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Abstract 

 

Clinical trials in breast cancer assess treatment regimens based on a balance of 

efficacy and adverse effects. To achieve high-quality evidence for these 

assessments, it is important to minimise potential sources of bias. Therefore, 

potential bias in the parameter estimates resulting from missing observations is an 

important concern.  

 

In this thesis, the influence of missing data on explanatory variables in time-

dependent Cox model analysis is explored, with application to breast cancer 

clinical trials. In particular, imputation in the context of time-dependent covariates 

that may be informative missing data which is described has not been studied in 

detail in the statistical literature. Standard imputation methods from the statistical 

literature are described, which involve assumptions about the missing data 

mechanism. Missing observations of quality of life (QoL) are imputed by standard 

methods before analysis of disease-free survival (DFS) and the performance of the 

imputation methods is considered. Then the influence of missing observations of 

an outcome variable assessing safety is considered. Repeated measures analysis of 

a safety assessment is performed. The insights into the influence of missing data 

could be generalised.  

 

Two clinical trials are considered; the International Breast Cancer Study Group 

(IBCSG) Trials VI and VII and the Herceptin Adjuvant (HERA) trial. Both 

investigated adjuvant treatment in breast cancer. There was no evidence in Trials 

VI and VII that the patient’s QoL is related to the patient’s DFS, though such a 

relationship could be masked by the missing observations. Simulation was 

performed in the context of a positive relationship between QoL and DFS. The 

simulation study suggested that the performance of the standard imputation 

methods was influenced by the missing data mechanism. There was no benefit 

from imputing LVEF values in the HERA trial. It was appropriate to perform the 

repeated measures analysis of LVEF values using observed LVEF values only.  
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1 Features of Breast Cancer Clinical Trials 

1.1 Introduction 

The focus of this thesis is the influence of missing data on explanatory variables 

that may be related to disease-free survival (DFS), such as quality of life, and also 

missing longitudinal assessments which are performed to assess major safety 

endpoints. The application is to breast cancer clinical trials. The potential 

problems associated with missing observations include bias of the parameter 

estimates and loss of power to detect clinically important differences among 

treatment groups over time (Fairclough 2010, Chapter 6; Little and Rubin 2002, 

Chapters 1 and 3). Imputation is among the methods proposed in the statistical 

literature to address these concerns (e.g. Rubin 1987; Molenberghs and Kenwood 

2007). Standard imputation methods are reviewed and outlined in this thesis. 

Missing values of quality of life are imputed using standard imputation methods 

before analysis investigating the possible relationship between quality of life and 

DFS. The performance of standard imputation methods is considered. Then the 

influence of missing values of an outcome variable assessing safety is 

investigated. Repeated measures analysis of a safety assessment is performed.  

 

This chapter begins by considering general features of breast cancer clinical trials. 

The two main aspects, efficacy and safety, are outlined, as well as the 

considerations of most relevance to this thesis: i) quality of life, ii) potential 

sources of bias, and iii) controlling bias. The subsection on general features 

concludes by describing considerations relating to the statistical analysis of breast 

cancer clinical trials. Then the clinical trials considered in this thesis are 

introduced. Next, quality of life and the main aspects of breast cancer clinical 

trials, efficacy and safety, are described in the context of the two clinical trials 

considered in this thesis. The standard analysis for time to event endpoints, the 

Cox proportional hazards model (Cox 1972), is described. Missing observations in 

longitudinal data are then considered. This includes i) the problem of missing data 
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in longitudinal data, ii) methods to deal with missing data, such as imputation, and 

iii) its prevalence. At the end of the chapter, the layout of thesis is described.  

 

1.1.1 General Features of Breast Cancer Clinical Trials 

Clinical trials in breast cancer are performed to assess the effects of treatment 

regimens.  Clinical judgment of treatment regimens for breast cancer is based on 

balancing efficacy with adverse effects. In addition, the risk of taking part in a 

clinical trial is of importance to patients. Efficacy and safety (see section 1.1.2) 

are the two main aspects of breast cancer clinical trials and are assessed in order to 

provide evidence for making clinical judgments and to protect patients. It is usual 

that the main treatment comparisons in breast cancer clinical trials are based on 

DFS and overall survival (OS). Traditional endpoints such as these do not reflect 

the patient’s sense of well-being and thus it is becoming increasingly common for 

quality of life to be assessed throughout the study (Fairclough 2010, p.1).  

 

In order to achieve high-quality evidence on the benefits and risks of treatment 

regimens, careful attention must be given to the study design, execution and 

analysis. Potential sources of bias and controlling bias are among considerations 

during the design stage of a breast cancer clinical trial (Fairclough 2010, Chapter 

6; Fayers and Machin 2007, p.355; Little and Rubin 2002, Chapter 1) (see section 

1.1.3). The potential bias of most interest in this thesis is the potential bias in 

parameter estimates associated with missing observations and this is described in 

detail in section 1.6. Considerations related to the statistical analysis required to 

meet the trial goals generally include Type I and Type II errors and power related 

to hypothesis tests (Piantadosi 2005, Chapters 6 and 7) (see section 1.1.4).  The 

power of hypothesis tests in the context of analysis of data with missing 

observations is of interest in this thesis (see section 1.6). 

       

1.1.2 Efficacy and Safety 

The evidence to make clinical judgments of treatment regimens for breast cancer 

comes from therapeutic clinical trials. Based on earlier experience of treatment 
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regimens in clinical trials, confirmatory trials evaluate the key clinical question 

relevant to efficacy or safety, which is formulated in advance as a hypothesis. The 

primary endpoint assessed in the key hypothesis of interest should be the variable 

which provides the most clinically relevant and convincing evidence directly 

related to the clinical question of most interest (International Conference on 

Harmonisation 1998, p.7).  Generally, the endpoints of most interest in breast 

cancer clinical trials are DFS and OS.  The standard analysis for these time to 

event endpoints is a Cox proportional hazards model. Explanatory variables which 

may be related to efficacy may be included as covariates in the Cox proportional 

hazards model analysis for the main analysis. 

 

In well designed and executed studies evaluating time to event endpoints, for 

patients who do not have the event being considered at the time of the analysis, 

there is an appropriate censoring date available. In addition, there are few missing 

observations in the explanatory variables included as covariates in the Cox 

proportional hazards model for the main analysis.  Therefore, it is not expected 

that missing observations cause difficulties in the main analysis of time to event 

endpoints. 

 

Breast cancer has a highly variable prognosis and benefit from a treatment 

regimen is unpredictable for the individual patient. Increasing attention is being 

paid to the molecular factors of the tumour with the aim of providing early and 

accurate information on outcome and benefit from a treatment regimen. 

(Urruticoechea et al. 2005). Thus, it is becoming increasingly common in breast 

cancer clinical trials to assess explanatory variables which may be related to 

efficacy, such as the molecular marker Ki-67, throughout the study (Urruticoechea 

et al. 2005).  When covariates are measured throughout the study and so vary over 

time they are referred to as time-dependent covariates. 

In addition to providing evidence used in making clinical judgements, patient 

safety is monitored in clinical trials in order to protect patients. Safety can often 

be summarised in terms of the risk of clinically relevant adverse events 
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(Piantadosi 2005, p. 411). It is common for medical assessments which monitor 

patient safety to be repeated throughout the breast cancer trials. An example is 

assessments of left ventricular ejection fraction (LVEF) performed to assess 

cardiac function (e.g. Suter et al. 2007). Medical assessments repeated throughout 

the study may be used as time-dependent covariates in an analysis of time to 

occurrence of major safety endpoints.  

 

1.1.3 Other Considerations in the Design and Execution of Breast 

Cancer Clinical Trials 

While the endpoints of DFS and OS are generally of most interest in breast cancer 

clinical trials, it is becoming increasingly common for quality of life also to be 

assessed. The goal of a clinical trial is to achieve high-quality evidence on the 

benefits and risks of treatment regimens. Therefore, among the considerations in 

breast cancer trials are: i) quality of life, ii) potential sources of bias, and iii) 

controlling bias, which are described in this subsection. Considerations relating to 

the statistical analysis of breast cancer clinical trials, such as the Type I error, are 

described in section 1.1.4.  

 

Quality of Life 

The patient’s ability to carry out day to day activities and how the patient feels 

will influence the patient’s perception of whether a treatment is beneficial and the 

patient’s perception of his or her health (Fairclough 2010, p.1). However, these 

factors are not reflected in traditional endpoints of efficacy and increasingly 

endpoints which address the patient’s perception of his or her health are included 

in clinical trials. The question of whether good quality of life is associated with 

good prognosis is of clinical interest in breast cancer trials (e.g. Epplein et al. 

2011; Keene Sarenmalm et al. 2009; Coates et al. 2000). The fact that quality of 

life assessments are commonly repeated throughout the study makes quality of life 

assessments suitable as a time-dependent covariate in a time-dependent Cox 

model.   
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Potential Sources of Bias 

Error has two components, a completely random one and a systematic one with a 

net direction and magnitude which is bias. Bias may arise from many sources, for 

example selection effects, uncontrolled prognostic factors, procedural errors and 

statistical methods. Age, severity of disease or comorbidities are examples of 

covariates that can appear as selection effects. (International Conference on 

Harmonisation 1998, p.5; Piantadosi 2005, Chapter 7). Another potential source 

of bias is missing observations (see section 1.6). Bias can be large relative to the 

treatment effect being investigated and cannot be resolved by replication of 

observations. The implications of bias may be difficult to know in advance, but it 

is often possible to understand factors that may contribute to bias and take steps to 

control these factors by careful design and conduct of the trial (Piantadosi 2005, 

Chapter 7).  

 

Controlling Bias 

The main methods for controlling bias described in the statistical literature are: 

randomisation, blinding, concurrent controls, objective assessments, endpoint 

ascertainment (International Conference on Harmonisation 1998, p.10-12; 

Piantadosi 2005, Chapter 7) and these methods are briefly described below.  

 

Randomisation 

Bias in selecting the patients in the clinical trial may affect the external validity of 

the results from the trial. Randomisation is the main method available for reducing 

selection bias. It is the only reliable method for controlling the effects of unknown 

covariates among the patients in the treatment groups (Piantadosi 2005, p.179-

180). Randomisation allows the assumption to be made that any differences in the 

observed and unknown covariates between treatment groups are attributable to 

chance. If other sources of bias have been removed, the difference in the outcome 

between the treatment groups can then be attributed to the treatments and thus 

providing evidence of causality.  
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Blinding 

Blinding reduces assessment bias, where the investigator’s or patient’s assessment 

is influenced by knowledge of the treatment the patient received. Generally, this is 

in the scenario of drug trials. 

 

Single blinding refers to the situation where the patient is unaware of which 

treatment he or she receives. In order to achieve this, the active treatment and the 

placebo must look, feel or taste the same and the investigator must be careful not 

to reveal the treatment group to the patient. Blinding can improve the objectivity 

of partially subjective endpoints. For example, if patients in a trial of analgesics 

know they are receiving the investigational treatment, they may be biased in 

favour of the treatment, causing them to overstate the treatment’s efficacy 

(Piantadosi 2005, p.180). However, there are scenarios where single blinding is 

not possible, for example if comparing chemotherapy treatment with surgery 

(International Conference on Harmonisation 1998, p.8-9).  

 

Double blinding refers to the situation where both the patient and the investigator 

responsible for assessing the outcome do not know which treatment the patient 

receives. Double blinding can further increase the usefulness of partially 

subjective endpoints. For example, if the investigator has knowledge of preclinical 

results in favour of the investigational treatment, he or she may be influenced by 

his or her expectations of the performance of the investigational treatment 

(Piantadosi 2005, p.180).  

 

Concurrent Controls 

Concurrent controls are an effective method of reducing bias, by removing the 

confounding of treatment effect with calendar time. Concurrent controls also 

make the use of randomisation more straightforward. For example, improvements 

in survival among cancer patients over calendar time make it impossible to 

determine the treatment effect from historical controls.  
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Objective Assessments 

An objective assessment is an assessment for which independent reviewers would 

agree on the result. Whenever possible, the methods used to assess trial endpoints 

should be objective as this reduces bias and increases the reproducibility of the 

trial results. 

 

However, there are circumstances where the most objective assessment is not the 

most appropriate. For example, when assessing pain intensity, the assessment of 

the investigator is more objective than the patient’s assessment but may be poorly 

correlated with the assessment of the patient (Grossman et al. 1991). It is likely 

health professionals underestimate pain and overestimate functional abilities 

(Piantadosi 2005, p.181). In a clinical trial, it would be more appropriate to 

consider the patient’s assessment of pain intensity, with the patient blinded to the 

treatment received.    

 

Endpoint Ascertainment 

It is important during the design stage of a trial that investigators plan follow-up 

procedures in order to ascertain trial endpoints. For example, it is not reasonable 

to assume patients who do not attend the clinic for a scheduled visit are alive and 

well. By actively determining the follow-up status of patients, by such methods as 

scheduled clinic follow-up visits and phone interviews, then the chance of 

ascertainment bias is reduced. The precise date of a breast cancer recurrence is 

difficult to determine. In breast cancer clinical trials, it is standard for the date of 

breast cancer recurrences to be reviewed centrally by the data management and 

medical staff (e.g. The International Breast Cancer Group 1997). The final 

adjudication of an endpoint may be made by a committee independent of the 

investigator (e.g. Chlebowski et al. 2003).  
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1.1.4 Other Considerations Relating to the Statistical Analysis of 

Breast Cancer Clinical Trials 

As well as the design and execution of a clinical trial, attention must be given to 

the statistical analysis to meet the goals of the trial. Generally, in clinical trials the 

primary analysis will be based on hypothesis tests and/or confidence intervals 

(International Conference on Harmonisation 1998, p.3). The primary analysis may 

be based on a stratified or unstratified hypothesis test. When making an inference 

from hypothesis tests, there are two random errors possible; “a false positive” 

(Type I) and a “false negative” (Type II). The consequences of type I and type II 

errors are different (Piantadosi 2005, Chapter 7).  This subsection begins by 

discussing stratification. Then the relationship between type I and type II errors 

and power, and factors influencing the probability of a type II error are described. 

Finally, p-values and confidence intervals are compared. 

 

Stratification 

While unrestricted randomisation is an acceptable approach, even in randomised 

trials, imbalances between treatment groups can occur by chance. Stratification by 

important prognostic factors measured at baseline may sometimes be valuable to 

help increase the comparability of the treatment groups. To be most advantageous, 

stratification should only be used for prognostic factors with relatively strong 

effects. The use of more than two or three stratification factors is rarely necessary 

(International Conference on Harmonisation 1998, p.10; Piantadosi 2005, p. 337-

338). 

 

When stratification is used in a clinical trial, the factors on which randomisation is 

stratified should be accounted for in the statistical analysis (International 

Conference on Harmonisation 1998, p.10). An example would be using a 

stratified log-rank test (Mantel 1966) for the comparison of treatment groups. The 

statistical section of the protocol should indicate if the primary analysis is based 

on a stratified or an unstratified analysis.  
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Type I and Type II Errors and Power 

The type I error is a “false positive” result and occurs if there is no treatment 

effect but the investigator wrongly rejects the null hypothesis and concludes that 

there is a treatment effect. The type II error is a “false negative” and occurs when 

the investigator fails to reject the null hypothesis and so fails to find a treatment 

effect that exists. The power of a hypothesis test is the probability of finding a 

treatment effect of a given size to be statistically significant when the alternative 

hypothesis is correct and is therefore is 1 – the probability of a type II error. 

Conventionally, the power is set at 80% and 90% in clinical trials (Piantadosi 

2005, p.277). Loss of statistical power due to missing observations in considered 

in section 1.6. 

 

Generally, the only factor that controls the type I error is the critical value of the 

hypothesis test. The type I error does not depend on the sample size. However, the 

type I error can become inflated when the multiple tests are performed, for 

example when several treatment group combinations are compared using multiple 

hypothesis tests. If multiple hypothesis tests are performed at the same 

significance level, the type I error of each individual hypothesis test will be 

controlled but the overall type I error across the clinical trial will increase. In this 

situation, methods for controlling the overall type I error should be carefully 

considered during the study design. Often the probability of a type I error in a 

clinical trial is set to 0.05, but there are circumstances where a higher or lower 

type I error is more appropriate (Piantadosi 2005, p.277). 

 

In particular, careful consideration should be given to the type I and type II error 

rates when designing a trial to demonstrate equivalence (a non-inferiority trial). In 

such trials the null hypothesis may be framed as “the treatments are different” and 

the alternative hypothesis framed as “the treatments are the same”. This is the 

reverse of what is standard in trials designed to demonstrate superiority of a 

treatment (Piantadosi 2005, p.290). For example, in the PhARE trial, the null 

hypothesis was “6 months of adjuvant trastuzumab treatment is not inferior to 12-
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month treatment by a pre-specified acceptable margin in terms of disease-free 

survival” (Pivot et al. 2013). Such hypothesis tests are naturally one sided, and the 

roles of the Type I and Type II error must be considered when selecting the values 

(Piantadosi 2005, p.290).  

  

Factors Influencing the Type II Error 

The probability of a type II error is influenced by three factors. These factors are 

the critical value for the rejection of the null hypothesis, the variance of the 

estimator under the null hypothesis and the treatment effect assumed in the study 

design. In principle, investigators have control over the critical value of the 

hypothesis test and the variance of the estimator under the null hypothesis, which 

is directly related to the sample size. 

 

The treatment effect assumed in the study design is generally based on the 

declared minimum clinically important difference. In this scenario, the probability 

of a type II error for a given sample size will increase as the assumed minimum 

clinically important difference increases. The advantage of a large clinical trial is 

that it can reliably find a treatment difference which is realistically small but 

clinically important (Piantadosi 2005, Chapter 7). 

 

P-values vs Confidence Intervals 

The p-value from a hypothesis test is the probability of obtaining a value of the 

test statistic equal to or more extreme than the observed test statistic when the null 

hypothesis is true. Therefore, p-values are probability statements made under the 

null hypothesis. It is important to remember that p-values are poor summaries of 

treatment effects (Royall 1986).  In particular, p-values do not provide 

information about the magnitude of the estimated treatment effect which is 

required to assess its clinical importance. In addition, the p-value partially reflects 

the sample size through the variability of the estimated treatment effect and the 

sample size is not of clinical importance. 
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Confidence intervals are centred on the estimated treatment effect and provide 

information on the magnitude and precision of the estimate. This makes 

confidence intervals more useful than p-values. (Piantadosi 2005, Chapter 16).  

For example, the 95% confidence interval for the hazard ratio for a DFS event in 

the trastuzumab group vs the observation group of 0.43 to 0.67 described in 

Piccart et al. (2005) is more informative than the corresponding p-value <0.0001. 

However, it should be remembered that confidence intervals and hypothesis tests 

are related. In particular, a confidence interval is a collection of hypotheses that 

cannot be rejected at a specified significance level. 

 
This subsection discussed statistical considerations relating to breast cancer trials. 

These would have been amongst the considerations in the published analyses for 

the breast cancer trials illustrated in this thesis. These breast cancer trials are 

described in the next section. 

 

1.2 Breast Cancer Clinical Trials Considered in this Thesis 

Adjuvant treatments with chemotherapy, endocrine therapy and combinations of 

both have been shown to increase DFS and OS in breast cancer patients (e.g. The 

International Breast Cancer Study Group [IBCSG] 1997). The breast cancer trials 

considered in this thesis, IBCSG Trials VI and VII and the more recent Herceptin 

Adjuvant (HERA) Trial, were large, international studies that investigated 

adjuvant treatment in early stage breast cancer.  

 

IBCSG Trials VI and VII 

IBCSG Trial VI was designed to examine different durations and timing of 

adjuvant chemotherapy in premenopausal and perimenopausal patients. IBCSG 

Trial VII compared tamoxifen alone or together with different durations and 

timing of chemotherapy among postmenopausal patients (see Figure 3.1). There 

were 1554 patients randomised to Trial VI between July 1986 and April 1993 and 

1266 patients randomised to Trial VII during the same time period. Quality of life 

was an important consideration in Trials VI and VII and data on patient’s self-
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assessed quality of life were prospectively collected throughout the study. Hürny 

et al. (1996) found that between baseline and 18 months, there was a significant 

improvement of quality of life over time. There was a significant adverse impact 

of delayed chemotherapy on all quality of life measures. Herring et al. (2004) 

noted that poor baseline quality of life was associated with improved prognosis in 

postmenopausal patients. This may reflect the fact that chemotherapy treatment is 

toxic.   

 

The further analysis of quality of life in Trials VI and VII presented in Chapter 3 

of this thesis investigated the hypothesis that the patient’s quality of life as 

measured by coping/perceived adjustment (“coping score”) was related to the 

patient’s DFS. The high proportion of missing coping scores and findings from 

previous statistical analysis of quality of life indicated that imputation is 

appropriate. The IBCSG dataset was the basis for simulated datasets with a known 

relationship between quality of life and DFS considered in Chapters 4 and 5. 

These simulated datasets are used to investigate if the performance of the standard 

imputation methods given different missing data mechanisms is influenced by the 

relationship between quality of life and DFS. 

 

HERA Trial 

The HERA trial was designed to investigate whether trastuzumab treatment was 

effective as adjuvant treatment for early stage breast cancer if used after the 

completion of the primary treatment and benefit in DFS and OS has been shown 

(Piccart-Gebhart et al. 2005; Smith et al. 2007). Cardiac function was monitored 

in all patients as trastuzumab treatment is associated with congestive heart failure 

(CHF) in patients with metastatic breast cancer. Assessments of LVEF were 

performed throughout the study as part of the cardiac monitoring and the 

percentage of missing LVEF assessments was low. Statistical analysis of cardiac 

safety in the HERA trial found a low incidence of CHF and suggested that cardiac 

dysfunction associated with adjuvant trastuzumab treatment is generally reversible 

(Suter et al. 2007; Procter et al. 2014). 
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The influence of missing LVEF assessments is investigated in the further analysis 

of cardiac safety in the HERA trial. As part of the further cardiac analysis, the 

LVEF values were used as a time-dependent covariate in a time-dependent Cox 

model for occurrence of a cardiac endpoint. Data were available for 3386 patients 

randomised between December 2001 and March 2005 with a median follow-up of 

1 year. In this setting, it was appropriate to perform the repeated measures 

analysis of the LVEF values over time in a mixed model using observed LVEF 

values only. 

 

1.3 Quality of Life 

Adjuvant therapy for early breast cancer can have substantial adverse effects, but 

improves DFS and overall survival. An important clinical question is whether the 

benefits in efficacy are worth the adverse effects on quality of life (Hürny et al. 

1996). Therefore, quality of life was an important endpoint in IBCSG Trials VI 

and Trials VII. The relationship between quality of life and DFS and delayed 

chemotherapy and DFS is explored in later chapters of this thesis (Chapters 3-5). 

Some important aspects of quality of life are described in this section. These 

aspects are: the definition of quality of life, the reason for and background to 

assessing quality of life and considerations in measuring quality of life. 

 

1.3.1 Definition of Quality of Life  

The World Health Organisation (WHO, 1948 and 1958) defined health as a “state 

of complete physical, mental and social well-being and not merely the absence of 

infirmity or disease.” Measures of health can be thought of as existing on a 

continuum of increasing biological, social and psychological complexity. Wilson 

and Cleary (1995) proposed the conceptual model described in Figure 1.1. The 

main purpose of the figure was to distinguish among conceptually distinct 

measures of quality of life and for the authors to make explicit what they consider 

the dominant causal associations.
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Figure 1.1 Conceptual Model of Quality of Life 
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Most conceptualisations of quality of life include the dimensions of physical 

functioning, social functioning, role functioning, mental health and general health 

perceptions (Ware 1987; Ware et al. 1981). Important concepts such as 

energy/fatigue, pain and cognitive functioning are incorporated in these broader 

categories. Clinical data, such as patient-reported symptoms, are generally not 

included in conceptualisations of quality of life (Wilson and Cleary 1995). While 

symptoms and adverse events impact on quality of life and will form part of a 

patient’s assessment of his or her assessment of quality of life, they are not 

equivalent to quality of life (Fairclough 2010, p.3). 

 

The term quality of life is not well defined. However, there is general agreement 

that it is a multi-dimensional concept that focuses on the impact of disease and its 

treatment on the well-being of a person (Fayers and Machin 2007, p.4; Fairclough 

2010, p.2). In its broadest definition, quality of life is influenced by our 

environmental and social conditions. Kaplan and Bust (1982) proposed the term 

health-related quality of life to distinguish health effects from other environmental 

and social factors influencing a person’s perception of quality of life, for example 

job satisfaction. Proposed definitions of health-related quality of life include those 

of Cella and Bonomi (1995) and Patrick and Erickson (1993). The definition 

proposed by Cella and Bonomi is: “Health-related quality of life refers to the 

extent to which one’s usual or expected physical, emotional and social well-being 

are affected by a medical condition or its treatment.” The definition of health-

related quality of life proposed by Patrick and Erickson (1993) is broader and 

considers quantity: “The value assigned to duration of life as modified by 

impairments, functional states, perceptions and social opportunities that are 

influenced by disease, injury, treatment or policy.” In general, the scope of 

clinical trials is limited to the assessment of health-related quality of life. 
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1.3.2 Reason for and Background to Assessing Quality of Life  

Reason for Assessing Quality of Life 

The endpoints of clinical trials have traditionally focused on endpoints that are 

physical or laboratory measures of response. The main treatment comparisons in 

breast cancer clinical trials are generally based on DFS and OS. However, 

traditional endpoints do not reflect how the patient feels or the patient’s ability to 

carry out day to day activities. These factors are likely to influence the patient’s 

perception on whether the treatment is beneficial and the patient’s perception of 

his or her health. More recently, clinical trials have been designed with endpoints 

which include the patient’s perception of his or her well-being, monitored 

throughout the study. 

 

Historical Development of Quality of Life Instruments 

In the late 1970s and early 1980s, questionnaires were developed that focused on 

physical functioning, physical and psychological symptoms, impact of illness, 

perceived distress and life satisfaction. However, these instruments were used for 

general evaluation of health and were not designated as quality of life instruments 

by the authors. An example of these questionnaires is the Sickness Impact Profile 

(Gilson et al. 1975). During the same time period, Priestman and Baum (1976) 

adapted visual analogue scales (VAS) to assess quality of life in breast cancer 

patients. VAS consist of a line with descriptive anchors at the extremes and often 

the length of the line is 10cm. Several subjective effects, such as the patient’s 

opinion as to “Is the treatment helping?” were assessed.  

 

Building on these early developments, more recent quality of life instruments 

have tended to emphasis subjective aspects of quality of life, such as emotional 

functioning, while continuing to consider functional capacity. It is common for 

one of more questions relating to overall quality of life also to be included.  

It is important to note that a person’s quality of life cannot be directly measured 

and it is only possible to make inferences from measurable indicators of 

symptoms and reported perceptions (Fairclough 2010, p.3).  
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1.3.3 Health Status Assessment Measures 

Characteristics of Health Assessment Measures 

In health status assessment measures, multiple aspects of the patient’s perceived 

well-being are assessed when the patient responds to a series of questions from 

which a score is derived. This score provides a relative comparison of the 

patient’s quality of life to the quality of life in the same patient at other times and 

to that of other patients. The assessment measures contained in the quality of life 

instrument often include a series of questions about particular aspects of the 

patient’s daily life during a recent period of time and a global question asking the 

patient to rate his or her current quality of life. Some questions among health 

status assessment measures focus on the perceived impact of the disease and 

treatment, for example “Has your physical condition or medical treatment 

interfered with your family life?” (Not at All, A Little, Quite a Bit, Very Much) in 

European Organization for Research and Treatment of Cancer (EORTC) QLQ-

C30 (Aaronson et al. 1993). Other questions focus on the frequency and severity 

of symptoms, for example “Have you had pain?”(Not at All, A Little, Quite a Bit, 

Very Much) in EORTC QLQ-C30. The main purpose of health status assessment 

measures is to compare quality of life among patients in different treatment 

groups or to identify changes in quality of life over time among patients in the 

same treatment group. 

 

Objective vs Subjective  

Health status assessment measures vary in the extent to which they assess events 

which can be observed or require the patient to make inferences. Some health 

status assessment measures assess symptoms or functional abilities which can be 

measured objectively, for example the frequency or severity of symptoms or 

whether the patient can perform certain tasks such as walking a mile. In contrast, 

some health status assessment measures assess the impact of symptoms or 

conditions, such as how much symptoms interfere with daily activities. Quality of 
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life instruments generally contain a combination of different types of health status 

assessment measures (Fairclough 2010, p.5). 

 

It may be that objective health status assessments are inappropriately considered 

more valid. As an example, while patient ratings have sometimes been found not 

to agree with the ratings of medical staff (Grossman et al. 1991), consideration 

should be given to the fact that the patient has more complete information than 

medical staff about the patient’s perception of his or her health and quality of life. 

The expectation that an objective health status assessment has less measurement 

error than a subjective assessment may be a reason for considering objective 

assessments more valid. This reasoning may not be correct when the objective 

endpoint has a high degree of measurement error. It should also be noted that 

some traditional endpoints contain a high degree of measurement error, for 

example blood pressure, or have poor predictive and prognostic validity, for 

example pulmonary function tests (Wiklund 1990). 

 

Generic and Disease-Specific Instruments 

Quality of life instruments can be designed to be generic or disease-specific. 

Generic instruments are designed to assess quality of life in people with and 

without active disease, for example EuroQoL (EQ-5D) (The EuroQoL Group 

1990). This is an advantage when following patients for an extended period of 

time after treatment has ended. Disease-specific instruments are designed to be 

narrower in scope and assess in detail the impact of a particular disease or 

treatment, for example EORTC QLQ-C30. Therefore, they are more likely to 

detect a small but clinically important change in quality of life related to 

treatment. 

 

Global Measurements and Aspect-Specific Measurements 

Some quality of life instruments are designed to provide a single global indicator 

of quality of life. An example is the question “Please mark with an X the 

appropriate place within the bar to indicate your rating of this person’s quality of 
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life during the past week.” (Lowest Quality – Highest Quality) which forms the 

Spitzer Uniscale intended to be completed by physicians (Spitzer et al. 1981). 

Others are designed to provide a profile of the dimensions such as the physical, 

emotional, functional and social well-being of patients, for example Functional 

Assessment of Cancer-General Version (FACT-G) (Cella et al. 1993). Many 

quality of life instruments attempt to assess both, for example EORTC QLQ-C30. 

 

Profiles of different aspects of quality of life are useful when the objective of the 

clinical trial is to investigate the possibly different treatment effect on several 

dimensions of quality of life. The advantage of a single indicator of quality of life 

is that it provides a simple approach to decision making. However, there are 

considerable challenges in constructing a single score that combines multiple 

aspects of quality of life and is valid in all contexts. A single indicator of quality 

of life has a potential for loss of information. It is possible that a particular 

treatment produces a benefit in one aspect of quality of life and a reduction in 

another aspect of quality of life which cancel each other out. (Fairclough 2002, 

p.5). Though these impacts on different aspects of quality of life may be important 

in the patient’s assessment of whether the treatment is beneficial, they would not 

be observed in a single indicator of quality of life.  

 

1.3.4 Reliability and Responsiveness and Response Format 

Reliability and Responsiveness 

The question “Would the patient give the same response at another time if he or 

she was experiencing the same quality of life?” is referred to as reliability. If the 

same patient experiencing the same quality of life has a large variation in 

responses, then it is difficult to discriminate between different levels of quality of 

life experienced by the patient or to identify any change in quality of life over 

time (Fairclough 2010, p.41; Fayers and Machin 2007, p.91).  

 

The question “Is the quality of life instrument sensitive to changes that are 

considered important to the patient?” is referred to as responsiveness. In a clinical 
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trial, responsiveness directly affects the ability to identify treatment-related 

changes in quality of life (Fairclough 2010, p.41; Fayers and Machin 2007, 

p.101). 

 

Response Format 

Quality of life instruments vary in their response format. The Likert scale (Likert 

1932) and the Visual Analogue Scale (VAS) are two of the most commonly used 

formats. The Likert scale contains a limited number of ordered responses and each 

response has an associated descriptive label. Individuals can discriminate at most 

7 to 10 ordered categories and reliability reduces at 5 or fewer levels (Miller 1956; 

Streiner and Norman, p.48-49). 

 

The VAS consists of a line with descriptive extreme anchors and often the length 

of the line is 10cm. The person is asked to mark the appropriate place on the line. 

Priestman and Baum (1976) developed VAS to assess quality of life in breast 

cancer patients. The concept behind the VAS is that the measure is continuous and 

potentially discriminates better than a Likert scale, however this has not generally 

been true in validation studies where both formats have been used (Fairclough 

2010, p.7). It may be that patients are more likely to judge how far along the line 

applies to him or her in round values and then mark on the line the place that he or 

she considers as the appropriate round value. The VAS format has the following 

limitations: i) it requires a level of eye-hand co-ordination that may be unrealistic 

in certain patients, ii) it requires a data management step where the position of the 

mark on the line is measured and iii) it excludes telephone assessment and 

interview formats (Fairclough 2010, p.7). 

  

1.3.5 Summary 

In clinical trials, the scope is generally limited to health-related quality of life, 

representing the impact of disease and treatment on a patient’s perception of his or 

her well-being. Quality of life is multidimensional including physical, emotional, 

functional and social components. It is subjective and represents the patient’s 
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perspective. Quality of life is not well defined and different instruments use 

different definitions. There is a wide range of instruments, however this range is 

expected to be reduced once the purpose of evaluating quality of life and the 

disease area has been considered. They are designed to be completed by the 

patient and frequently have several subscales. 

 

Quality of life will influence the patient’s perception of whether a treatment is 

beneficial. Adverse events are the most common reason for patients to discontinue 

treatment. Patient safety is monitored throughout the breast cancer trials and is 

described in the next section.  

 

1.4 Safety in Breast Cancer Clinical Trials 

The risk in taking part in a clinical trial is important to the patient. Patient safety is 

monitored in clinical trials in order to protect patients and inform clinical 

judgement. This section considers the scope of evaluation of safety data and 

statistical analysis of safety data. 

  

Scope of Evaluation of Safety Data 

The safety and tolerability profile of a treatment regimen for breast cancer is 

established by therapeutic breast cancer trials. These trials provide an important 

opportunity to explore potential adverse effects that were not previously 

associated with the treatment regimen, even though these investigations may have 

a low power (International Conference on Harmonisation 1998, p.29). Ongoing 

safety evaluation is performed throughout the trial to protect patients. Procedures 

should be in place to promptly notify all concerned investigator(s)/site(s) of 

findings that could adversely affect the safety of subjects and to expedite the 

reporting of all adverse drug reactions that are both serious and unexpected 

(International Conference on Harmonisation 1996, p.25-26). Reporting to 

regulatory authorities and/or institutional review board(s) may also be required 

(International Conference on Harmonisation 1996, p.25-26). An independent data 

monitoring committee (IDMC) may be established to assess at intervals the 
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progress of a trial, including safety data. An IDMC makes recommendations to 

the sponsor on whether to continue, modify or terminate a trial after reviewing the 

trial information (International Conference on Harmonisation 1998, p.21).  

   

The safety information collected is generally based on adverse events, laboratory 

tests concerning blood chemistry and haematology and vital signs. An example in 

breast cancer trials is collecting severity of adverse events that are associated with 

chemotherapy, such as nausea/vomiting. It is important to be able to identify the 

severity of an adverse event, adverse events leading to death, and whether an 

adverse event is classified as serious. Adverse events must be reported regardless 

of the investigator assessment of whether the adverse event was related to the 

treatment regimen. Procedures should be in place to promptly notify all concerned 

investigators expedite the reporting to all  Another important issue to explore is 

the reasons for discontinuing the treatment regimen (International Conference on 

Harmonisation 1998, p.30).  

 

Statistical Analysis of Safety Data 

Patients who do not receive any of the study treatment regimen are generally 

excluded from the statistical analysis of safety data.  The population groups for 

the statistical analysis of safety data may be defined by the treatments the patient 

received rather than the randomised treatment groups.  It is common for safety 

data to be summarised in terms of the risk of clinically relevant adverse events 

and for the occurrence of adverse events of interest to be expressed as an 

incidence. When calculating an incidence, it is important to consider the 

appropriate specification of the denominator. For example, it may be appropriate 

to consider the denominator as the number of patients who received at least one 

dose of the investigational treatment or as the total exposure time (in patient-

years) (International Conference on Harmonisation 1998, p.30).  

   

Often the probability of the risk of an adverse event over time is of interest and 

therefore it is common for medical assessments monitoring patient safety to be 
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repeated throughout the study. In this situation, summaries of the change in 

medical assessments from baseline over time and modelling the result of the 

medical assessment over time is likely to be of clinical interest. For example, it is 

of interest to model LVEF assessment over time in the HERA trial (see Chapter 

6). Models for longitudinal data are described in section 1.6.4. In the next section, 

modelling the time-to-event endpoints which are generally of most interest in 

breast cancer trials is described.   

 

1.5 Cox Proportional Hazards Model and Time-Dependent Cox  

Model 

The standard analysis for the time to event endpoints in breast cancer clinical 

trials is a Cox proportional hazards model. Covariates related to efficacy may be 

included in the Cox proportional hazards model. Breast cancer trials increasingly 

have covariates measured throughout the study. Such explanatory variables may 

be included as time-dependent covariates in a time-dependent Cox model analysis. 

The analysis of some time to event endpoints may be complicated by another type 

of event which prevents the event of interest occurring. This section considers the 

proportional hazards assumption, the assumption of a parametric form for the 

baseline hazard function, parameter estimates, time-dependent covariates and 

competing risks. 

 

Proportional Hazards Assumption 

In a survival model, the hazard function describes the instantaneous risk of failure 

for subjects that are surviving at time t. The effect parameters describe how the 

hazard varies in response to explanatory variables, such as the treatment group 

(Kalbfleisch and Prentice 2002, Chapter 2). The hazard ratio describing the 

treatment effect is assumed to be constant over time. In addition to an indicator for 

the treatment group, covariates may be included in the survival model in an 

attempt to control for confounding effects. An example of covariates that may be 

included in survival models are age and gender. Under the proportional hazards 
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assumption, the covariates affect the hazard function in a multiplicative fashion. 

The hazard function given covariate values is derived by multiplying a function of 

the covariates values by the baseline hazard function. The Cox proportional 

hazards model uses the assumption of proportional hazards to estimate the effects 

of the covariates without specifying the baseline hazard function. 

 

In the Cox proportional hazard model, the hazard function at time t for the ith 

subject (i=1,..,n) is assumed to be: 

 
0( | ) ( ) ,

T
i

it t e  Z
Z

  (1.1)  

where Zi is a vector of covariates, β is a vector of regression coefficients and λ0(t) 

is the unspecified baseline hazard function. 

 

For an subject characterised by the covariates Zi the ratio of his/her hazard to the 

baseline hazard is 𝑒𝜷𝑇𝒁𝒊. This relationship can be written as: 

 log {
𝜆(𝑡)

𝜆0(𝑡)
} =  𝜷𝒁𝑖  (1.2)  

 

Parameter Estimates from Cox Proportional Hazards Model 

Parameter estimates in the Cox proportional hazards model are obtained by 

maximizing the partial likelihood rather than the full likelihood. This is in order to 

eliminate the unknown baseline hazard function and to account for censored 

values. When the sample contains ties, an approximation of the partial likelihood 

is used. The confidence interval for the hazard ratio or the parameter estimate will 

generally provide useful information in addition to the p-value. 

 

Let the sample comprise of r uncensored times t1 < … < tr. The remaining n-r 

subjects are right censored. Let i denote the subject failing at ti and j denote the 

subject failing at time tj. Zi and Zj are the vectors of covariates for these subjects 

respectively. The log partial likelihood (Cox 1972) is given by: 

 
𝑙(𝛽) = ∑ {𝑍𝑖

𝑇𝛽 −  log [∑ exp (𝑍𝑗
𝑇𝛽)

𝑡𝑗≥𝑖
]}

𝑟

𝑖=1

 (1.3)  
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The treatment effect is often presented as a hazard ratio. In considering a binary 

(active vs placebo) treatment effect, the hazard ratio (active vs placebo) is the 

exponential of the parameter of the treatment effect. It is common in breast cancer 

trials that the hazard ratio corresponding to the minimum treatment effect of 

clinical interest is considered in the sample size calculations. A parametric form 

may be assumed as part of the sample size calculations.  

  

The Assumption of a Parametric Form for the Baseline Hazard Function 

The baseline hazard function is not specified in the Cox proportional hazards 

model. However, the proportional hazards model may be fitted by assuming the 

baseline hazard function follows a parametric form. For example, an exponential 

form for the baseline hazard function may be assumed during the sample size 

calculations in a breast cancer trial, as was done in the HERA trial. The hazard 

function is assumed to be constant. This assumption implies that the survival 

times follow an exponential distribution rescaled by the covariates. A 

generalisation of the exponential distribution allows for a power dependence of 

the hazard on time. This yields the two-parameter Weibull distribution.    

 

Stratified Cox Proportional Hazards Model 

In a clinical trial, a stratified analysis may be used to account for prognostic 

factors rather than including them as covariates in the survival model. The 

stratified Cox proportional hazards model allows the form of hazard function to 

vary across levels of stratification variables. Suppose X is a secondary categorical 

predictor, with Q levels, that we want to adjust for when making inferences about 

the relationship between the covariates Z and the outcome. Then a stratified 

analysis can be performed by fitting  

𝜆𝑞(𝑡|𝒁𝑖 , 𝑋) = 𝜆0𝑞(𝑡)𝑒𝜷𝑇𝑍𝑖 , 𝑞 = 1, . . , 𝑄   (1.4)  

 

The baseline hazard functions for the Q strata are allowed to be arbitrary. The 

parameter estimates are again found by maximising the partial likelihood. In 
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general, the approximate partial likelihood of β is the product of the Q partial 

likelihoods arising from the qth stratum alone (Kalbfleish and Prentice 2002, 

Chapter 4). 

   

Time-dependent Covariates 

It is becoming increasingly common in breast cancer trials to have covariates 

measured throughout the study and thus are defined as time-dependent covariates. 

Examples of time-dependent covariates in breast cancer trials are covariates which 

may be related to efficacy, quality of life assessments and medical assessments 

performed to monitor patient safety repeated throughout the study. 

 

Let D be a time-dependent covariate and let 

 ( )iD t = {Di(u); 0 < u < t} (1.5)  

denote the covariate history up to time t for the ith patient.  

 

In the time-dependent Cox proportional hazard model, the derived covariates Zi(t) 

are functions of the covariate history Di(t) and the time t. An internal covariate is 

defined as a value over time, such as a quality of life assessment, generated by the 

subject under study (Kalbfleish and Prentice, Chapter 6.). The parameter 

estimation for such covariates is based on the partial likelihood score function:  

𝑈(𝛽) = ∑ 𝛿𝑖 {𝐷𝑖(𝑡) − 
∑ exp (𝛽𝑇𝐷𝑗(𝑡𝑖))𝑡𝑗≥𝑡𝑖

𝐷𝑗(𝑡𝑖)

∑ exp (𝛽𝑇𝐷𝑗(𝑡𝑖))𝑡𝑗≥𝑡𝑖

}

𝑛

𝑖=1

 (1.6)  

where δi indicates, by values 1 versus 0, whether the ith subject fails or is 

censored at time ti. 

 

Competing Risks 

In the analysis of some time to event endpoints, the possibility that the patient has 

another type of event which prevents the occurrence of the event of interest has to 

be considered. An example is when considering death due to breast cancer, death 

due to other causes is a competing event. In the competing risks analogue of the 



27 
 

Cox proportional hazard model (Holt 1976), the cause-specific hazard of cause c 

for patient i with covariate vector Zi is modelled as 

 
,0( | ) ( ) ,

T
c i

c i ct t e  Z
Z

  (1.7)  

where λc,0(t) is an unspecified baseline cause-specific hazard function and the 

vector βc represents the covariate effects on cause c. 

 

The calculation of cause-specific hazard ratio follows standard methods. An 

important assumption is that the failure processes of the competing risks are 

independent (Piantadosi 2005, p. 199). Therefore, the interpretation of cause-

specific hazard ratios, such as the specific hazards of a cardiac endpoint, requires 

caution. 

 

1.6 Missing Observations in Longitudinal Data 

Longitudinal data refers to variables measured repeatedly throughout a study. As 

expected given that longitudinal data involves the patient returning repeatedly for 

an assessment, missing observations are common (Diggle et al. 2002, p.21). These 

missing observations complicate the analysis of longitudinal data. Thus, methods 

for dealing with missing longitudinal data, such as imputation, have been 

proposed in the statistical literature. In the analysis of longitudinal data, repeated 

measures models (e.g. Searle 1971) can be used to account for the structure of the 

measurements. This section begins by considering the problem of missing data in 

longitudinal data. Next, methods to deal with missing data and its prevalence are 

described. The last part of this section describes repeated measures models and a 

method for exploring the relationship among imputed values. 
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1.6.1 Problem of Missing Data, Missing Data Mechanism and 

Prevention of Missing Data 

Problems Arising From Missing Observations 

The potential problems associated with missing observations assessments include 

loss of power to detect clinically important differences among treatment groups or 

over time. Generally, the sample size of breast cancer clinical trials is based on 

DFS or OS and the sample size will be large enough to detect clinically important 

differences in quality of life assessments or patient safety. However, the reduction 

in power due to missing observations could potentially lead to the failure to detect 

a clinically important difference. 

 

Another problem associated with missing observations is the potential bias of the 

parameter estimate. If the probability of missingness is associated with the 

unknown value or with covariates not considered in the analysis model, then the 

parameter estimate will be over- or underestimated (Fairclough 2010, p.149). 

 

Missing Data Patterns 

The missing data pattern describes which values of variables in the dataset are 

observed and which are missing. The first missing data pattern to be considered 

was univariate missing data when only a single variable has missing observations. 

An assessment repeated throughout a clinical trial is an example of information 

collected repeatedly in a longitudinal study and may have a monotone missing 

data pattern.  This refers to situation where all assessments were observed up until 

the time the patient was lost to follow-up (dropped out) and then no further 

assessments are observed (Little and Rubin 2002, Chapter 1).  

 

It is common for missing observations from a clinical trial to have a general 

missing data pattern.  When a patient has intermittent missing observations in 

assessments repeated throughout the study, this is an example of a general missing 

data pattern (Little and Rubin 2002, Chapter 1). Methods for dealing with missing 

monotone data may be easier to apply than methods for dealing with a general 
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missing data pattern. These missing data patterns are illustrated below in Table 

1.1: 

 
Table 1.1 Examples of Missing Data Patterns 

A (Monotone) 

Patient Time 1 Time 2 Time 3 Time 4

1 O O O O

2 O O O

3 O O O O

4 O

5 O O  

 
B (General) 

Patient Time 1 Time 2 Time 3 Time 4

1 O O O O

2 O O O

3 O O O O

4 O O

5 O O O  

The spaces corresponding to missing observations are highlighted in blue;  

O corresponds to observed 

 

Missing Data Mechanism 

There are three major categories of missing data, depending on whether the reason 

for the observation being missing is related to the patient’s quality of life (Rubin 

1976; Little and Rubin 1987, Chapter 1; Little and Rubin 2002, Chapter 1). 

 

i) Missing Completely at Random (MCAR) 

For a quality of life assessment to be MCAR, the assumption is that the 

probability that an observation is missing is independent of the unknown value of 

the missing quality of life assessment and values of quality of life assessments at 

other times. Fielding et al. (2009) note that a scenario for MCAR quality of life 

assessment is if the form was lost in the post after being sent by the patient. 

 

ii) Missing at Random (MAR) 

For a quality of life assessment to be MAR, the assumption is that the probability 

that an observation is missing is independent of the unknown value of the missing 
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quality of life assessment but may depend upon the covariates and quality of life 

assessments made at other times. Fielding et al. (2009) note that a scenario for 

MAR quality of life assessments is if patients with poorer baseline quality of life 

are less likely to complete subsequent assessments than patients with better 

baseline quality of life. If quality of life assessments are MAR, then parameter 

estimates based on the analysis of patients with complete data (complete case 

analysis) will be biased (Little and Rubin 2002, Chapter 3; Molenberghs and 

Kenward 2007, Chapter 4). 

 

Unlike complete case analysis, available case analysis considers all available 

values. Fairclough (2010, Chapter 6) notes that it is possible to obtain unbiased 

parameter estimates from available case analysis of quality of life assessments. 

When the missing data mechanism is ignorable, unbiased estimates of the 

parameters θ can be obtained from likelihood based methods using all observed 

data and covariates associated with the probability of missingness. Little and 

Rubin (2002, Chapter 6) defined when the missing data mechanism is ignorable, 

as outlined in the paragraph below. 

 

The complete data Y is portioned into observed values, Yobs, and missing values, 

Ymiss
, and the missing-data indicator matrix M indicates the missing data pattern. 

They formulate models in terms of a probability distribution of Y with the density 

f(Y|θ) indexed by unknown vector parameter θ, and a probability distribution 

function f(M|Y, ψ) for M given Y indexed by a vector parameter ψ.  ψ is the 

distribution of the missing data mechanism. The missing data mechanism is 

ignorable for likelihood inference if: 

a) the missing data are MAR; 

b) the parameters θ and ψ are distinct, in the sense that the joint parameter 

space of (θ, ψ) is the product of the parameter space of θ and the parameter 

space of ψ. (Therefore the parameters θ are functionally independent of the 

missing data mechanism) 
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iii) Informative Missing Data (or Missing Not At Random) 

If the probability that an observation is missing depends on the unknown value of 

the missing quality of life assessment, then this quality of life assessment is 

informative missing data. The French 2003 decennial health study illustrates 

informative missing data from a quality of life questionnaire. Peyre et al. (2010) 

note that for half of items on the of the SF-36 questionnaire, low scores on their 

subscale was associated with missingness of the item. Therefore, these items were 

considered informative missing data. If quality of life assessments are informative 

missing data, then parameter estimates based on complete case and available case 

analysis will be biased (Little and Rubin 2002, Chapter 3). 

 

Selection Models and Pattern Mixture Models 

Schafer and Graham (2002) note that to model missing data without the MAR 

assumption, a distribution for the missingness must be explicitly specified as well 

as the model for the complete data. The two different ways to do this are selection 

models, reviewed by Little (1995), and pattern mixture models (see section 2.3.6).  

In typical applications of selection models, it is assumed that measurements over 

time (Y1, . . . , YT) follow a well-recognised distribution such as a multivariate 

Normal and allow the probability of dropout at occasion t to follow a logistic 

regression on the previous and current values (Y1, … , Yt) but not on future 

values (Schafer and Graham 2002). 

  

Identification of Informative Missing Data 

As the values of the missing observations are unknown, it is not possible to 

formally test a hypothesis that the probability that an observation is missing is 

independent of the unknown value. Formal comparisons of MAR versus the 

alternative informative missing data should be considered with caution (Jansen et 

al. 2006; Schafer and Graham 2002). For example, in selection models, the 

logistic coefficients for the drop-out model can be set to give special cases of 

MCAR and MAR. This allows the possibility of testing the MAR hypothesis by 

considering the confidence interval for the coefficient (Schafer and Graham 
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2002), but the results of such tests depend on untestable assumptions about the 

population distribution (e.g. Kenward 1998). However, it is possible to investigate 

whether the assumption that data are MAR is reasonable, though the evidence 

should be interpreted carefully (Molenberghs and Kenward 2007, p.185). For 

example, if the probability that an observation is missing is associated with the 

fact the patient has a poor quality of life due to suffering a serious adverse event, 

then it is unlikely that the assumption that the quality of life assessment is MAR is 

valid.   

 

Preventing Missing Observations 

Even though statistical methods for dealing with missing data exist, it is important 

to minimise the amount of missing data in a clinical trial. This is of particular 

importance when assessing quality of life, where often there is a high proportion 

of missing data. Potential factors contributing to missing quality of life 

assessments are: i) the assessments seem burdensome to a patient focused on his 

or her disease and ii) inadequate processes for collecting the assessments.   

 

Consideration should be given during the design stage of a study to the schedule 

and frequency of study assessments to minimise the burden on patients. When 

possible, quality of life assessments should be scheduled at the same time as other 

medical assessments. It is important that the study procedures are clearly 

described in the protocol. This should include details about how to complete 

quality of life assessments if the patient’s treatment does not follow the protocol 

schedule or if the patient is unable to complete the assessment without assistance 

(Fairclough 2010, Chapter 2).  

 

The quality of life questionnaire should be single-sided. A patient information 

sheet describing the reason for quality of life endpoints and the reason why 

completing the full quality of life assessment is important may help reduce 

missing quality of life assessments. However, the patient must be aware that his or 

her medical treatment will not be affected if he or she decides not to complete the 
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quality of life assessment (Fairclough 2010, Chapter 2). As not all quality of life 

assessments will be completed, it is useful to record the reason the patient did not 

complete the quality of life assessment and if possible to record if the reason was 

related to the patient’s quality of life (Fairclough 2010, p.46). 

 

1.6.2 Dealing with Missing Data-Methods 

Methods proposed for analysis of data with missing observations, can be grouped 

into the following categories, which are not mutually exclusive: 

i) procedures based on completely recorded units 

ii) imputation-based procedures 

iii) weighting procedures 

iv) model-based procedures 

 

Overview of Methods 

Imputation-based procedures, where missing values are replaced, are the focus of 

this thesis. Standard methods are described in Chapter 2. Following imputation, it 

may be of interest to explore the relationship among the imputed values. 

Hierarchical cluster analysis (e.g. Everitt [1993]) allows this relationship to be 

explored by constructing a dendrogram, a tree-like structure describing the 

distance between the observations. 

 

Complete case analysis may be satisfactory when there are only small amounts of 

missing data. However, it may lead to substantial bias and lacks efficiency (Little 

and Rubin 2002, Chapter 3). Randomisation inferences from sample survey 

design without missing data commonly weight sample units by their design 

weights, which are inversely proportional to their probability of selection. 

Weighting procedures for missing data modify the weights with the aim of 

adjusting for missing data as if it were part of the sample design (Little and Rubin 

2002, p.19-20). 
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Model based procedures are a broad class of procedures. A model is defined for 

the observed data and inferences are based on the likelihood or posterior 

distribution under the defined model, with parameters estimated by procedures 

such as maximum likelihood. An example is the expectation maximisation (EM) 

algorithm (Dempster et al. 1977), which has an expectation step and maximisation 

step. Next in this subsection, two different types of missing data, namely missing 

outcome data and missing explanatory variables, are considered. 

  

Missing Outcome Data in Clinical Trials 

Clinical trials are usually designed to allow statistical analysis which can be 

meaningfully interpreted to be performed using straightforward calculations. 

When considering standard classical designs, there is a standard least squares 

analysis, which gives estimates of parameters, standard errors for contrasts of 

parameters and the analysis of variance (ANOVA) table. 

 

Consider a missing data pattern where the covariates X are fully observed and the 

outcome variable Y contains missing observations. In this situation and when the 

MCAR assumption holds, the patients with Y missing provide no information for 

the regression of Y on X and analysis of the complete cases is fully efficient. 

However, the balance of the original design is lost and more complex calculations 

are required to compute the correct least squares analysis (Little and Rubin 2002, 

Chapter 2).   

 

The advantages of imputing the missing data in a clinical trial rather than 

analysing the available data include the fact the required statistical analysis is 

easier to interpret and compute as standard statistical methods can be applied. The 

aim is to have simple rules for imputing data in order to achieve one or more 

completed dataset(s) which represents the unknown complete data. 

 

Assuming the probability of missingness is unrelated to the missing values of Y 

and so the MAR assumption holds, there are several methods for imputing 
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missing data that lead to correct estimates of all parameters which can be 

estimated. In addition, it is simple to correct the residual (error) mean square, 

standard errors and sums of squares that have one degree of freedom. Though 

more complicated to compute, it is also possible to provide correct sums of 

squares with more than one degree of freedom. This information yields the 

ANOVA table (Little and Rubin 2002, Chapter 2). Imputation methods have also 

been developed to deal with informative missing data. However, as the missing 

values of Y are unknown, these methods often make assumptions that cannot be 

tested with the available data. 

 

Missing Explanatory Variables versus Missing Outcome Data 

An example of missing explanatory variables is where, in a clinical trial, treatment 

group and stratification variables are fully observed but some other variables, such 

as the patient’s weight at randomisation, are missing. The missing covariates may 

be part of a general linear model. The basic statistical assumption underlying 

general linear modelling is that the outcome variable can be described as the sum 

of a fixed component which is a linear function of the explanatory variables and a 

random error component.  In the scenario where some patient’s weight at 

randomisation is missing, complete case analysis would exclude these patients, 

allowing standard statistical analysis to be applied. The disadvantage would be 

loss of precision and potential bias due to excluding patients. Bias would arise 

when the missing data mechanism is not MCAR and so the complete patients are 

not a random sample of all patients. It is likely that the balance in a treatment 

comparison would be lost making the analysis less efficient. Imputation would 

generally be useful in this scenario. Considering covariates that are part of a 

general linear model, methods for dealing with missing covariates are generally 

applicable with minor modifications to missing outcome data (Wang and Chen 

2001).    

 

A challenge in dealing with missing covariates in the context of non-linear 

regression is that the likelihood-based score is not a linear function of the 
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covariates while it is linear function of the outcomes. This non-linearity property 

makes dealing with missing covariates more complicated than dealing with 

missing outcome data. Among the complications is modelling the covariate 

distribution when the maximum likelihood estimator is considered (Wang and 

Chen 2001). For survival data, further challenges in dealing with missing 

covariates are added due to censoring. For example, the conditional probability of 

missing covariates given observed covariate and outcome data is generally a 

function of the unknown baseline hazard function and some covariate 

distributions (Wang and Chen 2001).   

 

Missing Explanatory Variables in Survival Data 

Assuming the probability of missingness is unrelated to the unknown values of the 

outcome variable Y, though may depend on completely observed covariates, 

estimates of β from the Cox proportional hazards model based on the complete 

case analysis is unbiased but lacks efficiency (Paik 1997).  If data are completely 

observed, the full likelihood function contains an unspecified baseline hazard 

function making the estimate of β difficult to obtain and therefore the partial 

likelihood is considered. The maximum partial likelihood estimator of β is the 

solution to the log-partial likelihood equation involving derivatives with respect to 

β equalling 0 (Cox 1972; Andersen and Gill 1982). When covariates of a patient 

with an event are missing, a component of the log-partial likelihood is unknown.  

The baseline survival function, S(0)(β, Xi), cannot be calculated if any patients in 

the risk set have missing covariates. 

 

Methods of dealing with missing covariates in the Cox proportional hazards 

model have been proposed. These include methods considering the baseline 

cumulative hazards and weighted estimators (e.g. Wang and Chen 2001; Qi et al. 

2005; Bang and Robins 2005; White and Royston 2009), and methods when the 

covariates are missing at random (e.g. Lin and Ying 1993; Pugh et al. 1993; Zhou 

and Pepe 1995; Paik and Tsai 1997; Paik 1997; Zhou and Wang 2000) or when 

the missing covariates are informative missing data (e.g. Leong et al. 2001; 
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Herring et al. 2004). Methods for dealing with missing time-dependent covariates 

have also been proposed (e.g. Altman and De Stavola 1994; Collett 1994; Dupuy 

and Mesbah 2002; Bradshaw et al. 2010). 

 

Augmented Inverse Selection Probability Weighted Estimators and Fully 

Augmented Weighted Estimators 

Wang and Chen (2001) proposed an augmented inverse selection probability 

weighted (AIPW) estimator for parameter estimates of MAR covariates. The 

augmentation term of the parameter estimator depends on the baseline cumulative 

hazard and on a conditional distribution implemented by using an EM-type 

algorithm. The method proposed was developed considering missing covariates in 

survival data and extends the inverse probability weighted estimator proposed by 

Horvitz and Thompson (1952). 

 

The complete case analysis is adjusted to give the simple inverse probability 

weighted (SIPW) estimator by using the inverse of the selection probability πi as 

the weight. If πi is unknown, it has to be estimated. The SIPW is simple to 

implement but may be inefficient. Adding an augmented term to the simple 

weighted estimating equation was discussed in Robins et al. (1994) in a general 

framework. The AIPW estimator is derived from the augmented inverse AIPW 

estimating equation and can be implemented by an EM-type algorithm. 

 

Related to this AIPW estimator, Qi et al. (2005) proposed a kernel-assisted fully 

augmented weighted (FAW) estimator where both the selection probabilities and 

conditional expectation of the unobserved covariate are estimated non-

parametrically. Here, non-parametric kernel smoothing techniques are adopted to 

estimate conditional expectations that depend on the cumulative baseline hazard 

function and the conditional distribution of the missing covariates given the 

observed covariates.        
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Doubly Robust Estimators 

An estimator from a missing data model is doubly robust if it remains consistent 

when either a model for the missing data mechanism or a model for the 

distribution of the complete data is correctly specified. Scharfstein et al. (1999) 

showed that the orthogonal AIPW estimator proposed by Robins et al. (1994) and 

Rotnitzky et al. (1998) was doubly robust. They developed a general method to 

construct doubly robust estimators when data are missing at random. They also 

showed the orthogonal AIPW estimator had an alternative “regression 

representation”. Bang and Robins (2005) extended previously developed methods 

in order to construct doubly robust estimators in longitudinal monotone missing 

data models. The method assumes that the data are MAR, and here 𝐋 = �̅�𝐽+1 =

(𝐋1
T, … , 𝐋𝐽+1

T )T represents the full data obtained at times h = 1, …, J +1. 

Suppose the parameter of interest μ is the mean of Y = LJ+1. The parameter of 

interest μ can be expressed in terms of regression functions defined recursively. 

Bang and Robins (2005) show that it not necessary to specify a parametric model 

for the entire joint distribution of L, Instead, parametric models are specified for 

the regression functions.  The regression parameters are then estimated recursively 

based on the observed data.  

 

Logistic or Linear Regression using the Censoring Indicator, the Cumulative 

Baseline Hazard and Other Covariates  

White and Royston (2009) proposed logistic or linear regression using the 

censoring indicator, the cumulative baseline hazard and the other covariates as a 

suitable model for imputing missing binary or Normally distributed covariates.  

They considered regression analysis when covariates have missing data. They 

noted multiple imputation, which involves replacing each missing observation 

with K (K > 1) simulated values (Rubin 1987; Little and Rubin 2002), is typically 

more efficient than complete case analysis in this scenario. A regression model, 

referred to as the imputation model, may be used in multiple imputation, as 

opposed to the analysis model whose regression coefficients are of interest. In 
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survival data, it is common to include the censoring indicator and the log of the 

survival time in the imputation model. The choice of variables in the imputation 

model is very important in performing multiple imputation appropriately. They 

derived a number of exact and approximate results about the imputation model 

involving the censoring indicator and complete covariates in terms of the model 

parameters θ. These results motivate the regression models involving the 

censoring indicator, the cumulative baseline hazard and the complete covariates.  

 

The parameter estimator is exact in the case of a single binary covariate and in 

other situations it is approximately valid for small covariate effects and/or small 

cumulative incidence.  The method proposed assumes the missing covariates are 

MAR or MCAR. In addition to the Cox proportional hazards model for the 

survival time, an “exposure model” is also required to account for the missing 

covariates. The model parameters θ considered contain the parameters from the 

“exposure model”, the regression coefficients to be estimated and the cumulative 

baseline hazard. 

 

Covariates Missing At Random 

Parameter estimators dealing with MAR covariates include Lin and Ying (1993), 

Pugh et al. (1993), Zhou and Pepe (1995), and Zhou and Wang (2000). Paik 

(1997) considered imputation of the missing covariate to give a completed dataset. 

However, to avoid specifying the baseline hazard function, estimates of β 

following imputation of the missing covariate were derived by adapting the 

methods proposed by Zhou and Pepe (1995) and Paik and Tsai (1997).  

 

Informative Missing Data 

Methods based on maximising a semiparametric likelihood such as Martinussen 

(1999) and Chen and Little (1999) do not address informative missing data with 

missing categorical and continuous covariates. The extension of parameter 

estimators of Lipsitz and Ibrahim (1998) by Leong et al. (2001) applies to 

informative missing data when the missing covariates are binary. Considering a 
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more general missing covariates situation, Herring et al. (2004) proposed a partial-

likelihood-based method of parameter estimation which uses an EM approach. 

The method proposed by Herring et al. (2004) does not require the assumption the 

missing covariates are MAR and is general in the type and number of missing 

covariates. 

 

Methods for Dealing with Missing Time-Dependent Covariates 

It is possible that time-dependent covariates have missing observations. This is 

likely when a covariate is assessed at a number of study visits and a patient does 

not attend the study visit or the assessment is not done at the study visit.  Consider 

a clinical trial which is assessing survival and where a time-dependent covariate D 

is measured at discrete times until a terminal event occurs. There may be some 

sequences of measurements that end prematurely, truncating the covariate history 

of D, and this is referred to as dropout (Diggle and Kenward 1994; Little 1995; 

Scharfstein 1999). The Cox model is a standard analysis to evaluate the 

relationship between time to dropout and the time-dependent covariate D. When 

performing this analysis, the assumption is that changes in the value of D occur at 

the times tj of measurement of D and that the value of D during the interval [tj, 

tj+1] is observed at the end of the interval. Therefore, the value of D is missing at 

the time of dropout. 

 

Altman and De Stavola (1994) and Collett (1994) propose imputing the missing 

value of D at the time of dropout with the last observed value. However, this 

approach is not appropriate if D changes in the instants before dropout. Dupuy 

and Mesbah (2002) propose a joint modelling approach for dropout time and 

longitudinal covariate data. This model allows possible changes in D just before 

dropout and can applied when dropout is dependent on the unknown value of D. 

Parameter estimation is performed using the EM-algorithm. Bradshaw et al. 

(2010) extends the approach to parameter estimation proposed by Herring et al. 

(2004) to allow time-dependent covariates. The selection model proposed also 

allows covariates to be informative missing data. It is defined by the joint 
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distribution of the event times, missing covariates and the missing data 

mechanism. 

 

Summary  

Missing data can be missing outcome data or missing explanatory variables. 

Dealing with missing covariates in survival data is more complex than dealing 

with missing outcome data. Methods of dealing with missing covariates in the 

Cox proportional hazards model have been proposed. These methods include 

weighted estimators and generally do not consider imputation. The methods 

extend to missing time-dependent covariates and informative missing data and the 

combination of both. In this thesis, time-dependent covariates that may be 

informative missing data are considered. Imputation in this context has not been 

studied in detail in the literature and is the focus on later chapters in this thesis. 

 

1.6.3 Prevalence of Missing Data and Imputation Methods Applied in 

Reports of Clinical Trials 

In a large clinical trial, some missing data is likely to occur even when the study is 

well designed and well conducted. The previous section, section 1.6.2, reviewed 

some methods to deal with missing data. In this section, there is a review of how 

missing data is dealt with in practice in publications in the statistical literature. 

The review is based on the Journal of Clinical Oncology, which is a high-impact, 

widely cited oncology journal. Its impact factor reported in the 2010 Journal 

Citation Reports® (Thomas Reuters [2011]) was 18.970 and it ranks 4th among 

oncology journals in number of citations. To investigate the prevalence of missing 

data in clinical trials and the variety of methods for dealing with missing data in 

journal articles describing the results of clinical trials, 209 original reports 

describing the results of the clinical trials in the Journal of Clinical Oncology 

recently published between July and December 2006 were reviewed in 2007. 

  

There were 136 out of 209 (65%) of articles reporting clinical trials where there 

was a small number of patients (<10%) with missing baseline or demographic 
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characteristics included in the efficacy analysis but where there was no attempt to 

deal with the missing data and the patients with missing data were excluded from 

the efficacy analysis. In addition, there were 15 articles reporting clinical trials 

where there was a small amount of missing demographic or baseline data which 

was not used in the efficacy analysis. 

 

It was also noticeable that 19 out of 53 articles reporting clinical trials in August 

2006 excluded a small number of patients who did not meet eligibility criteria or 

could not be assessed for the primary outcome, for example because the patient 

did not have a suitable tumour biopsy.   

 

Imputation Methods Applied in Articles in the Journal of Clinical Oncology: 

2006 

Among the articles in Journal of Clinical Oncology reviewed, there were three 

articles that applied imputation to deal with missing data: Kudoh et al. (2006), 

Siemes et al. (2006) and Stiff et al. (2006).  

 

In Kudoh et al. (2006), the missing quality of life assessments were assigned as 

unimproved (extreme imputation)  in order to compare the results with the results 

considering available data. 

 

In Siemes et al. (2006), a Cox proportional hazards model was built with age, sex 

and separate potential risk factors as covariates. Missing indictors were used to 

study the effect of missing observations. Missing data on covariates were imputed 

by a single simulated value using the EM algorithm proposed by Horton and Laird 

(1999). 

 

In Stiff et al. (2006), in the primary analysis, area under the curve (AUC) was 

calculated over the duration of the study for all patient-reported outcomes end 

points. Missing assessments at the start day or end day were imputed with the 

nearest non-missing assessment. When the AUC could not be calculated, the AUC 
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was imputed by the grand mean AUC value or worst AUC value among patients 

with the same type of haematological disease. 

 

Recent Use of Multiple Imputation in Journal Articles and Missing Data in 

Articles in the Journal of Clinical Oncology in 2011 

Sterne and White (2009) consider recent use and reporting of multiple imputation 

in four major general medical journals: New England Journal of Medicine, 

Lancet, British Medical Journal and Journal of the American Medical Association. 

