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Abstract

This thesis deals with the solution of the Laplace and heat equations on complicated

domains. The approach follows the idea of the fictitious domain method, in which a

larger (simpler) domain is introduced with the idea of avoiding the use of meshes that

resolve the geometry.

The first part of the thesis is dedicated to propose and analyse a new stabilised finite

element method for the heat equation. The analysis, not available to date, is based

on the introduction of a new projected initial condition that satisfies the boundary

conditions of the original problem weakly. This allows us to prove inconditional stability

and optimal convergence of the solution, thus avoiding the restriction linking the time

discretisation and mesh width parameters present in previous references.
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inclusions of small size. For this case, the usual fictitious domain approach is no longer

applicable, and then a new method that compensates for the lack of stability of the

original one is proposed, analysed and tested numerically. The numerical analysis has

been carried out for the steady state case, but its applicability to time dependent

problems is sketched and shown by means of numerical experiments.
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Chapter 1

Introduction

This thesis aims at studying some stabilised Finite Element Methods (FEM) for problems

on complicated domains. The approach used herein will allow the use of uniform

meshes, that is, meshes containing cells with the same shape and size. Although the

solution u of the problem is unknown, some of its physical properties may be known.

Suppose, for example, that u is the temperature of a metal bar with constant length

L. We provide heat at the ends of this bar. So, the magnitude of the temperature in

these zones, |u|, is higher than in the rest of the bar. It will increase if we keep heating

the metal bar. Otherwise, this magnitude will decrease and will become eventually

constant throughout the bar. By using uniform meshes, we can exploit this fact and

save computational effort when computing a discrete approximation uh of u.

Let ω ⊆ R2 be a bounded open domain with Lipschitz continuous boundary γ := ∂ω,

which means that the boundary ω can locally be parametrized by a Lipschitz continuous

function. A more general definition can be found in [GR86GR86].

Then for given data f̂ : ω −→ R and g : γ −→ R, we will consider the following

steady-state problem for the Laplace equation:

find û : ω −→ R such that{
−∆û = f̂ in ω,

û = g on γ.
(1.1)

The domain ω can be very complicated in shape (see Fig. 1.11.1).

1



1. Introduction

Fig. 1.1. The real domain ω.

We now present the weak form of the problem (1.11.1):

find û ∈ H1(ω) such that
∫
ω
∇û∇v̂ dx =

∫
ω
f̂ v̂ dx,

û = g on γ.
(1.2)

for all v ∈ H1
0 (ω). To obtain this formulation we integrated by parts over the domain

ω, that is, we applied Green’s formula (see [GR86GR86]). This formula is proven to be valid

on domains whose boundary is Lipschitz continuous. All domains considered in this

thesis will have a Lipschitz continuous boundary.

Due to the complicated nature of ω, building a uniform mesh of it is not possible

especially if its shape changes with time. Therefore, we need to solve the problem

introducing a fictitious domain formulation. We first define Ω, an open bounded set

such that ω ⊆ Ω where Ω should be “simpler” than ω (see Fig. 1.21.2). A regular mesh

can be defined in Ω (even a uniform mesh) and we avoid building a mesh for each time

step. We introduce extensions f : Ω −→ R, u0 : Ω −→ R such that f |ω = f̂ .

Fig. 1.2. The very complicated domain ω in a fictitious domain Ω.

2



1. Introduction

Hereafter, we adopt the standard notation for Sobolev spaces (see, e.g., [EG04EG04]). Let

D ⊆ R2 and let L2(D) be the set of square integrable functions on D with the inner

product denoted by (u, v)D :=
∫
D

uv dx and the corresponding norm ‖v‖20,D := (v, v)D.

For l ∈ N+, H l(D) denotes the usual Sobolev space containing functions whose weak

(or distributional) derivatives up to order l belong to L2(D). The functions in H1
0 (D)

belong to H1(D) and vanish on the boundary ∂D. We denote the norm and seminorm

in H l(D) by ‖.‖l,D and |.|l,D, respectively. Another ingredient that will be needed in

what follows is the space of traces of functions in H1(D). First, we define the trace

map

γ0 : H1(D) −→ L2(∂D)

v 7−→ γ0(v) = v|∂D.

This mapping is well-defined and continuous (see [EG04EG04]). Moreover, its range

H
1
2 (∂D) = γ0(H1(D))

is a Banach space when equipped with the trace norm

‖µ‖ 1
2
,∂D = inf

v∈H1(D)
γ0(v)=µ

‖v‖1,D.

Its dual with respect to the L2(∂D) inner product is denoted by H−
1
2 (∂D), and the

duality pairing between them is denoted by 〈., .〉∂D. Its norm is denoted by ‖.‖− 1
2
,∂D

(see [GR86GR86] for more details). Then, using the following notation,

a(u, v) = (∇u,∇v)Ω and b(λ, v) = 〈λ, v〉γ ,

the problem (1.11.1) is written, in an equivalent form, as (see [GG95GG95]):

find (u, λ) ∈ H1
0 (Ω)×H−

1
2 (γ) such that{

a(u, v)− b(λ, v) = (f, v)Ω

b(µ, u) = b(µ, g),
(1.3)

for all v ∈ H1
0 (Ω) and all µ ∈ H−

1
2 (γ). More details about λ and the link between the

solution of the problem (1.11.1) and the solution of (1.31.3) will be provided later on.

Throughout the manuscript, C will denote a positive constant independent of any

discretization parameter, and whose value may vary whenever it is written in two

different places.

The remainder of this chapter is structured as follows. We first set the neccesary

3



1. Introduction

notation and recall sufficient conditions to solve problems of type (1.31.3) followed by a

literature review. Afterwards, an outline of the thesis is given.

1.1. Context for Literature review

We include this section to motivate some detailed statements in the later review of

existing literature. We will assume basic knowledge of the FEM, see for example

[Cia78Cia78,BS08BS08] for thorough introductions to the topic.

We say a problem is well-posed if it has a unique solution which, in addition, depends

continuously on the data. By applying the Babuška-Brezzi’s theorem (cf. [Bab73Bab73] or

[Bre74Bre74]), it is easy to prove that the problem (1.31.3) is well-posed. Indeed, the following

result makes use of this theorem to prove this fact (see [GG95GG95]).

Corollary 1.1. If the bilinear form a is elliptic on H1
0 (Ω), that is, there exists a

constant k > 0 such that

a(v, v) ≥ k‖v‖21,Ω ∀v ∈ H1
0 (Ω), (1.4)

and if b satisfies the inf-sup condition, so there exists a constant β > 0 such that

sup
v∈H1

0 (Ω)

b(v, µ)

|v|1,Ω
≥ β‖µ‖− 1

2
,γ ∀µ ∈ H−

1
2 (γ), (1.5)

then the problem (1.31.3) is well-posed.

Proof. The Poincaré inequality, ‖v‖0,Ω ≤ CΩ|v|1,Ω for all v ∈ H1
0 (Ω), guarantees the

validity of (1.41.4):

a(v, v) = |v|21,Ω ≥ k‖v‖21,Ω.

On the other hand, the inf-sup condition (1.51.5) is an easy consequence of the fact

that, by definition of dual normal on H−
1
2 (γ),

‖µ‖− 1
2
,γ = sup

θ∈H
1
2 (γ)

〈v, θ〉γ
‖θ‖ 1

2
,γ

.

Hence, the problem (1.31.3) has a unique solution.

Condition (1.51.5) is called inf-sup condition, or LBB condition, where LBB are the

initials of the authors Ladyzhenskaya, Babuška and Brezzi, who independently proposed

the condition.

In the resulting mixed formulation (1.31.3), the primal variable and the multiplier are

now members of linear spaces which are usually more amenable to approximation.

4



1. Introduction

Provided the LBB condition holds, the mixed formulation is well-posed. Hence, the

mixed problem (1.31.3) has a unique solution pair (u, λ) where u is the extension of the

solution û of (1.11.1) to the fictitious domain Ω. Thus the restriction of u to the initial

and complicated domain ω is the (unique) solution of the model problem. Futhermore,

the Lagrange multiplier λ satisfies

λ = −[[∂nû]]γ , (1.6)

where [[∂nû]]γ denotes the jump of ∂û
∂n across γ, i.e.

[[∂nû]]γ = ∇û|ω·n−∇û|Ωrω·n, (1.7)

and n denotes the unit normal vector to γ exterior to ω. A brief proof of (1.61.6) is the

following. If ϕ ∈ C∞0 (Ω r ω):∫
Ωrω

∇u· ∇ϕdx = (f, ϕ)Ωrω ⇒ −∆u = f in Ω r ω.

Since f ∈ L2(Ω), then the equality −∆u = f , a priori only valid in D′(Ω r ω), is also

valid as function of L2(Ω r ω). If ϕ ∈ C∞0 (ω):∫
ω

∇u· ∇ϕdx = (f, ϕ)ω ⇒ −∆u = f in ω.

Since f ∈ L2(Ω), then the equality −∆u = f , a priori only valid in D′(ω), is also valid

as function of L2(ω). From the previous consideration, for v ∈ H1
0 (Ω) and applying

Green’s formula, we get∫
Ωrω

(
∆u− f

)
v dx+

∫
ω

(∆u− f
)
v dx− 〈

(
∂n(u|Ωrω)− ∂n(u|ω)

)
, v〉γ − 〈λ, v〉γ = 0,

for all v ∈ H1
0 (Ω). Therefore,

〈λ, v〉γ = −〈[[∂nu]], v〉γ ∀v ∈ H1
0 (Ω),

which implies

〈λ, v〉γ = −〈[[∂nu]], v〉γ ∀v ∈ H
1
2 (γ).

Hence λ = −[[∂nu]] ∈ H−
1
2 (γ) (see [GG95GG95] and [GPP94GPP94] for more details).

Let us now state a fictitious domain formulation of (1.31.3). To this end, we define some

terminology. A FEM seeks a solution in a trial space and tests the equality for every

function in a test space. If trial and test spaces coincide, then the method is called

5



1. Introduction

the Galerkin method, otherwise it is called a Petrov-Galerkin method or a non-standard

Galerkin method (see [EG04EG04]).

Now, Ω is covered by a family of triangulations {Th}h>0 consisting of non-overlapping

triangles where the subscript h refers to the level of refinement of the triangulation.

Futhermore, let Vh ⊂ V and Λh ⊂ Λ be discrete, finite-dimensional, spaces associated

with Th. We define the following finite element spaces:

Vh = {vh ∈ C0(Ω̄) ∩H1
0 (Ω) : vh|K ∈ P1(K), ∀K ∈ Th},

Λh = {µh ∈ L2(γ) : µh|e ∈ P0(e),∀e ∈ γh},

such that Λh̃ ⊆ Λh. Then, a Galerkin method for (1.31.3) reads as follows:

find (uh, λh) ∈ Vh × Λh such that{
a(uh, vh)− b(λh, vh) = (f, vh)Ω

b(µh, uh) = b(µh, g),
(1.8)

for all (vh, µh) ∈ Vh × Λh. Applying the classical results for this type of problem,

(cf. [BF91BF91]), we can state the following result.

Corollary 1.2. Let us suppose that there exists a constant k > 0 independent of h such

that

a(vh, vh) ≥ k‖vh‖21,Ω ∀vh ∈ Vh, (1.9)

and there exists a constant β̃ > 0 independent of h, such that

sup
vh∈Vh

b(vh, µh)

‖vh‖1,Ω
≥ β̃‖µh‖− 1

2
,γ ∀µh ∈ Λh. (1.10)

Then the problem (1.81.8) has a unique solution and there exists a constant C > 0,

independent of h and of u, v, uh, vh, such that

‖u− uh‖1,Ω + ‖λ− λh‖− 1
2
,γ ≤ C

{
inf

vh∈Vh
‖u− vh‖1,Ω + inf

µh∈Λh
‖λ− µh‖− 1

2
,γ

}
.

(1.11)

Unlike an elliptic problem, (1.81.8) is not automatically well-posed by choosing subspaces

Vh ⊂ H1
0 (Ω) and Λh ⊂ H−

1
2 (λ). This is one source of instability that may occur solving

the problem (1.81.8).

A very popular approach to prove the discrete inf-sup condition (1.101.10) is using the

Fortin Operator. If the continuous inf-sup condition holds, then the discrete inf-sup

condition is equivalent to the existence of a restriction operator satisfying specific

6
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properties. A direct application of Fortin’s lemma (see [For77For77]) gives the following

result.

Lemma 1.3. Assume that b satisfies the inf-sup condition (1.51.5). Then the discrete

inf-sup condition (1.101.10) holds if and only if there exists a restriction operator Πh ∈
L(V, Vh) with two properties:

‖Πh(v)‖1,Ω ≤ C‖v‖1,Ω ∀v ∈ H1
0 (Ω), (1.12)

where C > 0 is a constant independent of h, and

b(Πh(v)− v, µh) = 0 ∀µh ∈ Λh,∀v ∈ V. (1.13)

We now present the time-dependent problem to be considered in this thesis:

find û : ω × (0, T ) −→ R such that
∂tû−∆û = f̂ in ω × (0, T ),

û = g on ∂ω × (0, T ),

û(x, 0) = û0(x) in ω.

(1.14)

for given data f̂ : ω × (0, T ) −→ R, g : γ × (0, T ) −→ R and û0 : ω −→ R with T > 0

a final time.

Using the fictitious domain formulation, and the extensions f : Ω −→ R, u0 : Ω −→ R

such that f |ω = f̂ , u0|ω = û0, the weak transient problem is given by:

find (u, λ) ∈ L2(0, T ;H1
0 (Ω))× L∞(0, T ;H−

1
2 (γ)) such that u(x, 0) = u0(x), and{

(∂tu, v)Ω + a(u, v)− b(λ, v) = (f, v)Ω

b(µ, u) = b(µ, g),
(1.15)

for all v ∈ H1
0 (Ω), all µ ∈ H−

1
2 (γ), and almost all t ∈ (0, T ).

We discretise the problem (1.151.15) with respect to the space and time variables.

Lagrange finite elements are used for the space discretisation, and first order backward

difference formula are used for the time discretisation.

For space discretisation, let {Th}h>0 denote a shape-regular family of triangulations

of the domain Ω. For each triangulation Th, the subscript h refers to the level of

refinement of the triangulation, which is defined by

h = max
K∈Th

hK ,

where hK = diam(K). Let γh and γh̃ be two partitions of γ such that the vertices of γh̃

are also vertices of γh, with edges ẽ satisfying the following (see [GG95GG95]): there exists

7



1. Introduction

C > 0 (independent of h) such that 3h 6| ẽ |6 Ch, for all ẽ ∈ γh̃. We suppose that

for all ẽ ∈ γh̃, card{e ∈ γh : e ⊂ ẽ} 6 C, where C > 0 is independent of ẽ and h. In

particular, we can define γh as the partition of γ induced by Th. This is, the collection

of edges e such that their end points are the intersections of γ with the edges of the

triangulation Th, plus the angular points of γ (see Fig. 1.31.3).

Fig. 1.3. Example of meshes on γ.

For the time discretisation, we use the implicit Euler method (although the same

analysis can be extended to more involved schemes). Let N ∈ N0 be given. We

consider a uniform partition {(tn, tn+1]}06n6N−1, with tn = nδt, of the time interval of

interest [0, T ] with time-step size δt = T
N .

Then, given subspaces Vh ⊆ H1
0 (Ω) and Λh ⊆ H

1
2 (γ), the semi-discrete problem for

(1.151.15) reads:{
(∂tuh, vh)Ω + a(uh, vh)− b(λh, vh) = (f, vh)Ω

b(µh, uh) = b(µh, g),
(1.16)

for all vh ∈ Vh, all µh ∈ Λh, and almost all t ∈ (0, T ).

For this time-dependent problem the situation is even more delicate. In fact, besides

the discrete inf-sup condition (1.101.10), some compatibility in the discrete initial condition

is needed (more on this later).

1.2. Literature review

In this section, we perform a literature review to solve the problem (1.81.8) through

FEM with fictitious domain to obtain stability and optimal convergence. Fictitious

domain method for partial differential equations have shown recently potential for

solving complicated problems from Science and Engineering. The main reason for this

8
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popularity of fictitious domain methods (sometimes called Domain Imbedding methods)

is that they allow the use of fairly structured meshes on a simple shape auxiliary

domain containing the actual one, allowing therefore the use of fast solvers (see [GPP94GPP94]

and [CJM96CJM96] for more details).

When we work with fictitious domains, a proper extension of the function has to be

chosen, if we want to ensure optimal convergence. We need to choose an appropiate

extension of f̂ to Ω to ensure that (u, λ), the solution of the problem (1.31.3), is regular

enough. We work on this direction in Chapter 22, although some preliminar results are

given in [FGM13FGM13, Loz16Loz16]. Methods like the classical penalty method or the Lagrange

multipliers method are known to produce a solution with a non-optimal order of the

error, in particular for immersed bodies, as we can read in [FGM13FGM13]. The authors

mention other methods that exist in the finite element framework in order to recover

this optimal order, such as the Fat Boundary method, method based on Nitsche’s

formulation or control approach methods (see, e.g, [Mau01Mau01, CB09CB09, ADG+91ADG+91] for more

details). The method presented in [FGM13FGM13] is in the spirit of these control approach

methods and aims at recovering the optimal error order. The authors present a smooth

extension method with a Poisson equation and introduce a method of the fictitious

domain type to simulate the motion of immersed rigid bodies. Their idea is to find a

smooth extension of the exact solution in the domain Ω\ω (where ω is a sphere included

in Ω) to the whole and fictitious domain Ω by finding a suitable extension of the

right-hand side in the inclusions. In [Loz16Loz16], an optimal convergence through fictitious

domain method is proved without cut elements introducing stabilisation terms. A.

Lozinski avoids the integration over the elements cut by the boundary of the problem

domain as in Extended FEM (XFEM) and CutFEM for example. A Poisson problem

is considered in a domain ω which is embedding into a simply shaped domain Ω and

there is a quasi-uniform mesh Th on Ω that can cut ω in an arbitrary manner. In

this work, the author does not extend the solution u or the initial function f in ω to

Ω as we have done in Chapter 33. He defines another fictitious domain ωh such that

ω ⊂ ωh ⊂ Ω and extends u and f from ω to ωh. The basic difference doing that is that

he needs the extension only in a narrow strip which minimizes the effect of choosing a

“wrong” extension and allows to avoid its explicit construction. The author mentions

the difficulty of an extension of his work to higher-order finite element solving this one

in P1 continuous finite element on a triangular mesh.

A fictitious domain formulation and its abstract discretisation was described in

[GG95GG95]. In this paper, a non-homogeneous elliptic Dirichlet problem is solved through

FEM defining the model problem and the mixed problem. With regard to uniqueness

9
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and regularity of the solution of the model problem, one can use the following theorem

given in [BH91BH91].

Theorem 1.4. Let f̂ ∈ Hp(ω), p ≥ 0 and g ∈ Hq(γ), q ≥ 1
2 . Then there exists a unique

weak solution û ∈ H1(Ω) of (1.11.1) and ∂û
∂n ∈ H

− 1
2 (γ).

The analysis of a low-order FEM for (1.81.8) was first presented in [GG95GG95]. In there,

the authors imposed a condition on the mesh Th (which induces the space Vh), and on a

partition of γ (which induces the space Λh) that allows them to prove a uniform inf-sup

condition. More precisely, the authors prove the discrete inf-sup condition where the

negative boundary norm (used until then) was replaced by the L2 norm on the boundary

through an inverse inequality and the discrete inf-sup condition was replaced by a

sufficient condition that must be checked in the applications. This negative boundary

norm was eliminated by constructing a Fortin operator.

To study the validity of (1.101.10), the use of linear triangular elements to approximate

u and linear element for λ in the two-dimensional case is proposed in [Bab73Bab73]. The

size of the elements for λ has to be greater than, or equal to, the diameter of the

triangles along ∂Ω times a constant C > 1 depending on Ω. With this condition,

stability and optimal-order convergence hold for the problem (1.81.8). The first works

using the idea of introducing a Lagrange multiplier to impose a boundary condition

weakly are [Bab73Bab73, AB72AB72, BTOL77BTOL77]. They established error estimates when the ratio

between the boundary mesh size and the mesh size in the domain is greater than

some constant depending on the domain. Unfortunately, the constant can be large

and its dependence on the domain is not straightforward. Their results were refined

by Pitkäranta in [Pit79Pit79] and Agouzal in [Ago93Ago93] where the boundary mesh points are

directly related to the mesh points of the interior grid.

Later on, in [GG95GG95], the authors propose a discretisation using linear continuous

elements for Vh and piecewise constant elements for Λh, where the mesh size in given

by γ is h̃ 6= h. Under the condition h̃ ≥ 3h, they could prove the existence of a

Fortin operator (and hence, the inf-sup condition). This condition has been shown,

by performing numerical experiments, to be necessary. Unfortunately, it prevents the

use of the most natural meshes, for example the mesh γn defined as the partition of γ

induced by Th.

To overcome this fact, a local projection stabilisation method is proposed in [BC12BC12]

for solving a fictitious domain problem where this restriction between the meshes is

not satisfied. The authors add a suitable fluctuation term to the formulation, thus

yielding the natural space for the Lagrange multiplier stable. This stabilised problem

is well-posed and stability and convergence are proved.

10
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Other approaches have also been proposed in the recent years to avoid this restriction,

such as using cut elements as in [BH10BH10, BH12BH12] or XFEM approaches as in [MDB99MDB99,

MBT06MBT06,HR09HR09] for instance.

In [BH10BH10], the authors propose a stabilised Lagrange multiplier method introducing

a fictitious domain formulation where the mesh is cut by the boundary. The main

idea behind cut elements is to consider the restriction of the finite element space

to the physical domain. This implies that the integration needs to be done in the

intersection of the underlying mesh in the fictitious domain with the physical domain.

One advantage of this approach is that it does not need the mesh on the physical

boundary to be coarser than the underlying mesh. On the contrary, the intersection of

the physical domain and the mesh needs to be tracked, and can be of very diverse nature

giving very different elements in the matrices and leading to possibly very ill-conditioned

matrices.

Similar ideas have been proposed in the framework of the Extended FEM. It was

introduced in [MDB99MDB99] when dealing with cracked domains. The technique allows

the entire crack to be presented independently of the mesh and so remeshing is not

necessary as the crack grows. The method consists of a FEM enriching the solution

space for solutions to differential equation with discontinuous functions. Based on

this technique plus stabilisation like the one from Barbosa-Hughes (see [BH91BH91]), an

optimally convergent method was proposed in [HR09HR09]. Since the problem is only

considered on the physical domain, the Lagrange multiplier is given by the normal

derivative of the primal variable (and not its jump as in the method of [GG95GG95]).

The introduction of a Lagrange multiplier is also used for the approximation of

interface problems in [ABG+15ABG+15] and has some similarities with the fictitious domain

approach with distributed Lagrange multiplier that is developed in [BGR14BGR14]. In [ABG+15ABG+15],

the authors consider the problem with two regions, Ω1 and Ω2, with different materials

using two meshes which fit with the interface Γ. Both meshes have to share the nodes on

Γ to impose continuity at the boundary but if Γ depends on time, one of these meshes

has to change close to the interface. To avoid this inconvenience, in [BGR14BGR14] the

authors propose a fictitious domain formulation with a distributed Lagrange multiplier

where one mesh is for the whole domain Ω and one for the region Ω2 where only one

material is present. Both problems are equivalent if the solution u restricted to Ω2 is

the solution u2. Then, introducing a Lagrange multiplier associated to this constraint,

the authors prove the convergence of the method.

All the above approaches deal with steady-state problems for which the formulation

and analysis of stabilised methods is fairly well understood. However, the design of
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robust and efficient stabilised methods for their transient counterparts is hardly a settled

matter.

Some of the most effective algorithms for treating time-dependent problems can

be defined through a process wherein the spatial and temporal discretisations are

separated. Such algorithms are especially well adapted to the cylindrical nature of

the time-space domain and usually posses excellent stability characteristics. Another

reason for their popularity is that they reduce the partial differential equation to either a

system of ordinary differential equations or, for problems with constraints, to a system

of differential algebraic equations. Fully discrete formulations in which spatial and

temporal discretisations are carried out separately are in much more common use than

are coupled time-space formulations. An additional motivation for this choice is the

desire to avoid the increase in the number of unknows required to achieve more accuracy

in space-time formulations.

