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Abstract

Quantum information scrambling refers to the spreading of initially localised infor-

mation across a system’s many degrees of freedom, generating many-body entangled

states. The fastest known scramblers achieve this at a timescale that grows logarith-

mically with the system size N and black holes are conjectured to saturate this bound.

Such fast scramblers are also potentially useful for generating resource states within

the system’s coherence time. This thesis investigates efficient entanglement generation

using models with tunable-range interactions, allowing interpolation between different

geometries with varying notions of locality. We show that this crossing between the

geometries leads to a dynamical phase transition, marking the onset of fast scram-

bling in quantum circuits with different levels of long-range connectivity. This enables

the identification of regimes where resource states can be generated on timescales of

O(logN), allowing the relevant system sizes to grow exponentially with coherence time.

We further demonstrate the utility of states generated from sparse coupling graphs in

quantum-enhanced metrology. We show both analytically and numerically that in

certain regimes, sparse graphs can emulate dynamics associated with dense all-to-all

coupling, with example applications including generating states with Heisenberg scal-

ing for quantum metrology. We also propose models to implement both the dynamical

transition and generation of metrologically relevant states in neutral atom arrays with

the aid of tweezer-assisted shuffling operations. With these results, we provide a solid

foundation for further exploration of the rich physics and applications that sparse cou-

pling graphs with tunable-range interactions have to offer.
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Dubito, ergo sum, vel, quod idem est, cogito, ergo sum.

René Descartes
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Chapter 1

Introduction

Invention, it must be humbly

admitted, does not consist in

creating out of void, but out of

chaos

Mary Shelley, Frankenstein

(1831)

The spreading of information is a phenomenon deeply embedded in our daily lives

and is not just native to quantum mechanics. Information spreading is central to human

interactions, driving the dissemination of ideas, knowledge, and innovations. Thanks

to the ever-increasing use of social media platforms, how information spreads through

society has changed significantly over the past decade. Just as information proliferates

through social networks and communities, it also has the capacity to distort, giving

rise to the rapid spread of misinformation. In such a scenario, once the source of

information is lost or corrupted, reconstructing the original message becomes nearly

impossible, leading to lasting confusion and misunderstanding. In social contexts, in-

dividuals or groups become interconnected through shared information, beliefs, and

experiences. Over time this sharing of information creates complex networks of influ-

ence, much like the complex network connections we consider here in quantum systems.

In quantum systems, the spreading of information may be attributed to dynamical
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Chapter 1. Introduction

coupling that leads to a build-up of entanglement in the system. Quantum entan-

glement plays a crucial role in a wide range of phenomena, from the thermalisation

dynamics of closed quantum systems [1–3] to the foundations of quantum computing

[4–7] to quantum metrology [8–14] and even the dynamics of black holes [15–18]. De-

spite the significant progress in understanding these phenomena and developing useful

quantum algorithms that exploit entanglement, much remains unexplored in this com-

plex field [19]. One of the helpful frameworks in navigating this intricate landscape is

the concept of quantum information scrambling [15–17, 20, 21].

1.1 Quantum Information Scrambling

What exactly is meant by quantum information scrambling? It is a process in which

initially localised quantum information spreads throughout a quantum system, becom-

ing inaccessible to local measurements. The mechanism responsible for the loss of

information from local measurements is the generation of entanglement between the

objects in the quantum system. For instance, consider a system of qubits, where qubits

are the quantum analogs of traditional binary bits, 0s, and 1s [7, 22]. Initially, the

information is encoded in a locally accessible state. During the scrambling process, the

state undergoes time evolution driven by some random unitary operator U . As a result,

the information becomes highly delocalised across the entire system. Importantly, no

information is lost during this process; it is merely hidden from local measurements.

This is because the operator is unitary and therefore the dynamics are reversible simply

by applying the adjoint U †.

There are several mathematical definitions of scrambling that can be used interchange-

ably. The definition mentioned by Lashkari et al. describes how initially distinguishable

states evolve to become indistinguishable, which characterises the dynamics of the sys-

tem rather than the quantum state itself [20]. Although this definition makes no explicit

mention of entanglement, the indistinguishability of states is related to the presence

of many-body entanglement [20]. In contrast, a state-centric notion of scrambling can

be defined using the concept of the Page limit [17], which relates to the entropy of

3



Chapter 1. Introduction

subsystems, and which we discuss in detail in Ch. 2 (see Eq. (2.4)). The crucial point

here is that a state is Page-scrambled if, for any subsystem, there is maximal entan-

glement with the rest of the system. Thus, if two distinguishable states both saturate

to the Page limit due to the dynamics of the system, it indicates that the system has

scrambled these states, resulting in complex entanglement throughout.

Understanding the speed at which information scrambles in a quantum system is crucial

because it directly impacts how quickly entanglement can be generated. This knowledge

is particularly relevant in noisy quantum devices, where the goal is to create entangled

resource states within a limited coherence time. By knowing how fast scrambling and

entanglement generation occurs, we can better engineer these states before decoherence

sets in, which is essential for achieving reliable quantum computation and simulation

[23–27]. For a system of N particles, the scrambling time t∗ is the time required for

initially localised information to spread across all N particles. In quantum systems

defined on regular lattices in D dimensions, t∗ ∝ N1/D [28]. For so-called “fast scram-

blers”, the scrambling time scales t∗ ∝ logN . The fast scrambling conjecture proposes

that fast scramblers are the fastest dynamic processes, capable of spreading information

across the system within this logarithmic timescale, and black holes are conjectured to

saturate this bound [15, 16, 21, 29–35].

1.2 Fast Scrambling

Fast scramblers are quantum systems that achieve a conjectured upper bound on

the speed limit (t∗ ∝ logN) for information spreading in quantum systems. These

timescales were initially studied in the context of the black hole information paradox

[15, 36]. Susskind, Thorlacius, and Sekino calculated the timescale required for an

observer outside a black hole to recover a quantum state from Hawking radiation, con-

sidering the constraints imposed by the no-cloning theorem. Their work suggests that

black holes are conjectured to be fast scramblers [15, 16, 36]

4



Chapter 1. Introduction

An important element that enables the rapid spreading of information in quantum

systems is the presence of non-local interactions. One of the early examples of Hamil-

tonian fast scramblers is the Sachdev-Ye-Kitaev (SYK) model [37–40], which is a model

of Majorana Fermions with random nonlocal 4-body interactions. The SYK model is

analytically solvable in the large N limit [38], thereby allowing one to compute the dy-

namics and show that quantum information is scrambled in the minimum possible time

allowed by the fast scrambling conjecture. Interestingly, the SYK model also appears

to have a close connection to specific models of black holes [41].

We can also construct quantum fast scramblers that are not a conventional Hamil-

tonian system [15, 16]. An important example is a quantum circuit model consisting of

random two-qubit unitary transformations (“quantum gates”) as shown in Fig. 1.1(a).

This circuit model, also called a random all-to-all model allows the time evolution of

a N qubit state by parallel application of the random two-qubit gates on N/2 non-

overlapping pairs of qubits at each layer. The time is proportional to the number of

circuit layers, also called the depth of the circuit. It is known that scrambling quantum

information localised in a single qubit in this random all-to-all circuit model requires

a number of circuit layers that scale as O(logN), making this model a fast scrambler

[15, 16]. In addition to its theoretical importance, fast scrambling has attracted at-

tention from experimentalists as well, particularly due to recent progress in atomic,

molecular, and optical physics that enables the generation of non-local interactions

in experimental platforms. Both conventional Hamiltonian systems and digital circuit

models share a common element: randomness in long-range interactions. However, ran-

domness is not a necessary condition for fast scrambling. As demonstrated in [33, 34],

long-range spin interactions with additional symmetry-breaking terms can achieve fast

scrambling. Moreover, a non-disordered spin model of sparsely connected spin-1/2 par-

ticles, as described in [30], also exhibits fast scrambling.

These results highlight that deterministic fast scramblers are feasible, providing ex-

citing possibilities for experimental realisations as we will discuss in Sec. 1.4.

5



Chapter 1. Introduction

1.3 Quantum Information Scrambling in Sparsely Cou-

pled Graphs

In this thesis, we study quantum information scrambling in sparsely coupled graphs,

as proposed by Gubser et al. [45]. The model interpolates between two incompatible

geometries: linear and treelike. The main distinct factor between these two geometries

is that they have different notions of locality. The idea of locality is based on the effect

of a change in a particular point on the rest of the system. This change affects its

immediate neighbours. To fully understand this, let us consider the all-to-all model

discussed in Sec. 1.2. Here, there is no geometric notion of locality whatsoever, this is

because all the qubits are connected to all others.

In the case of linear geometry (Euclidean geometry) as illustrated in Fig. 1.1(b), a

perturbation at site 0 will first travel to site 1 and then to further neighbours. So

the perturbation propagates in space, starting from the points that have the smallest

Euclidean distance and moving to the points with the largest Euclidean distance from

the initial site. By contrast, in the case of treelike geometry (p-adic geometry, where p

is a prime number), the notion of locality and distance is governed by the definition of

p-adic distance, discussed in detail in Sec. 5.2. But the main point is that it depends on

the number of branches of the tree between the two qubits shown in Fig. 1.1(b). Thus

some points that are far away in the linear geometry are close in the treelike geome-

try. This incompatibility between the notion of locality between these two geometries

motivated Gubser et al. to study a sparsely coupled model with p = 2 as depicted in

Fig. 1.1(b) (middle), which we also call the powers of two (PWR2) model as the edges

or interactions are present if and only if the site indices differ by an integer value of

two. Gubser et al. observed similarities between the p-adic field theory and a model

on the PWR2 graph defined by the Hamiltonian

H =
∑
ij

χsp(i− j)φiφj −
∑
j

φj , (1.1)
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Chapter 1. Introduction

Figure 1.1: Examples of Fast Scramblers (a) i. Random all-to-all circuit model,
where each qubit connects to every other qubit. The qubits evolve via random two-qubit
gates (yellow rectangles) with N/2 randomly selected qubit pairs coupled simultane-
ously per layer. Each qubit’s world line is shown in a distinct colour. (a) ii. The
corresponding graph representing the all-to-all connectivity of qubits. (b). Two incom-
patible geometries in the sparsely coupled PWR2 model for N = 8: linear (left) and
treelike (right). Blue circles represent vertices, and lines represent edges; line cross-
ings are incidental and carry no physical meaning. The tunable parameter s, allows a
smooth interpolation between these two geometries according to Eq. (1.2). For s < 0,
vertices separated by smaller powers of two couple more strongly, as shown by the
opacity of the edges. For s > 0, vertices separated by larger powers of two couple more
strongly. At s = 0, vertices separated by integer powers of two are coupled with equal
strength, representing a fast scrambling regime [30, 42–45].
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where φ is a real scalar field, and

χsp(i− j) =


|i− j|s when |i− j| = 2m,m = 0, 1, 2, . . . ,

0 otherwise.
(1.2)

By tuning the parameter s ∈ R, the model can be smoothly interpolated between the

two geometries. When s → −∞, the model converges to the nearest-neighbour model

in the linear geometry Fig. 1.1(b) (left). In contrast, as s → +∞, it converges to the

nearest-neighbour model in the treelike geometry Fig. 1.1(b) (right). This smooth tran-

sition forms the basis for much of the analysis in this thesis, where we also explore how

such changes in the underlying geometry occur in fully quantum mechanical systems.

At s = 0, where the geometry is neither linear nor treelike, fast-scrambling dynamics

emerge. We further show that, in this regime, fast scrambling can be observed without

the need for random interactions.

1.4 Towards Experimental Observation of Scrambled States

We have discussed that there is no requirement for random interactions, rather non-

local couplings between spins can also lead to fast scrambling dynamics [30, 33–35, 42].

This has sparked interest among experimentalists as it provides a way to create entan-

gled resource states within the coherence time. Technological advancements in atomic,

molecular, and optical physics have enabled the manipulation of atoms and photons

possible. This includes the ability to coherently control and transport atoms while

minimising decoherence, which is crucial for building scalable quantum information

systems. Examples of such systems include trapped ions [46–52], neutral atom arrays

[53–58], atoms in optical cavities [59–62], and solid-state systems [63–66].

In optical cavity experiments, non-local long-range interactions have been experimen-

tally demonstrated by programming spin-exchange interactions in an array of atomic

ensembles in the atomic cavity. Usually, the cavity-mediated interactions create all-

to-all connectivity, however, the introduction of a magnetic field gradient breaks this
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and allows frequencies of optical drives to control the spins that need to be coupled

[59]. Techniques have also been explored using trapped ions or atoms to create different

geometries by tailoring the frequency spectrum of a drive field [30, 48, 49].

One other promising platform is the ensemble of neutral atoms (Rydberg atoms)

equipped with optical tweezers. The shuffling operations generated by the optical

tweezers explore rich geometries that can generate fast scrambling. D = log2N dimen-

sional hypercube, which is a sparse graph and generate fast scrambling as suggested by

Susskind and Sekino [15] is native to Faro shuffling operations that can be generated

using the optical tweezers (see Sec. 6.4). This remarkable flexibility in atom manip-

ulation along with good scalability, and coherent control of each atom, makes neutral

atom arrays a powerful platform for quantum information processing [53, 58, 67–74],

and quantum simulations [54, 56, 57, 75, 76]. In this thesis, we focus on studying the

scrambling dynamics more on the sparse models that are native to the neutral atom

platforms.

1.5 Thesis Overview

Building upon Gubser’s work on p-adic field theory [45], which introduced a smooth

interpolation between two incompatible geometries, we extend the investigation into

sparse coupling models, particularly focusing on the intersection between these geome-

tries. This crossover point gives rise to fast scrambling dynamics, and prior work has

already demonstrated the feasibility of constructing deterministic fast scramblers at

this crossover point without relying on random interactions [30, 35]. In this thesis, we

demonstrate that this transition in geometry is also reflected as a dynamical transi-

tion, marking the onset of fast scrambling. Furthermore, we propose investigating this

transition on near-term experimental platforms, such as cold atom arrays in optical

tweezers. As part of our exploration of sparse coupling graphs, we also demonstrate

their potential utility in quantum-enhanced metrology, where the efficient generation

of entanglement plays a crucial role.
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The rest of the thesis is organised as follows. In the following three chapters, we

introduce the background and tools required. In Ch. 2, we discuss various measures

of quantum information scrambling. We introduce the concepts of lightcones, entan-

glement entropy, and tripartite mutual information. We establish how the negativity

of the tripartite mutual information serves as an indicator of many-body entanglement

in the system. By the end of Ch. 2, we also try to understand the interplay between

scrambling, chaos, and thermalisation. In Ch. 3, we introduce central concepts related

to quantum-enhanced metrology. First, we review the classical and quantum Fisher

information (QFI) to quantify how much information the measurable data contains

about an unknown parameter. We also discuss how metrologically relevant states can

be generated using spin squeezing. Finally, in Ch. 4, we introduce the numerical meth-

ods that are used to study the scrambling dynamics in this thesis. These three chapters

provide the foundation and framework for the analyses in later chapters.

In Ch. 5, we examine the connection between geometry, entanglement build-up, and

lightcones. Our approach involves studying a family of random circuits on sparse cou-

pling graphs with a parameter that changes the probability distribution for choosing

two-site gates as a function of distance. By tuning this parameter, we observe a transi-

tion in the underlying geometry of the model—from linear to treelike—accompanied by

the emergence of a fast scrambling regime at the crossover between these geometries.

We show that this transition is reflected in the entanglement structure of states that

appear in the dynamics.

The crossover regime offers a compelling region for the exploration of interesting physics,

and we will further investigate the transition between the geometries in Ch. 6. We

identify a dynamical transition marking the onset of scrambling in quantum circuits

with varying degrees of long-range connectivity. Specifically, we demonstrate that as a

function of the tunable parameter and on a timescale of O(1), the tripartite mutual in-

formation exhibits a scaling collapse around a critical point, distinguishing two regimes

with different dynamical behaviours. This transition is evident in both sparse and
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dense circuit models, and we observe similar features regardless of whether the model

functions as a deterministic or random scrambler. To gain an analytical understanding,

we also study an associated Brownian circuit model, mapping it to a long-range Ising

model within a particular region of parameter space. This transition has practical ap-

plications in noisy devices, especially in identifying regimes where resource states can

be generated on shorter timescales, staying within the relevant coherence time.

Sparse coupling graphs with limited connectivity have been shown to generate en-

tanglement efficiently. Quantum states with extensive multipartite entanglement are a

valuable resource for quantum-enhanced metrology. However, the robust generation of

such states in unitary dynamics typically requires all-to-all interactions among particles.

In Ch. 7, we demonstrate that optimal states for quantum sensing can be generated

with sparse interaction graphs featuring only a logarithmic number of couplings. We

show that certain sparse graphs can mimic the dynamics of all-to-all models, even for

larger system sizes. Furthermore, we propose that these states can be efficiently pro-

duced in neutral atom arrays through dynamical shuffling of the atoms.

Finally, in Ch. 8, we summarise our findings and present an outlook on potential di-

rections for future research.

1.6 Contributions During the PhD

The author of this thesis has contributed to the following publications and presentations

for the completion of this PhD.

1.6.1 Publications on Work Related to the Thesis

• Tomohiro Hashizume, Sridevi Kuriyattil, Andrew J. Daley, and Gregory Bentsen,

“Tunable Geometries in Sparse Clifford Circuits”, Symmetry 14, 666 (2022) [42].

The author of this thesis has produced data for Figure 1, has written sections 2

and 3, and has contributed to the various parts of the main text. The author of
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this thesis has also written sections C and D in the appendix. This is presented

in Ch. 5.

• Sridevi Kuriyattil, Tomohiro Hashizume, Gregory Bentsen, and Andrew J. Daley,

“Onset of Scrambling as a Dynamical Transition in Tunable-Range Quantum

Circuits”, PRX Quantum 4, 030325 (2023) [44].

The author of this thesis has produced all the data except for Figure 1, has written

sections I and IV, and has contributed to the various parts of the main text. The

author of this thesis has also written sections A, C, D, and E of the Appendix.

This is presented in Ch. 6

• Sridevi Kuriyattil, Pablo Poggi, Johannes Kombe, and Andrew J. Daley, “Sparse

graphs for quantum-enhanced metrology”, In preparation

1.6.2 Presentations and Posters on Work Related to the Thesis

• Presentation: “Onset of scrambling as a dynamical transition in tunable range

circuit models”, APS DAMOP, Forth Worth, Texas (June 2024)

• Presentation: “Quantum Information scrambling in tunable range circuit mod-

els”, Quantum Simulation Mini-Workshop, University of Oxford (February 2024)

• Presentation: “Quantum Information scrambling in tunable range circuit mod-

els”, DesOEQ/QSUM, University of Strathclyde (July 2023)

• Presentation: “Onset of scrambling as a dynamical transition in tunable range

circuit models”, APS March Meeting, Las Vegas (March 2023)

• Poster: “Onset of scrambling as a dynamical transition in tunable range circuit

models”, AQC, University of Strathclyde (June 2024)

• Poster: “Onset of scrambling as a dynamical transition in tunable range circuit

models”, IQTN, University of Strathclyde (January 2024)

• Poster: “Tunable Geometries in Sparse Clifford Circuits”, DesOEQ/QSUM,

University of Strathclyde (July 2022)
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1.6.3 Other Publications

• Aparna Sreedharan, Sridevi Kuriyattil and Sebastian Wüster, “Hyper-entangling

mesoscopic bound states,” New Journal of Physics, 25, 083028 (2023)

• Aparna Sreedharan, Sridevi Kuriyattil, Sarthak Choudhury, Rick Mukherjee,

Alexander Streltsov, and Sebastian Wüster, “Solitary waves explore the quantum-

to-classical transition,” EPL, 140, 35003 (2022)
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Chapter 2

Measures of Quantum

Information Scrambling

Imagination is the Discovering

Faculty, pre-eminently. It is that

which penetrates into the unseen

worlds around us, the worlds of

Science

Ada Lovelace

2.1 Introduction

The concept of entanglement traces its roots back to 1935 when Erwin Schrödinger

introduced it in a letter to Albert Einstein [77]. This followed the publication of a

seminal paper by Albert Einstein, Boris Podolsky, and Nathan Rosen, which presented

a thought experiment now famously known as the EPR paradox [78]. Schrödinger

coined the term Verschränkung (which he translated as entanglement) to describe the

peculiar correlations between two particles that interact and subsequently separate, as

illustrated in the EPR experiment. This concept laid the foundation for a significant

area of study, extending the classical definition of entropy—originally introduced phe-

nomenologically by Rudolf Clausius in the early 19th century within the context of
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the thermodynamics of heat engines [79]. The idea was further developed by pioneers

like Ludwig Boltzmann [80], Claude Shannon [22], and John von Neumann [81], who

expanded its implications into the disciplines of statistical mechanics and information

theory.

In Ch. 1, we introduced the concept of quantum information scrambling, which refers

to the loss of quantum information such that it becomes inaccessible to local mea-

surements. For a quantum system to become scrambled, correlations must build up

between all N particles. This process inevitably leads to the build-up of entanglement.

Theoretically, the build-up of these correlations can be quantified using various tools,

and this chapter is dedicated to discussing the methods employed to measure quantum

information scrambling. The rest of the chapter is structured as follows: In Sec. 2.2,

we introduce the theory of quantum entanglement entropy and explore how its scaling

with system size can be utilized to study both scrambling and the underlying geometry

of quantum systems. Next, in Sec. 2.3, we examine how the spread of information man-

ifests in a lightcone-like structure, reminiscent of the lightcones observed in relativistic

theory, but different, as they arise from the structure of the system’s dynamics, not

from fundamental physical limits like the speed of light. Following this, in Sec. 2.4,

we introduce another measure of information scrambling known as tripartite mutual

information and discuss its significance in detecting scrambling. In Sec. 2.5, we address

the differences and similarities between between three tightly related concepts: quan-

tum information scrambling, quantum chaos, and thermalisation. Finally, the chapter

concludes with a summary of the key ideas discussed in Sec. 2.6.

2.2 Quantum Entanglement Entropy

In quantum systems, the bipartite entanglement entropy measures the degree of en-

tanglement between two subsystems. This is also called the bipartite von Neumann
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entanglement entropy and is defined as

SA = −Tr[ρA log ρA], (2.1)

where ρA = TrB(ρAB) is the reduced density matrix of subsystem A, which is obtained

by tracing out the degrees of freedom of subsystem B. The choice of base for the

logarithm determines the units of entropy: base 2 yields entropy in bits, while the

natural logarithm (base e) gives entropy in nats. Any given pure state |ψ〉, can be

written as |ψ〉 =
∑m

i=1 αi|ui〉A|vi〉B, using the Schmidt decomposition, where |ui〉A and

|vi〉B are orthonormal states of subsystem A and subsystem B respectively. Thus,

the reduced density of subsystem A is ρA =
∑

i |αi|
2 |ui〉A 〈ui|A and the entanglement

entropy is simply

SA = −
∑
i

|αi|2 log |αi|2. (2.2)

This form also makes it clear that SA = SB. The Schmidt values follow
∑

i |αi|2 = 1 and

give us valuable insight into the entanglement properties of the system. If α1 = 1, and

αi 6=1 = 0, then |ψ〉 = |u〉A |v〉B is a product state and thereby has zero von Neumann

entanglement entropy. However, if all the αi are equal, then the entropy is maximal.

Hence, a large amount of entanglement between subsystems A and B is characterized by

a flat distribution of Schmidt values. Studying the dynamics of entanglement growth

has become particularly crucial in the study of many-body quantum systems out of

equilibrium [4, 5, 7, 25, 82–86]. Hence, numerical methods to efficiently simulate these

systems on classical computers are necessary, and this will be introduced in Ch. 4. To

better understand these quantum systems, it is important to look at how entanglement

scales as the system size grows.

2.2.1 Area Law and Volume Law Scaling

Having established the concept of quantum entanglement entropy, we now turn to a

critical question: how does entanglement scale during the dynamics as the size of a

quantum system increases? Two primary scaling behaviours, known as the area law
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and the volume law, describe how entanglement entropy grows with system size. This

behaviour may be linked to the properties of the energy spectrum of the system under

study. For example, in 1-dimensional gapped systems, it is proven that the low-energy

eigenstates of the Hamiltonian exhibit an entanglement entropy that follows area-law

scaling [87–93]. This means that the bipartite entanglement entropy SA of subsystem

A increases proportionally to the area of the boundary of the region A, which in 1-

dimensional systems is SA ∝ O(1). A good example of a gapped Hamiltonian is a 1D

transverse field Ising model

H = −χ
∑
i

σzi σ
z
i+1 − h

∑
i

σxi , (2.3)

where σzi and σxi are the Pauli matrices, χ is the coupling constant, and h is the trans-

verse field. For h > J , the system has a non-zero energy gap between the ground state

and the first excited state, making it a gapped Hamiltonian [90, 94]. In such systems,

long-range correlations may not be expected in the low-energy regime, as the genera-

tion of long-range interactions in a local system typically requires excitations.

When a state that follows area-law entanglement scaling undergoes out-of-equilibrium

quench dynamics-where a sudden change in a parameter of the Hamiltonian drives the

system away from equilibrium-the initially localised quantum information, such as a

spin excitation confined to a specific site or region, begins to spread across more distant

sites. Specifically, for example, in systems that exhibit thermalisation, which will be

introduced in Sec. 2.5, the entanglement entropy of a subsystem A reaches its maximal

value. In such a scenario, the entanglement entropy grows with the system size, i.e.,

SA ∝ |A|, leading to what is called volume-law entanglement scaling, as the entangle-

ment entropy is proportional to the volume of the region A. For a random state of N

qubits, Page showed that the average entropy of the state is 1

SA = |A| log 2− 1

2
22|A|−|N | , (2.4)

1One can generalise this for any system with a local dimension D. Here, we consider qubits, and
therefore D = 2.
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where A is an arbitrary subsystem with |A| < N/2. This implies that the entanglement

entropy of an arbitrary subsystem in such random state differs from the maximal by

less than a single bit. The state that saturates this random state limit is called a

Page-scrambled state [17] and is volume law entangled.

2.3 Lightcones and Information Spreading

In Sec. 2.2.1, we discussed different scaling of entanglement entropy with system size,

emphasising the spreading of quantum information. In this section, we adopt an ap-

proach involving lightcones to further explore this phenomenon. Analogous to causal

lightcones in relativistic theories, many-body lightcones limit the spread of quantum

information. However, unlike relativistic lightcones, these arise from the specific struc-

ture of the system’s dynamics, rather than from fundamental physical limits. Once the

lightcone extends across the complete system (say, N spins or qubits), the quantum

information becomes fully delocalised and is encoded in a many-body entangled state.

