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Abstract

Stochastic modelling of interest rates is very important for calibrating and evaluating

expected payoffs of interest-rate products. Many well-known univariate linear drift

stochastic models have been proposed to explain interest rate dynamics. However, by

testing parametric models by comparing their implied parametric density to the same

density estimated non-parametrically, Ait-Sahalia revealed all the existing univari-

ate linear drift stochastic models could not explain well the dynamics of Euro-dollar

interest rates. As a result, he proposed a new class of highly non-linear stochastic

interest rate models. The original Ait-Sahalia interest rate model has been found to

have considerable use for modelling time series evolution of interest rates. However,

this model does not possess certain specifications to provide adequate descriptions

of interest rates against unexpected empirical phenomena such as volatility ’skews’

and ’smiles’, jump behaviour, market regulatory lapses, economic crisis, financial

clashes, political instability, among others collectively. In this thesis, we propose a

modified version of this model by incorporating additional features to help collect-

ively describe these empirical phenomena adequately. However, the proposed model

does not have explicit solution. Hence, we split it into three stochastic interest rate

models and construct a new implementable truncated EM scheme to approximate

them numerically. Further, we study finite time strong convergence of the truncated

EM solutions to the exact solutions of the three models under the local Lipschitz

condition plus the Khasminskii-type condition. Moreover, we perform numerical sim-

ulations to validate the strong convergence results and justify these results within

Monte Carlo frameworks to evaluate expected payoffs of some financial products.
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2.5 Itô formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Stochastic differential equations (SDEs) . . . . . . . . . . . . . . . . . 27

2.7 Poisson processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 SDEs with Poisson jumps . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 Markov processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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General notations

positive : > 0.

nonpositive : ≤ 0.

negative : < 0.

nonnegative : ≥ 0.

a.s. : almost surely, or with probaility 1.

∅ : empty set

1A : the indicator function of a set A i.e.

1A(x) = 1 if x ∈ A or otherwise 0.

σ(C) : the σ-algebra generated by C.

a ∧ b : min {a, b}.

a ∨ b : max {a, b}.

f : A→ B : the mapping f from A to B.

R = R1 : the real line.

R+ : the set of all nonnegative real numbers, i.e. R+ ∈ [0,∞).

Rd : the d-dimensional Euclidean space.

Rd : = {x ∈ Rd : xi > 0, 1 ≤ i ≤ d}, i.e. the positive cone.

B : the Borel-σ-algebra on Rd.

|x| : the Euclidean norm of a vector x.

C(D;Rd) : the family of continuous Rd-valued functions defined on D.

ix



x

Cm(D;R) : the family of continuous m−times

differentiable Rd-valued functions defined on D.

Cm
0 (D;Rd) : the family of functions in Cm(D;R)

with compact support in D.

C2,1(D × R+;R) : the family of all real-valued functions

H(x, t) defined on D × R+

which are continuously twice differentiable

in x ∈ D and once differentiable in t ∈ R+.

Hx : = (Hx1 , · · · , Hxd) =
(∂H
∂x1

, · · · , ∂H
∂xd

)
.

Hxx : = (Hxixj)d×d =
( ∂2H

∂xi∂xj

)
d×d

.

||ξ||Lp : (E|ξ|p)1/p.

Lp(Ω;Rd) : the family of Rd-valued

random variables ξ with E|ξ|p <∞.

LpFt
(Ω;Rd) : the family of Rd-valued Ft-measurable

random variables ξ with E|ξ|p <∞.

C([−τ, 0];Rd) : the space of all continuous Rd-valued functions ϕ

defined on [−τ, 0] with a norm ||ϕ|| = sup
−τ≤θ≤0

|ϕ(θ)|.

LpF([−τ, 0];Rd) : the family of all C([−τ, 0];Rd)-valued random variables φ

such that E||φ||p <∞.

LpFt
([−τ, 0];Rd) : the family of all Ft-measurable C([−τ, 0];Rd)-valued

random variables φ such that E||φ||p <∞.

Cb
Ft

([−τ, 0];Rd) : the family of all Ft-measurable bounded

C([−τ, 0];Rd)-valued random variables.

Lp([a, b];Rd) : the family of Borel measurable functions h : [a, b]→ Rd



xi

such that

∫ b

a

|h(t)|pdt <∞.

Lp([a, b];Rd) : the family of Rd-valued Ft-adapted

processes {f(t)}a≤t≤b such that

∫ b

a

|f(t)|pdt <∞.

Mp([a, b];Rd) : the family of processes {f(t)}a≤t≤b ∈ Lp([a, b];Rd)

such that E
∫ b

a

|f(t)|pdt <∞.

Lp(R+;Rd) : the family of processes {f(t)}t≥0 such that for every T > 0,

{f(t)}0≤t≤T ∈ Lp([0, T ];Rd).

Mp(R+;Rd) : the family of processes {f(t)}t≥0 such that for every T > 0,

{f(t)}0≤t≤T ∈Mp([0, T ];Rd).

Other notations will be explained where they appear.



Chapter 1

Introduction

The probabilistic nature of interest rates is important since it affects every nature of

interest-rate products. In several pricing applications, interest rate is regarded as a

deterministic function of time. This is usually motivated under the assumption that

the variability of interest rates contributes to the price of financial products such

as equity or FX options by a smaller order of magnitude based on the underlying’s

movements. However, when we deal with interest-rate products, the main variability

of importance is that of the interest rates themselves. This gave rise to a new ap-

proach for modelling random evolution of interest rates through time with stochastic

models (see, e.g., [1, 2] and references cited therein).

Several well-known univariate linear drift stochastic models have been proposed

over the years to model dynamics of stochastic interest rates. These models, for

example, include Black and Scholes (1973) in [3], Merton (1973) in [4], Vasicek (1977)

in [5], Dothan (1978) in [6], Brennan and Schwartz (1980) in [7] and, Cox, Ingersoll

and Ross (CIR) (1980 and 1985) in [8] and [9] respectively. These models constitute

the popular mean-reverting process with parameter θ ∈ [1/2, 1]. However, it has

been espoused in some empirical studies that the most successful continuous-time

models for explaining the dynamics of interest rate are those that allow the volatility

of interest changes to be highly sensitive to the level of the rate. By applying χ2

tests to US treasury bill data, those models with θ < 1 were rejected in favour of

1



Chapter 1 2

those with θ ≥ 1. For instance, using the generalised moment method, Chan et al.

(1992) in [10] revealed that θ = 1.449. With the same data, Nowman (1997) in [11]

used the Gaussian estimation method to also estimate θ = 1.361. Hence it becomes

more evident empirically that θ > 1. Is it in this spirit that Lewis (2000) in [12]

generalised all these models as a non-linear mean-reverting-theta process of the form

dx(t) = α(µ− x(t))dt+ σx(t)θdB(t) (1.1)

for any t > 0 with initial data x(0) = x0, where α, µ and σ are constants, θ > 1 and

B(t) is a scalar Brownian motion. This SDE model is widely used to explain time-

series evolution of stochastic interest rate, asset price, volatility and other financial

quantities. There have been several extensive literature concerning with SDE (1.1)

with parametric restrictions. For example, Mao [17] studied analytical properties and

strong convergence theory of the numerical solutions of SDE (1.1) for θ ∈ [1/2, 1].

Higham and Mao [15] examined the strong convergence of Monte Carlo simulations

of SDE (1.1) for θ = 1/2. Wu et al. [16] established analytical properties of SDE

(1.1) and convergence in probability of the EM approximate solutions for θ > 1.

Ait-Sahalia discovered through empirical studies that all the existing univariate

linear drift models could not explain well the dynamics of Euro-dollar interest rates.

He then proposed in [18] a new class of stochastic interest rate model for capturing

time-series evolution of term structure of interest rates. This model is governed by

a highly non-linear SDE of the form

dx(t) = (α−1x(t)−1 − α0 + α1x(t)− α2x(t)2)dt+ σx(t)θdB(t), (1.2)

on t ≥ 0 with initial data x(0) = x0, where α−1, α0, α1, α2 > 0 and B(t) is a scalar

Brownian motion. Similarly, based on the empirical evidence, he retained θ > 1.

In his seminal paper, he used Feller test to show conditions under which almost

surely the solution of SDE (1.2) will not explode to infinity in finite time. The SDE

(1.2) has been studied extensively by many authors. For example, Cheng [19] studied

analytical properties including positivity of solution and finite moments of SDE (1.2)
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and established convergence of EM approximate solutions to the exact solution in

probability. Szpruch et al. in [20] generalised SDE (1.2) to

dx(t) = (α−1x(t)−1 − α0 + α1x(t)− α2x(t)ρ)dt+ σx(t)θdB(t), (1.3)

for any t > 0, ρ > 1, with initial data x(0) = x0, and established strong convergence

of the implicit EM method as well as preservation of positive approximate solutions

of this method when a monotone condition is fulfilled. Dung [21] in 2016 derived

explicit estimates for tail probabilities of the solutions to the generalised form of this

model. Deng et al. [13] in 2019 studied analytical properties of the generalised form

of this model with Poisson-jump and revealed weak convergence of the explicit EM

method.

Despite of the wide applications of the aforementioned linear drift stochastic mod-

els, they may not be well-specified adequately to fully explain financial variables

against certain types of phenomena which have been observed empirically from most

financial markets. For example, phenomena such as volatility ’skews’ and ’smiles’,

economic crisis, financial clashes and tail distribution or jump behaviour which have

been observed empirically from various sources of financial data may not be ad-

equately explained by these stochastic models (e.g., see [26,35,46,51]).

Several research works have been devoted in recent times to adequately explain

dynamical behaviours of financial variables against unexpected occurrences of these

empirical phenomena. For instance, the shortcoming of the continuous-time model of

Black-Scholes [3] in describing convex phenomena of implied volatility exhibited by

most historical financial data led to the underlying assumption of constant volatility

to be questioned. In particular, this assumption fails to describe volatility ’skews’

and ’smiles’ which are typically important for evaluating complex derivative instru-

ments. However, many empirical results found that volatility can be regarded as an

endogenous factor and any good financial model should possess important charac-

teristic of reproducing volatility ’smiles’ and ’skews’ as evidenced in option markets
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(e.g., see [23,26]). There are several extensive literature where stochastic models with

inherent features of past dependency have been used to describe volatility ’smiles’

and ’skews’ adequately. For example, Kind et al. justified in [25] that the instant-

aneous volatility is modelled in terms of the sample variance of the log-prices over

a past interval of fixed length. Mao and Sabanis [26] also extended the geometric

Brownian motion (GBM) to a delay geometric Brownian motion (DGBM) described

by a stochastic delay differential equation (SDDE), where the volatility is modelled

as a function of delay in asset price and justified it as a rich alternative for modelling

financial quantities in a complete market setting.

Additionally, it has also been well known that asset prices admit jumps in response

to lack of information or unexpected catastrophic news. This phenomenon typically

generates price vibrations with larger quantiles than normal (see [46]). Apparently,

this violates the efficient market hypothesis that all available information are reflected

in current asset prices. There are several existing rich literature where the authors

employed jump-diffusions models to describe jump behaviour of asset prices arising

from lack of information or unexpected catastrophic news (e.g., see [33–36]).

Furthermore, hybrid models driven by finite-state Markovian chains have also

been considerably used to model uncertainty in modern financial and economic sys-

tems. These models have a major characteristic of randomly switching between finite

number of regimes in anticipation to unexpected structural changes of unobservable

underlying economic or financial settings and mechanisms. The reader is referred,

for instance, to [48], [49] and [51] for relevant coverage of applications of hybrid

stochastic models in finance.

Interestingly, while the SDE (1.3) enjoys significant patronage from researchers,

academic experts and, market practitioners and participants, it may also not pos-

sess inherent features to provide full descriptions of dynamical behaviours of interest

rates against unexpected joint effects of extreme volatility, jumps, financial clashes,

economic crisis, regulatory lapses, political instability, among others. To help de-
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scribe joint effects of these empirical phenomena adequately, it may be appropriate

to specify SDE (1.3) as a hybrid SDDE with Poisson-driven jump governed by
dx(t) = (α−1(r(t))x(t−)−1 − α0(r(t)) + α1(r(t))x(t−)− α2(r(t))x(t−)ρ)dt

+ϕ(x((t− τ)−), r(t))x(t−)θdB(t) + α3(r(t))x(t−)dN(t), t > 0,

x(t) = ξ(t), r(0) = r0, t ∈ [−τ, 0],

(1.4)

where ρ, θ > 1, r(·) is a Markov chain with finite space S = {1, 2, · · · , N}, α−1, α0,

α1, α2 and α3 are functions of r(·), the volatility function ϕ(·, ·) depends on r(·) and

x(t− τ), τ > 0 and x(t− τ) denotes delay in x(t). Moreover, x(t−) = lims→t− x(s),

N(t) is a scalar Poisson process independent of a scalar Brownian motion B(t), with

the compensated Poisson process given by Ñ(t) = N(t) − λt, where λ is the jump

intensity.

The SDDE (1.4) integrates three main unique specifications under a unified frame-

work. For instance, the delayed volatility function may be useful in capturing ’smiles’

and ’skews’ of market implied volatility. On the other hand, the Poisson-driven jump

may account for responses of interest rates to discontinuous random effects gener-

ated in connection with unexpected catastrophic news or lack of information. The

Markovian switching term may address effects of unpredictable market shocks which

may arise from abrupt changes such us regulatory lapses, financial clashes, economic

crisis, political instability or unobservable states of the underlying market mechan-

isms or frameworks.

The solution to SDDE (1.4) obviously cannot be found by a closed-form formula.

It is also obvious the drift and diffusion terms of SDDE (1.4) are of super-linear

growth. This is further complicated by the stiff function α−1(r(t))x(t)−1 in the drift

which may explode to infinity in finite time around the origin, and the delayed volat-

ility function ϕ(x((t−τ)−), r(t)) in the diffusion term. As a result, we cannot employ

the classical global Lipschitz-based techniques for numerical analysis of SDDE (1.4).

Unfortunately, to the best of our knowledge, SDDE (1.4) has never been theor-
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etically and numerically analysed in any existing research literature in the strong

sense. Hence, we recognise the need to fill these important gaps by theoretically and

numerically investigating feasibility of this model from viewpoint of financial applic-

ations such as pricing and evaluating expected payoffs of path-dependent financial

products. However, it is widely known that the Monte Carlo approach is one of

the most powerful numerical methods used to price and evaluate expected payoffs

of many path-dependent financial products quickly and the strong convergence of

numerical approximations guarantees convergence in Monte Carlo simulations (e.g.,

see [15, 61]).

Meanwhile, the well-known existing strong convergence theory for explicit Euler

scheme required the drift and diffusion coefficients of SDEs to be globally Lipschit-

zian (e.g., see [17, 60] for detailed coverage). Higham et al. (2002) in [31] estab-

lished strong convergence theory for explicit EM scheme for SDEs with non-globally

Lipschitz coefficients under the local Lipschitz condition plus the linear growth con-

dition. Hutzenthaler et al. revealed later in [22] that the explicit EM scheme diverges

in strong mean-square sense at finite point for SDEs with super-linear coefficients.

This unlocked a new chapter for development of suitable class of efficient numer-

ical schemes with cheap computational cost as modified versions of the explicit EM

scheme for investigation of convergent approximations of SDEs with super-linear

coefficients. For instance, the tamed EM method was developed in 2012 to approx-

imate SDE models with one-sided Lipschitz drift coefficient and the linear growth

diffusion coefficient. In 2013, the stopped EM method was also developed to approx-

imate SDE models with non-globally Lipschitz continuous coefficients. Recently, Mao

in [27] developed a new explicit numerical method called the truncated EM method,

for SDE models with non-globally Lipschitz continuous coefficients. Moreover, the

truncated EM method has been further applied in various literature. For example,

the authors in [28] and [40] applied the truncated EM method to numerically study

non-linear SDE models with constant delay and Poisson-driven jumps respectively.

For further existing rich literature in connection with truncated EM methods, the

reader is referred, for instance, to [41–44].
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In this thesis, we split SDDE (1.4) into three sets of stochastic interest rate mod-

els. We examine analytical properties of the three proposed models. Then, we

construct several new truncated EM techniques to approximate these three pro-

posed models and explore Lp(p ≥ 2) finite time strong convergence of the truncated

EM approximate solutions to the exact solutions under the local Lipschitz condition

plus the Khasminskii-type condition, where p is a parameter in connection with the

Khasminskii-type condition. We perform some numerical examples to validate the

strong convergence results established. These results are then applied within Monte

Carlo settings to justify calibration and valuation of some financial products such as

a debt and a path-dependent derivative instruments. However, we accomplish these

tasks in [39], [57] and [58], and extract the results to form Chapters 3-6 of the thesis.

The rest of the thesis is organised as follows: We provide mathematical settings and

frameworks in Chapter 2. Chapter 3 is extracted from the paper The truncated EM

numerical method for generalised Ait-Sahalia-type interest rate model with delay, [39],

which I co-authored with my supervisor, Prof. Mao Xuerong. In this chapter,

we examine analytical properties of the Ait-Sahalia-type interest rate model with

delay and prove that the truncated EM approximation of this model is convergent

when the step size is sufficiently small. Chapter 4 is extracted from the paper

Delay stochastic interest rate model with jump and strong convergence in Monte

Carlo simulations, [57], which is solely authored. In this chapter, we investigate

analytical properties of the delay Ait-Sahalia-type interest rate model with Poisson-

jump and employ the truncated EM techniques to establish the strong convergence

results. Chapter 5 is extracted from the paper Numerical approximation of hybrid

Poisson-jump Ait-Sahalia-type interest rate model with delay, [58], which is also solely

authored. In this chapter, we study analytical properties of the hybrid Poisson-jump

Ait-Sahalia-type interest rate model with delay and show that the truncated EM

approximate solutions converge strongly to the exact solution of this model. The

financial applications in Chapter 6 are extracted from the three papers. We conclude

the thesis with discussions involving drawbacks, limitations, further applications and

future extensions of the theoretical and numerical findings in Chapter 7.



Chapter 2

Preliminaries

We need relevant mathematical apparatus to make this thesis self-sufficient. In this

chapter, we discuss basic concepts of stochastic analysis. We begin by introducing

some concepts from probability theory. We then exploit the fundamental concepts of

Brownian motion, stochastic integrals, Itô calculus, stochastic differential equations,

Poisson and Markov processes in connection with stochastic differential equations,

and proceed to recall some useful well-known inequalities in the last section. We

borrowed the contents of this chapter from [17], [60] and [55].

2.1 Basic probability concepts

Let us now present the key mathematical concepts of probability theory. If Ω is a

given set, then the σ-algebra F on Ω is a family of subsets of Ω with the following

properties:

i. ∅ ∈ F , where ∅ denotes the empty set;

ii. A ∈ F ⇒ AC ∈ F , where AC = Ω− A is the complement of A in Ω.;

iii. {Ai}i≥1 ∈ F ⇒ ∪∞i=1Ai ∈ F .

The pair (Ω,F) is called a measurable space, and the elements of F is henceforth

called F-measurable sets instead of events. If C is a family of subsets of Ω, then

8
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there exists a smallest σ-algebra σ(C) on Ω which contains C. This σ(C) is called the

σ-algebra generated by C. If Ω = Rd and C is the family of all open sets in Rd, then

Bd = σ(C) is called the Borel σ-algebra and the elements of Bd are called the Borel

sets.

A real-valued function X : Ω→ R is said to be F -measurable if

{ω : X(ω) ≤ a} ∈ F for all a ∈ R.

The function X is also called a real-valued (F -measurable) random variable. An

Rd-valued function X(ω) = (X1(ω), X2(ω), · · · , Xd(ω))T is said to be F -measurable

if all the elements Xi are F -measurable. Similarly, a d ×m-matrix-valued function

X(ω) = (Xij(ω))d×m is said to be F -measurable if all the elements Xij are F -

measurable.

The indicator function 1A of a set A ⊂ Ω is defined by

1A(ω) =

1 for ω ∈ A

0 for ω /∈ A.

The indicator function 1A is F -measurable if and only if A is an F -measurable set, i.e.

A ∈ F . If the measurable space is (Rd,Bd), a Bd-measurable function is then called a

Borel measurable function. More generally, let (Ω′,F ′) be another measurable space.

A mapping X : Ω→ Ω′ is said to be (F ,F ′)-measurable if

{ω : X(ω) ∈ A′} ∈ F for all A′ ∈ F .

The mapping X is then called an Ω′-valued (F ,F ′)-measurable (or simply, F -measurable)

random variable.
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Let X : Ω → Rd be any function. The σ-algebra σ(X) generated by X is the

smallest σ-algebra on Ω containing all the sets {ω : X(ω) ∈ U}, U ⊂ Rd open. That

is

σ(X) = σ({ω : X(ω) ∈ U} : U ⊂ Rd open).

Clearly, X will then be σ(X)-measurable and σ(X) is the smallest σ-algebra with this

property. If X is F -measurable, then σ(X) ⊂ F , i.e. X generates a sub-σ-algebra

of F . If {Xi : i ∈ I} is a collection of Rd-valued functions, define

σ(Xi : i ∈ I) = σ
(⋃
i∈I

σ(Xi)
)

which is called the σ-algebra generated by {Xi : i ∈ I}. It is the smallest σ-algebra

with respect to which every Xi is measurable.

A probability measure P on a measurable space (Ω,F) is a function P : F → [0, 1]

such that

i. P(∅) = 0;

ii. P(Ω) = 1;

iii. For any disjoint sequence {Ai}i≥1 ⊂ F (i.e. Ai ∩ Aj = ∅ if i 6= j)

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai).

The triple (Ω,F ,P) is called a probability space.

If (Ω,F ,P) is a probability space, we set

F̄ = {A ∈ Ω : ∃B,C ∈ F such that B ⊂ A ⊂ C, P(B) = P(C)}.

Then F̄ is a σ-algebra and is called the completion of F . If F = F̄ , the probability

space (Ω,F ,P) is said to be complete. In the sequel, we let (Ω,F ,P) denote a given
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complete probability space.

A random variable X is an F -measurable function X : Ω → Rd. Every random

variable induces a probability measure µx on the Borel measurable space (Rd,Bd),
defined by

µX(B) = P{ω : X(ω) ∈ B} for B ∈ Bd,

and µX is called the distribution of X.

If X is a real-valued random variable and is integrable with respect to the prob-

ability measure P, then the number

EX =

∫
Ω

X(ω)dP(ω) =

∫
Rd

xdµX(x)

is called the expectation of X with respect to P. The number

V(X) = E(X − E(X))2

is called the variance of X.

More generally, if f : Rd → Rm is Borel measurable and
∫

Ω
|f(X(ω))|dP(ω) <∞,

then we have

Ef(X) =

∫
Ω

f(X(ω))dP(ω) =

∫
Rd

f(x)dµX(x).

The number E|X|p for p > 0 is called the pth moment ofX i.e. E|X|p =
∫

Ω
|X(ω)|pdP(ω).

For p ∈ (0,∞), let Lp = Lp(Ω;Rd) be the family of Rd-valued random variables X

with E|X|p < ∞. In L1, we have |EX| ≤ E|X|. Moreover, the following three

inequalities hold true.

i Hölder’s inequality: if p > 1, 1/p+ 1/q = 1, X ∈ Lp and Y ∈ Lq, then

|E(XTY )| ≤ (E|X|p)1/p + (E|Y |q)1/q;
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ii Minkovski’s inequality: if p > 1 and X, Y ∈ Lp, then

(E|X + Y |p)1/p ≤ (E|X|p)1/p + (E|Y |p)1/p;

iii Chebyshev’s inequality: if c > 0, p > 0 and X ∈ Lp, then

P{ω : |X(ω)| ≥ c} ≤ 1

cp
E|X|p.

A simple application of Hölder’s inequality implies

(E|X|r)1/r ≤ (E|X|p)1/p

if 0 < r < p <∞, X ∈ Lp.

Let X and Xk, k ≥ 1, be Rd-valued random variables. The following four conver-

gence concepts are very important:

a. If there exists a P-null set Ω0 ∈ F such that for every ω /∈ Ω0, the sequence

{Xk(ω)} converges to X(ω) in the usual sense in Rd, then {Xk} is said to

converge to X almost surely or with a probability 1, and we write

lim
k→∞

Xk = X a.s.

b. If for every ε > 0, P{ω : |Xk(ω) − X(ω)| > ε} → 0 as k → ∞, then {Xk} is

said to converge to X stochastically or in probability.

c. If Xk and X belong to Lp and E|Xk −X|p → 0, then {Xk} is said to converge

to X in pth moment or in Lp.

d. If for every real-valued continuous bounded function g defined on Rd,

lim
k→∞

Eg(Xk) = Eg(X),
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then {Xk} is said to converge to X in distribution.

These convergence concepts have the following relationship:

convergence in Lp

⇓

a.s. convergence⇒ convergence in probability

⇓

convergence in distribution

Furthermore, a sequence converges in probability if and only if every subsequence

of it contains an almost surely convergent subsequence. A sufficient condition for

lim
k→∞

Xk = X a.s.

is the condition
∞∑
k=1

E|Xk −X|p <∞ for some p > 0.

Let now state two very important integration convergence theorems.

Theorem 2.1.1. (Monotonic convergence theorem) If {Xk} is an increasing

sequence of non-negative random variables , then

lim
k→∞

EXk = E
(

lim
k→∞

Xk

)
.

Theorem 2.1.2. (Dominated convergence theorem) Let p ≥ 1, {Xk} ⊂ Lp(Ω;Rd)

and Y ∈ Lp(Ω;R). Assume that |Xk| ≤ Y a.s. and {Xk} converges to X in probab-

ility. Then X ∈ Lp(Ω;Rd), {Xk} converges to X in Lp, and

lim
k→∞

EXk = EX.

When Y is bounded, this is referred to as the bounded convergence theorem.
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Let I be an index set. A collection of sets {Ai : i ∈ I} ⊂ F is said to be

independent if

P(Ai1 ∩ Ai2 · · · ∩ Aik) = P(Ai1)P(Ai2) · · ·P(Aik)

for all possible choices of indices i1, i2, · · · , ik ∈ I. Two sub-σ-algebras F1 and F2 of

F are said to be independent if

P(A1 ∩ A2) = P(A1)P(A2) for all A1 ∈ F1 and A2 ∈ F2.

A collection of sub-σ-algebras {Fi : i ∈ I} is said to be independent if for every

possible choice of indices i1, i2, · · · , ik ∈ I,

P(Ai1 ∩ Ai2 · · · ∩ Aik) = P(Ai1)P(Ai2) · · ·P(Aik)

holds for all Ai1 ∈ Fi1 , Ai2 ∈ Fi2 ,· · · ,Aik ∈ Fik. A family of random variables

{Xi : i ∈ I} (whose ranges may differ for different values of the index) is said to be

independent if the σ-algebras σ(Xi), i ∈ I generated by them are independent. For

example, two random variables X : Ω −→ Rd and Y : Ω −→ Rm are independent if

and only if

P{ω : X(ω) ∈ A, Y (ω) ∈ B} = P{ω : X(ω) ∈ A}P{ω : Y (ω) ∈ B}

holds for all A ∈ Bd, B ∈ Bm. If X and Y are two independent real-valued integrable

random variables, then XY is also integrable and

E(XY ) = EX EY.

If X, Y ∈ L2(Ω;R) are uncorrelated then

V(X + Y ) = V(X) + V(Y ).

If the X and Y are independent, they are uncorrelated. If (X, Y ) has a normal
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distribution, then X and Y are independent if and only if they are uncorrelated.

Let {Ak} be a sequence of sets in F . Define the upper limit of the sets by

lim
k→∞

Ak = {ω : ω ∈ Ak for infinitely many k} =
∞⋂
i=1

∞⋃
k=i

Ak.

Clearly, it belongs to F . With regard to its probability, we have the following well-

known Borel-Cantelli lemma.

Lemma 2.1.3. (Borel-Cantelli’s lemma)

i. If {Ak} ∈ F and
∑∞

k=1 P(Ak) <∞, then

P
(

lim sup
k→∞

Ak

)
= 0.

That is, there exists a set Ω0 ∈ F with P(Ω0) = 1 and an integer-valued random

variable k0 such that for every ω ∈ Ω0 we have ω /∈ Ak whenever k ≥ k0(ω).

ii. If the sequence {Ak} ⊂ F is independent and
∑∞

k=1 P(Ak) =∞, then

P
(

lim sup
k→∞

Ak

)
= 1.

That is, there exists a set Ωθ ∈ F with P(Ωθ) = 1 such that for every ω ∈ Ωθ,

there exists a sub-sequence {Aki} such that the ω belongs to every Aki.

Let A,B ∈ F with P(B) > 0. The conditional probability of A under condition B

is

P(A|B) =
P(A ∩B)

P(B)
.

Let now present a more general concepts of conditional expectation. Let X ∈
L1(Ω;R). Let G ⊂ F be a sub-σ-algebra of F . So, (Ω,G) is a measurable space.

In general, X is not G-measurable. Let seek an integrable G-measurable random
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variable Y such that

E(IGY ) = E(IGX),

that is, for all G ∈ G ∫
G

Y (ω)dP(ω) =

∫
G

X(ω)dP(ω).

By the Randon-Nikodym theorem, there exists one such Y , almost surely unique.

This is called the conditional expectation of X under the condition G, and is given by

Y = E(X|G).

If G is the σ-algebra generated by a random variable Y , we write

E(X|G) = E(X|Y ).

Now consider a collection of sets {Ak} ∈ F with⋃
k

Ak = Ω, P(Ak) > 0, Ak ∩ Ai = ∅ if k 6= i.

Let G = σ({Ak}), i.e. G is generated by {Ak}. Then E(X|G) is a step function on Ω

given by

E(X|G) =
∑
k

1Ak
E(1Ak

X)

P(Ak)
.

In other words, if ω ∈ Ak,

E(X|G)(ω) =
E(1Ak

X)

P(Ak)
.

It then follows from the definition that

E(E(X|G)) = E(X)

and

|E(X|G)| ≤ E(|X||G) a.s.
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2.2 Stochastic processes

Let (Ω,F ,P) be a probability space. A filtration is a family {F}t≥0 of increasing

sub-σ-algebras of F (i.e. Ft ⊂ Fs ⊂ F for all 0 ≤ t < s <∞). The filtration is said

to be right continuous if Ft =
⋂
s>tFs for all t ≥ 0. When the probability space is

complete, the filtration is said to satisfy the usual conditions if it is right continuous

and F0 contains all P-null sets.

From now on, unless otherwise specified, we let {Ω,F ,P} be a complete probability

space with a filtration {Ft}t≥0 satisfying the usual conditions. We also define F∞ =

σ(
⋃
t≥0Ft), i.e. the σ-algebra generated by

⋃
t≥0Ft.

A family {Xt}t∈I of Rd-valued random variables is called a stochastic process with

parameter set or index set I and state space Rd. The parameter set I is usually the

halfline R+ = [0,∞), but it may also be an interval [a, b], the non-negative integers

or even subsets of Rd. For each fixed t ∈ I, we have a random variable

Ω 3 ω → Xt(ω) ∈ Rd.

