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Abstract

This thesis focuses on the development of algorithms for the efficient computation

of the element system matrices associated with simplicial elements of arbitrary

polynomial order. The algorithms make use of properties intrinsic to Bernstein-

Bézier polynomials, allowing for sum factorizations techniques to be applicable.

In particular, the presented algorithms are the first to achieve optimal complex-

ity for H1 elements on simplicial partitions in R
d, for d = 1, 2, 3. The optimal

complexity result is extended to two-dimensional vector finite elements. The pre-

sented Bernstein-Bézier basis for vector finite elements presents a clear distinction

between the gradient and rotational components of the vector field. Numerical

results illustrate the optimal cost associated with the computation of the ele-

mental matrices, as well as the efficiency of the Bernstein-Bézier elements. The

thesis contains the documentation of BBFEM, a C++ implementation of the newly

developed algorithms which is available under a GNU General Public Licence. In

addition, a report on the work done for a shorter Knowledge Transfer Partnership

project on edge elements, with Cobham Technical Services, is also included.
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4.1.1 Bernstein-Bézier Basis for the H(curl) Finite Element . . . 86
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Chapter 1

Introduction

The finite element method (FEM) is the most widely used tool for the discretiza-

tion and numerical solution of the problems appearing in engineering design and

analysis. In the finite element method, the choice of the shape functions is crucial

for the stability and efficiency of the procedures involved in the computation of

the approximated solution. For the general theory of FEM, we refer the reader

to [31] and [33]. The solution is approximated by spaces of piecewise polynomials

defined over a partition. In the conventional definition of FEM, the polynomial

order is fixed at a low value, whereas the mesh is successively refined. In the

p-version of FEM [23], the initial mesh is maintained, while the polynomial order

of approximation is allowed to increase.

The standard finite elements consist of piecewise continuous polynomials, and

hold a great variety of corresponding H1-conforming shape functions in the litera-

ture. The most widely used are the Lagrange shape functions. They are very use-

ful for low-order FEM. However, due to the “oscillating” aspect of these functions,

they are not recommended for higher order. In [75], Szabò and Babus̆ka defined

their shape functions as integrals of Legendre polynomials, yielding sparse and

well-conditioned stiffness matrices, thereby suitable for high order FEM. Dubiner

[39] constructed shape functions on triangles by means of the Duffy transfor-

mation. These shape functions present the advantage of having fast integration

properties. Using a similar approach, Sherwin and Karniadakis [59] extended
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the construction to tetrahedra. Towards optimal complexity for setting up the

stiffness matrices, Eibner and Melenk [41] adapted their shape functions to the

quadrature formulas. Some authors gave a prominent place to the construction of

hierarchical bases. Ainsworth and Coyle [14] introduced a hierarchical basis for

tetrahedral elements, using an intrinsic orientation of edges, faces and elements

in order to ensure conformity. In [32], Carnevali presented a new hierarchical

basis for triangles and tetrahedra such that edge, face and region functions are

orthogonal to those of degree at most p−2, p−3 and p−4, respectively. Adjerid

et al [8] introduced shape functions with better conditioning than both Szabò

and Babus̆ka [75] and Carnevali [32], using a particular orthogonalization of the

Szabò-Babus̆ka basis. In [27], Bittencourt constructed shape functions using ten-

sor products of one-dimensional shape functions. Arnold et al use Bernstein

polynomials in their finite element construction [19].

It has been established [74, 35] that standard H1-conforming finite elements

lead to spurious solutions in electromagnetics. Indeed, on a general mesh, the

continuity condition imposed by the H1-shape functions distort the kernel in

such a way that the corresponding zero eigenvalues are shifted to non-zero values

which have no physical significance. When solving discrete variational problems

in electromagnetics, tangential finite elements are the natural choice (see [28] and

the references therein). In constrast to H1, H(curl)-conformity amounts to only

tangential continuity accross element interfaces. Tangential finite elements were

introduced by Nédelec in [67], where he presented (Nédelec) spaces for H(curl)-

conforming functions. The basis which corresponds to the lowest order Nédelec

space consists of the Whitney forms [29]. Even if we restrict our attention to the

case of two-dimensional H(curl)-conforming finite elements defined on triangular

partitions, the literature presents a rich variety of generalizations of the Whitney

forms to higher order. In [70], Ren and Ida use the framework of differential

forms to construct their high order vector shape functions. Using the different

geometries (vertex, edge, facet) of the simplex, they analyze the assigment of the

degrees of freedom on each simplex, and derive a general procedure for generat-

ing H(curl)-conforming bases. From a similar geometric partition of the triangle,
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Gopalakrishnan et al [48] design a basis obtained from some characterizations of

the homogeneous part of the Nédelec space. Their basis is solely expresssed in

terms of barycentric coordinates. Their construction turns out to coincide with

a particular application of the later published work in [19]. In [19], Arnold et al

generalize the classical finite element spaces to any dimension and any order of

the differential forms. Using the concept of a consistent family of extension op-

erators, they derive geometric decompositions of the polynomial spaces, yielding

explicit local bases for them. When p-adaption is needed, hierarchical bases are

often preferred. Motivated by the unified approach presented in [53], Hiptmair

describes in [54] hierarchical bases for high order differential forms of arbitrary

polynomial order. In [77], Webb gives explicit formulas for hierarchical shape

functions in terms of barycentric coordinates, while maintaining the separation

of gradient and rotational spaces. He then suggests a partial orthogonalization of

the presented basis in order to address ill-conditioning. An alternative orthogo-

nalization procedure is proposed in [6] for a generic hierarchical basis. In contrast

to the a posteriori orthogonalization proposed in [77] and in [6], Graglia et al con-

struct in [49] a new family of hierarchical vector bases, using the same technique

as in [50], but with the generating scalar interpolatory polynomials replaced by

orthogonal polynomials. In [12], Ainsworth and Coyle design hierarchical basis

functions based on Legendre polynomials which are suitable for hybrid quadrilat-

eral/triangular partitions. Their analysis includes the matrix conditioning as well

as the dispersive behaviour of the presented elements. Schöberl and Zaglmayr

introduce in [71] a set of hierarchical conforming basis functions based on a ten-

sorial construction [59]. Their basis satisfy the local complete property, in that

the subspaces associated with each geometric block form a complete sequence.

Inspired by [12] and [71], Xin and Cai construct in [80] a hierarchical basis with

improved matrix conditioning. The key idea is to allocate sets of shape functions

to each geometry, in such a way that the shape functions associated with the same

geometry are mutually orthogonal. Using an approach based on “small simplices“

obtained using affine contractions of the mesh simplex, Rapetti presents in [69] a

system for generating high-order Whitney shape functions.
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Bernstein basis representation of polynomials on simplices is widely used in

surface modeling and approximation theory [37, 44, 56, 64], where the computa-

tional methods based on this representation are usually referred to as Bernstein-

Bézier techniques. They feature stable and efficient evaluation, differentiation

and integration algorithms. In contrast to the Lagrange basis functions, Bern-

stein polynomials are non-negative and support shape preservation, which makes

them a standard tool for computer aided design. (For example, the well known

Bézier curves are based on univariate Bernstein polynomials.) Note that Bern-

stein bases have optimal condition numbers among all nonnegative bases on an

interval, see [45]. Finally, the restriction of a Bernstein polynomial to any facet of

the simplex either is identically zero or coincides with a lower dimensional Bern-

stein polynomial, which makes it easy to impose essential boundary conditions

as well as various interelement conformity conditions. Smoothness conditions be-

tween Bernstein-Bézier triangles can be exploited to easily generate elements of

higher regularity [64, 57]. These impressive properties make shape functions gen-

erated by Bernstein polynomials a promising tool for the finite element analysis,

as suggested e.g. in [72, 56]. Recently, Arnold et al [19] have suggested to use

Bernstein polynomials to construct bases for the finite element spaces for vector

fields. However, Bernstein-Bézier finite elements remain relatively little known

to the practitioners of FEM.

The purpose of this work is to exploit the desirable properties of the Bernstein

polynomials in order to generate H1 and H(curl) conforming elements which

produce fast and efficient numerical procedures. Taking account of the numerical

quadrature cost associated with higher order elements, optimal complexity is

obtained, in the sense that the required number of operations is of the same

order as the number of entries that needs to be computed. More precisely, the

obtained complexity amounts to each system matrix entry being computed with

O(1) operations.

Naturally, the efficient evaluation and visualisation of a finite element approx-

imation is but a single part of the overall finite element procedure: one must also
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assemble the so-called system matrix and load vector, and solve the resulting sys-

tem. The cost of assembling the stiffness matrix of an nth order standard finite

element on simplicial elements is at best generally found to be O(n2d+1) in d

dimensions [59, Chapter 2, Chapter 4]. Indeed, the number of shape functions

is O(nd), and O(nd) quadrature points are required in order to get a sufficiently

accurate quadrature rule. With no a-priori information on the shape functions,

this would lead to a O(n3d) cost. The ability to use sum factorizations techniques

relies on a tensorial structure of the shape functions. Quadrilaterals and hexa-

hedrons have a tensor product structure, and thus shape functions are naturally

contructed with a tensor product structure. Efficient finite element procedures

on quadrilaterals and hexahedrons are given in [47]. Tensorial construction of

shape functions on simplices are presented in [27, 39, 60, 61]. Combining a tensor

product structure of the basis functions with sum factorization techniques, Kar-

niadakis and Sherwin [60] design algorithms which achieve the lower complexity

O(n2d+1) for the construction of elemental matrices on simplicial elements. This

complexity is only realized by using special choices of bases. In fact, assuming

that each system matrix entry is to be computed with at least O(1) operations,
the best possible complexity is O(n2d) for elements based on the local polynomial

space P
n
d [41, Section A], but to-date there is no known algorithm by which this

can be achieved. Eibner and Melenk do actually present an algorithm achieving

the optimal orderO(n2d), but this comes at the price of using a significantly larger

local space (and hence more unknowns) than the space P
n
d consisting of polyno-

mials of degree at most n in d dimensions, without a corresponding increase

in convergence rate. Using special block structures arising in vectors and ma-

trices representing polynomials written in their Bernstein-decomposition, Kirby

develops in [62] fast and efficient algorithms based on Bernstein polynomials for

constant coefficient H1 finite elements. The presented algorithms compute the

action of the elemental matrices on a vector, and thus are matrix-free. More re-

cently, using a quadrature based on warped Gauss points, his results are extended

to variable data in [63].

The thesis is organized as follows. Notations and preliminary results are
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introduced in the remaining sections of this chapter. Chapter 2 then focuses

on the efficient computation of the so-called B-moments, which is fundamen-

tal to the optimal complexity results obtained for the computation of element

matrices associated with variable data. The key point consists in taking advan-

tage of a tensor product structure which arises from the Duffy transformation,

when applied to the Bernstein polynomials. Chapter 3 introduces the Bernstein

shape functions associated with the H1 finite elements, and details efficient and

ready-to-implement algorithms for computing the corresponding element matri-

ces. The associated computational costs are shown to be of optimal order in one,

two and three dimensions. Chapter 3 concludes with numerical results which

are consistent with the expected optimal complexity. Chapter 4 focuses on the

Bernstein-Bézier shape functions associated with tangential finite elements in two

dimensions. The presented basis features an explicit separation of the gradient

and gradient-free shape functions, which allows for an easy projection onto the

space orthogonal to the kernel of the curl operator. In addition, the optimal

complexity results of Chapter 3 are extended to the vector finite elements by

means of a sparse transformation into B-form. Chapter 4 includes numerical

results which confirm the predicted optimal complexity, and illustrate the effi-

ciency of the presented vector finite elements. Chapter 5 gives a brief report on

the work I have done during a short Knowledge Transfer Partnership internship

at Cobham Technical Services CTS Ltd, and may be read independently from

the previous chapters. The internship was focused on improving the efficiency of

tangential elements on non-affine meshes, as proposed in [43, 25]. Appendix A

contains explicit formulas for low-order element system matrices associated with

Bernstein-Bézier elements, as well as the graphs of the low-order H(curl) shape

functions illustrating the vector elements introduced in Chapter 4. Appendix B

contains the documentation of the C++ library BBFEM for the H1 Bernstein finite

elements in two and three dimensions, and H(curl) finite elements in two dimen-

sions. Examples illustrating the use of the library are also included. Appendix C

discusses the shift strategy used for solving the Maxwell’s generalized eigenvalue

problem of Chapter 4.
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1.1 Notations

Standard multi-index notations will be used throughout. Hence,

xβ := xβ1

1 . . . xβd

d , x ∈ R
d, β ∈ Z

d
+,

(

α

β

)

:=
d
∏

j=1

(

αj

βj

)

, α,β ∈ Z
d
+,

(

n

β

)

:=
n!

d
∏

j=1

βj !

, n ∈ Z+, β ∈ Z
d
+.

For n ∈ Z+, the space of polynomials of degree at most n in d variables will

be denoted by P
n
d . Then P

n
d is generated by the monomials xβ, with β ∈

Z
d
+, and satisfying |β| :=

d
∑

j=1

βj ≤ n, so that

dimP
n
d =

(

n + d

d

)

, n ∈ Z+. (1.1)

The equation K = O(nk) means that K(n) is equivalent to a polynomial of

degree k, that is, there exists such a polynomial p satisfying limK(n)/p(n) = 1,

as n → ∞. Boldface symbols will only refer to vectors, with the exception of

subscripts and superscripts. Also, 0 may either refer to the null vector or the null

matrix, depending on the context. For simplicity, the notation | · | will be used for

different purposes. Thus, |S| will denote the cardinality of a finite set S, while

|K| will refer to the d-dimensional measure of a domain K ⊂ R
d. Moreover, for

ρ ∈ Z
ℓ
+, ℓ = 1, 2, . . ., we set |ρ| :=∑ℓ

k=1 ρk as already used above. The notation

(·)t refers to the transpose operator.

For n and d ∈ Z+, we use the notation

Ind :=
{

ρ ∈ Z
d+1
+ : |ρ| = n

}

. (1.2)

The symbol T is used to denote a non-degenerate d-simplex with vertices vi,

i = 1, . . . , d + 1, that is, T := 〈vi, i = 1, . . . , d + 1〉 ⊂ R
d, with 〈·〉 denoting the
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convex hull operator. With f and g being square-integrable, we define the inner

product

(f, g) = (f, g)T :=

∫

T

f(x) · g(x)dx, d = 1, 2, 3. (1.3)

We define the set of Bernstein-Bézier domain points Dn
d (T ) associated with the

simplex T by

Dn
d (T ) :=

{

ξρ :=
1

n

d+1
∑

j=1

ρjvj : ρ ∈ Ind
}

. (1.4)

Given a point v ∈ R
d, the barycentric coordinates of v with respect to the simplex

T are given by the unique (d+ 1)-tuple λd = λ := (λ1, . . . , λd+1) such that

v =

d+1
∑

i=1

λivi, with

d+1
∑

i=1

λi = 1. (1.5)

The set Ind defined in (1.2) has a one-to-one correspondence with all possible

barycentric coordinates of degree n in d dimensions. Note that the cardinality of

Ind is
(

n+d
d

)

. Occasionally, for convenience, we use the notation

i ∈ I1d = {(1, 0, . . . , 0), (0, 1, . . . , 0), (0, . . . , 0, 1)}

instead of i ∈ {1, . . . , d + 1} with a natural correspondence. In particular, for

d = 2 we have λ100 := λ1, λ010 := λ2, λ001 := λ3.

The Bernstein polynomials of degree n in d variables associated with T are

defined by

Bn
η = Bn,T

η :=

(

n

η

)

λη, η ∈ Ind , n ∈ Z+. (1.6)

It is well known that the Bernstein polynomials are linearly independent. Observe
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from (1.1) and (1.2) that the cardinality of the set

{

Bn
η : η ∈ Ind

}

(1.7)

is
(

n+d
d

)

, and therefore it forms a basis for P
n
d , see [37]. In particular, every

polynomial p ∈ P
n
d can be uniquely written in the so-called B-form

p =
∑

η∈In
d

cηB
n
η . (1.8)

With cn called B-coefficient of p, we make the convention that any formula for

the B-coefficient sequence cn corresponding to a given polynomial of degree n is

only valid for α ∈ Ind . That is to say, unless α ∈ Ind , the value of the B-coefficient

cα is zero. For the sake of brevity of various formulas, for a given d+ 1-tuple α,

we also set Bn
α = Bn

α1,α2,...,αd+1
:= 0, if α = (α1, α2, . . . , αd+1) /∈ Ind .

We denote by L2(Ω) the space of square-integrable real functions on Ω, with

the associated L2-norm defined by

‖f‖L2(Ω) :=
(

∫

Ω

|f(x)
∣

∣

2
dx
)

1

2 , f ∈ L2(Ω).

For any s ≥ 0, the space Hs(Ω) is the subspace of L2(Ω) which consists of the

set {f ∈ L2(Ω) : Dαf ∈ L2(Ω), |α| ≤ s}, where Dα(·) := ∂|α|(·)
∂α1x1∂α2x2 . . . ∂αdxd

.

Hs(Ω) is endowed with the norm

‖f‖s,Ω := ‖f‖Hs(Ω) :=
(

∑

|α|≤s

‖Dαf‖2L2(Ω)

)
1

2 .

In particular, H0(Ω) = L2(Ω), and H1(Ω) is the subspace of L2(Ω) given by

{f ∈ L2(Ω) : ∇f ∈ L2(Ω)}, and is endowed with the norm

‖f‖1,Ω := ‖f‖H1(Ω) :=
(

‖f‖2L2(Ω) + ‖∇f‖2L2(Ω)

) 1

2 . (1.9)

With a slight abuse of notation, the symbol ‖ · ‖L2(Ω) in (1.9) refers to the norms

in
(

L2(Ω)
)d
, with d = 1, 2, since ∇f is a vector field. In other words, with
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g = (g0, g1)
t ∈ (L2(Ω))2, the L2-norm of g is given by ‖g‖L2(Ω) := ‖g‖(L2(Ω))2 :=

(

‖g0‖2L2(Ω) + ‖g1‖2L2(Ω)

)
1

2 .

For any vector-valued function f := (f1, f2), we set f⊥ := (−f2, f1), curl f :=

∂f2/∂x1 − ∂f1/∂x2, and for a scalar function a, ∇a := (∂a/∂x1, ∂a/∂x2). Obvi-

ously, x = (x1, x2) and x⊥ = (−x2, x1) are vector-polynomials in (P1)
2. Observe

in particular that curl ≡ ∇⊥·. For a given polyhedral domain Ω ⊂ R
2 and s ≥ 0,

we define the space

Hs(curl; Ω) := {v ∈ Hs(Ω) : curl(v) ∈ Hs(Ω)}

which is endowed with the norm ‖ · ‖Hs(curl;Ω) defined by

‖u‖Hs(curl;Ω) :=
(

‖u‖s,Ω + ‖ curl(u)‖s,Ω
)

1

2 .

In particular, with s = 0, H0(curl; Ω) consists of

H0(curl; Ω) := H(curl; Ω) := {v ∈ L2(Ω) : curl(v) ∈ L2(Ω)}, (1.10)

and is endowed with the norm ‖ · ‖H(curl;Ω) defined by

‖u‖H(curl;Ω) :=
(

‖u‖2L2(Ω) + ‖ curl(u)‖2L2(Ω)

)
1

2 , u ∈ H(curl; Ω). (1.11)

Given a normed vector space (V, ‖·‖V ), let A denote a bilinear form defined on

V . A is continuous if there exists a constant ν <∞ such that, for any u,v ∈ V ,

it holds that A(u,v) ≤ ν‖u‖V ‖v‖V . In the previous equation, ν is referred to as

the continuity constant. Moreover, A is termed coercive if there exists a constant

ϑ > 0 such that, for any u ∈ V , it holds that A(u,u) ≥ ϑ‖u‖2V . The scalar ϑ is

called the coercivity constant.
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1.2 The Finite Element Method

In this section, we briefly review the basic concepts as well as some useful results

on finite elements. For a more detailed discussion, the reader is referred to [33, 31].

1.2.1 Definitions

For a given polyhedral domain Ω ⊂ R
d, let ∆ = {Tj}Ni=1 denote a regular trian-

gulation of Ω, see [64, Section 4.3] and [33]. In particular, Ω = ∪Nj=1Tj , and the

intersection of two different simplices of ∆ is either empty, or composed of one

common facet. Each simplex T in ∆ is associated with a local finite element.

Complying with the definition given in [33], a finite element consists of a triple

(T,Nn(T ),Pn(T )), where:

• T is a simplex in R
d;

• Pn(T ) is a space of piecewise polynomials defined on T ;

• Nn(T ) consists of basis functions for the dual space
(

Pn(T )
)′
.

In particular, every polynomial p ∈ Pn(T ) is uniquely determined by its local

degrees of freedom given by the values of the functionals λ(p), λ ∈ Nn(T ). In

the above definition, Pn(T ) is also called the set of local shape functions. The

global finite element space Vn arises from the assembly of the local finite elements

(T,Nn(T ),Pn(T )) for all T ∈ ∆.

Finite element discretizations rely on the so-called variational formulation

which provides the correct mathematical framework in order to ensure the well-

posedness of the problem. Typically, the variational formulation of a differential

equation reads:

Given F ∈ V ′, find u ∈ V satisfying a(u, v) = F (v), ∀v ∈ V, (1.12)

where V is a closed subspace of some Hilbert space (H, (·, ·)), V ′ denotes the
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dual space of V , and a(·, ·) represents a continuous and coercive bilinear form on

V . The Galerkin conforming finite-element discretization of the problem (1.12)

consists in substituting the continuous space with a finite-dimensional subspace,

so as to obtain the discrete problem of the form:

Given a finite-dimensional space Vn ⊂ V and F ∈ V ′,

find u ∈ V satisfying a(un, vn) = F (vn), v ∈ Vn.

The next section discusses the error bounds for conforming finite elements,

when coercive variational problems are considered.

1.2.2 Approximation Properties of Conforming FEM

1.2.2.1 Standard results

The next theorem is a fundamental result behind the theory of FEM. For the

details of the proof, see, for example, [31, Theorem 2.7.7] (see also [42, Proposi-

tion 2.19]):

Lax-Milgram. Let
(

V, (·, ·)
)

denote a Hilbert space, and suppose that a(·, ·) is

a continuous and coercive bilinear form on V . Then, for a continuous linear

functional F ∈ V ′, there exists a unique u ∈ V which satisfies

a(u, v) = F (v), v ∈ V.

In addition, if Vn is a finite-dimensional subspace of V , then there exists a unique

solution un ∈ Vn which satisfies

a(un, vn) = F (vn), vn ∈ Vn.

Hence, for conforming finite elements associated with Hilbert spaces, the coer-

civity of the continuous problem automatically ensures the well-posedness of the
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discrete variational problem. If the coercivity property holds, the next lemma

provides a useful result on the approximation error produced by conforming fi-

nite elements:

Céa’s Lemma. Let (Vn)n denotes a sequence of finite-dimensional subspaces of

the Hilbert space
(

V, (·, ·)
)

. Assuming that the problem (1.12) satisfies the con-

ditions of the Lax-Milgram Lemma, the Galerkin approximation error is bounded

by means of

‖u− un‖V ≤
ν

ϑ
‖u− vn‖V , for any vn ∈ Vn,

where u ∈ V and un ∈ Vn respectively denote the exact solution to (1.12) and

the solution to the corresponding Galerkin discretization. Also, ν and ϑ are the

continuity constant and the coercivity constant of a(·, ·) on V .

The above lemma shows that, up to a multiplication by a constant, the

Galerkin solution un ∈ Vn is the best approximation of u in V with respect to

the norm ‖ · ‖V . This motivates the use of finite element spaces with optimal ap-

proximation properties. Assuming that the discrete variational formulations are

well-posed, the next two sections provide approximation results for conforming

finite elements in H1(Ω) and H(curl; Ω).

1.2.2.2 Approximation Properties of Scalar Finite Elements

Let d ∈ {1, 2, 3}. For n ∈ Z+, the H
1-conforming global finite element space of or-

der n, defined over a triangulation ∆ = {Tj}Nj=1, consists of piecewise continuous

polynomials of degree at most n in d variables. The next theorem gives a funda-

mental result [21, Lemma 4.1] on the approximation properties of H1-conforming

finite elements:

Theorem 1.2.1. Let s ≥ 0 and T ∈ ∆. For any integer n ≥ 1, there exists an

operator πn : Hs(T )→ P
n
d(T ) such that, for any f ∈ Hs(T ), it holds that

‖f − πnf‖ℓ,T ≤ Cn−(s−ℓ)‖f‖s,T , 0 ≤ ℓ ≤ s, (1.13)
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where the constant C is independent from f and n. In addition, the operator πn

is polynomial-preserving, in that πn(f) = f for any f ∈ P
n
d(T ).

Using the above result, it has been shown that for a sufficiently smooth solu-

tion, increasing the degree n will improve the convergence rate [21, Theorem 4.8].

In fact, when the exact solution is analytic on the domain Ω, the rate of conver-

gence is exponential with respect to n [22, Section 1].

1.2.2.3 Approximation Properties of Vector Finite Elements

For n ∈ Z+, the two-dimensional H(curl)-conforming Nédélec space of order n is

defined by

NDn := (Pn)
2 + x⊥

Pn, n ∈ Z+. (1.14)

The global finite element space defined over the triangulation ∆ = {Tj}Nj=1 con-

sists of polynomials defined on Ω such that their restriction to any simplex Tj ∈ ∆

belongs to NDn, and such that tangential continuity is satisfied across the ele-

ment interfaces. The next result [26, Theorem 5.1] gives a similar result as in

Theorem 1.2.1 in the case of high-order edge finite elements:

Theorem 1.2.2. Let s > 0 and T ∈ ∆. For any integer n ≥ 1, there exists an

operator πcurl
n : Hs(T ) ∩H(curl;T )→ NDn such that, for any u ∈ Hs(curl;T ), it

holds that

‖u− πcurl
n u‖H(curl;T ) ≤ Cn−s‖u‖Hs(curl;T ),

where the constant C is independent from u and n. Moreover, πcurl
n preserves

vector polynomials, in that πcurl
n (u) = u for any u ∈ NDn.

Piecewise continuous polynomials and more especially Nédélec polynomial

spaces have been established as suitable conforming finite element discretizations

of the spaces H1(Ω) and H(curl; Ω), respectively. In this thesis, we provide
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bases for theses spaces using Bernstein polynomials. In particular, the classical

results that have been developed on conforming p-FEM automatically apply to

our Bernstein finite elements.



Chapter 2

Bernstein-Bézier Moments

When the data is variable, the elemental quantities generally need to be approxi-

mated by means of numerical quadratures. In this case, the optimal computations

associated with Bernstein-Bézier finite elements are based on the efficient evalu-

ations of the Bernstein-Bézier moments (B-moments) defined by

µn
α(f) :=

∫

T

f(x)Bn
α(x)dx, α ∈ Ind , f ∈ L2(Ω), (2.1)

where T := conv(vi, i = 1, . . . , d + 1) is a non-degenerate simplex in R
d. In

this section, we show that, using the change of variables defined by the Duffy

transformation [40, 39], the multivariate Bernstein polynomials are mapped to

tensor products of univariate Bernstein polynomials, thereby allowing for sum

factorizations techniques [41] to be used. An alternative approach based on this

chapter has been published in [11]. Both methods yield the optimal complexity

O(nd+1) for the computation of the B-moments of order n in d variables. Note

that only divisions and multiplications are counted as operations.

2.1 Stroud Conical Product Rule

In order to optimize the numerical cost associated with quadrature for computing

integrals of the form (2.1), we want to start with a tensor product structure. To

17
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this end, we resort to the Duffy transformation defined by

λ1 = t1,

λ2 = t2(1− t1),
...

λd = td(1− t1)(1− t2) . . . (1− td−1)

λd+1 = (1− t1)(1− t2) . . . (1− td),











































(2.2)

which maps the unit cell [0, 1]d to the simplex T = 〈vi : i = 1, . . . , d+ 1〉. Thus,
the Duffy transformations maps any point t ∈ [0, 1]d to x(t) given by

x(t) :=

d+1
∑

i=1

λivi ∈ T.

The Duffy transformation can be used to build simplicial finite elements based on

a tensorial construction [59, Section 3.2]. However, it should be pointed out that,

in this work, the bases are not constructed as tensor product of polynomials.

Instead, the tensor product structure arises from the application of the Duffy

transformation to the (multivariate) Bernstein polynomials.

Combining the expression of x(t) with the definition of the Duffy transforma-

tion, we find that the determinant of the Jacobian is given by

d!|T |(1− t1)d−1(1− t2)d−2 . . . (1− td−1),

so that

∫

T

g(x)dx = d!|T |
∫ 1

0

dt1(1− t1)d−1

∫ 1

0

dt2(1− t2)d−2 . . .

∫ 1

0

dtd(g ◦ x)(t).

(2.3)

The q-point Stroud conical product rule [73, Chapter 2] consists in approximating

the right-hand side of (2.3) with some appropriate Gauss-Jacobi quadrature rules

as the ones discussed in Section 2.2. The q-point Stroud conical product rule is

exact for polynomials of degree at most 2q−1. In particular, the choice q = n+1



19

in Section 3.3 yields a quadrature rule which exactly computes the integrals of

polynomials of degree at most 2n+ 1.

In our computations, the cell [−1, 1]d is mapped to the unit cell [0, 1]d by

means of the change of variables given by

ti(si) :=
1 + si
2

, −1 ≤ si ≤ 1, i = 1, . . . , d. (2.4)

The Jacobian of this last transformation is equal to 1/2d, so that the right-hand

side of (2.3) can be transformed into an integral over [−1, 1]d. We next proceed

to analyze the computations in more details. For the sake of clarity, the cases

d = 1, 2, 3 will be handled separately.

2.2 Optimal Element-Level Computations of the

B-Moments

2.2.1 Binomial Coefficients

The use of the Bernstein polynomials defined in (1.6) involves multi-index bino-

mials of the form
(

n
α

)

which are products of ordinary binomial coefficients. The

computation of the binomial coefficients may be unnecessarily costly, for example,

if each binomial coefficient is “naively” computed by means of the representation

(

k

p

)

=
k(k − 1) . . . (k −min{p, k − p}+ 1)

(min{p, k − p})! , k, p ∈ N, 0 ≤ p ≤ k. (2.5)

For convenience, we recall that multi-index binomial coefficients are products

of ordinary binomial coefficients which are collected in the auxiliary matrix of C̄n

defined by

C̄i,j := C i+j
i , 0 ≤ i, j ≤ n, (2.6)

where C i+j
i :=

(

i+j
i

)

. The following algorithm with m = n allows for the com-
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putation of C̄n while avoiding the costly multiplications and divisions in (2.5):

Algorithm 2.1: Binomial(C, m, n)

Input : -
Output: Binomial coefficients {Cp+q

p : 0 ≤ p ≤ m, 0 ≤ q ≤ n}.
1 C ≡ 0;
2 for p = 0 to m do
3 Cp,0+= 1;

4 for q = 1 to n do
5 C0,q += 1;

6 for p = 1 to m do
7 for q = 1 to n do
8 Cp,q += Cp,q−1 +Cp−1,q;

9 Return C;

Note that the above algorithm is nothing more than the well-known Pascal

triangle method for the computation of binomial coefficients. With m = n,

Algorithm 2.1 returns C̄n which has its antidiagonals given by the rows of the

Pascal triangle (see Fig. 2.1). Although the entries of the array returned by

Binomial(C, m, n) are all integers, for large values ofm and n, it is recommended

to store them as “double“ numbers, in order to avoid overflow problems with

integers.













1 → 1 → 1
↓ � �

1 ⇉ 2 ⇉ 3
↓ � �

1 ⇉ 3 ⇉ 6













Figure 2.1: Computation of C̄2



21

2.2.2 One-dimensional Setting

With d = 1, it follows from (2.3) and (2.4) that

∫

T

g(x)dx =
|T |
2

∫ 1

−1

g(x(s))ds,

where, for −1 ≤ s ≤ 1, x(s) is the point in the interval T with barycentric

coordinates

(1 + s

2
,
1− s
2

)

,

having also used the fact that the Jacobian of the transformation (2.4) for d = 1

is 1/2. Taking g = f ·Bn
β with β ∈ In1 and using the definition (1.6), the q-point

Gauss quadrature rule applied to the above integral gives

µ̃n
β(f) =

|T |
2

q
∑

i=1

ωif(xi)B
n
β(xi) =

|T |
2

(

n

β

) q
∑

i=1

ωif(xi)
(1 + ξi

2

)β1
(1− ξi

2

)n−β1

(2.7)

where q = O(n), and (ωi, ξi) are the standard Gauss weights and centres for the

interval [−1, 1], and xi, i = 1, . . . , q, are the corresponding centres in the interval

T , with barycentric coordinates

(1 + ξi
2

,
1− ξi
2

)

. (2.8)

The quadrature rule given by the right-hand side of (2.7) exactly computes µn
β(f),

provided that f is a polynomial of degree less or equal to ℓ, with ℓ = max(0, 2q−
1− n). As a direct consequence, with q = n+1, the H1 load vector, as discussed

in Section 3.3.1, will be computed exactly as soon as f is a polynomial of degree

at most n. Clearly, the combined weights of the quadrature formulae (2.7) can

be pre-computed and stored in the auxiliary matrix

D :=
(

ωi

(1 + ξi
2

)β(1− ξi
2

)n−β)

i∈{1,...,q}, β∈{0,...,n}
. (2.9)
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Note that thanks to its product structure, D can be computed with O(n2) oper-

ations. Indeed, for each i = 0, . . . , q, the entries of the arrays

√
ωi

(1− ξi
2

)n−β

,
√
ωi

(1 + ξi
2

)β

, β = 0, . . . , n,

can be computed using O(n) operations, and then each of the q(n + 1) entries

of D obtained by just one multiplication of the corresponding components of the

above arrays.

Assuming that the values of f at the centres xi are known, each of the (n+1)

quadrature centres in (2.7) requires O(n) operations if the matrix D and the

binomial coefficients are pre-computed.

We summarize the findings of this section in the following algorithm for the

computation of µn
β(f) for β ∈ In1 and a theorem about its cost.

Algorithm 2.2: Moment1D(F, q, n)

Input : Precomputed array D given by (2.9), and precomputed binomial
coefficients {Cp+q

q , 0 ≤ p, q ≤ n}.
Output: Bernstein-Bézier moments of f obtained by means of the Stroud

quadrature rule with q quadrature points.
1 F ≡ 0;
2 foreach β ∈ In1 do
3 for i = 1 to q do
4 Fβ += Di,β1

∗ f(xi);
5 /* xi is the point with barycentric coordinates

(
1 + ξi
2

,
1− ξi
2

) */;

6 Fβ ∗=
|T |
2
∗ Cn

β2
;

7 Return F;

Theorem 2.2.1. Let n, q ∈ N with q = O(n). Given the values of a function

f at the Stroud nodes xi, i = 1, . . . , q, the moment vector
(

µ̃n
β(f)

)

β∈In
1

can be

computed with O(n2) operations. In addition, if f is a polynomial of degree at

most ℓ, with ℓ = max(0, 2q − 1− n), then µ̃n
β(f) = µn

β(f) for any β ∈ In1 .
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2.2.3 Two-dimensional Setting

With d = 2, (2.3) and (2.4) give

∫

T

g(x)dx =
|T |
4

∫ 1

−1

ds1(1− s1)
∫ 1

−1

ds2g(x(s))ds,

where x(s) is the point with barycentric coordinates

(1 + s1
2

,
(1− s1)(1 + s2)

4
,
(1− s1)(1− s2)

4

)

,

having also used the fact that the Jacobian of the transformation (2.4) for d = 2

is 1/4.

Taking g = f ·Bn
β and using the definition (1.6), the above integral is approx-

imated by means of the Stroud quadrature rule given by

µ̃n
β(f) =

|T |
4

(

n

β

) q
∑

i1,i2=1

ω
(1,0)
i1

ω
(0,0)
i2

f(xi1,i2)

×
(1 + ξ

(1,0)
i1

2

)β1
(1− ξ(1,0)i1

2

)n−β1
(1 + ξ

(0,0)
i2

2

)β2
(1− ξ(0,0)i2

2

)n−β1−β2

,

(2.10)

where (ω
(d,0)
i , ξ

(d,0)
i ), i = 1, . . . , q, are the Gauss-Jacobi weights and centres with

(α, β) = (d, 0), whereas q is chosen so as to satisfy q = O(n), and xi1,i2 are the

points with barycentric coordinates

(1 + ξ
(1,0)
i1

2
,
(1− ξ(1,0)i1

)(1 + ξ
(0,0)
i2

)

4
,
(1− ξ(1,0)i1

)(1− ξ(0,0)i2
)

4

)

, i1, i2 = 1, . . . , q.

(2.11)

Indeed, the 2-dimensional conical product rule gives

µ̃n
β(f) =

|T |
4

q
∑

i1,i2=1

ω
(1,0)
i1

ω
(0,0)
i2

f(xi1,i2)B
n
β(xi1,i2),



24

which implies (2.10) because

Bn
β(xi1,i2) =

(

n

β

)

[1 + ξ
(1,0)
i1

2

]β1
[1− ξ(1,0)i1

2

1 + ξ
(0,0)
i2

2

]β2

×
[1− ξ(1,0)i1

2

1− ξ(0,0)i2

2

]n−β1−β2

.

The q-point quadrature rule given in (2.10) exactly computes µn
β(f), provided

that f is a polynomial of degree at most ℓ, with ℓ = max(0, 2q − 1− n).

Exploiting the product structure of (2.10) leads to the following optimal result.

We use the concept of sum factorization explained in [41, Section A].

Theorem 2.2.2. Let the assumptions of Theorem 2.2.1 hold. Given the values

of the function f at the Stroud nodes xi1,i2, i1, i2 = 1, . . . , q, the moment vector
(

µ̃n
β(f)

)

β∈In
2

can be computed with O(n3) operations. In addition, if f is a poly-

nomial of degree at most ℓ with ℓ = max(0, 2q − 1 − n), then µ̃n
β(f) = µn

β(f) for

any β ∈ In2 .

Proof. We proceed to estimate the computational cost corresponding to the aux-

illiary vector µ̃(f) =
(

µ̃n
β(f)

)

β∈In
2

, with

µ̃n
β(f) :=

q
∑

i1,i2=1

ω
(1,0)
i1

ω
(0,0)
i2

f(xi1,i2)

×
(1 + ξ

(1,0)
i1

2

)β1
(1− ξ(1,0)i1

2

)n−β1
(1 + ξ

(0,0)
i2

2

)β2
(1− ξ(0,0)i2

2

)n−β1−β2

. (2.12)

Since obtaining the load vector µ(f) from the auxiliary vector µ̃(f) only involves

O(n2) operations, it suffices to prove that the computation of µ̃(f) is done within

a O(n3) cost, so that the resulting complexity is O(n2)+O(n3) = O(n3). To this

end, observe from (2.10) and (2.12) that, for any β ∈ In2 ,

µ̃n
β(f) =

q
∑

i2=1

[

√

ω
(0,0)
i2

(1 + ξ
(0,0)
i2

2

)β2
][

√

ω
(0,0)
i2

(1− ξ(0,0)i2

2

)n−β1−β2
]

×
q
∑

i1=1

[

√

ω
(1,0)
i1

(1 + ξ
(1,0)
i1

2

)β1
][

√

ω
(1,0)
i1

(1− ξ(1,0)i1

2

)n−β1
]

f(xi1,i2),
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that is,

µ̃n
β(f) =

q
∑

i2=1

[

√

ω
(0,0)
i2

(1 + ξ
(0,0)
i2

2

)β2
][

√

ω
(0,0)
i2

(1− ξ(0,0)i2

2

)n−β1−β2
]

H(β1, i2),

(2.13)

where, for β1 ∈ {0, . . . , n},

H(β1, i2) :=

q
∑

i1=1

[

√

ω
(1,0)
i1

(1 + ξ
(1,0)
i1

2

)β1
][

√

ω
(1,0)
i1

(1− ξ(1,0)i1

2

)n−β1
]

f(xi1,i2).

(2.14)

Now, assuming that the arrays

[

√

ω
(1,0)
i1

(1 + ξ
(1,0)
i1

2

)β1
]

,
[

√

ω
(1,0)
i1

(1− ξ(1,0)i1

2

)n−β1
]

, i1 = 1, . . . , q,

are pre-computed for β1 ∈ {0, . . . , n}, the cost to set up the field H is then of

order O(q2(n+ 1)). Again assuming that the arrays

[

√

ω
(0,0)
i2

(1 + ξ
(0,0)
i2

2

)β2
]

, β2 ∈ {0, . . . , n}, i2 = 1, . . . , q,

and

[

√

ω
(0,0)
i2

(1− ξ(0,0)i2

2

)n−β2
]

, β2 ∈ {0, . . . , n}, i2 = 1, . . . , q,

are precomputed, the cost of summing over i2 in (2.13), for all β ∈ In2 , is of order
O( (n+1)(n+2)

2
q). Hence, using the fact that q = O(n), the total cost of setting up

µ̃ is

O
(

q2(n+ 1) +
(n+ 1)(n+ 2)

2
q
)

= O(n3). (2.15)
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Using the notations:

D(2) :=

(

√

ω
(0,0)
i2

(1− ξ(0,0)i2

2

)n−β
)

β∈{0,...,n}, i2∈{1,...,q}

,

P(2) :=

(

√

ω
(0,0)
i2

(1 + ξ
(0,0)
i2

2

)β
)

β∈{0,...,n}, i2∈{1,...,q}

,

D(1) :=

(

√

ω
(1,0)
i1

(1− ξ(1,0)i1

2

)n−β
)

β∈{0,...,n}, i1∈{1,...,q}

,

P(1) :=

(

√

ω
(1,0)
i1

(1 + ξ
(1,0)
i1

2

)β
)

β∈{0,...,n}, i1∈{1,...,q}

,

(2.16)

we thus establish Algorithm 2.3 for the computation of µn
β(f) for β ∈ In2 , taking

into account the fact that
(

n
β

)

= Cβ1+β2

β2
∗ Cn

β3
.

Algorithm 2.3: Moment2D(F, q, n)

Input : Precomputed arrays D(k),P(k), k = 1, 2, defined by (2.16), and
precomputed binomial coefficients {Cp+q

q , 0 ≤ p, q ≤ n}.
Output: Bernstein-Bézier moments of f obtained by means of the Stroud

conical product rule with q2 quadrature points.
1 /* Precompute the field H */;
2 H ≡ 0;
3 for β1 = 0 to n do
4 for i1 = 1 to q do
5 for i2 = 1 to q do

6 H(β1, i2) += D
(1)
β1,i1
∗P(1)

β1,i1
∗ f(xi1,i2);

7 F ≡ 0;
8 foreach β ∈ In2 do
9 for i2 = 1 to q do

10 Fβ += D
(2)
β1+β2,i2

∗P(2)
β2,i2
∗H(β1, i2);

11 Fβ ∗=
|T |
4
Cβ1+β2

β2
∗ Cn

β3
;

12 Return F;
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2.2.4 Three-dimensional Setting

With d = 3, it follows from (2.3) and (2.4) that

∫

T

g(x)dx =
3|T |
32

∫ 1

−1

(1− s1)2
∫ 1

−1

(1− s2)
∫ 1

−1

g(x(s))ds,

where xs is the point with barycentric coordinates

(1 + s1
2

,
(1− s1)(1 + s2)

4
,
(1− s1)(1− s2)(1 + s3)

8
,
(1− s1)(1− s2)(1− s3)

8

)

,

having also used the fact that, for d = 3, the Jacobian of the transformation (2.4)

is 1/8.

With d = 3, the quadrature rule is defined by

µ̃n
β(f) =

3|T |
32

(

n

β

) q
∑

i1,i2,i3=1

ω
(2,0)
i1

ω
(1,0)
i2

ω
(0,0)
i3

f(xi1,i2,i3)
(1 + ξ

(2,0)
i1

2

)β1
(1− ξ(2,0)i1

2

)n−β1

×
(1 + ξ

(1,0)
i2

2

)β2
(1− ξ(1,0)i2

2

)n−β1−β2
(1 + ξ

(0,0)
i3

2

)β3
(1− ξ(0,0)i3

2

)n−β1−β2−β3

,

(2.17)

where q = O(n), and xi1,i2,i3 are the points with barycentric coordinates

(1 + ξ
(2,0)
i1

2
,
(1− ξ(2,0)i1

)(1 + ξ
(1,0)
i2

)

4
,
(1− ξ(2,0)i1

)(1− ξ(1,0)i2
)(1 + ξ

(0,0)
i3

)

8
,

(1− ξ(2,0)i1
)(1− ξ(1,0)i2

)(1− ξ(0,0)i3
)

8

)

, (2.18)

for i1, i2, i3 = 1, . . . , q.