For 1-dimensional systems with only short-range interactions, this causal region is de-

termined by the maximum velocity at which quantum information can spread, known

as the Lieb-Robinson (LR) bound [28]. Information spreading can be studied by quan-

tifying the degree of operator mixing, which is done by taking commutators between

an operator P at site i at time t = 0 and an operator Q at site j at time t = T . The

following inequality

||[Pi(t = 0), Qj(t = T )]|| ≤ Ce−µ(d(i,j)−vT ), (2.5)

sets a bound at a velocity v at which the information spreads, where [., .] is the com-

mutator, ||·|| is the operator norm, d(i, j) is the distance between sites i and j, and

C and µ are constants. This means that for a pair of sites, i, j where d(i, j) > vT ,

the correlations are exponentially suppressed. Similar bounds can also be derived for

systems with long-range and sparse interactions [32, 95–98]. Understanding the light-

cone structure and the LR velocity is crucial for determining the timescales over which
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entanglement and correlations are generated in quantum systems. By combining the

scaling of the entanglement entropy with the LR bounds, it is established that if the

subsystem A lies within the lightcone, the entanglement entropy exhibits a volume law

scaling. Conversely, if A is outside the lightcone, the entanglement entropy follows an

area law scaling. This relationship demonstrates that studying lightcones and the LR

velocity provides valuable insights into the underlying geometry of the quantum system

as we will discuss in Ch. 5. In systems with non-local interactions, the effective linear

lightcone collapses allowing for fast scrambling, where system-wide entanglement builds

up on timescales as short as t ∝ logN [15, 20, 29–35]. In Ch. 5, we calculate this time

for circuit models featuring sparse interactions of different strengths.

2.4 Tripartite Mutual Information

In the following section, we turn our attention to the tripartite mutual information as

a key measure for studying quantum scrambling.

Figure 2.1: Setup to Study Scrambling Using Tripartite Mutual Information
An initially separable state |0〉⊗Nundergoes time evolution under a unitary U , and
the final state is divided into four contiguous subregions A, B, C and D. Due to
the delocalisation of quantum information, the combined region BC contains more
information about A, than the individual regions B and C do about A. This leads to
a negative tripartite mutual information.

To understand this quantity, we refer to the Fig. 2.1. Here, an initial separable state

|0〉⊗N , where N is the system size, undergoes a time evolution according to a given

unitary U . We consider the system to be divided into four contiguous subregions A,
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B, C and D as illustrated in Fig. 2.1. If U scrambles the system, the initial localised

information cannot be retrieved by local measurements in the output state. This means

that the mutual information I(A;B), which measures the amount of information one

can learn about a given subregion A by measuring the subregion B, must be small.

This is mathematically given as

I(A;B) = SA + SB − SAB, (2.6)

where SA, SB, and SAB are the entanglement entropies of the respective subregions.

Similarly, I(A;C) will also be small as C is also a local region. However, the combined

region BC will have more information about A than B or C separately. This naturally

allows us to combine all three mutual information and using Eq. (2.6) to construct

I3 = I(A : B : C) = I(A;B) + I(A;C)− I(A;BC) (2.7)

= SA + SB + SC − SAB − SBC − SAC + SABC . (2.8)

This quantity is called the tripartite mutual information [21, 99–104]2. I3 vanishes

when the regions ABC are uncorrelated, as the amount of information subregions B

and C have about A is exactly equal to the information the combined region BC have

about A. This is because the quantum information is localised. However, when quan-

tum correlations have spread across the system, I(A;BC) > I(A;B) + I(A;C) and

I3 < 0. This means that the information contained in the quantum state is delocalised

across all three regions A, B, C and reconstruction of this information requires access

to all of them. Hence, the negativity of the tripartite mutual information serves as a

natural measure of many-body entanglement in the system [21, 99, 101, 103, 105].

For random states, we can show that the tripartite mutual information is typically

negative. By applying the entanglement entropy from Eq. (2.4) into Eq. (2.8), it is
2The tripartite mutual information is also referred to as the topological entanglement entropy in the

condensed matter community. However, we use the term “tripartite mutual information” in the thesis.
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straightforward to see that for these states

I3 =
1

2

[
3
(
24|A|−N

)
− 26|A|−N − 3

(
22|A|−N

)]
< 0. (2.9)

This can be attributed to the monogamous nature of entanglement, which arises from

the sub-additive property of entanglement entropy SAB ≤ SA + SB. In simple terms,

quantum correlations between regions A and B cannot be shared with region C without

spoiling the original entanglement. It has been shown that for holographic systems3 the

tripartite mutual information is always negative, i.e. I3 ≤ 0. This is often referred to

as monogamy of mutual information [21, 101, 103, 104]. However, in general quantum

systems, there will be both quantum and classical correlations. In systems where classi-

cal correlations dominate, this monogamy does not hold. For example, permutationally

symmetric (PS) states, such as the GHZ state, have a positive I3. Permutation sym-

metry, which will be discussed in detail in Sec. 3.3.2, allows us to reduce the effective

dimension of the Hilbert space to N+1, rather than 2N , for a system of N qubits. One

clear property of such states is that SA ≤ log(A+ 1) for a subsystem A, as the rank of

the reduced density matrix is at most A+1. With this, we can estimate the behaviour

of I3 for a permutationally symmetric state. Using Eq. (2.8), we find that

IPS3 ≈ 3 log(A+ 1)− 3 log(2A+ 1) + log(3A+ 1), (2.10)

= log
[
(3A+ 1)(A+ 1)3

(2A+ 1)3

]
> 0. (2.11)

This approximation is valid for large N and A [21, 102]. Although we have omitted

corrections here, this is enough to demonstrate the positivity of I3. This means that the

mutual information that A shares individually with B and C is greater than the mutual

information combined region BC shares with A. Thus, the subregions share correlations

with other parties. This contrasts sharply with random, nonsymmetric states as shown

in Eq. (2.9). Studies on non-integrable quantum spin systems with permutationally

symmetric initial states have shown that such systems can produce states with positive
3Class of quantum systems described by the holographic principle, which posits that a higher-

dimensional theory can be fully described by a lower-dimensional one [15, 106, 107].
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I3 [102, 108]. These findings suggest that scrambling does not directly align with

conventional quantum chaos, which we will explore further in Sec. 2.5

2.5 Scrambling vs Chaos vs Thermalisation

In this section, we explore the intricate relationships between quantum information

scrambling, quantum chaos, and thermalisation. While these concepts are often used

interchangeably due to their interconnected nature, it is essential to distinguish them

to fully understand their implications. Our discussion will remain focused on the core

aspects relevant to this thesis, providing clear and concise explanations.

Chaos in classical mechanics refers to the sensitivity to slight perturbations in the

phase-space trajectories. A classic example is the double-rod pendulum [109], which

shows an exponential divergence in the dynamics for slightly different initial conditions.

The notion of trajectories which is well established in classical systems does not work

in quantum mechanical systems by virtue of the Heisenberg uncertainty principle for-

bidding simultaneous measurement of coordinates and velocity. This is why quantum

chaos is a difficult concept to define and study in contrast to its classical counterpart.

Studying the level statistics of the Hamiltonian is the usual approach. Level statistics

of a Hamiltonian is the distribution of the eigenenergies of the Hamiltonian. The level

spacing between adjacent energy levels is given by λi = Ei+1 − Ei, when the energy

levels are ordered as a monotonically increasing sequence E1 ≤ E2 ≤ . . .. In a chaotic

system, the level spacings tend to follow the Wigner-Dyson distribution [110], which

is characteristic of random matrix theory (RMT) [111, 112]. This distribution shows

level repulsion, meaning that small spacings are less likely. This typically occurs for

non-integrable quantum systems [113] and for Hamiltonians obtained by quantizing

classical chaotic systems [114]. In contrast, integrable systems have level statistics that

typically follow a Poisson distribution. Having briefly introduced the concept of quan-

tum chaos from the perspective of level spacing statistics and random matrix theory,

we next discuss how this is related to the eigenstate thermalisation hypothesis (ETH).
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This concept was initially inspired by early works of Berry [115, 116] and later formal-

ized by Deutsch [117] and Srednicki [118–120].

To understand ETH, let us consider a generic, non-integrable Hamiltonian H. For

a given pure state |ψ〉 =
∑

uCu|u〉, evolving under this Hamiltonian H, the expecta-

tion value of an observable Ô can be calculated at a given time t with respect to |ψ(t)〉

as

〈Ô〉t = 〈ψ(t)|Ô|ψ(t)〉 (2.12)

=
∑
uv

C∗
vCue

−i(Eu−Ev)tOuv (2.13)

=
∑
u

|Cu|2Ouu +
∑
u6=v

C∗
vCue

−i(Eu−Ev)tOuv, (2.14)

where Ouv = 〈u|Ô|v〉 are the matrix elements. ETH states that for generic Hamilto-

nians, the diagonal elements of a local observable O correspond to the microcanonical

average prescribed by statistical mechanics, i.e., Ouu averaged over a small energy win-

dow is a smooth function of energy. Specifically, the eigenstates of such Hamiltonians

behave equal to the microcanonical or thermal density matrix. The off-diagonal el-

ements oscillate over time e−i(Eu−Ev)t, and these oscillations tend to average out to

zero over long times. As a result, the long-time behaviour is dominated by the diag-

onal elements. RMT provides valuable insights into the statistical properties of these

off-diagonal matrix elements [2, 119, 120]. Generally, Hamiltonians exhibit eigenstate

thermalisation along with quantum chaos, often behaving like random matrices as dis-

cussed in [1], although certain exceptions exist [121]. The ETH as stated by Srednicki

and Deutsch talk about the equilibration or relaxation of the local observables to the

micro-canonical predictions. However, systems may equilibrate to other values 4, which

means that thermalisation is a special case of equilibration [122–125]. While a com-

prehensive explanation of the eigenstate thermalisation hypothesis (ETH) is beyond

the scope of this thesis, the main message is that thermalisation, quantum chaos, and
4For example, integrable systems equilibrate to a state that retains the memory of the initial state

[122].
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random matrix theory (RMT) are closely related and often go hand in hand. For a

more detailed analysis of ETH, readers are referred to [2].

How are these related to quantum information scrambling? Even though we have

introduced measures of scrambling like tripartite mutual information in Sec. 2.4, to

understand the relationship between quantum chaos, ETH, and quantum information

scrambling, we use the out-of-time order correlator (OTOC) [126–133]. It is a time-

dependent function defined as the expectation value of double commutators

CWV = 〈[Ŵ (t), V̂ ]†[Ŵ (t), V̂ ]〉. (2.15)

Here V̂ and Ŵ are operators and they evolve under the Hamiltonian H according to

the Heisenberg picture W (t) = eiHtWe−iHt. Even though this definition holds for an

arbitrary pair of operators, we aim to characterise physical observables and hence the

operators are hermitian. This gives us

CWV = −〈[Ŵ (t), V̂ ]2〉, (2.16)

CWV = 2(1− Re{FW,V (t)}), (2.17)

where FW,V (t) = 〈Ŵ †(t)V̂ †Ŵ (t)V̂ 〉. (2.18)

An OTOC describes information scrambling by measuring how quickly the initially

commuting operators W and V (CW,V (t = 0) = 0) fail to commute. The growth of

the commutator as described by CW,V , is constrained by Lieb-Robinson velocity given

in Eq. (2.5) for 1-dimensional systems with short range interactions. The behaviour

of OTOCs has been studied in various systems and exponential growth in OTOCs is

interpreted as a signature of scrambling and chaos [127]. However, this definition of

chaos does not align with the spectral one [134–138]. Many focused studies have been

conducted to find the intricate differences between these two processes. One such quan-

tum system that is integrable (does not have a Wigner Dyson distribution for its level

statistics), but shows exponential growth in the OTOC calculations is the Floquet XXZ

model [138]. This is an example where we see that scrambling is necessary, but is not
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sufficient for chaos. Finally, fast scrambling is often associated with chaotic dynam-

ics, but the converse is not necessarily true [102, 108, 139, 140]. A simple example is

a randomly coupled nearest-neighbour model, which does not exhibit fast scrambling

but has level statistics that demonstrate chaotic behaviour [139, 140]. Thus, while the

spectral properties of a Hamiltonian may not predict fast scrambling, they serve as a

useful initial check to assess whether a system may possess fast scrambling.

While both the dynamical indicators of chaos and the spectral definition of chaos are

commonly studied, there is not yet agreement on what quantum chaos really is. This

remains an open question in the field, with various Hamiltonians and models being

explored to understand the connections between spectral and dynamical properties. In

this thesis, we adopt the more traditional definition of chaos based on spectral prop-

erties. For studying scrambling, we use bipartite entanglement entropy and tripartite

mutual information as key indicators. Building on the definition of fast scrambling

provided in Sec. 1.2, we also define a system as fast scrambling if the time for extensive

contiguous subregions to reach volume-law entanglement scales logarithmically with

the system size. Using this criterion, the tripartite mutual information saturates to

a given value corresponding to the system becoming volume-law entangled. For fast

scramblers, the time it takes to reach this value scales logarithmically with the system

size.

In summary, Sec. 2.5 discusses the distinctions and relationships between quantum

information scrambling, quantum chaos, and thermalisation. Quantum chaos and the

eigenstate thermalisation hypothesis (ETH) are connected through random matrix the-

ory (RMT). While scrambling and chaos are linked by the behaviour of out-of-time-

ordered correlators (OTOCs), they are not identical. Scrambling can occur without

the typical signatures of quantum chaos, and chaotic Hamiltonians do not necessarily

exhibit fast scrambling behaviour. Thus, although quantum chaos, ETH, and scram-

bling are related, they remain distinct phenomena with their own specific signatures

and behaviours. While this section outlines key similarities and distinctions between
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quantum chaos, ETH, and scrambling, the discussion is intentionally kept within the

scope of this thesis.

2.6 Summary

In Ch. 2, we established the foundational framework essential for the analyses presented

throughout this thesis and explored the key concepts related to quantum information

scrambling. We started by introducing the concept of entanglement entropy and ex-

plored how its scaling with system size can reveal the underlying geometry in Sec. 2.2.

This understanding is crucial for identifying the geometry in our sparse Clifford circuit

models, which we explore further in Ch. 5. Next, we discussed the concept of lightcones

to explore the relationship between entanglement spreading and the underlying geome-

try of the quantum system in Sec. 2.3. In Sec. 2.4, we introduced the tripartite mutual

information and established that its negativity may be used as an indicator of quantum

information scrambling. Finally, in Sec. 2.5, we tried to outline the connections between

three commonly discussed concepts: quantum information scrambling, quantum chaos,

and thermalisation. This chapter serves as a backbone for the calculations and anal-

yses in both Ch. 5 and Ch. 6, providing the necessary theoretical groundwork for the

discussions that follow. In the next chapter, we introduce the concepts surrounding

quantum-enhanced metrology and study a prototypical model to create metrologically

relevant states.
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Quantum Enhanced Metrology

What we observe is not nature

itself, but nature exposed to our

method of questioning.

Werner Heisenberg

3.1 Introduction

Metrology, the science of measurement, is fundamental to scientific inquiry and techno-

logical advancement. Its relevance in science and technology can be seen ubiquitously.

For example, the scientific theory of gravitational waves proposed by Albert Einstein

in 1916 was verified and tested experimentally by LIGO in 2016, thanks to the devel-

opment of advanced optical measurement technique [141]. Metrology is also critical

in the field of biology, where precise measurement techniques are essential for under-

standing complex biological processes. For instance, the use of Doppler ultrasound to

measure blood flow velocity is a prime example [142]. Similarly, metrology also plays

a crucial yet often overlooked role in engineering and architecture, where precision in

measurement is essential for ensuring the reliability and safety of buildings, bridges,

and all other kinds of infrastructure. Extracting useful information from the measure-

ments is a central challenge in metrology. While certain fundamental quantities, such

as length, and mass, can be directly measured with high precision using standardized

27



Chapter 3. Quantum Enhanced Metrology

instruments, many physical parameters of interest cannot be directly measured. It is

more accurate to say that such parameters are estimated. The process of constructing

an estimate still relies on measuring a related (measurable) quantity. For example,

the direct measurement of blood flow velocity within arteries and veins is not feasible

because inserting a measuring device into blood vessels could cause damage or dis-

rupt normal flow. Instead, the Doppler ultrasound measures the frequency shift of

sound waves as they bounce off moving red blood cells. Frequency, which is directly

measurable using instruments like oscilloscopes, is determined by observing the peri-

odicity of a waveform and calculating its oscillations over a known time interval. In

this way, it is intrinsically related to time—a fundamental quantity that can be mea-

sured with high precision. The frequency shift is then used to calculate the velocity

of blood flow indirectly. Mathematically, estimation theory addresses this problem of

estimating unknown parameters from measured empirical data. With the frequentist

approach [143, 144], in principle, with a sufficient set of empirical data from the mea-

sured quantity, the physical parameter of interest may be estimated with a given degree

of precision set by the mean-squared error.

Estimation theory was extended to quantum information by Holevo and Helstrom

[10, 145]. Quantum metrology, a discipline born from these developments, has found

applications in diverse areas, including but not limited to magnetometry [146–149],

thermometry [150–152], and clock synchronization [153–156]. In this context, our pri-

mary focus is on the canonical problem of phase estimation, where the goal is to retrieve

an unknown phase encoded in a given state using appropriate measurement strategies.

By leveraging quantum phenomena such as entanglement [11, 12], quantum-enhanced

metrology promises to surpass the classical limits of measurement accuracy. The process

of phase estimation can be broadly divided into two main components: state genera-

tion and measurement, as illustrated in Fig. 3.1 by the blue and pink dotted boxes,

respectively. State generation involves using the concept of entanglement discussed in

Sec. 2.2 to produce resource states that are used as probes to encode and measure an

unknown phase.
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Figure 3.1: A Schematic Diagram Showing the Usual Steps of Phase Estima-
tion An initial product state |ψ0〉 undergoes dynamics to generate an entangled state
|ψent〉. This highly sensitive state is used for encoding a phase via unitary evolution,
which is extracted through measurements. The blue dotted box shows the state gener-
ation part and the pink shows the measurement part.

A key strategy for this is spin squeezing which will be introduced in Sec. 3.4 and

the prototypical model used is the one-axis twisting model with all-to-all connectivity

[8, 13, 14, 157]. This model has been implemented in experiments using atoms in op-

tical cavities [60–62, 82], and trapped ions [158, 159]. Beyond all-to-all interactions,

other approaches have been explored to generate metrologically useful states, including

short-range interacting models using Rydberg atoms [160–162], and low-depth varia-

tional circuit models designed for neutral atom platforms and trapped ions [163–165].

Another experimental platform that has been investigated is dipolar interacting spin

systems, where highly entangled states are generated through uniform single-qubit ro-

tations and free evolution under dipolar interactions [166].

In this chapter, we introduce the key concepts related to generating states with metro-

logical relevance. The following sections are organised as follows: In Sec. 3.2, we begin

by introducing the Cramér-Rao bound and quantum Fisher information, which forms

the theoretical foundation of parameter estimation in quantum metrology. We then

introduce collective spin operators in Sec. 3.3, which are crucial for understanding

the collective spin nature of quantum systems. Following this, in Sec. 3.4, we discuss

spin-squeezing, a practical technique for enhancing measurement precision in quantum

systems, within which we introduce the one-axis twisting Hamiltonian (see Sec. 3.4.1),
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explore its dynamics, and examine how this system generates states of interest for

metrology. This foundation is important for our analysis in Ch. 7, where we utilize

sparse coupling graphs where the number of couplings per site scales logarithmically

with system size N , i.e., ∼ log2N to generate metrologically useful states. These results

are then compared with those produced by the one-axis twisting Hamiltonian.

3.2 Cramér-Rao Bound and Fisher Information

3.2.1 Classical Description

The question of efficient extraction of information from a set of data is native to statis-

tics. The basic idea is to estimate the value of the unknown latent parameters [144]

using the measured or provided data of observables. Formulating this mathematically,

let X be a random variable that has N different discrete values x = {x1, ..xN}. Let

P (xi|θ) be the conditional probability of the measurement data xi given the latent

parameter θ. The probability distribution function P (X|θ) dictates the distribution

of the observed data. After measuring a suitable variable, in this case X, the latent

parameter θ is estimated using an estimator function which we call as θest(x) whose

input is the collected data x. Ideally, the expectation value of the estimator function

should be equal to the true value of the parameter as shown

〈θest〉 =
∫
P (x|θ)θest(x)dx = θ. (3.1)

While the assumption given in Eq. (3.1) may not always hold, we consider this for the

purpose of deriving a bound on the sensitivity of parameter estimation [167]. Here,

we consider the observed data to take on a continuum of values, which can be treated

similarly to a sum in the discrete case. The mean and variance of the estimator function

are well-defined as it is a function associated with a random variable. The mean squared

error (MSE) is defined as

(∆θ)2 = 〈(θest(x)− θ)2〉 =
∫
P (x|θ)(θest(x)− θ)2dx, (3.2)
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and since Eq. (3.1) holds, MSE is equal to the variance of the latent parameter θ. The

Cramér-Rao bound [168] assigns the lowest possible value to the MSE. This can be

deduced by writing Eq. (3.1) as

∫
P (x|θ)(θest − θ)dx = 0. (3.3)

Thus,

0 =
∂

∂θ

∫
P (x|θ)(θest − θ)dx,

=

∫
P (x|θ)∂ logP (x|θ)

∂θ
(θest − θ)dx− 1. (3.4)

To calculate the bound, we use the Cauchy–Schwarz inequality

∣∣∣∣ ∫ f(x)g(x)dx

∣∣∣∣2 ≤ (∫ f(x)2dx

)
·
(∫

g(x)2dx

)
, (3.5)

with f(x) →
√
P (x|θ)∂ logP (x|θ)

∂θ and g(x) →
√
P (x|θ)(θest − θ). Applying this in

Eq. (3.4), gives

1 ≤
(∫

P (x|θ)
(
∂ logP (x|θ)

∂θ

)2

dx

)
·
(∫

P (x|θ)(θest − θ)2dx

)
. (3.6)

Rearranging the terms gives us the Cramér-Rao bound

(∆θ)2 ≥ 1

F(P (x|θ))
, (3.7)

where F(P (x|θ)) =
∫
P (x|θ)

(
∂ logP (x|θ)

∂θ

)2

dx =

∫
1

P (x|θ)

(
∂P (x|θ)
∂θ

)2

dx (3.8)

is the Fisher Information [169]. This quantity is interpreted as how much information

can be extracted about an unknown parameter θ from the probability distribution. The

Cramér-Rao bound can be equivalently represented as

(∆θ)2 ≥ 1

NF(P (x|θ))
, (3.9)
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because F is a non-negative quantity and x is N independent realizations of the random

variable X. From here, using the central limit theorem, as N → ∞, the sample average

will take a normal distribution with a variance of O(N−1).

3.2.2 Quantum Description

In the quantum realm, the basics of parameter estimation remain unchanged [10, 145].

The main difference is that the measurement outcomes (x in Sec. 3.2.1) may no longer

be independent due to the presence of entanglement in the system. In quantum for-

malism, we must account for all possible measurements in order to make the Fisher

information independent of specific measurement strategies. Thus, by maximising the

classical Fisher Information F over all Positive Operator-Valued Measures (POVMs)

[7, 170], which are sets of positive semi-definite (Hermitian) operators {M}, such that∑
n M̂(xn) = I, we obtain the quantum Fisher information (QFI) FQ. In essence,

the QFI provides a bound on how well we can estimate a parameter θ from a quan-

tum state ρ(θ), which is created from an initial state |ψ0〉 by a unitary evolution

Û(θ) = exp
{
−iĤθ

}
. If ν is the number of times the quantum measurement is done to

estimate θ on the state ρ(θ), then (∆θ)2 ≥ 1
νFQ(θ) . The probability of getting a partic-

ular measurement outcome xn on the state ρ(θ) = |ψ(θ)〉〈ψ(θ)| given the parameter θ

is

P (xn|θ) = 〈ψ(θ)|M̂(xn)|ψ(θ)〉 = Tr[ρ(θ)M̂(xn)]. (3.10)

Going back to the Eq. (3.8), we need to calculate

∂P (xn|θ)
∂θ

=

[
d

dθ
〈ψ(θ)|

]
M̂(xn)|ψ(θ)〉+ 〈ψ(θ)|M̂(xn)

[
d

dθ
|ψ(θ)〉

]
= −2Im{〈ψ(θ)|ĤM̂(xn)|ψ(θ)〉}. (3.11)
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Following reference [171], one may introduce an arbitrary real function G(θ). Since it

is a real value function, it does not affect Eq. (3.11) and we obtain

∂P (xn|θ)
∂θ

= −2Im{〈ψ(θ)|[Ĥ −G(θ)]M̂(xn)|ψ(θ)〉}. (3.12)

Calculating
(
∂P (xn|θ)

∂θ

)2

for continuous values, one may obtain

F(P (x|θ)) =
∫

1

P (x|θ)

(
∂P (x|θ)
∂θ

)2

dx,

= 4〈ψ(θ)|[Ĥ −G(θ)]2|ψ(θ)〉. (3.13)

If we choose G(θ) = 〈ψ0|Ĥ|ψ0〉, and by applying the Baker-Campbell-Hausdorff (BCH)

formula, we rewrite the expectation value 〈Ĥ〉 = 〈ψ0|Ĥ|ψ0〉 = 〈ψ(θ)|Ĥ|ψ(θ)〉, then

Eq. (3.13) may be expressed as

F = 4〈ψ(θ)|
(
Ĥ − 〈Ĥ〉

)2
|ψ(θ)〉,

= 4
(
〈ψ(θ)|Ĥ2|ψ(θ)〉+ 〈H〉2 〈ψ(θ)|ψ(θ)〉 − 2〈H〉2

)
,

F = FQ = 4
(
∆Ĥ

)2
, (3.14)

where
(
∆Ĥ

)2
= 〈Ĥ2〉 − 〈H〉2 is the variance. This is the QFI for a pure state [170].

This is a powerful tool for describing the sensitivity of a state to a given parameter θ

and is independent of the procedure of measurement.

