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Abstract

Despite decades of research, relevance remains a central focus of Information Retrieval

(IR) research. Many theoretical approaches in IR assume that relevance is based on

the mutual interaction of the system and user [1, 2]. Past studies have mainly fo-

cused on the system side, while user-centred studies are more recent and arguably

more challenging to conduct due to no universally accepted research methodology nor

established relevance definition [3,4]. Despite many competing theories, researchers in

general agree that relevance is an internal and subjective process. Therefore, exper-

imental approaches investigating relevance should consider the underlying physiolog-

ical, psychological and behavioural mechanisms involved [5]. With the development

of brain imaging, a new multidisciplinary research direction (termed NeuraSearch [6])

has begun to investigate user relevance by analysing brain activity. The combination

of information science, cognitive science, psychology and neuroscience has provided

a unique insight into relevance phenomena and established the foundation for brain

imaging research methodology within the IR field.

Therefore, this thesis builds upon the successful NeuraSearch framework to gain

a better understanding of relevance phenomena from a neuro-cognitive point of view,

to test existing relevance theories, and to gain in-depth insight into mental processes

that underpin relevance evaluation. To do so, we conducted a user study, during which

participants provided relevance assessments in the context of the Question-Answering

(Q/A) Task, during assessment with an electroencephalogram (EEG). Collected neuro-

physiological data were analysed using a data-driven approach, which offers a compre-

hensive overview of all the neurocognitive elements that play an essential role during

relevance assessment.
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Chapter 0. Abstract

In this thesis, we investigated relevance as a binary (i.e. relevant vs. non relevant)

and graded (e.g. highly relevant, low relevant, non relevant) variable. Additionally, we

have explored the role of users’ cognitive context (namely the self-perceived knowledge

(SPK)) on relevance assessment formation. Using a data-driven approach within the

NeuraSearch experimental framework, we present the following research contributions:

• By re-visiting binary relevance using a data-driven approach, we have not only

confirmed the findings of previous studies but also shed light on previously not

reported Event-Related Potential (ERP) component - P100. The data-driven

approach has been proven effective in discovering novel ERP phenomenon, which

have been shown to modulate early attention allocation [7] (see Chapter 4).

• Relevance is a complex and context-dependent. Thus, this research investigated

the impact of users’ SPK on binary relevance assessment. The results indicate

that the SPK within the relevance context is associated with significant differences

in cognitive processing related to attention, semantic integration and categorisa-

tion, memory and decision making (see Chapter 5).

• So far, brain imaging studies have mainly considered relevance as a binary vari-

able. The research presented in this thesis is the first to investigate relevance

granularity. We observed significant differences in ERPs in response to words

processed in the context of high-relevance, low-relevance and no-relevance. It is

possible that differences in attentional engagement, semantic mismatch (between

the question and answer) and memory processing may underpin the electrophys-

iological responses to the relevance assessment. The results support the concept

of graded relevance and knowledge of the electrophysiological modulation to each

type of stimulus may help to improve the search system design (see Chapter 6).

Overall, presented findings may help to better understand the cognitive levels of

individuals and recommend content based on their cognitive abilities, which would lead

to an increase in search success. A better understanding of relevance is an important

step toward improving personalisation in the IR process.
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Chapter 1

Introduction

This chapter introduces the core of the thesis topic, explores the general context of

the conducted research, and then continues with a discussion of the motivations and

research aims, leading to the thesis statement. Next, the chapter presents the main

contributions, published work and closes with a summary of the thesis layout.

1.1 Motivation

Despite decades of research and scientific advances, relevance remains a central, time-

less, and fundamental topic given its critical importance to the field of IR. The IR

relevance research relies on methods that are able to distinguish relevant from irrele-

vant information [8, 9]. These methods are based on obtaining relevance assessments

from users (i.e. user relevance) when they are examining specific information items

retrieved by the system (i.e. system relevance) [10]. Traditionally, relevance has been

mainly considered from a system side but more recent user-centred approaches suggest

that relevance is not just a match between the query and information but rather a

complex and important aspect of human–information interaction that occurs within

a specific Information Need (IN) context [11]. Studying relevance is, therefore, chal-

lenging as the construct is considered to be personal, multidimensional and dynamic

which depends on the specific problem at hand [1, 10, 12–16]. Relevance terminology

is often inconsistent and instead of a universal definition, there are many competing
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theories [3, 17]. Furthermore, despite relevance being considered a measurable phe-

nomenon, there are no universally accepted research methodologies and frameworks to

assess user relevance [18–20]. For instance, the debates surrounding relevance granu-

larity are still ongoing [21]. While the binary approach (i.e. information assessed as

relevant or non-relevant) is prevalent, seminal theories have proposed relevance as a

graded concept (i.e. information assessed to be relevant to a different degree) [22–24].

As a result, despite the vast amount of available literature, there are still significant

gaps in our understanding of users’ relevance perception. Thus, understanding fac-

tors affecting relevance decisions and the associated cognitive processes continues to be

important [25].

Generally, research investigating users’ relevance relies on explicit, implicit or the

combination of both feedback approaches [26]. The explicit approach requires users

to explicitly assess content relevance and, therefore, it can be cognitively demanding

[27]. The implicit approach relies on unobtrusive relevance assessments collected using

behavioural or/and physiological signals [5,26]. However, implicit feedback can be noisy

and, as a result, less accurate [5].

The last decade of relevance research was associated with a significant advancement

attributed to the neuro-cognitive empirical perspective, which enabled researchers for

the first time to access complex mental phenomena that underpin information relevance

evaluation. These studies employed a wide variety of brain imaging technologies while

investigating relevance assessment within the context of different stimuli modalities.

These neuro-cognitive studies can be categorised into two groups:

• Studies that considered relevance as a part of IR, therefore, taking into account

users’ INs (termed NeuraSearch [6]).

• Studies that considered relevance in terms of word associations, without taking

account of users’ INs [18].

It is possible to argue that relevance should be investigated as an integral part of IR.

Therefore, users’ INs should always be considered because they provide essential context

determining the problem situation, such as one’s awareness of available information,
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affective or emotional states, expectations, time constraints and information about

one’s gaps in knowledge [28].

Thus, the research presented in this thesis follows a NeuraSearch approach with

the aim to gain an in-depth understanding of neurophysiological characteristics related

to the cognitive processes that underlie the relevance assessment of textual informa-

tion (i.e. the most common form of information consumption [29]). We revisit the

concept of binary relevance as so far prior studies have mainly investigated this con-

struct using a component-driven approach. However, the component-driven approach

might not allow for the discovery of novel neurophysiological components and mental

phenomena. On the other hand, we propose to investigate binary relevance by em-

ploying a data-driven approach, which has been proven effective in discovering novel

neuro-cognitive components [30]. The data-driven approach might be especially useful

in gaining an in-depth, holistic understanding of complex cognitive constructs which

lacks a comprehensive theoretical and empirical overview, such as relevance [19,30].

Furthermore, relevance assessment involves complex interactions among various fac-

tors including but not restricted to users’ cognitive, affective and social aspects [10].

The work presented in this thesis aims to gain a better understanding of the relationship

between users’ cognitive states and relevance assessment. In particular, we investigate

users’ SPK states, which play a central role in the evaluation of information. Therefore,

it is important to examine the relevance assessment process while considering various

degrees of users’ SPK, which would enable us to better understand how humans interact

with information while considering their cognitive context.

Relevance is frequently investigated as a binary concept but there are many theories

and behavioural studies proposing relevance as a graded concept [22–24]. However,

so far it is not clear whether there are neurological signatures associated with the

processing of the information relevant to a different degree in the brain. Therefore, in

this thesis, we aim to address this gap in research by investigating neurophysiological

signature differences associated with the processing of each relevance grade using a

data-driven approach.

The technological progress in the field of Information Science and Retrieval (IS&R)
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and the continuous formation and development of information society lead to the de-

mand for efficient and accessible information search by the end users [31]. As a result,

there is a continuous need for the improvement of communication between the system

and the users [32]. To do so, it is important to adequately assist the users with their

INs by understanding how users interact with information. Over the last decade, stud-

ies examining users’ complex mental states and cognitive functioning have significantly

benefited the field of IR by uncovering important relationships between users’ internal

processes and information evaluation using brain imaging. This thesis aims to continue

in this direction by exploring the above-mentioned research gaps, which may lead to

the improvement of existing IR systems.

1.2 Contribution to Knowledge

In general, this thesis explores the application of the data-driven approach used to

potentially uncover previously not reported cognitive phenomena that underpin the

formation of relevance assessment. The key theoretical, methodological and empirical

contributions are summarised as follows:

• Binary Relevance

– The findings of the first experimental chapter re-visiting textual binary rele-

vance assessment confirm the result of the previous studies (e.g. [33]) as the

data-driven approach revealed statistically significant differences associated

with N400 and Late Positive Component (LPC) ERP components.

– Furthermore, through the application of a data-driven approach we were able

to uncover the P100 ERP component that has not been previously reported

and explored within the context of binary relevance assessment using other

data analysis methods.

• SPK

– Given the importance of the users’ internal cognitive context for relevance

assessment, the thesis explored the effect of the users’ SPK states on textual
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binary relevance assessment. The results of the data-driven analysis suggest

that user’s SPK plays an important role in relevance assessment and it is as-

sociated with differences in cognitive processes related to attention, memory

retrieval and learning.

– We explained how the users’ SPK modulates the formation of relevant and

non-relevant assessments.

– The findings contribute towards empirical validation of Ingwersen’s Cogni-

tive Theory of IR [2].

• Graded Relevance

– The findings of the last experimental chapter provide neuroscientific sup-

port for graded relevance. Past studies examining users’ graded relevance

assessments have mainly relied on explicit self-assessments provided by the

participants (e.g. [24]) and it was not clear whether the concept of graded

relevance has a neural origin (i.e. whether the perception of different grades

is associated with distinct cognitive processes).

– Additionally, the chapter provides an in-depth overview of cognitive pro-

cesses that contribute to graded relevance formation and explains the differ-

ences between each grade of relevance.

– Lastly, neurological differences associated with the processing of each rele-

vance grade provide empirical support for theories considering relevance as

a continuous rather than binary variable.

1.3 Thesis Statement

Given the above, the main statement of this thesis is that “by investigating textual rele-

vance as a subjective notion while considering the users’ cognitive states will strengthen

its theoretical foundations and unravelling novel neurological phenomena involved us-

ing the neuro-cognitive approach will contribute toward more realistic modelling of IR”.

Relevance is a complex human notion which should be investigated as a subjective
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perception of the relationship between certain information and the problem at hand,

so within the appropriate IR context [10, 34]. Furthermore, the user’s relevance pro-

cessing always happens as a result of interaction between the information property and

the user’s mental state [10]. However, users’ mental states within IR research only

began to receive attention in recent years. Therefore, there are still many gaps in un-

derstanding of this complex relationship. The research presented in this thesis aims

to unravel parts of this interaction by capturing and examining the user’s subjective

internal states manifested through the neurophysiological signals.

Thesis findings can aid researchers in improving the current state of IR systems

through the consideration of unobtrusively collected signals accurately reflecting users’

states during the information interaction process. Enabling automated information

recommendations based on implicit data might significantly improve user satisfaction.

1.4 Research Objectives

The multi-level user study constructed within the NeuraSearch framework was designed

to address the following objectives:

• RQ1: “Does a data-driven approach reveal additional previously not reported

ERP components associated with binary relevance phenomena?”;

• RQ2: “Are findings of the data-driven approach aligned with findings of previous

studies examining neurological signatures of binary relevance assessment?”;

• RQ3: “Are there clear and detectable neural manifestations associated with

distinct users’ SPK states during binary relevance assessment?”;

• RQ4: “How do the neural mechanisms associated with different SPK states drive

the cognitive processes underpinning the binary relevance assessment?”;

• RQ5: “Are there clear, detectable, physical manifestations of graded relevance

in human brains?”;
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• RQ6: “Do such manifestations differ when a user perceives different degrees of

relevance (i.e., when searchers assess a document as highly relevant, low relevant

or non-relevant)?”;

• RQ7: “What is the nature of graded relevance from a cognitive neuroscience

perspective?”

1.5 Publications Resulting from this Thesis

The research presented in this thesis and completed throughout the duration of the au-

thor’s PhD programme has been submitted and published at the peer-reviewed venues

listed below:

• Pinkosova, Z., McGeown, W. and Moshfeghi, Y., 2022, September. Revisiting

neurological aspects of relevance: an EEG study. In Advanced Online & On-

site Course & Symposium on Artificial Intelligence & Neuroscience. Certosa di

Pontignano, Italy.

• Pinkosova, Z., McGeown, W.J. and Moshfeghi, Y., 2020, July. The cortical ac-

tivity of graded relevance. In Proceedings of the 43rd international acm sigir

conference on research and development in information retrieval (pp. 299-308)

Xi’an, China. https://doi.org/10.1145/3397271.3401106

• Pinkosova, Z. and Moshfeghi, Y., 2019, July. Cortical activity of relevance. In

CEUR Workshop Proceedings (Vol. 2537, pp. 10-15). Milan, Italy. ISSN 1613-

0073

Submitted for Review:

• Pinkosova, Z., McGeown, W. and Moshfeghi, Y., 2022, Moderating Effects of Self-

perceived Knowledge in a Relevance Assessment Task: an EEG Study. Computers

in Human Behavior Reports, Submitted.
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1.6 Thesis Layout

This thesis is divided into two main parts which contain seven chapters in total.

• Part I: Theoretical Contributions

– Chapter 1: Introduction. The first chapter briefly introduces the context of

this thesis as well as research aims and contributions to the field.

– Chapter 2: Background. Drawing on key theories, this chapter begins with

a comprehensive overview of the terminology and relevant background infor-

mation about recent IS&R and Neuroscience advances to explain the context

of the research and consequently identifies research gaps which lead to the

Research Motivation described in Section 2.7.

– Chapter 3: Methodology. The chapter elicits the employed paradigm, data

acquisition, experiment protocol and experimental set-up for the recording,

pre-processing, feature extraction and data-driven analysis of the neurophys-

iological signal.

• Part II: Empirical Contributions

– Chapter 4: The Cortical Activity of Binary Relevance. The first empirical

chapter re-visits the neuro-cognitive aspects of textual relevance processing

by using a data-driven analysis method not previously employed to investi-

gate this complex construct.

– Chapter 5: SPK in a Relevance Assessment Task. In this chapter, the

user’s cognitive context (namely the SPK) is considered within the context

of binary relevance assessment using the data-driven method to obtain an

in-depth understanding of the involved complex cognitive phenomena.

– Chapter 6: The Cortical Activity of Graded Relevance. Given the ongoing

debate surrounding relevance granularity, this thesis also considers relevance

as a graded variable using a data-driven method to test whether there are any

significant differences associated with the processing of information relevant

to a different degree.
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– Chapter 7: Discussion and Conclusions. This final chapter concludes the

thesis by highlighting achieved objectives, discussing innovations, and new

insights along with the various research findings.

• The Appendix contains supplementary information for Chapter 3 and Part II of

the thesis.

The overall purpose of the experimental work presented in this thesis is to better

understand the neurophysiological aspects of relevance assessment within the context

of Information Retrieval (IR).
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Chapter 2

Background and Motivation

This chapter introduces the key terminology and extensive review of the literature

required to define key concepts relevant to the contributions made in this thesis. Fur-

thermore, the chapter provides an overview of the research approaches and application

context within which this research is situated.

The chapter opens with an overview of IR (Section 2.1) and discusses influential

theories in the field (Section 2.2). Next, Section 2.4 presents relevance as the central

notion in IR and introduces theoretical and empirical work which significantly shaped

the conceptualisation of the topic. Section 2.5 provides an introduction to brain imaging

techniques. Section 2.6 explains how brain imaging was applied to study complex IR

phenomena, namely relevance (Section 2.6.2), which is the main thesis focus. Finally,

Section 2.7 at the end of this chapter gathers the gaps in the existing scientific literature

that were explored in the Part II of this thesis.

2.1 Information Retrieval

The history of IR is inseparably connected with the early period of computer usage.

IR, as a research discipline, emerged in the 1950s as a response to the growing vol-

ume of machine-stored information, collected and maintained by library systems. With

the growing number of information, manual information search and maintenance was

getting more complicated. As a result, early research directions aiming to automatise
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existing manual indexing and document searching strategies accelerated the develop-

ment of IR. The term IR was first introduced and defined by Calvin Mooers in 1948

(published in 1952) as: “the problem of directing a user to stored information, some of

which may be unknown to him, is the problem of IR” [35].

In the 1950s and 1960s, the field of IR focused on two main areas: how to index

individual documents and how to retrieve them as easily and effectively as possible [36].

The fundamental hallmark in the IR research was the empirical evaluation of search

system performance [37]. The evaluation of retrieval systems was based on the influen-

tial Cranfield tests, which have set up the prevalent methodology for IR assessing how

well a system meets the needs of the user which involves three components: (i) a test

collection consisting of a set of documents, (ii) a set of topics, and (iii) a set of rele-

vance assessments involving human assessors [38]. A topic refers to a description of the

information being sought. Relevance assessment (typically binary responses) specifies

the documents that should be retrieved in response to the topic. The methodology set

up by Cranfield tests is still one of the most used for evaluating retrieval systems [39].

In the 1970s, the first conferences covering topics related to IR began to take place,

one of them being the SIGIR (International Conference on Information Storage and

Retrieval) in 1971. The TREC (Text REtrieval) Conference, which contributed greatly

to the development of the field of information research, was held for the first time in

1992. The IR conferences have influenced research in the field of evaluation of retrieval

systems in particular. It is important to note that in the very beginnings of the IR

research, all attention was mainly focused on information systems and the notion of a

user was hardly discussed [40].

Recent developments in IR research were fundamentally influenced by cognitive,

relevance, and interactive revolutions in the field [41]. The cognitive revolution has

opened up the possibility of analysing INs and their subsequent development processes,

which can change over time. It highlights the cognitive processes of the user associated

with information search and aims to narrow the gap between how the IN is understood

vs. how it is subsequently interpreted by the user. Furthermore, the revolution has

emphasised that IN is the user’s personal and individual perception of the information

13



Chapter 2. Background and Motivation

requirement [41]. In the relevance revolution, there is an increasing interest in the in-

formation requirement, which the user enters into the search system in the form of a

query. Retrieved information should be assessed against the individual’s IN situation,

not the submitted query or search request. Therefore, information relevance should be

assessed in relation to the IN or a problem at hand situation experienced by individual

users [11,41]. The advent of the Web in the 1990s and increased use of retrieval systems

highlighted the issues related to IR interaction between the user and the system [36].

In this period, the focus begins to shift toward interactive information retrieval and

empirical work starts to focus more on users’ search behaviour, mainly on query for-

mulation and reformulation. This revolution highlighted the fact that retrieval systems

cannot be evaluated without considering user’s interaction [41] and modern research

aims to accurately capture user search preferences.

The modern field of IR aims to study and understand information storage, access

and search in order to design, build and test search systems [42] that would assist human

information seekers to find information items containing answer sources to what the

seekers are looking for. This is because, within the context of IR, users often interact

with the system in order to resolve a problematic situation, caused by an information

gap. An outcome of such interaction is the desired change in the information state.

The such outcome often occurs by virtue of engagement with the information material

(usually textual documents) in the context of the system, through searching within a

document collection for particular information that resolves the users’ need(s) or helps

them to achieve the search task goal [43]. Relevance is a central notion in this process,

indicating system effectiveness and retrieval performance [10, 34]. Therefore, the main

aim is to retrieve the most relevant documents to the query from the collection of

documents [44]. A perfect IR system should ideally retrieve only relevant documents.

A schematic representation of IR interaction process is depicted in Figure 2.1.

2.1.1 IN

IN remains one of the most essential concepts in information science [45] and it is

undoubtedly related to the information search. However, the concept is challenging to
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Figure 2.1: Schematic Diagram of IR.

Users experiencing IN formulate a request in the form of a query. The IR system then responds

by retrieving documents from a collection of documents about the required information. The

user then evaluates retrieved documents with relation to their IN satisfaction.

clarify and up to this date, there is no universally accepted definition [46]. IN can be

expressed as a state in which individuals find that their own knowledge is insufficient to

accomplish certain goals or tasks. Thus, the concept can be understood as the difference

between the existing knowledge about a problem or topic and the knowledge that the

user needs to have in order to solve the problem at hand. To satisfy the knowledge

gap, users engage in information search which aims to identify desired information. The

reasons for INs are varied and generally are defined based on three basic motivations:

searching for answers to questions, a reduction of uncertainty, or a search for meaning.

One of the earliest IN theories, Taylor’s Classic Model [47] developed in the 1960s,

was based on research examining communication between libraries and library users.

According to this Classic Model, the IN can be characterised through four levels:

• Physical (visceral) need: a conscious or unconscious IN state that is verbally

inexpressible; it manifests itself as a vague feeling of dissatisfaction.

• Conscious need: refers to conscious but ambiguous IN formulation and expression.
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• Formalised need: at this stage, the user is able to formulate an intelligible state-

ment about their IN. However, it is not certain, whether this IN will be answered,

either by humans or information system.

• Compromised need: refers to the last stage in which the IN is expressed by a

query, which is submitted to a librarian or search engine.

Thomas D. Wilson [48, 49] considers the IN as secondary, based on a person’s pri-

mary needs - physiological, cognitive, and affective. The determinants and contexts of

the IN are the personal characteristics of the individual as well as various stimuli from

the environment; the same set of contexts also provide the obstacles (barriers) that

hinder subsequent information seeking.

Another influential theory, Belkin’s Anomalous States of Knowledge (ASK) for IR

(1980) [46], considered IN from a cognitive viewpoint. According to Nicholas Belkin,

information is linked with uncertainty and the main incentive for information seeking is

the ASK. Such a state occurs when an individual begins to become aware of anomaly in

their knowledge that motivates them in a given situation to resolve this uncertainty by

trying to find the necessary information. Having found the information, the individual

then evaluates whether the anomaly has been resolved - if it hasn’t, the ASK may

reappear or the motivation to continue in this state may disappear.

A different way of approaching the IN concept is proposed by Brenda Dervin, who

developed the theory of Sense-Making (the search for sense or/and meaning) [50, 51].

Dervin’s theory describes the cognitive gap that a person consciously perceives and as

a result of which they develop an IN. This cognitive imbalance must be bridged by

acquiring new information or knowledge through the understanding of the situation.

Dervin’s model consists of four basic elements [49–51]:

• The current situation in time and space, which defines the context of the infor-

mation problem;

• The information gap, which expresses the difference between the context situation

and the desired situation;
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• The outcome is the desired situation, such as the results of the sense-making

process, or/and the solution to the information problem;

• Finally, the bridge, which bridges the gap between the actual and desired situa-

tion.

Charles Cole explains IN in a similar way - as a gap in understanding, that allows

information to enter a person’s cognitive system. It is a gap between identified problem

and the problem solution, where IN is the input phase of the problem identification and

problem-solving process. IN is an integral part of the adaptive mechanism that enables a

person to adapt to changes in the physical/social environment. It is a mismatch between

the perceived environmental stimulus (the bottom-up principle) and the response of

the individual’s cognitive system to that stimulus (the top-down principle). Cole’s IN

theory is the proposition that the user’s IN itself does not evolve, but only aspects of

the topic evolve or shift in the course of information seeking [45].

Ingwersen lists three basic types of INs related to search in information systems [2]:

• Verificative INs: the user needs to verify certain structured information (e.g.

bibliographic data);

• Conscious topical INs: the user needs to clarify, assess or find certain unstructured

topical information (terms, concepts, etc.);

• Muddled topical INs: the user is looking for new or needs to clarify unfamiliar

concepts.

It is important to mention that INs do not exist in a vacuum, but are based on

basic human needs and are described as secondary to those needs. Among the basic

human needs include physiological (e.g. food, shelter), psychological (e.g. security)

and cognitive (e.g. the need to learn skills) needs [46].

INs can also be classified as unrecognised (the user may not be aware that they

have an IN until they encounter relevant information), unexpressed (people are aware

of their INs but do nothing about them because they either can not or do not want to),

wants (what the user would like to have) and requirements (a demand for information
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that the users believe they need). Some obstacles to meeting INs might be time, access

to information sources, information overload (i.e. a cognitive state associated with an

inability to process information efficiently and adequately [52]), personality, and the

availability of information resources [53].

IN user states are difficult to research, as they are described as subjective states of

mind, cannot be directly observed, and can be unconscious [54]. INs also often arise

only when a person is confronted with a particular problem or is exposed to a particular

situation. Furthermore, INs tend to change during the search process and over time

in general. However, in information science, neither the ”change” nor ”over time” are

clearly defined and researchers are inconsistent in interpreting these concepts [55].

To fully understand INs, it is necessary to examine the broader context of moti-

vations for the use of retrieval systems that are increasingly becoming a part of our

everyday life [54]. The IN consists of complex neurocognitive processes such as user’s

knowledge states and their feelings of knowing (i.e. one’s own assessment of their ex-

tent of knowledge that at present they cannot recall [56]) and it is important for future

research to recognise, address and explore these processes. An effort in this direction

has been made by the recent work of Michalkova et al. [57,58], who explored the drivers

of IN through investigation of the user’s cognitive context.

2.1.2 Query Formulation

Another important concept closely related to IN is the query formulation, which refers

to a user’s attempt to express their IN. A query is therefore a formalisation of IN, a

conceptualised difference between the user’s actual knowledge about the problem and

the knowledge they need to have to solve it. Formulated queries can, however, often

suffer from ambiguity and bias which is an important challenge in IR [59].

2.1.3 Information Behaviour

Information behaviour is the sum of human behaviour in relation to information sources

and information channels, including active and passive information seeking and usage

[60]. Generally, information behaviour can be understood as all the human activities in
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the information environment (such as seeking, acquisition, processing, and retrieval),

which manifest themselves through information interests, needs, and demands.

Interaction with information and resources can be active or passive. Active infor-

mation interaction is concerned with the direct search and retrieval of information on

the basis of a pre-formulated IN in the form of a query using keywords. Passive in-

formation interaction represents the reception of information by the user without any

effort in the form of its retrieval, subsequent retrieval and processing [60].

Information behaviour also includes information avoidance, which refers to a delib-

erate rejection of available information that might happen for example as a result of

information overload [52]. Additionally, people may avoid information that is in direct

conflict with their views or beliefs and rather seek out information that supports them.

This behaviour can also be referred to as confirmation bias [61].

Information Interaction. From the information science point of view, informa-

tion interaction represents a multilateral exchange of information between IR units.

Information interactions represent the mutual functioning of information and human

beings in the information environment. It is the relationship between people and in-

formation in various forms and purposes, which can be divided into the area of human

information-interaction (HII) and the area of human computer-interaction (HCI).

