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“Perché si vede più certa la cosa l’occhio ne’ sogni  

che colla immaginazione stando desto” 

“The eye sees a thing more clearly in dreams  
than the imagination awake”  
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ABSTRACT 

 

Globally 2.2 million people are visually impaired and, of these, approximately 

1 million present forms of visual impairment that could be addressed or prevented. 

Retinal imaging is a key step in the diagnosis and follow-up of major causes of visual 

impairment. As much as 20% of retinal images collected in the population are 

affected by artifacts, that render them ungradable both by expert graders and by the 

more recent automatic grading systems.  

This work aims to develop an artifact removal strategy able to improve the 

effectiveness of retinal image grading, in particular for retinal feature segmentation. 

First, a large group of statistical parameters designed to measure image quality have 

been selected from the literature. A new ophthalmic database was then collected 

(CORD – the Comprehensive Ophthalmic Research Database), which includes retinal 

images with and without artifacts. A mathematical model describing artifacts on the 

basis of the interaction of the light with the eye during eye photography was then 

developed. CORD and the mathematical model were then used to train a binary 

classifier to distinguish pixels affected by distortions within the image without the 

need for interpretive knowledge of the image itself and, on the basis of this, to 

establish a validation criterion for quality improvement in retinal images. Finally, an 

algorithm was developed to isolate in retinal images the regions affected by artifacts, 

and to subtract from the images the additive contributions to the distortion.  

The artifact clean-up has been shown to increase the textural information of 

the retinal images, by improving vessel segmentation by more than 10%. By avoiding 

the use of interpretative elements of the image, this improvement in the quality of 

retinal images is agnostic to specific disease processes, and thus potentially 

applicable to population screening. Further work is necessary to improve the 

cosmetic quality of the images, to optimise the artifact removal strategy, and to 

relate the feature extraction improvement to clinical performance. 
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CHAPTER 1. INTRODUCTION 

 

 

 

1.1 BACKGROUND 

The recent employment of mobile technology (mHealth) (Bastawrous et al., 

2016, Giardini et al., 2014), as a portable, easy to use and inexpensive solution 

for retinal imaging, has shown promising results in boosting the image 

collection for retinal screening programmes in hard-to-reach areas (S. Philip et 

al., 2007a). These technology are becoming attractive, particularly in areas 

where the number of ophthalmologists and clinical facilities are inadequate for 

the assessment workload (Soto‐Pedre et al., 2015). Many of these settings 

include middle- and low-income countries, but also the isolated communities 

(e.g. Northern European periphery and islands). However, the implementation 

of such solutions must be accompanied by effective strategies to face the 

increased assessment burden enabled by mHealth. The use of automatic or 

semiautomatic software for the identification of pathological signs in digital 

retinal images can be a valid aid. The health systems of many industrial 

countries are currently exploring with keen interest such software, with the 

prospective of addressing the increasing burden of diabetic and cardiovascular 

cases (Organization, 2011).  

The problem with automatic software concerns the robustness of the 

assessment process, which highly depends on the quality of the digital image 

itself. The rate of inadequate quality images (unusable for diagnostic 

evaluations) in regular retinal screening programmes can reach over one fifth 

of the total (Yu et al., 2012b, Teng,Lefley and Claremont, 2002, Liesenfeld et 

al., 2000, Scanlon et al., 2003). This has a direct impact on the workflow of the 

diagnostic chain (e.g. implementation of subjective/objective quality evaluation 

tests, recall of patients, false positive, etc.), hence on the effectiveness of the 

screening. In several mHealth applications, where the limits of the device’s 

optics and the uncontrolled environment illumination cause noise and artifacts, 

the consequent production of “non-clinical standard quality images” can be 
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even more significant. To mitigate the effect of such distortions on digital retinal 

images, and improve the effectiveness of mHealth solutions for retinal 

screening, appropriate ad hoc image clean-up strategies need to be 

developed.  

In this work, two different problems are considered in particular: the 

identification of suitable image quality evaluation systems and the 

development of filtering algorithms. While for the first topic there is a plethora 

of different solutions in the retinal imaging field, usually targeted for 

classification purpose (not-acceptable/acceptable) (M. Niemeijer,Abramoff 

and van Ginneken, 2006, Pires Dias,Oliveira and da Silva Cruz, 2014, Yu et 

al., 2012b, Bartling,Wanger and Martin, 2009), for the second the research 

production is limited. There are many reasons that have led the research 

community to prefer the development of image quality evaluators rather than 

try to restore the retinal image content:  

 difficulties in determining the statistical characteristic of the features of 

a digital retinal image that convey the clinical information,  

 the lack of publicly available data on retinal image artifacts for noise 

modelling 

 the difficulties in assessing the performance of artifact filtering 

strategies from a clinical perspective.  

However, to take full advantage of the capabilities enabled by mHealth, the 

development of clean-up algorithms and the better understanding of the impact 

of image artifacts on the clinical content of retinal images are very much 

needed.  

1.2 AIM OF THE STUDY 

This thesis reports the work around the creation of a clean-up strategy for 

retinal images, designed to mitigate the distortions on some of the most 

important anatomical features used for clinical assessment (specifically, the 

blood vessel tree and the optic nerve head) caused by the common artifacts, 

and able to enhance those statistical components of the digital image that are 

known to be proxy of the clinical information. To achieve this, an extensive 
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literature review regarding the state of the art in retinal imaging segmentation 

and image quality evaluation has been carried out. From this, a wide range of 

objective statistical parameters have been selected as suitable indicators of 

the quality/quantity of the clinical information in fundoscopy. Secondly, a 

simplified mathematical model of the eye, describing how the interaction 

between the light and the anatomical structure of the eye can originate 

scattering phenomena and artifacts, was developed. In parallel, a 

comprehensive ophthalmic database (CORD) was created, with the unique 

feature of including retinal images affected by artifacts along with the clinical 

standard quality counterparts (CORD project (CORD Comprehensive 

Ophthalmic Research Database, CORD 2019)). This database was then used 

to determine a set of statistical evaluators capable of distinguishing between 

clinical standard quality images and images affected by artifact via clustering. 

The same paradigm was then used to validate the mathematical model and to 

assess the performance of the clean-up strategy used on the retinal images 

affected by artifact collected in CORD.  

Specifically, the aims of this study have been: 

1. Identification of objective statistical features as proxy of clinical 

information suitable for image quality classification. 

2. The creation of a mathematical model that simulates the generation of 

artifacts in retinal imaging. 

3. Creation of a comprehensive ophthalmic database to inform the 

parameters required by the model, that includes images affected by a 

wide variety of common artifact in fundoscopy. 

4. Development of a clean-up strategy able to enhance the proxy of clinical 

information carried by the blood vessels and the optic disc. 

1.3 THESIS STRUCTURE 

CHAPTER 2 introduces the principles of retinal imaging, its clinical usage 

and its impact on the clinical workflow, particularly for population screening. 

Here, the description of the anatomy and the optical properties of the eye is 

provided, along with an overview of the principal retinal imaging techniques 
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commonly used in ophthalmology. Subsequently, the main features of a retinal 

image are described, with particular focus on their diagnostic relevance in the 

detection and prevention of retinopathies, neuropathies and cardiovascular 

diseases. 

The core topic of clinical quality in digital retinal imaging is then analysed 

in CHAPTER 3. Texture, in the context of this work, is defined as the 

distribution of pixel colour and luminance which conveys information on the 

structural arrangement of the different retinal structures (e.g. blood vessels, 

dark lesions, etc.) and on how they differ between a healthy and a pathological 

retina. In particular, the importance of the textural information in the diagnostic 

assessment process is discussed, highlighting how texture is differently 

interpreted by clinicians and computer vision algorithms. A wide range of the 

statistical descriptors for quality in retinal imaging is then presented, analysing 

the advantages and the limits of using evaluators commonly used in digital 

imaging to define criteria to infer the quality of the clinical content of a retinal 

image. 

The creation of such a dataset is described in CHAPTER 4. This 

comprehensive dataset has been collected from volunteers, including many 

novelties in ophthalmic datasets: quality-related subject information (age, sex, 

pigmentation), ophthalmic measurements, images from multiple imaging 

techniques and modalities and, crucial for this work, a subset of images 

affected by artifacts. Such a subset, together with the good quality images 

counterparts, is used to identify the statistical descriptors where the variability 

is higher in the presence of quality distortions. The descriptors are then used 

to build a quality classifier able to classify retinal images as clinical quality 

images and artifact images via clustering, as described at the end of the 

chapter.  

In CHAPTER 5, the development of a new phenomenological model that 

describes the formation of artifacts on retinal images is presented. This 

simplified mathematical model is used to simulate the interaction between the 

main optical anatomical components of the eye and the light, during 
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fundoscopy, in non-ideal conditions or in presence of pathological opacification 

of the clear structures of the eye. The model is then implemented as a 

computational simulator (Matlab) of artifacts and validated against a set of 

fundus images affected by artifacts from CORD. In the context of this work, the 

artifact simulator is used for data augmentation (to reach sufficient number of 

images affected by artifacts to train the machine learning algorithm for artifact 

pixel classification) and to establish the correct algorithmic approach to reduce 

the artifact distortion on the image. 

The algorithmic steps of the artifact clean-up strategy developed in this 

work, the description of each processing stage and the final results are 

presented in CHAPTER 6. The chapter begins by defining the physical and 

mathematical assumptions around the algorithmic approach of the clean-up 

strategy. It proceeds with the punctual description of each processing block, 

providing the numerical values used for the computer simulation on the CORD 

images affected by artifacts. It concludes presenting the results of the clean-

up process. 

Discussion and conclusions over the implementation of the clean-up 

strategy and its possible use in clinical practice is highlighted in the last 

chapter, CHAPTER 7. The review of the aims of this study is discussed with 

emphasis on the benefits for the clinical workload, especially in screening 

programmes. The closing section proposes recommendations for future works 

and implementations. 

1.4 PRINCIPAL RESULTS AND NOVELTY 

The work has entailed the acquisition of a retinal image database (CORD).  

CORD is the first database to date to contain a wide range of multimodal data 

from the same eye, correlated with information regarding the devices settings 

that generated those data, and a systematic subset of images affected by 

standard artifacts. The use of such a subset was crucial for the creation of a 

feature-agnostic image quality classifier for retinal images, also original to this 

thesis. Moreover, uniquely to this thesis, the selection of statistical features 
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used in the classifier is the result of a distance metric learning process that 

aims to identify the features that are mostly affected by image artifacts.  

Another significant contribution has been the creation of an artifact 

simulator, here used for data augmentation and to justify the mathematical 

approach in the image clean-up process. This simple, modular and parametric 

approach can (in principle) also be used to indirectly infer diagnostic 

information starting from the image affected by distortion caused by 

pathological conditions (e.g. cataract). It can be reasonably envisaged that this 

can be used as a diagnostic tool, with benefits for a medical imaging diagnostic 

and screening programme. 

Finally, a clean-up process for retinal image artifacts that is able to retrieve 

part of the textural content of an image, uniquely agnostic to the specific 

textural elements to be retrieved, has been developed. 
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CHAPTER 2. LITERATURE REVIEW 

 

2.1 RETINAL IMAGING 

Since its inception in 1970s, digital imaging has started a real revolution in 

the medical world, transforming diagnostic and enabling the creation of new 

medical techniques. What was previously a film photograph now is a matrix of 

digital pixels, of which intensity level can be enhanced, quantified, and 

correlated to each other by advanced image processing tools, disclosing more 

information content then what was previously accessible. Ophthalmology, as 

we know it today, is the perfect example of this new digital age (Chatziralli et 

al., 2012, Millbank, 2013). Retinal imaging (or fundoscopy), in particular, has 

fully exploited this transformation becoming the elective diagnostic technique 

for large number of age-related diseases and diabetes complications, which 

are amongst the leading causes of visual impairment and blindness in the 

world (Pascolini and Mariotti, 2012b). The retina is the only part of the human 

body where blood vessels and neurons can directly be observed with non-

invasive techniques. It is therefore considered as the window to the general 

health of a person, through which we haven’t yet finished exploring the whole 

landscape (Abramoff,Garvin and Sonka, 2010). 

The complexity and the richness of the retina’s features, and therefore of 

the digital retinal image, is particularly appealing both for doctors and image 

processing developers. More and more elements of the eye are being 

discovered to have a direct connection with cardiovascular conditions and 

brain diseases thanks to the observation of the morphological changes 

enabled by fundoscopy (London,Benhar and Schwartz, 2013, Gerald Liew and 

Wang, 2011). In this chapter, a brief overview of the anatomical structures and 

function of the eye is provided, followed by the description of the state of the 
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art of retinal imaging techniques and imaging acquisition strategies employed 

by modern ophthalmology for population screening. 

2.1.1 THE EYE: ANATOMY AND FUNCTION 

The principal anatomical structures of the human eye are shown in Figure 

2.1. The human eye can be divided into two halves, the anterior and posterior 

segments. The anterior segment is composed by transparent structures that 

interface between the external world and the retina, the actual light-sensitive 

structure of the eye, and, thanks to their curvature and refractive index, provide 

the refractive power of the eye. It is functionally composed of the cornea, the 

lens, and the iris. The posterior segment of the eye is referred to as the fundus, 

where the retina lies, and it is connected to the visual cortex of the brain via 

the optic nerve (Atchison and Smith, 2000, Rosenfield and Logan, 2009). 

 

Figure 2.1 The horizontal cross section of the right eye as seen from above, nasal side on the 
left (Rhcastilhos. And Jmarchn). 
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Sclera and cornea 

The spherical outer layer of the eye ball consists of the sclera, a white, 

opaque fibrous tissue that serves as a protection against injuries, and for 

mechanical support. In the anterior segment of the eye, the sclera becomes a 

transparent structure called cornea. The majority of the refractive power of the 

eye (two third) is provided by the combination of this multi-layer structure and 

the anterior chamber (Atchison and Smith, 2000). From the cross-sectional 

view (Figure 2.2), six different layers can be identified: tear film, the epithelium, 

Bowman’s membrane, the stroma, Descemet’s membrane and the 

endothelium.  

 

Figure 2.2 Structure of the cornea (adapted from(Eye7 Eye Hospitals)(Eye7 Eye 
Hospitals)(Eye7 Eye Hospitals)(Eye7 Eye Hospitals) (Eye7 Eye Hospitals)). 

 

The tear film is a 4-7 μm thick mucous layer composed 98% by water. It 

plays a key role in clear vision as it moistens the cornea and smooth out any 

roughness caused by the surface epithelial cells. The corneal epithelium is a 

50 μm thick chemical barrier of the outer cornea which protects the eye against 

water, large molecules, and toxic substances. This is followed by Bowman’s 

membrane which is a thin layer (8–14 μm) of randomly arranged collagen fibrils 

above the 500 μm thick stroma. The stroma is composed of approximately 250 
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stacked collagen lamellae. Each lamella has a thickness of about 2 μm where 

the collagen fibrils run parallel to each other. Each lamella run across the 

cornea at an angle to each other forming an ordered structure that guarantees 

the transparency while enhancing mechanical strength. Underneath the 

stroma lies the Descemet’s membrane (approximately 10 μm thick) which 

forms the basement layer of endothelial cells. The innermost corneal layer is 

the 5 μm thick endothelium. It is composed of hexagonal cells arranged in a 

honeycomb lattice and allows leakage of nutrients to the upper layers of the 

cornea. At the same time, the endothelium regulates the fluid balance by 

actively pumping water out of the cornea to keep it clear and transparent. 

Thanks to several population studies, the geometrical and the optical 

properties of the eye have been statistically evaluated (Sorsby, 1956, 

Stenstrom and Woolf, 1948, Hogan, 1971, Patel,Marshall and Fitzke, 1993). 

As for the cornea, experimental distributions of the vertex radii (R) and the 

surface power (F) are provided in Table 2.1. From these data, some practical 

equations have been drawn to describe the correlation between the geometric 

and optic characteristic of the cornea. For instance the existing linear 

correlation between the anterior and posterior radii of curvature, 𝑅𝑎 = 0.81𝑅𝑝 

(Patel,Marshall and Fitzke, 1993), from which the surface power can be 

calculated using the equation 

𝐹 = (𝑛′ − 𝑛)/𝑅,      (1) 

where 𝑛′ and 𝑛 are the refractive indexes of the anterior and posterior surfaces 

respectively. The total power of the cornea can be calculated from the “thick 

lens” equation: 

𝐹 = 𝐹𝑎 + 𝐹𝑝 − 𝐹𝑎𝐹𝑝𝑑/𝜇     (2) 

where 𝑑 is the vertex corneal thickness and 𝜇 is the refractive index of the 

cornea.  

 

Table 2.1 Thickness of the corneal layers according to Hogan et al. (Hogan, 1971), and radii 
of curvature R, corresponding power F and asphericity of the anterior surface of the cornea, 
assuming corneal refractive index 1.376, aqueous index 1.336 and corneal thickness 0.5mm 
(Patel,Marshall and Fitzke, 1993). 

Anterior Posterior Q 
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Corneal 

layers 

Thickness 

(m) 

Total 

thickness 
R(mm) F(D) R(mm) F(D) 

Total F(D) 

Tear film 4-7 

~580 7.68±0.40 49.0 5.81±0.41 -6.9 -0.01±0.25 42.2 

Epithelium 50 

Bowman’s 

membrane 

8-14 

Stroma 500 

Descemet’s 

membrane 

10-12 

Endothelium 5 

 

The characteristic asphericity (𝑄) is caused by the increase in the radius of 

curvature of the cornea as we move away from the surface apex. The sign and 

value of 𝑄 determines the conicity of the cornea, knowing that a conicoid can 

be express in the form 

ℎ2 + (1 + 𝑄)𝑍2 − 2𝑍𝑅 = 0 ,    (3)  

where 𝑍 is the optical axis and ℎ2 = 𝑋2 + 𝑌2. Sometime asphericity is 

expressed in terms of a quantity 𝑝, which is related to 𝑄 by: 

𝑝 = (1 + 𝑄).           (4) 

Between the cornea and the lens there is the anterior chamber, which 

contains a fluid called aqueous humour. In the middle layer of the eye we find 

the uveal tract, which is composed of the iris, the ciliary body and the choroid. 

The iris plays an important optical function by regulating the size of the pupil 

aperture. The ciliary body regulates accommodation of the lens, and both the 

ciliary body and the choroid support important vegetative processes (Atchison 

and Smith, 2000). 

Lens 

Behind the iris, we find the other important optical structure of the eye, the 

lens. Like the cornea, it is a transparent structures containing no blood vessels. 

The nutrients are provided by the aqueous humour. The lens bulk is a mass of 
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cellular tissue of non-uniform gradient index, contained within an elastic 

capsule (Figure 2.3). 

 

Figure 2.3 Diagram of the eye lens, showing the location of the lens cortex, nucleus, 
epithelial cells, and layers composed of hundreds of fibre cells (Widomska and Subczynski, 
2019). 

 

The anterior layer of epithelial cells maintains the lens by replacing the old 

layers throughout the entire life. The new cells are originated at the equator 

and migrate by elongation towards the centre, at the sutures. In this migration 

the cells lose their nuclei and intracellular organelles, keeping the structure 

clear. Because of its continual growth, lenticular parameters are age-

dependent. A set of ligaments connect the capsule to the ciliary body, the 

muscles that determine the shape of the lens, by their contraction or relaxation, 

during the accommodation process. In fact, by changing the shape of the lens, 

its equivalent power changes, allowing the eye to focus on object at different 

distances. Geometrical and optical parameters of the lens are summarised in 

Table 2.2. 

 

Table 2.2 Population distribution of in vivo lens vertex radii of curvature, thickness and 
surface asphericity for relaxed eye (Brown, 1974, Liou and Brennan, 1997). 

 

Radii of curvature Thickness 

(mm) 

Asphericity 

Anterior (mm) Posterior (mm) Anterior Posterior 

Lens 12.4±2.6 -8.1±1.6 3.6 -0.94 +0.96 
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Retina 

The retina is an upstream part of the brain which detects light and converts 

the stimulus to neuronal signal, which are then transmitted by the optic nerve 

to the visual centres of the brain, where the vision is processed (Atchison and 

Smith, 2000). It consists of numerous cellular and pigmented layers and a 

nerve fibre layer (Figure 2.4). These layers have different role and optical 

significance, with the amount of incoming light that is specular reflected, 

scattered or absorbed by each layer being of particular importance. More 

insights regarding optical properties of the eye’s tissues are discussed in 

Chapter 4. The thickness of the retina varies from ~100 m at the foveal centre 

to ~600 m near the optic disc (Atchison and Smith, 2000, 

Kaschke,Donnerhacke and Rill, 2013). 

The light-sensitive layer is placed at the back of the retina, and is formed 

by two type of cells: rods and cones. The different function and sensitivity of 

these receptors reflect their distribution across the retina (Figure 2.4). Rods, 

generally longer and narrower than cones, are not involved in colour vision but 

are high-sensitive to low-level light. This is mostly achieved by the extensive 

nerve fibres network, that connects each rod with other hundreds of other rods, 

which makes them very sensitive to light but poor in spatial resolution. For this 

reason, objects that appear bright coloured in day light when seen in moonlight 

appear colourless, phenomenon known as scotopic vision. 
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Figure 2.4 Layers of the retina (The Discovery Eye Foundation)(The Discovery Eye 
Foundation)(The Discovery Eye Foundation)(The Discovery Eye Foundation)(The Discovery 

Eye Foundation). 

 

In contrast, cones are connected with fewer other cones so they work at a 

higher light level and are capable of higher spatial resolution. Cones recover 

from exposure to light more quickly than rods, and thanks to the existing of 

different typologies of cones, colour vision, or photopic vision, is possible. The 

area where cones are more concentrated is the macula, which is 1.5 mm wide, 

and completely free from rods in its central 1° field (Kaschke,Donnerhacke and 

Rill, 2013, Rosenfield and Logan, 2009). Here, at the centre of the macula, 

called fovea, the best resolution is attained. The first connection between the 

cones and the bipolar cells of the neuronal network occurs outside the fovea. 

Consequently, there are no tissue layers such as ganglion cell and nerve fibre 

layers (Figure 2.4) above the foveal cones, which could cause a low image 

quality due to scattering of light by these layers. For the same reason, the 

central part of the macula (500 μm in diameter) contains no retinal capillaries 

(foveal avascular zone) (Atchison and Smith, 2000). Since rods are not present 
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in the fovea, this area is basically night-blind. At one common exit point, the 

nerve fibres penetrate all the outer layer and connect to the brain. Here, at the 

optic nerve head, the retina does not comprise any photoreceptors. The optic 

nerve head is located about 10° nasally relative to the optical axis and 1.5° 

upwards relative to the fovea (Figure 2.5). 

 

Figure 2.5 a) Functional areas of the retina. b) The density distribution of photoreceptors and 
nerve fibres across the retina relative to the optical axis (00) (Blechinger and Achtner, 2008). 

 

Visual performance 

Accommodation – The refractive power of the eye lens can be changed 

only within a limited range. The upper and lower limits of attainable refractive 

power determine the range of accommodation within which sharp vision is 
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possible. The endpoints of the range of accommodation are called far  and 

near point, respectively 𝑠𝑓𝑎𝑟 and 𝑠𝑛𝑒𝑎𝑟. The inverse distances are called the far 

point refraction Afar = 1 sfar⁄  and near point refraction Anear = 1 snear⁄  (Figure 

2.6). The difference between far and near point refraction is referred to as the 

amplitude of accommodation 

ΔAmax = Afar − Anear        (5) 

The amplitude of accommodation is not constant during life. With 

advancing age, the elasticity of the lens and thus the range of accommodation 

decreases. As a consequence, humans usually need spectacles for near 

vision at the age of approximately 50 (Kaschke,Donnerhacke and Rill, 2013). 

This reduction of ΔAmax (Figure 2.6), called presbyopia, is not a refractive error 

or an eye disease, but a common consequence of aging. 
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Figure 2.6 Top: physiology of accommodation. When the ciliary muscles are contracted and 
the zonular fibres are relaxed the lens acquires a more spherical lens (near vision). Bottom: 
age-dependence of the amplitude of accommodation (Kaschke,Donnerhacke and Rill, 2013). 

Light adaption – The eye is able to maintain a high sensitivity to small 

changes in light intensity across a broad range of ambient luminance levels. 

Full operation of human vision is possible for a luminance between 10-6 and 

108 cd/m2 (Geisler and Banks, 1995). To achieve this, the eye uses two basic 

mechanisms to adapt to the given ambient light conditions. The first relies on 

the photoreceptors which are engaged at different illumination level. Rods are 

used in the scotopic vision and can bear a magnitude of luminance up to 8 

orders of magnitude. Cones operates at higher intensity, covering a range of 

11 order of magnitude. This adaptation mechanism is regulated by biochemical 

and neural stimuli and takes few minutes to adjust to the optimal level. To 

protect the eye from more rapid changes of luminance intensity a faster 
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mechanism, the so-called pupil-reflex, takes place. The inner diameter of the 

iris diaphragm can shrink, reducing the diameter from 8 mm to 2 mm (Figure 

2.7), therefore reducing the area of the aperture stop by a factor of 16.  

 

 

Figure 2.7 Range of illumination levels which can be handled by the eye 
(Kaschke,Donnerhacke and Rill, 2013). 

 

Spectral properties – The spectrum of the light passing through the clear 

structures of the eye and reaching the retina is highly determined by the 

absorption and scattering phenomena of such layers. Figure 2.8 shows the 

transmittance spectrum at different passages through the eye. It can be 

observed that wavelengths below 400 nm and above 1400 nm are totally 

absorbed by the eye’s ocular media, whereas the transmittance remains 

higher than 0.6 in the spectral range between 420 and 920 nm. 
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Figure 2.8 Top: Spectral transmittance inside the eye after the incident light has passed the 
cornea (red), the aqueous humour (blue), the lens (green), and the vitreous (black). Bottom: 
dependence of normalized relative sensitivity of S, M, L cones, and rods on the wavelength 
(Blechinger and Achtner, 2008). 

 

Light with wavelengths between 380 and 780 nm can then be processed 

by the retina, which actually determines the visible spectrum. From the mean 

value of the sensitivity curves of all cones in Figure 2.8-top, we obtain a 

maximum sensitivity at a wavelength of 555nm under photopic conditions. The 

signals of S, M, and L cones are combined in the brain, resulting in a visual 

stimulus interpreted as a colour. Hence, the colour at which an object appears 

to us is not an inherent property of the object itself, but rather depends on our 
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visual impression. To give an example, the colour white appears white under 

illumination at different colour temperatures because, even though the 

spectrum of the reflected light is wildly different, the vision process combines 

the photoreceptor signal with prior knowledge to form the perceived colour. 

2.1.2 RETINAL IMAGING TECHNOLOGY AND TECHNIQUES 

Fundus observation has a relatively short history. The first device capable 

of observe directly the retina was developed by the eclectic inventor Charles 

Babbage in 1847 (Keeler, 2003). The paternity of what we now refer to as 

ophthalmoscope is however attributed to Hermann von Helmholtz (1851). This 

instrument allowed viewing the interior of a living eye through the pupil for the 

very first time. The first prototype included a partially transmitting mirror, used 

to project an external illumination onto the retina, and an additional lens, used 

to compensate the refractive error of the patient’s or/and physician’s eye. That 

simple intuition opened the way to modern fundoscopy.  

Today’s ophthalmoscopes are not much different from Helmholtz’s 

configuration. To see the retina, the primary condition is that the illumination 

and the observational paths must be arranged such that the area illuminated 

and the area observed overlap. Consequently, a beam splitter, pinhole mirror, 

or half mirror must be added to the observation beam path to attain the 

required overlap (Figure 2.9). 

 

 

Figure 2.9 General arrangement of illumination and observation beam paths for fundus 
observation using (a) beam splitter, (b) pinhole mirror and (c) half mirror (or prism) 
(Kaschke,Donnerhacke and Rill, 2013). 
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Based on these conditions, two type of ophthalmoscope configurations can 

be distinguished (Kaschke,Donnerhacke and Rill, 2013, Rosenfield and 

Logan, 2009): 

1. Direct ophthalmoscopes in which the patient’s fundus is directly 

observed, and 

2. Indirect ophthalmoscopes in which an intermediate image of the retina 

is created and observed. 

In direct ophthalmoscopy the illumination and observation beam paths are 

usually slightly tilted relative to each other to minimize interference caused by 

corneal reflections. The light source is commonly provided by a xenon-halogen 

bulb or an LED, which is focused by a condenser and an objective lens onto 

the tilted mirror. In case the physician and the patient are both emmetropic 

(without refractive errors), no compensation lens is required (Figure 2.10).  

 

Figure 2.10 Principle of a direct ophthalmoscope. Illumination beam path in red, and the 
observation path in blue (Kaschke,Donnerhacke and Rill, 2014). 

 

Otherwise, a positive or negative lens can be used to focus the patient’s 

retina onto the physician’s one. In this way the image of the retina is not 

magnified and perceived upright, as the visual cortex of the brain apply an 

inversion of the image. In this configuration, the portion of the retina that can 
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be observed, also known as field of view (FOV) or angle of coverage, is given 

by (Smith,GEORGE and Atchison, 1997): 

𝛼𝑓𝑜𝑣 =
𝑑𝑝𝑎𝑡+𝑑𝑝ℎ𝑦

𝐿
       (1) 

𝑑𝑓𝑜𝑣 ≈
𝛼𝑓𝑜𝑣

𝐷𝑒𝑦𝑒
       (2) 

with [𝛼𝑓𝑜𝑣] = rad. 𝑑𝑝𝑎𝑡 is the diameter of the patient’s pupil, 𝑑𝑝ℎ𝑦 is the diameter 

of the physician’s pupil, or the diameter of the observation aperture of the 

ophthalmoscope if this is smaller, and 𝐿 denotes the distance between the 

patient’s and the physician’s pupil. 𝑑𝑓𝑜𝑣 is the diameter of the FOV on the 

retina, as per Figure 2.11.  

 

Figure 2.11 Principles of a direct ophthalmoscope. The observable portion of the patient’s 
retina (𝛼𝑓𝑜𝑣) is directly proportional of the pupil aperture of the patient and the physician, 

and indirectly proportional to the distance between them.  

 

Equation 1 describe how the FOV increases when the patient’s or the 

physician’s pupil is dilated or when the distance between the two decreases. 

Considering an emmetropic eye, if 𝐷𝑒𝑦𝑒 ≈ 60𝐷, 𝐿 = 35mm, 𝑑𝑝𝑎𝑡 = 5mm and 

𝑑𝑝ℎ𝑦 = 2mm, it follows that 𝛼𝑓𝑜𝑣 = 0,2rad ≈ 11.5°, which corresponds to the 

visualisation of a portion of retina of 𝑑𝑓𝑜𝑣 ≈ 3.3mm. 

In contrast, in the indirect configuration a lens is added between the 

physician and the patient. It is positioned close to the patient eye, forming a 

magnified image of the patient’s pupil in the physician’s pupil plane (Figure 

2.13). As a result, the ophthalmoscopy lens together with the optics of the 

patient’s eye form an enlarged, inverted, and reversed intermediate image of 
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the patient’s fundus. An evolution of this last configuration is the widely used 

binocular indirect ophthalmoscope, which provides a 3D impression of the 

patient’s retina, suitable for evaluating glaucoma and retinal detachment 

(Figure 2.12) (Kaschke,Donnerhacke and Rill, 2013).  

 
Figure 2.12 Conventional binocular indirect ophthalmoscope (Kong et al., 2009). 

 

 

Figure 2.13 Ray diagram of an indirect ophthalmoscope which shows the illumination beam 
path (red) and the observation path (yellow). 𝐿𝑤𝑑 is the working distance of the 
ophthalmoscopy lens, 𝛼𝑓𝑜𝑣 denotes the angle of the retinal FOV, 𝑑𝑓𝑜𝑣 the corresponding 

diameter of the FOV, and 𝑑𝑜𝑝ℎ the free diameter of the ophthalmoscopy lens 

(Kaschke,Donnerhacke and Rill, 2013). 
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This limited FOV provided by direct ophthalmoscopy is primarily due to the 

large distance 𝐿. In indirect ophthalmoscopy this problem is overcome by 

imaging both pupils into one common intermediate plane (Figure 2.13). In this 

configuration the FOV observable can be calculated as 

𝛼𝑓𝑜𝑣

2
= tan−1 (

𝑑𝑜𝑝ℎ 2⁄

𝐿𝑤𝑑
) ⇒ 𝛼𝑓𝑜𝑣 ≈

𝑑𝑜𝑝ℎ

𝐿𝑤𝑑
    (3) 

where 𝐿𝑤𝑑 is the working distance of the ophthalmic device from the 

patient’s pupil, 𝑑𝑜𝑝ℎ is the focal distance of the optics of the ophthalmic 

instrument, 𝐷𝑒𝑦𝑒 is the total refractive power of the patient. As an example, 

using the previous data, and considering  𝑑𝑜𝑝ℎ = 40mm, 𝐿𝑤𝑑 = −5.6cm and 

𝐷𝑒𝑦𝑒 ≈ 60𝐷, we obtain 𝛼𝑓𝑜𝑣 = 0,7rad and, using Eq.2, 𝑑𝑓𝑜𝑣 ≈ 11.6mm. The 

significant increase of the FOV is not the only advantage enabled by this 

configuration. Any possible refractive error of the patient, or the physician, can 

be easily compensated by adjusting the displacement of the intermediate 

image plane. This is the reason why indirect fundoscopy instrumentation, such 

as fundus cameras and optical coherence tomography (OCT) machines, have 

been chosen as the elective imaging devices to perform assessment of the 

retina within the clinical workflow (Kaschke,Donnerhacke and Rill, 2014). 

A wide variety of imaging devices capable of picturing the fundus has been 

created based on these configurations. In this work we will focus on the three 

most widely used in ophthalmic practice: fundus camera, slit lamp and OCT 

machine. 

Fundus Camera - Fundus cameras are the elective instruments used for 

photographic documentation of the eye fundus (Bernardes,Serranho and 

Lobo, 2011). The acquired images can be saved in digital format allowing the 

ophthalmologist to detect any pathology related signs, such as for age-related 

macular degeneration, glaucoma or diabetic retinopathy (DR), also using 

computer-aided diagnostic tools (Abramoff,Garvin and Sonka, 2010, 

Chatziralli et al., 2012). Fundus cameras simplify the clinical documentation 

and progression control of diseases as well, thanks to the patient referral 

software that guide the clinician through the image acquisition session. Like in 

ophthalmoscopy the fundus images are acquired using white light. However, 
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the fundus camera can be operated in different imaging modalities which 

substantially expand the diagnostic options (Kaschke,Donnerhacke and Rill, 

2013): 

 Monochrome images - with the use of specific colour filters it is possible 

to highlight specific fundus structures. For example, when blue light is 

used, the retinal nerve fibre layer becomes clearly visible. 

 Fluorescence angiography imaging - allows visualization of blood 

vessels of the retina and choroid with high contrast via the injection of 

a fluorescent dye into the bloodstream. Thus, leakages and blockages 

can be easily detected, and the haemodynamics can be analysed. 

 Fundus autofluorescence imaging - is used to visualise the topographic 

distribution of substances which are relevant for the metabolism of the 

eye. The functional status of the retina can thus be diagnosed at the 

cellular level. A typical application is the diagnosis of disease-related 

changes in the retinal pigment epithelium by means of the 

autofluorescence of the metabolic pigment lipofuscin. 

 Stereo imaging - normally, fundus cameras produce monocular images. 

However, acquiring images from two different angles (usually aided by 

a guided procedure) generates stereo image pairs which can provide a 

stereoscopic view of the fundus. For example, the stereo imaging mode 

is used to evaluate the depth and morphology of the optic nerve head 

in glaucoma diagnosis. 

 Wide-field images – here, multiple images of different region of the 

same retina are used to create a wide map of the retina. To obtain that, 

the patient is invited to focus onto different spatial distributed targets. 

Each time, an image is acquired and, via image processing software all 

these images of different portion of the retina are registered (stitched 

together) forming a big image of the fundus. 

The main optical components of a fundus camera are the illumination 

system (red beam path in Figure 2.14a) and the observation system (blue 

beam path in Figure 2.14a) (Kaschke,Donnerhacke and Rill, 2013). The beam 
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paths of both systems are merged by a pinhole mirror and pass through an 

aspheric objective lens as well as the refractive parts of the patient’s eye. Here, 

the objective lens 𝐿𝑜𝑏𝑗 plays the same role as the ophthalmoscopy lens of an 

indirect ophthalmoscope, forming a real intermediate image of the illuminated 

fundus in front of the pinhole mirror. Behind the pinhole mirror, a second 

intermediate image is formed by the main objective lens 𝐿𝑚𝑜. With a movable 

focusing lens 𝐿𝑓𝑜𝑐, the rays are then parallelized (focus at infinity). This flexible 

configuration enables multiple optical interfaces, which can be used to attach 

 high-resolution cameras for image acquisition, 

 observer cameras (e.g., infrared CCDs for adjustment purposes in non 

mydriatic fundus cameras), and 

 projection systems (e.g., for fixation targets) 

Behind the pinhole mirror, an aperture stop is located which is imaged by 𝐿𝑜𝑏𝑗 

into the patient’s pupil plane with a decreased image size. It defines the 

diameter of the exit pupil of the observation beam path and thus the optical 

resolution of the fundus image. 

 

 

Figure 2.14 (a) Simplified schematic beam path of the ZEISS FF 450plus fundus camera (Carl 
Zeiss AG, Germany). (b) photograph of the ZEISS FF 450plus fundus camera. 
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Figure 2.15 Example of retinal images acquired using a fundus camera (Topcon TRC-50DX 
Type IA fundus camera fitted with the body of a Nikon D300s (Nikon Corp. Japan)), from 
CORD database (CORD Comprehensive Ophthalmic Research Database, CORD 2019). 

 

Modern fundus cameras are capable of producing images that resemble 

very closely the coloration of a fundus, as seen during direct examination, 

which is a fundamental factor in diagnostics. High-resolution ultra-widefield 

imaging is another standard feature in today’s technology, with a resolution 

that goes below 10m and a field of view of around 200° (>250° with montage 

post-processing of multiple images). The mechanical design and the 

digital/manual interfaces of fundus cameras available in the market are 

capable of offering a comfortable and minimal invasive experience for the 

patient. This is important for stability in long examination procedures and for 

making simpler and more reliable use of the device, which increases operator 

confidence in the results and adds plenty of different auto guided and partially 

automatic procedures. 

Scanning Laser Ophthalmoscope (SLO) – provides wide field images of 

the fundus. The scanning device uses monochromatic laser light with different 

frequencies that sweeps across it in a raster fashion, collecting information 

from multiple layers of the fundus. Reflected light is collected by a light detector 

and a real-time, piece-by-piece image of the fundus is produced on a digital 

monitor. As the SLO only illuminates a small area of the fundus at any one 

time, only a small amount of the patient's pupil is used for illumination, allowing 

the rest of it to be available for light collection. Most SLO systems are confocal, 
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whereby a pinhole is placed in front of the detector, conjugate to the laser plane 

of focus (Webb,Hughes and Delori, 1987). The standard for SLO imaging has 

been set by Optos Panoramic200 (Optos, Inc., Marlborough, MA, USA). and 

its “Optomap” approach (Rosenfield and Logan, 2009) (Figure 2.16). This 

device uses a wide ellipsoidal mirror to image the retina through an undilated 

pupil. Collimated low-powered red and green laser beams are deflected in the 

horizontal and vertical meridians to scan the fundus in 0.25 seconds, 

producing a high resolution (up to 2000 × 2000 pixels) digital colour image of 

virtually the entire retina (200°). Peripheral retinal lesions, difficult to image with 

conventional retinal cameras, can be observed using this instrumentation. 
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Figure 2.16 a) Scanning laser ophthalmoscope schematic. B) Optos Panoramic200 scanning 
laser ophthalmoscope. c) Example of ultra-widefield retinal image obtained via SLO 
(optomap image (Ophthalmic Imaging, 2008), Optos, Inc., Marlborough, MA, USA). 

OCT – Optical Coherence Tomography machines are used to image retinal 

areas below the surface at high lateral and axial resolution (Drexler and 

Fujimoto, 2008). This imaging technique has somehow revolutionised 

ophthalmology, as this is now one of the most used imaging techniques in 

diagnostic use. The working principle is similar to an ultrasound B-mode 

imaging, where the incident light wave is backscattered and backreflected from 

various tissue layers, with intensity being measured over the time delay 

(Figure 2.17). Rather than through time-resolved detection, this is achieved 

through interferometric methods (Drexler and Fujimoto, 2008).  
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Figure 2.17 OCT 2D scan technique. The time delay of the reflected light is used to reconstruct 
the axial position of different tissue layers (Kaschke,Donnerhacke and Rill, 2014). 

 

While the principles of the OCT go beyond the scope of this review, we 

note that this technique has bridged the gap between conventional ultrasound 

and confocal microscopy imaging, both in terms of resolution and depth of 

penetration, allowing volumetric and biometric quantitative assessment. The 

latest generation of OCT are extremely fast, with a high signal-to-noise ratio 

and no moving parts. To give some context, the most recent OCT machine 

produced by Zeiss, the CIRRUS 6000, has a depth scan of 2.9mm with an 

axial resolution of 5m in tissue. These characteristics make OCT the elective 

diagnostic technique for macular thickness and advanced retina analysis, 

anterior segment examination and glaucoma detection (Figure 2.18).   
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Figure 2.18 Overview of the data provided during an OCT examination (from CORD (CORD 
Comprehensive Ophthalmic Research Database, CORD 2019)). From the left, the first column 
represents the true colour (top) and the red free image (bottom) of the retina, macula 
centred. The green square represents the portion of the retina that has been scanned. The 
central column shows the 2D images of two different cross sections inside the scanning area. 
The column on the right displays some anatomical information and the 3D reconstruction of 
the surface of the retina that has been scanned. 

 

Slit lamp - With a standard slit lamp, a direct observation of the posterior 

eye segment is not possible due to the refractive power of the eye’s optical 

system (Figure 2.19). However, the fundus can be observed with an auxiliary 

lens placed in front of the eye which shifts the far point, and thus the 

intermediate image of the fundus, to the focal plane of the slit lamp microscope 

(Kaschke,Donnerhacke and Rill, 2013). For this purpose, positive or negative 

lenses with high optical power can be used (60D or 90D) (Figure 2.20). 

Positive lenses provide an inverted, real intermediate image. In principle, 

fundus observation with positive lenses corresponds to indirect 

ophthalmoscopy. The only difference is that the intermediate image is not 

viewed with the “naked eye”, but with the slit lamp microscope. Compared to 
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negative lenses, the field of view of the fundus is generally larger with positive 

lenses, as positive lenses image the entrance pupil of the microscope with 

reduced size into the patient’s pupil.  

 

Figure 2.19 a) Basic configuration of a slit lamp. (b) Slit lamp (Kaschke,Donnerhacke and Rill, 
2013). 

 

 

Figure 2.20 Principle of fundus observation via slit lamp. The slit lamp is transformed in an 
indirect ophthalmoscope by the means of an additional intermediate lens 
(Kaschke,Donnerhacke and Rill, 2013) 

 

An important sub-group of auxiliary optics are mirror contact glasses. As 

they have built-in reflective surfaces, the accessible field of view reaches 

beyond the central fundus area (Rosenfield and Logan, 2009). This optical 

arrangement thus allows viewing of the peripheral parts of the eye right up to 

the iridocorneal angle, including the vitreous and the vitreoretinal interface. 