Indeed, the 3-dimensional conical product rule gives

µ̃n
β(f) =

3|T |
32

q
∑

i1,i2,i3=1

ω
(2,0)
i1

ω
(1,0)
i2

ω
(0,0)
i3

f(xi1,i2,i3)B
n
β(xi1,i2,i3), (2.19)
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and (2.17) is obtained after collecting the factors in

Bn
β(xi1,i2,i3) =

(

n

β

)

(1 + ξ
(2,0)
i1

2

)β1
(1− ξ(2,0)i1

2

1 + ξ
(1,0)
i2

2

)β2

×
(1− ξ(2,0)i1

2

1− ξ(1,0)i2

2

1 + ξ
(0,0)
i3

2

)β3
(1− ξ(2,0)i1

2

1− ξ(1,0)i2

2

1− ξ(0,0)i3

2

)β4

.

The q-point quadrature rule given in (2.17) exactly computes µn
β(f), provided

that f is a polynomial of degree at most ℓ, with ℓ = max(0, 2q − 1− n).

Exploiting the product structure of (2.17) leads to the following optimal result.

We again use the concept of sum factorization.

Theorem 2.2.3. Let the assumptions of Theorem 2.2.1 hold. Given the values

of the function f at the Stroud nodes xi1,i2,i3 , i1, i2, i3 = 1, . . . , q, the moment

vector
(

µ̃n
β(f)

)

β∈In
3

can be computed with O(n4) operations. In addition, if f is a

polynomial of degree at most ℓ, with ℓ = max(0, 2q− 1− n), then µ̃n
β(f) = µn

β(f)

for any β ∈ In3 .

Proof. Using a similar approach as in the case d = 2, we proceed to evaluate the

cost of computing the vector µ̃(f) :=
(

µ̃n
β(f)

)

β∈In
3

, with

µ̃n
β(f) :=

q
∑

i1,i2,i3=1

ω
(2,0)
i1

ω
(1,0)
i2

ω
(0,0)
i3

f(xi1,i2,i3)
(1 + ξ

(2,0)
i1

2

)β1
(1− ξ(2,0)i1

2

)n−β1

×
(1 + ξ

(1,0)
i2

2

)β2
(1− ξ(1,0)i2

2

)n−β1−β2
(1 + ξ

(0,0)
i3

2

)β3
(1− ξ(0,0)i3

2

)n−β1−β2−β3

.

Since obtaining the load vector from µ̃(f) only involves O(n3) operations, it

suffices to prove that the computation of µ̃(f) can be done with O(n4) operations.
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To this end, observe from the above equation that, for β ∈ In3 ,

µ̃n
β(f) =

q
∑

i3=1

[

√

ω
(0,0)
i3

(1 + ξ
(0,0)
i3

2

)β3
][

√

ω
(0,0)
i3

(1− ξ(0,0)i3

2

)n−β1−β2−β3
]

×
q
∑

i2=1

[

√

ω
(1,0)
i2

(1 + ξ
(1,0)
i2

2

)β2
][

√

ω
(1,0)
i2

(1− ξ(1,0)i2

2

)n−β1−β2
]

×
q
∑

i1=1

[

√

ω
(2,0)
i1

(1 + ξ
(2,0)
i1

2

)β1
][

√

ω
(2,0)
i1

(1− ξ(2,0)i1

2

)n−β1
]

f(xi1,i2,i3),

that is,

µ̃n
β(f) =

q
∑

i3=1

[

√

ω
(0,0)
i3

(1 + ξ
(0,0)
i3

2

)β3
][

√

ω
(0,0)
i3

(1− ξ(0,0)i3

2

)n−β1−β2−β3
]

× U(β1, β2, i3), (2.20)

where, for β1 = 0, . . . , n, β2 = 0, . . . , n− β1,

U(β1, β2, i3) :=

q
∑

i2=1

[

√

ω
(1,0)
i2

(1 + ξ
(1,0)
i2

2

)β2
][

√

ω
(1,0)
i2

(1− ξ(1,0)i2

2

)n−β1−β2
]

×H(β1, i2, i3),

with, for β1 = 0, . . . , n,

H(β1, i2, i3) :=

q
∑

i1=1

[

√

ω
(2,0)
i1

(1 + ξ
(2,0)
i1

2

)β1
][

√

ω
(2,0)
i1

(1− ξ(2,0)i1

2

)n−β1
]

f(xi1,i2,i3).

Now, assuming that the arrays

[

√

ω
(2,0)
i1

(1 + ξ
(2,0)
i1

2

)β
]

,

[

√

ω
(2,0)
i1

(1− ξ(2,0)i1

2

)n−β
]

, i1 = 1, . . . , q, β = 0, . . . , n,

are precomputed, the cost of setting up the auxiliary field H is O(q3(n + 1)).

Similarly, assuming that the arrays

[

√

ω
(1,0)
i2

(1 + ξ
(1,0)
i2

2

)β
]

,

[

√

ω
(1,0)
i2

(1− ξ(1,0)i2

2

)n−β
]

, β = 0, . . . , n, i2 = 0, . . . , q,
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the cost of setting up the auxiliary field U is O(q2 (n+1)(n+2)
2

). Finally, supposing

that the arrays

[

√

ω
(0,0)
i3

(1 + ξ
(0,0)
i3

2

)β
]

,

[

√

ω
(0,0)
i3

(1− ξ(0,0)i3

2

)n−β
]

, β = 0, . . . , n, i3 = 1, . . . , q,

are precomputed, the cost of summing (2.20) over i3, for all β ∈ In3 , is

O(q (n+ 1)(n+ 2)(n+ 3)

6
).

Hence, the total cost of computing µ̃(f) is

O
(

q3(n+ 1) + q2
(n + 1)(n+ 2)

2
+ q

(n+ 1)(n+ 2)(n+ 3)

6

)

= O(n4),

having also used the fact that q = O(n).

Using the notations

D(k) :=

(

√

ω
(3−k,0)
ik

(1− ξ(3−k,0)
ik

2

)n−β
)

β∈{0,...,n},ik∈{1,...,q}

,

P(k) :=

(

√

ω
(3−k,0)
ik

(1 + ξ
(3−k,0)
ik

2

)β
)

β∈{0,...,n},ik∈{1,...,q}

,

(2.21)

for k = 1, 2, 3, we next introduce the algorithm Moment3D for the computation of

µn
β(f) for β ∈ In3 , having used the fact that

(

n
β

)

= Cβ1+β2

β2
∗ Cβ1+β2+β3

β3
∗ Cn

β4
.



31

Algorithm 2.4: Moment3D(F, q, n)

Input : Precomputed arrays D(k),P(k), k = 1, 2, 3, defined by (2.21), and
precomputed binomial coefficients {Cp+q

q , 0 ≤ p, q ≤ n}.
Output: Bernstein-Bézier moments of f obtained by means of the Stroud

conical product rule with q3 quadrature points.
1 /* Precompute the field H */;
2 H ≡ 0;
3 for β1 = 0 to n do
4 for i1 = 0 to q do

5 ω = D
(1)
β1,i1
∗P(1)

β1,i1
;

6 for i2 = 0 to q do
7 for i3 = 0 to q do
8 H(β1, i2, i3) += ω ∗ f(xi1,i2,i3);

9 /* Precompute the field U */;
10 U ≡ 0;
11 for β1 = 0 to n do
12 for β2 = 0 to n− β1 do
13 for i2 = 0 to q do

14 ω = D
(2)
β1+β2,i2

∗P(2)
β2,i2

;

15 for i3 = 0 to q do
16 U(β1, β2, i3) += ω ∗H(β1, i2, i3);

17 F ≡ 0;
18 foreach β ∈ In3 do
19 for i3 = 0 to q do

20 Fβ += D
(3)
β1+β2+β3,i3

∗P(3)
β3,i3
∗ U(β1, β2, i3);

21 Fβ ∗=
3

32
|T | ∗ Cβ1+β2

β2
∗ Cβ1+β2+β3

β3
∗ Cn

β4
;

22 Return F;

Combining Theorem 2.2.1, Theorem 2.2.2 and Theorem 2.2.3 gives the fol-

lowing result:

Theorem 2.2.4. For n ∈ N, let q = O(n) and f denote a smooth function. For

d = 1, 2, 3, the load vector µ(f) :=
(

µn
β(f)

)

β∈In
d

can be computed with O(nd+1),

when using the Stroud conical product rule based on qd quadrature points.

Remark 2.2.5. Observe from (2.8), (2.11) and (2.18) that the Stroud nodes

have non-negative barycentric coordinates, which means that the quadrature cen-

tres involved in the Stroud conical product rule lie inside the simplex T . Since
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the Bernstein polynomials Bn
β, β ∈ Ind , are non-negative inside the simplex T ,

and since the Gauss and Gauss-Jacobi quadrature rules use positive weights, the

weights involved in the quadrature rules (2.7), (2.10) and (2.17) are non-negative

with respect to f , which is not necessarily the case with other shape functions.

It is well-known that non-negative coefficients provide stability to the quadra-

ture rule by preventing round-off errors [34]. Thus, positive quadrature rules are

numerically stable.

2.3 CPU Timings

Observe from (2.9), (2.16) or (2.21) that the method presented in this work for

the evaluation of the B-moments relies on precomputing quadrature arrays at the

Stroud nodes. The present work was used as a foundation for building alternative

algorithms [11] which require no storage of precomputed arrays but still achieve

the optimal complexity.

For d = 1, 2, 3, we now proceed to plot the CPU time involved in the com-

putation of the B-moments against the value of n, using both the algorithms

presented here and those introduced in [11]. The computations are performed

on a Dell Precision T7400 workstation with Xeon 3.2GHz processor and 32Gb

RAM. The obtained results are plotted on Figure 2.2. The red line corresponds

to the algorithms proposed in this thesis, whereas the blue line is associated with

[11, Algorithm 3]. For each value of d, the CPU time is plotted next to the curve

of the function Cnd+1, where C is a constant. We observe that, in all cases, the

CPU timings are consistent with the predicted optimal complexity O(nd+1) for

the computation of the B-moments of order n.
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Figure 2.2: CPU timings for the computation of the B-moment vector
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2.4 Conclusion

The key idea behind the optimal evaluations of the B-moments consists in com-

bining sum factorization techniques with the conical Stroud product rule. One

should note that the factorizations which are used rely on intrinsic properties

of the Bernstein polynomials, in that a tensor product structure arises from the

Duffy transformation, when applied to the B-moments (2.1). For the case of vari-

able data, the optimal complexity result given in Theorem 2.2.4 will be crucial for

the efficient evaluations of the elemental quantities developed in the remaining

part of this work.



Chapter 3

Bernstein-Bézier Finite Elements

for H1

The purpose of this chapter is to present fast and easy to implement algorithms for

assembling the load vector, mass and stiffness matrices arising from the H1 finite

element method based on the Bernstein-Bézier shape functions of any polynomial

degree n in dimensions d = 1, 2, 3. In particular, we show that, taking the

numerical quadrature into consideration, these algorithms achieve the optimal

computational complexity O(n2d). The work discussed in this chapter was used

as as foundation for the algorithms presented in [11]. Both approaches have been

implemented in a C++ library which is documented in Appendix B.

The general linear second order elliptic PDE is given by











































−div (A∇u) + b · ∇u+ cu = f in Ω,

u = 0 on ΓD,

σu+ n · (A∇u) = g on ΓN ,

ΓD ∪ ΓN = ∂Ω,

ΓD ∩ ΓN = ∅,

(3.1)

where A is a matrix-valued function which is continuous and positive definite

on Ω. Multiplying the first equation by a sufficiently smooth test function v,

35
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integrating over Ω and using the Green’s formula

∫

Ω

−div (A∇u)vdx =

∫

Ω

∇v ·A · ∇udx−
∫

∂Ω

v
(

n · (A∇u)
)

ds

coupled with the boundary conditions yield

∫

Ω

[

∇v(x)A(x)∇u(x) + [b(x) · ∇u(x)]v(x) + c(x)u(x)v(x)
]

dx

+

∫

ΓN

σ(x)u(x)v(x)ds =

∫

Ω

f(x)v(x)dx+

∫

ΓN

g(x)v(x)ds, (3.2)

provided that all the integrals are meaningful. Defining the space H1
D(Ω) as

H1
D(Ω) := {v ∈ H1(Ω) : v = 0 on ΓD}, the weak formulation corresponding to

(3.1) is to find u ∈ H1
D(Ω) such that for all v ∈ H1

0 (Ω), equation (3.2) holds. The

Galerkin discretization of the problem consists in replacing the continuous space

H1
D(Ω) with a finite-dimensional subspace. For simplicity, we assume that Ω is

a polyhedral domain in R
d with d ∈ {1, 2, 3}. Assuming that Ω is triangulated

into simplices, and that {ψT,i}Ni=1 is a conforming set of shape functions on each

simplex T , the solution u ∈ H1
D(Ω), and any v ∈ H1

D(Ω) are approximated by

means of

v ≈ vFE :=
N
∑

j=1

ℓjψT,j, u ≈ uFE :=
N
∑

i=1

kiψT,i,

on each triangle T of the triangulation. Inserting the above approximations into

the weak form (3.2) leads to a linear system involving the load vector, mass,

stiffness and convective matrices whose components are given by

∫

T

fψT,i dx,

∫

T

cψT,iψT,j dx,

∫

T

∇ψT,j ·A · ∇ψT,i dx,

∫

T

ψT,jb · ∇ψT,idx, (3.3)

respectively. Observe in particular that the second integral in (3.2) involves mass

matrices and load vectors of the the same form as in (3.3) on simplices of lower

dimension.

The chapter is organized as follows. Section 3.1 is devoted to a description



37

of the Bernstein-Bézier shape functions and their well-known properties such as

de Casteljau evaluation algorithm and H1-conformity. Section 3.2 deals with

the finite element assembly in the case of piecewise constant data in (3.2) and

presents explicit formulae, without resort to any quadrature rules. This is because

the product of two Bernstein polynomials is again a Bernstein polynomial, the

components of the gradient are given by simple linear combinations of d + 1

Bernstein polynomials, and there is a closed form expression for the integral of

a Bernstein polynomial over a simplex. Section 3.2 forms the foundation for

Section 3.3, where the case of spatially variable data is considered. The main

result is presented in Theorem 3.5.1 which asserts that the optimal complexity

is achieved. Section 3.6 concludes with some preliminary illustrative examples of

the use of BB-FEM to solve some simple partial differential equations. We do not

consider the important issue of the cost of solving the resulting linear system, but

note that standard existing preconditioning techniques [30, 9] can be employed

to assist with this task.

3.1 Bernstein-Bézier H1 Finite Elements on a

Partition

The fact that the representation (1.8) of a polynomial p ∈ P
n
d(T ) is unique means

that, for every η ∈ Ind , we may define a linear functional

P
n
d ∋ p 7→ φT

η(p) = cη,

where cη is the coefficient appearing in (1.8). Hence by setting

Σn
d (T ) := {φT

η : η ∈ Ind },

we obtain a finite element (T,Σn
d (T ),P

n
d(T )), which we refer to as the Bernstein-

Bézier finite element (BB-FEM).
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Let ∆ = {Tj}Ni=1 be a regular triangulation [64, Section 4.3] of a bounded

domain Ω ⊂ R
d into d-simplices Tj in the usual sense, see e.g. [33]. Finite

elements (Tj ,P
n
d(Tj),Σ

n
d(Tj)) on the simplices Tj , j = 1, . . . , N , give rise to a

finite dimensional finite element space Sn
d (∆) of piecewise polynomial functions

on Ω with a corresponding basis Σn
d(∆) of the dual of Sn

d (∆). The global degrees of

freedom of s ∈ Sn
d (∆) are the values φ(s), φ ∈ Σn

d(∆). Similar to the standard H1-

conforming finite elements, certain functionals in Σn
d (Tj) and Σn

d(Tk) are identified

if Tj and Tk have a common interface. For this end it is convenient to use the

concept of domain points [64, Chapter 1]. For a simplex T = 〈vi, i = 1, . . . , d+1〉,
recall that the set of domain points Dn

d (T ) is defined by (1.4), from which one

can clearly see the 1-1 correspondence between the domain points ξη ∈ Dn
d (T )

and the multi-indices η ∈ Ind . Thus, it follows with a harmless abuse of notation

that the local degrees of freedom may be written as

Σn
d (T ) = {φT

ξ : ξ ∈ Dn
d (T )}. (3.4)

Similarly, the set of domain points Dn
d (∆) on the triangulation ∆ is given by

Dn
d (∆) :=

N
⋃

j=1

Dn
d (Tj).

In particular, we observe that the domain points on the interface between adjacent

elements coincide.

Remark 3.1.1. Recall that the faces of T in one dimension are the endpoints of

the interval T , in two dimensions vertices and edges of the triangle, and in three

dimensions vertices, edges and faces of the tetrahedron.

The finite element space Sn
d (∆) generated by the Bernstein-Bézier finite ele-

ments consists of the functions defined on Ω by the rule

s|T :=
∑

ξ∈Dn
d
(T )

cξB
n,T
ξ , T ∈ ∆, (3.5)

where the real numbers cξ, ξ ∈ Dn
d (∆), are the global degrees of freedom of
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s. Respectively, the basis Σn
d (∆) of the dual of Sn

d (∆) is given by the linear

functionals φξ, ξ ∈ Dn
d (∆), defined by

φξ(s) = φT
ξ (s|T ), for any T ∈ ∆ such that ξ ∈ Dn

d (T ).

Theorem 3.1.2. The global finite element space Sn
d (∆), resulting from the as-

sembly of the local Bernstein-Bézier finite elements, coincides with the standard

H1-conforming finite element space of continuous piecewise polynomials of degree

n on ∆. That is,

Sn
d (∆) =

{

s ∈ C0(Ω) : s|T ∈ P
n
d , T ∈ ∆

}

. (3.6)

Proof. If s ∈ Sn
d (∆), then (3.5) implies that pT := s|T ∈ P

n
d for all T ∈ ∆. To

show the continuity of s, consider any pair of elements Tj, Tk ∈ ∆ with a common

interface e. Then, with T = Tj or Tk, B
n,T
ξ vanishes on e if ξ /∈ e, and hence

(pT )|e =
∑

ξ∈Dn
d
(T )∩e

cξB
n,T
ξ .

Since B
n,Tj

ξ and Bn,Tk

ξ coincide on e for any ξ ∈ Dn
d (T ) ∩ e, we see that (pTj

)|e =

(pTk
)|e, and hence s|Tj∪Tk

is continuous.

On the other hand, if s is a continuous piecewise polynomial with s|T ∈ P
n
d ,

T ∈ ∆, then for each T there is a unique B-form representation of s|T in terms

of the sum s|T :=
∑

ξ∈Dn
d
(T ) c

T
ξB

n,T
ξ . It is well known [37, 64] that the continuity

of s implies c
Tj

ξ = cTk

ξ for any domain point ξ ∈ Dn
d (Tj) ∩ Dn

d (Tk). We conclude

that s belongs to Sn
d (∆) as it satisfies (3.5) with a sequence of global degrees of

freedom cξ uniquely defined by

cξ = cTξ for any T such that ξ ∈ Dn
d (T ).

Note that in the case of first order polynomials n = 1, there is no difference
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with the standard piecewise linear finite element. The basis functionals in Σ1
d(∆)

are the usual nodal evaluations at the vertices, and a dual basis for S1
d(∆) consists

of the standard hat functions.

3.1.1 Evaluation and Visualisation of Bernstein-Bézier

Finite Elements

The previous remarks show that we may use Bernstein-Bézier polynomials to con-

struct a basis for the standard H1-conforming finite element spaces of degree n on

a triangulation ∆. Bernstein-Bézier representation of polynomials is extensively

used in the CAGD and computer graphics. In computer graphics, the partition

of unity and non-negativity properties of the Bernstein polynomials make them

important tools in terms of Bézier curves, see [44, Chapter 4], [46, Chapter 11].

In CAGD, Bernstein polynomials appear in the form of control surfaces which

possess important shape-preserving properties. Using degree-raising or subdivi-

sion, control surfaces can be used to render surfaces, see [64, Chapter 3]. One

advantage of using Bernstein-Bézier polynomials is the availability of efficient and

stable procedures for their evaluation, and for the evaluation of their derivatives.

Evaluation and visualisation both play a vital role in the post-processing and

interpretation of the results of a finite element analysis. The availability of a

Bernstein-Bézier representation of the finite element approximation enables one

to exploit the attractive features of the B-form. In the interests of completeness,

we present a short overview of techniques for the efficient and stable evaluation

of a BB-FEM. We refer the reader to [64, Chapter 3], [44, Chapter 17], [36,

Chapter 12] for information on aspects related to visualisation.

For i = 1, . . . , d + 1, the symbol ei refers to the (d + 1)-tuple belonging to

I1d such that its ith is one and the other components are zero. The following

algorithm enables us to efficiently evaluate a polynomial written in B-form at

any given point v ∈ R
d:
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Algorithm 3.1: de Casteljau Algorithm

Input : B-form coefficients {cξ : ξ ∈ Ind } of polynomial p ∈ P
n
d , and

barycentric coordinates λi (i = 1, . . . , d+ 1) of v ∈ R
d.

Output: Evaluation of p at the point v.
1 Set c

(0)
η = cη for η ∈ Ind ;

2 for ℓ = 1 to n do
3 foreach η ∈ In−ℓ

d do

4 c
(ℓ)
η :=

d+1
∑

i=1

λic
(ℓ−1)
η+ei

;

5 Return c
(n)
000;

Observe that the innermost loop contains d + 1 multiplications which are

executed
(

n−ℓ+d
d

)

times, for ℓ ranging from 1 to n. Hence, the operation count

(multiplications and divisions only) corresponding to this algorithm is given by

(d+ 1)

n
∑

ℓ=1

(

n− ℓ+ d

d

)

.

In particular, the number of operations is:



























n2 + n, if d = 1,

(n3 + 3n2 + 2n)/2, if d = 2,

(n4 + 6n3 + 11n2 + 6n)/6, if d = 3.

(3.7)

The case d = 2 is proved in [64, Chapter 2].

Using sum factorization techniques, it is proved in [11, Algorithm 1] that a

polynomial of order n written in its BB-form can be evaluated at the Stroud

nodes of order q = O(n) with O(nd+1) operations.

The barycentric coordinates of a point v ∈ T are non-negative inside the

triangle T . Consequently, thanks to equation (1.5) and the de Casteljau algo-

rithm, we observe that, at each step of the algorithm, the new coefficients are

computed as a convex linear combination of the previous ones [64], which leads

to the numerical stability of the de Casteljau algorithm [44]. Although the de

Casteljau algorithm is an established tool for the evaluation of polynomials ex-
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pressed in their Bernstein representation, it is shown in [11, Section 3.2] that

Bernstein polynomials can be evaluated at Stroud points using a much faster

approach which costs O(nd+1) operations.

The B-form of the directional derivatives of a polynomial in B-form can also

be efficiently computed, using the formulae similar to those arising in the de

Casteljau algorithm [64]. The gradient will be of particular importance for our

purposes and we summarize here some key properties that will prove useful later.

Lemma 3.1.3. The gradient of the Bernstein polynomial Bn
ξ satisfies

∇Bn
ξ = n

d+1
∑

i=1

Bn−1
ξ−ei
∇λi, ξ ∈ Ind . (3.8)

Hence, if the B-form coefficients of p ∈ P
n
d with respect to the d-simplex T are

given by {cξ : ξ ∈ Ind }, then

∇p = n
∑

ξ∈In−1

d

Bn−1
ξ

d+1
∑

i=1

cξ+ei
∇λi. (3.9)

Proof. Let us fix ξ ∈ Ind . Using the chain rule, observe that

∇Bn
ξ =

(

n

ξ

)

∇
(

d+1
∏

i=1

λξii

)

= n

d+1
∑

i=1

Bn−1
ξ−ei
∇λi.

Thus, if p satisfies the equality p =
∑

ξ∈In
d

cξB
n
ξ , then

∇p =
∑

ξ∈In
d

cξ∇Bn
ξ = n

∑

ξ∈In
d

cξ

d+1
∑

i=1

Bn−1
ξ−ei
∇λi,

and (3.9) follows by a simple change of the summation index ξ.

Remark 3.1.4. Let T be a given d-simplex and xi any vertex. Let γi denote

the (d − 1)-simplex formed using the vertices of T with xi excluded. Then, for
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i = 1, . . . , d+ 1, it holds that

∇λi = −
|γi|
d|T | n̂i,

where n̂i is the unit outwards normal on γi. Note that in the case d = 1, we take

|γi| = 1.

3.2 Optimal FE-Assembly I: Piecewise Constant

Data

In this section, we present explicit formulae for computing the load vector, the

mass and the stiffness matrices in the case when f, c,b, A in (3.3) are constant

on each simplex. Using the formula for the inner product of Bernstein polyno-

mials as well as suitably defined shift operators which allow us to compute the

stiffness matrix from the mass matrix of lower degree, we develop algorithms for

the computation of the above matrices and vectors, and show that they achieve

the optimal complexity O(n2d). For simplicity, we assume that the diffusion co-

efficient A is scalar-valued in this section, and postpone the treatment of the

non-constant tensor-valued case to Section 3.3.4.

3.2.1 Load Vector

Given f ∈ S0
0,d(∆), that is, f being a piecewise constant polynomial on the

triangulation ∆, we now want to evaluate the load vector defined by

f = fTξ := µn
ξ(f), ξ ∈ Ind .

In particular, the load vector associated with H1-conforming Bernstein finite

elements coincides with the B-moment vector discussed in the previous chapter.

Observe that, if f is constant on T , then fξ = f|Tµ
n
ξ(1). But then, recall that [37,
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Section 7]

µn
ξ(1) :=

∫

T

Bn
ξ (x)dx =

|T |
(

n+d
d

) , ξ ∈ Ind . (3.10)

Therefore, we find that

fξ = µn
ξ(f) =

f |T |T |
(

n+d
d

) , ξ ∈ Ind . (3.11)

Note that the element load vector f corresponds to a single simplex T . Each

entry of the load vector corresponds to a node belonging to T . Each node is

assigned a local numbering, depending on the simplex T that is considered, and a

global numbering which is independent of the simplex T . The global load vector

is thus initialized to the null vector with number of entries given by the number of

global nodes. The kth entry of the global load vector is then obtained by summing

over all the triangles the entries which have been assigned the global numbering

k.

The global mass and stiffness matrices are built from the element mass and

stiffness matrices in a similar way.

3.2.2 Mass Matrix

For n ∈ Z+, we want to compute the element mass matrix Mn given by

Mα,β = Mn
α,β := (cBn

α, B
n
β), α,β ∈ Ind .

Exploiting the fact that the product of two Bernstein polynomials is a Bern-

stein polynomial, that is, Bn
αB

n
β =

(

α+β

α

)

/
(

2n
n

)

B2n
α+β, for α,β ∈ Ind , and again

using formula (3.10) immediately gives an explicit formula for the mass matrix

corresponding to the basis (1.7), see also [64].
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Theorem 3.2.1. For n ∈ Z+,

Mα,β =
c|T |T |

(

2n
n

)(

2n+d
d

)

(

α+ β

α

)

, α,β ∈ Ind . (3.12)

The next algorithms provide a method to compute the mass matrix with the

cost O(n2d). For comparison, the number of entries in MT is
(

n+d
d

)2
= O(n2d).

Hence, even if each entry were to be computed with O(1) operations, evaluating
the mass matrix would require at least O(n2d) operations.

Algorithm 3.2: 1DMassMatConst(M, n)

Input : Precomputed binomial coefficients
{Cp+q

p : 0 ≤ p ≤ n, 0 ≤ q ≤ n}.
Output: 1D element mass matrix of order n.

1 M = 0;
2 for α1 = n to 0 do
3 for β1 = n to 0 do

4 w1 = Cα1+β1

α1
∗ c|T |T |
C2n

n ∗ (2n+ 1)
;

5 w2 = w1 ∗ Cn−α1+n−β1

n−α1
;

6 Mα,β += w2;

7 Return M;

Algorithm 3.3: 2DMassMatConst(M, n)

Input : Precomputed binomial coefficients
{Cp+q

p : 0 ≤ p ≤ n+ 2, 0 ≤ q ≤ n}.
Output: 2D element mass matrix M of order n.

1 M = 0;
2 for α1 = n to 0 do
3 for β1 = n to 0 do

4 w1 = Cα1+β1

α1
∗ c|T |T |
C2n

n ∗ C2n+2
2

;

5 for α2 = n− α1 to 0 do
6 for β2 = n− β1 to 0 do
7 w2 = w1 ∗ Cα2+β2

α2
;

8 w3 = w3 ∗ Cn−α1−α2+n−β1−β2

n−α1−α2
;

9 Mα,β += w3;

10 Return M;
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Algorithm 3.4: 3DMassMatConst(M, n)

Input : Precomputed binomial coefficients
{Cp+q

p : 0 ≤ p ≤ n+ 3, 0 ≤ q ≤ n}.
Output: 3D element mass matrix of order n.

1 D = 0;
2 for α1 = n to 0 do
3 for β1 = n to 0 do

4 w1 = Cα1+β1

α1
∗ c|T |T |
C2n

n ∗ C2n+3
3

;

5 for α2 = n− α1 to 0 do
6 for β2 = n− β1 to 0 do
7 w2 = w1 ∗ Cα2+β2

α2
;

8 for α3 = n− α1 − α2 to 0 do
9 for β3 = n− β1 − β2 to 0 do

10 w3 = w2 ∗ Cα2+β2

α2
;

11 w4 = w3 ∗ Cn−α1−α2−α3+n−β1−β2−β3

n−α1−α2−α3
;

12 Mα,β += w4;

13 Return M;

The mass matrix can be computed by means of Algorithms 3.2, 3.3 and 3.4

for d = 1, 2 and 3, respectively.

We now proceed with the complexity analysis of the mass matrix algorithms.

For simplicity, we focus on the case d = 3. The other two cases are similar.

For i = 1, 2, every loop over the pair (αi, βi) contains one multiplication, and

is executed
(

n+i
i

)2
times. The computational cost of the algorithm is dominated

by its innermost loop which contains two multiplications, and is executed
(

n+3
3

)2

times. Hence, the total number of operations required for computing the 3D mass

matrix is (n + 1)2 +
(

n+2
2

)2
+ 2
(

n+3
3

)2
. Using a similar argument, we find that

the number of operations needed for computing the 1D and 2D mass matrices is

respectively given by 2(n+ 1)2 and (n+ 1)2 + 2
(

n+1
2

)2
. In summary, the number

of operations involved in the computation of the mass matrix associated with
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piecewise constant data is:



















2n2 + 4n+ 2 for d = 1,

n4

2
+ 3n3 + 15n2

2
+ 8n+ 3 for d = 2,

n6

18
+ 2n5

3
+ 125n4

36
+ 19n3

2
+ 539n2

36
+ 37n

3
+ 4 for d = 3.

(3.13)

3.2.3 Stiffness Matrix

With n ≥ 1, the stiffness matrix S is defined by

Sα,β := (A∇Bn
α,∇Bn

β), α,β ∈ Ind ,

and can be obtained by using the mass matrix M by means of Algorithms 3.5,

3.6 and 3.7 for d = 1, 2, 3, respectively.

Algorithm 3.5: 1DStiffMatConst(S, n)

Input : Precomputed element mass matrix
M = 1DMassMatConst(M, n− 1).

Output: 1D element stiffness matrix S.
1 S ≡ 0;
2 for i = 1 to 2 do
3 for j = 1 to 2 do
4 sij = n2 ∗ ∇λjA|T∇λi;

5 for α1 = n− 1 to 0 do
6 for β1 = n− 1 to 0 do
7 α2 = n− 1− α1;
8 β2 = n− 1− β1;
9 K = Mα,β;

10 S(α1+1,α2),(β1+1,β2) += K ∗ s1,1;
11 S(α1+1,α2),(β1,β2+1) += K ∗ s1,2;
12 S(α1,α2+1),(β1+1,β2) += K ∗ s2,1;
13 S(α1,α2+1),(β1,β2+1) += K ∗ s2,2;

14 Return S;

Observe in particular that, with d ∈ {1, 2, 3}, the computation the element

stiffness matrix entries takes the compact form:

Sα+ei,β+ej
+= Mα,β ∗ si,j, α,β ∈ In−1

d , i, j = 1, . . . , d+ 1, (3.14)
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Algorithm 3.6: 2DStiffMatConst(S, n)

Input : Precomputed element mass matrix
M = 2DMassMatConst(M, n− 1).

Output: 2D element stiffness matrix S.
1 S ≡ 0;
2 for i = 1 to 3 do
3 for j = 1 to 3 do
4 sij = n2 ∗ ∇λjA|T∇λi;

5 for α1 = n− 1 to 0 do
6 for α2 = n− 1− α1 to 0 do
7 for β1 = n− 1 to 0 do
8 for β2 = n− 1− β1 to 0 do
9 α3 = n− 1− α1 − α2;

10 β3 = n− 1− β1 − β2;
11 K = Mα,β;
12 S(α1+1,α2,α3),(β1+1,β2,β3)+= K ∗ s1,1;
13 S(α1+1,α2,α3),(β1,β2+1,β3)+= K ∗ s1,2;
14 S(α1+1,α2,α3),(β1,β2,β3+1)+= K ∗ s1,3;
15 S(α1,α2+1,α3),(β1+1,β2,β3)+= K ∗ s2,1;
16 S(α1,α2+1,α3),(β1,β2+1,β3)+= K ∗ s2,2;
17 S(α1,α2+1,α3),(β1,β2,β3+1)+= K ∗ s2,3;
18 S(α1,α2,α3+1),(β1+1,β2,β3)+= K ∗ s3,1;
19 S(α1,α2,α3+1),(β1,β2+1,β3)+= K ∗ s3,2;
20 S(α1,α2,α3+1),(β1,β2,β3+1)+= K ∗ s3,3;

21 Return S;
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Algorithm 3.7: 3DStiffMatConst(S, n)

Input : Precomputed element mass matrix
M = 3DMassMatConst(M, n− 1).

Output: 3D element stiffness matrix S.
1 S ≡ 0;
2 for i = 1 to 4 do
3 for j = 1 to 4 do
4 sij = n2 ∗ ∇λjA|T∇λi;

5 for α1 = n− 1 to 0 do
6 for α2 = n− 1− α1 to 0 do
7 for α3 = n− 1− α1 − α2 to 0 do
8 for β1 = n− 1 to 0 do
9 for β2 = n− 1− β1 to 0 do

10 for β3 = n− 1− β1 − β2 to 0 do
11 α4 = n− 1− α1 − α2 − α3;
12 β4 = n− 1− β1 − β2 − β3;
13 K = Mα,β;
14 S(α1+1,α2,α3,α4),(β1+1,β2,β3,β4)+= K ∗ s1,1;
15 S(α1+1,α2,α3,α4),(β1,β2+1,β3,β4)+= K ∗ s1,2;
16 S(α1+1,α2,α3,α4),(β1,β2,β3+1,β4)+= K ∗ s1,3;
17 S(α1+1,α2,α3,α4),(β1,β2,β3,β4+1) += K ∗ s1,4;
18 S(α1,α2+1,α3,α4),(β1+1,β2,β3,β4)+= K ∗ s2,1;
19 S(α1,α2+1,α3,α4),(β1,β2+1,β3,β4)+= K ∗ s2,2;
20 S(α1,α2+1,α3,α4),(β1,β2,β3+1,β4)+= K ∗ s2,3;
21 S(α1,α2+1,α3,α4),(β1,β2,β3,β4+1) += K ∗ s2,4;
22 S(α1,α2,α3+1,α4),(β1+1,β2,β3,β4)+= K ∗ s3,1;
23 S(α1,α2,α3+1,α4),(β1,β2+1,β3,β4)+= K ∗ s3,2;
24 S(α1,α2,α3+1,α4),(β1,β2,β3+1,β4)+= K ∗ s3,3;
25 S(α1,α2,α3+1,α4),(β1,β2,β3,β4+1) += K ∗ s3,4;
26 S(α1,α2,α3,α4+1),(β1+1,β2,β3,β4)+= K ∗ s4,1;
27 S(α1,α2,α3,α4+1),(β1,β2+1,β3,β4)+= K ∗ s4,2;
28 S(α1,α2,α3,α4+1),(β1,β2,β3+1,β4)+= K ∗ s4,3;
29 S(α1,α2,α3,α4+1),(β1,β2,β3,β4+1) += K ∗ s4,4;

30 Return S;
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with si,j = n2∇λjA|T∇λi, for i, j = 1, . . . , d+ 1.

The compact formulation (3.14) reflects the similarity of the structure of the

stiffness matrix algorithms for different values of d. This similarity allows for a

unified complexity analysis for Algorithm 3.5, 3.6 and 3.7: Note that the loop

over the pair (i, j) is executed (d + 1)2 times, and contains one matrix-vector

multiplication, one inner product and one scalar product, thereby yielding a cost

of (d2+d+1)(d+1)2 operations. Now considering the main loop of the algorithm,

observe from (3.14) that the computations inside the βd-loop amount to a loop

over the pair (i, j) which is executed (d + 1)2
(

n−1+d
d

)2
times, and contains one

multiplication. Thus the total cost of the algorithm is

(d2 + d+ 1)(d+ 1)2 + (d+ 1)2
(

n− 1 + d

d

)2

= O(n2d),

that is,



















4n2 + 12 for d = 1,

9n4

4
+ 9n3

2
+ 9n2

4
+ 63 for d = 2,

4n6

9
+ 8n5

3
+ 52n4

9
+ 16n3

3
+ 16n2

9
+ 208 for d = 3.

(3.15)

In order to show that (3.14) provides a correct method for computing the

stiffness matrix, we first introduce the following definitions:

Shift Operators

Operator Ed
i on Bernstein polynomials: For i = 1, . . . , d + 1 and n ∈ N,

we define Ed
i by

Ed
i (B

n
β) := Bn−1

β−ei
, β ∈ Ind . (3.16)
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Moreover, we extend Ed
i , i = 1, . . . , d + 1, to all polynomials in P

n
d by linearity,

that is, for any n ∈ N and any sequence {cβ : β ∈ Ind }, we set

Ed
i

(

∑

β∈In
d

cβB
n
β

)

=
∑

β∈In
d

cβE
d
i (B

n
β), i = 1, . . . , d+ 1. (3.17)

Operator Ei,d on coefficient sequences: For i = 1, . . . , d + 1, n ∈ N and a

given sequence c = {cβ : β ∈ Ind }, we define Ei,d by

(Ei,dc)β := cβ+ei
, β ∈ In−1

d . (3.18)

Remark 3.2.2. Observe from (3.16) and (3.17) that

Ed
i

(

∑

β∈In
d

cβB
n
β

)

=
∑

β∈In
d

cβB
n−1
β−ei

=
∑

β∈In−1

d

cβ+ei
Bn−1

β , i = 1, . . . , d+ 1, n ∈ N,

which, together with (3.18), yields

Ed
i

(

∑

β∈In
d

cβB
n
β

)

=
∑

β∈In−1

d

(Ei,dc)βB
n−1
β , i = 1, . . . , d+ 1, n ∈ N.

Operator Ed
i,j on mass matrices (3.12): For i, j = 1, . . . , d + 1 and n ∈ N,

we define the operator Ed
i,j by

(

Ed
i,jM

n
)

α,β
:= Mn−1

α−ei,β−ej
, α,β ∈ Ind . (3.19)

The following formula for the gradients of the Bernstein polynomials is an

immediate consequence of (3.8) and (3.16):

∇Bn
β = n

d+1
∑

i=1

Ed
i (B

n
β)∇λi, β ∈ Ind . (3.20)

This leads to the following theorem:
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Theorem 3.2.3. The stiffness matrix Sn is given by

S = n2

d+1
∑

i,j=1

Ed
i,j(M)∇λjA|T∇λi, (3.21)

where M is the mass matrix described in Theorem 3.2.1. Hence, (3.14) indeed

computes the stiffness matrix.

Proof. For any α,β in Ind , we have by (3.20),

Sα,β = n2

∫

T

[

d+1
∑

j=1

Ed
j (B

n
β)(x)∇λj

]

A(x)
[

d+1
∑

i=1

Ed
i (B

n
α)(x)∇λi

]

dx

= n2

d+1
∑

i,j=1

∇λjA|T∇λi
∫

T

Ed
i (B

n
α)(x)E

d
j (B

n
β)(x)dx,

= n2

d+1
∑

i,j=1

Mn−1
α−ei,β−ej

∇λjA|T∇λi.

Inserting (3.19) into the last equation gives (3.21).

Although Algorithms 3.5, 3.6 and 3.7 achieve the optimal complexity O(n2d)

for d = 1, 2, 3, they rely on the pre-computation of the mass matrix of lower

order. As a matter of fact, it is possible to directly compute the stiffness matrix

only using precomputed binomial coefficients, as shown in Algorithms 3.8, 3.9,

3.10, for d = 1, 2, 3, respectively.
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Algorithm 3.8: 1DStiffMatConstDirect(S, n)

Input : Precomputed binomial coeffficients
{Cp+q

q : 0 ≤ p ≤ n, 0 ≤ q ≤ n}
Output: 1D element stiffness matrix.

1 r =
n2

C2n−2
n−1 ∗ (2n− 1)

;

2 for i = 1 to 2 do
3 for j = 1 to 2 do
4 sij = r ∗ ∇λjA|T∇λi;

5 //Same lines as 1DMassMatConst (S, n− 1) (cf. Algorithm 3.2),

with line 4 replaced with the line:

6 w1 = Cα1+β1

α1
;

7 //and line 6 replaced with lines 7-13 of 1DStiffMatConst(S, n)
(cf. Algorithm 3.5), where:

8 K ← w2;
9 Return S;

Algorithm 3.9: 2DStiffMatConstDirect(S, n)

Input : Precomputed binomial coeffficients
{Cp+q

q : 0 ≤ p ≤ n, 0 ≤ q ≤ n}
Output: 2D element stiffness matrix.

1 r =
n2

C2n−2
n−1 ∗ C2n

2

;

2 for i = 1 to 3 do
3 for j = 1 to 3 do
4 sij = r ∗ ∇λjA|T∇λi;

5 //Same lines as 2DMassMatConst (S, n− 1) (cf. Algorithm 3.3),

with line 4 replaced with the line:

6 w1 = Cα1+β1

α1
;

7 //and line 9 replaced with lines 9-20 of 2DStiffMatConst(S, n)
(cf. Algorithm 3.6), where:

8 K ← w3;
9 Return S;
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Algorithm 3.10: 3DStiffMatConstDirect(S, n)

Input : Precomputed binomial coeffficients
{Cp+q

q : 0 ≤ p ≤ n+ 1, 0 ≤ q ≤ n}
Output: 3D element stiffness matrix.

1 r =
n2

C2n−2
n−1 ∗ C2n+1

3

;

2 for i = 1 to 4 do
3 for j = 1 to 4 do
4 sij = r ∗ ∇λjA|T∇λi;

5 //Same lines as 3DMassMatConst (S, n− 1) (cf. Algorithm 3.4),

with line 4 replaced with the line:

6 w1 = Cα1+β1

α1
;

7 //and line 12 replaced with lines 11-29 of

3DStiffMatConst(S, n) (cf. Algorithm 3.7), where:

8 K ← w4;
9 Return S;

Using a similar argument as the one used for the computation of the stiffness

matrix using a precomputed mass matrix, it is straightforward to find that, up to

the computation of the scaling constant r and two additional multiplications in

the innermost loop, the number of operations required for computing the element

stiffness matrix, only based on precomputed binomial coefficients, is also given

by (3.15). Note however from the input of Algorithm 3.8, Algorithm 3.9 and

Algorithm 3.10 that, for a given polynomial order n, the precomputed binomial

matrix is at most (n+1) by n, whereas the elemental mass matrix is of dimension
(

n+d
d

)

= O(nd). As a result, the numerical experiments seem to indicate that

memory access calls to the binomial matrix are slightly faster than those to the

mass matrix. In other words, since they have the same complexity, the algorithm

based on the direct computation of the stiffness matrix in terms of precomputed

binomial coefficients is recommended over that based on the (precomputed) mass

matrix.
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3.2.4 Convective Matrix

The convective matrix V is defined by

Vα,β = Vn
α,β :=

∫

T

Bn
β(x)b(x) · ∇Bn

α(x)dx, α,β ∈ Ind , (3.22)

and can be computed by means of Algorithms 3.11, 3.12, 3.13 for d = 1, 2, 3,

respectively.

Algorithm 3.11: 1DConvMatConstDirect(V, n)

Input : Precomputed binomial coefficients
{Cp+q

p : 0 ≤ p ≤ n− 1, 0 ≤ q ≤ n}.
Output: 1D element convective matrix V.

1 V ≡ 0;

2 r =
|T |

C2n−1
n ∗ 2;

3 for i = 1 to 2 do
4 vi = r ∗ b|T · ∇λi;
5 for α1 = n− 1 to 0 do
6 for β1 = n to 0 do
7 w1 = Cα1+β1

α1
;

8 α2 = n− 1− α1, β2 = n− β2;
9 w2 = w1 ∗ Cα2+β2

α2
;

10 V(α1+1,α2),β += w2 ∗ v1;
11 V(α1,α2+1),β += w2 ∗ v2;

12 Return V;



56

Algorithm 3.12: 2DConvMatConstDirect(V, n)

Input : Precomputed binomial coefficients
{Cp+q

p : 0 ≤ p ≤ n− 1, 0 ≤ q ≤ n}.
Output: 2D element convective matrix V.

