 

in its infancy, with only a handful of studies reporting combined 

metabolomics and phenotypic analyses. Data acquired from 

metabolomics analysis can be validated against routine molecular 

biology and phenotypic assays, providing a powerful platform for 

biomarker detection or the discovery of novel actionable pathways for 

drug development. 

 

Our results show that fingerprinting the metabolic profile of cells can be 

a powerful tool for uncovering potential oncometabolites or mechanisms 

giving rise to chemoresistance. Findings from such studies may provide 

potential additional actionable targets for modulating response to drug 

treatment or the design of new drug combinations that will overall 

enhance DNA damage efficacy, ultimately improving patient response to 

radiotherapy and adjuvant chemotherapy. 
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CHAPTER 5 
 

5.1. General discussion and conclusion 
 

The implementation and advancement of instrumentation, software, and 

databases in the field of mass spectrometry have played a leading role in the 

field of metabolomics thanks to advancements in detection sensitivity and 

high-speed data acquisition. Consequently, the refinement of untargeted and 

targeted metabolomics approaches has seen the expansion of their 

applications to a broader range of research areas.  

 

In this thesis, untargeted mass-spectrometry-based metabolomics has been 

applied to the fields of ageing and cancer research to characterise the 

phenotypic heterogeneity between and within biological samples at different 

scales, including cells and tissues. For each chapter of the thesis, the primary 

findings, conclusions and future perspectives are discussed below: 

 

In chapter 2 the heterogeneous nature of different models and mechanisms 

of cellular senescence (replicative senescence and DNA-damage induced 

senescence) were investigated. For this scope, we first induced senescence 

by multiple passages cell culture passages (P= 3-20) and varied the doses of 

irradiation (0-12 Gy), hydroxyurea (0-1000 µM) and etoposide (0-50 µM). 

Subsequently, we analysed the changes in cellular morphology and 

expression of senescence molecular markers (ß-galactosidase, H2AX, and 

Ki-67) coupled to the application of liquid chromatography-mass spectrometry 

(LC-MS) for intra- and extra-cellular extraction of cellular metabolites. 

Findings from the work performed in this chapter led to the following 

conclusions: 

1. Human foreskin fibroblasts present phenotypic and molecular markers 

of senescence in response to 20 passages in culture (replicative 

senescence), and exposure to 12 Gy irradiation, 800 µM hydroxyurea 

and 10 µM etoposide. Cellular enlargement and flattening was 

observed, which was accompanied with elevated expression of ß-
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galactosidase, enhanced expression of H2AX DNA damage foci, and 

reduced levels of the Ki-67 proliferation marker. 

2. All the senescence-like phenotypes were characterised by intracellular 

metabolic rewiring of amino acid (histidine, alanine, aspartate, 

glutamate and arginine) metabolism. Individual phenotypes such as 

irradiation, late passaged and etoposide treated cells showed altered 

glutamine and glutamate metabolism. Cells treated with hydroxyurea 

and late passaged cells presented relevant changes in the arginine and 

proline metabolism. while cells treated with etoposide showed changes 

in glycine, serine and threonine metabolism. 

3. The data relative to the extracellular content of the senescence-like 

phenotypes revealed the enrichment of inflammatory molecules such 

as prostaglandins (replicative senescence), nitrotyramine 

(hydroxyurea), and norepinephrine (etoposide). Depletion of 

methyldopamine was observed only for irradiated cells. 

4. Overall, this study has provided evidence that global mass 

spectrometry-based metabolomics analysis – combined with 

morphological and molecular studies – is an effective approach for the 

identification of putative metabolic pathways that evolve upon the 

development of different senescence sub-phenotypes. 

 

Since the heterogeneity of senescence relates not only to its method of 

induction but also to the cell type and tissue of origin, a limitation of this study 

is the employment of a single cell line (Human Foreskin Fibroblasts). Future 

work should consider using a panel of cell lines and types originating from 

different tissues including neurons, cardiomyocytes, endothelial cells, immune 

cells, etc. Moreover, other methods of senescence induction such as alteration 

of mitochondrial functionality, proteasome disruption, and epigenetic alteration 

should be considered for follow-up studies.  

Combining intra- and extracellular metabolomics using mass spectrometry has 

provided a wider understanding of the metabolic changes occurring upon the 

induction of different senescence phenotypes. However, the data presented 

here has developed a pipeline and generated hypotheses on how the different 
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senescence cell types may be profiled. Validation of this study using a targeted 

metabolomics approach is essential. For example, by isotope tracing of 13C-

labelled glucose and 14N-labelled glutamine to follow their incorporation 

through downstream biochemical reactions and provide more accurate 

insights into determined metabolic perturbations. 

 

Moving from the analysis of cellular senescence at the cellular to tissue scale, 

studies of ageing using metabolomics and proteomics approaches are 

currently in their infancy; however, they represent the powerful technologies 

needed to discover and map key biological processes associated with 

physiological ageing and age-related disease. The research presented in 

chapter 3 supports evidence for the potential of mass spectrometry-based 

metabolomics approaches when applied to tissue ageing. 

In this work, the metabolome of brain tissues from old mice (aged 10-months) 

was inspected and compared to brain tissue dissected from young mice (aged 

5-months). Integrating metabolomics and proteomics data generated a 

preliminary multi-omics profile of the biology of ageing in murine brain tissue 

alongside the opportunity to determine the spatial localization of metabolites  

using mass spectrometry imaging (MSI). 

 

Key conclusions from chapter 3 are summarised as follows: 

 

1. Alignment of metabolomics and proteomics data revealed that in the 

aged murine brain tissue, enrichment of glutamate, aspartate and 

cysteine-derived metabolic pathways is evident, which regulate 

neurotransmission signalling and thus can be potential targets in the 

treatment of neurodegenerative disease. 

2. A focus on the lipid components of the metabolome/proteome of aged 

brain tissue showed that fatty acids and enzymes involved in pro-

inflammatory pathways are upregulated, therefore confirming previous 

literature findings and our observations in cell lines on the presence of 

an inflammatory secretory phenotype associated with the ageing 

process (inflammaging). 



- 175 - 
 

3. The employment of matrix-assisted laser desorption/ionization mass 

spectrometry (MALDI-MSI) allowed the visualization and spatial 

characterization of different classes of lipids across the surface of 

murine brains, therefore presenting MALDI-MSI as a powerful 

diagnostic tool applicable in clinical settings. 

4. In summary, this research has shown that the employment of global 

mass spectrometry-based metabolomics, integrated with global 

proteomics and high-resolution spatial localization of metabolites as a 

powerful approach that can be deployed for in-depth chemical analysis 

of ageing. 

 

As noted in chapter 2, an untargeted approach was used for both 

metabolomics and proteomics analysis here, with the caveat of generating 

putative data that serve as hypothesis-driven information. Thus, targeted 

metabolomics/proteomics will be necessary to verify the findings presented in 

this research in models of murine brain tissue.  

A consideration in proteomics analysis is the prospect of integrating 

information about the post-translational modifications of identified proteins, as 

they are essential in the regulation of the metabolism, structure, activity, and 

localization of proteins providing a more extensive understanding of the 

biology of ageing. 

A key aspect of using the MSI method is visualising the spatial distribution of 

molecules throughout the tissues and can represent the bases to start 

designing reliable quantitative analyses of metabolite distribution in tissue. The 

data presented in this study are not suitable for quantitation as they lack 

internal standards and appropriate normalization to correct for sample 

variation and variability in signal intensity between different samples. 

Moreover, the thickness of tissue sections varied between samples 

contributing to their heterogeneity. In future applications of MSI, we will 

optimise sample preparation protocols and data quantitation to render this 

technique more consistent, reliable and reproducible. 
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An area of significant growth in the field of metabolomics is the application of 

metabolomics for uncovering potential oncometabolites or mechanisms 

responsible for resistance to chemotherapy. Acquired resistance is dependent 

on the cell line, type of drug, and genetic mutations inherent to the cancer cell 

type or accumulated during tumour development. In this research we focused 

on different breast cancer cells holding different genetic profiles: from the less 

aggressive MCF7 cells to the most aggressive triple-negative breast cancer 

cells MDA-MB-231 and the BRCA-1 mutated HCC1937 cells.  We first 

analysed their sensitivity to DNA damage repair (DDR) inhibition using a PARP 

inhibitor (olaparib), then investigated the extent of DNA damage following 

treatment, and finally studied the metabolic changes in response to DDR 

inhibition with olaparib. 

 

From the results presented in chapter 4 we conclude: 

 

1. Breast cancer cell lines harbouring different mutational profiles have 

different sensitivity to drug treatment: BRCA1/2-proficient MCF7 and 

MDA-MB-231 were more sensitive to olaparib treatment, while BRCA1-

mutant HCC1937 cells showed some resistance to Olaparib treatment. 

2. Despite developing some resistance, following DDR inhibition the 

BRCA1-mutated HCC1937 cells presented a higher occurrence of DNA 

damage foci compared to the other cell lines, therefore suggesting that 

Olaparib resistance extends beyond BRCA status in breast cancer 

cells. 

3. Breast cancer cells rely on common metabolic pathways mainly based 

on amino acid metabolism (alanine, aspartate, glutamine, arginine, 

proline, glycine, serine and threonine). Unique metabolic features for 

the individual cell lines included sphingolipid and glycerophospholipid 

metabolism (MCF7), taurine and hypotaurine metabolism (MDA-MB-

231) and glyoxylate and dicarboxylate metabolism (HCC1937). 

Changes in these metabolic pathways among treatment with Olaparib 

might be at the basis of their differential response to the drug. 
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4. Overall, the research presented in chapter 4 showed the potential for 

combining metabolomics and molecular analysis in the study of breast 

cancer to provide an in-depth characterisation of their different sub-

phenotypes and better profile their differential response to drug 

treatment. 

 

In future work we will apply this analytical approach to other breast cancer cell 

lines with a different variation in their BRCA1/2 status. Currently we are also 

expanding the range of DDR drugs investigated to include other standard of 

care treatments. Together, the implementation of these approaches might be 

useful for designing a panel of different breast cancer cell lines and treatments 

associated with specific phenotypic and metabolic profiles for each individual 

condition.  

Similar to the findings for the ageing chapter, validation of our results through 

a targeted approach will be required. Moreover, information on the 

extracellular metabolic content and integration with proteomics data would 

represent further improvements to the study that will be considered for future 

works.  

 

Conclusions 

Overall, the work presented in this thesis show the potential of mass 

spectrometry-based metabolomics for biomarker discovery and the 

stratification of different biological phenotypes and responses to treatments 

that cannot be distinguished using traditional biological techniques.  

Findings from these studies have suggested potential explanations for the 

metabolic rewiring occurring within different senescence cells, murine-aged 

brain tissue, and different breast cancer cell lines in response to DNA damage. 

Our results have revealed specific metabolic pathways for each ageing and 

breast tumour phenotype that might be targeted in the treatment of age-related 

diseases and cancer. Ultimately, this will be helpful in improving patient 

response to therapies against age-related diseases including cancer. 
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APPENDICES 
 

6.1.  Appendix 1 

 

Figure S1. 1 Sample batch order. 2 blanks were injected at the beginning and at the end of the run. 
10 QCs were injected before injections of the samples. Then QCs were injected after every 5 samples. 
QCs have been prepared by pooling together all the sample after drying and reconstitution with 
water:acetonitrile (50:50, v/v). 

Table S1. 1 Elution gradient used for the chromatographic separation of metabolite extracts 

Time Flow (ml/min) %B Curve 

0.000 0.300 20 5 

11.000 0.300 60 5 

15.000 0.300 20 5 

20.000 0.300 20 5 
 

 
Figure S1. 2 Viability response of HFF-1 cells at different passages, different doses of X-Ray, 
hydroxyurea and etoposide. Passaged, irradiated and etoposide-treated cells were kept in culture 
for 1 week, while hydroxyurea cells were treated for 2 weeks. After the incubation time, cells were 
stained with crystal violet, subsequently solubilised in ethanol, and absorbance was read at 600 nm. 



- 179 - 
 

p-values have been determined through ANOVA test. Dunnett’s multiple comparison test was used as 
a follow up to ANOVA test and the p-values were represented as: non-significant=ns, 0.05=*, 0.005=**, 
0.0005=***, 0.00005=****. 

 

Table S1. 2 Setting for LC-MS data analysis and processing 

Method settings  

Application mode Small molecule 

Method duration 20 min 

Global parameter  

Ion source type H-ESI 

Spray voltage Static 

Positive Ion (V) 3900 
Negative Ion (V) 2500 

Gas Mode Static 

Sheath Gas (Arb) 40 
Aux Gas (Arb) 10 

Sweep Gas (Arb) 1 

Ion Transfer Tube Temp 
(°C) 

320 

Vaporizer Temp (°C) 300 

APPI Lamp Not in use 

MS Global Settings  

Infusion Mode Liquid Chromatography 

Expected LC Peak Width 
(s) 

6 

Advanced Peak 
Determination 

False 

Mild Trapping True 
Default Charge State 1 

Internal Mass Calibration EASY-ICTM 

Mode Run Start 

 

Experiment 

 
Start time 0 min 

End time 20 min 

Full Scan  

Orbitrap resolution 60,000 

Scan range (m/z) 50-750 

RF Lens (%) 70 
AGC Target Custom 

Maximum Injection Time 
Mode 

Auto 
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Microscans 1 

Data Type Profile 

Polarity Both (+/-) 

Source Fragmentation Disabled 
Use EASY-CMTM On 

Monoisotopic peak 
determination (MIPS) 

 

Intensity Threshold 1-0e4 

Data Dependent Mode Number of Scans 

Number of Dependent 
Scans 

5 

Precursor fit  

Fit threshold (%) 70 
Fit window (m/z) 0.7 

Charge state 1-2 

Dynamic exclusion  

Dynamic exclusion mode Custom 

Exclude after n time 1 

Exclusion duration (s) 60 

Mass tolerance Ppm 
Low 3 

High 3 

Exclude isotopes Enabled 
Perform dependent scan 
on single scan precursor 
only 

Enabled 

Isotope exclusion Assigned 

Apex Detection  

Desired Apex Window 
(%) 

50 

ddMS2 Scan  

Multiplex Ions False 
Isolation Window (m/z) 0.7 

Isolation Offset Off 

Collision Energy Type Normalised 

HCD Collision Energies 
(%) 

10,20,30,40,100 

Orbitrap Resolution 15,000 

Scan Range Mode Auto 
AGC Target Standard 

Maximum Injection Time 
Mode 

Auto 

Microscans 1 

Data Type Profile 

Use EASY-ICTM On 
 Data processing 
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Input Files .raw data 

Select Spectra  

Lower RT Limit 0 

Upper RT Limit 0 
First Scan 0 

Last Scan 0 

Lowest charge state 0 
Highest charge state 0 

Min. precursor mass 0 Da 

Max precursor Mass 5000 Da 
Total intensity threshold 0 

Minimum peak count 1 

Scan event filters  

Mass analyzer Not specified 

MS Order Any 

Activation type Not specified 
Min collision energy 0 

Max collision energy 1000 

Scan type Any 

Polarity mode is +/- 
Peak Filters  

S/N threshold (FT-only) 1.5 

General settings  
Precursor selection Use MS(n-1) precursor 

Use isotope pattern in 
precursor reevaluation 

True 

Provide profile spectra Automatic 

Store chromatograms False 

Align retention times  
Alignment model Adaptive curve 

Alignment fallback None 

Maximum shift 0.3 min 
Shift reference file True 

Mass tolerance 3 ppm 

Remove outlier True 

Detect compounds  
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Mass tolerance 3 ppm 

Intensity tolerance (%) 30 

S/N threshold 3 

Min. peak intensity 500,000 
Base ions [M+H]+1; [M-H]-1 

Peak detection  

Filter peaks True 
Max peak width 0.5 min 

Remove singlets True 

Min #scans per peak 5 
Min #isotopes 1 

Isotope grouping  

Min spectral distance 
score 

0 

Remove potentially false 
positive isotopes 

True 

Group compounds  

Mass tolerance 5 ppm 

RT tolerance 0.2 min 

Preferred ions 
[M+H]+1; [M-H]-1; [M+ACN+H]+1; [M+FA-H]-1; 
[M+ACN+Na]+1; [M+H+Na]+2; [M+H+NH4]+2; 
[M+Na]+1; [M+NH4]+1 

Fill gaps  
Mass tolerance 5 ppm 

S/N threshold 1.5 

Use real peak detection True  (re-detected low-intensity peaks) 
Apply QC correction  

Regression model Linear 

Min QC coverage [%] 30 
Max QC area RSD [%] 30 

Max corrected QC area 
RSD [%] 

25 

Max #files between QC 
files 

15 

Max background 
compounds 

 

Max sample/blank 5 

Max blank/sample 0 

Hide background True 
Search ChemSpider  

Database(s) CheBI, Human Metabolome Database 

Search mode By formula mass 
Mass tolerance 5 ppm 

Max # of results per 
compound 

100 

Max # of predicted 
composition per 
compound 

3 

Apply mzLogic  

FT Fragment mass 
tolerance 

10 ppm 

IT Fragment mass 
tolerance 

0.4 Da 

Max # compounds 0 

Max # mzCloud similarity 
results to consider per 
compound 

10 

Match factor threshold 70 
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Predict compositions  

Mass tolerance 5 ppm 

Pattern matching  

Intensity tolerance (%) 30 
Intensity threshold (%) 0.1 

S/N threshold 3 

Min spectral fit (%) 30 
Min pattern Cov (%) 90 

Use dynamic 
recalibration 

True 

Use fragments matching True 

Mass tolerance 5 ppm 

S/N threshold 3 
Assign compound 
annotations 

 

Mass tolerance 5 pmm 
Data source 1 mzCloud search 

Data source 2 Predicted compositions 

Data source 3 massList search 

Data source 4 ChemSpider search 
Data source 5 Metabolika search 

Search mzCloud  

Compound classes All 
Precursor mass tolerance 10 ppm 

FT fragment mass 
tolerance 

10 ppm 

IT fragment mass 
tolerance 

0.4 Da 

Library Autoprocessed; reference 
Post processing Recalibrated 

Max # results 10 

Annotate matching 
fragments 

True 

DDA Search  

Identity search Cosine 

Match activation type True 
Match activation energy Match with tolerance 

Activation energy 
tolerance 

20 

Apply intensity threshold True 

Similarity search None 

Match factor threshold 20 
Differential analysis  

Log10 transform values True 
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Figure S1. 3 The expression of β-Gal in senescence-induced HFF-1 cells. Representative 
phase contrast images of β-Gal staining (grey), DAPI immunolabelled nuclei (blue) and composite 
(β-Gal (grey) and DAPI (blue)) in cells at different passages (a), increasing irradiation doses for 1 
week (b), treatment with increasing concentrations of hydroxyurea for 2 weeks (c) and etoposide for 
1 week (d). For each condition, corresponding β-Gal expression levels expressed have been 
reported as a percentage of manually counted stained cells relative to the number of counted nuclei 
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using ImageJ. 9 repeats with on average >50 cells per each sample. p-values have been determined 
ANOVA test. 