Commercially available Goldmann three-mirror contact lens usually consist of 
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a 64D central viewing lens and three lateral mirror surfaces which are arranged 

at 120° from each other, and tilted at an angle of 59°, 66°, and 73° each 

(Figure 2.21). The procedure requires a great deal of practice and can be 

uncomfortable for the patient. 

 

 

Figure 2.21 a) A Goldmann three-mirror lens. b) The central lens (PP) allows ones to access 
to the posterior pole, and the three peripheral mirrors 120° apart, at 73° (I), 67° (II) and 59° 
(III), allow the retinal periphery to be explored (Probert, 2016) 

 

 

Figure 2.22 Example of slit lamp images of the fundus from CORD database (CORD 
Comprehensive Ophthalmic Research Database, CORD 2019). 

 

Modern slit lamps offer state of the art optics, with anti-reflection coatings 

and magnification powers that can exceed 40x, to better visualise structural 

details of the front and the back of the eye. Standard slit lamps include also 

different illumination features and the colour filters (green filter to better 
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visualise blood vessels, blue filter to enhance contrast in fluorescence analysis 

and red filter for observation of the different retina layers).  

2.1.3 IMPORTANCE OF FUNDUS IMAGING FOR RETINOPATHIES 

ASSESSMENT 

Fundus imaging has been recognised as one of the most important 

diagnostic asset for ophthalmologists (Welch, 2014). Thanks to retinal imaging 

many common eye conditions can be detected, for example, DR (Donald S 

Fong et al., 2004), age-related macular degeneration (Lim et al., 2012) and 

glaucoma (Weinreb and Khaw, 2004). According to the World Health 

Organization these three conditions alone are responsible for 14% of the total 

avoidable blindness, more than 5 million people globally (Pascolini and 

Mariotti, 2012a). Moreover, retinal images can be used to identify systemic 

pathologies that impact on the morphology of the fundus, such as hypertension 

(Gerald Liew et al., 2009, Sairenchi et al., 2011), malaria (Beare et al., 2006) 

and neurological conditions (Bidot et al., 2013), as well as offer a source of 

biomarkers for chronic illness and long-term conditions (MacGillivray et al., 

2014). For these reasons, every general practitioner is expected to operate 

proficiently an ophthalmic imaging device within their basic training 

(Benbassat,Polak and Javitt, 2012).  

The transition from analog to digital imaging, and the recent advancement 

in medical imaging technology, has enriched retinal imaging with new and 

more powerful capabilities. Being able to capture and immediately display any 

repeated images as well as store, transmit and instantly access them remotely, 

has radically shaped modern ophthalmology. Amongst the advantages, the 

implementation of computer-aided diagnostic is, in many ways, the most 

relevant one. Not only for the implementation of new techniques otherwise 

impossible, OCT and optical bioscopy to name a few, but also for the capability 

to address immanent and future diagnostic challenges (automatic assessment, 

large population screening, etc.)  (Bruce et al., 2013).  

In this prospective, retinal images are the perfect candidates. Their rich 

level of detail and the high contrast of the anatomical and pathological features, 
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with respect to the background (Figure 2.23), make fundus images very 

appealing for computer vision scientists. Moreover, all this information is 

accessible via an imaging technique that is fast and non-invasive. 

 

Figure 2.23 Clinical signs of diabetic retinopathy on fundoscopic examination (T. Y. Wong et 
al., 2016). 

 

2.2 SCREENING PROGRAMMES WORKFLOW 

Systematic screening programmes have the potential to prevent visual 

impairments, and eventually blindness, if widespread and cost-effective 

principles are applied. To achieve this, an appropriate screening workflow 

must be designed. This allows the health service administrators to break down 

the screening process pipeline into its fundamental elements, maximizing 

efficiency and cost watching at every steps. In particular, the workflow has to 

take into consideration the following factors: the size of the population 

involved, the environmental and geographical limits, the health care service 

capabilities and the financial resources available. The economic aspects are 
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definitely essential in order to keep the healthcare provision running without 

structural problems. In the case of systemic diseases, such as DR, screenings 

have proven to be highly economically sustainable due to the long term 

benefits. Prevention within the diabetic community, in fact, largely reduces the 

social and economic impact of DR effects, leading to a sustainable system for 

the annual national health budget (Looker et al., 2013, Bachmann and Nelson, 

1998, Arun et al., 2009).  

 

 

Figure 2.24 Flow charts of the ‘‘disease/no disease’’ manual and automated graded systems 
for assessment of eyes, images and patients. The automated system detected dot 

haemorrhages/microaneurysms for diabetic retinopathy screening (S. Philip et al., 2007a). 



37 
 

 

It’s the case of United Kingdom, where every patient affected by diabetes 

mellitus over the age of 12 (almost 2 million people (Scanlon, 2008)) is offered 

an annual retinal examination as it has been shown to be a cost-effective way 

of reducing visual impairment (Cummings et al., 2002). To handle such a huge 

number of patients, even for a high-income country, not only the image 

collection but also the clinical assessment process must follow an optimized 

scheme. Lately, great expectations have been placed on automatic and semi-

automatic software. A good example of image grading workflow is offered by 

the Grampian Diabetes Retinal Screening Programme in North-East Scotland 

(Figure 2.23) (S. Philip et al., 2007a). In particular, this programme was 

designed to validate the implementation of an automatic grading system in the 

assessment chain. The two nodal points in this flowchart of binary decisions 

are the image quality evaluation (cyan in Figure 2.24) and the pathological 

sign detection (pale yellow in Figure 2.24). Both of these steps imply the 

knowledge of good quality (or clinical standard quality or gradability) for a 

retinal image and the knowledge of the features associated with a pathological 

state (or, symmetrically, the knowledge of the features of a healthy retinal 

image, where everything outside this condition is considered as a potential 

pathological sign). However, while in the case of the physician this decision is 

made subjectively based on previous medical knowledge and experience, for 

software this decision has to be taken via objective measurements, hence the 

need to translate the human’s decision process into a digital process made of 

isolated quantifiable steps. This problem, as it will be described in more details 

further in this work, has different possible solutions, each of them are the very 

core of the current research activity in the field. 

2.2.1 RETINAL IMAGING IN THE FIELD 

Medical intervention directly in the field has a number of challenges, 

whether it’s a low-income setting or an island in the north of Europe. Field 

medical screening requires essentially three elements: a provisional or mobile 

setup to perform the medical tests under standard level of quality (e.g. 
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according to the UK National Institute for Clinical Excellence guidelines, DR 

screening tests should have sensitivity and specificity of at least 80% and 95% 

respectively, with a technical failure rate of less than 5% (Excellence, 2001)), 

trained personnel and an informatics system where personal data can be 

stored and used for referral, patient identification and follow-up.  

In retinal imaging, instrumentation transportation and logistical issues are 

particularly relevant. Traditional tabletop retinal cameras are high-cost, bulky 

and designed for skilled operators. The transportation of such fragile piece of 

equipment over the screening site can represent a big challenge. While vans 

and trucks can be successfully employed in urban contexts as mobile units 

(Leese et al., 2008), in rural settings this is not always applicable.  

The geographical barriers and the limitations of the health care system, is 

what low- and middle-income countries, in particular, struggle to address. The 

vast majority of the “hard-to-reach” or “hidden” audience, in fact, live in low-

income settings (Yip et al., 2008, Grunfeld, 1997). The term hard-to-reach is 

not only used to identify those patients who are difficult to identify for geo-

economic reasons (isolated remote or inaccessible areas due to lack of 

infrastructures) but also those groups that see western medicine with 

scepticism or mistrust (Bonevski et al., 2014). The “social cognitive theory” 

explains how a person acquires and maintains specific behavioural patterns 

and how a person’s behaviour influences and is influenced by personal factors 

and the social environment (“reciprocal determinism”) (Bandura, 1977, 

Bandura, 2001). If the knowledge or importance of accessing screening 

programmes fails to be transmitted, no intervention strategies will be put in 

place by that community to overcome that barrier. The other major limit in these 

areas is the lack of specialists and medical facilities. In the work of Piyasena 

all this factors have been analysed in a systematic review (Piyasena et al., 

2019). Over a total of 77 different studies about problems related to systemic 

screening programmes were considered, 3 from low-income countries, 11 from 

middle-income countries, 7 from upper middle-income countries and 56 from 

high-income countries. Lack of knowledge (19/77), lack of awareness of the 

screening programme (15/77) and low educational attainment and poor 
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literacy (16/77) were amongst the principal problems identified at user level 

(Figure 2.25). The reduction of effectiveness of screening programmes has 

therefore to be accounted for a combination of structural and social factors. 

 

 

Figure 2.25 Harvest plot showing screening programme user barriers (Piyasena et al., 2019). 

 

2.2.2 MOBILE TECHNOLOGY FOR RETINAL SCREENING 

In this paragraph we focus exclusively on mobile technology developed for 

fundus imaging applications.  

According to the definition of the World Health Organisation, mobile e-

health or mHealth is “the use of mobile and wireless technologies to support 

the achievement of health objectives” (Organization, 2011). This branch of 

telemedicine has grown fast in the last decade, thanks to the following 

advantages (Perera, 2012): 

1. Portability – Smartphones and tablets are generally small in size and 

weight, making their transportation easier and less expensive. The 
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operational functionality is provided by on-board batteries, which can 

also be recharged via low voltage systems (portable solar panels or 

other energy harvesting solutions) simplify usage even place 

disconnected from the main power line. 

2. Inexpensive – Compared to classic ophthalmic tabletop devices 

(≥£10000) smartphones and tablets cost a fraction (<£1000) 

3. Easy to use – The intuitively usage of mobile technology is one of the 

reasons for their incredible success in the market. For the same reason 

smartphone applications and add-on are relatively simple to master, 

reducing training time for healthcare personnel and locally recruited 

operators, boosting ground operations such as population screening.  

4. Low barrier of acceptance – a smartphone device looks “familiar”, and 

there is widespread mobile literacy. 

5. Accessibility – the low-price and the ease of use have determined the 

spread of this technology almost everywhere a mobile cellular network 

is installed. This has built over time a good literacy of mobile devices 

which makes them well recognisable for most of the populations, 

increasing their acceptability especially for medical intervention, 

respect to the classic bulky, immersive and noisy instrumentation. 

6. Embedded computing power – mobile device functionalities are 

enabled by a processor, memory and hard storage, making them 

effectively a small computer. This can be exploited to develop image 

processing and data management system directly on-board. 

7. Built in software – a running system operator can be of support for 

software applications and machine-user interface supports.  

8. Internet connectivity - According to International Telecommunication 

Union (ITU), the number of mobile-cellular telephone subscriptions is 

greater than the global population. Growth in mobile cellular 

subscriptions in the last five years was driven by countries in Asia-

Pacific and Africa regions. Nearly the entire world population (90%) now 
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lives within reach of a mobile cellular network. Furthermore, 90% of the 

global population can access the Internet through a 3G or higher speed 

network (ITU). Thanks to this spread, images and data acquired in the 

field can be transmitted in clinical facilities everywhere in the world, 

optimising resource management and clinical assessment capabilities. 

As a result, some smartphone adapters for retinal image acquisition have 

been validated for screening in the field (Bastawrous et al., 2016) and are now 

available for purchase on the market (Table 2.3).  

Table 2.3 Commercially available smartphone adapters for retinal imaging under £1000, at 
the time of this work (September 2019). Prices are referred to August 2020. Where possible 
the field of view has been quoted. 

Manufacturer 
Smartphone 

adaptors 
Description Cost 

Peek Vision Peek Retina 

CE registered class 1 medical device. It 

is a universal smartphone clip that 

enables retinal imaging through a dilated 

pupil. Exploiting the smartphone’s inbuilt 

camera, the clip converts the device in a 

digital direct ophthalmoscope (Vision).  

£180 

D-Eye D-Eye Retina 

Works only with iPhone. Smartphone 

camera clip with illumination and corneal 

glare suppression filter. Can produce 

photos and video, with a field of view up 

to 20°, for clinical assessment (D-Eye). 

$544 

Volk Volk iNview 

It enables to capture wide-angle (50°) 

digital colour images of the fundus using 

an Apple iPhone or iPod. Is composed 

by a condensing lens attached to a 

smartphone clip. The user is assisted by 

an app that facilitate calibration and 

enables auto capture (Volk). 

$799 

oDocs Eye 

Care 

oDocs 

Fundus 

It’s an open-source 3D printable adapter 

that converts any smartphone into a 

fundus camera. It consists of a clip with a 

mounting bracket for a condensing lens, 

which allows retinal imaging up to 40° of 

field of view (Care). 

Cost of 

condensing 

lens ~£100 

oDocs nun 

Capable of both mydriatic and non-

mydriatic retinal imaging. It is a portable 

retinal examination device that can be 

used with a broad range of smartphones 

running on the iOS and Android 

platforms. The device can be used 

$1120 
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independently as a handheld 

ophthalmoscope or in conjunction with a 

smartphone (Care). 

Welch Allyn iExaminer 

Adapter designed to attach the PanOptic 

Ophthalmoscope to the iPhone. Requires 

the PanOptic Opthtalmosocope (included 

in the total cost). 

~$1200 

 

 

 

Figure 2.26 Smartphone adaptors for fundoscopy applications. a) Peek Retina, b) D-Eye 
Retina, c) Volk iNview, d) oDocs Fundus, e) oDocs nun and f) iExaminer. 

 

Despite these advantages, mobile technology has been actively introduced 

in fundoscopy practice only recently. This slow adoption, respect to other 

telemedicine branches, has primarily been identified with privacy and security 

concerns, dissatisfaction about content availability (completeness of 

information regarding a clinical exam) and with the lack of integration of mobile 

technology in the healthcare screening workflow (N. M. Bolster,Bastawrous 

and Giardini, 2015, Gagnon et al., 2015, Lo et al., 2012, Maguire et al., 2008).  
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While these issues are being addressed, the number of applications in 

ophthalmology screening are increasing across all the different income 

settings (Armfield,Gray and Smith, 2012, Ayatollahi et al., 2017, Poyser et al., 

2019). The majority of the smartphone based retinal imaging adapter are 

designed as a clip that can be inserted in front of the camera, and generally 

include: an illumination source (usually LED) to generate the illumination 

beam, some basic optics (mirror or prism) to overlap the projected illumination 

beam with the observation area of the retina and a filter or diffuser to reduce 

illumination intensity and glare (Nigel M. Bolster et al., 2014). Despite the 

potential for impact these devices have already shown in tackling population 

screening that there are still some limitations that need to be addressed in 

order to fully exploit this technology. In particular, image quality in smartphone 

based fundoscopy still represents a barrier in automatic 

classification/assessment of retinal images.  

 

 

Figure 2.27 Representative mydriatic images of an healthy retina acquired with Peek Retina 
on a healthy subject (Bastawrous,Giardini and Jordan, 2014). 

 

The substantial difference in quality and chromatic features compared to 

classic fundoscopy makes these images difficult to analyse for automatic 

software, necessitating expert manual grading. Some example of images 

acquired with smartphone adaptors are shown in Figure 2.27 and Figure 2.28 

(to compare with Figure 2.15). 
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The factors that contribute to the general degradation of the quality of 

images acquired in the field with smartphone adapters are several. In first 

approximation, the chromatic degradation and the poor contrast of the images 

(especially in the peripheral ring) are the most prominent. These are caused 

by environmental factors and lack of stable link between the camera optics and 

the patient’s eye. While the first is related with the image acquisition setting 

(provisional clinic or patient’s home), where artifact caused by 

illumination/reflections are difficult to control, the second has more to do with 

design choice, where devices that use direct contact with the patient to 

stabilise the image acquisition have to deal with patient acceptability, hygiene 

and disinfection problems. In Chapter 3 and Chapter 4 the complete 

description of those phenomena are detailed. 

 

Figure 2.28 Representative retinal images of diabetic retinopathy taken with D-Eye. (Top left) 
Optic disc in a retina with no apparent diabetic retinopathy. (Top right) Mild non-proliferative 
diabetic retinopathy. (Bottom left) Moderate non-proliferative diabetic retinopathy. (Bottom 
right) Panretinal photocoagulation scars in a proliferative diabetic retinopathy. (Russo et al., 
2015) 
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The quality of the image sensor of mobile technology is not an issue as this 

has shown to constantly improve over time, with the new smartphone and 

tablet generations expected to be more and more suitable as clinical imaging 

tools. The image acquisition environment and modality (ambient illumination, 

reflections, device optics artifacts, device illumination artifacts, etc.), however, 

have a direct impact on the formation of noise and artifacts on mHealth retinal 

imaging. 
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CHAPTER 3. IMAGE QUALITY IN RETINAL IMAGING 
 

 

 

 

3.1 RETINAL FEATURES: MORPHOLOGY AND CHROMATICITY 

As described in the previous chapter, imaging the fundus of the eye is not 

very different from trying to peek inside a dark room through the door’s keyhole 

(pupil). The light needs to be projected through the pupil, and the focus of the 

optics has to be adjusted to match the focal plane corresponding to the retina. 

For this reason, any element that interacts with the imaging acquisition process 

is potentially a source of unwanted alteration of the final image chromaticity 

and morphology. In the clinical setting these alterations are kept to a minimum, 

or, more properly, to a level that guarantees a high rate of images whose 

quality is sufficient to perform a clinical assessment. From now on, we will refer 

to this level of quality as “clinical quality”. When collecting retinal images in the 

field, the sources of alteration are far less controllable, therefore the rate of 

clinical quality images can drop massively (Yu et al., 2012b). 

To understand the differences between the two scenarios, we shall look at 

Figure 3.1. Here, two true colour fundus images are compared: the left image 

comes from a fundus camera operating in a clinical facility, while the image on 

the right has been obtained with a smartphone operating in the field. A classic 

clinical quality retinal image appears as a rectangular picture displaying a 

circular portion of the retina on its centre (the FOV covered by classic 

fundoscopy can vary between 30° and 60°, ~5mm to ~10mm), framed by a 

black uniform background (Figure 3.1, top). The image obtained in a non-

clinical setting by a mobile device, not primarily designed for fundoscopy, has 

the characteristic of a classic photo, with the chromaticity massively affected 

by the ambient light and the presence of some of the classic artifacts of 

photography (reflexes, fuzzy contours, poor contrast and so on, Figure 3.1 
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bottom). On both images though, the main anatomical features are displayed. 

In the image acquired with the smartphone, the morphology and chromatic 

information are still usable for clinical assessment. This is crucial because, for 

early detection of some pathologies, such as DR or glaucoma, this information 

might be sufficient for an effective diagnosis (Bastawrous et al., 2016).  

       

 

Figure 3.1 Example of classic true colour fundus image obtained via indirect ophthalmoscopy 
(top) and direct ophthalmoscopy (bottom). The retina on the top has been imaged using a 
fundus camera with a 𝐹𝑂𝑉 = 45° (MESSIDOR database (Etienne Decencière et al., 2014)). 
The images on the bottom has been taken on a mydriatic eye using a smartphone in a non-
clinical setting (𝐹𝑂𝑉 ≈ 14°). 

Understanding which are the important elements that allow a clinician to 

assess the health condition of a retina, is the topic of the following. The main 

anatomical features that can be found on a retinal image are (Qureshi et al., 

2012):  



48 
 

 Optic nerve head 

 Blood vessels 

 Macula (and Fovea) 

 Abnormalities (dark lesions, bright lesions and new vessels) 

Each of these features have a characteristic morphological and chromatic 

appearance, with small and well documented variations amongst subjects 

according to age, pigmentation, sex and so on. Therefore, any alteration of 

such appearance is a potential indicator of a pathological condition. 

Great effort has been put in formalising this phenotypical appearance using 

measurable criteria, so that objective evaluation techniques can be developed. 

As it will be more extensively explained later, the same criteria can be used to 

set up an image segmentation algorithm, for instance, for abnormality 

classification. Below, the description of such criteria is presented. 

Optic Nerve Head (ONH) – It appears as a bright circle, or slightly oval in 

shape, with yellow or white colouring, approximately 1.5mm in diameter 

(Goldbaum et al., 1996). It can easily be identified due to its shape and high 

contrast with respect to the background (especially within the red and green 

channel or the RGB colour space) and because the blood vessel network 

converges at the ONH. Sometime called optic disc (OD), the ONH has a 

central round portion called the optic cup (OC). The portion of tissue between 

the disc margin and the cup is called neural rim or neuroretinal rim (Figure 

3.2). The nasal region of the OC is in general the less accessible, because 

occluded by the blood vessels.  
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Figure 3.2 Retinal image centred on the Optic Nerve Head. 

Measuring the dimensions of OD and OC is a key diagnostic procedure. 

For instance, glaucoma causes the degradation of the optic nerve fibres 

leading to an enlargement of the OC, and atrophy of the neuroretinal rim 

(Bourne, 2006). Parameters such as the vertical cup-to-disc ratio can provide 

a good indicator of such condition. In order to better determine the boundaries 

between the rim and the OC and between the entire ONH and the background, 

it is useful to get the 3D perspective of this retinal region (Figure 3.3).  

 

Figure 3.3 3D topography of the retina, centred on the ONH. a) represents the 2D portion of 
the retina that has been scanned (approximately 6 mm x 6 mm of retinal surface), with the 
edge between the ONH and the fundus magnified in the small square. b) represents the 3D 
reconstruction obtained by combining 256 OCT slices from CORD (image c) is an example of 
such slices). The slice c) represent a scan of approximately 6 mm x 11.6 mm of retina, and the 

depth of approximately 23 m. 
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The ONH appears as a concavity from where the vasculature and the optic 

nerve emerge. The contour surrounding the dip raises with respect to the outer 

border of the OD. This characteristic morphology reflects the chromatic 

appearance of the rim and the OC in the retinal image. 

Blood vessels – the four main arches, formed by the central retinal vein 

and artery, branch out from the optic nerve head to frame the temporal and the 

nasal side of the retina (Figure 3.4).  

 

Figure 3.4 Blood vessel arches running out of the optic nerve head (left eye). The two nasal 
arches (left side) and the two temporal arches (central and right side), both composed by a 
pair of arteries (red) and veins (blue). 

 

This prevents the blood vessels from creating an obstacle between the light 

coming through the transparent structures of the eye and the chromatic 

receptors of the retina. Blood vessels have the characteristic long tubular 

shape with a diameter that decreases as the distance from the optic nerve 

head increases. They also show a natural mild tortuosity which can become 

severe due to abnormal growing or vascular diseases (Han, 2012). Amongst 

the most important geometrical parameters that are measured to establish the 

presence of a pathological condition we can find: width (cross-section 

diameter), tortuosity (relative curvature), branching morphology (angle and 

coefficient), and fractal dimension of the vasculature (Jordan et al., 2017). 
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Changes in these biomarkers are related to hypertension, obesity, 

cardiovascular disease, cerebrovascular diseases, and stroke (Heneghan et 

al., 2002b, Leung et al., 2004b, J. J. Wang et al., 2006a, T. Y. Wong et al., 

2001, Patton et al., 2005b).  

As for the chromatic content, blood vessels have a red hue, with a lower 

saturation value with respect to the background. Another important chromatic 

feature is the central reflex of the large vessels, which is sometime exploited 

to identify the centreline of the vasculature in computer aided tools (Bhuiyan 

et al., 2014, Muhammad Moazam Fraz et al., 2012b). Altogether, the chromatic 

and morphologic information allows the detection of the blood vessels and 

artery/vein classification (Figure 3.5).  

 

Figure 3.5 Blood vessel extraction and artery/vein classification example, from RITE 
(Hu,Abràmoff and Garvin, 2013). Arteries (red) and veins (blue) crosses each other in the 

green sections. 

 

Macula and fovea – in the central area, surrounded by the vascular 

arcades, lies the macula. It appears as a circular region of approximately 5mm 

in diameter, with a gradual darkening appearance that reaches its maximum 

in the centre, the fovea. This appearance is due to the xanthophyll pigments 

which protect the photoreceptors, in particular the cones, where they have 

here their distribution density peak. Like for the ONH, the cross section 

obtained from the 3D topography shows how the macula profile is 
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characterised by a gradual bulge of the surface as we approach the fovea, and 

by a dip in the very centre of the fovea (Figure 3.6).  

 

 

Figure 3.6 3D reconstruction of 7 mm x 7 mm portion of the retina, centred on the macula. 
a) 3D topography obtained by combining 256 OCT slices from CORD (image c) is an example 
of such slices). b) the same topography represented in a) with the superimposition of the 
corresponding retinal image, so to highlight the morphology of the macula. c) is an example 
of the OCT slice, which corresponds to approximately 7 mm x 13.56 mm of retina, and the 

depth of approximately 27 m. 

 

The localization of the macula is not always easy, since the different 

pigmentation can decrease the contrast of this area with respect to the 

background (especially in the blue channel where the contrast is maximum). 

This task usually relies on some anatomical assumptions regarding the relative 

position between the macula, the ONH and the vessel arches, far more easy 

to segment.  

Abnormalities - In a clinically gradable retinal image these are the features 

that are associated with some pathological condition. There are three main 

observed abnormalities that indicate disease: bright lesions, dark lesions and 

new vessels (Patton et al., 2006, Jordan et al., 2017). Under bright lesions we 

have exudates (lipoproteins) and cotton wool spots (superficial retinal infarcts). 

Microaneurysms and hemorrhages (dot, blot and flame) are examples of dark 

lesions. New vessels are dark features that can be detected due to the fact 

they do not take paths of known non-pathological retinal vessels. In Figure 3.7 

a broad overview is shown. 
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Figure 3.7 Broad overview of fundus images containing pathology: (a) Normal; (b) Mild NPDR; 
(c) Moderate NPDR; (d) Severe NPDR; (e) Prolific DR; (f) Macular oedema (M. M. Fraz et al., 
2012a). Scale was kept the same for all the images for comparative reasons. Unfortunately, 
this scale makes microaneurysms and soft exudates not as visible as the other lesions. For a 
better visualisation of this kind of lesion refer to (M. M. Fraz et al., 2012a). 

 

3.2 MANUAL VS AUTOMATIC ASSESSMENT 

Clinicians usually examine directly the retinal images, by using their 

judgment and experience. The same visual strategies can be adopted by 

computer software if these are converted into numerical values (e.g. colours, 

sizes, thresholds). However, the mechanisms that make a clinical assessment 

so robust are difficult to be translated, because they are not fully understood. 

From the other side, computer image processing can exploit levels of 

information that are inaccessible for human operators (e.g. infrared light 

spectrum, spatial frequency domain). 

3.2.1 HUMAN VISION: A COGNITIVE PROCESS 

Over the years, biologists, neurologists and psychologists have coined 

many terms to define the mechanisms that underpin the ability of animals (and 

in particular humans) to explore the surroundings using vision and retrieve 

from it the information needed for their successful survival. Visual cognition, 
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high-level vision, mid-level vision and top-down processing are just some 

examples (Cavanagh, 2011). These are not synonyms nor complementary 

concepts. Rather, they refer to different approaches to the tangled problem of 

breaking down “vision” to its fundamental blocks. The truth is that we are only 

starting to scratch the surface on how visual perception works and how it is 

processed by our brain. For this reason, researchers in this field tends to avoid 

explicit models when presenting a new theory about visual cognition. 

Nonetheless, they all agree that this is one of the most challenging and exciting 

open question in front of us, and an answer is therefore needed. The 

flourishing of research works about this topic, especially in the last 20 years, 

is evidence of this (Tory and Moller, 2004, Xiao and Liu, 2013, Sakaguchi et 

al., 2017, Pylyshyn, 1999). 

 

Figure 3.8 Visual system path, from retinas to the brain (Image created by Miquel Perello 
Nieto and distributed under CC BY-SA 4.0). 

 

A common ground in this field it is considering vision as the combination of 

two processes: measurement and inference. In the measurement part, light-

sensitive neurons transmit spatially localised signal intensities, for their 

parameter of interest (cones or rods), to the optic nerve and into the brain 

(Figure 3.8). The whole measurement chain is hard-wired, reflexive and 



55 
 

dependent by the surrounding context and attention, and the result is a raw 

and sketchy perception of the world (Cavanagh, 2011). To been able to identify 

surfaces, objects or even recognise faces the visual system must infer. To be 

clear, inference is not a guess, but a rule-based decision from partial data to 

the most appropriate solution. Deconstructing the mechanism of inference is 

difficult and advances in the field are very slow (Biederman, 1987). The 

majority of the researchers on vision have focused on the measurement 

components, which are accessible with in-vivo single cell recording and study 

of direct effects of specific stimuli on human behaviour. However, is clear that 

a large-scale information processing system oversees the whole visual 

computation. Thanks to the large improvement of computer vision and the 

more organic synergy between biologist and physiologist, the research effort 

on the inference mechanism is now experiencing a renewed push (Körding et 

al., 2007, Norris and Kinoshita, 2008, Marewski et al., 2010).  

Regardless of the approach selected, the process of collecting information 

from the retina and use it to solve the inference problem is generally called 

object knowledge. This independent and sophisticated mechanism uses 

different areas of the brain, and their interconnections, to achieve the goal, and 

involves classes of process such as memory, experience and context 

information processing, which use 30% to 40% of the total cortical surface 

(Grossberg, 1997, Ungerleider, 1982).  

  

Figure 3.9 On the left, partial and complete version of multiple-component objects. On the 
right, some example of 5 different stimuli used in the experiment of degraded objects 
(Biederman, 1987). 
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Some of the most organic theories regarding the assessment of this 

process can be traced back to the work of Biederman (Biederman, 1987). This 

pioneer of visual cognition is the father of the so called recognition-by-

components theory. The fundamental assumption of this theory is that even a 

modest set of components can be sufficient to determine an object using some 

readily detectable components of the edges in the 2-dimensional image. Such 

edge components are: curvature, collinearity, symmetry, parallelism and co-

termination (or connection between segments’ vertexes). These elements 

alone are sufficient to infer from the 2D image the corresponding object. 

Surface characteristic, such as colour or texture, have only secondary roles in 

primal access. This mechanism becomes particularly sophisticated when the 

task involves the perception of incomplete or degraded objects (Figure 3.9). 

The rate of successful identification with a limited amount of components (3 to 

4 components for objects of 6 to 9 components) is above 90%. This denotes 

the robustness and the massive influence of previous knowledge (and perhaps 

other hidden layers of processing) in object recognition (Figure 3.10).  
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Figure 3.10 Presumed processing diagram for object recognition as designed by Biederman 
(Biederman, 1987). 

More recently, a number of works have explored the role of T-junction, L-

junction and end-line in image understanding. In particular, the work of Rubin 

(Rubin, 2001) demonstrated that junctions play a crucial role in illusory contour 

perception and model completion, gaining a privilege role in scene 

segmentation. Yankelovich and Spitzer (Yankelovich and Spitzer, 2018) 

developed a model able to extract illusory contours from a grey tone image, by 

introducing simple desired object properties and minimizing a cost function that 

assign a value for each of the object boundary configurations. Worth 

mentioning is also the work around the description of filling-in colour illusions 

triggered by edges (Cohen-Duwek and Spitzer, 2019).   

After this overview on how visual perception works, it appears quite clear 

that we are dealing with a very complex topic, far from been fully extricated. 

Nonetheless, this process suggests a strategy similar to a Bayes classification 

(Fukunaga, 2013), which, is similar to the one exploited by some computer 

vision algorithms for tasks such as object detection.  
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The other fundamental outcome of these theories is that not all the 

elements of a 2-D image are strictly essential for its classification/identification. 

An image that is partially degraded might still contain the information we are 

looking for. In the context of this research work, a retinal image that is affected 

by quality distortions can still have the elements the clinicians need to identify 

the presence of a pathological condition. This is because vision is an inferential 

process. Understanding where the boundary between measurement and 

inference is located, could automatically define what is useful clinical 

information and what is not. As previously indicated, this is still far from being 

achieved. What can be done, though, is to establish, subjectively, when an 

image is clinically assessable (or has appropriate clinical quality) or not.  

3.2.2 PIXELS AS SPATIAL AND CHROMATIC INFORMATION 

CARRIERS 

A planar digital image (in the following referred to simply as a “digital 

image”) can be defined as a function of a two-dimensional space 𝑓(𝑥, 𝑦), where 

𝑥 and 𝑦 are the spatial coordinates and the amplitude of 𝑓, at any pair of 

coordinates, is a vector function that encodes the visual content (intensity 

function), such as luminance, or colour (Gonzalez and Wintz, 1977). In 

computer vision, every single element of this 2D matrix is called pixel. 

According to this description, each pixel is able to provide two pieces of 

fundamental information: the spatial position within the image and the related 

intensity value. 

Connected regions of the image with the same intensity denote pixels 

belonging to the same object, or in general to a cluster with similar properties. 

The intensity, in medical imaging, depends on the physical properties of the 

region being imaged in respect to the specific source of energy used to acquire 

the image (electromagnetic, acoustic, ultrasonic, electronic, etc.). A classic 

example is x-ray imaging, where the radiation emitted by an electromagnetic 

source hits the body, passes through it, and the remaining energy is collected 

by a detector. The intensity level depends on the degree of absorption of the 

tissues, the more the absorption the lower the intensity captured by the X-ray 
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detectors. Here, absorption is mostly related with density of the tissue. That is 

why this technique is widely used to inspect the status of bones and soft 

tissues with different cellular typology (Figure 3.11). 

 

 

Figure 3.11 CT-scan of a thorax. The different tissue densities correspond to different grey 
levels. 

 

To enrich the level of information, images produced by different energy 

sources can be overlapped. This strategy is particularly successful mostly 

because human vision has evolved to deal with edge detection. The retina is 

sensitive to three different wavelengths, corresponding to the red, green and 

blue regions of the visible light spectrum, which give rise to three separate 

streams of information at retinal level (Kalloniatis and Luu, 2007). For the 

purpose of standardization, the CIE (Commission Internationale de l’Eclairage 

– the International Commission on Illumination) designated in 1931 the 

following wavelength values to the three primary colours: blue=435.8nm, 

green=456.1nm and red=700nm. In Figure 3.12, the different absorption of 

the light by the blue, green and red cones of the human retina and the 

absorption efficiency of a typical colour image sensor of a camera device are 

compared.  
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Figure 3.12 On the top, the absorption of light by the blue, green and red cones of a human 
retina as a function of wavelength (Gonzalez and Wintz, 1977). On the bottom, the 
absorption efficiency of a CMOS colour image sensor (MT9M034 1/3-Inch CMOS Digital 
Image Sensor). 

As shown in Figure 3.12, in the visible range, the retina and the image 

sensors have a similar behaviour which results in the production of similar 

images.  

In computer vision the tristimulus (amount of red, green and blue) can be 

decoupled and manipulated to maximize the amount of information provided 
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by the specific feature under examination. This can be achieved by modelling 

mathematically the three colour values, as produced by the image sensor, to 

obtain a colour model where the clinical features have the maximum contrast, 

for instance. In other words, the intensity level of a pixel can be decomposed 

into colour spaces where the correlation between neighbour pixels (e.g. pixels 

that belong to the same anatomical feature) can unlock valuable information. 

There are many different colour models, or colour spaces, used to describe 

the chromatic appearance of a digital image. The majority of the monitors and 

imaging hardware use an RGB or CMY (cyan, magenta, yellow) system, which 

are not well suited to describe colours from a human perspective. In fact, we 

cannot describe the colour of an object by giving the percentage of the red, 

green and blue components. Instead, we prefer to describe its chromatic 

components by identifying a dominant wavelength and the intensity, or purity, 

of such colour. The HSI (hue, saturation, intensity) colour space does exactly 

that. It decouples the intensity components from the chromatic information. 

Hue and saturation taken together are called chromaticity, where the first 

describes to the dominant wavelength of a mixture of light waves, and the 

second the purity or the amount of white light mixed with the hue. Intensity is 

the achromatic (grey level) value of that particular combination of hue and 

saturation. This colour space is ideal for developing image processing 

algorithms based on colour description that are natural and intuitive to humans. 

Another very practical colour space used in image processing involving human 

perception applications is the CIE L*a*b* colour space (Robertson, 1977, CIE, 

1978). This colorimetric, perceptually uniform and device independent 

(Gonzalez and Woods, 2007) colour space can also decouple the intensity 

from the colour representation. Its gamut can replicate any colour of the visible 

spectrum, making it valuable for image manipulation and compression. 

The mathematical formulation to obtain these two colour spaces from the 

RGB digital image needs some mathematical considerations to be introduced. 

To specify the tristimulus as perceived by humans, the CIE chromaticity 

diagram was formally introduced, Figure 3.13. The graph shows colour 
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composition as a function of x (red) and y (green). For any combination of x 

and y, the corresponding z (blue) value can be obtained, considering: 

𝑥 =
𝑅

𝑅+𝐺+𝐵
  𝑦 =

𝐺

𝑅+𝐺+𝐵
          𝑧 =

𝐵

𝑅+𝐺+𝐵
   (3) 

where R, G and B are the three components of the tristimulus, and 

𝑥 + 𝑦 + 𝑧 = 1 ⟹ 𝑧 = 1 − (𝑥 + 𝑦).    (4) 

Pure colours are positioned around the boundary of the tongue-shaped 

diagram, covering the visible range from 380 nm to 700 nm. 

 

 

Figure 3.13 CIE chromaticity diagram. D65 corresponds to the white of the perfectly reflective 
diffuser. 

 

As we approach the centre of the diagram, where the fraction of the three 

primary colours are equal, lies the point that represents the CIE standard for 

the white light (point “D65”, defined by 𝑥 = 0.3127 and 𝑦 = 0.3290 in the CIE 

chromatic diagram). Now that we have identify a standard system to univocally 

identify each colour, we can use these Cartesian coordinates approach to 

convert the colour space from RGB to CIE L*a*b*.  The L* a* b* colour 

components can be derived as: 

𝐿∗ = 116 ∙ ℎ (
𝐺

𝑦𝑤
)       (5.1) 
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𝑎∗ = 500 [ℎ (
𝑅

𝑥𝑤
) − ℎ (

𝐺

𝑦𝑤
)]      (5.2) 

𝑏∗ = 200 [ℎ (
𝐺

𝑦𝑤
) − ℎ (

𝐵

𝑧𝑤
)]      (5.3) 

where 

ℎ(𝑞) = {
√𝑞3 , 𝑞 > 0.008856

7.787𝑞 + 16/116, 𝑞 ≤ 0.008856
   (5.4) 

and 𝑥𝑤, 𝑦𝑤 and 𝑧𝑤 are reference white tristimulus values (typically the white of 

a perfectly reflective diffuser under CIE standard D65 illumination, defined by 

𝑥 = 0.3127 and 𝑦 = 0.3290 in the CIE chromaticity diagram). For the HSI 

colour space the transformation from the RGB one can be visualized as in 

Figure 3.14. 

 

 

Figure 3.14 The HIS colour model based on circular colour planes. The circles are 
perpendicular to the vertical intensity axis. 

 

Mathematically, the transformation can be obtained from the following 

equations: 

 

𝐻 = {
𝜃, if 𝐵 ≤ 𝐺

360 − 𝜃, if 𝐵 > 𝐺
      (6.1) 
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with 

𝜃 = cos−1 {
1

2
[(𝑅−𝐺)+(𝑅−𝐵)]

[(𝑅−𝐺)2+(𝑅−𝐵)(𝐺−𝐵)]1 2⁄ }    (6.2) 

and 

𝑆 = 1 −
3

(𝑅+𝐺+𝐵)
[𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)]    (6.3) 

 

𝐼 =
1

3
(𝑅 + 𝐺 + 𝐵).       (6.4) 

Imaging sensors used in retinal imaging are sensitive to the visible and 

infrared band of the electromagnetic spectrum. The images they produce are 

therefore the result of the absorption (scattering and reflection) of the retinal 

structures to that specific band. As we will point out later, retinas reflect 

efficiently some specific wavelengths, therefore sensors with high sensitivity in 

those portions of the spectrum can extract more information. Nonetheless, also 

with classic photos we can extract information by manipulating the colour 

content as previously described. As an example, in Figure 3.15 a retinal image 

has been processed to obtain the HIS and CIE L*a*b* colour spaces from RGB 

one.  
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Figure 3.15 Healthy retinal image obtained by a fundus camera, from CORD database (CORD 
Comprehensive Ophthalmic Research Database, CORD 2019). First row, the red, green and 
blue channels of the RGB colour channel as obtained from the image sensor of the fundus 
camera. Second and third row, the HIS and CIE L*a*b* colour spaces and their respective 
channels. Given that the Hue of the retina is centred around the Red=0. The fluctuation 
around this number (between 0.9 and 0.1) produces the appearance of a binary image. 

 

In the next section of this chapter, some of the classic digital image 

processing techniques used to extract and enhance the clinical content of 

retinal images are presented. In particular, we will see how the combination of 

pixels’ colour and spatial position can enable very powerful clinical assessment 

techniques.  

3.2.3 PUBLICLY AVAILABLE DATASETS 

The availability of a large quantity of medical images is a fundamental 

requirement for the development of new digital imaging techniques. This can 
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be achieved by establishing a formal collaboration between the healthcare 

services and the research group, usually via a time consuming process, 

involving many legal and bureaucratic steps. However, this burden is often too 

arduous for small research groups or where there is no direct access to the 

clinical world. This is why the publication of open access medical image 

databases is greatly welcomed by the research community. 

 When new data are made available in a particular field, not only the 

quantity of publications will increases, but also the quality of research is 

expected to rise (Kramer, 2017). This because the direct access to the original 

data source allows peer researchers to review and replicate the results, 

overseeing the research validity and integrity. Furthermore, testing and 

evaluating the performances of different image techniques over the same 

dataset of images makes comparison and validation work more consistent and 

effective. This virtuous circle has contributed to create, over time, de facto 

standards, e.g. testing new algorithms over the same databases, that are now 

used to define new ground truths and frameworks for what is required in future 

databases (Jordan et al., 2017). Transparency in the data used in research, 

equal access to data, stimulation of innovation and knowledge development, 

affordability of research, and de-risking of research requiring medical data are 

other benefits that publicly available datasets can provide (Saleh,Alameddine 

and El-Jardali, 2009, Janssen,Charalabidis and Zuiderwijk, 2012).  

Compared to the past, there are also some structural facilitations that are 

making researchers more open to the publication of their own databases. The 

sizable investments that scientific and policy-making communities have put in 

developing data access and sharing infrastructures are in fact driving a positive 

change in the cultural and operational research attitude towards open access 

data (Arzberger et al., 2004). In Table 3.1, the list of the publicly available 

datasets of ophthalmic images available at the time of this thesis is presented. 

The bulk of them consist of retinal images, with a wide collection of pathological 

signs and interpretative data (e.g. ground truth and feature segmentation 

results) (Jordan et al., 2017). Some databases, such as DRIVE, REVIEW, 

MESSIDOR and STARE, are still widely used for the development and 
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validation of image processing algorithms (Staal et al., 2004, Al-Diri et al., 

2008, Etienne Decencière et al., 2014, STructured Analysis of the Retina).  

