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Abstract

In this thesis, we present a theoretical and numerical study of the properties and

dynamics of cavity solitons in photonic systems. Three systems are investigated

� a semiconductor laser with optical injection, a semiconductor laser with fre-

quency selective feedback and a nonlinear cavity with a Kerr material. Cavity

solitons have common features which can be observed in all three systems as well

as properties which are unique to each speci�c system. The writing and erasing

process under the action of an external pump is characterised �rst leading to the

establishment and subsequent erasure of stable cavity solitons in these systems.

In general a coherent writing beam is used, although in the case of lasers with fre-

quency selective feedback an incoherent writing beam is required. Switch-on time

is measured, allowing for optimisation of the writing process. Cavity soliton drift

is introduced by manipulating the detuning and, where appropriate, the phase of

the optical injection. Phase modulations of the optical injections are preferable

as cavity solitons remain stable over a larger range of parameters, although this

is not always possible. Cavity soliton interactions are particularly interesting,

with collisions resulting in di�ering behaviour in each system, including locking,

merging and the annihilation of the two cavity solitons. Furthermore Adler-type

locking is shown for two cavity solitons pinned by localised defects in the detuning

by varying the depth of one defect with respect to the other. Finally, oscillating

and pulsing regimes of cavity solitons are investigated in the laser with frequency

selective feedback. Unlocked oscillations and mode-locked oscillations and pulses

are described with the possible observation of fully self localised three dimensional

pulses or �light bullets.� The intriguing properties of cavity solitons investigated

in this thesis can be of practical application in the realisation and optimisation

of optical memories, optical delay lines and optical logic gates.
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Chapter 1

Introduction

Cavity Solitons (CS) can give rise to interesting phenomena in photonic systems.

These properties can also be useful for applications in optical information process-

ing. In this chapter, we introduce the basic principles on which the work in this

thesis is based. We begin with a review of laser operations, including atomic ab-

sorption and emission, semiconductor absorption and emission and general laser

operations. We introduce semiconductor lasers brie�y, before de�ning a CS and

introducing the motivation behind this research.

1.1 Laser operation

In this section, we describe the basics of laser operations in general before intro-

ducing the general methods exploited by semiconductor lasers, which are used for

the bulk of the research contained within this thesis.

1.1.1 Atomic absorption and emission

We begin with a brief review of quantisation of energy. The quantisation of energy

principle states that the electrons in an atom cannot move freely, that they must

occupy discreet energy levels. Figure 1.1 shows an example of a simple two level

atom. In this example we consider an electron occupying the lowest energy level

available, as indicated by the innermost ring. Providing energy to the electron

can cause it to jump to a higher energy level, however the energy injected must

be equal to the di�erence in energy between the two levels (i.e. ∆E = E1 −E0).

The energy which is injected to excite an electron to a higher energy level can

be introduced through di�erent methods. Here we concentrate on introducing

this energy through a single photon. A photon of light has an energy governed

1



+

-

- E0

E1

ΔE

Figure 1.1: An example of the energy levels in the simple case of a two level atom.
The nucleus consists of a single proton while a single electron orbits. The rings
surrounding the nucleus represent discreet energy levels which the electron can
occupy.

E0

E1

ΔE = Ep

Ep = hf

-

(a)

E0

E1

ΔE = Ep

Ep = hf

-
(b)

E0

E1

ΔE = Ep

Ep = hf

-(c)

Ep = hf

Ep = hf

Figure 1.2: Examples of absorption and emission in an atomic model, (a) shows
absorption of a photon by an electron and the corresponding jump in energy
level, (b) shows spontaneous emission and the corresponding drop in energy of
the electron while (c) shows stimulated emission of a photon by an excited electron
with the corresponding energy loss of the electron.

by its frequency � Ep = hf , where Ep is the energy of the photon, f is the

frequency and h is Planck's constant. By utilising a photon with the correct

energy (i.e Ep = ∆E), a photon can be absorbed by the electron while exciting

it to a higher energy level, as shown in �gure 1.2 (a).

Once the energy is stored by the electron, it can be released by one of two

methods. The �rst is spontaneous emission, where the photon is released ran-

domly by the electron's decay to a lower energy level. This has the disadvantage

of occurring at a random time and in a random direction (see �gure 1.2 (b)),

which is not of much use for practical applications (such as lasers).

The �nal method, which is of particular interest for laser operation, is stimu-

lated emission. This occurs when a photon of energy Ep = ∆E interacts with an

electron which is already excited to a higher energy level. This causes the elec-

2



tron to decay to the lower energy level, while releasing a photon in the process.

This has the advantage of occurring when the electron interacts with the photon

(i.e. not at some random time) and the photon released by the decaying electron

travels in the same direction as the photon which stimulated its release. Figure

1.2 (c) shows an example of this [1, 2].

1.1.2 Laser operations based on a cavity with a two level

atomic medium

For laser operation, an optical cavity is generally required. The simplest (and

most typical) laser cavity is a Fabry-Perot type cavity, which consists of a re�ector

at either end enclosing some sort of active medium (see �gure 1.3) � in this case

a two level atomic medium.

M M
Active

medium
Laser output

Figure 1.3: An example of a Fabry-Perot type cavity enclosed by a mirror (M)
at either end. In this case, the cavity is �lled with a two level atomic medium.

The �rst operation is to create an atomic population inversion. The popula-

tion inversion is where the electrons of the two level atomic medium are excited

from their ground state to an excited state. This is typically achieved by ap-

plying a current across the device. As the electrons begin to decay, the photons

they release stimulate the decay of electrons in the surrounding atoms causing

the release of more photons. As this continues, the photons bounce back and

forth between the re�ectors causing more photons to be released via stimulated

emission. This allows for gain in the optical cavity by causing constructive inter-

ference of the light. A small amount of light escapes at one of the re�ectors and

this creates the desired laser beam [2].

1.1.3 Semiconductor absorption and emission

Absorption and emission of photons by semiconductors is, however, more compli-

cated than that described above. When a photon is absorbed by a semiconductor

medium, the energy transferred does not cause an electron to jump to a higher

energy level as previously described. Rather it creates an �electron-hole pair.�

3



This occurs when an electron is excited from the valence band to the conduction

band and the electron and the `hole' it leaves behind are free to travel around

the semiconductor lattice, as shown in �gure 1.4 (a). When the electron and hole

recombine, the energy stored in the system is then released as a photon, as shown

in �gure 1.4 (b).

hole

electrons

ejected electron ejected electronhole

(a) (b)

Figure 1.4: An example of absorption and emission in a semiconductor medium.
When the photon is absorbed (a), an electron hole pair is created, which can
move freely around the semiconductor medium. When they recombine in (b), the
energy stored is released as a photon.

This process gives rise to complex e�ects which can a�ect the modelling of

semiconductor laser systems [2].

1.2 Semiconductor lasers

In this section we introduce some of the di�erent types of semiconductor lasers

available. We pay particular attention to the surface emitting lasers, which are

used throughout this thesis. Also discussed brie�y is the edge emitting laser,

which is widely available and used in many everyday products.

1.2.1 Edge emitting semiconductor lasers

The edge emitting semiconductor laser is grown in alternating layers of the desired

semiconductor materials. These layers are built up until the device is formed. The

active region runs parallel to these layers and the laser beam is emitted parallel

to the layers, as shown in �gure 1.5. The refractive index of the semiconductor

material is such that enough light is re�ected (typically 30%) by a plane cleaved

4



surface, resulting in a laser cavity without the requirement of additional re�ectors

at each end. Edge emitting semiconductor lasers have been around for some time

and are widely used in society.

active region 

laser output

Figure 1.5: An edge emitting semiconductor laser. The active region is made of
layers of semiconductor material and the laser light is emitted parallel to these
layers.

1.2.2 Surface emitting semiconductor lasers

Here we introduce surface emitting semiconductor lasers. In a similar method

to that used for creating the edge emitting laser, surface emitting semiconductor

lasers are grown using alternating layers of the desired semiconductor. In contrast

to the edge emitter, however, the laser beam is emitted perpendicular to the

semiconductor layers.

Vertical cavity surface emitting laser

The Vertical Cavity Surface Emitting Laser (VCSEL) forms the basis of most of

the work compiled in this thesis. A typical VCSEL schematic is shown in �gure

1.6. The key challenge facing the VCSEL is that the longitudinal length of the

active region is very short compared with other lasers and the wavelength of light

it is used to produce. The total length of the active region of a VCSEL is typically

1 � 3λ, where λ is the wavelength of the light being produced. This results in

less gain as the photons pass fewer electron-hole pairs in the semiconductor layers

which provides less stimulated emission than a typical laser.

To overcome this challenge, the re�ectors on either side of the active region

are replaced with Distributed Bragg Re�ectors (DBR). The typical re�ectivity

of an edge emitting semiconductor laser is approximately 30% of the incident

light. While this is su�cient for these lasers, as they have a longer active region

and can generate more gain with less passes, they are not for suitable for the

VCSEL. The DBRs used with the VCSELs typically re�ect approximately 99%

of the incident light. Further, the DBRs are also made of layers of semiconductor

material. They can therefore be grown directly onto the device. The DBRs works

by re�ecting some of the light incident on its initial surface and transmitting

5



active region 

reflector

reflector

heat sink

laser output

Figure 1.6: Schematic of a typical VCSEL. The active region is sandwiched be-
tween re�ectors and the light is emitted perpendicular to the semiconductor plane.

some. At the boundary between the layers some more light is re�ected and some

transmitted. This is achieved by the change in refractive index at the boundaries

between semiconductor layers. This process continues until the desired re�ectivity

is achieved, as shown in �gure 1.7.

DBRLaser beam 

incident on DBR

Laser beam 

reflected by DBR

Figure 1.7: The distributed Bragg re�ector. The red lines represent the laser
light incident on the surfaces and the blue lines represents the boundary between
the semiconductor layers making up the DBR.

Using this method allows for greater gain as more of the photons are re�ected

and therefore spend more time stimulating emissions in the active region.

Vertical external cavity surface emitting laser

The Vertical External Cavity Surface Emitting Laser (VECSEL) is essentially a

VCSEL without one of the DBRs, as shown in �gure 1.8. In place of the second

DBR, an external mirror is used to enclose the optical cavity, extending the cavity

6



length. This has the advantage of allowing di�erent optical media to be placed

within the cavity permitting di�erent e�ects to be examined. The disadvantage

of course comes directly from the use of an external mirror. For this device to

function properly, it must be aligned correctly. This is in contrast to the VCSEL

which is a complete device and immune from the e�ects of external in�uences

such as vibrations.

active region 

top mirror

reflector

heat sink

laser output

Figure 1.8: Schematic of the VECSEL. Here the top DBR is not included, rather
the device is aligned with an external mirror to enclose the optical cavity.

1.3 Nonlinear dynamics of spatio-temporal sys-

tems

In this section, we introduce the nonlinear dynamics relevant to the spatio-

temporal systems discussed in this thesis. We begin by introducing the saddle-

node bifurcation which is at hystersis the base of bistability in hysteresis cycles

and speci�cally the possibility of observing one of two states with the same gov-

erning parameters. We then discuss Hopf bifurcations and instabilities leading to

oscillatory behaviour. Finally we introduce the Turing instability, which governs

the existence of self organising patterns in various media.

1.3.1 Saddle-node bifurcations

Saddle-node bifurcations control the existence and destruction of �xed points in

spatio-temporal systems. Consider a control parameter, r. As r is varied, two

�xed points move towards each other before colliding. After this collision, if r

is varied further, these �xed points annihilate each other. The normal form of a

saddle-node bifurcation is:

7



dx

dt
= r + x2 (1.1)

The parameter r remains our control parameter and the system is considered

to be in a steady state (i.e. dtx = 0). We can clearly see the three states

as r changes from a negative to a positive quantity. Where r < 0, we obtain

x = ±
√
r and two �xed points exist in the system. As r approaches r = 0,

we obtain x = 0 and the two �xed points collide forming a singular, marginally

stable �xed point. Finally, for r > 0 we �nd that x =
√
−r and therefore the

�xed points have vanished. Figure 1.9 shows the di�erences between these three

states [3].

-2 0 2
-2

0

2

4

-2 0 2 -2 0 2

d t
x

x

(a) Unstable fixed point
Stable fixed point 

(b)

x

Marginally stable fixed point

x

(c)

Figure 1.9: Saddle node bifurcation upon variations of a control parameter (r).
In (a), r < 0 and two �xed points exist, in (b) r = 0 and the two �xed points
have collided. Finally, (c) shows r > 0 and the two �xed points have annihilated
each other.

There are several methods for plotting saddle-node bifurcations, the most

conventional of which is to plot x as a function of r. This is shown in �gure

1.10 (a) for equation (1.1) (left side) and for dtx = r − x2 (right side). The

reasoning behind this type of bifurcation diagram is that r takes the form of an

independent variable and should therefore be plotted on the horizontal axis [3].

A combination of two saddle-node bifurcations can be used to describe bistability

in a hysteresis cycle. Figure 1.10 (b) shows a bistable region by combining (slight

variations of) those shown in the bifurcation diagram of �gure 1.10 (a). Here, the

central branch is unstable and forms a separatrix between the upper and lower

curve in the bistable region.
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Figure 1.10: Panel (a) shows a bifurcation diagram for two cases, separated by
the vertical dotted line. Stable solutions are represented by a solid line while
unstable solutions are represented by a dashed line. Panel (b) shows bistability
approximated by a pair of saddle-node bifurcations. The centre branch is unstable
(dashed line) while the upper and lower branches are both stable (solid line).
Bistability exists in the region between the two arrows.

1.3.2 Hopf bifurcations

The results for the saddle-node bifurcation can be generalised to n-dimensional

systems, provided the Jacobian matrix has n distinct eigenvalues. Bifurcations

occur when either a real eigenvector is zero or when two complex conjugate eigen-

vectors have a real part equal to zero. If only one real eigenvalue becomes positive,

we have a saddle-node bifurcation (or other one dimensional bifurcations such as

a transcritical or pitchfork bifurcation). However if the real part of two complex

conjugate eigenvalues becomes positive, we have a Hopf bifurcation.

If we examine a two dimensional system which has a stable �xed point, the

eigenvalues (λ1, λ2) of the Jacobian must both lie in the left half of the plane, i.e.

Reλ < 0. Since the eigenvalues satisfy a quadratic equation with real coe�cients,

there are two possible scenarios. Either the eigenvalues are both real and negative

(�gure 1.11 (a)) or they are complex conjugates (1.11 (b)). To destabilise the �xed

point, we require that one or both eigenvalues cross into the right half of the plane

(i.e. λ > 0) [3].

Supercritical Hopf bifurcation

For the purpose of this discussion, we will restrict ourselves to two dimensions

however Hopf bifurcations can occur in phase spaces of any dimension n ≥ 2. We

begin by considering a system that relaxes to an equilibrium state through expo-

nentially damped oscillations. This means small perturbations decay back to the
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Re( )

Figure 1.11: Example of the eigenvalues of the Jacobian matrix of a two di-
mensional system. In (a) the eigenvalues are real and negative while in (b) the
eigenvalues are complex conjugates of each other with negative real parts.

equilibrium state through these oscillations. If the decay rate of the oscillations

depends on some control parameter, µ, and the decay becomes slower as µ is

varied before changing to growth at a critical value of the control parameter, µc,

then the equilibrium state will lose stability when µ passes through µc. In many

of these cases, this results in a small amplitude, sinusoidal oscillation around

the former equilibrium point. Such systems are described as having undergone a

supercritical Hopf bifurcation [3].

As a simple example of a supercritical Hopf bifurcation, we consider the fol-

lowing equations:

∂r

∂t
= µr − r3

∂θ

∂t
= ω + br2. (1.2)

Here we introduce three parameters, µ controls the stability of the �xed point at

the origin, ω is the frequency of the oscillations and b controls the dependence of

frequency on amplitude when considering larger oscillations. When µ < 0, the

origin r = 0 is a stable spiral while the direction of rotation is controlled by the

sign of ω. When µ = 0, the origin remains a stable spiral however it becomes

very weak. Finally for µ > 0, where there is an unstable spiral at the origin and

a stable, circular limit cycle with r =
√
µ.

To examine the behaviour of the eigenvalues during the bifurcation, we con-
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sider equations (1.2) in Cartesian coordinates:

∂x

∂t
= µx− ωy + cubic terms

∂y

∂t
= ωx+ µy + cubic terms. (1.3)

From this, we can extract the Jacobian matrix at the origin:

A =

(
µ −ω

ω µ

)
(1.4)

which has the eigenvalues λ = µ ± iω. As expected, the eigenvalues cross the

imaginary axis from left to right as µ increases from negative to positive values

[3].

Of course, this example is that of an ideal case and as such has properties

which are not completely accurate when examining a physical system. Firstly,

the Hopf bifurcations encountered in practice have a limit cycle which is elliptical

(not circular as with our example) and its shape becomes distorted as µ moves

away from the bifurcation point. Secondly, in our example, the eigenvalues move

horizontally as µ is increased, i.e. Imλ is independent of µ. In practice, the

eigenvalues follow a curve and cross the imaginary axis with a non-zero gradient.

Subcritical Hopf bifurcation

The subcritical Hopf bifurcation is much more dramatic (and potentially dan-

gerous in engineering applications) than its supercritical counterpart. With a

subcritical Hopf bifurcation, we �nd that the trajectories must jump to a distant

attractor, which may be a �xed point, another limit cycle, in�nity or (in three

or more dimensions) a chaotic attractor. Again, we limit ourselves to the two

dimensional case although interesting results, such as the Lorenz attractor which

demonstrates chaotic attractors, can be observed in three or more dimensions.

We consider the example:

∂r

∂t
= µr + r3 − r5

∂θ

∂t
= ω + br2 (1.5)

The important di�erence in this example is that the cubic term, r3, becomes

destabilising and helps to drive trajectories away from the origin. In this example,

we again consider µ which controls the stability of the �xed point, ω is the
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frequency of the oscillation and b determines the dependance of frequency on

amplitude.

The phase portraits are shown in �gure 1.12 and show two distinct cases.

When µ < 0, we observe two attractors � a stable limit cycle and a �xed point

at the origin. Between these two stable attractors lies an unstable cycle (shown

as the dashed circle in �gure 1.12 (a)). As µ increases from negative to posi-

tive values, this unstable cycle shrinks around the �xed point, until it has zero

amplitude, creating an unstable �xed point at the origin as µ = 0. For µ > 0,

the stable limit cycle becomes the only attractor and as a result, the only stable

solution.

 < 0

(a)

 > 0

(b)

Figure 1.12: Example of a subcritical Hopf bifurcation. In (a) there is an at-
tractive �xed point at the origin and an attractive limit cycle separated by an
unstable cycle (dashed circle), for µ < 0. In (b) the unstable cycle has shrunk
around the origin, resulting in the limit cycle existing as the only stable attractor
(µ > 0.

It is important to note that this system exhibits hysteresis. Once the stable

�xed point at the origin becomes unstable and solutions which used to remain

near the centre are forced towards the attractive limit cycle, these solutions will

not return towards the origin simply by returning µ left of the imaginary axis. The

large oscillations will remain until such time that µ is decreased to a point stable

and unstable cycles collide in a bifurcation known as a saddle-node bifurcation

of cycles [3].

Subcritical Hopf bifurcations occur in a number of dynamical systems such as

nerve cells [4], aeroelastic �utter and other vibrations of aeroplane wings [5, 6]

and in instabilities of �uid �ows [7].
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1.3.3 Turing instabilities

Since the pioneering work of Alan Turing on chemical morphogenesis [8], it has

become clear that two species di�using at di�erent rates and competing with each

other within the same environment can spontaneously break the translational

invariance (discretely) leading to the formation of regular (and irregular) spatial

patterns. Although the Turing instability can be studied in linearized systems (see

[9]), nonlinearity is necessary to saturate the growth of the unstable mode of the

pattern. Above the Turing instability a variety of geometrical structures (stripes,

squares, rhomboids, hexagons, honeycombs, etc.) can form in a 2D space, their

relative stability depending on the details of the given equations and nonlinear

terms. Here we examine the Turing instabilities leading to pattern formation in

the presence of di�usion and di�raction, the main mechanism for spatial coupling

in chemistry and photonics, respectively.

In his seminal paper on chemical morphogenesis in 1952, Alan Turing showed

that the translational invariance of a homogenous solution can spontaneously

break in systems with competing species (an activator and an inhibitor) with

separate di�usion rates [8]. An excellent review and expansion of Turing's work

is provided in [10]. Here we use a simpli�ed `linearized' model of the Turing

instability in 1D as discussed in [9]:

∂R

∂t
= αR− βI +D1∂

2
xR

∂I

∂T
= γR− δI +D2∂

2
XI (1.6)

where the parameters α, β, γ , δ and the di�usion rates D1 and D2 are real and

positive quantities. Since R (I) displays linear growth (decay), it is identi�ed

as the activator (inhibitor) variable of the two di�using species. The homoge-

neous solution R = I = 0 is unstable to a spatially modulated perturbation of

wavevector kc = 2π/Λc with

k2
c =

(
2π

Λc

)2

=
1

2

[
α

D1

− δ

D2

]
(1.7)

if and only if

D2

D1

>
δ

α
(1.8)

Since there are no nonlinear terms in equation (1.6), the amplitude of the

Turing pattern (i.e. a spatially periodic solution with wavelength Λc) grows in-
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de�nitely. The main role of the nonlinear terms is in fact to counterbalance such

linear growth via saturation (see [9, 10]).

In 2D the Turing instability does not prescribe a given geometry provided that

the spatial periodicity is Λc = 2π/kc. Several geometries can tile the 2D plane:

stripes, squares, rhomboids, hexagons, honeycombs, etc. The saturating nonlin-

ear terms do not a�ect the simultaneous existence of the separate geometries but

only their relative stability. We can now summarize the necessary features of an

instability leading to Turing patterns as follows [10]:

1. a clear activator-inhibitor linear dynamics and

2. speci�c conditions on the spatial coupling mechanism allowing or forbidding

pattern formation.

Early links between Turing and optical patterns were made in a seminal paper

by Lugiato and Lefever [11]. Clear activator-inhibitor dynamics, however, were

not established. It was later shown that this was possible for photonic systems

which display `o�-resonance' mechanism for the formation of stationary patterns.

`O�-resonance' pattern formation corresponds to the generation of periodic spa-

tial structures whose spatial modulation is inversely proportional to the square

root of the detuning between the material and cavity resonances. As an example

of a photonic system which displays `o�-resonance' pattern formation, we consider

the Degenerate Optical Parametric Oscillator (DOPO) [12] in the speci�c con-

�guration of a nonresonated pump �eld. For simplicity and for comparison with

that describe above for chemical systems, we restrict ourselves to one transverse

spatial dimension. These results do not change for the two transverse spatial

dimension case.

The equation for the electric �eld, E, takes the form of a Parametrically

Forced Ginzburg-Landau (PFGL) equation:

∂E

∂τ
= QE∗ − (1 + i∆)E − E|E|2 + ia∂2

xE (1.9)

where Q is the real amplitude of the input pump and ∆ is the detuning between

the signal frequency and the closest cavity mode. By introducing the real (R)

and imaginary (I) part of the signal �eld E, equation 1.9 becomes:

∂R

∂t
= (Q− 1)R +∆I − a∂2

XI −R(R2 + I2)

∂I

∂t
= −∆R− (1 +Q)I + a(∂2

xR− I(R2 + I2). (1.10)
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The nonlinear terms of the PFGL equation have a purely saturating role for both

R and I. In order to characterise the linear onset of the instability, we neglect

them (|R|, |I| ≪ 0). When setting the di�raction coe�cient to zero (a = 0),

the linear term structure of equation (1.10) exactly reproduces that of equation

1.6 with zero di�usion rates, under the identi�cation of α = Q1, β = γ = ∆,

δ = Q+ 1. In the DOPO system, then, the real (imaginary) part of the complex

electric �eld plays the role of the activator (inhibitor). This is condition (1)

of the Turing instability as established previously. Since we want to �nd out

if DOPO spatial periodic structures belong to the same class of universality of

Turing patterns, we study equation 1.10 with no nonlinear terms and with generic

di�raction coe�cients a1 and a2:

∂R

∂t
= αR− βI − a1∂

2
xI

∂I

∂t
= γR− δI + a2∂

2
xR. (1.11)

Following the method described in [10], the linear stability analysis of the homo-

geneous state gives:

0 = λ2 + λ(δ − α) + h(k2)

h(k2) = a1a2k
4 − k2(a1γ + a2β) + γβ − δα (1.12)

where λ are the stability eigenvalues. It is easy to �nd that the wavevector k

corresponding to the minimum stability value is

k2
c =

(
2π

Λ

)2

=
1

2

[
β

a1
+

γ

a2

]
(1.13)

Pattern formation is certainly inhibited when both a1 and a2 are negative. The

presence of a region in the (a1, a2) plane where pattern formation is forbidden

satis�es condition (2) of the Turing instability as described above. In the speci�c

case of the DOPO, a = a1 = a2 and β = γ = ∆, resulting in k2
c = −∆/a which

is the typical condition of `o�-resonance' pattern formation (we recall that ∆

is the cavity-medium detuning). We can then conclude that the `o�-resonance'

mechanism leading to pattern formation in DOPO and saturable absorbers is

a Turing instability and that the stationary and spatially periodic structures

observed in these photonic systems are Turing patterns [13].

Finally it is important to note that pattern formation and Turing patterns

are essential to the existence of spatial solitons. Solitons exist in a medium where
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there is bistability between the spatially homogeneous state and the patterned

state. In other words, in the desired system, the ability to observe a homogeneous

state and a patterned state for �xed values of the parameters give rise to the

formation of self-localised structures and spatial solitons.

1.4 Conservative and dissipative solitons

The soliton is a solitary wave that does not change as it propagates. It is formed

by a balance of linear and nonlinear e�ects in the medium of propagation. Solitons

were �rst observed in a canal near Edinburgh, Scotland by J. S. Russell in 1834

and were �rst described as the `wave of translation.' Included here is Russell's

description of this `wave of translation,' as published in [14]:

�I believe I shall best introduce this phenomenon by describing the circum-

stances of my own �rst acquaintance with it. I was observing the motion of a

boat which was rapidly drawn along a narrow channel by a pair of horses, when

the boat suddenly stopped�not so the mass of water in the channel which it had

put in motion; it accumulated round the prow of the vessel in a state of violent

agitation, then suddenly leaving it behind, rolled forward with great velocity, as-

suming the form of a large solitary elevation, a rounded, smooth and well-de�ned

heap of water, which continued its course along the channel apparently without

change of form or diminution of speed. I followed it on horseback, and overtook

it still rolling on at a rate of some eight or nine miles an hour, preserving its

original �gure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in the

windings of the channel. Such, in the month of August 1834, was my �rst chance

interview with that singular and beautiful phenomenon which I have called the

Wave of Translation, a name which it now very generally bears.�

Russell later recreated his `wave of translation' in a water tank. He deter-

mined that this was a fundamental mode of propagation, as an arbitrary `heap'

of water would disintegrate almost immediately and resolve itself into a primary

and residual wave. His work allowed the realisation that the velocity was pro-

portional to its height and proposed the law c2 = g(h + η), where g represents

gravity, h is the undisturbed depth of the water and η is the maximum height of

the wave, measured from the undisturbed level of the water [15].