They found that the use of multiple imputation roughly doubled between 2002 and 

2007. In line with these findings, the issue of missing data was addressed more 

often in articles reporting clinical trials in the Journal of Clinical Oncology 

between January and June 2011 than in 2006. This was done by describing i) the 

assumption about the missing data mechanism, ii) how patients with missing 

observations were considered, or iii) the reason why no measures to account for 

missing data were taken. However, in contrast to findings of Sterne and White 

(2009), multiple imputation was only applied in one article, Cooperberg et al. 

(2011). 

  

The assumptions about missing data mechanism were described in two articles 

(Kornblith et al. 2011 and Syrjala et al. 2011). Two articles (Grothey et al. [2011] 

and Osborne et al. [2011]) described how patients with missing observations are 

considered. The reason why no measures to account for missing data were taken 

was described in three articles (Ganz et al. 2011; Kitahara et al. 2011; Hurwitz et 

al. 2011). In Cooperberg et al (2011), the missing percent of biopsies cores 

positive in prostate cancer patients was replaced by multiple imputation in order 

to classify patients as low or high risk when analysing the primary outcome of 

cancer progression. The multiple imputation method was not described. 

 

Findings from the Review 

It was common in the articles reviewed for there to be a small number of patients 

(<10%) with missing baseline or demographic characteristics included in the 
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efficacy analysis but where there was no attempt to deal with the missing data.  

Multiple imputation was rarely used. However, between 2006 and 2011 it had 

become far more common for the articles to describe missing data and the related 

assumptions.  

   

1.6.4 Modelling Longitudinal Data with Missing Observations Data  

Missing data in clinical trials can be from longitudinal data as assessments, such 

as quality life assessments, may be repeated throughout the study. Generally, 

when an assessment is repeated throughout the study, modelling the result of the 

assessment over time is likely to be clinical interest, and is described in this 

subsection. Repeated measures models such as the mixed effects model, are used 

in the analysis of longitudinal data to account for the structure of the 

measurements.  These models accommodate missing observations by considering 

patients who do not have a complete set of measurements of the assessment.  

 

Repeated Measures Models 

In a repeated measures model, time is conceptualised as a categorical variable. 

Each measurement of an assessment is assigned to one category (Fairclough 2010, 

p.53). Possible models for repeated measures include the general linear model and 

the mixed-effects model. 

 

As previously noted, the general linear model assumes that the outcome variable 

can be described as the sum of a fixed component which is a linear function of the 

explanatory variables and a random error component. The random error 

component ε is assumed to be a vector of independent identically distributed 

Normal random errors (Searle 1971, Chapter 3). The mixed-effects model extends 

the general linear model by allowing flexibility in the specification of the 

covariance matrix of ε (Searle 1971, Chapter 9).  Its historical development is 

described by Henderson (1990) and Searle et al. (1992).  
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The mixed-effects model is written as: 

 Y = Xβ + Zω + ε (1.8)  

where Y is the variable of interest 

X is the known matrix of explanatory variables 

β is the unknown fixed-effects parameters vector 

Z is a known design matrix 

ω is an unknown random-effects parameters and 

ω ~ N(0, G)          

ε ~ N(0, R)          

and G and R are unknown variances of a multivariate Normal distribution. 

 

The variance of Y is 

 V=ZGZ’ + R (1.9)  

 

The mixed-effects model accommodates correlation and heterogeneity in 

variances (Searle 1971, Chapter 9).  

 

Fairclough (2002, Chapter 3; 2010, Chapter 3) describes an analytic approach to 

modelling repeated measures which incorporates both incomplete data and time-

dependent covariates. While the model is not strictly a mixed-effects model, it has 

been associated with the term (Fairclough 2010, p.54). Pinheiro and Bates (2000) 

note that the model can be thought of as an extended linear mixed-effects model 

with no random effects. The model can be expressed as: 

 Yi = Xiβ + εi (1.10)  

where Yi is the full data vector of H planned measurements of the variable of 

interest, which includes the observed values and the missing values 

Xi is the design matrix of fixed covariates corresponding to the complete data (Yi) 

β is the corresponding vector of fixed-effects parameters 

εi is the vector of residual errors 

Σi is the covariance of the full data (Yi), which is a known function of the vector of 

unknown variance parameters, τ 
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The process for building this model involves defining a model for the means (Xiβ) 

and identifying the structure of the covariance of the Yi (Fairclough 2002, p.44).  

The most straightforward structure for the means is the cell mean model (Searle 

1971, Chapter 7). The cell means model of interest is written as: 

        Ygih = μgh + εgih (1.11)  

where Ygih is the hth measurement of the ith patient in the gth treatment group 

μgh is the average value of the hth measurement in the gth treatment group. 

 

The covariance may be unstructured or structured. In the unstructured covariance, 

the variance of the measurement at each time point is allowed to be different. It is 

the least restrictive of the covariance structures and is generally the best choice 

when the number of repeated measure is small (Fairclough 2010, p.68.-69). 

 

This section considered missing observations in longitudinal data. This included i) 

the problem of missing data in longitudinal data, ii) methods to deal with missing 

data, such as imputation, and iii) its prevalence. Next, the thesis outline is 

presented. 

 

1.7 Thesis Outline 

Motivation 

This chapter began by considering general features of breast cancer clinical trials. 

High-quality evidence from clinical trials on the benefits and risks are required to 

make clinical judgements on treatment regimens for breast cancer. The assessment 

of benefit in breast cancer trials is generally based on DFS and OS. Clinical trials 

may also include endpoints which assess the patient’s perception of his or her 

well-being. Often such quality of life assessments are repeated throughout the 

study. It is common for medical assessments which monitor patient safety, such as 

monitoring cardiac function, to be repeated throughout the study. Generally when 

assessments are repeated throughout the study, some missing observations are 

expected. 
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The breast cancer clinical trials considered in this thesis were introduced. In these 

clinical trials, quality of life or cardiac function measured throughout the study 

was of importance. Therefore, quality of life and the main aspects of breast cancer 

trials, efficacy and safety, were described. The standard analysis for time to event 

endpoints, the Cox proportional hazard model, and parameter estimation was 

described. Explanatory variables measured throughout the study may be included 

as time-dependent covariates in a time-dependent Cox model analysis. 

 

Next, missing observations in longitudinal data were considered. The potential 

problems associated with missing observations, such as missing quality of life 

assessments, include bias of the parameter estimates and loss of power to detect 

clinically important differences among treatment groups over time. Methods for 

dealing with missing observations, such as imputation techniques, have been 

described in the statistical literature. In this thesis, the influence of missing 

explanatory variables is explored, with the application to the analysis of quality of 

life and cardiac function in breast cancer clinical trials. Imputation techniques are 

applied to missing explanatory variables before the time-dependent Cox model 

analysis, and the performance of these techniques considered. The influence of 

missing observations of an outcome variable assessing cardiac function is 

investigated and repeated measure analysis of cardiac function performed. 

 

Structure of Thesis 

Standard imputation methods are described in Chapter 2. Missing coping scores in 

the IBCSG dataset are imputed by standard simple and multiple imputation 

methods, in Chapters 3 and 4 respectively, in order to use the coping score as a 

time-dependent covariate in a time-dependent Cox model for DFS. Hierarchical 

cluster analysis is performed in order to explore the relationship between imputed 

values. 
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Imputation methods involve assumptions about the missing data mechanism. 

Simulation is performed with the aim of investigating the influence of the missing 

data mechanism resulting from the method of artificially removing data on the 

performance of standard imputation methods. The context of the simulation is a 

positive relationship between quality of life and DFS. Standard simple and 

multiple imputation methods are applied to the simulated datasets and this is 

described in Chapters 5 and 6 respectively. Following imputation, the coping 

scores are used as a time-dependent covariate in a time-dependent Cox model for 

DFS. 

 

The last part of the thesis, Chapter 7, considers missing observations in LVEF 

assessments performed throughout the study as part of the cardiac monitoring in 

the HERA trial. The occurrence of a noticeable drop in LVEF from baseline is 

used as a time-dependent covariate in a time-dependent Cox model for time to a 

cardiac endpoint. The further cardiac analyses also investigates the influence of 

missing LVEF assessments on the change in LVEF from baseline by applying 

multiple imputation to missing LVEF values. A mixed model is used in the 

repeated measures analysis of the LVEF values over time to model the patients’ 

LVEF values over time. The conclusions from the thesis are presented in Chapter 

8. 
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2 Standard Methods of Imputation 

As noted in Chapter 1, high-quality evidence from clinical trials on the benefits 

and risks are required to make clinical judgements on treatment regimens for 

breast cancer. It is recognised that a patient’s sense of well-being impacts on the 

patient’s perception of whether the treatment is beneficial. Thus, it is becoming 

increasingly common for endpoints addressing quality of life to be included in 

clinical trials. As it is usual for quality of life assessments to be repeated 

throughout the study, quality of life may be used in a time-dependent covariate in 

a time-dependent Cox model to explore the question in breast cancer clinical trials 

of whether quality of life is related to prognosis.  

 

Missing observations often present challenges in the statistical analysis of data 

which are collected sequentially over time, such as quality of life assessments 

(Fayers and Machin 2007, p.355). In some situations, imputation may be 

appropriate (Fairclough 2010, Chapters 8 and 9; Fayers and Machin 2007, chapter 

15). A scenario where imputation of quality of life assessments is beneficial is 

when the patients answer most questions but not all questions on the questionnaire 

(Fairclough 2010, p.163).  Imputation-based procedures have been proposed in 

the statistical literature with the aim of addressing bias in the analysis of such data 

where there are relatively large numbers of missing observations (e.g. Rubin 

1987; Little and Rubin 2002; Molenberghs and Kenward 2007).  The missing 

observations are replaced by a single plausible value (simple imputation) or with 

K (K > 1) simulated values (multiple imputation).   

 

The influence of missing explanatory variables in time-dependent Cox model 

analysis is explored in this thesis, with the application to the analysis of quality of 

life and cardiac function in breast cancer clinical trials. Standard imputation 

methods are applied to missing explanatory variables before the time-dependent 

Cox model analysis. These standard imputation methods are described in detail in 

statistical textbooks (e.g. Little and Rubin 2002; Molenberghs and Kenward 

2007). In order to apply imputation techniques in subsequent chapters, standard 
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imputation methods are reviewed in this chapter. Standard simple and multiple 

imputation methods are reviewed in sections 2.2 and 2.3 respectively. An example 

dataset of quality of life assessments from a breast cancer trial are used to 

illustrate the standard imputation methods.  Future directions of multiple 

imputation are noted. A summary is presented in section 2.4. 

 

2.1 Introduction 

The main aim in developing imputation techniques is to try to avoid bias due to 

missing data. This bias can be in the estimated effect and also in the estimated 

standard error.  Historically, simple imputation was used to replace missing 

observations in order to create a completed dataset for statistical analysis of 

longitudinal data or repeated measures (see section 1.6.4), such as multivariate 

analysis of variance (MANOVA) or multivariate analysis of covariance 

(MANCOVA). This was due to the fact that statistical software could not address 

incomplete cases and by default excluded them (Fairclough 2002, p.115).  Simple 

imputation methods have limitations in that they tend to underestimate the 

variability in the imputed variable, but can give useful information about the 

sensitivity of the results to assumptions about missing data (Fairclough 2010, 

p.178-179). 

  

Multiple imputation was first considered in the context of complex surveys which 

are used to create public-use datasets (e.g. Rubin 1987).  Later, multiple 

imputation expanded into further areas, including observational data from public 

health research and clinical trials (Kenward and Carpenter 2007). Multiple 

imputation has been applied to missing covariates in survival data (e.g. Paik 1997; 

White and Royston 2009) and to quality of life assessments in breast cancer trials 

(e.g. Bordeleau et al. 2003; Stanton et al. 2005). Statistical software is 

increasingly facilitating the implementing of imputation techniques, for example 

the introductions to the MI procedure in SAS® version 9 (SAS Institute 2002-

2008). 

  



 
 

51 
 

Whereas in simple imputation a single replacement value is drawn from an 

imputation model, in multiple imputation K replacement values are drawn. Many 

of the issues concerning multiple imputation relate to the construction and 

application of the imputation model. In particular, careful consideration must be 

given to the choice of variables in the model (Molenberghs and Kenward 2007, 

p.110-111). van Buuren and Groothuis-Oudshoorn (2011) note that the imputation 

model should: 

i) Account for the process that created the missing data 

ii) Preserve the relations in the data 

iii) Preserve uncertainty about these relations 

 

and note that issues that potentially could arise while imputing multivariate 

missing data (Y1,..,Yj) include: 

i) Circular dependence can occur, where Y1 depends on Y2 and Y2 depends on 

Y1 because in general Y1 and Y2 are correlated 

ii) The relation between Yj and Y-j could be complex, e.g. non-linear 

iii) Imputation can create impossible value outside the range of the variable, 

can create impossible combinations of variables or destroy deterministic 

relations in the data (e.g. sum scores) 

  

New forms of model selection and diagnostic procedures, for example to detect 

influential observations and the imputation of impossible values, may be required 

due to the increasing automation of multiple imputation using statistical software 

(Kenward and Carpenter 2007). 

 

It is important to note that as imputation methods require untestable assumptions 

every effort should be made to minimise missing observations. When imputation 

is applied, the sensitivity of the results to the assumptions of the imputation 

method should be explored. This is a topic where further development is required 

(Kenward and Carpenter 2007). 
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Analyses of data following imputation are more efficient than complete case or 

available case analysis of clinical trials as information from patients with 

incomplete data is considered. The fact that the imputation model may be 

different from the analytic model of interest for the data being considered is an 

advantage in the context of clinical trials. For example, including additional 

covariates in the imputation model that are not necessary in the analytic model 

may make the MAR assumption appropriate. There is an increasing understanding 

of the potential of multiple imputation and its continued development remains of 

scientific interest (Kenward and Carpenter 2007).  The chained equations method 

(van Buuren et al al. 1999; Raghunathan et al. 2001; Taylor et al. 2002) is 

prominent among the recent work on multiple imputation methods in the 

statistical literature. Kenward and Carpenter (2007) note a more formal 

justification of this method is of particular interest. 

 

However, imputation is not always a necessary way of dealing with missing 

observations (Rubin 1996; Fairclough 2010, chapter 9).  Standard statistical 

methods such as maximum likelihood estimation or regression models can be 

used if the missing data can be assumed to be MCAR or MAR and so imputing 

data is of more importance when there is informative missing data (Fairclough 

2010, p.181).  This is investigated in Chapter 6 where the influence of missing 

longitudinal assessments on major safety endpoints is discussed. 

 

Missing observations complicate the analysis of quality of life assessments in 

breast cancer trials. As noted, the concern is that missing observations may result 

in bias in the parameter estimates. In the context of investigating the possibility 

that quality of life is related to prognosis, imputation techniques can be used to 

investigate the influence of missing observations of quality of life assessments. 

This is discussed in Chapter 3.  
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2.1.1 Example Quality of Life Assessment  

As part of the quality of life assessment in Trials VI and VII, coping/perceived 

adjustment (“coping score”) was assessed by a VAS (“How much effort does it 

cost you to cope with your illness?” [none – a great deal]; the Perceived 

Adjustment to Chronic Illness Scale [Pacis]) (Hürny et al. 1993). The coping 

score ranges from 0 to 100, with lower scores indicating better quality of life. The 

quality of life questionnaire also assessed mood and physical well-being, with a 

range from 0 to 100 and lower scores indicating better quality of life. The primary 

endpoint of the trial was DFS (see section 1.2). 

A very small example dataset is used to illustrate the techniques (Table 2.1), both 

to demonstrate how the imputations are made and to highlight the differences 

among the different imputation methods. The example dataset is not meant to 

illustrate good estimation procedures or good imputation techniques, but to 

illustrate the methodology.  Here, the blanks corresponding to missing 

observations are highlighted in blue. There are 5 patients in treatment group A and 

5 patients in treatment group B. The coping score was measured at baseline (Time 

1, approximately at randomisation) and the first 3 measurements at approximately 

3-monthly intervals up to 9 months after randomisation were considered (Time 2 

– Time 4). For 5 patients, DFS was censored (censoring indicator is 0). 

Potentially, other quality of life assessments such as the assessment of mood 

(“mood score”) and physical well being (“physical score”) could be used in the 

imputation of the coping score.  Suppose that the mood scores and physical scores 

for the 10 patients in the example are as shown in Table 2.2.  
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Table 2.1 Example Coping Scores and Disease-Free Survival from a Breast Cancer Trial 

Patient Trt Time 1 Time 2 Time 3 Time 4

DFS 

(days)

DFS 

(censored)

6 B 27 32 18 18 4031 1

47 B 69 85 49 778 1

456 B 50 50 10 20 5486 0

635 A 50 46 2193 1

828 A 9 17 2 5062 0

1099 A 19 5120 0

1304 A 50 2 21 16 4737 0

1728 B 79 59 40 17 296 1

2237 A 43 38 32 993 1

2509 B 51 50 60 56 3569 0    

The blanks corresponding to missing observations are highlighted in blue; 
Indicator for DFS is 0 = event, 1 = censored;  

DFS= disease-free survival; Trt = Treatment 

 
Table 2.2 Example Mood Scores and Physical Scores from a Breast Cancer Trial 

Patient Treatment 

Quality of Life 

Domain Time 1 Time 2 Time 3 Time 4 

6 B Mood 49 14 6 8 

    Physical 27 17 4 3 

47 B Mood 66 90 43 81 

  

Physical 52 88 53 72 

456 B Mood 1 14 11 5 

    Physical 4 15 8 3 

635 A Mood 18 32 33 40 

  

Physical 18 11 33 45 

828 A Mood 30 7 23 16 

    Physical 7 6 24 16 

1099 A Mood 80 37 59 55 

  

Physical 27 31 57 25 

1304 A Mood 22 4 10 10 

    Physical 23 6 16 13 

1728 B Mood 41 64 67 68 

  

Physical 44 57 46 26 

2237 A Mood 22 46 38 46 

    Physical 18 15 40 25 

2509 B Mood 51 48 49 58 

  

Physical 52 31 29 34 

The mood score at Time 3 for patient 635 and the physical score at Time 4 for patient 1099 shown 

in black are disregarded when considering a general missing data pattern in Example 2.4. 
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The patients showed different patterns of quality of life as measured by the coping 

score and there was large within- and between-patient variability. The patients’ 

coping scores also displayed different missing data patterns. There were 4 patients 

(patients 47, 635, 1099, 2237) with a missing monotone data pattern (see section 

1.6.1) and patient 828 had intermittent missing data. The remaining 5 patients had 

complete coping scores. All of the patients had complete mood and physical 

scores. The coping, mood and physical scores measure different aspects of quality 

of life and do not necessarily correspond.  
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2.2  Simple Imputation Methods 

Simple imputation involves generating a single value from a predictive 

distribution for the imputation based on the observed data. In explicit modelling, 

the predictive distribution is based on a formal statistical model, for example 

multivariate Normal. In implicit modelling, imputation is based on an algorithm, 

which implies an underlying model, which is often not explicitly described. While 

the assumptions in implicit modelling are less obvious than in explicit modelling 

they are as important (Little and Rubin 2002, p59-60).  

Simple imputation methods using explicit modelling include: 

i) imputation of low or high values 

ii) mean or median imputation 

iii) simple imputation using linear regression models 

iv) imputation of conditional means by Buck’s method 

 

while those based on implicit modelling include: 

i) last observation carried forward (LOCF) 

ii) hot-deck imputation 

iii) nearest neighbour hot-deck imputation 

iv) cold-deck imputation 

 

Imputation of low or high values can provide a range of the variable of interest in 

the unknown complete data and is described first in section 2.2.1. Next, LOCF, 

which is the most prominent simple imputation method (Molenberghs and 

Kenward 2007, p.46), is described in section 2.2.2. This is followed by the 

remaining simple imputation methods using explicit modelling in section 2.2.3 to 

section 2.2.5. The remaining simple imputation methods using implicit modelling 

are described last in section 2.2.6 to section 2.2.8. Simple imputation is 

summarised in section 2.2.9.  After each simple imputation method is described, it 

is illustrated using the example dataset described in section 2.1.1 and the imputed 

values are presented in Table 2.3. 
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Table 2.3 Example Coping Scores from a Breast Cancer Trial Following Simple 

Imputation 

  

Section 

    2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 

Patient 

Time 

Period 

High 

Value LOCF Median LinReg 

Cond 

Means 

Hot 

Deck NNHD 

Cold 

Deck 

47 4 90 49 69 72 72 17 56 35 

635 3 90 46 48 33 35 21 17 25 

635 4 90 46 48 48 48 16 56 25 

828 2 90 9 9 24 24 46 2 10 

1099 2 90 19 19 45 45 50 38 15 

1099 3 90 19 19 50 50 32 40 15 

1099 4 90 19 19 29 31 20 17 15 

2237 4 90 32 38 29 29 20 16 25 

High value = imputing high value; LOCF = last observation carried forward; median = median 

imputation by patient; linreg=simple imputation using linear regression models; cond means = 

imputing conditional means by Buck’s method; NNHD = nearest neighbour hot-deck imputation  

  

2.2.1 Imputing Low or High Values 

This method uses an arbitrary high or low value for the missing quality of life 

assessments, such as imputing 0 or imputing a value just below the minimum 

observed value for all missing quality of life assessments. Imputation of low or 

high values is most commonly used when the missing observations are due to an 

adverse event such as death (e.g. Rabound et al. 1998), however it does not have a 

full theoretical justification (Fairclough 2010, p.174-175). 

 

Example 2.1 Imputing High Values of Coping Score (Low Quality of Life) 

There may be concern that patients with missing coping scores have a worse 

quality of life than patients with observed coping scores. Let the missing coping 

scores in the example dataset be replaced with a coping score of 90, a very poor 

quality of life slightly worse than the poorest coping score of 85 observed in the 

example. The imputed coping scores are shown in Table 2.3. 

 

2.2.2 Last Observation Carried Forward 

Last observation carried forward (LOCF) is also a common method of simple 

imputation. In this approach, a missing quality of life indicator is replaced by the 



 
 

58 
 

patient’s last available value of the quality of life indicator. It is important to note 

that LOCF is not always a conservative analysis. In some settings, it can result in 

bias towards a treatment with more dropout associated with morbidity (Fairclough 

2010, p.179; Molenberghs and Kenward 2007, Chapter 4). 

    

The assumption is that if the missing quality of life assessment had been 

performed, the patient’s quality of life would have been the same as the last 

available quality of life assessment. In many clinical trials, this assumption does 

not hold. For example, if a patient withdraws from a clinical trial because of 

adverse events, the patient’s quality of life assessment after withdrawing is likely 

to be lower than before the patient withdrew. In some clinical trials, quality of life 

may decrease over time and imputation using last observation carried forward 

would lead to quality of life estimates which are too high (Fayers and Machin 

2007, p.370-371; Fairclough 2010, p.172-173). The imputed coping scores in the 

example dataset are shown in Table 2.3. 

 

2.2.3 Median or Mean Imputation 

Imputing a median or mean value to replace missing observations is a common 

method of simple imputation. Median or mean imputation assumes that the 

missing values of the variable of interest follow the same distribution as the 

observed values, for example multivariate Normal. A further important 

assumption when the mean or median is calculated based on all observed values is 

that the missing observations are MCAR (Little and Rubin 2002, chapter 4). A 

disadvantage of median or mean imputation is that the missing values of the 

variable of interest Y are imputed by values at the centre of the distribution, 

leading to an underestimate of the variance of Y in the completed dataset (Little 

and Rubin 2002, p61). 

 

It is possible to calculate the mean or median to be imputed from a group of 

patients with similar characteristics as the patient with the missing observation. 

An example is calculating the mean or median from patients suffering from an 
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adverse event. Calculating the median or mean from a group of patients with 

similar characteristics as the patient with the missing observation assumes that the 

impact on quality of life of the characteristics, such as suffering an adverse event, 

is the same among patients with an observed quality of life value as among 

patients with a missing quality of life value. (Fairclough 2002, p.167-168; Fayers 

and Machin 2007, p371-373). 

  

Example 2.2 Median Imputation by Patient 

There are several different methods of calculating the median or mean of a quality 

of life indicator that could be applied to the example quality of life assessments, 

including: 

i) the median of the quality of life indictor across all patients at a particular 

time period 

ii) the median of the quality of life indictor across all patients in a particular 

treatment group in a particular time period 

iii) the median quality of life indictor for the patient across all time periods 

 

As there is such a wide range of coping scores in the example dataset, imputing 

the median coping score is preferred to imputing the mean. For illustration, the 

median coping score by patient was used. It was calculated by proc univariate in 

SAS and rounded to the nearest whole number. The imputed coping scores are 

shown in Table 2.3. 

 

2.2.4 Simple Imputation Using Linear Regression Models 

Simple imputation using linear regression models involves identifying a 

regression model to predict the missing observation. This extends mean 

imputation by imputing conditional means given observed values (Little and 

Rubin 2002, chapter 4). In clinical trials involving quality of life, this approach 

has the advantage that the linear regression model used to impute the missing 

observations can include concurrent information such as adverse events or stage 

of disease that are not used in the analytic model of interest. The linear regression 



 
 

60 
 

model could also include quality of life values assessed by another person, such as 

a relative or nurse caring for the patient (Fairclough 2002, p.118-119).  

 

The analytic model for the ith patient (i=1,…,n) is written as: 

 
i i iY ε X β  (2.1) 

where Y is the response variable (outcome measure)  

 Xi is the design matrix of covariates used in the analytic model for patient i 

β is the vector of parameters used in the analytic model  

εi is the residual error for patient i 

X0i is set to 1 in order that β0 is the intercept 

 

Similarly, the imputation model is for the ith patient is written as: 

 * * * *

i i iY ε X Β  (2.2) 

where Xi
* is the design matrix of covariates used in the imputation model for 

patient i 

B* is the vector of parameters used in the imputation model 

𝜀𝑖
∗ is the residual error for patient i  

 

Here * is used to distinguish the covariates and corresponding parameters of the 

imputation model from those included in the analytic model. The vector of 

parameters used in the imputation model is written as Β* as though it may be 

augmented from the vector of parameters used in the analytic model, it will have 

different terms and estimates compared to the analytical model. 

 

Using a linear regression model to predict the missing observations will only be 

appropriate if the assumptions for the general linear model (e.g. Lang and Secic 

2006) are met. The aim when carrying out imputation using linear regression 

models is to identify a linear regression model where the missing data mechanism 

depends only on the observed data and the covariates Xi
* in the imputation model. 

The covariates included in the linear regression model are likely to be strongly 

correlated with the variable being imputed and the probability that the observation 
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of the variable is missing. The assumption that the data are MAR should then be 

reasonable in the imputation model (Fairclough 2010, p.169). The covariates 

included in the regression model must have no missing observations, giving a 

univariate missing data pattern (see section 1.6.1). 

  

In the longitudinal setting, the parameters of the imputation model (2.2) for the ith 

patient at the hth measurement (h=1,...,H) are estimated from the observed data 

with the model: 

 obs obs ** *

hi hi h hiY  X Β  (2.3) 

 

The predicted values which will be imputed to replace the missing values are then 

calculated as follows: 

 miss miss ˆ* * *

hi hi hY  X Β  (2.4) 

 

Example 2.3 Imputation Using Linear Regression with Concurrent Quality of Life 

Assessments 

Let a linear regression model with the mood score, Xhmood, and physical score, 

Xhphys, (Table 2.2) be used to impute missing observations of the coping score 

miss

hY  at the hth assessment (h=1 for Time 1, h=2 for Time 2, h=3 for Time 3 and 

h=4 for Time 4) in the example dataset (Table 2.1).  

 

The linear regression models were calculated by proc reg in SAS from the 

patients with observed coping scores. The linear regression models were: 

 Y4i = 7.813 - 0.041X4imood + 0.936X4iphys (2.5)  

 Y3i = 10.457 + 0.558X3imood + 0.116X3iphys (2.6)  

 Y2i = 19.469 + 0.441X2imood + 0.287X2iphys (2.7)  

 

The imputed coping scores are shown in Table 2.3. 
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2.2.5 Imputing Conditional Means Using Buck’s Method 

Buck (1960) extended simple imputation using linear regression models to impute 

conditional means when the missing observations have a general missing data 

pattern rather than a univariate missing data pattern.  Suppose the variables Y1, 

…,YJ follow a multivariate Normal distribution with mean μ and covariance 

matrix Σ. Suppose c of the n units (patients in the case of clinical trials) have a 

complete set of J observations. Then if the ith patient has 𝐽𝑖
𝑚𝑖𝑠𝑠 of the J 

observations missing, these missing values can be estimated by linear regression 

on the J–𝐽𝑖
𝑚𝑖𝑠𝑠observed variables.  

 

In the method proposed, μ and Σ are first estimated from the sample mean and 

covariance matrix based on the c patients with complete observations. The 

estimates of μ and Σ are then used to generate the linear regressions of the 

variables to be imputed on the observed variables. For each patient, the J– 𝐽𝑖
𝑚𝑖𝑠𝑠 

observed variables are substituted into the linear regression model to give the 

estimate of the missing values of the 𝐽𝑖
𝑚𝑖𝑠𝑠 variables to be imputed. In the special 

case where a patient has a missing value in a single variable (𝐽𝑖
𝑚𝑖𝑠𝑠 = 1), the 

method is equivalent to simple imputation using linear regression models (section 

2.2.4). 

 

Conditional mean imputation using Buck’s method assumes that the data is 

MCAR and the variables Y1, …,YJ  are not highly correlated and there is not a 

large proportion of missing data (Buck 1960; Little and Rubin 2002, p.63).  A 

proportion of missing data of 10% was considered large by Gleason and Staelin 

(1975). Little and Rubin (2002, p.63) note that Buck’s method is a valid way to 

estimate μ under certain types of MAR missing data mechanisms. 

 

Example 2.4 Imputation of Conditional Means using Buck’s Method 

Here, the coping score, mood score and physical score (J = 3 in the notation of 

this section) at a particular time point h are considered. As noted, imputing 

conditional means using Buck’s method applies to a dataset with a general 
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missing data pattern. In order to illustrate the method, the mood score at Time 3 

for patient 635 and the physical score at Time 4 for patient 1099 shown in black in 

Table 2.2 are disregarded. 

 

Suppose the coping score Yhsp, mood score Yhmood and physical score Yhphys at the 

hth assessment follow a multivariate Normal distribution  

 Yh  ~ N(μh, Σh) (2.8)  

 where h=1 for Time 1, h=2 for Time 2, h=3 for Time 3 and h=4 for Time 4 

 

With 2 exceptions, the missing coping score in the example dataset (Table 2.1) is 

the single variable with a missing value. Therefore, the missing coping scores in 

the example dataset are imputed as in Example 2.3 with 2 exceptions. The 

exceptions are the missing coping score at Time 4 for patient 1099 and the 

missing coping score at Time 3 for patient 635. 

  

When only the mood score at Time 4 was observed, a linear regression model 

with mood score at Time 4 is used to impute the missing coping score at Time 4 

The linear regression model was calculated by proc reg in SAS from patients with 

observed coping, mood and physical scores at Time 4. The linear regression 

model for the missing coping score at Time 4 based on mood score is: 

 Y4i = 12.376 + 0.332Y4imood (2.9)  

 

Similarly, the linear regression model for missing coping score at Time 3 based on 

physical score is: 

 Y3i = 11.614 + 0.700Y3iphys (2.10)  

 

The imputed coping scores are shown in Table 2.3. 

 

2.2.6 Hot-deck Imputation 

The concept of hot-deck procedure is to impute a value from similar patients in 

the trial to replace missing observations, although the precise definition of the hot-
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deck procedure is not well defined (Little and Rubin 2002, chapter 4). The 

observed values of the variable to be imputed, Y, from the patients with similar 

characteristics to the patient with the missing observation form the hot-deck. The 

advantage of the hot-deck method compared to mean or median imputation is that 

the imputed values are not always from the centre of the distribution of Y and so 

do not distort the distribution of the variable Y in the completed dataset (Little and 

Rubin 2002, p.68). However, Rubin and Schenker (1986) note that by drawing the 

imputed values from a set of observed values, the hot-deck method acts as though 

the distribution of observed values of Y is the same as the population. In fact, the 

distribution of Y in the population is not precisely known and this uncertainty is 

not reflected. As with other simple imputation methods, the variability in Y is 

underestimated. 

  

In the simplest version of hot-deck imputation, the hot-deck of potential values is 

formed from all patients with an observed value and the imputed values are drawn 

with an equal probability. This is referred to as hot-deck imputation by simple 

random sampling with replacement and assumes the data are MCAR. Generally, 

the hot-deck is restricted to a subset of patients with observed values defined as 

similar to the patient with the missing observation. Assume that there are n 

patients classified as belonging to the same group of similar patients as the patient 

with the missing value and r out of the n have an observed value of Y, where n > 

r. Using random sampling with replacement amongst the group of similar 

patients, the hot-deck here consists of the r patients with an observed value. 

  

Many different methods for selecting these patients with similar characteristics to 

the patient with the missing observation have been used and may be based on the 

previous experience of the analyst (Little and Rubin 2002, p.60; Marker et al. 

2002, p.329). The aim is to use covariates associated with the value of interest and 

the probability of the variable of interest being missing to define the hot-deck 

(Marker et al. 2002, p.329). For example, among the covariates used to define the 

hot-deck in Bordeleau et al. (2003) were i) baseline performance status and ii) 
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previous global quality of life scores when imputing missing global quality of life 

scores at i) baseline ii) follow-up assessments respectively. The covariates used to 

define the hot-deck must have no missing observations, giving a univariate 

missing data pattern. Selecting patients with similar characteristics as the patient 

with the missing observation assumes that the impact on quality of life of the 

characteristics, such as baseline performance status, is the same among patients 

with an observed quality of life value and patients with a missing quality of life 

value (Meng 2002, p.344). 

 

Example 2.5 Hot-deck Imputation 

In the example dataset (Table 2.1), the baseline coping score could potentially be 

used to restrict the hot-deck. Let the hot-deck of potential coping scores to replace 

the missing coping score be defined as: the observed coping scores at the same 

time period as the missing coping score among patients with baseline coping score 

in the same group as the patient with the missing coping score. The baseline 

coping score groups are patients with baseline coping score < 50 and patients with 

baseline coping score > 50. 

  

Proc surveyselect in SAS with the method option set to urs (for unrestricted 

random sampling) performs simple random sampling with replacement. For 

illustration, suppose that the coping score selected at random from the hot-deck of 

potential coping scores to replace the missing coping scores was as shown in 

Table 2.3. 

 

2.2.7 Nearest Neighbour Hot-deck Imputation 

Nearest neighbour hot-deck imputation uses information from covariates to 

attempt to address the issue of missing data and makes the assumption that the 

data are MAR. A definition of the distance between patients is specified based on 

the values of the covariates. A missing observation is replaced by an imputed 

value chosen from the observed values of patients defined as close to the patient 

with a missing observation (Little and Rubin 2002, p.68-69). A possible metric to 
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describe the distance between patient a with a missing observation and patient b 

with an observed value is the predictive mean: 

 

 2ˆ ˆ( , )=[ ( )- ( )]a bd a b y x y x  (2.11)  

 

where �̂�(𝑥𝑎) is the predicted value of the missing 𝑌𝑎
miss and �̂�(𝑥𝑏) is the predicted 

value of the observed 𝑌𝑏
obs from the regression of Y on the covariates X computed 

from the complete patients. (Little and Rubin 2002, p.69). A linear regression 

model to predict the value of Y requires the assumptions described in section 

2.2.4. The hot-deck is formed from the observed values of Y from complete 

patients such that d(a,b) is less than some value d0. The value of d0 selected 

controls the number of potential values in hot-deck (Little and Rubin 2002, p.69).  

Increasing the value of d0 increases the number of potential values in the hot-deck. 

However, it will reduce the probability the potential values are similar to the 

missing value by allowing a larger difference between �̂�(𝑥𝑎) and �̂�(𝑥𝑏) . 

 

Example 2.6 Nearest Neighbour Hot-Deck Imputation 

Let a linear regression model with the mood score, Xhmood, and physical score, 

Xhphys, be used to impute missing observations of the coping score 
miss

hY  at the hth 

assessment as in Example 2.3. 

 

In the example dataset, the values of d(a,b) have a wide range, which is widest at 

Time 4. They are generally larger at Time 4 than at Times 2 and 3. The values of 

d0 selected for each time period reflect this. The hot-deck of potential coping 

scores to replace the missing coping scores at Time 4 was defined by setting d0 to 

1300.  The hot-deck of potential coping scores to replace the missing coping 

scores at Time 3 and Time 2 was defined by setting d0 to 100. For illustration, 

suppose the coping scores selected at random to replace the missing coping scores 

were as shown in Table 2.3. 
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2.2.8 Cold-deck Imputation 

The cold-deck procedure involves imputing a constant value from an external 

source, in place of missing observations. An example of an external source for a 

missing quality of life observation is a value from a previous study of similar 

patients (Fayers and Machin 2000, p.244). Fayers and Machin (2000, p.244) note 

that cold-deck imputation is unlikely to be useful in the context of clinical trials. 

The statistical analysis of the completed dataset usually proceeds as for complete 

data (Little and Rubin 2002, p.60-61). Little and Rubin (2002, p.61) noted that 

theoretical justification for such statistical analysis of completed datasets 

following cold-deck imputation may be lacking. Lessler and Kalsbeek (1992, 

p.214) describes cold-deck imputation as rarely used and of historical interest. 

  

Example 2.7 Cold-deck Imputation 

Suppose that information from a similar trial to the breast cancer trial in the 

example was used as the cold deck for the median coping score between 3 months 

(Time 2) and 9 months (Time 4). Next, suppose that the missing coping scores are 

replaced with the median coping score after baseline according to baseline coping 

score suggested by the similar trial. For example, that the median coping score 

after baseline among patients with baseline coping score 0 to 6 are replaced by 5.  

Given these suppositions, the imputed coping scores are as in Table 2.3. 

 

2.2.9 Summary of Simple Imputation 

The standard simple imputation methods were illustrated by a small example 

dataset. The imputed values in Table 2.3 indicate that imputing a high value was 

least like the other simple imputation methods. As previously noted, imputing 

conditional means by Buck’s method (Example 2.4) extended simple imputation 

using linear regression to a general missing data pattern (Example 2.3). The 

difference between Example 2.3 and Example 2.4 is that in Example 2.4 the mood 

score at Time 3 for patient 635 and the physical score at Time 4 for patient 1099 

are disregarded. It was thus expected that the imputed values following these 

imputation methods were very alike. There was no suggestion that there is a 



 
 

68 
 

completed dataset which will be achieved regardless of which simple imputation 

method is applied (Table 2.3). 

 

There are only limited circumstances when it is appropriate to draw inferences 

from the parameter estimate resulting from simple imputation. Justification should 

be provided if the parameter estimates are considered (Molenbergs and Kenward 

2007, Chapter 4). Simple imputation methods can give useful information about 

the sensitivity of the results from clinical trials to assumptions about missing data. 

However, an important disadvantage is that they lead to the underestimation of the 

variance of the observations. Imputing a predetermined value for the missing 

observations assumes that there is no variation in the missing values. The true 

predetermined value for the missing observations are assumed to be known when 

they are only estimated (Little and Rubin, 2002, chapter 4). The variance of the 

observations is also underestimated by the hot-deck method. This is due to the fact 

the hot-deck method acts as though the distribution of observed values of Y is the 

same as the population when drawing the imputed value from the set of potential 

values. Unlike simple imputation, multiple imputation, described in the next 

section, allows the uncertainty about the values to imputed, and the uncertainty of 

the model the imputed values are drawn from, to be considered (Little and Rubin, 

p.85-86).  
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2.3 Multiple Imputation 

Multiple imputation has become an important technique for dealing with missing 

observations. It is most directly motivated from the Bayesian perspective (Little 

and Rubin 2002, p.87). Kenward and Carpenter (2007) note that a key feature is 

that it is based on two distinct models: the analytic model, the target of the 

analysis, and the imputation model, which can be thought of as the conditional 

predictive distribution. The analytic model, also known as the substantive model, 

is the model for analysis that would have been appropriate had the data been 

complete. The parameters of interest, such as the mean or hazard ratio, are derived 

from it (Molenbergs and Kenward 2007 p. 106). The imputed values are draws 

from the imputation model.  Little and Rubin (2002, p.86) recommend that 

imputed values be drawn according to the following protocol. For each model for 

non-response being considered, the K imputations of Ymiss are K repetitions from 

the posterior predictive distribution of Ymiss, each repetition corresponding to an 

independent drawing of the parameters and missing observations. In practice, an 

implicit model rather than an explicit model (see section 2.2) can often be used as 

the imputation model (Little and Rubin 2002, p.86). 

 

The purpose of applying multiple imputation is usually to obtain valid inferences 

from standard statistical analysis. Multiple imputation addresses the important 

disadvantages of simple imputation that simple imputation methods do not reflect 

the uncertainty of the values to be imputed and the uncertainty of the model the 

imputed values are drawn from. It leads to K completed datasets which are 

analysed by standard procedures. The results from the analysis of the K completed 

datasets can be combined to give valid inferences reflecting the uncertainty of the 

missing values drawn from the imputation model. Drawing imputed values under 

more than one imputation model allows the uncertainty about the correct model to 

be shown by the variation in valid inferences across the models (Little and Rubin 

2002, p.85-87).   
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The procedure for combining the results from the analysis of the K completed 

datasets is described by Rubin (1987, p.75-76). Let θ be the vector of parameters 

from the analytic model. Let �̂�𝑘 and Vk, k=1,..,K be the estimate of θ from the kth 

completed dataset and the corresponding conventional estimate of the covariance 

matrix of �̂�𝑘, calculated as though the completed dataset was fully observed. The 

combined estimate of θ, �̅�𝐾, is the average of the estimates �̂�𝑘 from each complete 

dataset. The variability of θ associated with estimates from multiple imputation, 

VMI, has two components: the average within-imputation variance component (W) 

and the between-imputation component (B), giving the total variance: 

 
𝑽𝑀𝐼 =

1

𝐾
∑ 𝑽𝑘

𝐾

𝑘=1

+  (1 +
1

𝐾
) (

1

𝐾 − 1
) ∑(�̂�𝑘 − �̅�𝐾)

2
𝐾

𝑘=1

 (2.12)  

or 

 
𝐕𝑀𝐼 = 𝑾 + (1 +

1

𝐾
) 𝑩 (2.13)  

 

We assume that with complete data, inferences for θ would be based on the 

Normal approximation 

 (𝜽 − �̂�) ~ 𝑁(𝟎, 𝑽) (2.14)  

where �̂� is a statistic estimating θ, V is a statistic providing the covariance matrix 

and 𝑁(𝟎, 𝑽) is a multivariate Normal distribution with mean 0 and covariance 

matrix V.   

   

Now consider a scalar θ and large sample size. The reference distribution for tests 

and confidence intervals is a t distribution 

 (𝜃 − �̅�𝐾)𝑉𝑀𝐼
−1/2

 ~ 𝑡𝑣 (2.15)  

where 

 𝑣 = (𝑘 − 1)(1 +
1

𝑟
 )2 (2.16)  

and the relative increase in variance r is 

 
𝑟 =

(1 + 𝑘−1)𝐵

𝑊
 (2.17)  
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The validity of such inferences depends on the imputation technique that led to 

the imputed values. It is important that the imputed values give reasonable 

predictions for the unknown missing observation and that the variability of the 

imputed values reflects a degree of uncertainty (Schafer 1999). Rubin (1987, 

chapter 3) discusses how to obtain valid inference from multiple imputation. 

Consider a theoretically fundamental form of multiple imputation, repeated 

imputation (Rubin 1987, p.75-76). Repeated imputations are draws from the 

posterior predictive distribution of the missing observations under a particular 

Bayesian model for both the data and the missing data mechanism. The repeated 

inference method involves analysing each of the simulated datasets by standard 

methods and then combining the results.   

 

The number of repetitions of multiple imputation required for good statistical 

inference has been discussed in the statistical literature (e.g. Rubin 1987, chapter 

4; Schafer and Olsen 1998; Graham et al. 2007). The fraction of missing 

information γ and the efficiency of the estimator are considered. Schafer and 

Oslen (1998) give the formula for γ as:  

 
𝛾 =

𝑟 + (2/(𝑣 + 3))

𝑟 + 1
 (2.18)  

where r is the relative increase in variance and v is the number of degrees freedom 

of the t distribution. Rubin (1987, p.114) shows that the efficiency of the estimate 

based on K imputations is: 

 (1 +
𝛾

𝐾
)-1 (2.19)  

and notes that gains in the efficiency of the estimate rapidly diminish after the first 

few imputations (p. 548-549). In many applications, K=3 to 5 imputations are 

sufficient (Rubin 1987, chapter 4; Molenbergs and Kenward 2007 p. 109). 

However, Graham et al. (2007) recommend using a larger number of imputations 

based on considering statistical power to detect a small effect sizes in the 

parameter estimate compared to maximum likelihood methods as well as γ. 
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An important issue in multiple imputation is the construction and application of 

the imputation model. As with simple imputation, if the imputation model does 

not capture the missing data mechanism, then any analysis based on the 

imputation is flawed. Therefore, it is important to investigate the missing data 

mechanism thoroughly and to give careful consideration to the choice of variables 

in the imputation model. Unlike simple imputation, the uncertainty about the 

correct imputation model can be explored by performing multiple imputations 

from more than one imputation model.  

 

Both simple and multiple imputation techniques allow the imputation model to be 

different from the analytic model. As noted, in the clinical trial setting, it is 

possible that using a different imputation model from the analytic model of 

interest in the data being considered may make it appropriate to apply imputation 

methods assuming the data are MAR. Most of the techniques for multiple 

imputation assume that the missing observations are MAR. This assumption 

means that an explicit probability model for the missing observations is not 

required. A further assumption made by most multiple imputation methods in the 

longitudinal setting is that there is a montontone missing data pattern. 

 

Methods based on an explicit parametric Bayesian model for the imputation 

model include: 

i) explicit univariate regression 

ii) Markov chain Monte Carlo methods – data augmentation 

iii) Markov chain Monte Carlo methods – Gibbs’ sampling  

iv) pattern mixture models – Curran’s analytic technique 

 

Methods based on an implicit modelling include: 

i) approximate Bayesian bootstrap 

ii) nearest neighbour imputation 

iii) predictive mean matching 
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Among these standard multiple imputation methods (based on explicit or implicit 

modelling), the following assume a monotone missing data pattern: 

i) approximate Bayesian bootstrap 

ii) explicit univariate regression 

iii) nearest neighbour imputation 

iv) predictive mean matching 

v) pattern mixture models – Curran’s analytic technique 

 

and the following extend to data with a general missing data pattern: 

i) Markov chain Monte Carlo methods – data augmentation 

ii) Markov chain Monte Carlo methods – Gibbs’ sampling 

  

The Markov chain Monte Carlo (MCMC) methods that extend to data with a 

general missing data pattern are described in section 2.3.1 and section 2.3.2 and 

the multiple imputation methods assuming a monotone missing data pattern are 

described in section 2.3.3 to section 2.3.6.  Future directions are described in 

section 2.3.7 and multiple imputation is summarised in section 2.3.8. 

 

Considering the example data from a breast cancer trial (Table 2.1 and Table 2.2), 

the imputed coping scores following 5 repetitions of the multiple imputation 

methods described in this section are shown in Table 2.4. As previously noted, 

patient 828 had intermittent missing data. For methods requiring a monotone 

missing data pattern, the imputed coping scores for patient 828 at Time 2 are 

indicated in black. These coping scores were imputed by the MCMC method of 

data augmentation in order to create a monotone missing data pattern to illustrate 

the method.   
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Table 2.4 Example Coping Scores from a Breast Cancer Trial Following Multiple 

Imputation 

Section 2.3.1 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.5 2.3.6

Example 2.8 2.9 2.1 2.11 2.12 2.13 2.14 2.15

k Patient

Time 

Period

Data 

Aug 

(Mult)

Data 

Aug 

(Rep) Gibbs' ABB

Exp 

Uni 

Reg NNI

Pred 

Mean 

Match

P Mix 

Models

1 828 2 12 35 12 12 12 12 12 12

2 828 2 30 19 30 30 30 30 30 30

3 828 2 9 54 9 9 9 9 9 9

4 828 2 9 0 9 9 9 9 9 9

5 828 2 35 28 35 35 35 35 35 35

1 1099 2 37 52 37 32 57 32 38 38

2 1099 2 45 51 45 32 13 32 46 61

3 1099 2 54 22 54 2 18 32 38 32

4 1099 2 79 9 79 46 63 32 46 73

5 1099 2 89 31 89 50 27 32 38 54

1 635 3 61 23 61 18 15 60 40 56

2 635 3 46 61 46 21 54 10 60 50

3 635 3 15 45 15 18 42 18 18 36

4 635 3 31 24 31 17 30 60 32 48

5 635 3 38 32 38 21 38 10 10 69

1 1099 3 55 2 55 18 12 17 17 34

2 1099 3 53 56 53 32 21 18 10 11

3 1099 3 33 12 33 21 16 10 10 50

4 1099 3 73 29 73 21 9 18 60 33

5 1099 3 69 28 69 21 16 18 32 46  

k indicates the repetition of multiple imputation; Data aug (Mult) = Markov chain Monte Carlo 

methods – data augmentation with more than one type of assessment;  Data aug (Rep) = Markov 

chain Monte Carlo methods – data augmentation with repeated measures; Gibbs’ = Markov chain 

Monte Carlo methods – Gibbs’ sampling; ABB = approximate Bayesian bootstrap; Exp uni reg = 

explicit univariate regression; NNI = nearest neighbour imputation; P mix models = pattern 

mixture models - Curran’s analytic technique 

For methods requiring a monotone missing data pattern, the imputed coping scores imputed by the 

MCMC method of data augmentation in order to create a monotone missing data pattern to 

illustrate the method are shown in black   
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Table 2.4 Example Coping Scores from a Breast Cancer Trial Following Multiple 

Imputation (continued) 

Section 2.3.1 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.5 2.3.6

Example 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15

k Patient

Time 

Period

Data 

Aug 

(Mult)

Data 

Aug 

(Rep) Gibbs' ABB

Exp 

Uni 

Reg NNI

Pred 

Mean 

Match

P Mix 

Models

1 47 4 76 55 76 56 96 56 56 52

2 47 4 98 54 98 56 34 2 16 52

3 47 4 67 28 67 56 48 56 18 61

4 47 4 81 40 81 56 28 56 20 12

5 47 4 83 51 83 56 23 56 17 57

1 635 4 45 53 45 20 0 56 18 40

2 635 4 59 34 59 16 81 2 56 81

3 635 4 43 45 43 20 5 20 2 39

4 635 4 46 18 46 20 11 56 20 41

5 635 4 62 54 62 2 32 18 16 39

1 1099 4 22 9 22 20 39 20 2 16

2 1099 4 32 34 32 16 39 2 18 58

3 1099 4 21 13 21 20 60 17 16 26

4 1099 4 29 23 29 20 21 18 20 4

5 1099 4 3 15 3 2 20 20 17 56

1 2237 4 23 53 23 16 11 20 16 14

2 2237 4 21 31 21 16 9 17 20 48

3 2237 4 28 21 28 16 64 17 17 46

4 2237 4 22 25 22 2 63 17 20 36

5 2237 4 30 22 30 2 21 20 16 5  

k indicates the repetition of multiple imputation; Data aug (Mult) = Markov chain Monte Carlo 

methods – data augmentation with more than one type of assessment;  Data aug (Rep) = Markov 

chain Monte Carlo methods – data augmentation with repeated measures; Gibbs’ = Markov chain 

Monte Carlo methods – Gibbs’ sampling; ABB = approximate Bayesian bootstrap; Exp uni reg = 

explicit univariate regression; NNI = nearest neighbour imputation; P mix models = pattern 

mixture models - Curran’s analytic technique 
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2.3.1 Markov chain Monte Carlo Method of Data Augmentation 

Bayesian Inference 

Generally, the application of Markov chain Monte Carlo (MCMC) is for the 

purpose of Bayesian inference (Gilks et al. 1996, p.2). Let θ denote the unknown 

model parameters and the missing data.  Information about θ is expressed as a 

posterior probability distribution 

 
𝑃(𝜽 | 𝑌𝑜𝑏𝑠) =

𝑃(𝜽)𝑃(𝑌𝑜𝑏𝑠 | 𝜽)

∫ 𝑃(𝜽)𝑃(𝑌𝑜𝑏𝑠 | 𝜽) 𝑑𝜽
 (2.20)  

 

Any features, such as the mean or quartiles, of the posterior distribution may be 

considered in Bayesian inference. These quantities can be expressed in terms of 

the posterior expectations of functions of θ.  The posterior expectation of a 

function:  

 
𝐸[𝑓(𝜽) | 𝑌𝑜𝑏𝑠] =

∫ 𝑓(𝜽)𝑃(𝜽)𝑃(𝑌𝑜𝑏𝑠 | 𝜽)  𝑑𝜽)

∫ 𝑃(𝜽)𝑃(𝑌𝑜𝑏𝑠 | 𝜽) 𝑑𝜽
 (2.21)  

 

To consider this in general terms, let X be a vector of J random variables, with 

distribution π(.). In Bayesian applications, X comprises of model parameters and 

missing data and π(.) is a posterior distribution. The expectation required to be 

evaluated is: 

 
𝐸[𝑓(𝑿)] =

∫ 𝑓(𝑥)𝜋(𝑥)  𝑑𝑥

∫ 𝜋(𝑥) 𝑑𝑥
 (2.22)  

for some function of interest f(.) (Gilks et al. 1996, p.3-4). 

 

In most applications, E[f(X)] cannot be evaluated analytically. MCMC is a 

collection of methods for evaluating E[f(X)] and has two components: Monte 

Carlo integration and Markov chains (Gilks et al. 1996, p.3-4).  



 
 

77 
 

Monte Carlo integration 

Monte Carlo integration evaluates E[f(X)] by drawing samples {Xt, t=1,..l} from 

π(.) and then approximating (Gilks et al. 1996, p.4):  

 

𝐸[𝑓(𝑋)] ≈
1

𝑙
∑ 𝑓(𝑋𝑡

𝑙

𝑡=1

) (2.23)  

 

When the samples {Xt, t=1,..l} are independent, the approximation can be made as 

accurate as required by increasing the sample size l. However, in general, drawing 

samples {Xt, t=1,..l} independently from π(.) is not feasible. Markov chains can be 

used to generate the samples {Xt}  (Gilks et al. 1996, p.4). 

 

Markov Chains 

Consider a sequence of random variables, {X0, X1, X2,…} such that at each time t 

> 0 the next step Xt+1 is sampled from a distribution P(Xt+1 | Xt) which depends 

only on the current state of the chain Xt. The sequence is a Markov chain and P(.|.) 

is the transition kernel of the chain. Assuming that P(.|.) does not depend on t 

means that the Markov chain is time-homogeneous (Gilks et al. 1996, p.5).  

In MCMC methods, Markov chains are used to simulate random observations 

from non-standard distributions (Schafer 1999). A Markov chain is constructed 

long enough for the distribution of the elements to stabilise to a unique stationary 

distribution, which does not depend on t or X0. (Gilks et al. 1996, p.5). The 

stationary distribution is denoted as φ(.). This implies that the sampled points {Xt} 

will look increasingly like dependent samples from φ(.) (Gilks et al. 1996, p.5). 

There are many ways of constructing these chains (Gilks et al. 1996, chapter 1). 

After a sufficiently long “burn-in” of d iterations, draws from the distribution of 

interest φ(.) are simulated by repeatedly simulating the steps of the Markov chain. 

The output from the Markov chain is used to estimate the expectation E[f(X)] 

where X has distribution φ(.) (Gilks et al. 1996, chapter 1). 
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Implementing MCMC Methods 

Implementing MCMC methods begins with preliminary analysis, such as plotting 

the raw data, to explore how to model the data. When implementing MCMC 

methods, several issues must be considered. These include: i) running single or 

multiple chains, ii) burn-in iii) run length, iv) starting values and v) examining 

summary statistics for evidence of lack of fit of the model (Gilks et al. 1996, 

chapter 1). These issues are summarised briefly below. 

 

Number of chains 

Gilks et al. (1996, p.13) note that recommendations in the statistical literature on 

the number of chains have been conflicting. The argument made for a single chain 

is that one very long run is likely to be more precise for estimating a single 

quantity such as a posterior mean and comparison between chains cannot prove 

convergence. Whereas, the argument made for multiple chains is that comparing 

several seemingly converged chains might reveal genuine differences if the chains 

have not yet approached stationarity (Gilks et al. 1996, p.13). 

 

Starting values 

In order for the distribution of Xt to converge to a stationary distribution, the chain 

must be irreducible. This means that, from all starting points, the Markov chain 

can reach any non-empty set with positive probability, in some number of 

iterations. Thus, the starting values will not affect the stationary distribution. 

(Gilks et al 1996, p.46; Gilks et al. p.13). Gilks et al (1996, p.13) note that 

generally starting values do not need to be chosen carefully. 

     

Burn-in 

The factors influencing the length of burn-in d are X0, the rate of convergence of 

P(t)(Xt | X0) to π(Xt) and on how similar P(t)(. |.) and π(.) are required to be (Gilks et 

al. p14). A common method for determining burn-in is the visual inspection of 

plots of the Monte Carlo output {Xt, t=1,..l}. Formal convergence diagnostics for 

determining d have been proposed (e.g. Raftery and Banfield 1991; Raftery and 
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Lewis 1992; Rubin 1981; Rubin 1984), though these also make use of Monte 

Carlo output in some way (Gilks et al 1996, p.14).  

 

Run length 

The aim is to run the chain long enough to obtain adequate precision in  

calculating the expectation E[f(X)]. Generally, an estimator 𝑓 ̅ignoring the burn-in 

samples is used to calculate this expectation. A common method for determining 

the run length l is to run several chains in parallel, with different starting values, 

and informally compare the estimates 𝑓.̅ If the estimates 𝑓 ̅are not sufficiently 

consistent, l is increased (Gilks et al. 1996, p.15). More formal methods, which 

aim to estimate the variance of 𝑓 ̅have been proposed (e.g. convergence 

diagnostics referenced above). 

 

Assessing goodness-of-fit 

When implementing MCMC, it is important to consider: i) is the given model 

adequate and ii) which of the potential models under consideration is the best? 

(Gilks et al. 1996, p.144). MCMC methods allow multi-level models with large 

number of parameters for which standard asymptotic likelihood theory does not 

apply and therefore, particular care is needed when assessing the goodness-of-fit 

(Gilks et al. 1996, p.34). Classical approaches to assessing model adequacy 

generally involve defining a measure of fit, often a deviance statistic, and 

complexity. Complexity is described by the number of free parameters in the 

model. As increasing the complexity of a model increases the fit, models are 

compared by trading off these two quantities (Spiegelhalter et al. 2002). Proposals 

are often formally based on minimising a measure of expected loss on a future 

replicate dataset, for example Efron (1986).    
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Multiple Imputation from Parametric Bayesian Models and Data 

Augumentation 

MCMC is often used to perform multiple imputation in non-straightforward 

situations (Schafer, 1999). Suppose Y follows a parametric model P(Y| θ) where θ 

has a prior distribution and Ymiss is missing at random. Since 

 P(Ymiss
 |Y

obs) = ∫ P(Ymiss
 |Y

obs, θ) P(θ |Yobs) dθ (2.24)  

an imputation for Ymiss is generated by first generating a random value of the 

unknown parameters from their observed-data posterior 

 θ* ~ P(θ | Yobs) (2.25)  

followed by generating a random value of the missing observations from their 

conditional predictive distribution 

 Y*miss ~ P(Ymiss
 |Y

obs, θ*) (2.26)  

 

For many common models the conditional predictive distribution is simple but the 

observed-data posterior distribution is not. Generally, the observed-data posterior 

distribution (2.25) is not from a standard distribution and cannot be easily 

simulated. In this situation, MCMC methods can be used to generate simulations 

from it (Schafer, 1999). 

 

The MCMC method of Gibbs’ sampling became widely used following the work 

of Geman and Geman (1984). Gibbs’ sampling can be used to impute missing 

data and is described in section 2.3.2. Tanner and Wong (1987) proposed the 

MCMC method of data augmentation for imputing missing data and this is 

described in this section. Data augmentation is an iterative method of simulating 

the posterior distribution that can be applied to Bayesian inference with missing 

data. 

  

Suppose a random vector X is divided into two subvectors, X = (Xa, Xb), and let 

P(X) be the joint distribution of X, which is the target distribution for simulation. 

In data augmentation, we assume that the joint distribution P(X) is not easily 
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simulated but the conditional distributions P(Xa | Xb) and P(Xb | Xa) are (Schafer 

1997, p.70). 

 

At iteration t, let 

  X(t) = (𝑥1
𝑡, …, 𝑥𝑚

𝑡 ) = ((𝑥a1
𝑡 , 𝑥b1

𝑡 ),…, (𝑥a𝑚
𝑡 , 𝑥b𝑚

𝑡 )) (2.27)  

 

be a sample of size m that approximates the target distribution P(X). This sample 

is updated in two steps, first drawing 

 𝑋𝑎
𝑡+1 = (𝑥a1

𝑡+1 ,..., 𝑥a𝑚
𝑡+1) (2.28)  

and then drawing 

 𝑋𝑏
𝑡+1 = (𝑥b1

𝑡+1 ,..., 𝑥b𝑚
𝑡+1)  (2.29)  

(Schafer 1997, p.71). Tanner and Wang (1987) show that the distribution of X(t) 

converges to P(X) as t →  ∞. 

 

One run of data augmentation iterates to a draw from the posterior predictive 

distribution of Ymiss and a draw from the posterior distribution of θ. The two steps 

in the iterative sampling scheme are described by Schafer (1997, p.72) and Little 

and Rubin (2002, p.201) as follows: 

 

i) Imputation step (I-step) 

Given the current value of θ(t) of θ drawn at iteration t, draw a value for the 

missing data from the conditional predictive distribution of Ymiss 

 𝑌miss
(𝑡+1)

 ~ P(Ymiss | Yobs, θ(t)) (2.30)  

 

ii) Posterior Step (P-step) 

Conditioning on 𝑌miss
(𝑡+1)

, draw a new value of θ from its complete-data posterior  

 θ(t+1) ~  P(θ | Yobs, 𝑌miss
(𝑡+1)

) (2.31)  

After a suitably large number of iterations, θ(t) can be regarded as an approximate 

draw from the observed-data posterior (2.25) (Schafer 1997, p.72).  Thus, one run 

of data augmentation approximates a draw of an imputed value to replace each 



 
 

82 
 

missing observation in a completed dataset from the posterior predictive 

distribution P(Ymiss | Yobs) (2.24) (Schafer 1997, p.72; Little and Rubin 2002, 

p.202). Data augmentation is run independently K times to give K completed 

datasets (Little and Rubin 2002, p.202). 

 

Statistical Software for Implementing Data Augmentation  

There are S-Plus functions for applying MCMC methods for basic models for 

continuous, categorical and mixed multivariate data as well as models with a more 

complicated structure, such as repeated measures (Schafer 1999). Similar R 

packages for general model fitting or for specific models could also be used. This 

method can be applied to data from a multivariate Normal distribution by using 

the MCMC statement in the MI procedure in SAS. Iterations are run between 

imputations in order that is reasonable to consider that data augmentation has been 

run independently K times. The multivariate Normal distribution may describe 

more than one type of assessment measured at the same time or the same 

assessment measured repeatedly over time. Other statistical software, for example 

MICE in Stata® (StataCorp LP) could also be used. 

     

Example 2.8 Example of MCMC Methods: Data Augmentation 

More than One Type of Assessment  

 

Let the coping score Yhsp, mood score Yhmood and physical score Yhphys at the hth 

assessment follow a multivariate Normal distribution as in Example 2.4. Thus, for 

the hth assessment, θh = (μh, Σh). 

 

For the purposes of illustrating the MCMC method of data augmentation, let the 

following suppositions be made:  

i) a single chain is used 

ii) starting values and an informative prior, supposed to come from other 

trials, are used (e.g. 2 2

42 605 430 360

32 , 430 780 510

28 360 510 520

   
   
   
      

=  =   ) 
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iii) the burn-in length is 500 iterations before the first imputation 

iv) there are 5 imputations with 300 iterations between each imputation   

 

In the MI procedure, the prior option in the MCMC statement can be used to 

specify a noninformative prior, an informative prior for μ and Σ or an informative 

prior for Σ in the P-step. The initial option can be used to specify the initial 

parameter values.  

 

When considering Time 2 (h=2), in this example, the conditional predictive 

distribution (2.30) from which 𝑌2miss
(𝑡+1)

 is drawn in each I-step was a multivariate 

Normal. After d burn-in iterations, the values of the missing coping scores drawn 

in the I-step are considered as an approximate draw from the posterior predictive 

distribution P(Ymiss | Yobs) (2.24) and thus are used as the imputed values in the 

first completed dataset. The nbiter option in the MCMC statement can be used to 

specify 500 burn-in iterations and the round option can be used to round the 

imputed coping scores to the nearest whole number. Let the superscript (1, 500) 

refer to the first imputation and 500 burn-in iterations. Considering Time 2 for this 

example, given the suppositions above, the conditional predictive distribution in 

the I-step for the first completed dataset was: 

 
𝑌2miss

(1,500)
~ N ([

64.6
55.3
46.2

] , [
2158.5 2389.9 2012.4
2389.9 2969.4 2462.9
2012.4 2462.9 2201.7

]) 

 

(2.32)  

 

The imputed coping scores at Time 2 in the first completed dataset drawn from 

(2.32) were as shown in Table 2.4, column “Data Aug (Mult)”. 

   

The niter option in the MCMC statement can be used to specify 300 iterations 

between each draw of imputed values and the nimpute option can be used to 

specify 5 imputations. The imputed coping scores at Time 2 in the remaining 

completed datasets, again rounded to the nearest whole number, drawn from the 

respective conditional predictive distributions were as shown in Table 2.4, column 

“Data Aug (Mult)”. 
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The missing coping scores at Time 3 and Time 4 are imputed similarly to missing 

coping scores at Time 2 (Table 2.4, column “Data Aug (Mult)”). 

 

Example 2.9 Example of MCMC Methods: Data Augmentation 

Repeated measures 

 

Let the coping scores Yh (h=1,..,4) follow a multivariate Normal distribution  

 Y  ~ N(μ, Σ) (2.33)  

Thus, θ = (μ, Σ). 

 

In contrast to Example 2.8, the coping scores over time follow a multivariate 

Normal distribution. The mood score and physical score are not considered. Let 

the suppositions in Example 2.8 be made again for the purposes of illustration and 

let the imputed coping scores be again rounded to the nearest whole number. 

  

Given the suppositions made, suppose that the conditional predictive distribution 

in the I-step for the first completed dataset after 500 burn-in iterations was as 

follows: 

 

𝑌miss
(1,500)

~ N ([

44.2
41.9
30.4
27.3

] , [

804.9 292.5 475.9 504.8
292.5 417.7 307.8 338.3
475.9 307.8 576.4 471.9
504.8 338.3 471.9 573.7

]) 
(2.34)  

 

As there are only a small number of patients in this example, draws from the 

conditional predictive distribution may lead to imputed coping scores outside the 

range of 0-100. In order to avoid this, the range of 0-100 was specified using the 

minimum and the maximum option. The imputed coping scores in the first 

completed dataset drawn from (2.34) were as shown in Table 2.4, column “Data 

Aug (Rep)”. 

  

After 300 iterations between imputations, the imputed coping scores in the 

remaining completed datasets drawn from the respective conditional predictive 

distributions were as in Table 2.4, column “Data Aug (Rep)”.  
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2.3.2 Markov chain Monte Carlo Method of Gibbs’ Sampling 

Sampling from Full Conditional Distributions  

A popular MCMC method is Gibbs’ sampling, which is closely related to data 

augmentation. Like data augmentation, one run of Gibbs’ sampling iterates to a 

draw from the posterior predictive distribution of Ymiss and a draw from the 

posterior distribution of θ. Here, the random vector X is divided into J subvectors. 

X = X1,…,XJ 

where J is generally greater than two (Schafer 1997, p.69). 

 

The Gibbs’ sampler eventually generates a draw from the distribution P(x1,.,xj) of 

a set of J random variables X1,..XJ, in contexts where draws from the joint 

distribution are hard to compute, but draws from conditional distributions 

p(xj | x1,…, xj-1, xj,..., xJ),  j = 1,..,J are relatively easy to compute (Little and Rubin 

2002, p.204).   

