

Department of Naval Architecture, Ocean & Marine Engineering

NM404 Ship Structural Dynamics

6th December 2023 TIME: 10:00 2 hours

Attempt ALL Questions

Calculators must not be used to store text and/or formulae nor be capable of communication. Invigilators may require calculators to be reset.

(a) An impulsive force is applied to a spring-mass-damper system and initiates its free vibration with an initial velocity of $50 \, m/s$, the displacement response of which is expressed as follows:

$$x(t) = A_0 exp(-\xi \omega_n t) cos\left(\sqrt{1 - \xi^2} \omega_n t + \varphi_0\right)$$

where ω_n is the natural frequency, ξ is the damping ratio, t is time, φ_0 is the phase angle and A_0 is the initial displacement amplitude. It is known that the system mass is M = 10kg, system stiffness is $K = 6.4 \times 10^{-2} \, kN/mm$ and damping coefficient is $400 \, N/(ms^{-1})$. Also note that the critical damping coefficient is $C_{cr} = 2M\omega_n$. Please determine the followings:

- i. General expression of logarithmic decrement (δ) (8 marks)
- ii. Natural frequency of the system in question (2 mark)
- iii. Damping ratio of the system in question (2 mark)
- iv. Phase angle of the system displacement response assuming $\varphi_0 < \pi$. Hint: the initial displacement of the system is zero (2 mark)
- v. The time at which the system reaches maximum displacement (6 marks)

(20 marks)

(b) It is known that the magnification factor (M) of forced damped vibration is expressed as:

$$M = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\xi\left(\frac{\omega}{\omega_n}\right)\right]^2}}$$

where ω is the driving force frequency. Please determine the maximum magnification factor for the system in Q1(a).

(12 marks)

(a) Suppose that you are the principal naval architect in a maritime consultancy company, a client approaches you regarding the design of a high-speed craft against slamming. The hull form design can be simplified as below wedge shape.

Applying von Karman momentum principle, please help your client to

- i. Derive the general expression of maximum pressure. Given that initial impact velocity $= V_0$ and the accelerated fluid inertia $= 0.5 \rho \pi x^2$ where ρ is the fluid density (12 marks).
- ii. Outline the design principles against significant slamming (4 marks)
- iii. Establish operational measures against significant slamming. Please provide an outline (4 marks).

(20 marks)

(b) You are approached by another client who operates a fleet of container ships featured with large bow flares. All these vessels are equipped with on-board structural monitoring devices to monitor the springing and whipping responses. Below is a sample of the monitoring data in which the low frequency component has been filtered out.

Please help your client to

- i. Distinguish between springing and whipping for the sample monitoring data (during what time frame they occur) (7 marks)
- ii. Outline the main characteristics of springing and whipping responses (8 marks)

(15 marks)

The governing equation of free vibration in vertical direction of a uniform beam can be expressed as follows:

$$EI\frac{\partial^4 w(x,t)}{\partial x^4} + m\frac{\partial^2 w(x,t)}{\partial t^2} = 0$$

where w(x,t) is the beam deflection in vertical direction. E is the modulus of elasticity of material, I is the second moment of area of beam's cross section, m is the mass of the beam per unit length (assumed constant). The solution to above equation can be given as:

$$w(x,t) = P(x)\sin(\omega_n t)$$

where

$$P(x) = Asin(\kappa x) + Bcos(\kappa x) + Csinh(\kappa x) + Dcosh(\kappa x)$$

$$\kappa = \sqrt[4]{\frac{m\omega_n^2}{EI}}$$

- (a) Please define the boundary conditions for above beam formulation in the context of ship vibration analysis. Hint: a ship should be considered as free-free beam (4 marks)
- (b) Following above context, please prove $cos(\kappa L) \times cosh(\kappa L) = 1$ where L is the total length of the ship (6 marks).

(10 marks)

For a barge with uniform cross section, please determine the corrected deflection curve (φ_{3cor}) of three-node bending vibration using generalised iterative *Stodola method* with the information given below.

x/L	0.1	0.3	0.5	0.7	0.9
W (Per unit length)	49	28	30	28	49
φ_{2cor}	1.05	-0.34	-0.92	-0.35	0.98
y ₃ assumed	0.77	1.26	0.00	-1.26	-0.77

You may find the following formulae useful:

$${}^{0}\varphi_{3uncor} = \left[{}^{0}a_3 + ({}^{0}h_3 - {}^{0}a_3) \left(\frac{\chi}{L} \right) - {}^{0}y_3 \right]$$

$$SF = 0 = {}^{0}a_{3} \int_{\underbrace{0}}^{L} W dx + ({}^{0}h_{3} - {}^{0}a_{3}) \int_{\underbrace{0}}^{L} W \left(\frac{x}{L}\right) dx - \int_{\underbrace{0}}^{L} W {}^{0}y_{3} dx$$

$$BM = 0 = {}^{0}a_{3} \int_{0}^{L} W\left(\frac{x}{L}\right) dx + ({}^{0}h_{3} - {}^{0}a_{3}) \int_{0}^{L} W\left(\frac{x}{L}\right)^{2} dx - \int_{0}^{L} W\left(\frac{x}{L}\right) {}^{0}y_{3} dx$$

$${}^0\varphi_{3cor} = {}^0\varphi_{3uncor} - \alpha_{23}\varphi_{2cor}$$

where

$$\alpha_{23} = \frac{\int_0^L W^0 \varphi_{3uncor} \varphi_{2cor} dx}{\int_0^L W \varphi_{2cor}^2 dx}$$

(15 marks)

Are the following statements true or false?

- 1) Two-node bending is the second-order mode shape of a beam (1 marks)
- 2) There are finite numbers of natural modes for a discrete system (1 marks)
- 3) Blade frequency is independent on the number of blades (1 marks)
- 4) Hydro-elasticity unifies seakeeping and structural vibration (1 marks)
- 5) Ship structural vibration will only negatively affect the structural integrity (1 marks)
- 6) The entrapped air during wave-body impact increases the impact force (1 marks)
- 7) A free damped system vibrates at natural frequency (1 marks)
- 8) Eigenvector defines the absolute response amplitudes (1 marks)

(8 marks)