1 V ≡ 0;

2 r =
n ∗ |T |

C2n−1
n ∗ C2n+1

2

;

3 for i = 1 to 3 do
4 vi = r ∗ b|T · ∇λi;
5 for α1 = n− 1 to 0 do
6 for α2 = n− 1− α1 to 0 do
7 for β1 = n to 0 do
8 w1 = Cα1+β1

α1
;

9 for β2 = n− β1 to 0 do
10 w2 = w1 ∗ Cα2+β2

α2
;

11 α3 = n− 1− α1 − α2, β3 = n− β1 − β2;
12 w3 = w2 ∗ Cα3+β3

α3
;

13 V(α1+1,α2,α3),β += w3 ∗ v1;
14 V(α1,α2+1,α3),β += w3 ∗ v2;
15 V(α1,α2,α3+1),β += w3 ∗ v3;

16 Return V;
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Algorithm 3.13: 3DConvMatConstDirect(V, n)

Input : Precomputed binomial coefficients
{Cp+q

p : 0 ≤ p ≤ n− 1, 0 ≤ q ≤ n}.
Output: 3D element convective matrix V.

1 V ≡ 0;

2 r =
n ∗ |T |

C2n−1
n ∗ C2n+2

3

;

3 for i = 1 to 4 do
4 vi = r ∗ b|T · ∇λi;
5 for α1 = n− 1 to 0 do
6 for α2 = n− 1− α1 to 0 do
7 for α3 = n− 1− α1 − α2 to 0 do
8 for β1 = n to 0 do
9 w1 = Cα1+β1

α1
;

10 for β2 = n− β1 to 0 do
11 w2 = w1 ∗ Cα2+β2

α2
;

12 for β3 = n− 1− β1 − β2 to 0 do
13 w3 = w2 ∗ Cα3+β3

α3
;

14 α4 = n− 1− α1 − α2 − α3, β4 = n− β1 − β2 − β3;
15 w4 = w3 ∗ Cα4+β4

α4
;

16 V(α1+1,α2,α3,α4),β += w3 ∗ v1;
17 V(α1,α2+1,α3,α4),β += w3 ∗ v2;
18 V(α1,α2,α3+1,α4),β += w3 ∗ v3;
19 V(α1,α2,α3,α4+1),β += w3 ∗ v4;

20 Return V;

Observe that, for d = 1, 2, 3, the computation of the convective matrix entries

takes the compact form:

Vα+ei,β += wd ∗ vi, α ∈ In−1
d ,β ∈ Ind , i = 1, . . . , d+ 1, (3.23)

where vi = (n|T |)/(C2n−1
n C2n−1+d

d )b|T · ∇λi, for i = 1, . . . , d+ 1.

We now proceed to the complexity analysis of the convective matrix algorithm.

For simplicity, we focus on the case d = 3. The other two cases are similar. We

start with the loop over i which is executed four times, and contains one in-

ner product and one multiplication, which amounts to four operations. Thus,

taking account of the operations required for computing the scaling constant r,
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the number of operations needed in order to set up the field (vi)1≤i≤4 is 42 + 3.

The loop over β2 is executed
(

n+2
3

)(

n+2
2

)

times, and contains one multiplication.

Similarly, the loop over β3 is executed
(

n+2
3

)(

n+3
3

)

times, and contains six multi-

plications. Thus, the total number of operations involved in the computation of

the 3D convective matrix is:

42 + 3 +

(

n+ 2

3

)(

n+ 2

2

)

+ 6

(

n + 2

3

)(

n + 3

3

)

.

Using a similar argument, we find that the number of operations required for

computing the 1D and 2D convective matrices are respectively given by

22 + 3 + 3n(n + 1),

32 + 3 + 5

(

n + 1

2

)(

n + 2

2

)

.

To summarize, the complexity associated with the computation of the convective

matrix is:



















3n2 + 3n+ 7 for d = 1,

5n4

4
+ 5n3 + 25n2

4
+ 5n

2
+ 12 for d = 2,

n6

6
+ 19n5

12
+ 17n4

3
+ 115n3

12
+ 23n2

3
+ 7n

3
+ 19 for d = 3.

(3.24)

It is not difficult to establish that Algorithms 3.11, 3.12 and 3.13 do indeed

compute the convective matrix V, for d = 1, 2, 3. Note from (3.23) that V is

essentially given by

Vα,β =
n|T |

(

2n−1
n

)(

2n−1+d
d

)

d+1
∑

i=1

b|T · ∇λi
(

α− ei + β

β

)

, α,β ∈ Ind .

Theorem 3.2.4. Let n ∈ N. The convective matrix V is given by

Vα,β =
n|T |

(

2n−1
n

)(

2n−1+d
d

)b|T ·
d+1
∑

i=1

∇λi
(

α− ei + β

β

)

, α,β ∈ Ind . (3.25)
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Proof. Note from (3.20), (3.22) and (1.6) that, for α,β ∈ Ind ,

Vα,β =n
d+1
∑

i=1

∫

T

Bn−1
α−ei

Bn
βb · ∇λi

=
n

(

2n−1
n

)

d+1
∑

i=1

(

α− ei + β

β

)

b|T · ∇λi
∫

T

B2n−1
α−ei+β. (3.26)

Inserting (3.10) into the last line yields

Vα,β =
n|T |

(

2n−1
n

)(

2n−1+d
d

)b|T ·
d+1
∑

i=1

∇λi
(

α− ei + β

β

)

, α,β ∈ Ind . (3.27)

Remark 3.2.5. The degree raising formula [64, Chapter 2] yields

Bn−1
α−ei

=
1

n

d+1
∑

j=1

(αj − δi,j + 1)Bn
α−ei+ej

, α ∈ Ind , i = 1, . . . , d+ 1,

which, inserted into the first line of (3.26), gives

Vα,β =
d+1
∑

i,j=1

(αj − δi,j + 1)

∫

T

Bn
α−ei+ej

(x)Bn
β(x)b(x) · ∇λidx

=
d+1
∑

i=1

b|T · ∇λi
d+1
∑

j=1

(αj − δi,j + 1)Mα−ei+ej ,β, α,β ∈ Ind .

Hence, an alternative way to compute the convective matrix V is by means

of the weighted sum of mass matrix entries given in Remark 3.2.5. Note that

the corresponding algorithms will be recommended only if they have a lower

complexity than in (3.24).

The convective matrix can be computed in terms of mass matrix entries, as

proposed in Algorithms 3.14, 3.15, and 3.16, for d = 1, 2, 3, respectively.
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Algorithm 3.14: 1DConvMatConst(V, n)

Input : Precomputed element mass matrix M = 1DMassMatConst(M, n).
Output: 1D element convective matrix V.

1 V ≡ 0;
2 for i = 1 to 2 do
3 vi = b|T · ∇λi;
4 for α1 = n to 0 do
5 for β1 = n to 0 do
6 for i = 1 to 2 do
7 si = 0;
8 for j = 1 to 2 do
9 if α− ei + ej ≥ (0, 0) then

10 si += (αj − δi,j + 1) ∗Mα−ei+ej ,β;

11 Vα,β += vi ∗ si;

12 Return V;

Algorithm 3.15: 2DConvMatConst(V, n)

Input : Precomputed element mass matrix M = 2DMassMatConst(M, n).
Output: 2D element convective matrix V.

1 V ≡ 0;
2 for i = 1 to 3 do
3 vi = b|T · ∇λi;
4 for α1 = n to 0 do
5 for α2 = n− α1 to 0 do
6 for β1 = n to 0 do
7 for β2 = n− β1 to 0 do
8 for i = 1 to 3 do
9 si = 0;

10 for j = 1 to 3 do
11 if α− ei + ej ≥ (0, 0, 0) then
12 si+= (αj − δi,j + 1) ∗Mα−ei+ej ,β;

13 Vα,β += vi ∗ si;

14 Return V;
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Algorithm 3.16: 3DConvMatConst(V, n)

Input : Precomputed element mass matrix M = 3DMassMatConst(M, n).
Output: 3D element convective matrix V.

1 V ≡ 0;
2 for i = 1 to 4 do
3 vi = b|T · ∇λi;
4 for α1 = n to 0 do
5 for α2 = n− α1 to 0 do
6 for α3 = n− 1− α1 − α2 to 0 do
7 for β1 = n to 0 do
8 for β2 = n− β1 to 0 do
9 for β3 = n− β1 − β2 to 0 do

10 for i = 1 to 4 do
11 si = 0;
12 for j = 1 to 4 do
13 if α− ei + ej ≥ (0, 0, 0, 0) then
14 si += (αj − δi,j + 1) ∗Mα−ei+ej ,β;

15 Vα,β += vi ∗ si;

16 Return V;

We now proceed with the complexity analysis of the convective matrix al-

gorithm, when based on the precomputed mass matrix. Once again, we focus

on the case d = 3. The other two cases are handled in a similar way. Observe

that the first loop over i is executed four times, and contains one inner product

which amounts to three multiplications. Thus, the number of operations needed

in order to set up the field (vi)1≤i≤4 is 4×3 = 12. Moving to the main part of the

algorithm, note that the innermost loop over j is executed 42
(

n+3
3

)2
, and contains

at most one multiplication. Similarly, the (second) loop over i is executed 4
(

n+3
3

)2

times, and contains one multiplication. Hence, the total number of operations

involved in the computation of the 3D convective matrix is at most

12 + 42
(

n + 3

3

)2

+ 4

(

n+ 3

3

)2

.

Using a similar argument, we find that the complexity associated with the
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computation of the 1D and 2D convective matrices is at most given by

2 + 22(n+ 1)2 + 2(n+ 1)2,

6 + 32
(

n+ 2

2

)2

+ 3

(

n + 2

2

)2

,

respectively. To summarize, the number of operations required in order to com-

pute the convective matrix, based on precomputed mass matrix, is at most



















6n2 + 12n+ 8 for d = 1,

3n4 + 18n3 + 39n2 + 36n+ 18 for d = 2,

5n6

9
+ 20n5

3
+ 290n4

9
+ 80n3 + 965n2

9
+ 220n

3
+ 32 for d = 3.

(3.28)

Though the alternative approach for computing the convective matrix presents

the advantage of re-using the computed mass matrix, the comparison of (3.24)

and (3.28) is in favor of the direct computation of the convective matrix, that

is, only using precomputed binomial coefficients. Moreover, the presence of the

conditional checking inside the innermost loop over j might also affect the com-

putational speed. Once again, the direct approach is recommended.

Note that, in addition to optimal complexity, the formulas presented in this

section are explicit, thus allowing for efficient computations of the elemental quan-

tities, with no (quadrature) error from approximating the integrals. Section A.1

provides useful applications of the proposed algorithms for the mass and stiffness

matrices.

3.3 Optimal Assembly II: Variable Data

In the previous section we have seen that in the case of piecewise constant data

the load vector, mass, stiffness and convective matrices are given by the explicit

formulae (3.11), (3.12), (3.21) and (3.25), respectively. The cost of their compu-

tation for a single simplex is optimal in the sense it is bounded by a constant

times the number of entries, that is O(nd) for the load vector and O(n2d) for the



63

mass, stiffness and convective matrices.

When using the shape functions of a fixed degree on all simplices of a trian-

gulation, it is important to observe that the formulae (3.11), (3.12), (3.21) are

not strongly dependent on the particular simplex T . For example the normalized

mass matrix M̃ given by

M̃α,β :=

(

α+β

α

)

(

2n
n

)(

2n+d
d

) , α,β ∈ Ind ,

may be pre-computed according to 1DMassMatConst, 2DMassMatConst and

3DMassMatConst, for d = 1, 2, 3, and then the mass matrix for each simplex T

obtained as M = c|T |T |M̃. Similarly, the matrices Ed
i,j(M̃), i, j = 1, . . . , d + 1,

may be precomputed to save time when applying (3.21) to each simplex T .

If the data is variable, that is f,A,b, c in (3.3) are functions, then the depen-

dence on the particular element T is much stronger than in the case of piecewise

constant data. Moreover, the computation of the integrals cannot be done ana-

lytically in general and requires quadrature rules. For the quadrature accuracy

not to affect the convergence of the finite element scheme, the quadrature needs

to be exact for polynomials of degree 2n, where n is the order of the finite element

[20, Section 4.3] [24, Section 3]. In particular, using the q-point Stroud conical

product rule [73, Chapter 2] which is exact for polynomials of degree at most

2q − 1, one can see that the choice

q = n + 1, (3.29)

meets the above-mentioned requirement. In this section we present algorithms to

compute the load vector, mass and stiffness matrices with optimal cost in the case

of spatially varying data. For simplicity, we will not distinguish between equality

and approximation in the remaining part of the chapter. That is, depending on

the context, the expression A = B may either reads “A is equal to B”, or “B

approximates A”.
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3.3.1 Load Vector

Recall that the load vector coincides with the B-moment vector (µn
α)α∈In

d
. Note

that with q as in (3.29) the load vector will be computed exactly as soon as f is

a polynomial of degree at most n. The following result is a direct consequence of

Theorem 2.2.4.

Theorem 3.3.1. Let n ∈ Z+ and d ∈ {1, 2, 3}. Using the conical product rule

with q = n + 1, the element load vector can be computed with a numerical cost

O(nd+1) by means of Algorithms Moment1D, Moment2D and Moment3D for d = 1, 2

and 3, respectively.

3.3.2 Mass Matrix

Using a similar approach as for the load vector, we now want to use the conical

product rule to compute the mass matrix M defined by

Mα,β :=

∫

T

c(x)Bn
α(x)B

n
β(x)dx =

(

cBn
α, B

n
β

)

T
, α,β ∈ Ind . (3.30)

The mass matrix M can be obtained by means of Algorithms 3.17, 3.18, 3.19, for

d = 1, 2, 3, respectively.

Algorithm 3.17: 1DMassMat(M, n, {µ2n
β (c), β ∈ I2n1 })

Input : Bernstein-Bézier moments {µ2n
β (c) : β ∈ I2n1 } obtained by means

of the Stroud conical product rule with q = n + 1, and
precomputed binomial coefficients {C i+j

i : 0 ≤ i, j ≤ n}.
Output: 1D element mass matrix M.

1 //Same lines as 1DMassMatConst(M, n) (cf. Algorithm 3.2), with

line 4 replaced with the line:

2 w1 = Cα1+β1

α1
/C2n

n ;
3 //and line 6 replaced with the line:

4 Mα,β = w2 ∗ µ2n
α+β(c);

5 Return M;
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Algorithm 3.18: 2DMassMat(M, n, {µ2n
β (c), β ∈ I2n2 })

Input : Bernstein-Bézier moments {µ2n
β (c) : β ∈ I2n2 } obtained by means

of the Stroud conical product rule with q = n + 1, and
precomputed binomial coefficients {C i+j

i : 0 ≤ i, j ≤ n}.
Output: 2D element mass matrix M.

1 //Same lines as 2DMassMatConst(M, n) (cf. Algorithm 3.3), with

line 4 replaced with the line:

2 w1 = Cα1+β1

α1
/C2n

n ;
3 //and line 9 replaced with the line:

4 Mα,β = w3 ∗ µ2n
α+β(c);

5 Return M;

Algorithm 3.19: 3DMassMat(M, n, {µ2n
β (c), β ∈ I2n3 })

Input : Bernstein-Bézier moments {µ2n
β (c) : β ∈ I2n3 } obtained by means

of the Stroud conical product rule with q = n + 1, and
precomputed binomial coefficients {C i+j

i : 0 ≤ i, j ≤ n}.
Output: 3D element mass matrix M.

1 //Same lines as 3DMassMatConst(M, n) (cf. Algorithm 3.4), with

line 4 replaced with the line:

2 w1 = Cα1+β1

α1
/C2n

n ;
3 //and line 12 replaced with the line:

4 Mα,β = w4 ∗ µ2n
α+β(c);

5 Return M;
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We now proceed with discussing step by step the complexity of the proposed

algorithms. First observe that, for d = 1, 2, 3, the only difference between the

algorithms associated with constant and variable data lies in the computation of

the B-moments of order 2n, and one additional multiplication in the innermost

loop. Thus, in addition to the cost corresponding to the B-moments (which is

O(nd+1)), and those given in (3.13), the number of operations involved in the

computation of the mass matrix with variable coefficients is
(

n+d
d

)2
, that is,



















n2 + 2n+ 1 for d = 1,

n4

4
+ 2n3 + 6n2 + 8n+ 4 for d = 2,

n6

36
+ n5

3
+ 29n4

18
+ 4n3 + 193n2

36
+ 11n

3
+ 1 for d = 3.

Combining the above equations with (3.13) and Theorem 2.2.4 implies that the

number of operations involved in the computation of the mass matrix is O(n2d),

for d = 1, 2, 3.

Next, we analyze the output of Algorithms 3.17, 3.18 and 3.19. From the

description of the algorithms, one can see that the mass matrix is computed as

(

α+β

α

)

(

2n
n

)

(

c, B2n
α+β

)

T
.

But this is the right formula for Mα,β, as follows from (3.30) and (1.6).

We can now state the following result which is a direct consequence of the

above complexity analysis.

Theorem 3.3.2. Let n ∈ N, and d ∈ {1, 2, 3}. Using the conical product rule with
q = n+1, the element mass matrix of degree n can be computed with a numerical

cost O(n2d) by means of Algorithms 1DMassMat, 2DMassMat, 3DMassMat, for d =

1, 2, 3, respectively.
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3.3.3 Stiffness Matrix

In this section, we want to evaluate the stiffness matrix S defined by

Sα,β :=

∫

T

∇Bn
β(x) ·A(x) · ∇Bn

α(x)dx

The stiffness matrix S can be computed using Algorithms 3.20, 3.21, 3.22, for

d = 1, 2, 3, respectively.

Algorithm 3.20: 1DStiffMat(S, n, {µ2n−2
β (A) : β ∈ I2n−2

1 })
Input : Bernstein-Bézier moments {µ2n−2

β (A) : β ∈ I2n−2
1 } obtained by

means of the Stroud conical product rule with q = n+ 1, and
precomputed binomial coefficients {C i+j

j : 0 ≤ i, j ≤ n− 1}.
Output: 1D Element stiffness matrix S.

1 for i = 1 to 2 do
2 for j = 1 to 2 do

3 Compute µ̃
(i,j)
β = ∇λjµ2n−2

β (A)∇λi, β ∈ I2n−2
1 ;

4 //Same lines as 1DMassMatConst(S, n− 1) (cf. Algorithm 3.2),

with line 4 replaced with the line:

5 w1 = Cα1+β1

α1
∗ n2/C2n−2

n−1 ;
6 //and line 6 replaced with lines 7-13 of 1DStiffMatConst(S, n)
(cf. Algorithm 3.5), where:

7 K ← w2 and si,j ← µ̃
(i,j)
α+β, i, j = 1, 2;

8 Return S;
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Algorithm 3.21: 2DStiffMat(S, n, {µ2n−2
β (A) : β ∈ I2n−2

2 })
Input : Bernstein-Bézier moments {µ2n−2

β (A) : β ∈ I2n−2
2 } obtained by

means of the Stroud conical product rule with q = n+ 1, and
precomputed binomial coefficients {C i+j

j : 0 ≤ i, j ≤ n− 1}.
Output: 2D Element stiffness matrix S.

1 for i = 1 to 3 do
2 for j = 1 to 3 do

3 Compute µ̃
(i,j)
β = ∇λjµ2n−2

β (A)∇λi, β ∈ I2n−2
2 ;

4 //Same lines as 2DMassMatConst(S, n− 1) (cf. Algorithm 3.3),

with line 4 replaced with the line:

5 w1 = Cα1+β1

α1
∗ n2/C2n−2

n−1 ;
6 //and line 9 replaced with lines 9-20 of 2DStiffMatConst(S, n)
(cf. Algorithm 3.6), where:

7 K ← w3 and si,j ← µ̃
(i,j)
α+β, i, j = 1, 2, 3;

8 Return S;

Algorithm 3.22: 3DStiffMat(S, n, {µ2n−2
β (A) : β ∈ I2n−2

3 })
Input : Bernstein-Bézier moments {µ2n−2

β (A) : β ∈ I2n−2
3 } obtained by

means of the Stroud conical product rule with q = n+ 1, and
precomputed binomial coefficients {C i+j

j : 0 ≤ i, j ≤ n− 1}.
Output: 3D Element stiffness matrix S.

1 for i = 1 to 4 do
2 for j = 1 to 4 do

3 Compute µ̃
(i,j)
β = ∇λjµ2n−2

β (A)∇λi, β ∈ I2n−2
3 ;

4 //Same lines as 3DMassMatConst(S, n− 1) (cf. Algorithm 3.4),

with line 4 replaced with the line:

5 w1 = Cα1+β1

α1
∗ n2/C2n−2

n−1 ;
6 //and line 12 replaced with lines 11-29 of

3DStiffMatConst(S, n) (cf. Algorithm 3.7), where:

7 K ← w4 and si,j ← µ̃
(i,j)
α+β, i, j = 1, . . . , 4;

8 Return S;
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Recall from Theorem 2.2.4 that, for d = 1, 2, 3, the computation of the

Bernstein-Bézier moments {µ2n−2
β (A) : β ∈ I2n−2

d } requires O(nd+1) opera-

tions. Assuming that the B-moments have been computed, we now analyze the

complexity of the proposed algorithms for computing the stiffness matrix. For

simplicity, we focus on the case d = 3, that is, Algorithm 3.22. The other two

cases easily follow from a similar analysis. Computing µ̃
(i,j)
β for i, j ∈ {1, . . . , 4}

and β ∈ I2n−2
3 involves 32 + 3 multiplications, and is executed 42

(

2n+1
3

)

times.

Assuming that the scaling constant n2/C2n−2
n−1 one line 5 is computed once and

then re-used, the loop over the pair (α1, β1) contains one multiplication, and is ex-

ecuted n2 times. Similarly, the loop over (α2, β2) contains one multiplication, and

is executed
(

n+1
2

)2
times. Finally, the innermost loop of the algorithm contains

(3 + 1)2 + 2 multiplications, and is executed
(

n+2
3

)2
times. Thus, in addition to

the cost associated with the B-moment computations, the number of operations

required for computing the 3D stiffness matrix is

12× 16

(

2n+ 1

3

)

+ n2 +

(

n + 1

2

)2

+ 18

(

n + 2

3

)2

+ 1.

Similarly, we find that, assuming that the B-moments are given, the cost asso-

ciated with the computation of the 1D and 2D stiffness matrices is respectively

given by

2× 4(2n− 1) + 6n2 + 1, and 6× 9

(

2n

2

)

+ n2 + 11

(

n+ 1

2

)2

+ 1.

To summarize, the number of operations involved in computing the stiffness ma-

trix is



















6n2 + 16n− 7 for d = 1,

11n4

4
+ 33n3

2
+ 579n2

4
− 21n+ 12 for d = 2,

n6

2
+ 3n5 + 27n4

4
+ 525n3

2
+ 13n2

4
− 64n+ 1 for d = 3,

plus the cost associated with the computation of the B-moments which can be

precomputed with O(nd+1) operations.
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Let us now consider the output of the proposed algorithms. Note from the

expression of the scaling constant r that the stiffness matrix is computed as

Sα,β =
n2

(

2n−2
n−1

)

d+1
∑

i,j=1

(

α− ei + β − ej
α− ei

)

µ2n−2
α−ei+β−ej

(∇λjA∇λi), (3.31)

for α,β ∈ Ind . But then, observe from the definition of S and (3.20) that

Sα,β =n2

∫

T

(

d+1
∑

j=1

Bn−1
β−ej

(x)∇λj
)

A(x)
(

d+1
∑

i=1

Bn−1
α−ei

(x)∇λi
)

dx

=n2
d+1
∑

i,j=1

∫

T

(∇λjA(x)∇λi)Bn−1
α−ei

(x)Bn−1
β−ej

(x)dx,

which, together with the equality

Bn
αB

m
β =

(

α+β

α

)

(

n+m
n

)Bn+m
α+β , α ∈ Ind , β ∈ Imd , n,m ∈ N0, (3.32)

yields (3.31).

The next result thus holds.

Theorem 3.3.3. Let n ∈ N and d ∈ {1, 2, 3}. Using the conical product rule with
q = n + 1, the element stiffness matrix of degree n can be computed with O(n2d)

operations using Algorithms 1DStiffMat, 2DStiffMat, 3DStiffMat.

3.3.4 Convective Matrix

We now want to approximate the convective matrix V defined by

Vα,β :=

∫

T

∇Bn
α(x) · b(x)Bn

β(x)dx, α,β ∈ Ind . (3.33)

The convective matrix can be computed using Algorithms 3.23, 3.24, 3.25, for

d = 1, 2, 3, respectively.
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Algorithm 3.23: 1DConvMat(V, n, {µ2n−1
β (b) : β ∈ I2n−1

1 })
Input : Bernstein-Bézier moments {µ2n−1

β (b) : β ∈ I2n−1
1 } computed by

means of the Stroud conical product rule with q = n+ 1, and
precomputed binomial coefficients
{C i+j

i : 0 ≤ i ≤ n, 0 ≤ j ≤ n− 1}.
Output: 1D element convective matrix V.

1 for i = 1 to 2 do

2 Compute µ̃
(i)
β = ∇λi · µ2n−1

β (b), β ∈ I2n−1
1 ;

3 V ≡ 0;
4 //Lines 5-11 of 1DConvMatConstDirect(V, n)
(cf. Algorithm 3.11), with line 7 replaced with the line:

5 w1 = Cα1+β1

α1
∗ n/C2n−1

n ;
6 //and with:

7 vi ← µ̃
(i)
α+β, i = 1, 2;

8 Return V;

Algorithm 3.24: 2DConvMat(V, n, {µ2n−1
β (b) : β ∈ I2n−1

2 })
Input : Bernstein-Bézier moments {µ2n−1

β (b) : β ∈ I2n−1
2 } computed by

means of the Stroud conical product rule with q = n+ 1, and
precomputed binomial coefficients
{C i+j

i : 0 ≤ i ≤ n, 0 ≤ j ≤ n− 1}.
Output: 2D element convective matrix V.

1 for i = 1 to 3 do

2 Compute µ̃
(i)
β = ∇λi · µ2n−1

β (b), β ∈ I2n−1
2 ;

3 V ≡ 0;
4 //Lines 5-15 of 2DConvMatConstDirect(V, n)
(cf. Algorithm 3.12), with line 8 replaced with the line:

5 w1 = Cα1+β1

α1
∗ n/C2n−1

n ;
6 //and with:

7 vi ← µ̃
(i)
α+β, i = 1, 2, 3;

8 Return V;
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Algorithm 3.25: 3DConvMat(V, n, {µ2n−1
β (b) : β ∈ I2n−1

3 })
Input : Bernstein-Bézier moments {µ2n−1

β (b) : β ∈ I2n−1
3 } computed by

means of the Stroud conical product rule with q = n+ 1, and
precomputed binomial coefficients
{C i+j

i : 0 ≤ i ≤ n, 0 ≤ j ≤ n− 1}.
Output: 3D element convective matrix V.

1 for i = 1 to 4 do

2 Compute µ̃
(i)
β = ∇λi · µ2n−1

β (b), β ∈ I2n−1
3 ;

3 V ≡ 0;
4 //Lines 5-19 of 3DConvMatConstDirect(V, n)
(cf. Algorithm 3.13), with line 9 replaced with the line:

5 w1 = Cα1+β1

α1
∗ n/C2n−1

n ;
6 //and with:

7 vi ← µ̃
(i)
α+β, i = 1, . . . , 4;

8 Return V;

We now proceed to analyze the complexity associated with the convective

matrix algorithms. For simplicity, we focus on the case d = 3, that is, Algo-

rithm 3.25. The other two cases are similar. Recall from Theorem 2.2.4 that

the B-moments of order 2n− 1 can be computed in O(n4) operations. Assuming

that the required B-moments have been computed, we study the complexity as-

sociated with the proposed algorithm. To this end, observe that the loop over i

is executed four times, and contains one inner product which amounts to three

multiplications. Thus, setting up the field µ̃
(i)
β , 1 ≤ i ≤ 4, and β ∈ I2n−1

3 involves

twelve operations. In addition, the loop over β1 is executed
(

n+2
3

)

(n + 1) times,

and contains one multiplication, whereas the loop over β2 is executed
(

n+2
3

)(

n+2
2

)

times, and contains one multiplication. Finally, the innnermost loop is executed
(

n+2
3

)(

n+3
3

)

times, and contains six operations. Therefore, in addition to the cost

of computing the B-moments, the number of operations involved in the compu-

tation of the 3D stiffness matrix is

12 +

(

n + 2

3

)

(n+ 1) +

(

n+ 2

3

)(

n + 2

2

)

+ 6

(

n+ 2

3

)(

n+ 3

3

)

.

Using a similar argument, we find that the cost associated with Algorithm 3.23
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and Algorithm 3.24 is respectively given by

3 + 4n(n + 1), and 6 +

(

n + 1

2

)

(n+ 1) + 5

(

n + 1

2

)(

n+ 2

2

)

,

plus the cost involved in the B-moments computation. To summarize, in addition

to the cost associated with the computation of the B-moments, the number of

operations involved in computing the convective matrix is



















4n2 + 4n + 2 for d = 1,

5n4

4
+ 11n3

2
+ 29n2

4
+ 3n+ 6 for d = 2,

n6

6
+ 19n5

12
+ 35n4

6
+ 41n3

4
+ 17n2

2
+ 8n

3
+ 12 for d = 3.

Checking the output of Algorithms 3.23, 3.24 and 3.25, note that, for d =

1, 2, 3, the convective matrix is computed as:

Vα,β =
n

(

2n−1
n

)

d+1
∑

i=1

(

α− ei + β

β

)
∫

T

B2n−1
α−ei+β(∇λi · b), α,β ∈ Ind . (3.34)

But then, observe from the definition of V and equation (3.20) that, for any

α,β ∈ Ind ,

Vα,β = n

∫

T

d+1
∑

i=1

Bn−1
α−ei
∇λi · bBn

β = n
d+1
∑

i=1

∫

T

Bn−1
α−ei

Bn
β∇λi · b,

which, by virtue of (3.32), coincides with (3.34).

The following theorem is a direct consequence of the above argument.

Theorem 3.3.4. Let n ∈ N and d ∈ {1, 2, 3}. Using the conical product rule

with q = n + 1, the convective matrix of order n can be computed with O(n2d)

operations using Algorithms 1DConvMat, 2DConvMat, 3DConvMat, for d = 1, 2, 3,

respectively.
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3.4 Stencils

Observe on lines 16-19 of Algorithm 3.13 that, for β ∈ In−1
3 ≃ Dn−1

3 , the compu-

tation of the 3D convective matrix involves updating the columns associated with

β+ek with k = 1, . . . , 4. Lines 14-29 of Algorithm 3.7 yield a similar statement for

the stiffness matrix. One can easily check that analogous statements also hold for

d = 1, 2. For a given domain point β ∈ Iℓd, the set {β̃k := β+ek : k = 1, . . . , d+1}
is termed the stencil associated with β. Instead of checking the position of the

entry corresponding to β+ek, an efficient memory access call which considerably

speeds up the computations, consists in using the structure of the domain point

stencils. More precisely, it is possible to use the geometric architecture of the

domain points in order to systematically determine the lexicographical position

of β + ek. The key observation is that the lexicographical position of β and

β̃1 := β + e1 coincide, and that the difference between domain points of order ℓ

and of order ℓ+ 1 are given by the additional layer of domain points of lower di-

mension formed by the set Dℓ+1
d−1 (see Figure 3.1. For the 3D case, the non-visible

domain points are drawn in grey). Thus, in one, two and three dimensions, the

additional layer respectively consists of one additional point, line and triangle.

For β ∈ Dℓ
d and k = 2, , . . . , d + 1, the domain point β̃k := β + ek ∈ Dℓ+1

d lies

on the additional domain point layer. The offset between β̃1 and β̃2 is deduced

from the above remarks and careful observations of the geometric structure of

the domain points, leading to Algorithms Stencil1D, Stencil2D and Stencil3D

for the efficient position evaluation of the elements of the stencil sets associated

with each β ∈ Ind , assuming that the counter starts at 1. In the above-mentioned

algorithms, the notation lex(·) is used to represent the lexicographical position

operator.

Algorithm 3.26: Stencil1D(n)

1 Initialize lex(α̃1) = 1, lex(α̃2) = 2;
2 for α1 = n to 0 do
3 lex(α̃1) += 1;
4 lex(α̃2) += 1;
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Figure 3.1: Domain point stencils

Algorithm 3.27: Stencil2D(n)

1 Initialize lex(α̃1) = 1, lex(α̃2) = 2, lex(α̃3) = 3;
2 for α1 = n to 0 do
3 for α2 = n− α1 to 0 do
4 lex(α̃2) += 1;
5 lex(α̃3) += 1;
6 lex(α̃1) += 1;

7 lex(α̃2) += 1;
8 lex(α̃3) += 1;

stencil2Da.eps
stencil3Da.eps
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Algorithm 3.28: Stencil3D(n)

1 Initialize lex(α̃1) = 1, lex(α̃2) = 2, lex(α̃3) = 3, lex(α̃4) = 4;
2 for α1 = n to 0 do
3 for α2 = n− α1 to 0 do
4 for α3 = n− α1 − α2 to 0 do
5 lex(α̃1) += 1;
6 lex(α̃2) += 1;
7 lex(α̃3) += 1;
8 lex(α̃4) += 1;

9 lex(α̃3) += 1;
10 lex(α̃4) += 1;

11 lex(α̃2) += n− α1 + 2;
12 lex(α̃3) += 1;
13 lex(α̃4) += 1;

In particular, for the efficient evaluation of the convective matrix, Stencil1D,

Stencil2D, Stencil3D, as presented in Algorithms 3.26, 3.27 and 3.28, are in-

corporated into the loop over αi, i = 1, . . . , d, for d = 1, 2, 3, respectively. A

similar insertion is performed for the computation of the stiffness matrix, except

that the stencil structure is present in both the αi- and βi-loops.

3.5 Summary

We now proceed to summarize the main results of the previous sections, as fol-

lowing directly from (3.11), equation (3.13), equation (3.15), equation (3.24),

Theorem 3.3.1, Theorem 3.3.2, Theorem 3.3.3 and Theorem 3.3.4.

Theorem 3.5.1. In the case of piecewise constant data:

• the load vector entries of order n are all given by

f |T |T |
(

n+d
d

) ;
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• the mass matrix of order n is given by

Mα,β =
c|T |T |

(

2n
n

)(

2n+d
d

)

(

α+ β

α

)

, α,β ∈ Ind ,

and can be computed with a O(n2d) complexity using Algorithm 3.2, 3.3 and

3.4 for d = 1, 2, and 3, respectively;

• the stiffness matrix of order n is given by

Sα,β = n2
d+1
∑

i,j=1

Ek,ℓ(M)∇λjA|T∇λi,

and can be computed with a O(n2d) complexity using Algorithms 3.8, 3.9

and 3.10 for d = 1, 2 and 3, respectively ;

• the convective matrix of order n is given by

Vα,β =
n|T |

(

2n−1
n

)(

2n−1+d
d

)b|T ·
d+1
∑

ℓ=1

∇λℓ
(

α+ β − eℓ
α

)

, α,β ∈ Ind ,

and can be computed with a O(n2d) complexity using Algorithms 3.11, 3.12,

and 3.13 for d = 1, 2 and 3, respectively.

One should note that the above formulae are all explicit.

In the case of variable data, the integrals are approximated using the Stroud-

Conical product rule with qd quadrature points, with q = n+ 1. It holds that:

• the load vector of order n can be computed with a O(nd+1) complexity by

means of Algorithms 2.2, 2.3 and 2.4 for d = 1, 2 and 3, respectively;

• the mass matrix of order n can be computed with a O(n2d) complexity by

means of Algorithms 3.17, 3.18 and 3.19, for d = 1, 2 and 3, respectively;

• the stiffness matrix of order n can be computed with a O(n2d) complexity by

means of Algorithms 3.20, 3.21, and 3.22, for d = 1, 2, 3, respectively;
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• the convective matrix of order n can be computed with a O(n2d) complexity

by means of Algorithms 3.23, 3.24 and 3.25, for d = 1, 2, 3, respectively.

3.6 Numerical Examples

3.6.1 CPU Timings

For d = 1, 2, 3, we now proceed to plot the CPU time involved in the computation

of the elemental mass and stiffness matrices against the value of n, using both the

algorithms presented here and those introduced in [11]. We obtain Figure 3.2:

“Mass” and “Stiffness“ respectively refer to the CPU timings for computing the

mass and stiffness matrices with constant coefficients. The CPU timings for

computing the stiffness matrix with variable coefficients is represented by the

plots corresponding to ”Stiffness (variable)“ and ”Stiffness (variable, precomp)“.

That is, for the variable case, two approaches are represented: the one presented

in this work (PRECOMP), and that developed in [11] (see Section 2.3 for more

details).

On each graph, the growth of the computational cost is compared to the curve

of the function Cn2d, where C is a scalar constant. We observe that, in all cases,

the results confirm the predicted optimal cost O(n2d). In addition, observe that,

with d = 2, 3, the CPU timings corresponding to the constant and variable cases

are virtually the same for higher degrees, which is consistent with the fact that

the additional cost occuring when the data is variable only comes from the B-

moments computation which is done in onlyO(nd+1) operations. In contrast, with

d = 1, the computations of the B-moments and those of the stiffness matrix are

of the same order, which causes a significant difference between the constant and

variable data, as observed Figure 3.2(a) for the stiffness matrix. In other words,

with the proposed approach, the complexity is not dominated by the quadrature

cost with d > 1.
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Figure 3.2: CPU timings for the computation of the mass and stiffness matrices
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3.6.2 Test Problem

We next use our basis to solve the problem







−△u = 1 on Ω,

u = 0 on ∂Ω,
(3.35)

on the single triangle T defined by

T := {(x, y) ∈ R
2 : 0 ≤ x, y ≤ 1, 0 ≤ y ≤ 1− x}. (3.36)

The corresponding error in the energy norm is given in Figure 3.3(a).

Observe in particular that, for n > 30, the error starts oscillating, which

might be due to the growth of the stiffness matrix condition number, as shown

in Figure 3.3(b).
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Chapter 4

Bernstein-Bézier Finite Elements

for H(curl) in 2D

The goal of this chapter is to generalize the results obtained in Chapter 3 to the

two-dimensional space H(curl) defined by (1.10). In two dimensions, H(curl) is

isomorphic to the H(div) space defined by H(div; Ω) := {v ∈ L2(Ω) : div(v) ∈
L2(Ω)}, with div(v) := ∇ ·v. Hence the work presented in this chapter was used

as a foundation for an article on Bernstein-Bézier H(div) finite elements in two

dimensions [10].

Finite element spaces in H(curl) are used for solving curl-curl problems of the

form:

curl
(

A curlu
)

+ κu = f ,

u · τ = 0 on ΓD,

A curlu = 0 on ΓN ,

(4.1)

where

ΓD

⋃

ΓN = ∂Ω,

ΓD

⋂

ΓN = ∅.

It is well-established thatH1 finite elements applied to the Galerkin discretization

82
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of the above problem may lead to spurious solutions [74, 66].

Multiplying the first equation of (4.1) by smooth functions, and integrating

by parts, the weak formulation corresponding to (4.1) reads:

Find u ∈ H0(curl; Ω) such that, for all v ∈ H0(curl; Ω),
∫

Ω

A(x) curlu(x) curlv(x) dx +

∫

Ω

κ(x)u(x) · v(x) dx =

∫

Ω

f(x) · v(x) dx,

(4.2)

where H0(curl; Ω) consists of the functions inH(curl; Ω) with zero tangential com-

ponent on the boundary ΓD. Moreover, the scalar-valued function A is assumed

to be continuous and strictly positive on Ω, κ is bounded and uniformly positive

definite, and f is square-integrable. Under these assumptions, the bilinear form

a(·, ·) and the linear form F which are defined by

a(u,v) :=

∫

Ω

[

A curlu(x) curl v(x)dx + κ(x)u(x) · v(x)
]

dx, u,v ∈ H0(curl; Ω),

F (v) :=

∫

Ω

f(x) · v(x)dx, v ∈ H0(curl; Ω),

are continuous. In addition, a(·, ·) is coercive, with coercivity constant given by

ϑ = min
{

inf
x∈Ω

A(x), inf
x∈Ω

xtκ(x)x

‖x‖2
}

.

Thus, by virtue of the Lax-Milgram Lemma, (4.2) is well-posed. Without loss

of generality, we can assume that κ is symmetric. Assuming that Ω ⊂ R
2 is a

domain with polygonal boundary, and that
{

φT,i

}m

i=1
is a conforming set of shape

functions on each triangle T of a triangulation of Ω, the Galerkin discretization

of the problem consists in approximating any v ∈ H0(curl; Ω) and the solution u

using the substitutions

v ≈ vFE =

m
∑

j=1

ℓjφT,j, u ≈ uFE =

m
∑

i=1

kiφT,i,

on every triangle T of the triangulation. Inserting the above approximations into
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(4.2) yields a linear system involving the H(curl) load vector, mass and stiffness

matrices whose components are given by

∫

T

f · φT,i dx,

∫

T

κφT,i · φT,j dx,

∫

T

curl(φT,i)A curl(φT,j) dx, (4.3)

respectively.

Recall that, in two dimensions, the Raviart-Thomas elements are obtained by

“rotating“ the Nédélec elements (see [26, Section 5]). Hence, using the notations

in the above equations, the set {φ⊥
T,i}mi=1 forms an H(div)-conforming set of shape

functions on the triangle T , and the corresponding H(div) load vector, mass and

stiffness matrices are given by

∫

T

fdiv · φ⊥
T,i dx,

∫

T

κdivφ⊥
T,i · φ⊥

T,j dx,

∫

T

div(φ⊥
T,i)A

div div(φ⊥
T,j) dx, (4.4)

where fdiv, κdiv and Adiv respectively denote the coefficients associated with the

load vector, the mass matrix and the stiffness matrix. Using a simple algebraic

argument, it can be shown that

∫

T
fdiv · φ⊥

T,idx =
∫

T
(−fdiv)⊥ · φT,i dx,

∫

T
κdivφ⊥

T,i · φ⊥
T,j dx =

∫

T
κ̃divφT,i · φT,j dx,

∫

T
div(φ⊥

T,i)A
div div(φ⊥

T,j) dx =
∫

T
curl(φT,i)A

div curl(φT,j) dx,



















(4.5)

where κ̃div is defined as

κ̃div :=





a22 −a21
−a12 a11



 with κdiv := (aij)i,j=1,2.

Hence, in order to compute the H(div) elemental load vector associated with

the function fdiv, it suffices to compute the H(curl) load vector associated with

(−fdiv)⊥. Similarly, the H(div) elemental mass matrix associated with κdiv can

be obtained by computing the H(curl) elemental mass matrix associated with

κ̃div defined above. Using the fact that div(φ⊥) = − curl(φ), it can be easily

shown that the H(div) elemental stiffness matrix associated with the function A
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is equal to the H(curl) stiffness matrix associated with the same function. As a

consequence, provided that the data is pre-processed as on the right-hand side

of (4.5), the H(curl) routines presented in Appendix B can also be used for the

computation of the H(div) elemental quantities.

The chapter is organized as follows. Section 4.1 describes theH(curl) Bernstein-

Bézier (BB) finite element shape functions which are based on BB polynomials.

The key idea behind the optimal complexity results is to write the H(curl) quan-

tities in terms of linear combinations of B-moments, as discussed in Section 4.2,

and then use the estimations presented in Chapter 2 for the computation of the

B-moments. Section 4.3 then gives the details of the corresponding algorithms

and proves that they achieve the optimal complexity O(n4). Section 4.5 concludes

with CPU timings which are consistent with the predicted optimal complexity

results, and gives an illustrative example of the use of the presented finite element

for solving a Maxwell’s eigenvalue problem.

4.1 Bernstein-Bézier H(curl) Finite Element

Since only the case d = 2 is considered in this chapter, we use simplified versions of

the notations used in Chapter 2. Thus, for n ∈ Z
+
0 , the symbol In is used instead

of In2 . In particular, note that I0 = {(0, 0, 0)} and I1 = {ek : k = 1, 2, 3}, where
ek is such that the kth index is one and the other entries vanish. Similarly, we use

the simplified notation Dn(T ) = Dn
2 (T ) for the set of two-dimensional domain

points with respect to the simplex T . We also denote by Pk the space of bivariate

polynomials of total degree at most k, and (Pk)
2 is the space of vector functions

whose both components are polynomials in Pk.

Given a triangle T = 〈v1,v2,v3〉, where the vertices are ordered counterclock-

wise, the notations γi (respectively τ i) refer to the edge opposite to the vertex

vi (respectively the unit tangent vector on γi in the counterclockwise direction

around the triangle).
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The star of an index α ∈ In, as represented on Figure 4.1 below, is the set

Star(α) := {α+ ek − eℓ : k, ℓ = 1, 2, 3} ∩ In

=
{

α,α+ (−1, 1, 0),α+ (−1, 0, 1),α+ (0,−1, 1),

α+ (1,−1, 0),α+ (1, 0,−1),α+ (0, 1,−1)
}

∩ In. (4.6)

α

Figure 4.1: Domain Point Star

In addition, let γni (respectively I̊n) denote the set of domain points belonging

to the edge γi except the vertices (respectively the interior domain points).