The QFI of any separable state of N qubits is bounded by FQ ≤ N [14]. As a result,

the maximum sensitivity achievable for a separable state corresponds to the classical

limit or standard quantum limit (SQL), given by (∆θ)2 = O(N−1). However, the

presence of entanglement can surpass this limit. When entanglement is introduced,

the classical limit (∆θ)2 = O(N−1) is no longer the upper bound, and the sensitivity

improves, leading to (∆θ)2 > O(N−1), which implies FQ > N . This bound has been

mathematically discussed in [14, 172]. The maximum value of the attainable quantum
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Fisher information is called the Heisenberg limit with FQ = N2. It’s important to note

that not all entangled states are advantageous for metrology. Among those that are,

their effectiveness in quantum-enhanced metrology can vary. One prominent quantum

strategy for creating metrologically relevant states, first introduced by Kitagawa and

Ueda [8], is spin squeezing. Before introducing the concept of spin squeezing in Sec. 3.4,

we will first review the foundational concepts related to the collective nature of spin

systems in Sec. 3.3.

3.3 Collective Spin Operators and Phase Space Visualisa-

tion

3.3.1 Collective Spin System

Since we are interested in studying the scaling of the QFI with the number of particles

N , an ensemble of N distinguishable qubits is introduced and described with a collective

spin vector Ĵ = {Ĵx, Ĵy, Ĵz}, where

Ĵx =
1

2

N∑
l=1

σ̂xl , Ĵy =
1

2

N∑
l=1

σ̂yl , Ĵz =
1

2

N∑
l=1

σ̂zl , (3.15)

and σ̂l = {σ̂x, σ̂y, σ̂z} is the Pauli vector of the lth particle and h̄ = 1. The operators

given in Eq. (3.15) satisfy the angular-momentum commutation relations

[Ĵx, Ĵy] = iĴz, [Ĵz, Ĵx] = iĴy [Ĵy, Ĵz] = iĴx, (3.16)

and the associated uncertainty principle is 〈∆J2
µ〉〈∆J2

ν 〉 ≥ 1
4 |〈Jτ 〉|

2, where µ, ν, τ denote

the components of any three orthogonal directions. The dimension of the Hilbert

space for an N spin-1/2 system grows exponentially as 2N when symmetry is not

considered. However, by imposing exchange symmetry among the spins, this dimension

is significantly reduced to (N + 1). A common choice of basis in this reduced Hilbert

space is the Dicke states [52, 173–176]. The Dicke basis provides an orthonormal set

of states for the collective spin system and is crucial in various quantum information
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processing tasks, including quantum metrology. We will introduce the Dicke basis in

the following section, Sec. 3.3.2.

3.3.2 Dicke States

The N-spin Dicke state |J,M〉 with M ∈ {−N/2, . . . , N/2} is a uniform, permutation-

symmetric, superposition of N-bit strings |x〉, such that there are J+M bits in 0 where

J = N/2. The normalisation of such a state is
(

2J
J+M

)−1/2. For example, for N = 4,

the state |J = 4
2 ,M = 0〉 = 1√

6
(|0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉). It

is a simultaneous eigenstate of Ĵz and Ĵ2:

Ĵz|J,M〉 =M |J,M〉, (3.17)

Ĵ2|J,M〉 = J(J + 1)|J,M〉. (3.18)

This generates (N + 1) mutually orthogonal states. In the next section, we introduce

coherent spin states, which offer a complementary perspective by highlighting the more

classical behaviour of quantum spins.

3.3.3 Coherent Spin States

Coherent spin states (CSS) are pure, separable states of a symmetric ensemble of N

spins with J = N/2. This state can be created by an arbitrary rotation of |J,−J〉 or

|J, J〉. Starting from |J,−J〉, the spin coherent state in the Dicke basis can be written

as [177–179]

|θ, ϕ〉 = R̂θϕ |J,−J〉 , (3.19)

where ϕ is the angle in which the Cartesian axes (x, y, z) are rotated around the z axis

to create new axis ~k, ~n and θ is the angle in which the axis ~n is rotated [180]. The
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transformed collective spin operators are given by

Ĵz = Ĵz, (3.20)

Ĵn = Ĵx sinϕ− Ĵy cosϕ, (3.21)

Ĵk = Ĵx cosϕ+ Ĵy sinϕ, (3.22)

and the rotation operation is

R̂θϕ = e−iθĴn , (3.23)

= e−iθ(Ĵx sinϕ−Ĵy cosϕ), (3.24)

= exp
{
ζĴ+ − ζ∗Ĵ−

}
, (3.25)

where ζ = θ
2e

−iϕ, Ĵx = 1
2(Ĵ+ + Ĵ−), and Ĵy =

1
2i(Ĵ+ − Ĵ−). Eq. (3.19), thereby can be

written as

|θ, ϕ〉 =, R̂θϕ |J,−J〉 , (3.26)

=

M=J∑
M=−J

√(
2J

J +M

)(
cos θ

2

)J−M(
sin θ

2

)J+M
e−iϕ(J+M) |J,M〉 , (3.27)

showing that a general CSS can be described as a superposition of Dicke states. This

state can be visualised on a generalised Bloch sphere, as shown in Fig. 3.2(a), using

the Husimi Q distribution, which we introduce in the following section.

3.3.4 Visualisation of Quantum States

Phase space representation provides a powerful framework to describe quantum states

and their dynamics. The two widely used approaches for visualisation are the Husimi

Q function and the Wigner function [181–184]. In this chapter, we will focus on using

the Husimi Q function [184]. In general, the Husimi Q function on a Bloch sphere for

a quantum state ρ = |ψ〉 〈ψ| is defined as the expectation value of the density matrix

in the coherent state |θ, ϕ〉, where θ, ϕ are azimuthal and polar angles, respectively.
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Mathematically, it is expressed as:

Q(θ, ϕ) =
1

π
〈θ, ϕ| ρ |θ, ϕ〉 . (3.28)

The interpretation of this representation on a generalised Bloch sphere differs from that

of a single spin-1/2 on the Bloch sphere. A single spin-1/2 has a Hilbert space dimen-

sion of two, and representation of this single spin on a two dimensional Bloch sphere

hence will be exact. However, for the collective spin system, the dimension is 2J + 1,

making such an exact mapping impossible. Consequently, the representation of a spin

N system on the generalised Bloch sphere gives the mean spin direction and its fluc-

tuations adhering to the Heisenberg uncertainty principle as shown below Eq. (3.16).

The Husimi Q function is non-negative. An example of the Husimi Q function for a

CSS and spin squeezed state which will be introduced in Sec. 3.4 is shown in Fig. 3.2(a)

and Fig. 3.2(b) respectiviely.

Having established the foundational concepts of collective spin operators, coherent spin

states, and the phase space representation on the generalised Bloch sphere, we now dis-

cuss the topic of spin squeezing. In Sec. 3.4, we will examine spin squeezing in detail

and introduce the one-axis twisting Hamiltonian—a prototypical model that effectively

generates spin-squeezed states with metrological relevance.

3.4 Spin Squeezing

Spin squeezing is a quantum phenomenon in which the uncertainties (variances) in two

conjugate spin components (directions) are redistributed in such a way that one com-

ponent’s uncertainty is reduced (squeezed) at the expense of increasing the uncertainty

in the other component (anti-squeezed) [8, 9, 157, 185]. The squeezing parameter is a

crucial concept used to characterize the phenomenon of squeezing and hence multiple

definitions have been employed [8, 9]. The idea put forth by Kitagawa and Ueda [8] is

to compare the uncertainty with respect to the non-squeezed state, that is the coherent
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spin state, and is given as

ξ2S =
Nmin(∆Ĵ⊥)2

|〈ĴCSS〉|2
=

4min(∆Ĵ⊥)2

N
, (3.29)

where ⊥ denotes the perpendicular direction to the mean-spin direction s and (∆Ĵ⊥)
2

is the variance. Here, the minimum value is calculated by taking the smallest eigenvalue

of the covariance matrix Cµν = 1
2〈{Ĵµ, Ĵν}〉−〈Ĵµ〉〈Ĵν〉, where µ and ν are two mutually

perpendicular directions in the plane perpendicular to the mean-spin direction s and

{·} is the anticommutator. A stronger condition was introduced later by Wineland [9],

and is given by

ξ2R =
N(∆Ĵ⊥)

2

|〈Ĵs〉|2
. (3.30)

If ξ2R < 1, the state is said to be spin squeezed along the ⊥ axis. Since |〈Ĵs〉| ≤ N/2, we

obtain ξ2S ≤ ξ2R. Interestingly, one application of spin squeezing is to detect quantum

entanglement [186–191]. The Kitagawa and Ueda spin squeezing parameter ξ2S has been

studied in relationship with pairwise entanglement [192] and [193] proved that a many

body spin-1/2 state is entangled if it is spin squeezed with ξ2R < 1.

Alongside the calculation of the spin squeezing parameter, to gauge metrological rele-

vance, the QFI can also be calculated for the spin system, as it describes the sensitivity

of a given state |ψ〉 to a parameter θ as mentioned in Sec. 3.2.2. For spin systems,

the standard scenario corresponds to θ being a phase encoded by a small rotation of

the probe state around a given axis, Ĵµ, the generator of a rotation around axis µ.

In such a case, it is possible to maximize the QFI by optimising over all the rotation

directions [194]. For pure states, this optimum is given by the maximum eigenvalue of

the covariance matrix Cµν = 1
2〈{Ĵµ, Ĵν}〉 − 〈Ĵµ〉〈Ĵν〉, where µ and ν are two mutually

perpendicular directions and can take values µ, ν = x, y, z. This gives us

FQ[θ, Jµ] = 4(∆Ĵµ)
2 . (3.31)
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Figure 3.2: One Axis Twisting Dynamics (a). A Coherent Spin State of N = 32
spins initialised in the x-polarized state with the mean spin direction along the x-
axis. The effect of the one-axis twisting Hamiltonian in Eq. (3.32) is to shear this
distribution. (b) A spin squeezed state at χ0t = 0.03π. (c). The normalised quantum
Fisher information as a function of χ0t for the OAT model for N = 32. This shows an
initial steady rise in QFI which is also the spin-squeezed region, followed by a plateau
where the QFI scales as ∼ N2, and a rise to reach the GHZ state with FQ = N2.

3.4.1 One Axis Twisting Hamiltonian (OAT)

The most studied model on spin-squeezed states and the generation of metrologically

useful states is the One Axis Twisting (OAT) model [8, 13, 14, 157]. The OAT Hamil-

tonian along the z axis is given by:

HOAT = χ0

N∑
i,j=1

Szi S
z
j = χ0J

2
z , (3.32)

where χ0 is the OAT squeezing strength, N is the number of spins in the system,

and the spin z operator Szi = σzi /2 in terms of Pauli-Z operator on spin i. The OAT

Hamiltonian creates states in the Dicke manifold introduced in Sec. 3.3.2. An initial

state of N spins in the x-polarized state is depicted on the Bloch sphere as shown in

Fig. 3.2(a). This is the CSS introduced in Sec. 3.3.3, where all the qubits are pointing

along the same mean-spin direction s, x in this case. The states are visualised using the

Husimi Q representation introduced in Sec. 3.3.4. The OAT Hamiltonian in Eq. (3.32)

shears this distribution, resulting in a squeezed state with reduced variance along the

z-axis Fig. 3.2(b). This reduced variance hence allows for an enhanced measurement

sensitivity to rotations of the collective spin state along the anti-squeezed axis (y-axis
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in this case).

In the case of the OAT Hamiltonian in Eq. (3.32), for χ0t . 1/
√
N , the state is

spin squeezed, i.e. ξ2R < 1. However, once χ0t & 1/
√
N , the state wraps around the

Bloch sphere, and spin squeezing is lost ξ2R > 1. But the state is still entangled and the

quantum Fisher information follows FQ[|ψOAT(t)〉] > N , where |ψOAT(t)〉 is the state

after allowing the Hamiltonian to evolve up to t. Using the expression of variances

calculated with respect to axis x and y given in [8, 14], we can calculate the QFI of

this state FQ[|ψOAT(t)〉] = N(N + 1)/2 for 2/
√
N . χ0t . π/2 − 2/

√
N [13, 14]. At

χ0t = π/2, the Greenberger-Horne-Zeilinger (GHZ) state is formed with a maximum

QFI: FQ = N2, and we have a complete revival of initial dynamics at χ0t = π. All

this is illustrated in Fig. 3.2(c), where we observe how the QFI changes as a function

of evolution time χ0t. The OAT model features infinite range interactions and a dense

all-to-all connectivity. While these can be engineered via indirect interactions (e.g,

photon-mediated interactions between atoms in an optical cavity [60–62, 82, 159]), this

degree of connectivity is challenging to realize with direct interactions in most physical

setups. In Ch. 7, we show that this all-to-all dynamics can be emulated by sparsely

coupled graphs.

3.5 Summary

In Ch. 3, we discussed various concepts related to quantum-enhanced metrology. In

Sec. 3.2, we explored estimation theory, discussed the bounds on precision limits in

both classical and quantum contexts, and introduced key concepts such as the quan-

tum Fisher information and the Cramér-Rao bound. We established the standard

quantum limit (SQL) and the Heisenberg limit for parameter estimation.

Following this, in Sec. 3.3, we laid out the mathematical foundations necessary for un-

derstanding quantum spin systems within the framework of quantum metrology. These

included collective dynamics, coherent spin states, the Dicke basis, and the Husimi
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representation. With these foundations in place, we introduced spin squeezing as an ef-

fective strategy for creating metrologically relevant states. Additionally, we examined

the prototypical one-axis twisting Hamiltonian, a powerful tool for generating spin-

squeezed states, as discussed in Sec. 3.4.

This chapter sets the stage for our analysis in Ch. 7, where we leverage sparse cou-

pling graphs to create metrologically relevant states, comparing these results to those

obtained using the one-axis twisting Hamiltonian. In Ch. 4, we introduce the concepts

and methods necessary for efficiently simulating many-body systems, both in discrete

and continuous time models.
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Numerical Methods

The purpose of computing is

insight, not numbers

Richard Hamming

In this chapter, we introduce the numerical methods employed to solve the dynam-

ics of quantum systems in both discrete and continuous time evolution. In Sec. 4.1, we

begin by presenting a formalism for the efficient representation of a quantum state and

its time evolution in a circuit model fashion. This formalism, known as the stabilizer

formalism, not only simplifies the description of quantum states and operations but

also demonstrates efficiency in implementing gate-based operations. Following this, in

Sec. 4.2, we introduce the matrix product state (MPS) and matrix product operator

(MPO) representations, which are powerful tools for describing quantum states and op-

erators. In this section, we discuss how the MPS-MPO representation enables efficient

time evolution of states through the time-dependent variational principle (TDVP). We

also introduce methods for calculating entanglement entropy and tripartite mutual in-

formation, as detailed in Sec. 4.2.4. Together, these techniques provide a comprehensive

tool-set for exploring quantum dynamics, allowing for precise and scalable simulations

of complex systems.
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4.1 Discrete Time Models

For our calculations pertaining to digital circuit models, we utilize the stabilizer for-

malism, a powerful mathematical tool that simplifies the description of quantum states

and operations. In the sections that follow, we introduce this formalism and proceed to

calculate entanglement entropy within this framework, as this quantity will be central

to our analyses in Ch. 5 and Ch. 6.

4.1.1 Stabilizer Formalism

In classical systems, an N bit state is fully specified by one of the 2N possible con-

figurations, with each bit deterministically taking a value of 0 or 1. In contrast, an

N -qubit state in quantum mechanics, exists in a superposition of all the 2N configura-

tions, each with its own probability amplitude. This exponential growth of the number

of parameters complicates the efficient simulation of many-body dynamics of quantum

systems in classical computers. This is one of the major reasons for the development

of classical algorithms to handle the exponentially growing number of variables. The

stabilizer formalism is one such tool that helps in representing certain quantum many-

body states (stabilizer states) and operations on them [23, 195, 196].

Let us begin this section by introducing the Pauli group P(N), which consists of the

tensor product of Pauli matrices

X =

0 1

1 0

 , Y =

0 −i

i 0

 ,

Z =

1 0

0 −1

 , and I =

1 0

0 1

 .

Elements of the Pauli group act on a system of N qubits1, with each element of P(N)

being a tensor product of N Pauli matrices, combined with a multiplicative factor of
1We use X,Y, Z here instead of σx, σy, σz
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±1 or ±i. The Pauli matrices satisfy the identities:

X2 = Y 2 = Z2 = I, (4.1)

XY = iZ, Y Z = iX, ZX = iY. (4.2)

Thus, the Pauli group P(N) has |P(N)| = 4N+1 total number of operators. Consider

two Pauli operators P = ikp1..pN and Q = ilq1..qN , where pj , qj are Pauli matrices

acting on qubit j, and k, l control the multiplicative factor. P commutes with Q if

and only if the number of indices j ∈ {1, ..N} such that pj anticommutes qj are even;

otherwise P anticommutes with Q.

A stabilizer group Stab(|ψ〉) of a wavefunction |ψ〉 on a D-dimensional Hilbert space

consists of all unitary operators that leave the state |ψ〉 unchanged. In other words,

U |ψ〉 = |ψ〉. For example, let us consider a single qubit state |ψ〉 = 1√
2
(|0〉+ |1〉).

This state is stabilized by Pauli operator X, i.e., X |ψ〉 = |ψ〉. The identity oper-

ator I stabilizes all states and −I stabilizes no state. The reason we call Stab(|ψ〉)

a group is that if we have U, V ∈ Stab(|ψ〉), then UV , U−1 and V −1 also belong

to Stab(|ψ〉). Here, we are specifically interested in an abelian subgroup S satisfying

S(|ψ〉) = Stab(|ψ〉)∩P(N), or the group of Pauli operators that stabilize |ψ〉. Also, the

state |ψ〉 is stabilized by exactly 2N Pauli operators [196]. Using the principles of group

theory which state that any finite group G has a generating set of size at most log2 |G|,

one can construct a generator set of linearly independent, mutually-commuting N Pauli

strings for S, such that N = log2 |S|. Given a stabilizer group S one can construct a

stabilizer state

ρN (S) = 2−N
∑
g∈S

g , (4.3)

which is the unique density matrix stabilized by S: gρN (S)g = +ρN (S) for all elements

g ∈ S.
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4.1.2 Clifford Circuits

A Clifford group CN on N qubits is the group of all unitary operators C ∈ CN that maps

elements of the Pauli group to other elements of the Pauli group i.e. CP(N)C† = P(N).

Therefore elements of the Clifford group also map every stabilizer state ρN (S) onto

another stabilizer state ρN (S ′) with stabilizer group S ′. The Clifford group is generated

by three special gates, controlled-NOT (CNOT), Hadamard (H), and Phase gates (P)

H =
1√
2

1 1

1 −1

 , P =

1 0

0 i

 ,

and CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

The time evolution using unitaries from the Clifford group can be computed classically

in polynomial time, as shown by the Gottesman-Knill theorem [23, 195]. This is done

by mapping the dynamics onto linear algebra operations over the Galois field (GF(2),

i.e., binary numbers mod 2). The GF(2) contains just two elements, 0 and 1, with

arithmetic operations performed modulo 2. The unitary operations of the Clifford group

can be represented as matrices over GF(2), reducing their dynamics to efficient linear

algebra problems in this field. This reduction allows classical algorithms to simulate

these quantum operations in polynomial time. This is accomplished by considering the

generators g of the stabiliser group, that are Pauli strings, as g =
∏
iX

xi
i Z

zi
i , where

i = 0, 1, ..N − 1 are the qubit labels and xi, zi = 0, 1 specify whether a particular Pauli

operator Xi, Zi is present in the string. If xi = zi = 0, then the ith Pauli operator is I.

If xi = zi = 1, then it is the Yi operator. Further, the stabilizer state is mapped onto

a binary N × 2N matrix M, where each row ` = 1, . . . , N of the matrix is a binary

string ~b` = (x1, . . . , xN , z1, . . . , zN ) corresponding to the generator g` =
∏
iX

xi
i Z

zi
i .

The time evolution of the states represented using these matrices under the Clifford

group involves performing row and column linear algebra operations [196, 197]. The
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Hadamard gate Hi on-site i exchanges the operators Zi ↔ Xi which corresponds to

swapping columns i and i+N in the matrix M. The Phase gate Pi on-site i exchanges

the operators Xi ↔ Yi; in the matrix M this is equivalent to setting column i+N equal

to the sum (mod 2) of columns i and i +N . Finally, a controlled-NOT gate CNOTij

applied between a control qubit i and a target qubit j is equivalent to transforming

Pauli strings according to the following four rules:

XiIj → XiXj , (4.4)

IiXj → IiXj , (4.5)

ZiIj → ZiIj , (4.6)

and IiZj → ZiZj , (4.7)

which correspond to setting column j equal to the sum of columns i and j (mod 2),

and setting column i+N equal to the sum of columns i+N and j+N (mod 2). With

these Hi, Pi, and CNOTij gates in hand, we may systematically generate all N -qubit

operators in C using standard algorithms [197].

4.1.3 Entanglement Entropy of Stabilizer States

Given a stabilizer state Eq. (4.3) and its associated stabilizer matrix M, one can readily

compute the entanglement entropy of the system. The reduced density matrix of any

state on a subsystem A is obtained by tracing out the rest of the system B i.e. ρA =

TrB |ψ〉 〈ψ|, and for a stabilizer state, it is given by,

ρA =
1

2|A|

∑
gA∈SA

gA, (4.8)

where SA ⊂ S is the subgroup of stabilizers gA. Tracing out the subregion B from a

stabilizer matrix M is equivalent to simply discarding the columns corresponding to

Pauli operators Xj , Zj for j ∈ B. This is because Pauli matrices are traceless except

for the identity matrix I. Further, a row reduction is applied to the remaining columns

to identify a set of linearly independent set of generators gA. First, let us calculate the
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purity

Tr
[
ρ2A
]
= 2−2|A|

∑
g,g′∈SA

Tr
[
gg′
]
. (4.9)

If g 6= g′, then the Tr[gg′] = 0, and if g = g′, then the multiplication of two Pauli

matrices on the same site i gives identity matrix I, and hence Tr
[
g2
]
= 2|A|. Hence,

Tr
[
ρ2A
]
= 2−2|A|2|A| |SA| = 2−|A| |SA| . (4.10)

Then the second-order Rényi entropy can be calculated by

− log Tr
[
ρ2A
]
= − log

(
2−|A| · |SA|

)
= log 2(|A| − rankGF(2)(MA)), (4.11)

where we have used the fact that |SA| = 2rankGF(2)(MA) is the cardinality of the stabilizer

group and rankGF(2) is the binary rank of the associated binary matrix of subsystem A,

i.e., the number of linearly independent Pauli strings in the binary matrix MA. The

stabilizer states are said to have flat entanglement spectra, this means that all Rényi

entropies are the same. In a nutshell, this is a direct consequence of the reduced density

matrix being a stabilizer itself and can be written as Eq. (4.8). One can hence calculate

ρ2A = 2−2|A|
∑

g,g′∈SA

gg′ = 2−2|A| |SA|
∑
g∈SA

g =
|SA|
2|A|

ρA. (4.12)

Here, we are using the property of a group where the product of its elements generates

other elements within the same group. One can see that ρnA =
(
|SA|
2|A|

)n−1
ρA. The

nth-order Rényi entropy is given by [198]

SnA =
1

1− n
log Tr[ρnA]. (4.13)
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This means that

SnA =
1

1− n
log Tr

[(
|SA|
2|A|

)n−1

ρA

]
,

=
1

1− n
log

(
|SA|
2|A|

)n−1

Tr[ρA] . (4.14)

We further use the expression ρA from Eq. (4.8), and the fact that only the identity

matrix among the Pauli matrices has a non-zero trace, while all other Pauli matrices

are traceless. This gives us

SnA =
1

1− n
log

(
|SA|
2|A|

)n−1
1

2|A|
2|A|, (4.15)

and thus

SnA = |A| log 2− log(|SA|) , (4.16)

which is equal to Eq. (4.11). Since the first order Rényi entropy is equal to the von Neu-

mann entanglement entropy i.e. limn→1 S
n
A = SvN , stabilizer states allow for straight-

forward calculation of the entanglement spectrum, which simplifies the study of entan-

glement properties. In this section, we have introduced the main technique that we

employ to study our discrete-time models in Ch. 5 and Ch. 6. The Clifford group of

gates do not constitute the universal set of quantum gates as some gates outside the

Clifford group cannot be arbitrarily approximated with a finite set of operations. For

example, the T gate

T =

1 0

0 ei
π
4

 ,

cannot be expressed as a finite sequence of gates from the Clifford group. However, the

Clifford group remains an important tool in quantum information due to its classical

simulability, which makes it invaluable for tasks such as quantum error correction and

randomized benchmarking [7, 86, 199–201].
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Figure 4.1: Diagrammatic Representation of Tensors Illustration of rank-1 (vec-
tor), rank-2 (matrix), and rank-3 tensors, where each leg represents an index of the
corresponding tensor.

4.2 Matrix Product States and Matrix Product Operators

In the previous section, we introduced a numerical method that enables us to simulate

quantum circuits with thousands of qubits effectively. Here, we continue our exploration

of techniques that can efficiently manage the exponentially growing Hilbert space. In

this section, we introduce a method to efficiently represent one-dimensional weakly-

entangled states, known as Matrix Product States (MPS) [202–207]. We also introduce

the concept of time dependent variational principle (TDVP) [208–212] which we have

extensively used for our simulations in Ch. 7. Furthermore, we discuss the calculation

of tripartite mutual information using MPS techniques.

4.2.1 Matrix Product States (MPS)

Tensors are multi-dimensional collections of numbers that can be either real or complex.

For example, a rank 0 tensor is a scalar, a rank 1 tensor is a vector, and a rank 2 tensor

is a matrix as illustrated in Fig. 4.1. Graphically, tensors can be represented as shapes

(squares, circles, triangles), and each leg corresponds to an index of the tensor as

illustrated in Fig. 4.1. A tensor network is a collection of tensors that contract together

in a specific arrangement, of which matrix product states (MPS) are the simplest form.
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Keeping this in mind, the coefficient tensor cσ1···σN of a general quantum state

|ψ〉 =
∑

σ1,··· ,σN

cσ1···σN |σ1 · · ·σN 〉 , (4.17)

as a product of N rank-3 tensors Mi [204–207]

|ψ〉 =
∑

σ1,··· ,σN ,
m0,··· ,mN

Mσ1
1;m0,m1

· · ·MσN
N ;mN−1,mN

|σ1 · · ·σN 〉 . (4.18)

Here, m0 and mN are 1-dimensional dummy indices introduced so that each tensor

has the same form, and mj is the local bond dimension connecting adjacent tensors

and goes from 1 to the bond dimension D. For a given set of local states {σ1 · · ·σN},

we use a single matrix Mσi
i per site. Local physical states on-site i are given by σi.