Moreover, for each fixed ω ∈ Ω, we have a function

I 3 t→ Xt(ω) ∈ Rd

which is called a sample path of the process, and we shall write X.(ω) for the path.

Mostly, it is convenient to write X(t, ω) instead of Xt(ω), and the stochastic process

may be regarded as a function of two variables (t, ω) from I×Ω to Rd. We often write

stochastic process {Xt}t≥0 as {Xt}, Xt or X(t). In this work, we use the variable

x(t) to denote a stochastic process.

Let {Xt}t≥0 be an Rd-valued stochastic process. The stochastic process is said to

be continuous (resp. right continuous, left continuous) if for almost all ω ∈ Ω, the

function Xt(ω) is continuous (resp. right continuous, left continuous) on t ≥ 0. It
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is said to be càdlàg (right continuous and left limit) if it is right continuous and for

almost all ω ∈ Ω, the left limit lims↑tXs(ω) exists and is finite for all t > 0. It is

said to be integrable if for every t ≥ 0, Xt is an integrable random variable. It is

said to be {Ft}-adapted if for every t ≥ 0, Xt is Ft-measurable. It is said to be

measurable if the stochastic process regarded as a function of two random variables

(t, ω) from R+×Ω to Rd is B(R+)×F -measurable, where B(R+) is the family of all

Borel sub-sets of R+.

A random variable τ : Ω→ [0,∞] (it may take the value∞) is called {Ft} stopping

time if {ω : τ(ω) ≤ t} ∈ Ft for any t ≥ 0.

Theorem 2.2.1. If {Xt}t≥0 is a progressively measurable process and τ is a stopping

time, then XτI{τ<∞} is Fτ -measurable. In particular, if τ is finite, then Xτ is Fτ -

measurable.

Theorem 2.2.2. Let {Xt}t≥0 be an Rd-valued càdlàg {Ft}-adapted process, and D

an open subset of Rd. Define

τ = inf{t ≥ 0 : Xt /∈ D},

where we use the convention inf ∅ = ∞. Then τ is an {Ft}-stopping time, and is

called the first exit time from D. Moreover, if ρ is a stopping time, then

θ = inf{t ≥ ρ : Xt /∈ D}

is also called {Ft}-stopping time, and is called the first exit time from D after ρ.

An Rd-valued {Ft}-adapted integrable process {Mt}t≥0 is called a martingale with

respect to {Ft} (or simply, martingale) if

E(Mt|Fs) = Ms a.s. for all 0 ≤ s < t <∞.

Note every martingale has a càdlàg modification since we always assume that the

filtration {Ft} is right continuous.
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If X = {Xt}t≥0 is a progressively measurable process and τ is a stopping time,

then Xτ = {Xτ∧t}t≥0 is called a stopped process of X. The following is the well-known

Doob martingale stopping theorem.

Theorem 2.2.3. Let {Mt}t≥0 be an Rd-valued martingale with respect to {Ft}, and

let θ, ρ be two finite stopping times. Then

E(Mθ|Fρ) = Mθ∧ρ a.s.

In particular, if τ is a stopping time, then

E(Mτ∧t|Fs) = Mτ∧s a.s.

holds for 0 ≤ s < t <∞. That is, the stopped process M τ={Mτ∧t} is still martingale

with respect to the same filtration {Ft}.

A stochastic process X = {Xt}t≥0 is called square-integrable if E|Xt|2 < ∞ for

every t ≥ 0. If M = {Mt}t≥0 is a real-valued square-integrable continuous mar-

tingale, then there exists a unique continuous integrable adapted increasing process

denoted by {〈M,M〉t} such that {M2
t − 〈M,M〉t} is a continuous martingale van-

ishing at t = 0. The process {〈M,M〉t} is called the quadratic variation of M . In

particular, for any finite stopping time τ ,

EM2
τ = E〈M,M〉τ .

If N = {Nt}t≥0 is another real-valued square-integrable continuous martingale, we

define

〈M,N〉t =
1

2

(
〈M +N,M +N〉t − 〈M,M〉t − 〈N,N〉t

)
,

and call {〈M,N〉t} the joint quadratic variation ofM andN . It is useful to know that

{〈M,N〉t} is the unique continuous integrable adapted process of finite variation such

that {MtNt− 〈M,N〉t} is a continuous martingale vanishing at t = 0. In particular,
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for any finite stopping time τ ,

EMτNτ = E〈M,N〉τ .

A right continuous adapted process M = {Mt}t≥0 is called a local martingale if

there exists a nondecreasing sequence {τk}k≥1 of stopping times with τk ↑ ∞ a.s.

such that every {Mτk∧t −M0}t≥0 is a martingale. Every martingale is a local mar-

tingale (by Theorem 2.2.3) but the converse is not true. If M = {Mt}t≥0 and

N = {Nt}t≥0 are two real-valued continuous local martingales, their joint quadratic

variation {〈M,N〉}t≥0 is the unique continuous adapted process of finite variation

such that {MtNt − 〈M,N〉t}t≥0 is a continuous local martingale vanishing at t = 0.

When M = N , {〈M,M〉}t≥0 is called the quadratic variation of M .

The following result is the useful strong law of large numbers.

Theorem 2.2.4. (Strong law of large numbers) Let M = {Mt}t≥0 be a real-

valued continuous local martingale varnishing at t = 0. Then

lim
t→∞
〈M,M〉t =∞ a.s. ⇒ lim

t→∞

Mt

〈M,M〉t
= 0 a.s.

and also

lim sup
t→∞

〈M,M〉t
t

<∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.

More generally, if A = {At}t≥0 is a continuous adapted increasing process such that

lim
t→∞

At =∞ and

∫ ∞
0

d〈M,M〉t
(1 + At)2

<∞ a.s.

then

lim
t→∞

Mt

At
= 0 a.s.

A real-valued {Ft}-adapted integrable process {Mt}t≥0 is called a supermartingale

(with respect to {Ft}) if

E(Mt|Fs) ≤Ms
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and a submartingale (with respect to {Ft}) if

E(Mt|Fs) ≥Ms a.s. for all 0 ≤ s < t <∞.

Obviously, {Mt} is submartingale if and only if {−Mt} is a supermartingale. For

a real-valued martingale {Mt}, {M+
t := max (Mt, 0)} and {M−

t := max (0,−Mt)}
are submartingales. For a supermartingale (resp. submartingale), EMt is monoton-

ically decreasing (resp. increasing). Moreover, if p ≥ 1 and {Mt} is an Rd-valued

martingale such that Mt ∈ Lp(Ω;Rd), then {|Mt|p} is a non-negative submartin-

gale. Note Doob’s stopping Theorem 2.2.3 holds as well for supermartingales and

submartingales.

2.3 Brownian motion

In 1828, the Scottish botanist Robert Brown observed that pollens suspended in

liquid performed an irregular motion. The motion was later explained by a random

collisions with the molecules of the liquid. To describe the motion mathematically,

it is natural to use the concept of a stochastic process Bt(ω), interpreted as the

position at time t of the pollen grain ω. The Brownian motion is the most fun-

damental continuous-time stochastic process. It has useful applications in several

stochastic systems. The mathematical concepts of Brownian motion form the basis

for stochastic analysis. Let us now give the mathematical definition of a Brownian

motion.

Definition 2.3.1. Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥0.

A (standard) one-dimensional Brownian motion is a real-valued continuous {Ft}-
adapted process {Bt}t≥0 with the following properties:

i. B0 = 0 a.s.;

ii. for 0 ≤ s < t < ∞, the increment Bt − Bs is normally distributed with mean

zero and variance t− s;
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iii. for 0 ≤ s < t <∞, the increment Bt −Bs is independent of Fs.

iv. Almost surely, the sample path t→ Bt(ω) is continuous.

Let {Bt}0≤t≤T on [0, T ] for some T > 0. If {Bt}t≥0 is Brownian motion and

0 ≤ t0 < t1 < · · · < tk < ∞, then the increments Bti − Bti−1
, 1 ≤ i ≤ k are

independent, and we say that the Brownian motion has independent increments.

Moreover, the distribution of Bti−Bti−1
depends only on the difference ti− ti−1, and

we say that the Brownian motion has stationary increments. The filtration {Ft} is

a part of the definition of Brownian motion.

The following are important properties of Brownian motion.

i. {−Bt} is a Brownian motion with respect to the same filtration {Ft}.

ii. Let c > 0. Define

Xt =
Bct√
c

for t ≥ 0.

The {Xt} is a Brownian motion with respect to the filtration {Fct}.

iii. {Bt} is a continuous square-integrable martingale and its quadratic variation

〈B,B〉t = t for all t ≥ 0.

iv. The strong law of large numbers states that

lim
t→∞

Bt

t
= 0 a.s.

v. For almost every ω ∈ Ω, the Brownian sample path B.(ω) is nowhere differen-

tiable.

vi. For almost every ω ∈ Ω, the Brownian sample path B.(ω) is locally Hölder

continuous with exponent δ if δ ∈ (0, 1/2). However, for almost every ω ∈ Ω,

the Brownian sample path B.(ω) is nowhere Hölder continuous with exponent

δ > 1/2.
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2.4 Stochastic integrals

We present in this section the mathematical framework of stochastic integral. Let

us now define the stochastic integral∫ t

0

f(s)dBs

with respect to an m-dimensional Brownian motion {Bt} for a class of d×m-matrix-

valued stochastic processes {f(t)}. Since for almost all ω ∈ Ω, the Brownian sample

path B.(ω) is of infinite variation and nowhere differentiable, the integral cannot be

defined in the ordinary way. This integral was first defined by K. Itô in 1949 and is

now known as Itô stochastic integral.

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions. Let B = {Bt}t≥0 be a one-dimensional Brownian motion

defined on the probability space adapted to the filtration.

Definition 2.4.1. Let 0 ≤ a < b < ∞. Denote by M2([a, b];R) the space of all

real-valued measurable {Ft}−adapted processes f = {f(t)}a≤t≤b such that

||f ||2a,b = E
∫ b

a

|f(t)|2dt <∞.

We identify f and f̄ in M2([a, b];R) if ||f − f̄ ||2a,b = 0. In this case we say that f

and f̄ are equivalent and write f = f̄ .

The stochastic processes f ∈ M2([a, b];R) would help define the Itô stochastic

integral. The idea is natural: First we define the integral
∫ b
a
g(t)dBt for a class of

simple processes g. Then we show that each f ∈M2([a, b];R) can be approximated

by such simple processes g′s and we define the limit of
∫ b
a
g(t)dBt as the integral of∫ b

a
f(t)dBt. Let us first introduce the concept of simple processes.

Definition 2.4.2. A real-valued stochastic process g = {g(t)}a≤t≤b is called a simple

(or step) process if there exists a partition a = t0 < t1 < · · · < tk = b of [a, b], and
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bounded random variables ξi, 0 ≤ i ≤ k − 1 such that ξi is Fti-measurable and

g(t) = ξ01[t0,t1](t) +
k−1∑
i=1

ξi1(ti,ti+1](t). (2.1)

Denote by M0([a, b];R) the family of all such processes.

Apparently, M0([a, b];R) ⊂ M2([a, b];R). Let us now provide the definition of

Itô stochastic integral for such simple processes.

Definition 2.4.3. For a simple process g with the form of (2.1) in M0([a, b];R),

define ∫ b

a

g(t)dBt =
k−1∑
i=0

ξi(Bti+1
−Bti) (2.2)

and call it the stochastic integral of g with respect to the Brownian motion {Bt} or

the Itô integral.

Clearly, the stochastic integral
∫ b
a
g(t)dBt is Fb-measurable. By extension of (2.2)

into M2([a, b];R) yields the following definition.

Definition 2.4.4. Let f ∈ M2([a, b];R). The Itô integral of f with respect to {Bt}
is defined by ∫ b

a

f(t)dBt = lim
n→∞

∫ b

a

gn(t)dBt in L2(Ω;R),

where {gn} is a sequence of simple processes such that

lim
n→∞

E
∫ b

a

|f(t)− gn(t)|2dt = 0.

Let now present the following useful properties of Itô integral.

Theorem 2.4.5. Let f, g ∈M2([a, b];R), and let α, β be two real numbers. Then

i.
∫ b
a
f(t)dBt is Fb-measurable;

ii. E
∫ b
a
f(t)dBt = 0;
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iii. E|
∫ b
a
f(t)dBt|2 = E

∫ b
a
|f(t)|2dt;

iv.
∫ b
a
[αf(t) + βg(t)]dBt = α

∫ b
a
f(t)dBt + β

∫ b
a
g(t)dBt.

The indefinite Itô integral is defined below.

Definition 2.4.6. Let f ∈M2([a, b];R). Define

I(t) =

∫ t

0

f(s)dBs for 0 ≤ t ≤ T ,

where, by definition, I(0) =
∫ 0

0
f(s)dBs = 0. We call I(t) the indefinite Itô integral

of f .

Clearly, {I(t)} is {Ft}-adapted. Let us now present the very important martin-

gale property of the indefinite Itô integral.

Theorem 2.4.7. Let f ∈ M2([a, b];R), then the indefinite Itô integral {I(t)}0≤t≤T

is a square-integrable martingale with respect to the filtration {Ft}. In particular,

E
[

sup
0≤t≤T

∣∣∣ ∫ t

0

f(s)dBs

∣∣∣2] ≤ 4E
∫ T

0

|f(s)|2ds.

Theorem 2.4.8. If f ∈ M2([a, b];R), then the indefinite Itô integral {I(t)}0≤t≤T

has a continuous version.

Theorem 2.4.9. Let f ∈M2([a, b];R). Then the indefinite Itô integral I = {I(t)}0≤t≤T

is a square-integrable continuous martingale and its quadratic variation is given by

〈I, I〉t =

∫ t

0

|f(s)|2ds, 0 ≤ t ≤ T.

2.5 Itô formula

We use Itô formula to evaluate Itô integral. That is, we use Itô formula to simplify

stochastic integrals to Lebesgue integrals for easy evaluation. In this section, we
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shall first establish the one-dimensional Itô formula and then generalise it to the

multi-dimensional case.

Let B = {Bt}t≥0 be a one-dimensional Brownian motion defined on the complete

probability space (Ω,F ,P) adapted to the filtration {Ft}t≥0. Let L1(R+;Rd) denote

the family of all Rd-valued measurable {Ft}-adapted processes f = {f(t)}t≥0 such

that ∫ T

0

|f(t)|dt <∞ a.s. for every T > 0.

We require Itô process to define Itô formula. Let us now define the Itô process.

Definition 2.5.1. A d-dimensional Itô process is an Rd-valued continuous adapted

process x(t) = (x1(t), . . . , xd(t))
T on t ≥ 0 of the form

x(t) = x(0) +

∫ t

0

f(s)ds

∫ t

0

g(s)dB(s),

where f = (f1, · · · , fd)T ∈ L1(R+;Rd) and g = (gij)d×m ∈ L2(R+;Rd×m). We shall

say that x(t) has stochastic differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt+ g(t)dB(t).

Let C2,1(Rd×R+;R) denote the family of all real-valued functions H(x, t) defined

on Rd × R+ such that they are continuously twice differentiable in x and once in t.

If H ∈ C2,1(Rd × R+;R), we set

Ht =
∂H

∂t
, Hx =

(∂H
∂x1

, · · · , ∂H
∂xd

)
and

Hxx =
( ∂2H

∂xi∂xj

)
d×d

=


∂2H
∂x1∂x1

· · · ∂2H
∂x1∂xd

...
...

∂2H
∂xd∂x1

· · · ∂2H
∂xd∂xd

 .
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Theorem 2.5.2. (The multi-dimensional Itô formula) Let x(t) be a d-dimensional

Itô process on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;Rd) and g =∈ L2(R+;Rd×m). Let H ∈ C2,1(Rd × R+;R). Then

H(x(t), t) is again an Itô process with the stochastic differential given by

dH(x(t), t) =
[
Ht(x(t), t) +Hx(x(t), t)f(t)

+
1

2
trace(gT (t)Hxx(x(t), t)g(t))

]
dt+Hx(x(t), t)g(t)dB(t) a.s.

Let us now present formally a multiplication table:

dtdt = 0, dBidt = 0,

dBidBi = dt, dBidBj = 0 if i 6= j.

Then, for example,

dxi(t)dxj(t) =
m∑
k=1

gik(t)gjk(t)dt.

Moreover, the Itô formula can be written as

dH(x(t), t) = Ht(x(t), t)dt+Hx(x(t), t)dx(t)

1

2
dxT (t)Hxx(x(t), t)dx(t).

2.6 Stochastic differential equations (SDEs)

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions. Throughout this section, unless otherwise specified, we let

B(t) = (B1(t), · · · , Bm(t))T , t ≥ 0 be an m-dimensional Brownian motion defined

on the space. Let 0 ≤ t0 < T <∞. Let x0 be an Ft0-measurable Rd-valued random
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variable such that E|x0|2 < ∞. Let f : Rd × [t0, T ] → Rd and g : Rd × [t0, T ] →
Rd×m be both Borel measurable. Consider the d-dimensional stochastic differential

equation of Itô type

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) on t0 ≤ t ≤ T , (2.3)

with initial value x(t0) = x0. By the definition of stochastic differential, this equation

is equivalent to the following integral equation:

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T . (2.4)

Let us now provide the definition of the solution.

Definition 2.6.1. An Rd-valued stochastic process {x(t)}t0≤t≤T is called a solution

of equation (2.3) if it has the following properties:

i. {x(t)} is continuous and Ft-adapted;

ii. {f(x(t), t)} ∈ L1([t0, T ];Rd) and {g(x(t), t)} ∈ L2([t0, T ];Rd×m);

iii. equation (2.4) holds for every t ∈ [t0, T ] with probability 1.

A solution {x(t)} is said to be unique if any other solution {x̄(t)} is indistinguishable

from {x(t)}, that is

P{x(t) = x̄(t) for all t0 ≤ t ≤ T} = 1.

The following theorem provides conditions to guarantee existence and uniqueness

of the solution to SDE (2.3)

Theorem 2.6.2. Assume that there exist two positive constants K̄ and K such that

i. (Lipschitz condition) for all x, x̄ ∈ Rd and t ∈ [t0, T ]

|f(x, t)− f(x̄, t)|2 ∨ |g(x, t)− g(x̄, t)|2 ≤ K̄|x− x̄|2; (2.5)
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ii. (Linear growth condition) for all (x, t) ∈ Rd × [t0, T ]

|f(x, t)|2 ∨ |g(x, t)|2 ≤ K(1 + |x|2). (2.6)

Then there exists a unique solution x(t) to equation (2.3) and the solution belongs

M2([t0, T ];Rd).

The Lipschitz condition (2.5) means that the coefficients f(x, t) and g(x, t) do not

change faster than a linear function of x as change in x. This implies in particular

the continuity of f(x, t) and g(x, t) in x for all t ∈ [t0, T ]. Hence, functions that are

discontinuous with respect to x are excluded as the coefficients. This shows that the

Lipschitz condition is too restrictive. The following theorem is the generalisation of

Theorem 2.6.2. in which this (uniform) Lipschitz condition is replaced by the local

Lipschitz condition.

Theorem 2.6.3. Assume that the linear growth condition (2.6) holds, but the Lipschitz

condition (2.5) is replaced with the following local Lipschitz condition: For every in-

teger n ≥ 1, there exists a positive constant Kn such that, for all t ∈ [t0, T ] and all

x, x̄ ∈ Rd with |x| ∨ |x̄| ≤ n

|f(x, t)− f(x̄, t)|2 ∨ |g(x, t)− g(x̄, t)|2 ≤ Kn|x− x̄|2. (2.7)

Then there exists a unique solution x(t) to equation (2.3) and the solution belongs

M2([t0, T ];Rd).

The local Lipschitz condition allows us to include many functions. However, the

linear growth condition still excludes some important functions. The following result

improves the situation.

Theorem 2.6.4. Assume that the local Lipschitz condition (2.7) holds but the linear

growth condition (2.6) is replaced with the following monotone condition: There

exists a positive constant K such that for all (x, t) ∈ Rd × [t0, T ]

xTf(x, t) +
1

2
|g(x, t)|2 ≤ K(1 + |x|2). (2.8)
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Then there exists a unique solution x(t) to equation (2.3) in M2([t0, T ];Rd).

2.7 Poisson processes

The Brownian motion and Poisson process are the two basic examples of stochastic

processes. In this section, we present the key mathematical concept of a Poisson

process. We let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions.

Definition 2.7.1. A stochastic process N = {N(t)}t≥0 taking values in {0, 1, 2, · · · }
is said to be a Poisson process with intensity λ > 0 if the following conditions hold:

i. N(0) = 0 a.s.;

ii. For any 0 ≤ t0 < t1 < · · · < tk < ∞ and 1 ≤ n ≤ k − 1, the increments

N(tn+1)−N(tn) are independent Poisson random variables with means λ(tn+1−
tn);

iii. The sample paths {N(t, ω)}t≥0 of the process N are right-continuous with left

limits a.s.

It follows from Definition 2.7.1 that

P(N(t) = n) =
eλt(λt)n

n!
, n = 0, 1, 2, · · · .

Theorem 2.7.2. Let N be a Poisson process with intensity λ. Then N(t)− λt is a

martingale and is called a compensated Poisson process.

2.8 SDEs with Poisson jumps

Let B(t) = (B1(t), · · · , Bm(t))T , t ≥ 0, be an m-dimensional Brownian motion

defined on the above probability space. Let N(t) be Poisson process independent

of B(t) with compensated Poisson process Ñ(t) = N(t) − λt, where λ is the jump
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intensity, also defined on the above probability space. The d-dimensional stochastic

differential equations with Poisson jumps is given by:

dx(t) = f(x(t−), t)dt+ g(x(t−), t)dB(t) + h(x(t−), t)dN(t) (2.9)

on t ≥ 0 with initial value x(0) = x0 ∈ Rd. Here f : Rd × [t0, T ] → Rd, g :

Rd × [t0, T ] → Rd×m and h : Rd × [t0, T ] → Rd are Borel measurable and x(t−) =

lims→t− x(s). The following theorem reveals conditions for the existence and unique-

ness of the solution to equation (2.9).

Theorem 2.8.1. Assume that there exist two positive constants K̄1 and K1 such

that

i. (Lipschitz condition) for all x, x̄ ∈ Rd and t ∈ [t0, T ]

|f(x, t)−f(x̄, t)|2∨|g(x, t)−g(x̄, t)|2∨|h(x, t)−h(x̄, t)|2 ≤ K̄1|x− x̄|2; (2.10)

ii. (Linear growth condition) for all (x, t) ∈ Rd × [t0, T ]

|f(x, t)|2 ∨ |g(x, t)|2 ∨ |h(x, t)|2 ≤ K1(1 + |x|2). (2.11)

Then there exists a unique solution x(t) to equation (2.9) and the solution belongs

M2([t0, T ];Rd).

2.9 Markov processes

We will recall some fundamental concepts of a Markov process in this section. An

n-dimensional Ft-adapted process X = {Xt}t≥0 is called a Markov process if the

following Markov property is satisfied: for all 0 ≤ s ≤ t <∞ and A ∈ B(Rn),

P(X(t) ∈ A|Fs) = P(X(t) ∈ A|X(s)).
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This is equivalent to the following one: for any bounded Borel measurable function

ϕ : Rn → R and 0 ≤ s ≤ t <∞,

E(ϕ(X(t))|Fs) = E(ϕ(X(t))|X(s)).

The transition probability or function of the Markov process is a function P (s, x; t, A),

defined on 0 ≤ s ≤ t <∞, x ∈ Rn and A ∈ B(Rn), with the following properties:

i. For every 0 ≤ s ≤ t <∞ and A ∈ B(Rn),

P (s,X(s); t, A) = P(X(t) ∈ A|X(s)).

ii. P (s, x; t, ·) is a probability measure on B(Rn) for every 0 ≤ s ≤ t < ∞ and

x ∈ Rn.

iii. P (s, x; t, A) is Borel measurable for every 0 ≤ s ≤ t <∞ and A ∈ B(Rn).

iv. The Kolmogorov-Chapman equation

P (s, x; t, A) =

∫
Rn

P (u, y; t, A)P (s, x;u, dy)

holds for any 0 ≤ s ≤ u ≤ t <∞, x ∈ Rn and A ∈ B(Rn).

A stochastic process X = {X(t)}t≥0, defined on a probability space {Ω,F ,P}, with

values in a countable set Ξ (to be called the state space of the process), is called a

continuous-time Markov chain if for any finite set 0 ≤ t1 < t2 < · · · < tn < tn+1 of

”times”, and corresponding set i1, i2, · · · , in−1, i, j of states in Ξ such that P{X(tn) =

i,X(tn−1) = in−1, · · · , X(t1) = i1} > 0, we have

P{X(tn+1) = j|X(tn) = i,X(tn−1) = in−1, · · · , X(t1) = i1}

= P{X(tn+1) = j|X(tn) = i}.

If for all s, t such that 0 ≤ s ≤ t < ∞ and all i, j ∈ Ξ the conditional probability

P{X(t) = j|X(s) = i} depends only on t−s, we say that the process X = {X(t)}t≥0
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is homogeneous. In this case, then, P{X(t) = j|X(s) = i} = P{X(t− s) = j|X(0) =

i}, and the function

Pij(t) =: P{X(t) = j|X(s) = i}, i, j ∈ Ξ, t ≥ 0,

is called the transition function or transition probability of the process. The function

Pij(t) is called standard if limt→0 Pii(t) = 1 for all i ∈ Ξ.

Theorem 2.9.1. Let Pij(t) be a standard transition function, then

γi :=
limt→0[1− Pii(t)]

t

exists (but may be ∞) for all i ∈ Ξ.

A state i ∈ Ξ is said to be stable if γi <∞.

Theorem 2.9.2. Let Pij(t) be a standard transition function, and let j be a stable

state. Then γij = P ′ij(0) exists and is finite for all i ∈ Ξ.

Let γii = −γi and Γ = (γij)i,j∈Ξ. Γ is called the generator of the Markov chain. If

the state space is finite which we can take to be S = {1, 2, · · · , N}, then the process

is called a continuous-time finite Markov chain. We assume that all Markov chains

are finite and all states are stable throughout this thesis. For such a Markov chain,

almost every sample path is a right continuous step function.

Theorem 2.9.3. Let P (t) = (Pij(t))N×N be the transition probability matrix and

Γ = (γij)N×N be the generator of a finite Markov chain. Then

P (t) = etΓ.

It is useful to note that a continuous-time Markov chain X(t) with generator

Γ = (γij)N×N can be represented as a stochastic integral with respect to a Poisson

random measure. Indeed, let ∆ij be consecutive, left closed, right open intervals of
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the real line each having length γij such that

∆12 = [0, γ12),

∆13 = [γ12, γ12 + γ13),

...

∆1N =

[
N−1∑
j=2

γ1j,

N∑
j=2

γ1j

)
,

∆21 =

[
N∑
j=2

γ1j,

N∑
j=2

γ1j + γ21

)
,

∆23 =

[
N∑
j=2

γ1j + γ21,
N∑
j=2

γ1j + γ21 + γ23

)
,

...

∆2N =

[
N∑
j=2

γ1j +
N−1∑

j=1,j 6=2

γ2j,
N∑
j=2

γ1j +
N∑

j=1,j 6=2

γ2j

)

and so on. Define a function

h : S × R→ R

by

h(i, y) =

j − i if y ∈ ∆ij ,

0 otherwise.
(2.12)

Then

dX(t) =

∫
R
h(X−, y)ν(dt, dy),

with initial condition X(0) = i0, where ν(dt, dy) is a Poisson random measure with

intensity dt× µ(dy), in which µ is the Lebesgue measure on R.
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2.10 Generalised Itô’s formula

Let {Ω,F , {Ft}t≥0,P} be a complete probability space with a filtration {Ft}t≥0 sat-

isfying the usual conditions (i.e, it is increasing and right continuous while F0 con-

tains all P-null sets). Let B(t) = (B1(t), · · · , Bm(t))T , t ≥ 0, be an m-dimensional

Brownian motion defined on the above probability space. Also let r(t), t ≥ 0, be a

right-continuous Markov chain defined on the above probability space taking values

in a finite state space S = {1, 2, · · · , N} with the generator Γ = (γij)N×N given by

P{r(t+ δ) = j|r(t) = i} =

γijδ + o(δ) if i 6= j,

1 + γiiδ + o(δ) if i = j,

where δ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j while

γii = −
∑
i 6=j

γij.

We assume that the Markov chain r(·) is Ft-adapted but independent of the Brownian

motion B(·).

Let x(t) be an n-dimensional Itô process on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;Rn) and g ∈ L2(R+;Rn×m). The Itô formula established in

Section 2.5 shows that a C2,1(Rn × R+;R+)-function H maps the Itô process x(t)

into another Itô process H(x(t), t). Here, we let a function H : Rn×R+×S → R map

a paired process (x(t), r(t)) into another process H(x(t), r(t), t). For this purpose,

let C2,1(Rn × R+ × S;R) denote the family of all real-valued functions H(x, t, i)

on Rn × R+ × S which are continuously twice differentiable in x and once in t. If
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H ∈ C2,1(Rn × R+ × S;R), define LH from Rn × R+ × S to R by

LH(x, t, i) = Ht(x, t, i) +Hx(x, t, i)f(t)

+
1

2
trace(gT (t)Hxx(x, t, i)g(t)) +

N∑
j=1

γijH(x, t, j),

where

Ht(x, t, i) =
∂H(x, t, i)

∂t
, Hx(x, t, i) =

(∂H(x, t, i)

∂x1

, · · · , ∂H(x, t, i)

∂xn

)

Hxx(x, t, i) =
(∂2H(x, t, i)

∂xi∂xj

)
n×n

.

The following theorem is known as the generalised Itô’s formula.

Theorem 2.10.1. If H ∈ C2,1(Rn × R+ × S;R), then for any t ≥ 0

H(x(t), t, r(t))

= H(x(0), 0, r(0)) +

∫ t

0

LH(x(s), s, r(s))ds

+

∫ t

0

Hx(x(s), s, r(s))g(x(s), s, r(s))dB(s)

+

∫ t

0

∫
R
(H(x(s), s, i0 + h(r(s), l))−H(x(s), s, r(s)))µ(ds, dl),

where the function h is defined by (2.12) and µ(ds, dl) = ν(ds, dl) − µ(dl)ds is a

martingale measure, while ν and µ have been defined in the end of Section 2.9.

2.11 SDEs with Markovian switching

Let {Ω,F ,P} be a complete probability space with a filtration {Ft}t≥0 satisfying the

usual conditions. Let us assume that the Markov chain r(·) is Ft-adapted but inde-



Chapter 2 37

pendent of the Brownian motion B(·), Consider an SDE with Markovian switching

of the form

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t), t0 ≤ t ≤ T (2.13)

with initial data x(t0) = x0 ∈ L2
Ft0

(Ω;Rn) and r(t0) = r0, where r0 is an S-valued

Ft0-measurable random variable and

f : Rn × R+ × S → Rn and g : Rn × R+ × S → Rn×m.