However Russell's discovery and work was not received well by the scienti�c

community. Questions were raised by Airy and Stokes as to whether a wave which

travelled without change in shape could exist totally above water, attributing the
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loss of amplitude as a sign that the wave was nonpermanent. Russell refuted

these claims suggesting friction was the cause of the loss of amplitude, which

turned out to be correct. Russell's work was to be �nally accepted in the 1870's,

when (independently) Boussinesq [16] (1872) and Rayleigh (1876) found the hy-

perbolic sec squared solution for the free surface. Finally, in 1895, Korteweg

and deVries wrote down the equation describing waves in shallow water surfaces,

independently of the work performed by both Boussinesq and Rayleigh [15].

Solitons fall into one of two broad categories. They can be either conservative

or dissipative. We now attempt to de�ne these and describe the di�erence between

them before introducing cavity solitons, a type of spatial dissipative soliton, which

are the focus of this thesis. For this purpose we consider only optical solitons,

however the e�ects described have analogues to solitons in other media, such as

water or plasma.

1.4.1 Conservative solitons

Conservative solitons, as the name suggests, are solitary waves whose energy

is conserved. In other words, there is no energy lost from the system and no

energy input to the system. They exist with a balance of linear (di�raction

or dispersion) and nonlinear (e.g. optical Kerr e�ect) e�ects in the medium of

propagation. The Kerr e�ect states that, in a nonlinear medium, the refractive

index becomes proportional not only to the frequency of the photons passing

through the medium but also to the intensity of the photons, i.e. n = n0+n2|E|2

where n is the refractive index, n0 is the linear refractive index, n2 is the optical

Kerr coe�cient and E is the electric �eld [17].

The interaction (and collisions) of conservative solitons are of particular in-

terest. Indeed two conservative solitons which travel towards each other will pass

straight through each other and emerge una�ected by the collision (with the pos-

sible exception of a phase shift). There is no transfer of momentum or energy

between the two solitons during the collision. This brings us to the criteria which

a conservative soliton must satisfy [18]:

1. The soliton must maintain its shape when it moves at constant velocity.

2. When a soliton interacts with another soliton, it must emerge from the

collision unchanged with the possible exception of a phase shift.

17



1.4.2 Dissipative and cavity solitons

Dissipative solitons, in contrast to conservative solitons, exist in systems which

have dissipations, i.e. systems which have a loss of energy. To counter the energy

losses, a constant energy input is required. An excellent example of dissipative

optical solitons are those which exist in laser systems. At the laser output there is

a constant loss of energy as some of the photons exit the laser cavity. Energy input

to counter the loss of energy can take many forms. In this thesis, for example,

we examine systems with optical injection where a second (master) laser is used

to drive the system. Dissipative solitons are formed with a balance of linear and

nonlinear e�ects, however the energy losses of the system must also be balanced

by the energy input to the system.

Of particular interest are dissipative solitons in optical cavities, which have

become known as Cavity Solitons (CS). CS share many properties of spatial

solitons, for example di�raction is balanced with nonlinear e�ects in the cavity.

It is important to note that CS are not simply solitons `in a box.' They require

an optical cavity to exist and such optical cavities are essential to their survival.

The balance between nonlinear and linear e�ects required for the existence of

CS exists within the optical cavity, therefore if the cavity is removed, the soliton

ceases to exist.

For CS to exist, there has to a balance of forces acting on the excitation.

Firstly, the spatial components must balance. Therefore the nonlinear self-

focusing that exists in the cavity must balance di�raction e�ects, which try and

spread the CS (see �gure 1.13 (a)). Secondly, we require a balance between the

dissipative e�ects (losses at the cavity re�ectors) and gain, as shown in �gure

1.13 (b) [19].

(a)

Diffraction

Nonlinear 
self-focusing

(b)

LossesGain

Figure 1.13: Example of a CS pro�le. In (a) self-focusing is shown balancing
di�raction while (b) shows losses balancing gain.
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At this point, we will de�ne the criteria required for a localised structure to

be considered a CS. These important points will be revisited in some of the later

chapters:

1. The localised structure(s) must be bistable with the (quasi-) homogeneous

background.

2. The localised structure(s) should be optically controllable.

3. Each localised structure should be independently controllable.

From point 1, the CS should be bistable with the background state. Therefore,

an operator of the system should be able to write and erase the CS as they please.

Point 2 stipulates that the CS should be optically controllable. The position of the

CS can be adjusted by introducing optical gradients to induce motion. Finally,

the CS should be individually controllable, i.e an operator should be able to

switch individual CS on or o� and move them using optical gradients without

a�ecting any other CS that may have been created in the system. Note that the

CS can interact with each other, which does not a�ect this �nal point � chapter

5 examines the e�ects of collisions between CS, amongst other things.

A further point to note about CS is that their dynamics are non-Newtonian.

This fact is particularly useful for applications as the velocity of a CS is propor-

tional to the applied optical gradient, in contrast to Newtonian dynamics which

dictate the acceleration is proportional to the applied gradient [19].

Laser Cavity Solitons (LCS) are a further type of spatial dissipative soliton

examined in this thesis. The main di�erence between a CS and a LCS is the

freedom of an LCS to choose its own frequency and phase. CS typically exist

in driven systems, where an external holding beam is required to inject energy

into the system. This has the consequence of locking the frequency and phase of

the CS to that of the holding beam. LCS exist in systems which do not require

a holding beam to inject energy. In these systems, as there is no holding beam,

the frequency and phase remain free. LCS can be considered �micro-lasers� in

an active device with a large transverse area.

1.5 Motivation

Here we introduce some of the motivation behind the research contained within

this thesis. The motivations described here are practical applications which the

CS researched in this thesis may prove useful for in the future.
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1.5.1 All-optical delay line

The all-optical delay line was presented in [20] for a laser with injection operat-

ing in a passive con�guration and in [21], operating in an active con�guration.

Information can currently be transmitted along optical �bres, and such �bres can

provide for much faster transmission rates than are currently available. Future

networks will require information to be routed or stored optically, however such

routing will require the ability to bu�er data when the optical router is busy with

another data stream.

CS written CS read

CS drifts 

across cavity

Figure 1.14: An example of an all optical delay line based on CS. The CS can be
written at one point and travel on an optical gradient to a second location where
the result is read.

An all-optical delay line based on CS is ideal for this purpose. CS can be

created at one end of the delay line where they can travel across the transverse

plane of the cavity to a second location where they can be read and subsequently

erased, as shown in �gure 1.14. Where a CS is received at the output a binary

`1' would be read while an absence of a CS would represent a binary `0'. Further,

the delay can be controlled by varying the optical gradient on which the CS �nds

itself [20, 21].

1.5.2 Optical memories

Optical memories could play an important part in future optical networks or even

optical computers. The ability to store information as light could prove very

useful. Here we highlight that CS can be used to create arrays of information.

Again, we consider a CS at a speci�c location to represent a binary `1' and the
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CS No CS

Figure 1.15: An example of an optical memory based on CS. A message can be
stored as an array of CS and can be modi�ed or erased as desired.

absence of a CS to represent a binary `0'. The ability to write and erase individual

CS as desired makes them an ideal candidate for the task of optical memories.

A message can be stored as a sequence of CS and can be modi�ed or erased

completely, as desired (see �gure 1.15) [22].

1.6 Outline of the thesis

This thesis is organised as follows. We begin by introducing the theory and models

which are required throughout. Chapter 2 derives the Maxwell-Bloch equations

relevant for the studies using the VCSEL, before introducing the appropriate

models for a laser with optical injection and a laser with Frequency Selective

Feedback (FSF). For both these systems, we introduce some key parameters and

de�ne the range of these, over which we can expect to encounter CS. Further, for

the laser with FSF, we discuss the bene�ts of our model over the more traditional

Lang-Kobyashi approximation. This chapter concludes by introducing a simple

Kerr cavity model which is also used throughout this thesis.

Chapter 3 introduces the process of writing and erasing CS in the relevant

models. We begin with a general introduction to the literature on writing, before

applying the writing process in our models. Chapter 4 introduces motion into

our models by using phase gradients and detuning gradients, where appropriate.

Chapter 5 introduces CS interactions in our models. We examine not only colli-

sions of two or more CS but also introduce pinning defects to examine the e�ect

21



two CS have on each other in our laser with FSF. Finally, chapter 6 introduces

oscillations in our model of a laser with FSF before the general conclusions in

chapter 7.
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Chapter 2

Theory and models of photonic

devices displaying cavity solitons

2.1 Introduction

This chapter introduces the key background theory for the modelling of Cav-

ity Solitons (CS) in photonic devices. We begin by deriving the Maxwell-Bloch

equations relevant to this thesis. For this, we start by introducing Maxwell's

equations, with a description of the slowly varying wave approximation. The op-

tical Bloch equations for a two level atom follows, where we introduce the decay

terms before combining Maxwell's equations with the optical Bloch equations.

After this derivation, the appropriate models are introduced. For each model,

a diagram of the experimental setup is included, along with a discussion of the

key parameters. For the laser with Frequency Selective Feedback (FSF), we also

discuss the bene�ts of our model over more conventional techniques for modelling

feedback. We �nish with a description of the key numerical methods used to

integrate the model equations. These methods allow for the successful integration

of the device equations used for our models.
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2.2 Maxwell-Bloch equations for lasers

2.2.1 Maxwell's Equations

We start with Maxwell's equations in a non-magnetic medium with no free charges

and no free currents:

∇ · D̃ = 0 ∇ · B̃ = 0

∇× Ẽ = −∂B̃

∂t
∇× B̃ = µ0

∂D̃

∂t
(2.1)

D̃ = ε0Ẽ+ P̃

where D̃ and B̃ are the electric and magnetic �ux densities, Ẽ is the electric �eld,

P̃ is the medium polarisation, ε0 and µ0 the permittivity and permeability of

vacuum. By taking the curl of the third Maxwell's equation one gets

∇×∇× Ẽ = −∂(∇× B̃)

∂t
= −µ0

∂2D̃

∂t2
= −µ0

∂2(ε0Ẽ+ P̃)

∂t2

i.e.

∇×∇× Ẽ+
1

c2
∂2Ẽ

∂t2
= − 1

ε0c2
∂2P̃

∂t2

where c = (µ0ε0)
−1/2 is the speed of light in the vacuum. By using the vector

calculus equality

∇×∇× Ẽ = ∇(∇ · Ẽ)−∇2Ẽ

and considering that the directional derivative (�rst term in the r.h.s) is zero for

plane waves and negligibly small in the slowly varying amplitude approximation

(see later), one obtains:

−∇2Ẽ+
1

c2
∂2Ẽ

∂t2
= − 1

ε0c2
∂2P̃

∂t2
.

Note also that the magnitude of P̃ is much smaller than that of Ẽ so that the

�rst Maxwell's equation gives ∇ · D̃ ≈ ∇ · Ẽ ≈ 0 in agreement with the approx-

imation made above. We consider now a wave that propagates in the vacuum

with frequency ω and wave-vector k such that k = ω/c. Such wave impinges on

our medium along the z direction. By introducing the slowly varying complex
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amplitudes E and P via:

Ẽ =
[
Ee−i(kz−ωt) + c.c.

]
z⃗ P̃ =

[
Pe−i(kz−ωt) + c.c.

]
z⃗

where c.c. is the complex conjugate, one obtains:

−∇2
⊥E −

[
∂2E

∂z2
− 2ik

∂E

∂z
− k2E

]
+

1

c2

[
∂2E

∂t2
+ 2iω

∂E

∂t
− ω2E

]
= − 1

ε0c2

[
∂2P

∂t2
+ 2iω

∂P

∂t
− ω2P

]
where ∇2

⊥ is the Laplacian operator in the plane perpendicular to the direction

of propagation z⃗.

Slowly Varying Amplitude Approximation

Since we are dealing with frequencies and wavelengths in the optical domain∣∣∣∣∂2E

∂t2

∣∣∣∣≪ ω

∣∣∣∣∂E∂t
∣∣∣∣ ∣∣∣∣∂2E

∂z2

∣∣∣∣≪ k

∣∣∣∣∂E∂z
∣∣∣∣ ∣∣∣∣∂2P

∂t2

∣∣∣∣≪ ω

∣∣∣∣∂P∂t
∣∣∣∣

are very well satis�ed. The slowly varying amplitude approximation leads to:

−∇2
⊥E + 2ik

[
∂E

∂z
+

1

c

∂(E + P/ε0)

∂t

]
=

ω2

ε0c2
P (2.2)

where we have used the vacuum dispersion relation k = ω/c. Note that for a

medium with a linear response

P = ε0χ
(1)E

where χ(1) is the linear susceptibility, the wave equation becomes

−∇2
⊥E + 2i

[
k
∂E

∂z
+

ω(1 + χ(1))

c2
∂E

∂t

]
+

(
k2 − ω2

c2

)
E =

χ(1)ω2

c2
E .

The dispersion relation in the medium now becomes:

k2 = (1 + χ(1))
ω2

c2
=

n2ω2

c2
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where we have de�ned the refractive index as n =
√

1 + χ(1). Under this de�ni-

tion the wave equation in a linear medium becomes:

−∇2
⊥E + 2i

[
k
∂E

∂z
+

ck(1 + χ(1))

nc2
∂E

∂t

]
= −∇2

⊥E + 2ik

[
∂E

∂z
+

n

c

∂E

∂t

]
= 0 .

(2.3)

2.2.2 The Optical Bloch Equations

To describe the wave propagating in the medium we consider atoms with two

energy levels and appropriate wavefunctions

H0|1 > = E1|1 > H0|2 >= E2|2 >

< 1|1 > =< 2|2 >= 1 < 1|2 >=< 2|1 >= 0

where the �rst two equations are the time independent Schrödinger equations for

the two energy levels separated by the energy ~ωA while the third and fourth

are the orthonormality conditions of the wavefunctions. We introduce the raising

|2 >< 1| and lowering |1 >< 2| operators and express the Hamiltonian H0 and

the interaction Hamiltonian HI as

H0 = E1|1 >< 1|+ E2|2 >< 2|

HI = ~
(
g|1 >< 2|eiωt + g∗|2 >< 1|e−iωt

)
where ω is the frequency of the incoming laser beam while g is the Rabi frequency

de�ned as:

g = E0
e

2~

∫
< 1|DE0 |2 > dr⃗ =

µ12

2~
E0 (2.4)

with E0 being the amplitude of the incident beam, DE0 is the component of

the electric atomic dipole in the beam direction and µ12 is the magnitude of the

electric dipole moment provided by the appropriate matrix element in (2.4). The

time dependent Schrödinger equation for the full system is:

i~
∂

∂t
|Ψs > = (H0 +HI) |Ψs > (2.5)

=
[
E1|1 >< 1|+ E2|2 >< 2|+ ~

(
g|1 >< 2|eiωt + g∗|2 >< 1|e−iωt

)]
|Ψs >

where |Ψs > is the system wavefunction in the Schrödinger representation. It is

then convenient to move into the interaction representation via the transforma-
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tion:

|Ψ >= eiH0t/~|Ψs >

where the time dependent Schrödinger equation takes the convenient form

i~
∂

∂t
|Ψ >= HI |Ψ >= ~

(
g|1 >< 2|ei∆t + g∗|2 >< 1|e−i∆t

)
|Ψ >

where ∆ = ω−ωA is the �eld-atom frequency detuning and HI is now in the inter-

action representation. We can �nally introduce the density matrix ρ = |Ψ >< Ψ|
and rewrite the Schrödinger equation as:

∂

∂t
ρ = − i

~
[HI , ρ]

where [·, ·] is the commutator.

The decay terms: the Lindblad form

The interaction of the system with the environment (including the vacuum) is

described by a coupling with a heat bath in the Markov (short memory) approxi-

mation. It is then possible to obtain decay terms for the dynamics of the density

matrix in the Lindblad form

∂

∂t
ρ = − i

~
[HI , ρ] +

∑
ij

qij|j >< i|ρ|i >< j| − 1

2

∑
ij

qij|i >< i|ρ

− 1

2
ρ
∑
ij

qij|i >< i|

where i, j take the values 1, 2 and qij are numbers that specify the decays due to

the coupling with the external heat bath. For our medium formed by two-level

atoms the speci�c form of the Bloch equations is:

dρ11
dt

= −i
(
g∗ρ21e

i∆t − gρ12e
−i∆t

)
+ q21ρ22

dρ12
dt

= −ig∗ (ρ22 − ρ11) e
i∆t − 1

2
(q11 + q21 + q22) ρ12

dρ21
dt

= −ig (ρ11 − ρ22) e
−i∆t − 1

2
(q11 + q21 + q22) ρ21

dρ22
dt

= −i
(
gρ12e

−i∆t − g∗ρ21e
i∆t
)
− q21ρ22 .
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It is convenient to remove the explicit dependence of the Bloch equation from

time by introducing the variables Rii = ρii and

R12 = ρ12e
i∆t R21 = ρ21e

−i∆t

to obtain

dR11

dt
= −i (g∗R21 − gR12) + q21R22

dR12

dt
= −ig∗ (R22 −R11)−

[
1

2
(q11 + q21 + q22) + i∆

]
R12

dR21

dt
= −ig (R11 −R22)−

[
1

2
(q11 + q21 + q22)− i∆

]
R21

dR22

dt
= −i (gR12 − g∗R21)− q21R22 .

We consider that no other energy levels are involved in the dynamics so that

the sum of the probabilities of occupancy of level 1 and level 2 is certainty, i.e.

one. This translates into ρ11 + ρ22 = R11 + R22 = 1 and makes the system non-

homogeneous. We can reduce the number of relevant equations by considering

the population inversion variable n = ρ22 − ρ11 = R22 −R11. A further reduction

comes from the fact that the o� diagonal terms are the complex conjugate of each

other. The Bloch equations are then reduced to:

dR21

dt
= − (γ⊥ − i∆)R21 + ign

dn

dt
= −γ∥(n+ 1)− 2i(gR∗

21 − g∗R21)

where we have introduced the traditional decay rates

γ⊥ =
1

2
(q11 + q21 + q22) γ∥ = q21 .

Note that γ⊥ ≥ γ∥/2. The equation for N shows that with no incident �eld there

is no population inversion since N relaxes to -1 (all atoms in the ground state).

In a laser, however, the equilibrium state is in a population inversion state with

n = 1 due to the pumping:

dR21

dt
= − (γ⊥ − i∆)R21 + ign (2.6a)

dn

dt
= −γ∥(n− 1) + 2i(g∗R21 − gR∗

21) . (2.6b)
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The combination of Bloch and Maxwell's equations.

We introduce now new macroscopic variables in equations (2.6) connected to the

complex amplitudes E and P of the propagation Maxwell's equation (2.2):

N = nan P = naµ12R21e
−ikz E = E0e

−ikz

to obtain:

∂E

∂z
+

1

c

∂(E + P/ε0)

∂t
= − i

2k
∇2

⊥E − iω2

2kε0c2
P

∂P

∂t
= γ⊥

[
− (1− i∆)P +

iµ2
12

2~γ⊥
EN

]
∂N

∂t
= −γ∥

[
N − na +

i

~γ∥
(E∗P − EP ∗)

]
where we have normalised the detuning ∆ by γ⊥ to make it adimensional. To

follow the literature we rewrite these equations for the complex conjugate �eld

F = E∗ and conjugate polarisation Q = P ∗:

∂F

∂z
+

1

c

∂(F +Q/ε0)

∂t
=

i

2k
∇2

⊥F +
ik

2ε0
Q

∂Q

∂t
= γ⊥

[
− (1 + i∆)Q− iµ2

12

2~γ⊥
FN

]
∂N

∂t
= −γ∥

[
N − na −

i

~γ∥
(FQ∗ − F ∗Q)

]
.

A �nal normalization of the variables

E =
µ12

~√γ∥γ⊥
F P =

2i

µ12na

√
γ⊥
γ∥

Q D =
N

na

casts the equations in the standard Maxwell-Bloch form:

∂E

∂z
+

1

c

∂(E − 2iαP/k)

∂t
=

i

2k
∇2

⊥E + αP (2.7a)

∂P

∂t
= γ⊥ [− (1 + i∆)P + ED] (2.7b)

∂D

∂t
= −γ∥

[
D − 1 +

1

2
(EP ∗ + E∗P )

]
(2.7c)

where:

α =
µ2
12nak

4~ε0γ⊥
.
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Finally, by considering the variables αP and αD one obtains:

∂E

∂z
+

1

c

∂(E − 2iP/k)

∂t
=

i

2k
∇2

⊥E + P (2.8a)

∂P

∂t
= γ⊥ [− (1 + i∆)P + ED] (2.8b)

∂D

∂t
= −γ∥

[
D − α +

1

2
(EP ∗ + E∗P )

]
. (2.8c)

Equations (2.8a-2.8c) are the Maxwell-Bloch equations for a laser based on a

two-level atom model as derived by L. Lugiato and L.M. Narducci in [23] apart

from the polarisation term in the l.h.s. of equation (2.8a). We note that in the

case of an absorbing medium, the sign of P and D is reversed and that upon

reversing the equilibrium value of the population variable in the absence of an

incident �eld, one obtains exactly the equations given by A. Scroggie in his PhD

thesis [24].

2.2.3 Mean Field Limit

The Maxwell-Bloch equations derived above, describe the propagation of an elec-

tromagnetic wave in a two-level medium prepared in a state of population inver-

sion, within the slowly varying amplitude approximation. We now extend these

equations to the case of a medium of length L in a ring optical cavity of length

L. For clarity we focus our attention on the �eld equation (2.7) since the mean

�eld limit introduces conditions on the parameter α:

∂E

∂z
+

n

c

∂E

∂t
=

i

2k
∇2

⊥E + αP (2.9)

where in the l.h.s. we have considered the �rst order (linear) contribution of the

polarisation to the wave speed through the refractive index as described in (2.3).

We set z = 0 at the entrance of the crystal and write the longitudinal boundary

condition as

E(x, y, 0, t) = eD E

(
x, y, L, t− L− L

c

)
+
√
TEIN(x, y) (2.10a)

D = ln
√

Rj − iδj + (L − L)
i

2k
∇2

⊥ (2.10b)

δ =
ωc − ω

c
L T = 1−R, (2.10c)

where R(T ) is the mirror re�ectivity (transmittivity), for the �eld, EIN is the

input �eld (if any) at frequency ω, while ωc is the frequency of the longitudinal
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cavity mode closest to ω. In the following we will use the transmittivity of the

output mirror as a small parameter, i.e.

√
T = ε ≪ 1 .

In order to force the boundary condition (2.10) into the propagation equation

(2.9), the usual Mean Field Limit (MFL) transformation is entered

z′ = z (2.11a)

t′ = t+

[
L − L

c

]
z

L
. (2.11b)

Under the condition (2.11), we obtain

∂z = ∂z′ +

[
L − L

cL

]
∂t′ ∂t = ∂t′

∂z +
n

c
∂t = ∂z′ +

[
L − L

cL

]
∂t′ +

n

c
∂t′ = ∂z′ +

[
L+ (n− 1)L

cL

]
∂t′ .

Note that the usual MFL transformation of the time variable leaves a refractive

index dependence in the coe�cient of ∂t′ ; we will see its consequences later.

By introducing the new �eld variable F such that

F = ΓE +
√
TEIN

z

L
with Γ = exp

(
D z

L

)
we obtain

∂t′F +
cL

L+ (n− 1)L
∂z′F

=
cL

L+ (n− 1)L

[
D
L

(
F −

√
TEIN

z

L

)
+ Γ

(
∂zE +

n

c
∂tE

)
+
√
TEIN

1

L

]
=

cL

L+ (n− 1)L

[
D
L

(
F −

√
TEIN

z

L

)
+ Γ

(
i

2k
∇2

⊥E + αP

)
+

√
TEIN

1

L

]
.

The longitudinal boundary conditions (2.10) are now transformed into

F (x, y, 0, t′) = F (x, y, L, t′) (2.12)
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i.e. the �eld is periodic at the same time t′. The standard MFL conditions are

ε ≪ 1; δ = O(ε) ≪ 1;

α = O(ε) ≪ 1; (L − L)/2k = O(ε) ≪ 1

one obtains:

D ≈ −T

2
− iδ + i

L − L

2k
∇2

⊥ Γ ≈ 1 +
D
L
z

since

ln
√
R = ln

√
1− T ≈ ln

(
1− T

2

)
≈ −T

2
.

At the �rst order in ε one gets:

∂t′F +
cL

L+ (n− 1)L
∂z′F

= − c T/2

L+ (n− 1)L
F − i

c δ

L+ (n− 1)L
F + i

cL
2k[L+ (n− 1)L]

∇2
⊥F

+
c
√
T

L+ (n− 1)L
EIN +

c L

L+ (n− 1)L
αP.

By introducing the new convenient parameters

τ =
L+ (n− 1)L

c
; γ =

T

2
; a =

L
2k

,

one obtains:

τ ∂t′F + L ∂z′F = −γF − iδF + ia∇2
⊥F + αLP +

√
2γEIN .

Since the new longitudinal boundary condition (2.12) is now synchronous and

periodic, one can use an expansion in longitudinal Fourier modes. Under the

MFL conditions, however, only the longitudinal mode closest to ω has components

di�erent from zero. This mode corresponds to a zero longitudinal frequency so

that ∂z′F = 0 so that we �nally obtain:

τ ∂t′F = −γF − iδF + ia∇2
⊥F + αLP +

√
2γEIN

∂t′F = κ
[
−(1 + iθ)F + iâ∇2

⊥F + µP + EI

]
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where

κ =
γ

τ
=

γc

L+ (n− 1)L

θ =
δ

γ
=

(ωc − ω)L
cγ

â =
a

γ
=

L
2kγ

µ =
αL

γ
=

µ2
12nakL

4~ε0γ⊥γ

EI =

√
2EIN

γ

Going now back to the Maxwell-Bloch equations (2.8a-2.8c) after P = µP and

D = µD we obtain

∂E

∂t
= κ

[
EI + P − (1 + iθ)E + i∇2E

]
(2.13a)

∂P

∂t
= γ⊥ [ED − (1 + i∆)P ] (2.13b)

∂D

∂t
= γ∥

[
µ−D − 1

2
(EP ∗ + E∗P )

]
(2.13c)

where we have normalised the spatial variables x, y by dividing them by
√
â.

2.3 Semiconductor laser with injected signal.

In this section, the experimental setup and model equations for a laser with

optical injection are introduced. Here, a Vertical Cavity Surface Emitting Laser

(VCSEL) is used. We also examine the key parameters of the model to de�ne the

region where stable CS are located.

2.3.1 Experimental setup

The experimental setup of a VCSEL with optical injection is shown in �gure

2.1. The beam from the master laser is split by a beam splitter, with the �rst

branch providing the holding beam and the second being used to create the

localised addressing beam. These two branches are recombined and injected into

the VCSEL [25].
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Figure 2.1: The experimental setup of a VCSEL with optical injection. VCSEL
is a vertical cavity surface emitting laser, BS are the beam splitters, M are the
mirrors and AOM is an acousto-optic modulator used to create the localised
addressing beam.

2.3.2 Theoretical model

The theoretical model, also described in [25], is introduced here. This model,

based on the Maxwell-Bloch equations derived in section 2.2, includes a dynamical

variable for the polarisation. This is important as, above the lasing threshold,

the model can produce unphysical results without such term.