HCI is considered to be a multidisciplinary field focused on the design of computing

technology and especially on the interaction between the user and the computer. The

main focus of HCI is the exploration of user interfaces with a user-centric orientation

with the aim of defining principles and ways of presenting information that facilitate

effective human interaction with information [62]. It is a discipline concerned with

the design, evaluation, and implementation of interactive computing systems for the

study of the phenomena that surround them [63]. HII examines how people interact

with information. It brings together different disciplines ranging from human-computer

interaction to cooperative computing, human factors, computer and information sci-

ence [64]. HII deals with how and why people use, search, consume and work with

information to solve their information problems, as well as decision-making, learning
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and planning, and performing other tasks and activities [63].

2.2 Models of IR

Modern theories and models of IR have been heavily influenced by the cognitive ap-

proach to information science, which emerged around the mid-1980s [42]. A few exam-

ples of such prominent works that have shaped the foundations of IR through focusing

on the user’s cognition in the process of interaction with the system are:

• Ingwersen’s Cognitive Approach [42]

• Kuhlthau’s Information Seeking Process (ISP) model [65]

• Wilson’s Nested Model of Information Behaviour [48,49,60]

• Saracevic’s Stratified Model of IR [66]

The cognitive IR approaches, inspired by cognitive psychology, are seeking to bridge

the gap between the user and the system by no longer viewing the users as a ho-

mogeneous group, but rather highlighting the existence of individual and contextual

differences in search [67]. In general, these cognitive approaches usually depict the

relationships of knowledge structures involved in the information transfer and IR inter-

action with varying degrees of detail [42]. The cognitive approach to IR recognises the

the importance of user’s cognitive states involved in the formation of mental representa-

tions and conceptual structures that underpin information processing. These cognitive

states of users include perception, concentration, readiness to perceive information,

motivation, the emotional component, fatigue and others.

Understanding cognitive aspects can significantly contribute to better user interac-

tion with the system and increase the likelihood of users finding relevant information.

Information systems should be designed to be consistent with human needs, abilities

and characteristics. To design such systems, it is necessary to have a good knowledge

of users, the reasons for their information behaviour and the variables, in which these

processes take place [68]. Without addressing the cognitive variables influencing the in-
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formation behaviour, it is not possible to fully understand and predict what information

people will need and how best to help them in solving specific problems [69].

2.2.1 Ingwersen’s Cognitive Approach

The penetration of cognitive science into information science has marked a fundamental

change in the approach to IR. One of the first information scientists to address this

cognitive shift was Peter Ingwersen, who developed several models based on cognitive

user states [42]. According to Ingwersen, the application of the ”cognitive perspective”

to information science emphasises the complementarity between the social dimension

of cognition and the individually oriented cognitive processes. This complementarity

may provide unprecedented insight into the interaction of IR and information transfer.

Ingwersen’s models were based on Piaget’s concept of cognitive structures, which can

be characterised as patterns of mental or physical actions that underlie specific acts

of intelligence. Ingwersen introduced the concept of ”world knowledge” consisting of

cognitive and knowledge structures of an individual [42]. According to Ingwersen, the

cognitive structure is part of the interaction of the user’s mental states and the mental

models which are weaved into semantic (classifying information), and episodic memory

(creating information of an event) [42].

2.2.2 Kuhlthau’s ISP Model

The ISP Model [65,70] proposed by Kuhlthau captures the search process with emphasis

on the user’s cognitive and emotional states. This model began to take shape in the

mid-1980s and captures generalised information seeking. While it was predominately

applied in a library environment, it is also applicable in digital environments. The ISP

model describes a user’s experience in IR as a series of thoughts, feelings, and actions.

Thoughts, initially uncertain, vague and ambiguous, become clearer, more focused and

specific as the search process takes place. Feelings of anxiety and doubt turn into

feelings of confidence or certainty [65].

The model consists of six phases:

• Initiation: occurs when an individual discovers a lack of knowledge or under-
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standing, which commonly causes feelings of uncertainty and anxiety.

• Selection: in this phase, the area, topic or problem is identified and the initial

uncertainty experienced by the individual is followed by a momentary feeling of

optimism and readiness to start searching.

• Exploration: in this phase, inconsistent, incompatible information begins to ap-

pear and uncertainty, confusion and doubt often increase, while self-confidence

decreases.

• Formulation: a focused perspective is created and uncertainty decreases with

increasing confidence.

• Collection: as the user gathers more information and insight about the problem,

their uncertainty decreases.

• Presentation: during this phase, the search is complete, there is a new under-

standing that allows the individual information seeker to gain insight about the

problem, or there is a disappointment if the search fails.

• In the last, assessment phase (which is not one of the direct phases of the

ISP, but is mentioned in the model) there is increased self-awareness and self-

accomplishment of the searcher.

2.2.3 Wilson’s Nested Model of Information Behaviour

According to Wilson’s Nested Model of Information Behaviour, information seeking

is a broader domain - an activity of deliberate search for information as a result of a

need to satisfy a particular goal. Wilson divides human information activities and their

search as follows:

• Information behaviour is generally human behaviour in relation to sources and

channels of information, including active and passive information seeking and

information use. Therefore, it includes direct communication with other people

as well as the passive reception of information (e.g. people watch TV commercials

without the intention of acting on the information presented).
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• Information-seeking behaviour is the purposeful search for information as a result

of the need to complete a certain task. During the search, the individual can

interact with manual information systems (i.e. systems whereby individuals are

required to perform all the tasks manually, such as libraries) or automatic systems

(computer search systems) [71].

• Information search behaviour is a micro level of user behaviour during interaction

with information systems of all kinds. It includes all interactions with the system,

whether at the level of HCI (e.g. using a mouse and clicking a link) or at the

intellectual level (e.g. learning a Boolean search strategy or determining criteria

for deciding which of two books sitting next to each other on a library shelf is

the most useful), which also includes mental activities such as evaluating the

relevance of retrieved information [49,60].

The hierarchy of individual modes of behaviour is illustrated by Wilson’s model [60]

in Figure 2.2. This hierarchy is captured by the different use of the terms seeking and

search. The term ”information seeking” draws attention to the context of the solved

problem and the cognitive state of the user. Searching expresses the purposeful activity

of the user and, according to Marchionini [72], ”is closer to answering a question or

learning”. IR is only part of the search process. Therefore, some researchers use the

term seeking for user interaction with the search system (e.g. Spink - information

seeking and retrieving [73]). The term search refers more to the purpose for which

information is sought to the solved problem.

2.2.4 Saracevic Stratified Model of IR

According to Saracevic’s Stratified Model [66], the IR is seen as an interaction between

two main elements: a user and a system. Both the user and system side consists

of several mutually interactive levels or strata. Each stratum/level involves different

elements and/or specific processes. On the human side, processes may be physiological,

psychological, affective, and cognitive. On the computer side, they may be physical and

symbolic. The interface provides for an interaction on the surface level in which:
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Figure 2.2: A nested model of the Information Seeking and Information Searching
research areas developed by Wilson.

1. Users carry out a dialogue with the computer through an interface by making

utterances (e.g. commands) to receive responses (computer utterances). During

this process, users not only engage in searching and matching (as proposed by

the traditional IR model) but also in other processes such as understanding and

eliciting the attributes of a given computer component, or information resource;

browsing; navigating within and among information resources; determining the

state of a given process; visualising displays and results; obtaining and providing

various types of feedback; making relevance assessments; and so on.

2. Computers interact with users by providing responses in this dialogue.

The main purpose of user-system interaction is to affect the cognitive state of the

user through the effective use of relevant information in connection with the problem at

hand situated in the specific contextual environment. The dialogue can be reiterative,

incorporating among other things, various feedback types, and can exhibit a number

of patterns. Saracevic’s Stratified Model of IR is depicted in Figure 2.3 [66].

2.3 Current Trends in IR Research

The research methodology examining user behaviour when searching uses a whole range

of quantitative and qualitative techniques. Quantitative techniques consist, for exam-

ple, in recording all performed operations down to the level of keystrokes or mouse move-
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Figure 2.3: Saracevic’s Stratified Model of IR.

ments (the so-called execution protocol), examining the number of records searched and

evaluating the effectiveness of the search according to the criteria of accuracy and com-

pleteness, monitoring the elapsed time, the number of viewed and saved documents,

creating statistics of the use of individual functions of the system, etc. Qualitative meth-

ods may include filling out questionnaires before and after the search session, monitoring

and subsequent analysis of the user’s interaction with the information worker, asking

the user to explain all his steps in the system - the so-called ”thinking aloud” protocol,

examining the consistency of the relevance records evaluation during the search and

after its completion with printed records in hand, taking video recordings of users in-

teracting with the search system and the intermediary (if present) and their subsequent

analysis, and many others.

Recent research in the field of IR focuses mainly on users. The main focus of user-

oriented studies is to isolate and track individual aspects of the search process [74].

It is important to note that everyone searches in a different way, uses different search

techniques, and the overall way of working with retrieval systems is different. This
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means that individual users might come across different search results [74].

2.4 Relevance

The main goal of the IR systems is to retrieve relevant information or information

units that would help users to satisfy their INs and to achieve the search task goal [43].

Therefore, relevance is commonly referred to as the fundamental and timeless concept

within the IS&R [10,14,34,75]. It constitutes a major research area in IS&R as it plays

a crucial role in the user-system interaction and it is a substantial indicator of system

retrieval performance, representing a relation and a measure [10,76].

Relevance has been considered in information science as a multidimensional [10,12,

14], dynamic and complex process [1,13,15,16], which is difficult to quantify and which

depends on users’ perception of information relating to the specific IN situation at a

certain time point [10,77–79].

People usually understand the meaning of the term relevance intuitively. However,

available definitions in information science often differ from one another. In general, the

concept can be understood as the degree of utility that exists between text or document

and the user’s request for query or information [42]. Relevance can be measured on

the basis of units of measurement: precision and recall. Precision measures the extent

to which a retrieval system finds only relevant documents. The recall is a measure of

completeness or quantity, as it measures the success of the retrieval system in finding

all relevant documents that can be found [54].

Within the context of modern information science, relevance is no longer just a

black and white category (i.e. relevant vs. non-relevant), but a complex contextual

and socio-cognitive relationship often supported by the functionality of technologies and

connections in the electronic environment. Therefore, when talking about relevance,

we do not ask whether the information is relevant, but from what perspective and in

what context it is relevant.

For some users, the evaluation of relevance ends with an assessment of the formal

characteristics and basic content matching of the information resource to the informa-
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tion requirement; for others, a more detailed understanding of the content is part of

the process. In this respect, we can also speak of ’primary’ and ’secondary’ relevance.

While in the assessment of ’primary’ relevance, users largely decide whether to classify

an information resource (such as textual document) for detailed study at all, the as-

sessment of ’secondary’ relevance can already be considered to some extent as part of

the study or research process.

2.4.1 Relevance Theories

The information science literature discusses relevance from two dominant perspectives.

The first view is characterised as systemic. Here, relevance is referred to as objective and

the usefulness of a resource is based on the quality of its inherent attributes [80]. The

second view is characteristic of studies focusing on users from a cognitive perspective.

These studies are mainly concerned with the subjective aspects of relevance. Subjective

relevance is an umbrella term for subjective thematic and situational relevance (or

usefulness) [12,81,82]. The extent of information usefulness is determined by how well

it can be applied to the specific context (situation) of the information search [12].

Relevance is only meaningful in relation to goals or tasks, and this relation can

only be assessed by the human being. Thus, relevance according to Hjørland and

Christensen [83] can be understood as something serving as a tool to a goal. Here, a tool

is viewed in a broad sense and includes resources, information, stimuli, ideas, things,

etc. The evaluation of relevance depends on the user’s clarification, what they want to

achieve and what alternative views are represented in the information resources [83].

Cognitive relevance is defined as a relation between the information object and a

cognitive state of the user’s knowledge and is inferred by the criteria such as informa-

tiveness, information quality or/and novelty [34]. Understanding of cognitive relevance

might lead to a better understanding of the user’s engagement with the document [84].

Saracevic’s Stratified Model of Relevance.

As a part of the IR process, the user usually expresses the subjective IN through the

formulation of the query. The query is submitted to the system, which then presents
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the user with retrieved information (system relevance). The user then interprets and

relates the retrieved information to the problem at hand, cognitive state, and other

aspects (user relevance). According to Saracevic [10], relevance is, therefore, one of the

most important concepts in the field of IR. Relevance can be understood as a measure

of the appropriateness of a given answer to a query. This implies that information

relevance is never absolute, but is always based on its relationship to another entity

(e.g. a query or - more generally - a context).

Relevance can be understood in two ways: as the objective relevance of a document

to the query topic or as the relevance of the document to the user. Relevant information

can then be referred to as information, that is relevant to a given problem. Saracevic

[85], in his analysis of approaches to relevance research, also states that relevance implies

a certain relationship, with the type of this relationship defined by the involved entities.

Based on this, the theory distinguishes between five relevance types:

• System relevance is defined by the relationship between the search request/query

and the information unit.

• Topical (subject) relevance is the relationship between the topic of the information

requested and the topic of the information unit.

• Cognitive relevance (pertinence) is the relationship between the user’s knowledge

state of the subject and the information unit.

• Situational relevance (utility) is the relationship between the current situation,

task, problem and the information unit.

• Motivational (affective) relevance is the relationship between intentions, goals,

motivation of a user and the information unit [85].

Information or information units are selected as relevant (or expressed on some

continuum of relevance) from a number of available existing, or even competing in-

formation sources. The selection process involves a series of information interactions

of various kinds. Relevance has a set of general attributes that are rooted in human

cognition:
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• Relation: Relevance arises when expressing a relation along certain properties,

frequently in communicative exchanges that involve people as well as information

or information objects.

• Intention: The relation in the expression of relevance involves intention(s) —

objectives, roles, and expectations. Motivation is involved.

• Context: The intention in the expression of relevance always comes from a context

and is directed toward that context. Relevance cannot be considered without

context. It is possible to distinguish between internal context (involves cognitive

and affective states of a user) and external context (directed toward a situation,

tasks, and problem-at-hand). Additionally, social and cultural components may

be involved as well.

• Inference: Relevance involves the assessment about a relation, and it is, therefore,

created or derived on that basis. Inference may also involve a selection from

competing sources geared toward the maximisation of results and/or minimisation

of effort in dealing with results.

• Interaction: Inference is accomplished as a dynamic, interacting process, in which

an interpretation of other attributes may change, as context changes.

• Measurement: Relevance involves a graduated assessment of the effectiveness

or degree of maximisation of a given relation, such as an assessment of some

information sought, for an intention geared toward a context.

It is important to note that one of the main limitations of Saracevic’s stratified

relevance model is that the model is not detailed enough for experimentation and

verification [10]. However, Weigl and Guastavino [17] discussed the model’s potential

application and usefulness in user-centred music IR research. White confines Saracevic’s

Relevance Theory to the application of the cognitive effects and processing effort. In

his theory, White states that these are the components that can be used as predictive

mechanisms for the operational assessment of relevance [86].
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2.4.2 Relevance Granularity

Relevance has always been an equivocal concept in IR and thus it has given rise to

many studies and scientific discussions [87]. Up to this date, there are still debates

in IR over the granularity level of relevance assessment that should be collected from

users [21]. Relevance can be considered on a binary (i.e. relevant or non-relevant) or

graded (i.e. highly, partially or non-relevant) level. The predictive accuracy of graded

relevance has outperformed the approaches relying on a binary scale, which has proven

its efficiency [87, 88]. Past research has been mainly dedicated to examining user’s

relevance in binary terms [10]. However, the utilisation of binary scale is only one of

the options for information categorisation. Moreover, recent findings support the idea

of categorical thinking [24], which suggests that users usually divide retrieved results

into 3-5 categories based on results’ relevance [79]. Employing graded relevance, in

comparison to the binary one, has also been shown to improve ranking functions [87,88].

However, users’ perception of relevance continuity has not been yet examined in depth

and our understanding of how users perceive a different degree of information relevance

[88] is limited.

It is crucial to understand what each grade of relevance actually means. The value

of evaluating information based on graded relevance has begun to receive attention

in recent years both from system [88, 89] and user [5, 33, 90] point of views. This

is particularly important since the granularity of relevance judgements in previous

studies have been based on investigating this phenomenon indirectly, via some sort of

mediator [22,24]. Past theoretical concepts [10,43] have proposed to subdivide relevance

judgement into regions of high, middle and low relevance assessments, as relevance seem

to be bi-modal (having high peaks at endpoints of the range) [10]. Current research

examining system performance employing graded relevance supports Saracevic’s theory,

suggesting that graded relevance improves the document retrieval effectiveness [23,91].

2.4.3 Challenges Associated with Relevance

Relevance is difficult to define [92] and the terminology has not been consistent. Differ-

ent researchers assigned different meanings, with diverse components and criteria that
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underline this concept [93], aiming to develop an ideal and widely accepted relevance

model [3,17]. Such conceptual inconsistencies might be related to the fact that despite

a rich theoretical background, empirical research examining relevance is still relatively

recent. Furthermore, relevance feedback submitted by individuals is frequently associ-

ated with a large variability that is comparable to individual differences in other cogni-

tive processes involving information processing, such as indexing, classifying, searching,

feedback, and so on. Individual differences are one of the most prominent features and

factors in relevance inferences.

2.4.4 Capturing Relevance Assessments

The concept of relevance has a long theoretical background, which emphasises the

complementary relationship between the user and the system. While system-oriented

research is well-established, the investigation of the users’ internal processes happening

during relevance assessment is still relatively recent [26, 94]. However, the role of the

user in IR is critical as they play an active and integral role during the evaluation of

retrieved results, which is vital to the functioning of the system [10, 75, 95]. The user

interacts with the system through relevance feedback [96,97], which has been developed

to improve the representation of user’s IN [76]. Relevance feedback is a complex iter-

ative cyclic process involving a series of user-system interactions aiming to reduce the

semantic gap between the user’s IN and formulated queries [10, 26, 98, 99]. The feed-

back cycle aims to progressively and interactively determine the user’s desired output

based on the user’s evaluations, which are used to automatically modify the retrieval

process [100]. The utilisation of the relevance feedback cycle significantly speeds up

the search process and improves retrieval performance [95, 98] as the system uses the

user’s feedback information as directions to retrieve topically similar documents [99].

Given the importance of the user side of relevance, IR systems have been employing

mechanisms to capture this phenomenon to maximise the relevance of retrieved results.

Past research investigating users’ perceived relevance has introduced a number of feed-

back techniques, which vary from explicit, implicit, and psycho-physiological signals.

These feedback techniques determine document relevance with respect to the cogni-
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tive, situational, and psycho-physiological levels of the interactive dialogue occurring

between the user and the retrieval system [27]. Features extracted from users’ explicit,

implicit, and psycho-physiological feedback can be used to build models, which are able

to automatically predict the relevance of information [101].

Explicit Feedback

Explicit feedback is the most common and the most robust practice used to directly

annotate content within the user-system interaction with the aim to improve retrieval

effectiveness [29, 102]. This traditional relevance feedback technique requires users to

manually submit feedback on the information content using mechanisms such as rat-

ing, tagging and bookmarking [29, 103, 104], which frequently leads to a significant

improvement of the search result rankings quality for a given query [96]. Furthermore,

explicit feedback is easy to use and has low uncertainty due to a user’s overt con-

trol [105]. However, obtaining explicit feedback is frequently referred to as challenging

due to the cognitive burden and manual effort associated with direct user interac-

tion [26,29], which can be physically and mentally demanding. The user is required to

explicitly state whether presented content is subjectively perceived as relevant or non-

relevant [106], which increases the task complexity and the cognitive resources required

from the user [27]. Additionally, explicit feedback suffers from a trade-off in terms of

the user’s willingness to devote time (especially without a clear incentive) to explicitly

evaluate retrieved information, despite the fact that they are aware that doing so will

improve the search performance [29,107]. Explicit feedback mechanisms may also suffer

from biases and as they do not allow for continuous monitoring they are not always

applicable [26,108].

Implicit Feedback

Implicit feedback, in turn, refers to techniques that attempt to automatically and indi-

rectly infer the relevance assessments by monitoring the users in an unobtrusive manner

(i.e. without users’ additional explicit input) [102, 109]. The motivation for using im-

plicit feedback is in relieving the user from the cognitive burden associated with the
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laborious task of providing document rating and relevance assessments [27] by passively

observing users-system natural interactions and taking advantage of users’ behaviour.

Therefore, implicit feedback aims at analysing user context or interpreting the user’s

natural interactions with the search interface in order to generate relevance annota-

tions of information items [29, 110, 111]. Most of the research in this area relied on

the use of surrogate interactional measures based on behavioural features (e.g. docu-

ment retention, search results click-through, mouse movements, reading time, scrolling,

saving, printing, text selection) [104, 112–114] and psycho-physiological signals (e.g.

eye-movements, galvanic skin response, facial expressions) [26,27,115–117] or a combi-

nation of these recorded from users [26, 118]. Nevertheless, implicit feedback is often

considered to be less accurate due to the noise associated with it [5]. Additionally,

implicit research is often limited to tasks for which implicit behaviour can be observed

and often require data recorded from a large participant sample. Although the esti-

mated relevance scores are typically not perfect characterisations of the user’s needs,

they can still be used for guiding the search [110] as they offer an excellent possibility

of obtaining annotations for a large number of information items without imposing

additional mental load, which users find intriguing [119].

Behavioural Features. Early research employing the implicit feedback method was

mainly focused on the use of dwell time (i.e. document viewing time), as an indica-

tor of relevance [103, 120, 121], because of its applicability for real-time systems [122].

The traditional approach of using dwell time as a potential factor for predicting docu-

ment relevance was based on premise that users spend more time previewing relevant

documents compared to the non-relevant documents [120]. Nonetheless, past stud-

ies [114,123,124] investigating relevance within more complex and naturalistic settings

suggest that dwell time alone is not a reliable behavioural implicit relevance signal

measure when considered on its own, as it can vary significantly according to a specific

task and individual differences [113]. As a result, later research attempted to combine

dwell time with the task information, which has improved retrieval performance [125].

However, as information about the search task is not always available, dwell time has
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also been combined with additional behavioural data obtained by monitoring the user

information-interaction, such as scrolling [120], mouse movements [126–128], search re-

sults click-through [104,112], text selection actions [129] and exit types [103]. Analysis

of user’s behaviour during document evaluation is a good indicator of relevance, leading

to improvement in relevance prediction, which can significantly improve search [26]. It

is important to note that relevance feedback relying on behavioural features has been

shown to have mixed effectiveness because the selected measures of users’ interests and

preferences are often affected by many factors. For instance, users’ clicks are noisy,

and frequently susceptible to position and trust bias [130]. Therefore, inferences drawn

solely from behavioural interactions might not always be valid [131].

Psycho-Physiological Features. Although implicit feedback is typically obtained

by analysing behavioural actions (tracking mouse movements, scrolling, link clicks,

etc.), the more relevant perspective for this work is provided by studies inferring user

feedback from physiological signals. The psycho-physiological feedback has been pro-

posed in addition to behavioural implicit feedback in order to better capture variable

cognitive states during relevance operations [26, 27]. The idea of psycho-physiological

feedback is to track eyes [132], capture physiological signals (such as galvanic skin re-

sponse, skin temperature, and heart rate) [115], facial expressions [26, 118] and use

them as implicit relevance assessment.

Eye-tracking. Eye-tracking is the most widely used unobtrusive research ap-

proach, where pupil dilation, fixations, gaze points, and eye movements are the basic

output measures of interest. The essential functioning of the eye-tracker is based on

the ”eye-mind hypothesis” suggesting a link between the direction of the human gaze

and the focus of attention [133]. The fixation length of a given area is linked to the

amount of time required to process the information. Longer processing time indicates

higher cognitive effort and vice versa [133]. Therefore, eye-tracking seems to be well

suited to provide valid and valuable information about the user’s perceived relevance

of evaluated information. Overall, the findings of past eye-tracking studies established

a relationship between several EYE features and text passage relevance [110] as well as

34



Chapter 2. Background and Motivation

improved classification of processing states on three simulated search tasks (subjective

interest, question-answer, and word search) [134]. Furthermore, the findings indicate

that text relevance influences reading behaviour and visual processing of text [135].

Furthermore, eye-tracking data can be effectively used for binary relevance prediction,

with an accuracy of 70 - 75% [136].

Measuring pupil dilation has roots in early cognitive psychology research. Pupil di-

lation is mediated by the Autonomic Nervous System and early research has associated

this physiological response with a number of cognitive functions, such as surprise [137],

decision making [138], interest [139, 140] and mental workload [141–143]. In general,

pupil size variations are linked to attention [144–146]. Therefore, it is reasonable to

expect that document relevance will be linked to attention or mental workload and

consequently, pupil diameter [135]. However, there are only a few published studies

examining the relationship between information relevance and pupil dilation. For in-

stance, the findings of Oliviera et al. [147] suggest that pupil dilation is linked to the

higher relevance of text and image web search results. Additionally, Gwizdka et al. [135]

investigated the relevance of short text documents and Web pages [136] and showed

significant pupil dilation on relevant documents, related to cognitive effort. The pupil

dilation was the most significant in the one-two second period preceding relevance de-

cision [136]. They also showed significant differences in pupil dilation on fixations on

relevant words and on relevance decisions [132].

Another commonly assessed eye-tracking aspect used to interfere with cognitive

processes or mental states are gaze-fixations. Fixation is considered as a cluster of eye-

gaze coordinates within a specified range in time and space when our eyes hold the vision

in place so that the visual system can uptake the visual information of interest [148].

Past research examining the association of eye fixations and relevance processing found

that relevant information is associated with a higher number of fixations [149, 150].

However, in terms of fixation length, previous studies yield conflicting results. While

Balatsoukas and Ruthven [151] have shown that users made more frequent and longer

fixations on non-relevant document surrogates, Gwizdka [135] and Villa & Halvey [152]

found that non-relevant documents impose the lowest mental workload. Furthermore,
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Buscher [110] found that fixation duration was not an effective discriminator between

relevant and not relevant text. Despite fixation on a word being usually interpreted as

user interest or word relevance, eye fixation data are often noisy and can have different

causes depending on the user’s cognitive states. Therefore, it is not clear yet to what

extent fixation duration relates to relevance [110]. Additionally, simple gaze-based

measures like fixation usually rely on the analysis of single terms in a text. However, the

information and relations in a text document are mainly based on a specific combination

of words in sentences and paragraphs rather than single isolated terms [110]. Taylor

[153] found that first fixations and regressions are the most useful EYE features for the

selection of additional query terms in an implicit relevance feedback system.

Using eye movements is considered to be more appropriate in examining the rele-

vance of not only textual [154] but also visual [155, 156] information. The findings of

previous research suggest that eye-movements features are an important indicator of

implicit relevance feedback [110] with a potential to significantly improve IR system’s

performance [157]. Marcos, Gavin, and Arapakis [158] examined the eye and mouse

movement behaviours of web users who interact with SERP snippets incorporating

images, multimedia, and text. They developed measures of noticeability and inter-

est using fixations data, and conversion using click-through to better understand the

features of a well-designed, engaging, attractive and aggregated SERP [158]. Moe et

al. [159] found that the amount of reading behaviour is informative to the relevance of

the reading text. It is important to note that, generally, eye-tracking data are relatively

tightly coupled with cognitive processes.