 

Initial values 𝑥1
(0)

, 𝑥2
(0)

,…, 𝑥𝐽
(0)

 are selected. Then given values 𝑥1
(𝑡)

, 𝑥2
(𝑡)

,…, 𝑥𝐽
(𝑡)

 

at iteration t, new values are found by drawing from the following sequence of J 

conditional distributions:  

𝑥1
(𝑡+1)

~ 𝑝(𝑥1 |𝑥2
(𝑡)

, 𝑥3
(𝑡)

, … , 𝑥𝐽
(𝑡)

 

𝑥2
(𝑡+1)

~ 𝑝(𝑥2 |𝑥1
(𝑡+1)

, 𝑥3
(𝑡)

, … , 𝑥𝐽
(𝑡)

) 

𝑥3
(𝑡+1)

~ 𝑝(𝑥3 |𝑥1
(𝑡+1)

, 𝑥2
(𝑡+1)

, 𝑥4
(𝑡)

, … , 𝑥𝐽
(𝑡)

) 

… 

𝑥𝐽
(𝑡+1)

~ 𝑝(𝑥𝐽 |𝑥1
(𝑡+1)

, 𝑥2
(𝑡+1)

, … , 𝑥𝐽−1
(𝑡+1)

) 

It can be shown that the sequence of iterates 𝑥(𝑡) = (𝑥1
(𝑡)

, . . , 𝑥𝐽
(𝑡)

) converges to a 

draw from the joint distribution of X1,..XJ  (Little and Rubin 2002, p.204).  After 

the iterations of the Gibbs’ sampler are complete, the values Ymiss drawn from the 

posterior predictive distribution are the imputed values in the completed dataset to 

replace missing observations. The Gibbs’ sampler is run independently K times to 

give K completed datasets (Little and Rubin 2002, p.204). 
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Implementing Gibbs Sampling 

Gibbs’ sampling can be applied using the WinBUGS software (Lunn et al. 2000) 

and has also been implemented in R (Wilkinson 2011). In SAS, the genmode, 

lifereg and phreg procedures update parameters using the Gibbs’ sampler. The 

outline of the steps required to implement Gibbs sampling is as follows (Gilks et 

al. 1996, p.28): 

i) Starting values must be provided for all unobserved nodes (parameters and 

missing data) 

ii) Full conditional distributions for each unobserved node must be 

constructed and methods for sampling from them decided 

iii) The output must be monitored to decide on the length of “burn-in” and the 

total run length and consideration given to whether a different 

parameterisation or MCMC algorithm is more appropriate 

iv) Summary statistic for quantities of interest must be calculated from the 

output, for inference about the true values of the unobserved nodes 

Gilks et al. (1996, p.28) recommend adding a fifth step: 

v) Examine summary statistics for evidence of fit of the model 

 

Special case of Gibbs’ Sampler 

Schafer (1997) notes that data augmentation is a special case of the Gibbs sampler 

when X = (X1,  X2) (J = 2) and with m=1. Little and Rubin (2002, p.204) note that 

when J = 2, the Gibbs’ sampler is essentially the same as the MCMC data 

augmentation method described in section 2.3.1 if X1 = Ymiss, X2 = θ, θ is the 

unknown model parameters and the distributions condition on Yobs.   

However, the Gibbs’ sampler can be used in more complex problems where data 

augmentation is difficult to compute, but partitioning the missing data into more 

than one subvector aids computation. The special case noted by Little and Rubin 

(2002, p.204) can be implemented in statistical software in the same way as data 

augmentation.  
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Example 2.10 Example of MCMC Methods: Gibbs’ Sampler 

Let the coping score Yhsp, mood score Yhmood and physical score Yhphys at the hth 

assessment be assumed to follow a multivariate Normal distribution as in 

Example 2.4.  The imputation model is a linear regression of Yhsp on Yhmood and 

Yhphys. Let the random vector X be divided into two subvectors (J = 2), where X1 = 

Ymiss and X2 = θ.  In this special case, the imputation proceeds as in Example 2.8.  

 

2.3.3 Approximate Bayesian Bootstrap 

The approximate Bayesian bootstrap (ABB) method is an alternative to model-

based imputation. Originally the ABB method was developed for the situation 

where the data is missing at random from simple random samples (Rubin 1987; 

Rubin and Schenker 1986; Rubin and Schenker 1991).  It is a method for 

incorporating parameter uncertainty into hot-deck imputation (section 2.2.6). The 

concept of the ABB is to start with a set potential responses, selected at random 

with replacement from a subset of subjects with the same characteristics (X*) as 

those subjects with missing data. Then the imputed values are drawn from the set 

of potential values. Unlike in hot-deck imputation, where each imputed value is 

drawn from a single set of potential values, the set of potential values each 

imputed value is drawn from will be different for each repetition of ABB. The two 

steps are referred to as double sampling and ensures there is sufficient variability 

among the imputed values. The important assumption of the ABB method is that 

the data are missing at random (Fairclough 2010, chapter 9). 

  

The procedure for the ABB method was defined formally by Fairclough (2010, 

p.194) as follows:   

Repeat steps (i) to (iii) for k=1,..,K in order to generate K completed datasets  

i) Consider a set of n subjects with the same characteristics, X, where a 

univariate variable to be imputed was observed for nobs patients and 

missing for nmiss patients. The expectation is that nobs will be large 

compared to nmiss. 
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ii) Randomly select a set of nobs possible values of Ymiss with replacement 

from the nobs observed values for each of the nmiss missing values of Ymiss. 

iii) Then choose nmiss observations at random with replacement which will 

replace the nmiss missing values of Ymiss. Each missing value of Ymiss has 

one value from the set of nobs possible values selected at random with 

replacement as the imputed value of Ymiss in the kth completed dataset. 

 

Extending ABB to Longitudinal Variables 

The ABB method can be extended to apply to a longitudinal variable to be 

imputed with a monotone missing data pattern. The extension assumes that the 

values of the variable to be imputed at time h, Yh, are missing at random 

conditional on the patient characteristics X and Y1,…,Yh-1 (Fairclough 2002, 

p.144). K completed datasets are generated with missing values of Yh, at each time 

point Y1,…,YH  imputed. First, K sets of values for the first measurement of the 

variable to be imputed, Y1, are imputed conditional on X. Then, in order to impute 

the missing values of Y2, patients are grouped by Y1 and X. Within these groups, 

for each repetition of imputation, a possible sample of nobs observations of Y2 is 

randomly selected from the observed values. Then nmiss imputed values are 

randomly selected. This procedure is repeated for each subsequent measurement 

of the variable to be imputed conditional on X and Y1,…,Yh-1 for each of the K 

repetitions of imputation (Fairclough 2002, p.144).  

 

However, this extension to the ABB has important limitations. The possible 

number of groups conditional on X and Y1,…,Yh-1 increases with each procedure 

to impute missing observations of the hth measurement of the variable to be 

imputed Yh and this leads to there being not enough patients in a particular group 

to provide an adequate sample for this extension (Fairclough 2002, p.144). 

 

Extending ABB to Informative Missing Data 

Rubin and Schenker (1991) proposed a method to extend the ABB method to 

informative missing data. The particular case of informative missing data 
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considered is when high or low values of the variable of interest are more likely to 

be missing compared to the remaining values of the variable of interest. The 

method involves taking independent samples from the set of nobs possible values, 

where the probability of choosing an observed value is proportional to a function 

of the variable to be imputed Y, for example Y2. The aim of the method is to 

increase the proportion of large or small values included in the sample. Another 

possible method for increasing the proportion of large or small values included in 

the sample is to randomly sample l, where l is a small number such as 2 or 3, 

values from the set of nobs possible values and to select the maximum or minimum 

of these observed values (Fairclough 2002, p.146). If an extension of the ABB 

method is applied when informative missing data are present, a sensitivity 

analysis involving variations in the specifications used in the methods applied 

should be carried out (Fairclough 2002, p.146). 

 

Example 2.11 Example of Approximate Bayesian Bootstrap 

In the example dataset (Table 2.1), the baseline mood score and core and physical 

score (Table 2.2) could potentially be used as the patient characteristics X to 

define the strata for ABB imputation. In this example, the coping score Yh (h=1 

for Time 1, h=2 for Time 2, h=3 for Time 3 and h=4 for Time 4) is a longitudinal 

variable. 

 

For illustration, let the mutually exclusive strata for imputing the missing coping 

score at Time 2 be defined as: i) patients with baseline (Time 1) coping score < 50 

or baseline mood score < 40 or baseline physical score < 40 and ii) patients with 

baseline (Time 1) coping score > 50 and baseline mood score and physical score > 

40. In assigning patients to the strata, the 5 monotone datasets are considered (see 

Table 2.1 and note above Table 2.4). 

  

Consider the missing coping score at Time 2 for patient 1099. This patient is the 

one patient out of 7 in strata i) with a missing coping score at Time 2. From the 6 

observed coping scores at Time 2 among patients in strata i), nobs = 6 potential 
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coping scores to replace the missing coping score for patient 1099 were selected 

at random with replacement by proc surveyselect. The coping score selected by 

proc surveyselect to replace the missing coping score at Time 2 for patient 1099 

was as shown in Table 2.4. 

 

The missing coping scores at Time 3 are imputed similarly to the missing coping 

scores at Time 2. Let the strata defined also consider the coping score at Time 2 

and be: i) patients with baseline (Time 1) coping score < 50 or coping score at 

Time 2 < 40 or baseline mood score < 40 or baseline physical score < 40 and ii) 

patients with baseline (Time 1) coping score > 50 and coping score at Time 2 > 40 

and baseline mood score and physical score > 40. 

 

The missing coping scores at Time 4 are imputed similarly to missing coping 

scores at Time 2. Let the strata defined also consider the coping score at Time 3 

and be: i) patients with baseline (Time 1) coping score < 50 or coping score at 

Time 2 < 40 or coping score at Time 3 < 30 or baseline mood score < 40 or 

baseline physical score < 40 and ii) patients with baseline (Time 1) coping score > 

50 and coping score at Time 2 > 40 and coping score at Time 3 > 30 and baseline 

mood score and physical score > 40. 

 

The imputed coping scores at Time 3 and Time 4 were as shown in Table 2.4.   

 

2.3.4 Multiple Imputation Using Explicit Univariate Regression 

Identification of Imputation Model 

Multiple imputation using explicit univariate regression involves identifying a 

regression model to predict the missing observations. This regression model is 

similar to the regression model identified in simple imputation using linear 

regression models (section 2.2.4). The analytic model is as in (2.1) and the 

imputation model is as in (2.2). However, in the multiple imputation procedure, a 

random error is added to the estimated parameters �̂�∗ , as the true parameters are 

unknown (Fairclough 2010, p.183). The K sets of estimated parameters, including 
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the random error, β(k) k=1,.,K, are then used to predict the average value to be 

imputed for a patient with characteristics defined by the covariates *miss
X . 

Additional random error is then added to these values to reflect the natural 

variability among patients of the variable to be imputed (Fairclough 2010, p.183). 

 

The advantage of explicit univariate regression is again that the regression model 

can include additional information about the variable to be imputed not used in 

the analysis to compare treatment groups. For example, in clinical trials involving 

quality of life, this could be concurrent information such as adverse events or 

stage of disease. As in simple imputation using regression models, the covariates 

included in the regression model are likely to be strongly correlated with the 

variable being imputed and the probability that the observation of the variable is 

missing. The assumption that the data are missing at random should then be 

reasonable under the imputation model (Fairclough 2010, p.183-184).  

 

However, multiple imputation using explicit univariate regression models has 

limitations. There must be sufficient patients to give precise estimates of the 

parameters in the imputation model. There must also be covariates which are 

strong predictors of the variable to be imputed. (Fairclough 2010, p.185-186).  

The underlying assumption for the imputation model (2.2) is that: 

 𝑌𝑖
∗ ~ N(𝑿𝑖

∗𝑇𝑩∗, 𝜎∗2)   (2.35)  

 

The outline of the procedure for generating K sets of imputed values (Rubin 1987, 

Crawford et al. 1995, Little and Yau 1986) is described by Fairclough (2010, 

p.184-185) as follows: 

i) Calculate the parameter estimates �̂�∗and �̂�2∗using the observed data 

 

ii) Generate the kth set of regression model parameters β(k) and mean square 

error σ2(k) by adding random error to the estimates to reflect the 

imprecision of the estimates 

 
𝜎2(𝑘) = �̂�2∗

(𝑛𝑜𝑏𝑠 −  𝑝∗)

𝐶(𝑘)
 (2.36)  
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 𝜷(𝑘) =   �̂�∗ +  𝑼𝛽𝒁𝛽
(𝑘)

 (2.37)  

where p* is the number of unknown parameters in Β* 

 C(k) is randomly drawn from a χ
2
distribution with (𝑛𝑜𝑏𝑠 −  𝑝∗) degrees of 

freedom 

 𝑼𝛽 is the upper triangular matrix of the Cholesky decomposition of the 

variance of �̂�∗ 

 𝒁𝛽
(𝑘)

 is a vector of p* random numbers each drawn from a standard 

Normal distribution 

 

iii) Generate the imputed values of 𝑌𝑖
𝑚𝑖𝑠𝑠for the kth imputation by adding 

random error corresponding to inter- and intra-patient variability of the 

variable to be imputed to the predicted value  

 𝑌𝑖
𝑚𝑖𝑠𝑠(𝑘)

= 𝑿𝑖
𝑚𝑖𝑠𝑠𝜷(𝑘) +  𝜎(𝑘)𝒁𝑌

(𝑘)
 (2.38)  

 

where 𝒁𝑌
(𝑘)

 is a random number drawn from a standard Normal distribution 

Here, 𝑿𝑖
𝑚𝑖𝑠𝑠𝜷(𝑘) is the predicted value and 𝜎(𝑘)𝒁𝑌

(𝑘)
 is the random error. 

iv) Repeat step ii) and iii) for each of the K imputations 

 

Fairclough (2010, p.185) notes that the procedure outlined assumes the parameters 

𝜷(𝑘)have a Normal distribution with variance approximately equal to 

𝜎∗2(∑ 𝑿𝑖
𝑇∗𝑜𝑏𝑠 𝑿𝑖

∗𝑜𝑏𝑠)
−1

, where 𝑿𝑖
∗𝑜𝑏𝑠 is the design matrix of covariates used in the 

imputation model (2.2) for patient i among the patients with an observed value of 

the response variable Y. 

 

Step (i) in this context can be thought of obtaining values that characterise the 

joint posterior distribution of 𝑩∗ and 𝜎∗2 under a conventional non-informative 

prior distribution (Gelman et al. 2004, chapter 14). 

Step (ii) can be thought of as drawing 𝜷(𝑘) and 𝜎2(𝑘) from their joint observed-

data posterior (2.25). 
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Step (iii) can be thought of as obtaining a set of imputed values for 𝑌𝑖
𝑚𝑖𝑠𝑠(𝑘)

 by 

drawing from N(𝑿𝑖
𝑇∗𝑚𝑖𝑠𝑠𝜷(𝑘), 𝜎2(𝑘)𝐼𝑛𝑚𝑖𝑠𝑠 x 𝑛𝑚𝑖𝑠𝑠

), where  

N(𝑿𝑖
∗𝑇𝑚𝑖𝑠𝑠𝜷(𝑘), 𝜎2(𝑘)𝐼𝑛𝑚𝑖𝑠𝑠 x 𝑛𝑚𝑖𝑠𝑠

) is the (approximate) posterior predictive 

distribution (2.24) (Carlin 2014). 

 

Therefore, explicit univariate regression is related to the MCMC method of data 

augmentation (section 2.3.1). 

 

Extension to Longitudinal Trials 

Little and Yau (1996) proposed an extension to the explicit univariate regression 

method for when the variable to be imputed is measured longitudinally. The 

proposed extension is a sequential procedure and applies to a monotone missing 

data pattern. 

 

The procedure involves replacing missing observations of the first measurement 

(h=1) of the variable to be imputed (Y1) with imputed values, generating K sets of 

imputed values for the missing observations of Y1. The next step is to replace the 

missing observations of the second measurement (h=2) of the variable to be 

imputed (Y2) given the observed or imputed value of the first measurement Y1. In 

this step, a missing observation of Y2 is replaced by one imputed value in each of 

the K datasets. The missing observations of the later measurements of the variable 

to be imputed are imputed using all previous observed or imputed values. 

 

However, the extension to the explicit univariate regression model method for 

longitudinal trials requires at least two untestable assumptions. The first 

assumption is that the relationship between the variable to be imputed and the 

variables included in the regression model is the same for patients who complete 

all measurements and patients who do not. The second assumption is that all the 

relevant covariates are included in the imputation model so the assumption that 

the data are missing at random under the imputation model is reasonable. The 

explicit univariate regression model method also requires an assumption that the 
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residual errors and the parameter estimates of the imputation method follow a 

Normal distribution (Fairclough 2010, p.187). 

 

Implementing Explicit Univariate Regression  

Explicit univariate regression can be applied by using the reg option in the 

monontone statement in the MI procedure in SAS. Each variable is transformed 

into a N(0, 1) distribution (standardised). The calculations in the MI procedure are 

based on the standardised data. 

  

Example 2.12 Example of Explicit Univariate Regression 

To simplify illustration, only the previous coping scores were included in the 

imputation models for missing coping scores. The imputation model for the 

missing coping score for patient 1099 at Time 2 contains the coping score at 

baseline (Time 1): 

 *obs * ( )obs * *

2 2inter 1 2|1 2

k

i i iY Y ε     (2.39)  

where 
*

2int er is the intercept.
 
 

For example, for the first monotone dataset (see Table 2.1 and note above Table 

2.4), �̂�2
∗ =  [

−0.095
0.711

] and �̂�2∗= 0.607 

 

The second step of generating the model parameters for imputation requires: 

i) the upper triangular matrix of the Cholesky decomposition  of the 

variance of �̂�∗ , 𝑼𝛽2

(𝑘)
 (e.g. 𝑼𝛽2

(1)
= [

0.263 −0.042
0.000 0.283

]) 

ii) random draws 𝐶2
(𝑘)

 drawn from the 
2

7χ  
distribution (e.g. 𝐶2

(1)
= 5.414) 

iii) random draws  𝒁𝛽2

(𝑘)
 of 2 random numbers, both drawn from a standard 

Normal distribution (e.g. 𝒁𝛽2

(1)
= [

0.400
0.388

]) 

 

The third step of generating the imputed standardised value for the missing coping 

score for patient 1099 at Time 2 requires random draws 𝑍𝑌2

(𝑘)
 from a standard 𝑍𝑌2
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Normal distribution (e.g. 𝑍𝑌2

(1)
 = 1.805). The imputed coping score in standardised 

form in step iii), is converted to the original scale (e.g. 0.609 is converted to 57). 

The imputed coping score in the original scale, again rounded to the nearest whole 

number, was as shown in Table 2.4. 

  

The imputation model for the missing coping scores at Time 3 contains the coping 

score at baseline (Time 1) and Time 2.  

 *obs * ( )obs * ( )obs * *

3 3inter 1 3|1 2 3|2 3

k k

i i i iY Y +Y ε      (2.40)  

 

When imputing missing coping scores at Time 3, observed and imputed coping 

scores at Time 2 are considered as observed coping scores. The missing coping 

scores at Time 3 are imputed similarly to missing coping scores at Time 2. Again, 

due to the small number of patients in this example, the range of 0-100 was 

specified using the minimum and the maximum option. The imputed coping 

scores at Time 3 were as shown in Table 2.4. 

 

The imputation model for the missing coping scores at Time 4 contains the coping 

score at baseline (Time 1), Time 2 and Time 3. 

 *obs * ( )obs * ( )obs * ( )obs * *

4 4inter 1 4|1 2 4|2 3 4|3 4

k k k

i i i i iY Y +Y +Y ε       (2.41)  

 

The missing coping scores at Time 4 are imputed similarly to missing coping 

scores at Time 2 (Table 2.4). 

 

2.3.5 Nearest Neighbour and Predictive Mean Matching 

Nearest neighbour (Rubin 1987, chapter 5; Van Buuren et al. 1999) and predictive 

mean matching (Rubin 1987, p.168, Rubin and Schenker 1991; Heitjan and 

Landis 1994) were developed from the explicit univariate regression method. The 

advantage of nearest neighbour and predictive mean matching is that is not 

possible to impute a value out of the range for the scale of the variable to be 

imputed. An important assumption for both methods is that the relationship 

between the explanatory variables and the variable of interest is the same when 
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the variable of interest is observed and when missing (Fairclough 2010, p.187). 

The data are assumed to be missing at random. These methods may also be robust 

to departures from the assumption that the residual errors and the parameter 

estimates of the imputation model follow a Normal distribution (Fairclough 2010, 

p.187).  

 

Procedure for Nearest Neighbour Imputation 

The outline of the procedure for generating K sets of imputed values is outlined by 

Fairclough (2010, p.192) as follows:  

The initial steps are the same as for explicit univariate regression in section 2.3.4. 

i) Estimate the parameters of the regression model using the observed data 

ii) Generate the kth set of regression model parameters β(k) and σ2(k) by adding 

random error to the estimates to reflect the imprecision of the estimates 

 

The next steps are: 

iii) Generate predicted values for patients with both observed values and 

missing observations  

iv) For each patient with a missing observation, identify the patient with the 

closest predicted value and impute the observed value for this closest 

patient for the missing observation 

v) Repeat steps (ii) to (iv) for each of the K imputations 

 

Nearest neighbour imputation can be applied by using the regpredmeanmatch 

option in the monotone statement in the MI procedure in SAS. The K option in the 

monotone statement is set to 1 to identify the nearest neighbour. The 

regpredmeanmatch option can be shortened to regpmm. 
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Procedure for Predictive Mean Matching Imputation 

The initial steps for predictive mean matching can be based on bootstrap samples 

(Heitjan and Landis 1991). The outline of the procedure for generating K sets of 

imputed values is described by Fairclough (2010, p.192-193) as follows: 

i) Generate K bootstrap samples, by sampling with replacement, from 

patients with observed values 

ii) For each of the K bootstrap samples, calculate the model parameters β(k)  

iii) Generate predicted values for patients with both observed values and 

missing observations 

iv) For each patient with a missing observation, identify the five patients with 

an observed value with the closest predicted value 

v) Select one of the five patients with the closest predicted value at random 

and impute the observed value for this selected patient for the missing 

observation 

 

Alternatively, the initial steps can follow the same procedure as for nearest 

neighbour imputation (Rubin 1987, p.168). 

 

Predictive mean matching can be applied by using the regpredmeanmatch option 

in the monotone statement in the MI procedure in SAS. The initial steps follow 

the same procedure as for nearest neighbour imputation. The number of potential 

coping scores to be imputed considered in step (iv) is defined by the K option in 

the monotone statement. 
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Example 2.13 Example of Nearest Neighbour Imputation 

The initial steps in nearest neighbour imputation are the same as explicit 

univariate regression in section 2.3.4. For illustration, when considering Time 2, 

let the initial steps for the imputation of the missing coping for patient 1099 

proceed as in Example 2.12. In steps iii) and iv), the predicted values are 

generated and the nearest neighbour identified. For example, for the first 

monotone dataset, the standardised predicted value for patient 1099 was -0.99. 

The nearest neighbour in is then patient 6, who has a standardised predicted value 

of -0.683. The imputed coping score at Time 2 for patient 1099 was 32 as shown 

in Table 2.4. 

 

When imputing missing coping scores at Time 3, observed and imputed coping 

scores at Time 2 are considered as observed coping scores. Similarly, when 

imputing missing coping scores at Time 4, observed and imputed coping scores at 

Time 2 and Time 3 are considered as observed coping scores. The missing coping 

scores at Time 3 and Time 4 are imputed similarly to missing coping scores at 

Time 2 (Table 2.4). 

 

Example 2.14 Example of Predictive Mean Matching Imputation 

Initial Steps based on a Bootstrap Sample 

As noted, the first step is to generate K bootstrap samples, by sampling with 

replacement, from patients with observed value. Here, a bootstrap sample was 

generated from the patients with observed or imputed coping scores with 

replacement in each of the datasets with a monotone missing data pattern.  In this 

example, the parameter values for the imputation model in step ii) are calculated 

based on the standardised data (e.g. 𝜷2
(1)

=  [
0.000
0.733

]). This ensures that the 

predicted values in step (iii) were all within the range of the standardised value for 

a coping score of 0 and a coping score of 100 in the corresponding monotone 

dataset. 
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Initial Steps based on Procedure for Nearest Neighbour Imputation  

See section 2.3.4 and Example 2.13. For illustration, let the parameter values in 

step (ii) be the same as in the initial steps based on a bootstrap sample in Example 

2.14. It then follows the imputed values are identical for both sets of initial steps. 

 

Predicted and Imputed Coping Scores at Time 2 

In step (iii), the predicted coping scores are as calculated based on the parameter 

values for the imputation models in step ii). For example, the patients with the 

nearest predicted scores for patient 1099 in the first imputation were: 

Patients 6, 456, 635, 828, 2237. 

 

The coping scores selected at random to replace the missing coping scores for 

patient 1099 at Time 2 were as shown in Table 2.4. For example, the coping score 

selected in the first completed dataset was from patient 2237.  

 

Coping Scores at Time 3 and Time 4 

When imputing missing coping scores at Time 3, observed and imputed coping 

scores at Time 2 are again considered as observed coping scores. Similarly, when 

imputing missing coping scores at Time 4, observed and imputed coping scores at 

Time 2 and Time 3 are considered as observed coping scores. The missing coping 

scores at Time 3 and Time 4 are imputed similarly to missing coping scores at 

Time 2 (Table 2.4). 

 

2.3.6 Pattern Mixture Models - Curran’s Analytic Technique 

Pattern mixtures models (Little 1993; Little 1994; Little 1995) are a modelling 

approach proposed to analyse informative missing data. The method stratifies 

incomplete data by the pattern of missing values and formulates distinct models 

within each stratum (Little and Wang, 1996). It is common that the parameters for 

many of these models can only be estimated by imposing restrictions (Fairclough 

2010, p. 213). Thus, restrictions have been proposed for longitudinal data with 

monotone missing data. These are the complete case missing value restriction, 
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available case missing value restriction and neighbouring case missing value 

restriction. An analytic technique using multiple imputation has been proposed by 

Curran (2000) for applying such sets of restrictions. 

 

Methodology of Pattern Mixture Models 

The methodology of pattern mixture models is based on there being P different 

missing data patterns. The part of the pattern mixture model specifying the 

missing data mechanism (f[M]) is independent of the missing observations. Thus, 

it is not necessary to specify how the missing data mechanism for the variable to 

be imputed depends on the missing observations. The advantage of pattern 

mixture models is that only the proportion of patients with each pattern of missing 

data is required. However, the disadvantages of the pattern mixture models are the 

large number of potential patterns of missing data and the difficulties in 

estimating all the parameters in each model (Fairclough 2010, p. 213). 

 

Outline of Procedure for Pattern Mixture Models  

Among the P missing data patterns, there may be different distributions of the 

responses, Yi, with different parameters, β{p}, and variance Σ{p}: 

 𝒀𝑖|𝑀{𝑝} ~ 𝑁 (𝑿𝑖𝜷
{𝑝}, 𝛴𝑖

{𝑝}
) , 𝑝 = 1 … , 𝑃 (2.42)  

where is X is the design matrix of covariates 

M{p} is the missing data mechanism for the pth pattern 

𝑹𝑖 ∈ 𝑀{𝑝} where Ri is a vector of indicators of the missing data pattern for the ith 

patient and is identical for all patients in the pth pattern 

 

The true distribution of the response variable for all patients is a mixture of the P 

distributions from each group of patients. Therefore, the expected values of the 

parameters averaged over the P missing data patterns, 

 

𝐸[𝜷] = ∑ 𝜋{𝑝}𝜷{𝑝}

𝑃

𝑝=1

 (2.43)  

where π{p} is the proportion of patients with the pth pattern, is of interest. 
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The first step in determining the expected values of the parameters averaged over 

the P missing data patterns is to stratify the patients by the missing data pattern. 

Then, for each strata, the parameters (β{p}, Σ{p}) are estimated. The proportion of 

patients in each strata estimates the weights for averaging the parameters over the 

P missing data patterns, 

 { } { }ˆ = /p pπ n N  (2.44)  

 

The parameters for the true distribution of the response variable for all patients is 

estimated by the average of the estimates of P missing data patterns. 

 

Underidentification of Missing Data Patterns 

Unfortunately, problems with this method may arise. A possible problem is 

having a large number of missing data patterns corresponding to unusual 

scenarios with a small number of patients. Another possible problem is that for 

many missing data patterns the model is underidentified and so it is not possible to 

estimate all of the parameters β{p} without making further assumptions. In this 

situation, explicit restrictions, such as complete case restrictions (Little 1993), 

have been proposed. 

 

Complete case missing variable (CCMV) restriction for Bivariate Data 

Considering an example dataset with two assessments of coping score (Y1 and Y2), 

there are 4 possible missing data patterns, including no observed coping scores.  

These four patterns are described below, considering both observed coping scores 

as pattern 1 and with 1 indicating an observed coping score and 0 indicating a 

missing coping score: 
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Table 2.5 Possible Missing Data Patterns in an Example Dataset with Two Assessments 

of Coping Score 

Pattern Time 1 Time 2

1 1 1

2 1 0

3 0 1

4 0 0  

 

Let the subscript 1 and 2 refer to Time 1 and Time 2 respectively and the 

superscript p refer to the pattern being considered. Considering a cell means 

model (section 1.6.4), for each treatment group, in each of the four patterns, there 

are five possible parameters to be estimated: two means (�̂�1
{𝑝}

, �̂�2
{𝑝}

) and three 

parameters for the covariance (�̂�11
{𝑝}

, �̂�12
{𝑝}

, �̂�22
{𝑝}

). Thus, the model is underidentified 

as not all of these 20 parameters can be estimated from the data (Fairclough 2010, 

p.226). The CCMV restriction assumes that the missing value distributions are 

equal to the complete case distributions. Let the notation 𝜃{𝑝} refer to the 5 

possible parameters for the pth pattern. For the bivariate example (Table 2.5), the 

restrictions are:  

 𝜃[2.1]
{2}

= 𝜃[2.1]
{1}

, 𝜃[1.2]
{3}

= 𝜃[1.2]
{1}

 and 𝜃{4} = 𝜃{1} (2.45)  

where  𝜃[2.1]
{1}

 denotes the parameters from the regression of Y2 on Y1 using the 

complete cases in pattern 1 

𝜃[2.1]
{2}

 denotes the parameters from the regression of Y2 on Y1 for cases in pattern 2 

𝜃[1.2]
{1}

 denotes the parameters from the regression of Y1 on Y2 using the complete 

cases in pattern 1 

𝜃[1.2]
{3}

 denotes the parameters from the regression of Y1 on Y2 for cases in pattern 3. 

(Fairclough 2010, p.227).   

 

Consider the special case where there is a monotone missing data pattern 

excluding no observed assessments (pattern 1 and 2 in Table 2.5).  The CCMV 

restriction can be applied to estimate 𝜇2
{2}

 using the regression of the Y2 on Y1. In 
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this special case, the parameter estimates are the same as the maximum likelihood 

estimates using all available data (Fairclough 2012, p.227). 

 

Longitudinal Studies with Monotone Dropout 

For longitudinal trials with monotone dropout, three set of restrictions have been 

proposed. These restrictions are the extension to the CCMV restriction proposed 

by Little (1993) for the bivariate case, the available case missing value restriction 

and the neighbouring case missing value restriction. Curran (2000) proposed an 

analytic technique for these restrictions using multiple imputation by the MCMC 

method of data augmentation (section 2.3.1). As with MCMC method of data 

augmentation, Curran’s analytic technique can be applied to data from a 

multivariate Normal distribution by using the MCMC statement in the MI 

procedure in SAS.   

 

Considering an example dataset with four assessments of coping score (Y1 – Y4) 

and excluding the possibility of no observed coping scores, there are four 

monotone missing data patterns.  These four patterns are described below in Table 

2.6, considering four observed coping scores as pattern 1. 

 

Table 2.6 Monotone Missing Data Patterns in an Example Dataset with Four Assessments 

of Coping Score 

Pattern Time 1 Time 2 Time 3 Time 4

1 1 1 1 1

2 1 1 1 0

3 1 1 0 0

4 1 0 0 0  

 

Similarly to the bivariate example (Table 2.5), a cell means model with different 

means and covariances in each pattern is underidentified (Fairclough 2010, 

p.226). Extending the notation from the bivariate case, in the description of the 

restrictions proposed, 𝜃[34.12]
{1}

 denotes the parameters from the regression of Y3 on 

Y1 and Y2 and the regression of Y4 on Y1 and Y2 using the complete cases in pattern 
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1. Curran’s analytic technique for these restrictions can be used to create 

completed datasets with missing coping scores replaced.   

 

Complete Case Missing Value Restriction (CCMV) 

Under the CCMV restriction, the data for patients with complete data are used to 

predict the means for the missing observations in the remaining patterns. The 

assumption is that the missing observation distributions are equal to the complete 

case distributions. This restriction is only feasible when there are sufficient 

patients in pattern 1 to estimate these parameters reliably (Fairclough 2010, 

p.232).  In the example (Table 2.6), the restrictions are as follows: 

 𝜃[4.123]
{2}

= 𝜃[4.123]
{1}

 (2.46)  

 𝜃[34.12]
{3}

= 𝜃[34.12]
{1}

 (2.47)  

 𝜃[234.1]
{4}

= 𝜃[234.1]
{1}

 (2.48)  

 

Available Case Missing Value Restriction 

Under the available case missing value restriction, data from patients in all 

patterns with observed values are used to predict the means for the missing 

observations in the remaining patterns. The assumption is that the missing 

observation distributions are equal to the available case distributions. This method 

is more feasible than the CCMV restriction because there is more data to estimate 

the parameters (Fairclough 2010, p.232).  In the example (Table 2.6), the 

restrictions are as follows: 

 𝜃[4.123]
{2}

= 𝜃[4.123]
{1}

 (2.49)  

 𝜃[4.123]
{3}

= 𝜃[4.123]
{1}

, 𝜃[3.12]
{3}

= 𝜃[3.12]
{1,2}

 (2.50)  

 𝜃[4.123]
{4}

= 𝜃[4.123]
{1}

, 𝜃[3.12]
{4}

= 𝜃[3.12]
{1,2}

, 𝜃[2.1]
{4}

= 𝜃[2.1]
{1,2,3}

 (2.51)  

 

Neighbouring Case Missing Value Restriction 

Under the neighbouring case missing value restriction (NCMV), available data 

from patients in the neighbouring pattern are used to impute the means for the 
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missing observations. This may be the most useful of the three sets of restrictions 

proposed for longitudinal data (Fairclough 2010, p.234). The assumption is that 

the missing observations are MAR conditional on the nearest neighbouring 

pattern. This may be hard to justify for later assessments. For example, the 

assumption to restrict the parameters from a quality of life assessment at Time 4 

to be the same among patients who dropped out after the assessment at Time 1 as 

for patients with 4 complete assessments may not be justifiable. It may be more 

realistic that patients who dropout early have worse quality of life than the 

patients with complete assessments. The assumption in NCMV implies that the 

relationship between assessments is similar for patients who have complete 

observations and those who dropout early in the study (Fairclough 2010, p.234). 

 

In the example (Table 2.6), the restrictions are as follows: 

 𝜃[4.123]
{2}

= 𝜃[4.123]
{1}

 (2.52)  

 𝜃[4.123]
{3}

= 𝜃[4.123]
{1}

, 𝜃[3.12]
{3}

= 𝜃[3.12]
{2}

 (2.53)  

 𝜃[4.123]
{4}

= 𝜃[4.123]
{1}

, 𝜃[3.12]
{4}

= 𝜃[3.12]
{2}

, 𝜃[2.1]
{4}

= 𝜃[2.1]
{3}

 (2.54)  

 

Fairclough (2010, p.234) describes the procedures for Curran’s analytic technique 

as follows for each of the K completed datasets: 

i) Impute the missing values at Time 2 in pattern 4 based on patients in 

pattern 3 and 4 

ii) Combine the observed and imputed values from step i) with the 

information for patients in pattern 2 

iii) Impute the missing values at Time 3 based on patients in pattern 2, 3 and 

4. For patients in pattern 4, imputed values at Time 2 are considered in the 

calculation (Equation 2.52).  

iv) Combine the observed and imputed values from step iii) with the 

information for patients in pattern 1 

v) Impute the missing values at Time 4 based on patients in pattern 1.  For 

patients in pattern 4, observed and imputed values at Time 3 and Time 2 
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are considered in the calculation (Equation 2.52). For patients in pattern 3, 

imputed values at Time 3 are considered in the calculation (Equation 

2.51). 

Then analyse each completed dataset and finally combine estimates as for 

multiple imputation techniques. 

 

Example 2.15 Example of Pattern Mixture Models – Curran’s Analytic Technique for 

Neighbouring Case Missing Value Restriction 

Let the coping scores Yh (h=1,..,4) follow a multivariate Normal distribution as in 

Example 2.9 and let the suppositions in Examples 2.8 and 2.9 be made again for 

the purposes of illustration. Again, let the imputed coping scores be rounded to 

the nearest whole number and the range be specified as 0-100.  

 

As the basis of Curran’s analytic technique is a cell means model (section 1.6.4), 

each treatment group is considered separately. Considering four observed coping 

scores as pattern 1, the 5 datasets with a monotone missing data pattern have 4 

missing data patterns as follows:   

 

Table 2.7 Missing Data Patterns for Datasets with Monotone Missing Data Pattern in 

Example of Pattern Mixture Models 

Pattern Time 1 Time 2 Time 3 Time 4

Patients in 

Treatment 

Group A

Patients in Treatment 

Group B

1 1 1 1 1 828, 1304 6, 456, 1728, 2509

2 1 1 1 0 2237 47

3 1 1 0 0 635

4 1 0 0 0 1099  

 

Consider the patients in patterns 3 and 4, for which only coping scores at Time 1 

and Time 2 are relevant (step i). In this example, only treatment group A is 

relevant and there are insufficient patients in patterns 3 and 4 to illustrate step i) 

directly (Table 2.7).  However, for the purposes of illustration, let the example 

patients represent a larger dataset obtained from the full IBCSG dataset, ignoring 

intermittent coping scores to give a monotone missing data pattern. Imputation of 
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missing coping scores at Time 2 then proceeds similarly to Example 2.10. For 

example, using similar notation to Example 2.9 and Example 2,10, the relevant 

conditional predictive distributions for the first completed dataset were as follows: 

 𝑌A2miss
(1,500)

~ N ([
45.0
40.4

] , [
534.9 83.8
83.8 628.3

]) (2.55)  

 

The coping scores drawn from the conditional predictive distributions to replace 

the missing coping score at Time 2 for patient 1099 were as in Table 2.4. 

The observed and imputed coping scores for patients in patterns 3 and 4 are then 

combined with information for patients in pattern 2. For these patients, coping 

scores at Time 1, Time 2 and Time 3 are relevant.  Again, only treatment group A 

is relevant in this example (Table 2.7). The coping scores drawn from the 

respective conditional predictive distribution to replace the missing coping scores 

at Time 3 for patient 1099 and patient 635 were as shown in Table 2.4. 

 

The observed and imputed coping scores for patients in patterns 2, 3 and 4 are 

then combined with information for patients in pattern 1. The missing coping 

scores at Time 4 in treatment group A and treatment group B are imputed 

similarly to missing coping scores at Time 3 (Table 2.4). 

 

2.3.7 Further Development and Chained equations 

It likely that, given the increasing availability of multiple imputation methods in 

standard statistical packages and increasing understanding of its potential 

advantages, the use of multiple imputation in clinical trials will increase (Kenward 

and Carpenter 2007). The implementation of imputation techniques in statistical 

software is becoming more automatic. This may require new forms of model 

selection and diagnostic procedures, for example to detect influential observations 

and the imputation of impossible values (Kenward and Carpenter 2007).  

 

When multiple imputation is applied, the sensitivity of the results to the 

assumptions of the imputation method is often explored. In such sensitivity 

analysis, it is important to be clear what assumptions and what variations of these 
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assumptions are being considered. Thus, further development of models which 

can easily be communicated for appropriate sensitivity analysis is required 

(Kenward and Carpenter 2007). 

 

As the chained equations method is of increasing importance, a more formal 

justification of this method is of particular interest (Kenward and Carpenter 2007). 

The basic concept of the method is that it uses a series of univariate conditional 

models in the spirit of the Gibbs’ sampler (section 2.3.2). This means it is also 

related to the MCMC method of data augmentation (section 2.3.1), multiple 

imputation using explicit univariate regression (section 2.3.4), nearest neighbour 

imputation and predictive mean matching (section 2.3.5). It was developed to 

address the difficulty of constructing an appropriate imputation model for a 

combination of types of variables.  The method avoids specifying an appropriate 

joint imputation distribution by replacing this by the selection of appropriate 

univariate conditional distributions. While the chained equations method has been 

used successfully, the properties of conditional distributions is an area for further 

research (Kenward and Carpenter 2007). 

 

The procedure starts with an appropriate univariate conditional distribution for 

each variable to be imputed and imputes in turn from these distributions. At the 

end of one cycle, which considers all variables to be imputed, imputations will 

exist for all the missing observations. The whole cycle is repeated several times, 

taking the draws from the last cycle to form the first imputed dataset in line with 

the Gibbs’ sampler. The contrast to genuine Gibbs’ samplers is that only a 

comparatively few cycles are used, generally 10 or 20 (Kenward and Carpenter 

2007). Then the whole process is repeated to obtain further completed datasets. 

This approach has been implemented by in the statistical software MICE (van 

Buuren et al al. 1999) and IVEWARE (Raghunathan TE et al. 2001; Taylor et al. 

2002).  
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2.3.8 Summary of Multiple Imputation 

Multiple imputation techniques have proved useful in the context of clinical trials 

and multiple imputation of quality of life assessments has been used successfully 

(e.g. Bordeleau et al. 2003; Stanton et al. 2005; Peyre et al. 2011). An example 

application in this context is investigating the relationship between quality of life 

and prognosis in breast cancer patients (see Chapter 3). Potentially, several 

standard imputation methods could be applied to missing quality of life 

assessments as part of such an investigation. However, this would not be useful if 

the completed datasets are similar regardless of which imputation method is 

applied. In this scenario, the imputation method applied would have little 

influence on the parameter estimates from the analytic model.  

 

Standard multiple imputation methods were illustrated using a small example 

dataset. Considering the imputed values in Table 2.4 indicated that the MCMC 

methods (data augmentation with more than one type of assessment / MCMC 

methods – Gibbs’ sampling and pattern mixture models - Curran’s analytic 

technique) may be more similar to each other than the remaining methods.  

However, as with simple imputation, there was no suggestion that the completed 

datasets are similar regardless of which imputation method is applied (Table 2.4).  

 

Explicit univariate regression and ABB were developed from standard simple 

imputation techniques. Nearest neighbour and predictive mean matching where 

then developed from explicit univariate regression and are closely related. These 

multiple imputation methods were not originally developed for longitudinal data 

but can be extended to longitudinal data. Some of the standard multiple 

imputation methods, for example explicit univariate regression, are based on an 

explicit parametric Bayesian model for the imputation model. In the case of 

MCMC methods and pattern mixture models - Curran’s analytic technique, the 

assumption is that the data follow a multivariate Normal distribution. Other 

methods, for example nearest neighbour imputation, are based on an algorithm 

implying an underlying imputation model. In general the standard multiple 
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imputation methods assume a monotone missing data pattern, though the MCMC 

methods extend to a general missing data pattern. The MCMC methods of data 

augmentation and Gibbs sampling are closely related. 

 

Many of the standard multiple imputation methods, for example ABB, assume the 

data are MAR. Rubin and Schenker (1991) have proposed an extension of ABB to 

a particular case of informative missing data. Pattern mixture models were 

proposed to address informative missing data for longitudinal data. Curran’s 

analytic technique for implementing pattern mixture models is the only standard 

multiple imputation method based on the cell mean model.  

 

2.4   Summary   

This review of standard imputation methods noted that simple imputation 

methods, where a single value is imputed, can provide useful information as part 

of a sensitivity analysis in clinical trials.  Multiple imputation, where K (K > 1) 

values are imputed is a more useful method, although more complex.  It takes into 

account the variability induced by imputation. 

 

The standard imputation methods differ in whether the imputation model is based 

on i) an explicit parametric Bayesian model or ii) on an algorithm implying an 

underlying imputation model. In general the standard multiple imputation 

methods assume a monotone missing data pattern, though the MCMC methods 

extend to a general missing data pattern. Many of the standard multiple 

imputation methods assume the data are MAR. In contrast, pattern mixture 

models were proposed to address informative missing data for longitudinal data. 

When applying imputation, it is important to investigate the missing data 

mechanism and to carry out a sensitivity analysis of the results to specific 

assumptions about the missing observations. 

   

The potential advantages of multiple imputation and the increasing availability of 

statistical software to implement multiple imputation methods suggest that 
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multiple imputation will become increasingly important in breast cancer clinical 

trials. This particularly applies to quality of life assessments which, while 

becoming increasingly common in breast cancer trials, are associated with a high 

level of missing observations (Fairclough 2010, chapters 1 and 6). 

 

Imputation techniques provide a potential tool for investigating the question of 

whether quality of life is related to prognosis in breast cancer patients. As noted, 

several standard imputation methods could be applied as part of such an 

investigation. The illustration of the standard imputation methods in a small 

example dataset indicated that using several standard imputation methods may 

provide useful information in this investigation. A specific application is replacing 

missing quality of life assessments before the time-dependent Cox model analysis 

of DFS with quality of life as a time-dependent covariate. 

 

Thus, in the next chapters, the missing quality of life assessments as measured by 

coping score in the IBCSG dataset are imputed by several standard imputation 

methods. These imputed values are considered in the time-dependent Cox model 

analysis with coping score as a time-dependent covariate. The hypothesis 

investigated is that quality of life throughout the study is associated with 

prognosis. The efficacy endpoint of DFS was not considered in the imputation of 

coping scores. Preliminary to analysis, the assumption of whether the data are 

MAR is reasonable is considered. The results from the time-dependent Cox model 

analysis following standard imputation methods are presented and the 

performance of the standard imputation methods compared. The standard 

imputation methods are compared by i) considering the parameter estimates for 

quality of life and the corresponding standard errors and ii) by using simulated 

datasets to estimate the difference between the coping score and the missing 

coping score. 
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Simple Imputation 

As described in this chapter, there are several standard methods of simple 

imputation. Given the limitations of the standard simple imputation methods 

noted, it was not of interest to apply all standard simple imputation methods to the 

IBCSG dataset. In particular, cold deck imputation was noted to be only of 

historical interest. However, as part of a sensitivity analysis investigating the 

question of whether quality of life is related to prognosis, it was of interest to 

apply selected simple imputation methods. Therefore, 3 standard imputation 

methods, were selected representing the main approaches to simple imputation in 

the statistical literature to form part of sensitivity analysis. These 3 methods 

include LOCF as a simple imputation method commonly applied and are: 

i) last observation carried forward  

ii) mean or median imputation: median by patient, by time period and by time 

period and treatment group 

iii) imputation using regression models: linear regression with previous 

coping score(s) and with concurrent variables 

 

Extreme imputation of highest coping score of 100 (lowest quality of life) and 

lowest coping score of 0 (highest quality of life) was applied to illustrate the worst 

possible and best possible complete set of quality of life assessments in the 

IBCSG dataset. The remaining simple imputation methods described in this 

chapter are not applied to the IBCSG dataset in Chapter 3. 

 

Multiple Imputation 

There are two standard multiple imputation methods described in this chapter that 

are not applied to the IBCSG dataset in Chapter 4: 

i) explicit univariate regression 

ii) MCMC methods 

 

MCMC methods are more computationally complicated than other standard 

multiple imputation methods described in this chapter and are not applied to the 
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IBCSG dataset. Simple imputation using linear regression models is applied to the 

IBCSG dataset and it did not appear that explicit univariate regression would add 

any additional information about the question of the whether quality of life is 

related to the prognosis. 

  

The IBCSG dataset had a general missing data pattern which was not close to 

monotonic. However, it is possible to ignore the non-monotone missing data 

pattern when identifying the subgroups of patients considered in the bootstrapping 

method. This allowed the question of whether quality of life is related to 

prognosis to be investigated by a version of bootstrapping in the IBCSG dataset 

without first creating a monotone missing data pattern. In order to apply nearest 

neighbour imputation, predictive mean matching (initial steps as for nearest 

neighbour imputation) and pattern mixture models – Curran’s analytic technique 

to the IBCSG dataset, non-monotone missing coping scores were imputed by 

LOCF. 

   

Therefore, the four standard multiple imputation methods applied to the IBCSG 

dataset in Chapter 4 are:  

i) bootstrapping: subgroups defined by baseline coping score and 

subgroups defined by previous coping score 

ii) predictive mean matching 

iii) nearest neighbour imputation 

iv) pattern mixture models – Curran’s analytical technique
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3 Investigation of the Effects of Using Simple 

Imputation Methods to Estimate the Effect of Quality 

of Life on Disease-Free Survival in IBCSG Trials VI 

and VII 

 

3.1 Introduction 

In the previous chapter, several methods of imputation were reviewed and 

illustrated using a small example dataset. In this chapter the association between 

quality of life and DFS in IBCSG Trials VI and VII is investigated. Many studies 

have shown that a diagnosis of breast cancer can negatively affect a woman’s 

quality of life, but whether the resulting quality of life is associated with survival 

remains under debate (Epplein et al. 2011). Studies have reported that social well-

being in the first year after cancer recurrence is a significant prognostic factor for 

recurrence or mortality (Epplein et al. 2011) and that changes in quality of life 

during adjuvant therapy may be associated with recurrence (Keene Sarenmalm et 

al. 2009). 

 

Previous work by Coates et al. (2000) indicated that in the IBCSG dataset DFS 

was not significantly predicted by quality of life scores at baseline or month 18, or 

by changes in quality of life score between baseline and months 3 or 18. However, 

Herring et al. (2004) indicated that quality of life at baseline was associated with 

prognosis in postmenopausal patients. As noted, this may reflect the toxicity of 

chemotherapy treatment. Here, previous work is extended by considering quality 

of life as a time-dependent effect. The hypothesis investigated is that poorer 

quality of life throughout the study is associated with poorer DFS and conversely 

better quality of life throughout the study is associated with better DFS.  

 

In section 3.2, IBCSG Trials VI and VII are described together with a brief 

summary of the main published analyses on efficacy and quality of life of these 

trials.  The reason for imputing missing values before the time-dependent Cox 
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model analysis is discussed in section 3.3. The parameters included in the time-

dependent Cox model are also described in section 3.3. In section 3.3, the time-

dependent Cox model analysis is performed on the IBCSG dataset with no 

imputation for illustrative purposes. 

 

The selection of standard imputation methods that are applied is described in 

section 2.4. This chapter describes applying standard simple imputation methods 

to the IBCSF dataset. Applying multiple imputation methods is described in 

Chapter 4. The simple imputation methods that will be applied are: 

i) extreme imputation 

ii) last observation carried forward  

iii) mean or median imputation: median by patient, by time period and by time 

period and treatment group 

iv) imputation using regression models: linear regression with previous 

coping score(s) and with concurrent variables 

 

The technical details of applying the simple imputation methods are described in 

section 3.4. The results from the time-dependent Cox model analysis following 

standard simple imputation methods are presented in section 3.5. The standard 

simple imputation methods are compared in two main ways: 

i) comparing the estimated effect of the coefficient associated with 

quality of life from the time-dependent Cox model 

ii) comparing the imputed quality of life value with the observed value 

artificially removed in a simulated dataset based on the patients with 

complete quality of life assessments in the IBCSG dataset 

The relationship between the imputed values is explored together with multiple 

imputation in the next chapter, section 4.4. At the end of this chapter, a summary 

of the chapter is presented in section 3.6. 
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3.2 Description of IBCSG Trials VI and VII 

The description of IBCSG Trials VI and VII in this section begins with the 

background (section 3.2.1) and patients and methods (section 3.2.2). The 

published efficacy analysis is summarised in section 3.2.3. Then quality of life 

and follow-up assessments are described in section 3.2.4. The published analysis 

of quality of life is summarised in section 3.2.5. The author did not contribute to 

these published analyses. Lastly, the further analyses of quality of life described in 

this chapter and Chapter 4 is outlined in section 3.2.6.  

 

3.2.1 Background to IBCSG Trials VI and VII 

Adjuvant treatments with chemotherapy, endocrine therapy and combinations of 

both have been shown to increase DFS and OS in patients with node-positive 

breast cancer. However, adjuvant treatments can have substantial adverse effects, 

such as nausea which may impact on quality of life (Hürny et al. 1996) and 

increased risk of cardiac failure which may impact on survival (Piccart-Gebhart et 

al. 2005). An important clinical question is whether the DFS and OS benefits 

outweigh the adverse effects of adjuvant treatment on quality of life, though this is 

not the focus of this thesis.  

 

At the time Trials VI and VII were started in 1986, adjuvant chemotherapy for 

breast cancer was generally administered for 6 to 12 months after surgery. Several 

trials had previously directly investigated the duration of chemotherapy. Since 

cancer cells are more likely to be sensitive to chemotherapy during phases of fast 

growth, there was a hypothesis that the timing of chemotherapy influences 

treatment efficacy and this was investigated in these trials. 

 

Trials VI and VII both examined two different durations and two timings of 

adjuvant chemotherapy in premenopausal and perimenopausal patients (VI) and 

compared tamoxifen with different durations and timing of chemotherapy in 

postmenopausal patients (VII).  Therefore, each trial had 4 treatment groups, 

labelled A-D in Trial VI and E-H in Trial VII. The adjuvant chemotherapy was 
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cyclophosphamide, methotrexate and 5-fluorouracil (CMF). A secondary aim was 

to assess the effects of adjuvant treatments on self-assessed quality of life which 

was obtained prospectively on 9 occasions during the first 2 years on study. In the 

main findings from statistical analysis of quality of life in the IBCSG dataset 

(Hürny et al. 1996), Trials VI and VII were analysed together as they have similar 

protocols.  A schema for Trials VI and VII, after protocol amendments, is shown 

in Figure 3.1. 

  



 
 

118 
 

TRIAL VI: PRE- AND PERIMENOPAUSAL 
            

 

  

  

  

 

 

 

 

TRIAL VII: POSTMENOPAUSAL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

CMF = cyclophosphamide, methotrexate, 5-fluorouracil; TAM = tamoxifen; 

ER = oestrogen receptor 

CMF Treatment 

A  __|__|__|__|__|__|___________________ 

        1   2   3  4   5   6                                       (months) 

 

B  __|__|__|__|__|__|_____ |_____ |_____ |_ 

        1   2   3  4   5   6          9         12       15   (months) 

 

C  __|__|__|__________________________ 

        1   2   3                                                     (months) 

 

D  __|__|__|____________ |_____ |_____ |_ 

        1   2   3                        9         12       15   (months) 
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Tamoxifen Treatment (with/without CMF) 

E  _________________________________...__  TAM 

                                                                  15     60 (months) 

 

                                            CMF 

F  ___________________  |_____ |_____ |_...__   TAM 

                                            9         12       15     60 (months) 

 

        CMF 

G  __|__|__|__________________________...__  TAM 

        1   2   3                                                       60 (months) 

 

        CMF                           CMF 

H  __|__|__|____________ |_____ |_____ |_...__  TAM 

        1   2   3                        9         12       15     60 (months) 

 

 

Figure 3.1 Schema of IBCSG Trials VI and VII 
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3.2.2 Patients and Methods 

Premenopausal and perimenopausal patients with node-positive operable breast 

cancer were randomised in a 2x2 factorial design in Trial VI to receive three or six 

initial cycles of oral CMF, with or without delayed chemotherapy reintroducing 

three single cycles of CMF after 3-month intervals (labelled arms A-D in Figure 

3.1). Postmenopausal patients with node-positive operable breast cancer were 

randomised in Trial VII to tamoxifen (20mg daily) for 5 years, alone or with 

chemotherapy (labelled arms E-H in Figure 3.1). The chemotherapy consisted of 

three early cycles of CMF, three delayed cycles of CMF, spaced as in Trial VI, or 

both early and delayed CMF. Randomisation in Trials VI and VII was stratified 

by participating institution, type of surgery (mastectomy vs breast conserving 

procedure with breast irraditation) and oestrogen receptor (ER) status (negative vs 

positive). The randomisation schedule was produced using pseudorandom 

numbers generated by a convergence method and was conducted centrally. 

 

The primary endpoint was DFS, defined as the length of time from the date of 

randomisation to any relapse (including ipsilateral breast cancer), the appearance 

of a second primary cancer (including contralateral breast cancer), or death, 

whichever occurred first. Date of relapse was defined as the time when recurrent 

disease was diagnosed or, if confirmed later, when it was first suspected. 

Secondary endpoints included OS, defined as the time from randomisation to 

death due to any cause.  

 

All patients had a histologically proven unilateral breast cancer with either ER-

positive or negative primary tumours. Surgery of the primary tumour was either 

total mastectomy with axillary clearance or a lesser procedure (quadrantectomy or 

lumpectomy) with axillary lymph node dissection. For women treated with breast-

conserving surgery, radiotherapy was mandatory and had to be postponed until the 

end of the initial phase of chemotherapy (three or six courses). 
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The protocol required that adjuvant chemotherapy began within 6 weeks of 

surgery and consisted of CMF (cyclophosphamide 100mg/m2 orally on days 1 to 

14, methotrexate 40mg/m2 intravenously [IV] on days 1 and 8 and flurouracil 

600mg/m2 IV on days 1 and 8, repeated every 28 days). Eligible patients must 

have no evidence of metastatic spread and have acceptable baseline hepatic and 

renal function. 

 

In the sample size calculations, the baseline 5-year DFS rate for patients entering 

Trial VI and receiving 6 months of CMF chemotherapy was assumed to be 

approximately 60%. Randomisation of 1400 patients to Trial VI was planned. The 

baseline 5-year DFS rate for patients entering Trial VII and receiving at least 2 

years of tamoxifen was assumed to be approximately 50%. Randomisation of 

1200 patients to Trial VII was planned. 

 

Twenty-four institutions from nine countries took part in Trials VI and VII. 

Between July 1986 and April 1993, 1554 premenopausal and perimenopausal 

patients were randomised to Trial VI and out of the 1554 patients 1475 (95%) 

were eligible and assessable. During the same time period 1266 postmenopausal 

patients were randomised to Trial VII and out of the 1266 patients 1212 (96%) 

were eligible and assessable. 

 

3.2.3 Published Statistical Analysis of Efficacy 

The section summaries the main statistical analysis of efficacy in Trials VI and 

VII (The International Breast Cancer Group 1996; The International Breast 

Cancer Group 1997).  DFS and OS percentages were estimated with the Kaplan-

Meier method (Kaplan and Meier 1958). Greenwood’s formula for the calculation 

of standard error (Greenwood 1926) and log-rank tests for the comparison of 

treatment effects were used.  Cox proportional hazard regression models were 

used to control for prognostic factors (type of surgery, number of lymph nodes 

involved and ER status). Cox proportional hazard regression models were also 

used to estimate hazard ratios and confidence intervals for the treatment 
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comparisons and to test for interactions between potential prognostic factors and 

treatment effects. 

 

With a median follow-up of 60 months, Trial VI showed that three courses of 

adjuvant chemotherapy are not sufficient compared with longer duration of CMF 

chemotherapy, especially in younger women and in patients with ER-negative 

tumours. Patients who received 3 cycles of CMF without reintroduction of 

chemotherapy had a 5-year DFS rate of 53% compared with 58% for the other 

three treatment groups (hazard ratio 1.20; 95% confidence interval [CI], 1.00 to 

1.45). Delayed chemotherapy showed some evidence of additional therapeutic 

benefit (hazard ratio 0.86%; 95% CI 0.73 to 1.01) but remained investigational. 

With a median follow-up of 60 months, Trial VII found that early chemotherapy 

with three courses of CMF added to tamoxifen given for 5 years is beneficial for 

postmenopausal patients when compared with tamoxifen alone given for the same 

duration. The 598 patients who received early chemotherapy had a 5-year DFS 

rate of 64% compared with 57% for the 614 patients without early chemotherapy 

(hazard ratio 0.79; 95% CI 0.66 to 0.95). The use of tamoxifen before CMF 

chemotherapy might be detrimental, especially for patients with ER- primary 

tumours.  

 

3.2.4 Quality of Life and Follow-Up Assessments 

A secondary aim of IBCSG Trials VI and VII was to assess the effects of adjuvant 

treatments on self-assessed quality of life. The quality of life objectives were to 

evaluate the hypotheses: 

i) The level of early coping/well-being of the patient at diagnosis can be used 

as a prognostic indictor of outcome 

ii) The coping/well-being of the patient is different for different treatment 

groups 
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The quality of life questionnaire was designed to allow use in busy clinics and 

included five indicators of health-related quality of life that are particularly 

relevant in breast cancer patients. Physical wellbeing (good-lousy), mood (happy-

miserable), appetite (good-none) and perceived adjustment/coping (“How much 

effort does it cost you to cope with your illness?” [none – a great deal]; Pacis) 

were assessed with single-item linear analogue self-assessment scales (100mm), 

which had previously been validated in several cancer populations (Coates et al. 

1983; Coates et al. 1990). The fifth indicator is quality of life assessed with the 

Befindlichkeits-Skala (BfS) checklist for emotional wellbeing (von Zerssen 

1986). The Bf-S scores have been compared with the mood scores (Hürny et al. 

1996a). The quality of life forms were translated into the ten required languages. 

 

The baseline quality of life was assessed on, or as close as possible to, the first 

day of adjuvant therapy. Quality of life was recorded approximately 3 months 

after randomisation, then every 3 months until 24 months, and also at 1 and 6 

months after recurrence when applicable.  The assessment of quality of life was 

intended to occur during a clinic visit when other clinical heamatologic and 

biochemical assessments would also take place.  A clinical heamatologic and 

biochemical assessment of each patient was required every 3 months for 2 years, 

every 6 months from the third to the fifth year and yearly thereafter.  After 

instruction from clinic staff, patients were asked to complete the quality of life 

questionnaire before receiving any scheduled chemotherapy.  

 

3.2.5 Published Statistical Analysis of Quality of Life 

Main Findings from Statistical Analysis of Quality of Life (Hürny et al. 1996) 

The main findings from statistical analysis of quality of life in the IBCSG Trials 

VI and VII were published by Hürny et al. 1996 and are summarised in this 

section. In this statistical analysis, at a median follow-up of 60 months, the scores 

were treated as numbers from 0 to 100, and transformed so that higher numbers 

indicated a better quality of life.   
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ANOVA was used to test for associations between quality of life measures and 

biomedical and sociodemographic factors.  Heterogeneity among treatment groups 

at each time of assessment was analysed by ANOVA, after controlling for 

language/culture. Tests for differences in quality of life scores between any two 

assessment times used within-patient changes in an ANOVA model that included 

assigned treatment and language/culture. 

 

The baseline analysis and the tests for heterogeneity among treatment groups at 

each time point used the square root of the quality of life scores, because this 

transformation approximated a Normal distribution and was effective in 

stabilising the variances for quality of life scales.   

 

Baseline prognostic factors were significantly associated with quality of life 

scores. In Trial VI, there was a poorer quality of life as the number of involved 

axillary nodes increased. In Trial VII, older patients (>60) reported better quality 

of life than younger postmenopausal patients.  Patients who did not have all 9 

quality of life assessments had systematically poorer quality of life than those for 

whom all 9 assessments were available. 

 

Heterogeneity among the treatment groups was significant at each time point from 

6 to 15 months in Trial VI and at each time point from 3 to 15 months in Trial 

VII. While the patient was still having chemotherapy the quality of life was 

poorer. By month 18, after all treatment groups had completed chemotherapy, 

there was no significant difference among treatment groups for any quality of life 

measures. 

 

Between baseline and 18 months, there was a significant improvement of quality 

of life. There was a significant adverse impact of delayed chemotherapy on all 

quality of life measures.  
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Exploring Quality of Life as a Prognostic Factor of DFS 

One of the quality of life objectives in Trial VI and VII was to evaluate the 

hypothesis that the level of early coping/well-being of the patient at diagnosis can 

be used as a prognostic indictor of outcome. This objective has been addressed by 

Coates et al. (2000) and Herring et al. (2004). As with Hürny et al. 1996, the 

transformation of square root of the quality of life scores was used and higher 

scores indicated a better quality of life.    

 

In the analysis by Coates et al. (2000), Cox model analyses were used to test the 

relationship between quality of life scores and DFS. Coping score at baseline, 

Month 3 and Month 18 was considered. Patients with the relevant coping scores 

missing were not considered in the analyses. All models were stratified by 

language/country group and included other factors related to quality of life and/or 

outcome. The analysis indicated that DFS was not significantly predicted by 

quality of life scores or by changes in quality of life scores from baseline.   

 

The goal of the analysis by Herring et al. (2004) of Swiss postmenopausal patients 

in Trial VII was to evaluate the effect of quality of life on outcome while taking 

into consideration that the data may be informative missing data. Here, the quality 

of life assessment considered was coping/perceived adjustment (“coping score”). 

They proposed a method for estimating parameters in the Cox proportional 

hazards model when missing covariates may be non-ignorable. The square root of 

the baseline coping scores was among the covariates considered, along with other 

prognostic factors. The analysis indicated that poor baseline coping scores were 

associated with improved relapse-free survival. Unlike the endpoint of DFS, 

occurrence of second primary cancer or death without prior event was not an 

event for relapse-free survival.  

 

In the rest of this chapter and in Chapter 4, previous work is extended by 

considering quality of life as a time-dependent effect. As with Herring et al. 

(2004), coping score is the quality of life assessment considered. Of note, the 
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original coping score is considered and thus lower numbers indicated a better 

quality of life. Standard imputation methods are applied to impute the missing 

coping scores in the IBCSG dataset. The square root of the coping score (S_Pacis) 

is used in a time-dependent Cox model for DFS (see section 1.5) and therefore 

coping score is an example of a missing explanatory variable.  

 

3.2.6 Further Analyses of Quality of Life as a Prognostic Factor of 

Disease-Free Survival 

In the rest of this chapter and in Chapter 4, the IBCSG dataset is used to 

investigate the influence of missing quality of life values, as assessed by coping 

score, when exploring the relationship between quality of life and DFS. The 9 

coping scores up to Month 24 are considered, which focus on the impact of 

adjuvant treatment in the early stage of the trial. Previous work is extended by 

considering quality of life as a time-dependent effect in a time-dependent Cox 

model. Standard imputation methods are applied to impute the missing coping 

scores before analysis and the performance of the standard imputation methods 

compared. In this section, preliminary work and the further analyses are 

described. 

 

Preliminary Work 

Quality of life assessments were repeated throughout IBCSG Trials VI and VII. 

Preliminary to the further analysis of quality of life as a prognostic factor of DFS, 

the status of coping scores over time was summarised in Table 3.1 and Figure 3.2. 

 

As shown in Figure 3.2A and Table 3.1, considering only non-compliance where 

the quality of life assessment was expected, there was a high proportion of 

missing data in the IBCSG dataset, 17.0% [456/2687] at baseline (Time 1, 

approximately at randomisation) and 30.7% [666/2168] at 24 months (Time 9). 

The trend in the proportion of missing quality of life assessments was that initially 

the proportion was higher in Trial VII than in Trial VI, then was nearly identical 
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at 6 months (Time 3) and then was higher in Trial VI than Trial VII (Figure 3.2B).  

This high proportion indicates that the time-dependent Cox model analysis using 

only observed data will suffer from a lack of precision compared to the time- 

dependent Cox model analysis if all quality of life assessments were available. 

 

Table 3.1 Summary of Status of Coping Score in IBCSG Trials VI and VII 

Baseline (Time 1) – 24 Months (Time 9) 

Observed Missing

Post-

recurrence

Lost to 

follow-up Dead

Baseline (Time 1) 2231 (83.0) 456 (17.0) 0 (  0.0) 0 (  0.0) 0 (  0.0)

Month 3 (Time 2) 1918 (71.4) 744 (27.7) 25 (  0.9) 0 (  0.0) 0 (  0.0)

Month 6 (Time 3) 1871 (69.6) 751 (27.9) 56 ( 2.1) 1 (  0.0) 8 (  0.3)

Month 9 (Time 4) 1817 (67.6) 745 (27.7) 103 (  3.8) 1 (  0.0) 21 (  0.8)

Month 12 (Time 5) 1812 (67.4) 662 (24.6) 173 (  6.4) 3 (  0.1) 37 (  1.4)

Month 15 (Time 6) 1692 (63.0) 711 (26.5) 215 (  8.0) 3 (  0.1) 66 (  2.5)

Month 18 (Time 7) 1616 (60.1) 707 (26.3) 266 (  9.9) 5 (  0.2) 93 (  3.5)

Month 21 (Time 8) 1556 (57.9) 693 (25.8) 294 (10.9) 5 (  0.2) 139 (  5.2)

Month 24 (Time 9) 1502 (55.9) 666 (24.8) 339 (12.6) 5 (  0.2) 175 (  6.5)  
Data are n (%) 

 

Figure 3.2 Bar Graph of Status of Coping Score in IBCSG Trials VI and VII 

Baseline (Time 1) – 24 Months (Time 9) 

A: Status of Coping Score By Time Period 
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Figure 3.2 Bar Graph of Status of Coping Score in IBCSG Trials VI and VII 

Baseline (Time 1) – 24 Months (Time 9) 

B: Observed and Missing Coping Scores by Time Period and Trial 
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Next, the assumption that the coping scores are missing at random was 

considered. Statistical analysis of quality of life by Hürny et al. (1996) suggested 

that the patient’s quality of life described by the coping score may be related to 

anticipation of future chemotherapy. In Trial VI, patients with early chemotherapy 

scheduled for 3 months, particularly the patients who were not scheduled to have 

delayed chemotherapy, had a better quality of life at 3 months (Time 2) than the 

patients with early chemotherapy scheduled for 6 months.  In Trial VII, patients 

who were randomised to tamoxifen only reported a greater improvement in 

quality of life at 3 months (Time 2) compared to groups of patients who were 

randomised to receive delayed chemotherapy. This implies that the missing 

coping scores are likely to be informative missing data (see section 1.6.1). In 

addition, Hürny et al. (1996) found that patients who did not have all 9 quality of 

life assessments had systematically poorer quality of life than those for whom all 

9 assessments were available. This fact also suggests informative missing data.  

