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ABSTRACT 

The work presented in this thesis is to improve the evaluation of corneal injuries with the 

aim of eliminating the application of eye stains. In the case of this study, a new algorithm 

of image enhancement, mixture deep learning classification, and a novel mixing kernel 

for support vector machine are proposed to provide objective measurements. The 

proposed algorithms of image enhancement and the mixing kernel in this study are to 

provide a new contribution to knowledge in the field of ophthalmology and machine 

learning. 

To the authors’ knowledge, this is the first analysis of 25 corneal epithelium of porcine 

eyes using hyperspectral imaging combined with image processing algorithm. In addition, 

four series of experiments on the cornea were carried out with and without eye staining 

through the HSI scanning method. The analysis mainly focused on the eyes without 

staining, while the stained eyes were used as the ground truth images for the purpose of 

identifying the injured area. 

In this study, a new 8-Step Hyperspectral Image Enhancement (8-SHIE) was developed 

to differentiate the injured and healthy corneas. The results showed that the proposed 

algorithm was able to clearly highlight the boundary of the injury. This algorithm was 

further tested on the existing remote-sensing Indian Pines dataset in order to ascertain that 

it can work well with other hyperspectral images. Moreover, the algorithm can also be 

used to monitor the cornea healing process considering that the injured boundary can be 

viewed from band-to-band. Overall, it can be concluded that this algorithm is able to 

successfully separates the ten varying classes despite its main purpose of distinguishing 
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the two classes. All the enhanced images are then classified using mixture deep-learning 

technique. 

This study also introduced a novel design of mixing kernels (3-ConvSvm) for binary 

classification in support vector machine classifier. Three standard kernels, namely RBF, 

polynomial, and RQK are combined in order to provide more learning flexibility due to 

the various parameters setting. The algorithms proposed aim to minimise the 

generalisation error during the classification when one or more parameters is tuned. Apart 

from that, the numerical experiments also showed that the new kernel performs similarly 

and sometimes even better than the standard kernels (RBF, polynomial, RQK, mixed two-

kernels). Finally, the results revealed that the performance of 3-ConvSvm able to reduce 

the error loss by tuned the kernel parameters. 
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CHAPTER 1  

INTRODUCTION 

There are various causes of visual defects which can be broadly categorised into 

infectious and non-infectious  [1]. It is estimated that about 285 million people worldwide 

are either visually impaired or blind, out of which, approximately 80% of them are 

thought to have a preventable causes [1]. Blindness inflicted by the diseases of cornea, 

(the outermost layer of the eye) plays a significant role in these statistics, second only to 

cataracts in the overall importance [2]. Nevertheless, the diagnosis of corneal diseases 

remains challenging even amongst eye specialists. Therefore, the advances in the assistive 

technologies for the specialists and non-specialists to detect any corneal disorders at the 

earliest stage possible are crucial in reducing the prevalence of blindness worldwide. 

Hyperspectral imaging (HSI) is a relatively new, yet advanced, biomedical technology 

that combines imaging with spectroscopy. Initially developed for earth remote sensing 

[3], the technology underwent major advances to conform to the different challenges in 

the various industries, including space exploration [4], food safety and quality control [5], 

[6], [7], [8], [9], and archaeology for conservation and authentication [10]. More 

importantly, this technology has recently become an integral part of healthcare, in the 

clinical diagnostics and surgical guidance. 

An excellent example of the viability of this technology in biomedicine is HELICoiD 

[11], a European collaborative project. The project was co-funded by the European Union 

and established to support the HSI technology in real-time detection of malignant primary 

brain tumours during surgery. In addition, HSI has been adopted at a research level in 

quantifying the degrees of skin burns [12], demonstrating its potential role to guide the 
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clinicians in monitoring the healing process of their patients during treatment. In surgery, 

HSI has also been trialled to enhance visualisation during operations by improving the 

tissue visibility [13], [14] and detect local pathological tissues without any invasive tissue 

biopsies [14], [15]. 

There are several ways for an eye specialist to investigate the corneal injuries or diseases. 

Common methods include the slit lamp [16], the confocal microscopy [17], and the optical 

coherence tomography (OCT) [18], [19], all of which require a corneal staining prior to 

the procedures [20]. Despite their usefulness, these methods pose some challenges in the 

real-life setting because they usually involve heavy and complex machinery. Furthermore, 

they are costly and highly operator-dependent whereby a specialist is usually required. 

This thesis has proposed a non-invasive system which could overcome the above 

challenges and allow clinicians to evaluate the corneal epithelial injuries in a more 

objective manner. The overall system has been summarised in Figure 1.1.  

 

Figure 1.1: System block diagram. 

 

1) Data & Image Acquisition, 

Image Processing Analysis 
 

2) Hyperspectral Devices 

3) Sample (cornea epithelium on a 

porcine eye) 

4) Light/Illumination/Radiation 

Source 
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The block diagram comprises four main components: (1) an image acquisition via 

capturing and processing of the image; (2) an imaging device to provide spatial resolution 

and spectral signatures of reflectance; (3) a subject/sample to be observed (the corneal 

epithelium on a porcine eye), and; (4) a light source to ensure sufficient illumination on 

the subject of interest. Further details such as the system set-up and calibration are 

discussed in Chapter 3.  

At present, the dye test (fluorescein, rose bengal, or lissamine green) coupled with the use 

of a slit lamp machine is the most commonly used method to assess the corneal epithelial 

damage. This method allows the clinicians to assess the extent of damage despite often 

without any robust scale or objective measures [21]. The efforts to objectively quantify 

the corneal epithelial cell damage are still scant in the existing literature. 

Therefore, this research proposes the technique of combining HSI and image processing 

as an approach to visualise and classify the normal and abnormal cornea. The research 

aims to provide objective measurements by proposing an image enhancement and mixing 

kernel for classification, which could potentially improve the current investigations for 

corneal injuries and eliminate the application of eye staining. To the best knowledge of 

the author, the findings and the proposed algorithms presented in this thesis could 

contribute to the body of knowledge and provide important insight into the evaluation of 

corneal epithelial injuries using HSI. 
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1.1 Research Objectives – Original Contribution 

This research aims to improve the evaluation of corneal injuries in eliminating the 

application of eye stains, by proposing an image enhancement and design a new mixing 

kernel to provide objective measurements. Currently, it is common clinical practice to 

administer a dye onto a patient’s cornea before performing a cobalt-blue light or a slit-

lamp eye examination. These tests, while useful in diagnosing a corneal problem, may 

cause a great discomfort to the patient.  

This study, therefore, explores the potential of the combination of HSI and image 

processing in visualizing and classifying the normal and abnormal cornea specifically to 

the epithelial layer. The proposed framework illustrated in Figure 1.2 in this thesis to 

study the corneal epithelial injuries using HSI could be a new contribution in the field of 

ophthalmology and optometry.  

  



5 
 

 

 Figure 1.2: Framework fusion of corneal epithelium analysis using hyperspectral imaging 

and image processing algorithms. 
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 Figure 1.2: Cont. 
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 Figure 1.2: Cont. 
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Details explanation about Figure 1.2 is separated into chapter 3, 4, 5, and 6. Chapter 3 

provides a new hyperspectral image collection of cornea epithelium on pig’s eyes.  

Chapter 4 introduces a new algorithms of hyperspectral image enhancement. Chapter 5 

defines mixture deep learning classifier. Chapter 6 designs a novel mixing kernel for 

support vector machine. 

This thesis can be viewed from two perspectives. First, from the perspective of bio-

medical engineering, and second, from the perspective of image processing. This research 

work is the first to describe in detail the use of HSI in investigating the corneal epithelial 

injuries by using the porcine eye. This empirical research provides novel contributions 

through the following: 

From the perspective of bio-medical engineering: 

1 – A new hyperspectral image collection of the cornea would be beneficial to the 

researchers in the eye diagnosis (Chapter 3). 

2 – A new conceptual framework in extracting and analyse data from the corneal tissues 

through the hyperspectral imaging. 

From the perspective of image processing: 

3 – Develop a new 8-step algorithms to enhance image for the analysis of the corneal 

epithelial injuries and named it as 8-SHIE (Chapter 4). 

4 – A technique to classify the injured and healthy corneal epithelium using the Gaussian 

radial basis function in the support vector machine (SVM), as well as the mixture deep-

learning classifier by modifying the network parameters (Chapter 5). 
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5 – A new mixing kernels with three convex combinations for the SVM classifier (3-

ConSvm) (Chapter 6). 

Each of these contributions will be explained in more detail: 

In Chapter 3 of this thesis, a new dataset of hyperspectral images of porcine cornea is 

presented as the first research contribution. Corneal abrasion resulting in a partial loss of 

the epithelium has been chosen as the clinical problem of this research work. The loss of 

the epithelial layer is frequently undetected by the assessors, and is often only visible after 

the corneal surface is treated with diluted 1% fluorescein drops and viewed under the 

cobalt blue lighting. Thus, to provide objective measurement to the assessors and to avoid 

eye staining procedure, the application of HSI for corneal epithelium injuries is proposed. 

Two types of camera were used, namely VIS-NIR and NIR, to visualise images in 

different wavelength range. The hyperspectral image acquisition has been performed 

through the HSI system, whereby the line scanning method has been employed for the 

collection of images in the series of experiments. 

The second contribution is the first detail conceptual framework of cornea injury 

assessment using HSI. The framework consists of image acquisition using HSI 

pushbroom technique, a new image enhancement algorithm, mixing deep-learning image 

classification, and a novel mixing kernel for SVM classifier. 

The third novel contribution to knowledge of this work is 8-SHIE which helps to enhance 

an image to provide objective interpretation. Eight steps of combined algorithms had been 

performed to obtain distinction and visualisation of both normal and abnormal corneal 

epithelium. The proposed method has been tested on a new image collection and existing 

hyperspectral datasets.  
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The fourth contribution to knowledge of this work is the mixture deep learning 

classification presented in Chapter 5. Three types of classification approaches were used 

and discussed in this chapter. First approach is histogram feature extraction with SVM-

GRBF classifier. A total of four features were extracted, namely mean, standard deviation 

(square root of the variance), skewness, and kurtosis which were calculated using the 

probability distribution of the intensity levels in the histogram bins. For the second and 

third approaches, image augmentation with flipping and rotation was applied in order to 

obtain more images. Next approach is transfer learning using pretrained AlexNet with a 

fine-tuned model. The final approach is feature extraction with pretrained AlexNet 

(mixture AlexNet and SVM-Linear). The fusion of AlexNet and SVM-linear classifier 

was used for comparison to the standalone AlexNet. The combination of AlexNet and 

SVM-linear showed good performance, where AlexNet performs the high-level feature 

extraction, while SVM-linear carries out the classification. A performance comparison of 

these approaches is provided. 

The new mixing kernel (3-ConvSvm) described in the Chapter 6 is the fifth contribution 

to knowledge in this thesis. This kernel is combination of three existing kernels known as 

Poly, RBF, and RQK. The proposed method was applied with numerical experiments on 

several number of selected datasets. In particular, different type of datasets which include 

medical, general, and hyperspectral as well as the level of samples complexity were 

employed in this study for the purpose of producing the generalisation ability for the 

proposed mixing kernels. A comparison analysis was carried out between the accuracy of 

3-convex kernel after tuned loss and the single-kernel and 2-convex kernel combination.  
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Overall, this research intends to explore the novelty of HSI in investigating the corneal 

injuries and reveal its potential for further development and translation into biomedical 

application, especially in the ocular clinical diagnostics. 
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1.2 Research Aim and Limitations 

This study aims to explore the clinical role of the technique combining HSI with image 

processing in assessing the corneal injuries of patients. However, the porcine eyes have 

been used as the sample subjects instead of the human eyes because a research involving 

human subjects usually requires a longer time to obtain the regulatory and ethical 

approval. The 25 corneal samples in this study have been divided into three groups: the 

healthy eyes, the injured eyes with stains, and the injured eyes without stains, where the 

corneal injuries have been made visible using the HSI. The sample size in this research is 

not easily controllable as it depends on the quality and freshness of the porcine eyes 

obtained from the resources.  

In addition, a high-resolution camera with an optimal illumination control has been used 

to produce an image of good quality. Therefore, only certain eyes and images are suitable 

for further processing. This research focuses on the new data collection for eye 

assessment, algorithms for image enhancement, mixtures deep-learning classification, 

and newly-designed mixing kernels for SVM classification of corneal epithelial injuries. 
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1.3 Organisation of Thesis 

This thesis comprises of seven chapters. 

Chapter 2 provides a review of the literature regarding the problem addressed in this 

study. The literature review divided into two main topics which are related to the cornea 

injuries and hyperspectral imaging overview. A discussion for the first main topic is 

narrowed down into the cornea histology, current technologies in cornea assessment, and 

previous related to the eyes. The latter topic is covered on hyperspectral imaging in 

general and medical applications, also the image acquisition systems and approaches. 

Chapter 3 defines the background of study, methodology and procedures used for data 

collection and analysis. 

The following three chapters present the three contributions to knowledge in this study 

consist of image analysis and the results related to the corneal epithelial injuries. These 

chapters are in continuation with each other, starting with the image visualization, spatial 

and spectral analysis followed by the image enhancement, feature extraction and 

selection, classification, quantification, and lastly the mixing kernels for SVM classifier. 

Chapter 4 determines if hyperspectral imaging is possible in providing and revealing 

significant information from the cornea in general and especially to the epithelium layer. 

This chapter also presents how hyperspectral images were processed from raw images 

that contained massive information into formatted data file to minimise storage space. 

The analyses on spatial and spectral signatures are presented towards image enhancement 

so as to provide objective interpretation. 
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Chapter 5 describes and compares the three classification approaches with the purpose of 

figuring out the best accuracy and low time consumption for the cornea assessment. The 

three classification approaches are histogram feature extraction with SVM-GRBF 

classifier, transfer learning using pretrained AlexNet with a fine-tuned model, and feature 

extraction with pretrained AlexNet (Mixture AlexNet and SVM-Linear). 

Chapter 6 introduces a new 3-convex combination kernels function for the binary SVM 

classifier. In fact, it is important to note that kernel development for SVM has received 

considerable attention in the last few years for hyperspectral image classification. The 

purpose of choosing binary classification in the current observation is due to the fact that 

most medical data are commonly classified into two-class problems, namely benign or 

malignant which is helpful in detecting breast cancer, healthy or disorder in liver 

diagnosis, injured or no injury in eyes disease, and present or absent of diabetes and heart 

assessments.   

Chapter 7 offers a summary and discussion of the findings of this research. Additionally, 

the implications for practice and recommendations for future research are delineated 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter is divided into four subsections. Section 2.1 defines the clinical problem 

related to the corneal injuries, and also the current technologies used for the corneal 

assessment. Section 2.2 presents the background of hyperspectral imaging system and its 

applications. The general applications of HSI are defined followed by the outline of its 

applications in the medical field. In addition, a comparison of the HSI image acquisition 

methods is made. Section 2.3 is about previous works related to the corneal epithelial 

injuries.  

There are numerous studies surrounding these topics. Nevertheless, each study is only 

referred to as appropriate or briefly reviewed with the discussion mainly being focused 

on the analysis of corneal epithelial injuries using HSI and image processing techniques. 

This chapter ends with Section 2.4 where a summary of the key findings from the 

literature review is presented. 
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2.1 Corneal Injuries 

2.1.1 Eye Properties – Corneal Histology 

In general, an eye consists of two main parts, the cornea and the retina. The cornea is the 

foreground which refracts the light rays, while the retina is the background which contains 

the sensory receptors for vision. 

The cornea is a crystal clear (transparent) tissue that covers the front of the eyeball. Its 

translucent property allows the light to enter the eye. As shown in Figure 2.1, it is 

comprised of five essential layers: the epithelium which is the outermost layer; the stroma 

which is in the middle layer; the endothelium which is the innermost layer; the Bowman 

membrane which separates the epithelium and the stroma; the Descemet membrane which 

lies between the stroma and the endothelium. The vital roles of the cornea are protection, 

transmission, and refraction [22]. While serving as a protective membrane, cornea also 

works with the lens of the eye to focus images on the retina. 

The corneal epithelium is a tight and protective layer firmly attached to the underlying 

stroma which typically comprises five to seven layers of stratified squamous cells [22]. 

The outermost cells are approximately 50 μm in width [23] and they provide protection 

to the underlying layers. Being the outermost layer, it is frequently subjected to the 

external contact, therefore being a common site of injury on the cornea. 
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Figure 2.1: Cross-sectional of human cornea (healthy) using OCT and schematic diagram 

of corneal layers. 

 

Meanwhile, the stroma constitutes 90% of the overall corneal thickness. It appears as a 

layer of organised, structured, dense, avascular, and relatively acellular connective tissue 

mainly comprising collagen and proteoglycans. On the other hand, the corneal 

endothelium is a 4-6 μm thick monolayer of approximately 400,000 cells arranged in a 

hexagonal mosaic [22]. This layer plays a significant role in maintaining the transparency 

and clarity of the cornea by regulating its water content. 

Corneal damage can occur at different levels but injuries are often confined to the 

superficial epithelial layer. Such injuries trigger several mechanisms which contribute to 

the healing process, including the wound size and depth, the causative agents, and the tear 

quality [24]. Following a prolonged epithelial injury, the deeper stromal surface may be 

exposed and become irregular, causing the stroma to swell and cloud. Ulceration and 

scarring may follow causing the eye to become vulnerable to infection. A repetitive 

assault to the cornea, either acutely or chronically, is one of the main causes of visual 

impairment affecting people worldwide [23].  

There are several causes of corneal injuries [25], [26], among which are abrasions which 

refer to any scratches or scrapes on the surface of the cornea, and chemical injuries, which 
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can be caused by almost any fluid that is in contact with the eye. In addition, overuse of 

the contact lenses, poorly fitted lenses or sensitivity to contact lens care solutions can also 

harm the cornea. Exposure to foreign bodies such as sand or dust is also a common cause 

of corneal injuries. Furthermore, high-speed particles, such as chips from the hammering 

metal on metal are potential eye hazards which may adhere to the surface of the cornea. 

Rarely, they may penetrate deeper into the eye. Ultraviolet injuries to the eye can be 

caused by the sunlight, sun lamps, snow or water reflections, and arc-welding. The longer 

the exposure of the eye to the sunlight or the artificial ultraviolet light, the higher the risk 

of developing corneal injuries. Lastly, eye infections may also induce damage to the 

cornea. 

2.1.2 Corneal Assessment – Current Technologies and Methods 

As portrayed in Table 2.1, there are numerous technologies available in current clinical 

practice and research to acquire information about the cornea, including its morphology, 

shape, power, and thickness. Based on the literature review, five devices are currently 

used for corneal assessment, namely slit lamp, specular microscopy, ultrasound 

pachymetry, optical coherence tomography (OCT), and Scheimpflug imaging. 

The slit lamp was first invented by Allvar Gullstrand in 1911 [27] and it has now become 

the most popular device used by clinicians to illuminate the anterior chamber of the eye. 

It is used for the direct visualization of a cornea at different magnifications with an 

independent illumination. With additional condensing lenses, it also enables the clinicians 

to observe the retinal condition. 

Various anterior and posterior corneal disorders can be diagnosed using the different 

types of illumination setting of a slit lamp, including the diffuse illumination, direct focal 
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illumination (wide or narrow beam), indirect illumination, retro illumination, and 

sclerotic scatter. However, the slit-lamp examination is time-consuming. Furthermore, 

there is no objective measurement and its settings, such as the illumination angle, the 

thickness of the beam, and the level of the illumination depend solely on the experts and 

therefore result in different assessment outcomes. 

Table 2.1: Current methods/technologies used in corneal assessment. 

No. Device Method/Corneal Assessment Remark 

1. Slit Lamp 

Biomicroscopy 

[27] 

- Direct visualization of the 

cornea at different magnifications 

with an independent illumination. 

- Parameters: Illumination angle, 

thickness of the beam, and level 

of the illumination. 

- No objective 

measurement, totally 

depends on the ability of 

experts. Different 

assessment from one person 

to another. 

2.  Specular 

/Confocal 

Microscopy 

[28] 

- Non-contact optical instruments 

that use automatic image 

focusing technology. 

-Detect and monitor endothelial 

cell changes. 

- Limit visualisation to 

detect microorganism on 

stromal tissues (result about 

30 to 40%). 

3.  Ultrasound 

Pachymetry  

[29] 

-Use energy emitted from the tip 

of a probe that is reflected in the 

form of an echo/ultrasound wave. 

The time taken to return to the 

probe tip is used to calculate the 

corneal thickness. 

-It is mandatory to apply 

topical anesthesia because 

of the direct contact of the 

probe with the cornea. 

-Disadvantage: patient 

discomfort or difficult 

repeatability when placing 

the probe perpendicular to 

the cornea. 

-Advantage: ease of 

use,portability, and low 

cost. 

4. Optical 

Coherence 

Tomography 

(OCT) [30] 

-To obtain an OCT image, 

multiple scans are obtained at a 

series of lateral locations to form 

a composite two-dimensional 

image. 

-Anterior and posterior 

segment imaging (Cross-

sectional evaluation only) 

5. Scheimpflug 

Imaging [31] 

-Provide corneal topography data 

(anterior and posterior corneal 

surface). 

 

-Corneal surface 

measurement, apply to the 

healthy eye for contact 

lenses design. 



20 
 

Meanwhile, specular microscopy is mainly used for the corneal thickness measurement 

and the endothelial analysis. This technique can act as a non-invasive tool specifically for 

the endothelium analysis before and after an intraocular surgery [28]. Another method 

which provides the corneal thickness measurement is the ultrasound pachymetry [29]. 

Despite being low-cost, easy to use, and portable, this tool is invasive as it requires the 

application of a probe to the cornea throughout the procedure for the calculation process. 

Even though topical anaesthetics are administered prior to the examination, the direct 

contact of the probe tip to the cornea may still cause patient discomfort. 