4.1.1 Bernstein-Bézier Basis for the H(curl) Finite Ele-

ment

The aim of this section is to provide a basis for the Nédélec space NDn defined by

(1.14) associated with a given triangle T , such that the element-wise computations

of the quantities (4.3) are of optimal order.

We now recall the definition of the Whitney functions

ωi := λi+1∇λi−1 − λi−1∇λi+1, i = 1, 2, 3, (4.7)

where we identify λν+3 = λν . By definition, note that ωi ∈ ND0 = P
2
0+span(x⊥).

./star2D.eps
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It is well-known [78, 29, 67] that

span({ωi : i = 1, 2, 3}) = ND0. (4.8)

In addition, it is easy to check that (ωi · τ i+1)|γi = (ωi · τ i−1)|γi = 0.

Lemma 4.1.1. The barycentric coordinates λi and Whitney functions ωi, for

i = 1, 2, 3, satisfy

∇λi = −
|γi|
2|T |ni, (4.9)

(∇λi)⊥ · ∇λi+1 = −(∇λi)⊥ · ∇λi−1 =
1

2|T | , (4.10)

curl(ωi) =
1

|T | , (4.11)

(ωi · τ i)|γi = ∇λi−1 · τ i = −∇λi+1 · τ i =
1

|γi|
. (4.12)

Proof. The first identity is easy to check by definition. Since the angle between

(∇λi)⊥ and ∇λi+1 is always acute, we have (∇λi)⊥ ·∇λi+1 = ‖∇λi×∇λi+1‖, and
(4.10) follows from (4.9) and the identity |γi|ni×|γi+1|ni+1 = ±2|T |~k, where ~k is

the unit vector along the z-axis. The formula for (∇λi)⊥ ·∇λi−1 follows from the

identity a · b⊥ = −a⊥ · b. To show (4.11), we observe that in two dimensions,

curl(af) = −∇a · f⊥ + a curl(f), (4.13)

where a is a scalar function. Taking into account that curl∇f = 0, we obtain

curl(λi+1∇λi−1 − λi−1∇λi+1) = curl(λi+1∇λi−1)− curl(λi−1∇λi+1)

= −∇λi+1 · (∇λi−1)
⊥ +∇λi−1 · (∇λi+1)

⊥,

and (4.11) follows from (4.10), having also used the fact that, (i+1)+ 1 = i− 1,

when i is taken in the cyclic permutations of the set (1, 2, 3). Finally, by (4.9),

τ i = −2|T |
|γi| (∇λi)

⊥, and hence (4.10) implies ∇λi−1 · τ i = −∇λi+1 · τ i =
1
|γi| , so

that ωi · τ i =
λi+1+λi−1

|γi| . By restricting the latter to γi we complete the proof of

(4.12).
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For n ≥ 0 and α = (α1, α2, α3) ∈ In, we define σn
α ∈ (Pn+1)

2 by

σn
α := (n + 1)Bn

α

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1 α2 α3

λ1 λ2 λ3

∇λ1 ∇λ2 ∇λ3

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (n+ 1)Bn
α

3
∑

i=1

αiωi. (4.14)

In particular, σ0
000 = 0. By (4.7) and the identity Bn

αλi =
αi+1
n+1

Bn+1
α+ei

it follows

that

σn
α =

3
∑

i=1

(αi + 1)(αi−1∇λi+1 − αi+1∇λi−1)B
n+1
α+ei

. (4.15)

Since αiB
n
α|γi = 0 , we have

(σn
α · τ i)|γi = 0, i = 1, 2, 3. (4.16)

Lemma 4.1.2. For any (i, j, k) ∈ In,

curl(σn
ijk) =

n+ 1

|T | [(ij + ik + jk + n)Bn
ijk − i+1

2

(

jBn
i+1,j−1,k + kBn

i+1,j,k−1

)

− j+1
2

(

iBn
i−1,j+1,k + kBn

i,j+1,k−1

)

− k+1
2

(

iBn
i−1,j,k+1 + jBn

i,j−1,k+1

)

].

Proof. By using (4.13) and (4.11) it is easy to show that

curl(σn
ijk) = −(n + 1)

(

∇Bn
ijk(iω1 + jω2 + kω3)

⊥ − n

|T |B
n
ijk

)

.

By the chain rule,

∇Bn
ijk = n[Bn−1

i−1,j,k∇λ1 +Bn−1
i,j−1,k∇λ2 +Bn−1

i,j,k−1∇λ3], (4.17)

where, according to our convention, Bm
rst := 0 if (r, s, t) /∈ Im. For example,

∇Bn
n,0,0 = nBn−1

n−1,0,0∇λ1, so that two terms in the right hand side of (4.17) are

omitted. Inserting (4.10) and the definition of the Bernstein polynomials into
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(4.17), we obtain

∇Bn
ijkω

⊥
1 = n

[

λ2B
n−1
i−1,j,k∇λ1(∇λ3)⊥ − λ3Bn−1

i−1,j,k∇λ1(∇λ2)⊥

+ λ2B
n−1
i,j−1,k∇λ2(∇λ3)⊥ − λ3Bn−1

i,j,k−1∇λ3(∇λ2)⊥
]

=
n

2|T |
[

λ2B
n−1
i−1,j,k + λ3B

n−1
i−1,j,k − λ2Bn−1

i,j−1,k − λ3Bn−1
i,j,k−1

]

=
1

2|T |
[

(j + 1)Bn
i−1,j+1,k + (k + 1)Bn

i−1,j,k+1 − jBn
ijk − kBn

ijk

]

.

Similarly,

∇Bn
ijkω

⊥
2 =

1

2|T |
[

(i+ 1)Bn
i+1,j−1,k + (k + 1)Bn

i,j−1,k+1 − iBn
ijk − kBn

ijk

]

,

∇Bn
ijkω

⊥
3 =

1

2|T |
[

(i+ 1)Bn
i+1,j,k−1 + (j + 1)Bn

i,j+1,k−1 − iBn
ijk − jBn

ijk

]

.

The lemma follows by substituting these expressions into the above formula for

curl(σn
ijk).

We are ready to describe a spanning set and a basis for NDn associated with

a triangle T .

Theorem 4.1.3. A spanning set for NDn, n ≥ 0, is given by

{ω1,ω2,ω3} ∪
{

∇Bn+1
α : α ∈ In+1

}

∪
{

σn
α : α ∈ In

}

. (4.18)

Moreover, let

E(i)
n := {∇Bn+1

α : α ∈ γn+1
i } ∪ {ωi}, i = 1, 2, 3,

I∇n := {∇Bn+1
α : α ∈ I̊n+1},

Iσn :=
{

σn
α : α ∈ In \ {α0}

}

,

where α0 is an arbitrary index in In. Then Bn := Iσn ∪ I∇n ∪E(1)
n ∪ E(2)

n ∪ E(3)
n is

a basis for NDn.

Proof. The chain rules applied to the gradient operator shows that, for α ∈ In+1,
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∇Bn+1
α is in NDn. Similarly, since the Whitney functions are in ND0 = P

2
0 +

span(x⊥), it follows from (4.14) that σn
α belongs to NDn, for α ∈ In. Thus, all

functions listed in the first display of the theorem belong to NDn. Since Bn is

included in the set defined in (4.18), it suffices to prove that Bn forms a basis for

NDn. It is easy to check by definition that dim(NDn) = (n + 1)(n + 3) = #Bn,
and thus it suffices to prove that the functions in Bn are linearly independent.

To this end, we consider an arbitrary linear combination S of functions in Bn,

S = SI,σ + SI,∇ + SE,1 + SE,2 + SE,3,

where SI,σ ∈ span(Iσn ), SI,∇ ∈ span(I∇n ), SE,i ∈ span(E
(i)
n ), i = 1, 2, 3. Assuming

that S = 0, we will show that all coefficients of S are zero, which implies the

desired linear independence.

It is easy to see that (S ·τ i)|γi = (SE,i ·τ i)|γi , i = 1, 2, 3. Hence S = 0 implies

(SE,i · τ i)|γi = 0. Let

SE,3 = cω3 +
∑

α∈γn+1

3

cα∇Bn+1
α c, cα ∈ R.

By (4.12), (ωi · τ 3)|γ3 = ∇λ2 · τ 3 = −∇λ1 · τ 3 =
1

|γ3| . Hence

∇Bn+1
i,n+1−i,0 · τ 3 = (n+ 1)(Bn

i−1,n+1−i,0∇λ1 +Bn
i,n−i,0∇λ2) · τ 3

= (n+ 1)(Bn
i−1,n+1−i,0 − Bn

i,n−i,0)∇λ1 · τ 3, i = 1, . . . , n,

and since
∑n

i=0B
n
i,n−i,0 = 1 on the edge γ3, we obtain the following identity on

this edge:

0 = |γ3|SE,3 · τ 3 = c− (n+ 1)

n
∑

i=1

ci,n+1−i,0(B
n
i−1,n+1−i,0 −Bn

i,n−i,0)

=
n
∑

i=0

(c− (n+ 1)ci+1,n−i,0 + (n+ 1)ci,n+1−i,0)B
n
i,n−i,0,
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where

c0,n+1,0 = cn+1,0,0 = 0. (4.19)

By the linear independence of Bn
i,n−i,0, i = 0, . . . , n, on γ3, it follows that

c− (n+ 1)ci+1,n−i,0 + (n + 1)ci,n+1−i,0 = 0, i = 0, . . . , n,

which is a linear system with respect to the n+1 unknows c, c1,n,0, . . . , cn,1,0. Using

(4.19), it is easy to check that the above-mentioned linear system admits only

the trivial solution, thus implying that all coefficients of SE,3 are zero. Similarly,

by considering the edges γ1 and γ2, we conclude that all coefficients of SE,1 and

SE,2 are also zero. Hence

S = SI,σ + SI,∇.

Since curl(∇f) = 0 for any f , S = 0 implies curl(SI,σ) = 0. Let

SI,σ =
∑

α∈In

dασ
n
α, dα ∈ R, dα0

= 0.

Then by applying Lemma 4.1.2 we obtain

0 =
∑

α∈In

dα curl(σn
α) =

∑

(i,j,k)∈In

d̄ijkB
n
ijk,

with

d̄ijk =
n+ 1

|T |
[

(ij + ik + jk + n)dijk − i(j+1)
2

di−1,j+1,k − i(k+1)
2

di−1,j,k+1

− j(i+1)
2

di+1,j−1,k − j(k+1)
2

di,j−1,k+1 − k(i+1)
2

di+1,j,k−1 − k(j+1)
2

di,j+1,k−1

]

,

which, in view of the linear independence of the Bernstein polynomials implies

that

d̄ijk = 0, (i, j, k) ∈ In.

The latter is a square linear system with respect to dijk, (i, j, k) ∈ In. Since



92

the coefficients in each row of this system sum to zero, it is easy to see that

the matrix of the system after the column and the row corresponding to α0

are removed is irreducible and (weakly) diagonally dominant with at least one

strongly diagonally dominant row. By a well known theorem of linear algebra

this matrix is nonsingular, thus implying that dα = 0 for all α ∈ In \ {α0}.

Hence the coefficients gα of SI,∇ satisfy

0 = S = SI,∇ =
∑

α∈I̊n+1

gα∇Bn+1
α = ∇

(

∑

α∈I̊n+1

gαB
n+1
α

)

,

which implies that
∑

α∈I̊n+1 gαB
n+1
α is a constant. Since this expression vanishes

on the boundary of T , it follows that the constant is zero, and hence gα = 0 for

all α ∈ I̊n+1 by the linear independence of the Bernstein polynomials.

Note that B0 = {ω1,ω2,ω3} which are the classical Whitney edge functions.

In addition,

B1 = {ω1,ω2,ω3,∇B2
110,∇B2

101,∇B2
011} ∪ Iσ1 ,

where Iσ1 consists of any two functions in {σ1
e1
,σ1

e2
,σ1

e3
}, with σ1

ei
= λiωi,

i = 1, 2, 3. From the definition of the basis Bn, observe that the only shape

functions with non-zero tangential components consists of the edge gradients and

the Whitney shape functions (see Section A.2 for the graph of the sigma and

gradient basis functions for n = 1 and n = 2).

For simplicity, suppose that the shape functions described in Theorem 4.1.3

are indexed as in Bn = {bj : j = 1, . . . , dim(NDn)}. Then, for u ∈ NDn, there

exists a unique coefficient sequence {cj : j = 1, . . . , dim(NDn)} satisfying

u =

dim(NDn)
∑

j=1

cjbj . (4.20)

Introducing the set Σn = {φj : j = 1, . . . , dim(NDn)} consisting of linear func-
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tionals given by

NDn ∋ u 7→ φj(u) = cj, j = 1, . . . , dim(NDn),

Theorem 4.1.3 amounts to say that Σn is unisolvent with respect to NDn.

4.1.2 Bernstein-Bézier Vector Finite Element Spaces on a

Partition

We discuss in this section the H(curl)-conformity of the finite element. To this

end, recall that a sufficient condition for a finite element to be H(curl) conform-

ing is that the underlying space is in H(curl) and that inter-element tangential

continuity holds (see Lemma 4.1.4 below). Moreover, observe that the only shape

functions with non-vanishing tangential components consists of the interface gra-

dient and the Whitney edge functions. Thus, tangential continuity needs to be

checked only with the gradients and Whitney shape functions. One can check

that the tangential components of the gradients match on the interface, whereas

those of the Whitney functions match up to a minus sign. Therefore, the degrees

of freeedom associated with the interface gradients are identified with each other,

whereas, for the Whitney functions, the identification of the associated degrees of

freedom takes account of the global orientation of the corresponding edge. More

precisely, if the local and global orientation of a given edge are of opposite direc-

tions, then the sign of the corresponding Whitney function is reversed during the

assembly process.

Let ∆ = {T} be a regular triangulation of a polyhedral domain Ω ∈ R
2. Let

u ∈ NDn and T, T ′ ∈ ∆ such that T ∩ T ′ = e. Let τ T and τ T ′ respectively

denote the oriented edge e with respect to T and T ′. In particular, τ T = −τ T ′.

It then holds that (u · τ T )|T = (u · τ T ′)|T ′ if and only if the interface gradient

coefficients match and the Whitney coefficients are opposites with respect to each

other on the interface. That is to say, if the values of the local gradient (respec-

tively Whitney) degrees of freedom in the finite elements (T,NDn(T ),Σn(T )) and
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(T ′,NDn(T
′),Σn(T

′)) are the same (respectively opposites) on the interface, then

u has continuous tangential components. The next lemma justifies tangential

continuity as a criterion for H(curl)-conformity:

Lemma 4.1.4. Using the above notations, let v denote a function such that,

for any T ∈ ∆, v|T ∈ H(curl;T ). In addition, assume that v has continuous

tangential components, that is, for any T, T ′ ∈ ∆ satisfying T ∩ T ′ = e 6= ∅, it
holds that

[(v · τ )|e]Jp := (v · τ )|e∩T − (v · τ )|e∩T ′ = 0.

Then v is in H(curl; Ω).

Proof. See [65, Lemma 5.3].

The next theorem is an immediate consequence of Lemma 4.1.4:

Theorem 4.1.5. Let Scurl
n (∆) denote the global finite element resulting from

the assembly of the finite elements (T,NDn(T ),Σn(T )), T ∈ ∆. Then Scurl
n (∆)

is H(curl)-conforming, and consists of tangentially continuous functions in the

Nédélec space NDn(∆).

4.2 B-Moment Transformations

For simplicity, we will from now on make no distinction between equality and

approximation. That is, depending on the context, the expression “A = B′′ may

either reads “A is equal to B”, or “B approximates A”. The purpose of this sec-

tion is to write all the H(curl) quantities in terms B-moments. Combined with

the routine Moment2D, or Algorithm 2.3 presented in Chapter 2, these transfor-

mations lead to the optimal complexity results detailed in Section 4.3.

Let T ∈ ∆ be a triangle and let f : T → X denote a smooth function, where

X is a finite dimensional vector space (typically R, R2 or R2×2). Recall that the
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Bernstein-Bézier (B-) moments of degree n for the function f on T are given by

µn
α(f) =

∫

T

Bn
α(x)f(x) dx, α ∈ In. (4.21)

In addition, recall from Theorem 2.2.4 with the case d = 2 that the B-moments of

order n can be computed with O(n3) operations, when using the Stroud conical

product rule based on (n+ 1)2 quadrature points.

In this section we provide the transformation formulae for the element level

load vector, mass and stiffness matrices (4.3) in terms of B-moments of the data

when using the spanning set for NDn described in Theorem 4.1.3. In an imple-

mentation appropriate rows and columns will need to be removed to obtain the

matrices corresponding to the basis Bn.

For a given matrix function κ : T → R
2, let (·, ·)κ denote the inner product

(f , g)κ =

∫

T

(

κ(x)f(x)
)

· g(x) dx.

In the case κ(x) = Id = [ 1 0
0 1 ] we use the notation (·, ·) for simplicity.

We write the H(curl) element load vector, mass and stiffness matrices in a

block matrix form as

L =
[

f∇ fσ fW
]t
,

M =











M∇∇ M∇σ M∇W

(M∇σ)t Mσσ MσW

(M∇W )t (MσW )t MWW











, S =











0 0 0

0 Sσσ SσW

0 (SσW )t SWW











,

where

f∇α =
(

f ,∇Bn+1
α

)

, α ∈ In+1,

fσα =
(

f ,σn
α

)

, α ∈ In,

fWi =
(

f ,ωi

)

, i = 1, 2, 3,
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M∇∇
α,β =

(

∇Bn+1
α ,∇Bn+1

β

)

κ
, α,β ∈ In+1,

M∇σ
α,β =

(

∇Bn+1
α ,σn

β

)

κ
, α ∈ In+1, β ∈ In,

M∇W
α,i =

(

∇Bn+1
α ,ωi

)

κ
, α ∈ In+1, i = 1, 2, 3,

Mσσ
α,β =

(

σn
α,σ

n
β

)

κ
, α,β ∈ In,

MσW
α,i =

(

σn
α,ωi

)

κ
, α ∈ In, i = 1, 2, 3,

MWW
i,j =

(

ωi,ωj

)

κ
, i, j = 1, 2, 3,

Sσσ
α,β =

(

curl(σn
α), curl(σ

n
β)
)

A
, α,β ∈ In

SσW
α,i =

(

curl(σn
α), curl(ωi)

)

A
, α ∈ In, i = 1, 2, 3,

SWW
i,j =

(

curl(ωi), curl(ωj)
)

A
, i, j = 1, 2, 3.

Note that five blocks of S vanish because the curl of a gradient field is zero.

We also recall for later use the following expansions of σn
α and curl(σn

α) in

the Bernstein basis,

σn
α =

3
∑

i=1

c̊
(α)
α+ei

Bn+1
α+ei

, α ∈ In, (4.22)

where

c̊
(α)
α+ek

= (αk + 1)(αk−1∇λk+1 − αk+1∇λk−1), k = 1, 2, 3, (4.23)

and

curl(σn
α) =

∑

η∈Star(α)

c(α)
η Bn

η , α ∈ In, (4.24)
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where Star(α) is defined in (4.6), α ∈ In, and

c
(α)
α+ek−eℓ

= −n + 1

2|T | (αk + 1)αℓ, k, ℓ = 1, 2, 3, k 6= ℓ,

c(α)
α =

n + 1

2|T |
3
∑

k,ℓ=1
k 6=ℓ

(αk + 1)αℓ,
(4.25)

Indeed, (4.23) follows from (4.15), and (4.25) follows from Lemma 4.1.2.

We can now state the main result of this section.

Theorem 4.2.1. The entries of the H(curl) load vector L, mass matrix M and

stiffness matrix S can be expressed in terms of B-moments of the data as follows:

f∇α = (n+ 1)

3
∑

k=1

∇λk · µn
α−ek

(f), (4.26)

fσα =

3
∑

k=1

c̊
(α)
α+ek

· µn+1
α+ek

(f), (4.27)

fWi =
∑

r=±1

r∇λi−r · µ1
ei+r

(f), (4.28)

where c̊
(α)
α+ek

is defined in (4.23), and the terms in (4.26) for which α− ek /∈ In

are ignored in the summation,

M∇∇
α,β = (n+ 1)2

3
∑

k,ℓ=1

(

α−ek+β−eℓ

α−ek

)

(

2n
n

) ∇λℓ · µ2n
α−ek+β−eℓ

(κ) · ∇λk, (4.29)

M∇σ
α,β = (n+ 1)

3
∑

k,ℓ=1

(

α−ek+β+eℓ

α−ek

)

(

2n+1
n+1

) ∇λk · µ2n+1
α−ek+β+eℓ

(κ) · c̊(β)β+eℓ
, (4.30)

M∇W
α,i =

3
∑

k=1

∑

r=±1

r
(

α−ek+ei+r

α−ek

)

∇λk · µn+1
α−ek+ei+r

(κ) · ∇λi−r, (4.31)
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Mσσ
α,β =

3
∑

k,ℓ=1

(

α+ek+β+eℓ

α+ek

)

(

2n+2
n+1

) c̊
(α)
α+ek

· µ2n+2
α+ek+β+eℓ

(κ) · c̊(β)β+eℓ
, (4.32)

MσW
α,i =

3
∑

k=1

∑

r=±1

r
(

α+ek+ei+r

α+ek

)

n+ 2
c̊
(α)
α+ek

· µn+2
α+ek+ei+r

(κ) · ∇λi−r, (4.33)

MWW
i,j =

∑

r,s=±1

rs
(

2
ei+r+ej+s

)∇λi−r · µ2
ei+r+ej+s

(κ) · ∇λj−s, (4.34)

where, in (4.29), (4.30) and (4.31), the terms of the form µm
η for which η /∈ Imare

ignored in the summation, and

Sσσ
α,β =

∑

η∈Star(α)
ρ∈Star(β)

(

η+ρ

η

)

(

2n
n

) c(α)
η c(β)ρ µ2n

η+ρ(A), (4.35)

SσW
α,i =

1

|T |
∑

η∈Star(α)

c(α)
η µn

η(A), (4.36)

SWW
i,j =

1

|T |2
∫

T

A(x) dx =
1

|T |2µ
0
0
(A), (4.37)

where c̄
(α)
η , η ∈ Star(α), is defined in (4.25).

Proof. The chain rule applied to the gradient of the Bernstein polynomial gives

∇Bn+1
α = (n + 1)

3
∑

k=1

∇λkBn
α−ek

. Hence,

f∇α =

∫

T

f(x) · ∇Bn+1
α (x) dx = (n+ 1)

3
∑

k=1

∇λk ·
∫

T

f(x)Bn
α−ek

(x) dx,

which yields (4.26). Similarly, (4.27) follows from (4.22), and (4.28) is obtained

from the following calculation:

fWi =

∫

T

f(x) · (λi+1(x)∇λi−1 − λi−1(x)∇λi+1) dx

= ∇λi−1 ·
∫

T

f(x)B1
ei+1

(x) dx−∇λi+1 ·
∫

T

f(x)B1
ei−1

dx.

The formula (4.29) is a particular case of [11, Eq. (44)]. To obtain (4.30), we
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need the well known product formula for Bernstein polynomials,

Bn
αB

m
β =

(

α+β

α

)

(

m+n
n

)Bm+n
α+β , α ∈ In, β ∈ Im. (4.38)

Indeed, by applying (4.22) and the gradient formula, we have

M∇σ
α,β =

∫

T

σn
β(x) · κ(x) · ∇Bn+1

α (x) dx.

= (n+ 1)

3
∑

k,ℓ=1

c̊
(β)
β+eℓ
·
∫

T

κ(x)Bn+1
β+eℓ

(x)Bn
α−ek

(x) dx · ∇λk,

and (4.30) follows from (4.38). Again by the gradient formula,

M∇W
α,i =

∫

T

∇Bn+1
α (x) · κ(x) · (λi+1(x)∇λi−1 − λi−1(x)∇λi+1) dx

= (n+ 1)
3
∑

k=1

∇λk ·
∫

T

κ(x)Bn
α−ek

(x) ·
(

B1
ei+1

(x)∇λi−1 −B1
ei−1
∇λi+1

)

dx,

and by using (4.38) we obtain (4.31). Equations (4.32) and (4.33) can be shown

similarly to (4.30) and (4.31). Next,

MWW
i,j =

∫

T

∑

r=±1

rλi+r(x)∇λi−r · κ(x) ·
∑

s=±1

sλj+s(x)∇λj−s dx

=
∑

r,s=±1

rs∇λi−r ·
∫

T

κ(x)λi+r(x)λj+s(x) dx · ∇λj−s,

which implies (4.34) since B2
ek+eℓ

=
(

2
ek+eℓ

)

λkλℓ. Finally, (4.35)–(4.37) follow

immediately from (4.24), (4.38) and (4.11).

Considering that the formulas (4.26)–(4.37) include B-moments of different

degrees for the same data, for example the moments of κ of degree 2, n+1, n+2,

2n, 2n + 1 and 2n + 2, it is important to investigate the cheapest method for

working with B-moments of various orders. Thus, observe that the moments of

a lower degree can be obtained from the moments of a higher degree by a simple

degree raising transformation, rather than computed independently according to

Theorem 2.2.4. Note that degree raising is one of standard tools in curve and
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surface modelling [64, Section 2.15].

Lemma 4.2.2. Let ℓ < n. Then, the degree-raising formula is given by:

µℓ
α(f) =

∑

η∈In−ℓ

(

α+η

α

)

(

n
ℓ

) µn
α+η(f), α ∈ Iℓ. (4.39)

Proof. Since Bernstein polynomials build a partition of unity, we have

µℓ
α(f) =

∫

T

Bℓ
α(x)f(x) dx =

∑

η∈In−ℓ

∫

T

Bn−ℓ
η (x)Bℓ

α(x)f(x) dx,

and (4.39) follows by the product formula (4.38).

In view of Lemma 4.2.2, there are three possible alternatives for handling

different degrees: lower the B-moment order one step at a time using repeated

applications of the degree-raising formula, “jump” to the desired B-moment order

using only one application of the degree-raising formula, or directly computing

the desired B-moments using Moment2D. The first and second approaches are

respectively referred to as degree-lowering and degree-jump.

We next proceed to compare the cost involved in using degree-lowering, degree-

jump or the direct computation of the B-moments:

4.2.1 Degree-Lowering for B-Moments

By (4.39), the formula for degree raising from n− 1 to n has the form

µn−1
α (f) =

1

n

3
∑

k=1

(αk + 1)µn
α+ek

(f), α ∈ In−1,

and allows to compute B-moments µn−1
α (f) of degree n−1 if the moments {µn

α(f) :

α ∈ In} of degree n are known, which leads to the routine LowerMoment of

Algorithm 4.1.

We now estimate the cost of repeated degree-lowering in the case where X =

R
2.
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Algorithm 4.1: LowerMoment(F)

Input : Array F corresponding to degree n B-moments {µn
α(f) : α ∈ In}

of f : T → X .
Output: Array Fout of degree n− 1 B-moments {µn−1

α (f) : α ∈ In−1}.
1 foreach α ∈ In−1 do
2 foreach k = 1, 2, 3 do
3 Fout[α] += (αk + 1) ∗ F[α+ ek];

4 Fout /= n;
5 Return Fout;

Lemma 4.2.3. Assume that the B-moments {µn
α(f) : α ∈ In} of degree n of

a function f : T → R
2 are known. Then its B-moments {µℓ

α(f) : α ∈ Iℓ}
of degree ℓ < n can be computed by repeated applications of Algorithm 4.1 with

6
[(

n+2
3

)

−
(

ℓ+2
3

)]

operations.

Proof. Using LowerMoment to lower the degree from k to k − 1 will cost 6
(

k+1
2

)

multiplications, and we need to execute this for k = n, . . . , ℓ+ 1, thus giving the

overall cost of

6
n
∑

k=ℓ+1

(

k + 1

2

)

= 6
n−1
∑

k=ℓ

(

k + 2

2

)

= 6
n−1
∑

k=0

(

k + 2

2

)

− 6
ℓ−1
∑

k=0

(

k + 2

2

)

,

and the lemma follows since
∑m

k=0

(

k+2
2

)

=
(

m+3
3

)

.

4.2.2 Degree-Jump for B-Moments

Another way to approximate the moments of order ℓ from those of order n is,

rather than lowering the order of the moments one step at a time, jumping directly

from n to ℓ. More precisely, the degree-jump is obtained by directly implementing

(4.39), as detailed in Algorithm 4.2.

In the case where X = R
2, the following result holds:

Lemma 4.2.4. Assume that the B-moments {µn
α(f) : α ∈ In} of degree n of a

function f : T → R
2 are known. Then its B-moments {µℓ

α(f) : α ∈ Iℓ} of degree
ℓ < n can be computed by means of Algorithm 4.2 with (ℓ + 1)(n − ℓ + 1)(ℓn −
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Algorithm 4.2: Degree-Jump(F, n, ℓ)

Input : Array F corresponding to order n BB moments
{µn

α(f) : α ∈ In} of f : T → X , and precomputed binomial
coefficients {Cp+q

q : 0 ≤ p ≤ n, 0 ≤ q ≤ n}.
Output: Array Fout of order ℓ BB moments {µℓ

α(f) : α ∈ Iℓ}.
1 Fout ≡ 0;
2 for α1 = ℓ to 0 do
3 for β1 = n− ℓ to 0 do
4 w1 = Cα1+β1

α1
/Cn

ℓ ;
5 for α2 = ℓ− α1 to 0 do
6 for β2 = n− ℓ− β1 to 0 do
7 w2 = w1 ∗ Cα2+β2

α2
;

8 α3 = ℓ− α1 − α2, β3 = n− ℓ− β1 − β2;
9 w3 = w2 ∗ Cα3+β3

α3
;

10 Fout
α += w3 ∗ F[α + β];

11 Return Fout;

ℓ2 + 2n + 5) operations.

Proof. From the algorithm description, one can see that Algorithm 4.2 indeed

performs the operations in (4.39). We now proceed with the complexity analysis

of the algorithm. To this end, observe that the loop over the pair (α1, β1) is

executed (ℓ + 1)(n − ℓ + 1) times, and contains one multiplication. Similarly,

the loop over the pair (α2, β2) is executed
(

ℓ+2
2

)

×
(

n−ℓ+2
2

)

times, and contains

one scalar-vector multiplication (which amounts to two multiplications) and two

multiplications. Thus, the overall complexity for computing the BB moments of

order ℓ, using Algorithm 4.2, is given by

(ℓ+ 1)× (n− ℓ+ 1)+4×
(

ℓ+ 2

2

)

×
(

n− ℓ+ 2

2

)

= (ℓ+ 1)(n− ℓ+ 1)[1 + (ℓ+ 2)(n− ℓ+ 2)]

= (ℓ+ 1)(n− ℓ+ 1)(ℓn− ℓ2 + 2n+ 5). (4.40)
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4.2.3 Direct Computation

Using a similar argument as that leading to (2.15) yields the next lemma:

Lemma 4.2.5. For f : T → R
2 and ℓ < n, the B-moments {µℓ

α(f) : α ∈
Iℓ} computed with the q = n + 1 Stroud product rule, can be assembled with

2[(n+ 1)2(ℓ+ 1) + (ℓ+1)(ℓ+2)
2

(n+ 1)] operations, using Moment2D.

We now proceed to compare the cost between the alternatives for computing

B-moments of different degrees. First, note from Algorithm 4.2 that, when only

decreasing the B-moment degree by one, degree-jumping contains many redun-

dancies, since most of the binomial coefficients are just equal to 1. Thus, in that

case, LowerMoment is recommended. But it is surprising that, even for a longer

jump, LowerMoment is also preferable. Indeed, degree-jumping from 2n to n + 2

involves n4+6n3+6n2−10n−3 operations, whereas lowering the degree one step

at a time from 2n to n+2 costs 7n3+3n2−22n−24 operations. Another applica-

tion of Lemma 4.2.5 shows that directly computing the B-moments of order n+2

involves 3n3+18n2+33n+18 operations, and thus is the cheapest option. Now,

when decreasing the degree all the way to degree 2, degree-jumping appears to be

faster than degree-lowering. Indeed, degree-jumping from degree n+1 to degree 2

involves 12n2+15n operations, whereas degree-lowering costs n3+6n2+11n−18

operations. However, Lemma 4.2.5 shows that the direct computation of the B-

moments of order 2 by means of Moment2D only costs 6n2+24n+18. operations.

In view of the above discussion, our approach to handling different B-moment

degrees, for example for the matrix κ, is as follows: Compute the moments of

order 2n+2. Use degree-lowering to get the moments of order 2n+1, then use it

again to obtain those of order 2n. Compute the B-moments of order n+ 2 using

the routine Moment2D. Then apply degree-lowering to get the B-moments of order

n+ 1. Finally, compute the B-moments of order 2 by means of Moment2D.

One should also note that all the element-level computations are performed

using the same number of quadrature points. Thus, one can precompute and

store the value of the data at the quadrature nodes, thereby reducing the number
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of function evaluations.

4.3 Optimal Order Element Level Computations

4.3.1 Evaluation of the Element Load Vector

In this section, we provide Algorithm 4.3 for computing the H(curl) BB element

load vector of order n associated with some data f . In Algorithm 4.3, recall that

the routine Moment2D from Chapter 3 computes the B-moments corresponding

to the function f . Hence, the H(curl) load vector of f associated with a basis

function in Bn is computed as a linear combination of B-moments, where the

weights are taken as the corresponding BB coefficients. In particular, we make

use of (4.26), (4.27), and Equation (4.28).

Theorem 4.3.1. Let n ∈ N and q = n + 2. The element load vector of degree n

can be computed using the Stroud conical product rule with q2 quadrature points

in O(n3) operations using Algorithm HCurlLoad.

Proof. According to Theorem 2.2.4, the B-moments of order n + 1 based on the

Stroud conical quadrature rule with q = n + 2 can be approximated in O(n3)

operations. Besides, it follows from Lemma 4.2.3 that the B-moments of lower

order can be computed in O(n2) operations.

We now consider the computation of f∇ in Algorithm HCurlLoad: Note that

the complexity is dominated by the innermost loop over i containing one inner

product which amounts to two scalar multiplications, and is executed 3
(

n+2
2

)

times. Thus, given the B-moments of order n + 1, the overall complexity for

computing f∇ is given by 6
(

n+2
2

)

= O(n2). After taking account of the complexity

required for approximating the B-moments, we deduce that the complexity needed

for computing f∇ is of order O(n3).

Next, note that the complexity needed for computing fW is dominated by the

innermost loop which is executed 32 times, and contains seven multiplications.
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Algorithm 4.3: HCurlLoad

Input : Array F of 2D vectors corresponding to values of a vector-valued
function f at Stroud nodes.

Output: Blocks f∇, fσ and fW of the H(curl) load vector L.
1 f∇ ≡ 0, fσ ≡ 0, fW ≡ 0;
2 q = n + 2;
3 /* Element sub-load vector fσ */;
4 fmmt=Moment2D (F, q, n+ 1) /* cf. Algorithm 2.3 */ ;
5 foreach β ∈ In do
6 for i = 1 to 3 do
7 fσβ += (βi + 1)(βi−1∇λi+1 − βi+1∇λi−1) · fmmt

β+ei
;

8 /* c̊
(β)
β+ei

given in (4.23) */;

9 /* Element sub-load vector f∇ */;
10 fmmt=LowerMoment (fmmt) /* cf. Algorithm 4.1 */ ;
11 foreach α ∈ In do
12 for i = 1 to 3 do
13 f∇α+ei

+= ∇λi · fmmt
α ;

14 /* Element sub-load vector fW */;
15 fmmt= Moment2D (F, q, 1) /* cf. Algorithm 2.3 */ ;
16 for i = 1, 2, 3 do
17 for r = ±1 do
18 fWi += r ∗ ∇λi−r · fmmt

ei+r
;

19 Return f∇, fσ, fW ;
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Thus, given the B-moments of order 2, the overall complexity for computing fW

is given by 7 × 32 = O(1). After taking account of the complexity needed for

approximating the B-moments of order 1 based on the Stroud conical product

rule with q = n + 2, we deduce that the complexity needed for computing fW is

of order O(n2).

A similar argument for fσ completes the proof.

4.3.2 Evaluation of the Element Mass Matrix

The goal of this section is to provide efficient algorithms for the computation of

the H(curl) element mass matrix. Most of the presented algorithms refer to the

following Multinomial routine, as presented in [11, Algorithm 5] for arbitrary

dimension:

Algorithm 4.4: Multinomial(D, m, n)

Input : Precomputed binomial coefficients
{Cp+q

p : 0 ≤ p ≤ m, 0 ≤ q ≤ n}.
Output: D such that Dα,β =

(

α+β

α

)

/
(

m+n
n

)

, α ∈ Im, β ∈ In.
1 D = 0;
2 for α1 = m to 0 do
3 for β1 = n to 0 do
4 w1 = Cα1+β1

α1
/Cm+n

n ;
5 for α2 = m− α1 to 0 do
6 for β2 = n− β1 to 0 do
7 w2 = w1 ∗ Cα2+β2

α2
;

8 α3 = m− α1 − α2, β3 = n− β1 − β2;
9 w3 = w2 ∗ Cα3+β3

α3
;

10 Dα,β += w3;

11 Return D;

Recall that the computation of M∇∇ is proved to be of optimal complexity

O(n4), if using Algorithm StiffMat, or Algorithm 3.21.

Now observe that Algorithm 4.5 and Algorithm 4.9 are direct consequences

of (4.30) and (4.34), respectively. Besides, recall from (4.32) that the constant

factor in the expression of Mσσ is given by 1/
(

2n+2
n+1

)

, whereas the constant fac-
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tor produced by Multinomial (Mσσ, n, n) is 1/
(

2n
n

)

. Hence, in order to get the

right constant for Mσσ, the computed quantities need to be factorized with
(

2n
n

)

/
(

2n+2
n+1

)

= (n + 1)/[2(2n + 1)], as done in the line 8 of Algorithm 4.7. In

addition, note that, for m ∈ N, α,β ∈ Im, and k = 1, 2, 3, it holds that

(

α+ ek + β

α+ ek

)

=
αk + 1 + βk
αk + 1

(

α+ β

α

)

,

which gives, for ℓ = 1, 2, 3,

(

α+ ek + β + eℓ
α+ ek

)

=
βℓ + 1 + αℓ + δk,ℓ

βℓ + 1
× αk + 1 + βk

αk + 1

(

α+ β

α

)

. (4.41)

Inserting (4.41) into (4.32) with the substitution η = ek where k = 1, 2, 3, leads

directly to Algorithm 4.7. Besides, the identity

(

α+ eℓ
α

)

= αℓ + 1 (4.42)

inserted into (4.31) and (4.33) with ℓ = i + r yields Algorithm 4.6 and 4.8,

respectively.
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Algorithm 4.5: MassSubMat(M∇σ ,κmmt)

Input : B-moments {µ2n+1
α (κ) : α ∈ I2n+1} computed by means of the

Stroud conical product rule with q = n+ 2 , stored into array
κmmt = {κmmt

α : α ∈ I2n+1}.
Output: Element mass sub-matrix M∇σ.

1 // Same code as in Multinomial (M∇σ, n, n) (cf. Algorithm 4.4),

with the line 10 replaced with the lines:

2 foreach ℓ = 1 to 3 do
3 w̃ = (βℓ + 1 + αℓ)/(βℓ + 1) ∗ w ∗ (n+ 1)/(2n+ 1);

4 Prod = (n+ 1) ∗ w̃κmmt
α+β+eℓ

c̊
(β)
β+eℓ

;

5 foreach k = 1 to 3 do
6 M∇σ

α+ek,β
+= ∇λk ·Prod ;

7 deleteColumn M∇σ
[α0]

;

8 /* σn
α0

is not part of the basis */;
9 deleteRow M∇σ

[(n+1,0,0)];

10 deleteRow M∇σ
[(0,n+1,0)];

11 deleteRow M∇σ
[(0,0,n+1)];

12 /* There are no vertex gradient basis functions */;
13 Return M∇σ;

Algorithm 4.6: MassSubMat(M∇W ,κmmt)

Input : B-moments {µn+1
α (κ) : α ∈ In+1} computed by means of the

Stroud conical product rule with q = n+ 2, stored into array
κmmt = {κmmt

α : α ∈ In+1}.
Output: Element mass sub-matrix M∇W .

1 M∇W ≡ 0;
2 foreach α0 = 0 to n do
3 foreach α1 = 0 to n− α0 do
4 α3 = n− α1 − α2;
5 ω = [α1 + 1, α2 + 1, α3 + 1];
6 for i = 1, 2, 3 do
7 for k = 1, 2, 3 do
8 for r = ±1 do
9 M∇W

α+ek,i
+= r ∗ ωi+r ∗ ∇λk ·

(

κmmt
α+ei+r

∇λi−r

)

;

10 deleteRow M∇W
[(n+1,0,0)];

11 deleteRow M∇W
[(0,n+1,0)];

12 deleteRow M∇W
[(0,0,n+1)];

13 /* There are no vertex gradient basis functions */;
14 Return M∇W ;
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Algorithm 4.7: MassSubMat(Mσσ ,κmmt)

Input : B-moments {µ2n+2
α (κ) : α ∈ I2n+2} computed by means of the

Stroud conical product rule with q = n+ 2 , stored into array
κmmt = {κmmt

α : α ∈ I2n+2}.
Output: Element mass sub-matrix Mσσ.

1 // Same code as in Multinomial (Mσσ , n, n) (cf. Algorithm 4.4),

with the line 10 replaced with the lines:

2 foreach k = 1 to 3 do
3 w̃k = (αk + 1 + βk)/(αk + 1);
4 sumk = 0;
5 foreach ℓ = 1 to 3 do
6 w̃ℓ = (βℓ + 1 + αℓ + δk,ℓ)/(βℓ + 1);

7 sumk += wℓ ∗ w3 ∗ κmmt
α+ek+β+eℓ̊

c
(β)
(β+eℓ)

;

8 Mσσ
α,β += w̃k ∗ c̊(α)

α+ek
· sumk ∗ (n+ 1)/2/(2n+ 1);

9 deleteRow Mσσ
[α0]

;

10 deleteColumn Mσσ
[α0]

;

11 /* σn
α0

is not part of the basis */;
12 Return Mσσ;

Algorithm 4.8: MassSubMat(MσW ,κmmt)

Input : B-moments {µn+2
α (κ) : α ∈ In+2} computed by means of the

Stroud conical product rule with q = n+ 2, stored into array
κmmt = {κmmt

α : α ∈ In+2}.
Output: Element mass sub-matrix MσW .

1 MσW ≡ 0;
2 foreach α0 = 0 to n do
3 foreach α1 = 0 to n− α0 do
4 α3 = n− α1 − α2;
5 ω = [α1 + 1, α2 + 1, α3 + 1];
6 for i = 1, 2, 3 do
7 for k = 1, 2, 3 do
8 for r = ±1 do
9 MσW

α,i +=
r

n + 2
∗ (ωi+r + δk,i+r) ∗ c̊α+ek

·
(

κmmt
α+ek+ei+r

(κ)∇λi−r

)

;

10 deleteRow MσW
[α0]

;

11 /* σn
α0

is not part of the basis */;
12 Return MσW ;



110

Algorithm 4.9: MassSubMat(MWW ,κmmt)

Input : B-moments {µ2
α(κ) : α ∈ I2} computed by means of the Stroud

conical product rule with q = n + 2, stored into array
κmmt = {κmmt

α : α ∈ I2}.
Output: Element mass sub-matrix MWW .

1 MWW ≡ 0;
2 for i, j = 1, 2, 3 do
3 for r, s = ±1 do
4 if i+ r 6= j + s then
5 ε = 1/2;

6 else
7 ε = 1;

8 MWW
i,j += r ∗ s ∗ ε ∗ ∇λi−r ·

(

κmmt
ei+r+ej+s

∇λj−s

)

;

9 Return MWW ;

Algorithm 4.10: HCurlMassMat

Input : Array κStroud corresponding to values of a matrix-valued function
κ at Stroud nodes.

Output: Blocks M∇∇,M∇σ,M∇W ,Mσσ,MσW ,MWW of the H(curl) mass
matrix M.

1 q = n + 2;
2 κmmt = Moment2D (κStroud, q, 2n+ 2) /* cf. Algorithm 2.3 */ ;
3 Mσσ = MassSubMat(Mσσ ,κmmt) /* cf. Algorithm 4.7 */ ;
4 κmmt = LowerMoment(κmmt) /* cf. Algorithm 4.1 */ ;
5 M∇σ = MassSubMat(M∇σ ,κmmt) /* cf. Algorithm 4.5 */ ;
6 κmmt = LowerMoment(κmmt) /* cf. Algorithm 4.1 */ ;
7 M∇∇ = StiffMat(M∇∇, n+ 1,κmmt) /* cf. Algorithm 3.21 */ ;
8 κmmt = Moment2D (κStroud, q, n+ 2) /* cf. Algorithm 2.3 */ ;
9 MσW = MassSubMat(MσW ,κmmt) /* cf. Algorithm 4.8 */ ;

10 κmmt = LowerMoment (κmmt) /* cf. Algorithm 4.1 */ ;
11 M∇W = MassSubMat(M∇W ,κmmt) /* cf. Algorithm 4.6 */ ;
12 κmmt = Moment2D (κStroud, q, 2) /* cf. Algorithm 2.3 */ ;
13 MWW = MassSubMat(MWW ,κmmt) /* cf. Algorithm 4.9 */ ;
14 Return M∇∇,M∇σ,M∇W ,Mσσ,MσW ,MWW ;
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Theorem 4.3.2. Let n ∈ N and q = n+2. The H(curl) element mass matrix of

degree n in R
2 can be computed and assembled using the Stroud conical quadrature

rule with q2 points in O(n4) operations using Algorithm HCurlMassMat.