To begin, the equation for the polarisation must be modi�ed to include the

peculiar behaviour of the susceptibility (and gain) in semiconductor lasers. In

[26] for example equations (2.13) are modi�ed into:

∂E

∂t
= ε

[
EI + P − (1 + iθ)E + i∇2E

]
(2.14a)

∂P

∂t
= ξ(D) [(1− iα)ED − P ] (2.14b)

∂D

∂t
= γ

[
J −D − 1

2
(EP ∗ + E∗P )

]
(2.14c)

where α is the renown linewidth enhancement factor, ε = κ/γ⊥, γ = γ∥/γ⊥ and

ξ(D) = Γ(D)(1− iα) + iδ(D) (2.15a)

Γ(D) = 0.276 + 1.016D δ(D) = 0.169 + 0.216D (2.15b)

where δ(D) representing the detuning between the reference frequency and the

peak of the gain curve, E and P are the dynamical cavity �eld and polarisation

terms respectively, EI is the optical injection, θ is the detuning between the
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injection and VCSEL �elds, ia∇2E is di�raction with a the di�raction parameter,

ξ is the susceptibility of the semiconductor material, D is the carrier distribution,

J is the pump current and d∇2D is the carrier di�usion with d the di�usion

coe�cient. Note that the value of this coe�cient is such that di�usion e�ects are

negligible and henceforth ignored (d = 0.052) [25].

Further ε is the is the decay rate of the �eld and γ is the decay rate of the

carriers. Time is scaled to the dephasing rate, τd, of the microscopic dipoles and

the decay rates are de�ned as ε = τd/τp and γ = τd/τc, where τp and τc are the

photon lifetime and carrier recombination time respectively.

2.3.3 Homogeneous stationary solutions and bistability con-

ditions

From [26], the dynamical equations (2.14) admit the plane wave stationary solu-

tion E = ES, P = PS and D = DS. Introducing x = |ES|2 and y = |EI |2 the

equation that links the output intensity x to the input intensity y is

y = x

[(
1− J

1 + x

)2

+

(
θ +

αJ

1 + x

)2
]
. (2.16)

The shape of the stationary curve depends on the parameters J , α and θ. The

stationary curve can be bistable, with a negative slope branch that extends be-

tween the two turning points xA and xB. Figure 2.2 shows the bistability domains

in the plane (x, θ) for α = 3.0 and di�erent values of the pump parameter J . The

intersections of the bistability domain with the horizontal line corresponding to

a certain value of θ give the turning points xA and xB for that value of θ. All the

x values between the turning points belong to the negative slope branch.

The equation for the boundaries of the bistability region is:

θ±(x, α, θ) = −
Jα±

√
J2x2 (1 + α2)−

[
(1 + x)2 − J

]2
(1 + x)2

(2.17)

so that one can derive the exact expression for coordinates (xC , θC) of the right-

most point of bistability domain:

xC = −1 +
J
√
1 + α2 +

√
J
[
J (1 + α2)− 4

(√
1 + α2 − 1

)]
2

(2.18a)

θC = − Jα

(1 + xC)
2 (2.18b)
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Figure 2.2: Bistability domain for α = 3. From the larger to the smaller domain
J takes the values of 1.05, 1.00, 0.95 and 0.90.

Clearly, bistability is possible only if xC is real and positive, and this sets a lower

limit to the pump parameter

Jmin = 4

√
1 + α2 − 1

1 + α2
(2.19)

For J = Jmin the bistability domain shrinks to the point of coordinates x′ =

1 − 2/
√
1 + α2 (positive only for α >

√
3) and θ′ = −(

√
1 + α2 + 1)/α. For

α = 3.0 we have Jmin = 0.8649, x′ = 0.3675 and θ′ = −1.387.

If the VCSEL is close to threshold (J ≈ 1) and α >
√
3, approximated

expressions can also be found for the lower and upper extrema θmin and θmax of

the bistability domain:

θmin(α, J) ≈ −α− α2 + 1

α±
√
3
(J − 1) (2.20a)

θmax(α, J) ≈
(α2 − 9)

2 − 108

8α3
+

(α2 + 9)
2
(α2 + 1)

8α3 (α2 − 3)
(J − 1) (2.20b)

In equations (2.20) the upper (lower) sign holds for J > 1 (J < 1). For J = 1 we

have exactly θmin = −α. In general, θ must be negative and smaller in absolute

value than α in order to have bistability. In our model ε(θ + α) represents the

frequency of plane wave emission for the solitary laser, while the zero frequency

is that of the injected �eld. The fact that bistability requires θ + α > 0 means

that the injected �eld must be red detuned with respect to the solitary laser.
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2.3.4 Turing instability

We now study the stability of the homogeneous solution against perturbations of

the form δX exp (λτ + iK · x), with X = E,P,D. Two types of instability are

possible. Here we examine the �rst of these, the Turing instability (Re(λ) > 0

and Im(λ) = 0) [13, 26].

In the absence of carrier di�usion (d = 0), an analytic expression of the

stability eigenvalues can be found

λ± = −
[
1− J

(1 + x)2

]
±

√
J2x2 (1 + α2)

(1 + x)4
−
[
K2 + θ +

Jα

(1 + x)2

]2
(2.21)

The positive eigenvalue is responsible for the instability and the spatial wavevector

Kmax that maximizes it is given by

K2
max = − Jα

(1 + x)2
− θ (2.22)

The boundaries of the Turing instability domain in the plane (x,K2) are

K2
T± = θ±(x, α, J)− θ (2.23)

where the values of θ± are given by equation (2.17). The instability domain is

therefore simply the bistability domain shifted vertically by an amount −θ, and

it crosses the axis K = 0 in correspondence with the turning points xA and xB

of the stationary curve. This is related to the fact that the negative slope branch

is unstable even in the plane wave limit (K = 0). Equation (2.23) shows that a

variation of θ simply causes a rigid translation of the instability domain in the

vertical direction. In this translation the position of the turning points xA and xB

varies but the right extremum xC of the instability domain remains unchanged.

Hence, by varying θ we can vary the extension of the unstable part of the upper

branch. In order to have bistability and instability on the upper branch it must

be θmin < θ < θC with θmin given by (2.20a) and xC and θC given by (2.18). An

example of the Turning instability domain is shown in �gure 2.3 for J = 1.05,

α = 3.0 and θ = −2.3. The upper branch of the stationary curve is Turing

unstable from the turning point xB to xC [26].
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Figure 2.3: Turing instability domain for J = 1.05, α = 3.0, θ = −2.3 and
d = 0. The dashed line is the wavevector that maximises the unstable eigenvalue
according to equation (2.22)

2.3.5 Hopf instability

The second type of instability is the Hopf instability (Re(λ) > 0 and Im(λ) ̸= 0).

The Hopf instability is the region before the slave laser, in this case the VCSEL,

locks its frequency and phase to that of the master laser (i.e. the optical injection)

[3, 26]. A simple expression for the boundary of the instability domain can be

obtained by neglecting terms of order γ:

εK2
H± = δS (2−DS) + αΓS (DS − 1) + ε

(
δSDS

ΓS

− θ − αDS

)
± (ΓS + ε)

√
(DS)

(
α2DS + 1− 2αDSδS

ΓS

)
+

(
DSδS
ΓS

)2

(2.24)

where ΓS = Γ(DS), δS = δ(DS) and DS = J/(1 + x) is the stationary value

of D in the homogeneous solution. The instability domain (both exact and the

approximated one) is shown in �gure 2.4, for J = 1.05, α = 3.0, θ = −2.3, and

ε = 0.04.

The homogeneous solution is unstable up to the injection locking point, which

is x ≈ J − 1, (DS ≈ 1). This has a clear physical meaning. As stated above, the

solitary laser and the injected �eld oscillate at di�erent frequencies, ε(θ+α) and 0,

respectively. The two frequencies compete giving rise to an oscillatory behaviour

as long as the injected �eld is not strong enough to impose its frequency. This

happens when the intensity of the driven laser equates that of the solitary laser,

i.e. when x ≈ J − 1.
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Figure 2.4: Hopf instability domain for J = 1.05, α = 3.0, θ = −2.3 and ε = 0.04.
The solid line represents the exact boundary, the dashed line is the approximated
expression given by equation (2.24).

This picture remains valid even in the plane wave limit (K = 0). The inclu-

sion of di�raction modi�es it under two respects. First, the critical transverse

wavevector KH,C , which can be obtained from equation (2.24) setting the square

root equal to zero and approximating DS with 1, is given by:

εK2
H,C ≈ δ(1)− ε (α + θ) (2.25)

This result can be interpreted considering that δ(1) is the peak of the gain curve

for DS = 1 and ε(α + θ) is the frequency of the solitary laser when it emits on-

axis. Hence the right hand member of the above equation is an e�ective �atomic�

detuning ∆, and the equation expresses the well-known result that for positive

∆ the tilted wave with K =
√
∆/ε has maximum gain. The second analytic

result that can be obtained from equation (2.24) concerns the bandwidth of the

unstable transverse wavevectors, which is maximum for x = 0, where it is given

approximately by:

εK2
H(0) ≈ Γ(J)

[√
(α2J + 1) (J − 1) + α (J − 1)

]
(2.26)

The results of the stationary homogeneous solution and its stability are sum-

marised in �gure 2.5 which shows the homogeneous stationary curve for J = 1.05,

α = 3.0 and θ = −2.3 as a function of y. The lower branch is Hopf unstable up to

the injection locking point. The negative slope branch is unstable as usual. The

upper branch is unstable from the upper turning point to the critical point which

is beyond the right margin of the �gure. The part of the lower branch from the

injection locking point to the lower turning point, however, is stable. Stationary

39



CS with stable backgrounds exist in that region, and their peak intensity is also

shown in �gure 2.5 [26].
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Figure 2.5: Homogeneous stationary states as a function of |EI |2. The dashed line
represents the unstable solutions. The only stable part is the portion between the
injection locking point and the lower turning point, shown by the solid red line.
The circles indicate the peak intensity of the CS that exist in correspondence
with the stable part of the lower branch. Parameters are J = 1.05, α = 3.0, while
θ = −2.3.

2.3.6 Reduced equations

The model described in equations 2.14 is however, numerically sti� to integrate.

This sti�ness arises directly from the introduction of the dynamical polarisation

variable. The resulting model exists with all the dynamical variables evolving

on di�erent time scales (E =⇒ 10ps, P =⇒ 100fs and D =⇒ 1ns). To

overcome this problem, we introduce two new models and discuss the positive

and negative aspects of each. The �rst includes a simple adiabatic elimination

of the polarisation and re-normalisation of the time scales as shown in equations

(2.27) [21, 26].

∂E

∂τ
=

EI − i (α + θ)E + i∇2E√
ε

+ (1− iα)WE (2.27a)

∂W

∂τ
= σ

[
J −

(
1 +

√
εW
) (

1 + |E|2
)]

(2.27b)

Where τ = ε3/2t, D = 1 +
√
εW and γ = σε2.
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The second reduction procedure was reported in [27] and reviewed in [21].

This reduction used perturbative methods based on Centre Manifold theory to

reduce the number of dynamical variables, allowing for a signi�cant portion of

the numerical sti�ness to be removed. This model, shown in equations (2.28),

accurately reproduces the results of equations (2.14), but with a reduction of

computational overhead of approximately 100.

∂E

∂τ
=

EI − i (α + θ)E + ai∇2E√
ε

+ (1− iα)WE

+
√
ε (1− iα)

(
1 +

√
εW
)
(LE + Z) (2.28a)

∂W

∂τ
= σ

{
J −

(
1 +

√
εW
) (

1 + |E|2
)
− εRe [(1− iα)E∗ (LE + Z)] + dε3/2∇2W

}
(2.28b)

L = − i∇2

ξ(1) + iε∇2
(2.28c)

Z = − 1

ξ(1)

[
EI − i (α + θ)E +

√
ε (1− iα)WE

]
(2.28d)

Where D = 1+
√
εW . Note that the operator L has not been expanded further

in ε for numerical convenience. Equations (2.27) can be easily obtained by only

keeping terms up to order ε0 in the equation for E and order ε3/2 in the equation

for W . This corresponds to a standard adiabatic elimination of the variable P .

2.4 Semiconductor laser with frequency selective

feedback

Here, we introduce the setup and model for a laser with FSF, using a VCSEL

as the semiconductor laser. Further, we de�ne some key parameters of these

equations and their role in establishing both a stable model and Laser Cavity

Solitons (LCS).

2.4.1 Experimental setup

The experimental setup of the VCSEL with FSF is shown in �gure 2.6. The

output of the VCSEL is coupled to an external, self-imaging cavity which is

enclosed by a Volume Bragg Grating (VBG). The VBG provides feedback over

a narrow frequency range which is injected back into the VCSEL. The Fresnel

re�ection from an uncoated glass surface is used to couple out light for detection.

LCS are written in this system with an incoherent, pulsed addressing beam which
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is applied through the VBG.
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Figure 2.6: Experimental setup for the VCSEL with FSF. VCSEL is a vertical
cavity surface emitting laser, BS is the beam splitter used to couple out the light
for detection and VBG is the volume Bragg grating. Addressing is provided by
the pulsed writing beam which is applied through the VBG.

2.4.2 Theoretical model

To model the experimental setup of �gure 2.6, separate descriptions of the VCSEL

device and the VBG are required. The latter provides the FSF, lowering the laser

threshold over a narrow frequency range around the peak of the Bragg re�ection.

Away from this frequency the feedback is negligible, as most light is transmitted

by the VBG.

The temporal dynamics of semiconductor lasers with optical feedback has been

modelled for some time (see for example [28]). The present experimental setup

however, requires the inclusion of transverse-space degrees of freedom, including

di�raction, and also a high re�ectivity of the feedback mirror. We combine all

these elements in a single model that can be compared with the experimental

realisations and does not restrict to purely temporal regimes and/or introduce

restrictions in the magnitude of the feedback [29].

Our model for the intra-VCSEL optical �eld, E, and carrier distribution, N ,

is based on that used for the study of CS in optical ampli�ers [22, 30, 20]. The

holding beam is, however, replaced by the external cavity �eld at the VCSEL

output mirror, F . The complete system is described by the following system of

equations [29]:

∂E

∂t
= − (1 + iθ)E + i∇2E − iσ (α+ i) (N − 1)E +

2
√
T1

(T1 + T2)
F (2.29a)

∂N

∂t
= −γ

[
N − J + |E|2 (N − 1) +D∇2N

]
(2.29b)

F (t) = e−iδτf Ĝ
(
t− τf

2

)
[−r1F (t− τf ) + t1E (t− τf )] (2.29c)
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where θ is the detuning of the VCSEL cavity with respect to the chosen reference

frequency, σ is a coupling constant, α is the linewidth enhancement factor, T1 and

T2 are the transmittivities of the VCSEL mirrors and J represents the injection

current, normalised to the value at transparency. Time is scaled to the VCSEL

cavity lifetime, and γ is the ratio of cavity lifetime to carrier response time in

the VCSEL. The term i∇2E describes di�raction in the VCSEL cavity, while

D∇2N describes the carrier di�usion. It should be noted that the coe�cient for

the carrier di�usion, D, is considered small and therefore carrier di�usion e�ects

are henceforth omitted.

The external cavity round-trip time and its detuning to the reference frequency

are denoted by τf and δ respectively, while r1 and t1 are the (real) amplitude

re�ection and transmission coe�cients of the VCSEL output mirror (i.e. T1 =

t21 = 1 − r21: for a detailed description of the external cavity, see [31]). The

operator Ĝ describes the frequency selective operation of the VBG on the �eld

envelope and is given by:

Ĝ(t)[h(t)] =
rg
2β

∫ t

t−2β

eiΩg(t′−t)h(t′)dt′ (2.30)

in the time domain, or equivalently,

Ĝ(ω)[h(ω)] = rge
−iβ(Ωg−ω)sinc(β(Ωg − ω))h(ω) (2.31)

in the frequency domain. The frequency 1/β determines the bandwidth of the

VBG while Ωg is the central frequency (henceforth referred to as the Bragg fre-

quency) relative to the reference (carrier) frequency. The parameter rg is an over-

all re�ection coe�cient. Note that in the description we neglect the transverse

wavevector dependence of the re�ector response. We have also ignored transverse

e�ects of free-space propagation (i.e. di�raction) in the external cavity, since in

the corresponding experiment the VCSEL output coupler is imaged directly onto

the VBG (see �gure 2.6).

The validity of equation 2.29 extends to regimes of high re�ectivity of the

feedback mirrors that cannot be investigated with the more usual Lang-Kobayashi

(L-K) approximation for lasers with external feedback [28, 32, 33, 34], in which

the e�ects of multiple round trips in the external cavity are neglected. The model

(2.29), however, describes operational regimes of CS lasers with arbitrarily high

re�ectivities of the frequency-selective feedback mirror and captures the physical

status of the feedback loop as a true optical cavity [31]. From the simulation point

of view, the inclusion of multiple round trips is accomplished with essentially no
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additional computational overhead with respect to the L-K approximation [29].

LCS have been initially described in this model in [29].

2.4.3 External cavity model vs. Lang-Kobayashi approxi-

mation

Here, we examine in more detail, the advantages of the full external cavity model

shown in equations (2.29) compared to the more common L-K approximation,

which is generally used to model lasers with external feedback (see, e.g. [28,

32, 33, 34, 35, 36, 37]). In the latter, the e�ects of multiple round trips in the

external cavity are neglected, giving rise to a VCSEL feedback �eld which is

simply a scaled delayed version of the VCSEL output. This can be justi�ed only

if the external cavity �nesse is su�ciently small to neglect multiple-interference

e�ects. The model given in equations (2.29) describes operational regimes of CS

lasers with arbitrarily high re�ectivities of the FSF mirror [38]. It also recovers

the L-K approximation by setting the VCSEL external re�ection coe�cient to

zero, thus allowing for a quantitative comparison.

Figure 2.7 compares the full external cavity and L-K models for two di�erent

external cavity �nesses, controlled by altering the re�ection coe�cient rg of the

VBG. Figure 2.7 (a)-(d) show there are some quantitative and qualitative di�er-

ences which become more pronounced as rg is increased. This is not unexpected.

The key point, however, is illustrated in �gures 2.7 (b) and (d) which plot the

threshold current as a function of frequency. For an external re�ectivity of as

low as rg = 0.25, the laser threshold current in the L-K model is almost equal

to the transparency current (J = 1). For an external re�ectivity of rg = 0.81,

which corresponds approximately to experimental conditions [38], the L-K laser

threshold is well below transparency, indicating that lasing is predicted to occur

even without a population inversion, which is unphysical.

The source of the problem lies in the failure of the L-K approximation to con-

serve energy through its one-sided neglect of the re�ectivity of the VCSEL output

coupler. As examination of equations (2.29) shows, this can lead to a feedback

strength which exceeds the VCSEL cavity losses, and hence to unphysical linear

gain even when the laser gain medium is absorbing rather than amplifying. Nu-

merical simulation of the system under these conditions does indeed lead to rapid

blowup of the optical �eld E.

In contrast, a more physical treatment of the feedback loop as a true opti-

cal cavity [31] avoids this problem by observing the boundary conditions and

conserving energy at the VCSEL output coupler. Moreover, this regularisation
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Figure 2.7: Comparison between the external-cavity model (solid line) and the
Lang-Kobyashi model (dashed line). (a) and (c) Plane-wave modes K2(ω) for the
laser with FSF, for rg = 0.5 and rg = 0.9, respectively. Only portions of each
curve above the lineK2 = 0 are physically relevant. (b) and (d) Threshold current
versus ω for the modes in (a) and (c), respectively. (d) Depicts threshold currents
below the transparency value of J = 1 for the Lang-Kobyashi approximation,
indicating lasing even when the laser medium is not amplifying. Parameters:
α = 9, θ = −3, σ = 0.9, γ = 0.01, T1 = 0.008, T2 = 0.0002, β = 1.0, δ = 0, and
τf = 50. Image reproduced with permission [29].

is accomplished with essentially no additional computational overhead [31]. As

equations (2.29) show, only one extra addition and multiplication are required

per time step with respect to the L-K approximation, while storage requirements

for �elds at earlier times are the same in both the L-K and external-cavity ap-

proaches.

2.4.4 Travelling-wave modes

The calculation of travelling-wave modes was reported in [29]. Here we discuss

the consequences of these travelling-wave modes on the bistability of the system.

Examples of the laser modal spectrum are shown in �gure 2.8, along with the

corresponding mode thresholds. The small scale oscillations in �gure 2.8 re�ect

the narrow mode spacing of the external cavity, while the larger-scale modulation
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is due to the response of the VBG. There is clearly a set of modes grouped around

the grating frequency (ω = 0) and other modes coming into e�ect around the

VCSEL lasing frequency, with a frequency gap in between. The former modes

owe their existence to the strong feedback provided by the VBG in the region of

ω = 0 and, as a result, have the lowest thresholds. The latter modes exist where

the feedback is small and so can be termed VCSEL modes, although the in�uence

of the external cavity is still apparent.
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Figure 2.8: Plots of the threshold current as a function of frequency, close to the
central frequency of volume Bragg grating in the laser with FSF. (a) Shows the
threshold current for τf = 0.05ns while (b) shows the threshold current for τf =
0.41ns. The gap indicated between the two horizontal (dashed) lines indicates the
region where both the patterned and homogeneous steady state is stable. Other
parameters are α = 9, θ = −1, σ = 0.9, γ = 0.01, T1 = 0.008, T2 = 0.0002,
β = 0.6, δ = 0 and rg = 0.9.

The separation of grating-determined modes and VCSEL modes is accom-

plished through the detuning between the VCSEL and grating frequencies. Suit-

able operating conditions will also create a threshold gap between the highest-

threshold VBG modes and where the lowest-threshold VCSEL-determined modes

exist (i.e., the system can lase) but where the laser o� state is also stable (i.e.,

the system can also not lase). In this region there is therefore bistability between

lasing and nonlasing states, and the possibility of observing localised lasing on a

zero-�eld background: in other words, LCS [29, 39, 40].

2.5 Kerr cavity

For the Kerr cavity, we consider a ring cavity containing a Kerr medium. The

Kerr medium provides the nonlinear self-focusing e�ect required for the existence

of CS. The ring cavity, shown in �gure 2.9, consists of four mirrors, two orthogonal

to the axis of propagation with a distance L and transmission coe�cient T ≪ 1,
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and two orthogonal to the transverse plane, with distance b and transmission

coe�cient T = 0.

Optical 

Injection Kerr 

medium

Output

M

M

M

M

Figure 2.9: Setup of a ring cavity containing a Kerr medium. Here, M represents
the mirrors enclosing the cavity and the solid line represents the path an injected
signal takes.

The self-focusing e�ect of the Kerr medium is based on the well established

fact that the refractive index, n, is proportional to the intensity of the �eld

propagating through the medium, as shown in equation (2.32).

n(ω, I) = n0(ω) + n2(ω)I (2.32)

Where n0 is the (linear) refractive index, n2 is the Kerr coe�cient and I is the

intensity of the �eld propagating through the medium. Presuming the cavity

is driven by a coherent, stationary plane-wave pump, EI , the dynamics of the

electric �eld E can be described in the mean �eld approximation by a perturbed

nonlinear Schrödinger equation, given in equation (2.33).

i
∂E

∂t
E +

∂2

∂x2
E + |E|2E = iε(−E − iθE + EI) (2.33)

Where ε > 0 such that the right side of the equation becomes a sum of losses

and gains within the cavity, with θ representing the frequency detuning. The �rst

and second term on the left side make the linear Schrödinger equation, while the

term |E|2E represents the Kerr nonlinearity.

By assuming ε = 1, the equation described above reduces to the well estab-

lished Lugiato-Lefever equation:

∂E

∂t
= EI − (1 + iθ)E + i|E|2E + i

∂2

∂x2
E (2.34)

where E is the dynamical �eld variable, EI is the injected �eld, θ is the detuning
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and ∂2/∂x2 represents di�raction. In making the assumption ε = 1, it is implied

that time becomes scaled to the decay time of the �eld [11].

2.6 Numerical Integration

Here we detail the methods of performing numerical integration, which will be

used to integrate the device equations detailed in this chapter. First we introduce

the split-step method, which is used to integrate the linear terms spectrally and

integrate the nonlinear terms using either a second- or fourth-order Runge-Kutta

method.

2.6.1 The split-step method

Consider equations of the form

∂E

∂t
= L̂E (2.35)

where L̂ is an operator which contains no explicit time-dependence. Equation

(2.35) can be formally integrated to give E at some time (t + dt) in terms of its

value at an earlier time:

E (t+ dt) = edtL̂E(t). (2.36)

Now assume that L̂ can be rewritten as the sum of two terms

L̂ = L̂1 + L̂2 (2.37)

and further assume that the error introduced by neglecting
[
L̂1, L̂2

]
is of high

enough order that we can write equation (2.36) as

E(t+ dt) ≈ e(dt)L̂1e(dt)L̂2E(t). (2.38)

In fact, it can be shown that the error introduced by neglecting
[
L̂1, L̂2

]
can be

reduced if rewrite (2.36) as

E(t+ dt) ≈ e(dt/2)L̂1e(dt/2)L̂2E(t). (2.39)
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E(t + dt) is now calculated in three steps. We �rst calculate E ′ as the solution

at t = dt/2 of the equation

∂F

∂t
= L̂2F (2.40)

with initial condition F (0) = E(t). Then we solve for E ′′ given by F (dt) where

∂F

∂t
= L̂1F (2.41)

and F (0) = E ′. Finally, E(t + dt) is given by solving (2.40) at time t = dt/2

with an initial condition given by E ′′.

To calculate E(t+ ndt) the above procedure is carried out repeatedly. Thus

E(t) = e(dt/2)L̂2e(dt)L̂1e(dt)L̂2 . . . e(dt/2)L̂2e(dt)L̂1e(dt)L̂2E(0). (2.42)

The motivation behind such method is to �nd a splitting of L̂ such that

equations (2.40) and (2.41) can be solved fairly easily. The equations studied in

this thesis take the form

∂E

∂t
= a∇2E + b(E) (2.43)

where b is a nonlinear function, containing no spatial dependence and a is a

complex number. This gives an obvious splitting, reducing equations (2.40) and

(2.41) to

∂E

∂t
= a∇2E (2.44a)

∂E

∂t
= b(E) (2.44b)

respectively.

Equation (2.44a) can be solved spectrally. This is easily achieved by using

fast Fourier transforms to move into the frequency domain and by taking the

inverse to move back to the time domain, a process which is O(dxN) where

dx is the space step and N is the dimension of the grid. [24, 41, 42]. Since

equation (2.44b) has no spatial dependence, it can be solved at each point of

the numerical grid using a standard technique for solving ordinary di�erential

equations [24, 41, 42]. In section 2.6.2 we describe both the second- and fourth-

order Runge-Kutta methods, used to solve the nonlinear terms of the models

described in this chapter.
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2.6.2 The Runge-Kutta method

The Euler method is de�ned as:

yn+1 = yn + hf(xn, yn). (2.45)

This method advances the solution from xn to xn+1 ≡ xn + h. This formula is,

however, unsymmetrical. It advances the solution through an interval h, but uses

derivative information from the beginning of the interval only. As a result, the

step's error is only one power of h smaller than the correction, i.e., O(h2) added

to equation (2.45). An example is shown in �gure 2.10.

3

2

1

x3x2x1

y(x)

x

Figure 2.10: Example of the Euler method. A full step is taken on the �rst
evaluation.

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1) (2.46)

yn+1 = yn + k2

The second-order Runge-Kutta method utilises a step similar to that shown in

equation (2.45) to take a trial step to the midpoint between the intervals. We then
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use the values at the midpoint to compute the real step across the full interval.

An example of this is given in equations (2.46) and shown in �gure 2.11. This

symmetrisation cancels out the �rst-order error term resulting in a second order

error of O(h3) [41, 42].

5

4
3

2

1

y(x)

x1 x2 x3
x

Figure 2.11: Example of the second-order Runge-Kutta method. A trial step is
taken before evaluating the full step.

