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Abstract

Full analytical stock-assessment normally relies on age data, but that is not avail-
able for most species. Length data are cheaper to collect and is available for all
species, and many modern models are being based on that. Length data can be
gathered from different sources, for instance, the length distribution of the catches.
An alternative source of time series data of length distribution is scientific surveys.
Another source of information for species that are not aged is time series of biomass,
for both catches and survey, as such can provide a valuable indication of total
abundance.
We developed a new length-based model that is able to incorporate data from
different sources, survey, landings and discard, and data of two different types,
length frequencies and time series of biomass. We called it the Survey-LAndings
Model (SLAM), it is based on a growth projection matrix and we fitted it using
the Bayesian package Rstan. The model is designed to be flexible and can respond
to situations with different data availability. In this thesis it was tested in two
versions, a “full model”, that fits survey length frequency and abundance, landings
length frequency and abundance and discard abundance. The second version
includes data from only survey length frequency and abundance. The two different
versions are meant to reflect a situation with good data availability, where there
is information about the catches and especially there is compositional information
from the landings, and a highly data-limited situation, where the assessment can
only rely on survey information. In the first research chapter (chapter III) we tested
both versions on pseudo data, performed some sensitivity analysis and checked for
bias. In the second research chapter (chapter IV) we applied the “full version” of
SLAM to a data rich species: Whiting stock from division 6a. We evaluated its
performance comparing it to an existent assessment and we assessed its sensitivity
to specific assumptions. In the third research chapter (chapter V) we tested the
“survey only” version, again we picked Whiting stock from division 6a as a data
rich species, as well as Haddock from division 6a, and we compared the results
with an existing assessment. In this chapter we applied SLAM to two data limited
species from division 6a, which are Grey Gurnards and Lemon Sole.
We conclude that SLAM can be a valid tool for stock assessment because it was
able to produce assessments comparable to the ones produced by a well-established



age-based stock assessment model, even by just using length information. Stocks
like lemon sole and grey gurnard are currently un-assessed and there could be a
benefit for fisheries management of West of Scotland by the adoption of SLAM
as a stock assessment tool.
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1
Chapter I: introduction to the topic

This chapter will provide the context necessary to understand the thesis. It reviews

literature in regards to the science of stock assessment, and it will focus especially on

some of the challenges it faces, like dealing with data-limited situations, and it will

also provide insights on the advantages of length-based assessment and Bayesian

methods. This chapter will also explain how this body of work contributes to

the progress in the field.

1.1 What is stock-assessment and what it does

Fisheries play a crucial role in providing food, employment, and economic benefits.

They are vital for the livelihoods of many people and, in some cases, even for the

survival of entire nations. In the first half of the 20th century, it was widely believed

that the fish in the sea were an infinite resource, and fisheries were thought to

operate like any other sector of the economy, where increased input of investment

would lead to increased output of profit. However, this notion was proven false

when industrial fisheries developed unprecedented technological advancements and

catches started to decline worldwide. This prompted fisheries agencies to start

monitoring changes in the abundance of various fish stocks using different methods,

leading to the establishment of the science of stock assessment.
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Stock assessment comprises any scientific study to determine the productivity of

a fishery resource, the effect of fishing on that resource, and the impact (on the

resource and the fishery) of changing the patterns of fishing, e.i., from the implemen-

tation of management actions or development of policies. It aims to reconstruct the

past abundance of stocks, or understand their current state, or make predictions

about the future and construct scenarios (Gulland (1983)). The basic principles

of assessing fish stocks are the same general principles of population dynamics.

Most stock assessment produce reference points, like for instance the Maximum

Sustainable Yield (MSY), that can be used by policy makers to implement, for

instance, Total Allowable Catch (TAC). The types of data normally used in stock

assessment are the age, size, abundance and effort (used then to calculate Catch Per

Unit Effort (CPUE)). The methods of data collection of stock assessment include

scientific surveys and tagging programs, which collect fisheries independent data,

then there are fisheries dependent data which are collected for instance from market

samples, fisheries observers and cameras on board of fishing vessels.

Official statistics on global fisheries, specifically official fisheries catch data, have

been compiled since the 1930s. The League of Nations initially attempted to report

on the world’s economy, and this effort was continued by the United Nations, which

was founded in 1945. In the 1950s, the Food and Agriculture Organization of

the United Nations began publishing its annual yearbook of fisheries statistics.

These yearbooks, with annually updated data, are widely utilized to monitor the

development of fisheries at the national, regional, and global levels and to make

projections about their future prospects. Additionally, they help identify stocks

that have significantly declined in abundance and require conservation measures,

such as inclusion in international endangered species listings like CITES or the

IUCN Red List. Fisheries management agencies have been tracking changes in

the abundance of many stocks using various methods, including scientific surveys,

tagging programs, and commercial trends in CPUE. These abundance trend data

are now available for over 1,300 fish stocks constituting roughly 50% of global

marine fish landings in the RAM Legacy Stock Assessment Database (Hilborn et

2
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al. (2020); Ricard et al. (2012)). This effort to keep track of stock biomass does not

go only to ensure food security of a growing human population, but also to protect

worldwide biodiversity and prevent fisheries to cause the disruption of marine and

freshwater ecosystems. Unfortunately, we do not have abundance trend data for

thousands of fish stocks, mainly because they have minor economic importance or

because they come from developing areas of the world (Kindsvater et al. (2018)).

The increasing demand for fish abundance assessment is generating a requirement

for better data and for new models that can be used in situations where data

are deficient (Hoggarth (2006)).

1.2 Data-limited stocks

We define as data-limited a stock for which there are knowledge gaps such as it is

impossible to conduct a comprehensive quantitative, model-based stock assessment

to estimate time-series of biomass and fishing mortality relative to their reference

points, and to estimate productivity and reconstruct historical abundance trends

(N. Dowling et al. (2015b); N. Dowling et al. (2015a); N. A. Dowling et al.

(2019)). This is true for the majority of the fish and invertebrate stocks, which

have scarce, fragmented, or unreliable information. Data-limited fish stocks pose

complex challenges and there is high scientific effort into developing models to

asses data-limited stock status, in order to find simple, generic, low-cost solutions

for fisheries management (Chrysafi & Kuparinen (2016)).

Normally, a data limited stock does not have information on age, and this is

because the practice of aging a fish is expensive, therefore, in general, it is regularly

conducted only on stocks of medium-high commercial interest by high-income

countries. Moreover, many species are hard or even impossible to age, like for

many crustaceans and mollusks species (Punt et al. (2013)). Age is at the base of

traditional stock assessment because it provides a precise measure of the fish’s

life stage and development, and it allows accurate estimates of mortality and

recruitment rates (Ricker (1975)).

A solution that does not rely on age data are surplus production models. In this
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type of models, the dynamic of stock biomass over time is modeled through the

surplus production, which is net production of biomass over a given period, which

is the difference between the biomass added to the population through growth

and reproduction and the biomass removed through natural mortality and fishing.

However, these models do not account for internal structuring of the population

by age or size, and consider individuals within the stock as homogeneous (Haddon

(2011)). Modelling the life-stage of individuals within a stock provides greater

realism and more information than simply considering the total abundance and

overall mortality rate. It is therefore desirable to model population abundance in

a structured form when assessing fish stocks (Kuparinen et al. (2012)).

Length-based models have a high potential for data-limited species, as size is cheap

to collect and available for all species. Length based models use abundance-at-

length as the state variable, and are a valid alternative to age-based models in

terms of biological resolution. Compared to surplus production models, they can

provide more detailed information on how fishing affects stocks. Next section will

be dedicated to length based models.

1.3 Length-Based Assessments

Full analytical stock assessment is normally based on age rather than length data

because age data are more powerful. If the growth rates are not consistent across

the population, and this is almost always the case, length alone can be mis-

leading (Ricker (1975)). Growth is subject to seasonality, due to differences in

food availability and temperature, it slows down with age, and it is different

among individuals of the same species. Age based models are in general more

computationally convenient than length based models, because the model is fitted

to length classes that normally more numerous than age classes. Also, length classes

get promoted not just to one, but several other classes with time.

However, along with many advantages, age data have the considerable disadvantage

of being unavailable for many species, including many mollusks, crustacean and

elasmobranch species, and this results in a large uncertainty regarding the status
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of a huge range of the world’s fish stocks. On the other hand, length information

is accessible for every species. Some biological and fisheries related processes are

thought to be better described by length then by age. Kvamme & Bogstad (2007)

investigated the benefits of including length data in an assessment, suggesting that

the mortality caused by fisheries is size-related rather than age-related.

For the reasons cited above, length-only assessments are growing in popularity

(Pauly et al. (1987), Hilborn (2003)). Some of the most prominent methods

include Length-Based SPawning Ratio (LBSPR; Hordyk et al. (2015)), Length-

Based Integrated Mixed Effects (LIME; Rudd & Thorson (2018)) and Length-Based

Bayesian (LBB; Kindong et al. (2020) Froese et al. (2018)). LBSPR is a well-known

length-based model that assesses stock status by making use of a quantity called

spawning potential. Spawning potential in fisheries stock assessment refers to the

estimated reproductive capacity of a fish population at a given time. It’s a measure

of the potential contribution of adult fish to the next generation through the

production of offspring. This model compares the spawning potential as measured

through the length composition data to that expected in an unfished stock. LIME

can be fit to at least one year of length distribution of the catches, catch records

and abundance index (fished biomass for instance). It accommodates fluctuating

recruitment and fishing mortality (while assuming constant selectivity) and derives

population parameters based on an age-structured model and length compositions.

LBB is a Bayesian model that fits only info from the catch and considers differences

between gears selectivity. It simplifies data requirements by solely relying on this

specific data representing the population structure, with the flexibility for users

to refine results by inputting additional parameters like maximum length, initial

catch length, and natural mortality rates if available from the literature. These

models have been developed especially for data limited situations and they are

being largely applied.

None of these models have integrated fisheries independent information like survey.

Indeed, fisheries-dependent data such as landings and discard abundance and size

composition are essential to estimate the removal from the stock on an absolute
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scale (Cook (2004)). However, these data are more prone to error or bias originating

from various aspects related to misreporting of fisheries catch or changes in fishing

technology (Pennino et al. (2016)). Unreported catch and discards create a

discrepancy between fish landings used in an assessment model and the actual

at-sea fish removals, thereby biasing stock size estimates (Beare et al. (2005)).

When fisheries catch rates are used to inform stock trends, many factors that cause

changes in fisheries catchability can distort or misrepresent the real trends (Harley

et al. (2001); Maunder et al. (2006)). For a state-of-the-art stock assessment

model it is fundamental to rely on both these sources of information, the dependent

and independent of the fisheries, to describe the stock population dynamics and

provide management advice.

1.4 Bayesian approach in stock-assessment

Bayesian inference is an alternative framework to the maximum likelihood (fre-

quentist) approach for conducting statistical inference, although they both share

the same likelihood function. The maximum likelihood approach seeks a single

point estimate that maximizes the likelihood function. It’s a deterministic process

aimed at finding the most likely parameter values according to the data. Bayesian

inference strictly relies on the Markov Chain Monte Carlo (MCMC), an algorithm

that generates samples from a probability distribution when direct sampling is

difficult. It’s a stochastic process that provides a full probabilistic understanding

of the parameter estimates, capturing uncertainties and dependencies (Casella &

Berger (2002), Gilks et al. (1996)).

The interpretation of probability of the two methods is fundamentally different:

a frequentist probability is the proportion of times an event occurs in an infinite

sequence of repeated trials; a Bayesian probability is interpreted as a reasonable

expectation of a degree of belief (De Finetti (1989)). In Bayesian statistics there

is the possibility to include some prior knowledge about the distribution of a

parameter. The prior probability represents our initial belief or knowledge about

the likelihood of different values for a parameter before observing any data. It’s
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like having a starting point or an assumption about the parameter’s distribution

based on existing information, expert opinions, or previous studies. When new data

becomes available, Bayes’ theorem allows us to update our prior beliefs to obtain

the posterior probability. The posterior probability incorporates both the prior

knowledge and the new evidence, yielding an updated and refined understanding

of the parameter’s likelihood. It represents our revised belief about the parameter

after considering the observed data.

Bayesian methods are very computationally costly, therefore they have never found

a wide application until the early 90’s. Along with the progress in computational

power, Bayesian method have been steadily growing in popularity, in stock assess-

ment as in many other fields (Hilborn (2003), Punt & Hilborn (1997), McAllister et

al. (1994)). The primary rationale behind employing a Bayesian approach in stock

assessment lies in its ability to encompass and consider the complete spectrum of

uncertainties linked to models and parameter values. In contrast, many decision

analyses relying on conditional maximum likelihood or least squares estimation

tend to fix or condition on specific parameter values. In Bayesian statistics, instead

of fixing a parameter at a specific value, it can be assigned it a prior distribution

that reflects the belief or knowledge about that parameter before observing the

data. Some of these values might play a crucial role in the final outcome of

the assessment, yet they often carry substantial uncertainty, which the Bayesian

approach effectively addresses and accommodates.

The use of Bayesian parameter estimation in stock assessment models presents

significant unresolved challenges, for instance the choice of which prior to use. In

general, the Bayesian approach offers a way of incorporating prior information

from previous studies or expert opinion, and is a natural framework for estimat-

ing probabilities of hypotheses and performing decision analyses. Nevertheless,

as highlighted by Punt & Hilborn (1997), defining prior distributions for model

parameters was a struggle since the beginning. They demonstrate that even when

employing a seemingly neutral prior on population scale (like a uniform prior on

unfished biomass), the resulting prior on the final biomass ratio becomes notably
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informative. Thorson & Cope (2017) also showed that the arbitrary upper bound

on a uniform prior on log-maximum recruitment determines results in 3 of 4 case

studies considered. Punt & Butterworth (2000) also warns about specifying priors

so that they are not contradictory, which is a problem that has occurred for

the bowhead whale assessment. A prior is in conflict with another (or with the

likelihood) when the areas where these function have high densities are significantly

different (Gagnon (2023)). The other main downside of Bayesian statistics is the

long run time. It is extremely intensive computationally to apply Bayes Theorem to

complex models, and despite the recent advance in technology and computational

power it can take several hours to run.

The alternative to Bayesian statistics in stock assessment is the estimation of

Maximum Likelihood (ML). Bayesian and maximum likelihood estimates of stock

assessment parameters are both guaranteed to converge on their optimal values as

the amount of data increases to infinity (Gelman (2006)), but the main difference

between the two methods is how they deal with uncertain or not-so-accurate

data. Bayesian estimation involves using a method called “integrating the posterior

distribution”, which involves complex computation processes. On the other hand,

maximizing the likelihood is also complex, even though not as computationally

expensive. However, to conduct defensible decision analyses for assessments based

on maximum likelihood estimation, it is usually necessary to conduct a bootstrap

analysis (Restrepo et al. (1992)).

Bayesian analyses can be slow for many reasons, especially because the model needs

to be iterated a large number of times to converge and produce sufficiently precise

shapes of the posterior distributions. This inefficiency comes from different factors.

Firstly, the model’s speed, depends on the computer’s power, the programming

language used, and how well the code is written. Usually, this isn’t the main reason

why the whole process takes a long time. The second factor is the geometric shape

of the posterior, which increases run time when the model has many parameters and

the posterior has a more complex geometric shape. For instance, efficiency degrades

when posterior mass is close to parameter boundaries, or the posterior has fat tails,
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or there are correlations between parameters that vary over the posterior. Every

parameter adds a dimension to the likelihood, making it hard for the model to find

the lowest point.

Despite the many difficulties that arise from the use of Bayesian techniques, they

still have a vast an constantly increasing application in stock assessment and

decision analysis (Hilborn (2003)).

1.5 This thesis

This chapter introduced the science of stock assessment, along with its fundamental

concepts, its key challenges, its latest trends, like implementation of Bayesian stock

assessment models. The protagonist of this thesis is a length-based Bayesian

stock assessment model, thought for, but not limited to, assessing data-limited

species. The model is forward running, deterministic, matrix based and length

based population model called Survey-LAndings Model (SLAM), and it integrates

both fisheries dependent and independent information. It can adapt to different

data availability and it incorporates the latest trend in the field to face modern

challenges while remaining simple and user friendly. This thesis will show the

process of developing of a new stock assessment tool and demonstrate how it

is possible to obtain results that are comparable with age-based models by just

using length information, even in highly data limited situations where only fisheries

independent information is available.

The content of next chapters will be:

- Chapter II gives a detailed overview of all the data sources used during this work

and especially focuses on the bias of the data.

- Chapter III introduces SLAM: it describes the structure of the model, the different

data sources that it can possibly fit and it reports the results of different tests.

In fact, in this chapter the model is tested on pseudo data on the two different

configuration that were chosen for this study. The first one is the model “full

version” and the second is “survey only”.

- Chapter IV tests SLAM “full version” on whiting data and compares the results
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with another stock assessment model.

- Chapter V tests SLAM “survey only” on different stocks: whiting (Merlangus

merlangius), haddock (Merlanus aeglefinus), grey gurnard (Eutriglia gurnardus)

and lemon sole (Microstomus kitt)

- Chapter VI presents and overall discussion and conclusion.
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Chapter II: the data

In this thesis we will develop and apply a new stock assessment method called

Survey-LAndings Model (SLAM). SLAM is a length-based Bayesuan model that

can rely on both fisheries dependent (landings and discard) and independent infor-

mation (scientific surveys). The model, described in details in chapter III, can fit 6

different types of data, survey biomass, landings biomass and discard biomass, and

proportions-at-length from survey, landings and discard. SLAM can be configured

in different ways in order to face situations with different data availability, in

fact SLAM can be fit to all the data simultaneously or just partially. The least

requirement to run an assessment with SLAM are survey biomass and survey length

distribution, which is what we could consider a data limited situation.

In the present chapter are described in detail the data sources used in this thesis,

the species we chose, the area they come from, the advantages and limitations of

each data set. Being aware of the biases contained in the fisheries and survey

data is fundamental to understand the motivation behind some of the choices

that were made, and the content of this chapter will be referred multiple times

in the rest of the thesis.
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2.1 The stocks

In this thesis are used 4 different stocks, all from West of Scotland (also referred

to ICES subarea VIa). The study was limited to this area because it is the only

area for which I had access to landings proportions-at-length data for some species.

Moreover, differently from the North Sea, there are well assessed stocks along with

several unassessed stocks. For this study it was important to pick a couple of

assessed stocks to have a reference for the model output, but it was also of interest

to assess new stock, which is the ultimate reason why this model was developed.

The first species chose is whiting (Merlangus merlangius) from West of Scotland,

which is a well assessed stock. Whiting is a commercial species present in the North

Atlantic, North Sea and Mediterranean Sea. It is caught in mixed trawl fisheries

and in Nephrops fisheries. The maximum size they can reach is 70 cm and there is a

great size variability within individual of the same age. A fish of 30 cm can be even

6 years old (Hislop et al. (1991)). Being short is computationally advantageous,

because it means a modest number of length classes to fit for the model. This

made whiting preferable over cod (Gadus morhua). For whiting from subarea VIa

there is no evidence of migration to other areas and the international Council for

the Exploration of the Sea considers it a closed stock, therefore it is compatible

with SLAM’s assumption of a closed population. In Scottish waters, Hunter et

al. (2016) found that there were significant decreasing trends in asymptotic size,

maturity at length and abundance over the last three decades. The main cause

driving this trend is the systematic removal of the faster growing individual by

the fisheries. This is a well known detrimental effect of fisheries, that goes by the

name of the Rosa Lee phenomenon (Lee (1912)). R. M. Cook (2019) also found a

decreasing trend over the values of discard at lengths, highlighting as the fisheries

is retaining specimens that are smaller and smaller. It is important to be aware

of these trends when conducting a stock assessment study. Kraak et al. (2019)

investigated the consequences of overlooking the Rosa Lee phenomenon working

on simulated data.
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As a second well assessed stock we chose haddock (Merlanus aeglefinus). It is

a commercial species in the North Atlantic and North Sea and it is commonly

caught in mixed trawl fisheries alongside cod and whiting. They can grow up

to a maximum size of 100 cm, and there is considerable variation in size among

individuals. For instance, a haddock measuring 40 cm in length can be around

5 years old (Scott (1988)). They prefer the coarser seabed sediments around the

periphery of the muddy Nephrops grounds, the adults are found more commonly

from 80 to 200 m (Cohen et al. (1990)). Haddock is known for having a considerable

variability in recruitment from year to year, therefore we chose it for a comparison

with whiting which has a lower variability, to test how the model was dealing with

that. Nevertheless, haddock from West of Scotland and haddock from the North

Sea were proved to be a single stock, meaning that haddock from area VIa is not

a closed population.

We then chose two unassessed and data-limited species: grey gurnard (Eutriglia

gurnardus) and lemon sole (Microstomus kitt). Grey gurnard is the most common

gurnard in the North Sea. It is caught as a by-catch in demersal fisheries, and is of

limited commercial importance. Juveniles feed on a variety of small crustaceans,the

diet of older specimens mainly consists of larger crustaceans and small fish. Spawn-

ing takes place in spring and summer. The average length of 8-year-old fish has

been estimated at 35cm Damm (1987) and 32cm Pope et al. (2000). Females grow

faster and live longer than males Damm (1987). Lemon Sole is a commercial species

present in the North Atlantic and North Sea. It is frequently caught in demersal

trawl fisheries, where it is encountered alongside other flatfish species. Lemon Sole

can grow up to a maximum size of 30 cm, and like the other species mentioned,

there can be considerable variability within individuals of the same size. In Scottish

waters, lemon sole start to spawn in the northwest of the North Sea in April and

spawning spreads south and east as the season progresses. Most spawning occurs

between the first and the second quarter of the year (Age et al. (2010)). We

chose these two species not only because they are not currently assessed but also

because they have quite different morphology and swimming habits, also compared
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to whiting and haddock. Therefore it was interesting to check if SLAM was able to

produce a reliable assessment independently from these characteristics of the stocks.

2.2 The types of data

2.2.1 Pseudo data

The data were generated using SLAM as an operating model. All the parameters

were assumed to be known and the model was used to calculate the quantities

that we then used to generate the data: total biomass and length distributions.

We generated data for survey, discard and landings biomass, landings and survey

length frequency. The biomass data were generated by perturbing the model output.

Each value was multiplied by a sample withdrawn from a lognormal distribution

centered on 0 with standard deviation of 0.3. The length frequency data were

generated by withdrawing 50 samples with a multinomial distribution from the

model output.

The values of fishing mortality (Ft) used as know values to generate the pseudo

data were calculated with a random walk:

Ftt+1 = Ftt + ϵt; ϵt ∼ N(0, 0.1) (2.1)

this is because in SLAM fishing mortality is assumed to follow a random walk,

with correlation from one year to the other.

In table 3.1 we report all the parameters and the true values used for the simulations

in this chapter, and the type of prior used.

2.2.2 Survey

Scientific surveys are a fundamental source of information for fisheries science. They

are designed to catch a representative sample of the real age and length distribution

in the sea. In fact, the mesh size of survey net is smaller in comparison to the one

of the one of the average demersal trawler, so that the survey is be able to catch

small fish. Surveys take samples that are evenly distributed in space, differently
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from fishing vessels that go only to places where fish of commercial size are known

to gather. On board of scientific surveys all fish are identified and measured, then,

according to the survey protocol, a sub-sample of fish is also aged, sexed, and the

maturation stage of the gonads is evaluated. Observation error can hide at different

stages of the sampling process, as discussed in Gerritsen & McGrath (2006).

The survey data used in this study were downloaded from the DATRAS repository

on the ICES website. The data were normalised to fish caught per Km2, dividing

the number of fish caught per haul by the Km towed multiplied by the wingspread.

For each of the four species a data set was obtained with the numbers of fish

caught for each centimeter of length (per year, from 1989 to 2020). To obtain

the proportions at length, the total numbers-at-length was divided by the sum

of fish caught by the survey on that year. To obtain the survey biomass, it was

necessary to calculate the weight of each fish based on length l. This is done by

applying the weight-length relationship:

W = αW · lβW (2.2)

Where W is a column vector with size equal to the length classes in the survey

data and l is another column vector of the same size. The parameters αw and

βw are specie-specific and are available in the literature. To calculate the total

biomass surveyed each year we multiplied the weight-at-length W by numbers at

length Sur and then summed across length classes:

Wt =
∑
l=1

Surt · W (2.3)

Figure 2.1 shows the proportions-at-length of whiting broke down by quarter

in an example year, 1998. We observe how the shape of the distribution changes

during the year, this is due to fish somatic growth. Spawning happens in quarter

III and fish starts to appear in the catch in the first peak of quarter IV, at about

15 cm long. This recruitment peak is smaller than the second one because the

survey does not select well fish that are smaller than this size. The second peak
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Figure 2.1: The following histograms shows the proportions-at-length of whiting in
1998 broke down by quarter of the year. Quarter 3 was not conducted in 1998. We
observe how the shapes of the distribution vary consistently during the year due to the
growth of fish.

of quarter IV, with mean at about 25 cm, appeared as the first peak in quarter I

with a mean of about 17 cm. We can follow the growth of this cohort in quarter

II, where the mean increased of a couple of centimeters. It is of fundamental

importance to select fish from only one quarter, otherwise the model will not be

able to track the fish cohorts and estimate important quantities, like growth and

recruitment. For this study we chose quarter I because it is the only one that was

consistent for every year in subarea VIa.

2.2.3 Landings and discard

In this study we focus only on demersal fisheries, where the most of the catch comes

from demersal trawlers. Fisheries catches are source of different types of data that

can be collected at different stages of the process. Catches can be separated into
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two components: landings, the part of the catch of commercial value that is took

to the port to be sold, and discard, the part of the catch that is thrown back at sea,

because because of being too small or too damaged or having no commercial value

(bycatch). Fisheries aims at targeting only fish at a commercial size, therefore the

mesh sizes of the net is large enough to let the small fish of the target species escape.

Moreover, fisheries effort is not evenly distributed in space, but rather focused on

specific areas where the target species is known to gather. Moreover, trawlers can

fish for many hours and they can easily tire out old and experienced fish, which can

swim faster in front of the gear but are not able to escape from the side because of

the cloud of sediment that is rising from the trawl wings.

In this study, fisheries dependent data were used only for whiting. Time series of

landings biomass and discard biomass are published by the International Council

for the Exploration of the sea (ICES) on an annual report (ICES (2022)). This

report also breaks down the landed weight by country, and it appears how the

majority of the whiting in the area is caught by Scotland. Those values indicate

the total weight of fish that were landed or discarded on that particular year.

The landings length frequency data were made available by prof. Heath. The

landings length frequency data were collected from year 1989 to 2008 in markets

over the coast of West of Scotland. The sample has then been raised to the total

landed weight registered for that year. The data set is split between landings

coming from Pair Trawls, Nephrops trawl and other gears. This data set is for

Scottish gears only, and is missing the landings length frequency from non-Scottish

gears. Nevertheless, we saw in the ICES report how non-Scottish landings makes

up only a small fraction of the total, therefore this is not a major limitation. We

overcame this problem by considering that non-Scottish trawlers fishing in subarea

VIa are mainly big trawlers, categorized in the Landings Length Frequency data as

“Other Gears”. Therefore we could assume that the landings catch at length from

non-Scottish fleet has approximately the same shape of Scottish “Other Gears”. In

the ICES report we found both the total landed biomass and the total Scottish

landed biomass, it was possible to calculate the total Non-Scottish Total Landed
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Biomass, and then raise the “Other Gears” Scottish Length Frequency according

to the ratio between Non-Scottish total landed biomass and total Scottish landed

biomass. This step can be more easily read in the formula:

non ScottishLFl,y = Scottish other gearsLFl,y ∗ non ScottishW

ScottishW
(2.4)

Where non-Scottish and Scottish LF are a matrix of dimensions rows = numberoflengths

and columns = number of years. We then summed non-Scottish and Scottish LF

to obtain the landings length frequency.

For the landings and discard we are using annual values and we do not break

down by quarter, because the biomass data do not have that resolution. In figure

2.2 we try to break down proportions-at-length landings data by quarter to see if

the peaks are very different from one another and if summing them together might

mask relevant signal for the model. Each plot in the grid represents a different

year, and the four different lines are the different quarters. We observe how for

some years the profiles were very similar, like in 1991, while for others there was

quite a lot of variability, like 1999. Using annual values is still the better option,

since we do not have landings and discard biomass quarterly values, but this is a

limitation of the data and we must be aware of that.

Let’s now compare the annual landings proportions-at-length with the survey

proportions-at-length from quarter I. Figure 2.3 shows each year of proportions-at-

length as a different line. We observe how there are no small fish in the landings,

because they are discarded. Also, the peak in the landings comes around 35 cm

length, when there are very little fish caught in the survey. This is because the

survey trawls only for half an hour (an hour before the change in protocol year

2011) and the bigger fish manage to escape. This is an important source of bias

that will need to be considered in chapter IV and V.
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Figure 2.2: The figure shows the breakdown of landings proportions-at-length by
quarter, for a part of the years we had available: 1996-2006. We can observe in some years
the different quarter had a very similar shape, like year 1996, while for others the shape
was quite different, like 1999 or 2003. In the present study we sum over these quartely
values to take the yearly values, therefore this might mask some information regarding
growth, and create a conflict with the survey proportions-at-length, which comes from
quarter 1 only.
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Figure 2.3: Line plot show the whiting proportions-at-length of annual landings and
QI survey. We observe how there are no small fish in the landings, because they are
discarded, and there are no big fish in the survey, probably because the survey does not
sample well big fish.

2.3 West of Scotland fishing area

The West of Scotland fishing area (sometime referred to as subarea VIa), stretches

from the West Coast of Scotland over the Outer Hebrides to approximately 5

degrees longitude west of the edge of the continental shelf. The area is exploited

for both demersal and pelagic fisheries. It was chose for this study because it was

the only one for which I had access to landings compositional data. Moreover,

the area has a long and rich survey history. Nevertheless, the geography and the

weather conditions of area 6a makes it quite hard to sample uniformly. Furthermore,

the survey protocol underwent relevant changes after 2011. A major one was that

the haul duration was reduced from 1 hour to 30 minutes, having a significant

impact on the survey catchability. Catchability is a concept in fishery biology
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which reflects the efficiency of a particular fishery (Tanaka (1997)). Moreover, the

gear was changed and they changed the design from fixed station to a random

stratified design. Table 1.2 is presenting the number of hauls conducted every year

during quarter one. We can see how before 2011 the in number of hauls tended to

be higher. The mean haul number was roughly 80, with a standard deviation 21.6.

This indicate quite high variability, we see for instance year 1999 has two times the

number of hauls than year 1995. This could have been for a variety of reasons, even

weather conditions. After year 2011 there was an effort to have more consistent

with haul numbers, the mean is roughly 61 hauls with a much smaller standard

deviation of 2.5. These hauls also had half the duration of hauls before 2011.

Subarea VIa is also known to be difficult to sample, for both the morphology

of the seafloor and the harsh weather conditions. We can see in figure 2.4 three

maps presenting the spatial distribution of hauls in quarter one. The big map

shows all hauls from year 1989 to 2020, and we can observe how there was not

one single haul in the area just west of the Outer Hebrides. This is due to the

characteristics of the bottom, that is rocky and full of sharp and tall pinnacles,

that makes it impossible to practice any kind of demersal fisheries. Furthermore,

almost one third of the whole area 6a is occupied by the deep waters outiside the

continental shelf, which by protocol are not sampled by demersal survey. The

smaller maps compare the distribution of Q1 hauls in 1991, before the protocol

was changed, and in 2019. In the first map indeed the hauls are not very uniform

in space, with a very clear aggregation of hauls between the Outer Hebrides and

the coast. This could be due to an especially bad year in terms of weather, that

made it difficult to sample west of the Outer Hebrides for many days. The survey

design was based on fixed stations: the operators were given a list of station that

they could sample and they could choose from that. If the weather was bad they

could just have gone for those hauls that were easy to sample, instead of heading

offshore. After the design was changed to random stratified in 2011, we can see

that the hauls seems more uniformly spread. The reader is invited to take a look

at more maps shown in Appendix II.
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Figure 2.4: The maps above show West of Scotland and the limits of subarea VIa. The
larger map represents the distribution of the total hauls that were ever made in quarter 1.
We observe how the hauls are not been taken uniformly over the whole area, in fact they
are limited to the continental shelf and the area just South West of the Outer Hebrides
has never been sampled. The smaller maps display the quarter 1 hauls taken in individual
years, 1991 on the left and 2019 on the right. Due to the change in the sampling protocol
in 2011, the hauls taken before this year appear to be less spread out, while the ones
taken after look more randomised.
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Table 2.1: Year and Haul numbers for quarter 1

Year Haul numbers

1989 82
1990 78
1991 96
1992 76
1993 78
1994 82
1995 54
1996 80
1997 77
1998 72
1999 110
2000 105
2001 76
2002 84
2003 106
2004 92
2005 94
2006 106
2007 130
2008 54
2009 53
2010 57
2011 57
2012 64
2013 64
2014 61
2015 62
2016 63
2017 62
2018 60
2019 62
2020 57

2.4 Summary

In the present thesis we will present a new length-based assessment, the Survey-

LAndings Model, and we will test it on different data combinations. Table 1.3

presents the types of data used in each chapter.
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Table 2.2: The table summarises the stocks and the types of data used for each chapter.