Proof. Observe that the B-moments are computed by means of Moment2D only

for the orders 2n+ 2, n+ 2 and 2. But then, it follows from Theorem 2.2.4 that

the B-moments of order 2n + 2 and n + 2 can respectively be computed with

O((2n+2)3) and O((n+2)3) operations. Moreover, it follows from the left-hand

side of (2.15) that the B-moments of order 2 can be computed using O((n+ 2)2)

operations. For the remaining B-moment orders, Lemma 4.2.3 shows that using

Algorithm LowerMoment for deducing the B-moments of order ℓ − 1 from those

of order ℓ, with ℓ = 2n + 2, 2n+ 1 and n + 2, involves O(n2) operations. Thus,

the computation of the moments can be done with O(n3) complexity.

Assuming that the appropriate B-moments are stored into κmmt, we now con-

sider the routine MassSubMat(M∇σ ,κmmt), that is, Algorithm 4.5. The loop over

the pair (α1, β1) contains one division and is executed (n + 1)2 times. The loop

over the pair (α2, β2) contains two multiplications and is executed
(

n+2
2

)2
times.

The loop over ℓ contains two divisions, three multiplications, one matrix-vector

product and one scalar-vector product, which amounts to eleven operations, and

is executed 3×
(

n+2
2

)2
times. Finally, the loop over k contains one inner product,

and is executed 32 ×
(

n+2
2

)2
. Therefore, the overall complexity is given by

(n + 1)2 + 2

(

n+ 2

2

)2

+ 11× 3

(

n+ 2

2

)2

+ 2× 32
(

n+ 2

2

)2

= O(n4).

A similar argument shows that the computation of Mσσ can be performed

with O(n4) operations, whereas the blocks M∇W and MσW are computed with

O(n2) complexity. Finally, it is easy to see that the required complexity for

Algorithm MassSubMat(MWW ,κmmt) is of order O(1).

Note that, though the mass matrix involves B-moments of six different degrees,

the moments are explicitly computed using the routine Moment2D only for three
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degrees. As shown in Lemma 4.2.3, whenever the B-moments of lower order are

needed, it is cheaper to apply one step of LowerMoment, rather than calling the

routine Moment2D.

4.3.3 Evaluation of the Element Stiffness Matrix

In this section, we provide algorithms for the computation of the H(curl) element

stiffness matrix.

Recall from (4.6) that, for a given α ∈ In, the set Star(α), consists of

In ∩ {α− ek + eℓ : k, ℓ = 1, 2, 3, k 6= ℓ} ∪ {α}.

The computational details associated with the stiffness matrix are given in Algo-

rithm 4.11.

Theorem 4.3.3. Let n ∈ N and q = n+2. The H(curl) element stiffness matrix

of degree n in R
2 can be computed using the Stroud conical quadrature rule with q2

points in O(n4) operations using HCurlStiffMat. More precisely, Sσσ, SσW and

SWW can be computed using O(n4), O(n3) and O(n2) operations, respectively.

Proof. Using a similar argument as in the proof of Theorem 4.3.2, it is shown

that the B-moments of order 2n and n can be computed with O(n3) operations,

whereas that of order 0 involves O(n2) operations.

Now recall from the definition of Star(·) that, for a given α, the number of

indices contained in Star(α) is (at most) seven. Considering the sub-routine for

computing Sσσ, note that the cost is dominated by the innermost loop which is

executed at most 72×
(

n+2
2

)2
, and contains two multiplications. Thus, the overall

complexity for computing Sσσ is dominated by

2× 72 ×
(

n + 2

2

)2

= O(n4).

Similarly, observe that the complexity required by the sub-routine computing
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Algorithm 4.11: HCurlStiffMat

Input : Array AStroud corresponding to values of a function A at Stroud
nodes.

Output: Blocks Sσσ, SσW , SWW of the H(curl) stiffness matrix S.
1 q = n + 2;
2 /* Stiffness sub-matrix Sσσ */;
3 Ammt = Moment2D (AStroud, q, 2n) /* cf. Algorithm 2.3 */ ;
4 // Same code as in Multinomial (Sσσ , n, n) (cf. Algorithm 4.4),

with the line 10 replaced with the lines:

5 foreach s1 ∈ Star(α) do

6 rα,s1 = w3 ∗ c(s1)α ;
7 foreach s2 ∈ Star(β) do

8 Sσσ
s1,s2 += rα,s1 ∗Ammt

α+β ∗ c(s2)β ;

9 deleteRow Sσσ
[α0]

;

10 deleteColumn Sσσ
[α0]

;

11 /* Stiffness sub-matrix SσW */;
12 Ammt = Moment2D (AStroud, q, n) /* cf. Algorithm 2.3 */ ;
13 SσW ≡ 0;
14 for i = 1 to 3 do
15 foreach α ∈ In do
16 foreach s ∈ Star(α) do

17 SσW
s,i +=

1

|T | ∗ c
(s)
α ∗Ammt

α ;

18 deleteRow SσW
[α0]

;

19 /* Stiffness sub-matrix SWW */;
20 Ammt = Moment2D (AStroud, q, 0) /* cf. Algorithm 2.3 */ ;
21 for i, j = 0 to 3 do

22 SWW
i,j =

1

|T |2 ∗A
mmt
0

;

23 Return Sσσ, SσW , SWW ;
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SσW is concentrated in the innermost loop over s, which is executed (at most)

3 × 7 ×
(

n+2
2

)

times, and contains two multiplications. Hence, the complexity

required for the algorithm is (at most) of order

2× 3× 7×
(

n+ 2

2

)

= O(n2).

Taking account of the complexity needed for computing the B-moments of order

n, we find that SσW can be computed with O(n3) operations.

Finally, it is easy to see that the complexity needed by the sub-routine corre-

sponding to SWW is of order O(1), which, together with the complexity required

for computation of the B-moment of order 0, concludes the proof.

4.4 Projection onto the Kernel of the curl Oper-

ator

This section shows that the basis described in Theorem 4.1.3 exhibits an explicit

kernel splitting, in that the sigma functions are gradient-free. To this purpose,

we will make use of an important result in the analysis of Maxwell’s equations,

Helmoltz decomposition [51], which states that any vector field v ∈
(

L2(Ω)
)2
,

there exist φ and ϕ in H1(Ω) such that

v = −∇φ + curl(ϕ). (4.43)

Now observe that the gradient polynomials which are contained in NDn := P
2
n+1⊕

x⊥
P̄n+1 consists of span{∇Bn+1

α : α ∈ In+1}. It follows from the definition of the

basis Bn given in Theorem 4.1.3 that the only gradient basis functions which are

explicitly (but not implicitly) missing from Bn are those associated with vertex

domain points, that is,

{∇Bn+1
(n+1)ej

: j = 1, 2, 3}. (4.44)
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Hence, in order to prove that the sigma basis functions are gradient-free, it suffices

to show that the gradient polynomials in (4.44) are orthogonal to the sigma

functions (see Theorem 4.4.1).

The ability to identify the shape functions which belong to the kernel of the

curl operator can be useful, when dealing with a situation, such as the Maxwell’s

eigenvalue problem, where the knowledge of the kernel shape functions can speed

up the computations. In addition, some preconditioning techniques [52, 18] are

based on the ability to identify the functions which are curl-free.

In Equation (4.43), the function ϕ provides the irrotational component of v,

whereas ∇φ is termed the gradient part of v. In the sequel, the functions v for

which ϕ is zero in (4.43) are called gradients. Moreover, we denote by B∇ the

matrix of the gradient operator from Pn+1 to NDn. We next proceed to compute

the projection of a function in NDn onto the space orthogonal to gradients.

4.4.1 Discrete Projection

Continuous setting Given φ ∈
(

L2(Ω)
)2
, we seek v ∈ H1(Ω) satisfying

(φ−∇v,∇u) = 0, ∀u ∈ H1(Ω).

Discrete setting Given φ ∈ NDn, we seek v ∈ Pn+1 satisfying

(φ−∇v,∇u) = 0, ∀u ∈ Pn+1.

Assuming that the Bernstein polynomials of order n+1 are ordered by means of

{bℓ : ℓ = 1, . . . , dim(Pn+1)}, and that v =
∑

i vibi, the above equation amounts

to

(φ,∇bj) =
∑

i

vi(∇bi,∇bj), j = 1, . . . , dim(Pn+1). (4.45)
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In addition, suppose that the elements of Bn are ordered by means of Bn =

{fk : k = 1, . . . , dim(NDn)}, and that φ =
∑

k ckfk. Thus, using the fact that

∇bj =
∑

ℓ(B∇ej)ℓfℓ, it follows that, for any j,

(φ,∇bj) =
∑

k

ck(fk,∇bj) =
∑

k

ck
∑

ℓ

(B∇ej)ℓ(fk, fℓ)

=
∑

k

ck
∑

ℓ

(B∇ej)ℓMk,ℓ

=
∑

k

ck(MB∇ej)k.

Hence,

(φ,∇bj) = CtMB∇ej =
(

CtMB∇
)

·,j, (4.46)

where C is the coefficient vector of φ with respect to the basis Bn, and the

notation A·,j refers to the jth column vector of the matrix A.

Similarly, we find that

(∇bi,∇bj) =
(

∑

k

(B∇ei)kfk,
∑

ℓ

(B∇ej)ℓfℓ
)

=
∑

k

(B∇ei)k
∑

ℓ

(B∇ej)ℓ(fk, fℓ)

=
∑

k

(B∇ei)k(MB∇ej)k

= etiB
t
∇MB∇ej = (Bt

∇MB∇)i,j.

(4.47)

Inserting (4.46) and (4.47) into (4.45) then yields

(

CtMB∇
)

·,j =
∑

i

vi
(

Bt
∇MB∇

)

i,j
=
(

VtBt
∇MB∇

)

·,j,

where V represents the coefficient vector of v with respect to the basis {bi : i =
1, . . . , dim(Pn+1)}. It follows that

Bt
∇MC = Bt

∇MB∇V,
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so that

V =
(

Bt
∇MB∇

)−1
Bt

∇MC.

In particular, the coefficient vector of ∇v with respect to the basis Bn is given by

B∇V = B∇
(

Bt
∇MB∇

)−1
Bt

∇MC.

Hence, the projection from NDn to the space orthogonal to ∇Pn+1 is represented

by the matrix

I−B∇
(

Bt
∇MB∇

)−1
Bt

∇M, (4.48)

where I denotes the identity matrix.

4.4.2 Gradient Matrix

We now proceed to compute B∇ which is the matrix of the gradient operator

from Pn+1 to NDn. To this end, recall that the only gradient polynomials which

are missing from the definition of the basis Bn described in Theorem 4.1.3 are

the gradients of the Bernstein polynomials associated with vertex domain points,

or vertex gradients. Thus, in order to find the matrix B∇, it suffices to find the

expression of the vertex gradients with respect to the basis Bn, as given in the

next theorem:

Theorem 4.4.1. The gradients of the polynomials of order 1 are spanned by the

Whitney functions, by means of:

∇λ1 = ω2 − ω3,

∇λ2 = ω3 − ω1,

∇λ3 = ω1 − ω2. (4.49)
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Moreover, with n ≥ 1, it holds that:

∇Bn+1
(n+1)ej

= −
∑

α∈In+1

0<αj<n+1

αj

n+ 1
∇Bn+1

α + (ωj+1 − ωj−1), j = 1, 2, 3. (4.50)

Proof. The results given in (4.49) are well-known, and can be easily checked.

We now proceed to prove (4.50). The partition of unity property of the

Bernstein polynomials implies that

λj =
∑

α∈In

λjB
n
α =

∑

α∈In

αj + 1

n + 1
Bn+1

α+ej
.

Making the change of variable α′ = α+ ej then gives

λj =
∑

α∈In+1

αj

n + 1
Bn+1

α = Bn+1
(n+1)ej

+
∑

α∈In+1

0≤αj<n+1

αj

n + 1
Bn+1

α .

The gradient of the above equation reads

∇Bn+1
(n+1)ej

= −
∑

α∈In+1

0≤αj<n+1

αj

n+ 1
∇Bn+1

α +∇λj

= −
∑

α∈In+1

0<αj<n+1

αj

n+ 1
∇Bn+1

α +∇λj, j = 1, 2, 3. (4.51)

Inserting (4.49) into (4.51) yields the desired result.

Recall that the Whitney edge functions are divergence-free, so that the pro-

jection onto the space orthogonal to gradients is only needed with higher order

Nédélec spaces, that is, with n ≥ 1. The rectangular dim(NDn) by dim(Pn+1)

matrix B∇ is then such that the first dim(Pn+1) columns, which correspond to

gradients, almost form the identity matrix, whereas three of these columns, which

are associated with vertex gradients, can be deduced from (4.50). In addition,

the rows of B∇ associated with the sigma basis functions only have zero en-
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tries, which, by virtue of Helmoltz decomposition, implies that the sigma basis

functions are purely solenoidal.

4.5 Numerical Results

4.5.1 CPU Timings

This section focuses on the CPU timings obtained after running the presented

algorithms for the element load vector and the element matrices. Regarding the

load vector, observe from the proof of Theorem 4.3.1 that, assuming that the ap-

propriate B-moments are given, the computation of the load vector only requires

O(n2) operations. Thus, the computation of the B-moments clearly dominates

the cost, and it is worth distinguishing the CPU time required for computing the

load vector from that required for computing the B-moments. On Figure 4.2(a),

“LOAD” and “BMOMENTS” respectively refer to the CPU timings correspond-

ing to the element load vector and the B-moments. The associated plots are

respectively compared to the curves of Cn3 and Cn2 with C denoting a generic

constant. As illustrated on the graph, the growth of the CPU time is consis-

tent with the predicted optimal complexity results given in Theorem 4.3.1. On

Figure 4.2(b), “MASS” and “STIFF” respectively refer to the CPU timings as-

sociated with the element mass and stiffness matrices. We observe that, in both

cases, the growth of the CPU time is consistent with the optimal complexity

results given in Theorem 4.3.2 and Theorem 4.3.3.
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4.5.2 Eigenvalue Problem

Consider the curl - curl problem given by:

curl(curlu) =λ2u in Ω,

τ · u =0 on ∂Ω.

The weak form corresponding to the above equations is to find u ∈ H0(curl) and

λ ∈ R such that

(curlu, curlv) = λ2(u,v), v ∈ H0(curl). (4.52)

In the case where Ω = [0, 1]2, it is well-known [28] that the corresponding eigen-

functions and associated eigenvalues are respectively given by the sets {uk,ℓ :

k, ℓ ∈ Z+} and {λk,ℓ : k, ℓ ∈ Z+} defined by

uk,ℓ(x, y) :=





k sin(kπx) cos(ℓπx)

ℓ sin(ℓπy) cos(kπx)





⊥

(4.53)

and

λ2k,ℓ := π2(k2 + ℓ2), k, ℓ ∈ Z+. (4.54)

Observe that the oscillations of uk,ℓ increase with k and ℓ. Thus, higher approx-

imation order is required in order to approximate larger eigenvalues.

The Galerkin finite element discretization of (4.52) results in a generalized

eigenvalue problem which can be solved by means of any general-purpose eigen-

solver. However, in order to avoid computing the multiple zero eigenvalues, we

use the algorithms presented in Appendix C. It should be mentioned that the

non-zero eigenpairs produced by the methods proposed in Appendix C, and those

returned by numpy.linalg.eigh on Python were found to be the same, up to ma-

chine precision. Considering the mesh consisting of the two triangles separated
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by one diagonal of the square, we obtain Figure 4.3. Figure 4.3(a) shows the

obtained eigenvalues with n = 5, 15 and 25. With n = 5, only the first 10 eigen-

values are approximated correctly, whereas with n = 15, up to 54 eigenvalues are

well-approximated. With n = 25, the first 100 eigenvalues are computed accu-

rately. Hence, provided that the approximation order is sufficient, each eigenvalue

is represented according to its correct multiplicity. For instance, with n = 15 or

n = 25, the eigenvalue λ2 = 25π2 is repeated four times, which is consistent

with (4.54). Moreover, Figure 4.3(b) shows the convergence rate of the discrete

eigenvalues towards the exact ones. Motivated by the following error bound [13,

Equation 26]

|λ− λN | ≤ C exp(−bN1/3),

where N is the number of degrees of freedom whereas C and b are positive con-

stants, we have chosen to represent n2/3, and not n, on the x-axis, with n denoting

the polynomial order used.

Observe in particular that the first eigenvalues are well-approximated by lower

order approximation, whereas the approximation of the larger eigenvalues start

to improve when the polynomial order is increased.
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Figure 4.3: Eigenvalues associated with (4.52).
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Chapter 5

Enhanced Edge Elements

This chapter gives a brief report on the work I have done for a short Knowl-

edge Transfer Partnership (KTP) project sponsored by Cobham Technical Ser-

vices and the Technology Strategy Board (UK) (see [2]). Cobham Technical

Services – Vector Fields Software (Kidlington, UK) (see [1]) is a leading provider

in computational electromagnetics software. The KTP project involved some

research and development (R&D) work on edge finite elements.

As mentioned in the previous chapters, edge elements provide the H(curl)-

conforming finite element discretization of Maxwell’s equations. In a typical finite

element implementation, the shape functions are defined on the reference element.

The shape functions on the physical elements are then computed from appropriate

local-to-global mappings. A mesh is termed affine when each element of the mesh

is obtained by an affine transformation of the reference element. On such meshes,

Nédélec elements have been shown to provide optimal convergence rates O(hn+1)

in H(curl)-norm [38]. However, a lower order of convergence is obtained when

using more general non-affine meshes [17, 43]. In particular, for the lowest-order

Nédélec space ND0, there is no convergence in H(curl)-norm.

The purpose of the KTP project was to investigate this convergence degener-

ation, and implement a remedy suggested in [43, 25] using the C++ programming

language.
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This chapter is organized as follows. Section 5.1 revisits the theoretical con-

ditions for optimal accuracy in H(curl)-norm, including the rationale behind re-

cently developed edge elements [43, 25] designed to preserve optimal accuracy

on non-affine meshes. Section 5.2 details an analytical example illustrating the

defect of standard Nédélec basis on a non-affine hexahedron, in comparison with

new edge shape functions discussed in Section 5.1.2.

5.1 Completeness Condition

This section recalls the H(curl)-conforming transforms which are used in the

finite element computations involving edge elements. A condition for optimal

convergence rate is also given for the polynomial space defined on the reference

element.

5.1.1 H(curl)-Conforming Transformations

Finite element spaces are typically defined on a reference element. The corre-

sponding space on the physical element are generated by applying appropriate

local-to-global mappings. For the sake of completeness, this section recalls the

transformations used for H(curl)-conforming elements.

Assuming that the reference element K̂ and the physical element K are related

by a diffeomorphism Φ by means of

x = Φ(x̂), x̂ ∈ K,

then the vector fields are related by the H(curl)-conforming transform [17, Equa-

tion (1.3)]

A(x) = dΦ(x̂)−trÂ(x̂), (5.1)

where dΦ(·) denotes the Jacobian matrix of the transformation. Hence, for a
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given order r, the finite element space on the physical element K is defined as

Pr(K) := {A such that dΦtrA ◦ Φ ∈ P̂r(K̂)}, (5.2)

where P̂r(K̂) denotes the finite element space defined on the reference element.

Applying the curl operator to both sides of (5.1), and using the chain rules

yields [65, Corollary 3.58]

curl A(x) = PΦ(x̂) ˆcurl Â(x̂) := |dΦ(x̂)|−1dΦ(x̂) ˆcurl Â(x̂), (5.3)

where |dΦ(·)| represents the Jacobian of the transformation.

With h denoting the mesh size, the following condition ensures a convergence

rate of order O(hr+1) in H(curl)-norm for edge elements of order r [25, Defini-

tion 2].

Completeness Condition. Let r ≥ 0, and P̂r(K̂) the edge finite element space

of order r on the reference element. Then P̂r(K̂) is termed optimal if, for any

element K, it holds that

NDr ⊆ Pr(K),

where NDr refers to the Nédélec space of order r and Pr(K) is defined in (5.2).

As discussed in the following section, standard Nédélec elements need to be

adjusted in order to meet the above condition on non-affine meshes.

5.1.2 Extended Edge Elements

In [43] an improved lowest-order edge basis which is complete for arbitrary tri-

linear hexahedra is presented. In addition to hexahedral elements, Bergot and

Duruflé introduce in [25] prismatic and pyramidal elements which satisfy the com-

pleteness condition, for arbitrary polynomial order of approximation. In order to

maintain the optimal accuracy of edge finite elements on non-affine meshes, both

above-mentioned references involve the addition of supplementary functions to
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the standard Nédélec basis. This section explains the rationale behind the design

of the additional shape functions.

The key idea used in [43] is to determine which functions need to be added

to the reference cube, for constants to belong to the span of the curl of the basis

functions on the physical hexahedron, using the correspondence (5.3) between

curl A(x) and ˆcurl Â(x̂), that is,

curl A(x) = PΦ(x̂) ˆcurl Â(x)

or, equivalently,

ˆcurl Â(x̂) = P−1
Φ (x̂) curl A(x) = |dΦ(x̂)|(dΦ)−1(x̂) curl A(x). (5.4)

More precisely, starting with a general trilinear map Φ : K̂ → R
3, the map

P−1
Φ (x̂) is applied to linearly independent constant vectors, as in

ˆcurl Â(x̂) = P−1
Φ (x̂)B(x),

where B(x) is successively set equal to (1, 0, 0)tr, (0, 1, 0)tr and (0, 0, 1)tr. This

gives rise to a 20-dimensional linear space, which, together with the fact that the

curl of the Nédélec shape functions span a linear space of dimension 5 (see [43,

p.129]), implies that 15 additional basis functions are needed for the curl of the

basis functions to contain constants.

In contrast with Falk et al, Bergot and Duruflé [25] use theH(curl)-conforming

transform, as given in (5.1), that is,

A(x) = dΦ(x̂)−trÂ(x̂),

with Φ defined as a generic linear isoparametric map. The additional functions

that need to be included on the reference element are deduced by looping the field

A over all Nédélec monomials on the physical element. In the lowest-order case,
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this process results in additional degrees of freedom associated with the elements’

faces, as displayed in Figure 5.1.

Figure 5.1: Additional Face-Based Degrees of Freedom

Note that, in addition to the face-based degrees of freedom, each hexahedron

has three internal degrees of freedom.

5.2 Hexahedron: A Particular Example

This section illustrates the fact that the Nédélec edge shape functions do not

satisfy the completeness condition on a simple non-affine hexahedron. In contrast,

the new elements presented in [43, 25] are shown to be complete on the non-affine

hexahedron. Finite element simulations involving the enhanced edge elements are

also included.

5.2.1 Nédélec Basis Functions

The edge and node numbering is as in Figure 5.2.

For i = 1, . . . , 12, we denote by wi the Whitney edge basis function associated

with the ith edge. In particular, on the reference hexahedron [−1, 1]3, the edge

./adjacentElements.eps


129

1

2 3

4

5

6 7

8

31

4

2

5

6

7

8

9

10 11

12

x

y

z

Figure 5.2: Reference Hexahedron

basis functions are defined by:

ŵ1(x̂, ŷ, ẑ) :=(−(1− ŷ)(1− ẑ)/8, 0, 0)tr,

ŵ2(x̂, ŷ, ẑ) :=(0, (1− x̂)(1− ẑ)/8, 0)tr,

ŵ3(x̂, ŷ, ẑ) :=((1 + ŷ)(1− ẑ)/8, 0, 0)tr,

ŵ4(x̂, ŷ, ẑ) :=(0,−(1 + x̂)(1− ẑ)/8, 0)tr,

ŵ5(x̂, ŷ, ẑ) :=(−(1− ŷ)(1 + ẑ)/8, 0, 0)tr,

ŵ6(x̂, ŷ, ẑ) :=(0, (1− x̂)(1 + ẑ)/8, 0)tr,

ŵ7(x̂, ŷ, ẑ) :=((1 + ŷ)(1 + ẑ)/8, 0, 0)tr,

ŵ8(x̂, ŷ, ẑ) :=(0,−(1 + x̂)(1 + ẑ)/8, 0)tr,

ŵ9(x̂, ŷ, ẑ) :=(0, 0, (1 + x̂)(1− ŷ)/8)tr,

ŵ10(x̂, ŷ, ẑ) :=(0, 0, (1− x̂)(1− ŷ)/8)tr,

ŵ11(x̂, ŷ, ẑ) :=(0, 0, (1− x̂)(1 + ŷ)/8)tr,

ŵ12(x̂, ŷ, ẑ) :=(0, 0, (1 + x̂)(1 + ŷ)/8)tr,

./hexReference.eps
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so that, on each edge γ̂i, it holds that

∫

γ̂i

ŵj · τ̂ids =







1 if i = j,

0 otherwise,

where τ̂i is the unit tangent vector along the edge γ̂i.

We consider the non-affine hexahedron K with vertices given by:

x1 = (3/2, 0, 0)tr, x2 = (0, 0, 0)tr, x3 = (0, 1, 0)tr, x4 = (1/2, 1, 0)tr,

x5 = (3/2, 0, 1)tr, x6 = (0, 0, 1)tr, x7 = (0, 1, 1)tr, x8 = (1/2, 1, 1)tr, (5.5)

as illustrated on Figure 5.3.
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Figure 5.3: Distorted Hexahedron

Let A : K → R be the function defined as

A(x) := (0, x, 0)tr, (5.6)

so that

(curl A)(x) := ∇×A(x) = (0, 0, 1)tr.

We now want to express curl A as a linear combination of the curl of the edge

./hexExample.eps
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basis functions. To this purpose, observe from Figure 5.3 and the expression

of A(x) that the only non-zero degrees of freedom of A with respect to the

lowest order Nédélec elements consist of its tangential components along the

edges γ4 and γ8. Thus, in order to find the best representation of curl A by the

curl of the edge shape shape functions, it suffices to compute the L2-orthogonal

projection of curl A with respect to the curl of the space span(w1,w4). To this

purpose, it suffices to compute Â which is obtained from the H(curl)-conforming

transform (5.1), that is,

Â(x̂) := dΦ(x̂)trA(x) = dΦ(x̂)trA(Φ(x̂)), (5.7)

and find the coefficients α1 and α4 which solve the two-by-two system

Pα = f
Â
, (5.8)

where

P1,1 := 〈ŵ4, ŵ4〉K̂ P1,2 := 〈ŵ4, ŵ8〉K̂
P2,1 := 〈ŵ8, ŵ4〉K̂ , P2,2 := 〈ŵ8, ŵ8〉K̂ ,

and

f
Â,1 := 〈Â, ŵ4〉K̂
f
Â,2 := 〈Â, ŵ8〉K̂

where the inner product 〈·, ·〉K̂ is defined by means of

〈v,w〉K̂ :=

∫

K̂

(

ˆcurl v(x̂)
)

·
(

ˆcurl w(x̂)
)

dx̂, (5.9)

assuming that v and w are sufficiently regular so that the right-hand side of the

above equation is well-defined.

We now proceed to compute Â(x̂), as defined in (5.7). We set Φ to be the
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linear isoparametric transformation [58, Section 5.5], that is,

Φ(x̂)‘ :=

8
∑

i=1

N̂i(x̂)xi,

where N̂i are the nodal shape functions on the reference cube [−1, 1]3 [5, Equa-

tion (11.2)] and xi are given in (5.5), for i =, 1, . . . , 8. Expanding the above

expression gives

Φ(x̂, ŷ, ẑ) = (
(x̂+ 1)(2− ŷ)

4
,
ŷ + 1

2
,
ẑ + 1

2
)tr, (5.10)

so that

dΦ(x̂, ŷ, ẑ) =











(2− ŷ)/4 −(1 + x̂)/4 0

0 1/2 0

0 0 1/2











, (5.11)

and

|dΦ(x̂, ŷ, ẑ)| = 2− ŷ
16

. (5.12)

Inserting (5.11) and (5.10) into (5.7) yields

Â(x̂) = (0, (−x̂− 1)(ŷ − 2)/8, 0)tr. (5.13)

Using the above expression of Â for solving the system (5.8) gives

α1 = α8 = −1.

Hence, the representation of ˆcurl Â by the lowest order Nédélec basis is given

by

12
∑

i=1

αi
ˆcurl ŵi(x̂) = − ˆcurl ŵ4(x̂)− ˆcurl ŵ8(x̂), (5.14)
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Inserting (5.12) into (5.3) amounts to

curl A(x) =
16

2− ŷdΦ(x̂)
ˆcurl Â(x̂).

Hence, it follows from (5.14) that an attempt to represent the constant field

(0, 0, 1)tr = (curl A)(x) gives

− 16

2− ŷdΦ(x̂)
(

ˆcurl ŵ4(x̂) + ˆcurl ŵ8(x̂)
)

= − 16

2− ŷdΦ(x̂)
[











−(1 + x̂)/8

0

−(1− ẑ)/8











+











(1 + x̂)/8

0

−(1 + ẑ)/8











]

=
4

2− ŷdΦ(x̂)(0, 0, 1)
tr,

which, together with (5.11), yields

8

2− ŷ (0, 0, 1)
tr

instead of (0, 0, 1)tr, thereby showing that the curl of the lowest-order edge basis

functions fail to reproduce constants.

5.2.2 Extended Edge Shape Functions

The aim of this section is to illustrate the completeness of the enhanced edge

basis presented in [25, 43] with the hexahedron given in (5.5). More precisely,

using the function A defined in (5.6), we claim that curl A ≡ (0, 0, 1)tr is ex-

actly reproduced by the curl of the new edge basis on the non-affine hexahedron.

Proceeding as in the previous section, we will use the L2-orthogonal projection

of ˆcurl Â, as defined in (5.13), with respect to the curl of the shape functions

defined on the reference hexahedron K̂ = [−1, 1]3, and then use the mapping

given in (5.3) to deduce the representation of curl A by the curl of the edge

basis functions defined on the physical element K.
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5.2.2.1 Additional Shape Functions

In order to preserve the approximation properties of edge finite elements when

applied to non-affine meshes, standard edge elements need to include additional

functions [43, 25]. We recall below the formulae for the additional edge basis

functions, adapted from [43, Section 6], or equivalently [25, Proposition 2], to

correspond to the case K̂ = [−1, 1]3:

ŵ13(x̂) :=(0, (x̂− 1)(x̂+ 1)(ẑ − 1)/8, 0)tr,

ŵ14(x̂) :=(0, −(x̂− 1)(x̂+ 1)(ẑ + 1)/8, 0)tr,

ŵ15(x̂) :=(0, 0, (x̂− 1)(x̂+ 1)(ŷ − 1)/8)tr,

ŵ16(x̂) :=(0, 0, −(x̂− 1)(x̂+ 1)(ŷ + 1)/8)tr,

ŵ17(x̂) :=((ŷ − 1)(ŷ + 1)(ẑ − 1)/8, 0, 0)tr,

ŵ18(x̂) :=(−(ŷ − 1)(ŷ + 1)(ẑ + 1)/8, 0, 0)tr,

ŵ19(x̂) :=(0, 0, (x̂− 1)(ŷ − 1)(ŷ + 1)/8)tr,

ŵ20(x̂) :=(0, 0, −(x̂+ 1)(ŷ − 1)(ŷ + 1)/8)tr,

ŵ21(x̂) :=((ŷ − 1)(ẑ − 1)(ẑ + 1)/8, 0, 0)tr,

ŵ22(x̂) :=(−(ŷ + 1)(ẑ − 1)(ẑ + 1)/8, 0, 0)tr,

ŵ23(x̂) :=(0, (x̂− 1)(ẑ − 1)(ẑ + 1)/8, 0)tr,

ŵ24(x̂) :=(0, −(x̂+ 1)(ẑ − 1)(ẑ + 1)/8, 0)tr,

ŵ25(x̂) :=((ŷ − 1)(ŷ + 1)(ẑ − 1)(ẑ + 1)/16, 0, 0)tr,

ŵ26(x̂) :=(0, (x̂− 1)(x̂+ 1)(ẑ − 1)(ẑ + 1)/16, 0)tr,

ŵ27(x̂) :=(0, 0, (x̂− 1)(x̂+ 1)(ŷ − 1)(ŷ + 1)/16)tr.

The first 12 new edge basis functions are associated with degrees of freedom of

the form (see [43, Equation (6.3)])

∫

f̂

( ˆcurl û(x̂)) · n̂p̂(x̂)dx̂, for all faces f̂ with normal n̂, (5.15)
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where p(x̂) is a homogeneous linear polynomial, while the last three additional

basis functions are associated with degrees of freedom of the form [43, Equa-

tion (6.4)]

∫

K̂

( ˆcurl u(x̂)) · r̂(x̂)dx̂, (5.16)

where r̂ is taken from the set [43, Equation (3.6)]

R̂ := {r̂1, r̂2, r̂3} := {(0,−ẑ/2, ŷ/2)tr, (−ẑ/2, 0, x̂/2)tr, (−ŷ/2, x̂/2, 0)tr}. (5.17)

The table below summarizes the correspondence between the new shape func-

tions and their degrees of freedom.

Basis function d.o.f value

ŵ13

∫

ẑ=−1
ˆcurl û(x̂) · n̂x̂dx̂ 2/3

ŵ14

∫

ẑ=1
ˆcurl û(x̂) · n̂x̂dx̂ −2/3

ŵ15

∫

ŷ=−1
ˆcurl û(x̂) · n̂x̂dx̂ −2/3

ŵ16

∫

ŷ=1
ˆcurl û(x̂) · n̂x̂dx̂ 2/3

ŵ17

∫

ẑ=−1
ˆcurl û(x̂) · n̂ŷdx̂ −2/3

ŵ18

∫

ẑ=1
ˆcurl û(x̂) · n̂ŷdx̂ 2/3

ŵ19

∫

x̂=−1
ˆcurl û(x̂) · n̂ŷdx̂ 2/3

ŵ20

∫

x̂=1
ˆcurl û(x̂) · n̂ŷdx̂ −2/3

ŵ21

∫

ŷ=−1
ˆcurl û(x̂) · n̂ẑdx̂ 2/3

ŵ22

∫

ŷ=1
ˆcurl û(x̂) · n̂ẑdx̂ −2/3

ŵ23

∫

x̂=−1
ˆcurl û(x̂) · n̂ẑdx̂ −2/3

ŵ24

∫

x̂=1
ˆcurl û(x̂) · n̂ẑdx̂ 2/3

ŵ25

∫

[−1,1]3
ˆcurl û(x̂) · r̂1(x̂)dx̂ 2/9

ŵ26

∫

[−1,1]3
ˆcurl û(x̂) · r̂2(x̂)dx̂ −2/9

ŵ27

∫

[−1,1]3
ˆcurl û(x̂) · r̂3(x̂)dx̂ 2/9
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5.2.2.2 Completeness Test Revisited

We illustrate the results of [43, 25] by showing that the new edge finite element

spaces, including the functions defined in the previous section, are complete on

the non-affine hexahedron with vertices given by (5.5). More precisely, we want

to show, that with A given in (5.6), that is, A(x) = (0, x, 0)tr, the constant field

curl A(x) = (0, 0, 1)tr is correctly represented by the curl of the new basis.

We start by determining which of the new shape functions, combined with ŵ4

and ŵ8, are involved in the representation ofA(x), and thus in that of curl A(x).

To this end, observe from (5.13) that

ˆcurl Â(x̂) = (0, 0,−(ŷ − 2)/8)tr,

so that ˆcurl Â(x̂) is along the ẑ-direction. It follows from (5.15) and (5.16) that

Â only has degrees of freedom on the faces ẑ = −1 and ẑ = 1, plus degrees of

freedom associated with interior values of ˆcurl Â. Using the degree of freedom

table given in the previous section together with (5.17), we find that, in addition

to ŵ4 and ŵ8, the field Â has degrees of freedom associated with ŵ13, ŵ14, ŵ17,

ŵ18, ŵ25, and ŵ26. Hence, in order to find the representation of ˆcurl Â with

respect to the curl of the new edge basis functions, it suffices to compute the

L2-orthogonal projection of ˆcurl Â onto the curl of the linear space spanned by

the set B
Â
, where B

Â
consists of

B
Â
:= {ŵ4, ŵ8, ŵ13, ŵ14, ŵ17, ŵ18, ŵ25, ŵ26}.

More precisely, we solve the system

P̃ = f̃
Â

(5.18)

where P̃ is the 8 by 8 matrix with entries

P̃ŵ,v̂ := 〈ŵ, v̂〉K̂ , ŵ, v̂ in B
Â
,
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and Ã is the column vector composed of

f̃
Â,ŵ := 〈Â, ŵ〉K̂ , ŵ in B

Â
.

In the above equations, recall that 〈·, ·〉K̂ denotes the inner product defined in

(5.9).

Solving the linear system (5.18) yields

α4 = α8 = −1, α17 = α18 = −1/4, α13 = α14 = α25 = α26 = 0,

so that the representation of ˆcurl Â with respect to the curl of the new basis is

given by

ˆcurl
[

− ŵ4 − ŵ8 −
1

4
ŵ17 −

1

4
ŵ18

]

= ˆcurl
[

− (0, (x̂+ 1)(ẑ − 1)/8, 0)tr − (0,−(x̂+ 1)(ẑ + 1)/8, 0)tr

− 1

4
((ŷ − 1)(ŷ + 1)(ẑ − 1)/8, 0, 0)tr

− 1

4
(−(ŷ − 1)(ŷ + 1)(ẑ + 1)/8, 0, 0)tr

]

,

which, after simplification, gives

ˆcurl (
ŷ2 − 1

16
,
x̂+ 1

4
, 0)tr = (0, 0,

2− ŷ
8

)tr.

It then follows from (5.4) that the representation of curl A(x) is given by

PΦ(x̂)(0, 0,
2− ŷ
8

)tr = |dΦ(x̂)|−1dΦ(x̂)(0, 0,
2− ŷ
8

)tr,

which, combined with (5.11) and (5.12), yields

16

2− y











(2− y)/4 −(1 + x)/4 0

0 1/2 0

0 0 1/2





















0

0
2− ŷ
8











=











0

0

1











,
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thereby proving that the curl of the new edge shape functions on the physical

element K indeed contains the constant vector (0, 0, 1)tr.

Although not reported, similar computations show that the unit vectors (0, 1, 0)tr

and (1, 0, 0)tr are also generated by the curl of the new edge basis, thereby prov-

ing that the curl of the enhanced edge shape functions contain constants on the

non-affine hexahedron.

We have implemented the new shape functions presented in [43, 25] on the

prism, the pyramid and the hexahedron for the lowest-order case r = 0. Similarly

to the hexahedron given in Figure 5.3, the completeness of the new edge basis

has been tested on the non-affine prism and pyramid given on Figure 5.4(a) and

Figure 5.4(b) below.

x

y

z

(a) Distorted Prism

x

y

z

(b) Distorted Pyramid

Figure 5.4: Non-Affine Elements

Figure 5.5 displays the error obtained when projecting constant fields onto the

curl of the new edge basis, using distorted non-affine geometries, which confirms

the fact that, in contrast to Nédélec shape functions, the new edge basis is able

to reproduce constants on the non-affine elements.

./prismExample.eps
./pyramidExample.eps
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(a) Distorted Hexahedron
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(b) Distorted Prism
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(c) Distorted Pyramid

Figure 5.5: Completeness Test

./hexPatchTestError.eps
./prismPatchTestError.eps
./pyramidPatchTestError.eps
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5.2.3 Numerical Simulations

This section includes a comparative study between the classical Nédélec elements

and the enriched elements discussed in Section 5.1.2. Both hexahedral elements

are used to compute the eigenvalues of a simple rectangular cavity with perfectly

conducting walls. The computations were conducted by John Simkin from Cob-

ham Technical Services [1], using Opera SOPRANO [3], with a 3.6 Ghz Intel

Xeon E5-1620. The solution error is measured as the relative error in the fre-

quency of the computed modes. For the sake of clarity, three non-trivial modes

are represented in the numerical results below.

Using a uniform rectangular mesh produces the results given in Table 5.1 and

Table 5.2 below, where h and N respectively denote the element size and the

number of elements:

h N dof time (s) Error1 Error2 Error3
1 1000 10830 2 6.73e-6 4.07e-3 7.79e-3

0.5 8000 91260 20 4.22e-7 1.03e-3 2.04e-3
0.25 64000 748920 322 2.64e-8 2.57e-4 5.12e-4

Table 5.1: Relative Frequency Error with Enhanced Elements

h N dof time (s) Error1 Error2 Error3
1 1000 2430 1 4.12e-3 4.12e-3 1.24e-2

0.5 8000 21660 6 1.03e-3 1.03e-3 3.09e-3
0.25 64000 182520 74 2.57e-4 2.57e-4 7.71e-4

Table 5.2: Relative Frequency Error with Nédélec Elements

The variation of the error against the mesh size, as given in the above tables,

is plotted on Figure 5.6.
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Figure 5.6: Using a Rectangular Mesh

Apart from the first mode which exhibits quadratic convergence with respect

to the mesh size, Mode 2 and Mode 3 converges as O(h2), when using the rectan-

gular mesh. Hence, Nédélec elements are more efficient on affine meshes, because

they involve fewer degrees of freedom.

Similar computations have been performed, using the non-affine mesh below.

Figure 5.7: Non-Affine Ziggurat Mesh

./cavity_rec_mesh_enhanced_nedelec_Mode3.eps
./ziggurat_mesh.eps
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The results obtained using the non-affine mesh given in Figure 5.7 are sum-

marized in Table 5.3 and Table 5.4 below.

h N dof time (s) Error1 Error2 Error3
2.5 24 272 0.3 1.16e-3 1.12e-2 1.40e-2
1.25 192 2240 0.9 3.21e-4 2.79e-3 4.37e-3
0.625 1536 18176 2.74 8.23e-5 6.98e-4 2.00e-3
0.3125 12288 146432 18 2.07e-5 1.75e-4 2.75e-4
0.15625 98304 1175552 240 5.19e-6 4.37e-5 6.87e-5

Table 5.3: Relative Frequency Error with Enhanced Elements

h N dof time (s) Error1 Error2 Error3
2.5 24 186 0.2 2.41e-2 2.62e-2 6.19e-2
1.25 192 544 0.8 1.14e-2 1.28e-2 1.82e-2
0.625 1536 4480 1.29 8.18e-3 1.03e-2 1.35e-2
0.3125 12288 36352 6.5 7.38e-3 9.69e-3 1.23e-2
0.15625 98304 292864 58.1 7.18e-3 9.53e-3 1.19e-2

Table 5.4: Relative Frequency Error with Nédélec Elements

The variation of the error as a function of the mesh size is shown on Figure 5.8.
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Figure 5.8: Using a Non-Affine Mesh

As predicted, the enhanced edge elements yield a O(h2) convergence rate.

./cavity_zigg_mesh_enhanced_nedelec_Mode3.eps
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By contrast, refining the mesh brings no significant improvement on the accuracy

produced by the Nédélec elements, as shown in Table 5.4. Comparing Table 5.3

and Table 5.4 shows that, on the non-affine mesh, the enhanced edge elements

are more efficient than the Nédélec ones in terms of accuracy, number of degrees

of freedom and computing time.



Chapter 6

Conclusion

This project sought to apply the desirable properties of the Bernstein-Bézier (BB)

polynomials discussed in Chapter 1 to the finite element method. Although quite

popular in CAGD, BB polynomials had received little attention in the finite

element community. This project was set out to design finite element shape

functions based on BB polynomials, establish the computational advantages of

such bases, and provide ready-to-implement finite element algorithms.

The main findings consist of algorithms which enable for simplicial elemental

system matrices of order n to be computed with optimal complexity O(n2d) in d

dimensions, while taking account of the cost associated with numerical quadra-

ture. The proposed algorithms include the one-, two- and three-dimensional set-

tings for H1-conforming finite elements, whereas two-dimensional Nédélec spaces

are considered for H(curl)-conforming elements. To the best of the author’s

knowledge, this optimal complexity result on simplicial elements is new.

The key approach behind the design of the algorithms consists in writing each

elemental quantity in terms of the B-moments defined in (2.1), which is only

possible because the product of two Bernstein polynomials is also a Bernstein

polynomial of higher degree:

• in the case of piecewise constant data, this transformation, coupled with the

closed expression (3.10) for the integral of a Bernstein polynomial, yields

144



145

explicit formulas which can be implemented using O(n2d) operations;

• in the case of variable data, once the elemental quantities have been written

as weighted sums of B-moments, we simply make use of the efficient B-

moment evaluation given in Chapter 2. As a consequence, the additional

cost associated with numerical quadrature is negligible compared to the

overall complexity O(n2d).