 
Figure S1. 4 Measurements of width and length of HFF-1 cells. Cells at late passage (P20), 12 
Gy irradiation, for 1 week, 800 µM hydroxyurea for 2 weeks, and 10 µM etoposide for 1 week. Cells 
stained for β-Gal expression have been analysed to measure width and length of individual cells. A 
total number of 45 cells have been analysed per each passage and dosage. Width and length have 
been measured through the line tool in ImageJ and expressed as µm. Dunnett’s multiple comparison 
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test was used as a follow up to ANOVA and corresponding p-values were represented as: non-
significant=ns, 0.05=*, 0.005=**, 0.0005=***, 0.00005=****. 

 
Figure S1. 5 Statistical analysis of global metabolomics features identified in different induced 
senescence models. These include replicative senescence at passage 20, 12 Gy irradiation for 1 
week, 800 µM hydroxyurea for 2 weeks, and 10 µM etoposide for 1 week. A) Workflow used in this 
study to perform pathway analysis from metabolomics analyses. b) Global PCA score plots of the 
analysed senescent cells for data acquired in positive/negative switching mode. For each treatment 
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group, five replicates were used. Data points in the two-dimensional PCA score plot were central 
scaled. 

 
Figure S1. 6 Pairwise partial least square-discriminant analysis (PLS-DA) of different senescence-
induced cells. The orange circles represent the first 20 discriminating compounds that allow to 
differentiate between non-treated and treated cells. 

 

Table S1. 3 Table with a list of the first 20 PLS-DA compounds for all the conditions. m/z value, 
Log2Fold change and p-values have been reported. 
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Table S1. 4 Output tables of pathway enriched analysis performed with MetaboAnalyst and 
Mummichog software in different cell treatment conditions (multiple passages, irradiation, hydroxyurea, 
and etoposide). P values (p) are FDR = False Discovery Rate.  

Multiple passages 

    

MetaboAnalyst 

    

 Tot Exp Hits p Imp 

Alanine, aspartate and glutamate 
metabolism 

28 0.6 6 0.00 0.45 

D-Glutamine and D-glutamate 
metabolism 

6 0.13 3 0.01 0.5 

Histidine metabolism 16 0.34 4 0.01 0.27 

Taurine and hypotaurine 
metabolism 

8 0.17 3 0.01 0.71 

Biosynthesis of unsaturated fatty 
acids 

36 0.77 5 0.01 0 

Arginine biosynthesis 14 0.3 3 0.03 0.12 

Aminoacyl-tRNA biosynthesis 48 1.02 5 0.03 0 

Butanoate metabolism 15 0.32 3 0.04 0.03 

Mummichog 
     

 Tot Exp Hits p Emp 

Methionine and cysteine 
metabolism 

94 1.97 6 0.00 0.01 

Vitamin A (retinol) metabolism 67 0.56 5 0.01 0 

Selenoamino acid metabolism 35 0.84 2 0.03 0 

Glycerophospholipid metabolism 
15
6 

2.11 4 0.12 0.1 

De novo fatty acid biosynthesis 
10
6 

0.7 2 0.13 0.06 

      
Irradiation 

     

MetaboAnalyst 
    

 Tot Exp Hits p Emp 

Taurine and hypotaurine 
metabolism 

8 0.05 2 0.09 0.71 

Starch and sucrose metabolism 18 0.12 2 0.23 0.15 

Amino sugar and nucleotide sugar 
metabolism 

37 0.24 2 0.62 0.08 

Mummichog 
     

 Tot Exp Hits p Emp 

Caffeine metabolism 11 0.1 2 0.09 0.03 

Ubiquinone Biosynthesis 10 0.21 1 0.18 0.08 

Bile acid biosynthesis 82 0.26 1 0.22 0.1 

Aspartate and asparagine 
metabolism 

11
4 

1.65 1 0.48 0.39 

Methionine and cysteine 
metabolism 

94 0.77 1 0.54 0.34 

      
Hydroxyurea 
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MetaboAnalyst 
    

 Tot Exp Hits p Imp 

Alanine, aspartate and glutamate 
metabolism 

28 0.49 4 0.08 0.36 

Butanoate metabolism 15 0.26 3 0.08 0.06 

Pentose phosphate pathway 22 0.38 3 0.16 0.22 

Glutathione metabolism 28 0.49 3 0.24 0.31 

Arginine biosynthesis 14 0.24 2 0.39 0 

Mummichog 

     

 Tot Exp Hits p Imp 

Methionine and cysteine 
metabolism 

94 2.19 6 0.04 0.06 

Nitrogen metabolism 6 0.51 2 0.07 0.08 

Arachidonic acid metabolism 95 1.16 3 0.08 0 

Glycerophospholipid metabolism 
15
6 

2.83 5 0.10 0.08 

Glutamate metabolism 15 1.29 3 0.12 0.07 

      
Etoposide 

     

MetaboAnalyst 
    

 Tot Exp Hits p Emp 

Glycerophospholipid metabolism 36 0.44 5 0.00 0.08 

Taurine and hypotaurine 
metabolism 

8 0.1 3 0.00 0.71 

Aminoacyl-tRNA biosynthesis 48 0.59 3 0.53 0 

Pentose phosphate pathway 22 0.27 2 0.62 0.22 

Mummichog 

     

 Tot Exp Hits p Emp 

Methionine and cysteine 
metabolism 

94 0.63 3 0.01 0.01 

Bile acid biosynthesis 82 0.16 1 0.14 0.03 

Glycerophospholipid metabolism 
15
6 

0.95 2 0.22 0.21 

Linoleate metabolism 46 0.32 1 0.27 0.12 

Lysine metabolism 52 0.55 1 0.43 0.18 
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Figure S1. 7 Venn diagram. The diagram represents the metabolic pathways of normal human 
fibroblast at late passaged cells, and cells treated with irradiation, hydroxyurea, and etoposide. 
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Table S1. 5 List of metabolites identified in normal human fibroblasts. Cells at passage 20, after 12 Gy X-ray treatment for 1 week, 800 µM hydroxyurea and 10 
µM etoposide treatment for 2 and 1 week, respectively. Class, name, Log2 fold change, and p-value (p) is represented for each compound. In bold are the significant 
compounds. 

  Multiple passage Irradiation Hydroxyurea Etoposide 
  P20/P3 12 Gy/Ctrl 800 µM/Ctrl 10 µM/Ctrl 

Class Name 
Log2 
Fold 

Change 
P 

Log2 
Fold 

Change 
P 

Log2 
Fold 

Change 
P 

Log2 
Fold 

Change 
P 

Amino acids 1-Methylhistidine 1.52 0.01 - - 0.29 0.97 -0.46 0.74 

TCA acids 2- Oxoglutarate 0.67 0.02 -0.17 0.87 0.83 0.05 -0.38 0.65 

Acyl carnitines C18-Carnitine 2.05 0.00 0.37 0.12 0.59 0.01 -0.55 0.36 

Cholines Acetylcholine 1.38 0.01 -0.61 0.01 0.11 0.48 -0.88 0.03 

Purine ribonucleosides Adenosine 1.36 0.00 -0.57 0.12 - - 0.56 0.33 

Purine ribonucleoside diphosphates ADP -0.12 0.81 -0.01 0.73 -0.2 0.61 -0.57 0.14 

Dicarboxylic acids -Aminoadipic acid -1.3 0.01 -0.54 0.07 -0.25 0.28 -1.22 0.02 

Pyrimidine ribonucleoside 
monophosphates 

AMP - - 0.79 0.12 1.55 0.14 -0.78 0.21 

Unsaturated Fatty Acids Arachidonic acid 1.18 0.00 0.10 0.39 -0.21 0.21 0.48 0.13 

Amino acids Argininosuccinic acid 0.14 0.50 -0.31 0.56 -0.51 0.12 -0.80 0.09 

Amino acids Asparagine 1.68 0.01 -0.05 0.79 -0.21 0.78 -1.63 0.04 

Amino acids Aspartate 0.07 0.51 -0.28 0.42 -0.92 0.00 -0.69 0.09 

Purine ribonucleoside triphosphates ATP 0.96 0.04 0.56 0.27 -0.35 0.21 -0.89 0.38 

Amino acids Alanine -0.5 0.06 0.87 0.49 - - -1.13 0.04 

Hybrid peptides Carnosine 0.12 0.51 0.02 0.68 0.13 0.48 -1.69 0.12 

Pyrimidine ribonucleoside 
diphosphates 

CDP - - 0.5 0.11 0.29 0.09 - - 

Pyrimidine ribonucleoside 
diphosphates 

CDP-Ethanolamine -0.62 0.05 -0.13 0.63 -0.15 0.66 -0.70 0.06 

Cholines Choline -0.28 0.13 -0.15 0.06 -0.06 0.77 -0.64 0.03 

TCA acids Citrate 0.1 0.65 0.06 0.25 0.07 0.88 -1.7 0.38 

Amino acids Citrulline 0.78 0.09 -0.58 0.26 -0.01 0.99 -2.35 0.07 

Pyrimidine ribonucleoside 
monophosphates 

CMP -0.07 0.42 0.51 0.12 -0.19 0.68 -0.08 0.94 
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Amino acids Creatine -0.24 0.07 0.45 0.64 0.01 0.83 -0.10 0.47 

Amino acids Creatinine 0.15 0.55 -0.13 0.42 0.09 0.21 -0.68 0.15 

Amino acids Cystathionine -2.53 0.00 -0.57 0.08 -1.01 0.00 -1.29 0.01 

Carbohydrates Fructose 0.67 0.04 - - - - - - 

Monosaccharides Glucose 1P - - 1.31 0.05 - - 0.02 0.32 

Aldotriose 
Glyceraldehyde 3-
phosphate 

0.64 0.16 0.31 0.28 0.55 0.01 -0.59 0.28 

Monosaccharides Glucosamine 6P -0.2 0.44 -0.18 0.32 - - -0.76 0.08 

Amino acids Serine 1.71 0.00 0.82 0.01 0.31 0.11 0.49 0.14 

Amino acids Tryptophan 0.28 0.22 -0.10 0.39 -0.26 0.27 -0.80 0.16 

Alcohols Diethanolamine 0.49 0.23 2.88 0.04 0.96 0.09 -2.21 0.25 

Nucleobasis Dihydrothymine -0.76 0.01 -0.21 0.57 -0.19 0.23 -0.34 0.82 

Vitamins Folic acid - - -0.05 0.35 -0.15 0.45 -0.82 0.16 

Aldotriose Glycerol 3P -1.25 0.00 -0.05 0.46 0.08 0.32 -0.47 0.58 

Amino acids GABA -0.62 0.03 - - -1.86 0.00 - - 

Sugar acids Galactonic acid - - -0.14 0.28 - - - - 

Nucleoside GDP - - - - 0.35 0.04 - - 

Sugar acids Gluconic acid -0.31 0.77 -0.97 0.00 -0.84 0.01 -2.34 0.01 

Carboxylic acids Glutathione GSH 1.16 0.03 0 0.95 0.87 0.01 -0.62 0.21 

Carboxylic acids Glutathione GSSG 0.75 0.06 0.43 0.17 1.17 0.00 -0.78 0.07 

Amino acids Glycine 0.29 0.11 - - -0.05 0.89 -0.62 0.19 

Nucleoside GMP 0.32 0.55 0.41 0.08 - - - - 

Amino acids Guanidinosuccinic acid -0.25 0.01 0.28 0.40 - - 0.35 0.07 

Nucleobasis Guanine - - 1.49 0.05 - - 0.48 0.09 

Acyl carnitines C12-Carnitine -1.18 0.04 - - -4.12 0.15 -1.17 0.53 

Aralkylamines Histamine 0.31 0.83 0.19 0.55 0.18 0.37 -0.21 0.40 

Taurines Hypotaurine -0.77 0.03 -0.67 0.01 -0.20 0.89 -1.70 0.01 

Taurines Hypoxanthine - - 1.14 0.01 -0.10 0.84 - - 

Amino acids Arginine 0.68 0.86 0.17 0.56 0.10 0.73 -0.85 0.22 

Amino acids Ergothioneine -1.66 0.05 -1.68 0.02 0.11 0.15 -0.73 0.04 

Amino acids Glutamine 1.06 0.01 0.25 0.49 0.21 0.14 -0.37 0.47 

Carboxylic acids Glutamic acid -1.62 0.00 -0.32 0.83 -0.61 0.05 -1.01 0.08 

Amino acids Histidine -0.38 0.05 -0.02 0.99 -0.08 0.97 -1.37 0.12 

Amino acids 1-methylhistidine 1.52 0.01 - - 0.29 0.97 -0.46 0.74 

Butyrophenones Kynurenine 1.17 0.01 - - -0.73 0.02 - - 
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Amino acids Methionine 1.15 0.04 0.08 0.57 0.02 0.87 -0.51 0.23 

Amino acids Phenylalanine 0.44 0.28 -0.15 0.39 -0.34 0.27 -0.76 0.28 

Amino acids Threonine 0.54 0.07 0.28 0.35 -0.06 0.60 -0.31 0.34 

Amino acids Tyrosine 0.5 0.10 -0.06 0.62 -0.22 0.36 -0.86 0.19 

Carboxylic acids Lactate 0.5 0.08 -0.47 0.29 0.07 0.72 -0.73 0.03 

Amino acids Leucine 0.45 0.09 -0.01 0.62 -0.26 0.25 -0.79 0.16 

Unsaturated Fatty Acids Oleic acid 1.71 0.00 -0.09 0.49 -0.27 0.00 - - 

Amino acids Lysine 0.37 0.15 0.20 0.65 0.09 0.70 -0.85 0.21 

LPC LysoPC(P-18:0) - - -0.10 0.68 - - -0.47 0.00 

TCA acids Malate 0.03 0.57 0.16 0.49 -0.36 0.09 -0.76 0.07 

Sugar alcohols Mannitol 1.85 0.00 1.33 0.00 0.21 0.15 0.22 0.15 

Nicotinamide dinucleotides NAD 0.69 0.27 - - - - - - 

Nicotinamide dinucleotides NADH - - - - -0.03 0.54 - - 

Nicotinamide Nicotinamide 0.25 0.13 -0.02 0.56 0.1 0.47 -0.62 0.18 

Catechols Norepinephrine - - - - -0.07 0.73 - - 

Carboxylic acids Ophthalmic acid 0.43 0.07 0.24 0.10 -0.14 0.59 -0.43 0.47 

Amino acids Ornithine - - -0.07 0.26 -0.33 0.09 -1.23 0.07 

Saturated Fatty Acids Palmitic acid 0.56 0.02 - - - - - - 

Acyl carnitines Palmitoylcarnitine 1.61 0.00 0.32 0.16 0.91 0.00 -0.57 0.51 

Phosphoric acid Phosphoric acid 0.46 0.03 -0.18 0.50 - - - - 

Benzoic acids Phthalic acid 0.38 0.07 - - -0.68 0.03 -0.84 0.10 

Amino acids Phenylalanine 0.44 0.27 -0.15 0.38 -0.34 0.27 -0.76 0.28 

Amino acids Proline -0.26 0.38 -0.16 0.30 -0.08 0.81 -1.01 0.05 

Acyl carnitines Propionylcarnitine -1.05 0.03 -0.33 0.11 -0.13 0.78 -0.75 0.07 

Carboxylic acids Pyroglutamic acid 0.17 0.58 0.08 0.86 0.10 0.45 - - 

Short-chain acids and derivatives Pyruvate 1.32 0.00 -0.51 0.31 0.56 0.07 -0.71 0.06 