An almost absent typology of ophthalmic database is the multi-source one, 

that is a dataset that includes, for each eye, different imaging modalities and 

techniques. Multi-source paradigm is seeing great interest in the field, due to 

the possibility to enrich imaging techniques, such as segmentation, registration 

and fusion, with multiple contextual information, improving diagnostic 

capabilities, pre-surgery planning and follow-up assessment (James and 

Dasarathy, 2014, Casey and Damper, 2010). This is the same approach used 

by the clinician during an eye examination, where data coming from 

measurement procedures (e.g. slit-lamp examination, measurement of the 

objective refractive error of the eye, or optical biometry) and different imaging 

techniques, are used to get the clinical picture of the patient’s eye. As a result, 

some research groups are starting to create their own multi-source datasets, 

making them publicly available.  

The ROD-REP repository, created by Rotterdam Ophthalmology Institute, 

grants access to three different datasets collected from the same patients: the 

first includes intraocular pressure (IOP) measurements and 24-2 full threshold 

visual fields obtained with a Humphrey field analyser, the second collects 

fundus images from a DR screening program and the last has in-vivo confocal 

corneal microscopy endothelium images (Adal et al., 2015, Erler et al., 2014, 

Selig et al., 2015). Of particular interest is the inclusion of some important 

metadata directly on the landing page, such as exclusion and inclusion criteria 

and the data content. The Retina Image Bank, a project of the American 

Society of Retina Specialists, is another example of image dataset created to 

provide images coming from different imaging techniques (ASRS). To the 

author knowledge it is, at the time of writing, the largest repository of retinal 

images publicly available, but also includes images of the anterior chamber, 

and showcases a variety of medical conditions. The repository is open to the 

research community with the possibility to download and upload new images 

(with some restrictions). Here, not just fundoscopy but also OCT, 

ultrasonography, slit-lamp examination, endoscopy and many other 
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techniques can be found. Another innovative database is the High-Resolution 

Fundus (HRF) Image Database (Budai et al., 2013). This contains two 

datasets, one focuses on feature segmentation, the other on image quality 

classification.  The image quality assessment dataset is unique in that it 

provides retinal image pairs of the same eye, one classified as “good quality” 

and the other as “poor quality”. The poor category are ophthalmic images 

affected by artifacts and general distortions (uneven illumination and chromatic 

dominants) that have been purposely introduced. 

If from one side this is an encouraging first step towards multi-source 

databases, the low level of homogeneity of the kind of data between databases 

and the lack of a unified data structure could prevent the establishment of such 

paradigm. The accessibility of the information within a database, in fact, is as 

crucial as the data content itself (Janssen,Charalabidis and Zuiderwijk, 2012, 

Arzberger et al., 2004). Whilst the drive to make data openly available is very 

important step towards quality research, such data should be fit for purpose 

and meaningful to an outsider accessing the database.  

For example, if the original data collected is a 3D volume, making available 

only a single slice of such volume (Gholami et al., 2018) reduces the 

information content provided by that technique and restricts the possible 

research usage. The lack of hierarchical structures or of appropriate metadata 

can also create barriers for the user, such as difficulties in searching, 

interpretation and usability, ultimately limiting the potential for impact of the 

datasets. Taking the Retinal Image Bank as an example, its website based 

database employs a searching box that allows the user to highlight a specific 

element of the archive, displaying all the possible associated results. Although 

this is a robust mechanism to retrieve single images, it is not ideal if the aim is 

to isolate a specific category of images. All images, in fact, are linked to at least 

three different keywords. Therefore, searching for “slit-lamp images”, for 

instance, produces as result not only images coming from slit-lamp 

examinations, but also images with other degrees of correlation (e.g. acquired 

in the same examination/patient) such as fundoscopy and OCT. This can 

significantly increase the workload and search time of a researcher and 
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exposes to oversights and errors. 

Poor or inappropriate data structure reduces not only accessibility, but also 

makes inter-database comparison (comparison of the same type of data 

between different databases) more difficult. This issue can be tackled by 

implementing, for instance, appropriate guidelines for database creation 

framework. In fact, many ready available information, at the time of the data 

acquisition, (e.g. device setting, age and sex of the subject etc.) could be part 

of the data content of the image itself if the researcher is guided through the 

proper completion of the image contextual data. In this way, a more effective 

comparison, and sometime some forms of normalization process, might be 

enabled.  

Table 3.1 Brief description of publicly available ophthalmic datasets. 

Database  
Tot No of 

images 
Description  

BioImLab  536 

Sets of ophthalmic databases, including 60 fundus images, 30 images 

from the sub-basal corneal nerve plexus, 356 images from corneal 

epithelium layer to corneal endothelium and 90 images of corneal sub-

basal epithelium (Scarpa,Fiorin and Ruggeri, 2007, Scarpa,Grisan and 

Ruggeri, 2008, Scarpa et al., 2011, Grisan,Foracchia and Ruggeri, 

2008).  

   

CHASEDB1  28 

Retinal image database of multi-ethnic school children, subset of the 

CHASE dataset. Contains 28 retinal images and blood vessel 

segmentations obtained from two experts (Owen et al., 2009).  

   

DIARETDB  130 

Currently at its V2.1 version, this database, related with the ImageRet 

project, contains 130 colour fundus images, 20 normal and 110 contain 

signs of the DR lesions (hard exudates, soft exudates, microaneurysms 

and haemorrhages) (IMAGERET Optimal Detection and Decision-

Support Diagnosis of Diabetic Retinopathy)(IMAGERET Optimal 

Detection and Decision-Support Diagnosis of Diabetic 

Retinopathy)(IMAGERET Optimal Detection and Decision-Support 

Diagnosis of Diabetic Retinopathy)(IMAGERET Optimal Detection 

and Decision-Support Diagnosis of Diabetic 

Retinopathy)(IMAGERET Optimal Detection and Decision-Support 

Diagnosis of Diabetic Retinopathy)[245].  

   
DRIONS-DB  110 

This database contains 110 retinal images for benchmarking optic 

nerve head segmentation (Carmona et al., 2008).  

   

DRISHTI-

GS1  
101 

101 images split into a test and training set collected and annotated by 

Aravind Eye Hospital, India. The ground truths for Optic Disc and Cup 

segmentation are provided for the training set (Sivaswamy et al., 

2015).  

   
DRIVE  40 

Dataset comprised of 40 randomly selected fundus images obtained 

from a DR screening program in the Netherlands (Staal et al., 2004).  

   
E-OPHTHA  463 

Database of colour fundus images especially designed for scientific 

research in DR. Two sub databases named e-ophtha-MA 
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(MicroAneurysms) 381 images, and e-ophtha-EX (EXudates) 82 

images (E. Decencière et al., 2013).  

   
FIRE  134 

The dataset consists of 134 retinal image pairs captured from 39 

patients (Hernandez-Matas et al., 2017).  

   

HEI-MED  169 

(formerly DMED) Collection of 169 fundus images to train and test 

image processing algorithms for the detection of exudates and diabetic 

macular oedema (Giancardo et al., 2012).  

   

HRF  81 

Two subsets. the first contains 3 groups of 15 images that represent 

healthy patients, patients with DR and glaucomatous patients. The 

second contains 18 image pairs of the same eye from 18 subjects 

(Budai et al., 2013).  

   

INSPIRE a  70 

Two datasets. The first, 30 stereo colour images of the optic disc 

including a depth reference standard based on spectral domain OCT 

(Tang et al., 2011). The second, 40 colour images of the vessels and 

optic disc and arterial-venous ratio reference standard (M. Niemeijer et 

al., 2011).  

   

MESSIDOR  1200 

Created to facilitate studies on computer-assisted diagnoses of DR, it 

contains 1200 retinal images with DR Grading and Macula Edema Risk 

Level (Etienne Decencière et al., 2014).  

   

ONHSD  99 

This dataset contains 99 fundus images, with discernible ONH, taken 

from 50 patients randomly sampled from a DR screening program 

(Lowell et al., 2004).  

   

REVIEW  16 

Consisting in four subsets, for a total of 16 images, selected to assess 

the accuracy and precision of the vessel width measurement algorithms 

in the presence of pathology and a central light reflex (Al-Diri et al., 

2008).  

   
RIM ONE  169 

169 ONH images obtained from 169 full fundus images of different 

subjects (Fumero et al., 2011).  

   

ROC  100 

Set of 50 training and 50 testing retinal images created to improve 

computer aided detection and diagnosis of DR (M. Niemeijer et al., 

2010).  

   

ROD-REP  1120 

Contains three datasets made available by the Rotterdam Ophthalmic 

Institute, including longitudinal glaucomatous visual fields, 

longitudinal DR screening fundus photos and confocal corneal 

endothelial microscopy images (Adal et al., 2015, Erler et al., 2014, 

Selig et al., 2015).  

   

STARE  400 

400 fundus images collated by the University of California alongside 

expert annotated images of features and a list of diagnoses for each 

image (STructured Analysis of the Retina)(STructured Analysis of the 

Retina)(STructured Analysis of the Retina)(STructured Analysis of the 

Retina)(STructured Analysis of the Retina)[232].  

   
VICAVR & 

OCTAGON  
202 

The first, 58 optic disc centred retinal images, the second, 144 healthy 

OCT-A images and 24 diabetic OCT-A images 

(VARPA)(VARPA)(VARPA)(VARPA)(VARPA) [254].  

   
CORD (this 

work) 
548 

548 fundus images, 231 photos and 160 videos from slit lamp 

examination, and 80 scans (composed by ~260 2D slices each) from 

OCT. 
a in INSPIRE – stereo, only one image per eye is available in the stereo dataset. 

3.3 ENHANCEMENT OF HIDDEN CLINICAL INFORMATION 

CARRIER 
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The concept of image enhancement refers to the heuristic procedure of 

manipulating an image to the information content of the image more accessible 

for the examiner. This differs from the concept of restoration, which aims 

instead to recover an image that has been degraded by using a priori 

knowledge of the degradation phenomenon or the content of the image. 

Enhancement and restoration usually involve the formulation of criteria of 

“goodness” against which the result of the image manipulation can be 

assessed. Although these two approaches have some common ground, image 

enhancement is largely subjective, while image restoration is for the most part 

objective (Gonzalez and Woods, 2007). In the following paragraph, the state 

of the art of digital image processing techniques in retinal imaging are 

presented. These act on the main features of the retinal image aiming at 

improving those elements that are useful during a clinical assessment 

procedure. For these reason we will refer to them as image enhancement 

techniques, as the manipulation is human visual assessment oriented. The 

majority of these techniques are related to image segmentation, morphological 

image processing and chromatic manipulation. These are commonly used as 

fundamental processing steps for feature extraction and classification 

methods. 

3.3.1 TEXTURAL CONTRAST AND CHROMATIC TUNING 

In image processing each enhancement method is developed to perform a 

specific task (e.g. object detection, segmentation etc.). As it will be better 

highlighted in the following, this task-oriented characteristic means that each 

technique has some drawbacks if used outside its primary objective. The 

backbone of the image enhancement theory, upon which almost the entire 

panorama of retinal image processing (and medical imaging in general) has 

been built is represented by: 

 Intensity transformation 

 spatial and frequency filtering,  

 wavelet and multiresolution processing 

 morphological processing  
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Following the description order of the anatomical features of section 3.1, 

the state of the art of feature-based techniques that exploit the textural and 

chromatic characteristics of the object under examination are presented for 

each anatomical feature. A summary of such techniques and a review of their 

outcome results can be found in Table 3.2, while Table 3.3 shows the 

definition and the mathematical description for each of the performance 

evaluator used. It should be noticed that the statistical values presented by the 

reviewed works are obtained by comparing the results of their image 

processing technique with a dataset of images manually segmented by 

experts. Therefore, the closer the value are to 100% the more the performance 

of the algorithm are close to the clinician assessment performance. 

Optic Nerve Head – As mentioned, the relation between the OD and the 

OC morphology is particularly important in the context of glaucoma disk 

grading. For this reason, most of the image processing techniques have as 

goal the localization and segmentation of the OD and OC. Such techniques 

exploit the image contrast and brightness (Sinthanayothin et al., 1999, Walter 

and Klein, 2001), deformable model (Lowell et al., 2004), principal component 

analysis (Huiqi Li and Chutatape, 2004) and pyramidal decomposition and 

template matching (Mookiah et al., 2013a).  

Adaptive filters have been implemented by Issac et al. (Issac,Sarathi and 

Dutta, 2015) and Dashtbozorg et al. (Dashtbozorg,Mendonça and Campilho, 

2015), improving robustness in OD and OC boundary identification. In the work 

of Issac, statistical measures on pixel intensities, such as the mean and 

standard deviation, are used to determine an adaptive threshold to separate 

OC from the rim. The main advantage of this technique was its robustness with 

respect to the quality of the image and the noise content. With this technique 

the cup-to-disc ratios assessment for glaucoma detection obtained an 

accuracy (Acc) of 94.4%, with 100% sensitivity (Se) and 90% specificity (Sp), 

performed on a local database of 67 images. Dashtbozorg et al. demonstrated 

an adaptive automated OD segmentation, focusing on providing meaningful 

results in images that contain severe pathological features. Classified as a 

template matching method (finding elements of an image that match a 
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template), a sliding band filter (SBF), which enhanced bright regions of the 

image, was implemented in locating the OD centre and boundary in two steps. 

First, the blood vessels were removed from the images and a low-resolution 

SBF was applied to the fundus image to initially locate the OD centre. A second 

adaptive high-resolution SBF was applied to the image once the OD centre 

has been found, to isolate the OD boundary, which was segmented and 

smoothed. This method was proven to demonstrate better detection results in 

comparison to recently published techniques, with an Acc of 99.9% and 99.6% 

on the MESSIDOR and INSPIRE-AVR databases, respectively (Etienne 

Decencière et al., 2014, M. Niemeijer et al., 2011). These two publicly available 

dataset of retinal images are part of a big family of databases used by 

researchers to test their algorithms. In Chapter 4 of this thesis, a more 

descriptive section about publicly available datasets is presented.  

The success of the SBF method is highly connected to its ability to find the 

centre of the OD, which was found to be poor when image quality is low or in 

the presence of image artifacts. Mookiah et al. (Mookiah et al., 2013b) were 

more specifically focused on identifying boundaries in such scenario. Mookiah 

et al. used a histon-based segmentation based on Attanassov intuitionistic 

fuzzy image representation to identify a fuzzy or unclear boundary. The histon 

is similar to the histogram with the difference that it preserves the spatial 

correlation of same or similar colour value elements, preserving the structural 

information rather than just the intensity value one (Mohabey and Ray, 2000). 

The Attanassov intuition fuzzy representation of an image involves the 

definition of membership functions, which help to emphasise some particular 

characteristic of the image, in this case intensity value and Euclidean distance. 

This method was found to identify the OD boundary with 93.4% Acc and an F-

score of 0.92 on 100 images, without any shape constraints being applied on 

healthy, diabetic retinopathy and Glaucoma cases. This study compared 

results with other conventional histogram based segmentation techniques 

(Otsu (Nithya and Venkateswaran, 2015) and Gradient Vector Flow 

(Thongnuch and Uyyanonvara, 2007)) and was found to be superior at 

detecting unclear OD boundaries. Another technique adapted to improve the 



74 
 

accuracy of OD boundary segmentation is the implementation of prior 

knowledge into the computer processing. Prior knowledge based on 

anatomical features of the retina was implemented by Cheng et al. (Cheng et 

al., 2013) and Basit and Fraz (Basit and Fraz, 2015). Cheng et al. used 

superpixels, group of connected pixels clustered together as they contain 

similar intensity values, to differentiate the OD region from the background in 

the presence of peripapillary atrophy, thinning of retinal pigment epithelium 

around the OD, by comparing the textures of the two anatomical structures. 

They classified pixels as either disk or non-disk and then applied a deformable 

body to identify the contour boundary. To identify the OC boundary, prior 

knowledge of the position of the cup (usually at the centre of the OD) has been 

incorporated to the segmented OD, reducing the area in which superpixels are 

classified as cup or non-cup. One limitation of this method was the trained 

classifier used for cup segmentation was dominated by medium-sized cups, 

and therefore underestimation of very large cups, and overestimation of small 

cups was observed. This method for OD and OC segmentation achieved an 

area under the curve (AUC) of 0.800, 0.039 lower than the manual disk and 

cup boundary determination.  

Basit and Fraz focused on accurate detection and extraction of the OD 

region by increasing segmentation specificity. The OD region was detected 

and properly classified using prior knowledge elements: it contains high 

intensity pixels (bright spot), it has specific size range (different from bright 

lesions) and it can be found in the neighbourhood of the main blood vessels. 

Once the region was correctly isolated, a region-based segmentation 

(watershed transform) was applied to segment the OD boundary. This method 

reported results of an average OD detection Acc of 98.9% with an average Sp 

and Se of 99.2% and 76.2%, respectively, for SHIFA (local database), DRIVE 

and CHASE_DB1 and DIARETDB1. However, this method had limitations that 

if the vessels were not extracted accurately or the OD did not contain a region 

of maximum intensity, the location constraints could not be applied and the 

initial detection phase failed. Reza et al. (Reza and Ahmad, 2015) looked to 

significantly reduce the computer processing time of each image by 
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automatically detecting the OD region using a curve operator, inspired by the 

work performed by Lu and Lim (Lu and Lim, 2010). The idea is to use the 

knowledge that pixels inside the OD are not just bright but they also are 

surrounded by curve gradients of grey tone, which are the boundaries of the 

OD with the background. Here, no previous vessel segmentation or 

background mask need to be applied, reducing the processing time per image, 

and possibly enabling a higher throughput of data when used in computer-

aided diagnosis. Efficiency and fast processing are only affecting OD 

detection, at the expense of boundary segmentation accuracy. This 

compromise may have been minimised by Welfer et al. (Welfer et al., 2010) 

who achieved a detection accuracy of 97.7% taking 7.89 s per image on 

DIARETDB1 in comparison to the reported 94.4% in 6.13 s per image using 

Reza’s technique.  

Deep learning techniques have been successfully demonstrated to achieve 

state-of-the-art performance for image classification (Krizhevsky,Sutskever 

and Hinton, 2012) and segmentation (Long,Shelhamer and Darrell, 2015). In 

particular, Huazhu at al. (Fu et al., 2018) explored the use of Convolutional 

Neural Networks (CNNs) to develop a fully automatic method for joint OD and 

OC segmentation. After the disc centre is detected, the ROI with the OD is 

transferred into polar coordinate system and fed into a costumed CNN, where 

the multi-label probability maps for OD and OC are generated. Finally, the 

segmentation maps are converted back into Cartesian coordinate. The use of 

polar transformation in conjunction with CNN has shown an AUC of 0.851 and 

0.900 on two local datasets of retinal images with glaucoma cases. 

 

Blood vessels – Retinal blood vessels, along with the ONH, are the retinal 

feature with the highest contrast visible in a healthy retina. For this reason, 

blood vessels segmentation is used not only to assess the pathological 

condition related to the vascular structures, but also as landmarks for several 

object detection and registration techniques (Lloret et al., 2000, M 

Niemeijer,Abramoff and Van Ginneken, 2008, Perez-Rovira et al., 2011). A 

common vessel-related pathology is DR, where high blood sugar level and 
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ischemia can alter the natural elasticity of the inner walls of the vessels, 

especially in small capillaries, creating bulges and new vessels in the late 

proliferative stage. As mentioned before, measuring the width, tortuosity, 

branching morphology (angle and coefficient), and fractal dimension of the 

vasculature gives a numerical assessment of possible blood filled dilatations, 

called microaneurysms, and of new vascularization (Perez-Rovira et al., 2011, 

Archana et al., 2015, Devaraj and Kumar, 2014, Pourreza,Pourreza and 

Banaee, 2013). Variations in these biomarkers can also be related to 

hypertension, obesity, cardiovascular disease, cerebrovascular diseases, and 

stroke, increasingly common conditions globally (Heneghan et al., 2002a, 

Leung et al., 2004a, Jie J Wang et al., 2006b, Witt et al., 2006, Patton et al., 

2005a).  

Classic threshold techniques for vessel segmentation usually result in a 

runaway number of false positive (FP) or false negative (FN). To overcome 

this problem, the morphological features of the vessels can be exploited. 

Retinal vessels can be distinguished among other features that lie on the 

ocular fundus by their piecewise linear shape, the tree-shape branching and 

the decrease in diameter as they move radially outward from the OD. Matched 

filters exploit the abovementioned morphological characteristics, along with the 

assumption that the cross-section profile of a vessels has a Gaussian-like 

intensity profile (Katz et al., 1989, Hoover,Kouznetsova and Goldbaum, 1998).  

An example has been proposed by Odstrcilik et al. (Odstrcilik et al., 2013). 

Here, a contrast enhancement algorithm was applied to the green channel, 

increasing the intensity level of the elements different from the uniform 

background (vessels, exudates and haemorrhages). After this pre-processing 

step, five different filters with a Gaussian-like profile were applied to extract the 

vasculature. The profile of pixel intensity of the cross-section of a vessel, in 

fact, resembles the shape of a Gaussian distribution, as the intensity values of 

the pixels move from the background intensity to a higher (or lower) level at 

the centre of the vessel, and back to the background level again. The final 

binary representation of the vascular tree was then obtained by thresholding 

the histogram and removing the unconnected objects. This method was tested 
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on the DRIVE, STARE, and the HRF databases (Staal et al., 2004, 

Hoover,Kouznetsova and Goldbaum, 1998, Budai et al., 2013). The Se and 

Sp were 78.5% and 95.1%, respectively, for the first two databases with an 

Acc of 93.4%, and 79.0% and 97.5%, respectively, for the HRF database with 

an Acc of 97.4%. A line detector not based on the Gaussian profile of the 

vessel was designed by Nguyen et al. (Nguyen et al., 2013). Here, the limit of 

this technique, which is a high level of FPs at the contour of the vessels, have 

been partially overcome by combining two different approaches. Firstly, by 

reducing the length of the lines detector, the inclusion of adjacent vessel pixels 

is avoided. Secondly, by increasing the dynamic range of the intensity levels 

of the pixels (using a local contrast enhancement) the background noise is 

reduced. The resulting effect was tested on the DRIVE and STARE databases, 

with an Acc of 94.1% and 93.2%, respectively. Akram and Khan used a 2-D 

Gabor wavelet to enhance vascular structures and thin vessels (Akram and 

Khan, 2013). This directional selective algorithm has the double advantage of 

filtering out background noise and adjusting its detectability level by tuning the 

spatial frequency of the wavelet. The output of such enhancement process 

was used as input for multi-layered thresholding. In this last stage, several 

levels of threshold values and validation masks were applied with different 

rules, eliminating false edges and generating a binary map of the blood 

vessels. This technique obtained good results in DRIVE and STARE, with an 

Acc of 94.7% and 95.0%, respectively.  

To avoid the issues related to the learning process of image classifiers 

(learning rate, learning epoch, and local minima), Bala and Vijayachitra 

implemented an Extreme Learning Machine (ELM) classifier (Bala and 

Vijayachitra, 2015). An ELM is a feed-forward neural network used to handle 

problems difficult to solve with classical parametric techniques (Huang,Zhu 

and Siew, 2006). In particular, the authors chose to employ a three-step single 

hidden layer feed-forward neural network. This artificial network has three 

layers (input, hidden, and output) of interconnected nodes that mimics the 

connection of neurons. The features used to train this neural network were 

extracted from the pre-processed retinal image (histogram equalization and 
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segmented by a matched filter). Among the features extracted and used to 

classify retinal images, there are some first- and second-order statistical 

texture values, such as entropy, energy, correlation, and homogeneity. The 

method was tested on DIARETDB0 (Kauppi et al., 2006) and DRIVE 

databases obtaining a Se of 96.7% and 100%, Sp of 100% and 94.1%, and an 

Acc of 97.5% and 95.0%, respectively.  

Neural networks have also been used by Liskowski and Krawiec (Liskowski 

and Krawiec, 2016), who designed a pre-trained convolutional neural network 

for vascular segmentation. This multilayer approach, based on the succession 

of convolutional, pooling and fully connected layers, has been applied on 

STARE and DRIVE datasets achieving an Acc up to 97.0% and 95.1%, 

respectively. 

Azzopardi et al. adopted a strategy that aimed to automatically segment 

vessel trees in low-quality retinal images (Azzopardi et al., 2015). In the pre-

processing stage, the strong contrast around the circular border of the FOV 

area was smoothed to enhance the features of the fundus. The smoothing 

technique, developed by Soares at al.  (Soares et al., 2006), performs dilation 

of the border, replacing every black pixel with the mean value of its neighbours 

inside the ROI. This process was repeated several times, augmenting the 

radius of the ROI by one pixel per iteration. The enhancement was achieved 

using a histogram equalization algorithm developed by Pizer at al. (Pizer et al., 

1987). The actual segmentation, based on a computational model called bar-

selective combination of shifted filter responses (B-COSFIRE), employed 

some difference-of-Gaussian filters to detect the change of intensity typical of 

a vessel object. This trainable filter has shown to be computationally efficient. 

By tuning the values of the blurring and shifting operators, used to increase its 

detectability property, B-COSFIRE filter was able to detect vessels in different 

orientation and the end of the vessel. Tests on DRIVE, STARE, and 

CHASE_DB1 obtained values of Se and Sp up to 77.2% and 97.0%, 

respectively.  

A segmentation technique that does not require any pre-processing or 

training was devised by Wang et al. (Yangfan Wang et al., 2013). To create 
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the binary map of the vessel tree, the authors combined matched filters with 

multi-wavelet kernels, and a multiscale hierarchical decomposition as a vessel 

locator. The wavelet, similarly to the Fourier transform, is used to represent 

the image in the frequency domain, which in this work is used to highlight the 

spatial frequency associated with the step edge of the vessels, while the 

hierarchical decomposition operates an iterative segmentation at varying 

image resolution, locating smaller and smaller vessels. This segmentation 

technique exploits the central specular reflection of the vessels. The filter was 

applied to the image at several orientations to match different profiles of the 

vessel. The decomposition reduced also of the noise content of the image as 

it decomposes the image into two components, namely; the part that contains 

the features of interest and a part related to the noise. The ability of this 

algorithm to identify small features without confusing them with noise is the 

main goal of this strategy. An adaptive thresholder is then applied to obtain the 

binary map. The quantitative analysis of this technique conduced on DRIVE 

and STARE datasets revealed an Acc of 94.6% and 95.2%, respectively. 

 

Macula and fovea - Locating the position of the macula and fovea is crucial 

in the automatic detection of pathology related to diabetes, such as diabetic 

maculopathy. If disease in this area becomes chronic, damage to the 

composite photoreceptors becomes irreversible (Medhi and Dandapat, 2016). 

There is increasing evidence that as the surviving diabetic population ages, 

blindness secondary to maculopathy exceeds that of proliferative retinopathy 

(Flanagan, 1993). As observed from the literature, most of the techniques used 

to locate the ROI containing the macula rely on some anatomical assumptions 

related to the distance between the fovea and OD (Huiqi Li and Chutatape, 

2004, M Niemeijer,Abramoff and Van Ginneken, 2008, 

Sagar,Balasubramanian and Chandrasekaran, 2007, Welfer,Scharcanski and 

Marinho, 2011). The exact location of the fovea is achieved by various 

algorithms, such as thresholding or template matching, usually preceded by a 

filtering stage where blood vessel abnormalities are removed. An example of 

this procedure was presented by Chin et al. (Chin et al., 2013). To locate the 
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fovea centre, the authors combined the information provided by the vessels 

and OD segmentations with some a-priori knowledge about the anatomical 

structure of the retina. To establish the search area, the vessel arch was used 

as template to draw a hypothetical parabola with a vertex on the nasal side of 

the OD. The search interval was selected along the principal meridian of this 

parabola at a specific distance from the disk, in terms of disk diameter (DD). 

Such distance was estimated calculating the disk-macula distance from a 

sample of 126 images. Inside this area, the window with the minimum number 

of vessel pixels was considered as fovea. To measure the performance of this 

method, the number of correct detections (NCD) within 25%DD and 50%DD 

was performed. MESSIDOR and some images from the Tayside diabetic 

screening program at Ninewells Hospital (Dundee) were used to validate the 

technique. The performance was better on the latter, with a NCD-25% of 51/66 

and a NCD-50% of 61/66 in high resolution images. To overcome the time-

consuming process of blood vessel segmentation and vascular arch parabola 

fitting, Zheng et al. developed a technique based on anatomical structure 

constraints and their relative location, and on intensity-level information related 

to the OD (Zheng et al., 2014). In the preprocessing stage, a course 

localization of the OD was performed analysing the intensity levels of red 

channel of the retinal image. After the elimination of the blood vessels, the OD 

boundary was detected using a region-based model (Joshi et al., 2010). From 

this boundary, a circle was fitted to obtain the position and radius of the OD. 

This information was used to provide constraints in order to narrow the search 

area for the fovea. To locate the temporal side of the OD the brighter area was 

detected, the side less covered by blood vessels. To this side, the distance of 

2.5 OD diameter off the centre of the OD and 5-degree below, referred to the 

x axis of the image, was selected as research area. The final position of the 

fovea was then detected by applying a morphological geodesic reconstruction 

(Mukhopadhyay and Chanda, 2003). In the reconstruction based on geodesic 

dilation the image is repeatedly dilated by an elementary isotropic element until 

it reaches an image “mask”, which acts as a limit for the dilation (Arefi et al., 

2009). In this way the peaks in the image spread out. This allows the removal 
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of all the undesirable features, such as bright spots, vessels and so on. The 

outcome is a connected area with constant intensity level. The geometrical 

centre of this area is the fovea centre. This method was performed on DRIVE, 

obtaining a detection success rate of 100%, on HEI-MED obtaining 98.8% and 

DIARETDB1 with 93.3%. An extraction method independent from geometrical 

relationship estimation and blood vessel removal was described by Medhi and 

Dandapat (Medhi and Dandapat, 2016). In this work, the colour intensity 

normalization and the contrast enhancement of the retinal image in the 

preprocessing stage involved the use of different colour spaces. The first 

colour normalization took place in the luminance plane of YIQ colour space, 

where the Y plane was modified according to a specific parametric rule 

proposed by Sánchez et al. (Sánchez et al., 2008). A second transformation 

was applied on the HIS colour space. To detect the circular region containing 

the macula, the authors used two sets of information: the absence of blood 

vessels and the location of the OD. Because the superior and the inferior 

arteries of the retina are arranged horizontally with respect to the macula in a 

fundus image, a horizontal canny edge detector was used to find them. Within 

the central region between these arteries, the macula and fovea were located. 

The intensity value was then inverted and the binary image of the macula 

region obtained through an Otsu’s thresholding. The Otsu’s method searches 

for the threshold that minimizes the intra-class variance of the intensity levels 

of the intensity histogram, returning as result a binary image. A further Hough 

transformation, which is designed to detect edges, was applied to the edges 

of the macula in order to define the circular geometry of the macula and its 

centre, the fovea. A well-established way to evaluate the performances of 

macula detection methods is to measure the Euclidean Distance between the 

manual segmented image and the one processed by the feature extractor 

algorithm (Flanagan, 1993). The analysis was performed on DRIVE and 

DIARETDB1 datasets obtaining an average distance of m = 6.88 pixel and a 

standard deviation of s = 5.85 pixel in the first and m = 8.90 pixel and s = 12.89 

pixel in the second. 
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Table 3.2 List of the reviewed methods regarding retinal image anatomical features and their 
outcome results. 

 Authors  Methods Databases Performances 

Optic 

Nerve 

Issac et al. 

(Issac,Sarathi and 

Dutta, 2015) 

Adaptive image 

thresholding to 

identify OD and OC 

boundaries 

Local Dataset Se 100%, Sp 

90.0%, Acc 

94.4%. 

 Dashtbozorg et al. 

(Dashtbozorg,Mendonça 

and Campilho, 2015) 

Sliding Band Filter.  MESSIDOR; 

INSPIRE-AVR 

Acc 99.9%; Acc 

99.6%. 

 Mookiah et al. (Mookiah 

et al., 2013b) 

 

Attanassov 

intuitionistic fuzzy 

histon 

segmentation. 

Local Dataset Acc 93.4%, F-

score 0.92. 

 Cheng et al. (Cheng et 

al., 2013) 

Superpixel 

Classification. 

MESSIDOR. AUC 0.800 

 Basit and Fraz (Basit 

and Fraz, 2015) 

Morphological 

Operations, 

Smoothing filters 

and 

Watershed 

Transform 

SHIFA (local 

database); 

DRIVE; 

CHASE_DB1; 

DIARETDB1 

AVG Se 99.2%; 

AVG Sp 76.2%; 

AVG Acc 98.9%. 

 Reza et al. (Reza and 

Ahmad, 2015) 

Curve Operator for 

automatic OD 

detection. 

STARE; 

DIARETDB1 

Acc 87.7%; Acc 

94.4%. 

 Huazhu et al. (Fu et al., 

2018) 

Multi-label deep 

network with polar 

transformation 

ORIGA; 

SCES (local 

datasets) 

AUC 0.851; AUC 

0.900. 

     

Blood 

Vessels 

Odstrcilik et al. 

(Odstrcilik et al., 2013) 

Illumination 

correction, 

contrast 

equalization, 2D 

Matched filtering, 

thresholding. 

 

HRF; DRIVE; 

STARE  

 

Se 78.6%, Sp 

97.5%, Acc 

95.4%, AUC 

0.974; 

Se 70.6%, Sp 

96.9%, Acc 

93.4%, AUC 

0.952; 

Se 78.5%, Sp 

95.1%, Acc 

93.4%, AUC 

0.957. 

 Akram and Khan (Akram 

and Khan, 2013) 

2D Gabor wavelet, 

multilayer and 

adaptive 

thresholding. 

DRIVE; 

STARE 

Acc 94.7%; Acc 

95.0%. 
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 Bala and Vijayachitra 

(Bala and Vijayachitra, 

2015) 

Matched filtering, 

local 

entropy 

thresholding, Grey 

level co-occurrence 

matrix 

for features 

extraction and 

Extreme learning 

machine for 

classification. 

DIARETDB0; 

DRIVE  

 

Se 96.7%, Sp 

100%, Acc 97.5%; 

Se 100%, Sp 

94.1%, Acc 

95.0%. 

 Liskowski and Krawiec 

(Liskowski and Krawiec, 

2016) 

Convolutional 

Neural Network. 

DRIVE; 

STARE 

Acc 95.0%, AUC 

0.97; Acc 95.7%, 

AUC 0.979. 

 Azzopardi et al. 

(Azzopardi et al., 2015) 

Difference-of-

Gaussians filtering 

(B-COSFIRE). 

 

DRIVE; 

STARE; 

CHASE_DB1  

 

Se 76.6%, Sp 

97.0%, Acc 

94.3%, AUC 

0.961; 

Se 77.2%, Sp 

97.0%, Acc 

95.0%, AUC 

0.956; 

Se 75.9%, Sp 

95.9%, Acc 

93.9%, AUC 

0.949. 

 Wang et al. (Yangfan 

Wang et al., 2013) 

 

Multiwavelet 

kernels vessel 

enhancement, 

hierarchical optimal 

decomposition, 

adaptive 

thresholding 

DRIVE; 

STARE 

Acc 94.6%; Acc 

95.2%. 

     

Macula & 

Fovea 

Chin et al. (Chin et al., 

2013) 

OD location and 

vasculature 

map via geometrical 

approximation and 

VAMPIRE, location 

of the ROI via 

anatomical priors 

and fovea location 

with highest 

likelihood after 2D 

Gaussian mask 

filtering. 

Local Dataset; 

MESSIDOR  

 

Fovea detection 

rate (FDR) within 

25%DD 77.3%, 

FDR 50%DD 

92.4% (with good 

quality images); 

FDR 25% DD 

56.2%, FDR 50% 

DD 79.8% (with 

no risk of macula 

edema images). 
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 Zheng et al. (Zheng et 

al., 2014) 

OD location via 

thresholding, 

morphological 

bottom-hat 

transform for blood 

vessel 

elimination, OD 

boundary detection 

and circle fitting, 

fovea location via 

anatomical 

constraints and 

morphological 

geodesic transform. 

DRIVE; HEI-

MED; 

DIARETDB1  

 

FDR 100%; FDR 

98.8%; FDR 

93.3%. 

 Medhi and Dandapat 

(Medhi and Dandapat, 

2016) 

OD detection via 

thresholding, 

fovea detection via 

Canny edge 

detector, Otsu 

thresholding, Hough 

transform and 

anatomical 

constraints 

DRIVE; 

DIARETDB1  

 

FDR 100% D 

6.88; FDR 

95.51%, D 8.90. 

 

 

Table 3.3 Performance Evaluators – Statistical measures mostly used for the evaluation 
process of feature extraction methods. 

Measure Description Formula 

Sensitivity (Se) or True 

Positive Fraction (TPF) 

or Recall (Rec) 

The proportion of pixels 

that are correctly identified 

as object 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity (Sp) or True 

Negative Fraction (TNF) 

The proportion of pixels 

that are correctly identified 

as non-object 

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

Precision or Positive 

Predicted Value (PPV) 

The proportion of positive 

results that are true 

positive 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative Predicted 

Value (NPV) 

The proportion of negative 

results that are true 

negative 

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

Accuracy (Ac or Acc) It describes the closeness 

of a measurement to the 

true value 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
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False Positive Fraction 

(FPF) 

The proportion of pixels 

that are not correctly 

identified as object 

𝐹𝑃

𝑇𝑃 + 𝐹𝑁
 

False Negative Fraction 

(FNF) 

The proportion of pixels 

that are not correctly 

identified as non-object 

𝐹𝑁

𝑇𝑃 + 𝑇𝑁
 

Receiver Operating 

Characteristic (ROC) 

It plots the TPF versus the 

FPF 
- 

Area under the curve 

(AUC) 

The area under the ROC 

(AUC = 1 in an optimal 

system) 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝐹(𝐹𝑃𝐹)𝑑𝐹𝑃𝐹
1

0

≈
𝑆𝑒 + 𝑆𝑝

2
 

Mathew’s correlation 

coefficient (MCC) 

Used in machine learning 

as a measure of the quality 

of binary (two-class) 

classifications 

𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

F-score Measure of a test’s 

accuracy 
2 ×

𝑃𝑃𝑉 × 𝑆𝑒

𝑃𝑃𝑉 + 𝑆𝑒
 

Euclidean distance (D) Measure the distance 

between two points in a 2D 

space. If P(p1,p2) and 

Q(q1,q2) 

𝑑(𝑃, 𝑄) = √(𝑞1 − 𝑝1)2(𝑞2 − 𝑝2)2 

 

3.4 PRINCIPAL ARTIFACT SOURCES 

The terms artifact and noise refer to two different phenomena. In this 

thesis, artifact is assumed as a chromatic or textural element of the image that 

doesn’t belong to the object being imaged. Noise is an additional contribution 

to the image caused by a stochastic process. A more detailed definition can 

be found in Chapter 4.  

Typically, the optical system configuration during fundoscopy or similar 

fundus observation, is the one formed by the eye’s fundus, the device optics 

used to get access into the eyeball, the image sensor and a source of light. 

Every ophthalmic device, capable to access the posterior segment of the eye 

and acquire an image of the fundus, is based on this configuration, with 

different levels of complexity in the optics layout. Some classic examples are 

displayed in Figure 3.16, where we can have an overview of the main optical 

components that allow the light to be projected into the fundus and then been 

collected from the fundus, so to obtain the image of the retina.  
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Figure 3.16 Simplified schematic of the optical setup of a ZEISS FF 450PLUS fundus camera, on 
the left, and a ZEISS SL 120 slit lamp, on the right (Kaschke,Donnerhacke and Rill, 2013). 

In the following, an overview of the main causes of artifacts and poor quality 

in retinal imaging is presented.  

3.4.1 OPTICAL PATH DISTORTIONS AND COLOUR 

DISTORTIONS 

Two optical systems stand between the retina and the images sensor: the 

eyeball and the optical stage of the ophthalmic device. If one of this two 

elements presents an optical (or geometrical) anomaly or a misalignment, this 

can cause a distortion in the final retinal image, hence a loss of information of 

the retina’s clinical features. It is important to note that taking a photo does not 

rely entirely on the proper functioning of the optical, mechanical and electrical 

subsystems of the device. The way the operator and the subject interact with 

the device impacts as well on the quality of the retinal photography (Saine, 

1984). This is determined by the varying level of experience of the personnel, 

the different types of cameras and device settings or the individual 

characteristics of the acquired eye, to name a few (Paulus et al., 2010). For 

these reasons, the specialists tend to assess the quality of images after each 

shooting before labelling them as usable for the clinical evaluation, based on 

their own experience and knowledge about image quality. As introduced in 

Chapter 2, when this assessment take place in a clinical environment under 
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the supervision of professional personnel, the chances to result in poor quality 

images is low (Yu et al., 2012a). However, in many mHealth applications, 

images are acquired directly in the field by trained locals, who cannot rely on 

the same level of experience in image quality assessment. 

 

Figure 3.17 Optical path in retinal photography. Between the image sensor, on the left, and 
the retina, on the right, there are two optical systems formed by the optics of the imaging 
device and the eye. 

Five common sources of artifacts during an eye examination have been 

identified  (S. Wang et al., 2016, Yu et al., 2012a): 

 eye movement and blinking 

 object obstruction 

 incorrect focus 

 media opacity 

 inadequate illumination.  

Eyelashes and dust are the most frequently sources of obstruction 

observed. Another important source of obstruction has been found in small 

pupil size (Sangave et al., 2014). Incorrect focus and aberrations in retinal 

photography can be caused by wrong device settings, optics misalignment or 

by the severe refractive error of the eye. The loss of contrast is usually 

associated with media opacity and by illumination problem. The illumination 

also plays a key role in the chromatic dominance of the photo. The light 

interacts with the objects along the optical path and with the surrounding 

media, determining the dominant wavelength therefore the colour of the retinal 
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features on the final image. Light reflections are also another important source 

of artifact, that usually is minimized by tilting the optics that projects the light 

into the eye with respect to the optics that collects the image from the fundus. 

Interfaces between media with different reflective index, such as between the 

air and the cornea, are the most subjected to this phenomenon. 

3.4.2 PATHOLOGICAL CONDITIONS 

Poor quality retinal imaging can be caused by some pathological or 

congenital conditions or as consequence of natural aging. In general, these 

are related with the opacification of the clear structures of the eye (cornea and 

lens) or with some traumas, which can complicate the visual access to the 

fundus from the front of the eye. A brief description of the main pathological 

conditions that have an impact on the quality of retinal imaging is presented 

below, divided according to the anatomical structure involved. 

Cornea: as described in Chapter 2, the inner and biggest structure of the 

cornea is the corneal stroma, which packed with more than 200 layers 

(lamellae) of long cylindrical collagen fibrils, with each lamella being about 2.0 

m thick (Atchison and Smith, 2000). The fibrils that compose each lamella 

are parallel to each other, and uniform in size and spacing. The lamellae are 

arranged so that successive lamella runs across the cornea at an angle 

respect to the previous one. This arrangement guarantees the transparency of 

the cornea while enhancing mechanical strength. More precisely, the high level 

of transparency has been associated with the regularity of the fibril size and 

separation (Hart and Farrell, 1969). When this regularity is compromised, due 

to aging, pathologies or traumas, the cornea can become cloudy, which 

induces light scattering phenomena. 