  

The high proportion of missing coping scores and the indication that the coping 

scores are informative missing data together lead to the conclusion that imputation 

is appropriate for the IBCSG dataset. Standard imputation methods were used, in 

order to include S_Pacis as a covariate in a time-dependent Cox model for DFS 

(see section 3.4 and 3.5). The standard imputation methods are used as part of an 

investigation into the possible relationship between quality of life and DFS and do 

not necessarily represent good estimation techniques for the IBCSG dataset. 

 

Comparison of Standard Imputation Methods  

The simple imputation methods (see section 3.4 and 3.5) are compared by: 

i) Investigation of the estimated effects of the coefficient associated with 

S_Pacis and its standard error in the time-dependent Cox model fitted to 

the completed datasets following imputation by standard imputation 

methods. The estimates are compared to each other and to the estimated 

effects from the complete case analysis to consider the impact of the 

imputation method. 
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ii) From 585 patients with a complete history of 9 observed coping scores, 

150 simulated datasets were created by removing coping scores to imitate 

the missing data pattern in the full IBCSG dataset. The missing data were 

imputed in each of the 150 simulated datasets, using the same methods as 

in i) above, and the mean and standard deviation of the difference between 

the imputed coping score and the real coping score, which had been 

artificially removed, were calculated.  This was to investigate how well the 

imputed values reflected the real coping score. Imputation methods with a 

mean closer to zero and a small standard deviation are better predictors of 

the missing observations. 

 

Description of Time-Dependent Cox Model 

When investigating the relationship between quality of life and DFS, the changing 

values of quality of life, as measured by coping score throughout the study were 

considered. This means that a time-dependent Cox model was appropriate. Low 

values of coping scores, and therefore S_Pacis, indicated good quality of life. The 

treatment effect included in the time-dependent Cox model as well as S_Pacis was 

the indicator for delayed chemotherapy. The indicator was defined according to 

randomised arm (intent-to-treat). This treatment effect was used as statistical 

analysis of quality of life by Hürny et al. (1996) suggested that quality of life as 

described by coping score may be related to anticipation of future chemotherapy. 

The time-dependent Cox model analysis was stratified by trial, Trial VI 

(premenopausal) or Trial VII (postmenopausal).  

  

Age was not considered as a covariate due to the association with menopausal 

status. Statistical analysis of efficacy (The International Breast Cancer Group 

1996; The International Breast Cancer Group 1997) (see section 3.2.3) and 

previous statistical analysis of quality of life by Herring et al. (2004) suggested 

also including an indicator for sufficient early chemotherapy and oestrogen 

positive receptor status in the time-dependent Cox model.  Sufficient early 

chemotherapy was defined as 6 initial cycles of CMF in Trial VI and 3 initial 
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cycles of CMF in Trial VII. This was not done in the main investigation of this 

chapter to keep the model parsimonious.  However, the results from the extended 

model are also presented (see section 3.5). 

 

Consider the notation for the time-dependent Cox model for the main 

investigation of this chapter. Let Xsp(t)  denote S_Pacis at time t and let 

 Dsp(i)(t) = {Dsp(i)(u); 0 < u < t} (3.1) 

denote the covariate history of S_Pacis up to time t for the ith patient. 

 

While S_Pacis changes during the study, the indicator for delayed chemotherapy, 

Xdel, remains 1 for patients with delayed chemotherapy and 0 for patients with no 

delayed chemotherapy throughout.  

 

Under the assumption of proportional hazards (see section 1.5): 

 
log (

𝜆(𝑡|𝒁𝑖(𝑡))

𝜆0
) = 𝛽𝑠𝑝𝑋𝑠𝑝(𝑖)(𝑡) + 𝛽𝑑𝑒𝑙𝑋𝑑𝑒𝑙(𝑖) 

(3.2) 

where the derived covariates Zi(t) for the ith patient considered are S_Pacis at time 

t and the indicator for delayed chemotherapy   

the derived covariates Zi(t) are functions of the covariate history Dsp(i)(t) and the 

time t   

β is a vector of regression coefficients for S_Pacis and the indicator for delayed 

chemotherapy, written as βsp  and βdel respectively  

λ0 is an unspecified baseline hazard function 

λ(t|Zi(t)) is the hazard function at time t for the ith patient given the derived 

covariates Zi(t) 

 

Time-Dependent Cox Model Analyses With No Imputation 

For illustrative purposes, time-dependent Cox model analysis was performed on 

the IBCSG dataset with no imputation (see section 3.3).  First, an initial analysis 

based upon 585 patients with observed coping scores at each of the 9 time periods 

was performed.  Next, a dataset with a monotone missing data pattern created 
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from the available coping scores was considered. Thirdly, a dataset with all 

available coping scores was considered.   

 

3.3 Available Patients, Complete Patient and Available Patients 

with a Monotone Missing Data Pattern Analysis  

The hypothesis investigated in this chapter and Chapter 4 is that poorer quality of 

life throughout the study is associated with poorer DFS and conversely better 

quality of life throughout the study is associated with better DFS. Standard 

imputation methods are applied to impute the missing coping scores before 

analysis in a time-dependent Cox model. The influence of the standard simple 

imputation methods and the standard multiple imputation methods on the 

parameter estimates for S_Pacis and delayed chemotherapy is considered in 

Chapters 3 and 4 respectively. Time-dependent Cox model analyses without 

imputation was carried out to provide parameter estimates for reference and 

illustrative purposes. The analyses of coping scores for reference and illustrative 

purposes were: i) complete case ii) available monotone and iii) all available. 

 

The complete case analysis considered the 585 patients with observed coping 

scores at each of the 9 time periods. Of note, a patient must have been alive and 

disease-free for 24 months to have 9 observed coping scores. The dataset for the 

available monotone coping score analysis was extracted from the dataset for all 

available coping scores. This was done by removing the relevant observed coping 

scores from the patients with a non-monotone missing data pattern. As many 

patients in the IBCSG dataset have a non-monotone missing data pattern, a large 

number of observed coping scores had to be removed. The time-dependent Cox 

model analysis of available monotone coping scores and all available coping 

scores considered 2214 and 2544 patients respectively.   
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Technical Details of Time-Dependent Cox Model Analysis Using Available 

Monotone and All Available Coping Scores 

The following patients were not considered in the time-dependent Cox model 

analysis of available monotone coping scores: 

i) Patients with a missing baseline coping score (Time 1, approximately 

at randomisation) 

ii) One patient who had the date of quality of life assessment at 21 (Time 

8) and 24 months (Time 9) both on 25th June 1992 

iii) One patient who was considered disease-free in the efficacy analysis 

but has a date of recurrence reported at 16.6 months after 

randomisation 

iv) Fifteen patients where using the expected dates of assessment for 

missing coping scores led to intervals of less or equal to 0 for the time-

dependent Cox model were not considered. 

There were 103 patients where the baseline coping score (approximately at 

randomisation) was assessed before the date of randomisation, ranging from 30 

days to 1 day before randomisation.  

 

The dataset for the analysis of all available coping scores contains patients with 

intermittent missing coping scores. Here, the intervals for quality of life began on 

the date of the first quality of life assessment and patients with a missing baseline 

coping score could be considered. The intervals ended at the next quality of life 

assessment, regardless of any missing intermittent coping scores. Again, the 

patient who had the date of quality of life assessment at 21 (Time 8) and 24 

months (Time 9) on the same date was not considered. One other patient was 

excluded because the date of the quality of life assessments at 6 months (Time 3) 

of 21st June 1994 was after the date of the quality of life assessment at 15 months 

(Time 6) of 15th March 1994.   

 

In order to carry out the analysis of coping scores with a missing data pattern, a 

large number of observed coping scores were removed. The status of coping 
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scores considered for available patient analysis using a monotone missing data 

pattern was as shown in Figure 3.3 and summarised in Table 3.2  

 

Figure 3.3 Bar Graph of Status of Coping Scores by Time Period for Time-Dependent 

Cox Model Analysis of Available Patients with Monotone Missing Data Pattern  

 

 

Table 3.2 Summary of Status of Coping Scores in Time-Dependent Cox Model Analysis 

Stratified by Trial: Available Patients with a Monotone Missing Data Pattern 

Available Monotone

Patients with Observed Coping 

Score Not Considered

Baseline (Time 1) 2214 16

Month 3 (Time 2) 1706 211

Month 6 (Time 3) 1385 484

Month 9 (Time 4) 1161 655

Month 12 (Time 5) 1003 808

Month 15 (Time 6) 873 817

Month 18 (Time 7) 753 862

Month 21 (Time 8) 660 895

Month 24 (Time 9) 585 916  

 

Assumption of Proportional Hazards 

The plots of Schoenfeld residuals (Schoenfeld 1982) against time for the S_Pacis 

and delayed chemotherapy from the time-dependent Cox model analysis of all 

available coping scores is shown in Figure 3.4. 

2214
1706

1385
1161

1003 873 753 660 585

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Patients with Observed
Coping Score Not
Considered

Available Monotone



 
 

134 
 

Figure 3.4 A 
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Figure 3.4 B 

 
Figure 3.4 Schoenfeld residuals against time for the square root of the coping score (S_Pacis) (A) and delayed chemotherapy (B) from the 

time-dependent Cox model analysis of all available coping scores 
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A zero slope indicates that the assumption of proportional hazards is reasonable 

(Figure 3.4). Beyond approximately 11 years (~ 4000 days), the plots no longer 

indicated a zero slope for delayed chemotherapy (Figure 3.4B). However, this did 

not raise concerns time about the time-dependent Cox mode, as approximately 5% 

DFS events occurred after this time.   

 

Results of the Time-Dependent Cox Model Analyses of Disease-Free Survival 

with no Imputation 

The results of the time-dependent Cox model analyses with no imputation are 

shown below in Table 3.3. The bias from the selection of patients considered in 

these analyses makes it difficult to interpret the values of the parameter estimates 

from the time-dependent Cox model. The parameter estimates from the available 

monotone and all available analyses were similar and much more like each other 

than the parameter estimates from the complete case analysis. This difference 

between these parameter estimates illustrate the importance of carefully 

investigating the missing data mechanism and considering the assumptions of 

analysis methods in order to avoid biased parameter estimates. The standard error 

of the parameter estimates from the complete case analysis was approximately 

twice as large as the standard errors from the available monotone and all available 

analyses. There was little increase in the standard error of the parameter estimates 

from removing the relevant coping scores to create a monotone missing data 

pattern.  

 

Table 3.3 Summary of Time-Dependent Cox Model Analysis Stratified by Trial: 

Complete Patients, All Available Patients and Available Patients with a Monotone 

Missing Data Pattern 

Parameter Dataset

Parameter 

estimate

Standard 

error

Hazard 

ratio

95% CI for        

hazard ratio

S_Pacis Complete -0.0200 0.0259 0.9802 (0.9317, 1.0311)

Avail Monotone 0.0096 0.0110 1.0096 (0.9881, 1.0316)

All Available 0.0085 0.0104 1.0086 (0.9881, 1.0294)

Delayed Complete -0.0415 0.1207 0.9594 (0.7572, 1.2155)

Chemotherapy Avail Monotone -0.0933 0.0555 0.9109 (0.8170, 1.0155)

All Available -0.1079 0.0519 0.8977 (0.8109, 0.9938)  
S_Pacis = square root of the coping score; CI  = confidence interval; Avail = available 
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3.4 Technical Details of Application of Simple Imputation 

Methods to the IBCSG Breast Cancer Trial Data 

In this section, the technical details of applying the standard simple imputation 

methods to the IBCSG dataset and of the subsequent time-dependent Cox model 

analysis are described. In particular, addressing the general missing data pattern in 

the IBCSG dataset and the patients included in the dataset for the time-dependent 

Cox model analysis are described. 

 

3.4.1 Introduction 

Standard simple imputation methods were used to impute missing coping scores 

before analysis of DFS. The aim of the imputation was to use the S_Pacis as a 

covariate in a time-dependent Cox model for DFS. The time-dependent Cox 

model analysis investigates the hypothesis that poorer quality of life throughout 

the study is associated with poorer DFS and conversely better quality of life 

throughout the study is associated with better DFS.  The standard simple 

imputation methods considered are listed in section 3.1. Extreme imputation is 

considered for illustration. The results from the time-dependent Cox model 

analysis after applying standard simple imputation methods to the IBCSG dataset 

are shown in section 3.5.  

 

Missing Data Pattern 

As noted (section 2.4), the IBCSG dataset had a general missing data pattern 

which was not close to monotonic. Among the 456 patients with a missing 

baseline coping score (Table 3.1), 312 (68%) had at least one observed coping 

score at a later time point. The intermittent observed coping scores among these 

patients did not have a consistent missing data pattern. Some of the standard 

simple imputation methods require a baseline coping score. In this scenario, there 

was no obvious way to replace the missing coping scores. It was more reasonable 

to exclude the patients with a missing baseline coping score from the time-

dependent Cox model analysis. 
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Calculating Imputed Values for Coping Score  

For the following standard imputation methods, S_Pacis was considered during 

the imputation. From these imputed values, the imputed value of the missing 

coping score was calculated, rounded to the nearest whole number.   

i) linear regression with previous coping score(s) (section 3.4.5) 

ii) linear regression with concurrent variables (section 3.4.6) 

 

Quality of Life Assessments Considered in the Time-Dependent Cox Model 

Analysis Following Imputation Methods 

There were 2687 patients randomised to Trials VI and VII. However, some 

patients could not be considered in the time-dependent Cox model analysis 

following standard imputation methods. These patients were: 

i) one patient who had the date of quality of life assessment at 21 and 24 

months (Time 8 and Time 9) both on 25th June 1992  

ii) one patient who was considered disease-free in the efficacy analysis 

but has a date of recurrence reported at 16.6 months after 

randomisation  

iii) patients where using the expected dates of assessment for missing 

coping scores led to intervals of less or equal to 1 day for the time-

dependent Cox model  

 

The 456 patients with a missing baseline coping score (approximately at 

randomisation) were not considered in the time-dependent Cox model analysis 

after applying the following standard imputation methods: 

i) LOCF (section 3.4.3) 

ii) linear regression with previous coping score(s) (section 3.4.5) 

 

When considering these standard imputation methods, there were 15 patients 

where using the expected dates of assessment for missing coping scores together 

with actual dates of observed assessments led to intervals of less than 1. These 15 

patients were not considered in the time-dependent Cox model analysis. Thus, for 
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the 6 standard imputation methods listed above, 2214 patients were considered in 

the time-dependent Cox model analysis. 

 

The number of patients in the time-dependent Cox model analysis is described as 

part of the technical details for the remaining standard imputation methods: 

i) extreme imputation (section 3.4.2) 

ii) median imputation (section 3.4.4) 

iii) linear regression with previous coping scores (section 3.4.6) 

 

The status of the coping scores considered for time-dependent Cox model analysis 

at each time points considered was as shown in Table 3.4. 

 

The methods which allow patients with a missing baseline coping score to be 

considered, such as median imputation, result in the largest number of patients 

and the largest number of DFS events being considered in the time-dependent Cox 

model analysis. Linear regression using concurrent variable results in the lowest 

number of patients and DFS events being considered postbaseline in the time-

dependent Cox model (Table 3.4).  
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Table 3.4 Status of Coping Scores for Time-Dependent Cox Model Analysis 

Time

Main 

Group Extreme

Median by 

Patient

Median by Time, 

Time and Trt

Lin Reg 

Concurr

Observed 1 2214 2214 2214 2214 2214

2 1706 1899 1899 1899 1783

3 1657 1855 1855 1855 1540

4 1611 1807 1807 1807 1319

5 1585 1795 1795 1795 1177

6 1495 1676 1676 1676 1046

7 1415 1604 1604 1604 910

8 1380 1544 1544 1544 819

9 1329 1488 1488 1488 728

Imputed 1* 0 446 308 446 157

2 492 739 607 739 192

3 502 741 612 741 96

4 498 730 607 730 81

5 451 654 537 654 72

6 484 704 591 704 57

7 499 698 587 699 52

8 478 683 576 683 47

9 470 663 560 663 39

Total 1 2214 2660 2522 2660 2371

2 2198 2638 2506 2638 1975

3 2159 2596 2467 2596 1636

4 2109 2537 2414 2537 1400

5 2036 2449 2332 2449 1249

6 1979 2380 2267 2380 1103

7 1914 2302 2190 2302 962

8 1858 2227 2120 2227 866

9 1799 2151 2048 2151 767  

*see note on number of patients with an imputed baseline coping score (Time 1) in extreme 

imputation and median imputation by time period or by time period and treatment group in section 

3.4.2 and section 3.4.4 respectively  

Imputation methods in column Main group = i) last observation carried forward, ii) bootstrapping, 

subgroups defined by baseline coping score and subgroups defined by previous coping score, iii) 

linear regression with previous coping score(s), iv) nearest neighbour imputation, v) predictive 

mean matching, and vi) pattern mixture models – Curran’s analytic technique; extreme = extreme 

imputation; median by patient = median imputation by patient; median by time, time and trt = 

median by time period/median by time period and treatment group; lin reg concur= linear 

regression with concurrent variables; imputed without LOCF= imputed coping scores excluding 

coping scores imputed by last observation carried forward in order to create a monotone missing 

data pattern for i) nearest neighbour imputation, ii) predictive mean matching and iii) pattern 

mixture models – Curran’s analytic method  
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Table 3.4 Status of Coping Scores for Time-Dependent Cox Model Analysis (continued) 

Time

Main 

Group Extreme

Median by 

Patient

Median by Time, 

Time and Trt

Lin Reg 

Concurr

Recurrence/ 1 N/A N/A N/A N/A N/A

Death* 2 16 22 16 22 16

3 38 41 38 41 28

4 50 59 52 59 32

5 72 86 80 86 42

6 57 69 65 69 34

7 63 76 74 76 32

8 56 75 71 75 26

9 59 76 72 76 29

Lost to 1 N/A N/A N/A N/A N/A

follow-up* 2 0 0 0 0 0

3 1 1 1 1 1

4 0 0 0 0 0

5 1 2 2 2 0

6 0 0 0 0 0

7 2 2 2 2 1

8 0 0 0 0 0

9 0 0 0 0 0  

*since last assessment 

Imputation methods in column Main group = i) last observation carried forward, ii) bootstrapping, 

subgroups defined by baseline coping score and subgroups defined by previous coping score, iii) 

linear regression with previous coping score(s), iv) nearest neighbour imputation, v) predictive 

mean matching and vi) pattern mixture models – Curran’s analytic technique; extreme = extreme 

imputation; median by patient = median imputation by patient; median by time, time and trt = 

median by time period/median by time period and treatment group; lin reg concur= linear 

regression with concurrent variables 

 

Dates of Quality of Life Assessments Considered in Time-Dependent Cox 

Model Analysis Following the Main Group of Standard Imputation Methods 

For 2 patients with a date of assessment taken from the non-compliance form but 

a missing coping score, the expected date of quality of life assessment was used to 

prevent an interval of less than 1 day in the time-dependent Cox model analysis. 

There were 103 patients where the baseline coping score (approximately at 

randomisation) was assessed before the date of randomisation, ranging from 30 

days to 1 day before randomisation. Among the 1799 patients with a coping score 

considered at 24 months (Time 9), there were 4 patients where the date of quality 

of life assessment at 24 months (Time 9) was more than 2.5 years after 

randomisation. Two of these 4 patients had an observed coping score. One of 



 
 

142 
 

these 4 patients had a partial quality of life assessment at 24 months (Time 9). The 

remaining patient had a quality of life assessment scheduled 1244 days (41 

months) after randomisation but did not complete the quality of life assessment 

and has a missing coping score. 

 

Comparing Imputation Methods 

To compare simple imputation methods, 585 patients with a complete history of 9 

observed coping scores were identified and some values were removed to imitate 

the missing data pattern in the full dataset. Baseline coping scores (Time 1, 

approximately at randomisation) were not removed in order that all patients could 

be considered when applying standard imputation methods to the simulated 

dataset. One hundred and fifty simulated datasets with coping scores artificially 

removed were generated. For each of the 150 simulated datasets with coping 

scores artificially removed, the difference between the imputed coping score and 

the real coping score originally observed and artificially removed was calculated. 

To further investigate imputed coping scores following median imputation, the 

distribution of the coping scores artificially removed and the distribution of 

imputed coping scores was summarised.  

 

3.4.2 Extreme Imputation 

Missing coping scores were replaced by 100 (lowest quality of life) and then by 0 

(highest quality of life). When considering extreme imputation, 22 patients where 

using the expected dates of assessment for missing coping scores led to intervals 

of less or equal to 0 for the time-dependent Cox model were not considered. Out 

of these 22 patients, 7 had a missing baseline coping score. In addition to the 

exclusions described in section 3.4.1, the 3 patients with a recurrence on the date 

of randomisation were not considered. These 3 patients had a missing baseline 

coping score. Thus, 2660 patients were considered in the time-dependent Cox 

model analysis (Table 3.4). This included 446 patients with a missing baseline 

coping score. (Table 3.4; Time 1 in section Imputed). 
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For 3 patients with a date of assessment taken from the non-compliance form but 

a missing coping score, the expected date of quality of life assessment is used to 

prevent an interval of less than 1 day for the time-dependent Cox model. There 

were 112 patients where the date of baseline coping score was before the date of 

randomisation. There were 4 patients where the date of quality of life assessment 

at 24 months (Time 9) was more than 2.5 years after randomisation.  

 

3.4.3 Last Observation Carried Forward 

Missing coping scores were replaced with the last observed coping score for the  

patient. There were 2214 patients considered in the time-dependent Cox model 

analysis (Table 3.4). 

 

3.4.4 Median Imputation 

Three types of median were considered. Median of the patient’s observed coping 

scores, median of the time period and median of treatment group and time period. 

Where necessary, the median to be imputed was rounded to the nearest whole 

number.  

 

Median Imputation by Patient 

Missing coping scores were replaced by the median of the patient’s observed 

coping scores, calculated by proc univariate in SAS. When considering median 

imputation by patient, 18 patients where using the expected dates of assessment 

for missing coping scores led to intervals of less or equal to 0 for the time-

dependent Cox model were not considered. In addition to the exclusions described 

in section 3.4.1, the 141 patients with no observed coping scores were not 

considered. Thus, 2522 patients were considered in the time-dependent Cox 

model analysis (Table 3.4).  

 

For 3 patients with a date of assessment taken from the non-compliance form but 

a missing coping score, the expected date of quality of life assessment is used to 
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prevent an interval of less than 1 day for the time-dependent Cox model. There 

were 109 patients where the date of baseline coping score was before the date of 

randomisation. There were 4 patients where the date of quality of life assessment 

at 24 months (Time 9) was more than 2.5 years after randomisation. 

 

Median Imputation by Time Period and Median Imputation by Time Period 

and Treatment Group 

Missing coping scores were replaced by the median of the observed coping scores 

by time period or the median of the observed coping scores by time period and 

treatment group. These medians were calculated by proc univariate in SAS. As 

with extreme imputation (section 3.4.2), 2660 patients were considered in the 

time-dependent Cox model analysis (Table 3.4) and this included 446 patients 

with a missing baseline coping score (Table 3.4; Time 1 in section Imputed). 

 

3.4.5 Linear Regression with Previous Coping Score(s) 

S_Pacis was modelled with a linear regression model using the square root of all 

previous observed or imputed coping score(s) as explanatory variables. The linear 

regression model was calculated by proc reg in SAS. There were 2214 patients 

considered in the time-dependent Cox model analysis (Table 3.4). The R2 values 

from the linear regression model with previous coping score(s) were as in Table 

3.5. There was a trend for the R2 values to increase as the number of explanatory 

in the model increases up until S_Pacis at Time 6 is modeled.  

 
Table 3.5 R2 Value from Linear Regression Model for Square Root of Coping Score 

(S_Pacis) Based on the Square Root of Previous Coping Score(s)  

Time 2 3 4 5 6 7 8 9

R
2
 value 0.274 0.406 0.475 0.511 0.565 0.558 0.631 0.583  
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3.4.6 Linear Regression with Concurrent Variables 

S_Pacis was modeled with a linear regression model using the concurrent 

categorical variables assessed at approximately the same time as the quality of life 

assessment. These concurrent variables refer to adverse events, performance status 

and menstrual status. 

 

Concurrent variables were considered from the Chemotherapy form (Form D) 

which records the highest intensity experienced by the patient of the following 

adverse events: 

 

Nausea / vomiting 

Diarrhoea  

Stomatis / mucus membrane 

 

The categories for the intensity for adverse events, with the reference category in 

bold, are: 

0 patient did not experience the adverse event 

1 mild 

2 moderate 

3 severe 

4 life-threatening 

 

The intensity of adverse events reported at baseline were as shown in Figure 3.5: 
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Figure 3.5 Intensity of Adverse Events at Baseline by Status of Coping Score 

 

Stom / mucus = stomatis / mucus membrane 

 

Concurrent variables were considered from the Follow Up form (Form E) which 

records the performance status and menstrual status. There were 6 categories for 

performance status and 3 categories for the menstrual status. 

 

The categories for performance status, with the reference category in bold, are: 

0 fully active without restriction or aid of analgesics 

1 restricted in strenuous activity, but ambulatory and able to carry out work 

of light and sedentary nature 

2 ambulatory and capable of self care, but unable to work. Up and about 

more than 50% of waking hours 

3 capable of only limited self care, confined to bed or chair more than 50% 

of waking hours 

4 completely disabled. Unable to carry out any self care and totally confined 

to bed or chair 

5 dead 
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The categories for menstrual status, with the reference category in bold, are: 

1 normal and regular during the last 3 months 

2 irregular and/or scanty 

3 no period 

  

No quality of life assessment should exist after the patient’s death. Thus, no 

patient with a quality of life assessment has a performance status of 5 Dead. The 

menstrual status for patients in Trial VII, who are postmenopausal, was 3 no 

period, with one exception. The performance status and menstrual status reported 

at Week 13 was as shown below in Figure 3.6: 

 

Figure 3.6 Performance Status and Menstrual Status at Week 13 by Status of Coping 

Score 

 
 

 

The schedule for completing Chemotherapy forms was not the same in all 

treatment groups.  It was not expected that a Chemotherapy form could be 

matched to a quality of life assessment in all treatment groups at all time periods. 

Only Chemotherapy forms with information for all 3 types of adverse event were 

considered when matching the forms to the quality of life assessments. There 

were 12 Chemotherapy forms which could not be considered because of an 

incomplete or invalid date.  The quality of life assessments were matched to 
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information on the Chemotherapy form with the closest date up to 30 days before 

the date or expected date of the quality of life assessment. It was not possible to 

match a Chemotherapy form to every quality of life assessment where this was 

expected. 

 

When matching Follow Up forms to the quality of life assessments, only forms 

with information for both performance status and menstrual status were 

considered. Follow Up forms were not expected at baseline. Quality of life 

assessments after baseline (3 months – 24 months, Time 2 – Time 9) were 

matched to information on the Follow Up form with the closest date up to 30 days 

before the date or expected date of the quality of life assessment. It was not 

possible to match a Follow Up form to every quality of life assessment where this 

was expected. 

 

The concurrent information expected to be matched to the quality of life 

assessments is summarised below in Table 3.6.  

 
Table 3.6 Concurrent Information Matched to Quality of Life Assessments for Linear 

Regression Based on Concurrent Variables 

Trial VII 

(Postmenopausal)

A B C D

All Treatment 

Groups

Baseline (Time 1) Chemo Chemo Chemo Chemo Chemo

Month 3 (Time 2) Chemo, FU Chemo, FU Chemo, FU Chemo, FU Chemo, FU

Month 6 (Time 3) Chemo, FU Chemo, FU FU Chemo, FU Chemo, FU

Month 9 (Time 4) FU Chemo, FU FU Chemo, FU Chemo, FU

Month 12 (Time 5) FU Chemo, FU FU Chemo, FU Chemo, FU

Month 15 (Time 6) FU Chemo, FU FU FU Chemo, FU

Month 18 (Time 7) FU FU FU FU Chemo, FU

Month 21 (Time 8) FU FU FU FU Chemo, FU

Month 24 (Time 9) FU FU FU FU Chemo, FU

Trial VI (Premenopausal)

 

Chemo = Chemotherapy form (Form D); FU = Follow Up form (Form E) 

 

The linear regression models for missing coping scores at Time 2 to Time 9 were 

calculated by proc reg in SAS. Both a Chemotherapy form and Follow Up form 

must be matched to a quality of life assessment where indicated for the quality of 
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life assessment to be considered. The parameters included in the linear regression 

models reflect the concurrent information expected to be matched to the quality of 

life assessment. When considering only the patients in Trial VII (postmenopausal 

patients), menopausal status was not included in the linear regression model. As 

higher intensities of adverse events and higher categories of performance status 

were unusual, all potential categories were not always included in the linear 

regression model. The parameters in the respective linear regression models are 

shown in Table 3.7.  
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Table 3.7 Parameters in Linear Regression Model for Square Root of Coping Score 

(S_Pacis) Based on Concurrent Variables 

Treatment 

Group

Nausea/ 

vomitting Diarrhoea

Stom / 

mucus

Performance 

Status

Menstrual 

Status

Baseline (Time 1) All 1, 2, 3 1, 2, 3 1, 2, 3

Month 3 (Time 2) All 1, 2, 3 1, 2, 3 1, 2, 3 1, 2 2, 3

Month 6 (Time 3)
A, B, D, E, 

F, G, H 1, 2, 3 1, 2 1, 2 1, 2 2, 3

Month 6 (Time 3) C 1, 2, 3 2, 3

Month 9 (Time 4)
B, D, E, F, 

G, H 1, 2, 3 1, 2 1, 2 1, 2 2, 3

Month 9 (Time 4) A, C 1, 2 2, 3

Month 12 (Time 5)
B, D, E, F, 

G, H 1, 2, 3 1, 2, 3, 1, 2 1, 2, 3 2, 3

Month 12 (Time 5) A, C 1, 3 2, 3

Month 15 (Time 6)

B, E, F, G, 

H 1, 2, 3 1, 2 1, 2 1, 2, 3 2, 3

Month 15 (Time 6) A, C, D 1 2, 3

Month 18 (Time 7) E, F, G, H 1, 2 1, 2, 3 2, 3

Month 18 (Time 7) A, B, C, D 1, 3 2, 3

Month 21 (Time 8) E, F, G, H 1 1 1

Month 21 (Time 8) A, B, C, D 1 2, 3

Month 24 (Time 9) E, F, G, H 1 1 1, 3

Month 24 (Time 9) A, B, C, D 1, 2, 3 2, 3

Adverse Event Grade from 

Chemotherapy From

Status Category from 

Follow Up Form

 

Stom / mucus = stomatis / mucus membrane 

 

Category of adverse events: 

0 = patient did not experience the adverse event; 1 = mild; 2 = moderate; 3  = severe  

 

Category of performance status: 

0 fully active without restriction or aid of analgesics 

1 restricted in strenuous activity, but ambulatory and able to carry out work of light and 

sedentary nature 

2 ambulatory and capable of self care, but unable to work. Up and about more than 50% of 

waking hours 

3 capable of only limited self care, confined to bed or chair more than 50% of waking hours 

 

Category of menstrual status: 

1 normal and regular during the last 3 months 

2 irregular and/or scanty 

3 no period 

 

Reference categories shown in bold 

Treatment groups A-D: Trial VI (premenopausal); treatment groups E-H: Trial VII 

(postmenopausal) 
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3.4.7 Reason for 150 Simulated Datasets to Estimate Difference 

Between the Imputed Coping Score and the Missing Coping 

Score for Simple Imputation Methods 

Hauser and Walsh (2008) noted that small changes (less than 5mm) on a VAS 

may not be clinically relevant. A clinically significant change has been suggested 

as 50% of the scale’s standard deviation, which is 8-10mm on a 100mm VAS 

such as PACIS. Sloan and Dueck (2004) consider detecting a treatment effect 

between two treatment groups. They note that around 400 and 55 patients in each 

treatment group would be needed to achieve an 80% power to detect a small 

(3mm) or medium (8mm) effect size respectively. This is based on a two-sample 

t-test with a 5% type I error rate (see section 1.1.4). As noted in section 3.2.6, the 

estimated mean and standard deviation of the difference between the imputed 

coping score and missing coping score in the full IBCSG dataset was calculated 

from 150 simulated datasets. In each of the 150 simulated datasets, there are 

approximately 1000 artificially missing coping scores among approximately 500 

patients. Given this large number, it is reasonable to assume, that even a small 

difference (~ 3 out of a range 0-100) that is not clinically meaningful between the 

imputed coping score and the real coping score artificially removed would be 

found in each of the simulated completed datasets. 

 

Each simulated completed dataset following simple imputation is a potential 

representation of the completed dataset if the missing data pattern from the 

IBCSG dataset had applied to the patients with a complete history of 9 observed 

coping scores. Considering LOCF, the range of the estimated mean difference 

between the imputed coping score and the missing coping score from each 

individual dataset was constant after 100 simulated datasets (Appendix B, Figure 

B1.1). This was approximately similar for all standard simple imputation methods 

(Table B1.1). These considerations on power and completed datasets indicate that 

there would be no benefit from considering more than 150 simulated datasets 
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when estimating the mean and standard deviation of the difference between the 

imputed coping score and the missing coping score in the IBCSG dataset. 

 

3.5 Results from Applying Simple Imputation Methods to the 

IBCSG Dataset 

In this section, the contents of summary tables of results from applying simple 

imputation methods to the IBCSG dataset are described (section 3.5.1) and then 

results are summarised (section 3.5.2).  

 

3.5.1 Description of Contents of Tables of Results from Applying 

Standard Imputation Methods to the IBCSG Dataset 

The results from the time-dependent Cox model analysis following standard 

simple imputation methods are shown in Table 3.8. The estimated mean 

difference between the imputed coping score and the missing coping score is the 

estimate of the real value of the missing coping score – the imputed coping score. 

The standard error shown is the square root of the variance of the parameter 

estimate. The standard error and the parameter estimate are used to calculate the 

95% confidence interval for the parameter estimate. The exponential of the lower 

and upper 95% confidence limits for the parameter estimate gives the lower and 

upper 95% confidence limits for the hazard ratio. Results from the extended time-

dependent Cox model are also presented in Table 3.9 are calculated similarly. 
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Table 3.8 Summary of Time-Dependent Cox Model Analysis Considering Square Root of  

Coping Score (S_Pacis) and Delayed Chemotherapy Stratified by Trial 

Square root of coping score (S_Pacis)

Method Detail

Parameter 

estimate

Standard 

error t  statistic

95% CI for 

hazard ratio

Extreme 100 0.0239 0.0080 2.99 (1.008, 1.040)

0 -0.0148 0.0087 -1.70 (0.969, 1.002)

LOCF 0.0047 0.0112 0.42 (0.983, 1.027)

Median by patient 0.0136 0.0107 1.27 (0.993, 1.035)

time period 0.0233 0.0117 1.99 (1.000, 1.047)

time period 

and trt group 0.0235 0.0117 2.01 (1.000, 1.048)

Linear 

regression

previous 

coping scores 0.0069 0.0124 0.56 (0.983, 1.032)

concurrent 

variables 0.0112 0.0112 1.00 (0.989, 1.034)

Delayed Chemotherapy

Method Detail

Parameter 

estimate

Standard 

error t  statistic

95% CI for 

hazard ratio

Extreme 100 -0.1040 0.0504 -2.06 (0.817, 0.995)

0 -0.0927 0.0504 -1.84 (0.826, 1.006)

LOCF -0.0929 0.0555 -1.67 (0.817, 1.016)

Median by patient -0.1124 0.0521 -2.16 (0.807, 0.990)

time period -0.1050 0.0505 -2.08 (0.816, 0.994)

time period 

and trt arm -0.1095 0.0507 -2.16 (0.811, 0.990)

Linear 

regression

previous 

coping scores -0.0937 0.0556 -1.69 (0.817, 1.015)

concurrent 

variables -0.1030 0.0536 -1.92 (0.812 1.002)  
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Table 3.9 Summary of Time-Dependent Cox Model Analysis Considering Extended 

Model Stratified by Trial 

Method Detail

Parameter 

estimate

Standard 

error t  statistic

95% CI for 

hazard ratio

Extreme 100 0.0240 0.0080 3.00 (1.008, 1.040)

0 -0.0144 0.0087 -1.66 (0.969, 1.003)

LOCF 0.0050 0.0112 0.45 (0.983, 1.027)

Median by patient 0.0136 0.0107 1.27 (0.993, 1.035)

time period 0.0236 0.0117 2.02 (1.001, 1.048)

time period 

and trt group 0.0251 0.0118 2.13 (1.002, 1.050)

Linear 

regression

previous 

coping scores 0.0076 0.0124 0.61 (0.983, 1.032)

concurrent 

variables 0.0117 0.0112 1.04 (0.990, 1.034)

Method Detail

Parameter 

estimate

Standard 

error t  statistic

95% CI for 

hazard ratio

Extreme 100 -0.1058 0.0504 -2.10 (0.815, 0.993)

0 -0.0947 0.0505 -1.88 (0.824, 1.004)

LOCF -0.0949 0.0555 -1.71 (0.816, 1.014)

Median by patient -0.1149 0.0521 -2.21 (0.805, 0.987)

time period -0.1072 0.0505 -2.12 (0.814, 0.992)

time period 

and trt arm -0.1127 0.0507 -2.22 (0.809, 0.987)

Linear 

regression

previous 

coping scores -0.0958 0.0556 -1.72 (0.815, 1.013)

concurrent 

variables -0.1045 0.0536 -1.95 (0.811, 1.001)

Method Detail

Parameter 

estimate

Standard 

error t  statistic

95% CI for 

hazard ratio

Extreme 100 -0.0968 0.0504 -1.92 (0.822, 1.002)

0 -0.0980 0.0503 -1.95 (0.827, 1.008)

LOCF -0.0994 0.0555 -1.79 (0.812, 1.009)

Median by patient -0.0898 0.0520 -1.73 (0.826, 1.012)

time period -0.0950 0.0504 -1.88 (0.824, 1.004)

time period 

and trt group -0.1004 0.0505 -1.99 (0.819, 0.999)

Linear 

regression

previous 

coping scores -0.0997 0.0555 -1.80 (0.812, 1.009)

concurrent 

variables -0.1116 0.0536 -2.08 (0.805, 0.993)

Square root of coping score (S_Pacis)

Delayed Chemotherapy

Sufficient Early Chemotherapy
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Table 3.9 Summary of Time-Dependent Cox Model Analysis Considering Extended 

Model Stratified by Trial (continued) 

Method Detail

Parameter 

estimate

Standard 

error t  statistic

95% CI for 

hazard ratio

Extreme 100 -0.1570 0.0569 -2.76 (0.764, 0.956)

0 -0.1590 0.0569 -2.79 (0.763, 0.954)

LOCF -0.1144 0.0630 -1.82 (0.788, 1.009)

Median by patient -0.1278 0.0591 -2.16 (0.784, 0.988)

time period -0.1589 0.0569 -2.79 (0.763, 0.954)

time period 

and trt arm -0.1591 0.0569 -2.80 (0.763, 0.954)

Linear 

regression

previous 

coping scores -0.1148 0.0630 -1.82 (0.788, 1.009)

concurrent 

variables -0.1188 0.0608 -1.95 (0.788, 1.000)

Oestrogen Receptor Positive Status

 
 

The estimated mean difference is shown in Table 3.10. The estimated mean 

difference is calculated by the sum of the mean difference in each simulated 

dataset with coping scores artificially removed divided by the number of 

simulated datasets. The estimated standard deviation of the difference is 

calculated by the sum of the standard deviation of the difference in each simulated 

dataset divided by the number of simulated datasets.  

 

Table 3.10 Estimated Mean Difference Between Imputed Coping Score and Missing 

Coping Score Following Imputation in Simulated Datasets with Coping Scores 

Artificially Removed 

Method Detail

Estimated 

Mean Diff

SD of Estimate 

Mean Diff

Estimated 

SD of Diff

Range of 

Estimated SD 

of Diff

LOCF -0.73 20.64

Median by patient 2.09 18.01

time period 11.22 25.17

time period and trt 

group 10.19 25.00

Linear 

regression

previous coping 

scores 5.36 18.35

concurrent 

variables 9.83 26.03  
diff = difference; sd=standard deviation; trt = treatment group 

Estimated difference between the imputed coping score and the missing coping score is the 

estimate of the real value of the missing coping score – the imputed coping score     
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The distribution of coping scores artificially removed and the distribution of 

imputed coping scores following median imputation is summarised in Table 3.11. 

The mean of the median of coping scores artificially removed is calculated by the 

sum of the median coping score in each simulated dataset with coping scores 

artificially removed divided by the total number of simulated datasets. The mean 

of the median of imputed coping scores is calculated similarly. The mean of the 

interquartile range of coping scores artificially removed is calculated by the sum 

of the interquartile range in each simulated dataset with coping scores artificially 

removed divided by the total number of simulated datasets. The mean of the 

interquartile range of imputed coping scores is calculated similarly. 

 

Table 3.11 Summary of Distribution of Coping Scores Artificially Removed and 

Distribution of Imputed Coping Score Following Median Imputation in Simulated 

Datasets with Coping Scores Artificially Removed   

Method Detail

Mean of 

Median of 

Coping Scores 

Artifically 

Removed

Mean 

Interquartile 

Range of Coping 

Scores 

Artifically 

Removed

Mean of 

Median of 

Imputed 

Coping Scores

Mean 

Interquartile 

Range of 

Imputed Coping 

Scores

Median by patient 21.94 39.51 21.46 30.53

time period 21.94 39.51 19.74 5.31

time period 

and trt group 21.94 39.51 19.92 6.06

trt = treatment group 

 

3.5.2 Summary of Simple Imputation Methods 

Assumptions in Applying Standard Simple Imputation Methods to the 

IBCSG Dataset 

Standard simple imputation methods were applied to the IBCSG dataset in order 

to investigate the relationship between quality of life and DFS in a time-dependent 

Cox model. It is not plausible that the missing coping scores were all 

approximately 100 (lowest quality of life) or all approximately 0 (highest quality 

of life). Extreme imputation illustrates the lowest possible collection of quality of 

life scores or highest possible collection of quality of life scores (Table 3.8), but is 

not a suitable method of imputation for the IBCSG dataset. Linear regression 
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using concurrent variables is also not a suitable method of imputation for the 

IBCSG dataset because of the lack of suitable concurrent variables to model the 

coping score. 

 

Given the indication that the missing coping scores in the IBCSG dataset are 

informative missing data, it is unlikely that the assumptions for the standard 

simple imputation methods hold. However, the purpose of applying simple 

imputation methods is generally as part of a sensitivity analysis into the sensitivity 

of results to the assumptions about the missing data.  

 

Lack of Accuracy in the Imputed Coping Score 

The estimated standard deviation of the difference between the imputed coping 

score and the missing coping score suggests a lack of accuracy when imputing the 

missing coping score by both standard simple and standard multiple imputation 

methods. It is reasonable to consider that a difference of 8 points between the 

coping score and the imputed coping score is clinically significant (see section 

3.4.7). The estimated standard deviation of this difference was more than twice 

this for all standard imputation methods. Therefore an individual imputed coping 

score may represent a quality of life clinically significantly different from the 

missing coping score. The estimated standard deviation of the difference between 

the imputed and the missing coping score was similar for all the standard simple 

methods, around 20-25 (Table 3.10).  

 

Suggested Bias in the Imputed Coping Score 

For the standard simple imputation methods except LOCF the estimated mean 

difference between the imputed coping score and the missing coping score was 

greater than 2, out of a range 0 -100 (Table 3.10). This suggests that the imputed 

coping score is generally lower than the real value of the missing coping score and 

that these standard imputation methods may be systematically underestimating the 

missing coping scores. In this case, the completed dataset(s) then represent a 

poorer quality of life than was experienced by the patients. 
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Further, for median imputation by i) time period and ii) by time period and 

treatment group, the estimated difference between the between the imputed and 

the missing coping score represents a clinically significant difference. Together 

with the lack of accuracy in the imputed coping scores, this indicates that these 

would not be suitable imputation methods for the IBCSG dataset. This also 

applies to linear regression using concurrent coping scores, which has already 

been noted as not being a suitable method of imputation for the IBCSG dataset.   

 

There was no suggestion that imputation by LOCF is systematically over- or 

underestimating the missing coping scores (Table 3.10).  

 

Parameter Estimate for Square Root of Coping Score  

The parameter estimate for S_Pacis was positive, favouring a positive relationship 

between quality of life and DFS, for all standard simple imputation methods 

(Table 3.8), except extreme imputation where missing coping scores were 

replaced with 0 (the highest quality of life). S_Pacis was a significant parameter in 

the time-dependent Cox model analysis for DFS following median imputation by 

time period and median imputation by time period and treatment group.  

However, coping scores imputed using median imputation by time period and by 

time period and treatment group may not follow the same distribution as the 

missing coping scores (Table 3.11). The imputed coping scores may be clinically 

significantly different from the missing coping score. As median imputation by i) 

time period and ii) by time period and treatment group are not suitable methods of 

imputation for the IBCSG dataset, the statistical significance of βsp is discounted.  

Therefore, there was no evidence from the standard imputation methods of a 

statistically significant or clinically important relationship between quality of life 

and DFS in the IBCSG dataset. 

  

Parameter Estimate for Delayed Chemotherapy 

The parameter estimate for delayed chemotherapy was negative, favouring a 

positive relationship between further treatment with delayed chemotherapy and 
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DFS, for all standard imputation methods (Table 3.8). Delayed chemotherapy was 

a significant parameter following extreme imputation where missing coping 

scores were replaced with 100 (the worst quality of life) and median imputation. 

However, this should be interpreted cautiously because of the assumptions of the 

imputation methods. The remaining standard simple imputation methods indicated 

a trend towards a positive relationship. The time-dependent Cox model analysis 

following imputation is consistent with the finding from the main efficacy 

analysis that there may be a therapeutic benefit from delayed chemotherapy (The 

International Breast Cancer Group 1997). 

 

The estimate of βdel was similar for all standard simple imputation methods, 

around -0.1 (Table 3.8). The estimates of βsp from the time-dependent Cox model 

analysis without imputation for the available monotone and all available analyses 

were similarly around -0.1 (Table 3.3). The parameter estimate for the complete 

case analysis, though smaller in magnitude, also indicated a trend towards a 

positive relationship between delayed chemotherapy and DFS (Table 3.3). 

However, again the bias from the selection of patients considered in the analyses 

with no imputation makes it difficult to interpret the values of the parameter 

estimates. 

 

3.6 Conclusions 

This chapter investigated the influence of missing quality of life values, as 

assessed by coping score, when exploring the relationship between quality of life 

and DFS in a time-dependent Cox model.  As the missing coping scores are 

informative missing data, the all available analysis (Table 3.3) is not appropriate. 

Preliminary investigations indicated that imputation is appropriate for the IBCSG 

dataset.  While recognising the limitation of simple imputation methods, they may 

give useful information about the sensitivity of the results to assumptions about 

missing data. The standard simple imputation methods noted in section 2.4 were 

applied to the IBCSG dataset according to the technical details in section 3.4. 
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Assumptions when Applying Simple Imputation 

Extreme imputation and linear regression using concurrent variables are not a 

suitable method of imputation for the IBCSG dataset. Given the indication that the 

missing coping scores in the IBCSG dataset are informative missing data, it is 

unlikely that the assumptions for the standard simple imputation methods hold. 

However, potentially the simple imputation methods could provide information as 

part of a sensitivity analysis into the sensitivity of results to the assumptions about 

the missing data.  

 

Parameter Estimates from Time-Dependent Cox Model 

With one exception, the parameter estimate for S_Pacis  was positive, favouring a 

positive relationship between quality of life and DFS, for all standard simple 

imputation methods. The estimate of βsp was close to 0 for all standard simple 

imputation methods (Table 3.8). There was no evidence of a statistically 

significant or clinically relationship between quality of life and DFS. 

   

The parameter estimates for delayed chemotherapy showed a trend towards a 

positive relationship between delayed chemotherapy and DFS. The magnitude of 

the parameter estimate, around -0.1, was little influenced by the imputation 

method (Table 3.8) or by not applying imputation in the available monotone and 

all available analyses (Table 3.3). The trend towards a positive relationship is 

consistent with the finding from the main efficacy analysis that there may be a 

therapeutic benefit from delayed chemotherapy. 

 

Performance of Standard Imputation Methods 

The investigation of the performance of the standard simple imputation methods 

(section 3.5) found that: 

i) there was a suggestion of a lack of accuracy when imputing the 

missing coping score  

ii) the standard simple imputation methods except LOCF may be 

systematically underestimating the missing coping scores 
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Limitations of Simple Imputation Methods 

Limitations of simple imputation, including underestimation of the variance of 

observations, have been noted. Multiple imputation methods should also be 

considered as part of an investigation of the relationship between quality of life 

and DFS in the IBCSG dataset. Standard multiple methods are applied to the 

IBCSG dataset in Chapter 4. 

  



 
 

162 
 

4 Investigation of the Effects of Using Multiple 

Imputation Methods to Estimate the Effect of Quality 

of Life on Disease-Free Survival in IBCSG Trials VI 

and VII 

 

4.1 Introduction 

In the previous chapter, standard simple imputation methods were applied to the 

IBCSG dataset before analysis as part of an investigation of the relationship 

between quality of life and DFS. This chapter describes applying multiple 

imputation methods to the IBCSG dataset. IBCSG Trials VI and VII are described 

in section 3.2.  

 

The selection of the standard multiple imputation methods that are applied is 

described in section 2.4. As noted, MCMC methods are not applied as they are 

more computational complex than other standard multiple imputation methods. 

The multiple imputation methods that will be applied are: 

i) bootstrapping: subgroups defined by baseline coping score and subgroups 

defined by previous coping score 

ii) nearest neighbour imputation 

iii) predictive mean matching 

iv) pattern mixture models – Curran’s analytical technique 

 

The technical details of applying the multiple imputation methods are described in 

section 4.2. The results from the time-dependent Cox model analysis following 

standard multiple imputation methods are presented in section 4.3. The standard 

multiple imputation methods are compared in the same way as the standard simple 

imputation methods. The relationship between the imputed values is explored in 

section 4.4. A summary of the chapter and its implications is presented in section 

4.5. 
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4.2 Technical Details of Application of Multiple Imputation 

Methods Applied to the IBCSG Breast Cancer Trial Data 

In this section, the technical details of applying the standard multiple imputation 

methods to the IBCSG dataset and of the subsequent time-dependent Cox model 

analysis are described. Again, addressing the general missing data pattern in the 

IBCSG dataset and the patients included in the dataset for the time-dependent Cox 

model analysis is described in particular. 

 

4.2.1 Introduction 

Similarly to standard simple imputation methods, standard multiple imputation 

methods were used to impute missing coping scores before analysis of DFS. The 

standard multiple imputation methods considered are listed in section 4.1. The 

results from the time-dependent Cox model analysis after applying standard 

imputation methods to the IBCSG dataset are shown in section 4.3. Fifty 

repetitions of multiple imputation were performed leading to 50 completed 

datasets. The reason for number of repetitions is described in section 4.2.2. 

 

Missing Baseline Coping Scores and Missing Data Pattern 

The standard multiple methods applied require a baseline coping score. As with 

the standard simple imputation methods in this scenario, the patients with a 

missing baseline coping score were excluded from the time-dependent Cox model 

analysis. In contrast, given the large number of patients with a non-monotone 

missing data pattern (Figure 3.3; Table 3.2), excluding these patients from the 

time-dependent Cox model analysis would not be a reasonable approach in this 

chapter. A monotone missing data pattern was created by imputing non-monotone 

missing coping scores by LOCF before applying selected multiple imputation 

methods. These coping scores were replaced by LOCF as there was no suggestion 

of bias in the imputed coping scores from LOCF in the IBCSG dataset (Table 

3.10, column Estimated Mean Diff) and it is a commonly used simple imputation 
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method (e.g. Vogel et al. 2002). The standard multiple imputation methods 

concerned were: 

i) nearest neighbour imputation (section 4.2.4) 

ii) predictive mean matching (section 4.2.5) 

iii) pattern mixture models – Curran’s analytic method (section 4.2.6)  

   

Calculating Imputed Values for Coping Score  

For the following standard multiple imputation methods, S_Pacis was considered 

during the imputation. From these imputed values, the imputed value of the 

missing coping score was calculated, rounded to the nearest whole number.   

i) nearest neighbour imputation (section 4.2.4) 

ii) predictive mean matching (section 4.2.5) 

iii) pattern mixture models – Curran’s analytic method (section 4.2.6)  

 

Calculations during the imputation by the MI procedure in SAS were based on 

standardised values of S_Pacis.  

 

Quality of Life Assessments Considered in the Time-Dependent Cox Model 

Analysis Following Imputation Methods 

As noted, there were 2687 patients randomised to Trials VI and VII. Some 

patients could not be considered in the time-dependent Cox model analysis 

following standard imputation methods and for 2 patients the expected date of 

quality of life assessment was used (see section 3.4.1). The 456 patients with a 

missing baseline coping score (approximately at randomisation) were not 

considered in the time-dependent Cox model analysis after applying the following 

standard multiple imputation methods. Thus, for the standard multiple imputation 

methods listed above, 2214 patients were considered in the time-dependent Cox 

model analysis. The status of the coping scores considered for time-dependent 

Cox model analysis at each time points considered was as shown in Table 3.4 

(column “Main Group”). 
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The fact that there were a large number of non-monotonic missing coping scores 

can be seen below in Table 4.1. Among the 3 multiple imputation methods where 

a monotone missing data pattern was created by LOCF, the proportion of non-

monotone missing coping scores imputed by LOCF decreases from 78.5% at 

Month 3 (Time 2) to 34.3% at Month 21 (Time 8) and 141 then was 0 at Month 24 

(Time 9). 

 

Table 4.1 Status of Coping Scores for Time-Dependent Cox Model Analysis 

Time Main Group

Imputed 

without LOCF

Imputed 1 0 0

2 492 106

3 502 139

4 498 175

5 451 194

6 484 226

7 499 260

8 478 314

9 470 470  

Main group = i) last observation carried forward, ii) bootstrapping, subgroups defined by baseline  

coping score and subgroups defined by previous coping score, iii) linear regression with previous 

coping score(s), iv) nearest neighbour imputation, v) predictive mean matching, and vi) pattern 

mixture models – Curran’s analytic technique; imputed without LOCF= imputed coping scores 

excluding coping scores imputed by last observation carried forward in order to create a monotone 

missing data pattern for i) nearest neighbour imputation, ii) predictive mean matching and iii) 

pattern mixture models – Curran’s analytic method 

 

Comparing Imputation Methods 

The standard multiple imputation methods were compared using simulated 

datasets in the same was the standard simple imputation methods (see section 

3.4.1). For each of the first 100 simulated datasets with coping scores artificially 

removed, 10 repetitions of multiple imputation was performed and the difference 

between the imputed coping score and the real coping score originally observed 

and artificially removed was calculated. From these differences, the mean and 
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standard deviation of the difference between the imputed coping score and the 

unknown real value of the missing coping score was estimated for the imputation 

method. The reason for the number of repetitions is described in section 4.2.2 and 

the results are shown in section 4.3. 

 

4.2.2 Reason for Number of Repetitions of Multiple Imputation and 

Simulated Datasets with Coping Scores Artificially Removed 

Reason for 50 Repetitions of Multiple Imputation  

As noted, Graham et al. recommends that two issues are considered in 

determining the appropriate number of repetitions of multiple imputation: i) the 

fraction of missing information γ and ii) the statistical power to detect a small 

effect size in the parameter estimate compared to maximum likelihood methods 

(see section 2.3). The issues related to determining the appropriate number of 

repetitions are the same for all of the standard multiple imputation methods and 

are illustrated here using bootstrapping, subgroups defined by baseline coping 

score. Figure 4.1 shows the parameter estimate from the completed dataset (A) 

and the cumulative mean parameter estimate (B) for S_Pacis from the time-

dependent Cox model analysis versus the number of repetitions of imputation. 

The estimates displayed in the y-axis for the cumulative mean parameter estimate 

are calculated by combining the information from the number of completed 

datasets displayed in the x-axis. The estimates of βsp from the completed datasets 

are randomly scattered around a mean. The cumulative mean estimate of βsp 

converges after approximately 25 repetitions of multiple imputation. Figure 4.2 

shows the same information for the parameter for delayed chemotherapy, with 

similar patterns.  
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A 

 

B 

 

Figure 4.1 Parameter estimate from the completed dataset (A) and cumulative mean 

parameter estimate (B) for the square root of the coping score (S_Pacis) from the time-

dependent Cox model analysis following bootstrap imputation, subgroups defined by 

baseline coping score by the number of repetitions of imputation 
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A 

 

B 

 

Figure 4.2 Parameter estimate from the completed dataset (A) and cumulative mean 

parameter estimate (B) for delayed chemotherapy from the time-dependent Cox model 

analysis following bootstrap imputation, subgroups defined by baseline coping score by 

the number of repetitions of imputation 
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As noted, the indicator for delayed chemotherapy, Xdel, remains constant 

throughout the study. Therefore, the between-imputation component of the 

variance of βdel following 50 repetitions of imputation (0.000003) and the increase 

in variance (0.0010) is negligible. The variance decomposition for βsp is shown 

below in Table 4.2: 

 

Table 4.2 Variance Decomposition of the Parameter for Square Root of Coping Score 

(βsp) from Time-Dependent Cox Model Analysis Following Bootstrap Imputation, 

Subgroups Defined by Baseline Coping Score 

K =5 K =40 K =50

Within-imputation (W) 0.000132 0.000132 0.000132

Between-imputation (B) 0.000051 0.000034 0.000037

Total variance 0.000193 0.000166 0.000170

Fraction of missing information 0.3052 0.2065 0.2251

Efficiency of estimate 0.9425 0.9949 0.9956  

 

The efficiency of the estimate (see section 2.3) is very high (> 99%) after 40 

imputations and little increased by increasing the number of repetitions of 

imputation to 50 (Table 4.2). The work by Graham et al. (2007) indicates that the 

power of the time-dependent Cox model analysis would only be negligibly 

increased by increasing the number of repetitions of imputation from 50 to 100. 

This indicates that there would be no benefit from performing more than 50 

repetitions of imputation. 

 

The figures for the parameter estimates from the completed dataset, the 

cumulative mean parameter estimate, and the decomposition of the variance of βsp 

for the remaining standard multiple imputation methods are shown in Appendix 

A. There would be no benefit from performing more than 50 repetitions of 

imputation for any of the standard multiple imputation methods. 
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Reason for 10 Repetitions of 100 Simulated Datasets to Estimate Mean 

Difference Between the Imputed Coping Score and the Missing Coping Score 

For Multiple Imputation Methods 

In the estimation of the difference between the imputed coping score and the 

missing coping score following multiple imputation, two components had to be 

considered i) the number of simulated datasets ii) the number of repetitions of 

multiple imputation applied to each of the simulated datasets. Performing 50 

repetitions of multiple imputation on 150 simulated datasets is impractical due to 

computational time and so considering lower numbers was explored. 

 

Considering the first 5 simulated datasets and imputation by bootstrapping, 

subgroups defined by baseline coping score, the estimated mean difference 

between the imputed coping score and the missing coping score from each 

simulated dataset was little influenced by increasing the number of repetitions 

from 10 to 30 (Table B2.1). Based on 10 repetitions, the range of the estimated 

mean difference from each simulated dataset was little influenced by considering 

more than 75 simulated datasets (Table B2.2). This suggests that it is reasonable 

to consider 10 repetitions of multiple imputation for 100 simulated datasets in the 

estimation of the mean and standard deviation of the difference between the 

imputed coping score and the missing coping score in the IBCSG dataset.  

 

The considerations relating to the power to detect a small effect size are similar to 

those when applying simple imputation (section 3.4.7). It is reasonable to assume 

that even a small difference (~ 3) that is not clinically meaningful between the 

imputed coping score and the real coping score artificially removed would be 

found in each of the simulated completed datasets.  

 

4.2.3 Bootstrapping from Subgroup of Patients 

Two methods of defining the subgroups for bootstrapping were considered: i) 

baseline coping score and ii) previous coping score. The histogram of the baseline 

coping score is shown in Figure 4.3:  
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Figure 4.3 Histogram of Baseline Coping Scores 

 

 

The histogram (Figure 4.3) suggests that the patients were more likely to judge 

how far along the line applies to her in round values, as noted may happen in 

Fairclough 2010. The subgroups selected for the baseline coping scores were 

influenced by this fact and that high coping scores (> 60) indicating poor quality 

of life were less common than lower quality of life scores. The same subgroups 

were used for baseline coping score and previous coping scores. 

 

These subgroups were: 

0 – 6 

7 – 17 

18 – 22 

23 – 32 

33 – 42 

43 – 52 
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53 – 62 

63 - 82 

83 – 100 

 

For each missing coping score, the set of potential imputed values is all the 

observed coping scores at the same time period among the patients in the same 

subgroup as the patient with the missing coping score. The imputed coping score 

is selected at random from the set of potential imputed values by proc 

surveyselect in SAS with the method option set to urs (for unrestricted random 

sampling).   

 

4.2.4 Nearest Neighbour Imputation 

A monotone missing monotone pattern was created by imputing non-monotone 

missing coping scores by LOCF. Nearest neighbour imputation was then 

implemented using the MI procedure in SAS (see section 2.3.5). During the 

imputation, the linear regression model for S_Pacis at each time point based on 

the previous coping score(s) was considered. 

   

4.2.5 Predictive Mean Matching 

Predictive mean matching, initial steps as for nearest neighbour imputation was 

implemented similarly to nearest neighbour imputation (section 4.2.3).  

For completeness, time-dependent Cox model analysis following predictive mean 

matching, initial steps as for bootstrapping was also considered (Table 4.5). The 

outline of the procedure in SAS was as follows: 

i) Generate K bootstrap samples, by sampling with replacement, of patients 

with observed values. The subgroups for bootstrapping are defined by the 

previous coping score (section 4.2.2). 

ii) For each of the K samples, estimate the model parameters. The linear 

regression model for S_Pacis at each time point based on the previous 

coping score(s) is considered. 
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iii) Generate predicted values of S_Pacis for patients with both observed 

values and missing observations. 

iv) For each patient with a missing observation, identify the patients with an 

observed coping score with the 5 closest predicted values to the patient 

with the missing coping score. The absolute difference between the 

predicted value for the patient with observed coping score and the patient 

with the missing coping score is considered. There may be 2 predicted 

values for observed coping scores giving the same absolute difference. 

Precedence is given to the lower of 2 such predicted values in order to 

ensure 5 closest predicted values are identified. 

v) Select one of the patients with the 5 closest predicted values at random and 

impute the observed value for this selected patient for the missing 

observation using proc surveyselect. 

 

4.2.6 Pattern Mixture Models - Curran’s Analytic Technique 

Curran’s analytic technique for complete case missing value restriction was used 

to replace missing coping scores in completed datasets (see section 2.3.6). A 

monotone missing data pattern was created by imputing non-monotone missing 

coping scores by LOCF. Curran’s analytic technique was then implemented using 

the MI procedure in SAS. During the imputation, S_Pacis at time h, Yh (h=1,..,9), 

were assumed to follow a  multivariate Normal distribution. The range for 

imputed values of S_Pacis was specified as 0-10 using the minimum and the 

maximum option. 

 

Issues when implementing MCMC methods are summarised in section 2.3.1. 

Default settings for the MCMC statement applying MCMC methods in the MI 

procedure in SAS were used. Therefore, during the imputation i) a single chain 

was used, ii) the initial parameter estimates from the EM algorithm were used as 

starting values, iii) the burn-in length was 200 and iv) the run length was 200. 
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4.3 Results from Applying Multiple Imputation Methods to the 

IBCSG Dataset 

In this section, the contents of summary tables of results from applying multiple 

imputation methods to the IBCSG dataset are described (section 4.3.1) and then 

results are summarised (section 4.3.2).  

 

4.3.1 Description of Contents of Tables of Results from Applying 

Standard Imputation Methods to the IBCSG Dataset 

The results from the time-dependent Cox model analysis following standard 

imputation multiple methods are shown in Table 4.3. The parameter estimate is 

the mean of the parameter estimate from each of the 50 completed datasets. The 

variance of the parameter estimate for each of the multiple imputation methods is 

calculated based on the 50 repetitions of multiple imputation according to (2.13). 

The standard error shown is the square root of the variance of the parameter 

estimate. The standard error and the parameter estimate are again used to calculate 

the 95% confidence interval for the parameter estimate. Results from the extended 

time-dependent Cox model are also presented in Table 4.4. The results from 

predictive mean matching, initial steps based on bootstrapping are shown in Table 

4.5. These further results are calculated similarly to Table 4.3.  
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Table 4.3 Summary of Time-Dependent Cox Model Analysis Considering Square Root of  

Coping Score (S_Pacis) and Delayed Chemotherapy Stratified by Trial 

Square root of coping score (S_Pacis)

Method Detail

Parameter 

estimate Range

Standard 

error t  statistic

95% CI for 

hazard ratio

Bootstrap

baseline 

coping score 0.0046 -0.0096 to 0.0195 0.0130 0.35 (0.979, 1.030)

previous 

coping score 0.0070 -0.0027 to 0.0194 0.0125 0.56 (0.983, 1.032)

Nearest neighbour 0.0030 -0.0037 to 0.0108 0.0118 0.25 (0.980, 1.026)

Predictive 

mean 

matching

initial steps 

as described 

for NNI 0.0043 -0.0026 to 0.0149 0.0121 0.36 (0.981, 1.028)

Pattern mixture models 0.0127 0.0061 to 0.0231 0.0123 1.03 (0.989, 1.037)

Delayed Chemotherapy

Method Detail

Parameter 

estimate Range

Standard 

error t  statistic

95% CI for 

hazard ratio

Bootstrap

baseline 

coping score -0.0929 -0.0968 to -0.0884 0.0556 -1.67 (0.802, 1.020)

previous 

coping score -0.0937 -0.0976 to -0.0907 0.0556 -1.69 (0.802, 1.020)

Nearest neighbour -0.0926 -0.0948 to -0.0905 0.0560 -1.65 (0.802, 1.021)

Predictive 

mean 

matching

initial steps 

as described 

for NNI -0.0928 -0.0963 to -0.0909 0.0555 -1.67 (0.803, 1.020)

Pattern mixture models -0.0956 -0.1009 to -0.0933 0.0556 -1.72 (0.800, 1.018)
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Table 4.4 Summary of Time-Dependent Cox Model Analysis Considering Extended 

Model Stratified by Trial 

Method Detail

Parameter 

estimate Range

Standard 

error t  statistic

95% CI for 

hazard ratio

Bootstrap

baseline 

coping score 0.0050 -0.0089 to 0.0199 0.0130 0.38 (0.980, 1.030)

previous 

coping score 0.0076 -0.0017 to 0.0202 0.0116 0.66 (0.985, 1.030)

0.0036 -0.0030 to 0.0114 0.0118 0.31 (0.980, 1.027)

Predictive 

mean 

matching

initial steps 

as described 

for NNI 0.0048 -0.0020 to 0.0153 0.0121 0.40 (0.981, 1.029)

0.0133 0.0067 to 0.0238 0.0123 1.08 (0.989, 1.037)

Method Detail

Parameter 

estimate Range

Standard 

error t  statistic

95% CI for 

hazard ratio

Bootstrap

baseline 

coping score -0.0949 -0.0989 to -0.0904 0.0556 -1.71 (0.800, 1.018)

previous 

coping score -0.0958 -0.1001 to -0.0929 0.0556 -1.72 (0.800, 1.018)

-0.0946 -0.0969 to -0.0925 0.0556 -1.70 (0.801, 1.019)

Predicted 

mean 

matching

initial steps 

as described 

for NNI -0.0948 -0.0985 to -0.0929 0.0556 -1.71 (0.801, 1.019)

-0.0978 -0.1035 to -0.0953 0.0556 -1.76 (0.798, 1.016)

Method Detail

Parameter 

estimate Range

Standard 

error t  statistic

95% CI for 

hazard ratio

Bootstrap

baseline 

coping score -0.0990 -0.1010 to -0.0969 0.0555 -1.78 (0.797, 1.015)

previous 

coping score -0.0996 -0.1038 to -0.0980 0.0555 -1.79 (0.796, 1.014)

-0.0990 -0.1006 to -0.0980 0.0555 -1.78 (0.797, 1.015)

Predictive 

mean 

matching

initial steps 

as described 

for NNI -0.0992 -0.1013 to -0.0981 0.0555 -1.79 (0.797, 1.014)

-0.1008 -0.1028 to -0.0995 0.0555 -1.82 (0.795, 1.013)

Sufficient Early Chemotherapy

Nearest neighbour

Pattern mixture models

Square root of coping score (S_Pacis)

Nearest neighbour

Pattern mixture models

Delayed Chemotherapy

Nearest neighbour

Pattern mixture models
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Table 4.4 Summary of Time-Dependent Cox Model Analysis Considering Extended 

Model Stratified by Trial (continued) 

Method Detail

Parameter 

estimate Range

Standard 

error t  statistic

95% CI for 

hazard ratio

Bootstrap

baseline 

coping score -0.1149 -0.1160 to -0.1140 0.0630 -1.82 (0.768, 1.016)

previous 

coping score -0.1151 -0.1168 to -0.1128 0.0630 -1.83 (0.768, 1.015)

-0.1150 -0.1153 to -0.1144 0.0630 -1.83 (0.768, 1.015)

Predicted 

mean 

matching

initial steps as 

described for 

NNI -0.1148 -0.1152 to -0.1134 0.0630 -1.82 (0.768, 1.015)

-0.1145 -0.1158 to -0.1136 0.0630 -1.82 (0.768, 1.015)

Oestrogen Receptor Positive Status

Nearest neighbour

Pattern mixture models

 

Table 4.5 Summary of Time-Dependent Cox Model Analysis Stratified by Trial 

Following Imputation by Predictive Mean Matching, Initial Steps Based on Bootstrap   

Model Considering Square Root of Coping Score and Delayed Chemotherapy

Parameter

Parameter 

estimate Range

Standard 

error

t 

statistic

95% CI for 

hazard ratio

Square root of coping 

score (S_Pacis) 0.0064 -0.0039 to 0.0171 0.0125 0.51 (0.982, 1.031)

Delayed Chemotherapy -0.0935 -0.0976 to -0.0902 0.0556 -1.68 (0.802, 1.020)

Extended Model

Parameter

Parameter 

estimate Range

Standard 

error

t 

statistic

95% CI for 

hazard ratio

Square root of coping 

score (S_Pacis) 0.0071 -0.0033 to 0.0181 0.0125 0.57 (0.983, 1.032)

Delayed Chemotherapy -0.0957 -0.1002 to -0.0923 0.0556 -1.72 (0.800, 1.018)

Suff Early Chemotherapy -0.0996 -0.1016 to -0.0979 0.0555 -1.79 (0.796, 1.014)

Oestrogen Receptor 

Positive Status
-0.1151 -0.1163 to -0.1144 0.0630 -1.83 (0.768, 1.015)
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The estimated mean difference between the imputed coping score and the missing 

coping score is again the estimate of the real value of the missing coping score – 

the imputed coping score. The estimated mean difference is shown in Table 4.6.  