Glycosylamines Adenosylhomocysteine -0.37 0.19 -0.19 0.64 -0.86 0.02 -0.42 0.21 

Saturated Fatty Acids Stearic acid 0.71 0.01 0.02 0.39 0.29 0.28 0.01 0.39 

Pyrimidine nucleotide sugars Thiamine 0.57 0.20 0.23 0.22 -0.25 0.19 -0.86 0.14 

Tertiary amines Triethanolamine 0.8 0.08 -0.22 0.51 0.19 0.93 - - 

Pyrimidine ribonucleoside 
diphosphates 

UDP 0.19 0.59 -0.57 0.19 0.14 0.31 -0.95 0.03 

Pyrimidine ribonucleoside 
monophosphates 

UMP - - 0.96 0.03 - - -0.06 0.45 
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Pyrimidine ribonucleoside 
diphosphates 

UDP-N-acetylglucosamine -0.1 0.9 - - 0.58 0.01 -1.18 0.04 

Amino acids Valine 0.4 0.11 0.03 0.59 -0.21 0.21 -0.66 0.19 

Amino acids Taurine -2.04 0.00 -0.99 0.00 -0.89 0.00 -1.70 0.00 
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Figure S1. 8 Known and predicted protein-protein interactions. Analysis performed through 
STRING Data Sources. Input data are represented by the list of senescence genes (Table S 3) and 
the enzymatic genes in the metabolic pathway model of Figure 8. 
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Figure S1. 9 PCA analysis of growth media samples collected from HFF-1 cells. Cells at passage 
20, and after treatment with 12 Gy irradiation, 800 µM hydroxyurea and 10 µM etoposide.  For each 
treatment group, five replicates were used. Data points in the two-dimensional PCA score plot were 
central scaled. Ellipses represent 95% confidence interval. 

 

 
Figure S1. 10 Pairwise partial least square-discriminant analysis (PLS-DA) of the media collected 
from different senescence-induced cells. The orange circles represent the first 10 discriminating 
compounds that allow to differentiate between non-treated and treated cells. 
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Table S1. 6 Table with a list of the first 10 PLS-DA compounds for all the conditions. m/z value, 
Log2Fold change and p-values have been reported. 
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Table S1. 7 List of metabolites identified in the media of normal human fibroblasts. Cells at passage 20, after 12 Gy X-ray treatment for 1 week, 800 µM hydroxyurea 
and 10 µM etoposide treatment for 2 and 1 week, respectively. Name, Log2 fold change, and p-value (p) is represented for each compound. In bold are significant 
compounds. 

  Multiple passage Irradiation Hydroxyurea Etoposide 

  P20/P3 12 Gy/Ctrl 800 µM/Ctrl 10 µM/Ctrl 

Name 
Log2 
Fold 

Change 
P 

Log2 
Fold 

Change 
P 

Log2 
Fold 

Change 
P 

Log2 
Fold 

Change 
P 

(1R,2S)-1-(7,8-Dihydro-6-pteridinyl)-
1,2-propanediol 

            -0.33 0.27 

1-Methylguanine -0.35 0.00             

1-Methylnicotinamide 0.28 0.16 -0.16 0.51 -0.67 0.00     

1-Nitrosonaphthalene 0.07 0.57         -2.11 0.01 

1,2,3-cyclopropanetricarboxylic acid -0.49 0.99             

1,4-Dihydroxyoctahydro-2,3-
quinoxalinedione 

0.66 0.00             

−(−)      -0.64 0.50         

2-{2-[5-(Ethoxycarbonyl)-2-
morpholinoanilino]-2-
oxoethoxy}acetic acid 

-0.77 0.01             

2-{2-Oxo-2-[4-(1H-pyrrol-1-
yl)piperidino]ethoxy}acetic acid 

-0.24 0.04             

2-Acetamidoglucal 3.25 0.00             

2-amino-2,3,7-trideoxy-D-lyxo-hept-
6-ulosonic acid 

1.52 0.00             

2-Amino-3-methoxybenzoic acid -0.16 0.19             

2-Aminooctanedioic acid 0.83 0.00             

2-Oxoglutaric acid 1.71 0.00             

2-Quinolinecarboxylic acid     -0.22 0.64 0.22 0.01     

3-[(3-Hydroxyundecanoyl)oxy]-4-
(trimethylammonio)butanoate 

-0.79 0.00             

3-[(methoxycarbonyl)amino]-2,2,3-
trimethylbutanoic acid 

0.54 0.01             
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3-Hydroxy-3-methylbutanoic acid -0.38 0.53             

3-Hydroxy-5-(hydroxymethyl)-2-
methylisonicotinaldehyde oxime 

        4.17 0.00     

3-Indoleacetamide 0.07 0.57         -2.11 0.01 

3-oxopalmitic acid 1.11 0.00             

4-Aminobenzoic acid 0.07 0.66             

4-hydroxyphenylglycine     -0.37 0.04 -0.21 0.03 -0.32 0.02 

4-Methyl-5-thiazoleethanol     -0.58 0.24 0.08 0.42 -0.34 0.65 

4-Methylcarbostyril 1.42 0.00 0.15 0.64 1.49 0.00     

4-tert-Octylphenol monoethoxylate 3.03 0.00             

5-Amino-3-(4-methoxyphenyl)-5-
oxopentanoic acid 

0.47 0.13             

6-Methylnicotinamide             -0.36 0.00 

6-Oxohexanoic acid -0.04 0.60 -0.13 0.08 0.16 0.67 -0.08 0.89 

7Z,10Z-Hexadecadienoic acid 1.11 0.00 0.34 0.27     0.88 0.03 

abacavir carboxylate             0.63 0.30 

C10-Carnitine -0.58 0.00             

Choline         -0.05 0.69     

Cysteinylglycine disulfide             0.25 0.07 

DL-2,6-Diaminopimelic acid -0.11 0.74             

Ecgonine 1.05 0.00         -0.01 0.65 

EDDA 1.18 0.00             

epsilon-(gamma-Glutamyl)-lysine 0.70 0.00     1.29 0.00 -0.09 0.26 

Ethanolamine -1.26 0.00             

gamma-Glu-gln 0.25 0.01 0.04 0.34 0.86 0.00 0.09 0.39 

glu-thr 0.57 0.01             

Glutamic acid 0.56 0.00             

Glutamine -1.06 0.00 -0.80 0.00 -1.72 0.00 -1.60 0.00 

Glutarimide -0.39 0.09 -0.15 0.29 -0.59 0.00 -0.13 0.28 

Hex-2-ulose         1.88 0.95     

Kynurenine 0.91 0.00             

Lactic acid 0.02 0.73 -0.11 0.27     -0.10 0.03 

Methyl acetoacetate -0.09 0.57 -0.28 0.01 -0.12 0.21 -0.29 0.04 
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Mono(2-ethylhexyl) phthalate 
(MEHP) 

0.83 0.00         0.94 0.11 

N-((3S,4R)-6-Cyano-3-hydroxy-2,2-
dimethylchroman-4-yl)-N-

hydroxyacetamide 
0.25 0.89             

N-(2-Pyridinylmethyl)-5,6,7,8-
tetrahydro[1,2,4]triazolo[5,1-

b]quinazolin-9-amine 
    -0.28 0.19         

N-[(2S)-2-
Hydroxypropanoyl]methionine 

1.32 0.01             

N-Acetyl cytosine -0.49 0.01             

N-Acetyl-D-quinovosamine -0.57 0.05             

N,N-dimethyl-N'-(3-
phenyl[1,2,4]triazolo[4,3-b]pyridazin-

6-yl)iminoformamide 
            -0.43 0.11 

N'2-cinnamoyl-3-(1H-pyrrol-1-
yl)thiophene-2-carbohydrazide 

        0.80 0.00     

N2-Dimethylguanosine -0.33 0.11             

N2-Methylguanosine     -0.26 0.24     -0.81 0.13 

Norleucine 0.31 0.69             

Oxaceprol -0.57 0.05 -0.25 0.65     -0.30 0.23 

phenacetin     0.00 0.24     0.06 0.62 

Phenylalanine     1.11 0.77         

Pivagabine 0.60 0.18             

Prostaglandin E1 0.92 0.00             

Pyridoxal -0.33 0.04 -0.18 0.08         

Salsolinol 0.78 0.00     1.38 0.00     

Thiamine     -0.59 0.22         

thr-phe         -0.27 0.29     

trans-10-Heptadecenoic Acid 3.06 0.00             

trans-Petroselinic acid 2.22 0.00             

Trimethoprim impurity B -0.04 0.43 -0.22 0.11 -0.19 0.53 -0.44 0.02 

γ-Glu-Ala -0.13 0.10             

γ-Glu-Ala     0.01 0.53 0.80 0.00 -0.19 0.05 
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Υ-Glutamyl-L-glutamic acid 0.99 0.00 -0.39 0.18         
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6.2. Appendix 2 
 

Table S2. 1 Corresponding elution gradient used for the chromatographic separation of metabolites 
and protein extracts 

Metabolomics Proteomics 

Time Flow [ml/min] %B Curve Time Flow [ml/min] %B Curve 

0 0.3 20 5 0 0.05 3 5 

11 0.3 60 5 65 0.05 20 5 

15 0.3 20 5 70 0.05 40 5 

20 0.3 20 5 74 0.05 95 5 

    79 0.05 95 5 

    84 0.05 3 5 

    100 0.05 3 5 

 

Table S2. 2 LC-MS/MS method summary for metabolomics and proteomics 

 Metabolomics Proteomics 

Method setting   

Application mode Small molecules Peptide 

Method duration (min) 20 100 
Global parameters   

Ion source type H-ESI H-ESI 

Spray voltage Static Static 
Positive ion (V) 3900 3400 

Negative ion (V) 2500 3000 

Gas mode Static Static 
Sheath gas (Arb) 40 25 

Aux gas (Arb) 10 5 

Sweep gas (Arb) 1 0 
Ion transfer tube temp (°C) 250 320 

Vaporizer temp (°C) 250 75 

Infusion mode Liquid chromatography Liquid chromatography 
Expected LC peak width (s) 20 10 

Mild trapping TRUE TRUE 

Default charge state 1 2 

Internal mass calibration EASY-IC EASY-IC 
Mode Run start Scan-to-scan 

Experiment   

Start time (min) 0 0 
End time (min) 20 100 

Filters   
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Full scan   

Orbitrap resolution 60,000 120,000 

Scan range (m/z) 50-750 275-1500 
RF Lens (%) 70 70 

AGC Target Custom Custom 

Maximum injection time mode Auto Custom 
Maximum injection time (ms) - 25 

Microscans 1 1 

Data type Profile Profile 
Polarity Positive/negative Positive 

Use EASY-C On On 

MIPS   

Mono isotopic peak determination Small molecule Peptide 
Relax restrictions when too few 
precursors are found 

Checked Checked 

Intensity   

Intensity threshold 1.0e4 1.0e4 

Precursor fit   

Fit threshold (%) 70 - 
Fit window (m/z) 0.7 - 

Charge state   

Include charge state (s) 1-2 1-2 
Dynamic exclusion   

Dynamic exclusion mode Custom Custom 

Exclude aftern n time 1 1 
Exclude duration (s) 60 45 

Mass tolerance Ppm ppm 

Low 3 5 

High 3 5 
Exclude isotopes Checked Checked 

Isotope exclusion Assigned - 

Apex detection   
Designed apex window (%) 50 - 

ddMS/MS   

Multiplex ions FALSE FALSE 
Isolation window (m/z) 0.7 1.2 

Isolation Offset Off Off 



- 205 - 
 

Collision energy type Normalised Normalised 

HCD Collision energies (%) 10,20,30,40,100 30 

Orbitrap resolution 15,000 15,000 

Scan range mode Auto Auto 
AGC Target Standard Custom 

Normalised AGC target (%) - 100 

Maximum injection time mode Auto Auto 
Microscans 1 1 

Data type Profile Centroid 

Use EASY-C On On 

 
Table S2. 3 Data processing workflows for metabolomics analysis through Compound Discoverer 3.3 

 Metabolomics 

 

 

Input files .raw data 

Select spectra  

Lower RT limit 0 

Upper RT limit 0 

First Scan 0 

Last Scan 0 

Min precursor mass 0 Da 

Max. precursor mass  5,000 Da 

Tot intensity threshold 0 

Min peak count 1 

Min collision energy 0 

Max collision energy 1,000 

Polarity mode is -;+ 

S/N threshold 1.5 

Align retention time  
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Alignment model Adaptive curve 

Max shift (min) 2 

Mass tolerance  5 ppm 

Remove outlier TRUE 

Detect compound  

Mass tolerance  5 ppm 

Min. peak intensity 10,000 

Min N scan per peak 5 

Use most intense isotope only TRUE 

Chromatographic S/N threshold 1.5 

Gap ratio threshold 0.35 

Max peak width (min) 1 

Min relative valley depth 0.1 

Base ions  [M+H]+1;[M-H]-1 

Group compounds  

Mass tolerance  5 ppm 

RT tolerance (min) 0.2 

Align peaks FALSE 

Preferred ions 

[M+H]+1; [M-H]-1; 
[M+ACN+H]+1; [M+FA-H]-1; 
[M+ACN+Na]+1; 
[M+H+Na]+2; [M+H+NH4]+2; 
[M+Na]+1; [M+NH4]+1 

Area integration Most common 

Area contribution 3 

CV contribution 10 

Peak rating threshold 4.5 

Number of files 2 

Fill gaps 
(re-detected low-intensity 
peaks) 

Mass tolerance  5 ppm 

S/N Threshold 1.5 

Search mzCloud  

Compound classes All 

Library Autoprocessed; Reference 

Search MSn tree TRUE 

Identity search Cosine 

Match activation type TRUE 

Match activation energy Match with tolerance 

Activation energy 20 

Apply intensity threshold TRUE 

Similarity search Confidence forward 
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Match factor threshold 50 

Predict composition  

Mass tolerance  5 ppm 

Min element count  C H 

Intensity tolerance 30 

Intensity threshold 0.1 

S/N threshold 3 

Use dynamic recalibration TRUE 

Use fragments matching TRUE 

Mass tolerance  5 ppm 

S/N threshold 3 

Search ChemSpider  

Databases BioCyc, CheBI, HMDB, KEGG 

Search mode by formula or mass 

Mass tolerance  5 ppm 

Max N of results per compound 100 

Max N of predicted composition 3 

Apply mzLogic  

Max N compounds 0 

Max N mzCloud 10 

Match factor threshold 70 

Assign compound annotations  

Mass tolerance  5 ppm 

Use mzLogic  TRUE 

Use spectral distance TRUE 

Apply QC correction  

Min QC coverage NA 

Max QC area RSD NA 

Max corrected QC area NA 

Mark background compounds  

Max sample/blank 5 

Max blank/sample 0 

Hide background TRUE 

DDA Search  

Identity search Cosine 

Match activation type True 

Match activation energy Match with tolerance 

Activation energy tolerance 20 

Apply intensity threshold True 

Similarity search None 
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Match factor threshold 20 

Differential analysis  

Log10 transform values True 

 
 
Table S2. 4 Data processing workflows (processing and consensus) for proteomics analysis through 
Proteome Discoverer 3.0 

 Proteomics 

Processing 

 

Spectrum files RC  

Protein database Mus musculus (TaxID:10090) 

Enzyme name Trypsin 

Precursor mass tolerance 20 ppm 

Fragment mass tolerance 0.5 Da 

Regression model Non-linear regression 

Parameter tuning Coarse 

Minora  

Min. trace length 5 

S/N threshold 1 

Max ∆RT (min) 0.2 

PMS confidence at least High 

Spectrum selector  

Precursor selection Use MS1 precursor 

Min precursor mass 350 Da 

Max precursos mass 6500 Da 

Min peak count 1 

Scan type  Is full 

Polarity mode Any 

Sequest HT  

Max missed cleavage 2 

Min peptide length 6 

Max peptide length 144 

Percolator  

Target/Decoy selection Concatenated 
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Validation based on q-Value 

Target FDR (Strict) 0.01 

Targetd FDR (Relaxed) 0.05 

Consensus 

 

MSF Files  

Merge mode Globally by search engine type 

Reported FASTA tale lines Best match 

Feature mapper  

Perform RT alignment TRUE 

Max RT shift (min) 10 

Min S/N threshold 5 

Precursor ions quantifier  

Peptide to use Unique + Razor 

Consider protein groups TRUE 

Precursor abundance based on Insensity 

Min replicate features (%) 60 

Protein abundance calculation Summed abundances 

Protein ratio calculation Protein abundance based 

Max allowed fold change 100 

Hypothesis test ANOVA (Individual proteins) 

PMS Grouper  

Site probability threshold  75 

Peptide validator  

Validation mode Automatic 

Target FDR (strict) 0.01 

Target FDR (relaxed) 0.05 

Peptide and protein filter  

Peptide confidence at least High 

Min peptide length 6 

Min N of peptide sequences 1 
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Protein marker  

Contaminant database PD_Contaminants_2015_5fasta 

Additional marker database Mus musculus (TaxID:10090) 

Protein annotation  

Aspect 
Biological process, Cellular 
component, molecular function 

Protein grouping TRUE 

Peptide in protein annotation  

Protein modifications reported Only for master proteins 

Modification sites reported All and specific 

 
 

 
Figure S2. 1 Sample batch order. 2 blanks were injected at the beginning and at the end of the run 
and after every 5 samples. 
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Figure S2. 2 Workflow used in this study to perform pathways analysis from metabolomics analyses 

 

.  