OCT was initially used for the imaging of the posterior segment of the eye but has now 

been improved for the analysis of the anterior segment of the eye as well. The anterior 

and the posterior segment of an eye can be inspected clearly using an infrared light with 

1,310 nm and 800 nm, respectively [30]. To obtain an OCT image, multiple scans are 

performed at a series of lateral locations to provide cross-sectional evaluation of the 

cornea.  

Lastly, the Scheimpflug imaging technique adopted with the Pentacam instrument is a 

diagnostic tool for corneal diseases based on the topography concept. In addition to 

diagnosing the corneal diseases such as cataract, it provides an objective evaluation of the 

corneal surface and serves as a significant tool for the refractive surgeons and the 

glaucomatologists [31].  
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2.2 Hyperspectral Imaging (HSI) Overview 

 General Applications of HSI 

HSI was first introduced in 1985 as a remote sensing device. Since then, there has been 

an increasing research interest in exploring the potential of HSI for other applications. 

Over the years, it has gained much popularity due to the introduction of new techniques 

from various disciplines, particularly the development of statistical signal processing in 

engineering. The fast-growing computational technology and the advances in sensor 

development have transformed HSI into one of the most promising tools in data 

exploitation. Despite the data redundancies and the curse of dimensionality, HSI provides 

hundreds of contiguous spectral bands which constitute subtle information of a material 

or a tissue in the sample of interest. These diagnostic spectral bands are used for many 

purposes, including for detection, identification, recognition, discrimination, 

classification, and quantification. HSI is a non-contact and non-destructive technique 

which makes it ideal for a wide range of applications. Other non-medical applications are 

earth remote sensing, food applications, and surveillance monitoring. 

As mentioned earlier, the earliest use of HSI was for the remote sensing and earth 

observation, which allowed different types of material on earth to be identified from the 

aircraft [3]. This system employed a sensor which had the ability to scan massive data. 

Goetz et. al [3] studied the Cuprite mining district of Nevada in mineral identification. 

Two types of mineral, alunite and kaolinite were discovered at 2.0 µm to 2.3 µm 

wavelength of spectral response. In the study, the spectral normalisation was applied to 

produce an equal intensity that allowed the direct comparisons of the different wavelength 

signatures for visual enhancement. For the classification, the authors proposed a binary 

encoding technique to achieve a rapid cross-correlation for signature matching, and 
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applied the Hamming distance to measure the similarity between the two binary spectral 

vectors. 

Further applications of hyperspectral remote sensing are in the vegetation and water 

resources [32], wetland vegetation [33], and geological [34]. Traditional methods for 

landscape-scale vegetation mapping require expensive time and intensive field surveys. 

Moreover, most of the land cover is grouped and the identification of individual species 

using the traditional methods is difficult. On the contrary, the remotely sensed data for 

the classification and mapping of vegetation provide a detailed and accurate in a timely 

and cost-effective manner. Furthermore, the availability of satellite and airborne 

hyperspectral data with its increased spatial and spectral resolution could enhance the 

classification and mapping of land use and vegetation. With a large number of wavebands, 

the image processing would be able to obtain both the biochemical and the structural 

properties of a vegetation [35]. Considering the limitations of the traditionally available 

wavebands, HSI is vital to further explore the spectral properties. 

In the food industrial applications [5], [7], [36], normal machine vision systems have 

limited ability to conduct a quantitative analysis and capture a wide range of spectral 

information of the internal features. These internal features, such as texture, colour, 

tenderness, moisture, and fat and protein contents are important to maintain the quality 

and safety of the food. A traditional assessment involves the human visual inspection of 

the food products which is tedious, time-consuming, and even destructive. With the 

current increasing demand for a lower production cost and a higher efficiency, HSI is 

accurate, fast, real-time, and non-invasive seems, and it to be an ideal alternative approach 

to optimize the quality and safety of the food. Other than its usefulness in the food 
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industry, HSI also plays a role in the art authentication to identify counterfeits through 

colour fidelity [37].  

 HSI Technology, Image Acquisition System and Methods 

HSI is a hybrid modality that combines the imaging and the spectroscopy. By collecting 

the spectral information at each pixel of a two-dimensional (2D) detector array, HSI 

generates a three-dimensional (3D) dataset of spatial and spectral information, known as 

the hypercube. 

HSI has been designed to integrate the imaging (spatial) and the spectroscopic (spectral) 

techniques into an imaging device [38]. Clearly, both pieces of information cannot be 

synchronized with each other from the conventional imaging or spectroscopy when they 

operate individually. Spectroscopy is a tool that acquires the spectral characteristics of a 

sample of interest to portray different intensities of light, i.e. electromagnetic energy from 

the object structures at different wavelengths, thus giving a unique spectrum signature to 

describe different types of elements. Meanwhile, imaging acquires spatial information 

from the object camera. The combination of these two techniques allows simultaneous 

acquisition of the spatial and the spectral information from an object. As a result, a 3D 

data cube can be perceived from the HSI by considering the 2D image as the image data 

and deriving a third dimension from the spectral information in the wavelength 

measurement [8]. 

The principal hardware used to generate hyperspectral images is known as the 

hyperspectral camera [38], [39]. The camera is combined with a light source and a 

separate processing device to allow a huge hyperspectral data to store to the next 

processing stage. For data collection, there are three types of device configurations, 
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namely plane scanning or snapshot/staring, line scanning or pushbroom, and point 

scanning or whiskbroom.  

Figure 2.2 shows the configuration of a line scan system which also known as the 

pushbroom technique. To capture a contiguous image, either the subject or the camera 

must be moved whereby the movement between the array detector and the frame 

acquisition rate requires synchronisation [39]. 

 

Figure 2.2: Pushbroom hyperspectral imaging. 

The collection of data cube image is characterised by two fundamental image resolutions, 

i.e. spatial resolution, and spectral resolution [32]. Spatial resolution can be interpreted 

as the spatial quality measure in an image being observed. The higher the resolution, the 

clearer and the more detailed the image element is. The spatial feature of an image is 

related to the design of the sensor in terms of its field of view and the distance at which 

it operates above the surface [40]. Each of the detectors in a remote sensor measures the 

electromagnetic energy received from a limited patch on the sample surface. The smaller 
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the individual patches, the higher the spatial resolution and the more detailed one can 

spatially interpret. On the other hand, spectral resolution can be interpreted as the ability 

of an imaging to discriminate different parts in the range of the measured wavelength 

intervals. Specifically, it measures the narrowest spectral feature that can be resolved by 

an HSI system. A higher spectral resolution can potentially provide a more accurate 

spectral signature of a sample.  

With the rapid evolution of technology, several imaging technologies, each with its own 

strengths and limitations, have been applied and proposed to be used in the imaging 

system. These technologies include the conventional spectroscopy, conventional 

imaging, multispectral imaging, hyperspectral imaging, ultra-spectral imaging, and full 

spectral imaging, which have different range of wavelength. 

Conventional spectroscopy has no spatial information to be captured. The main 

components are the light source, wavelength dispersion device, and point detector. It only 

collects the spectral resolution from dozens to hundreds of wavelengths of the sample. 

The measurement cannot cover large or small areas with a high spatial resolution due to 

the size limitation of the point detector. Meanwhile, conventional imaging consisting of 

a light source and an area detector do not have number of spectral bands which means 

there is no spectral resolution. The sensitivity depends on the area detector of the spectral 

response which has the capability of adjusting the image brightness/intensity by obtaining 

the spatial information from the sample in the form of a monochrome or RGB image. 

These two devices have merged to form a system that is able to collect both spatial and 

spectral information from the sample. It is known as multispectral and hyperspectral 
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imaging. Multispectral comprises of 3 to 10 spectral bands, and the spectral resolution is 

about tens nanometres.  

The image acquisition performance is optimised through the hyperspectral where it is 

capable of acquiring hundreds to thousands spectral bands, and the spectral resolution is 

narrow into few nanometres. Compared to the multispectral, hyperspectral has able to 

identifies solids and liquids features from their respective reflectance or transmission 

signature [32]. Therefore, hyperspectral has the potential to capture the subtle spectral 

differences to provide detailed information for diagnostic purposes. 

On the other hand, the ultra-spectral imaging has emerged as a recent advanced 

technology which contains thousands of spectral bands with a very narrow spectral 

resolution. This technology can detect and identify solids, liquids, and gasses. 

Nevertheless, it is costly and still under development. Another proposed data processing 

system is the full spectral imaging which has similar abilities to the ultra-spectral imaging. 

It contains thousands of continuous spectra over a full optical spectral range from the 

ultraviolet to the infrared (Table 2.2). 

The more the spectral features available, the higher the potential information about the 

object that can be extracted. Thus, to achieve this goal, it is desirable to maximise the 

spectral resolution and coverage. However, the selection of the spectral range still 

depends on the application being observed.
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Table 2.2: Full optical spectral ranges (UV to IR). 

Range Name Wavelength Range (nm) 

Ultraviolet (UV) 200 to 400 

Visible (VIS) 400 to 780 

Near Infrared (NIR) 780 to 2500 

Mid Infrared (MIR) 2500 to 25,000 

Far Infrared (FIR) 25,000 to 1000000 

The fundamental components of an HSI system (Figure 2.3) include the illumination 

sources (incoming light), the area detectors (image sensor), and the wavelength dispersion 

devices (prism or grating). 

 

Figure 2.3: Fundamental components of an HSI system. 
(source: https://www.teledynedalsa.com/en/learn/markets-and 

applications/aerospace/hyperspectral/) 

 

Light source functions as a scene illumination and it is essential for a successful capturing 

of the wavelength variations that are reflected from or transmitted to the object of interest. 

There are three types of light sources commonly used in the HSI, namely halogen, light 

emitting diode (LED), and laser [41]. These light sources have been widely used in 

various medical devices for diagnosis of diseases, with each having its own pros and cons. 

LED [42], [43] is cheaper and safer for the eyes because it has less heat and no wavelength 

coverage at the UV range. Halogen produces heat but it has a smooth spectrum ranging 

https://www.teledynedalsa.com/en/learn/markets-and%20applications/aerospace/hyperspectral/
https://www.teledynedalsa.com/en/learn/markets-and%20applications/aerospace/hyperspectral/
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from the visible to the infrared. Meanwhile, laser [44] is expensive but it has highly 

concentrated energy, a perfect directionality, and a true monochromatic emission. 

The excitation wavelength of light over the full spectral range of the HSI system is highly 

desirable and it is expected to be as spectrally uniform as possible. As illustrated in Figure 

2.4, the LED spectral response does not cover the full wavelength compared to the 

halogen spectrum.  

 

(a) Halogen Spectrum 

 

(b) LED Spectrum 

 

Figure 2.4: Spectral response for halogen and LED lamp.  

(Source: http://www.specim.fi/iq/manual/software/iq/topics/illumination.html.) 

http://www.specim.fi/iq/manual/software/iq/topics/illumination.html
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A good illumination plays a vital role in the spectral imaging and it can be evaluated 

based on three main parameters, namely intensity, spectral response, and uniformity. In 

terms of the light intensity, high light leads to a loss of information, while low light 

introduces noise peaks. An ideal spectral response should have a continuous spectrum to 

cover a full wavelength range. Meanwhile, shadow effects can be eliminated by 

uniformity [45], [46] whereby two or four light sources are used instead of one. 

Another important component of HSI system is the area detector used to acquire the 

intensity of light transmitted from the dispersive devices. It measures the spectrum at each 

pixel by converting the light energy into the electrical signal. The area detector which is 

most widely used is the silicon charge coupled device (CCD) in the visible (VIS) and 

near-infrared (NIR) regions. The other example is the InGaAs detector which has a high-

quantum efficiency and is well applied in the short wavelength infrared (SWIR) imaging. 

In addition, the complementary metal oxide semiconductor (CMOS) [47] is a recently 

designed area detector which can be used in the hyperspectral medium wave infrared 

imaging. In comparison to the CCD, CMOS has a lower cost and requires a lower power 

supply but it has a higher dark current and generates more noises. 

Wavelength dispersion devices are the core components of an HSI system. The devices 

disperse the incident broadband light into different wavelengths and transfer the dispersed 

light to the area detector. The various types of the dispersive devices can be categorized 

into (1) monochromators, such as prism and diffraction grating which have been used in 

the push broom mode; (2) optical bandpass filters, such as the fixed or the tunable filter 

which have been widely used in the area scanning method, and; (3) single shot imager 

which is used in the snapshot HSI system [48].  
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There are three typical approaches for the hyperspectral sensing modes measurement to 

acquire spatial and spectral information, namely reflectance, transmittance, and 

interactance [49]. Reflectance mode is where the field of view of the light detector 

includes parts of the sample surface directly illuminated by a light source. Without the 

reflection of light, human eyes would be unable to perceive colour or texture of objects. 

Nevertheless, in the context of a spectrometer, reflection is simply a fraction of light 

reflected from a surface as the function of the wavelength. 

While reflectance is the most commonly used in agriculture and food industry, 

transmittance is also used to detect the internal defects such as bruises in fruits (apple, 

pear, pickling cucumber, honeydew melon, and kiwi) [41]. This feature makes HSI 

suitable to be used in the medical field for detection of an internal disorder. Using the 

transmittance mode, the object viewed by the detector is diametrically opposite to the 

illuminated surface. However, its measurements are influenced by factors such as object 

geometry and size. Furthermore, in implementing the transmittance mode, it is important 

for sufficient light to penetrate the entire object of interest without causing any damage. 

In relation to the interactance measurement, the field of view of the detector is separated 

from the illuminated surface by a light sealed in contact with the object surface. The path 

length of the light transmitted into the sample can be controlled, thus allowing the sensing 

mode to obtain more representative measurements of the sample. Nevertheless, an 

interactance mode is more complicated than the reflectance and the transmittance. Among 

the three modes, the reflectance is the easiest to obtain as it requires no contact with the 

object. Therefore, the most suitable sensing mode in this research is the reflectance 

measurement. 
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Spectral and spatial information can be acquired through several ways. Four image 

acquisition methods have been used in the previous studies [39], with each method 

demonstrating both pros and cons when being applied in the analysis of the biological 

tissues. 

The first method is the point scanning or whiskbroom approach, which scans along two 

spatial dimensions by moving either the sample or the detector. This method usually 

requires two-axis motorised positioning tables to finish the data acquisition. The process 

is usually slow as the data are accumulated pixel by pixel in an exhaustive manner. 

However, this method employs a dispersive element to split the light and a factor to obtain 

a uniformly high efficiency. Furthermore, it has low scatter and it is less costly. 

Secondly, the images can be acquired via the area scanning or staring approach, whereby 

the entire scene (x, y) is captured onto the focal plane, with one spectral band at one time. 

Besides, the three-dimensional data cube can be obtained without scanning. While the 

staring approach may reduce either the spatial or the spectral resolution, it remains 

suitable for the high-speed applications with its added advantage of producing an artefact-

free image (no temporal distortion of the spatial information).  

Next, single scanning or snapshot is another image acquisition method which is similar 

to the staring approach. Using this method, images can be captured at a high speed without 

any scanning. Nonetheless, its spatial and spectral resolutions are limited as the total 

number of voxels cannot exceed the total number of pixels on the area detector. In 

addition, this technique needs further development as there is still a lack of support for its 

higher resolution. 
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Lastly, images can be acquired by line scanning or also known as the pushbroom 

technique. This method is common and has been utilised in this research. It involves 

scanning an image line by line simultaneously to acquire both the spatial and the spectral 

information. The time exposure, however, must be short during line scanning to avoid the 

risk of inconsistencies at the spectral band level. In this study, the sample is moving 

forward or backward to perform scanning process using a motorised linear stage, while 

the camera remains stand still to capture the full band of image. Nevertheless, in the real 

clinical practice to capture an image of the human eyes, the patient remains still while the 

camera is moved.  

Despite the rapid advances in technology, there is still no ‘absolute’ best method currently 

to select the most suitable image acquisition mode for a specific medical application. In 

determining the most optimal method for the medical imaging, the features of different 

tissues and the detection objectives must be considered. 

 Medical Applications of HSI 

As with all other technologies, HSI has advanced over the years and has currently been 

widely used in the medical applications (see Table 2.3), particularly to diagnose diseases 

at an early stage [50], [48], [51] in both humans and animals. Medical hyperspectral 

imaging (MHSI) has been explored for its use in several surgeries, such as mastectomy, 

cholecystectomy, and abdominal surgery [48]. In [52], HSI was employed to monitor the 

oxygen saturation levels before a kidney transplant operation. In addition, it was used to 

measure the oxygen saturation in the optic nerve head of the monkey eyes [53].  



33 
 

Table 2.3: Summary of medical applications using hyperspectral imaging for the year 

1988 to 2013 (summarised from [48]). 

No. Medical Application Imaging 

mode 

Spectral 

range (nm) 

Measurement Mode Year 

1. Burn wounds Staring 400 to 1100 Reflectance 1988 

2. Cervical neoplasia Staring 200 to 700 Fluorescence and 

reflectance 

2001 

3. Cervical cancer Staring 330 to 480 Fluorescence and 

reflectance 

2003 

4. Cutaneous wound Pushbroom 530 to 680 Transmission 2003 

5. Cervical pathology FTIR 5000 to 
10,526 

Reflectance 2004 

6. Diabetic foot Staring 500 to 600 Reflectance 2005 

7. Tumor hypoxia and 

microvasculature 

Staring 400 to 720 Fluorescence 2005 

8. Skin cancer Staring 440 to 640 Fluorescence and 

reflectance 

2006 

9. Hemorrhagic shock Staring 500 to 600 Reflectance 2006 

10. Melanoma Pushbroom 365 to 800 Transmission 2006 

11. Skin bruises Pushbroom 400 to 1000 

900 to 1700 

950 to 2500 

Reflectance 2006&2012 

12. Ophthalmology-retina Snapshot 450 to 700 Reflectance 2007 
13. Breast cancer Staring 450 to 700 Reflectance 2007 

14. Laparoscopic surgery Staring 650 to 1100 Reflectance 2007 

15. Intestinal ischemia Pushbroom 400 to 1000 

900 to 1700 

Reflectance 2010 

16. Gastric cancer Pushbroom 1000 to 2500 Reflectance 2011 

17. Endoscope Snapshot 450 to 650 Reflectance 2011 

18. Atherosclerosis Pushbroom 410 to 1000 Reflectance and 

fluorescence 

2011 

19. Diabetic foot Staring 400 to 720 Reflectance 2011 

20. Prostate cancer Staring 450 to 950 Reflectance 2012 

21. Laryngeal disorders Pushbroom 390 to 680 Reflectance 2012 
22. Cholecystectomy Staring 650 to 750 Fluorescence and 

reflectance 

2012 

23. Ovarian cancer Staring 400 to 640 Fluorescence and 

reflectance 

2012 

24. Pharmaceutical Staring 1000 to 2400 Reflectance 2012 

25. Dental caries Staring 900 to 1700 Reflectance 2012 

26. Leucocyte pathology Staring 550 to 950 Transmission 2012 

27. Nerve fiber 

identification 

Staring 550 to 1000 Transmission 2012 

28. Breast cancer FTIR 2500 to 

11,111 

- 2013 

Note: FTIR, Fourier transform infrared spectroscopy. 

 

Spectral retina imaging was developed [54] by modifying a fundus camera with a spectral 

imaging device which was achieved by integrating a liquid crystal tuneable filter (LCTF) 
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and a charge-coupled device (CCD). In the study, wavelengths between 500 nm and 650 

nm were used to obtain retinal vasculature images for the analysis of arteriole and venule 

changes. Examples of the application of HSI in retinal imaging were detection of diabetic 

and non-diabetic based on the spectral difference in the Wistar rats [55] and the retinal 

tissue oximetry mapping of human eyes [56]. There have been a few studies focusing on 

the diagnosis of retinal diseases [57], [58], [59] but the investigation of the eyes using 

HSI particularly on the epithelium is still scant. 
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2.3 Previous Work Related to the Eyes  

Table 2.4 presented a summary of the previous studies regarding the corneal injuries. In 

2003, Reynaud et al. [60] investigated the spectral response on the cornea of a rabbit using 

the HSI interfaced with a confocal microscope. In the study, a highly transparent and 

healthy cornea was reflected with 410 nm to 918 nm wavelengths to generate an image 

in 256 spectral bands. The study discovered that the endothelial cell layer and stroma 

reflected at 440 nm to 730 nm. The combination of HSI and the confocal microscope was 

proven to be capable of isolating the corneal structures or the individual cells based on 

the spectral signatures. 

On the other hand, Khoobehi et al. [53]  evaluated the monkey eyes using HSI attached 

with a fundus camera to measure the relative changes in the oxygen saturation of the 

retina. Employing this technique, the study detected the abnormalities of the oxygen 

saturation in the optic nerve head which allowed an earlier diagnosis of glaucoma.  

Another study on retina conducted by Qing Li et al. [55] on 40 healthy Wistar rats which 

were divided into normal, diabetic without treatment, and diabetic with treatment. The 

eyes were opened along the ora serrata (which forms the junction between the retina and 

the ciliary body, Figure 2.5), with each retina section being stained and scanned to 

acquire the desired images. As revealed by their results, the difference between the 

outer/inner nuclear layer and the inner plexiform layer can be visualised in the different 

spectral bands. 
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Table 2.4: Comparison of the present study with the previous research works on eyes. 

No. Title Method/Corneal Assessment Remark 

1. Confocal 
Hyperspectral Imaging 

of the Cornea. 

(Hyperspectral 

Imaging+Confocal 
Microscope) 

-Sample/Object:  examined highly 
transparent and healthy cornea of 

anesthetized New Zealand white 

rabbit. 

-410 nm to 918 nm wavelenghts. 
-256 spectral bands. 

-Extract nucleus, cytoplasm, and 

extracellular compartment. 

ARVO Annual 
Meeting Abstract, 

May 2003. 

Reynaud et al. [60] 

2. Hyperspectral Imaging 

for Measurement of 

Oxygen Saturation in 

the Optic Nerve Head. 

-Sample/Object: Monkey eyes. 

-Measured changes in oxygen 

saturation. 

ARVO Journal, 

September 2003. 

Khoobehi et al. [53]   

3.  Spectral Optical 

Coherence 

Tomography:A Novel 

Technique for Cornea 
Imaging. 