Chapter Stock Source Type
II pseudo data survey biomass

length frequency
landings biomass

length frequency
discard biomass

III whiting VIa survey biomass
length frequency

landings biomass
length frequency

discard biomass
IV whiting VIa survey biomass

length frequency
haddock VIa survey biomass

length frequency
grey gurnard VIa survey biomass

length frequency
lemon sole VIa survey biomass

length frequency
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3
Chapter III: Description of the

Survey-LAndings Model (SLAM) and test
on pseudo-data

3.1 Introduction

Most of marine animal species are hard or impossible to age. Length is a measure-

ment that is available for every species and many modern models are being based

on that. Length-based population models typically find use when there’s a lack of

direct aging information but some data on growth is available (Chen et al. (2003),

Sullivan et al. (1990), Punt et al. (1997), Hillary (2011)). The three most common

types of data used in stock assessment models are catch, abundance indices, and

age/length composition, although many integrated models do not simultaneously

include all three of these (like Sullivan et al. (1990); Rudd & Thorson (2018); Rudd

et al. (2021)). Length data can be gathered from the composition of the catches

or of scientific surveys. Catch and abundance indeces are also information that

are not dependent on the ageing process, because they are usually a time series of

biomass, and can provide a valuable indication of total abundance.

In this chapter we present a forward running, deterministic, matrix based and

length based population model called the Survey-LAndings Model (SLAM), which
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is inspired to Sullivan et al. (1990). Sullivan’s model is also a length based

model that uses a generalisation of the of the Leslie matrix that uses size classes

instead of age (Sullivan et al. (1990), Sainsbury (1982)). In length-based methods,

differently from age based methods, the concept of aging revolves around moving

through various lengths over time, but in a single time step, an organism can

skip multiple length classes or even stay in the same length class. Therefore it is

necessary to create a matrix of probabilities of transitions between length classes

(Morales-Bojorquez & Nevarez-Martinez (2010), Nevarez-Martinez et al. (2010),

Hillary (2011)). In a stock assessment model, the mean growth increment is

modeled with the von Bertalanffy curve. Sullivan’s model is based on catch-at-

length, meaning it relies on information coming from the fisheries and is able to

estimate quantities relevant to stock assessment, namely relative abundance, fishing

mortality, selectivity, and the von Bertalanffy growth parameters L∞ and k by using

nonlinear least squares approach. The length distribution of the catches is almost

never available and this makes Sullivan’s model quite limited in its applicability.

Differently from Sullivan’s model, SLAM is able to fit both fisheries dependent

data (landings and discard) and fisheries independent data (scientific surveys).

The types of information required are an index of abundance (total biomass)

and compositional information (length frequencies). The minimum requirement

to run an assessment with SLAM are survey biomass and length frequencies, which

represent a data limited situation. All the other types of data can be added if

available. This makes SLAM a flexible tool that can adapt to situations with

different data availability. As a further implementation from the Sullivan model,

we implemented SLAM in a Bayesian framework, using the software Stan.

This chapter will describe the model in details and will present two different

version of the model. The first versions represent a data-rich situations were

the model is fitted to survey biomass and length frequency, landings biomass and

length frequency and discard biomass. The second version represent a data-limited

situation where the model is fitted only to survey biomass and length frequency.

The objective of this chapter is to demonstrate that SLAM is unbiased and has
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low sensitivity to key input values, therefore its output can be fully trusted when

applied to a real stock. In order to prove this, both versions of the model will

undergo some sensitivity analysis and some tests to show that it is able to retrieve

input parameters from sets of pseudo data.

3.1.1 The Survey-LAndings Model (SLAM)

The Survey-LAndings Model (SLAM) is a forward running, deterministic, matrix-

based and length-based population model, where the abundances at two different

time steps t are related and the length classes are discrete. The time resolution

of SLAM is years and the length resolution is centimeters. Equation 1 shows the

population dynamic equation underlying of SLAM:

Nt+1 = G · St · Nt + Rt+1 (3.1)

N is the column vector of length equal to the maximum size modeled (l), the

numbers of which indicate the numbers of individuals at each size. G (growth) and

S (survival) are square matrices of dimensions l and R is another column vector

of length l that adds recruitment every year.

Stock Growth

The element G is the growth projection matrix, which is a generalisation of

the Leslie matrix and it is commonly used in many population dynamics models

[?, ?, ?, ?]. G grows each individual for their source length classes and distributes

them a set of destination length classes. The mean growth increment µ∆l of fish

of length Li is assumed to follow the Bertalanffy growth curve. Here the subscript

i indicates the single length class.

µ∆l = (L∞ − Li)(1 − e−K∆t) (3.2)

K is the growth rate coefficient and it is species-specific and influenced by

environmental and genetic factors. The spread around the mean length σ∆l is

modeled by a coefficient variation ω that we assume to be constant, therefore:
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σ∆l = ωµ∆l . (3.3)

Stock survival

The survival matrix S changes in time and is defined by:

St = diag(e−Zt) (3.4)

Where Zt is the vector by length l of the total mortality rate. Total mortality

is given by the sum of natural mortality (M) and fishing mortality (Ft):

Zt = M + Ft (3.5)

where M and Ft are two column vector of dimension l. We assume natural

mortality M depends only on the size of the fish and it can be calculated by

Lorenzen equation [?] expressed in terms of length:

M = αM · lβM (3.6)

The assumption of Lorenzen natural mortality is widely used in stock assess-

ment and the parameters αM and βM are normally fixed. This is not because these

parameters are known, but rather the opposite. Estimating both natural mortality

and fishing mortality at the same time without information is impossible without

information on both. Since the trend of natural mortality is widely agreed to follow

a Lorenzen curve, the parameters are fixed so the model is able to estimate fishing

mortality. Fishing mortality Ft represents the mortality of the stock caused by

fisheries and will be unpacked in ??

Stock Reproduction

Recruitment R is a column vector of length l that contains the total number of

recruits by length. The shape of the length distribution is controlled by a mean µR

and a standard deviation σR. The total number of recruits is estimated every year,
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but in case the model is being used to generate data, Rt needs to be calculated.

This is done by using Beverton-Holt model:

r = α · SSB

1 + β · SSB
(3.7)

Where SSB the spawning stock biomass. SSB is calculated by multiplying the

weights-at-length by a the maturity ogive and then summing over length:

SSB =
l∑

i=1
NtW · 1

1 + exp(−βmat(L − L50mat))
(3.8)

Where the vector W is a weight-length converter calculated with the follow-

ing relationship:

W = αW · lβW · w (3.9)

αW and βW are values are commonly available in the literature, w is parameter

used in case the weight needs to be converted from gutted to non-gutted.

The initial Population

The initial population in SLAM is calculated by adding the number-at-length

of survival fish from the year before, and the first year of recruitment-at-length.

Each component is multiplied by its respective length distribution:

N1 = NS1 · LF1 + R1 · Rdistr (3.10)

3.1.2 Modelling the abundance relationship with Landings
and Survey

Landings

So far we described the biological process model. Nevertheless, in order to

understand the impact that the fisheries has on the population, we need to make

some further assumptions on how the data we observe relates to the abundance.

We start considering the Baranov equation, commonly referred to as Baranov
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catch equation, which describes the number of fish caught Ct in relation to fishing

mortality F and total mortality Z, already described in the section above:

Ct = Ft

Zt

· (1 − e−Zt) · Nt (3.11)

Fishing mortality can be split as a size component, the selectivity s, and a

time component Ft:

Ft = Ft · s (3.12)

Ft is the fishing pressure applied to the population every year. It is assumed to

have correlation between one year to the other. The term s is a vector of length

l and represents the the fisheries selectivity. The following equation models the

fishing selectivity as a logistic:

fsell = 1
1 + L50fsel · exp (−βfselL)

(3.13)

This equation is considered to represent a typical selectivity of a standard com-

mercial vessel with a trawl gear. Modelling the selectivity as a logistic depending on

length it means assuming that a fish of length 0 cm has 0 probability of being caught,

and the probability increases with the size of the fish. The explanation for this is

that fishermen prefer to use a mesh size large enough to catch only marketable

fish and let the small ones escape through the mesh. The assumption here is that

large fish are not able to escape the gear because the vessel will keep trawling for

several hours, and in the end, exhausted, will end up in the net. Escaping to the

side is unlikely, because the high amount of sediment that gets suspended by the

mouth of the net are scary for the fish, which will keep swimming in front of the

opening. This is probably the case for some fish species, but not for all of them.

We decided to consider a second assumption for the fisheries selectivity that could

be included in the model, that fishing selectivity looks as a gamma curve instead

of a logistic. This curve also starts at 0 and increase up to a certain size of the

fish, but then it decreases when the fish gets bigger. ICES assessment also chose
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this second version. The practical explanation of this second assumption is that

a bigger fish is faster and more experienced, therefore more likely to escape the

nets. The shape of the gamma is regulated by two parameters, the mode of the

curve (modef ) and the spread (αf ).

fsell = L

αfsel − 1
· β

αfsel−1
fsel · exp

αfsel − 1 − L

βfsel

(3.14)

Where:

βfsel = modefsel

αfsel − 1
(3.15)

Sampson & Scott (2012) has explored the shapes and stability of population-

selection curves, reporting the dome shape curve as more frequent than other

shapes. Now that we know all the components to calculate the catches Ct, we can

define another important quantity, the discard Dt. The discard is that proportion

of the catch that is being thrown back at sea, because of being too small or too

damaged. Dt is a column vector of length l, with a logistic curve defined in terms

of two parameters L50 and L25:

dsel = 1
1 + L50dsel · exp (−βdselL)

(3.16)

The discard is shaped like a logistic because small fish have probability equal

to 1 of being discarded (or 0 probability of being landed) and this probability

gradually increases with size. This selectivity is parametrised in terms of L50 and

L25 because it is more intuitive to assign two lengths as parameters (instead of a

length and a steepness). As L50 it makes sense to pick the minimum landing size

from the fisheries regulation, and as L25 maybe 10 or 15 cm less than that. Once

the selectivity is defined, the discard numbers-at-length are equal to:

Dt = dsel · Ct (3.17)

Once we have defined what is thrown back at sea, we can define what is landed

(Ll,t):
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Lt = Ct − Dt (3.18)

This quantity is the length frequency composition of the Landings, so in case

data from fish market samples are available, this is a quantity that will be fitted.

The vectors Lt and Dt, represent how many fish have been landed or discarded

at that specific length on that specific time step. In order to obtain a value of

total biomass for each time step, they need to be multiplied by the weight-length

relationship W presented in equation 2.2 and summed over length classes:

LBt =
l∑

i=1
Lt · W ; DBt =

l∑
i=1

Dt · W. (3.19)

Survey

The fundamental source of information for SLAM are the compositional and

abundance data from fisheries independent information, the scientific surveys. The

survey is designed to take samples that resemble the real length distribution of

fish in the sea as much as possible. The mesh size is smaller than the one used

by commercial fisheries, in order to take a representative sample of the population

length frequency. We assume that the logistic curve follows a logistic selectivity,

starting at 0 for small fish and increasing progressively in size.

NSurvt = Nt · ssel · q (3.20)

ssel = 1
1 + αssel exp(−βsselL)

(3.21)

SBt =
ymax∑
y=1

NSurvt · W (3.22)

Nevertheless, the survey trawling time is quite short, hauls of the ICES NS-IBTS

only last half an hour, while a commercial trawler can trawl for hours. This might

allow big and fast swimming fish to escape the survey more easily than a commercial
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fishing vessel. We then leave open the option to describe the survey selectivity as a

gamma curve. The shape of the gamma is regulated by two parameters, the mode

of the curve (modesurv) and the spread (αsurv).

ssel = L

αssel − 1
· βαssel−1

ssel · exp
αssel − 1 − L

βssel

(3.23)

Where:

βf = modef

αf − 1
(3.24)

Likelihood types

The type of likelihood depends on the type of data and how we assume those

data are distributed. In SLAM we use two different types of data, total biomass of

landings, survey and discard and length composition from the same sources (even

though discard composition will not be used in this thesis, but they can be included

by the user).

It is appropriate to assume that the total landed or surveyed biomass follows a

log-normal distribution, therefore we chose to apply a lognormal likelihood. It has

been applied in similar cases in the literature, even though instead of biomass they

had been using CPUE (Maunder (2001); Cook et al. (2021)).

The log-normal distribution is not appropriate for compositional data. Even by

assuming that the distribution around that certain length class of that certain year

is log-normal, the model would not be able to cope with the many zeros that are

commonly present in compositional data. Also, the model would need to calculate

the likelihood for every length class of every year, making it too computationally

expensive and inefficient. A better choice is the multinomial likelihood, which is

the most widely used type of likelihood for length and age data. Nevertheless,

multinomial distribution is not the most appropriate (Francis (2014); Thorson et

al. (2017)). A strong limitation is that the multinomial assumes that the true

proportion at length (or at age) is constant for all samples. This is not the case,

because fish are not uniformly distributed in the sea because of schooling and size
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segregation. Fish, like humans, tend to create groups where the size or age is

uniform. This means that one single sample (a catch from a fishing vessel or a

scientific survey) almost certainly will not be representative of the real population,

at the exact same way if we want to sample a human population by going to a

night club or a retirement home. In fact, set of length distribution does not look

smooth, even if it comes from a large number of hauls. The choice of the sample

size is very important and cannot be easily guessed. A low sample size will imply

a low weight put on the length frequency data, while a high number will put a lot

of weight. In the specific case of SLAM, a high sample size will favor the fit to the

length frequencies and penalize the fit to the biomass, and the other way around.

Although choosing somewhat arbitrary effective samples sizes is not uncommon

Hulson (2012), arbitrariness should be avoided whenever possible, and the literature

offers different approaches (Francis (2011), Hulson (2012)). Hulson (2012) suggests

a way to overcome the problem by iterating the model many times in order to find

the value/s of the sample/s size that lead to the best fit. This approach, however,

it is too computationally expensive for a rather complicated model like SLAM.

A possible solution to the problem is offered by Thorson et al. (2017), who

introduces the Dirichlet-multinomial likelihood. By combining a Dirichlet with

multinomial distribution, he overcomes the problem of the choice of the sample

size by the introduction of a new parameter, Dβ, which indicate the dispersion of

the sample. When the input sample size is increased, Dβ compensates the excess

by being reduced, and vice versa. I results, the model becomes less senstitive to

the choice of the input sample size.

In this chapter we will apply to compositional data both multinomial and Dirichlet-

multinomial likelihood, in order to evaluate which one works best.
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Table 3.1: Table summarising all the parameters that can be used for SLAM. The
first column stands for the type of parameter, if it is related to time, growth, survival,
recruitment or if it is an error term. The second column specifies the abbreviation
we attributed to the parameter. The third column provides a brief description of the
parameter.

Table 3.1 – continued from previous page
Category Abbreviation Description
Time ymin minimum year present in the dataset

ymax maximum year present in the dataset
nyears number of years, used as a dimension

for matrices
Dt timestep, in the current SLAM version

is one
year time step

Initial conditions NS1 a single number indicating the size of
the
initial population

LF1distr vector of probabilities indicating the
shape of
the length frequency of the initial pop-
ulation

Growth lmin minimum length class
lmax maximum length class
nlen number of length classes, length dimen-

sion in
vector and matrices of the model

DL width of length classes
Linf infinite length of the Von Bertalanffy

growth
curve

K steepness of the Von Bertalanffy growth
curve

cv coefficient variation of the growth
αwgt alpha of the weight length conversion
βwgt beta of the weight length conversion
w conversion factor from gutted to ungut-

ted weight
Survival Ft vector of length nyears with time series

of
fishing mortality values

L50fsel L50 of the logistic curve of fishing
selectivity

βfsel β of the logistic curve of fishing
selectivity

Continued on next page
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Table 3.1: Table summarising all the parameters that can be used for SLAM. The
first column stands for the type of parameter, if it is related to time, growth, survival,
recruitment or if it is an error term. The second column specifies the abbreviation
we attributed to the parameter. The third column provides a brief description of the
parameter.

Table 3.1 – continued from previous page
Category Abbreviation Description

αssel spread of the gamma fisheries selectiv-
ity

modessel mode of the gamma fisheries selectivity
pD proportion discarded every year, on a

logit
scale

L50ssel L50 of the logistic survey selectivity
βssel β of the logistic survey selectivity
q survey catchability
αssel spread of the gamma survey selectivity
modessel mode of the gamma survey selectivity
αM α of Lorenzen natural mortality curve
βM β of Lorenzen natural mortality curve

Recruitment Rt a vector of length nyears that indicates
total recruitment

µRt Mean length of the recruitment (1 year
old fish)

σRt Standard deviation of the recruitment
length

Error terms σF t log-normal standard error of Ft
σpD log-normal standard error of pD
σsbiom log-normal error term of survey

biomass
σlbiom log-normal error term of landings

biomass
σdbiom log-normal error term of discard

biomass
Dβsurv dispersion term of the Dirichelet-

Multinomial for the landings
Dβland dispersion term of the Dirichelet-

Multinomial for the survey
σFt log-normal standard error of Ft
σpD log-normal standard error of pD
σsbiom log-normal error term of survey

biomass
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3.1.3 Stan and the NO-U-Turn Sampler (NUTS) algorithm

SLAM is fitted using Bayesian statistics. The algorithms used in Bayesian statistics

tend to be very complicated and slow. To speed up the process, we fitted the

model using the software Stan, that is available with an R interface in the package

rstan Carpenter (2015). Stan is written is C++ and is a state-of-the-art platform

for statistical modeling and thousands of users utilize it for statistical modeling,

data analysis, and prediction in many different fields. Stan’s high-performance

statistical computation makes it rather commonly used in stock assessment, as well

as many other ecological fields. Other Bayesian software like BUGS (Spiegelhalter

et al. (1996)) and JAGS (http://mcmc-jags.sourceforge.net) rely on the

classic Markov chain Monte Carlo (MCMC) as a sampling algorithm, but it is

very computationally expensive and the time runs for complicated models are

prohibitive. Stan uses Hamiltonian Monte Carlo (Neal (2011)), a new family of

MCMC algorithm that promises improved efficiency (Brooks et al. (2011)). Neal

(2011) provides a good introduction to Hamiltonian Dynamics. HMC has the

advantage of efficiently exploring high-dimensional parameter spaces, as it employs

gradient information to make intelligent proposals. However, HMC can encounter

issues like slow exploration and wasted computation due to rejections. Tuning an

HMC sampler in a way that can prevent this to happen require expert hands-on

tuning and a priori knowledge (Neal (2011)). Fortunately, Stan does not have this

problem because it adopted the NO-U-Turn Sampler (NUTS) algorithm developed

by Hoffman et al. (2015). The No U-Turn Sampler (NUTS) addresses these

problems by automatically determining the appropriate number of Hamiltonian

dynamics steps to take, resulting in a more efficient exploration of the parameter

space. NUTS automates this process and provides efficient sampling with mini-

mal or no manual tuning, improving the HMC performance and providing faster

convergence (Monnahan et al. (2017)).
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3.2 Material and Methods

To check if the Survey-LAnding Model (SLAM) was working as expected, we used

it as an operating model to generate data and fit the model to them. The biomass

data were perturbed with an error term, one per each: σsbiom, σlbiom and σdbiom. The

error is described mathematically in chapter II in equation 2.1. The parameters

used to generate the data for each of the two SLAM version are reported in the

tables 3.2 and 3.3 as well as the priors and the initial values used. The majority

of the priors used were uninformative and centered on the real value with relaxed

boundaries. The prior of Ft1 was set to uniform and the priors of the following

years have a lognormal prior centered on the estimate of Ft of the year before.

This is because it is assumed that fishing pressure is correlated from one year to

the other. The model was fit by running 30,000 iterations with a thinning rate of

300.

Testing the model on only one set of data it is not enough to undestand if the model

is subject to systematic bias. Therefore, both for “full model” both for “survey

only” we iterated the model 25 times on different sets of pseudo data generated by

the same parameters. The model was run every time with the same set of priors,

initial values, number of iterations and thinning rate.

3.2.1 Full model

We decided to test SLAM in a data rich situation, with survey biomass and

proportions-at-length, landings biomass and proportions-at-length and discard biomass.

It is actually not entirely the “full” model, since we did not include the discard

proportions-at-length. We did not have any we did not have any data availability

from this source. Therefore, within this manuscript it is justifiable to address this

version as the full model. The model assumes both the fisheries, the survey and the

discard have a logistic selectivity, and fits the proportions at length with a multino-

mial likelihood. In the results we will show how the use of a Dirichlet-multinomial
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likelihood can improve the fit when the correct sample size is not known. In the

following table we report the true parameters and the type of prior used.

Table 3.2: Table summarising the fixed and fitted parameters used on the full version
of SLAM tested on pseudo data. The first column indicates the category, the second
the starting value (in the case the parameter was fitted) or the actual fixed value (if the
parameter was fixed). The third column specifies if the parameter was fitted and if so
what type of prior and what kind of bounds have been set.

Table 3.2 – continued from previous page
Abbreviation Value Description
ymin 1 fixed
ymax 24 fixed
nyears 24 fixed
Dt 1 fixed
NS1 2670 derived from q, L50ssel and βssel

LF1distr fig. 3.2 Dirichlet ∼ (1)
lmin 1 fixed
lmax 53 fixed
nlen 53 fixed
DL 1 fixed
Linf 53 lognormal ∼ (50; 15)
K 0.2 uniform ∼ (0.01; 0.9)
cv 0.1 uniform ∼ (0.01; 0.9)
αwgt 0.008 fixed
βwgt 250 fixed
w 1 fixed
Ft fig. 3.1 first year has a uniform prior, later

years have a log-normal prior with µ =
Ftt−1

L50fsel 18 uniform ∼ (10; 30)
βfsel 0.25 uniform(0; 1)
L50ssel 12 uniform ∼ (5; 20)
βssel 0.4 uniform(0; 1)
L50dsel 30 fixed
βdsel 0.3 fixed
q 0.9 uniform ∼ (0; 2)
αM 0.1 fixed
βM −0.3 fixed
Rt fig 3.1 uniform ∼ (2; 2000)
µRt 10.5 uniform ∼ (5; 20)
σRt 1 uniform ∼ (0.1; 20)
σRt - uniform ∼ (0; 2)
σsbiom 0.3 uniform ∼ (0; 1)
σlbiom 0.3 uniform ∼ (0; 1)

Continued on next page
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Table 3.2: Table summarising the fixed and fitted parameters used on the full version
of SLAM tested on pseudo data. The first column indicates the category, the second
the starting value (in the case the parameter was fitted) or the actual fixed value (if the
parameter was fixed). The third column specifies if the parameter was fitted and if so
what type of prior and what kind of bounds have been set.

Table 3.2 – continued from previous page
Abbreviation Value Description
σdbiom 0.3 uniform ∼ (0; 1)
Dβsurv - uniform ∼ (0; 1000)
Dβland - uniform(0; 1000)
nland 100 fixed
nsurv 100 fixed

3.2.2 Survey only

The following table summarises all the parameters used in the survey only version,

their true value and whether they were kept fixed or they were estimated, and if

they were estimated what kind of prior was used. In the survey only version the

model has only the survey data which are on a much smaller scale than the fisheries.

Therefore, the model will not be able to estimate the real size of the population.

Moreover, the model will not be able to estimate the catchability of the survey q,

which reflects the efficiency of the survey in sampling the population. The model

must then be fitted by fixing q to 1. The same can be said for the survey and

fisheries selectivity. The model cannot estimate both selectivity at the same time,

therefore we must keep fixed one of the two. By keeping the fisheries selectivity

fixed the model would probably be able to estimate well both parameters of the

selectivity, let this selectivity have a gamma or a logistic shape. Nevertheless,

estimating the survey selectivity parameters is not as meaningful as estimating

the fisheries selectivity parameters. Not having any information at all regarding

any proportions-at-length coming from the fisheries though, it is unlikely that the

model will be able to estimate both parameters, therefore we decided to keep one

of the two fixed. In this survey only version we decided to try a gamma curve for

fisheries selectivity, indicated by the parameters αfsel, the spread, and modefsel, the

peak of the dome. Therefore the mode and the spread estimated. The parameter
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αfsel required the use of an informative prior.

This version is less powerful in estimating parameters, because there is no infor-

mation from the fisheries. Nevertheless, the model will still be able to provide a

decent estimate of the trends of meaningful quantities, which might not be precise,

but is as far as we can get with the information available.

Table 3.3: Table summarising the fixed and fitted parameters used on the survey only
version of SLAM tested on pseudo data. The first column indicates the category, the
second the starting value (in the case the parameter was fitted) or the actual fixed value
(if the parameter was fixed). The third column specifies if the parameter was fitted and
if so what type of prior and what kind of bounds have been set.

Table 3.3 – continued from previous page
Abbreviation True value/s Prior
ymin 1 fixed
ymax 24 fixed
nyears 24 fixed
Dt 1 fixed
NS1 2670 lognormal ∼ (5.37; 0.9)
LF1distr fig. 3.2 Dirichlet ∼ (1)
lmin 1 fixed
lmax 53 fixed
nlen 53 fixed
DL 1 fixed
Linf 53 lognormal ∼ (50; 15)
K 0.2 uniform ∼ (0.01; 0.9)
cv 0.1 uniform ∼ (0; 1)
αwgt 0.008 fixed
βwgt 250 fixed
Ft fig 3.1 first year has a uniform prior, later

years have a log-normal prior with µ =
Ftt−1

αfsel 3 lognormal ∼ (log(2.4); 0.2)
modefsel 25 fixed
αssel 3 fixed
modessel 27 fixed
L50dsel 30 fixed
βdsel 0.3 fixed
q 1 fixed
αM 0.1 fixed
βM −0.3 fixed
Rt fig 3.1 loguniform ∼ (log(2); log(2000))
µRt 10.5 uniform ∼ (5; 20)

Continued on next page
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Table 3.3: Table summarising the fixed and fitted parameters used on the survey only
version of SLAM tested on pseudo data. The first column indicates the category, the
second the starting value (in the case the parameter was fitted) or the actual fixed value
(if the parameter was fixed). The third column specifies if the parameter was fitted and
if so what type of prior and what kind of bounds have been set.

Table 3.3 – continued from previous page
Abbreviation True value/s Prior
σRt 1 uniform ∼ (0.1; 20)
σRt estimated uniform ∼ (0.1; 2)
σRt 0.3 uniform ∼ (0; 1)
Dβsurv estimated uniform ∼ (0; 1000)

3.3 Results

These first results show how the model fitted in the “full-version” was able to

retrieve the psedo-data generated running SLAM as an operating model. In this

run we are fitting the length frequency data with a multinomial likelihood and the

value of the sample size is the same used for generating the data.

The first set of graphs presented in 3.1, shows how the model fits survey,

landings and discard biomass, the data are disposed as black dots. The rest of

the plots represent the real values of fishing mortality, recruitment and Spawning

Stock Biomass (SSB). The real values are presented as ×. The dark line is the model

output median and the polygon around it is the 95 credible intervals. We observe

as the model fits the data well and can also provide good estimates of Spawning

Stock Biomass (SSB), fishing mortality and recruitment, as almost all the points

lies between the intervals. The trace plots and histograms of the posteriors for the

parameters q, L50ssel, βssel, L50fsel, βfsel, µR, σR, K and L∞ do not show any

particular problem, and can be seen in appendix Chapter III.

The next two plots in 3.2 show the model estimates of the proportions-at-length

of the initial population LF1 and the recruitment. The symbols × represent the

real values, the thick central line is the model median and the shaded area are the

credible intervals. The model was able to estimate the values well, and in the case

of recruitment proportions-at-length with very low uncertainty.
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Figure 3.1: The following figures display the model estimates of survey biomass,
landings biomass, discard biomass, spawning stock biomass, fisheries mortality and
recruitment. The black dots represent the pseudo data that the model is fitting, while
the × are the estimated quantities. The central line is the median of the model of the
estimates and the shaded area around are the 95% credible intervals.
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Figure 3.2: The figure shows the model estimates of the proportions-at-length for the
initial population (LF1) and the proportions at length of the recruitment. The black
dots represent data points, the thick line is the median of the model output and the
shaded area represents the 95% credible intervals. The model was able to estimate the
all the values correctly.

Figure 3.3 and 3.4 show how the model fits the proportions-at-length of survey

and landings respectively. The graphs are disposed in a grid where each single

plot represents one year. The black dots represent the data, the thick central line

is the model median and the credible intervals around it are really thin, meaning

the model fits the data with low uncertainty.

3.3.1 Sensitivity to the Effective Sample Size

The choice of the sample size is know to be critical in stock assessment model

when using a multinomial likelihood. Therefore, we decided to test the sensitivity

of the model to this value. In figure 3.5 we compare the previous model run, where

the two input sample sizes were equal to 100 (the same value used to generate

the data), with a new run where the two effective sample sizes were raised to to

1000. The output of the run with the correct value is presented with the dark

line, while the other in red. The estimates of fishing mortality appear to be quite

different, even though the trends are still picked up and the difference is not drastic.

The fit to survey and landings biomass does not seem to be particularly affected,

differently from the discard biomass. The estimates of recruitment and spawning

stock biomass are not particularly affected.
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Figure 3.3: The figure shows a series of yearly plot of survey proportions at length.
The black dots represent data points, the thick line is the median of the model output
and the shaded area represents the 95% credible intervals. The model fits well the data.

In the next two sets of plots, 3.6) and 3.7), we observe the fit of the two

models to landings and survey proportions-at-length. The model does not look

particularly sensitive to the sample size in this case, and the red and the black

line are overlapping almost at every point.

Despite these tests on pseudo data did not reveal a high sensitivity to the

choice of the sample size, we still decided to implement the Dirichlet-multinomial

likelihood, because when dealing with real data the situation gets more complicated

and the model could become more sensitive.

3.3.2 Implementation of the Dirichlet-multinomial likelihood

In order to remove the sensitivity to the effective sample size, we replaced the

multinomial likelihood with a Dirichlet-multinomial likelihood as described by
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Figure 3.4: The figure shows a series of yearly plot of landings proportions at length.
The black dots represent data points, the thick line is the median of the model output
and the shaded area represents the 95% credible intervals. The model fits well the data.

Thorson et al. (2017). In 3.8 we see the fit to survey, landings and discard biomass,

and the estimates of fishing mortality, recruitment and Spawning Stock Biomass.

The black line is the model run with neff = 100 while the red line neff = 1000,

for both survey and landings. The data are presented as black dots and the real

values of Ft, Rt and SSB with the symbols ×. The dark and the red line are

almost completely overlapping so it looks as if the Dirichlet-multinomial likelihood

managed to reduce the model’s sensitivity to the sample size.

Similarly, in the next two sets of plots 3.9 and 3.10 presenting landings and

survey proportions-at-length, the red and the black line are almost completely

overlapping, meaning the model is not sensitive to the sample size.

The histograms in figure 3.11 represent the posterior distributions of the Dirich-

let β parameters, Dβ. The top ones were run with effective sample size equal to
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Figure 3.5: The following figures display the median of the model estimates when the
sample size for the survey and the landings is set to the true value in dark blue (nland and
nsurv = 100) and when it is set to a much higher value in red (nland and nsurv = 1000).
The plot displays the estimates for survey biomass, landings biomass, discard biomass,
spawning stock biomass, fisheries mortality and recruitment. The symbols × represent
the actual data the model is being fitted to, while the black dots are estimates calculated
by the space assessment model. The difference between the two models is not dramatic,
even though there is some difference in the estimates of some values, especially fisheries
mortality.
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Figure 3.6: The figure shows a series of yearly plot of landings proportions at length.
The dark line represents the median of the estimates for the proportions-at-length when
the sample size corresponds to the true value (nland and nsurv = 100) and when the
sample size is set to a much higher value in red (nland and nsurv = 1000).The black dots
are pseudo data. We observe that the lines are close and the model does not seem to be
sensible to this assumption when estimating the proportions-at-length.

100, while the bottom ones with sample size equal to 1000. The left histograms

represent the posterior for the survey β and the right ones for the fisheries β.

We observe how when the sample size is increased respect to the right value, the

parameter β compensates the excess by being reduced.