Figure S2. 3 Pairwise partial least square-discriminant analysis (PLS-DA) of old vs young brain tissues. 
The orange circles represent the first 20 discriminating compounds that allow to differentiate between 
young and old murine brain tissues. 
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Table S2. 5 Table with a list of the first 20 PLS-DA compounds for all the conditions. m/z value, 
Log2Fold change and p-values have been reported. 

Name m/z 

Log2 
Fold 
Change: 
(Old) / 
(Young) 

P-value: 
(Old) / 
(Young) 

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-
glycero-3-phosphocholine 568.339 -1.6 9E-05 

1-[(1Z)-octadec-1-enyl]-sn-glycero-3-
phosphoethanolamine 464.315 -1.54 3E-03 

1-Oleoyl-2-hydroxy-sn-glycero-3-PE 478.294 -1.03 4E-04 
2,2'-({2-
[(Carboxylatomethyl)amino]ethyl}ammonio)diacetate 233.077 1.23 1E-04 

2-Iminobutanoic acid 102.055 0.32 2E-04 

3-Methylhistamine 126.103 1.86 5E-04 

3-O-beta-D-galactosyl-sn-glycerol 272.134 -1.13 1E-04 

Arachidonic acid 303.233 0.86 7E-04 

C14-Carnitine 372.310 0.56 5E-05 

CDP-ethanolamine 447.067 2.2 6E-04 

Crotonic acid 87.044 1.99 1E-03 

Cytidine 5'-diphosphocholine 489.114 0.52 4E-04 

Serine 106.050 0.73 3E-05 

Glucuronamide 192.051 -5.28 7E-04 

Homoanserine 255.145 -1.28 1E-04 

Glutamic acid 148.060 0.29 2E-04 

LysoPC(24:1(15Z)) 606.448 -1.69 1E-03 

N-acetyl-L-2-aminoadipic acid 202.072 -1.26 8E-05 

PAF C-18:1 550.386 -2.32 6E-05 

Uracil 111.020 0.6 1E-04 

 
 
Table S2. 6 Classes of enriched metabolites in the brain tissues of old mice relative to the young mice. 
Analysis performed thorugh MetaboAnalyst and Mummichog software. 

MetaboAnalyst   
 Tot Hits p 

Amino acids 277 12 0 

Pyrimidine 
ribonucleoside 
diphosphates 

10 3 0 

Unsaturated 
Fatty Acids 

267 4 0 
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TCA acids 9 2 0 

Glycosylamines 10 2 0 

Saturated Fatty 
Acids 

38 2 0.01 

LPC 79 2 0.03 

Mummichog 
   

 Tot Hits p 

Pyrimidine 
ribonucleoside 
diphosphates 

20 4 0 

Peptides 22 1 0.04 

Glycosylamines 15 1 0.08 

Aralkylamines 15 2 0.2 

Amino acids 510 16 0.51 

Dipeptides 438 2 0.82 

 
 
Table S2. 7 Classification of putative metabolites identified in the brain tissues of old and young 
mice. Variation of metabolite expression in old/young mice is represented with the Log2 fold change, 
while P is the p-value associated with each metabolite. Significant metabolites are highlighted in Bold. 

Class Name 
Log2 
Fold 
Change 

P 

Long-chain fatty acids 11(Z)-Eicosenoic acid -0.71 1E-03 

HODEs 13S-hydroxyoctadecadienoic acid 1.82 8E-02 
Amino acids 2-Aminoadipic acid -0.23 2E-01 
 2-aminopentanenitrile 0.80 2E-01 

Carnitines 2-methylbutyrylcarnitine -0.32 5E-01 
Tricarboxylic acids 2-methylcitric acid 0.16 4E-01 

Keto acid 2-Oxobutyric acid -0.41 4E-02 

TCA acids 2-Oxoglutaric acid 1.09 4E-01 
Aniline 3-Aminobenzamide 2.04 1E-03 

Hydroxy fatty acids 3-Hydroxy-3-methylglutaric acid 0.37 1E-01 

Hydroxy acids 3-Hydroxybutyric acid 0.03 8E-01 

Carnitines 3-hydroxypalmitoleoylcarnitine -0.38 2E-01 
Amines 3-Methylhistamine 1.86 5E-04 

Benzene 4-Aminobenzoic acid -0.79 2E-02 

Amino acids 4-Guanidinobutyric acid 5.04 7E-02 
Amino acids 4-Oxoproline -0.81 2E-01 

Short-chain keto acids 5-guanidino-2-oxopentanoic acid -2.64 4E-02 

Purine ribonucleosides 5'-S-Methy5'-thioadenosine 0.75 1E-01 
lineolic acids 9-HpODE 1.60 8E-02 

Benzene Acetanilide 0.29 1E-01 

Acetohydroxamic acids Acetohydroxamic acid -1.23 2E-03 
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Carnitines Acetycarnitine -0.25 2E-01 

Acyl cholines Acetylcholine 2.00 1E-03 

Purines Adenine -0.26 5E-01 

Purine ribonucleosides Adenosine 0.31 2E-02 
Purine ribonucleoside 
monophosphates 

Adenosine 5'-monophosphate 0.58 1E-01 

Unsaturated Fatty Acids Adrenic acid 0.22 2E-01 
Amino acids Alanine -0.23 1E-01 

Dipeptides Alanyproline 1.35 8E-02 

Glycerophosphocholines alpha-lysophosphatidylcholine -1.02 3E-03 
Unsaturated Fatty Acids Arachidonic acid 0.86 7E-04 

Peptides arg-ala -0.19 2E-01 

Amino acids Arginine 0.35 3E-01 
Vitamin Ascorbic acid 0.49 5E-03 

Dipeptides asp-gln 1.65 8E-03 

Amino acids Asparagine 0.44 3E-03 
Amino acids Aspartic acid 0.35 6E-02 

Carnitines C12-Carnitine 0.04 3E-01 

Carnitines C14-Carnitine 0.56 5E-05 

Carnitines C18-Carnitine -0.43 7E-03 
Amino acids Carbocysteine 1.65 3E-02 

Amino acids carboxynorspermidine -0.32 4E-02 

Carnitines Carnitine -0.50 4E-03 
Peptides Carnosine 0.82 5E-02 

Pyrimidine ribonucleoside 
diphosphates 

CDP-ethanolamine 2.20 6E-04 

Ceramide Ceramide (d18:1/18:0) 1.03 8E-04 

Amino acids Choline -0.13 8E-01 

TCA acids Citric acid 0.52 2E-02 
Amino acids Citrulline -0.98 4E-03 

Amino acids Creatine -0.09 2E-01 

Amino acids Creatinine 0.20 5E-02 
Dipeptides CYS-ASP -2.94 2E-01 

Ribonucleoside 
diphosphates 

Cytidine 5'-diphosphocholine 0.52 4E-04 

Pyrimidones Cytosine 0.73 6E-03 
Amines Deanol 0.56 7E-02 

gamma butyrolactones Dehydroascorbic acid 0.24 2E-02 

1,2-aminoalcohols Diethanolamine -0.29 2E-01 
Dialkylamines Diethylamine 0.29 2E-01 

Pyrimidones Dihydrothymine 0.85 1E-01 

Unsaturated Fatty Acids Docosahexaenoic acid -0.22 2E-01 
Carboxylic acids Ergothioneine -0.55 4E-03 

1,2-aminoalcohols Ethanolamine 0.08 1E-01 

Fatty acid esters Ethyl myristate 0.29 2E-02 
TCA acids Fumaric acid 0.70 3E-01 

Nitrofurans Furazolidone -0.27 8E-01 

Monosaccharide 
phosphates 

Glucosamine 6-phosphate -0.51 5E-02 

Carboxylic adìcids Glutamic acid 0.29 2E-04 

Amino acids Glutamine 0.06 3E-01 

Dicarboxylic acids Glutaric acid -0.15 2E-01 
Carboxylic acids Glutathione (reduced) -0.25 5E-01 

Amino acids Glutaurine 0.84 3E-03 

Peptide Gly-Leu -0.70 4E-03 
Dipeptides Gly-pro 0.53 4E-01 

Dipeptides Glycyleucine -0.22 2E-01 
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Dipeptides Glycylglutamine -0.04 6E-01 

purine nucleosides Guanine -3.21 2E-02 

Carnitines Hexanoylcarnitine 0.94 3E-01 

Peptide Homoanserine -1.28 1E-04 
Carnitines Hydroxyhexanoycarnitine 1.72 2E-03 

Xanthines Hypoxanthine -0.23 2E-01 

Purine nucleosides Inosine -0.27 2E-01 
Monoalkylamines Isoamylamine 1.14 5E-01 

Pyrimidines Isocytosine 0.88 3E-01 

Amino acids Kynurenine 0.58 5E-02 
Carboxylic adìcids Lactic acid -0.19 5E-01 

Dipeptides Leu-ala -0.52 3E-02 

Dipeptides Leu-Val -0.12 8E-01 
Dipeptides Leucylproline 0.33 6E-02 

Unsaturated Fatty Acids Linoelaidic acid 0.32 2E-02 

Amino acids Lysine 0.04 8E-01 
LPC LysoPC(22:1(13Z)) -2.00 5E-03 

LPC LysoPC(24:1(15Z)) -1.69 1E-03 

Unsaturated Fatty Acids Maleamic acid 0.10 4E-01 

Carbohydrates Mannitol -0.20 5E-02 
Long-chain fatty acids Margaric acid 0.34 5E-02 

Amino acids methionine -0.10 
1E+0
0 

Amino acids Methionine sulfoxide 0.39 3E-01 

Fatty acid methyl esters Methyl stearate 0.14 9E-02 

Imidazolyl carboxylic acids Methylimidazoleacetic acid 0.49 5E-02 
Carbohydrates muramic acid 0.33 1E-01 

Saturated Fatty Acids Myristic acid 0.24 3E-01 

Dipeptides N-Acety1-aspartylglutamic acid -0.77 5E-02 
Amino acids N-acety2-aminoadipic acid -1.26 8E-05 

Amino acids N-Acetyglutamic acid -0.39 3E-01 

n-acyalpha-amino acids N-Acetylalanine 0.10 3E-01 
Amino acids N-Acetylaspartic acid 0.06 7E-01 

Amino acids N-Acetyleucine -0.96 1E-01 

n-acylneuraminic acids N-Acetylneuraminic acid 1.08 4E-03 

n-acyalpha-amino acids N-Acetylornithine 0.09 
1E+0
0 

Amino acids N-Acetylvaline -0.64 7E-03 

Amino acids N-Ethylglycine 0.34 9E-04 
Amino acids N-Formylmethionine -0.26 7E-01 

Acylamide N-Oleoyl Taurine -2.20 3E-02 

Acylamide N-OleoySerine 0.26 5E-02 
Amino acids N-Tigloylglycine 0.90 6E-02 

Amino acids N6,N6,N6-Trimethylysine 0.49 5E-02 

Amino acids nicotianamine 0.44 8E-02 
Pyridines Nicotinamide -0.68 4E-02 

Unsaturated Fatty Acids Oleic acid 0.33 1E-02 

Glycosylamines Orotidine 0.58 5E-02 
TCA acids Oxalosuccinic acid 1.09 2E-02 

Fatty acids PAF C-18:1 -2.32 6E-05 

Phosphosphingolipids Palmitoyl sphingomyelin 0.06 3E-01 

Carnitines Palmitoylcarnitine -0.08 5E-01 
Alcohols Pantothenic acid -0.48 3E-02 

Saturated Fatty Acids Pentadecanoic Acid 0.55 3E-01 

Amino acids Phenylalanine 0.22 1E-01 
Peptide Pro-Leu 0.12 6E-01 

Amino acids Proline 0.14 2E-01 
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Carnitines Propionylcarnitine -0.05 9E-01 

Pyridine carboxaldehydes Pyridoxal 0.59 7E-01 

Glycosylamines S-Adenosylhomocysteine 0.67 9E-04 

Amino acids Saccharopine -1.40 6E-03 
Amino acids Serine 0.73 3E-05 

Tryptamines Serotonin 0.44 2E-02 

Amines Sphingosine (d18:1) 0.16 8E-01 
Saturated Fatty Acids Stearic acid 0.39 2E-02 

Carbohydrates Streptozotocin -0.46 3E-02 

Carboxylic acids Succinate 0.24 6E-01 
TCA acids Succinic acid -0.33 5E-01 

Sulfonic acids Taurine 0.15 4E-01 

Pyrimidines Thiamine 1.50 1E-02 
Dipeptides Thr-Gln -0.08 2E-01 

Amino acids Threonine 0.57 8E-02 

Tertiary amines Triethanolamine 0.80 9E-01 
Tertiary amines Trimethylamine 0.80 1E-01 

Amino acids Tryptophan 0.46 4E-02 

Amino acids Tyrosine 0.02 3E-01 

Pyrimidine ribonucleoside 
diphosphates 

UDP-N-acetylglucosamine 1.71 5E-04 

Pyrimidones Uracil 0.60 1E-04 

Ureas Urea 0.25 2E-01 
Pyrimidine nucleosides Uridine -0.25 5E-02 

Amino acids Valine 0.21 1E-01 

Xanthines Xanthine 0.45 6E-03 
Amino acids β-Alanine 0.01 9E-01 

 

 
Figure S2. 4 Workflow used in this study to perform pathway analysis from proteomics analyses. 
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Table S2. 8 List of genes encoding proteins/enzymes involved in certain metabolic pathways. 
Name, pathways, role and location for each gene have been reported, which were acquired from 
UniProt. 

NAME PATHWAY ROLE LOCATION 

Abi2 Adhesion and 
communication 

Regulator of actin 
cytoskeleton dynamics 
underlying cell motility and 
adhesion. Functions as a 
component of the WAVE 
complex, which activates 
actin nucleating machinery 
Arp2/3 to drive lamellipodia 
formation  

- 

Acaa2 Fatty acid ß-
oxidation 

Catalyzes the last step of the 
mitochondrial beta-oxidation 
pathway, an aerobic process 
breaking down fatty acids 
into acetyl-CoA.  