This is diagrammatically illustrated in Fig. 4.2(a). For a spin system, σi ∈ {↑, ↓},

represents the local physical state. The bond dimension plays a critical role in how

efficiently the quantum state can be represented. In the simplest case, when the bond

dimension is 1, the MPS corresponds to a product state with no correlation between the

sites. To represent some states, the bond dimension must grow exponentially with the

system size, however, for states that obey area law scaling in entanglement entropy as

introduced in Sec. 2.2.1, this can saturate (in 1D) [91, 205, 213]. In practice numerically

we can truncate the bond dimension to a specified cutoff value. This cutoff value is set

by the truncation error, which dynamically controls the bond dimension. This allows

the bond dimension to grow or shrink such that the error introduced by truncating

is below this set cutoff. This truncation is achieved by exploiting the singular value

decomposition which will be introduced in Sec. 4.2.1.1, and this truncation effectively

limits the entanglement of the system, making the method efficient for representing

1D equilibrium states, evolution close to equilibrium or short time evolution in quench

dynamics with rapid entanglement growth.
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Figure 4.2: Basic Concepts of the Matrix Product States (MPS) Represen-
tation (a). A diagrammatic illustration of a 5-site MPS, where the horizontal lines
represent the bond dimension and the vertical lines indicate physical indices with di-
mension σ. (b). The left and (c) the right orthonormal MPS tensors are depicted
using triangles. (d) i. An MPS with general tensors can be transformed into the mixed
canonical form by using a singular value decomposition (SVD) (d) ii. with one site cen-
ter MC(n) at site n or (d) iii. with a zero site center C(n), where the singular values
correspond to the Schmidt coefficients of the state. The form of these illustrations is
inspired by illustrations in [209, 210].

4.2.1.1 Canonical Forms of MPS

The power of MPS lies in its ability to efficiently represent certain classes of quantum

states, which in turn allows for easy manipulation, and use in various algorithms. The

simplest manipulations are done using QR decomposition and singular value decompo-

sition (SVD). The SVD is a powerful and versatile tool in linear algebra that allows us

to represent a matrix M of dimensions DA ×DB as

M = USV †. (4.19)

Here,

• U is of dimensions DA×min(DA, DB), and has orthonormal columns or in other

words left singular vectors satisfying U †U = I.

• S is of dimension min(DA, DB) × min(DA, DB), and is a diagonal matrix con-

taining singular values λi.
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• V † is of dimensions min(DA, DB)×DB, and has orthonormal rows (right singular

vectors) and satisfies V †V = I.

The number of non-zero singular values λi in S, also called the Schmidt rank, measures

the degree of entanglement between two subsystems of a quantum state. Using this, we

may calculate the entanglement entropy within the MPS framework, as we will discuss

in Sec. 4.2.4. The SVD is also central in allowing us to truncate our bond dimension.

One truncates an MPS in practice by performing an SVD on each bond, starting from

the leftmost tensor and sweeping through the MPS, and retaining only the largest D

singular values. Discarding some of the singular values will inevitably introduce a error

in the MPS representation, which is calculated as the sum of the discarded singular

values squared

ε =
∑
i>D

(λi)
2. (4.20)

Alternatively, we may also go the other way around and introduce an ε as our cutoff,

which further controls our bond dimension adaptively. In this case, the smallest sin-

gular values are discarded until the error saturates to ε. While SVD is widely used

due to its ability to reveal important properties of matrices, another common matrix

decomposition technique is the QR decomposition. Here, as the name suggests, it is

the decomposition of a matrix M = QR, where Q is an orthonormal matrix and R is

an upper triangular matrix. Given the dimension of M as DA ×DB, and DA > DB,

then the bottom DA −DB rows of R are zero.

Due to the power of QR decomposition and SVD, the MPS given in Eq. (4.18) can

be written as left, right, and mixed canonical forms. To create the left-canonical form

of the MPS, one starts with the leftmost tensor, performs a QR decomposition, and

proceeds to the right until reaching the end. For the right-canonical form, the process is

done in reverse, starting from the right (See Fig. 4.2(b) and (c)). The most commonly

used canonical form in the MPS framework is the mixed form, where one can perform

an SVD by choosing a site n to be the center. Then M [n] = U [n]Λ[n]V [n], where U [n] is
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left-orthogonal matrix, Λ[n] is diagonal with singular values and V [n] is right-orthogonal.

Mathematically, one can write the MPS given in Eq. (4.18) in a mixed canonical form

as

|ψ〉 =
∑
α,β,σn

M(n)σnC α,β

∣∣∣φ[1:n−1]
L,α

〉
|σn〉

∣∣∣φ[n+1:N ]
R,β

〉
, (4.21)

where the new states
∣∣∣φ[1:n−1]
L,α

〉
and

∣∣∣φ[n+1:N ]
R,β

〉
form an orthonormal basis of the left

and right blocks respectively [204, 210]. The mixed canonical form can be expressed as

either a one-site center MC(n) at site n as shown in Fig. 4.2(d) ii. or a zero-site center

C(n) as shown in Fig. 4.2(d) iii., where the singular values correspond to the Schmidt

coefficients of the state. In Sec. 4.2.4, we demonstrate how the mixed canonical form

of the MPS is advantageous for calculating entanglement entropy. We also show its

benefits in the TDVP algorithm in Sec. 4.2.3.

4.2.2 Matrix Product Operators (MPO)

Analogous to matrix product states (MPS), matrix product operators (MPO) offer

a similarly structured approach for representing operators in the context of tensor

networks [204, 206, 210, 214]. Here there will be N rank-4 tensors Wj as shown below

(see Fig. 4.3(a))

Ô =
∑

σ1,··· ,σN ,
σ′
1,··· ,σ′

N

cσ1···σN ,σ′
1···σ′

N
|σ1 · · ·σN 〉

〈
σ′1 · · ·σ′N

∣∣
=

∑
σ1,··· ,σN ,
σ′
1,··· ,σ′

N
w0,···wN

W
σ1,σ′

1
1;w0,w1

· · ·W σN ,σ
′
N

N ;wN−1,wN
|σ1 · · ·σN 〉

〈
σ′1 · · ·σ′N

∣∣ . (4.22)

Applying an MPO to an MPS is one of the most critical operations within the frame-

work of matrix product states. The straightforward way to do this is by tensor multipli-

cation of the corresponding site tensors of the MPS and MPO. However, this approach

results in a state with a much higher bond dimension than necessary to represent the

final state efficiently.
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Figure 4.3: Basic Concepts of the Matrix Product Operators (MPO) Rep-
resentation (a). A diagrammatic illustration of a 4-site MPO. The horizontal lines
represent the bond dimension, whereas the vertical lines indicate physical indices with
dimension d. (b). Applying an MPO directly to an MPS results in an MPS with an
increased bond dimension, which is depicted by thick horizontal lines.

Despite this, we briefly discuss how the form of the MPS remains unchanged [204, 210].

While more sophisticated methods like variational application and zip-up method exist

[204, 210], they are beyond the scope of this thesis. In most of our simulations in Ch. 7,

after applying an MPO to an MPS, we truncate the resulting state to a specified bond

dimension.

When the operator Ô (See Eq. (4.22)) acts on state |ψ〉 (See Eq. (4.18)), we get

Ô |ψ〉 =
∑

σ1,··· ,σN ,
σ′
1,··· ,σ′

N
σ′′
1 ,··· ,σ′′

N

∑
w0,···wN
m0···mN

(
W

σ1,σ′
1

1;w0,w1
· · ·W σN ,σ

′
N

N ;wN−1,wN

)(
M

σ′′
1

1;m0,m1
· · ·Mσ′′

N
N ;mN−1,mN

)

× |σ1 · · ·σN 〉
〈
σ′1 · · ·σ′N

∣∣σ′′1 · · ·σ′′N〉 .
(4.23)

This gives

Ô |ψ〉 =
∑

σ1,··· ,σN ,
σ′
1,··· ,σ′

N

∑
w0,···wN
m0···mN

(
W

σ1,σ′
1

1;w0,w1
M

σ′
1

1;m0,m1

)
· · ·
(
W

σN ,σ
′
N

N ;wN−1,wN
M

σ′
N

N ;mN−1,mN

)
|σ1 · · ·σN 〉

=
∑

σ1,··· ,σN ,
w0,···wN
m0···mN

Nσ1
1;(w0m0),(w1m1)

· · ·NσN
N ;(wN−1mN−1),(wNmN ) |σ1 · · ·σN 〉 = |φ〉 . (4.24)

The resulting state |φ〉 is hence again an MPS, but with a larger dimension m′ = m ·w

as illustrated in Fig. 4.3(b). Repeated application of an operator onto a state rapidly

increases the state’s dimension, necessitating truncation.
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4.2.3 Time Evolution of Matrix Product States

The power of the tensor network representation of states also seeps into the studies of

the dynamical properties of the system using time evolution methods. This includes

time evolving block decimation method (TEBD) [203, 215–218] and time-dependent vari-

ational principle (TDVP) [208–212].

Time evolution of state with a given Hamiltonian Ĥ involves exponentiation of the

Hamiltonian, and at the core, the TEBD algorithm is based on the Lie-Trotter Suzuki

decomposition of exp
{
−itĤ

}
[219, 220]. When the decomposed individual terms are

local, they can be applied efficiently and the tensor network can be updated accordingly.

However, the TEBD algorithm is not effective when we have systems with long-range

interactions. This is where the time-dependent variational principle becomes particu-

larly significant. Here, we focus on TDVP as we use it extensively in our simulation of

dynamics in continuous time models.

4.2.3.1 Time-Dependent Variational Principle (TDVP)

Figure 4.4: An Illustration of MPS Manifold and Tangent Space Approxima-
tion (a). An illustration depicting the MPS manifold MMPS as the solid frame and the
black dot represents the MPS |ψ(M)〉. The grey square represents the tangent plane
T|ψ(M)〉. The black arrow is the direction iĤ |ψ(M)〉 of time evolution, and the red
arrow represents the vector that best approximates iĤ |ψ(M)〉 in the tangent plane.
(b). The tangent space projector operator (up to a factor of −i). For an N site tensor,
the first term of the projector is a summation over the different physical sites of the
MPS. The second term is the summation over the bonds in the MPS. For a given MPS
of N tensors, there are N − 1 bonds, and hence n sums from 1 to N − 1. The form of
these illustrations is inspired by illustrations in [208, 209]

The MPS representation of a given quantum state resides in a variational manifold 2.

When a time evolution operator is applied to this MPS, it typically causes the MPS to
2The variational manifold of MPS refers to the set of all possible states that can be represented by

an MPS with a given bond dimension.
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leave this manifold. The Time-Dependent Variational Principle (TDVP) addresses this

by projecting the time evolution onto the tangent space of the manifold, ensuring that

the evolution remains within the MPS manifold MMPS. This idea has been depicted in

Fig. 4.4(a). Indeed as shown in [208], this can lead to a complicated set of equations,

however, [209] showed a different scheme to understand this using the tensor network

route. Mathematically, this means

d |ψ(M)〉
dt

= −iP̂T |ψ(M)〉MMPSĤ |ψ(M)〉 , (4.25)

where M is a set of site-dependent matrices defined in Eq. (4.18) and the time-evolving

states can be described by |ψ(M(t))〉. The tangent space projector can be decomposed

as (see Fig. 4.4(b) for the diagrammatic representation)

P̂|Tψ(M)〉MMPS =

N∑
n=1

P̂
[1:n−1]
L ⊗ 1̂n ⊗ P̂

[n+1:N ]
R −

N−1∑
n=1

P̂
[1:n]
L ⊗ P̂

[n+1:N ]
R , (4.26)

where

P̂
[1:n]
L =

D∑
α=1

∣∣∣φ[1:n]L,α

〉〈
φ
[1:n]
L,α

∣∣∣ , (4.27)

P̂
[n:N ]
R =

D∑
β=1

∣∣∣φ[n:N ]
R,β

〉〈
φ
[n:N ]
R,β

∣∣∣ , (4.28)

are described as a combination of left and right canonical forms as discussed in Sec. 4.2.1.1.

The state |ψ(M)〉 can be expressed in the form given by Eq. (4.21) followed by the

application of P̂T |ψ(M)〉MMPS onto Ĥ |ψ(M)〉. We can identify the one-site or zero-site

effective Hamiltonian H(n) (see Fig. 4.5(b) i.) or K(n) (see Fig. 4.5(b) ii.) by ap-

propriately choosing the center n. The construction of tangent space projector into

individual sites n is a direct reflection of the Lie-Trotter splitting scheme. For a given

site n, the operator P̂ [1:n−1]
L ⊗ 1̂n⊗P̂ [n+1:N ]

R Ĥ applied to state |ψ(M)〉 reduces to solving

the differential equation ṀC(n, t) = −iH(n)MC(n, t). Here, a bold notation is used

for the vector representation, MC(n, t) is the matrix at site n defined in Eq. (4.18) and
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Figure 4.5: A Diagrammatic Representation of the Time-Dependent Varia-
tional Principle (TDVP) (a). An illustration of Eq. (4.25) within the tensor network
framework, where each term in the projector operator is highlighted as blue and pink
dotted boxes respectively. Each term is further decomposed into two parts: (b) i. cor-
responding to Eq. (4.29), and (b) ii. corresponding to Eq. (4.30). These illustrations
are inspired by [209].

the subscript C signifies that this site is the center. This leads to

MC(n, t) = exp[−iH(n)t]MC(n, 0). (4.29)

In a similar vein, the second term, in the projector operators gives

C(n, t) = exp[+iK(n)t]C(n, 0). (4.30)

The derivation of these equations from Eq. (4.25) is diagrammatically represented in

Fig. 4.5. The evolution of C in Eq. (4.30) can be interpreted as an evolution backward

in time. For this type of differential equation, it is very natural to use the Lie-Trotter

decomposition approach [219, 220] along with the Krylov sub-space method. The sim-

plest way to split this algorithm is highlighted below. For a right orthogonal MPS,

start at n = 1 and repeat the following steps:

(1) Evolve MC(n) according to Eq. (4.29) for a time step ∆t.

(2) Update Mσn
C (n) =Mσn

L (n)C(n).
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(3) Evolve C(n) backwards in time according to Eq. (4.30) and then absorb it into

the next site to create Mσn
C (n+ 1) = C(n)Mσn

R (n+ 1).

This is known as the one-site algorithm, where, as the name implies, only a single site

is updated at a time. The two-site algorithm, which is more commonly used and often

more advantageous, involves updating a block of two consecutive sites simultaneously.

This approach is advantageous as it enables dynamic updating of the bond dimension,

which is particularly beneficial for Hamiltonian simulations where entanglement tends

to increase over time. The Julia ITensor TDVP package [221, 222] implements this

two-site algorithm.

4.2.4 Calculating the Measures of Scrambling Using MPS Framework

In Sec. 6.5 of Ch. 6, we study the scrambling dynamics using the tripartite mutual

information introduced in Sec. 2.4. Given the importance of this measure in our analy-

sis, we employ the MPS framework for their calculation. This approach is particularly

advantageous for handling large systems and capturing the entanglement properties

efficiently. While the theoretical background tripartite mutual information is covered

in the aforementioned section, the focus here will be on the practical implementation

of these calculations within the MPS framework.

4.2.4.1 Computing von Neumann Entanglement Entropy

The calculation of entanglement entropy using Matrix Product States (MPS) formalism

is quite straightforward. The idea again utilizes singular value decomposition (SVD)

of the matrix at a given center. To determine the entanglement entropy, the system

is divided into two subsystems A and B. Consider a specific bipartition at site n with

the MPS in a mixed canonical form, where the first n sites form bipartition A and the

remaining N − n sites constitute subsystem B. Performing an SVD at the center n,

allows us to express the matrix MC(n) = USV †, where U and V are unitary matrices

and S is a diagonal matrix containing the singular values λi. We know that the von
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Neumann entropy for a state ρA, as discussed in Sec. 2.2 is

S(ρA) = −Tr{ρA log[ρA]} = −
∑
i

λ2i logλ2i . (4.31)

Thus, the calculation of entanglement entropy for a pure state within the MPS formal-

ism is notably straightforward due to the efficient application SVD.

4.2.4.2 Computing Tripartite Mutual Information

Once we have calculated the bipartite entanglement entropy for various regions, com-

puting the tripartite mutual information simply involves performing a linear combina-

tion of these entropies. As explained in Sec. 2.4, the tripartite mutual information I3

of three subsystems A, B, C is

I3 = SA + SB + SC − SAB − SBC − SAC + SABC . (4.32)

Computing the entanglement entropies of contiguous sub-regions (regions that share a

boundary) SA, SB, SC , SAB, SBC , and SABC is relatively straightforward because the

centers can be chosen appropriately. For example, to determine SA, the center will be

the last tensor in the subsystem A touching the boundary of subsystem B as illustrated

in Fig. 4.6(a). In contrast, calculating entanglement entropies for non-contiguous sub-

regions, such as SAC , presents greater difficulty due to the lack of shared boundaries.

One approach to address this issue involves swapping the discontiguous sub-regions

B and C so that they share a boundary as illustrated in Fig. 4.6. We demonstrate in

Sec. 6.5 that this method works well for small system sizes. However, as the system

size increases and entanglement grows, this operation becomes more challenging. This

is because the required bond dimension to represent the system increases as σD where

σ is the physical dimension and D is the bond dimension of the MPS before the SWAP

operation. If σD is greater than Dcutoff, the pre-set limit on the bond dimension of

the resultant MPS, we canonicalize the MPS and then truncate the bond dimension to

Dcutoff during the singular value decomposition.
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Figure 4.6: Calculation of Entanglement Entropy and Swapping Operation
Scheme in Matrix Product States Framework (a). An 8-site MPS is divided into
four contiguous subsystems: A, B, C, and D. To calculate the entanglement entropy
SA, the center of the system is marked by a filled circle, indicating the cut across which
the entropy is computed. (b) For calculating the entanglement entropy SAC , we first
perform a SWAP operation between regions B and C. This operation increases the
bond dimension to σD, where σ is the physical dimension and D is the bond dimension
of the MPS prior to the SWAP. The increased bond dimension is represented by thick
horizontal lines.

However, this truncation may not fully capture the underlying physics of the system.

In summary, while the SWAP operation is effective for smaller systems, the increas-

ing bond dimension for larger systems necessitates careful consideration of truncation

effects. Future work may focus on optimizing these methods to better handle high en-

tanglement scenarios and improve the accuracy of the resulting MPS representations,

and the physical states for which they are applicable.

4.3 Summary

In Ch. 4, we discussed various numerical techniques that will be employed at different

points throughout the thesis. In Sec. 4.1.1, we showed that circuits composed of two-

qubit CNOT, and single-qubit Hadamard and Phase gates can be simulated efficiently

classically in polynomial time. This efficiency is achieved because the circuit dynamics

can be reduced to simple row and column operations on N × 2N matrices, enabling

the simulation of thousands of qubits efficiently. A significant aspect of our work in-

cludes the study of entanglement, and hence we used both the Stabilizer formalism and

MPS/MPO frameworks to calculate the entanglement entropy as shown in Sec. 4.1.3

and Sec. 4.2.4 respectively. Furthermore, we introduced matrix product states and ma-

trix product operators in Sec. 4.2, and showed their versatility in representing states

and subsequent time evolutions. The Stabilizer formalism excels in efficiently simu-
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lating certain classes of entangled states, but it is not universal and cannot generate

or represent many quantum states. In contrast, the MPS-MPO framework is highly

effective for simulating states with low entanglement, such as those obeying area-law

scaling, but struggles with states that exhibit volume-law entanglement. Throughout

the thesis, these numerical techniques are applied extensively. In Ch. 5 and Ch. 6, we

use the Clifford group of gates to construct circuits for studying quantum information

scrambling, exploring how information spreads. The MPS and MPO methods are par-

ticularly prominent in Ch. 7, where we investigate correlations and the metrological

importance of entangled states, respectively.
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Probing Emergent Geometries

Using Entanglement Entropy

Science and everyday life cannot

and should not be separated.

Rosalind Franklin

5.1 Introduction

Quantum information scrambling as discussed in Ch. 2 involves the spreading of in-

formation to different degrees of freedom. This process is regulated by the system’s

inherent lightcone, which is determined by the Lieb-Robinson bound. Depending on the

range of interactions, the spreading of the lightcone varies as described in Sec. 2.3. Con-

sequently, the concepts of information spreading and geometry are closely linked. Ex-

tensive numerical, experimental, and analytical studies have been conducted to explore

this relationship. A classic example is the difference between ‘area-law’ entanglement

entropy typically found in ground states of 1D gapped systems versus the ‘volume-law’

ground-state entanglement found in gapless systems [87–93]. On the experimental side,

the connections between patterns of entanglement and geometry have recently been

explored in pioneering experiments with nonlocally-interacting spins in a cavity system

[59], where spin-spin correlations were used to reconstruct the underlying geometry of
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the system. Similarly, numerical simulations [30], and field theory calculations [45, 223]

have been used to study sparse systems and the effective geometries that emerge from

the dynamics.

In Ch. 5, we extend these ideas by numerically studying entanglement dynamics in

sparse Clifford circuits with tunable-range interactions. These systems enable numeri-

cal access to strong interactions at large system sizes for a special class of many-body

dynamics. We begin this chapter by introducing the two types of geometry we will

explore in Sec. 5.2. Furthermore, we introduce our model in Sec. 5.3, and then use

the scaling of bi-partite entanglement entropy, introduced in Sec. 2.2.1, to describe the

geometry of our models in Sec. 5.4.

5.2 Euclidean and Ultrametric Geometry

Named after the ancient Greek mathematician Euclid, at heart Euclidian geometry is

the way we count numbers 0, 1, 2, · · · . This is the conventional way of ordering num-

bers, and the Euclidean distance between two points in the Euclidean space is defined

as the length of the line segment between two points. The Euclidian norm | · | gives the

distance between points x and y in the reals R.

Going beyond Euclidean (linear) geometry, we turn to an alternative numerical sys-

tem: p-adic numbers forming the ultrametric space. Just like how irrational numbers

along with rational numbers form the real numbers R, the p-adic numbers Qp are an

alternative extension of the rational numbers, each associated with a prime number p

[224]. The distances between p-adic numbers are measured by the p-adic norm |·|p. The

idea behind the p-adic norm is to use the multiplicity of the prime p in the factorization

of numbers. The definition of the p-adic metric is

|i− j|p =


p−vp(i−j) (i− j 6= 0)

0 (i− j = 0),

(5.1)
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where vp(·) is the number of times the prime factor p is present in the factorization of

the irreducible fraction i− j. Let us consider the p = 2-adic metric, as it will be used

most frequently in this thesis. This metric gives naturally a treelike structure shown in

Fig. 5.1, and this is referred to as the Bruhat-Tits tree.

Figure 5.1: Distances on the Bruhat-Tits Tree for N = 8 Sites (a). Sites i = 2
and j = 6 are closer as within the treelike structure, one must only traverse 2 edges
of the tree, thus the 2-adic norm is |i− j|2 = 2dtree(i,j)/2/N = 1/4. (b). By contrast,
for sites i = 0 and j = 1, one must traverse 6 edges of the tree, making it farther and
|i− j|2 = 2dtree(i,j)/2/N = 1.

According to Eq. (5.1), the sites i = 2 and j = 6 are separated by a 2-adic norm of

|i− j|2 = 2−v2(4) = 2−2 = 1/4, while the sites i = 0 and j = 1 are separated by a

2-adic norm of |i− j|2 = 2−v2(1) = 20 = 1. This can also be defined using the number

of edges required to connect sites i and j, i.e., dtree(i, j). The 2-adic norm thereby can

be defined as |i− j|2 = 2dtree(i,j)/2/N , where N is the system size. This is illustrated

in Fig. 5.1. Perhaps surprisingly, this definition satisfies the usual axioms required of

a metric and therefore serves as a useful notion of distance. One of the notable and

crucial properties of the p-adic numbers is their ultrametricity, thus obeying the strong

triangle inequality |i− j|2 ≤ max(|i− k|2 , |j − k|2) for all i, j, k. This gives it a hierar-

chical structure, where decreasing vp implies moving deeper into the tree as shown in

Fig. 5.1.

To arrange integers sequentially using the p-adic norm, one can use a map M called

Monna map introduced by Monna [225]. Let N = pn, where n is an integer, then
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x ∈ {0, 1, 2, . . . , N − 1} can be expressed as

x =

n−1∑
q=0

x̄qp
q, (5.2)

where x̄q ∈ {0, 1, . . . , p− 1}. Then the Monna map M is defined as

M(x) ≡
n−1∑
q=0

x̄n−1−qp
q, (5.3)

which means that we reverse the digits in the base p of expansion x. Using this definition

of Monna Map for p = 2, we reverse the binary equivalent of the argument. This leads

to the treelike ordering of qubits as illustrated in Fig. 5.2.

5.3 Sparse Clifford Circuits

Here we explore the emergence and collapse of tunable lightcones in a family of tunable-

range quantum circuit models featuring sparse interactions. In our model, pairs of

qubits in a 1-dimensional chain are coupled if and only if they are separated by a power

of 2: |i− j| = 2m−1 for m = 1, . . . , log2N (See Fig. 5.2(a)). This is called the Powers

of two model (PWR2) model. and features sparse nonlocal interactions.