-Sample/Object: 11 of human eyes. 

- Cross-sectional evaluation of 

various corneal pathologies. 

Cornea-Lippincott 

Williams & Wilkins, 

Volume 25,Number 

8, September 2006. 
Kaluzny et al. [18] 

4.  New Microscopic 

Pushbroom 
Hyperspectral Imaging 

System for Application 

in Diabetic 

Retinopathy Research. 

-Sample/Object: 40 healthy Wistar 

rats. Divided into three groups:10 
normal rats,12 diabetic without 

treatment, and 12 diabetic treated. 

-400 nm to 800 nm wavelenghts. 

-To study the pathogenesis of 
diabetic retinopathy. 

Journal of 

Biomedical Optics. 
Novembaer 2007. 

Qing Li et al. [55] 

5. Quantitative 

Evaluation of Corneal 
Epithelium Injury 

Caused by N-Heptanol 

using a Corneal 

Resistance Measuring 
Device In Vivo. 

-Sample/object: An Albino rabbit’s 

cornea was exposed to a filter paper 
immersed in n-heptanol for 1 

minute to induce injury to the 

corneal epithelium. 

- Injury measured using an 
electrical corneal resistance device. 

Clinical 

Ophthalmology, 
2012. 

Fukuda and Sasaki 

[61]  

6. Analysis  of Corneal 

Epithelium Injuries 
using Hyperspectral 

Imaging Combined 

with Image Processing 

Algorithm. 

-Sample: Porcine eyes 

-Group into three: Healthy, injured 
with staining, and injured without 

staining. 

-Provide hyperspectral image 

dataset of porcine eyes for future 
study in ocular clinical diagnostics. 

-Develop a new/detailed framework 

for corneal epithelium injuries 
assessment including image 

acquisition, pre-processing, 

enhancement, classification, 
segmentation, and image 

quantification. 

-Develop new mixing kernel for 

support vector machine classifier. 

Author’s approach. 
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Figure 2.5: Anatomy section of the human eyeball. 

(Source:  https://owlcation.com/stem/Anatomy-of-the-Eye-Human-Eye-Anatomy) 

Next, there was a study conducted by Kaluzny et al. [18] on 11 human eyes to evaluate 

the cross-sections of various corneal pathologies using the spectral OCT. The fusion of 

OCT and hyperspectral camera produced an objective assessment of the tissue changed 

and the shape, size, and location of the pathologies. In addition, the technique allowed the 

estimation of the epithelial thickness and the depth and width of the injuries. However, 

two devices were used for the evaluation. 

Finally, Fukuda and Sasaki [61] also attempted to develop a device for the quantitative 

evaluation of the corneal epithelial injuries. In their experiment, n-heptanol was used to 

induce injury on the corneal epithelium of the albino rabbits. Instead of using the HSI, 

resistance was used by authors to measure the normal and the abnormal cornea whereby 

a damaged epithelium was indicated by an increased electric current flow. 

 

https://owlcation.com/stem/Anatomy-of-the-Eye-Human-Eye-Anatomy
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2.4 Summary 

 

HSI has first emerged as a better solution for the quality and safety inspection of food and 

agricultural products. Over the years, it has become an area of interest in the medical field 

as its application provides a more rapid and objective measurement.  

Based on the literature review, the works of Reynaud (2003), Khoobehi (2003), and 

Kaluzny et al. (2006), employed HSI fused with another device, namely confocal 

microscope, fundus camera, and OCT, respectively. Meanwhile, the study conducted by 

Qing Li et al. (2007) acquired images of eyes using the pushbroom approach, which has 

been similarly employed in the present study. However, the study by Qing Li et al. 

focused on the pathogenesis of diabetic retinopathy in rats, while this research is about 

the corneal epithelial injury of the porcine eyes. 

At present, the dye test (fluorescein, rose bengal, or lissamine green) coupled with the use 

of a slit lamp machine is the most commonly used method to assess the corneal epithelial 

damage. This method allows the clinicians to assess the extent of damage despite often 

without any robust scale or objective measures [21]. The efforts to objectively quantify 

the corneal epithelial cell damage are still scant in the existing literature. 

Therefore, this research proposes the technique of combining HSI and image processing 

as an approach to visualise and classify the normal and abnormal cornea. The research 

aims to provide objective measurements by proposing an image enhancement and mixing 

kernel for classification, which could potentially improve the current investigations for 

corneal injuries and eliminate the application of eye staining. To the best knowledge of 

the author, the findings and the proposed algorithms presented in this thesis could 
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contribute to the body of knowledge and provide important insight into the evaluation of 

corneal epithelial injuries using HSI. 
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CHAPTER 3  

RESEARCH BACKGROUND 

This chapter discusses the system set-up and calibration, hardware specification, image 

acquisition, and image collection. To the best knowledge of the author, hyperspectral 

image collection presented in this chapter is a novelty of this study. This is first work to 

use HSI for corneal epithelium injury detection as shown in Figure 3.1. Four groups 

experiments were performed to obtain high quality of images. 

In addition, the background theory of the proposed algorithm is presented, which includes 

the image enhancement, normalisation, contrast transformation, mathematical 

morphological (MM), Laplacian of Gaussian filter (LoG), image subtraction, and 

principal component analysis (PCA). The two types of feature extraction applied in this 

research are described. 

3.1 Hyperspectral Corneal Image Collection using Pushbroom 

Technique 

3.1.1 System Set-Up and Calibration 

The HSI system consists of structured frame (aluminium profile) and a spectrograph with 

the associated cameras. The spectrographs used are SPECIM ImSpector VNIR V10 and 

V10E, while the attached cameras are Basler piA 1600-35 gm GigE CCD camera with a 

spatial resolution of 1608 x 1208 pixels and a CCD camera Hamamatsu C8484-05G with 

a spatial resolution of 1344 x 1024 effective no. of pixels. The lenses are Schneider 

Xenoplan 1.4/23-0902 and 1.9/35-0901, respectively. 
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Figure 3.1: Hyperspectral corneal image collection. 
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Post-Processing 

Images 

Control Image  
(Ground Truth Image) 

END 
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Image Enhancement (8-SHIE) 

Load Cubical Images 
M*N* 
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In addition, there is a translation stage to move the sample forward and backward with an 

adjustable speed for line scanning, which is also known as the pushbroom method. There 

are two light sources: a blue lamp to illuminate the stained eye and a 35-watt halogen 

dichroic lamp for normal illumination. Two halogen lamps are assembled on the left and 

the right as an illumination source [62] of reflectance onto the sample. The paper filter is 

attached in front of lamp (Figure 3.2) to avoid an excessive radiation.  Meanwhile, a 

frame is used as a holder for the camera, spectrograph, and lens.   

 

Figure 3.2: Halogen lamp covered with paper filter. 

 

As illustrated in Figure 3.3, the hyperspectral image acquisition has been performed 

through the HSI system, whereby the line scanning (pushbroom) method [36] has been 

employed for the collection of images in the series group of experiments (Table 3.1). 

Two types of camera were used, namely VIS-NIR (group 1 to 3) and NIR (group 4), to 

visualise images in different wavelength range.  

1) Aluminium frame 

 

 

2) HSI device 

(camera, 

Spectograph, lens) 
 

3) Halogen lamp 
 

4) Paper filter 

 
 

5) Sample 

3 

4 

2 

1 

5 
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Figure 3.3: Hyperspectral imaging system. 

 

Table 3.1 shows four groups of experiment, group 1 was performed using visible-near 

infrared camera as preliminary result of this study since there was no similar reference 

available. Five samples were bought and six were scanned, meaning one healthy eye has 

been scanned two times. The first time was healthy eye, and the second time was eye with 

injury (manually created).  

Based on the preliminary result, HSI able to capture and record spectral and spatial tissues 

in tremendous detail. For that reason, the experiment has been continued to group 2 to 
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1) CCD camera 

 

 

2) Spectrograph 
 

3) Aluminium frame 
 

4) Lens 
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6) Linear translation stage 
 

7) Spectralon/white panel 

 
 

8) Sample (porcine eye) 
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collect more images. The samples of eye were dead tissues that have been dissected and 

frozen at resourced site (food industry) before delivery. Therefore, some of the eyes had 

poor quality. As shown in the group 2, 22 eyes were rejected. During this experiment, 

each sample has been scanned twice, first scan without eye staining, second scan with 

diluted 1% fluorescein eye drops. The eye stained is for ground truth purposes.  

Table 3.1: List of experimental works. 

Group Quantity Camera Type Image Scanned Remarks 

 

1 

Supplier A  

5 Porcine 

Eyes 

VIS-NIR  

(400 nm to 

1000 nm) 

6 Scanned (3 injured 

3 healthy) 

Pilot test [50] Image 

Dimension after binning: 

1200 to 1300 × 804 × 302  

302 spectral bands. 

 

 

2 

Supplier A  

30 Porcine 

Eyes  

VIS-NIR  

(400 nm to 

1000 nm) 

17 Scanned (from 8 

Eyes) (5 injured + 7 

Stained 1 Healthy + 

1 Stained 3 No Intact 

Epithelium) 22 Eyes 

Rejected 

Apply stains on image 

Dimension after binning: 

500 to 700 × 336 × 256  

256 spectral bands 

 

3 

Supplier B  

12 Porcine 

Eyes  

VIS-NIR  

(400 nm to 

1000 nm) 

26 Scanned (8 

injured + 10 stained 

4 healthy + 4 

stained) 

Apply stains on image 

Dimension after binning: 

250 to 400 × 336 × 256  

256 spectral bands 

 

4 

Supplier B 

10 Porcine 

Eyes 

NIR 

(950 nm to 

1700 nm) 

10 scanned (8 

injured + 2 healthy) 

Dimension after binning: 

393 × 336 × 256 

Image collection was resumed to group 3, since too many rejection samples (from 30 

samples, 22 were rejected) in the group 2 from supplier A, new samples were bought from 

a new supplier (supplier B). From 12 eyes, 26 were scanned, consists of 8 eyes with injury 

without staining, 10 eyes were stained, 4 were healthy eyes with and without staining. 

Then, group 4 was a last group of experiment, and using near infrared camera to compare 

the results with VIS-NIR camera. 

The porcine eye is anatomically and biochemically similar to the human eye, and 

therefore a common alternative for the wet lab-based research and the surgical training 
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[63], [64]. Corneal abrasion resulting in a partial loss of the epithelium has been chosen 

as the clinical problem of this research work. The loss of the epithelial layer is frequently 

undetected by the assessors and is often only visible after the corneal surface is treated 

with diluted 1% fluorescein drops (Figure 3.4) and viewed under the cobalt blue lighting 

(Figure 3.5). This finding is possible because the abraded areas of the cornea retain the 

dye and fluoresce brightly under the cobalt blue light. 

 
 

Figure 3.4: Staining process. 

 

1) Aluminium frame 

 

      2) Porcine eye 

 

      3) Corkboard 3 

2 
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Figure 3.5: Blue lamp illumination source for the stained eye. 

 

During this work, all ethical obligations, refer as safety and health regulation, risk 

assessment list for researcher, samples, and lab have been complied prior to the 

experiment works. The lab work sessions have been conducted according to the rules 

implemented by the governing organisations. All porcine eyes have been resourced from 

the by-products of the food industry. It means no animal been slaughtered purposely for 

this study. 

The details about the sample preparation used have been previously reported [50]. The 

sample preparation started with frozen porcine eyes (dead tissues) were defrosted slowly 

in warm sodium chloride 0.9%. These eyes were moistened with sodium chloride 0.9% 

regularly throughout the experiment to prevent corneal over drying. When defrosted, they 

were fixed on a corkboard to minimise movement. The eyes were then placed 

1) Cobalt blue light 

source 

 

      2) Porcine eye with stain 

2 
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approximately 10 cm below the camera for optimum image focus. Before image 

acquisition, the camera was calibrated using a white tile and checkerboard pattern (Figure 

3.6) to obtain corrected reflectance data. Camera calibration is important to make sure the 

true parameters of the camera are correct to achieve high accuracy of image resolution.  

 
 

Figure 3.6: White tile and checkerboard paper for calibration. 

 

3.1.2 HSI Corneal Epithelium Image and Data Collection 

The image collections from group 1, group 2, and group 3 were captured using VIS-NIR 

camera have been included as the data of this study. The images from group 4 have been 

excluded due to the poor quality of the images because the epithelium layer hardly seen 

through the NIR camera. As shown in Figure 3.7, 25 hyperspectral images have been 

obtained from this study: 14 with corneal epithelial injury (abnormal) and 11 with 

completely intact corneal epithelium (normal). 

1) White tile 

 

      2) Checkerboard pattern 

2 

1 
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Figure 3.7: 25 hyperspectral images sliced at band-100. All images were normalised and 

resized to 100 by 100 pixels. (a) Rows 1 and 2 are images of healthy Corneas. (b) Rows 3 

and 4 are images of corneas with induced epithelial injuries. (c) Row 5 shows the ground 

truth images. 

 

All 25 eyes have been scanned without any fluorescein staining. Out of the 14 eyes with 

abnormal epithelium, four eyes have been randomly selected for the application of 

fluorescein stain and repeated scanning. The control group (ground truth images) is 

formed by the images from the stained eyes. 
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3.1.3 Preliminary Analysis - Properties of Corneal Epithelium Layer 

Based on Hyperspectral Images. 

Biomedical engineering is a unique area that allows fusion between two distinct fields of 

engineering and medicine. The amalgamation of efforts from both fields promises 

progress via acquisition of information from tissues, cells, and organs through non-

invasive assessment methods. Figure 3.8 illustrates an identical sample captured by using 

a digital camera and a hyperspectral camera.  

  

   

Figure 3.8: An identical sample is captured using the digital camera (on the left) and 

scanned with the hyperspectral camera (on the right) with their respective histogram. 
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Both images were compared, and the injured area (in circle) is more apparent and vivid 

in the hyperspectral image (image had been sliced from the selected band). Here, an 

investigation on the ability of a hyperspectral device in extracting data from tissues 

through wavelength spectrum is depicted. This highlights its potential in clinical 

diagnostics through simplification of procedures that can be carried out by clinicians to 

detect corneal injuries.   

Hyperspectral imaging that ranged from 400 nm to 1000 nm visible wavelength was used 

to scan five porcine eyes (sample contained both injured and non-injured corneas). Five 

images were collected and named as group 1. In this experiment, eye staining was omitted 

as both healthy and injured eyes were identified by an eye expert. All samples were 

scanned and the raw data were saved into three-dimensional (3D) size of rows, columns, 

and depths. 
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The images of all the eyes were processed. The eye portrayed in Figure 3.9 had been 

selected as it best represented the data that consisted of both injured and intact epithelium 

on its surface.  

 

Figure 3.9: Sample of eye that consisted of normal and injured cornea. 

Meanwhile, the eye displayed in Figure 3.10 refers to a reference subject as it showed no 

identifiable surface injury. As such, reflectance spectrum analysis was performed for both 

eyes for comparison purpose. 

 
 

 

Figure 3.10: Sample of eye with normal cornea.     

 

Figure 3.11 (a) shows random placement of pixels on both the injured area (labelled as 

1) and the non-injured area (labelled as 2). The data retrieved from the pixel points of 

both areas were averaged and plotted, as presented in Figure 3.11 (b).  
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Figure 3.11 (b) compares the reflectance spectra derived from both areas. As a result, a 

similar initial outline was displayed, but with a distinct separation in reflectance values 

from wavelength 548 nm until 748 nm.  The corneal base tissue properties were likely to 

account for a similar spectrum outline, thus requiring further analysis for verification. 

       
 

(a) 

 
(b) 

 
Figure 3.11: (a) Image sliced at band-150 (638 nm), selected pixels of two surfaces:  

1- Injured surface, and 2- Non-injured surface. (b) Reflectance vs wavelength of both 

normal and injured surfaces. 
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On the contrary, when the pixel points were placed and distributed in identical areas on 

healthy eye, as portrayed in Figure 3.12 (a), only slight gap variance had been noted in 

reflectance between both surfaces, which ranged from wavelength 398 nm until 798 nm 

(Figure 3.12 (b)). 

       
 

 

 (a)  

 

 
(b) 

 
Figure 3.12: (a) Left: Sample of healthy eye, image sliced at band-150 (638 nm), 

(a) Right: Cornea area cropped with selected pixels at two surfaces: 1- surface 1, 

2- surface 2. (b) Reflectance vs wavelength of surfaces 1 and 2. 
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Figure 3.13: Signature reflectance of 

healthy eyes. 



55 
 

Intact 
Epithelium 

Un-Intact 

Epithelium Injury 

Boundary 

Intact 

Epithelium 

Un-Intact 

Epithelium 
Injury 

Boundary 

Figure 3.14: Signature reflectance of 

injured eyes without stains.  
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Figure 3.15: Signature reflectance of 

injured eyes with stains. 
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Figure 3.11 and Figure 3.12 image eyes obtained from group 1, to confirm that the 

reflectance signature show significant difference between intact and un-intact epithelium, 

image scanned from other groups were compared in term of reflectance signature depicted 

in Figure 3.13, 3.14, and 3.15. The reflectance signature of healthy eyes in Figure 3.12 

and 3.13 show that no gap between two groups of random pixels were selected. Whereas, 

Figure 3.11 and 3.14 show signature gap between intact and un-intact of epithelium. This 

scenario is validated by eyes with stains, where the plot of reflectance shows signature 

distinction between injured and healthy area. 

The injured surface was determined by slicing the images into several areas of interest. 

Figure 3.16 (a), (c), (e), and (g) display the grey image at bands 518 nm, 698 nm, 758 

nm, and 818 nm, respectively. The images at longer wavelengths revealed distinct shapes 

in regular arrangements that are likely to represent individual cells, although further 

analysis is required for confirmation. On the other hand, Figure 3.16 (b), (d), (f), and (h) 

illustrates the structure in hue, saturation, and value (HSV) colour image.   

The preliminary analysis revealed a gap in the reflectance spectrum between the non-

injured and injured parts of the porcine cornea, thus suggesting further assessment of 

corneal tissue integrity. In fact, additional image processing as image enhancement with 

grayscale slices could reveal distinct tissue properties at varying wavelengths. This notion 

suggests a novel role for the hyperspectral image technology in the diagnostics of corneal 

tissues, apart from the conventional methods of microscopy.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3.16: Images sliced at bands 518 nm, 698 nm, 758 nm, and 818 nm at first column 

of (a), (c), (e), and (g) represent grey scale images. The second column of (b), (d), (f), and 

(h) represent HSV colour images. 
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3.2 Digital Image Enhancement for Hyperspectral Image 

Image enhancement is a process that transforms an original image when contrast is 

insufficient, or when a good quality of image with low noise is required for further 

analysis  [65]. The methods used for enhancement vary according to the chosen imaging 

modality. For example, the methods used to enhance MRI images are unlikely to represent 

the best approach to enhance hyperspectral images taken in the visible near infrared band 

of the electromagnetic spectrum  [66]. 

There is no universal enhancement algorithm that is effective for all types of images. The 

main goal of enhancement algorithms is to reduce noise and increase the contrast between 

the structures of interest and their surroundings. In addition, image enhancement 

improves and refines the image segmentation, especially for the images where the 

distinction between the normal and the abnormal tissues is unclear for the interpretation 

by human or automatic systems [65], [67]. The following section describes the HSI image 

pre-processing and the enhancement applied in this research work. 

3.2.1 HSI Image Normalisation 

The flat-field correction for data normalization before acquiring the image is an essential 

step of the HSI. During this step, the white balance and dark current measurements [68] 

are used to acquire the relative reflectance from the sample (Figure 3.17). The dark 

current of the sensor is recorded with the sensor being protected from the incoming light 

to measure the actual dynamic range of the sensor. In the meantime, the white balance 

material is calibrated at regular intervals for comparison of its reflectance properties with 

those of a spectralon probe, which compensate for the ageing or usage degradation of a 

white balance quality. Simultaneously, both measures can identify any corrupted or 
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defected pixels in the pushbroom sensor of the hyperspectral camera. In addition, the data 

from the dark current and white balance measurements can be used to correct the 

measured material image. The main purpose of this correction is to eliminate artefacts 

and noise effects on the sample [62], computed with the following equation [36]: 

 

𝑅𝑠(𝜆) =
𝐼𝑠(𝜆) − 𝐼𝑑(𝜆)

𝐼𝑟(𝜆) − 𝐼𝑑(𝜆)
 𝑥 100% Eq. 1 

  

where Rs(λ) is the relative reflectance of the sample object; Is(λ) is the sample or 

measured image; Id(λ) is the dark image acquired when the light is absent by closing the 

lens with a cap; Ir(λ) is the image obtained from the spectralon white bar, and; 𝜆 is the 

wavelength. 

 
 

Figure 3.17: Illustration of flat-field correction procedure: (a) original image, (b) flat-field 

background, and (c) processed image [69]. 
 

 

3.2.2 Brightness and Contrast Adjustment 

Most of the captured images appear relatively dark due to their exposure during the image 

acquisition by the HSI system. These low-contrast dark images require brightness and 

contrast adjustment for a better visibility of the image details. Gamma correction (Figure 

3.18) or power-law transformation, s = rγ is essential for contrast manipulation when the 

This image has been 

removed by the author 

of this thesis for 

copyright reasons. 
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image is likely to be too dark [66]. The transformation can be obtained simply by varying 

the value of γ, according to the power-law curves, by setting γ > 1 to make an image 

darker, and vice versa. 

 

Figure 3.18: Gamma correction [70]. 

 

 

3.2.3 Morphological Transformation 

The mathematical morphological (MM) technique is widely used in the shape-based 

image processing for region segmentation, threshold processing, noise elimination, and 

hole filling [65]. MM is particularly useful in describing shapes using a set theory by the 

structuring element (SE). Typically, SE is chosen with the same size and shape as the 

objects to be processed in the input image. For example, to detect lines in an image, a 

linear SE is created. There are two categories of SE in gray-scale morphology: flat and 

non-flat [66]. Flat SE is two-dimensional (2D) while non-flat SE is three-dimensional 

(3D). SE consists of a matrix of 0s and 1s, which is typically much smaller than the image 

being processed. The origin, which is a centre of the SE, identifies the pixel of interest 

and defines the neighbourhood used in the processing of each pixel.  
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These SEs are also considered in the primitive operations, namely erosion and dilation 

processing. The following explanation focuses on the erosion operator as it is used in this 

research. Erosion is applied to two sets of matrices: the gray-level image matrix A(x,y), 

and the structural element matrix B(u,v). Erosion of A by B is the set of all points z in B, 

translated by z, is comprised of A, written AθB = {z|Bz  A} [66].  