Mitochondri
al 

Acadl Fatty acid ß-
oxidation 

Long-chain specific acyl-CoA 
dehydrogenase is one of the 
acyl-CoA dehydrogenases 
that catalyze the first step of 
mitochondrial fatty acid beta-
oxidation, an aerobic process 
breaking down fatty acids 
into acetyl-CoA and allowing 
the production of energy from 
fats 

Mitochondri
al 

Acadm Fatty acid ß-
oxidation 

Catalyze the first step of 
mitochondrial fatty acid beta-
oxidation, 

Mitochondri
al 

Acat1 Fatty acid ß-
oxidation 

Catalyzes the last step of the 
mitochondrial beta-oxidation 
pathway, an aerobic process 
breaking down fatty acids 
into acetyl-CoA 

Mitochondri
al 

Aco2 TCA cycle Catalyzes the isomerization 
of citrate to isocitrate via cis-
aconitate 

Mitochondri
al 

Acot7 Fatty acid ß-
oxidation 

Catalyzes the hydrolysis of 
acyl-CoAs into free fatty 
acids and coenzyme A 
(CoASH), regulating their 
respective intracellular levels 

Mitochondri
al 

Acsf2 Fatty acid ß-
oxidation 

Catalyze the initial reaction in 
fatty acid metabolism, by 
forming a thioester with CoA. 
Has some preference toward 
medium-chain substrates. 
Plays a role in adipocyte 
differentiation 

Mitochondri
al 

Actn1 Adhesion and 
communication 

F-actin cross-linking protein 
which is thought to anchor 
actin to a variety of 
intracellular structures. This 
is a bundling protein  

- 
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Akap5 Cell biogenesis, 
transport and 
transduction 

Multivalent scaffold protein 
that anchors the cAMP-
dependent protein 
kinase/PKA to cytoskeletal 
and/or organelle-associated 
proteins, targeting the signal 
carried by cAMP to specific 
intracellular effectors. 

Synapse 

Aldh6a
1 

BCAAs Plays a role in valine and 
pyrimidine metabolism. Binds 
fatty acyl-CoA 

Mitochondri
al 

Aldoc Gluconeogenesi
s 

Catalyzes the conversion of 
beta-D-fructose 1,6-
bisphosphate into 
glyceraldehyde 3-phosphate  

cytoplasmic 

Asrgl1 Phenylalanine 
metabolism 

Involved in the production of 
L-aspartate, which can act as 
an excitatory 
neurotransmitter in some 
brain regions 

cytosolic 

Auh BCAAs Catalyzes the fifth step in the 
leucine degradation 
pathway, the reversible 
hydration of 3-
methylglutaconyl-CoA (3-
MG-CoA) to 3-hydroxy-3-
methylglutaryl-CoA (HMG-
CoA) 

Mitochondri
al 

Basp1 Developmental 
processes 

Nucleic acid bingind activity Membrane 

Bcat1 BCAAs Catalyzes the first reaction in 
the catabolism of the 
essential branched chain 
amino acids leucine, 
isoleucine, and valine 

cytosolic 

Ca8 One-carbon 
metabolism 

Does not have a carbonic 
anhydrase catalytic activity 

cytosolic 

Cadm2 Adhesion and 
communication 

Adhesion molecule that 
engages in homo- and 
heterophilic interactions with 
the other nectin-like family 
members, leading to cell 
aggregation 

- 

Calb1 Developmental 
processes 

Buffers cytosolic calcium. 
May stimulate a membrane 
Ca2+-ATPase and a 3',5'-
cyclic nucleotide 
phosphodiesterase. 

cytoplasmic 
and synapse 

Calb2 Other Calretinin is a calcium-
binding protein which is 
abundant in auditory neurons 

cytosolic 

Camk2
a 

Cell cycle and 
proliferation 

Calcium/calmodulin-
dependent protein kinase 
that functions autonomously 
after Ca2+/calmodulin-
binding and 
autophosphorylation, and is 
involved in various 
processes, such as synaptic 

cytoplasmic 
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plasticity, neurotransmitter 
release and long-term 
potentiation 

Camkv Protein 
metabolism 

Does not appear to have 
detectable kinase activity. 

Cell 
membrane 

Cask Dopamine 
metabolism 

Multidomain scaffolding 
Mg2+-independent protein 
kinase that catalyzes the 
phosphotransfer from ATP to 
proteins such as NRXN1, 
and plays a role in synaptic 
transmembrane protein 
anchoring and ion channel 
trafficking 

- 

Cdc37 Adhesion and 
communication 

Co-chaperone that binds to 
numerous kinases and 
promotes their interaction 
with the Hsp90 complex, 
resulting in stabilization and 
promotion of their activity. 

- 

Celf2 RNA 
metabolism and 
transcription 

RNA-binding protein 
implicated in the regulation of 
several post-transcriptional 
events 

Nucleus and 
cytoplasm 

Cltb Adhesion and 
communication 

Clathrin is the major protein 
of the polyhedral coat of 
coated pits and vesicles. 

- 

Coro1a Cell adhesion 
and transport 

May be a crucial component 
of the cytoskeleton of highly 
motile cells, functioning both 
in the invagination of large 
pieces of plasma membrane, 
as well as in forming 
protrusions of the plasma 
membrane involved in cell 
locomotion 

Cytoplasm 
and 
cytoskeleton 

Crkl IL-2 signaling  Mediates the transduction of 
intracellular signals. 

cytosolic 

Crym Transport and 
other biological 
processes 

Specifically catalyzes the 
reduction of imine bonds in 
brain substrates that may 
include cystathionine 
ketimine (CysK) and 
lanthionine ketimine (LK). 
Binds thyroid hormone which 
is a strong reversible 
inhibitor.  

cytosolic 

Cryzl2 Redox 
metabolism 

Oxidoreductase activity, 
acting on CH-OH group of 
donors, NAD or NADP as 
acceptors  

Lysosome 

Cs TCA cycle Conversion of acetyl-CoA 
into Citrate with release of 
CoA 

Mitochondri
al 

Dbn1 Cell signalling 
and cell 
communication 

Required for actin 
polymerization at 
immunological synapses (IS) 
and for the recruitment of the 

cytosolic 
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chemokine receptor CXCR4 
to IS 

Dclk1 Cell biogenesis 
and protein 
metabolism 

Involved in a calcium-
signaling pathway controlling 
neuronal migration in the 
developing brain 

Axon, 
Synapse 

Dlat TCA cycle Catalyzes the conversion of 
pyruvate to acetyl-CoA and 
CO2 

Mitochondri
al 

Dlst TCA cycle Catalyzes the overall 
conversion of 2-oxoglutarate 
to succinyl-CoA and CO2 

Mitochondri
al 

Echs1 Fatty acid ß-
oxidation 

Converts unsaturated trans-
2-enoyl-CoA species ((2E)-
enoyl-CoA) to the 
corresponding (3S)-3-
hydroxyacyl-CoA species 
through addition of a water 
molecule to the double bond 

Mitochondri
al 

Eci1 Other Able to isomerize both 3-cis 
and 3-trans double bonds 
into the 2-trans form in a 
range of enoyl-CoA species 

Mitochondri
al 

Fh TCA cycle Catalyzes the reversible 
stereospecific 
interconversion of fumarate 
to L-malate 

Mitochondri
al 

Gda Other Catalyzes the hydrolytic 
deamination of guanine, 
producing xanthine and 
ammonia 

cytoplasmic 

Glo1 Pyruvate 
metabolism 

Catalyzes the conversion of 
hemimercaptal, formed from 
methylglyoxal and 
glutathione, to S-
lactoylglutathione. Involved 
in the regulation of TNF-
induced transcriptional 
activity of NF-kappa-B 

cytosolic 

Gnpda
2 

Glycolysis Catalyzes the reversible 
conversion of alpha-D-
glucosamine 6-phosphate 
(GlcN-6P) into beta-D-
fructose 6-phosphate (Fru-
6P) and ammonium ion, a 
regulatory reaction step in de 
novo uridine diphosphate-N-
acetyl-alpha-D-glucosamine 
(UDP-GlcNAc) biosynthesis 
via hexosamine pathway.  

cytosolic 

Gria2 Cell signalling 
and cell 
communication 

Receptor for glutamate that 
functions as ligand-gated ion 
channel in the central 
nervous system and plays an 
important role in excitatory 
synaptic transmission 

Cell 
membrane 

Hadha Fatty acid ß-
oxidation 

Acylates monolysocardiolipin 
into cardiolipin, a major 
mitochondrial membrane 

Mitochondri
al 
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phospholipid which plays a 
key role in apoptosis and 
supports mitochondrial 
respiratory chain complexes 
in the generation of ATP.  

Hadhb Fatty acid ß-
oxidation 

Catalyzes the last three of 
the four reactions of the 
mitochondrial beta-oxidation 
pathway. 

Mitochondri
al 

Hagh Pyruvate 
metabolism 

Catalyzes the hydrolysis of 
S-D-lactoyl-glutathione to 
form glutathione and D-lactic 
acid 

Mitochondri
al 

Hapln2 Adhesion and 
communication 

Mediates a firm binding of 
versican V2 to hyaluronic 
acid. May play a pivotal role 
in the formation of the 
hyaluronan-associated 
matrix in the central nervous 
system (CNS) which 
facilitates neuronal 
conduction and general 
structural stabilization 

Extracellular 

Hibch BCAAs isobutyryl-CoA 
dehydrogenase that 
functions in valine catabolism 

Mitochondri
al 

Ldhb Pyruvate 
metabolism 

Interconverts simultaneously 
and stereospecifically 
pyruvate and lactate with 
concomitant interconversion 
of NADH and NAD+ 

cytosolic 

Mapk1 IL-9, IL-3 
signaling  

Depending on the cellular 
context, the MAPK/ERK 
cascade mediates diverse 
biological functions such as 
cell growth, adhesion, 
survival and differentiation 
through the regulation of 
transcription, translation, 
cytoskeletal rearrangements 

cytosolic 

Mdh1 Gluconeogenesi
s 

Catalyzes the reduction of 
aromatic alpha-keto acids in 
the presence of NADH 

cytoplasmic 

Mdh2 TCA cycle Catalyzes the conversion of 
malate into oxaloacetate with 
release of NADH 

Mitochondri
al 

Nefh Cell biogenesis 
and stress 
response 

Important function in mature 
axons. May additionally 
cooperate with the neuronal 
intermediate filament 
proteins to form neuronal 
filamentous networks 

cytoplasmic 

Pde2a Signal 
transductio and 
cellular 
development 

cGMP-activated cyclic 
nucleotide 
phosphodiesterase with a 
dual-specificity for the 
second messengers cAMP 
and cGMP, which are key 

Cell 
membrane 
and 
cytoplasm 
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regulators of many important 
physiological processes 

Pfkm Glycolysis Catalyzes the 
phosphorylation of D-
fructose 6-phosphate to 
fructose 1,6-bisphosphate by 
ATP, the first committing step 
of glycolysis 

cytoplasmic 

Phf24 Cell signalling Showing features 
for region, zinc finger 

Other 

Pkm Glycolysis Catalyzes the final rate-
limiting step of glycolysis by 
mediating the transfer of a 
phosphoryl group from 
phosphoenolpyruvate (PEP) 
to ADP, generating ATP 

cytosolic 

Ppp3ca Other Acts as cofactor for myogenic 
bHLH transcription factors 
such as MYOD1 

Cytoplasm 
and 
cytoskeleton 

PrKca IL-9, IL-3 
signaling  

Calcium-activated, 
phospholipid- and 
diacylglycerol (DAG)-
dependent serine/threonine-
protein kinase that is involved 
in positive and negative 
regulation of cell proliferation, 
apoptosis, differentiation, 
migration and adhesion, 
cardiac hypertrophy, 
angiogenesis, platelet 
function and inflammation 

- 

Pvalb Cell signalling In muscle, parvalbumin is 
thought to be involved in 
relaxation after contraction. It 
binds two calcium ions. 

cytosolic 

Qdpr Phenylalanine 
metabolism 

Catalyzes the conversion of 
quinonoid dihydrobiopterin 
into tetrahydrobiopterin 

cytosolic 

Rab3b Biogenesis and 
protein 
metabolism 

Protein transport. Probably 
involved in vesicular traffic  

Cell 
membrane 
and Golgi 

Rpl13a Protein 
metabolism 

Associated with ribosomes 
but is not required for 
canonical ribosome function 
and has extra-ribosomal 
functions  

cytoplasmic 

S100b Other Weakly binds calcium but 
binds zinc very tightly-distinct 
binding sites with different 
affinities exist for both ions on 
each monomer 

cytosolic 
and nucleus 

Sdha TCA cycle Responsible for transferring 
electrons from succinate to 
ubiquinone (coenzyme Q) 

Mitochondri
al 

Slc30a
3 

Stress response 
and transport 

Proton-coupled zinc ion 
antiporter mediating the 
import of zinc from cytoplasm 
into synaptic vesicles and 

Cytoplasm, 
synapse 
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participating to cellular zinc 
ion homeostasis in the brain 

Sncg Cell signalling 
and cell 
communication 

Plays a role in neurofilament 
network integrity 

cytoplasmic 

Srr Other Catalyzes the synthesis of D-
serine from L-serine 

cytoplasmic 

Stx1a Dopamine 
metabolism 

Plays an essential role in 
hormone and 
neurotransmitter calcium-
dependent exocytosis and 
endocytosis  

- 

Sucla2 TCA cycle Couples the hydrolysis of 
succinyl-CoA to the synthesis 
of ATP and thus represents 
the only step of substrate-
level phosphorylation in the 
TCA 

Mitochondri
al 

Syt1 Dopamine 
metabolism 

Calcium sensor that 
participates in triggering 
neurotransmitter release at 
the synapse 

- 

Wasf1 Adhesion and 
communication 

Downstream effector 
molecule involved in the 
transmission of signals from 
tyrosine kinase receptors and 
small GTPases to the actin 
cytoskeleton. Promotes 
formation of actin filaments 

- 

 
 
Table S2. 9 Metabolic pathways enriched in the brain tissues of aged mice after integrative analysis 
with metabolomics and proteomics data. FDR = False discovery rate. 

  Total Hits FDR Impact 

Pyruvate 
metabolism 

45 13 0.00 0.63 

Valine, leucine 
and isoleucine 
degradation 

88 18 0.00 0.41 

Citrate cycle 
(TCA cycle) 

42 12 0.00 2.18 

Propanoate 
metabolism 

48 12 0.00 0.44 

Glyoxylate and 
dicarboxylate 
metabolism 

56 12 0.00 0.08 

beta-Alanine 
metabolism 

44 9 0.01 0.15 

Butanoate 
metabolism 

29 7 0.01 0.30 

Lysine 
degradation 

49 9 0.01 0.14 

Cysteine and 
methionine 
metabolism 

71 11 0.01 0.59 
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Alanine, 
aspartate and 
glutamate 
metabolism 

61 10 0.01 0.15 

Glycolysis or 
Gluconeogenesis 

61 10 0.01 0.73 

Fatty acid 
degradation 

102 13 0.02 1.96 

 
 
Table S2. 10 List of lipids identified from MALDI-MSI analysis. For each m/z value peak intensity 
is reported in Young-wild type (Young-WT), Old-WT, and Young-knocked out (Young-KO) samples. 