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

k3 = hf(xn +
1

2
h, yn +

1

2
k1) (2.47)

k4 = hf(xn + h, yn + k3)

yn+1 = yn
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

This method can of course be generalised further, however the most common

methods are the second- and fourth- order Runge-Kutta methods. Further, for

the numerical integration of the device equations detailed in this chapter, we

utilise either a second- or fourth- order method. The fourth-order Runge-Kutta

method is shown in equations (2.47) and in �gure 2.12. Here each step (h) requires
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Figure 2.12: Example of the fourth-order Runge-Kutta method. A derivative is
evaluated four times for each full step: once for the initial point, twice at trial
midpoints and once at a trial endpoint. The �nal value of the function is then
calculated from these derivatives.
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four evaluations, resulting in an error O(h5) [41, 42]. For the models described

in this chapter, the step size takes the range 0.01 ≤ h ≤ 0.1, with the laser

with optical injection model using the value h = 0.002, the laser with FSF model

using the value h = 0.01 and the Kerr cavity model using the value h = 0.001.
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Chapter 3

Writing cavity solitons in photonic

devices

3.1 Introduction

In chapter 1, a set of criteria was introduced which can be used to determine if a

localised structure is indeed a Cavity Soliton (CS). In this chapter, an examination

of the �rst criterium is presented. In order to be considered a CS, localised

states must coexist with a stable background state over the parameter range of

their existence. The background can be homogeneous or quasi-homogeneous and

should be linearly stable against weak perturbations. This implies that CS can

be present or absent under the same conditions of operation, i.e. they exhibit

bistability between �o�� and �on� states.

A CS is a stable, self-localised optical excitation sitting on a uniform or quasi-

uniform background, and substantially independent of transverse boundary con-

ditions. In this introductory discussion we sketch some basic features which follow

from these properties for practical applications, both for single isolated and mul-

tiple CS.

We begin by considering the existence, stability and excitation of a single CS.

By assumption, for any suitable externally-controlled parameter, Q, there is a

range of values over which both the CS `on' state and CS `o�' states are stable.

For clarity, small values of Q are de�ned to correspond to a weak nonlinearity.

Since a CS is an intrinsically nonlinear object, there will be a minimum value, say

QA, below which no CS exists. We also expect that there will be some maximum

value, QB, above which the CS either does not exist or becomes unstable. Since

all CS in a given system are identical, and distinguishable from the background,

we must be able to de�ne a �power� measure P , such that a single CS has power
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P1, and n CS have power nP1. We have set the background �power� to zero,

which may exist naturally in a system or can be achieved by subtraction. We will

assume P1 to be positive, since in this thesis we consider only bright solitons. We

thus arrive at a schematic P vs Q diagram, shown in �gure 3.1, consisting of a set

of parallel lines, spaced by intervals P1 and extending from QA to QB, the �rst

rung corresponding to a single CS, the second to two, and so on. In a real system,

of course, the rungs would be neither exactly horizontal nor exactly straight, but

that is not important in the present context of a qualitative discussion.

2P1

3P1

QA

P1

QB QC

P

Q

Figure 3.1: Schematic power (P ) vs. control parameter (Q � see text) for the
excitability of CS in photonic systems. Solid lines correspond to stable structures,
dotted lines show the separatrix between the basins of attraction and the dashed
arrow shows the minimum perturbation required to excite a CS within the range
of stability and existence. Figure adapted with permission and thanks from [43].

We now consider, with reference to �gure 3.1, the dynamics of excitation

(writing) and erasure of CS, beginning with the former. In order to write one

(or more) CS in such a system, a perturbation is required to increase the power

locally such that P > PS. The value PS, represented in �gure 3.1 by the diagonal

dotted lines, separates the basins of attractions for the �o�� and �on� states and

can therefore be considered a separatrix between the two states. It is also impor-

tant to note that the dotted lines represented by PS also correspond to a third

state, although this state is unstable. Hence, when an appropriate perturbation

is applied, the system power is increased beyond the separatrix and the CS is

switched on.

Physically, this is done with a spatially localised writing beam which adds
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energy to the system for a speci�c amount of time, after which the writing beam

is switched o� [44]. With such a localised writing beam factors such as the

width of the writing beam, amplitude and the duration that the writing beam is

active are key to the successful creation of a single CS. If these parameters are

incorrectly set, a multi-peaked structure can form which can separate into two (or

more) distinct and separate CS. Alternatively, the separatrix may not be crossed

with insu�cient values and the CS would not switch on. If the perturbation to

the system is great enough to cross the separatrix, the CS switches on and if not

then the system returns to the background state.

Such writing beams can be coherent or incoherent with respect to the VCSEL

output frequency, and each has its advantages and disadvantages. A coherent

beam requires a system where the frequency and phase are locked by an external

optical pump. In such systems, quicker writing times are achieved compared to

similar systems using an incoherent writing beam [45]. In contrast, in systems

where the phase is not locked to that of an external beam, it is impossible to

achieve a completely coherent writing beam. Therefore, the only solution is to

use an incoherent writing beam. Although this allows us to perturb the system

without the need for an optical pump, this method is (in general) slower for

writing times, as the energy input is not converted into an optical excitation as

e�ciently.

We examine now the erasure process, introduced in �gure 3.2. Since the

conditions which support the existence of CS require Q ≥ QA, a small negative

perturbation to its power will cause it to decay when Q is only just above QA.

At any value of Q within the region where stable CS exist, it is possible to

�nd the minimum perturbation necessary to destroy the CS. Since the required

negative perturbation is small at QA, but increases with Q as the CS becomes

more stable, this switch o� power curve will have the general form of the dotted

line falling away from the rungs of the �ladder� in �gure 3.2. The dotted line in

�gure 3.2, again, tracks a separatrix between the basins of attraction of the no

CS and one (or more) CS states. As such, we again de�ne this dotted line to be

PS. By applying a negative perturbation, with su�cient magnitude to cross the

separatrix, the CS will return to the �o�� state.

Physically, this is can be achieved in number of ways. A localised erasing beam

can be utilised if the phase of the CS is known. This is easily achieved in systems

where the phase is locked to an external holding beam. Where the phase is not

known, an optical pulse can be used to interfere with the carrier distribution

[46], exciting the carriers in the region where the CS is located and inhibiting
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Figure 3.2: Schematic power (P ) vs. control parameter (Q � see text) for the de-
excitability of CS in photonic systems. Solid lines correspond to stable structures,
dotted lines show the separatrix between the basins of attraction and the dashed
arrow shows the minimum perturbation required to switch a CS o� within the
range of stability and existence. Figure adapted with permission and thanks from
[43].

the stimulated emission in the region. This can be used to cause the magnitude

of the CS to drop until it crosses the separatrix and switches �o��. Another

method is to take advantage of localised defects in the device structure. This

is particularly useful in semiconductor devices, where localised defects develop

during the epitaxial growth process. One can exploit a region where CS are

stable in a localised defect and simply erase them by pulling them out of the

defect and into a region where the CS is no longer stable.

This chapter is structured as follows. In section 3.2 we examine the writing

and erasing process in lasers with optical injection. In this example, a coherent

writing beam is used both to create and erase the CS in the device. The coherent

writing beam is created by splitting the holding beam from the master laser,

as detailed in section 2.3.1 and shown in �gure 2.1. In particular, attention is

drawn to the advantages of the laser con�guration over passive con�gurations

using this setup. Section 3.3 provides details on writing and erasing CS in lasers

with frequency selective feedback. In this system there is no readily accessible

coherent source which can be used to provide the writing beam, therefore the

injection of energy to perturb the system has to be drawn from an incoherent

source. This, coupled with the fact the CS in this system are free to choose their
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own phase and frequency provides a challenge for the erasing procedure. This

can be overcome by perturbing the lasers carrier distribution to the point where

the CS is switched o�. Physically, this can be provided by means of a localised

external optical pulse injected to the system. Finally, section 3.4 introduces the

writing process in a simpli�ed Kerr cavity model. This is achieved by a coherent

address beam, in a similar manner to that described for the laser with optical

injection.

3.2 Writing and erasing cavity solitons in lasers

with optical injection

In order to write and erase CS in lasers with optical injection, a coherent, pulsed

input signal is injected and the energy is transferred into CS. The simulations

and results from this section were obtained using the models described in chap-

ter 2.3.6 and rewritten here for convenience after the adiabatic elimination of

the polarisation using the application of the Centre Manifold theory [27], with

equations (3.1) referring to the reduction using the perturbative method based

on Centre Manifold theory, as sketched in [27] and equations (3.2) referring to

standard adiabatic elimination of the polarisation.

∂E

∂τ
=

EI − i (α + θ)E + ai∇2E√
ε

+ (1− iα)WE

+
√
ε (1− iα)

(
1 +

√
εW
)
(LE + Z)

∂W

∂τ
= σ

{
J −

(
1 +

√
εW
) (

1 + |E|2
)
− εRe [(1− iα)E∗ (LE + Z)]

}
L = − i∇2

ξ(1) + iε∇2

Z = − 1

ξ(1)

[
EI − i (α + θ)E +

√
ε (1− iα)WE

]
(3.1)

If we neglect ε0 terms in the �eld equation and ε(1/2) terms in the carrier

distribution equation, one obtains a simpler set of equations:

∂E

∂τ
=

EI − i (α + θ)E + i∇2E√
ε

+ (1− iα)WE

∂W

∂τ
= σ

[
J −

(
1 +

√
εW
) (

1 + |E|2
)]

(3.2)
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Where E is the electric �eld, W the rescaled carrier density, EI the optical

injection, α the linewidth enhancement factor, θ the detuning between the optical

injection and the VCSEL and J the pump current. Time is scaled to cavity decay

rate ε, with σ = γ/ε2, where γ is the decay rate of the carriers. Di�raction is

described in two transverse dimensions by the Laplacian operator ∇2E and in

one transverse dimension by ∂2
x = (∂2/∂x2).

Since the reference frequency in (3.1) and (3.2) is that of the injected �eld, EI

can be considered a real amplitude. The writing beam is then created by simply

adding a perturbation, say U(x, t), to the optical injection which takes the form

EI = EI0 + U(x, t), over a �nite spatial range and for a �nite duration. This

creates the spatially localised writing beam, with width l and active for duration

t. In �gure 3.3, we show the system before, during and after the writing process

with one transverse spatial dimension and �gure 3.4 shows the same process with

two transverse spatial dimensions.

Figure 3.3: Writing process of a CS in a VCSEL with optical injection where (a)
shows the system immediately prior to the application of the writing beam (the
�o�� state), (b) shows the system during the writing process, with the writing
beam (U(x)) overlayed for clarity and (c) shows the system immediately after
the writing beam is discontinued. Parameters are: J = 1.05, ε = 0.04, γ = 10−4,
|EI |2 = 0.03, θ = −2.3 and α = 3.0.

Figure 3.5 shows the intensity, phase and carrier distributions of a steady

state CS in both 1D and 2D for parameter values where the lower homogeneous

steady�state is stable.

Note that the peak intensity of the 2D CS is higher than that of the 1D case

because of the well-known larger self-focusing e�ect in two transverse dimensions.

When writing CS, various parameters can a�ect the time required to fully estab-

lish and in particular, we consider here the amplitude and the duration of the

writing beam.
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Figure 3.4: Writing process of a CS in a VCSEL with optical injection in two
transverse dimensions, where (a) shows the system immediately prior to the ap-
plication of the writing beam (the �o�� state), (b) shows the system during the
writing process, with the writing beam (U(x,t)) overlayed (dashed line)for clarity
and (c) shows the system immediately after the writing beam is discontinued.
Parameters are: J = 1.05, ε = 0.04, γ = 10−4, |EI |2 = 0.03, θ = −2.3 and
α = 3.0.

Figure 3.5: Spatial distributions of (a) the intensity, (b) phase and (c) carrier
density of a CS in a VCSEL with optical injection. Solid (dashed) lines are for
the 1D (2D) case. Parameters are: J = 1.05, ε = 0.04, γ = 10−4, |EI |2 = 0.03,
θ = −2.3 and α = 3.0.

3.2.1 Writing cavity solitons in a laser with optical injec-

tion

Writing dissipative solitons in cavity media with optical injection has been accom-

plished both experimentally and theoretically (see e.g. [25, 47]) in passive and

laser con�gurations. The advantage of the laser con�guration over the passive

con�guration lies with the response time of the system. Indeed, in the passive

system, the response to a coherent writing beam can be signi�cantly slower. In

�gure 3.6, we show a qualitative comparison between the passive con�guration

(ampli�er J = 0.96, red, dashed curve) and the laser con�guration (J = 1.05,

black, solid curve). It is clear from �gure 3.6 that the minimum injection time

decreases with increasing amplitude of the writing beam in both cases. The

passive con�guration, however, requires a pulse length approximately four times

longer than that of the laser con�guration. This provides a clear advantage for
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the laser con�guration when considering applications of CS to delay lines [20, 21]

and optical memories [26, 48].
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Figure 3.6: Qualitative comparison between the minimum injection time required
to write a CS in the VCSEL (black/solid line, J = 1.05) and ampli�er (red/dashed
line, J = 0.96) cases for varying amplitudes of the address beam. Similar results
have been obtained for the 2D case. Other parameters for the lasing case are �xed
to the values given in �gure 3.5. The parameters for the ampli�er are: EI = 0.61,
θ = −2.25 and α = 4.5.

The minimum injection time for writing a CS is, however, not necessarily

the optimum one because of the switch-on dynamics of the generated CS. In

�gure 3.7 we show that for a �xed value of the amplitude of the writing beam

(U0 = 0.65) an increase in the address beam duration from 0.15ns to 0.20ns

leads to a considerably faster establishment of the CS, from around 5ns for the

former to around 1ns for the latter. Further increases of the duration of the

writing beam however do not further reduce the CS establishing time. Figure 3.7

shows, for example, that for an address pulse duration of 0.5ns (dot-dash line)

the establishment of the CS takes around 1.8ns. This is typical of the critical

behavior of CS switching as originally described and observed in a liquid crystal

light valve [43, 44].

3.2.2 Erasing cavity solitons in lasers with optical injection

In order to erase CS in lasers with optical injection, an erasing beam can be used.

To create the erasing beam, we use the same coherent writing beam, but introduce

a phase shift of π. Again, since the reference frequency of equations (3.1) and
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Figure 3.7: CS peak intensity during and after writing via an address beam of
amplitude A0 = 0.65 and various durations. Dotted line (black): duration =
0.15ns; dash line (green): duration = 0.16ns; solid line (red): duration = 0.20ns;
dot-dash line (blue): duration = 0.50ns. Parameters are those of �gure 3.5.

(3.2) is exactly that of the injected �eld, we can consider the erasing beam to be

a real amplitude. The erasing beam is then created by introducing a localised

negative perturbation in the optical injection, U(x, t), which now takes the form

EI = EI0 − U(x, t). This process decreases the amplitude of the electric �eld of

the CS, in a similar way to that described in section 3.1. By using an amplitude

and pulse duration su�cient to decrease the amplitude to the point where it

crosses the separatrix, the CS can be easily switched to the �o�� state. Figure

3.8 shows an example of a 1D CS in a laser with optical injection being erased

using this method. The ability to erase these localised structures is important

when considering the applications discussed in chapter 1. We will also revisit the

issue of erasing in chapter 5, where we will examine another method of erasing

CS based on collisions and merging.

Finally, an important point to note is that both the writing and erasing process

can be performed at precise locations in the transverse plane of the VCSEL cavity.

The ability to write and erase at precise locations is of vital importance when

implementing applications based on this photonic system, and forms the �rst and

third criterium, set out in chapter 1 for a localised structure to be considered a

CS.
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Figure 3.8: Example of a CS being erased in a VCSEL with optical injection. In
(a) we show the fully established CS at time t = 0ns, (b) shows the amplitude
decay towards the homogeneous state at t = 5.5ns and (c) shows the CS is
completely erased and the homogeneous (or �o��) state has been recovered at
t = 78.0ns. Amplitude of the erasing beam, A0 = 0.1 and the pulse duration is
t = 0.5ns

3.3 Writing and erasing cavity solitons in a laser

with frequency selective feedback

We now present and discuss the results of numerical simulations of the model

described chapter 2.4, and rewritten here, for convenience.

∂E

∂t
= − (1 + iθ)E + i∇2E − iσ (α + i) (N − 1)E +

2
√
T1

(T1 + T2)
F

∂N

∂t
= −γ

[
N − J + |E|2 (N − 1)

]
F (t) = e−iδτf Ĝ

(
t− τf

2

)
[−r1F (t− τf ) + t1E (t− τf )]

Ĝ(t) [h(t)] =
rg
2β

∫ t

t−2β

eiΩg(t′−t)h(t′)dt′ (3.3)

Where E is the electric �eld, N the carrier density, F describes the electric �eld in

the external cavity, θ the detuning between the VCSEL frequency and the chosen

reference frequency, σ is a coupling constant, α is the linewidth enhancement

factor, T1 and T2 are the transmittivities of the VCSEL mirrors, J is the current,

δ is the detuning between the feedback �eld and the chosen reference frequency,

τf is the external cavity round-trip time and r1 and t1 are the amplitude re�ection

and transmission coe�cients of the VCSEL output mirror (i.e. T1 = t21 = 1−r21).

The operator Ĝ describes the frequency selective operation at the volume Bragg
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grating on the �eld envelope. Time is scaled to the VCSEL cavity lifetime, and

γ is the ratio of the cavity lifetime to the carrier response time.

At di�erence with the VCSEL with optical injection, a VCSEL with Frequency

Selective Feedback (FSF) is free to choose its own frequency and phase. We then

investigate the e�ect of using a writing beam which is detuned with respect to the

VCSEL output and draw attention to the spectral dynamics during the writing

process.

3.3.1 Writing cavity solitons in a laser with frequency se-

lective feedback

We have investigated in detail the Laser CS (LCS) writing process in the model

(3.3). As described in the previous section, a coherent beam was readily available

in the VCSEL with optical injection for use as a writing beam as the frequency

and phase of the VCSEL is locked to that of the optical injection. In contrast, as

the VCSEL with FSF does not have homogeneous holding beam and its frequency

and phase are free, it becomes much more di�cult to create an e�ective coherent

writing beam. We then consider an incoherent writing beam, where we initiate

a LCS through the application of a spatially-localised rectangular writing pulse

A(x, t) of the form

A(x, t) = A0 exp

(
−x2

η2
− iωpt

)
rect

(
t

τp

)
. (3.4)

where A0 is the amplitude of the writing beam, η controls the width, ωp is the

frequency with respect to the chosen reference frequency and τp is the duration

the writing beam is active. All of these parameters can be varied independently.

Computationally, the writing beam is added to VCSEL �eld equation of (3.3). In

the simulations the writing beam parameters are dimensionless. In order to make

a qualitative comparison with the experiment we consider a typical cavity decay

time of 10ps. Figure 3.9 shows the intensity, phase and carrier distribution of a

steady state LCS, in a VCSEL with FSF, where the homogeneous steady state

solution is also stable.

In [29] a �xed width and frequency (ωp = 0) of the address pulse was used

to map a region of successful LCS initiation in the plane of amplitude, A0, and

duration, τp. Here, instead, we �rst investigate the e�ect of the frequency ωp on

the minimum amplitude A0 necessary for the initiation of a LCS. We �x the value

of the address pulse duration at around 50 round trips of the external cavity (i.e.

around 20ns). Figure 3.10 (a) shows that there is an optimal frequency shift of
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Figure 3.9: Spatial distributions of (a) the intensity, (b) phase and (c) carrier
distribution of a LCS in a VCSEL with FSF. Parameters are α = 9, θ = −1,
σ = 0.9, γ = 0.01, T1 = 0.008, T2 = 0.0002, β = 0.6, δ = 0, rg = 0.9 and
τf = 0.05ns.

around 3.5 (corresponding to around 55GHz or 0.18nm in experimental values)

for which the lowest-amplitude address pulses can generate a LCS. This detuning

value is in qualitative agreement with the experimental �nding. Our �nding that

a blue-detuned frequency is optimal for writing of LCS in VCSEL systems with

FSF is also in agreement with the results of [49] which utilise a di�raction grating

and also with [29], where �gure 6(b), and the associated discussion, demonstrates

that the lowest-amplitude LCS for a given current has higher frequency than the

stable LCS.

Figure 3.10: Minimum value of the address beam amplitude A0 versus its fre-
quency shift ωp. Parameters are: α = 9, θ = −1, σ = 0.9, γ = 0.01, T1 = 0.008,
T2 = 0.0002, β = 0.6, rg = 0.8, δ = 0, τf = 41, η = 5, and τp = 2000. Panel
(b) is a continuation and magni�cation of panel (a) to show the details of the
resonances with the cavity mode frequencies.

The envelope of the threshold characteristic presented in �gure 3.10 (a) is quite

jagged. Although this �gure is a�ected by undersampling of the frequency scale,

the existence of peaks and troughs is due to the external mode structure. For

example, �gure 3.10 (b), obtained with a higher frequency resolution, shows that
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when scanning ωp there are clear resonances with the frequencies of the external

cavity modes which a�ect the optimal operation of the switching-on process.

We next �x the frequency shift, ωp, to the lowest optimal value (the minima

of �gure 3.10) and proceed to determine the minimum value of the amplitude A0

as a function of the writing beam duration τp. Figure 3.11 shows that there are

two distinct regions in an amplitude vs duration diagram: for pulse lengths below

about 15ns, the minimum address amplitude increases as the address pulse short-

ens, while above 15ns the minimum amplitude remains constant. The constant

minimum address power for long address pulses translates into a direct propor-

tionality between the pulse energy Q and its duration τp as shown in the inset of

�gure 3.11.

Figure 3.11: Minimum address beam amplitude A0 for successful switching versus
its duration τp. Parameters as in Fig. 3.10 apart from ωp = 3.5. The solid line in
the inset displays the threshold energy Q of the address beam versus the address
pulse length τp. The linear behavior observed at large pulse lengths (dashed line)
extends to 200ns. Note that no LCS is generated for pulse lengths below 1.5ns.

In �gure 3.12, the experimental results [50] from a similar exploration to �nd

the minimum writing beam amplitude as a function of the pulse length is shown

for comparison with the numerical results of �gure 3.11. The experiment is the

one described in section 2.4. When comparing the results of �gure 3.11 with

those of �gures 3.12 (a) and (b), there is a good qualitative agreement between

the numerical simulations and the data from the VCSEL with FSF experiment.

The cross-over between the two regimes occurs at di�erent values of the pulse
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Figure 3.12: Experimental results for comparison, the left panel shows the min-
imum peak pulse power required to switch on a LCS for varying pulse lengths
and the right panel shows the minimum energy required to switch a LCS on for
varying pulse lengths. The lower linear �t (red) is for all pulses shorter than
and including 100ns, the upper linear �t (blue) is for all pulses longer than and
including 100ns. Inset: Time trace of switch-on events for 100ns pulse (a), 300ns
pulse (b). The red line corresponds to the WB pulse and the black line shows
the response of the LCS. Images reproduced with permission.

duration for the experiment and for the numerical simulations. Note that the

latter were performed at the optimum frequency for the writing of LCS. Better

agreement is, however, found for other values of the pulse frequency ωp. For

example, in the simulations of [29], the cross-over occurred at pulse durations of

around 70ns for ωp = 0, i.e. closer to the experimental observation.

Typical behaviours from numerical simulation of the LCS switching in the two

regions identi�ed in �gure 3.11 are shown in �gure 3.13 (a) and (b), respectively.

For short durations of the writing beam, τp, the address amplitude A0 is higher at

threshold than the case of longer τp. Away from threshold (upper traces in �gure

3.13 (a) and (b)), delays between the switch on of the LCS and the writing beam

pulse are strongly reduced. This is in agreement with the results obtained for the

VCSEL with optical injection, and presented in section 3.2 (e.g. see �gure 3.7).

Figure 3.14 shows the LCS peak intensity as a function of time, obtained from

experimental results of the FSF system. There is again good agreement between

the experimental observations of �gures 3.14 where the delay reduction is most

noticeable at longer writing beam durations, and the numerical results of �gure

3.13.
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Figure 3.13: Time evolution of the peak output intensity of the LCS for (a)
τp =1.5ns, A0 = 0.06 (lower trace) and A0 = 0.6 (upper trace); (b) τp =200ns,
A0 = 0.022 (lower trace) and A0 = 0.22 (upper trace). The other parameters
as in Fig. 3.10 apart from ωp = 3.5. The (red) dashed lines display the peak
intensity of the address WB and is accurate in position and duration but rescaled
in amplitude.

Figure 3.14: Experimental time series of pulse (grey) and LCS response (black)
for comparison, (left panel) for three 15ns long pulses with power (a) 3.4, (b)
1.6, (c) 1 (normalised to threshold power) and (right panel) for three 50ns long
pulses with power (a) 11.8, (b) 4.2, (c) 1. Curves are o�set by 200mV for clarity.
WB pulse traces are indicative of position and length but not amplitude. Traces
taken using a cavity round trip time of 1.05ns.
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3.3.2 Transient spectral dynamics

The successful addressing of LCS in VCSELs with FSF appears to be accompanied

by transient oscillations. This was �rst experimentally observed in [49] and later

con�rmed in the numerical simulations of [29]. Here we present numerical and

experimental evidence in the spectral domain, demonstrating that a considerable

number of external cavity modes are involved during these transient oscillations.

Only a single mode, perhaps with sidebands, remains in the �nal LCS state.

The numerical integration of the model (3.3) provides temporal data on the

dynamics of the LCS switching. From this data we have evaluated frequency

spectra as displayed in �gure 3.15. We compute the spectrum of E(x = 0, t) (the

peak of the CS) for each round-trip and then plot the evolution of such spectrum

over a slower time scale.

Figure 3.15: Time evolution of the frequency spectrum evaluated every round trip.
Parameters are the same as in �gures 3.10 but with τp = 20ns and ωp = 55GHz
(a) and ωp = 0GHz (b). Each frequency spectrum is normalized such that the
highest intensity corresponds to dark blue, to avoid the dominance of the �nal
peak.

Figure 3.15 (a) shows the transient spectral dynamics when the writing beam

has a duration of τp = 20ns and is blue-shifted from the grating frequency

by around 55GHz corresponding to the minimum writing beam amplitude as

determined previously. Before the end of the address pulse, multi-mode operation

sets in. At t = 10ns from the beginning of the simulation, around 30 external

cavity modes are present. This regime of frequency spreading is followed by a fast

(around 5ns) sweeping of the frequency spectrum, accompanied by a narrowing to

only about 15 modes. Then slower spectral evolution leads to a further narrowing
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of the spectrum and to the �nal state of the LCS, which has one strong mode

and a few weak side-modes.

Surprisingly, very similar spectral dynamics take place when the writing beam

frequency is close to that of the �nal LCS (�gure 3.15 (b)). In this case, the writing

beam corresponds to ωp = 0 and yet one still observes the same three distinct

dynamical regimes: creation of a band of modes close to 55GHz (3.5 in the units

of �gure 3.10), followed by a fast spectral broadening and frequency sweep, and

�nally a slower spectral narrowing to a quasi-single-mode LCS emission state.

the similarity of the spectral evolution in �gures 3.15 (a) and (b) suggests the

existence of a globally attractive, yet unstable, oscillatory state that is initially

approached, independent of the frequency of the writing beam. Note that this

state still corresponds to spatial localization, since the LCS is well de�ned during

the entire duration of the transient. Another interesting feature of �gure 3.15

is that the �rst frequency response of the system takes place around the blue-

detuned position of the minimum determined in �gure 3.10 (a) independently

of the frequency shift ωp of the writing beam. This seems to correspond to the

unstable low-amplitude LCS state typically found in CS laser models [29, 32,

33], which is likely to behave like a separatrix in LCS switch-on. The multiple

external cavity modes present an extra complication, not just because there is

a pair of LCS associated with each of many such modes, but also because there

seems to be multi-mode LCS. These were theoretically described in [29] as multi-

frequency �nal states, and it is likely that the above-mentioned globally-attractive

intermediate state is also multi-mode.