A tunable parameter s controls how these couplings either decay (s < 0) or grow

(s > 0) with distance as illustrated in Fig. 5.2(b). The gates are arranged in a non-

local bricklayer pattern with interaction layers stacked into an alternating sequence of

‘even’ and ‘odd’ blocks. During the ‘even’ block, a gate Qij is placed between qubits

i < j with probability p(|i− j| , s) if and only if mod(bi/2m−1c, 2) = 0. During the

subsequent odd block, gates are placed according to the same rules but with the odd-

bricklayer condition mod(bi/2m−1c, 2) = 1 [200].
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Figure 5.2: Sparse Clifford Circuits Yielding Tunable Geometries. (a) The
powers of two model (PWR2) featuring qubits i, j arranged in a linear chain interacting
pairwise if and only if they are separated by a power of two, |i− j| = 2m−1 for m =
1, 2, . . . , log2N . To mimic continuously-tunable interactions in a discrete circuit, we
arrange random two-qubit gates into even and odd bricklayer blocks and randomly
apply each gate Qij with probability p(|i− j| , s) given in Eq. (5.4). (b) A tunable
power-law exponent s controls whether this distribution decays (s < 0, top) or grows
(s > 0, bottom) with distance. At s = 0, all the qubits are coupled with all other qubits
with equal probability as shown in the middle. (c) The structure of entanglement
generated by these circuits indicates linear (Euclidean) geometry when s < 0 and
the treelike geometry of the 2-adic numbers when s > 0. (d) Numerical studies of
entanglement entropies as a function of time reveal three distinct regimes: a linear
area-law regime (blue) when s < 0, a treelike area-law regime (red) when s > 0, and a
volume-law regime (green) at late times. In the two local regimes |s| > 1, volume-law
entanglement builds up on a timescale t∗ ∼ N that grows linearly with the system
size, but near s = 0 fast scrambling dynamics generates volume-law entanglement on
timescales as short as t∗ ∼ logN . This figure was reproduced from [42].

The probability of applying a two qubit Clifford gate Qij = Qji at each timestep t is

p(|i− j| , s) =


Js |i− j|s when |i− j| = 2m−1

0 otherwise,
(5.4)
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where the normalisation ensures that a single gate on average is applied per site at each

timestep t. This naturally gives the value of the normalisation factor as

1/Js =
1

2

(
N

2

)s
+

log2N−1∑
m=1

2(m−1)s. (5.5)

Thus, short-distance gates dominate the Clifford circuit when s < 0 while long-distance

gates dominate when s > 0 (Fig. 5.2(b) top and bottom). At the midpoint s = 0, gates

at all length scales are equally probable in the circuit (Fig. 5.2(b) middle). Here and

throughout this chapter, we impose periodic boundary conditions, such that the linear

distance |i− j| between a pair of sites is the smaller of abs(i−j) and N−abs(i−j). The

idea of the probabilistic application of gates is to mimic the continuous time coupling

matrix [J(|i− j| , s)] [30]. In Sec. 5.4, we study the entanglement entropies SA of

contiguous regions A of output qubits prior to the scrambling time and show that the

area-law or volume-law scaling of the entropy in these regions at early times allows us

to extract information about the geometry.

5.4 Results

We begin characterising the geometry generated by the circuit discussed in Sec. 5.3

by examining the pattern of entanglement present in various subregions A of the out-

put qubits as illustrated in Fig. 5.3(a). Because the circuit is composed entirely of

Clifford gates, we may completely characterise the entanglement in the system at any

time t by computing Rényi entropies SA ≡ S
(2)
A = − log Tr

[
ρ2A
]

of various subregions

A [196, 198]. This is because the Clifford group has flat entanglement spectra, and

the second-order Rényi entropy equals the von Neumann entanglement entropy as ex-

plained in Sec. 4.1.3. In this section, we study Rényi entropies of contiguous subregions

A, where the meaning of the word ‘contiguous’ depends on the geometry implied by

the interactions, as explained below.

A linearly-contiguous region A has the property that any bipartition A = A1
⋃
A2

is contiguous with respect to the Euclidean metric defined in the Sec. 5.2.
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Figure 5.3: Probing Tunable Geometry Using Entanglement Entropy (a) En-
tanglement growth in contiguous subregions A in a system of N = 64 qubits initialized
in the product state |0〉

⊗
N , plotted as a function of subregion size |A| and time t in

linear (top) and treelike (bottom) geometries. (b) A time-slice at t = 6 from the color-
map illustrates the area-law scaling and volume-law scaling for linear (left) and treelike
(right) geometries. When s < 0, linearly contiguous subregions A exhibit area-law
entanglement at short times, while other subregions are trivially volume-law entangled.
When s > 0, treelike subregions have area-law entanglement at short times, while other
regions are volume-law entangled. (c) The timescale tvol. required to reach volume-law
entanglement grows polynomially with system size N = 23, · · · , 27 when |s| > 1, but is
much shorter near s = 0, consistent with a logarithmic scrambling time tvol. ∼ logN .
Error bars are shown or are smaller than data points. Data points are obtained by
averaging over 102 trajectories. This figure was reproduced from [42].

This means that for every i ∈ A1, there exists a j ∈ A2 such that |i− j| = 1. When

s < 0, we find that the entanglement generated by the circuit is organized into linearly

contiguous subregions. By contrast, in the limit s > 0, we find that the entanglement in

the circuit is organized into treelike-contiguous regions defined by the treelike (2-adic)

metric given in Eq. (5.1). A treelike-contiguous region A is defined by the property

that any bipartition A = A1
⋃
A2 is contiguous with respect to the treelike (2-adic)

metric: for every i ∈ A1, there exists a j ∈ A2 such that |i− j|2 = 2/N for N a power

of 2. One can obtain the sites i, j in the treelike ordering by rearranging the qubits by

the discrete Monna map M, which reverses the digits of the argument when written

in base 2 as shown in Sec. 5.2. For example, in a system with N = 8 qubits, site 1 is
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mapped to site M(1) = 4 under the Monna map because M(0012) = 1002 when the site

numbers are written in binary. Simply relabeling the sites under the Monna map M

is not enough to constitute a distinct geometry, but the treelike structure of the 2-adic

metric |i− j|2 endows this arrangement with a notion of distance that is entirely dif-

ferent from the conventional metric |i− j| in linear (Euclidean) geometry [43, 226–230].

We expect typical contiguous subregions A of output qubits to be volume-law entangled

SA ∼ |A| when they are small enough to lie entirely inside the system’s many-body

lightcone, but to cross over to area-law entanglement SA ∼ const. when the region

becomes much larger than the extent of the lightcone at a given time, as illustrated in

Fig. 5.3(a). On the contrary, geometrically disjoint subregions—for example, arbitrary

subsets of k � N qubits chosen at random from anywhere in the system—typically

exhibit volume-law entanglement after only a single layer of gates, which originates

trivially from the short-range entanglement in the system. This distinction between

area-law and volume-law scaling in the entanglement entropy therefore provides a sim-

ple and sharp test of geometrical contiguity. Specifically, contiguous subregions A

should exhibit area-law entanglement scaling at short times, whereas non-contiguous

subregions should exhibit volume-law scaling. We therefore proceed to use the scaling

of the Rényi entropy with subregion size |A| as a quantitative probe of the system’s

geometry. This is clearly illustrated in Fig. 5.3, where we analyze the growth of en-

tanglement in the sparse Clifford circuit acting on qubits initialized in a product state

|0〉
⊗
N , where |0〉 is the ground state of the Pauli-Z operator. The colour shading in

Fig. 5.3(a) shows the entanglement entropy SA of contiguous subregions A as a func-

tion of their size |A| and time t with either linearly-contiguous bipartitions (top) or

treelike-contiguous bipartitions (bottom).

Taking a time-slice t = 6 from Fig. 5.3(a), we find area-law scaling in the linear geom-

etry at negative values of s < 0 (Fig. 5.3(b), left), whereas other choices of geometry

yield volume-law entanglement. Similarly, at positive values of s > 0 we find area-law

scaling in the treelike geometry and volume-law entanglement for other choices of ge-
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Figure 5.4: Curve Fits for Timescale tvol.. We use linear fits on tvol. and N data for
s ≤ −1, and tvol. and logN data for s = 0. In the treelike s > 0 limits, we use the sth
degree polynomial to show that the timescale tvol. grows polynomially in the system
size. Error bars are shown or are smaller than data points. This figure was reproduced
from [42].

ometry (Fig. 5.3(b), right). The non-monotonic features appearing at early times in

Fig. 5.3(b) are a direct result of the treelike geometric structure present in the circuit

at large s > 0. For instance, a treelike region consisting of precisely half the qubits

|A| = N/2 has especially low entropy at early times coming from the weakest long-

range interactions in the deepest parts of the tree (blue couplings in Fig. 5.2(c). By

contrast, smaller treelike regions |A| < N/2 will have additional entropy coming from

couplings higher in the tree (purple, red, orange in Fig. 5.2(c). Together, these ob-

servations confirm that the entanglement entropy has a volume-law scaling for typical

regions A and an area-law scaling SA ∼ O(1) when the regions are chosen to be either

linearly- or treelike-contiguous depending on the value of s.

Finally, we estimate the timescale tvol. required for extensive contiguous regions |A| =

N/2 to saturate to volume-law entanglement. In the linear regime s < 0, we find that

this timescale grows linearly in the system size tvol. ∼ N for large system sizes. In the
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treelike regime s > 0, on the other hand, we find that this timescale grows polynomi-

ally in the system size tvol. ∼ N |s| for large system sizes. This is expected because the

local geometry in each case inhibits the spreading of quantum information through the

system, and an extensive subregion A cannot become volume-law entangled until the

lightcone of a single qubit has spread to of order |A| qubits [96]. By contrast, near the

crossover point s = 0 the circuit achieves volume-law entanglement on much shorter

timescales consistent with logarithmic scaling tvol. ∼ logN , which indicates fast scram-

bling dynamics [15, 20, 29–35]. Additionally, we fit the data according to theoretical

predictions outlined in [30, 42, 96], as shown in Fig. 5.4. When s ≤ −1, we linear

fit tvol. and N , in the treelike regime (s > 0), we fit the sth degree polynomial in N

and at the crossover point s = 0, we linear fit tvol. and logN . While these fits align

with theoretical expectations, slight deviations are observed for smaller system sizes,

particularly for s = −1 and s = 0. These deviations are likely due to finite-size effects

and are expected to diminish for larger systems, as demonstrated in [42].

5.5 Conclusions

In Ch. 5, we studied the tunable effective geometries that emerge in sparse circuits,

using Clifford circuits as toy models. To characterise the effective geometries in these

circuits we numerically computed Rényi entropies of contiguous regions of output qubits

A as a function of time, where the term ‘contiguous’ is defined either according to the

linear (Euclidean) metric |i− j| or according to the treelike 2-adic metric |i− j|2. In

Sec. 5.4, we found area-law entanglement at short times t < N in both of the local

regimes |s| > 1, indicating linear entanglement growth for negative s < 0 and treelike

entanglement growth in a treelike geometry for positive s > 0. Near s = 0, the time

taken to reach volume law entanglement scales logarithmically with system size N , i.e.

tvol ∼ logN . This is the fast scrambling region. In Ch. 6, we explore the region around

s = 0 at early times to study the onset of scrambling.
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Chapter 6

Onset of Scrambling as a

Dynamical Transition

My methods are really methods

of working and thinking; this is

why they have crept in

everywhere anonymously.

Emmy Noether

6.1 Introduction

In Ch. 5, we explored the transition in the underlying geometry of the quantum system

by systematically studying the scaling of the bipartite entanglement entropy of various

subregions for different values of the tunable power law exponent s for the powers of

two (PWR2) coupling graph. Notably, at s = 0, we observed a fast scrambling regime,

where information spreads in a time logarithmically proportional to the system size

N . This makes the region around s = 0 particularly interesting, as it allows for the

generation of entangled states in such a way that the relevant system size can grow

exponentially with the coherence time [15, 20, 29–35, 231]. In this chapter, we further

investigate the region around s = 0, by studying the dynamics of information spreading

using the tripartite mutual information introduced in Sec. 2.4. We identify the onset of
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scrambling at early times as a dynamical transition in quantum circuits with different

levels of long-range connectivity controlled by the same s. In particular, we show that,

as a function of the interaction range for circuits of different structures, the tripar-

tite mutual information exhibits a scaling collapse around a critical point between two

clearly defined regimes of different dynamical behaviour. Importantly, we focus on a

fixed timescale t ∼ O(1) that does not grow with system size. At these early times, the

signatures of the dynamical transition are particularly sharp, making them promising

for experimental observation. Importantly, focusing on early times may allow for the

generation of entangled states using shallow-depth quantum circuits, which could be

more feasible to simulate and implement in experiments. This transition is reminiscent

of the analysis done in [231]; however, in our study, we do not employ projective mea-

surements.

We start this chapter by introducing all considered models used to study the tran-

sition in Sec. 6.2. This includes one experimentally realisable model (see Sec. 6.4),

which maybe potentially implemented using neutral atom arrays equipped with opti-

cal tweezers. The transition is also studied analytically using an associated Brownian

circuit model in Sec. 6.3, and we show that this transition can be mapped onto the

statistical mechanics of a long-range Ising model for a particular region of parameter

space defined by s and time t. Finally, we summarise our finding in Sec. 6.6.

6.2 Models Studied

The models used to explore the transition are again the quantum circuits in 1+1D where

qubits i, j = 0, 1, . . . N − 1 are arranged in a linear chain and interact via random two-

qubit gates that depend on the linear distance d = |i − j| between them. In these

circuits we apply two-qubit gates Qij between qubits i and j with probability

p(|i− j|, s) = J |i− j|s, (6.1)
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where the normalisation factor J ensures that, on average, one gate is applied per site

during each time step t = 0, 1, 2, . . . It follows that, regardless of s, the average number

of gates applied per qubit is a constant at any given time step t.

6.2.1 Weighted Random All-To-All (WrAA) Model

The weighted random all-to-all (WrAA) model interpolates between the nearest neigh-

bour model and random all-to-all regimes with a tunable parameter s. In this model,

in each circuit layer, the qubits are randomly paired up, and a random two-site gate

from the Clifford group is applied with probability p(d, s) on each qubit pair, where

p(d, s) = Js,WrAAd
s. (6.2)

Here d = min{N − |i − j|, |i − j|} is the inter-qubit distance with periodic boundary

conditions.

Using the definition of the normalisation factor discussed after Eq. (6.1),

1/Js,WrAA = (N/2)s + 2

N/2−1∑
d=1

ds (6.3)

ensures that each site, on average, has only one gate applied to it at each time step t.

This is achieved after N − 1 circuit iterations, where each circuit iteration as shown in

Fig. 6.1(a) is composed of applying two-qubit gates followed by randomly permuting

the qubits. To characterise the onset of scrambling in this system, we calculate the

tripartite mutual information I3 of three contiguous regions A, B and C of size N/4

in the output state, across system sizes N = 32, 64, . . . , 1024, for different values of s

initialised in the z-polarized state. I3 between three subregions A,B,C of the output

qubits is expressed as

I3 ≡ I(A : B : C) = I(A;B) + I(A;C)− I(A;BC), (6.4)
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Figure 6.1: Onset of Scrambling in Weighted Random All-to-All Model (a).
An illustration of a single circuit iteration of the weighted random all-to-all (WrAA)
model that is composed of applying two-qubit gates Qij followed by shuffling of the
qubits to generate random permutations. The gates between qubits i, j are applied
with probability as given in Eq. (6.2). (b). Tripartite mutual information between
three output regions A, B, and C as a function of the tunable parameter s for various
systems sizes N = 32, . . . , 1024 (see legend in (c) for colours and markers) at a fixed
time step t = 1. (c). Scaling ansatz for I3 gives ν = 2.72 ± 0.52 and sc = −1.33.
The numerical results are obtained by averaging over 5000 random circuit realisations.
Error bars are shown or are smaller than datapoints; lines are guides to the eye. This
figure was reproduced from [44].

where I(A;B) = S
(2)
A + S

(2)
B − S

(2)
AB is the mutual information between subregions A

and B. Our circuit models are composed of Clifford gates, and the states created by

these gates have SA = S
(2)
A = − log Tr[ρ2A] as discussed in Sec. 4.1.3. The second Rényi

entropy is therefore sufficient to completely characterise the system’s entanglement

spectrum. As discussed in Sec. 2.4, the negativity of I3 serves as an indicator of

scrambling. Crucially, note that Bell pairs (bipartite entanglement) shared between

qubits are not enough to generate negativity in I3. To investigate this, we consider a

scenario where every qubit in subregions A, B, C, and D in Fig. 6.1(a) forms a pair

with a qubit outside the subregion (e.g. a qubit in A pairing with a qubit in subregion

B, C or D but does not pair with other qubits in the subregion A). This is the scenario

where the entanglement entropy of the given subregion is maximized, and hence the

information in a subregion is completely delocalised just from the non-overlapping

formation of bell pairs. Thus, the second-order Rényi entropy for region A, B, C, and

D will be maximum at SA = SB = SC = N/4. However, SXY = N/2− 2NXY , where

X 6= Y ∈ {A,B,C,D} and NXY are the number of bell pairs within the subregion. In
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this case, I3 defined in Eq. (6.4) becomes

I3 = 2(NAB +NAC)−
N

2
+ 2NBC . (6.5)

With the constraints NAB +NAC = N/4−NAD and NBC = NAD, Eq. (6.5) goes to 0,

i.e., I3 = 0.

At fixed time step t = 1, we observe a transition marking the onset of scrambling

at a critical value of s = sc, as shown in Fig. 6.1(b). Each data point in these plots

is obtained by averaging over a given number of circuit realisations (CR), with error

bars representing the uncertainty in the mean. The error is calculated as the standard

error SE = σ/
√

CR, where σ is the standard deviation of data. The critical point sc

is located by looking for a crossing as the system size varies between 64 ≤ N ≤ 1024,

indicated by a black dashed line in Fig. 6.1(b). Near this transition, the tripartite

mutual information I3 exhibits a scaling collapse, as shown in Fig. 6.1(c). We find

empirically that the data collapse is well-described by the scaling theory [232–235]

I3 = N ζ/νf(|s− sc|N1/ν), (6.6)

where f is a universal scaling function, ν is the critical exponent and ζ = 0. The

data collapses down to universal curves and the estimated values of sc = −1.33 and

ν = 2.72± 0.52. These routines are carried out by using the scientific Python package

pyfssa [235, 236].

We also check the robustness of this transition for different sub-region sizes, with A,

B, C, and D each having a size of N/8. I3 of three contiguous subregions of size N/8

in the output state is plotted as a function of the tunable parameter s for the weighted

random all to all model across system sizes N = 32, 64, .., 1024 in Fig. 6.2(a). We

observe a transition at t = 1 marking the onset of scrambling, indicating that the tran-

sition remains stable with respect to changes in sub-region sizes. This transition occurs

at the same critical point sc = −1.33. We also observe scaling collapse in Fig. 6.2(b),
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Figure 6.2: Robustness of the Dynamical Transition. (a) Tripartite mutual
information between three output regions A, B, and C of size N/8 as a function of
the tunable parameter s for various systems sizes N = 32, .., 1024 (see legend in (b)
for colours and markers) for weighted random all to all model at a fixed time step
t = 1. (b). Scaling ansatz for I3 gives ν = 2.23± 0.67 and sc = −1.33. The numerical
results are averaged over 12000 random circuit realisations. Error bars are shown or
are smaller than datapoints. This figure was reproduced from [44].

with the same critical exponent ν = 2.23± 0.67. This provides an additional evidence

that this is a bonafide critical point that emerges from the properties of the bulk and

does not depend on the boundary conditions.

6.2.2 Powers of Two (PWR2) Model

In Sec. 6.2.1, we studied the transition in a densely connected all-to-all model. In this

section, we extend our exploration to the sparsely coupled graphs introduced in Sec. 5.3.

In this model, qubits are coupled if, and only if, they are separated by an integer power

of 2: |i−j| = 2m−1 for m = 1, . . . , log2N as shown in Fig. 5.2(a). As discussed in Ch. 1

and Ch. 5, the motivation to study these models stems from both theoretical interest,

as they generate fast scrambling, and experimental relevance, with potential near-term

implementation on platforms such as atoms in optical cavities [59] and neutral atom

arrays equipped with optical tweezers [35, 53, 237]. Here, the two-qubit gates Qij are

chosen randomly from the Clifford group and are applied in a brick-work pattern. As

explained in Sec. 5.3, this consists of even and odd blocks, and one circuit layer will
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Figure 6.3: Onset of Scrambling in PWR2 Model (a). Tripartite mutual informa-
tion I3 between three regions A, B, and C as a function of the tunable parameter s for
various systems sizes N = 32, . . . , 1024 (see legend in (a) for colours and markers). (b).
Scaling collapse of I3 gives ν = 2.78± 0.514 and sc = −0.33. The numerical results are
obtained by averaging over 5000 random circuit realisations. Error bars are shown or
are smaller than datapoints. This figure was reproduced from [44].

consist of one even and odd block so that, on average, one gate is applied at each

time step t. We observe the dynamical transition marking the onset of scrambling by

plotting tripartite mutual information I3 given in Eq. (6.4) as a function of the tunable

parameter s for various system sizes N = 32, 64, . . . , 1024 at t = 1, shown in Fig. 6.3(a).

We also estimate the critical point sc = −0.33 and the corresponding critical exponent

ν = 2.78± 0.514 by using the finite size scaling analysis given in Eq. (6.6), and this is

shown in Fig. 6.3(b).

6.3 Analytical Study of Transition Dynamics

In Sec. 6.2.1, and Sec. 6.2.2, the onset of scrambling as a dynamical transition has been

numerically investigated in both dense and sparse models. Due to the classical simula-

bility of Clifford circuits as mentioned in Sec. 4.1.1, larger system sizes are accessible,

thus allowing us to emulate the thermodynamic limit. To support our numerical analy-

sis, it is crucial to obtain an analytical understanding of this transition, and to achieve

this, we use a closely related Brownian circuit model, the entanglement properties of

which can be calculated using path integral techniques [20, 132, 238–244]. These mod-
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els have been extensively studied on the grounds of entanglement phase diagrams, and

measurement-induced phase transitions [243, 244]. Here, we show that for a certain

choice of parameters, the dynamics of this model can be mapped onto a long-range

Ising model, the ordering transition of which is well understood [245–247].

6.3.1 Brownian Circuit Model

For any given WrAA model, we construct a related Brownian circuit that acts on N

clusters of M spins arranged in 1 dimension as shown in Fig. 6.4(a), where i, j =

0, . . . , N − 1 label the clusters and u, v = 0, . . . ,M − 1 label the spins ~Siu = Sαiu within

each cluster where α = x, y, z. During each timestep dt, the system evolves under the

unitary Ut = e−iHBC(t)dt, generated by the Hamiltonian

HBC = Jαβuv (t)S
α
iuS

β
iv +Kαβ

iu,jv(t)S
α
iuS

β
jv, (6.7)

where repeated indices are implicitly summed over. Here, the Brownian couplings

Jαβuv (t) generate intra-cluster interactions, while the couplings Kαβ
iu,jv(t) generate inter-

cluster interactions. These couplings are white-noise variables with zero mean and

variance given by

〈Jαβuv (t)J
α′β′

u′v′ (t
′)〉 = J

Mdt
(1− b) δαα

′
δββ

′
δuu′δvv′δtt′ , (6.8)

and 〈Kαβ
iu,jv(t)K

α′β′

i′u′,j′v′(t
′)〉 = J

Mdt
bAij δ

αα′
δββ

′
δii′ · · · δtt′ . (6.9)

Here, J controls the overall coupling strength, 0 ≤ b ≤ 1 controls the ratio of the

intra-cluster and inter-cluster couplings, Aij = A |i− j|s is the normalised inter-cluster

coupling matrix which falls off as a power law with exponent s, and the factor of M is

necessary to ensure that the instantaneous Hamiltonian HBC(t) is extensive. The full

evolution over a total time t is given by the unitary matrix U =
∏t

0 Ut, and we work

in the limit of dt → 0 with J t fixed. We also take the limit M → ∞, with the model

therefore completely controlled by the coupling matrix Aij , the chain length N , and

the parameter b.
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Figure 6.4: Illustration Showing an Associated Brownian Circuit Model. The
Brownian circuit model consists of N clusters with M spins in each cluster. Here,
i, j = 0, . . . , N − 1 label the clusters and u, v = 0, . . . ,M − 1 label the spins ~Siu = Sαiu
within each cluster where α = x, y, z. The Brownian couplings Jαβuv (t) generate intra-
cluster interactions while the couplings Kαβ

iu,jv(t) generate inter-cluster interactions.
These are white noise variables with zero mean and variance given in Eq. (6.8) and
Eq. (6.9).

6.3.2 Calculating the Second-Order Rényi Entropy

Calculating the tripartite mutual information I3, requires finding the bi-partite entan-

glement entropies SA, SB, SAB etc. as given in Eq. (6.4). The second-order Rényi

entropy of a subregion A can be written as

Sn=2
A = − log Tr

[
ρ2A
]
, (6.10)

and hence e−SA = Tr[ρAρA] = 〈ρA〉. (6.11)

This is equivalent to introducing two copies of the system and measuring the expectation

value of the SWAP operator (‘doing a SWAP test’) on the region A [248, 249]. This is

because of a simple proof shown in [248, 249], where

Tr[SWAPρ1 ⊗ ρ2] = Tr

[
SWAP

∑
aba′b′

ρ
(1)
ab ρ

(2)
a′b′ |a〉〈b| ⊗ |a′〉〈b′|

]
,

= Tr

[ ∑
aba′b′

ρ
(1)
ab ρ

(2)
a′b′ |a

′〉〈b| ⊗ |a〉〈b′|

]
,

=
∑
aba′b′

ρ
(1)
ab ρ

(2)
a′b′δa′bδab′ =

∑
aa′

ρ
(1)
aa′ρ

(2)
a′a = Tr[ρ1ρ2], (6.12)
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and if ρ1 = ρ2 = ρA then e−SA = Tr[ρAρA], representing the expectation value of the

SWAP operator. We rewrite Eq. (6.12) as

S
(2)
A = − log Tr

[
(SWAPA1A2)Uρ0U

† ⊗ Uρ0U
†
]
, (6.13)

where ρ0 is the initial state, and A1 and A2 represents the regions that will be swapped.

Moving to the path-integral language, we first use the Choi-Jamiołkowski isomorphism

[250, 251] to convert the mixed-state dynamics on two copies of the system into pure-

state dynamics on four copies. This isomorphism maps the two-copy density ma-

trix |ψ〉 〈ψ|
⊗

|ψ′〉 〈ψ′| to the four-replica pure state |ψ〉 |ψ〉 |ψ′〉 |ψ′〉 = |ρ〉〉. Hence,

Eq. (6.13) may then be expressed as

S
(2)
A = − log〈〈SWAPA1A2 |U ⊗ U τ ⊗ U ⊗ U τ |ρ0〉〉, (6.14)

where

U τ = (iσy)U
∗(−iσy) = σyU

∗σy (6.15)

is the time reversal of U . Complex conjugation alone is not enough for a given spin to

transform correctly under time reversal (~S → −~S)1. This is because it only reverses

the y-component of spin, that is (σx, σy, σz)∗ = (σx,−σy, σz). Hence, to properly

time-reverse a spin 1/2 qubit, one must include conjugation by iσy. In particular,

(Ut)
τ = e+iH(t)dt because the Hamiltonian is quadratic in the spins. In this way, the

Rényi entropy can be understood as a bulk propagator U ⊗ U τ ⊗ U ⊗ U τ connecting

the initial state |ρ0〉〉 = |ψ0〉〉 to the final state |SWAPA1A2〉〉 = |ψT 〉〉 at a final time T .