Furthermore, a spherical or ball shape non-flat SE is used to probe the image, which is 

constructed in 3D structure and consists of the radius in the x-y plane. Then, z value is 

added to define the third dimension. Spherical SE is used with a radial decomposition 

[71] to accelerate such operations as with the top hat and rolling ball transformations [72]. 

This non-flat SE also improves the performance of morphological filtering in terms of the 

smooth opening and closing of electrocardiogram (ECG) signals [73]. Although disk SE 

is commonly used for medical images [74], it is unlikely to be effective in this study 

(Figure 3.19b). In contrast, the spherical shape (Figure 3.19c) removes the glare while 

preserving the vital image features (boundary of abnormal tissue) because it has been 

eroded by a spherical SE about the size of the glare. This glare must be removed from the 

image for further processing. 
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Figure 3.19: Eroded Image. (a) Original image. (b) Eroded with ‘disk’ SE. (c) Eroded with 

‘spherical’ SE. 

 

3.2.4 Laplacian of Gaussian Filter (LoG) 

The Laplacian of Gaussian (LoG) is one of the earliest edge detectors introduced by Marr-

Hildreth [75]. The LoG [66] can detect boundaries or edges at different scales while 

overcoming the intensity changes from the surface disruptions, reflectance, or 

illumination. The combination of a 2D Gaussian function (image smoothing), Eq.2, and 

a Laplacian operator (edge detection), Eq.3, gives the expression in Eq.4. 

 

 
(a) 

 
(b) 

 
(c) 

 

 

 

1) Intact epithelium 

      2) Un-intact epithelium (injury) 

      3) Injured boundary 

      4) Glare 

      5) Glare still appear 

      6) Glare disappears 
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𝐺 = exp (−
𝑥2 + 𝑦2

2𝜎2
) Eq. 2 

∇2= (
𝑑2

𝑑𝑥2
+

𝑑2

𝑑𝑦2
) Eq. 3 

∇2𝐺(𝑥, 𝑦) =  [𝑥2 +  𝑦2 −
2𝜎2

𝜎4
 exp (−

𝑥2 + 𝑦2

2𝜎2
)] Eq. 4 

 

By applying LoG to hyperspectral images, a variety of images were generated, subject to 

alterations in its parameters (Figure 3.20). Larger values of sigma caused the edges to 

blur. Meanwhile, the smaller values led to detailed and sharp detectable edges but prone 

to noise.  

 

 
 

Figure 3.20: LoG operation with different value of sigma [76]. 

 

3.2.5 Image Subtraction 

Image subtraction in this work is performed to enhance visibility a region of interest as 

shown in Figure 3.21. Let g(x,y) denotes an image difference by the subtraction of PC1 

Input Image Sigma 0.1 

Sigma 0.2 Sigma 0.4 
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f(x,y) from PC10 h(x,y) or vice versa; forming, g(x,y) = f(x,y) − h(x,y) or h(x,y) − f(x,y). 

The image differences are enhanced with details as described previously [66]. 

 

Figure 3.21: Pre and postcontrast enhanced MRI images with fat suppression (A and B) of 

the pelvis in female patient showing a large ovarian lesion exhibiting a hyperintense signal 

in both images. Subtraction image (C) shows multiple mural solid enhancing nodules seen 

along the wall of the lesion (arrows). The possibility of a mucinous ovarian cystic neoplasm 

probably of malignant nature was suggested and was confirmed histopathologically [77]. 
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3.3 The Dimensional Reduction of Hyperspectral Image 

3.3.1 Principal Component Analysis (PCA) 

With 3D structures, i.e. 2D in the spatial domain and 1D in the spectral domain, HSI 

contains a massive volume of data due to a large number of spectral bands used. This 

causes three challenges during the data collection: (1) high data redundancy due to the 

high correlation with the adjacent bands; (2) large variability of hyperspectral signatures, 

and; (3) enormous dimensionality [48].   

In overcoming the above issues, PCA [78] which is a popular image transformation 

method has been employed in this research work. PCA is a form of unsupervised learning 

method commonly used to transform an image from high into low dimensional space 

[79]. In this study, several principal components with the maximum variability have been 

selected for the subsequent processing stages. This algorithm has been previously 

described in the hyperspectral image classification [79]. The method includes the mean 

subtraction, computation of covariance matrix, calculation of the eigenvectors and the 

eigenvalues, selection of components, and formation of feature vectors to derive a new 

data set. Additionally, dimensional reduction or band selection techniques have been 

applied to reduce the computational time and minimize the error of parameter estimation, 

i.e. the feature mean [80].  

As an alternative to the conventional PCA, structured covariance PCA has been proposed 

[81] leading to the introduction of folded-PCA [82]. In this research, PCA has been used 

to transform correlated data into the uncorrelated features known as the principal 

components (PCs). This allows a smaller number of bands to be selected, reducing the 

used subspace to best describe the resulted data for clinical interpretation. In other words, 
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PCA projects the whole data set onto different subspaces to find components containing 

the maximum variances, as reflected by the corresponding eigenvalues. Considering its 

benefits, this study has, therefore, employed PCA to perform a concise feature extraction 

and selection [77]. 

The background of mathematical expression used in this research work has been 

previously described [48], [79]. Each image in the spatial dimension m × n pixels is 

transformed into an image vector consisting of the spectral wavelength N-dimensional 

samples and into one image matrix M, [ImgVec1:…: ImgVecN]. The mean vector (Eq. 5) 

for every image vector, xi = [x1, x2, …, xN ]T is computed and transformed into a 

covariance matrix (Eq. 6). The covariance matrix is then used to generate eigenvectors 

(e1, …, en) and corresponding eigenvalues (λ1, …, λn). Subsequently, the eigenvectors 

are arranged in a higher to a lower order of eigenvalues to form the PCs that correspond 

to the number of hyperspectral bands. The mean vector and covariance matrix are 

computed as follows: 

Mean vector: 

�̅� =
1

𝑀
 ∑[𝑥1, 𝑥2, ⋯ , 𝑥𝑁]

𝑀

𝑖=1

𝑇

 Eq. 5 

Covariance matrix: 

𝐶𝑜𝑣𝑥 =
1

𝑀
 ∑(𝑥𝑖 − �̅�)

𝑀

𝑖=1

(𝑥𝑖 − �̅�)𝑇 Eq. 6 

where M is an image dimension, x is image pixel, and T denotes the transpose operation. 

In conventional PCA, mean vector and covariance matrix are computed to the hypercube 

data which requires a large amount of memory.  This issue can be resolved by splitting 
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them into four approaches using the structured covariance PCA (SC-PCA) scheme. The 

SC-PCA includes; pixel-based (Eq. 7), row-based (Eq. 8), column-based (Eq. 9), and 

band-based approaches (Eq. 10). As a result, SC-PCA provides a rapid processing time 

with a smaller memory requirement which is applicable for the real-time application. 

Pixel-based: 

𝐶𝑝𝑖𝑥𝑒𝑙 = ∑ 𝑃𝑖𝑃𝑖
𝑇

𝑅𝐶

𝑖=1

 

Eq. 7 

Row-based: 

𝐶𝑅𝑜𝑤 = ∑ 𝑃𝑟
𝑅

𝑅

𝑟=1

[𝑃𝑟
𝑅]𝑇   

Eq. 8 

Column-based: 

𝐶𝐶𝑜𝑙𝑢𝑚𝑛 = ∑ 𝑃𝑐
𝐶

𝐶

𝑐=1

[𝑃𝑐
𝐶]𝑇   

Eq. 9 

Band-based: 

𝐶𝐵𝑎𝑛𝑑(𝑖, 𝑗) = 𝑣𝑒𝑐(𝑃𝑏=𝑖
𝐵 )[𝑣𝑒𝑐(𝑃𝑏=𝑗

𝐵 )]𝑇   Eq. 10 

Where 𝐶𝑝𝑖𝑥𝑒𝑙 , 𝐶𝑅𝑜𝑤, 𝐶𝐶𝑜𝑙𝑢𝑚𝑛  , 𝐶𝐵𝑎𝑛𝑑(𝑖, 𝑗) are covariance matrix, 𝑃𝑖 , 𝑃𝑟
𝑅  , 𝑃𝑐

𝐶  , 𝑃𝑏=𝑖
𝐵   are 

partial covariance matrix of pixel, row, column, and band, respectively, and; T denotes the 

transpose operation. As with the SC-PCA, the advantage of the folded-PCA is the 

reduction in memory and computational cost. The algorithm is explained in [82]. Table 

3.2 shows the memory requirement for the three types of PCA. It illustrates how the data 

matrix and the covariance matrix computation of conventional PCA demand a higher 

memory space when compare to the others. 
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Table 3.2: Computational size requirement for the three types of PCA 

PCA Data Matrix Size Covariance Matrix 

Conventional BxRC RCxRC 

Pixel-based SC-PCA Bx1 Sum of pixels 

Row-based SC-PCA BxR Sum of Rows 

Column-based SC-PCA BxC Sum of Columns 

Band-based SC-PCA RxC CxC 

Folded-PCA RxC CxC 

Note: B is bands, R is rows/height, and C is columns/width 
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3.4 Digital Image Classification 

3.4.1 Image Feature Extraction 

Feature extraction is conducted prior to the image classification, whereby the most 

relevant information of the input data is transformed into a set of features. Colour, gray 

level, shape, and histogram are the examples of features that can be used to categorize 

images into different classes. Image segmentation is commonly used in the feature 

extraction [79]. Nevertheless, to reduce the computational time, the central moment of 

the histogram has been used in the present study for image classification without 

segmentation. 

The central moment of the histogram or also known as the first-order statistics provides 

information related to the gray level distribution. Four features are represented by the 

first, the second, the third, and the fourth moments, i.e. mean, standard deviation, 

skewness, and kurtosis. In this study, a combination of 2D features has been used for the 

feature selection to reduce redundancies. Subsequently, the classification has been 

performed to discriminate between the injured and the healthy cornea. For comparison, 

the feature extraction with the pre-trained AlexNet is also presented. These methods are 

further explained in Chapter 5. 

3.4.2 Support Vector Machine – Gaussian Radial Basis Function 

(SVM-GRBF) 

SVM is commonly used for the machine learning applications due to its capability to 

work with different types of the kernel or covariance function [83] by the dot product 

rule. Based on the 2D-image feature distribution obtained from the histogram, it is not 

possible to separate the two classes of image data by a linear transformation in the input 
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space. Therefore, a non-linear SVM classifier has been employed with the Gaussian radial 

basis function kernel, as its performance in the hyperspectral remote sensing classification 

is better than the SVM-linear, the K-NN classifier, or the standalone of RBF classifier 

[84]. The linear and non-linear SVM are represented by Eq. 11 and Eq. 12, respectively: 

 

 𝑓(𝑥)𝑙𝑖𝑛𝑒𝑎𝑟 =  ∑ ⍺𝑖𝑦𝑖

𝑖∊𝑠𝑣

(𝑥𝑖, 𝑥′) + 𝑏 
Eq. 11 

  

 𝑓(𝑥)𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 =  ∑ ⍺𝑖𝑦𝑖

𝑖∊𝑠𝑣

𝐾(𝑥𝑖, 𝑥′) + 𝑏 Eq. 12 

 

  

where ⍺𝑖𝑦𝑖  is a data point, 𝐾(𝑥𝑖, 𝑥′) is a kernel, and 𝑏 is a bias. 

Further, the GRBF kernel which is represented as 𝐾(𝑥𝑖, 𝑥′) in Eq. 12 is denoted as Eq. 

13: 

𝐾𝐺𝑅𝐵𝐹(𝑥𝑖, 𝑥𝑗) =  exp (−
|𝑥 − 𝑥𝑖|

2

2𝜎2
) Eq. 13 

where 𝜎 is the width of the radial basis function, and different values of width will affect 

the boundary of classification between normal and abnormal.  

Data normalization has been conducted before training the model to ensure that all 

attributes have the same importance. In this paper, each column of the feature vector in 

both the training and the testing sets has been normalised to a length of 1.  
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3.4.3 Convolutional Neural Networks (AlexNet) 

Recent advances in deep learning made tasks such as image and speech recognition 

possible. Deep learning is a subset of machine learning algorithms that is very good at 

recognizing patterns but typically requires a large number of data [97]. Deep learning 

excels in recognizing objects in images because it is implemented using three or more 

layers of artificial neural networks whereby each layer is responsible for extracting one 

or more features of the image. 

On the other hand, neural network [98] refers to a computational model that works in a 

similar way to the neurons of the human brain. The function of each neuron is to take an 

input, perform several operations, and then pass the output to the following neuron. For 

example, the purpose of this research is to teach the computer to recognise cornea images 

and classify them into the categories between healthy or injured. Hence, the computer is 

required to learn (training) how a healthy and an injured cornea look like before it is able 

to recognize (testing) a new image. In regard to this, the more injuries sample the 

computer sees, the better is the ability of the computer to recognize injured cornea which 

is also known as supervised learning. This task starts by labelling the images, followed 

by the process of recognizing patterns that are present in the images which are absent 

from the others, and finally building its own cognition. In other words, this process is also 

known as machine learning [99]. 

Computers are able to perform computations on numbers but has no ability to interpret 

images in the similar way human does. In the case of machine learning, the images have 

to be converted to numbers to help the computer to understand. There are two common 

ways that can be employed in image processing as follows: (1) Grayscale involves the 
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conversion of the image to grayscale with the range of gray from white to black. Next, 

each pixel will be assigned a value based on the darkness of the grayscale. In addition, all 

the numbers will be put into an array for the computation to be performed, and (2) RGB 

allows colours to be represented as RGB values which involves the combination of red, 

green, and blue ranging from 0 to 255. Next, the RGB value of each pixel can then be 

extracted and the result can be put in an array for interpretation.  

A new image that is interpreted by the computer will be converted to an array using the 

same technique, followed by the comparison of the patterns of numbers against the 

existing known objects. The computer then allots confidence scores for each class. In this 

case, the class with the highest confidence score is usually considered as the predicted 

one. 

One of the most popular techniques in improving the accuracy of image classification is 

convolutional neural networks (CNNs) [100]. This technique involves a special type 

neural networks that functions similarly as the regular neural network, except that it has 

a convolutional layer. The image is broken up into a number of tiles instead of feeding 

the whole images as an array of numbers, whereby each tile will be predicted by the 

algorithm. Finally, the computer will try to predict what is in the picture based on the 

prediction of all the tiles. More importantly, this allows the computer to parallelise the 

operations and detect the object regardless of its location in the image. 

A standard neural network known as AlexNet [85] consists of 1.2 million high-resolution 

images and can be used to classify 1000 different classes. It comprises millions of 

parameters, hundreds thousand neurons, five convolutional layers (some of which consist 

of max-pooling layers), and three fully-connected layers with a 1000-way SoftMax 
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(Figure 3.22). The AlexNet has been used on small data for fingerprint detection [86] on 

a pretrained model with good results. Furthermore, AlexNet has been trained on rich 

feature representations for a wide range of images.  

 

Figure 3.22: AlexNet architecture. 

 

As AlexNet is designed to classify 1000 images, it is not suitable (overfitting concerns) 

for this research work to train the network from scratch which has a small data set and a 

limited number of classes (healthy and injured). Therefore, the pre-trained (Figure 3.23) 

AlexNet with two approaches have been used to classify the data, namely transfer 

learning [87] and deep feature extraction [88], [89] with some modification parameters 

from the old AlexNet model (see detailed explanation in Chapter 5).  

 

 

 

 

Image Input 5 Convolution Layers 3 Fully-Connected  

Layers 
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Figure 3.23: Example of pre-trained with transfer learning approach [90]. 

 

 

To understand well the AlexNet structure, key terms used describe as follows: 

Convolution layer – A layer designates a filter by which examine a subset of the image, 

and subsequently scans the whole image through image filter (Figure 3.24). Convolution 

layer defines the filter size and stride.  

Filter – The filter looking for specific features e.g. edges on the image. 
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Figure 3.24: Convolution layer image output [91]. 

 

Stride – An alternative method for down sampling the spatial resolution of the feature 

mappings. The stride length defines how many steps take when sliding filter across an 

image. For example, a stride length of one, moving the filter one unit as is scanned an 

entire image. 

 

Max pooling – Pooling layer used to compress information rather than extract image 

features. Similar to convolution layer, it defines filter and stride size. Maximum pooling 

refers to the selection of maximum value inside the filter in every scan (Figure 3.25). 
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Figure 3.25: Max pooling process [92]. 

 

Rectified linear units (ReLU) – Activation function where output is 0 when image pixel 

smaller than 0, otherwise, no changes (Figure 3.26). It is applied after convolution layer 

to solve vanishing gradient and to induce sparsity in the features. 

 

Figure 3.26: Rectified linear units (ReLU) function [92]. 

 

 

Fully connected (FC) – In FC, image matrix flattened into vector and feed it into a FC 

layer as neural network. Feature map matrix will be converted into vector, the features 

were combined together to create a model (Figure 3.27). From here, an activation 

function such as softmax to classify the outputs as injury or healthy.  

 

This image has been 

removed by the author 

of this thesis for 

copyright reasons. 

This image has been 

removed by the author 

of this thesis for 

copyright reasons. 
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Figure 3.27: CNN with fully connected (FC) and softmax layer. Model 1 has a FC layer of 

1024 neurons, while Model 2 presents 32 neurons [93]. 

 

Dropout – To deal with overfitting where the neuron weight has been reduced as shown 

in Figure 3.28.  

 
Figure 3.28: Neural network without and with dropout  

(Source: N. Srivastava et.al., Dropout: A Simple Way to Prevent Neural Networks from 
Overfitting, 2014) 

 

Softmax – Often used in the final layer after fully connected layer. Softmax is output for 

the probabilities range of 0 to 1. It calculates a probability for every possible class and 

sum of all probabilities is one.  

This image has been 

removed by the author 

of this thesis for 

copyright reasons. 

This image has been 

removed by the author 

of this thesis for 

copyright reasons. 
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3.5 Summary 

The new data collection of cornea epithelium using the pushbroom HSI system is 

presented in this chapter. To the best knowledge of the author, hyperspectral image 

collection presented in this chapter is a novelty of this study. This is first work to use HSI 

for corneal epithelium injury detection. Four series of experiments for images with and 

without eye staining have been captured via a scanning process. The analysis has mainly 

focused on the eyes without staining while the stained eyes have been used as the ground 

truth images to identify the injured area. Two types of camera, VIS-NIR (400 nm to 1000 

nm) and NIR (950 nm to 1700 nm) have been used.  

The resulting images from the VIS-NIR have been utilised for the subsequent process, 

while the images captured from the NIR have been rejected due to the low image quality, 

where the intact and un-intact corneal epithelium layer were difficult to distinguish. 

However, this study has not investigated the valid reason for the poor outcome from NIR. 

Overall, the literature on the background knowledge of image analysis will be used has 

been categorised into image enhancement, dimensional reduction, and image 

classification with each being discussed appropriately. 
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CHAPTER 4  

A NEW HYPERSPECTRAL IMAGE ENHANCEMENT (8-SHIE) 

A corneal injury may be visible, but the severity of damage cannot be easily determined 

by the naked eye. Quantifying the defect or assessing each layer on the cornea is a 

challenging task even to an expert, because the appearance is transparent and it is 

comprised of a tiny structure. Therefore, the preliminary experiment, which is referred as 

group 1, tested five samples. This experiment determined if hyperspectral imaging is 

possible in providing and revealing significant information from the cornea in general 

and especially in the epithelium layer.  

This chapter also presents information on how hyperspectral images were processed from 

raw images that contained a large amount of information into formatted data file to 

minimise storage space for post-processing. The analyses on spatial and spectral 

signatures are presented towards image enhancement so as to provide objective 

interpretation. 
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4.1 Spectral Bands Post-Processing 

4.1.1 Spectral Binning 

The Environment for Visualizing Images (ENVI) software program was applied to read 

the raw image, a sample illustration of which is given in Figure 4.1..  

 
 

 

 
 

Figure 4.1: Image sliced at band-150 (638 nm). Mean reflectance of original image at pixel 

‘X’ as labelled. 
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First, the dimension was minimised via spectral binning [94] to save storage space and 

reduce processing time. Spectral binning where two or more spectral bands are summed 

up to form a unique row channel that shows in Figure 4.2. It is called on-chip binning if 

the summation is performed during image acquisition by the hardware, otherwise if this 

done offline during post-processing, is then called off-chip binning. By all means, the 

higher the number of binned bands (rows), the higher is the spectral signal-to-noise ratio 

(SNR). 

 
 

Figure 4.2:Spectral Binning. The number of across-track spatial pixels is preserved 

whereas the bands (0,1,2) are binned to form band (0), bands (3,4) will form band 1 and so 

on [94]. 

 

After that, the image data were saved for the post-processing. The cubical image 

dimension 1200 to 1300 x 804 (spatial) x 604 (spectral) was binned on the spectral 

dimension. It is worthy to note that although spectral binning may affect the spectral 

resolution, it can also reduce spatial redundancies.  

4.1.2 Image and Reflectance Normalisation 

The original image contained 604 bands. Spectral binning was applied twice, from 604 

bands to 302 bands, and to 151 bands shows in Figure 4.3.  
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(c) 

Band 15 

Band 110 

 

Figure 4.3: (a) Spectral signature for 302-band. (b) 

Spectral signature for 151-band. (c) Spectral 

signature with normalised image and reflectance 

between band-15 and band-110. 
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4-pixel had been selected to plot the spectral signature. 2-pixel denoted injured area, 1-

pixel represented injured boundary, and the other 1-pixel referred to intact epithelium 

(Figure 4.3). Figure 4.3 (a) and (b) represent spectral signature binned by 4 and 6 

respectively. Both plots do not show any significant spectral difference between injured 

and healthy pixels.  