Corneal haze can be caused by congenital or neonatal corneal 

opacification, which includes endothelial dystrophies, corneal dermoids, 

cornea plana, CYP1B1 cytopathy and kerato-irido-lenticular dysgenesis, also 

called Peter’s anomaly (Nischal, 2015). Corneal degenerations, such as the 

Salzmann’s nodular degeneration (Maharana et al., 2016), can lead to haze. 

This pathology alters the regularity between the fibrils creating bluish grey 
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nodules that, if located in the central region of the cornea, induces scattering. 

Herpetic corneal diseases, keratitis, trachoma and other corneal infections 

(Teweldemedhin et al., 2017, Kalezic et al., 2018, Shah et al., 2011, Taylor et 

al., 2014) if not treated are responsible for a range of corneal haze such as 

scarring, thinning and neovascularization. Limbal stem cell deficiency (LSCD) 

is another cause of corneal opacity (Fernandez-Buenaga et al., 2018, 

Shortt,Tuft and Daniels, 2011). The limbal stem cells are situated in the 

junction between the sclera and the cornea and are responsible for the 

renovation of the corneal epithelium. LSCD causes loss of transparency, with 

ulcerations and ingrowth of blood vessels onto the cornea. The most 

commonly reported causes of LSCD are chemical and thermal burns (75%), 

followed by ocular surface inflammatory diseases such as Stevens Johnson 

syndrome and ocular cicatricial pemphigoid (Bobba et al., 2017). Corneal 

trauma can create discontinuities in the epithelium-stromal interface, and the 

corneal oedema/fibroblastic activated during the wound healing generates 

corneal haze (Meek et al., 2003, Moller-Pedersen, 2004). Almost 80% of 

emergency visits due to eye trauma are account for corneal abrasions or 

foreign bodies (Willmann and Melanson, 2017). Other sources of trauma 

responsible for corneal haze arise from complications of refractive surgery, in 

particular with surface ablations (Chang,Maurice and Ramirez-Florez, 1996). 

In Table 3.4, the summary of the abovementioned epidemiology is presented. 

Table 3.4 The most common causes of corneal opacity. 

Genetic  Corneal degeneration Infectious Physical/ traumatic 

Endothelial 
dystrophies 

Salzmann’s nodular 
degeneration 

Herpes simplex LSCD 

Corneal dermoids  Keratitis Corneal injury 

Cornea plana  Trachoma Surgery 

Peters anomaly  Allergic eye disease  

 

Along with optical media opacity, some morphological alteration of the 

curvature of the cornea can cause distortions and aberrations in retinal 

imaging. In some cases, such as with keratoconus, the degradation of the 
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image quality is such that can be used as measurement of the severity of such 

pathology (Leonard et al., 2016). 

Lens: similar to the cornea, the lens fibres form the bulk of the lens. These 

long and thin structures are wound up together under the surrounding capsule 

and epithelium, maintaining a circular symmetry with respect the central axis 

of the lens. Because of its thickness and the presence of cellular body, within 

the lens the scattering phenomena are more intense than in the other clear 

components of the eye. Moreover, the constant growth of the lens throughout 

life, determines an age-related change of the lenticular parameters, observing 

an increment of the forward-scatter compared to the backward-scatter 

(Atchison and Smith, 2000). 

The symptomatic clouding of some of the lens’s layers is usually referred 

to as cataract, which is one of the leading causes of visual impairment and the 

first cause of blindness worldwide, according to the WHO (Pascolini and 

Mariotti, 2012b). There are a wide variety of conditions that can cause cataract, 

the majority of which are age-related. A recent survey in UK (Table 3.5) has 

shown that the most common lens opacities assessed, which resulted in 

cataract surgery prescription, are: anterior subcapsular cataract, vacuoles, 

water clefts, coronary flakes, and focal dots (Frost and Sparrow, 2001). Other 

more rear causes of cataract are: polychromatic lustre, lenticonus and central 

nuclear morphology.  

 

Table 3.5 Common lens opacities as observed in the UK survey (Frost and Sparrow, 2001). 

Group of opacities Class of opacities 

Subcapsular opacities Anterior subcapsular opacity 

 Posterior subcapsular opacity 

  
Nuclear sclerosis Nuclear colour, brunescence 

 Nuclear light scatter, opalescence 

  
Cortical opacities Cortical spokes 

 Water clefts 

 Fibre folds 
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Eyeball geometry: Severe myopia and hyperopia cause distortions and 

blurred vision. Similarly, these refractive errors can corrupt the quality of retinal 

imaging, generating distortion, chromatic aberration and defocusing. Although 

the impact of such pathologies on the images of the fundus has not been the 

object of a systemic investigation yet, some researchers are starting to use the 

information contained in the deformations and in the level of contrast of retinal 

images to train deep learning algorithms for the automatic assessment of the 

refractive error (Varadarajan et al., 2018). 

3.5 ARTIFACT AND NOISE SUPPRESSION 

Unlike image enhancement methods, the purpose of artifact and noise 

suppression algorithms is to selectively remove the degradation and restore 

the original clinical content of the image. Here, a wide overview of techniques 

used for artifact and noise mitigation are presented, providing application 

examples, when possible, in retinal imaging. 

 

Figure 3.18 Model of image degradation/restoration process. 

The theoretical basis of image degradation and restoration is schematised 

in Figure 3.18. Given an input image 𝑓(𝑥, 𝑦), the degraded image 𝑔(𝑥, 𝑦) is 

the result of the degradation process and the noise, considered as an additive 

process. Knowing (or modelling) the degradation function 𝐻, and the noise 

𝜂(𝑥, 𝑦), the process of restoration aims to obtain an estimate 𝑓′(𝑥, 𝑦) of the 

original image. If 𝐻 is a linear, position-invariant process, the degraded image 

in the spatial domain is given by 

𝑔(𝑥, 𝑦) = ℎ(𝑥, 𝑦) ⋆ 𝑓(𝑥, 𝑦) + 𝜂(𝑥, 𝑦)     (6) 

where ℎ(𝑥, 𝑦) is the spatial representation of the degradation function and the 

symbol ⋆ indicates convolution. Convolution in the spatial domain is analog to 
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multiplication in the frequency domain, so by using Fourier transform Eq. 6 

becomes 

𝐺(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)𝐹(𝑢, 𝑣) + 𝑁(𝑢, 𝑣)     (7) 

In the restoration process a filter 𝑅(𝑢, 𝑣) is applied so to obtain 𝐹′(𝑢, 𝑣) as 

𝐹′(𝑢, 𝑣) = 𝑅(𝑢, 𝑣)𝐺(𝑢, 𝑣)          (8.1) 

𝐹′(𝑢, 𝑣) = 𝑅(𝑢, 𝑣)𝐻(𝑢, 𝑣)𝐹(𝑢, 𝑣) + 𝑅(𝑢, 𝑣)𝑁(𝑢, 𝑣)   (8.2) 

𝐹′(𝑢, 𝑣) ≈ 𝐹(𝑢, 𝑣)      (8.3) 

as the restoration filter 𝑅(𝑢, 𝑣) is the inverse of the degradation function, 

neglecting the noise function.  

Spatial filtering –The mechanism of spatial filtering consists in defining a small 

region (mask) and a predefined operation. Each pixel of the image is then 

processed by computing the predefined operation on the surrounding region 

of the pixel (neighbourhood) and the pixel itself Figure 3.19 and Eq. 9. 

 

Figure 3.19 The mechanism of lineal spatial filtering using a 3 x 3 filter mask. 

 

𝑓′(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑠, 𝑡)𝑓(𝑥 + 𝑠, 𝑦 + 𝑡)𝑏
𝑡=−𝑏

𝑎
𝑠=−𝑎    (9) 
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where 𝑤(𝑠, 𝑡) are the coefficients of the filter at the 𝑠 and 𝑡 pixel location. 

Spatial filters can offer larger versatility, because they can be used for linear 

and nonlinear filtering, something not always possible in the frequency domain 

for instance. There is a wide variety of filters with the mathematical structure 

of Eq. 9. They can be clustered as: 

1. Mean filters – (arithmetic, geometric, harmonic, etc.) where the filtering 

produces a smooth image, and the noise is reduced as a result of 

blurring. 

2. Order-static filters – (median, max&min, midpoint, etc.) which 

response is based in ordering (ranking) the value of the pixel contained 

in the image region, defined by the 𝑎 × 𝑏 rectangular window, under 

processing.  

3. Adaptive filters – they take advantage of the characteristic of the 

abovementioned filters but the behaviour changes based on the 

statistical characteristic of the image region under processing. 

Frequency domain filtering – The great intuition of Jean Baptist Fourier was 

that any periodic function can be expressed as the sum of sines (or/and 

cosines) of different frequencies, each multiplied by a different coefficient, now 

called Fourier series. Even non-periodic function can be expressed as integral 

of sines (or/and cosines) multiplied by a weighting function. A classic example 

is offered by digital music. Any sound waves (musical, vocal, noise, etc.) can 

be obtained as the sum of multiple sinusoidal components, Figure 3.20. 

 

Figure 3.20 The shape of the wave on the left can be obtained as the sum of the sinusoidal 
components on the right. 
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As a consequence, every sound can be decomposed in simple sinusoidal 

waves characterized by the triples: frequency, amplitude and phase. Knowing 

the triplets of each subcomponent of the wave can fully describe it. Similarly, 

a digital image can be seen as the combination of all the different pixel intensity 

distribution in two dimensions. The 2D Discrete Fourier Transform is the 

mathematical formalism that translate the image into the sum of each 

frequency component 

𝐹(𝑢, 𝑣) = ∑ ∑ 𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(𝑢𝑥 𝑀⁄ +𝑣𝑦 𝑁⁄ )𝑁−1
𝑦=0

𝑀−1
𝑥=0    (10) 

where 𝑓(𝑥, 𝑦) is the digital image of size 𝑀 × 𝑁, and 𝐹 is evaluated for values 

of the discrete variables 𝑢 and 𝑣 in the range 𝑢 = 0, 1, 2, … , 𝑀 − 1 and 𝑣 =

0, 1, 2, … 𝑁 − 1. 

Like in noise filtering for audio recording, if the frequency components of the 

noise are identified they can be removed by employing the following filers or 

their combination.  

1. Bandreject filters – as anticipated in the introduction to filtering in the 

frequency domain, when the location of the noise components is known, 

those can be removed selectively. 

2. Bandpass filters – opposite to bandreject application, this type of filters 

excludes the entire frequency components above or below an 

established threshold (low-, high- and band-pass filter). 

3. Notch filters – a notch filter rejects frequencies in predefined 

neighbourhoods about a central frequency.  

Once the degradation function 𝐻 (estimated by observation, 

experimentation or modelling) has been obtained, we can generate the 

restored image 𝐹′(𝑢, 𝑣) by using the following methods: 

1. Inverse filtering – the simplest approach to restoration from 

degradation is directly inverse filtering, where we obtain the Fourier 

transform of the estimate image 𝐹′(𝑢, 𝑣) simply by dividing the 

transform of the degraded image 𝐺(𝑢, 𝑣) by the degradation function. 

𝐹′(𝑢, 𝑣) =
𝐺(𝑢,𝑣)

𝐻(𝑢,𝑣)
     (10) 
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      Substituting the right side of Eq.7 for 𝐺(𝑢, 𝑣) in Eq. 10 yields 

𝐹′(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) +
𝑁(𝑢,𝑣)

𝐻(𝑢,𝑣)
   (11) 

     This first rough approach can be very convenient from a computational 

prospective, but highlights two important problems. The first regards the 

noise components 𝑁(𝑢, 𝑣) which, if not known, prevent us from 

estimating effectively 𝐹(𝑢, 𝑣). The second is that if the degradation 

function has zero or very small values, then the ratio 𝑁(𝑢, 𝑣) 𝐻(𝑢, 𝑣)⁄  

can easily dominate the estimate 𝐹′(𝑢, 𝑣). A possible approach to 

partially prevent this side effect is to limit the filter frequencies to values 

near the origin. In fact 𝐻(0,0) is usually the highest value of 𝐻(𝑢, 𝑣) in 

the frequency domain. Thus, by limiting the analysis of frequencies near 

the origin, we can reduce the probability of encountering zero values. 

2. Least square error filters – To handle both the degradation function 

and the statistical characteristics of noise, Norbert Wiener in 1942 

proposed an innovative restoration approach. The idea is considering 

images and noise as random uncorrelated variables, and the goal is to 

find an estimate 𝑓′ of the uncorrupted image 𝑓 such that the mean 

square error between them is minimised. The error measure is given by 

𝑒2 = 𝐸{(𝑓 − 𝑓′)2}     (12) 

where 𝐸{ ∙ } is the expected value of the argument. Assumed that one 

or the other function has zero mean and the intensity levels of the 𝑓′ 

are a linear function of the intensity level of 𝑓, Eq.12 is given in the 

frequency domain by 

 

𝐹′(𝑢, 𝑣) = [
𝐻∗(𝑢,𝑣)𝑆𝑓(𝑢,𝑣)

𝑆𝑓(𝑢,𝑣)|𝐻(𝑢,𝑣)|2+𝑆𝜂(𝑢,𝑣)
] 𝐺(𝑢, 𝑣)     (13.1) 

= [
𝐻∗(𝑢,𝑣)

|𝐻(𝑢,𝑣)|2+𝑆𝜂(𝑢,𝑣) 𝑆𝑓(𝑢,𝑣)⁄
] 𝐺(𝑢, 𝑣)    (13,2) 

= [
1

𝐻(𝑢,𝑣)

|𝐻(𝑢,𝑣)|2

|𝐻(𝑢,𝑣)|2+𝑆𝜂(𝑢,𝑣) 𝑆𝑓(𝑢,𝑣)⁄
] 𝐺(𝑢, 𝑣),  (13.3) 
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where 𝐻(𝑢, 𝑣) is the degraded function, 𝐻∗(𝑢, 𝑣) is the complex 

conjugate of 𝐻(𝑢, 𝑣), |𝐻(𝑢, 𝑣)|2 =  𝐻∗(𝑢, 𝑣)𝐻(𝑢, 𝑣). 𝑆𝜂(𝑢, 𝑣) = |𝑁(𝑢, 𝑣)|2 

and 𝑆𝑓(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|2 are the power spectrum of the noise and the 

non-degraded image respectively. While this method doesn’t suffer 

from the problem of the inverse filter, since the denominator is usually 

non-zero, it requires the knowledge of the power spectra of the noise 

and the degraded image. 

3. Constrained least square filters – an important improvement to the 

previous solutions is the constrained least square filter, since here only 

the mean and variance of the noise are required. To explain this 

method, it is convenient to express the elements of Eq. 6 as matrixes 

and vectors: 

𝒈 = 𝑯𝒇 + 𝜼      (14) 

The constraint here is given by 

‖𝒈 − 𝑯𝒇′‖𝟐 = ‖𝜼‖𝟐            (15) 

where ‖𝒂‖ ≜ 𝒂𝑇𝒂 is the Euclidean vector norm. This equation aims to 

establish a criterion to measure the smoothness, such as the second 

derivative of the image (Laplacian), of the restoration. The frequency 

domain solution to this optimization problem is given by the expression  

𝐹′(𝑢, 𝑣) = [
𝐻∗(𝑢,𝑣)

|𝐻(𝑢,𝑣)|2+𝛾|𝑃(𝑢,𝑣)|
] 𝐺(𝑢, 𝑣)   (16) 

Where 𝛾 is a parameter that must be adjusted to satisfy the constraint, 

and 𝑃(𝑢, 𝑣) is the Fourier transform of the Laplacian operator. In order 

to adjust 𝛾 we can define a residual vector 𝒓 as 

𝒓 = 𝒈 − 𝑯𝒇′      (17) 

Since 𝐹′(𝑢, 𝑣) is a function of 𝛾, then also 𝒓 is a function of this 

parameter. What we need to do is to define the optimum 𝛾 so that 

‖𝒓‖𝟐 = ‖𝜼‖𝟐 ± 𝑎     (18) 
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Where 𝑎 is an accuracy factor. ‖𝒓‖𝟐 can be easily obtained by noting 

that  

𝑅(𝑢, 𝑣) = 𝐺(𝑢, 𝑣) − 𝐻(𝑢, 𝑣)𝐹′(𝑢, 𝑣)    (19) 

From which 𝑟(𝑥, 𝑦) can be obtained by computing the inverse transform 

of 𝑅(𝑢, 𝑣). Then 

‖𝒓‖2 = ∑ ∑ 𝑟2(𝑥, 𝑦)𝑁−1
𝑦=0

𝑀−1
𝑥=0     (20) 

And ‖𝜼‖2 can be obtained as the summation of the variance 𝜎𝜂
2 and the 

mean 𝑚𝜂 of the noise as 

‖𝜼‖2 = 𝑀𝑁[𝜎𝜂
2 + 𝑚𝜂

2]        (21) 

where  

𝜎𝜂
2 =

1

𝑀𝑁
∑ ∑ [𝜂(𝑥, 𝑦) − 𝑚𝜂]

2𝑁−1
𝑦=0

𝑀−1
𝑥=0    (22) 

and 

𝑚𝜂 =
1

𝑀𝑁
∑ ∑ 𝜂(𝑥, 𝑦)𝑁−1

𝑦=0
𝑀−1
𝑥=0          (23) 

are the sample mean. These quantities are not difficult to estimate, assuming 

the noise and the image intensity values are not correlated. 

It is important to highlight that while, from a theoretical point of view, the 

presented solutions show an increasing optimization, this is formally not 

correlated to an automatic improvement from a clinical quality perspective. As 

a result, the choice of one method over the other will mostly be determined by 

the perceived visual quality of the resulting images. It is therefore subjective 

and, once again, highly task-dependant. 

In retinal imaging, two different restoration approaches have been 

established over the years: classical Gaussian-filtering based techniques and 

edge-preserving based methods (He et al., 2017, Shin et al., 2005, 

Buades,Coll and Morel, 2005, Hani et al., 2014). The first is widely used in 

medical imaging for its robustness and computational advantages, however 

since the weights of a Gaussian filter depend on the spatial distance, these 

techniques may lose sharp edges and add blurring effect. In retinal image this 
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is a major drawback since the majority of blood vessel and ONH segmentation 

methods rely on edge-detection principles. Edge-preserving methods were 

introduced to overcome this problem.  

The latter methods are more widely used in denoising retinal images, with 

bilateral filter (BLF) becoming one of the most popular type of algorithm. BLF 

uses a local weighted average (on the spatial distance and intensity difference 

between pixels, hence bilateral) without the need for iterations, allowing for a 

low computational effort. The drawback is that it doesn’t perform well with thin 

tube-like structures, such as the retinal vasculature, therefore some 

implementations are usually required. He et al. (He et al., 2017) modified a 

BLF by substituting the spatial kernel with an adaptive spatial kernel, sensitive 

to different orientations and size of blood vessels. This is computed by 

measuring the normal distance between each pixel and the straight line 

passing through the centre of the blood vessel, rather than the Euclidean 

distance. Such method has proven to improve blood vessel segmentation 

accuracy (Frangi’s filter technique was selected (Frangi et al., 1998)). Another 

image restoration technique that uses BLF is described by Xian et al. (Xian et 

al., 2017). Here, a combination of spatial and frequency domain techniques is 

used to reduce the mixed Gaussian-Poisson noise from retinal images. The 

corrupted image is initially processed with a BLF, which preserves large 

amplitudes and results in a denoised image characterised by high contrast. 

Secondly, the denoised image is subtracted to the original one obtaining a low-

contrast output which is processed by a Wavelet shrinkage in the short-time 

Fourier transform domain. In this way the small amplitudes are filtered, 

completing the denoising mechanism. The sum of this two component forms 

the estimated image: 

𝑓′ = 𝑠′ + 𝑆′ 

Where 𝑠′ and 𝑆′ are the denoised high-contrast and low-contrast images. This 

approach is then iteratively processed as shown in Figure 3.21. 
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Figure 3.21 the block diagram of the Dual-Domain Image Denoising. 

 

This multi-domain approach was more effective in reducing the error between 

the original image and the denoised one with improvement of segmentation 

and detection techniques. 

 

3.5.1 AUTOMATIC AND SEMIAUTOMATIC ASSESSMENT 

SYSTEMS 

Manual grading by an ophthalmologist has been the state of the art of DR 

and maculopathy screening in the past decades. However, the increase of the 

population with diabetes and the progressive aging of the population had 

pushed the health care provision capability, with prediction of an increasing 

need in the next decades (Tufail et al., 2016, Yung-Hui Li et al., 2019). In 

particular, the large number of images produced within screening programmes 

(boost by mHealth services) has to be assessed by the same constant number 

of ophthalmologists, creating a bottleneck in the screening workload. For this 

reason, as soon as the technology for automated detection of pathologies 

became available, many software solutions were developed and tested, some 

of which have already been employed by NHS. 

The principal goal of these software packages is the evaluation of the 

gradability of the image (the image needs to pass some quality tests) and the 
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classification of the retinal images as diseases/no disease. The terms 

automatic and semiautomatic refer to the capability of these algorithms to 

process the image without the intervention of an operator or with the 

intervention/supervision of the operator, respectively.  

The process of validation of automated retinal image analysis systems 

(ARIAs) usually involves the measurement of sensitivity and specificity in 

detecting the targeted retinopathy (Larsen et al., 2003, Usher et al., 2004). 

However, these absolute values need to be compared with the performance of 

alternative grading system, including human graders, in order to determine the 

actual improvement of screening programme efficiency. This is what has been 

done by the University of Aberdeen, in collaboration with NHS Scotland, in a 

large-scale study, involving 6722 patients from Grampian, where the software 

has proven to have a better detection rate, 90.5%, than manual grading, 

86.5%, for any retinopathy (Scotland et al., 2007, Sam Philip et al., 2007b). 

This class I CE marked ARIA software, called iGradingM, is currently being 

used in Scottish national diabetic retinopathy screening programmes. 

As for supervised software packages, of particular interest are the solutions 

developed for the quantitative evaluation of the morphometry of the retinal 

vasculature, e.g. IVAN (Tien Yin Wong et al., 2006), SIVA (G. Liew et al., 

2008), QUARTZ (Muhammad Moazam Fraz et al., 2015) and VAMPIRE 

(Perez-Rovira et al., 2011). In particular, VAMPIRE (Vasculature Assessment 

and Measurement Platform for Images of the REtina), created in collaboration 

with 10 clinical and image processing centres, has been designed to quantify 

morphological parameters of blood vessels (cross-section width, tortuosity, 

fractal dimension etc.) for large sets of fundus images, generating 

measurements suitable for biomarker discovery. Here biomarkers are 

considered as elements of the vasculature that are statistically associated with 

conditions that impact treatment decisions, prognosis, or diagnosis (Trucco et 

al., 2013). 

Other commercial systems currently available in the market are the IDx-

DR (Goatman, 2006), the Retmarker (Pires Dias,Oliveira and da Silva Cruz, 
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2014) and the EyeArt (Solanki et al., 2014). The IDx-DR is a class IIa CE 

approved medical device, which includes features such as quality assessment, 

detection of microaneurism detection, haemorrhage, cotton wool spots and 

fusion algorithms that combined together to generate a diabetic retinopathy 

index used as classifier. This software has been validated in several large 

screening populations, reaching a sensitivity and specificity of 96.8% and 59.5 

%, respectively. Retmarker, developed in Portugal by the Coimbra University, 

combines a quality assessment algorithm and a co-registration algorithm, 

which allows comparisons during follow-up visits of the same retinal area. CE 

approved as a class IIa medical device in 2010, this system has obtained a 

sensitivity of 95.8% and a specificity of 63.2%. Finally, EyeArt, developed by 

Eyenuk and USC Keck School of Medicine, is engineered to perform DR 

screening on the cloud cluster (Amazon Elastic Cloud; Amazon EC2, Amazon, 

Seattle, WA, USA). Sensitivity and Specificity are 93.8% and 72.2 respectively. 

A detailed list of other ARIA systems can be found in (Trucco et al., 2013). 

3.6 STATISTICAL DESCRIPTORS OF QUALITY 

In objective terms, the definition of “quality” in retinal photography is still a 

matter of debate (Lalonde,Gagnon and Boucher, 2001). Translating a 

subjective evaluation into a quantitative value is per se an ill-posed problem. 

As we discussed in the previous paragraph, the assessment of an image is a 

cognitive task that depends on the experience of the clinician, the viewing 

conditions, the diagnostic procedure and so on. Nonetheless, the considerable 

advantage coming from obtaining a measurable quantity of the clinical 

information content of an image has stimulated the researchers to identify 

some evaluation criteria. 

A retinal image contains many anatomical structures and other features 

that can be associated to some pathological conditions. When we explore the 

world around us we usually are able to identify an object only in relation to its 

immediate background (Figure 3.22). This is the same strategy adopted by 

many image processing procedures, rather than using the overall 

characteristics of the image.  
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Figure 3.22 Example of the process that convert tissue characteristics in a visual image. 

 

Under these considerations, five different factors have been identified to 

have direct impact on the visual assessment process in medical imaging: 

contrast, blur, noise, artifacts, and distortion (Sprawls, 1987). The advantage 

in using these factors is that they are measurable, since they can be described 

or modelled mathematically. In the following, the impact that each factor has 

in retinal imaging will be proposed, as it will clarify the selection of the statistical 

descriptors used to evaluate them. 

Contrast – probably the most fundamental characteristic of an image, it is 

the difference between the image intensity of an object and the surrounding or 

background (Figure 3.22). In retinal imaging, the identification of a specific 

object is only possible if the difference between its intensity value and the 

surrounding area is not zero. Particularly for detection of pathological signs, a 

device that produces high contrast fundus images is preferable. If we suppose 

that in a specific colour channel an object has a nominal intensity value 𝐼𝑂 and 

the background a nominal intensity value 𝐼𝐵, we can define local contrast as 

𝐶 =
𝐼𝑂−𝐼𝐵

𝐼𝐵
.      (1) 

Blur – The variation of the physical characteristics of an object within an 

image concern not only the intensity level of a specific colour channel but also 

to its size. Sometimes addressed to in terms of resolution, in fundoscopy it’s 
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the ability to distinguish two retinal structures in space as separate (Prince and 

Links, 2006) (example in Figure 3.23). Since it has an impact on small objects, 

the higher the resolution, or the lower the blur, the better in terms of diagnostic 

capability.  

 

Figure 3.23 Example of blur in fundus imaging. In the magnified portion of the retinal 
image, the separation between the blood vessels and the fundus appears more as a gradual 

transition rather than a clear line. 

Noise – the effect of noise on retinal images is to add a random fluctuation 

in the intensity levels of the pixels. If properly modelled, this contribution can 

be predicted and sometime filtered or mitigated. The type and amount of noise 

depend on many variables: the imaging system, the imaging method and so 

on. A more detailed description will be presented in the next chapter on this 

regard. 

Artifacts – this aspect will be described in more details in the next chapter. 

Distortion – Closely related with noise and artifact, this term is sometime 

used to explicitly refer to the resulting effects of noise and artifact on the retinal 

image (change in the morphology or the chromaticity of an anatomical feature 

of the retina).  

As explained above, dealing with the restoration of images from artifact and 

noise is commonly related with the problem of obtaining a model of these two 

elements (or together as a unified model). To help the evaluation of the effect 
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of degradation phenomena on the image, after obtaining a model of such 

degradation, the signal-to-noise (SNR) ratio can be used. This measures the 

level of information carried by the signal power (here the non-degraded image) 

and the noise power, expressed in the frequency domain as: 

𝑆𝑁𝑅 =
∑ ∑ |𝐹(𝑢, 𝑣)|2𝑁−1

𝑣=0
𝑀−1
𝑢=𝑜

∑ ∑ |𝑁(𝑢, 𝑣)|2𝑁−1
𝑣=0

𝑀−1
𝑢=𝑜

 

 Another important parameter used in the evaluation of a degradation 

filtering process is the mean square error, given by 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑[𝑓(𝑥, 𝑦) − 𝑓′(𝑥, 𝑦)]2

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

In literature, as for retinal image quality evaluation (Yu et al., 2012b, 

Remeseiro,Mendonca and Campilho, 2017, Yin et al., 2014, S. Wang et al., 

2016, Haralick,Shanmugam and Dinstein, 1973), three different groups of 

statistical descriptors are commonly employed: histogram features, Haralick 

features and specific textural feature. 

3.6.1 HISTOGRAM AND CONTRAST FEATURES 

Histogram features 

These are mean, standard deviation, skewness, kurtosis, interquartile range 

(IQR) and contrast sensitivity function (CSF). Where the CSF of a channel 𝑋 

is obtained as: 

𝐶𝑆𝐹(𝑋) = 𝐼𝑄𝑅(𝑋)  𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛(𝑋)⁄ ,    (1) 

and is an expression of the statistical dispersion of the between the upper 

and lower quartile respect to the range of intensities of that channel. 

Contrast and blur features 

To detect uneven illumination and poor focus, 7 different contrast and blur 

measures have been selected: contrast ratio, local contrast ratio, blur metric, 

full intensity range, relative intensity range, interquartile intensity range and 

saturation metrics (Yin et al., 2014, Crete et al., 2007).  
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Contrast ratio (𝐶𝑅) is calculated as: 

𝐶𝑅𝑗 = 𝑝�̅� 𝑠𝑗⁄ ,     (2) 

where 𝑝�̅� is the mean intensity of all of the pixels in a ROI in the channel 𝑗 

while 𝑠𝑗 is the standard deviation of the pixels in the same ROI in the channel 

𝑗. The ROI, in this case, is the whole retinal image excluding the black borders. 

The higher the CR the higher the blurriness. A similar contrast indicator is the 

local contrast ratio (𝐿𝐶𝑅) which is the CR calculated on non-overlapping sub-

windows of the retinal image as follows: 

𝐿𝐶𝑅 = (∑
�̅�𝑤,𝑖

𝑠𝑤,𝑖

𝑛
𝑖=1 ) 𝑛⁄ ,     (3) 

where 𝑤 is a 𝑁 × 𝑁 window inside the ROI and 𝑛 is the total number of sub-

windows.  

Blur metrics (𝐵𝑀) measures the focal blur and the motion blur by 

comparing the original image with its low-pass filtered version. Intensity ranges 

measure the grayscale spread of an image. A larger range usually indicates 

higher contrast in an image. For the saturation metrics, the proportion of pixels 

at the highest (𝑃𝑚𝑎𝑥) and lowest (𝑃𝑚𝑖𝑛) intensity level are computed, which can 

reveal over- or underexposure respectively. 

3.6.2 HARALICK FEATURES 

Texture, along with spectrum and context are the three fundamental 

pattern elements used in human interpretation of colour images. Haralick at al. 

developed a classification system for texture based on the statistical evaluation 

not of the image itself but on grey-tone spatial-dependence matrices obtained 

from it (Haralick,Shanmugam and Dinstein, 1973). This method is based on 

the assumption that grey tone and texture have a mutual interconnection to 

one another. So, if a small region of an image is characterized by small 

variation of grey tone, the dominant property of that area is the tone. When in 

a small portion of the image the variation of tone is wide, then the texture is 

more prominent. From this intuitive assumption it appears clear that the size 
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of the image’s region been processed is crucial. At the extreme point, in fact, 

if the area is the size of a single pixel, the tone prevails. Vice versa, as the 

number of pixels increases, the texture raises over the tone. The procedure to 

obtain this grey-tone spatial-dependence matrix 𝑃(𝑙, 𝑑, 𝜃), or co-occurrence 

matrix, is based on the computation of the number of occurrences of the pair 

of 𝑙 grey levels which are distant 𝑑 and oriented θ degrees from each other in 

the original image (orientation is described in Figure 3.24).  

 

Figure 3.24 Different orientations used to evaluate the co-occurrence matrix. 

As an example, considering an image 4x4 with 4 level of grey, from 0 to 3, 

the evaluation process for 𝑃(4,1,0), 𝑃(4,1,45), 𝑃(4,1,90) and 𝑃(4,1,135), which 

are the co-occurrence matrixes of the 4 grey levels distant 1 at 0°, 45°, 90° 

and 135° is: 

 

Figure 3.25 The first element of the 𝑃0 matrix is obtained by evaluating the number of 0s that 
have a 0 as neighbour in the horizontal orientation. The second is obtained by counting the 
number of 1s that have a 0 as neighbour and so on. 

 

 𝑃45 = (

4 1 0 0
1 2 2 0
0 2 4 1
0 0 1 0

) 𝑃90 = (

6 0 2 0
0 4 2 0
2 2 2 2
0 0 2 0

) 𝑃135 = (

2 1 3 0
1 2 1 0
3 1 0 2
0 0 2 0

) 
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This transformation highlights the complexity of the grey tone transitions 

within the image, revealing the presence of organized structures or 

homogeneity according to which between texture or tone prevails. Haralick et 

al. identify 14 different textural features that can be measured on this matrix. 

In this work we will evaluate 5 of these Haralick textural features: energy, 

contrast, correlation, homogeneity and the (second order) entropy 

(Haralick,Shanmugam and Dinstein, 1973). Entropy is related to the 

randomness of the grey level co-occurrence matrix. Contrast and correlation 

measure the intensity level difference and correlation between a pixel and its 

neighbourhood respectively. When correlation is high, the complexity of the 

image is high. Energy and homogeneity are directly related, when energy is 

high the image is more homogeneous, giving information on the texture 

roughness of an image. The following equations define these features. 

1. Energy:  𝐻1 = ∑ ∑ {𝑝(𝑖, 𝑗)}2
𝑗𝑖  

2. Contrast:  𝐻2 = ∑ 𝑛2𝑁−1
𝑛=0 {∑ ∑ 𝑝(𝑖, 𝑗)𝑁

𝑗=1
𝑁
𝑖=1 ||𝑖 − 𝑗| = 𝑛} 

3. Correlation: 𝐻3 =
∑ ∑ (𝑖𝑗)𝑝(𝑖,𝑗)−𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
 

4. Homogeneity: 𝐻4 = ∑ ∑
1

1+(𝑖−𝑗)2 𝑝(𝑖, 𝑗)𝑗𝑖  

5. Entropy:  𝐻5 = − ∑ ∑ 𝑝(𝑖, 𝑗)𝑗 log(𝑝(𝑖, 𝑗))𝑖  

Where 𝑝(𝑖, 𝑗) is the (𝑖, 𝑗)th entry in a normalised co-occurrence matrix 𝑃. 𝜇𝑥, 

𝜇𝑦, 𝜎𝑥 and 𝜎𝑦 are the means and standard deviations of 𝑝𝑥 and 𝑝𝑦, which 

represent the marginal-probability matrix obtained as ∑ 𝑃(𝑖, 𝑗)𝑁
𝑗=1 , where the 

number of distinctive grey level is 𝑛 = 1, … , 𝑁. 

3.6.3 SPECIFIC TEXTURAL FEATURES 

In this work, two parameters specifically designed to assess the 

quality/quantity of clinical information in retinal images were included. The two 

metrics are the blood vessel density (BVD) and the blood vessel contrast 

(BVC). To compute these two values for each retinal image, we firstly isolated 

the blood vessels, allowing the obtainment of the binary map 𝑀 of them. This 
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has been achieved using a matching filter algorithm and fixing an arbitrary 

threshold 𝑇, as follows: 

𝑀(𝑖, 𝑗) = {
1, �̃�(𝑖, 𝑗) > 𝑇
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (3) 

where �̃� is the result of the filtering on the histogram equalized green 

channel 𝑔 of the retinal image. BVD is a measure of the quantity of pixels that 

belongs to the blood vessels in relationship to the total amount of pixels in the 

ROI, expressed as: 

𝐵𝑉𝐷 =  
∑ 𝑀(𝑖,𝑗)𝑚,𝑛

𝑖=1,𝑗=1

𝑚×𝑛
,     (4) 

where m and n are the width and height of the image in pixels respectively. 

Blood vessel contrast is defined as the contrast of the pixels of the blood 

vessels with respect to the background, and is obtained using the following: 

𝐵𝑉𝐶 = |�̅� ∈ 𝑀(𝑖, 𝑗) − �̅� ∉ 𝑀(𝑖, 𝑗)|.    (5)  

3.7 PROBLEM STATEMENT: IMAGE QUALITY IN THE FIELD 

All the statistical features described so far, along with the description of the 

textural and contextual elements of a retinal image, highlights the intense effort 

the research community has put in establishing an objective method to 

“measure” the quality of a digital image. This problem, however, is still far from 

being fully unwrapped. Some of the reasons are related to the different 

approaches used to tackle the problem. In particular, there are two different 

school of thoughts that can be identified in the field: details-oriented and task-

oriented. For the first, quality is based on the capability of the image to provide 

the larger number of details, while the second builds the definition of quality on 

the ability of the image to provide the information related to the specific 

diagnostic purpose for which is used. 

To better explain these two different angles, we can make some simple 

examples. When we look at some old family photos, in general, the quality of 

the image is low compared to a picture acquired with a current smartphone. 

We have this perception because our ability to distinguish face tracts or 
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background objects is poor in old images compared to the modern digital 

photos, thus relating the quality with level of details perceived. Between the 

line of this initial statement one can spot a first attempt of defining quality in 

digital imaging as the ability of distinguishing the largest number of details. 

This shares some elements with the concept of resolution, which indicates that 

quality and resolution are somehow connected. This may be a small but 

promising step towards the establishment of quality as measurable 

characteristic of a digital image. Let’s take few other steps forward. To be able 

to distinguish two separate objects we also need contrast, or an appreciable 

transition between two different levels of tone. So also contrast, or better, the 

ability to provide a large dynamic for the representation of different hues, 

saturations and intensity, is another key factor that builds up quality in a digital 

image. Following this path, it seems logical to employ the statistical descriptors 

presented above as criterion to measure objectively the quality of a retinal 

image. Unfortunately, this is only one side of the story. 

The attribution of a “degree of quality” to a digital image can also be 

established by its ability to fulfil the purpose for which has been created, in our 

case perform a diagnostic assessment. Based on this concept, a medical 

image that appears “unpleasant” is not necessary unfit to perform a reliable 

clinical assessment, therefore being of diagnostic-oriented good quality. Let’s 

think of an X-ray scan or an ultrasound image for instance. Even if resolution 

and contrast can be low, for the diagnostic purposes for which these 

techniques are employed, these are not limitations. Ultimately, the accessibility 

of the clinical information is the first requirement of a good medical image and 

all the other characteristics play only a secondary role. The big problem in this 

approach is that measuring this accessibility is a complex issue. The medical 

diagnosis is (still) the result of a subjective evaluation, thus based on some of 

the rules that we are just starting to understand (e.g. considering all the 

inference elements related to human vision we described initially) (Muhammad 

Moazam Fraz et al., 2012b, Hoover,Kouznetsova and Goldbaum, 1998). In 

other words, what appeared to be a promising way to objectively define quality 

in clinical imaging, has to clash with the subjectivity side of these medical 
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tasks, therefore losing the conditions of generality and independency typical of 

a definition. Not all is lost though. 

From a practical point of view, the latter path is the one that seems to offer 

the more effective outcomes. This because, even in conditions of poor quality 

photography from an “aesthetic level”, if the image still contains the information 

that the assessment process requires, e.g. cup-to-disc ratio requires OC and 

OD edges, then the image is usable. This means that even images with noise 

or artifacts can be effectively used in the assessment process boosting the 

overall throughput of screening programmes. Studies have reported a rate of 

inadequate retinal images up to 10% for mydriatic images and up to 20.8% for 

single field non-mydriatic ones (Teng,Lefley and Claremont, 2002, Liesenfeld 

et al., 2000, M. Niemeijer,Abramoff and van Ginneken, 2006, Scanlon et al., 

2003). Even in the clinical setting this problem can reach similar proportion 

with Niemeijer at al. (M. Niemeijer,Abramoff and van Ginneken, 2006) 

reporting a 12% of ungradable images in a web-based screening programme, 

and Fleming et al. (Fleming et al., 2010) indicating between 5.6% and 20.5% 

of the number of patients with at least one non assessable image in at least 

one eye. This has a severe impact especially in screening programmes, where 

a considerable amount of time, resources and health care personnel is 

involved (England, 2018, Peto and Tadros, 2012). The adoption of mobile 

technology is showing promising results in addressing these three aspects. 

Moreover, now that mobile technology is bridging the gap between health care 

coverage and hard-to-reach-communities (Bastawrous et al., 2016). Quality 

however remain a problem. In fact, images acquired with different 

environmental conditions, by different devices, operated by personnel with 

different level of experience generate large variability in the image quality. 

In this work, focusing on gradability requirements of automatic assessment 

algorithms, a new artifact removal solution is proposed to boost image 

throughput of population screening. This new solution has been applied to 

images affected by artifact and validated by measuring the statistical 

descriptors of retinal image quality describe in the previous section.  
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CHAPTER 4. A COMPREHENSIVE DATABASE OF RETINAL 

IMAGES (CORD) 

 

 

 

 

4.1 PREMISES 

The following chapters describe the original work produced during this 

doctoral research activity. In particular, given our need to study image artifacts 

and their removal, and the lack in the literature of a suitable dataset, this 

chapter describes the creation of a database that, amongst other information, 

contains reference image artifacts and ground truth images, and sets a method 

for an internal consistency check of image quality. Such work was led primarily 

by the author, in particular the creation and management of the ethics 

documentation and submission process, the development of the data 

collection protocol, as well as the data collection process itself, and the dataset 

assembly, in concert with ophthalmologists, clinical personnel and colleagues 

from the research group of the author. Following this, the thesis produces a 

phenomenological artifact model to be used as a premise to artifact removal 

(Chapter 5), an actual artifact removal strategy and shows its results on a set 

of retinal images (Chapter 6), and draws a set of conclusions (Chapter 7). 

4.2 CORD DATABASE: RATIONALE AND ORGANIZATION 

To address the lack of images reporting artifacts in the field, a new 

comprehensive database called CORD, (Comprehensive Ophthalmic 

Research Database) (CORD Comprehensive Ophthalmic Research 

Database, CORD 2019) has been created. To achieve this, a simplified 

framework for the data collection process and a new hierarchical database 

structure were designed. The aim of such choice is to facilitate the creation of 

similar databases, and to optimise information extraction and usage from 

CORD. 

The NHS premise selected for this project was the eye clinic of the Falkirk 
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Community Hospital, NHS Forth Valley, Falkirk, UK. To minimise impact on 

the NHS workflows, the database collection was performed during clinical 

hours. We decided to adopt three basic principles for the selection of the data 

and imaging modalities to include in this dataset:  

 Selecting techniques routinely performed within ophthalmology; 

 Maximizing the variety of information; 

 Keeping the acquisition time and participant discomfort and 

inconvenience to broadly acceptable levels.  

As part of the database information, we included basic and easy to report 

parameters such as the ophthalmic device settings (Ravikumar,Thibos and 

Bradley, 2008) used, the ambient illumination (Ravikumar,Thibos and Bradley, 

2008) and patient information that are known to have an impact on image 

specifics, such as skin type (Wilk et al., 2017), age (Artal et al., 1993) and sex 

(Wagner,Fink and Zadnik, 2008, Zetterberg, 2016). This information is not just 

essential to be able to replicate the acquisition conditions, but also contribute 

to the better understanding of how each single aspect of fundoscopy impact 

on image quality. We acknowledge the absence of these basic information as 

one of the most diffuse lack within existing ophthalmic databases, though very 

useful for image quality evaluation and inter-database data normalisation. 