Definition 2.11.1. An Rn-valued stochastic process {x(t)}t0≤t≤T is called a solution

of equation (2.13) if it has the following properties.

i. {x(t)}t0≤t≤T is continuous and Ft-adapted;

ii. {f(x(t), t, r(t))}t0≤t≤T ∈ L1([t0, T ];Rn) while

{g(x(t), t, r(t))}t0≤t≤T ∈ L2([t0, T ];Rn×m);

iii. for any t ∈ [t0, T ], equation

x(t) = x(t0) +

∫ t

t0

f(x(s), s, r(s))dt+

∫ t

t0

g(x(s), s, r(s))dB(s),

holds with probability 1.

Theorem 2.11.2. Assume that there exist two positive constants K̄2 and K2 such

that

i. (Lipschitz condition) for all x, x̄ ∈ Rn, t ∈ [t0, T ] and i ∈ S

|f(x, t, i)− f(x̄, t, i)|2 ∨ |g(x, t, i)− g(x̄, t, i)|2 ≤ K̄2|x− x̄|2; (2.14)

ii. (Linear growth condition) for all (x, t, i) ∈ Rn × [t0, T ]× S

|f(x, t, i)|2 ∨ |g(x, t, i)|2 ≤ K2(1 + |x|2). (2.15)
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Then there exists a unique solution x(t) to equation (2.13) and the solution belongs

M2([t0, T ];Rn).

The following theorem shows the existence of unique maximal local solution under

the Local Lipschitz condition without the linear growth condition.

Theorem 2.11.3. Assume that (local Lipschitz condition) for every integer k ≥ 1,

there exists a positive constant hk such that, for all t ∈ [t0, T ], i ∈ S and those

x, x̄ ∈ Rn with |x| ∨ |x̄| ≤ k,

|f(x, t, i)− f(x̄, t, i)|2 ∨ |g(x, t, i)− g(x̄, t, i)|2 ≤ hk|x− x̄|2. (2.16)

Then there exists a unique maximal local solution x(t) to equation (2.13).

The following theorem is an improved version of Theorem 2.11.3.

Theorem 2.11.4. Assume that the local Lipschitz condition (2.16) holds but the

linear growth condition (2.15) is replaced with the following monotone condition:

There exists a positive constant K such that for all (x, t, i) ∈ Rn × [t0, T ]× S

xTf(x, t, i) +
1

2
|g(x, t, i)|2 ≤ K(1 + |x|2). (2.17)

Then there exists a unique solution x(t) to equation (2.13) in M2([t0, T ];Rn).

2.12 Some useful inequalities

Let us also present some useful inequalities which are used frequently in this thesis.

Let us start with the simplest inequality

2ab ≤ a2 + b2, ∀a, b ∈ R.

From this follows

2ab ≤ εa2 +
1

ε
b2, ∀a, b ∈ R and ∀ε > 0.
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Let us also proceed to the Young inequality

|a|β|b|(1−β) ≤ β|a|+ (1− β)|b|, ∀a, b ∈ R and ∀β ∈ [0, 1].

Theorem 2.12.1. (Jensen’s inequality) If ϕ : Ω→ R is a convex function while

ξ : R→ R is a random varaible on a probability space (Ω,F ,P) such that E|ξ| <∞,

then

ϕ(Eξ) ≤ E(ϕ(ξ)).

Theorem 2.12.2. (Doob’s martingale inequalities) Let {Mt}t≥0 be an Rd-valued

martingale. Let [a, b] be a bounded interval in R+.

i. If p ≥ 1 and Mt ∈ Lp(Ω;Rd), then

P
{
ω : sup

a≤t≤b
|Mt(ω)| ≥ c

}
≤ E|Mb|p

cp

holds for all c > 0.

ii. If p > 1 and Mt ∈ Lp(Ω;Rd), then

E
(

sup
a≤t≤b

|Mt|p
)
≤
( p

p− 1

)p
E|Mb|p.

Theorem 2.12.3. Let p ≥ 2. Let g ∈M2([0, T ];Rd×m) such that

E
∫ T

0

|g(s)|pds <∞.

Then

E
∣∣∣ ∫ T

0

g(s)dB(s)
∣∣∣p ≤ (p(p− 1)

2

) p
2
T

p−2
2 E

∫ T

0

|g(s)|pds.

In particular, for p = 2, there is equality.

Theorem 2.12.4. Let p ≥ 2. Let g ∈M2([0, T ];Rd×m) such that

E
∫ T

0

|g(s)|pds <∞.
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Then

E
(

sup
0≤t≤T

∣∣∣ ∫ t

0

g(s)dB(s)
∣∣∣p) ≤ ( p3

2(p− 1)

) p
2
T

p−2
2 E

∫ T

0

|g(s)|pds.

Theorem 2.12.5. (Burkholder-Davis-Gundy inequality) Let g ∈ L2(R+;Rd×m).

Define, for t ≥ 0,

x(t) =

∫ t

0

g(s)dB(s) and A(t) =

∫ t

0

|g(s)|2ds.

Then for every p > 0, there exist universal positive constants cp, Cp (depending on

only p), such that

cpE|A(t)|
p
2 ≤ E

(
sup

0≤s≤t
|x(s)|p

)
≤ CpE|A(t)|

p
2

for all t ≥ 0. In particular, one may take

cp = (p/2)p, Cp = (32/p)
p
2 if 0 < p < 2;

cp = 1, Cp = 4 if p = 2;

cp = (2p)−
p
2 , Cp = [pp+1/2(p− 1)p−1]

p
2 if p > 2.

Theorem 2.12.6. (Gronwall’s inequality) Let T > 0 and c ≥ 0. Let u(·) be

a Borel measurable bounded non-negative function on [0, T ], and let v(·) be a non-

negative integrable function on [0, T ]. If

u(t) ≤ c+

∫ t

0

v(s)u(s)ds for all 0 ≤ t ≤ T ,

then

u(t) ≤ cexp
(∫ t

0

v(s)ds
)

for all 0 ≤ t ≤ T .
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Truncated Euler-Maruyama

method for Ait-Sahalia-type

interest rate model with delay

3.1 Introduction

The original Ait-Sahalia model of the spot interest rate proposed by Ait-Sahalia

assumes constant volatility. As supported by several empirical results, volatility is

never constant in most financial markets. From application viewpoint, it is important

we generalise the Ait-Sahalia model to incorporate volatility as a function of delay in

the spot rate. In this chapter, we study analytical properties of the exact solution to

this model. Apparently, the solution to this model cannot be found by a closed-form

formula. Therefore, we construct a new implementable truncated EM method to

study numerical properties of this model under the local Lipschitz condition plus the

Khasminskii-type condition.

The rest of the chapter is organised as follows: We introduce the Ait-Sahalia-type

interest rate model with delay in Section 3.2. In Section 3.3, we verify the existence

and uniqueness of the solution to the proposed model and show that the solution will

never become negative. We also study analytical properties such as boundedness of

41
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moments of the exact solution in Section 3.3. In Section 3.4, we construct a new

implementable truncated EM scheme for the proposed model. We explore numerical

properties to investigate a finite time strong convergence of this scheme in Section

3.5. In Section 3.6, we perform some numerical examples to support the established

results and provide a brief summary of the results in Section 3.7.

3.2 The Ait-Sahalia-type model with delay

We let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions. Let us now incorporate a delayed volatility function into SDE

(1.3) to obtain a dynamicsdx(t) = (α−1x(t)−1 − α0 + α1x(t)− α2x(t)ρ)dt+ ϕ(x(t− τ))x(t)θdB(t), t > 0,

x(t) = ξ(t), t ∈ [−τ, 0],

(3.1)

for time-series evolution of interest rates. Here ϕ(·) is a volatility function which

depends on x(t − τ), where τ > 0 and x(t − τ) denotes delay in x(t). The delayed

volatility function is past-level-dependent in this case and hence, may describe dy-

namics of volatility ’smiles’ and ’skews’ adequately (e.g., see [25,26]).

Consider the following scalar dynamics

dx(t) = f(x(t))dt+ ϕ(x(t− τ))g(x(t))dB(t), (3.2)

as equation of SDDE (3.1) on t ∈ [−τ,∞) with initial data x(t) = ξ(t), where

f(x) = α−1x
−1 − α0 + α1x − α2x

ρ, g(x) = xθ, ∀x ∈ R+ and ϕ(y) ∈ C(R+;R+).

Let C2,1(R × R+;R) be the family of all real-valued functions H(x, t) defined on

R × R+ such that H(x, t) is twice continuously differentiable in x and once in t.

Given H ∈ C2,1(R×R+;R), we note the operator LH : R×R×R+ → R is defined

by

LH(x, y, t) = Ht(x, t) +Hx(x, t)f(x) +
1

2
Hxx(x, t)ϕ(y)2g(x)2, (3.3)
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where Ht(x, t) and Hx(x, t) are first-order partial derivatives with respect to t and x,

and Hxx(x, t) is a second-order partial derivative with respect to x. The Itô formula

can now be written as

dH(x(t), t) = LH(x(t), x(t−τ), t)dt+Hx(x(t), t)ϕ(x(t−τ))g(x(t))dB(t) a.s. (3.4)

3.3 Analytical properties

We observe the f and g coefficient terms of SDDE (3.2) are non-globally Lipschitz

continuous. Naturally, for SDDE (3.2) to have a pathwise unique global solution

for any given initial data, both drift and diffusion terms are required to satisfy local

Lipschitz condition plus super-linear growth condition (e.g., see [20] for more details).

Clearly, this means we have to assume the volatility function ϕ(·) is locally Lipschitz

continuous and bounded. The following theorem illustrates that the SDDE (3.2)

admits a unique positive global solution. Moreover, since the SDDE (3.2) describes

interest rate dynamics in the financial market, it is important the solution x(t) should

always be positive. The following conditions are however sufficient to establish a

pathwise unique positive global solution x(t) to SDDE (3.2).

Assumption 3.3.1. The volatility function ϕ : R+ → R+ of SDDE (3.2) is Borel-

measurable and bounded by a positive constant λ, that is

ϕ(y) ≤ λ, ∀y ∈ R+. (3.5)

See, for instance, Mao and Sabanis [26] for detailed coverage of the above assumption.

In addition to Assumption 3.3.1, we also require the following assumption on the

parameter values to help control the potential growth likely to emerge from the

diffusion term.

Assumption 3.3.2. The parameters of the SDDE (3.2) satisfy

1 + ρ > 2θ, ρ, θ > 1.
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3.3.1 Existence and uniqueness of solution

Theorem 3.3.3. Let Assumptions 3.3.1 and 3.3.2 hold. Then for any given initial

data

{x(t) : −τ ≤ t ≤ 0} = ξ(t) ∈ C([−τ, 0] : R+), (3.6)

there exists a unique global solution x(t) to SDDE (3.2) on t ∈ [−τ,∞) and x(t) > 0

almost surely. This solution can be computed by the following step by step procedure:

for k = 0, 1, 2, · · · and t ∈ [kτ, (k + 1)τ ],

x(t) = x(kτ) +

∫ t

kτ

f(x(s))ds+

∫ t

kτ

ϕ(x(s− τ))g(x(s))dB(s). (3.7)

Moreover, for any T > 0,

lim
n→∞

P(τn ≤ T ) = 0, (3.8)

where

τn = inf{t ≥ 0 : x(t) 6∈ (1/n, n)} (3.9)

for every sufficiently large integer n.

We employ an inductive argument to establish this proof.

Proof. For t ∈ [0, τ ], the SDDE (3.2) becomes the following SDE

dx(t) = f(x(t))dt+ ϕ(ξ(t− τ))g(x(t))dB(t),

with initial value x(0) = ξ(0) and has a well-known unique positive global solution

x(t) = ξ(0) +

∫ t

0

f(x(s))ds+

∫ t

0

ϕ(ξ(s− τ))g(x(s))dB(s). (3.10)

The solution x(t) to SDE (3.10) on t ≥ 0 has been however established in various

literature to satisfy (3.8) (see, e.g., [18,20] for more details). This implies (3.7) holds

for k = 0. As x(t) is now known on t ∈ [0, τ ], we may repeat this procedure over the
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interval t ∈ [τ, 2τ ] to obtain the SDE

dx(t) = f(x(t))dt+ ϕ(x(t− τ))g(x(t))dB(t).

This SDE has a unique positive global solution

x(t) = ξ(0) +

∫ t

0

f(x(s))ds+

∫ t

0

ϕ(x(s− τ))g(x(s))dB(s). (3.11)

Clearly the solution x(t) is a continuous stochastic process on t ∈ [0, τ ] and so both

integrals are well defined. Hence the (3.7) holds for k = 1. Given that the solution

x(t) to SDE (3.10) on t ≥ 0 satisfies (3.8) implies it also satisfies (3.8) for SDE (3.11).

Repeating this procedure for all k ≥ 0, we obtain a unique positive global solution

to SDDE (3.2) which satisfies (3.8).

3.3.2 Moment bounds

Finiteness of moments is essential for evaluating and pricing financial quantities. The

following lemmas give boundedness property of the exact solution to SDDE (3.2).

Lemma 3.3.4. Let Assumptions 3.3.1 and 3.3.2 hold. Then for any p ≥ 2, the

solution x(t) to SDDE (3.2) satisfies

sup
0≤t<∞

(E|x(t)|p) ≤ C1 (3.12)

and

sup
0≤t<∞

(
E| 1

x(t)
|p
)
≤ C2, (3.13)

where C1 and C2 are constants which depend on the initial value ξ(t) and p.

Proof. Let n0 > 0 be sufficiently large such that

1

n0

< min
−τ≤t≤0

|ξ(t)| ≤ max
−τ≤t≤0

|ξ(t)| < n0.
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For each integer n ≥ n0, define the stopping time by

τn = inf{t ≥ 0 : x(t) 6∈ (1/n, n)}.

Applying the diffusion operator to H(x, t) = etxp, we compute

LH(x, y, t) = etxp + petxp−1f(x) +
1

2
p(p− 1)etxp−2(ϕ(y)g(x))2

= etxp + petxp−1
(
α−1x

−1 − α0 + α1x− α2x
ρ
)

+
1

2
p(p− 1)etxp−2ϕ(y)2x2θ

≤ et
[
xp + pxp−2(α−1 − α0x+ α1x

2 − α2x
ρ+1 +

(p− 1)

2
λ2x2θ)

]
,

where Assumption 3.3.1 has been used. Moreover, by Assumption 3.3.2, there exists

a constant K such that

LH(x, y, t) ≤ etK. (3.14)

By the Itô formula, we obtain

E[et∧τn|x(t ∧ τn)|p] ≤ |ξ(0)|p + E
∫ t∧τn

0

Kesds

≤ |ξ(0)|p +Ket.

Applying the Fatou lemma and letting n→∞ gives

E|x(t)|p ≤ |ξ(0)|p

et
+K <∞, (3.15)

and hence

sup
0≤t<∞

(E|x(t)|p) ≤ C1. (3.16)

Similarly, we can show (3.13) in the same way by using the Itô formula on H(x, t) =

et/xp, applying the Fatou lemma and letting n→∞.

Lemma 3.3.5. Let Assumptions 3.3.1 and 3.3.2 hold. Then for any p ≥ 2, the
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solution x(t) to SDDE (3.2) satisfies

E
(

sup |x(t)|p
)

0≤t≤T

≤ C3, (3.17)

where C3 is a constant.

Proof. Define a function H ∈ C2(R+,R+) by

H(x) = xp. (3.18)

By the Itô formula, we compute

dH(x(t)) = pxp−1dx(t) +
1

2
p(p− 1)xp−2(dx(t))2

= pxp−1(α−1x(t)−1 − α0 + α1x(t)− α2x(t)ρ

+
1

2
p(p− 1)x(t)2(θ−1)+pϕ(y)2)dt+ px(t)p+θ−1ϕ(y)dB(t)

≤
[
pxp−2(α−1 − α0x(t) + α1x(t)2 − α2x(t)ρ+1

+
(p− 1)

2
λ2x(t)2θ)

]
dt+ λpx(t)p+θ−1dB(t),

where Assumption 3.3.1 has been used. We now have

E(sup |x(t)|p)
0≤t≤T

≤ |ξ(0)|P + E
∫ T

0

[pxp−2(α−1 − α0x(t) + α1x(t)2 − α2x(t)ρ+1

+
(p− 1)

2
λ2x(t)2θ)]dt+ E[ sup

0≤t≤T

∫ t

0

λpx(s)p+θ−1dB(s)].

By Assumption 3.3.2, there exists a constant K such that

E(sup |x(t)|p)
0≤t≤T

≤ |ξ(0)|P +KT + E[ sup
0≤t≤T

∫ t

0

λpx(s)p+θ−1dB(s)].
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By the Hölder and Burkholder-Davis Gundy inequalities we then obtain,

E(sup |x(t)|p)
0≤t≤T

≤ |ξ(0)|P +KT + C
(∫ T

0

Ex(s)2(p+θ−1)ds
)1/2

,

where C is a constant which may vary from line to line. Hence

E
(

sup |x(t)|p
)

0≤t≤T

≤ C3.

3.4 Numerical method

As we have already noted, the truncated EM method for SDEs under local Lipschitz

condition plus Khasminskii-type condition was developed in [27]. This numerical

method was further developed in [28] to study SDDEs under local Lipschitz condition

plus generalised Khasminskii-type condition. Hence, in order to study SDDE (3.2)

using the truncated EM techniques, we need to imposed the following conditions on

the coefficient terms.

Assumption 3.4.1. For any R > 0, there exists a positive constant LR such that

the volatility function ϕ : R+ → R+ of SDDE (3.2) satisfies

|ϕ(y)− ϕ(ȳ)| ≤ LR|y − ȳ| (3.19)

for all y, ȳ ∈ [ 1
R
, R].

Lemma 3.4.2. For any R > 0, there exists a positive constant KR > 0 such that

the f and g coefficient terms of SDDE (3.2) satisfy

|f(x)− f(x̄)| ∨ |g(x)− g(x̄)| ≤ KR|x− x̄| (3.20)

for all x, x̄ ∈ [ 1
R
, R].
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Lemma 3.4.3. Let Assumptions 3.3.1 and 3.3.2 hold. For any p ≥ 2, there exists

K1 = K(p) > 0 such that the coefficients of SDDE (3.2) satisfy

xf(x) +
p− 1

2
|ϕ(y)g(x)|2 ≤ K1(1 + |x|2) (3.21)

for all x, y ∈ R+.

Proof. By Assumption 3.3.1, ∀x, y > 0, we have that

xf(x) +
p− 1

2
|ϕ(y)g(x)|2 = x(α−1x

−1 − α0 + α1x− α2x
ρ) +

p− 1

2
|ϕ(y)xθ|2

≤ α−1 − α0x+ α1x
2 − α2x

ρ+1 +
p− 1

2
λ2x2θ.

By Assumption 3.3.2,

xf(x) +
p− 1

2
|ϕ(y)g(x)|2 ≤ α−1 − α0x+ α1x

2 +K(p)

≤ α−1 + α1x
2 +K(p)

≤ K1(1 + |x|2),

where K(p) ≥ −α2x
ρ+1 + p−1

2
λ2x2θ and K1 = [(α−1 +K(p)) ∨ α1].

3.4.1 The truncated EM method

Before we proceed to construct the truncated EM scheme, let us extend the domain

of the volatility function ϕ(y) from R+ to R by setting the volatility function ϕ(x) =

ϕ(0) for x < 0. It is worth to note that the solution for the SDDE (3.2) is already

known to always be positive, so this extension does not in any way influence the

solution. The local Lipschitz condition in Assumption 3.4.1 and the boundedness

condition on ϕ(y) in (3.5) are also well preserved.

To define the truncated EM numerical solutions for the SDDE (3.2), we first choose

a strictly increasing continuous function µ : R+ → R+ such that µ(r)→∞ as r →∞
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and

sup
1/r≤x≤r

(|f(x)| ∨ g(x)) ≤ µ(r), ∀r > 1. (3.22)

Denote by µ−1 the inverse function of µ. We define a strictly decreasing function

h : (0, 1)→ R+ such that

lim
∆→0

h(∆) =∞ and ∆1/4h(∆) ≤ 1, ∀∆ ∈ (0, 1]. (3.23)

Find ∆∗ ∈ (0, 1) such that µ−1(h(∆∗)) > 1 and f(x) > 0 for 0 < x < ∆∗. For a

given step size ∆ ∈ (0,∆∗), let us define the truncated functions

f∆(x) = f
(

1/µ−1(h(∆)) ∨ (x ∧ µ−1(h(∆)))
)
, ∀x ∈ R

and

g∆(x) =

g
(
x ∧ µ−1(h(∆))

)
, if x ≥ 0

0, if x < 0.

That is, for x < 1/µ−1(h(∆)), we have f∆(x) = f(1/µ−1(h(∆))) and if x < 1 ∧
µ−1(h(∆)), g∆(x) = g(x) or 0 if x < 0. For x > µ−1(h(∆)), we have f∆(x) =

f(µ−1(h(∆))) and g∆(x) = g(µ−1(h(∆))). Moreover, for x ∈ [1/µ−1(h(∆)), µ−1(h(∆))],

we have f∆(x) = f(x) and g∆(x) = g(x) with

|f∆(x)| = |f(x)| ≤ max |f(z)|
1/µ−1(h(∆))≤z≤µ−1(h(∆))

≤ µ(µ−1(h(∆)))

= h(∆)

and

g∆(x) ≤ µ(µ−1(h(∆))) = h(∆).
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It is easy to see that

|f∆(x)| ∨ g∆(x) ≤ h(∆), ∀x ∈ R. (3.24)

Obviously, both truncated functions f∆ and g∆ are bounded although both f and g

may not. The following lemma illustrates f∆ and g∆ preserve the Khasminskii-type

condition in (3.21) very well.

Lemma 3.4.4. Let Assumption 3.3.1 and 3.3.2 hold. Then, for all ∆ ∈ (0,∆∗) and

p ≥ 2, the truncated functions satisfy

xf∆(x) +
p− 1

2
|ϕ(y)g∆(x)|2 ≤ K̄(1 + |x|2) (3.25)

∀x, y ∈ R, where K̄ is a positive constant independent of ∆.

Proof. Fix any ∆ ∈ (0,∆∗). For x, y ∈ R with x ∈ [1/µ−1(h(∆)), µ−1(h(∆))], by

(3.21), we have

xf∆(x) +
p− 1

2
|ϕ(y)g∆(x)|2 = xf(x) +

p− 1

2
|ϕ(y)g(x)|2 ≤ K1(1 + |x|2)

as the required assertion. For x ∈ R with x ∈ (0, 1/µ−1(h(∆))), we have

0 < xµ−1(h(∆)) < 1

. So by (3.21), we get

xf∆(x) +
p− 1

2
|ϕ(y)g∆(x)|2

= xf(1/µ−1(h(∆))) +
p− 1

2
|ϕ(y)g∆(x)|2

= xµ−1(h(∆))
1

µ−1(h(∆))
f(1/µ−1(h(∆))) +

p− 1

2
|ϕ(y)g∆(x)|2

≤ K1xµ
−1(h(∆))(1 + [1/µ−1(h(∆))2]) +

p− 1

2
|ϕ(y)g∆(x)|2.
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This follows that

xf∆(x) +
p− 1

2
|ϕ(y)g∆(x)|2 ≤ K1(1 + 1) +K1(1 + |x|2)

= 2K1 +K1(1 + |x|2)

≤ K2(1 + |x|2),

where K2 = 3K1. But for x, y ∈ R with x ≤ 0, we have

f∆(x) = f(1/µ−1(h(∆))) > 0 and g∆(x) = 0.

Therefore,

xf∆(x) +
p− 1

2
|ϕ(y)g∆(x)|2 ≤ 0 ≤ K1(1 + |x|2).

Finally, for x, y ∈ R with x > µ−1(h(∆)), we have

xf∆(x) +
p− 1

2
|ϕ(y)g∆(x)|2

≤ xf(1/µ−1(h(∆)) ∨ µ−1(h(∆))) +
p− 1

2
|ϕ(y)g(µ−1(h(∆)))|2

≤ µ−1(h(∆))f(µ−1(h(∆))) +
p− 1

2
|ϕ(y)g(µ−1(h(∆))|2

+ (
x

µ−1(h(∆))
− 1)µ−1(h(∆))f(µ−1(h(∆)))

≤ K1(1 + [µ−1(h(∆))]2) + (
x

µ−1(h(∆))
− 1)µ−1(h(∆))f(µ−1(h(∆))),

where (3.21) with K1 independent of ∆ has been used. But once again we see from

(3.21) that xf(x) ≤ K1(1 + |x|2) for any x ∈ R+. We therefore have

xf∆(x) +
p− 1

2
|ϕ(y)g∆(x)|2 ≤ K1(1 + [µ−1(h(∆))]2)

+
( x

µ−1(h(∆))
− 1
)
K1(1 + [µ−1(h(∆))]2)

≤ x

µ−1(h(∆))
K1(1 + [µ−1(h(∆))]2)
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≤ xK1(1 + µ−1(h(∆)))

≤ xK1(1 + x) ≤ 2K1(1 + |x|2).

It is worthwhile to note that K̄ = (K1 ∨K2).

From now on, we will let the step size ∆ ∈ (0, 1) be a fraction of τ . That is, we will

use ∆ = τ/N for sufficiently large integer N . Let form the discrete-time truncated

approximation for SDDE (3.2). Define tk = k∆ for k = −N,−(N−1), · · · , 0, 1, 2, · · · .
Set X∆(tk) = ξ(tk) for k = −N,−(N − 1), · · · , 0 and form

X∆(tk+1) = X∆(tk) + f∆(X∆(tk))∆ + ϕ(X∆(tk−N))g∆(X∆(tk))∆Bk (3.26)

for k = 0, 1, 2, · · · , where ∆Bk = B(tk+1) − B(tk). Let us now form two versions of

the continuous-time truncated EM solutions. The first is defined by

x̄∆(t) =
∞∑

k=−N

X∆(tk)1[k∆,(k+1)∆)(t). (3.27)

This is the continuous-time step-process x̄∆(t) on t ∈ [−τ,∞], where 1[k∆,(k+1)∆] is

the indicator function on [k∆, (k+1)∆]. The other is the continuous-time continuous

process x∆(t) on t ∈ [−τ,∞] defined by setting x∆(t) = ξ(t) for t ∈ [−τ, 0] while for

t ≥ 0

x∆(t) = ξ(0) +

∫ t

0

f∆(x̄∆(s))ds+

∫ t

0

ϕ(x̄∆(s− τ))g∆(x̄∆(s))dB(s). (3.28)

We see that x∆(t) is an Itô process on t ≥ 0 with its Itô differential

dx∆(t) = f∆(x̄∆(t))dt+ ϕ(x̄∆(t− τ))g∆(x̄∆(t))dB(t). (3.29)

We can clearly observe that x∆(tk) = x̄∆(tk) = X∆(tk) for all k = −N,−(N −
1), · · · . That is x∆(t) and x̄∆(t) coincide with the discrete truncated EM approximate

solution at the gridpoints. We would like to point out that this numerical scheme is
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not positivity-preserving. This will however be tackled elsewhere.

3.5 Numerical properties

Under this section, we establish boundedness of moments and strong convergence

theory for the truncated EM solutions.

3.5.1 Moment bounds

To upper bound the pth moment of the truncated EM solution, we need the following

lemma which shows x∆(t) and x̄∆(t) are close to each other in the strong sense.

Lemma 3.5.1. Let Assumption 3.3.1 hold. For any fixed ∆ ∈ (0,∆∗] and p ≥ 2, we

have that

E|x∆(t)− x̄∆(t)|p ≤ Cp∆
p/2(h(∆))p, ∀t ≥ 0, (3.30)

where Cp stands for generic positive real constants dependent only on p and may

change between occurrences. Consequently,

lim
∆→0

E|x∆(t)− x̄∆(t)|p = 0, ∀t ≥ 0. (3.31)

Proof. Fix any ∆ ∈ (0,∆∗) and t ≥ 0. There exists an integer k ≥ 0 such that

tk ≤ t ≤ tk+1. By elementary inequality, (3.24) and Assumption 3.3.1, we obtain

from (3.28) that

E|x∆(t)− x̄∆(t)|p

≤ 2p−1
(
E|
∫ t

tk

f∆(x̄∆(s))ds|p + E|
∫ t

tk

ϕ(x̄∆(s− τ))g∆(x̄∆(s))B(s)|p
)

≤ 2p−1
(

∆p−1E
∫ t

tk

|f∆(x̄∆(s))|pds+ c̄p∆
(p−2)/2E

∫ t

tk

|ϕ(x̄∆(s− τ))g∆(x̄∆(s))|pds
)

≤ 2p−1
(

∆p−1∆(h(∆))p + c̄p∆
(p−2)/2∆(λh(∆))p

)
≤ 2p−1(1 ∨ c̄pλp)∆p/2(h(∆))p
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≤ Cp∆
p/2(h(∆))p,

where c̄p depends on p and Cp = 2p−1(1 ∨ c̄pλp). Noting from (3.23) that

∆p/2(h(∆))p ≤ ∆p/4,

we get (3.31) from (3.30).

The following lemma reveals the upper bound of the truncated EM solutions.

Lemma 3.5.2. Let Assumptions 3.3.1 and 3.3.2 hold. Then for any p ≥ 2,we have

sup
0≤∆≤∆∗

sup
0≤t≤T

(E|x∆(t)|p) ≤ C4, ∀T > 0, (3.32)

where C4 stands for generic positive real constants dependent on T, p, K̄, ξ but inde-

pendent of ∆ and may change between occurrences.

Proof. Fix any ∆ ∈ (0,∆∗) and T ≥ 0. By the Itô formula, we derive from (3.28)

that, for 0 ≤ t ≤ T ,

E|x∆(t)|p ≤ |ξ(0)|p + E
∫ t

0

p|x∆(s)|p−2
(
x∆(s)f∆(x̄∆(s))

+
p− 1

2
|ϕ(x̄∆(s− τ))g∆(x̄∆(s))|2

)
ds

= |ξ(0)|p + E
∫ t

0

p|x∆(s)|p−2
(
x̄∆(s)f∆(x̄∆(s))

+
p− 1

2
|ϕ(x̄∆(s− τ))g∆(x̄∆(s))|2

)
ds

+ E
∫ t

0

p|x∆(s)|p−2(x∆(s)− x̄∆(s))f∆(x̄∆(s))ds.

By Lemma 3.4.4 and the Young inequality, we then have

E|x∆(t)|p ≤ |ξ(0)|p + E
∫ t

0

K̄|x∆(s)|p−2(1 + |x̄∆(s)|2)ds
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+ (p− 2)E
∫ t

0

|x∆(s)|pds+ 2E
∫ t

0

|x∆(s)− x̄∆(s)|p/2|f∆(x̄∆(s)|p/2ds

≤ C5 + C6

∫ t

0

(E|x∆(s)|p + E|x̄∆(s)|p)ds

+ 2E
∫ t

0

|x∆(s)− x̄∆(s)|p/2|f∆(x̄∆(s)|p/2ds,

where C5 and C6 are positive constants independent of ∆. By Lemma 3.5.1 and

inequalities (3.24) and (3.23), we have

E
∫ t

0

|x∆(s)− x̄∆(s)|p/2|f∆(x̄∆(s)|p/2ds ≤ (h(∆))p/2
∫ T

0

E(|x∆(s)− x̄∆(s)|p/2)ds

≤ (h(∆))p/2
∫ T

0

(E|x∆(s)− x̄∆(s)|p)1/2ds

≤ (h(∆))p/2
∫ T

0

(Cp∆
p/2(h(∆))p)1/2ds

≤ CpT (h(∆))p∆p/4 ≤ CpT.