However, eye movements are often subconscious and there is a large number of in-

ternal and external unknown factors influencing them. Hence, obtained data is usually

very noisy and require careful interpretation and manipulation. Additionally, it is im-

portant to mention that there are reading-related individual differences among readers

as well as document-induced changes for a single reader. For example, saccade sizes can

range from 1 to 15 characters, while fixation duration can vary between 100 - 500ms

for the same reader. The variability is further influenced by a variety of characteristics,

including the reader’s reading style, background knowledge, word predictability, and
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reading difficulty [160].

Emotional Features. Growing scientific evidence suggests that users naturally

express emotions during their interactions with search systems and information items

[161–163]. Emotions influence users’ interests [164], motivation [165], and play an im-

portant role in the process of IR as they can be used as an effective source of implicit

feedback, to personalise search [115, 116]. Tkalcic et al. [166] used the user’s emo-

tional metadata in combination with generic metadata in image recommender systems

for improving image recommendation results. Overall, their findings indicated that

using the user’s emotional information improved the image recommender system’s ef-

fectiveness compared to using only generic metadata. Emotional features have been

shown to enhance recommendation effectiveness not only for images but also video con-

tent [167,168]. Later work by Moshfeghi et al. [169] has shown that emotional features

can be combined with physiological signals to model relevance and predict task types.

2.4.5 The Role of Brain Imaging

Relevance assessments are underpinned by a series of complex cognitive phenomena

and existing implicit feedback techniques consider relevance with respect to the cogni-

tive and situational levels of interaction [109]. However, these methods can only help

researchers to understand the concept of relevance to a certain degree, and the effec-

tiveness of some of these techniques is limited [90]. IR is one of the fields that could

significantly benefit from the use of a direct neuroscientific approach used to access

complex mental processes in the brain [105]. Mental processes can reveal information

about information relevance thereby providing an effective way to implicitly collect

relevance feedback with great efficiency. Brain activity can be used to automatically

annotate information items for future use and collaborative filtering [29]. Further-

more, understanding cognitive processes can provide important information that can

potentially improve information presentation to the user, considering their cognitive

workload, awareness, and other mental states [105]. Brain signals can be unobtru-

sively recorded in the background in real-time, as the user interacts with the system,
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which in the future has the potential to augment standard input devices (e.g. computer

keyboard and mouse) for interaction between the user and the machine [170].

2.5 Introduction to Brain Imaging

The human brain is the most complex organ with diverse functions. Through the pro-

cessing of different types of information inputs from different parts of the body, it gives

rise to elaborate molecular, cellular, and neuronal phenomena which consequently form

the physical and biological basis of cognition. The brain is organised into anatomi-

cally or functionally defined cortical regions constituting the foundation of cognitive

functions that are optimally adaptable to environmental perturbations [171].

The past decades have shown revolutionary development, improvement and mod-

ernisation of our ability to non-invasively image human brain activity, with current

spatial (on the order of millimetres) and temporal (on the order of milliseconds) reso-

lutions meeting standards previously reserved for invasive methods in animal models.

The employment of non-invasive brain imaging technologies enables the exploration

of functional brain areas and structures which has significantly enriched experimental

research and contributed to our understanding of information processing in the brain.

The brain imaging research is based on the following empirically tested facts:

• A nerve cell called a neuron is the fundamental functional unit of the brain and

nervous system.

• Communication between neurons generates the electrical and magnetic signal.

The signal, conducted from the brain source, travels within the brain but also

up through other brain areas, the blood-brain barrier, through the skull and the

scalp, resulting in microvolt (µV) signals reaching the scalp.

• The brain is divided into areas that have different functions. These brain functions

are approximately the same across individuals.

• The human brain consists of very complex webs of multiple interconnected struc-

tures, creating neural networks.
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• Distinct brain areas are interdependent and do not work in isolation.

Brain imaging refers to the use of quantitative (computational) techniques that em-

ploy an interaction between brain tissue and various forms of physiological energy (e.g.

electromagnetic or particle radiation) to capture positional data about the structure and

function of the brain. Such data are used to generate corresponding brain maps [172],

which aim to provide a detailed picture of brain connectivity and organisation. With

recent advances in the field of neuroscience, there are many brain imaging tools avail-

able, such as functional magnetic resonance imaging (fMRI), magnetoencephalography

(MEG) and EEG, that have been used in IR.

fMRI. fMRI is an effective non-invasive imaging technique based on the examination

of changes in brain blood flow (i.e. hemodynamic response). At the site of brain activ-

ity, there is an increased influx of oxygenated blood which supplies activated neurons

with energy. The fMRI method uses a magnetic field to detect the subtle changes in

the blood oxygenation levels as oxygenation impacts blood magnetic properties [173].

The measurement of neurological responses based on differentiated blood oxygenation

is called BOLD (Blood Oxygenation Level Dependent). Although the BOLD signal is

an indirect measure of brain activity and is susceptible to influence by many physio-

logical activities of the body, past empirical findings demonstrated a strong correlation

between brain tissue activity and mental processes [174]. It is important to note that

the hemodynamic responses are relatively slow, noisy and weak. Therefore, low tempo-

ral resolution is often considered as one of the major limitations of fMRI. The typical

BOLD hemodynamic post-stimulus response begins to rise after 1-2 seconds, peaks at

4-6 seconds and returns to baseline after 12-16 seconds. Furthermore, evoked fMRI

signals in short time scale events might overlap, which increases the difficulty of de-

termining individual events [175]. The fMRI is associated with additional limitations,

such as high scanning cost, long acquisition time, presence of a strong magnetic field

and participant sample selection. In terms of experimental design, participants are

required to lay down still to avoid image distortion, which can cause fatigue and dis-

comfort, consequently affecting participants’ cognitive performance. Therefore, careful
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consideration must be taken with regard to study design and implementation [176].

However, fMRI is one of the most important methods for examining brain activity as

high spatial resolution enables a comprehensive coverage of the whole brain [177]. The

fMRI imaging can provide important information about the functional brain architec-

ture and the organisation of neural interactions [178].

MEG. MEG is another non-invasive technique for investigating human brain activity

which uses superconducting sensors (SQUIDs) to detect very subtle changes in the mag-

netic field generated by electric currents in the brain. Unlike fMRI, MEG can record

neural changes with millisecond precision, and thus, it has a high temporal resolution.

Additionally, it has a good spatial resolution; sources can be localised with millimetre

precision [179]. MEG is an extremely sensitive method as magnetic fields are not atten-

uated by the skin, scalp, and skull, in contrast to electrical potentials [180–182]. During

the MEG assessment participant is in a sitting position, which allows for conducting

cognitive experiments that more closely resemble real-life scenarios. MEG does not

require exposure to strong magnetic fields or loud noises, which is an advantage when

compared to fMRI acquisition sequences. As the MEG acquisition is silent, the method

can be used to study neural responses to sound stimuli [183]. Therefore, MEG is a low-

risk assessment that can be repeated in participants of all ages as often as needed. The

subject preparation time for the assessment is reduced in MEG compared with EEG

as there is no need to connect all conductive electrodes on the scalp (however, modern

EEG systems offer dry or quick electrode application alternatives) [184]. The main dis-

advantage of this method is the need for specialised shielding to eliminate the magnetic

interference found in a typical urban environment. MEG is also more expensive and

not as good as fMRI at localising precise brain activity locations. Therefore, obtained

MEG data are often combined with fMRI data. Furthermore, for overall signal qual-

ity, it is important that the participant’s head is as close to the MEG sensor arrays

as possible and head movements are restricted [185], which makes it hard for partic-

ipants to interact naturally [186]. Compared to EEG, the traditional SQUID-based

MEG is less portable. However, with the recent development, new MEG devices (i.e.
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OPMs – optically pumped magnetometers) are becoming more portable, comfortable

(permitting head movement) and cost-efficient (no need for expensive supercoolant).

Therefore, there is an opportunity to record brain activity while participants perform

realistic actions and movements.

EEG. EEG is a non-hazardous and non-invasive brain imaging technique that allows

measurement of the electrical potential of brain activity on the scalp surface that is

generated by the activation of neurons, while the brain is at rest or performs different

cognitive and behavioural tasks. The EEG method allows monitoring complex cogni-

tive activity with a near real-time precision due to its high temporal resolution [187].

Changes in neural electric currents reach the surface of the head, where they are de-

tected by a set of electrodes (also called sensors or channels) attached to specific stan-

dardised scalp locations. Each electrode measures the voltage at its location and enables

the transfer of electrical activity from the scalp surface to the EEG input of the device.

While recorded electrical activity differences are typically evident, the raw activity

measured on any given site does not necessarily reflect the unique activity in the region

since a strong signal from a distant brain region could dominate a local signal in the

vicinity of the electrode site. Furthermore, the electrodes are separated from current

sources in the brain by cerebrospinal fluid (CSF), the skull, and the scalp which might

considerably infiltrate the EEG potentials [188,189].

For the purpose of the data collection in this work, we used 128-channel Geodesic

Sensor Net. Figure 2.4 shows the electrode placement scheme used for data recording.

Following the approach of Bian et al. [190] the scalp is divided into five regions and

two hemispheres (left (LH) and right (RH)), namely: frontal (F), right temporal (RT),

central (C), left temporal (LT), and posterior (P) regions. Figure 2.5 depicts a colour-

coded map of the electrodes in the 128-channel layout, with each colour being assigned

to a different scalp region. The EEG channels are arranged in a cap which is placed on

the participant’s head, aligning the Cz electrode with the top-centre point of the head.

The EEG captures electric potential fluctuation changes between the channels and

a reference point (an electrode whose potential is stable and frequently equals zero).
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Figure 2.4: 128 channel HydroCel Geodesic Sensor Net (HCGSN).

Figure 2.5: Colour-coded electrode map for 128 channel layout.

Each colour represents a particular region. Electrodes of interest are within the black dotted

circular region. A vertical dotted box divides the net into left and right hemispheres.

The information recorded from the EEG takes the form of the sum of voltage changes of

neurons that are detected by different electrode types. The result is a wave representing

the course of potential difference changes in time. Amplitude refers to the height of
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a waveform or the strength of the pattern in terms of µV of the EEG signal. The

recorded signal consists of many waves with different characteristics. The rate at which

the waveform data is sampled in order to convert it into a continuous digital format is

known as the sampling rate (measured in Hertz (Hz)).

Voltage amplitude changes range from 0.5 to 100µV [191], while the conventional

bandwidth of EEG studies focuses on the waveform analysis ranging from 0.5Hz to

70Hz [192]. The signal of each recording electrode is contrasted with a reference elec-

trode, which in turn influences the amplitude at each EEG channel and time point [193].

The synchronisation between the behavioural responses of the participant and their

brain signals is facilitated via the amplifier. Obtained neurological data may contain

interfering elements at different frequencies with extracerebral origin (e.g. eye move-

ments, muscle contractions or/and ambient electrical noise). Additionally, high-density

EEG recordings are commonly associated with bad channels, which are common phe-

nomena that arise due to various technical reasons, such as a bad connection between

the electrode and the scalp. To account for interfering elements, acquired (raw) data

usually undergo a series of pre-processing steps (see Section 3.3.1) which aim to max-

imise signal-to-noise ratio.

The brain waves’ shape, location and character are directly dependent on the ac-

tual activity of the brain. For the most accurate interpretation of brain activity, it is

necessary to analyse the recorded neurological signal. The brain waves can, therefore,

be divided into bandwidths to describe their functions delineating slow, moderate, and

fast waves:

• Delta waves (0.5 to 4Hz) have the largest amplitudes and are commonly referred

to as slow-wave activity. Normally, the delta band brain waves are associated

with the deep sleep stages over frontal scalp locations [194].

• Theta waves (4 to 8Hz) are related to the number of cognitive tasks, especially

involving working memory, executive control, goal-oriented behaviour and short-

term memory load [195–197].

• Alpha waves (8 to 14Hz) reflect visual stimulation, attention, target discrimina-
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tion and aid overall mental coordination [195,198,199].

• Beta waves (13 to 30Hz) are high-frequency and low-amplitude waves, the most

prominent in the frontal and central scalp locations [192]. Beta brain waves

are commonly observed in an awakened state and reflect the brain’s active en-

gagement in cognitive processes such as assessment of subjectively-relevant stim-

uli [200].

• Gamma waves (30Hz and upwards) are considered to be the smallest and fastest

brain activity signatures [201] responsible for cognitive functioning, learning,

memory, and information processing [202].

Another commonly used approach to analyse multichannel data between conditions

is to quantify the difference of the topography in a given EEG segment or a time

window of interest (i.e. epoch) and to test it for significance. This approach is not

only applicable for the analysis of continuous EEG signal, but also for the analysis of

ERPs. ERPs are scalp-recorded long latency voltage fluctuations that measure neural

response time-locked to an onset (start) of a specific event or stimulus which reflects

cognitive processing [203]. The ERPs provide unique insight into neurological processes

with unrivalled time resolution. The ERP component represents a deflection from the

baseline of EEG activity which correlates with cognitive processes. The ERP waveforms

consist of a series of positive and negative amplitude fluctuations. Although some ERP

components are denoted by acronyms (e.g. LPC), most components are denoted by a

letter (N/P) indicating polarity (negative/ positive), followed by a number specifying

either the latency (delay) in milliseconds or the position of the component in the wave.

For example, the negative peak of the curve, which is the first significant peak in the

wave and often occurs about 100ms after the stimulus, is usually called N100 (with a

latency of 100ms after the stimulus and negative polarity) or N1 (indicating that it is

the first peak and is negative). The N100/N1 component is frequently followed by a

positive peak, usually called P200 or P2. Latencies for ERP components are often quite

variable [204]. The P300, N400 and P600/ LPC ERP components have been the most

commonly studied within the context of IR [5,33,101,205,206]. The component-driven
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ERP analysis relies on a priori analysis decisions made based on previous research

(e.g. selecting regions of interest (ROIs)1 or the time measurement window). On the

other hand, in the data-driven ERP analysis, researchers often use statistical tests

to identify ROIs. The data-driven ERP identification compared to component-driven

analysis avoids the analytical biases introduced by apriori implication of known ERP

components [30].

The EEG is by far the most widespread brain activity recording modality because

of its advantages such as the possibility of repeated examination, non-invasiveness and

the possibility of a longer duration of the examination, which increases the application

in practice. Compared to fMRI and MEG, EEG equipment is cheap, portable, easy to

use, set up and more readily available [208,209]. Given the EEG benefits, the technique

is becoming increasingly used in commercial Brain-Computer Interfaces (BCIs). Never-

theless, EEG has several limitations. EEG is only sensitive to post-synaptic potentials

generated in the superficial layers of several cortical regions that are often detected si-

multaneously. Therefore, with the low spatial resolution, it can be difficult to precisely

localise the exact area/region of activity. EEG is not sensitive to neuronal responses

from structures that are deep in the brain, such as the hippocampus [177]. Additionally,

the EEG signal is very sensitive to noise and artifacts whose origins are not cerebral.

They may arise from the participant (i.e. muscle movements, skin resistance) or/and

from electrical interference with a power line or surrounding electrical apparatus [208].

Furthermore, it is almost impossible to reconstruct a unique intracranial current source

distribution for a given EEG signal, although substantial recent progress has been made

in this area [177].

Brain Activity Modeling. Brain imaging technologies enable researchers to per-

form analyses resulting in assumptions about the nature of the observed neurological

signals. These assumptions can be encoded in powerful computational models that

bridge descriptive analyses and neuroscientific theory in a mutually explanatory man-

ner. Computational brain activity models are able to elucidate how sensory information

1ROI refers to a selected region of neighbouring electrodes that jointly and significantly contribute
toward neurophysiological phenomena of interest [207].
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is represented in the brain and predict brain activity in response to certain stimuli [210].

The ultimate purpose of these models is to explain behavioural, neurophysiological, and

neuroanatomical data in a manner that provides a comprehensive description of pro-

cesses ranging from high-level brain function and behaviour down to the single-neuron

level [211]. While the existing models present exciting possibilities for understanding

the brain, the behavioural repertoire of current models is still limited. Therefore, the

effort to expand such models’ functional capabilities and improve their behavioural

flexibility is still ongoing.

2.5.1 Brain, Mind and Behaviour Relationship

An in-depth understanding of users’ information processing and evaluation requires a

multidisciplinary approach, combining recent research advances in IR and cognitive sci-

ence. From a cognitive perspective, it is important to understand how mental processes

underpin user information interaction. In a short period of time, the brain is able to

integrate sensory signals and produce a cognitive representation of the internal and ex-

ternal environment. Sensory inputs activate brain systems that allow the emergence of

cognitive processes, which in turn influence human behaviour. This section focuses on

defining and conceptualising frequently reported cognitive processes within the IR liter-

ature, such as interrelated basic (perception [11], attention [212], motor cognition [90],

memory [213]), higher-order (problem-solving [214], learning [215], language [216], and

executive functioning) and metacognitive abilities (i.e. organisation and evaluation of

one’s thought processes which relate to learning and problem-solving) [217]. The hu-

man brain, mind and behaviour are closely interconnected components and research

methods studying neural mechanisms that underpin cognitive states aim to provide a

holistic approach to understanding human behaviour.

Perception. Perception refers to the ability to detect, capture, process, interpret and

integrate information about our internal and external percepts received from our sen-

sory receptors [218]. Perception is, therefore, not only the passive recipient of sensory

signals but instead, an active process, influenced by an individual’s memory, learning,
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expectations and attention, involving the transformation of low-level sensory informa-

tion to higher-level cognition [219,220].

Perception occurs in three stages: selection, organisation, and interpretation. Selec-

tion is the first stage, during which we focus our attention on certain incoming sensory

information. We tend to pay attention to information that is salient. Salience is the

degree to which the information attracts our attention in a particular context. Selected

information is then organised by the means of subjectively meaningful categorisation

which is based on innate and learned cognitive patterns. Interpretation, the final per-

ception phase, refers to the process of attaching meaning to the selected stimuli using

mental structures known as schemata. Schemata are like databases of stored, related

information that we use to interpret new experiences [221].

Generally, the process of perception can be understood with two fundamental ap-

proaches to perceptual processing: bottom-up and top-down [222]. Bottom-up process-

ing is an explanation for perceptions that start with sensory input and work upwards

through the uninterrupted cascade of transformations until a mental representation of

the perceived information is obtained. This process suggests that our perceptual expe-

rience is based entirely on the data available from our senses that can independently

create increasingly complex representations [223]. On the other hand, top-down pro-

cessing can be understood as the influence of our inner goals on stimulus selection [224].

Therefore, perception is developed through contextual information - the process begins

with the most general known information (that has already been brought in by the

senses) and moves toward the more specific (the interpretation of finer details) [225].

Attention. Attention is the means by which we actively, selectively and consciously

process a limited amount of internal and external stimuli [226]. The selective aspect

of attention has an important adaptive function, protecting individuals from being

overwhelmed by the abundance of information and allowing them to focus primarily

on currently relevant information. Thus, attention acts as a selective filter mechanism

that allows us to focus our cognitive resources on relevant information.

According to Sohlberg & Mateer’s model [227–229], which is widely used and opera-
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tionalised, hierarchically orders attention [230] into five levels: (i) focused (withholding

irrelevant information while focusing on relevant information), (ii) sustained (main-

tained continuous response to the presented stimulus), (iii) selective (focusing on one

relevant stimulus at the time), (iv) alternating (ability to control attentional allocations

in order to switch between dissimilar cognitive tasks), (v) divided (ability to respond

simultaneously to multiple task demands while maintaining accuracy and speed). At-

tention can be divided as either voluntary or involuntary [231], which serve different

functions and are controlled by distinct mechanisms [232]. Voluntary (also referred

to as endogenous, or top-down) attention is a sustained goal-driven process, which in-

volves higher mental effort due to being instructed to orient attention to a particular

location. On the other hand, involuntary (also referred to as exogenous, or bottom-

up) attention is a passive, transient, automatic, stimulus-driven process, during which

automatically captured signals propagate from lower sensory areas to higher cognitive

processing areas [233]. Both voluntary and involuntary attention are interrelated and

simultaneously affect a certain proportion of psychological activity.

The attention control, intensity and shifting can be affected by internal and external

determining factors. Internal factors depend on individual differences and some exam-

ples are motivation, interest, the effort required by the task, the individual’s physical

state, thought processes, and personal or social significance. Internally oriented, goal-

driven attention is also referred to as top-down or endogenous attention [234]. External

factors are environment-dependent and usually governed by the characteristics of the

stimuli. These external factors could be related to the stimuli novelty and familiar-

ity, intensity, environment contrast, repetition, movement, size etc. Stimulus-driven

attention is referred to as bottom-up or exogenous attention [234].

Motor Cognition. Motor cognition (i.e., cognitive processes that underlie complex

motor output) encompasses the mental processes involved in the planning, preparation,

and production movements with the aim to satisfy a specific motor goal, as well as the

higher cognitive processes involved in anticipating, predicting, recognising, mimicking,

understanding and interpreting events in the physical and social environments. The
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fundamental aspect of the motor cognition paradigm is the perception–action cycle,

involving the transformation of perceived patterns of intended movement into coordi-

nated patterns of actual movement. Both cognitive and motor functions are controlled

by brain areas such as the cerebellum, basal ganglia and frontal lobes that govern

the executive function and intentional movements requiring anticipation, planning and

prediction [235].

Memory. Memory is a complex, three-stage process involving the encoding, storage

and retrieval of past experience [236,237]. Any successful act of remembering requires

all three stages to be intact. Encoding is the process of converting physical stimuli into

a form that the brain’s memory system can interpret and use. During encoding sensory

input (acoustic, elaborative, visual and semantic) is detected by sensory receptors which

send the signal into the somatosensory centre in the brain. Storage refers to the process

of keeping memories intact in the brain’s memory system over time. The brain can

store episodic, procedural and semantic memories. Retrieval is the process of accessing

specific memories in storage and bringing them into consciousness. There are two

types of memory retrieval - recall (i.e. unaided retrieval of memories) and recognition

(retrieval with the help of hints) [238].

Retrieved memories can be categorised as explicit (conscious storage and subsequent

processing of memories) or implicit (unintentional recollection). Explicit memory can

be divided into semantic and episodic. Semantic memory is focused on storing concepts,

facts, data and terms. Episodic memory, on the other hand, captures events, time,

place, percepts, thoughts, and emotional information [239].

Many traditional theories distinguish between short-term and long-term memory.

which differ based on their capacity and duration. While long-term memory is thought

to have unlimited capacity and memories can be stored for up to several decades, short-

term memory can only hold a few items for a short time duration. Past research suggests

that people can store between five to nine items [240] or approximately four chunks

or information pieces [241]. The term short-term memory is often used interchange-

ably with working memory. However, it is important to note that working memory
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refers to the processes used to temporarily store, organise, and manipulate informa-

tion, while short-term memory, refers only to temporary information storage. Working

memory plays an important part in the integration of short-term and long-term mem-

ory information and guides reasoning, decision-making and behaviour [242, 243]. The

distinction between short-term and long-term memory was central to the multi-store

model of Atkinson and Shiffrin [244]. However, recent theories have proposed unitary-

store models, in which this distinction is not so clear-cut as the approaches focus on

similarities between short-term and long-term memory, rather than their differences.

Both of these approaches have considerable strengths and limitations. It is important

to note that memory research is still ongoing and novel discoveries call for existing

memory theories to be revised. For instance, recent research suggests that memories

can be stored in the brain even though they could not be retrieved through natural

recall cues. Memory storage does not rely on the strengthening of neural connections,

as it has been originally thought. Therefore, long-term memory storage is possible

even without cellular protein synthesis as it is stored as a specific type of connectivity

between neurons [245].

Problem-Solving and Decision-Making. The terms problem-solving and decision-

making are frequently used interchangeably, but they are not the same [246]. Problem-

solving refers to a structured analytical process of investigating the given information

and finding all possible solutions to the situation at hand [247].

It is possible to distinguish between five strategies for finding new solutions to solve

problems: trial and error, memory retrieval, algorithms, heuristics, and insight. The

trial and error problem-solving approach involves multiple activity patterns for eval-

uating solution ideas. If the evaluation result is negative, a different activity pattern

needs to be generated and evaluated again until success or a solution is reached [248].

Memory retrieval in the context of problem-solving is based on recognition and refers

to the retrieval of previously acquired knowledge [249]. The use of algorithms refers

to the methodological development of a step-by-step method to solve a problem [250].

Heuristics are not a formal problem-solving models as such. They are defined as men-
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tal shortcuts (sometimes based on information stored in memory), which help with

the thinking processes in a problem-solving situation which do not require an optimal

solution [251]. Means/ends analysis is an example of a heuristic tactic, which requires

the recognition of discrepancies existing between the current and goal situation and the

identification of intermediate steps necessary to reduce the difference. Another heuris-

tic tactic is decomposition, which requires the overarching problem to be broken into

smaller pieces [252]. In some cases, the solution to a problem can appear as a sudden

insight, which is an unexpected emergence of a solution strategy. Generally, in contrast

with other problem-solving approaches, insight is not deliberate and conscious process-

ing that advances step by step and problem-solvers are often not able to consciously

explain how they generated a solution in a sequential manner [251].

However, problem-solving is not always a flawless process and there are numerous

barriers that can interfere with an individual’s problem-solving ability. Commonly,

problem-solving barriers refer to mental constructs impeding the ability to correctly

and efficiently solve problems. Some examples of problem-solving impediments include

functional fixedness, confirmation bias and mental sets. Functional fixedness is a cog-

nitive bias involving a tendency to view an activity or an object as only working in a

particular way, which, therefore, impacts an individual’s creative abilities. Confirma-

tion bias is the tendency to search for, interpret, focus, favour, and recall information

that confirms or supports one’s existing beliefs, views or values and to neglect evidence

that disconfirms it [253]. A mental set is a form of rigidity to approach problems in a

certain fashion due to prior experience which can lead people to make problem-solving

assumptions without considering all the available information [254].

Traditionally, it is argued that problem-solving is a step toward decision-making,

so that the information gathered in that process may be used for decision-making.

Therefore, decision-making refers to an action based on either an intuitive or reasoned

process (or a combination of the two) derived during the problem-solving, which is

based on assumptions of values, preferences and beliefs of the decision-maker [255]. In-

tuitive decision-making (or ‘gut feeling’) relies on non-sequential, rapid, non-conscious

information processing and recognition of patterns and associations to derive affectively
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charged judgements [256]. On the other hand, reasoning is a more complicated decision-

making process and tends to require a more formal, structured approach, consisting of

a sequence of linear and logical steps designed to rationally develop a desired solu-

tion [257]. Both problem-solving and decision-making involve critical thinking, which

is a process of discovering, conceptualising, analysing, applying, synthesising, and/or

evaluating information (gathered or generated via reflection, reasoning, communica-

tion, or/and observation) with the goal of finding the best possible solution to the

problem [258].