Since this modification was proved to be effective, we decided to adopt the

Dirichlet-multinomial for SLAM. The rest of the run from here on wards have

this implementation.

3.3.3 Check for bias in “full model”

In this and the next section we present the results of the test we made to see if

the full model was biased. The first box plots we present (3.12), represent the

48



3. Chapter III: Description of the Survey-LAndings Model (SLAM) and test on
pseudo-data

0 20 40 0 20 40 0 20 40 0 20 40

0 20 40

0.00
0.02
0.04
0.06

0.00

0.02

0.04

0.06

0.000
0.025
0.050
0.075

0.00
0.02
0.04
0.06

0.000
0.025
0.050
0.075
0.100

0.000
0.025
0.050
0.075

0.00

0.05

0.10

0.15

0.00
0.02
0.04
0.06
0.08

0.000
0.025
0.050
0.075
0.100

0.000
0.025
0.050
0.075

0.00
0.02
0.04
0.06

0.00
0.02
0.04
0.06
0.08

0.000
0.025
0.050
0.075
0.100

0.00
0.02
0.04
0.06

0.000
0.025
0.050
0.075

0.00
0.03
0.06
0.09

0.00

0.05

0.10

0.000
0.025
0.050
0.075
0.100

0.00
0.02
0.04
0.06
0.08

0.00

0.05

0.10

0.00
0.03
0.06
0.09

0.00
0.02
0.04
0.06

0.00
0.02
0.04
0.06

0.000
0.025
0.050
0.075
0.100

Length

P
ro

po
rt

io
ns

Landings proportions at length per year

Figure 3.7: The figure shows a series of yearly plot of landings proportions at length.
The dark line represents the median of the estimates for the proportions-at-length when
the sample size corresponds to the true value (nland and nsurv = 100) and when the
sample size is set to a much higher value in red (nland and nsurv = 1000).The black dots
are pseudo data. We observe that the lines are close and the model does not seem to be
sensible to this assumption when estimating the proportions-at-length.

median values of the 25 different runs on 25 different survey, landings and discard

biomass pseudo data. The real values (black dots), were perturbed every time with

3 constant error terms, a different one for each set of data (σsbiom, σdbiom, σlbiom).

The central values of the box is the median of the medians and the upper and

lower bounds are the highest and the lowest medians generated by the model. We

can observe how all the parameters lie in the grey area, meaning that the model

fits all the data without bias.

We will now see if SLAM is able to retrieve the parameters used to generate the

pseudo data. The first box plot in figure (3.13) shows the median, the maximum

and the minimum values calculated by SLAM for the parameters: q, βssel, βfsel,

σR, K, cv, σsbiom and σdbiom. The parameters
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Figure 3.8: The following figures display the median of the model estimates when the
sample size for the survey and the landings is set to the true value in dark blue (nland and
nsurv = 100) and when it is set to a much higher value in red (nland and nsurv = 1000).
The plot displays the estimates for survey biomass, landings biomass, discard biomass,
spawning stock biomass, fisheries mortality and recruitment. The x represent the actual
data the model is being fitted to, while the black dots are estimates calculated by the
space assessment model. We observe that the lines are close and the model does not
seem to be sensible to this assumption.
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Figure 3.9: The figure shows a series of yearly plot of landings proportions at length.
The dark blue line represents the median of the estimates for the proportions-at-length
when the sample size corresponds to the true value (nland and nsurv = 100) and when
the sample size is set to a much higher value in red (nland and nsurv = 1000).The black
dots are estimates calculated by the space assessment model. We observe that the line
are close and the model does not seem to be sensible.

muR, L50fsel, L50ssel and L∞ have been grouped in the second box plot (3.14)

for scaling reasons. In both graphs, the symbols × indicate the real value for

each parameter. We observe how the model manages to retrieve well all the

parameters, except for a slight overestimation of the slope of the logistic curve

of the survey selectivity.

The last figure of this paragraph (3.15) shows three similar box plots with

fisheries mortality, recruitment and SSB. SLAM managed to retrieve correctly all

the parameters of recruitment and fishing mortality and the generated quantity

SSB. For all points the symbol × lies ot just outside of it. The only really biased

value seems to be the first year of recruitment, which is underestimated.
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Figure 3.10: The figure shows a series of yearly plot of landings proportions at length.
The dark blue line represents the median of the estimates for the proportions-at-length
when the sample size corresponds to the true value (nland and nsurv = 100) and when
the sample size is set to a much higher value in red (nland and nsurv = 1000).The black
dots are estimates calculated by the space assessment model. We observe that the line
are close and the model does not seem to be sensible.

3.4 Survey only model

This session will present the Survey-LAndings Model (SLAM) fitted in its survey

only version to pseudo data of survey biomass and proportions-at-length. The

trace plots and histograms of the posteriors for the parameters µR, σR, L∞, K, cv,

αfsel, σsbiom, σF t and NS1 do not show any particular problem, and can be found

in appendix Chapter III. 3.16 shows the fit to survey biomass and the estimates of

spawning stock biomass, fisheries mortality and recruitment. Data are represented

as black dots, while real values used for comparison are indicated with the symbol

×. The dark line is the model output median and the polygon around it is the 95

credible intervals. We observe as the result is quite satisfactory as almost all the
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Figure 3.11: The four histograms shows the posterior distribution of the posterior
parameters Dβs, on the left, and Dβl on the right. The top histograms were run with
the two values of sample size set to 100 (the true value), while the bottom ones were run
with effective sample size set to 1000. We observe how the parameter Dβ compensate
the excess in sample size by being reduced.

points lies between the intervals. The only parameters that might be biased are

the first year recruitment and the first two years of spawning stock biomass.

The two plots in 3.17 show the model estimates of the proportions-at-length

of the initial population LF1 and the recruitment. The symbols × represent the

real values, the thick central line is the model median and the shaded area are the

credible intervals. The model was able to estimate the values well, and in the case

of recruitment proportions-at-length with very low uncertainty.

3.18 shows how the model fits the proportions-at-length of surveys. The graphs

are disposed in a grid where each single plot represents one year. The black dots

represent the data, the thick central line is the model median and the credible

intervals around it are very thin, meaning the model fits the data with really

low uncertainty.

3.4.1 Check for bias in “survey only”

We are now going to check if the survey only model is biased. In 3.19 is shown

a box plot of the median values of the 25 different runs on 25 different survey

biomass pseudo data. The real values (black dots), were perturbed every time
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Figure 3.12: The boxplot at the top shows the bias in the yearly values of survey
biomass, the one at the centre shows the bias in the yearly values of landings biomass
and the one at the bottom shows the bias in the yearly values of landings biomass.
In every boxplot, the central value of each box shows the median values, the upper is
the maximum value estimated by the model and the lower is the minimum. The dots
represent the true values. The model fits the pseudo data ok. We run it for 25 times and
fitted every time to a different set of data perturbed with a random error.
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Figure 3.13: Box plot showing the median, the maximum and the minimum values
calculated by SLAM for the parameters: q, βssel, βfsel, σR, K, cv, σsbiom and σdbiom.
The symbol × stands for the values of the parameter that was used to generate the
pseudo data. The model was run for 25 times and fitted every time to a different set of
data perturbed with a random error.
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Figure 3.14: Box plot showing the median, the maximum and the minimum values
calculated by SLAM for the parameters: µR, L50fsel, L50ssel, L∞. The symbols ×
represent the values of the parameter that was used to generate the pseudo data. The
model was run for 25 times and fitted every time to a different set of data perturbed with
a random error.
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Figure 3.15: The boxplot at the top shows the bias in the yearly values of fishing
mortality, the one at the centre shows the bias in the yearly values of recruitment and
the one at the bottom shows the bias in the yearly values of spawning stock biomass. In
every boxplot, the central value of each box shows the median values, the upper is the
maximum value estimated by the model and the lower is the minimum. The symbols ×
represent the true values. The model retrieves the generated quantities generated with
the pseudo data ok. The model was run for 25 times and fitted every time to a different
set of data perturbed with a random error.
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Figure 3.16: The following figures display the model estimates of survey biomass,
spawning stock biomass, fisheries mortality and recruitment. The symbols x represent
the actual data the model is being fitted to, while the black dots are estimates calculated
by the space assessment model. The central line is the median of the estimates and the
shaded area around are the 95% credible intervals.
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Figure 3.17: The following figures display the model estimates of the proportions-at-
length of the initial population and the proportions-at-length of the recruitment. The
symbols x represent the actual data the model is being fitted to, while the black dots are
estimates calculated by the space assessment model. The central line is the median of
the estimates and the shaded area around are the 95% credible intervals.
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Figure 3.18: The figure shows a series of yearly plot of survey proportions at length.
The black dots represent data points, the thick line is the median of the model output
and the shaded area represent the 95% credible intervals. The model fits well the data.
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Figure 3.19: Box plot showing the median, the maximum and the minimum values
calculated by SLAM for the survey biomass. The model has been run for 25 times.

with a constant error term (σsbiom). The central value of the box is the median

of the medians and the upper and lower bounds are the highest and the lowest

medians generated by the model. We can observe how all but one data points

lie in the grey area, meaning that the model fits survey well and with little to

no bias. Nevertheless, the model seems to smooth out the trend of the data in

the early years.

We will now see if SLAM is able to retrieve the parameters used to generate

the pseudo data. The first box plot (3.20) shows the median, the maximum and

the minimum values calculated by SLAM for the parameters: αfsel, σR, K, cv and

σsbiom. The parameters µR and L∞ have been grouped in the second box plot (3.21)

for scaling reasons. In both graphs, the symbols × indicate the real value for each

parameter. We observe how the model manages to retrieve well all the parameters,

except for αfsel, which seems slightly underestimated. This is likely due to the

fact that we set 2.7 was the value chosen for the mean of the lognormal prior, as

reported on table 3.3. It looks as if the estimate of the posterior is prior driven.

Three similar box plot show the bias in estimation of fisheries mortality, recruit-

ment and SSB (3.22). SLAM managed to retrieve correctly all the values for fishing

mortality as for both estimates all × lie in the grey area except for one, which is
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Figure 3.20: Box plot showing the median, the maximum and the minimum values
calculated by SLAM for the parameters: αF t, σR, K, cv and σsbiom. The model has been
run for 25 times.
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Figure 3.21: Box plot showing the median, the maximum and the minimum values
calculated by SLAM for the parameters: µR, L∞. The model has been run for 25 times.

nevertheless lying just outside of it. SLAM performed well even on recruitment,

but as observed in the full model, there seem to be an underestimation of the first

year recruitment. Regarding SSB, SLAM seems biased in the first two years of

estimates. This is likely because it is basing the estimates of SSB on the fit to survey

abundance, which we have already noticed to be slightly smoothed in the first years.

3.5 Discussion

This chapter described the theory behind Survey-LAndings Model (SLAM) and

presented two possible configurations, one called full model and the other survey
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Figure 3.22: The boxplot at the top shows the bias in the yearly values of fishing
mortality, the one at the centre shows the bias in the yearly values of recruitment and
the one at the bottom shows the bias in the yearly values of spawning stock biomass. In
every boxplot, the central value of each box shows the median values, the upper is the
maximum value estimated by the model and the lower is the minimum. The symbols ×
represent the true values. The model retrieves the generated quantities generated with
the pseudo data, except for a slight bias in the early years of SSB. The model has been
run for 25 times and fitted every time to a different set of data perturbed with a random
error. 61
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only. Then, by fitting the model to pseudo data, it was tested if both versions

were able to retrieve parameter values. Overall, the results can be considered

satisfactory, because SLAM was able to retrieve almost all the parameters with

little bias and a very little use of informative priors, and it can be considered valid

and reliable.

Nevertheless, the aim of this chapter was also to flag the model’s weaknesses. For

some of those it was possible to implement a correction, as we did after testing the

model’s sensitivity to the effective sample size when the proportions-at-length were

fitted with a multinomial likelihood. The model showed a moderate sensitivity to

the choice of sample size: it was still able to fit the survey and landings biomass

and estimate accurately recruitment and spawning stock biomass. The fisheries

mortality estimates appeared to be more sensitive. The model also fit worse the

discard biomass. This can be explained by the fact the whenever we increase the

sample size, we also increase the “weight” we attribute to the proportions-at-length.

Since the full-model version was not fitted to any discard proportions-at-length, the

model fits better the landings and survey biomass compared to discard biomass,

because more weight went to landings and survey proportions-at-length. Age- and

length-composition data are often fitted using a multinomial distribution and then

reweighted iteratively. However, this method is not advisable with SLAM that

is a computationally costly model. Therefore, even though the sensitivity was

not high, we decided to act precautionary by replacing the multinomial likelihood

with a Dirichlet-multinomial likelihood, as suggested by Thorson et al. (2017).

In fact, the sensitivity could increase when switching from pseudo data to real

data and cause problems. The Dirichlet-multinomial likelihood visibly reduced

the sensitivity to the sample size. The Dirichlet-multinomial likelihood provides a

model-based alternative that estimates an additional parameter and thereby “self-

weights” data.

The survey only version of the model also managed to fit well the data and retrieve

most of the parameters without bias. The survey only version of the model tended

to smooth out through the survey biomass data. Understanding the exact causes of
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this would require more investigation, which we decided not to undertake because

it was not something major. Nevertheless, we noticed how the Spawning Stock

Biomass tended to follow the exact same pattern of the survey biomass. This is

because the model has only this information available to estimate the abundance of

the stock. The model had produced biased estimates for SSB only for the first two

years, nevertheless, we expect this to be a limitation that is important to consider

when apply the model to real data, because if the survey data are unreliable so will

be the estimates of the model.

It is important to remark how the fewer information available, the stronger the

model assumptions have to be. This chapter demonstrated how removing stock

information from the model (by going from the full-version to the survey only),

means to fix more information, use more informative priors and make stronger

assumptions. For instance we had to fix the survey selectivity, fix the mode of

the fishing selectivity and assume that q = 1. It was necessary to fix entirely

one of the two selectivity because the model did not have enough information to

estimate both selectivity curves at the same time, since it only had information

from one type of data. It was also necessary to fix one of the two parameters of the

fishing selectivity because estimating fisheries parameters from survey only data

it was too hard for the model. Even when fixing all this information, the spread

of the fishing selectivity resulted to be prior driven, which means the model does

not have enough information in the survey length composition data to estimate

this parameter correctly and relies on the prior information that were provided.

The situation was solved by using an informative (lognormal) prior, because when

a uniform was used, the model could not converge on a value for the parameter.

This should be accounted for when applying the model to real data, because if

the data are not very informative, the result will be conditioned by the input

value chosen by the user. This problem could be addressed by trying different

priors parameters and input values for the selectivity and conduct some sensitivity

analysis. The assumption that q = 1 is also quite limiting in a real stock situation,

because it means that values of recruitment and SSB will be returned in the survey
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scale. This means it will be possible to trust the trends, but not the numbers.

Anyway, it is still important to remember that stock assessment needs to have

simplifying assumptions, especially in situations whew, like in this case, there are

strong constraints on data availability (A. Cotter et al. (2004)).

Even though the survey only version resulted to be less powerful compared to the

full model version, it is important to keep in mind that length composition of

the catches are almost never available, therefore the full version is likely to find

much less applicability than the survey only. As the introduction stressed, the

majority of the world’s stock are unassessed because of the lack of data availability

and developing model like this survey only version is of vital importance. It is

impossible to reach the same level of assessment quality of a data-rich, age-based

assessment with a model like the survey only version of SLAM, but an assessment

with limitation is always better than no assessment at all.
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4
Chapter IV: Full-model version applied to

Whiting VIa

4.1 Introduction

In stock assessment, using fisheries-dependent data such as landings and discard

abundance and size composition can provide detailed information on removals from

the stock, thereby allowing the provision of catch advice on an absolute scale

(Cook (2004)). However, these data are more prone to error or bias originating

from various aspects related to misreporting of fisheries catch or changes in fishing

technology (Pennino et al. (2016)). Unreported catch and discards create a

discrepancy between fish landings used in an assessment model and the actual

at-sea fish removals, thereby biasing stock size estimates (Beare et al. (2005)).

When fisheries catch rates are used to inform stock trends, many factors that cause

changes in fisheries catchability can distort or misrepresent the real trends (Harley

et al. (2001); Maunder et al. (2006)).

A state-of-the-art stock assessment model relies on both these sources of infor-

mation, the dependent and independent of the fisheries, to describe the stock

population dynamics and provide management advice.

In this chapter we are testing on a real stock the “full-version” of the Survey-
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Landings Stock Assessment Model (SLAM), which is a version that incorporates

both fisheries dependent and fisheries independent information. It is fitted to a 5

sets of data: survey biomass and length frequency, landings biomass and length

frequency and discard biomass. In this chapter are performed also sensitivity

analysis to different assumptions. As a species for this study we picked whiting

(Merlangus merlangius) from West of Scotland, that identifies as ICES area VIa.

4.2 Materials and Methods

The description of stock, the area, the data collection process and the potential

bias in the data can be found in chapter II.

The bias in the data lead some structural changes to the version we tested on

pseudo data. We needed to consider the surveys before and after 2011 as two

different surveys, because of the change in protocol described in 2.4. This means

the parameters must be estimated separately, meaning that we needed two different

selectivity, catchability, error terms, as well as two separate likelihood functions.

The change in the survey protocol and especially the reduction of the haul duration

had undoubtedly impacted the survey catchability and the selectivity. After few

trials, we concluded that the model’s best fit was given by adopting a logistic

curve for the fishery selectivity, a logistic for the survey pre 2011 and a gamma for

the selectivity post 2011. In this chapter, the survey parameters labeled with the

number 1 refers to the survey pre 2011 and the ones labeled with the number 2 to

the survey post 2011.

All the model output presented here were run for 100,000 iterations, 3 chains and

thinning of 1,000, on data from 1996 to 2020. The shape of the priors, the initial

values and the parameter bound used in this version of the model can be found in

table 4.1. To have an idea if the results were on a reasonable scale we compared

them with the results with an existing assessment for Whiting from subarea VIa.

This assessment is conducted by using the State Space Stock Assessment Model

(SAM), the results are presented in ICES (2022). The two models are based on

different assumptions and fit to different data sources, so this is not a comparison
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where we expect to see the two outputs to overlap completely, but rather to see

if SLAM is able to pick up the relevant trends highlighted by SAM (i.e major

decreases or increases in fishing mortality or spawning stock biomass).

Table 4.1: Table summarises the fixed and fitted parameters used on the full model test
on real whiting data. The first column indicates the parameter abbreviation pr symbol,
the second the starting value (in the case the parameter was fitted) or the actual fixed
value (if the parameter was fixed). The third column specifies if the parameter was fitted
and if so what type of prior and what kind of bounds have been set.

Abbreviation Initial value/s Prior
ymin 1990 fixed
ymax 2020 fixed
nyears 30 fixed
Dt 1 fixed
LF1distr

data_surv_distrl,1∑
l=1 data_surv_distr

l,1
Dirichlet ∼ (1)

NS1 100, 000 Uniform ∼
(90, 000; 500, 000)

lmin 10 fixed
lmax 55 fixed
nlen 46 fixed
DL 1 fixed
Linf 58 lognormal ∼ (58; 10)
K .34 Uniform ∼ (.34; .2)
cv .1 Uniform ∼ (0; 1)
αwgt .0093 fixed
βwgt 2.9456 fixed
w 1.13 fixed
Ftl,1 .2 Uniform ∼ (0, 1)
Ftl,y+1 .2 lognormal ∼

(Ftl,y, σF t)
L50fsel 30 lognormal ∼ (30; 3.5)
βfsel .35 lognormal ∼ (.35; .2)
L50dsel values reported by [?] fixed
βdsel .3 0.3
L50ssel1 20 Uniform ∼ (10; 50)
βssel1 .3 Uniform ∼ (0; 1)
modessel2 35 Uniform ∼ (10; 100)
αssel2 2 Uniform ∼ (1; 80)
q1 .01 Uniform ∼ (0.001; 1)
q2 .01 Uniform ∼ (0.001; 1)
αM .1 fixed
βM −.3 fixed

Continued on next page
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Table 4.1 – continued from previous page
Abbreviation Initial value/s Fixed or fitting
Rt recruitment values reported in [?] Uniform ∼

(log(50, 000); log(2, 000, 000))
Rtµ 15 Uniform ∼ (5; 30)
Rtσ 1 Uniform ∼ (.1; 3)
σF t .1 Uniform ∼ (0; 1)
σlbiom .2 Uniform ∼ (0; 1)
σdbiom .2 Uniform ∼ (0; 1)
σsbiom .2 Uniform ∼ (0; 1)
Dβsurv1 50 Uniform ∼ (0; 1000)
Dβsurv2 50 Uniform ∼ (0; 1000)
Dβland 50 Uniform ∼ (0; 1000)
nsurv1 70 fixed
nsurv2 70 fixed
nland 70 fixed

We performed different types of sensitivity analysis to check how the model

reacted to some key specific assumptions. We tried to change the assumptions

on fixed parameters, the input sample size (nsurv1, nsurv2, nland) and the L50 of

the discard selectivity (L50dsel). The input sample sizes were decreased from 70

to 30. L50dsel was changed from the increasing trend reported by R. M. Cook

(2019) to a fixed number: the highest at the end of the time series (38) and

the lowescorresponding to the beginning of the time series 26. As an analysis

of the sensitivity to the model structure we changed the shape of the fisheries and

survey selectivity. For testing the model sensitivity to the shape of the fishing

selectivity we replaced the logistic selectivity with a gamma selectivity, for which

we estimated both the mode and the spread. For the sensitivity to the survey

selectivity shape we tried two different combinations: both surveys (pre and post

2011) are assumed to have a logistic selectivity and both the surveys are assumed

to have a dome-shaped selectivity. The last type of sensitivity we tried is the

sensitivity to parameter bounds. In particular we decreased the lower bound of

the parameter from log(7500) to log(200).
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4.3 Results

4.3.1 SLAM full version

In this section we show the results of the model fitted to Whiting IVa data. The

trace plots and histograms of the posterior distributions for the most important

parameters are reported in the Appendix IV. In 4.1 we can observe the model fit to

survey, landings and discard biomass, the estimates for Spawning Stock Biomass,

fisheries mortality and recruitment. The black dots are the data the model is being

fitted to, while the × are the estimates calculated by SAM. The central line is the

median of the estimates and the shaded area around are the 95% credible intervals.

The model fits well the data, it produces estimates of fishing mortality very close

to the ones produced by SAM, it picks up well the trends in SSB and the ones in

recruitment, despite this last one seems to be underestimated.

Figure 4.2 shows two different proportions-at-length estimated by the model.

The graph on the left shows the proportions-at-length of the initial population

NS1 after mortality was applied, this means it is representative of the survivors

from the year before. The graph on the right shows the proportions at length for

the recruitment across all years. The central line is the median of the estimates

and the shaded area around are the 95% credible intervals.

In the next two plot grids 4.3 and 4.4 we observe how the model fits the

proportions-at-length of survey and landings of whiting from subarea VIa. Each

single plot in the grid represents one year, from 1996 to 2020. The dark line is the

model output median and the polygon around it is the 95 credible intervals. The

black dots represents the data. The landings data are missing from 2009 onwards.

The model was fitted only to the available data and with the parameters estimated

from those it calculated the expected landings for the following years. Except for

few exceptional years in the survey, both the model fits the data quite well.

We now have a look at the estimates of the fisheries and survey selectivity in 4.5.

The three plots show the logistic selectivity of the fisheries on the right, the model

estimated L50fsel = 28.7 and βfsel = 0.6. At the centre there is the survey pre
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Figure 4.1: In this set of graphs we can observe the model fit to survey, landings
and discard biomass, the estimates for Spawning Stock Biomass, fisheries mortality and
recruitment. The black dots are the data the model is being fitted to, while the × are
the estimates calculated by SAM. The central line is the median of the estimates and
the shaded area around are the 95% credible intervals. The model fits well the data, it
produces estimates of fishing mortality very close to the ones produced by SAM, it picks
up well the trends in SSB and the ones in recruitment, despite this last one seems to be
underestimated.
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Figure 4.2: The two graphs shows two different proportions-at-length estimated by the
model. The graph on the left shows the proportions-at-length of the initial population
NS1 after mortality was applied, this means it is representative of the survivors from the
year before. The graph on the right shows the proportions at length for the recruitment
across all years. The central line is the median of the estimates and the shaded area
around are the 95% credible intervals.
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Figure 4.3: The figure shows a series of yearly plot of survey proportions at length.
The black dots represents data points, the thick line is the median of the model output
and the shaded area represents the 95% credible intervals. The data has been fitted by
using two separate surveys, with different parameters and likelihood. The first survey
runs until 2010, while the second from 2011 onwards. The model fits well the data.
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Figure 4.4: The figure shows a series of yearly plot of landings proportions at length.
The thick line is the median of the model output and the shaded area represents the 95%
credible intervals. The black dots represents data, which are available only untile 2009.
The model fits well the data.

2011, the model estimated the parameters to be L50ssel1 = 40 and βfsel = 0.17. The

gamma selectivity of the survey post 2011 is shown on the right, the parameters are

modessel2 = 39 and αssel2 = 5.5 The estimates are sensible, except that in general

we would expect the L50 of the fisheries to be higher that the one of the survey.

4.3.2 Sensitivity Analysis

In the following paragraphs we will present the sensitivity analysis performed on the

model. First we present the sensitivity to parameter values, then the sensitivity

to model structure and lastly to parameter bounds. In every plot, the output

presented in the previous paragraph, that we con sider the best fit, is compared

to the output with modified features.
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Figure 4.5: The first figure on the left shows the logistic fisheries selectivity, the one
in the centre the logistic survey selectivity pre 2011 and the last plot shows the gamma
survey selectivity post 2011. The three curves seem sensible.

Sensitivity to parameter values I: sample size

In this paragraph we present the results of the sensitivity analysis we performed

on SLAM by trying to decrease the three input sample sizes (nsurv1, nsurv2 and nland)

from 70 to 30. The results for the estimated (4.6) quantities like recruitment, SSB

and fishing mortality are shown in the next plot, as well as the fit to biomass data.

The median of the model output of the “original” model is represented as a black

line, while the red line is the run with the decreased sample size. The difference

between the two lines is not dramatic overall, but it is notable, especially in the

estimates of fishing mortality and SSB. We can say that the model with n = 70

fits the data better and produces estimates closer to SAM. We would not expect

to observe sensitivity to the sample size after replacing the multinomial likelihood

with the Dirichlet-multinomial likelihood. When we decrease the sample size we

are putting less weight on the compositional data therefore the model will fit better

the abundance data. This is not really visible, it actually seems that the model

fits better discard biomass when the sample size is higher.

The fit to proportions-at-length of landings and survey is shown in figure 4.7

and 4.8 respectively. Again the black line is the median of the model where the
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Figure 4.6: This set of plots shows as a dark line the sample size that was used in the
previous model run, while in red a lower sample size. The black dots represents data
points and the symbols × represents the SAM estimates. The difference between the
two lines is not dramatic overall, but it is notable, especially in the estimates of fishing
mortality and SSB.
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Figure 4.7: The figure shows a series of yearly plot of landings proportions at length.
The black line is the median of the model where the input sample sizes were equal to 70
and the red line is the median of the model with sample sizes equal to 30. The black dots
represents data, which are available only untile 2009. Both model fits well the data and
only the red line on top is visible because the two estimates are completely overlapping.

input sample sizes were equal to 70 and the red line is the median of the model with

sample sizes equal to 30. The black dots are data points, which for landings are

available only until 2009. In this case the two models are completely overlapping.

From the fishing mortality plot shown in 4.6 we would expect an effect on

the fishing selectivity. In 4.9 we compare the fishing selectivity curves of the two

models. The two curves are basically the same, even though the fishing selectivity

with lower input sample size has higher uncertainty and higher L50fsel (31>28.7).

Sensitivity to parameter values II: discard L50dsel

In this section we present the results of the analysis we performed to investigate

the sensitivity of the model to the values picked as the L50 of the discard selectivity.
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Figure 4.8: The figure show a series of yearly plot of landings proportions at length.
The black line is the median of the model where the input sample sizes were equal to 70
and the red line is the median of the model with sample sizes equal to 30. The data has
been fitted by using two separate surveys, with different parameters and likelihood. The
first survey runs until 2010, while the second from 2011 onwards. Both model fits well
the data and only the red line on top is visible because the two estimates are completely
overlapping.

We compared the version described in paragraph 4.3.1 with other two versions

where we replaced the series of increasing values of L50dsel calculated in R. M.

Cook (2019) with a single value: a supposedly low L50, L50dsel = 26, and what we

hypothesise could be a high L50, L50dsel = 36. These two values are the highest

(most recent) and the lowest (older) calculated in R. M. Cook (2019). Figure 4.10

shows the median values of the three different models as a line. The model that

has the increasing trends of L50dsel is represented in dark blue, L50dsel = 26 in red,

L50dsel = 38 in dark red. The black dots represents data points and the symbols

× represents the SAM estimates. The lines are all very close between each other,

highlighting that the model does not have high sensitivity to the choice if the
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Figure 4.9: This figure compares the fishing selectivity curves of the two models. The
two curves are basically the same, even though the fishing selectivity with lower input
sample size has higher uncertainty and higher L50fsel

parameter L50dsel. The greatest difference between the models can be observed in

fishing mortality, but it is still not very relevant.

Figure 4.11 shows SLAM sensitivity in the fit to landings proportions-at-length.

The model that has the increasing trends of L50dsel is represented in dark blue,

L50dsel = 26 in red and L50dsel = 38 in dark red. The black dots represents data

points. The lines are overlapping, confirming that the model does not have high

sensitivity to the choice if the parameter L50dsel, as we have already observed in the

previous figure. Figure 4.12 shows a similar situation for the survey proportions-

at-length. The lines are overlapping here too.

Sensitivity to model structure: the shape of the survey selectivity

This section shows the results of the sensitivity analysis on the shape of the

survey selectivity. We compared the model presented in 4.3.1, that assumes that

the survey pre 2011 has a logistic selectivity while the survey post 2011 has a dome-

shaped selectivity with other two versions, one both surveys (pre and post 2011) are

assumed to have a logistic selectivity and one where both the surveys are assumed to

have a dome-shaped selectivity. In 4.13 we compare the three versions performance
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Figure 4.10: The figure shows different values of the parameter L50dsel have influenced
the fit to abundance indexes and the estimates of SSB, fishing mortality and recruitment.
The model that has the increasing trends of L50dsel is represented in dark blue, L50dsel =
26 in red and L50dsel = 38 in dark red. The black dots represents data points and the
symbols × represents the SAM estimates. The lines are all very close between each other,
highlighting that the model does not have high sensitivity to the choice if the parameter
L50dsel.
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Figure 4.11: The figure shows SLAM sensitivity to the parameter L50dsel in the fit to
landings proportions-at-length. The model that has the increasing trends of L50dsel is
represented in dark blue, L50dsel = 26 in red and L50dsel = 38 in dark red. The black
dots represents data points, which are available only until 2009. The lines are overlapping,
suggesting that the model does not have high sensitivity to the choice if the parameter
L50dsel.

on fitting the survey, landings and discard biomass and estimating fishing mortality,

recruitment and SSB. The black dots represents data points and the symbols ×

represents the SAM estimates. The combination logistic+gamma, the one we

use as a reference, is colored in dark blue, the combination gamma+gamma is

presented in red and the combination logistic+logistic in dark red. The combi-

nation gamma+gamma has a very similar performance to the reference model,

while the combination logistic+logistic goes quite off track on the early years of

estimate of discard and landings biomass. The estimates of recruitment and SSB

are acceptable, but the model overestimates the values of fishing mortality and fails

to capture the initial peak and overestimating the values in the recent years.

Figure 4.14 shows SLAM sensitivity in the fit to landings proportions-at-length.
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Figure 4.12: The figure shows SLAM sensitivity to the parameter L50dsel in the fit
to survey proportions-at-length. The model that has the increasing trends of L50dsel is
represented in dark blue, L50dsel = 26 in red and L50dsel = 38 in dark red. The black
dots represents data points. The lines are overlapping, suggesting that the model does
not have high sensitivity to the choice if the parameter L50dsel. The data has been fitted
by using two separate surveys, with different parameters and likelihood. The first survey
runs until 2010, while the second from 2011 onwards.

The dark blue line is the model with the logistic+gamma combination, the red line

is the gamma+gamma and the dark red line is the logistic+logistic. The black dots

represents data points, which are available until 2009. The model is not sensitive

to the shape of the survey selectivity in the fit to landings proportions-at-length.

Figure 4.15 shows the same situation for the survey proportions-at-length.