Therefore, we have

E|x∆(t)|p ≤ C5 + 2CpT + C6

∫ t

0

(E|x∆(s)|p + E|x̄∆(s)|p)ds

≤ C5 + 2CpT + 2C6

∫ t

0

sup
0≤u≤s

(
E|x∆(u)|p

)
ds.

As this holds for any t ∈ [0, T ] while the right-hand side is non-decreasing in t, we

then see

sup
0≤u≤t

(E|x∆(u)|p) ≤ C5 + 2CpT + 2C6

∫ t

0

sup
0≤u≤s

(
E|x∆(u)|p

)
ds.

The well-known Gronwall inequality gives us

sup
0≤u≤T

(E|x∆(u)|p) ≤ C4.
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As this holds for any ∆ ∈ (0,∆∗) while C4 = (C5 + 2CpT )e2C6T is independent of ∆,

we obtain the required assertion.

3.5.2 Finite time strong convergence

For the numerical solution to converge in finite time to the exact solution in the

strong sense, we need the following condition on the initial data (see, e.g, [29]).

Assumption 3.5.3. There is a pair of constant K4 > 0 and γ ∈ (0, 1] such that for

all −τ ≤ s ≤ t ≤ 0, the initial data ξ satisfies

|ξ(t)− ξ(s)| ≤ K4|t− s|γ. (3.33)

In addition to the above condition, we also need the following lemma.

Lemma 3.5.4. Let Assumptions 3.3.1, 3.3.2, 3.4.1 and 3.5.3 hold and T > 0 be

fixed. Then for any ε ∈ (0, 1), there exists a pair of positive constants n = n(ε) and

∆1 = ∆1(ε) such that

P(ρn ≤ T ) ≤ ε (3.34)

for each ∆ ∈ (0,∆1], where

ρn = ρn(∆) = inf{t ∈ [0, T ] : x∆(t) /∈ (1/n, n)}

is the stopping time.

Proof. Define a C2-function, H : R+ → R+ by

H(x) = 1/x2 + x2. (3.35)

Clearly, H(x)→∞ as x→∞ or x→ 0. For s ∈ [0, t ∧ ρn], we can derive from the

Itô formula that

E(H(x∆(t ∧ ρn))) = H(ξ(0)) + E
∫ t∧ρn

0

(
Hx(x∆(s))f∆(x̄∆(s)) (3.36)
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+
1

2
Hxx(x∆(s))ϕ(x̄∆(s− τ))2g∆(x̄∆(s))2

)
ds.

But we note

Hx(x∆(s))f∆(x̄∆(s)) +
1

2
Hxx(x∆(s))ϕ(x̄∆(s− τ))2g∆(x̄∆(s))2

≤ LH(x∆(s), x∆(s− τ)) +Hx(x∆(s))
(
f∆(x̄∆(s))− f∆(x∆(s))

)
+

1

2
Hxx(x∆(s))

(
ϕ(x̄∆(s− τ))2g∆(x̄∆(s))2 − ϕ(x∆(s− τ))2g∆(x∆(s))2

)
,

where LH is (3.3) with H independent of t, defined here by

LH(x∆(s), x∆(s−τ)) = Hx(x∆(s))f∆(x∆(s))+
1

2
Hxx(x∆(s))ϕ(x∆(s−τ))2g∆(x∆(s))2.

By Assumptions 3.3.1 and 3.3.2, there exists a constant K3 such that

LH(x∆(s), x∆(s− τ)) ≤ K3

and

Hx(x∆(s))f∆(x̄∆(s)) +
1

2
Hxx(x∆(s))ϕ(x̄∆(s− τ))2g∆(x̄∆(s))2

≤ K3 +Hx(x∆(s))
(
f∆(x̄∆(s))− f∆(x∆(s))

)
+

1

2
Hxx(x∆(s))

(
ϕ(x̄∆(s− τ))2g∆(x̄∆(s))2

− ϕ(x∆(s− τ))2g∆(x∆(s))2
)
.

We recall from the definition of the truncated functions f∆ and g∆ that

f∆(x̄∆(s)) = f(x̄∆(s)) and g∆(x̄∆(s)) = g(x̄∆(s))

for s ∈ [0, t ∧ ρn]. So by Lemma 3.4.2, we have that for s ∈ [0, t ∧ ρn]

|f(x̄∆(s))− f(x∆(s))| ∨ |g(x̄∆(s))− g(x∆(s))| ≤ Kn|x̄∆(s)− x∆(s)|.
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We observe that for any x̄∆(s), x∆(s) ∈ [1/n, n], by (3.22), we have

|g(x̄∆(s))| ∨ |g(x∆(s))| ≤ µ(n).

So by Lemma 3.4.2, we have that for s ∈ [0, t ∧ ρn]

|g(x̄∆(s))2 − g(x∆(s))2| = |g(x̄∆(s))− g(x∆(s))||g(x̄∆(s)) + g(x∆(s))|

≤ 2µ(n)Kn|x̄∆(s)− x∆(s)|.

Moreover, for s ∈ [0, t ∧ ρn], we obtain from Assumptions 3.3.1 and 3.4.1 that

|ϕ(x̄∆(s− τ))2 − ϕ(x∆(s− τ))2|

= |ϕ(x̄∆(s− τ))− ϕ(x∆(s− τ))||ϕ(x̄∆(s− τ)) + ϕ(x∆(s− τ))|

≤ 2λLn|x̄∆(s− τ)− x∆(s− τ)|.

Consequently,

ϕ(x̄∆(s− τ))2g(x̄∆(s))2 − ϕ(x∆(s− τ))2g(x∆(s))2 = ϕ(x̄∆(s− τ))2g(x̄∆(s))2

− ϕ(x̄∆(s− τ))2g(x∆(s))2 + ϕ(x̄∆(s− τ))2g(x∆(s))2 − ϕ(x∆(s− τ))2g(x∆(s))2

= g(x∆(s))2(ϕ(x̄∆(s− τ))2 − ϕ(x∆(s− τ))2) + ϕ(x̄∆(s− τ))2(g(x̄∆(s))2 − g(x∆(s))2)

≤ 2λ(µ(n))2Ln|x̄∆(s− τ)− x∆(s− τ)|+ 2λ2µ(n)Kn|x̄∆(s)− x∆(s)|.

So we get

Hx(x∆(s))f∆(x̄∆(s)) +
1

2
Hxx(x∆(s))ϕ(x̄∆(s− τ))2g∆(x̄∆(s))2

≤ K3 + λ(µ(n))2LnHxx(x∆(s))|x̄∆(s− τ)− x∆(s− τ)|

+
(
KnHx(x∆(s)) + λ2Knµ(n)Hxx(x∆(s))

)
|x̄∆(s)− x∆(s)|

≤ K3 + ζn|x̄∆(s− τ)− x∆(s− τ)|+ ζ∗n|x̄∆(s)− x∆(s)|,
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where

ζn = max
1/n≤x≤n

[
λ(µ(n))2LnHxx(x)

]
and

ζ∗n = max
1/n≤x≤n

[
KnHx(x) + λ2Knµ(n)Hxx(x)

]
.

We now have

E(H(x∆(t ∧ ρn))) ≤ H(ξ(0)) + E
∫ t∧ρn

0

(K3 + ζn|x̄∆(s− τ)− x∆(s− τ)|

+ ζ∗n|x̄∆(s)− x∆(s)|)ds

≤ H(ξ(0)) +K3T + ζnE
∫ 0

−τ
|ξ([s/∆]∆)− ξ(s)|ds

+ (ζn + ζ∗n)

∫ T

0

E|x∆(s)− x̄∆(s)|ds

≤ H(ξ(0)) +K3T + ζnK4∆γτ

+ (ζn + ζ∗n)

∫ T

0

(E|x∆(s)− x̄∆(s)|p)1/pds.

By Lemma 3.5.1 and (3.23), we obtain

E(H(x∆(t ∧ ρn))) ≤ H(ξ(0)) +K3T + ζnK4∆γτ + (ζn + ζ∗n)TC1/p
p ∆1/4.

Therefore

P(ρn ≤ T ) ≤ H(ξ(0)) +K3T + ζnK4∆γτ + (ζn + ζ∗n)TC
1/p
p ∆1/4

H(1/n) ∧H(n)
. (3.37)

For ε ∈ (0, 1), we may choose sufficiently large n such that

H(ξ(0)) +K3T

H(1/n) ∧H(n)
≤ ε

2
(3.38)
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and sufficiently small step size ∆ ∈ (0,∆1] such that

ζnK4∆γτ + (ζn + ζ∗n)TC
1/p
p ∆1/4

H(1/n) ∧H(n)
≤ ε

2
. (3.39)

Combining (3.38) and (3.39), we get the required assertion.

To establish the strong convergence of the truncated EM scheme, we first define the

stopping time

υn = τn ∧ ρn, (3.40)

where τn and ρn are (3.9) and (3.34) respectively.

Lemma 3.5.5. Let Assumptions 3.3.1, 3.4.1 and 3.5.3 hold. Then, for any p ≥ 2,

T > 0, ∆ ∈ (0,∆∗] and sufficiently large n

E
(

sup
0≤t≤T

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ C∆p(1/4∧γ) (3.41)

and

lim
∆→0

E
(

sup
0≤t≤T

|x∆(t ∧ υn)− x(t ∧ υn)|p
)

= 0 (3.42)

where C is a constant independent of ∆.

Proof. It follows from (3.2) and (3.29) that

[x∆(t ∧ υn)− x(t ∧ υn)] =

∫ t∧υn

0

[f∆(x̄∆(s))− f(x(s))]ds

+

∫ t∧υn

0

[ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s))]dB(s).

We now apply elementary inequality to have

|x∆(t ∧ υn)− x(t ∧ υn)|p ≤ 2p−1
(∣∣∣ ∫ t∧υn

0

[f∆(x̄∆(s))− f(x(x))]ds
∣∣∣p

+
∣∣∣ ∫ t∧υn

0

[ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s))]dB(s)
∣∣∣p).
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So for t1 ∈ [0, T ], we obtain

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ 2p−1

(
E
∣∣∣ ∫ t1∧υn

0

[f∆(x̄∆(s))− f(x(s))]ds
∣∣∣p

+ E( sup
0≤t≤t1

∣∣∣ ∫ t1∧υn

0

[ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s))]dB(s)
∣∣∣p)).

By the Hölder inequality,

E
(
|
∫ t1∧υn

0

[f∆(x̄∆(s))− f(x(s))]ds|p
)
≤ T p−1E

(∫ t1∧υn

0

|f∆(x̄∆(s))− f(x(s))|pds
)
.

Also by the Burkholder-Davis-Gundy inequality, we obtain

E
(

sup
0≤t≤t1

∣∣∣ ∫ t1∧υn

0

(ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s)))dB(s)
∣∣∣p)

≤ T
p−2

2 C(p)E
(∫ t1∧υn

0

|ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s))|pds
)
,

where C(p) is a constant. We now have

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ 2p−1

(
T p−1E

∫ t1∧υn

0

|f∆(x̄∆(s))− f(x(s))|pds

+ T
p−2

2 C(p)E
∫ t1∧υn

0

|ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s))|pds
)
.

Meanwhile

E
∫ t1∧υn

0

(|ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s))|p)ds

= E
∫ t1∧υn

0

(|ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g∆(x̄∆(s)) + ϕ(x(s− τ))g∆(x̄∆(s))

− ϕ(x(s− τ))g(x(s))|p)ds.
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By elementary inequality,

E
∫ t1∧υn

0

(|ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s))|p)ds

≤ 2p−1E
∫ t1∧υn

0

(|ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g∆(x̄∆(s))|p

+ |ϕ(x(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s))|p)ds

≤ 2p−1E
∫ t1∧υn

0

g∆(x̄∆(s))p|ϕ(x̄∆(s− τ))− ϕ(x(s− τ))|p

+ ϕ(x(s− τ))p|g∆(x̄∆(s))− g(x(s))|p)ds.

By Assumption 3.3.1, we get

E
∫ t1∧υn

0

(|ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s))|pds)

≤ 2p−1E
∫ t1∧υn

0

g∆(x̄∆(s))p|ϕ(x̄∆(s− τ))− ϕ(x(s− τ))|pds

+ 2p−1λpE
∫ t1∧υn

0

|g∆(x̄∆(s))− g(x(s))|pds.

Moreover, by (3.22), we note |g∆(x̄∆(s))| ≤ µ(n) for any x̄∆(s) ∈ [1/n, n]. Hence,

E
∫ t1∧υn

0

(|ϕ(x̄∆(s− τ))g∆(x̄∆(s))− ϕ(x(s− τ))g(x(s))|pds)

≤ 2p−1(µ(n))pE
∫ t1∧υn

0

|ϕ(x̄∆(s− τ))− ϕ(x(s− τ))|pds

+ 2p−1λpE
∫ t1∧υn

0

|g∆(x̄∆(s))− g(x(s))|pds.

We note from Assumption 3.4.1 that

|ϕ(x̄∆(s− τ))− ϕ(x(s− τ))|p ≤ Lpn|x̄∆(s− τ)− x(s− τ)|p
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for s ∈ [0, t1 ∧ υn]. So by Assumption 3.5.3, we get

E
∫ t1∧υn

0

|ϕ(x̄∆(s− τ))− ϕ(x(s− τ))|pds

≤ LpnE
∫ t1∧υn

0

|x̄∆(s− τ)− x(s− τ)|pds

≤ LpnE
∫ 0

−τ
|ξ([s/∆]∆)− ξ(s)|pds+ LpnE

∫ t1∧υn

0

|x̄∆(s)− x(s)|pds

≤ LpnK
p
4∆pγτ + LpnE

∫ t1∧υn

0

|x̄∆(s)− x(s)|pds.

We now have

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ 2p−1T p−1E

∫ t1∧υn

0

|f∆(x̄∆(s))− f(x(s)|pds

+ 4p−1T
p−2

2 (µ(n))pC(p)LpnK
p
4∆pγτ

+ 4p−1T
p−2

2 (µ(n))pC(p)LpnE
∫ t1∧υn

0

|x̄∆(s)− x(s)|pds

+ 4p−1T
p−2

2 λpC(p)E
∫ t1∧υn

0

|g∆(x̄∆(s))− g(x(s))|pds.

We note from the definition of the truncated functions f∆ and g∆ that

f∆(x̄∆(s)) = f(x̄∆(s)) and g∆(x̄∆(s)) = g(x̄∆(s))

for s ∈ [0, t1 ∧ υn]. Hence by Lemma 3.4.2, we have

|f(x̄∆(s))− f(x(s))|p ∨ |g(x̄∆(s))− g(x(s))|p ≤ Kp
n|x̄∆(s)− x(s)|p

for s ∈ [0, t1 ∧ υn]. We now get

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)

≤ 4p−1T
p−2

2 C(p)LpnK
p
4 (µ(n))p∆pγτ + 2p−1T p−1Kp

nE
∫ t1∧υn

0

|x̄∆(s)− x(s)|pds
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+ 4p−1T
p−2

2 (µ(n))pC(p)LpnE
∫ t1∧υn

0

|x̄∆(s)− x(s)|pds

+ 4p−1T
p−2

2 λpC(p)Kp
nE
∫ t1∧υn

0

|x̄∆(s)− x(s)|pds.

This implies

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ 4p−1T

p−2
2 C(p)LpnK

p
4 (µ(n))p∆pγτ

+ 4p−1
(
T

p−2
2 (µ(n))pC(p)Lpn + T

p−2
2 λpC(p)Kp

n + 21−pT p−1Kp
n

)
× E

∫ t1∧υn

0

|x̄∆(s)− x(s)|pds.

By elementary inequality, we have

E
∫ t1∧υn

0

|x̄∆(s)− x(s) + x∆(s)− x∆(s)|pds

≤ 2p−1E
(∫ t1∧υn

0

(|x̄∆(s)− x∆(s)|p + |x∆(s)− x(s)|p)ds
)

≤ 2p−1
(∫ T

0

E|x̄∆(s)− x∆(s)|pds+ E
∫ t1

0

sup
0≤t≤s

|x∆(t ∧ υn)− x(t ∧ υn)|pds
)
.

This yields

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)

≤ 4p−1T
p−2

2 C(p)LpnK
p
4τ(µ(n))p∆pγ

+ 8p−1
(
T

p−2
2 (µ(n))pC(p)Lpn + T

p−2
2 λpC(p)Kp

n + 21−pT p−1Kp
n

)
×
(∫ T

0

E|x̄∆(s)− x∆(s)|pds+ E
∫ t1

0

sup
0≤t≤s

|x∆(t ∧ υn)− x(t ∧ υn)|pds
)
.

By Lemma 3.5.1, we get

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
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≤ 4p−1T
p−2

2 C(p)LpnK
p
4τ(µ(n))p∆pγ

+ 8p−1Cp

(
T

p
2 (µ(n))pC(p)Lpn + T

p
2λpC(p)Kp

n + 21−pT pKp
n

)
∆p/4

+ 8p−1
(
T

p−2
2 (µ(n))pC(p)Lpn + T

p−2
2 λpC(p)Kp

n + 21−pT p−1Kp
n

)
× E

∫ t1

0

sup
0≤t≤s

|x∆(t ∧ υn)− x(t ∧ υn)|pds.

This also means

E
(

sup
0≤t≤t1

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ (C1(n, p, T ) + C2(n, p, T ))∆p(1/4∧γ)

+ C3(n, p, T )E
∫ t1

0

sup
0≤t≤s

|x∆(t ∧ υn)− x(t ∧ υn)|pds,

where

C1(n, p, T ) = 4p−1T
p−2

2 C(p)LpnK
p
4τ(µ(n))p,

C2(n, p, T ) = 8p−1Cp

(
T

p
2 (µ(n))pC(p)Lpn + T

p
2λpC(p)Kp

n + 21−pT pKp
n

)
and

C3(n, p, T ) = 8p−1
(
T

p−2
2 (µ(n))pC(p)Lpn + T

p−2
2 λpC(p)Kp

n + 21−pT p−1Kp
n

)
.

By the Grownwall inequality, we arrive at

E
(

sup
0≤t≤T

|x∆(t ∧ υn)− x(t ∧ υn)|p
)
≤ C∆p(1/4∧γ)

as the required assertion, where C = (C1(n, p, T ) + C2(n, p, T ))eC3(n,p,T ). Moreover,

we obtain (3.42) by letting ∆→ 0.

Theorem 3.5.6. Let Assumptions 3.3.1, 3.3.2, 3.4.1 and 3.5.3 hold. Then, for any

p ≥ 2, we get

lim
∆→0

E
(

sup
0≤t≤T

|x∆(t)− x(t)|p
)

= 0. (3.43)
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and consequently

lim
∆→0

E
(

sup
0≤t≤T

|x̄∆(t)− x(t)|p
)

= 0. (3.44)

Proof. Let υn be the same as before. Set

e∆(t) = x∆(t)− x(t).

Clearly

E
(

sup
0≤t≤T

|e∆(t)|p
)

= E
(

sup
0≤t≤T

|e∆(t)|p1{τn>T and ρn>T}

)
+ E

(
sup

0≤t≤T
|e∆(t)|p1{τn≤T or ρn≤T}

)
. (3.45)

For any arbitrary % > 0, the Young inequality gives us

E
(

sup
0≤t≤T

|e∆(t)|p
)

1{τn≤T or ρn≤T} ≤
%

2
E
(

sup
0≤t≤T

|e∆(t)|2p
)

+
1

2%
P(τn ≤ T or ρn ≤ T ).

Consequently,

E
(

sup
0≤t≤T

|e∆(t)|p
)
≤ E

(
sup

0≤t≤T
|e∆(t)|p1{τn>T and ρn>T}

)
+
%

2
E
(

sup
0≤t≤T

|e∆(t)|2p
)

(3.46)

+
1

2%
P(τn ≤ T or ρn ≤ T ).

By elementary inequality, we can derive to obtain

E
(

sup
0≤t≤T

|e∆(t)|2p
)
≤ 2pE

(
sup

0≤t≤T
(|x∆(t)|2p + |x(t)|2p)

)
≤ 22pE

(
sup

0≤t≤T
(|x∆(t)|p) ∨ sup

0≤t≤T
(|x(t)|p)

)2

.

So by Lemmas 3.3.4 and 3.5.2,

E
(

sup
0≤t≤T

|e∆(t)|2p
)
≤ 22p(C1 ∨ C4)2. (3.47)
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Moreover,

E
(

sup
0≤t≤T

|e∆(t)|p1{τn>T and ρn>T}

)
≤ E

(
sup

0≤t≤T
|e∆(t)|p1{υn>T}

)
≤ E

(
sup

0≤t≤T
|x∆(t ∧ υn)− x(t ∧ υn)|p

)
.

So by Lemma 3.5.5,

E
(

sup
0≤t≤T

|e∆(t)|q1{τn>T and ρn>T}

)
≤ C∆p(1/4∧γ). (3.48)

Also,

P(τn ≤ T or ρn ≤ T ) ≤ P(τn ≤ T ) + P(ρn ≤ T ). (3.49)

Substituting the inequalities (3.47), (3.48) and (3.49) into (3.46), we obtain

E
(

sup
0≤t≤T

|e∆(t)|q
)
≤ 2p(C1 ∨ C4)2%

2
+ C∆p(1/4∧γ)

+
1

2%
P(τn ≤ T ) +

1

2%
P(ρn ≤ T ).

For any given ε ∈ (0, 1), we may choose % such that

2p(C1 ∨ C4)2%

2
≤ ε

4
. (3.50)

By Theorem 3.3.3 and Lemma 3.5.4, for any given ε ∈ (0, 1) , there exists no such

that for n ≥ no we may choose % to have

1

2%
P(τn ≤ T ) ≤ ε

4
(3.51)
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and choose n(ε) ≤ no such that for ∆ ∈ (0,∆1]

1

2%
P(ρn ≤ T ) ≤ ε

4
. (3.52)

Lastly, we may select ∆ ∈ (0,∆1] sufficiently small for ε ∈ (0, 1) such that

C∆p(1/4∧γ) ≤ ε

4
. (3.53)

Combining (3.50), (3.51), (3.52) and (3.53), we get

E
(

sup
0≤t≤T

|x∆(t)− x(t)|p
)
≤ ε

as the required assertion. Moreover, by Lemma 3.5.1, we obtain (3.44).

3.6 Numerical experiments

To illustrate efficiency of the proposed truncated EM scheme for SDDE (3.1), we

perform two numerical examples with different Ait-Sahalia-type models. In the first

numerical example, we implement Ait-Sahalia-type model with α−1x(t)−1 term in the

drift and delayed volatility function. In the second numerical example, we implement

and perform comparative assessment of the delayed Ait-Sahalia-type model without

α−1x(t)−1 term in the drift using both truncated EM (TEM) and backward EM

(BEM) schemes. This becomes necessary because it is unknown if the backward EM

scheme could cope with α−1x(t)−1 term at the origin. We would like to point out

that we consider this case and use BEM scheme in the numerical study because the

only well-known available literature for one half strong convergent approximation of

Ait-Sahalia-type model focuses on the BEM method (see e.g [31]). There is so far no

relevant literature devoted to strong convergent approximation of Ait-Sahalia-type

model with α−1x(t)−1 term and delayed volatility function.
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3.6.1 Numerical example I

In this numerical illustration, we consider the following delayed Ait-Sahalia-type

model

dx(t) = (0.1x(t)−1 − 0.3 + x(t)− 0.5x(t)3)dt+ ϕ(x(t− 1))x(t)3/2dB(t), (3.54)

with initial data ξ(t) = 0.2 and ϕ(y) is defined by

ϕ(y) =

1
2

(1+(ey−e−y))
(ey+e−y)

, if y ≥ 0

1
4
, Otherwise.

(3.55)

Note (3.55) is a special type of sigmoid function. Naturally, sigmoid functions

like (3.55) are bounded, real-valued functions and hence fulfil Assumption 3.3.1.

Moreover, parameterising sigmoid-based functions in financial models on past data

are observed to capture volatility skews and smiles (see, e.g., [32]). Do also note the

drift and diffusion coefficient terms of (3.54) satisfy

sup
1/u≤x≤u

(|f(x)| ∨ g(x)) ≤ 1.9u3, u ≥ 1.

This means we can have µ(u) = 1.9u2 with inverse µ−1(u) = (u/1.9)1/3. If we define

∆ = 10−2 and h(∆) = ∆−2/3, then µ−1(h(∆)) = (∆−2/3/1.9)1/3 and 1/µ−1(h(∆)) =

(∆−2/3/1.9)−1/2. Displayed in Figure 3.1 is a Monte Carlo simulated sample path of

x(t) with step size 10−2 using the TEM scheme.

3.6.2 Numerical example II

In this subsection, we assess the performance of TEM scheme with BEM scheme. We

already noted there exists no relevant literature on strong convergent approximation

of SDDE (3.56). Hence, we have to fall on the BEM method which has one half

strong order approximation of Ait-Sahalia-type model without the delayed volatility
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function. Consider the following delayed Ait-Sahalia-type model

dx(t) = (0.2 + 0.3x(t)− 0.5x(t)2)dt+ ϕ(x(t− 1))x(t)4/3dB(t), (3.56)

with initial data ξ(t) = 0.2 and the same volatility function ϕ(·) in (3.55). Clearly,

we have µ(u) = u2 with inverse µ−1(u) = u1/2. Using TEM and BEM schemes with

step size 10−2, we obtain Monte Carlo simulated sample paths of x(t) in Figure 3.2.

We notice that both simulated sample paths are almost the same. Figure 3.3 depicts

the log-log plot of the strong errors between TEM and BEM numerical solutions

based on step sizes 10−3, 10−4, 10−5 and 10−6. For the purpose of comparison, we

also plotted the reference line with slope 1.0. We can see the strong errors between

TEM and BEM numerical solutions have order 1.0 although this has not been proved

theoretically.
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Figure 3.1: Simulated sample path of x(t) when ∆ = 0.01
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Figure 3.2: Convergence of TEM and BEM solutions when ∆ = 0.01
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Figure 3.3: Strong errors between TEM and BEM schemes



Chapter 3 75

3.7 Summary

As supported by empirical findings, stochastic volatility models with inherent fea-

tures of past dependency are suitable models for describing convex phenomena of

implied volatility against market anomalies. This motivated the need to replace the

constant volatility of the Ait-Sahalia-type interest rate model with a delayed volat-

ility function. Then we discussed analytical properties such as existence of pathwise

unique positive global solution and boundedness of moments of the exact solution.

We moved on to construct a new implementable truncated EM scheme which

could cope around the origin with the inverse function in the drift of the proposed

model. We also proved numerical properties such as boundedness of moment in

the strong sense and established finite time strong convergence of the truncated

EM approximate solutions to the exact solution under the local Lipschitz condition

plus the Khasminskii-type condition. The strong convergence result implies that

in practice, the truncated EM approximate solutions can be used to compute some

debt and path-dependent financial products. We obtained C∆p(1/4∧γ) as the strong

pathwise error. Finally we implemented some numerical examples to validate the

theoretical results.
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Numerical approximation of

Poisson-jump Ait-Sahalia-type

interest rate model with delay

4.1 Introduction

We study analytical properties of the exact solution to the generalised Poisson-jump

Ait-Sahalia-type interest rate model with delay in this chapter. Since this model

does not have explicit solution, we employ several new truncated EM techniques to

investigate finite time strong convergence theory of the numerical solutions under

the local Lipschitz condition plus the Khasminskii-type condition.

The rest of the chapter is organised as follows: In Section 4.2, we present the

Poisson-jump Ait-Sahalia-type interest rate model with delay. We study the exist-

ence of a unique global solution to the proposed model and show that the solution

will always be positive in Section 4.3. We also establish boundedness of moments

of the exact solution in this section. In Section 4.4, we introduce the truncated

EM approximation scheme for the proposed model. Section 4.5 is entirely devoted

to exploration of numerical properties of the truncated EM scheme. These include

boundedness of moments and Lp(p ≥ 2) finite time strong convergence of the trun-

76
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cated EM approximate solutions to the exact solution. In Section 4.6, we perform

some numerical illustrations to support the theoretical results. We briefly summarise

the findings in the last section.

4.2 The Poisson-jump Ait-Sahalia-type

interest rate model with delay

Let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the

usual conditions. Let us extend SDE (1.3) to incorporate delayed volatility function

and Poisson-driven jump described by

dx(t) = (α−1x(t−)−1 − α0 + α1x(t−)− α2x(t−)ρ)dt+ ϕ(x((t− τ)−))x(t−)θdB(t)

+ α3x(t−)dN(t) (4.1)

on t ≥ −τ with initial data x(t) = ξ(t) for t ∈ [−τ, 0]. Here x(t−) = lims→t− x(s),

x((t − τ)−) denotes delay in x(t−), ϕ(·) depends on x((t − τ)−) with τ > 0. The

delayed volatility function and Poisson-driven jump may, for instance, explain joint

effects of volatility ’skews’ and ’smiles’, and tail distribution of interest rates which

pervade most financial markets. The reader is referred to [14] for relevant information

about this extension.

Now let the following scalar dynamics

dx(t) = f(x(t−))dt+ ϕ(x((t− τ)−))g(x(t−))dB(t) + h(x(t−))dN(t), (4.2)

x(t) = ξ(t), on t ∈ [−τ,∞), denote equation of SDDE (4.1) such that f(x) =

α−1x
−1 − α0 + α1x − α2x

ρ, g(x) = xθ and h(x) = α3x, ∀x ∈ R+, with ϕ(y) defined

in C(R+;R+). Let C2,1(R×R+;R) be the family of all real-valued functions Z(x, t)

defined on R × R+ such that Z(x, t) is twice continuously differentiable in x and

once in t. For each Z ∈ C2,1(R × R+;R), define the jump-diffusion operator LZ :
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R× R× R+ → R by

LZ(x, y, t) = `(x, y, t) + λ(Z(x+ h(x), t)− Z(x, t)), (4.3)

for SDDE (4.2) associated with the C2,1-function Z, where

`(x, y, t) = Zt(x, t) + Zx(x, t)f(x) +
1

2
Zxx(x, t)ϕ(y)2g(x)2, (4.4)

`Z : R × R × R+ → R, is the diffusion operator. Here, Zt(x, t) and Zx(x, t) are

first-order partial derivatives with respect to t and x respectively, and Zxx(x, t) is a

second-order partial derivative with respect to x. With the jump-diffusion operator

defined, the Itô formula then yields

dZ(x(t), t) = LZ(x(t−), x((t− τ)−), t)dt

+ ϕ(x((t− τ)−))Zx(x(t−), t)g(x(t−))dB(t)

+ (Z(x(t−) + h(x(t−)), t)− Z(x(t−), t))dÑ(t) (4.5)

a.s. (e.g., see [47] for detailed coverage).

4.3 Analytical properties

In this section, we survey the analytical properties such as existence-and-uniqueness

theorem and boundedness of moments of the exact solution to SDDE (4.2).