In the context of mixed problems, such as the Stokes problem or the problem

(1.161.16), numerical experiments have shown that fully discrete algorithms are completely

adequate for transient calculations carried out for moderate to relatively large time

steps. However, in settings that require very fine time resolution, the behavior of

such algorithms is not very well understood. The behavior just described is especially

notorious if stabilisation is used in the space discretisation. As a matter of fact, if the

Stokes problem is discretised in space using a residual stabilised finite element method,

and the time is discretised using backward Euler, in [BGS04BGS04] it is shown that the fully

discrete scheme is stable only if

δt ≥ Ch2. (1.17)

It is important to notice this is not limited to the backward Euler method. In fact,

the same conclusion can be obtained if other time discretisation schemes are used

(see [BB07BB07,BF09BF09] for discussions on this topic).

As the authors mention in [BB07BB07], this condition relating the time step and the

mesh size is required in the analysis of the stability of the methods described. This

lower bound on the time step size was assumed in the stabilised methods for transient

flows considered in [CVZ98CVZ98, BC01BC01, CB00CB00, CPGB07CPGB07]. It is interesting to observe that

this condition may not be required if inf-sup stable discretisations are used in transient

problems and some stabilised methods are also free of this restriction (see, e.g, [BGL07BGL07,

He03He03]). Then this condition prevents the use of stabilised FEM in combination with

very small time steps. Moreover, there is an even deeper reason for this. Loosely

speaking, if the initial condition satisfies a restriction (for example, divergence-free in
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Stokes, or the boundary condition u = g in (1.161.16)), then the approximated initial

condition should satisfy a similar restriction to prevent instabilities. This remark is

the basis of the work [BF09BF09] where an appropriate projection of the initial condition

is used to avoid the instabilities. In Chapter 33 we use a similar approach to address

problem (1.161.16).

The previous approaches deal with a physical domain whose size is comparable

with the size of the fictitious domain. In this way the restriction imposed on the

mesh (i.e. h̃ ≥ 3h) can be naturally satisfied. A different problem appears if the

physical domain is perforated, i.e. domains with holes Bi (or inclusions) that are

smaller than the characteristic mesh width. In our case, this amounts to stating that

diam(Bi) << diam(Ω), and in turn, this will imply that, in most cases, |ẽ| < h where

ẽ are the curved edges from the mesh on ∂Bi, which is precisely the case not allowed

in [GG95GG95]. Over the years many authors have proposed solutions to this problem. One

alternative is the Composite FEM (see, e.g., [HS97HS97]), where the geometrical features

are included in the finite element space, thus proposing a method whose dimension

does not necessarly depend on the number of geometrical inclusions. We can see

the application of the same idea to the Stokes problem in [PS08PS08], and an adaptive

strategy associated to a discontinuous Galerkin version of this method in [GH14GH14].

Alternatively, the geometrical features of the domain can be taken into account at

the mesh generation step. This idea is at the basis of some recent developments

on discontinuous Galerkin methods on general polyhedral meshes (see [CGH14CGH14], and

[ACC+16ACC+16] for a recent review). Finally, it is interesting to mention the approach

described in [BLL14BLL14] (see also the references therein for an extensive review of this

type of approach), where a multiscale problem on a domain with inclusions has been

approximated using a multiscale finite element approach based on the enrichment of

the Crouzeix-Raviart method with bubble functions.

1.3. Outline

We conclude this chapter with the outline of this thesis.

In Chapter 22, we have proved that optimal convergence is obtained if we choose

a proper extension of the function f̂ when we are working with a fictitious domain.

We need to choose an appropiate extension of f̂ to the fictitious domain Ω to ensure

that (u, λ), solution of the problem (1.31.3), is regular enough. This is not an easy task,

especially in dimensions higher than one. We do not know how to extend f̂ such that

f ∈ Hk−1(Ω) or u ∈ Hk+1(Ω) when we are working with n-dimensional problem.

13
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Then we start to work with time-dependent problems in P1 where we need just

f ∈ L2(Ω). In Chapter 33, we develop transient problems studing full analysis for

the backward difference formula for order one. The full discretisation of (1.161.16), using

Lagrange elements for the space variables and the backward Euler formula for the time

discretisation, is carried out.

In Chapter 44, the purpose is to approximate numerically an elliptic partial differential

equation posed on domains with small perforations (or inclusions). The approach

is based on the FEM, and since the method’s interest lies in the case in which the

geometrical features are not resolved by the mesh, we propose a stabilised FEM. Our

objective was to propose a simple alternative to the approaches described in the previous

sections. Then the stabilisation term is a simple, non-consistent penalization, that can

be linked to the Barbosa-Hughes approach. Stability and optimal convergence are

proved, and numerical results confirm the theory. We have already submitted a paper

with these results [BG16aBG16a].

We conclude and present possible further extensions in Chapter 55. We show the

conclusions obtained after work developed in this thesis and describe possible future

work in two directions mainly.

Finally, we include two appendices. In Appendix AA, we describe the calculation done

to get the solution and errors of the problems worked in Chapter 22. We consider three

different linear spaces to solve an especific problem through FEM with fictitious domain

and without that. In Appendix BB, we describe the proccess to define the matrix C in

FreeFem++. This matrix is coming from introducing the established term j to our the

stabilised method described in Chapter 33.
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Chapter 2

Numerical experiments with fictitious

domain and higher-order elements

2.1. Introduction

In this chapter, we focus on steady problems. We have solved elliptic problem using

the FEM .

We have considered the following simple one-dimensional problem for P1,P2 and P3

finite dimensional spaces:

For f̂ given, find û such that
−û′′ = f̂ in ω,

û(0) = g0,

û(1) = g1,

(2.1)

where g0, g1 ∈ R. We obtain the solution and calculate the error in the L2(ω) and

H1(ω) norms between the approximate solution, ûh, and the exact solution, û.

Moreover, we consider the same problem (2.12.1) applying the fictitious domain method.

As we have stated in the previous chapter, this approach relies on the introduction of a

larger domain Ω ⊃ ω, an extension f of f̂ to Ω, and the solution of the following mixed

problem:

find (u, λ) ∈ H1
0 (Ω)×H−

1
2 (∂ω) such that{

a(u, v)− b(λ, v) = (f, v)Ω

b(µ, u) = b(µ, g),
(2.2)

for all (v, µ) ∈ H1
0 (Ω) ×H−

1
2 (∂ω) where f ∈ L2(ω) and g ∈ H

1
2 (∂ω). We obtain the

solution and calculate the errors in the L2(ω) and H1(ω) norms as well but restricted

to the interval ω with different extensions f of f̂ to Ω. The purpose of the calculations

is to show that, if the extension f of f̂ is not built carefully enough, then the extended
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solution u is not regular enough, which, in turn, affects the quality of the numerical

results.

The remainder of this chapter is organised as follows. In Section 2.22.2, we consider

the problem (2.12.1) and we show the numerical results implemented in Matlab [ACF99ACF99].

In Section 2.32.3, we apply the fictitious domain method to the problem solved in the

previous section and we also show the numerical results.

2.2. Method without fictitious domain

In this section, we use u as the solution in the initial domain (0, 1) instead of û and, f

instead of f̂ to simplify the notation. Therefore, the weak problem is written as:

find u ∈ H1
0 (0, 1) such that

(u′, v′)(0,1) = (f, v)(0,1) ∀v ∈ H1
0 (0, 1),

where f is a given function.

This problem has been solved using a standard FEM. For this, we introduce a

uniform partition, 0 = x0 ≤ x1 ≤ ... ≤ xN+1 = 1, of (0, 1) and denote h = xi+1 −
xi. Associated to this partition we introduce the finite element space Vh = {vh ∈
C0((0, 1)) : vh|[xi,xi+1] ∈ Pl[xi, xi+1] and vh(0) = vh(1) = 0 ∀i} for l = 1, 2, 3.

Then, the finite element problem is:

find uh ∈ Vh such that

(u′h, v
′
h)(0,1) = (f, vh)(0,1) ∀vh ∈ Vh. (2.3)

2.2.1. Applications

We now present the numerical results of the errors solving the problem (2.12.1) for different

values of N , number of subintervals in Ω of length h = 1
N , and two different functions

f1(x) = −12x2 + 12x− 2,

f2(x) = −ex.

For finite elements of order k the following estimate holds (see [EG04EG04]):

‖ u− uh ‖0,(0,1) ≤ Chk+1 | u |k+1,(0,1), (2.4)

| u− uh |1,(0,1) ≤ Chk | u |k+1,(0,1) . (2.5)
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We have computed the errors ‖u−uh‖0,(0,1) and |u−uh|1,(0,1). The results are given

in Tables 2.12.1- 2.32.3 and they follow the optimal behavior predicted in (2.42.4) and (2.52.5).

‖u− uh‖0,(0,1) order |u− uh|1,(0,1) order

f1(x) = −12x2 + 12x− 2 N = 4 0.0103 0.0690
N = 8 0.0027 1.9316 0.0329 1.0685
N = 16 6.8039e-04 1.9885 0.0162 1.0221
N = 32 1.7055e-04 1.9962 0.0081 1

f2(x) = −ex N = 4 0.0119 0.1288
N = 8 0.0030 1.9879 0.0645 0.9978
N = 16 7.4906e-04 2.0018 0.0322 1.0022
N = 32 1.8733e-04 1.9995 0.0161 1

Table 2.1. Finite element errors for P1 finite dimensional space.

‖u− uh‖0,(0,1) order |u− uh|1,(0,1) order

f1(x) = −12x2 + 12x− 2 N = 4 5.4256e-04 0.0162
N = 8 6.5794e-05 3.0437 0.0041 1.9823
N = 16 8.1596e-06 3.0114 0.0010 2.0356
N = 32 1.0179e-06 3.0029 2.5208e-04 1.9880

f2(x) = −ex N = 4 1.3467e-04 0.0041
N = 8 1.6805e-05 3.0025 0.0010 2.0356
N = 16 2.0997e-06 3.0006 2.6014e-04 1.9426
N = 32 2.6244e-07 3.0001 6.5045e-05 1.9998

Table 2.2. Finite element errors for P2 finite dimensional space.

‖u− uh‖0,(0,1) order |u− uh|1,(0,1) order

f1(x) = −12x2 + 12x− 2 N = 4 2.0487e-05 0.0011
N = 8 1.2805e-06 3.9999 1.3905e-04 2.9838
N = 16 8.0028e-08 4.0001 1.7381e-05 3.0000
N = 32 5.0018e-09 4.0000 2.1726e-06 3.0000

f2(x) = −ex N = 4 1.5344e-06 8.2485e-05
N = 8 9.6526e-08 3.9906 1.0344e-05 2.9953
N = 16 6.0482e-09 3.9963 1.2941e-06 2.9988
N = 32 3.7835e-10 3.9987 1.6179e-07 2.9997

Table 2.3. Finite element errors for P3 finite dimensional space.

2.3. Method with fictitious domain

The problem (2.12.1), with g0 = 0 and g1 = 1, is solved in this section with fictitious

domain formulation through FEM.
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2. Numerical experiments with fictitious domain and higher-order elements

The fictitious domain formulation is obtained by including ω = (0, 1) in a larger

domain Ω = (−1, 2), an extension f of f̂ to Ω and the solution of the following mixed

problem:

find (u, λ) ∈ H1
0 (−1, 2)×R2 such that

2∫
−1

u′v′ dx− λ1v(1)− λ0v(0) =
2∫
−1

fv dx,

−µ1u(1)− µ0u(0) = −µ1· 1− µ0· 0,
(2.6)

for all v ∈ H1
0 (−1, 2) and for all µ0, µ1 ∈ R. Both problems are linked by the fact that

if (u, λ) satisfies (2.62.6), then u |ω satisfies (2.12.1).

We use the same procedure as in Section 2.22.2 for P1, P2 and P3 but using these new

data.

The errors are defined by Section 2.22.2 in the same way for each space but working with

fictitious domain. It is worth emphasizing that we cannot obtain the errors in L2(−1, 2)

and H1(−1, 2) norms because we do not always know the value of the solution outside

the interval (0, 1). If f is defined using the same functional expression as f̂ , then it is

possible to calculate the errors in the fictitious domain. Thus, we have calculated the

errors, with different extensions of f , restricted to the interval (0, 1), more specifically

to [xele+1, xk] ⊆ (0, 1) in each one where the variables ele and k are defined as

ele = max{i : xi ≤ 0},

k = max{j : xj ≤ 1}.

The error committed using this approximation for (0, 1) is negligible.

2.3.1. Applications

We can prove that, if f is such that u ∈ Hk+1(−1, 2), then

|u− uh|1,(−1,2) ≤ Chk|u|k+1,(−1,2).

This result relies on the fact that we are capable of building an extension of f̂ such that

the extended solution u is regular. This is not an inmediate task, and is even necessary

condition for optimal convergence.

In the following numerical results we have used f̂(x) =
(
π
2

)2
sin
(
π
2x
)

and three

possible extensions,

f(x) = f0(x) =
(π

2

)2
sin
(π

2
x
)
, (2.7)
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2. Numerical experiments with fictitious domain and higher-order elements

f(x) = f1(x) =

f̂(x) if x ∈ [0, 1],

0 otherwise,

f(x) = f2(x) =


f̂(0) if − 1 < x < 0,

f̂(x) if x ∈ [0, 1],

f̂(1) if 1 < x < 2.

For the first case, f(x) = f0(x) is regular in such a way that u (the extended solution

to (−1, 2)) is regular as well. This will lead to the fictitious domain method providing

optimal order estimates. This is not the case for f(x) = f1(x) and f(x) = f2(x). In

both these cases u is not regular, which will show in the numerical results. This fact is

apparent in Tables 2.42.4- 2.62.6 where the errors ‖û−uh‖0,(0,1) and |û−uh|1,(0,1) are depicted.

We see that the errors in these last two cases are suboptimal. As a matter of that, they

show an erratic behavior which, never the less, hints a first order convergence, at best,

which is clearly non optimal for P2 and P3 elements.

‖û− uh‖0,(0,1) order |û− uh|1,(0,1) order

f(x) = f0(x) N = 16 0.0040 0.1003
N = 32 9.9989e-04 2.0001 0.0501 1.0014
N = 64 2.3641e-04 2.0805 0.0240 1.0618
N = 128 5.8988e-05 2.0028 0.0120 1
N = 256 1.4530e-05 2.0214 0.0059 1.0243
N = 512 3.6309e-06 2.0006 0.0030 0.9758

f(x) = f1(x) N = 16 0.0179 0.1696
N = 32 0.0113 0.6637 0.1989 -0.2299
N = 64 0.0050 1.1763 0.0750 1.4070
N = 128 0.0027 0.8883 0.1013 -0.4337
N = 256 0.0013 1.0544 0.0364 1.4766
N = 512 0.000657 0.9846 0.0509 -0.4837

f(x) = f2(x) N = 16 0.0159 0.1105
N = 32 0.0087 0.8699 0.0708 0.6422
N = 64 0.0042 1.0506 0.0300 1.2388
N = 128 0.0022 0.9260 0.0269 0.1574
N = 256 0.0011 1 0.0104 1.3710
N = 512 5.3893e-04 1.0293 0.0123 -0.2421

Table 2.4. Finite element errors with fictitious domain for P1 finite dimensional space.
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2. Numerical experiments with fictitious domain and higher-order elements

‖û− uh‖0,(0,1) order |û− uh|1,(0,1) order

f(x) = f0(x) N = 16 1.0036e-04 0.0031
N = 32 1.5640e-05 2.6819 8.6962e-04 1.8338
N = 64 1.8679e-06 3.0657 2.1732e-04 2.0006
N = 128 2.4544e-07 2.9280 5.5666e-05 1.9646

f(x) = f1(x) N = 16 0.0093 0.2061
N = 32 0.0074 0.3296 0.2159 -0.0670
N = 64 0.0019 1.9615 0.1085 0.9927
N = 128 0.0012 0.6629 0.1154 -0.0890
N = 256 0.000447 1.4247 0.0549 1.0718
N = 512 0.000243 0.8793 0.0586 -0.0940

f(x) = f2(x) N = 16 0.0055 0.0528
N = 32 0.0033 0.6781 0.0556 -0.0746
N = 64 0.0014 1.2370 0.0259 1.1021
N = 128 7.4326e-04 0.9135 0.0276 -0.0917
N = 256 3.5798e-04 1.0540 0.0129 1.0973
N = 512 1.8119e-04 0.9824 0.0138 -0.0973

Table 2.5. Finite element errors with fictitious domain for P2 finite dimensional space.

‖û− uh‖0,(0,1) order |û− uh|1,(0,1) order

f(x) = f0(x) N = 16 1.2780e-06 8.9292e-05
N = 32 8.1123e-08 3.9776 1.1167e-05 2.9993
N = 64 4.8945e-09 4.0509 1.3362e-06 3.0630
N = 128 3.0723e-10 3.9938 1.6699e-07 3.0003
N = 256 1.9623e-11 3.9687 2.0633e-08 3.0167

f(x) = f1(x) N = 16 0.0034 0.0966
N = 32 0.0049 -0.5272 0.1934 -1.0014
N = 64 9.5763e-04 2.3552 0.0528 1.8730
N = 128 7.5707e-04 0.3390 0.1004 -0.9271
N = 256 2.4670e-04 1.6177 0.0270 1.8947

f(x) = f2(x) N = 16 0.0030 0.0261
N = 32 0.0019 0.6589 0.0478 -0.8730
N = 64 8.0295e-04 1.2426 0.0128 1.9009
N = 128 4.3097e-04 0.8977 0.0238 -0.8949
N = 256 2.0439e-04 1.0763 0.0064 1.8948

Table 2.6. Finite element errors with fictitious domain for P3 finite dimensional space.

We observe the same fact graphically for the three possible extensions in the same

order for each finite dimensional space. We check the optimal order in each first graph

for each space.
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2. Numerical experiments with fictitious domain and higher-order elements

Fig. 2.1. Finite element errors with fictitious domain for P1 finite dimensional space depending
on each extension: f0 (top), f1 (middle), f2 (bottom).
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2. Numerical experiments with fictitious domain and higher-order elements

Fig. 2.2. Finite element errors with fictitious domain for P2 finite dimensional space depending
on each extension: f0 (top), f1 (middle), f2 (bottom).
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2. Numerical experiments with fictitious domain and higher-order elements

Fig. 2.3. Finite element errors with fictitious domain for P3 finite dimensional space depending
on each extension: f0 (top), f1 (middle), f2 (bottom).
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Chapter 3

A fictitious domain method for the

transient heat equation

3.1. Introduction

In this chapter, we prove unconditional stability of u and Lagrange multipliers, and

optimal converge for the transient heat equation when the initial datum is chosen as a

certain Ritz-type projection. In the case when a standard interpolation of the initial

data is applied, an inverse parabolic Courant-Friedrich-Lewy (CFL)-type condition like

the one presented in (1.171.17), must be respected in order to maintain stability for small

time steps. Futhermore, we will distinguish two cases: inf-sup stable condition problem

and not inf-sup stable where we have to add the stabilisation operator to obtain a

stabilised method (see [BC12BC12]). We base our approach on previous work done for the

transient Stokes equations (see, e.g., [BGS04BGS04,BF09BF09]).

The remainder of this chapter is organised as follows. In Section 3.23.2, we introduce

the problem under consideration and some useful notation. We study the stability of

our problem for the inf-sup stable case and the stabilised method with the space and

time discretised formulations in Section 3.33.3. In Section 3.43.4, we have the convergence

analysis for both cases too. Some numerical results are presented in Section 3.53.5.

3.2. Problem setting

Let ω be an open bounded domain in R2 with a Lipschitz continuous boundary γ := ∂ω.

We consider γ =

M⋃
i=1

γi, where γi are the M smooth components of γ, that is, if γ has

corners then γi ∩ γi+1 will be its corner points (see Fig. 3.13.1).

24



3. A fictitious domain method for the transient heat equation

Fig. 3.1. Example of γ where M = 3.

In what follows, the following space is used:

H :=

M∏
i=1

H
1
2 (γi) with ‖µ‖H :=

M∑
i=1

‖µ‖ 1
2
,γi
.

For T > 0 we consider the problem (recall problem (1.11.1)):

find û : ω × (0, T ) −→ R such that
∂tû−∆û = f̂ in ω × (0, T ),

û = g on γ × (0, T ),

û(x, 0) = û0(x) in ω,

(3.1)

where f̂ ∈ L2(ω) and g ∈ H
1
2 (γ) are given. Here, f̂ : ω× [0, T ] −→ R, g : γ× [0, T ] −→

R, û0 : ω −→ R stand for source term, and boundary and initial condition, respectively.

To introduce the fictitious domain formulation for this problem, we first define Ω as

an open bounded set such that ω ⊆ Ω (Ω should be “simpler” than ω) and extensions

f : Ω −→ R, u0 : Ω −→ R such that f |ω = f̂ , u0|ω = û0. We now rewrite this problem

in an equivalent way following the approach presented in [GG95GG95]. Defining

a(u, v) = (∇u,∇v)Ω and b(λ, v) = 〈λ, v〉γ ,

then the following equivalent weak form for (3.13.1) can be written:

find (u, λ) ∈ H1(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω))×L∞(0, T ;H−

1
2 (γ)) such that u(x, 0) =

u0(x), and{
(∂tu, v)Ω + a(u, v)− b(λ, v) = (f, v)Ω

b(µ, u) = b(µ, g),
(3.2)

for all v ∈ H1
0 (Ω), µ ∈ H−

1
2 (γ) and almost all t ∈ (0, T ). Problems (3.13.1) and (3.23.2) are

linked by the fact that if (u, λ) satisfies (3.23.2), then u|ω satisfies (3.13.1) and λ coincides

with the jump of the normal derivative of u on γ (see [GPP94GPP94,GG95GG95] for details).
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3. A fictitious domain method for the transient heat equation

We discretise the problem (3.23.2) with respect to the space and time variables (for

more details, see Chapter 11).

We define the following finite element spaces:

Vh = {vh ∈ C0(Ω̄) ∩H1
0 (Ω) : vh|K ∈ P1(K), ∀K ∈ Th},

Λh = {µh ∈ L2(γ) : µh|e ∈ P0(e),∀e ∈ γh},

Λh̃ = {µh̃ ∈ L
2(γ) : µh̃|ẽ ∈ P0(ẽ), ∀ẽ ∈ γh̃},

such that Λh̃ ⊆ Λh. We denote Wh := Vh×Λh. Thanks to the hypothesis on Th and γh̃,

the pair Wh̃ := Vh × Λh̃ satisfies the following discrete inf-sup condition (see [GG95GG95]):

there exists β > 0, independent of h and h̃, such that

sup
vh∈Vh\{0}

〈µh̃, vh〉γ
|vh|1,Ω

≥ β‖µh̃‖− 1
2
,γ ∀µh̃ ∈ Λh̃. (3.3)

On the other hand, the pair Vh ×Λh is not inf-sup stable. For this case, it is proven

in [BC12BC12] that there exist two constants C, β > 0, independent of h, such that

sup
vh∈Vh\{0}

〈µh, vh〉γ
|vh|1,Ω

+ C
(∑
e∈γh

|e|‖µh‖2− 1
2
,γ

) 1
2
> β‖µh‖− 1

2
,γ ∀µh ∈ Λh. (3.4)

A part of this work is devoted to approximating (3.23.2) using the space Wh. Since we

only have the weak inf-sup condition (3.43.4), the problem needs stabilisation. Then we

introduce a bilinear form j : L2(γ)× L2(γ) −→ R defined as

j(µ, ξ) =
∑
ẽ∈γh̃

|ẽ|(µ−Πh̃µ, ξ −Πh̃ξ)ẽ,

where Πh̃ : L2(γ) −→ Λh̃ is defined as (Πh̃ξ)|ẽ = |ẽ|−1(ξ, 1)ẽ for each ẽ ∈ γh̃. This term

satisfies the following properties:

Symmetry:

j(µ, ξ) = j(ξ, µ) ∀µ, ξ ∈ L2(γ); (3.5)

Continuity: There exists C > 0 such that

|j(µ, ξ)| ≤ Ch‖µ−Πh̃µ‖0,γ‖ξ −Πh̃ξ‖0,γ ∀µ, ξ ∈ L2(γ); (3.6)
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3. A fictitious domain method for the transient heat equation

Weak consistency:

j(µ, ξ) ≤
∑
ẽ∈γh̃

|ẽ|‖µ−Πh̃µ‖0,ẽ‖ξ −Πh̃ξ‖0,ẽ ≤ Ch
2‖µ‖ 1

2
,H‖ξ‖ 1

2
,H ∀µ, ξ ∈ H.