From what we observed in the fishing mortality estimate in figure 4.13 we would

expect the fisheries selectivity of the model with two logistics to look different

compared to the other two. In 4.16 we show the logistic selectivity of the fisheries

for the three combinations of survey selectivity, from the left is shown the fisheries

selectivity when the survey selectivity is assumed to be logistic before year 2011
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Figure 4.13: The black dots represents data points and the symbols × represents the
SAM estimates. The dark line represents the median of the model output with the
logistic selectivity and the red line is the median of model with the gamma selectivity.
The gamma model fits well discard and landings biomass, and the estimates of SBB and
recruitment are not too far from the logistic model, but the estimates of fishing mortality
are too high and not credible, and the early years of the survey biomass are clearly
overestimated.
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Figure 4.14: The figure shows a series of yearly plot of survey proportions at length.
The dark blue line is the median of the model with the the logistic+gamma combination,
the red line is the gamma+gamma and the dark red line is the logistic+logistic. The
black dots represents data points, which are available until 2009. The three models fit
well the data and there is no relevant difference between the three.

and gamma after 2011, at the centre when it is assumed to be gamma for both

surveys, and lastly when it is assumed to be logistic. The three curves look identical,

therefore we assume that the difference in the estimates of fishing mortality must

be due to some other processes.

Sensitivity to model structure: the shape of the fishing selectivity

This paragraph shows the results of the sensitivity analysis performed on SLAM

by replacing the logistic selectivity of the fisheries with a gamma curve. Figure

4.17 shows the fit to the abundance indexes and the estimates of SSB, fishing

mortality and recruitment. The black dots represents data points and the symbols

× represents the SAM estimates. The dark line represents the median of the model
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Figure 4.15: The figure shows a series of yearly plot of survey proportions at length.
The dark blue line is the median of the model with the the logistic+gamma combination,
the red line is the gamma+gamma and the dark red line is the logistic+logistic. The
black dots represents data points. The first survey runs until 2010, while the second
from 2011 onwards. The three models fit well the data and there is no relevant difference
between the three.

output with the logistic selectivity and the red line is the median of model with the

gamma selectivity. Despite the fact that the gamma model fits well the biomass

data, and the estimates of SBB and recruitment are not too far from the logistic

model, the estimates of fishing mortality are clearly too high. We keep in mind

that SAM is a soft reference, but fishing mortality of whiting in West of Scotland

is surely not above 1. Therefore fishing mortality is overestimated. Nevertheless

the estimates did not change in trend, but they changed in scale.

Figure 4.18 shows SLAM sensitivity in the fit to landings proportions-at-length.

The logistic model is represented in black while the gamma model is represented

in red. The black dots represents data points. The lines are almost overlapping,

suggesting that the structural change does not particularly affect the model fit to
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Figure 4.16: The three plots show the logistic selectivity of the fisheries for the three
combinations of survey selectivity, from the left is shown the fisheries selectivity when
the survey selectivity is assumed to be logistic before year 2011 and gamma after 2011,
at the centre when it is assumed to be gamma for both surveys, and lastly when it is
assumed to be logistic. The three curves look identical, even though we would expect to
see the last one on the right to be different to the other two.

proportions-at-length. A similar situation is shown in 4.19, which shows the fit

to survey proportions-at-length.

In order to understand further the reason of the overestimation of the fishing

mortality, we have a look at the posterior of the two parameters of the fishing

selectivity, modefsel and αfsel, reported in the upper half of figure 4.20. While

modefsel seems reasonable, αfsel is far too high. The graph at the bottom left

corner shows the estimated shape of the selectivity curve with its credible intervals.

From the graph emerges that the high value of αfsel makes the spread of the gamma

curve really narrow. The plot at the bottom right of the figure reports the median

of the fishing selectivity in comparison to one year of landings proportions-at-length.

It seems that the gamma curve is trying to over-fit the landings distribution.

Sensitivity to parameter bounds: Recruitment

The last sensitivity analysis we conducted was on recruitment parameter bounds.

In this test we compared the reference model with one where the lower bound of the
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Figure 4.17: The black dots represents data points and the symbols × represents the
SAM estimates. The dark line represents the median of the model output with the
logistic selectivity and the red line is the median of model with the gamma selectivity.
The gamma model fits well discard and landings biomass, and the estimates of SBB and
recruitment are not too far from the logistic model, but the estimates of fishing mortality
are too high and not credible, and the early years of the survey biomass are clearly
overestimated.

85



4. Chapter IV: Full-model version applied to Whiting VIa

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0.00

0.05

0.10

0.00

0.04

0.08

0.12

0.00

0.04

0.08

0.12

0.00
0.03
0.06
0.09
0.12

0.00

0.05

0.10

0.00
0.03
0.06
0.09
0.12

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00
0.03
0.06
0.09
0.12

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.000
0.025
0.050
0.075
0.100
0.125

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.15

0.000
0.025
0.050
0.075
0.100

0.00

0.05

0.10

0.00
0.05
0.10
0.15
0.20

0.00

0.05

0.10

0.00

0.05

0.10

Length

P
ro

po
rt

io
ns

Landings proportions at length per year

Figure 4.18: The figure shows a series of yearly plot of landings proportions at length.
The black line is the median of the model with the fisheries logistic selectivity, while
the red line is the median of the model with the gamma. The black dots represents
data, which are available only untile 2009. Both model fits well the data and there is no
relevant difference between the two.

log-uniform prior of the recruitment was lowered. Figure 4.21 shows the fit to the

abundance indexes and the estimates of SSB, fishing mortality and recruitment.

The black dots represents data points and the symbols × represents the SAM

estimates. The dark line represents the median of the model output with the higher

lower bound (log 7500) and the red line is the median of model with the lower lower

bound (log 200). The fit to abundance index is consistent, but the recruitment and

SSB a bit underestimated and fishing mortality has some bizarre peaks in the recent

years. Sensitivity to recruitment bounds could mean that the model does not find

a lot information in the data to estimate recruitment, especially in the last years.

The fit to proportions-at-length of landings and survey is shown in figure 4.22

and 4.23 respectively. Again the black line is the median of the model with the
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Figure 4.19: The figure shows a series of yearly plot of survey proportions at length.
The black line is the median of the model with the fisheries logistic selectivity, while the
red line is the median of the model with the gamma. The data has been fitted by using
two separate surveys, with different parameters and likelihood. The first survey runs
until 2010, while the second from 2011 onwards. Both model fits well the data and there
is no relevant difference between the two.

higher lower bound and the red line is the median of the model with the lower

lower bound. The black dots are data points, which for landings are available

only until 2009. In this case the two models are completely overlapping and only

the red line is visible.

4.4 Discussion

In this chapter we applied the “full version” of the Survey-LAndings Model (SLAM)

to the whiting stock of subarea VIa. SLAM’s output was compared to the State

Space Assessment Model (SAM), the stock currently used to assess whiting in this

area (ICES (2022)). It is important to remark that the aim of the comparison with
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Figure 4.20: The upper half of the figure shows the posterior distribution of the
parameters modefsel and αfsel. The distributions looks as if the model converged on
two different values, the upper bound of αfsel should have probably have set to 70 in
order to avoid a bivariate distribution. The plots at the bottom left shows the shape of
the selectivity, the line at the centre being the median and the shaded area around being
the 95% credible interval. The high value(s) of αfsel causes the angle of the curve to be
very narrow. The plot at the bottom right compares on year of landings proportions-at-
length with the median of the curve. It seems that the curve is almost trying to overfit
the distribution of lengths.

SAM was not to check if SLAM could reproduce the results of ICES assessment

exactly, but rather if SLAM’s output was on a reasonable scale and could pick

up SAM’s relevant trends (i.e decrease/increase. . . ). The two models are fitted to

different data and are based on different assumptions. Overall it can be concluded

that SLAM performed well against SAM.

SLAM fitted well both the compositional and the abundance data, and provided

estimates of fishing mortality that were really close to SAM’s. Fishing mortality

for the two models express slightly different quantities: for SLAM fishing mortality

is a fishing pressure which is constant for fish of every size. The fishing mortality

reported by ICES (2022) is the one experienced by fish of age 1 to 3. The estimates

of Spawning Stock Biomass (SSB) were also satisfactory. The model managed to
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Figure 4.21: The figure shows the fit to the abundance indexes and the estimates of
SSB, fishing mortality and recruitment. The black dots represents data points and the
symbols × represents the SAM estimates. The dark line represents the median of the
model output with the higher lower bound (log 7500) and the red line is the median of
model with the lower lower bound (log 200). The fit to abundance index is consistent,
but the recruitment and SSB a bit underestimated and fishing mortality has some bizarre
peaks in the recent years. Sensitivity to recruitment bounds could mean that the model
does not find a lot information in the data to estimate recruitment.
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Figure 4.22: The figure shows a series of yearly plot of landings proportions at length.
The black line is the median of the model with the higher lower bounds and the red line
is the median of the model with the lower lower bound. The black dots represents data,
which are available only untile 2009. Both model fits well the data and only the red line
on top is visible because the two estimates are completely overlapping.

estimate well all parameters’ posteriors even by using almost exclusively uninfor-

mative priors, meaning that the data were sufficiently informative. The estimates

of recruitment were slightly lower compared to SAM’s, but this is not a major

concern. The reasons for this discrepancy could be several: first of all, SAM is an

age based model that assumes recruitment as year fish of one year old. SLAM is

a length-based model and as such it interprets recruitment as the first consistent

length peak appearing in survey data. This is a major difference in the two model’s

assumption, that might lead to difference in the estimates. Moreover, length data

are renowned to provide weak information about recruitment and this could result

into being a problem for producing a reliable estimate. A possible way to improve

the estimates of recruitment could be assume they follow a time series. This is
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Figure 4.23: The figure shows a series of yearly plot of landings proportions at length.
The black line is the median of the model with the higher lower bound and the red line
is the median of the model with the lower lower bound. The data has been fitted by
using two separate surveys, with different parameters and likelihood. The first survey
runs until 2010, while the second from 2011 onwards. Both model fits well the data and
only the red line on top is visible because the two estimates are completely overlapping.

the assumption in SAM, and it is fair to assume correlation between years for

species with low recruitment variability like whiting (Nielsen & Berg (2014)). This

would probably not help to improve the scale, but would still help the model in

the estimate.

In order to fit the model, the survey was split into two, pre and post 2011. We

needed to specify different parameters, different likelihood functions and even two

different selectivity shapes. The fact that the model estimated different parameters

for the two survey and even two different selectivity shapes confirms that the change

in the survey protocol had a significant impact on the sampling. Before fitting the

model, we were not intended to use a dome-shaped selectivity for the survey. Often,

in stock assessment the selectivity of the survey is assumed to be logistic and the
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selectivity of the fisheries is assumed to be dome shaped. Nevertheless, after the

data visualization process made in chapter II (2.3), it was evident that the survey

was not efficient in catching big fish, because the large length classes found in the

landings composition were absent in the survey. Finding SLAM’s best fit was not an

easy process, it required a lot of trial and error to find the best configuration, even

though we already have experience with fitting it to pseudo data. This reminds

how real data can be extremely complex and conducting a stock assessment should

always be preceded by a detailed investigation on the stock characteristics.

The priors used were largely uniform, with the only exception of fishing mortality.

Here the mean of the log-normal of each prior is set to the mean of the posterior of

the year before. This is because fishing mortality is expected to be correlated from

one year to the other. It was also necessary to put recruitment on a log scale and

then apply a log-uniform prior. Many Bayesian stock assessments specify a uniform

prior on the logarithm of the parameter governing carrying capacity in the log-

unfished recruits, but Thorson & Cope (2017) demonstrated as this is not always

advisable, especially in data limited situations. In 3 of 4 case studies considered, the

arbitrary upper bound on a uniform prior on log-maximum recruitment determined

the results of the assessment. We tried to estimate the real value of recruitment

using a uniform prior, but the result was not satisfactory. Further investigation

is required to better understand the influence of the shape of the priors and the

initial values chose for SLAM.

This chapter also explored SLAM’s sensitivity to some key assumptions. We

analysed the sensitivity to two fixed parameter values, the first of which was the

sensitivity to input sample size. The model showed low-to-moderate sensitivity

to the input sample size when we decreased the values from 70 to 30 (nsurv1 =

nsurv2 = neffland = 70 to neffsurv1 = neffsurv2 = nland = 30). We were not

expecting to observe sensitivity to the choice of sample size after implementing

the Dirichlet-multinomial likelihood. The sensitivity to sample size showed by the

model was definitely higher than the sensitivity in found on pseudo chapter III

(see 3.8). Moreover, in the previous chapter the input sample size was set 10
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times higher than the real value, while here the input sample size was only halved.

The reason is not obvious, we might speculate that it is related to the fact that

the Dirichlet-multinomial likelihood assumes no correlation between the length

classes within one year. This was true for the pseudo data, that were generated by

sampling the population by a multiomial random sample, but it is not true for the

data. Length observation in the data are correlated because fish tends to distribute

in space and aggregate in schools by size. This violates the Dirichlet-multinomial

assumption of independent observation and might be the cause of the sensitivity

we observed. Jim Thorson, the same author who implemented the Dirichlet-

multinomial likelihood for stock assessment (Thorson et al. (2017)), recently came

up with a multivariate-Tweedie likelihood (Thorson et al. (n.d.)). The multivariate

Tweedie has three main advantages. The first one is that it can identify both

overdispersion (downweighting) or underdispersion (upweighting) relative to the

input sample size. Second, proportional changes in the input sample size are exactly

offset by parameters. The last one is that it arises naturally when expanding data

arising from a hierarchical sampling design. A future implementation for SLAM

could be replacing the Dirichlet-multinomial likelihood with a Tweedie-multinomial.

The second sensitivity analysis on fixed parameter assumption we performed was

the one to the L50 of the discard selectivity ogive. In the reference model we used

values calculated by R. M. Cook (2019), who found a decreasing trend in this value

for whiting in West of Scotland. When we tried to assumed fixed values, either

high or low, the model showed basically no sensitivity. This is excellent, because

it means that for a case in which we do not have information about the value of

this parameter, we do not have to worry about finding a precise value.

The other class of sensitivity analysis regarded structural assumptions. Firstly the

sensitivity of the model to the shape of the survey selectivity was investigated. The

reference model used a logistic and a gamma, so the test assumed both selectivities

to be logistic in one case and both selectivities to be gamma in the other. The

model was proved to perform equally well when the two selectivities were assumed

to be gamma, but its performance was much worse when both selectivities were
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assumed to be logistic. Especially, it mis-fitted the early years of landings and

discard biomass, underestimating them, and it provided different estimates of

fishing mortality and SSB compared to the reference model. While estimates

of SSB are lower but still acceptable, fishing mortality is poorly estimated, not

just in scale but also in shape. Nevertheless, this sensitivity is caused by the

characteristics of the data rather than the model’s ability of estimating the curves.

As seen in 2.3, there are contrasting information between the maximum size in

the length composition of the landings and the one of the survey. The logistic

selectivity is much less flexible than a gamma and assumes the highest probability

is always at the highest lengths. Having a logistic selectivity in both of the surveys

means that the survey has the highest probability of catching big fish, if it cannot

find them it is because they are being wiped out by the fisheries. This explains

the higher values of fishing mortality. However, it does not provide an obvious

explanation to the underestimation to the early years of discard and landings

biomass data. This might require further investigation. The sensitivity of the

model to the shape of the fisheries selectivity was also tested by replacing the

logistic selectivity of the reference model with a gamma selectivity. The model

resulted to be insensitive in the fit to the data and the estimates of recruitment

and SSB, but it was quite sensitive in the estimates of fishing mortality, which

resulted to be quite overestimated, even though the shape was right. It is known

that the fishing selectivity likely has a dome-shaped curve in reality, which is the

shape assumed by SAM. Nevertheless, the model already applies a gamma curve

to the survey post 2011, and the model struggles to estimate two gammas at the

same time, due to their high flexibility. As shown in figure 4.20, the spread of

the gamma selectivity tends to grow larger, seeming to try to over-fit the landings

length frequency. Having a logistic model works better because the logistic manages

to “pin down” the gamma. We must also keep in mind that selectivity shape have

been demonstrated to be inconstant over time, and sometimes are even subject to

drastic changes (Sampson & Scott (2012)). This is another potential limitation for

the model and might be object to further investigation in the future.
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The last sensitivity analysis regard the lower parameter bound of the log-uniform

prior of the recruitment. The model showed notable sensitivity in the estimates

of fishing mortality and recruitment of the later years when the lower bound las

decreased from log(7500) to log(200). Estimating recruitment in length based

models is a problem, as length data do not include information as powerful as age

data. If the model does not have clear information regarding recruitment, it might

be that playing around with parameter bounds pulls the mean of the posterior

from one side to the other. This might be what is happening in the later years

of recruitment, which appear to be underestimated in later years when the lower

bound of the prior is set to a lower value. This problem then propagates to the

estimates of fishing mortality, which in the later years are slightly overestimated

and show some peaks that are unlikely true.

The sensitivity analysis of this chapter helped to determine the robustness of a

SLAM’s qualitative conclusions. In this thesis we evaluated the model performance

was evaluated only by visually inspecting the different lines of the model outputs

against the data or SAM’s estimate. Considering the relevance of these tests, a

more accurate evaluation could be considered for publishing the study. A possible

solution could be offered by Morris method, also called the elementary effects

method, which is based on the ratio of the change in an output variable to the

change in an input parameter. The Morris method is easy to understand, does

not depend on assumptions about the model and is computationally inexpensive,

however, it cannot quantify the contribution of a parameter to the variability of

the output (Wu et al. (2013), Morris et al. (2014)).
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Chapter V: survey-only version applied to

four VIa stocks

Traditional methods of evaluating fish stocks heavily rely on commercial catch

information. However, there’s a growing need for alternative assessment approaches

in various scenarios, for instance or bycatch or collapsed stocks. In the first case the

species might have low to no commercial values, and a large part might be discarded.

If discard information are inaccessible, the information goes lost. Misreporting

and unrecorded discards are an issue, as they make it hard to accurately convert

landings into actual sea catches. In collapsed stocks the catch data can be unreliable

or unavailable because the fishery might shut down. Moreover, there’s an increasing

demand for advice on numerous data limited stocks.

In this context, research-based surveys conducted at sea using standardized meth-

ods and controlled conditions offer invaluable fishery-independent data crucial

for conducting assessments. In the latest years, several assessments have been

conducted using only information coming from research vessels (Cook (2004), Cook

(1997), Cook (2013)). The most renowned survey only method is the SURvey-

BAsed stock assessment model (SURBA), which has quite a long history and was

first used to analyze the major fish stocks of the North Sea (Cook (1997)). Since

then, it has been extensively used in assessments conducted by the International
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5. Chapter V: survey-only version applied to four VIa stocks

Council for the Exploration of the Sea (ICES) for various bottom-dwelling fish

stocks (Beare et al. (2005); Needle (2002)). It’s been applied to evaluate cod

stocks in Northwest Atlantic Fisheries Organization (NAFO) regions like Divisions

2J3KL (DFO, 2013) and Subdivision 3Ps (Cadigan (2010)). Additionally, even

a state-space variation called the SSURBA model (Space SURvey-BAsed) has

been implemented and applied to the Grand Banks stock of American plaice

(Hippoglossoides platessoides) (Kumar et al. (2020)). SURBA and other survey

only models have been proved to be able to capture effectively fluctuations in

survey biomass, nevertheless these models normally cannot offer precise estimates

of absolute abundance, but they rather offer relative values on a scale without a

fixed reference point. In general, survey-based methods might offer quicker updates

on the stock’s condition compared to methods relying on catch data (Mesnil et al.

(2009), J. Cotter et al. (2009)).

In this chapter we test the Survey-LAndings-Model (SLAM) in its “survey only

version” for data-limited species. For this purpose we chose two well assessed

species from subarea VIa, one of which is again whiting (Merlangus merlangius),

and the other one is haddock (Merlanus aeglefinus). These two species have a

similar body type but haddock has much bigger variability in recruitment. We

also chose two un-assessed species from the same area, grey gurnard (Eutriglia

gurnardus) and lemon sole (Microstomus kitt). These two species do not have

a stock assessment available, and they have completely different body types and

swimming habits. Stocks with different characteristics will be targeted differently

by the survey and the fisheries, and this might imply different gear selectivity that

may affect as well the model’s assumptions. Therefore, it is important to test

SLAM’s behavior on different species.

5.1 Materials and Methods

In this chapter we used survey data from subarea VIa for four species: whiting

(Merlangus merlangius), haddock (Merlanus aeglefinus), grey gurnard (Eutriglia

gurnardus) and lemon sole (Microstomus kitt). Information about the species
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5. Chapter V: survey-only version applied to four VIa stocks

biology and how the data were prepared can be found in Chapter II.

Whiting and haddock from subarea VIa are already assessed by the International

Council for the Exporation of the Sea (ICES). The results are published online

on reports that are regularly updated (ICES (2022), ICES (2023)). Haddock

assessment is available only until 2013, because after that year ICES decided to

incorporate the assessment of subarea VIa with the rest of the North Sea. This is

because scientific investigations proved that what was considered to be two separate

stock is actually a single stock. The assessments are conducted with the State-space

stock-Assessment Model (SAM). SAM has different assumptions and relies on full

catch and age data, therefore we do not expect the models to overlap, but we are

interested to see if SLAM can pick up the relevant trends.

Since SLAM is fitted to survey data only, and the survey samples a very small pro-

portion of the population, the survey catchability parameter q cannot be estimated

because the model has no information from the fisheries to reconstruct the real size

of the population. The parameter q was fixed to 1, meaning that we’re assuming

that the survey samples the population with the maximum possible efficiency. The

estimates of Spawning Stock Biomass (SSB) and recruitment will then be returned

in the same order of magnitude of the survey biomass, and in order to make them

comparable with SAM results we divided each time series by its mean. This means

that it will be only possible to compare the trends of the output and not the

absolute scale. This approach is the same used in Cook (2013).

The absence of information from the fisheries impacts also the model’s ability to

estimate the selectivities, in particular it is impossible for the model to estimate

both survey and fisheries selectivity simultaneously. Therefore one must be treated

as known, and since fisheries selectivity is more interesting from the stock assess-

ment’s point of view, the two survey selectivity (pre and post 2011) were assumed

to be known. One of the two parameters controlling the shape of the fishing

selectivity, which depending on the stock could be logistic or dome-shaped, was

also fixed. For whiting, for instance, it was applied a logistic function where the

inclination βfsel is assumed to be known and L50fsel is estimated. The information

98



5. Chapter V: survey-only version applied to four VIa stocks

regarding the input values were taken from the results presented in chapter IV For

the other stocks there was no prior knowledge about what the fishing selectivity

nor the survey selectivity. The the survey selectivities were assumed to be known

and dome shaped, and the fisheries selectivity a dome-shaped curve with a known

modefsel and an estimated αfsel. It was possible to use three gamma curves because

two of them are fixed, therefore the model has no problem of convergence relative

to the excessive flexibility of the gamma curve, as observed in the previous chapter

(4.17 and 4.20). The reason behind preferring a dome-shaped curve is that this

is likely the true shape of the fisheries selectivity. This is because the bigger fish

the more likely they are to escape the trawlers, since they are faster and more

experienced, and the probability of catching them decreases after a certain size.

SAM too assumes the fisheries selectivity to be dome-shaped.

The simulations in this chapter were made by running SLAM in the survey-only

version for all the four species, using 3 chains, 50,000 iterations and a thinning of

500.

The fixed values used for every stock are reported in table 1.1, while the priors and

initial values used for the fitting parameters are reported in table 1.2.

Table 5.1: The table summarises the values we used for the fixed parameters in the
survey-only test on whiting, haddock, lemon sole and grey gurnard.

Parameter Whiting Haddock Grey Gurnard Lemon sole
ymin 1989 1989 1989 1989
ymax 2020 2020 2020 2020
nyears 31 31 31 31
Dt 1 1 1 1
lmin 8 8 8 8
lmax 52 52 42 42
nlen 45 45 35 35
DL 1 1 1 1
L0 1 1 1 1
αwgt .0093 .0157 .007 .0238
βwgt 2.9456 2.8268 3.05 2.7643
cwgt 1.13 1.16 1 1.04
αM .2 .2 .2 .2
βM −.3 −.3 −.3 −.3

Continued on next page
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Table 5.1 – continued from previous page
Abbreviation Initial value/s Fixed or fitting
L50mat 20.5 20 25.25 18.5
βmat .3 .6 .3 .3
modessel1 26 25 30 35
αssel1 3.6 3.5 3.5 8.5
modessel2 29 27 27 32
αssel2 3 2.5 3 8
modefsel − 25 30 25
βfsel .6 − − −
q 1 1 1 1

5.2 Results

5.2.1 Whiting (Merlangus merlangius)

The trace plots and the histograms for some of the most important parameters can

be found in the appendix of chapter V under the paragraph whiting. The chains

have mixed well and do not highlight any serious issue. There are no obvious

signs of autocorrelation, even if some parameters are likely auto-correlated, like

L∞ and K. Figure 5.1 shows SLAM in its survey only version fitted to whiting

data from subarea VIa (West of Scotland). The dark line is the model output

median and the shaded area around it is the 95% credible intervals. We observe

that the model fits the survey biomass data, displayed as black dots, quite well.

Almost all the points lie between the intervals. The symbols × in the graphs of

Spawning Stock Biomass (SSB), fishing mortality and recruitment, represent the

quantities estimated by the State-Space Stock Assessment Model (SAM). Values

of recruitment and SSB have been scaled to be comparable with the survey scale.

We notice how the estimated quantities of SSB resembles the pattern of the survey

biomass. This is expected, because the model does not have any other information

out of survey abundance to estimate SSB. The values of fishing mortality are much

higher than SAM’s, and even though the trend is picked up correctly, values of

1.2 for whiting VIa are too high. Recruitment trends are also approximately right,

even though there is high uncertainty.
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Figure 5.1: Whiting - The following figures display the model estimates of survey
biomass, SSB, fisheries mortality and recruitment. The black dots are the data the model
is being fitted to, while the × are estimates calculated by SAM (the values of recruitments
and SSB are scaled to be comparable to SLAM). The central line is the median of the
estimates and the shaded area around are the 95% credible intervals. The model fits
well the data in the case of survey biomass and SLAM can pick up the trends of the
estimates of SSB, fisheries mortality and recruitment calculated by SAM. Nevertheless,
recruitment appears to be very variable and fishing mortality is too high.

102



5. Chapter V: survey-only version applied to four VIa stocks

10 20 30 40 50
0.00

0.05

0.10

 

 
Year 1 survivor

10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

 

 

Recruitment

cm

P
ro

po
rt

io
n

Figure 5.2: Whiting - The two graphs shows two different proportions-at-length
estimated by the model. The graph on the left shows the proportions-at-length of the
initial population NS1 after mortality was applied, this means it is representative of the
survivors from the year before. The model has high uncertainty and the proportions at
length are not well estimated. The graph on the right shows the proportions at length
for the recruitment across all years. The central line is the median of the estimates and
the shaded area around are the 95% credible intervals, in this case they are very thin,
meaning very low uncertainty.

Figure 5.2 shows two graphs with proportions-at-length. The graph on the

left shows the proportions-at-length of the initial population NS1 after mortality

was applied, this means it is representative of the survivors from the year before.

The graph on the right shows the proportions at length for the recruitment across

all years. Still, the central line is the median of the estimates and the shaded

area around are the 95% credible intervals. The first thing to notice is the high

uncertainty of the estimates. It is clear that the model does not have much

information about the state of the initial population. We notice how the first

peak of the survivors of the initial population coincides perfectly with the peak

in recruitment at 20. The initial population has also a very clear second peak

at around 30 cm, which represents the second cohort, and then declines. In the

recruitment proportions-at-length we observe how the credible intervals are very

thin, this means the model has very little uncertainty on these values.

In the next plot, 5.3 grid we observe the model fit to proportions-at-length of

survey for whiting from subarea VIa. Each graph represents the length distribution

of a single year, form 1990 to 2000. The dark line is the model output median and
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Figure 5.3: Whiting - The figure shows a series of yearly plot of survey proportions
at length. The black dots represents data points, the thick line is the median of the
model output and the shaded area represents the 95% credible intervals. There is bigger
uncertainty around the estimate of the first year. The model fits well the data.

the polygon around it is the 95% credible intervals. We notice how the credible

intervals around the first years estimate are larger than for the other years, but the

model fits the rest of the data well and with very little uncertainty.

Figure 5.4 shows the estimated logistic fishing selectivity curve. The inclination

was kept fixed (βfsel = 0.6) and L50fsel was estimated. The value of βfsel and the

mean of the log-normal prior of L50fsel was taken from the estimates provided by

the full model version applied to whiting in chapter IV. Despite setting up a strong

prior, the median of the parameter L50fsel sets at around 10, a very low value.

5.2.2 Haddock (Melanogrammus aeglefinus)

The trace plots and the histograms can be found in the Appendix V under the

paragraph haddock. The chains have mixed well and does not highlight any serious
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Figure 5.4: Whiting - The graph shows the gamma-shaped fisheries selectivity
estimated by the model from 10 to 50 cm. The thick line is the median of the model
output and the shaded area represents the 95% credible intervals. In this run, the mode
of the gamma (modefsel) was kept fixed and only the width αfsel was estimated. The
estimate looks quite reasonable, with a minimum probability of being caught at 10 cm,
then increasing to peak at around 29 to 31 cm, and then decreasing again.

issue. L∞ and µR show some signs of autocorrelation and σR is clearly hitting a

bound. other than that there are no signs of major issues and the model seem

to have converged on these parameters. The second figure shows the histograms

of the porteriors for the same parameters cited above. For haddock, K does not

show any sign of auto-correlation with other parameters. Figure 5.5 shows SLAM

in its survey only version fitted to haddock data from subarea VIa. The dark line

is the model output median and the shaded area around it is the 95% credible

intervals. We observe that the model fits quite well the survey biomass data,

displayed as black dots. Almost all the points lies between the intervals. The

symbols × in the graphs of SSB, fishing mortality and recruitment, represent the

quantities estimated by SAM. Values of recruitment and SSB have been scaled to

1 be comparable, since the two models work on different scales. As for the run

on whiting, we do not expect the two assessments to overlap, since the models

have different assumptions and rely on different data sources. We notice how the

estimated quantities of SSB resembles the pattern of the survey biomass, but even

so the trends of SLAM’s estimate are comparable with SAM’s. SLAM and SAM’s
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estimate of recruitment overlap. SLAM’s estimate of fisheries mortality in the early

years are probably a bit too low, but from 2000 onward SLAM manages to produce

a fairly good estimate, comparable with ICES’s assessment.

Figure 5.6 shows two graphs with proportions-at-length. The graph on the

left shows the proportions-at-length of the initial population NS1 after mortality

was applied, this means it is representative of the survivors from the year before.

The graph on the right shows the proportions-at-length for the recruitment across

all years. Still, the central line is the median of the estimates and the shaded

area around are the 95% credible intervals. We notice how the first peak of the

survivors of the initial population coincides perfectly with the peak in recruitment

at 20 cm. The initial population has also a very clear second peak at around 28

cm, which represents the second cohort, and then gradually declines. The model

has high uncertainty regarding the initial population and it is not very estimated.

In the recruitment proportions-at-length we observe how the credible intervals are

very thin, this means the model has very little uncertainty regarding the value

of this quantity.

The grid plot in figure 5.7 shows the model fit to proportions-at-length of survey

for haddock. Each graph represents the length distribution of a single year, form

1990 to 2000. The dark line is the model output median and the polygon around

it is the 95% credible intervals. Differently than whiting, the credible intervals

around the first years estimate are not larger than for the other years, meaning

that the model have little uncertainty regarding the distribution of the first year

of survey length frequency and the length frequency of the initial population.