NAME m/z Ion Young-WT Old-WT Young-KO 

CerPE36:2;O6 749.5066 [M-H]- 11187 7543  

CerPE36:3;O6 747.4948 [M-H]- 139627 65555 104551 

CerPE38:2;O4 745.5485 [M-H]- 62633 29195 37379 

CerPE40:5;O4 767.5344 [M-H]- 54173 31832 37456 

DGCC32:4 718.532 [M-H]- 94280 25170 45030 

DGCC34:5 744.5476 [M-H]- 180137 79410 100573 

DGCC36:10 762.4992 [M-H]- 53194 22021 39284 

DGCC38:8 794.5598 [M-H]- 29996 19556 19040 

DGCC38:9 792.5391 [M-H]- 20664 11098 17165 

DGDG 30:0 863.577 [M-H]- 5124   

DGDG30:0 863.577 [M-H]-   5124 

DGTA 34:5 728.5466 [M-H]- 32055   

DGTA 34:6 726.5378 [M-H]- 35453   

DGTA 38:9 776.5441 [M-H]- 25864   

DGTA34:5 728.5466 [M-H]-   32055 

DGTA34:6 726.5378 [M-H]-   35453 

DGTA36:8 750.5318 [M-H]- 35997 26970 28591 

DGTA38:10 774.5362 [M-H]- 143131 77571 127406 

DGTA38:9 776.5441 [M-H]-   25864 

FA16:0 255.2311 [M-H]- 406278 157167 271516 

FA16:3;O4 313.143 [M-H]- 301333 229492 327901 

FA16:4;O3 295.1076 [M-H]-  25262  

FA16:4;O4 311.1256 [M-H]- 96404 67021 95585 

FA18:0 283.2613 [M-H]- 527615 313714 436081 

FA18:1 281.2468 [M-H]- 447602 218221 320325 

FA20:4 303.2316 [M-H]- 310162 149052 217446 

FA22:4 331.2625 [M-H]- 84582 50588 25652 

FA22:6 327.231 [M-H]- 234821 87186 163779 

Hex2Cer30:2;O4 834.522 [M-H]- 41581 24872 30834 

Hex2Cer32:4;O4 858.5248 [M-H]- 15693 14998 11558 
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Hex2Cer32:5;O4 856.503 [M-H]- 38601 24168 44752 

Hex2Cer34:5;O4 884.5382 [M-H]- 8674 5624 12048 

HexCer 32:1;O4 702.5124 [M-H]- 23886   

HexCer32:1;O4 702.5124 [M-H]-   23886 

HexCer32:2;O4 700.5041 [M-H]- 44020 9735 30020 

HexCer36:2;O5 772.5548 [M-H]- 13118 14587 8975 

HexCer36:6;O4 748.5022 [M-H]- 57190 21020 22908 

IPC40:5;O4 886.5501 [M-H]- 128009 134249 140514 

LPA10:0 325.1161 [M-H]-  13846  

LPA18:0 437.266 [M-H]- 29922 19805 24796 

LPAO-10:0;O 327.123 [M-H]-  27987  

LPAO-16:2 391.2231 [M-H]- 37288 15799 34180 

LPAO-18:2 419.255 [M-H]- 104117 95526  

LPAO-18:3 417.2386 [M-H]- 32772 16567 128120 

LPC28:2;O 674.4788 [M-H]- 45233 16558 24091 

LPE18:0 480.3061 [M-H]- 41966 36113 47130 

LPEO-18:1 464.3105 [M-H]- 31742 20058 36524 

LPEO-18:2 462.2957 [M-H]- 24027 17671 17044 

LPG14:2;O 467.1899 [M-H]- 26736 19316 32470 

LPI 32:0 795.5327 [M-H]- 7742   

LPI32:0 795.5327 [M-H]-   7742 

LPS12:2 436.1611 [M-H]-  9478  

NAE14:3;O3 312.1324 [M-H]- 161777 116300 160655 

NAT10:0;O2 310.1083 [M-H]- 47819 22352 22123 

NAT10:0;O3 326.1196 [M-H]-  7337  

NAT14:3 328.118 [M-H]-  24394 45700 

PA 52:10 907.6221 [M-H]- 18447   

PA20:5 469.199 [M-H]-  24722 28036 

PA34:1 673.4758 [M-H]- 137470 50147 64938 

PA36:1 701.5071 [M-H]- 52816 39716 47571 

PA36:2 699.4908 [M-H]- 73048 26172 43069 

PA42:6 775.5382 [M-H]- 33572 17567 28308 

PA42:6;O 791.534 [M-H]- 151038 62068 121370 

PA50:10 879.5852 [M-H]- 8275 7985 7847 

PA52:10 907.6221 [M-H]-   18447 

PA52:11 905.6073 [M-H]-  17696 12824 

PA52:11 905.6102 [M-H]-   25480 

PAO-38:1 715.5675 [M-H]- 53006 17325 30890 

PAO-52:11 891.6213 [M-H]- 38715 27869 43942 

PE 40:6;O 806.5334 [M-H]- 11494   
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PE 44:11 836.525 [M-H]- 14414   

PE 44:6;O 862.5937 [M-H]- 8241   

PE 44:7;O 860.571 [M-H]- 160   

PE34:1 716.5392 [M-H]- 15152 19020 11450 

PE38:4 766.5317 [M-H]- 146001 89349 99033 

PE40:6 790.5319 [M-H]- 307053 155271 165867 

PE40:6;O 806.5334 [M-H]-   11494 

PE44:11 836.525 [M-H]-   14414 

PE44:6;O 862.5937 [M-H]-   8241 

PE44:7;O 860.571 [M-H]-   160 

PE46:6;O 890.6215 [M-H]- 112030 171825 128219 

PE46:7;O 888.6135 [M-H]- 377239 452991 277102 

PEO-38:7 746.5218 [M-H]- 21802 10543 34720 

PEO-40:8;O 788.5273 [M-H]- 28283 18070 31654 

PI 38:0 893.6081 [M-H]- 9877   

PI 40:6 909.553 [M-H]- 10037   

PI34:1 835.5239 [M-H]- 42697 25746 34416 

PI36:4 857.5189 [M-H]- 76358 17450 29908 

PI38:0 893.6081 [M-H]-   9877 

PI38:3 887.5562 [M-H]- 66260 21156 38167 

PI38:4 885.5428 [M-H]- 484494 281109 609455 

PI38:5 883.5356 [M-H]- 38689 23434 52417 

PI40:6 909.553 [M-H]-   10037 

PS44:5 892.613 [M-H]-  17559 27886 

SHexCer 
36:1;O3 

822.5295 [M-H]- 13115   

SHexCer 
40:2;O3 

876.5865 [M-H]- 11776   

SHexCer36:1;O3 822.5295 [M-H]-   13115 

SHexCer40:1;O3 878.5922 [M-H]- 32496 38856 34127 

SHexCer40:2;O3 876.5865 [M-H]-   11776 

SHexCer42:1;O3 906.6198 [M-H]-  31266 41135 

SHexCer42:1;O3 906.6222 [M-H]-   47783 

SHexCer42:2;O3 904.6078 [M-H]-  43730 13591 

SHexCer42:2;O3 904.6097 [M-H]-   54849 

SPB18:0;O 284.2645 [M-H]- 84403 40620 54816 

SPB18:1;O 282.2501 [M-H]- 83329 41596 47060 

ST 24:2;O5;GlcA 581.3007 [M-H]- 16790   

ST18:0;O7;T 464.164 [M-H]-  8279 15937 

ST18:5;O4 299.134 [M-H]-  34105 48685 

ST18:5;O5 315.1512 [M-H]- 123018 79014 121613 
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ST20:0;O7;S 465.1702 [M-H]- 25493 11079 21461 

ST20:1;O7;S 463.1571 [M-H]-  8968  

ST20:3;O5;T 454.1987 [M-H]- 44703 31345 48532 

ST20:3;O6;T 470.1964 [M-H]-  15732 16582 

ST20:4;O5;T 452.182 [M-H]- 28822 20889 33091 

ST20:4;O6;T 468.1924 [M-H]- 22913 27377 31187 

ST20:5;O5;T 450.1656 [M-H]- 20852 12613 23885 

ST20:5;O6;T 466.1754 [M-H]- 28575 8572 23404 

ST22:3;O4;S 439.186 [M-H]-  8354 11199 

ST22:4;O4;S 437.1697 [M-H]-  16239 25478 

ST22:4;O5;S 453.1905 [M-H]- 39570 29146 49771 

ST22:5;O5;S 451.1727 [M-H]- 36307 11928 22200 

ST24:1;O6;GlcA 599.313 [M-H]- 20260 12858 23282 

ST24:2;O5;GlcA 581.3007 [M-H]-   16790 

ST24:4;O7;GlcA 609.2524 [M-H]-  6716 7921 

ST24:5;O8;GlcA 623.256 [M-H]-  4944  

ST26:7;O7 455.1997 [M-H]- 16440 11381 19990 

ST28:5;O8;T 610.2606 [M-H]-  6616 11820 

ST28:6;O8;T 608.2464 [M-H]-  7486 15263 

ST28:7;O2 403.259 [M-H]- 31474 22392 32326 

TG 46:10;O 773.5461 [M-H]- 12861   

TG46:10;O 773.5461 [M-H]-   12861 

TG52:10;O3 889.6169 [M-H]- 166475 211158 117197 
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6.3. Appendix 3 
 

Table S3. 2 Cell lines used in this study and their corresponding clinicopathologic profiles (ER: estrogen 
receptor, PR: progesterone receptor, and HER2: Human epidermal growth factor 2 receptor) 

Cell Line Histology Subtype Immunoprofile Genetic 
alterations 

MCF-7 Metastatic 
Adenocarcinoma 

Luminal A ER+, PR+, 
HER2- 

PIK3CA, 
CDKN2A, 
GATA3, 
PIK3CA, TP53 

MDA-MB-
231 

Metastatic 
Adenocarcinoma 

Basal ER-, PR-, HER2- BRAF, 
CDKN2A, 
KRAS,  
NF2,  
TP53 

HCC1937 Primary 
Ductalcarcinoma 

Basal-like ER-, PR-, HER2- BRCA1, TP53 

 

 
Figure S3. 2 Sample batch order. 2 blanks were injected at the beginning and at the end of the run. 
10 QCs were injected before injections of the samples. Then QCs were injected after every 5 samples. 
QCs have been prepared by pooling together all the sample after drying and reconstitution with 
water:acetonitrile (50:50, v/v). 

Elution Gradient used for LC-MS  
 
Buffer A composition:10 mM ammonium acetate in 95% acetonitrile, 5% water with 
0.1% acetic acid  
Buffer B composition: 10 mM ammonium acetate in 50% acetonitrile, 50% water 
with 0.1% acetic acid 
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Table S3. 3 Corresponding elution gradient used for the chromatographic separation of metabolite 
extracts 

Retention 
(min) 

Flow (ml/min) %A %B Curve 

0.000 0.500 99.0 1.0 5 

1.000 0.500 99.0 1.0 5 

3.000 0.500 85.0 15.0 5 

6.000 0.500 50.0 50.0 5 

9.000 0.500 5.0 95.0 5 

10.000 0.500 5.0 95.0 5 

10.500 0.500 99.0 1.0 5 

14.000 0.500 99.0 1.0 5 
 

Table S3. 4 Normality test for cell viability and immunofluorescence quantification data. The 
Shapiro-Wilk test has been performed with R software. p-values of >0.05 were considered as normally 
distributed. P-value (p). 

Cell viability   Immunofluorescence   

      

Cell line p  Cell line 
p 
p53 

p 

H2AX 

MCF7  0.5  MCF7  0.7 0.1 

MDA-MB-231 0.3  MDA-MB-231 0.3 0.9 

HCC1937 0.3  HCC1937 0.7 0.1 

 
 
Table S3. 5 Setting for LC-MS data analysis and processing 

Method settings  

Application mode Small molecule 

Method duration 14 min 
Global parameter  

Ion source type H-ESI 

Spray voltage Static 

Positive Ion (V) 3900 
Negative Ion (V) 2700 

Gas Mode Static 

Sheath Gas (Arb) 40 
Aux Gas (Arb) 10 

Sweep Gas (Arb) 1 

Ion Transfer Tube Temp (°C) 320 
Vaporizer Temp (°C) 300 

APPI Lamp Not in use 

MS Global Settings  

Infusion Mode Liquid Chromatography 

Expected LC Peak Width (s) 6 

Advanced Peak Determination False 
Mild Trapping True 

Default Charge State 1 

Internal Mass Calibration EASY-ICTM 

Mode Run Start 
 Experiment 
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Start time 0 min 

End time 14 min 

Full Scan  

Orbitrap resolution 60,000 
Scan range (m/z) 70-1050 

RF Lens (%) 50 

AGC Target Standard 
Maximum Injection Time Mode Custom 

Microscans 1 

Data Type Profile 
Polarity +/- 

Source Fragmentation Disabled 

Use EASY-CMTM On 
Apex Detection  

Desired Apex Window (%) 50 

Intensity  
Intensity threshold 5.0e4 

Data Dependent Mode Number of scans 

Number of Dependent Scans 5 

ddMS2 Scan  

Multiplex Ions False 

Isolation Window (m/z) 2 

Isolation Offset Off 
Collision Energy Type Normalised 

HCD Collision Energies (%) 15,30,45 

Orbitrap Resolution 15,000 
Scan Range Mode Auto 

AGC Target Standard 

Maximum Injection Time Mode Auto 
Microscans 1 

Data Type Profile 

Use EASY-ICTM On 
 Data processing 
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Input Files .raw data 

Select Spectra  

Lower RT Limit 0 

Upper RT Limit 0 
First Scan 0 

Last Scan 0 

Lowest charge state 0 
Highest charge state 0 

Min. precursor mass 0 Da 

Max precursor Mass 5000 Da 
Total intensity threshold 0 

Minimum peak count 1 

Scan event filters  

Mass analyzer Not specified 

MS Order Any 

Activation type Not specified 
Min collision energy 0 

Max collision energy 1000 

Scan type Any 

Polarity mode is +/- 
Peak Filters  

S/N threshold (FT-only) 1.5 

General settings  

Precursor selection Use MS(n-1) precursor 

Use isotope pattern in precursor reevaluation True 

Provide profile spectra Automatic 
Store chromatograms False 

Align retention times  

Alignment model Adaptive curve 
Alignment fallback None 

Maximum shift 0.3 min 

Shift reference file True 
Mass tolerance 3 ppm 

Remove outlier True 

Detect compounds  

Mass tolerance 3 ppm 
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Intensity tolerance (%) 30 

S/N threshold 3 

Min. peak intensity 500,000 

Base ions [M+H]+1; [M-H]-1 
Peak detection  

Filter peaks True 

Max peak width 0.5 min 
Remove singlets True 

Min #scans per peak 5 

Min #isotopes 1 
Isotope grouping  

Min spectral distance score 0 

Remove potentially false positive isotopes True 
Group compounds  

Mass tolerance 5 ppm 

RT tolerance 0.2 min 

Preferred ions 

[M+H]+1; [M-H]-1  
+ 2nd analysis: 
[M+H]+1; [M-H]-1; [M+ACN+H]+1; 
[M+FA-H]-1; [M+ACN+Na]+1; 
[M+H+Na]+2; [M+H+NH4]+2; 
[M+Na]+1; [M+NH4]+1 

Fill gaps  
Mass tolerance 5 ppm 

S/N threshold 1.5 

Use real peak detection 
True (re-detected low-intensity 
peaks) 

Apply QC correction  

Regression model Linear 
Min QC coverage [%] 30 

Max QC area RSD [%] 30 

Max corrected QC area RSD [%] 25 
Max #files between QC files 15 

Max background compounds  

Max sample/blank 5 

Max blank/sample 0 
Hide background True 

Search ChemSpider  

Database(s) 
CheBI, Human Metabolome 
Database 

Search mode By formula mass 

Mass tolerance 5 ppm 
Max # of results per compound 100 

Max # of predicted composition per compound 3 

Apply mzLogic  
FT Fragment mass tolerance 10 ppm 

IT Fragment mass tolerance 0.4 Da 

Max # compounds 0 
Max # mzCloud similarity results to consider per 
compound 

10 

Match factor threshold 30 + 2nd analysis at 70 

Predict compositions  
Mass tolerance 5 ppm 

Pattern matching  

Intensity tolerance (%) 30 
Intensity threshold (%) 0.1 

S/N threshold 3 
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Min spectral fit (%) 30 

Min pattern Cov (%) 90 

Use dynamic recalibration True 

Use fragments matching True 
Mass tolerance 5 ppm 

S/N threshold 3 

Assign compound annotations  
Mass tolerance 5 pmm 

Data source 1 mzCloud search 

Data source 2 Predicted compositions 
Data source 3 massList search 

Data source 4 ChemSpider search 

Data source 5 Metabolika search 
Search mzCloud  

Compound classes All 

Precursor mass tolerance 10 ppm 
FT fragment mass tolerance 10 ppm 

IT fragment mass tolerance 0.4 Da 

Library Autoprocessed; reference 

Post processing Recalibrated 
Max # results 10 

Annotate matching fragments True 

DDA Search  
Identity search Cosine 

Match activation type True 

Match activation energy Match with tolerance 
Activation energy tolerance 20 

Apply intensity threshold True 

Similarity search None 
Match factor threshold 60 

Differential analysis  

Log10 transform values True 

 
 

 
Figure S3. 3 The formation of p53BP1 foci in response to treatment with either growth medium or 
medium containing olaparib. Representative images of immunolabelled P53BP1 foci (red), DAPI 
(blue) nuclear counterstain and composite (p53BP1 (red) and DAPI (blue)) in MCF-7, MDA-MB-231, 
and HCC1937 cells treated with olaparib for seven days (a-c). 
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Figure S3. 4 The formation of γH2AX foci formation in response to treatment with either growth 
medium or medium containing olaparib. Representative images of immunolabelled γH2AX foci 
(green), DAPI (blue) nuclear counterstain and composite (γH2AX and DAPI) in MCF-7, MDA-MB-
231, and HCC1937 cells treated with for seven days (a-c). 

 
Table S3. 6 ANOVA analysis of olaparib dose-dependent DNA DSB immunofoci formation 

Cell line Foci p-value 

MCF-7 53BP1 

γH2AX 

0.011 
 

4.876 x 10-10 

MDA-MB-231 53BP1 

γH2AX 

0.0009 

4.096 x 10-10 

HCC1937 53BP1 

γH2AX 

1.204 x 10-6 
 

1.441 x 10-5 

 

 
Figure S3. 5 Global metabolic features identified in MCF7, MDA-MB-231 and HCC1937 upon exposure 
to IC10, IC25 and IC50 olaparib doses for seven days acquired in positive and negative ionization mode. 
a) Workflow used in this study to perform pathway analysis from metabolomics analyses. b) Global 
PCA score plots of the analysed breast cancer cell lines for data acquired in positive and negative 
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ionization mode. For each treatment group, five replicates were used. Data points in the two-
dimensional PCA score plot were central scaled. Ellipses represent 95% confidence interval. 