We label the four copies (or ‘replicas’) of the system by the indices r, s = 1, 2, 3, 4.

6.3.3 Disorder Averaging

We focus first on the dynamics of the bulk propagator and later consider the effects

of the initial and final states. For simplicity, the disorder average is represented as

〈.〉 = E. Because the Brownian coefficients are uncorrelated in time, we may perform
1Spin is an intrinsic form of angular momentum
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the disorder average independently at each timestep:

E [Ut ⊗ U τt ⊗ Ut ⊗ U τt ] = E
[
e−iH(t)dt ⊗ e+iH(t)dt ⊗ e−iH(t)dt ⊗ e+iH(t)dt

]
. (6.16)

Applying Eq. (6.8) and Eq. (6.9), this can be further simplified as

E [?] ≈ 1− J
Mdt

(1− b)
∑
r<s

(−1)r+s
∑
i

(∑
u

~Siu · ~Siu

)2

dt2 (6.17)

− J
Mdt

b
∑
r<s

(−1)r+s
∑
ij

Aij

(∑
u

~Siu · ~Siu

)(∑
v

~Sjv · ~Sjv

)
dt2,

where ? = Ut ⊗ U τt ⊗ Ut ⊗ U τt is used to make the equation compact. We stack

the timesteps together and find that the bulk propagator is governed by a quantum

statistical mechanics model that has a Gibbs weight of exp(−tHeff), and an effective

Hamiltonian

Heff =MJ
∑
r<s

(−1)r+s

(1− b)
∑
i

(Grsi )2 + b
∑
ij

AijG
rs
i G

rs
j

 , (6.18)

where Grsi =
1

M

∑
u

~Sriu · ~Ssiu (6.19)

are the mean fields on each cluster, and the total time t plays the role of inverse

temperature. This can be understood as considering the expression exp(−tHeff) as

exp(−βHeff), where β is the inverse of temperature.

6.3.3.1 Derivation of Bulk Propagator via Disorder Averaging

From here it is convenient to take up the path-integral representation

〈〈ψT | exp(−tHeff)|ψ0〉〉 =
∫

DF rsi DGrsi DSrαiu exp(−MS), (6.20)
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with action

S =

∫ t

0
dt

J (1− b)
∑
r<s

(−1)r+s
∑
i

(Grsi )2 + J b
∑
r<s

(−1)r+s
∑
ij

AijG
rs
i G

rs
j (6.21)

−
∑
r<s

∑
i

iF rsi

(
Grsi − 1

M

∑
u

~Sriu · ~Ssiu

)]
,

where we have introduced Lagrange multipliers iF rsi to enforce the mean-field constraint

[44, 243, 244]. Here, the mean fields Grsi , Lagrange multipliers F rsi , and spin variables

Sα,riu are all functions of Euclidean time t, and the spin variables satisfy the boundary

conditions imposed by |ψ0〉〉 and |ψT 〉〉. From here, the main idea will be to isolate the

spin terms in the action so that we can create a propagator term for spin clusters that

connects the initial state |ψ0〉〉 to the final state |ψT 〉〉. In Eq. (6.20), and Eq. (6.21),

we have incorporated the kinetic term for the spin variables in the integration factor∫
DSα. Now that the spins have been isolated to a single term it is convenient to

separate them from the rest of the action, so we write

S =

∫ t

0
dt

J ∑
r<s

(−1)r+s
∑
ij

χijG
rs
i G

rs
j −

∑
r<s

∑
i

iF rsi G
rs
i

−
∑
i

logKi, (6.22)

where

Ki :=

∫
DSα,r exp

(
−
∫ t

0
dt
∑
r<s

iF rsi ~Sr · ~Ss
)

=〈〈ψT |
∏
t

exp

(
−
∑
r<s

iF rsi (t)~Sr · ~Ss
)
|ψ0〉〉 (6.23)

is the propagator for a single spin cluster under the mean field Lagrange multiplier

iF rsi , and

χij := (1− b)δij + bAij , (6.24)

where we have assumed that Aij is translation invariant, symmetric, and normalised.
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6.3.4 Mapping to Long-Range Ising Model

We now consider the limit J t � 1 � b and show that the dynamics of the effective

Hamiltonian in this regime is equivalent to a long-range Ising model. The propagator

Ki is simply the quantum mechanics of 4 spins r, s = 1, 2, 3, 4 in the external fields

F rsi (t). The factors ±iσy introduced in U τ creates the singlet state:

∓ 1√
2
(I
⊗

iσy)(|00〉+ |11〉)rs = ± 1√
2
(|01〉 − |10〉) = |(rs)〉 . (6.25)

Here, |(rs)〉 denotes a spin-singlet state between replicas r, s. The spin-singlet is an-

tisymmetric under replica exchange |(rs)〉 = − |(sr)〉, and the final state is |(14)(32)〉

due to the SWAP operator as shown in Fig. 6.5(a).

Figure 6.5: Mapping the Brownian Circuit Model to a Long Range Ising
Model (a). The calculation of the second-order Rényi entropy can be mapped to the
pure-state dynamics of a 4-replica system due to Choi-Jamiołkowski isomorphism. Red
dashed lines represent the initial boundary conditions, and at the final time, we have
the swapped boundary conditions. (b). The effective spin-1/2 particle governing the
propagator Ki can be visualized as a time-dependent state |ψ(t)〉 (red) on a Bloch
sphere spanned by the basis vectors |↑〉 , |↓〉. The saddle-point solutions (blue) are the
vectors ψ± =

√
3
2 |↑〉 ± 1

2 |↓〉

The single spin cluster propagator between different replicas as shown in Eq. (6.23)

has coupling of the form ~Sr · ~Ss, thereby conserving the total spin ~STot =
∑

r
~Sr. The

entire dynamics are therefore restricted to the singlet S2
Tot = 0 subspace. Furthermore,

we apply the method introduced in [243, 244] to create the basis vector that spans the

84



Chapter 6. Onset of Scrambling as a Dynamical Transition

subspace (see Appendix A for further details)

|↑〉 = 1

2
√
3
(2 |1010〉+ 2 |0101〉 − |0011〉 − |1100〉 − |1001〉 − |0110〉) ,

|↓〉 = 1

2
(|0011〉+ |1100〉 − |1001〉 − |0110〉) . (6.26)

Thus, each propagator can be written as the dynamics of a spin-1/2 particle in a time-

dependent magnetic field:

Ki = 〈ψT | exp
{[

1

2

∫ t

0
dt ~Bi(t) · ~σ

]}
|ψ0〉 eB

0
i t/2. (6.27)

The presence of the .~σ in Eq. (6.27) reflects that we are in the subspace generated

by two basis vectors, with any matrix A ∈ M2 (any 2 × 2 matrix) decomposable to

normalised Pauli matrices as they form an orthogonal basis. It follows that the magnetic

field variables are effectively responsible for guiding the non-trivial dynamics taking

place in the bulk to satisfy the non-equal boundary conditions |ψ0〉, |ψT 〉. Therefore,

for
∣∣∣ ~B∣∣∣ t � 1, the boundary conditions do not control what happens in bulk, and

the magnetic field variables will be strongly time-independent in bulk and strongly

time-dependent near t = 0, T . Using block diagonalization, the values of different

components of the time-dependent magnetic field are

Bx
i =

√
3

2

(
iF 12
i + iF 34

i − iF 14
i − iF 23

i

)
,

By
i = 0,

Bz
i =

1

2

∑
r<s

iF rsi − 3

2

(
iF 13
i + iF 24

i

)
,

B0
i =

1

2

∑
r<s

iF rsi . (6.28)

Since the bulk dynamics are time-independent, so

Ki ≈ ce

∣∣∣ ~Bi

∣∣∣t/2
eB

0
i t/2, (6.29)
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where the constant factor c comes from the overlap of the initial state with the spin

singlet subspace basis vectors |↑〉 , |↓〉. Therefore, our action simplifies to:

S = J t
∑
r<s

(−1)r+s
∑
ij

χijG
rs
i G

rs
j −

∑
r<s

∑
i

iF rsi G
rs
i t−

∑
i

(∣∣∣ ~Bi∣∣∣+B0
i

)
t/2. (6.30)

The final step is to find the saddle points of this action by taking derivatives ∂S/∂G =

∂S/∂F = 0 with respect to the fields F,G, yielding the following conditions

iF rsi = 2J (−1)r+s
∑
j

χijG
rs
j , (6.31)

and

Grsi = −1

2

∂

∂iF rsi

(∣∣∣ ~Bi∣∣∣+B0
i

)
. (6.32)

The antisymmetric combinations iF 12
i − iF 34

i , iF 14
i − iF 23

i , iF 13
i − iF 24

i = 0 vanish 2,

and we introduce the symmetric combinations

φai = iF 12
i + iF 34

i , (6.33)

φbi = iF 14
i + iF 23

i , (6.34)

φci = iF 13
i + iF 24

i . (6.35)

2One may check this by putting in the values for r, s in Eq. (6.31) and applying G12
i = G34

i , G14
i =

G23
i , G13

i = G24
i
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This simplifies the equations of motion to

φai = 2J
∑
j

χij

∂
∣∣∣ ~Bj∣∣∣
∂φaj

+
1

2

 = J
∑
j

χij

 1∣∣∣ ~Bj∣∣∣
(
2φaj − φbj − φcj

)
+ 1

 , (6.36)

φbi = 2J
∑
j

χij

∂
∣∣∣ ~Bj∣∣∣
∂φbj

+
1

2

 = J
∑
j

χij

 1∣∣∣ ~Bj∣∣∣
(
−φaj + 2φbj − φcj

)
+ 1

 , (6.37)

φci = −2J
∑
j

χij

∂
∣∣∣ ~Bj∣∣∣
∂φcj

+
1

2

 = −J
∑
j

χij

 1∣∣∣ ~Bj∣∣∣
(
−φaj − φbj + 2φcj

)
+ 1

 .

(6.38)

Eq. (6.36), Eq. (6.37), and Eq. (6.38) are solved for a small value of b focusing on the

lowest-order approximation. We evaluate the quantities
∣∣∣ ~Bi∣∣∣ = 3J + O(b) and the

linear combination

φai + φbi − φci = 3J
∑
j

χij = 3J − 3bJ
∑
j

(δij −Aij) . (6.39)

Substituting this into Eq. (6.38), we conclude that φci vanishes at lowest order φci =

0+O(b). Finally, we substitute φai +φbi = 3J +O(b) into
∣∣∣ ~Bi∣∣∣ = 3J +O(b) to solve for

φai − φbi = ±3J +O(b). (6.40)

Thus, we find exactly two saddle points |ψ±〉 (See Fig. 6.5 (c)) for each cluster i, which

we label with an Ising spin σi = ±1. In the spin-1/2 replica subspace, these states are

written as

|ψ±〉 =
√
3

2
|↑〉 ± 1

2
|↓〉 . (6.41)

When σi = +1 we find that G12
i = G34

i = −3/4 + O(b) with all other fields vanishing,

while for σi = −1 we find that G14
i = G23

i = −3/4+O(b) with all other fields vanishing

(see Appendix A). Applying these saddle-point solutions back into Eq. (6.18), we find
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Figure 6.6: Onset of Scrambling as a Domain-Wall Depinning Transition
in a Brownian Quantum Circuit (a). Averaging over the Brownian couplings
Jαβuv (t),K

αβ
iu,jv(t) and taking the large cluster size limit M → ∞ maps the calculation of

the Rényi entropy S(2)
A of a subregion A onto a quantum statistical mechanics problem

with effective Hamiltonian Heff and exactly two saddle point solutions |ψ±〉 (red, blue).
For short-range interactions s < sc ((b).i.), the system is in a paramagnetic (PM) phase
where it is energetically favorable to form vertical domain walls ((b).i., dotted black)
that are pinned to the bottom of the circuit. For s > sc ((b).ii.), the system is in the
ferromagnetic (FM) phase where vertical domain walls are energetically expensive and
it is, therefore, favorable to form a horizontal domain wall ((b).ii., dotted black) that
is ‘depinned’ from the bottom boundary. This figure was reproduced from [44].

that the bulk dynamics are

exp(−tHeff) ≈
∑

{σi=±1}

e−tH[σ], (6.42)

where H[σ] = J
∑
ij

χij(3/4)
2 (σiσj + 1) . (6.43)

χij may be expressed in terms of Aij by using Eq. (6.24). Apart from additive constants,

this is simply a long-range Ising model with coupling matrix χij . To get the true action,

in principle, we ought to expand to higher powers of b, but doing so will not change the

number of saddle-point solutions, it will only modify the energy of the effective Ising

model.
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6.3.5 Transition in Tripartite Mutual Information

In this framework, the transition in the tripartite mutual information I3 can be viewed

as an ordering transition in the statistical mechanics model Heff as illustrated in Fig. 6.6

(a). When s < sc, the interactions are short-range and are not strong enough to sta-

bilise a ferromagnetic phase (FM). Consequently, the bulk remains in a paramagnetic

(PM) phase, and the free energy is dominated by vertical domain walls that extend

directly downward from region A and are pinned to the bottom edge of the circuit,

as shown in dotted black in Fig. 6.6(b).i. As a result, we find that S(2)
A = 2g(t, s), a

function dependent only on time t and exponent s, and independent of the subregion

size |A|, such that I3 = 0.

Conversely, for sufficiently large s > sc, long-range couplings increase the cost of verti-

cal domain walls and, in this regime, the bulk quickly settles into |ψ+〉 favored by the

majority boundary region A, while the boundary condition |ψ−〉 on region A induces a

horizontal domain wall (dotted black) that is depinned from the bottom edge. In this

case, the entanglement entropy follows a volume law S
(2)
A = k |A| for some constant

k, and correspondingly negative tripartite mutual information I3 < 0. The transition

between these two regimes occurs when the bulk undergoes a transition between the

paramagnetic and ferromagnetic phases.

Therefore, I3 reveals a domain-wall depinning transition in the Brownian circuit driven

by an ordering transition in Heff. I3 is effective at diagnosing this transition because

the contributions from vertical domain walls separating neighbouring regions cancel out

(Fig. 6.6(b)i., dotted black), while contributions from horizontal domain walls do not

cancel [105]. Hence, I3 = 0 unless a horizontal domain wall (Fig. 6.6(b)ii., dotted black)

has depinned from the bottom edge. For sufficiently long-range interactions s > sc, the

tripartite mutual information becomes negative precisely because a depinned domain

wall separates the input and output of the circuit. The critical exponents of the long-

range Ising model are known to be mean-field and numerically agree with the critical

exponents we find in our Clifford simulations, suggesting that the transition in question

89



Chapter 6. Onset of Scrambling as a Dynamical Transition

is itself mean field. Specifically, the mean-field critical exponent for the long-range Ising

model predicted in [246] is, in terms of our parameters, ν = −1/(1 + sc) ≈ 3, which

agrees with our Clifford results with a difference of about 7%.

6.4 Towards Experimental Observation

Having explored the onset of scrambling numerically in both dense and sparse models,

along with an analytical Brownian circuit model, it is interesting to ask whether this

transition can be observed in experiments. Tunable power-law interactions are natu-

rally accessible in trapped ion experiments, and the tripartite mutual information may

be measured in principle by interfering many-body twins [248, 249] or by performing

randomized measurements [252, 253]. Here, we pursue a slightly different approach and

ask whether the same phenomena appears in systems with sparse interactions that can

be engineered in ensembles of Rydberg atoms with optical tweezers.

Building on ideas proposed in [35], we demonstrate that the transition studied in Sec. 6.2

may be observed in near-term experiments using optically trapped Rydberg atoms

[72, 73, 254, 255]. Nonlocal couplings in the system are generated by a quasi-1D shuffling

process employing optical tweezers that rearrange atomic positions [53, 237, 256–258].

Each rearrangement executes a “Faro Shuffle”, moving the atom originally located at

lattice site i to lattice site i′ according to the map [259, 260]

i′ = R(i = bm...b2b1) = b1bm...b2. (6.44)

This nonlocal mapping permutes the bit order of the atomic index i = bm...b2b1, writ-

ten in binary such that the least significant bit b1 of i becomes the most significant

bit of i′ = R(i). This operation creates a sparse coupling geometry that resembles a

m = log2(N) hypercube which has been studied recently extensively in neutral atom

array platforms [35, 53].

A proposal to perform a “Faro Shuffle” begins with N atoms (represented by blue and
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Figure 6.7: Illustrations Showing Proposed Experimental Implementation of
the Dynamical Transition (a). Our circuit implementation is composed of inverse
Faro-shuffles (green), global rotations (purple), and an interaction layer (pink). Based
on the iteration, the interaction layer will be composed of weighted CZweven or CZwodd
gates. Each time step t is composed of m = log2N even and m = log2N odd it-
erations. (b) A schematic diagram to illustrate Faro-shuffling operations (green layer
in Fig. 6.7(a)) in neutral atom arrays using optical tweezers. It starts with N atoms
labeled i = 0, 1, ...N − 1 on a 1D lattice with spacing a. Using an auxiliary 1D tweezer
array, atoms are adiabatically relocated, with the left half recaptured by the lattice
and the right half shifted leftwards and back into the trap, resulting in permutation
i′ = R(i). The inverse process reverses these steps.

green dots in Fig. 6.7(b)) labeled i = 0, 1, . . . , N − 1 initially trapped at sites x(i) = ia

of a fixed 1D lattice (black boxes in Fig. 6.7(b)) with spacing a. An additional N empty

sites x = Na, . . . , (2N−1)a are reserved. Using an auxiliary 1D tweezer array superim-

posed on the fixed lattice to capture all N atoms, an adiabatic row-stretch operation is

conducted that relocates atoms at site x to site 2x (Fig. 6.7(b)(i)). The first N/2 tweez-

ers are then switched off, causing the atoms in the left half of the cloud (Fig. 6.7(b)(ii),

green dots) to be recaptured by the fixed 1D lattice. The remaining N/2 tweezers then

adiabatically transport the atoms in the right half of the cloud (Fig. 6.7(b)(ii), blue

dots) below the trap array, shifting them leftward by a distance ∆x = (N − 1)a, and

back into the trap. When the tweezer array is switched off, the atoms i are rearranged

in the linear trap according to the permutation i′ = R(i) (Fig. 6.7(b)(iii)).

Repeated shuffling operations lead to a dramatic rearrangement of the atomic posi-

tions, and the resulting nonlocal couplings can rapidly generate many-body entangle-

ment. The coupling operations in the circuit occur in the interaction layer, shown
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in Fig. 6.7(a), and are achieved using stochastically applied alternating even and odd

layers of Controlled-Z (CZ) gates. Combining this, along with global rotations, we

implement a strong scrambling circuit (sc)

Dsc = EmscOm
sc , (6.45)

where Esc = [R−1CZwevenTθφ], (6.46)

and Osc = [R−1CZwoddTθφ] (6.47)

are the even and odd circuit iterations respectively, with Tθφ = HP, a combination of

global Hadamard H and phase gates P. Please refer to Sec. 5.3 for definitions of the

even and odd circuit iterations. The weighted CZweven and CZwodd gates couple qubits

i < j with probability p(d, s) given by

p(d, s) = JDsd
s. (6.48)

The normalisation factor JDs ensures that one gate, on average, is applied per site

during each timestep t. In our sparse coupling circuit, this is achieved after m = log2N

even (Eq. (6.46)) and m = log2N odd circuit iterations (Eq. (6.47)) . One even circuit

iteration Esc is composed of globally applied Tθφ, followed by a stochastic random ap-

plication of CZweven gates and a “Faro Shuffle” as illustrated in Fig. 6.7(a). The same

procedure applies to one odd circuit iteration Osc. To experimentally realise this cir-

cuit, we propose using the long-lived ground states |0〉 and |1〉 of neutral atoms as qubit

states. In each of the constituting even Esc and odd Osc circuit iteration, the implemen-

tation of Hadamard and Phase gates may be achieved by single-qubit rotations. For

the entangling operations, pairs of qubits i and j are randomly sampled according to

the probability distribution in Eq. (6.48). The chosen qubits, of corresponding atomic

indices i′ = R−1
l (i) and j′ = R−1

l (j) where l represents the number of inverse shuffle

operations, are then entangled using CZ gates. These CZ gates are realised by exciting

the state |1〉 to a Rydberg state, and utilizing the strong van der Waals interactions

[54, 55, 261–266]. Further, we observe the dynamical transition in Fig. 6.8(a) charac-

terised by the negativity of the tripartite mutual information I3 of three contiguous
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Figure 6.8: Onset of Scrambling in a Deterministic Circuit with a Random
Initial State (a). Tripartite mutual information (I3) between three regions A, B,
and C in the bulk as a function of the tunable parameter s for various systems sizes
N = 32, 64, . . . , 1024. This transition is observed for system sizes as small as N = 16
(orange) at t = 1. (inset) Scaling collapse of I3 gives ν = 2.79± 0.39 and sc = −0.29.
(b) I3 between three regions A, B, and C as a function of the tunable parameter s for
N = 16 for different values of time steps t (light to dark orange). Black dotted vertical
lines highlight the window over which I3 is plotted as a function of s in (a). I3 is further
plotted as a function of s for various system sizes N = 32, ..512 for (c) t = 2 and (d)
t = 3. The numerical results are averaged over 3000 random circuit realisations. Error
bars are shown or are smaller than datapoints. This figure was reproduced from [44].

regions A, B, and C across system sizes N = 16, 32, 64, . . . , 1024, at a fixed time step

t = 1 initialised in a completely random state. The three contiguous regions A, B, and

C of the output set of qubits are chosen in the bulk as shown in Fig. 6.7(a) to avoid

any boundary effects on the calculations. A random initial state is characterised by an

arbitrary polarization (x, y or z) qubit state at each site. In an experimental setting,

this may be prepared using classical random sampling and by rotating individual spins
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that constitute the qubit state. We also perform finite-size scaling analysis for this

model, with the scaling ansatz for I3 giving ν = 2.79± 0.39 and sc = −0.29, shown in

the inset of Fig. 6.8(a). Considering near-term experimental realisation, this transition

is observable in system sizes as small as N = 16 and N = 32 for a deterministic initial

state (say a single polarisation on all qubits), thereby avoiding individual addressing

of the qubit states. We observe that larger system sizes exhibit noticeable error bars,

as shown in Fig. 6.8(a). However, at t = 1, focusing on the experimental realizations

for system sizes N = 16 and N = 32, the error bars appear relatively smaller. Addi-

tionally, calculating the standard deviation reveals that it remains small for N = 16

and N = 32. For N = 16, the value of I3 is already negative for the range of s in

Fig. 6.8(a). However, if we extend the range of s, we observe that for N = 16 the value

of the I3 transitions from positive to negative as shown in Fig. 6.8(b). This figure also

demonstrates the variation in I3 as a function of the tunable parameter s across differ-

ent time steps t for N = 16. Furthermore, with increasing time step, the many-body

entanglement generated in the system increases and is characterised by an appreciable

negative value of I3 as shown in Fig. 6.8(c) and Fig. 6.8(d) for t = 2 and t = 3, respec-

tively. As t increases, the onset of scrambling as a transition is more evident only in

larger system sizes. We also observe that as t increases, the error in larger system sizes

tends to decrease, accompanied by a reduction in the standard deviation. This suggests

that, with future advancements in experimental techniques and technology, increasing

t could help ensure that a smaller number of samples is more likely to be representative

of the mean behaviour. However, in the context of near-term experiments, our focus

remains on system sizes N = 16 and N = 32, for which t = 1 is sufficient to achieve

efficient generation of entangled states, using shallow depth circuits.

6.5 Continuous Time Models

In Sec. 6.2 and Sec. 6.4, we studied the onset of scrambling as a dynamical transi-

tion in gate-based models. However, in most experimental setups, the evolution occurs

continuously, which motivates the exploration of this transition in continuous time

models. To access this transition in larger system sizes, matrix product states (MPS)
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and matrix product operator (MPO) techniques will be essential. The spin system

that we investigate is inspired by [267, 268]. In discrete time models, we observed this

transition through the tripartite mutual information I3, leading to the natural ques-

tion of whether the transition in continuous time models can also be characterised by

this quantity. Therefore, we attempt to calculate I3 using the method described in

Sec. 4.2.4.2.

The model of interest is the one-dimensional chain of N spin 1/2 system described

by the long-range transverse field Ising (LRTI) model

HLRTI =
N∑
ab

χabS
x
aS

x
b +B

N∑
i

Sza, (6.49)

where χab is the coupling strength between spins a, b, which resides on the vertices of a

given coupling graph, B is the transverse field, and the spin operators in terms of Pauli

operators are given by Sαi = σαi /2 (h̄ = 1), and α ∈ {x, y, z}. In this section, we study

the dynamics in the powers of two (PWR2) model with tunable range interactions

controlled by s and periodic boundary conditions (see Sec. 5.3 and Sec. 6.2.2). The

coupling strength χab thereby follows

χab,s =


χ0|a− b|s |a− b| = 2m−1

0 Otherwise,
(6.50)

for m = 1, . . . , log2N . Our primary motivation for studying the quench dynamics in

these spin models is their feasibility for experimental implementation in setups such as

trapped ions [269] and neutral atom arrays [72, 255, 270, 271]. To study the dynamics,

we start in an initial state that is z-polarized, specifically |↓〉⊗N , and evolve using the

Hamiltonian in Eq. (6.49). This corresponds to a global quench from B = ∞ to some

finite value of the field B = 1.0χ0.

