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Abstract

This paper investigates the effect of air quality management areas (AQMAs)

- local, non-binding commitments to improve air quality - on pollution levels

in the United Kingdom. I exploit the staggered declaration of the policy

which is triggered when a local authority marginally and temporarily exceeds

national air quality benchmarks. The institutional setting thus creates a natural

control group, namely local authorities with pollution levels just below the

thresholds for the time being. The difference-in-differences estimation suggests

that AQMAs fail to lead to decreases in average NO2 concentration and the

number of days on which daily NO2 limits are exceeded.

Keywords: Air Quality Management Areas; Monitoring Stations; Air Pollution; Ex-

ceedance; Difference-in-Differences
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1 Introduction

Air pollution has long been regarded as a substantial health issue. Every day 1.8 billion

children worldwide breathe highly polluted air that puts their health and development at

serious danger (WHO et al., 2018). Low ambient air quality is caused by multiple sources,

mainly, by the combustion of fossil fuels, power plants, greenhouse gas emissions, and

industrial activities and facilities. Transportation - a major use of energy - contributes, too,

to air pollution and to global warming.

Good air and natural environment quality foster good health (Lovell et al., 2018). Public

health is determined by the way people live and, broadly, by the aspects of their daily life.

This includes social and economic dimensions, in addition to the quality of the environment

they live in. Across Europe, human activities cause a significant burden of illness that is

attributed to the exposure of low air quality.

In the European Union (EU), environmental factors such as low air quality and certain

weather conditions including high temperature, frequent heavy rains, and floods and droughts

are considered as key risk factors causing death (OECD, 2018). In 2012, air pollution was

responsible for 630 000 deaths in the 28 Member States of the EU (EU-28) according to data

from the WHO (WHO et al., 2016). This number, however, decreased to around 400 000

premature deaths in 2018 (EEA, 2020). In the United Kingdom (UK) – the subject of this

study - many local authorities and cities have regularly breached the recommended threshold

of air pollution set by the national government. The health burden of low air quality is

substantial; in the UK alone, about 307,000 life-years are lost every year and air pollution

contributes to about 30,000 premature deaths (Gowers et al., 2014).

In addition to adverse health effects, pollution also carries substantial economic and

financial consequences. This usually happens through several channels; shortening lives,

increasing deaths and migration, therefore affecting the working population size; increasing the
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number of lost working hours and days due to illness and absenteeism; lowering productivity

at work; and affecting the natural capital. In Europe, the rise in air pollution levels leads to

substantial reductions in output per capita, hence in economic activity. It is estimated that

a 1 µg/m3 increase in PM2.5 concentration causes a 0.8% reduction in real GDP annually

(Dechezlepretre & Stadler, 2019). Knowing that the EU’s GDP in 2017 was about EUR 15

trillion1, this means that curbing air pollution would increase the EU’s GDP by 0.8%, or by

EUR 120 billion annually in the short run.

Air pollution affects the UK economy considerably. It drains about £20 billion each year

from the economy (Hodges, 2018). Recent research indicates that in 2017 alone, the costs of

air pollution to the National Health Service (NHS) and social care in England were £157

million and that these costs could rise to as much as £18 billion by 2035 if the issue is not

addressed (Pimpin et al., 2018).

Investing in certain integrated policies that support cleaner energy consumption and

production, energy efficiency, and cleaner passenger vehicles is regarded as an effective option

to eliminate or at least to reduce key sources of air pollution. Policies that aim to reduce

air pollution and to protect the environment offer a win-win situation for both the public

and the environment. These policies reduce the burden of air pollution-related diseases and

simultaneously contribute to the mitigation of climate change.

Policymakers have started to tackle this problem by taking several actions. In the EU,

policymakers have considered air pollution as one of the most significant environmental

problems. Since the begging of 1980s, several EU directives have set air pollution limit values

and target values for different pollutants. The most recent EU’s air quality directive is the

Directive on Ambient Air Quality and Cleaner Air for Europe. This directive was adopted in

2008 and it consolidated a series of previous directives such as the Directive 96/62/EC on

ambient air quality assessment and management (“the Air Framework Directive”). Basically,

1EU’s GDP statistics can be found on this website:shorturl.at/hzDM6.
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this Directive aims to maintain a good quality of ambient air. However, its objectives are also

to define the fundamentals of a common strategy to improve air quality and protect human

health and the environment, to assess ambient air quality among Member States according to

common standards, and to collect adequate information on air quality and make it accessible

by the public.