Secondly, we included ophthalmic measurements and functional tests, namely 

optical biometry of the eye (Aguila-Carrasco et al., 2017, Lopez-Gil,Iglesias 

and Artal, 1998), refractive errors (Aguila-Carrasco et al., 2017), corneal 

tomography and visual field. In fact, the optical and geometrical parameters of 

the eye play an important role in the generation of phenomena such as 

chromatic dominants and blurring. Finally, we included retinal images acquired 

via fundoscopy and OCT, including the majority of the modality output.  

Within these last imaging modalities, we also collected retinal images 

affected by classic artifacts and quality distortions (uneven illumination, loss of 

contrast, object obstruction, corneal reflection and chromatic dominants (Yu et 

al., 2012b)). Often discarded as poor quality images. Such images, which 

indeed are usually not included in the final corpus of a database, depriving the 
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research field of noise modelling of valuable resources, are indeed essential 

to this thesis, and constitute one of the core novelties of this dataset with 

respect to the literature. Particularly for this doctoral work, artifact images are 

of crucial importance, as they will be used in the development of the artifact 

removal strategy.  

4.2.1 DATABASE CONTENT 

As per the previous paragraph, the CORD database contains: 

Participant information - only participant information that are relevant to 

current knowledge on the interpretation of the content of retinal images was 

retained: age, sex (M/F) and skin type. No information that can directly identify 

the participant have been included in the data collection, in accordance with 

the General Data Protection Regulation 2018 (GDPR) of the European Union.  

Numerical measurements - the numerical measurements included for each 

eye are: autorefraction (spherical error, cylindrical error and slope of the 

principal meridian), optical biometry (axial length, corneal power, anterior 

chamber depth, white to white distance and pupil size), corneal topography 

(anterior axial curvature, pachymetry, anterior elevation and posterior 

elevation maps), Humphrey visual field 24-2 perimetry and Goldmann 

tonometry IOP (intra-ocular pressure). 

Images and videos - slit-lamp images and videos of the iridocorneal angle 

pre-dilation and images and videos of the anterior and posterior segments 

before and after dilation were included. Other post-dilation imaging technique 

included are: OCT scans of the macula (including the transverse scan of retinal 

and choroidal layers at a specified depth, called en-face scan), optic disc and 

dye-free OCT angiography, disc and macula-centred stereo retinal pair 

images, and images with and without examples of artifacts of the fundus. 

Moreover, fundus camera images of the retina (macula centred) with and 

without artifacts. 

Metadata - information on how to access and retrieve data from the 

database, the content of each folder, the data format and the licensing terms 
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are available in the database in the form of ‘readme’ files, were included as 

navigational tool and guideline. 

All data included are stored in the native formats at the time of data 

collection. Where the data format was not recommended for long term 

preservation (eCommons: Cornell's Digital Repository)(eCommons: Cornell's 

Digital Repository)(eCommons: Cornell's Digital Repository)(eCommons: 

Cornell's Digital Repository)(eCommons: Cornell's Digital 

Repository)(eCommons: Cornell's Digital Repository)(eCommons: Cornell's 

Digital Repository)(eCommons: Cornell's Digital Repository)(eCommons: 

Cornell's Digital Repository)[262], a more stable format was additionally 

produced, to ensure long-term curation and preservation, as sanctioned in the 

data preservation policy of the University of Strathclyde. 

All the fundus camera and slit-lamp biomicroscope images are in JPG 

format, as this was the native format at data capture. OCT native data are in 

Tag Image File Format (TIFF) (Commission). TIFF files have been included 

also for slit-lamp and fundus camera to ensure long term preservation of the 

data. A DICOM format (DCM) (DICOM)(DICOM)(DICOM)(DICOM) for all the 

images is available to allow the user to access the metadata embedded by the 

respective imaging devices, and to allow easy visualization on viewers 

commonly available in medical settings.  

Videos obtained from the slit-lamp are stored in MPEG-4 (MP4) format, as 

this was the native format at data capture. Given this format is likely to enable 

a long-term preservation, no alternative formats have been produced for 

videos. 

Numerical data, not in digital format, have been retrieved and included in 

their native printout version from the respective device, alongside thematic 

tables and Comma-Separated Value (CSV) (Datahub) files for data 

preservation. Some of the reports and exam results have been directly 

produced in PDF format by some of the ophthalmic devices employed, 

therefore they are included in the dataset. “Readme” or similar data content 

description files have been included for each folder of data and stored in 
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Markdown format (MD) (CommonMark Spec), which is human-readable both 

with a simple text viewer, and with Markdown-aware viewers. 

4.2.2 DATA COLLECTION FRAMEWORK 

Given the large number of data collected, a specific labelling system and 

data structure have been designed to facilitate navigation. Data are labelled 

with a unique alphanumeric code to ensure the identification of the participant, 

the anatomic side examined (left/right eye), the ophthalmic test used and the 

clinical quality (clinical standard/artifact). This labelling code is optimized for 

data retrieval through simple wildcard searches. Finally, the folder tree allows 

the user to manually navigate through the ophthalmic techniques to select a 

specific ophthalmic data within each single participant. 

Data Labelling System 

A coded file labelling system has been implemented, allowing for unique 

identification of each datum, for data isolation, and for potential expansion of 

the database. When creating the labelling system, capital Latin characters and 

digits have been used, avoiding the 4 letters (B, I, L and O) as these letters 

inherently contain ambiguity and may be confused/misread for numerical digits 

(8, 1, 1, 0 respectively). The elements that compose each label are: a 6-digit 

numeric participant identifier (ID) which allows for potential growth of the 

database to include up to 1,000,000 participants with a unique identifier, 

anatomical side (D or S), a unique letter triplet code which identifies each 

device and acquisition modality (with each triplet for each device beginning 

with the same letter to enable macro searching), image quality classification 

(determined as either data captured as per the instrument intended 

performance, and hence assumed of clinical quality (C) or with artifacts and 

therefore falling outside the clinical standard quality (A)). Due to the need to 

maintain timing within reasonable acceptability, the clinical standard images 

have been defined as such by qualitative inspection by the operator. A final 3-

digit serial number starting at 000 accounts for multiple images within the 

category. For instance, in the label 168522STUJC000: 168522 identifies the 

participant number, S stands for left eye, TUJ refers to OCT 3D angiography, 



116 
 

C means that the data has been acquired as per the instrument intended 

performance and 000 means that this is the first of its data type. The complete 

list of abbreviations used for the labelling is shown in Table 4.1. 

Table 4.1 List of abbreviation used to build the label of the data. 

Description  Label code  Description  Label code 

Oculus Dexter  D CT Anterior Elevation BFA  GEX 

Oculus Sinister  S CT Anterior Elevation BFS  GEY 

Clinical Standard  C CT Anterior Elevation BFTA  GEZ 

With Artifacts  A CT Axial Curve Anterior  GJJ 

Fundus Camera  FJQ CT Axial Curve Posterior  GJU 

Humphrey Visual Field  HXE CT Height Anterior  GJV 

SL Anterior Segment (NM)  MJU CT Height Posterior  GJX 

SL Anterior Segment (Blue 

Illumination)  
MJY CT Indices  GKE 

SL Posterior Segment (NM)  MKK CT Inst Curve Anterior  GKU 

SL Gonioscopy  MKU CT Inst Curve Posterior  GXY 

SL IOP  MQV CT Pachy  GQE 

SL Anterior Segment (M)  MXU CT Posterior Elevation BFA  GQJ 

SL Posterior Segment (M)  MYK CT Posterior Elevation BFS  GQU 

Fitzpatrick Skin Type Table  PXY CT Posterior Elevation BFTA  GQZ 

Handheld Autorefractor Table  RZK CT Refractive Power  GUJ 

OCT 3D Disc  TJQ CT Total Power  GVK 

OCT 3D Macula  TKE CT Asymmetric Report  GVV 

OCT 3D Macula En-face  TQJ CT CLMIX  GVY 

OCT 3D Angiography  TUJ CT Densitometry Report  GXK 

OCT Stereo Fundus Image Left  TZV CT Eye Metrics Report  GXJ 

OCT Stereo Fundus Image Right  TXY CT IOL Power Report  GXQ 

OCT Fundus Image  TYE CT Mapx4 Report  GXU 

OCT Report  TEX CT Mapx1 Report  GXZ 

Optical Biometry  WXU CT Mapx4_3  GYE 

Participant Information Table  NEJ CT Refractive Report  GYJ 

CT Galilei Native Files  GEQ CT Wavefront Report  GZK 

SL=Slit-lamp, CT=Corneal Topography, M=Mydriatic, NM=Non-Mydriatic. 

 

4.3 DATA COLLECTION PROTOCOLS 

The CORD database has been created in collaboration with the NHS Forth 

Valley, using the ophthalmic devices and the premises of a running eye clinic. 

Therefore, all the instrumentation and the data acquisition setup were 

calibrated and certified for clinical usage at the time of data collection. Below, 

the full description of the employed ophthalmic devices and setup is detailed. 
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4.3.1 CLINICAL PREMISES SETUP 

The whole project took place at Falkirk Community Hospital, NHS Forth 

Valley, Falkirk, UK. The time slot scheduled for the data acquisition from 

volunteers was chosen to be late afternoon, as it was identified to have the 

minimal impact on the daily clinical activity. All the ophthalmic devices 

employed in this work were located in different rooms, one close to the other, 

on the same floor, as per clinical logistics. The ophthalmic instrumentations, 

the consumables and the room setup were not altered from the ordinal setting, 

as all the techniques and modalities included in the database are ophthalmic 

assessment procedures routinely used, therefore already configured for data 

acquisition. 

4.3.2 OPHTHALMIC DEVICES  

The ophthalmic devices selected for this database are all part of routine 

eye exams: 

1. Slit-lamp biomicroscope 

2. OCT (Optical Coherence Tomography) 

3. Fundus camera 

4. Optical biometry analyser 

5. Handheld autorefractor 

6. Corneal topography scanner 

7. Humphrey visual field analyser 

Slit-Lamp biomicroscope - A slit-lamp biomicroscope is probably the most 

versatile and widely-used instrument for ophthalmic diagnosis. It is mostly 

used for the visual inspection of the anterior and posterior eye segments. It 

also serves as a mechanical and optical support for many accessories, such 

as those used to measure the IOP or view the iridocorneal angle as well as 

digital cameras for photo and video documentation. In the CORD database, 

the images of the anterior segment of the eye, iridocorneal angle (gonioscopy), 

the IOP and some of the posterior segment images (or fundus images) were 

acquired using a Topcon SL-D701 slit-lamp (Figure 4.1 left) integrated with a 
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Topcon DC-4 5-megapixel CMOS sensor based digital camera (Topcon Corp., 

Japan). The gonioscopy was performed using an additional Goldmann one-

mirror lens (Figure 4.1 centre) (Ocular Instruments Inc., Washington, USA). 

The IOP was measured with a Keeler Goldmann Applanation Tonometer 

(Figure 4.1 right) (Keeler Ophthalmic Instruments, UK) and an auxiliary 

handheld 90D lens (Volk Optical Inc., Ohio, USA) enabled visual access to the 

fundus. 

 

   

Figure 4.1 Topcon SL-D701 slit-lamp integrated with a Topcon DC-4 (left), Applanation 
tonometer (centre) and an handheld 90D lens (right). 

 

OCT - OCT is a widely used imaging modality for generating high-

resolution three-dimensional images of ocular tissues. In this work, a Topcon 

DRI OCT Triton Plus (Figure 4.2) was used to capture the multi-modal true 

fundus images, and cross-sections of tissue layers with micrometre resolution. 

OCT angiography was also implemented, enabling the visualization of retinal 

microvasculature without the need for injectable dye. The OCT system used 

returns images in the form of a stack of 2-dimensional slices. 



119 
 

 

Figure 4.2 DRI OCT Triton Plus. 

Fundoscopy - Colour fundus images were obtained using a Topcon TRC-

50DX Type IA fundus camera (Figure 4.3) fitted with the body of a Nikon 

D300s (Nikon Corp. Japan) 12.3 megapixel digital camera. This imaging 

technique is frequently used to analyse the structures of the fundus, such as 

blood vessels and the ONH, enabling the visualization of potential 

morphological changes. 

 

Figure 4.3 Topcon TRC-50DX Type IA fundus camera. 
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Optical biometry, refractive error, corneal topography and visual field 

information - The biometric measurements of the anterior chamber and the 

axial length were determined using a Zeiss IOL Master 500 (Carl Zeiss AG, 

Germany). Refractive error was assessed objectively by using a handheld 

autorefractor Nidek HandyRef-K (Nidek Co. Ltd, Japan), obtaining the 

spherical error and astigmatism (cylindrical error and slope of the principal 

meridian). Corneal topography was performed using a Ziemer Galilei G4 

(Ziemer Ophthalmic Systems AG, Germany), which combines Placido 

Topography, Scheimpflug Tomography and optical biometry. The size and 

functionality of the visual field, or perimetry, was measured using a Zeiss HFA 

II 740i (4 participants) and a Zeiss HFA III 840 (6 participants) Humphrey visual 

field analysers. 

 

 

Figure 4.4 From left to left: optical biometry analyser, handheld autorefractor, corneal 
topography scanner and Humphrey visual field analyser. 

 

4.4 WORKFLOW DESIGN AND METHODS 

For this study, 10 healthy volunteers aged between 18 and 40 years old 

were recruited. Due to the large number of imaging modalities and 

measurements which were performed on each participant, the acquisition 

workflow (Figure 4.5) has been specifically designed to have as low an impact 

on the clinical routine of the hospital as possible, optimizing timing and 

resources. 
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Figure 4.5 Diagram of the workflow used for the CORD database acquisition process. Grey 
blocks represent ophthalmic tests that produce numerical data, the white blocks represent 

imaging modalities and a striped background represents administrative steps. 

 

The total acquisition time per participant, including the 15-minute break 

after dilation drops administration, was approximately 2 hours. The whole data 

acquisition process was carried out by two trained ophthalmologists. 

4.4.1 DATA ACQUISITION 

Ethics authorization was secured from the University of Strathclyde Ethics 

Committee, as per the law in force (University of Strathclyde UEC18-36). Prior 

to each data acquisition session, informed consent was received from the 

participant in the presence of a practicing ophthalmologist (Participant Consent 

Form example provided in Appendix I). Appropriate care was taken for 

personal data protection, as per the guidelines of the GDPR of the European 

Union and the University of Strathclyde’s code of practice on investigations 

involving human beings. The study also received approval from NHS Forth 
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Valley, UK, which provided permission to use the premises and equipment for 

the acquisition of the data. 

Once consent was secured, each participant was asked to complete a 

Fitzpatrick skin phototype questionnaire (Sachdeva, 2009). This test is 

commonly used to determine the skin type in terms of response to ultraviolet 

radiation exposure. This information, together with sex and age, are the only 

subject data included in the database. 

The data collection framework is divided into two phases: pre-dilation and 

post-dilation of the subject’s pupils. Between the two phases, dilating drops 

(Bausch and Lomb, Minims tropicamide 1%) were applied to dilate the pupils 

of the participant. As for the ambient lighting of the clinic’s room, from now on, 

we will refer to a dimmed light room as a setting with an illuminance, measured 

at the subject’s eyes level, of about 35 lx. We will refer to a dark room as a 

setting with illuminance of maximum 5 lx. Unless otherwise specified, the 

illuminance of the room, measured at the subject’s eyes level, will be 

considered at least 240 lx. 

Pre-dilation 

During the first phase, all the optical and geometrical measurements of the 

eye were performed, together with IOP and slit-lamp imaging. 

The objective refractive error was measured with both the operator and the 

participant in a seated position, with the operator holding the autorefractor by 

hand, yielding the spherical error, cylindrical error and slope of the principal 

meridian for each eye. The optical biometry and corneal topography were 

determined (in a dark room) following the classic procedure for these tests. For 

the visual field test (performed under dimmed light), a full-threshold 24-2 

Swedish Interactive Thresholding Algorithm (SITA) (Bengtsson et al., 1997) 

was used. 

The non-mydriatic slit-lamp images of the anterior segment were acquired 

using a diffuse illumination and x10 magnification. Fluorescein dye (Bausch 

and Lomb, Minims fluorescein sodium 2%) eye drops were also administrated 
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to obtain fluorescein images of the front of the eye under blue illumination. 

Videos of the fundus were then taken at x10 magnification while using a direct 

focal illumination technique with a slit beam width varying between 2-4 mm, as 

well as diffusely illuminated anterior segment photographs. Images and videos 

of the fundus were also obtained with a 90D handheld lens. Gonioscopy was 

performed at x16 magnification with a narrow slit-beam. Before putting the 

Goldmann one-mirror lens in contact with the eye, topical ocular anaesthetics 

(Bausch and Lomb, Minims proxymetacaine hydrochloride 0.5%) were 

administrated to limit discomfort. All of the steps mentioned above were 

performed in a room with dimmed light. The measurement of the IOP using the 

Applanation tonometer and cobalt blue illumination filter completed the slit-

lamp usage of the first phase. 

Post-dilation 

The post-dilation phase began at least 15 minutes after the administration 

of the dilating drops. A second round of anterior and posterior segment images 

and videos were captured with the slit-lamp biomicroscope. This was followed 

by OCT and fundus camera. Slit-lamp imaging was performed using the same 

settings as the pre-dilation phase. Images were acquired with the OCT device 

using five different modes: macula focused 3D scan, disc focused 3D scan, 3D 

OCT angiography, stereo-imaging and fundus imaging. The settings of the 

fundus camera during imaging was: 50 degrees angle of coverage, flash 

illumination at 50% of the max intensity from the 300W xenon bulb, observation 

light at 30% of the max intensity from the halogen bulb (used for the alignment 

procedure) and no filters (true-colour). All these imaging techniques were 

performed under dimmed light apart from OCT scans which were carried out 

in a dark room. 

4.4.2 ARTIFACT GENERATION 

The artifacts that classically determine the reduction of the quality in retinal 

imaging are: specular reflections, loss of contrast due to defocusing, 

movement of the eye, media opacity, uneven illumination and object 
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obstruction (eyelash due to blinking) (Yu et al., 2012b). In this work, only for 

retinal images (fundus camera and OCT), we collected, together with adequate 

quality retinal counterpart, images including a selected artifact, purposefully 

introduced. These artifacts cover the uneven illumination, the defocusing and 

the object obstruction phenomena, and were manually produced during the 

image acquisition. In particular, the uneven illumination and the defocusing 

was achieved by shifting the focusing plane of the optics further or closer to 

the retina’s one, the object obstruction was introduced by asking the participant 

to blink.  

4.5 RETINAL IMAGE QUALITY CLASSIFICATION 

The decision of undertaking the substantial amount of work that has led to 

the creation of CORD, rather than just collecting fundus images, is justified by 

the unique opportunity to set a course towards the definition of a data collection 

paradigm that enables the research community to fully exploit the information 

enclosed in such data. Moreover, the quantity and the variety of data contained 

in CORD is expected to offer grounding for further, more comprehensive 

developments.  

However, for consistency with the topic of this thesis, from this point in the 

discourse only the retinal images and related information will be considered. 

The retinal image set in CORD consists of 548 fundus images, 231 photos 

and 160 videos from slit lamp examination, and 80 scans (composed by ~260 

2D slices each) from OCT.  Excluding the fundus images acquired with the 

OCT in stereo imaging modality, the total amount of retinal images per each 

ophthalmic technique, and divided in “clinical standard” quality (CSQ) and 

artifact, is summarised in Table 4.2. Example of retinal images are shown in 

Figure 4.6 and Figure 4.7. 
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Table 4.2 Fundus images (macula centred) in CORD. Images subjected to complete object 
obstruction were excluded from the total dataset. 

Imaging Technique Artifacts CSQ Tot. 

Fundus Camera 251 37 288 

OCT 40 20 60 

 

 

Figure 4.6 Retinal images acquired using a fundus camera Topcon TRC-50DX Type IA fitted 
with the body of a Nikon D300s. Left: clinical standard quality. Right: artifact caused by 
patient blinking. 

 

 

Figure 4.7 Retinal images macula-centred acquired using a Topcon DRI OCT Triton Plus OCT 
machine. Left: clinical standard quality. Right: artifact caused by shifting the focal plane of 
the instrument optics away from the retinal plane. 
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The classification of the images as clinical quality or artifact-affected was 

done during the image acquisition by an expert operator. The majority of the 

images affected by artifact were created on purpose with the modalities 

explained previously. Amongst the artifact group, a successive subdivision in 

4 different categories was performed by expert, according to the most 

prominent typology of artifact, as follow: 

 Defocusing (OCT and Fundus Camera) 

 Object obstruction (OCT and Fundus Camera) 

 Eyelid occlusion (OCT and Fundus Camera) 

 Uneven illumination (only Fundus Camera) 

Examples of such artifact typology within the CORD dataset is presented in 

Figure 4.8. 

 

Figure 4.8 a) defocusing, b) object obstruction, c) eyelid occlusion and d) uneven illumination. 

 

4.5.1 INTERNAL CONSISTENCY OF IMAGE QUALITY: METHODS 

The unique feature of CORD of having images of the same retina (and the 

same device setting) acquired with and without distortions, allowed us to 

answer to the first critical research question of this work: can subjectively 

“good” or “inadequate” images be clustered on the basis of objective statistical 

features? And which statistical feature is more significant in such task? 

The statistical features used to establish the feasibility of the clustering 

process are the ones described in Chapter 3: 
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• Histogram features: mean, standard deviation, kurtosis, inter quartile 

range, contrast sensitivity function. 

• Haralick features: entropy, contrast, correlation, energy, homogeneity. 

• Contrast and blur features: contrast ratio, local contrast ratio, blur 

metrics, intensity range and saturation metrics. 

• Specific textural features: blood vessel density and the blood vessel 

contrast. 

Given the large number of features the first step has involved the 

implementation of a “feature selection” algorithm. This operation results in the 

identification of a subset of features that optimally distinguish between CSQ 

retinal images and not. In fact, using too many features can degrade prediction 

performance even if they all contain relevant information about the response 

variable (Guyon and Elisseeff, 2003). From this a model used to cluster image 

quality was derived and used to evaluate the performances of the artifact 

removal algorithm developed in this work. 

To reduce the dimensionality of the data and identify the subset of features 

whose weight in the quality classification method are most significant, a filter 

type feature selection algorithm was used. The algorithm selected for this 

purpose is a diagonal adaptation of Neighbourhood Component Analysis 

(NCA) (Goldberger et al., 2005, Yang,Wang and Zuo, 2012), a distance metric 

learning methods already implemented in Matlab 2016b and well established 

in the literature for object classification, image retrieval, image ranking, face 

identification, kinship verification, clustering, or person re-identification (Dong 

Wang and Tan, 2017). Given the multi-class problem with a training set 

containing n observations: 

𝑆 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, … , 𝑛},     (1) 

where 𝑥𝑖 ∈ ℝ𝑝 are the feature vectors,  𝑦𝑖 ∈ {1, 2} are the class labels, in this 

case only 2 classes, the NCA aims to learn a classifier 𝑓: ℝ𝑝 ⟶ {1, 2} that can 

accept a feature vector and makes a prediction 𝑓(𝑥) for the true label 𝑦 of 𝑥. 



128 
 

The benefits of using this technique comes from its simple yet effective 

non-linear decision surface, with only a single parameter 𝜆 to tune via simple 

cross-validation, and it improves automatically as the amount of training data 

increases. 

For each retinal features, both from fundus camera and from OCT, the 

statistical performances have been evaluated over each channel of the RGB, 

HSI and CIELab colour spaces, as described in Chapter 3.  

The features were then processed with the NCA algorithm and the 𝜆 

parameter was tuned per each channel by splitting the dataset into 5 partition 

and using 4/5th as training set and 1/5th as test set. The local optimization 

solver used for the NCA was a quasi-Newton method called Limited memory 

Broyden-Fletcher-Goldfarb-Shanno algorithm. To establish the best channel 

for quality classification the data sets of fundus camera and OCT images were 

split into two parts: the classification training part and the test part. The training 

section of the database started from 1/8th of the total retinal images and was 

increased by 1/8th of the total until the classification process was able to 

correctly classify the remaining test section (Figure 4.9). 

 

Figure 4.9 Visual description of the iteration process used to find the minimum training 
dataset able to classify the test dataset correctly. 

 

After identifying the most sensitive channel for quality classification, the 

features with a weight ≥ 0.4 were considered for the clustering. 
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4.5.2 RESULTS 

The colour channels which model shown the best prediction rate were the 

second channel of the CIELab colour space as for the fundus camera images, 

and the green channel of the RGB colour space for the images acquired via 

OCT, as summarised by Table 4.3. The confusion matrices displayed on 

Figure 4.10 and Figure 4.11 show the sensitivity and specificity of the 

predictive model built on the different channel at the iteration that achieved the 

best results. The tuned lambda per each channel is shown in Figure 4.12.  

Table 4.3 Results of the best predictive model for the Fundus Camera and the OCT Images. 

Dataset 
Best Colour 

Space 

Best 

Channel 

Most Relevant 

Features 

 Iteration 

Fundus 

Camera 
CIELab a Mean, IQR, BVC 7.94 ∙ 10−3 7 

OCT RGB Green Kurtosis, Mean, R 3.76 ∙ 10−3 3 

 

 

Figure 4.10 Confusion matrixes for the Fundus Camera (FC) images on the three channels of 
the RGB, HIS and CIELab colour spaces. 
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Figure 4.11 Confusion matrixes for the OCT images on the three channels of the RGB, HIS and 
CIELab colour spaces. 

 

 

Figure 4.12 Tuning of the lambda parameter for the fundus camera and the OCT images. 

 

The Figure 4.13 and Figure 4.14 shows, per each channel, the results coming 

from the feature selection process operated by the NCA, on the fundus camera 

and the OCT images. The more the weight of the feature, the stronger the 
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influence in the classification process. It is noteworthy that the BVC feature 

results relevant for classification purpose of fundus camera retinal images in 

the majority of the channels. As for the OCT images, range (R) and kurtosis 

were the most significant. Trends regarding feature significance for clustering 

is shown in Figure 4.15. 

 

Figure 4.13 Results coming from the feature selection process operated by the NCA algorithm 
on the FC images. 
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Figure 4.14 Results coming from the feature selection process operated by the NCA algorithm 
on the OCT images. 

 

 

Figure 4.15 Number of times a statistical features reached a with a weight>0.4 for the 
clustering process over the 9 different channels. BVC reached the best performance for FC 
images, while R and kurtosis were equally the best features for OCT images. 
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To better visualise the clustering of the data, according to the most significant 

features, Figure 4.16 to Figure 4.19 present a 3D scatter plot of the images 

distributed along the 3 more significant features per each channel. Figure 4.17 

and Figure 4.19 have been proposed to better visualise the clustering 

capability of the two most significant channels for image quality classification, 

the 𝑎 channel for the FC images and the 𝐺𝑟𝑒𝑒𝑛 channel for the OCT images. 

 

Figure 4.16 3D scatter plot of FC images, distributed along the 3 more significant features 
per each channel considered. 
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Figure 4.17 3D scatter plot of the best three features used to cluster FC images. 

 

 

Figure 4.18 3D scatter plot of OCT images, distributed along the 3 more significant features 
per each channel considered. 
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Figure 4.19 3D scatter plot of the best three features used to cluster OCT images. 

 

4.5.3 INTERNAL CONSISTENCY OF IMAGE QUALITY: 

DISCUSSION  

The classification models developed for the FC and the OCT images show 

better using the triplet [IQR, mean, BVC] calculated for the 𝑎 channel and 

[mean, range, kurtosis] calculated for the 𝑔𝑟𝑒𝑒𝑛 channel, respectively. The 

good performance shown by specific textural features was somehow 

predictable, given the anatomical features (blood vessels, OD and Macula) are 

what mostly characterises the information of a retinal image (many semi-

automatic and automatic quality classification algorithms rely on textural 

information). Less predictable was the good performance of common 

histogram features in quality classification. In general histograms give 

information about the general aspect of the whole image without providing 

local information content. This characteristic is very limiting when apply to 

images where local information is key (anatomical features and pathological 

signs usually very much localised in retinal images), but it shows advantages 

in images with artifacts or global distortion. 
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The decision of analysing separately fundus camera and OCT images was 

made to account for the different imaging device used (hence different optics, 

sensors and settings) and the more systematic generation of artifact obtained 

in the OCT images collection. In fact, OCT image acquisition was made more 

repeatable due to the device software and modalities, which improved also 

repeatability of image distortions. As for the fundus camera, this process was 

far less controllable, generating more random artifacts and distortions in 

general. 

A high level of repeatability boosts the identification of specific patterns in 

the images, hence improve the classification process. For this reason, the 

quality clustering of the OCT images is more clear than the fundus camera 

ones (Figure 4.17 VS Figure 4.19). The big advantage of NCA algorithms is 

the improvement of the clustering performance as the amount of training data 

increases. As will be described in the next chapter, this characteristic was 

exploited by producing many artefact-like images using an ad-hoc 

mathematical model. 

4.5.4 CONCLUSIONS 

The collection of a new ophthalmic database, a data collection workflow 

suitable acquisition during visiting hours and a quality classification approach 

based on NCA were developed.  

Unlike other publicly available databases, in this work, no ground truths or 

expert manual segmentations have been produced. Interpretive data have 

been voluntarily left out from this first iteration of the database, although these 

may be added with future iterations. However, by providing the core set of 

imaging technologies normally accessible and used in clinical practice, this 

database aims to provide a consistent and coherent set of data along which to 

develop extraction strategies for clinical information from multimodal 

instrumental observations. We predict potential usefulness in having data 

coming from different technique (7 different imaging techniques and 45 

different modalities), contextual data about the acquisition setup and 
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participant information, especially in the imaging processing research field, in 

training and education and in data mining applications.  

The inclusion of retinal images affected by artifacts is a direct extension of 

this concept. In particular, the extraction of valuable clinical data from 

instrumental images is, in principle, possible regardless of the cosmetic quality 

of the images themselves, as long as some information content is maintained. 

By providing counterparts of acknowledged clinical quality alongside the 

images affected by artifacts, a reference dataset that can facilitate the 

development of noise models and clinical information retrieval strategies for 

retinal images is provided.  

The choice of including only 10 participants in this first iteration of the 

database has been driven by some practical considerations. Firstly, the 

recruitment modality of the volunteers, which was not opportunistic 

(approaching patients attending other clinical investigations) but systematic 

(inviting participants by letter). This requires proactive initiative by researchers 

and participants, and we have opted to make the database available as soon 

as recruitment numbers have reached levels that envisage usefulness of the 

dataset. Indeed, the recruitment numbers are consistent with e.g. the dataset 

explored by the DRIVE database. Future extension of the database might 

increase the number of participants. Secondly, to keep the protocol tolerable 

for the participant and the hospital workload, the workflow was restricted to a 

maximum of 2-hours of acquisition time, and to non-invasive measurements. 

Indeed, fluorescein angiography was not performed, albeit used in clinical 

practice.   

The second important outcome of CORD is the development of an ad hoc 

workflow for the data collection process of a comprehensive dataset in a 

clinical operating setting, which can be difficult to evaluate without inside 

knowledge of classic eye clinic equipment and routine, and time consuming to 

developed. In this regard, the project was supported by two practicing 

ophthalmologists who played a key role in the selection of the imaging 
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techniques to include, and in evaluating the logistics of the data collection 

protocol. 

Finally, the unique opportunity of having the same retinal images with and 

without artifact has allowed the implementation of a classification model based 

on statistical features. An NCA feature selection algorithms was used to 

identify those features play a key role in the image quality classification and to 

build a binary classification model able to distinguish CSQ images from images 

affected by artifacts. Such model will be used to assess the performance of 

the artifact removal algorithm presented in the next chapter. 

Overall, CORD presents several novelties compared to the databases 

publicly released so far, making a step towards the definition of a 

comprehensive tool for the ophthalmic image processing development, and 

possibly a usable database framework for future reference. 

To the author knowledge, at the time of data acquisition, this database 

does not include pathologies beyond refraction error. Since the majority of the 

population presents refractive error, emmetropia was not stipulated to be a 

requirement for this database.  

The CORD dataset is available open-access under a CC-BY-4.0 license at 

https://cord.bioe.strath.ac.uk/, and from the data repository of the University of 

Strathclyde, with Digital Object Identifier (DOI) 10.15129/39bcd12d-0677-4cf3-

a099-b763fbb7d3c4. 
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CHAPTER 5. DEVELOPMENT OF THE 

PHENOMENOLOGICAL MODEL OF RETINAL 

ARTIFACTS 

 

 

5.1 ARTIFACT MODEL RATIONALE 

The creation of a new mathematical model able to simulate the effects of 

artifacts on retinal images is key to this work, principally for two reasons: 

1. Understanding how artifacts impact on the formation of a retinal image, 

is an essential step for the development of the image clean-up 

strategy, as this will determine the mathematical operation to put in 

place to mitigate the distortion once this has been identified and 

isolated (e.g. subtraction, chromatic shifting, etc.) 

2. Data augmentation: the development of machine learning strategy able 

to recognise the pixels that are affected by distortions caused by 

artifacts required a massive quantity of data to reach an acceptable 

accuracy. This model will be used to produce images affected by 

artifacts starting from clinical quality images, increasing the dataset, 

initiated by CORD, of retinal images affected by artifacts that have the 

good quality counterpart. 

Other significant applications of this model, not directly related with this work, 

are described and contextualised in the discussion chapter. 

5.2 ARTIFACT MATHEMETICAL DESCRIPTION AND EYE 

MODELLING 

For the purposes of this work, it will be assumed throughout that the term 

‘image artifacts’ refer to those non-stochastic image features that are part of 

the context of the image but that don’t belong to the anatomical object being 
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imaged. Noise, instead, will be defined as a contribution to the image due to a 

random process.  

Addressing noise modelling in medical imaging involves estimating the 

variance distribution of such noise, in general considering the noise additive 

with zero-mean. A common approach is to find the relationship between the 

intensity of the image 𝐼 and its noise variance 𝜎2, in the form 

𝜎2 = 𝑓(𝐼, 𝛼1,𝛼2,𝛼3, … )     (1) 

where the parameters 𝛼1,𝛼2,𝛼3, … are determined by the image acquisition 

conditions, device setting, imaging modality and so on (Gravel,Beaudoin and 

De Guise, 2004). This method can be applied also to uncorrelated noise. In 

general, it is more convenient to approximate the resulting variance to a well-

known stochastic model. For example, magnetic resonance noise is usually 

considered having a Rician probability density function, computer tomography 

produces Gaussian noise, positron-emission tomography noise is commonly 

associated with a Poisson distribution and so on (Gudbjartsson and Patz, 

1995, Rodrigues,Sanches and Bioucas-Dias, 2008). These two strong 

assumptions, the additive nature of the noise and the approximation of the 

statistical distribution of its variance, simplify image filtering and deblurring, but 

it often results in poor quality images. To mitigate this drawback, two 

approaches can be pursuit: the identification of optimal trade-off between 

image resolution and contrast-to-noise ratio, or the definition of new noise 

models with parameters that better fit the real stochastic behaviour (Fuderer, 

1988). 

As for artifacts modelling, the approach is substantially different. Unlike 

noise, artifacts have a combination of deterministic and stochastic elements. 

The phenomena that produce artifacts can be physics-based, patient-based or 

device-based (Hsieh, 2009). Some of them, such as subject motion, light 

reflexes or foreign objects can be described mathematically, knowing the 

boundary conditions. Other physical phenomena, such as scattering or 

absorption, can be modelled using a combination of stochastic and 
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deterministic paradigm. In the following, the geometrical and physical 

assumptions used in developing this parametric model are presented. 

5.2.1 GEOMETRICAL EYE MODEL AND LIGHT PATH ANALYSIS 

The interaction with the ocular media underpins the same physical 

considerations used to model the chromatic aberration and optical reflection of 

the human eye in the hypothesis of a Lambertian fundus (Atchison and Smith, 

2000). In the following model, the geometrical and optical characteristics of the 

tissue are expressed as function of the reflectance 𝑅, absorption 𝐴 and 

scattering 𝑆 phenomena. The intensity of the light, for each wavelength 𝜆 and 

for each photosite (𝑥, 𝑦) of an hypothetical CCD sensor of 𝑀 × 𝑁 matrix of 

photosites, have therefore been expressed as: 

𝐼(𝑥, 𝑦, 𝜆) = 𝐼𝑂𝛼(𝑅, 𝐴, 𝑆),     (2) 

where 𝐼𝑂 is the intensity of the ophthalmic device’s illumination source and 𝛼 

is a proportional term which is function of reflectance, absorption and 

scattering. Only three main anatomical structures have been considered in the 

simplify eye model adopted: the cornea, the lens and the retina (Figure 5.1). 

These are the tissues that mainly have an impact on the light in its passage 

through the eyeball towards the retina, and back to the image sensor. In fact, 

the total transmittance (direct light plus scattered light) of the cornea and the 

lens can be seen in Figure 5.12, and was found by Boettner and Wolter 

(Boettner and Wolter, 1962) to be mostly age dependent, with a decrease of 

transmittance with age. To roughly quantify the loss of light at the passage of 

these transparent tissues, approximately 10% and 8% of the total information 

is either absorbed, scattered or reflected respectively from the cornea and the 

lens in a healthy eye within the portion of the spectrum corresponding to the 

visible light (380 nm to 700 nm). 
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Figure 5.1 Geometrical model of the eye. The light passes through the cornea and the lens 
reaching the retina. It goes then back to the light sensor passing through lens and cornea 

again. 

5.2.2 DETERMINISTIC COMPONENTS OF THE ARTIFACTS 

The ophthalmic instrumentation used to take digital pictures of the retina 

relies on imaging devices that employ high resolution CCD (charge-coupled 

device) or CMOS (complementary metal-oxide semiconductor) sensors. 

These sensors produce as output the discrete numerical value of the light 

intensity of the wavelengths they are more sensitive to, generally the RGB 

(red-green-blue). This is, in other terms, the definition of digital image. It follows 

that a single pixel carries only two information: the intensity level of a specific 

wavelength (or three) and the position where this intensity was measured 

(coordinates in the photo-sensor). So there is a direct link between the light 

intensity and spectrum and the digital value of that corresponding point in the 

image. Therefore, the phenomena that generate interference usually act at the 

level of the light being measured or at the level of the digital conversion of the 

light intensity. The first is mostly associated with artifacts, the second with 

noise. The contribution of the stochastic noise to the digital value of a single 

collection site (pixel) has been extensively described (Healey and Kondepudy, 

1994, Withagen,Groen and Schutte, 2007). A comprehensive model, 

developed by Healey and Kondepudy for CCD camera calibration (Healey and 

Kondepudy, 1994), summarize the main CCD noise sources: 
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𝐷 = (𝐾𝐼 + 𝑁𝐷𝐶 + 𝑁𝑆 + 𝑁𝑅)𝐺 + 𝑁𝑄,     (3) 

where 𝐷 is the digital value for a pixel, 𝐾 is a factor that takes into 

consideration the spatial variation over the sensor array, 𝐼 is the number of 

electrons produced by incident photons at the collection site, 𝑁𝐷𝐶 is the signal 

due to dark noise, 𝑁𝑆 is shot noise, 𝑁𝑅 represent the read noise, 𝐺 represents 

the amplification gain and 𝑁𝑄 the quantization noise.  

It follows from Eq. 3 that the information content of a retinal image lies 

within 𝐼, which depends on the light source 𝐼𝑂 used to illuminate the retina and 

on its interaction with the optics of the ophthalmic device and the eye’s tissues. 

In the presented model, the final digital image 𝐷 of the retina is the result of 

the light scattered from the retina plus an additional diffusive background 

component 𝐵. Such contribution is the only non-first order phenomenon that 

has been considered since it is the most significant for the overall chromatic 

reconstruction of the retinal image. During the implementation of the model 

into the simulating software, this term will be calculated as: 

𝐵 =
∑ ∑ 𝐼𝑀𝑁

𝑀×𝑁
.      (4) 

5.3 MATHEMATICAL ASSUMPTIONS 

Light-loss phenomena assumptions 

Specular Reflection – Part of the illumination light is reflected by each of 

the 4 smooth surfaces of the eye, the anterior and posterior surfaces of cornea 

and lens, creating the so called Purkinje images. The fraction of the light 

reflected 𝑅 depend on the refractive indices on each side of the surface and is 

described by the Fresnel equation. For normal incidence the intensity 

reflectance is: 

𝑅 = [(𝑛′ − 𝑛)/(𝑛 + 𝑛′)]2.     (5) 

 

 In this work, specular reflection is considered only at the air-cornea 

interface since the smoothness of the surface and the difference between the 
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refractive index between the two media is big enough to be image forming. 

Below, we refer to 𝑅𝐶𝑜 as the Fresnel reflectance between the two media.  

Absorption – The progressive loss of light while passing through the eye’s 

structures shows a spectral absorption pattern strongly influenced by the 

absorption properties of water. Below 600 nm however, where the ocular 

media are more absorbing, the pattern changes, indicating a leading role of 

proteins and other cellular components (Atchison and Smith, 2000). In this 

work, absorption is the physical conversion of photons in other forms of energy. 

No inelastic scattering or fluorescence phenomena are considered. 

Proportional absorption coefficient 𝐴𝑖 is used to account for the fraction of light 

loss caused by absorption at the 𝑖 biological medium. 

Scattering - Scattering is by far the most complex and perhaps the most 

relevant phenomenon involving the light interaction with biological media. It is 

the result of diffraction, refraction and reflection caused by spatial variations in 

the refractive index within a medium. Some of the light can be scattered either 

forward or backward. The spatial distribution of the scattered light depends 

upon a number of factors: size, shape and distribution of inhomogeneities, size 

of the scattering particles compare to the wavelength and so on. In this work, 

we consider the scattering occurring only in the lens and at the retina. Corneal 

haze has been neglected due to its modest contribution compared with the 

lens. Moreover, at the best of the author’s knowledge, no sufficient 

experimental data on living human cornea has been produced to quantify its 

amount of back- and forward-scattering. To account for the portion of the 

overall light-loss caused by scattering at the lens, we introduce the coefficient 

𝑆𝐿𝑒: 

𝑆𝐿𝑒 = 𝑆𝐿𝑒
𝑏 + 𝑆𝐿𝑒

𝑓
,     (6) 

 

where 𝑆𝐿𝑒
𝑏  and 𝑆𝐿𝑒

𝑓
 are the backward- and forward-scattering components 

respectively. This distinction must be taken into account since the difference 

between the weights of these two components, which changes according to 

the abovementioned factors. At the retina what is not absorbed is scattered 
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back. 𝑆𝑅𝑒 will be used to take into account the portion of light scattered from 

the retina. 

Light source: the light source is here represented by discrete rays 

associated with a single wavelength hitting the (𝑥, 𝑦) position of the region of 

interest (surface of the sonsor). Although geometrical optics is considered in 

the simulation of the light-surface interaction, geometrical approximations are 

employed where appropriate.  We also assume that the optics of the eye is 

correctly focused onto the retina (emmetropic eye). 