In contrast, Figure 4.3 (c) portrays the band 15 to band 110 with normalised spectral 

signature. The reflectance showed distinct spectral signature within the selected band, 

whereby non-injured area refers to healthy cornea being separated from the injuries and 

its boundaries. Therefore, normalisation of spectral signature and band selection are 

required to distinguish intact and un-intact epithelium layer. 
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4.1.3 Bad Band Removal 

Initially, the band selection was performed via visual interpretation. For example, band 1 

and 10, as shown in Figure 4.4, had no useful information to differentiate the target 

pixels, while band 140 was comprised of noisy image.  

 

 
 

 

 
 

 

 

 
 

 

 
 

Figure 4.4: Visual interpretation on single band. 

 

Refer to Figure 4.3 (C) based on the spectral signature, band less than 15 and more than 

120 not contained useful information (bad band) and had been discarded. In comparison 
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to band 60, the pixels of interest were successfully identified. The procedure of automatic 

band selection is depicted in section 4.2. 

 

4.2 The 8-Step Image Enhancement for Corneal Epithelium Injuries 

As aforementioned, eye staining step was omitted in group 1, but this procedure was 

carried out in group 2 and group 3 to provide ground truth images. Based on the grading 

staining in the Oxford schema [95] , various types of dyes are available, for instance, 

fluorescein sodium (corneal staining), rose Bengal, and lissamine green (conjunctival 

staining). These dyes can be applied to estimate surface damage on the cornea. However, 

the application of eye staining has several shortcomings [95], [96], for example, 

fluorescein sodium diffuses rapidly into the tissues that affects the quality of image. On 

the other hand, the drop size of rose Bengal and lissamine green is an essential factor for 

successful grading.  

Hyperspectral image enhancement had been explored [97] in this study for the purpose 

of providing high accuracy in image classification. The steps involved in image pre-

processing and image enhancement, as described in Chapter 3, had been performed to 

improvise distinction and visualisation of both normal and abnormal corneal epithelium 

(Figure 4.5). Figure 4.6 illustrates eleven eyes that had been transformed by using PCA 

before image enhancement was carried out. 
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Figure 4.5: Block diagram of HSI image enhancement
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PC/ 
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Healthy 
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Healthy 
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Healthy 
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Injured 
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Injured 

 

EYE6 

Injured 

 

EYE7 

Injured 

 

EYE8 

Injured Stain 

 

EYE9 

Injured Stain 

 

EYE10 

Injured Stain 

 

EYE11 

Injured Stain 

 

Figure 4.6: Ten principal components (PC) of eleven eyes transformed with PCA. Clinical 

information was noted in several PCs, particularly for EYE8 until EYE11, as these images 

were stained. In contrast, EYE1 to EYE7, which were not stained, appeared similar 

although EYE4 to EYE7 displayed abnormal corneal epithelium. 
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The samples showed that all the unstained eyes displayed similarity between normal and 

abnormal corneas. In contrast, all the stained eyes indicated vivid clinical information 

from the injury area. 

The 8-Step image enhancement algorithms for the hyperspectral image of porcine cornea 

are summarised as follows: 

Step-1. Post-processing, a full band of a hyperspectral image was loaded,  

Input = M*N*λ. 

𝐷𝑀∗𝑁∗𝜆 =  {𝑑𝑖|𝑖 = 1, 2, … … . , 𝜆} Eq. 14 

where D represented as full band, 𝜆 denoted as band images acquired from a hyperspectral 

remote sensor. Each image 𝑑𝑖  D can be indicated as a spatial dataset where each pixel 

of the image has spatial attributes, i.e., the row (M) and column (N), and a non-spatial 

attribute, i.e., the intensity value. 

Step-2. A region of interest (cornea) was selected by using the template matching method 

(2D FFT-based correlation [98]) (see Figure 4.7). 

 

Figure 4.7: Template matching-FFT based correlation. (a) Input image. (b) Template 

image. (c) Correlation plot. (d) Template matched. 

 

  
(a)                           (b)                                  (c)                                          (d) 

Input Image
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𝐹(𝑢, 𝑣) =  
1

𝑀𝑁
∑ ∑ 𝑓(𝑚, 𝑛)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

exp [−2𝜋𝑗 (
𝑚𝑢

𝑀
+

𝑛𝑣

𝑁
)] Eq. 15 

where  𝐹(𝑢, 𝑣) denoted as image in frequency domain while, 𝑓(𝑚, 𝑛) represented as 

image in time domain. M, N designated as row and column of image pixels. The complex 

number is represented by 𝑒𝑥𝑝 which consists sine and cosine function. Then, the inverse 

image transformation (IFFT) denoted as Eq. 16. 

𝑓(𝑚, 𝑛) =  ∑ ∑ 𝐹(𝑢, 𝑣)

𝑁−1

𝑣=0

𝑀−1

𝑢=0

exp [2𝜋𝑗 (
𝑚𝑢

𝑀
+

𝑛𝑣

𝑁
)] Eq. 16 

Step-3. The image was resized to 100 x 100, A ϵ D M* N* λ. 

Step-4. Contrast transformation was applied to all the selected bands (i.e., from band 50 

until band 100). Parameter setting: clip pixel level, and gamma. 

The bands were selected by using spatial entropy based on mutual information (SEMI) 

[99] derived from the spectral image that ranged as follows: 0-50, 50-100, 100-150, 150-

200, and 200-250. The SEMI equation generated as follows: 

𝐻𝑠(𝑋) =  − ∑
𝑑𝑖

𝑖𝑛𝑡

𝑑𝑖
𝑒𝑥𝑡

𝑡

𝑖=1

𝑃𝑖  log2(𝑝𝑖) Eq. 17 

 

where 
𝑑𝑖

𝑖𝑛𝑡

𝑑𝑖
𝑒𝑥𝑡 added as a weight factor in the Shannon entropy. 𝑃𝑖 is the fraction of the 

number of pixels computed from the image histogram.  

 

𝐼𝑠(𝑋, 𝑌) =  𝐻𝑠(𝑋) + 𝐻𝑠(𝑌) − 𝐻𝑠(𝑋, 𝑌) Eq. 18 

 



91 
 

Eq. 18 is a statistical information measurement of image X, where 𝐻𝑠(𝑋) and 𝐻𝑠(𝑌) are 

the entropies to the band image X and the ground truth Y, respectively, and 𝐻𝑠(𝑋, 𝑌) is 

the joint entropy between X and Y. 

 

𝐼𝑠(𝑋, 𝑌) =  − ∑
𝑑𝑖

𝑖𝑛𝑡

𝑑𝑖
𝑒𝑥𝑡

𝑡

𝑖=1

𝑃𝑖  log2(𝑝𝑖) − ∑
𝑑𝑗

𝑖𝑛𝑡

𝑑𝑗
𝑒𝑥𝑡

0

𝑗=1

𝑃𝑗  log2(𝑝𝑗) + ∑ ∑
𝑑𝑖𝑗

𝑖𝑛𝑡

𝑑𝑖𝑗
𝑒𝑥𝑡

0

𝑗=1

𝑃𝑖𝑗  log2(𝑝𝑖𝑗)

𝑡

𝑖=1

 Eq. 19 

Finally, Eq. 19 SEMI equation was generated by substitutes Eq. 17 in the Eq. 18. Which 

enables the spatial entropy 𝐻𝑠 to measure the image information by evaluating the pixels 

non-spatial attribute in a spatial space. 

As a result, the image that was within the range of wavelength 503 nm until 625 nm had 

been selected for further processing (see Figure 4.8). These images displayed significant 

outcomes as the injured boundary gradually disappeared from the lower to the higher 

band. Hence, this method can be applied to examine the healing process. 

 

Figure 4.8: Output image at bands 1-50, 50-100, 100-150, 150-200, and 200-250. Image at 

row 2 column 3 is the ground truth image. 

 

 

                  

Band 1 to 50
Entropy:2.1305

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Band 50 to 100
Entropy:1.1312

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Band 100 to 150
Entropy:1.1801

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Band 150 to 200
Entropy:1.2012

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Band 200 to 250
Entropy:1.3038

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100  

 Pixels 

P
ix

el
s 

Band 1-50 

 Pixels 

Band 50-100 

 Pixels 

Band 100-150 

 Pixels 

P
ix

el
s 

Band 150-200 

 Pixels 

Band 200-150 Ground Truth 



92 
 

Step-5. Morphology operation using the erosion technique was applied to all the selected 

bands. Parameter setting: structure element (SE) ‘ball’ size. 

𝐴𝜃𝐵 =  {𝑧|𝐵𝑧 ⊆ 𝐴} Eq. 20 

where 𝐴𝜃𝐵 as erosion of 𝐴 by 𝐵 is the set of all points 𝑧 in 𝐵, translated by 𝑧, is comprised 

of 𝐴. 𝐴 is the gray-level image matrix, and 𝐵 is the structural element matrix.  

Step-6. Image filtering using Laplacian of Gaussian (LoG) had been performed on all the 

selected bands. Parameter setting: filter size, and sigma. The equations as follows:  

𝐺 = exp (−
𝑥2 + 𝑦2

2𝜎2
)  Eq. 21 

 

 

∇2= (
𝑑2

𝑑𝑥2
+

𝑑2

𝑑𝑦2
)  Eq. 22 

 

 

∇2𝐺(𝑥, 𝑦) =  [𝑥2 +  𝑦2 −
2𝜎2

𝜎4
 exp (−

𝑥2 + 𝑦2

2𝜎2
)] Eq. 23 

 

The combination of a 2D Gaussian function as Eq. 21, and a Laplacian operator as Eq. 

22, gives the LoG expression as Eq.23.  

The three-parameter setting (SE size, filter size, and sigma) was selected based on the 

visualisation of the spectral image with four varying parameter sets ([5,5], [3 3], 0.1), 

([15,15], [5 5], 0.1), ([25,25], [7 7], 0.1), and ([50,50], [9 9], 0.1). As a result, the image 

with parameters ([50,50], [9 9], 0.1) displayed the injured boundary (see Figure 4.9). 
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Step-7. Principal component analysis (as Eq. 5 to Eq. 10) of all the selected bands had 

been computed. As a result, 10 PCs displayed almost 100% variance, while PCs that 

signified zero variance were neglected.  

 

Figure 4.9: Four output image with different parameter setting ([5,5], [3 3], 0.1), ([15,15], 

[5 5], 0.1), ([25,25], [7 7], 0.1), and ([50,50], [9 9], 0.1). Image at row 2 column 2 is the 

ground truth image. 

 

Step-8. Image subtraction was performed between PC2 (2nd largest variance) and PC1 

(1st largest variance). The outcome after the enhancement was carried out is illustrated in 

Figure 4.10. 

𝑔(𝑥, 𝑦) =  𝑓(𝑥, 𝑦) − ℎ(𝑥, 𝑦) Eq. 24 

where 𝑔(𝑥, 𝑦) denotes an image difference by the subtraction of two images, 𝑓(𝑥, 𝑦) from  

ℎ(𝑥, 𝑦) or vice versa.  

The comparison between the image before and after enhancement is portrayed in Figure 

4.11. After enhancement, the injury boundary in the images seemed to be visible and 
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corresponded to the ground truth image. The enhanced image appeared slightly larger due 

to the morphological process. 

Image enhanced 

 

 

 

1) Boundary of injury 

2) No intact epithelium (injured area) 

3) Intact epithelium (healthy area) 

Ground Truth 

 

Figure 4.10: (a) Image enhanced. (b) Ground truth image. 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 4.11: Image comparison before and after enhancement. (a) Original image without 

stain. (b) After image enhancement (without stain). (c) Ground truth image with stain. 

 

4.2.1 The 8-SHIE Applied on Indian Pines 

The remote sensing Indian Pines [100] data were employed to ascertain that this newly 

developed algorithm worked well in the presence of hyperspectral image, although this is 
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not reckoned as medical image. The Indian Pines data happen to be popular for 

hyperspectral image classification [101] as they are comprised of 16 classes of samples. 

The set of scenes was gathered by using an AVIRIS sensor in June 12, 1992 at the Indian 

Pines test site located at North-western Indiana. The set consisted of 145 x 145 pixels and 

220 contiguous spectral reflectance bands in wavelengths that ranged between 0.4 µm 

and 2.5 µm. The set contained two-third agriculture, and one-third forest or other natural 

vegetation scenes. It also had two major dual-lane highways, a rail line, as well as some 

low-density housing, built structures, and smaller roads.  

The AVIRIS refers to a proven instrument in the realm of earth remote-sensing. The 

primary objective of the AVIRIS project is to identify, measure, and monitor the 

constituents of the Earth's surface and the atmosphere based on molecular absorption, as 

well as particle scattering signatures. Studies that employed the AVIRIS data had 

predominantly focused on understanding processes associated to the global environment 

and climate change. 

For any given material, the amount of solar radiation that is reflected (absorbed, 

transmitted) would appear to vary in different wavelengths. The varying features of 

samples allow the segregation of distinct signatures based on their response values for a 

given wavelength. Figure 4.12 illustrates the spectral signatures for five classes derived 

from the Indian Pines dataset. 
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Figure 4.12: Indian Pines before apply image enhancement.  

(a) Indian Pines at band-10. 

(b) Signature reflectance for five classes.
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The Indian Pines ground truth scene was comprised of 16 classes, which are: alfalfa, corn-

notill, corn-mintill, corn, grass-pasture, grass-tress, grass-pasture-mowed, hay-

windrowed, oats, soybean-notill, soybean-mintill, soybean-clean, wheat, woods, 

buildings-grass-trees-drives, and stone-steel-towers. However, only ten classes had been 

applied in order to test the algorithm. This is mainly due to the purpose of testing the 

algorithm in its ability to separate the spectral signatures individually towards image 

classification.  

By comparing Figure 4.12 (image before enhancement) with Figure 4.13 (image after 

enhancement), the latter exhibited its spectral signature being distinctly separated for the 

five classes in the following order: woods, hay, alfalfa, grass, and steel tower. 
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Figure 4.13: Indian Pines after apply image enhancement.  

 (a) Results after image enhancement. 

 (b) Spectral signature for five classes being separated individually.  

From top is woods followed by hay, alfalfa, grass, and steel tower.
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With additional classes, as illustrated in Figure 4.14, clear separation was still noted with 

segregated signatures and in some cases, several classes were formed into a group. From 

top ranking, the four reflectance signatures are as follows: woods, buildings, wheat, and 

corn, which had been likely to form a group of varied wavelengths. 

 

Figure 4.14: Spectral signature of Indian Pines data for ten classes after image 

enhancement. From top are woods, buildings, wheat, and corn in a group. Next is oats 

followed by alfalfa and hay in a group. Final signatures in a group are steel tower, 

soybean, and grass.  

 

Followed by oats as standalone reflectance signature and being parallel with the outcomes 

of classification accuracies, as presented in Table 4.1, oats recorded 100% accuracy for 

eight types of classifiers. Hence, it had been envisaged that oats contained unique 

wavelength, in comparison to other classes. Next, two classes that formed a group were 

alfalfa and hay. Last but not least, steel tower, soybean, and grass were classified in the 

last group.
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Table 4.1: Classification accuracies (%) of the Indian Pines image obtained by eight classifiers. Table source [97]. 
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4.3 Performance Measure using Contrast to Noise Ratio (CNR) 

Figure 4.15 and Figure 4.16 illustrate the outcomes of images with contrast to noise ratio 

(CNR) [74], as well as the histogram between healthy and injured corneas. CNR measure 

(Eq.25) used to determine image quality. The CNR value for the enhanced image 

appeared to be higher, when compared to the original image, hence making the injury 

easily detectable (Figure 4.16 (C)) with human vision. Whereas, lower CNR indicated 

difficulty in detecting the injury.  

𝐶𝑁𝑅 =
𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡

𝑁𝑜𝑖𝑠𝑒
=  [

|𝜇1 − 𝜇2|

√𝜎1
2 + 𝜎2

2
 ] Eq. 25 

Where 𝜇 and 𝜎 are expectation values and standard deviations of two different images or 

it can be two areas of different brightness in a same image. 

 

       

 

      

 

       

 

 

 

 

 

 

 

   

 
    Pixels      Pixels       Pixels 

      (a)      (b)       (c) 
 

Figure 4.15: Images of healthy cornea with the histogram underneath respectively. Images 

were normalised and resized to 100 x 100. (a) Original image sliced at band-100 (CNR: 

33.1256), (b) Image after PC subtraction before enhancement (CNR: 27.276), and (c) 

Image after PC subtraction and enhancement (CNR: 77.3276). 
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    Pixels      Pixels       Pixels 

      (a)      (b)       (c) 
Figure 4.16: Images of injured cornea with the histogram underneath respectively. Images 

were normalised and resized to 100 x 100. (a) Original image sliced at band-100 (CNR: 

46.4635), (b) Image after PC subtraction before enhancement (CNR: 36.1354), and (c) 

Image after PC subtraction and enhancement (CNR: 93.6535). 

 

Finally, image enhancement was performed upon all twenty-five eyes, as portrayed in 

Figure 4.17. All these images were further used in the next process for image 

classification. 

 

Figure 4.17: All the images were normalised and resized to 100 x 100. Rows 1 and 2 

represent healthy eyes, while rows 3 and 4 denote injured eyes.
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4.4 Summary 

The preliminary study from experiment group 1 had shown that the reflectance signatures 

retrieved from hyperspectral imaging of both normal and abnormal corneal epithelium 

tissues of porcine had similar morphology with subtle variances.  This gives confidence 

to pursue further experimental in groups 2, 3, and 4 on the data collected for further image 

analyses.  

Twenty-five hyperspectral data were employed to develop a new image enhancement 

algorithm. Initially, the spatial and the spectral dimensions were interpreted visually from 

band-to-band. The spatial and spectral normalisation had been applied in advance during 

the pre-processing step to attain optimum outcomes. Furthermore, any unnecessary band 

that contained meaningless information had been discarded to save space storage and to 

hinder data redundancy. After that, the 8-Step image enhancement was carried out to 

discriminate injured and healthy corneas.  

Overall, the results showed that the proposed algorithm had been able to illustrate clearly 

the injured boundary. The algorithm could also be used to monitor the cornea healing 

process as the injured boundary can be viewed from band-to-band. Primarily, this 

algorithm had been designed for the cornea images gathered for the purpose of this thesis. 

Besides, in order to ascertain that this algorithm worked well for other hyperspectral 

images, it was further tested on the existing remote-sensing Indian Pines dataset. As such, 

some parameters were altered to suit the image properties. For example, the SE size in 

the morphology operation was changed to 1 instead of 50. From the reflectance signature 

results, this algorithm successfully segregated the ten varying classes, although its main 
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purpose is to distinguish between two classes. All the enhanced images were then applied 

for image classification in the next chapter. 
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CHAPTER 5  

MIXTURE DEEP-LEARNING CLASSIFICATION OF CORNEAL 

EPITHELIUM INJURIES 

The purpose of this chapter is to describe and compare the three classification approaches 

(Figure 5.1) with the purpose of figuring out the best accuracy and low time consumption 

for the cornea assessment. The three classification approaches are as follows: 

1. Histogram feature extraction with SVM-GRBF classifier. 

2. Transfer learning using pretrained AlexNet with a fine-tuned model. 

3. Feature extraction with pretrained AlexNet (Mixture AlexNet and SVM-Linear). 

 

In regard to this matter, it is important to note that the classification input features can be 

extracted from the histogram (features crafting) as well as the deep learning neural 

network (features learning). Image classification is described as the process of labelling 

predetermined pixels into different classes. Commonly, the purpose of classification in 

medical application is to classify healthy and unhealthy tissues for the purpose of 

analysing and diagnosing specific diseases such as cancer [102].  

In relation to this, an automatic classification has been developed using various 

techniques with the purpose of helping human to classify them in an objective manner. 

Moreover, several procedures have been adopted in the achievement of image 

classification, namely image pre-processing, features selection, features extraction, type 

of classifiers, and performing accuracy assessment [103].  
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Figure 5.1: Framework of three classification approaches. 
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The purpose of image pre-processing is to process the original image and prevent any 

ineffective information. On another note, the objective of both feature selection and 

extraction is to avoid the overfitting of the data to ensure that further analysis can be 

performed. The function of feature extraction is to transform high-dimensional datasets 

into a lower dimensional space. Contrastingly, feature selection is not responsible in 

transforming or altering the original representation of the data. The next procedure refers 

to the type of classifiers which can be further categorised as follows: (1) supervised 

learning allows the input variables and output variables to be utilized for the purpose of 

learning the mapping function, and (2) unsupervised learning only provides input data 

and no corresponding output variables.  

Hence, it is crucial to understand that the goal of unsupervised learning is to model the 

underlying structure in order to learn more about the data. The final procedure involves 

the performance assessment which is carried out based on the six criteria proposed by 

Cihlar et al. (1998) for the purpose of evaluating the classification method [104]. The six 

criteria are accuracy, reproducibility, robustness, ability to fully use the information 

content of the data, uniform applicability, and objectiveness. Nevertheless, in reality, no 

classification algorithm can satisfy all these requirements nor be applied to all studies due 

to different environmental settings and data used. 
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5.1 Building a Deep Learning Convolutional Neural Networks 

25 images have been obtained from the PC subtraction consisting of the normal and the 

abnormal cornea. image flipping and rotation were employed for data augmentation to 

increase the classification accuracy and to enrich the training data [83]. In total, 94 images 

have been used following the image augmentation for classification. All images have been 

transformed into image vectors and randomly split into two sets for training and testing. 

The ratio of training to testing was varied across the following values: 0.1(10% for 

training, 90% for testing), 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 in order to determine 

the optimal accuracy. The time consumed using a single CPU for every distribution has 

also been recorded. 