Figure 5.8 shows the estimated fishing selectivity curve. In this run, the mode

of the gamma was kept fixed (modefsel = 25) and only the width αfsel was

estimated. The curve has a minimum for fish of 10 cm, it has a long peak at

1 from approximately 28 cm to 40 cm and then decrease slighly. overall it looks

quite flat. The upper credible interval on the left part of the graph is not likely,

since it estimates values for the selectivity (a probability) that are bigger than one.
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Figure 5.5: Haddock - The following figures display the model estimates of survey
biomass, Spawning Stock Biomass, fisheries mortality and recruitment. The black dots
are the data the model is being fitted to, while the symbols × are estimates calculated
by SAM (the values of recruitments and SSB are scaled to be comparable to SLAM).
The central line is the median of the estimates and the shaded area around are the 95%
credible intervals. The model fits well the data and the estimates of SSB, recruitment
and fishing mortality are comparable with the ICES’s assessment, even though fishing
mortality in the early years are probably a bit too low.
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Figure 5.6: Haddock - The two graphs shows two different proportions-at-length
estimated by the model. The graph on the left shows the proportions-at-length of the
initial population NS1 after mortality was applied, this means it is representative of the
survivors from the year before. The graph on the right shows the proportions at length
for the recruitment across all years. The central line is the median of the estimates and
the shaded area around are the 95% credible intervals.
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Figure 5.7: Haddock - The figure shows a series of yearly plot of survey proportions at
length. The black dots represents data points, the thick line is the median of the model
output and the shaded area represents the 95% credible intervals. The credible intervals
around the first years estimate are not larger than the intervals around the other years.
In general, the model fits well the data.
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Figure 5.8: Haddock - The graph shows the gamma-shaped fisheries selectivity
estimated by the model for haddock from 10 to 50 cm. The thick line is the median
of the model output and the shaded area represents the 95% credible intervals. In this
run, the mode of the gamma (modefsel) was kept fixed and only the width αfsel was
estimated. The curve looks quite flat, having a long peak at 1 from approximately 28 cm
to 40 cm. The upper credible interval on the left part of the graph does not seem very
likely, in fact it estimates values for the selectivity bigger than one. The median and the
lower credible interval though, are plausible.

5.2.3 Lemon Sole (Microstomus kitt)

The trace plots and the histograms can be found in the Appendix V under the

paragraph lemon sole. The chains have mixed well and does not highlight any

serious issue. There are no obvious signs of autocorrelation. The next set of plots

5.9 shows some of the model estimates for SLAM applied to lemon sole. The dark

line is the model output median and the shaded area around it is the 95% credible

intervals. We observe that the model fits well the survey biomass data, disposed

as black dots. All the points lies between the intervals. For this species there is no

SAM assessment available for comparison of Ft, recruitment and SSB. As for the

other species, we see how the estimated quantities of recruitment and especially

SSB resembles the pattern of the survey biomass. Values of Ft seem reasonable

and resemble the patterns of whiting and haddock fisheries mortality.

Figure 5.15 shows two graphs with proportions-at-length. The graph on the left

shows the proportions-at-length of the initial population NS1 after mortality was
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Figure 5.9: Lemon sole - The following figures display the model estimates of survey
biomass, Spawning Stock Biomass, fisheries mortality and recruitment. The black dots
are the data the model is being fitted to. For this model there is no SAM assessment
available for comparison. The central line is the median of the estimates and the shaded
area around are the 95% credible intervals. The model fits well the survey biomass data.
SSB resembles almost perfectly the trends in survey biomass. The medians of fishing
mortality and recruitment seems plausible, fishing mortality tends to be higher in central
years like the other two species and recruitment follows more or less the trend of survey
biomass.
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Figure 5.10: Lemon sole - The two graphs shows two different proportions-at-length
estimated by the model. The graph on the left shows the proportions-at-length of the
initial population NS1 after mortality was applied, this means it is representative of the
survivors from the year before. The graph on the right shows the proportions at length
for the recruitment across all years. The central line is the median of the estimates and
the shaded area around are the 95% credible intervals.

applied and before recruitment was added, representing the survivors from the year

before. The graph on the right shows the proportions-at-length for the recruitment

across all years. The central line is the median of the estimates and the shaded

area around are the 95% credible intervals. The initial population does not very

clear peaks, and this reflects the situation in the survey proportions-at-length. In

fact, fish appear quite late in the survey, probably when they are already two years

old, that is why µR is quite high. Because of how the species grows, the length

classes in the later years merge and it is no longer possible to distinguish cohorts.

Figure 5.11 shows the model fit to survey proportions-at-length. Each graph

represents the length distribution of a single year, form 1990 to 2000. The dark line

is the model output median and the polygon around it is the 95% credible intervals.

The credible intervals have approximately all the same width around every year.

Overall, the fit is good and the uncertainty is quite low. We observe how lemon

sole does not have clearly distinct cohorts, but rather a single peak.

Figure 5.12 shows the estimated fishing selectivity curve. In this run, the

mode of the gamma was kept fixed (modefsel = 35) and only the width αfsel was

estimated. The curve has a minimum for fish of 10 cm, it peaks at the maximum

probability of 1 from approximately 24 cm to 36 cm and then decrease again.
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Figure 5.11: Lemon sole - The figure shows a series of yearly plot of survey proportions
at length. The black dots represents data points, the thick line is the median of the model
output and the shaded area represents the 95% credible intervals. The credible intervals
around the first years estimate are not larger than the intervals around the other years.
In general, the model fits well the data.

5.2.4 Grey Gurnard (Eutriglia gurnardus)

The model could fit gurnard’s biomass and proportions-at-length quite well, but

it could not provide a very reasonable estimation of fishing mortality. The right

graph in figure 5.13 shows how the median is very low and almost flat, while the

upper credible interval is sky rocketing at the center. This is because the model

has no clue about what could be the value of σF t, as shown by the trace plot on

the right. The model was given a uniform prior for σF t, U ∼ (0, 1). The left graph

shows that the model is returning a uniform posterior that resembles the prior,

meaning that the model has no clue of the value of σF t. This lead us to to make

a new trial keeping this parameter fixed to 0.2.

The trace plots and the histograms of the run with σF t = 0.2 can be found in the
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Figure 5.12: Lemon sole - The graph shows the gamma-shaped fisheries selectivity
estimated by the model for lemon sole from 10 to 42 cm. The thick line is the median
of the model output and the shaded area represents the 95% credible intervals. In this
run, the mode of the gamma (modefsel) was kept fixed and only the width αfsel was
estimated. The estimate looks quite reasonable, with a minimum probability of being
caught at 10 cm, then increasing to peak at around 24 to 26 cm, and then decreasing
again.
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Figure 5.13: Grey gurnard - Posterior of σF t and estimates of Ft. The posterior
resembles the prior and the model does not find a solution for this parameter. This
means that the model cannot find out the value of σF t, and the reason is the data do not
contain enough information.
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Appendix V under the paragraph grey gurnard. The chains have mixed well but

almost every parameters show signs of autocorrelation, like µR and L∞, or inverse

autocorrelation, like L∞ and K. Figure 5.14 shows some of the model estimates

for SLAM applied to grey gurnard. The dark line is the model output median and

the shaded area around it is the 95% credible intervals. We observe that the model

fits well the survey biomass data, disposed as black dots, all data the points lie

between the intervals. For this species there is no SAM assessment available for

comparison of Ft, recruitment and SSB. We observe how SSB trends resembles

the trends of the survey biomass. Recruitment have quite a lot of variability from

one year to the other, and interestingly, the model have high uncertainty regarding

recruitment values from 2009 onward. Comparing the estimates of fishing mortality

with the right graph of figure 5.13, we can see how fixing σF t helped the model

to produce a more reasonable estimate of Ft. Nevertheless, the values are quite

low and the curve almost flat, leading us to think that the survey data do not

contain much information about Ft.

Figure 5.15 shows two graphs with proportions-at-length. The graph on the left

shows the proportions-at-length of the initial population NS1 after mortality was

applied and before recruitment was added, representing the survivors from the year

before. The graph on the right shows the proportions-at-length for the recruitment

across all years. The central line is the median of the estimates and the shaded

area around are the 95% credible intervals. The initial population does not very

clear peaks, and this reflects the situation in the survey proportions-at-length. In

fact, fish appear quite late in the survey, probably when they are already two years

old, that is why µR is quite high. Because of how the species grows, the length

classes in the later years merge and it is no longer possible to distinguish cohorts.

Figure 5.16 shows the model fit to survey proportions-at-length. Each graph

represents the length distribution of a single year, form 1990 to 2000. The dark line

is the model output median and the polygon around it is the 95% credible intervals.

The credible intervals have approximately all the same width around every year.

Overall, the fit is good and the uncertainty is quite low.
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Figure 5.14: Grey gurnard - The following figures display the model estimates of
survey biomass, Spawning Stock Biomass, fisheries mortality and recruitment. The black
dots are the data the model is being fitted to. For this model there is no SAM assessment
available for comparison. The central line is the median of the estimates and the shaded
area around are the 95% credible intervals. The model fits well the survey biomass
data. SSB resembles almost perfectly the trends in survey biomass. The mean for fishing
mortality and recruitment seems plausible, but the upper credible interval for fishing
mortality is very high in the central years.
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Figure 5.15: Grey gurnard - The two graphs shows two different proportions-at-
length estimated by the model. The graph on the left shows the proportions-at-length
of the initial population NS1 after mortality was applied, this means it is representative
of the survivors from the year before. The graph on the right shows the proportions at
length for the recruitment across all years. The central line is the median of the estimates
and the shaded area around are the 95% credible intervals.
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Figure 5.16: Grey gurnard - The figure shows a series of yearly plot of survey
proportions at length. The black dots represents data points, the thick line is the median
of the model output and the shaded area represents the 95% credible intervals. The
credible intervals around the first years estimate are not larger than the intervals around
the other years. In general, the model fits well the data.
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Figure 5.17: Grey gurnard - The graph shows the gamma-shaped fisheries selectivity
estimated by the model for grey gurnard from 10 to 42 cm. The thick line is the median
of the model output and the shaded area represents the 95% credible intervals. In this
run, the mode of the gamma (modefsel) was kept fixed and only the width αfsel was
estimated. The estimate looks quite reasonable, with a minimum probability of being
caught at 10 cm, then increasing to peak at around 28 to 32 cm, and then decreasing
again.

Figure 5.17 shows the estimated fishing selectivity curve. In this run, the

mode of the gamma was kept fixed (modefsel = 35) and only the width αfsel was

estimated. The curve has a minimum for fish of 10 cm, it peaks at the maximum

probability of 1 from approximately 28 cm to 32 cm and then decrease again.

5.3 Discussion

Overall, the analysis of this chapter can be considered satisfactory. Nevertheless,

as survey only method, this version of the model has some consistent limitations.

The model has no information on abundance coming from the catches, and this

data is fundamental for the model to know the real scale of the population and

consequentially to estimate the survey catchability q. In this study q was fixed to

1, which means assuming that the survey samples uniformly and completely the

population. The estimates of the model output will then be returned in the survey

scale, which is much lower than the real population size. Nevertheless the trends

are still valid and they still provide important information on the stock.
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Another limitation of the survey only version of SLAM is that with no other

information from abundance, quantities like SSB completely resemble the shape

of the survey biomass. This was observed in every species tested: The estimates

of SSB can be completely overlapped to the estimates of survey biomass. In case

the survey is reliable this would not be a major issue, but in the case of West

of Scotland, where the survey quality is limited (as explained in chapter II), the

assessment becomes less reliable. The model also seemed to struggle to estimate

initial population for every species. This should not be ignored, but estimating the

initial population is a general problem of many stock assessment models, because

normally the data are not very informative regarding this quantity.

When fitted to whiting, the model managed to pick up the relevant trends of

recruitment, SSB and fishing mortality. The values estimated for fishing mortality

were overestimated compared to SAM’s, and even if we do not expect the two

model to produce the same results, the highest value of fishing mortality estimated

by SLAM, roughly 1.2, is too high for whiting VIa. Having applied the model to

the same stock with catch data, we were able to feed the model the estimates of

selectivity parameters. The inclination αfsel was kept fixed and the L50fsel was

estimated with an informative prior with the mean coming from the full model

version in chapter IV. Nevertheless, the L50fsel was considerably underestimated.

The reason for this likely hides in the fact that the full model version was fitted

to landings composition that had bigger fish in them compared to the survey (this

was described in chapter II, 2.3) Since in the survey only version is using only

length information from the survey, the model thinks that the highest length in

the population are the only one present in the survey. This hypothesis is supported

also by the estimates of Linf . The value estimated in the full model (??) is higher

than the one estimated by the survey only version (??). Since with a low L50fsel

the fishing mortality happens at a smaller size, the overall fishing mortality results

to be higher and this could also explain why the estimate resulted to be higher than

SAM’s. For other species we did not have the landings distribution to compare,

but likely the survey has the same problem in sampling the biggest length classes.
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The trial on haddock was also satisfactory. The model fitted the data well and

managed to estimate trends of recruitment, SSB and fishing mortality that were

in line with the ones provided by SAM. The model just missed the second peak in

SSB because it was not well captured by the survey. The early estimates of fishing

mortality are underestimated. The reason for this are not as immediately obvious,

but it is still probably due to some inconsistency in the early years of the survey.

Also we must keep in mind that haddock VIa was demonstrated to be connected

with North Sea stock and this violates SLAM’s assumption of close population.

Anyway, this can compromise the quality of the assessment overall, but not the

comparison with SAM, as it makes the same assumptions. This two models can

buffer the immigration and emigration of the population through recruitment and

natural mortality respectively, but it is fundamental to be aware of this limitation

because it influence the quality of the assessment.

The quality of results of lemon sole and grey gurnard is a bit harder to evaluate

since we do not have an assessment of reference. Anyway, the model fitted the

data of both species well, provided estimates of SSB that are similar to the the fit

to survey biomass and the estimates of fishing mortality are consistent with the

ones of whiting and haddock. The fishing mortality of all species were increasing,

reaching one (or two peaks), and then decreasing to a lower value than the start.

These are all demersal stocks caught by the same gears, therefore observing similar

patterns of fishing mortality is encouraging. For grey gurnard it was necessary to

fix the standard error of fishing mortality σFt, because the model was returning a

bivariate posterior. This suggests that the model does not have much information

about fishing mortality from the data, but still the fishing mortality is low, as we

would expect for a species of no commercial interest like grey gurnard, which is not

actively targeted and caught only as bycatch.

The reason why the model worked better for some species than others is that the

survey does not sample all the species at the same way. In fact, the quality of

the survey data is influenced by things like the species abundance, behavior and
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body type. The numbers-at-length we had for haddock were around 10 times the

numbers-at-length we had for gurnard and lemon sole, meaning the model has

more observations and can produce estimates that are more robust. Also, haddock,

as well as whiting, had distinct peaks in the length distribution, that makes it

possible to track down the cohorts. Gurnard and lemon sole on the other hand,

had one single peak in the survey length frequency, probably of 2 years old fish.

The absence of the peak of 1 year old fish means that the model interprets 2

years old as recruitment. Furthermore, for a length based model it is important

to recognise at least two peaks in the length distribution in order to read the

signals for growth and survival. Although both lemon sole and gurnard suffered

of this limitation, SLAM produced performed fairly well, especially for lemon sole.

Grey gurnard had a slightly worse performance, this could be again related to the

data collection process. It is possible that grey gurnard has quite a strong size

segregation, meaning that the survey is never able to sample more than one size in

one haul, and this would make the sample not very informative. Also, grey gurnard

might be confunded with other two species of gurnard, the red gurnard (Aspitrigla

cuculus) and tub gurnard (Chelidonichthys lucerna).

Another limitation for this study is that SLAM assumes that somatic growth is

constant, but in Chapter II we have seen there are strong evidence for long term

decreasing term in L∞ in whiting and haddock from subarea VIa (Hunter et al.

(2016)). Another study conducted on plaice (Ciotti et al. (n.d.)) found the same

evidence, and it could be possible that something similar is happening to lemon

sole and grey gurnard. The long term trends are caused by external stressors

like climate change (Lindmark et al. (2022)) or the Rosa Lee phenomenon, by

which fishing pressure removes individuals that grow bigger and mature slower

(Lee (1912); Enberg et al. (2012)). Growth is also variable during the year, due

to the water temperature that affects the fish metabolism. It could be possible to

implement a SLAM version that fits data from the four quarter, nevertheless it is

very rare to have survey data available for every quarter. West of Scotland, for

instance, does not have this data availability. Accounting for interannual variation
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instead opens up to the necessity of estimating one growth parameter or more

for every year of model run, and this adds a considerable level of complexity. The

existence of trends in growth, either seasonal or long-term, is a violation of SLAM’s

assumptions, but accounting for it might be impossible to do, or too complex to

be worth it, leading to overparametrisation of the model. Also, we recall that in

the bias test conducted in chapter III, the survey only model was proved to be

underestimating αfsel (3.20). If this bias in the parameter might be affecting the

fishing mortality estimates requires further investigation.

SLAM has indeed several limitations, but it must also be considered that it is

a method developed for data limited species. These species are often of minor

commercial interest and are not a direct target of the fisheries. A precise and

accurate stock assessment is then less necessary than for commercially important

stocks, which experience a high fishing pressure. This study showed that in a

data limited situation with survey only it is possible to capture the trends in

abundance and fishing mortality, and even though they are not reliable in an

absolute scale, they are still able to inform the assessor regarding the state of

the stock. This monitoring could highlight, for example, a decrease in abundance

to dangerously low levels, and it could lead up to the implementation of policies

for the protection of the species.

121



6
Final discussion and conclusion

This thesis focused on the development of the The Survey-LAndings Stock Assess-

ment Model, a new length based forward running, deterministic, matrix based

and length based population model, thought for data limited species, but not

limited to that. Chapter III, the first of the research chapters, was dedicated

to the implementation of two different versions of the model. SLAM is designed

to be a flexible tool, able to fit different data sources at the same time. The

first version, called “full-model”, is thought for data rich stocks, and the other

version, called “survey only”, was thought for data limited stocks with good survey

information. The full-model version fits 5 sets of data, survey, landings and discard

abundance and survey and landings proportions-at-length. The survey only fits

only survey biomass and survey length frequency. The two versions were then

tested on pseudo data, with sensitivity analysis and check for bias. The testing

phase was fundamental to highlight some of the model’s fault and identify the

first of the adaptations necessary when stepping from theory to practice. Stepping

from equations to data is a key step during model development, because some

issues cannot be evident until the model is put into practice. For instance, after

the analysis on sensitivity to sample size, it emerged that it would have been

better to replace the multinomial likelihood with a Dirichlet-multinomial. The full-
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model correctly retrieve all the fitting parameters, even when using a majority of

uninformative priors. The bias test proved this version of the model to be unbiased.

The “survey only” version also performed well, retrieving all parameters with no

bias, except for the early years of Spawning Stock Biomass (SSB). The cause of

this bias hides in the fact that the only source of information on stock abundance is

survey biomass, therefore the trends of SSB will follow the trends of survey biomass.

The model also revealed bias in estimating αfsel, the spread of the gamma fishing

selectivity curve, despite making use of an informative prior. An important take

home message of this chapter is that when data are removed, the model needs to

be aided by making use of more informative priors and by fixing more information.

In fact, if this version modefsel resulted to be prior driven, and instead of a uniform

prior it was necessary to adopt a log-normal.

Chapter IV tested the full-version of SLAM with a real stock, for this purpose it

was chosen whiting from ICES subarea VIa. Stepping from pseudo data to real

data is another key step in model development, because real data are much more

complex. It was necessary to distinguish two different surveys, before and after

2011. As explained in the data chapter (chapter II), the survey protocol for West

of Scotland was subject to major changes in 2011 that had a serious impact on the

characteristics of the data. Different shapes of selectivity were investigated and in

the end were selected a logistic for the fisheries, another logistic for the survey pre

2011 and a gamma for the survey post 2011. Survey selectivity is normally assumed

to be logistic but during the data visualization process emerged that the survey fails

to sample large length classes, which appear in the landings instead (2.3). After

these implementations, the model fitted well the data, produced good estimates

of fishing mortality and SSB and reasonable estimates of recruitment, as well as

of all other parameters. The chapter proceeded with sensitivity analysis on fixed

parameter values, structural assumptions and parameter bounds. The sensitivity

to the input sample size (nsurv1, nsurv2, nland) was also checked, as well as the

sensitivity to L50 of the discard selectivity (L50dsel). It was analysed the sensitivity

to the shape of the fisheries and survey selectivity and finally the sensitivity to
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recruitment parameter bounds. The only assumption that the model is clearly

insensitive to is the value of L50dsel. To all other assumption the model resulted to

be moderately sensitive, and the only estimate that was always affected was fishing

mortality. In some cases the sensitivity is not caused by some underlying processes

of the model itself, but rather from the properties of the data, like in the case of the

assumptions on the survey selectivity shapes. In some other cases, the sensitivity

analysis highlighted a model’s fault, like the sensitivity to the input sample size.

Another important result from these analysis is the sensitivity to recruitment prior

bounds. The fact that the model is sensitive to the width of the log-uniform prior

suggests that in the data there is not much information to estimate this quantity,

and the model relies also on the information that we input. Therefore, extra care

needs to be applied when we apply the model to new unassessed species for which

the scale of the recruitment is not known. These are only few of the many possible

sensitivity test. In the future, the analysis could be extended to the choice of priors

and on the initial values.

The last of the research chapters, chapter V, was dedicated to fitting the survey only

version of SLAM on four groundfish stocks from subarea VIa. The stocks picked

for this chapter have different characteristics. Whiting and haddock have similar

body types and swimming habits, but they have a very different recruitment signal.

Grey gurnard and lemon sole were selected because they have completely different

body types and swimming habits, therefore we assume the survey to sample all

these species in a different way. The first two stocks are assessed by ICES and

the results were compared with the pre-existing stock assessment. The other two

stocks are unassessed and SLAM provided the first stock assessment that was ever

conducted for these two species in area 6a. We are partially satisfied by the results

of this chapter: in whiting and haddock the model managed to pick up the trends

of SAM, but in whiting the fishing mortality was considerably overestimated and in

haddock was underestimated for the first two years. The other two assessments are

harder to evaluate, because there is no available assessment for a comparison. This

version of SLAM requires more investigation before being published, but indeed it
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has the potential to become the model used to assess these two species and other

currently unassessed flatfish stocks in West of Scotland.

There are still few improvements that could be developed before SLAM gets adopted

as a stock assessment tool. During stock assessment meetings models need to

be re-fitted many times in just a couple of days, and in general assessors prefer

models that take under half an hour to run. This is why Bayesian models are not

commonly used for official assessments. SLAM full version takes slightly more than

1 hour to run and it could be rejected because considered too slow. A possibility

could be implementing a non-Bayesian version with RTMB. Another possible way

to improve SLAM could be account for misreported landings. SLAM makes no

attempt to account for potential misreported landings and this may be considered

in future formulations of the model as landings of West of Scotland for cod and

whiting are suspected to be subject to significant misreporting Patterson (1998).

Finally, in order to make SLAM more user friendly, it would be ideal to develop a

well documented R package.

As a length based model, SLAM has several limitations, but there could be different

approaches to mitigate them. Length-based models are very complicated, they need

many assumptions, including the one that growth is constant over time. This might

be the case for few stocks, but not for the majority. It is important to account for

potential changes in growth rate within stock assessment models because trends

in growth can influence estimates of stock biomass (Lorenzen (2016)). In fish,

growth is influenced by the external condition, and we can consider this as an year

effect depending on things like temperature, food availability), but it is also pretty

much defined at the birth of the fish, so there is also a cohort effect. For correctly

modelling growth, it is necessary to take into account a cohort and a year effect.

At the moment, the only way to account for growth variability in SLAM is through

the parameter cv, and it can buffer only for the difference in growth during the year.

The year effect at the moment is not accounted for, but it should, as we saw that

whiting and haddock from subarea VIa are subject to the Rosa Lee phenomenon

(Hunter et al. (2016)), by which fishing pressure removes individuals that grow
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bigger and mature slower (Lee (1912); Enberg et al. (2012)).

A possible other use of SLAM that goes beyond stock assessment could be the

incorporation of its outputs into to analyse the predator-prey interactions in a multi-

species context. There are several food chain, ecological or end-to-end models that

requires input about fish stocks. SLAM could be used in one of its possible con-

figurations, depending on data availability, as source for fishing mortality, biomass

trends, recruitment, SSB, or more. SLAM is able to capture trends in the state of

the stocks, and serve as a source of information on network changes and stressors

that have a potential importance for ecosystem based management.

In this thesis emerged another fundamental concept, which is the importance of

data availability and quality for correctly managing fisheries. Chapter IV, for

instance, showed how the shape of the survey selectivity could be heavily impacted

by the change in protocol, and especially by halving the trawling time. This study

highlighted that going back to 1 hour trawling time could be advisable. Chapter

III, IV and V showed how removing data sources from a model, going from a

data rich to a data limited situation, impact the amount of information that is

possible to get out of an assessment. When the model has only information coming

from scientific survey, it becomes impossible to provide values on an absolute

scale, and to make estimates without assuming as known several parameters. For

management purposes, it would be ideal to include always both fisheries dependent

and independent information, and use survey only assessments only when it is

really impossible to have access to one or the other. In the next future it is

likely that catch-at-length information will become easier to collect. New tools

like image recognition with AI on board of vessels, but also in the net itself,

can provide an enormous amount of information on the size composition of catch.

With this technology it will also be possible to monitor what is landed and what

discarded, and even collect data on bycatch. These kinds of fisheries compositional

information are almost impossible to find online so far. An important step towards

accessibility and transparency would also be to provide open access to these data

around the world, as it is already for some scientific surveys. Stock assessment
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nowadays seems to be much more oriented towards the developing and improving

models, which are becoming more and more complex, rather than what is truly

important: the collection of data and the understanding of biological processes

Rose (1997). Few scientists are working on biology and new data; and few scientists

are in touch with the fishery and what is actually happening on the water Hilborn

(2003). For the future of stock assessment and for the correct management of the

sea, it is desirable that data stay at the centre of management procedures.
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Appendix

A.1 Chapter II
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A.2 Chapter III

A.2.1 Fully annotated code of supplementary functions called
in the mode: file INTERNAL.R

library(latticeExtra)

# function to create a generic logistic function

logistic <- function(x,x0,k) {

return(1/(1+exp(-k(x-x0))))

}

# function to create a logistic that varies in time

time_varying_logistic <- function(x,x0,k) {

M <- matrix(NA, nrow=length(x), ncol=length(x0))

for (i in 1:length(x0)){

M[,i] <- 1/(1+exp(-k(x-x0[i])))

}

return(M)

}

# gamma function

gamsel <- function(alpha,beta,len){

return((len/((alpha-1)* beta))ˆ(alpha-1)exp(alpha-1-len/beta));

}

# Von Bertalanffy growth function

Von_B <- function (L0,Linf,K,Dt){

# function returning the new length of fish of length L after timestep Dt (von

Bertalanffy growth)
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return(Linf - (Linf-L0) exp(-KDt))

}

# Length-weight conversion. Transforms a vector of lengths in a vector of weights.

# divide by 1e6 converts grams into tons

wgt_at_len <- function (L,alpha,beta,gut_wgt_conv) {

return((alpha Lˆbeta)* gut_wgt_conv1e-3)

}

# Natural mortality function transforms a vector of weigth in mortality at length.

# (Lorenzen 1996, Journal of Fish Biology 49, 627-647).

Lorenzen <- function(W, M_u, d) {

return(M_u Wˆd)

}

# I create a function for calculating the differences between pnorms, which is

# necessary in order to create some normal distribution around a length class.

# the mean of these pnorms on each column is defined by VB growth function.

The mean

# is a function and also sd is a function (Coefficient Variation 10% of the new

# destination length), as in the original model Sullivan et al.

Get_G <- function(nlen, L, Linf, K, Dt, lmax, DL, cv) {

newL <- Von_B(L0=L,Linf=Linf,K=K,Dt=Dt) # the mean of pnorm (mu)

sd <- cvnewL

G <- matrix(0,nrow=nlen,ncol=nlen)

for (j in 1:nlen) { # loop through the columns (i.e. length classes). . .

newL <- Von_B(L[j],Linf=Linf,K=K,Dt=Dt) # new mean length after timestep

Dt

G[,j] <- pnorm(L + DL, mean = newL, sd = sd) - pnorm(L, mean = newL, sd =

133



A. Appendix

sd)

}

G <- sweep(G,2,colSums(G),‘/’) # normalise column sum to 1. in order not to

loose individuals

return(G)

}

# these are the function to get recruitment. I have three different ones: one to get

the

# spawning stock biomass, one for generating the normal distribution around the

mean length

# and one for the Beverton_Holt. They are expliceted below in the right order of

application

Get_SSB_new <- function(N, Mat, W) {

SSB <- sum((Mat N) * W)

return(SSB)

}

Beverton_Holt <- function(SSB, alpha_recr, beta_recr) {

return((alpha_recr*SSB)/(beta_recr + SSB))

}

### Fully annotated code of supplementary functions called in the mode: file

FUNCTIONS.R

source(“INTERNAL.R”)

# in this document are presented the functions to get the matrices and the

# main function of the survey-landings model. The general functions, like

# the Beverton-Holt and the Von Bertalanffy etc, are soucerd through
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# INTERNAL.R.