 
 

 
Figure S3. 6 PCA pairwise analysis of untargeted metabolomics data collected, in both positive and 
negative mode, from MCF7, MDA-MB-231, and HCC1937 cells treated with IC10, IC25 and IC50 olaparib 
treatment doses. Data points in the two-dimensional PCA score plot were central scaled. The plot was 
designed on R through the ggplot2 graphical package (n=5). Ellipses represent 95% confidence 
interval. 

 
Figure S3. 7 Volcano plots showing the log2 fold change and the -log10 adjusted p-values in metabolite 
levels induced by treatment with different doses of Olaparib (IC10, IC25, and IC50) in MCF7, MDA-MB-
231 and HCC1937 cells. Data were selected at the cut off values adjusted p<0.05 and fold change 
>1.5. Blue and grey boxes indicate metabolites significantly enriched and depleted in the different 
samples, respectively. 
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Figure S3. 8 Statistical analysis with new data processing method using 70% of annotation threshold 
and more ion adducts ([M+H]+1; [M-H]-1; [M+ACN+H]+1; [M+FA-H]-1; [M+ACN+Na]+1; [M+H+Na]+2; 
[M+H+NH4]+2; [M+Na]+1; [M+NH4]+1). A) PCA pairwise analysis of untargeted metabolomics data 
collected, in both positive and negative mode, from MCF7, MDA-MB-231, and HCC1937 cells treated 
with IC10, IC25 and IC50 olaparib treatment doses. Data points in the two-dimensional PCA score plot 
were central scaled. The plot was designed on R through the ggplot2 graphical package (n=5). Ellipses 
represent 95% confidence interval. B) Volcano plots showing the log2 fold change and the -log10 
adjusted p-values in metabolite levels induced by treatment with different doses of Olaparib (IC10, IC25, 
and IC50) in MCF7, MDA-MB-231 and HCC1937 cells. Data were selected at the cut off values adjusted 
p<0.05 and fold change >1.5. Blue and grey boxes indicate metabolites significantly enriched and 
depleted in the different samples, respectively. The first 20 features mostly contributing to the 
separation between young and old samples are indicated as orange data points and correspond to the 
PLS-DA components highlighted in the c) loading plot and d) PLS-DA analysis. 

 
Table S3. 7 Global differential number of altered metabolites for samples treated with IC10, IC25 and 
IC50 of Olaparib and their relative control (non-treated) samples. Metabolites identified in both positive 
and negative mode with p-value = <0.05 and Log2 Fold Change = >1.5. 

Sample HESI + HESI - 

MCF7 IC10/Ctrl 41 10 

MCF7 IC25/Ctrl 111 62 

MCF7 IC50/Ctrl 41 15 

MDA231 IC10/Ctrl 2 1 

MDA231 IC25/Ctrl 12 1 

MDA231 IC50/Ctrl 34 9 

HCC1937 IC10/Ctrl 36 2 

HCC1937 IC25/Ctrl 107 13 

HCC1937 IC50/Ctrl 134 43 

 

 
Figure S3. 9 Enrichment analysis of non-treated MCF7, MDA-MB-231 and HCC1937 cells. 
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Table S3. 8 Metabolic pathways in different breast cancer cells (MCF7, MDA-MB-231, and HCC1937) 
before and after treatment with IC50 dose of Olaparib. FDR = False Discovery Rate. 

 
 

 
Figure S3. 10 Venn diagram representing the metabolic pathways in MCF7, MDA-MB-231 and 
HCC1937 cells .a) Baseline metabolic pathways and b) following a seven day treatment with olaparib 
at IC50 doses. 
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Table S3. 9 Comparison analysis between MetaboAnalyst and Mummichog software. FDR = False 
discovery rate. Gamma = Gamma p-value. FET = Fisher’s Exact test. 
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Table S3. 10 Classification of the metabolites identified in MCF7, MDA-MB-231 and HCC1937 at all Olaparib doses (IC10, IC25 and IC50) after seven days treatment. 
Class, name, Log2 fold change, and the p-value (p) is represented for each compound. PC: phosphocholine; PE: phosphoethanolamine; PUFA: poly unsaturated fatty 
acid; SM: Sfingomyelin. 

  MCF7 MDA-MB-231 HCC1937 

Class Name 
FC 

IC10 
p 

FC 
IC25 

p 
FC 

IC50 
p 

FC 
IC10 

p 
FC 

IC25 
p 

FC 
IC50 

p 
FC 

IC10 
p 

FC 
IC25 

p 
FC 

IC50 
p 

Amide Nicotinamide -0.5 0.1 -0.5 0.3 -0.1 0.3 -0.1 0.5 -0.2 0.1 -0.5 0 0.4 0.1 0.3 0 -0.1 0.3 

Amine N-Oleoylethanolamine -1.5 0.1 -0.8 0.6 -0.1 0.6 -0.5 0.3 -3.2 0 -0.6 0.3 -1.6 0.2 -2.5 0 -1.2 0 

Amine Triethanolamine 1 0.6 -0.6 0 0.1 0.2 2.9 0.4 0.6 0.8 3.1 0.4 -0.5 0.5 0.4 0.1 0.4 0.5 

Amino acid 3-Sulfinoalanine -1.1 0.5 -1.8 0 -1.1 0.2 - - -0.7 0.3 - - 0.3 0.7 -0.4 0.6 -0.7 0 

Amino acid 4-Guanidinobutanoic acid -1.3 0 -2 0 -1.1 0 -0.2 0.5 -0.3 0.6 -0.5 0.2 -1 0.1 -1.8 0 -1.8 0 

Amino acid 4-Hydroxyproline -1 0 -2.1 0 -1.1 0 -0.4 0.2 - - -0.4 0.1 -0.3 0.4 -0.3 0.3 -0.9 0 

Amino acid 4-Oxoproline -0.7 0.3 0.9 0 0.2 0.2 0.4 0.6 -0.3 0 0.8 0.1 0.6 0 1 0 1.5 0 

Amino acid Betaine - - -0.8 0 0 0.7 0 0.3 -0.2 0.1 -0.4 0 -0.1 0.7 0 0.5 -0.4 0 

Amino acid Choline -3.7 0.1 -2.1 0 -2.1 0.1 0.1 0.5 -1.3 0 -1.5 0 -2.1 0 -2.9 0 -3.7 0 

Amino acid Citrulline -0.3 0.6 1.8 0 -0.4 0 -0.3 0.2 -0.3 0.1 -0.3 0 -0.1 0.5 0.3 0.5 0.1 0.9 

Amino acid Creatine -0.3 0.6 -1.7 0 -0.5 0.1 -0.8 0 -0.4 0.2 -1.1 0 0.1 0.3 -0.4 0 -0.7 0 

Amino acid Creatinine - - -0.1 0.2 0.1 0.7 -0.5 0 -0.4 0.1 -0.4 0.2 -0.1 0.4 0.3 0.4 -0.2 0.3 

Amino acid Gamma-Aminobutyric acid -0.9 0 -1.8 0 -0.7 0 -0.2 0.1 -0.1 0.2 -0.2 0.1 -0.2 0.7 0 0.9 -0.5 0 

Amino acid Glycine -1.3 0 -2.1 0 -1 0 - - - - - - - - - - - - 

Amino acid Hypotaurine 0.3 0.3 -0.4 0.1 -0.6 0 0.3 0.6 -0.2 0.1 -0.5 0 -0.7 0 -0.6 0 -1.3 0 

Amino acid L-Alanine -0.8 0 -1.7 0 -0.9 0 - - - - - - - - - - - - 

Amino acid L-Arginine 6.7 0 -0.5 0 -0.1 0.6 -0.1 0.6 -0.1 0.7 0.3 0.4 0 0.5 0.3 0.1 -0.2 0.1 

Amino acid L-Asparagine 0.3 0.3 -0.4 0.2 1 0 - - - - - - 0.9 0.2 1.1 0.1 1.3 0.1 

Amino acid L-Aspartic acid -0.6 0 -2.2 0 -1.4 0 0.3 0.1 0.3 0.3 0.8 0 -0.1 0.9 -0.5 0 -1.6 0 

Amino acid L-Cystathionine 5.2 0 -2.1 0 -0.3 0.1 -0.1 0.9 1.2 0.4 0.8 0.6 -1.7 0 -2.2 0 -3.8 0 

Amino acid L-Glutamic acid -1.3 0 -2.1 0 -1.3 0 -0.4 0.5 -0.7 0 -1.1 0 -0.4 0.1 -0.5 0 -2.1 0 

Amino acid L-Glutamine -11.4 0 -1 0 -0.4 0.1 -0.1 0.2 0.2 0.4 -0.1 0.7 -0.2 0 -0.3 0 -0.5 0 

Amino acid L-Isoleucine - - -1.5 0.3 -0.6 1 -1.4 1 1.5 0.3 -0.3 0.7 0.1 0.2 -0.6 0.7 0.1 1 

Amino acid L-Leucine - - -1.4 0 -0.4 0.1 0.2 0.4 - - -0.5 0.1 - - -0.6 0 -1.3 0 

Amino acid L-Lysine -1.1 0 -1 0 -0.4 0.3 -0.3 0.1 -0.4 0.1 0.1 0.5 0.2 0.3 0.3 0 -0.4 0 

Amino acid L-Methionine -0.9 0 -2.3 0 -1 0 -0.1 0.2 -0.3 0 -0.4 0.1 0.1 1 -0.1 0.2 -0.9 0 

Amino acid L-Ornithine - - - - - - - - - - - - 0.2 0.6 0.3 0.1 -0.1 0.7 
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Amino acid L-Phenylalanine -1.3 0.7 - - - - -0.1 0.4 -0.4 0 -0.3 0.1 -0.2 0.9 -0.3 0.2 -0.7 0 

Amino acid L-Proline -1.3 0 2 0.1 -0.3 0.5 0.1 0.6 -0.3 0.4 -0.4 0.1 - - - - - - 

Amino acid L-Serine 2.2 0 2.5 0 2.1 0 0.3 0.2 0.3 0.5 0.9 0 -0.1 0.7 -0.3 0 -1 0 

Amino acid L-Tryptophan -1.6 0 -2.4 0 -1.3 0 -0.3 0.1 -0.8 0 -0.9 0 -0.3 0.5 -0.8 0 -0.8 0 

Amino acid L-Tyrosine 0.1 0.7 -2.3 0 -1.3 0 -0.4 0 -0.5 0 -0.6 0 0.1 0 -0.4 0.1 -1 0 

Amino acid L-Valine -1.2 0 -1.4 0 -0.6 0 0.1 0.6 0.1 0.9 0.4 1 0.1 0.8 0.2 1 0.6 0.4 

Amino acid N-a-Acetyl-L-arginine - - -1.6 0 -0.6 0 0.5 0.5 -0.2 0.4 -0.6 0.1 -0.3 0.2 0 0.5 -0.4 0 

Amino acid N-Acetylaspartylglutamic acid -0.5 0.1 -1.5 0 -0.7 0.1 0.2 0.7 -0.3 0.4 -0.1 0.2 -1.3 0 -0.8 0 -2.9 0 

Amino acid N-Acetylisoleucine -0.1 0 0.3 0.1 -0.1 0.5 2.4 0.4 0.4 0.8 1.4 0.5 0 0.6 0.1 0 0.1 0.2 

Amino acid N-Acetylleucine - - 0.9 0.7 0.4 0.7 - - 0.4 0.6 - - - - - - 0.7 0.5 

Amino acid N-Acetyltaurine -0.4 0.1 -0.8 0 -0.7 0 0.1 0.9 -0.2 0.2 -5.9 0 -0.7 0.1 -0.7 0 -1.1 0 

Amino acid Ornithine 4.8 0 -0.4 0.3 -0.2 0.2 -0.5 0.1 -0.6 0 -0.3 0.2 0.2 0.6 0.3 0.1 -0.1 0.7 

Amino acid Pyroglutamic acid -10.3 0 -0.7 0 -0.2 0.5 -0.1 0.2 0.2 0.4 -0.3 0.6 -0.3 0 -0.3 0 -0.6 0 

Amino acid Taurine -0.4 0.1 -0.8 0 -0.7 0 0.1 0.9 -0.2 0.2 -5.9 0 -0.7 0.1 -0.7 0 -1.1 0 

Amino acid Thiamine 5.4 0.4 -1.2 0 -0.9 0 -1.2 0 -0.4 0.1 -0.3 0.3 -0.3 0.5 -0.2 0.4 -1.1 0 

Amino acid Threonine 0.1 0.4 1.4 0.5 0.6 0.9 -1.9 0.6 -0.5 0.1 0.6 0.5 -0.2 0.7 -0.3 0.1 0.7 0.3 

Benzenoid Benzoic acid 0.6 0.9 0.3 0.4 0.1 0.4 0.4 0 0.1 0.6 0.3 0.4 -0.2 0.3 -0.2 0 0.8 0 

Carbohydrate D-Glucose -0.2 0.9 1 0 0.2 0.2 -0.2 0.4 -0.4 0 0.1 0.2 1.1 0 0.9 0 0.8 0 

Carbohydrate Glyceraldehyde3-phosphate -1.5 0 -2.3 0 -1.4 0 0.2 0.3 -0.2 0.2 -1.3 0 0.2 0.9 -0.3 0.3 -1.7 0 

Carbohydrate Mannose6-phosphate -0.3 0.2 -0.7 0.1 -0.2 0.3 0.8 0 0 0.9 0.2 0.3 0.3 0 0.7 0 0.5 0 

Carbohydrate N-Acetyl-glucosamine 1-phosphate -1.3 0 -2.4 0 -1.6 0 -0.1 0.1 -0.6 0 -1.2 0 - - - - - - 

Carbohydrate Threonic acid -0.7 0 -0.9 0 -0.3 0.7 -0.5 0 -0.3 0.1 -0.8 0 -0.5 0 -0.6 0 -1.6 0 

Carboxylic 
acid 

5-L-Glutamyl-taurine 2.2 0 1.2 0 2.1 0 - - - - - - - - - - - - 

Carboxylic 
acid 

Citric acid -0.4 0.1 -1.3 0 -0.3 0.2 0.1 0.8 -0.2 0.9 - - - - - - -0.9 0 

Carboxylic 
acid 

Dodecanedioic acid 0.4 0.7 0.7 0.1 0.5 0.1 1.8 0.4 0.1 0.7 -1.1 0.6 0.3 0.3 0.3 0.2 0.4 0.1 

Carboxylic 
acid 

Fumaric acid - - - - - - - - - - - - 0.3 0.2 0.1 0.1 -2.3 0 

Carboxylic 
acid 

L-Lactic acid -0.6 0 -0.5 0.1 0.4 0.3 0.1 0.7 -0.4 0 -0.5 0.1 -0.1 0.8 0.1 0.3 -0.9 0 
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Carboxylic 
acid 

Phthalic acid - - -1.6 0 -0.7 0.5 -0.5 0.7 0.7 0.3 - - - - - - - - 

Carboxylic 
acid 

Pyruvic acid -0.7 0 -1 0 -0.6 0 1.7 0.5 -0.3 1 0 0.1 -0.5 0 -0.6 0 -1.2 0 

Carboxylic 
acid 

Succinic acid -0.9 0.1 -1.2 0.1 -0.6 0.3 - - - - - - - - - - - - 

Carboxylic 
acid 

Tetradecanedioic acid -0.4 0.1 -0.2 0.3 -0.6 0 - - - - - - 0.2 0.4 0.1 0.5 0.2 0.1 

Carnitine 2-Methylbutyroyl -0.7 0 -2 0 -1.2 0 0.1 1 -0.4 0 -0.9 0 -0.3 0.1 -1.2 0 -3.3 0 

Carnitine Butenylcarnitine - - 1.1 0.3 -0.2 0.6 1.2 0 1.9 0 2.9 0 1.1 0.3 1.5 0 1.2 0 

Carnitine Decanoylcarnitine 0.4 0.8 -0.1 1 0.2 1 0 0.9 -1.4 0.3 1 0.9 -1.5 0.6 -0.9 0.6 -0.7 1 

Carnitine Dodecanedioyl carnitine -1.3 0.4 0.6 0.1 0 1 2.9 0.5 0.9 0.6 - - 1.2 0 1.1 0 1.8 0 

Carnitine Heptadecanoyl carnitine - - -1.8 0.4 1.3 0 0.2 0.7 -1 0.1 -0.4 0.3 0.7 0.7 0.2 0.8 1.2 0 

Carnitine L-Carnitine -0.2 0.8 0 0.5 -0.4 0.1 -0.4 0.4 0.4 0.8 1.7 0.6 1.1 0.1 0.5 0.1 1 0 