(3.7)

We end this section by presenting the fully discrete methods to be analyzed in this

chapter. The fully discrete problems read as follows:

1) Given a suitable approximation of u0
h ∈ Vh of u0, then for all (vh, µh̃) ∈ Wh̃ and

0 ≤ n ≤ N − 1, find (un+1
h , λn+1

h̃
) ∈Wh̃ such that{

1
δt(u

n+1
h − unh, vh)Ω + a(un+1

h , vh)− b(λn+1

h̃
, vh) = (f(tn+1), vh)Ω

b(µh̃, u
n+1
h ) = b(µh̃, g)

(3.8)

in the inf-sup stable context, and

2) Given a suitable approximation of u0
h ∈ Vh of u0 for all (vh, µh) ∈ Wh and 0 ≤

n ≤ N − 1, find (un+1
h , λn+1

h ) ∈Wh such that{
1
δt(u

n+1
h − unh, vh)Ω + a(un+1

h , vh)− b(λn+1
h , vh) = (f(tn+1), vh)Ω

b(µh, u
n+1
h ) + j(λn+1

h , µh) = b(µh, g)
(3.9)

for the stabilised case.

3.3. Stability analysis

3.3.1. The inf-sup stable case

In this section, we analyze the stability of problem (3.83.8). For the purpose of the stability

and convergence analysis below, we introduce the Ritz-projection operator

Sh̃ : W −→Wh̃,

where W := H1
0 (Ω) × H−

1
2 (γ). For each (w, ξ) ∈ W , the projection Sh̃(w, ξ) =

(Ph̃(w, ξ), Rh̃(w, ξ)) ∈Wh̃ is defined as the unique solution of{
(∇Ph̃(w, ξ),∇vh)Ω − 〈Rh̃(w, ξ), vh〉γ = (∇w,∇vh)Ω − 〈ξ, vh〉γ

〈µh̃, Ph̃(w, ξ)〉γ = 〈µh̃, w〉γ
(3.10)

for all (vh, µh̃) ∈ Wh̃. Problem (3.103.10) is well-posed thanks to the inf-sup condition

(3.33.3). Moreover, defining the norm

‖(v, µ)‖2W := |v|21,Ω + ‖µ‖2− 1
2
,γ
,
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3. A fictitious domain method for the transient heat equation

then the following stability and approximation results hold (see [GG95GG95]):

‖Ph̃(w, ξ)‖2W 6 C
(
|w|21,Ω + ‖ξ‖2− 1

2
,γ

)
, (3.11)

and if (w, ξ) ∈ H2(Ω)×H, then there exist C > 0 independent of h such that

|w − Ph̃(w, ξ)|1,Ω + ‖ξ −Rh̃(w, ξ)‖− 1
2
,γ ≤ Ch(|w|2,Ω + ‖ξ‖H). (3.12)

The next result is a first step towards proving the stability of (3.83.8).

Lemma 3.1. Let ‖u0
h‖1,Ω ≤ C|u0|1,Ω and let

{
(unh, λ

n
h̃
)
}N
n=1

be the solution of the fully

discrete problem (3.83.8). Then, there exists C > 0 for 1 ≤ n ≤ N , independent of h, h̃

and δt, such that

‖unh‖20,Ω +
n−1∑
m=0

(
δt|um+1

h |21,Ω + ‖um+1
h − umh ‖20,Ω

)
≤ C|u0|21,Ω + C

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

)
, (3.13)

and

n−1∑
m=0

δt‖λm+1

h̃
‖2− 1

2
,γ

≤ C|u0|21,Ω +
C

β2

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

)
, (3.14)

where β is the constant from (3.33.3), and Dum+1
h =

um+1
h −umh

δt .

Proof. We start by proving the estimate for λh̃. Applying the inf-sup condition (3.33.3)

and the definition of the method (3.83.8), we get

δtβ‖λm+1

h̃
‖− 1

2
,γ ≤ sup

vh∈Vh\{0}

δtb(vh, λ
m+1

h̃
)

|vh|1,Ω

= sup
vh∈Vh\{0}

δt(f(tm+1), vh)Ω − δta(um+1
h , vh)− (um+1

h − umh , vh)Ω

|vh|1,Ω

≤ C sup
vh∈Vh\{0}

(
δt2‖f(tm+1)‖20,Ω + δt2 | um+1

h |21,Ω +‖um+1
h − umh ‖20,Ω

) 1
2 |vh|1,Ω

|vh|1,Ω
.
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3. A fictitious domain method for the transient heat equation

Thus,

β‖λm+1

h̃
‖− 1

2
,γ

≤ C

δt

(
δt2‖f(tm+1)‖20,Ω + δt2|um+1

h |21,Ω + ‖um+1
h − umh ‖20,Ω

) 1
2

= C
(
‖f(tm+1)‖20,Ω + |um+1

h |21,Ω + δt−2‖um+1
h − umh ‖20,Ω

) 1
2
.

Then squaring, multiplying by δt and taking summation over 0 ≤ m ≤ n− 1, we get

n−1∑
m=0

δt‖λm+1

h̃
‖2− 1

2
,γ
≤ C

β2

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + |um+1

h |21,Ω + ‖Dum+1
h ‖20,Ω

)
. (3.15)

Then, to prove (3.133.13), we need to bound
n−1∑
m=0

δt|um+1
h |21,Ω, which we now do. Taking

vh = um+1
h and µh̃ = λm+1

h̃
in (3.83.8), we get

(um+1
h − umh , um+1

h )Ω + δta(um+1
h , um+1

h )− δtb(λm+1

h̃
, um+1

h ) + δtb(λm+1

h̃
, um+1

h )

= δt(f(tm+1), um+1
h )Ω + δt〈λm+1

h̃
, g(tm+1)〉γ .

Using the equality (a− b)a = 1
2(a2− b2)+ 1

2(a− b)2 and the Cauchy Schwarz inequality,

this gives

1

2

(
‖um+1

h ‖20,Ω − ‖umh ‖20,Ω + ‖um+1
h − umh ‖20,Ω

)
+ δt|um+1

h |21,Ω

= δt(f(tm+1), um+1
h )Ω + δt〈λm+1

h̃
, g(tm+1)〉γ

≤ Cδt‖f(tm+1)‖0,Ω|um+1
h |1,Ω + δt‖λm+1

h̃
‖− 1

2
,γ‖g(tm+1)‖ 1

2
,γ

≤ C δt
2
‖f(tm+1)‖20,Ω +

δt

2
|um+1
h |21,Ω + δt‖λm+1

h̃
‖− 1

2
,γ‖g(tm+1)‖ 1

2
,γ .

Thus,

1

2

(
‖um+1

h ‖20,Ω − ‖umh ‖20,Ω+‖um+1
h − umh ‖20,Ω

)
+
δt

2
|um+1
h |21,Ω

≤ C δt
2
‖f(tm+1)‖20,Ω + δt‖λm+1

h̃
‖− 1

2
,γ‖g(tm+1)‖ 1

2
,γ .
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3. A fictitious domain method for the transient heat equation

After summation over 0 ≤ m ≤ n− 1,

1

2
(‖unh‖20,Ω − ‖u0

h‖20,Ω) +
1

2

n−1∑
m=0

‖um+1
h − umh ‖20,Ω +

δt

2

n−1∑
m=0

|um+1
h |21,Ω

≤ C δt
2

n−1∑
m=0

‖f(tm+1)‖20,Ω + δt

n−1∑
m=0

‖λm+1

h̃
‖− 1

2
,γ‖g(tm+1)‖ 1

2
,γ

≤ C δt
2

n−1∑
m=0

‖f(tm+1)‖20,Ω +
1

2α
δt

n−1∑
m=0

‖λm+1

h̃
‖2− 1

2
,γ

+
α

2
δt

n−1∑
m=0

‖g(tm+1)‖21
2
,γ
,

(3.16)

where α > 0 will be chosen later. So, inserting (3.153.15) in (3.163.16), we get

1

2

(
‖unh‖20,Ω − ‖u0

h‖20,Ω
)

+
1

2

n−1∑
m=0

‖um+1
h − umh ‖20,Ω +

δt

2

n−1∑
m=0

|um+1
h |21,Ω

≤ C
(δt

2

n−1∑
m=0

‖f(tm+1)‖20,Ω +
δt

2α

n−1∑
m=0

‖f(tm+1)‖20,Ω +
δt

2α

n−1∑
m=0

‖Dum+1
h ‖20,Ω

+
δt

2α

n−1∑
m=0

|um+1
h |21,Ω +

α

2
δt

n−1∑
m=0

‖g(tm+1)‖21
2
,γ

)
.

Choosing α = 2C,

‖unh‖20,Ω − ‖u0
h‖20,Ω +

n−1∑
m=0

‖um+1
h − umh ‖20,Ω + δt

n−1∑
m=0

|um+1
h |21,Ω

≤ C
n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

)
.

We obtain the estimate (3.143.14) inserting (3.133.13) into (3.153.15) and applying the inequality

‖u0
h‖1,Ω ≤ C‖u0‖1,Ω.

The last result is a partial stability result. In fact, the term in the time derivative,

namely Dum+1
h , still needs to be estimated. To present a uniform estimate of this

term, the initial condition has to be appropriately chosen. Moreover, to accommodate

the possibility of a time-dependent boundary condition g, we need to suppose extra

regularity. We do that in the next result.

Theorem 3.2. Let
{

(unh, λ
n
h̃
)
}N
n=1

be the solution of the fully discrete problem (3.83.8)

where we consider u0
h = Ph̃(u0, 0). Let us also assume ∂tg ∈ L∞(0, T ;H

1
2 (γ)). Then
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3. A fictitious domain method for the transient heat equation

the following estimates hold for all 1 ≤ n ≤ N

|unh|21,Ω +
n−1∑
m=0

(
δt|um+1

h |21,Ω + ‖um+1
h − umh ‖20,Ω

)
≤ C

(
|u0|21,Ω +

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖∂tg‖2
L∞(tm,tm+1;H

1
2 (γ))

))
(3.17)

and

n−1∑
m=0

δt‖λm+1

h̃
‖2− 1

2
,γ

≤ C|u0|21,Ω +
C

β2

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖∂tg‖2
L∞(tm,tm+1;H

1
2 (γ))

)
.

(3.18)

Proof. From Lemma 3.13.1, it is enough to prove that

n−1∑
m=0

δt‖Dum+1
h ‖20,Ω + |unh|21,Ω

≤ C
(
|u0|21,Ω +

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω +

1

ε
‖∂tg(ξm)‖21

2
,γ

+ ε‖λm+1

h̃
‖2− 1

2
,γ

))
, (3.19)

where ε > 0 will be chosen later.

For 0 ≤ m ≤ N−1, by taking vh = Dum+1
h and µh̃ = 0 in (3.83.8) and using the Cauchy

Schwarz inequality, we have

‖Dum+1
h ‖20,Ω + a(um+1

h , Dum+1
h )− b(λm+1

h̃
, Dum+1

h )

= (f(tm+1), Dum+1
h )Ω

≤ ‖f(tm+1)‖0,Ω‖Dum+1
h ‖0,Ω

≤ 1

2
‖f(tm+1)‖20,Ω +

1

2
‖Dum+1

h ‖20,Ω.

So,

1

2
‖ Dum+1

h ‖20,Ω +a(um+1
h , Dum+1

h )− b(λm+1

h̃
, Dum+1

h ) ≤ 1

2
‖ f(tm+1) ‖20,Ω . (3.20)

On the other hand, for 1 ≤ m ≤ N − 1, testing (3.83.8) at the time levels m + 1 and m

with vh = 0 and µh̃ = λm+1

h̃
, we have

b(λm+1

h̃
, um+1

h ) = b(λm+1

h̃
, g(tm+1)) and b(λm+1

h̃
, umh ) = b(λm+1

h̃
, g(tm)). (3.21)
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3. A fictitious domain method for the transient heat equation

Therefore, by subtracting these equalities and applying a Taylor expansion, we get

b(λm+1

h̃
, um+1

h − umh ) = b(λm+1

h̃
, g(tm+1)− g(tm))

= 〈λm+1

h̃
, g(tm+1)− g(tm)〉γ

≤ ‖λm+1

h̃
‖− 1

2
,γ‖g(tm+1)− g(tm)‖ 1

2
,γ = ‖λm+1

h̃
‖− 1

2
,γ‖δt∂tg(ξm)‖ 1

2
,γ

≤ 1

2ε
δt‖∂tg(ξm)‖21

2
,γ

+
ε

2
δt‖λm+1

h̃
‖2− 1

2
,γ
,

where ξm ∈ (tm, tm+1) and then

b(λm+1

h̃
, Dum+1

h ) ≤ 1

2ε
‖∂tg(ξm)‖21

2
,γ

+
ε

2
‖λm+1

h̃
‖2− 1

2
,γ

for 1 ≤ m ≤ N − 1. (3.22)

Then it follows from (3.203.20) and (3.223.22) that

1

2
‖Dum+1

h ‖20,Ω +a(um+1
h , Dum+1

h ) ≤ 1

2
‖f(tm+1)‖20,Ω +

1

2ε
‖∂tg(ξm)‖21

2
,γ

+
ε

2
‖λm+1

h̃
‖2− 1

2
,γ
.

(3.23)

Next, using the symmetry and bilinearity of a(., .), we have

Da(um+1
h , um+1

h ) =
a(um+1

h , um+1
h )− a(umh , u

m
h )

δt
,

and

a(Dum+1
h , Dum+1

h )

= a

(
um+1
h − umh

δt
,
um+1
h − umh

δt

)
=

1

δt
a(um+1

h , Dum+1
h )− 1

δt
a(umh , Du

m+1
h ).

Thus,

Da(um+1
h , um+1

h ) + δta(Dum+1
h , Dum+1

h )

=
a(um+1

h , um+1
h )− a(umh , u

m+1
h ) + a(um+1

h , umh )− a(umh , u
m
h )

δt

+ a(um+1
h , Dum+1

h )− a(umh , Du
m+1
h )

= a(Dum+1
h , um+1

h ) + a(Dum+1
h , umh ) + a(um+1

h , Dum+1
h )− a(umh , Du

m+1
h )

= 2a(um+1
h , Dum+1

h ).

Therefore,

a(um+1
h , Dum+1

h ) =
1

2
Da(um+1

h , um+1
h ) +

δt

2
a(Dum+1

h , Dum+1
h ) ≥ 1

2
Da(um+1

h , um+1
h ).
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3. A fictitious domain method for the transient heat equation

Hence, (3.233.23) becomes

1

2
‖Dum+1

h ‖20,Ω +
1

2
Da(um+1

h , um+1
h ) ≤ 1

2
‖f(tm+1)‖20,Ω +

1

2ε
‖∂tg(ξm)‖21

2
,γ

+
ε

2
‖λm+1

h̃
‖2− 1

2
,γ
,

for 1 ≤ m ≤ N − 1. After multiplication by δt and summation over 1 ≤ m ≤ n− 1, it

follows that

n−1∑
m=1

δt‖Dum+1
h ‖20,Ω +

n−1∑
m=1

δtDa(um+1
h , um+1

h )

≤
n−1∑
m=1

δt
(
‖f(tm+1)‖20,Ω +

1

2ε
‖∂tg(ξm)‖21

2
,γ

+
ε

2
‖λm+1

h̃
‖2− 1

2
,γ

)
,

and since

n−1∑
m=1

δtDa(um+1
h , um+1

h ) = a(unh, u
n
h)− a(u1

h, u
1
h),

we get

n−1∑
m=1

δt‖Dum+1
h ‖20,Ω + a(unh, u

n
h)

≤ a(u1
h, u

1
h) +

n−1∑
m=1

δt
(
‖f(tm+1)‖20,Ω +

1

2ε
‖∂tg(ξm)‖21

2
,γ

+
ε

2
‖λm+1

h̃
‖2− 1

2
,γ

)
.

Thus,

n−1∑
m=1

δt‖Dum+1
h ‖20,Ω + |unh|21,Ω

≤ |u1
h|21,Ω +

n−1∑
m=1

δt
(
‖f(tm+1)‖20,Ω +

1

2ε
‖∂tg(ξm)‖21

2
,γ

+
ε

2
‖λm+1

h̃
‖2− 1

2
,γ

)
. (3.24)

Since the initial approximation of u is given in terms of the Ritz-projection, u0
h =

Ph̃(u0, 0) with u0 ∈ H1
0 (Ω), by setting λ0

h̃
= Rh̃(u0, 0) it follows that (3.223.22) also holds
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3. A fictitious domain method for the transient heat equation

for m = 0. This is

δtb(λ1
h̃
, Du1

h) = δt

〈
λ1
h̃
,
u1
h − u0

h

δt

〉
γ

= 〈λ1
h̃
, u1

h〉γ − 〈λ1
h̃
, u0

h〉γ = 〈λ1
h̃
, g(t1)〉γ − 〈λ1

h̃
, g(t0)〉γ

= 〈λ1
h̃
, g(t1)− g(t0)〉γ

≤ ‖λ1
h̃
‖− 1

2
,γ‖g(t1)− g(t0)‖ 1

2
,γ

≤ δt‖λ1
h̃
‖− 1

2
,γ‖∂tg(ξ0)‖ 1

2
,γ

≤ 1

2ε
δt‖∂tg(ξ0)‖21

2
,γ

+
ε

2
δt‖λ1

h̃
‖2− 1

2
,γ
, (3.25)

where ξ0 ∈ (t0, t1). Now, testing for m = 0 in (3.83.8) with vh = Du1
h and µh̃ = 0, gives

(Du1
h, Du

1
h)Ω + a(u1

h, Du
1
h)− b(λ1

h̃
, Du1

h) = (f(t1), Du1
h)Ω,

and then

2δt‖Du1
h‖20,Ω + 2

δt

2
Da(u1

h, u
1
h) + 2

δt2

2
a(Du1

h, Du
1
h)− 2δtb(λ1

h, Du
1
h)

= 2δt(f(t1), Du1
h)Ω

≤ 2δt‖f(t1)‖0,Ω‖Du1
h‖0,Ω

≤ δt‖f(t1)‖20,Ω + δt‖Du1
h‖20,Ω.

Hence, applying (3.253.25) to this last inequality we arrive at

δt‖Du1
h‖20,Ω +a(u1

h, u
1
h)−a(u0

h, u
0
h) ≤ δt‖f(t1)‖20,Ω +

1

ε
δt‖∂tg(ξ0)‖21

2
,γ

+ εδt‖λ1
h̃
‖2− 1

2
,γ
,

(3.26)

which, applying the stability of the Ritz-projection (3.113.11), gives

δt‖Du1
h‖20,Ω + |u1

h|21,Ω ≤ |u0
h|21,Ω + δt

(
‖f(t1)‖20,Ω +

1

ε
‖∂tg(ξ0)‖21

2
,γ

+ ε‖λ1
h̃
‖2− 1

2
,γ

)
≤ C|u0|21,Ω + δt

(
‖f(t1)‖20,Ω +

1

ε
‖∂tg(ξ0)‖21

2
,γ

+ ε‖λ1
h̃
‖2− 1

2
,γ

)
. (3.27)

Then, using (3.243.24) and (3.273.27),

n−1∑
m=0

δt‖Dum+1
h ‖20,Ω + |unh|21,Ω

≤ C|u0|21,Ω +

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω +

1

ε
‖∂tg(ξm)‖21

2
,γ

+ ε‖λm+1

h̃
‖2− 1

2
,γ

)
,

which proves (3.193.19). Taking ε = 1
2C , estimate (3.173.17) is obtained by inserting (3.193.19) into

(3.133.13) and the estimate (3.183.18) is obtained by inserting (3.193.19) into (3.143.14).
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3. A fictitious domain method for the transient heat equation

Remark 3.3. If we do not start with the Ritz-projection of u0, then a weaker stability

result can be obtained. In fact, if u0 is given in terms of a general interpolant, u0
h =

ih(u0), using the approximation properties of ih and supposing that δt ≥ Ch2, we get,

instead of (3.253.25),

δtb(λ1
h̃
, Du1

h) = δt〈λ1
h̃
,
u1
h − u0

h

δt
〉γ

= 〈λ1
h̃
, u1

h〉γ − 〈λ1
h̃
, u0

h〉γ

= 〈λ1
h, g(t1)− g(t0)〉γ + 〈λ1

h, g(t0)− ih(u0)〉γ

≤ 1

2ε
δt‖∂tg‖21

2
,γ

+
ε

2
δt‖λ1

h‖2− 1
2
,γ

+ Ch|u0|22,Ω‖λ1
h‖2− 1

2
,γ

≤ 1

2ε
δt‖∂tg‖21

2
,γ

+
ε

2
δt‖λ1

h‖2− 1
2
,γ

+ C
1

2ε
|u0|22,Ω +

ε

2
h2‖λ1

h‖2− 1
2
,γ

≤ 1

2ε
δt‖∂tg‖21

2
,γ

+ C|u0|22,Ω + Cεδt‖λ1
h‖2− 1

2
,γ
.

Then, the same results as in Theorem 3.23.2 can be obtained supposing δt ≥ Ch2.

3.3.2. The stabilised method

In this section, we analize the stability of problem (3.93.9). The first step is to modify the

definition of the Ritz-projection Sh : W −→ Wh to accommodate it to the stabilised

method. For each (w, ξ) ∈ W , the projection Sh(w, ξ) = (Ph(w, ξ), Rh(w, ξ)) ∈ Wh is

now defined as the unique solution of{
(∇Ph(w, ξ),∇vh)Ω − 〈Rh(w, ξ), vh〉γ = (∇w,∇vh)Ω − 〈ξ, vh〉γ
〈µh, Ph(w, ξ)〉γ + j(Rh(w, ξ), µh) = 〈µh, w〉γ ,

(3.28)

for all (vh, µh) ∈ Wh. The well-posedness of (3.283.28) has been studied in [BC12BC12].

Moreover, defining the norm

|||(vh, µh)|||2h = |vh|21,Ω + j(µh, µh),

then the following stability and approximation results hold (see [BC12BC12]):

|||(Ph(w, ξ), Rh(w, ξ))|||2h ≤ C
(
|w|21,Ω + ‖ξ‖2− 1

2
,γ

)
, (3.29)

and if (w, ξ) ∈ H2(Ω)×H, then there exists C > 0 independent of h such that

‖ξ −Rh(w, ξ)‖− 1
2
,γ + |||(w − Ph(w, ξ), ξ −Rh(w, ξ))|||h ≤ Ch (|w|2,Ω + ‖ξ‖H) .

As it was done in the last section, we give the following analogues of Lemma 3.13.1 and

Theorema 3.23.2.
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3. A fictitious domain method for the transient heat equation

Lemma 3.4. Let ‖u0
h‖1,Ω ≤ C|u0|1,Ω and let {(unh, λnh)}Nn=1 be the solution of the fully

discrete problem (3.93.9). Then there exists C > 0 independent of h and δt such that the

following estimate holds for 1 ≤ n ≤ N :

‖unh‖20,Ω +
n−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

≤ C|u0|21,Ω + C

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

)
, (3.30)

and

n−1∑
m=0

δt‖λm+1
h ‖2− 1

2
,γ

≤ C

β2

(
|u0|21,Ω +

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

))
, (3.31)

where β is the constant from (3.43.4).