Artifacts 

As described in Chapter 3, in developing the present model, the most 

common sources of retinal image distortion have been considered  (S. Wang 

et al., 2016, Yu et al., 2012a): 

 eye movement: blurring caused by involuntary eye movement during 

the shooting. 

 object obstruction: in this model the obstruction of eyelashes caused 

by partial blinking during the shooting have been considered. 

 incorrect focus: blurring caused by inappropriate focus adjustment. 

 inadequate illumination: uneven illumination of the ROI and camera 

target (orange ring projected by many fundus cameras to help the ROI 

alignment with the device optics) misalignment. 

5.4 PARAMETRIC MODEL 

In the following, the symbols used as subscripts will identify the anatomical 

part involved and the symbols used as superscript will indicate the biophysical 

phenomenon that generated that specific intensity contribution. In particular, 

the subscript 𝐿𝑒, 𝐶𝑜 and 𝑅𝑒 indicates quantities related to the lens, the cornea 

and the retina respectively. As for the superscripts, 𝑅, 𝐴 and 𝑆 will refer to 

quantities resulting from specular reflection, absorption and scattering 

phenomena respectively. As for the scattered contributions, 𝑆𝑓 for forward-

scattering and 𝑆𝑏 for backward-scattering will be used. Table 5.1 summarises 
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the physical phenomena considered per each anatomical component of the 

eye. 

Another important contribution caused by scattering is the following: while 

scattering in absolute terms is a loss for the single photosite located in (𝑥, 𝑦) 

position, the illuminance contribution, coming from the light scattered by the 

surrounding area around (𝑥, 𝑦) position, within a radial area included in 

(√(𝑥 − 𝑛)2 + (𝑦 − 𝑚)2 ≤ 𝑅), needs to be added to the overall luminance 

intensity hitting the single photosite, with a contribution that is inversely 

proportional to the distance from point of the object images by that photosite. 

This spatially localized distribution of light was approximated to Gaussian bell 

model, in agreement with the Stiles-Crawford effect (Atchison and Smith, 

2000). This phenomenon will therefore be considered in the final equation by 

introducing the terms 𝑃𝑆𝐹𝐿𝑒 and 𝑃𝑆𝐹𝑅𝑒 (Point Spread Function of the lens and 

the retina respectively), which examples of 2D intensity distributions are shown 

in Figure 5.2. 

 

  

Figure 5.2 two dimensional distribution of the PSF of a healthy lens (left) and PSF of healthy 
retina (right). The whiter the more intense the PSF is. 

 

As stated above, considering 𝐼0 as the initial luminance [𝑐𝑑/𝑚2] of a point 

source of light, projected from the infinite by an hypothetical ophthalmic device 

at the (𝑥, 𝑦) position of the corresponding image sensor of the device, into an 

emmetropic eye (Figure 5.3), for the conservation of energy the following 

equation is applied: 

𝐼𝐶𝑜
𝑇 (𝑥, 𝑦, 𝜆) = 𝐼0 − 𝐼𝐶𝑜

𝑅 − 𝐼𝐶𝑜
𝐴 ,    (7) 
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where 𝐼𝐶𝑜
𝑅 , 𝐼𝐶𝑜

𝐴  and 𝐼𝐶𝑜
𝑇  are, respectively, the fraction of the initial luminance 

that is reflected, absorbed and transmitted at the interaction with the cornea, 

as in Figure 5.3. From now on the dependency from the position and the 

wavelength (𝑥, 𝑦, 𝜆) will be omitted to lighten the notation. 

Table 5.1 Physical phenomena considered per each eye’s anatomical structure. 

Tissue 
Phenomena 

Reflection Absorption Scattering 

Cornea x x  

Lens  x x 

Retina  x x 

 

 

Figure 5.3 Light path through the three main anatomical components of the eye (cornea, 
lens and retina). On the right, an exploded view of the angular distribution of the scattered 

light at the retina. 

 

The fraction of light that is reflected back from the cornea is defined as: 

𝐼𝐶𝑜
𝑅 = 𝐼0𝑅𝐶𝑜.     (8) 
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In this model at the cornea only absorption and reflection have been 

considered as scattering is negligible. Therefore, the fraction of light absorbed 

by the cornea will be: 

𝐼𝐶𝑜
𝐴 = (𝐼0 − 𝐼𝐶𝑜

𝑅 )𝐴𝐶𝑜 = 𝐼0(1 − 𝑅𝐶𝑜)𝐴𝐶𝑜.   (9) 

Hence, the light transmitted through the cornea that reaches the lens can 

be obtained, as function of 𝐼0, by substituting Eq. 8 and 9 to Eq. 7 as follow: 

𝐼𝐶𝑜
𝑇 = 𝐼0(1 − 𝑅𝐶𝑜)(1 − 𝐴𝐶𝑜).              (10) 

At the lens, only absorption 𝐼𝐿𝑒
𝐴  and scattering 𝐼𝐿𝑒

𝑆  will reduce the amount of 

light passing through. Overall, the equation will have the following formulation: 

𝐼𝐿𝑒
𝑇 = 𝐼𝐶𝑜

𝑇 − 𝐼𝐿𝑒
𝐴 − 𝐼𝐿𝑒

𝑆 .    (11) 

 

As before, the absorbed and scattered light by the lens can be obtained 

as: 

𝐼𝐿𝑒
𝐴 = 𝐼𝐶𝑜

𝑇 𝐴𝐿𝑒,     (12) 

and 

  𝐼𝐿𝑒
𝑆 = (𝐼𝐶𝑜

𝑇 − 𝐼𝐿𝑒
𝐴 )𝑆𝐿𝑒 = 𝐼𝐶𝑜

𝑇 (1 − 𝐴𝐿𝑒)𝑆𝐿𝑒,   (13) 

 

The resulting transmitted light through the lens is: 

𝐼𝐿𝑒
𝑇 = 𝐼𝐶𝑜

𝑇 (1 − 𝐴𝐿𝑒)(1 − 𝑆𝐿𝑒)     

𝐼𝐿𝑒
𝑇 = 𝐼0(1 − 𝑅𝐶𝑜)(1 − 𝐴𝐶𝑜)(1 − 𝐴𝐿𝑒)(1 − 𝑆𝐿𝑒)   (14) 

 

As displayed by Figure 5.3, from the lens there are two main components 

that reach the retina: 𝐼𝐿𝑒
𝑇  and the forward scattered light which impact on the 

overall contribution will be spatial dependent. The point (𝑥, 𝑦) in fact will be 

affected be the scattered ray passing through position, therefore coming from 

the scatter generated by near light beams. coming from the surrounding region 

of the lens 𝐼𝐿𝑒
𝑆𝑓′

 resulting from the scattering phenomena of the surrounding 

area, which can be expressed as: 

𝐼𝐿𝑒
𝑆𝑓′

= ∑ ∑ 𝐼𝐿2
𝑗=0

𝐿1
𝑖=0 𝐿𝑒

𝑆𝑓

(𝑥 − (
𝐿1

2
− 𝑖) , 𝑦 − (

𝐿2

2
− 𝑗)) 𝑃𝑆𝐹𝐿𝑒 (𝑥 − (

𝐿1

2
− 𝑖) , 𝑦 −

(
𝐿2

2
− 𝑗)).  (15) 
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𝐿1 and 𝐿2 are the sides of the square area, centered in (𝑥, 𝑦), where the 

scattering phenomena have a relevant impact on the single site and 𝐼𝐿𝑒
𝑆𝑓

 is the 

intensity of the luminance of the forward scatter, as: 

𝐼𝐿𝑒
𝑆𝑓

= (𝐼𝐶𝑜
𝑇 − 𝐼𝐿𝑒

𝐴 )𝑆𝐿𝑒
𝑓

= 𝐼𝐶𝑜
𝑇 (1 − 𝐴𝐿𝑒)𝑆𝐿𝑒

𝑓
   (16) 

and 𝑃𝑆𝐹𝐿𝑒 is the profile of the intensity distribution caused by the scattering at 

each (𝑥, 𝑦) point, which will be define in the computer simulation section.  

To reduce the complexity of the notation, we refer to the summation as: 

∑ ∑ 𝐼0 (𝑥 − (
𝐿1

2
− 𝑖) , 𝑦 − (

𝐿2

2
− 𝑗)) 𝑃𝑆𝐹 (𝑥 − (

𝐿1

2
− 𝑖) , 𝑦 − (

𝐿2

2
− 𝑗))𝐿2

𝑗=0
𝐿1
𝑖=0 =

∑ ∑ 𝐼0𝑃𝑆𝐹  (17) 

 

 

Figure 5.4 Light path from the retina back to the image detector (CCD sensor). On the right, 
an exploded view of the scattering occurring at the retina. Backward scattering collected 

directly by the lens 𝐼𝑅𝑒
𝑆𝑏

 and the portion diffusely scattered by the other structure of the 
posterior segment and collected as a diffuse background contribution 𝐵. 

 

The forward scattered light from the lens, in function of 𝐼0, can therefore be 

written as: 

𝐼𝐿𝑒
𝑆𝑓′

= (1 − 𝑅𝐶𝑜)(1 − 𝐴𝐶𝑜)(1 − 𝐴𝐿𝑒)𝑆𝐿𝑒
𝑓 ∑ ∑ 𝐼0𝑃𝑆𝐹𝐿𝑒    (18) 
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Reaching the retina, the light is partially absorbed 𝐼𝑅𝑒
𝐴  by the retinal structures 

and partially scattered 𝐼𝑅𝑒
𝑆 . The portion of back scattered light 𝐼𝑅𝑒

𝑆𝑏
 from the 

retina is either collected directly into the lens 𝐼𝑅𝑒
𝑆𝑏𝑐𝑙𝑡

 or scattered in other 

direction within the eye forming a spatially uniform background 𝐵.  

Absorption is by far the most relevant phenomenon that occurs at the 

retina. It is caused mainly by the visual pigment in the photoreceptors, by the 

melanin in the pigment epithelium and by the haemoglobin in the choroid. What 

is not absorbed returns back to the lens contributing, in various proportion, to 

the formation of the retinal image on the CCD (Figure 5.4). 

The fraction of light that is scattered from the retina and reaches directly 

the portion of the clear aperture of the lens is: 

𝐼𝑅𝑒
𝑆𝑏𝑐𝑙𝑡 = ∑ ∑ (𝐼𝐿𝑒

𝑇 + 𝐼𝐿𝑒
𝑆𝑓′

− 𝐼𝑅𝑒
𝐴 ) 𝑆𝑅𝑒

𝑏 𝜑𝑐𝑙𝑡 𝑃𝑆𝐹𝑅𝑒.    (19) 

 

Where 𝜑𝑐𝑙𝑡 is the fraction of backscatter that is collected directly by the lens 

as a first order phenomenon, which can be geometrically approximated as the 

ratio between the surface of the lens and the total surface of the eye ball 𝜑𝑐𝑙𝑡 =

𝜋𝑟𝐿𝑒
2 4𝜋𝑟𝑒𝑦𝑒

2⁄  (≈ 6.2%). As for the light absorbed by retina 𝐼𝑅𝑒
𝐴 , it can be defined 

as: 

𝐼𝑅𝑒
𝐴 = (𝐼𝐿𝑒

𝑇 + 𝐼𝐿𝑒
𝑆𝑓′

) 𝐴𝑅𝑒.    (20) 

The fraction of scattered light collected inside the clear aperture of the lens 

𝐼𝑅𝑒
𝑆𝑏𝑐𝑙𝑡

can finally be expressed as: 

𝐼𝑅𝑒
𝑆𝑏𝑐𝑙𝑡 = ∑ ∑ (𝐼𝐿𝑒

𝑇 + 𝐼𝐿𝑒
𝑆𝑓′

) (1 − 𝐴𝑅𝑒)𝑆𝑅𝑒
𝑏 𝜑𝑐𝑙𝑡𝑃𝑆𝐹𝑅𝑒   (21) 

To obtain such intensity in function of 𝐼0, we substitute 𝐼𝐿𝑒
𝑇  from Eq. 13 and 

𝐼𝐿𝑒
𝑆𝑓′

 from Eq. 17 to obtain:     

𝐼𝑅𝑒
𝑆𝑏𝑐𝑙𝑡 = (1 − 𝑅𝐶𝑜)(1 − 𝐴𝐶𝑜)(1 − 𝐴𝐿𝑒)(1 − 𝐴𝑅𝑒)𝑆𝑅𝑒

𝑏 𝜑𝑐𝑙𝑡[(1 −

𝑆𝐿𝑒) ∑ ∑ 𝐼0𝑃𝑆𝐹𝑅𝑒 + 𝑆𝐿𝑒
𝑓 ∑ ∑(∑ ∑ 𝐼0𝑃𝑆𝐹𝐿𝑒)𝑃𝑆𝐹𝑅𝑒].    (22) 

In the implementation of the model into the simulating software, this 

diffusive term will be calculated as: 

𝐵 =
∑ ∑ 𝐼𝐿𝑒

𝑇 (1−𝐴𝑅𝑒)(1−𝜑𝑐𝑙𝑡)𝑆𝑅𝑒
𝑏

𝑀𝑁

𝑀×𝑁
.    (23) 
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This results in a chromatic shift to the red hue of the overall retinal image. 

This tallies with intuition, as both the retina and the sclera appear red, and 

therefore impart a red hue to any light reflected or scattered by them. In the 

following notation the term 𝐵 will remain a constant value. 

Passing through the lens, as in the first passage, the conservation of the 

total energy gives: 

𝐼𝐿𝑒̅̅ ̅
𝑇 = 𝐼𝑅𝑒

𝑆𝑏𝑐𝑙𝑡 + 𝐵 − 𝐼𝐿𝑒̅̅ ̅
𝐴 − 𝐼𝐿𝑒̅̅ ̅

𝑆 .     (24) 

Where the fraction of absorbed light intensity at the eye’s lens 𝐼𝐿𝑒̅̅ ̅
𝐴  can be 

expressed as: 

𝐼𝐿𝑒̅̅ ̅
𝐴 = 𝐴𝐿𝑒 (𝐼𝑅𝑒

𝑆𝑏𝑐𝑙𝑡 + 𝐵),      (25) 

the fraction of scattered light at the lens 𝐼𝐿𝑒̅̅ ̅
𝑆  can be expressed as: 

𝐼𝐿𝑒̅̅ ̅
𝑆 = (𝐼𝑅𝑒

𝑆𝑏𝑐𝑙𝑡 + 𝐵 − 𝐼𝐿𝑒̅̅ ̅
𝐴 ) 𝑆𝐿𝑒 = (𝐼𝑅𝑒

𝑆𝑏𝑐𝑙𝑡 + 𝐵) (1 − 𝐴𝐿𝑒)𝑆𝐿𝑒.   

 (26) 

At this point, the fraction of light transmitted through the lens 𝐼𝐿𝑒̅̅ ̅
𝑇  can be 

obtained using Eq. 23 and substituting the variables with the expressions so 

far obtained, as follow: 

𝐼𝐿𝑒̅̅ ̅
𝑇 = (𝐼𝑅𝑒

𝑆𝑏𝑐𝑙𝑡 + 𝐵) (1 − 𝐴𝐿𝑒)(1 − 𝑆𝐿𝑒).    (27) 

The other relevant component that contribute to the amount of light 

reaching the cornea in a specific point is the forward scattering from the lens. 

This can be expressed similarly to the previous passage through the lens as: 

𝐼𝐿𝑒̅̅ ̅
𝑆𝑓′

= 𝑆𝐿𝑒
𝑓 ∑ ∑ (𝐼𝑅𝑒

𝑆𝑏𝑐𝑙𝑡 + 𝐵) 𝑃𝑆𝐹𝐿𝑒    (28) 

In its last interaction with the cornea, the light is specular reflected back 

and absorbed once again. According to the conservation of the total energy, 

the light that comes out from the eye and hits the photodetector can be 

calculated as: 

𝐼𝐶𝑜̅̅̅̅
𝑇 = 𝐼𝐿𝑒̅̅ ̅

𝑇 + 𝐼𝐿𝑒̅̅ ̅
𝑆𝑓′

− 𝐼𝐶𝑜̅̅̅̅
𝑅 − 𝐼𝐶𝑜̅̅̅̅

𝐴 .     (29) 

Where the specular reflection 𝐼𝐶𝑜̅̅̅̅
𝑅  and the absorbed light 𝐼𝐶𝑜̅̅̅̅

𝐴  at the cornea 

are defined as: 

𝐼𝐶𝑜̅̅̅̅
𝑅 = (𝐼𝐿𝑒̅̅ ̅

𝑇 + 𝐼𝐿𝑒̅̅ ̅
𝑆𝑓′

) 𝑅𝐶𝑜,     (30) 
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𝐼𝐶𝑜̅̅̅̅
𝐴  = (𝐼𝐿𝑒̅̅ ̅

𝑇 + 𝐼𝐿𝑒̅̅ ̅
𝑆𝑓′

− 𝐼𝐶𝑜̅̅̅̅
𝑅 ) 𝐴𝐶𝑜.     (31) 

By substituting Eq.26, 27, 29 and 30 to Eq.28, we can finally obtain the 

fraction of transmitted light that comes out of the cornea and hits the sensor in 

function of the 𝐼0: 

𝐼𝐶𝑜̅̅̅̅
𝑇 = (𝐼𝐿𝑒̅̅ ̅

𝑇 + 𝐼𝐿𝑒̅̅ ̅
𝑆𝑓′

) (1 − 𝑅𝐶𝑜)(1 − 𝐴𝐶𝑜) 

𝐼𝐶𝑜̅̅̅̅
𝑇 = [(𝐼𝑅𝑒

𝑆𝑏𝑐𝑙𝑡 + 𝐵) (1 − 𝐴𝐿𝑒)(1 − 𝑆𝐿𝑒) + 𝑆𝐿𝑒
𝑓 ∑ ∑ (𝐼𝑅𝑒

𝑆𝑏𝑐𝑙𝑡 + 𝐵) 𝑃𝑆𝐹𝐿𝑒] (1 − 𝑅𝐶𝑜)(1 −

𝐴𝐶𝑜) (32) 

 

When no pathological conditions affect the eye, only the specular reflection 

at the cornea 𝑅𝐶𝑜, the absorption and scattering phenomena at the retina, 𝐴𝑅𝑒 

and 𝑆𝑅𝑒, and the second order scattering from the sclera, 𝐵 and 𝑃𝑆𝐹𝑅𝑒, are not 

negligible. All the other coefficient can be considered close to 0, therefore the 

Eq. 31 can be rewritten as: 

𝐼𝐶𝑜̅̅̅̅
𝑇 = 𝑆𝑅𝑒

𝑏 𝜑𝑐𝑙𝑡(1 − 𝑅𝐶𝑜)2(1 − 𝐴𝑅𝑒) ∑ ∑ 𝐼0𝑃𝑆𝐹𝑅𝑒 + (1 − 𝑅𝐶𝑜)𝐵. (33) 

 

5.5 MODEL CONSISTENCY ANALYSIS: METHODS 

5.5.1 COMPUTER SIMULATION  

Starting from CORD, a new dataset of 200 retinal images affected by 

artifacts has been created, 5 for each good quality retinal images produced 

using the fundus camera technique. The mathematical model has been 

implemented in Matlab 2019a (The MathWorks, Inc., Natick, MA, USA) using 

a i7-7700HQ CPU laptop with 16GB of RAM and Windows 10 as operating 

system. Below, the description of the numerical values of the parameters used 

in the simulation. 

Illumination 𝐼0 

Two different source of illumination have been implemented: RGB LED and 

Xenon bulb. In the following simulation, only the xenon bulb model will be 

considered as closer to the spectrum of the majority of ophthalmic devices’ 

illumination. The three RGB wavelengths selected are 460nm 550nm and 
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620nm and their relative intensity value was determined based on the 

spectrum profile shown in Figure 5.5. 

 

Figure 5.5 Emitting spectrum of two common light sources for ophthalmic devices. The one 
selected for the test id the Xenon bulb as commonly used in fundus imaging devices. 

 

To simulate the uneven distribution of light intensity along the radial 

coordinate of the observational area (the image acquisition area), a 

multivariate normal distribution profile (Z axis) with radial symmetry and with 

variance = 8 × 104 and covariance = 20 × 106, was used (Figure 5.6).  

 

   

Figure 5.6 3D representation of the radial distribution of the intensity of the illumination 
light. 
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Specular reflection 𝑅𝐶𝑜 

Specular reflection, which in this simplified model occurs only at the cornea 

surface, can be estimated by considering the reflectance for normal incident 

light at the interface between two media of refractive index 𝑛𝑜 and 𝑛1. Following 

from Eq. 5, where 𝑛𝑜 = 1.0003 is the refractive index of the air and 𝑛1 = 1.3371 

(Atchison and Smith, 2000) the refractive index of the cornea, 𝑅𝐶𝑜  = 0.021. 

This means that approximately 2% of 𝐼0 is reflected by the cornea back to the 

photodetector.  

Retinal absorption 𝐴𝑅𝑒 

The information about the absorption of the retina is given by the image 

complement of the good quality retinal image used (in this work comes from 

the CORD database). Under the assumptions adopted in this work, reaching 

the retina, the light can either be absorbed or scattered back to the lens. It 

follows that the information regarding the absorption of the retina’s features is 

stored in the retinal image itself. 

Lens and retina scattering S 

As shown in the mathematical model, the scattering produces not only a 

local loss of information for each single photosite, but also an additional 

contribution of information coming from the surroundings. Two different models 

have been adopted to take into account this phenomenon: the CIE general 

disability glare equation for the lens, derived from the Stiles-Holladay model 

(Vos, 2003), and an adaptation of the psychophysical Stiles-Crawford model 

(Marcos,Burns and He, 1998) adopted by reflectometric techniques.  

The first one is express by the equation: 

𝐼 =
10

𝜃3 + [1 + (
𝐴

62.5
)

4

] ∙ [
5

𝜃2 + 0.1
𝑝

𝜃
] + 0.025𝑝,   (34) 

 
where 𝜃 is the glare angle domain (in this model valid from 0.1° < 𝜃 < 100°), 

𝐴 accounts for the age, 𝑝 is the pigmentation factor (𝑝 = 0 for very dark eyes, 

𝑝 = 0.5 for brown eyes, and 𝑝 = 1 for blue-green Caucasian eyes). Figure 5.7 

and Figure 5.8 show the profile of intensity caused by scattering in relation 
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with the distance from the point where such phenomenon originates. It can be 

seen that age have a bigger impact than pigmentation. 

 

 

Figure 5.7 Profile of intensity along the optical axis of the eye at different age, keeping the 
pigmentation factor constant. 

 

 

Figure 5.8 Profile of intensity along the optical axis of the eye at different pigmentation, 
keeping the age factor constant. 
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The second one is simplified by the Gaussian function: 

𝐼 = 𝐵 + 𝐼𝑚𝑎𝑥10−𝜌𝑟2
      (35) 

where 𝑟 is the distance from the centre of the intensity distribution and 𝜌 is the 

shape factor and it’s defined as 

𝜌 =
𝜋2(0.4𝑠)2

𝑓2𝜆2 ln 10
        (36) 

and 𝑠 is the cone spacing ranging from 2.6 to 6.5 m in the foveal area, 𝑓 =

16.7𝑚𝑚 and 𝜆 is the wavelengths, which in this models are [460 550 620] nm. 

𝐵 is the constant background, which is the only second order contribution 

included, here calculated as the mean value of the light scattered back from 

the retina. 

 
CLASSIC SOURCES OF ARTIFACTS 

Object obstruction 

The simulation of objects between the image sensor and the cornea (e.g. 

eyelashes and dust on the optics) has been obtained by introducing an image, 

representing the obstructing object, between the light source plane and the 

corneal plane. Different levels of severity have been implemented to account 

for none to severe phenomena (different density of obstructing object, as in 

Figure 5.9, and different blurring level). 

        

Figure 5.9 Image of eyelashes used to simulate object obstruction. 

 

Optics misalignment – The misalignment between the target ring (intended 

as the orange/yellowish circular target used to help the operator to align the 

optics of the ophthalmic device with the centre of the retina) has been 
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simulated by adding an additional source of light non-coaxial with the main 

one. This generates the commonly observed saturated yellowish contour on 

the edges of the retinal image. Five different level of misalignment have been 

implemented (Figure 5.10). 

 

Figure 5.10 Increasing level of misalignment of the target ring. The shape the rig was 
designed to be as similar as possible with the target ring of a Topcon TRC-50DX Type IA 

fundus camera. 

 

Light detection efficiency – The detection efficiency of the photodetector 

conventionally depends on its optical efficiency 𝜀𝑜𝑝𝑡𝑖𝑐𝑎𝑙, which includes many 

factors (e.g. geometric and transmission efficiencies). It has been observed 

that the overall efficiency of a CCD photodetector can be obtained simply as 

the product of the geometric and transmission efficiencies (Catrysse and 

Wandell, 2002). 

𝜀𝑜𝑝𝑡𝑖𝑐𝑎𝑙(𝐸) = 𝜀𝑔𝑒𝑜𝑚𝜀𝑡𝑟𝑎𝑛𝑠𝑚(𝐸)     (34) 

The geometric efficiency 𝜀𝑔𝑒𝑜𝑚 depends on the numerical aperture (NA) of 

the lens, and the bending of the light due to the different dielectric media along 

the optical path. Such geometric efficiency can be express as: 

𝜀𝑔𝑒𝑜𝑚 =
𝐺𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

𝐺𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒
,     (35) 

where 𝐺𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 is the extension captured by a general photodetector and 

𝐺𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 is the extension available at the aperture.  

The transmission efficiency 𝜀𝑡𝑟𝑎𝑛𝑠𝑚(𝐸) depends on the energy 𝐸 of the 

incident ray and on the transparency of the different dielectric layers that 

compose the photodetector. 

For the proposed model we will implement these phenomena by 

considering different optical efficiency values for the different light source 
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contribution. Light ray with higher energy and a narrow angle of incidence with 

the photodetector will have a higher optical efficiency. 

The light collected by the sensor, which is the one forming the final retinal 

image, can be obtained by adding the contribution transmitted from the retina 

and the specular reflection coming from the first interaction with the cornea: 

𝐼𝑑𝑒𝑡𝑒𝑐𝑡(𝑖, 𝑗) = 𝐼𝐶𝑜̅̅̅̅
𝑇 𝜀1 + 𝐼𝐶𝑜

𝑅 𝜀2,    (36) 

where 𝜀1 and 𝜀2 have been here arbitrary chosen constants, for simplicity, 90% 

and 94% respectively, to account for the different energy content of the 

reflected and transmitted light. 

Radial symmetric artifact 

Specular reflections caused by the optics of the ophthalmic device and the 

over exposition of light caused by a partial placement of the patient’s eye on 

the eyepiece of the device was also simulated. To do so a Bessel function of 

the first kind with different orders was used. This radial symmetric function can 

be set to simulate circular or macular halos (Figure 5.11) 
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Figure 5.11 Example of Bessel function of the first kind with 3rd (top) and 2nd (bottom) order 
used to simulate illumination distortions in the retinal image. 

Numerical value of the simulation’s parameters 

The amount of luminance intensity reflected, absorbed and scattered by 

the cornea and the lens was established based on the literature, and they are 

here express in percentage of the total luminance intensity hitting the specific 

tissue. In particular, from the work of Boettner and Wolter (Boettner and Wolter, 

1962) (Figure 5.12) the amount of light not transmitted was estimated, which 

was used to determine the combined contribution of absorption, reflection and 

backward scattering for each tissue.  
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Figure 5.12 Spectral transmittances of the cornea and lens according to Boettner and 
Wolter (Boettner and Wolter, 1962). 

 

After calculating the amount to light reflected by the cornea according to 

the Eq.8, the remaining loss was shared between absorption and scattering, 

7%, 9% and 13% for the three selected wavelengths respectively. Figure 5.13 

helps to visualise the magnitude of the three losses at the cornea. 

 

Figure 5.13 Proportion of the different physical phenomena (specular reflection, absorption 
and scattering) occurring at the cornea. 

 

The proportion of absorbed and backward scattered light was determined 

based on empirical considerations, in particular in from Rayleigh scattering 

theory, and are summarised in Table 5.2.  
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As for the lens, only absorption and scattering were considered, in the 

proportions shown in Figure 5.14. 

 

Figure 5.14 Proportion of the different physical phenomena (specular reflection, absorption 
and scattering) occurring at the lens. 

 

Table 5.2 Proportion of the different phenomena on the cornea and the lens. 

 

This parametric formulation allows a different redistribution of the loss, if 

required, to simulate for instance pathological conditions or different light 

source spectrum. The full script with the implementation of the mathematical 

model created is included in Appendix II. 

5.5.2 STATISTICAL ANALYSIS 

To validate the mathematical model, the images produced with model have 

been compared with the images affected by artifact from CORD. The settings 

of the model are the ones described in the previous section. To be able to 

compare it with CORD only the quality distortions caused by external sources 

5050
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Reflection % 2.5 2.5 2.5 - - - - - - 

Absorption % 67.5 72.5 77.5 50 55 60 imcomplement(CORD_Image) 

Scattering % 30 25 20 50 45 40 24 22 20 
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of artifacts were produced (no abnormal lens or retinal scattering), since the 

images from CORD comes from healthy subjects. For the comparison, the 

statistical descriptors described in Chapter 3 were computed for the images 

created with the model and compared with the descriptors of the CORD’s 

dataset. One-way ANOVA test was then used to test statistically significant 

difference between the two datasets. 

5.6 MODEL CONSISTENCY ANALYSIS: RESULTS 

The dataset created with the mathematical model includes a wide variety 

of quality distortions (some examples are shown by Figure 5.15), obtained by 

setting the tuneable parameters in different combinations, from mild effect to 

severe one.  
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Figure 5.15 Example of images affected by artifacts produced using the mathematical model 
with different settings (left), in comparison with classic artifacts from CORD (right) 
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The one-way ANOVA test between the features of the images obtained 

with the mathematical model and the features evaluated on the images 

affected by artifacts from CORD, established no statistical difference for the 

majority of the features. In particular, 7 features over 20 obtained a p-value 

>0.05 across all the colour channels selected, and only three features were 

<0.05  for less than 67% of the channels (Figure 5.16 and Figure 5.17).    

 

Figure 5.16 Number of features per colour channel with p>0.05  

 

 

Figure 5.17 Frequency of features with p>0.05 across the 9 different colour channels 
considered. 
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In particular, the three features selected for the image classifier of the 

fundus images (mean, IQR and BVC of the a* channel) are not statistically 

different from the ones obtained with real artifacts (Figure 5.18). 

 

Figure 5.18 Features of the a* channel with p>0.05. 

Also the second most significant triplets of features for image classification 

identified in the previous chapter (mean, SatOver and BVC of the Green 

channel) has been reported.  

 

Figure 5.19 Features of the Green channel with p>0.05. 
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In Table 5.3 the p-value of such statistical features are reported.  

 

Table 5.3 p-value of the 3 most significant features identified by the classification strategy, 
for the a* channel and the Green channel. 

Colour 
channel 

Statistical 
feature 

p-value 

a* 

mean 0.7645 

IQR 0.0683 

BVC 0.0891 

Green 

mean 0.9004 

SatOver 0.0698 

BVC 0.0528 

 

5.7 DISCUSSIONS AND CONCLUSIONS 

One of the critical gaps that has been identified in the field of retinal image 

processing (and in particular in artifact modelling and filtering) is the lack of 

examples of images affected by artifacts. Such images are fundamental for 

research groups that do not have direct access to ophthalmic devices or 

clinical facilities. The creation of CORD represents an important first step 

towards bridging this gap. However, the time, resources and organizational 

effort needed to produce a large number of fundus images in a running clinic 

are considerable. The images so far collected cover a wide variety of quality 

distortions, but they are still a limited number. While the CORD repository will 

grow in the future, with more images to be collected by this research group 

and hopefully with some help of other researchers inspired by this work, within 

the time of this doctoral work other solutions were considered in order to obtain 

more artifact examples. Amongst others, the creation of a mathematical model 

able to reproduce, starting from clinical quality image, the effects of artifacts 

was eventually selected.  
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At the best of the authors’ knowledge, at time of this work, no image 

processing tool developed to simulate the quality distortion caused by artifacts 

in retinal imaging was identified in the field. The choice of using a parametric 

model to describe the interaction of the light with the eye’s tissues and the 

ophthalmic device was made to keep the whole algorithmic structure as more 

modular and simple as possible. Such model, in fact, can be easily readapted, 

upgraded and implemented to fit multiple purposes (e.g. artifact simulation or 

image restoration) and to account for more phenomena and parameters. 

For the purpose of this thesis, such model was used to generate an artificial 

dataset of images affected by artifact characterised by the same statistical 

features of images acquired in the field. The ANOVA test proved that the 

images produced by this mathematical model are similar to the images obtain 

in real fundoscopy, from a statistical perspective. Together with the images 

from CORD, this database is going to provide a robust training dataset to 

develop and optimize the artifact removal algorithm described in the next 

chapter.  

The potential offered by this algorithmic approach, however, goes beyond 

the aim of this thesis. This image processing tool was designed with the 

ambition to simulate not only artifact and noise produced by the optics of the 

image acquisition device or environmental factors, but also to simulate artifact 

caused by pathological conditions. Having a simplified mathematical 

description of the interaction between the light and the eye can help the 

understanding of the phenomena behind the generation of artifact, with 

potential impact in ophthalmic device design and imaging technique to improve 

diagnosis in eyes with pathologies that impact on image quality (e.g. 

keratoconus and cataract).  
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CHAPTER 6. CLEAN-UP ALGORITHM DEVELOPMENT 

 

 

 

 

6.1 CLEAN-UP STRATEGY 

As highlighted throughout this work, “quality” in medical imaging is strongly 

related with the information contained in the image, in relation to the specific 

diagnostic procedure used. In retinal imaging, the principal carrier of the 

clinical information is the textural information, hence the anatomical features 

and pathological signs. Such features can be faded, hidden or distorted due to 

artifacts produced during the image acquisition process. Nevertheless, as long 

as some textural content is preserved (i.e. no image saturation is masking out 

the features of interest), the portion of the image affected by the distortion may 

still give usable insights, provided the artifacts are removed.  

The clean-up strategy developed had the primary objective of retrieving 

two main anatomical features of the retina (blood vessels and ONH) and was 

developed under the following basic assumptions: 

 The contribution of the artifact distortions to the image is additive; 

 If the intensity level of the region of the image affected by artifact is 

saturated (complete loss of textural information), the information cannot be 

retrieved. 

As for the first condition, the artifacts described so far are commonly 

generated by the combination of scattering, specular reflections, illumination 

issues (uneven illumination, ring slit target misalignment) and object 

obstruction. With the proviso that different chromatic components cross-talk 

with each other due to scattering, the approximation of such distortion as 

merely additive show good results in the artifact simulator described in 

Chapter 5. Such additive nature has been reported by many research works 
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involving the collection of retinal image datasets (STructured Analysis of the 

Retina, E. Decencière et al., 2013, CORD Comprehensive Ophthalmic 

Research Database, CORD 2019, IMAGERET Optimal Detection and 

Decision-Support Diagnosis of Diabetic Retinopathy), including CORD 

(examples in Figure 6.1).  

 

Figure 6.1 Examples of artifacts in fundoscopy. Each row corresponds to a different dataset; 
each column represents a different typology of artifact.  

As for image saturation, this occurs when the intensity level of the pixels 

reaches its maximum digital level (e.g. 255 for an 8-bit unsigned integer 2D 

image). This happen because the intensity of the signal captured by the image 

sensor is greater than the dynamic, or operational range, of the image sensor 

itself. If saturation affects a portion of the image, the information within it is lost, 

and no image filtering technique can be used to retrieve the textural content of 

that area. However, given the sensitivity of image sensors used in fundoscopy 

is not uniform across the spectrum, the saturation may affect only some colour 
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channels of the image. In such cases, part of the textural information can be 

retrieved, although the overall clinical usability may result severely reduced 

(e.g. detection of dark lesions but not bright ones or vice versa).  

The strategy used in this work to isolate, model and mitigate the distortion 

caused by artifacts, exploits the unique opportunity of having full access to the 

textural content for each of the retinal image affected by artifacts (CORD + 

dataset of artificial artifacts). In fact, in both datasets the images affected by 

artifacts have always the CSQ counterpart (Chapter 5 and 6). A classification 

algorithm is used on half of the images of the two datasets (training set) to 

identify the pixels affected by artifacts. This classification will take advantage 

of the statistical feature of the pixel affected by distortions in comparison with 

pixels free from distortion. This algorithm will be then used on the second half 

of the datasets (test set) to identify the region of the images affected by 

artifacts. Those regions will be isolated and fitted by the means of an image 

interpolation algorithm, obtaining a simplified model of the distortion. Such 

model will then be subtracted by the artifact image obtaining a cleaned-up 

image. All the processing steps illustrated in the following were performed 

using Matlab 2019a (MathWorks, Inc., Natick, MA, USA) as numerical 

computing software. 

6.2 METHODS 

The processing steps are reported in Figure 6.2. The pixel classifier is 

developed on half of the database, by comparing the pixel with and without 

artifact of the same area, thanks to the registration between the image affected 

by artifact and the CSQ image. The classifier is then applied on the other half 

of the images and the profile of the distortion extracted via surface fitting. 

Finally, the distortion is subtracted from the image affected by artifact and the 

main textural elements of the cleaned-up images are evaluated to assess 

quality improvement. 
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Figure 6.2 Block diagram of the clean-up strategy. The yellow section represent the steps 
used to train the pixel classification model, starting from the training dataset. The green 
section shows the steps used to clean-up the artifact from the test dataset using the 
classification model. 

 

6.2.1 PIXEL CLASSIFICATION MODEL 

The first part of the process, where the classification model is trained is 

better detailed in Figure 6.3. 
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Figure 6.3 Block diagram of algorithmic process used to train the pixel classification model. 
The white boxes are the input and output images; the grey boxes are the image processing 
steps. 

Image registration 

The aim of the image registration is to find the geometric transformation 

(translation, rotation and scaling) that maps the points in the CSQ image into 

the points of the same feature in the artifact image. In fact, during the image 

acquisition process, small ocular movements of the participant cause each 

image to be slightly translated and/or rotated compared to the previous one. 
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Figure 6.4 Rotation axes of the eye (Büttner and Büttner-Ennever, 1988). 

Although the shift is primarily caused by the rotation of the eye along its z 

axis (Figure 6.4), this can be approximated by a translation along the x axis 

due to the small shift. Similarly, the rotation along the X axis will be 

approximated by a translation along the Z axis. This transformation, 

combination of the translation in the XY plane and the rotation around the Y 

axis, can be formalised as: 

T: (x, y) ⟼ (x′, y′) .     (1) 

 The approach selected for the registration can be classified as landmark-

based (Maintz and Viergever, 1998), as the automatic segmentation process 

of the inadequate quality images can be highly inaccurate, leading to a 

mismatch. The approach consists in the manual identification of two points per 

image (distant at least one radius of the ROI from each other) belonging to 

features easily identifiable in both images. The selection of these two points is 

performed on the green channel of the image, after an adaptive contrast 

enhancement (CLAHE) (Pizer et al., 1987) process is applied (Figure 6.5).  
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Figure 6.5 CLAHE of the green channel of the CSQ retinal image (left) and the artifact affected 
counterpart (right). The selection of the two points for the registration process is highlighted 
in the magnified sections. 

To calculate the geometric transformation we can express the points 

𝑃(𝑥, 𝑦) and 𝑃′(𝑥′, 𝑦′) related by the matrix relation: 

[
𝑥′

𝑦′

1

] = 𝑅𝑇𝑆 [
𝑥
𝑦
1

]   𝑅𝑇𝑆 = [
𝑥′

𝑦′

1

] [
𝑥
𝑦
1

]

−1

   (2) 

where the scaling matrix 𝑆, the rotation matrix 𝑅 and the translation matrix 

𝑇 are: 

𝑆 = [
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

]    𝑅 = [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
]    𝑇 = [

1 0 𝑑𝑥

0 1 𝑑𝑦

0 0 1

]    (3) 

Once the geometric transformation is obtained, this is applied to the CSQ 

image, obtaining the overlap of the features in both images.  

ROI redefinition 

After the registration, some useful measurements and information are 

collected for both the images: 

 Image Mask that defines the margins of the ROI (area inside the circular 

black frame) 

 Extraction of the geometric parameters of the ROI: radius 𝑟 and centre 

𝐶(𝑥, 𝑦)  



175 
 

 Enhancement of the green channel of the CSQ image via adaptive 

method. 

The Mask is a binary image (black and white) used to identify the pixels 

that belong to the ROI (usually, 1s identify the pixels of the ROI and 0s the 

pixels outside the ROI). The creation of such mask allows the optimization of 

some of the processing steps and the evaluation of the geometrical 

parameters of the ROI.  

 

Figure 6.6 Graphical principles used in the evaluation of the geometrical parameters of the 
ROI. 

The radius of the circular ROI, in fact, is evaluated by determining the row 

of the Mask image with the maximum number of ones, calculating the number 

of them and dividing the result by half. This row will also be the Y coordinate 

of the centre of the ROI, and the X coordinate is obtained be summing the 

margin with the radius, as in Figure 6.6. The final value of the radius needs to 

be reduced so to compensate for the geometrical shift between the registered 

CSQ image and the artifact-affected one (Figure 6.7). 
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Figure 6.7 Blended overlay image of the artifact image and the registered CSQ image.  

The final radius 𝑟𝑓 can be evaluated by subtracting the previous radius with 

the modulus of the total translation, as: 

𝑟𝑓 = 𝑟 − √𝑥2 + 𝑦2 − 𝜏      (4) 

where 𝜏 is a safety factor that account for the quantisation errors (here 𝜏 =

4). Once the radius is calculated, the registered CSQ image and the artifact 

one are re-processed so that the ROI of both the images have the same 

geometrical values (Figure 6.8).  

 

 

Figure 6.8 Result of the image registration process and the ROI re-definition. 
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Retinal feature segmentation 

The segmentation of the retinal features of the registered CSQ image has 

the purpose of creating a binary image where 1s are assigned to the 

background pixels and 0s to the features pixels. This map is then used to 

exclude the pixels of the features from the evaluation of the statistical features, 

as their value can vary widely depending on the kind of feature and the position 

on the retina, while the background has much constant chromatic 

characteristic across the ROI. 

The feature segmentation algorithms selected for this work is a 

combination of the classic thresholding and an improved matched filter 

technique (Katz et al., 1989, Al-Rawi,Qutaishat and Arrar, 2007). The selection 

has been somewhat arbitrary, and the simplest method has been used. The 

impact of the segmentation method on the clean-up strategy has not been 

evaluated (time constraints). However, from simple preliminary tests (not 

reported) the impact of the choice appears to be very minor. 

ONH segmentation – the extraction of the ONH was performed via simple 

thresholding. Once the centre of the ONH was identify, by knowing that the 

intensity level of the red channel reaches the maximum at the ONH, an image 

threshold technique was performed within a limited area from the ONH’s centre 

(blue circle of Figure 6.9). In this work, the radius of such area was 20% of the 

radius of the ROI and the threshold value used to isolate the ONH was 210 (of 

possible digital values that go from 0 to 255). 
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Figure 6.9 Red channel of the CSQ image. The blue circle represents the area where the 
thresholding was performed. On the right, the binary image resulting from the ONH 

segmentation. 