# create the initial population, the population that exists before the model starts.

get_pop_start <-function(no_at_age,cv,nlen,DL,L0,Linf,K){

# population total of input data

tot <- sum(no_at_age)

# proportion of population at each age

pr_at_age <- no_at_age/tot

# N.B. assumes input adist starts at age 1

MaxAge <- length(no_at_age)

mean_len_at_age <- Von_B(L0,Linf,K,1:MaxAge)

# get sd of length at age assuming a constant coefficient of variation

sd_len_at_age <- cvmean_len_at_age

# vector of lengths for output

L <- seq(1,nlen,DL)

# initialise the population length distribution

ldist <- rep(0,length(L))

for (a in 1:length(no_at_age)){

# get length distribution of the cohort of age a. . .

ldist_at_age <-pnorm(L+DL,mean_len_at_age[a],sd_len_at_age[a])

-pnorm(L,mean_len_at_age[a],sd_len_at_age[a])

# add that to the population length distribution after weighting by the proportion

at the current age..

ldist <- ldist + pr_at_age[a]ldist_at_age

}

# normalise (not strictly necessary) and scale up to total population

ldist<-ldist/sum(ldist)tot

return(ldist)
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}

# function that gets the recruitment matrix

Get_R <- function(totR, muR, cv, nlen, L, DL) {

sd <- cvmuR

Rdistr <- pnorm(L + DL, mean = muR, sd = sd) - pnorm(L, mean = muR, sd =

sd)

Rdistr <- Rdistr/sum(Rdistr)

Rdistr <- RdistrtotR

return(Rdistr)

}

Get_R_stan <- function(muR, cv, nlen, L, DL) {

sd <- cvmuR

Rdistr <- pnorm(L + DL, mean = muR, sd = sd) - pnorm(L, mean = muR, sd =

sd)

Rdistr <- Rdistr/sum(Rdistr)

return(Rdistr)

}

# MODEL FUNCTION

Survey_Landings_run <- function(parms_fixed, parms_fitting) {

with(c(parms_fixed, parms_fitting), {

# create the initial population

pop_start <-get_pop_start(no_at_age, cv, nlen, DL, L0, Linf, K)

# (the sum of popstart must be equal to the sum of no_at_age)

# Growth

G <- Get_G(nlen, L, Linf, K, Dt, lmax, DL, cv)
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# Recruitment

Mat <- logistic(L,L50R,k)

# Survivorship

s <- logistic(L,L50_fish_sel,beta_fish_sel) # fishing selectivity

# outer product performs all the possible multiplication in a matrix

F <- s%o%Ft # fishing mortality at length and year

Z <- F + M # total mortality

S <- exp(-Z) # survivorship dt

# empty population matrix

N <- matrix(0,nlen,nyears)

R <- matrix(0,nlen,nyears)

SSB <- rep(0, nyears)

Survey <- matrix(0,nlen,nyears)

R[,1] <- Get_R(Rt[1], muR, cv, nlen, L, DL)

N[,1] <- R[,1] + pop_start

Survey[,1] = theta logistic(L, L50_surv_sel, beta_surv_sel)N[,1]

# model function

# Population

for(i in 1:(nyears-1)){

# recruitment

SSB[i] <- Get_SSB_new(N[,i], Mat, W)

totR <- Beverton_Holt(SSB[i], alpha_recr, beta_recr)

# model is use with Rt[i] as a first index for this function when recr is fitted

# and with totR when recr is used to generate data.

R[,i+1] <- Get_R(Rt[i+1], muR, cv, nlen, L, DL) #totR
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N[,i+1] <- G % % (N[,i] * S[,i])

Survey[,i+1] = theta* logistic(L, L50_surv_sel, beta_surv_sel)N[,i+1]

N[,i+1] <- N[,i+1] + R[,i+1]

}

# next step switch off recr and check growth. 17 cm first peak

# Generate catch data

# catch numbers at length and year

C = F/Z {1-S}N

# catch retention fraction

sD = logistic(L,L50_discard_sel,log(9)/beta_discard_sel)

# landed numbers at length and year

Landed_N = sD C

# discarded numbers

Discard_N = C-Landed_N

# total landed biomass (model expectation)

Landed_B = colSums(W * Landed_N)

# total discarded biomass (model expectation)

Discard_B = colSums(W * Discard_N)

# caught biomass

Caught_B = colSums(W * C)

# distribution of landings over lengths each year

Landed_Distr = sweep(Landed_N,2,colSums(Landed_N),‘/’)

# distribution of discards over lengths each year

Discard_Distr = sweep(Discard_N,2,colSums(Discard_N),‘/’)

Catch_Distr = sweep(C,2,colSums(C),‘/’)

Survey_Distr = sweep(Survey,2,colSums(Survey),‘/’)

return(list(N=N, C=C, sD=sD, Landed_N=Landed_N, Discard_N=Discard_N,
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Landed_B=Landed_B, Discard_B=Discard_B, Landed_Distr=Landed_Distr, Dis-

card_Distr=Discard_Distr, parms_fixed=parms_fixed, parms_fitting=parms_fitting,

Caught_B=Caught_B, Survey_Distr=Survey_Distr, sD=sD, Catch_Distr=Catch_Distr,

Survey=Survey, G=G, S=S, R=R, F=F, Z=Z, M=M, Rt=Rt, pop_start=pop_start,

SSB=SSB))

})

}

A.2.2 Fully annotated code used to generate the pseudo
data

# in this file I am plotting a time series for showing biomass and numbers of discard

and landings over years and compare with SAM output.

source(“FUNCTIONS.R”)

set.seed(38)

##### other values coming from ICES model (from 1963 till 2019) #####

# recruitment

r <- matrix(c(397633000, 650569000, 871808000, 1059734000, 891641000, 448119000,

391338000, 1319269000, 1740206000, 43186000, 635677000, 632510000, 1092931000,

75228000, 1842843000, 1122754000, 1399884000, 2254006000, 877285000, 1414554000,

784294000, 1436937000, 350975000, 1597931000, 609972000, 421805000, 733346000,

294268000, 341888000, 780266000, 395474000, 951238000, 544657000, 350372000,

1072352000,112966000, 227641000, 416935000, 152852000, 229713000, 113961000,

193972000, 154826000, 354524000, 168447000, 190527000, 183333000, 270365000,

131827000, 179746000, 223389000, 310228000, 150660000, 114185000, 320063000,

77677000, 133583000), byrow = TRUE, ncol = 1)

#### MODEL PARAMETRS ####

ymin = 1995
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ymax = 2018

# Number of years with both catch and survey data

nyears = ymax-ymin+1

# fixed parameters

parms_fixed = list(

##### GROWTH RELATED #####

DL = 1,

# maximum length represented in matrix model (cm)

lmax = 53,

# minimum length modeled

L0 = 1,

# minimum that appears in model

lmin = 8,

# Year index

years = 1:nyears,

# timestep (years)

Dt = 1,

# L_infinity

Linf = 53,

# growth rate (1/year)

K = 0.2,

# coefficient variation. estimated to be 0.1 for many biological processes

cv = 0.1,

##### RECRUITMENT RELATED #####

# L50 of the maturity ogive

L50R = 40,

# Inclination of the maturity ogive
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k = 0.14,

# mean length of recr

muR = 10.5,

# coefficient variation. estimated to be 0.1 for many biological processes

cv = 0.1,

# parameter of the Beverton-Holt

alpha_recr = 175000,

# parameter of the Beverton-Holt

beta_recr = 250,

##### SURVIVORSHIP RELATED #####

# parameter of Lorenzen

d = -0.3, # parameter of Lorenzen

M_u = 0.1,

# parameter for the weight-length conversion

alpha_wgt_len = 0.008,

# parameter for the weight-length conversion

beta_wgt_len = 3.0669,

##### GENERATE THE CATCHES AND SURVEY LENGTH-DISTR #####

# Length at which 50% of the fishery catch is retained as landings, and the other

50% is discarded

L50_discard_sel = 30,

# As above, controls the steepness of the retention fraction curve

beta_discard_sel = 7,

# sample size to scale

neff_surv = 50,

# sample size for landings
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neff_land = 50

)

# I add the derived parameters to the list

parms_fixed$ymin <- ymin

parms_fixed$ymax <- ymax

parms_fixed$nyears <- nyears

parms_fixed$L <- seq(parms_fixed$L0, parms_fixed$lmax, parms_fixed$DL)

parms_fixed$nlen <- length(parms_fixed$L)

parms_fixed$W <- wgt_at_len(parms_fixed$L, parms_fixed$alpha_wgt_len, parms_fixed$beta_wgt_len,

gut_wgt_conv = 1)

parms_fixed$M <- Lorenzen(parms_fixed$W, parms_fixed$M_u, parms_fixed$d)

# fitting parameters

parms_fitting = list(

no_at_age = c(0,1e+3,9e+02,500,200,70),

# Length at 50% fishery selectivity

L50_fish_sel = 22,

# Difference in length between fish that are 75% and 25% selected by the fishery,

betaF=L75F-L25F.

# Controls the steepness of selectivity curve.

beta_fish_sel = 0.25,

alfa_f = 2,

mode_f = 25,

# Length at 50% survey selectivity

L50_surv_sel = 12,

# As above, controls the steepness of the survey selectivity curve.

beta_surv_sel = 0.4,

142



A. Appendix

alfa_s = 3,

mode_s = 27,

# Survey catchability

q = 1,

# Vector parameters

Ft = c(0.2000000, 0.2081258, 0.3212827, 0.5513396, 0.5851095, 0.9068046, 0.9661099,

1.0161163, 1.0474364, 0.8603230, 0.8797522, 0.5865069, 0.6715918, 0.6915008, 0.4545992,

0.6859463, 0.6146628, 0.5088190, 0.5086527, 0.6975478, 0.7068113, 0.9353432, 1.0017207,

0.6231272),

Rt = r[34:57]/1e6

)

#################### MODEL ########################

# FUNCTION

Survey_Landings_trial <- function(parms_fixed, parms_fitting) {

with(c(parms_fixed, parms_fitting), {

# Growth

G <- Get_G(nlen, L, Linf, K, Dt, lmax, DL, cv)

# initial population

pop_init <-get_pop_start(no_at_age, cv, nlen, DL, L0, Linf, K)

# Survivorship

#s <- logistic(L,L50_fish_sel,beta_fish_sel) # fishing selectivity

beta_s=mode_s/(alfa_s-1)
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beta_f=mode_f/(alfa_f-1)

s <- gamsel(alfa_f,beta_f,L)

# outer product performs all the possible multiplication in a matrix

F <- s%o%Ft

Z <- F + M # total mortality

S <- exp(-Z) # survivorship dt

# Recruitment

Mat <- logistic(L,L50R,k)

# empty population matrix

N <- matrix(0,nlen,nyears)

R <- matrix(0,nlen,nyears)

Survey <- matrix(0,nlen,nyears)

R[,1] <- Get_R(Rt[1], muR, cv, nlen, L, DL)

N[,1] <- pop_init

Survey[,1] = q gamsel(alfa_s,beta_s,L)N[,1]

# Population

for(i in 1:(nyears-1)){

# recruitment

R[,i+1] <- Get_R(Rt[i+1], muR, cv, nlen, L, DL)

N[,i+1] <- G % % (N[,i] * S[,i]) + R[,i+1]

Survey[,i+1] = q* gamsel(alfa_s,beta_s,L)N[,i+1]

}

# Generate catch data

# catch numbers at length and year

C = F/Z {1-S} * N

# catch retention fraction
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sD = logistic(L,L50_discard_sel,log(9)/beta_discard_sel)

SSB=colSums(Mat * N * W)

# landed numbers at length and year

Landed_N = (sD * C)

# discarded numbers

Discard_N = C-Landed_N

# total landed biomass (model expectation)

Landed_B = colSums(W * Landed_N)/10e4

# total discarded biomass (model expectation)

Discard_B = colSums(W * Discard_N)

# caught biomass

Caught_B = colSums(W * C)

Survey_B = colSums(W * Survey)/10e4

# normalise the surveys

Survey_Distr = sweep(Survey,2,colSums(Survey),‘/’)

# distribution of landings over lengths each year

Landed_Distr = sweep(Landed_N,2,colSums(Landed_N),‘/’)

# distribution of discards over lengths each year

Discard_Distr = sweep(Discard_N,2,colSums(Discard_N),‘/’)

data_surv_distr <- matrix(0,nlen,nyears)

for (i in 1:nyears) {

# divide by three hundred and multiply

data_surv_distr[,i] <- rmultinom(1, neff_surv, Survey[,i])

data_surv_distr[,i] <- (data_surv_distr[,i]/neff_surv) * sum(Survey[,i])

}

# generate data with lognormal distribution

data_surv_biom <- matrix(0,1,nyears)

for (i in 1:nyears) {
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data_surv_biom[i] <- Survey_B[i] * rlnorm(1, 0, 0.3)

}

# output the initial population to use as initial condition in the model

pop_start <- rep(0, nlen)

pop_start <- N[,1]

return(list(N=N, C=C, G=G, sD=sD, Landed_N=Landed_N, Discard_N=Discard_N,

Landed_B=Landed_B, Discard_B=Discard_B, Landed_Distr=Landed_Distr, Dis-

card_Distr=Discard_Distr, parms_fixed=parms_fixed, parms_fitting=parms_fitting,

Caught_B=Caught_B, SSB=SSB, Survey_Distr=Survey_Distr, Survey=Survey,

data_surv_distr=data_surv_distr, Survey_B=Survey_B, data_surv_biom=data_surv_biom,

R=R, pop_start=pop_start, pop_init=pop_init))

})

}

generate_data <- Survey_Landings_trial(parms_fixed, parms_fitting)

data_surv_distr <- round(generate_data$data_surv_distr)

data_surv_biom <- as.vector(generate_data$data_surv_biom)

pop_start <- as.vector(generate_data$pop_start)

SSB <- as.vector(generate_data$SSB)

surv_biom_true <- as.vector(generate_data$Survey_B)

surv_distr_true <- as.vector(generate_data$Survey_Distr)

write.table(data_surv_distr, ‘surv_only_data_surv_distr.txt’)

write.table(data_surv_biom, ‘surv_only_data_surv_biom.txt’)

write.table(pop_start, ‘surv_only_pop_start.txt’)

write.table(surv_biom_true, ‘surv_only_surv_biom_true.txt’)

write.table(surv_distr_true, ‘surv_only_surv_distr_true.txt’)

write.table(SSB, ‘surv_only_SSB.txt’)
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### Fully annotated R code of the full model tested on pseudo data

#source(“GENERATE DATA.R”)

source(“FUNCTIONS.R”)

library(rstan)

#### FIXED PARAMETERS AND DATA ####

#### RECR VALUES ####

r <- matrix(c(397633000, 650569000, 871808000, 1059734000, 891641000, 448119000,

391338000, 1319269000, 1740206000, 43186000, 635677000, 632510000, 1092931000,

75228000, 1842843000, 1122754000, 1399884000, 2254006000, 877285000, 1414554000,

784294000, 1436937000, 350975000, 1597931000, 609972000, 421805000, 733346000,

294268000, 341888000, 780266000, 395474000, 951238000, 544657000, 350372000,

1072352000, 112966000, 227641000, 416935000, 152852000, 229713000, 113961000,

193972000, 154826000, 354524000, 168447000, 190527000, 183333000, 270365000,

131827000, 179746000, 223389000, 310228000, 150660000, 114185000, 320063000,

77677000, 133583000), byrow = TRUE, ncol = 1)

#### PARAMETERS ####

# many parameters of this block are not used directly in the model in stan, but

rather used in

# functions to calculate values that will enter the stan model as parameters.

ymin = 1989 # first year of data

ymax = 2008 # last year of data

y_land = 2008

y_D_beta = 2011

nyears = ymax-ymin+1 # number of years

nyears_land = ymax-y_land+1

nyears_D_beta_pre2011 = ymax-y_D_beta+1

Dt = 1 # timestep
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L0 = 1 # minimum length modeled

lmax = 66 # maximum length modeled

DL = 1 # length class width

L = L0:lmax

# coefficient variation (used to calculate the sd around length class)

cv = 0.1

nlen = length(L) # number of length classes

alpha_wgt_len = 0.0093 # alpha in length-weight conversion

beta_wgt_len = 2.9456 # beta in length-weight conversion

M_u = 0.1 # parameter in natural mortality

d = -0.3 # parameter in natural mortality

L50_Mat = 40 # L50 of the maturity logistic

L25_Mat = 0.14 # steepness of the maturity logistic

muR = 12.7 # mean length of the recruitment

# call to functions to calculate derived fixed parameters

W = wgt_at_len(L, alpha_wgt_len, beta_wgt_len) # vector of weight at length

M = Lorenzen(W, M_u, d) # natural mortality at length

Mat = logistic(L,L50_Mat,L25_Mat) # maturity at length

R_distr = Get_R_stan(muR, cv, nlen, L, DL) # probability of recruitment length

#### DATA ####

data_disc_biom <- read.table(‘data_disc_biom_whiting.txt’)

data_land_biom <- read.table(‘data_land_biom_whiting.txt’)

data_surv_biom <- read.table(‘data_surv_biom_whiting.txt’)

data_surv_distr <- read.table(‘data_surv_distr_whiting.txt’)

data_surv_distr[is.na(data_surv_distr)] <- 0
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data_land_distr <- round(read.table(‘data_land_distr_whiting.txt’))

#### LIST THAT IMPUTS THE DATA ####

input.data = list(

# see above for definitions

#~~~~~ PARAMETERS ~~~~~

# TIME

nyears = nyears,

# GROWTH

nlen = nlen,

L = L,

W = W,

Dt = 1, # timestep

L0 = 1, # minimum length modeled

lmax = 66, # maximum length modeled

DL = 1, # length class width

Linf = 38, # maximum length for the Von Bertalanffy

# RECRUITMENT

# R_distr = R_distr,

# used only in generated quantities (a posteriori calculations)

Mat = Mat,

# SURVIVORSHIP

M = M,

q = 0.9,

# EFFECTIVE SAMPLE SIZE

neff_surv = 1000, # effective sample size of the survey

neff_land = 1000,

# discard selectivity
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L25_disc_sel = 22, # L25 of the discard selectivity

L50_disc_sel = 27, # L50 of the discard selectivity

#~~~~ DATA ~~~~

data_land_distr = as.matrix(data_land_distr),

data_surv_distr = as.matrix(data_surv_distr),

data_surv_biom = data_surv_biom[,1],

data_land_biom = data_land_biom[,1],

data_disc_biom = data_disc_biom[,1],

#~~~~ FITTING PARAMETERS BOUNDS ~~~~~

Rt_mean = log(200),# lower bound for Rt

Rt_sd = log(200000), # Upper bound for Rt

q_mean = 0,

q_sd = 2,

L50_fish_sel_mean = 5,

L50_fish_sel_sd = 35,

beta_fish_sel_mean = 0,

beta_fish_sel_sd = 3,

L50_surv_sel_mean = 5,

L50_surv_sel_sd = 20,

beta_surv_sel_mean = 0,

beta_surv_sel_sd = 3,

L50_surv_sel_bounds = c(2,40),

beta_surv_sel_bounds = c(0.1,3),

Ft_bounds = c(0.01,3),

sd_Ft_bounds = c(0.01,2),

sd_surv_biom_bounds = c(0,50),

sd_disc_biom_bounds = c(0,50),

sd_land_biom_bounds = c(0,50),
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NS1_mean=mean(log(2colSums(as.matrix(data_land_distr)))),

NS1_sd=0.9,

alpha=rep(1,nlen),

rd_lim=c(5,20),

rd_sd_lim=c(.1,20),

lf=c(1:nlen),

cv_bounds = c(0.01,0.9),

K_bounds = c(0.01,0.9),

L_bound=c(38,.338),

D_beta_bounds = c(0,900)

# steepness of the discard selectivity

#L25_disc_sel_bounds = c(5,40),

# L50 of the discard selectivity

#L50_disc_sel_bounds = c(5,50)

)

#### FITTING PARAMETERS ####

# initial values

inits1 <- list(

#Rt = rep((250),(nyears)), # recruitment per year

Rt=log(colSums(data_surv_distr[1:15,]*3)),

Ft = c(0.1,rep(0.5,(nyears-1))), # fishing effort per year

beta_surv_sel = 0.2, # steepness of the survey selectivity

L50_surv_sel = 10, # L50 of the survey selectivity

L50_fish_sel = 23, # L50 of fishing selectivity curve

beta_fish_sel = 0.19, # steepness of fishing selectivity curve

q =(0.1), # survey catchability

sd_surv_biom=0.6, # error around the survey biomass

sd_land_biom=0.2, #error around the landings biomass
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sd_disc_biom=0.6,

sd_Ft=0.2,

NS1=exp(input.data$NS1_mean),

LF1_distr=(data_land_distr[,1]+1)/sum(data_land_distr[,1]+1),

R_distr_mean=12,

R_distr_sd=1.2,

cv = 0.1,

K = 0.1,

Linf=38,

D_beta_pre2011=c(50,50),

D_beta_post2011=c(50,50)

)

inits2<-inits3<-inits1

iter<-30000

chains<-3

thin<-300

model<-“whiting_slam_v4.02_DM.stan”

init<-list(inits1,inits2,inits3)#

t1<-Sys.time()

fitted <- stan(file = model, data = input.data, thin=thin, diagnostic_file = “pa-

rameter values”,

init=init, cores=4, seed = “38”, #algorithm = “Fixed_param”,

iter =iter, chains = chains, verbose=FALSE, init_r=.5)

t2<-Sys.time()

t2-t1
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A.2.3 Fully annotated Stan code of the full model tested
on pseudo data

functions {

// function to calculate log probability for a Dirichlet-multinomial distribution

real DM_lpmf(int [] n, vector alpha) {

int N = sum(n);

real A = sum(alpha);

return lgamma(A) - lgamma(N + A)

+ sum(lgamma(to_vector(n) + alpha))

- sum(lgamma(alpha));

}

}

// data and fixed parameters

data {

int nyears; // number of years

real Dt; // time step

real L_bound[2]; // bounds on Linf

real DL; // length bin size

int nlen; // number of length bins

vector[nlen] W; // weight at length vector

vector[nlen] L; // length classes

vector[nlen] alpha; // Dirichlet parameter vector

vector[nlen] M; // natural mortality

vector[nlen] sD; // discard selection at length

vector[nlen] Mat; // maturity

// bounds for survey q

real q_mean;

real q_sd;

// values for fishery selection parameter priors,
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real L50_fish_sel_mean;

real L50_fish_sel_sd;

real beta_fish_sel_mean;

real beta_fish_sel_sd;

// values for survey selection parameter priors

real L50_surv_sel_mean;

real L50_surv_sel_sd;// = 0.3,

real beta_surv_sel_mean;// = 0.25,

real beta_surv_sel_sd;// = 0.1,

// values for prior on initial population survivors

real NS1_mean;

real NS1_sd;

// observations

int data_land_distr[nlen,nyears]; // landings number at length

int data_surv_distr[nlen,nyears]; // survey number at length

real data_surv_biom[nyears]; // survey biomass

real data_land_biom[nyears]; // landings biomass

// effective sample sizes for survey and landings distributions

int neff_surv;

int neff_land;

// Bounds for prior on growth parameters

real K_bounds[2];

real cv_bounds[2];

// Bounds for prior on recruitment

real Rt_mean;

real Rt_sd;

// bounds or prior on Ft

real Ft_bounds[2];

// bounds for prior on suvey biomass

real sd_surv_biom_bounds[2];
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// bounds for std dev prior on landings observations

real sd_land_biom_bounds[2];

// bounds for std dev process error on Ft

real sd_Ft_bounds[2];

// bounds of priors on recruitment distribution parameters

real rd_lim[2]; // bounds for mean of distribution

real rd_sd_lim[2]; // bounds for sd of distribution

}

// end block

transformed data {

int data_land_scaled[nlen,nyears];

int data_surv_scaled[nlen,nyears];

// re-scale survey distribution to effectove sample size

for (l in 1:nlen){

for (y in 1:nyears){

data_surv_scaled[l,y] = data_surv_distr[l,y]*

neff_surv/sum(data_surv_distr[,y]);

}

}

// re-scale landings distribution to effective sample size

for (l in 1:nlen){

for (y in 1:nyears){

data_land_scaled[l,y] = data_land_distr[l,y]*

neff_land/sum(data_land_distr[,y]);

}

}

}

// end block
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// fitting parameters

// see R document for definitions

parameters {

vector[nyears] Rt; // Annual recruitment

vector[nyears] Ft; // Annual fishing mortality year effect

simplex[nlen] LF1_distr; // proportion at length surviving in first year

real NS1; // total number of survivirs in first year

real sd_surv_biom; //observation error on survey biomass

real sd_land_biom; // observation error on landings biomass

real sd_Ft; // process error on fishing morality year effect

// growth parameters

real cv;

real K;

real Linf;

// survey slectivity parameters

real L50_surv_sel;

real beta_surv_sel;

// fishery selectivity parameters

real L50_fish_sel;

real beta_fish_sel;

// survey catchability

real q;

// recruitment length frequency parameters

real R_distr_mean;

real R_distr_sd;

// Dirichlet scalar

real D_beta[2];

}

// end block
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transformed parameters {

matrix[nlen, nlen] G; // growth projection matrix

vector[nlen] newL;

vector[nlen] sd_growth;

vector[nlen] s; // fishing selectivity curve

matrix[nlen, nyears] F; // fishing mortality matrix

matrix[nlen, nyears] Z; // total mortality matrix

matrix[nlen, nyears] S; // survival matrix

matrix[nlen, nyears] N; // population matrix

vector[nlen] NS; // population matrix * survival matrix

// survey proportion at length x years

matrix[nlen, nyears] Survey_Distr;

// survey numbers at length x years

matrix[nlen, nyears] Survey;

// landings proportion at length x years

matrix[nlen, nyears] Land_Distr;

// caught numbers at length x years

matrix[nlen, nyears] Catches;

// discarded numbers at length x years

matrix[nlen, nyears] Discard;

// landed numbers at length x years

matrix[nlen, nyears] Landings;

// biomass landed per length per year

matrix[nlen, nyears] Landings_biom_xlen;

// total biomass landed per year

vector[nyears] Land_Biomass;

// biomass surveyed per length per year

matrix[nlen, nyears] Survey_biom_xlen;
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// total biomass surveyed per year

vector[nyears] Surv_Biomass;

// recruitmet length frequency distribution

vector[nlen] R_distr;

// calculate recruitment length distribution from a normal distribution

for(i in 1:nlen){

R_distr[i] = normal_cdf(L[i]+DL,R_distr_mean,R_distr_sd)-

normal_cdf(L[i],R_distr_mean,R_distr_sd);

}

// construct initial population from survivors in initial year and recruitment

for(l in 1:nlen){

N[l,1]=NS1* LF1_distr[l]+ (Rt[1])R_distr[l];

}

newL = Linf - (Linf-L) exp(-KDt);

for (l in 1:nlen) {

sd_growth[l] = cv newL[l];

}

for (y in 1:nlen){

for (l in 1:nlen) {

G[l,y] = normal_cdf(L[l]+DL,newL[y],sd_growth[l])-

normal_cdf(L[l],newL[y],sd_growth[l]);

}

}

for (y in 1:nlen){

for (l in 1:nlen) {

G[l,y] = G[l,y] / sum(G[,y]);

}

}
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// define S: survival at length

s = 1 ./ (1+exp(-beta_fish_sel(L-L50_fish_sel)));

for (l in 1:nlen) {

for (y in 1:nyears) {

F[l,y] = s[l] Ft[y];

Z[l,y] = F[l,y] + M[l];

}

}

S = exp(-(Z));

// Calculate survivors into the next year

for (y in 1:(nyears-1)) {

for (l in 1:nlen) {

NS[l] = N[l,y] * S[l,y];

}

// Project the population at length one year ahead from suvivors and growth matrix

N[,y+1] = G * NS; // double check with length distribution plot

for (l in 1:nlen) {

N[l,y+1] = N[l,y+1] + (Rt[y+1])

R_distr[l]; // note Rt is on a log scale

}

}

// Calculate fitted survey numbers at length from catchability q and survey size

selection

for (y in 1:nyears){

for (l in 1:nlen){

Survey[l,y] = q N[l,y]/ (1+exp(-beta_surv_sel(L[l]-L50_surv_sel))); }

}

// calculate discard, catches and landings

// catch numbers at length and year

Catches = F ./ Z . (1-S) .* N;
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for (l in 1:nlen) {

for (y in 1:nyears) {

// landings dervided from a retention ogive sD

Landings[l,y] = sD[l] * Catches[l,y];

}

}

Discard = Catches - Landings; // discarded numbers

for (y in 1:nyears) {

for (l in 1:nlen) {

// landed weight at length and year

Landings_biom_xlen[l,y] = W[l] * Landings[l,y];

}

Land_Biomass[y] = sum(Landings_biom_xlen[,y])/10e4;

}

for (y in 1:nyears) {

for (l in 1:nlen) {

// survey weight at length and year

Survey_biom_xlen[l,y] = W[l] * Survey[l,y];

}

// fitted survey biomass

Surv_Biomass[y] = sum(Survey_biom_xlen[,y])/10e4;

}

// calculate fitted landing and survey length frequency

for (y in 1:nyears) {

for (l in 1:nlen) {

Land_Distr[l,y] = Landings[l,y] / sum(Landings[,y]);

Survey_Distr[l,y] = Survey[l,y] / sum(Survey[,y]);
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}

}

}

// end block

model {

// Priors

// Fishing mortality year effect in first year

Ft[1]~uniform(Ft_bounds[1],Ft_bounds[2]);

// Annual recruitment

for (y in 1:(nyears)) {

Rt[y]~uniform(Rt_mean,Rt_sd);

}

// total survivors in first year

NS1~lognormal(NS1_mean,NS1_sd);

//survivors proportion at length

LF1_distr~dirichlet(alpha);

// survey catcability

q~uniform(q_mean,q_sd);

// fishery and survey selection parameters

beta_surv_sel~uniform(beta_surv_sel_mean, beta_surv_sel_sd);

L50_surv_sel~uniform(L50_surv_sel_mean, L50_surv_sel_sd);

L50_fish_sel~uniform(L50_fish_sel_mean, L50_fish_sel_sd);

beta_fish_sel~uniform(beta_fish_sel_mean, beta_fish_sel_sd);

// growth parameters

cv~uniform(cv_bounds[1],cv_bounds[2]);

K~uniform(K_bounds[1],K_bounds[2]);

Linf~normal(L_bound[1],L_bound[2]);

// Dirichlet scalar

D_beta~uniform(0,1000);
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// observation errors

sd_land_biom~uniform(sd_land_biom_bounds[1],sd_land_biom_bounds[2]);

sd_surv_biom~uniform(sd_surv_biom_bounds[1],sd_surv_biom_bounds[2]);

// process error on fishing mortality

sd_Ft~uniform(sd_Ft_bounds[1],sd_Ft_bounds[2]);

// recruitmnet proiportins at length

R_distr_mean~uniform(rd_lim[1],rd_lim[2]);

R_distr_sd~uniform(rd_sd_lim[1],rd_sd_lim[2]);

// construct a randon walk for fishing mortality

for (y in 1:(nyears-1)) {

Ft[y+1]~lognormal(log(Ft[y]),sd_Ft);

}

// Likelihoods

for(y in 1:(nyears)){

// biomass observations

data_surv_biom[y]~lognormal(log(Surv_Biomass[y]),sd_surv_biom);

data_land_biom[y]~lognormal(log(Land_Biomass[y]),sd_land_biom);

// length frequency observations

target+=DM_lpmf(data_surv_scaled[,y]|Survey_Distr[,y]D_beta[1]);

target+=DM_lpmf(data_land_scaled[,y]|Land_Distr[,y]D_beta[2]);

}

}

// end block

generated quantities {

matrix[nlen,nyears] SSB_Mat;

vector[nyears] SSB;

vector[nyears] Discard_Biomass;

vector[nyears] Caught_Biomass;

matrix[nlen, nyears] Catches_biom_xlen;
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matrix[nlen, nyears] Discard_biom_xlen;

matrix[nlen, nyears] Catch_Distr;

matrix[nlen, nyears] Discard_Distr;

real eff_smpl_size[2]; // effective sample size

// Distribution of the catches and of the discard

for (y in 1:nyears) {

for (l in 1:nlen) {

Discard_Distr[l,y] = Discard[l,y] / sum(Discard[,y]);

Catch_Distr[l,y] = Catches[l,y] / sum(Catches[,y]);

}

}

// Discard and Catches weight

for (y in 1:nyears) {

for (l in 1:nlen) {

// landed numbers at length and year

Catches_biom_xlen[l,y] = W[l] * Catches[l,y];

}

Caught_Biomass[y] = sum(Catches_biom_xlen[,y]);

}

for (y in 1:nyears) {

for (l in 1:nlen) {

// landed numbers at length and year

Discard_biom_xlen[l,y] = W[l] * Discard[l,y];

}

Discard_Biomass[y] = sum(Discard_biom_xlen[,y]);

}

// Spawning Stock Biomass (SSB)

for (y in 1:nyears) {

for (l in 1:nlen) {
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SSB_Mat[l,y] = Mat[l] * N[l,y]; // caught biomass

}

}

for (y in 1:nyears) {

for (l in 1:nlen) {

SSB_Mat[l,y] = SSB_Mat[l,y] * W[l]; // caught biomass

}

}

for (y in 1:nyears) {

SSB[y] = sum(SSB_Mat[,y]);

}

// calculate effective sample size

eff_smpl_size[1]=neff_surv* (1+D_beta[1])/(neff_surv+D_beta[1]);

eff_smpl_size[2]=neff_land* (1+D_beta[2])/(neff_land+D_beta[2]);

}

// end block
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A.2.4 Supplementary plots: Full model
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Figure A.1: Chapter III full model - Trace plot for some of the most important
parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel, βfsel, L∞, K, µR, σR
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Figure A.2: Chapter III full model - Posterior distribution of the most important
parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel, βfsel, L∞, K, µR, σR
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Figure A.3: Chapter III full model - Trace plot for some of the most important
parameters: σF t, q1, q2, modessel1, modessel2, αssel1, αssel2, Dβ1, Dβ
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Figure A.4: Chapter III full model - Posterior distribution of the most important
parameters: σF t, q1, q2, modessel1, modessel2, αssel1, αssel2, Dβ1, Dβ
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### Survey only

### Fully annotated R code of the survey only model tested on pseudo data

source(“FUNCTIONS.R”)

library(rstan)

#### FIXED PARAMETERS AND DATA ####

#### RECR VALUES ####

r <- matrix(c(397633000, 650569000, 871808000, 1059734000, 891641000, 448119000,

391338000, 1319269000, 1740206000, 43186000, 635677000, 632510000, 1092931000,

75228000, 1842843000, 1122754000, 1399884000, 2254006000, 877285000, 1414554000,

784294000, 1436937000, 350975000, 1597931000, 609972000, 421805000, 733346000,

294268000, 341888000, 780266000, 395474000, 951238000, 544657000, 350372000,

1072352000, 112966000, 227641000, 416935000, 152852000,229713000, 113961000,

193972000, 154826000, 354524000, 168447000, 190527000, 183333000, 270365000,

131827000, 179746000, 223389000, 310228000, 150660000, 114185000, 320063000,

77677000, 133583000), byrow = TRUE, ncol = 1)

r = r[34:57]/1e6

#### PARAMETERS ####

# many parameters of this block are not used directly in the model in stan, but

rather used in

# functions to calculate values that will enter the stan model as parameters.

ymin = 1995 # first year of data

ymax = 2018 # last year of data

nyears = ymax-ymin+1 # number of years

Dt = 1 # timestep

L0 = 1 # minimum length modeled

lmax = 53 # maximum length modeled

DL = 1 # length class width

Linf = 53 # maximum length for the Von Bertalanffy

L = L0:lmax

Linf = 53 # maximum length for the Von Bertalanffy
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L = L0:lmax

K = 0.2 # K for the Von Bertalanffy

# coefficient variation (used to calculate the sd around length class)

cv = 0.1

nlen = length(L) # number of length classes

alpha_wgt_len = 0.008 # alpha in length-weight conversion

beta_wgt_len = 3.0669 # beta in length-weight conversion

M_u = 0.1 # parameter in natural mortality

d = -0.3 # parameter in natural mortality

L50Mat = 40 # L50 of the maturity logistic

kMat = 0.14 # steepness of the maturity logistic

beta_discard_sel = 7 # steepness of the discard selectivity

L50_discard_sel = 30 # L50 of the discard selectivity

muR = 10.5 # mean length of the recruitment

# call to functions to calculate derived fixed parameters

# vector of weight at length

W = wgt_at_len(L, alpha_wgt_len, beta_wgt_len, gut_wgt_conv = 1)

M = Lorenzen(W, M_u, d) # natural mortality at length

Mat = logistic(L,L50Mat,kMat) # maturity at length

# probability of discard at length

sD = 1 / (1+exp(-log(9)/beta_discard_sel(L-L50_discard_sel)))

alfa_s = 3

mode_s = 27

beta_s=mode_s/(alfa_s-1)

sS = gamsel(alfa_s,beta_s,L)