4.3.1 Existence and uniqueness of solution

Before we show existence of positive solution to SDDE (4.2), we are required to

assume the volatility function ϕ(·) is locally Lipschitz continuous and bounded (see,

e.g., [26] for detailed accounts of these conditions). The following conditions are thus

sufficient to establish existence of a unique positive global or nonexplosive solution

to SDDE (4.2).
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Assumption 4.3.1. The volatility function ϕ : R+ → R+ of SDDE (4.2) is Borel-

measurable and bounded by a positive constant σ, i.e.

ϕ(y) ≤ σ, (4.6)

∀y ∈ R+.

Assumption 4.3.2. For any R > 0, there exists a constant LR > 0 such that the

volatility function ϕ : R+ → R+ of SDDE (4.2) satisfies

|ϕ(y)− ϕ(ȳ)| ≤ LR|y − ȳ|, (4.7)

∀y, ȳ ∈ [ 1
R
, R].

Assumption 4.3.3. The parameters of SDDE (4.2) satisfy

1 + ρ > 2θ, ρ, θ > 1. (4.8)

The following theorem reveals the SDDE (4.2) admits a pathwise-unique posit-

ive global solution x(t) on t ∈ [−τ,∞). Since SDDE (4.2) describes interest rate

dynamics, the solution will always remain nonnegative a.s.

Theorem 4.3.4. Let Assumptions 4.3.1 and 4.3.3 hold. Then for any given initial

data

{x(t) : −τ ≤ t ≤ 0} = ξ(t) ∈ C([−τ, 0] : R+), (4.9)

there exists a unique global solution x(t) to SDDE (4.2) on t ∈ [−τ,∞) and x(t) > 0

a.s.

Proof. Since the coefficient terms of SDDE (4.2) are locally Lipschitz continuous in

[−τ,∞), then there exists a unique positive maximal local solution x(t) ∈ [−τ, τe)
for any given initial data (4.9), where τe is the explosion time (e.g., see [13] and the

classical methods in [17]). Let n0 > 0 be sufficiently large such that

1

n0

< min
−τ≤t≤0

|ξ(t)| ≤ max
−τ≤t≤0

|ξ(t)| < n0.
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For each integer n ≥ n0, define the stopping time

τn = inf{t ∈ [0, τe) : x(t) 6∈ (1/n, n)}. (4.10)

Obviously, τn is increasing as n → ∞. Set τ∞ = lim
n→∞

τn, whence τ∞ ≤ τe a.s. In

other words, we need to show that τ∞ = ∞ a.s. to complete the proof. For any

β ∈ (0, 1), define a C2-function Z : R+ → R+ by

Z(x) = xβ − 1− βlog(x). (4.11)

Clearly Z(x) → ∞ as x → ∞ or x → 0. By Assumption 4.3.1, we get from the

operator in (4.3) that

LZ(x, y) ≤ `Z(x, y) + λ
(

(x+ α3x)β − 1− β log(x+ α3x)− (xβ − 1− β log(x))
)

= `Z(x, y) + λ
(

((x+ α3x)β − xβ)− β log(x(1 + α3)/x)
)

= `Z(x, y) + λ((1 + α3)β − 1)xβ − λβ log(1 + α3),

where

`Z(x, y) = β(xβ−1 − x−1)
(
α−1x

−1 − α0 + α1x− α2x
ρ
)

+
1

2
(β(β − 1)xβ−2 + βx−2)ϕ(y)2x2θ

≤ α−1βx
β−2 − α0βx

β−1 + α1βx
β − α2βx

ρ+β−1 − α−1βx
−2 + α0βx

−1

− α1β + α2βx
ρ−1 +

σ2

2
β(β − 1)xβ+2θ−2 +

σ2

2
βx2θ−2.

Since β ∈ (0, 1) and by Assumption 4.3.3, we note −α−1βx
−2 leads and tends to

−∞ for small x and for large x, −α2βx
ρ+β−1 leads and also tends to −∞. Hence

there exists a constant K0 such that

LZ(x, y) ≤ K0. (4.12)
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So for t1 ∈ [0, τ ], we derive from the Itô formula

E[Z(x(τn ∧ t1))] ≤ Z(ξ(0)) +

∫ τn∧t1

0

K0dt,

∀n ≥ n0. It then follows that

P(τn ≤ τ) ≤ Z(ξ(0)) +K0τ

Z(1/n) ∧ Z(n)
.

As n → ∞, P(τn ≤ τ) → 0. This implies τ∞ > τ a.s. Also for t1 ∈ [0, 2τ ], the Itô

formula yields

E[Z(x(τn ∧ t1))] ≤ Z(ξ(0)) +

∫ τn∧t1

0

K0dt,

∀n ≥ n0 and consequently,

P(τn ≤ 2τ) ≤ Z(ξ(0)) + 2K0τ

Z(1/n) ∧ Z(n)
.

As n→∞, we get τ∞ > 2τ a.s. Repeating this procedure for t1 ∈ [0,∞), we obtain

P(τ∞ ≤ ∞)→ 0 by letting n→∞. This means τ∞ =∞ a.s. and hence τe =∞ a.s.

The proof is now complete.

4.3.2 Moment bounds

The following lemmas show the finite moments of the exact solution to SDDE (4.2).

Lemma 4.3.5. Let Assumptions 4.3.1 and 4.3.3 hold. Then for any p ≥ 2, there

exists a constant ρ1 such that the solution of SDDE (4.2) satisfies

sup
0≤t<∞

(
E|x(t)|p

)
≤ ρ1. (4.13)
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Proof. Define the stopping time for every sufficiently large integer n by

τn = inf{t ≥ 0 : x(t) 6∈ (1/n, n)}. (4.14)

Define a function Z ∈ C2,1(R+ × R+;R+) by Z(x, t) = etxp . By Assumption 4.3.1,

the jump-diffusion operator in (4.3) gives us

LZ(x, y, t) ≤ `Z(x, y, t) + λ[et(x+ α3x)p − etxp]

= `Z(x, y, t) + λetxp[(1 + α3)p − 1],

where

`Z(x, y, t) = etxp + petxp−1
(
α−1x

−1 − α0 + α1x− α2x
ρ
)

+
1

2
p(p− 1)etxp−2ϕ2(y)x2θ

≤ et
[
xp + α−1px

p−2 − α0px
p−1 + α1px

p − α2px
ρ+p−1 +

p(p− 1)

2
σ2x2θ+p−2)

]
.

By Assumption 4.3.3, −pα2x
ρ+p−1 dominates and tends to −∞ for large x. Hence

we can find a constant K1 such that

LZ(x, y, t) ≤ K1e
t.

The Itô formula gives us

E[et∧τn|x(t ∧ τn)|p] ≤ |ξ(0)|p +K1e
t.

Applying the Fatou lemma and letting n→∞ yields

E|x(t)|p < e−t|ξ(0)|p +K1

and consequently,

sup
0≤t<∞

(E|x(t)|p) ≤ ρ1.

as the required assertion in (4.13).
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Lemma 4.3.6. Let Assumptions 4.3.1 and 4.3.3 hold. For any p > 2∨ (ρ−1), there

exists a constant ρ2 such that the solution of SDDE (4.2) satisfies

sup
0≤t<∞

(
E| 1

x(t)
|p
)
≤ ρ2. (4.15)

Proof. Let τn be the same as in (4.14). By applying (4.3) to Z(x, t) = et/xp, we

compute

LZ(x, y, t) ≤ `Z(x, y, t) + λ[et(x+ α3x)−p − etx−p]

= `Z(x, y, t) + λetx−p[(1 + α3)−p − 1],

where Assumption 4.3.1 has been used and here, we have

`Z(x, y, t) = etx−p − petx−(p+1)(α−1x
−1 − α0 + α1x− α2x

ρ)

+
1

2
p(p+ 1)etx−(p+2)ϕ(y)2x2θ

≤ et[x−p − α−1px
−(p+2) + α0px

−(p+1) − α1px
−p + α2x

ρ−p−1

− p(p+ 1)

2
σ2x2θ−p−2)].

By Assumption 4.3.3 and noting that p > 2∨ (ρ−1), we observe −α−1px
−(p+2) leads

and tends to −∞ for small x and for large x, pα2x
ρ−p−1 dominates and tends to 0.

Hence there exists a constant K2 such that

LZ(x, y, t, ) ≤ K2e
t.

We can now use the Itô formula, apply Fatou lemma and let n→∞ to arrive at

E|x(t)|−p < e−t|ξ(0)|−p +K2

and consequently the required assertion in (4.15).
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4.4 The truncated EM method

In this section, we present the truncated EM scheme for numerical approximation

of SDDE (4.2). Meanwhile, we need the following useful assumption on the initial

data. This is needed to prove the results of this chapter.

Assumption 4.4.1. There is a pair of constant K3 > 0 and γ ∈ (0, 1] such that for

all −τ ≤ s ≤ t ≤ 0, the initial data ξ satisfies

|ξ(t)− ξ(s)| ≤ K3|t− s|γ. (4.16)

In the sequel, we also need the following lemmas.

Lemma 4.4.2. For any R > 0, there exists a constant KR > 0 such that the

coefficient terms f , g and h of SDDE (4.2) satisfy

|f(x)− f(x̄)| ∨ |g(x)− g(x̄)| ∨ |h(x)− h(x̄)| ≤ KR|x− x̄|, (4.17)

∀x, x̄ ∈ [ 1
R
, R].

Lemma 4.4.3. Let Assumptions 4.3.1 and 4.3.3 hold. Then for any p ≥ 2, there

exists K4 > 0 such that the drift and diffusion terms of SDDE (4.2) satisfy

xf(x) +
p− 1

2
|ϕ(y)g(x)|2 ≤ K4(1 + |x|2), (4.18)

∀x, y ∈ R+, where K4 is a constant (see [39] for the proof).

4.4.1 Numerical approximation

Before we proceed, let us extend the volatility function ϕ(y) and the jump term

h(x) from R+ to R by setting ϕ(y) = ϕ(0) and h(x) = 0 for x < 0. Apparently,

Theorem 4.3.4 as well as conditions (4.6), (4.7), (4.17) and (4.18) are well maintained.

Moreover, we do not need to truncate the jump term since it is of linear growth. To
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define the truncated EM scheme for SDDE (4.2), we first choose a strictly increasing

continuous function µ : R+ → R+ such that µ(r)→∞ as r →∞ and

sup
1/r≤x≤r

(|f(x)| ∨ g(x)) ≤ µ(r), ∀r > 1. (4.19)

Denote by µ−1 the inverse function of µ. We define a strictly decreasing function

π : (0, 1)→ R+ such that

lim
∆→0

π(∆) =∞ and ∆1/4π(∆) ≤ 1, ∀∆ ∈ (0, 1]. (4.20)

Find ∆∗ ∈ (0, 1) such that µ−1(π(∆∗)) > 1 and f(x) > 0 for 0 < x < ∆∗. For a

given step size ∆ ∈ (0,∆∗), let us define the truncated functions

f∆(x) = f
(

1/µ−1(π(∆)) ∨ (x ∧ µ−1(π(∆)))
)
, ∀x ∈ R

and

g∆(x) =

g
(
x ∧ µ−1(π(∆))

)
, if x ≥ 0

0, if x < 0.

So for x ∈ [1/µ−1(π(∆)), µ−1(π(∆))], we have

|f∆(x)| = |f(x)| ≤ max |f(w)|
1/µ−1(π(∆))≤w≤µ−1(π(∆))

≤ µ(µ−1(π(∆))) = π(∆)

and

g∆(x) ≤ µ(µ−1(π(∆))) = π(∆).

We easily observe that

|f∆(x)| ∨ g∆(x) ≤ π(∆), ∀x ∈ R. (4.21)
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That is, both truncated functions f∆ and g∆ are bounded although both f and g

may not. The following lemma shows f∆ and g∆ maintain (4.18) nicely.

Lemma 4.4.4. Let Assumptions 4.3.1 and 4.3.3 hold. Then, for all ∆ ∈ (0,∆∗)

and p ≥ 2, the truncated functions satisfy

xf∆(x) +
p− 1

2
|ϕ(y)g∆(x)|2 ≤ K5(1 + |x|2) (4.22)

∀x, y ∈ R, where K5 is a constant independent of ∆ (see [39] for the proof).

From now on, let T > 0 be fixed arbitrarily and the step size ∆ ∈ (0,∆∗] be a

fraction of τ . We define ∆ = τ/M for some positive integer M . Let now form

the discrete-time truncated EM approximation of SDDE (4.2). Define tk = k∆ for

k = −M,−(M−1), · · · , 0, 1, 2, · · · . Set X∆(tk) = ξ(tk) for k = −M,−(M−1), · · · , 0
and then compute

X∆(tk+1) = X∆(tk)+f∆(X∆(tk))∆+ϕ(X∆(tk−M))g∆(X∆(tk))∆Bk+h(X∆(tk))∆Nk

(4.23)

for k = 0, 1, 2, · · · , where ∆Bk = B(tk+1)− B(tk) and ∆Nk = N(tk+1)−N(tk). Let

now form two versions of the continuous-time truncated EM solutions. The first one

is defined by

x̄∆(t) =
∞∑

k=−M

X∆(tk)1[tk,tk+1)(t). (4.24)

This is the continuous-time step-process x̄∆(t) on t ∈ [−τ,∞], where 1[tk,tk+1) is the

indicator function on [tk, tk+1). The other one is the continuous-time continuous

process x∆(t) on t ≥ −τ defined conveniently by setting x∆(t) = ξ(t) for t ∈ [−τ, 0]

while for t ≥ 0

x∆(t) = ξ(0) +

∫ t

0

f∆(x̄∆(s−))ds+

∫ t

0

ϕ(x̄∆((s− τ)−))g∆(x̄∆(s−))dB(s)

+

∫ t

0

h(x̄∆(s−))dN(s). (4.25)
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Obviously x∆(t) is an Itô process on t ≥ 0 satisfying Itô differential

dx∆(t) = f∆(x̄∆(t−))dt+ϕ(x̄∆((t−τ)−))g∆(x̄∆(t−))dB(t)+h(x̄∆(t−))dN(t). (4.26)

For all k = −M,−(M − 1), · · · , it is useful to see that x∆(tk) = x̄∆(tk) = X∆(tk).

4.5 Numerical properties

In this section, we establish the finite moment and finite time strong convergence

theory of the truncated EM solutions to SDDE (4.2).

4.5.1 Moment bounds

To upper bound the moment of the truncated EM solution, let first define

k(t) = [t/∆]∆,

for any t ∈ [0, T ], where [t/∆] denotes the integer part of t/∆. The following lemma

shows x∆(t) and x̄∆(t) are close to each other in Lp.

Lemma 4.5.1. Let Assumption 4.3.1 hold. Then for any fixed ∆ ∈ (0,∆∗], we have

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤ D1

(
∆p/2(π(∆))p + ∆

)
|x̄∆(t)|p, p ∈ [2,∞) (4.27)

and

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤ D2

(
∆p/2(π(∆))p

)
|x̄∆(t)|p, p ∈ (0, 2), (4.28)

for all t ≥ 0, where D1 and D2 denote positive generic constants which depend only

on p and may change between occurrences.
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Proof. Fix any ∆ ∈ (0,∆∗) and t ∈ [0, T ]. Then for p ∈ [2,∞), we derive

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤ 3p−1

(
E
(
|
∫ t

k(t)

f∆(x̄∆(s))ds|p
∣∣Fk(t)

)
+ E

(
|
∫ t

k(t)

ϕ(x̄∆((s− τ)))g∆(x̄∆(s))dB(s)|p
∣∣Fk(t)

)
+ E

(
|
∫ t

k(t)

h(x̄∆(s))dN(s)|p
∣∣Fk(t)

))
≤ 3p−1

(
∆p−1E(

∫ t

k(t)

|f∆(x̄∆(s))|pds
∣∣Fk(t))

+ c(p)∆(p−2)/2E(

∫ t

k(t)

|ϕ(x̄∆((s− τ)))g∆(x̄∆(s))|pds
∣∣Fk(t))

+ E(|
∫ t

k(t)

h(x̄∆(s))dN(s)|p
∣∣Fk(t))

)
≤ 3p−1

(
∆p−1∆(π(∆))p + c(p)∆(p−2)/2∆(σπ(∆))p + E(|

∫ t

k(t)

h(x̄∆(s))dN(s)|p
∣∣Fk(t))

)
,

where Assumption 4.3.1 and (4.21) have been used and c(p) depends on p. By the

characteristic function’s argument (see [45]), we have

E|∆Nk|p ≤ c̄∆, ∀∆ ∈ (0,∆∗),

where c̄ is a positive constant independent of ∆. We now obtain

E(|
∫ t

k(t)

h(x̄∆(s))dN(s)|p
∣∣Fk(t)) = |h(x̄∆(t))|pE|∆Nk|p.

This implies

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤ 3p−1

(
∆p−1∆(π(∆))p

+ c(p)∆(p−2)/2∆(σπ(∆))p + |h(x̄∆(t))|pE|∆Nk|p
)
,
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where h(x̄∆(t)) is independent of Nk. We now have

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤ 3p−1

(
(1 ∨ c(p)σp)∆p/2(π(∆))p + c̄αp3|x̄∆(t−)|p∆

)
≤ 3p−1(1 ∨ c(p)σp ∨ c̄αp3)

(
∆p/2(π(∆))p + |x̄∆(t)|p∆

)
≤ D1

(
∆p/2(π(∆))p + ∆

)
|x̄∆(t)|p,

which is (4.27), where D1 = 3p−1[(1 ∨ c(p)σp) ∨ c̄αp3]. For p ∈ (0, 2), the Jensen

inequality yields

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤
{
E
(
|x∆(t)− x̄∆(t)|2

∣∣Fk(t)

)}p/2
≤
{
D1

(
∆(π(∆))2 + ∆

)
|x̄∆(t)|p

}p/2
≤ 2p/2−1D

p/2
1

(
∆p/2(π(∆))p + ∆p/2

)
(|x̄∆(t)|p)p/2

≤ D2

(
∆p/2(π(∆))p

)
|x̄∆(t)|p,

which is the required assertion in (4.28), where D2 = 2p/2D
p/2
1 . The proof is thus

complete.

The finite moment of the truncated EM solution is revealed in the following

lemma.

Lemma 4.5.2. Let Assumptions 4.3.1 and 4.3.3 hold. Then for any p ≥ 3

sup
0≤∆≤∆∗

sup
0≤t≤T

(E|x∆(t)|p) ≤ ρ3, ∀T > 0, (4.29)

where ρ3 := ρ3(T, p,K5, ξ) and may change between occurrences.

Proof. Fix any ∆ ∈ (0,∆∗) and T ≥ 0. For t ∈ [0, T ], we derive from (4.3), (4.19)

and Lemma 4.4.4 that

E|x∆(t)|p − |ξ(0)|p
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≤ E
∫ t

0

p|x∆(s−)|p−2
(
x̄∆(s−)f∆(x̄∆(s−)) +

p− 1

2
|ϕ(x̄∆((s− τ)−))g∆(x̄∆(s−))|2

)
ds

+ E
∫ t

0

p|x∆(s−)|p−2(x∆(s−)− x̄∆(s−))f∆(x̄∆(s−))ds

+ λE
(∫ t

0

|x∆(s−) + h(x̄∆(s−))|p − |x∆(s−)|p
)
ds

≤ H11 +H12 +H13,

where

H11 = E
∫ t

0

K5p|x∆(s−)|p−2(1 + |x̄∆(s−)|2)ds,

H12 = E
∫ t

0

p|x∆(s−)|p−2
(
x∆(s−)− x̄∆(s−)

)
f∆(x̄∆(s−))ds

and

H13 = λE
(∫ t

0

|x∆(s−) + h(x̄∆(s−))|p − |x∆(s−)|p
)
ds.

Applying the Young inequality, we obtain

H11 = K5pE
∫ t

0

|x∆(s−)|p−2(1 + |x̄∆(s−)|2)ds

≤ K5p

∫ t

0

((p− 2)

p
E|x∆(s−)|p +

2

p
E(1 + |x̄∆(s−)|)p

)
ds

≤ K5

∫ t

0

(
(p− 2)E|x∆(s−)|p + 2p(1 + E|x̄∆(s−)|p)

)
ds

≤ c1

∫ t

0

(1 + E|x∆(s)|p + E|x̄∆(s)|p)ds,

where c1 = K5[(p− 2) ∨ 2p]. For s ∈ [0, t], we note from the triangle inequality

|x∆(s−)| ≤ |x∆(s−)− x̄∆(s−)|+ |x̄∆(s−)|.
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This implies for p ≥ 3, we obtain

H12 ≤ pE
∫ t

0

(
|x∆(s−)− x̄∆(s−)|+ |x̄∆(s−)|

)p−2

× |x∆(s−)− x̄∆(s−)||f∆(x̄∆(s−))|ds

≤ 2(p−3)pE
∫ t

0

(
|x∆(s−)− x̄∆(s−)|p−2 + |x̄∆(s−)|p−2

)
× |x∆(s−)− x̄∆(s−)||f∆(x̄∆(s−))|ds

= H121 +H122,

where

H121 = 2(p−3)pE
∫ t

0

|x̄∆(s−)|p−2|x∆(s−)− x̄∆(s)||f∆(x̄∆(s−))|ds

and

H122 = 2(p−3)pE
∫ t

0

|x∆(s−)− x̄∆(s−)|p−1|f∆(x̄∆(s−))|ds.

By Lemma 4.5.1 and (4.21), we now have

H121 ≤ 2(p−3)p

∫ t

0

E
{
|x̄∆(s)|p−2|f∆(x̄∆(s))|E

(
|x∆(s)− x̄∆(s)|Fk(s))

)}
ds

≤ 2(p−3)pD2(π(∆))∆1/2(π(∆))

∫ t

0

E
{
|x̄∆(s)|(|x̄∆(s)|p−2)

}
ds

≤ 2(p−3)pD2(π(∆))∆1/2(π(∆))

∫ t

0

E|x̄∆(s)|p−1ds

≤ 2(p−3)pD2(π(∆))2∆1/2

∫ t

0

(1

p
+

(p− 1)

p
E|x̄∆(s)|p

)
ds

≤ c2 + c3

∫ t

0

E|x̄∆(s)|pds, (4.30)

where c2 = 2(p−3)D2T and c3 = 2(p−3)D2(p − 1) , noting that (π(∆))∆1/4 ≤ 1 and
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hence

[(π(∆))∆1/4]2 ≤ 1.

Also by (4.21), we have

H122 ≤ 2(p−3)pπ(∆)

∫ t

0

E|x∆(s)− x̄∆(s)|p−1ds. (4.31)

Do note for p ≥ 3 and w̄ ∈ (0, 1/4], we have pw̄ ≤ (p− 1)/2 and then

∆(p−1)/2−w̄p ≤ 1. (4.32)

So for p ≥ 3 and w̄ = 1/4, we obtain from (4.31), Lemma 4.5.1, (4.32) and the Young

inequality

H122 ≤ 2(p−3)pD1

(
∆(p−1)/2(π(∆))p−1(π(∆)) + ∆(π(∆))

)∫ t

0

E|x̄∆(s)|p−1ds

≤ 2(p−3)pD1

(
∆(p−1)/2(π(∆))p + ∆(π(∆))

)∫ t

0

E|x̄∆(s)|p−1ds

≤ 2(p−3)pD1

(
∆(p−2)/4 + ∆(π(∆))

)∫ t

0

E|x̄∆(s)|p−1ds

≤ 2(p−2)pD1

∫ t

0

(1

p
+

(p− 1)

p
E|x̄∆(s)|p

)
ds

≤ c4 + c5

∫ t

0

E|x̄∆(s)|pds,

where c4 = 2(p−2)D1T and c5 = 2(p−2)D1(p− 1). We now combine H121 and H122 to

have

H12 ≤ c2 + c4 + (c3 + c5)

∫ t

0

E|x̄∆(s)|pds

≤ c6 + c7

∫ t

0

E|x̄∆(s)|pds,
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where c6 = c2 + c4 and c7 = c3 + c5. Also we estimate H13 as

H13 = λE
(∫ t

0

|x∆(s−) + h(x̄∆(s−))|p − |x∆(s−)|p
)
ds

≤ λE
(∫ t

0

2p−1|x∆(s−)|p + 2p−1|h(x̄∆(s−))|p − |x∆(s−)|p
)
ds

≤ λE
(∫ t

0

(2p−1 − 1)|x∆(s−)|p + 2p−1αp3|x̄∆(s−)|p
)
ds

≤ c8

∫ t

0

(E|x∆(s)|p + E|x̄∆(s)|p)ds,

where c8 = λ[(2p−1 − 1) ∨ 2p−1αp3]. Combining H11, H12 and H13, we have

E|x∆(t)|p ≤ |ξ(0)|p + (c1T + c6) +

∫ t

0

(
(c1 + c8)E|x∆(s)|p + (c1 + c7 + c8)E|x̄∆(s)|p

)
ds

≤ c9 + 2c10

∫ t

0

sup
0≤u≤s

(
E|x∆(u)|p

)
ds,

where c9 = |ξ(0)|p + c1T + c6 and c10 = (c1 + c8) ∨ (c1 + c7 + c8). As this holds for

any t ∈ [0, T ], we then have

sup
0≤u≤t

(E|x∆(u)|p) ≤ c9 + 2c10

∫ t

0

sup
0≤u≤s

(
E|x∆(u)|p

)
ds.

The Gronwall inequality yields

sup
0≤u≤T

(E|x∆(u)|p) ≤ ρ3

as the required assertion, where ρ3 = c9e
2c10T is independent of ∆.

4.5.2 Finite time strong convergence

We can now establish the finite time strong convergence of the truncated EM solu-

tions to the exact solution of SDDE (4.2). Before that, let us first establish the

following useful lemma.
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Lemma 4.5.3. Suppose Assumptions 4.3.1, 4.3.3 and 4.4.1 hold and fix T > 0.

Then for any ε ∈ (0, 1), there exists a pair n = n(ε) > 0 and ∆̄ = ∆̄(ε) > 0 such

that

P(ϑ∆,n ≤ T ) ≤ ε (4.33)

as long as ∆ ∈ (0, ∆̄], where

ϑ∆,n = inf{t ∈ [0, T ] : x∆(t) /∈ (1/n, n)} (4.34)

is a stopping time.

Proof. Let Z(·) be the Lyapunov function in (4.11). Then for t ∈ [0, T ], the Itô

formula gives us

E(Z(x∆(t ∧ ϑ∆,n))− Z(ξ(0)))

= E
∫ t∧ϑ∆,n

0

[
Zx(x∆(s−))f∆(x̄∆(s−)) +

1

2
Zxx(x∆(s−))ϕ(x̄∆((s− τ)−))2g∆(x̄∆(s−))2

+ λ(Z(x∆(s−) + h(x̄∆(s−)))− Z(x∆(s−)))
]
ds.

By expansion, we obtain

E(Z(x∆(t ∧ ϑ∆,n))− Z(ξ(0)))

≤ E
∫ t∧ϑ∆,n

0

[(
Zx(x∆(s−))f∆(x∆(s−))

+
1

2
Zxx(x∆(s−))ϕ(x∆((s− τ)−))2g∆(x∆(s−))2

+ λ(Z(x∆(s−) + h(x∆(s−)))− Z(x∆(s−)))
)

+ Zx(x∆(s−))
(
f∆(x̄∆(s−))− f∆(x∆(s−))

)
+

1

2
Zxx(x∆(s−))

(
ϕ(x̄∆((s− τ)−))2g∆(x̄∆(s−))2 − ϕ(x∆((s− τ)−))2g∆(x∆(s−))2

)
+ λ
(
Z(x∆(s−) + h(x̄∆(s−)))− Z(x∆(s−) + h(x∆(s−)))

)]
ds

≤ E
∫ t∧ϑ∆,n

0

L(x∆(s−), x∆((s− τ)−))ds+H21 +H22 +H23
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Here,

L(x∆(s−), x∆((s− τ)−)) ≤ `(x∆(s−), x∆((s− τ)−))

+ λ(Z(x∆(s−) + h(x∆(s−)))− Z(x∆(s−)))

is the operator (4.3) which is independent of t with

`(x∆(s−), x∆((s− τ)−)) = Zx(x∆(s−))f∆(x∆(s−))

+
1

2
Zxx(x∆(s−))ϕ(x∆((s− τ)−))2g∆(x∆(s−))2,

and

H21 = E
∫ t∧ϑ∆,n

0

Zx(x∆(s−))
(
f∆(x̄∆(s−))− f∆(x∆(s−))

)
ds,

H22 =
1

2
E
∫ t∧ϑ∆,n

0

Zxx(x∆(s−))
(
ϕ(x̄∆((s− τ)−))2g∆(x̄∆(s−))2

− ϕ(x∆((s− τ)−))2g∆(x∆(s−))2
)
ds,

H23 = λE
∫ t∧ϑ∆,n

0

(
Z(x∆(s−) + h(x̄∆(s−)))− Z(x∆(s−) + h(x∆(s−)))

)
ds.

By Assumption 4.3.3, there exists a constant K6 > 0 such that for s ∈ [0, t ∧ ϑ∆,n]

L(x∆(s−), x∆((s− τ)−)) ≤ K6.

Also by Lemma 4.4.2, we have

H21 ≤ KnE
∫ t∧ϑ∆,n

0

Zx(x∆(s−))|x̄∆(s−)− x∆(s−)|ds.

Meanwhile, for x∆(s−), x̄∆(s−) ∈ [1/n, n], we derive that

H22 =
1

2
E
∫ t∧ϑ∆,n

0

Zxx

(
g∆(x∆(s−))2|ϕ(x̄∆((s− τ)−))2 − ϕ(x∆((s− τ)−))2|
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+ ϕ(x̄∆((s− τ)−))2|g∆(x̄∆(s−))2 − g∆(x∆(s−))2|
)
ds

≤ E
∫ t∧ϑ∆,n

0

Zxx

(
x∆(s−))(σ2µ(n)Kn|x̄∆(s−)− x∆(s−)|

+ σ(µ(n))2Ln|x̄∆((s− τ)−)− x∆((s− τ)−)|
)
ds,

where (4.6), (4.16) and (4.17) have been used. Moreover, by the definition of (4.11),

we have

H23 ≤ λE
∫ t∧ϑ∆,n

0

(
(x∆(s−) + h(x̄∆(s−)))β − 1− β log(x∆(s−) + h(x̄∆(s−)))

− (x∆(s−) + h(x∆(s−)))β + 1 + β log(x∆(s−) + h(x∆(s−)))
)
ds

≤ H231 +H232,

where

H231 = λE
∫ t∧ϑ∆,n

0

|(x∆(s−) + α3x̄∆(s−))β − (x∆(s−) + α3x∆(s−))β|ds

and

H232 = λβE
∫ t∧ϑ∆,n

0

| log(x∆(s−) + α3x̄∆(s−))− log(x∆(s−) + α3x∆(s−))|ds.

Applying the mean value theorem, we obtain

H231 ≤ nλE
∫ t∧ϑ∆,n

0

|x∆(s−) + α3x̄∆(s−)− α3x∆(s−)− x∆(s−)|ds

= nλα3E
∫ t∧ϑ∆,n

0

|x̄∆(s−)− x∆(s−)|ds.