 

Blood vessels segmentation – as described in Chapter 3, the matched filter 

is a template matching algorithm that exploit the spatial properties of the object 

to be recognized. In this case the properties of the blood vessels are: 

 Vessels appear darker relative to the background 

 Vessel size decreases when moving away from the optic nerve (retinal 

vessel width range of 2-12 pixels) 

 The intensity profile of the cross section of a vessel has a Gaussian 

shape. 

The matched filter kernel can be expressed by: 

𝑘(𝑥, 𝑦) = −𝑒
(−

𝑥2

2𝜎2)
    ∀|𝑦| ≤ 𝐿/2,     (5) 

Where 𝐿 is the length of the vessel segment that lies on the same 

orientation, 𝜎 is the variance of the Gaussian profile (defines the spread of the 

bell-shape profile). To be able to detect vessel oriented at different angles, the 

kernel is rotated and the maximum response from the filter for each angle is 

registered. The trails of the Gaussian curve are truncated at 𝑢 = ±3𝜎. A 

neighbourhood 𝑁 is defined such that: 

𝑁 = {(𝑢, 𝑣), |𝑢| ≤ 𝑇, |𝑣| ≤ 𝐿/2}     (6) 
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As suggested by the work of Al-Rawi at al. (Al-Rawi,Qutaishat and Arrar, 

2007), in this work, the value selected are 𝜎 = 1.9, 𝐿 = 11, 𝑇 = 8 and the angle 

of rotation of the kernel 𝜃 = 15°, for a total of 12 rotation. This filtering process 

produces a grey scale image where the features are brighter than the 

background. 

 

 

Figure 6.10 Blood vessels segmentation process. Matched filter is applied to the CSQ image 
resulting in the grey scale map of the vessel. The map is then transformed into a binary image 
and the small non-connected objects removed. 

 

To obtain the binary image a threshold value is empirically established to 

include the majority of the retinal features detected previously (here, 𝑇ℎ = 50).  

Once the binary image is obtained a further step is implemented to eliminate 

the non-connected elements formed by a group of pixels < 50. In Figure 6.10, 

the segmentation steps of the blood vessels are shown. 
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After the two binary maps (ONH and blood vessel) have been created, they 

were combined together and processed to obtain the complement (example in 

Figure 6.11). In this way only the pixel belonging to the background have value 

equal to 1, allowing the subsequent stage to be performed.  

 

 

Figure 6.11 Creation of the binary map of the retinal features. 

 

Image difference 

The difference between the two registered images isolates the contribution 

caused by the artifacts, under the hypothesis of additive artifact (Figure 6.12). 

Given the border between the pixels affected by artifact and not affected is 

fuzzy, to prevent pixels not belonging to the artifact to be considered, a 

thresholding was applied. In this work, under 5% of the max value of the artifact 

contribution, of the corresponding channel, was empirically established. The 

image representing the artifact contribution was then multiplied by the binary 

image of the background (1 if the pixel belongs to the background, 0 

otherwise), obtained in the previous step. The result is the image of the artifact, 

excluding the pixels that belong to blood vessels and ONH (Figure 6.12, right). 
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Out of this image, the binary maps of the pixels of the background affected by 

artifacts and the pixels of the background not affected by artifacts were created 

(Figure 6.13). 

 

Figure 6.12 From the left, the registered CSQ and artifact images, in the right corner the 
image difference between them.  

 

Figure 6.13 Binary maps of pixels of the background affected by artifact distortions (left) 
and the pixels of the background non-affected by the artifact (right), respectively. 

Pixel value extraction  

The binary maps are used to distinguish between the pixels of the retinal 

background affected by artifact and not. The colour channel values of such 

pixel was stored in separate matrixes and labelled as “Group A” = affected and 

“Group B” = not affected. Labels and colour channel parameters are the two 

inputs for the SVM model, which will use such dataset to train its binary 

classifier. To account for the variability between the retinal images caused by 

subject characteristics (age, sex, skin colour) the values collected were 

normalised respect to the mean value of the respective channel of the whole 

ROI.  
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Training of the binary classifier 

The classifier adopted for the pixel classification is the regularized support 

vector machine (SVM), a linear classification models for two-class learning 

with high-dimensional, full or sparse predictor data. This classifier has been 

used in retinal vessel segmentation with good results, as described in Chapter 

3, thanks to its robust learning process. Here is used to predict which pixel of 

the retina’s background is affected by quality distortions in the test database. 

6.2.2 IMAGE CLEAN-UP PROCESS 

The classifier trained in the first part of the process is now applied to the 

test dataset to evaluate how well the model can identify pixels affected by 

quality distortions (Figure 6.14). Once the distortions have been isolated and 

extracted, they are subtracted to the original artifact image to counteract the 

effect of the distortion itself. The mitigation of the quality distortion is then 

evaluated using the quality classifier developed in Chapter 4. 

 

Figure 6.14 Block diagram of algorithmic process used to clean-up the images from the 
artifact contribution. The white boxes are the input and output images; the grey boxes are 
the image processing steps. 
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Pixel classification 

For each image affected by artifact (of the half portion of the database used 

as test dataset) the colour channels values of the pixel of the ROI was 

collected. These values were processed by the classifier, establishing which 

one is affected by artifact or not. Pixels recognised by the classifier as affected 

by artifact were labelled as such, forming the binary image representing the 

region of the image affected by artifacts.  

Pixel classification performance assessment 

The pixel classification performance was tested in terms of accuracy, 

specificity and sensitivity. To do so the number of pixels correctly classified as 

background affected by artifacts (TP), number of pixels correctly classified as 

background not affected by artifacts (TN), number of pixels wrongly classified 

as background affected by artifacts (FP) and number of pixels wrongly 

classified as background not affected by artifacts (FN) was quantified for each 

image of the test database (80 images from CORD + 50 images from the 

artifact model). The total accuracy reached was 𝐴𝑐𝑐 = 89.4%, 𝑆𝑝 = 98.3% and 

𝑆𝑒 = 60.3%. 

Artifact pattern extraction 

The extraction of the artifact contribution is achieved by extracting the value 

of the pixels that belong to the artifact (using the binary map of the previous 

step). This value is subtracted with the mean value of the intensity value of the 

entire ROI. This operation is made for each channel. 

Surface fitting 

The distortion pattern obtained in the previous step is discontinuous, given 

the outliers and possible interaction of the pixels of the retinal features. To give 

to the distortion a smoother profile, a surface interpolation process is 

implemented. The fitting model selected is the biharmonic spline interpolation 

which allows the interpolation of irregularly spaced two dimensional data points 

(Sandwell, 1987). This model is based on the physical interpretation of the 
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spline as an elastic surface that bends under the effect of loads of weight wi, 

passing through the points xi (Figure 6.15 reports an example in 1 dimension).  

 

Figure 6.15 Bending of the elastic spline under the effect of loads of weight  𝑤𝑖 
(Belozubov,Vasil’ev and Chernov, 2014). 

 

The bending of a beam under the action of a point load found at the 

coordinate origin may be described by the biharmonic differential equation 

(Belozubov,Vasil’ev and Chernov, 2014) 

𝑑4𝑓(𝑥) 𝑑𝑥4⁄ =  𝛿(𝑥),     (7) 

where the function 𝑓(𝑥) characterizes the bending of the spline while the 

point weight is represented by the Dirac delta function 𝛿(𝑥). The response of 

the system to an action expressed in the form of a delta function is called 

Green’s function, to which particular solution is: 

𝑓(𝑥) = |𝑥|3      (8) 

By using this function to interpolate N data points 𝑤𝑖 located at 𝑥𝑖, the 

corresponding weight coefficients must be added together: 

𝑓(𝑥) = ∑ 𝑤𝑗|𝑥 − 𝑥𝑗|
3𝑁

𝑗=1       (9) 

For known coefficients 𝑤𝑗, the value of a biharmonic spline at any point 𝑥𝑗 

is found from Eq. 9. 

The method used to calculate the weights is the non-linear least square 

one, using the Levenberg-Marquardt algorithm as fitting method (Levenberg, 

1944), where a function 𝑓(𝑥) is minimized that is a sum of squares. 
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min
𝑥∈ℝ𝑛

𝑓(𝑥) = ‖𝑭(𝑥)‖2
2 = ∑ 𝐹𝑖

2(𝑥)𝑖 ,     (10) 

where the vector 𝑭(𝑥) is 

𝑭(𝑥) = [

�̅�(𝑥, 𝑡1) − �̅�(𝑡1)
�̅�(𝑥, 𝑡2) − �̅�(𝑡2)

…
�̅�(𝑥, 𝑡𝑚) − �̅�(𝑡𝑚)

]         (11) 

and �̅�(𝑥, 𝑡) and �̅�(𝑡) are scalar functions representing the output and the 

continuous model trajectory of the surface. In the Levenberg-Marquardt 

method the searching direction 𝑑𝑘 for the minimum is set by the solution of the 

linear equation: 

(𝐽(𝑥𝑘)𝑇𝐽(𝑥𝑘) + 𝜆𝑘𝐼)𝑑𝑘 = −𝐽(𝑥𝑘)𝑇𝐹(𝑥𝑘),    (12) 

where 𝐽(𝑥𝑘) is the Jacobian matrix of 𝐹(𝑥𝑘) and 𝜆𝑘 is a scalar that controls 

both the direction and the magnitude of 𝑑𝑘. 

To reduce the computational complexity needed for the surface 

interpolation process, a small number of pixels (400) is randomly selected 

across the ROI of the distortion pattern, following a normal distribution. As an 

example, the result of the curve interpolation process of the three channels of 

the RGB colour space, for the retinal image in Figure 6.8, is shown in Figure 

6.16 and Figure 6.17. 

 

Figure 6.16 Curve interpolation of the biharmonic model into the distortion pattern caused 
by scattering and artifact phenomena. 
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Figure 6.17 3D map of the modelled surface of the distortion. 

 

Artifact pattern subtraction 

The model of artifact obtained is then subtracted to the corresponding 

image. As stated before, this is possible giving the additive nature of such 

contribution to the image. In the region with no saturation, the chromatic value 

has mostly been restored by the artifact model subtraction. The contrast of 

portion of the image affected by the artifact distortion, however, results in lower 

than in the region non affected by quality distortion. This is due the loss in the 

overall dynamic of the textural information and the scattering phenomena. To 

improve contrast of the textural features an image sharpening technique in the 

spatial frequency domain is employed. Because the edges and other sudden 

changes in intensity are associated with high-frequency components, the 

textural sharpening can be performed via high-pass filtering, which attenuate 

the low-frequency components without altering the high-frequency information 

in the Fourier transform. 

To compensate the reduction of the average value of the image due to the 

highpass filtering, a high-frequency emphasis filtering approach is employed. 

Here, an offset is combined to the filter in order to mitigate the amplitude 

reduction of the low-frequency components. The transfer function of the high-

frequency filter is: 

𝐻(𝑢, 𝑣) = 𝑎 + 𝑏𝐻𝐻𝑃(𝑢, 𝑣)     (13) 
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Where 𝑎 is the offset, 𝑏 is the multiplier and 

𝐻𝐻𝑃(𝑢, 𝑣) = 1 (1 + [𝐷0/𝐷(𝑢, 𝑣)]2𝑛)⁄  is the Butterworth highpass filter, where 𝐷0 

denotes the cut-off frequency (radius outside which the frequencies can pass 

in the Fourier spectrum) and 𝐷(𝑢, 𝑣) is the distance between the point (u, v) in 

the domain frequency and the centre of the frequency rectangle (Figure 6.18). 

 

Figure 6.18 From the left: the spectrum of the image affected by artifact after the artifact 
model subtraction, the spectrum visualization of the Butterworth HP filter (where the black 
circle is the cut-off area) and the spectrum visualization of the high-frequency emphasis filter. 

 

The filtering process was performed on the L (lightness) channel of the CIE 

L*a*b* colour space. This colour space was selected because, by design (CIE, 

1978), numerical changes in the CIE L*a*b* colour space correspond to 

roughly the same amount of visually perceived changes. The sharpening 

process steps are described by the block diagram in Figure 6.19. 

 

Figure 6.19 Block diagram of the image sharpening. 

 

This is the last step of the retinal filtering strategy which result for the 

example used so far can be seen in Figure 6.20. 
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Figure 6.20 Comparison between the image affected by artifacts and the result of the 
artifact clean-up strategy. 

6.3 VALIDATION OF THE CLEAN-UP STRATEGY 

To assess the improvement on the quality of the cleaned-up images the 

specific textural features were evaluated before and after the imaging clean-

up to assess the improvement of the textural content of the image, which have 

been found to be critical in the clinical assessment. 

 

6.4 ARTIFACT CLEAN-UP RESULTS 

A total of 80 images affected by artifacts (40 from CORD + 40 from the 

dataset created with the mathematical model), which is half of the retinal 

images available, have been processed using the clean-up strategy 

developed.  
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Figure 6.21 Result from the artifact removal strategy on the fundus images acquired via 
fundus camera. In the left column, the images affected by artifact, in the middle one the 
binary map of the pixels identified by the classifier as affected by artifacts and the right 
column the cleaned-up images. 

 

Following the steps described in the previous chapter, for each image the 

pixels affected by artifacts were identified via the SVM binary classifier trained 

on the first half the dataset, their value subtracted to the mean value of the 

corresponding ROI and then used to fit a 3D surface model that recreated the 

additive contribution of the artifact. The image subtraction between the image 

affected by artifact and the estimated artifact contribution was then performed, 

finishing with an image sharpening step. Some example of the result of the 

artifact clean-up are shown in Figure 6.21. In particular, Figure 6.22 offers a 

close-up visualisation of the textural components improvement after the 

implementation of the artifact removal strategy. 



190 
 

 

Figure 6.22 Enlargement of some retinal vessel of the peripheral macular area. In the left 
image, the contrast of the blood vessels is reduced by the artifact, while in the right image 
the artifact removal procedure has restored some visibility. 

6.4.1 IMAGE QUALITY IMPROVEMENT EVALUATION 

The improvement of the textural content was measured via Haralick and 

specific textural features, in particular: 

 Energy - gives an indication about the quantity of information within an 

image. Therefore, the higher the energy of an image the higher is the 

information content.  

 Entropy - measures the randomness of an image. When the value of all 

the pixels of the image are maximally random, entropy has its highest 

value. In other words, images with low entropy has more correlated 

elements (textural features) than images with high entropy. 

 Blood vessel density (BVD) – it is a measure of the quantity of pixels 

that belongs to the blood vessels in relationship to the total amount of 

pixels in the ROI. This is determined via segmentation of the blood 
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vessel and the creation of a binary map where a value equal to 1 

corresponds to those pixels that belong to the blood vessel and 0 is 

assigned to the background, as described in Chapter 3 and Chapter 4. 

From Figure 6.23 to Figure 6.25 the value of energy, entropy and BVD is 

shown per each image affected by artifact before and after the artifact 

removal process. 

 

Figure 6.23 Comparison between the energy measured in the images affected by artifacts 
(blue line) and the same images after the artifact removal process (orange line) for the retinal 
images acquired using the fundus camera. 

 

Figure 6.24 Comparison between the entropy measured in the images affected by artifacts 
(blue line) and the same images after the artifact removal processing (orange line) for the 
retinal images acquired using the fundus camera. 
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Figure 6.25 Comparison between the BVD measured in the images affected by artifacts 
(blue line) and the same images after the artifact removal processing (orange line) for the 
retinal images acquired using the fundus camera. 

 

Table 6.1 Statistical descriptors selected to verify the improve of the textural information of 
the retinal images after the artifact removal process. 

Imaging Device 
Stat. 

Descriptor 
Retinal image Mean Value Std. Deviation Improvement 

Fundus Camera 

Energy 
Artifact 0.3224 0.1240 

+23.8% 
Cleaned-up 0.4230 0.1178 

Entropy 
Artifact 2.1129 0.3937 

-17.4% 
Cleaned-up 1.7455 0.3740 

BVD 
Artifact 0.0653 0.0323 

+11.2% 
Cleaned-up 0.0735 0.0357 

 

In Table 6.1 the mean value and the standard deviation of energy, entropy 

and BVD are listed. Overall, energy and BVD improved and Entropy is 

reduced, as expected in images where the textural content increases. In 

particular, the BVD values shown that the quantity of detectable textural 

information, e.g. for blood vessel segmentation, is increased by more than 

11%, as also shown in Figure 6.26. 
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Figure 6.26 Comparison between the results of vessel segmentation obtained via matching 
filters technique on the image affected by artifact (left) and the same image after clean-up 
(right). More vessel could be segmented using the same segmentation parameters 

6.5 COMPUTATIONAL PERFORMANCE 

The most computational demanding step of the artifact removal strategy is 

the surface fitting process of the distortion pattern. In particular, the number of 

points chosen for the surface fitting has a direct impact on the computational 

time. The artifact model, in fact, is shaped around a set of pixel values selected 

from the image obtained by the pixel-by-pixel subtraction between the poor 

quality image and the registered good quality counterpart in those areas where 

there are no retinal features, Figure 6.27. As stated in the methods section, 

these points are sampled uniformly across the whole ROI. The selection of the 

minimum number of points to fit properly the surface was empirically 

established to be at least 0.4% of the total number of points. Giving the 

average number of non-zero pixels on the ROI is around 100000, the average 

set of points sampled was around 400 for each image. 
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Figure 6.27 Result from the subtraction between the poor quality image and the clinical 
standard quality counterpart multiplied by the binary map to exclude of the retinal features. 

6.5.1 PROCESSING TIME 

The Matlab script was built and tested on a Window 10 SO, 8GB of RAM 

laptop, mounting an Intel 64 processor (core i7-7700HQ @ 2.80GHz), running 

4 physical cores and 8 logical cores, 4 of which used in the computation. The 

digital format and size of the retinal images from CORD database and from the 

artifact simulator are: 

 Fundus camera images – JPEG format, 3216 x 2136 pixels (12 of the 

50 images selected for the image clean-up are 4288 x 2848 in size. 

They were resized to 3216 x 2136) (~2MB each). 

 Simulated artifact images - JPEG format, 1832 x 1797 pixels (~1MB 

each). 

The relation between the number of points (in percentage of the ROI) 

selected from the ROI for the surface fitting and the processing time for the 

biharmonic model fitting and the surface creation is shown in Figure 6.28 and 

Figure 6.29. 
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Figure 6.28 Model fitting time vs percentage of number of pixel of the ROI considered. 

 

Figure 6.29 Surface creation time vs percentage of number of pixel of the ROI considered. 

The average time of the principal computational steps is listed in Table 6.2. 

The artifact surface fitting time is the sum of the surface modelling and the 

surface creation, and was evaluated considering the 0.4% point of the ROI. 

Table 6.2 – Mean processing time per each computational step. 

Processing step Time (s) 

Image registration 1.19 

Binary map creation 4.13 

Artifact surface fitting 32.71 

Image sharpening 3.86 
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CHAPTER 7. DISCUSSION AND CONCLUSION 

 

 

 

7.1 QUALITY IN RETINAL IMAGING 

As highlighted from the literature review, there is not a unique way to define 

quality in retinal imaging diagnostic. Many factors contribute to classify an 

image as useful or not for the clinical assessment: different imaging 

techniques, different diagnostic methods, different anatomical features under 

examination, and so on. Moreover, some cognitive mechanisms related to the 

visual perception play a not fully understood role in this. Experience, memory 

and contextual information are always used by the clinician to draw 

connections between what he/she is seeing in the image and the health status 

of the eye.  

On the other hand, what also emerges from the literature is that the texture 

of the main retinal features (optic disc, vessels, exudates, etc.) act as 

information carriers. Despite no clinical evaluation having been done at this 

stage to corroborate such connection, the wide production of image processing 

techniques designed to identify and extract retinal features suggests that the 

visibility of the textural content is of primary importance. This is why the artifact 

removal algorithm, developed in this work, was specifically designed to 

improve the visibility of some of the main textural anatomical features of the 

retina (blood vessels and ONH).  

Dealing with digital images, the possible approach to objectively quantify 

the textural content is to calculate statistical parameters out of the digital value 

of the pixels. Such a technique has been widely documented in the field, with 

many works converging in the use of features such as entropy, energy or 

contrast, to quantify the level of detail in an image or how “sharp” such details 

are. In this regard, one of the major findings of this work has been the 

identification of those statistical figures that varies the most when measured 
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on images with artifacts in comparison with the same image without artifacts 

and the creation of an image quality classifier based on such features which is 

completely agnostic with respect to the diagnostic process. This was possible 

also thanks to CORD, the comprehensive ophthalmic database developed 

within this research work. What resulted from the statistical feature 

classification, via NCA algorithm, was that features such as entropy and 

energy differ between adequate and inadequate quality in retinal imaging, as 

expected. What was less predictable is that even histogram features, like 

mean value or IQR can also be used as quality classifiers if evaluated on 

specific colour channels of the image.  

In conclusion, a new agnostic image quality classifier based on objective 

statistical features was developed and tested on CORD. Although more work 

needs to be done to better understand how these statistical features are 

correlated with the kind of artifact of the image or with different characteristics 

of the eye under examination (for instance, when the eye pigmentation is 

darker some statistical features are more robust than others), this approach 

offers a starting point that can be implemented for future works.  

7.2 COMPREHENSIVE OPHTHALMIC RESEARCH DATABASE 

At the present, CORD represents a novelty in the panorama of the publicly 

available ophthalmic databases. For the first time, within a single online 

repository, a user can find, for each eye, the comprehensive geometric, optical 

and functional description, along with images of the front and back of the eye 

acquired using the majority of the imaging techniques employed in clinical 

diagnostic. 

Such a comprehensive set of information can be used as a didactic and 

training tool for ophthalmologists and operators in the ophthalmic field in 

general, but it is in the medical image processing that this database expresses 

its full potential. CORD, in fact, was specifically structured and designed to aid 

the development of computer aided diagnostic tools. The multimodal images 

(and the information about the device setting used to acquire them) and the 

ophthalmic related measurements, are arranged and labelled to be easily 



198 
 

cross referenced. This simulates the same strategy adopted by clinicians 

during the diagnostic process. For instance, when assessing glaucoma, the 

combination of field of view test, slit lamp examination, IOP, OCT images and 

fundus images is used to formulate the diagnosis (Thomas and Parikh, 2006). 

Similarly, macular degeneration is assessed by testing the field of view, and 

imaging the retina via OCT and fundoscopy (Cook,Patel and Tufail, 2008), or 

again cataracts are diagnosed via field of view test, biometry, corneal 

topography and OCT (Kenneth CS Fong and Malhotra, 2008). Such process 

allows the clinician to have different sources of information that can be cross 

correlated to perform a more robust assessment of the pathological condition. 

Databases with large multi-modal data like CORD are therefore the elective 

tools of machine learning techniques, like the one used in this thesis. But even 

more classic imaging techniques, such as thresholding and segmentation, can 

take advantage of different imaging modalities. ONH segmentation, for 

instance to find the ratio between OD and OC, can be improved by using 

images coming from OCT scans. The problem of 2D fundus images is the 

limited information with respect to the third dimensionality of the anatomical 

features’ morphology, like at the boundary between OD and OC, which instead 

can be more easily identified via 3D scan (Figure 7.1). 

 

Figure 7.1 Example of a classic problem in retinal imaging (detection of OD and OC 
boundaries). The boundary between the OD and OC is somehow fuzzy and it’s difficult to 
establish a univocal threshold. With the help of the 3D prospective from the OCT scan this 
operation can be more objective. 
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The other novelty is the systematic inclusion of fundus images affected by 

common artifacts, along with the clinical quality image counterpart. This offers 

some samples for image filtering and noise reduction strategies and an 

objective ground truth for algorithmic performance evaluation and 

improvement. This unique feature of CORD was massively exploited by this 

research work, yet only just scratching the surface of its real potential though. 

In fact, much work can be done on understanding how the contextual 

characteristics (e.g. device setting, subject pigmentation) impact on the 

formation of quality distortion in fundoscopy. All these research paths are now 

enabled by this database, opening the way for a better understanding of such 

phenomena on image quality and developing new methods that can take 

advantage of this knowledge. 

Finally, the database structure is the other enabling factor of CORD. The 

data collection workflow described and provided in the repository allows other 

researchers to data with similar characteristics. This will potentially enlarge 

CORD in the future, and we hope will stimulate the creation of similar platforms 

that can be used consistently and, possibly, cross-referenced, establishing a 

de facto standard for comprehensive database collection and sharing. 

In conclusion, this sizable work has led to the creation of a new open 

source ophthalmic dataset, aimed to enabling other research groups and 

clinicians to develop computer vision solutions, training programmes and 

more. To the best of our knowledge, this is the first database to include, for 

each eye, the most complete clinical description (images, videos obtained 

using multiple techniques and modalities) and the information of the 

parameters under which such data have been produced. It is also the only 

database to include artifact examples along with clinical image counterparts 

and with the information regarding the subject that are known to have an 

impact on image specifics. 

7.3 PARAMETRIC MODEL OF ARTIFACTS 

The lack of examples of artifacts in retinal databases was also tackled with 

the development of a quality distortion simulator which, starting from good 
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quality images, can replicate some of the classic artifacts in fundoscopy. Such 

parametric model was conceived as an image processing tool, rather than as 

a new bio-physical model for the description of the interaction between the light 

and the eye. In fact, the strong physical assumptions under which the model 

was developed, and the algorithmic strategies adopted, do not add anything 

more to what is already available in terms of scattering, absorption and 

reflection modelling in the field. Nonetheless, while several physical models 

have been developed to describe the effect of pathological conditions (e.g. 

myopia, cataract) on the visual perception of the patient, no model that 

simulates the formation of the retinal image from the device prospective 

capable of generating quality distortions has been identified.  

Computer programs that reproduce blurring effects and artifacts are 

available for graphic and rendering purposes (e.g. in the field of photography 

and cinema), where specific filers are applied on top of the images to obtain 

the desired effect. On the contrary, the artifact simulator developed in this 

thesis creates a physically-compliant distortion applied directly to the layer 

where such distortion is supposed to be generated. This gives more control on 

how the distortion is created, relating it to the fundamental mechanisms that 

generate the distortion in the first place, with the possibility to change specific 

key parameters of the model (e.g. subject’s age or pigmentation, percentage 

of light absorption or severity of uneven illumination), and see how those 

parameters, although in a simplified way, impact on image quality.  

This model has also led to the identification of the most suitable algorithmic 

strategy for the artifact mitigation process. In fact, the way the artifacts are 

generated with this model has suggested an additive nature of the artifact 

contribution to the retinal image. 

The modularity and the parametric nature of the model allow possible users 

to freely readapt some of the elements of its structure or implement it with more 

modules. Moreover, simulating the distortion caused by artifact from the 

imaging device perspective can be useful for ophthalmic device developers 

and for clinicians, allow them to develop techniques or strategies to 
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compensate them, be it digitally or through compensation of the core artifact 

mechanisms. 

7.4 IMAGE CLEAN-UP STRATEGY 

The mitigation of the distortion caused by artifact was achieved in the 

dataset of images selected for the test. In particular, the success of the clean-

up was proved by the increased capacity of the vessel segmentation algorithm, 

selected to evaluate the BVD, to identify more vessels. In the field, this is one 

of the first attempts to build an algorithm to reduce artifacts in fundoscopy. The 

majority of the efforts in the literature focus of the identification of image quality 

classifier, to label image as assessable or not, bypassing the problem of 

retrieving information from degraded images. This because the variety and the 

different severity of the distortions caused by artifacts make this task 

particularly difficult. Here, thanks to CORD and to the modelling of artifacts, 

this problem was tackled not by designing the clean-up algorithm around a 

specific characteristic of the artifact, but by extracting the knowledge of which 

elements of the image make it a “good” image.  

The image segmentation techniques available in the field mostly rely on 

the a priori knowledge of the retinal feature they are designed to extract (e.g. 

Gaussian cross-sectional profile of the vessels, circularity of the OD). Similarly, 

noise filtering techniques exploit the knowledge of the characteristics of the 

noise itself to be able to extract it from the image. All these approaches 

introduce some form of bias in the resulting image, as they work more 

efficiently where the feature has the characteristic predicted, overlooking the 

feature where such characteristics are more variable. This, per se, can lead to 

a loss of valuable clinical information. Such loss is acceptable when the clinical 

assessment focuses on a specific feature or a specific pathology, because the 

advantage of enhancing those features over the others is higher than the 

disadvantages. In a more general scenario however, where for instance the 

clinician wants to check the general health of the retina, or when there is no 

previous suspicion of pathological conditions, such loss can prevent valuable 

information from being detected. For this reason, the approach followed by this 
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work aimed to use as few elements about the features as possible. In fact, the 

pixel classifier uses only the knowledge of how pixels of retinal images should 

look like, as opposed to pixels of artifacts.  

In conclusion, the image clean-up strategy developed in this work was able 

to classify pixels as affected / not affected by artifact distortions using a 

machine learning technique (trained regularised SVM) based on the statistical 

features previously identified. A surface fitting algorithm was then used on the 

group of pixels affected by artifacts and then subtracted to the original image. 

The results show an increase in the textural content, in particular, a drop of the 

entropy by 17.4% and an increase in the energy and the BVD of the image by 

23.8% and 11.2% respectively. This improvement has a direct impact on 

image processing techniques, such as blood vessels segmentation, with an 

increase of 11% of the blood vessel detected on cleaned-up images, with 

respect to the original ones. This is the very first example in the literature of a 

retinal image quality retriever which is agnostic to the features to be retrieved, 

i.e. not focused on improving a specific image processing technique (therefore 

the typology of diagnostic assessment). In other words, rather than eliminating 

the “non-feature” elements of the images on the basis of an assumption of the 

feature characteristic properties, it positively identified the artifacts, improving 

the overall textural characteristics of the image, hence retrieving, as much as 

possible, the overall clinical information content of the image.   

The suppression of the distortion by simple image subtraction can be 

improved in the future. In fact, this was one of the simplest approaches, which 

was derived by the artifact simulator. However, while the dataset of training 

images grows, more information on the specific identity of distortions can be 

stored in the classifier. This ideally can lead to the definition of a differentiated 

artifact suppression strategy based on the kind of artifact, for instance, or on 

its severity.   

7.5 REVIEW OF THE AIMS OF THE STUDY 

The challenge that, in the first place, triggered this PhD project was the 

idea of developing a pixel classification model able to identify the pixels 
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affected by quality distortion without any knowledge of the distortion per se, 

but only knowing how usually a clinically-assessable retinal image looks like. 

In this way, artifact removal strategies could be applied only where the 

distortion acts, leaving the clinical information as intact as possible. This was 

in the context of helping emerging mHealth retinal imaging solutions to 

increase the rate of clinical quality images acquired in the field, and more 

generally to improve the image collection throughput and the overall 

effectiveness of population screening programmes.  

To achieve this objective, an extensive research around the definition of 

quality and, in particular, around the identification of those elements that make 

a retinal image assessable was done. Thanks to CORD and to the artifact 

model produced within this research work, a big step forward was possible with 

respect to what has so far been identified in the field. In fact, while texture and 

contrast are still crucial in image processing (image segmentation and filtering 

mostly rely on these parameters), these not always are a sign of high quality 

in fundus images. The NCA analysis on the statistical features performed on 

the images affected by artifact and the CSQ counterparts highlighted a more 

complex correlation between texture, histogram characteristic of the pixels and 

Haralick features (energy, entropy, etc.). This was explored throughout many 

colour spaces, so as to explore how different organisation of the intensity level 

of the pixels impacted in quality assessment. In this work, such research was 

primarily focused on identifying a way to assess quality objectively, based on 

classic characteristics of CSQ images.  

The second objective was to establish the algorithmic criteria to be used in 

the artifact removal strategy. With respect to what is available in the field in 

terms of noise filtering, which usually exploit the a priori knowledge of the noise 

to work, here no artifact model was available. The development of the artifact 

simulator and the verification that the images obtained are comparable, in 

terms of statistical features, to the images affected by artifacts acquired during 

classic fundoscopy was used to identify the clean-up steps. The improvement 

of the image segmentation capability on the cleaned-up images are the proof 

that the overall textural content was improved. However, due to time limits, no 
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clinical test was performed at this stage. To better validate the clean-up 

strategy a quality evaluation performance should be tested by clinicians, for 

instance by manually segmenting the images and/or extracting actual 

diagnostic information, be it by trained clinicians or validated diagnostic 

software. 

Thanks to these steps the main aim of this research work was tackled and 

partially achieved. In fact, while the pixel classification model has already an 

accuracy close to 90%, with the potential of growing as CORD or similar data 

sources grow, more work needs to be done on the artifact model. So far, fitting 

the distortion identified in the image to a biharmonic surface model has 

produced promising results. An example of artifact clean-up applied on an 

image obtained via smartphone is shown in Figure 7.2, where a low 

computational blood vessel segmentation is performed on both images without 

modifying the algorithmic parameters. Although premature, given the low field 

of view and low resolution of such images, this example gives an idea of what 

this clean-up strategy can do at present, namely improve feature 

segmentation, and what still need to be done, namely improving a more 

subjective visual appearance, that does not render justice to the improvement 

in information retrieval. 
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Figure 7.2 Comparison between a retinal image acquired using a smartphone clip on a low-
resolution camera of a commercial smartphone (left column) and the same image after 
artifact mitigation (right column). The same blood vessel segmentation algorithm was used 
without modifying the segmentation parameters. 

7.6 BENEFITS FOR THE CLINICAL WORKLOAD 

Current reports on the percentage of images not usable for the final 

diagnosis in screening programmes is on the order of 20% (Yu et al., 2012b, 

Teng,Lefley and Claremont, 2002, Liesenfeld et al., 2000, S. Philip,Cowie and 

Olson, 2005, Scanlon et al., 2003), or higher when the screening is in the field, 

like what is now happening in low-income countries in image acquisition via 

mHealth technology by minimally-trained operators.  
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For this reason, increasing the rate of images with adequate quality for 

automatic assessment can massively improve any clinical activity involving the 

collection of a large number of images. The advantage is not only economic 

(more usable images per hour of acquisition means lower costs for the health 

system), but also the effectiveness of screenings and their social perception 

and acceptance improve. Less time of acquisition means less stress for the 

patient. Less unusable images mean also less chances to be summoned again 

for more acquisitions. These aspects can all potentially impact on the general 

perception of the health service activity, and are very important when 

considering the effectiveness of a screening programme. In many settings, 

such as in low-income countries, where the welfare system has just started to 

reach those portions of the population previously isolated, it is extremely 

important to build trust and show the beneficial aspects of screening.  

mHealth, and telemedicine in general, is aiming to bridge some of these 

gaps, shortening the distance between the patients and the health system not 

only in the low-income settings. Smartphones and tablets have already been 

successfully employed for fundus images collection in rural areas (Bastawrous 

et al., 2016, Bastawrous,Giardini and Jordan, 2014) and in clinical practice 

(Livingstone et al., 2019). We will assist in the near future to a partial transition 

of the clinical assessment, from the clinical premises to the patient’s home. 

wide cellular network coverage and high resolution camera mobile devices are 

already a reality. In this perspective, the quality of the images, especially if not 

acquired by an expert, will have a big impact on the overall success of such 

transition. Clean-up strategies and more reliable quality evaluation algorithm 

will be therefore crucial.  

7.7 RECOMMENDATIONS FOR FUTURE WORK 

As previously mentioned, many implementations to the main outputs of this 

work are possible. In this study, the selection of the statistical descriptors of 

quality was limited to those commonly used to assess segmentation algorithm 

performance and general quality in digital imaging. However, many other 

textural descriptors have been developed in the field, in particular features 
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related to illumination and contrast (Pires Dias,Oliveira and da Silva Cruz, 

2014, Remeseiro,Mendonca and Campilho, 2017, Yu et al., 2012b). Therefore, 

pixel classification models based on other statistical descriptors should be 

considered for future implementations. Ideally, a catalogue of different textural 

descriptors should be optimally established for each specific diagnostic use 

(vessel segmentation, dark lesion detection, etc.). 

The publication of CORD as open access database enables its usage as 

a versatile tool for the research community, particularly for projects involving 

the development of medical image processing, teaching aid and ophthalmic 

devices. The number of participants recruited for the study was kept at the 

minimum, in line with some of the most used publicly available database 

(DRIVE, REVIEW, HRF). This decision is the result of time and resource 

management considerations, given the volume of data to acquire per each eye 

and the use of multiple ophthalmic devices during clinic hours of a running eye 

clinic. This first version of the database, however, represents only the first 

stage. The whole structure of the dataset is modular as it is its labelling system, 

which can guarantee unique identification up to two million eyes. The 

implementation of CORD can be done by any research groups with access to 

similar resources, without limiting the collection to a specific research purpose 

or geographical area. This is possible thanks to detailed metadata included in 

the database, providing the data acquisition information (devices used, set up, 

ambient luminance, etc.). The whole structure of the dataset is modular as it is 

its labelling system, which can guarantee unique identification up to two million 

eyes. Accordingly, the future steps will involve firstly the publication of the work 

in a suitable journal. Even if this database is already openly accessible and 

downloadable online, this will give more visibility to CORD amongst the 

research community, advocating the usage of its data content for image 

processing research and more, such as in the recent EMBC conference 

(Coghill et al., 2019). Secondly, the enlargement of the dataset will be pursued, 

potentially in collaboration with other research groups, given that the full 

description of the data collection process, the labelling system and the data 

structure are openly available. 
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The parametric model of retinal artifacts was developed to generate 

controlled distortions on CSQ retinal images. The model can also be used to 

simulate the effect of scattering, and similar phenomena, caused by 

pathological conditions (e.g. cataract or corneal opacification) on the final 

image. The parameters of the model can be modified (absorption, PSF, etc.) 

or implemented with more complex steps, to be used to study the interaction 

between the light and the eye, for the production of ad hoc distortions for image 

filtering technique development and for the optimization of image sensors, 

devices or acquisition technique able to robustly perform in wide range of 

different conditions. Moreover, the indirect use of this model can be potentially 

use to extract clinical parameters from pathological images. In fact, starting 

from an image affected by distortion, for instance caused by cataract, it would 

be possible to objectively quantify the parameters that have determined the 

blurring, effectively assessing the progress and/or the typology of cataract. In 

other words, theoretically this model can be used as a diagnostic tool.  

Finally, the strategy developed in this work to mitigate the effect of artifacts 

and quality distortions on retinal images has shown promising initial results. 

However, though no formal analysis of the learning curve of the machine 

learning classifier has been performed, the dataset is small by any reasonable 

machine learning practice, and we have therefore good reason to believe that 

by adding more training data, and/or selecting a more performant machine 

learning algorithm than a simple SVM, is likely to lead to higher accuracy in 

pixel classification. Moreover, different surface fitting models can be used to 

reconstruct the distortion contribution, for instance circular symmetrical 

models. Given the geometrical characteristics of the optics of the imaging 

device and the transparent structures of the eye (close to spherical or elliptical 

surface), it is likely that the spline model used in this thesis, effectively a 

convenience choice, may be better replaced by assuming a spatial distribution 

described as a combination of modes, such as the more traditional Bessel, 

Laguerre-Gauss, Hermite-Gauss function sets, or specifically optimised 

eigenfuctions, such as e.g. traditionally done in face analysis (Sirovich and 

Kirby, 1987). 
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APPENDIX I – Participant consent form 

 

 

Consent Form for: 

Name of department:  Department of Biomedical Engineering 
Title of the study:  Comprehensive Ophthalmic Research Database (CORD) 

 

 I confirm that I have read and understood the information sheet for the above project and 

the researcher has answered any queries to my satisfaction.  

 I understand that my participation is voluntary and that I am free to withdraw from the 

project at any time before data collection has begun (not possible beyond this point due 

to full anonymization of data), without having to give a reason and without any 

consequences.  If I exercise my right to withdraw and I don’t want my data to be used, 

any data which have been collected from me will be destroyed. 

 I understand that anonymised data (i.e. data which do not identify me personally) cannot 

be withdrawn once they have been included in the study. 

 I understand that anonymised data will be made publically available to the research 

community. 

 I understand that any information recorded in the investigation will remain confidential 

and no information that identifies me will be made publicly available.  

 I consent to being a participant in the project. 

 I consent to video of my eye(s), that will not show my face, being recorded as part of the 

research project. 

 I consent to my name, surname and signature being retained and stored within the 

Department of Biomedical Engineering as evidence of consent being provided for 

participation in this study. 
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(PRINT NAME)  

Signature of Participant: Date: 

 

 

 

 

 

 

 

APPENDIX II – Mathematical model of retinal artifacts: Matlab scripts 
 

 

% ARTIFACTS SIMULATOR FOR RETINAL IMAGES 
% 
% This file contains the algorithm to generate retinal images       

% affected by common artifacts, starting from clinical quality      

% retinal images.  

% 
% This algorithm uses the model developed in the work Thesis of     

% Matteo Menolotto (2020) to simulate the effects caused by the     

% interaction between the light produced by the illumination of the 

% ophthalmic instrumentation and the tissues of the eye (cornea,    

% lens and retina).  
%  
% This parametric model describes each interaction with the tissue  

% of the eye in terms of transmission (T), absorption (A),          

% scattering (S) and specular reflection (R). Most of the parameters 

% can be tuned to simulate common artifact caused by pathological   

% conditions (e.g. cataract).  
% On top of this model, a wide variety of common artifact are also   

% made following the respective legend. 

  
clc 
close all 
clear all 

  
%% Eye model parameters 
% Absorbance of the 3 tissues: cornea, lens, retina (wavelength dep) 
thickness_cornea = 0.580; % mm from Atchinson and Smith pag. 12 
thickness_lens = 3.6;     % mm relaxed state from Atchinson and 

Smith  

% Total loss 
Loss_Co = [0.07 0.09 0.13]; 
Loss_Le = [0.04 0.05 0.07]; 

  
% Fraction of reflected light (only at the cornea) 
n_air = 1.0003;  % refractive index of air 
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n_co = 1.376;    % mean refractive index of the cornea's layers 
n_aqh = 1.336;   % refractive index of aqueous humor 
n_le = 1.4;      % refractive index of lens 
air_co = ((n_air - n_co)/(n_air + n_co))^2; % Specular reflection of 

the source of light 
co_air = ((n_co - n_air)/(n_co + n_air))^2; 
co_aqh = ((n_aqh - n_co)/(n_aqh + n_co))^2; % Specular reflection of 

the source of light 
R_co = [air_co air_co air_co];      % [R G B] 
Rf_aqh = [co_aqh co_aqh co_aqh];    % [R G B] 

  
% Fraction of absorbed light  
A_co = Loss_Co-R_co;                % [R G B] 
A_le = [0.50 0.55 0.60].*Loss_Le;   % [R G B] 
% A_re=imcomp(I) IS WHERE THE INFORMATION IS STORED!!! (which is the 

clinical quality image) 

  
% Fraction of scattered light (wavelength dep) respect to the total 

loss 
S_co = [0.2 0.22 0.24].*Loss_Co;    % [R G B] 

  
S_le = [0.5 0.54 0.58].*Loss_Le;    % [R G B] if cataract = [0.2 

0.26 0.32] 
S_le_f = 0.7*S_le; 
S_le_b = 0.3*S_le; 

  
S_re_b = [0.30 0.32 0.38]; 

 
% Insert the directory of the folders that contains the clinical    

% quality retinal images to be used. 
% In this example we are using the CORD Database:  
%   * Spatial Resolution -> 4288 x 2848  
%   * FOV -> 50 deg 
FundusCameraImages_dir = '…';   % Insert here the path for the 

clinical quality retinal images. 