It is important to note that the spectral features presented in �gure 3.15 are

intrinsically related to the use of an external cavity for the FSF. The frequency

sweeping, in particular, has no counterpart in the VCSEL with optical injection

or the Kerr cavity. More generally, a CS laser without holding beam has the

freedom to change frequency. Similar phenomena might exist in the schemes

relying on saturable absorption [51, 52] due to phase-amplitude coupling.

3.4 Writing cavity solitons in Kerr cavities

The process of writing CS in a Kerr cavity is similar to that used for their creation

in a VCSEL with optical injection. A coherent writing beam is used at the same

frequency of the holding beam, which is possible as the output frequency and

phase of the Kerr cavity are locked to that of the optical injection. Therefore, a

localised perturbation, U(x, t) is created in the Kerr cavity �eld by use of a holding
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beam which takes the form of EI = EI0 + U(x, t). In �gure 3.16 we show the

intensity and phase distribution of a one dimensional steady state CS in a Kerr

cavity after switching o� the writing beam. Note in contrast to that shown for the

VCSEL with optical injection, the Kerr CS has spatial modulations in its tails.

For example, modulated tails of bright CS have been observed in semiconductor

microresonators well below lasing threshold [53].
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Figure 3.16: Intensity (a) and phase pro�le (b) for a typical, steady state, single
peaked 1D CS in a Kerr cavity. Parameters are θ = 1.5 and |EI |2 = 1.114.
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Figure 3.17: Number of solitons created as a function of writing beam amplitude,
U(x, t), and a �xed width of the writing beam. Parameters are those of �gure
3.16.

By using a �xed (large) width of the writing beam, and increasing the ampli-

tude U(x, t) of the writing beam, we �nd that the number of CS created increases,

as shown in �gure 3.17. We can clearly see that the number of CS increases from

one peak at U = 1.0 to �ve peaks at U = 6.0. As the amplitude increases further,
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the number of peaks created returns, and remains at, four CS. This behaviour

suggests that the three and four peaked structures correspond to a more stable

branch of multi-CS existence while the one and �ve peaked structures correspond

to less stable solutions.

3.5 Conclusions

In this chapter we have investigated the writing process in various photonic sys-

tems. Beginning with a VCSEL with optical injection, it has been shown that a

localised coherent writing beam can be used to establish CS. In particular, when

the laser con�guration is compared the passive con�guration below threshold,

faster reaction times are observed. This leads to the CS establishing quicker for

shorter pulses than possible below threshold.

The VCSEL with FSF provides an additional challenge in that it is not pos-

sible to use a coherent writing beam to create CS. However, we show that an

incoherent beam is e�ective, and when using an incoherent beam in this system

that a frequency detuning of the writing beam can provide a faster response time.

Indeed, it is shown that for a writing beam frequency close to that of the �nal CS

frequency, the initial response of the system is closer to this optimum frequency,

probably corresponding to an unstable low-amplitude laser CS.

Finally, in the Kerr cavity, we show that by increasing the amplitude of the

localised writing beam, multiple peaked CS can be switched on.

Of particular importance in all of these systems is the use of a localised writing

beam. These localised beams are essential for creating single structured peaks.

Additionally, the localised writing beam can be moved around the transverse

plane of the VCSEL. This is essential as it provides the ability to locate the CS

in precise location which will be required in later chapters and is essential for

applications.
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Chapter 4

Motion of cavity solitons in

photonic devices

4.1 Introduction

Motion on local gradients forms part of the criteria for the existence of Cavity

Solitons (CS) in photonic devices and is therefore well established in the literature.

For a localised structure to be considered a CS, it is a requirement that the

structure is optically controllable. In this chapter, we aim to brie�y review the key

established points of the motion of CS in photonic devices before presenting and

discussing the results based on the numerical simulations of the models described

in chapter 2.

Motion was described in optical bullet holes in one and two dimensions in a

system based on a driven optical cavity with a saturable absorber in [54]. Here

phase gradients of the injected �eld, of the form given in equation (4.1) were

considered for the purpose of inducing motion.

EI = EI0 exp(iKx) (4.1a)

EI = EI0 exp[iφ(x, y)] (4.1b)

where K is a constant vector. With respect to equation (4.1a) the time derivative

becomes a convective derivative, therefore stationary solutions which exist for

K = 0 move with a velocity v = 2aK, where a is the di�raction parameter. This

indicates that travelling CS are solutions of the equation. This procedure was

then generalised to the two dimensional case in equation (4.1b), where a periodic

modulation is considered. Under this local gauge transformation the damping

and detuning coe�cients develop a spatial dependence, and the drift velocity
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becomes v = 2a(∇φ). Using this method (a periodic phase modulation of the

injection) has the consequence of creating a velocity with the optical bullet hole

moving towards the local maxima of the phase landscape, φ(x, y).

CS can also be self-propelled in optical cavities. In [55], a semiconductor mi-

crocavity consisting of a driven VCSEL which can act either as an absorber or an

ampli�er is presented. In this case, an examination of the spontaneous transition

from stationary to moving CS in one a two transverse dimensional systems, is

investigated through a bifurcation of the system. In the model described in [55],

the detuning is not a parameter, but rather a dynamical variable which is depen-

dant on the local temperature and is capable of spontaneous spatial variations.

The movement can be thought of as arising from an instability of the stationary

CS which, for an ampli�er, has a temperature minimum at its centre. When the

peak of the CS is displaced from the temperature minimum, it lowers the tem-

perature at its new location but also moves on the detuning gradient on which

it �nds itself. In this case, when the motion is slow, the CS establishes itself

at a new location and becomes �xed. However if the motion is faster, the CS

keeps moving, while the temperature relaxes behind it. This process maintains

the detuning gradient, allowing the motion to continue. This process holds for

`bright' CS in an active device and `dark' CS in a passive system.

Reversible motion of CS can be described in a variety of nonlinear systems

[56]. Here it is shown that, for a sinusoidal modulation of wavevector K, the

soliton velocity is proportional to a function of K the spatial Fourier transform

of a function related to the unperturbed CS. Therefore, when the sign of the

Fourier transform changes upon variations of a control parameter, the direction

in which the CS travels is also reversed. Further, at frequencies when the Fourier

transform becomes zero, the CS remain stationary. This allows CS to move either

towards a modulation maximum, towards a modulation minimum, or to remain

stationary in spite of the background phase gradient. This was shown to hold true

for systems as di�erent as a degenerate optical parametric oscillator, a two level

atomic medium and more generic models based on the Swift-Hohenberg equation

and the parametrically driven Ginzburg-Landau equation.

Here we present results based on periodic modulations of the detuning and,

where appropriate, of phase modulations of an injected �eld. We propose periodic

modulations as an ideal method to induce motion for the purpose of applications

in optical memory arrays. When implementing the applications described in

chapter 1, it can be useful to build arrays within a single device. As such, by

using periodic modulations, an array of, for example, all-optical delay lines can be
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established using a single device. Further, in the next chapter, we use the periodic

modulation to induce motion in two or more CS towards a common point, which

allows us to examine collisions of multiple CS.

This chapter is organised as follows. In section 4.2, we introduce a range

of techniques to induce motion of a CS in a VCSEL with optical injection. In

particular, we use various types of periodic modulation of the phase of the optical

injection and examine the e�ects on the CS velocity. We also consider sinusoidal

modulations of the detuning and the e�ect on the carrier dynamics. Section 4.3

introduces motion in a laser with Frequency Selective Feedback (FSF). Here, as

there is no optical injection to manipulate, we concentrate on inducing motion

using periodic modulations of the detuning. Again this induces motion for the CS

of this system and explains why CS are often found trapped by inhomogeneities of

the background that alter the local value of the cavity resonance. Finally, section

4.4 introduces motion of CS in a Kerr cavity. Here we concentrate on inducing

motion by using linear phase gradients and triangular modulations of the optical

injection.

4.2 Cavity soliton motion in a laser with optical

injection

When CS have been written in a VCSEL with optical injection their motion is

a�ected by the dynamics of the background. In fact, depending on the parameters

(in particular, the pumping current), CS can either have a stable background

(similar to the case below threshold) or they can sit on a rapidly oscillating

irregular background [25]. Here we induce CS motion by a modulation of the

phase of the injected signal and by introducing a modulation of the VCSEL

detuning in the regime where the background is stable.
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For convenience, we rewrite the relevant model equations here.

∂E

∂τ
=

EI − i (α + θ)E + ai∇2E√
ε

+ (1− iα)WE

+
√
ε (1− iα)

(
1 +

√
εW
)
(LE + Z)

∂W

∂τ
= σ

{
J −

(
1 +

√
εW
) (

1 + |E|2
)
− εRe [(1− iα)E∗ (LE + Z)]

}
L = − i∇2

ξ(1) + iε∇2

Z = − 1

ξ(1)

[
EI − i (α + θ)E +

√
ε (1− iα)WE

]
(4.2)

∂E

∂τ
=

EI − i (α + θ)E + i∇2E√
ε

+ (1− iα)WE

∂W

∂τ
= σ

[
J −

(
1 +

√
εW
) (

1 + |E|2
)]

(4.3)

Where E is the electric �eld, W the rescaled carrier density, EI the optical in-

jection, α the linewidth enhancement factor, θ the detuning between the optical

injection and the VCSEL and J the pump current. Time is scaled to cavity decay

rate ε, with σ = γ/ε2, where γ is the decay rate of the carriers. Di�raction is

described in two transverse dimensions by the Laplacian operator ∇2E and in

one transverse dimension by ∂2
x = (∂2/∂x2).

4.2.1 Cavity soliton motion induced by periodic phase mod-

ulation of the optical injection

Spatially periodic modulations of the phase of the injected �eld provide a versatile

and e�ective method for building arrays of CS for the desired application in

multiple delay lines with a single device. Periodic modulations of the injected

phase extend over a wide range of parameters where both the system and CS

remain stable. This contrasts with the case of modulating injected amplitudes

which easily make the CS unstable. Here we examine the one and two dimensional

cases of inducing motion by spatially modulating the phase of the injected �eld.

Sinusoidal phase modulation of the optical injection

The simplest form of a periodic phase modulation is a sinusoidal modulation of

the injected phase. The injected �eld term, EI of equations (4.2) and (4.3) is now
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de�ned as:

EI = EI0 exp [iµ sin(kxx+ φx)] (4.4)

where EI0 is the amplitude of the injected �eld, µ is the amplitude of the sinusoidal

phase modulation, kx is the transverse wavevector of the injected phase and φx is

an arbitrary phase shift. Figure 4.1 shows an example of a CS travelling towards

the peak of a local phase maxima for this case.

Figure 4.1: Motion of a CS induced by sinusoidal modulation of the injected
phase. The output phase of the VCSEL is plotted as a function of transverse
spatial coordinate, with time t = 0.0ns (a), t ≈ 400ns (b) and t ≈ 1000ns (c).
Parameters are µ = 1.0, kx = 0.036 and other parameters are those of �gure 3.5.

By varying the amplitude of the phase modulation, µ, it is possible to control

the spatial gradient applied to the CS and hence its velocity. Further, by control

of the wave vector, kx, we can control the number of peaks in the modulation in

a given amount of space. This is useful when considering applications built on

arrays of CS. In �gure 4.2, we show how the velocity of the CS varies as it moves

towards a local phase maxima.

Triangular phase modulation of the optical injection

While a sinusoidal modulation of the injected phase is a simple and e�ective solu-

tion for inducing motion in CS and building arrays of these localised structures,

the results provide a velocity which is constantly changing as the CS progresses

to the nearest maximum. This is due to the fact that the applied gradient is

nonlinear combined with the non-Newtonian dynamics discussed in section 1.4.2.

For example, for a CS written near a minimum, the velocity increases until it is

approximately halfway to the peak � the point where the gradient is at its largest.

From this point the CS velocity is constantly slowing until it �nally arrives at

the modulation maximum, where the velocity tends to zero. For the purpose of
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Figure 4.2: CS velocity as a function of injected phase amplitude, µ, in a VCSEL
with a sinusoidally phase modulated optical injection. Here, γ = 10−3, kx = 0.036
and other parameters are those of �gure 3.5.

applications, this can cause problems with unwanted interactions before the CS

reaches the nearest maximum.

To solve this issue, a triangular modulation of the injected phase has been

considered. In this case, the optical injection term, EI in equations (4.2) and

(4.3) takes the form of equation (4.5).

EI = EI0 exp

{
i
2

π
µ sin−1 [sin(kxx+ φx)]

}
(4.5)

Again, we consider a system with one transverse dimension, with EI0 the am-

plitude of the optical injection, µ the amplitude, kx the transverse wavevector

of the injected �eld and φx an arbitrary phase shift. In this case the term 2/π

is a normalisation factor. An example of the motion of a CS in a VCSEL with

triangular modulation of the injected phase is shown in �gure 4.3.

In a similar way to the previous case of sinusoidal phase modulation, by con-

trolling the amplitude, µ, we can control the velocity of the CS and by controlling

the transverse wave vector of the injected phase, kx, we can control the number

of peaks in a given amount of space, allowing us to build arrays of the desired CS

application (e.g. all-optical delay line) in a single device. Figure 4.4 shows how

the velocity varies as the amplitude, µ is increased.

The possibility exists for the realisation of these modulations in experiments.

78



Figure 4.3: Motion of a CS induced by a triangular modulation of the injected
phase, in a VCSEL with optical injection. The output phase of the VCSEL is
plotted as a function of transverse spatial coordinate, x. Here, (a) is at time
t = 0.0ns, (b) t ≈ 400ns and (c) t ≈ 1000ns. Parameters are µ = 1.0 and
kx = 0.036, with other parameters as �gure 3.5.
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Figure 4.4: CS velocity as a function of the amplitude, µ of the injected phase,
for a system with triangular phase modulation of the optical injection. Here,
γ = 10−3, kx = 0.036 and other parameters are those of �gure 3.5.
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A phase mask can be introduced with the desired modulation in a similar method

to described in [57]. Here CS are stabilised using a phase mask. Further, it is

shown that their position can be manipulated, resulting in an square array of CS

pinned by the local phase distribution [57].

Two dimensional conical phase modulation of the optical injection

With two transverse spatial dimensions, the situation becomes a little more com-

plicated. A sinusoidal type modulation is again the simplest option but, as dis-

cussed previously, it provides a velocity which is constantly changing as the CS

approaches the nearest maxima. Therefore we suggest that either a pyramid or

a conical structure would provide a better solution. It should be noted that, al-

though the pyramid structure provides a constant gradient and therefore constant

velocity as the CS approaches the maxima, by introducing the soliton at di�erent

locations on a speci�c side, we vary the distance from the maximum, as shown in

�gure 4.5.

a

b

c e

d
Figure 4.5: Example showing the drawback of using a pyramid structure in the
phase of the optical injection. By writing CS in di�erent locations, we can vary
the distance from the nearest peak.

From �gure 4.5, we can show quite simply that the two distances from the

writing position and the maximum (c and e) are di�erent. It is clear that the two

lengths become c =
√
a2 + b2 and e =

√
a2 + d2. Since the length a is constant

in both cases, if b ̸= d, then c ̸= e must also hold true.

In this instance, a conical phase modulation is then chosen. This has the

advantage of having a linear gradient between the peak and the trough, while

avoiding any unnecessary velocity variations incurred when considering sinusoidal
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phase modulations. To this end, we consider the optical injection, EI to take the

form:

EI = EI0 exp

{
i
2

π
µ sin−1 [sin(kxx+ φx) sin(kyy + φy)]

}
(4.6)

where EI0 is the amplitude of the optical injection, µ is the amplitude of the

phase modulation, while kx and ky are the transverse wave vectors of the injected

phase. The constant 2/π is for normalisation and φx and φy are arbitrary phase

shifts in the x and y direction, respectively. We present an example of a two

dimensional CS moving towards the nearest maxima, in the presence of a conical

phase modulation of the optical injection in �gure 4.6.

Figure 4.6: CS moving towards the local phase maxima of the optical injection
in a two dimensional simulation of a VCSEL with conical modulation of the
optical injection. Here, (a) is taken at time t = 0.0ns, (b) at t ≈ 60ns and
(c) at t ≈ 150ns. Parameters are µ = 9.0 and kx = ky = 0.036 with other
parameters as shown in �gure 3.5.

Again, the velocity of the CS can be controlled by varying the amplitude,

µ, while the number of peaks in a given amount of space can be controlled by

varying the transverse wave vectors of the phase modulation, kx and ky. Figure

4.7 shows how the velocity of the CS varies as the amplitude µ increases.

Comparison between the di�erent methods of inducing motion

Here we brie�y compare the advantages and disadvantages of the di�erent meth-

ods described in inducing motion of CS, and also present results obtained with

the full model. For convenience, we present in �gure 4.8 (a) the three plots shown

in �gures 4.2, 4.4 and 4.7, along with a comparison obtained with the full model

using a triangular modulation.

We note that the peak velocity of a CS on a sinusoidal phase modulation is

greater than that achieved with the triangular modulation. This is due to the

fact that the CS experiences a steeper gradient during parts of its journey to the
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Figure 4.7: Velocity of a CS, taken from 2D simulations, as a function of the
amplitude, µ, of the injected phase. Parameters are γ = 10−3, kx = ky = 0.036
and other parameters are those of �gure 3.5.

maxima. This, however, does not necessarily mean that the sinusoidal modulation

is the best choice, as unwanted interactions can occur as the CS slows while

approaching a maximum. We also note that the results obtained from the full

model show excellent agreement with those obtained from the reduced models.

Varying the carrier decay rate, γ, provides another method for controlling the

velocity of the CS [20], while keeping both µ and k constant. The increase in

velocity is basically inversely proportional to the decay time of the carriers (see

�gure 4.8 (b) for 1D simulations). If γ is too small, however, the system does not

support CS while if it is too large localised structures will begin to form randomly

across the cavity width. Note that the range of existence and stability of the CS

upon variations of γ is reduced by an order of magnitude in our active VCSEL in

comparison with operation below lasing threshold where CS have a more stable

background [20].

One dimensional sawtooth phase modulation of the optical injection

By introducing a sawtooth modulation of the injected phase, we observe a number

of new phenomena, which are dependent on the applied gradient and the size of

the phase discontinuity. Figure 4.9 introduces an example of a one �toothed�

sawtooth modulation of the injected phase.

By increasing the `amplitude' (µ, as de�ned in �gure 4.9), and therefore the
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Figure 4.8: CS velocity as a function of the amplitude of the phase modulation of
the injected �eld (a) and as a function of the decay rate of the carriers, γ (b). In
(a), the motion induced by a sinusoidal modulation is shown by the solid (black)
line while the motion induced by a triangular modulation is shown by the dashed
(red) line in 1D and by the dot-dash-dot (green) line in 2D. Further, the dot-
dashed (blue) line shows the velocity calculated using the full model (2.14) and a
triangular phase modulation. Here γ = 10−3, k = 0.036 and other parameters are
those of �gure 3.5. is velocity vs. In (b), µ = 10, k = 0.036 and other parameters
are those of �gure 3.5.

μ

Figure 4.9: An example of the sawtooth modulation of the optical injection. We
de�ne the �amplitude� as µ, which is annotated in the diagram for convenience.
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`drop' experienced at the phase discontinuity created by the sawtooth modulation,

we move progressively from a region where the CS are stopped at the phase

discontinuity, in a similar way to that observed for CS at a phase maximum, to

regions where the CS exhibit di�erent behaviours. The CS can either continue

moving in the original direction, they can create a CS pulse train in the transverse

plane of the VCSEL or they can be destroyed by the phase discontinuity. The

behaviour of the CS can be controlled by adjusting the gradient of the system.

Starting with one tooth, we �nd that for an amplitude (or phase discontinuity

size) µ ≤ 1.121, the CS is stopped at the phase discontinuity, as shown in �gure

4.10. When we increase the amplitude to the range 1.121 < µ < 2.14, a CS

pulse train is created (see �gure 4.11), and for the range 2.14 ≤ µ < 2.15, the

CS continues past the phase discontinuity (see �gure 4.12). When the amplitude

is increased further, the CS is destroyed in the range 2.17 ≤ µ, as shown in �gure

4.13.
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Figure 4.10: Motion of a CS with a sawtooth modulation of the optical injection.
Here, the gradient is such that the CS stops at the phase discontinuity. In (a)
the CS is shown at time t = 0ns, (b) shows t = 57ns and (c) shows t = 100ns.
The gradient used is µ = 1.12 and other parameters are as �gure 3.5.

4.2.2 Motion induced by periodic modulation of the detun-

ing

We now switch the method of inducing CS motion by introducing a periodic

modulation of the VCSEL detuning. This modulation takes the form of equation

(4.7), where a sinusoidal modulation of the detuning of the VCSEL is introduced.

θ = θ0 + µ sin(kx+ φ) (4.7)
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Figure 4.11: Motion of a CS with a sawtooth modulation of the optical injection.
Here, the gradient is such that a CS pulse train is created at the phase disconti-
nuity. In (a) the CS is shown at time t = 0ns, (b) shows t = 57ns and (c) shows
t = 101ns. The gradient used is µ = 1.13 and other parameters are as �gure 3.5.
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Figure 4.12: Motion of a CS with a sawtooth modulation of the optical injec-
tion. Here, the gradient is such that the CS continues uninhibited at the phase
discontinuity. In (a) the CS is shown at time t = 0ns, (b) shows t = 28ns and
(c) shows t = 49ns. The gradient used is µ = 2.14 and other parameters are as
�gure 3.5.
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Figure 4.13: Motion of a CS with a sawtooth modulation of the optical injection.
Here, the gradient is such that the CS is destroyed at the phase discontinuity. In
(a) the CS is shown at time t = 0ns, (b) shows t = 28ns and (c) shows t = 35ns.
The gradient used is µ = 2.17 and other parameters are as �gure 3.5.

Where θ0 is the background detuning, µ is the amplitude, kx is the transverse

wavevector and φ is an arbitrary phase shift.

Figure 4.14 shows an example of motion in the VCSEL with optical injection,

induced by a periodic modulation of the detuning. We see clearly that the CS

moves towards the nearest maximum of the VCSEL �eld, i.e. the minimum of

the detuning modulation. Note the modulations observed in the background are

produced by the fact that the VCSEL is operating only slightly above threshold.

Due to this, the detuning modulation induces regions where the VCSEL is oper-

ating closer too, or indeed below, the lasing threshold. This in turn creates the

modulations observed in the VCSEL background.

Figure 4.14: An example of motion induced by periodic modulation of the detun-
ing of the optical injection. We show the motion from the writing position towards
the nearest maximum of the modulation, with (a) at t = 0ns, (b) t = 1000ns
and (c) t = 2500ns. Parameters are µ = 0.01, k = 0.036 and other parameters
are those of �gure 3.5.

Subsequently, we have measured the velocity of CS when propelled by a detun-
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ing modulation. Figure 4.15 shows the velocity as a function of the amplitude,

µ of the detuning modulation. We can clearly see that, while using detuning

modulation does indeed induce motion, the range of the motion is limited with

respect to that observed when using phase modulations of the optical injection.

The problem arises from the fact that, when varying the detuning, we quickly

move to a region where the CS solution is unstable, leaving the system to return

to the homogeneous steady state.
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Figure 4.15: Velocity of a CS induced by a detuning modulation of the VCSEL.
The velocity is shown as a function of the amplitude of the detuning modulation,
µ. For this, the wave vector of the modulation is �xed at k = 0.036 and all other
parameters are those of �gure 3.5

4.2.3 Cavity soliton velocity with injected frequency tuning

For simplicity, a linear gradient is introduced to the phase of the injected �eld by

setting EI = EI0 exp(iKx). As shown in [20, 21], the CS velocity depends linearly

on the applied gradient over a large range, and then it saturates. For higher

values of K, the moving CS solution becomes unstable, and the homogeneous

background state is recovered. As shown in [54], it turns out that the addition

of a linear phase gradient in the holding beam generates, after a suitable change

of variables, two extra terms in the �eld equation. The �rst one transforms the

time derivative of the �eld into a convective derivative as discussed previously,
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Figure 4.16: CS velocity, (a) and CS peak intensity, (b) as a function of the
amplitude K of the phase gradient. Solid (dashed) line: without (with) detuning
compensation (see text). Parameters are as �gure 3.5.

thus indicating that travelling CS are solutions of the �eld equation. The second

one e�ectively modi�es the value of the cavity detuning parameter θ, according

to the following relation:

θ = θ0 + aK2, (4.8)

where a is the di�raction parameter. The e�ect of equation (4.8) is that for

large values of K, the correction to the cavity detuning eventually leads to a

destabilisation of the travelling CS. This interpretation has been validated in

[58], where the existence domain of CS was calculated in the parameter space (θ,

K) for the case below threshold. There, it has been shown that the boundaries

(in the parameter θ) of the CS existence domain obtained for K = 0 change

according to the law expressed by equation (4.8) when K is increased. Knowing

this, we can progressively adapt the value of the cavity detuning parameter θ

when K is increased, in such a way to compensate for the variation introduced in

the detuning by the gradient via equation (4.8). This amounts to a blue-shift of

the injected frequency by a term equal to aK2/τp, where τp is the photon lifetime.

We therefore introduced this correction in our numerical simulations and the

result is shown in �gure 4.16. In �gure 4.16 (a) the solid line is the CS velocity

as a function of K, for the case without correction: the saturation e�ect comes

into e�ect quickly and then the curve stops at a gradient amplitude of about

0.0480µm−1, where, for our choice of the parameters, the CS reaches the velocity

of 2.9µm/ns. The dashed line shows the results obtained with the correction to

the injected �eld frequency. First of all, we note that the travelling CS survives
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up to values of the gradient amplitude that are on the order of 0.0873µm−1 (about

two times bigger that the case without correction), where the velocity reached

by the CS is about 15.8µm/ns (more than 5 time larger than in the case without

correction). This is associated with the fact that saturation disappears, also

suggesting that the saturation of the CS velocity is an e�ect due to the variation

of the cavity detuning introduced by the gradient according to equation (4.8),

and it is not due to the slow dynamics of carriers that cannot follow the �eld.

As a matter of fact, the correction to the injected frequency modi�es the

concavity of the curve (see Fig. 4.16 (a)) and the growth rate of the velocity

increases, making the process of CS displacement more e�cient. In �gure 4.16 (b)

we show the CS peak intensity as a function of the gradient amplitude K. We

observe that for the case without the θ correction (solid line) the peak intensity

decreases very rapidly, while for the case with the correction (dashed line) it

decreases much slower.

It will therefore be possible to realise an ultra�fast delay line although, as a

side e�ect, we observe a strong deformation in the CS pro�le at large speeds, as

shown in �gure 4.17. This fact can be a limiting factor in the rate of encoding

information in the line. The deformation consists in the creation of a dip in the

intensity plus a tail in the spatial distribution, and a delayed minimum of the

carrier distribution that follow the travelling CS (see �gure (4.17)). The lag of

the population variable is due to its slow dynamics with respect to that of the

�eld and increases with the phase gradient that induces the CS motion. The

ultra�fast CS pro�le presents a strong similarity with the travelling CS pro�le

observed in experiments [20, 59], thus suggesting that observable CS in VCSELs

are usually strongly pinned by spatial inhomogeneities of the cavity, so that they

e�ectively move only in the presence of fairly strong gradients.