Proof. Using (3.43.4) and (3.93.9) with µh = 0, the Cauchy Schwarz and Poincaré inequalities,

we get

β‖λm+1
h ‖− 1

2
,γ ≤ sup

vh∈Vh\{0}

|b(λm+1
h , vh)|
|vh|1,Ω

+ Cj(λm+1
h , λm+1

h )
1
2

= sup
vh∈Vh\{0}

(f(tm+1), vh)Ω − a(um+1
h , vh)− (Dum+1

h , vh)Ω

|vh|1,Ω
+ Cj(λm+1

h , λm+1
h )

1
2

≤ C‖f(tm+1)‖0,Ω + |um+1
h |1,Ω +

C

δt
‖um+1

h − umh ‖0,Ω + Cj(λm+1
h , λm+1

h )
1
2 .

Squaring, multiplying by δt and adding over 0 ≤ m ≤ n− 1,

δt
n−1∑
m=0

‖λm+1
h ‖2− 1

2
,γ

≤ C

β2

n−1∑
m=0

δt

‖f(tm+1)‖20,Ω + |um+1
h |21,Ω +

∥∥∥∥∥um+1
h − umh

δt

∥∥∥∥∥
2

0,Ω

+ j(λm+1
h , λm+1

h )


=
C

β2

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖Dum+1

h ‖20,Ω +
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

)
. (3.32)
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To prove (3.303.30), we take vh = um+1
h and µh = λm+1

h in (3.93.9),(
um+1
h − umh

δt
, um+1

h

)
Ω

+ a(um+1
h , um+1

h )− b(λm+1
h , um+1

h ) + b(λm+1
h , um+1

h )

+ j(λm+1
h , λm+1

h ) = (f(tm+1), um+1
h )Ω + b(λm+1

h , g(tm+1)).

Using the equality (a− b)a = 1
2(a2− b2) + 1

2(a− b)2 and the Cauchy Schwarz inequality

in the above expression, we get

1

2δt

(
‖um+1

h ‖20,Ω − ‖umh ‖20,Ω
)

+
1

2δt
‖um+1

h − umh ‖20,Ω +
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

= (f(tm+1), um+1
h ) + b(λm+1

h , g(tm+1))

≤ C‖f(tm+1)‖0,Ω|um+1
h |1,Ω + ‖λm+1

h ‖− 1
2
,γ‖g(tm+1)‖ 1

2
,γ .

Now, after multiplying by 2δt and adding over 0 ≤ m ≤ n− 1, we obtain

‖unh‖20,Ω − ‖u0
h‖20,Ω +

n−1∑
m=0

‖um+1
h − umh ‖20,Ω + 2δt

n−1∑
m=0

∣∣∣∣∣∣(um+1
h , λm+1

h )
∣∣∣∣∣∣2
h

≤ Cδt
n−1∑
m=0

‖f(tm+1)‖0,Ω|um+1
h |1,Ω + 2δt

n−1∑
m=0

‖λm+1
h ‖− 1

2
,γ‖g(tm+1)‖ 1

2
,γ

≤ Cδt
n−1∑
m=0

‖f(tm+1)‖20,Ω + δt
n−1∑
m=0

|um+1
h |21,Ω + εδt

n−1∑
m=0

‖λm+1
h ‖2− 1

2
,γ

+
1

ε
δt

n−1∑
m=0

‖g(tm+1)‖21
2
,γ
,

where ε > 0 will be chosen later. Then as |um+1
h |21,Ω ≤

∣∣∣∣∣∣(um+1
h , λm+1

h )
∣∣∣∣∣∣2
h
, using (3.323.32),

we get

‖unh‖20,Ω +

n−1∑
m=0

‖um+1
h − umh ‖20,Ω + δt

n−1∑
m=0

∣∣∣∣∣∣(um+1
h , λm+1

h )
∣∣∣∣∣∣2
h

≤ ‖u0
h‖20,Ω + Cδt

n−1∑
m=0

‖f(tm+1)‖20,Ω + εδt
n−1∑
m=0

‖λm+1
h ‖2− 1

2
,γ

+
1

ε
δt

n−1∑
m=0

‖g(tm+1)‖21
2
,γ

≤ ‖u0
h‖20,Ω + Cδt

n−1∑
m=0

‖f(tm+1)‖20,Ω +
1

ε
δt

n−1∑
m=0

‖g(tm+1)‖21
2
,γ

+ ε
C

β2
δt

n−1∑
m=0

(∣∣∣∣∣∣(um+1
h , λm+1

h )
∣∣∣∣∣∣2
h

+ ‖Dum+1
h ‖20,Ω + ‖f(tm+1)‖20,Ω

)
.
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Then, taking ε = β2

2C , we obtain

‖unh‖20,Ω +

n−1∑
m=0

‖um+1
h − umh ‖20,Ω + δt

n−1∑
m=0

∣∣∣∣∣∣(um+1
h , λm+1

h )
∣∣∣∣∣∣2
h

≤ C‖u0
h‖20,Ω + C

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

)
,

which proves (3.303.30) applying the inequality ‖u0
h‖1,Ω ≤ C‖u0‖1,Ω. We obtain the

estimate (3.313.31) inserting (3.303.30) into (3.323.32).

The last result is a partial stability result. In fact, the term in the time derivative,

namely Dum+1
h , still needs to be estimated. We do that in the next result.

Theorem 3.5. Let {(unh, λnh)}Nn=1 be the solution of the fully discrete problem (3.93.9)

where we consider u0
h = Ph(u0, 0). Let us also assume ∂tg ∈ L∞(0, T ;H

1
2 (γ)). Then

for all 1 ≤ n ≤ N the following estimate holds

‖unh‖20,Ω +
n−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

≤ C|u0|21,Ω + C
n−1∑
m=0

δt

(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖∂tg‖2
L∞(tm,tm+1;H

1
2 (γ))

)
,

(3.33)

and

n−1∑
m=0

δt‖λm+1
h ‖2− 1

2
,γ

≤ C|u0|21,Ω + C

n−1∑
m=0

δt

(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖∂tg‖2
L∞(tn,tn+1;H

1
2 (γ))

)
.

(3.34)

Proof. Based on the previous lemma, it is enough to prove that

n−1∑
m=0

δt‖Dum+1
h ‖20,Ω + |||(unh, λnh)|||2h

≤ C
(
|u0|21,Ω +

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω +

δt

ε
‖∂tg‖21

2
,γ

+ ε‖λm+1
h ‖2− 1

2
,γ

))
. (3.35)

where ε > 0 will be chosen later.

For 0 ≤ m ≤ N − 1, taking vh = Dum+1
h and µh = 0 in (3.93.9) and using the Cauchy
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3. A fictitious domain method for the transient heat equation

Schwarz inequality, we have

‖Dum+1
h ‖20,Ω + a(um+1

h , Dum+1
h )− b(λm+1

h , Dum+1
h )

= (f(tm+1), Dum+1
h )Ω

≤ ‖f(tm+1)‖0,Ω‖Dum+1
h ‖0,Ω

≤ 1

2
‖f(tm+1)‖20,Ω +

1

2
‖Dum+1

h ‖20,Ω,

which implies

1

2
‖Dum+1

h ‖20,Ω + a(um+1
h , Dum+1

h )− b(λm+1
h , Dum+1

h ) ≤ 1

2
‖f(tm+1)‖20,Ω. (3.36)

On the other hand, for 1 ≤ m ≤ N − 1, testing (3.93.9) at the time levels m + 1 and m

with vh = 0 and µh = λm+1
h , we have

b(λm+1
h , g(tm+1))− b(λm+1

h , um+1
h ) = j(λm+1

h , λm+1
h ),

b(λm+1
h , g(tm))− b(λm+1

h , umh ) = j(λmh , λ
m+1
h ). (3.37)

Therefore, by subtracting these equalities and using the bilinearity of j(., .), we obtain

−b(λm+1
h , Dum+1

h ) = j(Dλm+1
h , λm+1

h )− 1

δt
b(λm+1

h , g(tm+1)− g(tm)), (3.38)

for 1 ≤ m ≤ N − 1. It then follows from (3.363.36) and a Taylor expansion that

1

2
‖Dum+1

h ‖20,Ω + a(um+1
h , Dum+1

h ) + j(Dλm+1
h , λm+1

h )

≤ 1

2
‖f(tm+1)‖20,Ω +

1

δt
b(λm+1

h , g(tm+1)− g(tm))

≤ 1

2
‖f(tm+1)‖20,Ω +

1

δt
‖λm+1

h̃
‖− 1

2
,γ‖δt∂tg(ξm)‖ 1

2
,γ

≤ 1

2
‖f(tm+1)‖20,Ω +

1

ε
‖δt∂tg(ξm)‖21

2
,γ

+ ε‖λm+1

h̃
‖2− 1

2
,γ
, (3.39)

where ξm ∈ (tm, tm+1).

On the other hand, using the symmetry and bilinearity of a(., .) and j(., .), we have

a(um+1
h , Dum+1

h ) =
1

2
Da(um+1

h , um+1
h ) +

δt

2
a(Dum+1

h , Dum+1
h ),

j(λm+1
h , Dλm+1

h ) =
1

2
Dj(λm+1

h , λm+1
h ) +

δt

2
j(Dλm+1

h , Dλm+1
h ).

Hence, (3.393.39) becomes

‖Dum+1
h ‖20,Ω +D(a(um+1

h , um+1
h ) + j(λm+1

h , λm+1
h ))

≤ ‖f(tm+1)‖20,Ω +
1

ε
‖δt∂tg(ξm)‖21

2
,γ

+ ε‖λm+1

h̃
‖2− 1

2
,γ
,
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for 1 ≤ m ≤ N − 1. After multiplication by δt and summation over 1 ≤ m ≤ n− 1, it

follows that

n−1∑
m=1

δt‖Dum+1
h ‖20,Ω + |||(unh, λnh)|||2h

≤
∣∣∣∣∣∣(u1

h, λ
1
h)
∣∣∣∣∣∣2
h

+
n−1∑
m=1

δt

(
‖f(tm+1)‖20,Ω +

1

ε
‖δt∂tg(ξm)‖21

2
,γ

+ ε‖λm+1

h̃
‖2− 1

2
,γ

)
.

(3.40)

Since the initial approximation of u is given in terms of the Ritz-projection, u0
h =

Ph(u0, 0), by setting λ0
h = Rh(u0, 0) it follows that (3.383.38) also holds for m = 0. This is

b(λ1
h, Du

1
h) =

1

δt
b(λ1

h, g(t1)− g(t0))− j(Dλ1
h, λ

1
h). (3.41)

Taking vh = Du1
h, µh = 0 in (3.93.9) and multiplying by 2δt, we get

δt‖Du1
h‖20,Ω + a(u1

h, u
1
h)− a(u0

h, u
0
h) ≤ δt‖f(t1)‖20,Ω + b(λ1

h, Du
1
h),

which implies

δt‖Du1
h‖20,Ω +

∣∣∣∣∣∣u1
h, λ

1
h

∣∣∣∣∣∣2
h
≤
∣∣∣∣∣∣u0

h, λ
0
h

∣∣∣∣∣∣2
h

+ δt‖f(t1)‖20,Ω + b(λ1
h, Du

1
h).

Applying (3.413.41) to this last inequality, we obtain

δt‖Du1
h‖20,Ω +

∣∣∣∣∣∣u1
h, λ

1
h

∣∣∣∣∣∣2
h

≤
∣∣∣∣∣∣(u0

h, λ
0
h)
∣∣∣∣∣∣2
h

+ δt‖f(t1)‖20,Ω + b(λ1
h, g(t1)− g(t0))

≤
∣∣∣∣∣∣(u0

h, λ
0
h)
∣∣∣∣∣∣2
h

+ δt‖f(t1)‖20,Ω + ‖λ1
h‖− 1

2
,γ‖δt∂tg(ξ0)‖ 1

2
,γ

≤
∣∣∣∣∣∣(u0

h, λ
0
h)
∣∣∣∣∣∣2
h

+ δt‖f(t1)‖20,Ω +
ε

2
δt‖λ1

h‖2− 1
2
,γ

+
δt

2ε
‖∂tg(ξ0)‖21

2
,γ

(3.42)

where ξ0 ∈ (t0, t1). Then we get the estimate (3.353.35) adding (3.423.42) to (3.403.40) and using

the stability of the Ritz-projection (3.293.29),
∣∣∣∣∣∣(u0

h, λ
0
h)
∣∣∣∣∣∣2
h
≤ C|u0|21,Ω.

Finally, we obtain the estimate (3.333.33) taking ε = 1
2C in (3.353.35) and the estimate (3.343.34)

is obtained in an analogous way.

3.4. Convergence analysis

In this section we prove optimal order error estimates for the fully discrete methods

(3.83.8) and (3.93.9).
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3.4.1. The inf-sup stable case

We start by presenting the following result on consistency. Its proof is direct verification.

Lemma 3.6. Let (u, λ) be the solution of (3.23.2) and let {(unh, λnh̃)}0≤n≤N be the solution

of (3.83.8). Assume that u ∈ H1(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω)) and let λ ∈ L∞(0, T ;H−

1
2 (γ)).

Then, for 0 ≤ n ≤ N − 1, there holds

(Du(tn+1)−Dun+1
h , vh)Ω + a(u(tn+1)− un+1

h , vh)− b(λ(tn+1)− λn+1

h̃
, vh)

+ b(µh̃, u(tn+1)− un+1
h ) = (Du(tn+1)− ∂tu(tn+1), vh)Ω,

for all (vh, µh̃) ∈Wh̃.

We prove the following result which states an optimal error estimate for u, and an

estimate for λ which is optimal, up to a term that will be treated later.

Lemma 3.7. Let us assume that u ∈ H1(0, T ;H2(Ω))∩H2(0, T ;L2(Ω))∩C0(0, T ;H2(Ω)),

u0 ∈ H2(Ω) ∩ H1
0 (Ω) and λ ∈ H1(0, T ;H), and set u0

h ∈ Vh as u0
h = Ch(u0) where

Ch : H1
0 (Ω) −→ Vh stands for the Clément interpolation operator. Then, the following

estimates hold for 1 ≤ n ≤ N :

‖unh − u(tn)‖20,Ω +

n−1∑
m=0

δt|um+1
h − u(tm+1)|21,Ω

≤ Ch2
(
‖u0‖22,Ω + ‖λ(0)‖2H

)
+ Ch2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ C

(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2‖λ‖2C0(t1,tn;H) + h2‖u‖2C0(t1,tn;H2(Ω))

)
,

and

n−1∑
m=0

δt‖λm+1

h̃
− λ(tm+1)‖2− 1

2
,γ

≤
n−1∑
m=0

δt

(
Ch2

(
‖u0‖22,Ω + ‖λ(0)‖2H

)
+ Ch2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ C

(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2‖λ‖2C0(t1,tn;H) + h2‖u‖2C0(t1,tn;H2(Ω))

)
+ ‖∂tu(tm+1)−Dum+1

h ‖20,Ω
)
,

with C > 0 a positive constant independent of h and δt.

Proof. As usual, for s = 0, ..., N , we decompose the error into interpolation and discrete

errors as follows
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3. A fictitious domain method for the transient heat equation

u(ts)− ush = u(ts)− Ph̃(u(ts), λ(ts))︸ ︷︷ ︸
θsπ

+Ph̃(u(ts), λ(ts))− ush︸ ︷︷ ︸
θsh

=: θsπ + θsh, (3.43)

λ(ts)− λsh̃ = λ(ts)−Rh̃(u(ts), λ(ts))︸ ︷︷ ︸
ysπ

+Rh̃(u(ts), λ(ts))− λsh̃︸ ︷︷ ︸
ysh

=: ysπ + ysh, (3.44)

where (Ph̃, Rh̃) is defined in (3.103.10). To simplify the notation, we write

ũs = Ph̃(u(ts), λ(ts)),

λ̃s = Rh̃(u(ts), λ(ts)).

Let n ∈ 1, ..., N , and m ∈ 0, ..., n− 1. First, using (3.123.12), it follows that

|θm+1
π |1,Ω + ‖ym+1

π ‖− 1
2
,γ ≤ Ch (‖u(tm+1)‖2,Ω + ‖λ(tm+1)‖H) .

In order to estimate θm+1
h , we first note that a quick calculation gives

(Dum+1
h , um+1

h )Ω =
1

2
D‖um+1

h ‖20,Ω +
1

2δt
‖um+1

h − umh ‖20,Ω.

Then, using the definition of the bilinear form a(., .), we get

1

2
D‖θm+1

h ‖20,Ω + |θm+1
h |21,Ω ≤ (Dθm+1

h , θm+1
h )Ω + |θm+1

h |21,Ω

= (Dθm+1
h , θm+1

h )Ω + a(θm+1
h , θm+1

h ) + b(ym+1
h , θm+1

h )− b(ym+1
h , θm+1

h )︸ ︷︷ ︸
Tm+1
1

. (3.45)

In addition, using (3.433.43)-(3.443.44), we have

Tm+1
1 = −(Dθm+1

π , θm+1
h )Ω − a(θm+1

π , θm+1
h ) + a(u(tm+1)− um+1

h , θm+1
h )

+ (Du(tm+1)−Dum+1
h , θm+1

h )Ω − b(λ̃m+1 − λ(tm+1), θm+1
h ) + b(ym+1

h , ũm+1 − u(tm+1))

− b(λ(tm+1)− λm+1

h̃
, θm+1
h ) + b(ym+1

h , u(tm+1)− um+1
h ).

We know that (ũm+1, λ̃m+1) is the finite element approximation of (u(tm+1), λ(tm+1)),

so

b(µh̃, u(tm+1)− ũm+1) = 0 ∀µh̃ ∈ Λh̃.
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3. A fictitious domain method for the transient heat equation

Futhermore, using Lemma 3.63.6, Tm+1
1 can be written as

Tm+1
1

= −(Dθm+1
π , θm+1

h )Ω + (Du(tm+1)− ∂tu(tm+1), θm+1
h )Ω − a(θm+1

π , θm+1
h )

+ b(ym+1
π , θm+1

h ).

Now, using Schwarz and Poincaré inequalities and approximation properties of the

operator, we get

Tm+1
1

≤ C
(
‖Du(tm+1)− ∂tu(tm+1)‖0,Ω + ‖Dθm+1

π ‖0,Ω︸ ︷︷ ︸
Tm+1
2

+|θm+1
π |1,Ω + ‖ym+1

π ‖− 1
2
,γ

)
|θm+1
h |1,Ω

≤ C

2

(
Tm+1

2 + |θm+1
π |1,Ω + ‖ym+1

π ‖− 1
2
,γ

)2
+

1

2
|θm+1
h |21,Ω. (3.46)

The term Tm+1
2 can be treated as two terms. For the first one, a Taylor expansion gives

u(tm) = u(tm+1)− δt∂tu(tm+1)− 1

2

∫ tm+1

tm

∂ttu(s)(tm − s)ds,

which implies∣∣∣∣u(tm+1)− u(tm)

δt
− ∂tu(tm+1)

∣∣∣∣ ≤ 1

2δt

∫ tm+1

tm

|∂ttu(s)||(tm − s)|ds

≤ 1

2

∫ tm+1

tm

|∂ttu(s)|ds ≤ 1

2

(∫ tm+1

tm

12ds

) 1
2
(∫ tm+1

tm

|∂ttu(s)|2ds
) 1

2

=
1

2
δt

1
2 ‖∂ttu‖L2(tm,tm+1).

Then,∥∥∥∥u(tm+1)− u(tm)

δt
− ∂tu(tm+1)

∥∥∥∥2

0,Ω

=

∫
Ω

∣∣∣∣u(tm+1)− u(tm)

δt
− ∂tu(tm+1)

∣∣∣∣2 dx
≤ 1

4
δt

∫
Ω
‖∂ttu‖2L2(tm,tm+1)dx =

δt

4
‖∂ttu‖2L2(tm,tm+1;L2(Ω)). (3.47)
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For the second term we have, using (3.123.12) once again and a Taylor expansion,

‖Dθm+1
π ‖20,Ω =

∥∥∥∥θm+1
π − θmπ

δt

∥∥∥∥2

0,Ω

=

∥∥∥∥u(tm+1)− Ph̃(u(tm+1), λ(tm+1))− u(tm) + Ph̃(u(tm), λ(tm))

δt

∥∥∥∥2

0,Ω

=

∥∥∥∥u(tm+1)− u(tm)

δt
− Ph̃

(
u(tm+1)− u(tm)

δt
,
λ(tm+1)− λ(tm)

δt

)∥∥∥∥2

0,Ω

≤ Ch2
( ∣∣∣∣u(tm+1)− u(tm)

δt

∣∣∣∣2
2,Ω

+

∥∥∥∥λ(tm+1)− λ(tm)

δt

∥∥∥∥2

H

)
≤ Ch2δt

(
‖∂tu‖2L2(tm,tm+1;H2(Ω)) + ‖∂tλ‖2L2(tm,tm+1;H)

)
. (3.48)

Gathering (3.453.45)-(3.483.48), we arrive at

1

2
D‖θm+1

h ‖20,Ω + |θm+1
h |21,Ω

≤ C
(
δt‖∂ttu‖2L2(tm,tm+1;L2(Ω)) + Ch2δt

(
‖∂tu‖2L2(tm,tm+1;H2(Ω)) + ‖∂tλ‖2L2(tm,tm+1;H)

)
+ |θm+1

π |21,Ω + ‖ym+1
π ‖2− 1

2
,γ

)
+

1

2
|θm+1
h |21,Ω.

Multiplying the resulting expression by 2δt and summing over 0 ≤ m ≤ n−1, we obtain

‖θnh‖20,Ω +

n−1∑
m=0

δt|θm+1
h |21,Ω

≤ ‖θ0
h‖20,Ω + Cδt

n−1∑
m=0

(
δt‖∂ttu‖2L2(tm,tm+1;L2(Ω))

+ Ch2δt
(
‖∂tu‖2L2(tm,tm+1;H2(Ω)) + ‖∂tλ‖2L2(tm,tm+1;H)

)
+ |θm+1

π |21,Ω + ‖ym+1
π ‖2− 1

2
,γ

)
= ‖θ0

h‖20,Ω + C

(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + Ch2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω))

+ ‖∂tλ‖2L2(0,tn;H)

)
+

n−1∑
m=0

δt
(
|θm+1
π |21,Ω + ‖ym+1

π ‖2− 1
2
,γ

))
. (3.49)

The only term that remains to be bounded is ‖θ0
h‖20,Ω. For this, we write

θ0
h = Ph̃(u(0), λ(0))− ih(u0)

= u0 − ih(u0) + Ph̃(u(0), 0)− u0 + Ph̃(0, λ(0)).

Due to the approximation properties of ih and Ph̃ we have

‖u0 − ih(u0)‖0,Ω ≤ Ch2‖u0‖2,Ω, (3.50)
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and

‖Ph̃(u(0), 0)− u0‖0,Ω ≤ Ch‖u0‖2,Ω. (3.51)

In addition, Ph̃(0, λ(0)) is the finite element approximation of 0, and then

‖Ph̃(0, λ(0))‖0,Ω = ‖Ph̃(0, λ(0))− 0‖0,Ω ≤ Ch‖λ(0)‖H. (3.52)

Hence, inserting (3.503.50)-(3.523.52) in (3.493.49), we arrive at

‖θnh‖20,Ω +
n−1∑
m=0

δt|θm+1
h |21,Ω

≤ C
(
h2(‖u0‖22,Ω + ‖λ(0)‖2H) + δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω))

+ ‖∂tλ‖2L2(0,tn;H)

)
+ h2

n−1∑
m=0

δt
(
‖u(tm+1)‖22,Ω + ‖λ(tm+1)‖2H

))
. (3.53)

For the Lagrange multiplier error estimate we first note that, from (3.443.44), it suffices

to control ‖yn+1
h ‖− 1

2
,γ . To this end, we use the inf-sup condition (3.33.3):

β‖yn+1
h ‖− 1

2
,γ ≤ sup

vh∈Vh

b(yn+1
h , vh)

|vh|1,Ω
.

From (3.443.44) we have

b(yn+1
h , vh) = −b(yn+1

π , vh) + b(λ(tn+1)− λn+1

h̃
, vh).

Using the definition of b and the trace inequality, we get

b(yn+1
π , vh) ≤ ‖yn+1

π ‖− 1
2
,γ |vh|1,Ω.