Similarly, we also have

H232 ≤ nλβE
∫ t∧ϑ∆,n

0

|x∆(s−) + α3x̄∆(s−)− α3x∆(s−)− x∆(s−)|ds
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= nλα3βE
∫ t∧ϑ∆,n

0

|x̄∆(s−)− x∆(s−)|ds.

Substituting H231 and H232 back into H23, we have

H23 ≤ nλα3(1 + β)E
∫ t∧ϑ∆,n

0

|x̄∆(s−)− x∆(s−)|ds.

We thus combine the H21, H22 and H23 to have

E(Z(x∆(t ∧ ϑ∆,n))) ≤ Z(ξ(0)) +K6T

+ σ(µ(n))2LnE
∫ t∧ϑ∆,n

0

Zxx(x∆(s−))|x̄∆((s− τ)−)− x∆((s− τ)−)|ds

+KnE
∫ t∧ϑ∆,n

0

Zx(x∆(s−))|x̄∆(s−)− x∆(s−)|ds

+ σ2µ(n)KnE
∫ t∧ϑ∆,n

0

Zxx(x∆(s−))|x̄∆(s−)− x∆(s−)|ds

+ nλα3(1 + β)E
∫ t∧ϑ∆,n

0

|x̄∆(s−)− x∆(s−)|ds.

Therefore, we get

E(Z(x∆(t ∧ ϑ∆,n))) ≤ Z(ξ(0)) +K6T +K7E
∫ t∧ϑ∆,n

0

|x̄∆(s− τ)− x∆(s− τ)|ds

+K8E
∫ t∧ϑ∆,n

0

|x̄∆(s)− x∆(s)|ds

≤ Z(ξ(0)) +K6T +K7E
∫ 0

−τ
|ξ([s/∆]∆)− ξ(s)|ds

+ (K7 +K8)

∫ T

0

E
(
E|x̄∆(s)− x∆(s)|p

∣∣∣Fk(s)

)1/p

ds

where

K7 = max
1/n≤x≤n

{Zxx(x)σ(µ(n))2Ln}
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and

K8 = max
1/n≤x≤n

{Zx(x)Kn + Zxx(x)σ2µ(n)Kn + nλα3(1 + β)}.

By Lemma 4.5.1 and 4.5.2, we now have

E(Z(x∆(t ∧ ϑ∆,n))) ≤ Z(ξ(0)) +K6T +K3K7T∆γ + (K7 +K8)D
1/p
1

×
(

∆p/2(π(∆))p + ∆
)1/p

∫ T

0

(E|x̄∆(s)|p)1/pds

≤ Z(ξ(0)) +K6T +K3K7T∆γ + (K7 +K8)D
1/p
1

×
(

∆p/2(π(∆))p + ∆
)1/p

∫ T

0

( sup
0≤u≤s

(E|x̄∆(u)|p))1/pds

≤ Z(ξ(0)) +K6T + ν1∆γ + ν2(∆p/2(π(∆))p + ∆)1/pρ
1/p
3 T.

where ν1 = K3K7T and ν2 = (K7 +K8)D
1/p
1 . Hence,

P(ϑ∆,n ≤ T ) ≤ Z(ξ(0)) +K6T + ν1∆γ + ν2(∆p/2(π(∆))p + ∆)1/pρ
1/p
3 T

Z(1/n) ∧ Z(n)
. (4.35)

For any ε ∈ (0, 1), we may select sufficiently large n such that

Z(ξ(0)) +K6T

Z(1/n) ∧ Z(n)
≤ ε

2
(4.36)

and sufficiently small of each step size ∆ ∈ (0, ∆̄] such that

ν1∆γ + ν2(∆p/2(π(∆))p + ∆)1/pρ
1/p
3 T

Z(1/n) ∧ Z(n)
≤ ε

2
. (4.37)

Therefore, we obtain (4.33) by combining (4.36) and (4.37).

The following lemma shows the finite time strong convergence theory of the trun-

cated EM solutions.
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Lemma 4.5.4. Let Assumptions 4.3.1, 4.3.3, 4.4.1 and 4.3.2 hold. Set

ς∆,n = ϑ∆,n ∧ τn,

where ϑ∆,n and τn are (4.10) and (4.34) respectively. Then for any p ≥ 2, T > 0,

we have

E
(

sup
0≤t≤T

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)
≤ K∆p(1/4∧γ∧1/p) (4.38)

for any sufficiently large n and any ∆ ∈ (0,∆∗], where K is a constant independent

of ∆. Consequently, we have

lim
∆→0

E
(

sup
0≤t≤T

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)

= 0. (4.39)

Proof. By elementary inequality, it follows from (4.2) and (4.26) that for t1 ∈ [0, T ]

E
(

sup
0≤t≤t1

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)
≤ H31 +H32 +H33.

where

H31 = 3p−1E
(
|
∫ t1∧ς∆,n

0

[f∆(x̄∆(s−))− f(x(s−))]ds|p
)
,

H32 = 3p−1E
(

sup
0≤t≤t1

|
∫ t∧ς∆,n

0

[ϕ(x̄∆((s− τ)−))g∆(x̄∆(s−))

− ϕ(x((s− τ)−))g(x(s−))]dB(s)|p
)

and

H33 = 3p−1E
(

sup
0≤t≤t

|
∫ t1∧ς∆,n

0

[h(x̄∆(s−))− h(x(s−))]dN(s)|p
)
.

By the Hölder inequality and Lemma 4.4.2, we have

H31 ≤ 3p−1T p−1Kp
nE
∫ t1∧ς∆,n

0

|x̄∆(s−)− x(s−)|pds, (4.40)
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Furthermore, the Hölder and Burkholder-Davis Gundy inequalities yield

H32 ≤ 3p−1T
p−2

2 cpE
∫ t1∧ς∆,n

0

(
|ϕ(x̄∆((s− τ)−))g∆(x̄∆(s−))− ϕ(x((s− τ)−))g∆(x̄∆(s−))

+ ϕ(x((s− τ)−))g∆(x̄∆(s−))− ϕ(x((s− τ)−))g(x(s−))|p
)
ds

≤ 2p−13p−1T
p−2

2 cpE
∫ t1∧ς∆,n

0

(
g∆(x̄∆(s−))p|ϕ(x̄∆((s− τ)−))− ϕ(x((s− τ)−))|p

+ ϕ(x((s− τ)−))p|g∆(x̄∆(s−))− g(x(s−))|p
)
ds,

where cp is a positive constant. For s ∈ [0, t1 ∧ ς∆,n], we have x∆(s−), x̄∆(s−) ∈
[1/n, n]. So by Assumption 4.4.1, Lemma 4.4.2 and (4.19), we now have

H32 ≤ 2p−13p−1T
p−2

2 cpL
p
n(µ(n))pE

∫ 0

−τ
|ξ([s/∆]∆)− ξ(s)|pds (4.41)

+ 2p−13p−1T
p−2

2 cp(L
p
n(µ(n))p +Kp

nσ
p)E

∫ t1∧ς∆,n

0

|x̄∆(s−)− x(s−)|pds.

≤ 2p−13p−1T
p−2

2 cpL
p
nK

p
3 (µ(n))p∆pγτ + 2p−13p−1T

p−2
2 cp

(
Lpn(µ(n))p +Kp

nσ
p
)

× E
∫ t1∧ς∆,n

0

|x̄∆(s−)− x(s−)|pds. (4.42)

Moreover, we obtain from elementary inequality

H33 ≤ 3p−1E
(

sup
0≤t≤t1

|
∫ t∧ς∆,n

0

[h(x̄∆(s−))− h(x(s−))]dÑ(s)

+ λ

∫ t∧ς∆,n

0

[h(x̄∆(s−))− h(x(s−))]ds|p
)

≤ H331 +H332,

where

H331 = 2p−13p−1E
(

sup
0≤t≤t1

|
∫ t∧ς∆,n

0

[h(x̄∆(s−))− h(x(s−))]dÑ(s)|p
)
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and

H332 = 2p−13p−1λpE
(

sup
0≤t≤t1

|
∫ t∧ς∆,n

0

[h(x̄∆(s−))− h(x(s−))]ds|p
)
.

The Doob martingale inequality, martingale isometry and Lemma 4.4.2 give us

H331 ≤ 2p−13p−1c̄pλ
p
2

(
E
∫ t1∧ς∆,n

0

|h(x̄∆(s−))− h(x(s−))|2dÑ(s)
) p

2

≤ 2p−13p−1c̄pλ
p
2T

p−2
2 Kp

nE
∫ t1∧ς∆,n

0

|x̄∆(s−)− x(s−)|pds,

where c̄p is a positive constant. Moreover by the Hölder inequality and Lemma 4.4.2,

H332 ≤ 2p−13p−1λpT p−1E
∫ t1∧ς∆,n

0

|h(x̄∆(s−))− h(x(s−))|pds

≤ 2p−13p−1λpT p−1Kp
nE
∫ t1∧ς∆,n

0

|x̄∆(s−)− x(s−)|pds,

where Lemma 4.4.2 has been used. Substituting H331 and H332 into H33 yields

H33 ≤ 2p−13p−1Kp
n(c̄pλ

p
2T

p−2
2 + λpT p−1)E

∫ t1∧ς∆,n

0

|x̄∆(s−)− x(s−)|pds. (4.43)

We now combine (4.40), (4.41) and (4.43) to have

E
(

sup
0≤t≤t1

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)

≤ ζ1∆pγτ + (ζ2 + ζ3 + ζ4)E
∫ t1∧ς∆,n

0

|x̄∆(s−)− x(s−)|pds

≤ ζ1∆pγτ + (ζ2 + ζ3 + ζ4)E
∫ t1∧ς∆,n

0

|x̄∆(s)− x(s)|pds,

where

ζ1 = 2p−13p−1T
p−2

2 cpL
p
nK

p
3 (µ(n))p,
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ζ2 = 3p−1T p−1Kp
n,

ζ3 = 2p−13p−1T
p−2

2 cp(L
p
n(µ(n))p +Kp

nσ
p)

and

ζ4 = 2p−13p−1Kp
n(c̄pλ

p
2T

p−2
2 + λpT p−1).

Meanwhile by elementary inequality and Lemma 4.5.1,

E
(

sup
0≤t≤t1

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)

≤ ζ1∆pγτ + 2p−1(ζ2 + ζ3 + ζ4)

∫ T

0

E
(
E|x̄∆(s)− x∆(s)|p

∣∣Fk(s)

)
ds

+ 2p−1(ζ2 + ζ3 + ζ4)

∫ t1

0

E
(

sup
0≤t≤s

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)
ds

≤ ζ1∆pγτ + 2p−1(ζ2 + ζ3 + ζ4)D1

(
∆p/2(π(∆))p + ∆

)∫ T

0

E|x̄∆(s)|pds

+ 2p−1(ζ2 + ζ3 + ζ4)

∫ t1

0

E
(

sup
0≤t≤s

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)
ds

So by Lemma 4.5.2, we have

E
(

sup
0≤t≤t1

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)

≤ ζ1τ∆pγ + 2p−1ρ3D1T (ζ2 + ζ3 + ζ4)
(

[∆p/4(π(∆))p]∆p/4 + ∆p(1/p)
)

+ 2p−1(ζ2 + ζ3 + ζ4)

∫ t1

0

E
(

sup
0≤t≤s

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)
ds

≤
(
ζ1τ + 2p−1ρ3D1T (ζ2 + ζ3 + ζ4)(∆p/4(π(∆))p + 1)

)
∆p(1/4∧γ∧1/p)

+ 2p−1(ζ2 + ζ3 + ζ4)

∫ t1

0

E
(

sup
0≤t≤s

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)
ds.
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Noting from (4.20) that [∆1/4(π(∆))]p ≤ 1, we have

E
(

sup
0≤t≤t1

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)

≤
(
ζ1τ + 2pρ3D1T (ζ2 + ζ3 + ζ4)

)
∆p(1/4∧γ∧1/p)

+ 2p−1(ζ2 + ζ3 + ζ4)

∫ t1

0

E
(

sup
0≤t≤s

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)
ds.

By the Gronwall inequality, we obtain

E
(

sup
0≤t≤T

|x∆(t ∧ ς∆,n)− x(t ∧ ς∆,n)|p
)
≤ K∆p(1/4∧γ∧1/p),

where K = %1(p)e%2(p) with

%1(p) = ζ1τ + 2pρ3D1T (ζ2 + ζ3 + ζ4)

and

%2(p) = 2p−1(ζ2 + ζ3 + ζ4).

Moreover, the required inequality (4.39) is deduced by setting ∆→ 0.

The following gives the strong convergence theory of the truncated EM scheme.

Theorem 4.5.5. Let Assumptions 4.3.1, 4.3.3, 4.4.1 and 4.3.2 hold. Then for any

p ≥ 2, we have

lim
∆→0

E
(

sup
0≤t≤T

|x∆(t)− x(t)|p
)

= 0 (4.44)

and consequently

lim
∆→0

E
(

sup
0≤t≤T

|x̄∆(t)− x(t)|p
)

= 0. (4.45)

Proof. We only need to prove the theorem for p ≥ 3 as for p ∈ [2, 3) it follows from

the case of p = 3 and the Hölder inequality. Let ϑ∆,n, τn and ς∆,n be the same as
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before and set

e∆(t) = x∆(t)− x(t).

For any arbitrarily δ > 0, the Young inequality yields

E
(

sup
0≤t≤T

|e∆(t)|p
)

(4.46)

= E
(

sup
0≤t≤T

|e∆(t)|p1{τn>T and ϑ∆,n>T}

)
+ E

(
sup

0≤t≤T
|e∆(t)|p1{τn≤T or ϑ∆,n≤T}

)
≤ E

(
sup

0≤t≤T
|e∆(t)|p1{ς∆,n>T}

)
+
δ

2
E
(

sup
0≤t≤T

|e∆(t)|2p
)

+
1

2δ
P(τn ≤ T or ϑ∆,n ≤ T ).

So for p ≥ 3, Lemmas 4.3.5 and 4.5.2 give us

E
(

sup
0≤t≤T

|e∆(t)|2p
)
≤ 22pE

(
sup

0≤t≤T
|x(t)|2p ∨ sup

0≤t≤T
|x∆(t)|2p

)
≤ 22p(ρ1 ∨ ρ3)2. (4.47)

Also by Theorem 4.3.4 and Lemma 4.5.4,

P(ς∆,n ≤ T ) ≤ P(τn ≤ T ) + P(ϑ∆,n ≤ T ). (4.48)

Moreover, by Lemma 4.5.4

E
(

sup
0≤t≤T

|e∆(t)|p1{ς∆,n>T}

)
≤ K∆p(1/4∧γ∧1/p). (4.49)

Therefore, we substitute (4.47), (4.48) and (4.49) into (4.46) to have

E
(

sup
0≤t≤T

|e∆(t)|p
)
≤ 22p(ρ1 ∨ ρ3)2δ

2
+K∆p(1/4∧γ∧1/p)

+
1

2δ
P(τn ≤ T ) +

1

2δ
P(ϑ∆,n ≤ T ).
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Given ε ∈ (0, 1), we can select δ so that

22p(ρ1 ∨ ρ3)2δ

2
≤ ε

4
. (4.50)

Similarly, for any given ε ∈ (0, 1), there exists no so that for n ≥ no, we may select

δ to have
1

2δ
P(τn ≤ T ) ≤ ε

4
(4.51)

and select n(ε) ≤ no such that for ∆ ∈ (0, ∆̄]

1

2δ
P(ϑ∆,n ≤ T ) ≤ ε

4
. (4.52)

Finally, we may select ∆ ∈ (0, ∆̄] sufficiently small for ε ∈ (0, 1) such that

K∆p(1/4∧γ∧1/p) ≤ ε

4
. (4.53)

Combining (4.50), (4.51), (4.52) and (4.53), we establish

E
(

sup
0≤t≤T

|x∆(t)− x(t)|p
)
≤ ε.

Therefore, we obtain (4.44) and clearly, by Lemma 4.5.1, also get (4.45) by letting

∆→ 0.

4.6 Numerical examples

In this section, we analyse the strong convergence result established in Theorem 4.5.5

by comparing the truncated Euler-Maruyama (TEM) scheme with backward Euler-

Maruyama (BEM) scheme for SDDE (4.3) without α−1x(t)−1 term. It is already

noted in [39] that the BEM scheme is not known to cope with α−1x(t)−1 term but

the TEM could cope with this term. Consider the following form of SDDE (4.2)

dx(t) = (α−1x(t−)−1 − α0 + α1x(t−)− α2x(t−)2)dt
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+ ϕ(x((t− 1)−))x(t−)5/4dB(t) + α3x(t−)dN(t), (4.54)

with initial data ξ(t) = 0.2. Here ϕ(y) is a sigmoid-type function defined by

ϕ(y) =

1
2

(1+(ey−e−y))
(ey+e−y)

, if y ≥ 0

1
4
, Otherwise,

(4.55)

Obviously, equation (4.55) meets all the conditions imposed on ϕ(y) (see [39]). The

coefficient terms f(x) = α−1x
−1 − α0 + α1x − α2x

2 and g(x) = x5/4 are locally

Lipschitz continuous and hence fulfil Assumption 4.3.5. Moreover, we easily observe

sup
1/u≤x≤u

(|f(x)| ∨ g(x)) ≤ K9u
2, u ≥ 1,

where K9 = α−1 + α0 + α1 + α2 + α3. We can now use µ = K9u
2 with inverse

µ−1(u) = (u/K9)1/2.

4.6.1 Numerical results

By choosing π(∆) = ∆−2/3, step size ∆ = 10−2 and the following coefficient values

in Table 4.1, we obtain Monte Carlo simulated sample path of x(t) to SDDE (4.54)

in Figure 4.1 using the TEM scheme.

α−1 α0 α1 α2 α3

0.2 0.3 0.2 0.5 1

Table 4.1: Coefficient values including α−1

By similarly choosing π(∆) = ∆−2/3, step size ∆ = 10−2 and the coefficient values

in Table 4.2 below, we also obtain Monte Carlo simulated sample paths of x(t) to

SDDE (4.54) in Figure 4.2 using the TEM and BEM schemes. Clearly, the sample

paths of these two schemes are almost identical for the step size ∆ = 10−2.
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α0 α1 α2 α3

0.3 0.2 0.5 1

Table 4.2: Coefficient values excluding α−1

Finally, the log-log plot of the strong errors between the TEM and BEM numerical

solutions for step sizes 10−2, 10−3, 10−4 and 10−5 is displayed in Figure 4.3 with a

reference line of slope 1.0. Do note this simulated result of strong errors is not yet

established theoretically.

Figure 4.1: Simulated sample path of x(t) when ∆ = 0.01
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Figure 4.2: Convergence of TEM and BEM solutions when ∆ = 0.01
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Figure 4.3: Strong errors between TEM and BEM schemes



Chapter 4 110

4.7 Summary

In this chapter, we proposed the Poisson-jump Ait-Sahalia-type interest rate model

with delay. In this case, we retained the delayed volatility function introduced in

Chapter 3 and added Poisson-driven jumps to help explain interest rate dynamics

against unexpected joint effects of extreme volatility and jump behaviour or inform-

ation flows which commonly pervade most financial markets. We proved analytical

properties such as existence of pathwise unique positive global solutions and finite

moments of the exact solution to the proposed model.

Apparently, the proposed model is not analytically tractable. So, we employed the

truncated EM scheme to approximate it. Then we proceeded to establish numerical

properties such as boundedness of moments in the strong sense and finite time strong

convergence order of the truncated EM approximate solutions to the exact solution

under the local Lipschitz condition plus the Khasminskii-type condition. We estab-

lished the strong convergence result of K∆p(1/4∧γ∧1/p). Lastly, we performed some

numerical simulations to support the theoretical findings.
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Numerical approximation of

hybrid Poisson-jump

Ait-Sahalia-type

interest rate model with delay

5.1 Introduction

The aim of this chapter is to perform theoretical and numerical analyses of the

proposed SDDE model (1.4) by drawing on applicable analytical and numerical tools

and techniques developed in Chapters 3 and 4.

The rest of the chapter is organised as follows: In Section 5.2, we introduce the

hybrid Poisson-jump Ait-Sahalia-type interest rate model with delay. We examine

the existence and uniqueness of the solution to the proposed model and show that

the solution will always be positive in Section 5.3. We also establish boundedness of

moments of the exact solution in this section. In Section 5.4, we define the truncated

EM scheme for the proposed model. We survey boundedness of moments of the

truncated EM approximate solutions and employ the truncated EM techniques to

111
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study finite time strong convergence of the numerical solutions to the exact solution

in Section 5.5. In Section 5.6, we implement some numerical examples to validate

efficiency of the proposed scheme. Brief summary of the results established is then

provided in the last section.

5.2 The hybrid Poisson-jump Ait-Sahalia-type

interest rate model with delay

We let (Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying

the usual conditions. Consider the following scalar dynamics as equation of SDDE

(1.4)

dx(t) = f(x(t−), r(t))dt+ ϕ(x((t− τ)−)), r(t))g(x(t−))dB(t)

+ h(x(t−), r(t))dN(t), (5.1)

such that f(x, i) = α−1(i)x−1−α0(i) +α1(i)x−α2(i)xρ, g(x) = xθ, h(x, i) = α3(i)x,

∀x ∈ R+ and i ∈ S, where ϕ(y, i) ∈ C(R+ × S;R+). For each H ∈ C2,1(R × R+ ×
S;R), define the jump-diffusion operator LH : R× R× R+ × S → R by

LH(x, y, t, i) = IH(x, y, t, i) + λ(H(x+ h(x), t, i)−H(x, t, i)) +
N∑
j=1

γijH(x, t, j),

(5.2)

where IH : R× R× R+ × S → R is the diffusion operator defined by

IH(x, y, t, i) = Ht(x, t, i) +Hx(x, t, i)f(x) +
1

2
Hxx(x, t, i)ϕ(y, i)2g(x)2, (5.3)

with Ht(x, t, i) and Hx(x, t, i) as first-order partial derivatives with respect to t and

x, and Hxx(x, t, i) as a second-order partial derivative with respect to x. Given the

jump-diffusion operator, we could deduce the generalised Itô formula as

dH(x(t), t, r(t)) = LH(x(t−), x((t− τ)−), t, r(t))dt
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+Hx(x(t−), t, r(t))ϕ(x((t− τ)−), r(t))g(x(t−))dB(t)

+ (H(x(t−)) + h(x(t−)), t, r(t))−H(x(t−), t, r(t)))dÑ(t)

+

∫
R
(H(x(t−), t, i0 + q(x(t−), z))−H(x(t−), t, r(t))))M(dt, dz), a.s.

(5.4)

Consult (e.g., see [56] and the references cited therein). We impose the following

standing hypotheses which are very useful for the proofs.

Assumption 5.2.1. The volatility function ϕ : R+ × S → R+ of SDDE (5.1) is

Borel-measurable and bounded by a positive constant, that is

ϕ(y, i) ≤ σ, (5.5)

∀y ∈ R+ and i ∈ S.

Assumption 5.2.2. For any R > 0, there exists a constant LR > 0 such that the

volatility function ϕ : R+ × S → R+ of SDDE (5.1) satisfies

|ϕ(y, i)− ϕ(ȳ, i)| ≤ LR|y − ȳ|, (5.6)

∀(y, ȳ) ∈ [ 1
R
, R] and i ∈ S.

Assumption 5.2.3. The parameters of SDDE (5.1) obey

1 + ρ > 2θ, ρ, θ > 1. (5.7)

5.3 Analytical properties

In this section, we study the existence of pathwise uniqueness and finite moments of

the exact solution to SDDE (5.1).
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5.3.1 Existence and uniqueness of solution

One basic requirement of a financial model is the existence of a pathwise unique

positive solution. The following lemma therefore reveals this requirement.

Lemma 5.3.1. Let Assumptions 5.2.1 and 5.2.3 hold. Then for any given initial

data

{x(t) : −τ ≤ t ≤ 0} = ξ(t) ∈ C([−τ, 0] : R+), r0 ∈ S, (5.8)

there exists a unique global solution x(t) to SDDE (5.1) on t ≥ −τ and x(t) > 0 a.s.

Proof. Since the coefficient terms of SDDE (5.1) are locally Lipschitz continuous in

[−τ,∞), then there exists a unique positive maximal local solution x(t) ∈ [−τ, τe)
for any given initial data (5.8), where τe is the explosion time (e.g., see [56]). Let

n0 > 0 be sufficiently large such that

1

n0

< min
−τ≤t≤0

|ξ(t)| ≤ max
−τ≤t≤0

|ξ(t)| < n0.

For each integer n ≥ n0, define the stopping time

τn = inf{t ∈ [0, τe) : x(t) 6∈ (1/n, n)}. (5.9)

Obviously, τn is increasing as n → ∞. Set τ∞ = lim
n→∞

τn, whence τ∞ ≤ τe a.s. In

other words, to complete the proof, we need to show that

τ∞ =∞ a.s.

We define a C2-function H : R+ → R+ for some φ ∈ (0, 1] by

H(x) = xφ − 1− φlog(x). (5.10)

From the operator (5.3) and by Assumption 5.2.1, we obtain

IH(x, y, t, i) ≤ α−1(i)φxφ−2 − α0(i)φxφ−1 + α1(i)φxφ − α2(i)φxρ+φ−1 − α−1(i)φx−2
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+ α0(i)φx−1 − α1(i)φ+ α2(i)φxρ−1 +
σ2

2
φ(φ− 1)xφ+2θ−2 +

σ2

2
φx2θ−2.

By the Jump-diffusion operator in (5.2), we now have

LH(x, y, t, i) ≤ IH(x, y, t, i) + λ((1 + α3(i))φ − 1)xφ − λφ log(1 + α3(i)).

For φ ∈ (0, 1] and by Assumption 5.2.3, we observe −α−1(i)φx−2 dominates and

tends to −∞ for small x and for large x, −α2(i)φxρ+φ−1 dominates and tends to

−∞. So there exists a constant K0 such that

LH(x, y, t, i) ≤ K0.

So for any arbitrary t1 ≥ 0, the Itô formula gives us

E[H(x(τn ∧ t1))] ≤ H(ξ(0)) +K0t1.

It then follows

P(τn ≤ t1) ≤ H(ξ(0)) +K0t1
H(1/n) ∧H(n)

.

This implies P(τ∞ ≤ t1) = 0 and consequently, we must have

P(τ∞ =∞) = 1

as the required assertion. The proof is thus complete.

5.3.2 Moment bounds

The following lemma shows the moment of the exact solution x(t) to SDDE (5.1) is

finite.

Lemma 5.3.2. Let Assumptions 5.2.1 and 5.2.3 hold. Then for any p > 2∨ (ρ−1),
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the solution x(t) to SDDE (5.1) satisfies

sup
0≤t<∞

(
E|x(t)|p

)
≤ c1, (5.11)

and consequently

sup
0≤t<∞

(
E| 1

x(t)
|p
)
≤ c2, (5.12)

where c1 and c2 are constants.

Proof. For every sufficiently large integer n, we define the stopping time by

τn = inf{t ≥ 0 : x(t) 6∈ (1/n, n)}.

We also define a Lyapunov function H ∈ C2,1(R+ × R+;R+) by H(x, t) = etxp. By

Assumption 5.2.1, we apply (5.1) to obtain

LH(x, y, t, i) ≤ IH(x, y, t, i) + λetxp[(1 + α3(i))p − 1],

where

IH(x, y, t, i) ≤ et
[
xp+pxp−2(α−1(i)−α0(i)x+α1(i)x2−α2(i)xρ+1 +

(p− 1)

2
σ2x2θ)

]
.

Apparently, by Assumption 5.2.3, −pα2(i)xρ+p−1 dominates and tends to −∞ for

large x. So there exists a constant K1 such that

LH(x, y, t, i) ≤ K1e
t.

By the the Itô formula, we have

E[et∧τn|x(t ∧ τn)|p] ≤ |ξ(0)|p +K1e
t.
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Applying the Fatou lemma and letting n→∞ yields

E|x(t)|p < |ξ(0)|p +K1e
t

et

and consequently, we obtain (5.14) as the required assertion. Moreover, by applying

the operator (5.1) to the Lyapunov function H(x, t) = et/xp, we compute

LH(x, y, t, i) ≤ IH(x, y, t, i) + λetx−p[(1 + α3(i))−p − 1],

where Assumption 5.2.1 has been used and

IH(x, y, t, i) ≤ et
[
x−p−px−(p+2)(α−1(i)−α0(i)x+α1(i)x2−α2(i)xρ+1+

(p+ 1)

2
σ2x2θ)

]
.

For p > 2 ∨ (ρ− 1), we note −α−1(i)px−(p+2) dominates and tends to −∞ for small

x. Moreover, we also note pα2(i)xρ−p−1 dominates and tends to 0 for large x. We

then find a constant K2 such that

LH(x, y, t, i) ≤ K2e
t.

So from the Itô formula, we can apply the Fatou lemma and let n→∞ to arrive at

(5.12).

5.4 Numerical method

Under this section, we recall the truncated EM method and apply it for conver-

gent approximation of SDDE (5.1). To start with, let us also impose the following

important condition on the initial data.

Assumption 5.4.1. There is a pair of constant K3 > 0 and Υ ∈ (0, 1] such that for

all −τ ≤ s ≤ t ≤ 0, the initial data ξ satisfies

|ξ(t)− ξ(s)| ≤ K3|t− s|Υ. (5.13)
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We also need the following lemmas (see [39]).

Lemma 5.4.2. For any R > 0, there exists a constant KR > 0 such that the

coefficient terms of SDDE (5.1) satisfy

|f(x, i)− f(x̄, i)| ∨ |g(x)− g(x̄)| ∨ |h(x, i)− h(x̄, i)| ≤ KR|x− x̄|, (5.14)

∀x, x̄ ∈ [ 1
R
, R] and i ∈ S.

Lemma 5.4.3. Let Assumptions 5.2.1 and 5.2.3 hold. For any p ≥ 2, there exists

K4 = K4(p) > 0 such that the coefficient terms of SDDE (5.1) satisfy

xf(x, i) +
p− 1

2
|ϕ(y, i)g(x)|2 ≤ K4(1 + |x|2), (5.15)

∀(x, y, i) ∈ R+ × R+ × S.

The truncated EM scheme for SDDE (5.1) is now defined in the following sub-

section.

5.4.1 The truncated EM method

Let extend the volatility function ϕ(y, i) and the jump term h(x, i) from R+ to R
by setting ϕ(y, i) = ϕ(0, i) and h(x, i) = 0 for x < 0. These extensions do not in

any way affect above conditions and results. To define the truncated EM scheme for

SDDE (5.1), we first choose a strictly increasing continuous function µ : R+ → R+

such that µ(r)→∞ as r →∞ and

sup
1/r≤x≤r

(|f(x, i)| ∨ g(x)) ≤ µ(r), ∀r > 1. (5.16)

Let µ−1 be the inverse function of µ and ψ : (0, 1)→ R+ a strictly decreasing function

such that

lim
∆→0

ψ(∆) =∞ and ∆1/4ψ(∆) ≤ 1, ∀∆ ∈ (0, 1]. (5.17)
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Find ∆∗ ∈ (0, 1) such that µ−1(ψ(∆∗)) > 1 and f(x, i) > 0 for 0 < x < ∆∗. For a

given step size ∆ ∈ (0,∆∗), let us define the truncated functions

f∆(x, i) = f
(

1/µ−1(ψ(∆)) ∨ (x ∧ µ−1(ψ(∆))), i
)
, ∀(x, i) ∈ R× S

and

g∆(x) =

g
(
x ∧ µ−1(ψ(∆))

)
, if x ≥ 0

0, if x < 0.