Learning. Learning can be understood as an enrichment of individual experiences.

It is defined as either temporary or permanent behavioural change obtained via pur-

poseful, planned and systematic acquisition of skills, knowledge and habits which occur

as a result of practice. The definition does not include behavioural changes caused by

maturation or temporary organism state (e.g. due to substance abuse) [259].

In a broader sense, it is possible to distinguish between four types of learning be-

haviours: habituation, classical conditioning, operant conditioning and cognitive learn-

ing. Habituation, the simplest form of learning, is a decline in responding to a repeated

or prolonged stimulus presentation that is not caused by fatigue or adaptation [260].

The concept of classical conditioning (also known as Pavlovian or respondent condi-

tioning) is a type of learning that happens unconsciously through the association of

a neutral stimulus paired with a biologically potent stimulus (i.e. reflexive response).

Classical conditioning was first demonstrated by Pavlov, who found that dogs began

to salivate as a response to a bell sound prior to being fed [261]. Operant conditioning,

also known as instrumental learning or conditioning, occurs when behaviour changes as

a function of its consequences called reinforcement schedules, i.e. by using behaviour

to ‘operate’ with the environment. A reinforcement schedule is any procedure that

presents (or removes) a reinforcer (or punishers) to an organism as a result of specified

behaviour following precise rules [262]. Cognitive learning is an active, constructive,

and long-lasting process of change in knowledge attributable to experience by which

the learner takes in, interprets, stores, and retrieves information [263].
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Language and the System of Thinking. Language and thoughts play central roles

in human cognition. Although interrelated, language and thinking are not identical.

Thinking is a higher cognitive process in which the mind employs various structures

and processes of conscious awareness such as mental imagery, episodic memories or

explicit anticipations to produce thoughts. Thoughts can be expressed and shared via

language [264].

Language (spoken, signed, or written) is a communicative, structured, arbitrary,

dynamic, and generative system that enables humans to perceive, store and share

information [265, 266]. Language, as a structured hierarchical communication system,

involves systematic grammatical rules to organise lexical information transmission from

one individual to another. Lexicon refers to the vocabulary of a given language. Thus,

the lexicon is a language’s vocabulary. Grammar refers to the wide set of structural

rules that are used to convey the construction of sentences, clauses, phrases and words

in a language through the use of the lexicon. The syntax is a part of grammar which

refers to the way words are organised into sentences [267] and it plays an important

role in the interpretation of the sentence meaning (i.e. semantics of the sentence).

Executive Functioning. Executive functioning includes high-level mental control

processes that underlie effective planning and organisation of goal-directed behaviour,

especially in the novel, unstructured, and non-routine situations that require some

degree of judgement. Executive functioning refers to the human ability to drive the

attention in the desired direction and move away from unwanted stimuli, anticipate

future events, self-control, formulate realistic goals and set priorities. Thanks to the

executive functions, we are able to multi-task, recognise errors and learn from them

and adapt to (unexpected) changes [268,269].

Brain Region Networks. Studies of functional connectivity patterns (based on

contexts or correlations) between brain regions have shown that brain regions do not

work in isolation. Instead, human functioning is attributed to the neural functioning of

multiple brain areas working together in predictable sequences and forming large-scale

neural networks that subserve different cognitive functions [270].
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2.6 NeuraSearch Science

In recent years, novel NeuraSearch research direction (an innovative user-centred ap-

proach bridging brain imaging methods and IR) represents a growing interest in HII

and IR research [6]. This research line was able to bring new knowledge and under-

standing of IR phenomena as the field profits from direct access to neural signatures

associated with user’s mental processes [6, 271–274] such as attention, cognitive work-

load and memory. The main benefit of the application of the neuroscientific approach is

that the internal mental states of an individual can reveal information about IR process

in response to particular information items, which overcomes the self-referential nature

of direct and obtrusive methods. Therefore, the neuroscientific approach reduces cog-

nitive load and enables data collection in real-time without disrupting the user’s search

process, while also tackling measurability issues [105].

The most frequently used neuroimaging methods in the NeuraSearch research have

been fMRI [90, 102, 275–277], MEG [278] and EEG [5, 94, 105, 170, 205, 216, 273, 279–

283]. These neuroimaging techniques have been classified by their spatial vs. temporal

resolution and portability. Spatial resolution refers to the capacity a technique has to

allow discrimination between different active brain regions with high accuracy. On the

other hand, temporal resolution refers to the accuracy of the scanner to capture brain

activation in relation to time.

Opportunities and Challenges in NeuraSearch

The NeuraSearch experiments employing brain imaging methods must be carefully de-

signed and conducted, considering the strengths and limitations of available methods.

Commonly used brain imaging methods restrict participants’ movements and, there-

fore, can not be used with uncooperative participants. In addition, functional imaging

is not merely correlational. Brain imaging studies provide mainly information about

the casual relationship between manipulated variables (such as stimuli and task in-

structions) and their influence on brain activity. Therefore, inferring cognitive process

engagement from the activated brain sites should be done with great caution [284]. The
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use of neuroscientific equipment to examine IR phenomena requires multidisciplinary

expertise and skills from fields such as neuroscience, cognitive psychology and infor-

mation science. Equipment cost and accessibility are other important factors to be

considered as in particular fMRI and MEG are very expensive and require access to

neuroimaging centres [285].

On the other hand, brain imaging has improved our understanding of cognitive

processes underpinning HII and helped to explain fundamental IR phenomena. Brain

imaging data provide an objective measure of information-seeking behaviours while

considering unobservable (e.g. mental workload, attention) and observable (click be-

haviour, information selection) variables [285]. Brain imaging can be used to verify

existing theoretical models. Furthermore, brain signals can be potentially decoded us-

ing BCI [286,287] which enables the communication between the brain and an external

device (e.g. computer) [288].

2.6.1 NeuraSearch Research

Novel NeuraSearch research has begun to unravel the brain activities of users inter-

acting with information systems when conducting a problem-solving task, which has

fundamentally changed the foundations of modern IR research [6]. Users frequently

engage in IR to find a solution to a subjectively experienced problem-solving scenario,

motivated by the state of uncertainty stemming from their lack of knowledge (coined as

IN). To overcome the state of uncertainty, users usually formulate the query (that best

represents their IN) which is submitted to the system. The system then retrieves docu-

ments for the user to evaluate. Therefore, the user judges retrieved documents (coined

as relevance judgement) based on their relevance to the experienced IN until they are

able to solve the problem at hand and consequently satisfy their IN. Information search

and retrieval are, therefore, complex processes consisting of many interconnected steps

and involving a variety of intricate cognitive mechanisms. NeuraSearch research direc-

tion attempts to better understand neurological signatures underlying IR and search

to improve users’ experience in such tasks. This section presents existing research in

this direction.
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Recent studies have employed brain imaging techniques to gain a better under-

standing of the IR&S process as a whole [276, 289] and also to examine its interactive

parts such as IN (e.g. [275]), query formulation [290], relevance (e.g. [278]) and search

satisfaction [276,291].

Information Search. Information search has become the most performed activity

on the web, forming an important part of everyday life and helping humans to find

a wide range of information. Seminal approaches and theories in the IR have subdi-

vided the search process into subprocesses which can be analysed and evaluated. The

influential work of Moshfeghi and colleagues [276] investigated the search process using

a cognitive approach suggesting that the search process can be divided into different

mutually interactive cognitive processes. Using fMRI, the researchers discovered and

mapped large-scale functional neural networks associated with functional brain activity

changes between different stages of the search. These stages included IN realisation,

query formulation and query expression, relevance assessment and search satisfaction.

Therefore, the analysis of neural activation enables the identification of distinct search

process parts as the user moves through them [276].

Furthermore, the study of Paisalnan et al. [289] was able to identify and compare

functional brain activity differences between IN, relevance and satisfaction leading to

a better understanding of the involvement of several cognitive functions and their re-

lationship within the search process.

Information Need. One particular area of emphasis for NeuraSearch research has

been to examine the IN process [102,275]. This is due to challenges associated with IN

understanding, capturing, and in turn, satisfying [277]. IN realisation is underpinned

by complex high-level cognitive processes involving memory retrieval, decision-making,

attention and executive functioning. Therefore, traditional user-based research relying

on implicit or/and explicit user assessment could provide only limited insight into how

exactly such a phenomenon emerges. Moshfeghi, Triantafillou and Pollick [275] used

fMRI to example neural activation associated during the complex and cognitively de-

manding process of IN realisation. The authors found detectable neural correlates of
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INs that can be identified at an early stage of the information seeking and retrieval

process, as well as distributed network of specific brain regions where INs manifest

themselves. The fMRI analysis has revealed higher activation in the caudate, thalamus

and right inferior frontal gyrus when participants did not experience IN. In contrast,

the brain activation in the region known as the dorsal posterior cingulate cortex was

associated with the realisation of IN. Monitoring the activity in the posterior cingulate

cortex might, therefore, provide useful signals necessary for the detection and identifi-

cation of IN [275].

Additionally, it has been found that the prediction of the IN state experienced by

the user is possible using brain signals [102]. Moshfeghi and colleagues [102] also exam-

ined personalised (unique to the individual) or generalised (same across participants)

brain activity patterns associated with the IN realisation and found that personalised

IN prediction is more accurate than the generalised approach. This finding suggests

that despite some general similarities associated with brain activation (mostly concen-

trated in frontal and occipital brain regions), individual differences are an important

factor to consider within the context of IN realisation. The work, therefore, highlights

possibilities for the prediction of complex cognitive processes using brain activation

recorded using fMRI [102].

The findings of fMRI research have led to the development of a novel IN model in-

corporating the user’s neurophysiological responses to the presented information [277].

The model has been proposed by Moshfeghi and Pollick [277] and suggests, based on

increased activation of certain neural networks, that the realisation of IN is under-

pinned by the three interrelated components: (a) successful memory retrieval, (b) an

information flow regulation, and (c) a high-level perception.

To understand cognitive processes underpinning the realisation of IN, Michalkova

et al. [292] conducted an EEG experiment comparing the IN states with the non-

IN scenarios. The authors found differences in the early stages of the IN realisation

attributed to the N1-P2 complex (related to early stimulus recognition), which suggest

that the realisation of IN is manifested in the user’s brain before they are consciously

aware of it.
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Query Formulation. Searcher’s ability to formulate a query is a crucial part of the

search process as it directly influences the search system’s performance. Despite the

critical role query formulation plays in the search process, our understanding of neuro-

cognitive processes associated with the recall and reorganisation of query terms specific

to a particular document was until recently very limited. The study of Kangassalo et

al. [290] investigated neuro-cognitive mechanisms involved in the estimation of query

terms goodness using EEG. The authors found that the term specificity was associated

with the amplitudes of P200, P300, N400 and P600 ERP components, which differed

significantly between query-specific and non-specific terms. Therefore, the authors have

demonstrated that the human ability to detect specific terms has neural origins [290].

Search Satisfaction. While the above-mentioned study of Moshfeghi and Pollick

[276] identified search satisfaction as one of the stages of the search process, it did

not focus on satisfaction on its own. The user’s experience of satisfaction of their IN

plays an important role during IR as it signals that the user has gathered adequate

information to answer their need. The realisation of search satisfaction frequently

leads to the stop of the search process. To better understand the user’s internal states

associated with IN satisfaction, Paisalnan et al. [291] examined the involvement of brain

regions during this subjective and complex process. The findings suggest that user’s

satisfaction arises from the actions of inter-related neural regions associated with both

cognitive and emotional control. Paisalnan et al. [293] found that IN satisfaction is not

only underpinned by cognitive but also affective processes that differ significantly when

the IN is vs. is not satisfied.

2.6.2 Neuroscience & Relevance

The neuroscientific approach to relevance has brought novel knowledge and understand-

ing in terms of unravelling neural processes happening in the brain [90]. The efforts in

this direction might be categorised in two ways based on the experimental design used

to measure relevance. The first line of brain-imaging research (NeuraSearch [6]) has

position relevance within the context of IR task while considering the user’s IN [206].
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Participants experienced the IN through the creation of a problem-solving scenario. In

order to satisfy their IN, participants engaged in the relevance assessment tasks, while

their brain activity was monitored. Another direction of research examined relevance

in the context of information associations, where participants did not experience IN

and were mainly instructed to judge information association to the topic. Therefore,

it is possible to argue relevance was investigated in loose terms, without considering

its relationship with the IN of a user [18, 206]. Overall, the results of these studies,

employing brain imaging, suggest that overall, neurological signals differ significantly

during the processing of relevant content vs. non-relevant content across individuals.

Relevance and NeuraSearch Research

The first line of brain-imaging research has positioned relevance within the IR task [90].

The tasks of these studies were designed to include simulated IN situations through the

creation of a problem-solving scenario. To satisfy the IN, participants were presented

with images [5, 90, 95, 170, 278], videos [26, 205, 294, 295] or textual information [94,

105, 216, 276, 280, 296] and instructed to judge the relevance of the presented content

with relation to the problem at hand, while their brain activity was monitored. Many

different types of search tasks have been used to operationalise relevance, ranging from

known-item identification [5,90], information lookup [94,276], exploratory search [216],

and browsing [105].

Moshfeghi and colleagues [90] conducted the first brain imaging study examining

neural signatures associated with relevance by employing the fMRI technique. The

study aimed to answer the fundamental question “how does relevance happen in the

brain“ through the localisation of brain activity differences in cortical regions during the

processing of relevant vs. non-relevant images. Contrasting relevant and non-relevant

images was associated with significant differences in the right brain hemisphere, in-

cluding the superior frontal gyrus, the inferior parietal lobe and the posterior area

of the inferior temporal gyrus. The three cortical regions have shown greater activa-

tion associated with judging relevant compared to non-relevant images. A later fMRI

study conducted by Moshfeghi and Pollick [276] identified two brain networks showing
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functional connectivity during relevance assessments: frontoparietal task control and

the default-mode network. While the frontoparietal network is essential for our abil-

ity to coordinate behaviour in a goal-driven, rapid, accurate, and flexible manner, the

default-mode network might be related to self-referential or self-initiated thought [276].

These study results have provided an important insight into how the activity of large-

scale brain networks that subserve fundamental cognitive functions underpin relevance

assessments.

Kauppi and colleagues [278] employed MEG to show that the frequency content

of the MEG signal, along with eye movement data can be used to decode the per-

ceived relevance of viewed images. The study constitutes an important step toward

the development of brain-activity and eye-movements-based interactive image retrieval

systems [278].

Temporal pattern of brain activity related to relevance assessment phenomena has

also been studied using EEG alone or in combination with pupillometry or/and eye-

tracking devices [94, 170]. For instance, Behneman et al. [296] demonstrated that

changes in the EEG signals (theta and alpha bands) can be used to differentiate between

relevant and irrelevant sentences to a given IN. Gwizdka and colleagues [94] investi-

gated the dynamics of text relevance decision-making in a Q/A task. The findings

suggest differences in cognitive processes (reflected via EEG-measured alpha frequency

band) used to evaluate texts of varying relevance levels, as well as provide evidence for

the ability to detect these differences in information search sessions using direct mea-

surement of eye movement via eye-tracking and EEG [94]. Later, Gwizdka [216] found

significant differences in EEG-measured power of alpha frequency band and in EEG-

detected attention levels associated with relevant and non-relevant judgements during

information search tasks conducted on the open web. Ye and colleagues [297] found that

relevance assessment of textual stimuli happens around 800ms. Furthermore, monitor-

ing the neural activity associated with post-relevance assessment revealed differences

in the processing of non-relevant and relevant words, that persisted for approximately

260ms to 320ms for relevant words and 500ms to 530ms for irrelevant words [280].

Using EEG, relevance has been inferred not only for textual stimuli but also for
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images [5, 170, 271] and videos [205, 294, 295]. In terms of image stimuli, Allegreti et

al. [5] examined neural activity related to the processing of relevant vs. non-relevant

images to identify when relevance assessment happens in the brain. The researchers

identified time intervals and significant differences in brain activity shifting during rel-

evant and non-relevant image processing. The findings suggest that such processing

happens as follows: 180 - 300ms - an early process of implicit assessment of relevance

(frontal areas - F1; AF4) and stimuli processing. At this stage, there is no relevance

assessment. Between the 300 - 500ms time interval, the differences in the brain activity

elicited by relevant and non-relevant images start to shift towards central areas C2

and CP2. Finally, the most significant differences are associated with the 500 – 800ms

time interval in the electrodes located around Cz and C1 over the central area of the

scalp. Hence, the human brain requires around 800ms to assess relevance of visual stim-

uli [5]. Past research demonstrated [170, 271] that EEG and eye-tracking data can be

used to estimate the user’s subjectively perceived relevance from a user’s image search.

Additionally, studies [170, 271] demonstrated that implicit data constitute an impor-

tant input necessary to resolve possible image search result ambiguities when users

query for an ambiguous search term. Mohedano and colleagues [95] explored relevance

feedback mechanisms for object detection image retrieval. Researchers compared the

performance of brain signals to mouse-based interfaces and found that when users have

limited time to judge the relevance of the image, both interfaces are comparable in per-

formance. However, when using data only from the best-performing users, researchers

found that EEG-based relevance feedback outperformed mouse-based feedback [95].

In the context of video stimuli, Kim and Kim [294] found that the central, frontal,

and pre-frontal positions of the left hemisphere were linked to the most significant

neural activity differences during the topical relevance detection of video skims. The

neural differences were the most apparent during the 300∼500ms and 500∼700ms time

range, corresponding to the N400 and P600 ERP components, which have been shown

to be indicators of relevant and non-relevant judgements [205, 294]. The N400 ERP

component was associated with greater amplitude negativity in topic-irrelevant shots

than in topic-relevant shots. The P600 ERP component elicited greater positivity in
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ERP amplitude for topic-relevant compared to topic-irrelevant shots [295]. Both ERP

components showed fronto-central scalp distribution pattern [295].

Above mentioned studies have provided an important empirical grounding for rel-

evance through the understanding of neuro-cognitive processes, which is an important

step towards the development of neuro-adaptive IR systems. This has been demon-

strated by a recent study by Jacucci and colleagues [105], showing that relevance can

be predicted in real-time from EEG brain signals and eye movements while the user

engages with the system and IR task.

Relevance in the Word Associations Context

Another stream of relevance research has considered relevance in the context of in-

formation associations, employing EEG either in isolation [33, 101] or in combination

with eye gaze [283]. In these scenarios, participants did not experience IN, but they

engaged in judging information associations to the given topic. For instance, in the

study of Eugster et al. [101], participants were asked to assess the relevance of the

term stimulus to a predetermined topic. A similar approach was employed in a study

designed by Wenzel and colleagues [283], where participants were instructed to find

words (e.g. goat, tractor, mouse) belonging to one out of five semantic categories (e.g.

category: transportation). Overall, study findings suggest that information associa-

tions can be traced to the EEG signal as well as ERPs [101], which is reflected by the

corresponding P300 [101, 283, 298], N400 [33] and P600 components [290]. Mentioned

P300, N400 and P600 ERP components have also been reported in the studies posi-

tioning relevance within the context of the IR task. EEG signal, as well as ERPs, can

be used to define a set of features that enable decoding and inference of human judge-

ments directly from the human cognitive states without any direct explicit physical

intervention of the user [33, 283, 290, 299] not only for textual but also picture stim-

uli [288,298]. The Pz EEG electrode location was associated with the highest significant

difference between category relevant and irrelevant information, regardless of stimulus

modality [33, 290, 298]. Based on the latest methodological and technical advances in

BCI, there is increasing interest in using neurological signatures trained to detect rel-
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evant information for the automatic generation of relevant content that matches given

task [288, 298]. For instance, brainsourcing, a recently developed paradigm, allows di-

rect mapping of neurally measured implicit reactions within recognition task to predict

targets of interest to appear [119].

2.7 Research Motivation

Relevance assessment remains a major study area in the field of IR. Recent findings

employing brain imaging to investigate relevance have shown that human mental ex-

periences during the IR process can be understood and decoded using non-invasive

measurements of brain activity. Hence, the recent application of the neuroscientific

approach has brought valid and valuable insight into a better understanding of rele-

vance. Relevance has been studied within the context of multiple stimuli modalities

(e.g. videos, images) but the most information consumption in IR happens in textual

format [29]. Assessing the relevance of textual documents, given IN, involves several

cognitive processes including reading comprehension. Therefore, it is one of the most

complex cognitive activities in IR [300].

Additionally, since relevance is a complex process, it is important to highlight the

benefit of combining multiple data collection tools, which has become very popular in

recent years. As Kelly and Belkin suggested [124] tools such as questionnaires enable

researchers to explore participant views of a task and topic familiarity, which influence

relevance perception. Furthermore, the researchers highlighted the importance of the

naturalistic approach, which optimises ecological validity [124]. It is essential to design

the task, which will closely model real-life user-system interaction and place relevance

assessment within the context of IR. The experimental design needs to consider that

subjective relevance assessment made by user [78] is preceded by the IN and that

encountering a relevant document should result in a change of user’s knowledge state

[42]. Additionally, physical, cognitive or/and affective aspects of information should

also be considered [76]. Topical relevance, in analogy with text comprehension, can be

examined through the relevance of individual words, sentences or/and the main ideas

of the document to the query [301].
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In this thesis, we aim to investigate cognitive processes that underpin textual rele-

vance assessment employing the NeuraSearch framework. In the task, we evoke artificial

IN and engage participants in relevance assessment. We will aim to capture the time-

course of the relevance assessment during the visual presentation of text. The controlled

experimental task is designed to mimic real-life human-information interaction while

keeping the limitations associated with the EEG in mind to avoid signal contamination.

In addition to obtaining EEG signals, we gather survey and behavioural data to better

understand participants’ subjective experiences during the task. The study is built on

the previous literature investigating relevance through the comparison of neural signals

associated with the content of different relevance [5, 33, 101]. In addition, to provide a

better insight into the cognitive stratum of relevance, the task is be designed to explore

participants’ SPK.

2.7.1 Binary Relevance

Relevance assessment is a holistic cognitive response with underlying neuropsychologi-

cal mechanisms that form more basic perceptional and cognitive features of some sort.

In terms of relevance granularity, the binary division has been the prevalent approach in

the IR field, keeping the assessment cost low while maximising the number of relevant

documents per topic, guaranteeing measure stability [10,302]. Therefore, the majority

of EEG studies using the neuroscientific approach have investigated relevance as a bi-

nary variable. However, it is important to note that these studies have either misplaced

relevance within the context of word-relatedness (i.e. IN was not considered) [33] or

(when considering IN) predominantly focused on ERP component-driven analysis [206].

While past ERP component-driven analysis and theory-driven approaches have

contributed to the understanding of binary relevance assessment formation, these ap-

proaches can constrain knowledge by potentially overlooking all the possible features

or dimensions that synthesise complex phenomena such as relevance assessment. On

the other hand, a data-driven approach is a useful tool when it comes to making

sense of behavioural responses during complex tasks. Despite its advantages, the data-

driven analysis might be challenging because the EEG data frequently exhibit spatial
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heterogeneity, have non-stationary and multiscale dynamics, and are typified by sub-

stantial individual variability [303]. Many scientific observations of brain activity may

be scope limited, constrained by opportunistic participant sampling, and have reduced

reproducible controls. Relying on varied background assumptions while employing a

data-driven exploratory approach might help to overcome the above-mentioned limita-

tions and provide significant benefits associated with the potential discovery of novel,

previously not reported cognitive phenomena.

This research aims to explore previously not reported potential components that

could arise from binary relevance phenomena, while avoiding the potential analytical

bias introduced by the restriction to distinct ERPs reported by previous studies [30]. We

aim to re-visit textual binary relevance assessment, which would enable us to compare

experimental results obtained using a data-driven approach with previously reported

results associated with textual binary relevance assessment formation.

This is the first NeuraSearch EEG study investigating binary relevance assessment

using a data-driven approach to gain a holistic view of ERP components underpinning

complex cognitive processes associated with relevance assessment. To do so, we capture

the users’ binary relevance assessment in real-time as they engage in the Q/A task. The

findings can help to further explore cortical differences associated with the two types of

textual relevance assessment and to validate the results of past studies. The outlined

research motivation to investigate binary relevance using a data-driven approach is

addressed in Chapter 6.

2.7.2 Moderating Effect of SPK in Relevance Assessment

Relevance assessment is often investigated in a context-independent manner [22, 304].

Nonetheless, relevance assessment strongly depends on the user’s cognitive states,

knowledge, and perception [25, 305], which provide psychological context determin-

ing the problem and situation at hand [10, 12, 306, 307]. This work, therefore, aims to

better understand the role of users’ SPK within the relevance assessment context.

Past IR studies have mainly focused on topical knowledge referring to the rela-

tionship between one’s prior knowledge and the conceptual aspects of the topic they
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engage in [308]. These studies have found that topical knowledge influences users’ rel-

evance criteria and evaluation process [305, 309, 310], as users rely on their knowledge

to discriminate between relevant and non-relevant information. Furthermore, topical

knowledge has also been shown to help users assess information credibility with higher

accuracy [22]. Although topical knowledge plays an important role in information pro-

cessing, users are often unaware of their knowledge anomalies [311] which significantly

impact information search motivation and decision-making [312]. This paper focuses

on SPK, which refers to self-assessment of knowledge that one believes to hold irrespec-

tive of what they actually know [313]. We follow a common approach using post-task

assessment to evaluate participants’ SPK states, which allows participants to be more

cautious with the estimation of their SPK through the recognition of their anomalous

knowledge states [311, 314]. However, both relevance assessment and SPK are dy-

namic, complex and subjective phenomena, which are difficult to quantify [90]. Thus,

the present study takes the neuroscience approach which addresses the aforementioned

challenges by offering the unique possibility of investigating these complex cognitive

phenomena directly through the understanding of neurophysiological correlates of cog-

nitive processes [90]. The outlined research motivation to explore users’ SPK within

relevance assessment using a data-driven approach is addressed in Chapter 5.

2.7.3 Graded Relevance

Past research has been mainly dedicated to examining users’ relevance in binary terms,

which is only one of the options for information categorisation. Binary relevance implies

a direct, fixed and unchanging topical relationship between the user and IN, which

might not reflect the true nature of relevance mental representations [10,43]. Thus, to

account for such circumstances, the relevance of information should be inferred on a

continuum and comparatively.

On the other hand, the importance of information evaluation based on graded rel-

evance has begun to receive attention in recent years mainly from a system point of

view. Within the system side, graded relevance (in comparison to the binary one) has

been shown to improve ranking functions [87,88]. Within the user side, recent research
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supports the idea of categorical thinking [24], suggesting that users divide retrieved

results into 3-5 categories based on relevance [79]. However, levels of granularity were

decided based on a self-report mechanism, without clear evidence that those levels have

different physical manifestations in the brain. In this paper, we aim to provide evidence

for different grades of relevance from a neuroscience perspective.