The parameters identification is considered as a challenging task because there are many 

parameters that need to be adjusted. In this research we adopted a structure made by Alex 

Krizhevsky (AlexNet), the champion of ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC2010) as a reference [85]. In this case, five convolutional layers and 

three max pooling were used to achieve the optimum result. Max pooling is described as 

technique that down sampling the array size for the purpose of reducing the dimensions 

of an image by taking the maximum pixel value of a grid. Moreover, this also helps to 

reduce overfitting and allow the model to be more generic. The idea here is that the most 

interesting bit will be kept if something interesting is found in any of the four input tiles 

that makes up each 2 by 2 grid square. Hence, this allows the size of array to be reduced 

and at the same time, keeping the most important bits. 

The next step involves the addition of three fully connected layers with the inclusion of a 

softmax layer at the very end of the fully connected layers. This process reduces a giant 
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image into a fairly small array. It is crucial to note that an array is just a bunch of numbers 

that can be used as input into another neural network. Hence, the final neural network 

will decide if the image is a match or not a match. Apart from that, a fully connected 

network is applied to differentiate it from the convolution step. 

On a more important note, these steps can be combined and stacked as many times as 

needed, be it two, three, or even ten convolution layers when solving problems in the real 

world. The max pooling can be thrown wherever appropriate in order to reduce the size 

of data. The basic idea is to start with a large image which is boiled down step by step 

until a single result is achieved. In this case, more convolution steps allow the network to 

learn to recognise more complicated features. For example, the first convolution step 

might involve the process of recognising injury edges, while the second might be 

responsible of identifying the shape of injury using the knowledge of injury edges. Next, 

the third step may include the technique of situating the location of injury using the 

knowledge on injury shape. 

The experiment in this study started with a 227 x 227-pixel image, with the application 

of convolution and max pooling twice. The process was followed by the application of 

convolution three more times and the max pooling in order to produce three fully-

connected layers. The end result shows that the image managed to be classified into 

healthy and injured classes. Nevertheless, it is crucial to note that a large amount of data 

makes it harder for neural network to solve the problem, but it can be compensated by 

making the network bigger for the purpose of allowing more complicated patterns to be 

learned. Therefore, it can be understood that the deep neural network needs to build up 

more layers compared to the traditional neural network. 
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5.2 Histogram Feature Extraction with SVM-GRBF Classifier 

In this case, the first classification approach was performed based on the histogram of the 

gray-scale image. Specifically, a total of four features were extracted, namely mean, 

standard deviation (square root of the variance), skewness, and kurtosis which were 

calculated using the probability distribution of the intensity levels in the histogram bins 

[105]. The histogram of intensity levels is described as a simple summary of the statistical 

information of the image, which involves the use of individual pixels to calculate the 

gray-level histogram. Therefore, it can be clearly understood that the histogram contains 

the first-order statistical (central moments) information about the image values [106]. The 

statistics are defined based on the following equations [107]. 

Let random variable I represents the gray-levels of image values. The first-order 

histogram P(I) is defined as: 

𝑃(𝐼) =
𝑁𝑜. 𝑜𝑓𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑔𝑟𝑎𝑦 𝑙𝑒𝑣𝑒𝑙 𝐼

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚
 Eq. 26 

Based on the definition of P(I), the mean and central moments µk of I given by:  

Mean: 

𝑃𝑚1 = ∑ 𝐼1𝑃(𝐼)

𝑁−1

𝐼=0

 Eq. 27 

Central moments: 

µ𝑘 = ∑(𝐼 − 𝑚1)𝑘𝑃(𝐼)

𝑁−1

𝐼=0

 Eq. 28 
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where k = 2, 3, 4, and N is the number of possible gray levels. 

The most frequently used central moments are variance, skewness, and kurtosis given by 

µ2, µ3, and µ4 respectively [107]. The function of variance is to measure the deviation of 

gray-levels from the mean. Meanwhile, skewness is described as an indicator of 

asymmetry around the mean, whereas kurtosis is defined as a function of the histogram 

sharpness. Apart from that, the combinations of 2D-features were computed for both 

healthy and injured eyes, which will then be used as inputs to the binary classifiers. 

The results of 1st-order histogram are shown in Table 5.1. All of these features will then 

be combined as 2D-features for the classification purposes using SVM with various 

parameters setting. In addition, the results of six pairs 2D-features (Mean-Std, Mean-

Skew, Mean-Kurt, Std-Skew, Std-Kurt, Skew-Kurt) are depicted in (Section 5.5). 

Table 5.1: 4-features computed from image histogram for 25 eyes. 

EYE 

Healthy 

Mean 

Healthy 

Standard 

Deviation 

Healthy 

Skewness 

Healthy 

Kurtosis 

Healthy 

EYE 

Injured 

Mean 

Injured 

Standard 

Deviation 

Injured 

Skewness 

Injured 

Kurtosis 

Injured 

1 135.31 28.10 0.69 4.79 12 125.85 26.46 0.51 5.36 
2 97.23 28.67 0.92 5.86 13 110.69 26.74 0.83 6.45 

3 101.50 27.87 0.84 6.09 14 81.23 22.58 1.43 8.40 
4 80.91 22.34 1.22 8.73 15 82.07 23.08 0.83 5.81 
5 88.11 25.90 0.95 7.26 16 76.56 19.28 1.16 8.80 
6 102.41 26.99 1.04 6.47 17 79.44 28.30 1.02 5.54 
7 100.73 19.88 1.10 7.74 18 67.84 20.04 1.11 8.01 
8 108.48 21.03 1.25 9.66 19 73.76 27.27 1.11 6.24 
9 89.85 24.00 1.26 8.21 20 116.46 27.40 0.61 4.64 
10 99.75 27.72 0.89 6.08 21 120.36 21.74 0.76 6.61 

11 98.96 22.73 1.18 8.66 22 96.72 27.15 0.94 6.51 
     23 108.97 28.55 0.67 5.71 
     24 101.93 29.25 0.27 4.67 
     25 105.74 24.04 0.37 4.67 
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5.3 Transfer Learning Using Pretrained AlexNet with a Fine-Tuned 

Model 

The second approach classification adopted by the present study refers to transfer learning 

with a fine-tuned model, whereby the last three layers were configured for a total of 1000 

classes of the original trained network. In this work, these layers including several other 

layers were fine-tuned (see Table 5.2, underlined-bold items) for the new classification 

cornea problem that was restricted to only two classes.  

In this research, image augmentation with flipping and rotation were applied in order to 

obtain more images. However, the image augmentation is only applied to the injured 

image as shown in Figure 5.2. More importantly, image augmentation allows a variety 

of injured locations and positions to be obtained, which is not applicable on healthy 

cornea (Figure 5.3). As a result, a total of 94 images managed to be achieved instead of 

the initial target of 25 images. 
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Table 5.2: AlexNet parameters with fine-tuned network for transfer learning on cornea 

images. 

No Layer Type Parameters 

1 Data Image Input 
Layer1: Convolution layer Input image size: 227×227×3 with 
zero centre normalisation No. of filters: 96 Filter size: 11×11×3 
Stride: [4 4] Output: 224/4×224/4×96 (because of stride 4)  
Train Network with a CPU 2 Conv1 Convolution 

3 Relu1 Relu Rectified linear units 

4 Norm1 Cross channel normalisation Cross channel normalisation with 5 channels per element 

5 Pool1 Max pooling 
Layer2: Max pooling followed by convolution Input: 
55×55×96 Max pooling: 55/2×55/2×96 = 27×27×96 No. of 
filters: 256 Filter size: 5×5×48 Stride: [2 2] Output: 27×27×256  
Train Network with a CPU 

6 Conv2 Convolution 

7 Relu2 Relu Rectified linear units 
8 Norm2 Cross channel normalisation Cross channel normalisation with 5 channels per element 

9 Pool2 Max pooling Layer3: Max pooling followed by convolution Input: 
27×27×256 Max pooling: 27/2×27/2×256 = 13×13×256 No. of 
filters: 384 
Filter size: 3×3×256 Stride: [2 2] Output: 13×13×384 
Train Network with a CPU 

10 Conv3 Convolution 

11 Relu3 Relu Rectified linear units 

12 Conv4 Convolution 

Layer4: Convolution layer Input: 13×13×192 
No. of filters: 384 Filter size: 3×3×192 Stride: [1 1] Output: 
13×13×384  
Train Network with a CPU 

13 Relu4 Relu Rectified linear units 

14 Conv5 Convolution 

Layer5: Convolution layer Input: 13×13×192 No. of filters: 256 

Filter size: 3×3×192 Stride: [1 1] Output: 13×13×256  
Train Network with a CPU 

15 Relu5 Relu Rectified linear units 
16 Pool3 Max pooling 3×3 max pooling with stride [2 2] 

17 Fc6 Fully connected 
Layer6: Fully connected layer Input: 13×13×128 is transformed 
into a vector Output: 4096-dimensional feature with 2048 in 
each vector 

18 Relu6 Relu Rectified linear units 
19 Drop6 Dropout Reducing overfitting with probability 0.5 

20 Fc7 Fully connected 
Layer7: Fully connected layer 4096-dimensional feature with 
2048 in each vector 

21 Relu7 Relu Rectified linear units 

22 Drop7 Dropout 
Reducing overfitting with probability 0.5 

 

23 Fc8 Fully connected Layer8: Fully connected layer 2 number of classes 

24 Prob SoftMax Reducing overfitting 
25 Output Classification output Classify 2 image: Healthy and Injured 
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Figure 5.2: Injured cornea with image augmentation. 

:

 

Figure 5.3: Healthy cornea without image augmentation. 



115 
 

The input image was resized to 227×227×3, while the network was trained with a single 

CPU. The layers other than the last three were transferred directly (the layer weights of 

the pretrained network remains) to the new classification task, whilst the final three layers 

were replaced with other layers, namely a fully connected layer, a softmax layer, and a 

classification output layer. The new fully connected layer was trained to classify the 

cornea images limited to only two classes. In the case of increasing the learning rate in 

the new layers, the values for both the weight learn rate factor and the bias learn rate 

factor were set to 20 with a small initial learning rate of 0.001, including the number of 

epochs to five. Finally, the cornea images were trained in a network that consists of the 

transferred and the new layers. As a result, the validation images managed to be classified 

using the fine-tuned network, while the accuracy was computed from the fraction of labels 

correctly predicted by the network. 
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5.4 Mixture AlexNet and SVM-Linear 

The third approach employed in this study refers to the image feature extraction with 

pretrained AlexNet, which is considered as the easiest and fastest way to exploit the 

representational power of pretrained deep networks. In particular, the network is 

responsible of producing a hierarchical representation of input images. Meanwhile, 

activations on the fully connected layer ‘fc6’ are used for feature extraction of the training 

and test images as can be seen in Figure 5.4.  

The class labels from the training and test data were extracted. Next, the features extracted 

from the training images were utilised as the predictor variables, which was then trained 

using linear support vector machine (SVM). Overall, the test images were classified using 

the trained SVM model based on the features extracted from the test images. 

 

Figure 5.4: Feature extraction with pretrained AlexNet on cornea images classification 

using SVM. 
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The fusion of AlexNet and SVM-linear classifier was used for comparison to the 

standalone AlexNet. Due to the complex architecture involved in AlexNet, the learning 

process can be very time-consuming. This disadvantage could potentially be resolved by 

the use of a graphics processing unit (GPU). However, GPU is less readily used or 

available, thereby limiting future applicability. Therefore, for central processing unit 

(CPU) users, the combination of AlexNet and SVM-linear is more than sufficient, where 

AlexNet performs the high-level feature extraction while SVM-linear carried out the 

classification (Figure 5.4). 

Figure 5.5 depicts the samples of features extracted from convolution 1, convolution 5, 

and fully-connected 8 (FC8). In the present study, there are three possible layers of feature 

extraction output in AlexNet, namely FC6 (layer 17), FC7 (layer 20), and FC8 (layer 23) 

that consist of 4096, 4096, and 1000 feature dimensions, respectively. More importantly, 

any of these three layers can be used as feature representation entries to the SVM 

classifier. In this combination, convolutional layers were employed for the purpose of 

learning a better representation of the input image. Meanwhile, SVM classification was 

performed on the fc output during the training and testing with such automatically 

extracted features. Therefore, this is a clear explanation as to why AlexNet-SVM tends to 

run much faster than a standalone AlexNet. 
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Figure 5.5: Sample of features extraction. (a); Conv1 (56 channels); (b); Conv5 (30 

channels); and (c) FC8 layer (channel 1). 

 
(a) 

 
(b) 

 
(c) 
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5.5 Results and Performance  

Table 5.3 shows the results of classification performed by SVM-GRBF using the four 

features extracted from the histogram for testing data (data were unseen during training). 

In particular, it represents the number of iterations required for convergence, accuracy, 

and error during the testing of different sets of hyperparameters. 

Table 5.3: Four features classification using SVM-GRBF. 

Features 

C = 1 C = 500 C = 500 

Sigma = 1 Sigma = 1.658 Sigma = 2.658 

10-Fold Cross Validation 10-Fold Cross Validation 10-Fold Cross Validation 

 Iterations Accuracy Error Iterations Accuracy Error Iterations Accuracy Error 

Mean-Std. 13 0.2708 0.4545 81 0.5625 0.3636 578 0.4792 0.4545 

Mean-Skew 13 0.8333 0.3636 148 0.9583 0.4545 412 1 0.4545 

Mean-Kurt 6 0.7500 0.3636 169 0.8125 0.3636 189 0.5208 0.2727 

Std.-Skew 10 0.6042 0.4545 161 0.2083 0.5455 207 0.1875 0.6364 

Std.-Kurt 6 0.3750 0.1818 419 0.6875 0.6364 172 0.7083 0.4545 

Skew-Kurt 12 0.6875 0 200 0.5833 0.1818 243 0.7292 0.0909 

4-Features 11 0.4375 0.3636 38 0.7292 0.4545 86 0.4583 0.4545 

 

The results showed that a combination of 2D features of mean and skewness is able to 

yield 100% accuracy, particularly when C and Sigma are increased sufficiently. Figure 

5.6 illustrates the decision boundaries and support vectors. 

The performance of the classifiers is measured based on confusion matrix as presented in 

Table 5.4. First, the cornea injury that is correctly identified as injured by the network is 

called as True Positives (TP). Second, the healthy cornea correctly identified by the 

network as healthy is described as True Negatives (TN). Third, False Positives (FP) is 

used to label the cornea predicted as injured but is actually healthy. Finally, False 

Negatives (FN) describes the injured cornea that is incorrectly recognised as injured. In 

this case, false positives are more preferred than false negatives when detecting injured 

cornea because false negatives is regarded as the worst possible case, particularly when 

the injured cornea is measured as healthy. 
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Figure 5.6: Decision boundary and support vector for mean vs skewness (testing data). 

 

Table 5.4: Confusion Matrix. 

Confusion Predict Predict 
Matrix Injured Healthy 

Actual True False 

Injured Positives (TP) Negatives (FN) 

Actual False True 

Healthy Positives (FP) Negatives (TN) 

 

The accuracy was calculated as the area under the receiver operating characteristic (ROC) 

curve, which was then computed using LibSVM-MATLAB. The error refers to the 

generalisation error which is described as the out-of-sample mean squared error with the 

purpose of measuring how accurately a model is able to predict outcome values for 

previously unseen data. The ROC curve for 2D feature classification is shown in Figure 

5.7.  

The ROC is a metric used to check the accuracy of classifiers. By definition [108], [109] 

a ROC curve shows True Positive Rate (TPR) versus False Positive Rate (FPR) for 

different thresholds of the classifier output. The maximum area under the curve (AUC) is 
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1, which corresponds to a perfect classifier. Larger AUC values indicate better classifier 

performance. From the ROC curve, 2D features of mean vs skewness yielded an optimal 

accuracy compared to other combinations of features. This ROC curve can be used for 

feature selection to classify cornea images. 

 

Figure 5.7: ROC curve for 2D-features classification by SVM-GRBF with C = 500, and 

Sigma = 1.658. 

 

The results of the second and third approaches to classify physical images features 

according to AlexNet and AlexNet-SVM linear, with respect to accuracy as in Figure 5.8 

and the time consumed in Figure 5.9.  
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Figure 5.8: The accuracy of AlexNet and AlexNet-SVM classifier. 

 

 

Figure 5.9: The time consumption of AlexNet and AlexNet-SVM linear classifiers. 

 

Both AlexNet with and without SVM yielded 100% accuracy at 0.8 (80% training, 20% 

testing) based on image training and testing distribution, although AlexNet without SVM 

performed poorly in-terms of computation time. This result proved that mixed SVM in 

the AlexNet as a classifier will improve the processing time.  
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5.6 Parameter of Injured Boundary 

Image quantification was performed following image classification. In regard to this 

matter, quantification of these images is essential in providing objectivity considering that 

medical imaging plays a role in medical assessments [65]. Ideally, an imaging assessment 

algorithm must be precise and capable of generating numerical quantification in a rapid 

fashion. Hence, the technique must utilize statistical approach for robustness in order to 

produce the expected outcome [110]. Here we looked statistical approach at five 

measurements for computation of the image: 1. Entropy (E) is measured randomness of 

the image pixels denoted in (Eq. 29). 2. No. of pixels also called as area (A) is determined 

by counting pixels contained within a boundary. 3. Perimeter (l) is the total length of the 

segmentation area. 4. The centroid (xc,yc) is computed two points of elements in the row 

and column to specify the center mass of the object denoted in (Eq. 30). 5. Finally, 

eccentricity (Ec) is the ratio of the longest (lc) and maximum length (lp) within the 

boundary pixels denoted in (Eq. 31).   

These listed measurements of the image are available built-in MATLAB code known as 

‘regionprops' (measure properties of image region), and the mathematical definitions of 

entropy, centroid, and eccentricity are given as follows. Entropy (E): 

𝐸 = − ∑𝑃𝑖𝑗

𝑖𝑗

𝑙𝑜𝑔𝑃𝑖𝑗 Eq. 29 

Where 𝑃𝑖𝑗 is the histogram count from the imhist operation.  
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Centroid (xc,yx): 

𝑥𝑐 =
1

𝑁
 ∑𝑥𝑖

𝑁

𝑖=1

 
Eq. 30 

 

𝑦𝑐 =
1

𝑁
 ∑𝑦𝑖

𝑁

𝑖=1

 
 

Where N is a number of pixels in the boundary, xi and yi are the row and column points 

of pixel N, respectively. 

Eccentricity (Ec): 

𝑙𝑐 (𝑙𝑝) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 

𝐸𝑐 = 𝑙𝑐/𝑙𝑝 

Eq. 31 

Where lc is the longest length, lp is maximum (perpendicular with lc) length of foci 

boundary, and the two points of pixels in the respective length denotes as (x1, y1), (x2, 

y2).  

In the Figure 5.10, row 1 at columns 2 and 3 show a binary mask and a perimeter of the 

injured region respectively, whereas in the row 2 at column 2 shows an injured area in a 

blue color and the binary mask image with mathematical morphology was applied in the 

column 3. 
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Figure 5.10: Image in size 100 x 100. Row 1: Human segmentation using selected image 

from one PCs. Row 2: Machine/colour image segmentation using RGB image selected 

from three PCs. 

The entropy, no. of pixels, centroid, perimeter, and eccentricity were tabulated in Table 

5.5.  

Table 5.5: Quantification of eye injury (comparison of human and machine segmentation). 

Items Entropy No. of Pixels Centroid 
Perimeter 

(Pixels) 
Eccentricity 

EYE8 

Human 
4.2519 1949 57.7, 49.4 210.8 0.99 

EYE8 

Machine 
3.5247 2993 60.9, 56.1 618.3 0.68 

EYE9 

Human 
5.6581 3992 58.2, 47.7 286.2 0.89 

EYE9 

Machine 
4.8547 4280 57.7, 47.1 424.4 0.75 

EYE10 

Human 
5.5148 4164 55.9, 54.5 277.3 0.95 

EYE10 

Machine 
5.5566 4153 57.0, 56.6 452.3 0.82 

EYE11 

Human 
4.7504 2684 58.1, 48.6 240.7 0.88 

EYE11 

Machine 
5.1956 2714 59.5, 51.4 343.9 0.79 

These parameters were quantified and obtained from the injured areas using five types of 

shape measurement. The no. of pixels and perimeter imply the size of the injured area. 

The centroid allows the location of the injury to be best estimated. Finally, eccentricity 

indicates the shape of the injured area close to line segment (closer to 1) or circle (closer 

to 0). 
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5.7  Summary 

In summary, the image acquired from hyperspectral imaging managed to produce better 

result in assessing corneal epithelium injury. The combination of spatial and spectral 

features was revealed to be particularly useful for gathering clinical information. In the 

case of this study, different approaches were employed to identify injury on the images 

due to the transparent nature of the cornea, with and without fluorescein staining.  

On another note, features crafting (histogram) and features learning (deep learning) for 

features extraction method were used for comparison purposes. In regard to this matter, 

features crafting involves a human designing features that are fed into a classifier, 

whereas features learning refers to having an algorithm create feature itself  [111], [112], 

[113]. Features learning is motivated by the fact that machine learning tasks such as 

classification often require input that is mathematically and computationally convenient 

to process.  

However, it is important to realize that real-world data such as images and video are 

usually complex, redundant, and highly variable. Hence, it is deemed necessary to 

discover useful features from raw data. On the other hand, traditional hand-crafted 

features/features crafting is known to involve expensive human labor and highly 

dependent on expert knowledge. Moreover, one of the drawbacks is that they normally 

cannot be generalized well. Therefore, this has motivated the design of efficient feature 

learning techniques for automation and generalization purposes.  

Overall, it can be concluded that the mixture AlexNet-SVM (features learning) is the most 

suitable technique that can be used for cornea assessment among the three classification 

approaches based on the accuracy and time consumption. The algorithm proposed which 
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involves the use of optimal classifier can be used for objective measurement (image 

quantification) in order to help the clinician to identify normal and abnormal tissues 

automatically.  
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CHAPTER 6  

A NEW MIXING KERNEL FOR SUPPORT VECTOR MACHINE 

CLASSIFIER (3-CONVSVM) 

This chapter describes the third knowledge contributions in this study. A new 3-convex 

combination kernels function is introduced for the binary SVM classifier. In fact, it is 

important to note that kernel development for SVM has received considerable attention 

in the last few years for hyperspectral image classification [114], as well as its recent 

utilisation in medical study [115]. The purpose of choosing binary classification in the 

current observation is due to the fact that most medical data are commonly classified into 

two-class problems, namely benign or malignant which is helpful in detecting breast 

cancer, healthy or disorder in liver diagnosis, injured or no injury in eyes disease, and 

present or absent of diabetes and heart assessments.   