  
Retinal_Images = dir(fullfile(FundusCameraImages_dir, '*.jpg')); 

  
for NoRetIm = 1:numel(Retinal_Images)  % for each retinal images 

contained in the selected folder 

     
    I_retina = 

imread([FundusCameraImages_dir,Retinal_Images(NoRetIm).name]); 

     
    % resize the images to be more manageble keeping its original 

ration. 
    small_side = 1000;  % increase or decrese at your own discretion 
    side_ratio = min(size(I_retina,1), 

size(I_retina,2))/(max(size(I_retina,1), size(I_retina,2))); 
    I = imresize(I_retina,[small_side 

round(small_side/side_ratio)]); 

     
%% --------------------------Pre-processing------------------------- 
    % create Mask for the ROI of the Retinal image 
    Mask = ones(size(I,1),size(I,2)); 
    for k = 1:size(I,2) 
        for j = 1:size(I,1) 



226 
 

            if I(j,k,1) <= 40 
                I(j,k,:) = 0; 
                Mask(j,k)=0; 
            end 
        end 
    end 
 

    stats = regionprops(Mask,'Extrema','Centroid'); 
    Radius = round((stats.Extrema(3,1)-stats.Extrema(8,1))/2)-2; 
    ctr_X = round(stats.Centroid(1,1)); 
    ctr_Y = round(stats.Centroid(1,2)); 

     
    % if you are using CORD uncomment this line 
    I = imcrop(I,[ctr_X-Radius ctr_Y-

round(round(size(I,1)*0.87266)/2) Radius*2 

round(size(I,1)*0.87266)]); 
    % if you are using another Dataset uncomment this line 
    % I = imcrop(I,[ctr_X-Radius ctr_Y-Radius Radius*2 Radius*2]); 

     
    ctr_X = round(size(I,2)/2); 
    ctr_Y = round(size(I,1)/2); 
    NN = size(I,1); 
    MM = size(I,2); 
    I = im2double(I); 
    lambda = [460 550 620];  % we consider the contrinbution of 

these three wavelengths 
    A_re = imcomplement(I);  % IS WHERE THE INFORMATION IS STORED!!! 

  

  
%% --------------------------Source of light------------------------ 

  
    for uuu=1:10 % 5 artifact images per each good clincal images 

         
        %% External artifact parameters: 
        % - UNEVEN ILLUMINATION 
        Pos_X = randi([-400 400]); % random position 
        Pos_Y = randi([-400 400]); 
        Var = randi([48000 55000]); 
        Covar = randi([550000 580000]); 
        % - SPECULAR REFLECTION 
        % - MISALIGNED TARGET RING  
        misalignment = randi([0 4]); % 5 different misalignments [0 

- 4]. 0 means no misalignment 
        % - INVOLUNTARY MOVEMENT 
        % - EYELASHES AND BLINKING 
        Eyelash_severity = randi([0 1]); % 6 level of severity from 

[0 - 5]. Severity = 0 means no eyelashes 

         
        Wavelen = 380:1:749;   % visible range [380nm - 750nm] 

         

         
        clear XenonLight LEDLight 
        % Simulation of the emitting spectrum of LED light (from 

samsung smartphone camera LED) 
        % Estimation of the emitted light intensity for the three 

wavelengths 
        LED_R = 0.34 * gaussmf(Wavelen,[55 lambda(3)]); 
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        LED_G = 0.46 * gaussmf(Wavelen,[42 lambda(2)]); 
        LED_B = 0.93 * gaussmf(Wavelen,[8 lambda(1)]); 
        LED = LED_R + LED_G + LED_B; 

  
% Simulation of the source of Xenon bulb light 
Xenon_base = .95 * gaussmf(Wavelen,[1000 500]); 
Xenon_Peack1 = 0.01 * gaussmf(Wavelen,[3 475]); 
% Xenon_Peack2 = 0.3 * gaussmf(Wavelen,[4 450]); 
Xenon = Xenon_base + Xenon_Peack1; 

  
% Simulation of the characteristic radiation pattern produced by 

these light sources 
% Matix of 584x565 Xenon bulb 
XenonLight(:,:,1) = Xenon(lambda(3)-380) * ones(NN,MM); 
XenonLight(:,:,2) = Xenon(lambda(2)-380) * ones(NN,MM); 
XenonLight(:,:,3) = Xenon(lambda(1)-380) * ones(NN,MM); 
% Matix of 584x565 LED 
LEDLight(:,:,1) = LED(lambda(3)-380) * ones(NN,MM); 
LEDLight(:,:,2) = LED(lambda(2)-380) * ones(NN,MM); 
LEDLight(:,:,3) = LED(lambda(1)-380) * ones(NN,MM); 

  
mu = [round(size(LEDLight,2)/2) round(size(LEDLight,1)/2)]; 
Var_F = 80000; 
Covar_F = 20000000; 
Sigma = [Covar_F Var_F; Var_F Covar_F]; 
x1 = 1:1:size(LEDLight,2); 
x2 = 1:1:size(LEDLight,1); 
[X1,X2] = meshgrid(x1,x2); 
F = mvnpdf([X1(:) X2(:)],mu,Sigma); 
F = reshape(F,length(x2),length(x1))*125700000; 

  
MaxF = max(max(F)); 

  
for f2=1:size(XenonLight,2) 
    for f1=1:size(XenonLight,1) 
        XenonLight(f1,f2,1) = XenonLight(f1,f2,1) - MaxF + F(f1,f2); 
        XenonLight(f1,f2,2) = XenonLight(f1,f2,2) - MaxF + F(f1,f2); 
        XenonLight(f1,f2,3) = XenonLight(f1,f2,3) - MaxF + F(f1,f2); 
    end 
end 

  
for f2=1:size(LEDLight,2) 
    for f1=1:size(LEDLight,1) 
        LEDLight(f1,f2,1) = LEDLight(f1,f2,1) - MaxF + F(f1,f2); 
        LEDLight(f1,f2,2) = LEDLight(f1,f2,2) - MaxF + F(f1,f2); 
        LEDLight(f1,f2,3) = LEDLight(f1,f2,3) - MaxF + F(f1,f2); 
    end 
end 

  
% %% --------------------------------ARTIFACTS---------------------- 
%  
% % ---------------------------------------------------------------- 
% % 1 ---------------------Uneven illumination---------------------- 
% % ---------------------------------------------------------------- 
Seed = [ctr_X+Pos_X ctr_Y+Pos_Y]; 
mu = [Seed(1) Seed(2)]; 
Sigma = [Covar Var; Var Covar]; 
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x_g = 1:1:size(I,2); 
y_g = 1:1:size(I,1); 
[X1,Y1] = meshgrid(x_g,y_g); 

  
F = mvnpdf([X1(:) Y1(:)],mu,Sigma); 
F = reshape(F,length(y_g),length(x_g)); 

  
F = F.*(1/max(max(F))); 
MaxF = max(max(F)); 

  
F = F - (randi([0 10])*0.1); 

 
% Un-comment this section to introduce an uneven illumination effect 

on the 
% retinal image 
XenonLight_hsi = rgb2hsv(XenonLight); 
LEDLight_hsi = rgb2hsv(LEDLight); 

 
% Comment this to don't intoduce UNDER-illumination 
for j=1:size(XenonLight,1) 
    for i=1:size(XenonLight,2) 
        %XenonLight(j,i,1) = XenonLight(j,i,1)-F(j,i)/2;%+(MaxF-

F(j,i)); 
        %XenonLight(j,i,2) = XenonLight(j,i,2)-(MaxF-F(j,i)); 
        XenonLight_hsi(j,i,3) = XenonLight_hsi(j,i,3)+(F(j,i)-MaxF); 
        %LEDLight(j,i,1) = LEDLight(j,i,1)-F(j,i)/2;%+(MaxF-F(j,i)); 
        %LEDLight(j,i,2) = LEDLight(j,i,2)-(MaxF-F(j,i)); 
        LEDLight_hsi(j,i,3) = LEDLight_hsi(j,i,3)+(F(j,i)-MaxF); 
    end 
end 

 
XenonLight = hsv2rgb(XenonLight_hsi); 
LEDLight = hsv2rgb(LEDLight_hsi); 

 
% % ---------------------------------------------------------------- 
% % 2 ---------------------Camera-Target misalignment--------------- 
% % ---------------------------------------------------------------- 

  
% creation of a circular target (to use only with fundus cameras!) 

  
displacement = round(Radius/5); 

  
% misalignment=0; 
% for kjk=1:5     
 switch misalignment 
     case 0 
         misX=0; 
         misY=0; 
     case 1 
         misX=randi([-round(displacement/3) round(displacement/3)]); 
         misY=randi([-round(displacement/3) round(displacement/3)]); 
     case 2 
         misX=randi([-round(displacement/2) round(displacement/2)]); 
         misY=randi([-round(displacement/2) round(displacement/2)]); 
     case 3 
         misX=randi([-round(displacement) round(displacement)]); 
         misY=randi([-round(displacement) round(displacement)]); 
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     case 4 
         misX=randi([-round(displacement*1.5) 

round(displacement*1.5)]); 
         misY=randi([-round(displacement*1.5) 

round(displacement*1.5)]); 
 end 

          
Int_r = Radius + round(Radius/15); 
Ext_r = Int_r + round(Radius/4); 

  
Tar_X = ctr_Y + misX; 
Tar_Y = ctr_X + misY; 

  
Target_Light = zeros(size(I,1),size(I,2),3); 
for i=1:size(Target_Light,2) 
    for j=1:size(Target_Light,1) 
        if sqrt((j-Tar_X)^2 + (i-Tar_Y)^2) <= Ext_r && ... 
                sqrt((j-Tar_X)^2 + (i-Tar_Y)^2) >= Int_r && ... 
                (j <= Tar_X-round(Radius/7) || 

j>=Tar_X+round(Radius/7)) && ... 
                (i <= Tar_Y-round(Radius/7) || 

i>=Tar_Y+round(Radius/7)) 
            Target_Light(j,i,1) = 240/255;    
            Target_Light(j,i,2) = 200/255;  
            Target_Light(j,i,3) = 100/255; 
        end 
    end 
end 

  
% dim the intensity t=with a gaussian profile 
Target_Light_hsi = rgb2hsv(Target_Light); 
Seed = [ctr_Y + misY ctr_X + misX]; 
mu = [Seed(1) Seed(2)]; 
Var = 50000; 
Covar = 200000; 
Sigma = [Covar Var; Var Covar]; 
x_g = 1:1:size(I,2); 
y_g = 1:1:size(I,1); 
[X1,Y1] = meshgrid(x_g,y_g); 

  
F_mis = mvnpdf([X1(:) Y1(:)],mu,Sigma); 
F_mis = reshape(F_mis,length(y_g),length(x_g)); %125700000; 
F_mis = F_mis.*(1/max(max(F_mis))); 

  
Target_Light_hsi(:,:,3) = (1-F_mis);%.*255; 

  
Target_Light = hsv2rgb(Target_Light_hsi); 

  
for i=1:size(Target_Light,2) 
    for j=1:size(Target_Light,1) 
        if Target_Light_hsi(j,i,1)>0  
            LEDLight(j,i,1) = Target_Light(j,i,1);    
            LEDLight(j,i,2) = Target_Light(j,i,2); 
            LEDLight(j,i,3) = Target_Light(j,i,3); 

             
            XenonLight(j,i,1) = Target_Light(j,i,1); 
            XenonLight(j,i,2) = Target_Light(j,i,2); 
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            XenonLight(j,i,3) = Target_Light(j,i,3); 
        end 
    end 
end 

  
% blur the edges to simulate scattering 
LEDLight=imgaussfilt(LEDLight,4); 
XenonLight=imgaussfilt(XenonLight,4); 

  
% ------------------------------------------------------------------ 
% 3 ----------Eyelash and eye blinking (shadows in the image)------- 
% ------------------------------------------------------------------ 

  
% 5 degrees of severity 

  
Sigma_eyel = 40; 

  
switch Eyelash_severity 
    case 1 
        Eyelash = imread('Eyelash\eyelash_1.png'); 
        Eyelash = imresize(Eyelash,[NN MM]); 
        Eyelash = im2double(Eyelash); 
        Eyelash = rgb2gray(Eyelash) + 0.3;         
        for i=1:size(Eyelash,2) 
            for j=1:size(Eyelash,1) 
                if Eyelash(j,i) > 1 
                    Eyelash(j,i) = 1; 
                end 
            end 
        end 
        w = 45;  % window 
        Eyelash = integralImage(Eyelash);          % Compute the 

integral image. 
        avgH = integralKernel([1 1 w w], 1/(w^2)); % Apply a w-by-w 

average filter. 
        Eyelash = integralFilter(Eyelash, avgH); 
        Eyelash = imresize(Eyelash,[size(I,1) size(I,2)]);         
        Eyelash = imgaussfilt(Eyelash, Sigma_eyel); 

         
        for i=1:size(XenonLight,2) 
            for j=1:size(XenonLight,1) 
                XenonLight(j,i,1) = XenonLight(j,i,1)-(1-

Eyelash(j,i)); 
                XenonLight(j,i,2) = XenonLight(j,i,2)-(1-

Eyelash(j,i)); 
                XenonLight(j,i,3) = XenonLight(j,i,3)-(1-

Eyelash(j,i)); 
                LEDLight(j,i,1) = LEDLight(j,i,1)-(1-Eyelash(j,i)); 
                LEDLight(j,i,2) = LEDLight(j,i,2)-(1-Eyelash(j,i)); 
                LEDLight(j,i,3) = LEDLight(j,i,3)-(1-Eyelash(j,i)); 
            end 
        end        
    case 2 
        Eyelash = imread('Eyelash\eyelash_1.png');    
        Eyelash = imresize(Eyelash,[NN MM]); 
        Eyelash = im2double(Eyelash); 
        Eyelash = rgb2gray(Eyelash);         
        for i=1:size(Eyelash,2) 
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            for j=1:size(Eyelash,1) 
                if Eyelash(j,i) > 1 
                    Eyelash(j,i) = 1; 
                end 
            end 
        end  
        w = 38;  % window 
        Eyelash = integralImage(Eyelash);         % Compute the 

integral image. 
        avgH = integralKernel([1 1 w w], 1/(w^2)); % Apply a w-by-w 

average filter. 
        Eyelash = integralFilter(Eyelash, avgH); 
        Eyelash=imresize(Eyelash,[size(I,1) size(I,2)]); 
        Eyelash = imgaussfilt(Eyelash, Sigma_eyel); 

         
        for i=1:size(Eyelash,2) 
            for j=1:size(Eyelash,1) 
                XenonLight(j,i,1) = XenonLight(j,i,1)-(1-

Eyelash(j,i)); 
                XenonLight(j,i,2) = XenonLight(j,i,2)-(1-

Eyelash(j,i)); 
                XenonLight(j,i,3) = XenonLight(j,i,3)-(1-

Eyelash(j,i)); 
                LEDLight(j,i,1) = LEDLight(j,i,1)-(1-Eyelash(j,i)); 
                LEDLight(j,i,2) = LEDLight(j,i,2)-(1-Eyelash(j,i)); 
                LEDLight(j,i,3) = LEDLight(j,i,3)-(1-Eyelash(j,i)); 
            end 
        end     
    case 3 
        Eyelash = imread('Eyelash\eyelash_2.png');      
        Eyelash = imresize(Eyelash,[NN MM]); 
        Eyelash = im2double(Eyelash); 
        Eyelash = rgb2gray(Eyelash) + 0.3; 
        for i=1:size(Eyelash,2) 
            for j=1:size(Eyelash,1) 
                if Eyelash(j,i) > 1 
                    Eyelash(j,i) = 1; 
                end 
            end 
        end  
        w = 45;  % window 
        Eyelash = integralImage(Eyelash);         % Compute the 

integral image. 
        avgH = integralKernel([1 1 w w], 1/(w^2)); % Apply a w-by-w 

average filter. 
        Eyelash = integralFilter(Eyelash, avgH); 
        Eyelash=imresize(Eyelash,[size(I,1) size(I,2)]); 
        Eyelash = imgaussfilt(Eyelash, Sigma_eyel); 

         
        for i=1:size(Eyelash,2) 
            for j=1:size(Eyelash,1) 
                XenonLight(j,i,1) = XenonLight(j,i,1)-(1-

Eyelash(j,i)); 
                XenonLight(j,i,2) = XenonLight(j,i,2)-(1-

Eyelash(j,i)); 
                XenonLight(j,i,3) = XenonLight(j,i,3)-(1-

Eyelash(j,i)); 
                LEDLight(j,i,1) = LEDLight(j,i,1)-(1-Eyelash(j,i)); 
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                LEDLight(j,i,2) = LEDLight(j,i,2)-(1-Eyelash(j,i)); 
                LEDLight(j,i,3) = LEDLight(j,i,3)-(1-Eyelash(j,i)); 
            end 
        end      
    case 4 
        Eyelash = imread('Eyelash\eyelash_2.png');   
        Eyelash = imresize(Eyelash,[NN MM]); 
        Eyelash = im2double(Eyelash); 
        Eyelash = rgb2gray(Eyelash);         
        for i=1:size(Eyelash,2) 
            for j=1:size(Eyelash,1) 
                if Eyelash(j,i) > 1 
                    Eyelash(j,i) = 1; 
                end 
            end 
        end  
        w = 38;  % window 
        Eyelash = integralImage(Eyelash);         % Compute the 

integral image. 
        avgH = integralKernel([1 1 w w], 1/(w^2)); % Apply a w-by-w 

average filter. 
        Eyelash = integralFilter(Eyelash, avgH); 
        Eyelash = imresize(Eyelash,[size(I,1) size(I,2)]);         
        Eyelash = imgaussfilt(Eyelash, Sigma_eyel); 

         
        for i=1:size(Eyelash,2) 
            for j=1:size(Eyelash,1) 
                XenonLight(j,i,1) = XenonLight(j,i,1)-(1-

Eyelash(j,i)); 
                XenonLight(j,i,2) = XenonLight(j,i,2)-(1-

Eyelash(j,i)); 
                XenonLight(j,i,3) = XenonLight(j,i,3)-(1-

Eyelash(j,i)); 
                LEDLight(j,i,1) = LEDLight(j,i,1)-(1-Eyelash(j,i)); 
                LEDLight(j,i,2) = LEDLight(j,i,2)-(1-Eyelash(j,i)); 
                LEDLight(j,i,3) = LEDLight(j,i,3)-(1-Eyelash(j,i)); 
            end 
        end     
    case 5 
        Eyelash = imread('Eyelash\eyelash_3.png'); 
        Eyelash = imresize(Eyelash,[NN MM]); 
        Eyelash = im2double(Eyelash); 
        Eyelash = rgb2gray(Eyelash);         
        for i=1:size(Eyelash,2) 
            for j=1:size(Eyelash,1) 
                if Eyelash(j,i) > 1 
                    Eyelash(j,i) = 1; 
                end 
            end 
        end  
        w = 45;  % window 
        Eyelash = integralImage(Eyelash);         % Compute the 

integral image. 
        avgH = integralKernel([1 1 w w], 1/(w^2)); % Apply a w-by-w 

average filter. 
        Eyelash = integralFilter(Eyelash, avgH); 
        Eyelash=imresize(Eyelash,[size(I,1) size(I,2)]); 
        Eyelash = imgaussfilt(Eyelash, Sigma_eyel); 
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        for i=1:size(Eyelash,2) 
            for j=1:size(Eyelash,1) 
                XenonLight(j,i,1) = XenonLight(j,i,1)-(1-

Eyelash(j,i)); 
                XenonLight(j,i,2) = XenonLight(j,i,2)-(1-

Eyelash(j,i)); 
                XenonLight(j,i,3) = XenonLight(j,i,3)-(1-

Eyelash(j,i)); 
                LEDLight(j,i,1) = LEDLight(j,i,1)-(1-Eyelash(j,i)); 
                LEDLight(j,i,2) = LEDLight(j,i,2)-(1-Eyelash(j,i)); 
                LEDLight(j,i,3) = LEDLight(j,i,3)-(1-Eyelash(j,i)); 
            end 
        end      
end 
  

 
%% ----------------------------------------------------------------- 
%  ---------------------ARTIFACTS PARAMETRIC MODEL------------------ 
%  ----------------------------------------------------------------- 

  
% ------------------------------------------------------------------ 
% ------------------------------ CORNEA ---------------------------- 
% ------------------------------------------------------------------ 

  
% --------Fracion of specular REFLECTION generated at the cornea---- 
% I0 = LEDLight; 
I0 = XenonLight; 

 
I_R_co(:,:,1) = I0(:,:,1) * R_co(1); 
I_R_co(:,:,2) = I0(:,:,2) * R_co(2); 
I_R_co(:,:,3) = I0(:,:,3) * R_co(3); 

  
% --------------------Light ABSORPTION at the CORNEA---------------- 
% choose the source of light between Xenon bulb and LED 
I_A_co(:,:,1) = (I0(:,:,1)-I_R_co(:,:,1)) * A_co(1); 
I_A_co(:,:,2) = (I0(:,:,2)-I_R_co(:,:,2)) * A_co(2); 
I_A_co(:,:,3) = (I0(:,:,3)-I_R_co(:,:,3)) * A_co(3); 

 
% -----------------TRANSMITTED light through the CORNEA------------- 
% choose the source of light between Xenon bulb and LED 

  
I_T_co = I0 - I_R_co - I_A_co; 
% Cleaning of the region outside the ROI 
for i=1:size(I,2) 
    for j=1:size(I,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) >= Radius 
            I_T_co(j,i,1) = 0; 
            I_T_co(j,i,2) = 0; 
            I_T_co(j,i,3) = 0; 
        end 
    end 
end 
% ------------------------------------------------------------------ 
% -------------------------------- LENS ---------------------------- 
% ------------------------------------------------------------------ 
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% --------------------Light absorption at the LENS------------------ 
I_A_le(:,:,1) = I_T_co(:,:,1) * A_le(1); 
I_A_le(:,:,2) = I_T_co(:,:,2) * A_le(2); 
I_A_le(:,:,3) = I_T_co(:,:,3) * A_le(3); 

 
% ----------------Fracion of scattered light at the LENS------------ 
I_S_le(:,:,1) = (I_T_co(:,:,1) - I_A_le(:,:,1)) * S_le(1); 
I_S_le(:,:,2) = (I_T_co(:,:,2) - I_A_le(:,:,2)) * S_le(2); 
I_S_le(:,:,3) = (I_T_co(:,:,3) - I_A_le(:,:,3)) * S_le(3); 

 
% ------------------Transmitted light through the LENS-------------- 
I_T_le = I_T_co - I_A_le - I_S_le; 
 

% Cleaning of the region outside the ROI 
for i=1:size(I,2) 
    for j=1:size(I,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) >= Radius 
            I_T_le(j,i,1) = 0; 
            I_T_le(j,i,2) = 0; 
            I_T_le(j,i,3) = 0; 
        end 
    end 
end 

  
% --------------- PSF function Lens to calculate I_Sf_le ----------- 
% From the 1999 CIE General Disability Glare Equation, which has a 

validity  
% that stretches from 0.1deg to almost 100deg. Derived from Stiles-

Holladay 
% equation 

  
p=0:0.5:1;   % p is the pigmentation factor (p=0 for very dark eyes, 

p=0.5 for brown eyes, and p=1.0 for blue–green-eyed Caucasians) 
A= [20 40 60];  % A the age in years 
phi=0.01:0.01:30; % phi is the glare angle in degrees 
clear PSF 
for age=1:numel(A) 
    for i=1:numel(phi) 
        PSF(age,i) = (10/(phi(i)^3)) + (((5/(phi(i)^2)) + 

0.1*(p(2)/phi(i)))*(1+((A(age)/62.5)^4))) + (0.0025*p(2)); 
    end 
end 

 
PSF = PSF + phi; 
L_le = 19; % the area affected by the point spread function 
age_range = 3; 

  
PSF_le_profile = [10^7 PSF(age_range,2) PSF(age_range,3) 

PSF(age_range,4) PSF(age_range,5) ... 
    PSF(age_range,6) PSF(age_range,7) PSF(age_range,8) 

PSF(age_range,9) PSF(age_range,10)]/(max(PSF(1,:))); 
PSF_le = ones(L_le,L_le); 
for i=1:19 
    for j=1:19 
        if sqrt((j-10)^2 + (i-10)^2) > 9 
            PSF_le(j,i) = 0; 
        else 
            if sqrt((j-10)^2 + (i-10)^2) == 0 % peak 
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                PSF_le(j,i) = 1; 
            else 
                PSF_le(j,i) = PSF_le_profile(round(sqrt((j-10)^2 + 

(i-10)^2)) + 1); 
            end 
        end 
    end 
end 

 
% Fracion of forward scattered light at the LENS produced by 

neighbours 
I_Sf_le(:,:,1) = I_S_le(:,:,1) * S_le_f(1); 
I_Sf_le(:,:,2) = I_S_le(:,:,2) * S_le_f(2); 
I_Sf_le(:,:,3) = I_S_le(:,:,3) * S_le_f(3); 
 

I_Sf_leI = imfilter(I_Sf_le,PSF_le);  %%%%%%%%% 

 
% ------------------------------------------------------------------ 
% -------------------------------- RETINA -------------------------- 
% ------------------------------------------------------------------ 

  
% --------------------Light absorption at the RETINA---------------- 
% ---------------------!!!WHERE THE MAGIC HAPPEN!!!----------------- 
I_A_re = zeros(size(I_T_le,1),size(I_T_le,2),3); 
for i=1:size(I_T_le,2) 
    for j=1:size(I_T_le,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) <= Radius 
           I_A_re(j,i,1) = (I_T_le(j,i,1) + I_Sf_leI(j,i,1)) * 

A_re(j,i,1); 
           I_A_re(j,i,2) = (I_T_le(j,i,2) + I_Sf_leI(j,i,2)) * 

A_re(j,i,2); 
           I_A_re(j,i,3) = (I_T_le(j,i,3) + I_Sf_leI(j,i,3)) * 

A_re(j,i,3); 
        end 
    end 
end 

 
% ----------------Fracion of scattered light from the RETINA ------- 
I_S_re(:,:,1) = (I_T_le(:,:,1) + I_Sf_leI(:,:,1) - I_A_re(:,:,1)); 
I_S_re(:,:,2) = (I_T_le(:,:,2) + I_Sf_leI(:,:,2) - I_A_re(:,:,2)); 
I_S_re(:,:,3) = (I_T_le(:,:,3) + I_Sf_leI(:,:,3) - I_A_re(:,:,3)); 
 

% Cleaning of the region outside the ROI 
for i=1:size(I,2) 
    for j=1:size(I,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) >= Radius 
            I_S_re(j,i,1) = 0; 
            I_S_re(j,i,2) = 0; 
            I_S_re(j,i,3) = 0; 
        end 
    end 
end 
 

% ------------------------ PSF function Retina --------------------- 
% From Marcos and Burns, scattering model 
s = 2.6:0.1:6.5;  % cone spacing [um] 
lambdaBis = lambda/1000; % wavelenght [um] 1000 
f = 16.7; % axial lenght [mm] 
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i=1;j=1; 
clear I_psf 
for l = 1:3 
    for x = -8:0.1:8 
        for y = -8:0.1:8 
            rho = 

(pi^2*(0.4*s(10)))/((f^2)*(lambdaBis(l)^2)*log(10));  % shape factor 

[mm^-2] 

             
            I_psf(i,j,l) = 10^(-rho*((x-0)^2+(y-0)^2)); 
            j=j+1; 
        end 
        i=i+1; 
        j=1; 
    end 
    i=1; 
end 
 

for l = 1:3 
    for i=1:numel(s) 
        rho(i,l) = 

(pi^2*(0.4*s(i)))/((f^2)*(lambdaBis(l)^2)*log(10)); 
    end 
end 

 
PSF_re = imcrop(I_psf, [50 50 60 60]); 

  
I_S_reb(:,:,1) = I_S_re(:,:,1) .* S_re_b(1); 
I_S_reb(:,:,2) = I_S_re(:,:,2) .* S_re_b(2); 
I_S_reb(:,:,3) = I_S_re(:,:,3) .* S_re_b(3); 

  
I_Sb_clt_re = imfilter(I_S_reb, PSF_re(:,:,1));  %%%%%%%% 

 
% ----- Fracion diffuse backward scattered light from the RETINA (B)  
k=1; 
B_temp = ones(3673339,3); 
for i=1:size(I_S_re,2) 
    for j=1:size(I_S_re,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) <= Radius - 5 
            B_temp(k,1)= I_S_re(j,i,1);%*(1-S_re_clt); 
            B_temp(k,2)= I_S_re(j,i,2);%*(1-S_re_clt); 
            B_temp(k,3)= I_S_re(j,i,3);%*(1-S_re_clt); 
            k=k+1; 
        end 
    end 
end 
B_mean(1) = mean(B_temp(:,1))* 0.6; 
B_mean(2) = mean(B_temp(:,2))* 0.6; 
B_mean(3) = mean(B_temp(:,3))* 0.6; 

  
B = zeros(size(I_S_re,1),size(I_S_re,2),3); 
for i=1:size(B,2) 
    for j=1:size(B,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) <= Radius 
            B(j,i,1)= B_mean(1); 
            B(j,i,2)= B_mean(2); 
            B(j,i,3)= B_mean(3); 
        end 
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    end 
end 

  
% ------------------------------------------------------------------ 
% ------------------------------ LENS I ---------------------------- 
% ------------------------------------------------------------------ 

  
% --------------------Light absorption at the LENS------------------ 
I_A_leI(:,:,1) = (I_S_re(:,:,1) + B(:,:,1)) * A_le(1);%I_Sb_clt_re 
I_A_leI(:,:,2) = (I_S_re(:,:,2) + B(:,:,2)) * A_le(2); 
I_A_leI(:,:,3) = (I_S_re(:,:,3) + B(:,:,3)) * A_le(3); 

 
% ----------------Fracion of scattered light at the LENS ---------- 
I_S_leI(:,:,1) = ((I_S_re(:,:,1) + B(:,:,1)) - I_A_leI(:,:,1)) * 

S_le(1); 
I_S_leI(:,:,2) = ((I_S_re(:,:,2) + B(:,:,2)) - I_A_leI(:,:,2)) * 

S_le(2); 
I_S_leI(:,:,3) = ((I_S_re(:,:,3) + B(:,:,3)) - I_A_leI(:,:,3)) * 

S_le(3); 

 
% Fracion of bacward scattered light at the LENS produced by 

neighbours 
I_Sf_leI(:,:,1) = I_S_leI(:,:,1)* S_le_f(1); 
I_Sf_leI(:,:,2) = I_S_leI(:,:,2)* S_le_f(2); 
I_Sf_leI(:,:,3) = I_S_leI(:,:,3)* S_le_f(3); 

  
I_Sf_leI = imfilter(I_Sf_leI,PSF_le);    %%%%% 

  
% -----------------Transmitted light through the LENS I------------- 
I_T_leI = I_Sb_clt_re + B - I_A_leI - I_S_leI; 
% Cleaning of the region outside the ROI 
for i=1:size(I,2) 
    for j=1:size(I,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) >= Radius 
            I_T_leI(j,i,1) = 0; 
            I_T_leI(j,i,2) = 0; 
            I_T_leI(j,i,3) = 0; 
        end 
    end 
end 

 
% ------------------------------------------------------------------ 
% ------------------------------ CORNEA I -------------------------- 
% ------------------------------------------------------------------ 

 
% --------Fracion of specular REFLECTION generated at the cornea---- 
I_R_coI(:,:,1) = (I_T_leI(:,:,1) + I_Sf_leI(:,:,1)) * R_co(1); 
I_R_coI(:,:,2) = (I_T_leI(:,:,2) + I_Sf_leI(:,:,2)) * R_co(2); 
I_R_coI(:,:,3) = (I_T_leI(:,:,3) + I_Sf_leI(:,:,3)) * R_co(3); 
% figure(27) 
% set(figure(27),'Position',[800 100 1865 2273]) 
% imshow(I_R_coI), title('I_R_coI') 

  
% -------------------Light absorption at the CORNEA I---------------

------ 
I_A_coI(:,:,1) = ((I_T_leI(:,:,1) + I_Sf_leI(:,:,1))-I_R_co(:,:,1)) 

* A_co(1); 
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I_A_coI(:,:,2) = ((I_T_leI(:,:,2) + I_Sf_leI(:,:,2))-I_R_co(:,:,2)) 

* A_co(2); 
I_A_coI(:,:,3) = ((I_T_leI(:,:,3) + I_Sf_leI(:,:,3))-I_R_co(:,:,3)) 

* A_co(3); 

 
% ------- AND FINALLY!...Transmitted light through the CORNEA I ---- 
I_T_coI = I_T_leI + I_Sf_leI - I_R_coI - I_A_coI; 
% Cleaning of the region outside the ROI 
for i=1:size(I,2) 
    for j=1:size(I,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) >= Radius 
            I_T_coI(j,i,1) = 0; 
            I_T_coI(j,i,2) = 0; 
            I_T_coI(j,i,3) = 0; 
        end 
    end 
end 

 
%% ---------------COLLECTION EFFICIENCY of the image sensor--------- 
eps1 = 0.94; % COLLECTION EFFICIENCY of the specular reflection at 

the CORNEA 
eps2 = 0.90; % COLLECTION EFFICIENCY of the direct transmitted light 

through the CORNEA 

  
FINAL_RETINAL_IMG = (I_R_co * eps1) + (I_T_coI * eps2); 

  
% Cleaning of the region outside the ROI 
for i=1:size(I,2) 
    for j=1:size(I,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) >= Radius 
            FINAL_RETINAL_IMG(j,i,1) = 0; 
            FINAL_RETINAL_IMG(j,i,2) = 0; 
            FINAL_RETINAL_IMG(j,i,3) = 0; 
        end 
    end 
end 

 
%% ---------------------ILLUMINATION RING SATURATION---------------- 

  
Segm_ran = rand(1); 
Target_Light = zeros(size(I,1),size(I,2),3); 
for i=1:size(Target_Light,2) 
    for j=1:size(Target_Light,1) 
        if sqrt((j-Tar_X)^2 + (i-Tar_Y)^2) <= Ext_r && ... 
                sqrt((j-Tar_X)^2 + (i-Tar_Y)^2) >= Int_r && ... 
                (j <= Tar_X-round(Radius/7) || 

j>=Tar_X+round(Radius/7)) && ... 
                (i <= Tar_Y-round(Radius/7) || 

i>=Tar_Y+round(Radius/7)) 

               
            Target_Light(j,i,2) = (Ext_r - sqrt((j-Tar_X)^2 + (i-

Tar_Y)^2))/(Ext_r - Int_r);  
            Target_Light(j,i,3) = 1; 
            if sqrt((j-Tar_X)^2 + (i-Tar_Y)^2) <= Int_r + 

round(((Ext_r - Int_r)/4) * Segm_ran) 
                Target_Light(j,i,1) = 0.06; 
            else 
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                if sqrt((j-Tar_X)^2 + (i-Tar_Y)^2) > Int_r + 

round(((Ext_r - Int_r)/4) * Segm_ran) ... 
                        && sqrt((j-Tar_X)^2 + (i-Tar_Y)^2) <= Ext_r 

- round(((Ext_r - Int_r)/4) * Segm_ran) 
                    Target_Light(j,i,1) = 0.15; 
                else 
                    Target_Light(j,i,1) = 0.3; 
                end 
            end 
        end 
    end 
end 

 
Target_Light = imgaussfilt(hsv2rgb(Target_Light),10); 

 
FINAL_RETINAL_IMG = FINAL_RETINAL_IMG + Target_Light; 
% Cleaning of the region outside the ROI 
for i=1:size(I,2) 
    for j=1:size(I,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) >= Radius 
            FINAL_RETINAL_IMG(j,i,1) = 0; 
            FINAL_RETINAL_IMG(j,i,2) = 0; 
            FINAL_RETINAL_IMG(j,i,3) = 0; 
        end 
    end 
end 

 
%% ----------------------RADIAL SYMMETRIC ARTIFACTS----------------- 
clear Shape 

  
[X_b, Y_b] = meshgrid(-1:(1/(size(I,2)-1)):1,-1:(1/(size(I,1)-

1)):1); 
R = sqrt(X_b.^2+Y_b.^2); 

  
% Random number of peaks 
No_peaks = 1;%randi([1 2]); 

  
% Bessel function 
a = (-1 +4*rand)*pi; 
index = randi([1 3]); 
f1 = (2*besselj(index, a*R(:))./R(:)).^2; 
f1 = reshape(f1,size(X_b)); 

  
a = (-1 +4*rand)*pi; 
index = randi([1 3]); 
f2 = (2*besselj(index, a*R(:))./R(:)).^2; 
f2 = reshape(f2,size(X_b)); 

 
% move the peak randomly  
f1 = imcrop(f1,[randi([1 round((size(f1,2)-size(I,2))/2)]) ... 
    randi([1 round((size(f1,1)-size(I,1))/2)]) ... 
    size(I,2)-1 size(I,1)-1]); 

  
f2 = imcrop(f2,[randi([1 round((size(f2,2)-size(I,2))/2)]) ... 
    randi([1 round((size(f2,1)-size(I,1))/2)]) ... 
    size(I,2)-1 size(I,1)-1]); 
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if No_peaks==1 
    Shape = f1; 
else 
    Shape = f1+f2; 
end 

 
FINAL_RETINAL_IMG(:,:,1) = FINAL_RETINAL_IMG(:,:,1) + (Shape*.02); 
FINAL_RETINAL_IMG(:,:,2) = FINAL_RETINAL_IMG(:,:,2) + (Shape*.03); 
FINAL_RETINAL_IMG(:,:,3) = FINAL_RETINAL_IMG(:,:,3) + (Shape*.05); 

  

  
%% ---------------------------BLURRING & MOTION--------------------- 

  
% % Gaussian noise 
% var_x = 4; 
% var_y = 4; 
% IblurGaus = imgaussfilt(FINAL_RETINAL_IMG,[var_x var_y]); % 2-D 

Gaussian filtering 
%  
% % Median filter blurring 
% window = 20; 
% IblurMed(:,:,1) = medfilt2(FINAL_RETINAL_IMG(:,:,1),[window 

window]);  % 2-D median filtering 
% IblurMed(:,:,2) = medfilt2(FINAL_RETINAL_IMG(:,:,2),[window 

window]); 
% IblurMed(:,:,3) = medfilt2(FINAL_RETINAL_IMG(:,:,3),[window 

window]); 
%  
% % Circular averaging filter blurring 
% radius = 4; % averaging filter within the square matrix of size 

2*radius+1 
% DiscFilt = fspecial('disk',radius);  % Circular averaging filter  
% IblurDisc = imfilter(FINAL_RETINAL_IMG,DiscFilt); 
%  
% % Two-dimensional Laplacian filter blurring 
% alpha = 0.9; % controls the shape of the Laplacian and must be in 

the range 0.0 to 1.0 
% LaplFilt = fspecial('laplacian',alpha);  % Approximates the two-

dimensional Laplacian operator 
% IblurLap = imfilter(FINAL_RETINAL_IMG,LaplFilt); 
%  
% % Linear motion of a camera 
% len = 20; % linear motion of a camera by len pixels 
% theta = 45; % with an angle of theta degrees 
% MotFilt = fspecial('motion', len, theta); % Approximates the 

linear motion of a camera 
% IblurMot = imfilter(FINAL_RETINAL_IMG,MotFilt);  
%  
% % % Simulation of the electronic noise introduced during the 

conversion from  
% % % photons to digital value 
% % M = 0;    % mean of Gaussian noise 
% % V = 0.0009; % variance of Gaussian noise 
% % I_sensor = imnoise(I_T_coI,'gaussian',M,V); % adds Gaussian 

white noise of mean m and variance v to the image I 
% % sigma = 0.9; 
% % I_sensor = imgaussfilt(I_sensor,sigma); % filters image I_sensor 

with a 2-D Gaussian smoothing kernel with standard deviation sigma  
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%  
% FINAL_RETINAL_IMG = IblurGaus; 
%  
% % 

imwrite(I_T_coI,['Artifacts\Lens_Transmission\I_after_lens_',num2str

(num_pic),'.tif']); 
% % 

imwrite(FINAL_RETINAL_IMG,['Artifacts\Artifact_Model\I_art_sim_',num

2str(num_pic),'.tif']); 
% % imwrite(I_T_coI,'Artifacts\Eyelashes\I_eyelash_1.tif'); 

  
% ------------------------------------------------------------------ 
% 4 ------- Specular Reflection of the illumination light spot ----- 
% ------------------------------------------------------------------ 

  
Spec_ref = zeros(size(I,1),size(I,2),3); 
tras_ref_x = 0; %-Radius/3; 
tras_ref_y = - Radius/3; 
Radius_prop = 12; 

  
% first Purkinje image  
Refl_radius = round(Radius/Radius_prop); 
ref_X = ctr_X - Pos_Y; 
ref_Y = ctr_Y + Pos_X; 
for i=1:size(Spec_ref,2) 
    for j=1:size(Spec_ref,1) 
        if sqrt((j-Tar_X)^2 + (i-Tar_Y)^2) <= Refl_radius 
            Spec_ref(j,i,1) = XenonLight(j,i,1)*R_co(1);    
            Spec_ref(j,i,2) = XenonLight(j,i,2)*R_co(2);  
            Spec_ref(j,i,3) = XenonLight(j,i,3)*R_co(3);  
        end 
    end 
end 
% second Purkinje image  
for i=1:size(Spec_ref,2) 
    for j=1:size(Spec_ref,1) 
        if sqrt((j-Tar_X)^2 + (i-Tar_Y)^2) >= Refl_radius && ... 
                sqrt((j-Tar_X+randi([-20 20]))^2 + (i-Tar_Y+randi([-

20 20]))^2) <= Refl_radius*1.4 
            Spec_ref(j,i,1) = XenonLight(j,i,1)*R_co(1)*.7;    
            Spec_ref(j,i,2) = XenonLight(j,i,2)*R_co(1)*.7;  
            Spec_ref(j,i,3) = XenonLight(j,i,3)*R_co(1)*.7;  
        end 
    end 
end 
Spec_ref=imgaussfilt(Spec_ref,3.2); 

  
FINAL_RETINAL_IMG = FINAL_RETINAL_IMG + Spec_ref; 

 
% FINAL Cleaning of the region outside the ROI 
for i=1:size(I,2) 
    for j=1:size(I,1) 
        if sqrt((j-ctr_Y)^2 + (i-ctr_X)^2) >= Radius 
            FINAL_RETINAL_IMG(j,i,1) = 0; 
            FINAL_RETINAL_IMG(j,i,2) = 0; 
            FINAL_RETINAL_IMG(j,i,3) = 0; 
        end 
    end 
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end 

  
Art_name = strcat(Retinal_Images(NoRetIm).name(1:10), 'A00', 

num2str(uuu), '.jpg'); 
imwrite(FINAL_RETINAL_IMG,['…',Art_name]) % Insert here the path of 

the directory where you want to save the image 

 
    end 

end 