It is crucial to understand what each grade of relevance actually means. The value

of evaluating information based on graded relevance has begun to receive attention

in recent years both from system [88, 89] and user [5, 33, 90] point of views. This is

particularly important since the granularity of relevance assessment in previous studies

has been based on investigating this phenomenon indirectly, via some sort of media-

tor [22, 24]. Therefore, our understanding of how searchers perceive different degrees

of information relevance is limited [88]. This paper aims to investigate the neural un-

derpinnings of graded relevance directly. In particular, we focus on discovering and

mapping the brain mechanisms of graded relevance, within an IR process performed by

humans engaged in a Q/A retrieval task. Examining differential judgement perception

and execution from the user’s point of view could provide a simple extension to the

traditional relevance research [315]. Additionally, understanding graded relevance at

the visceral level could lead to a better understanding of automatic graded relevance

prediction. The outlined research motivation to investigate graded relevance using a

data-driven approach is addressed in Chapter 6.

2.8 Conclusion

This chapter aimed to establish a basic theoretical background for the thesis in light

of recent developments. Relevance, a key concept in IR, is an intrinsically difficult

phenomenon to capture and understand effectively. A multidisciplinary approach pro-

vides significant advantages by introducing novel techniques and methods to study this

complex phenomenon. As relevance is a human notion, it is essential to examine the

neurological, psychological, and physiological mechanisms involved, which is the main

scope of this work. This chapter introduces the NeuraSearch research branch, providing
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the main motivation for the theoretical and empirical design of the present study. As

a result of identified research gaps in this chapter, we argue that:

• Our understanding of cognitive mechanisms that contribute to the formation of

relevance is still not complete.

• It is not clear how the user’s cognitive states, which provide psychological context,

influence the formation of relevance assessment.

• While past studies have shown that brain activity differs significantly during the

processing of relevant vs. non-relevant information, so far our understanding of

relevance as a graded variable from a cognitive neuroscience standpoint is limited.

The following chapters explain how the research is carried out and introduce the

contributions that the work undertaken within this thesis provides.
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Research Methodology

This Chapter outlines detailed settings of the experimental methodology utilised in the

user study, investigating neurological processes during the relevance assessment. Sec-

tion 3.1 focuses on the user study setup. Then, Section 3.2, presents the procedural

model of the study and the EEG data acquisition process. Section 3.3 describes how the

collected physiological data were pre-processed and statistically analysed. Finally, Sec-

tion 3.4 reports the results of the Questionnaires used to assess participants’ subjective

task perception.

3.1 Experimental Setup

3.1.1 Participants

For the purpose of this project, we have recruited a participant sample consisting of

forty-two individuals (16 males (38.10%) and 26 females (61.90%)) between 18 to 40

years old and with a mean age of 24.88 and a standard deviation (SD) 5.71 years.

All participants were recruited either via the SONA System (the School of Psycho-

logical Sciences and Health Participant Pool), social media advertisements or flyers

posted at the University of Strathclyde campus using opportunistic sampling. There

was no monetary payment associated with the study participation, but eligible par-

ticipants (enrolled in Psychology or Psychology combined degree at the University of

Strathclyde), received two academic credits. Participants reported themselves to be
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neurologically and physically healthy with normal or corrected-to-normal vision. Over

half of the participants were students (61.90%), and the rest were either employed in

skilled jobs (33.33%) or unemployed (4.48%). Three participants reported being left-

handed. All participants have completed part of their education in English and either

had high English proficiency (n = 22) or were native English speakers (n = 20). The

majority of non-native speakers were originally Romanian (3) and the rest of the par-

ticipants were from Germany (2), India (2), Poland (2), Slovakia (2), Spain (2), China

(1), Czechia (1), Ghana (1), Greece (1), Hungary (1), Iran (1), Lybia (1), Malta (1)

and Syria (1). On average, participants had an experience of 16.83 (±3.26) years of

formal education. Recruited participant sample was not equally balanced based on

demographic information (i.e. sex, nationality, age), as these factors were independent

of the variables of interest influencing the effects under study, which in turn reduces

potential sampling bias [316].

Participants sub-selection

A priori power analysis was performed, which identified that a minimum sample of 27

participants was required to achieve a medium effect size with 0.80 power for each exper-

iment presented in this thesis. Prior to every main experimental analysis, the collected

data were visually inspected in order to detect EEG signal disturbances. Participants

with a high number of artefacts (caused for example by excessive movement, insufficient

number of trials or/and poor contact between the conductive electrode and a scalp)

present in the data were manually excluded based on visual inspection of pre-processed

data channels and topographic plots of averaged epochs (detailed pre-processing steps

are described in Section 3.3.1).

3.1.2 Study Design

This controlled user-centred work followed a within-subject experimental design. Par-

ticipants were exposed to every level of an independent variable (IV) presented in

randomised order to measure neurophysiological changes resulting from exposure to

different experimental conditions using EEG. In this experiment, participants engaged
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in the Q/A task, which is a well-established and frequently employed paradigm to in-

vestigate IR phenomena (see e.g. [275]). During the task, participants were presented

with a question and either relevant or non-relevant answer, presented word by word.

To investigate neural correlates of binary relevance assessments, participants were in-

structed to make a binary relevance assessment once they gathered enough information

to determine the answer relevance in relation to the presented question. The binary

relevance assessment had 2 levels: relevant (‘rel’) and not relevant (‘nr’). Next, to in-

vestigate the effect of SPK on relevance assessment, participants were asked to provide

an assessment of their SPK of the question answer. The SPK assessment had 2 levels:

knowledgeable (‘know’) and not knowledgeable (‘notknow’). Lastly, in the graded rel-

evance paradigm, participants were presented with the same question and answer they

initially saw and instructed to provide graded relevance judgement at each point of

the answer as it was unfolding to them. The graded relevance judgement had 3 levels

(non-relevant, low relevant and high relevant). The dependent variable (DV) was the

EEG signal. The overview of IVs, DVs and their comparison is presented in Table 3.1.

Table 3.1: The overview of all experimental variables investigated in this thesis.

Experimental Variables

Binary Relevance rel nr
IV SPK know notknow

know rel vs. notknow rel know nr vs. notknow nr
Graded Relevance HIGHR LOWR NONR

DV EEG Signal

3.1.3 Stimulus Presentation

The experimental stimuli were presented on a 22-inch colour Mitsubishi Diamond Pro

2040u NF CRT monitor (with a resolution of 2048 x 1536 and refresh rate of 75 Hz)

using E-Prime 2.0. Participants were seated approximately 60cm from the computer

screen, and response keys were located on a standard QWERTY keyboard. All text

events were presented in Arial font, size 16 with grey background to reduce screen

luminance. A soft light was used to eliminate external visual distractions.
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3.1.4 Questionnaires

Throughout the experiment, participants were asked to fill in the Entry, Pre-Task, Post-

Task and Exit Questionnaires. The Pre-Task, Post-Task and Exit Questionnaires were

administered using Qualtrics online survey tool, which automatically creates and stores

the log file. Participants engaged with the questionnaires using either their personal

smartphone or the experimenter’s tablet. On the other hand, the Entry questionnaire

(designed to gather participants’ demographics and medical history information) was

administered in a printed format, so that the experimenter could check more efficiently

whether participants meet the pre-defined inclusion criteria. A copy of the Entry

Questionnaire is available in Appendix C.1. Inclusion criteria included individuals

between 18 to 55 years of age, without any pre-existing neurological or psychiatric

condition, and not under influence of drugs or medication that might impact the EEG

signal recordings. Furthermore, as prior sleep has been shown to significantly affect

the EEG signals [317], we required participants to feel rested. There were no selection

criteria based on handedness. Prior to participating in the task, participants filled

in the Pre-Task questionnaire (see Appendix C.2), with the instruction to self-rate

their general knowledge of 6 disciplines (i.e. sport, history, politics, science, medicine,

history). After completing the task, participants filled in the Post-Task questionnaire

(see Appendix C.3), assessing their task perception. At the end of the experiment,

participants completed the Exit Questionnaire (see Appendix C.4), designed to examine

the participants’ perception of their overall performance.

3.1.5 Q/A Data Set

The data set employed for the studies included in this thesis was initially developed

and used by Moshfeghi, Triantafillou, and Pollick [275]. We have chosen this data

set as it has been proven effective in investigating IR phenomena from a neuroscience

standpoint [275,276]. The original data set developed by Moshfeghi, Triantafillou, and

Pollick [275] contained 138 general knowledge questions with either relevant or non-

relevant answers and difficulty assessments. For the main experimental part (described

in Section 3.2.4, we kept 55 original questions with the difficulty ratings, which were
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further expanded by the inclusion of 73 Q/As from TREC-8 and TREC-2001 1 following

an example from the original data set. Additional three questions were selected for the

trial part of the experiment (see Appendix D.1). The TREC-8 and TREC-2001 Tracks

were selected as they (i) cover a wide range of disciplines, (ii) they are independent of

one another, and (iii) they provide a correct answer to the question as well as relevance

assessment. We ensured that the selected Q/As were accurate and not time-dependent

or ambiguous by manually validating each answer using a search engine. The created

data set was then split into two parts (Data Set A (see Appendix D.2) and Data Set B

(see Appendix D.3)), each containing 64 questions, answers and relevance assessments

in total. The decision of splitting the data set into two balanced parts was made during

the pilot study after observing the length of the experiment and to reduce the fatigue

of the participants. We ensured that Data Set A and B have similar characteristics

(shown in Table 3.2) to avoid introducing any bias in our results. For example, we

balanced both data sets to contain apriori 50% relevant and 50% no-relevant answers

presented to the participant. Selected questions covered a wide range of topics (such

as sport, geography, politics, science, history, medicine etc.) to reduce any potential

bias that might occur from the emphasis of one particular topic area.

To address our research questions, we have further adapted and balanced the an-

swer length (long vs. short) 2, answer presentation (grammatically complete sentence

vs. snippet), question difficulty (easy vs. difficult)3 and readability (readable vs. not

readable) 4. This was done to reduce any potential bias that might occur from the

emphasis of one particular question/answer type. An example of an easy question pre-

sented to the participants was “What is epilepsy?”, which was followed by the short,

relevant answer “Epilepsy is a brain disorder characterised by seizures”. The order of

1https://trec.nist.gov/data/qamain.html
2The answer length was measured by the number of words the answer consisted of. The answer

length ranged from 8 to 25 words
3To assess the difficulty level, two independent annotators separately judged question difficulty on

a two-point scale - i.e. difficult vs. easy. The overall inter-annotator agreement was reasonably high
(Cohen’s kappa, κ = 0.72)

4The answer readability was calculated using Flesch Score. Following the approach of Gargoum and
Keeffe, answers with Flesch Schore ¿ 60 were classified as readable, whereas answers with Flesch Score ¡
60 were classified as not readable [318]. Answer readability was calculated using the textstat readability
function [319] implemented in RStudio with R 3.6.1
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the questions was randomised for each participant. This randomisation ensured that

the recorded signals and effects were related to the users’ subjective relevance assess-

ment of the presented stimuli, and not related to the stimulus presentation frequency,

potentially causing an oddball effect [33]. We ensured that the questions from both

data sets were approximately the same length, based on the mean number of characters

per question category. We have further modified some words with American English

spelling to suit British readers and corrected some minor grammatical mistakes con-

tained within the TREC-8 and TREC-2001 collections. This was done to minimise

any potential artefacts present in the neurological data resulting from the presentation

of grammatical violations. Furthermore, we have modified the length of some of the

answers to fit the answer word limit. Participants were randomly assigned to one of

the two data sets.

Table 3.2: The Mean length and of the answer word-count based on category for Data
Set A and Data Set B.

Data Sets
A B

Answer Length MeanA SDA MeanB SD B

Total 14.88 6.24 15.02 6.31

Relevant 15.00 6.24 14.97 6.34

No-Relevant 14.75 6.33 15.06 6.38

Difficult 15.19 6.42 14.69 6.02

Easy 14.56 6.13 15.34 6.67

Long 20.84 2.17 21.09 1.99

Short 8.91 0.89 8.94 0.80

Complete 14.63 6.25 14.94 5.96

Incomplete 15.13 6.31 15.09 6.74

Readable 14.20 6.53 14.57 6.27

Not Readable 15.38 6.10 15.39 6.38

3.1.6 EEG Recordings

The experiment took place at a neuropsychology laboratory at the University of Strath-

clyde in a semi-darkened room, free of any visual or auditory distractions to avoid inter-

ference from deviant neurophysiological activity. Brain signals were acquired using the
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128-channel HydroCel Geodesic Sensor Net (Electrical Geodesics Inc., Oregon Eugene,

USA) and recorded within the standard EGI package Net Station 4.3.1 software. The

location of the 128 electrode placement (E1 to E128) has been shown in Section 2.5,

Figure 2.4. A Net Amps 200 amplifier was used for the recording and to facilitate the

synchronisation between the behavioural response of the participant and their brain

signals. To set the system for recording, we followed Electrical Geodesic Inc guidelines.

We aimed to keep the electrode impedances below 50 kΩ, according to the recom-

mended system value. Raw EEG data were recorded at a sampling rate of 1000 Hz and

referenced to the vertex electrode (Cz). Before fitting the sensor net over the scalp,

the electrodes were soaked in potassium chloride (KCl) electrolyte solution to facilitate

conductivity between the skin and electrodes. Each participant’s head was measured

to determine the correct EEG net size, and the net was positioned using standardised

procedures, ensuring that the vertex (located at the central intersection of the sagittal

and coronal planes) is halfway between the inion and nasion and halfway between both

bilateral preauricular points [320]. The EEG net Cz electrode was positioned at the

marked vertex.

3.2 Experimental Procedure

3.2.1 Ethics

Ethical approval (no. 948) was obtained from the Computer and Information Science

Ethics Committee at the University of Strathclyde and the experiment was carried

out in accordance with the ethical guidelines. The current study did not involve any

invasive procedure for data collection. All participants were assigned a unique ID num-

ber to ensure participation anonymity. Anonymised data were securely stored on a

personal, password-protected database within the university network with authorised

access to ensure a high level of data protection. Collected data were processed with

strict adherence to the Code of practice and with the General Data Protection Regula-

tions. The Data Management Plan (containing information about data collection, data

documentation, metadata, ethics, data storage and data preservation) was submitted
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as a part of the ethics application.

3.2.2 Procedure Outline

The user study was carried out in the following manner. The formal meeting with the

participants took place in the laboratory setting. The investigator was present and

available for the entire duration of the experiment in order to monitor the experiment,

answer questions and provide clarification if necessary.

At the beginning of the session, all the participants were briefed as to the procedure

and the purpose of the experiment through the information sheet (see Appendix A.1

for reference). All participants received the same experimental instructions and the

experiment only began once participants fully understood the task and felt confident to

perform it. Then, participants were asked to provide informed consent (see Appendix

A.2), confirming their willingness to voluntarily participate in the experiment. All

participants were notified about their right to withdraw at any time during the study,

without giving a reason and without any consequences. After that, they filled in an

Entry Questionnaire. Next, participants completed a Pre-Task Questionnaire.

Once the sensor net has been placed on the participant’s scalp and impedances

were brought to an acceptable level, all the channels were checked for any flat activ-

ity. Participants were instructed to avoid eye movements, eye blinks, jaw clenching,

muscle tensing and any head movements during the data acquisition. For this purpose,

we have provided a short demonstration during which participants were instructed to

perform certain movements while they observed the raw EEG activity displayed in real-

time on the screen. This process helped participants understand the negative effect of

physiological artefacts on the data quality.

Prior to the main experimental trials, participants underwent a number of three

training trials, which resembled the main experimental task. Participants were able to

repeat the training until they confirmed to have a good understanding of the proce-

dure. The data obtained during the training procedure were not included in the main

analysis. After completing the training procedure, participants proceeded to the main

experimental task. In total, every participant completed 64 main experimental trials.
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To avoid fatigue, the trails were split into two equally long blocks separated by a break.

After completing the main experimental task, participants were instructed to fill out

the Post-Task and Exit Questionnaires. A debriefing sheet was provided at the end of

the experimental session (see Appendix A.3).

3.2.3 Synchronisation of EEG signal and Behavioural responses

The EEG signal and behavioural responses were recorded throughout the entire dura-

tion of the main experimental task, during which participants interacted with presented

stimuli as their brain activity was monitored. The synchronisation between the real-

time raw EEG signal and behavioural responses was maintained via Network Time

Protocol (NTP). The NTP is a standard and commonly used mechanism for commu-

nicating clock and timing information between devices and software so that events in

E-Prime are synchronised with the EEG data collected by EGI’s amplifier. E-Prime is,

therefore, able to send the event marker with a unique ID and a timestamp representing

the event of interest (i.e. stimulus presentation, button press) to the EEG recording

system. Each experimental session generated two complementary data files:

• Behavioural data .edat output file containing information about stimuli, stim-

ulus presentation sequence, participant details, participants’ reaction times and

responses linked to the chronological presentation of every trial.

• Real-time raw EEG signal (i.e. voltage fluctuations measured at each electrode)

containing event markers.

3.2.4 Experimental Task

The schematic task representation is depicted in Figure 3.1. At the beginning of the

task, participants were presented with instructions. Next, they viewed a randomly

selected question from the data set, followed by the fixation cross, which indicated the

location of the answer presentation. Eye movements introduce large artefacts to the

EEG signal and in standard EEG paradigms trials contaminated by eye movements

or blinks are often discarded [321]. Therefore, to control free-viewing and minimise
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the presence of any confounding artefacts (i.e. saccades), the answer was presented

in the middle of the screen word by word. Words were presented to the participant

using a rapid serial visual presentation (RSVP) with a duration of 950ms for each

word stimulus. The presentation duration of 950ms has been tested and determined

by the pilot study outcomes. Furthermore, the duration has been deemed sufficient

to model fluent reading and to avoid the overlapping effect of two consecutive words

on the ERPs [33]. Furthermore, the engagement of cognitive processes underpinning

information processing and decision making during word RSVP is frequently captured

within the 100 to 900ms time interval [322–324]. Rather than using a naturalistic

reading approach (i.e. self-paced reading [325]), we employed RSVP as it reduces the

effect of time differences associated with inter-individual stimulus processing variability.

The ERP components were, therefore, time-locked to the word presentation. The RSVP

approach has been commonly applied to examine neurological signatures of reading in

the ERP studies (e.g. [326]) as well as in the IR paradigms investigating IN [292] and

query construction [290].
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Figure 3.1: The flow diagram of the experimental task.

The figure shows the structure of a task. From the left (START), the question is presented in

a randomised order. Once ready, the participant presses a button on the keyboard to start.

Firstly, a fixation cross was presented for 950ms. Then, an answer is presented word by word.

Each word is shown for 950ms. The participant makes a binary relevance assessment (i.e.

’rel’ vs. ’nr’) once enough information is gathered and he/she has the option to stop the

word presentation once the assessment has been made. If the participant does not make a

relevance assessment during the word presentation, they are prompted to do so in the next

step, without the time limit. Next, they are instructed to respond to the question assessing

their prior knowledge and indicate whether they already knew the answer to the question (i.e.

’know’ vs. ’notknow’). After that, participants proceed with the graded relevance judgement

(’NONR’, ’LOWR’, ’HIGHR’), with no time restrictions. Within this step, the participant

assesses relevance based on the subjectively perceived information accumulation process. Hence,

while the answers were presented word-by-word again, participants were asked to submit a

subjective graded relevance assessment for the information segment presented to them from the

first stimulus (i.e. word) up to and including the current stimulus. The process is repeated for

all 64 questions (END).

Participants were instructed to carefully read individual words that would form ei-

ther relevant or non-relevant answers. Once participants gathered enough information,

they had an option to terminate the word presentation sequence (and to continue to
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the next step), or to view the sequence in full. In general, we controlled the number of

relevant and non-relevant answers presented to the participant, but we did not control

the number of words each participant saw. This allowed us to simulate an information

search and retrieval, as participants were not required to read through the whole an-

swer. Instead, they were able to terminate the answer presentation once the relevance

assessment was made. As brain activity was recorded during the reading, to avoid the

possibility of confounding hemispheric effects (due to motor planning or execution),

counter-balancing was used, and participants were instructed to interact with the key-

board using either their left or right hand. Participants were then asked whether they

already knew the answer to the presented question (i.e. SPK assessment - ‘know’ vs.

‘notknow’). The SPK evaluation was performed after completing each trial (after see-

ing the answer to the question). This allowed participants to make a more informed

judgement about their knowledge state, as opposed to asking participants about their

knowledge state prior to seeing the answer. This is because participants may not be

completely aware of whether they know the answer as there might be difficulties in

distinguishing whether someone actually knows something or is instead simply familiar

with it and whether they can recall or only recognise the information they believe to

have knowledge of. Additionally, levels of confidence and criterion levels for judge-

ments of this nature can vary across participants [311, 314]. In other words, asking

the question after the participant sees the answer, can make participants aware of any

anomalies in their knowledge [311]. It is important to note that in general, there is a

positive relationship between overclaiming non-existent knowledge and self-perceived

knowledge driven by impression-management concerns [327]. Therefore, we were not

interested in the participants’ knowledge accuracy, but rather in their feelings of cer-

tainty and confidence associated with Q/A interaction and processing resulting from

self-perceived domain expertise [328].

After that, participants were again presented with the same answer appearing on

the screen in the same order (up to the point of presentation abandonment). In this

stage of the trial, the answers were presented word by word as continuous text. Par-

ticipants were instructed to assign graded relevance assessments (NONR, LOWR, and
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HIGHR) for each word segment of the answer while taking into account information

accumulation, rather than assessing words in isolation with relationship to the question.

The graded relevance assessments were then assigned retrospectively, enabling this de-

tailed information to be applied to the corresponding EEG segments of interest. The

interpretation of binary and graded relevance assessment categories depended on each

participant’s subjectively perceived information accumulation process, which enabled

capturing the subjective nature of relevance assessment [10].

3.2.5 Pilot Studies

Before commencing the main user study, we performed a pilot study with four partic-

ipants whose data were not included in the final analysis. The sample of pilot partic-

ipants consisted of 3 females and 1 male between 23 to 38 years of age, with a mean

age of 29.75 years (SD = 6.24). Based on the participants’ experience and detailed

feedback, we adjusted the study design and presentation by increasing the font size,

decreasing screen luminance and clarifying small parts of the instructions. Addition-

ally, we optimised background colour to reduce eye-blinks [329, 330]. After the pilot

study, it was determined that the participants were able to complete the user study

without problems, including having adequate time to comfortably read and respond to

presented stimuli, and that the system was correctly logging participants’ behavioural

responses and neurological signals.

3.3 Data Pre-processing and Analysis

3.3.1 Pre-processing Steps

The brain activity was recorded from participants as they engaged with relevant and

non-relevant content, up to the point where the participant submitted binary relevance

judgement. Because the recorded EEG signal is often weak and noisy, raw data typically

requires a series of preparation steps. To prepare data for analysis, an automated

pre-processing pipeline was built through the adaptation of the EEGLAB tools [331]

performed in MATLAB (The MathWorks, Inc., Natick, Massachusetts, US). The EEG
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data pre-processing steps were based on Makoto’s Pre-processing Pipeline5. The order

of pre-processing steps with brief descriptions is available in table 3.3.1. All collected

neurological raw data were first loaded to the EEGLAB and visually inspected. Then a

low-pass filter of 30Hz was applied. We down-sampled the data from 1000Hz to 250Hz.

Downsampling, a commonly applied procedure, is used to reduce file size for easier

data manipulation. Then a high pass filter of 0.3Hz was applied. Filtering is another

common procedure used to attenuate frequencies associated with noise rather than a

signal of interest. In other words, filtering efficiently increases the signal-to-noise ratio

by removing frequency bands of non-neural origin. We then automatically rejected bad

channels EEG sensors that were not functioning properly during the data acquisition

and that were high in noise throughout the task). The re-referencing to average (across

all electrodes) was subsequently performed (to provide an approximation of zero µV for

the reference at each time point). The CleanLine EEGLAB plugin was used to filter

line noise. All epochs (the time windows of interest) were then extracted from 200ms

before stimulus presentation to 950ms afterwards. To detect and remove components

associated with ocular, cardiac and muscular artefacts based on their power spectrum

and time-course, we performed Independent Component Analysis (ICA) and rejected

artefacts using ADJUST [332]. Both ICA and ADJUST are capable of extracting

relevant information within the noisy signal, allowing the separation of measured signal

into fundamental underlying components [333]. Bad channels were interpolated using a

spherical interpolation method. The spherical interpolation method refers to a common

data-repair method that computes interpolated data in the bad channels based on the

good channel values [334]. Next, we removed the two outermost belts of electrodes

of the sensor net. We removed 38 peripheral channels: E1, E8, E14, E17, E21, E25,

E32, E38, E43, E44, E48, E49, E56, E57, E63, E64, E68, E69, E73, E74, E81, E82,

E88, E89, E94, E95, E99, E100, E107, E113, E114, E119, E120, E121, E125, E126,

E127, E128 which are prone to show muscular artefacts, following the approaches of

Bian et al. [190] and Calbi et al. [335]. Epochs were then extracted again from 100ms

before stimulus presentation to 950ms afterwards based on the stimulus labels for every

5https://sccn.ucsd.edu/wiki/Makoto’s_preprocessing_pipeline
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condition of interest as follows:

• Binary Relevance: ‘rel’ and ‘nr’

• Graded Relevance: ‘HIGHR’, ‘LOWR’ and ‘NONR’

• Self Perceived Knowledge: ‘know’, ‘notknow’, ‘know rel’, ‘notknow rel’, ‘know nr’

and ‘notknow nr

We used automatic epoch rejection based on thresholding (i.e. rejecting epochs by

detecting outlier values greater than ±100µV due to the signal contamination). All

epochs were baseline corrected. After pre-processing the data, epochs of interest were

grand averaged.

3.3.2 Statistical Analysis of EEG data

To test for statistically significant differences in the neurological processing associated

with the condition of interest, we employed a data-driven approach, which is partic-

ularly effective in whole-brain analysis of complex mental phenomena as it minimises

the upfront assumptions and allows for the contribution of many distinct areas at dif-

ferent time points [30]. To identify significant cortical differences, we compared the

values for 109 electrode pairs at every time point (every 4ms, 237-time points in to-

tal) over the 100 - 950ms time window. The initial time interval (0 - 100ms) was

excluded from the main analysis as we were not interested in the initial sensory pro-

cessing of stimulus features [336]. The data-driven approach applied a non-parametric

permutation-based paired t-test (1000 permutations) using the statcond function imple-

mented in the EEGLAB [331]. The statcond function produces a matrix of p values per

each time interval of interest and per compared condition pair. Instead of employing

formal corrections for multiple comparisons, we have followed the recommendations of

Rothman [337] and the approach of Laganaro [338] outlined in Subsection 3.3.3. As a

result, the probability of false positives was reduced by employing rigorous clustering

methods. In all statistical analyses, a significance level of 0.05 was used. This means

that only p values which were less than or equal to 0.05 were considered statistically

significant.
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Table 3.3: An overview of data pre-processing pipeline steps.