The optimal complexity is achieved in particular because the above-mentioned

transformations into B-moments are sparse, and hard-coded into the computa-

tions. A fundamental property behind the sparsity of the transformation is given

by the closed formula (3.8) for the gradient of a Bernstein polynomial.

For variable data, the efficient computations of the element system matrices

rely on the optimal evaluation of the B-moments. A key observation behind

this optimal result is that, although the Bernstein-Bézier shape functions are

not based on a tensorial construction, a tensor product structure arises from

the application of the Duffy transformation defined in (2.2) to the B-moments,

thereby allowing for sum factorization techniques to be used.

The proposed algorithms have been implemented in the bbfem library which

is available through a GPL licence. Numerical simulations involving benchmark

test problems are consistent with the expected accuracy of the finite elements,

as well as with the predicted optimal cost associated with the assembly of the

BB elemental quantities.

Finally, some remarks on future work are due. Since the algorithms have been

designed with high polynomial orders in mind, the running times for specific low

orders can probably be improved by appropriate customization.

For reasonably large polynomial degrees, that is, up to n = 25, the proposed

algorithms are numerically shown to produce accurate results. However, in order

to fully exploit the optimal complexity of the Bernstein-Bézier elements for larger

polynomial orders, future work should include the investigation of precondition-

ing techniques and solvers that are well suited for the resulting linear systems.
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Further research may also include the extension of the two-dimensional H(curl)

Bernstein-Bézier finite elements discussed in Chapter 4 to the three-dimensional

setting.



Appendix A

Examples

This appendix provides illustrative examples regarding the finite element bases

presented in this work. Section A.1 presents explicit formulas for theH1 mass and

stiffness matrices for n = 2 and n = 3, whereas Section A.2 gives the graphs of

the H(curl) shape functions introduced in Chapter 4 for the linear and quadratic

polynomial orders.

A.1 H1 Element Mass and Stiffness Matrices

Example A.1.1. By ordering the indices in In2 as in Figure A.1 for n = 2 and

n = 3 and with the help of Algorithm 3.3, we find that the two-dimensional H1

element mass matrix is respectively given by M(2) and M(3), where

M(2) =
|T |
90






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
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

6 1 1 1 3 3

1 6 1 3 1 3

1 1 6 3 3 1

1 3 3 4 2 2

3 1 3 2 4 2

3 3 1 2 2 4




























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and

M(3) =
|T |
560


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
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(a) n = 2 (b) n = 3

Figure A.1: Ordering used on the elements of In2

Example A.1.2. Using Algorithm 3.9 with A =





1 0

0 1



, we find that the

orderDomain.eps
orderDomainN3.eps
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two-dimensional H1 element stiffness matrix S(2), for n = 2, is given by

S(2) =
1

24














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








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

























2 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 2 1

1 0 0 0 1 2
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Similarly, Algorithm 3.10 with A =











1 0 0

0 1 0

0 0 1











shows that the H1 element

stiffness matrix S(3), for n = 3, is given by

S(3) =
1

80

(

B|∇λ1|2 +C∇λ1 · ∇λ2 +D∇λ1 · ∇λ3

+ E|∇λ2|2 + F∇λ2 · ∇λ3 +G|∇λ3|2
)

,

where the matrices B,C,D,E,F,G are given in Tab. A.1.
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Table A.1: The matrices in the formula for S3 in Example A.1.2.
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A.2 Basis Functions Graphs

We proceed in this section to plot the H(curl) shape functions (excluding the

Whitney edge functions) associated with the standard triangle T with vertices

0, (1, 0) and (0, 1).

(a) Sigma basis functions (b) Gradient basis functions

Figure A.2: Basis Functions for n = 1

sigmaN2.eps
gradientN2.eps
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(a) Sigma basis functions

(b) Gradient basis functions

Figure A.3: Basis functions for n = 2

sigmaN3.eps
gradientN3.eps


Appendix B

C++ Library Documentation

The Bernstein-Bézier algorithms presented in the previous chapters, as well as

those presented in [11] have been implemented using the C++ programming lan-

guage. The code is available from [4] under a GPL license. In contrast to the

algorithms given in this work, those described in [11] make no use of precomputed

arrays of the form (2.9), (2.16), (2.21). For this reason, the approach considered

in [11] will be referred to as the method without precomputed arrays. This sec-

tion contains the documentation which will be useful in order to make use of the

2D and 3D source code for H1 finite elements as well as the 2D source code for

H(curl) finite elements. Recall that, in two dimensions, H(curl) is isomorphic

to H(div), which means that the presented codes may also be used for H(div)

computations in 2D (see Equation (4.5)). In this chapter, each routine will have

its purpose, parameter(s) and output explained. For simplicity, only the routines

used for 3D computations are considered for H1 finite elements. The 2D routines

are based on a similar design, and are given in [4]. For details on each routine’s

method and its interactions with the other routines, see [4].

The 2D and 3D source code for H1 computations is called bbfem.cpp. Its pur-

pose is to provide efficient routines for the computation of the elemental quantities

forH1 finite elements in two and three dimensions, using the algorithms presented

in in Chapter 2 and Chapter 3. When the data is variable, the code makes use

of Gauss-Jacobi quadrature weights and centres which are stored in the data file

153
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JacobiGaussNodes.h, given in [4]. More precisely, JacobiGaussNodes.h con-

tains the declarations of the legendre, jacobi and jacobi2 arrays which respec-

tively contain Gauss-Jacobi quadrature weights and centres with (α, β) = (0, 0),

(α, β) = (1, 0) and (α, β) = (2, 0) from q = 2 to q = 80. The minimal value

q = 2 comes from the assumption that the finite element order is at least equal

to 1 for which the Stroud rule of order 2 is needed. In addition to the routines

contained in bbfem.cpp for the computation of the B-moments, the source code

for computing the H(curl) elemental quantities is called bbfem2dCurl.cpp.

This chapter is organized as follows. Section B.1 below lists the routines

which are contained in bbfem.cpp, along with a brief description of each routine’s

purpose. The routines’ syntax is discussed in Section B.2. Section B.3 then lists

all the routines which are specific to H(curl) computations. The H(curl) routines’

syntax is described in Section B.4.

B.1 H1 Routines List

This section alphabetically lists the routines in bbfem.cpp for the computation

of elemental quantities in two and three dimensions. Routines named with a

suffix 3d are specific to 3D computations and have 2D analogues which perform

a similar task. In addition, routines which are specific to the approach developed

in [11] are marked with an asterisk:

• Area2d: computes the area of the triangle.

• assign pointers Bmom2d, assign pointers Mass2d,

assign pointers Convec2d, assign pointers Stiff2d: initialize the in-

termediate arrays used in the computation of the 2D elemental quantities.

• assign pointers Bmom3d, assign pointers Mass3d,

assign pointers Convec3d, assign pointers Stiff3d: initialize the in-

termediate arrays used in the computation of the 3D elemental quantities.
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• assign quadra2d: assigns values to the arrays used for storing the quadra-

ture weights and centres.

• assign quadra3d: assigns values to the arrays used for storing the quadra-

ture weights and centres.

• bary2cart2d: map from barycentric to Cartesian coordinates.

• bary2cart3d: map from barycentric to Cartesian coordinates.

• Bmoment2d: computes the B-moments in two dimensions.

• Bmoment2d const: computes the 2D B-moments associated with con-

stant coefficients equal to 1.

• Bmoment2d Index*: computes the 2D B-moments using the method

without precomputed arrays.

• Bmoment3d: computes the B-moments in three dimensions.

• Bmoment3d const: computes the 3D B-moments associated with con-

stant coefficients equal to 1.

• Bmoment3d Index*: computes the 3D B-moments using the method

without precomputed arrays.

• computeBinomials: computes binomial coefficients using Pascal’s Trian-

gle.

• Convec2d: computes the 2D convective matrix associated with variable

coefficients.

• Convec2d const: computes the 2D convective matrix associated with con-

stant vector-valued coefficients.

• Convec3d: computes the 3D convective matrix associated with variable

coefficients.
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• Convec3d const: computes the 3D convective matrix associated with con-

stant vector-valued coefficients.

• create BinomialMat: allocates memory for storing binomial coefficients.

Precomputing binomial coefficients is a key step in order to obtain efficient

routines using Bernstein polynomials.

• create Bmoment: allocates memory for storing the B-moment vector en-

tries. This routine can handle scalar-, vector- or matrix-valued B-moments.

• create quadraWN2d: allocates memory for storing the quadrature weights

and centres used in the computation of the 2D elemental quantities associ-

ated with variable coefficients.

• create quadraWN3d: allocates memory for storing the quadrature weights

and centres used in the computation of the 3D elemental quantities associ-

ated with variable coefficients.

• create Mat: allocates memory to the mass, convective or stiffness matrix.

• create matValNodes2d: allocates memory for storing the value of the

data at the 2D Stroud nodes.

• create matValNodes3d: allocates memory for storing the value of the

data at the 3D Stroud nodes.

• create precomp2d: allocates memory for the arrays defined in (2.16).

• create precomp3d: allocates memory for the arrays defined in (2.21).

• crossProd2: computes the half-scaled cross-product of two vectors.

• data at Nodes Bmom2d, data at Nodes Mass2d,

data at Nodes Convec2d, data at Nodes Stiff2d: compute the val-

ues of the data at the Stroud nodes.
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• data at Nodes Bmom3d, data at Nodes Mass3d,

data at Nodes Convec3d, data at Nodes Stiff3d: compute the val-

ues of the data at the Stroud nodes.

• data at Nodes Cval2d: reads the value of the data at the Stroud nodes,

when using an array of data values at the Stroud nodes as input.

• data at Nodes Cval3d: reads the value of the data at the Stroud nodes,

when using an array of data values at the Stroud nodes as input.

• delete BinomialMat: frees the memory allocated to the array storing

binomial coefficients.

• delete Bmoment: frees the memory used to store B-moments.

• delete Mat: frees the memory allocated to the mass, convective or stiffness

matrix.

• delete matValNodes: frees the memory used to store the value of the

data at the Stroud nodes.

• delete pointers Bmom, delete pointers Mass,

delete pointers Convec, delete pointers Stiff: free the memory allo-

cated to intermediate arrays used in the computation of the elemental quan-

tities.

• delete precomp: frees the memory allocated to the arrays defined in

(2.21) in 3D, and (2.16) in 2D.

• delete quadraWN: frees the memory used to store the quadrature weights

and centres.

• gaussJacobiUnit2D*: transforms the Gauss-Jacobi quadrature weights

and centres on [-1;1] to those on [0;1].

• gaussJacobiUnit3D*: transforms the Gauss-Jacobi quadrature weights

and centres on [-1;1] to those on [0;1].
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• get Bmoments2d: driver routine for computing the 2D B-moments.

• get Bmoments2d const: driver routine for computing the 2D B-moments

associated with constant coefficients equal to 1.

• get Bmoments3d: driver routine for computing the 3D B-moments.

• get Bmoments3d const: driver routine for computing the 3D B-moments

associated with constant coefficients equal to 1.

• get convec2d: driver routine for computing the 2D convective matrix as-

sociated with variable coefficients.

• get convec2d const: driver routine for computing the 2D convective ma-

trix associated with constant coefficients.

• get convec3d: driver routine for computing the 3D convective matrix as-

sociated with variable coefficients.

• get convec3d const: driver routine for computing the 3D convective ma-

trix associated with constant coefficients.

• get mass2d: driver routine for computing the 2D mass matrix associated

with variable coefficients.

• get mass2d const: driver routine for computing the 2D mass matrix with

constant coefficients equal to 1.

• get mass3d: driver routine for computing the 3D mass matrix associated

with variable coefficients.

• get mass3d const: driver routine for computing the 3D mass matrix with

constant coefficients equal to 1.

• get stiffness2d: driver routine for computing the 2D stiffness matrix as-

sociated with variable coefficients.

• get stiffness2d const: driver routine for computing the 2D stiffness ma-

trix associated with constant coefficients.
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• get stiffness3d: driver routine for computing the 3D stiffness matrix as-

sociated with variable coefficients.

• get stiffness3d const: driver routine for computing the 3D stiffness ma-

trix associated with constant coefficients.

• init Bmoment2d Cval*: contains the first step of the B-moments com-

putation for the method without precomputed arrays, when using an array

of data values at the 2D Stroud nodes as input for the coefficients. More

precisely, the B-moment vector entries are initialized with the values of the

data at the Stroud nodes.

• init Bmoment3d Cval*: Analogue of init_Bmoment2d_Cval used in 3D

computations.

• init BmomentC Bmom2d, init BmomentC Mass2d,

init BmomentC Convec2d, init BmomentC Stiff2d*: contain the first

step of the B-moments computation for the method without precomputed

arrays. More precisely, the B-moment vector entries are initialized with the

values of the data at the Stroud nodes.

• init BmomentC Bmom3d, init BmomentC Mass3d,

init BmomentC Convec3d, init BmomentC Stiff3d*: Analogues of

the previous routines used in 3D computations.

• init precomp2d: computes the arrays given in (2.16).

• init precomp3d: computes the arrays given in (2.21).

• innerProd Coeff2d: Given a vector-valued coefficient vectCoeff, com-

putes the vector containing the inner products of vectCoeff with the outer

normals to the triangle’s edges. The innerProd Coeff routine is needed for

the computation of the convective matrix associated with constant coeffi-

cients.
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• innerProd Coeff3d: Given a vector-valued coefficient vectCoeff, com-

putes the vector containing the inner products of vectCoeff with the outer

normals to the tetrahedron’s faces.

• inter: auxiliary routine which is needed in the computation of the normals

to the tetrahedron’s faces.

• len Mat2d: returns the dimension of the 2D elemental matrices.

• len Mat3d: returns the dimension of the 3D elemental matrices.

• len Moments2d: returns the length of the array used to store the 2D

B-moments. This depends on whether or not the method without precom-

puted arrays is used in order to compute the B-moments.

• len Moments3d: returns the length of the array used to store the 3D

B-moments. This depends on whether or not the method without precom-

puted arrays is used in order to compute the B-moments.

• Mass2d: computes the 2D mass matrix with variable coefficients.

• Mass2d const: computes the 2D mass matrix associated with constant

coefficients equal to 1.

• Mass3d: computes the 3D mass matrix with variable coefficients.

• Mass3d const: computes the 3D mass matrix associated with constant

coefficients equal to 1.

• matrix values at Stroud2d: computes the values of a (symmetric) matrix-

valued function at the 2D Stroud nodes of a given order.

• matrix values at Stroud3d: computes the values of a (symmetric) matrix-

valued function at the 3D Stroud nodes of a given order.

• normals2d: computes the outer normals to the edges of the triangle.

• normals3d: computes the outer normals to the faces of the tetrahedron.
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• position2d: indexes the entries of the 2D mass, convective and stiffness

matrix entries. Also indexes the B-moment vector entries, when the routines

described in Chapter 3 are used for the B-moment computation.

• position2d2*: indexes the entries of the the 2D B-moment vector, when

using the method without precomputed arrays.

• position2d sum: auxiliary routine which computes the index associated

with the sum of two domain points in two dimensions. This routine is

needed for the 2D stiffness matrix computation.

• position3d: indexes the entries of the 3D mass, convective and stiffness

matrix entries. Also indexes the B-moment vector entries, when the routines

described in Chapter 3 are used for the B-moment computation.

• position3d2*: indexes the entries of the the 3D B-moment vector, when

using the method without precomputed arrays.

• position3d sum, position3d sum2: auxiliary routines which compute

the index associated with the sum of two domain points in three dimensions.

These routines are needed for the 3D stiffness matrix computation.

• scalarMatrix2d Coeff: computes the matrix containing weighted inner

products of the outer normals to the triangle’s edges. This matrix is needed

for the computation of the 2D stiffness matrix associated with constant

coefficients.

• scalarMatrix3d Coeff: computes the matrix containing weighted inner

products of the outer normals to the tetrahedron’s faces.

• scalarProd2d: computes the scalar product of two vectors in two dimen-

sions.

• scalarProd3d: computes the scalar product of two vectors in three dimen-

sions.
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• scalar values at Stroud2d: computes the values of a scalar-valued func-

tion at the 2D Stroud nodes of a given order.

• scalar values at Stroud3d: computes the values of a scalar-valued func-

tion at the 3D Stroud nodes of a given order.

• Stiff2d: computes the 2D stiffness matrix associated with variable coeffi-

cients.

• Stiff2d const: computes the 2D stiffness matrix associated with constant

matrix-valued coefficients.

• Stiff3d: computes the 3D stiffness matrix associated with variable coeffi-

cients.

• Stiff3d const: computes the 3D stiffness matrix associated with constant

matrix-valued coefficients.

• stroud nodes bary2d: computes the barycentric coordinates of the 2D

Stroud nodes.

• stroud nodes bary3d: computes the barycentric coordinates of the 3D

Stroud nodes.

• subtract: computes the difference of two 3D vectors.

• transform BmomentC Convec2d: computes the inner product of the

vector-valued B-moments with the normals to the triangle’s edges in 2D.

• transform BmomentC Convec3d: computes the inner product of the

vector-valued B-moments with the normals to the tetrahedron’s faces in 3D.

• transform BmomentC Stiff2d: multiplies the matrix-valued B-moments

with the normals to the triangle’s edges in 2D.

• transform BmomentC Stiff3d: multiplies the matrix-valued B-moments

with the normals to the tetrahedron’s faces in 3D.
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• vector values at Stroud2d: computes the values of a vector-valued func-

tion at the 2D Stroud nodes of a given order.

• vector values at Stroud3d: computes the values of a vector-valued func-

tion at the 3D Stroud nodes of a given order.

• Volume3d: computes the volume of a tetrahedron.

Typically, routines of the form create_[] and delete_[] are respectively

used to allocate and free the memory allocated to intermediate quantities. In ad-

dition, routines of the form assign_[] are used to assign values to intermediate

quantities. The driver routines for computing the elemental quantities are of the

form get_[]. Each driver routine is associated with a corresponding low-level

routine which performs the same computation, with the exception that the low-

level routines do not contain the initialization of auxilliary arrays. As a result,

the arguments passed to low-level routines include the auxilliary arrays which are

needed in order to compute the elemental quantities. The entries of the mass,

convective and stiffness matrices are indexed with respect to position3d in 3D,

and position2d in 2D. The above-mentioned routines are also used for index-

ing the B-moment vector entries, unless the method without precomputed arrays

presented in [11] is used. In that case, alternative indexing methods, respec-

tively given by position3d2 and position2d2 in two and three dimensions, are

required. This is because the size of the array used to store the B-moments is

slightly larger in the approach proposed in [11]. In the sequel, the PRECOMP macro

indicates that the algorithms presented in Chapter 2 are used for the computation

of the B-moments.

B.2 H1 Routines Description

This section contains the execution of the driver routines computing 3D elemental

quantities. The 2D routines are based on a similar design.Explanations on the use

of the 3D routines listed in Section B.1 are given. For the definitions of the 2D
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and 3D routines, see [4]. As mentioned before, in order to compute the elemental

matrices associated with variable coefficients, only the coefficient values at the

quadrature nodes is required. Hence, two data structures are possible for the

input representing the coefficients: either a function definition, or an array of

function values at the quadrature nodes. Thus, a flag called functval is used to

distinguish the two approaches. By default, a function is used as input for the

coefficients.

B.2.1 B-moments

This section discusses the routines used for computing the B-moments associated

with variable coefficients. Since the B-moment entries associated with constant

coefficients are given by a constant, the program for computing such B-moments

can be considered as trivial and as such is left out. The routines presented in this

section are involved with the computations of B-moments on the tetrahedron T =

〈vi, i = 1, . . . , 4〉 associated with a non-constant scalar-valued data. Depending

on the value of the flag functval, the input for the coefficients is either given

by a function called f, or an array called Cval which contains the values of the

B-moment coefficients at the quadrature nodes.

With the purpose of offering a better understanding of the structure of the

code, this section starts with the driver routine for computing B-moments of a

given order. The routines responsible for allocating memory are then discussed in

Section B.2.1.2, whereas the routines used for auxiliary computations are given

in Section B.2.1.3. Section B.2.1.3 discusses the auxiliary routines which handle

intermediate computations. Finally, Section B.2.1.4 displays an example of code

execution for computing B-moments.

B.2.1.1 Driver Routine

This section focuses on get_Bmoments3d which is the driver routine used for

computing the B-moments. The above-mentioned routine is declared as follows:
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void

get Bmoments3d (double ∗∗Bmoment , int n , double

(∗ f ) (double [ 3 ] ) , double ∗Cval , double v1 [ 3 ] , double

v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] , int f u n c tva l ) ;

In the above routine, recall that the parameter functval is used as a flag for set-

ting the input used for the coefficients: With functval=0, the B-moments coeffi-

cients are produced by the function f, whereas with functval=1, the B-moments

coefficients are produced by the array Cval which contains the data values at the

Stroud nodes. The routine get_Bmoments3d computes the B-moments of order n

on the tetrahedron with vertices v1, v2, v3, v4, associated with either f or Cval.

The computed B-moments are stored into the array Bmoment.

B.2.1.2 Memory Allocation

This section discusses the purpose and the syntax of the B-moment routines which

are used to allocate memory. These routines are listed as: create_BinomialMat,

create_Bmoment, create_quadraWN3d, create_matValNodes3d,

create_precomp3d, delete_BinomialMat, delete_Bmoment,

delete_matValNodes, delete_pointers_Bmom, delete_precomp,

delete_quadraWN and len_Moments3d.

When PRECOMP is switched on, the routine for computing the B-moments

requires precomputed binomial coefficients. The memory used for storing such

coefficients is allocated by means of create_BinomialMat which is declared as

follows:

double ∗∗
create BinomialMat ( int len binomialMat ) ;

The above routine creates a square matrix of dimension len_binomialMat.

The routine used to allocate memory for storing the computed B-moments is

declared as follows:

double ∗∗
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create Bmoment ( int lenMoments , int nb Array ) ;

In the above routine, lenMoments specifies the size allocated to the B-moments,

whereas nb_Array depends on the type of coefficients associated with the B-

moments. Note that, by adjusting the value of nb_Array and lenMoments, the

create_Bmoment routine can also be used for 2D computations.

In order to compute B-moments associated with variable data, Gauss-Jacobi

quadrature rules are needed. The next routine is responsible for allocating mem-

ory for storing Gauss-Jacobi quadrature weights and centres:

double ∗∗
create quadraWN3d ( int l en quadra ) ;

When PRECOMP is switched on, the routine declared below is called in order

to allocate memory for storing weighted data values at the Stroud nodes:

double ∗∗
create matValNodes3d ( int len matValNodes ) ;

What distinguishes the algorithms described in this work from those presented

in [11] is the use of precomputed arrays of the form (2.21). The latter are stored

in an array called precomp which is created by means of the routine declared

below:

double ∗∗
create precomp3d ( int len precomp ) ;

The next routine is used to free the memory allocated to binomial coefficients:

void

delete BinomialMat (double ∗∗binomialMat , int len binomialMat ) ;

In the above routine, binomialMat is used to store binomial coefficients, whereas

len_binomialMat is the size allocated to binomialMat.

The next routine frees the memory allocated to B-moments:

void
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delete Bmoment (double ∗∗Bmoment) ;

The next routine is used to free the memory allocated by create_matValNodes3d:

void

delete matValNodes (double ∗∗matValNodes ) ;

The following routine is needed in order to free the memory allocated to

auxiliary arrays involved in the computation of the B-moments:

#ifdef PRECOMP

void

delete pointers Bmom (double ∗∗precomp , double ∗∗matValNodes ,

double ∗∗quadraWN) ;

#else

void

delete pointers Bmom (double ∗∗BmomentInter , double

∗∗quadraWN) ;

#endif

The next routine frees the memory allocated to precomputed arrays used when

PRECOMP is switched on:

void

de lete precomp (double ∗∗precomp ) ;

The following routine is used to free the memory allocated to Gauss-Jacobi

quadrature weights and centres:

void

delete quadraWN (double ∗∗quadraWN) ;

As mentioned before, the size allocated to the array storing the B-moments

depends on whether or not the algorithms presented in [11] are used. More

precisely, the following routine returns the size allocated to the array containing

the B-moments:

1 int



168

2 len Moments3d ( int n , int q ) ;

In the above routine, n is the order of the computed B-moments, whereas q is the

order of the Stroud rule used.

B.2.1.3 Auxiliary Computations

This section describes the auxiliary routines which are needed in order to compute

the B-moments computation. These routines are listed as:

assign_pointers_Bmom3d, assign_quadra3d, bary2cart3d, Bmoment3d,

Bmoment3d_Index, computeBinomials, data_at_Nodes_Bmom3d,

data_at_Nodes_Cval3d, gaussJacobiUnit3D, init_Bmoment3d_Cval,

init_BmomentC_Bmom3d, init_precomp3d, position3d, position3d2,

scalar_values_at_Stroud3d, stroud_nodes_bary3d and Volume3d.

The routine declared below is responsible for initializing intermediate arrays

used in the computation of the B-moments:

1 #ifdef PRECOMP

2 void

3 ass ign pointers Bmom3d (double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , int n , int q , int nDash , int m, int

nb Array , double ∗∗matValNodes , double ∗Cval , double

∗∗quadraWN, double ∗∗precomp , double (∗ f ) (double [ 3 ] ) , int

f u n c tva l ) ;

4 #else

5 void

6 ass ign pointers Bmom3d (double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , int n , int q , int nDash , int m, int

nb Array , double ∗Cval , double ∗∗quadraWN, double

∗∗Bmoment , double (∗ f ) (double [ 3 ] ) , int f u n c tva l ) ;

7 #endif

In the above routine, v1, v2, v3, v4 are the tetrahedron’s vertices, q is the order

of the Stroud rule, quadraWN stores Gauss-Jacobi quadrature weights and cen-
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tres, nb_Array is a variable used to specify that the computed B-moments are

associated with scalar-valued data, and n is the order of the B-moments. When

PRECOMP is switched on, the values of the coefficients at the Stroud nodes is stored

into matValNodes. Otherwise, they are stored into Bmoment. Depending on the

value of the flag functval, either the function f or the array Cval is used as

input for the B-moments coefficients.

The routine assign_quadra3d is used to initialize Gauss-Jacobi quadrature

weights and nodes, and is declared as follows:

1 void

2 ass ign quadra3d ( int q , double ∗∗quadraWN ) ;

The above routine stores the Gauss-Jacobi quadrature weights and centres of

order q needed in the computation of the 3D elemental quantities into the array

quadraWN.

The next routine transforms barycentric coordinates into Cartesian coordi-

nates, and is needed when evaluating data values at Stroud nodes:

1 void

2 bary2cart3d (double b1 , double b2 , double b3 , double b4 ,

double v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] ,

double v [ 3 ] ) ;

The above routine computes the Cartesian coordinates corresponding to the

barycentric coordinates (b1, b2, b3, b4).

The low-level routine for computing B-moments based on the algorithms pre-

sented in Section 2.2.4 is declared below:

1 double

2 Bmoment3d ( int n , int q , int nb Array , double v1 [ 3 ] , double

v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] , double ∗∗binomialMat ,

double ∗∗precomp , double ∗∗Bmoment , double ∗∗matValNodes ) ;

The above routine computes B-moments of order n on the tetrahedron with ver-

tices v1, v2,v3,v4, using the Stroud rule of order q. The array binomialMat is
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used to store precomputed binomial coefficients, whereas precomp contains the

precomputed arrays defined in (2.21). The coefficients values at the Stroud nodes

are stored into the array matValNodes. The parameter nb_Array allows the above

routine to handle scalar-, vector- or matrix-valued coefficients.

The following routine for computing B-moments is derived the algorithms

presented in [11]:

1 double

2 Bmoment3d Index ( int n , int q , int nb Array , double

∗∗Bmoment , double ∗∗BmomentInter , double ∗∗quadraWN ) ;

The above routine is the analogue of the previous one, when using the algorithms

without precomputed arrays. More precisely, Bmoment3d_Index is derived from

[11, Algorithm 3] with d = 3.

The next routine is used for precomputing binomial coefficients, using Pascal’s

Triangle:

1 void

2 computeBinomials (double ∗∗binomialMat , int len binomialMat ) ;

In the above routine, the computed binomial coefficients are stored into the

array binomialMat, whereas len_binomialMat specifies the size allocated to

binomialMat.

The routine described below is used to initialize the entries of the coefficients

at the Stroud nodes when PRECOMP is switched on:

1 void

2 data at Nodes Bmom3d ( double (∗ f ) (double [ 3 ] ) , double

∗∗matValNodes , int q , double ∗∗quadraWN, double v1 [ 3 ] ,

double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] ) ;

The routine data_at_Nodes_Bmom3d computes the value of the coefficient f at

the Stroud nodes of order q. The computed coefficients values are then stored

into the array matValNodes.
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When the input for the B-moments coefficients is given by an array of data

values at the Stroud nodes, the next routine is used instead of

data_at_Nodes_Bmom3d:

1 void

2 data at Nodes Cval3d (double ∗∗matValNodes , int q , double

∗Cval , int nb Array ) ;

The above routine initializes the entries of matValNodes by reading the coeffi-

cients values stored in Cval. The parameter q stands for the order of the Stroud

rule used, whereas nb_Array allows data_at_Nodes_Cval3d to handle scalar,

vector, or matrix-valued coefficients.

When PRECOMP is switched off, the following routine is used to compute the

Gauss-Jacobi quadrature rules defined on the interval [0, 1]:

1 void

2 gaussJacobiUnit3D ( int q , double ∗∗quadraWN ) ;

The above routine stores the Gauss-Jacobi quadrature weights and centres of

order q defined on the unit interval into the array quadraWN.

When the input for the B-moments coefficients is given by an array of data

values at the Stroud nodes, the following routine is responsible for initializing the

B-moments:

1 void

2 init Bmoment3d Cval (double ∗Cval , int q , double v1 [ 3 ] , double

v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] , double ∗∗BmomentInter ,

int nb Array ) ;

In the above routine, the coefficients values at the Stroud nodes of order q are

stored in Cval, whereas v1, v2, v3, v4 are the tetrahedron’s vertices. The param-

eter nb_Array allows for init_Bmoment3d_Cval to be used with scalar-, vector-,

or matrix-valued data. In particular, this routine can also be used for computing

the convective and stiffness matrices associated with variable coefficients.

When a function serves as input for the coefficients, the routine described
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below is used instead of init_Bmoment3d_Cval:

1 void

2 init BmomentC Bmom3d ( double (∗ f ) (double [ 3 ] ) , int q ,

double v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] ,

double ∗∗BmomentInter , double ∗∗quadraWN) ;

In the above routine, f is a scalar-valued function which produces the B-moments

coefficients, and quadraWN contains Gauss-Jacobi quadrature weights and centres

of order q. The routine init_BmomentC_Bmom3d stores the values of f at the

Stroud nodes of order q into the array BmomentInter.

The next routine initializes the values assigned to the array precomp which is

used to store the precomputed arrays defined in (2.21):

1 void

2 in i t precomp3d (double ∗∗precomp , int n , int q , int mp, double

∗∗quadraWN) ;

The above routine computes the arrays defined in (2.21) into precomp.

When PRECOMP is switched on, the routines used for indexing the entries of

the B-moments is displayed below:

1 int

2 pos i t i on3d ( int eta1 , int eta2 , int eta3 ) ;

Note that the above routine is also used for storing the entries of the elemental

matrices, regardless of whether or not PRECOMP is used.

When PRECOMP is switched off, the array storing B-moments is also used to

store coefficient values at the Stroud nodes, hence the need for the alternative

indexing routine position2d2 declared as:

1 int

2 pos i t i on3d2 ( int i , int j , int k , int n) ;

The next routine is responsible for initializing the array containing the values

of the data at the quadrature nodes:
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1 void

2 s c a l a r va l u e s a t S t r oud3d ( int q , double ∗Cval , double ∗B,

double (∗ f ) (double [ 3 ] ) , double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] ) ;

In the above routine, B contains the barycentric coordinates of the Stroud nodes

of order q. The routine scalar_values_at_Stroud3d stores the values of the

function f at the Stroud nodes of order q into the array Cval.

In order to evaluate B-moments associated with variable coefficients, it is

necessary to evaluate the data at the Stroud nodes. The next routine returns the

barycentric coordinates of the q-point Stroud nodes:

1 void

2 s t roud nodes bary3d ( int q , double ∗B) ;

The above routine stores the barycentric coordinates of the Stroud nodes of order

q into the array B.

The next routine computes the volume of a tetrahedron which is needed for

defining scaling constants involved in various intermediate computations:

1 double

2 Volume3d (double v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] , double

v4 [ 3 ] ) ;

In the above routine, v1, v2, v3, v4 are the tetrahedron’s vertices.

B.2.1.4 Code Execution

This section presents an example which illustrates how to make use of the routines

described in the previous sections in order to compute the B-moments:

1 #include <s td i o . h>

2 #include <math . h>

3 #include <time . h>

4 #include <iostream>
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5 #include ”bbfem . h”

7 #ifndef MAX // a template

8 #define MAX(a , b) ( ( a ) > (b) ? ( a ) : (b) )

9 #endif

11 // example o f c o e f f i c i e n t f unc t i on

12 double

13 f 0 (double v [ 3 ] )

14 {
15 return s i n (v [ 0 ] ∗ v [ 1 ] ∗ v [ 2 ] ) ;
16 }

18 int main ( )

19 {
20 // // v e r t i c e s ( standard te t rahedron )

21 // doub le v1 [ 3 ] = {0 , 0 , 0} ;
22 // doub le v2 [ 3 ] = {1 , 0 , 0} ;
23 // doub le v3 [ 3 ] = {0 , 1 , 0} ;
24 // doub le v4 [ 3 ] = {0 , 0 , 1} ;

26 // v e r t i c e s ( p a r t i c u l a r t e t rahedron )

27 double v1 [ 3 ] = { 1 .2 , 3 . 4 , 0} ;
28 double v2 [ 3 ] = { −1.5 , 2 . , 0} ;
29 double v3 [ 3 ] = { 0 .1 , −1. , 0} ;
30 double v4 [ 3 ] = {1 . , 1 . , 1 . } ;
31 int n ; // order o f the B−moments

32 std : : cout<<”Enter a value f o r the polynomial order n : ” ;

33 std : : cin>>n ;

34 int q=n+1; // q i s f o r the number o f quadrature po i n t s used

in each d i r e c t i o n

36 double ∗∗Bmoment ; // po in te r used f o r Bmoment e n t r i e s
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37 int lenMoments = len Moments3d (n , q ) ; // memory requ i red

f o r s t o r i n g Bmoments depends on whether or not PRECOMP

i s used

38 int nb Array = 1 ; // the Bmoments are a s s oc i a t e d wi th a

sca lar−va lued func t i on

39 double (∗ f ) (double [ 3 ] ) = f0 ; // change here to your

rou t ine f o r the B−moments c o e f f i c i e n t s

40 double ∗Cval ; // s t o r e c o e f f i c i e n t s v a l u e s at Stroud nodes ,

on ly used wi th FUNCT VAL

41 int f u n c tva l = 0 ; // d e f a u l t : us ing a rou t ine ( f ) f o r

B−moments ’ c o e f f i c i e n t s

43 #i f d e f FUNCTVAL

44 f u n c tva l = 1 ; // us ing the va l u e s s tored in Cval f o r

B−moments ’ c o e f f i c i e n t s

45 double ∗B; // s t o r e b a ry c en t r i c coord ina te s o f Stroud nodes

46 B = new double [ q∗q∗q ∗ 4 ] ;
47 s t roud nodes bary3d (q , B) ;

48 int LEN = q ∗ q ∗ q ; // space requ i red f o r 2D array wi th

dimension q+1

49 Cval = new double [LEN ∗ nb Array ] ; //Cval e n t r i e s are

s tored in l i n e a r memory

50 #end i f

52 #i f d e f FUNCTVAL

53 s c a l a r va l u e s a t S t r oud3d (q , Cval , B, f , v1 , v2 , v3 , v4 ) ;

// s t o r i n g your data in Cval

54 #end i f

56 Bmoment = create Bmoment ( lenMoments , nb Array ) ; // a l l o c a t e

memory to Bmoments

57 get Bmoments3d (Bmoment , n , f , Cval , v1 , v2 , v3 , v4 ,

f un c tva l ) ; // s t o r e Bmoments i n t o Bmoment
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59 // f r e e memory a l l o c a t e d memory

60 #i f d e f FUNCTVAL

61 delete [ ] Cval ;

62 delete [ ] B;

63 #end i f

66 // In s e r t your code here to make use o f Bmoment . I t w i l l be

de s t royed in the next l i n e !

68 delete Bmoment (Bmoment) ;

69 }

Listing B.1: bmom3d.cpp

In the above example, the macro FUNCT_VAL is used when Cval serves as input

for the B-moments coefficients.

B.2.2 H1 Mass Matrix

This section describes the routines which are involved with the computation of the

mass matrix associated with a tetrahedron T =< vi, i = 1, . . . , 4 >. Depending

on whether or not the data is variable, two driver routines are proposed. As in

the B-moments case, a parameter functval serves as a flag for the type of input

used for variable coefficients.

Similarly to Section B.2.1, we first start with the driver routines used for

computing the elemental mass matrix. The routines responsible for allocating

memory are then discussed in Section B.2.2.2. Section B.2.2.3 then focuses on

the routines used for intermediate computations. Finally, an example on how to

execute the mass matrix computation is given in Section B.2.2.4.
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B.2.2.1 Driver Routines

This section focuses on on the driver routines used for computing the mass matrix.

The following routine computes the mass matrix associated with constant

coefficients equal to 1:

void

get mass3d const (double ∗∗massMat , int n , double v1 [ 3 ] ,

double v2 [ 3 ] ,

double v3 [ 3 ] , double v4 [ 3 ] ) ;

The above routine computes the mass matrix of order n associated with constant

coefficients equal to 1 on the tetrahedron with vertices v1, v2, v3, v4. The

computed mass matrix is stored into the array massMat.

The next routine is used to compute the mass matrix associated with variable

coefficients:

void

get mass3d (double ∗∗massMat , int n , double (∗ f ) (double [ 3 ] ) ,

double ∗Cval , double v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] ,

double v4 [ 3 ] , int f u n c tva l ) ;

Listing B.2: get mass3d

In the above routine, recall that the parameter functval is used as a flag for

setting the input used for the coefficients: With functval=0, the mass matrix

coefficients are produced by the function f, whereas with functval=1, the mass

matrix coefficients are produced by the array Cval which contains the data values

at the Stroud nodes. The routine get_mass3d computes the mass matrix of order

n on the tetrahedron with vertices v1, v2, v3, v4, associated with either f or Cval.

The computed mass matrix is stored into the array massMat.
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B.2.2.2 Memory Allocation

This section focuses on the mass matrix routines which are used to dynamically al-

locate memory. The mass matrix routines involved in allocating memory are listed

as: create_BinomialMat, create_Bmoment, create_quadraWN3d, create_Mat,

create_matValNodes3d, create_precomp3d, delete_BinomialMat,

delete_Bmoment, delete_Mat, delete_matValNodes, delete_pointers_Mass,

delete_precomp, delete_quadraWN and len_Mat3d. Note that most routines

are described in Section B.2.1.2. Indeed, create_BinomialMat,

create_Bmoment, create_quadraWN3d, create_matValNodes3d,

create_precomp3d, delete_BinomialMat, delete_Bmoment,

delete_matValNodes, delete_precomp, and delete_quadraWN are also used in

the B-moments computation. Hence, only create_Mat, delete_Mat,

delete_pointers_Mass and len_Mat3d are discussed in this section.

The next routine is used to allocate memory to the mass matrix:

double ∗∗
create Mat ( int len Mat ) ;

The above routine allocates memory to a square matrix of dimension len_Mat.

By adjusting the value of len_Mat, create_Mat can also be used for 2D compu-

tations.

The routine delete_Mat frees the memory allocated by create_Mat, and is

declared as:

void

de lete Mat (double ∗∗Mat) ;

The routine which frees the memory allocated to intermediate arrays involved

in the computing the mass matrix is declared as follows:

#ifdef PRECOMP

void

de l e t e p o in t e r s Mas s (double ∗∗precomp , double ∗∗Bmoment ,

double ∗∗matValNodes , double ∗∗quadraWN) ;
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#else

void

de l e t e p o in t e r s Mas s (double ∗∗Bmoment , double ∗∗BmomentInter ,

double ∗∗quadraWN) ;

#endif

The next routine is used to determine the size allocated to the mass matrix:

int

len Mat3d ( int n) ;

The above routine actually returns the dimension of Pn
3 .

B.2.2.3 Auxiliary Computations

This section describes the auxiliary routines which are involved in the mass

matrix computation. These routines are listed as: assign_pointers_Mass3d,

assign_quadra3d, bary2cart3d, Bmoment3d, Bmoment3d_Index,

computeBinomials, data_at_Nodes_Cval3d, data_at_Nodes_Mass3d,

gaussJacobiUnit3D, init_Bmoment3d_Cval, init_BmomentC_Mass3d,

init_precomp3d, Mass3d, Mass3d_const, position3d, position3d2,

scalar_values_at_Stroud3d, stroud_nodes_bary3d and Volume3d. Note that

most routines are defined in Section B.2.1.3. Indeed, assign_quadra3d,

bary2cart3d, Bmoment3d, Bmoment3d_Index, computeBinomials,

data_at_Nodes_Cval3d, gaussJacobiUnit3D, init_Bmoment3d_Cval,

init_precomp3d, position3d, position3d2, scalar_values_at_Stroud3d,

stroud_nodes_bary3d and Volume3d are also used in the B-moments computa-

tion. Hence, only assign_pointers_Mass3d, data_at_Nodes_Mass3d,

init_BmomentC_Mass3d, Mass3d and Mass3d_const are discussed in this section.

The next routine is used in order to allocate memory to auxiliary arrays

involved in the computation of the mass matrix:

#ifdef PRECOMP

void
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as s i gn po in te r s Mas s3d (double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , int n , int q , int nDash , int m, int

nb Array , double ∗∗matValNodes , double ∗Cval , double

∗∗quadraWN,

double ∗∗precomp , double (∗ f ) (double [ 3 ] ) , int f u n c tva l ) ;

#else

void

as s i gn po in te r s Mas s3d (double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , int n , int q , int nDash , int m, int

nb Array , double ∗Cval , double ∗∗quadraWN, double

∗∗Bmoment , double (∗ f ) (double [ 3 ] ) , int f u n c tva l ) ;

#endif

In the above routine, v1, v2, v3, v4 are the tetrahedron’s vertices, q is the order

of the Stroud rule, quadraWN stores Gauss-Jacobi quadrature weights and centres,

nb_Array is a variable used to specify that the computed B-moments are asso-

ciated with scalar-valued data, and n is the order of the B-moments. Depending

on the value of the flag functval, either the function f or the array Cval is used

as input for the mass matrix coefficients.

When PRECOMP is switched on, the following routine is used to compute the

values of the mass matrix coefficients at the Stroud nodes:

void

data at Nodes Mass3d ( double (∗ f ) (double [ 3 ] ) , double

∗∗matValNodes , int q , double ∗∗quadraWN, double v1 [ 3 ] ,

double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] ) ;

The above routine has the same structure as data_at_Nodes_Bmom3d. More pre-

cisely, f is a scalar-valued function which produces the mass matrix coefficients,

quadraWN contains Gauss-Jacobi quadrature weights and centres of order q, and

the tetrahedron’s vertices are given by v1, v2, v3, v4. The computed coefficients

values are stored into matValNodes.

When PRECOMP is switched off, the routine described below is used to initialize
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the B-moments with the values of the mass matrix coefficients at the Stroud

nodes:

void

init BmomentC Mass3d ( double (∗ f ) (double [ 3 ] ) , int q ,

double v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] ,

double ∗∗BmomentInter , double ∗∗quadraWN) ;

In the above routine, f is a scalar-valued function which produces the mass matrix

coefficients, and quadraWN contains Gauss-Jacobi quadrature weights and centres

of order q. The routine init_BmomentC_Mass3d stores the values of f at the

Stroud nodes of order q into the array BmomentInter.

The next routine computes the mass matrix associated with constant coeffi-

cients:

double

Mass3d const ( int n , double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , double ∗∗binomialMat , double

∗∗massMat ) ;

The above routine computes the mass matrix of order n associated with constant

coefficients equal to 1 on the tetrahedron with vertices v1, v2, v3, v4. The array

binomialMat contains precomputed binomial coefficients, whereas massMat is

used to store the computed mass matrix.

The following routine computes the mass matrix associated with variable co-

efficients:

#ifdef PRECOMP

double

Mass3d ( int n , int q , double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , double ∗∗binomialMat , double

∗∗precomp , double ∗∗Bmoment , double ∗∗massMat , double

∗∗matValNodes , double ∗∗quadraWN) ;

#else

double
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Mass3d ( int n , int q , double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , double ∗∗binomialMat , double

∗∗Bmoment , double ∗∗BmomentInter , double ∗∗massMat , double

∗∗quadraWN) ;

#endif

The above routine implements Algorithm 3.19 when PRECOMP is switched on, and

[11, Algorithm 6] with d = 3 otherwise. The main difference between the two

algorithms lies in the approach for computing the B-moments associated with the

mass matrix coefficients. Indeed, PRECOMP makes use of the precomputed arrays

defined in (2.21). As a result, the arguments of the routine Mass3d depend on

whether or not PRECOMP is used.