It is also interesting to look at what happens for higher values of the gradient

amplitudes K for the case with the frequency correction. In �gure 4.18, we show

the 2D transverse pro�le of the travelling structure (left: �eld intensity, right:

carrier distribution) for K = 0.1091µm−1. As soon as the CS starts to move, it

develops damped spatial oscillations in its wake. This phenomenon is due to the

fact that the carrier dynamics are much slower than that of the �eld, so the hole

in the carrier population that is usually located at the (stationary) CS peak, now

lags behind the travelling CS. This phenomenon gives rise to a new intensity peak

that in turn creates a new carrier hole and eventually an entire set of travelling

�laments in the wake of the CS. It is worth noting that such structure would be

unstable in the absence of the phase gradient.
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Figure 4.17: Ultra�fast CS pro�les. First line: 2D pro�les of �eld intensity
(left) and carrier distribution (right). Color scale: blue corresponds to minima
and red to maxima. Second line: 1D pro�le of the �eld intensity (solid line)
and carrier distribution (dashed line). Here the gradient is directed rightwards,
K = 0.08724µm−1, and the detuning is compensated according to equation (4.8).
Other parameters as in �gure 3.5.
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Figure 4.18: 2D pro�les of �eld intensity (left) and carrier distribution (right).
Color scale: blue corresponds to minima and red to maxima. Here the gradi-
ent is directed rightwards, K = 0.1091µm−1, and the detuning is compensated
according to equation 4.8. Other parameters as in �gure 3.5.

4.3 Motion of cavity solitons in lasers with fre-

quency selective feedback

Due to the absence of the optical injection, to induce motion in the VCSEL with

FSF we need to use a method other than the manipulation of injected �elds.

To achieve this, we suggest using a periodic modulation of the detuning. For

convenience, we rewrite the device equations here.

∂E

∂t
= − (1 + iθ)E + i∇2E − iσ (α + i) (N − 1)E +

2
√
T1

(T1 + T2)
F

∂N

∂t
= −γ

[
N − J + |E|2 (N − 1)

]
F (t) = e−iδτf Ĝ

(
t− τf

2

)
[−r1F (t− τf ) + t1E (t− τf )]

Ĝ(t) [h(t)] =
rg
2β

∫ t

t−2β

eiΩg(t′−t)h(t′)dt′ (4.9)

Where E is the electric �eld, N the carrier density, F describes the electric �eld

in the external cavity, θ the detuning between the VCSEL frequency and the cho-

sen reference frequency, σ is a coupling constant, α is the linewidth enhancement

factor, T1 and T2 are the transmittivities of the VCSEL mirrors, J is the current,

δ is the detuning between the feedback �eld and the chosen reference frequency,

τf is the external cavity round-trip time and r1 and t1 are the amplitude re�ec-
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tion and transmission coe�cients of the VCSEL output mirror. The operator Ĝ

describes the frequency selective operation at the volume Bragg grating on the

�eld envelope. Time is scaled to the VCSEL cavity lifetime, and γ is the ratio

of the cavity lifetime to the carrier response time. As discussed previously, a

periodic modulation allows us to build arrays of CS in a single device. Given the

results from the previous section, we suggest using a triangular modulation of the

VCSEL detuning, now de�ned as θ(x) = θ0 + (2µ/π) sin−1[sin(kx+φx)], where

θ0 is the background detuning value, µ is the amplitude of the modulation, k is

the transverse wavevector and φx is an arbitrary phase shift.
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Figure 4.19: Motion of a LCS in the VCSEL with FSF with a triangular modu-
lation of the detuning for τf = 0.05ns (a) and τf = 0.41ns (b), while (c) and (d)
show the respective detuning modulation. The LCS travels towards the modula-
tion minimum with the solid line showing t = 0ns, the dashed t = 49ns and the
dotted t = 99ns. Other parameters are as �gure 3.9

Figure 4.19 shows the motion of a LCS as it moves towards the minimum of

the modulation of the detuning. Presented here are the results from simulations

with two di�erent external cavity lengths, which were performed to calculate

the velocity of the LCS in the VCSEL with FSF. In �gure 4.20, we introduce the

velocity of the LCS as a function of modulation amplitude µ, utilising a triangular

modulation of the detuning.
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Figure 4.20: Velocity of a LCS in the VCSEL with FSF. The dots represent
τf = 0.05ns and the squares represent τf = 0.41ns.

It is clear from �gure 4.20 that changing the length of the external cavity

causes the velocity of the LCS to decrease slightly. This is most likely due to a

damping e�ect caused by the delayed feedback. With a longer external cavity, the

LCS has time to move further from the central (spatial) region where the feedback

is strongest. Further, due to the fact we use detuning gradients to induce motion

in the LCS, it is both expected and shown that the range of possible velocities is

limited. Figure 4.20 shows the maximum velocity to the point where bistability

at the minimum of the modulation is lost. At this point, when the detuning

amplitude becomes too large, the modulation minimum enter the region where

the patterned solution is stable but the homogeneous solution is not. This results

in spontaneous formation of one or more localised structures at the modulation

minimum.

4.4 Motion of cavity solitons in Kerr cavities

We now introduce motion of CS in a Kerr cavity by initially considering a linear

phase gradient of the optical injection. We �rst reintroduce the model equation
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for convenience:

∂E

∂t
= EI − (1 + iθ)E + i|E|2E + i

∂2

∂x2
E (4.10)

where E is the electric �eld, EI is the injected �eld, θ is the detuning and i∂2/∂x2

represents di�raction. The injected �eld is described by equation (4.11a). We also

introduce at this stage a periodic modulation of the optical injection, as described

in equation (4.11b). In this case we again restrict ourselves to a triangular phase

modulation of the optical injection, as described previously, since this provides a

constant gradient and subsequently a constant velocity for �xed parameters.

EI = EI0 exp(iKx) (4.11a)

EI = EI0 exp{i
µ

2π
sin−1[sin(kx+ φ)]} (4.11b)

Here, EI0 is the amplitude of the injected �eld, K is the linear gradient, µ is the

amplitude of the modulation, k is the transverse wavevector and φ can represent

an arbitrary phase shift of the periodic modulation. In �gure 4.21, the velocity

of the CS in a Kerr cavity are shown as a function of the phase gradient. This

shows a linear relationship between the velocity and the applied phase gradient

on which the CS �nds itself.

4.5 Conclusions

In this chapter we have investigated methods of inducing motion in CS in pho-

tonic devices. It has been demonstrated that, in all three systems of interest,

established methods for inducing motion in CS provides the required gradient

and indeed induces motion over suitable parameter ranges. Beginning with the

VCSEL with optical injection, we have shown that both phase modulations of

the optical injection and modulations of the detuning provide very di�erent re-

sults. In particular, the range of the amplitudes over which the CS is stable is

greatly reduced when considering detuning modulations with respect to the in-

jected phase modulations. This arises from the fact that changing the detuning

quickly moves the system to a regime where the CS solution is no longer stable

and the system returns to the homogeneous state.

In the VCSEL with FSF, we are unable to induce motions by using phase mod-

ulations in the manner described for the VCSEL with optical injection speci�cally

due to the lack of the injected �eld. We demonstrate that a periodic modulation

of the detuning is su�cient to induce CS motion in this system. This method
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Figure 4.21: Velocity of cavity solitons in a Kerr cavity as a function of the phase
gradient applied to the optical injection. Parameters are those of �gure 3.16.

produces similar problems to the VCSEL with optical injection when moving to

larger gradients. In this case, when the amplitude of the detuning becomes too

large, the minimum enters a region where only the patterned state is stable. This

results in the spontaneous formation of localised structures at the modulation

minima.

Finally, motion of CS in a Kerr cavity is explored using linear phase gradients

introduced to the optical injection. In this case, we have not investigated the use

of detuning gradients or modulations, as the results of the previous cases show a

limited velocity and range of stability when compared to injected phase gradients

and modulations. Here we �nd a linear relationship between the velocity and the

applied gradient.
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Chapter 5

Cavity soliton interactions in

photonic devices

5.1 Introduction

Cavity Solitons (CS) can be switched on and o�, at will, by the operator. For this

reason, they are excellent candidates for use as elements of an optical memory

[22, 26] or an all-optical delay line [20, 21]. In these applications, CS can come

into close contact with each other and it is then important to understand how they

interact with each other. The aim of this chapter is to investigate CS interactions

in simulations of photonic devices based on VCSELs.

We have already seen in the previous chapters that CS possess translational

invariance, i.e. they can be positioned in any location of the transverse plane.

Laser CS, such as those described in VCSELs with Frequency Selective Feedback

(FSF) [29] and VCSELs with saturable absorbers [52], also possess phase invari-

ance. Such invariance is removed in VCSELs with optical injection since the

external �eld breaks the free rotation of the laser phase. We will then �rst dis-

cuss in section 5.2 the interaction of CS in VCSELs with optical injection where

there is no phase invariance and where we break the translational invariance by

spatially modulating the phase of the injected �eld. The external modulation

forces separate CS to move towards the same region of space and consequently to

interact with each other. This case is then contrasted with forced interactions in

a simpli�ed Kerr cavity model under the action of a spatially modulated pump

in section 5.3. Here we observe some of the CS interaction features described in

the VCSEL simulations of section 5.2, such as CS merging, but also CS locking

due to the overlap of their modulated tails. In section 5.4, instead we investigate

the interactions of CS in models of VCSELs with FSF in the presence of phase
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invariance. We �rst study coupled CS on homogeneous backgrounds and then

CS trapped by spatial defects due to imperfections of the growth process of the

semiconductor material.

5.2 Forced collisions of cavity solitons in a laser

with optical injection

In the VCSEL with optical injection, the nature of forced collisions of two or

more CS is introduced. The collisions are enabled by introducing a periodic

modulation to the phase of the injected �eld, as described in section 4.2. By

using such periodic modulations, two (or more) CS can be written near a phase

maxima, thus inducing motion towards a common point. When the CS collide,

the results can be analysed.

Induced collision of di�ractive autosolitons have been described in pioneering

numerical simulations of systems with two homogeneous states for the imple-

mentation of optical adders (not to be confused with optical snaking) [60]. In

this case the collision between a larger and smaller autosoliton destabilises the

domain walls that connect the two homogeneous states leading to the survival

of just one of the colliding solitons [60]. Collisions leading to de-stabilisation of

domain walls can also be induced by noise [61]. In the case of CS in VCSELs

with optical injection there is no bistability between homogeneous states and no

domain walls connecting them. The merging mechanism of CS described here is

related to the absorption of energy from the pump and its release in the form of

short pulses.

5.2.1 Collisions and merging of cavity solitons in a laser

with optical injection

To investigate the mechanism of CS collisions and merging, extensive simulations

have been performed of the VCSEL equations:

∂E

∂τ
=

EI − i (α + θ)E + i∇2E√
ε

+ (1− iα)WE

∂W

∂τ
= σ

[
J −

(
1 +

√
εW
) (

1 + |E|2
)]

(5.1)

where E is the electric �eld, W the rescaled carrier density, EI the optical in-

jection, α the linewidth enhancement factor, θ the detuning between the optical
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injection and the VCSEL and J the pump current. Time is scaled to cavity decay

rate ε, with σ = γ/ε2, where γ is the decay rate of the carriers. Di�raction is

described in two transverse dimensions by the Laplacian operator ∇2E and in

one transverse dimension by ∂2
x = (∂2/∂x2).

To induce motion and force collisions, we use a periodic phase modulation of

the optical injection, as described in equations 5.2.

EI = EI0 exp[µ sin(kx+ φx)] (5.2a)

EI = EI0 exp

{
2

π
µ sin−1 [sin(kx + φx)]

}
(5.2b)

EI = EI0 exp

{
i
2

π
µ sin−1 [sin(kxx+ φx) sin(kyy + φy)]

}
(5.2c)

Where EI0 is the amplitude of the injected �eld, µ is the amplitude of the phase

modulation, kx and ky are the transverse wavevector and φx and φy are an arbi-

trary phase shift. In �gure 5.1 we show the e�ect of a second CS on an initial CS

already positioned at a maximum of the phase modulation. Here we have used a

triangular phase modulation, as described in equation (5.2b), of the injected �eld

to induce CS motion as described in the previous chapter of this thesis. A clear

merging process takes place at the peak of the modulation.

Simulations over a wide range of the amplitude of the phase modulation, µ,

display CS merging at the peak of the phase modulation, as shown in �gure

5.1. This occurs even for very small values of µ, corresponding to small spatial

gradients and very low velocities of the CS.

When more than two CS are introduced in the VCSEL they all move towards

their nearest respective peak of the injected phase modulation and, when two

or more meet, they merge to form a single CS (see �gure 5.2). CS merging is

commonplace in a driven laser system operating above threshold over a wide

range of the modulation parameters.

CS merging is also observed in simulations with two transverse dimensions.

Figure 5.3 shows an example where two newly written CS move towards their

closest maximum of the conical phase modulation (5.2c) in a 2D lattice. When

the maximum is empty, the CS is properly positioned. When the maximum is

occupied by another CS, merging takes place.

We also note that 1D and 2D CS in VCSELs with optical injection have tails

with almost no spatial oscillations. This fact greatly reduces possible mechanisms

of the interaction between CS, resulting in the merging of CS described above

and in maintaining a constant temporal separation between input pulses during
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Figure 5.1: Merging of two CS in a VCSEL with triangular phase modulation
of the optical injection. Panels (a)-(c) display the spatial pro�le of the laser
intensity while panels (A)-(C) show the phase of the output �eld. Here µ = 1.0,
k = 0.036 and the other parameters are those of �gure 3.5. (a) and (A) correspond
to t = 0ns, (b) and (B) correspond to t = 870ns, (c) and (C) correspond to
t = 990ns.

Figure 5.2: Merging of eight CS in a VCSEL with sinusoidal phase modulation of
the optical injection. The phase of the output �eld is plotted versus the transverse
spatial coordinate. Here the phase modulation of the injected �eld corresponds
to µ = 0.5, k = 0.036 and is switched on after a comb of eight equally spaced CS
has been initiated. The other parameters are those of �gure 3.5. (a) corresponds
to t = 0ns, (b) corresponds to t ≈ 838ns and (c) corresponds to t ≈ 2488ns.
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Figure 5.3: Motion and merging of CS in a VCSEL with phase modulation of the
optical injection in 2D given by equation (4.6). Panel (a) shows the stationary
2D distribution of the output intensity before the writing of two new CS, (b)
shows the distribution immediately after the writing of the two CS and (c) after
t = 27.5ns from the writing of the two new CS. The CS in the dashed circle moves
to the closest maximum of the modulation while the CS in the solid oval merges
with a CS at the peak of the phase modulation.

their motion. Both e�ects are bene�cial for the implementation of applications

in optical information processing such as delay lines and optical memories.

5.2.2 Energy balance in lasers with optical injection during

cavity soliton merging processes

The process of merging of dissipative spatial solitons is quite intriguing and de-

serves special attention. For example, spatial soliton merging is impossible in

conservative systems where travelling solitons are well known to pass through

each other unchanged. Merging of CS is then intrinsically related to their dissi-

pative nature. Here we demonstrate that during merging there is the emission of

light pulses accompanied by the violation of the energy balance in the system.

Energy balance has been studied in systems based on the complex Ginzburg-

Landau equation. In particular, this phenomenon is described in [62], where the

energy �ow is described for the system as

∂ρ

∂z
+

∂j

∂t
= P (5.3)

where ρ is the energy density, ρ = |φ|2, and φ is the �eld variable. The corre-

sponding �ux, j, is

j =
i

2
(φφ∗

t − φtφ
∗) (5.4)

and the density of energy generation, P , can be derived from the model equation.

100



We now adapt this concept to our model, derive the energy balance equations

and examine the energy �ow in our system.

We consider �rst the simpler case of laser CS without dynamical contributions

of the carrier population. By setting the population variable D to its equilibrium

value, one obtains:

∂E

∂τ
= EI − i (θ + α)E + i∂2

xE + (1− iα) (D − 1)E (5.5a)

D =
J

1 + |E|2
(5.5b)

where τ = εt. In analogy with the cubic-quintic Ginzburg-Landau equation

[62], we introduce a continuity equation for the �eld E:

∂ρ

∂t
+

∂j

∂x
= Q (5.6)

where the density is ρ = |E|2 and the current is j = i(E∂xE
∗−E∗∂xE). For con-

servative systems the quantity Q is identically zero. For injected and dissipative

systems like (5.5) however we can write:

Q = 2
[
Re (EIE

∗) +D|E|2 − |E|2
]

(5.7)

The three contributions that form Q are identi�ed as the energy provided by the

external injection, the energy stored in the material by the laser pumping, J , and

the losses at the laser output, respectively. Q is trivially equal to zero for ho-

mogeneous steady states while the spatial part ∂xj counterbalances Q locally for

stationary CS. In this last case, however, the integration over the full transverse

space of Q (as well as ∂xj) is identically zero and one talks of `energy balance'

across the full pro�le of a CS.

We �nd that the energy balance for
∫
Qdx persists in the case of CS moving

on phase gradients. At the moment of the merging, however, clear violations

appear. Figure 5.4 shows the time evolution of the energy balance before and

after a CS merging event for the single equation model (5.5). Balance takes place

both during the motion of one CS towards the second and after the collision event.

Around the merging time, however, energy exchanges are clearly not balanced.

Initially excess energy is absorbed from the injection to be later released through

cavity losses. Note that this excess energy is not stored in the carrier distribution

but is instead emitted from the VCSEL in the form of a short pulse, as shown in

the inset of Figure 5.4.
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Figure 5.4: Time evolution of the energy balance
∫
Qdx for the merging of two CS

in the model (5.5). Inset: cavity losses
∫
|E|2dx as a function of time (with scale

as in the main image). Parameters are those of �gure 3.5. Triangular modulation
parameters are µ = 0.1 and k = 0.036.

The physical description of CS merging in model (5.1) is more complicated

due to the delayed dynamics of the carriers. When we take this into account, the

density term in the continuity equation (5.6) becomes ρ = |E|2 − D2 while the

current term, j = i(E∂xE
∗−E∗∂xE), is unchanged. There is a simple explanation

for the negative sign in front of the carrier term, D2, in the de�nition of ρ: in

contrast with the peak of the �eld intensity, the carrier distribution has a trough

at the center of the CS (see Figure 3.5 (c)). This means, for example, that �eld

dissipations are larger at the centre of the CS while the carrier dissipations are

reduced in the same place due to inhibited spontaneous emission. For equations

(5.1) the de�nition of Q then has to be updated to:

∂(|E|2 −D2)

∂t
+

∂j

∂x
= Q̂ (5.8)

= 2
{
Re (EIE

∗) + (D − 1) |E|2 + σ
[
D
(
1 + |E|2

)
− J

]}
The addition of the carrier dynamics corresponds to the term multiplied by σ in

the de�nition of Q̂. Again Q̂ is identically equal to zero for homogeneous steady

states while
∫
Q̂ dx = 0 for a stationary CS due to energy balance. Figure 5.5 (a)

shows the time evolution of the quantity
∫
Qdx with Q from equation (5.7), i.e.

without the carrier dynamics term, before and after a CS merging event for the

model (5.1). The inclusion of the carrier dynamics in the de�nition of Q̂ ensures

balance during the motion of one CS towards the second (see the comparison

between Figures 5.5 (a) and (b)). As in the previous case, energy exchanges

are clearly not balanced around the merging of CS since excess energy is �rst
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absorbed from the injection and later released through cavity losses. Again, the

excess energy is emitted from the VCSEL in the form of light pulses, as shown in

the inset of Figure 5.5 (b).

Figure 5.5: Time evolution of (a) the quantity
∫
Qdx without the carrier density

dynamics and (b)
∫
Q̂ dx with the carrier density dynamics for the merging of two

CS in the model (5.1). Inset: cavity losses
∫
|E|2dx as a function of time (with

the scale as in the main image). Parameters are those of �gure 3.5. Triangular
modulation parameters are µ = 1.0 and k = 0.036.

5.3 Merging and locking of cavity solitons in a

Kerr cavity

At di�erence from what we have observed in the model of a VCSEL with injected

signal, forced collisions of CS in a Kerr cavity can take two forms. They can

either lock together, becoming a multi-peaked CS structure, or they can merge,

as described previously in section 5.2. There are also regions where locking and

merging co-exist. We begin by rewriting the model equations, for convenience:

∂E

∂t
= EI − (1 + iθ)E + i|E|2E + i

∂2

∂x2
E (5.9)

where E is the �eld, EI is the injected �eld, θ is the detuning and i(∂2/∂x2)E is

di�raction. Here, we detail the e�ects of varying the phase gradient applied to

the CS by varying the amplitude of a triangular phase modulation, as described

in equation 5.10.

EI = EI0 exp

{
2

π
µ sin−1 [sin(kx+ φ)]

}
(5.10)
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Where EI0 is the amplitude of the injected �eld, µ is the amplitude of the phase

modulation, k is the transverse wavevector and φ is an arbitrary phase shift.

It is important to note that the shape of the CS in the Kerr cavity di�ers from

that of the VCSEL with optical injection. In particular, the CS in VCSELs have

very short tails with no spatial modulations. In contrast, the CS in a Kerr cavity

have longer tails with distinct spatial modulations (see, for example, �gure 3.16).

5.3.1 Merging and locking of cavity solitons in a Kerr cav-

ity

By varying the applied phase gradient, we can control the nature of the interaction

between two CS in a Kerr cavity. Using this control parameter, a region of locking

and merging is mapped, along with regions where merging and locking co-exist.

The modulation is provided by equation (5.10), and �gure 5.6 shows an example

of the initial conditions used for the collisions.

Figure 5.6: The initial conditions used to force collisions between CS. In this
case, an additional CS is introduced to the right of the phase maximum. Panel
(a) shows the intensity pro�le of the system while (b) shows the output phase.
Parameters are those of �gure 3.16.

We start with low values of the injected phase amplitude, µ, and gradually

increase the amplitude. Initially, a CS is introduced to the left of the maximum

shown in �gure 5.6. We �nd three distinct behaviours, accompanied by a small

region where CS writing was impossible. Examples of the three behaviours are

shown in �gure 5.7. In the range 0.05 ≤ µ < 0.25, the second CS locks with

the CS at the peak of the phase modulation. In the range 0.25 ≤ µ < 0.40,
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we observe a region of both merging and locking. The merging and locking

phenomenon occurs when the cavity soliton locks with a multi-peaked structure

at the phase maximum. As the cavity soliton locks, one of the peaks which formed

the original structure is absorbed. This is most likely due to the number of peaks

in the structure at the phase maximum becoming unstable when the additional

CS locks with the structure at the peak.

When the phase gradient is increased to the range 0.41 ≤ µ < 0.60 we observe

a bifurcation when the behaviour switches to purely merging. As described for

the case of the laser with optical injection, the CS drifts up the phase gradient

and merges with the structure at the peak. Meanwhile, if the phase gradient is

further increased to the range 0.60 ≤ µ < 0.77, the behaviour of the interaction

switches from pure merging back to a region where both locking and merging are

present. In this case, a three peaked symmetric structure is observed after the

collision.

It is important to note that, for the range of phase gradient 0.77 ≤ µ < 0.79,

it is impossible to write an additional CS. This is most likely due to the system

being only being able to switch to an unstable soliton branch, rather than a stable

solution. However for larger gradients, the writing process allows for switching

to a stable solution again. In the range 0.79 ≤ µ < 0.85 we �nd a region of pure

merging. This is followed by the range 0.85 ≤ µ ≤ 0.90 where the behaviour

switches back to pure locking once again. Figure 5.8 (a) shows the mapping of

these behaviours as the phase amplitude increases.

When an additional CS is introduced to the right of the phase maxima, we

observe similar behaviour to that described for an additional CS introduced on

the left. There are some di�erences though. For the range 0.35 ≤ µ < 0.41,

we observe a switch from the merging and locking behaviour to pure locking. In

the range 0.43 ≤ µ < 0.48 we observe a shift from pure merging to locking and

merging before a shift back to pure merging for the range 0.48 ≤ µ < 0.77. Note

that we do not see any change from pure merging at µ = 0.60, as observed when

an additional CS is introduced on the left.

Again, a region where the creation of an additional CS becomes impossible

is observed for the range 0.77 ≤ µ < 0.80. This is followed directly by pure

locking, with no intermediate merging behaviour, in the range 0.80 ≤ µ ≤ 0.90.

In �gure 5.8 (b), we show how the behaviour of the interaction changes as the

phase gradient, µ, increases for this case.
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Figure 5.7: Example of the three behaviours observed during CS interaction.
The �rst line (a) - (c) shows locking with a phase amplitude µ = 0.2. A second
CS is introduced in (a), at time t = 0, travelling towards the peak, with (b)
(t = 10740) and (c) (t = 15000) showing the locking process. In (d) - (f) we
show merging with a phase amplitude µ = 0.6. A second CS introduced in (d)
at time t = 0 moving towards the peak and (e) (t = 2400) and (f) (t = 7980)
showing the merging process. Finally, in (g) - (i) we show the peculiar locking and
merging phase with phase amplitude µ = 0.3. A second CS introduced in (g),
at time t = 0, moving towards the peak and (h) (t = 4800) and (i) (t = 9000)
showing the combined locking and merging process. Other parameters are as
�gure 3.16.
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Figure 5.8: Behaviour of the interaction when an additional CS is introduced and
forced to collide with the structure at the peak of a phase gradient, as the ampli-
tude of the phase gradient (µ) increases. (a) The behaviour when an additional
CS is introduced to the left of the phase maxima while (b) shows the behaviour
when an additional CS is introduced to the right of the phase maxima.

107



5.3.2 Energy balance in a Kerr cavity during cavity soliton

merging and locking processes

We now examine the energy �ow in the Kerr cavity during CS collisions. A similar

process to that sketched in section 5.2 is used. Obviously, the energy continuity

equations are much simpler when applied to the model of the Kerr cavity. We

re-introduce the continuity equation for simplicity:

∂ρ

∂t
+

∂j

∂x
= Q (5.11)

where the density is ρ = |E|2 and the current is j = i(E∂xE
∗ −E∗∂xE). For the

case of the Kerr cavity, we can write:

Q = 2
[
Re(EIE

∗)− |E|2
]

(5.12)

In this case, we have a two contributions to the value Q. These are identi�ed

as the energy input from the external injection and the energy losses at the output

mirror. Again, Q is trivially zero for homogeneous steady states while the spatial

part ∂xj counterbalances Q locally for stationary CS. When integrated over the

full transverse space, Q (as well as ∂xj) is identically zero and we can show `energy

balance' across the full pro�le of a CS in the Kerr cavity.

Similar to the case of the laser with optical injection, we �nd that energy

balance persists for
∫
Qdx in the case of CS moving on phase gradients. However

as the CS interact with the structure at the peak, violations of the energy balance

occur. For the case of locking, as shown in �gure 5.9, the energy is balanced

with
∫
Qdx ≈ 0 before and after the interaction. Since these changes in the

energy balance are very small, �gure 5.9 displays background �uctuations due to

numerical error. By decreasing the time step, the amplitude of these �uctuations

decreases but obviously the numerical error cannot be completely eliminated.

However, as the peak of the moving CS interacts with the tail of the stationary

structure at the peak, there is a clear violation as energy in the system increases

before decreasing as a pulse of light is emitted. It should be noted that, in contrast

to the laser with injection, the Kerr cavity has no carrier distribution in which to

store extra energy so there is clearly no question as to what happens to the extra

energy.