It is calculated by the sum of the mean difference from the completed dataset 

following each repetition of multiple imputation in each simulated dataset with 

coping scores artificially removed divided by the total number of completed 

datasets. The standard deviation of the estimated mean difference is defined as the 

standard deviation of the mean difference from the completed dataset following 

each repetition of multiple imputation in each simulated dataset divided by the 

total number of completed datasets. The mean of the estimated standard deviation 

is calculated by the sum of the standard deviation of the difference from the 

completed dataset following each repetition of multiple imputation in each 

simulated dataset divided by the total number of completed datasets. The mean t-

statistic is the mean parameter estimate divided by the mean standard error. 

 

Table 4.6 Estimated Mean Difference Between Imputed Coping Score and Missing 

Coping Score Following Imputation in Simulated Datasets with Coping Scores 

Artificially Removed 

Method Detail

Estimated 

Mean Diff

SD of Estimate 

Mean Diff

Estimated 

SD of Diff

Range of 

Estimated SD 

of Diff

Bootstrap

baseline coping 

score 3.60 1.04 30.63 28.55 to 33.02

previous coping 

score 2.88 0.99 27.75 25.20 to 30.20

-0.55 0.77 21.43 19.16 to 23.41

Predicted 

mean 

matching

initial steps as 

described for NNI -0.22 0.77 21.28 19.90 to 22.70

-0.52 0.76 21.52 19.49 to 23.74

Nearest neighbour

Pattern mixture models  
diff = difference; sd=standard deviation; trt = treatment group 

Estimated difference between the imputed coping score and the missing coping score is the 

estimate of the real value of the missing coping score – the imputed coping score    
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4.3.2 Summary of Multiple Imputation Methods 

Standard multiple imputation methods were applied to the IBCSG dataset in order 

to investigate the relationship between quality of life and DFS in a time-dependent 

Cox model. The standard multiple imputation methods are not necessarily good 

estimation techniques in this context due to the assumptions relating to the 

missing data mechanism and the missing data pattern. The performance of 

imputation methods has also been considered in the statistical literature (see 

section 4.5).  

 

Creating a Monotone Missing Data Pattern 

Many multiple imputation methods assume a monotone missing data pattern,  

which is not the case the IBCSG dataset. In the standard multiple imputation 

methods except for bootstrapping, the non-monotone missing data patterns were 

imputed by LOCF. Between Month 3 (Time 2) and Month 21 (Time 8) at least 

30% of missing coping scores were imputed by LOCF (Table 3.4). Multiple 

imputation then proceeds based on the dataset with a monotone missing data 

pattern. This gives the advantage compared to LOCF imputation of generating 

multiple completed datasets.  

 

Lack of Accuracy in the Imputed Coping Score 

Similarly to the standard simple imputation methods, the estimated standard 

deviation of the difference between the imputed coping score and the missing 

coping score suggests a lack of accuracy when imputing the missing coping score. 

The estimated standard deviation of the difference between the imputed and the 

missing coping score was similar for the standard simple methods and the more 

complex standard multiple imputation methods, around 20-25 (Table 3.10 and 

Table 4.6).  

 

Suggested Bias in the Imputed Coping Score 

For the standard multiple imputation method of bootstrapping, the estimated mean 

difference between the imputed coping score and the missing coping score was 
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greater than 2, out of a range 0 -100 (Table 4.6). This suggests that the imputed 

coping score is generally lower than the real value of the missing coping score and 

that these standard imputation methods may be systematically underestimating the 

missing coping scores. In this case, the completed dataset(s) then represent a 

poorer quality of life than was experienced by the patients. As with LOCF, there 

was no suggestion that the remaining standard multiple imputation methods 

systematically over- or under-estimate the missing coping scores (Table 4.6). This 

may be influenced by the fact that the non-monotone missing data patterns were 

imputed by LOCF. 

 

Parameter Estimate for Square Root of Coping Score  

The parameter estimate for S_Pacis was positive, favouring a positive relationship 

between quality of life and DFS, for all standard multiple imputation methods 

(Table 4.3). Similarly to the standard simple imputation methods, there was no 

evidence from the standard multiple imputation methods of a statistically 

significant or clinically important relationship between quality of life and DFS in 

the IBCSG dataset. 

 

The multiple imputation methods showed parameter estimates of S_Pacis which 

were similar for each repetition (Figure 4.1A). The estimate of βsp was close to 0 

for all standard multiple imputation methods, with absolute magnitude less than 

0.013 (Table 4.3). This similar to the estimates of βsp from the time-dependent 

Cox model analyses without imputation carried out for reference and illustrative 

purposes (Table 3.3) and following simple imputation (Table 3.8).  

  

Parameter Estimate for Delayed Chemotherapy 

The parameter estimate for delayed chemotherapy was negative, favouring a 

positive relationship between further treatment with delayed chemotherapy and 

DFS, for all standard multiple imputation methods (Table 4.3). As with simple 

imputation, this is consistent with the finding from the main efficacy analysis that 
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there may be a therapeutic benefit from delayed chemotherapy (The International 

Breast Cancer Group 1997). 

 

As with the parameter estimate for S_Pacis, the multiple imputation methods 

showed parameter estimates of delayed chemotherapy which were similar for each 

repetition (Figure 4.2A). The estimate of βdel was similar for all standard 

imputation methods, around -0.1 (Table 4.3). The estimates of βsp from the time-

dependent Cox model analysis without imputation for the available monotone and 

all available analyses (Table 3.3) and following simple imputation (Table 3.8) 

were similarly around -0.1.  

 

Standard Error of Parameter Estimate for Square Root of Coping Score and 

Delayed Chemotherapy 

Simple imputation does not address the issue of underestimation of the variance of 

observations (see section 2.2.9). Ignoring extreme imputation, the standard error 

of the parameter estimate for S_Pacis (~0.011) and delayed chemotherapy 

(~0.054) following simple imputation methods (Table 3.8) is approximately equal 

to the standard error considering the available monotone or all available analyses 

(Table 3.3). The standard error of the parameter estimates following simple 

imputation have not increased to reflect the uncertainty in the imputed values. As 

every imputed value was the same, imputing the extreme values for illustrative 

purposes led to a decrease in the standard error of the parameter estimates 

compared to the available monotone or all available analyses. In contrast, the 

standard error of the parameter estimates following multiple imputation showed a 

small increase to reflect this uncertainty. The standard error of the parameter 

estimate for S_Pacis and delayed chemotherapy increased by ~14% to ~0.0125 

(Table 4.3) compared to ~0.011 (Table 3.3) and by ~4% to ~0.056 (Table 4.3) 

compared to ~0.054 (Table 3.3) respectively. Due to the smaller sample size, the 

standard error of the parameter estimates from the complete case analysis (Table 

3.3) were approximately twice as large as the standard errors from the available 

monotone and all available analyses and following standard imputation methods. 
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4.4 Cluster Analysis of Imputed Values in the IBCSG Dataset 

This section investigates whether or not it is reasonable to assume the imputed 

values in the IBCSG dataset following the standard imputation methods reflect the 

imputation method applied. Under the scenario where the imputed values are 

similar regardless of the imputation method applied, the parameter estimates from 

the analytic model would be little influenced by the imputation method applied. 

The similarities/differences between the imputed values following the standard 

imputation methods is explored in hierarchical cluster analysis.  

 

Suppose that the imputed values following imputation in the IBCSG dataset form 

natural clusters. It might then be reasonable to consider that among these clusters 

the completed dataset will be similar regardless of which imputation method is 

applied. Assuming the imputed values are influenced by the imputation method 

applied, we do not expect the imputed values to form natural clusters. Hierarchical 

cluster analysis was performed on the 3874 imputed values (Table 3.4, “Main 

group” column) following simple imputation and following multiple imputation. 

In the cluster analysis, the Euclidean distance between the imputed values was 

considered and three linkage methods were considered: average linkage, centroid 

method and single linkage (Everitt 1993, chapter 4). 

 

4.4.1 Distance Measures and Linkage Methods 

Hierarchical cluster analysis involves ordering observations to construct a 

dendrogram to explore the relationship among the observations. The starting point 

is a distance matrix describing the distance between observations. Generally, this 

distance matrix is based on the Euclidean distance (Everitt 1993, p.46).  Let X be 

a matrix columns giving the Q variable values for each of the n observations being 

considered. The Euclidean distance is then (Everitt 1993, p.46):     

 

𝑑𝑖𝑗
𝐸𝑢𝑐𝑖𝑙𝑑  = (∑(

𝑄

𝑞=1

𝑥𝑖𝑞 − 𝑥𝑗𝑞)2)1/2 

(4.1) 
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From the distance matrix, clusters of observations are identified. It is more  

common to determine these clusters by joining similar observations 

(agglomerative method) rather than removing dissimilar observations (divisive 

method). Popular methods for joining similar observations (linkage methods) 

include: i) average linkage, ii) centroid method and iii) single linkage (Everitt 

1993, chapter 4). 

 

These linkage methods share the same basic algorithm outlined below (Everitt 

1993, chapter 4):  

i) Create a cluster containing the two closest observations, in this case 

the two observations with the smallest Euclidean distance between 

them 

ii) A third observation, which is next closest, is added to the two-

observation cluster from step i) or a new two-observation cluster is 

formed 

iii) Continue to agglomerate one additional observation until all the 

observations are in one cluster  

 

However, the definition of the difference between clusters varies among these 

linkage methods (Everitt 1993, chapter 4). 

 

i) Average linkage 

the average distance from observations in one cluster to any observation in the 

second cluster 

 

Let CA and CB be clusters of size NA (NA > 1) and NB (NB > 1) respectively. The 

distance between the two clusters, DAB, is defined by: 

 

 
𝐷AB =

1

𝑁A𝑁B

∑ ∑ 𝑑𝑖𝑗

𝑗∈𝐶B𝑖∈𝐶A

 

 

(4.2) 
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ii) Centroid linkage 

the (squared) Euclidean distance measured between the centroids of the two 

clusters 

 

In this method, once a cluster is formed, it is represented by its mean vector as the 

centroid. The mean vector describes the mean of the Q variables of the 

observations in the cluster.  

  

iii) Single linkage  

the shortest distance from any observation in one cluster to any observation in 

second cluster   

 

Displaying Distance Between Clusters 

The calculation of the distance between clusters may be based on the distance 

matrix in the original scale or on squared distances. The distance between clusters 

displayed in the dendrogram may be in the original scale or as a Normalised 

value.  

 

4.4.2 Imputed Values following Imputation 

The imputed values of the missing coping scores were considered as observations 

for 7 of the standard simple imputation methods. The simple imputation method 

of linear regression using concurrent variables was not considered due to the lack 

of suitable concurrent variables. The median imputed value from 50 repetitions of 

the 5 standard multiple imputation methods was considered. This included 

missing coping scores imputed by LOCF in order to create a monotone missing 

data pattern. The dendrogram for single linkage was similar to the dendrogram for 

average linkage and is not shown in Figure 4.4. Here, the calculations of the 

distance between clusters was based on the squared Euclidean distance and the 

distance is displayed as the Normalised value. 
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Figure 4.4 A 

 

medtimetr = median imputation by time period and treatment group; medtime = median 

imputation by time period; bcs = bootstrapping, subgroups defined by baseline coping score; pmm 

= pattern mixture models – Curran’s analytic technique; pcs = baseline, subgroups defined by 

previous coping score; linreg = linear regression with previous coping score(s); medpt = median 

imputation by patient ; rpredmm = predictive mean matching; nni = nearest neighbour imputation; 

locf = last observation carried forward; extreme0 = extreme imputation of 0; extreme100 = 

extreme imputation of 100  
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Figure 4.4 B 

 

medtimetr = median imputation by time period and treatment group; medtime = median 

imputation by time period; medpt = median imputation by patient; bcs = bootstrapping, subgroups 

defined by baseline coping score; pmm = pattern mixture models – Curran’s analytic technique; 

pcs = baseline, subgroups defined by previous coping score; linreg = linear regression with 

previous coping score(s); rpredmm = predictive mean matching; nni = nearest neighbour 

imputation; locf = last observation carried forward; extreme0 = extreme imputation of 0; 

extreme100 = extreme imputation of 100 

 

Figure 4.4 Dendrogram for imputed values in the IBCSG dataset following standard 

imputation methods considering two different linkage methods: average linkage (A) and 

centroid linkage (B)  

 

The cluster analysis indicated that imputation of a high value was least like the 

other standard imputation methods. Among the simple imputation methods, 

median imputation by time period and by time period and treatment group were 

most similar (Figure 4.4). Considering the multiple imputation methods, nearest 

neighbour imputation and predicted mean matching were most similar. The 

imputed values from bootstrapping, subgroups defined by previous coping score 

were more like the imputed values from pattern mixture models – Curran’s 
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analytical technique than the imputed values from bootstrapping, subgroups 

defined by baseline coping score (Figure 4.4). As with simple imputation, there 

was no suggestion that the multiple imputation methods form natural clusters 

(Figure 4.4). 

 

4.4.3 Summary of Cluster Analysis of Imputed Values 

Imputation of a high value replaced missing the coping scores was the worst score 

for the quality of life, whereas in the IBCSG dataset, high coping scores (> 60, 

indicating poor quality of life) were less common than lower quality of life scores 

(Figure 4.3).  This influenced the fact that that imputation of high values was least 

like the other standard imputation methods. Among the simple imputation 

methods, the median coping score by time period was similar to the median 

coping score by time period and treatment group. It was thus expected that the 

imputed values following these imputation methods are the most similar. Given 

the initial steps of both methods are the same, it was also expected that the 

imputed values of nearest neighbour imputation and predicted mean matching 

were most similar amongst the multiple imputation methods. Apart from 

bootstrapping, subgroups defined by baseline coping score, the implementation of 

the standard multiple imputation methods involved the previous coping score (see 

section 3.4). This influenced the fact that the imputed values from bootstrapping, 

subgroups defined by previous coping score were more like the imputed values 

from pattern mixture models – Curran’s analytical technique than the imputed 

values from bootstrapping, subgroups defined by baseline coping score.  

 

The fact that the imputed values do not appear to form natural clusters indicated 

that the imputed values reflect the imputation method applied. There was no 

suggestion from the cluster analysis that the completed datasets are all similar 

regardless of which imputation method is applied. The parameter estimates from 

the analytic model therefore also reflect the imputation method. This raises the 

possibility that the performance of the imputation methods in this setting is 

influenced by the actual relationship between quality of life and DFS. 
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4.5 Conclusions 

This chapter continued the investigation of the influence of missing quality of life 

values, as assessed by coping score, when exploring the relationship between 

quality of life and DFS in a time-dependent Cox model.  Standard simple 

imputation methods were applied to the IBCSG dataset in Chapter 3. Here, the 

standard multiple imputation methods noted in section 2.4 were applied to the 

IBCSG dataset according to the technical details in section 4.2. 

 

Type of Missing Data and Missing Data Pattern 

Many multiple imputation methods assume the data are MAR and a monotone 

missing data pattern, which is not the case in the IBCSG dataset. In order to 

address the missing data pattern, in the standard multiple imputation methods 

except bootstrapping, the non-monotone missing data patterns were imputed by 

LOCF.  

 

Parameter Estimates from Time-Dependent Cox Model 

The parameter estimate for S_Pacis was positive, favouring a positive relationship 

between quality of life and DFS, for all standard multiple imputation methods. As 

with standard simple imputation methods (Table 3.8), the estimate of βsp was 

close to 0 for all standard multiple imputation methods (Table 4.3). This is similar 

to the fact that the parameter estimates for baseline coping score in Herring et al. 

(2004) were little influenced by the different models accounting for missing data. 

As noted, in Herring et al. (2004) poor baseline coping score was associated with 

improved relapse-free survival in postmenopausal patients. However, considering 

coping scores throughout the study in a time-dependent Cox model led to 

parameter estimates in the opposite direction and of a smaller magnitude. There 

was no evidence from the standard simple or standard multiple imputation 

methods of a statistically significant or clinically important relationship between 

quality of life and DFS. 
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As noted (section 4.3.2), the standard error of the parameter estimates following 

simple imputation did not increase compared to considering all available coping 

scores and thus did not reflect the uncertainty in the imputed values. In contrast, 

there was a small increase in the standard error of the parameter estimates 

following the standard multiple imputation methods (section 4.3.2).  

 

The parameter estimates for delayed chemotherapy again showed a trend towards 

a positive relationship between delayed chemotherapy and DFS. The magnitude 

of the parameter estimate, around -0.1, was little influenced by the simple (Table 

3.8) or multiple (Table 4.3) imputation method or by not applying imputation in 

the available monotone and all available analyses (Table 3.3). The trend towards a 

positive relationship is consistent with the finding from the main efficacy analysis 

that there may be a therapeutic benefit from delayed chemotherapy. 

 

Performance of Standard Imputation Methods 

As noted, the standard multiple imputation methods are not necessarily good 

estimation techniques in this context due to the assumptions relating to the 

missing data mechanism and the missing data pattern.  The investigation of the 

performance of the standard multiple imputation methods (section 4.3) found that: 

i) there was a suggestion of a lack of accuracy when imputing the 

missing coping score, similarly to the standard simple imputation 

methods (section 3.5).  

ii) the standard multiple imputation method of bootstrapping may be 

systematically underestimating the missing coping scores, as with the 

standard simple imputation methods except LOCF (section 3.5), 

There was no suggestion that the remaining multiple imputation methods 

systematically over- or underestimated the missing coping scores (section 4.3). 

This may be influenced by the fact that the non-monotone missing data patterns 

were imputed by LOCF. 
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The performance of imputation methods has also been considered in the statistical 

literature, for example Peyre et al. (2011), Ranstam et al. (2012) and Marshall et 

al. (2012). Peyre et al. (2011) and Ranstam et al. (2012) were among the 

references identified from a PubMed search. They are described here as they 

consider simple and multiple imputation of quality of life scores. While both of 

these examples considered missing quality of life scores, unlike in this chapter, 

quality of life was the outcome variable. A further difference was that in both 

these examples, only one multiple imputation method was considered. Also of 

note was that the number of repetitions of multiple imputation in these examples 

was less than in this chapter, with 20 and 30 repetitions respectively. Marshall et 

al. (2012) is described as it considers missing explanatory variables in a breast 

cancer dataset. It was identified from the citation of Herring et al. (2004). Unlike 

in this chapter, the explanatory variables were standard prognostic factors in 

breast cancer rather than quality of life and were not time-dependent. Again, the 

number of repetitions of multiple imputation, 20, was less than in this chapter. 

 

Performance of imputation in the 2003 French Decennial Health Study 

(Peyre et al. [2011]) 

The quality of life assessment was the medical outcome study 36-item short-form 

health survey (SF-36). Samples of 300 and 1000 subjects were randomly drawn 

from the 2003 French Decennial Health Survey. Various patterns of missing data 

were generated according to three different item non-response rates (3, 6, and 9%) 

and three types of missing data: i) missing completely at random, ii) missing at 

random, and iii) informative missing data.  

 

The multiple imputation method used a set of external covariates in a standard 

multiple regression model. Imputation by personal mean score, which is similar to 

median imputation by patient, was also considered. Personal mean score appeared 

appropriate for dealing with missing items from completed SF-36 questionnaires 

in most routine scenarios. However, the use of personal mean score was 

associated with small bias (relative bias <2%) in all studied situations. This is 
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similar to the imputation in the IBCSG dataset where the coping score may be 

systematically underestimated. In contrast to imputation in the IBCSG dataset, 

Peyre et al. (2011) found that multiple imputation improved accuracy and 

precision compared to personal mean score.  

 

Performance of Imputation in the FREE Trial in Acute Painful Vertebral 

Fractures (Ramstam et al. [2012]) 

The FREE trial was a randomised, non-blinded study comparing balloon 

kyphoplasty with non-surgical care for the treatment of patients with acute painful 

vertebral fractures. The primary endpoint was the change from baseline to 1 

month in quality of life assessed using the SF-36 physical component summary 

(PCS) scale. Five secondary endpoints were also considered. 

 

The multiple imputation method used chained equations. The imputation model 

included all six outcomes at baseline and follow-up visits, all stratification factors, 

age, treatment centre and number of fractures at baseline (≥ 1), in addition to 

treatment ‘as received’. LOCF and mixed-effect models were also considered.  

 

Similarly to the IBCSG dataset, the amount of missing data increased during 

follow-up (1 month: 14.5%; 24 months: 28%). Overall patterns of missing 

response across time were similar for each treatment group. As with imputation in 

the IBCSG dataset, the alternative imputation methods used for substituting 

missing data produced similar results. Mixed-effect model analyses, rather than 

imputation, appeared to be the most appropriate method for analysing the FREE 

trial data. 

 

Performance of Imputation in the Simulation Study Based on the German 

Breast Cancer Study Group Dataset (Marshall et al. [2010]) 

Datasets were generated to resemble the skewed distributions seen in a motivating 

breast cancer example. The motivational dataset assessed the prognostic ability of 

eight covariates on recurrence-free survival. Multivariate missing data were 
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imposed on four covariates using four different mechanisms: i) missing 

completely at random, ii) missing at random, iii) informative missing data and iv) 

a combination of these 3 mechanisms. Five amounts of patients with incomplete 

data from 5% to 75% were considered. The scenario considering 25% of patients 

with incomplete data was approximately in line with the percentage of missing 

coping scores in the IBCSG dataset. Similarly to the IBCSG dataset, 

transformation of continuous covariates was used to make the assumption of 

Normality more applicable. 

 

A single imputation by predictive mean matching was considered, whereas 

multiple repetitions were performed in the IBCSG dataset. Multiple imputation 

was performed by i) two data augmentation techniques, ii) regression switching 

imputation, iii) regression switching with predictive mean matching (MICE-

PMM) and iv) flexible additive imputation models. The last imputation method 

fitted separate flexible additive imputation models to each incomplete covariate. 

The imputation model included eight standard prognostic factors in addition to the 

survival time and event status. The results of the single imputation by predictive 

mean matching and multiple imputation by data augmentation were similar 

considering the scenario considering 25% of patients with missing data and 

informative missing data. This is similar to the imputation in the IBCSG dataset. 

The simulation study found that performing MICE-PMM may be the preferred 

approach provided that less than 50% of the patients have missing data and the 

missing data are not informative missing data. 

  

Relationship Among the Imputed Values 

The relationship among the imputed values from the standard imputation methods 

was investigated by hierarchical cluster analysis (section 4.4). Imputing a high 

value was least like the other standard imputation methods. As expected, median 

imputation by time period was similar to median imputation by time period and 

treatment group. Among the multiple imputation methods, nearest neighbour 

imputation was similar to predicted mean matching. The imputed values from 
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bootstrapping, subgroups defined by previous coping score were more like the 

imputed values from pattern mixture models – Curran’s analytical technique than 

the imputed values from bootstrapping, subgroups defined by baseline coping 

score. As noted, the cluster analysis indicated that the imputed values following 

multiple imputation reflect the imputation methods (Figure 4.4). 

 

Possible Influence of Relationship Between Quality of Life and DFS on 

Performance of Imputation Methods 

As the imputed values reflect the imputation method, it is possible that the 

performance of the imputation methods in this setting is influenced by the 

relationship between quality of life and DFS. The performance of the standard 

imputation methods may not be the same in the context of a strong positive 

relationship between quality of life and DFS compared to a weak positive 

relationship or no relationship. As noted, the assumption in many of the standard 

imputation methods that the data are MAR does not hold. The performance of the 

standard imputation methods may not be the same when the data are informative 

missing data compared to when the MAR assumption is reasonable. The IBCSG 

dataset was the basis for simulated datasets with a known relationship between 

quality of life and DFS given different missing data mechanisms. These simulated 

datasets are used in Chapters 5 and 6 to investigate if the performance of the 

standard imputation methods given different missing data mechanisms is 

influenced by the relationship between quality of life and DFS. 
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5 Applying Simple Imputation Methods to Simulated 

Datasets with a Positive Relationship Between Quality 

of Life and Disease-Free Survival and a Positive 

Relationship Between Delayed Chemotherapy and 

Disease-Free Survival 

 

5.1 Introduction  

There was no evidence of a statistically significant or clinically important 

relationship between quality of life and DFS in the IBCSG dataset from the time-

dependent Cox model analysis following imputation of missing coping scores by 

standard simple and standard multiple imputation methods described in Chapters 

3 and 4 respectively. There was a trend towards a positive relationship between 

delayed chemotherapy and DFS.  The performance of standard imputation 

methods may be different when there is a positive relationship between quality of 

life and DFS compared to when there is no relationship, and this is investigated in 

this chapter. 

 

Complete simulated datasets were generated with a positive relationship between 

quality of life and DFS and a positive relationship between delayed chemotherapy 

and DFS. Here, a high quality of life was associated with improved DFS and 

delayed chemotherapy was associated with improved DFS. These associations 

were from the parameters βsp and βdel of the time-dependent Cox model 

respectively. The method for generating the complete simulated datasets is 

described in section 5.2.1 and these datasets are based on the 2231 patients from 

the IBCSG dataset with an observed baseline coping score (approximately at 

randomisation). As described in section 5.2.2, four combinations of βsp and βdel 

were considered and for each of the 4 combinations, 150 complete simulated 

datasets were generated. The time-dependent Cox model analysis of the complete 

simulated datasets is described in section 5.2.2. 
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Simulated datasets with missing data were generated by artificially removing 

coping scores from the complete simulated datasets. An overview of generating 

the simulated datasets is given in Figure 5.1. The methods for artificially 

removing coping scores are described in section 5.2.2. The aim of simulating data 

was to investigate the influence of the missing data mechanism on the 

performance of standard imputation methods given different combinations of a 

positive relationship between quality of life and DFS and positive relationship 

between delayed chemotherapy and DFS. In assessing the performance, whether 

the positive relationship between quality of life and DFS and between delayed 

chemotherapy and DFS is found following imputation is of interest as well as the 

parameter estimates. This chapter describes applying standard simple imputation 

methods to the simulated datasets. Applying multiple imputation methods is 

described in Chapter 6. 

 

The standard simple imputation methods that are applied to the IBCSG dataset are 

listed in section 3.1. Three of the standard simple imputation methods applied to 

the IBCSG dataset were applied to the simulated datasets with a positive 

relationship between quality of life and DFS and a positive relationship between 

delayed chemotherapy and DFS: 

i) LOCF (see section 3.4.3) 

ii) median imputation by patient (see section 3.4.4)   

iii) linear regression with previous coping score(s) (see section 3.4.5)  

 

The explanation why the remaining standard simple imputation methods were not 

applied to the simulated datasets is given in section 3.5.2. 

 

The time-dependent Cox model analysis following standard imputation methods 

is described in section 3.2.6. The technical details of the patients included in the 

time-dependent Cox model analysis are described in section 5.3 and the findings 

are described in section 5.4.  The summary of the chapter is presented in section 

5.5. 
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Figure 5.1 Overview of Generating Simulated Datasets 

 

 

 

 

 

 

# 

 

 

 

Complete simulated 

datasets 

150 x 4 combinations 

of βsp and βdel 
 

5 methods of 

artificially 

removing 

coping scores 

Simulated datasets with 

coping scores artificially 

removed 

150 x 4 combinations of 

βsp and βdel x 5 methods of 

removing coping scores 

 

3 simple 

imputation 

methods 

Completed simulated 

datasets 

150 x 4 combinations of βsp 

and βdel x 5 methods of 

removing coping scores x 3 

simple imputation methods 
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5.2 Simulated Datasets with a Positive Relationship Between 

Quality of Life and Disease-Free Survival and a Positive 

Relationship Between Delayed Chemotherapy and Disease-

Free Survival 

It was noted that in the IBCSG dataset DFS times for patients with a DFS event 

and patients with no DFS event both approximately follow a Weibull distribution. 

It was straightforward to simulate DFS times from these Weibull distributions. 

These DFS times could be matched to the same matrix of coping scores for 

patients and the same indicator for delayed chemotherapy from the IBCSG 

dataset. This created complete simulated datasets with a positive relationship 

between quality of life and DFS and a positive relationship between delayed 

chemotherapy and DFS. The strength of the relationship between quality of life 

and DFS and between delayed chemotherapy and DFS was controlled by the 

parameters βsp and βdel respectively (see section 5.2.1). As shown in the overview 

of generating the simulated datasets in Figure 5.1, there were 600 complete 

simulated datasets, 150 x 4 combinations of βsp and βdel. There were 5 methods of 

artificially removing coping scores from each of the complete simulated datasets 

(150 x 4 x 5). 

 

Three different simple imputation methods were applied to these simulated 

datasets with coping scores artificially removed. Time-dependent Cox model 

analysis was carried out on the 150 x 4 x 5 x 3 completed simulated datasets. The 

parameter estimates from the time-dependent Cox model analysis can therefore be 

thought as arising from an experiment with 150 replications where imputation 

method is nested within missing data mechanism, both nested within the 

combination of βsp and βdel. In this section, the method for simulating time to event 

data and creating the simulated datasets with coping scores artificially removed is 

summarised, with the technical details provided in Appendix C.   
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5.2.1 Simulating Time to Event Data  

Method for Simulating Data 

In the IBCSG dataset, the median follow-up time is 12.3 years. The DFS survival 

times in days for patients with a DFS event approximately followed a Weibull 

distribution with a shape parameter 1.199 and scale parameter 1519. The range 

was 0 days – 5786 days (190.1 months; 15.8 years). For patients with no DFS 

event recorded, the follow-up time in the trial approximately followed a Weibull 

distribution with a shape parameter 5.5014 and scale parameter 4997. The longest 

censored DFS time was 6212 days (204.1 months; 17.0 years).  

 

MacKenzie and Abrahamowicz (2002) described an algorithm for randomly 

generating time-to-event data that arises from an interpretation of the expression 

for the partial likelihood. The method for simulating a positive relationship 

between quality of life and DFS and a positive relationship between delayed 

chemotherapy and DFS according to this algorithm is summarised as follows. A 

matrix of coping scores based on the patients’ coping scores in the IBCSG dataset 

is considered. Simulated DFS times (event or censored) are simulated from 

Weibull distributions (see equation (C1)). The simulated DFS times are 

considered in ascending order and matched to a patient. The risk set of patients 

who have yet to be matched to a DFS time is identified. The probability of 

selection is calculated for each patient in the risk set of patients, and the patient to 

whom the DFS time is matched is selected (see equation (C2)). For times to DFS 

event, this selection probability is based on the covariates i) the centred S_Pacis 

and ii) indicator for delayed chemotherapy. To create a time- dependent process, 

the centred S_Pacis at the appropriate time period is used when calculating the 

selection probability. For censored DFS times, the selection probability is equal 

for all patients in the risk set. The patient matched is removed from the risk set 

and the steps repeated until all patients have been matched to a DFS time. The 

technical details are described in Appendix C, Part 1.  
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5.2.2 Complete Simulated Datasets and Artificially Removing Data 

Complete Simulated Datasets 

When generating the complete simulated datasets with a positive relationship 

between quality of life and DFS and a positive relationship between delayed 

chemotherapy and DFS, the 2231 patients with an observed baseline coping score 

(approximately at randomisation) were considered (Appendix C, Part 1). 

 

Four combinations of βsp and βdel data were considered. The complete simulated 

datasets had a positive relationship between quality of life and DFS and a positive 

relationship between delayed chemotherapy and DFS. Low coping scores 

correspond to high quality of life. The combinations considered a value for βsp of 

0.1 (weak) or 0.4 (strong) and a value for βdel of -0.165 (weak) or -0.195 (strong). 

For each of the 4 combinations, 150 simulated datasets were generated. The 

considerations for setting these parameter values relate to the time-dependent Cox 

model analysis of the complete simulated datasets, which is described next. 

 

Time-Dependent Cox Model Analysis of Complete Simulated Datasets 

The real date of quality of life assessments were used wherever possible in the 

complete simulated datasets. However, if using the real date of the quality of life 

assessment would lead to an interval less than 1 day, then the expected dates of 

visit calculated from the date of randomisation were used instead. 

 

Example 5.1 Example of Using Expected Dates of Visit in Complete Simulated 

Datasets 

Suppose a patient randomised on 24th October 1990 had the following visit dates: 

    Actual    Expected   

21 months (Time 8)  27th May 1992   22nd July 1992  

  

24 months (Time 9)  29th July 1994   21st October 1992 

 

If the simulated DFS for this patient was 825 days, ending on 26th January 1993, 

then the expected date of 21st October 1992 was used for the date of 24 months 
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(Time 9) quality of life assessment.  For 3 patients with a date of assessment taken 

from the non-compliance form but a missing coping score, the expected date of 

quality of life assessment was used to prevent an interval of less than 1 day for the 

time-dependent Cox model analysis. 

 

The plots of Schoenfeld residuals against time for the covariates S_Pacis and 

delayed chemotherapy from the time-dependent Cox model analysis of a complete 

simulated dataset for each of the 4 combinations of βsp and βdel are shown in 

Appendix D. As noted, a zero slope indicates that the assumption of proportional 

hazards is reasonable. Beyond approximately 13.5 years (~ 5000 days), the plots 

no longer indicated a zero slope for delayed chemotherapy. However, this did not 

raise concerns about the time-dependent Cox model.  The results from the time-

dependent Cox model analysis of the complete simulated datasets are shown 

below in Table 5.1: 

 
Table 5.1 Summary of Time-Dependent Cox Model Analysis Stratified by Trial of 

Complete Simulated Datasets 

Combination of 

βsp  and βdel

Theoretical 

Value of 

βsp

Mean 

Parameter 

Estimate

Mean 

Standard 

Error

Number of 95% 

CIs for Hazard 

Ratio 

Containing 1

Number of 95% CIs for 

Parameter Estimate 

Containing Theoretical 

Value

Weak, weak 0.1 0.1007 0.0111 0 (  0.0%) 150 (100.0%)

Weak, strong 0.1 0.1024 0.0111 0 (  0.0%) 150 (100.0%)

Strong, weak 0.4 0.4019 0.0131 0 (  0.0%) 150 (100.0%)

Strong, strong 0.4 0.4025 0.0131 0 (  0.0%) 150 (100.0%)

Combination of 

βsp  and βdel

Theoretical 

Value of 

βdel

Mean 

Parameter 

Estimate

Mean 

Standard 

Error

Number of 95% 

CIs for Hazard 

Ratio 

Containing 1

Number of 95% CIs for 

Parameter Estimate 

Containing Theoretical 

Value

Weak, weak -0.165 -0.1721 0.0549 40 ( 26.7%) 150 (100.0%)

Weak, strong -0.195 -0.1866 0.0549 19 ( 12.7%) 150 (100.0%)

Strong, weak -0.165 -0.1531 0.0549 41 ( 27.3%) 150 (100.0%)

Strong, strong -0.195 -0.1928 0.0549 17 ( 11.3%) 150 (100.0%)

Square root of coping score (S_Pacis)

Delayed chemotherapy

 

CI  = confidence interval 
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Of note, the 95% confidence interval for the parameter estimates for all of the 

complete simulated datasets contained the theoretical value (Table 5.1). The 

simulation process has been successful and the complete simulated datasets 

represent the relationship between quality of life and DFS and delayed 

chemotherapy and DFS intended. There was imprecision in the parameter estimate 

for delayed chemotherapy from the individual complete simulated datasets, 

reflected in the standard error of the parameter estimate (~0.055) (Table 5.1). 

 

It is of interest to investigate if a relationship between quality of life and DFS 

could be masked by the missing data mechanism, or if a relationship is still found 

following imputation. The values for βsp of 0.1 and 0.4 lead to a relationship 

between quality of life and DFS being found in all the complete simulated 

datasets (Table 5.1). This relationship should be found as well as the parameter 

estimate being unbiased following imputation in order to consider the imputation 

method performs well. A relationship between delayed chemotherapy and DFS 

was found in 73% (219/300) and 88% (264/300) of complete simulated datasets 

when considering the weak and strong relationship respectively (Table 5.1). The 

values for βdel of -0.165 and -0.195 approximately correspond to conventional 

values for the power of the hypothesis tests (80% and 90%) set in clinical trials 

(see section 1.1.4).  

 

Artificially Removing Data 

For each of the complete simulated datasets 5 different methods of artificially 

removing coping scores were considered. These 5 methods represent 4 different 

scenarios and each of the 3 different categories (see section 1.6.1) for the missing 

data mechanism in the IBCSG dataset: 
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i) Higher coping scores (lower quality of life) have a higher 

probability of missingness: informative missing data 

ii) Lower coping scores (higher quality of life) have a higher 

probability of missingness: informative missing data 

iii) Later time periods have a higher probability of missingness: MAR 

iv) Coping scores missing (completely) at random: MCAR 

 

The most likely scenario in the IBCSG dataset was that higher coping scores 

(poorer quality of life) have a higher probability of missingness. Two methods of 

artificially removing data under this scenario were considered. Each of the 

methods were derived in order that in the simulated datasets approximately 30% 

of the expected coping score were missing, similar to the IBCSG dataset. The 

technical details of the 5 methods of artificially removing coping scores were as 

described in Appendix C, Part 2.  

 

5.3 Technical Details of Patients Considered in Time-Dependent 

Cox Model Analysis of Simulated Datasets 

The status of coping scores for time-dependent Cox model analysis from the 600 

simulated datasets, 150 simulated datasets in each of the 4 combinations of βsp and 

βdel, with coping scores artificially removed according to a particular method is 

described in Table 5.2 and Figure 5.2: 
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Table 5.2 Summary of Status of Coping Scores in Simulated Datasets According to 

Method of Artificially Removing Coping Scores 

Method of Artifically 

Removing Coping 

Scores Time

Mean Number of 

Observed Coping 

Scores

Mean Number of 

Imputed Coping 

Scores

Mean Total 

Number of 

Coping Scores

Method 1 1 1592 639 2231

3 1587 543 2131

5 1556 455 2010

7 1493 398 1891

9 1422 355 1777

Method 2 1 1661 570 2231

3 1515 616 2131

5 1371 639 2010

7 1252 639 1891

9 1155 622 1777

Method 3 1 1784 447 2231

3 1596 534 2131

5 1307 703 2010

7 1039 851 1891

9 888 889 1777

Method 4 1 1560 671 2231

3 1490 641 2131

5 1408 603 2010

7 1322 569 1891

9 1244 533 1777

Method 5 1 1498 733 2231

3 1485 646 2131

5 1442 568 2010

7 1382 509 1891

9 1313 465 1777  
Method 1: Higher coping scores have a higher chance of being missing. 
Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 

  



 
 

204 
 

A 

 

 

B 

 

Figure 5.2 Mean number of imputed coping scores (A) and mean percentage of imputed 

coping scores (B) in simulated datasets according to method of artificially removing 

coping scores  

Method 1: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing  
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When higher coping scores (lower quality of life) were associated with a higher 

probability of missingness (Methods 1 and 5), the number and percentage of 

patients with missing coping score decreased across time in an approximately 

linear fashion. This number remained similar across time when lower coping 

scores (higher quality of life) were associated with a higher probability of 

missingness (Method 2), with the percentage of patients with missing coping 

score increasing in an approximately linear fashion. The method of later time 

period being associated with a higher probability of missingness (Method 3) was 

the most different from the other methods in terms of the number of patients and 

percentage of patients with missing coping score increases across time (Figure 

5.2; Table 5.2). 

 

When performing the imputation by LOCF and by linear regression using 

previous coping scores, the patients with the baseline coping score artificially 

removed could not be considered in the time-dependent Cox model analysis. This 

was a noticeable number of patients, with the number varying depending on the 

method of artificially removing coping scores. The time-dependent Cox model 

analyses following these imputation methods was based on an average of between 

1498 and 1784 patients, compared to 2231 (Table 5.2).       

 

Patients with no observed coping scores could not be considered in the time-

dependent Cox model analysis when performing median imputation by patient. 

The number of such patients is summarised in Table 5.3.  As shown in Table 5.3, 

the number of patients with no observed coping scores increased when higher 

coping scores (lower quality of life) were associated with a higher probability 

missingness compared to other methods. When higher coping scores were 

associated with a higher probability of missingness, this number increased when 

the strength of the relationship between quality of life and DFS increased from 0.1 

to 0.4. This is due to the fact that when there is a strong relationship between 

quality of life and DFS, the patients with poorer quality of life are more likely to 

have a DFS event and thus a lower number of expected quality of life assessments 
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than when there is a weak relationship between quality of life and DFS. The 

number of patients with no observed coping scores was lowest overall when later 

time periods were associated with a higher probability of missingness. When 

considering the weak relationship between quality of life and DFS, the number of 

patients with no observed coping scores was higher when lower coping scores 

(higher quality of life) were associated with a higher probability of missingness 

compared to later time periods. The number of patients with no observed coping 

scores was similar for these missing data mechanisms when considering the 

strong relationship between quality of life and DFS. 

 

Table 5.3 Summary of Number of Patients with No Simulated Observed Coping Scores 

According to Method of Artificially Removing Coping Scores 

Combination 

of βsp and βdel  

Theoretical 

Value of βsp 

Theoretical 

Value of βdel  

Method of 

Artificially 

Removing 

Coping Scores 

Mean Number of 

Patients with No 

Observed Coping 

Scores 

Weak, weak 0.1 -0.165 Method 1 24 

 

0.1 -0.165 Method 2 19 

 

0.1 -0.165 Method 3 13 

 

0.1 -0.165 Method 4 21 

  0.1 -0.165 Method 5 29 

Weak, strong 0.1 -0.195 Method 1 25 

  0.1 -0.195 Method 2 19 

  0.1 -0.195 Method 3 13 

  0.1 -0.195 Method 4 21 

  0.1 -0.195 Method 5 29 

Strong, weak 0.4 -0.165 Method 1 33 

 

0.4 -0.165 Method 2 12 

 

0.4 -0.165 Method 3 12 

 

0.4 -0.165 Method 4 21 

  0.4 -0.165 Method 5 38 

Strong, strong 0.4 -0.195 Method 1 33 

  0.4 -0.195 Method 2 11 

  0.4 -0.195 Method 3 12 

  0.4 -0.195 Method 4 21 

  0.4 -0.195 Method 5 38 

Method 1 and Method 5: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 
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5.4 Findings from Applying Simple Imputation Methods to 

Simulated Datasets with a Positive Relationship Between 

Quality of Life and Disease-Free Survival and Positive 

Relationship Between Delayed Chemotherapy and Disease-

Free Survival 

This section describes the findings from the time-dependent Cox model analysis 

of DFS on S_Pacis and delayed chemotherapy stratified by trial for the 4 

combinations of a positive relationship between quality of life and DFS and a 

positive relationship between delayed chemotherapy and DFS following simple 

imputation of simulated datasets. For each completed simulated dataset, the 

estimate of βsp and βdel from the time-dependent Cox model stratified by trial was 

recorded. Then the 

i) mean parameter estimate 

ii) mean standard error of the parameter estimate 

iii) number of 95% confidence intervals for hazard ratio containing 1 

iv) number of 95% confidence intervals for parameter estimate containing 

the simulated value 

were calculated for each combination according to the method of artificially 

removing coping scores (see Appendix C, Part 2 for technical details of the 

methods). The results are shown in Appendix E. An overview of the estimate of 

βsp is shown in Figure 5.3 and the results are summarised in Table 5.4 – Table 5.6.  
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A (Weak relationship between delayed chemotherapy and DFS) 

 
 

B (Strong relationship between delayed chemotherapy and disease-free survival) 

 
Footnotes for figure on next page 

 

Figure 5.3 Mean parameter estimate for square root of coping score (S_Pacis) from the 

time-dependent Cox model analysis and 95% confidence interval based on mean standard 

error from simple imputation in 150 simulated datasets. The weak and strong relationship 

between quality of life and disease-free survival is shown in top and lower portion of the 

figure respectively, with the combination of A) weak relationship between delayed 

chemotherapy and disease-free survival; (B) strong relationship between delayed 

chemotherapy and disease-free survival  
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Footnotes for Figure 5.3: 

Method 1: Higher coping scores have a higher chance of being missing 

Method 2: Lower coping scores have a higher chance of being missing 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 

 

LOCF = last observation carried forward; 

Med imp by patient = median imputation by patient; 

Lin reg prev scores: linear regression using previous coping score(s) 
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Table 5.4 Summary of Findings from Applying Last Observation Carried Forward to Simulated Datasets with Positive Relationship Between 

Quality of Life and Disease-Free Survival and Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival  

Combination of βsp 

and βdel 

 

Suggestion of poorest 

performance 1 

Robustness of Estimate 

of βsp 
2 

Power to Find Significance        

of βdel 
3 Robustness of Estimate of βdel 4 

Weak, weak 

βsp=0.1, βdel= -0.165 

Little influence of missing 

data mechanism 

Robust to missing data 

mechanism 

Lowest when higher coping 

scores           missingness 

Robust to missing data mechanism 

Weak, strong 

βsp=0.1, βdel= -0.195 

Higher coping scores           

missingness 

Robust to missing data 

mechanism 

Lowest when higher coping 

scores           missingness 

Trend to underestimate βdel,  most 

noticeable when higher coping 

scores             missingness 

Strong, weak 

βsp=0.4, βdel= -0.165 

Higher coping scores           

missingness or later time 

periods           missingness 

βsp underestimated, bias most 

extreme when later time 

periods           missingness  

Lowest when higher coping 

scores           missingness 

βdel underestimated, most extreme 

when higher coping scores             

missingness 

Strong, strong 

βsp=0.4, βdel= -0.195 

Higher coping scores           

missingness or later time 

periods           missingness 

βsp underestimated, bias most 

extreme             when later 

time periods missingness 

Lowest when higher coping 

scores           missingness 

βdel underestimated, most extreme  

when higher coping scores             

missingness  
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Table 5.5 Summary of Findings from Applying Median Imputation by Patient to Simulated Datasets with Positive Relationship Between 

Quality of Life and Disease-Free Survival and Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Combination of βsp 

and βdel 

Suggestion of poorest 

performance 1 Robustness of Estimate 

of βsp 
2 

Power to Find Significance      

of βdel 
3 Robustness of Estimate of βdel 4 

Weak, weak 

βsp=0.1, βdel= -0.165 

Little influence of missing 

data mechanism 

Robust to missing data 

mechanism 

Little or no reduction Robust to missing data mechanism 

Weak, strong 

βsp=0.1, βdel= -0.195 

Higher coping scores           

missingness  

Robust to missing data 

mechanism 

Trend towards a small 

reduction  

 

Trend to underestimate βdel, most 

noticeable when higher coping 

scores           missingness 

Strong, weak 

βsp=0.4, βdel= -0.165 

Higher coping scores           

missingness or later time 

periods           missingness 

βsp underestimated, bias most 

extreme when later time 

periods            missingness                              

 Little or no reduction βdel underestimated, most extreme 

when higher coping scores             

missingness 

Strong, strong 

βsp=0.4, βdel= -0.195 

Higher coping scores           

missingness or later time 

periods           missingness 

Trend to underestimate βsp Trend towards a small 

reduction  

 

Trend to underestimate βdel, most 

noticeable when higher coping 

scores           missingness 

βsp = parameter estimate for square root of coping score (S_Pacis); βdel = parameter estimate for delayed chemotherapy 

1: Considers the robustness of βsp and βdel and the power to find the significance of βdel 

2: Summarised from columns “Mean Parameter” estimate and “Bias (%): …” for section “Median imputation” in Tables E1.1, E2.1, E3.1 and E4.1 

3: Summarised from column “Number of 95% Cis for hazard ratio containing 1” for section “Median imputation” in Tables E1.2, E2.2, E3.2 and E4.2 

4: Summarised from columns “Mean Parameter” estimate and “Bias (%): …” for section “Median imputation” in Tables E1.2, E2.2, E3.2 and E4.2 
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Table 5.6 Summary of Findings from Applying Linear Regression using Previous Coping Scores to Simulated Datasets with Positive 

Relationship Between Quality of Life and Disease-Free Survival and Positive Relationship Between Delayed Chemotherapy and Disease-Free 

Survival 

Combination of βsp 

and βdel 

Suggestion of poorest 

performance 1 

Robustness of Estimate        

of βsp 
2 

Power to Find Significance         

of βdel 3 Robustness of Estimate of βdel 4 

Weak, weak  

βsp=0.1, βdel= -0.165 

Little influence of missing 

data mechanism 

Robust to missing data 

mechanism 

Lowest when higher coping 

scores            missingness 

Robust to missing data mechanism 

Weak, strong 

βsp=0.1, βdel= -0.195 

Higher coping scores           

missingness 

Robust to missing data 

mechanism 

Lowest when higher coping 

scores            missingness 

Trend to underestimate βdel,  most 

noticeable when higher coping 

scores             missingness 

Strong, weak 

βsp=0.4, βdel= -0.165 

Higher coping scores           

missingness 

Robust to missing data 

mechanism 

Lowest when higher coping 

scores            missingness, 

jointly with coping scores 

missing at random 

βdel underestimated, most extreme 

when higher coping scores             

missingness 

Strong, strong 

βsp=0.4, βdel= -0.195 

Higher coping scores           

missingness 

Robust to missing data 

mechanism 

Lowest when higher coping 

scores            missingness  

Trend to underestimate βdel, most 

noticeable when higher coping 

scores           missingness  

βsp = parameter estimate for square root of coping score (S_Pacis); βdel = parameter estimate for delayed chemotherapy 

1: Considers the robustness of βsp and βdel and the power to find the significance of βdel 

2: Summarised from columns “Mean Parameter” estimate and “Bias (%): …” for section “Linear regression” in Tables E1.1, E2.1, E3.1 and E4.1 

3: Summarised from column “Number of 95% Cis for hazard ratio containing 1” for section “Linear regression” in Tables E1.2, E2.2, E3.2 and E4.2 

4: Summarised from columns  “Mean Parameter” estimate and “Bias (%): …”  for section “Linear regression” in Tables E1.2, E2.2, E3.2 and E4.2 
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A relationship between quality of life and DFS was found in all the completed 

simulated datasets (column Number of 95% CIs for hazard ratio containing 1, 

Table E1.1; Table E2.1; Table E3.1; Table E4.1). As noted, following imputation 

by LOCF and by linear regression using previous coping scores, the patients with 

the baseline coping score artificially removed could not be considered.  

 

The time-dependent Cox model analyses of the completed simulated datasets 

indicates a lack of precision in the estimates of βdel and led to a wide range of the 

parameter estimates from each of the completed simulated datasets. For example, 

the range of the parameter estimate following LOCF was (-0.4322, 0.0846) when 

considering the combination of weak positive relationship between quality of life 

and DFS and weak positive relationship between delayed chemotherapy and DFS 

and when higher coping scores (lower quality of life) were associated with a 

higher probability of missingness (first row of Table E5.1). The imprecision is 

reflected in the fact that the mean standard error of the parameter estimate was at 

least 0.055 (Table E1.2; Table E2.2; Table E3.2; Table E4.2). The details on the 

performance of the individual standard simple imputation methods are given 

below. 

 

5.4.1 Last Observation Carried Forward 

When considering the weak positive relationship between quality of life and DFS, 

the parameter estimate for S_Pacis was robust to not being able to consider 

patients with a missing baseline coping score and the missing data mechanism. 

The mean parameter estimate for S_Pacis was between 0.0914 and 0.0992 

compared to the theoretical value of 0.1, with a mean standard error around 0.013 

(Figure 5.3; Table E1.1; Table E2.1).  

  

In contrast, the parameter estimate for S_Pacis was generally biased towards 0 

following imputation by LOCF when considering the strong positive relationship 

between quality of life and DFS (Table E3.1; Table E4.1). The mean parameter 

estimate for S_Pacis was around 0.35-0.38 compared to theoretical value of 0.4, 
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with a mean standard error around 0.015. This indicates a bias of around 6% to 

12%. Only a low number, 62% or less, of the 95% confidence intervals for the 

parameter estimate for S_Pacis for the completed simulated datasets following 

imputation by LOCF contained the parameter estimate for the complete simulated 

dataset (column Number of 95% CIs for parameter estimate containing simulated 

value, Table E3.1 and Table E4.1). The bias in the parameter estimate was most 

extreme when later time periods were associated with a higher probability of 

missingness. In this case, almost none of the completed simulated datasets 

following imputation by LOCF contained the parameter estimate for the complete 

simulated dataset (Method 3, Table E3.1; Table E4.1).  

 

When considering the weak positive relationship between delayed chemotherapy 

and DFS, approximately 27% of the complete simulated datasets failed to find a 

relationship between delayed chemotherapy and DFS (Table 5.1). Not being able 

to consider the patients with a missing baseline coping score in the imputation by 

LOCF led to a noticeable decrease in the probability of finding a relationship 

between delayed chemotherapy and DFS, where between 31.3% and 44.7% of the 

completed simulated datasets failed to find this relationship (column Number of 

95% CIs for hazard ratio containing 1, Table E1.2 and Table E3.2). The 

proportion of complete simulated datasets failing to find this relationship was 

lower when considering the strong positive relationship between delayed 

chemotherapy and DFS, approximately 12% (Table 5.1). The probability of 

finding a relationship between delayed chemotherapy and DFS again decreased 

following LOCF, where between 17.3% and 29.3% of the completed simulated 

datasets failed to find this relationship (Table E2.2; Table E4.2). The probability 

of finding this relationship was lowest when higher coping scores (lower quality 

of life) were associated with a higher probability of missingness (Method 1 and 

Method 5), when at least 24% of completed simulated datasets failed to find this 

relationship (Table E2.2; Table E4.2). 
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The parameter estimate for delayed chemotherapy was robust to not being able to 

consider patients with a missing baseline coping score and the missing data 

mechanism when considering the combination of weak positive relationship 

between quality of life and DFS and weak positive relationship between delayed 

chemotherapy and DFS. It was close to the theoretical value of -0.165 for each of 

5 methods of artificially removing data (Table E1.2). For the remaining 

combinations of βsp and βdel, the trend was the for the parameter estimate to be 

closer to 0 following imputation by LOCF (Table E2.2; Table E3.2; Table E4.2). 

The bias indicated ranged from 3% to 18%. This bias was more noticeable when 

higher coping scores (lower quality of life) were associated with a higher 

probability of missingness than in other methods (Method 1 and Method 5, Table 

E2.2; Table E3.2; Table E4.2). The bias was more extreme (> 6%) in the 

combination of strong positive relationship between quality of life and DFS and 

weak positive relationship between delayed chemotherapy and DFS (Table E3.2). 

 

With one exception, the performance of LOCF was influenced by the missing data 

mechanism. For example, consider the combination of strong positive relationship 

between quality of life and DFS and weak positive relationship between delayed 

chemotherapy and DFS. Here, i) the bias in the parameter estimates of S_Pacis 

and delayed chemotherapy was lowest and ii) the probability of finding a 

relationship between delayed chemotherapy and DFS was highest when lower 

coping scores (better quality of life) were associated with missingness (Method 2, 

Table E3.1; Table E3.2). This indicated that the performance of LOCF was better 

when lower coping scores (better quality of life) were associated with a higher 

probability of missingness compared to other missing data mechanisms in this 

setting. The exception was when considering the combination of weak positive 

relationship between quality of life and DFS and weak positive relationship 

between delayed chemotherapy and DFS. Here, the performance of LOCF was 

similar for each of the 5 methods of artificially removing data. As noted, the 

parameter estimates of S_Pacis and delayed chemotherapy were robust in this 
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setting. LOCF performed better in this setting than in the other combinations of 

βsp and βdel.  

 

5.4.2 Median Imputation by Patient 

Similar to LOCF (section 5.4.1), when considering the weak positive relationship 

between quality of life and DFS, the parameter estimate for S_Pacis was robust to 

the missing data mechanism following median imputation by patient. The mean 

parameter estimate was approximately equal to the theoretical parameter value of 

0.1 with a standard error around 0.012 (Figure 5.3; Table E1.1; Table E2.1).  

  

The parameter estimate for S_Pacis following median imputation by patient had a 

similar pattern to LOCF when considering the strong positive relationship 

between quality of life and DFS. The bias indicated was around 3% to 9%, with 

the numerically most extreme bias in the parameter estimate again when later time 

periods were associated with a higher probability of missingness. The mean 

parameter estimate was around 0.37-0.39, compared to 0.4, with a mean standard 

error of around 0.013 (Table E3.1, Table E4.1). 

  

There was little or no reduction in the probability of finding a relationship 

between delayed chemotherapy and DFS following median imputation by patient. 

As with the complete simulated datasets (Table 5.1), approximately 27% 

completed datasets failed to find this relationship when considering the weak 

positive relationship between delayed chemotherapy and DFS (Table E1.2; Table 

E3.2). There was a trend towards a small reduction in the probability of finding 

this relationship when considering the strong positive relationship between 

delayed chemotherapy and DFS. Here, between 13.3% and 16.7% of the 

completed simulated datasets failed to find this relationship (Table E2.2; Table 

E4.2) compared to 12% of the complete simulated datasets (Table 5.1). 

 

The parameter estimate for delayed chemotherapy following median imputation 

by patient was robust to the missing data mechanism when considering the 
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combination of weak positive relationship between quality of life and DFS and 

weak positive relationship between delayed chemotherapy and DFS. In this 

setting, the parameter estimates, though numerically further away from 0, were 

similar to the theoretical value and had a bias < 6% (Table E1.2). They can be 

considered robust, similar to LOCF. The parameter estimate was also 

approximately equal to the theoretical value when coping scores were missing at 

random when considering the combination of strong positive relationship between 

quality of life and DFS and strong positive relationship between delayed 

chemotherapy and DFS (Method 4, Table E4.2). As with LOCF, for the remaining 

combinations of βsp and βdel, the trend was for the parameter estimate to be closer 

to 0. This trend was small, corresponding to a bias of between 3.0% and 5.2%, 

when considering the combination of weak positive relationship between quality 

of life and DFS and strong positive relationship between delayed chemotherapy 

and DFS (Table E2.2). Though smaller in magnitude, around 5% to 12%, the bias 

in the parameter estimate for delayed chemotherapy had a similar pattern to LOCF 

when considering the strong positive relationship between quality of life and DFS 

(Table E3.2; Table E4.2).  

 

As with LOCF, the performance of median imputation by patient was influenced 

by the missing data mechanism, with the exception noted. An example considered 

the combination of strong positive relationship between quality of life and DFS 

and weak positive relationship between delayed chemotherapy and DFS (Table 

E3.1; Table E3.2). In this setting, i) the bias in the parameter estimates of S_Pacis 

was lowest (3% when the range was around 3% to 8%) and ii) the bias in the 

parameter estimate for delayed chemotherapy (8.1%) was among the lower values 

when lower coping scores (higher quality of life) were associated with 

missingness (Method 2, Table E3.1; Table E3.2). This indicated that the 

performance of median imputation by patient was again better when lower coping 

scores (higher quality of life) were associated with a higher probability of 

missingness compared to other missing data mechanisms in this setting. The 

performance of median imputation by patient was again better when considering 
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the combination of weak positive relationship between quality of life and DFS and 

the weak positive relationship between delayed chemotherapy and DFS than in the 

other combinations of βsp and βdel.  

 

5.4.3 Linear Regression Using Previous Coping Scores 

The parameter estimate for S_Pacis was robust to not being able to consider 

patients with a missing baseline coping score and the missing data mechanism 

following imputation by linear regression using previous coping scores. For the 

weak positive relationship between delayed chemotherapy and DFS, the mean 

parameter estimate was between 0.1009 and 0.1051 compared to 0.1, with a mean 

standard error around 0.014 (Figure 5.3; Table E1.1; Table E2.1). The 

corresponding mean parameter estimate was between 0.3910 and 0.4082, with a 

mean standard error around 0.016, compared to 0.4 for the strong positive 

relationship between delayed chemotherapy and DFS (Figure 5.3; Table E1.1; 

Table E2.1).  

 

Not being able to consider the patients with a missing baseline coping score again 

led to a reduction in the probability of finding a relationship between delayed 

chemotherapy and DFS. The reduction in this probability following imputation by 

linear regression using previous coping scores was similar to LOCF (section 

5.4.1). When considering the weak positive relationship between delayed 

chemotherapy and DFS, between 28% and 42% of the completed simulated 

datasets failed to find a relationship between delayed chemotherapy and DFS 

(Table E1.2; Table E3.2) compared to approximately 27% (Table 5.1). 

  

The parameter estimate for delayed chemotherapy was again robust to not being 

able to consider patients with a missing baseline coping score and the missing 

data mechanism when considering the combination of weak positive relationship 

between quality of life and DFS and weak positive relationship between delayed 

chemotherapy and DFS (Table E1.2). Though, as with median imputation by 

patient, the largest bias of the parameter estimate towards 0 was between 5% and 
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6% (Method 4 and Method 5, Table E1.2). For the remaining combinations of βsp 

and βdel, the trend was for the parameter estimate to be closer to 0 following 

imputation by linear regression using previous coping scores. The bias indicated 

was between 2% and 16%. The parameter estimates followed a similar pattern to 

LOCF (Table E2.2; Table E3.2; Table E4.2). 

 

The performance of linear regression using previous coping scores was also 

influenced by the missing data mechanism, with the exception previously noted. 

The example described considered the combination of strong positive relationship 

between quality of life and DFS and weak positive relationship between delayed 

chemotherapy and DFS (Table E3.1; Table E3.2). For similar reasons to LOCF 

relating to the parameter estimate for delayed chemotherapy, the performance of 

linear regression using previous coping scores was again better when lower 

coping scores (higher quality of life) were associated with a higher probability of 

missingness compared to other missing data mechanisms in this setting. The 

performance of linear regression using previous coping scores was again better 

when considering the combination of weak positive relationship between quality 

of life and DFS and the weak positive relationship between delayed chemotherapy 

and DFS than in the other combinations of βsp and βdel.   

 

5.5 Summary of Applying Simple Imputation Methods to 

Simulated Datasets  

In this chapter, the performance of the standard simple imputation methods when 

there is a positive relationship between quality of life and DFS and a positive 

relationship between delayed chemotherapy and DFS was investigated. As noted, 

the performance of the standard simple imputation methods was better when 

considering the combination of weak positive relationship between quality of life 

and DFS and weak positive relationship between delayed chemotherapy and DFS 

(Table E1.1; Table E1.2) than in the other combinations of βsp and βdel. 
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The standard simple imputation methods involve assumptions described in section 

2.2. The investigations considered in this chapter include many scenarios where 

the assumptions of the standard simple imputation methods were not met. An 

example is LOCF when higher coping scores were associated with a higher 

probability of missingness. The standard simple imputation methods performed 

better when considering the combination of weak positive relationship between 

quality of life and DFS and weak positive relationship between delayed 

chemotherapy and DFS than other combinations. This suggests the standard 

simple imputation methods are less sensitive to the assumptions for the imputation 

methods in this setting.  

 

A relationship between quality of life and DFS was found in all of the completed 

simulated datasets (Appendix E). As noted, the parameter estimate for S_Pacis 

was robust when considering the weak relationship between quality of life and 

DFS (Table E1.1; Table E2.1). It was also robust following linear regression using 

previous coping scores when considering the strong relationship between quality 

of life and DFS (Table E3.1; Table E4.1) The trend was for the parameter estimate 

to be biased towards 0 following LOCF or median imputation by patient when 

considering the strong relationship between quality of life and DFS (Table E3.1; 

Table E4.1). The bias was most extreme when later time periods were associated 

with a higher probability of missingness (Method 3, Table E3.1; Table E4.1).  

 

Patients who had a missing baseline coping score could not be considered in the 

time-dependent Cox model analysis following LOCF and linear regression using 

previous coping scores. This lead to i) a larger mean standard error in the 

parameter estimates and ii) a lower probability of finding a relationship between 

delayed chemotherapy and DFS compared to median imputation by patient 

(Appendix E). Here, the probability of finding a relationship between delayed 

chemotherapy and DFS was lowest when higher coping scores were associated 

with a higher probability of missingness (Method 1 and/or Method 5, Table E1.2; 

Table E2.2; Table E3.2; Table E4.2).  This probability was highest when later 

Appendix%20E.docx
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time periods were associated with a higher probability of missingness when 

considering the strong relationship between delayed chemotherapy and DFS 

(Method 3, Table E2.2; Table E4.2).  

  

As with the parameter estimate for S_Pacis, the parameter estimate for delayed 

chemotherapy was robust when considering the combination of weak positive 

relationship between quality of life and DFS and weak positive relationship 

between delayed chemotherapy and DFS (Table E1.2). For the remaining 

combinations of βsp and βdel, the trend was for the parameter estimate for delayed 

chemotherapy to be biased towards 0, with the exception noted (section 4.4; 

Appendix E). The bias in the parameter estimate was most noticeable when higher 

coping scores were associated with a higher probability of missingness (Method 1 

and/or Method 5, Table E2.2; Table E3.2; Table E4.2). The exception to the trend 

was that when coping scores were missing at random the parameter estimate was 

approximately equal to the theoretical value following median imputation by 

patient when considering the combination of strong positive relationship between 

quality of life and DFS and strong positive relationship between delayed 

chemotherapy and DFS (Method 4, Table E4.2). 

 

The performance of the standard simple imputation method was influenced by the 

missing data mechanism except when the combination of weak positive 

relationship between quality of life and DFS and weak positive relationship 

between delayed chemotherapy and DFS was considered (Table 5.4 – Table 5.6). 

However, there was no suggestion that the performance of the standard simple 

imputation methods was noticeably better when coping scores were missing at 

random (Method 4) compared to other missing data mechanisms. This is 

reassuring for the investigation of applying the standard simple imputation 

methods to the IBCSG dataset in Chapter 3. Among the simulated datasets, the 

IBCSG dataset most resembles the combination of weak positive relationship 

between quality of life and DFS and weak positive relationship between delayed 

chemotherapy and DFS. The results from applying the standard simple imputation 
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methods to the IBCSG dataset may be more robust, though not necessarily 

unbiased, than if there was an indication of a strong relationship between quality 

of life and DFS or a strong relationship between delayed chemotherapy and DFS.   

 

The influence of the missing data mechanism on the performance the standard 

simple imputation methods in the simulation study illustrates the importance of 

carefully investigating the missing data mechanism when performing imputation 

techniques. It also raises the question of the influence of the missing data 

mechanism on the performance of standard multiple imputation methods. This 

will be considered in Chapter 6. Unlike simple imputation, the issue of 

underestimation of the variance of observations is addressed by the standard 

multiple imputation methods considered in Chapter 6. 

 

Implications of Findings from Applying Simple Imputation Methods 

 Simple imputation methods have limitations; the main limitation is the 

underestimation of the variance of the parameter estimate  

 There are only limited circumstances when it is appropriate to draw 

inferences from the parameter estimate resulting from simple imputation; 

if the parameter estimates are considered, then justification should be 

provided   

 The simple imputation methods may provide information as part of a 

sensitivity analysis into the sensitivity of results to the assumptions about 

the missing data 

 The influence of the missing data mechanism on the performance of the 

standard simple imputation methods in the simulation study illustrates the 

importance of carefully investigating the missing data mechanism 
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6 Applying Multiple Imputation Methods to Simulated 

Datasets with a Positive Relationship Between Quality 

of Life and Disease-Free Survival and a Positive 

Relationship Between Delayed Chemotherapy and 

Disease-Free Survival 

6.1 Introduction 

Simulation of datasets took place with the aim of investigating the influence of the 

missing data mechanism on the performance of standard imputation methods 

given different combinations of a positive relationship between quality of life and 

DFS and a positive relationship between delayed chemotherapy and DFS.  The 

influence of the missing data mechanism from the method of artificially removing 

data on the performance of standard simple imputation methods is described in 

Chapter 5.  This chapter describes applying standard multiple imputation methods 

to the simulated datasets (see section 5.2). An overview of generating the 

completed simulated datasets following multiple imputation is given in Figure 6.1.  