# probability of recruitment length

R_distr = Get_R_stan(muR, cv, nlen, L, DL)

#### DATA ####

# survey length distribution, total number at length
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data_surv_distr <- (read.table(‘surv_only_data_surv_distr.txt’))

data_surv_biom <- read.table(‘surv_only_data_surv_biom.txt’)

#### LIST THAT IMPUTS THE DATA ####

input.data = list(

# see above for definitions

#~~~~ PARAMETERS ~~st

# TIME

nyears = nyears,

# GROWTH

nlen = nlen,

L = L,

W = W,

Dt = 1, # timestep

L0 = 1, # minimum length modeled

lmax = 53, # maximum length modeled

DL = 1, # length class width

Linf = 53, # maximum length for the Von Bertalanffy

# RECRUITMENT

Mat = Mat, # used only in generated quantities (a posteriori calculations)

# SURVIVORSHIP

M = M,

sD = sD,

sS = sS,

q = 1,

# EFFECTIVE SAMPLE SIZE

neff_surv = 100, # effective sample size of the survey

neff_land = 100,

#~~ DATA ~st

data_surv_distr = as.matrix(data_surv_distr),

data_surv_biom = data_surv_biom[,1],
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#~~ FITTING PARAMETERS BOUNDS ~~~

Rt_mean = (70),# lower bound for Rt

Rt_sd = (1500), # Upper bound for Rt

#L50_fish_sel_mean = 5,

#L50_fish_sel_sd = 50,

mode = 27,

Ft_bounds = c(0.01,.5),

sd_Ft_bounds = c(0.01,2),

sd_surv_biom_bounds = c(0,1),

sd_land_biom_bounds = c(0,1),

NS1_mean=mean(log(2 colSums(as.matrix(data_surv_distr)))),

NS1_sd=0.9,

alpha=rep(1,nlen),

rd_lim=c(5,20),

rd_sd_lim=c(.1,20),

lf=c(1:nlen),

cv_bounds = c(0.01,0.9),

K_bounds = c(0.01,0.9),

L_bound=c(50,0.3*50),

alfa_bounds=c(2.4,0.2)

#beta_fish_sel_mean = 0.1,

#beta_fish_sel_sd = 0.9 # steepness of fishing selectivity curve

)

#### FITTING PARAMETERS ####

# initial values

inits1 <- list(

#Rt = rep((250),(nyears)),

Rt=(r),

Ft = c(0.1,rep(0.5,(nyears-1))), # fishing effort per year
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#L50_fish_sel= 20, # L50 of fishing selectivity curve

sd_surv_biom=0.6, # error around the survey biomass

sd_Ft=0.2,

#beta_fish_sel=0.3,

alfa = 2.5,

NS1=exp(input.data$NS1_mean),

LF1_distr=(data_surv_distr[,1]+1)/sum(data_surv_distr[,1]+1),

R_distr_mean=12,

R_distr_sd=1.2,

cv = 0.1,

K = 0.1,

Linf=55,

D_beta=500

)

inits2<-inits3<-inits1

iter<-30000

chains<-3

thin<-300

model<-“slam_v5.stan”

init<-list(inits1,inits2,inits3)

t1<-Sys.time()

fitted0 <- stan(file = model, data = input.data, thin=thin, diagnostic_file =

“parameter values”, init=init, cores=4, seed = “38”, iter =iter, chains = chains,

verbose=FALSE, init_r=.5)

t2<-Sys.time()
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A.2.5 Fully annotated Stan code of the survey only model
tested on pseudo data

functions {

// function to calculate log probability for a Dirichlet-multinomial distribution

real DM_lpmf(int [] n, vector alpha) {

int N = sum(n);

real A = sum(alpha);

return lgamma(A) - lgamma(N + A)

+ sum(lgamma(to_vector(n) + alpha))

- sum(lgamma(alpha));

}

real gamsel(real alpha,real beta,real len){

return((len/((alpha-1)* beta))ˆ(alpha-1)* exp(alpha-1-len/beta));

}

}

// data and fixed parameters

data {

int nyears; // number of years

real Dt; // time step

real L_bound[2]; // bounds on Linf

real DL; // length bin size

int nlen; // number of length bins

vector[nlen] W; // weight at length vector

vector[nlen] L; // length classes

vector[nlen] alpha; // Dirichlet parameter vector

vector[nlen] M; // natural mortality

vector[nlen] sD; // discard selection at length

real sS[nlen];

vector[nlen] Mat; // maturity
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// values for fishery selection parameter priors,

//real beta_fish_sel_mean;

//real beta_fish_sel_sd;

//real L50_fish_sel_mean;

//real L50_fish_sel_sd;

real mode;

real alfa_bounds[2];

// values for prior on initial population survivors

real NS1_mean;

real NS1_sd;

// observations

int data_surv_distr[nlen,nyears]; // survey number at length

real data_surv_biom[nyears]; // survey biomass

// effective sample sizes for survey and landings distributions

int neff_surv;

// Bounds for prior on growth parameters

real K_bounds[2];

real cv_bounds[2];

// Bounds for prior on recruitment

real Rt_mean;

real Rt_sd;

// bounds or prior on Ft

real Ft_bounds[2];

175



A. Appendix

// bounds for prior on suvey biomass

real sd_surv_biom_bounds[2];

// bounds for std dev process error on Ft

real sd_Ft_bounds[2];

// bounds of priors on recruitment distribution parameters

real rd_lim[2]; // bounds for mean of distribution

real rd_sd_lim[2]; // bounds for sd of distribution

}

// end block

transformed data {

int data_surv_scaled[nlen,nyears];

// re-scale survey distribution to effectove sample size

for (l in 1:nlen){

for (y in 1:nyears){

data_surv_scaled[l,y] = data_surv_distr[l,y]* neff_surv/sum(data_surv_distr[,y]);

}

}

}

// end block

// fitting parameters

// see R document for definitions

parameters {

vector[nyears] Rt; // Annual recruitment

vector[nyears] Ft; // Annual fishing mortality year effect

simplex[nlen] LF1_distr; // proportion at length surviving in first year
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real NS1; // total number of survivirs in first year

real sd_surv_biom; //observation error on survey biomass

real sd_land_biom; // observation error on landings biomass

real sd_Ft; // process error on fishing morality year effect

real alfa;

// growth parameters

real cv;

real K;

real Linf;

// fishery selectivity parameters

real L50_fish_sel;

real beta_fish_sel;

// recruitment length frequency parameters

real R_distr_mean;

real R_distr_sd;

// Dirichlet scalar

real D_beta;

}

// end block

// place here anything for which you want to plot a posterior distribution.

// The actual ecologycal model must go here.

transformed parameters {

matrix[nlen, nlen] G; // growth projection matrix

vector[nlen] newL;

vector[nlen] sd_growth;
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vector[nlen] s; // fishing selectivity curve

matrix[nlen, nyears] F; // fishing mortality matrix

matrix[nlen, nyears] Z; // total mortality matrix

matrix[nlen, nyears] S; // survival matrix

matrix[nlen, nyears] N; // population matrix

vector[nlen] NS; // population matrix * survival matrix

// survey proportion at length x years

matrix[nlen, nyears] Survey_Distr;

// survey numbers at length x years

matrix[nlen, nyears] Survey;

// landings proportion at length x years

matrix[nlen, nyears] Land_Distr;

// caught numbers at length x years

matrix[nlen, nyears] Catches;

// discarded numbers at length x years

matrix[nlen, nyears] Discard;

// landed numbers at length x years

matrix[nlen, nyears] Landings;

// biomass landed per length per year

matrix[nlen, nyears] Landings_biom_xlen;

// total biomass landed per year

vector[nyears] Land_Biomass;

// biomass surveyed per length per year

matrix[nlen, nyears] Survey_biom_xlen;

// total biomass surveyed per year

vector[nyears] Surv_Biomass;

// recruitmet length frequency distribution

vector[nlen] R_distr;

real beta;
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// calculate recruitment length distribution from a normal distribution

for(i in 1:nlen){

R_distr[i] = normal_cdf(L[i]+DL,R_distr_mean,R_distr_sd)-

normal_cdf(L[i],R_distr_mean,R_distr_sd);

}

// construct initial population from survivors in initial year and recruitment

for(l in 1:nlen){

N[l,1]=NS1* LF1_distr[l]+exp(Rt[1])R_distr[l];

}

newL = Linf - (Linf-L) exp(-KDt);

for (l in 1:nlen) {

sd_growth[l] = cv newL[l];

}

for (y in 1:nlen){

for (l in 1:nlen) {

G[l,y] = normal_cdf(L[l]+DL,newL[y],sd_growth[l])-

normal_cdf(L[l],newL[y],sd_growth[l]);

}

}

for (y in 1:nlen){

for (l in 1:nlen) {

G[l,y] = G[l,y] / sum(G[,y]);

}

}

// define S: survival at length

//s = 1 ./ (1+exp(-beta_fish_sel(L-(L50_fish_sel))));

beta=mode/(alfa-1);

for (l in 1:nlen) {

for (y in 1:nyears) {

s[l] = gamsel(alfa,beta,L[l]);
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F[l,y] = s[l] Ft[y];

Z[l,y] = F[l,y] + M[l];

}

}

S = exp(-(Z));

// Calculate survivors into the next year

for (y in 1:(nyears-1)) {

for (l in 1:nlen) {

NS[l] = N[l,y] * S[l,y];

}

// Project the population at length one year ahead from suvivors and growth matrix

N[,y+1] = G * NS; // double check with length distribution plot

for (l in 1:nlen) {

// note Rt is on a log scale

N[l,y+1] = N[l,y+1] + exp(Rt[y+1])R_distr[l];

}

}

// Calculate fitted survey numbers at length from catchability q and survey size

selection

for (y in 1:nyears){

for (l in 1:nlen){

Survey[l,y] = N[l,y]sS[l];

}

}

// calculate discard, catches and landings

// catch numbers at length and year

Catches = F ./ Z .* (1-S) .* N;

for (y in 1:nyears) {

for (l in 1:nlen) {
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// survey weight at length and year

Survey_biom_xlen[l,y] = W[l] * Survey[l,y];

}

// fitted survey biomass

Surv_Biomass[y] = sum(Survey_biom_xlen[,y])/10e4;

}

// calculate fitted landing and survey length frequency

for (y in 1:nyears) {

for (l in 1:nlen) {

Survey_Distr[l,y] = Survey[l,y] / sum(Survey[,y]);

}

}

}

// end block

model {

// Priors

// Fishing mortality year effect in first year

Ft[1]~uniform(Ft_bounds[1],Ft_bounds[2]);

// Annual recruitment

for (y in 1:(nyears)) {

Rt[y]~uniform(Rt_mean,Rt_sd);

}

// total survivors in first year

NS1~lognormal(NS1_mean,NS1_sd);

//survivors proportion at length

LF1_distr~dirichlet(alpha);

// fishery and survey selection parameters
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//L50_fish_sel~uniform(L50_fish_sel_mean,L50_fish_sel_sd);

//beta_fish_sel~uniform(beta_fish_sel_mean,beta_fish_sel_sd);

alfa~lognormal(log(alfa_bounds[1]),alfa_bounds[2]);

// growth parameters

cv~uniform(cv_bounds[1],cv_bounds[2]);

K~uniform(K_bounds[1],K_bounds[2]);

Linf~normal(L_bound[1],L_bound[2]);

// Dirichlet scalar

D_beta~uniform(0,1000);

// observation errors

sd_surv_biom~uniform(sd_surv_biom_bounds[1],sd_surv_biom_bounds[2]);

// process error on fishing mortality

sd_Ft~uniform(sd_Ft_bounds[1],sd_Ft_bounds[2]);

// recruitmnet proiportins at length

R_distr_mean~uniform(rd_lim[1],rd_lim[2]);

R_distr_sd~uniform(rd_sd_lim[1],rd_sd_lim[2]);

// construct a randon walk for fishing mortality

for (y in 1:(nyears-1)) {

Ft[y+1]~lognormal(log(Ft[y]),sd_Ft);

}

// Likelihoods

for(y in 1:(nyears)){

// biomass observations

data_surv_biom[y]~lognormal(log(Surv_Biomass[y]),sd_surv_biom);

// length frequency observations

target+=DM_lpmf(data_surv_scaled[,y]|Survey_Distr[,y]*D_beta);

}

}
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// end block

generated quantities {

matrix[nlen,nyears] SSB_Mat;

vector[nyears] SSB;

vector[nyears] Discard_Biomass;

vector[nyears] Caught_Biomass;

matrix[nlen, nyears] Catches_biom_xlen;

matrix[nlen, nyears] Discard_biom_xlen;

matrix[nlen, nyears] Catch_Distr;

matrix[nlen, nyears] Discard_Distr;

real eff_smpl_size; // effective sample size

// Distribution of the catches and of the discard

for (y in 1:nyears) {

for (l in 1:nlen) {

Discard_Distr[l,y] = Discard[l,y] / sum(Discard[,y]);

Catch_Distr[l,y] = Catches[l,y] / sum(Catches[,y]);

}

}

// Discard and Catches weight

for (y in 1:nyears) {

for (l in 1:nlen) {

// landed numbers at length and year

Catches_biom_xlen[l,y] = W[l] * Catches[l,y];

}

Caught_Biomass[y] = sum(Catches_biom_xlen[,y]);

}

for (y in 1:nyears) {

for (l in 1:nlen) {
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// landed numbers at length and year

Discard_biom_xlen[l,y] = W[l] * Discard[l,y];

}

Discard_Biomass[y] = sum(Discard_biom_xlen[,y]);

}

// Spawning Stock Biomass (SSB)

for (y in 1:nyears) {

for (l in 1:nlen) {

// caught biomass

SSB_Mat[l,y] = Mat[l] * N[l,y];

}

}

for (y in 1:nyears) {

for (l in 1:nlen) {

// caught biomass

SSB_Mat[l,y] = SSB_Mat[l,y] * W[l];

}

}

for (y in 1:nyears) {

SSB[y] = sum(SSB_Mat[,y]);

}

// calculate effective sample size

eff_smpl_size=neff_surv*(1+D_beta)/(neff_surv+D_beta);

}

// end block
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A.2.6 Supplementary plots: survey only model
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Figure A.5: Chapter III survey only model - Trace plots for some example
parameters: µR, σR, L∞, K, cv, αfsel, σsbiom, σF t, NS1
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Figure A.6: Chapter III survey only model - Plot showing the posterior for some
example parameters: µR, σR, L∞, K, cv, αfsel, σsbiom, σF t, NS1
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A.3 Chapter IV

A.3.1 Fully annotated R code of the reference model tested
on whiting data

library(rstan)

#### FIXED PARAMETERS AND DATA ####

#### RECR VALUES ####

r <- c(657216, 860236, 1145112, 771780, 785939, 755366, 696054, 657609, 657222,

402613, 866442, 328494, 213390, 287758, 217260, 117059, 106349, 65960, 59396,

98577, 302352, 96013, 204747, 113307, 257644, 477394, 324234, 268962, 206089,

427777, 480698, 202293)

r <- r[9:32]

#### PARAMETERS ####

ymin1 = 1996 # first year of data

ymax1 = 2010 # last year of the first survey

ymin2 = 2011 # first year of the new survey

ymax2 = 2020 # last year of data

nyears1 = ymax1-ymin1+1

nyears2 = ymax2-ymin2+1 # number of years

nyears_tot = ymax2-ymin1+1

Dt = 1 # timestep

L0 = 1

lmin = 10 # minimum length modeled

lmax = 55 # maximum length modeled

DL = 1 # length class width

L = lmin:lmax

# coefficient variation (used to calculate the sd around length class)

cv = 0.1
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nlen = length(L) # number of length classes

alpha_wgt_len = 0.0093 # alpha in length-weight conversion

beta_wgt_len = 2.9456 # beta in length-weight conversion

M_u = 0.2 # parameter in natural mortality

d = -0.31 # parameter in natural mortality

L50_Mat = 20 # L50 of the maturity logistic

L25_Mat = 0.14 # steepness of the maturity logistic

muR = 15.4 # mean length of the recruitment

# internal functions to get weight-at-length, natural mortality, maturity ogive.

# This quantities are calculated with quantities assumed to be known,

# therefore they are calculated externally from the Stan model

# Length-weight conversion. Transforms a vector of lengths in a vector of weights.

# divide by 1e6 converts grams into tons

wgt_at_len <- function (L, alpha, beta) {

return((alpha * Lˆbeta)* 1.131e-3)

}

M = Lorenzen(W, M_u, d) # natural mortality at length

# Natural mortality function transforms a vector of weigth in mortality at length.

# (Lorenzen 1996, Journal of Fish Biology 49, 627-647).

Lorenzen <- function(W, M_u, d) {

return(M_u Wˆd)

}

# multipurpose logistic function that can be used to calculate the maturity ogive

logistic <- function(x,x0,k) {

return(1/(1+exp(-k(x-x0))))

}
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Mat = logistic(L,L50_Mat,L25_Mat) # maturity at length

#### DATA ####

data_disc_biom <- read.table(‘data_disc_biom_whiting.txt’)

data_land_biom <- read.table(‘data_land_biom_whiting.txt’)

data_surv_biom <- read.table(‘data_surv_biom_whiting.txt’)

data_surv_distr <- round(read.table(‘data_surv_distr_whiting.txt’))

data_surv_distr[is.na(data_surv_distr)] <- 0

data_surv_distr <- data_surv_distr[10:55,]

data_land_distr <- round(read.table(‘data_land_distr_whiting.txt’))

data_land_distr <- (data_land_distr[11:56,])

data_land_distrX26 < −rep(0, 46)datalanddistrX27 <- rep(0,46)

#### LIST THAT IMPUTS THE DATA ####

input.data = list(

# see above for definitions

#~~~~~ PARAMETERS ~~~~

# TIME

nyears1 = nyears1,

nyears2 = nyears2,

nyears_tot = nyears_tot,

# GROWTH

nlen = nlen,

L = L,

W = W,

Dt = Dt, # timestep

L0 = L0, # minimum length modeled

lmax = lmax, # maximum length modeled

DL = DL, # length class width

# RECRUITMENT

# used only in generated quantities (a posteriori calculations)
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Mat = Mat,

# SURVIVORSHIP

M = M,

# EFFECTIVE SAMPLE SIZE

neff_surv = 30,

neff_land = 40,

# discard selectivity

L25_disc_sel = 0.3, # L25 of the discard selectivity

L50_disc_sel = c(28.55163, 29.29826, 29.89666, 30.20272, 30.01695, 29.92714,

29.84362, 31.08411, 31.22390, 31.46994, 31.80673, 31.93525, 31.82081, 31.93169,

32.08761, 32.73832, 32.63299, 33.54136, 34.31517, 34.67922, 34.76380, 35.20056,

35.27752, 35.2, 35.2),

#~~~~ DATA ~~~~

data_land_distr = as.matrix(data_land_distr),

data_surv_distr = as.matrix(data_surv_distr),

data_surv_biom = data_surv_biom[,1],

data_land_biom = data_land_biom[,1],

data_disc_biom = data_disc_biom[,1],

#~~~~ FITTING PARAMETERS BOUNDS ~~~

Rt_mean = log(200),# lower bound for Rt

Rt_sd = log(20000000), # Upper bound for Rt

q_mean = 0,

q_sd = 2,

L50_fish_sel_mean=30,

L50_fish_sel_sd=3.5,

beta_fish_sel_mean=0.35,

beta_fish_sel_sd=0.1,
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Ft_bounds = c(0.01,2),

sd_Ft_bounds = c(0.01,1),

sd_surv_biom_bounds = c(0,1),

sd_disc_biom_bounds = c(0,1),

sd_land_biom_bounds = c(0,1),

alpha=rep(1,nlen),

rd_lim=c(5,20),

rd_sd_lim=c(.1,1.5),

lf=c(1:nlen),

cv_bounds = c(0.01,0.9),

K_bounds = c(0.34,0.2),

L_bound=c(58,.330),

D_beta_bounds = c(0,900),

md2 = c(1.5,50),

al2 = c(1.5,10),

md1 = c(1.5,50),

al1 = c(1.5,10)

)

#### FITTING PARAMETERS ####

# initial values

inits1 <- list(

Rt=log(r),

Ft = c(rep(0.2,(nyears_tot))), # fishing effort per year

q1=0.01, # survey catchability before 2011

q2=0.01, # survey catchability after 2011

L50_fish_sel = 30,

beta_fish_sel = 0.35,

sd_surv_biom=0.2, # error around the survey biomass
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sd_land_biom=0.2, # error around the landings biomass

sd_disc_biom=0.2,

sd_Ft=0.1,

LF1_distr=(data_surv_distr[,1]+1) / sum(data_surv_distr[,1]+1),

R_distr_mean=15,

R_distr_sd=1,

cv=0.1,

K=0.34,

Linf=58,

D_beta=c(50,50,50),

mode1=30,

alfa1=3,

mode2=35,

alfa2=2

)

inits2<-inits3<-inits1

iter<-100000

chains<-3

thin<-1000

model<-“whiting_slam_v5.03.stan”

init<-list(inits1,inits2,inits3)

t1<-Sys.time()

fitted <- stan(file = model, data = input.data, thin=thin, diagnostic_file = “pa-

rameter values”, init=init, cores=4, seed = “38”, #algorithm = “Fixed_param”,

iter =iter, chains = chains, verbose=FALSE, init_r=.5)

t2<-Sys.time()
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t2-t1

A.3.2 Fully annotated Stan code of the reference model
tested on whiting data

// slam full model version: reference model

// initial N is estimated the sum of Rt[1] and NS1,

// the survivors from year 0 (first data year -1)

// recruitment length distribution is estimated

// recruitment drawn from uniform distribution - not log uniform

// Ft follows a random walk

// estimates growth parameters

// removed initial zeroing of G matrix calculation

// uses Dirichlet-multinomial with Beta dispersion parameter D_beta

// two surveys: pre and post 2011

// fisheries logistic selectivity and survey gamma selectivity

functions {

// function to calculate log probability for a Dirichlet-multinomial distribution

real DM_lpmf(int [] n, vector alpha) {

int N = sum(n);

real A = sum(alpha);

return lgamma(A) - lgamma(N + A)

+ sum(lgamma(to_vector(n) + alpha))

- sum(lgamma(alpha));

}

// gamma selectivity function

real gamsel(real alpha,real beta,real len){

return((len/((alpha-1) * beta))ˆ(alpha-1))exp(alpha-1-len/beta);

}
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}

// data and fixed parameters

data {

int nyears1; // number of years

int nyears2; // number of years

int nyears_tot; // number of years

real Dt; // time step

real L_bound[2]; // bounds on Linf

real DL; // length bin size

int nlen; // number of length bins

vector[nlen] W; // weight at length vector

vector[nlen] L; // length classes

vector[nlen] alpha; // Dirichlet parameter vector

vector[nlen] M; // natural mortality

vector[nlen] Mat; // maturity

// bounds for survey q

real q_mean;

real q_sd;

// values for fishery selection parameter priors,

real L50_fish_sel_mean;

real L50_fish_sel_sd;

real beta_fish_sel_mean;

real beta_fish_sel_sd;
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// discard selectivity parameters

real L25_disc_sel;

real L50_disc_sel[nyears_tot];

// values for survey selection parameter priors

real md2[2];

real al2[2];

real md1[2];

real al1[2];

// observations

int data_land_distr[nlen,nyears1]; // landings number at length

int data_surv_distr[nlen,nyears_tot]; // survey number at length

real data_surv_biom[nyears_tot]; // survey biomass

real data_land_biom[nyears_tot]; // landings biomass

real data_disc_biom[nyears_tot]; // discard biomass

// effective sample sizes for survey and landings distributions

int neff_surv;

int neff_land;

// Bounds for prior on growth parameters

real K_bounds[2];

real cv_bounds[2];

// Bounds for prior on recruitment

real Rt_mean;

real Rt_sd;

// bounds or prior on Ft
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real Ft_bounds[2];

// bounds for prior on suvey biomass

real sd_surv_biom_bounds[2];

// bounds for std dev prior on landings observations

real sd_land_biom_bounds[2];

// bounds for std dev process error on Ft

real sd_Ft_bounds[2];

// bounds for std dev discard biomass

real sd_disc_biom_bounds[2];

// bounds for dispersion parameter Dirichlet

real D_beta_bounds[2];

// bounds of priors on recruitment distribution parameters

real rd_lim[2]; // bounds for mean of distribution

real rd_sd_lim[2]; // bounds for sd of distribution

}

// end block

transformed data {

int data_land_scaled[nlen,nyears1];

int data_surv_scaled[nlen,nyears_tot];

// re-scale survey distribution to effectove sample size
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for (l in 1:nlen){

for (y in 1:nyears_tot){

data_surv_scaled[l,y] = data_surv_distr[l,y] neff_surv/sum(data_surv_distr[,y]);

}

}

// re-scale landings distribution to effective sample size

for (l in 1:nlen){

for (y in 1:(nyears1-2)){

data_land_scaled[l,y] = data_land_distr[l,y] * neff_land/sum(data_land_distr[,y]);

}

}

}

// end block

// fitting parameters

// see R document for definitions

parameters {

vector[nyears_tot-1] Rt; // Annual recruitment

vector[nyears_tot] Ft; // Annual fishing mortality year effect

simplex[nlen] LF1_distr; // proportion at length surviving in first year

real sd_surv_biom; //observation error on survey biomass

real sd_land_biom; // observation error on landings biomass

real sd_disc_biom; // observation error on discard biomass

real sd_Ft; // process error on fishing morality year effect

// growth parameters

real cv;

real K;
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real Linf;

// fishery selectivity parameters

real L50_fish_sel;

real beta_fish_sel;

// survey catchability

real q1;

real q2;

// recruitment length frequency parameters

real R_distr_mean;

real R_distr_sd;

// Dirichlet scalar

real D_beta[3];

// survey selectivity parameter

real mode1;

real alfa1;

real mode2;

real alfa2;

}

// end block

transformed parameters {

matrix[nlen, nlen] G; // growth projection matrix
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vector[nlen] newL;

vector[nlen] sd_growth;

matrix[nlen, nyears_tot] F; // fishing mortality matrix

matrix[nlen, nyears_tot] Z; // total mortality matrix

matrix[nlen, nyears_tot] S; // survival matrix

matrix[nlen, nyears_tot] N; // population matrix

vector[nlen] NS; // population matrix * survival matrix

// survey proportion at length x years

matrix[nlen, nyears_tot] Survey_Distr;

// survey numbers at length x years

matrix[nlen, nyears_tot] Survey;

// survey numbers at length x years

matrix[nlen, nyears1] Survey1;

// survey numbers at length x years

matrix[nlen, nyears2] Survey2;

// landings proportion at length x years

matrix[nlen, nyears_tot] Land_Distr;

// caught numbers at length x years

matrix[nlen, nyears_tot] Catches;

// discarded numbers at length x years

matrix[nlen, nyears_tot] Discard;

// landed numbers at length x years

matrix[nlen, nyears_tot] Landings;

// biomass landed per length per year

matrix[nlen, nyears_tot] Landings_biom_xlen;

// total biomass landed per year

vector[nyears_tot] Land_Biomass;

vector[nyears_tot] Disc_Biomass;

vector[nyears_tot] Caught_Biomass;

199



A. Appendix

matrix[nlen, nyears_tot] Catches_biom_xlen;

matrix[nlen, nyears_tot] Discard_biom_xlen;

// biomass surveyed per length per year

matrix[nlen, nyears_tot] Survey_biom_xlen;

// total biomass surveyed per year

vector[nyears_tot] Surv_Biomass;

// recruitmet length frequency distribution

vector[nlen] R_distr;

real NS1; // total number of survivirs in first year

vector[nlen] sF; // fishing selectivity curve

vector[nlen] sS1;

vector[nlen] sS2;

real beta1;

real beta2;

// calculate recruitment length distribution from a normal distribution

for(i in 1:nlen){

R_distr[i] = normal_cdf(L[i]+DL,R_distr_mean,R_distr_sd)-

normal_cdf(L[i],R_distr_mean,R_distr_sd);

}

// survey gamma selectivity

beta1=mode1/(alfa1-1);

beta2=mode2/(alfa2-1);

for (l in 1:nlen) {

sS1[l]=gamsel(alfa1,beta1,L[l]);

sS2[l]=gamsel(alfa2,beta2,L[l]);

}

// construct initial population from survivors in initial year and recruitment
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NS1=0;

for(l in 1:nlen){

NS1=NS1+data_surv_distr[l,1]/(q1sS1[l]);

}

for(l in 1:nlen){

N[l,1]=NS1LF1_distr[l];

}

// total biomass

newL = Linf - (Linf-L)* exp(-KDt);

for (l in 1:nlen) {

sd_growth[l] = cv newL[l];

}

for (y in 1:nlen){

for (l in 1:nlen) {

G[l,y] = normal_cdf(L[l]+DL,newL[y],sd_growth[l])-

normal_cdf(L[l],newL[y],sd_growth[l]);

}

}

for (y in 1:nlen){

for (l in 1:nlen) {

G[l,y] = G[l,y] / sum(G[,y]);

}

}

// fishing logistic selectivity

sF = 1 ./ (1+exp(-beta_fish_sel* (L-L50_fish_sel)));

// define S: survival at length

for (l in 1:nlen) {

for (y in 1:nyears_tot) {
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F[l,y] = sF[l] * Ft[y];

Z[l,y] = F[l,y] + M[l];

}

}

S = exp(-(Z));

// Calculate survivors into the next year

for (y in 1:(nyears_tot-1)) {

for (l in 1:nlen) {

NS[l] = N[l,y] * S[l,y];

}

// Project the population at length one year ahead from suvivors and growth matrix

N[,y+1] = G * NS; // double check with length distribution plot

for (l in 1:nlen) {

// note Rt is on a log scale

N[l,y+1] = N[l,y+1] + exp(Rt[y])R_distr[l];

}

}

// Calculate fitted survey numbers at length from catchability q and survey size

selection

for (y in 1:nyears1){

for (l in 1:nlen){

Survey1[l,y] = q1N[l,y]/sS1[l];

}

}

for (y in 1:nyears2){

for (l in 1:nlen){

Survey2[l,y] = q2N[l,y+nyears1]/sS2[l];
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}

}

Survey = append_col(Survey1,Survey2);

// calculate discard, catches and landings

// catch numbers at length and year

Catches = F ./ Z . (1-S) .* N;

for (y in 1:nyears_tot) {

for (l in 1:nlen) {

// landed weight at length and year

Discard[l,y] = (1 / (1+exp((log(3)/ (L25_disc_sel-L50_disc_sel[y]))*

(L[l]-L50_disc_sel[y])))) * Catches[l,y];

}

}

Landings = Catches - Discard;

for (y in 1:nyears_tot) {

for (l in 1:nlen) {

Landings_biom_xlen[l,y] = W[l] * Landings[l,y];

Catches_biom_xlen[l,y] = W[l] * Catches[l,y];

Discard_biom_xlen[l,y] = W[l] * Discard[l,y];

Survey_biom_xlen[l,y] = W[l] * Survey[l,y];

}

Caught_Biomass[y] = sum(Catches_biom_xlen[,y]);

Land_Biomass[y] = sum(Landings_biom_xlen[,y]);

Disc_Biomass[y] = sum(Discard_biom_xlen[,y]);

Surv_Biomass[y] = sum(Survey_biom_xlen[,y]);

}
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// calculate fitted landing and survey length frequency

for (y in 1:nyears_tot) {

for (l in 1:nlen) {

Land_Distr[l,y] = Landings[l,y] / sum(Landings[,y]);

Survey_Distr[l,y] = Survey[l,y] / sum(Survey[,y]);

}

}

//print(“N =”,N);

//print(“LB =”,Land_Biomass);

//print(“SB =”,Surv_Biomass);

}

// end block

model {

// Priors

// Fishing mortality year effect in first year

Ft[1]~uniform(Ft_bounds[1],Ft_bounds[2]);

// Annual recruitment

for (y in 1:(nyears_tot-1)) {

Rt[y]~uniform(Rt_mean,Rt_sd);

}

//survivors proportion at length

LF1_distr~dirichlet(alpha);

// survey catcability

q1~uniform(q_mean,q_sd);

q2~uniform(q_mean,q_sd);
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// fishery, discard and survey selection parameters

L50_fish_sel~lognormal(log(L50_fish_sel_mean),L50_fish_sel_sd);

beta_fish_sel~lognormal(log(beta_fish_sel_mean),beta_fish_sel_sd);

// survey selection parameters

mode1~uniform((md1[1]),md1[2]);

alfa1~uniform((al1[1]),al1[2]);

mode2~uniform(md2[1],md2[2]);

alfa2~uniform((al2[1]),al2[2]);