For the case of full CS merging, we present the time evolution of the energy

balance in �gure 5.10. Again, energy is balanced before and after the interaction

with
∫
Qdx ≈ 0, but with large violations during the merging process. We �rst
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Figure 5.9: Energy balance before, during and after a locking interaction between
two CS in a Kerr cavity. Before and after the interaction, the energy is balanced
with

∫
Q ≈ 0. During the process there is a brief increase in energy before the

excess energy is released as a pulse.

see a smaller violation as the two tails interact, followed by a larger violation as

the peaks interact with the tails. Finally, a larger violation occurs as the peak of

the moving CS merges with the peak of the structure at the maxima.

5.4 Cavity soliton interactions in a laser with fre-

quency selective feedback

Interactions between Laser Cavity Solitons (LCS) in the VCSEL with frequency-

selective feedback are decidedly more complicated than those of the VCSEL with

optical injection. The complications arise from the freedom of the individual LCS

to choose their own frequency and phase, unlike the LCS in the previous systems

which are locked to the frequency and phase of the injected �eld. Here we examine

the e�ects of introducing two or more LCS into our system and examine their
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Figure 5.10: Energy balance before, during and after a merging interaction be-
tween two CS in a Kerr cavity. Before and after the interaction, the energy is
balanced with

∫
Q ≈ 0. During the process there are three brief violations, the

�rst as the tails interact with each other, the second as the peaks interact with
the tails and the third as the peaks merge.

e�ects on each other. For convenience, we reproduce the model equations here.

∂E

∂t
= − (1 + iθ)E + i∇2E − iσ (α + i) (N − 1)E +

2
√
T1

(T1 + T2)
F

∂N

∂t
= −γ

[
N − J + |E|2 (N − 1)

]
F (t) = e−iδτf Ĝ

(
t− τf

2

)
[−r1F (t− τf ) + t1E (t− τf )]

Ĝ(t)[h(t)] =
rg
2β

∫ t

t−2β

eiΩg(t′−t)h(t′)dt′ (5.13)

Where E is the electric �eld, N the carrier density, F describes the electric �eld

in the external cavity, θ the detuning between the VCSEL frequency and the cho-

sen reference frequency, σ is a coupling constant, α is the linewidth enhancement

factor, T1 and T2 are the transmittivities of the VCSEL mirrors, J is the current,

δ is the detuning between the feedback �eld and the chosen reference frequency,

τf is the external cavity round-trip time and r1 and t1 are the amplitude re�ec-

tion and transmission coe�cients of the VCSEL output mirror. The operator Ĝ

describes the frequency selective operation at the volume Bragg grating on the

�eld envelope. Time is scaled to the VCSEL cavity lifetime, and γ is the ratio of

the cavity lifetime to the carrier response time.
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For the purpose of applications such as delay lines and optical memories, it is

important to understand how multiple LCS interact. In [63], an analysis of multi-

soliton solutions is performed in the quintic complex Ginzburg-Landau equation.

The equation modelled takes the form of

iδφ = iφξ +

(
D

2
− iβ

)
φττ

+ (1− iε) |φ|2φ+ (ν − iµ)|φ|4φ (5.14)

where τ is the retarded time, ξ is the propagation distance, δ, β, ε, µ and ν are

real constants, φ is a complex �eld and D, which can be set to either D = ±1,

is set to D = 1 representing the self focusing regime. Here the distance between

the solitons, ρ, and their phase di�erence, Φ is de�ned in terms of energy (Q)

and momentum (M) balance equations. Since the gain and losses of the system

must be balanced for the existence of dissipative solitons, the rate of change of

these variables becomes

F (Φ) =
d

dξ
Q = 0 J(Φ) =

d

dξ
M = 0 (5.15)

i.e. the rate of change of the energy and momentum should be zero. The results

predict that, for ε = 1.8, with the other parameters de�ned as δ = −0.01,

β = 0.5, µ = −0.05 and ν = 0, two stable points exist in phase di�erence

and separation at Φ = π/2, where the zero solutions of the energy balance and

momentum balance equations intersect, while for ε = 0.4 no stable solutions

exist. Also presented is the existence of saddles, which are attractive spatially

and repulsive in terms of the phase di�erence or repulsive spatially and attractive

in terms of the phase di�erence, which fall on the intersection between the zeroes

of the energy balance and the Φ = 0 and Φ = π plane. Numerical results support

these predictions, with one of three behaviours, detailed below and shown in

�gure 5.11.

1. The phase di�erence is attracted to Φ = 0 and attracted by the second

saddle (S2 in �gure 5.11) and repulsed by the saddle (S3), in which case the

solitons are attracted to each other and merge.

2. The phase di�erence is attracted to a �xed stable position and phase di�er-

ence at Φ = π/2. In this case, the separation and phase di�erence oscillate

while approaching the �xed point, as shown by points F1 and F2 in �gure

5.11 (a) only.
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Figure 5.11: Trajectories showing the evolution of two-soliton solutions on the
interaction plane for the parameters given in (a). The saddles are denoted by
S1,2,3, as appropriate, and the stable solution is denoted by F1,2. The radius of
the dashed circle in the centre represents the full width half maximum width of
the soliton and, within this circle, solitons merge. Figure reproduced from [63].
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3. The phase di�erence is attracted to Φ = π and repulsed at the �rst saddle

(S1). Here, once the soliton reaches the Φ = π locked state, they repulse

each other, moving further apart.

In general, this means one of two behaviours between two or more interacting

LCS in our systems. The �rst, when the phase di�erence between them is 0,

allows the LCS to attract. The second, when the phase di�erence is π, allows the

LCS to repel each other. It should be noted that the second is not possible in

the driven systems, such as the laser with optical injection as the phase in these

systems is �xed to that of the holding beam.

5.4.1 Cavity soliton interactions on a homogeneous back-

ground

When two LCS are written in our VCSEL with FSF, their frequencies and phases

interact over larger distances than experienced in the VCSEL with optical injec-

tion. Again, because the frequency and phase of the LCS in the VCSEL with

optical injection are �xed to that of the input, the frequency and phase of each

individual cavity soliton is always identical. The phase is locked with 0 phase

di�erence, and the frequency of each is locked to that of the injected �eld. This

is not the case in the VCSEL with FSF, where the LCS are free to choose their

own frequency and phase, which can be independent to that of the neighbouring

laser cavity soliton.

Simulations of the complex Ginzburg Landau equations predict that interac-

tions of two solitons will result in their spiralling slowly to �xed relative distances

L, with a phase di�erence Φ = φ2−φ1 = π/2 unless merging takes place [64, 65].

Φ equal to zero and π states are also possible but correspond to saddles that are

either phase or distance unstable [66]. Analytically, the attainment of a bound

state reduces to the analysis of two transcendental equations in the (L,Φ) phase

space. This situation is very similar to that described in [63, 67, 68].

In contrast LCS in our model of a VCSEL with frequency selective feed-

back, which is designed to better represent the experimental setup than the more

generic complex Ginzburg Landau models, does not predict Φ = π/2 locked

states. Theoretically, the interaction of two phase-chirped LCS should lead to a

phase locked state with a frequency di�erence close to π/2 in a way similar to

what is observed in temporal-longitudinal systems [40]. The reality of VCSELs

with frequency-selective feedbacks is however quite di�erent from this scenario.

First, realistic values of the linewidth enhancement factor α strongly reduce the
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laser cavity soliton phase chirp making it impossible to observe the π/2 locking

even on homogeneous backgrounds. Secondly and more importantly, LCS in real

systems are pinned to local defects that are due to the growth process of the

semiconductor material.

Our model and chosen parameters predict that only the Φ = π state is phase

stable. Our model also predicts that possibly the Φ = 0 phase state may be

stable for larger distances, although simulations to �nd states at such distances

are very time consuming and this is therefore not a state we have been able to

observe. The two LCS, once locked at Φ = π slowly begin to repel each other and

motion is induced pushing the two LCS apart. Simulations have been performed

for considerable lengths of time and the velocity induced by the repulsion of the

LCS slowly decreases until the LCS are essentially stationary with no further

interactions. Figure 5.12 shows the quick evolution of the phase, followed by

the slow dynamics of the motion, for α = 9.0 and α = 5.0. Also shown is a

prediction for the point where the phase locking would change from Φ = π to

Φ = 0.

Figure 5.12: Phase plane for two interacting LCS for α = 9.0 (a) and α = 5.0 (b).
The initial, fast phase locking is characterised by the initial sweep from Φ = 0.1π
and Φ = −0.1π to the Φ = π phase locked state. The LCS then repel each other
and the distance (L) increases.

5.4.2 Cavity soliton interactions with spatially modulated

detuning

By introducing a spatially periodic modulation of the VCSEL detuning, we can

induce motion of the laser cavity soliton towards a common minimum of the in-

teraction potential. Inducing motion using this method allows us to overcome

the repulsive force between the two LCS described previously and, in a similar

method to that described in section 5.2, we can use this method to force colli-

sions between two LCS in a VCSEL with FSF. For this purpose, we consider a
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triangular modulation of the detuning, as described by equation (5.16).

θ = θ0 +
2

π
µ sin−1[sin(kxx+ φx)] (5.16)

Where θ0 is the background detuning, µ is the amplitude of the modulation, kx

is the transverse wavevector and φx is an arbitrary phase shift.

We begin by focusing on two LCS in an initially phase locked state and with

a round trip time, τf = 0.05ns . The two LCS are created from the same pro�le,

but with a phase shift of π. They are then allowed to relax in localised traps to

prevent the repulsive force between the LCS inducing motion. Once the system

is relaxed, and the phases of the LCS are locked, the defects are switched to a

triangular modulation of the detuning, with each cavity soliton at approximately

equal distance from the minima.

Figure 5.13 shows an example of the evolution of the motion towards the com-

mon minimum. In �gure 5.13 (c), we see that the LCS have merged. Immediately

before merging, the LCS begin to destabilise, and oscillate brie�y.

Figure 5.13: Collision of two LCS at the minimum of the detuning modulation.
The initial condition is shown in (a) at time t = 0ns, (b) t = 185ns and (c) t =
555ns. The LCS merge after their initial collision. Parameters are τf = 0.05ns,
µ = 2.5, kx = 2.5 × 10−2 and φx = −1.6. Other parameters are those of �gure
3.9

Now the e�ect of a longer external cavity length is examined. For this purpose,

we use a round trip time of τf = 0.41ns. Again, two LCS are created from a single

pro�le with a phase shift of π between them. The LCS are allowed to relax in

two localised defects of the detuning, before switching to a periodic modulation.

This time, when the LCS collide with each other, they �rst oscillate but then

annihilate each other, leading to a homogeneous �o�� state, as shown in �gure

5.14.
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Figure 5.14: Collision of two LCS at the minimum of the detuning modulation.
The initial condition is shown in (a) at time t = 0ns, (b) t = 160ns and (c)
t = 555ns. The LCS annihilate after their initial collision. Parameters are τf =
0.41ns, µ = 2.5, kx = 2.5 × 10−2 and φx = −1.6. Other parameters are those of
�gure 3.9

5.4.3 Interactions of laser cavity solitons pinned by local

defects

Experimentally, the use of a completely homogeneous background is not physi-

cally realistic. Fluctuations during the epitaxial growth process produce localised

material defects which pin the LCS to speci�c locations in the transverse plane

of the VCSEL. In order to represent the experimental con�guration more real-

istically, we introduce localised defects into the detuning of our VCSEL. This

then allows us to examine the properties of the LCS in a more physically realistic

setting.

To simulate these defects, three new parameters are introduced in the numer-

ical simulations. The �rst is the distance between the �rst and second defect

(i.e. the distance between the stationary LCS after relaxation), the second is the

width of the defect and the third is the depth of each defect as simulated by a

localised change in detuning. In order to pin the LCS, we use a negative change

in the local detuning. Positive changes in the values of the local detuning do not

pin the LCS as desired. An example of the detuning pro�le is shown in �gure

5.15.

As the position of the LCS is now �xed, the phase plane shows similar be-

haviour to that of �gure 5.12 without the repulsion. The phase of the two LCS

quickly evolves to a locked state with a phase di�erence Φ = π. It should be

noted that since local defects prevent the motion of LCS, merging or annihilation

of spatial solitons (such as those shown in �gures 5.13 and 5.14) is not possible

in the trapped con�guration.
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Figure 5.15: An example of the localised defects built into the detuning of the
VCSEL with FSF.

Adler locking between two laser cavity solitons

By varying the change in the local detuning of one defect with respect to the

other, it is possible to control the value of the phase at which the two LCS

lock. Such behaviour is described by the Adler model, which has relevance in

biological clocks, chemical reactions and mechanical and electrical oscillators. In

optics frequency locking of the Adler type has been observed in lasers with injected

signals for a long time [69] with more recent generalisations to coupled lasers [70],

the spatio-temporal domain [71], quantum dot lasers [72] and frequency without

phase lockings [73].

The archetypal equation describing synchronization between the coupled os-

cillators is the Adler equation [74, 75],

dΦ

dt
= ∆ω + ε sin(Φ) (5.17)

where in-phase and anti-phase solutions are selected for zero detuning, ∆ω = 0,

depending on the sign of the coupling parameter ε: for positive ε the �nal stable

state is Φ = π; for negative ε it is Φ = 0. A comparison of the results of the Adler

equation with positive ε and simulations of the synchronisation of LCS in the

model with FSF and a more generic cubic complex Ginzburg Landau equation, as

shown in [66], are presented in �gure 5.16. The agreement is remarkable. In-phase

and out-of-phase values have already been observed in numerical simulations of

LCS in cubic-quintic complex Ginzburg Landau equations with regular variations
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of the background [76, 77, 78] although no Adler scenario is suggested.
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Figure 5.16: Locked phase di�erences Φ of pinned LCS for di�erent frequency
detunings (controlled by the potential depths θ1 and θ2) from integration of the
cubic complex Ginzburg Landau equation as described in [66] and of the model
with FSF. The solid line refers to the Adler equation 5.17.

To characterise the Adler locking both in the spatial and temporal domains,

we display the time averaged far �eld images in the �rst column of �gure 5.17,

the optical spectra in the second column of �gure 5.17 and the evolution of the

phase in the third column of �gure 5.17 for two points inside the locking range

(∆ω/∆ωth = 0 and 0.99) and two outside the Adler region (∆ω/∆ωth = 2 and

7.5), respectively. Far �eld fringes are well de�ned in the region where the LCS

are locked in frequency (see the full overlap of the soliton peaks in the frequency

spectrum in �gures 5.17 (b) and 5.17 (e)) indicating a strong interaction. For

detunings just outside the Adler locking region some phase and spectral correla-

tion survives due to non-uniform evolution of the phase (�gures 5.17 (g), 5.17 (h)

and 5.17 (i)). For detunings much larger than the locking range, however, the

fringe visibility disappears (�gure 5.17 (j), 5.17 (k) and 5.17 (l)). In particular,

we note that the separation of the frequency in spectra for the individual LCS

has separated further and the phase evolution is almost linear and continuous

(�gures 5.17 (k) and 5.17 (l)).

The Adler locked state between LCS is a robust feature independent of initial

phases, frequencies and sequential order of creation of the two LCS. Once the

locked state is attained, one of the two LCS can be switched o� by a short,

localised perturbation to the carrier density at its location. Hence, LCS retain

their solitonic properties in the phase-locked state in the sense that they are still

individually bistable and optically controllable.
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Figure 5.17: Far �eld images (a, d, g and j) averaged over 2µs, optical spectra (b,
e, h and k) for a time window of 5µs and evolution of the phase di�erence (Φ) (c,
f, i and l) for ∆ω/∆ωth = 0 (a-c), 0.99 (d-f), 2.0 (g-i) and 7.5 (j-l). In (b) and
(e) the laser cavity soliton peaks (dashed and solid lines) overlap.
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Interactions between three laser cavity solitons

We now brie�y examine the e�ects of introducing a third laser cavity soliton to

the system. As discussed previously, two LCS can lock in frequency and phase

with respect to each other. When these LCS are pinned by localised defects of

the detuning, the position becomes �xed and the phase di�erence locks in the

range −π/2 ≤ ∆ω ≤ π/2. Here we study three LCS pinned by defects of equal

depths (∆ω12 = ∆ω13 = ∆ω23 = 0), to examine the e�ect a third laser cavity

soliton has on the phase of the other two. This is achieved by using a single cavity

soliton pro�le (carrier distribution, VCSEL �eld and feedback �eld), shifting it

to the left and right by the desired distance, and adding the new pro�les to the

original cavity pro�les. Figure 5.18 shows the three LCS used for this purpose.

From this, the phase at the peak of CS1 is φ1, CS2 is φ2 and CS3 is φ3.
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Figure 5.18: An example of three LCS, pinned by traps of equal depth to allow
a study of the e�ects a third cavity soliton has on phase locking.

When the third laser cavity soliton is introduced, we �nd that the two outer

peaks of �gure 5.18 lock with phase di�erence Φ13 = φ1 − φ3 = 0, as expected.

However the third cavity soliton has the e�ect of changing the phase di�erence

between the outer two and the inner cavity soliton away from π, resulting in

and phase di�erence Φ12 = Φ32, ̸= π, where Φ12 = φ1 − φ2 and Φ32 = φ3 −
φ2. We �nd the value of the phase di�erence becomes Φ12 = Φ32 ≈ 1.1π,

i.e. the value is close to π but is experiencing a shift due to the e�ect of the

interactions between the outer two LCS. Figure 5.19 shows the evolution of the

phase di�erence between the three LCS. This shows that there is an interaction

between the outer two LCS, although the e�ect is weaker than that between the

nearest neighbours.
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Figure 5.19: An example of three LCS, pinned by traps of equal depth to allow
a study of the e�ects a third cavity soliton has on phase locking. In (a) we show
the phase di�erence Φ12 = ∆φ1 − ∆φ2, (b) shows Φ32 = ∆φ3 − ∆φ2 and (c)
shows Φ13 = ∆φ1 − ∆φ3.
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5.5 Conclusions

We have shown that cavity soliton interactions can vary greatly in di�erent sys-

tems. In the laser with optical injection, a collision between two LCS results in

merging, regardless of the phase gradient and therefore velocity. It has also been

shown that before and after merging events energy �ow in the system is balanced,

while during merging there is an initial brief absorption of energy followed by it's

release as a pulse of light.

In the Kerr cavity, cavity soliton collisions can have one of three results. The

�rst is a state of pure merging, where the �rst cavity soliton merges with the

structure at the peak. The second is a state of pure locking, where the �rst locks

with the structure at the peak. The third is a state of locking and merging, where

the �rst cavity soliton locks with a multi-peaked structure at the phase maxima

and another peak merges as a result. This is due to the multi-soliton solution

created by introducing another peak being unstable and the system rearranging

itself accordingly.

In the laser with FSF, interactions are more complex due to the fact that the

frequency and phase of each cavity soliton can di�er from that of its neighbour.

We have shown that, for realistic values of the linewidth enhancement factor, two

LCS on a homogeneous background initially lock with a phase di�erence Φ = π,

before repelling each other, possibly towards an unstable saddle.

Collisions in this case require a gradient to overcome these repulsive e�ects,

and the results have been varied. We have found that for LCS with a shorter

external cavity, the two merge to form a single structure at the minimum of

the detuning. However for an oscillatory cavity soliton with a longer external

cavity, the two peaks destabilise, resulting in the annihilation of both structures.

This is most likely due to the fact that the LCS lock to a phase di�erence Φ = π

fairly quickly. When coupled with the longer cavity used to allow oscillations, the

phase of the feedback remains locked at Φ = π for longer than that experienced

in the shorter cavity and the two LCS essentially act as an erasing beam with

respect to each other. Note that no merging or annihilation can take place in the

case of conservative solitons. These features are then intrinsically associated to

dissipation.

LCS pinned by localised defects remove the repulsive behaviour observed in

the homogeneous case and allow for a setup that is closer to that observed exper-

imentally. When the depth of one trap is varied with respect to the other, the

LCS display Adler type phase locking until a threshold limit is reached, at which

point the frequency and phase of each laser cavity soliton unlocks from that of
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its neighbour. When a third laser cavity soliton is introduced, we observe that

while the outer structures lock with a phase di�erence Φ13 = 0, they lock with

the inner structure with a phase di�erence Φ12 = Φ32 ≈ 1.1π. This indicates

that the outer two LCS are not only interacting with the inner structure but also

with each other.
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Chapter 6

Oscillations, pulsing and mode

locking of laser cavity solitons

6.1 Introduction

Oscillations of Laser Cavity Solitons (LCS) is a relatively new subject. This due

to the fact that, while the existence of localised structures in systems designed

without an injected �eld were predicted some time ago [60], CS lasers have only

been realised in recent years [39, 51, 79]. In [51], the system consists of two

VCSELs mounted in a face to face con�guration. The �rst VCSEL operates

above threshold while the second operates below, acting as the saturable absorber.

Recent numerical simulations of a model based on this system have revealed the

existence of pulsed regimes which can be accessed by increasing the ratio between

the carrier lifetime of the active and passive VCSELs [80].

In this chapter we study oscillations and pulsing of LCS in a model and in com-

parison with experiments of a VCSEL with Frequency Selective Feedback (FSF).

For convenience, the model equations of the VCSEL with FSF are reproduced

here:

∂E

∂t
= − (1 + iθ)E + i∇2E − iσ (α + i) (N − 1)E +

2
√
T1

(T1 + T2)
F

∂N

∂t
= −γ

[
N − J + |E|2 (N − 1)

]
F (t) = e−iδτf Ĝ

(
t− τf

2

)
[−r1F (t− τf ) + t1E (t− τf )]

Ĝ(t)[h(t)] =
rg
2β

∫ t

t−2β

eiΩg(t′−t)h(t′)dt′

Ĝ(ω)[h(ω)] = rge
−iβ(Ωg−ω)sinc(β(Ωg − ω))h(ω) (6.1)
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where E and N are the dynamic �eld and carrier distributions respectively, θ is

the detuning, α is the linewidth enhancement factor, σ is a coupling constant,

T1 and T2 are the transmittivities of the VCSEL mirrors, J is the current, γ is

the decay rate of the carriers, i∇2E describes di�raction in the laser cavity, τf

is the external cavity round trip time, δ is the detuning of the external cavity

to the reference frequency, r1 and t1 are amplitude re�ection and transmission

coe�cients, rg is the re�ection coe�cient of the Volume Bragg Grating (VBG),

Ωg is the central grating frequency with 1/β as the re�ected bandwidth.

For the model of a laser with FSF, an initial study of LCS oscillations is

presented in [29]. In the example given, the re�ection coe�cient of the volume

Bragg grating, rg, is used as a control parameter with a short external cavity

of round trip time τf = 0.05ns, corresponding to an external cavity length of

0.75cm. Using such a short external cavity length has the advantage of providing

a larger mode spacing of the frequencies of the external cavity, in this case a

spacing of ∆ν = 20GHz. The re�ectivity of the volume Bragg grating is initially

set to rg = 0.79 and a stable, single frequency CS is observed with frequency

ω ≈ 17.2GHz. On increasing the re�ectivity of the end re�ector to rg = 0.85, a

new single frequency CS with frequency ω ≈ 2.0GHz appears. This new CS exists

in the band of modes adjacent to that containing the original, corresponding in

physical terms to a frequency hop between the adjacent external cavity modes.

When an interim value of the re�ectivity of the volume Bragg grating is se-

lected, in this case rg = 0.83, the CS contains frequencies corresponding to both of

the above external cavity modes, it contains frequency components from both of

the single frequency CS described above, resulting in intensity oscillations. Sim-

ilar results have been observed experimentally. In the experimental case, control

parameter becomes the pump current,J , and by increasing the current, one can

move from a region where a single frequency soliton exists, to a region where two

(or more) external cavity modes are excited before returning to a single frequency

state [81].

This phenomenology appears to be quite general and analogous to observa-

tions of a laser with transverse modes when changing the cavity length [82],

although in the case of the laser with FSF, single transverse mode solutions cor-

respond to single frequency CS. Increasing the cavity round trip time has the

consequence of generating sideband instabilities of the single frequency CS fol-

lowed by the eventual appearance of a new single frequency solution in an adjacent

external cavity mode.

As a consequence of the oscillating regimes observed in a laser with frequency
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selective feedback, the possibility exists for the detection of mode locked CS

oscillations and pulsing. Here we brie�y reexamine the external cavity of the

VCSEL with FSF before describing the method used to determine if the CS are

indeed mode locked.

The VCSEL used in the experimental realisation and the models described in

the thesis, while having a large transverse diameter ( 200µm), have a relatively

short longitudinal length. The longitudinal length is typically 1 � 3λ. For this

reason, the typical VCSEL has only one principle longitudinal mode on which it

can lase, since the spacing between the laser modes is large. The external cavity,

on the other hand, is relatively long. In this thesis we have thus far examined

round trip times of τf = 0.05ns to τf = 0.41ns equating to external cavity

lengths of approximately 0.75cm to 6cm. Experimental realisations have exam-

ined longer external cavities measuring approximately 15cm [50]. As explained

in previous chapters, the strong feedback provided by the Volume Bragg Grating

(VBG) can lower the VCSEL lasing threshold and can force the VCSEL to lase

on di�erent modes which become governed by the external cavity length. Figure

6.1 (a) shows an example of the external cavity. Note that wave shown in this

�gure is for illustrative purposes only and with the external cavity lengths exam-

ined, there typically exists approximately 104 � 105λ, where λ is the wavelength

of the light.

(a)

M2M1

L

 

c/2L

f

(b) (c)

f

Figure 6.1: An example of the external cavity (a), the mode structure (b) and
relative modes within the response range governed by its length (c). In (a) the
wave shown is for illustrative purposes only while M1 and M2 are the VCSEL
output coupler and VBG in this example.

From �gure 6.1 (a), the mode separation and, ultimately, the modes relevant

to the speci�c cavity length chosen can be described. These are shown is �gure

6.1 (b) and (c). The mode structure is governed by:

∆f =
c

2L
=

1

τf
(6.2)

where ∆f is the external cavity mode spacing, L is the external cavity length, τf
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is the external cavity round trip time and c is the speed of light.

In [83], mode locking is de�ned by comparing the sum of the spectral broad-

enings, νi, of the modes in the optical spectrum with respect to that of the

broadening in the RF spectrum, ∆νRF , as described in equation 6.3.

∆νRF ≪
M∑
i

∆νi (6.3)

Where M is the total number of longitudinal modes in the optical spectrum and

∆νi is the broadening of the ith mode in the optical spectrum. The criterium

states that if the device is passively mode locked, the FWHM linewidth of the

RF signal is much smaller than the sum of the spectral linewidths corresponding

to all M of the main optical modes [83, 84].

Here we attempt to reproduce the experimental measurements using our

model of a VCSEL with FSF. To this end, we �rst describe LCS oscillations

in models of a VCSEL with FSF in section 6.2. We �rst examine peak oscil-

lations of LCS due to unlocking of external cavity modes, before detailing our

search for mode locked oscillations. Next we detail the results on the search for

CS pulses and, in particular, for fully self localised three dimensional pulses as

described in section 6.3. For each case, we explore the possibility of mode locking

in such regimes. Finally, we present experimental results [81, 85] performed by

T. Ackemann and N. Radwell for comparison with the numerical results.

6.2 Peak oscillations of laser cavity solitons in mod-

els of VCSELs with frequency selective feed-

back

Here we describe peak oscillations of CS in VCSELs with FSF. Such oscillations

correspond to amplitude �uctuations in the peak of the CS. These oscillations

are caused by an unlocking of the CS from the single frequency solution where

there is only one external cavity mode operating, to a regime where multiple

external cavity modes are excited, �rst described in [29]. As such, depending on

the number of external cavity modes active in the CS spectrum, these oscillations

can be either (almost) regular in time or they can become irregular to the point

where chaotic oscillation dynamics are observed.
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6.2.1 Peak oscillations due to unlocking of external cavity

modes

As detailed above and in [29], a suitable control parameter can be used to move the

system between stable single frequency solutions and multi frequency solutions.