 

The standard multiple imputation methods applied were: 

i) bootstrapping: subgroups defined by baseline coping score and subgroups 

defined by previous coping score (see section 4.2.3) 

ii) nearest neighbour imputation (see section 4.2.4) 

iii) predictive mean matching (see section 4.2.5) 

iv) pattern mixture models – Curran’s analytical technique (see section 4.2.6) 

 

Similarly to Chapter 5, time-dependent Cox model analysis (see section 3.2.6) 

was performed following standard multiple imputation methods. The technical 

details of the patients included in the time-dependent Cox model analysis are 

described in section 6.2 and the findings from the time-dependent Cox model 

analysis are described in section 6.3. The summary of the chapter is presented in 

section 6.4.   
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Figure 6.1 Overview of Generating Simulated Datasets for Multiple Imputation 

  

Complete simulated datasets 

150 x 4 combinations of βsp and βdel 
 

5 methods of 

artificially 

removing 

coping scores 
 

Simulated datasets with coping scores 

artificially removed 

150 x 4 combinations of βsp and βdel x 5 

methods of removing coping scores 
 

First 50 

simulated 

datasets 

considered 
 

Simulated datasets with coping scores 

artificially removed considered 

50 x 4 combinations of βsp and βdel x 5 

methods of removing coping scores 
 

5 multiple 

imputation 

methods 
 

Completed simulated datasets 

5 methods of multiple imputation x 10 repetitions 

x 50 simulated datasets x 4 combinations of βsp 

and βdel x 5 methods of removing coping scores  
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6.2 Technical Details of Time-Dependent Cox Model Analysis  

Patients Considered in Time-Dependent Cox Model Analysis 

As noted in section 4.2.1, when considering the standard multiple imputation 

methods, the patients with the baseline coping score artificially removed could not 

be considered in the time-dependent Cox model analysis. A monotone missing 

data pattern was created by imputing non-monotone missing coping scores by 

LOCF for the following standard multiple imputation methods:   

i) nearest neighbour imputation (see section 4.2.4) 

ii) predictive mean matching (see section 4.2.5) 

iii) pattern mixture models – Curran’s analytical technique (see section 

4.2.6) 

 

In contrast, patients with a missing baseline coping score artificially removed can 

be considered in bootstrapping: subgroups defined by baseline coping score and 

subgroups defined by previous coping score (see section 4.2.3). 

 

Repetitions of Multiple Imputation  

There are 3000 simulated datasets with coping scores artificially removed (150 x 

4 combinations of βsp and βdel x 5 methods of artificially removing coping scores).  

This makes performing multiple imputation on each of the simulated datasets or 

performing a large number of repetitions of multiple imputation impractical. In 

the context of the multiple imputation in the IBCSG dataset, the efficiency of the 

estimate was high (94%) after 5 repetitions using bootstrapping, subgroups 

defined by baseline coping score (Table 4.2). There was more variation between 

imputed values between simulated datasets with coping scores artificially 

removed than within repetitions of multiple imputation when estimating the 

difference between the imputed coping score and the missing coping score in the 

IBCSG dataset (Table B2.1 and Table B2.2). These were among the 

considerations in the decision to apply 10 repetitions for 50 simulated datasets 

with coping scores artificially removed for each scenario in this chapter (Figure 

6.1).   
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6.3 Findings from Applying Multiple Imputation Methods to 

Simulated Datasets with a Positive Relationship Between 

Quality of Life and Disease-Free Survival and a Positive 

Relationship Between Delayed Chemotherapy and Disease-

Free Survival 

This section describes the findings from the time-dependent Cox model analysis 

of DFS on S_Pacis and delayed chemotherapy stratified by trial for the 4 

combinations of a positive relationship between quality of life and DFS and a 

positive relationship between delayed chemotherapy and DFS following multiple 

imputation in simulated datasets. The results are shown in Appendix F and a 

relationship between quality of life and DFS was found in all the simulated 

completed datasets (column n (%) of the 50x95% CIs for hazard ratio containing 

1, Table F1.1; Table F2.1; Table F3.1; Table F4.1). An overview of the estimate 

of βsp is shown in Figure 6.2 and a summary of results is provided in Table 6.1- 

Table 6.4. 

 

Figure 6.2 A (Weak relationship between delayed chemotherapy and DFS) 

 

  

Appendix%20F.docx
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Figure 6.2 B (Strong relationship between delayed chemotherapy and DFS) 

 

  

Method 1: Higher coping scores have a higher chance of being missing 

Method 2: Lower coping scores have a higher chance of being missing 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 

 

bcs = bootstrapping, subgroups defined by baseline coping score; 

pcs = baseline, subgroups defined by previous coping score; 

pat mix models = pattern mixture models – Curran’s analytic technique; 

pred mean match = predictive mean matching 

 

Figure 6.2 Mean parameter estimate for square root of coping score (S_Pacis) from the 

time-dependent Cox model analysis and 95% confidence interval based on mean standard 

error from 10 repetitions of multiple imputation in 50 simulated datasets. The weak and 

strong relationship between quality of life and disease-free survival is shown in top and 

lower portion of the figure respectively, with the combination of A) weak relationship 

between delayed chemotherapy and disease-free survival; (B) strong relationship between 

delayed chemotherapy and disease-free survival  
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Table 6.1 Summary of Findings from Applying Bootstrapping, Subgroups Defined by Baseline Coping Score to Simulated Datasets with 

Positive Relationship Between Quality of Life and Disease-Free Survival and Positive Relationship Between Delayed Chemotherapy and 

Disease-Free Survival  

Combination of βsp 

and βdel 

Suggestion of poorest 

performance 

Robustness of Estimate   

of βsp 

Power to Find Significance 

of βdel Robustness of Estimate of βdel 

Weak, weak 

βsp=0.1, βdel=-0.165 

Later time periods          

missingness 

βsp generally 

underestimated, bias most 

noticeable when later time 

periods           missingness 

Lowest when higher coping 

scores           missingness 

according to method 5 

Reduction lowest when 

coping scores missing at 

random                                                                     

Trend to overestimate βdel, except 

when higher coping scores          

missingness according to method 

1 

Weak, strong 

βsp=0.1, βdel=-0.195 

Higher coping scores        

.         missingness 

according to method 1 or 

later time periods         

missingness  

βsp generally 

underestimated, bias most 

noticeable when later time 

periods          missingness     

Lowest when higher coping 

scores           missingness 

according to method 1 

 

Trend to underestimate βdel, most 

noticeable when higher coping 

scores          missingness 

according to method 1 

Strong, weak 

βsp=0.4, βdel=-0.165 

Higher coping scores      

.         according to 

method 5 or later time 

periods         missingness 

βsp underestimated, bias 

most extreme when later 

time periods          

missingness   

Lowest when higher coping 

scores           missingness 

according to method 5 or 

later time periods           

missingness    

βdel underestimated, bias most 

extreme when later time periods          

a        missingness  

Strong, strong 

βsp=0.4, βdel=-0.195 

Higher coping scores 

according to method 5          

,        missingness or 

later time periods           

missingness 

βsp underestimated, bias 

most extreme when later 

time periods           

missingness 

Lowest when higher coping 

scores           missingness  

according to method 5 or 

later time periods           

missingness                                                                                    

βdel underestimated, bias most 

extreme when later time periods                       

.         missingness 
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Table 6.2 Summary of Findings from Applying Bootstrapping, Subgroups Defined by Previous Coping Score to Simulated Datasets with 

Positive Relationship Between Quality of Life and Disease-Free Survival and Positive Relationship Between Delayed Chemotherapy and 

Disease-Free Survival 

Combination of βsp 

and βdel 

Suggestion of poorest 

performance 

Robustness of Estimate   

of βsp 

Power to Find Significance 

of βdel Robustness of Estimate of βdel 

Weak, weak 

βsp=0.1, βdel=-0.165 

Later time periods          

missingness 

βsp, generally 

underestimated, bias most 

noticeable when later time 

periods           missingness  

Lowest when higher coping 

scores           missingness 

according to method 5 

Reduction lowest when 

coping scores missing at 

random                                                                     

Trend to overestimate βdel, except 

when higher coping scores          

missingness according to method 

1 

Weak, strong 

βsp=0.1, βdel=-0.195 

Higher coping scores       

.         according to 

method 1 or later time 

periods         missingness 

βsp, generally 

underestimated, bias most 

noticeable when later time 

periods           missingness  

Lowest when higher coping 

scores            missingness 

according to method 1                                                                          

Trend to underestimate βdel, most 

noticeable when higher coping 

scores           missingness 

according to method 1 

Strong, weak 

βsp=0.4, βdel=-0.165 

Higher coping scores        

.        according to 

method 5 or later time 

periods          missingness 

βsp underestimated, bias 

most extreme when later 

time periods          

missingness 

Lowest when higher coping 

scores           according to 

method 5 or later periods     

.         missingness  

βdel underestimated, bias most 

extreme when later coping scores             

.         missingness   

Strong, strong 

βsp=0.4, βdel=-0.195 

Later time periods         

missingness 

 

βsp underestimated, bias 

most extreme when later 

time periods           

missingness 

Lowest when  later time 

periods            missingness                                                                                        

βdel generally underestimated, 

bias most extreme when later    

coping scores           missingness 

 

  



 
 

230 
 

Table 6.3 Summary of Findings from Applying Nearest Neighbour Imputation and Predictive Mean Matching to Simulated Datasets with 

Positive Relationship Between Quality of Life and Disease-Free Survival and Positive Relationship Between Delayed Chemotherapy and 

Disease-Free Survival 

Combination of βsp 

and βdel 

Suggestion of poorest 

performance 

Robustness of Estimate    

of βsp 

Power to Find Significance 

of βdel Robustness of Estimate of βdel 

Weak, weak 

βsp=0.1, βdel=-0.165 

Later time periods          

missingness 

βsp, generally 

underestimated, bias most 

noticeable when later time 

periods           missingness 

Lowest when higher coping 

scores           missingness 

according to method 5 

Reduction lowest when 

coping scores missing at 

random                                                                     

Trend to overestimate βdel, except 

when higher coping scores                

missingness according to method 

1 

Weak, strong 

βsp=0.1, βdel=-0.195 

Higher coping scores or 

later time periods         

missingness 

βsp, generally 

underestimated, bias most 

noticeable when later time 

periods           missingness 

Lowest when higher coping 

scores           missingness 

according to method 1                                                                          

Trend to underestimate βdel, most 

noticeable when higher coping 

scores          missingness  

Strong, weak 

βsp=0.4, βdel=-0.165 

Higher coping scores or 

later time periods          

missingness 

βsp underestimated, bias 

most extreme when later 

time periods           

missingness 

Lowest when higher coping 

scores          missingness 

  

βdel underestimated, bias most 

extreme when higher coping 

scores           missingness            

Strong, strong 

βsp=0.4, βdel=-0.195 

Later time periods         

missingness 

βsp underestimated, bias 

most extreme when later 

time periods           

missingness 

Lowest when higher coping 

scores or later time periods          

.        missingness                                                                                        

Trend to underestimate βdel, most 

noticeable when later coping 

scores           missingness 
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Table 6.4 Summary of Findings from Applying Pattern Mixture Models to Simulated Datasets with Positive Relationship Between Quality of 

Life and Disease-Free Survival and Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Combination of βsp 

and βdel 

Suggestion of poorest 

performance 

Robustness of Estimate   

of βsp 

Power to Find Significance 

of βdel Robustness of Estimate of βdel 

Weak, weak 

βsp=0.1, βdel=-0.165 

Later time periods          

missingness 

βsp, generally 

underestimated, bias most 

noticeable when later time 

periods           missingness 

Lowest when higher coping 

scores           missingness 

according to method 5 

Reduction lowest when 

coping scores missing at 

random                                                                

Trend to overestimate βdel, except 

when higher coping scores           

missingness according to method 

1 

Weak, strong 

βsp=0.1, βdel=-0.195 

Higher coping scores       

.         missingnness or 

later time periods          

missingness 

βsp, generally 

underestimated, bias most 

noticeable when later time 

periods           missingness 

Lowest when higher coping 

scores           missingness 

according to method 1 

Trend to underestimate βdel, most 

noticeable when higher coping 

scores           missingness 

Strong, weak 

βsp=0.4, βdel=-0.165 

Higher coping scores or 

later time periods          

missingness 

βsp underestimated, bias 

most extreme when later 

time periods           

missingness 

Lowest when higher coping 

scores           missingness         

  

βdel underestimated, bias most 

extreme when higher coping 

scores           missingness 

Strong, strong 

βsp=0.4, βdel=-0.195 

Later time periods         

missingness 

βsp underestimated, bias 

most extreme when later 

time periods           

missingness  

Lowest when higher coping 

scores or later coping scores           

.        missingness                                                                                             

Trend to underestimate βdel, most 

noticeable when later coping 

scores          missingnes 
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Similarly to the standard simple imputation methods, the time-dependent Cox 

model analyses of the completed simulated datasets indicates a lack of precision 

in the estimates of βdel and led to a wide range of the mean parameter estimate 

based on 10 repetitions of multiple imputation for each of the 50 simulated 

datasets in each scenario. For example, the range of the mean parameter estimate 

was (-0.4270 to 0.0865) when considering the combination of weak positive 

relationship between quality of life and DFS and weak positive relationship 

between delayed chemotherapy and DFS and when higher coping scores were 

associated with a higher probability of missingness (first row of Table F1.2). The 

imprecision is reflected in the fact that the mean standard error of the parameter 

estimate for delayed chemotherapy was around 0.065 and around 0.068 when 

considering the weak positive relationship (Table F1.2; Table F2.2) and the strong 

positive relationship (Table F3.2; Table F4.2) between quality of life and DFS 

respectively. 

 

In contrast to simple imputation, as previously noted, the standard errors of the 

parameter estimates reflect the uncertainty in the imputed values. The standard 

error of the parameter estimate for S_Pacis increased from ~0.011 (Table 5.1) to 

~0.015 (Table F1.1; Table F2.1) and from ~0.013 (Table 5.1) to ~0.017 (Table 

F3.1; Table F4.1) compared to the complete simulated datasets when considering 

the weak relationship between quality of life and DFS and the strong relationship 

between quality of life and DFS respectively. The relative increases for the 

parameter estimate for S_Pacis are similar when considering both the weak and 

strong relationship between quality of life and DFS. The corresponding values for 

the parameter estimate for delayed chemotherapy were ~0.065 (Table F1.2; Table 

F2.2) and ~0.068 (Table F3.2; Table F4.2) compared to ~0.055 (Table 5.1) in the 

complete simulated datasets respectively.  

 

Overall, the time-dependent Cox model analysis indicated that the 5 standard 

multiple imputation methods did not perform well in this setting. For example, the 

bias in the parameter estimate for S_Pacis was at least 6.5% (Table F1.1; Table 
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F2.1; Table F3.1; Table F4.1). The details on the performance of the individual 

standard multiple imputation methods are given below.  

 

6.3.1 Bootstrapping, Subgroups Defined by Baseline Coping Score 

The parameter estimate for S_Pacis was generally biased towards 0 following 

bootstrapping, subgroups defined by baseline coping score, with the most extreme 

bias when later time periods were associated with a higher probability of 

missingness (Method 3). The bias was large when considering the strong positive 

relationship between quality of life and DFS, generally of 25%. The mean 

parameter estimate for S_Pacis was around 0.29-0.31, compared to 0.4, with a 

mean standard error of ~0.017 (Table F3.1; Table F4.1), with one exception. 

Almost none of the 95% confidence intervals for the parameter estimate from the 

50 completed simulated datasets contained the value of the complete simulated 

dataset when considering the strong positive relationship between quality of life 

and DFS (Table F3.1; Table F4.1). The exception was when later time periods 

were associated with a higher probability of missingness. Here, the bias indicated 

was around 40% (Method 3, Table F3.1; Table F4.1). 

 

As noted, when considering the strong positive relationship between delayed 

chemotherapy and DFS, approximately 12% of the complete simulated datasets 

failed to find a relationship between delayed chemotherapy and DFS (Table 5.1). 

The probability of finding a relationship between delayed chemotherapy and DFS 

was noticeably lower following bootstrapping, subgroups defined by baseline 

coping score, when between 26% and 40% of the completed simulated datasets 

failed to find this relationship (column n (%) of the 50x95% CIs for hazard ratio 

containing 1, Table F2.2; Table F4.2). This probability was jointly lowest when 

there was a strong positive relationship between quality of life and DFS and i) 

later time periods (Method 3) and ii) higher coping scores were associated with a 

higher probability of missingness according to method 5 (Table F4.2).   
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The proportion of complete simulated datasets failing to find a relationship 

between delayed chemotherapy and DFS was higher when considering the weak 

positive relationship between delayed chemotherapy and DFS, approximately 

27% (Table 5.1).  The probability of finding this relationship following 

bootstrapping, subgroups defined by baseline coping score was reduced when 

considering the combination of weak positive relationship between quality of life 

and DFS and weak positive relationship between delayed chemotherapy and DFS. 

The exception was when coping scores were missing at random (Method 4; Table 

F1.2). Between 26% and 36% of the completed simulated datasets failed to find 

this relationship (Table F1.2). The reduction in the probability of finding this 

relationship was much larger when considering the combination of strong positive 

relationship between quality of life and DFS and weak positive relationship 

between delayed chemotherapy and DFS. A high proportion, between 60% and 

68%, of the completed simulated datasets failed to find this relationship between 

delayed chemotherapy and DFS in this case (Table F3.2).  

 

When considering the combination of weak positive relationship between quality 

of life and DFS and weak positive relationship between delayed chemotherapy 

and DFS, the general trend was for the parameter estimate for delayed 

chemotherapy to be further away from 0 following bootstrapping, subgroups 

defined by baseline coping score. The bias was around 3% - 10% (Table F1.2), 

with one exception. The exception was when higher coping scores (lower quality 

of life) were associated with a higher probability of missingness according to 

method 1, when the parameter estimate was robust (Table F1.2). In contrast, the 

parameter estimate for delayed chemotherapy was biased towards 0 when 

considering the combination of weak positive relationship between quality of life 

and DFS and strong positive relationship between delayed chemotherapy and 

DFS. Here, the bias was around 6%-14% (Table F2.2). In both combinations, 

almost all of the 95% confidence intervals for the parameter estimate from the 50 

completed simulated datasets contained the value of the complete simulated 

dataset (Table F1.2; Table F2.2). The bias towards 0 in the parameter estimate for 
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delayed chemotherapy was higher when considering the strong relationship 

between quality of life and DFS, at least 35% and around 15%-30% when 

considering the combination with a weak (Table F3.2) and a strong (Table F4.2) 

relationship between delayed chemotherapy and DFS respectively. The bias was 

most extreme when later time periods were associated with a higher probability of 

missingness (Method 3; Table F3.2 and Table F4.2). 

 

The bias in the parameter estimate for S_Pacis was largest when later time periods 

were associated with a higher probability of missingness for the 4 combinations of 

a positive relationship between quality of life and DFS and a positive relationship 

between delayed chemotherapy and DFS (Method 3, Table F1.1; Table F2.1; 

Table F3.1; Table F4.1). In addition, the number of 95% confidence intervals for 

the parameter estimate from the 50 completed simulated datasets that contained 

the value of the complete simulated dataset was lowest (less than 25%) when 

considering the weak positive relationship between quality of life and DFS 

(Method 3, Table F1.1; Table F2.1). 

   

Bootstrapping, subgroups defined by baseline coping score did not perform as 

well when later time periods were associated with a higher probability of 

missingness compared to other missing data mechanisms. The probability of 

finding a relationship between delayed chemotherapy and DFS was lowest and the 

bias in the parameter estimate for delayed chemotherapy was most extreme for a 

particular combination when higher coping scores (lower quality of life) were 

associated with a higher probability of missingness. The particular combination 

was the combination of weak relationship between quality of life and DFS and 

strong relationship between delayed chemotherapy and DFS (Method 1, Table 

F2.2). Therefore, bootstrapping, subgroups defined by baseline coping score also 

did not perform as well when higher coping scores (lower quality of life) were 

associated with a higher probability of missingness compared to other missing 

data mechanisms when considering this combination. 
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As noted, the bias in the parameter estimate for S_Pacis was large when 

considering the strong positive relationship between quality of life and DFS. In 

addition, a high proportion of the completed simulated datasets failed to find a 

relationship between delayed chemotherapy and DFS. Bootstrapping, subgroups 

defined by baseline coping score did not perform well in this setting. 

  

6.3.2 Bootstrapping, Subgroups Defined by Previous Coping Score 

Though closer to the theoretical parameter value, the parameter estimates of 

S_Pacis had a similar pattern to bootstrapping, subgroups defined by baseline 

coping score (section 6.3.1). The most extreme bias in the parameter estimates of 

S_Pacis was again when later time periods were associated with a higher 

probability of missingness (Method 3, Table F1.1; Table F2.1; Table F3.1; Table 

F4.1). The bias remained large when considering the strong positive relationship 

between quality of life and DFS, generally of 18%. Here, the mean parameter 

estimate for S_Pacis was around 0.33-0.35, compared to 0.4, with a mean 

standard error of ~0.017 (Table F3.1; Table F4.1), with the exception noted.  

 

The probability of finding a relationship between delayed chemotherapy and DFS 

was also always reduced following bootstrapping, subgroups defined by previous 

coping score, with the exception noted. This probability had a similar pattern to 

bootstrapping, subgroups defined by baseline coping score, but was generally 

higher (column n (%) of the 50x95% CIs for hazard ratio containing 1, Table 

F1.2; Table F2.2; Table F3.2; Table F4.2). The reduction in this probability was 

again particularly noticeable when considering the combination of strong positive 

relationship between delayed chemotherapy and DFS and weak positive 

relationship between delayed chemotherapy and DFS (Table F3.2). 

 

When considering the weak positive relationship between quality of life and DFS, 

the parameter estimate for delayed chemotherapy also had a similar pattern to 

bootstrapping, subgroups defined by baseline coping score. The bias was around 

5% to 12% further away from 0 in combination with the weak positive 
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relationship between delayed chemotherapy and DFS (Table F1.2), with the 

exception noted. Though the bias was of a similar magnitude when considering 

the combination with the strong positive relationship between delayed 

chemotherapy and DFS, around 4% to 13%, it was in the opposite direction, 

towards 0 (Table F2.2). The parameter estimate was closest to the theoretical 

value when coping scores were missing at random (Method 4, Table F2.2).  

 

6.3.3 Nearest Neighbour and Predictive Mean Matching 

The parameter estimates and mean standard errors were similar following both 

nearest neighbour imputation and predictive mean matching. This is as expected 

given that i) the imputation methods follow the same initial steps and ii) a 

monotone missing data pattern was created by imputing non-monotone missing 

coping scores by LOCF. The parameter estimates of S_Pacis was generally biased 

towards 0, with the most extreme bias when later time periods were associated 

with a higher probability of missingness (Method 3, Table F1.1; Table F2.1; Table 

F3.1; Table F4.1). When considering the strong positive relationship between 

quality of life and DFS, the parameter estimates were closer to the theoretical 

parameter value than following bootstrapping (section 6.3.1 and section 6.3.2). 

However, the bias remained large, generally 14%. The mean parameter estimate 

for S_Pacis was around 0.34 – 0.35, compared to 0.4, with a mean standard error 

of ~0.017 (Table F3.1; Table F4.1), with the same exception noted as for 

bootstrapping.       

 

The probability of finding a relationship between delayed chemotherapy and DFS 

was also almost always reduced following the nearest neighbour imputation and 

predictive mean matching. This probability was generally higher than following 

bootstrapping but had a similar pattern (column n (%) of the 50x95% CIs for 

hazard ratio containing 1, Table F1.2; Table F2.2; Table F3.2; Table F4.2). The 

reduction in this probability was again particularly noticeable when considering 

the combination of strong positive relationship between quality of life and weak 

positive relationship between delayed chemotherapy and DFS. A high proportion, 
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between 44% and 64%, of the completed datasets failed to find a relationship 

between delayed chemotherapy and DFS in this case (Table F3.2). 

 

When considering the weak positive relationship between quality of life and DFS, 

the parameter estimate for delayed chemotherapy had a similar pattern to 

bootstrapping. The bias was around 8% to 13% further away from 0 in 

combination with the weak positive relationship between delayed chemotherapy 

and DFS (Table F1.2), with the exception noted as for bootstrapping. The 

parameter estimates were further away from the theoretical parameter value than 

following bootstrapping. In contrast, when considering the combination with the 

strong positive relationship between delayed chemotherapy and DFS, the 

parameter estimates were generally closer to the theoretical parameter value than 

following bootstrapping. Here, the bias was around 5% to 13% towards 0 (Table 

F2.2). 

  

6.3.4 Pattern Mixture Models - Curran’s Analytical Technique 

The parameter estimates and mean standard errors following imputation by 

pattern mixture models – Curran’s analytical technique (Appendix F) were similar 

to those following both nearest neighbour imputation and predictive mean 

matching (section 6.3.3). This may be influenced by the fact that in applying these 

3 standard imputation methods, a monotone missing data pattern was created by 

imputing non-monotone missing coping scores by LOCF. 

  

6.4 Summary of Applying Multiple Imputation Methods to 

Simulated Datasets 

The time-dependent Cox model analysis of completed simulated datasets in 

Chapter 4 suggested that the performance of the standard simple imputation 

methods was influenced by the missing data mechanism except when considering 

the combination of weak positive relationship between quality of life and DFS and 
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weak positive relationship between delayed chemotherapy and DFS. This chapter 

investigated the performance of the standard multiple imputation methods.  

 

As noted, a relationship between quality of life and DFS was found in all the 

completed simulated datasets. However, the fact that the 5 standard multiple 

imputation methods led to i) a biased parameter estimate for S_Pacis closer to 0 

than the theoretical parameter value and ii) a reduction in the probability of 

finding a relationship between delayed chemotherapy and DFS in almost all cases 

indicates that they did not perform well (section 6.3). The bias of the parameter 

estimate for S_Pacis was most extreme when later time periods were associated 

with a higher probability of missingness (Method 3). This most extreme bias was 

higher following bootstrapping than following the other multiple imputation 

methods, around 30% to 40% compared to around 17% to 27% (Table F1.1; Table 

F2.1; Table F3.1; Table F4.1). It was also noticeable that, as with simple 

imputation, there was imprecision in the parameter estimate for delayed 

chemotherapy (section 6.3).   

 

The standard multiple imputation methods did not perform well in the context of 

the simulation study. This is influenced by the fact i) for two of the scenarios the 

simulated datasets have informative missing data and ii) all the simulated datasets 

have a general missing data pattern. While none of the standard multiple 

imputation methods could be recommended for the scenarios considered in the 

simulation study, there were differences in the bias seen in the parameter estimate 

of S_Pacis. This bias was smaller following pattern mixture models - Curran’s 

analytical technique than following the other multiple imputation methods when 

lower coping scores (higher quality of life) was associated with a higher 

probability of missingness (Method 2).The bias in the parameter estimate for 

S_Pacis was largest following bootstrapping, subgroups defined by baseline 

coping score (Figure 6.2). The probability of finding a relationship between 

delayed chemotherapy and DFS was generally lowest following bootstrapping, 

subgroups defined by baseline coping score (section 6.3).        
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The largest influence of the performance of the standard multiple imputation 

methods was the combination of a positive relationship between quality of life and 

DFS and a positive relationship between delayed chemotherapy and DFS. The 

relative bias in the parameter estimates of S_Pacis was lower when there was a 

weak relationship between quality of life and DFS than when there was a strong 

relationship between quality of life and DFS (Table F1.1 and Table F2.1 vs Table 

F3.1 and Table F4.1). The probability of finding a relationship between delayed 

chemotherapy and DFS was lowest when considering the combination of strong 

relationship between quality of life and DFS and weak relationship between 

delayed chemotherapy and DFS (Table F3.2). There was a trend for parameter 

estimates of delayed chemotherapy to be further away from 0 than the theoretical 

parameter value when considering the combination of weak relationship between 

quality of life and DFS and weak relationship between delayed chemotherapy and 

DFS (Table F1.2), with the exception noted (section 6.3). In contrast, the trend 

was for the parameter estimates of delayed chemotherapy to be closer to 0 when 

considering the other combinations (Table F2.2; Table F3.2; Table F4.2).  

 

The performance of the standard multiple imputation methods was influenced by 

the missing data mechanism. The bias in the parameter estimate for S_Pacis was 

largest when later time periods were associated with a higher probability of 

missingness. The parameter estimate for delayed chemotherapy could only be 

considered robust, in one combination, when higher coping scores (lower quality 

of life) were associated with a higher probability of missingness according to 

method 1. The applicable combination was the combination of weak relationship 

between quality of life and DFS and weak relationship between delayed 

chemotherapy and DFS (Table F1.2). In the remaining combinations, the bias in 

the parameter estimate for delayed chemotherapy was lowest when coping scores 

were missing at random (Method 4, Table F2.2; Table F3.2; Table F4.2). The fact 

the that the standard multiple imputation methods did not perform well and that 

the performance of the standard multiple imputation methods was influenced by 

the missing data mechanism further illustrates the importance of carefully 
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investigating the missing data mechanism when performing imputation 

techniques. 

 

The standard errors of the parameter estimates of S_Pacis and delayed 

chemotherapy following standard multiple imputation methods were larger than 

from the complete simulated datasets, reflecting the uncertainty in the imputed 

values (section 6.3). This is the advantage of the standard multiple imputation 

methods compared to the standard simple imputation methods, where the standard 

error did not increase. However, bias in the parameter estimate for S_Pacis was 

more apparent following the standard multiple imputation methods than the 

standard simple imputation methods. For example, the bias was around 6% to 

12% (Table E3.1; Table E4.1) and generally of 25% (Table F3.1; Table F4.1) 

following imputation by LOCF and by bootstrapping, subgroups defined by 

baseline coping score respectively when considering the strong positive 

relationship between quality of life and DFS. The parameter estimate for S_Pacis 

was robust following the standard simple imputation methods (Table E1.1; Table 

E2.1) but were generally biased towards 0 (Table F1.1; Table F2.1) following the 

standard multiple imputation methods when considering the weak positive 

relationship between quality of life and DFS. Considering the bias in the 

parameter estimates, there was no indication that the standard multiple imputation 

methods were more useful than the standard simple imputation methods in the 

context of the simulated datasets. 

 

As noted, the square root of the coping score in the time-dependent Cox model 

analysis of the IBCSG dataset and simulated completed datasets in Chapters 3 – 6 

was an example of a missing explanatory variable. Missing coping scores were 

imputed by standard imputation methods before the time-dependent Cox model 

analysis. The most appropriate way of dealing with missing data may not be the 

same for a missing explanatory variable as a missing outcome. The influence of a 

missing outcome variable will be investigated in Chapter 7.  
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Implications of Findings from Applying Multiple Imputation Methods 

 Multiple imputation methods generally assume the data are MAR; pattern 

mixture models were developed to analyse informative missing data  

 A monotone missing data pattern was required to implement pattern 

mixture models – Curran’s analytical technique and the remaining 

standard multiple imputation techniques apart from bootstrapping  

 In the context of the simulation study, the standard multiple imputation 

methods did not perform well; this is influenced by the fact 

i) for two of the scenarios the simulated datasets have informative 

missing data 

ii) all the simulated datasets have a general missing data pattern  

 The bias of the parameter estimate for S_Pacis was most extreme when 

later time periods were associated with a higher probability of missingness 

 The influence of the missing data mechanism on the performance of the 

standard multiple imputation methods in the simulation study again 

illustrates the importance of carefully investigating the missing data 

mechanism 
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7 Cardiac Safety in the HERA trial 

Trastuzumab treatment had been shown to benefit patients with metastatic breast 

cancer; however, it is associated with congestive heart failure (CHF) (Slamon et 

al. 2001; Vogel et al. 2002; Baselga et al. 2005; Marty et al. 2005). Therefore, in 

the HERA trial, which investigated trastuzumab treatment in early stage breast 

cancer, only patients with healthy heart function were eligible and cardiac 

function was monitored in all patients.  Symptomatic or asymptomatic CHF was a 

cardiac endpoint. As part of the cardiac monitoring, the patients’ left ventricular 

ejection fraction (LVEF) was assessed throughout the study and the patients’ 

LVEF assessments. The missing LVEF values give an example of a missing 

outcome variable in analysis of the change from baseline LVEF over time and 

repeated measures analysis of the LVEF values over time. 

 

The initial aim of further cardiac analysis described in this chapter was to 

investigate the influence of missing LVEF assessments on change in LVEF from 

baseline. Then, to investigate the relationship between a noticeable LVEF drop 

from baseline and a cardiac endpoint and to model the patients’ LVEF values over 

time.  First, the background to the HERA trial is described in section 7.1. The 

status of LVEF assessments and whether the LVEF assessments were missing at 

random is described in section 7.2. Multiple imputation was applied to the missing 

LVEF values in section 7.3 in order to assess the impact of missing LVEF values 

on the change in LVEF from baseline. The observed and imputed LVEF values 

were considered in regression models investigating the change in LVEF from 

baseline at Week 13 as a risk factor for later developing a cardiac endpoint. The 

occurrence of a noticeable drop in LVEF from baseline was used as a time-

dependent covariate in a time-dependent Cox model for time to a cardiac endpoint 

or competing event of a DFS event in section 7.4. This time-dependent covariate 

was based on i) observed LVEF values only and ii) observed and imputed LVEF 

values.  Next, repeated measures analysis of LVEF values over time was 
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performed using a mixed model with baseline information as covariates in section 

7.5. The summary of the chapter is presented in section 7.6. 

 

7.1 Description of the HERA Trial 

The description of the HERA trial in this section begins with the background 

(section 7.1.1) and study design (section 7.1.2). The definitions of cardiac 

endpoints (section 7.1.3) and administration of trastuzumab (section 7.1.4) are 

described. The published analysis on efficacy and cardiac safety, with statistical 

analyses performed by the author, is summarised in section 7.1.5. Lastly, the 

further cardiac analysis described in this chapter is outlined in section 7.1.6.  

 

7.1.1 Background to the HERA Trial 

In breast cancer patients, overexpression of the HER2 protein, amplification of the 

HER2 gene, or both, are associated with aggressive tumours (Slamon et al. 1987; 

Slamon et al. 1989).  The HER2 gene is involved in controlling the growth and 

survival of cells (Yarden et al. 2001; Gschwind et al. 2004). Trastuzumab is an 

antibody against HER2 which has been shown to benefit patients with HER2-

positive metastatic breast cancer when administered alone (Vogel et al. 2002; 

Baselga et al. 2005) or in combination of chemotherapy (Slamon et al. 2001; 

Marty et al. 2005). 

 

Trastuzumab is not associated with the adverse events, such as nausea and 

vomiting, which often occur during chemotherapy treatment (Bell 2002). 

However, occasionally hypersensitivity to trastuzmab is seen, generally during or 

immediately after the first infusion. Trastuzumab treatment is associated with 

congestive heart failure (CHF) and cardiac dysfunction. Therefore, in the HERA 

trial cardiac function was prospectively monitored in all patients. The HERA trial 

investigated whether trastuzumab treatment was effective as adjuvant treatment 

for HER2-positive breast cancer if used after the completion of the primary 

treatment. 
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7.1.2 Study Design  

The HERA trial is an international, intergroup, open-label, randomised trial 

considering women with HER2-positive early-stage breast cancer who completed 

primary therapy of surgery, radiotherapy if indicated and a minimum of four 

courses of chemotherapy given preoperatively (neo-adjuvant), postoperatively 

(adjuvant) or both. The HER2-positive status of the breast cancer tumour was 

centrally confirmed before randomisation. Patients were randomised between 

three treatment groups on a 1:1:1 basis; observation only, 1 year of trastuzumab 

treatment intravenously with one loading dose at 8 milligram/kilogram (mg/kg) 

then at a dose of 6 mg/kg every three weeks; and 2 years of trastuzumab treatment 

intravenously also with one loading dose at 8 mg/kg then at a dose of 6 mg/kg 

every three weeks. A minimisation procedure according to Pocock and Simon 

(1975) was used with the stratification factors of nodal status, type of 

chemotherapy, hormone receptor status and intention to use endocrine therapy, 

age at randomisation and region of the world.  

 

The primary endpoint was DFS, defined as the time from randomisation to the 

first occurrence of a DFS event: any local, regional or distant recurrence of breast 

cancer, the development of contralateral breast cancer, including ductal carcinoma 

in situ but not lobular carcinoma in situ; second non-breast malignant disease 

other than basal-cell or squamous-cell carcinoma of the skin or carcinoma in situ 

of the cervix; or death from any cause without documentation of a cancer-related 

event. Secondary endpoints included overall survival, time to distant recurrence, 

time to recurrence and cardiac safety.  Overall survival was defined as time from 

randomisation to death due to any cause.  

 

The trial involved the collaboration of 17 Breast International Group (BIG) 

groups, 9 other cooperative groups, 91 independent sites and the pharmaceutical 

sponsor, Roche. The institutional review board at each of the 478 sites in 39 

countries approved the trial protocol. All patients gave informed consent.  
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Eligibility Criteria 

Eligible patients had histologically confirmed, completely excised invasive breast 

cancer with HER2 positive status as assessed locally and confirmed centrally. The 

oestrogen receptor status of the tumour must be known. Eligible patients had 

node-positive disease or node-negative disease if the pathological tumour size was 

larger than 1cm. Adjuvant chemotherapy, neo-adjuvant chemotherapy or both 

from an approved list consisting of at least four cycles was completed before 

randomisation. Patients with chemotherapy treatment with anthracyclines above a 

maximum cumulative dose were excluded. Patients given stem-cell support for 

chemotherapy treatment were excluded. Patients must have acceptable baseline 

hepatic, renal and bone marrow function.  

 

Adjuvant endocrine therapy, most commonly tamoxifen, was given after 

chemotherapy to women with hormone receptor positive disease unless 

contraindicated. During the trial, a protocol amendment allowed aromatase 

inhibitors to be given as endocrine therapy instead of, or in sequence with, 

tamoxifen.  Patients were required to use contraception, excluding hormone-based 

methods, if indicated. 

 

Patients were excluded if they had distant metastases, a previous invasive breast 

carcinoma, or a neoplasm not involving the breast, except for curatively treated 

basal-cell or squamous-cell carcinoma of the cervix. Patients with clinical stage 

T4 tumours, including inflammatory breast cancers or involvement of 

supraclavicular nodes, were excluded. Patients with suspicious internal mammary 

nodes were excluded unless radiotherapy was given to the internal mammary 

nodes. Patients with prior mediastinal irradiation (except internal mammary node 

irradiation for primary breast cancer) were excluded. Patients with chemotherapy 

treatment with anthracyclines above a maximum cumulative dose were excluded. 

Patients given stem-cell support for chemotherapy treatment were excluded. 
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Only patients with a normal baseline LVEF of 55% or more measured by 

echocardiography or multiple-gated acquisition (MUGA) scan after completion of 

chemotherapy and radiotherapy were eligible. Patients with a history of 

documented CHF, coronary heart disease (angina pectoris requiring antianginal 

medication or transmural infarction on ECG), uncontrolled hypertension (blood 

pressure systolic > 180 mmHg or diastolic > 100 mmHg), high-risk arrhythmias 

or clinically significant valvular disease were excluded. 

 

Follow-up Procedures   

All patients followed the same schedule of follow-up visits, which required the 

recording of symptoms, side effects (graded according to the National Cancer 

Institute Common Toxicity Criteria [NCI-CTC] version 2.0), and findings on 

clinical examination every three months for the first two years, with haematologic 

and chemistry studies performed every six months. From year 3 to year 10 after 

randomisation, these assessments were scheduled to occur annually. Annual chest 

radiography was required to year 5 and annual mammography to year 10. 

 

Cardiac Monitoring  

A cardiac questionnaire, physical examination, ECG and an assessment of LVEF 

by echocardiography or MUGA scan were performed in all patients at baseline, 3, 

6, 9, 12, 18, 24, 30, 36 and 60 months after randomisation. Among the first 900 

patients randomised, echocardiograms up to six months (the first three LVEF 

assessments) were reviewed by a core laboratory blinded to treatment group as a 

quality control measure and feedback to the site was given where necessary. The 

results of the review of echocardiograms by the core laboratory were presented to 

the Independent Data Monitoring Committee (IDMC). Three pre-specified interim 

cardiac safety analyses were performed after 300, 600 and 900 patients were 

treated or observed for at least six months. As part of cardiac monitoring, the 

patients’ LVEF assessments were analysed by summarising the change from 

baseline over time. 
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7.1.3 Cardiac Definitions 

Cardiac safety and tolerability of trastuzumab were assessed on the basis of pre-

specified cardiac endpoints, which must take place between randomisation and the 

start date of new therapy for recurrent disease. Cardiac death was defined as death 

definitely due to cardiac failure, myocardial infarction or documented arrhythmia, 

or probable cardiac death within 24 hours of a cardiac event. A significant LVEF 

drop was defined as an absolute decline of at least 10 percentage points from 

baseline LVEF and to below a value of 50% identified by MUGA scan or 

echocardiogram. Severe CHF was defined as New York Heart Association 

(NYHA) class III or IV, confirmed by a cardiologist and a significant LVEF drop. 

Symptomatic CHF was defined as symptomatic CHF confirmed by a cardiologist 

and a significant LVEF drop. Confirmed significant LVEF drop was defined as an 

asymptomatic (NYHA class I) or mildly symptomatic (NYHA class II) significant 

LVEF drop, unless the next subsequent LVEF assessment indicated a return to 

levels that did not meet the definition of a significant LVEF drop; or as identified 

by the treatment unblinded Cardiac Advisory Board. A repeat LVEF assessment 

was to be performed approximately 3 weeks after the first documented LVEF 

drop. The primary cardiac endpoint of the trial was cardiac death or severe CHF. 

The secondary cardiac endpoint of the trial was confirmed significant LVEF drop. 

 

7.1.4 Administration of Trastuzumab 

Trastuzumab was administered intravenously over a 90-minute period at all doses. 

Patients were closely observed for at least six hours after the start of the first 

infusion of trastuzumab, a loading dose of 8 mg/kg. Subsequent maintenance 

doses were 6 mg/kg every three weeks. Trastuzumab was permanently 

discontinued in patients who experienced severe CHF (a primary cardiac 

endpoint) and heart failure treatment was recommended. If the patient reached a 

confirmed significant LVEF drop (a secondary cardiac endpoint) trastuzumab was 

permanently discontinued. In patients who reached a significant LVEF drop, 

trastuzumab was temporarily suspended and a repeat LVEF assessment performed 
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three weeks later. If the repeat LVEF assessment indicated a return to levels that 

did not meet the criteria for significant LVEF drop, then trastuzumab was 

resumed. 

  

7.1.5 Published Statistical Analysis 

Randomisation of 4482 patients was planned to detect a 23 percent relative 

reduction in the risk of DFS event with 80% power, with a two-sided significance 

level of 0.025 for each pairwise comparison of 1 year trastuzumab vs observation 

and 2 years trastuzumab vs observation. A total of 951 DFS events were required 

for the final analysis. One interim efficacy analysis was planned after 475 DFS 

events, with a sequential plan according to the O’Brien-Fleming boundary as 

implemented by Lan and DeMets (1983). Each of these pair wise comparisons 

was made according to the method of Holm (1979) so that the overall trial-wide 

alpha level was 0.05. The significance level for the interim efficacy analysis was 

0.002. 

 

The null hypothesis was tested with unstratified log-rank tests (two-sided) 

following a step-down adjustment procedure of the Bonferroni method as 

proposed by Holm. In this procedure the testing is conducted in decreasing order 

of significance. The smallest of the p-values is tested at significance level alpha/2.  

If the corresponding hypothesis is rejected then the second p-value is be tested at 

the level of alpha.  Efficacy analyses were conducted according to the intent-to-

treat principle. Log-rank tests for time-to-event endpoints provide two-sided p-

values. Kaplan-Meier curves were presented. Cox proportional hazards model 

analysis was used to estimate hazard ratios and 95% confidence intervals. A 

stratified log-rank test was not part of the primary analysis of DFS described in 

the protocol and not part of the publications.  

 

The interim efficacy analysis after 475 DFS events showed a highly significant 

improvement of DFS for patients who were randomised to both 1 year 

trastuzumab and 2 years trastuzumab compared with observation. The IDMC 
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recommended the release of the 1 year trastuzumab vs observation results. The 

detailed efficacy results for 1 year trastuzumab vs observation with a median 

follow-up of 1 year were published (Piccart-Gebhart et al. 2005). Follow-up for 

the 1 year trastuzumab vs 2 years trastuzumab group continued and details of the 

2 years trastuzumab group were not published. Subsequently, manuscripts 

detailing the cardiac safety (Suter et al. 2007; Procter et al. 2010; de Azambuja et 

al. 2014) and efficacy results with longer median follow-up and details of the 2 

year trastuzumab group (Goldhirsch et al. 2013) were published. At the 

completion of follow-up, 10 years after the randomisation of the last patient, 

established benefit of 1 year trastuzumab vs observation was shown and 

cardiotoxicity remained low (Jackisch et al. 2015).  

 

7.1.6 Further Cardiac Analysis 

The clinical cut-off date for the further cardiac analysis described in this chapter 

was 29th March 2005. Data were available for 3386 patients randomised between 

December 2001 and March 2005; 1693 were randomised to observation and 1693 

were randomised to 1 year trastuzumab. The safety analysis population groups 

were defined by whether or not a patient received trastuzumab before disease 

recurrence. There were 19 patients randomised to 1 year trastuzumab who did not 

receive any trastuzumab before recurrence and 4 patients randomised to 

observation who received at least one dose of trastuzumab before recurrence. 

Therefore, there were 1678 patients in the trastuzumab safety analysis population 

group and 1708 patients in the observation safety analysis population group.  

 

The further cardiac analysis had three aims. These were to i) investigate the 

influence of missing LVEF assessments on the change in LVEF from baseline 

(section 6.3) ii) investigate the relationship between a noticeable LVEF drop from 

baseline and a cardiac endpoint (section 6.4) and iii) to model the five LVEF 

values from Week 13 up to Week 103/Month 24 (section 6.5). The change from 

baseline was analysed by i) summarising the change in LVEF from baseline over 

time and ii) regression models to investigate if, for patients in the trastuzumab 
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group, the change in LVEF from baseline at Week 13 was related to later 

development of a cardiac endpoint. The further cardiac analysis was performed in 

SAS. 

  

When investigating the relationship between the occurrence of an LVEF drop 

greater than 5 LVEF points from baseline and later development of a cardiac 

endpoint, the LVEF values throughout the study were considered. This means that 

a time-dependent Cox model was appropriate. As a cardiac endpoint must occur 

before the start of new therapy for recurrent disease, the occurrence of a DFS 

event was a competing risk (see section 1.5). The cause-specific hazards of a 

cardiac endpoint and the cause-specific hazards of a DFS event from the time-

dependent Cox model analysis were calculated. The five LVEF values from Week 

13 up to Week 103/Month 24 were modelled by safety analysis population group 

using a mixed model with the stratification factors and the baseline LVEF and 

Eastern Cooperative Oncology Group (ECOG) performance score as covariates.  

 

The further cardiac analysis began by investigating if the assumption that the 

LVEF values are MAR was reasonable (section 7.2). The impact of missing 

LVEF values on the change in LVEF from baseline was considered by multiple 

imputation of the missing LVEF values by bootstrapping, subgroups defined by 

baseline LVEF and safety analysis population group (section 7.3). It was also 

considered by defining the time-dependent covariate of the occurrence of an 

LVEF drop greater 5 LVEF points in the time-dependent Cox model analysis 

based on observed LVEF values and imputed LVEF values (section 7.4). There 

was no benefit found from imputing LVEF values. 
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7.2 LVEF Assessments in the HERA Trial 

7.2.1 Percentage of Missing LVEF Assessments 

The baseline LVEF value was measured at the screening visit. Out of the 3386 

patients all except 3 had a baseline LVEF value. There were 31 patients with 

baseline LVEF of less than 55%, a protocol violation. The status of LVEF 

assessments by safety analysis population group (see section 7.1.6) is shown 

below in Table 7.1: 

 

Table 7.1 Status of LVEF Assessments by Visit and Safety Analysis Population Group 

Screening

Week 

13

Week 

25

Week 

52

Week 79/ 

Month 18

Week 103/ 

Month 24

Month 

30

Month 

36

Observed

Trastuzumab 1677 1586 1454 1033 595 266 65 4

Observation 1706 1503 1383 931 535 251 65 2

All patients 3383 3089 2837 1964 1130 517 130 6

Missing

Trastuzumab 1 45 64 69 72 66 25 4

Observation 2 109 91 89 68 49 19 6

All patients 3 154 155 158 140 115 44 10

Not reached

Trastuzumab 0 26 114 490 886 1201 1433 1513

Observation 0 27 114 468 824 1101 1307 1381

All patients 0 53 228 958 1710 2302 2740 2894

Post-recurrence

Trastuzumab 0 10 25 50 79 90 93 95

Observation 0 22 51 114 159 171 179 179

All patients 0 32 76 164 238 261 272 274

Lost to follow-up

Trastuzumab 0 11 18 25 29 29 31 31

Observation 0 47 61 85 94 100 100 100

All patients 0 58 79 110 123 129 131 131

Dead

Trastuzumab 0 0 3 11 17 26 31 31

Observation 0 0 8 21 28 36 38 40

All patients 0 0 11 32 45 62 69 71

Total

Trastuzumab 1678 1678 1678 1678 1678 1678 1678 1678

Observation 1708 1708 1708 1708 1708 1708 1708 1708

All patients 3386 3386 3386 3386 3386 3386 3386 3386  
LVEF = left ventricular ejection fraction  
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Considering the LVEF assessments that were expected, the percentage of missing 

LVEF values was low (2.8% [45/1631] in the trastuzumab group and 6.8% 

[109/1612] in the observation group at Week 13 and 6.3% [69/1102] in the 

trastuzumab group and 8.8% [89/1020] in the observation group at Week 52; 

Table 7.1). The percentage of missing LVEF values increased across time, and the 

missing LVEF values have a general missing data pattern. Among the 779 

missing LVEF assessments (Table 7.1), approximately half had an expected date 

between January and March 2005. For approximately 75% of the missing LVEF 

assessments with such an expected date, the value of the LVEF assessment was 

observed in later databases.   

 

As expected, the status of LVEF assessments was not the same for both safety 

analysis population groups. The number of patients lost to follow-up is higher in 

the observation group compared to the trastuzumab group. The number of patients 

with recurrence of disease was higher in the observation group compared to the 

trastuzumab group (Table 7.1). Therefore the number of observation patients 

expected to have an LVEF assessment at each visit was lower than the number of 

trastuzumab patients. 

 

7.2.2 Missing at Random vs Informative Missing Data 

It might be expected that the status of LVEF assessments was related to DFS or 

whether the patient had a severe or life-threatening adverse event. DFS for 

patients where the LVEF value was expected was compared in each safety 

analysis population group by the status of LVEF assessment at each visit in Table 

7.2. Visits up to Week 79/Month 18 were considered due to the low number of 

patients at risk of a DFS event beyond the subsequent visit at Week 103/Month 

24. The 2-year DFS rate and 95% confidence interval was calculated for these 

cohorts. The null hypothesis that DFS was the same among patients in the same 

safety analysis population group with an observed and with a missing LVEF value 

at a particular visit was tested using a log-rank test. 
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Table 7.2 Summary of Disease-Free Survival by Safety Analyses Population Group and 

Status of LVEF Assessment 

Visit

Status of 

LVEF 

Assessment

Number of 

Patients

Number of 

Patients 

with a DFS 

Event

Percentage 

of Patients 

with a DFS 

Event

2-year DFS 

rate (%)               

(95% CI) p-Value

Week 13 Observed 1586 116 7.3 86.2 (83.4, 89.1) 0.734

Week 13 Missing 45 1 2.2 95.2 (86.1, 100)

Week 25 Observed 1454 98 6.7 87.3 (84.4,90.1) 0.737

Week 25 Missing 64 1 1.6 94.1 (82.9, 87.1)

Week 52 Observed 1033 64 6.2 89.9 (87.1, 92.6) 0.683

Week 52 Missing 69 2 2.9 85.2 (64.3, 100)

Week 79/ 

Month 18 Observed 595 28 4.7 94.0 (91.4, 96.5) 0.216

Week 79/ 

Month 18 Missing 72 3 4.2 85.9 (71.0, 100)

Visit

Status of 

LVEF 

Assessment

Number of 

Patients

Number of 

Patients 

with a DFS 

Event

Percentage 

of Patients 

with a DFS 

Event

2-year DFS 

rate (%)               

(95% CI) p-Value

Week 13 Observed 1503 186 12.4 79.4 (76.3, 82.5) 0.299

Week 13 Missing 109 11 10.1 79.8 (68.0, 91.7)

Week 25 Observed 1383 157 11.4 81.1 (78.0, 84.3) 0.314

Week 25 Missing 91 3 3.3 89.6 (77.0, 100)

Week 52 Observed 931 82 8.8 86.6 (83.5, 89.8) 0.247

Week 52 Missing 89 2 2.3 93.9 (85.7, 100)

Week 79/ 

Month 18 Observed 535 29 5.4 93.2 (90.5, 96.0) 0.516

Week 79 / 

Month 18 Missing 68 3 4.4 96.0 (88.3, 100)

Trastuzumab

Observation

 

LVEF = left ventricular ejection fraction 

 

Of note, there was a small percentage of patients with a DFS event at each visit. 

The number of patients with a DFS event was particularly small among patients 

with a missing LVEF assessment (Table 7.2). The uncertainty in the Kaplan-

Meier estimates for the cohorts with a missing LVEF assessment is reflected in 

the wide 95% confidence interval for the 2-year DFS rate. These 95% confidence 

intervals included the estimated 2-year DFS rate among the corresponding cohort 

with an observed LVEF value (Table 7.2). The p-values from the log-rank test 
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were not significant and were not adjusted for multiple testing (Table 7.2). While 

the percentage of patients with a DFS event was numerically smaller among 

patients with a missing LVEF assessment, there was no suggestion that the status 

of LVEF assessments was related to DFS.  

 

A logistic regression model was used to investigate if the status of LVEF value 

was related to whether the patient had a severe or life-threatening adverse event 

for each safety population group. Here, the number of LVEF assessments at Week 

103/Month 24 was sufficient for this visit also to be included. Any severe or life-

threatening adverse event reported was considered. The results from the logistic 

regression model analysis are shown in Table 7.3:  
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Table 7.3 Occurrence of at Least One Severe or Life-Threatening Adverse Event as Risk 

Factor for Missing LVEF Assessment by Safety Analysis Population Group 

Visit

Safety 

Analysis 

Population 

Arm

Status of Risk 

Factor

Number 

of 

Patients Incidence Odds Ratio

95% 

Confidence 

Interval for 

Odds Ratio

Week 13 Trastuzumab

At least one severe 

or life-threatening 

adverse event 153 6 ( 3.9%) 1.51 (0.63, 3.62)

Week 13 Trastuzumab

No severe or life-

threatening 

adverse events 1478 39 ( 2.6%) Reference

Week 13 Observation

At least one severe 

or life-threatening 

adverse event 88 1 ( 1.1%) 0.15 (0.02, 1.09)

Week 13 Observation

No severe or life-

threatening 

adverse events 1524 108 ( 7.1%) Reference

Week 25 Trastuzumab

At least one severe 

or life-threatening 

adverse event 147 6 ( 4.1%) 0.96 (0.41, 2.27)

Week 25 Trastuzumab

No severe or life-

threatening 

adverse events 1371 58 ( 4.2%) Reference

Week 25 Observation

At least one severe 

or life-threatening 

adverse event 85 1 ( 1.2%) 0.21 (0.03, 1.56)

Week 25 Observation

No severe or life-

threatening 

adverse events 1389 73 ( 5.3%) Reference  

LVEF = left ventricular ejection fraction 
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Table 7.3 Occurrence of at Least One Severe or Life-Threatening Adverse Event as Risk 

Factor for Missing LVEF Assessment by Safety Analysis Population Group (continued) 

Visit

Safety 

Analysis 

Population 

Arm

Status of Risk 

Factor

Number 

of 

Patients Incidence Odds Ratio

95% 

Confidence 

Interval for 

Odds Ratio

Week 52 Trastuzumab

At least one severe 

or life-threatening 

adverse event 114 10 ( 8.8%) 1.51 (0.75, 3.05)

Week 52 Trastuzumab

No severe or life-

threatening 

adverse events 988 59 ( 6.0%) Reference

Week 52 Observation

At least one severe 

or life-threatening 

adverse event 64 6 ( 9.4%) 1.09 (0.46, 2.6)

Week 52 Observation

No severe or life-

threatening 

adverse events 956 83 ( 8.7%) Reference

Week 79/ 

Month 18 Trastuzumab

At least one severe 

or life-threatening 

adverse event 71 7 ( 9.9%) 0.89 (0.39, 2.03)

Week 79/ 

Month 18 Trastuzumab

No severe or life-

threatening 

adverse events 596 65 (10.9%) Reference

Week 79/ 

Month 18 Observation

At least one severe 

or life-threatening 

adverse event 48 3 ( 6.3%) 0.5 (0.15, 1.66)

Week 79/ 

Month 18 Observation

No severe or life-

threatening 

adverse events 555 65 (11.7%) Reference

Week 103/ 

Month 24 Trastuzumab

At least one severe 

or life-threatening 

adverse event 32 6 (18.8%) 0.92 (0.36, 2.34)

Week 103/ 

Month 24 Trastuzumab

No severe or life-

threatening 

adverse events 300 60 (20.0%) Reference

Week 103/ 

Month 24 Observation

At least one severe 

or life-threatening 

adverse event 30 6 (20.0%) 1.32 (0.51, 3.42)

Week 103/ 

Month 24 Observation

No severe or life-

threatening 

adverse events 270 43 (15.9%) Reference  

LVEF = left ventricular ejection fraction 
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The number of patients with at least one severe or life-threatening adverse event 

was small compared to the number of patients with no severe or life-threatening 

adverse event (Table 7.3). The uncertainty in the odds ratio estimate is reflected in 

the width of the confidence interval. The 95% confidence interval for odds ratio at 

each visit contained 1 (Table 7.3). 

 

There was no evidence that the probability of an LVEF value being missing was 

related to DFS (Table 7.2) or whether the patient had a severe or life-threatening 

adverse event (Table 7.3). Though not a formal test for informative missing data, 

this suggests that it is reasonable to assume the LVEF values are MAR. As noted, 

the number of patients expected to have LVEF assessments at each visit was not 

the same in each safety analysis population group. Among the patients who were 

expected to have an LVEF assessment at each visit, the proportion of missing 

LVEF assessments was not the same for each safety analysis population group 

(Table 7.1). The probability of a missing LVEF assessment was not independent 

of the safety analysis population group and it is not reasonable to assume the 

LVEF values are MCAR. 

 

7.3 Change in LVEF from Baseline 

The further cardiac analysis in this section investigated the influence of missing 

LVEF assessments on the change in LVEF from baseline. The change in LVEF 

from baseline over time was summarised (section 7.3.2). For patients in the 

trastuzumab safety analysis population group, regression models were used to 

investigate if the change in LVEF from baseline at Week 13 was related to later 

development of a cardiac endpoint (section 7.3.3). Missing LVEF values required 

to calculate the change from baseline were imputed using multiple imputation. 

The results of these analyses based on i) observed LVEF values only ii) observed 

and imputed LVEF values were compared.  
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7.3.1 Description of Analysis of Change in LVEF from Baseline 

Calculating Change in LVEF from Baseline 

Change in LVEF from baseline could only be only be calculated when both LVEF 

assessments were by the same method (i.e. echocardiography or MUGA scan). If 

the change in LVEF from baseline could not be calculated, the LVEF assessment 

was set to missing. The 3 patients with a missing baseline LVEF value and the 

patient with baseline LVEF only reported as a range > 55% could not be 

considered in the analysis of change in LVEF from baseline. Among the 3 patients 

with a missing baseline LVEF value, 2 patients were lost to follow-up by Week 

13. The remaining patient with a missing baseline LVEF value reached Week 13 

but could not be considered in the analysis of change in LVEF from baseline. The 

Week 13 LVEF value for one patient was incorrectly reported as 2% and was not 

considered in the analysis of change in LVEF from baseline. 

 

LVEF values reported as unscheduled LVEF assessments were considered when 

summarising the change in LVEF from baseline over time. For the unscheduled 

LVEF assessments, a visit window was assigned according to the length of time 

the patient had been on study at the time of the LVEF assessment.   

 

Decrease from Baseline Greater than 5% and Developing Cardiac Endpoint 

Otterstad et al. (1997) investigated sources of variability in echocardiograms. 

Among the 12 healthy volunteers, the standard deviation of the baseline (first 

echocardiogram recording) LVEF assessment was 5.2 LVEF points (%) and the 

mean was 54.3%. In the HERA trial, LVEF > 50% was considered healthy heart 

function in defining the cardiac endpoints. Amongst the considerations in setting 

the eligibility criteria baseline LVEF > 55% was the possibility that patients with 

an LVEF between 50% and 55% may have been assessed as LVEF less than 50% 

by a different cardiologist or at a slightly different time.  Based on this, it was 

reasonable to consider that a decrease greater than 5 LVEF points from baseline 

indicates a genuine decrease in LVEF from baseline LVEF. Decrease from 

baseline LVEF greater than 5% is considered when investigating change in LVEF 
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from baseline at Week 13 as a risk factor for later development of a cardiac 

endpoint (section 7.3.3) and as a time-dependent covariate in a time-dependent 

Cox model analysis for time to cardiac endpoint (section 7.4).  

 

Technical Details of Log-Binomial Regression and Logistic Regression 

Models Considering Change in LVEF from Baseline at Week 13 as a Risk 

Factor for Later Development of a Cardiac Endpoint 

Change in LVEF from baseline at Week 13 was considered as a continuous 

variable in a log-binomial regression model to investigate if the change in LVEF 

from baseline at Week 13 was related to later development of a cardiac endpoint. 

This change was then considered as a categorical variable in a logistic regression 

model. The categories are i) decrease > 5% LVEF points and ii) decrease < 5% 

LVEF points, no change or increase (see paragraph above). This change was 

considered as a categorical variable as well as a continuous variable given the fact 

change from baseline is considered categorically in the definition of a significant 

LVEF drop. Patients with a baseline LVEF of less than 55%, a protocol violation, 

were not considered. The change from baseline at Week 13 calculated considered 

LVEF values reported as a Week 13 LVEF assessment. The exception was for 2 

patients where no Week 13 LVEF assessment was reported and an unscheduled 

assessment reported around the time of Week 13 was considered.  

 

Percentage of Patients with Missing LVEF Change from Baseline 

The status of the change in LVEF from baseline by safety analysis population 

group is shown in Table 7.4. Considering the patients expected to have an LVEF 

assessment, the percentage of patients with a missing change in LVEF from 

baseline was higher in the observation group than the trastuzumab group for the 

visits that a large number of patients had reached. 
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Table 7.4 Status of Change in LVEF from Baseline by Visit and Safety Analysis Population Group 

Observed Missing Total Observed Missing Total Observed Missing Total

Week 13 1496 (92.8%) 116 (7.2%) 1612 1584 (97.2%) 45 (2.8%) 1629 3081 160 3241

Week 25 1376 (93.3%) 99 (6.7%) 1475 1453 (95.7%) 65 (4.3%) 1518 2829 164 2993

Week 52 921 (90.1%) 101 (9.9%) 1022 1024 (93.0%) 77 (7.0%) 1101 1945 178 2123

Week 79/Month 18 523 (86.7%) 80 (13.3%) 603 587 (88.0%) 80 (12.0%) 667 1110 160 1270

Week 103/Month 24 244 (81.3%) 56 (18.7%) 300 256 (77.3%) 75 (22.7%) 331 500 131 631

Month 30 65 (76.5%) 20 (23.5%) 85 62 (68.1%) 29 (31.9%) 91 127 49 176

Month 36 2 (25.0%) 6 (75.0%) 8 4 (50.0%) 4 (50.0%) 8 6 10 16

TrastuzumabObservation All patients

 
LVEF = left ventricular ejection fraction 
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Imputing Missing LVEF Assessments 

The impact of missing LVEF assessments on the change in LVEF from baseline 

was investigated by comparing the results following imputation of the missing 

LVEF values required to calculate the change in LVEF from baseline with the 

results considering the observed LVEF values. As it is expected that the patients’ 

LVEF values throughout the study are influenced by the baseline LVEF value and 

the safety analysis population group, the missing LVEF values required to 

calculate the change in LVEF from baseline were imputed by bootstrapping, 

subgroups defined by baseline LVEF and safety analysis population group.  This 

means that the baseline LVEF values are considered when imputing missing 

LVEF assessments in a standard multiple imputation method. 

 

The patients were divided into 10 subgroups defined according to baseline LVEF 

value and safety analysis population group. The number of patients in each 

subgroup is shown in Table 7.5. The 31 patients with a baseline LVEF of less than 

55% were not considered in the analysis of change in LVEF from baseline 

following imputation. An LVEF value by the same method as the baseline LVEF 

is imputed where the change in LVEF from baseline could not be calculated due 

to different methods of assessment.  

 

Table 7.5 Summary of Subgroups Defined by Baseline LVEF and Safety Analysis 

Population Group 

Observation Trastuzumab

Baseline LVEF > 55% and < 60% 379 377

Baseline LVEF > 60% and < 63% 337 333

Baseline LVEF > 63% and < 65% 190 207

Baseline LVEF > 65% and < 70% 474 450

Baseline LVEF > 70% 308 296  

LVEF = left ventricular ejection fraction 

Note: 31 patients (13 in the trastuzumab group and 18 in the observation arm) excluded due to a 

protocol violation of baseline LVEF < 55% 

1 patient in the trastuzumab group with baseline LVEF reported only as a range > 55% excluded  
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Parameter Estimate from Log-Binomial Model and Reason for 50 

Repetitions of Multiple Imputation 

The log-Binomial model for later development of a cardiac endpoint was based on 

the change in LVEF from baseline at Week 13 as a continuous variable and 

considered a log link: 

 log(𝜋) =  𝛽0 +  𝛽1𝑥 (7.1) 

 𝑌 ~ Binomial(1, 𝑥) (7.2) 

where  

π is the predicted probability that Y =1 (a later cardiac endpoint occurs) 

x is the change from baseline LVEF at Week 13    

  

The log-Binomial model was considered in order to estimate the relative risk and, 

when considering observed values, the 95% confidence interval directly. As with 

the parameter estimate for S_Pacis (Table 4.2), the efficiency of the parameter 

estimate for change in LVEF from baseline at Week 13 was very high after 5 

imputations (> 99%). Similarly to section 4.2.6, the efficiency of the parameter 

estimate and the work of Graham et al. (2007) indicated that there would be no 

benefit from performing more than 50 repetitions of imputation.  

 

7.3.2 Summary of LVEF Over Time 

The summary of change in LVEF from baseline over time for observed LVEF 

assessments is shown in Table 7.6. The most important category was LVEF of 

less than 50% and at least 10 EF points from baseline. This category is the 

intersection of the category decrease > 10 and the category LVEF < 50%. As 

shown in Table 7.6, the percentage of patients with an LVEF of less than 50% and 

at least 10 EF points from baseline was low for both the trastuzumab and 

observation group (7.4% in the trastuzumab group and 2.2% in the observation 

group considering the worst LVEF value). 

 

The mean summary of LVEF over time following imputation by bootstrapping, 

subgroups defined by baseline LVEF and safety analysis population group is also 
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shown in Table 7.6. Though the number of patients summarised at each visit has 

increased, there appeared to be little difference between the percentage of patients 

in each category from the summary of LVEF over time considering observed 

LVEF values. There was no suggestion that the percentage of patients who 

experienced an LVEF of less than 50% and at least 10 EF points from baseline 

increased. Imputing the missing LVEF values to calculate the change in LVEF 

from baseline had little influence on the summary of LVEF over time (Table 7.6). 