The proposed method (Figure 6.1) was applied with numerical experiments on several 

number of selected datasets. The datasets were iris dataset, breast dataset, diabetes 

dataset, heart dataset, liver dataset, satellite dataset, and pig’s eyes dataset.  In particular, 

different type of datasets which include medical, general, and hyperspectral as well as the 

level of samples complexity were employed in this study for the purpose of producing the 

generalisation ability for the proposed mixing kernels. Meanwhile, several aspects were 

computed and recorded which include the number of iterations, support vectors, 

classification training time, training and testing accuracy, and generalisation loss during 

the testing. In addition, it is worth to note that all datasets were added with outliers and 

Gaussian noise with the aim of observing the kernel sensitivity. Finally, a comparison 
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analysis was carried out between the accuracy of 3-convex kernel after tuned loss and the 

single-kernel and 2-convex kernel combination.
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Figure 6.1: Framework of new mixing kernel for SVM.
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 Developing New Kernel from Old Function 

The essential step in SVM classification include the need to determine the appropriate 

kernel function. Specifically, kernel function is commonly applied in a nonlinear problem 

that transforms data space into a high-dimensional feature space with the aim of forming 

a linear model. Hence, it is possible for the nonlinear data to be separable into two labels 

of classes. More importantly, the modify existing functions with the aim of making new 

ones are deemed possible provided that the kernel is valid and the combination is 

admissible [114], [83].  

A considerable amount of research indicated that combined kernels are able to produce 

improved classification accuracy compared to the use of a single kernel [116], [117], 

[118], [119], [120]. In this case, the most critical step is to provide suitable 

hyperparameters in order to combine the coefficients from different kernels. Meanwhile, 

past studies also managed to explore different techniques that can be employed in 

obtaining optimal classification results which include grid search [121], particle swarm 

optimization (PSO) [122], and genetic algorithms (GA) [123]. Nevertheless, the 

hyperparameters used in the present study were fixed in all analyses considering that the 

aim was to provide a comparison across single and combined kernels instead of 

maximising the accuracy. Moreover, it is worth to note that the parameters might be tuned 

to reduce generalisation loss. 

6.1.1 Standard Kernel Functions and Covariance Function 

Characteristics 

The standard kernel functions in SVM used in this study are listed below except the RQK 

which is known as the covariance function used in Gaussian processes:  
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1) Linear kernel function: 

𝐾𝐿𝑖𝑛𝑒𝑎𝑟(𝑥, 𝑥′) =   (𝑥 ∗ 𝑥′) Eq. 32 

Linear kernel is a basic kernel function to resolve a linear problem by providing the 

hyperplane in sample space. 

2) Polynomial kernel function (Poly): 

𝐾𝑃𝑜𝑙𝑦(𝑥, 𝑥′) =  |(𝑥 − 𝑥′) + 𝑟|𝑑  Eq. 33 

where r is the is the offset coefficient that is normally 1, while d denotes the degree of 

polynomial kernel, d > 0. 

3) Radial basis kernel function (RBF): 

𝐾𝑅𝐵𝐹(𝑥, 𝑥′) =  exp (−
|𝑥 − 𝑥′|2

2𝜎2
) Eq. 34 

where 𝜎 is RBF kernel parameter. Moreover, the radius of influence of the support vectors 

changes according to different values of 𝜎. 

4) Rational quadratic kernel function (RQK): 

𝐾𝑅𝑄𝐾(𝑥, 𝑥′) =  (1 +
|𝑥 − 𝑥′|2

2𝛼𝜎2
)

−𝛼

 Eq. 35 

similar like RBF when  𝛼 is infinity. Where  𝛼 denotes the relative weighting of maximum 

and minimum scale variations. 

Figure 6.2 shows the characteristic of polynomial kernel as described in Eq. 33. In this 

case, it should be understood that the increase in the deviation between input data x and 

test input (0.1) value xi is always greater than zero apart from causing the K value to 
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increase on the right and decrease on the left side of xi. Hence, this clearly shows that the 

overall properties of the data points far away from the test points in the dataset may also 

cause an impact on the value of the kernel function. 

On another note, larger d (1, 2, 3, 4, 5) value leads to larger curvature of the curve, which 

causes the distribution of the K value to be increasingly uneven. On a more important 

note, it is argued that the overall properties of kernel will be weakened, while its 

generalisation ability which is also known as extrapolation ability will become weaker 

with the increase of the d value [118]. 

 

Figure 6.2: The characteristics curve of polynomial kernel with increased polynomial 

degree, 𝒅. 

 

Figure 6.3 shows the characteristic of RBF kernel as illustrated in Eq. 34. As can be 

observed in the figure, the K value is larger in the vicinity of the test input value xi. In 

this case, the increase in the deviation between x and xi tends to decrease the K value. 

Hence, this shows that only data points close to the test points in the dataset have an 

impact on the value of the kernel function.  
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The larger the σ (0.1, 0.2, 0.3, 0.4, 0.5) value, the larger the curve control interval. On a 

similar note, larger value of σ leads to larger K value corresponding to the same x, which 

causes the distribution to be more even. Moreover, it was also suggested that the RBF 

will be weakened and its learning ability will become weaker with the increased value of 

σ [123]. 

 
 

Figure 6.3: The characteristics curve of RBF kernel with increased sigma, 𝝈. 

 

 

The characteristics of RQK kernel as described in Eq. 35 are shown in  

Figure 6.4. As can be seen, the RQK kernel is equivalent to adding together many RBF 

kernels with various kernel parameters. The parameter 𝛼 determines the relative 

weighting of small and large-scale variations. Hence, the RQK is identical to the RBF if 

𝛼 is infinity. 
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Figure 6.4: The characteristics curve of RQK kernel with increased sigma, 𝝈 with same 

value of C=1. 
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 Proposed 3-Convex Kernels Combinations (3-ConvSvm) 

It is worth to note that there are several ways of mixing kernels. The most important 

concern is that the resulting kernel must be an admissible kernel. In this case, the sum of 

two kernels is considered as a valid kernel. Consideration to the random process 

f(x)=f1(x)+ f2(x), where f1(x) and f2(x) are independent which lead to k(x, x’)= k1(x, x’)+ 

k2(x, x’) [83]. This construction can be used to add together kernels with different 

characteristics length-scales. 

On another note, a convex combination has been recommended to be used on the valid 

kernel [124] as one of the methods to guarantee that the mixed kernel is admissible.  This 

study used the following method to construct a new mixed-kernel function. One of the 

examples of convex combination of two kernels is as follows: 

𝐾𝑀𝑖𝑥 =  1 𝐾1 + (1 − 1 )𝐾2  Eq. 36 

As shown in the Eq. 36, it is necessary to determine the optimal mixing weight coefficient 

() whereby the value of  is a constant scalar. Convex combinations involve the 

coefficients to sum to 1 and are non-negative [125].  

One of the examples of mixing kernel known as PRBF is shown in Eq. 36. It is worth to 

note that the combination of polynomial and RBF kernel has been presented in previous 

study [124]. Figure 6.5 illustrates the characteristic graph of PRBF where the total weight 

coefficient,  = 1. In this case, the kernel parameters were set as C = 1, 2, 3, 4, and 5, 

while 𝑑 and σ were 2 and 0.25, respectively.  
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Figure 6.5: The characteristics curve of mixed RBF and polynomial kernel with different 

kernel parameters, 𝑪 with test input 0.1. 𝐖𝐡𝐞𝐫𝐞, 𝒅 = 2, σ = 0.25. 

 

The PRBF which is known as an integrated global kernel (polynomial) and local kernel 

(RBF) function tends to have a great impact on the data samples closer to the test points 

as well as a certain impact on the data samples far from the test points. Moreover, PRBF 

was suggested as a strong kernel function model in both learning ability and 

generalisation ability. More importantly, its learning ability is said to be stronger than the 

global kernel function, while its generalisation ability is stronger than the local kernel 

function. The PRBF kernel is able to improve the SVM classification accuracy by 

determining the suitable parameters compared to the single kernel [120].  

Therefore, the sum of three kernels is also considered as a valid kernel. Here, the 3-convex 

combination kernel is proposed as shown below: 

𝐾3−𝐶𝑜𝑛𝑣𝑆𝑣𝑚 =  1 𝐾1 + 2 𝐾2 + 3 𝐾3   

(1 + 2 + 3 = 1, 𝑎𝑛𝑑 1 ,2 3 ≥ 0) 

Eq. 37 
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Where, 

𝐾1 =  4 𝐾𝑅𝐵𝐹 + (1 − 4 )𝐾𝑅𝑄𝐾 , 𝐾2 =  5 𝐾𝑅𝑄𝐾 + (1 − 5)𝐾𝑃𝑜𝑙𝑦 , and, 𝐾3 =  𝐾𝑅𝐵𝐹  

The  1 ,2 ,3    and 4, 5 are kernel coefficients to sum to 1 and non-negative in order 

to form convex combinations. 𝐾𝑅𝐵𝐹  denotes the RBF kernel, 𝐾𝑅𝑄𝐾  refers to RQK kernel, 

and 𝐾𝑃𝑜𝑙𝑦  is known as polynomial kernel.  

Figure 6.6 shows the characteristics of the new kernel construction as shown in Eq. 37. 

 
 

Figure 6.6: The characteristics curve of 3-ConvSvm kernel with different kernel 

parameters with 𝑪 = 𝟏. The kernel coefficient is set as: 

 (𝑲𝟑−𝑪𝒐𝒏𝒗𝑺𝒗𝒎 =  𝟎. 𝟖 ∗ (𝟎. 𝟖 ∗ 𝑲𝑹𝑩𝑭 + (𝟏 − 𝟎. 𝟖) ∗ 𝑲𝑹𝑸𝑲 ) + 𝟎. 𝟏 ∗ (𝟎. 𝟕 ∗ 𝑲𝑹𝑸𝑲 +
(𝟏 − 𝟎. 𝟕) ∗ 𝑲𝑷𝒐𝒍𝒚 ) + 𝟎. 𝟏 ∗ (𝑲𝑹𝑩𝑭)). 

 

 Kernel Coefficient Selection for 3-Convex Combination 

In this case, it is necessary to first determine the admissible range for the weight 

coefficient of each kernel. Table 6.1 illustrates the 32 possible combination for the 

convex kernel coefficient that was tested on the pig’s eyes dataset. Moreover, the 

accuracy for all these combinations were computed as depicted in Figure 6.7. 
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Table 6.1: Possible combination for the convex kernel coefficient. 

No. 1 (RBF) 2 (Poly) 3 (RQK) No. 1 (RBF) 2 (Poly) 3 (RQK) 

1. 0.8 0.1 0.1 17. 0.1 0.6 0.3 

2. 0.5 0.4 0.1 18. 0.5 0.1 0.4 

3. 0.4 0.5 0.1 19. 0.4 0.2 0.4 

4. 0.1 0.8 0.1 20. 0.3 0.3 0.4 

5. 0.7 0.1 0.2 21. 0.2 0.4 0.4 

6. 0.6 0.2 0.2 22. 0.1 0.5 0.4 

7. 0.5 0.3 0.2 23. 0.4 0.1 0.5 

8. 0.4 0.4 0.2 24. 0.3 0.2 0.5 

9. 0.3 0.5 0.2 25. 0.2 0.3 0.5 

10. 0.2 0.6 0.2 26. 0.1 0.4 0.5 

11. 0.1 0.7 0.2 27. 0.3 0.1 0.6 
12. 0.6 0.1 0.3 28. 0.2 0.2 0.6 

13. 0.5 0.2 0.3 29. 0.1 0.3 0.6 

14. 0.4 0.3 0.3 30. 0.2 0.1 0.7 

15. 0.3 0.4 0.3 31. 0.1 0.2 0.7 

16. 0.2 0.5 0.3 32. 0.1 0.1 0.8 

 

 

 

Figure 6.7: The accuracy of 32 convex kernel combination. 

 

The result of 1st combination yields a higher accuracy at 99%, while the combination in 

no.4 is recorded only as 90%. Therefore, higher weight coefficient belongs to RBF kernel, 

whereas the smallest is for polynomial and RQK kernel with the purpose of achieving the 

optimal classification. Apart from that, it is worth to note that the 1st combination is used 

for the all analyses. 
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 Performance of the New Mixing Kernel  

In this study, the performance of new mixing kernel was measured using various datasets. 

Specifically, the seven datasets that were used include one owned dataset (Figure 6.8), 

whereas the remaining six datasets were obtained from UCI repository [126] as follows: 

Iris (Figure 6.9), breast (Figure 6.10), diabetes (Figure 6.11) , heart (Figure 6.12), liver 

(Figure 6.13), and satellite (Figure 6.14). The sample size that was employed in this 

study are as follows: 25 samples (pig’s eyes), 100 samples (iris), 683 samples (breast), 

768 samples (diabetes), 297 samples (heart), 345 samples (liver), and 1333 samples 

(satellite).  

Furthermore, the five types of datasets were categorised as medical dataset, while iris and 

satellite were respectively categorised into the general and hyperspectral category. As 

presented in Figure 6.8 to Figure 6.14, it can be observed that each dataset has different 

complexity in terms of the data distribution for the purpose of envisaging that the mixing 

kernel will work well on any dataset.  

Meanwhile, it should also be noted that all datasets were non-linear problem for the binary 

classification. According to the best classification result presented in Chapter 5 (Figure 

5.8), each dataset was randomly divided into 80% training and 20% testing in corresponds 

to data partitioning. 
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Figure 6.8: Pig’s Eyes dataset (total:25, training: 19, testing: 6). 

 

 

Figure 6.9: Iris dataset (total: 100, training: 80, testing: 20). 

 

 

Figure 6.10: Breast dataset (total: 683, training: 543, testing: 140). 
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Figure 6.11: Diabetes dataset (total: 768, training: 614, testing: 154). 

 

 

Figure 6.12: Heart dataset (total:297, training:238, testing:59). 

 

 

Figure 6.13: Liver dataset (total:345, training:276, testing:69). 
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Figure 6.14: Satellite dataset (total:1333, training:858, testing:475). 

 

In regard to this matter, noisy data was added on the testing dataset instead of the training 

samples. Two types of noise [127], [128] known as the class noise (Figure 6.15) and 

attribute noise (Figure 6.16) were added in the test dataset for the purpose of observing 

the kernel sensitivity. In particular, outliers are described as points in the region of some 

class but with a wrong label that are known as class noise, while attribute noise is 

considered as points in each class in which its attributes are randomly chosen. 

 

Figure 6.15: Adding class noise in the dataset. 
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Figure 6.16: Adding attribute noise in the dataset. 

 

The accuracy rates obtained in each test dataset as well as for each kernel are presented 

in Table 6.2 to Table 6.8. The weight coefficient settings were set as follows: 1 = 0.8, 2 

= 0.1, 3 = 0.1, 4 = 0.8, 5 = 0.7, kernel parameters, 𝜎𝑅𝐵𝐹 = 0.25, 𝜎𝑅𝑄𝐾 = 0.5, 𝑑𝑃𝑜𝑙𝑦 = 2, 

𝐶𝑅𝐵𝐹 = 1, and 𝐶𝑅𝑄𝐾 = -1. However, some datasets were represented the tuned loss by 

changing the  𝐶𝑅𝐵𝐹  parameter according to the complexity of the data.  

As can be observed in these tables, the performance of the new mixing kernel with the 

single kernel as well as the two-mixed kernels were compared. Moreover, it is clearly 

shown that there is an insignificant impact on the small-scale samples for the eye (Table 

6.2) and iris (Table 6.3) datasets. Considering that they obtain almost the same amount 

of accuracy and yield lowest generalisation loss for the testing dataset. 
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Table 6.2: Classifiers performance on the eye dataset. 

Item RBF RQK POLY RBF 

RQK 

RBF 

POLY 

RQK 

POLY 

3-ConvSvm 

Iteration 30 114 172 35 30 173 55 
S.Vector 18 12 13 18 18 12 19 

Time 0.0315 0.0282 0.0291 0.0294 0.0296 0.0290 0.0306 

Training 0.9772 0.8522 0.8863 0.9772 0.9772 0.8863 0.9805 

Testing 
C=1, S=0.25 1 1 1 1 1 1 1 
Loss 0 0.1467 0 0 0 0 0 
Outlier1 0.8809 0.9285 0.7380 0.9523 0.7857 0.8333 0.8095 
Outlier2 0.8840 0.5942 0.5797 0.6956 0.6811 0.5797 0.6231 
Outlier3 0.8333 0.5196 0.5098 0.5098 0.6568 0.4901 0.5392 
Outlier4 0.7829 0.3875 0.4961 0.3333 0.6511 0.4186 0.4651 
Outlier5 0.8395 0.2716 0.3456 0.2654 0.5432 0.3950 0.3888 

Noise1 0.9375 1 0.8333 1 0.7083 0.9583 0.9583 
Noise2 0.6964 0.6250 0.5952 0.4761 0.6666 0.5029 0.6130 
Noise3 0.6704 0.4526 0.5511 0.4678 0.5113 0.5435 0.5246 
Noise4 0.5979 0.3760 0.5070 0.4929 0.5351 0.5468 0.4242 
Noise5 0.5721 0.4220 0.4540 0.4807 0.5381 0.5681 0.4355 

 

Table 6.3: Classifiers performance on the iris dataset. 

Item RBF RQK POLY RBF 

RQK 

RBF 

POLY 

RQK 

POLY 

3-ConvSvm 

Iteration 286 34 398 151 158 512 120 
S.Vector 69 24 23 38 39 21 30 
Time 0.0506 0.0438 0.0490 0.0499 0.0500 0.0463 0.0466 

Training 0.9568 0.9537 0.9450 0.9762 0.9731 0.9493 0.9693 

Testing 
C=1, S=0.25 1 1 1 1 1 1 1 
Loss 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 

Outlier1 1 1 1 1 1 1 1 
Outlier2 0.6785 0.7276 0.9107 0.8705 0.9017 0.9107 0.9151 
Outlier3 0.4694 0.5461 0.7563 0.4371 0.7074 0.6612 0.7586 
Outlier4 0.4131 0.2791 0.5296 0.2465 0.4814 0.3128 0.4530 
Outlier5 0.4005 0.2446 0.5953 0.2993 0.4227 0.3773 0.4246 
Noise1 1 0.9658 0.9658 0.9059 1 1 1 
Noise2 0.6517 0.7767 0.6830 0.7187 0.7008 0.6830 0.6383 
Noise3 0.5510 0.4913 0.5238 0.4397 0.5162 0.5290 0.4305 
Noise4 0.5192 0.4908 0.5247 0.5041 0.5423 0.5659 0.5130 
Noise5 0.5197 0.4924 0.4975 0.5196 0.4774 0.4913 0.5218 

 

The aim of this new mixing kernels was to determine the ability of the kernel in reducing 

losses during testing. In addition, it was also claimed that the kernel is able to handle the 

future or unseen data for the correct classification purposes. Nevertheless, other factors 

that tend to have an impact on the kernel which include iteration, support vector, training 

time, and noise were also observed in this study apart from accuracy and generalisation 

loss. 
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On another note, the breast dataset (Table 6.4) yields high training and testing accuracy 

with smallest support vectors due to the adjustment of the C parameter (parameter to 

control misclassification) in the RBF kernel from 1 to 0.5. However, the test data had the 

same loss as others.  

Table 6.4: Classifiers performance on the breast dataset. 

Item RBF RQK POLY RBF 

RQK 

RBF 

POLY 

RQK 

POLY 

3-ConvSvm 3-ConvSvm 

(Tune Loss) 

Iteration 199 491 1778 131 145 405 148 173 
S.Vector 131 102 98 103 106 99 99 96 
Train Time 0.2284 0.2134 0.2547 0.2072 0.2068 0.2120 0.2326 0.2213 

Training 0.9603 0.9707 0.9736 0.9711 0.9714 0.9732 0.9676 0.9767 

Testing 
C=1, S=0.25 0.9853 0.9888 0.9912 0.9855 0.9866 0.9912 0.9872 - 
Loss 0.0822 0.0656 0.0334 0.0715 0.0715 0.0334 0.0715 - 
C=0.5 0.9872 - - 0.9918 0.9924 - - 0.9929 
Loss 0.0393 - - 0.0393 0.0393 - - 0.0393 

Outlier1 0.9804 0.9181 0.9378 0.9151 0.9335 0.9461 0.9305 0.9388 
Outlier2 0.9740 0.8395 0.8643 0.8695 0.8838 0.8679 0.8641 0.8618 
Outlier3 0.9229 0.5674 0.6346 0.6162 0.6151 0.6301 0.6695 0.6487 
Outlier4 0.8611 0.3515 0.4849 0.4137 0.4870 0.4825 0.4566 0.4752 
Outlier5 0.7449 0.1981 0.3267 0.2673 0.3043 0.3490 0.3176 0.3542 

Noise1 0.9582 0.9401 0.9612 0.9843 0.9349 0.9793 0.9310 0.9637 
Noise2 0.8075 0.8893 0.8306 0.8491 0.8661 0.8125 0.7827 0.8248 
Noise3 0.6595 0.6512 0.6856 0.6246 0.6294 0.7048 0.6079 0.6480 
Noise4 0.5373 0.5729 0.5011 0.5798 0.5608 0.5932 0.5987 0.5213 
Noise5 0.5098 0.5681 0.5435 0.5460 0.5279 0.5496 0.5364 0.5547 

In contrast, the losses go down when the C is set to the high value (C=100) on the diabetes 

dataset (Table 6.5).  

Table 6.5: Classifiers performance on the diabetes dataset. 