Here, we present results on the calculation of the tripartite mutual information I3

for system sizes N = 8, 16, 32 for three different values of the tunable parameter
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Figure 6.9: Tripartite Mutual Information Using SWAP Operation. Spins
initially in an z-polarized state evolve under the Hamiltonian given in Eq. (6.49) up to
a time t = 1. The absolute value of the tripartite mutual information |I3| is plotted as
a function of the maximal bond dimension D for system sizes N = 8, 16, 32 (see legend
in (a) for colours and markers). The technique used to calculate |I3| is by using the
SWAP operation introduced in Sec. 4.2.4.2. In the case of (a) s = −4.0, |I3| appears
to converge well with increasing bond dimension D. However, as s approaches 0 (b)
and (c), I3 struggles to converge even at higher D, particularly for larger system sizes,
such as N = 32.

s = −4.0,−2.0, 0.0. In these preliminary results, we don’t normalise the Hamilto-

nian, i.e., χ0 = 1, instead, we evolve the initial state up to a time t = 1/χ0. The

analysis presented here demonstrates the difficulty in computing I3 for larger system

sizes using the SWAP operator introduced in Sec. 4.2.4.2. We calculate I3 of the state

at t = 1/χ0 as a function of the maximal bond dimension D, where, during time evo-

lution and the SWAP operations, the bond dimensions of our MPS can never exceed

D. This is illustrated in Fig. 6.9. When s is large and negative, the model is ap-

proximately the nearest neighbour model (NN) with short-range interactions. Thus, a

lower D may be sufficient to calculate I3 as demonstrated in Fig. 6.9(a). However, as

s → 0, the interactions become increasingly non-local. Even with a D ∼ O(103), the

values of I3 do not converge for N = 32, as shown in Fig. 6.9(b) and Fig. 6.9(c). One

possible solution for this would be to use the principle of classical shadows, proposed

in [272] to calculate the properties of the quantum state. We leave these more involved

calculations for future work.
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6.6 Conclusions

In Ch. 6, we studied a dynamical transition marking the onset of scrambling in both

dense and sparse quantum circuit models as shown in Sec. 6.2. In circuits where short-

range couplings dominate (s < sc), scrambling is constrained by local Lieb-Robinson

bounds, leading to slow scrambling behaviour. Beyond a critical interaction exponent

s > sc, these bounds were shown to break down such that information could be scram-

bled on a much faster timescale of t ∼ logN . In both cases, we diagnosed the presence

of scrambling through the negativity of the tripartite information I3 < 0. We also stud-

ied this transition analytically in Sec. 6.3 by showing that the dynamics of a related

long-range Brownian model were mappable to the long-range Ising model in a particu-

lar regime. In particular, we also estimated the mean-field critical exponent and found

it to agree with our Clifford-simulation results. Additionally, we also explored this

transition in a model that may be realised in an ensemble of neutral atoms equipped

with optical tweezers in Sec. 6.4. After analysing this transition using both an analyti-

cally tractable model and a numerically accessible digital circuit model, we attempted

to apply MPS-MPO techniques to observe the same transition in a continuous-time

model, as discussed in Sec. 6.5. However, we encountered computational challenges in

this approach, and we leave the detailed calculations involved for future work.
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Chapter 7

Sparse Coupling Graphs for

Quantum Metrology

What is much more likely is that

the new way of seeing things will

involve an imaginative leap that

will astonish us.

John Bell

7.1 Introduction

In Ch. 5 and Ch. 6, we analysed the efficient generation of entanglement in sparse

coupling models. Entanglement, as established in Sec. 3.2.2, enhances the sensitiv-

ity of states for phase estimation, allowing us to surpass the standard quantum limit.

Building on these insights, a natural next step is to investigate how the entanglement

generated by these sparse coupling graphs can be utilised to create states relevant to

quantum metrology. In this chapter, we address this question by demonstrating that

the PWR2 coupling graph introduced in Sec. 5.3 and the hypercube coupling graph

introduced in Sec. 6.4 can generate states exhibiting Heisenberg scaling in quantum

Fisher information. These are the states that offer super classical limits in the estima-

tion of an unknown parameter due to the presence of entanglement. We have already
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discussed the versatility offered by the neutral atom platform equipped with optical

tweezers in Sec. 1.4 and Sec. 6.4. This advantage has also been noted in recent tweezer-

based clock platforms [162, 273–278]. Hence, we aim to leverage this platform to create

entangled states that can be used as resource states for quantum-enhanced metrology.

The rest of the chapter is organised as follows: we begin by showing how the spin-

exchange Hamiltonian in a sparse coupling graph may generate optimal states for quan-

tum metrology in Sec. 7.2. We numerically demonstrate that specific sparse graphs

featuring long-range interactions approximate the dynamics of all-to-all spin models

like the one axis twisting model introduced in Sec. 3.4.1. We explain these results by

analysing the spectral gap of the Hamiltonian of the sparse coupling graphs in Sec. 7.3.

Finally, we show how the metrologically relevant states may be prepared in near-term

experimental platforms in Sec. 7.4. We end this chapter by summarizing our findings

in Sec. 7.5.

7.2 Dynamical Preparation of Metrologically Useful States

One axis twisting Hamiltonian (OAT) as mentioned in Sec. 3.4 is a well-studied model

known for its relevance in metrology and spin squeezing which features uniform, infinite-

range Ising interactions [8, 157, 279]. While this model may be engineered by collisional

interactions between delocalized atoms [280, 281] and interactions mediated by coupling

to phonons [82, 159] or cavity modes [60–62], this degree of connectivity is challenging

to realise with direct interactions in most physical setups. This is where sparse coupling

graphs with limited connectivity become useful. The specific Hamiltonian we study is

the spin-exchange Hamiltonian given by:

HXY =
N∑
a,b

χab(S
x
aS

x
b + SyaS

y
b ), (7.1)

where χab is the coupling strength between spins a, b, which reside on the vertices of

a given coupling graph, and the spin operators in terms of Pauli operators are given

by Sαi = σαi /2 (h̄ = 1), and α ∈ {x, y, z}. The reason for opting for the spin-exchange
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Figure 7.1: Coupling Graphs (a) An all-to-all coupling graph for N = 8 spins.
(b). Removing certain edges (dashed) results in the sparse long-range PWR2 graph
with open boundary conditions. (c). This is an illustration of a m = 3 dimensional
hypercube.

Hamiltonian instead of the Ising Hamiltonian is that the non-uniform couplings in

the Ising Hamiltonian, which arise due to sparse interactions, break the permutational

symmetry discussed in Sec. 3.3.2. However, the spin-exchange Hamiltonian, as given

in Eq. (7.1), preserves the collective spin behaviour. This will be explained further

in Sec. 7.3, where we analyse the spectral gap of this Hamiltonian. For the case of a

1D chain (e.g., a nearest-neighbour coupling graph), this model has been extensively

studied due to its integrability. However, integrability breaks down when considering

sparse graphs like the Powers of Two (PWR2) coupling graph introduced in Sec. 5.3

and the hypercube coupling graph introduced in Sec. 6.4.

We compare and contrast these two sparse coupling models, with a dense all-to-all

(A2A), see Fig. 7.1(a), and the nearest neighbour (NN) coupling geometry. In the

PWR2, as mentioned in Sec. 5.3, the spins interact iff separated by a distance equiva-

lent to a power of 2, and we consider open boundary conditions. The model’s coupling

graph has EG = N log2(N) − N + 1 edges (see Fig. 7.1(b), where solid lines repre-

sent the edges of this graph) for N vertices. In contrast, for the hypercube coupling

graph spins reside on the vertices of a m = log2(N) dimensional hypercube, resulting

in EG = N
2 log2(N) edges for N vertices, as shown in Fig. 7.1(c), which illustrates a

3-dimensional hypercube.
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We consider spins initially prepared in an x polarised state |+〉⊗N and allow it to

evolve under the XY Hamiltonian in Eq. (7.1). We normalise the time in such a way

that we take into account the deficit of bonds in the sparse coupling graphs compared

to the A2A coupling graph. The normalised time is written as

t̃ = t
EG

EG,A2A
, (7.2)

where EG is the number of edges in the sparse graph, and t is the physical time. For the

A2A graph, χab = χ0 for a 6= b, thus recovering back the OAT Hamiltonian. This can

be inferred by using the collective spin operators Ĵα, α = x, y, z discussed in Sec. 3.3,

and by applying the following identity

Ĵ2
x + Ĵ2

y + Ĵ2
z = Ĵ2 = J(J + 1). (7.3)

For the A2A graph, HXY Hamiltonian in Eq. (7.1) hence can be expressed as:

HXY = χ0

(
Ĵ2
x + Ĵ2

y

)
− χ0N

2
, (7.4)

= χ0

(
J(J + 1)− Ĵ2

z

)
− χ0N

2
. (7.5)

Thus, the OAT Hamiltonian is effectively recovered, up to a constant term. As men-

tioned in Sec. 3.2.2, the quantum Fisher information (QFI) describes the sensitivity

of a given state |ψ〉 to a parameter θ. For spin systems, θ is encoded into the probe

state through a small rotation around a given axis. The QFI for a pure state in such a

scenario is

FQ[θ, Jα] = 4(∆Ĵα)
2 , (7.6)

where Ĵα is the generator of a rotation around axis α with α = x, y, z, and (∆Ĵα)
2 =

〈Ĵ2
α〉 − 〈Ĵα〉2 is its variance. The initial x polarised state |+〉⊗N evolves under the XY

Hamiltonian Eq. (7.1) and we calculate the QFI as a function of time for the coupling

graphs shown in Fig. 7.1, along with the NN coupling graph. As illustrated in Fig. 7.2,
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Figure 7.2: Dynamics of the Quantum Fisher Information (QFI): Spins initially
in an x-polarised state evolve under the XY Hamiltonian given in Eq. (7.1). We plot
the QFI FQ/N as a function of normalised time t̃ according to Eq. (7.2) for (a) A2A,
(b) PWR2, (c) hypercube, and (d) nearest neighbour (NN) geometry for system sizes
N = 8, 16, 32, 64 (see legend in (d) for colours). The dynamics of the sparse coupling
graphs PWR2 and hypercube closely resemble those of the A2A coupling graph, while
the NN coupling graph exhibits a significantly lower QFI.

the dynamics of the QFI for the PWR2 (Fig. 7.2(b)), and hypercube coupling graph

(Fig. 7.2(c)) are reminiscent of the dynamics of the A2A coupling graph, shown in

Fig. 7.2(a). For all three coupling graphs, at t . 1/
√
N there is an initial spin-squeezed

region where the QFI rises steadily, followed by a plateau region, and a final rise to reach

a state with maximum QFI, at t̃ ' π. We determine the Wineland squeezing parameter

[9] given in Eq. (3.30) as a function of normalised time t̃, evolving the system up to

t̃ = 1/
√
N for N = 16. Both the PWR2 and hypercube coupling graphs exhibit similar

behaviour in terms of the squeezing parameter ξ2R < 1, whereas the NN coupling graph

shows significantly less squeezing as shown in Fig. 7.3(a). This implies that the states
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Figure 7.3: Mimicking the All-to-All Dynamics. (a). The Wineland squeezing
parameter given in Eq. (3.30) is plotted as a function of the normalised time t̃ given
in Eq. (7.2) for different coupling graphs for N = 16. Here, the system of spins
initialised in an x-polarised state is evolved up to a final time t̃ = 1/

√
N under the

XY Hamiltonian given in Eq. (7.1). We observe that the A2A, PWR2, and hypercube
coupling graphs exhibit significant spin squeezing, with ξ2R < 1. In contrast, the NN
geometry exhibits spin squeezing initially, but quickly ξ2R > 1 compared to other graphs.
(b). The QFI of compass states is plotted as a function of different system sizes N =
8, 16, 32, 64. The A2A coupling graph creates states that have FQ = N(N +1)/2. Both
the PWR2 and hypercube also have similar scaling. The slopes for A2A, PWR2, and
hypercube are 1.95, 1.93, and 1.97 respectively. The black dashed line indicates the
value of N(N+1)/2 for different values of N . We exclude NN geometry in this analysis,
due to the lack of distinct plateau as shown in Fig. 7.2(d). (c). The overlap of the state
with maximum QFI |ψ(t∗)〉 with the GHZ state is plotted as a function of system sizes
N = 8, 16, 32, 64 for different coupling graphs G. See legend in (b) for colours and
markers.

generated by the sparse coupling graphs at χ0t . 1/
√
N are spin-squeezed similar to the

OAT Hamiltonian as discussed in Sec. 3.4.1. Additionally, we also analyse the states on

the plateau which are called as compass states. In Sec. 3.4.1, we discussed the dynamics

of the OAT Hamiltonian, and we mentioned that these states have FQ = N(N + 1)/2.

In Fig. 7.3(b), we compare FQ of the compass states for different coupling graphs as

a function of the system size. Since the dynamics of the NN geometry do not exhibit

a distinct plateau, as shown in Fig. 7.2(d), we exclude it from the following analysis.

The sparse graphs (PWR2 and hypercube) demonstrate the same scaling of FQ with

system size as the A2A coupling graph, indicating Heisenberg scaling. We also calcu-

late the overlap of the states with maximum QFI |ψ(t∗)〉 created by different coupling

graphs with the GHZ state. Here t∗ is the physical time required to reach the state

with maximum QFI. The choice of the GHZ state is due to the discussion in Sec. 3.4.1,
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Figure 7.4: Heisenberg Scaling and Emulating All-To-All Dynamics Using
Sparse Graphs (a) The maximum value of the QFI under the dynamics generated by
the XY Hamiltonian in Eq. (7.1) on an initially x polarized state is shown as a function
of the number of spins for different coupling graphs, see legend in (b). We extract the
scaling coefficients for different coupling graphs and it is β = 2.00 for A2A coupling,
β = 1.96 for the hypercube, and β = 1.97 for the PWR2 graph. The NN coupling
shows a much weaker scaling of β = 1.51. (b) This plot illustrates how the physical
time t∗ taken to reach the maximum QFI scales with system size for the considered
coupling graphs. For the A2A coupling case, t∗ = π, and it is observed that the value
for t∗ aligns with the dashed line, provided as a guide for the eye, drawn at t∗ = π.

which shows that the state with maximum QFI (Heisenberg limit) generated in the

OAT dynamics is the GHZ state. In Fig. 7.3(c), |〈ψGHZ |ψ(t∗)〉|2 is plotted as a func-

tion of system size for different coupling graphs. As expected, we see a perfect overlap

for the A2A coupling graph. The PWR2 and hypercube coupling graphs have a good

overlap with the GHZ state, with N = 64 having more than 50% overlap. In contrast,

the NN coupling graph exhibits a decreasing overlap, becoming negligible for larger

system sizes. While we employ exact diagonalisation for smaller system sizes, all re-

sults for N > 16 are obtained using the time-dependent variational principle (TDVP)

approach with matrix product states (MPS) [203, 204, 208, 216, 221, 222] introduced

in Sec. 4.2.3.1. These results are for bond dimension D = 256 for N = 32 and D = 512

for N = 64, truncation error ε = 10−13, and the time step χ0dt = 10−2. To ensure

convergence of our results, we vary truncation error and bond dimension for N = 32

and N = 64. In doing this, we find that the maximum error in the value of QFI for all

graphs at t∗ is at 2% level and this maximum error occurs for the hypercube geometry.
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To understand the gain we get from using sparse interactions, it is instructive to com-

pare the dynamics to the nearest neighbour model, Fig. 7.2(d), which shows much lower

QFI throughout the dynamical evolution. It is thus evident that the sparse models cre-

ate states with significantly higher QFI and emulate the OAT dynamics. In Fig. 7.4(a),

we analyse how the maximum QFI scales with system size, specifically FQ(t
∗) ∝ Nβ,

where t∗ is physical time at which the QFI reaches its maximum. We extract β numer-

ically and find that the PWR2 and hypercube-like geometry creates states that follow

FQ(t
∗) ∝ N1.97 and FQ(t

∗) ∝ N1.96 respectively. The physical time t∗ taken to reach

the maximum FQ is shown as a function of the system size N in Fig. 7.4(b). For the

A2A coupling graph, this time is known to be constant at t∗ = π [8, 13, 14]. For the

NN model, as expected, it increases linearly with the system size, whereas we observe

that t∗ ∼ N/ log2N in the sparse models. The analytical values of this time for the

sparse coupling graphs can be extracted using Eq. (7.2) and are depicted as dashed

lines in Fig. 7.4(b), corresponding to the colours of the respective coupling graphs.

7.3 Spectral Gap Analysis

To gain a deeper analytical understanding of why sparse coupling graphs mimic the

dynamics of an A2A coupling graph, similar to the OAT dynamics, we conduct a spec-

tral gap analysis. The OAT Hamiltonian given in Eq. (3.32) is highly degenerate, as all

states with the same total magnetisation along the z-axis have equal energies. However,

introducing perturbations in the form of non-uniform couplings, such as power-law in-

teractions with coefficients |i− j|s breaks the permutational symmetry of the model,

as shown in [282]. This lack of robustnes against perturbations leads to a loss of col-

lective spin behaviour, which is crucial for generating metrologically useful states, as

discussed in Sec. 3.3. Robustness in this context refers to the ability of the system

to maintain its properties like collective spin behaviour and permutational symmetry

under the influence of external perturbations. It has been shown that addition of

spin aligning terms like Si.Sj would make the OAT Hamiltonian robust against these

non-uniform power law perturbations [282]. Building on this idea, we show that in-
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corporating spin-exchange interactions allows certain sparse coupling Hamiltonians to

preserve the collective spin behaviour. To achieve this, it is instructive to rewrite the

XY Hamiltonian in Eq. (7.1) for a given coupling graph {χij} as

HXY =
∑
i,j

χij(S
x
i S

x
j + Syi S

y
j ) = HgOAT −

∑
i,j

(χ0 − χij)S
z
i S

z
j , (7.7)

where

HgOAT = χJ2
z −

∑
i,j

χij ~Si · ~Sj (7.8)

is a generalized OAT model (introduced in [282]) composed of the usual OAT twisting

term and the Heisenberg Hamiltonian. HgOAT shares a basis of eigenvectors with Ĵ

and Jz as [HgOAT , Ĵ
2] = [HgOAT , Jz] = 0. This restricts the dynamics of the initial

spin coherent states to the subspace of permutationally symmetric states discussed

in Sec. 3.3.2. The term Vpert = −
∑

i,j(χ0 − χij)S
z
i S

z
j will then be responsible for

the deviation from this collective spin behaviour, and how much deviation may occur

depends on the spectral gap of the gOAT Hamiltonian. Moreover, both terms of HgOAT

commute, and so to analyse the energy gap between subspaces of defined J we focus

our analysis on the Heisenberg Hamiltonian,

HH = −
∑
i,j

χij ~Si · ~Sj = −1

4

∑
ij

χij ~σi. ~σj = −
∑
ij

χijh(i,j), (7.9)

where h(i,j) =
1

4
~σi. ~σj =

1

2

(
σ+i σ

−
j + σ−i σ

+
j

)
+

1

4
σzi σ

z
j . (7.10)

The Hamiltonian in Eq. (7.9) has SU(2) symmetry, meaning it is invariant under global

rotations of the spins. Due to the SU(2) symmetry, the ground state is not unique but

forms a degenerate manifold. In particular, all the Dicke states
∣∣J = N

2 ,M
〉

introduced

in Sec. 3.3.2 can be ground states. For instance, if we consider one of the Dicke states

|Φ0〉 = |0〉⊗N , (7.11)
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its corresponding energy E0 = −1
4

∑
ij
χij . We can construct excitations from this base

state by flipping a single spin, which leads to the family of states

|φk〉 = |00 . . . 01k0 . . .〉 , k = 1, . . . , N. (7.12)

The Heisenberg interaction acts on this state as

h(i,j) |φk〉 =
1

2
(δjk |φi〉+ δik |φj〉) +

1

4
(1− 2(δik + δjk)) |φk〉 . (7.13)

Using that χij = χji we can prove that (see Appendix B)

HH |φk〉 =

E0 +
∑
j

χkj

 |φk〉 −
∑
i

χik |φi〉 . (7.14)

7.3.1 One-Dimensional Graphs

The eigenstates of HH can be obtained exactly when the coupling graph shows trans-

lational invariance. For a system in one dimension and periodic boundary conditions,

this means that the coupling strengths can expressed as a function of

χij ≡ χ(|i− j|) (7.15)

which obeys χ(d) = χ(d−N), χ(0) = 0, where d = |i− j|. One can use spin-wave theory

to describe the eigenstates of this Hamiltonian [283–285]. This is because the ground

state has long-range order, and the excited states can be represented as collective

oscillations of the spins around this ordered state. These excitations are known as

spin waves or magnons, where the eigenstates correspond to wave-like disturbances
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propagating through the lattice i.e.

|Φq〉 =
1√
N

N∑
k=1

eik
2π
N
q |φk〉 , with q = 1, . . . , N − 1, (7.16)

and HH |Φq〉 = E0 |Φq〉+
1√
N

∑
k

eik
2π
N
q

∑
j

χ(k − j)
(
1− ei(j−k)

2π
N
q
) |φk〉 .

(7.17)

Due to the SU(2) symmetry of the Hamiltonian in Eq. (7.9), |Φq=0〉 is also the ground

state of the Hamiltonian. Using translational invariance and periodic boundary condi-

tions, we can derive an expression for the gaps ∆(q) = Eq − E0 (see Appendix B for

more details), which is given by:

N even : ∆(q) = 2

N
2∑

d=1

χ(d)

(
1− cos

(
2π

N
dq

))
− χ

(
N

2

)
(1− eiπq), (7.18)

N odd : ∆(q) = 2

N−1
2∑

d=1

χ(d)

(
1− cos

(
2π

N
dq

))
, (7.19)

where d = k − j sets the distance between the spins. In many cases, the lowest-energy

excitation corresponds to q = 1; however, this is not always the case, as it depends on

the coupling graph. To better understand this, we plot the energy gap as a function q

for a system size N = 64, identifying where the minima occur, as shown in Fig. 7.5(a).

For the PWR2 coupling graph, we observe that the smallest gap occurs at q = N/2,

while for the A2A and NN coupling graphs, the smallest gap is found at q = 1 (see

Fig. 7.5(a) inset).

PWR2 Graph

For the PWR2 graph with periodic boundary conditions, we have

χ(d) = χ0, if d = 2r or N − d = 2r, r = 0, 1, . . . (7.20)
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Figure 7.5: Spectral Gap of the Heisenberg Hamiltonian (a). The energy gap of
the Hamiltonian in Eq. (7.8), ∆(q) = Eq−E0, given in Eq. (7.18) is plotted as a function
of q for N = 64 for A2A, PWR2 and NN coupling graphs. We observe that the lowest-
energy excitation occurs at q = 1 for the A2A and NN coupling graphs (see inset for a
zoomed-in view of the spectral gap near q = 1). By contrast, for the PWR2 coupling
graph, it occurs at q = N/2 (see legend in (b) for colours and markers). The dashed
black at q = N/2 is included as a visual reference. (b). The spectral gap of the isotropic
Heisenberg Hamiltonian in Eq. (7.8) as a function of system size N for different coupling
graphs with various levels of connectivity. Systems with asymptotically vanishing gaps
deviate from the collective OAT dynamics, while systems with non-vanishing gaps in the
large-N limit display robust collective dynamics capable of generating metrologically
useful states. Examples of the former are the nearest-neighbour graph (NN) coupling
graph, whereas the latter category includes the all-to-all (A2A) coupling and the sparse
PWR2 and hypercube coupling graphs studied here, both of which maintain a constant
gap as a function of system size.

Restricting to even N , and q = N/2 we obtain,

∆PWR2 =

log2(N)−1∑
r=0

2χ0 (1− cos (π2r))− 2χ

(
N

2

)
(1− eiπ

N
2 ) = 4χ0. (7.21)

The result then indicates that the energy gap separating the collective states from the

rest of the spectrum is finite for all N , and independent of system size.
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All-to-All Graph

The gap can be worked out exactly from Eq. (7.18) with q = 1. We calculate the gap

as

∆A2A = 2χ0

N
2∑

d=1

(
1− cos

(
2π

N
dq

))
− 2χ0 = Nχ0, (7.22)

which shows the expected ∼ N scaling.

Nearest-Neighbour Graph

For nearest neighbour coupling with periodic boundary conditions,

χ(m) = χ0(δd,1 + δd,N−1), (7.23)

and assuming even N , and q = 1, the gap corresponds to

∆NN = 2χ0

(
1− cos

(
2π

N

))
∼ 4π2N−2, (7.24)

which decays as N increases.

7.3.2 Hypercube Coupling Graph

To calculate the spectral gap of the hypercube coupling graph, it is important to note

that, while this graph lacks translational invariance in one dimension, it is inherently

“translationally invariant” in D = log2(N) dimensions. This means that, when shifting

from one vertex to another (corresponding to movement in a particular direction), the

local neighbourhood remains invariant. Also, there are only two sites in each direction,

and all these suggest that excited states form D-dimensional spin-wave states. For a

given site k = 1, 2, . . . , N , a D dimensional vector can be constructed from the binary

representation of k, i.e.
~Bk = (b0, b1, . . . , bD−1), (7.25)

where bi are the binary digits of k. The Hamming distance dH(i, j) = | ~Bi − ~Bj |

between two sites i and j represents the number of differing bit positions in the binary
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representations of i and j. In the context of the hypercube graph, the condition χij = χ0

holds when dH(i, j) = 1; otherwise χij = 0. Given this framework, the spin-wave states

can be explicitly constructed as

∣∣Φ~q〉 = N∑
k=1

ei
2π
L
~Bk.~q |φk〉 , (7.26)

where ~q is a now a D-dimensional spin-wave vector and L represents the number of lat-

tice points along one dimension. Since each direction has only two sites, the wavenum-

ber can only take the values qi = 0, 1 and L = 2. The action of HH on this state

is analogous to Eq. (7.17). The expression in the brackets in Eq. (7.17), which corre-

sponds to the gap will change accordingly. For a given site k in the hypercube graph,

there are D other sites connected to it, and hence D possible choices of j such that

| ~Bj − ~Bk| = 1. The corresponding gap ∆HYP can be calculated as

∆HYP = χ0

D∑
l=1

(
1− eiql

)
, where ql = 0, 1. (7.27)

Setting all ql = 0 corresponds to the ground state, while the first excited state occurs

when one of the ql = 1 and the others remain zero. In this case, the gap simplifies to

∆HYP = χ0(D − (D − 2)) = 2χ0. (7.28)

This result shows that the spectral gap is independent of N , similar to the case of the

PWR2 coupling graph. These calculations show how the collective dynamics generated

by the hypercube and PWR2 coupling graphs, under the spin-exchange Hamiltonian

in Eq. (7.1), are robust against non-collective perturbations. This explains why these

models are capable of producing metrologically useful states. To visually see this gain,

we plot the spectral gap of the Heisenberg Hamiltonian Eq. (7.8) as a function of the

system size N in Fig. 7.5(b).
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7.4 Towards Experimental Observation

In Sec. 7.3, we studied the spectral gap of the spin-exchange Hamiltonian for different

coupling graphs and obtained an analytical understanding of why the sparsely coupled

graphs particularly PWR2 and hypercube maintain the collective spin behaviour. We

now shift our focus to proposing possible experimental implementations of these mod-

els. The platform that we wish to focus on is the neutral atom arrays with the aid

of tweezer-assisted shuffling operations. This choice, as mentioned in Sec. 1.4, comes

from the flexibility offered for atom manipulation, good scalability, and the ability to

control each atom coherently. In Sec. 6.4, we introduced the “Faro Shuffle” operation,

that moves the atom according to the algorithm given in Eq. (6.44). The hypercube

geometry is native to this Faro shuffle, and here, we propose an algorithm to implement

the spin-exchange Hamiltonian given in Eq. (7.1) in near-term neutral atom platforms.