 

Table 7.6 Summary of LVEF Over Time Based on Observed LVEF Values and Based on 

Observed and Imputed LVEF Values  

Observed 

Values

Including 

Imputed 

Values*

Observed 

Values

Including 

Imputed 

Values*

Week 13

n 1496 1594 1584 1616

Increase or no change 811 (54.2%) 858 (53.8%) 614 (38.8%) 624 (38.6%)

Decrease < 10 593 (39.6%) 637 (40.0%) 786 (49.6%) 802 (49.6%)

Decrease > 10 92 (  6.1%) 99 (  6.2%) 184 (11.6%) 190 (11.8%)

LVEF < 50% 18 (  1.2%) 19 ( 1.2%) 65 (4.1%) 64 ( 4.0%)

LVEF < 50% and decrease > 10 11 (  0.7%) 12 (  0.8%) 50 (3.2%) 50 ( 3.1%)

Week 25

n 1376 1459 1453 1506

Increase or no change 734 (53.3%) 772 (52.9%) 571 (39.3%) 593 (39.4%)

Decrease < 10 535 (38.9%) 572 (39.2%) 686 (47.2%) 708 (47.0%)

Decrease > 10 107 (  7.8%) 115 (  7.9%) 196 (13.5%) 205 (13.6%)

LVEF < 50% 18 (  1.3%) 19 (  1.3%) 62 (  4.3%) 64 (  4.2%)

LVEF < 50% and decrease > 10 14 ( 1.0%) 15 (  1.0%) 48 (  3.3%) 50 (  3.3%)

Week 52

n 921 1010 1024 1096

Increase or no change 515 (55.9%) 563 (55.7%) 380 (37.1%) 406 (37.0%)

Decrease < 10 345 (37.5%) 380 (37.6%) 488 (47.7%) 520 (47.4%)

Decrease > 10 61 (  6.6%) 68 (  6.7%) 156 (15.2%) 170 (15.5%)

LVEF < 50% 15 (  1.6%) 16 (  1.6%) 40 (  3.9%) 42 (  3.8%)

LVEF < 50% and decrease > 10 13 (  1.4%) 14 (  1.4%) 34 (  3.3%) 37 (  3.4%)

Observation Trastuzumab

 
*Mean of 50 repetitions of imputation; LVEF = left ventricular ejection fraction  
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Table 7.6 Summary of LVEF Over Time Based on Observed LVEF Values and Based on 

Observed and Imputed LVEF Values (continued)  

Observed 

Values

Including 

Imputed Values*

Observed 

Values

Including 

Imputed Values*

Week 79/Month 18

n 523 595 587 664

Increase or no change 297 (56.8%) 336 (56.5%) 284 (48.4%) 320 (48.2%)

Decrease < 10 185 (35.4%) 212 (35.6%) 249 (42.4%) 282 (42.5%)

Decrease > 10 41 (  7.8%) 47 (  7.9%) 54 (  9.2%) 63 (  9.5%)

LVEF < 50% 4 ( 0.8%) 5 (  0.8%) 14 (  2.4%) 16 (  2.4%)

LVEF < 50% and decrease > 10 4 ( 0.8%) 5 (  0.8%) 13 (  2.2%) 15 (  2.3%)

Week 103/Month 24

n 244 297 256 329

Increase or no change 135 (55.3%) 164 (55.2%) 139 (54.3%) 180 (54.7%)

Decrease < 10 92 (37.7%) 112 (37.7%) 93 (36.3%) 119 (36.2%)

Decrease > 10 17 (  7.0%) 21 (  7.1%) 24 (  9.4%) 29 (  8.8%)

LVEF < 50% 4 (  1.6%) 5 (  1.7%) 3 (  1.2%) 4 (  1.2%)

LVEF < 50% and decrease > 10 1 (  0.4%) 1 (  0.3%) 3 (  1.2%) 4 (  1.2%)

Month 30

n 65 84 62 90

Increase or no change 34 (52.3%) 46 (54.8%) 37 (59.7%) 54 (60.0%)

Decrease < 10 27 (41.5%) 34 (40.5%) 22 (35.5%) 32 (35.6%)

Decrease > 10 4 (  6.2%) 4 (  4.8%) 3 (  4.8%) 5 (  5.6%)

LVEF < 50% 2 (  3.1%) 2 (  2.4%) 1 (  1.6%) 1 (  1.1%)

LVEF < 50% and decrease > 10 0 ( 0.0%) 0 (  0.0%) 1 (  1.6%) 1 (  1.1%)

Overall (worst value)

n 1544 1594 1600 1616

Increase or no change 516 (33.4%) 482 (30.2%) 323 (20.2%) 292 (18.1%)

Decrease < 10 816 (52.8%) 850 (53.3%) 883 (55.2%) 881 (54.5%)

Decrease > 10 212 (13.7%) 232 (14.6%) 394 (24.6%) 412 (25.5%)

LVEF < 50% 45 (  2.9%) 49 (3.1%) 144 (  9.0%) 146 (  9.0%)

LVEF < 50% and decrease > 10 34 (  2.2%) 38 (2.4%) 118   (7.4%) 123 (  7.6%)

Observation Trastuzumab

*Mean of 50 repetitions of imputation; LVEF = left ventricular ejection fraction 
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7.3.3 Change in LVEF from Baseline at Week 13 as a Risk Factor for 

Developing a Later Cardiac Endpoint (Trastuzumab Group) 

Change in LVEF from baseline at Week 13 as a risk factor for later development 

of a cardiac endpoint is shown in Table 7.7 based on observed LVEF values and 

in Table 7.8 based on observed and imputed LVEF values.  

 

Table 7.7 Change in LVEF from Baseline at Week 13 as Risk Factor for Later 

Development of a Cardiac Endpoint (Observed LVEF Values) 

Number of 

patients Incidence Risk Ratio

95% Confidence 

Interval for Risk 

Ratio

Change from baseline at 

Week 13 (continuous)

1547 34 (2.2%) 0.943 (0.897, 0.992)

Decrease > 5 LVEF points
407 15 (3.7%) 2.211 (1.134, 4.310)

Decrease <= 5 LVEF points, 

no change or increase

1140 19 (1.7%) Reference

 

LVEF = left ventricular ejection fraction 

Note: For change from baseline at Week 13 as a continuous variable, change in risk ratio is per 1 

LVEF point increase in the change from baseline at Week 13  

 

Table 7.8 Change in LVEF from baseline at Week 13 as Risk Factor for Later 

Development of a Cardiac Endpoint  

(Missing LVEF Values Required to Calculate Change from Baseline Imputed) 

Mean 

Number of 

Patients

Mean 

Incidence

Mean Risk 

Ratio

Range of 

Risk Ratio

Change from baseline at 

Week 13 (continuous)

1589 34 (2.1%) 0.944 0.943 to 0.948

Decrease > 5 LVEF points
421 15 (3.6%) 2.193 2.148 to 2.226

Decrease <= 5 LVEF points, 

no change or increase

1168 19 (1.6%) Reference

 

LVEF = left ventricular ejection fraction 

Note: For change from baseline at Week 13 as a continuous variable, change in mean risk ratio is 

per 1 LVEF point increase in the change from baseline at Week 13  

 

The incidence of a later cardiac endpoint was low (2.2%). Each 1 unit increase in 

change in LVEF from baseline at Week 13 was associated with a reduction in risk 

of later development of a cardiac endpoint (“Change from baseline at Week 13 

(continuous)” row, Table 7.7).  A decrease of greater than 5 LVEF points from 
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baseline at Week 13 was associated with later development of a cardiac endpoint 

(Table 7.7). This indicates that LVEF is an important measure of cardiac function 

in patients receiving trastuzumab. Though the number of patients considered in 

the analysis has increased following multiple imputation, imputing the missing 

LVEF values required to calculate the change in LVEF from baseline at Week 13 

had little influence on the risk ratios (Table 7.8). 

 

7.4 Time-Dependent Cox Model Analysis of Time to Cardiac 

Endpoint or Disease-Free Survival Event  

Time-dependent Cox Model 

Patients with a noticeable LVEF drop (> 5%) may not suffer a cardiac endpoint. 

They may instead have LVEF values which return to baseline values or which, 

though lower than baseline, do not meet the definition of a significant LVEF drop. 

Further, patients who suffer a cardiac endpoint may not have a noticeable LVEF 

drop beforehand. An aim of the further cardiac analysis was to investigate the 

relationship between the occurrence of a noticeable LVEF drop and a cardiac 

endpoint. As LVEF was measured throughout the study, a time-dependent Cox 

model was appropriate. An indicator for the occurrence of an LVEF drop greater 

than 5 LVEF points from baseline was included in a time-dependent Cox model 

for time to cardiac endpoint or the competing event of a DFS event. Previous 

analysis (Suter et al. 2006) found that low baseline LVEF was a risk factor for a 

cardiac endpoint in the trastuzumab safety analysis population. Therefore, 

indicators for two categories of baseline LVEF, 55% < baseline LVEF < 60% and 

60% < baseline LVEF < 65%, were included in the model as well as the 

randomised group. An interaction term for category of baseline LVEF and 

randomised group was not included in the model described as it did not add 

information to the main effects. The influence of the category of baseline LVEF 

was assumed to be the same in both randomised groups. The cause-specific 

hazards of a cardiac endpoint and the cause-specific hazards of a DFS event from 

the specified time-dependent Cox model analysis were considered. The time-
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dependent Cox model analysis considered i) observed LVEF values and  ii) 

observed and imputed LVEF values. 

 

Defining Time-Dependent Indicator for Occurrence of an LVEF Drop 

Greater than 5 LVEF Points from Baseline 

LVEF assessments were considered where change in LVEF from baseline could 

be calculated as described in section 7.3.1. As noted, 36 patients (19 randomised 

to observation; 17 randomised to 1 year trastuzumab) were excluded due to the 

baseline LVEF value or because of an incorrect LVEF value reported at Week 13. 

There were also 99 patients (56 randomised to observation; 43 randomised to 1 

year trastuzumab) excluded as no post-screening information was available (DFS 

censored at date of randomisation). In addition, 2 patients randomised to 

observation were excluded due to an incorrect date of LVEF assessment at Week 

13 or Week 25 which was before the date of randomisation. Therefore, 3249 

patients were considered in the time-dependent Cox model analysis; 1616 

randomised to observation and 1633 randomised to 1 year trastuzumab. In 

defining an indicator for the occurrence of an LVEF drop greater than 5 LVEF 

points from baseline, missing LVEF assessments were ignored. 

 

The first occurrence of an LVEF drop greater than 5 LVEF points from baseline 

for each patient was identified. For patients with no occurrence of an LVEF drop, 

the time-dependent indicator for occurrence of an LVEF drop was set to 0 from 

the date of randomisation until the date of cardiac endpoint or DFS event or 

censoring. For patients with an occurrence of an LVEF drop, the time-dependent 

indictor for occurrence of an LVEF drop was set to 0 from the date of 

randomisation to the date of first LVEF drop and set to 1 from the date of first 

LVEF drop to the date of cardiac endpoint or DFS event or censoring. 
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7.4.1 Cause-Specific Hazards from Time-Dependent Cox Model 

Analysis with Competing Risks (Observed LVEF Values) 

The status of the competing risks of cardiac endpoint and DFS event by 

randomised group and occurrence of an LVEF drop greater than 5 LVEF points 

from baseline is summarised in Table 7.9: 

 

Table 7.9 Summary of Cardiac Endpoint and DFS Event by Randomised Group and 

Occurrence of an LVEF Drop Greater Than 5 LVEF Points from Baseline 

(Observed LVEF Values) 

Total

Cardiac 

endpoint

DFS 

event 

No event 

(censored)

Cardiac 

endpoint

DFS 

event

No event 

(censored)

LVEF drop > 5 

LVEF points from 

baseline 2 47 357 17 53 549 1025

No LVEF drop > 5 

LVEF points from 

baseline 8 166 1036 44 71 899 2224

Observation (N=1616) Trastuzumab (N=1633)

 
DFS = disease-free survival; LVEF = left ventricular ejection fraction 

 

The cause-specific hazards for a cardiac endpoint and the competing risk of a DFS 

event from the time-dependent Cox model analysis are shown in Table 7.10: 

 

Table 7.10 Cause-Specific Hazards for Cardiac Endpoint and DFS Event from Time-

Dependent Cox Model Analysis (Observed LVEF Values)  

Parameter

Parameter 

estimate

Standard 

error

Hazard 

ratio

95% CI for 

hazard ratio

LVEF drop > 5 LVEF points from baseline 0.4807 0.2941 1.6172 (0.909, 2.878)

Randomized group (trastuzumab vs obs.) 1.7247 0.3421 5.6110 (2.869, 10.972)

55% < Baseline LVEF < 60% 1.3192 0.3106 3.7403 (2.035, 6.876)

60% < Baseline LVEF < 65% 0.6918 0.3187 1.9974 (1.070, 3.730)

Parameter

Parameter 

estimate

Standard 

error

Hazard 

ratio

95% CI for 

hazard ratio

LVEF drop > 5 LVEF points from baseline 0.0705 0.1336 1.0730 (0.826, 1.394)

Randomized group (trastuzumab vs obs.) -0.6001 0.1139 0.5488 (0.439, 0.686)

55% < Baseline LVEF < 60% -0.0341 0.1493 0.9665 (0.721, 1.295)

60% < Baseline LVEF < 65% 0.0661 0.1290 1.0683 (0.830, 1.376)

Cardiac Endpoint

DFS Event

 
DFS = disease-free survival; LVEF = left ventricular ejection fraction; obs = observation 
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There was a trend for the occurrence of an LVEF drop greater than 5 LVEF points 

from baseline to be associated with a cardiac endpoint, though this was not 

statistically significant. Low baseline LVEF, 55% < baseline LVEF < 60% and 

60% < baseline LVEF < 65%, were significantly associated with a cardiac 

endpoint. This is consistent with the previous finding that low baseline LVEF was 

a risk factor for a cardiac endpoint. As expected from the efficacy analysis 

(Piccart-Gebhart et al. 2005), observation rather than trastuzumab treatment was 

associated with recurrence of disease (a DFS event). There was no association 

between low baseline LVEF and a DFS event or occurrence of an LVEF drop 

greater than 5 LVEF points from baseline and a DFS event (Table 7.10). 

 

7.4.2 Cause-Specific Hazards from Time-Dependent Cox Model 

Analysis with Competing Risks (Observed and Imputed LVEF 

Values) 

The mean status of the competing risks of cardiac endpoint and DFS event by 

randomised group and occurrence of an LVEF drop greater than 5 LVEF points 

from baseline following multiple imputation is summarised in Table 7.11.  

 

Table 7.11 Summary of Cardiac Endpoint and DFS Event by Randomised Group and 

Occurrence of an LVEF Drop Greater Than 5 LVEF Points from Baseline 

(Missing LVEF Values Required to Calculate Change from Baseline Imputed) 

Total

Cardiac 

endpoint

DFS 

event 

No event 

(censored)

Cardiac 

endpoint

DFS 

event

No event 

(censored)

LVEF drop > 5 

LVEF points from 

baseline 2 50 381 19 55 570 1077

No LVEF drop > 5 

LVEF points from 

baseline 8 163 1012 42 69 878 2172

Observation (N=1616) Trastuzumab (N=1633)

 
DFS = disease-free survival; LVEF = left ventricular ejection fraction 
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The cause-specific hazards for a cardiac endpoint and the competing risk of a DFS 

event from the time-dependent Cox model analysis following multiple imputation 

are shown below in Table 7.12. The derivations in the summary table were as 

described in section 3.5.1. 

 

Table 7.12 Cause-Specific Hazards for Cardiac Endpoint and DFS Event from Time-

Dependent Cox Model Analysis 

(Missing LVEF Values Required to Calculate Change from Baseline Imputed) 

Parameter

Mean 

Parameter 

estimate Range

Mean 

Standard 

Error

Mean t 

statistic

LVEF drop > 5 LVEF points from baseline 0.6458 (0.607, 0.791) 0.2865 2.26

Randomized group (trastuzumab vs obs.) 1.7122 (1.699, 1.717) 0.3421 5.00

55% < Baseline LVEF < 60% 1.3662 (1.353, 1.408) 0.3109 4.40

60% < Baseline LVEF < 65% 0.7310 (0.721, 0.764) 0.3188 2.29

Parameter

Mean 

Parameter 

estimate Range

Mean 

Standard 

Error

Mean t 

statistic

LVEF drop > 5 LVEF points from baseline 0.0968 (0.047, 0.159) 0.1324 0.73

Randomized group (trastuzumab vs obs.) -0.6026 (-0.609, -0.597) 0.1139 -5.29

55% < Baseline LVEF < 60% -0.0253 (-0.041, -0.006) 0.1494 -0.17

60% < Baseline LVEF < 65% 0.0735 (0.060, 0.090) 0.1291 0.57

Cardiac Endpoint

DFS Event

 DFS = disease-free survival; LVEF = left ventricular ejection fraction; obs = observation 

 

Following imputation, the number of patients with an occurrence of an LVEF 

drop greater than 5 LVEF points from baseline increased from 1025 (Table 7.9) to 

a mean of 1077 (Table 7.11). The parameter for an LVEF drop greater than 5 

LVEF points from baseline was statistically significant in the time-dependent Cox 

model analysis of each of the completed datasets.  Following imputation, the 

association between an LVEF drop greater than 5 LVEF points from baseline and 

a cardiac endpoint (~0.65) (Table 7.12) was stronger than when only observed 

LVEF values are considered (0.48) (Table 7.10). This may be influenced by the 

fact that in the multiple imputation by bootstrapping, subgroups were defined by 

baseline LVEF, and low baseline LVEF was a risk factor for a cardiac endpoint. 

The remaining parameter estimates for the cause-specific hazard of cardiac 
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endpoint were little influenced following multiple imputation. Similarly, the 

parameter estimates for the cause-specific hazard of DFS event were little 

influenced following multiple imputation. 

 

The low percentage of missing LVEF assessments and the fact that it is reasonable 

to assume the missing LVEF assessments are MAR makes the missing data less of 

a concern than the missing quality of life assessments in the IBCSG dataset. 

Simple imputation methods will lead to an underestimation of the variance of the 

LVEF assessments (see section 2.2). The possible influence of the fact baseline 

LVEF is a risk factor for a cardiac endpoint when applying bootstrapping 

(subgroups defined by baseline LVEF) in the time-dependent Cox model analysis 

is noted in the paragraph above. The remaining standard multiple imputation 

methods require a monotone missing data pattern, which is not the case for LVEF 

assessments in the HERA trial. Here, there was no benefit in imputation of 

missing LVEF values. No imputation will be applied in the repeated measures 

analysis in the next section. 

 

7.5 Repeated Measures Analysis of LVEF Over Time 

The five LVEF values from Week 13 up to Week 103/Month 24 were modeled in 

this section. The repeated measures analysis incorporates correlations for the 

LVEF values from the same patient. In the mixed model considered, the overall 

linear trend in LVEF values is defined, among cohorts of patients according to the 

stratification factors (see section 7.1.2 and Table 7.13) and the baseline ECOG 

performance status, by the parameter corresponding to the visit. A different 

intercept is defined for patients according to the safety analysis population group. 

The interaction term for safety analysis population group and visit makes the 

slopes different over time for each group. The parameters from this mixed model 

are estimated and hypothesis tests on the parameter estimates carried out in order 

to describe the pattern of the LVEF values. The repeated measures analysis can be 

applied by proc mixed in SAS.  
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7.5.1 Description of the Mixed Model 

Henderson (1990) and Searle et al. (1992) describe the historical development of 

the mixed model. The mixed model is written as: 

y = Xβ + Zω + ε    (6.3) 

where  

X is a matrix of independent coefficients (fixed effects) 

β is a unknown design matrix 

Xβ is the fixed component 

Z is a known design matrix 

ω is a vector of unknown random-effects parameters and 

ω ~ N(0, G)     (6.4) 

ε ~ N(0, R)     (6.5) 

and G and R are unknown variances of a multivariate Normal distribution. 

   

A special case of the mixed model is where there are no random-effects and the 

term Zω disappears. As noted, it is expected that the patients’ LVEF values 

throughout the study are influenced by the baseline LVEF value and the safety 

analysis population group. In modeling the 5 LVEF values from Week 13 up to 

Week 103/Month 24, visit is the within-subject factor. The between-subject factor 

of safety analysis population group (treatment) and the potential interaction 

between safety analysis population and visit are of most interest.   

  

By considering the time from randomisation of the LVEF assessments as 

continuous, the regression model for each patient could be considered as a random 

deviation from some population regression model, with a random intercept and 

slope from each patient. This allows the effect of time from randomisation on 

LVEF to differ between patients. However, it does not appear reasonable to use 

the 5 LVEF assessments at predefined visits up to 2 years from randomisation to 

model LVEF at time from randomisation as a continuous variable.    
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It was more appropriate to consider visit as a categorical within-subject factor in a 

mixed model and consider the between-subject factors as systematic (fixed 

effects). The 5 LVEF values from Week 13 up to Week 103/Month 24 were 

modelled using a mixed model that included an interaction term for safety 

analysis population group and visit. The stratification factors and the baseline 

LVEF and ECOG performance score were included as covariates. Due to 

eligibility criteria LVEF > 55%, baseline LVEF values have a truncated 

distribution and baseline LVEF was considered as a categorical variable. As 

baseline LVEF was included as a covariate, the type of assessment was not 

considered. The particular mixed model considered for the LVEF values over 

times is a special case of the mixed model where there are no random-effects.  

  

The repeated measures analysis considered patients where at least one LVEF 

assessment between Week 13 and Week 103/Month was expected. LVEF values 

were included in the repeated measure analysis over time regardless of the method 

of assessment, echocardiography or MUGA scan. Patients with a baseline LVEF 

of less than 55%, a protocol violation, were not considered. As shown in Table 

7.13, the stratification factors and baseline ECOG performance status were 

balanced by randomised group.  
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Table 7.13 Summary of Stratification Factors and Baseline ECOG Performance Status by 

Randomised Group 

Observation Trastuzumab

N=1693 N=1693

Any Nodal Status, neo-adj chemotherapy 176 ( 10.4%) 190 ( 11.2%)

No Positive Nodes, no neo-adj chemotherapy     555 ( 32.8%) 543 ( 32.1%)

1-3 Nodes Positive, no neo-adj chemotherapy    490 ( 28.9%) 483 ( 28.5%)

>=4 Nodes Positive, no neo-adj chemotherapy 471 ( 27.8%) 477 ( 28.2%)

Missing 1 (   0.1%) 0 (   0.0%)

No Anthracyclines or Taxanes 99 (  5.8%) 97 (  5.7%)

Anthracyclines but no Taxanes 1154 ( 68.2%) 1150 ( 67.9%)

Anthracyclines + Taxanes 438 ( 25.9%) 443 ( 26.2%)

Other (not predefined) 2 (   0.1%) 3 (   0.2%)

Negative 841 ( 49.7%) 838 ( 49.5%)

Positive and no Endocrine Therapy 34 (   2.0%) 53 (   3.1%)

Positive and Endocrine Therapy 818 ( 48.3%) 802 ( 47.4%)

< 35 years 126 (   7.4%) 126 (   7.4%)

35 - 49 years 749 ( 44.2%) 751 ( 44.4%)

50 - 59 years 546 ( 32.3%) 546 ( 32.3%)

>= 60 years 272 ( 16.1%) 270 ( 15.9%)

Western and Northern Europe, Canada, 1222 ( 72.2%) 1208 ( 71.4%)

South Africa, Australia, New Zealand

Asia Pacific and Japan 202 ( 11.9%) 202 ( 11.9%)

Eastern Europe 175 ( 10.3%) 189 ( 11.2%)

Central and South America 94 (   5.6%) 94 (   5.6%)

0 1542 ( 91.1%) 1550 ( 91.6%)

1 149 (   8.8%) 143 (   8.4%)

Missing 2 (   0.1%) 0 (   0.0%)

Baseline ECOG performance status

Nodal Status

Adjuvant Chemotherapy Regimen¹

Receptor Status and Endocrine Therapy

Age group

Region

 
ECOG = Eastern Cooperative Oncology Group   
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7.5.2 Estimating Parameters and Missing and Unexpected Values in the 

Mixed Model 

Estimating Parameters 

Estimation of the parameters in the mixed model is complicated by having 

unknown parameters ω, G and R as well as unknown design matrixs β. 

 

The variance of ω is 

V=ZGZT + R     (6.6) 

in the special case where Z=0 as there are no random-effects V=R.  

 

Restricted or residual maximum likelihood (REML) estimation (Patterson and 

Thompson 1971; Harville 1977) is a particular form of maximum likelihood 

estimation which does not use all observations available but uses a likelihood 

function calculated from a transformed set of observations in order to consider 

only the parameters of interest.  

   

The approach used in SAS® proc mixed is to use maximum likelihood and REML 

to find a reasonable estimate of G and R. Maximum likelihood and REML are 

valid when missing data is MAR (Rubin 1976; Little 1995). Then an estimate of V 

can be used in estimated generalised least squares, minimising the expression: 

 (𝒚 − 𝑿𝜷)𝑇𝑽−1(𝒚 − 𝑿𝜷) (7.7) 

 

The standard method of estimating β and ω is to solve Henderson’s mixed model 

equations (Henderson 1984) and the solutions can be written as: 

 �̂� = (𝑿T�̂�−1𝑿)−1𝑿T�̂�−1𝒚 (7.8) 

 

 �̂� = �̂�T𝒁𝑇�̂�−1(𝒚 − 𝑿�̂�) (7.9) 
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Missing and Unexpected Values  

As noted, patients with a baseline LVEF of less than 55%, a protocol violation, 

were not considered in the repeated measures analysis over time. The 3 patients 

with a missing baseline LVEF value and the patient with baseline LVEF only 

reported as a range > 55% could also not be considered. There were 8 patients 

excluded due to a missing stratification factor or baseline ECOG performance 

status. Therefore, there were 3202 patients identified in the repeated measures 

analysis, of which 3111 patients had at least one observed LVEF value between 

Week 13 and Week 103/Month 24.  

 

The Week 13 LVEF value for one patient was incorrectly reported as 2% and was 

not considered in the repeated measures analysis, but instead set to missing. The 

Week 79/Month 18 and Week 103/Month 24 LVEF assessment for one patient 

were only reported as a range 55% – 65% and were also set to missing. 

 

It is reasonable to assume that the LVEF values are MAR, and therefore the 

parameter estimates from repeated measures analysis of available LVEF values 

over time are unbiased. As the proportion of missing LVEF value is low, it is 

reasonable to assume that the missing LVEF values do not lead to a noticeable 

loss of power in the repeated measures analysis over time. This indicates that it is 

appropriate to perform the repeated measures analysis of LVEF values over time 

using observed LVEF values only. 
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7.5.3 Structure of Covariance Matrix  

The mean LVEF value by visit and safety analysis population group is shown in 

Table 7.14 and the covariance matrix for LVEF values is shown in Table 7.15. 

 

Table 7.14 Mean LVEF Value by Visit and Safety Analysis Population Group 

Safety analysis 

population group Visit n Mean LVEF

Standard 

Deviation Minimum Maximum

Observation Week 13 1502 64 6.5 32 97

Observation Week 25 1383 64 6.7 32 85

Observation Week 52 931 64 6.7 41 87

Observation

Week 79/ 

Month 18 535 64 6.5 39 88

Observation

Week 103/ 

Month 24 251 64 6.4 46 88

Trastuzumab Week 13 1586 62 7.1 26 91

Trastuzumab Week 25 1454 62 7.2 20 83

Trastuzumab Week 52 1033 62 7.1 33 85

Trastuzumab

Week 79/ 

Month 18 594 63 6.9 34.7 83

Trastuzumab

Week 103/ 

Month 24 265 64 6.7 45 81.5  

LVEF = left ventricular ejection fraction 

 

Table 7.15 Variance/Covariance Matrix of LVEF Values 

Week 13 Week 25 Week 52

Week 79/  

Month 18

Week 103/ 

Month 24

Week 13 47.6 28 24.7 19.4 18.8

Week 25 28 49.3 28.6 23.3 19.8

Week 52 24.7 28.6 49.3 27 21.1

Week 79/Month 18 19.4 23.3 27 44.9 21.9

Week 103/Month 24 18.8 19.8 21.1 21.9 42.5  

LVEF = left ventricular ejection fraction 

 

While the covariance between LVEF values decreased as the time between the 

LVEF values increased, the covariance matrix does not appear to follow the first 

order autoregressive pattern of decrease by a constant factor (Table 7.15). The 

value of the fit statistic -2(residual log likelihood) from the mixed model 

considering an unstructured covariance matrix and a first order autoregressive 

covariance matrix is shown in Table 7.16.   
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Table 7.16 Restricted Maximum Likelihood Residuals from the Mixed Model for LVEF 

Values Up to Week 103/Month 24 by Safety Analysis Group with Stratification Factors, 

Baseline LVEF, LVEF Method and ECOG Performance Status as Covariates 

Type of 

Covariance Matrix

 -2 Residual 

Log Likelihood

Number of 

Covariance 

Parameters

Difference in -2 

Residual Log 

Likelihood

Difference in Number 

of Covariance 

Parameters

Unstructured 59435.7 15 204 13

Autoregessive 59639.7 2  

LVEF = left ventricular ejection fraction 

 

The covariance matrix of LVEF values (Table 7.15) and the value of the fit 

statistic -2(residual log likelihood) from the mixed model (Table 7.16) indicate 

that it is appropriate to consider an unstructured covariance matrix in the repeated 

measures analysis. In the mixed model considered, the R matrix was a block 

diagonal 3202 blocks, each block consisting of identical 5x5 unstructured 

matrices.  

 

7.5.4 Solution of Repeated Measures Analysis of LVEF Values 

An unstructured covariance matrix was used in the repeated measures analysis of 

LVEF values over time. The solution to the repeated measures analysis of LVEF 

values over time is shown in Table 7.17. The test of fixed-effects from the 

repeated measures analysis of LVEF values over time is shown in Table 7.18.  



 
 

280 
 

Table 7.17 Repeated Measures of LVEF Values up to Week 103/Month 24 by Safety Analysis Population Group with 

Stratifications Factors, Baseline LVEF and ECOG Performance Status as Covariates 

Level of Variable

Safety Analysis 

Population Group Visit Estimate

Standard 

Error p-Value

Intercept 60.343 0.572 <0.0001

Safety group Observation 0

Safety group Trastuzumab -1.909 0.221 <0.0001

Visit Week 13 0

Visit Week 25 -0.049 0.171 0.7735

Visit Week 52 0.402 0.210 0.0556

Visit Week 79/Month 18 0.575 0.265 0.0300

Visit Week 103/Month 24 0.400 0.367 0.2767

Baseline LVEF 

category 55 - <60% 0

Baseline LVEF 

category 60 - <65% 3.006 0.250 <0.0001

Baseline LVEF 

category >65% 6.691 0.236 <0.0001

Nodal status

Any Nodal Status, neo-adj 

chemotherapy -0.305 0.346 0.3780

Nodal status

No Positive Nodes, no neo-adj 

chemotherapy 0

Nodal status

1-3 Nodes Positive, no neo-adj 

chemotherapy 0.106 0.236 0.6531

Nodal status

>= 4 Nodes Positive, no neo-adj 

chemotherapy -0.322 0.249 0.1955  
LVEF = left ventricular ejection fraction; ECOG = Eastern Cooperative Oncology Group; neo-adj = neo-adjuvant  
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Table 7.17 Repeated Measures of LVEF Values up to Week 103/Month 24 by Safety Analysis Population Group with 

Stratifications Factors, Baseline LVEF and ECOG Performance Status as Covariates (continued) 

Level of Variable

Safety Analysis 

Population Group Visit Estimate

Standard 

Error p-Value

Chemotherapy regimen No Anthracyclines or Taxaes 0

Chemotherapy regimen Anthracyclines but no Taxanes -0.729 0.389 0.0614

Chemotherapy regimen Anthracyclines + Taxanes 0.031 0.442 0.9432

Receptor status and 

endocrine therapy Negative 0

Receptor status and 

endocrine therapy Positive and no endocrine therapy 1.067 0.597 0.0737

Receptor status and 

endocrine therapy Positive and endocrine therapy -0.342 0.187 0.0668

Age category < 35 years 0

Age category 35-49 years -0.332 0.365 0.3626

Age category 50-59 years 0.241 0.375 0.5210

Age category >= 60 years 0.296 0.413 0.4734

Region

Western and Northern Europe, 

Canada, South Africa, Australia, 

New Zealand 0

Region Asia Pacific and Japan 1.107 0.285 0.0001

Region Eastern Europe 1.362 0.299 <0.0001

Region Central and South America 1.069 0.398 0.0073  
LVEF = left ventricular ejection fraction; ECOG = Eastern Cooperative Oncology Group   
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Table 7.17 Repeated Measures of LVEF Values up to Week 103/Month 24 by Safety Analysis Population Group with 

Stratifications Factors, Baseline LVEF and ECOG Performance Status as Covariates (continued) 

Level of Variable

Safety Analysis 

Population Group Visit Estimate

Standard 

Error p-Value

ECOG performance 

status 0 0

ECOG performance 

status 1 -0.467 0.320 0.1446

Safety group*Visit Observation Week 13 0

Safety group*Visit Observation Week 25 0

Safety group*Visit Observation Week 52 0

Safety group*Visit Observation Week 79/Month 18 0

Safety group*Visit Observation Week 103/Month 24 0

Safety group*Visit Trastuzumab Week 13 0

Safety group*Visit Trastuzumab Week 25 -0.067 0.239 0.7793

Safety group*Visit Trastuzumab Week 52 -0.678 0.290 0.0193

Safety group*Visit Trastuzumab Week 79/Month 18 1.116 0.365 0.0022

Safety group*Visit Trastuzumab Week 103/Month 24 1.894 0.512 0.0002  
LVEF = left ventricular ejection fraction; ECOG = Eastern Cooperative Oncology Group   



 
 

283 
 

Table 7.17 Repeated Measures of LVEF Values up to Week 103/Month 24 by Safety Analysis Population Group with 

Stratifications Factors, Baseline LVEF and ECOG Performance Status as Covariates (continued) 

ECOG performance 

status 0 0

ECOG performance 

status 1 -0.467 0.320 0.1446

Safety group*Visit Observation Week 13 0

Safety group*Visit Observation Week 25 0

Safety group*Visit Observation Week 52 0

Safety group*Visit Observation Week 79/Month 18 0

Safety group*Visit Observation Week 103/Month 24 0

Safety group*Visit Trastuzumab Week 13 0

Safety group*Visit Trastuzumab Week 25 -0.067 0.239 0.7793

Safety group*Visit Trastuzumab Week 52 -0.678 0.290 0.0193

Safety group*Visit Trastuzumab Week 79/Month 18 1.116 0.365 0.0022

Safety group*Visit Trastuzumab Week 103/Month 24 1.894 0.512 0.0002  

LVEF = left ventricular ejection fraction; ECOG = Eastern Cooperative Oncology Group 
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Table 7.18 Test of Fixed-Effects for Repeated Measures of LVEF Assessments up to 

Week 103/Month 24 by Safety Analysis Population Group with Stratification Factors, 

Baseline LVEF and ECOG Performance Status and Covariates 

Numerator 

Degrees of 

Freedom

Denominator 

Degrees of 

Freedom

p-Value             

(Wald Chi-

Square Test)

p-Value            

(F Test)

Safety group 1 3093 <0.0001 <0.0001

Visit 4 3093 <0.0001 <0.0001

Baseline LVEF category 2 3093 <0.0001 <0.0001

Nodal status 3 3093 0.3025 0.3027

Chemotherapy regimen 2 3093 0.0012 0.0013

Receptor status and 

endocrine therapy 2 3093 0.0206 0.0207

Age category 3 3093 0.0233 0.0234

Region 3 3093 <0.0001 <0.0001

ECOG performance status 1 3093 0.1445 0.1446

Safety group*Visit 4 3093 <0.0001 <0.0001  
LVEF = left ventricular ejection fraction; ECOG = Eastern Cooperative Oncology Group 

 

The interaction term between safety analysis population group and visit was 

statistically significant because the LVEF values over time for patients in the 

trastuzumab group did not follow the same pattern as the LVEF values for 

patients in the observation group (Table 7.18). 

 

The treatment or observation period lasts for 1 year. For trastuzumab patients, the 

trend was for LVEF values during the treatment period to decrease from the 

reference visit of Week 13 and increase from the reference visit of Week 13 after 

the treatment period was completed. LVEF values after the treatment period was 

completed were statistically significantly higher than the reference visit of Week 

13 (Table 7.17). However, the increase in LVEF value at Week 103/Month 24 

compared to reference visit of Week 13 was less than 3 LVEF points (Table 7.17) 

and is not clinically important. This suggests that during the treatment period, 

trastuzumab treatment was associated with a statistically significant but clinically 

unimportant decrease in LVEF values which then returned to baseline LVEF 

values after trastuzumab treatment was completed. 
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For observation patients, there was no suggestion of a trend in direction of LVEF 

values during the period from Week 13 to Week 103/Month 24. The LVEF value 

at Week 103/Month 24 was not statistically significantly different from the 

reference visit of Week 13. There was no suggestion of a clinically important 

change in LVEF values during the period from Week 13 to Week 103/Month 24 

(Table 7.17).   

 

Patients with a baseline LVEF 60% or more and less than 65% and patients with a 

baseline LVEF 65% or more had a statistically significant higher LVEF value 

than patients with a baseline LVEF 55% or more and less than 60%. The mean 

LVEF value for patients with baseline LVEF 55% or more and less than 60% and 

patients with a baseline LVEF 60% or more and less than 65% for visits between 

Week 13 and Week 103/Month 24 remained above the eligibility criteria of 55% 

and is considered a normal value (Table 7.17). The incidence of cardiac endpoints 

among patients with a baseline LVEF 55% or more and less than 60% and 

patients with a baseline LVEF 60% or more and less than 65% was statistically 

significantly higher than patients with a higher baseline LVEF (Suter et al. 2007). 

This suggests patients with a LVEF 55% or more and less than 60% and patients 

with a baseline LVEF 60% or more and less than 65% had clinically poorer 

cardiac function than patients with baseline LVEF 65% or more. 

 

Amongst the 5 stratification factors, nodal status was not a statistically significant 

fixed effect (Table 7.18). There was no suggestion of a clinically important 

difference in LVEF values among any of the categories of these stratification 

factors (Table 7.17). However, there were some trends or statistically significant 

differences that were not clinically important. Firstly, there was a trend towards 

patients treated with anthracyclines but no taxanes having a lower LVEF value 

than patients treated with no anthracyclines or taxanes and patients treated with 

anthracycline and taxanes. Secondly, there was a trend towards the LVEF in the 

receptor status and endocrine therapy categories being in ascending order i) 

positive and endocrine therapy, ii) negative and iii) positive and endocrine 
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therapy. Thirdly, patients from Western and Northern Europe, Canada, South 

Africa, Australia and New Zealand had a statistically significant lower LVEF 

value than patients from each of the other 3 regions (Table 7.17). Similarly to the 

trends described for the stratification factors, there was a trend towards patients 

with ECOG performance status 0 having a higher LVEF than patients with ECOG 

performance status 1 (Table 7.17). 

 

While randomisation ensured the number of patients in each category of the 

stratification factors or baseline characteristic was balanced among the treatment 

groups, the number of patients in each of these categories may not be balanced 

(Table 7.13). In particular, there was:  

i) a small number of patients who did not receive anthracyclines 

ii) a small number of patients with hormone receptor positive tumours 

who did not receive endocrine therapy 

iii) a large number of patients aged 35-49 years compared to patients aged 

less than 35 years and patients aged 60 years or more 

iv) a large number of patients from Western and Northern Europe, 

Canada, South Africa, Australia and New Zealand compared to each of 

the other 3 regions 

v) a large number of patients with ECOG performance status 0 compared 

to the number of patients with ECOG performance status 1  

This may influence the estimates from the repeated measures analysis for the 

corresponding stratification factor or baseline characteristic.  
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7.6 Summary 

Trastuzumab treatment has established efficacy in early breast cancer but is not 

appropriate for patients with a history of cardiac disease (Goldhirsch et al. 2013; 

de Azambuja et al. 2014). In the HERA trial, LVEF assessments were performed 

throughout the study to assess cardiac safety. Further cardiac analysis was 

performed with the aim of investigating the influence of missing LVEF 

assessments on the change in LVEF from baseline and to model the LVEF values 

over time. It was reasonable to assume the LVEF assessments were MAR and the 

percentage of missing LVEF values was low (section 7.2).   

 

The percentage of patients with an LVEF of less than 50% and at least 10 LVEF 

points from baseline throughout the study was low for both the observation and 

trastuzumab group (Table 7.6). Among trastuzumab patients, a decrease of greater 

than 5 LVEF points from baseline at Week 13 was associated with later 

development of a cardiac endpoint. There was little influence on the findings 

following multiple imputation (section 7.3.3). The occurrence of an LVEF drop 

greater than 5 LVEF points was considered as a time-dependent covariate in a 

time-dependent Cox model analysis based on competing risks (section 7.4). The 

finding that low baseline LVEF was significantly associated with a cardiac 

endpoint (Table 7.10) was consistent with the previous finding that low baseline 

LVEF was a risk factor for a cardiac endpoint. Considering imputed LVEF values 

led to a stronger association between an LVEF drop greater than 5 LVEF points 

from baseline and a cardiac endpoint (~0.65) (Table 7.12) than when only 

observed LVEF values are considered (0.48) (Table 7.10). As noted, this may be 

influenced by the fact that in the multiple imputation by bootstrapping subgroups 

were defined by baseline LVEF and low baseline LVEF was a risk factor for a 

cardiac endpoint. In context of the HERA trial, it was not beneficial to impute 

LVEF values. 
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It was appropriate to perform the repeated measures analysis of LVEF over time 

using observed LVEF values only (section 7.5). The five LVEF values from Week 

13 up to Week 103/Month 24 were modeled by safety analysis population group 

using a mixed model with the stratification factors and the baseline LVEF and 

ECOG performance score as covariates. The LVEF values over time for patients 

in the trastuzumab group did not follow the same pattern as the LVEF values for 

patients in the observation group (Table 7.18). For trastuzumab patients, the 

repeated measures analysis suggests that during the treatment period, trastuzumab 

treatment was associated with a statistically significant but clinically unimportant 

decrease in LVEF values which then returned to baseline LVEF value after 

trastuzumab treatment was completed. For observation patients, there was no 

suggestion of trend in direction of LVEF values or a clinically important change 

in the LVEF values during the period between Week 13 and Week 103/Month 24 

(Table 7.17).  

 

The repeated measures analysis of LVEF values over time and the fact that the 

incidence of cardiac endpoints among patients with a baseline LVEF > 55% and < 

60% and patients with a baseline LVEF > 60% and < 65% was statistically 

significantly higher than patients with a higher baseline LVEF suggested that 

patients with a LVEF > 55% and < 65% had clinically poorer cardiac function 

than patients with baseline LVEF > 65%. 

 

The missing LVEF assessments in the further cardiac analysis are an example of a 

missing outcome variable and an example where the assumption that missing 

values are MAR was reasonable. Here, there was no benefit in multiple 

imputation. In contrast, the missing quality of life assessments in the time-

dependent Cox model analysis of DFS in the IBCSG dataset are an example of a 

missing explanatory variable and are informative missing data. Imputation of the 

missing quality of life scores was appropriate. The differences in the appropriate 

approaches in addressing the missing values again highlights the importance of 

carefully considering the missing data mechanism
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8 Conclusions 
Therapeutic trials in breast cancer are conducted to compare the effectiveness of 

treatment regimens. The main treatment comparisons in breast cancer clinical 

trials are generally based on DFS and OS and the time to event endpoints are 

generally analysed in a Cox proportional hazards model. More recently, clinical 

trials have been designed with endpoints which include the patient’s perception of 

his or her well-being. Often quality of life assessments are repeated throughout 

the study and so are suitable as a time-dependent covariate in a time-dependent 

Cox model analysis of DFS. It is common for medical assessments which monitor 

patient safety to be repeated throughout the study.  

 

Generally when assessments are repeated throughout the study, some missing 

observations are expected. The potential problems associated with missing 

observations such as missing quality of life assessments include bias of the 

parameter estimates and loss of power to detect clinically important differences 

among treatment groups over time. Imputation-based procedures, where the 

missing values are filled-in and the completed data are analysed by standard 

methods, have been developed in the statistical literature for the analysis of data 

with missing values with the aim of reducing bias from missing data. A review of 

articles published in the Journal of Clinical Oncology indicated that between 2006 

and 2011 it had become more common to describe missing data and the associated 

assumptions but that imputation was not widely applied. In particular, imputation 

in the context of time-dependent covariates that may be informative missing data 

has not been studied in detail in the statistical literature and is the focus of this 

thesis. 

 

8.1  Imputation of Missing Observations 

Simple imputation involves replacing the missing observation with a single 

plausible value and there are several standard methods of simple imputation. 

When appropriately performed, simple imputation allows valid inferences from 
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standard procedures with modifications to account for the different status of 

observed and imputed values and allows all patients where the observation was 

expected to contribute to the analysis. However, inappropriate use of simple 

imputation methods may increase bias. An important disadvantage of simple 

imputation methods is that, as they do not reflect the uncertainty in imputed value, 

they lead to the underestimation of the variance of the observations. There are 

only limited circumstances when it is appropriate to draw inferences from the 

parameter estimate resulting from simple imputation. Of note, LOCF cannot 

always be assumed to be a conservative analysis. However, simple imputation 

methods can give useful information about the sensitivity of the results to 

assumptions about missing data. In considering the performance of imputation 

methods, simple imputation methods such as LOCF have been considered in the 

statistical literature.  

 

The basic strategy of multiple imputation is to generate K (K > 1) completed 

datasets in order to analyse each of the completed datasets by standard methods 

and then combine the results to produce estimates and confidence intervals that 

take account of the missing-data uncertainty. The number of repetitions of 

multiple imputation is commonly set to 5. Multiple imputation can avoid the 

disadvantage of underestimation of the variance of the observations and allow 

sensitivity analysis of the imputation methods on the results from the analyses. As 

with simple imputation, it has the advantage of including information from 

patients with incomplete observations.  

 

Careful consideration should be given to the final choice of imputation method. It 

is important to remember that if the imputation model does not capture the 

missing data mechanism, then any analysis based on the imputation is flawed. 

Most of the methods for multiple imputation assume that the missing observations 

are missing at random and many methods assume a multivariate normal 

distribution for the data. Among the considerations when deciding on the final 

imputation method will be previous experience with similar missing data issues, 
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the ease of communicating the methods used and the resources required to 

perform the imputation.  

 

Imputation in quality of life data is expected to be beneficial when additional 

information, such as intensity of adverse events, that is related to quality of life is 

available when the quality of life assessment is both observed and missing. This 

additional patient information can be considered in the imputation process, for 

example by using MCMC methods. In quality of life data, the few items or scales 

which have been identified as the most important should be the focus of choosing 

the imputation method. 

 

The focus of this thesis is the influence of missing data on explanatory variables 

that may be related to DFS, such as quality of life, and also missing longitudinal 

assessments which are performed to assess major safety endpoints. The 

application is to breast cancer clinical trials. Standard imputation methods were 

reviewed and outlined. Missing values of quality of life were imputed using 

standard imputation methods before analysis investigating the possible 

relationship between quality of life and DFS. The performance of standard 

imputation methods was considered. This was done by generating simulated 

datasets with a known relationship between quality of life and DFS. Simulated 

datasets with each of the three types of missing data mechanism (MCAR, MAR 

and informative missing data) were considered. In the last part of the thesis, the 

influence of missing values of an outcome variable assessing safety was 

considered. Repeated measures analysis of a safety assessment was performed.  

 

8.2 Main Findings from Applying Imputation Methods in Breast 

Cancer Trials 

Quality of Life in the IBCSG Dataset 

Quality of life was an important endpoint in the adjuvant breast cancer trials 

IBCSG Trials VI and VII. The main publication on quality of life compared 

quality of life among treatment groups based on observed values (Hürny et al. 



 
 

292 
 

1996).  As noted, Coates et al. (2000) indicated that DFS was not significantly 

predicted by quality of life scores or by changes in quality of life scores from 

baseline. However, Herring et al. (2004) indicated poor baseline coping score was 

associated with improved prognosis in Swiss postmenopausal patients.    

 

Previous work investigating the potential relationship between quality of life and 

DFS was extended in this thesis by considering quality of life as a time-dependent 

covariate. The quality of life assessments focus on the impact of adjuvant 

treatment in the early stage of the trial. The high proportion of missing coping 

scores and the indication from previous statistical analysis that the coping scores 

are informative missing data (Herring et al. [2004]) together lead to the 

conclusion that imputation is appropriate for the IBCSG dataset. The question of 

interest is whether quality of life is related to prognosis in breast cancer patients. 

The illustration of the standard imputation methods in a small example dataset 

indicated that using several standard imputation methods may provide useful 

information in this investigation. Standard imputation methods were used before 

analysis of DFS, in order to use the coping score as a covariate in a time-

dependent Cox model for DFS considering the treatment effect of delayed 

chemotherapy. Here, the coping score was an example of a missing explanatory 

variable. 

 

In the IBCSG dataset there was no evidence of a statistically significant or 

clinically important relationship between quality of life and DFS from the 

standard imputation methods. The multiple imputation methods showed hazard 

ratios which were similar for each repetition. There was a small increase in the 

standard error of the parameter estimates following the standard multiple 

imputation methods compared to the analysis of all available coping scores. The 

parameter estimate for the square root of the coping score (S_Pacis) was close to 0 

following imputation by all of the standard imputation methods.  Similarly, the 

parameter estimates for S_Pacis from the time-dependent Cox model analyses 

without imputation carried out for reference and illustrative purposes were also 
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close to 0. The trend towards a positive relationship between delayed 

chemotherapy and DFS, with the parameter estimate around -0.1, is consistent 

with the finding from the main efficacy analysis that there may be a therapeutic 

benefit from delayed chemotherapy. 

 

Considering coping scores throughout the study in a time-dependent Cox model 

led to parameter estimates in the opposite direction and of a smaller magnitude 

than when considering baseline quality of life in Herring et al. (2004). There are 

differences of note in the analyses in Chapters 3 and 4 compared to Herring et al. 

(2004). Firstly, in Chapters 3 and 4 premenopausal patients and postmenopausal 

patients outside Switzerland were considered, giving a broader and larger 

population of patients. Secondly, the outcome of relapse-free survival considered 

by Herring et al. (2004) did not include second primary cancer or death without 

prior event as events. Lastly, further covariates such as age and interaction terms 

were considered in the analysis by Herring et al. (2004), whereas the time-

dependent Cox model in the main investigation in Chapters 3 and 4 was 

parsimonious. 

 

There was large within and between patient variability in coping scores in the 

IBCSG dataset. Simulated datasets based on the patients with a complete set of 

coping scores were used to estimate the difference between the imputed coping 

score and the missing coping score. For all the standard imputation methods 

considered, the estimated variance of this difference was high, indicating a lack of 

accuracy when imputing the missing coping score. In the setting of the IBCSG 

dataset, the more complex standard multiple imputation methods did not perform 

better than the standard simple imputation methods. There were similarities 

between the performance of the imputation methods in the IBCSG dataset in 

imputing quality of life scores and the performance of imputation methods in the 

literature. Ramstam et al. (2012) also noted that the alternative imputation 

methods produced similar results. Peyre et al. (2011) noted a small bias following 

imputation by personal mean score. This is similar to the finding in the IBCSG 
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dataset that the coping score may be systematically underestimated following 

median imputation by patient. However, unlike the imputation in the IBCSG 

dataset, Peyre et al. (2011) found that multiple imputation improved accuracy and 

precision compared to personal mean score.  

 

The imputed values form the standard simple and multiple imputation methods in 

the IBCSG dataset reflected the imputation method applied. There was no 

suggestion that there is a completed dataset which would be achieved regardless 

of the imputation method applied. Thus, it is possible that the performance of the 

imputation methods in this setting was influenced by the relationship between 

quality of life and DFS. Further, the performance of the standard imputation 

methods may not be the same when the data are informative missing data 

compared to when the MAR assumptions is reasonable or when there is a strong 

relationship between quality of life and DFS. Simulated datasets were generated 

in order to investigate if the performance of the standard imputation methods 

given different missing data mechanisms is influenced by the relationship between 

quality of life and DFS. The IBCSG dataset was the basis of these simulated 

datasets.   

 

Simulation of Data with a Positive Relationship Between Quality of Life and 

DFS and a Positive Relationship Between Delayed Chemotherapy and DFS 

Complete simulated datasets were generated with four different combinations of a 

positive relationship between quality of life and DFS and a positive relationship 

between delayed chemotherapy and DFS. From these complete simulated 

datasets, simulated datasets containing missing data were generated by artificially 

removing coping scores. Standard imputation methods were applied to the 

simulated datasets in order to investigate the influence of the missing data 

mechanism on the performance of standard imputation methods given different 

combinations of a positive relationship between quality of life and DFS and a 

positive relationship between delayed chemotherapy and DFS. 
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There was a suggestion that the performance of the standard simple imputation 

methods was influenced by the missing data mechanism except when the 

combination of weak positive relationship between quality of life and DFS and 

weak positive relationship between delayed chemotherapy and DFS was 

considered. The performance of the standard simple imputation methods was 

poorest when lower quality of life was associated with a higher probability of 

missingness, a likely scenario for missing quality of life assessments. 

 

The standard simple imputation methods may be less sensitive to the assumptions 

for the method in the combination of weak positive relationship between quality 

of life and DFS and weak positive relationship between delayed chemotherapy 

and DFS than in other settings. This suggests the results from applying the 

standard simple imputation methods to the IBCSG dataset, may be more robust, 

though not necessarily unbiased, than if there was an indication of a strong 

relationship between quality of life or delayed chemotherapy and DFS.  

 

With the one exception for a particular setting noted, the standard multiple 

imputation methods led to a trend for the parameter estimates of S_Pacis and 

delayed chemotherapy to be biased towards 0. The bias towards 0 of the 

parameter estimate for S_Pacis was most extreme when later time periods were 

associated with a higher probability of missingness. Unlike in simple imputation, 

the uncertainty in the imputed values was reflected in the fact that the resulting 

standard errors of the parameter estimates of S_Pacis and delayed chemotherapy 

were larger than those from the complete simulated datasets. Countering this was 

the fact that, in this setting, the bias in the parameter estimate for S_Pacis was 

more apparent following standard multiple imputation methods than standard 

simple imputation methods. Here, the standard multiple imputation methods were 

not more useful in achieving unbiased parameter estimates than the standard 

simple imputation methods. The investigation of applying the standard imputation 

methods to the simulated datasets illustrates the importance of carefully 
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investigating the missing data mechanism when performing imputation 

techniques. 

 

8.3 Findings on Cardiac Safety in the HERA Trial 

While trastuzumab treatment has established efficacy in early breast cancer, it is 

not appropriate for patients with a history of cardiac disease. LVEF assessments 

were performed throughout the study to assess cardiac safety. Publications on 

cardiac safety considered observed LVEF values and indicated that the incidence 

of cardiac endpoints was low. In the trastuzumab group, low baseline LVEF was a 

risk factor for a cardiac endpoint, which mostly occurred during the trastuzumab 

period and is generally reversible (Suter al. 2007; Procter et al. 2014).  

 

Further cardiac analysis was performed with the aim of investigating the influence 

of missing LVEF assessments on the change in LVEF from baseline and to model 

the LVEF values over time. LVEF was an important safety variable in the HERA 

trial and considering the LVEF assessments that were expected, the percentage of 

missing LVEF values was low. This is in contrast to the high percentage of 

missing quality of life assessments in the IBCSG dataset, where the quality of life 

assessments were likely considered of less importance during the study. The 

missing LVEF values give an example of a missing outcome variable and it was 

reasonable to assume the LVEF values are MAR. In the context of the HERA 

trial, it was not beneficial to impute LVEF values. 

 

The percentage of patients with an LVEF of less than 50% and at least 10 EF 

points from baseline throughout the study was low for both the observation and 

trastuzumab group. Among trastuzumab patients, a decrease of more than 5 LVEF 

points from baseline at Week 13 was associated with later development of a 

cardiac endpoint, indicating that LVEF is an important measure of cardiac 

function in patients receiving trastuzumab. The further cardiac analysis suggested 

that patients with a LVEF 55% or more and less than 65% had clinically poorer 

cardiac function than patients with baseline LVEF 65% or more. 
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The occurrence of an LVEF drop greater than 5 LVEF points from baseline was 

considered as a time-dependent covariate, similarly to coping score. In line with 

the previous finding, low baseline LVEF was significantly associated with a 

cardiac endpoint following multiple imputation. Considering imputed LVEF 

values led to a stronger association between an LVEF drop greater than 5 LVEF 

points from baseline and a cardiac endpoint than when only observed LVEF 

values are considered. The stronger association may be influenced by the fact that 

in the multiple imputation by bootstrapping, subgroups were defined by baseline 

LVEF and low baseline LVEF was a risk factor for a cardiac endpoint.  

 

In the HERA trial, it was appropriate to perform the repeated measures analysis of 

the LVEF values over time in a mixed model using observed LVEF values only. 

The 5 LVEF values from Week 13 up to Week 103/Month 24 were modelled 

using a mixed model that included an interaction term for safety analysis 

population group and visit. Repeated measures analysis suggests that during the 

treatment period, trastuzumab treatment was associated with a statistically 

significant but clinically unimportant decrease in LVEF values which then 

returned to baseline LVEF values after trastuzumab treatment was completed. In 

contrast, for observation patients, there was no suggestion of a trend in direction 

of LVEF values or clinically important change in LVEF values up to Week 

103/Month 24.  The pattern in LVEF values for trastuzumab patients suggested by 

repeated measures analysis was consistent with the findings from the previous 

publications that the majority of cardiac endpoints occur during the scheduled 

treatment period and may be reversible.   

 

LVEF was an important safety variable with a low percentage of missing values. 

Loss of statistical power from missing safety variables such as LVEF values is 

less likely to be a concern than when considering quality of life assessments, 

which may have a high proportion of missing values. The missing LVEF 

assessments in the further cardiac analysis are an example of where the 

assumption that missing values are MAR was reasonable and in this setting there 



 
 

298 
 

was no benefit in multiple imputation. In contrast, the missing quality of life 

assessments in the time-dependent Cox model analysis of DFS in the IBCSG trial 

are an example of informative missing data and imputation of the missing quality 

of life scores was appropriate.  The differences in the appropriate approaches in 

addressing the missing values again highlights the importance of carefully the 

missing data mechanism.  

 

8.4 Further Work and Limitations 

Observed and imputed coping scores could be used to compare quality of life 

among treatment groups, repeating the analysis in Hürny et al. (1996). This was 

not done as the focus of this thesis is investigating the potential association 

between quality of life and DFS. The work in this thesis focused on standard 

imputation methods. It could be extended by applying further multiple imputation 

methods to the missing coping scores in the IBCSG dataset and simulated 

datasets. In particular, chained equations (section 2.3.7), implemented in the 

statistical software MICE, has become of more common since work began on this 

thesis. Of note, the statistical literature on correctly specifying the imputation 

model continues to be developed (e.g. White et al. 2011). Though chained 

equations were not considered in this thesis, they are related to multiple 

imputation methods that were applied: multiple imputation using explicit 

univariate (section 2.3.4), nearest neighbour imputation and predictive mean 

matching (section 2.3.5).  

 

Qi et al. (2010) compared multiple imputation by chained equations and fully 

augmented weighted (FAW) equations (section 1.6.2). The comparison indicated 

that FAW equations show potential to be a useful tool in survival analysis with 

missing covariates. It would be of interest to apply FAW equations to the missing 

coping scores in the IBCSG dataset and simulated datasets. 

 

Jolani et al. (2014) proposed a dual imputation model (DIM) for incomplete 

longitudinal data. This method integrates multiple imputation and doubly robust 
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weighing-based methods to protect against misspecifications of the imputation 

model under a MAR assumption. A key feature of the DIM strategy is to 

iteratively estimate propensities for each incomplete variable conditional on the 

other variables, and to impute missing values on that variable by including a 

function of propensities into the imputation model. The proposed method works 

well with an intermittent pattern of missingness, as in the IBCSG dataset.   

 

Morris et al. (2014) proposed imputation by local residual draws (LRD). LRD was 

developed from predictive mean matching, but in LRD the donar’s residual is 

borrowed during imputation rather than an observed value. They compared the 

performance of predictive mean matching and LRD to fully parametric imputation 

in simulation studies. Morris et al. (2014) note that that predictive mean matching 

and LRD may have a role for imputing covariates which i) which are not strongly 

associated with outcome; and ii) where the imputation model is thought to be 

slightly but not grossly misspecified. It would be of interest to investigate 

specification of the imputation model in the IBCSG dataset and whether LRD 

could be of use. 

 

He et al. (2011) proposed a functional multiple imputation approach. Here, 

longitudinal response profiles are modeled as smooth curves of time under a 

functional mixed effects model. They developed a Gibbs sampling algorithm to 

draw model parameters and imputations for missing values. A simulation study 

demonstrated that this approach performs well under varying modelling 

assumptions on the time trajectory and missingness patterns.   

 

The time-dependent Cox model analysis in this thesis assumes proportional 

hazards. Song and Wang (2013) investigated this proportional hazards assumption 

and proposed inverse selection probability weighted estimators based on the local 

partial likelihood approach. These estimators could be used to investigate the 

sensitivity of the findings of the time-dependent Cox model analysis of quality of 

life and DFS and cardiac safety to the assumption of proportional hazards. 
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A further method of obtaining the parameter estimates from the time-dependent 

Cox model that is of interest is by joint modeling of event time and informative 

missing values of a time-dependent Covariate (Dupuy and Mesbah 2002). Here, a 

semi-parametric maximum likelihood estimator of the parameter from the time-

dependent Cox model was obtained. An estimator for the variance of these 

parameter estimates was proposed by Dupuy and Mesbah (2004) to allow 

hypothesis testing. It would also be of interest to consider the parameter estimate 

from the selection model proposed by Bradshaw et al. (2010). The selection 

model is defined by the joint distribution of the event times, missing covariates 

and the missing data mechanism. It extends work by Herring et al. (2004) to allow 

time-dependent covariates, such as quality of life in the IBCSG dataset. 

 

Though there was no evidence in the IBCSG dataset of a statistically significant 

or clinically important relationship between quality of life and DFS, the topic 

remains of scientific interest in breast cancer clinical trials and clinical trials more 

widely. It would be of interest to investigate if the findings on the performance of 

the standard imputation methods in Chapters 4 and 5 are replicated in a simulation 

study based on quality of life in another clinical trial.  Such a simulation study 

could take place based on a clinical trial from a different application from breast 

cancer. The two findings that would be of particular interest to investigate the 

replicability of are:  

i) the standard multiple imputation methods were not more useful than 

the standard simple imputation methods in terms of achieving an 

unbiased parameter estimate 

ii) the bias of the parameter estimate relating to quality of life was largest 

when later time periods were associated with a higher probability of 

missingness following the standard multiple imputation methods 

 

A limitation of the further cardiac analysis in the HERA trial is the short median 

follow-up time of patients (1 year). It would be of interest to consider the time-

dependent Cox model analysis of time to cardiac endpoint and the repeated 
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measures analysis of LVEF over time from a database with longer follow-up. This 

would incorporate a larger number of cardiac endpoints and a larger number of 

LVEF assessments beyond the scheduled treatment/observation period.  The 

LVEF values from assessments further from randomisation could then also be 

included in the repeated measures analysis.     

 

8.5 Summary 

The most important concern arising from missing data in clinical trials is the 

potential to introduce bias to the findings from the clinical trial. The simplest 

approach to the analysis of data with missing observations is to disregard 

incomplete patients and only analyse patients with complete data. Though this 

may be satisfactory when there are only small amounts of missing data, it may 

lead to misleading results and lacks efficiency.  

 

The aim of the imputation-based procedures for the analysis of data with missing 

observations which have been developed in the statistical literature was reducing 

bias from missing data. The review of standard imputation methods and applying 

standard imputation methods to the IBCSG dataset and the simulation study 

found: 

 There are only limited circumstances when it is appropriate to draw 

inferences from the parameter estimate resulting from simple imputation. 

Justification should be provided if the parameter estimates are considered. 

 The simple imputation methods may provide information as part of a 

sensitivity analysis into the sensitivity of results to the assumptions about 

the missing data 

 Multiple imputation methods generally assume the data are MAR; several 

multiple imputation methods assume a monotone missing data pattern  

 The standard multiple imputation methods did not perform well in the 

simulation study; this is influenced by the fact 
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i) for two of the scenarios the simulated datasets have informative 

missing data 

ii) all the simulated datasets have a general missing data pattern  

 The influence of the missing data mechanism on the performance of the 

standard imputation methods in the simulation study illustrates the 

importance of carefully investigating the missing data mechanism 

 

Imputation may not be the most appropriate method of analysing missing data, as 

illustrated by the further cardiac analysis in the HERA trial. The LVEF 

assessments were MAR and there was a low percentage of missing LVEF values. 

It was appropriate to perform the repeated measures of LVEF values based on the 

observed LVEF values. Complete case analysis may be acceptable when the 

proportion of missing assessments is small (< 5%). In some scenarios, 10%-20% 

of missing data will have little or no effect on the results of the study. The reason 

for the missing data needs to be considered as well as the amount of missing data 

(Fairclough 2010, p.126-127; Little and Rubin 2002, p.41-42). Special care should 

be taken if imputation is being applied when more than 30-50% of the data are 

missing (White et al. 2011), and in this scenario the conclusions that can be drawn 

are restricted (Fairclough 2010, p.127).    

 

When appropriately performed, imputation allows valid inferences from standard 

procedures.  Development of imputation-based procedures continues, while 

recognising that imputation-based procedures are not always the best approach to 

analysing missing data. When appropriately performed, imputation allows valid 

inferences from standard procedures. However, it is important to investigate why 

observations are missing and to give careful consideration to the final choice of 

imputation method used as imputation methods involve untestable assumptions. 

While statistical methods for dealing with missing data exist, it is always 

preferable to have the actual data and it is important to minimise the amount of 

missing data in a clinical trial. 
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Appendix A Parameter Estimates from the Completed 

Dataset, the Cumulative Mean Parameter Estimates and 

the Decomposition of the Variance of the Parameter for 

Square Root of Coping Score (βsp) for the Remaining 

Standard Multiple Imputation Methods 

 

The figures for the parameter estimates for the square root of the coping score 

(S_Pacis) and delayed chemotherapy from the completed dataset and the 

cumulative mean parameter estimates for the remaining standard multiple 

imputation methods are shown as noted below: 

 

Method Detail Estimate of βsp  Estimate of βdel  

Bootstrapping previous coping 

score 

Figure A1.1 Figure A1.2 

Nearest neighbour  Figure A2.1 Figure A2.2 

Predictive mean 

matching 

initial steps as 

described for NNI 

Figure A3.1 Figure A3.2 

Pattern mixture 

models 

Curran’s analytic 

technique 

Figure A4.1 Figure A4.2 

 

The decomposition of the variance of βsp for the remaining standard multiple 

imputation methods is shown in Table A1.1.   
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Figure A1.1 Parameter estimate from the completed dataset (A) and the cumulative mean 

parameter estimate (B) for the square root of the coping score (S_Pacis) from the time-

dependent Cox model analysis following bootstrap imputation, subgroups defined by 

previous coping scores by the number of repetitions of imputation 
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Figure A1.2 Parameter estimate from the completed dataset (A) and the cumulative mean 

parameter estimate (B) for delayed chemotherapy from the time-dependent Cox model 

analysis following bootstrap imputation, subgroups defined by previous coping scores by 

the number of repetitions of imputation  
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Figure A2.1 Parameter estimate from the completed dataset (A) and the cumulative mean 

parameter estimate (B) for square root of the coping score (S_Pacis) from the time-

dependent Cox model analysis following nearest neighbour imputation by the number of 

repetitions of imputation  
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Figure A2.2 Parameter estimate from the completed dataset (A) and the cumulative mean 

parameter estimate (B) for delayed chemotherapy from the time-dependent Cox model 

analysis following nearest number imputation by the number of repetitions of imputation  
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Figure A3.1 Parameter estimate from the completed dataset (A) and the cumulative mean 

parameter estimate (B) for square root of the coping score (S_Pacis) from the time-

dependent Cox model analysis following imputation by predictive mean matching by the 

number of repetitions of imputation  
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Figure A3.2 Parameter estimate from the completed dataset (A) and the cumulative mean 

parameter estimate (B) for delayed chemotherapy from the time-dependent Cox model 

analysis following imputation by predictive mean matching by the number of repetitions 

of imputation  

P
ar

am
et

er
 e

st
im

at
e 

fr
o
m

 c
o
m

p
le

te
d

 d
at

as
et

-0.095

-0.094

-0.093

-0.092

-0.091

-0.090

Repetition of imputation

0 10 20 30 40 50

C
u
m

u
la

ti
v
e 

m
ea

n
 p

ar
am

et
er

 e
st

im
at

e

-0.095

-0.094

-0.093

-0.092

-0.091

-0.090

Number of repetitions of imputation

0 10 20 30 40 50



 
 

327 
 

A 

 

B 

 

 

Figure A4.1 Parameter estimate from the completed dataset (A) and the cumulative mean 

parameter estimate (B) for square root of the coping score (S_Pacis) from the time-

dependent Cox model analysis following imputation by pattern mixture models by the 

number of repetitions of imputation  
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Figure A4.2 Parameter estimate from the completed dataset (A) and the cumulative mean 

parameter estimate (B) for delayed chemotherapy from the time-dependent Cox model 

analysis following imputation by pattern mixture models by the number of repetitions of 

imputation 
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Table A1.1 Variance Decomposition of the Parameter for Square Root of Coping 

Score (βsp) from Time-Dependent Cox Model Analysis Following Standard 

Imputation Methods 

Bootstrap - previous coping scores 

  K=5 K=40 K=50 

Within-imputation (W) 0.000132 0.000132 0.000131 

Between-imputation (B) 0.000015 0.000025 0.000024 

Total variance 0.000150 0.000157 0.000156 

Fraction of missing information 0.1067 0.1603 0.1557 

Efficiency of estimate 0.9791 0.9689 0.9969 

Nearest neighbour 

  K=5 K=40 K=50 

Within-imputation (W) 0.000128 0.000128 0.000128 

Between-imputation (B) 0.000013 0.000012 0.000011 

Total variance 0.000143 0.000140 0.000139 

Fraction of missing information 0.0960 0.0861 0.0794 

Efficiency of estimate 0.9981 0.9983 0.9984 

Predictive mean matching 

  K=5 K=40 K=50 

Within-imputation (W) 0.00013 0.00013 0.000131 

Between-imputation (B) 0.00002 0.000014 0.000016 

Total variance 0.000154 0.000145 0.000147 

Fraction of missing information 0.1409 0.0977 0.1093 

Efficiency of estimate 0.9972 0.9981 0.9978 

Pattern mixture models 

  K=5 K=40 K=50 

Within-imputation (W) 0.000136 0.000136 0.000136 

Between-imputation (B) 0.000015 0.000015 0.000014 

Total variance 0.000154 0.000152 0.000151 

Fraction of missing information 0.1037 0.0998 0.0937 

Efficiency of estimate 0.9979 0.9980 0.9981 
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Appendix B Estimated Mean Difference Between the 

Imputed Coping Score and the Missing Coping Score and 

Estimated Standard Deviation of the Difference Following 

the Standard Imputation Methods in Simulated Datasets 

 

The estimated mean difference between the imputed coping and the missing 

coping score following standard imputation methods in the IBCSG dataset is 

considered in this appendix. The estimated difference between the imputed coping 

score and the missing coping score is the estimate of the real value of the missing 

coping score – the imputed coping score. 