Then for x ∈ [1/µ−1(ψ(∆)), µ−1(ψ(∆))], we get

|f∆(x, i)| = |f(x, i)| ≤ max |f(z, i)|
1/µ−1(ψ(∆))≤z≤µ−1(ψ(∆))

≤ µ(µ−1(ψ(∆))) = ψ(∆)

and

g∆(x) ≤ µ(µ−1(ψ(∆))) = ψ(∆).

We easily see that

|f∆(x, i)| ∨ g∆(x) ≤ ψ(∆), ∀(x, i) ∈ R× S. (5.18)

The following lemma confirms that f∆ and g∆ nicely reproduce (5.15).

Lemma 5.4.4. Let Assumption 5.2.1 and 5.2.3 hold. Then, for all ∆ ∈ (0,∆∗) and

p ≥ 2, the truncated functions satisfy

xf∆(x, i) +
p− 1

2
|ϕ(y, i)g∆(x)|2 ≤ K5(1 + |x|2) (5.19)

∀(x, y, i) ∈ R× R× S, where K5 is independent of ∆. Consult [39].

Let also recall the following useful lemma.
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Lemma 5.4.5. Given ∆ > 0, let rk∆ = r∆(k∆) for k ≥ 0. Then {rk∆, k = 0, 1, 2, · · · }
is a discrete Markov chain with the one-step transition probability matrix

P (∆) = (Pij(∆))N×N = e∆Γ.

The discrete Markovian chain {rk∆, k = 0, 1, 2, · · · } can be simulated as follows:

compute the one-step transition probability matrix

P (∆) = (Pij(∆))N×N = e∆Γ.

Let r0
∆ = i0 and generate a random number $ which is uniformly distributed in

[0, 1]. Define

r1
∆ =

i1 if i1 ∈ S − {N} such that
∑i1−1

j=i Pi0,j(∆) ≤ $1 <
∑i1

j=i Pi0,j(∆)

N, if
∑N−1

j=i Pi0,j(∆) ≤ $1,

where we set
∑0

j=i Pi0,j(∆) = 0 as usual. Generate independently a new random

number $2 which is again uniformly distributed in [0, 1] and then define

r2
∆ =

i2 if i2 ∈ S − {N} such that
∑i2−1

j=i Pr1
∆,j(∆) ≤ $2 <

∑i2
j=i Pr1

∆,j(∆)

N, if
∑N−1

j=i Pr1
∆,j(∆) ≤ $2,

Repeating this procedure, a trajectory of {rk∆, k = 0, 1, 2, · · · } can be generated.

Given the discrete Markovian chain scheme, we now form the discrete-time trun-

cated EM scheme for SDDE (5.1) by first letting T > 0 be arbitrarily fixed and the

step size ∆ ∈ (0,∆∗] be a fraction of τ . Define ∆ = τ/M for some positive integer

M . Define tk = k∆ for k = −M,−(M − 1), · · · , 0, 1, 2, · · · , set X∆(tk) = ξ(tk) for

k = −M,−(M − 1), · · · , 0 and then compute

X∆(tk+1) = X∆(tk) + f∆(X∆(tk), r∆(tk))∆ + ϕ(X∆(tk−M), r∆(tk))g∆(X∆(tk))∆Bk



Chapter 5 121

+ h(X∆(tk), r∆(tk))∆Nk (5.20)

for k = 0, 1, 2, · · · , where ∆Bk = B(tk+1)−B(tk) and ∆Nk = N(tk+1)−N(tk). We

have two versions of the continuous-time truncated EM solutions. The first one is

defined by

x̄∆(t) =
∞∑

k=−M

X∆(tk)1[tk,tk+1)(t) and r̄∆(t) =
∞∑

k=−M

r∆(tk)1[tk,tk+1)(t). (5.21)

These are the continuous-time step processes x̄∆(t) and r̄∆(t) on t ≥ −τ , where

1[tk,tk+1) is the indicator function on [tk, tk+1). The second one is the continuous-time

continuous process x∆(t) on t ≥ −τ defined by setting x∆(t) = ξ(t) for t ∈ [−τ, 0]

while for t ≥ 0

x∆(t) = ξ(0) +

∫ t

0

f∆(x̄∆(s−), r̄∆(s))ds+

∫ t

0

ϕ(x̄∆((s− τ)−), r̄∆(s))g∆(x̄∆(s−))dB(s)

+

∫ t

0

h(x̄∆(s−), r̄∆(s))dN(s). (5.22)

Apparently x∆(t) is an Itô process on t ≥ 0 satisfying Itô differential

dx∆(t) = f∆(x̄∆(t−), r̄∆(t))dt+ ϕ(x̄∆((t− τ)−), r̄∆(t))g∆(x̄∆(t−))dB(t)

+ h(x̄∆(t−), r̄∆(t))dN(t). (5.23)

We observe x∆(tk) = x̄∆(tk) = X∆(tk), for all k = −M,−(M − 1), · · · .

5.5 Numerical properties

Let us now investigate the numerical properties of the truncated EM scheme. In the

sequel, we let

k(t) = [t/∆]∆,
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for any t ∈ [0, T ], where [t/∆] denotes the integer part of t/∆. The following lemma

affirms x∆(t) and x̄∆(t) are close to each other in the strong sense.

5.5.1 Moment bounds

Lemma 5.5.1. Let Assumption 5.2.1 hold. Then for any fixed ∆ ∈ (0,∆∗], we have

for p ∈ [2,∞)

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤ C1

(
∆p/2(ψ(∆))p + ∆

)
|x̄∆(t)|p (5.24)

∀t ≥ 0, where C1 denotes positive generic constants dependent only on p and may

change between occurrences.

Proof. Fix any ∆ ∈ (0,∆∗) and t ∈ [0, T ]. Then for p ∈ [2,∞), we derive

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤ 3p−1

(
E
(
|
∫ t

k(t)

f∆(x̄∆(s), r̄∆(s))ds|p
∣∣Fk(t)

)
+ E

(
|
∫ t

k(t)

ϕ(x̄∆((s− τ)), r̄∆(s))g∆(x̄∆(s))dB(s)|p
∣∣Fk(t)

)
+ E

(
|
∫ t

k(t)

h(x̄∆(s), r̄∆(s))dN(s)|p
∣∣Fk(t)

))
≤ 3p−1

(
∆p−1E(

∫ t

k(t)

|f∆(x̄∆(s), r̄∆(s))|pds
∣∣Fk(t))

+ Cp∆
(p−2)/2E(

∫ t

k(t)

|ϕ(x̄∆((s− τ)), r̄∆(s))g∆(x̄∆(s))|pds
∣∣Fk(t))

+ E(|
∫ t

k(t)

h(x̄∆(s), r̄∆(s))dN(s)|p
∣∣Fk(t))

)
≤ 3p−1

(
∆p−1∆(ψ(∆))p + Cp∆

(p−2)/2∆(σψ(∆))p

+ E(|
∫ t

k(t)

h(x̄∆(s), r̄∆(s))dN(s)|p
∣∣Fk(t))

)
.

Recalling the characteristic function’s argument E|∆Nk|p ≤ C̄∆, ∀∆ ∈ (0,∆∗),
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in [45], we note

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤ 3p−1

(
∆p−1∆(ψ(∆))p + Cp∆

(p−2)/2∆(σψ(∆))p + |h(x̄∆(t), r(t))|pE|∆Nk|p
)

≤ 3p−1
(

∆p−1∆(ψ(∆))p + Cp∆
(p−2)/2∆(σψ(∆))p + C̄α3(i)p|x̄∆(t)|p∆

)
,

where h(·, ·) and C̄ > 0 are independent of Nk and ∆ respectively. We now have

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤ 3p−1(1 ∨ Cpσp ∨ C̄α3(i)p)

(
∆p/2(ψ(∆))p + |x̄∆(t)|p∆

)
≤ C1

(
∆p/2(ψ(∆))p + ∆

)
|x̄∆(t)|p,

where

C1 = 3p−1(1 ∨ Cpσp ∨ C̄αp3) and α3 = max
i∈S

α3(i).

Moreover, for p ∈ (0, 2), we obtain from the Jensen inequality that

E
(
|x∆(t)− x̄∆(t)|p

∣∣Fk(t)

)
≤
[
C1

(
∆(ψ(∆))2 + ∆

)
|x̄∆(t)|p

]p/2
≤ 2p/2−1C

p/2
1

(
∆p/2(ψ(∆))p + ∆p/2

)
(|x̄∆(t)|p)p/2

≤ C2

(
∆p/2(ψ(∆))p

)
|x̄∆(t)|p, (5.25)

where C2 = 2p/2C
p/2
1 . The proof is now complete.

The following lemma reveals the finite moment of the truncated EM solutions.

Lemma 5.5.2. Let Assumptions 5.2.1 and 5.2.3 hold. Then for any p ≥ 3

sup
0≤∆≤∆∗

sup
0≤t≤T

(E|x∆(t)|p) ≤ c3, ∀T > 0, (5.26)

where c3 := c3(T, p,K5, ξ) and may change between occurrences.
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Proof. Fix any ∆ ∈ (0,∆∗) and T ≥ 0. For t ∈ [0, T ], we obtain from (5.2) and

Lemma 5.4.4

E|x∆(t)|p − |ξ(0)|p ≤ E
∫ t

0

p|x∆(s−)|p−2
(
x̄∆(s−)f∆(x̄∆(s−), r̄∆(s))

+
p− 1

2
|ϕ(x̄∆((s− τ)−), r̄∆(s))g∆(x̄∆(s−))|2

)
ds

+ E
∫ t

0

p|x∆(s−)|p−2(x∆(s−)− x̄∆(s−))f∆(x̄∆(s−), r̄∆(s))ds

+ λE
(∫ t

0

|x∆(s−) + h(x̄∆(s−), r̄∆(s))|p − |x∆(s−)|p
)
ds

≤ J11 + J12 + J13,

where

J11 = E
∫ t

0

K5p|x∆(s−)|p−2(1 + |x̄∆(s−)|2)ds,

J12 = E
∫ t

0

p|x∆(s−)|p−2
(
x∆(s−)− x̄∆(s−)

)
f∆(x̄∆(s−), r̄∆(s))ds

and

J13 = λE
(∫ t

0

|x∆(s−) + h(x̄∆(s−), r̄∆(s))|p − |x∆(s−)|p
)
ds.

The Young inequality gives us

J11 ≤ K5

∫ t

0

(
(p− 2)E|x∆(s−)|p + 2p(1 + E|x̄∆(s−)|p)

)
ds

≤ ν1

∫ t

0

(1 + E|x∆(s)|p + E|x̄∆(s)|p)ds,

where ν1 = K5(2p ∨ (p− 2)). By the triangle inequality, we have for p ≥ 3

J12 ≤ pE
∫ t

0

(
|x∆(s−)− x̄∆(s−)|+ |x̄∆(s−)|

)p−2
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× |x∆(s−)− x̄∆(s−)||f∆(x̄∆(s−), r̄∆(s))|ds

≤ 2(p−3)pE
∫ t

0

(
|x∆(s−)− x̄∆(s−)|p−2 + |x̄∆(s−)|p−2

)
× |x∆(s−)− x̄∆(s−)||f∆(x̄∆(s−), r̄∆(s))|ds

= J121 + J122,

where

J121 = 2(p−3)pE
∫ t

0

|x̄∆(s−)|p−2|x∆(s−)− x̄∆(s)||f∆(x̄∆(s−), r̄∆(s))|ds

and

J122 = 2(p−3)pE
∫ t

0

|x∆(s−)− x̄∆(s−)|p−1|f∆(x̄∆(s−), r̄∆(s))|ds.

We now obtain from (5.18) and (5.25)

J121 ≤ 2(p−3)p

∫ t

0

E
{
|x̄∆(s)|p−2|f∆(x̄∆(s), r̄∆(s))|E

(
|x∆(s)− x̄∆(s)|Fk(s))

)}
ds

≤ 2(p−3)pC2(ψ(∆))∆1/2(ψ(∆))

∫ t

0

E
{
|x̄∆(s)|(|x̄∆(s)|p−2)

}
ds

≤ 2(p−3)pC2(ψ(∆))∆1/2(ψ(∆))

∫ t

0

E|x̄∆(s)|p−1ds

≤ 2(p−3)C2(ψ(∆))2∆1/2

∫ t

0

(
1 + (p− 1)E|x̄∆(s)|p

)
ds

≤ ν2 + ν3

∫ t

0

E|x̄∆(s)|pds, (5.27)

where ν2 = 2(p−3)C2T , ν3 = 2(p−3)C2(p − 1) and [(ψ(∆))∆1/4]2 ≤ 1. We also have

from (5.18)

J122 ≤ 2(p−3)pψ(∆)

∫ t

0

E|x∆(s)− x̄∆(s)|p−1ds. (5.28)
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We clearly observe that for p ≥ 3 and κ ∈ (0, 1/4], pκ ≤ (p− 1)/2 and hence

∆(p−1)/2−κp ≤ 1. (5.29)

So for p ≥ 3 and κ = 1/4, we get from (5.28), Lemma 5.5.1, (5.29) and the Young’s

inequality that

J122 ≤ 2(p−3)pC1

(
∆(p−1)/2(ψ(∆))p−1(ψ(∆)) + ∆(ψ(∆))

)∫ t

0

E|x̄∆(s)|p−1ds

≤ 2(p−3)pC1

(
∆(p−1)/2(ψ(∆))p + ∆(ψ(∆))

)∫ t

0

E|x̄∆(s)|p−1ds

≤ 2(p−3)pC1

(
∆(p−2)/4 + ∆(ψ(∆))

)∫ t

0

E|x̄∆(s)|p−1ds

≤ 2(p−2)C1

∫ t

0

(
1 + (p− 1)E|x̄∆(s)|p

)
ds

≤ ν4 + ν5

∫ t

0

E|x̄∆(s)|pds,

where ν4 = 2(p−2)C1T and ν5 = 2(p−2)C1(p − 1). We now combine J121 and J122 to

have

J12 ≤ ν2 + ν4 + (ν3 + ν5)

∫ t

0

E|x̄∆(s)|pds

≤ ν6 + ν7

∫ t

0

E|x̄∆(s)|pds,

where ν6 = ν2 + ν4 and ν7 = ν3 + ν5. Also we estimate J13 as

J13 = λE
(∫ t

0

|x∆(s−) + h(x̄∆(s−), r̄∆(s))|p − |x∆(s−)|p
)
ds

≤ λE
(∫ t

0

2p−1|x∆(s−)|p + 2p−1|h(x̄∆(s−), r̄∆(s))|p − |x∆(s−)|p
)
ds

≤ λE
(∫ t

0

(2p−1 − 1)|x∆(s−)|p + 2p−1α3(i)p|x̄∆(s−)|p
)
ds
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≤ ν8

∫ t

0

(E|x∆(s)|p + E|x̄∆(s)|p)ds,

where ν8 = λ((2p−1− 1)∨ 2p−1αp3) and α3 = maxi∈S α3(i). We combine J11, J12 and

J13 to have

E|x∆(t)|p ≤ |ξ(0)|p + (ν1T + ν6)

+

∫ t

0

(
(ν1 + ν8)E|x∆(s)|p + (ν1 + ν7 + ν8)E|x̄∆(s)|p

)
ds

≤ ν9 + 2ν10

∫ t

0

sup
0≤u≤s

(
E|x∆(u)|p

)
ds,

where

ν9 = |ξ(0)|p + ν1T + ν6

and

ν10 = (ν1 + ν8) ∨ (ν1 + ν7 + ν8).

As this holds for any t ∈ [0, T ], we then have

sup
0≤u≤t

(E|x∆(u)|p) ≤ ν9 + 2ν10

∫ t

0

sup
0≤u≤s

(
E|x∆(u)|p

)
ds.

The Gronwall inequality gives us

sup
0≤u≤T

(E|x∆(u)|p) ≤ c3,

where c3 = ν9e
2ν10T is independent of ∆. The proof is thus complete.



Chapter 5 128

5.5.2 Finite time strong convergence

Lemma 5.5.3. Suppose Assumptions 5.2.1, 5.2.3 and 5.4.1 hold and fix T > 0.

Then for any ε ∈ (0, 1), there exists a pair n = n(ε) > 0 and ∆̄ = ∆̄(ε) > 0 such

that

P(ς∆,n ≤ T ) ≤ ε (5.30)

as long as ∆ ∈ (0, ∆̄], where

ς∆,n = inf{t ∈ [0, T ] : x∆(t) /∈ (1/n, n)} (5.31)

is a stopping time.

Proof. Let H(·) be the Lyapunov function in (5.11). Then for t ∈ [0, T ], the Itô

formula gives us

E(H(x∆(t ∧ ς∆,n))−H(ξ(0))) = E
∫ t∧ς∆,n

0

[
Hx(x∆(s−))f∆(x̄∆(s−), r̄∆(s))

+
1

2
Hxx(x∆(s−))ϕ(x̄∆((s− τ)−), r̄∆(s))2g∆(x̄∆(s−))2

+ λ
(
H(x∆(s−) + h(x̄∆(s−), r̄∆(s)))−H(x∆(s−))

)]
ds.

For s ∈ [0, t ∧ ς∆,n], we can expand to have

Hx(x∆(s−))f∆(x̄∆(s−), r̄∆(s)) +
1

2
Hxx(x∆(s−))ϕ(x̄∆((s− τ)−), r̄∆(s))2g∆(x̄∆(s−))2

+ λ
(
H(x∆(s−) + h(x̄∆(s−), r̄∆(s)))−H(x∆(s−))

≤ L(x∆(s−), x∆((s− τ)−), r̄∆(s)) + J21 + J22 + J23,

where LH is the operator in (5.2), which now takes the form

L(x∆(s−), x∆((s− τ)−), r̄∆(s))

= Hx(x∆(s−))f∆(x∆(s−), r̄∆(s))

+
1

2
Hxx

(
x∆(s−))ϕ(x∆((s− τ)−), r̄∆(s))2g∆(x∆(s−))2



Chapter 5 129

+ λ(H(x∆(s−) + h(x∆(s−), r̄∆(s))−H(x∆(s−)))
)

with H independent of t and

J21 = Hx(x∆(s−))
(
f∆(x̄∆(s−), r̄∆(s))− f∆(x∆(s−), r̄∆(s))

)
,

J22 =
1

2
Hxx(x∆(s−))

(
ϕ(x̄∆((s− τ)−), r̄∆(s))2g∆(x̄∆(s−))2

− ϕ(x∆((s− τ)−), r̄∆(s))2g∆(x∆(s−))2
)
,

J23 = λ
(
H(x∆(s−) + h(x̄∆(s−), r̄∆(s)))−H(x∆(s−) + h(x∆(s−), r̄∆(s)))

)
.

By Assumptions 5.2.1 and 5.2.3, we can find a constant K6 such that

L(x∆(s−), x∆((s− τ)−), r̄∆(s)) ≤ K6. (5.32)

Recalling from the definition of f∆ and g∆, we note for s ∈ [0, t ∧ ς∆,n]

f∆(x∆(s−), r̄∆(s)) = f(x∆(s−), r̄∆(s)) and g∆(x∆(s−)) = g(x∆(s−)).

So for s ∈ [0, t ∧ ς∆,n], we obtain from Lemma 5.4.2 that

J21 ≤ KnHx(x∆(s−))|x̄∆(s−)− x∆(s−)|.

Moreover, for s ∈ [0, t∧ ς∆,n] and any x̄∆(s−), x∆(s−) ∈ [1/n, n], we note from (5.16)

that

g(x̄∆(s−)) ∨ g(x∆(s−)) ≤ µ(n).

So for s ∈ [0, t∧ ς∆,n], we now obtain from Assumptions 5.2.1 and 5.2.2, and Lemma

5.4.2

J22 ≤
1

2
Hxx(x∆(s−))

[
g(x∆(s−))2

(
ϕ(x̄∆((s− τ)−), r̄∆(s))2 − ϕ(x∆((s− τ)−), r̄∆(s))2

)
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+ ϕ(x∆((s− τ)−), r̄∆(s))2
(
g(x̄∆(s−))2 − g(x∆(s−))2

)]
≤ Hxx(x∆(s−))

[
Lnσ(µ(n))2|x̄∆(s− τ)− − x∆(s− τ)−|

+Knσ
2µ(n))|x̄∆(s−)− x∆(s−)|

]
.

Also for s ∈ [0, t ∧ ς∆,n], we obtain from the Lyapunov function in (5.11) and the

mean value theorem that

J23 ≤ λ
[(
x∆(s−) + h(x̄∆(s−), r̄∆(s))

)φ
− φ log

(
x∆(s−) + h(x̄∆(s−), r̄∆(s))

)
−
(
x∆(s−) + h(x∆(s−), r̄∆(s))

)φ
+ φ log

(
x∆(s−) + h(x∆(s−), r̄∆(s))

)]
≤ λ

[(
x∆(s−) + α3(i)x̄∆(s−)

)φ
−
(
x∆(s−) + α3(i)x∆(s−)

)φ
+ φ log

(
x∆(s−) + α3(i)x∆(s−)

)
− φ log

(
x∆(s−) + α3(i)x̄∆(s−)

)]
≤ nλ|x∆(s−) + α3(i)x̄∆(s−)− x∆(s−)− α3(i)x∆(s−)|

+ nλφ|x∆(s−) + α3(i)x∆(s−)− x∆(s−)− α3(i)x̄∆(s−)|

≤ nλα3(1 + φ)|x̄∆(s−)− x∆(s−)|,

where α3 = maxi∈S α3(i). Combining J21, J22 and J23 with (5.32), we now have

E(H(x∆(t ∧ ς∆,n))

≤ H(ξ(0))) +K6T +KnE
∫ t∧ς∆,n

0

Hx(x∆(s−))|x̄∆(s−)− x∆(s−)|ds

+ E
∫ t∧ς∆,n

0

Hxx(x∆(s−))
[
Lnσ(µ(n))2|x̄∆(s− τ)− − x∆(s− τ)−|

+Knσ
2µ(n)|x̄∆(s−)− x∆(s−)|

]
ds+ nλα3(1 + φ)E

∫ t∧ς∆,n

0

|x̄∆(s−)− x∆(s−)|ds

≤ K7 +K8E
∫ 0

−τ
|ξ([s/∆]∆)− ξ(s)|ds+ (K8 +K9)

∫ T

0

E
(
E|x̄∆(s)− x∆(s)|p

∣∣∣Fk(s)

)1/p

ds
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where

K7 = H(ξ(0)) +K6T , K8 = max
1/n≤x≤n

{Hxx(x)σ(µ(n))2Ln}

and

K9 = max
1/n≤x≤n

{Hx(x)Kn +Hxx(x)σ2µ(n)Kn + nλα3(1 + φ)}.

So by Lemmas 5.5.1 and 5.5.1, we now obtain

E(H(x∆(t ∧ ς∆,n))) ≤ K7 +K3K8T∆Υ + (K8 +K9)C
1/p
1

(
∆p/2(ψ(∆))p + ∆

)1/p

×
∫ T

0

( sup
0≤u≤s

(E|x̄∆(u)|p))1/pds

≤ K7 +K3K8T∆Υ + (K8 +K9)C
1/p
1

(
∆p/2(ψ(∆))p + ∆

)1/p

c
1/p
3 T.

This implies

P(ς∆,n ≤ T ) ≤
K7 +K3K8T∆Υ + (K8 +K9)C

1/p
1

(
∆p/2(ψ(∆))p + ∆

)1/p

c
1/p
3 T

H(1/n) ∧H(n)
.

(5.33)

For any ε ∈ (0, 1), we may select sufficiently large n such that

K7

H(1/n) ∧H(n)
≤ ε

2
(5.34)

and sufficiently small of each step size ∆ ∈ (0, ∆̄] such that

K3K8T∆Υ + (K8 +K9)C
1/p
1

(
∆p/2(ψ(∆))p + ∆

)1/p

c
1/p
3 T

H(1/n) ∧H(n)
≤ ε

2
. (5.35)

We can now combine (5.34) and (5.35) to obtain the required assertion.

The following lemma shows the truncated EM solutions converges strongly to the
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exact solution in finite time.

Lemma 5.5.4. Let Assumptions 5.2.1, 5.2.2, 5.2.3 and 5.4.1 hold. Set

ϑ∆,n = τn ∧ ς∆,n,

where τn and ς∆,n are (5.9) and (5.31). Then for any p ≥ 2, T > 0, we have for any

sufficiently large n and any ∆ ∈ (0,∆∗],

E
(

sup
0≤t≤T

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)
≤ C

(
(∆ + o(∆))(ψ(∆))p) ∨∆p(1/4∧Υ∧1/p)

)
(5.36)

where C is a constant independent of ∆ and consequently,

lim
∆→0

E
(

sup
0≤t≤T

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)

= 0. (5.37)

Proof. For t1 ∈ [0, T ], we obtain from (5.1) and (5.23) that

E
(

sup
0≤t≤t1

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)
≤ J31 + J32 + J33. (5.38)

where

J31 = 3p−1E
(
|
∫ t1∧ϑ∆,n

0

[f∆(x̄∆(s−), r̄∆(s))− f(x(s−), r(s))]ds|p
)
,

J32 = 3p−1E
(

sup
0≤t≤t1

|
∫ t∧ϑ∆,n

0

[ϕ(x̄∆((s− τ)−), r̄∆(s))g∆(x̄∆(s−))

− ϕ(x((s− τ)−), r(s))g(x(s−))]dB(s)|p
)

and

J33 = 3p−1E
(

sup
0≤t≤t1

|
∫ t∧ϑ∆,n

0

[h(x̄∆(s−), r̄∆(s))− h(x(s−), r(s))]dN(s)|p
)
.
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By the Hölder inequality, we compute

J31 ≤ J311 + J312,

where

J311 = 3p−12p−1T p−1E
∫ t1∧ϑ∆,n

0

|f∆(x̄∆(s−), r(s))− f(x(s−), r(s))|pds

and

J312 = 3p−12p−1T p−1E
∫ t1∧ϑ∆,n

0

|f∆(x̄∆(s−), r̄∆(s))− f∆(x̄(s−), r(s))|pds.

It is clear from the definition of the truncated function f∆ that

f∆(x̄∆(s−), r̄∆(s)) = f(x̄∆(s−), r̄∆(s))

for s ∈ [0, t1 ∧ ϑ∆,n]. So by Lemma 5.4.2,

J311 = 3p−12p−1T p−1E
∫ t1∧ϑ∆,n

0

|f(x̄∆(s−), r(s))− f(x(s−), r(s))|pds

≤ 3p−12p−1T p−1Kp
nE
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds.

Let n = [T/∆] be the integer part of T/∆. Then

J312 = 3p−12p−1T p−1E
∫ T

0

|f∆(x̄∆(s−), r̄∆(s))− f∆(x̄(s−), r(s))|pds

= 3p−12p−1T p−1

n∑
k=0

E
∫ tk+1

tk

|f∆(x̄∆(tk), r(tk))− f∆(x̄(tk), r(s))|pds,

with tn+1 now set to be T . We now have from (5.18)

J312 ≤ 3p−122(p−1)T p−1

n∑
k=0

E
∫ tk+1

tk

[|f∆(x̄∆(tk), r(tk))|p



Chapter 5 134

+ |f∆(x̄(tk), r(s))|p]1{r(s)6=r(tk)}ds

≤ 3p−122(p−1)T p−1

n∑
k=0

∫ tk+1

tk

E
[
E[((ψ(∆))p + (ψ(∆))p)1{r(s)6=r(tk)}|r(tk)]

]
ds

= 3p−122(p−1)T p−1

n∑
k=0

∫ tk+1

tk

E
[
E[2(ψ(∆))p|r(tk)]E[1{r(s) 6=r(tk)}|r(tk)]

]
ds,

(5.39)

where we use the fact that x̄(s) and 1r(s)6=r(tk) are conditionally independent with

respect to the σ−algebra generated by r(tk) in the last step. By the Markov property,

we compute

E[1{r(s)6=r(tk)}|r(tk)] =
∑
i∈S

1{r(tk)=i}P(r(s) 6= i|r(tk) = i)

=
∑
i∈S

1{r(tk)=i}
∑
i 6=j

(γij(s− tk) + o(s− tk))

≤ ( max
1≤i≤N

(−γij)∆ + o(∆))
∑
i∈S

1{r(tk)=i}

≤ c̄1∆ + o(∆). (5.40)

where c̄1 = max1≤i≤N(−γij). By Lemma 5.5.2, we note

E
∫ tk+1

tk

|f∆(x̄∆(tk), r(tk))− f(x̄(tk), r(s))|pds ≤ 2(c̄1∆ + o(∆))

∫ tk+1

tk

(ψ(∆))pds

≤ 2(c̄1∆ + o(∆))∆(ψ(∆))p.

This implies

E
∫ T

0

|f∆(x̄∆(s−), r̄∆(s))− f(x̄(s−), r(s))|pds ≤ 2(c̄1∆ + o(∆))(ψ(∆))p
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and consequently

E
∫ t1∧ϑ∆,n

0

|f∆(x̄∆(s−), r̄∆(s))− f(x̄(s−), r(s))|pds ≤ 2(c̄1∆ + o(∆))(ψ(∆))p.

Substituting this into J312 yields

J312 ≤ 3p−122p−1T p−1(c̄1∆ + o(∆))(ψ(∆))p.

We then combine J311 and J312 to obtain

J31 ≤ c̄2(c̄1∆ + o(∆))(ψ(∆))p + c̄3E
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds,

where

c̄2 = 3p−122p−1T p−1

and

c̄3 = 3p−12p−1T p−1Kp
n.