On the other hand, using the modified Galerkin orthogonality (see Lemma 3.63.6) with

µh̃ = 0, we have

b(λ(tn+1)− λn+1

h̃
, vh) = a(u(tn+1)− un+1

h , vh) + (∂tu(tn+1)−Dun+1
h , vh)Ω

≤ |u(tn+1)− un+1
h |1,Ω|vh|1,Ω + ‖∂tu(tn+1)−Dun+1

h ‖0,Ω‖vh‖0,Ω.

As a result, from the above estimations, we have

β‖yn+1
h ‖− 1

2
,γ ≤

(
‖yn+1
π ‖− 1

2
,γ + |u(tn+1)− un+1

h |1,Ω
)

+ C‖∂tu(tn+1)−Dun+1
h ‖0,Ω.
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Therefore,

β2
n−1∑
m=0

δt‖ym+1
h ‖2− 1

2
,γ

≤ C
n−1∑
m=0

δt
(
‖ym+1
π ‖2− 1

2
,γ

+ |u(tm+1)− um+1
h |21,Ω + ‖∂tu(tm+1)−Dum+1

h ‖20,Ω
)
.

Finally, standard interpolation estimate 3.123.12 gives

‖ym+1
π ‖− 1

2
,γ ≤ Ch‖λ(tn+1)‖H.

This together with the estimate for u finish the proof.

The only problematic term is in the second estimate in Lemma 3.73.7, ‖∂tu−Dun+1
h ‖0,Ω,

which we bound in the following theorem using the hypothesis u0
h = Ph(u0, 0).

Theorem 3.8. Under the assumptions of Lemma 3.73.7, assuming that λ ∈ H1(0, T ;H), u0 ∈
H2(Ω) ∩H1

0 (Ω), and u0
h := Ph̃(u0, 0), for 1 ≤ n ≤ N we have

n−1∑
m=0

δt‖λm+1

h̃
− λ(tm+1)‖2− 1

2
,γ

≤ C
(
h2‖λ‖2C0(t1,tn;H) + h2‖u0‖22,Ω + h2‖u‖2C0(t1,tn;H2(Ω)) + δt2‖∂ttu‖2L2(0,tn;L2(Ω))

+ h2δt2
(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ h2‖λ(0)‖2H

)
.

Proof. From Lemma 3.73.7, we only need to prove the following estimate:

n−1∑
m=0

δt‖∂tu(tm+1)−Dum+1
h ‖20,Ω + |Ph̃(u(tn), λ(tn))− unh|21,Ω

≤ C
(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

))
+ Ch2‖λ(0)‖2H. (3.54)

We use the descomposition of the error given in (3.433.43)-(3.443.44). Using the triangle

inequality we get

n−1∑
m=0

δt‖∂tu(tm+1)−Dum+1
h ‖20,Ω

≤ C
n−1∑
m=0

δt
(
‖∂tu(tm+1)−Du(tm+1)‖20,Ω + ‖Dθm+1

π ‖20,Ω + ‖Dθm+1
h ‖20,Ω

)
.

The first and second terms are bounded in Lemma 3.73.7. For the third term, we use the
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definition of the Ritz-projection (3.103.10) which implies

a(u(tn+1)− ũn+1, vh)− b(λ(tn+1)− λ̃n+1, vh) = a(θn+1
π , vh)− b(yn+1

π , vh) = 0.

The modified Galerkin orthogonality (see Lemma 3.63.6) with µh̃ = 0 gives

‖Dθn+1
h ‖20,Ω + a(θn+1

h , Dθn+1
h )− b(yn+1

h , Dθn+1
h )

=
(
D(Ph̃(u(tn+1), λ(tn+1))− un+1

h ± u(tn+1)), Dθn+1
h

)
Ω

+ a
(
Ph̃(u(tn+1), λ(tn+1))− un+1

h ± u(tn+1), Dθn+1
h

)
− b
(
Rh̃(u(tn+1), λ(tn+1))− λn+1

h̃
± λ(tn+1), Dθn+1

h

)
= −(Dθn+1

π , Dθn+1
h )Ω − a(θn+1

π , Dθn+1
h )

+ b(yn+1
π , Dθn+1

h ) + (Du(tn+1)− ∂tu(tn+1), Dθn+1
h )Ω

= −(Dθn+1
π , Dθn+1

h )Ω + (Du(tn+1)− ∂tu(tn+1), Dθn+1
h )Ω.

and, using Young’s inequality, we arrive at

1

2
‖Dθn+1

h ‖20,Ω + a(θn+1
h , Dθn+1

h )− b(yn+1
h , Dθn+1

h )

≤ C
(
‖Dθn+1

π ‖20,Ω + ‖Du(tn+1)− ∂tu(tn+1)‖20,Ω
)
. (3.55)

Moreover, since, for every 0 ≤ m ≤ N the following Galerkin orthogonality holds

b(µh̃, θ
m
h ) = 0 ∀µh̃ ∈ Λh̃,

then

b(yn+1
h , Dθn+1

h ) =
1

δt

(
b(yn+1

h , θn+1
h )− b(yn+1

h , θnh)
)

= 0.

So, inserting this into (3.553.55), we get

1

2
‖Dθn+1

h ‖20,Ω+a(θn+1
h , Dθn+1

h ) ≤ C
(
‖Dθn+1

π ‖20,Ω+‖Du(tn+1)−∂tu(tn+1)‖20,Ω
)
. (3.56)

Using the symmetry of a(., .), we get

a(θn+1
h , Dθn+1

h ) =
1

2
Da(θn+1

h , θn+1
h ) +

δt

2
a(Dθn+1

h , Dθn+1
h ),

which, after (3.563.56), gives

1

2
‖Dθn+1

h ‖20,Ω +
1

2
Da(θn+1

h , θn+1
h ) ≤ ‖Dθn+1

π ‖20,Ω + ‖Du(tn+1)− ∂tu(tn+1)‖20,Ω.
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Thus, after multiplication by 2δt and adding over 0 ≤ m ≤ n− 1, we have

n−1∑
m=0

δt‖Dθm+1
h ‖20,Ω + |θnh |21,Ω

≤ |θ0
h|21,Ω + C

n−1∑
m=0

δt
(
‖Dθm+1

π ‖20,Ω + ‖Du(tm+1)− ∂tu(tm+1)‖20,Ω
)
,

where we just have to bound the initial term because the other terms have already

bounded in (3.473.47) and (3.483.48). Therefore,

θ0
h = Ph̃(u(0), λ(0))− u0

h = Ph̃(0, λ(0))︸ ︷︷ ︸
:=wh∈Vh

+Ph̃(u(0), 0)− u0
h︸ ︷︷ ︸

=0

.

We realise that Ph̃(0, λ(0)) is the finite element approximation of (0, λ(0)), and then

|θ0
h|1,Ω = |Ph(0, λ(0))− 0|1,Ω 6 Ch(|0|2,Ω + ‖λ(0)‖H).

This implies

|θ0
h|21,Ω ≤ Ch2‖λ(0)‖2H.

This gives rise to the following estimate:

n−1∑
m=0

δt‖Dθm+1
h ‖20,Ω + |θnh |21,Ω

≤ C
(
h2‖λ(0)‖2H + δt2‖∂ttu‖2L2(0,tn;L2(Ω) + h2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω))

+ ‖∂tλ‖2L2(0,tn;H)

))
for all 1 ≤ n ≤ N , which proves (3.543.54).

3.4.2. The stabilised method

We start by presenting the following result on consistency. Its proof is direct verification.

Lemma 3.9. Let (u, λ) be the solution of (3.13.1) and let {(unh, λnh)}0≤n≤N be the solution

of (3.93.9). Assume that u ∈ C0(0, T ;H1
0 (Ω)) and let λ ∈ C0(0, T ;H−

1
2 (γ)). Then, for

0 ≤ n ≤ N − 1, there holds

(Du(tn+1)−Dun+1
h , vh)Ω + a(u(tn+1)− un+1

h , vh)− b(λ(tn+1)− λn+1
h , vh)

+ b(µh, u(tn+1)− un+1
h ) = j(λn+1

h , µh) + (Du(tn+1)− ∂tu(tn+1), vh)Ω,

for all (vh, µh) ∈Wh.
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We prove the following result which states an optimal error estimate for u, and an

estimate for λ which is optimal, up to a term that will be treated later.

Lemma 3.10. Let us assume that u ∈ H1(0, T ;H2(Ω))∩H2(0, T ;L2(Ω))∩C0(0, T ;H2(Ω)),

u0 ∈ H2(Ω) ∩ H1
0 (Ω) and λ ∈ H1(0, T ;H), and set u0

h ∈ Vh as u0
h = ih(u) where

ih : H1
0 (Ω) −→ Vh stands for the Clément interpolation operator. Then the following

estimates hold for 1 ≤ n ≤ N :

‖unh − u(tn)‖20,Ω +

n−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h − u(tm+1), λ(tm+1)− λm+1
h )

∣∣∣∣∣∣2
h

≤ Ch2
(
‖u0‖22,Ω + ‖λ(0)‖2H

)
+ Ch2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ C

(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2‖λ‖2C0(t1,tn;H) + h2‖u‖2C0(t1,tn;H2(Ω))

)
,

and

n−1∑
m=0

δt‖λm+1
h − λ(tm+1)‖2− 1

2
,γ
≤ C

(
1 +

1

β2

)
h2‖λ‖2C0(t1,tn;H)

+
C

β2

(
Ch2

(
‖u0‖22,Ω + ‖λ(0)‖2H

)
+ Ch2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ C

(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2‖λ‖2C0(t1,tn;H) + h2‖u‖2C0(t1,tn;H2(Ω))

)
+

n−1∑
m=0

δt‖∂tu(tm+1)−Dum+1
h ‖20,Ω

)
,

with C > 0 a positive constant independent of h and δt.

Proof. As usual, for s = 0, ..., N , we decompose the error in to interpolation and discrete

errors as follows

u(ts)− ush = u(ts)− Ph(u(ts), λ(ts))︸ ︷︷ ︸
θsπ

+Ph(u(ts), λ(ts))− ush︸ ︷︷ ︸
θsh

:= θsπ + θsh, (3.57)

λ(ts)− λsh = λ(ts)−Rh(u(ts), λ(ts))︸ ︷︷ ︸
ysπ

+Rh(u(ts), λ(ts))− λsh︸ ︷︷ ︸
ysh

:= ysπ + ysh, (3.58)
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where (Ph, Rh) is defined (3.283.28). To facilite the notation, let

ûs = Ph(u(ts), λ(ts)),

λ̂s = Rh(u(ts), λ(ts)).

The first term θm+1
π can be bounded using (3.123.12). In order to estimate θm+1

h using

the definition of the bilinear form a(., .) + j(., .) and

(Dum+1
h , um+1

h ) =
1

2
D‖um+1

h ‖20,Ω +
1

2δt
‖um+1

h − umh ‖20,Ω,

we get

1

2
D‖θm+1

h ‖20,Ω +
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣2
h

≤ (Dθm+1
h , θm+1

h )Ω +
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣2
h

= (Dθm+1
h , θm+1

h )Ω + a(θm+1
h , θm+1

h ) + b(ym+1
h , θm+1

h )− b(ym+1
h , θm+1

h ) + j(ym+1
h , ym+1

h )︸ ︷︷ ︸
Tm+1
1

.

(3.59)

In addition, using (3.573.57)-(3.583.58), we have

Tm+1
1 = −(Dθm+1

π , θm+1
h )Ω − a(θm+1

π , θm+1
h ) + a(u(tm+1)− um+1

h , θm+1
h )

+ j(λ̂m+1, ym+1
h )− j(λm+1

h , ym+1
h ) + (Du(tm+1)−Dum+1

h , θm+1
h )Ω

− b(λ̂m+1 − λ(tm+1), θm+1
h ) + b(ym+1

h , ûm+1 − u(tm+1))

− b(λ(tm+1)− λm+1
h , θm+1

h ) + b(ym+1
h , u(tm+1)− um+1

h ).

By the modified Galerkin orthogonality (see Lemma 3.93.9), this expression reduces to

Tm+1
1 = −(Dθm+1

π , θm+1
h )Ω + (Du(tm+1)− ∂tu(tm+1), θm+1

h )Ω − a(θm+1
π , θm+1

h )

+ j(λ̂m+1, ym+1
h ) + b(ym+1

π , θm+1
h )− b(ym+1

h , θm+1
π )

= I + II + III + IV + V. (3.60)

We now bound the above right-hand side term by term using the Cauchy Schwarz and

the Poincaré inequalities:

I ≤
(
‖Dθm+1

π ‖0,Ω + ‖Du(tm+1)− ∂tu(tm+1)‖0,Ω
)
‖θm+1
h ‖0,Ω

≤
(
‖Dθm+1

π ‖0,Ω + ‖Du(tm+1)− ∂tu(tm+1)‖0,Ω
)
Cp|θm+1

h |1,Ω

≤
(
‖Dθm+1

π ‖0,Ω + ‖Du(tm+1)− ∂tu(tm+1)‖0,Ω
)
Cp
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣
h
, (3.61)
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II ≤ |a(θm+1
π , θm+1

h )| ≤ |θm+1
π |1,Ω‖θm+1

h ‖0,Ω ≤ |θm+1
π |1,Ω

∣∣∣∣∣∣(θm+1
h , ym+1

h )
∣∣∣∣∣∣
h
,

(3.62)

III ≤ j(λ̂m+1, λ̂m+1)
1
2 j(ym+1

h , ym+1
h )

1
2 ≤ j(λ̂m+1, λ̂m+1)

1
2

∣∣∣∣∣∣(θm+1
h , ym+1

h )
∣∣∣∣∣∣
h
,

(3.63)

IV = 〈ym+1
π , θm+1

h 〉γ

≤ ‖λ(tm+1)− λ̂m+1‖− 1
2
,γ‖θ

m+1
h ‖ 1

2
,γ

≤ Ch‖λ(tm+1)‖H‖θm+1
h ‖1,Ω

≤ Ch‖λ(tm+1)‖H
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣
h
, (3.64)

V ≤ |b(ym+1
h , θm+1

π )| = 〈ym+1
h , θm+1

π 〉γ = j(λ̂m+1, ym+1
h )

= j(λ̂m+1 − λ(tm+1), ym+1
h ) + j(λ(tm+1), ym+1

h )

≤
(
j(λ̂m+1 − λ(tm+1), λ̂m+1 − λ(tm+1)) + j(λ(tm+1), λ(tm+1))

) 1
2
j(ym+1

h , ym+1
h )

1
2

≤ Ch‖λ(tm+1)‖H
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣
h
. (3.65)

Then collecting (3.603.60)-(3.653.65), we get

Tm+1
1 ≤

(
‖Du(tm+1)− ∂tu(tm+1)‖0,Ω + ‖Dθm+1

π ‖0,Ω
)

︸ ︷︷ ︸
Tm+1
2

Cp
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣
h

+
(
|θm+1
π |1,Ω + j(λ̂m+1, λ̂m+1)

1
2 + Ch‖λ(tm+1)‖H

)∣∣∣∣∣∣(θm+1
h , ym+1

h )
∣∣∣∣∣∣
h
. (3.66)

The term Tm+1
2 has already been analysed (see (3.473.47) and (3.483.48)). Thus, from (3.663.66)

and using Young’s inequality, it follows that

Tm+1
1 ≤ 1

2

∣∣∣∣∣∣(θm+1
h , ym+1

h )
∣∣∣∣∣∣2
h

+ C
(δt

4
‖∂ttu‖2L2(tm,tm+1;L2(Ω))

+ Ch2δt
(
‖∂tu‖2L2(tm,tm+1;H2(Ω)) + ‖∂tλ‖2L2(tm,tm+1;H)

)
+ |θm+1

π |21,Ω + j(λ̂m+1, λ̂m+1) + h2‖λ(tm+1)‖2H
)
.

By inserting this expression into (3.593.59), multiplying the resulting expression by 2δt,
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and adding over 0 ≤ m ≤ n− 1, we obtain

‖θnh‖20,Ω +
n−1∑
m=0

δt
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣2
h

≤ ‖θ0
h‖20,Ω + C

(
δt2

2
‖∂ttu‖2L2(0,tn;L2(Ω)) + Ch2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω))

+ ‖∂tλ‖2L2(0,tn;H)

)
+

n−1∑
m=0

δt
(
|θm+1
π |21,Ω + j(λ̂n+1, λ̂n+1) + h2‖λ(tn+1)‖2H

))
.

where |θm+1
π |21,Ω has already bounded and

j(λ̂n+1, λ̂n+1) = j
(
λ̂n+1 − λ(tn+1), λ̂n+1 − λ(tn+1)

)
+ j (λ(tn+1), λ(tn+1)) ,

j
(
λ̂n+1 − λ(tn+1), λ̂n+1 − λ(tn+1)

)
≤
∣∣∣∣∣∣∣∣∣(ûn+1 − u(tn+1), λ̂n+1 − λ(tn+1))

∣∣∣∣∣∣∣∣∣2
h

≤ Ch2(|u(tn+1)|22,Ω + ‖λ(tn+1)‖H),

and

j(λ(tn+1), λ(tn+1)) =
∑
e∈γ
|e|‖λ(tn+1)−Πh̃λ(tn+1)‖20,e ≤ C

∑
e∈γ
|e|2‖λ(tn+1)‖2H.

Therefore,

j(λ̂n+1, λ̂n+1) ≤ Ch2(|u(tn+1)|22,Ω + ‖λ(tn+1)‖2H).

The error estimate for u is obtained using approximation properties of a projection

operator and the consistency of the Lagrange multiplier stabilisation, which yields

‖θnh‖20,Ω +

n−1∑
m=0

δt
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣2
h

≤ ‖θ0
h‖20,Ω + C

(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ h2

n−1∑
m=0

δt‖u(tm+1)‖22,Ω + h2
n−1∑
m=0

δt‖λ(tm+1)‖2H
)
.

Finally,

θ0
h = Ph(u0, λ(0))− u0

h

= Ph(u0, 0)− u0
h + Ph(0, λ(0)),

and, procceding as before,

‖θ0
h‖20,Ω ≤ Ch(‖u0‖2,Ω + ‖λ(0)‖H).
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For the Lagrange multiplier error estimate we first note that, from (3.583.58), it suffices

to control ‖yn+1
h ‖0,Ω. To this end, we use the inf-sup condition (3.43.4):

β‖yn+1
h ‖− 1

2
,γ ≤ sup

vh∈Vh\{0}

b(yn+1
h , vh)

|vh|1,Ω
+ Cj(yn+1

h , yn+1
h )

1
2 .

From (3.583.58), we have

b(yn+1
h , vh) = −b(yn+1

π , vh) + b(λ(tn+1)− λn+1
h , vh).

The first term can be bounded using the continuity of b(., .) and the trace inequality,

which yields

b(yn+1
π , vh) ≤ ‖yn+1

π ‖− 1
2
,γ |vh|1,Ω.

On the other hand, using the modified Galerkin orthogonality (see Lemma 3.93.9) with

µh = 0, we have

b(λ(tn+1)− λn+1
h , vh) = a(u(tn+1)− un+1

h , vh) + (∂tu(tn+1)−Dun+1
h , vh)Ω

≤ C
∣∣∣∣∣∣(u(tn+1)− un+1

h , 0)
∣∣∣∣∣∣
h
|vh|1,Ω + ‖∂tu(tn+1)−Dun+1

h ‖0,Ω|vh|1,Ω.

As a result, from the above estimations, we have

β‖yn+1
h ‖− 1

2
,γ ≤ sup

vh∈Vh\{0}

| − b(yn+1
π , vh) + b(λ(tn+1)− λn+1

h , vh)|
|vh|1,Ω

+ Cj(yn+1
h , yn+1

h )
1
2

≤ C

(
‖yn+1
π ‖0,Ω|vh|1,Ω
|vh|1,Ω

+

∣∣∣∣∣∣(u(tn+1)− un+1
h , yn+1

h )
∣∣∣∣∣∣
h
|vh|1,Ω

|vh|1,Ω

+
‖∂tu(tn+1)−Dun+1

h ‖0,Ω|vh|1,Ω
|vh|1,Ω

)
≤ C

(
‖yn+1
π ‖− 1

2
,γ +

∣∣∣∣∣∣(u(tn+1)− un+1
h , yn+1

h )
∣∣∣∣∣∣
h

+ Cp‖∂tu(tn+1)−Dun+1
h ‖0,Ω

)
.

Therefore,

β2
n−1∑
m=0

δt‖ym+1
h ‖2− 1

2
,γ

≤ C
n−1∑
m=0

δt
(
‖ym+1
π ‖2− 1

2
,γ

+
∣∣∣∣∣∣(u(tm+1)− um+1

h , ym+1
h )

∣∣∣∣∣∣2
h

+ ‖∂tu(tm+1)−Dum+1
h ‖20,Ω

)
and we conclude using the error estimate for u.

We solve the problem of the Lagrange multiplier convergence by providing an error

estimate for the term ‖∂tu−Dun+1
h ‖0,Ω.
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Theorem 3.11. Under the assumptions of Lemma 3.103.10, assuming that λ ∈ H1(0, T ;H),

u0 ∈ H2(Ω) ∩H1
0 (Ω), and u0

h := Ph(u0, 0), for 1 ≤ n ≤ N we have

n−1∑
m=0

δt‖λm+1
h − λ(tm+1)‖2− 1

2
,γ

≤ C
(

1 +
1

β2

)
h2‖λ‖2C0(t1,tn;H) + Ch2‖u0‖22,Ω

+ Ch2δt2
(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ C

(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2‖λ‖2C0(t1,tn;H) + h2‖u‖2C0(t1,tn;H2(Ω))) + Ch2‖λ(0)‖2H

)
.

Proof. Based on the previous lemma, we just need to prove

n−1∑
m=0

δt‖Dum+1
h − ∂tu(tm+1)‖20,Ω +

∣∣∣∣∣∣∣∣∣(ûn − unh, λ̂n − λnh)
∣∣∣∣∣∣∣∣∣2
h

≤ C
(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ Ch2‖λ(0)‖2H. (3.67)

As usual, in order to provide an optimal error estimate, we decompose the error as

in (3.573.57)-(3.583.58). Using the triangle inequality, we have

n−1∑
m=0

δt‖∂tu(tm+1)−Dum+1
h ‖20,Ω

=
n−1∑
m=0

δt‖∂tu(tm+1)−Du(tm+1) +Dθm+1
π +Dθm+1

h ‖20,Ω

≤ C
n−1∑
m=0

δt
(
‖∂tu(tm+1)−Du(tm+1)‖20,Ω + ‖Dθm+1

π ‖20,Ω + ‖Dθm+1
h ‖20,Ω

)
.

For the first and second terms, we proceed as in the inf-sup case (see Lemma 3.73.7).

For the third term, we use the modified Galerkin orthogonality (see Lemma 3.93.9) with

µh = 0 and the definition of the Ritz-projection (3.283.28) to obtain

‖Dθn+1
h ‖20,Ω + a(θn+1

h , Dθn+1
h )− b(yn+1

h , Dθn+1
h )

= −(Dθn+1
π , Dθn+1

h )Ω − a(θn+1
π , Dθn+1

h ) + b(yn+1
π , Dθn+1

h )

+ (Du(tn+1)− ∂tu(tn+1), Dθn+1
h )Ω

= −(Dθn+1
π , Dθn+1

h )Ω + (Du(tn+1)− ∂tu(tn+1), Dθn+1
h )Ω.
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Next, Young’s inequality yields

1

2
‖Dθn+1

h ‖20,Ω + a(θn+1
h , Dθn+1

h )− b(yn+1
h , Dθn+1

h ) (3.68)

≤ C
(
‖Dθn+1

π ‖20,Ω + ‖Du(tn+1)− ∂tu(tn+1)‖20,Ω
)
.