B.2.2.4 Code Execution

This section displays an example which illustrates how to make use of the routines

defined in the previous sections in order to compute the mass matrix:

1 #include <s td i o . h>

2 #include <math . h>

3 #include <time . h>

4 #include <iostream>

6 #include ”bbfem . h”

8 #ifndef MAX

9 #define MAX(a , b) ( ( a ) > (b) ? ( a ) : (b) )

10 #endif

12 // example o f c o e f f i c i e n t f unc t i on

13 double

14 f 0 (double v [ 3 ] )

15 {
16 // re turn 1 . ;
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17 return s i n (v [ 0 ] ∗ v [ 1 ] ∗ v [ 2 ] ) ;
18 }

21 #ifdef CONSTANT

22 int main ( )

23 {
24 // // v e r t i c e s ( standard te t rahedron )

25 // doub le v1 [ 3 ] = { 0 , 0 , 0} ;
26 // doub le v2 [ 3 ] = { 1 , 0 , 0} ;
27 // doub le v3 [ 3 ] = { 0 , 1 , 0} ;
28 // doub le v4 [ 3 ] = { 0 , 0 , 1} ;

30 // v e r t i c e s ( p a r t i c u l a r t e t rahedron )

31 double v1 [ 3 ] = { 1 .2 , 3 . 4 , 0} ;
32 double v2 [ 3 ] = { −1.5 , 2 . , 0} ;
33 double v3 [ 3 ] = { 0 .1 , −1. , 0} ;
34 double v4 [ 3 ] = {1 . , 1 . , 1 . } ;

36 int n ; // degree o f the Berns te in po lynomia l b a s i s

37 std : : cout<<”Enter a value f o r the polynomial order n : ” ;

38 std : : cin>>n ;

40 double ∗∗massMat ; // used f o r s t o r i n g mass matrix e n t r i e s

41 int len Mass = len Mat3d (n) ; // a l l o c a t e memory f o r massMat

42 massMat = create Mat ( len Mass ) ;

44 get mass3d const (massMat , n , v1 , v2 , v3 , v4 ) ; // compute

mass matrix

46 // In s e r t your code here to make use o f massMat . I t w i l l be

de s t royed in the next l i n e !
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48 // f r e e a l l o c a t e d memory

49 de lete Mat (massMat ) ;

51 }

53 #else // not CONSTANT

55 int main ( )

56 {
57 // // v e r t i c e s ( standard te t rahedron )

58 // doub le v1 [ 3 ] = { 0 , 0 , 0} ;
59 // doub le v2 [ 3 ] = { 1 , 0 , 0} ;
60 // doub le v3 [ 3 ] = { 0 , 1 , 0} ;
61 // doub le v4 [ 3 ] = { 0 , 0 , 1} ;

63 // v e r t i c e s ( p a r t i c u l a r t e t rahedron )

64 double v1 [ 3 ] = { 1 .2 , 3 . 4 , 0} ;
65 double v2 [ 3 ] = { −1.5 , 2 . , 0} ;
66 double v3 [ 3 ] = { 0 .1 , −1. , 0} ;
67 double v4 [ 3 ] = {1 . , 1 . , 1 . } ;

69 int n ; // degree o f the Berns te in po lynomia l b a s i s

70 std : : cout<<”Enter a value f o r the polynomial order n : ” ;

71 std : : cin>>n ;

73 double (∗ f ) (double [ 3 ] ) = f0 ; // change here to your

rou t ine f o r the mass matrix c o e f f i c i e n t s

74 double ∗Cval ; // s t o r e c o e f f i c i e n t s v a l u e s at Stroud nodes ,

on ly used wi th FUNCT VAL

76 int f u n c tva l = 0 ; // d e f a u l t : us ing a rou t ine ( f ) f o r mass

matrix c o e f f i c i e n t s

77 #i f d e f FUNCTVAL
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78 f u n c tva l = 1 ; // us ing the va l u e s s tored in Cval f o r

c onv e c t i v e matrix c o e f f i c i e n t s

79 int q = n+1;

80 int nb Array = 1 ; // the mass matrix i s a s s oc i a t e d wi th

sca lar−va lued data

81 double ∗B; // s t o r e b a ry c en t r i c coord ina te s o f Stroud nodes

82 B = new double [ q∗q∗q ∗ 4 ] ;
83 s t roud nodes bary3d (q , B) ;

84 int LEN = q ∗ q ∗ q ; // space requ i red f o r 3D array wi th

dimension q+1

85 Cval = new double [LEN ∗ nb Array ] ; //Cval e n t r i e s are

s tored in LINEAR memory , and used d i r e c t l y

86 #end i f

88 #i f d e f FUNCTVAL

89 s c a l a r va l u e s a t S t r oud3d (q , Cval , B, f , v1 , v2 , v3 , v4 ) ;

// s t o r i n g your data in Cval

90 #end i f

92 double ∗∗massMat ; // used f o r s t o r i n g mass matrix e n t r i e s

93 int len Mass = len Mat3d (n) ; // a l l o c a t e memory f o r massMat

94 massMat = create Mat ( len Mass ) ;

96 get mass3d (massMat , n , f , Cval , v1 , v2 , v3 , v4 , f un c tva l ) ;

// compute mass matrix

98 // f r e e a l l o c a t e d memory

99 #i f d e f FUNCTVAL

100 delete [ ] Cval ;

101 delete [ ] B;

102 #end i f
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104 // In s e r t your code here to make use o f massMat . I t w i l l be

de s t royed in the next l i n e !

106 de lete Mat (massMat ) ;

108 }
109 #endif // end not CONSTANT

Listing B.3: mass3d.cpp

As mentioned previously, recall that the macro FUNCT_VAL is used when Cval

serves as input for the mass matrix coefficients. When CONSTANT is switched on,

the code executes the computation of the mass matrix associated with constant

coefficients. By default, the mass matrix associated with variable coefficients is

computed.

B.2.3 H1 Stiffness Matrix

This section discusses the routines which are involved with the computation of

the stiffness matrix associated with a tetrahedron T =< vi, i = 1, . . . , 4 >. De-

pending on whether or not the data is variable, two driver routines are proposed.

Recall that a parameter functval serves as a flag for the type of input used for

variable coefficients.

This section is organized as follows: Section B.2.3.1 first describes the driver

routines used for computing the elemental stifness matrix. The routines involved

in allocating memory to auxiliary arrays used in the stiffness matrix computation

are then presented in Section B.2.3.2. Section B.2.3.3 then focuses on the routines

used for intermediate computations. Finally, an example on how to compute the

stiffness matrix using the proposed routines is given in Section B.2.3.4.
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B.2.3.1 Driver Routines

This section focuses on on the driver routines used for computing the stiffness

matrix.

The following routine computes the stiffness matrix associated with constant

coefficients:

void

g e t s t i f f n e s s 3 d c o n s t (double ∗∗ s t i f fMat , int n , double

v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] , double

Coef f [ 6 ] ) ;

The routine get_stiffness3d_const computes the stiffness matrix of order n

associated with constant matrix-valued coefficients on the tetrahedron with ver-

tices v1, v2, v3, v4. In the above routine, Coeff contains the upper triangular

entries of the stiffness matrix coefficients. The computed stiffness matrix is stored

into the array stiffMat.

The next routine is used to compute the stiffness matrix associated with vari-

able coefficients:

void

g e t s t i f f n e s s 3 d (double ∗∗ s t i f fMat , int n , void (∗A) (double

[ 3 ] , double [ 3 ] [ 3 ] ) , double ∗Cval , double v1 [ 3 ] , double

v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] , int f u n c tva l ) ;

In the above routine, recall that the parameter functval is used as a flag for

setting the input used for the coefficients: With functval=0, the stiffness matrix

coefficients are produced by the (symmetric) matrix-valued function A, whereas

with functval=1, the B-moments coefficients are produced by the array Cval

which contains the data values at the Stroud nodes. The routine get_Stiff3d

computes the stiffness matrix of order n on the tetrahedron with vertices v1, v2,

v3, v4, associated with either A or Cval. The computed stiffness matrix is stored

into the array stiffMat.



188

B.2.3.2 Memory Allocation

This section focuses on the stiffness matrix routines which are used to dynami-

cally allocate memory. The stiffness matrix routines involved in allocating mem-

ory are listed as: create_BinomialMat, create_Bmoment, create_quadraWN3d,

create_Mat, create_matValNodes3d, create_precomp3d, delete_BinomialMat,

delete_Bmoment, delete_Mat, delete_matValNodes, delete_pointers_Stiff,

delete_precomp, delete_quadraWN and len_Mat3d. Note that, with the ex-

ception of delete_pointers_Stiff, all the above routines are discussed in Sec-

tion B.2.2.2. Hence, only delete_pointers_Stiff is displayed in this section.

The next routine is used to free the memory allocated to auxiliary arrays used

in the stiffness matrix computation:

#ifdef PRECOMP

void

d e l e t e p o i n t e r s S t i f f (double ∗∗precomp , double ∗∗Bmoment ,

double ∗∗Bmomentab , double ∗∗matValNodes , double

∗∗quadraWN) ;

#else

void

d e l e t e p o i n t e r s S t i f f (double ∗∗Bmoment , double

∗∗BmomentInter , double ∗∗Bmomentab , double ∗∗quadraWN) ;

#endif

B.2.3.3 Auxiliary Computations

This section is focused on the auxiliary routines which are involved in the stiffness

matrix computation. These routines are listed as: assign_pointers_Stiff3d,

assign_quadra3d, bary2cart3d, Bmoment3d, crossProd2, Bmoment3d_Index,

computeBinomials, data_at_Nodes_Cval3d, data_at_Nodes_Stiff3d,

gaussJacobiUnit3D, init_Bmoment3d_Cval, init_BmomentC_Stiff3d,

init_precomp3d, inter, matrix_values_at_Stroud3d, normals3d, position3d,

position3d2, position3d_sum, position3d_sum2, scalarMatrix3d_Coeff,
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Stiff3d, Stiff3d_const, subtract, transform_BmomentC_Stiff3d,

stroud_nodes_bary3d and Volume3d. Note that most routines are defined in

Section B.2.1.3. Indeed, assign_quadra3d, bary2cart3d, Bmoment3d,

Bmoment3d_Index, computeBinomials, data_at_Nodes_Cval3d,

gaussJacobiUnit3D, init_Bmoment3d_Cval, init_precomp3d, position3d,

position3d2, stroud_nodes_bary3d and Volume3d are also involved in the com-

putation of the B-moments. As a result, only assign_pointers_Stiff3d,

crossProd2, data_at_Nodes_Stiff3d, init_BmomentC_Stiff3d, inter,

matrix_values_at_Stroud3d, normals3d, position3d_sum, position3d_sum2,

scalarMatrix3d_Coeff, Stiff3d,Stiff3d_const, subtract and

transform_BmomentC_Stiff3d are described in this section.

The routine given below is used to compute the auxiliary arrays needed in the

stiffness matrix computation:

#ifdef PRECOMP

void

a s s i g n p o i n t e r s S t i f f 3 d (double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , int n , int q , int nDash , int m, int

nb Array , double ∗∗matValNodes , double ∗Cval , double

∗∗quadraWN, double ∗∗precomp , void (∗A) (double [ 3 ] ,

double [ 3 ] [ 3 ] ) , int f u n c tva l ) ;

#else

void

a s s i g n p o i n t e r s S t i f f 3 d (double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , int n , int q , int nDash , int m, int

nb Array , double ∗Cval , double ∗∗quadraWN, double

∗∗Bmoment , void (∗A) (double [ 3 ] , double [ 3 ] [ 3 ] ) , int

f u n c tva l ) ;

#endif

In the above routine, v1, v2, v3, v4 are the tetrahedron’s vertices, q is the order

of the Stroud rule, quadraWN stores Gauss-Jacobi quadrature weights and cen-

tres, nb_Array is a variable used to specify that the computed B-moments are
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associated with matrix-valued data, and n is the order of the B-moments. De-

pending on the value of the flag functval, either the matrix-valued function A or

the array Cval is used as input for the stiffness matrix coefficients. The output

of assign_pointers_Stiff3d is stored into matValNodes if PRECOMP is switched

on, and in Bmoment otherwise.

The routine declared below computes the half-scaled cross-product of two

vectors:

void

crossProd2 (double w1 [ 3 ] , double w2 [ 3 ] , double Cross [ 3 ] ) ;

In the above routine, the half-scaled cross-product of the vectors w1 and w2 is

stored into Cross. The details of crossProd2 are given in Listing ??.

When PRECOMP is switched on, the following routine is used to compute the

values of the stiffness matrix coefficients at the Stroud nodes:

void

da ta a t Node s S t i f f 3d ( void (∗A) (double [ 3 ] , double [ 3 ] [ 3 ] ) ,

double ∗∗matValNodes , int q , double ∗∗quadraWN, double

v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] ) ;

Note that the above routine has similar arguments as data_at_Nodes_Bmom3d.

More precisely, A is a matrix-valued function which produces the stiffness matrix

coefficients, quadraWN contains Gauss-Jacobi quadrature weights and centres of

order q, and the tetrahedron’s vertices are given by v1, v2, v3, v4. The computed

coefficients values are stored into matValNodes.

When PRECOMP is switched off, the routine described below is used to initialize

the B-moments with values of the stiffness matrix coefficients at the Stroud nodes:

void

in it BmomentC Sti f f3d ( void (∗A) (double [ 3 ] , double [ 3 ] [ 3 ] ) ,

int q , double v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] , double

v4 [ 3 ] , double ∗∗BmomentInter , double ∗∗quadraWN) ;
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In the above routine, A is a (symmetric) matrix-valued function which produces

the stiffness matrix coefficients, and quadraWN contains Gauss-Jacobi quadrature

weights and centres of order q. The routine init_BmomentC_Mass3d stores the

values of A at the Stroud nodes of order q into the array BmomentInter.

The following routine compute intermediate values needed for computing the

normals to the element’s faces:

void

i n t e r ( double u [ 3 ] , double v [ 3 ] , double w[ 3 ] , double Res [ 3 ] ) ;

The routine defined below is used to compute the values of matrix-valued

coefficients at the Stroud nodes:

void

matr ix va lu e s at S t roud3d ( int q , double ∗Cval , double ∗B,

void (∗A) (double [ 3 ] , double [ 3 ] [ 3 ] ) , double v1 [ 3 ] , double

v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] ) ;

The above routine stores the values of the function A at the Stroud nodes of order

q into the array Cval.

The next routine is used to compute the normals to the faces of the element:

void

normals3d (double v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] , double

v4 [ 3 ] , double normalMat [ 4 ] [ 3 ] ) ;

The above routine computes the normals to the faces of the tetrahedron with ver-

tices v1, v2, v3, v4. The computed normals are stored into the array normalMat.

The routine described below is used for computing weighted inner products

of the normals to the tetrahedron’s faces:

void

s ca la rMatr ix3d Coe f f (double scalarMat [ ] [ 4 ] , double v1 [ 3 ] ,

double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] , double

normalMat [ ] [ 3 ] , double Coef f [ 6 ] ) ;
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The above routine computes products of the form ni ·A ·nj, where nℓ denotes the

outer normals to the faces of the tetrahedron 〈v1, v2, v3, v4〉 for 1 ≤ ℓ ≤ 4, and

A is the value of the constant coefficients associated with the stiffness matrix.

In the above routine, the upper triangular entries of A are stored in the array

Coeff, whereas the normals are stored in normalMat. The computed products

are stored into scalarMat.

The routines position3d_sum and position3d_sum2 are declared as follows:

int

pos i t ion3d sum ( int eta123 , int x i123 ) ;

int

pos i t ion3d sum2 ( int eta23 , int x i23 ) ;

The routines position3d_sum and position3d_sum2 are auxiliary indexing rou-

tines.

The following routine is used for computing the stiffness matrix associated

with constant coefficients:

double

S t i f f 3 d c o n s t ( int n , double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , double ∗∗ s t i f fMat , double

∗∗binomialMat , double scalarMat [ ] [ 4 ] , double

normalMat [ ] [ 3 ] , double cpu time [ 5 ] , double Coef f [ 6 ] ) ;

The above routine computes the stiffness matrix of order n associated with con-

stant coefficients on the tetrahedron with vertices v1, v2, v3, v4. Coeff contains

the upper triangular entries of the constant matrix-valued coefficients associated

with the stiffness matrix. The computed stiffness matrix is stored into the array

stiffMat.

The next routine is used for the computation of the stiffness matrix associated

with variable coefficients:

#ifdef PRECOMP

double
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S t i f f 3 d ( int n , int q , double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , double ∗∗ s t i f fMat , double

∗∗matValNodes , double ∗∗quadraWN, double ∗∗binomialMat ,

double normalMat [ ] [ 3 ] , double ∗∗precomp , double ∗∗Bmoment ,

double ∗∗Bmomentab , double cpu time [ 5 ] ) ;

#else

double

S t i f f 3 d ( int n , int q , double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , double ∗∗ s t i f fMat , double ∗∗quadraWN,

double ∗∗binomialMat , double normalMat [ ] [ 3 ] , double

∗∗Bmoment , double ∗∗BmomentInter , double ∗∗Bmomentab ,

double cpu time [ 5 ] ) ;

#endif

Stiff3d computes the stiffness matrix of order n on the tetrahedron with vertices

v1, v2, v3, v4 associated with variable coefficients. The coefficients values at the

Stroud nodes of order q are stored in matValNodes if PRECOMP is switched on,

and in BmomentInter otherwise. Bmoment contains the B-moments of order 2n−2
associated with the stiffness matrix coefficients. The array Bmomentab contains

the products of the matrix-valued B-moments with the normals to the tetrahe-

dron’s faces which are stored in normalMat. The routine Stiff3d implements

Algorithm 3.22 when PRECOMP is switched on, and [11, Algorithm 7] with d = 3

otherwise. The main difference between the two algorithms lies in the approach

for computing the B-moments associated with the stiffness matrix coefficients.

Indeed, PRECOMP makes use of the precomputed arrays defined in (2.21). As a

consequence, the arguments of the routine Stiff3d depend on whether or not

PRECOMP is used.

The routine declared below computes the difference of two 3D vectors:

void

sub t rac t ( double v [ 3 ] , double w[ 3 ] , double Sub [ 3 ] ) ;

The above routine computes the difference between the vectors v and w.
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The next routine is used to compute the products of matrix-valued B-moments

with the normals to the tetrahedron’s faces:

void

transform BmomentC Stif f3d ( int n , int q , double ∗∗Bmoment ,

double ∗∗Bmomentab , double normalMat [ 4 ] [ 3 ] ) ;

The above routine computes the products of matrix-valued B-moments of order n

with the normals to the tetrahedron’s faces In the above routine, q is the order of

the Stroud rule, Bmoment is used to store the B-moments, and normalMat contains

the normals to the tetrahedron’s faces. The computed products are stored into

the array Bmomentab.

B.2.3.4 Code Execution

This section displays an example which illustrates how to make use of the routines

defined in the previous sections in order to compute the stiffness matrix:

1 #include <s td i o . h>

2 #include <math . h>

3 #include <time . h>

4 #include <iostream>

5 #include ”bbfem . h”

7 #ifndef MAX // a template

8 #define MAX(a , b) ( ( a ) > (b) ? ( a ) : (b) )

9 #endif

11 // example o f matrix−va lued c o e f f i c i e n t matrix A

12 void

13 A0(double v [ 3 ] , double matC [ 3 ] [ 3 ] )

14 {
15 // // i d e n t i t y matrix

16 // matC [ 0 ] [ 0 ]=1 ; matC [ 0 ] [ 1 ]=0 ; matC [ 0 ] [ 2 ]=0 ;

17 // matC [ 1 ] [ 0 ]=0 ; matC [ 1 ] [ 1 ]=1 ; matC [ 1 ] [ 2 ]=0 ;
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18 // matC [ 2 ] [ 0 ]=0 ; matC [ 2 ] [ 1 ]=0 ; matC [ 2 ] [ 2 ]=1 ;

20 // example o f non− t r i v i a l matrix

21 matC [ 0 ] [ 0 ]= s i n (v [ 0 ] ∗ v [ 1 ] ) ; matC [ 0 ] [ 1 ] = 0 ; matC [ 0 ] [ 2 ] = 0 ;

22 matC [ 1 ] [ 0 ] = 0 ; matC [ 1 ] [ 1 ] = 1 ; matC [ 1 ] [ 2 ] = 0 ;

23 matC [ 2 ] [ 0 ] = 0 ; matC [ 2 ] [ 1 ] = 0 ; matC [ 2 ] [ 2 ]= exp (v [ 2 ] ) ;

24 }

27 #ifdef CONSTANT

29 int main ( )

30 {
31 // // v e r t i c e s ( standard te t rahedron )

32 // doub le v1 [ 3 ] = { 0 , 0 , 0} ;
33 // doub le v2 [ 3 ] = { 1 , 0 , 0} ;
34 // doub le v3 [ 3 ] = { 0 , 1 , 0} ;
35 // doub le v4 [ 3 ] = { 0 , 0 , 1} ;

37 // v e r t i c e s ( p a r t i c u l a r t e t rahedron )

38 double v1 [ 3 ] = { 1 .2 , 3 . 4 , 0} ;
39 double v2 [ 3 ] = { −1.5 , 2 . , 0} ;
40 double v3 [ 3 ] = { 0 .1 , −1. , 0} ;
41 double v4 [ 3 ] = {1 . , 1 . , 1 . } ;

43 int n ; // degree o f the Berns te in po lynomia l b a s i s

44 std : : cout<<”Enter a value f o r the polynomial order n : ” ;

45 std : : cin>>n ;

47 double Coef f [ 6 ] = {1 . , 0 . , 0 . , 1 . , 0 . , 1 . } ; // upper

t r i an g u l a r e n t r i e s o f ( symmetric ) matrix a s s oc i a t e d wi th

s t i f f n e s s matrix
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49 double ∗∗ s t i f fMat ; // s t o r e s t i f f n e s s matrix e n t r i e s

50 int l e n S t i f f = len Mat3d (n) ; // a l l o c a t e memory to s t i f fMa t

51 s t i f fMat = create Mat ( l e n S t i f f ) ;

53 g e t s t i f f n e s s 3 d c o n s t ( s t i f fMat , n , v1 , v2 , v3 , v4 , Coef f ) ;

// compute s t i f f n e s s matrix

55 // In s e r t your code here to make use o f s t i f fMa t . I t w i l l

be de s t royed in the next l i n e !

57 // f r e e a l l o c a t e d memory ;

58 de lete Mat ( s t i f fMat ) ;

60 }

62 #else // not CONSTANT

64 int main ( )

65 {
66 // // v e r t i c e s ( standard te t rahedron )

67 // doub le v1 [ 3 ] = { 0 , 0 , 0} ;
68 // doub le v2 [ 3 ] = { 1 , 0 , 0} ;
69 // doub le v3 [ 3 ] = { 0 , 1 , 0} ;
70 // doub le v4 [ 3 ] = { 0 , 0 , 1} ;

72 // v e r t i c e s ( p a r t i c u l a r t e t rahedron )

73 double v1 [ 3 ] = { 1 .2 , 3 . 4 , 0} ;
74 double v2 [ 3 ] = { −1.5 , 2 . , 0} ;
75 double v3 [ 3 ] = { 0 .1 , −1. , 0} ;
76 double v4 [ 3 ] = {1 . , 1 . , 1 . } ;

78 int n ; // degree o f the Berns te in po lynomia l b a s i s

79 std : : cout<<”Enter a value f o r the polynomial order n : ” ;



197

80 std : : cin>>n ;

82 double ∗Cval ; // s t o r e c o e f f i c i e n t s v a l u e s at Stroud

quadrature nodes , on ly used wi th FUNCT VAL

83 int f u n c tva l = 0 ; // d e f a u l t : us ing a rou t ine (A) f o r

s t i f f n e s s matrix c o e f f i c i e n t s

84 #i f d e f FUNCTVAL

85 f u n c tva l = 1 ; // us ing the va l u e s s tored in Cval f o r

s t i f f n e s s matrix c o e f f i c i e n t s

86 int q = n+1;

87 int nb Array = 6 ; // the s t i f f n e s s matrix i s a s s oc i a t e d

wi th ( symmetric ) matrix−va lued data

89 double ∗B; // s t o r e b a ry c en t r i c coord ina te s o f Stroud nodes

90 B = new double [ q∗q∗q ∗ 4 ] ;
91 s t roud nodes bary3d (q , B) ;

93 int LEN = q ∗ q ∗ q ; // Cval i s used to s t o r e data va l u e s

at qˆ3 Stroud nodes

94 Cval = new double [LEN ∗ nb Array ] ; //Cval e n t r i e s are

s tored in LINEAR memory , and used d i r e c t l y

95 #end i f

97 void (∗A) (double [ 3 ] , double [ 3 ] [ 3 ] ) = A0 ; // change here to

your rou t ine f o r the s t i f f n e s s matrix c o e f f i c i e n t s

99 #i f d e f FUNCTVAL

100 matr ix va lu e s at S t roud3d (q , Cval , B, A, v1 , v2 , v3 , v4 ) ;

// s t o r i n g your data i n t o Cval

101 #end i f

103 double ∗∗ s t i f fMat ; // s t o r e s t i f f n e s s matrix e n t r i e s

104 int l e n S t i f f = len Mat3d (n) ; // a l l o c a t e memory to s t i f fMa t
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105 s t i f fMat = create Mat ( l e n S t i f f ) ;

107 g e t s t i f f n e s s 3 d ( s t i f fMat , n , A, Cval , v1 , v2 , v3 , v4 ,

f un c tva l ) ; // compute e l ementa l s t i f f n e s s matrix

109 // f r e e a l l o c a t e d memory

110 #i f d e f FUNCTVAL

111 delete [ ] Cval ;

112 delete [ ] B;

113 #end i f

115 // In s e r t your code here to make use o f s t i f fMa t . I t w i l l

be de s t royed in the next l i n e !

117 de lete Mat ( s t i f fMat ) ;

118 }
119 #endif // end not CONSTANT

Listing B.4: stiff3d.cpp

As mentioned previously, recall that the macro FUNCT_VAL is used when Cval

serves as input for the stiffness matrix coefficients. When CONSTANT is switched

on, the code executes the computation of the stiffness matrix associated with

constant coefficients. By default, the stiffness matrix associated with variable

coefficients is computed.

B.2.4 H1 Convective Matrix

This section discusses the routines which are involved with the computation of

the convective matrix associated with a tetrahedron T =< vi, i = 1, . . . , 4 >.

Depending on whether or not the data is variable, two driver routines are pro-

posed. Recall that a parameter functval serves as a flag for the type of input

used for variable coefficients.
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This section is organized as follows: Section B.2.4.1 focuses on the driver rou-

tines used for computing the elemental convective matrix. The routines involved

in allocating memory to auxiliary arrays used in the convective matrix compu-

tation are presented in Section B.2.4.2. The routines involved in intermediate

computations are then discussed in Section B.2.4.3. Section B.2.4.4 ends with an

example on how to compute the convective matrix using the proposed routines.

B.2.4.1 Driver Routines

This section focuses on on the driver routines used for computing the convective

matrix.

The following routine computes the convective matrix associated with con-

stant coefficients:

void

get convec3d con s t (double ∗∗convecMat , int n , double v1 [ 3 ] ,

double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] , double

vec tCoe f f [ 3 ] ) ;

The above routine computes the convective matrix of order n associated with

constant coefficients equal to vectCoeff on the tetrahedron with vertices v1, v2,

v3, v4. The computed convective matrix is stored into the array convecMat.

The next routine is used to compute the convective matrix associated with

variable coefficients:

void

get convec3d (double ∗∗convecMat , int n , void (∗b) (double [ 3 ] ,

double [ 3 ] ) , double ∗Cval , double v1 [ 3 ] , double v2 [ 3 ] ,

double v3 [ 3 ] , double v4 [ 3 ] , int f u n c tva l ) ;

Listing B.5: get convec3d

In the above routine, recall that the parameter functval is used as a flag for

setting the input used for the coefficients: With functval=0, the convective

matrix coefficients are produced by the vector-valued function b, whereas with
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functval=1, the B-moments coefficients are produced by the array Cval which

contains the data values at the Stroud nodes. The routine get_Convec3d com-

putes the convective matrix of order n on the tetrahedron with vertices v1, v2,

v3, v4, associated with either b or Cval. The computed convective matrix is

stored into the array convecMat.

B.2.4.2 Memory Allocation

This section focuses on the convective matrix routines which are used to dynam-

ically allocate memory. The convective matrix routines involved in allocating

memory are listed as: create_BinomialMat, create_Bmoment,

create_quadraWN3d, create_Mat, create_matValNodes3d, create_precomp3d,

delete_BinomialMat, delete_Bmoment, delete_Mat, delete_matValNodes,

delete_pointers_Convec, delete_precomp, delete_quadraWN and len_Mat3d.

Note that, with the exception of delete_pointers_Convec, all the above rou-

tines are discussed in Section B.2.2.2. Hence, only delete_pointers_Convec is

discussed in this section.

The routine delete_pointers_Convec is declared as:

#ifdef PRECOMP

void

de l e t e p o in t e r s Convec (double ∗∗precomp , double ∗∗Bmoment ,

double ∗∗Bmomentab , double ∗∗matValNodes , double

∗∗quadraWN) ;

#else

void

de l e t e p o in t e r s Convec (double ∗∗Bmoment , double

∗∗BmomentInter , double ∗∗Bmomentab , double ∗∗quadraWN) ;

#endif

The routine delete_pointers_Convec frees the memory allocated to auxil-

iary arrays used in the convective matrix computation.
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B.2.4.3 Auxiliary Computations

This section is focused on the auxiliary routines which are involved in the con-

vective matrix computation. These routines are listed as:

assign_pointers_Convec3d, assign_quadra3d, bary2cart3d, Bmoment3d,

Convec3d, Convec3d_const, crossProd2, Bmoment3d_Index, computeBinomials,

data_at_Nodes_Cval3d, data_at_Nodes_Convec3d, gaussJacobiUnit3D,

init_Bmoment3d_Cval, init_BmomentC_Convec3d, init_precomp3d,

innerProd_Coeff3d, inter, vector_values_at_Stroud3d, normals3d,

position3d, position3d2, position3d_sum, position3d_sum2, subtract,

transform_BmomentC_Convec3d, stroud_nodes_bary3d and Volume3d. Note

that most routines are defined in the previous sections. Indeed, assign_quadra3d,

bary2cart3d, Bmoment3d, Bmoment3d_Index, computeBinomials, crossProd2,

data_at_Nodes_Cval3d, gaussJacobiUnit3D, init_Bmoment3d_Cval,

init_precomp3d, inter, normals3d, position3d, position3d2,

position3d_sum, position3d_sum2, stroud_nodes_bary3d, subtract and

Volume3d are used in the stiffness matrix computation. As a result, only

assign_pointers_Convec3d, Convec3d, Convec3d_const,

data_at_Nodes_Convec3d, init_BmomentC_Convec3d, innerProd_Coeff3d,

transform_BmomentC_Convec3d and vector_values_at_Stroud3d are defined

in this section.

The routine declared below is used to compute the auxiliary arrays needed in

the convective matrix computation:

#ifdef PRECOMP

void

as s i gn po in te r s Convec3d (double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , int n , int q , int nDash , int m, int

nb Array , double ∗∗matValNodes , double ∗Cval , double

∗∗quadraWN, double ∗∗precomp , void (∗b) (double [ 3 ] ,

double [ 3 ] ) , int f u n c tva l ) ;

#else
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void

as s i gn po in te r s Convec3d (double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , int n , int q , int nDash , int m, int

nb Array , double ∗Cval , double ∗∗quadraWN, double

∗∗Bmoment , void (∗b) (double [ 3 ] , double [ 3 ] ) , int f u n c tva l ) ;

#endif

In the above routine, v1, v2, v3, v4 are the tetrahedron’s vertices, q is the order

of the Stroud rule, quadraWN stores Gauss-Jacobi quadrature weights and cen-

tres, nb_Array is a variable used to specify that the computed B-moments are

associated with vector-valued data, and n is the order of the B-moments. The

output of assign_pointers_Convec3d is stored into matValNodes if PRECOMP

is switched on, and in Bmoment otherwise. Depending on the value of the flag

functval, either the vector-valued function b or the array Cval is used as input

for the convective matrix coefficients.

The next routine computes the convective matrix associated with constant

coefficients:

double

Convec3d const ( int n , double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , double ∗∗binomialMat , double

normalMat [ ] [ 3 ] , double innerProdMat [ 4 ] , double

∗∗ convecMat , double vec tCoe f f [ 3 ] ) ;

The above routine implements Algorithm 3.13. More precisely, Convec3d_const

computes the convective matrix of order n on the tetrahedron with vertices v1,

v2, v3, v4. The computed convective matrix is associated with constant coef-

ficients given by vectCoeff, and is stored in the array convecMat. The array

innerProdMat contains the scalar products of vectCoeff with the normals to

the tetrahedron’s faces stored in normalMat.

The routine for the computation of the convective matrix associated with

variable coefficients is defined as follows:

double
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Convec3d ( int n , int q , double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , double ∗∗binomialMat , double

normalMat [ ] [ 3 ] , double ∗∗precomp , double ∗∗Bmoment , double

∗∗Bmomentab , double ∗∗ convecMat , double ∗∗matValNodes ,

double ∗∗quadraWN) ;

#else

double

Convec3d ( int n , int q , double v1 [ 3 ] , double v2 [ 3 ] , double

v3 [ 3 ] , double v4 [ 3 ] , double ∗∗binomialMat , double

normalMat [ ] [ 3 ] , double ∗∗Bmoment , double ∗∗BmomentInter ,

double ∗∗Bmomentab , double ∗∗convecMat , double ∗∗quadraWN) ;

#endif

Convec3d computes the convective matrix of order n on the tetrahedron with ver-

tices v1, v2, v3, v4 associated with variable coefficients. The coefficients values at

the Stroud nodes of order q are stored in matValNodes if PRECOMP is switched

on, and in BmomentInter otherwise. Bmoment contains the B-moments of order

2n − 1 associated with the convective matrix coefficients. The array Bmomentab

contains the scalar products of the vector-valued B-moments with the normals to

the tetrahedron’s faces. The routine Convec3d implements Algorithm 3.25 when

PRECOMP is switched on, and [11, Algorithm 8] with d = 3 otherwise. The main

difference between the two algorithms lies in the approach for computing the

B-moments associated with the convective matrix coefficients. Indeed, PRECOMP

makes use of the precomputed arrays defined in (2.21). As a consequence, the

arguments of the routine Convec3d depend on whether or not PRECOMP is used.

When PRECOMP is switched on, the following routine is used to compute the

values of the convective matrix coefficients at the Stroud nodes:

void

data at Nodes Convec3d ( void (∗b) (double [ 3 ] , double [ 3 ] ) ,

double ∗∗matValNodes , int q , double ∗∗quadraWN, double

v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] ) ;
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In the above routine, b is a vector-valued function which produces the convective

matrix coefficients, quadraWN contains Gauss-Jacobi quadrature weights and cen-

tres of order q, and the tetrahedron’s vertices are given by v1, v2, v3, v4. The

computed coefficients values are stored into matValNodes.

When PRECOMP is switched off, the routine described below is used to initialize

the B-moments with values of the convective matrix coefficients at the Stroud

nodes:

void

init BmomentC Convec3d ( void (∗b) (double [ 3 ] , double [ 3 ] ) , int

q , double v1 [ 3 ] , double v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] ,

double ∗∗BmomentInter , double ∗∗quadraWN) ;

In the above routine, b is a vector-valued function which produces the convective

matrix coefficients, and quadraWN contains Gauss-Jacobi quadrature weights and

centres of order q. The routine init_BmomentC_Convec3d stores the values of b

at the Stroud nodes of order q into the array BmomentInter.

The next routine is used to compute the inner products of the constant vector-

valued coefficients with the normals to the tetrahedron’s faces:

void

innerProd Coef f3d (double normalMat [ ] [ 3 ] , double

innerProdMat [ 4 ] , double vec tCoe f f [ 3 ] ) ;

The above routine is used for the computation of the convective matrix associated

with constant coefficients given by vectCoeff. The array normalMat contains the

normals to the tetrahedron’s faces. The routine innerProd_Coeff3d computes

the inner products of the normals with vectCoeff. The computed inner products

are stored into innerProdMat.

When the data is variable, the next routine is used to compute the inner

products of the vector-valued B-moments with the normals to the tetrahedron’s

faces:

void
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transform BmomentC Convec3d ( int n , int q , double ∗∗Bmoment ,

double ∗∗Bmomentab , double normalMat [ 4 ] [ 3 ] ) ;

In the above routine, q is the order of the Stroud rule, Bmoment is used to store

the B-moments, and normalMat contains the normals to the tetrahedron’s faces.

The computed inner products are stored into the array Bmomentab.

The following routine is used to compute the values of the convective matrix

coefficients at the Stroud nodes:

void

vec t o r va l u e s a t S t r oud3d ( int q , double ∗Cval , double ∗B,

void (∗b) (double [ 3 ] , double [ 3 ] ) , double v1 [ 3 ] , double

v2 [ 3 ] , double v3 [ 3 ] , double v4 [ 3 ] ) ;

The above routine stores the values of the function b at the Stroud nodes of order

q into the array Cval.

B.2.4.4 Code Execution

This section displays an example which illustrates how to make use of the routines

defined in the previous sections in order to compute the convective matrix:

1 #include <s td i o . h>

2 #include <math . h>

3 #include <time . h>

4 #include <iostream>

6 #include ”bbfem . h”

8 #ifndef MAX // a template

9 #define MAX(a , b) ( ( a ) > (b) ? ( a ) : (b) )

10 #endif

13 #ifdef CONSTANT
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14 int main ( )

15 {
16 // // v e r t i c e s ( standard te t rahedron )

17 // doub le v1 [ 3 ] = { 0 , 0 , 0} ;
18 // doub le v2 [ 3 ] = { 1 , 0 , 0} ;
19 // doub le v3 [ 3 ] = { 0 , 1 , 0} ;
20 // doub le v4 [ 3 ] = { 0 , 0 , 1} ;

22 // v e r t i c e s ( p a r t i c u l a r t e t rahedron )

23 double v1 [ 3 ] = { 1 .2 , 3 . 4 , 0} ;
24 double v2 [ 3 ] = { −1.5 , 2 . , 0} ;
25 double v3 [ 3 ] = { 0 .1 , −1. , 0} ;
26 double v4 [ 3 ] = {1 . , 1 . , 1 . } ;

28 int n ; // degree o f the Berns te in po lynomia l b a s i s

29 std : : cout<<”Enter a value f o r the polynomial order n : ” ;

30 std : : cin>>n ;

32 double vec tCoe f f [ 3 ] = { 1 . , 1 . , 1 . } ; // constant c o e f f i c i e n t s

a s s oc i a t e d wi th the conv e c t i v e matrix

33 double ∗∗ convecMat ; // s t o r e c onv e c t i v e matrix e n t r i e s

34 int len Convec = len Mat3d (n) ;

35 convecMat = create Mat ( len Convec ) ; // a l l o c a t e memory to

convecMat

37 get convec3d con s t ( convecMat , n , v1 , v2 , v3 , v4 ,

vec tCoe f f ) ; // compute conv e c t i v e matrix

39 // In s e r t your code here to make use o f convecMat . i t w i l l

be de s t royed in the next l i n e !

41 // f r e e a l l o c a t e d memory

42 de lete Mat ( convecMat ) ;
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43 }

46 #else // not CONSTANT

48 // example o f c o e f f i c i e n t vec tor b ( used wi th c onv e c t i v e

matrix )

49 void

50 b0 (double v [ 3 ] , double r e s [ 3 ] )

51 {
52 r e s [ 0 ] = s i n (v [ 0 ] ∗ v [ 1 ] ∗ v [ 2 ] ) ;
53 r e s [ 1 ] = 1 . ;

54 r e s [ 2 ] = exp (v [ 0 ] ) ;

55 }

57 int main ( )

58 {
59 // // v e r t i c e s ( standard te t rahedron )

60 // doub le v1 [ 3 ] = { 0 , 0 , 0} ;
61 // doub le v2 [ 3 ] = { 1 , 0 , 0} ;
62 // doub le v3 [ 3 ] = { 0 , 1 , 0} ;
63 // doub le v4 [ 3 ] = { 0 , 0 , 1} ;

65 // v e r t i c e s ( p a r t i c u l a r t e t rahedron )

66 double v1 [ 3 ] = { 1 .2 , 3 . 4 , 0} ;
67 double v2 [ 3 ] = { −1.5 , 2 . , 0} ;
68 double v3 [ 3 ] = { 0 .1 , −1. , 0} ;
69 double v4 [ 3 ] = {1 . , 1 . , 1 . } ;

71 int n ; // degree o f the Berns te in po lynomia l b a s i s

72 std : : cout<<”Enter a value f o r the polynomial order n : ” ;

73 std : : cin>>n ;
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75 void (∗b) (double [ 3 ] , double [ 3 ] ) = b0 ; // change here to

your rou t ine f o r the conv e c t i v e matrix c o e f f i c i e n t s

76 double ∗Cval ; // s t o r e c o e f f i c i e n t s v a l u e s at Stroud

quadrature nodes , on ly used wi th FUNCTVAL

78 int f u n c tva l = 0 ; // d e f a u l t : us ing a rou t ine ( b ) f o r

c onv e c t i v e matrix c o e f f i c i e n t s

79 #i f d e f FUNCTVAL

80 f u n c tva l = 1 ; // us ing the va l u e s s tored in Cval f o r

c onv e c t i v e matrix c o e f f i c i e n t s

81 int q = n+1;

82 int nb Array = 3 ; // the conv e c t i v e matrix i s a s s oc i a t e d

wi th vec tor−va lued data

83 double ∗B; // s t o r e b a ry c en t r i c coord ina te s o f Stroud nodes

84 B = new double [ q∗q∗q ∗ 4 ] ;
85 s t roud nodes bary3d (q , B) ; // compute Stroud nodes

87 int LEN = q ∗ q ∗ q ; // qˆ3 Stroud nodes

88 Cval = new double [LEN ∗ nb Array ] ; //Cval e n t r i e s are

s tored in LINEAR memory , and used d i r e c t l y

89 #end i f

91 #i f d e f FUNCTVAL

92 vec t o r va l u e s a t S t r oud3d (q , Cval , B, b , v1 , v2 , v3 , v4 ) ;

// s t o r i n g your data i n t o Cval

93 #end i f

95 double ∗∗ convecMat ; // s t o r e c onv e c t i v e matrix e n t r i e s

96 int len Convec = len Mat3d (n) ;

97 convecMat = create Mat ( len Convec ) ; // a l l o c a t e memory to

convecMat
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99 get convec3d ( convecMat , n , b , Cval , v1 , v2 , v3 , v4 ,

f un c tva l ) ; // compute conv e c t i v e matrix

101 // f r e e a l l o c a t e d memory

102 #i f d e f FUNCTVAL

103 delete [ ] Cval ;

104 delete [ ] B;

105 #end i f

107 // In s e r t your code here to make use o f convecMat . I t w i l l

be de s t royed in the next l i n e !

109 de lete Mat ( convecMat ) ;

110 }
111 #endif // end not CONSTANT

Listing B.6: convec3d.cpp

B.3 H(curl) Routines List

Recall from Section 4.2 that the entries of the H(curl) elemental quantities

are reduced to linear combinations of B-moments. Hence, the routines used in

bbfem.cpp for the computation of the B-moments are also involved in H(curl)

computations. In addition, routines which are H(curl)-specific are given in the

source code bbfem2dCurl.cpp. This section alphabetically lists the routines in

bbfem2dCurl.cpp for the computation of H(curl) elemental quantities in two

dimensions:

• CBar: computes the sequences c̄(α) defined in (4.25).

• copy Data at Stroud*: copies stored values of the data at the Stroud

nodes into the array used to store B-moments. This routine is needed when

handling B-moments of various orders.
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• create cBar: allocates memory to the sequences c̄(α) defined in (4.25).

• create Coeff: allocates memory to a coefficient sequence of specified length.

• create cRing: allocates memory to the sequences c̊(α) defined in (4.23).

• CRing: computes the sequences c̊(α) defined in (4.23).

• data at Nodes Coeff: reads the values of the data at the Stroud nodes.

• delete cBar: frees the memory allocated by create_cBar.

• delete Coeff: frees the memory allocated by create_Coeff.

• delete cRing: frees the memory allocated by create_cRing.

• delete pointers Curl: frees the memory allocated to auxilliary arrays

involved in the computation of H(curl) elemental quantities.

• dimCurl: computes the dimension of the Nédélec space.

• dim nonGradCurl: computes the number of gradients spanning functions

discussed in Theorem 4.1.3.

• get load2dCurl: driver routine for computing the H(curl) elemental load

vector.