Carnitine L-Hexanoylcarnitine 0.6 0.6 1.4 0.3 0 1 -0.4 0.1 -1.3 0 -1.6 0 -0.9 0 1.8 0 1.7 0 

Carnitine L-Palmitoylcarnitine -8.5 0.2 0.3 0.5 0.5 0.5 0.1 0.9 -0.9 0.1 -0.9 0.1 0.1 0.7 1.2 0.1 1.6 0 

Carnitine Pentadecanoyl carnitine -1.6 0.2 -0.5 0.1 0 0.9 0.7 0.2 - - -1.2 0.8 -1.1 0.1 -2.7 0 -1.4 0 

Carnitine Propionylcarnitine -15.4 0 -1.4 0.2 -0.7 0.6 0.1 0.9 0.2 0.9 -0.9 0 0.1 0.6 -0.9 0 -2.8 0 

Carnitine Stearoylcarnitine -1.2 0.9 2 0 2.4 0.1 -0.4 0.9 -1 0.2 -0.7 0.2 1.1 0.2 1.6 0 2.1 0 

Carnitine Tiglylcarnitine -0.4 0.1 -0.3 0 0.2 0.4 0 0.9 -0.2 0.1 -0.5 0 0.1 0.3 0.1 0.3 -1.9 0 

Carnitine trans-2-Dodecenoylcarnitine -1 0.6 0.8 0.8 -0.5 0.2 -0.6 0.8 -0.4 0.1 0.3 0.3 -0.9 0 -0.5 0.1 -0.8 0 

Carnitine trans-Hexadec-2-enoyl carnitine - - -0.7 0.1 0.4 0.9 0.2 0.8 -0.9 0.2 -0.5 0.3 -0.8 0.1 -1.2 0 -1.2 0 

Ceramide Cer(d18:1/16:0) -0.6 0.2 -2.4 0 -0.7 0.1 0.4 0.9 -1.7 0.1 -1.3 0.2 -1.5 0 - - -2.7 0 

Ceramide Cer(d18:1/24:1(15Z)) -2.3 0.1 -2.7 0 -3 0.1 - - - - - - -1.5 0.1 -3.6 0 -3.7 0 

Cholesterol 
ester 

Cholesteryl acetate -1.4 0.6 -0.9 0 -0.8 0.2 -0.1 0.2 -0.4 0.1 -1.3 0 - - - - - - 

Fatty acid Glycerol 3-phosphate -1 0 -1.6 0 -0.7 0 -0.6 0.1 -0.8 0.1 -2 0 -0.1 0.6 0 0.9 -0.8 0 

Fatty acid Linoleamide -2.8 0.1 -1.5 0.6 -0.1 1 -0.1 0.6 -3 0 0 0.7 -1.2 0.4 -0.8 0.4 -1.2 0.3 

Fatty acid Stearic acid -0.4 0.5 0.4 0.4 -0.3 0.6 0.2 0.8 0.7 0.8 0.7 0.7 0.3 0.5 0.3 0.1 0.7 0 

Fatty acid Stearoylethanolamide - - - - - - - - -1.2 0 -1.3 0 -0.8 0.6 -1.3 0.2 -1.4 0.1 

Fatty acid Tetraglyme - - 0.7 0.1 -2 0 0.8 0.4 0.7 0.8 2.4 0.2 0.7 0.1 0.4 0 0.9 0 

Fatty amide Oleamide -2.8 0.1 -1.5 0.6 -0.1 1 -0.1 0.6 -3 0 0 0.7 -1.2 0.4 -0.8 0.4 -1.2 0.3 

Furanone Ascorbic acid 0 1 -0.8 0 -0.2 0.2 1.3 0.5 - - 1.4 0.3 -2.2 0 -1.6 0 -0.3 0.1 
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Inorganic 
compound 

Pyrophosphate 0 0.3 0.9 0 0.5 0.2 0.6 0.3 0.6 0.2 0.9 0 0.9 0.1 1.5 0 1.7 0 

Keto acid Acetoacetic acid 7.7 0 -0.5 0 0 0.2 -0.1 0.4 -0.2 0.1 -0.7 0 -0.2 0.3 -0.4 0 -1.5 0 

Keto acid alpha-Ketoglutaric acid -0.4 0 -1.4 0 0.4 0 0.5 0 0.1 0.2 -0.3 0.1 -0.6 0 -0.4 0 -0.6 0 

Keto acid Levulinic acid - - - - - - - - -1.1 0 -0.6 0 -1.1 0.1 -0.8 0 -2.4 0 

Nucleobase Adenine -1.2 0 -1.9 0 -0.8 0 - - - - - - -0.3 0.2 -1.6 0 -5.2 0 

Nucleoside 2'-Deoxycytidine - - - - - - - - - - - - -0.4 0.5 -0.1 0.7 -0.9 0 

Nucleoside 5'-Methylthioadenosine -1 0.2 -1.4 0 -0.8 0 -1.5 0.2 -0.4 0.6 -0.8 0.8 -0.6 0.1 -0.7 0 -0.9 0 

Nucleoside Adenosine -1 0.2 0.9 0 1.1 0.1 -1.5 0.2 -0.4 0.6 -0.8 0.8 -0.6 0.1 -0.7 0 -0.9 0 

Nucleoside Thymidine - - - - - - - - - - - - -0.3 0.2 0.2 0.9 -2.1 0 

Nucleotide 3'-AMP - - 0.9 0 1.1 0.1 - - - - - - - - - - 0.4 0.9 

Nucleotide CDP-ethanolamine - - - - - - - - - - - - 2.5 0 - - 2.9 0 

Nucleotide Cytidine 5'-diphosphocholine - - - - - - - - - - - - 1.4 0 1.7 0 1.3 0 

Nucleotide NAD 4.7 0.3 -1.5 0 -0.6 0 0.5 0.2 0 0.2 -0.5 0 -0.3 0.2 -0.6 0 -1 0 

Nucleotide NADH -0.5 0 -1.2 0 -0.5 0.1 - - - - -4.7 0 - - - - - - 

Nucleotide Uridine -0.8 0 -1.9 0 -1 0 0.4 0.4 -1.1 0.4 -2 0 -0.6 0.1 -0.7 0 -1 0 

Nucleotide Uridine 5'-diphosphogalactose - - - - - - -0.1 0.2 -0.2 0.1 -0.8 0 - - - - - - 

Nucleotide Uridine 5'- diphosphoglucuronic acid -0.6 0 -1.4 0 -1 0 0.1 0.8 - - - - -0.5 0 -0.9 0 -1.9 0 

Nucleotide Uridine diphosphate-N-acetylglucosamine -0.5 0 -2 0 -1.4 0 -0.9 0 -0.7 0 -1.7 0 -0.5 0 -1 0 -2 0 

Nucleotide Uridine diphosphategalactose -0.9 0 -1.4 0 -0.6 0 - - - - - - -0.7 0 -1.1 0 -2.7 0 

PC 1,2-Dipalmitoleoyl-sn-glycero-3-phosphocholine - - -3.1 0 -2.8 0 0.5 0.3 -1.8 0.1 -1.3 0.1 - - - - - - 

PC LysoPC(14:1(9Z)/0:0) -1.7 0.6 -3.7 0 -2.4 0 - - - - - - - - - - - - 

PC LysoPC(24:1(15Z)) -2.4 0.5 -2.1 0 -1.8 0.2 0.8 0.3 -1.4 0.2 -2.1 0.1 -2.6 0 -4.2 0 -4 0 

PC LysoPC(P-16:0/0:0) -1.9 0.3 -1 0.1 -1.3 0.2 - - - - - - -1.9 0.1 -3.3 0 -3.3 0 

PC PC(16:0/18:1(9Z)) - - -0.8 0.2 -0.7 0.8 0.4 0.3 -1.5 0.3 -1.2 0.1 -0.6 0.1 -2.8 0 -2.9 0 

PC PC(16:0/18:3(9Z,12Z,15Z)) -4.2 0.3 -0.5 0.1 -1.2 0.1 0.5 0.2 - - - - -0.5 0.3 -1.3 0 -1.5 0 

PC PC(18:1(9Z)e/2:0) - - -0.5 0.1 -1.5 0.1 0.5 0.5 -1.4 0.1 -1.9 0 -2.8 0 -4 0 -3.3 0 

PE 
1-oleoyl-2-linoleyl-sn-glycero-3-

phosphoethanolamine 
-0.8 0.1 -2.5 0 -1.8 0 - - - - - - -0.6 0.3 -1.6 0 -3.2 0 

PE 1-Palmitoyl-2-linoleoyl PE -0.8 0.1 -2.7 0 -1.6 0 0 0.9 -0.9 0.3 -0.3 0.5 - - - - - - 

PE LysoPE(18:0/0:0) - - -1.9 0.3 -1 0.4 - - - - -1.2 0.2 -2.1 0 -2.8 0 -1.4 0.1 

PE LysoPE(18:1(9Z)/0:0) -1.2 0 -2.1 0 -1.1 0 0.8 0.1 - - - - - - - - - - 

PE PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) -0.1 0.7 -0.7 0 -0.1 0.3 - - -1.3 0.6 - - - - - - - - 
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PE PE(18:0/20:4(5Z,8Z,11Z,14Z)) - - -0.1 0.1 0.2 0.1 1.4 0.3 -0.5 0.4 0.2 0.6 2.1 0.4 1.7 0.7 1.6 0.4 

PE PE(P-16:0/20:4(5Z,8Z,11Z,14Z)) 0.5 0.7 0 0.5 0.6 0.5 - - -0.3 0.2 - - - - - - - - 

Peptide Carnosine 5.2 0 -0.2 0.4 0 0.8 -0.2 0.3 -0.4 0 -0.4 0 -0.9 0 -1.2 0 -1.5 0 

Peptide L-Glutathione(reduced) -1 0 -3.3 0 -1.4 0 0 0.4 -0.3 0.1 -1.7 0 -0.6 0 -1.2 0 -1.7 0 

Peptide L-Glutathione(oxidized) - - 1.5 0 - - 1.2 0.1 - - - - -0.2 0.6 - - - - 

Peptide Ophthalmic acid 5.9 0.1 -2.2 0 0.2 0.4 0.4 0 0.5 0 0.8 0 1.6 0 1.6 0 1.5 0 

Peptide Pro-leu 8.4 0 -1 0 0.1 1 1 0 1.2 0 1.3 0 -0.2 0.7 -0.1 0.7 -0.5 0 

Phenylketone Kynurenine -1.7 0.3 - - - - - - -0.3 0.4 1.2 0.1 - - - - - - 

Polyamine N-Acetylputrescine -1.3 0 -2.8 0 -2.4 0 - - - - - - - - - - - - 

Polyamine N1,N12-Diacetyl spermine 1.8 0.4 3.1 0 5.7 0 3 0 3.7 0 4.5 0 4.8 0 4.4 0 5.4 0 

Polyamine N1,N8-Diacetyl spermidine 1 0 0.5 0 2.2 0 1.1 0 1.4 0 0.7 0 1.3 0 0.5 0 0.5 0 

Polyamine N8-Acetyl spermidine 8.4 0 0.7 0 2.7 0 1 0.3 1.2 0 0.8 0 1 0 0.6 0 0 0.8 

PUFA Alpha-Linolenic acid - - 0.6 0.9 2 0.4 -0.3 0.6 -1 0.8 0.3 0.6 -1.3 0.5 -1.3 0.6 -1.5 0.5 

PUFA Linolenelaidic acid - - 2.3 1 -1.9 0 0.1 0.5 -1.7 0.2 1 0.3 -1.4 0.6 -2.7 0.2 0 0.5 

Pyridine Pyridoxal - - 0.8 0.1 0.2 0.9 1.3 0.5 1 0.7 1 0.6 0.2 0.6 0.2 0.4 0.2 0.8 

Pyridine Pyridoxamine -1.4 0.2 -2 0 -0.3 0.8 1.8 0.4 0 0.8 0.5 0.7 -0.1 0.4 0.1 0.7 -0.5 0.2 

Pyridine Pyridoxine -0.7 0 -1.5 0 7 0 - - - - -1.1 0.7 0.6 0.9 1.4 0 - - 

Pyrrolidine 1-Methyl pyrrolidine - - 2.1 0 0.9 0.1 -0.3 0.2 0.9 0.6 0.2 0.9 0.9 0 1 0 1.5 0 

Pyrrolidine Pyrrolidine -0.6 0.3 -0.9 0.6 -0.8 0.3 -1 0.7 -2.6 0.1 1.9 0.5 -2.1 0 -0.1 0.6 -0.3 0.2 

SM SM(d18:0/14:0) -3.1 0.1 -2.3 0 -3.1 0.1 - - - - - - -2.3 0 -3.9 0 -4.1 0 

SM SM(d18:1/16:0) -4 0.1 -5.2 0 -3.9 0 1.1 0.3 -1.3 0.3 -1.2 0.1 -2.3 0 -3.4 0 -4.3 0 

 

 

 

 

 

 

 



- 245 - 
 

 
Figure S3. 11 Pearson’s correlation analysis between the relevant metabolites identified within each 
different breast cancer cell line. Pearson’s coefficient is set in a range of 1 to -1, indicative of a 
positive and negative correlation, respectively. 
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Table S3. 11 Effect scores of enriched metabolic genes in MCF-7, MDA-MB-231 and HCC1937 cells 
evaluated through the Dependency Map Portal (DepMap) database. Fitness effect score is based on 
the Chronos algorithm. Fitness Effect Score (FES). 

PATHWAYS   MCF
7 

MDA
-MB-
231 

HCC193
7 

 FULL NAME GENE FES FES FES 

Arginine biosynthesis      
 Glutamine synthetase GLUL -0.13 -0.05 -0.02 
 Glutaminase 2 GLS2 -0.05 -0.11 -0.05 

 Glutamic-oxaloacetic 
transaminase 1 

GOT1 0.03 -0.06 -0.07 

 Glutamic-Pyruvic 
Transaminase 

GPT 0.04 0.11 -0.22 

 Ornithine 
transcarbamylase 

OTC 0.15 0.1 0.14 

 Arginase 1 ARG1 0.23 0.09 0.02 

 Nitric Oxide Synthase 
1 

NOS1 -0.02 -0.14 0 

 Argininosuccinate 
Synthase 1 

ASS1 -0.18 -0.4 -0.56 

 Argininosuccinate 
Lyase 

ASL -0.11 -0.12 -0.05 

Alanine, aspartate and 
glutamate metabolism 

     

 
Succinate-
semialdehyde 
dehydrogenase 

SSDH -0.15 -0.09 -0.24 

 Aminobutyrate 
aminotransferase 

ABAT -0.05 -0.08 0.01 

 Glutamate 
Decarboxylase 1 

GAD1 -0.04 0 -0.1 

 Glutamate 
Dehydrogenase 1 

GLUD1 -0.02 -0.07 0.08 

 Asparagine Synthetase ASNS -0.37 -0.56 -0.4 

 Glycine 
Amidinotransferase 

GATM -0.05 -0.12 -0.18 

Arginine and proline 
metabolism 

     

 Ornithine 
Decarboxylase 1 

ODC1 -0.05 0.05 0.11 

 Spermidine/Spermine 
N1-Acetyltransferase 

SAT2 -0.19 0 -0.18 

Taurine and 
hypotaurine 

     

 Glutamate 
Decarboxylase 1 

GAD1 -0.04 0 -0.1 

 Glutamate 
Decarboxylase Like 1 

GADL1 0.08 -0.12 0.05 

 Gamma-
Glutamyltransferase 6 

GGT6 -0.05 -0.09 -0.01 

Glycine, serine and 
threonine metabolism 

     

 Serine Dehydratase SDS 0.21 0.01 0.02 

 
Serine 
Hydroxymethyltransfer
ase 

SHMT 0.09 -0.11 -0.17 
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 Alanine-Glyoxylate 
Aminotransferase 

AGXT 0 0.06 -0.09 

 Guanidinoacetate 
Methyltransferase 

GAMT -0.07 0.02 0.04 

 Antiquitin 1 ATQ1 -0.15 -0.08 0.02 

 Arginine:glycine 
amidinotransferase 

AGAT -0.05 -0.12 -0.18 

Vitamin B6 metabolism      

 Pyridoxine 5-prime-
phosphate oxidase 

PNPO 0 -0.06 0.04 

Cysteine and 
methionine metabolism 

     

 Betaine-homocysteine 
methyltransferase 

BHMT -0.1 -0.08 0.04 

 Glutathione Synthetase GSS -0.09 -0.01 0.17 

 

ChaC Glutathione 
Specific Gamma-
Glutamylcyclotransfera
se 1 

CHAC 0.1 -0.12 -0.19 
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