In addition, for 0 ≤ n ≤ N , testing (3.283.28) at the time level n with vh = 0, we have

b
(
µh, û

n
)

= −j(λ̂n, µh) + b(µh, g(tn)). (3.69)

For 1 ≤ n ≤ N , testing (3.93.9) at the time level n with vh = 0 and since by definition,

u0
h = Ph(u0, 0), we have

b(µh, u
n
h) = −j(λnh, µh) + b(µh, g(tn)), (3.70)

for all µh ∈ Λh and 0 ≤ n ≤ N and where we have defined λ0
h = Rh(u0, 0). As a result,

from (3.693.69) - (3.703.70), we have

b(µh, θ
n
h) = −j(ynh , µh),

for all µh ∈ Λh and 0 ≤ n ≤ N . We therefore have, for 0 ≤ n ≤ N − 1,

b(yn+1
h , Dθn+1

h ) = −j(Dyn+1
h , yn+1

h ). (3.71)

On the other hand, using the symmetry of a and j, we get

a(θn+1
h , Dθn+1

h ) =
1

2
Da(θn+1

h , θn+1
h ) +

δt

2
a(Dθn+1

h , Dθn+1
h ),

j(yn+1
h , Dyn+1

h ) =
1

2
Dj(yn+1

h , yn+1
h ) +

δt

2
j(Dyn+1

h , Dyn+1
h ).

Then, replacing (3.713.71) and the last set of equalities in (3.683.68), we get

1

2
‖Dθn+1

h ‖20,Ω +
1

2
D(a(θn+1

h , θn+1
h ) + j(yn+1

h , yn+1
h ))

≤ ‖Dθn+1
π ‖20,Ω + ‖Du(tn+1)− ∂tu(tn+1)‖20,Ω.

Thus, after multiplication by 2δt and summation over 0 ≤ m ≤ n− 1, we have

n−1∑
m=0

δt‖Dθm+1
h ‖20,Ω + |||(θnh , ynh)|||2h

≤
∣∣∣∣∣∣(θ0

h, y
0
h)
∣∣∣∣∣∣2
h

+ C
n−1∑
m=0

δt
(
‖Dθm+1

π ‖20,Ω + ‖Du(tm+1)− ∂tu(tm+1)‖20,Ω
)
.

For the initial term, we use the linearity of the Ritz-projection and its approximation
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3. A fictitious domain method for the transient heat equation

properties

θ0
h = u0

h − Ph(u(0), λ(0)) = Ph(u(0), 0)− Ph(u(0), λ(0))

= Ph(u(0), 0)− Ph(u(0), 0)− Ph(0, λ(0)) = −Ph(0, λ(0)),

y0
h = λ0

h −Rh(u(0), λ(0)) = Rh(u(0), 0)−Rh(u(0), 0)−Rh(0, λ(0)) = −Rh(0, λ(0)).

Hence∣∣∣∣∣∣(θ0
h, y

0
h)
∣∣∣∣∣∣
h

= |||(Ph(0, λ(0)), Rh(0, λ(0)))|||h.

We have

|Ph(0, λ(0))|1,Ω = |Ph(0, λ(0))− 0|1,Ω ≤ Ch
(
|0|2,Ω + ‖λ(0)‖H

)
= Ch‖λ(0)‖H,

and

j(Rh(0, λ(0)), Rh(0, λ(0)))

= j(Rh(0, λ(0))− λ(0), Rh(0, λ(0))) + j(λ(0), Rh(0, λ(0)))

≤
(
j(Rh(0, λ(0))− λ(0)), Rh(0, λ(0))− λ(0))

+ j(λ(0), λ(0))
) 1

2
(
j(Rh(0, λ(0)), Rh(0, λ(0))

) 1
2

≤ Ch‖λ(0)‖H.

Thus, we obtain∣∣∣∣∣∣(θ0
h, y

0
h)
∣∣∣∣∣∣2
h

= |||(Ph(0, λ(0)), Rh(0, λ(0)))|||2h ≤ Ch
2‖λ(0)‖2H.

Therefore, using (3.473.47) and (3.483.48), we have

n−1∑
m=0

δt‖Dθm+1
h ‖20,Ω + |||(θnh , ynh)|||2h

≤ C
(
h2‖λ(0)‖2H + δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω))

+ ‖∂tλ‖2L2(0,tn;H)

))
for 1 ≤ n ≤ N . This proves (3.673.67), and then the proof is finished.

3.5. Numerical studies

In this section, we will report the results of numerical experiments that support the

analytical results of Section 3.33.3 and Section 3.43.4. We present computations demonstrating
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the optimal convergence using the space discretisation and the time discretisation

defined in Section 3.23.2. We also verify numerically that the choice of the initial condition

u0
h = Ph(u0, 0) guarantees a uniform approximation of λ, thus confirming the results in

Theorem 3.83.8 and Theorem 3.113.11. It is also discussed that for other choices of discrete

initial condition. The results for small time steps are not stable in the sense that the

error explodes. All computations have been performed using FreeFem+ + [Hec12Hec12].

We consider problem (3.13.1) with ω = {(x, y) ∈ R2 : x2+y2 < 1}, and its reformulation

(3.23.2) using Ω = (−2.4, 4)× (−2, 2). We have taken T = 1.

Fig. 3.2. Meshes for inf-sup stable case when n = 1.

We have tested two examples with known analytical solution. We first choose f in

Ω× (0, T ) such that the exact solution of (3.23.2) is given by

u1(x, t) = et(x2 + y2 − 1)

thus giving g = 0 on γ × (0, T ). Also, we have chosen another case where g 6= 0 on γ

given by

u2(x, t) = et(x2 + xy).

We have discretised this problem using a sequence of uniform meshes. The starting

point is the mesh depicted in Fig. 3.23.2. To build the meshes, a parameter n is given (n

denotes an integer parameter which refines the meshes). Then Ω is divided horizontally

into 20 · 2n segments and vertically into 20 · 2n segments. The resulting quadrilateral

mesh is then divided into triangles to form the mesh in Fig. 3.23.2 (where n = 1 is

depicted). To build the mesh on γ, (i.e., γh̃), we divide γ into 4 · 2n curved segments.

The pair of meshes Th × γh̃ is used to implement the inf-sup stable method (3.83.8). For
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the stabilised method (3.93.9) we use Th×γh, where the mesh γh is obtained after dividing

each segment ẽ of γh̃ into 4 equally spaced curved segments.

For both test problems we have λ = 0. To measure convergence, we have computed

the norms

‖u− uh̃,δt‖
2
∗ := ‖uNh − u(tN )‖20,Ω +

N−1∑
m=0

δt|um+1
h − u(tm+1)|21,Ω,

‖λ− λh̃,δt‖
2
∗∗ :=

N−1∑
m=0

δt‖λm+1

h̃
− λ(tm+1)‖20,γ ,

in the case of (3.83.8), and

‖(u− uh,δt, λ− λh,δt)‖2+ := ‖uNh − u(tN )‖20,Ω +
N−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h − u(tm+1), λm+1
h − λ(tm+1))

∣∣∣∣∣∣2
h
,

‖λ− λh,δt‖2++ :=
N−1∑
m=0

δt‖λm+1
h − λ(tm+1)‖20,γ ,

for the stabilised method (3.93.9). Recall the error estimates ‖error‖ ≤ C(h+ δt). So, to

balance both terms, we have chosen δt = h in the experiments. The numerical results

are depicted in Figs. 3.33.3- 3.63.6 and measured the behavior of the corresponding norm

with respect to h. We see that all norms go to zero as predicted by the theory.

Fig. 3.3. Error of u and λ for inf-sup stable case (Theorem 3.83.8) for homogeneous BCs.
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3. A fictitious domain method for the transient heat equation

Fig. 3.4. Error of u and λ for inf-sup stable case (Theorem 3.83.8) for nonhomogeneous BCs.

Fig. 3.5. Error of u and λ for stabilised method (Theorem 3.113.11) for homogeneous BCs.
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Fig. 3.6. Error of u and λ for stabilised method (Theorem 3.113.11) for nonhomogeneous BCs.

The results depicted on the right-hand side of the above figures do not contradict the

theory. To stress this fact, we have performed a numerical experiment reminiscent of the

one from [JN15JN15]. This is, we have fixed one level n = 1 and have taken δt −→ 0. We have

then measured ‖λ(δt)−λ1
h‖0,γ both considering u0

h = ih(u0) and u0
h = Ph(u0, 0) defined

before. The results, depicted in Figs. 3.73.7-3.103.10 show that, unless the initial condition

is chosen appropriately, the error in λ grows as δt −→ 0, i. e. the approximation of

λ cannot be guaranteed. These results confirm the sharpness of the stability results

presented in Section 3.33.3.
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3. A fictitious domain method for the transient heat equation

Fig. 3.7. Lambda behavior for inf-sup stable case for homogeneous BCs.

Fig. 3.8. Lambda behavior for inf-sup stable case for nonhomogeneous BCs.
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Fig. 3.9. Lambda behavior for stabilised method for homogeneous BCs.

Fig. 3.10. Lambda behavior for stabilised method for nonhomogeneous BCs.
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Chapter 4

A stabilised finite element method for a

fictitious domain problem allowing small

inclusions

4.1. Introduction

In this chapter, we extend the fictitious domain approach to the situation in which

a domain contains small holes, or inclusions, that cannot be resolved by the finite

element mesh. We consider a problem in such domain restricted to Dirichlet boundary

conditions which is of importance. Another type of boundary conditions, e.g., Neumann

boundary conditions, would lead to a different approach. Nevertheless, our motivation

is to use a method like the one proposed in this chapter to approximate a problem like

(4.14.1), but in incompressible fluid mechanics, i.e., solving Stokes, or even Navier-Stokes,

equation. In such a case, Dirichlet conditions posed on each one of the perforations are

the typical ones.

The situation in which the geometrical details of the domain are of a smaller size than

the finite element mesh is not considered in the classical theory of fictitious domain

method. In fact, in [GG95GG95] the condition |ẽ| ≥ 3h was imposed in order to prove

stability and error estimates where ẽ denote the mesh on γ and h is the mesh size of

the mesh in Ω. This last condition was relaxed in [BC12BC12] by using a stabilised FEM,

but the need for an auxiliary space satisfying |ẽ| ≥ 3h was still needed for convergence.

Then, this work presents an alternative to both these approaches by introducing a

different stabilisation term, motivated by the method of Barbosa-Hughes (cf. [BH91BH91],

see also [HR09HR09] for an application of this idea in the context of fictitious domain using

cut elements).

The remainder of this chapter is organised as follows. In Section 4.24.2, we present the

problem under consideration and useful notation. In Section 4.34.3, we study the stability
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4. A stabilised finite element method for a fictitious domain problem allowing small inclusions

of the stabilised problem, its convergence in Section 4.44.4 and we show the numerical

results in Section 4.54.5. In Section 4.64.6, we extend the work done in the previous sections

to the problem depending on time where the numerical results are also shown.

4.2. Problem setting

Let Ω ⊆ R2 be an open bounded fictitious domain which contains the initial physical

domain ω := Ω \
M⋃
i=1

Bi where M ∈ N. Each domain Bi is a closed, simply connected

domain that can be, a priori, of any shape and size with γi := ∂Bi (see Fig. 4.14.1 for a

typical case).

Fig. 4.1. Physical domain ω, fictitious domain Ω and inclusions Bi.

The problem of interest reads as follows:

find û : ω −→ R such that
−∆û = f̂ in ω,

û = gi on γi, i = 1, ...,M,

u = 0 on ∂Ω,

(4.1)

where f̂ ∈ L2(ω) and gi ∈ H
1
2 (γi) for all i = 1, ...,M . To present the fictitious domain

method we introduce an extension f of f̂ to Ω, and the solution of the following mixed

problem:

find (u,λ) ∈W := H1
0 (Ω)×

M∏
i=1

H−
1
2 (γi), where λ = (λi)

M
i=1, such that


(∇u,∇v)Ω −

M∑
i=1
〈λi, v〉γi = (f, v)Ω,

M∑
i=1
〈µi, u〉γi =

M∑
i=1
〈µi, gi〉γi ,

(4.2)
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4. A stabilised finite element method for a fictitious domain problem allowing small inclusions

for all (v,µ) ∈ W,µ = (µi)
M
i=1. Problems (4.14.1) and (4.24.2) are linked by the fact that

if (u,λ) satisfies (4.24.2), then u|ω satisfies (4.14.1) and the Lagrange multipliers λi satisfy

λi = [[∂nu]]γi , for i = 1, ...,M , where [[v]]γi stands for the jump of a function v across γi

(see [GG95GG95] for details).

To solve this weak problem, we introduce Th, a regular triangulation of Ω built using

triangles K with diameter hK , and h := max
K∈Th

hK . Additionally, each γi is partitioned

into a different mesh γi,h̃ with curved edges ẽ, where h̃ := max |ẽ|. We are interested in

the case in which diam(Bi) << diam(Ω) (and then |ẽ| < h), which is precisely the case

not allowed in [GG95GG95]. Associated to these partitions, we define the following finite

element spaces:

Vh = {vh ∈ C0(Ω̄) : vh|k ∈ P1(K), ∀K ∈ Th},

Λi,h̃ = {µh̃ ∈ L
2(γi) : µh̃|ẽ ∈ P0(ẽ), ∀ẽ ∈ γi,h̃} for i = 1, ...,M,

Λh̃ =

M∏
i=1

Λi,h̃.

We now give a little bit more insight on the assumption on the geometry of γi. In

fact, the case we are interested in is depicted in Fig. 4.24.2, where K and K ′ are in the

triangulation Th of the domain Ω defined above and γi is a circle.

Fig. 4.2. A typical situation in which the inclusion Bi is a circle.

This implies that, for almost every point on γi, say P , we can be sure the jump of the

normal derivative of u is zero. Namely, vh ∈ Vh so vh|K ∈ P1(K). Hence ∇vh|K ∈ R2

which implies [[∇vh · n]]γ∩K = 0.

4.3. The stabilised formulation and its stability

As it has been shown in [GG95GG95], the inf-sup condition would only be valid if |ẽ| ≥ 3h.

Due to our assumptions on Bi (i.e. h > diam(Bi) for all i = 1, ...,M), this situation
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cannot occur. Then, we now propose the following stabilised FEM to approximate (4.24.2)

using Vh ×Λh̃ as finite element space:

find (uh,λh̃) ∈Wh := Vh ×Λh̃ such that

B
(
(uh,λh̃), (vh,µh̃)

)
= (f, vh)Ω −

M∑
i=1

〈µi,h̃, gi〉γi ∀(vh,µh̃) ∈Wh, (4.3)

where

B
(
(uh,λh̃), (vh,µh̃)

)
= (∇uh,∇vh)Ω −

M∑
i=1

〈λi,h̃, vh〉γi −
M∑
i=1

〈µi,h̃, uh〉γi

−
M∑
i=1

h〈λi,h̃, µi,h̃〉γi . (4.4)

We define the following norm

‖(vh,µh̃)‖2Wh
:= |vh|21,Ω +

M∑
i=1

h‖µi,h̃‖
2
0,γi ,

and prove next the stability of the method.

Theorem 4.1. For all (vh,µh̃) ∈Wh, the following holds

B
(
(vh,µh̃), (vh,−µh̃)

)
= ‖(vh,µh̃)‖2Wh

.

Hence, problem (4.34.3) is well-posed.

Proof. It follows directly from the definition of the bilinear form B.

The next result states the consistency of the method for smooth solutions.

Lemma 4.2. Let (u,λ) be the solution of (4.24.2) and (uh,λh̃) ∈ Wh be the solution of

(4.34.3). Then

B
(
(u− uh,λ− λh̃), (vh,µh̃)

)
= −

M∑
i=1

h〈λi, µi,h̃〉γi , (4.5)

for all (vh,µh̃) ∈Wh. Moreover, if u ∈ H
3
2

+ε(Ω) for some ε > 0, then

B
(
(u− uh,λ− λh̃), (vh,µh̃)

)
= 0, (4.6)

for all (vh,µh̃) ∈Wh.
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Proof. From the definition of B, and the fact that (u,λ) solves (4.24.2) and (uh,λh̃) solves

(4.34.3), it follows that

B
(
(u,λ), (vh,µh̃)

)
= (∇u,∇vh)Ω −

M∑
i=1

〈λi, vh〉γi −
M∑
i=1

〈µi,h̃, u〉γi −
M∑
i=1

h〈λi, µi,h̃〉γi

= (f, vh)Ω −
M∑
i=1

〈µi,h̃, gi〉γi −
M∑
i=1

h〈λi, µi,h̃〉γi

= B
(
(uh,λh̃), (vh,µh̃)

)
−

M∑
i=1

h〈λi, µi,h̃〉γi ,

which proves (4.54.5). Now, if u ∈ H
3
2

+ε(Ω), then λi = [[∂nu]]γi = 0, for i = 1, ...,M and

we get (4.64.6) directly from (4.54.5).

4.4. Error analysis

We start this section by making two assumptions. First, we will suppose that the

inclusions Bi satisfy dist(Bi, ∂Ω) ≥ h
2 . This assumption will be needed on what follows,

and, although it may seem restrictive, the factor 1
2 can be relaxed to any positive

constant, as long as it is fixed. We will also assume, just to simplify the presentation,

that the inclusions Bi are convex. This latter hypothesis is made only for simplicity,

the same results are valid, up to minor modifications, if this does not hold.

The next result is a first technical tool, the local trace inequality, that will be used

in the error analysis. The proof of this result is similar to the one given in [CGS16CGS16] for

the case of curved elements.

Lemma 4.3. Let B̃i be the local annular neighborhood defined as B̃i :=
{
x ∈ ω :

dist(x, γi) ≤ h
2

}
, for every i = 1, ...,M . Then, the following local trace inequality holds

‖v‖20,γi ≤ 8h−1‖v‖2
0,B̃i

+ 8‖v‖0,B̃i‖∇v‖0,B̃i , (4.7)

for every v ∈ H1(Ω).

Proof. Let v ∈ H1(Ω). We split γi =
R⋃
j=1

γji , where the γji are disjoint, and introduce a

collection of points xji ∈ Ω \Bi (see Fig. 4.34.3) such that

dist(xji , γ
j
i ) =

1

2
h and (x− xji ) · n|γi ≥

1

4
h, (4.8)

for all x ∈ γji . Using these points, we build the curved triangle Tij as depicted in

Fig. 4.34.3.
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Fig. 4.3. The curved triangle Tij used in the proof of Lemma 4.34.3.

Let m(x) = x − xji . Then ∇ ·m = 2, and m · n = 0 on ∂Tij \ γji . Applying Green’s

theorem we get,

(m · n, v2)
γji

= (m · n, v2)∂Tij = (∇(v2 ·m), 1)Tij = 2‖v‖20,Tij + 2(v,∇v ·m)Tij .

On the other hand, from (4.84.8) we get m ·n|
γji
≥ 1

4h. Then, applying Hölder’s inequality

to the last expresion, and supposing there R is large enough to have ‖m‖∞,Tij ≤ h, we

arrive at

1

4
h‖v‖2

0,γji
≤ (m · n, v2)

γji
= 2‖v‖20,Tij + 2(v,∇v ·m)Tij

≤ 2‖v‖20,Tij + 2‖v‖0,Tij‖∇v‖0,Tij‖m‖∞,Tij
≤ 2‖v‖20,Tij + 2h‖v‖0,Tij‖∇v‖0,Tij .

Then, the following holds

‖v‖2
0,γji
≤ 8h−1‖v‖20,Tij + 8‖v‖0,Tij‖∇v‖0,Tij ,

for each γji . Hence, adding over j = 1, ..., R, using that the curved triangles Tij are

disjoint, B̃i ⊃
R⋃
j=1

Tij and applying Cauchy-Schwarz’s inequality, we obtain

‖v‖20,γi =
R∑
j=1

‖v‖2
0,γji
≤ 8h−1

R∑
j=1

‖v‖20,Tij + 8
R∑
j=1

‖v‖0,Tij‖∇v‖0,Tij

≤ 8h−1‖v‖2
0,B̃i

+ 8‖v‖0,B̃i‖∇v‖0,B̃i .

This finishes the proof.

Remark 4.4. More precisely, if the inclusion is not convex, then the set of points xji

defined in the proof of Lemma 4.34.3 would need to be chosen in such a way that the curved

triangles Tij are convex. Moreover, the convexity assumption ensures that the curved
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triangles Tij are disjoint. If Bi is not convex, then this is no longer time, and the

constant in (4.74.7) will change to include maximun number of non-empty intersections.

In order to prove the error estimate, we split the error into interpolation and discrete

errors as follows: (eu, eλ) := (u−uh,λ−λh̃) = (u−ihu,λ−Πh̃λ)+(ihu−uh,Πh̃λ−λh̃) =:

(ηu, ηλ) − (euh, e
λ
h̃

). Here ih : C0(Ω) −→ Vh stands for the Lagrange interpolation

operator, and Πh̃λ ∈ Λi,h̃ is defined by Πh̃λ = (Πh̃λi)
N
i=1 where Πh̃λi|ẽ := |ẽ|−1(λi, 1)ẽ

for all ẽ ∈ γi,h̃, and all i = 1, ...,M . We now state the main error estimate for the

method (4.34.3).

Theorem 4.5. Let us suppose there exits ε > 0 such that u ∈ H1+s(Ω), for s ∈

[1
2 − ε, 2], and λ ∈

N∏
i=1

Hδ(γi), for δ ∈ [0, 1
2 ]. Then, there exits a constant C > 0,

independent of h and h̃, such that

‖(eu, eλ)‖Wh
≤ C

(
hs|u|1+s,Ω + h

1
2

+δ
( M∑
i=1

‖λi‖2δ,γi
) 1

2

)
. (4.9)

Proof. First, using standard interpolation estimates (see [EG04EG04]) and h̃ ≤ h, we obtain

‖(ηu, ηλ)‖Wh
≤ C

(
hs|u|1+s,Ω + h

1
2

+δ
( M∑
i=1

‖λi‖2δ,γi
) 1

2

)
. (4.10)

To bound the discrete error, we suppose s > 1
2 . Then, using Theorem 4.14.1 and Lemma

4.24.2, we arrive at

‖(euh, eλh̃ )‖2Wh
= B

(
(euh, e

λ
h̃

), (euh,−eλh̃ )
)

= B
(
(ηu, ηλ), (euh,−eλh̃ )

)
= (∇ηu,∇euh)Ω −

M∑
i=1

〈ηλi , euh〉γi +
M∑
i=1

〈eλi
h̃
, ηu〉γi +

M∑
i=1

h〈−ηλi ,−eλi
h̃
〉γi

= I + II + III + IV. (4.11)

We now bound the above right-hand side term by term. The main arguments are the

approximation properties of ih and Πh̃ (see [EG04EG04]), the duality between H−
1
2 (γi) and

H
1
2 (γi), the Trace theorem in each Bi, the local trace result from Lemma 4.34.3, and the

Cauchy-Schwarz and Poincaré inequalities:

I ≤ |ηu|1,Ω|euh|1,Ω

≤ Ch2s|u|21+s,Ω +
1

4
|euh|21,Ω, (4.12)
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II ≤
M∑
i=1

‖ηλi‖− 1
2
,γi
‖euh‖ 1

2
,γi

≤
M∑
i=1

‖ηλi‖− 1
2
,γi
‖euh‖1,Bi

≤ C
M∑
i=1

h1+2δ‖λi‖2δ,γi +
1

4
|euh|21,Ω, (4.13)

III ≤ 1

4

M∑
i=1

h‖eλi
h̃
‖20,γi +

M∑
i=1

h−1‖ηu‖20,γi

≤ 1

4

M∑
i=1

h‖eλi
h̃
‖20,γi +

M∑
i=1

(
8h−2‖ηu‖2

0,B̃i
+ 4h−1‖ηu‖0,B̃i‖∇η

u‖0,B̃i
)

≤ 1

4

M∑
i=1

h‖eλi
h̃
‖20,γi + Ch2s|u|21+s,Ω, (4.14)

IV ≤
M∑
i=1

h‖ηλi‖20,γi +
1

4

M∑
i=1

h‖eλi
h̃
‖20,γi

≤ C
M∑
i=1

h1+2δ‖λi‖2δ,γi +
1

4

M∑
i=1

h‖eλi
h̃
‖20,γi . (4.15)

Collecting then (4.114.11)-(4.154.15), we get

‖(euh, eλh )‖2Wh
≤ C

(
h2s|u|21+s,Ω + h1+2δ

M∑
i=1

‖λi‖2δ,γi

)
+

1

2
‖(euh, eλh̃ )‖2Wh

,

and (4.94.9) follows by rearranging terms and applying the triangle inequality and (4.104.10).