• get mass2dCurl: driver routine for computing theH(curl) elemental mass

matrix.

• get stiffness2dCurl: driver routine for computing the H(curl) elemental

stiffness matrix.

• Load2d Curl: computes the H(curl) elemental load vector.

• LowerMoment: lowers the B-moments order. The initial array containing

the B-moments is overwritten with entries of lower-order B-moments.

• Mass2d Curl: computes the H(curl) elemental mass matrix.
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• Stiff2d Curl: computes the non-zero entries of the H(curl) elemental stiff-

ness matrix. More precisely, the gradient entries of the stiffness matrix are

not computed.

• transform BmomentC Mass2dCurl: multiplies the normals to the tri-

angle’s edges with matrix-valued B-moments associated with the H(curl)

mass matrix coefficients.

For each elemental quantity, the above routines compute the entries corresponding

to the spanning set described in Theorem 4.1.3. In an implementation which is

not covered by the proposed code, the appropriate entries need to be removed in

order to obtain the elemental quantities which correspond to the H(curl) finite

element basis defined in Theorem 4.1.3. One should note that, in the proposed

routine, the Whitney lowest order edge elements correspond to the polynomial

order n = 1.

B.4 H(curl) Routines Description

This section contains the execution of the driver routines computing H(curl)

elemental quantities in two dimensions. Explanations on the use of the routines

listed in Section B.3 are given. For the definitions of the H(curl) routines, see [4].

Similarly to the H1 computations, a flag called functval is used to determine

whether an array of data values or a function is used as input for the coefficients.

By default, a function is used as input for the coefficients.

B.4.1 H(curl) Load Vector

This section describes the routines which are involved with the computation of

the load vector associated with a triangle T =< vi, i = 1, . . . , 3 >. As in the

H1 case, a parameter functval serves as a flag for the type of input used for the

load vector coefficients.
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Similarly to the routines discussed in Section B.2, we first start with the driver

routine used for computing the elemental load vector. The routines responsible

for allocating memory are then described in Section B.4.1.2. Section B.4.1.3

then focuses on the routines involved in auxiliary computations. Section B.4.1.4

concludes with an example on how to execute the load vector computation.

B.4.1.1 Driver Routine

This section focuses on get_load2dCurl which is the driver routine used for

computing the load vector. The above-mentioned routine is declared as follows:

void

get load2dCur l (double ∗ loadVect , int n , void (∗F) ( double

[ 2 ] , double [ 2 ] ) , double ∗Cval , double v1 [ 2 ] , double

v2 [ 2 ] , double v3 [ 2 ] , int f u n c tva l ) ;

In the above routine, recall that the parameter functval is used as a flag for

setting the input used for the load vector coefficients: With functval=0, the

coefficients are produced by the function F, whereas with functval=1, the co-

efficients are produced by the array Cval which contains the data values at the

Stroud nodes. The routine get_load2dCurl computes the load vector of order n

on the triangle with vertices v1, v2, v3, associated with either F or Cval. The

computed load vector entries are stored into the array loadVect. Recall that the

Whitney’s lowest order edge elements correspond to the case n = 1.

B.4.1.2 Memory Allocation

This section discusses the purpose and the syntax of the load vector routines

contained in Section B.3 which are used to allocate memory. These routines

are listed as: create_cRing, delete_cRing, dimCurl, dim_nonGradCurl and

delete_pointers_Curl.

The next routine allocates memory for storing the coefficients defined in (4.23):

double ∗∗
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c r eate cR ing ( int n) ;

In the above routine, n is the finite element order.

The routine declared below frees the memory allocated by create_cRing:

void

de l e t e cR ing (double ∗∗ cRing ) ;

The following routine returns the number of shape functions contained in the

spanning set defined in Theorem 4.1.3:

int

dimCurl ( int n) ;

The next routine computes the number of non-gradient shape functions con-

tained in the spanning set of Theorem 4.1.3:

int

dim nonGradCurl ( int n) ;

The routine declared below is used to free the memory allocated to auxiliary

arrays involved in the computation of the H(curl) load vector:

#ifdef PRECOMP

void

d e l e t e p o i n t e r s Cu r l (double ∗∗precomp , double ∗∗Bmoment ,

double ∗∗BmomentInter , double ∗∗matValNodes , double

∗∗quadraWN) ;

#else

void

d e l e t e p o i n t e r s Cu r l (double ∗∗Bmoment , double ∗∗BmomentInter ,

double ∗∗matValNodes , double ∗∗quadraWN) ;

#endif

In the above routine, Bmoment contains the B-moments associated with the load

vector coefficients, whereas quadraWN contains Gauss-Jacobi quadrature weights

and centres. BmomentInter is used to store intermediate values needed for the
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B-moments computation, while matValNodes contains coefficients values at the

Stroud nodes. In the case where PRECOMP is switched on, the array precomp is

used to store the precomputed arrays given in (2.16).

B.4.1.3 Auxiliary Computations

This section describes the auxiliary routines contained in Section B.3 which are

needed in the load vector computation. These routines are listed as: CRing,

copy_Data_at_Stroud, Load2d_Curl and LowerMoment.

The following routine computes the coefficients defined in (4.23):

void

CRing ( int n , double normalMat [ ] [ 2 ] , double ∗∗ cRing ) ;

In the above routine, n stands for the polynomial order and normalMat contains

the normals to the triangle’s edges. The computed coefficients are stored into the

array cRing.

The coefficient declared below is used to initialize the B-moment entries with

coefficients values at the Stroud nodes:

void

copy Data at Stroud ( int q , double v1 [ 2 ] , double v2 [ 2 ] , double

v3 [ 2 ] , double ∗∗Bmoment , double ∗∗matValNodes , int

nb Array ) ;

In the above routine, the parameter nb_Array determines whether the coeffi-

cients are scalar-, vector-, or matrix-valued. The array matValNodes contains

the coefficients values at the Stroud nodes of order q on the triangle with ver-

tices v1, v2, v3. The routine copy_Data_at_Stroud copies the values stored

in matValNodes into the array Bmoment. Since the array Bmoment is overwrit-

ten during the B-moments computations, this routine is useful when handling

B-moments of various orders, as it avoids having to compute data values at the

Stroud nodes for each particular B-moment order.
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The low-level routine for the load vector computation is declared as:

#ifdef PRECOMP

double

Load2d Curl ( int n , int q , double v1 [ 2 ] , double v2 [ 2 ] ,

double v3 [ 2 ] , double ∗∗binomialMat , double

normalMat [ ] [ 2 ] , double ∗∗precomp , int mp, double

∗∗Bmoment , double ∗∗BmomentInter , double ∗ loadVect , double

∗∗matValNodes , double ∗∗quadraWN, double ∗∗ cRing , double

cputime [ 3 ] ) ;

#else

double

Load2d Curl ( int n , int q , double v1 [ 2 ] , double v2 [ 2 ] , double

v3 [ 2 ] , double ∗∗binomialMat , double normalMat [ ] [ 2 ] , double

∗∗Bmoment , double ∗∗BmomentInter , double ∗ loadVect , double

∗∗matValNodes , double ∗∗quadraWN, double ∗∗ cRing , double

cputime [ 3 ] ) ;

#endif

The above routine computes the elemental H(curl) load vector of order n on

the triangle with vertices v1, v2 and v3. Precomputed binomial coefficients are

stored into binomialMat. The array quadraWN contains Gauss-Jacobi quadrature

weights and centres of order q. The normals to the triangle’s edges are stored

in normalMat. The array cRing is initialized with the coefficients defined in

(4.23). The values of the load vector coefficients at the Stroud nodes are stored

in matValNodes. Bmoment and BmomentInter are involved in the computation of

the B-moments associated with the load vector coefficients. The computed load

vector is stored into the array loadVect.

Load2d_Curl implements Algorithm 4.3. When PRECOMP is switched on, the

B-moments associated with the load vector coefficients are computed using the

precomputed arrays defined in (2.16). Otherwise, they are computed using [11,

Algorithm 6] with d = 2. As a result, the arguments of the routine Load2d_Curl

depend on whether or not PRECOMP is active.



216

The next routine is used for lowering the B-moments order:

void

LowerMoment ( int p , int q , int e l l , double ∗∗Bmoment , double

∗∗BmomentInter , int nb Array ) ;

The above routine computes the B-moments of order ell from those of order

p, with ell < p. The array Bmoment initially contains B-moments of order

p computed by means of the q-point Stroud rule. Once passed to the rou-

tine LowerMoment, the initial entries of the array Bmoment are replaced with

B-moments of order ell.

B.4.1.4 Code Execution

This section presents an example which illustrates how to make use of the routines

described in the previous sections in order to compute the H(curl) load vector:

1 #include <s td i o . h>

2 #include <math . h>

3 #include <time . h>

4 #include <iostream>

6 #include ”bbfem . h”

7 #include ”bbfem2dCurl . h”

9 // example o f load vec tor c o e f f i c i e n t

10 void

11 F0( double v [ 2 ] , double vectF [ 2 ] )

12 {
13 vectF [ 0 ] = s i n (v [ 0 ] ∗ v [ 1 ] ) ;

14 vectF [ 1 ] = 1 − v [ 0 ] ∗ v [ 1 ] ;

15 }

17 int main ( )

18 {
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19 // // v e r t i c e s ( standard t r i a n g l e )

20 // doub le v1 [ 2 ] = { 0 , 0 } ;
21 // doub le v2 [ 2 ] = { 1 , 0 } ;
22 // doub le v3 [ 2 ] = { 0 , 1 } ;

24 // v e r t i c e s ( p a r t i c u l a r t r i a n g l e )

25 double v1 [ 2 ] = { 1 .2 , 3 . 4 } ;
26 double v2 [ 2 ] = { −1.5 , 2 . } ;
27 double v3 [ 2 ] = { 0 .1 , −1. } ;

29 int n ; // degree o f the Berns te in po lynomia l b a s i s

30 std : : cout<<”Enter a value f o r the polynomial order n : ” ;

31 std : : cin>>n ;

33 double ∗Cval ; // s t o r e array o f c o e f f i c i e n t s v a l u e s at

Stroud quadrature nodes

34 int f u n c tva l = 0 ; // d e f a u l t : us ing a rou t ine (Kappa) f o r

mass matrix c o e f f i c i e n t s

36 void (∗F) (double [ 2 ] , double [ 2 ] ) = F0 ; // change here to

your rou t ine f o r load vec tor c o e f f i c i e n t s

38 #i f d e f FUNCTVAL

39 f u n c tva l = 1 ; // us ing the va l u e s s tored in Cval f o r load

vec tor c o e f f i c i e n t s

40 int q = n+1;

41 int nb Array = 2 ; // the load vec tor i s a s s oc i a t e d wi th

vec tor−va lued data

43 double ∗B; // s t o r e b a ry c en t r i c coord ina te s o f Stroud nodes

44 B = new double [ q∗q ∗ 3 ] ;
45 s t roud nodes bary2d (q , B) ;
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47 int LEN = q ∗ q ; // space requ i red f o r 2D array wi th

dimension q x q

48 Cval = new double [LEN ∗ nb Array ] ; //Cval e n t r i e s are

s tored in LINEAR memory , and used d i r e c t l y

49 vec t o r va l u e s a t S t r oud2d (q , Cval , B, F , v1 , v2 , v3 ) ; //

s t o r i n g your data in Cval

50 #end i f

52 double ∗ loadVect ; // s t o r e load vec tor e n t r i e s

53 int len Load = dimCurl (n) ; // a l l o c a t e memory to s t i f fMa t

54 loadVect = new double [ len Load ] ;

56 get load2dCur l ( loadVect , n , F , Cval , v1 , v2 , v3 , f un c tva l ) ;

// compute load vec tor

58 // f r e e a l l o c a t e d memory

59 #i f d e f FUNCTVAL

60 delete [ ] Cval ;

61 delete [ ] B;

62 #end i f

64 // In s e r t your code here to make use o f loadVect . I t w i l l

be de s t royed in the next l i n e !

66 delete [ ] loadVect ;

67 }

Listing B.7: load2dCurl.cpp

As mentioned previously, the macro FUNCT_VAL is used when the array Cval serves

as input for the load vector coefficients. In addition, the Whitney’s lowest order

edge elements correspond to the case n = 1. In Listing B.7, stroud_nodes_bary2d

and vector_values_at_Stroud2d are routines defined in bbfem.cpp which re-

spectively compute the barycentric coordinates of the Stroud nodes and the val-
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ues of vector-valued coefficients at the Stroud nodes. In addition, recall that the

above code executes the computation of the load vector entries associated with

the spanning set described in Theorem 4.1.3. Hence, in an implementation the

appropriate rows needs to be removed in order to correspond to the H(curl) finite

element basis given in Theorem 4.1.3.

B.4.2 H(curl) Mass Matrix

This section describes the routines which are involved with the computation of

the H(curl) mass matrix associated with a triangle T =< vi, i = 1, . . . , 3 >.

This section is organized as follows: the driver routine used for computing the

elemental mass matrix is described in Section B.4.2.1. The routines responsible

for allocating memory to auxiliary arrays involved in the mass matrix computa-

tion are discussed in Section B.4.2.2. Section B.4.2.3 then focuses on the routines

used in intermediate computations. Section B.4.2.4 concludes with an example

on how to execute the H(curl) mass matrix computation.

B.4.2.1 Driver Routine

The driver routine for computing the H(curl) mass matrix is declared as:

void

get mass2dCur l (double ∗∗massMat , int n , void (∗Kappa) (double

[ 2 ] , double [ 2 ] [ 2 ] ) , double ∗Cval , double v1 [ 2 ] , double

v2 [ 2 ] , double v3 [ 2 ] , int f u n c tva l ) ;

The above routine computes the elemental mass matrix of order n on the triangle

with vertices v1, v2, v3. Depending on the value of the flag functval, either

the matrix-valued function Kappa or the array Cval is used as input for the mass

matrix coefficients. The computed mass matrix is stored into the array massMat.

In the proposed code, the Whitney’s lowest order edge elements correspond to

the case n = 1.
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B.4.2.2 Memory Allocation

This section presents the routines mentioned in Section B.3 which are responsible

for allocating memory to the intermediate arrays involved in the H(curl) mass

matrix computation. These routines are listed as: create_cRing, delete_cRing,

delete_pointers_Curl, dimCurl and dim_nonGradCurl. The above-mentioned

routines are discussed in Section B.4.1.2.

B.4.2.3 Auxiliary Computations

This section focuses on the mass matrix routines presented in Section B.3 which

are involved in intermediate computations. These routines are listed as:

copy_Data_at_Stroud, CRing, LowerMoment, Mass2d_Curl and

transform_BmomentC_Mass2dCurl. Observe that the first three routines are de-

scribed in Section B.4.1.3. Hence, only Mass2d_Curl and

transform_BmomentC_Mass2dCurl are discussed in this section.

The low-level routine for computing the H(curl) mass matrix is declared as:

#ifdef PRECOMP

double

Mass2d Curl ( int n , int q , double v1 [ 2 ] , double v2 [ 2 ] , double

v3 [ 2 ] , double ∗∗binomialMat , double normalMat [ ] [ 2 ] , double

∗∗precomp , int mp, double ∗∗Bmoment , double

∗∗BmomentInter , double ∗∗Bmomentab , double ∗∗massMat ,

double ∗∗matValNodes , double ∗∗quadraWN, double ∗∗ cRing ,

double cputime [ 2 ] ) ;

#else

double

Mass2d Curl ( int n , int q , double v1 [ 2 ] , double v2 [ 2 ] , double

v3 [ 2 ] , double ∗∗binomialMat , double normalMat [ ] [ 2 ] , double

∗∗Bmoment , double ∗∗BmomentInter , double ∗∗Bmomentab ,

double ∗∗massMat , double ∗∗matValNodes , double ∗∗quadraWN,

double ∗∗ cRing , double cputime [ 2 ] ) ;
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#endif

The above routine computes the elemental H(curl) mass matrix of order n on

the triangle with vertices v1, v2 and v3. The arguments which are common to

Mass2d_Curl and Load2d_Curl discussed in Section B.4.1.3 have the same defini-

tion, with the exception that the arrays Bmoment and BmomentInter are involved

in the computation of B-moments associated with the mass matrix coefficients.

The routine Mass2d_Curl implements Algorithm 4.10. When PRECOMP is

switched on, the B-moments associated with the mass matrix coefficients are

computed using the precomputed arrays defined in (2.16). Otherwise, they are

computed using [11, Algorithm 6] with d = 2. Thus, the arguments of the routine

Mass2d_Curl depend on whether or not PRECOMP is active.

B.4.2.4 Code Execution

This section presents an example which illustrates how to make use of the routines

described in the previous sections in order to compute the H(curl) mass matrix:

1 #include <s td i o . h>

2 #include <math . h>

3 #include <time . h>

4 #include <iostream>

7 #include ”bbfem . h”

8 #include ”bbfem2dCurl . h”

11 // example o f mass matrix c o e f f i c i e n t :

12 void

13 Kappa0 (double v [ 2 ] , double matC [ 2 ] [ 2 ] )

14 {
15 // // standard c o e f f i c i e n t matrix ( i d e n t i t y ) f o r s t i f f n e s s
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16 // matC [ 0 ] [ 0 ] = 1 ;

17 // matC [ 0 ] [ 1 ] = 0 ;

18 // matC [ 1 ] [ 0 ] = 0 ;

19 // matC [ 1 ] [ 1 ] = 1 ;

21 //non−standard c o e f f i c i e n t

22 matC [ 0 ] [ 0 ] = 10.0 + v [ 0 ] ;

23 matC [ 0 ] [ 1 ] = v [ 1 ] ∗ v [ 0 ] ∗ v [ 0 ] ;

24 matC [ 1 ] [ 0 ] = v [ 1 ] ∗ v [ 0 ] ∗ v [ 0 ] ;

25 matC [ 1 ] [ 1 ] = 2 .0 − s i n (v [ 0 ] ∗ v [ 1 ] ) ;

27 }

30 int main ( )

31 {
32 // // v e r t i c e s ( standard t r i a n g l e )

33 // doub le v1 [ 2 ] = { 0 , 0 } ;
34 // doub le v2 [ 2 ] = { 1 , 0 } ;
35 // doub le v3 [ 2 ] = { 0 , 1 } ;

37 // v e r t i c e s ( p a r t i c u l a r t r i a n g l e )

38 double v1 [ 2 ] = { 1 .2 , 3 . 4 } ;
39 double v2 [ 2 ] = { −1.5 , 2 . } ;
40 double v3 [ 2 ] = { 0 .1 , −1. } ;

42 int n ; // degree o f the Berns te in po lynomia l b a s i s

43 std : : cout<<”Enter a value f o r the polynomial order n : ” ;

44 std : : cin>>n ;

46 double ∗Cval ; // s t o r e array o f f unc t i on va l u e s at Stroud

quadrature nodes , needed by get mass2dCurl
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47 int f u n c tva l = 0 ; // d e f a u l t : us ing a rou t ine (Kappa) f o r

mass matrix c o e f f i c i e n t s

49 void (∗Kappa) (double [ 2 ] , double [ 2 ] [ 2 ] ) = Kappa0 ; // change

here to your rou t ine f o r mass matrix c o e f f i c i e n t s

51 #i f d e f FUNCTVAL

52 f u n c tva l = 1 ; // us ing the va l u e s s tored in Cval f o r mass

matrix c o e f f i c i e n t s

53 int q = n+1;

54 int nb Array = 3 ; // the mass matrix i s a s s oc i a t e d wi th

( symmetric ) matrix−va lued data

56 double ∗B; // s t o r e b a ry c en t r i c coord ina te s o f Stroud nodes

57 B = new double [ q∗q ∗ 3 ] ;
58 s t roud nodes bary2d (q , B) ;

60 int LEN = q ∗ q ; // space requ i red f o r 2D array wi th

dimension q x q

61 Cval = new double [LEN ∗ nb Array ] ; //Cval e n t r i e s are

s tored in LINEAR memory , and used d i r e c t l y

63 matr ix va lu e s at S t roud2d (q , Cval , B, Kappa , v1 , v2 , v3 ) ;

// s t o r i n g your data in Cval

64 #end i f

66 double ∗∗massMat ; // s t o r e mass matrix e n t r i e s

67 int len Mass = dimCurl (n) ; // a l l o c a t e memory to massMat

68 massMat = create Mat ( len Mass ) ;

70 get mass2dCur l (massMat , n , Kappa , Cval , v1 , v2 , v3 ,

f un c tva l ) ; // compute e l ementa l mass matrix
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72 // f r e e a l l o c a t e d memory

73 #i f d e f FUNCTVAL

74 delete [ ] Cval ;

75 delete [ ] B;

76 #end i f

78 // In s e r t your code here to make use o f massMat . I t w i l l be

de s t royed in the next l i n e !

80 de lete Mat (massMat ) ;

81 }

Listing B.8: mass2dCurl.cpp

In the above code, stroud_nodes_bary2d and matrix_values_at_Stroud2d are

routines defined in bbfem.cpp which respectively compute the barycentric coor-

dinates of the Stroud nodes and the values of matrix-valued coefficients at the

Stroud nodes. In addition, recall that the above code executes the computation

of the mass matrix entries associated with the spanning set described in Theo-

rem 4.1.3. Hence, in an implementation the appropriate rows needs to be removed

in order to correspond to the H(curl) finite element basis given in Theorem 4.1.3.

B.4.3 H(curl) Stiffness Matrix

This section describes the routines which are involved with the computation of

the H(curl) mass matrix associated with a triangle T =< vi, i = 1, . . . , 3 >.

This section is organized as follows: Section B.4.3.1 focuses on the driver

routine used for computing the elemental stiffness matrix. The routines respon-

sible for allocating memory to auxiliary arrays involved in the stiffness matrix

computation are discussed in Section B.4.3.2. The routines used in auxiliary

computations are presented in Section B.4.3.3. Section B.4.3.4 concludes with

an example on how to execute the H(curl) stiffness matrix computation. In the

proposed code, the Whitney’s lowest order edge elements correspond to the case
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n = 1.

B.4.3.1 Driver Routine

The driver routine for computing the non-gradient stiffness matrix entries is de-

clared as:

void

g e t s t i f f n e s s 2 dCu r l (double ∗∗ s t i f fMat , int n , double (∗A)

(double v [ 2 ] ) , double ∗Cval , double v1 [ 2 ] , double v2 [ 2 ] ,

double v3 [ 2 ] , int f u n c tva l ) ;

The above routine computes the non-gradient entries of the elemental stiffness

matrix of order n on the triangle with vertices v1, v2, v3. Depending on the value

of the flag functval, either the scalar-valued function A or the array Cval is used

as input for the stiffness matrix coefficients. The computed stiffness matrix is

stored into the array stiffMat. In the proposed code, the Whitney’s lowest

order edge elements correspond to the case n = 1.

B.4.3.2 Memory Allocation

This section presents the routines mentioned in Section B.3 which are responsi-

ble for allocating memory to the auxiliary arrays involved in the H(curl) stiffness

matrix computation. These routines are listed as: create_cBar, delete_cBar,

delete_pointers_Curl and dim_nonGradCurl. Observe that the last two rou-

tines are described in Section B.4.1.3. As a result, only create_cBar and

delete_cBar are discussed in this section.

The routine described below is used to allocate memory to the coefficients

defined in (4.25):

double ∗∗
c r eate cBar ( int n) ;

In the above routine, n is the order of the H(curl) finite element. Recall that in
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the presented codes, the Whitney’s lowest order edge elements correspond to the

case n = 1.

The next routine is used to free the memory allocated by create_cBar:

void

de l e t e cBar (double ∗∗ cBar ) ;

B.4.3.3 Auxiliary Computations

This section focuses on the auxiliary routines which are involved in the stiffness

matrix computation. These routines are listed as: CBar, copy_Data_at_Stroud

and Stiff2d_Curl. Observe that copy_Data_at_Stroud is covered by Sec-

tion B.4.1.3. Hence, only the routines CBar and Stiff2d_Curl are discussed

in this section.

The routine described below is used to compute the coefficients defined in

(4.25)

void

CBar ( int n , double v1 [ 2 ] , double v2 [ 2 ] , double v3 [ 2 ] ,

double ∗∗ cBar ) ;

In the above routine, n is the finite element order, and v1, v2, v3 are the triangle’s

vertices. The computed coefficients are stored into the array cBar.

The low-level routine for computing the H(curl) elemental stiffness matrix is

declared as:

#ifdef PRECOMP

double

S t i f f 2 d Cu r l ( int n , int q , double v1 [ 2 ] , double v2 [ 2 ] , double

v3 [ 2 ] , double ∗∗binomialMat , double ∗∗precomp , int mp,

double ∗∗Bmoment , double ∗∗BmomentInter , double ∗∗ cBar ,

double ∗∗ s t i f fMat , double ∗∗matValNodes , double

∗∗quadraWN, double cputime [ 3 ] ) ;

#else
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double

S t i f f 2 d Cu r l ( int n , int q , double v1 [ 2 ] , double v2 [ 2 ] , double

v3 [ 2 ] , double ∗∗binomialMat , double ∗∗Bmoment , double

∗∗BmomentInter , double ∗∗cBar , double ∗∗ s t i f fMat , double

∗∗matValNodes , double ∗∗quadraWN, double cputime [ 3 ] ) ;

#endif

The above routine computes the elemental H(curl) stiffness matrix of order n

on the triangle with vertices v1, v2 and v3. The arguments which are common

to Stiff2d_Curl and Load2d_Curl discussed in Section B.4.1.3 have the same

definition, with the exception that the arrays Bmoment and BmomentInter are

involved in the computation of B-moments associated with the stiffness matrix

coefficients. In addition, the array cBar contains the coefficients defined in (4.25).

The routine Stiff2d_Curl implements Algorithm 4.11. When PRECOMP is

switched on, the B-moments associated with the stiffness matrix coefficients are

computed using the precomputed arrays defined in (2.16). Otherwise, they are

computed using [11, Algorithm 6] with d = 2. As a consequence, the arguments

of the routine Stiff2d_Curl depend on whether or not PRECOMP is active.

B.4.3.4 Code Execution

This section presents an example which illustrates how to make use of the routines

described in the previous sections in order to compute the H(curl) mass matrix:

1 #include <s td i o . h>

2 #include <math . h>

3 #include <time . h>

4 #include <iostream>

6 #include ”bbfem . h”

7 #include ”bbfem2dCurl . h”

9 // example o f s t i f f n e s s matrix c o e f f i c i e n t
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10 double

11 A0 (double v [ 2 ] )

12 {
13 return 2 .0 − s i n ( v [ 0 ] ∗ v [ 1 ] ) ;

14 }

16 int main ( )

17 {
18 // // v e r t i c e s ( standard t r i a n g l e )

19 // doub le v1 [ 2 ] = { 0 , 0 } ;
20 // doub le v2 [ 2 ] = { 1 , 0 } ;
21 // doub le v3 [ 2 ] = { 0 , 1 } ;

23 // v e r t i c e s ( p a r t i c u l a r t r i a n g l e )

24 double v1 [ 2 ] = { 1 .2 , 3 . 4 } ;
25 double v2 [ 2 ] = { −1.5 , 2 . } ;
26 double v3 [ 2 ] = { 0 .1 , −1. } ;

28 int n ; // degree o f the Berns te in po lynomia l b a s i s

29 std : : cout<<”Enter a value f o r the polynomial order n : ” ;

30 std : : cin>>n ;

32 double ∗Cval ; // s t o r e array o f f unc t i on va l u e s at Stroud

quadrature nodes , needed by get mass2dCurl

33 int f u n c tva l = 0 ; // d e f a u l t : us ing a rou t ine (Kappa) f o r

mass matrix c o e f f i c i e n t s

35 double (∗A) (double [ 2 ] ) = A0 ; // change here to your

rou t ine f o r s t i f f n e s s matrix c o e f f i c i e n t s

37 #i f d e f FUNCTVAL

38 f u n c tva l = 1 ; // us ing the va l u e s s tored in Cval f o r mass

matrix c o e f f i c i e n t s
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39 int q = n+1;

40 int nb Array = 1 ; // the s t i f f n e s s matrix i s a s s oc i a t e d

wi th sca lar−va lued data

42 double ∗B; // s t o r e b a ry c en t r i c coord ina te s o f Stroud nodes

43 B = new double [ q∗q ∗ 3 ] ;
44 s t roud nodes bary2d (q , B) ;

46 int LEN = q ∗ q ; // space requ i red f o r 2D array wi th

dimension q x q

47 Cval = new double [LEN ∗ nb Array ] ; //Cval e n t r i e s are

s tored in LINEAR memory , and used d i r e c t l y

49 s c a l a r va l u e s a t S t r oud2d (q , Cval , B, A, v1 , v2 , v3 ) ; //

s t o r i n g your data in Cval

50 #end i f

52 double ∗∗ s t i f fMat ; // s t o r e (non−zero ) s t i f f n e s s matrix

e n t r i e s

53 int l e n S t i f f = dim nonGradCurl (n ) ; // a l l o c a t e memory to

s t i f fMa t

54 s t i f fMat = create Mat ( l e n S t i f f ) ;

56 g e t s t i f f n e s s 2 dCu r l ( s t i f fMat , n , A, Cval , v1 , v2 , v3 ,

f un c tva l ) ; // compute non−zero s t i f f n e s s matrix e n t r i e s

58 // f r e e a l l o c a t e d memory

59 #i f d e f FUNCTVAL

60 delete [ ] Cval ;

61 delete [ ] B;

62 #end i f
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64 // In s e r t your code here to make use o f s t i f fMa t . I t w i l l

be de s t royed in the next l i n e !

66 de lete Mat ( s t i f fMat ) ;

67 }

Listing B.9: stiff2dCurl.cpp

In the above code, stroud_nodes_bary2d and scalar_values_at_Stroud2d are

routines defined in bbfem.cpp which respectively compute the barycentric coor-

dinates of the Stroud nodes and the values of scalar-valued coefficients at the

Stroud nodes. In addition, recall that the above code executes the computation

of the stiffness matrix entries associated with the spanning set described in Theo-

rem 4.1.3. Hence, in an implementation the appropriate rows needs to be removed

in order to correspond to the H(curl) finite element basis given in Theorem 4.1.3.



Appendix C

Shift strategy

Applying the Galerkin finite element discretization to Maxwell’s equations yields

a generalized eigenvalue problem, where the pencil consists of the pair (S,M) with

S and M respectively denoting the H(curl) stiffness and mass matrices. Having

computed the element matrices by means of the algorithms presented in Chap-

ter 4, the obtained eigenvalue problem can be solved using any general-purpose

eigensolver. However, doing so results in wasteful computations of the zero eigen-

values. Hence, this section presents a systematic approach for computing directly

the non-zero eigenvalues associated with the pencil (S,M).

For alternative methods regarding the numerical solutions of Maxwell’s equa-

tions, the reader is referred to [7, 55, 16, 15], and the references therein.

C.1 Symmetric Eigenvalue Problem

Consider the symmetric eigenproblem consisting in finding the pairs (λ,u) satis-

fying

Su = λMu, (C.1)

where the eigenvalue λ is a scalar, and u the associated eigenvector. In addition,

the matrix M is assumed to be positive definite. In (C.1), the pair (S,M) is

231
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often called a pencil. The next result, given in [68, Theorem 15.3.3], motivates

the use of some orthogonalization (or deflation) procedures in the iterative scheme

described later.

Theorem C.1.1. Let S and M denote real-valued symmetric matrices of dimen-

sion ℓ. In addition, suppose that M is positive definite. Then, the problem (C.1)

has ℓ real eigenvalues λ1, . . . , λℓ. For k = 1, . . . , ℓ, denote by uk the eigenvector

corresponding to λk. Then the set {uk : k = 1, . . . , ℓ} is orthogonal with respect

to the M-inner product defined by

〈u,v〉M = utMv, u,v ∈ R
ℓ.

For the sake of completeness, we next describe the numerical scheme used for

solving Maxwell’s eigenvalue problem in Chapter 4.

Based on [76], we opt for a combination of shifted inverse iteration (INVIT)

and Rayleigh quotient iteration (RQI) [68, Chapter 4 and Chapter 15], denoted

as INVIT-RQI. In order to avoid computing the zero eigenvalues associated with

the above-mentioned eigenproblem, our iterative scheme also contains additional

projections onto the space orthogonal to the kernel of the curl operator. For the

reader’s convenience, we recall in Algorithm C.1 the basic steps of INVIT with

orthogonal projection, for finding the non-zero eigenvalues associated with (C.1),

when Maxwell’s eigenvalue problem is considered. The projection matrix P∇ on

line 7 is given in Section 4.4.

In Algorithm C.1, ‖ · ‖M−1 is the norm induced by the inner product 〈·, ·〉M−1,

whereas ”tol“ is a prescribed tolerance. RQI differs from INVIT in that no LU

factorization is used, and that the shift is updated at each level of iteration. RQI

is described in more details in Algorithm C.2. Recall that, for k ≥ 2, ρk−1 denotes

the Rayleigh quotient of the current iterate uk−1.

Without the projection step given on line 7, INVIT is well-known to converge

linearly towards the eigenvalue closest to the shift θ, provided that the starting

iterate uinit is not orthogonal to the corresponding eigenvector. In contrast, RQI
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Algorithm C.1: INVIT(S,M, θ,uinit)

Input : Matrices S and M, shift θ, and starting eigenvector uinit.
Output: Eigenpair (ρ,u) such that ρ is one eigenvalue of minimal distance

from the shift θ.
1 Compute the LU factorization of S− θM ;
2 Set u0 = uinit, ρ0 = θ, k = 0;
3 while ‖Suk − ρkMuk‖M−1 > tol do
4 k += 1;
5 Solve (S− θM)ỹk = Muk−1 for ỹk, using the LU factorization

computed on line 1 ;
6 //Project onto space orthogonal to ker(curl):

7 Compute ũk = (I−P∇)ỹk;
8 Compute uk = ũk/‖ũk‖M;
9 Set ρk = ut

kSuk;

10 //Return the final values obtained at the end of the loop

11 Return (ρ∞,u∞);

Algorithm C.2: RQI(S,M, θ,uinit)

Input : Matrices S and M, shift θ, and starting eigenvector uinit.
Output: Eigenpair (ρ,u) such that ρ is one eigenvalue of minimal distance

from the shift θ.
1 Set u0 = uinit, ρ0 = θ, k = 0;
2 while ‖Suk − ρkMuk‖M−1 > tol do
3 Same as lines 4-9 of INVIT (S,M, θ,uinit), with the line 5 replaced with

4 Solve (S− ρk−1M)ỹk = Muk−1 for ỹk;

5 //Return the final values obtained at the end of the loop

6 Return (ρ∞,u∞);
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has a locally cubic convergence [68, Section 15.9], but does not necessarily con-

verges towards the eigenvalue which is closest to the initial shift [68, Section 4.9].

In [76], Szyld describes an elegant way of combining the properties of INVIT and

RQI in order to optimize the convergence towards a desired part of the spectrum.

The presented algorithm, referred to as INVIT-RQI in this work, is used to solve

the Maxwell’s eigenproblem considered at the end of Chapter 4. More precisely,

starting with an initial guess (θ,uinit), the basic step of the eigenvalue algorithm

that we use can be described in Algorithm C.3.

Algorithm C.3: INVIT-RQI(S,M, θ,uinit, η)

Input : Matrices S and M, initial shift θ, starting eigenvector uinit, and
switching parameter η.

Output: Eigenpair (ρ,u) such that ρ is one eigenvalue of minimal distance
from θ.

1 Set u0 = uinit, ρ0 = θ, k = 0;
2 //Start with INVIT:

3 while ‖Suk − θMuk‖M−1 > η do
4 Same as lines 4-9 of INVIT (S,M, θ,uinit);
5 //Monitor the relative change of the Rayleigh quotient:

6 δk = |ρk − ρk−1|/|ρk|;
7 if δk < δ and k ≥ 3 then
8 break;

9 //Switch to RQI using the output of the INVIT-loop as starting

eigenpair:

10 Compute (ρRQI,uRQI) = RQI(S,M, ρINVIT,uINVIT) ;
11 Return (ρRQI,uRQI);

If the condition

‖Suk − θMuk‖M−1 ≤ η (C.2)

is satisfied at some iteration level k, then the limit eigenvalue of INVIT belongs

to the interval (θ − η, θ + η) [76]. In addition, if η satifies

η ≤ min
λi 6=λj

|λi − λj |
4

, (C.3)
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where the minimum is taken over all the eigenvalues of the pencil (S,M), then

starting with the last eigenpair produced by INVIT when switching to RQI ensures

cubic convergence towards the desired eigenpair. INVIT-RQI also covers the case

where the eigenvalue which is closest to θ does not belong to the interval (θ −
η, θ+η). In this case, (C.2) is never satisfied, and after a few INVIT iterations, the

Rayleigh quotient starts to converge towards an eigenvalue outside (θ− η, θ+ η),

so that its relative change satisfies

ρk − ρk−1

ρk
≤ δ (C.4)

for a prescribed tolerance δ. In this case, the algorithm switches to RQI solely

to accelerate the convergence. However, (C.4) can occur too soon, if the starting

iterate happens to be very close to an actual eigenvector. In order to prevent a

premature switch to RQI, a minimum of 3 INVIT iterations is enforced. For our

purposes, since the problem that we consider is known to have integer eigenvalues

(up to a multiplication by π2), the choice η = 1/4 is satisfactory. For more general

settings, the algorithm proposed in [76] features the extra option of switching back

to INVIT using the latest iterate of RQI as starting eigenvector, in the case where

the input value η is too large.

C.2 Vector Iteration

Now observe that Algorithm C.3 only computes one eigenpair such that the eigen-

value is of minimal distance from θ. In order to compute several eigenpairs,

INVIT-RQI needs to be incorporated into a bigger loop, where the shift θ is up-

dated according to the obtained eigenvalues. In addition, deflation procedures

are applied in order to avoid convergence to already obtained eigenpairs.

This section describes the details of the ”global” eigenvalue algorithm, that

is, when INVIT-RQI given in Algorithm C.3 is used to find several eigenpairs

associated with the Maxwell’s eigenvalue problem in Section 4.5. In particular,

details are also given regarding the shift strategy used. The method is given in
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Algorithm C.4.

EigenList and EigenVecList respectively contain the list of obtained eigen-

values and the corresponding eigenvectors. Before the loop over ℓ, EigenList

EigenVecList and EigenVecSameList are each initializated to be empty. The

list EigenVecSameList stores the eigenvectors which belong to the same eigen-

value, and is needed for the selective deflation applied on line 8. More precisely,

only the set of previously obtained eigenvectors which are associated with the

latest obtained eigenvalue are considered during the deflation process. That is

to say, the current iterate is not orthogonalized with respect to the full set of

previously obtained eigenvectors. Thus, if the shift θ happens to be closer to

a smaller eigenvalue than to the eigenvalue on the right of λinit, then INVIT-RQI

converges to the smaller eigenvalue which is already stored in EigenList. In that

case, the shift θ is corrected by means of line 25, where r is the counter for the

number of times the INVIT-RQI loop produced the smaller eigenvalue. In order

to distinguish the different cases, the algorithm needs to compare the computed

eigenvalue ρ∞ to the previously obtained eigenvalue λinit. Hence, the dummy

initialization λinit = 0 on line 1 covers the very first loop over ℓ.

C.3 Artificial Shift Perturbation

When inverse iteration is coupled with orthogonal deflation, for solving the eigen-

problem associated with the pencil (S,M), the choice of shift given on line 21

of Algorithm C.4 might not be optimal. In fact, it is observed that slightly per-

turbed shifts produce better and faster results. This can be illustrated from the

following simple example.

Consider the problem of finding the eigenpairs associated with (S,M), with

S =





1 −1
−1 2



 ,

and M is the identity matrix. Observe that the eigenvalues of S are given by
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Algorithm C.4: RQI-INVIT-Extended(S,M, ℓ)

Input : Matrices S and M, and ℓ which stands for the desired number of
computed eigenpairs.

Output: First ℓ non-zero eigenpairs associated with the pencil (S,M).
1 EigenList = {}, EigenVecList = {}, EigenVecSameList = {}, θ = 0,
EigenNumber = 1, λinit = 0, r = 1 ;

2 while EigenNumber ≤ ℓ do
3 uinit = random(dim(S));
4 Same lines as in INVIT-RQI(S,M, θ,uinit), except that before the

normalizing step:

5 uk = ũk/‖ũk‖M
6 the following lines are inserted:

7 foreach v ∈ EigenVecSameList do
8 ũk ← (I− vvtM)ũk;

9 //At this point, INVIT-RQI loop has produced (ρ∞,u∞).

10 //Case where ρ∞ is another multiplicity of the previously

obtained eigenvalue:

11 if EigenList == {} or |ρ∞ − λinit| < ǫ then
12 EigenList.append(ρ∞), EigenVecList.append(u∞);
13 EigenVecSameList.append(u∞);
14 EigenNumber += 1;

15 else
16 //Case where ρ∞ is greater than the previously obtained

eigenvalue:

17 if ρ∞ > λinit + η − ǫ then
18 EigenList.append(ρ∞), EigenVecList.append(u∞);
19 EigenVecSameList = {u∞}, λinit = ρ∞;
20 //Update shift value:

21 θ = ρ∞;
22 EigenNumber += 1, r = 1;

23 //Case where ρ∞ is smaller than the previously obtained

eigenvalue:

24 else
25 θ ← θ + r ∗ (λinit − ρ∞), r ← r + 1;

26 Return EigenList, EigenVecList;
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(3±
√
5)/2, and that the corresponding eigenspaces are respectively spanned by

the vectors

e1 =
(

1,
−1 +

√
5

2

)T
and e2 =

(

1,−1 +
√
5

2

)T
. (C.5)

Starting with σ = 0, we perform 16 iterations of shifted inverse iteration, and find

a good approximation of (λ1, e1). We then update the value of σ, and continue

the inverse iteration, coupled with deflation, to find the next eigenvector: With

σ = λ1, the code breaks down after 3 iterations; with σ = λ+1e-16, the maximal

number of iterations (500) is attained, and the resulting approximation is very

poor, with an error of order 1e-1 for the approximation of λ2.

In order to undestand this phenomenon, we now proceed to “simulate” what

is happening inside the implementation during the evaluation of the second eigen-

value. Since the error is very small (of order 1e-16) for λ1, the matrix used in the

code is given by S− λ1M, up to machine precision. Thus, for simplicity, we will

use the exact value of S−λ1M for the “simulation“. One can show that S−λ1M
can be factorized by means of





−1+
√
5

2
−1

−1 1+
√
5

2



 =





1 0

−2
−1+

√
5

1









−1+
√
5

2
−1

0 0





≈





1 0

−2
−1+

√
5

1









−1+
√
5

2
−1

0 ε





In the above equation, the symbol ”≈“ indicates that the right-hand side gives

the numerical approximation which is produced. The constant ε is of order 1e-16.

With the starting iterate u0 = (1, 1)T, we want to solve LUu2 = u1 for u2. To

this end, we first solve Lw2 = u1 for w2, that is,





1 0

−2
−1+

√
5

1









w2,1

w2,2



 =





1

1



 .
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The above system gives w2 = (1,
√
5+3
2

)T. Thus, we need to solve the system





−1+
√
5

2
−1

0 ε









u2,1

u2,2



 =





1
√
5+3
2



 , (C.6)

Now, observe from the second row that u2,2 = (
√
5+3)/(2ε) = O(1e+16), so that

u2,2 + 1 ≈ u2,2. (C.7)

But then, the first row of (C.6) yields

−1 +
√
5

2
u1,1 = 1 + u2,2 ≈ u2,2,

which, together with (C.5), shows that the second iterate u2 has a significant

component along the direction of the eigenvector e1. Thus, with w2 satisfying

Lw2 = u1,

(Uu2 = w2)⇒ (u2 is ”very” parallel to e1). (C.8)

In fact, for any w ∈ R
2 which is not ”too large“ (which can always be attained

using normalization), the solution to Uu = w with U given on the left-hand-side

of (C.6), is always a vector which is very ”parallel“ to e1. Indeed, it suffices to

use the same argument as the one leading to (C.8), but with the right-hand side

of (C.6) given by the normalized form of w. As a consequence,

(LUu2 = u1)⇒ (u2 is ”very” parallel to e1).

Hence, the inverse iteration with the shift θ = λ1 produces iterates uk which

are almost ”parallel“ to the eigenvector e1. When the deflation procedure is

applied, the iterate uk is replaced with its projection onto the space orthogonal

to e1. But then, the next iterate uk+1 satisfying LUuk+1 = uk is again almost

”parallel“ to e1. In other words, the choice σ = λ1+O(1e-16) annihilates too much

the components of the iterates along the eigenvector e2, making it numerically
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impossible to get a good approximation of the eigenpair (λ2, e2).

As a particular application of the above argument, we opt for an artificial

perturbation of the shift θ used in Algorithm C.4. More precisely, the shift choice

on line 21 is replaced with θ = ρ∞ + ς, where ς is a prescribed perturbation. In

our computations, we used ς = 0.1. The concept of artificial shift is not new, and

has been mentioned, for example, in [79, p.328] for the accurate approximation

of eigenvalues with multiplicities.
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