Also by the Hölder and Burkholder-Davis Gundy inequalities, we have

J32 ≤ 3p−1T
p−2

2 C1(p)E
∫ t1∧ϑ∆,n

0

(
|ϕ(x̄∆((s− τ)−), r̄∆(s))g∆(x̄∆(s−))

− ϕ(x((s− τ)−), r(s))g∆(x̄∆(s−)) + ϕ(x((s− τ)−), r(s))g∆(x̄∆(s−))

− ϕ(x((s− τ)−), r(s))g(x(s−))|p
)
ds

≤ J321 + J322,

where

J321 = 2p−13p−1T
p−2

2 C1(p)E
∫ t1∧ϑ∆,n

0

g∆(x̄∆(s−))p|ϕ(x̄∆((s− τ)−), r̄∆(s))
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− ϕ(x((s− τ)−), r(s))|pds

and

J322 = 2p−13p−1T
p−2

2 C1(p)E
∫ t1∧ϑ∆,n

0

ϕ(x((s− τ)−), r(s))p|g∆(x̄∆(s−))− g(x(s−))|pds.

where C1(p) is a positive constant. For s ∈ [0, t1 ∧ ϑ∆,n], we note from (5.16) that

x̄∆(s−) ∈ [1/n, n] and g∆(x̄∆(s−)) ≤ µ(n). So we now have

J321 ≤ 2p−13p−1T
p−2

2 C1(p)(µ(n))pE
∫ t1∧ϑ∆,n

0

|ϕ(x̄∆((s− τ)−), r̄∆(s))

− ϕ(x((s− τ)−), r(s))|pds

≤ J323 + J324,

where

J323 = 22(p−1)3p−1T
p−2

2 C1(p)(µ(n))pE
∫ t1∧ϑ∆,n

0

|ϕ(x̄∆((s− τ)−), r(s))

− ϕ(x((s− τ)−), r(s))|pds

and

J324 = 22(p−1)3p−1T
p−2

2 C1(p)(µ(n))pE
∫ t1∧ϑ∆,n

0

|ϕ(x̄∆((s− τ)−), r̄∆(s))

− ϕ(x̄((s− τ)−), r(s))|pds

By Assumption 5.2.2, we obtain

J323 ≤ 22(p−1)3p−1T
p−2

2 C1(p)(µ(n))pLpnE
∫ t1∧ϑ∆,n

0

|x̄∆((s− τ)−)− x((s− τ)−)|pds.
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Also as before, we compute

J324 = 22(p−1)3p−1T
p−2

2 C1(p)(µ(n))pE
∫ T

0

|ϕ(x̄∆((s− τ)−), r̄∆(s))

− ϕ(x̄((s− τ)−), r(s))|pds

= 2p−13p−1T
p−2

2 C1(p)(µ(n))p
n∑
k=0

E
∫ tk+1

tk

|ϕ(x̄∆((tk − τ)−), r̄∆(tk))

− ϕ(x̄((tk − τ)−), r(s))|pds,

where n is the usual integer part of T/∆ with tn+1 set to be T . By elementary

inequality,

J324 ≤ 22(p−1)3p−1T
p−2

2 C1(p)(µ(n))p
n∑
k=0

E
∫ tk+1

tk

[|ϕ(x̄∆((tk − τ)−), r̄∆(tk))|p

+ |ϕ(x̄((tk − τ)−), r(s))|p1{r(s)6=r(tk)}]ds

= 22(p−1)3p−1T
p−2

2 C1(p)(µ(n))p
n∑
k=0

∫ tk+1

tk

E
[
E[|ϕ(x̄∆((tk − τ)−), r̄∆(tk))|p

+ |ϕ(x̄((tk − τ)−), r(s))|p1{r(s)6=r(tk)}|r(tk)]
]
ds

= 22(p−1)3p−1T
p−2

2 C1(p)(µ(n))p
n∑
k=0

∫ tk+1

tk

E
[
E[|ϕ(x̄∆((tk − τ)−), r̄∆(tk))|p

+ |ϕ(x̄((tk − τ)−), r(s))|p]E[1{r(s)6=r(tk)}|r(tk)]
]
ds

We note from (5.40) that

E[1{r(s)6=r(tk)}|r(tk)] ≤ c̄1∆ + o(∆).

By Assumption 5.2.1, we have

E
∫ tk+1

tk

|ϕ(x̄∆((tk − τ)−), r̄∆(tk))− ϕ(x̄((tk − τ)−), r(s))|pds
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≤ 2(c̄1∆ + o(∆))

∫ tk+1

tk

σpds

≤ 2σp(c̄1∆ + o(∆))∆.

This means by Assumption 5.2.1, we have

E
∫ T

0

|ϕ(x̄∆((s− τ)−), r̄∆(s))− ϕ(x̄((s− τ)−), r(s))|pds ≤ 2σp(c̄1∆ + o(∆))

and hence,

E
∫ t1∧ϑ∆,n

0

|ϕ(x̄∆((s− τ)−), r̄∆(s))− ϕ(x̄((s− τ)−), r(s))|pds ≤ 2σp(c̄1∆ + o(∆)).

Inserting this into J324 yields

J324 ≤ 22p−13p−1T
p−2

2 C1(p)(µ(n))pσp(c̄1∆ + o(∆)).

We obtain from J323 and J324

J321 ≤ 22p−13p−1T
p−2

2 C1(p)(µ(n))pσp(c̄1∆ + o(∆))

+ 22(p−1)3p−1T
p−2

2 C1(p)(µ(n))pLpnE
∫ t1∧ϑ∆,n

0

|x̄∆((s− τ)−)− x((s− τ)−)|pds.

Moreover, by Assumption 5.2.1 and Lemma 5.4.2

J322 ≤ 2p−13p−1T
p−2

2 C1(p)(µ(n))pKp
nE
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds.

Combining J321 and J322, we have

J32 ≤ c̄4(c̄1∆ + o(∆)) + c̄5E
∫ t1∧ϑ∆,n

0

|x̄∆((s− τ)−)− x((s− τ)−)|pds

+ c̄6E
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds,
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where

c̄4 = 22p−13p−1T
p−2

2 C1(p)(µ(n))pσp,

c̄5 = 22(p−1)3p−1T
p−2

2 C1(p)(µ(n))pLpn

and

c̄6 = 2p−13p−1T
p−2

2 C1(p)(µ(n))pKp
n.

Furthermore, by elementary inequality

J33 = 3p−1E
(

sup
0≤t≤t1

|
∫ t∧ϑ∆,n

0

[h(x̄∆(s−), r̄∆(s))− h(x(s−), r(s))]dÑ(s)

+ λ

∫ t∧ϑ∆,n

0

[h(x̄∆(s−), r̄∆(s))− h(x(s−), r(s))]ds|p
)

≤ J331 + J332,

where

J331 = 2p−13p−1E
(

sup
0≤t≤t1

|
∫ t∧ϑ∆,n

0

[h(x̄∆(s−), r̄∆(s))− h(x(s−), r(s))]dÑ(s)|p
)

and

J332 = 2p−13p−1λpE
(

sup
0≤t≤t1

|
∫ t∧ϑ∆,n

0

[h(x̄∆(s−), r̄∆(s))− h(x(s−), r(s))]ds|p
)
.

By the Doob martingale inequality and martingale isometry, we have

J331 ≤ 2p−13p−1λ
p
2C2(p)E

(
sup

0≤t≤t1
|
∫ t∧ϑ∆,n

0

|h(x̄∆(s−), r̄∆(s))− h(x(s−), r(s))|2dÑ(s)
) p

2

≤ 2p−13p−1λp/2T
p−2

2 C2(p)E
∫ t1∧ϑ∆,n

0

|h(x̄∆(s−), r̄∆(s))− h(x(s−), r(s))|pds

≤ J333 + J334,
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where

J333 = 2p−13p−1λp/2T
p−2

2 C2(p)E
∫ t1∧ϑ∆,n

0

|h(x̄∆(s−), r(s))− h(x(s−), r(s))|pds

and

J334 = 2p−13p−1λp/2T
p−2

2 C2(p)E
∫ t1∧ϑ∆,n

0

|h(x̄∆(s−), r̄∆(s))− h(x̄∆(s−), r(s))|pds

and C2(p) is a positive constant. By Lemma 5.4.2,

J333 ≤ 2p−13p−1λp/2T
p−2

2 C2(p)Kp
nE
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds.

We also compute

J334 = 2p−13p−1λp/2T
p−2

2 C2(p)E
∫ T

0

|h(x̄∆(s−), r̄∆(s))− h(x̄∆(s−), r(s))|pds

= 2p−13p−1λp/2T
p−2

2 C2(p)
n∑
k=0

E
∫ tk+1

tk

|h(x̄∆(tk), r̄∆(tk))− h(x̄∆(tk), r(s))|pds

≤ 22(p−1)3p−1λp/2T
p−2

2 C2(p)
n∑
k=0

E
∫ tk+1

tk

[|h(x̄∆(tk), r̄∆(tk))|p

+ |h(x̄∆(tk), r(s))|p1{r(s)6=r(tk)}ds

≤ 22(p−1)3p−1λp/2T
p−2

2 C2(p)
n∑
k=0

∫ tk+1

tk

E
[
E[|h(x̄∆(tk), r̄∆(tk))|p

+ |h(x̄∆(tk), r(s))|p|r(tk))]E[1{r(s)6=r(tk)}|r(tk)]
]
ds,

where n, as usual, is the integer part of T/∆ with tn+1 set to be T . By Lemma 5.5.2

and (5.40)

E
∫ tk+1

tk

|h(x̄∆(tk), r̄∆(tk))− h(x̄∆(tk), r(s))|pds
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≤ (c̄1∆ + o(∆))

∫ tk+1

tk

2α3(i)E|x̄∆(tk)|pds

≤ 2α3(c̄1∆ + o(∆))∆,

where α3 = maxi∈S α3(i). Consequently, we have

E
∫ T

0

|h(x̄∆(s−), r̄∆(s))− h(x̄∆(s−), r(s))|pds ≤ 2α3(c̄1∆ + o(∆))

and then,

E
∫ t1∧ϑ∆,n

0

|h(x̄∆(s−), r̄∆(s))− h(x̄∆(s−), r(s))|pds ≤ 2α3(c̄1∆ + o(∆)). (5.41)

We substitute this into J334 to get

J334 ≤ 22p−13p−1C2(p)α3λ
p/2T

p−2
2 (c̄1∆ + o(∆)).

It then follows from J333 and J334 that

J331 ≤ 22p−13p−1C2(p)α3λ
p/2T

p−2
2 (c̄1∆ + o(∆))

+ 2p−13p−1C2(p)Kp
nλ

p/2T
p−2

2 E
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds.

By the the Hölder inequality,

J332 ≤ 2p−13p−1λpT p−1E
∫ t1∧ϑ∆,n

0

|h(x̄∆(s−), r̄∆(s))− h(x(s−), r(s))|pds

= J335 + J336,

where

J335 = 2p−13p−1λpT p−1E
∫ t1∧ϑ∆,n

0

|h(x̄∆(s−), r(s))− h(x(s−), r(s))|pds
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and

J336 = 2p−13p−1λpT p−1E
∫ t1∧ϑ∆,n

0

|h(x̄∆(s−), r̄∆(s))− h(x̄∆(s−), r(s))|pds.

So by Lemma 5.4.2,

J335 = 2p−13p−1λpT p−1Kp
nE
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds.

Apparently, we see from (5.41) that

E
∫ t1∧ϑ∆,n

0

|h(x̄∆(s−), r̄∆(s))− h(x̄∆(s−), r(s))|pds ≤ 2α3(c̄1∆ + o(∆)).

This implies

J336 ≤ 2p−13p−12α3λ
pT p−1(c̄1∆ + o(∆)).

We now have from J335 and J336

J332 ≤ 2p−13p−12α3λ
pT p−1(c̄1∆ + o(∆))

+ 2p−13p−1λpT p−1Kp
nE
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds.

We then combine J331 and J332 to have

J33 ≤ c̄7(c̄1∆ + o(∆)) + c̄8E
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds

+ c̄9E
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds,

where

c̄7 = 22p−13p−1C2(p)α3λ
p/2T

p−2
2 + 2p−13p−12α3λ

pT p−1,

c̄8 = 2p−13p−1C2(p)Kp
nλ

p/2T
p−2

2
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and

c̄9 = 2p−13p−1λpT p−1Kp
n.

Substituting J31, J32 and J33 into (5.38), we get

E
(

sup
0≤t≤t1

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)

≤ c̄2(c̄1∆ + o(∆))(ψ(∆))p + c̄4(c̄1∆ + o(∆)) + c̄7(c̄1∆ + o(∆))

+ c̄5E
∫ t1∧ϑ∆,n

0

|x̄∆((s− τ)−)− x((s− τ)−)|pds

+ c̄6E
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds

+ c̄8E
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds+ c̄9E
∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds.

It then follows that

E
(

sup
0≤t≤t1

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)

≤ c̄10(c̄1∆ + o(∆))(ψ(∆))p

+ c̄5E
∫ 0

−τ
|ξ([s/∆]∆)− ξ(s)|pds+ c̄11E

∫ t1∧ϑ∆,n

0

|x̄∆(s−)− x(s−)|pds,

where

c̄10 = c̄2 ∨ c̄4 ∨ c̄7

and

c̄11 = c̄5 ∨ c̄6 ∨ c̄8 ∨ c̄9.
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By elementary inequality, Assumption 5.4.1 and Lemma 5.5.1

E
(

sup
0≤t≤t1

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)

≤ c̄10(c̄1∆ + o(∆))(ψ(∆))p)

+ c̄5∆pΥτ + 2p−1c̄11

∫ T

0

E
(
E|x̄∆(s)− x∆(s)|p

∣∣Fk(s)

)
ds

+ 2p−1c̄11

∫ t1

0

E
(

sup
0≤t≤s

|x∆(t ∧ ϑ∆, n)− x(t ∧ ϑ∆, n)|p
)
ds

≤ c̄10(c̄1∆ + o(∆))(ψ(∆))p)

+ c̄5∆pΥτ + 2p−1c̄11C1

(
∆p/2(ψ(∆))p + ∆

)∫ T

0

E|x̄∆(s)|pds

+ 2p−1c̄11

∫ t1

0

E
(

sup
0≤t≤s

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)
ds

So by Lemma 5.5.2 and noting that (∆1/4(ψ(∆)))p ≤ 1, we now have

E
(

sup
0≤t≤t1

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)

≤ c̄10(c̄1∆ + o(∆))(ψ(∆))p)

+ c̄5∆pΥτ + 2p−1c̄11c3C1

(
[∆p/4(ψ(∆))p]∆p/4 + ∆p(1/p)

)
+ 2p−1c̄11

∫ t1

0

E
(

sup
0≤t≤s

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)
ds

≤ c̄10(c̄1∆ + o(∆))(ψ(∆))p)

+
(
c̄5τ + 2p−1c̄11c3C1(∆p/4(ψ(∆))p + 1)

)
∆p(1/4∧Υ∧1/p)

+ 2p−1c̄11

∫ t1

0

E
(

sup
0≤t≤s

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)
ds

≤ c̄10(c̄1∆ + o(∆))(ψ(∆))p) + c̄12∆p(1/4∧Υ∧1/p)

+ c̄13

∫ t1

0

E
(

sup
0≤t≤s

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)
ds,
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where c̄12 = c̄5τ + 2pc̄11c3C1 and c̄13 = 2p−1c̄11. The Gronwall inequality gives us

E
(

sup
0≤t≤t1

|x∆(t ∧ ϑ∆,n)− x(t ∧ ϑ∆,n)|p
)
≤ C

(
(∆ + o(∆))(ψ(∆))p) ∨∆p(1/4∧Υ∧1/p)

)
,

as the required result in (5.36). where C = (c̄10(c̄1 ∨ 1) ∨ c̄12)ec̄13 . By letting ∆→ 0,

we get (5.37).

The strong convergence of the truncated EM approximate solutions is revealed

in the following theorem.

Theorem 5.5.5. Let Assumptions 5.2.1, 5.2.2, 5.2.3 and 5.4.1 hold. Then for any

p ≥ 2, we have

lim
∆→0

E
(

sup
0≤t≤T

|x∆(t)− x(t)|p
)

= 0 (5.42)

and consequently

lim
∆→0

E
(

sup
0≤t≤T

|x̄∆(t)− x(t)|p
)

= 0. (5.43)

Proof. Here, we only prove the theorem for p ≥ 3. As for p ∈ [2, 3), it follows directly

from the case of p = 3 and the Hölder inequality. Let τn, ς∆,n and ϑ∆,n, be the same

as before. Set

e∆(t) = x∆(t)− x(t).

For any arbitrarily δ > 0, the Young inequality gives us

E
(

sup
0≤t≤T

|e∆(t)|p
)

= E
(

sup
0≤t≤T

|e∆(t)|p1{τn>T and ς∆,n>T}

)
+ E

(
sup

0≤t≤T
|e∆(t)|p1{τn≤T or ς∆,n≤T}

)
≤ E

(
sup

0≤t≤T
|e∆(t)|p1{ϑ∆,n>T}

)
+
δ

2
E
(

sup
0≤t≤T

|e∆(t)|2p
)

+
1

2δ
P(τn ≤ T or ς∆,n ≤ T ). (5.44)
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So for p ≥ 3, Lemmas 5.3.2 and 5.5.2 give us

E
(

sup
0≤t≤T

|e∆(t)|2p
)
≤ 22pE

(
sup

0≤t≤T
|x(t)|2p ∨ sup

0≤t≤T
|x∆(t)|2p

)
≤ 22p(c1 ∨ c3)2. (5.45)

By Lemmas 5.3.1 and 5.5.3,

P(ϑ∆,n ≤ T ) ≤ P(τn ≤ T ) + P(ς∆,n ≤ T ). (5.46)

Also by Lemma 5.5.4,

E
(

sup
0≤t≤T

|e∆(t)|p1{ϑ∆,n>T}

)
≤ C

(
(∆ + o(∆))(ψ(∆))p) ∨∆p(1/4∧Υ∧1/p)

)
. (5.47)

Substituting (5.45), (5.46) and (5.47) into (5.44) yields

E
(

sup
0≤t≤T

|e∆(t)|p
)
≤ 22p(c1 ∨ c3)2δ

2
+ C
(

(∆ + o(∆))(ψ(∆))p) ∨∆p(1/4∧Υ∧1/p)
)

+
1

2δ
P(τn ≤ T ) +

1

2δ
P(ς∆,n ≤ T ).

Given ε ∈ (0, 1), we can select δ so that

22p(c1 ∨ c3)2δ

2
≤ ε

4
. (5.48)

Similarly, for any given ε ∈ (0, 1), there exists no so that for n ≥ no, we may select

δ to have
1

2δ
P(τn ≤ T ) ≤ ε

4
(5.49)

and select n(ε) ≤ no such that for ∆ ∈ (0, ∆̄]

1

2δ
P(ς∆,n ≤ T ) ≤ ε

4
. (5.50)
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Finally, we may select ∆ ∈ (0, ∆̄] sufficiently small for ε ∈ (0, 1) such that

C
(

(∆ + o(∆))(ψ(∆))p) ∨∆p(1/4∧Υ∧1/p)
)
≤ ε

4
. (5.51)

Combining (5.48), (5.49), (5.50) and (5.51), we get

E
(

sup
0≤t≤T

|x∆(t)− x(t)|p
)
≤ ε.

as the required result in (5.42). By Lemma 5.5.1, we also get (5.43) by setting

∆→ 0.

5.6 Numerical simulations

Let us now implement the truncated EM (TEM) scheme for SDDE (5.1). To illustrate

the strong result established in Theorem 5.5.5, we compare the scheme with the

backward EM (BEM) scheme. For justification regarding the choice of BEM scheme

and its limitation, we refer the reader to consult [39]. Now consider the following

form of SDDE (5.1)

dx(t) = f(x(t−), r(t))dt+ ϕ(x((t− τ)−)), r(t))g(x(t−))dB(t)

+ h(x(t−), r(t))dN(t), (5.52)

on t ≥ 0 with initial values ξ(t) = 0.2 and r0 = 1, where r(t) is a Markovian chain

defined on the state S = {1, 2} with the generator given by

Γ = (γ)2×2 =

(
−2 2

1 −1

)
. (5.53)

Moreover, let

f(x, i) =

0.3x−1 − 0.2 + 0.1x− 0.5x2, if i = 1

0.2x−1 − 0.3 + 0.2x− 0.6x2, if i = 2,
(5.54)
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∀(x, i) ∈ (R× S),

g(x) = x5/4, (5.55)

∀x ∈ R, and

h(x, i) =

x, if i = 1

2x, if i = 2,
(5.56)

∀(x, i) ∈ (R×S). The volatility process ϕ(y, i) is a sigmoid-type function defined as

follows:

for i = 1,

ϕ(y, i) =

1
2

(1+(ey−e−y))
(ey+e−y)

, if y ≥ 0

1
4
, Otherwise,

and for i = 2,

ϕ(y, i) =

1
4

(1+(ey−e−y))
(ey+e−y)

, if y ≥ 0

1
8
, Otherwise,

(5.57)

∀(y, i) ∈ (R×S). Obviously, all the assumptions imposed on ϕ(y, i) are met(see [39]).

We clearly see

sup
1/u≤x≤u

(|f(x, i)| ∨ g(x)) ≤ 3u2, u ≥ 1.

We can now set µ = 3u2 with inverse µ−1(u) = (u/3)1/2.

5.6.1 Numerical results

By selecting ψ(∆) = ∆−2/3 and a step size ∆ = 10−2, we obtain Monte Carlo

simulated sample path of x(t) to SDDE (5.52) at a terminal time T in Figure 5.1

using the TEM scheme. The strong convergence between TEM and BEM numerical

solutions for the step size 10−2 is shown in Figure 5.2. In Figure 5.3, we observe

the log-log plot of strong errors between TEM and BEM numerical solutions for step
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sizes 10−2, 10−3, 10−4 and 10−5 with a reference line of slope 1.0. Do note that Figure

5.2 and Figure 5.3 were obtained without the α−1(r(t))x(t−)−1 drift term (see [39]).

Figure 5.1: Simulated sample path of x(t) when ∆ = 0.01
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Figure 5.2: Convergence of TEM and BEM solutions when ∆ = 0.01
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Figure 5.3: Strong errors between TEM and BEM schemes
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5.7 Summary

In this chapter, we studied Ait-Sahalia-type interest rate model with inherent delayed

volatility function and Poisson-driven jumps which is then modulated by finite state

Markov chains. Because of the analytical intractability of this model, we employed

relevant tools and techniques of the truncated EM scheme developed in the previous

chapters to investigate its feasibility from viewpoint of financial applications.

We proved analytical properties such as existence of pathwise unique positive

global solutions and finite moments of the exact solution to the proposed model.

We drew on the truncated EM scheme to approximate the model. We then moved

on to prove numerical properties such as finite moments and the strong conver-

gence order in finite time of the truncated EM approximate solutions under the local

Lipschitz condition plus the Khasminskii-type condition. We established C((∆ +

o(∆))(ψ(∆))p) ∨ ∆p(1/4∧Υ∧1/p)) as the strong pathwise error. We concluded the

chapter by performing numerical simulations to validate the theoretical findings.
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Applications in finance

In this chapter, we apply the strong convergence results obtained in the previous

chapters to evaluate expected payoffs of some financial products such as a bond and

a path-dependent barrier option.

6.0.1 Bond valuation

Let us apply the results to evaluate the price of a bond for maturity T which is

characterised by a unit amount available at time T . If we characterise the distribution

of the bond price in terms of a chosen dynamics for a stochastic interest rate, we can

compute the price at the end of time T . This is revealed in the following lemma.

Lemma 6.0.1. If the short-term interest rate dynamics is described by SDDE (3.1),

(4.1) or (5.1) then the payoff of a bond at the end of time T is given by

B(T ) = E
[

exp
(
−
∫ T

0

x(t)dt
)]
. (6.1)

Using the step function x̄(t) defined in (3.27), (4.24) or (5.21) in Chapter 3, 4 or 5

respectively, the approximate payoff based on the truncated EM method becomes

B̄∆(T ) = E
[

exp
(
−
∫ T

0

|x̄∆(t)|dt
)]
. (6.2)
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Then from Theorem 3.5.6, 4.5.5 or 5.5.5 in Chapter 3, 4 or 5 respectively, it follows

that

lim
∆→0
|B(T )− B̄∆(T )| = 0. (6.3)

Proof. The proof we established here is similar to the one obtained in [15]. In general,

it is remarkable to consider

B̄∆(T ) = E
[

exp
(
−∆

∞∑
k=−M

|X∆(tk)|
)]

as a natural approximation of equation (6.1) based on (3.26), (4.23) or (5.20). This

can be written conveniently as

B̄∆(T ) = E
[

exp
(
−
∫ T

0

|x̄∆(t)|dt
)]
,

where x̄(t) is (3.27), (4.24) or (5.21) respectively. Nothing that

exp(−|x|)− exp(−|y|) ≤ |x− y|

and by the positivity of x(t), we have

|B(T )− B̄∆(T )| = E
[

exp
(
−
∫ T

0

x(t)dt
)
− exp

(
−
∫ T

0

|x̄∆(t)|dt
)]

≤ E
∣∣∣ ∫ T

0

x(t)dt−
∫ T

0

x̄∆(t)dt
∣∣∣

≤ E
∫ T

0

|x(t)− |x̄∆(t)||dt

≤ E
∫ T

0

|x(t)− x̄∆(t)|dt

≤ T sup
0,T

E|x(t)− x̄∆(t)|.

So by Theorem 3.5.6, 4.5.5 or 5.5.5 implies that sup0,T E|x(t)−x̄∆(t)| → 0 and hence,

we obtain the required assertion.
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6.0.2 Barrier option valuation

Theorem 3.5.6, 4.5.5 or 5.5.5 is very important where SDDE (3.1), (4.1) or (5.1) is

to be numerically simulated to calibrate and price a path-dependent option. In this

context, we may represent any of these SDDEs as an asset on which an option is

to be written on. However, it is established in [15, 17] that the strong convergence

of SDE models for asset price guarantees convergence in Monte Carlo simulations

for option value. More specifically, suppose that we compute the expected payoff

from Monte Carlo simulations based on (3.26), (4.23) or (5.20). Then the following

lemma affirms that the expected payoff for a path-dependent barrier option from the

truncated EM method will converge to the exact expected payoff as ∆→ 0.

Lemma 6.0.2. Consider a barrier option with a European payoff P . Let the asset

price be the exact solution x(T ) to SDDE (3.1), (4.1) or (5.1) at expiry date T . In

this case, the asset price never exceeds a fixed barrier B and pays zero otherwise,

where Λ is the strike price and B > Λ. The payoff at expiry date is

P (T ) = E
[
(x(T )− Λ)+1sup0≤t≤T

x(t) < B)
]
. (6.4)

The approximate payoff using the truncated EM scheme defined in (3.27), (4.24) or

(5.21) in Chapter 3, 4 or 5 respectively, becomes

P̄∆(T ) = E
[
(x̄∆(T )− Λ)+1sup0≤t≤T

x̄∆(t) < B)
]
. (6.5)

So from Theorem 3.5.6, 4.5.5 or 5.5.5 in Chapter 3, 4 or 5 respectively, we have

lim
∆→0
|P (T )− P̄∆(T )| = 0. (6.6)

The proof of this lemma can be established in the same way as in [15,17]. The proof

presented in [15, 17] depends only on the strong convergence properties rather than

the structure of the underlying asset price models. This justifies that we can apply

the truncated EM method to evaluate a path-dependent barrier option.



Chapter 7

Conclusion

In this thesis, we proposed a modified version of the Ait-Sahalia-type interest rate

model by incorporating three specifications, namely delayed volatility function, Poisson-

driven jump and Markovian switching. These three specifications are introduced

to help provide adequate descriptions of interest rates against collective effects of

unexpected empirical phenomena such as volatility ’skews’ and ’smiles’, jump beha-

viour, market regulatory lapses, economic crisis, financial clashes, political instabil-

ity, among others. However, the proposed model is not analytically tractable. This

motivated the need to perform theoretical and numerical analyses to examine its

feasibility from viewpoint of financial applications. We carried out these analyses by

splitting the proposed model into three sets of stochastic interest rate models and

studied them respectively in Chapters 3-5.

One of the major challenges is that the drift terms of these three stochastic in-

terest rate models posses a reciprocal function which may explode to infinity in

finite time around the origin and the drift and diffusion terms are of super-linear

growth which may also explode during numerical simulations. We overcame this

challenge by constructing a new implementable truncated EM method to deal with

these terms by forcing numerical solutions to remain within a compact support. We

did this by truncating the coefficients whenever they grow super-linearly (i.e. the

numerical solutions are bounded from tending to 0 or ∞); otherwise, we apply the
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classical EM method. With this technique, finite time explosions of the numerical

solutions to infinity during numerical simulations have been ultimately avoided. In

fact, this numerical technique enables the reciprocal function in the drifts of the

three stochastic interest rate models to cope well around the origin. This is one

of the most significant results we achieved in this thesis. Another major challenge

is the structure of the delayed volatility function. We overcame this challenge by

allowing the delayed volatility function to be locally Lipschitz continuous and upper

bounded. This contributed significantly to proving the main results of the thesis.

We will consider if the proofs of these main results can be extended to cope with

unbounded delayed volatility functions in the near future.

The main objective of the thesis is to establish the Lp(p ≥ 2) strong conver-

gence theories for the truncated EM approximate solutions of the three stochastic

interest rate models. Apparently, these results are very paramount for calibration

and valuation of some financial products such as debt and path-dependent derivative

instruments. The only known strong convergence result for Ait-Sahalia-type model

is the one established under a monotone condition by Szpruch et al. in [20] based

on implicit EM methods (i.e., backward and forward-backward EM methods). The

existing explicit method for Ait-Sahalia-type model is the EM method where weak

convergence or convergence in probability has been revealed in several literature.

However, under sufficient conditions, we achieved this main objective of the thesis

by establishing the Lp(p ≥ 2) finite time strong convergence theories of the numerical

solutions to these three proposed models based on the explicit method for sufficiently

small step size. These results are very essential in research and financial contexts.

In financial applications, preservation of positivity of numerical schemes for finan-

cial models is a desirable feature in the context of explaining pathwise movements of

financial variables. One drawback is that the truncated EM method we developed

falls short to preserve positive numerical paths of the proposed models due to the

Brownian path taking all real values with positive probability. We retained this im-

portant qualitative property by applying the balanced-implicit method (BIM) tech-
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niques in [69, 70] to the truncated EM scheme. However, we have been confronted

with the problem of non-adaptedness to filtration of the stochastic integral in the

continuous-time continuous process. This is one of the major drawbacks yet to be

overcome. Another drawback we also encountered is the failure to establish rates

of convergence for the proposed numerical schemes. However, rates of convergence

are crucial in providing useful insights into approximation quality and theoretical

foundations for efficient variance reduction techniques in Monte Carlo simulations.

We worked to address this problem but failed to prove the upper bound of the expec-

ted reciprocal function involving the approximate solutions. It would be desirable

in a view of future work to think of, maybe, using forward Itô stochastic integral

introduced in [67] and discrete case approach employed in [68] to address these two

drawbacks respectively, and achieve the expected theoretical results.

The results obtained from this thesis have opened up new chapter for further

research in connection with strong convergent approximation of Ait-Sahalia-type

models and applications of this to other relevant fields. For instance, it would be

interesting to study the strong convergent approximation of Ait-Sahalia-type model

driven by fractional Brownian motion. It is well recognised that SDEs driven by

fractional Brownian motion produce long range dependency and rough volatility

trajectory or turbulence which are controlled by Hurst parameter (e.g., see [71,72]).

Using Levy process in place of fractional Brownian motion is also another useful ap-

proach to describe further unexpected empirical disasters against interest rates since

the Levy process consists of linear drift, Brownian motion and Levy jump processes

known as Levy triplet (e.g., see [73, 75]). Moreover, stochastic modelling of struc-

tured investment plans has been attracting a serious deal of attention in the worlds

of research, finance and insurance lately. However, most of the existing literature

employed constant interest rates to compute mean percentage returns of structured

investment products (e.g., see [76] and references cited therein). With results from

this thesis, it would also be interesting to examine the use of the three proposed Ait-

Sahalia-type models to describe interest rates dynamics for computation of mean

percentage returns of some of these structured investment products.
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