Pre-Processing Step Description

1. Channel Locations Import Modification of default channel names which do not
correspond to those in the montage.

2. Low-pass Filter Cutting off frequencies higher than 30Hz.
3. Data Re-sampling Re-sampling the data to the rate of 250Hz.
4. High-pass Filter Cutting off frequencies lower than 0.3Hz.
5. Clean rawdata Automated identification of bad channels.
6. Re-reference to Average Creating a common reference for the data using the

vertex electrode (Cz).
7. Cleanline Automatic adaptive estimation and removal of si-

nusoidal noise.
8. Epoching Optional step to reduce the data set size and to im-

prove the outcomes of ICA. Epoching at this stage
removes noisy periods between the epochs of inter-
est. As a result, specific time windows of interest
(-200 to 950ms) are extracted.

9. ICA & ADJUST ADJUST is based on ICA and used for the identifi-
cation and removal of artefacted ICA components.

10. Interpolation Automated transformation of channel values iden-
tified through automatic rejection as bad on the
basis of channel values identified as good.

11. Electrode Removal Optional step of removing two outermost belts of
electrodes, prone to contain muscular artefacts.

12. Epoching Extracting specific time windows for every condi-
tion of interest (-200 to 950ms) from the continuous
EEG signal.

13. Baseline Correction Automated transformation and correction of the
baseline for every epoch segment over the -100ms
to 0ms time window.

14. Epochs Auto-rejection Automated artefact rejection based on thresholding
(i.e. the function finds values exceeding threshold
values of -100 to 100µV).

84



Chapter 3. Research Methodology

3.3.3 Identifying ROIs

As the present study utilises a data-driven approach, for optimal detection of effects, the

ROIs were determined based on statistically significant differences between compared

conditions of interest. Therefore, we used the features of the data under analysis to

position the ROIs. We were not interested in isolated electrodes where a test statistic

might happen to be large. Instead, we applied the method utilised by Laganaro and

colleagues [338]. To identify potential ROIs, we only considered clusters with at least

five electrodes next to each other extending over at least 20ms and retained with an

alpha criterion of 0.05.

3.3.4 Identifying ERP Components

Obtained pre-processed signal reflects the average neural activity per condition time-

locked to an event of interest, recorded at each of the scalp electrodes. The high tempo-

ral resolution of the order of the ms makes EEG an excellent tool for studying the time

course of cognitive and neural processes. The paired t-test described in Subsection 3.3.2

was able to identify ROIs and time intervals reflecting significant changes in the neural

activity between conditions of interest. Identified significant ROI clusters and time

intervals were used to visualise topographic plots and grand averaged ERP waveform

for every condition of interest. To determine the ERP component, topographic plots,

the ROI distribution and grand-averaged ERP waveforms were visually inspected and

compared with existing literature based on their latency, location on the scalp, func-

tional sensitivity and amplitude polarity. A similar approach was used by Kaganovich,

Schumaker and Rowland [339] and by Tacikowski, Cygan and Nowicka [340].

3.4 Questionnaire Analysis

This section presents the analysis of the quantitative and qualitative feedback obtained

from forty-two participants using questionnaires to understand participants’ overall

background and subjective experiences. The questionnaire analysis was done prior

to the main experimental result analysis with the aim to better understanding fac-
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tors that might affect participants’ engagement with the main experimental task. The

questionnaires were distributed to the participants before (Entry and Pre-Task Ques-

tionnaires) and after the main experimental task (Post-Task and Exit Questionnaires)

and there was no time limit associated with the completion of each questionnaire.

The outcomes of the Entry Questionnaire, gathering mainly participants’ demographic

and background information such as gender or age were reported earlier in Section

3.1.1. The Pre-Task questionnaire was designed to assess participants’ use of search

engines and general knowledge across different disciplines. The Post-Task Question-

naire was designed to shed light on a participant’s specific actions and responses during

the task and the Exit Questionnaire allowed participants to assess their own perfor-

mance. In general, questions included in the Pre-Task and Post-Task Questionnaires

were a structured forced-choice type, while Exit Questionnaire included an unstructured

open-ended question.

3.4.1 Pre-Task Questionnaire

The main goal of the Pre-Task Questionnaire was to collect information on the partic-

ipants’ engagement with search engines and to understand participants’ overall prior

knowledge with respect to the topics included in the main experimental task. We have

decided to exclude the first question from the analysis as many participants found it

ambiguous. The next two questions briefly assessing the frequency at which partici-

pants engage with search engines used a 5-point Likert-type agreement response format

(answers: 1: “I do not use search engines”, 2: “Less than several times a month”, 3:

“Several times a month”, 4: “Several times a week”, 5: “Several times a day”). Overall,

results suggest that all participants use search engines on average several times a day

(M = 4.88, SD = 0.40) and as well as submit their query in the form of a question to

answer their IN (M = 4.66, SD = 0.62).

Additionally, we asked participants to what extent they are familiar with the fol-

lowing topics: history, sport, science, geography, medicine and politics using a 5-point

Likert response scale (answers: 1: ”Not knowledgeable at all”, 2: ”Slightly knowl-

edgeable”, 3: ”Moderately knowledgeable”, 4: ”Very knowledgeable”, 5: ”Extremely
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Figure 3.2: Graphical representation of Pre-Task Questionnaire results.
Box plot of the participants’ knowledgeability across different disciplines (History, Sport, Sci-

ence, Geography, Medicine, Politics). The asterisk (*) represents the mean value, while the

cross (+) represents the outlier value.

knowledgeable”). The results shown in Figure 3.2 indicate that participants were the

most knowledgeable in the area of Science (M = 3.00, SD = 0.83) and least knowledge-

able in the area of Sport (M = 2.24, SD = 1.01).

3.4.2 Post-Task Questionnaire

The Post-Task Questionnaire was developed by expanding and adapting questions and

answers published in the study of Moshfeghi and Jose [169]. The main aim of the Post-

Task Questionnaire was to capture participants’ subjective experiences and impressions

of performing the main experimental task. Participants rated their perception of the

task, presented questions, familiarity with questions and comfort using a 7-point Likert

Scale (answers: 1: “Strongly Disagree”, 2: “Disagree”, 3: “Somewhat Disagree”, 4:

“Neither Agree nor Disagree”, 5: “Somewhat Agree”, 6: “Agree”, 7: “Strongly Agree”).

The results shown in Figure 3.3 indicate that participants found the task (M =

6.13, SD = 1.18), questions (M = 5.97, SD = 0.90) and selected question topics (M =

5.95, SD = 1.04) rather interesting. Perceived difficulty of the task (M = 4.35, SD =

1.64), questions (M = 4.18, SD = 1.58) and selected question topics (M = 4.30, SD =

1.59) was rated as moderate. Presented questions (M = 5.95, SD = 1.18) and task in

general (M = 6.00, SD = 1.11) were overall considered as readable. Additionally, both,

questions (M = 5.88, SD = 1.26) and task (M = 5.78, SD = 1.12) were also considered
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Figure 3.3: Graphical representation of Post-Task Questionnaire results.
Box plot of the participants’ task-related perceptions. The asterisk (*) represents the mean

value, while the cross (+) represents the outlier value.

as understandable. Overall, participants indicated that they have somewhat enjoyed

the task (M = 5.33, SD = 1.35). On average, participants felt moderate physical

comfort (M = 5.53, SD = 1.40) and task was not rated as too stressful (M = 3.28,

SD = 1.78). Questions selected for the experiment were perceived by participants as

moderately familiar (M = 4.70, SD = 1.32) and relevant to them (M = 5.35, SD =

1.39). In general, the results of the Post-Task Questionnaire indicate that participants

did not perceive any difficulties with the experimental design that might have made

caused them discomfort and impacted their engagement.

3.4.3 Exit Questionnaire

Using the Exit Questionnaire, we examined participants’ experiment-related impres-

sions (Part A), perceptions of their own overall performance (Part B), as well as general

comments for the user study. To record participants’ responses, we used a 7-point Lik-

ert Scale (answers: 1: “Strongly Disagree”, 2: “Disagree”, 3: “Somewhat Disagree”,

4: “Neither Agree nor Disagree”, 5: “Somewhat Agree”, 6: “Agree”, 7: “Strongly
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Agree”) and one open-ended question, which gave participants an opportunity to pro-

vide a qualitative description of their experience during the experiment.

Figure 3.4: Graphical representation of Exit Questionnaire results.
Box plot of the participants’ experiment-related impressions and their performance. The aster-

isk (*) represents the mean value, while the cross (+) represents the outlier value.

Overall, the results (presented in Figure 3.4) indicate that participants felt that

they had enough time to press a button to terminate the answer presentation (M =

6.10, SD = 1.28). Additionally, they found the speed of the word presentation (M =

6.20, SD = 1.12) to be appropriate for reading. The font size (M = 6.56, SD = 0.95)

and monitor luminance (M = 6.00, SD = 1.58) were also rated to be task appropriate.

Most of the participants felt moderately comfortable (M = 5.32, SD = 1.65) during the

task and the EEG cap was not causing them significant discomfort (M = 6.00, SD =

1.50). Participants found following the procedure to be somewhat easy (M = 5.76, SD

= 1.26), with easy to read (M = 6.24, SD = 1.36) information and clear instructions

(M = 6.61, SD = 0.80) and they were somewhat satisfied with their performance (M

= 5.29, SD = 1.33). Participants indicated that they have answered (M = 6.80, SD

= 0.60) all the questions honestly (M = 5.27, SD = 1.55), somewhat correctly and to

their best abilities (M = 6.59, SD = 0.87). On average, participants did not feel under

significant pressure (M = 2.90, SD = 1.53) and they did not feel tired (M = 3.76, SD =
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1.83). The majority of participants rated their effort (37) and their performance (31)

to be constant throughout the study. The rest of the participants felt that their effort

(3) and performance (6) was greater during the first half of the main experimental task

(i.e. before the break). Out of 42 participants, 13 participants took the opportunity to

provide qualitative feedback, which opened up the opportunity to gain a better insight

into the participant’s experience. The majority of qualitative responses (8) were rather

positive. Participants found the experiment interesting (3), enjoyable (3), intellectually

stimulating (1), fun (1), amazing (1) and they enjoyed having a new experience (1).

In terms of negative feedback, participants found the task slightly uncomfortable (2)

and tiring (1) and would appreciate more breaks (1). One participant would prefer

a more narrow definition of relevance categories (however, our aim was to investigate

subjectively perceived relevance). One participant made a suggestion to space relevance

response buttons further apart.

3.5 Chapter Summary

The current Chapter has provided a detailed overview of the methodological and ana-

lytical framework used in the current thesis. In particular, the chapter outlines:

• Considerations and requirements behind the study design and implementation.

• Participant recruitment, participant exclusion.

• Study design, explaining variables of interest used in the thesis to address our

Research Goals outlined in Section 2.7.

• Overview of the procedural steps necessary to conduct the experimental study

as well as ethical considerations including the informed consent process and data

privacy measures.

• Detailed steps involved in the EEG data pre-processing and preparation for the

statistical analysis.

• Detailed steps involved in statistical analysis of obtained neurological signals.
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• Questionnaire results describing participants’ subjective perceptions of their task

engagement.
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Part II

Empirical Contributions
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Since relevance is a complex mental phenomenon, it is essential to also consider the

underlying perceptual and cognitive processes. To do so, as mentioned in the thesis

motivation (Section 2.7), this work aims to gather behavioural and neuro-physiological

EEG data in order to better understand participant’s experience during relevance judge-

ment tasks. Chapter 4 investigates neurological phenomena that underpin binary rele-

vance assessment using a data-driven approach. Chapter 5 considers contextual aspects

of relevance assessment formation, namely participants’ SPK. Chapter 6 examines rel-

evance as a graded variable and explore potential neurological and cognitive differences

associated with each grade of relevance. The approaches used in the empirical part

were designed to gain a better understanding of this complex construct and provide

empirical support for relevance theories, but also existing studies.
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Chapter 4

The Cortical Activity of Binary

Relevance

This Chapter describes the EEG investigation of binary relevance assessment and pro-

vides the means to address the first thesis motivation outlined in Section 2.7.1. The

main contribution of this chapter is the use of a data-driven approach, which has not

been previously used to investigate textual binary relevance assessment. In compari-

son to traditionally used methods (e.g. theory-driven ERP analysis), the data-driven

approach used in this study highlights important and previously not reported neuro-

logical differences associated with the processing of relevant vs. not relevant content.

The chapter is organised as follows. Section 4.1 presents theoretical background evalu-

ating relevant literature and explaining the assumptions that guide the present study.

The Chapter then continues with the outline of the experimental setup (Section 4.2),

Section 4.3 where the results are presented and discussed before conclusions are drawn

in Section 4.4.

4.1 Background

After Roccio’s introduction of the binary relevance feedback in 1965, relevance became

a central active concept, vital for the functioning of the IR systems [75, 97]. Up to

this date, binary relevance remains the most common standardised evaluation method
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of text documents [341], as well as the most used methodological tool in experimental

research [302]. Traditionally, binary relevance evaluation reflects the relationship be-

tween the content of a retrieved document and the user’s IN expressed as a query [342]

(i.e. the content is either classified as relevant or non-relevant).

Past user-centred relevance assessment experiments rely on the user’s subjective

notion of relevance, which makes users an integral part of the IR. As users’ subjective

perceptions can be challenging to collect using traditional IR explicit feedback methods,

novel research started to focus on the application of brain imaging, such as the EEG.

Past EEG studies have found that processing of relevant vs. non-relevant informa-

tion elicits significantly different neural responses. However, these studies have mainly

utilised component-driven approaches to investigate binary relevance phenomena.

The component-driven approach to researching relevance assessment offers invalu-

able insights, but it is only partially capable of identifying and quantifying any pre-

viously unknown and unreported ERP components that could arise from relevance

phenomena. As a result, a component-driven analysis may overlook key cognitive as-

pects that contribute significantly to unexplored and complex cognitive processes dur-

ing relevance assessment formation. To minimise the potential analytical bias induced

by previous research’s restriction to particular ERPs, this study adopts a data-driven

methodology instead [30].

This chapter aims to study the relevance assessment phenomena using a data-driven

approach. The current experiment was carried out to investigate binary relevance

assessment using a data-driven approach to gain a better understanding of complex

cognitive processes underpinning relevance assessment formation. In particular, the

user’s neural signals associated with relevant and not relevant relevance assessments

were recorded in real-time during a Q/A relevance assessment task. Using a data-

driven approach we compared information assessed as relevant (‘rel’) to that which was

non-relevant (‘nr’).
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4.2 Experimental Setup

In the first study, we aim to explore aspects of binary relevance assessment through

the examination of the user’s physiological and behavioural signals. These signals are

obtained through naturalistic tasks designed for this purpose (described in Section

3.2.4), placing relevance assessment within the context of the IR process and aiming to

incorporate all its aspects, such as user’s IN. The study is built on the previous literature

investigating relevance assessment through the comparison of signals associated with

relevant and non-relevant information.

4.2.1 Participants

Twelve participants were excluded from the final study analysis due to the high number

of physiological artefacts present in the EEG data. The 30 remaining participants (18

females and 12 males) were between 19 to 40 years old and with a mean age of 24.53

and a SD of 5.74 years. Fourteen participants were randomly assigned to Data Set A

and sixteen participants were assigned to Data Set B.

4.2.2 Data Preparation

By design, participants were instructed to make explicit binary relevance assessments

once they acquired enough information to determine answer relevance. Post-relevance

assessment events were not considered for further analysis as it is not the scope of the

thesis. The IV was the user’s binary relevance assessment (with two levels: ”Non-

Relevant” (‘nr’) and ”Relevant” (‘rel’)). The DV was the EEG signal gathered during

the word-by-word answer presentation.

During data pre-processing we have removed on average 17.17 (±9.82) bad channels

and ADJUST (based on ICA) isolated and removed a mean number of 16.33 (±10.03)

component artifacts. After the data pre-processing, 330.03 (50.57%) of accepted trials

were marked as ‘rel’ and 322.63 (49.43%) as ‘nr’ (descriptive statistics are displayed in

Table 4.1).
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4.2.3 Data Analysis

We used a data-driven approach (described in Section 3.3.2) to test whether there are

statistically significant differences in the neurological processing associated with the

judgement of ’rel’ vs. ’nr’ information, which is particularly effective in whole-brain

analysis of complex mental phenomena because it minimises upfront assumptions and

allows for the contribution of many distinct areas at different time points. [343,344].

Table 4.1: The Mean number and SD of accepted and rejected epochs for ‘rel’ and ‘nr’
condition.

Accepted Epochs Rejected Epochs
Condition Mean SD Mean SD

rel 330.03 130.27 75.87 86.43

nr 322.63 112.14 72.53 64.97

4.2.4 Statistical Analysis of Button Responses

Participants’ behavioural responses were compared to the relevance assessment set pro-

vided with the TREC-8 and TREC-2001. In general. The overall accuracy of the partic-

ipants’ binary judgements was 81.09%. Although participants’ accuracy indicates how

well the task was performed, we were primarily interested in the subjectively perceived

relevance of each answer. Hence, these results were excluded from further analysis.

On average, participants were presented with 801.07 words (±168.49) and the main

experimental task lasted approximately 49.68 minutes (+/- 8.43). Overall, the mean

button-press response time for binary relevance assessment from the point that the

stimulus was presented was 501.14ms (±259.48ms). In particular, the average response

time for relevant judgement from stimulus onset was 500.78ms (±259.26ms) and for

non-relevant judgement, it was 500.41ms (±259.04ms)
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4.3 Results

100 - 200ms. The first observed a statistically significant difference in neural activity

between the ’rel’ and ’nr’ conditions emerged in the 100 - 200ms interval. When com-

pared to the ’nr’ condition, the ’rel’ condition was associated with significantly greater

positivity in the right posterio-temporal region and significantly greater negativity in

the left fronto-temporal region. Figure 4.1 (row I) shows significant electrode clusters

(5 electrodes: E90, E91, E92, E98, E101), time intervals, and ERP waveforms, as well

as topographic plots. Given the topographies and waveform peaks, the differences are

most likely due to P100 ERP component variability (similar distributions reported, e.g.

by [345]). The P100 ERP component is a positive waveform reflecting initial visual

field activation, and increased P100 amplitude observed during relevant information

processing could indicate early selective attention allocation, with more early attention

allocated to relevant stimuli [204]. This early P100 selective stimulus encoding may

have an impact on later ERP components associated with working-memory [346], such

as the LPC which has been commonly reported in relevance assessment studies [206].

450 - 600ms. The processing of ’nr’ content versus ’rel’ content was associated with

lower amplitude in an electrode cluster (16 electrodes: E6, E7, E13, E55, E78, E79,

E80, E85, E86, E87, E92, E93, E98, E103, E104, E106) that bridged the right centro-

parietal negativity within the 450 - 600ms time interval, as shown in 4.1, row II. The

significant differences were related to the increased centro-parietal negativity associated

with the ’nr’ condition versus the ’rel’ condition. Previous studies have found that

observed anterior negativity and co-occurring posterior positivity reflect the N400 ERP

component, with similar topographic distributions [347,348]. Lower N400 amplitudes in

response to ’nr’ content may be associated with a higher semantic incongruity between

the question context and the provided answer. The fact that ’nr’ content is associated

with less positivity during this time period is consistent with the findings of e.g. [205],

who discovered that irrelevant content produced more negative N400 responses.

600 - 750ms. It is possible to trace the significant differences in ERP positivity

recorded over the right centro-posterio-temporal cluster (7 electrodes: E78, E79, E85,
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E86, E92, E93, E98) shown in the topographic plots between 600 and 750ms time

frame (see Figure 4.1, row III) to the LPC1 (e.g. [33, 101]). The LPC component is a

positive-going deflection that appears 600ms after the stimulus and is typically strongest

over the posterio-medial brain areas [349]. In comparison to the processing of the ’nr’

content, the positivity was noticeably higher for ’rel’ content. Higher LPC amplitudes

are connected to decision-making and memory processing, which may indicate an effort

to retain pertinent information during cumulative information exposure [205, 350]. In

addition, larger LPC amplitude deflection has been observed in response to task-related

stimuli in the past studies [351], which is consistent with our results.

4.4 Conclusion

The data-driven approach was found to be an effective tool to explore novel, previously

not reported neurological signatures associated with the subjective perception of binary

relevance assessment. Our findings add to our understanding of the concept of relevance

and provide evidence to support its theoretical foundations. Overall, the study supports

the empirical findings of previous studies that investigated textual relevance processing

associated with the N400 and LPC components. Furthermore, the data-driven approach

revealed previously not reported neural differences in an early P100 component, which

provide novel insight into cognitive mechanisms that contribute to the formation of

relevance assessment. Attention-related P100 might trigger early stimulus processing,

such as input registration and classification. Finally, we believe our findings are a

significant step toward understanding the nature of relevance assessment in terms of

electrophysiological modulation and operationalising it for the IR process.

1LPC and P600 are frequently used interchangeably. The P600 ERP component has frequently
been related to relevance assessment (e.g. [33]). However, in language studies, the P600 component is
mostly related to ”syntactic re-analyses.” As a result, given that the LPC has been connected to memory
and recognition processes, the term LPC might be more appropriate to utilise while concentrating on
relevance assessment.
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Figure 4.1: (a) Topographic plots for ‘rel’ vs. ‘nr’ conditions, including a mean differ-
ence plot for the 100 - 200ms (I), 450 - 600ms (II) and 600 - 750msms (III) time windows.
Reddish colours of the scalp topography indicate positive ERP values, whereas bluish
colours indicate negative ERP values. (b) The 128-channel net graph with highlighted
statistically significant electrode sites for each significant time interval. (c) The com-
parison of grand averaged ERP waveforms for ‘rel’ (blue) vs. ‘nr’ (orange) condition.
Significant time intervals are highlighted in grey for each significant time period.
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4.5 Chapter Summary

This chapter revisited neural aspects of binary relevance assessment. The findings of

this study are consistent with previous literature examining users’ subjective binary

relevance perception. Additionally, we have observed significant differences in neural

activity related to the P100 ERP component, related to early visual processing, which

has not been reported by previous studies.
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Chapter 5

Self-perceived Knowledge in a

Relevance Assessment Task

The previous chapter presented findings from the data-driven binary relevance assess-

ment analysis and outlined distinct cognitive processes that contribute to the binary

relevance assessment formation. As relevance assessment is significantly influenced by

the user’s internal context, this chapter will examine the effect of context (namely

the SPK variability) on binary relevance assessment formation using a neuroscientific

approach.

5.1 Background

The SPK plays an integral role in shaping cognition and influencing decision-making

within information processing [312] as it impacts subjectively perceived information

importance value [352]. Despite the potential construct importance, SPK has not

been investigated within the context of relevance assessment, and past studies have

predominantly focused on topical knowledge [305]. However, the users’ SPK is a better

predictor of information-interaction behaviour than their actual topical knowledge [312]

as users’ are often unable to accurately assess their actual knowledge [311]. The main

aim of this work is to investigate complex cognitive processes that underpin SPK within

the relevance assessment context from a neuroscience perspective.
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Taking the neuroscience approach offers the unique possibility of exploring dynamic

and complex SPK states while addressing measurement and subjectivity challenges

frequently associated with relevance [90].

This is the first study investigating user’s SPK as a contextual aspect of relevance

assessment during real-time information processing employing electrophysiological mea-

surement. We capture the user’s SPK, binary relevance assessments and associated

brain activity in relation to the Q/A task. The data-driven approach employed in

this study provides the benefit of avoiding potential analytical bias introduced by the

restriction to distinct ERPs [30]. Understanding brain activity associated with the

user’s cognitive states related to SPK could lead to innovative IR techniques improv-

ing retrieval performance and satisfying searchers’ needs more effectively through the

adaptation to individual differences.

5.2 Experimental Setup

The main aim of this study was to explore the effect of user’s SPK on the binary

relevance assessment formation from a neuro-cognitive perspective. Participants’ be-

havioural and neurological signals were recorded as they engaged in the IR task (de-

scribed in Section 3.2.4). We compared the signal associated with distinct SPK states

for each binary relevance assessment (i.e. ‘rel’ vs. ‘nr’).

5.2.1 Participants

Out of a total number of forty-two recruited participants, we have excluded nineteen due

to the high amount of physiological artefacts present in their data, which was in some

cases related to the low number of trials. The low number of trials was caused through

further data sub-sectioning given the variables of interest. The study included a sample

of 23 participants, out of which 9 were males (39.13%) and 14 (60.87%) were females

with a mean age of 24.57 years (SD = 5.84). As the sample size is smaller than required

by power analysis it is important to keep in mind lower statistical power (75% instead of

pre-defined 80%). Data Set A was randomly assigned to 12 participants, whereas Data
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Set B was assigned to 11 participants. On average, participants were presented with

810.17 words (±145.76) and the main experimental task lasted approximately 49.77

minutes (±9.13).

5.2.2 Data Preparation

In this study, participants were instructed to provide explicit binary relevance assess-

ments and their perceived SPK states for every Q/A trial. The IVs were user’s SPK

states (with two levels: “Knowledgeable” (‘know’), “Not Knowledgeable” (‘notknow’)),

and relevance assessments (with two levels: “Non-Relevant” (‘nr’) and “Relevant”

(‘rel’)). The DV was the EEG signal gathered during the Q/A task. Following the

approach of prior studies, the SPK assessment, as a metacognitive evaluation, was per-

formed after completing each trial [311, 353, 354]. This is because participants may

not be completely aware of whether they know the answer1 [311, 314]. After the data

pre-processing (described in Section 3.3.1) a mean number of 17.61 (±11.18) compo-

nents were removed and on average 15.87 bad channels (±10.13) were automatically

identified for removal. The mean number and SDs of accepted vs. rejected epochs for

every condition of interest in this study are presented in Table 5.1.

Table 5.1: The Mean number and SD of accepted and rejected epochs for every SPK
condition of interest within binary relevance assessment context.

Rejected Epochs Accepted Epochs
Condition Mean SD Mean SD

SPK

know 58.70 61.02 260.04 118.34

notknow 103.65 112.42 387.78 126.19

know
rel 31.83 33.80 148.43 89.99
nr 26.87 29.50 111.61 57.57

notknow
rel 50.65 66.84 179.17 78.91
nr 53.00 49.39 208.61 80.31

1There are difficulties in distinguishing whether someone actually knows something or is instead
simply familiar with it, or whether they can recall or only recognise the information they believe in
having the knowledge of. Also, confidence and criterion levels for assessments of this nature can vary
across individuals [311,314].
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5.3 Results

Effects of SPK. The data-driven comparison of ‘know’ and ‘notknow’ conditions

(irrespective of relevance assessment) revealed no statistically significant differences in

brain activity. On the other hand, the comparisons of ‘know rel’ vs. ‘notknow rel’

and ‘know nr’ vs. ‘notknow nr’ conditions were associated with significant brain signal

differences within multiple time intervals and with wide scalp distributions. The SPK,

therefore, has an effect on relevance assessment and can modulate this process at the

neural level.

Non-Relevant Assessments: There were no significant differences between the ‘know’

vs. ‘notknow’ conditions for non-relevant information in early 100 - 350ms time interval.