// growth parameters

cv~uniform(cv_bounds[1],cv_bounds[2]);

K~lognormal(log(K_bounds[1]),K_bounds[2]);

Linf~lognormal(log(L_bound[1]),L_bound[2]);

// Dirichlet scalar

D_beta[1]~uniform(D_beta_bounds[1],D_beta_bounds[2]);

D_beta[2]~uniform(D_beta_bounds[1],D_beta_bounds[2]);

// observation errors

sd_land_biom~uniform(sd_land_biom_bounds[1],

sd_land_biom_bounds[2]);

sd_surv_biom~uniform(sd_surv_biom_bounds[1],

sd_surv_biom_bounds[2]);

sd_disc_biom~uniform(sd_disc_biom_bounds[1],

sd_disc_biom_bounds[2]);

// process error on fishing mortality

sd_Ft~uniform(sd_Ft_bounds[1],sd_Ft_bounds[2]);
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// recruitmnet proiportins at length

R_distr_mean~uniform(rd_lim[1],rd_lim[2]);

R_distr_sd~uniform(rd_sd_lim[1],rd_sd_lim[2]);

// construct a randon walk for fishing mortality

for (y in 1:(nyears_tot-1)) {

Ft[y+1]~lognormal(log(Ft[y]),sd_Ft);

}

// Likelihoods functions

for(y in 1:(nyears_tot)){

// biomass observations

data_surv_biom[y]~lognormal(log(Surv_Biomass[y]), sd_surv_biom);

data_land_biom[y]~lognormal(log(Land_Biomass[y]), sd_land_biom);

data_disc_biom[y]~lognormal(log(Disc_Biomass[y]), sd_disc_biom);

}

for(y in 1:(nyears1)){

// length frequency observations

target+=DM_lpmf(data_surv_scaled[,y]|Survey_Distr[,y]* D_beta[1]);

}

for(y in 1:(nyears2)){

// length frequency observations

target+=DM_lpmf(data_surv_scaled[,y+nyears1]|

Survey_Distr[,y+nyears1] D_beta[2]);

}
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for(y in 1:(nyears1-2)){

// length frequency observations

target+=DM_lpmf(data_land_scaled[,y]|

Land_Distr[,y]D_beta[3]);

}

}

// end block

generated quantities {

matrix[nlen,nyears_tot] SSB_Mat;

vector[nyears_tot] SSB;

matrix[nlen, nyears_tot] Catch_Distr;

matrix[nlen, nyears_tot] Discard_Distr;

//real eff_smpl_size_post2011[2]; // effective sample size

//real eff_smpl_size_pre2011[2];

// Distribution of the catches and of the discard

for (y in 1:nyears_tot) {

for (l in 1:nlen) {

Discard_Distr[l,y] = Discard[l,y] / sum(Discard[,y]);

Catch_Distr[l,y] = Catches[l,y] / sum(Catches[,y]);

}

}

// Spawning Stock Biomass (SSB)

for (y in 1:nyears_tot) {

for (l in 1:nlen) {

SSB_Mat[l,y] = Mat[l] * N[l,y]; // caught biomass
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}

}

for (y in 1:nyears_tot) {

for (l in 1:nlen) {

SSB_Mat[l,y] = SSB_Mat[l,y] * W[l]; // caught biomass

}

}

for (y in 1:nyears_tot) {

SSB[y] = sum(SSB_Mat[,y]);

}

// calculate effective sample size before 2011

eff_smpl_size_pre2011[1]=neff_surv(1+D_beta_pre2011[1])/

(neff_surv+D_beta_pre2011[1]);

eff_smpl_size_pre2011[2]=neff_land(1+D_beta_pre2011[2])/

(neff_land+D_beta_pre2011[2]);

// calculate effective sample size after 2011

eff_smpl_size_post2011[1]=neff_surv(1+D_beta_post2011[1])/

(neff_surv+D_beta_post2011[1]);

eff_smpl_size_post2011[2]=neff_land(1+D_beta_post2011[2])/

(neff_land+D_beta_post2011[2]);

}

// end block
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A.3.3 Supplementary plots

0.8

1.0

1.2

1.4

1.6

5e
+0

4

6e
+0

4

7e
+0

4

8e
+0

4

9e
+0

4

1e
+0

5

chain

1

2

3

σdbiom

0.0

0.2

0.4

5e
+0

4

6e
+0

4

7e
+0

4

8e
+0

4

9e
+0

4

1e
+0

5

chain

1

2

3

σdland

0.3
0.4
0.5
0.6
0.7
0.8

5e
+0

4

6e
+0

4

7e
+0

4

8e
+0

4

9e
+0

4

1e
+0

5

chain

1

2

3

σdsurv

28.0

28.5

29.0

29.5

30.0

5e
+0

4

6e
+0

4

7e
+0

4

8e
+0

4

9e
+0

4

1e
+0

5

chain

1

2

3

L50fsel

0.55

0.60

0.65

0.70

5e
+0

4

6e
+0

4

7e
+0

4

8e
+0

4

9e
+0

4

1e
+0

5

chain

1

2

3

βfsel

28

29

30

31

5e
+0

4

6e
+0

4

7e
+0

4

8e
+0

4

9e
+0

4

1e
+0

5

chain

1

2

3

Linf

0.5

0.6

0.7

0.8

0.9

5e
+0

4

6e
+0

4

7e
+0

4

8e
+0

4

9e
+0

4

1e
+0

5

chain

1

2

3

K

16.25

16.50

16.75

17.00

5e
+0

4

6e
+0

4

7e
+0

4

8e
+0

4

9e
+0

4

1e
+0

5

chain

1

2

3

µR

1.8

2.0

2.2

5e
+0

4

6e
+0

4

7e
+0

4

8e
+0

4

9e
+0

4

1e
+0

5

chain

1

2

3

σR

Figure A.7: Chapter IV reference model - Trace plot for some of the most important
parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel, βfsel, L∞, K, µR, σR
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Figure A.8: Chapter IV reference model - Posteriors for some of the most important
parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel, βfsel, L∞, K, µR, σR
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Figure A.9: Chapter IV reference model - Trace plots for some of the most
important parameters: σF t, q1, q2, L50ssel1, βssel1, αssel2, modessel2, Dβ1, Dβ
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Figure A.10: Chapter IV reference model - Posteriors for some of the most
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A.3.4 Sensitivity to parameter values I: sample size

Input sample size = 30,30
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Figure A.11: Chapter IV sensitivity to sample size - Trace plot for some of the
most important parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel, βfsel, L∞, K, µR, σR
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Figure A.12: Chapter IV sensitivity to sample size - Posterior distribution of the
most important parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel, βfsel, L∞, K, µR, σR
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Figure A.13: Chapter IV sensitivity to sample size - Trace plot for some of the
most important parameters: σF t, q1, q2, modessel1, modessel2, αssel1, αssel2, Dβ1, Dβ
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Figure A.14: Chapter IV sensitivity to sample size - Posterior distribution of the
most important parameters: σF t, q1, q2, modessel1, modessel2, αssel1, αssel2, Dβ1, Dβ

216



A. Appendix

A.3.5 Sensitivity to parameter values II: discard L50dsel

Discard L50dsel = 26
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Figure A.15: Chapter IV sensitivity to L50 of discard selectivity (26) - Trace
plot for some of the most important parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel,
βfsel, L∞, K, µR, σR
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Figure A.16: Chapter IV sensitivity to L50 of discard selectivity (26) - Posterior
distribution of the most important parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel, βfsel,
L∞, K, µR, σR
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Figure A.17: Chapter IV sensitivity to L50 of discard selectivity (26) - Trace
plot for some of the most important parameters: σF t, q1, q2, modessel1, modessel2, αssel1,
αssel2, Dβ1, Dβ
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Figure A.18: Chapter IV sensitivity to L50 of discard selectivity (26) - Posterior
distribution of the most important parameters: σF t, q1, q2, modessel1, modessel2, αssel1,
αssel2, Dβ1, Dβ
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Figure A.19: Chapter IV sensitivity to L50 of discard selectivity (38) - Trace
plot for some of the most important parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel,
βfsel, L∞, K, µR, σR
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Figure A.20: Chapter IV sensitivity to L50 of discard selectivity (38) - Posterior
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Figure A.21: Chapter IV sensitivity to L50 of discard selectivity (38) - Trace
plot for some of the most important parameters: σF t, q1, q2, modessel1, modessel2, αssel1,
αssel2, Dβ1, Dβ
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Figure A.22: Chapter IV sensitivity to L50 of discard selectivity (38) - Posterior
distribution of some of the most important parameters: σF t, q1, q2, modessel1, modessel2,
αssel1, αssel2, Dβ1, Dβ
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A.3.6 Sensitivity to model structure: the shape of the sur-
vey selectivity
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Figure A.23: Chapter IV sensitivity to survey selectivity logistic and logistic
- Trace plot for some of the most important parameters: σdbiom, σlbiom, σsbiom, αfsel,
L50fsel, βfsel, L∞, K, µR, σR
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Figure A.24: Chapter IV sensitivity to survey selectivity logistic and logistic
- Posterior distribution of some of the most important parameters: σdbiom, σlbiom, σsbiom,
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Figure A.25: Chapter IV sensitivity to survey selectivity logistic and logistic
- Trace plot for some of the most important parameters: σF t, q1, q2, L50ssel1, βssel1,
L50ssel2, βssel2, Dβ1, Dβ
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Figure A.26: Chapter IV sensitivity to survey selectivity logistic and logistic
- Posterior distributions for some of the most important parameters: σF t, q1, q2, L50ssel1,
βssel1, L50ssel2, βssel2, Dβ1, Dβ
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Figure A.27: Chapter IV sensitivity to survey selectivity gamma and gamma
- Trace plot for some of the most important parameters: σdbiom, σlbiom, σsbiom, αfsel,
L50fsel, βfsel, L∞, K, µR, σR
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Figure A.28: Chapter IV sensitivity to survey selectivity gamma and gamma -
Posterior distributions for some of the most important parameters: σdbiom, σlbiom, σsbiom,
αfsel, L50fsel, βfsel, L∞, K, µR, σR
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Figure A.29: Chapter IV sensitivity to survey selectivity gamma and gamma
- Trace plots of some of the most important parameters: σF t, q1, q2, modessel1, modessel2,
αssel1, αssel2, Dβ1, Dβ

231



A. Appendix

0.2 0.4 0.6 0.8
σFt

0.001 0.002 0.003 0.004 0.005

q1
0.01 0.02 0.03 0.04

q2

3.5 4.0 4.5 5.0 5.5
αssel1

60 70 80 90 100

modessel1

4 6 8 10
αssel2

20 40 60 80

modessel2

400 500 600 700 800 900

Dβland

200 400 600 800

Dβsurv

Figure A.30: Chapter IV sensitivity to survey selectivity gamma and gamma -
Posterior distributions for some of the most important parameters: σF t, q1, q2, modessel1,
modessel2, αssel1, αssel2, Dβ1, Dβ
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A.3.7 Sensitivity to model structure: the shape of the fish-
ing selectivity
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Figure A.31: Chapter IV sensitivity to fishing selectivity - Trace plot for some
of the most important parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel, βfsel, L∞, K,
µR, σR
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Figure A.32: Chapter IV sensitivity to fishing selectivity - Posterir distributions
of some of the most important parameters: σdbiom, σlbiom, σsbiom, αfsel, L50fsel, βfsel,
L∞, K, µR, σR
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Figure A.33: Chapter IV sensitivity to fishing selectivity - Trace plot for some
of the most important parameters: σF t, q1, q2, modessel1, modessel2, αssel1, αssel2, Dβ1,
Dβ
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Figure A.34: Chapter IV sensitivity to fishing selectivity - Trace plot for some
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A.3.8 Sensitivity to parameter bounds: Recruitment
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Figure A.35: Chapter IV sensitivity to recruitment lower parameter bound
- Trace plot for some of the most important parameters: σdbiom, σlbiom, σsbiom, αfsel,
L50fsel, βfsel, L∞, K, µR, σR

237



A. Appendix

0.75 1.00 1.25 1.50 1.75
σdbiom

0.0 0.2 0.4 0.6 0.8
σdland

0.4 0.6 0.8
σdsurv

27.5 28.0 28.5 29.0 29.5

L50fsel

0.50 0.55 0.60 0.65 0.70

βfsel

28 29 30 31

Linf

0.6 0.7 0.8 0.9 1.0 1.1

K
16.25 16.50 16.75 17.00

µR

1.7 1.8 1.9 2.0 2.1
σR

Figure A.36: Chapter IV sensitivity to recruitment lower parameter bound -
Posterior distribution of some of the most important parameters: σdbiom, σlbiom, σsbiom,
αfsel, L50fsel, βfsel, L∞, K, µR, σR
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Figure A.37: Chapter IV sensitivity to recruitment lower parameter bound -
Trace plot for some of the most important parameters: σF t, q1, q2, modessel1, modessel2,
αssel1, αssel2, Dβ1, Dβ
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Figure A.38: Chapter IV sensitivity to recruitment lower parameter bound
- Posterior distributions of some example parameters: σF t, q1, q2, modessel1, modessel2,
αssel1, αssel2, Dβ1, Dβ
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A.4 Chapter V

### Fully annotated R code

source(“FUNCTIONS.R”)

library(rstan)

#### FIXED PARAMETERS AND DATA ####

#### PARAMETERS ####

# many parameters of this block are not used directly in the model in stan, but

rather used in

# functions to calculate values that will enter the stan model as parameters.

ymin1 = 1989 # first year of data

ymax1 = 2010 # last year of data

ymin2 = 2011

ymax2 = 2020

nyears1 = ymax1-ymin1+1

nyears2 = ymax2-ymin2+1 # number of years

nyears_tot = ymax2-ymin1+1

nyears = nyears_tot

Dt = 1 # timestep

L0 = 1

lmin=8

lmax = 52 # maximum length modeled

DL = 1 # length class width

L = lmin:lmax

cv = 0.1 # coefficient variation (used to calculate the sd around length class)

nlen = length(L) # number of length classes

alpha_wgt_len = 0.0093 # alpha in length-weight conversion

beta_wgt_len = 2.9456 # beta in length-weight conversion

M_u = 0.2# parameter in natural mortality

d = -0.31 # parameter in natural mortality
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L50M = c(19.9, 19.8, 19.7, 19.6, 19.5, 19.3, 19.2000, 19.0875, 18.9750, 18.8625,

18.7500, 18.6375, 18.5250, 18.4125, 18.3000, 18.1875, 18.0750, 17.9625, 17.8500,

17.7375, 17.6250, 17.5125, 17.4000, 17.2875, 17.1750, 17.0625, 16.9500, 16.8375,

16.7250, 16.6125, 16.5000, 16.5000) # L50 of the maturity logistic

L50F = c(24, 23.9, 23.8, 23.7, 23.5, 23.4, 23.3000, 23.1625, 23.0250, 22.8875,

22.7500, 22.6125, 22.4750, 22.3375, 22.2000, 22.0625, 21.9250, 21.7875, 21.6500,

21.5125, 21.3750, 21.2375, 21.1000, 20.9625, 20.8250, 20.6875, 20.5500, 20.4125,

20.2750, 20.1375, 20.0000, 20.0000)

beta_Mat = 0.3 # steepness of the maturity logistic

muR = 15 # mean length of the recruitment

# call to functions to calculate derived fixed parameters

# Length-weight conversion. Transforms a vector of lengths in a vector of weights.

# divide by 1e6 converts grams into tons

wgt_at_len <- function (L, alpha, beta) {

return((alpha * Lˆbeta)* 1.131e-3)

}

# Natural mortality function transforms a vector of weigth in mortality at length.

# (Lorenzen 1996, Journal of Fish Biology 49, 627-647).

Lorenzen <- function(W, M_u, d) {

return(M_u Wˆd)

}

M = Lorenzen(W, M_u, d) # natural mortality at length

# multipurpose logistic function that can be used to calculate the maturity ogive

logistic <- function(x,x0,k) {

return(1/(1+exp(-k(x-x0))))

}

Mat = logistic(L,L50_Mat,L25_Mat) # maturity at length

# calculation of the survey selectivity

alfa1=.17

mode1=20
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sS1 <- logistic(1:52,mode1,alfa1)

alfa2=6

mode2=20

beta2=mode2/(alfa2-1);

sS2 <- gamsel(alfa2,beta2,1:52)

W = W[-(1:7)];M = M[-(1:7)];sS1 = sS1[-(1:7)];sS2 = sS2[-(1:7)]

# maturity at length for males

MatM = time_varying_logistic(1:52,L50M,beta_Mat)

# maturity at length for females

MatF = time_varying_logistic(1:52,L50F,beta_Mat)

MatM = MatM[-(1:7),];MatF = MatF[-(1:7),]

# function to get the distribution of recruitment

Get_R_stan <- function(muR, cv, nlen, L, DL) {

sd <- cvmuR

Rdistr <- pnorm(L + DL, mean = muR, sd = sd) -

pnorm(L, mean = muR, sd = sd)

Rdistr <- Rdistr/sum(Rdistr)

return(Rdistr)

}

# probability of recruitment length

R_distr = Get_R_stan(muR, cv, nlen, 1:52, DL)

R_distr = R_distr[-(1:7)]

#### DATA ####

data_surv_biom <- read.table(‘data_surv_biom_whiting.txt’)

data_surv_distr <- round(read.table(‘data_surv_distr_whiting.txt’))

data_surv_distr[is.na(data_surv_distr)] <- 0

#### LIST THAT IMPUTS THE DATA ####

input.data = list(
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# see above for definitions

#~~~~ PARAMETERS ~~~~

# TIME

nyears1 = nyears1,

nyears2 = nyears2,

nyears_tot = nyears_tot,

# GROWTH

nlen = nlen,

L = L,

W = W,

Dt = Dt, # timestep

L0 = L0, # minimum length modeled

lmax = lmax, # maximum length modeled

DL = DL, # length class width

# note that at least one parameter of the fishing selectivity must be fixed

alfa=0.2,

sd_Ft=0.1, # note that in survey only sd_Ft is fixed

#Linf=40,

# RECRUITMENT

# used only in generated quantities (a posteriori calculations)

MatM = MatM,

MatF = MatF,

# SURVIVORSHIP

M = M,

sS1 = sS1,

sS2 = sS2,

# EFFECTIVE SAMPLE SIZE

neff_init = 15,

#~~~ DATA ~~st

data_surv_distr = as.matrix(data_surv_distr),
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data_surv_biom = data_surv_biom[,1],

#~~ FITTING PARAMETERS BOUNDS ~~~~

Rt_mean = log(400),# lower bound for Rt

Rt_sd = log(500000), # Upper bound for Rt

Ft_bounds = c(0.01,1),

#sd_Ft_bounds = c(0.01,3),

sd_surv_biom_bounds = c(0,1),

alpha=rep(1,nlen),

rd_lim=c(5,20),

rd_sd_lim=c(.1,5),

lf=c(1:nlen),

NS1_bounds = c(600,5000),

cv_bounds = c(0.01,1.2),

K_bounds = c(0.25,0.1),

L_bound=c(35,3),

D_beta_bounds = c(0,10000),

md = c(3,35)

)

#### FITTING PARAMETERS ####

# initial values

inits1 <- list(

Rt=log(colSums(data_surv_distr[1:15,-1])),

Ft = c(rep(0.2,(nyears_tot))), # fishing effort per year

sd_surv_biom=0.2, # error around the survey biomass

LF1_distr=(data_surv_distr[,1]+1)/sum(data_surv_distr[,1]+1),

R_distr_mean=7.5,

R_distr_sd=1,

cv=0.1,

K=0.34,
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Linf=40,

D_beta=c(150,150),

mode=29,

NS1=sum(data_surv_distr[15:45,1])

)

inits2<-inits3<-inits1

iter<-100000

chains<-3

thin<-1000

model<-“whiting_slam_v5.00.stan”

init<-list(inits1,inits2,inits3)

t1<-Sys.time()

surv_only_whiting <- stan(file = model, data = input.data, thin=thin, diagnos-

tic_file = “parameter values”, init=init, cores=4, seed = “38”, #algorithm =

“Fixed_param”, iter =iter, chains = chains, verbose=FALSE, init_r=.5)

t2<-Sys.time()

t2-t1

A.4.1 Fully annotated Stan code

// slam full model version: reference model

// initial N is estimated the sum of Rt[1] and NS1,

// the survivors from year 0 (first data year -1)

// recruitment length distribution is estimated

// recruitment drawn from uniform distribution - not log uniform

// Ft follows a random walk

// estimates growth parameters

// removed initial zeroing of G matrix calculation

// uses Dirichlet-multinomial with Beta dispersion parameter D_beta
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// two surveys: pre and post 2011

// fisheries logistic selectivity and survey gamma selectivity

functions {

// function to calculate log probability for a Dirichlet-multinomial distribution

real DM_lpmf(int [] n, vector alpha) {

int N = sum(n);

real A = sum(alpha);

return lgamma(A) - lgamma(N + A)

+ sum(lgamma(to_vector(n) + alpha))

- sum(lgamma(alpha));

}

// gamma selectivity function

real gamsel(real alpha,real beta,real len){

return((len/((alpha-1) * beta))ˆ(alpha-1)

exp(alpha-1-len/beta));

}

}

// data and fixed parameters

data {

int nyears1; // number of years of first survey

int nyears2; // number of years of second survey

int nyears_tot; // total number of years

real Dt; // time step

real L_bound[2]; // bounds on Linf

real DL; // length bin size

int nlen; // number of length bins

vector[nlen] W; // weight at length vector

vector[nlen] L; // length classes

vector[nlen] alpha; // Dirichlet parameter vector
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vector[nlen] M; // natural mortality

matrix[nlen,nyears_tot] MatM; // maturity for males

matrix[nlen,nyears_tot] MatF; // maturity for females

real NS1_bounds[2];

// values for survey selection parameter priors

real alfa;

real sd_Ft; // process error on fishing morality year effect

real md[2];

// observations

int data_surv_distr[nlen,nyears_tot]; // survey number at length

real data_surv_biom[nyears_tot]; // survey biomass

// effective sample sizes for survey and landings distributions

int neff_init;

// Bounds for prior on growth parameters

real K_bounds[2];

real cv_bounds[2];

// Bounds for prior on recruitment

real Rt_mean;

real Rt_sd;

// bounds or prior on Ft

real Ft_bounds[2];

// bounds for prior on suvey biomass

real sd_surv_biom_bounds[2];

// bounds for std dev process error on Ft

//real sd_Ft_bounds[2];

// bounds for dispersion parameter Dirichlet

real D_beta_bounds[2];

// bounds of priors on recruitment distribution parameters

real rd_lim[2]; // bounds for mean of distribution
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real rd_sd_lim[2]; // bounds for sd of distribution

// survey selectivity

real sS1[nlen];

real sS2[nlen];

}

// end block

transformed data {

int data_surv_scaled[nlen,nyears_tot];

// re-scale survey distribution to effectove sample size

for (l in 1:nlen){

for (y in 1:nyears_tot){

data_surv_scaled[l,y] = data_surv_distr[l,y]

neff_init/sum(data_surv_distr[,y]);

}

}

}

// end block

// fitting parameters

parameters {

vector[nyears_tot-1] Rt; // Annual recruitment

vector[nyears_tot] Ft; // Annual fishing mortality year effect

simplex[nlen] LF1_distr; // proportion at length surviving in first year

real sd_surv_biom; //observation error on survey biomass

real NS1; // total number of survivirs in first year

// growth parameters

real cv;

real K;

real Linf;
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// fishery selectivity parameters

real mode;

// recruitment length frequency parameters

real R_distr_mean;

real R_distr_sd;

// Dirichlet scalar

real D_beta[2];

}

// end block

transformed parameters {

matrix[nlen, nlen] G; // growth projection matrix

vector[nlen] newL;

vector[nlen] sd_growth;

matrix[nlen, nyears_tot] F; // fishing mortality matrix

matrix[nlen, nyears_tot] Z; // total mortality matrix

matrix[nlen, nyears_tot] S; // survival matrix

matrix[nlen, nyears_tot] N; // population matrix

// population matrix * survival matrix

vector[nlen] NS;

// survey proportion at length x years

matrix[nlen, nyears_tot] Survey_Distr;

// survey numbers at length x years

matrix[nlen, nyears_tot] Survey;

// survey numbers at length x years

matrix[nlen, nyears1] Survey1;

// survey numbers at length x years

matrix[nlen, nyears2] Survey2;

// caught numbers at length x years

matrix[nlen, nyears_tot] Catches;
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vector[nyears_tot] Caught_Biomass;

matrix[nlen, nyears_tot] Catches_biom_xlen;

// biomass surveyed per length per year

matrix[nlen, nyears_tot] Survey_biom_xlen;

// total biomass surveyed per year

vector[nyears_tot] Surv_Biomass;

// recruitmet length frequency distribution

vector[nlen] R_distr;

vector[nlen] sF; // fishing selectivity curve

// calculate recruitment length distribution from a normal distribution

for(i in 1:nlen){

R_distr[i] = normal_cdf(L[i]+DL,R_distr_mean,R_distr_sd)-

normal_cdf(L[i],R_distr_mean,R_distr_sd);

}

// construct initial population from survivors in initial year and recruitment

for(l in 1:nlen){

N[l,1]=NS1LF1_distr[l];

}

newL = Linf - (Linf-L) exp(-KDt);

for (l in 1:nlen) {

sd_growth[l] = cv newL[l];

}

for (y in 1:nlen){

for (l in 1:nlen) {

G[l,y] = normal_cdf(L[l]+DL,newL[y],sd_growth[l])-

normal_cdf(L[l],newL[y],sd_growth[l]);

}

}

for (y in 1:nlen){

for (l in 1:nlen) {

251



A. Appendix

G[l,y] = G[l,y] / sum(G[,y]);

}

}

// logistic survey selectivity

sF=1 ./ (1+exp(-alfa(L-mode)));

// define S: survival at length

for (l in 1:nlen) {

for (y in 1:nyears_tot) {

F[l,y] = sF[l] Ft[y];

Z[l,y] = F[l,y] + M[l];

}

}

S = exp(-(Z));

// Calculate survivors into the next year

for (y in 1:(nyears_tot-1)) {

for (l in 1:nlen) {

NS[l] = N[l,y] * S[l,y];

}

// Project the population at length one year ahead from suvivors and growth matrix

N[,y+1] = G * NS; // double check with length distribution plot

for (l in 1:nlen) {

// note Rt is on a log scale

N[l,y+1] = N[l,y+1] + exp(Rt[y])R_distr[l];

}

}

// Calculate fitted survey numbers at length from catchability q and survey size

selection

for (y in 1:nyears1){

for (l in 1:nlen){

Survey1[l,y] = N[l,y]sS1[l];
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}

}

for (y in 1:nyears2){

for (l in 1:nlen){

Survey2[l,y] = N[l,y+nyears1]sS2[l];

}

}

Survey = append_col(Survey1,Survey2);

// calculate discard, catches and landings

Catches = F ./ Z . (1-S) .* N; // catch numbers at length and year

for (y in 1:nyears_tot) {

for (l in 1:nlen) {

Catches_biom_xlen[l,y] = W[l] * Catches[l,y];

Survey_biom_xlen[l,y] = W[l] * Survey[l,y];

}

Caught_Biomass[y] = sum(Catches_biom_xlen[,y]);

Surv_Biomass[y] = sum(Survey_biom_xlen[,y]);

}

// calculate fitted landing and survey length frequency

for (y in 1:nyears_tot) {

for (l in 1:nlen) {

Survey_Distr[l,y] = Survey[l,y] / sum(Survey[,y]);

}

}

//print(“N =”,N);

//print(“LB =”,Land_Biomass);

//print(“SB =”,Surv_Biomass);

}

// end block
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model {

// Priors

// Fishing mortality year effect in first year

Ft[1]~uniform(Ft_bounds[1],Ft_bounds[2]);

// Annual recruitment

for (y in 1:(nyears_tot-1)) {

Rt[y]~uniform(Rt_mean,Rt_sd);

}

//survivors proportion at length

LF1_distr~dirichlet(alpha);

//initial population size

NS1~uniform(NS1_bounds[1],NS1_bounds[2]);

// survey selection parameters

mode~uniform(md[1],md[2]);

//alfa~lognormal(log(al[1]),al[2]);

// growth parameters

cv~uniform(cv_bounds[1],cv_bounds[2]);

K~lognormal(log(K_bounds[1]),K_bounds[2]);

Linf~normal((L_bound[1]),L_bound[2]);

// Dirichlet scalar

D_beta[1]~uniform(D_beta_bounds[1],D_beta_bounds[2]);

D_beta[2]~uniform(D_beta_bounds[1],D_beta_bounds[2]);

// observation errors

sd_surv_biom~uniform(sd_surv_biom_bounds[1], sd_surv_biom_bounds[2]);

// process error on fishing mortality

//sd_Ft~uniform(sd_Ft_bounds[1],sd_Ft_bounds[2]);

// recruitment proiportins at length

R_distr_mean~uniform(rd_lim[1],rd_lim[2]);

R_distr_sd~uniform(rd_sd_lim[1],rd_sd_lim[2]);

// construct a randon walk for fishing mortality
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for (y in 1:(nyears_tot-1)) {

Ft[y+1]~lognormal(log(Ft[y]),sd_Ft);

}

// Likelihoods

for(y in 1:(nyears_tot)){

// biomass observations

//if(data_surv_biom[y]>0)

if(data_surv_biom[y]>0) data_surv_biom[y]~lognormal(log(

Surv_Biomass[y]),sd_surv_biom);

}

for(y in 1:(nyears1)){

// length frequency observations

target+=DM_lpmf(data_surv_scaled[,y]|Survey_Distr[,y]* D_beta[1]);

}

for(y in 1:(nyears2)){

// length frequency observations

target+=DM_lpmf(data_surv_scaled[,y+nyears1]|

Survey_Distr[,y+nyears1]D_beta[2]);

}

}

generated quantities {

matrix[nlen,nyears_tot] SSB_MatF;

matrix[nlen,nyears_tot] SSB_MatM;

vector[nyears_tot] SSB;

//matrix[nlen, nyears_tot] Catch_Distr;

//matrix[nlen, nyears_tot] Discard_Distr;

real neff[2]; // effective sample size

// Spawning Stock Biomass (SSB) for males and for females

for (y in 1:nyears_tot) {

255



A. Appendix

for (l in 1:nlen) {

SSB_MatF[l,y] = ((MatF[l,y] N[l,y]) * W[l])/2;

SSB_MatM[l,y] = ((MatM[l,y] * N[l,y]) * W[l])/2;

}

SSB[y] = sum(SSB_MatF[,y])+sum(SSB_MatM[,y]);

}

// calculate effective sample size

neff[1]=neff_init(1+D_beta[1])/(neff_init+D_beta[1]);

neff[2]=neff_init(1+D_beta[2])/(neff_init+D_beta[2]);

}

// end block
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A.4.2 Supplementary plots: whiting
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Figure A.39: Chapter V whiting - Trace plots for some example parameters: µR,
σR, L∞, K, cv, αfsel, σsbiom, NS1
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Figure A.40: Chapter V whiting - Posterior distributions of some example parame-
ters: µR, σR, L∞, K, cv, αfsel, σsbiom, NS1
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A.4.3 Supplementary plots: haddock
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Figure A.41: Chapter V haddock - Trace plots for some example parameters: µR,
σR, L∞, K, cv, αfsel, σsbiom, NS1
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Figure A.42: Chapter V haddock - Plot showing the posterior distributions for some
example parameters: µR, σR, L∞, K, cv, αfsel, σsbiom, NS1
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A.4.4 Supplementary plots: lemon sole
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Figure A.43: Chapter V lemon sole - Trace plots for some example parameters: µR,
σR, L∞, K, cv, αfsel, σsbiom, NS1
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Figure A.44: Chapter V lemon sole - Plot showing the posterior distributions for
some example parameters: µR, σR, L∞, K, cv, αfsel, σsbiom, NS1
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A.4.5 Supplementary plots: grey gurnard
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Figure A.45: Chapter V grey gurnard - Trace plots for some example parameters:
µR, σR, L∞, K, cv, αfsel, σsbiom, NS1

263



A. Appendix

17.5 18.0 18.5
µRt

2.00 2.25 2.50 2.75 3.00
σRt

22 23 24

Linf

0.35 0.40 0.45 0.50 0.55

K
0.06 0.07 0.08 0.09

cv
2 3 4 5

αfsel

0.6 0.7 0.8 0.9 1.0
σsurv

40 50 60 70 80 90

NS1

Figure A.46: Chapter V grey gurnard - Plot showing the posterior for some example
parameters: µR, σR, L∞, K, cv, αfsel, σsbiom, NS1
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