Next, if s ≤ 1
2 , proceeding as above, we get

‖(euh, eλh̃ )‖2Wh
≤ I + II + III + IV +

M∑
i=1

h〈λi, eλih̃ 〉γi .

The first four terms have already been bounded. The fifth is bounded as follows:

M∑
i=1

h〈λi, eλih̃ 〉γi ≤
M∑
i=1

h‖λi‖0,γi‖e
λi
h̃
‖0,γi ≤ 8

M∑
i=1

h‖λi‖20,γi +
1

4

M∑
i=1

h‖eλi
h̃
‖20,γi .

Then (4.94.9) follows rearranging terms, and applying the triangle inequality and (4.104.10).

Remark 4.6. Even if the proof of this result does not depend on M , the number of
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perforations, it is important to remark that, for a given mesh, the constant on the error

estimate may degenerate with M . The reason for this lies in the bound for the third

term in the above proof. In fact, the constant in the estimate of III depends on the

overlap between the annular regions B̃i. If the number of inclusions increases, then

a larger number of these regions are expected to have non-empty intersections, thus

increasing that constant. This problem is of no importance once the mesh is refined

enough, since the annular regions B̃i become more and more separated, but this might

be an issue when the mesh is coarse.

Remark 4.7. It is worth remarking that the method can be written in a completely

consistent way, at least in the case in which all the γi are curved boundaries. As a

matter of fact, in such a case we have [[∂nvh]]γi = 0 for all vh ∈ Vh and all i = 1, ...,M

(see Fig. 4.24.2 for a typical situation, as can be seen there, ∇vhis the same constant both

sides of the curve γi, at almost every point of it). Then the bilinear form B can be

rewritten as

B
(
(uh,λh̃), (vh,µh̃)

)
=(∇uh,∇vh)Ω −

M∑
i=1

〈λi,h̃, vh〉γi −
M∑
i=1

〈µi,h̃, uh〉γi

+
M∑
i=1

h〈[[∂nuh]]− λi,h̃, [[∂nvh]] + µi,h̃〉γi , (4.16)

and then (4.64.6) follows using λi − [[∂nu]]γi = 0 for all i = 1, ...,M . Looking at this

last definition, the link to the Barbosa-Hughes method (and the method from [HR09HR09])

is apparent. Nevertheless, we have preferred to keep the non-consistent presentation

here since the defintion (4.164.16) leads to technical difficulties. More precisely, for this

alternative writing of B, Lemma 4.34.3 would have to be applied with respect to the interior

of Bi, which would lead, ultimately, to error estimates that depend on diam(Bi)
−1.

4.5. Numerical studies

In this section, we report the results of numerical experiments that support the analysis

carried out in previous sections. All computations have been performed using a code

written in FreeFem+ + [Hec12Hec12].

We consider the stabilised problem (4.34.3) with ω = Ω\
3⋃
i=1

Bi, where Ω = (0, 10)2, and

Bi = [ci, r], where r > 0. The centers of the balls Bi are c1 = (1.7, 7.4), c2 = (5.7, 8.4)

and c3 = (8.7, 3.4), respectively. To build the meshes, a parameter n is given. Then Ω

is divided horizontally and vertically into 10n segments. The mesh on each γi is built

by dividing each one of them into 8n curved segments. The resulting meshes, where
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n = 1 and r = 0.1, are depicted in Fig. 4.44.4 and Fig. 4.54.5 is a zoom around B1 of the

resulting mesh where we can observe that the finite element mesh does not resolve the

geometrical feature that is B1. We can observe that diam(Bi) ≤ h. More importantly,

for all values of n, the discretisation parameter |ẽ| on γi is such that |ẽ| < h, and

then stabilisation is indeed needed. We remark that we have also implemented the

unstabilised version of the method, and it has lead to singular matrices (in all the

cases). Thus, there is a real need for stabilisation in a situation such as this one.

Fig. 4.4. Meshes when n = 1.

Fig. 4.5. A zoom of the computational mesh in a neighborhood of B1 for r = 0.1 and n = 1.
We can observe that the mesh does not resolve the inclusion.
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We first build two examples in which we know the exact solution. We set the

right-hand side f and the boundary conditions in such a way that the exact solutions

are given by two different examples

u1(x, y) = sin(x) sin(y) and u2(x, y) = x2(10− x)2y2(10− y)2 in Ω.

These two examples are built just to show that if an extension of f that makes the

extended solution regular is available, then the method converges in an optimal way.

In this sense, we can interpret this method as a way of imposing Dirichlet conditions

on the interior of the domain weakly.

The results of the simulation for these first two examples are given in Tables 4.14.1, 4.24.2

and 4.34.3 (where we have taken r = 0.2, r = 0.1 and r = 0.025, respectively). We observe

that, since u ∈ H2(Ω) and λ = 0 ∈
M∏
i=1

H1(γi), then the optimal order of convengerce

o(h) is obtained with an even better than optimal converge for λ. This is most likely

due to the fact λ = 0, and is compatible with the results obtained in [BC12BC12].
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‖u− uh‖1,Ω order

(
3∑
i=1

h‖λ− λh̃‖
2
0,γi

) 1
2

order

u = u1(x, y) n = 1 3.5808 0.2486
n = 2 1.7996 0.9926 0.0691 1.8471
n = 3 1.1988 1.0019 0.0336 1.7783
n = 4 0.8989 1.0008 0.0180 2.1696
n = 5 0.7187 1.0026 0.0121 1.7799
n = 6 0.5988 1.0011 0.0086 1.8728
n = 7 0.5131 1.0020 0.0061 2.2282
n = 8 0.4489 1.0010 0.0047 1.9525
n = 9 0.3995 0.9898 0.0037 2.0311
n = 10 0.3592 1.0092 0.0030 1.9905
n = 11 0.3266 0.9982 0.0028 0.7239
n = 12 0.3001 0.9725 0.0023 2.2607
n = 13 0.2762 1.0368 0.0020 1.7461
n = 14 0.2563 1.0090 0.0018 1.4217
n = 15 0.2395 0.9826 0.001490 2.6426
n = 16 0.2244 1.0091 0.001466 0.2516

u = u2(x, y) n = 1 189836 8013.27
n = 2 92234.4 1.0414 2082.72 1.9439
n = 3 61106.9 1.0154 1047.71 1.6945
n = 4 45743.9 1.0065 587.443 2.0112
n = 5 36542.8 1.0064 433.107 1.3659
n = 6 30435.2 1.0031 282.196 2.3496
n = 7 26070.1 1.0043 213.894 1.7977
n = 8 22805 1.0021 159.669 2.1896
n = 9 20282.5 0.9952 130.767 1.6954
n = 10 18245.4 1.0046 112.195 1.4539
n = 11 16584 1.0017 101.369 1.0646
n = 12 15252.4 0.9620 84.1687 2.1370
n = 13 14030.7 1.0431 78.6999 0.8393
n = 14 13015.1 1.0139 69.2829 1.7197
n = 15 12160.4 0.9845 61.8237 1.6511
n = 16 11390.6 1.0133 54.8456 1.8557

Table 4.1. Finite element errors for the smooth examples and r = 0.2.
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‖u− uh‖1,Ω order

(
3∑
i=1

h‖λ− λh̃‖
2
0,γi

) 1
2

order

u = u1(x, y) n = 1 3.5800 0.1986
n = 2 1.7993 0.9925 0.0595 1.7389
n = 3 1.1986 1.0019 0.0256 2.0800
n = 4 0.8989 1.0002 0.0156 1.7218
n = 5 0.7187 1.0026 0.0113 1.4451
n = 6 0.5988 1.0011 0.0069 2.7056
n = 7 0.5131 1.0020 0.0057 1.2394
n = 8 0.4489 1.0010 0.0038 3.0365
n = 9 0.3994 0.9920 0.0032 1.4590
n = 10 0.3592 1.0069 0.0025 2.3430
n = 11 0.3265 1.0015 0.0022 1.3412
n = 12 0.3001 0.9690 0.0020 1.0954
n = 13 0.2763 1.0323 0.0016 2.7878
n = 14 0.2563 1.0139 0.0014 1.8018
n = 15 0.2395 0.9826 0.0012 2.2343
n = 16 0.2244 1.0091 0.0011 1.3482

u = u2(x, y) n = 1 189830 5920.23
n = 2 92230.1 1.0414 1538.89 1.9438
n = 3 61106.1 1.0153 731.663 1.8337
n = 4 45742.8 1.0066 439.74 1.7698
n = 5 36542.9 1.0063 337.51 1.1857
n = 6 30434.6 1.0032 226.654 2.1839
n = 7 26070.2 1.0041 187.245 1.2388
n = 8 22804.9 1.0021 127.731 2.8648
n = 9 20282.6 0.9952 103.571 1.7801
n = 10 18245.4 1.0046 76.8754 2.8291
n = 11 16584.1 1.0017 81.1063 -0.5621
n = 12 15252.4 0.9620 77.5004 0.5227
n = 13 14030.7 1.0431 56.0019 4.0591
n = 14 13015 1.0140 50.6272 1.3615
n = 15 12160.4 0.9844 43.6408 2.1523
n = 16 11390.6 1.0133 41.8489 0.6496

Table 4.2. Finite element errors for the smooth examples and r = 0.1.
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‖u− uh‖1,Ω order

(
3∑
i=1

h‖λ− λh̃‖
2
0,γi

) 1
2

order

u = u1(x, y) n = 1 3.5804 0.1088
n = 2 1.7993 0.9927 0.0384 1.5025
n = 3 1.1986 1.0019 0.0152 2.2857
n = 4 0.8988 1.0006 0.0124 0.7077
n = 5 0.7186 1.0027 0.0067 2.7587
n = 6 0.5988 1.0003 0.0060 0.6052
n = 7 0.5131 1.0020 0.0034 3.6846
n = 8 0.4489 1.0010 0.0033 0.2236
n = 9 0.3994 0.9920 0.0029 1.0970
n = 10 0.3592 1.0069 0.0015 6.2570
n = 11 0.3265 1.0015 0.0019 -2.4802
n = 12 0.3001 0.9690 0.0015 2.7168
n = 13 0.2762 1.0368 0.0012 2.7878
n = 14 0.2563 1.0090 0.0011 1.1741
n = 15 0.2395 0.9826 0.0010 1.3814
n = 16 0.2243 1.0160 0.0008 3.4575

u = u2(x, y) n = 1 189822 3171.73
n = 2 92227.5 1.0414 798.105 1.9906
n = 3 61104.7 1.0153 468.024 1.3163
n = 4 45742.1 1.0066 364.426 0.8697
n = 5 36542.6 1.0063 121.598 4.9188
n = 6 30434.6 1.0032 178.351 -2.1009
n = 7 26069.7 1.0043 98.6184 3.8436
n = 8 22804.8 1.0020 91.6176 0.5514
n = 9 20282.7 0.9951 86.4029 0.4975
n = 10 18245.4 1.0047 44.2459 6.3521
n = 11 16584 1.0017 58.2477 -2.8847
n = 12 15252.3 0.9620 49.7358 1.8156
n = 13 14030.6 1.0431 35.2758 4.2918
n = 14 13015 1.0139 30.919 1.7788
n = 15 12160.4 0.9844 32.2092 -0.5925
n = 16 11390.6 1.0133 25.1221 3.8505

Table 4.3. Finite element errors for the smooth examples and r = 0.025.

Next, we move onto a case in which the exact solution is not known. More precisely,

we consider the approximation of the following boundary value problem:
−∆û = 0 in ω,

û = 10 on γi, i = 1, 2, 3,

u = 0 on ∂Ω.

(4.17)

Then, we have computed a reference solution using a standard FEM in ω using a mesh
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containing 71200 elements. We denote this solution by uref . In Tables 4.44.4, 4.54.5 and 4.64.6

we report the errors ‖uref −uh‖0,ω and ‖uref −uh‖1,ω. We see that these tend to zero,

but with a slower rate. The slower rate of convergence is due to two factors. For the

coarser meshes the results show an erratic behavior typical of preasymptotic regimes

(since diam(Bi) < h). Later, for fine meshes the convergence orders tend to stabilise

on a suboptimal order, which is linked to the fact that u does not belong to H2(Ω).

‖uref − uh‖0,ω order ‖uref − uh‖1,ω order

n = 1 17.9261 28.069
n = 2 12.4341 0.5278 20.0713 0.4838
n = 3 9.5128 0.6605 15.7798 0.5933
n = 4 7.9418 0.6274 13.0286 0.6660
n = 5 6.6404 0.8020 11.2396 0.6619
n = 6 5.6830 0.8539 9.8531 0.7221
n = 7 5.0598 0.7535 8.7309 0.7844
n = 8 4.5119 0.8583 7.9581 0.6941
n = 12 3.1452 0.8899 5.9118 0.7331
n = 16 2.3856 0.9609 4.7040 0.7944
n = 20 1.9860 0.8216 4.002 0.7243
n = 24 1.6406 1.0479 3.3968 0.8993
n = 28 1.4105 0.9803 3.0996 0.5940
n = 32 1.2245 1.0590 2.8213 0.7045

Table 4.4. The errors ‖uref − uh‖0,ω and ‖uref − uh‖1,Ω for r = 0.2.

‖uref − uh‖0,ω order ‖uref − uh‖1,ω order

n = 1 17.1514 27.2304
n = 2 12.7182 0.4314 21.4572 0.3438
n = 3 10.591 0.4514 17.3827 0.5194
n = 4 8.6825 0.6907 15.0703 0.4962
n = 5 7.5684 0.6154 13.1351 0.6159
n = 6 6.6633 0.6986 11.7117 0.6291
n = 7 5.8129 0.8857 10.6428 0.6209
n = 8 5.3928 0.5618 9.5588 0.8045
n = 12 3.8631 0.8227 7.2007 0.6987
n = 16 3.0487 0.8230 5.7899 0.7580
n = 20 2.5217 0.8505 5.0093 0.6490
n = 24 2.0896 1.0309 4.2809 0.8618
n = 28 1.8109 0.9286 3.7392 0.8776
n = 32 1.5872 0.9874 3.5047 0.4850

Table 4.5. The errors ‖uref − uh‖0,ω and ‖uref − uh‖1,Ω for r = 0.1.
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‖uref − uh‖0,ω order ‖uref − uh‖1,ω order

n = 1 14.8711 24.4094
n = 2 13.1243 0.1803 22.3855 0.1249
n = 3 11.8203 0.2581 20.2568 0.2464
n = 4 10.5745 0.3871 18.9668 0.2287
n = 5 9.6422 0.4136 17.5545 0.3468
n = 6 8.8191 0.4894 16.4094 0.3700
n = 7 8.3809 0.3306 15.0603 0.5565
n = 8 7.4988 0.8329 14.536 0.2654
n = 9 6.9397 0.6579 13.8106 0.4346
n = 10 6.9632 -0.0321 12.5167 0.9337
n = 11 6.1493 1.3042 12.4309 0.0722
n = 12 5.8831 0.5086 11.7656 0.6322
n = 13 5.8012 0.1751 10.9178 0.9343
n = 14 5.3615 1.0637 10.6914 0.2828
n = 15 5.1095 0.6978 10.266 0.5885
n = 16 4.9088 0.6208 9.8383 0.6594

Table 4.6. The errors ‖uref − uh‖0,ω and ‖uref − uh‖1,Ω for r = 0.025.

We observe the behavior of the reference and approximate solutions for n = 10 when

r = 0.2 in Fig. 4.64.6- 4.94.9.

Fig. 4.6. Reference solution, uref , of the problem (4.174.17) for r = 0.2.
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Fig. 4.7. Approximate solution, uh, of the problem (4.174.17) when n = 10 for r = 0.2.

Fig. 4.8. Reference solution, uref , of the problem (4.174.17) for r = 0.2.
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Fig. 4.9. Approximate solution, uh, of the problem (4.174.17) when n = 10 for r = 0.2.

For both solutions, the cross section is shown in Fig. 4.104.10, when x ∈ (0, 10), r = 0.2

and we fix y = 8.4, with different mesh refinements .

Fig. 4.10. Cross section of the approximate solution for some values of n and the approximate
solution along the line y = 8.4 when r = 0.2.
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4.6. Extension to time-dependent problems

We extend the work done in this chapter to the problem depending on time. The

problem which we have consider is the following:

find û : ω × (0, T ) −→ R such that
∂tû−∆û = f̂ in ω × (0, T ),

u = gi on γi × (0, T ), i = 1, ...,M.

u = 0 on ∂Ω× (0, T ),

û(x, 0) = û0(x) in ω,

(4.18)

where f̂ ∈ L2(ω), gi ∈ H
1
2 (γi), and we keep the same notation as on the previous

section.

We can apply the theory from Chapter 33 with fictitious domain to this stabilised

problem:

find (u,λ) ∈W := H1
0 (Ω)×

M∏
i=1

H−
1
2 (γi), where λ = (λi)

M
i=1, such that


(∂tu, v)Ω + (∇u,∇v)Ω −

M∑
i=1
〈λi, v〉γi = (f, v)Ω,

M∑
i=1
〈µi, u〉γi =

M∑
i=1
〈µi, gi〉γi ,

(4.19)

for all (v,µ) ∈W,µ = (µi)
M
i=1. Then, the fully discrete problem is as follows:

Given a suitable approximation of u0
h ∈ Vh of u0 for all (vh,µh̃) ∈ Wh and 0 ≤ n ≤

N − 1, find (un+1
h ,λn+1

h̃
) ∈Wh such that

1
δt(u

n+1
h − unh, vh)Ω + a(un+1

h , vh)−
M∑
i=1
〈λn+1

i,h̃
, v〉γi = (f(tn+1), vh)Ω

M∑
i=1
〈µi,h̃, u

n+1
h 〉γi + j(λn+1

h̃
,µh̃) =

M∑
i=1
〈µi,h̃, gi〉γi .

(4.20)

The stabilised term added in this case to circumvent the inf-sup condition,

j(λn+1

h̃
,µh̃) =

M∑
i=1

h〈λn+1

i,h̃
, µi,h̃〉γi ,

satisfies the requirements of the analysis in Chapter 33. More precisely, (3.53.5) is satisfied

automatically. Conditions (3.63.6) and (3.73.7) are used primarily in the error analysis, and

even if the current definition of j does not fulfill them, we notice that if (u,λ) is the

exact solution of (4.194.19), and u ∈ H
3
2

+ε(Ω), then λ = 0 and j(λn+1

h̃
,µh̃) = 0 for all

µh̃ ∈ Λh̃, which is enough to carry the analysis over.
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4.6.1. Numerical studies

We consider the problem (4.184.18) with the domains and meshes defined in Section 4.54.5

with r = 0.2.

We first build two examples in which we know the exact solution. We set the

right-hand side f and the boundary conditions in such a way that the solutions are

given by two different examples:

u1(x, t) = et(x2 + xy) and u2(x, y) = cos(t)(x2 + xy) in Ω,

taking the time step δt = h. We solve the problem (4.184.18) defining the initial value

for the solution (when t = 0) by the Ritz-projection as we have seen in Chapter 33.

In Table 4.74.7 we report the values of the errors ‖u(., T ) − uh(., T )‖1,Ω and j
(
λ(., T ) −

λh̃(., T ),λ(., T ) − λh̃(., T )
) 1

2 , where we have used T = 1. We can observe that these

quantities tend to zero with optimal rates.
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‖u− uh‖1,Ω order

(
3∑
i=1

h‖λ− λh̃‖
2
0,γi

) 1
2

order

u = u1(x, y) n = 1 522.107 86.9896
n = 2 270.092 0.9509 50.9639 0.7714
n = 3 181.752 0.9770 35.0871 0.9206
n = 4 137.091 0.9802 25.7068 1.0813
n = 5 109.991 0.9870 20.2107 1.0780
n = 6 91.8498 0.9886 16.454 1.1279
n = 7 78.8835 0.9872 13.6429 1.2154
n = 8 69.1239 0.9891 11.5956 1.2176
n = 9 61.5557 0.9845 9.98372 1.2707
n = 10 55.4355 0.9939 8.72377 1.2804
n = 11 50.411 0.9969 7.79123 1.1862
n = 12 46.2607 0.9874 6.92771 1.3500
n = 13 42.7205 0.9946 6.2629 1.2604
n = 14 39.7034 0.9883 5.64608 1.3991
n = 15 37.0754 0.9926 5.15584 1.3165
n = 16 34.7705 0.9945 4.73283 1.3264

u = u2(x, y) n = 1 197.257 32.6503
n = 2 109.657 0.8471 20.323 0.6840
n = 3 75.7344 0.9128 14.1366 0.8952
n = 4 57.8828 0.9344 10.3649 1.0788
n = 5 46.8138 0.9511 8.12328 1.0921
n = 6 39.2982 0.9598 6.58655 1.1502
n = 7 33.8793 0.9625 5.4457 1.2339
n = 8 29.7689 0.9686 4.61124 1.2456
n = 9 26.5629 0.9674 3.96006 1.2925
n = 10 23.9661 0.9764 3.45152 1.3045
n = 11 21.8236 0.9826 3.0706 1.2270
n = 12 20.0498 0.9743 2.72619 1.3673
n = 13 18.5328 0.9829 2.45772 1.2952
n = 14 17.2381 0.9772 2.21345 1.4126
n = 15 16.1077 0.9831 2.01815 1.3389
n = 16 15.1148 0.9858 1.84933 1.3536

Table 4.7. Finite element errors for the smooth examples with δt = h and r = 0.2.

We next move onto a case in which the exact solution is not known. In this case,

we define the initial value for the solution by zero. More precisely, we consider the
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approximation of the following boundary value problem:
∂tû−∆û = 0 in ω × (0, 1],

û = 10t on γi × (0, 1], i = 1, 2, 3.

u = 0 on ∂Ω× (0, 1],

û(x, 0) = 0 in ω.

(4.21)

Then, we have computed the reference and approximate solutions as in Section 4.54.5,

taking δt = 10−4 and δt = h respectively. As expected, the errors decrease, but not

with an optimal rate.

We observe the behavior of the reference solution for δt = 10−4 and approximate

solution for δt = h and n = 10, when r = 0.2, in Fig. 4.114.11- 4.144.14.

Fig. 4.11. Reference solution, uref , of the problem (4.214.21) for r = 0.2.
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Fig. 4.12. Approximate solution, uh, of the problem (4.214.21) when n = 10 for r = 0.2.

Fig. 4.13. Reference solution, uref , of the problem (4.214.21) for r = 0.2.
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Fig. 4.14. Approximate solution, uh, of the problem (4.214.21) when n = 10 for r = 0.2.

In Fig. 4.154.15 we depict cross-section of the reference and approximate solution at

T = 1, obtained using different mesh refinement levels, and δt = h.

Fig. 4.15. Cross section of the approximate solution of the problem (4.214.21) for some values of n
and the reference solution along the line y = 8.4 when r = 0.2.
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In addition, in Fig. 4.164.16 we depict cross-section of the reference solutions and approximate

solution at different stages using n = 8. Here then h = 1
8 = δt, which implies the

approximation is quite coarse. We observe then a rough approximation of the boundary

condition. This is due, mostly, to the space discretisation error. As a matter of fact,

we have repeated the same test case using h = 1
8 as before but δt = 10−2 for the

fictitious domain method. The results are depicted in Fig. 4.174.17, where we observe that

the solution given by the fictitious domain method is very close to the one using δt = 1
8 .

Fig. 4.16. Cross section of the approximate solution for n = 8 and the reference solution of the
problem (4.214.21) along the line y = 8.4, r = 0.2 and different times when h = δt.
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Fig. 4.17. Cross section of the approximate solution for n = 8 and the reference solution of the
problem (4.214.21) along the line y = 8.4, r = 0.2 and different times when δt = 10−2

and h = 1
8 .
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Chapter 5

Conclusions and future work

In this chapter, we first present conclusions, and then we show our ideas for future

projects.

5.1. Conclusions

Our goal in this thesis has been to solve partial differential equations through FEM.

The domain, where our problem is defined, can be very complicated in shape and we

have used fictitious domain methods.

Our first motivation was to rewrite the problem defined in the initial domain ω as a

problem in the fictitious domain Ω where it is easier to solve it. In Chapter 22, we

have observed that if the choice of extension f makes the solution u less regular,

then the method will not converge with an optimal rate. In fact, the numerical

experiments shown prove that. Otherwise, optimal convergence is obtained if we choose

an appropriate extension of the function f̂ . Pursuing this purpose is not an easy task,

especially in dimensions higher than one.