The comparison of ‘know nr’ and ‘notknow nr’ conditions revealed significant dif-

ferences in the right centro-parietal cluster within the 350 - 450ms time interval (cluster

of 9 electrodes: E55, E78, E79, E80, E85, E86, E87, E93, E104), as displayed in Figure

5.3, row I. Similar activity patterns are observed in a later time interval of 500 - 550ms

with a more posterior cluster of 5 electrodes (E85, E90, E91, E96, E97) (Figure 5.3,

row II). The significant differences were driven by the higher centro-parietal positivity

associated with ‘know nr’ compared to the ‘notknow nr’ condition. Centro-posterior

positivity of this nature has been shown to co-occur with the N400 [347]. If interpret-

ing this difference in the N400 context, the greater positivity may indicate that SPK

attenuates semantic incongruity (e.g. perhaps through a process where SPK informs

the participant that the information is not relevant, and they, therefore, do not focus

as intently on the relationship and the incongruence between the answer and question,

as someone who does not have SPK).

The ‘know nr’ condition was associated with a significantly greater right posterio-

temporal positivity compared to the ‘notknow nr’ condition. Topographic plots and

ERP waveforms (displayed in Figure 5.3, row III and IV) indicate a transition between

two components as observed bilateral positivity (row III) is becoming more centralised

(row IV). Given the topographies and waveform distributions within the 600 - 750ms

time interval, the differences are likely to reflect the transition from N400 ERP compo-
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nent (row III, a significant cluster of 7 electrodes: E78, E85, E90, E91, E92, E96, E97)

the LPC component (row IV, a significant cluster of 8 electrodes: E84, E90, E91, E92,

E96, E97, E98, E101). Both N400 and LPC components are related and sensitive to se-

mantic violations. The LPC component is a positive-going deflection, emerging around

600ms post-stimulus usually largest over the medial posterior brain areas [355, 356].

The LPC amplitudes are proportional to the effort invested in working memory main-

tenance. Similar to the N400 response, but with a different polarity, more positive LPC

amplitudes are elicited in response to incongruent stimuli [357]. Visual inspections of

scalp topographies within 700 - 750ms time interval suggests that the small significant

cluster of 6 electrodes (E3, E4, E11, E15, E16, E18) in the frontal region could be

likely attributed to the noise associated with excessive eye-movements. Therefore, the

differences in the frontal region are excluded from further interpretation.

Relevant Assessments: The earliest neural activity differences for information as-

sessed as relevant emerged within the 250 - 350ms time interval over the left fronto-

centro-temporal region (significant cluster of 6 electrodes: E27, E28, E29, E35, E40,

E41). The ‘know rel’ condition was associated with a greater positivity compared

to the notknow rel’ condition. Significant electrode clusters, time intervals and ERP

waveforms, as well as topographic plots, are displayed in Figure 5.3, row I. Given the

topographies and waveform peaks at around 300ms post-stimulus, the differences are

likely to reflect variability in the P300/ centro-parietal positivity (CPP) (similar dis-

tributions are reported, e.g. by [358, 359]). The CPP is commensurate with the P300

family of ERPs and similarly to P300, it increases proportionally with the strength of

the exogenously presented evidence (i.e. stimulus intensity) over time [360]. The higher

amplitude observed when people indicated to have SPK might suggest processing ease

associated with reduced cognitive load (see e.g. [361]).

Next, the comparison of ‘know rel’ and ‘notknow rel’ conditions was associated

with statistically significant differences in the right posterio-temporal regions, which

reflected greater positivity in the no knowledge condition. Significant electrode clusters

(8 electrodes: E75, E78, E83, E84, E85, E90, E91, E97), time intervals and ERP
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Figure 5.1: (a) Topographic plots for ’know nr’ vs. ’notknow nr’ conditions, including
a mean difference plot for the 350 - 450ms (I), 500 - 550ms (II), 600 - 650ms (III),
and 700 - 750ms (IV) time windows. Reddish colours of the scalp topography indicate
positive ERP values, whereas bluish colours indicate negative ERP values. (b) The
128-channel net graph with highlighted statistically significant electrode sites for each
significant time interval. (c) The comparison of grand averaged ERP waveforms for
’know nr’ (blue) vs. ’notknow nr’ (orange) condition. Significant time intervals are
highlighted in grey.
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waveforms, as well as topographic plots, are displayed in Figure 5.3, row II. Observed

significance might be related to the N400 ERP component, as N400 scalp distribution

shows anterior negativity and a posterior positivity [362].

The comparison of ‘know rel’ and ‘notknow rel’ conditions revealed significant dif-

ferences in the bilateral fronto-central region within the 350 - 450ms time interval (see

Figure 5.3, row V). Greater frontal negativity was observed in the cluster of 6 elec-

trodes (E5, E11, E12, E13, E19, E20) for ‘notknow rel’ compared to the ‘know rel’

condition. The negativity reflects the N400 component, which has been previously de-

scribed [347,348,363]. The decreased N400 amplitude, when judging information to be

relevant and aligned with the question, appears to indicate that SPK helps to decrease

semantic incongruity and to integrate the words into context [364].

Significant differences between ‘know rel’ vs. ‘notknow rel’ conditions were observed

within the 600 to 700ms time-window over the right centro-posterior region of 6 elec-

trodes (E78, E84, E85, E86, E90, E91; see Figure 5.3, row VI). The differences were

associated with higher positive-going ERP amplitudes associated with the processing of

‘notknow rel’ compared to ‘know rel’ information. The topographic distribution with

a characteristic posterior positivity can be attributed to the LPC component. Greater

LPC amplitudes have been associated with information accumulation and decision-

making processes [365]. Additionally, the LPC reflects the information learning pro-

cess [366] through codification and strengthening of episodic memory [367]. Greater

posterior positivity across ‘notknow rel’ compared to the ‘know rel’ condition might

therefore reflect the enhanced episodic memory activation, enabling the lexico-semantic

facilitation of learning novel information.

5.4 Conclusion

The data-driven comparison of ‘know’ and ‘notknow’ conditions (irrespective of rele-

vance assessment) revealed no statistically significant differences in brain activity. On

the other hand, the comparisons of ‘know rel’ vs. ‘notknow rel’ and ‘know nr’ vs.

‘notknow nr’ conditions were associated with significant brain signal differences within

multiple time intervals and with wide scalp distributions. SPK, therefore, has an effect
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Figure 5.2: (a) Topographic plots for ’know rel’ vs. ’notknow rel’ conditions, including
a mean difference plot for the 250 - 350ms (I), 350 - 400ms (II), 350 - 450ms (III),
and 600 - 700ms (IV) time windows. Reddish colours of the scalp topography indicate
positive ERP values, whereas bluish colours indicate negative ERP values. (b) The
128-channel net graph with highlighted statistically significant electrode sites for each
significant time interval. (c) The comparison of grand averaged ERP waveforms for
’know rel’ (blue) vs. ’notknow rel’ (orange) condition. Significant time intervals are
highlighted in grey.
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on binary relevance assessment and can modulate this process at the neural level. The

current research results establish an important step towards understanding the distinct

cognitive and neural mechanisms involved in relevance assessments within the context

of SPK. As the first attempt to study relevance assessment using brain imaging in the

context of SPK, our work opens up an array of interesting future directions and future

studies might want to consider the importance and implications of user’s SPK.

5.5 Chapter Summary

The current chapter investigated the contextual aspects of relevance assessment forma-

tion. The main aim was to gain a better understanding of neural correlates associated

with user’s SPK states during binary relevance assessment. The results of this re-

search highlight the importance of contextual aspects affecting relevance assessment

formation.
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Chapter 6

The Cortical Activity of Graded

Relevance

The current chapter presents findings from the final part of the empirical research.

Previous chapters described neurophysiological signatures of binary relevance alone

and within the context of user’s SPK. However, in the field of IR, debates surrounding

the concept of relevance granularity are still ongoing. Therefore, this chapter aims to

investigate whether the processing of distinct relevance grades is also associated with

neural differences in the brain. To do so, we employ a data-driven approach, which

has been proven effective in discovering novel, previously non-reported neurophysiolog-

ical phenomena. This would allow us to better understand potential differences and

relationships between each relevance grade.

6.1 Background

While a binary relevance division is prevalent in IR, seminal theories have proposed

relevance as a graded variable; i.e. having different degrees. Empirical studies inves-

tigating relevance as a graded construct mainly focused on explicit user ratings and

graded relevance was often investigated indirectly [24].

Therefore, our understanding of cognitive processes that underpin each relevance

grade is still limited [88]. To unravel this complex phenomenon, we utilise an exper-
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imental design that enables the investigation of graded relevance within the context

of NeuraSearch paradigm and in real-time. The NeuraSearch approach constitutes a

complementary and promising area that can enhance the understanding of complex rel-

evance assessment through the employment of multidisciplinary knowledge. This study

is the first to incorporate relevance theory and a cognitive neuroscience approach to in-

vestigate the neural correlates of graded relevance assessment employing a data-driven

approach.

Our central aims are to identify: (i) the brain activity associated with distinct

graded relevance assessment across time from stimulus onset (ii) test whether there are

neural manifestations of cognitive activity underlying each grade of relevance assess-

ment and (iii) test whether processing distinct grades of relevance is associated with

significantly different neural signatures.

The findings might also potentially increase our understanding of the neurological

properties underlying this process. In addition, the findings can lead to an improve-

ment of user-system interaction, which might result in greater search success. This is

because the system might be able to recommend information to the user which is rel-

evant to different degrees, potentially increasing the interaction effectiveness between

the user and a system [368]. This is because capturing and decoding brain processes

can provide enrichment for information recommendation through the development of

novel softwares and personalisation techniques paired with wireless and portable EEG

devices, enabling everyday unobtrusive signal acquisition.

This chapter focuses on discovering and mapping the brain mechanisms of graded

relevance, within an IR process performed by humans engaged in a Q/A retrieval task.

This investigation will undoubtedly further our understanding of the concept of rele-

vance and will provide the evidence needed to strengthen the theoretical foundations.

6.2 Experimental Setup

The paradigm developed for this study enabled the assessment of relevance to be inves-

tigated in a graded fashion, and for the corresponding neural activity to be recorded

in real-time. The brain activity obtained in the first part of the experimental trial
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(described in Section 3.2.4) was matched with the graded relevance assessment for each

word from the second part of the trial. That way the brain activity for each word was

labelled with an appropriate graded relevance assessment. Specifically, participants re-

flected on sentences that they had seen in response to a question and reported after each

word of the sentence what their perception of relevance was at that time. Participants

were, therefore, processing each word of the sentence within the context of whether

they subjectively perceived the information segment at that time to be relevant to the

question.

6.2.1 Participants

After the participant exclusion, this study was carried out with a sample of fourteen

remaining participants. The sample constituted of 7 females (50%) and 7 males (50%)

with a mean age of 24.93 (SD = 6.27) years. The smaller sample size was a result of data

sub-selection (resulting in a low number of trials). However, despite the small sample

size, the study can provide a reliable indication for the direction of further research and

explain existing behavioural studies examining graded relevance. Six participants were

randomly assigned Data Set A and eight participants were randomly assigned Data Set

B. Participants were presented with a mean number of 870.57 words (SD = 127.62)

and the main experimental task lasted approximately 46.19 minutes (SD = 9.26).

6.2.2 Data Preparation

The data-driven EEG analysis relied upon a participant’s graded relevance assessment

to the presented information. We used a within-subject experimental design, where IV

was graded relevance assessment (with three levels: “No-Relevance” (NONR), “Low

Relevance” (LOWR), and “High Relevance” (HIGHR)). The DV was the EEG brain

signal, gathered from the users during the Q/A task. The acquired continuous EEG

signals were pre-processed using steps described in Section 3.3.1. During pre-processing

steps, a mean number of 15.86 (±9.52) bad channels and 15.86 (±10.34) components

were automatically removed. The mean number and SDs of accepted vs. rejected

epochs for every condition of interest in this experiment are presented in Table 6.1.
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Table 6.1: The Mean number and SD of accepted and rejected epochs across HIGHR,
LOWR and NONR conditions.

Rejected Epochs Accepted Epochs
Condition Mean SD Mean SD

Graded Relevance

HIGHR 19.93 17.97 201.36 58.14

LOWR 16.43 17.60 148.29 66.18

NONR 47.29 43.41 381.71 135.03

6.3 Results

Overall, our experimental results show that significant differences exist in brain activity

when assessing information as having high-relevance, low-relevance, or no-relevance.

Significant differences associated with the mutual comparison of each relevance grade

suggest the presence of distinct cognitive processes that are underpinning the formation

of graded relevance assessment.

6.3.1 HIGHR vs. NONR

200 - 350ms: The first significant time interval associated with the comparison of

HIGHR vs. NONR condition within the 200 - 350ms was associated with 2 significant

electrode clusters and higher widespread central positivity associated with HIGHR con-

dition. The first, earlier significance, within the 200 - 300ms over the centro-frontal

scalp region (cluster of 13 electrodes: E2, E4, E5, E10, E12, E13, E18, E20, E23, E24,

E118, E123, E124) was associated with higher positive amplitudes for HIGHR condi-

tion (Figure 6.1, row I). The second, later significant electrode cluster of 5 electrodes

(E70, E72, E75, E76, E77), emerged within 250 - 350ms time interval over the poste-

rior scalp locations (Figure 6.1, row II). Based on previous studies reporting similar

component distributions [361,369], observed significant differences might be related to

the P300/CPP component, as visual P300/CPP is associated with anterior positivity

and posterior negativity. Greater P300/CPP amplitudes for HIGHR condition when

compared to NONR condition suggests that during this early stage of implicit relevance

assessment, users’ selective attention is allocated towards highly relevant stimuli, which
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are also easier to process in terms of cognitive load [361, 370]. These findings are con-

sistent with the previous literature, showing that the degree of subjectively perceived

information relevance is proportional to the P300/CPP component amplitude [5, 371].

300 - 400ms: The next significant cluster of 29 electrodes (E3, E4, E5, E6, E7, E10,

E11, E12, E13, E15, E16, E18, E19, E20, E22, E23, E24, E28, E29, E30, E34, E35, E36,

E41, E80, E106, E111, E118, E124) within 300 - 400ms time interval emerged within

the large fronto-centro-temporal region, more prominent over the left hemisphere (see

Figure 6.1, row III). Topographic plots, as well as ERP waveforms, suggest a possible

transition between the P300/CPP and N400 ERP components. Centro-frontal posi-

tivity observed within the earlier significant time interval (200 - 350ms) appears to be

shifting towards bilateral posterior regions. Such activity shifting is also reflected in the

ERP waveforms. The P300/CPP component, peaking around 300ms post-stimulus be-

comes negative, with amplitudes peaking around 400ms post-stimulus. The P300/CPP

and N400 share similarities in some respect as they reflect unexpected events, and thus

they might share common resources [372]. Both ERP components are sensitive to pre-

dictability during linguistic categorisation but represent different cognitive processes.

According to Alday and Kretzschmar [373], while the P300/CPP is sensitive to the

dynamics of the stimulus categorisation process itself, the N400 component indexes the

processing of stimulus properties relevant for categorisation and there is a degree of

overlap usually exists between these components.

400 - 500ms: The statistical comparison of HIGHR and NONR conditions was signif-

icant within the 400 - 500ms time interval of 34 electrodes (E5, E6, E7, E11, E12, E13,

E19, E20, E28, E29, E30, E35, E36, E37, E47, E52, E53, E54, E55, E60, E61, E78,

E79, E80, E85, E86, E87, E93, E104, E105, E106, E111, E112, E118), as displayed in

Figure 6.1, row IV. Observed bilateral posterior positivity, frontal negativity and signif-

icant differences within the centro-posterior cluster were associated with negative-going

amplitude deflection, which was the most prominent for the NONR condition, which

is consistent with previous literature [33,205,283]. The context within this experiment

has been provided through the question, and hence it is possible to assume that higher
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N400 amplitudes elicited during NONR condition signalise contextual violation [372]

while highly relevant information reduces the N400 amplitude [374].

550 - 750ms: The last significant time-interval associated with the comparison of

HIGHR and NONR conditions emerged within the 550 - 750ms time interval over the

left centro-posterio-temporal cluster of 31 electrodes (E5, E6, E7, E11, E12, E13, E20,

E30, E31, E36, E37, E42, E52, E53, E54, E55, E60, E61, E62, E67, E78, E79, E80,

E85, E86, E87, E93, E104, E105, E106, E112). Our findings are in alignment with

previous binary relevance studies, suggesting that processing of NONR information is

associated with reduced LPC amplitudes [33,205]. As the LPC amplitude is higher for

the HIGHR condition, this may reflect that the amount of information carried by the

processed term is higher in comparison to the NONR condition [290].
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Figure 6.1: (a) Topographic plots for HIGHR vs. LOWR conditions, including a mean
difference plot for the 200 - 300ms (I), 250 - 350ms (II), 300 - 400msms (III), 400 - 450ms
(IV), and 550 - 750ms (V) time windows. Reddish colours of the scalp topography
indicate positive ERP values, whereas bluish colours indicate negative ERP values. (b)
The 128-channel net graph with highlighted statistically significant electrode sites for
each significant time interval. (c) The comparison of grand averaged ERP waveforms for
HIGHR (blue) vs. NONR (orange) condition. Significant time intervals are highlighted
in grey for each significant time period.

6.3.2 HIGHR vs. LOWR

300 - 350ms: The data-driven comparison of HIGHR vs. LOWR condition revealed

a statistically significant differences within the 300 - 350ms time interval, over the left

posterio-temporal cluster of 8 electrodes (E50, E58, E65, E66, E67, E70, E71, E75), as
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displayed in Figure 6.2 (row I). The posterior negativity differences were associated with

negative amplitude deflections (higher for HIGHR condition), which were likely related

to the P300/CPP distributions. These findings and distributions are very similar to the

previously reported HIGHR vs. NONR comparison, Figure 6.1 (row II). Therefore, the

results suggest that HIGHR information is still perceived by the users as significantly

more relevant compared to the LOWR information [5, 371].

300 - 400ms: Second significant differences in the EEG signal emerged within the

300 - 400ms time interval. The differences were significant over the frontal cluster

of 6 electrodes (E5, E10, E11, E12, E15, E19), as displayed in Figure 6.2 (row II).

Similarly to previously reported significant differences associated with the comparison

of HIGHR vs.NONR conditions within the 300 - 400ms time interval (6.1 (row III), the

topographic plots as well as ERP waveforms associated with the HIGHR and LOWR

condition suggests transition between the P300/CPP and N400 ERP components.

350 - 550ms: Significant differences within the 350 - 550ms time interval were recorded

over the central cluster of 8 electrodes: E7, E31, E36, E37, E53, E54, E55, E80 (Figure

6.1, row III). The differences were associated with negative amplitude deflections, higher

for LOWR condition compared to the HIGHR condition. Scalp distributions and ERP

waveforms suggest that the differences are driven by the N400 ERP component. The

findings, therefore, suggest that LOWR content still causes some degree of semantic

violation which amplifies the N400 component. Furthermore, the processing of LOWR

content might be associated with uncertainty in relation to semantic expectancy, which

is linked to negative voltage deflection [375] when compared to the HIGHR condition.

550 - 750ms: The last significant time interval resulting from a comparison of HIGHR

and LOWR condition emerged within the 550 - 750ms time interval over the centro-

posterior cluster of 7 electrodes (E53, E54, E55, E61, E78, E79, E80). Significant elec-

trodes, topo plots and ERP waveforms are displayed in Figure 6.2, row IV. Significant

differences related to centro-posterior positivity were likely driven by the LPC compo-

nent which is amplified by context-relevant information [376]. Similarly to the compar-
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ison of HIGHR vs. NONR condition, context-relevant words carry higher amount of

information and therefore amplify the HIGHR but not LOWR amplitudes.

Figure 6.2: (a) Topographic plots for HIGHR vs. LOWR conditions, including a mean
difference plot for the 300 - 350ms (I), 300 - 400ms (II) and 350 - 550ms (III), and 550
- 750ms (IV) time windows. Reddish colours of the scalp topography indicate positive
ERP values, whereas bluish colours indicate negative ERP values. (b) The 128-channel
net graph with highlighted statistically significant electrode sites for each significant
time interval. (c) The comparison of grand averaged ERP waveforms for HIGHR (blue)
vs. LOWR (orange) condition. Significant time intervals are highlighted in grey for
each significant time period.

6.3.3 LOWR vs. NONR

250 - 300ms: The earliest time interval associated with the comparison of LOWR

vs. NONR condition was associated with the 250 - 300ms time interval over the left

centro-temporal cluster of 5 electrodes (E36, E41, E42, E46, E51), displayed in Figure

6.3, row I. The differences were associated with a small positive going amplitude de-
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flection, higher for the NONR condition. The observed effect might be due to the fact

that the P300/CPP amplitudes are sensitive to the degree of certainty such that more

certain probabilities elicit higher P300/CPP amplitudes [377, 378]. It is possible that

when perceiving information rated as NONR, participants might feel more confident to

submit their assessments when compared to the LOWR content.

350 - 600ms: Next significant differences were associated with the two time intervals

over the fronto-central cluster. The first significant time interval emerged within the

350 - 450ms interval (cluster of 8 electrodes: E4, E5, E6, E13, E30, E111, E118,

E124) displayed in Figure 6.3, row II; and the second time interval emerged within

the 500 - 600ms interval (cluster of 11 electrodes: E4, E5, E6, E7, E12, E13, E20,

E24, E106, E118, E124) displayed in Figure 6.3, row III. Both of these significant time

intervals were associated with bilateral posterior positivity and frontally distributed

negativity, characteristic for the N400 component. The differences in negative-going

ERP amplitude deflections, which was the most prominent for NONR condition. Our

findings are consistent with previous literature [33, 205, 283] and suggest that NONR

stimuli require significantly greater cognitive effort when compared to LOWR to process

and integrate within the given context [379].
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Figure 6.3: (a) Topographic plots for LOWR vs. NONR conditions, including a mean
difference plot for the 250 - 350ms (I), 350 - 450ms (II), and 500 - 600ms (III) time win-
dows. Reddish colours of the scalp topography indicate positive ERP values, whereas
bluish colours indicate negative ERP values. (b) The 128-channel net graph with high-
lighted statistically significant electrode sites for each significant time interval. (c) The
comparison of grand averaged ERP waveforms for LOWR (blue) vs. NONR (orange)
condition. Significant time intervals are highlighted in grey for each significant time
period.

6.4 Conclusion

In conclusion, our findings provide support for the concept of graded relevance, given

the clear differences in neural activity when information segments are perceived as hav-

ing high relevance, low relevance or no-relevance. The P300/CPP, N400 and P600/LPC

all differed due to the perceived relevance of the answer. Being able to detect relevance

in graded manner inputs to information systems, which in turn could lead to improved

retrieval effectiveness and greater searcher’s satisfaction. Despite a number of ERP

components being identified that relate in different ways to the perceived relevance

level, it will be important to understand how robust/reliable these differences are and

how alterations in the questions (e.g. the difficulty level) or in the answer (e.g. the
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length of the response) may interact with these features. Finally, we believe our con-

clusions constitute an important step in unravelling the nature of graded relevance and

knowledge of the electrophysiological modulation to each grade of relevance.

6.5 Chapter Summary

This chapter explored graded relevance assessment from the neurocognitive point of

view. Our results suggest that there are distinct cognitive processes that underpin each

relevance grade. Therefore, we believe our conclusions constitute an important step in

unravelling the nature of graded relevance and knowledge of the electrophysiological

modulation to each grade of relevance.
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Chapter 7

Conclusions

After introducing theoretical background (Section 2) outlining key concept in this thesis

and identifying important research gaps, which were then empirically investigated and

results presented (Sections 3 and Part II), the thesis comes to a conclusion in this final

part. This final chapter concludes the main achievements and contributions presented

in this thesis, then discusses the limitations, present its implications for academia and

industry and suggests ideas for further research opportunities in the area of IR.

7.1 Thesis Summary

Relevance plays a significant role in IR but up to this date, there is not a widely ac-

cepted theory and understanding of relevance. Thus, there is a great need to further

investigate this key IR concept, which is often labelled as challenging and difficult to ex-

amine mainly due to its complex and subjective nature. This empirical work addresses

challenges associated with relevance subjectivity and measurability by employing the

NeuraSearch approach. The approach benefits from a direct real-time recording of

neuropsychological aspects that contribute to relevance assessment while considering

the user’s perspective. Theoretically, no other features can reflect the user’s subjective

relevance perception better than the signals collected directly from the users them-

selves [130].

As indicated in Chapter 2.7, the main aim of this thesis was to investigate the
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user’s subjective perception of relevance assessment in terms of the cognitive context

and assessment granularity. In particular, we conducted and reported on the user study

examining neurological differences associated with binary and graded relevance assess-

ment. Furthermore, we have explored the role of the user’s SPK in the formation of

binary relevance assessment. The empirical work outlined in this thesis has benefited

from the employment of a data-driven approach, which enabled us to explore neuro-

physiological phenomena associated with relevance in detail while trying to minimise

literature-driven ERP component selection bias.

7.2 Findings and Contributions

In this thesis, we have presented significant advancements in our understanding of hu-

man neurophysiological signals and cognitive mechanisms that drive binary and graded

relevance assessment within the context of IR research. The presented work is based

on the following premises: (a) understanding user’s neural correlates during relevance

assessment can provide an in-depth and realistic understanding of relevance process-

ing; (b) as our understanding of relevance is still incomplete, focusing on data-driven

rather than literature-driven analysis can facilitate exploration of previously unreported

phenomena; (c) by addressing these neurocognitive mechanisms contributing to infor-

mation processing, it is possible to improve current IR systems which would lead to

more efficient search and user’s satisfaction. The results of a data-driven examination

of relevance revealed a number of novel, interesting areas of discussion. We first present

the overall contributions guided by our research aims which are then discussed in more

detail.

Overall, this research has reported the following advancements:

• Chapter 2 summarised current views of relevance within the context of IR, identi-

fied critical gaps in existing research and emphasised the importance of cognitive

aspects that play a crucial role during information processing and categorisation.

• This work proposed to investigate relevance assessment using a data-driven ap-

proach while considering the user’s IN. The data-driven framework (in comparison
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to the literature-driven one) has helped to reveal previously not reported cognitive

phenomena that significantly contribute to relevance assessment formation.

• Our results strengthen existing theoretical and empirical relevance foundations

in the following ways: (a) the data-driven analysis of binary relevance yielded

comparable results to the ones reported by previous studies; (b) neurophysiologi-

cal differences associated with the processing of graded relevance provide support

for the concept of relevance granularity as previously suggested by e.g. [24, 34];

(c) the SPK as a cognitive contextual variable seem to modulate neural activity

during relevance assessment, which supports Ingwersen’s Cognitive Theory [380].