Here we focus on two values of the round trip time of the external cavity, τf =

0.41ns and τf = 0.28ns, to induce oscillations, with �xed values of the other

parameters. We introduce �gure 6.2, showing the threshold current for the new

regime with τf = 0.28ns. As before, the gap indicated by the horizontal dashed

lines represents the region where both the homogeneous background state and

the patterned state are stable.
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Figure 6.2: Plot of the threshold current as a function of frequency close to
the grating frequency. Here τf = 0.28ns. The gap indicated between the two
horizontal dashed lines shows the region where bistability exists between the
homogeneous and patterned states. Other parameters are as shown in �gure 3.9.

We begin with the case of an external cavity round trip time, τf = 0.41ns. In

�gure 6.3 (a), the intensity at the peak of the CS is presented for a duration of 30ns

after transients have been discarded. These show that the CS is spatially stable

and temporally oscillating. Figure 6.3 (b) shows the intensity of the peak of the

CS over a shorter time period of (5ns), which shows reasonably regular oscillations

as the CS evolves. Figure 6.3 (c) shows the time-frequency spectrogram taken for

the peak of the CS. It is clearly visible that, in addition to the main CS frequency,

weak side modes are generated, providing the mechanism for oscillations. For a

description of the de�nition and numerical implementation of the spectrogram,

see section 3.3.2.

Now we shorten the external cavity round trip time to τf = 0.28ns and repeat

the above procedure. We introduce �gure 6.4 (a) showing the CS peak intensity

over a duration of 30ns, while �gure 6.4 (b) shows the same intensity over a shorter
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Figure 6.3: An oscillating CS in the VCSEL with FSF for τf = 0.41ns. In (a) the
CS peak intensity is plotted as a function of time, over 30ns while (b) shows these
oscillations over the shorter period of 5ns. In (c) the time-frequency spectrogram
of the CS is presented. Other parameters are as �gure 3.9.
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time period of 5ns. From these �gures, we can see the CS oscillations are both

sustained and reasonably regular. Figure 6.4 (c) introduces the time-frequency

spectrogram for this simulation. We can clearly see one dominant mode and two

fairly strong side modes, surrounded by approximately 5 weak side modes.

6.2.2 Search for mode locked oscillations

We now examine the possibility of these oscillations being mode locked. We

consider the mode locking criteria as set in section 6.1, and in particular, in

equation (6.3). For the case of the stable CS oscillations at τf = 0.41ns, we

integrate the model equations (6.1) over a long time (t = 1µs), with a sampling

rate of 200GHz, corresponding to an output every 5ps. Figure 6.5 (a) shows

the RF spectrum obtained from these numerical simulations while �gure 6.5 (b)

shows the optical spectrum.

We can clearly see from the �gure 6.5 (b) that three external cavity modes

are excited, one central mode and two weak side modes. From �gure 6.5 (a),

the linewidth of the RF spectrum ∆νRF = 3MHz and �gure 6.5 (b) shows the

sum of the broadenings
∑M

i ∆νi ≈ 9MHz. With reference to the mode locking

criteria detailed previously ∆νRF ̸≪
∑M

i ∆νi and therefore the oscillations are

not mode locked.

Subsequently, we examine the oscillations observed with the shorter external

cavity, τf = 0.28ns, for mode locking against the same criteria. Again, we

integrate our model for 1µs with a sampling rate of 200GHz. Figure 6.6 (a)

shows the RF spectrum obtained while �gure 6.6 (b) shows the optical spectrum.

We can clearly see that there is one central mode with several weak side modes.

The linewidth of the RF spectrum for this case is measured as ∆νRF ≈ 30MHz,

while the sum of the optical broadenings is measured to be
∑M

i ∆νi > 300MHz.

From this we conclude that, for this con�guration, the peak oscillations of the

LCS are mode locked as ∆νRF ≪
∑M

i ∆νi.

6.2.3 Noisy peak oscillations in the presence of local defects

in the VCSEL detuning

We now return to an external cavity round trip time of τf = 0.41ns, and intro-

duce a pinning defect, as described in section 5.4.3. In this regime, by introducing

an appropriate detuning, we can move from a region where there is bistability,

to a region where an oscillating pattern is observed. The use of a localised de-

fect allows us to study temporal oscillations that are transversally localised by
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Figure 6.4: An oscillating CS in the VCSEL with FSF for τf = 0.28ns. In (a) the
CS peak intensity is plotted over a 30ns time scale, while (b) shows the CS peak
intensity over a 5ns time scale. Panel (c) shows the time-frequency spectrogram
of the CS presented in (a) and (b), taken over a 60ns period. Other parameters
are as �gure 3.9.

131



-15 -10 -5 0 5 10 15
-2.0

-1.5

-1.0

-0.5

0.0

0.5
(a)

R
F 

Sp
ec

tru
m

 (l
og

10
 sc

al
e)

Frequency (GHz)
-20 -10 0 10 20 30

-2.0

-1.5

-1.0

-0.5

0.0

0.5
(b)

O
pt

ic
al

 S
pe

ct
ru

m
 (l

og
10

 sc
al

e)

Frequency (GHz)

Figure 6.5: The RF spectrum, (a), and the optical spectrum, (b) are presented
here. Results are taken from simulations over 1µs with an output every 5ps. The
external cavity round trip time is 0.41ns and other parameters are those of �gure
3.9.
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Figure 6.6: The RF spectrum, (a), and the optical spectrum, (b), are presented
here. Results are taken from simulations over 1µs with an output every 5ps. The
external cavity round trip time is 0.28ns and other parameters are those of �gure
3.9.
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the defect, a situation that is commonplace in experiments. We introduce �gure

6.7 (a), showing the noisy peak oscillations over a duration of 100ns after tran-

sients have been discarded. In �gure 6.7 (b) and (c), the RF and optical spectra

are displayed respectively. Here we can clearly see more modes excited in the op-

tical spectrum when compared to �gure 6.5. Further, we calculate the linewidth

of the RF spectrum to be ∆νRF = 3MHz while the sum of the broadenings of

the optical spectrum is
∑M

i ∆νi > 1000MHz. Therefore we conclude that these

noisy oscillations are mode locked in this con�guration.

6.3 Pulsing regimes in a laser with frequency se-

lective feedback

The search for full three dimensional self localisation is currently of great interest

[86]. In this section we present our results on this topic. To begin with, we

introduce two values for τf which are exclusive to this section. As such, we

present �gure 6.8, which shows the threshold current as a function of frequency

for our new values, τf = 1.1ns, corresponding to an external cavity length of

16.5cm, and τf = 0.1ns, corresponding to an external cavity length of 1.5cm.

We begin with the external cavity round trip time, τf = 1.1ns. Presented in

�gure 6.9 are the dynamics of these simulations. In (a), we show the envelope,

while (b) shows an enlarged section highlighting the pulses. It is clear from these

�gures that the CS amplitude either returns to the background state or comes

very close to it. Further, it can also be shown that these pulses have a period of

tp ≈ 1.1ns, therefore τf ≈ tp. The time-frequency spectrogram shown in �gure

6.9 (c) shows many external cavity modes are contributing to these pulses.

The drawback of this regime, though, is the fact that these pulses are a tran-

sient behaviour of the system. The long term implication is that these pulses die

out after a few hundred nanoseconds and the system returns to the background

state.

We now move to a shorter external cavity of round trip time τf = 0.10ns.

Here we observe CS pulses with more regularity. Figure 6.10 shows the results

obtained with this value of τf . In �gure 6.10 (a) we show the that the oscillation

of the LCS is asymptotically stable by displaying the peak intensity over 60ns.

Figure 6.10 (b) shows the oscillations over a shorter time of 2ns, which shows the

general shape of the pulses is much smoother than that shown for τf = 1.1ns.

Finally, �gure 6.10 (c) shows the time-frequency spectrogram, again taken at the

peak of this CS. Here we observe the existence of two strong modes with three
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Figure 6.7: The peak oscillation (a), the RF spectrum (b) and the optical spec-
trum (c) of a localised structure, con�ned transversely by a local pinning defect.
Here the local detuning in the defect is θt = −1.825 while the background de-
tuning is θ0 = −1.0. The external cavity round trip time is τf = 0.41ns and
other parameters are those of �gure 3.9.
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Figure 6.8: Plot of the threshold current as a function of frequency close to the
grating frequency. Here, (a) shows τf = 1.1ns while (b) shows τf = 0.10ns.
The gap indicated between the two horizontal dashed lines shows the region
where bistability exists between the homogeneous and patterned states. Other
parameters are as shown in �gure 3.9.

weak side modes participating in the dynamics of the pulsing. The oscillation has

an excursion larger than that of section 6.2 but it does not show long intervals

around zero, as �gure 6.9.

6.3.1 Search for mode locked pulses

Due to the short time scales on which the pulses exist, it is not possible to

accurately determine if the pulses with τf = 1.1ns are indeed mode locked using

the criteria set out at the start of this chapter. Therefore we concentrate here on

the case where τf = 0.1ns. We integrate the device equations over a long time

period (t = 1µs), with a sampling rate of 200GHz. Figure 6.11 (a) shows the RF

spectrum and �gure 6.11 (b) shows the corresponding optical spectrum obtained

from these simulations.

We can clearly see from �gure 6.11 (b) six groups of modes, each with at least

ten contributing modes. The two groups of modes between −5GHz and 10GHz

which make up the strongest contribution with four weak groups of side modes,

in agreement with �gure 6.10 (c). We calculate, from �gure 6.11, the linewidth

of the RF spectrum to be ∆νRF ≈ 30MHz and the sum of the broadenings of

the optical spectrum to be
∑M

i ∆νi ≫ 300MHz. From this, we can clearly see

that these oscillations are mode locked as ∆νRF ≪
∑M

i ∆νi.
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Figure 6.9: An oscillating CS in the VCSEL with FSF for τf = 1.1ns. In (a) the
CS peak intensity is plotted as a function of time over 30ns, while (b) shows the CS
peak intensity plotted over 5ns. In (c) we show the time frequency spectrogram
of the CS presented in (a). Other parameters are those of �gure 3.9.
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Figure 6.10: An oscillating CS in the VCSEL with FSF for τf = 0.1ns. In (a)
the CS peak intensity is plotted as a function of time plotted over 60ns, while (b)
shows the CS peak intensity plotted over 2ns. In (c) we show the time-frequency
spectrogram of the CS presented in (a). Other parameters are those of �gure 3.9.
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Figure 6.11: The RF spectrum, (a), and the optical spectrum, (b), are presented
here for τf = 0.1ns. Results are taken from simulations over 1µs with an output
every 5ps. Other parameters are those of �gure 3.9.

Figure 6.12: Experimental results obtained with a long external cavity with round
trip time τf = 1.1ns. In (a) we see strong pulsing at the start of the experiment,
while (b) shows noisy oscillations in the later stages.

6.4 Experimental results

We now brie�y discuss experimental results by N. Radwell and T. Ackemann and

that are useful to compare with the numerical simulations of the peak oscillating

and pulsing regimes [81, 85]. The experiments are performed with a long external

cavity corresponding to a round trip time around τf = 1.1ns. In �gure 6.12 the

early (a) and later (b) stages of the peak intensity of an experimental LCS with

FSF are displayed. Initially we observe transient oscillations (�gure 6.12 (a)).

This is in agreement with the numerical results, although as the experiment

continues, noisy peak oscillations are observed instead of the disappearance of

the LCS. The initial strong pulsing is determined to be mode locked, while the

�nal noisy oscillations are not.

Next, we introduce the experimental results for a shorter external cavity, with

round trip time τf = 0.61ns. In �gure 6.13 (a) and (b) we show the pulsing
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Figure 6.13: Experimental results obtained with a shorter external cavity with
round trip time τf = 0.61ns. In (a) we see fairly well de�ned pulsing over a
duration of 10ns, while (b) shows the envelope over 500ns.

regime over a duration of 10ns and 500ns respectively. There are clear pulses

that are fairly well de�ned in panel (a) while panel (b) shows these pulses are

not of a transient nature. Further, the envelope presented in panel (b) shows

some resemblance to that shown for the numerical results with an external cavity

round trip time τf = 0.1ns, shown in �gure 6.10. Finally, for this con�guration,

the RF linewidth is measured as ∆ν = 5.5MHz while the sum of the broadenings

of the optical modes is
∑M

i ∆νi ≥ 30MHz. We therefore conclude that there are

indications of incomplete mode locking for this con�guration.

6.5 Conclusions

In this chapter we have successfully shown both oscillating and pulsing LCS.

These phenomena are typically not observed in models based on a driven cavity.

Beginning with the oscillations, we have shown that these are present for di�erent

external cavity lengths, and the external cavity length can assume an important

role in governing these oscillations. Further, for the shorter external cavity length,

τf = 0.28ns, we have observed mode locked oscillations.

Fully localised three-dimensional CS pulses are an active area of exploration.

We show pulses in the laser with FSF, again for two external cavity lengths.

Firstly we introduce pulsing in a long cavity, comparable to that used during

similar experimental research. This shows interesting pulsing e�ects with con-

tributions from many external cavity modes however we also note that these

oscillations appear to be a transient e�ect. For a shorter cavity, however, we ob-

served well de�ned stable and regular peak oscillations, whose intensity returns

either to zero or very close to zero during each round trip. We show that there
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are approximately �ve or six groups of modes in operation and we note the pulses

are separated by approximately 0.12ns. This separation is close to the external

cavity round trip time and can be explained by the fact that the VCSEL �eld

evolves on a similar time scale, typically 0.01ns. Further it is also shown that

these pulses are mode locked. Therefore, we conclude that these pulses are well

con�ned transversally, display large intensity modulations and are mode-locked.

They are a good candidate for the so-called `light bullets.'
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Chapter 7

Conclusions

In this thesis we have investigated the dynamics and interactions of Cavity Soli-

tons (CS) in photonic devices. Our study focused on three models of optical

systems, a laser with optical injection, a laser with Frequency Selective Feedback

(FSF) and a driven Kerr cavity. We have started with the establishment of CS

in all three systems, by use of a spatially localised writing beam with a duration

that can be controlled by the operator. We shown how CS can be erased in these

systems and generally that there is bistability between the background �o�� state

and the CS �on� state.

Our CS are optically controllable, by using an appropriate optical gradient

in the system. Where possible, control of the position is best achieved by using

a gradient in the phase of the optical injection, as this allows for faster drift

velocities to be achieved. It is not always possible, however, to control the phase

of an optical injection. In particular, systems based on a laser with FSF have no

optical injection in which to manipulate. In this case, a gradient can be introduced

to the detuning between the laser frequency and the reference frequency. This

again allows for drift in the desired direction and is also compatible with systems

with optical injection such as the Kerr cavity and the driven laser.

We have shown the e�ects of collisions between CS in all systems, with each

system behaving in its own unique way from each other. For the laser with optical

injection, when two (or more) CS collide we exclusively see merging. This occurs,

even when the CS are drifting with a low velocity, on a slight gradient. In the Kerr

cavity, we observe three di�erent types of behaviour, which can be controlled by

varying the applied gradient. We have shown that we can move between regions

where the CS merge, where they lock and where we can observe both locking and

merging. In both these systems we have also shown that there is energy balance

in the system both before and after the CS interactions, as one would expect.
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However during the interaction, we see a clear violation of this energy balance

with an initial increase in energy in the system before this energy is released and

the system returns to the equilibrium value. The laser with FSF shows that we

can observe merging or annihilation of the two CS, leaving either one or no CS,

respectively.

Further, in the laser with FSF, we have shown that the CS tend to lock their

phases, with a phase di�erence of π between them for our chosen parameters.

This locking causes the CS to repel each other. Other parameter regions can of

course exhibit phase locking with 0 phase di�erence, which we expect would allow

attraction between the two CS. Further, the CS can be pinned by localised defects.

This is a common problem experimentally which we simulate by introducing

localised defects in the detuning of the laser. This pins the CS in place however

they are still able to lock with π phase di�erence. We have successfully shown

Adler type locking between the two pinned CS when we vary the `depth' of one

of the traps with respect to the other.

We �nally introduce CS oscillations and pulsing in our model of a laser with

FSF. We have shown that these oscillating and pulsing regimes can be controlled

by varying the length of the external cavity in this system. We have shown that

the oscillations can be fairly regular although irregular regimes also exist. These

oscillations can be either mode locked or unlocked for di�erent external cavity

lengths. We have introduced transient pulses with an irregular shape when the

system has a long external cavity and also sustained pulses with a much more

regular shape for a shorter external cavity length. It has also been shown that

these pulses are mode locked for the case of the short external cavity length.

Further, on measurement, we �nd the time between the pulse to be approximately

equal to that of the round trip time, indicating that these pulses may indeed be

fully self localised three dimensional pulses or �optical bullets.�

7.1 Applications based on the properties of these

cavity solitons

We now revisit the motivation for the research included in this thesis. In chapter

1, two applications were introduced which would lend themselves well to the prop-

erties of CS. Here we discuss these properties and introduce a third applications

based on some of the properties discussed in this thesis.
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7.1.1 All-Optical Delay Line

The all-optical delay line is well suited to CS, as discussed in [20]. The CS can be

written, drift across the transverse plane of the cavity on an optical gradient to

be read out and erased. We propose that the read out and erasing procedures can

be achieved using CS merging. In the laser with injection, we have shown that

the energy balance in the system is violated during the merging process leading

to a pulse of light being emitted from the device. This pulse can be used in place

of the read-out operation, where a pulse obviously represents a �1� and no pulse

represents a �0.� Further, the CS is automatically erased during the merging

process, removing the need for a separate erasing beam completely [21].

7.1.2 Optical Memories

CS are well suited to the storage of data in optical memories. They can be written

and erased independently, at �xed locations in the VCSEL. We propose that the

use of a periodic modulation is an ideal method of pinning CS in such a device.

Any CS which is written slightly o� the correct maxima would automatically

reposition itself. Further, merging can introduce a method of error checking.

Where a CS is written in an incorrect location, i.e. where a second CS is already

placed at the maxima, the new CS would travel to the peak and merge. This

merging would release a pulse from the system which could be detected, alerting

the operator to the misplaced CS [21, 26].

7.1.3 Optical logic gates

We propose the use of CS for optical logic gates. The properties in these systems

would lend themselves well to three types of logic gate, the `OR' gate, the `AND'

gate and the `XOR' (exclusive `OR') gate. The properties of these gates are

shown in table 7.1.

Input 1 Input 2 OR AND XOR
0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 0

Table 7.1: Table showing the input and output states of the `OR,' `AND' and
`XOR' logic gates. The �rst two columns show the input while the third show
the respective output for each of the three logic gates.
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For the purposes of the `OR' gate, our laser with injected signal would lend

itself well to its implementation. Two writing beams can be utilised as the input

parameters, and these writing beams should be located at equal distance on either

side of a single peak of a periodic modulation. The CS can then travel to the

peak. If there is a CS at the peak then we have a logical `1' while if there is no CS

we have a logical `0.' Further the `AND' gate can be implemented by detecting

the pulse given o� during the merging process. If a pulse is released from the

system them we have a logical `1' and if no pulse is released then we have a logical

`0.'

The `XOR' would require the laser with FSF. In this system, we have observed

that the interaction of two CS can cause the annihilation of both CS, given the

correct parameters. Here we propose a similar scheme to that described for the

`OR' and `AND' gates, with two writing beams at an equal distance on either side

of a modulation minimum (presuming we are modulating the detuning). If one

CS is written on one side of the minimum, the CS will drift to the minimum and

remain there, providing a logical `1.' However if two CS are written, they would

both drift to the minimum and collide, causing their annihilation and leaving a

logical `0.'

7.2 Future developments

The future of this research remains with further exploration of the parameter

space. In particular, in the model of a laser with FSF, further characterisation of

oscillating and pulsing regimes is required. We have observed regular, sustained

pulsing for a short external cavity with length 1.5cm, which is much shorter than

the experimental realisation. It would be interesting to re�ne our parameters

further to a region which was more similar to the corresponding experiment.

Another parameter which could be explored further in this model is the linewidth

enhancement factor, α. The majority of our results use α = 9.0, however a more

realistic range would be 3.0 ≤ α ≤ 5.0.

Further, in appendix A, we introduce the derivation of the model of a laser

with double injection. This model was derived and has been tested using similar

parameters to those established for the laser with optical injection. Here we

have a system which is unexplored, with very little work completed theoretically.

Initial experiments have indicated the possibility of observing CS sitting on top

of a patterned state with this system, however this has yet to be con�rmed in

this model.
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Appendix A

Derivation of the model of a laser

with double injection

In this appendix, we introduce the derivation of a laser with double injection.

Again, we consider a VCSEL as our laser for the purpose of this derivation. Here

we aim to derive the cavity �eld through the application of the mean �eld limit

(MFL) to the case of a cavity under the action of two injected (pump) �elds. We

start from a generic �eld equation

∂zF +
n

c
∂tF =− αP +

i

2k1
∇2F (A.1)

where F is the �eld in the material, α the susceptibility c the speed of light,

P the polarization, k1 the wave-vector, and ∇2 the transverse Laplacian. The

boundary condition at the entrance of the medium at z = 0 is

F(x, y, 0, t) = eDF
(
x, y, L, t− L− L

c

)
+ TE1(x, y) + TE2(x, y)e

i(∆k z−∆ω t)

(A.2)

where the propagation operator D is

D = lnR− iδ + (L − L)
i

2k1
∇2 (A.3a)

δ =
ωc − ω1

c
L T = 1−R, (A.3b)

with R (T ) the mirror re�ectivity (transmittivity), ωc the closest cavity mode to

the reference frequency, L the length of the medium, L the length of the cavity,

E1 the amplitude of the �rst injection, E2 the amplitude of the second injection,
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and where

∆k = k2 − k1 (A.4a)

∆ω = ω2 − ω1 (A.4b)

are the wave-vector and frequency di�erences between the two injected �elds.

Assuming that the frequency and wave-vector of the second injection are close to

that of the �rst injection so that the refractive index n is the same, we have

∆k =
n ∆ω

c
. (A.5)

Note that the reference system is anchored to the wavelength and frequency of

the �rst injected �eld. Note also that the re�ectivity (transmittivity) R (T ) can

contain distributed losses such as absorptions during the cavity propagation as

long as they do not violate the MFL conditions described later. In the following

we will use the transmittivity of the mirror T as a small parameter.

In order to force the boundary condition (A.2) into the propagation equation

(A.1), the usual MFL transformation is entered

z′ = z (A.6a)

t′ = t+

[
L − L

c

]
z

L
. (A.6b)

Although equation (A.6a) looks trivial, it is there to remind us that z′ is a cyclic

variable from z′ = 0 to z′ = L, the cavity length. Under the conditions (A.6), we

obtain

∂z = ∂z′ +

[
L − L

cL

]
∂t′ ∂t = ∂t′ (A.7a)

∂z +
n

c
∂t = ∂z′ +

[
L − L

cL

]
∂t′ +

n

c
∂t′ = ∂z′ +

[
L+ (n− 1)L

cL

]
∂t′ . (A.7b)

Note that the usual MFL transformation of the time variable leaves a refractive

index dependence in the coe�cient of ∂t′ . By introducing the new �eld variable

F such that

F (x, y, z′, t′) = ΓF(x, y, z′, t′) + TE1
z′

L

+ TE2
z′

L
exp

{
i

[
∆k

(
L+ (n− 1)L

nL

)
z′ −∆ω t′

]}
(A.8)
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with

Γ = exp

(
D
z′

L

)
, (A.9)

we �rst obtain a synchronous longitudinal boundary condition

F (x, y, 0, t′) = F(x, y, 0, t′) = F (x, y, L, t′) (A.10)

and then

∂t′F = Γ∂t′F − i∆ω TE2
z′

L
exp {...} (A.11a)

∂z′F = Γ∂z′F +
D

L

(
F − TE1

z′

L
− TE2

z′

L
exp {...}

)
+ TE1

1

L

+ TE2
1

L
exp {...}+ i∆k

(
L+ (n− 1)L

nL

)
TE2

z′

L
exp {...} (A.11b)

where exp {...} is the exponential in the last term of equation (A.8). This leads

to the dynamical equation for the �eld F

∂t′F +
cL

L+ (n− 1)L
∂z′F

=
c

L+ (n− 1)L

[
D

(
F − TE1

z

L
− TE2

z′

L
exp {...}

)
+ ΓL

(
∂zF +

n

c
∂tF

)
+ TE1 + TE2 exp {...}

]
+ i
(
∆k

c

n
−∆ω

)
TE2

z′

L
exp {...} (A.12a)

=
c

L+ (n− 1)L

[
D

(
Fj − TE1

z

L
− TE2

z′

L
exp {...}

)
+

(
−αLΓP +

iL

2k1
∇2F

)

+ TE1 + TE2 exp {...}

]
. (A.12b)

Note that the last term in E2 coming from the derivatives of the phase shift of

the second injection comes out to be identically zero.

Under the usual MFL assumptions, i.e.

T ≪ 1; δ = O(T ) ≪ 1;

(L − L)/2k1 = O(T ) ≪ 1 (A.13)
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one obtains

D ≈ T

[
−(1 + iθ) + i

L − L

2k1T
∇2

]
Γj ≈ 1 +

D

L
z (A.14)

which, at the �rst order in T leads to

∂t′F +
cL

L+ (n− 1)L
∂z′F

= K

[
− αL

T
P − (1 + iθ)F + ia∇2F + E1

+ E2 exp

{
i

[
∆k

(
L+ (n− 1)L

nL

)
z′ −∆ω t′

]}]
(A.15)

where we have de�ned the �eld decay rate and the di�raction parameter as:

K =
cT

L+ (n− 1)L
(A.16a)

a =
L

2Tk1
. (A.16b)

At this point of the MFL procedure one expands all variables in a Fourier series

of longitudinal modes, considers that longitudinal modes are well separated (this

is particularly true for VCSEL cavities that are extremely short), retains only

the zero-spatial-frequency mode and drops the ∂z′F derivative in the equation

(A.15). However we have an explicit dependence from z′ in the phase of the

second injection. Let us consider such phase term over a single round trip:

∆k

(
L+ (n− 1)L

nL

)
L =

∆k

k1

(
L+ (n− 1)L

nL

)
k1L . (A.17)

If we consider the reasonable assumption

∆k

k1
=

λ1 − λ2

λ2

= O(T ) (A.18)

then the phase shift due to the z′ spatial term of the phase of the second injection

is negligible (O(T )) during a round trip since the length of the VCSEL cavity is

only few times longer than the lasing wavelength. This means that the MFL

procedure described above retains validity since it is correct at order zero in T .

However the small phase shift of the second injection accumulates round trip after

round trip so that it would be incorrect to neglect it on secular time scales. To
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consider it properly on long time scales we write

∆Φ = ∆ω

[(
L+ (n− 1)L

cL

)
z′ −∆ω t′

]
(A.19)

and consider the cyclic nature of the z′ variable. After many round trips

∆Φ = ∆ω

(
nL
c

− t

)
. (A.20)

The �rst term in the parenthesis is of order T while the second keeps increasing

with t. As a consequence after the MFL procedure we can rewrite equation (A.15)

as:

∂tF = K

[
− αL

T
P − (1 + iθ)F + ia∇2F + E1 + E2e

−i∆ω t

]
. (A.21)

The second injection acts as a periodic forcing on the equations with a single

injection. The frequency of the forcing is given by the frequency separation

between the two injections in the limit of small changes of wavelength between

the two injections.
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