Item RBF RQK POLY RBF 

RQK 

RBF 

POLY 

RQK 

POLY 

3-ConvSvm 3-ConvSvm 

(Tune Loss) 

Iteration 846 761 8679 1258 1806 5518 1350 616 
S.Vector 441 432 410 427 422 411 427 462 
Train Time 0.3632 0.3752 0.5618 0.3807 0.4029 0.4868 0.4250 0.3839 

Training 0.7006 0.6259 0.6057 0.7508 0.7297 0.6075 0.7249 0.7990 

Testing 
C=1, S=0.25 0.6022 0.5808 0.6308 0.5821 0.5831 0.6308 0.6200 - 
Loss 0.3062 0.3469 0.3162 0.3191 0.3191 0.3225 0.3191 - 
C=100 0.6266 - - 0.6287 0.5947 - - 0.6365 
Loss 0.3105 - - 0.3056 0.3120 - - 0.3054 

Outlier1 0.5937 0.5732 0.6194 0.5930 0.5836 0.6237 0.6037 0.6103 
Outlier2 0.6152 0.5575 0.6121 0.5556 0.5858 0.6165 0.5788 0.5868 
Outlier3 0.6016 0.5257 0.5442 0.5341 0.5723 0.5382 0.5594 0.5610 
Outlier4 0.6443 0.5146 0.5094 0.6108 0.5367 0.5111 0.5460 0.4998 
Outlier5 0.6477 0.4667 0.4904 0.5587 0.5676 0.4309 0.5187 0.4168 

Noise1 0.6055 0.4356 0.6256 0.5948 0.5922 0.6137 0.5953 0.6282 
Noise2 0.5752 0.4651 0.5725 0.5226 0.5789 0.6016 0.5541 0.6019 
Noise3 0.5807 0.4547 0.5541 0.5587 0.5224 0.5322 0.4695 0.5741 
Noise4 0.5247 0.4815 0.5084 0.4725 0.5105 0.5283 0.4752 0.4903 
Noise5 0.4786 0.4907 0.5485 0.5327 0.4863 0.5260 0.5042 0.5110 
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Meanwhile, the PRBF kernel shows a good loss result in the heart dataset (Table 6.6). A 

possible explanation to this might be the complexity of dataset whereby the tuning only 

works on the training accuracy. 

Table 6.6: Classifiers performance on the heart dataset. 

Item RBF RQK POLY RBF 

RQK 

RBF 

POLY 

RQK 

POLY 

3-ConvSvm 3-ConvSvm 

(Tune Loss) 

Iteration 289 961 1426 353 413 671 420 410 
S.Vector 195 200 197 194 194 198 192 230 
Train Time 0.1497 0.1758 0.1699 0.1658 0.1655 0.1708 0.1997 0.1817 

Training 0.8719 0.6623 0.6672 0.8585 0.8578 0.6674 0.8449 0.9835 

Testing 
C=1, S=0.25 0.5230 0.5599 0.5403 0.5115 0.5103 0.5391 0.5046 - 
Loss 0.4765 0.4101 0.4998 0.5161 0.5216 0.5142 0.5216 - 
C=100 0.4683 - - 0.5876 0.5749 - - 0.5726 
Loss 0.4419 - - 0.4280 0.3938 - - 0.4081 

Outlier1 0.5151 0.5555 0.5343 0.5151 0.5101 0.5272 0.5070 0.5646 
Outlier2 0.5063 0.5446 0.5000 0.5134 0.5033 0.4924 0.5016 0.5488 
Outlier3 0.4877 0.5069 0.4456 0.5298 0.4448 0.4734 0.4330 0.4562 
Outlier4 0.4834 0.5099 0.3815 0.5105 0.3574 0.4237 0.3483 0.3597 
Outlier5 0.4849 0.4930 0.4081 0.5374 0.2681 0.3914 0.2495 0.2483 

Noise1 0.5121 0.5780 0.5669 0.5223 0.4969 0.5081 0.4817 0.5638 
Noise2 0.4804 0.5802 0.5570 0.5377 0.4787 0.4908 0.5519 0.5377 
Noise3 0.5103 0.5266 0.5458 0.4654 0.5066 0.5623 0.4869 0.5302 
Noise4 0.5403 0.5027 0.5225 0.5027 0.5199 0.5032 0.4726 0.5274 
Noise5 0.4723 0.5137 0.5106 0.4793 0.4888 0.4824 0.5254 0.5017 

The tuning parameter is shown to have worked well on the liver dataset (Table 6.7) based 

on the decrease of the losses instead of the accuracy.  

Table 6.7: Classifiers performance on the liver dataset. 

 
Item RBF RQK POLY RBF 

RQK 

RBF 

POLY 

RQK 

POLY 

3-ConvSvm 3-ConvSvm 

(Tune Loss) 

Iteration 353 473 540 515 716 510 671 550 
S.Vector 239 247 244 241 238 243 239 237 
Train Time 0.1857 0.1726 0.1846 0.1987 0.1791 0.1889 0.1998 0.1993 
Training 0.7868 0.6407 0.6610 0.7866 0.7872 0.6609 0.7772 0.7707 

Testing 
C=1, S=0.25 0.5897 0.6172 0.5964 0.6134 0.6020 0.6001 0.6049 - 
Loss 0.4055 0.4420 0.4338 0.4297 0.4055 0.4338 0.3812 - 
C=0.8 

Loss 
0.6040 
0.4176 

- 
- 

- 
- 

0.6125 
0.4176 

0.6096 
0.3934 

- 
- 

- 
- 

0.6078 

0.3570 

Outlier1 0.5783 0.5850 0.5658 0.5800 0.5716 0.5683 0.5733 0.5658 
Outlier2 0.5647 0.5413 0.5238 0.5371 0.5399 0.5308 0.5413 0.5222 
Outlier3 0.5293 0.4175 0.4298 0.4122 0.4682 0.4397 0.4570 0.4466 
Outlier4 0.5138 0.3335 0.4265 0.3477 0.3968 0.4234 0.3870 0.4599 
Outlier5 0.5042 0.2737 0.3848 0.2676 0.3791 0.4033 0.3913 0.4613 
Noise1 0.5960 0.6011 0.5952 0.5909 0.5935 0.5977 0.6292 0.5791 
Noise2 0.5162 0.5434 0.5561 0.6049 0.5579 0.4825 0.5271 0.5550 
Noise3 0.5318 0.5356 0.5481 0.4673 0.5078 0.5462 0.4895 0.4970 
Noise4 0.5372 0.5221 0.4682 0.4942 0.4821 0.4809 0.5245 0.5684 
Noise5 0.4946 0.5174 0.4958 0.5205 0.5057 0.4832 0.4880 0.5173 
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Nevertheless, a satisfying result managed to be obtained in the satellite dataset (Table 

6.8). In particular, the training and testing accuracy were increased, generalisation loss 

was reduced, with low training time, and smallest iteration. Therefore, this further 

envisages that this kernel is able to work well with a large-scale sample dataset. 

Table 6.8: Classifiers performance on the satellite dataset. 

Item RBF RQK POLY RBF 

RQK 

RBF 

POLY 

RQK 

POLY 

3-ConvSvm 3-ConvSvm 

(Tune Loss) 

Iteration 1417 711 633 1573 1377 656 1583 537 
S.Vector 268 299 279 247 253 288 251 321 
Train Time 0.4248 0.3947 0.3882 0.3895 0.3989 0.3992 0.3959 0.3849 

Training 0.9292 0.9182 0.9337 0.9314 0.9267 0.9334 0.9317 0.9547 

Testing 
C=1, S=0.25 0.8976 0.9176 0.9026 0.9092 0.9023 0.9074 0.9105 - 
Loss 0.1570 0.1603 0.1672 0.1672 0.1570 0.1687 0.1421 - 
C=40 

Loss 
0.8627 
0.1645 

- 

- 

- 
- 

0.9030 
0.1450 

0.8971 
0.1430 

- 
- 

- 
- 

0.9125 

0.1323 

Outlier1 0.6762 0.7403 0.7333 0.6975 0.7010 0.7345 0.7121 0.7234 
Outlier2 0.6607 0.7623 0.7247 0.6453 0.7104 0.7419 0.7229 0.7211 
Outlier3 0.6471 0.7845 0.7111 0.5945 0.7159 0.7373 0.7487 0.6999 
Outlier4 0.5367 0.7600 0.5089 0.3363 0.7045 0.5889 0.7420 0.5955 
Outlier5 0.5033 0.7470 0.4434 0.2751 0.6720 0.5615 0.7343 0.5749 

Noise1 0.6704 0.7362 0.7234 0.6955 0.6958 0.7240 0.6885 0.7103 
Noise2 0.6258 0.6963 0.6764 0.6525 0.6504 0.6917 0.6678 0.6351 
Noise3 0.5915 0.5808 0.5910 0.6187 0.5848 0.5933 0.6115 0.5659 
Noise4 0.4930 0.5356 0.5184 0.5014 0.5043 0.5116 0.4877 0.5665 
Noise5 0.4757 0.4883 0.4959 0.4845 0.4930 0.4953 0.4829 0.5643 

 

Hence, the generalisation ability [129] was tested to ensure a complete analysis of the 3-

ConvSvm performance. The heart dataset was selected as a training samples with the 

previous weight setting. Figure 6.17 shows data distribution of the heart dataset as a 

training model, while iris as the test datasets. Next, the other datasets were used as test 

samples by depending on only one set of parameters model (heart dataset) for training. 
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Figure 6.17: Samples distribution of heart dataset as training and iris dataset for testing.  

 

As can be observed in Table 6.9, the performance of the new kernel is quite similar with 

the individuals testing. More importantly diabetes and satellite datasets show better 

results. Therefore, these results can be considered as an empirically proof of the good 

generalisation ability. 

Table 6.9: Generalisation ability. 

Datasets Accuracy 

(Group) 

Accuracy 

(Individual) 

Training (C=100, S=0.25) 

Heart 0.9845  

Testing 

Eye 0.8506 1 

Iris 1 1 
Liver 0.5862 0.6049 

Breast 0.9481 0.9872 

Diabetes 0.6409 0.6200 

Satellite 0.9181 0.9105 

 

Overall, results showed in Table 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8 represent datasets of 

eye, iris, breast, diabetes, heart, liver, and satellite respectively. Seven types of classifiers 
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were compared, and seven attributes were computed to measure the performance of 

proposed kernel. It is certain that type of kernel used in the SVM affecting the 

classification accuracy. The complexity of dataset also contributes to the classifier 

efficiency. Based on the accuracy on the testing dataset, both of eye and iris datasets have 

shown best accuracy seems the data distribution is less complex.  

The setting of parameters was tuned when dataset become more complex as shown in the 

breast, diabetes, heart, liver, and satellite. Among seven classifiers, it appears that heart 

dataset has highest complexity based on the lowest accuracy at 0.5726. Therefore, the 

parameter setting in kernel should change according to the complexity of dataset. The 

proposed kernel showed has best accuracy on the eye, iris, breast, diabetes, and satellite 

datasets compared with RBF kernel. Whereas, third best accuracy on the heart and liver 

datasets. 

In addition, accuracy is the preferable measure to study kernel performance with noise. 

This study is very useful for real-world application that may contain implicit and explicit 

data processing errors.  The proposed kernel showed low accuracy when noise level is 

increased on the most of datasets. It suggests that the proposed kernel is more sensitive 

to the noise compared with RBF kernel. Furthermore, the time consumed during the 

training was similar with others classifiers or sometimes even better despite the fact that 

the proposed kernel is comprised of more than two kernels. 
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 Summary 

A mixing kernel for SVM classifier has been proposed in this chapter. The model adopts 

the convex combination on the coefficient weights of a combined kernels in order to solve 

a non-linear binary classification problem. Moreover, three standard kernels, namely 

RBF, polynomial, and RQK were combined because they were believed to provide more 

learning flexibility due to the various parameters setting. The main objective was to 

reduce the generalisation loss for testing samples, which further envisages that the new 

kernel is able to work well on the future or unseen dataset. 

Apart from that, several numerical experiments were performed on seven different sizes 

and types of datasets. The purpose of the current experiment was to compare the proposed 

kernel with the single and 2-convex kernel. In addition, the numerical experiments 

showed that the new kernel are able to perform similarly and sometimes even better than 

the standard kernels (RBF, polynomial, RQK). Finally, the performance of 3-ConvSvm 

obtained in the generalisation error managed to satisfy some of the test problems. 
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CHAPTER 7  

CONCLUSIONS AND FURTHER WORKS 

The uniqueness of the cornea with five-layer tissues underneath lies mainly in its 

transparency. This property poses a huge challenge to clinicians due to the changes that 

are often fine and subtle, thus serving as a barrier for diagnosis. Over the years, the state 

of the art in eye diagnostics depends on the optical investigation and diagnosis that are 

conducted based on medical expert’s insights and deep knowledge. Therefore, 

hyperspectral imaging is described as a new method that has the potential to change the 

pure human-optical method to a digitally supported optical method. 

The image acquired from hyperspectral imaging are capable of producing better result in 

assessing corneal epithelium injury. In addition, the combination of spatial and spectral 

features was revealed to be particularly useful in gathering clinical information. 

Moreover, the different approaches can be employed to identify injury on the images due 

to the transparent nature of the cornea, with and without fluorescein staining.  

On a more important note, the combination of hyperspectral imaging and image 

processing techniques has the potential to become a viable alternative solution in 

assessing corneal epithelium injury without having to conduct the traditional contacting 

methods. Hence, this will not only lead to new insights in eye diagnostics because there 

is a high possibility that the new approach will affect daily clinical practice, especially in 

terms of injury assessment processes, eye treatment, and the perspective on the field of 

eye care on the long run. In this thesis, the three main contributions have been presented 

and discussed in Chapters 4, 5, and 6. 
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This chapter draws a number of conclusions about the work that has been presented. The 

chapter concludes by providing a number of suggestions for future work that may be 

carried out as a result of the finding in this thesis. 
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7.1  The 8-SHIE 

Following the literature review that was provided in Chapter 2, and the background 

notions that were presented in Chapter 3, the discussion in Chapter 4 focused on image 

enhancement based on the hyperspectral images. The preliminary study managed to show 

the similarity between the reflectance signatures that are retrieved from hyperspectral 

imaging of both normal and abnormal corneal epithelium tissues of porcine with subtle 

variances. Hence, this provides confidence to pursue the data collected for further image 

analyses. Moreover, a total of 25 new hyperspectral data were collected to develop a new 

image enhancement algorithm in this particular study. 

Perhaps the most significant contribution of this thesis is the new image enhancement 

was presented in Chapter 4. This new image enhancement carried out to differentiate the 

injured and healthy corneas. As such, the proposed enhancement is known as an 8-Step 

Hyperspectral Image Enhancement (8-SHIE). Hyperspectral image enhancement had 

been explored  in previous study for the purpose of providing high accuracy in image 

classification [97]. The steps involved were image pre-processing and image 

enhancement, as described in Chapter 3, had been performed to improvise distinction and 

visualisation of both normal and abnormal corneal epithelium. 

The results showed that the proposed algorithm is able to clearly illustrate the injured 

boundary. Apart from that, the algorithm can also be used to monitor the cornea healing 

process considering that the injured boundary can be viewed from band-to-band. 

Primarily, this algorithm is designed for cornea images that were gathered for the purpose 

of this thesis. Hence, this algorithm was further tested on the existing remote-sensing 

Indian Pines dataset in order to ascertain that it can work well with other hyperspectral 
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images. In the case of this experiment, several parameters were altered to suit the image 

properties. According to the reflectance signature results, this algorithm is able to 

discriminates the ten varying classes despite its main purpose of distinguishing only the 

two classes.  

The limitation of this proposed algorithm is on the processing steps. From eight steps that 

apply for medical application, it become seven steps by eliminates the step-2 when 

automatic image crop is irrelevant. The parameter setting in step-5 need to change in the 

morphology process for the structuring element type and size. For example, in medical 

application ‘ball’ type is appropriate on the cornea image, whereas ‘disk’ type is more 

suitable for satellite image, as shown in this study. 
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7.2  Mixture Deep-Learning Classification 

Image classification is described as the process of labelling predetermined pixels into 

different classes. Commonly, the purpose of classification in medical application is to 

classify healthy and unhealthy tissues for the purpose of analysing and diagnosing 

specific diseases. 

Chapter 5 was described and compared the three classification approaches with the 

purpose of figuring out the best accuracy and low time consumption for the cornea 

assessment. The three classification approaches were: 

1. Histogram feature extraction with SVM-GRBF classifier. 

2. Transfer learning using pretrained AlexNet with a fine-tuned model. 

3. Feature extraction with pretrained AlexNet (Mixture AlexNet and SVM-Linear). 

In this research we adopted feature extraction using a histogram  [105] and a deep learning 

structure made by Alex Krizhevsky (AlexNet), the champion of ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC2010) as a reference [85]. 

Recent advances in deep learning made tasks such as image and speech recognition 

possible. Deep learning is a subset of machine learning algorithms that is very good at 

recognizing patterns but typically requires a large number of data [130]. Deep learning 

excels in recognizing objects in images because it is implemented using three or more 

layers of artificial neural networks whereby each layer is responsible for extracting one 

or more features of the image. 

Overall, it can be concluded that the mixture deep learning AlexNet-SVM is the most 

suitable technique that can be used for cornea assessment among the three classification 

approaches based on the accuracy and time consumption. The algorithm proposed which 
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involves the use of optimal classifier can be used for objective measurement (image 

quantification) in order to help the clinician to identify normal and abnormal tissues 

automatically. 
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7.3  The 3-ConvSvm 

The experiments that were carried out to produce the results that concluded Chapter 6 

highlighted the fact that the SVM classifier was inefficient when implemented using 

single kernel. A considerable amount of research indicated that combined kernels are able 

to produce improved classification accuracy compared to the use of a single kernel [116], 

[117], [118], [119], [120]. As a result, a mixing kernel was needed to make the SVM 

reduce the generalisation loss. 

It is important to realize that real-world data such as images and video are usually 

complex, redundant, and highly variable. One of the drawbacks in designing a new kernel 

for the SVM classifier refers to the concern that they cannot be generalised well. 

Therefore, this has motivated the design of the proposed mixing kernel (3-ConvSvm). 

More importantly, the modify existing functions with the aim of making new ones are 

deemed possible provided that the kernel is valid and the combination is admissible [114], 

[83]. 

The new model used 3-convex combination on the coefficient weights of a combined 

kernel has been designed to solve a non-linear binary classification problem. Three 

standard kernels, namely RBF, polynomial, and RQK were combined in order to provide 

more learning flexibility due to the various parameter’s settings. The objective was to 

reduce the generalisation loss for testing samples, which envisages that the new kernel is 

able to work well with future or unseen dataset. Apart from that, numerical experiments 

showed that the new kernel has a similar performance or sometimes even better than the 

standard kernel (RBF, polynomial, RQK).  
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Overall, it can be concluded that the performance of 3-ConvSvm obtained in 

generalisation error is able to solve some of the test problems by tuned only one parameter 

known as C. This proposed kernel has limitation where the kernel parameters need to be 

setting appropriately based on how complex the dataset is. There are two main parameters 

are important in order to obtain optimum classification i.e., C parameter (regularization 

parameter to reduce misclassification) and gamma parameter (defines the support vector). 
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7.4 Further Works 

There are a number of areas that could be developed in order to build upon and extend 

the ideas and techniques that have been presented in this thesis. First, it is clearly that the 

input image tested in the new image enhancement (8-SHIE) was porcine eyes were dead 

tissue. Where the porcine eyes are readily accessible and inexpensive. This could provide 

a number of advantages if the 8-SHIE could be tested on the live tissue or a best is on to 

human cornea.  

Future works are also recommended to investigate different types of corneal disorder 

using HSI technique. In this study focuses only on one type of injury i.e., corneal abrasion. 

The system could be more robust if different size and pattern of injuries are collected. 

Other than corneal abrasion, different type of injury such as impacts to the eye, foreign 

bodies, penetrating injuries, chemical burns, and radiation exposure that are produced 

various effect and shape of injuries on the corneal. It might be more splendid if HSI can 

capture more details into the cornea for early detection of damage from bacteria that 

caused to the corneal keratitis. Other than that, corneal disorder such as dry eye where the 

eyes produce lower quality tears, and corneal dystrophies when corneal lose normal 

clarity, that commonly undetectable in the early stage. Because, early diagnosis is able to 

cut treatment costs.  

Referring to the mixture deep-learning classification, to the author’s knowledge when 

submitting this thesis, there was no similar dataset available that could be compared to 

the method proposed in this thesis for the classification performance. As a result, the 

classification performance was compared with three different approaches as described in 

the Chapter 5.  
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In the future, the proposed method would perhaps be interesting applied to other similar 

large datasets. By having a large dataset, the neural network can be trained with various 

injuries pattern and size, as well as with corneal disorder characteristics, such as corneal 

opacities. This is important for ensure the real-time corneal detection is success with 

minimum error.  

The applications of the 3-ConvSvm have so far focused on the analysis of 2-dimensional 

image features for binary classification. The standard SVM classifier has been used in a 

large number of applications involved with multiclass model. Multiclass model could 

understand more detailed features of each image compare to binary class model. It would 

be interesting to investigate the improvement in the robustness that is offered in the 

multiclass model when using the 3-ConvSvm that has been introduced in this thesis.  

Multiclass model classification is representing the real-time application where the inputs 

can be classified as one of many outputs. For example, in binary, system only classify 

injuries and healthy cornea, in multiclass model, the system can classify type of injuries 

and the size of injuries such as small, average, or large for corneal abrasion. In addition, 

the pattern of chemical burn severity could be identified by train the classifier on the first, 

second, and third-degree burns. The multiclass classification is allowing the model to 

learn more features and the systems become more intelligent and robust. 

Finally, as awareness of the steps involved to the new technology that related to the 

internet of things (IoT), the proposed algorithm is suggested to be integrated with 

hyperspectral camera as a mobile application hardware and software.  This mobile apps 

can lead to a greater efficiency in cornea assessment without hassle and make every single 

task easier.  
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