7.2.1 Binary Relevance

From empirical evidence presented in Chapter 4, it was shown that neurophysiological

signals associated with the processing of relevant vs. non-relevant textual information

significantly differ (e.g. [33,101]). However, so far relevance has either been investigated

within the context of word associations (where the relationship between the user’s IN

and relevance assessment was not considered, e.g. [33, 101]) or by the employment

of component-driven approach (with focus on pre-defined ERP components [206]). Al-

though these approaches provide valid empirical insights, for an in-depth understanding

of this phenomenon it is important to investigate relevance as a part of IR while con-

sidering the entire time-scale of relevance assessment build-up and not just its parts.

In order to gain an in-depth understanding of the intricate cognitive processes that

underlie the formation of binary relevance assessments, the current experiment em-

ployed a data-driven approach in contrast to the above-mentioned component-driven

approaches. In particular, we recorded the user’s neural signals associated with the

processing of subjectively assessed ‘rel’ and ‘nr’ textual content in real-time in response

to the Q/A relevance assessment task. The data-driven approach was used to compare

information assessed as relevant to that which was assessed as non-relevant. The data-

driven analysis revealed significant differences in neurophysiological signal associated

with the user’s subjectively perceived relevance in distinct significant time intervals

linked to differences in topographic plots and ERP waveform distributions (addressing
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the RQ1 outlined in Section 1.4). Along with previously reported N400 and LPC ERP

components in studies investigating binary relevance (e.g. [206, 299]) (addressing the

RQ2 outlined in Section 1.4), our results revealed significant differences in neural ac-

tivity in the early time interval associated with the P100 ERP component (addressing

the RQ3 outlined in Section 1.4). The neurological variations linked to the P100 com-

ponent could be early indicators of selective attention allocation, showing an increased

focus on ’rel’ information during early sensory facilitation, which is later transferred

to higher levels of cognitive processing. The past IR studies provide mixed results in

terms of the P300 component. While some studies have found reported differences

related to P300/CPP component within the context of textual relevance assessment

between relevant and irrelevant words (e.g. [94, 280]), others did not - which is con-

sistent with our results (e.g. [33]). Further studies are needed to provide clarification

as the P300 component is complex and frequently elicited by different combinations of

experimental variables [381]. The different contributions of neural sub-processes to the

overall P300 amplitude at varying time points should be considered to better address

the component’s functional significance.

P100. The 100 - 200ms time interval seems to be an early time point associated

with the P100 ERP component, reflecting the early activation of primary visual areas

linked to the participant’s selective attention modulation associated with the process-

ing of relevant information. The P100 component is not sensitive to the stimulus

task-relevance [7], but rather the P100 amplitude enhancement is linked to attentional

relevance coupled with enhanced neural excitability of the visual cortex [7]. Such

enhanced visual excitability might reflect the pre-activation of sensory networks in re-

sponse to effect anticipation [382]. The P100 may indicate participants’ initial capacity

and processing effort to recognise relevant stimuli during relevance assessment con-

struction, according to previous studies that have shown a direct correlation between

the P100 and working memory performance [346]. Further research could explore the

relationship between the P100 and LPC ERP components, which are related to atten-

tion during relevance assessment formation and provide clarification on their mutual

interaction.
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N400. The N400 topographies and time-window differences between the ”rel” and

”nr” conditions were significantly different, with ”rel” condition being associated with

significantly higher amplitude than the ”nr” condition (see Figure 4.1, line II). The

N400 component has been extensively researched in the sense of semantic processing

and the findings have shown that N400 represents many aspects of semantic knowledge

integration and retrieval. The processing of semantic mismatch increases N400 neg-

ativity (see e.g. [383]). Accordingly, less negative amplitude deflections for the ”rel”

condition may signify a higher degree of answer relevance to the query, as was previously

observed by [206], who discovered a lower N400 for highly relevant information.

LPC. The significant differences within the LPC topographies and waveforms (see Fig-

ure 4.1, line III) demonstrate that the amplitudes associated with the LPC component

are much higher for information assessed as relevant compared to non-relevant. The

LPC is frequently reported to follow the N400 component and is connected to cumula-

tive evidence exposure during decision-dependent tasks [350]. Thus, when the memory

judgement at hand requires consideration of the relevance dimension in search tasks,

the LPC amplitudes appear to be influenced by the participant’s response to a stimulus.

Additionally, higher amplitudes observed under the relevant condition might indicate

that the process of categorising words is less cognitively demanding for participants.

7.2.2 SPK

The second empirical contribution of this thesis focused on the investigation of the

role of SPK as a cognitive contextual variable during binary relevance assessment (see

Chapter 5). The main finding, which addresses RQ4, outlined in Section 1.4, is that

there are significant differences in neural activity associated with the user’s SPK when

they perceive information as relevant or as non-relevant. Data-driven analyses revealed

distinct significant time intervals and cortical differences driven by the self-perceived

level of knowledge the user had about the question during relevance assessment. The

differences in neural activity suggest that a user’s SPK affects a variety of cognitive

processes, which underpin relevance assessment formation, such as attentional engage-

ment, perception of semantic relatedness and working memory engagement (addressing
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RQ5, outlined in Section 1.4).

SPK & Non-Relevance Assessment. When judging information to be non-relevant,

SPK was associated with key differences that emerged within two significant time inter-

vals with similar topographic activity patterns. The differences in both time intervals

were driven by centro-parietal positivity during a time period corresponding with the

N400. The SPK might facilitate the cognitive expectancy process and potentially help

with information integration. If the positivity is taken to reflect the same processes as

the N400 (given the bipolar representation across the scalp), then the greater amplitude

in relation to SPK might reflect a greater degree of perceived semantic congruency (e.g.

the answer is not relevant and the participant is aware of that). Users with SPK might

experience reduced uncertainty levels and make more accurate information relevance

predictions [22].

Next significant neurophysiological differences were associated with the LPC am-

plitudes, which were higher across knowledgeable condition within the context of no-

relevance. Significant amplitude differences related to LPC ERP component with differ-

ences recorded over the right posterio-temporal region were higher when participants

subjectively perceived some degree of knowledge of the information presented. The

LPC amplitudes are higher for previously seen stimuli, especially those classified as

”old,” than for stimuli classified as ”new” [384]. This is assumed to be the index for

recollection — recognition accompanied by accurate source memory [349,385–387]. The

LPC amplitudes correlate with the item memory strength (confidence) [388]. The left

hemisphere supports the recollection of word associations, which results in more posi-

tive LPC amplitudes for task-related stimuli compared to unrelated ones. On the other

hand, the right hemisphere processes categorically related words (as indicated by a ten-

dency to observe a difference between categorically related and unrelated words) [351].

Higher amplitudes recorded over the right hemisphere across all the know conditions

might suggest that prior knowledge facilitates the word categorisation process during

the presentation with non-relevant content.

SPK & Relevance Assessment. The significant time interval (within the left

fronto-centro-temporal region), was associated with significantly higher P300/CPP am-
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plitudes for content assessed as knowledgeable. This may be influenced by the amount

of cognitive control [336], referring to high-level executive functions such as attention,

salience detection, working memory and task management. The P300/CPP may be

related to a process such as recognition of previously encountered information [389].

A reduction of the N400 within the time interval of 350 – 450ms, more prominent

for subjectively perceived known relevant information, might be related to semantic

information retrieval [364]. The N400 amplitude positively correlates with the ease

of semantic processing [390], and information recognition during the presentation of

self-important information [347]. This may suggest that SPK decreases cognitive effort

when processing information within a subjectively relevant context [379]. It is possible

that the P300/CPP component and N400 deflections associated with the processing

of subjectively perceived known relevant information are interdependently modulating

relevance assessments [372], as both of these components have been frequently linked

to relevance processing (e.g. [206]). However, further research is required to provide

clarification.

Another important difference was seen in the LPC which is commonly reported to

follow the N400 [391] and it is a key component that relates to memory-based deci-

sions [392]. No SPK conditions might, therefore, require higher memory effort during

decision-making tasks that require relevance considerations [350]. Also, past stud-

ies have reported that learning is correlated with an increase in LPC amplitude [366]

which supports Ingwersen’s Cognitive Theory, suggesting that IR facilitates information

transfer into knowledge and novel cognition [380].

The differences observed within the LPC component might suggest that content

relevance has a higher impact on brain activity modulations than the user’s SPK.

Our results suggest that for non-relevant information items, the LPC amplitudes were

higher for SPK conditions but for subjectively relevant items the amplitudes were

higher across no SPK conditions. It seems that the LPC component amplitudes are

strongly modulated with the evidence accumulation that contributes to the overall

relevance assessment decision rather than the user’s SPK. Therefore, it might be that

the user’s SPK plays an important role during early information processing, but as the
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user becomes more consciously aware of the nature of semantic information the role of

SPK as a cognitive context recedes into the background. However, further studies are

required to provide clarification.

7.2.3 Graded Relevance

The paradigm developed for this study enabled assessments of relevance to be judged in

a graded fashion, and for the corresponding neural activity to be recorded. Specifically,

participants reflected on sentences that they had seen in response to a question and

reported after each word of the sentences what their perception of relevance was at that

time (HIGHR, LOWR or NONR). Participants were, therefore, processing each word of

the sentence within the context of whether they subjectively perceived the information

segment at that time to be relevant to the question and hence, to their simulated IN.

The key findings which emerged from the study (presented in Chapter 6 are that

levels of neural activity across time are dependent on whether the person perceived the

sentence as of high relevance, low relevance or no-relevance to the question (this finding

addresses RQ6, outlined in Section 1.4). A data-driven approach used in this study has

detected three ERP components (P300/CPP, N400 and LPC) associated with the infor-

mation processed in the context of subjectively perceived high relevance, low relevance

or no-relevance. The differences in neural activity suggest that during the assessment

of relevance, a variety of cognitive processes are relied upon to different degrees. For

example, higher relevance might be linked to greater attentional engagement, higher

perception of semantic relatedness (the lower the semantic incongruency between the

context of the question and the answer), and a greater requirement for engagement of

memory (relevant information might be deemed more important to encode and recall

than irrelevant information) - this discussion provides an early step towards answering

RQ7, outlined in Section 1.4.

High Relevance: The results suggest that the greater attentional resources are

allocated to highly relevant stimuli in comparison to stimuli of no and low-relevance,

as indicated through the differences observed within the P300/CPP component. The

P300/CPP amplitude has been shown to be proportional to attentional engagement
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[393]. Greater P300/CPP amplitude has also been suggested to reflect the quantity of

information transmitted [394], the quantity of useful information [395], relevance to the

self [371], or relevance to the task [396,397], or to assessment of relevance specifically [5].

Our results also suggest significant differences in the time interval during which there

seemed to be a transition between the P300 and N400 components. It is possible that

our P300/CPP measure is influenced by the N400 deflections, but the P300/CPP and

N400 may both be modulated during the assessment of relevance. The underlying

processes might therefore be related [372], but future research is necessary to provide

clarification.

There was a clear reduction of the N400 associated with the time interval of approx-

imately 300 – 550ms when comparing highly relevant content to non- and low-relevant

one. Typically, in studies of language, the N400 provides an index of semantic relat-

edness; it is larger when there is a semantic mismatch than semantic congruency (see

e.g. [383]). Given the task requirements of the current study and the differences we

observed in the N400 in response to graded relevance, it seems that in this case the

component is modulated not necessarily in response to the meaning of the word, but

to the relatedness of the sentence to the question. Words processed in the context

of high relevance are semantically aligned to the question, which likely explains the

attenuated N400 response. The N400 results fit closely with the study by Eugster and

colleagues [33], who found a reduced N400 for relevant words, compared to irrelevant

words.

In our study, words linked to sentences of high relevance were associated with the

highest LPC amplitudes compared to the words of non and low relevant sentences.

Similarly, Eugster et al. [33] found in their study that relevant words elicited larger

P600 components than irrelevant words. The link between higher relevance and the

P600/LPC amplitude is not completely clear. In terms of P600 linked to syntactic

processing, later research has flagged a semantic-thematic role (however, larger P600

amplitudes are found due to violations – see e.g. [398]). A more likely reason, or at least

a partial explanation, may be that the late stage positivity is instead linked to memory

processing (e.g. through a process such as recognising that the answer is relevant and
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is linked to the question) and instead of P600 component, it is the LPC component

that should be emphasised within the context of relevance processing. A LPC has been

observed during memory recognition, it is higher for old versus new stimuli, occurs at

around 600ms after a stimulus and also has a central posterior topography [350].

No-Relevance: Words processed without any perceived relevance to the question

had the lowest P300/CPP and the greatest N400 amplitudes across all the comparison

conditions. Additionally, the non-relevant content was associated with lower LPC am-

plitudes during the comparison with highly relevant content. Conversely to the words

processed in the high relevance context, the words processed that are not relevant to

the question may have a low P300 due to cognitive factors such as low attentional

engagement, a large N400 due to a mismatch between the semantic material offered in

the answer given the context of the question (larger semantic incongruity), and a lower

LPC due to reduced memory processing given that the answer is not relevant to the

question (e.g. information to be retained results in larger LPC amplitudes than infor-

mation to be forgotten - see e.g. [399]. No significant differences observed during the

comparison of non-relevant and low-relevant content might suggest that participants

are not intentionally storing this type of content in their memory for further processing

as it does not provide an answer to their IN.

Low Relevance: A crucial question relates to the manner in which words are pro-

cessed in the low relevance context. Specifically, is the processing of these words more

similar to words viewed in the highly relevant context or the non-relevant context? The

ERP component amplitudes for the words processed in the context of low relevance fell

somewhere between those processed in the context of high relevance and those pro-

cessed in the context of no relevance (significant differences were seen for P300/CPP

and N400 components). However, during the later information processing, there were

no significant differences during the comparison of non-relevant and low-relevant con-

tent.
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7.3 Study Implications

The findings presented in this thesis have a number of implications for both theory and

practice. The major contribution of this thesis to the literature is an in-depth, interdis-

ciplinary, data-driven exploration of neurophysiological phenomena that contribute to

binary and graded relevance formation while considering the user’s cognitive context.

The field of IR can benefit from objective and proactive detection of user’s cognitive

states during relevance assessment, which can be implemented to improve the current

system design [400,401].

Further understanding of neurological properties of relevance might provide valu-

able insight into personalisation within IR [124], leading to a significant improvement

in addressing user’s INs [3]. This is because annotating content with some measure of

relevance might be especially useful to filter or/and personalise the content to users.

The more accurate information the system possesses about the user, the higher the

efficacy in assisting the user by providing them with relevant content. For instance, if

the content is too complex for the user to comprehend, the user might be unable to ef-

fectively interact with the retrieved information. As a result, the problem-solving may

fail to occur [368]. In this context, gathering relevance feedback efficiently, unobtru-

sively and in real-time on a set of results allows better iteration of results [29], leading

to effective IN satisfaction while reducing information overload through the reduction

of searcher’s effort.

In terms of graded relevance feedback, previous research has not yet specified clear

criteria and the borderline between distinct relevance grades was unclear [302] despite

the fact that graded assessments reflect the user’s subjective relevance perception more

thoroughly when compared to the traditional binary scale [402]. The current study was

able to provide valuable insight into cognitive processes that contribute to the formation

of distinct relevance assessment grades. We provide empirical support for the theory

of graded relevance and suggest that the human brain processes distinct grades of

relevance significantly different. Emerged significant differences in neural processing

manifested themselves in the form of P300/CPP, N400 and LPC ERP components.
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Generally, both the user and the system would significantly benefit from further

cognitively focused IR research as human-information interaction undoubtedly involves

a series of complex subjective mental representations and cognitive processes. Better

understanding and support of such interactions between human users and elements of

the system might improve the accessibility of information environments. Our research

highlights cognitive processes that contribute to relevance assessment formation and

can be used as an objective measure to inform the system about the distinct mental

perception of a user. The NeuraSearch approach and in particular the employment

of EEG is a highly informative tool which enables to capture the triggers and drivers

of subjective mental phenomena with excellent temporal precision. Furthermore, the

extraction, classification and automatic prediction of the key EEG features can be

integrated to create effective BCI based IR systems. On the other hand, despite sig-

nificant advances in the field and promising impact, the use of EEG technology to

capture user’s implicit feedback as a natural interaction modality is associated with

technological and economical challenges that have so far prevented mass adoption of

this approach. At the same time, researchers should continue to explore the possibil-

ities of everyday applications of the EEG technology to improve IR due to its proven

significant advantages.

7.4 Study Limitations and Further Research Avenues

The study design of this thesis was based on an improved version of previous text-

based relevance studies (e.g. [33,101]). Such improvement was achieved by positioning

relevance in the context of IR through incorporating IN rather than focusing on the

judgement of word-relatedness. However, it is possible to argue that the IN was intro-

duced as an external and artificial factor through the question presentation. Therefore,

as IN is an important aspect that within the IR context precedes relevance assessment,

future studies should consider incorporating more naturalistic representations of the

user’s actual INs, such as user’s own query submissions while considering their true

INs. This work mainly focused on one of the parts of IR process. Investigating rel-

evance while considering all components of IR process while incorporating the user’s
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actual rather than simulated INs might further improve the research validity. However,

it is important to consider the cognitive demands placed on the user while complet-

ing the full IR task. Furthermore, it is also important to account for motor and eye

movements resulting from participants’ interaction with the system while submitting

the query and searching through the results.

Another general limitation across all the work in this thesis is that participants were

presented with a question answer presented word by word rather than as a continuous

text. Although this is a common approach in many EEG studies examining textual

processing as it minimises eye-movement-related artifacts [326], presenting participants

with continuous text would be better suited to simulate naturalistic information inter-

action.

For the purposes of our experiment, we collected data from a total number of forty-

two participants which is more than the requirement of power analysis. However, we

had to exclude a large number of participants due to the high number of artefacts

present in their data. Subsetting existing data have further amplified the issue as some

participants had a low number of trials during certain conditions and therefore had to

be excluded. Smaller participant samples might decrease the statistical power of the

test, which might in turn reduce the reliability and generalisation of our findings. While

this is a valid concern, it is important to note that our results are mainly consistent

with previous NeuraSearch and neurocognitive studies examining cognitive processes

during text comprehension and decision-making.

The experimentation in this thesis examining user relevance assessment was con-

ducted using textual stimuli. However, it is important to note that ERP components as

the neural bases of cognitive processes are sensitive to stimulus modalities [403]. While

most of the information consumption online happens in textual format, gaining a better

understanding of binary and graded relevance assessments in response to image, audio

and video retrieval might significantly enrich the IR field.

It is important to mention that so far there is no general EEG methodological

protocol to investigate textual relevance phenomena and tasks employed across past

experiments differ in their approaches. Usually, the studies would present the partici-
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pant with a question to simulate the query (within IR context) or with a term or topic.

Then, in the next step, the participant would express their subjectively perceived rel-

evance of the offered content. However, the way the content is presented differs across

relevance experiments. For instance, Gwizdka et al. [94] presented participants with a

short continuous paragraph. On the other hand, in the study of Eugster et al. [101]

participants were instructed to submit their relevance judgement after each term they

have been presented with. Our approach can be seen as a combination of the afore-

mentioned study designs. For binary relevance, participants submitted their relevance

assessment after they acquired enough information. For graded relevance, participants

submitted their assessments word-by-word in response to information accumulation.

Such differences in approaches to evaluating relevance might be considered a general

limitation within the field and should be addressed by future research.

Further questions relate to determining the neural thresholds that must be ex-

ceeded for relevance assessment to be made, and to identifying electrophysiological

features with the greatest power to predict relevance assessment and users’ cognitive

context both for binary and graded assessments. Being able to automatically detect

relevance assessment while considering users’ cognitive states gives more sophisticated

ways to detect users’ reactions to information and therefore gives better inputs to infor-

mation systems. This is because capturing and decoding brain processes can provide

enrichment for information recommendation through the development of novel soft-

wares and personalisation techniques paired with wireless and portable EEG devices,

enabling everyday unobtrusive signal acquisition [101, 170, 283]. This could lead to a

reduction or elimination of explicit relevance assessments, which might help to make

IR systems much more user-friendly as minimising user effort is critical. Additionally,

future studies should take into account the proliferation of mobile and tablet devices.

This is because Ong and colleagues [404] demonstrated that search behaviours do differ

between individuals using desktop computers and smartphones. Therefore, the process

of relevance assessment formation should also be considered within this context.

The work in this thesis mainly focused on one aspect of the user’s cognitive states

- their SPK of the content topic. However, users’ internal states involve additional

136



Chapter 7. Conclusions

complex factors such as their emotions, expectations, perceived time pressure and stress,

mental capacity etc. Many of these internal states and their influence on relevance

assessment remain unexplored and therefore this is the area where future work could

be done.

7.5 Final Reflections

The thesis provided valuable insight into relevance phenomena and can serve as an

important basis for further research. Relevance is a difficult phenomenon to understand.

There is a wide range of different factors that influence this internal decision-making

process that depends on the user’s subjective perception of information which occurs

within the context of IR. Despite the inherently difficult task that understanding of

relevance represents we believe that the potential benefits of further exploration in this

area will undoubtedly aid the searchers and researchers of future IR systems.

The work presented in this thesis was an effort in this direction. We have re-visited

binary relevance assessment from a neuroscientific point of view and furthered our

existing understanding of this phenomenon by employing a data-driven approach. The

findings were consistent with previous studies focusing on binary relevance (e.g. [33]),

but also revealed additional important ERP component - P100 which was previously

undetected using component-driven approaches. Furthermore, we have explored the

user’s SPK state and its effect on relevance assessment formation. Lastly, we explored

relevance as a graded variable. Existing user studies using brain imaging considered

relevance only in binary terms which treats relevance grades as equally important. This

premise is clearly not true, as users consider the importance of information to different

degrees.

Moreover, the efficiency of graded relevance in recommender systems has been

proven, as its predictive accuracy has outperformed the approaches relying on a bi-

nary scale [23]. Examining differential judgement perception and execution from a user

point of view provided a simple extension to the traditional relevance research [315].

This is important as exploring manifestations of graded relevance at the visceral level

could lead to a better understanding of automatic relevance prediction. If researchers
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really start using graded relevance metrics, this enables them to build IR systems that

can return highly relevant documents on top of partially relevant ones [405].

It is to be expected that future IR systems will routinely use additional unobtru-

sive information sources (such as brain imaging) as soon as the necessary measurement

techniques are widely available; they have already been demonstrated to provide useful

information that should not be ignored. It is unlikely that more complex behaviour

could be accurately decoded without measurements of brain activity [278]. Offline

neurological signal processing is often a necessary preliminary step preceding the devel-

opment of online BCI research [406]. Future NeuraSearch research within the context

of IR could focus on bridging the gap between EEG data classification and their appli-

cation in online BCIs.

7.6 Chapter Summary

This chapter contrasted the research findings and objectives, discussed the implications

of the findings for academia and industry, unveiled the limitations of the study, and

recommended future research avenues. The empirical work presented in this thesis

concludes, that neurophysiological signals play an important role in furthering our

understanding of relevance phenomena, as they provide an important insight into users’

neurocognitive processes and should be considered in future works.
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[87] J. Kekäläinen, “Binary and graded relevance in ir evaluations—comparison of the

effects on ranking of ir systems,” Information processing & management, vol. 41,

no. 5, pp. 1019–1033, 2005.

[88] S. E. Robertson, E. Kanoulas, and E. Yilmaz, “Extending average precision to

graded relevance judgments,” in Proceedings of the 33rd international ACM SI-

GIR conference on Research and development in information retrieval. ACM,

2010, pp. 603–610.

[89] L. Lerche and D. Jannach, “Using graded implicit feedback for bayesian

personalized ranking,” in Proceedings of the 8th ACM Conference on

Recommender Systems, ser. RecSys ’14. New York, NY, USA: Association

for Computing Machinery, 2014, p. 353–356. [Online]. Available: https:

//doi.org/10.1145/2645710.2645759

[90] Y. Moshfeghi, L. R. Pinto, F. E. Pollick, and J. M. Jose, “Understanding

relevance: An fmri study,” in European conference on information retrieval.

Springer, 2013, pp. 14–25.

[91] W. Qiying, M. Halvey, and R. Villa, “Video test collection with graded rele-

vance assessments,” in Proceedings of the 2016 ACM on Conference on Human

Information Interaction and Retrieval. ACM, 2016, pp. 309–312.

[92] L. Schamber, “Relevance and Information Behavior,” Annual review of informa-

tion science and technology (ARIST), vol. 29, pp. 3–48, 1994.

[93] S. Mizzaro, “How many relevances in information retrieval?” Interacting with

Computers, vol. 10, no. 3, pp. 303–320, 1998.

[94] J. Gwizdka, R. Hosseini, M. Cole, and S. Wang, “Temporal dynamics of eye-

tracking and eeg during reading and relevance decisions,” Journal of the Asso-

ciation for Information Science and Technology, vol. 68, no. 10, pp. 2299–2312,

2017.

148

https://doi.org/10.1145/2645710.2645759
https://doi.org/10.1145/2645710.2645759


Bibliography

[95] E. Mohedano, K. McGuinness, G. Healy, N. E. O’Connor, A. F. Smeaton, A. Sal-
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[290] L. Kangassalo, M. Spapé, G. Jacucci, and T. Ruotsalo, “Why do users issue

good queries? neural correlates of term specificity,” in Proceedings of the 42nd

international acm sigir conference on research and development in information

retrieval, 2019, pp. 375–384.

[291] S. Paisalnan, Y. Moshfeghi, and F. Pollick, “Neural correlates of realisation of

satisfaction in a successful search process,” Proceedings of the Association for

Information Science and Technology, vol. 58, no. 1, pp. 282–291, 2021.

[292] D. Michalkova, M. P. Rodriguez, and Y. Moshfeghi, “Information need awareness:

an eeg study,” in Special Interest Group on Information Retrieval (SIGIR) 2022,

2022.

[293] S. Paisalnan, Y. Moshfeghi, and F. E. Pollick, “Neural correlates of satisfaction

of an information need,” in Advanced Online & Onsite Course & Symposium on

Artificial Intelligence & Neuroscience, 2022.

[294] Y. H. Kim and H. H. Kim, “Automatic extraction techniques of topic-relevant

visual shots using realtime brainwave responses,” Journal of Korea Multimedia

Society, vol. 19, no. 8, pp. 1260–1274, 2016.

170



Bibliography

[295] H. H. Kim and Y. H. Kim, “Video summarization using event-related potential

responses to shot boundaries in real-time video watching,” Journal of the As-

sociation for Information Science and Technology, vol. 70, no. 2, pp. 164–175,

2019.

[296] A. Behneman, N. Kintz, R. Johnson, C. Berka, K. Hale, S. Fuchs, P. Axelsson, and

A. Baskin, “Enhancing text-based analysis using neurophysiological measures,”

in International Conference on Foundations of Augmented Cognition. Springer,

2009, pp. 449–458.

[297] Z. Ye, X. Xie, Y. Liu, Z. Wang, X. Li, J. Li, X. Chen, M. Zhang, and S. Ma,

“Why don’t you click: Neural correlates of non-click behaviors in web search,”

arXiv preprint arXiv:2109.10560, 2021.
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