We have implemented the time-dependent problem (1.141.14), described in Chapter 11,

with and without fictitious domain as well. We have checked the same fact for both

cases. The regularity of the solution depends on the extension of f̂ and it not easy

to define f when we are working with an n-dimensional problem. We avoid to work

with higher-order methods for the time being owing to the fact that we do not know

how to extend f̂ in such a way that u ∈ Hk+1(Ω) when we are working with an

n-dimensional problem. So, we focus on transient problems with fictitious domain

for P1/P0 finite element spaces where we need just f ∈ L2(Ω) which was our second

motivation described in the Chapter 33 after reading papers as [BF09BF09,BC12BC12].

In Chapter 33, we have proved unconditional stability and optimal convergence for

the transient heat problem. We have shown that for small time steps the use of a

Ritz-projection for the initial data is essential to avoid instabilities, unless the condition
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between time and space discretisation parameters (δt ≥ Ch2) is satisfied. We have

carried out the full analysis for the backward difference formula for order one when the

inf-sup stable condition is satisfied or not. To circumvent the inf-sup stable condition,

a stabilisation operator has been added to obtain a stabilised method.

In Chapter 44, we have proposed a simple stabilised FEM for approximating the

solution of partial differential equations posed in domains containing a moderate amount

of small perforations. The method is a fictitious domain method, enhanced with a

stabilisation term that, in some cases, is reminiscent of the Barbosa-Hughes stabilised

method. The numerical results show that, at least for the cases presented in this

chapter, this method can be used to approximate the solution (especially the far field)

with a good accuracy, without the need to modify the finite element space, or to

consider elements with special geometries. We do not expect this method to give

accurate results if we consider a domain with a very large number of perforations but,

as long as this number remains moderate, we believe this method presents a simple

alternative to previously existing references. This analysis has also been extended to

the time-dependent problem building on the analysis performed in Chapter 33.

5.2. Future projects

We have new concerns related to what we have mentioned in this document. We would

like to extend our future work in two directions mainly.

On the one hand, we have started the study of the described problem here with

a new alternative: when the domain ω is moving over time. This idea is applied by

Fluid-Structure Interaction problems (FSI). Fluid-structure interactions can be stable

or oscillatory. In the oscillatory case, the strain induced in the solid structure causes

it to move such that the source of strain is reduced, and the structure returns to its

former state only for the process to repeat. The study of fluid-structure interactions are

essential in the field of engineering or medicine for example. One very famous example

is the spectacular collapse of the Tacoma Narrows Bridge which occurred in 1940 (see,

e.g., [AVKW41AVKW41] for more details), where the excessive oscilations caused by wind action

were the main problem. Nowadays, this type of problems are really important in the

development of medicine, for example, for the simulation of biological problems related

to the blood flow in the heart.

Navier-Stokes equations are applied to FSI, in general, because they describe the

motion of a fluid. We would like to apply our results to FSI considering that the

velocity of the fluid is the gradient of a potential and then, it is a heat equation. Thus,
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we think that we can prove the unconditional stability and optimal convergence for

our problem when the domain is moving following the FSI structure. In papers such

as [BRS11BRS11,BG16bBG16b,JDP10JDP10], the stability results are provided and optimal convergence

estimates are proved for coupled problems, such as FSI. In [JDP10JDP10], it is shown that the

overall problem is likely to be less regular stable and less accurate than the individual

sub-problems consisting of two or more domains unless special measures are taken. An

appropiate time integration scheme is applied to each domain to obtain better results.

In [BRS11BRS11] the authors present the full analysis of a problem for the interaction between

the wind and a sail (applying it to nautical sports). They propose a fictitious domain

formulation of the problem, involving the wind velocity stream function and a Lagrange

multiplier considering two domains, the fictitious domain and the moving domain (the

sail). As in our case, the authors in this paper work with a FEM based on piecewise

linear continuous elements to approximate the stream function and piecewise constant

ones for the Lagrange multiplier and the analysis follows essentially the paper [GPP94GPP94]

as well. The work done in [BRS11BRS11] is very similar to our study described in Chapter 33.

The method is used to determine the sail shape under the action of the wind to obtain,

for example, a greater speed. We will consider the paper [JGP02JGP02] as well, where the

authors look at the motion of rigid bodies settling in an incompressible viscous fluid

based on fictitious domain formulation.

On the other hand, with respect to the work done in Chapter 44, more intensive

numerical testing and the extension to problems in incompressible fluid and solid

mechanics will be the subject of future research as well. And also we have in mind

to continue with the idea proposed in Chapter 22 and try to find a good extension of f̂

in dimensions higher than one.
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Chapter A

Appendix A

We shall specify the calculus used to get the solution and errors of the problems worked

on Chapter 22.

A.1. Method without fictitious domain

In this section, u is the solution in the initial domain (0, 1) instead of û and f is used

instead of f̂ to simplify notation.

The problem has been solved through FEM, so the discrete form is given by (2.32.3).

We consider three different linear spaces and the process to solve it is depending on each

one in details shown. All computations have been performed using Matlab [ACF99ACF99].

A.1.1. P1 finite dimensional space

Let us consider problem (2.12.1). We introduce the linear space

V = {v ∈ C0(ω) : v′ is piecewise continuous and bounded ω, v = 0 on ∂ω}

where V ⊃ Vh = {vh ∈ C0(ω) : vh|[xi,xi+1] ∈ P1[xi, xi+1]}.
We can see the problem as a linear system of equations with N+1 equations in N+1

unknowns u1, u2, ..., uN+1 where u = [u1, ..., uN+1]> is the solution. The linear system

to be solved is

N+1∑
j=1

ui(ϕ
′
i, ϕ
′
j) = (f, ϕj),

which can be written in matrix form asAu = F , whereA = (ϕ′i, ϕ
′
j), u = [u1, ..., uN+1]T

and F = (f, ϕj).

Let N be the number of subintervals in ω = (0, 1) of length h = 1
N . Let us introduce
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the basis functions ϕj ∈ Vh for all j = 1, ..., N + 1 defined by

ϕj(xi) =

1 if i = j,

0 if i 6= j.

The elements aij = (ϕ′i, ϕ
′
j) of the stiffness matrix A can easily be computed. First,

we observe that (ϕ′i, ϕ
′
j) = 0 if | i − j |> 1 since, in this case, for all x ∈ (0, 1) either

ϕi(x) or ϕj(x) is equal to zero. So, the matrix A is tri-diagonal where

(ϕ′i, ϕ
′
i) =

∫ xi

xi−1

1

h2
dx+

∫ xi+1

xi

1

h2
dx =

1

h
+

1

h
=

2

h

(ϕ′i, ϕ
′
i−1) = (ϕ′i−1, ϕ

′
i) = −

∫ xi

xi−1

1

h2
dx = −1

h

Note also that the matrix A is symmetric and positive definite. Specially,

A =



1
h − 1

h 0 0 0 . . . 0

− 1
h

2
h − 1

h 0 0

0 − 1
h

2
h − 1

h 0
...

...
. . .

0 . . . 0 − 1
h

1
h


If we impose the boundary conditions, we will change the first and the last row.

Hence, in this problem, the stiffness matrix is

A =



1 0 0 0 0 . . . 0

− 1
h

2
h − 1

h 0 0

0 − 1
h

2
h − 1

h 0
...

...
. . .

0 . . . 0 0 1


The load vector, F = [F1, ..., FN+1]>, is defined as

F =

∫ 1

0
f(x)ϕ(x)dx,

and where restricted to each subinterval is

Fi =

∫ xi+1

xi−1

f(x)ϕi(x)dx = hf(xi).

93



A. Appendix A

Moreover, the boundary conditions are applied, F1 = Fn+1 = 0.

Once we have developed this work, we can obtain the solution by solving the linear

system Au = F .

We shall now study the error between the solution of (2.12.1) and the solution of the

finite element problem (2.32.3).

The error in L2(0, 1) norm is given by

‖ u− uh ‖20,(0,1)=

∫ 1

0
(u− uh)2(x)dx =

N∑
i=1

∫ xi+1

xi

(u− uh)2(x)dx,

which is approximated by the Simpson’s rule.

The error in H1(0, 1) norm is defined by:

| u− uh |21,(0,1) =

∫ 1

0
(u′ − u′h)2 =

N∑
i=1

∫ xi+1

xi

(u′ − u′h)2(x)dx

=

N∑
i=1

∫ xi+1

xi

[u′(x)− u′h(x)]2dx

=
N∑
i=1

∫ xi+1

xi

[u′(x)− uh(i+ 1)− uh(i)

h
]2dx.

A.1.2. P2 finite dimensional space

Let us consider the problem (2.12.1) but, in this case, the linear space is Vh = {vh ∈
C0(ω) : vh|[x2i−1,x2i+1] ∈ P2[x2i−1, x2i+1]}.

We follow the same procedure as in previous section.

We will have 2N + 1 nodes in P2, so the stiffness matrix B ∈M(2N + 1, 2N + 1).

In the reference interval (0, 1), the bases functions are

ϕ̂1(x) = (1− x)(1− 2x) =⇒ ϕ̂′1(x) = −3 + 4x,

ϕ̂2(x) = 4x(1− x) =⇒ ϕ̂′2(x) = 4− 8x,

ϕ̂3(x) = x(2x− 1) =⇒ ϕ̂′3(x) = 4x− 1.

Then, we define the matrix BG as:

BG := [(ϕ̂′jϕ̂
′
i)] for i, j = 1, 2, 3.
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A simple calculation in our particular case gives:

(ϕ̂′1ϕ̂
′
1) =

7

3
,

(ϕ̂′2ϕ̂
′
2) =

16

3
,

(ϕ̂′3ϕ̂
′
3) =

7

3
,

(ϕ̂′1ϕ̂
′
2) = (ϕ̂′2ϕ̂

′
1) = −8

3
,

(ϕ̂′1ϕ̂
′
3) = (ϕ̂′3ϕ̂

′
1) =

1

3
,

(ϕ̂′2ϕ̂
′
3) = (ϕ̂′3ϕ̂

′
2) = −8

3
.

If we work with the matrix BG and we perform the change of variables

T : (0, 1) −→ (x2i−1, x2i+1)

x̂ −→ T x̂ = x2i−1 + x̂h,

leads to

ϕ̂(x̂) = ϕ(x), x = x2i−1 + x̂h,

ϕ̂′(x̂) = ϕ′(x)
dx

dx̂
= ϕ′(x)h.

This will help us to calculate the stiffness matrixB. Moreover, we impose the boundary

conditions where the first and the last row are zeros except B(1, 1) = B(2N + 1, 2N +

1) = 1.

Otherwise, we calculate the load vector, F2 = [F21, ..., F22N+1]>. In this case we

have to differenciate the basis functions of the node in odd or ever position, i.e.,∫ 1

0
fϕ2i =

∫ x2i+1

x2i−1

fϕ2i =
2h

3
f(x2i),∫ 1

0
fϕ2i+1 =

∫ x2i+1

x2i−1

fϕ2i+1 +

∫ x2i+3

x2i+1

fϕ2i+1 =
h

3
f(x2i+1),

applying the Simpson’s rule.

In this case, to calculate the errors, we have to use quadrature formula of higher

order because the error due to the quadrature rule has to be smaller than the finite
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element error. For that, we use the quadrature formula∫ b

a
f(x)dx = w1f(y1) + w2f(y2) + w3f(y3),

where y1, y2, and y3 are the quadrature points and w1, w2 and w3 are the weights

(see [EG04EG04]). In our problem

y1 =
1

2
(a+ b)− (b− a)

2

√
3

5
,

y2 =
1

2
(a+ b),

y3 =
1

2
(a+ b) +

(b− a)

2

√
3

5
,

w1 = w3 =
5

18
and w2 =

8

18
.

Thus, with h = (x2i+1 − x2i−1),∫ 1

0
(u− uh)2(x)dx =

N∑
i=1

∫ x2i+1

x2i−1

(u− uh)2(x)dx

'
N∑
i=1

{ 5

18
h(u(y1)− uh(y1))2

+
8

18
h(u(y2)− uh(y2))2

+
5

18
h(u(y3)− uh(y3))2

}
.

In this expression, uh(y1) and uh(y3) are unknowns. To find these values, we shall

calculate ϕ2i−1(yi) and ϕ2i(yi), ϕ2i+1(yi), for i = 1, 3. It will be easier if we work in the

reference interval and we obtain the following matrix

Q =


ϕ̂1(ŷ1) ϕ̂2(ŷ1) ϕ̂3(ŷ1)

ϕ̂1(ŷ2) ϕ̂2(ŷ2) ϕ̂3(ŷ2)

ϕ̂1(ŷ3) ϕ̂2(ŷ3) ϕ̂3(ŷ3)

 ,
where

ŷ1 =
1

2
− 1

2

√
3

5
,

ŷ2 =
1

2
,

ŷ3 =
1

2
+

1

2

√
3

5

and ϕ̂i are the P2 basis functions in the reference interval for i = 1, 2, 3.
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For the error in H1(0, 1) norm,∫ 1

0
(u′ − u′h)2(x)dx =

N∑
i=1

∫ x2i+1

x2i−1

(u′(x)− u′h(x))2dx

'
N∑
i=1

{ 5

18
h(u′(y1)− u′h(y1))2 +

8

18
h(u′(y2)− u′h(y2))2

+
5

18
h(u′(y3)− u′h(y3))2

}
,

where

u′h(yi) = uh(x2i−1)ϕ′2i−1(yi) + uh(x2i)ϕ
′
2i(yi) + uh(x2i+1)ϕ′2i+1(yi) for i = 1, 2, 3,

and ϕ′2i−1(yi), ϕ
′
2i(yi), ϕ

′
2i+1(yi) are unknown. To facilitate calculations, we will calculate

the derivative of the basis functions in the reference interval again, such that

P =


ϕ̂′1(ŷ1) ϕ̂′2(ŷ1) ϕ̂′3(ŷ1)

ϕ̂′1(ŷ2) ϕ̂′2(ŷ2) ϕ̂′3(ŷ2)

ϕ̂′1(ŷ3) ϕ̂′2(ŷ3) ϕ̂′3(ŷ3)

 .
A.1.3. P3 finite dimensional space

Let us consider the problem (2.12.1) with Vh = {vh ∈ C0(ω) : vh|[x3i−2,x3i+1] ∈ P3[x3i−2, x3i+1]}
and the same steps are followed as before.

We define with the stiffness matrix C. Let N be the number of subintervals in ω of

lenght h = 1
N . We will have 3N + 1 nodes in P3, so C ∈M(3N + 1, 3N + 1). In the

reference interval (0, 1), the basis functions are

ϕ̂1(x) = −9

2

(
1

3
− x
)(

x− 2

3

)
(1− x) =⇒ ϕ̂′1(x) = −27

2
x2 + 18x− 11

2
,

ϕ̂2(x) = x

(
2

3
− x
)

(x− 1)

(
−27

2

)
=⇒ ϕ̂′2(x) =

81

2
x2 − 45x+ 9,

ϕ̂3(x) =
27

2
x

(
x− 1

3

)
(1− x) =⇒ ϕ̂′3(x) = −81

2
x2 + 36x− 9

2
,

ϕ̂4(x) = −9

2
x

(
1

3
− x
)(

x− 2

3

)
=⇒ ϕ̂′4(x) =

27

2
x2 − 9x+ 1.

Then we define the matrix CG as

CG := [(ϕ̂′j , ϕ̂
′
i)] for i, j = 1, 2, 3, 4.

We calculate it using a quadrature formula. If we work with the matrix CG and we

perform the change of variables, we will be able to calculate the stiffness matrix C.

Moreover, we impose the boundary conditions where the first and the last row are
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zeros except C(1, 1) = C(3N + 1, 3N + 1) = 1. Moreover, we calculate the load vector,

F3 = [F31, ..., F33N+1]>, as

F =

∫ 1

0
f(x)ϕ(x)dx '

3N+1∑
i=1

f(xk)

∫ 1

0
ϕk(x)ϕi(x)dx = M [f(x1), f(x2), ..., f(x3N+1)]>,

where

Mki =

∫ 1

0
ϕk(x)ϕi(x)dx.

To calculate the mass matrix M ,∫ xk+1

xk

ϕk(x)ϕi(x)dx = h

∫ 1

0
ϕ̂k(x)ϕ̂i(x)dx̂,

where the matrix MG in the reference interval is defined by

MG =

[∫ 1

0
ϕ̂k(x)ϕ̂i(x)dx

]
.

We obtain MG through quadrature formula and thus, the matrix M . The error is

calculated using the same procedure as in P2. We use the quadrature formula∫ b

a
f(x)dx = w1f(y1) + w2f(y2) + w3f(y3) + w4f(y4),

where

y1 =
(a+ b)

2
− (b− a)

2

√
15 + 2

√
30

35
,

y2 =
(a+ b)

2
− (b− a)

2

√
15− 2

√
30

35
,

y3 =
(a+ b)

2
+

(b− a)

2

√
15− 2

√
30

35
,

y4 =
(a+ b)

2
+

(b− a)

2

√
15 + 2

√
30

35
,

w1 = w4 =

(
1

4
− 1

12

√
5

6

)
(b− a),

w2 = w3 =

(
1

4
+

1

12

√
5

6

)
(b− a).
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A.2. Method with fictitious domain

The problem (2.12.1) is solved in this section with fictitous domain formulation through

FEM. In particular,we consider the mixed problem (2.62.6).

We use the same procedure as in Section A.1A.1 for P1, P2 and P3 but using these new

data. Thus, to implement the problem with Matlab, we need to change the domain,

boundary conditions, the function f̂(x), exact solution uex(x) and define the extension

function f(x). Futhermore, we introduce the variables ele and k define as

ele = max{i : xi ≤ 0},

k = max{j : xj ≤ 1},

in such a way that [xele+1, xk] ⊆ (0, 1). The code to implement the problem in Matlab

is the same to get the solution as in the method without fictitous domain just changing

the data for each finite dimensional space and following the details shown in Chapter 22

for this case.
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Appendix B

When we are working on the stabilised method, we defined a bilinear form j : Λh ×
Λh −→ R as

j(λ, µ) =
∑
ẽ∈γh̃

|ẽ|(λ−Πh̃λ, µ−Πh̃µ)ẽ,

where Πh̃ : L2(γ) −→ Λh̃ is defined as (Πh̃ξ)|ẽ = |ẽ|−1(ξ, 1)ẽ. This stabilised term, j,

will be introduced in the problem as a matrix C in our case. Thus, in this section, we

want to describe the proccess to define this matrix in FreeFem+ +.

B.1. Matrix C from the stabilised term

We work with two uniform meshes on the boundary of ω, γ. Let γh be the partition

of γ with edges e. Let also γh̃ be a partition of γ, whose vertices are also vertices of

γh, with edges ẽ satisfying the following: there exists C > 0 ( independent of h) such

that 3h 6| ẽ |6 Ch, for all ẽ ∈ γh̃. Using the mesh regularity of Th, a shape-regular

family of triangulations of the fictitious domain Ω, it is easy to see that for all ẽ ∈ γh̃,

card{e ∈ γh : e ⊂ ẽ} 6 C, where C > 0 is independent of ẽ and h. The angular points

of γ also belong to γh̃.

We show this proccess for the case where ω is a square of side two. The partition of

both meshes on γ change depending of n, given in the full code of the problem, which

gives us the refinement of the meshes. For example, when n = 0,
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First, we need to load “lapack” in the full code to define the matrix C by blocks

which changes for every value of n.

After that, we start implementing the code for the matrix C. We define the square

block matrix B1 which arises from the term

|ẽ|(λ−Πh̃λ, µ−Πh̃µ)ẽ.

In our example,
(λ1 −Πλ1, λ1 −Πλ1) · · · (λ1 −Πλ1, λ4)

...
. . .

...

(λ1, λ4 −Πλ4) · · · (λ4 −Πλ4, λ4 −Πλ4)

 =


3
16 · · · 3

16
...

. . .
...

3
16 · · · 3

16

 ∗ |ẽ|
which multiplied by |ẽ| again, from the definition of j, gives us the square block matrix

B1 whose dimension is equal to four because we split each ẽ of the mesh γ̃ in four e of

γ. So, in FreeFem + +, we define the real number a = 3
16 (line 5) and knowing that

the lenght of one of the elements ẽ is equal to 1
n+1 , we can build the matrix B1 ( lines

6-15).

One you have defined B1, the diagonal matrix C is formed with this block 8∗ (n+1)

times,

C =


B1 · · · 0
...

. . .
...

0 · · · B1

 .
To implement the matrix C in FreeFem + +, we will do it in two steps: we define

array D and after that, we copy array D to matrix C just to simplify the code. We
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need to convert to matrix in order to work in our full code where we find the solution

to our problem of matrix form.

To define D, we need to introduce new variables. Number of times that B1 is

repeated in D which depend of the value of n, numberOfBlocks. A variable, startIdx,

whose value is the index of the element of D in the first row and column in each block

B1. When we are working in C++, the element of a matrix which is in the first row

and first column has index = 0. And blockwidth, which says the dimension of the

square block matrix B1 (line 25).

We start defining the array D equal to zero whose dimension is the product between

numberOfBlocks and blockwidth (lines 27-30) and we do some changes explained later

on (lines 31-39). We are transforming the array D to one which is not sparse and it is

formed with B1 in the diagonal. To this end, we begin with a loop where the variable

iB takes integer values from 1 to 8, both included, for the case n = 0 (line 31). For each

value of this variable, startIdx is changing as well (line 32), and give us the number

of row and column of D where we will write the element b100 of the matrix B1. The

following loops, which depend on j and ir, change the elements of D equal to zeros to

the rest of the matrix B1 (lines 34-38). For example, to insert the second block matrix

in D, iB = 2, startIdx = 4, j takes the value 4 until 7. For j = 4, integer number ir

can be 4 or less than 8. Thus, we get d44 = b100, d54 = b110, d64 = b120 and d74 = b130

when ir = 4. We need to continue with this proccess with every value in the loops to

get the second block of D and the final array D.

Therefore, as we said before, last step is convert the array D to the matrix C (line

42).

In such a way that we have implemented the matrixC, stabilised term, in FreeFem+

+. The code reads as follows

1 load "lapack"

2 // Define matrix C, stabilised term.

3

4 real a=3/16.;

5 matrix B1=[

6 [-a/((n+1)*(n+1)),-a/((n+1)*(n+1)),

7 -a/((n+1)*(n+1)), -a/((n+1)*(n+1))],

8 [-a/((n+1)*(n+1)), -a/((n+1)*(n+1)),

9 -a/((n+1)*(n+1)), -a/((n+1)*(n+1))],

10 [-a/((n+1)*(n+1)), -a/((n+1)*(n+1)),

11 -a/((n+1)*(n+1)), -a/((n+1)*(n+1))],

12 [-a/((n+1)*(n+1)), -a/((n+1)*(n+1)),
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13 -a/((n+1)*(n+1)), -a/((n+1)*(n+1))]

14 ];

15

16

17 // define the block matrix which dimension depends on "n":

18

19 // 1. define array D to use loop to assemble "array"

20 // 2. copy array D to matrix C

21

22

23 // Step 1

24 int numberOfBlocks =8*(n+1), startIdx , blockwidth =4;

25

26

27 real[int ,int]

28 D(numberOfBlocks*blockwidth ,numberOfBlocks*blockwidth);

29

30 D=0;

31 for(int iB=1;iB <numberOfBlocks +1;iB++){

32 startIdx = (iB -1)*blockwidth;

33 // (since C++ starts with index zero)

34 for(int j=startIdx;j<startIdx +4;j++){

35 for(int ir=startIdx;ir <startIdx +4;ir++){

36 D(ir ,j) = B1(ir%4, j%4);

37 };

38 };

39 };

40

41 // Step 2

42 matrix C = D;
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[MBT06] Nicolas Mos, Eric Béchet, and Matthieu Tourbier, Imposing Dirichlet
boundary conditions in the extended finite element method, International
Journal for Numerical Methods in Engineering 67 (2006), no. 12,
1641–1669.
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