 

The figures for i) the estimated mean difference from each simulated dataset and 

ii) the cumulative estimated mean difference following LOCF is shown in Figure 

B1.1. This estimated mean difference is summarised for the standard simple 

imputation methods in Table B1.1. This estimated mean difference estimated 

following the standard multiple imputation methods varying the number of 

repetitions of multiple imputation and varying the number of simulated datasets is 

described in Table B2.1 and Table B2.2 respectively. 
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Figure B1.1 Estimated mean difference (A) and the cumulative estimated mean 

difference (B) between the imputed coping score and the missing coping score following 

imputation by last observation carried forward by the number of simulated datasets 
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Table B1.1 Range of Estimated Mean Difference and Estimated Standard Deviation of 

Estimated Mean Difference Between Imputed Coping Score and Missing Coping Score 

Following Simple Imputation in Simulated Datasets  

Method 

Number of 

Simulated 

Datasets 

Estimated 

Mean 

Difference 

Range of 

Estimated 

Difference 

Estimated 

SD of 

Difference 

LOCF 100 -0.73 -2.55 to 1.12 20.64 

  150 -0.73 -2.55 to 1.12 20.64 

Median 100 2.09 0.44 to 3.72 18.01 

by patient 150 2.09 0.44 to 3.72 18.01 

Median 100 11.22 7.99 to 13.19 25.17 

by time period 150 11.22 7.99 to 13.19 25.17 

Median 100 10.19 7.67 to 12.38 25.00 

time period and trt arm 150 10.19 7.67 to 12.40 25.00 

Linear regression 100 5.36 3.73 to 6.90 18.35 

previous coping scores 150 5.36 3.73 to 6.90 18.35 

Linear regression 100 9.83 6.19 to 12.34 26.03 

concurrent variables 150 9.83 6.19 to 13.91 26.03 

trt = treatment 

Estimated difference between the imputed coping score and the missing coping score is the 

estimate of the real value of the missing coping score – the imputed coping score    
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Table B2.1 Estimated Mean Difference Between Imputed Coping Score and Missing 

Coping Score Following a Varying Number of Repetitions of Multiple Imputation in 

Simulated Datasets  

Imputation Method

Simulated 

Dataset

Estimated 

Mean 

Difference (10)

Estimated 

Mean 

Difference (20)

Estimated 

Mean 

Difference (30)

Bootstrap: 1 3.32 3.47 3.33

baseline coping score 2 4.49 4.51 4.43

3 4.16 4.03 3.99

4 2.86 3.10 3.09

5 4.98 4.87 4.76

Bootstrap: 1 2.97 2.81 2.76

previous coping score 2 3.31 3.31 3.24

3 3.50 3.47 3.50

4 2.45 2.59 2.59

5 3.13 3.38 3.36

Nearest neighbour 1 -0.80 -0.75 -0.76

2 -0.82 -0.89 -0.84

3 0.45 0.49 0.51

4 0.41 0.32 0.31

5 -0.69 -0.65 -0.60

Predictive mean matching 1 -0.62 -0.72 -0.75

(Initial steps as described 2 -0.61 -0.68 -0.73

for NNI) 3 0.46 0.41 0.41

4 0.24 0.30 0.32

5 -0.59 -0.57 -0.56

Pattern mixture models 1 -0.76 -0.72 -0.74

2 -0.43 -0.52 -0.53

3 0.41 0.48 0.49

4 0.40 0.39 0.37

5 -0.56 -0.51 -0.48  

nni = nearest neighbour imputation 

Estimated difference between the imputed coping score and the missing coping score is the 

estimate of the real value of the missing coping score – the imputed coping score    

Estimated difference following 10, 20 and 30 repetitions of multiple imputation respectively 
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Table B2.2 Estimated Mean Difference Between Imputed Coping Score and Missing 

Coping Score Following Multiple Imputation in a Varying Number of Simulated Datasets  

Imputation Method

Number of 

Simulated 

Datasets

Estimated Mean 

Difference

Range of Estimated Mean 

Difference from Individual 

Simulated Datasets

Bootstrap: 10 4.01 2.86 to 4.98

baseline coping score 50 3.72 2.02 to 5.19

75 3.63 1.59 to 5.19

100 3.60 1.59 to 5.19

Bootstrap: 10 3.09 2.12 to 4.65

previous coping score 50 2.94 1.47 to 4.77

75 2.93 1.40 to 4.77

100 2.87 1.07 to 4.77

Nearest neighbour 10 -0.32 -1.43 to 1.16

50 -0.43 -2.44 to 1.16

75 -0.49 -2.44 to 1.16

100 -0.55 -2.44 to 1.16

Predictive mean matching 10 -0.27 -1.51 to 1.20

(Initial steps as described 50 -0.40 -2.33 to 1.20

for NNI) 75 -0.47 -2.33 to 1.20

100 -0.51 -2.33 to 1.20

Pattern mixture models 10 -0.29 -1.54 to 1.41

50 -0.42 -2.43 to 1.41

75 -0.48 -2.43 to 1.41

100 -0.52 -2.43 to 1.41  

nni = nearest neighbour imputation 

Estimated difference between the imputed coping score and the missing coping score is the 

estimate of the real value of the missing coping score – the imputed coping score    

Estimated difference following 10 repetitions of multiple imputation respectively 
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Appendix C Technical Details of Simulated Datasets with 

a Positive Relationship Between Quality of Life and 

Disease-Free Survival and a Positive Relationship 

Between Delayed Chemotherapy and Disease-Free 

Survival   

 

The technical details of generating the simulated datasets with a positive 

relationship between quality of life and DFS and a positive relationship between 

delayed chemotherapy and DFS are described in this appendix. Simulating time to 

event data (section 4.2.1) is described in Part 1 and artificially removing coping 

scores from the complete simulated datasets (section 4.2.2) is described in Part 2. 

 

Part 1: Simulating Time to Event Data  

The method for simulating a positive relationship between quality of life and DFS 

and a positive relationship between delayed chemotherapy and DFS according to 

the algorithm described by MacKenzie and Abrahamowicz (section 4.2.1) is 

described below: 

 

Algorithm for Randomly Generating Time to Event Data 

1a) Start with the actual observed coping scores for the patients in the 

IBCSG dataset with an observed baseline coping score 

2231 patients with an observed baseline coping score are considered 

1b) Create a matrix of 9 coping scores for 2231 patients. This is achieved 

by replacing any missing coping scores or any coping scores when a 

quality of life assessment was no longer expected by the last known 

coping score for the patient 

1c) Centre the square root of the coping score, S_Pacis, by subtracting the 

median of square root of the coping scores for the time point 
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2a) Generate 1338 times to DFS event from a Weibull distribution with 

shape parameter 1.199 and scale parameter 1519 

2b) Generate 893 follow-up times in the trial (censored DFS time) from a 

Weibull distribution with shape parameter 5.5014 and scale parameter 

4997 

 

3) Sort the n (n=2331) simulated DFS times (event or censored) in 

ascending order 

The simulated DFS times were rounded up to the nearest day to avoid a 

DFS time of 0  

 

4) Identify the risk set of patients who have yet to be matched to a DFS 

time (at the beginning this is all 2231 patients) 

 

5) For i=1 to n (starting with lowest DFS time, event or censored), 

a) for times to DFS event, select the patient to match to the DFS time 

based on the value of the centred S_Pacis and indicator for delayed 

chemotherapy from the risk set. For each individual patient in the risk set, 

the probability of selection is:  

(ratio of the hazard of an event at time t for an individual with covariate 

matrix X vs an individual for whom the covariate matrix βT = (0, 0)) / (the 

sum of the hazard ratio for all patients in the risk set)  

b) for the follow-up times in the trial (censored DFS), the ratio of the 

hazard of a censored DFS event at time t for an individual with covariate 

matrix X versus an individual for whom the covariate matrix XT = (0, 0) is 

1 for all values of the covariate matrix X 

Therefore, for each individual patient in the risk set, the probability of 

selection is: 1 / (the number of patients in the risk set) 

c) Include this patient and matched DFS time (event or censored) in the 

simulated dataset of outcome in the IBCSG trial 

d) Remove the patient selected from the set of patients at risk 
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Hazard Function for the Weibull Distribution 

The probability density function for the Weibull distribution with shape parameter 

p and scale parameter q is: 

 
𝑓(𝑡) = (

𝑝

𝑞𝑝
) 𝑡𝑝−1exp {− (

𝑡

𝑞
)

𝑝

} 
(C1) 

 

The corresponding hazard function at time t for a patient with covariate matrix X 

is: 

 
ℎ(𝑡|𝑿) = (

1

𝑞𝑝
) exp {𝜷T𝑋}𝑝(𝑡𝑝−1) 

(C2) 

where 

 

βsp is the parameter for square root of the coping scores (S_Pacis) in the time-

dependent Cox model 

βdel is the parameter for the delayed chemotherapy in the time-dependent Cox 

model 

XT = (centred square root of S_Pacis, del_ind) 

βT = (βsp , βdel) 

The indicator variable del_ind is 1 if the patient has delayed chemotherapy and 0 

if a patient has no delayed chemotherapy 

 

Example C1 Simulated DFS times According to Algorithm from MacKenzie 

and Abrahamowicz (2002) 

For illustration, consider βsp = 0.1 and βdel = -0.165. Let the 4 patients in the risk 

set be: 

 

Table C1 Example Risk Set in Algorithm for Simulating Disease-Free Survival Times 

Patient 

Coping 

score 

Centred 

S_Pacis 

Indicator for 

Delayed 

Chemotherapy 

395 13 -0.8666 1 

1322 2 -3.0579 1 

1467 3 -2.7401 1 

1928 15 -0.5992 1 

The indicator variable is 1 if the patient has delayed chemotherapy 
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and let the 4 simulated disease free survival times remaining to be matched (the 4 

longest) be: 

 

Table C2 Example Simulated Disease-Free Survival Times to be Matched in Step 5 of 

Algorithm for Simulating Disease-Free Survival Times 

DFS (days) DFS (censored)

7133 1

7149 1

7151 1

9325 1  
Censoring indicator for DFS is 0; DFS= disease-free survival  

 

Consider the time to DFS event of 7133 days. Then the probability of selecting 

each of the 4 patients to match to the time to DFS event of 7133 days is calculated 

as in step 5 of the algorithm and was as follows: 

 

Table C3 Example Probability of Selection of Patient in the Risk Set in Step 5 of 

Algorithm for Simulating Disease-Free Survival Times 

Patient Hazard of an 

event at time t 

with covariates  0

Hazard of an event 

at time t  with 

covariates  X
T 

Ratio of hazards 

at time t

Probability 

of selection

395 0.00107 0.00083 0.7757 0.2721

1322 0.00107 0.00067 0.6262 0.2197

1467 0.00107 0.00069 0.6449 0.2262

1928 0.00107 0.00086 0.8037 0.2820  
 

Suppose patient 1467 was selected. The simulated disease-free survival for patient 

1467 became 7133 days, with censoring indicator 1 for event. Patient 1467 is 

removed from the risk set. 

 

Creating a Time-Dependent Process 

As noted, to create a time-dependent process, the centred square root of the coping 

score at the appropriate time period in the calculation of the selection probability 

(section 4.2.1). The appropriate time period is as shown in Table C4: 
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Table C4 Time Period of Centred Square Root Coping Score 

Considered when Calculating the Hazard at Time t for a Patient with Covariates X 

DFS (days) Time Period

0-91 Baseline (Time 1)

92-182 Month 3 (Time 2)

183-273 Month 6 (Time 3)

274-364 Month 9 (Time 4)

365-455 Month 12 (Time 5)

456-546 Month 15 (Time 6)

547-637 Month 18 (Time 7)

638-728 Month 21 (Time 8)

> 729 Month 24 (Time 9)  

 

Therefore in Example C1 the centred square root of the coping score at Month 24 

(Time 9) was considered. 

 

Part 2: Artificially Removing Data from the Complete Simulated 

Datasets 

There were 600 complete simulated datasets generated (150 x 4 combinations of 

βsp and βdel) (Figure 4.1). As noted, for each of the complete simulated datasets 5 

different methods of artificially removing coping scores were considered. The 

details of the 5 methods of artificially removing coping scores were as follows:  

 

Method 1: Higher coping scores (lower quality of life) have a higher chance 

of being missing 

For each coping score, generate a random number, RTerm, from the Uniform(0, 

1) distribution. As the quality of life increases (coping score decreases) the 

probability of the coping score being observed increases. Patients with the highest 

quality of life (coping score < 10) have at least a 95% probability of coping score 

being observed. In contrast, patients with poor quality of life (coping score > 60) 

have a 50% probability of a coping score being observed.  

 

For 0 < coping scores < 2, the coping score is set to missing if RTerm is < 0.025 

For 3 < coping scores < 10, the coping score is set to missing if RTerm is < 0.05 
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For 11 < coping scores < 20, the coping score is set to missing if RTerm is < 

0.125 

For 21 < coping scores < 39, the coping score is set to missing if RTerm is < 0.2 

For 40 < coping scores < 49, the coping score is set to missing if RTerm is < 0.35 

For 50 < coping scores < 60, the coping score is set to missing if RTerm is < 

0.425 

For 61 < coping scores < 100, the coping score is set to missing if RTerm is < 0.5 

 

Method 2: Lower coping scores (higher quality of life) have a higher chance 

of being missing 

For each coping score, generate an random number, RTerm, from the Uniform(0, 

1) distribution. As the quality of life increases (coping score decreases) the 

probability of the coping score being observed decreases. Patients with the highest 

quality of life (coping score < 10) have at most a 50% probability of coping score 

being observed. In contrast, patients with poor quality of life (coping score > 60) 

have a 99% probability of a coping score being observed. 

 

For 0 < coping scores < 2, the coping score is set to missing if RTerm is < 0.65 

For 3 < coping scores < 5, the coping score is set to missing if RTerm is < 0.575 

For 6 < coping scores < 10, the coping score is set to missing if RTerm is < 0.5 

For 11 < coping scores < 20, the coping score is set to missing if RTerm is < 0.35 

For 21 < coping scores < 39, the coping score is set to missing if RTerm is < 

0.275 

For 40 < coping scores < 60, the coping score is set to missing if RTerm is < 0.2 

For 61 < coping scores < 100, the coping score is set to missing if RTerm is < 

0.01 

 

Method 3: Later time periods have a higher chance of being missing 

For each coping score, generate an random number, RTerm, from the Uniform(0, 

1) distribution. As the time in study increases the probability of the coping score 

being observed decreases. At baseline, patients have an 80% probability of coping 
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score being observed. In contrast, at Month 24 patients have a 50% probability of 

a coping score being observed. 

 

For baseline (approx randomisation), the coping score is set to missing if RTerm 

is < 0.2 

For Month 3, the coping score is set to missing if RTerm is < 0.225 

For Month 6, the coping score is set to missing if RTerm is < 0.25 

For Month 9, the coping score is set to missing if RTerm is < 0.30 

For Month 12, the coping score is set to missing if RTerm is < 0.35 

For Month 15, the coping score is set to missing if RTerm is < 0.4 

For Month 18, the coping score is set to missing if RTerm is < 0.45 

For Month 21, the coping score is set to missing if RTerm is < 0.475 

For Month 24, the coping score is set to missing if RTerm is < 0.5 

 

Method 4: Artificially remove approximately 30% of coping scores at 

random  

For each coping score, generate an random number, RTerm, from the Uniform(0, 

1) distribution 

 

If RTerm is < 0.3, set the coping score to missing 

 

Method 5: Higher coping scores have a higher chance of being missing 

As in Method 1, the quality of life increases (coping score decreases) the 

probability of the coping score being observed increases. However in Method 5, 

the coping scores are considered on a continuous scale rather than grouped into 

categories.  

 

The initial step is, for each coping score, generate an random number, RTerm, 

from the Uniform(0, 1) distribution.  

 

Let the variable Formula = ((Cope_status + 10) / 200) + RTerm, where 

Cope_status is the coping score 
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The ratio term will be between 10/200 = 0.05 and 110/200 = 0.55. When adding a 

random term between 0 and 1, the value of the formula will be above 0.925 

approximately 30% of the time. Therefore the rule was: 

If Formula > 0.925, set the coping score to missing 
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Appendix D Schoenfeld Residuals from Time-Dependent 

Cox Model Analysis for Different Combinations of a 

Positive Relationship Between Quality of Life and 

Disease-Free Survival and a Positive Relationship 

Between Delayed Chemotherapy and Disease-Free 

Survival   

 

The plots of Schoenfeld residuals against time for the square root of coping score 

(S_Pacis) and delayed chemotherapy for the 4 for complete simulated datasets 

with different combinations of a positive relationship between quality of life are 

shown in this appendix. The Schoenfeld residuals were calculated from the time-

dependent Cox model analysis on S_Pacis and delayed chemotherapy stratified by 

trial. The first complete simulated dataset for each of the different combinations 

of a positive relationship between quality of life and DFS and a positive 

relationship between delayed chemotherapy and DFS is considered, as shown 

below: 

 

Combination of βsp and βdel S_Pacis  Delayed Chemotherapy  

Weak, weak Figure D1.1 Figure D1.2 

Weak, strong Figure D2.1 Figure D2.2 

Strong, weak Figure D3.1 Figure D3.2 

Strong, strong Figure D4.1 Figure D4.2 
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Figure D1.1 Schoenfeld residuals against time for the square root of the coping score (S_Pacis) from the time-dependent Cox model analysis 

for the first complete simulated dataset with weak relationship between quality of life and disease-free survival and weak relationship between 

delayed chemotherapy and disease-free survival 

S
c
h
o
e
n
fe

ld
 r

e
si

d
u
a
l

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Study day

0 1000 2000 3000 4000 5000 6000 7000 8000



 
 

345 
 

 
Figure D1.2 Schoenfeld residuals against time for delayed chemotherapy from the time-dependent Cox model analysis for the first complete 

simulated dataset with weak relationship between quality of life and disease-free survival and weak relationship between delayed 

chemotherapy and disease-free survival  
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Figure D2.1 Schoenfeld residuals against time for the square root of the coping score (S_Pacis) from the time-dependent Cox model analysis 

for the first complete simulated dataset with weak relationship between quality of life and disease-free survival and strong relationship 

between delayed chemotherapy and disease-free survival 
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Figure D2.2 Schoenfeld residuals against time for delayed chemotherapy from the time-dependent Cox model analysis for the first complete 

simulated dataset with weak relationship between quality of life and disease-free survival and strong relationship between delayed 

chemotherapy and disease-free survival 
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Figure D3.1 Schoenfeld residuals against time for the square root of the coping score (S_Pacis) from the time-dependent Cox model analysis 

for the first complete simulated dataset with strong relationship between quality of life and disease-free survival and weak relationship 

between delayed chemotherapy and disease-free survival 

S
c
h
o
e
n
fe

ld
 r

e
si

d
u
a
l

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Study day

0 1000 2000 3000 4000 5000 6000 7000



 
 

349 
 

 
Figure D3.2 Schoenfeld residuals against time for delayed chemotherapy from the time-dependent Cox model analysis for the first complete 

simulated dataset with strong relationship between quality of life and disease-free survival and weak relationship between delayed 

chemotherapy and disease-free survival 
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Figure D4.1 Schoenfeld residuals against time for the square root of the coping score (S_Pacis) from the time-dependent Cox model analysis 

for the first complete simulated dataset with strong relationship between quality of life and disease-free survival and strong relationship 

between delayed chemotherapy and disease-free survival 
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Figure D4.2 Schoenfeld residuals against time for delayed chemotherapy from the time-dependent Cox model analysis for the first complete 

simulated dataset with strong relationship between quality of life and disease-free survival and strong relationship between delayed 

chemotherapy and disease-free survival 
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Appendix E Results from Time-Dependent Cox Model 

Analysis for Different Combinations of a Positive 

Relationship Between Quality of Life and Disease-Free 

Survival and a Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival Following 

Simple Imputation of 150 Simulated Datasets with 

Coping Scores Artificially Removed  

 

The results of the time-dependent Cox model analysis on the square root of 

coping score (S_Pacis) and delayed chemotherapy stratified by trial for different 

combinations of a positive relationship between quality of life and DFS and a 

positive relationship between delayed chemotherapy and DFS following simple 

imputation of 150 simulated datasets with coping scores artificially removed are 

shown in this appendix. The mean hazard ratio is calculated from the hazard ratios 

of the simulated completed datasets and is the exponential of the mean parameter 

estimate. These results for the different combinations of a positive relationship 

between quality of life and DFS and a positive relationship between delayed 

chemotherapy and DFS are shown as noted below: 

 

Combination of βsp and βdel Estimate of βsp  Estimate of βdel  

Weak, weak Table E1.1 Table E1.2 

Weak, strong Table E2.1 Table E2.2 

Strong, weak Table E3.1 Table E3.2 

Strong, strong Table E4.1 Table E4.2 
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Table E1.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent 

Cox Model Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and 

Weak Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Imputation 

Method

Method of 

Artificially 

Removing 

Coping 

Scores

Mean 

Parameter 

Estimate

Mean 

Standard 

Error

Bias (%): 

Theoretical 

Parameter 

Value =           

0.1

Number of 

95% CIs for 

hazard ratio 

containing 1

Number of 95% 

CIs for Parameter 

Estimate 

Containing 

Simulated Value

LOCF Method 1 0.0969 0.0133 3.1 0 (0.0%) 150 (100.0%)

Method 2 0.0950 0.0134 5.0 0 (0.0%) 149 (  99.3%)

Method 3 0.0914 0.0124 8.6 0 (0.0%) 147 (  98.0%)

Method 4 0.0958 0.0132 4.2 0 (0.0%) 150 (100.0%)

Method 5 0.0948 0.0138 5.2 0 (0.0%) 149 (  99.3%)

Median 

imputation:
Method 1 0.0993 0.0114 0.7 0 (0.0%) 150 (100.0%)

by patient Method 2 0.1066 0.0120 6.6 0 (0.0%) 150 (100.0%)

Method 3 0.0988 0.0116 1.2 0 (0.0%) 150 (100.0%)

Method 4 0.1030 0.0114 3.0 0 (0.0%) 150 (100.0%)

Method 5 0.1000 0.0115 0.0 0 (0.0%) 150 (100.0%)

Linear 

regression:
Method 1 0.1025 0.0140 2.5 0 (0.0%) 150 (100.0%)

previous 

coping 

score

Method 2 0.1025 0.0141 2.5 0 (0.0%) 150 (100.0%)

Method 3 0.1009 0.0134 0.9 0 (0.0%) 150 (100.0%)

Method 4 0.1019 0.0139 1.9 0 (0.0%) 150 (100.0%)

Method 5 0.1020 0.0148 2.0 0 (0.0%) 149 (  99.3%)  
Method 1: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 
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Table E1.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model 

Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and 

Weak Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Imputation 

Method

Method of 

Artificially 

Removing 

Coping 

Scores

Mean 

Parameter 

Estimate

Mean 

Standard 

Error

Bias (%): 

Theoretical 

Parameter 

Value =        

-0.165

Number of 

95% CIs for 

hazard ratio 

containing 1

Number of 95% CIs 

for Parameter 

Estimate Containing 

Simulated Value

LOCF Method 1 -0.1641 0.0655 0.5 51 (34.0%) 150 (100.0%)

Method 2 -0.1689 0.0631 2.3 49 (32.7%) 150 (100.0%)

Method 3 -0.1714 0.0614 3.9 49 (32.7%) 150 (100.0%)

Method 4 -0.1730 0.0656 4.9 47 (31.3%) 150 (100.0%)

Method 5 -0.1722 0.0675 4.3 57 (38.0%) 150 (100.0%)

Median 

imputation:
Method 1 -0.1700 0.0554 3.0 43 (28.7%) 150 (100.0%)

by patient Method 2 -0.1732 0.0552 5.0 42 (28.0%) 150 (100.0%)

Method 3 -0.1743 0.0551 5.6 40 (26.7%) 150 (100.0%)

Method 4 -0.1741 0.0553 5.5 41 (27.3%) 150 (100.0%)

Method 5 -0.1725 0.0555 4.5 41 (27.3%) 150 (100.0%)

Linear 

regression:
Method 1 -0.1655 0.0655 0.3 49 (32.7%) 150 (100.0%)

previous 

coping 

score

Method 2 -0.1689 0.0631 2.4 49 (32.7%) 150 (100.0%)

Method 3 -0.1722 0.0614 4.4 42 (28.0%) 150 (100.0%)

Method 4 -0.1742 0.0656 5.6 47 (31.3%) 150 (100.0%)

Method 5 -0.1738 0.0675 5.3 55 (36.7%) 150 (100.0%)

Method 1: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 

 

  



 
 

355 
 

Table E2.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent 

Cox Model Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and 

Strong Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Imputation 

Method

Method of 

Artificially 

Removing 

Coping 

Scores

Mean 

Parameter 

Estimate

Mean 

Standard 

Error

Bias (%): 

Theoretical 

Parameter 

Value =           

0.1

Number of 

95% CIs for 

hazard ratio 

containing 1

Number of 95% CIs 

for Parameter 

Estimate Containing 

Simulated Value

LOCF Method 1 0.0992 0.0133 0.8 0 (0.0%) 150 (100.0%)

Method 2 0.0968 0.0134 3.2 0 (0.0%) 150 (100.0%)

Method 3 0.0932 0.0124 6.8 0 (0.0%) 147 (  98.0%)

Method 4 0.0969 0.0133 3.1 0 (0.0%) 149 (  99.3%)

Method 5 0.0980 0.0138 2.0 0 (0.0%) 149 (  99.3%)

Median 

imputation:
Method 1 0.1006 0.0114 0.6 0 (0.0%) 150 (100.0%)

by patient Method 2 0.1081 0.0120 8.1 0 (0.0%) 150 (100.0%)

Method 3 0.1000 0.0117 0.0 0 (0.0%) 150 (100.0%)

Method 4 0.1046 0.0115 4.6 0 (0.0%) 150 (100.0%)

Method 5 0.1011 0.0115 1.1 0 (0.0%) 150 (100.0%)

Linear 

regression:
Method 1 0.1051 0.0141 5.1 0 (0.0%) 150 (100.0%)

previous 

coping 

score

Method 2 0.1039 0.0141 3.9 0 (0.0%) 149 (  99.3%)

Method 3 0.1025 0.0135 2.5 0 (0.0%) 150 (100.0%)

Method 4 0.1028 0.0139 2.8 0 (0.0%) 149 (  99.3%)

Method 5 0.1048 0.0147 4.8 0 (0.0%) 149 (  99.3%)

Method 1: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 
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Table E2.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model 

Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and 

Strong Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Imputation 

Method

Method of 

Artificially 

Removing 

Coping 

Scores

Mean 

Parameter 

Estimate

Mean 

Standard 

Error

Bias (%): 

Theoretical 

Parameter 

Value =           

-0.195

Number of 

95% CIs for 

hazard ratio 

containing 1

Number of 95% CIs 

for Parameter 

Estimate Containing 

Simulated Value

LOCF Method 1 -0.1781 0.0656 8.6 41 (27.3%) 150 (100.0%)

Method 2 -0.1864 0.0631 4.4 31 (20.7%) 150 (100.0%)

Method 3 -0.1899 0.0615 2.6 26 (17.3%) 150 (100.0%)

Method 4 -0.1891 0.0657 3.0 35 (23.3%) 150 (100.0%)

Method 5 -0.1877 0.0674 3.7 36 (24.0%) 149 (  99.3%)

Median 

imputation:
Method 1 -0.1850 0.0554 5.2 20 (13.3%) 150 (100.0%)

by patient Method 2 -0.1884 0.0553 3.4 21 (14.0%) 150 (100.0%)

Method 3 -0.1888 0.0552 3.2 20 (13.3%) 150 (100.0%)

Method 4 -0.1892 0.0553 3.0 20 (13.3%) 150 (100.0%)

Method 5 -0.1852 0.0555 5.0 23 (15.3%) 150 (100.0%)

Linear 

regression:
Method 1 -0.1795 0.0656 8.0 40 (26.7%) 150 (100.0%)

previous 

coping 

score

Method 2 -0.1862 0.0631 4.5 31 (20.7%) 150 (100.0%)

Method 3 -0.1907 0.0615 2.2 26 (17.3%) 150 (100.0%)

Method 4 -0.1899 0.0657 2.6 34 (22.7%) 150 (100.0%)

Method 5 -0.1893 0.0674 2.9 36 (24.0%) 149 (  99.3%)

Method 1: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 
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Table E3.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent 

Cox Model Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and 

Weak Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Imputation 

Method

Method of 

Artificially 

Removing 

Coping 

Scores

Mean 

Parameter 

Estimate

Mean 

Standard 

Error

Bias (%): 

Theoretical 

Parameter 

Value =           

0.4

Number of 

95% CIs for 

hazard ratio 

containing 1

Number of 95% CIs 

for Parameter 

Estimate Containing 

Simulated Value

LOCF Method 1 0.3726 0.0153 6.9 0 (0.0%) 78 ( 52.0%)

Method 2 0.3758 0.0154 6.0 0 (0.0%) 93 ( 62.0%)

Method 3 0.3512 0.0142 12.2 0 (0.0%) 5 (   3.3%)

Method 4 0.3684 0.0154 7.9 0 (0.0%) 56 ( 37.3%)

Method 5 0.3681 0.0159 8.0 0 (0.0%) 63 ( 42.0%)

Median 

imputation:
Method 1 0.3792 0.0132 5.2 0 (0.0%) 101 ( 67.3%)

by patient Method 2 0.3881 0.0139 3.0 0 (0.0%) 142 ( 94.7%)

Method 3 0.3667 0.0135 8.3 0 (0.0%) 27 ( 18.0%)

Method 4 0.3825 0.0134 4.4 0 (0.0%) 114 ( 76.0%)

Method 5 0.3775 0.0134 5.6 0 (0.0%) 89 ( 59.3%)

Linear 

regression: Method 1
0.3930 0.0162 1.7 0 (0.0%) 149 ( 99.3%)

previous 

coping 

score Method 2

0.4082 0.0162 2.1 0 (0.0%) 147 ( 98.0%)

Method 3 0.3910 0.0155 2.3 0 (0.0%) 145 ( 96.7%)

Method 4 0.3942 0.0162 1.5 0 (0.0%) 150 (100.0%)

Method 5 0.3929 0.0171 1.8 0 (0.0%) 146 ( 97.3%)

Method 1: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 
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Table E3.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model 

Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and 

Weak Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Imputation 

Method

Method of 

Artificially 

Removing 

Coping 

Scores

Mean 

Parameter 

Estimate

Mean 

Standard 

Error

Bias (%): 

Theoretical 

Parameter 

Value =           

-0.165

Number of 

95% CIs for 

hazard ratio 

containing 1

Number of 95% CIs 

for Parameter 

Estimate Containing 

Simulated Value

LOCF Method 1 -0.1345 0.0667 18.5 67 (44.7%) 149 (  99.3%)

Method 2 -0.1549 0.0620 6.1 51 (34.0%) 150 (100.0%)

Method 3 -0.1514 0.0614 8.2 52 (34.7%) 149 (  99.3%)

Method 4 -0.1476 0.0657 10.5 64 (42.7%) 150 (100.0%)

Method 5 -0.1405 0.0686 14.9 67 (44.7%) 149 (  99.3%)

Median 

imputation:
Method 1 -0.1460 0.0556 11.5 46 (30.7%) 150 (100.0%)

by patient Method 2 -0.1517 0.0551 8.1 43 (28.7%) 150 (100.0%)

Method 3 -0.1574 0.0551 4.6 38 (25.3%) 150 (100.0%)

Method 4 -0.1559 0.0553 5.5 39 (26.0%) 150 (100.0%)

Method 5 -0.1482 0.0557 10.2 44 (29.3%) 150 (100.0%)

Linear 

regression:
Method 1 -0.1393 0.0667 15.6 61 (40.7%) 149 (  99.3%)

previous 

coping 

score

Method 2 -0.1547 0.0620 6.2 51 (34.0%) 150 (100.0%)

Method 3 -0.1544 0.0614 6.4 51 (34.0%) 149 (  99.3%)

Method 4 -0.1510 0.0657 8.5 63 (42.0%) 150 (100.0%)

Method 5 -0.1466 0.0686 11.2 63 (42.0%) 149 (  99.3%)

Method 1: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 
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Table E4.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent 

Cox Model Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and 

Strong Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Imputation 

Method

Method of 

Artificially 

Removing 

Coping 

Scores

Mean 

Parameter 

Estimate

Mean 

Standard 

Error

Bias (%): 

Theoretical 

Parameter 

Value =           

0.4

Number of 

95% CIs for 

hazard ratio 

containing 1

Number of 95% CIs 

for Parameter 

Estimate Containing 

Simulated Value

LOCF Method 1 0.3740 0.0153 6.5 0 (0.0%) 76 (  50.7%)

Method 2 0.3749 0.0154 6.3 0 (0.0%) 85 (  56.7%)

Method 3 0.3512 0.0142 12.2 0 (0.0%) 1 (   0.7%)

Method 4 0.3709 0.0154 7.3 0 (0.0%) 62 (  41.3%)

Method 5 0.3698 0.016 7.5 0 (0.0%) 67 (  44.7%)

Median 

imputation:
Method 1 0.3785 0.0132 5.4 0 (0.0%) 87 (  58.0%)

by patient Method 2 0.3879 0.0139 3.0 0 (0.0%) 142 (  94.7%)

Method 3 0.3657 0.0135 8.6 0 (0.0%) 17 (  11.3%)

Method 4 0.3828 0.0136 4.3 0 (0.0%) 125 (  83.3%)

Method 5 0.3773 0.0134 5.7 0 (0.0%) 80 (  53.3%)

Linear 

regression:
Method 1 0.3947 0.0163 1.3 0 (0.0%) 147 (  98.0%)

previous 

coping 

score

Method 2 0.4070 0.0162 1.7 0 (0.0%) 150 (100.0%)

Method 3 0.3914 0.0155 2.1 0 (0.0%) 144 (  96.0%)

Method 4 0.3953 0.0162 1.2 0 (0.0%) 149 (  99.3%)

Method 5 0.3948 0.0171 1.3 0 (0.0%) 149 (  99.3%)

Method 1: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 
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Table E4.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model 

Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and 

Strong Positive Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Imputation 

Method

Method of 

Artificially 

Removing 

Coping 

Scores

Mean 

Parameter 

Estimate

Mean 

Standard 

Error

Bias (%): 

Theoretical 

Parameter 

Value =          

-0.195

Number of 

95% CIs for 

hazard ratio 

containing 1

Number of 95% CIs 

for Parameter 

Estimate Containing 

Simulated Value

LOCF Method 1 -0.1803 0.0668 7.5 40 (26.7%) 150 (100.0%)

Method 2 -0.1881 0.0620 3.6 36 (24.0%) 150 (100.0%)

Method 3 -0.1853 0.0614 5.0 32 (21.3%) 150 (100.0%)

Method 4 -0.1863 0.0657 4.5 35 (23.3%) 149 (  99.3%)

Method 5 -0.1775 0.0686 9.0 44 (29.3%) 150 (100.0%)

Median 

imputation:
Method 1 -0.1830 0.0556 6.2 25 (16.7%) 150 (100.0%)

by patient Method 2 -0.1862 0.0551 4.5 23 (15.3%) 150 (100.0%)

Method 3 -0.1930 0.0552 1.0 20 (13.3%) 150 (100.0%)

Method 4 -0.1956 0.0562 0.3 24 (16.0%) 150 (100.0%)

Method 5 -0.1852 0.0557 5.0 22 (14.7%) 150 (100.0%)

Linear 

regression:
Method 1 -0.1845 0.0668 5.4 36 (24.0%) 150 (100.0%)

previous 

coping 

score

Method 2 -0.1895 0.0620 2.8 32 (21.3%) 150 (100.0%)

Method 3 -0.1905 0.0614 2.3 27 (18.0%) 150 (100.0%)

Method 4 -0.1895 0.0657 2.8 35 (23.3%) 150 (100.0%)

Method 5 -0.1824 0.0686 6.5 39 (26.0%) 150 (100.0%)

Method 1: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 
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Table E5.1 Range of Parameter Estimate for Delayed Chemotherapy from Time- 

Dependent Cox Model Analysis Stratified by Trial Following Last Observation Carried 

Forward  

Positive Relationship Between Quality of Life and Disease-Free Survival and Positive 

Relationship Between Delayed Chemotherapy and Disease-Free Survival 

Combination of 

βsp  and βdel

Method of 

Artificially 

Removing 

Coping Scores

Theoretical 

Value 

Mean 

Parameter 

Estimate

Range of 

Parameter Estimate

Weak, weak Method 1 -0.165 -0.1641 (-0.4322, 0.0846)

Method 2 -0.165 -0.1689 (-0.3983, 0.0344)

Method 3 -0.165 -0.1714 (-0.4036, 0.0862)

Method 4 -0.165 -0.1730 (-0.4396, 0.0901)

Method 5 -0.165 -0.1722 (-0.5142, 0.0854)

Weak, strong Method 1 -0.195 -0.1781 (-0.3721, 0.0937)

Method 2 -0.195 -0.1864 (-0.4252, 0.0598)

Method 3 -0.195 -0.1899 (-0.3840, 0.0673)

Method 4 -0.195 -0.1891 (-0.4418, 0.0897)

Method 5 -0.195 -0.1877 (-0.4662, 0.0667)

Strong, weak Method 1 -0.165 -0.1345 (-0.3371, 0.1395)

Method 2 -0.165 -0.1549 (-0.3548, 0.0904)

Method 3 -0.165 -0.1514 (-0.3657, 0.1527)

Method 4 -0.165 -0.1476 (-0.3423, 0.1498)

Method 5 -0.165 -0.1405 (-0.4166, 0.1447)

Strong, strong Method 1 -0.195 -0.1803 (-0.3749, 0.0434)

Method 2 -0.195 -0.1881 (-0.3820, 0.0479)

Method 3 -0.195 -0.1853 (-0.4068, 0.0258)

Method 4 -0.195 -0.1863 (-0.4041, 0.0184)

Method 5 -0.195 -0.1775 (-0.4131, 0.0658)  
Method 1: Higher coping scores have a higher chance of being missing. 

Method 2: Lower coping scores have a higher chance of being missing. 

Method 3: Later time period have a higher chance of being missing 

Method 4: 30% of coping scores missing at random 

Method 5: Higher coping scores have a higher chance of being missing 
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Appendix F Results from Time-Dependent Cox Model 

Analysis for Different Combinations of a Positive 

Relationship Between Quality of Life and Disease-Free 

Survival and a Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival Following 

Multiple Imputation of Simulated Datasets with Coping 

Scores Artificially Removed 

 

The results of the time-depedent Cox model analysis on the square root of coping 

score (S_Pacis) and delayed chemotherapy stratified by trial for different 

combinations of a positive relationship between quality of life and DFS and a 

positive relationship between delayed chemotherapy and DFS following 10 

repetitions of multiple imputation in 50 simulated datasets with coping scores 

artificially removed are shown in this appendix.  

 

The parameter estimate from each simulated dataset is the mean of the parameter 

estimate from 10 repetitions of multiple imputation. The variance of the parameter 

estimate from each simulated dataset is calculated based on the 10 repetitions of 

multiple imputation according to (2.13). The standard error from each simulated 

dataset is the square root of the variance of the parameter estimate. These 

estimates are used to calculate the 95% confidence interval for the parameter 

estimate from each simulated dataset. The exponential of the lower and upper 

95% confidence limits for the parameter estimate gives the lower and upper 95% 

confidence limits for the hazard ratio from the simulated dataset. It is then 

determined for how many of the 95% confidence intervals for the hazard ratio 

from the 50 simulated datasets contains the value 1. Similarly, it is determined for 

how many of the 95% confidence intervals for the parameter estimated from the 
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50 simulated datasets contained the parameter estimate from the complete 

simulated dataset with no missing observations.  

 

The results for the parameter estimates from the above time-dependent Cox model 

analysis for the different combinations of a positive relationship between quality 

of life and DFS and a positive relationship between delayed chemotherapy and 

DFS are shown as noted below: 

 

Combination of βsp and βdel Estimate of βsp  Estimate of βdel  

Weak, weak Table F1.1 Table F1.2 

Weak, strong Table F2.1 Table F2.2 

Strong, weak Table F3.1 Table F3.2 

Strong, strong Table F4.1 Table F4.2 
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Table F1.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent Cox Model Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and Weak Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =        

0.1

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Bootstrap baseline coping score Method 1 13.3 0.0147 0 (0%) 47 (94%)

Method 2 22.0 0.0152 0 (0%) 39 (78%)

Method 3 35.5 0.0141 0 (0%) 11 (22%)

Method 4 21.7 0.0147 0 (0%) 37 (74%)

Method 5 18.0 0.0156 0 (0%) 43 (86%)

Bootstrap previous coping score Method 1 7.5 0.0143 0 (0%) 49 (98%)

Method 2 13.5 0.0151 0 (0%) 49 (98%)

Method 3 26.6 0.0142 0 (0%) 29 (58%)

Method 4 14.2 0.0144 0 (0%) 47 (94%)

Method 5 11.1 0.0153 0 (0%) 49 (98%)

Method 1 10.7 0.0138 0 (0%) 49 (98%)

Method 2 9.0 0.0142 0 (0%) 50 (100%)

Method 3 20.3 0.0134 0 (0%) 35 (70%)

Method 4 12.0 0.0138 0 (0%) 50 (100%)

Method 5 12.5 0.0145 0 (0%) 48 (96%)

Parameter Estimate:        

mean [range]

0.0867 [0.0634 to 0.1204]

0.0780 [0.0568 to 0.0977]

0.0645 [0.0493 to 0.0831]

0.0820 [0.0572 to 0.1076]

0.0889 [0.0601 to 0.1147]

0.0925 [0.0727 to 0.1245]

0.0783 [0.0602 to 0.1036]

0.0865 [0.0639 to 0.1082]

0.0734 [0.0459 to 0.0945]

0.0858 [0.0685 to 0.1113]

0.0893 [0.0719 to 0.1261]

0.0910 [0.0710 to 0.1142]

0.0797 [0.0491 to 0.1051]

0.0880 [0.0705 to 0.1109]

0.0875 [0.0590 to 0.1129]

Nearest neighbour
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Table F1.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent Cox Model Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and Weak Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival (continued) 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =    

0.1

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Predictive mean 

matching

initial steps as 

described for NNI
Method 1 10.5 0.0139 0 (0%) 49 (98%)

Method 2 9.5 0.0143 0 (0%) 50 (100%)

Method 3 20.0 0.0134 0 (0%) 38 (76%)

Method 4 12.1 0.0138 0 (0%) 50 (100%)

Method 5 13.0 0.0145 0 (0%) 47 (94%)

Method 1 11.0 0.0141 0 (0%) 49 (98%)

Method 2 7.5 0.0143 0 (0%) 49 (98%)

Method 3 19.1 0.0137 0 (0%) 45 (90%)

Method 4 12.3 0.0141 0 (0%) 49 (98%)

Method 5 13.3 0.0149 0 (0%) 46 (92%)0.0867 [0.0605 to 0.1123]

0.0890 [0.0703 to 0.1221]

0.0879 [0.0705 to 0.1126]

0.0925 [0.0699 to 0.1148]

0.0809 [0.0509 to 0.1036]

0.0877 [0.0703 to 0.1110]

Pattern mixture models

Parameter Estimate:        

mean [range]

0.0895 [0.0728 to 0.1259]

0.0905 [0.0701 to 0.1141]

0.0800 [0.0514 to 0.1024]

0.0870 [0.0586 to 0.1124]

 
Method 1: Higher coping scores have a higher chance of being missing; Method 2: Lower coping scores have a higher chance of being missing; 

Method 3: Later time period have a higher chance of being missing; Method 4: 30% of coping scores missing at random; 

Method 5: Higher coping scores have a higher chance of being missing 
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Table F1.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and Weak Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =        

-0.165

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Bootstrap baseline coping score Method 1 1.6 0.0656 15 (30%) 50 (100%)

Method 2 3.8 0.0631 16 (32%) 50 (100%)

Method 3 3.0 0.0615 15 (30%) 50 (100%)

Method 4 9.9 0.0658 13 (26%) 50 (100%)

Method 5 6.6 0.0676 18 (36%) 50 (100%)

Bootstrap previous coping score Method 1 0.0 0.0656 14 (28%) 50 (100%)

Method 2 5.7 0.0631 15 (30%) 50 (100%)

Method 3 5.6 0.0616 14 (28%) 50 (100%)

Method 4 11.9 0.0658 12 (24%) 50 (100%)

Method 5 8.5 0.0676 16 (32%) 50 (100%)

Method 1 0.3 0.0655 14 (28%) 50 (100%)

Method 2 7.9 0.0631 15 (30%) 50 (100%)

Method 3 8.3 0.0615 12 (24%) 50 (100%)

Method 4 13.4 0.0657 12 (24%) 50 (100%)

Method 5 9.5 0.0675 16 (32%) 50 (100%)

Parameter Estimate:        

mean [range]

-0.1623 [-0.4270 to 0.0865]

-0.1712 [-0.3892 to -0.0074]

-0.1699 [-0.4002 to 0.0177]

-0.1759 [-0.5083 to 0.0433]

-0.1790 [-0.5120 to 0.0397]

-0.1650 [-0.4300 to 0.0870]

-0.1814 [-0.4260 to -0.0065]

-0.1744 [-0.3944 to -0.0076]

-0.1742 [-0.4014 to 0.0100]

-0.1847 [-0.4336 to -0.0086]

-0.1645 [-0.4325 to 0.0830]

-0.1780 [-0.3941 to -0.0120]

-0.1787 [-0.4046 to 0.0028]

-0.1870 [-0.4364 to -0.0091]

-0.1807 [-0.5128 to 0.0415]

Nearest neighbour
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Table F1.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and Weak Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival (continued) 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =         

-0.165

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Predictive mean 

matching

initial steps as 

described for NNI
Method 1 0.2 0.0655 14 (28%) 50 (100%)

Method 2 7.7 0.0631 15 (30%) 50 (100%)

Method 3 8.4 0.0615 14 (28%) 50 (100%)

Method 4 13.3 0.0658 12 (24%) 50 (100%)

Method 5 9.4 0.0675 16 (32%) 50 (100%)

Method 1 0.8 0.0655 14 (28%) 50 (100%)

Method 2 9.1 0.0632 15 (30%) 50 (100%)

Method 3 7.4 0.0616 13 (26%) 50 (100%)

Method 4 13.0 0.0676 12 (24%) 50 (100%)

Method 5 8.9 0.0675 16 (32%) 50 (100%)

Parameter Estimate:        

mean [range]

-0.1646 [-0.4295 to 0.0844]

-0.1778 [-0.3926 to -0.0113] 

-0.1789 [-0.4048 to 0.0029]

-0.1805 [-0.5135 to 0.0433]

-0.1796 [-0.5121 to 0.0411]

-0.1637 [-0.4284 to 0.0863]

-0.1870 [-0.4345 to -0.0111]

-0.1799 [-0.3979 to -0.0152]

-0.1772 [-0.4015 to 0.0029]

-0.1870 [-0.4265 to -0.0072]

Pattern mixture models

 
Method 1: Higher coping scores have a higher chance of being missing; Method 2: Lower coping scores have a higher chance of being missing; 

Method 3: Later time period have a higher chance of being missing; Method 4: 30% of coping scores missing at random; 

Method 5: Higher coping scores have a higher chance of being missing 
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Table F2.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent Cox Model Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and Strong Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =        

0.1

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Bootstrap baseline coping score Method 1 13.1 0.0148 0 (0%) 48 (96%)

Method 2 22.4 0.0153 0 (0%) 38 (76%)

Method 3 32.1 0.0145 0 (0%) 12 (24%)

Method 4 20.0 0.0147 0 (0%) 36 (72%)

Method 5 17.7 0.0155 0 (0%) 46 (92%)

Bootstrap previous coping score Method 1 6.7 0.0143 0 (0%) 50 (100%)

Method 2 13.2 0.0151 0 (0%) 49 (98%)

Method 3 24.8 0.0143 0 (0%) 30 (60%)

Method 4 12.1 0.0144 0 (0%) 47 (94%)

Method 5 10.0 0.0151 0 (0%) 50 (100%)

Method 1 9.6 0.0138 0 (0%) 49 (98%)

Method 2 8.6 0.0143 0 (0%) 50 (100%)

Method 3 17.0 0.0133 0 (0%) 40 (80%)

Method 4 10.5 0.0138 0 (0%) 47 (94%)

Method 5 11.0 0.0145 0 (0%) 48 (96%)

0.0904 [0.0576 to 0.1159]

0.0914 [0.0721 to 0.1205]

0.0830 [0.0555 to 0.1024]

0.0895 [0.0640 to 0.1154]

0.0890 [0.0610 to 0.1146]

Nearest neighbour

0.0900 [0.0580 to 0.1215]

0.0933 [0.0625 to 0.1185]

0.0800 [0.0592 to 0.1090]

0.0868 [0.0683 to 0.1157]

0.0752 [0.0455 to 0.0945]

0.0879 [0.0585 to 0.1174]

Parameter Estimate:        

mean [range]

0.0869 [0.0602 to 0.1166]

0.0776 [0.0626 to 0.1022]

0.0679 [0.0433 to 0.0932]

0.0823 [0.0562 to 0.1123]
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Table F2.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent Cox Model Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and Strong Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival (continued) 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =         

0.1

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Predictive mean 

matching

initial steps as 

described for NNI
Method 1 9.6 0.0138 0 (0%) 49 (96%)

Method 2 8.4 0.0142 0 (0%) 50 (100%)

Method 3 17.0 0.0135 0 (0%) 44 (88%)

Method 4 10.5 0.0139 0 (0%) 47 (94%)

Method 5 10.5 0.0145 0 (0%) 48 (96%)

Method 1 10.6 0.0141 0 (0%) 49 (98%)

Method 2 6.5 0.0144 0 (0%) 50 (100%)

Method 3 17.0 0.0137 0 (0%) 43 (86%)

Method 4 10.6 0.0142 0 (0%) 46 (92%)

Method 5 12.1 0.0149 0 (0%) 49 (98%)

Parameter Estimate:        

mean [range]

0.0904 [0.0581 to 0.1189]

0.0916 [0.0724 to 0.1230]

0.0830 [0.0555 to 0.1022]

0.0895 [0.0608 to 0.1153]

0.0879 [0.0574 to 0.1159]

0.0894 [0.0583 to 0.1176]

0.0895 [0.0615 to 0.1168]

0.0935 [0.0763 to 0.1233]

0.0830 [0.0571 to 0.1048]

0.0894 [0.0625 to 0.1142]

Pattern mixture models

 
Method 1: Higher coping scores have a higher chance of being missing; Method 2: Lower coping scores have a higher chance of being missing; 

Method 3: Later time period have a higher chance of being missing; Method 4: 30% of coping scores missing at random; 

Method 5: Higher coping scores have a higher chance of being missing 

  



 
 

370 
 

Table F2.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and Strong Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival  

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =        

-0.195

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Bootstrap baseline coping score Method 1 14.5 0.0656 19 (38%) 50 (100%)

Method 2 11.6 0.0633 15 (30%) 50 (100%)

Method 3 9.2 0.0615 13 (26%) 50 (100%)

Method 4 5.5 0.0659 15 (30%) 50 (100%)

Method 5 9.4 0.0676 15 (30%) 49 (100%)

Bootstrap previous coping score Method 1 12.6 0.0656 18 (36%) 50 (100%)

Method 2 9.4 0.0633 15 (30%) 50 (100%)

Method 3 7.4 0.0616 11 (22%) 50 (100%)

Method 4 3.5 0.0659 16 (32%) 50 (100%)

Method 5 7.0 0.0676 14 (28%) 50 (100%)

Method 1 13.0 0.0656 18 (36%) 50 (100%)

Method 2 7.6 0.0633 14 (28%) 50 (100%)

Method 3 4.8 0.0615 9 (18%) 50 (100%)

Method 4 2.7 0.0658 14 (28%) 50 (100%)

Method 5 6.8 0.0675 14 (28%) 50 (100%)

Parameter Estimate:        

mean [range]

-0.1667 [-0.3697 to -0.0170]

-0.1724 [-0.4141 to 0.0070]

-0.1770 [-0.3732 to -0.0089]

-0.1767 [-0.4688 to -0.0206]

-0.1813 [-0.4677 to -0.0246]

-0.1704 [-0.3728 to -0.0231]

-0.1844 [-0.4419 to 0.0009]

-0.1767 [-0.4220 to -0.0018]

-0.1807 [-0.3789 to -0.0172]

-0.1882 [-0.4379 to -0.0037]

-0.1697 [-0.3698 to -0.0230]

-0.1802 [-0.4205 to -0.0054]

-0.1856 [-0.3792 to -0.0200]

-0.1898 [-0.4414 to -0.0055]

-0.1817 [-0.4686 to -0.0247]

Nearest neighbour
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Table F2.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model Analysis Stratified by Trial 

Weak Positive Relationship Between Quality of Life and Disease-Free Survival and Strong Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival (continued) 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =         

-0.195

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Predictive mean 

matching

initial steps as 

described for NNI
Method 1 13.0 0.0656 18 (36%) 50 (100%)

Method 2 7.5 0.0633 14 (28%) 50 (100%)

Method 3 4.8 0.0615 10 (20%) 50 (100%)

Method 4 2.6 0.0658 13 (26%) 50 (100%)

Method 5 6.8 0.0675 14 (28%) 50 (100%)

Method 1 13.5 0.0656 19 (38%) 50 (100%)

Method 2 6.7 0.0633 14 (28%) 50 (100%)

Method 3 4.5 0.0617 10 (20%) 50 (100%)

Method 4 2.9 0.0659 14 (28%) 50 (100%)

Method 5 7.6 0.0675 14 (28%) 50 (100%)

Parameter Estimate:        

mean [range]

-0.1696 [-0.3713 to -0.0245]

-0.1803 [-0.4222 to -0.0034]

-0.1857 [-0.3802 to -0.0186]

-0.1818 [-0.4693 to -0.0251]

-0.1801 [-0.0261 to 0.0675]

-0.1687 [-0.3733 to -0.0204]

-0.1899 [-0.4415 to -0.0054]

-0.1819 [-0.4307 to -0.0015]

-0.1863 [-0.3979 to -0.0299]

-0.1893 [-0.4431 to -0.0040]

Pattern mixture models

 
Method 1: Higher coping scores have a higher chance of being missing; Method 2: Lower coping scores have a higher chance of being missing; 

Method 3: Later time period have a higher chance of being missing; Method 4: 30% of coping scores missing at random; 

Method 5: Higher coping scores have a higher chance of being missing 
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Table F3.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent Cox Model Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and Weak Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =        

0.4

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Bootstrap baseline coping score Method 1 23.1 0.0169 0 (0%) 0 (0%)

Method 2 26.1 0.0183 0 (0%) 0 (0%)

Method 3 40.4 0.0161 0 (0%) 0 (0%)

Method 4 28.4 0.0174 0 (0%) 0 (0%)

Method 5 28.1 0.0180 0 (0%) 0 (0%)

Bootstrap previous coping score Method 1 15.6 0.0169 0 (0%) 0 (0%)

Method 2 16.4 0.0184 0 (0%) 0 (0%)

Method 3 32.2 0.0172 0 (0%) 0 (0%)

Method 4 18.8 0.0177 0 (0%) 0 (0%)

Method 5 19.4 0.0181 0 (0%) 0 (0%)

Method 1 13.2 0.0164 0 (0%) 0 (0%)

Method 2 11.5 0.0180 0 (0%) 7 (14%)

Method 3 21.6 0.0166 0 (0%) 0 (0%)

Method 4 13.8 0.0169 0 (0%) 1 (2%)

Method 5 15.2 0.0171 0 (0%) 0 (0%)

Parameter Estimate:        

mean [range]

0.3074 [0.2811 to 0.3419]

0.2956 [0.2655 to 0.3223]

0.2383 [0.2211 to 0.2563]

0.2878 [0.2597 to 0.3150]

0.3226 [0.2968 to 0.3527]

0.3375 [0.3074 to 0.3730]

0.2864 [0.2645 to 0.3092]

0.3346 [0.3052 to 0.3674]

0.2712 [0.2525 to 0.2986]

0.3247 [0.2947 to 0.3505]

0.3474 [0.3198 to 0.3765]

0.3540 [0.3272 to 0.3899]

0.3138 [0.2854 to 0.3327]

0.3448 [0.3097 to 0.3695]

0.3391 [0.3121 to 0.3739]

Nearest neighbour
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Table F3.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent Cox Model Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and Weak Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival (continued) 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =    

0.4

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Predictive mean 

matching

initial steps as 

described for NNI
Method 1 13.2 0.0164 0 [0 to 0] 0 (0%)

Method 2 11.5 0.0178 0 [0 to 0] 6 (12%)

Method 3 21.6 0.0165 0 [0 to 0] 0 (0%)

Method 4 14.0 0.0169 0 [0 to 0] 1 (2%)

Method 5 15.3 0.0173 0 [0 to 0] 0 (0%)

Method 1 13.7 0.0165 0 [0 to 0] 0 (0%)

Method 2 9.5 0.0173 0 [0 to 0] 14 (28%)

Method 3 21.2 0.0166 0 [0 to 0] 0 (0%)

Method 4 13.9 0.0171 0 [0 to 0] 2 (4%)

Method 5 15.6 0.0173 0 [0 to 0] 0 (0%)

Parameter Estimate:        

mean [range]

0.3472 [0.3209 to 0.3771]

0.3541 [0.3268 to 0.3888]

0.3135 [0.2879 to 0.3429]

0.3389 [0.3100 to 0.3714]

0.3375 [0.3077 to 0.3719]

0.3452 [0.3197 to 0.3711]

0.3441 [0.3098 to 0.3668]

0.3621 [0.3335 to 0.3980]

0.3151 [0.2952 to 0.3371]

0.3442 [0.3177 to 0.3702]

Pattern mixture models

 
Method 1: Higher coping scores have a higher chance of being missing; Method 2: Lower coping scores have a higher chance of being missing; 

Method 3: Later time period have a higher chance of being missing; Method 4: 30% of coping scores missing at random; 

Method 5: Higher coping scores have a higher chance of being missing 
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Table F3.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and Weak Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =        

-0.165

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Bootstrap baseline coping score Method 1 39.2 0.0682 33 (66%) 48 (96%)

Method 2 41.5 0.0645 30 (60%) 50 (100%)

Method 3 49.1 0.0635 34 (68%) 48 (96%)

Method 4 35.7 0.0682 31 (62%) 50 (100%)

Method 5 42.9 0.0705 34 (68%) 49 (98%)

Bootstrap previous coping score Method 1 31.7 0.0683 28 (56%) 49 (98%)

Method 2 32.5 0.0650 30 (60%) 50 (100%)

Method 3 38.1 0.0646 32 (64%) 49 (98%)

Method 4 26.2 0.0681 26 (52%) 50 (100%)

Method 5 33.9 0.0707 32 (64%) 50 (100%)

Method 1 30.0 0.0678 27 (54%) 49 (98%)

Method 2 23.8 0.0645 26 (52%) 50 (100%)

Method 3 25.5 0.0638 28 (56%) 49 (98%)

Method 4 19.6 0.0674 22 (44%) 50 (100%)

Method 5 29.7 0.0698 32 (64%) 50 (100%)

-0.1154 [-0.2902 to 0.1016]

-0.1257 [-0.3338 to 0.0979]

-0.1230 [-0.3687 to 0.0768]

-0.1327 [-0.3374 to 0.0699]

-0.1160 [-0.3857 to 0.0951]

Nearest neighbour

-0.1091 [-0.3558 to 0.0751]

-0.1126 [-0.2860 to 0.0997]

-0.1061 [-0.3077 to 0.0772]

-0.1141 [-0.3034 to 0.0912]

-0.1021 [-0.3369 to 0.0980]

-0.1217 [-0.3284 to 0.0838]

Parameter Estimate:        

mean [range]

-0.1003 [-0.2934 to 0.1143]

-0.0966 [-0.2877 to 0.1249]

-0.0840 [-0.3137 to 0.1213]

-0.0943 [-0.3439 to 0.0981]
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Table F3.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and Weak Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival (continued) 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =         

-0.165

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Predictive mean 

matching

initial steps as 

described for NNI
Method 1 30.2 0.0678 28 (56%) 49 (98%)

Method 2 24.1 0.0645 25 (50%) 50 (100%)

Method 3 24.6 0.0639 25 (50%) 49 (98%)

Method 4 19.3 0.0677 24 (48%) 50 (100%)

Method 5 29.7 0.0700 32 (64%) 50 (100%)

Method 1 31.1 0.0678 28 (56%) 49 (98%)

Method 2 17.1 0.0640 22 (44%) 50 (100%)

Method 3 23.8 0.0653 26 (52%) 49 (98%)

Method 4 17.8 0.0677 23 (46%) 50 (100%)

Method 5 30.4 0.0702 34 (68%) 50 (100%)

Parameter Estimate:        

mean [range]

-0.1152 [-0.2988 to 0.1027]

-0.1253 [-0.3171 to 0.1014]

-0.1243 [-0.3620 to 0.0815]

-0.1160 [-0.3923 to 0.0936]

-0.1149 [-0.3898 to 0.0891]

-0.1136 [-0.2957 to 0.0961]

-0.1332 [-0.3365 to 0.0586]

-0.1367 [-0.3643 to 0.0752]

-0.1257 [-0.3671 to 0.0416]

-0.1357 [-0.3361 to 0.0641]

Pattern mixture models

 
Method 1: Higher coping scores have a higher chance of being missing; Method 2: Lower coping scores have a higher chance of being missing; 

Method 3: Later time period have a higher chance of being missing; Method 4: 30% of coping scores missing at random; 

Method 5: Higher coping scores have a higher chance of being missing 
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Table F4.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent Cox Model Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and Strong Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =        

0.4

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Bootstrap baseline coping score Method 1 22.7 0.0171 0 (0%) 0 (0%)

Method 2 26.7 0.0182 0 (0%) 0 (0%)

Method 3 41.3 0.0162 0 (0%) 0 (0%)

Method 4 28.5 0.0177 0 (0%) 0 (0%)

Method 5 26.8 0.0182 0 (0%) 0 (0%)

Bootstrap previous coping score Method 1 14.7 0.0169 0 (0%) 0 (0%)

Method 2 16.5 0.0182 0 (0%) 0 (0%)

Method 3 32.3 0.0165 0 (0%) 0 (0%)

Method 4 18.6 0.0175 0 (0%) 0 (0%)

Method 5 18.0 0.0184 0 (0%) 0 (0%)

Method 1 12.2 0.0164 0 (0%) 0 (0%)

Method 2 12.1 0.0177 0 (0%) 2 (4%)

Method 3 21.9 0.0165 0 (0%) 0 (0%)

Method 4 13.9 0.0169 0 (0%) 1 (2%)

Method 5 13.9 0.0174 0 (0%) 2 (4%)

0.3511 [0.3238 to 0.3864]

0.3517 [0.3306 to 0.3795]

0.3123 [0.2862 to 0.3558]

0.3445 [0.3172 to 0.3770]

0.3443 [0.3219 to 0.3810]

Nearest neighbour

0.3278 [0.3042 to 0.3531]

0.3412 [0.3189 to 0.3716]

0.2858 [0.2578 to 0.3125]

0.3341 [0.3095 to 0.3632]

0.2707 [0.2558 to 0.2981]

0.3257 [0.3074 to 0.3526]

Parameter Estimate:        

mean [range]

0.3090 [0.2875 to 0.3284]

0.2934 [0.2646 to 0.3138]

0.2347 [0.2100 to 0.2689]

0.2928 [0.2684 to 0.3240]
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Table F4.1 Summary of Square Root of Coping Score (S_Pacis) from Time-Dependent Cox Model Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and Strong Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival (continued) 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =    

0.4

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Predictive mean 

matching

initial steps as 

described for NNI
Method 1 12.3 0.0164 0 (0%) 0 (0%)

Method 2 11.7 0.0177 0 (0%) 3 (6%)

Method 3 21.9 0.0164 0 (0%) 0 (0%)

Method 4 13.8 0.0170 0 (0%) 1 (2%)

Method 5 14.0 0.0174 0 (0%) 0 (0%)

Method 1 12.8 0.0165 0 (0%) 0 (0%)

Method 2 9.9 0.0175 0 (0%) 9 (18%)

Method 3 22.0 0.0166 0 (0%) 0 (0%)

Method 4 13.9 0.0169 0 (0%) 0 (0%)

Method 5 14.5 0.0176 0 (0%) 0 (0%)0.3422 [0.3233 to 0.3709]

0.3487 [0.3261 to 0.3824]

0.3449 [0.3177 to 0.3738]

0.3603 [0.3262 to 0.3953]

0.3119 [0.2773 to 0.3584]

0.3444 [0.3207 to 0.3678]

Pattern mixture models

Parameter Estimate:        

mean [range]

0.3507 [0.3238 to 0.3868]

0.3531 [0.3254 to 0.3794]

0.3126 [0.2900 to 0.3477]

0.3441 [0.3187 to 0.3738]

 
Method 1: Higher coping scores have a higher chance of being missing; Method 2: Lower coping scores have a higher chance of being missing; 

Method 3: Later time period have a higher chance of being missing; Method 4: 30% of coping scores missing at random; 

Method 5: Higher coping scores have a higher chance of being missing 
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Table F4.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and Strong Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival  

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =        

-0.195

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Bootstrap baseline coping score Method 1 16.5 0.0683 19 (38%) 50 (100%)

Method 2 23.5 0.0648 16 (32%) 49 (98%)

Method 3 29.1 0.0639 20 (40%) 47 (94%)

Method 4 17.8 0.0686 16 (32%) 50 (100%)

Method 5 15.3 0.0708 20 (40%) 50 (100%)

Bootstrap previous coping score Method 1 8.7 0.0684 12 (24%) 50 (100%)

Method 2 14.3 0.0653 15 (30%) 50 (100%)

Method 3 20.8 0.0643 16 (32%) 50 (100%)

Method 4 9.0 0.0682 13 (26%) 50 (100%)

Method 5 6.6 0.0708 14 (28%) 50 (100%)

Method 1 7.4 0.0678 12 (24%) 50 (100%)

Method 2 6.9 0.0645 11 (22%) 50 (100%)

Method 3 9.7 0.0639 13 (26%) 50 (100%)

Method 4 3.0 0.0673 10 (20%) 50 (100%)

Method 5 3.0 0.0699 12 (24%) 50 (100%)

-0.1806 [-0.3533 to -0.0044]

-0.1816 [-0.3568 to 0.0048]

-0.1762 [-0.3288 to -0.0321]

-0.1892 [-0.4057 to -0.0040]

-0.1891 [-0.3946 to -0.0469]

Nearest neighbour

-0.1821 [-0.3600 to -0.0401]

-0.1780 [-0.3533 to 0.0029]

-0.1604 [-0.3533 to 0.0266]

-0.1671 [-0.3232 to -0.0010]

-0.1545 [-0.3162 to -0.0311]

-0.1774 [-0.3768 to 0.0120]

Parameter Estimate:        

mean [range]

-0.1628 [-0.3430 to 0.0122]

-0.1491 [-0.3212 to 0.0342]

-0.1383 [-0.3036 to 0.0028]

-0.1651 [-0.3286 to -0.0228]
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Table F4.2 Summary of Delayed Chemotherapy from Time-Dependent Cox Model Analysis Stratified by Trial 

Strong Positive Relationship Between Quality of Life and Disease-Free Survival and Strong Positive Relationship Between Delayed 

Chemotherapy and Disease-Free Survival (continued) 

Imputation 

Method Detail

Method of 

Artificially 

Removing 

Coping 

Scores

Bias (%): 

Theoretical 

Parameter 

Value  =         

-0.195

Mean 

Standard 

Error

n (%) of the 

50x95% CIs 

for Hazard 

Ratio 

Containing 1

n (%) of the 

50x95% CIs for 

Parameter Estimate 

Containing 

Simulated Value

Predictive mean 

matching

initial steps as 

described for NNI
Method 1 7.3 0.0677 13 (26%) 50 (100%)

Method 2 5.9 0.0641 11 (22%) 50 (100%)

Method 3 8.7 0.0638 11 (22%) 50 (100%)

Method 4 3.0 0.0678 10 (20%) 50 (100%)

Method 5 3.2 0.0701 11 (22%) 50 (100%)

Method 1 8.8 0.0678 13 (26%) 50 (100%)

Method 2 0.1 0.0654 9 (18%) 50 (100%)

Method 3 10.5 0.0645 14 (28%) 50 (100%)

Method 4 1.3 0.0678 9 (18%) 50 (100%)

Method 5 3.9 0.0701 11 (22%) 50 (100%)

Parameter Estimate:        

mean [range]

-0.1807 [-0.3550 to -0.0104]

-0.1836 [-0.3701 to -0.0016]

-0.1780 [-0.3309 to -0.0441]

-0.1887 [-0.3946 to -0.0469]

-0.1874 [-0.3800 to -0.0468]

-0.1779 [-0.3550 to -0.0070]

-0.1892 [-0.4055 to -0.0054]

-0.1953 [-0.3663 to 0.0015]

-0.1745 [-0.3147 to -0.0324]

-0.1925 [-0.3956 to 0.0011]

Pattern mixture models

 
Method 1: Higher coping scores have a higher chance of being missing; Method 2: Lower coping scores have a higher chance of being missing; 

Method 3: Later time period have a higher chance of being missing; Method 4: 30% of coping scores missing at random; 

Method 5: Higher coping scores have a higher chance of being missing 

 