Recently, a dipolar XY model has been experimentally realised in a Rydberg simu-

lator up to N = 100 atoms, where scalable spin squeezing was demonstrated [160].

This was achieved in a square array of Rb atoms by encoding the effective spin−1/2

degree of freedom in the Rydberg states of opposite parity. By contrast, the quantum

Ising model is realised by encoding the spin−1/2 degree of freedom in the ground and

the excited state [271, 286]. Excited Rydberg states are short-lived and this places

the implementation of XY Hamiltonian at a slight disadvantage as both the spin-1/2

degrees of freedom are in the Rydberg state. However, the XY Hamiltonian can be sim-

ulated using global rotations, and Ising ZZ interactions. This forms the basis for our

approach to implementing the spin-exchange Hamiltonian in the hypercube geometry.

We propose to use global π/2 rotations

Rα = e−iπ/4
∑

a σ
α
a α ∈ {x, y}, (7.29)

and Hzz = 2χ0

∑
ν

Sz2ν−1S
z
2ν (7.30)

ZZ interactions, where ν indicates the atomic position, rather than the spin index.

During each time step dt = t∗/M , we apply m ∈ {1, .. log2(N)} Faro shuffles R to
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Figure 7.6: Proposed Experimental Implementation to Create Metrologically
Relevant States (a). Our circuit implementation consists of single qubit rotations
Eq. (7.29) (purple for Rx and yellow for Ry) followed by ZZ interactions between
nearest neighbour spins according to Hamiltonian in Eq. (7.30) (pink for Hzz) and
Faro shuffles R (green). The application of the ZZ interaction Hamiltonian and global
rotations are done in m = log2(N) steps where N is the number of spins involved. (b).
The QFI FQ normalized to its maximum value N2 is plotted as a function of the number
of iterations M , where we evolve the initial x-polarized state up to t = t∗ according to
Eq. (7.32). The dashed lines of corresponding colours represent the values of FQ

N2 for
N = 8, 16, 32 respectively at t = t∗ extracted from the continuous time analysis shown
in Fig. 7.4(a). (inset) The tripartite mutual information I3 is plotted as a function of the
number of iterations M to show a sharp deviation from the permutationally symmetric
subspace to a scrambled region characterized by negative I3. The horizontal black
dashed line represents I3 = 0.

build up the hypercube coupling graph. Before each shuffling operation, we evolve the

system according to

Um(dt) =
[
Rxe

−iHzzdt/2R†
x

][
Rye

−iHzzdt/2R†
y

]
, (7.31)

where the subscript m indicates the step of the Faro shuffle when the ZZ Hamiltonian

and the global rotations are applied. One of these steps is illustrated in Fig. 7.6(a).

This effectively realises a first-order Trotter decomposition, such that the full evolution
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during one-time step takes the following form

U(t, t+ dt) =
∏
m

RUm(dt) . (7.32)

We simulate this stroboscopic evolution and compare it to the continuous-time model

discussed in Sec. 7.2. In this way, we dynamically generate an effective hypercube

geometry for the spins, and observe that FQ indeed acquires its maximum value for

experimentally attainable iterations of M < 100, where we evolved the initially x-

polarized state up to maximum physical time t∗. This is shown in Fig. 7.6(b) where

the QFI is plotted as a function of the number of iterations M for N = 8, 16, 32.

The horizontal lines of the corresponding colours indicate the maximum QFI, FQ(t∗),

extracted from the continuous time evolution as shown in Fig. 7.4(a). In addition, we

also calculate the tripartite mutual information I3 introduced in Sec. 2.4. As discussed

in the same section I3 can be positive for permutationally symmetric states as shown

in Eq. (2.10). A simple example is the Greenberger-Horne-Zeilinger GHZ state, that

has I3 = log 2. In Fig. 7.6(b) (inset), we plot the I3 as a function of the number

of iterations M for system sizes N = 8, 16. We observe that for M > 10 in these

two system sizes, the tripartite mutual information is positive, supporting our previous

analyses of collective spin behaviour. Calculating I3 for larger system sizes using MPS-

MPO techniques is challenging, as discussed in Sec. 6.5, and is left for future work.

These plots are present to show that the collective nature is preserved for larger M and

is also reflected in I3. The PWR2 coupling graph can also be generated through these

dynamical shuffling operations, and we detail this scheme in Appendix C.

7.5 Conclusions

In Ch. 7, we demonstrated the effectiveness of sparse coupling graphs with a logarithmic

number of couplings in generating highly entangled states. Specifically, in Sec. 7.2, we

examined how the PWR2 and hypercube coupling graphs can mimic the dynamics of

the A2A coupling graph under the XY Hamiltonian. To gain a deeper understanding,

we analytically computed the spectral gap of the generalised OAT Hamiltonian for
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various coupling graphs in Sec. 7.3. Notably, we found that both the PWR2 and

hypercube graphs exhibit a constant gap as a function of system size N , ensuring

the robustness of collective spin behaviour against perturbations. This is akin to the

A2A model, where the gap increases with N , and in stark contrast to the NN model,

where the gap diminishes with system size. Moreover, these models can be realised in

near-term experimental platforms and in Sec. 7.4, we presented a stroboscopic method

that may be experimentally realised on current neutral atom arrays, that leverages

only nearest-neighbour Ising interactions, local rotations, and tweezer-assisted shuffling.

Importantly, through these coupling graphs and protocols, we generated states with

Heisenberg scaling in QFI, a hallmark of highly entangled states.
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Chapter 8

Conclusions and Future

Directions

This thesis, while addressing multiple concepts and seemingly diverse topics, revolves

around a central goal: understanding the dynamics of entanglement buildup in sys-

tems with tunable range interactions and leveraging their potential to create states

useful for quantum-enhanced metrology. To achieve this, we investigated a range of

sparsely coupled models and demonstrated that, near the crossover between two ge-

ometries with differing notions of locality, a transition occurs between regions of distinct

dynamical behaviour, marking the onset of scrambling. Additionally, we utilised these

sparse coupling graphs to generate states with metrological relevance, illustrating poten-

tial experimental realisations on near-term neutral atom array platforms using optical

tweezers. In this chapter, we provide a summary of the results and an outlook for

future directions opened by this work.

8.1 Summary

We first established the theoretical framework necessary for understanding quantum

information scrambling and quantum-enhanced metrology. In Ch. 1, we discussed how

the fast scrambling conjecture imposes a fundamental limit on the growth rate of entan-

glement entropy, t∗ ∝ logN , where N is the system size. Recognizing the importance
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of non-local interactions as a key factor for fast scrambling, we then introduced the mo-

tivation for studying scrambling dynamics in sparse coupling graphs. Then in Ch. 2,

we discussed various measures of quantum information scrambling. We introduced the

concepts of lightcones, entanglement entropy, and tripartite mutual information. In

Ch. 3 we reviewed the fundamental concepts revolving around phase estimation, in-

cluding quantum Fisher information, collective spin behaviour, and spin squeezing. We

discussed that the fundamental bound on the quantum Fisher information for separable

states is governed by the standard quantum limit, FQ = N , while for entangled states,

it is determined by the Heisenberg limit, FQ = N2. These three chapters provided the

foundation and framework for the analyses in the later chapters.

In Ch. 5, we explored how the notion of geometry, entanglement build-up, and light-

cones are closely related. To achieve this, we studied sparse Clifford circuits featuring

powers of two interactions, where the interactions are tuned using a parameter s to

either decay or grow with distance. Based on the scaling of the entanglement entropy

with system size, we were able to distinguish between ‘contiguous’ subregions in the

linear (Euclidean) and treelike (ultrametric) geometry. By tuning the interactions, we

showed that we can smoothly interpolate between these two geometries with a fast

scrambling regime near s = 0.

Having established the presence of a fast scrambling regime, we continued our investiga-

tion around the s = 0 region of these sparse models. In Ch. 6, we identified a dynamical

transition marking the onset of scrambling characterised by tripartite mutual informa-

tion. Particularly, we showed that as a function of the tunable power law exponent

s and at a time of O(1), the tripartite mutual information vanishes when s < sc and

becomes large and negative for s > sc, where sc is the critical value of the tunable pa-

rameter. We observed this transition in both sparse and densely coupled models; and

deterministic and random models. We also studied this transition analytically using an

associated Brownian circuit model, which can be mapped to the long-range Ising model

in a particular parameter regime. Additionally, we also estimated the mean-field critical
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exponent and found it to agree with our Clifford simulation results thus supporting the

presence of a critical point and hence a phase transition. This transition connects to

practical applications in noisy devices, especially in identifying regimes where resource

states can be generated on timescales that grow only logarithmically with the size of the

system so that the relevant system size can grow exponentially with the coherence time.

As established in Ch. 5 and Ch. 6, sparse coupling models are efficient entanglement

generators. In Ch. 7, we further explored the potential of these sparse coupling graphs

by investigating their utility in quantum-enhanced metrology. Through both numerical

and analytical methods, we showed that powers of two and hypercube coupling graphs

can replicate the dynamics of all-to-all spin models, such as the one-axis twisting model,

even for large system sizes. This enables the generation of metrologically relevant states

with only a logarithmic number of couplings, eliminating the need for all-to-all Ising

interactions. Additionally, we proposed a stroboscopic protocol, which can be imple-

mented on current neutral atom arrays using only tweezer shuffling, nearest-neighbour

Ising interactions, and local rotations to prepare states that exhibit Heisenberg scaling.

8.2 Outlook

While significant progress has been made, the journey ahead is filled with excitement,

as there remains much more to uncover and achieve. A number of compelling theo-

retical and computational questions emerge from the analysis in Ch. 6. Drawing from

Steve Gubser’s field theory work [45], we observe that a smooth interpolation between

linear and treelike geometries is indeed feasible. Our results show a transition near

s = 0 in these sparse models. This raises an important question: Can such a transition

also be detected in a continuous-time model? If so, could this transition be effectively

characterized by tripartite mutual information? Our initial investigations began by fo-

cusing on the tripartite mutual information in the transverse field Ising model, but we

encountered significant challenges in calculating this quantity for larger system sizes us-

ing MPS-MPO simulations. This leads us to the following question: How can we bypass

these computational problems? One potential approach involves leveraging the classi-
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cal shadows protocol to estimate state properties [272]. However, are there alternative

observables that could characterise this transition and be more efficiently computed for

larger system sizes? Additionally, extending this study to Fermionic models, alongside

the Brownian circuit model explored in Ch. 6, where analytical solutions are accessible,

could offer further insights.

Towards an experimental point of view, we proposed a model in Ch. 6 involving tweezer-

assisted shuffling operations, and nearest neighbour controlled Z gates for realising this

transition. Measuring the tripartite mutual information involves measuring entangle-

ment entropies of different subregions. In practice, the second-order Rényi entropy

can be measured in the cold atom setup by quantum interference of many-body twins

[248, 249] or by performing randomized measurements [252, 253]. For N = 16, we

would be required to measure the entanglement entropy of a maximum of 8 qubits. For

randomized measurements [252, 253], it is known that the number of measurements re-

quired for estimating the second-order Rényi entropy S(2)
A scales exponentially with the

size of the subregion A. Hence, by preparing a single copy of the qubit state of interest

at each time step, the estimation of entanglement entropy can be done using average

103 to 104 measurements. However, these measurements tend to be quite challenging

in practice, and it is important to think carefully about how a given protocol would

perform given the realities of dissipation and repetition rates in specific platforms [287].

One potential approach to this problem is to treat the system as an open quantum sys-

tem and analyse its dynamics using the master equation. This could involve studying

continuous-time analogues of the models, which we have begun to explore using the

transverse field Ising model. We leave further investigation of this for future work.

In Ch. 7, we proposed a stroboscopic protocol to generate states with Heisenberg scal-

ing. The same protocol can be used to create spin-squeezed states using these sparse

graphs. One major theoretical outlook for this work that will benefit the implemen-

tation in near-term experimental platform will be to check the robustness of these

protocols to dissipation and decoherence. The stroboscopic protocol proposed for the
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generation of metrologically useful states relies on three key components:

(1) dynamical optical tweezer reconfiguration which allows to shuffle the position of

the atoms,

(2) local rotations Rα around the α = x, y axis by a fixed angle π/2 as given in

Eq. (7.29),

(3) implementation of zz or Ising interactions, described by the Hamiltonian Hzz

given in Eq. (7.30) for a time interval of dt/2 = t∗/(2M).

The local rotations are readily achieved by using microwave or Raman pulses, while en-

tangling operations utilize controlled phase gates, successfully demonstrated in recent

Rydberg atom experiments [58, 288]. An important next step would be to theoretically

calculate the standard error rates that might arise when employing these state-of-the-

art processes. Understanding these errors will provide information about the reliability

and practicality of the protocol in experiments and help identify ways to improve it.

Additionally, while we have simulated spin models on a graph in this work, extending

these techniques to digital circuit models could open new avenues for fault-tolerant

preparation of metrologically relevant states.

From Einstein’s description of entanglement as “spooky action at a distance” to today’s

efforts in engineering complex forms of entanglement in atomic, molecular, and optical

systems, we’ve come a long way. These are exciting times, with analogue quantum

simulators revealing insights into complex phenomena [27] and significant work being

dedicated to creating fault-tolerant gates for digital simulators [289–291]. Over time,

these advancements will undoubtedly deepen our understanding of how entanglement

builds up, and help us observe exotic physics in new ways.
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Appendix A

Additional calculations for the

Brownian circuit model

In Ch. 6, we introduced the Brownian circuit model to study analytically the dynam-

ical transition marking the onset of scrambling. Here, we provide some additional

calculations to support the analysis in the main text of Sec. 6.3.

A.1 Formulation of the Basis Vectors

To construct the basis vectors for the singlet subspace introduced in Sec. 6.3.4, we

follow the approach outlined in [243, 244]. The basis states, as presented in the main

text, are given by

|↑〉 = 1

2
√
3
(2 |1010〉+ 2 |0101〉 − |0011〉 − |1100〉 − |1001〉 − |0110〉) ,

|↓〉 = 1

2
(|0011〉+ |1100〉 − |1001〉 − |0110〉) . (A.1)

To derive this, we use the pictorial representation given in Fig. A.1. For the |↓〉 state,

we consider a spin singlet state formed between replicas r = 1 and r = 3, and r = 2
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and r = 4, yielding

|↓〉 = 1√
2
(|01〉 − |10〉)1,3

1√
2
(|01〉 − |10〉)2,4, (A.2)

|↓〉 = 1

2
(|0011〉+ |1100〉 − |1001〉 − |0110〉) , (A.3)

where the subscript r, s identifies the replicas between which the singlet state is created.

Figure A.1: Illustration of Basis Vector Construction in the Singlet Subspace.
The basis vector |↑〉 is formed by considering singlet pairs between the combined replicas
r = 1 and r = 3, and r = 2 and r = 4. The combined replicas are highlighted with blue
shading, and the singlet pairings are represented by red lines. In contrast, the basis
vector |↓〉 is constructed by considering singlet pairs between replicas r = 1 and r = 3,
and r = 2 and r = 4. Additionally, we also show the saddle point solutions |ψ±〉 as
singlet pairs between corresponding replicas.

For the |↑〉 state, we first combine replicas r = 1 and r = 3 into a spin 1 system

and similarly combine replicas r = 2 and r = 4. These two spin-1 systems are then
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combined to form a singlet state, resulting in (see Fig. A.1)

|↑〉 = 1√
3
(|1− 1〉 − |00〉+ |−11〉), (A.4)

|↑〉 = 1√
3

(
|1010〉+ |0101〉 − 1

2
(|01〉+ |10〉)1,3(|01〉+ |10〉)2,4

)
, (A.5)

|↑〉 = 1

2
√
3
(2 |1010〉+ 2 |0101〉 − |0011〉 − |1100〉 − |1001〉 − |0110〉) . (A.6)

A.2 Derivation of the saddle points

In Sec. 6.3.4 of Ch. 6, we calculated the saddle point solutions of the action in Eq. (6.30).

Here, we provide a detailed derivation. The two key equations are

φai + φbi = 3J , (A.7)

φai − φbi = ±3J , (A.8)

for the lowest order in b. These equations present us with two cases, which we will

examine individually.

Case 1

For case 1, we take φai − φbi = 3J and subtract Eq. (A.8) from Eq. (A.7). This gives

φai = 3J and φb = φci = 0. Consequently, from Eq. (6.33), Eq. (6.34), and Eq. (6.35),

we obtain iF 12
i = iF 34

i = 3J /2. We then apply these constraints back in Eq. (6.28),

and we find

Bx
i =

√
3

2
(3J ) ,

By
i = 0,

Bz
i =

1

2
(3J ). (A.9)

This positions one of the saddle points |ψ+〉 as shown in Fig. 6.5.
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Case 2

Similarly, for Case 2, we consider φai − φbi = −3J . Performing the same analysis, we

find iF 14
i = iF 23

i = 3J /2. The corresponding fields are:

Bx
i = −

√
3

2
(3J ) ,

By
i = 0,

Bz
i =

1

2
(3J ). (A.10)

This positions |ψ−〉 as shown in Fig. 6.5. We also show that when σi = +1 we find

that G12
i = G34

i = −3/4 + O(b) with all other fields vanishing, while for σi = −1 we

find that G14
i = G23

i = −3/4 +O(b). This result can be easily seen in the lowest order

of b by using Eq. (6.31)

iF rsi = 2J (−1)r+s
∑
j

χijG
rs
j ,

iF rsi = 2J (−1)r+s
∑
j

[(1− b)δij + bAij ]G
rs
j ,

iF 12
i = 2J (−1)3

∑
j

[bAijG
12
j ] + 2J (−1)3(1− b)G12

i . (A.11)

Given that iF 12
i = iF 34

i , and iF 12
i =

φai
2 , where φai = 3J , we have:

3J
2

= −2J
∑
j

[bAijG
12
j ]− 2J (1− b)G12

i ,

G12
i ∼ −3

4
. (A.12)

A similar analysis may be done to calculate G14
i = G23

i = −3/4.
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Spectral gap calculations

In Sec. 7.3 of Ch. 7, we calculated the spectral gap of Hamiltonian to support our

study of how the sparse coupling graph emulates the all-to-all coupling graph. Here,

we derive the results stated in the main text. The isotropic Heisenberg Hamiltonian

HH = −1

4

∑
ij

χij ~σi. ~σj = −
∑
ij

χijh(i,j), (B.1)

where h(i,j) =
1

4
~σi. ~σj =

1

2

(
σ+i σ

−
j + σ−i σ

+
j

)
+

1

4
σzi σ

z
j (B.2)

has a ground state corresponding to all spins pointing along the same direction, for in-

stance |Φ0〉 = |0〉⊗N . As mentioned in the main text, the excitations can be constructed

by flipping a single spin, leading to a family of states given by |φk〉 = |00 . . . 01k0 . . .〉,

where k = 1, . . . , N . To derive Eq. (7.13) of how Heisenberg interaction acts on this

state, we consider the interaction Hamiltonian term-wise,

σ+i σ
−
j |φk〉 = δjk |φi〉 , (B.3)

σ−i σ
+
j |φk〉 = δik |φj〉 , (B.4)

and σzi σ
z
j |φk〉 = (1− 2(δik + δjk)) |φk〉 . (B.5)

Combining Eq. (B.3), Eq. (B.4), and Eq. (B.5), we obtain Eq. (7.13),

h(i,j) |φk〉 =
1

2
(δjk |φi〉+ δik |φj〉) +

1

4
(1− 2(δik + δjk)) |φk〉 . (B.6)
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Since χij = χji, we obtain

HH |φk〉 = −
∑
ij

χij

(
1

2
δjk |φi〉+

1

2
δik |φj〉

)
+

(
1

4
− 1

2
(δik + δjk)

)
|φk〉 , (B.7)

HH |φk〉 = (E0 +
∑
j

χkj) |φk〉 −
1

2

(∑
i

χik |φi〉+
∑
i

χkj |φj〉

)
, (B.8)

HH |φk〉 =

E0 +
∑
j

χkj

 |φk〉 −
∑
i

χik |φi〉 . (B.9)

As mentioned in the main text, in Sec. 7.3, we use the spin-wave theory to describe the

excitations around the ground state in this model. The spin waves are

|Φq〉 =
1√
N

N∑
k=1

eik
2π
N
q |φk〉 , with q = 1, . . . , N − 1. (B.10)

Next, we calculate HH |Φq〉, and for that, it is instructive to write

HH |Φq〉 =
1√
N

N∑
k=1

eik
2π
N
qHH |φk〉 , (B.11)

and using Eq. (B.9), HH |Φq〉 =
1√
N

N∑
k=1

eik
2π
N
q

E0 +
∑
j

χkj

 |φk〉 −
∑
i

χik |φi〉 .

(B.12)

This yields

HH |Φq〉 − E0 |Φq〉 =
1√
N

N∑
k=1

eik
2π
N
q

∑
j

χkj

(
1− ei(j−k)

2π
N
q
) |φk〉 . (B.13)

Now, we calculate the gap, and for that we take an inner product with |Φq〉, and this

yields

∆(q) =
1

N

∑
k

∑
j

(
χkj

(
1− ei

2πq
N

(j−k)
))

. (B.14)
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Let d = k − j, and using this ansatz in Eq. (B.14), we get

∆(q) =
1

N

N∑
k=1

(
N∑
d=1

χ(d)
(
1− e−i

2πqd
N

))
, (B.15)

∆(q) =
N∑
d=1

χ(d)
(
1− e−i

2πqd
N

)
. (B.16)

Let us consider N to be even and hence,

∆(q) =

N/2∑
d=1

χ(d)
(
1− e−i

2πqd
N

)
+

N∑
d=N/2+1

χ(d)
(
1− e−i

2πqd
N

)
. (B.17)

Due to the imposed periodic boundary condition and translational invariance in one

dimension, we have χ(d) = χ(N − d). Hence Eq. (B.17) is written as

∆(q) =

N/2∑
d=1

χ(d)
(
1− e−i

2πqd
N

)
+

N/2∑
d=1

χ(N − d)
(
1− e−i

2πq(N−d)
N

)
, (B.18)

∆(q) =

N/2∑
d=1

χ(d)
(
1− e−i

2πqd
N

)
+

N/2∑
d=1

χ(N − d)
(
1− ei

2πqd
N

)
, (B.19)

∆(q) =

N/2∑
d=1

χ(d)

(
2− 2 cos

(
2π

N
dq

))
, (B.20)

∆(q) = 2

N/2∑
d=1

χ(d)

(
1− cos

(
2π

N
dq

))
. (B.21)

However, when d = N/2, it is counted twice. To correct for this double counting, we

subtract it once, resulting in:

N even : ∆1(q) = 2

N
2∑

m=1

χ(d)

(
1− cos

(
2π

N
dq

))
− χ

(
N

2

)
(1− eiπq), (B.22)

which is exactly Eq. (7.18). A similar analysis for odd N gives Eq. (7.19). These are

the results appearing in Sec. 7.3.
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Dynamical realisation of a

Powers of Two (PWR2) graph

In this section, we briefly outline how to dynamically generate a PWR2 sparse cou-

pling graph as introduced in Sec. 5.3 and Sec. 7.2, following a method similar to that

described in Sec. 7.4 for the hypercube. The general setup is shown schematically in

Fig. 7.6(a).

We propose an iterative reshuffling of the atomic qubits, followed by global rotations,

and stroboscopic nearest-neighbour interactions according to Eq. (7.31). For the shuf-

fling procedure, we envisage a one-dimensional arrangement of the atoms (although

other geometries are also possible) with nearest-neighbour interactions 1. Fig. C.1 il-

lustrates the entire protocol for a system of N = 16 atoms, with log2(N) = 4 shuffling

stages. After nearest-neighbour Ising interactions (and local rotations) are applied ac-

cording to Eq. (7.30) at stage m, each chain is split into two subchains comprising the

odd and even sites, respectively. These subchains are then spatially separated to avoid

any interactions with each other, and form the new chain layout for stage m+1. In this

way, at each iteration step m = 0, 1, . . . , log2(N)−1, couplings between atoms separated

by a distance d = 2m are implemented (mathematically given by the Hamiltonian Hm).
1If periodic boundary conditions are applied, the atoms would need to be arranged in a circular

configuration.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

0 4 8 12 2 6 10 14 1 5 9 13 3 7 11 15

0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

i j = [Rx
i, je−iSz

i Sz
j dtRx†

i, j ][Ry
i, je

−iSz
i Sz

j dtRy†
i, j ]

m = 3

m = 2

m = 1

m = 0

Figure C.1: PWR2 Graph Using Dynamical Shuffling Operations. Shuffling
proposal to dynamically realise a PWR2 coupling graph using neutral atoms (grey
circles) in tweezer arrays, shown schematically here for N = 16 atoms. At each stage m,
the atoms are excited to the Rydberg state and interact strongly (black lines connecting
neighboring atoms) if they are within each other’s blockade radius (in this case, only
nearest neighbors). Each chain is then split into two subchains (even and odd sites,
respectively), as indicated by the green arrows, yielding the new chain layout for stage
m+1. The interaction Hamiltonian is applied in log2(N) steps, effectively implementing
a first-order Trotter decomposition of the spin-interaction Hamiltonian as given in
Eq. (7.31).

After the final shuffling stage, the atoms are brought back into the original layout from

stage m = 0, completing one full time step in the evolution under the PWR2 coupling

geometry.
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