In response, the UK government announced the National Air Quality Strategy (Depart-

ment of the Environment, the Scottish Office and the Welsh Office, 1997). It includes the

UK Air Quality Objectives (AQOs) which comply with the EU limit and target values. This

piece of legislation has a strong local component in which local authorities are obliged to

review and assess the air quality within their territories on a regular basis. For example,

due to the recognised adverse health impacts of air pollution exposure both the EU and the

UK mandate that nitrogen dioxide (NO2) concentrations are to remain below an annual

mean of 40 µg/m3; in addition, an hourly mean of 200 µg/m3 must not exceed more than 18

times in a given year (European Communities Council Directive, 1999). Local governments

who find that pollution levels have exceeded one of these thresholds are obliged to take

counter-measures and to prepare Air Quality Action Plans (AQAPs). The AQAPs follow the

declaration of designated Air Quality Management Areas (AQMAs) that are areas of the

respective local authority in which counter-measures are focused.

While the pollution thresholds are binding in that they automatically trigger AQMAs,

local authorities have substantial leeway in what measures they take to tackle pollution

and how they design their respective AQMAs. Typically, they develop air quality action

plans (AQAPs) that are focused on public transport improvements and traffic emissions

reduction. Moreover, the time period for which counter-measures remain in place varies

considerably between local authorities depending on the complexity of the options chosen

(NSCA, 2001). There are also no explicit penalties or centralized reduction schedules set

by the UK government. This raises the question of whether AQMAs - more than 700 of

which have been declared across the UK - pay more than lip-service to the goal of pollution
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reduction and have actually been effective. This is precisely the main objective of this study.

Figure 1 shows the areas across the UK that are covered by declared AQMAs. There is

no size requirement for AQMAs. However, AQMA boundaries should cover the areas where

an exceedance has first been detected and where air quality is thus likely to be low. Local

authorities have taken individual approaches and different methods for setting the boundaries

of their AQMAs. While some local authorities have chosen an approach where a "hot-spot"

is declared as an AQMA, others declared AQMAs that covered whole boroughs.

My identification strategy exploits the staggered declaration of AQMAs in a difference-

in-differences setting. Figure 2 illustrates the process of the declaration of an AQMA. The

timing of an AQMA declaration is determined by the marginal exceedances of air quality

thresholds. As a result, local authorities that follow very similar pollution trends will declare

AQMAs at different points in time. Figure 3 illustrates the intuition by plotting annual

mean NO2 concentrations for three local authorities. Between 1997 and 2012, all three local

authorities follow similar time trends close to the annual mean of 40 µg/m3 threshold but

never exceeding it. However, in 2013 Newcastle slips across the threshold and thus had to

declare an AQMA, the same happens to Stoke-on-Trent in 2016. In a two-local-authorities

case, Stoke-on-Trent would serve as the counter-factual for Newcastle. Obviously, this can be

extended to all the 125 local authorities that obtain pollution measures whereby I distinguish

between local authorities that have adopted at some point in time and those that have

never adopted. Never-adopters may or may not be a good control group. In Figure 3,

Brighton-Hove never quite breaches the limit but - at least until 2010 - follows reasonably

similar pollution trends. In practice, it turns out that including such non-adopting local

authorities in the control group has little impact on the estimated effects. To overcome

concerns regarding the inappropriate control group and as a robustness check, I re-run all

specifications only using local authorities that have declared AQMAs at some point in time

(“ever-adopters”).
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To the best of my knowledge, this study is the first to provide a comprehensive empirical

analysis of the effect of the air quality management areas on air quality. There is a substantial

interest among policymakers regarding the effectiveness of AQMAs. As such I make an

important contribution by providing evidence for whether this piece of UK flagship legislation

has been successful in improving air quality. The findings suggest that – similar to many

other local approaches such as congestion charges, driving restrictions, and low emission zones

– AQMAs have failed to lead to substantial improvements in air quality. The estimates are

precise enough to rule out any substantial air quality improvements in either the short-run or

the long-run.

The remainder of this paper is structured as follows: Section 2 provides additional

background information on AQMAs and also provides an overview of the effectiveness of

other local measures aimed at tackling air pollution. Section 3 describes the data and

provides descriptive statistics. Section 4 provides the empirical framework with a focus on

key identifying assumptions. Section 5 presents the results and several robustness checks. I

discuss and conclude in Section 6.
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2 Background

In urban places, passengers and pedestrians spend significant time in close proximity to or

indeed inside of vehicles, and thus exposed to air pollution from NO2 and other pollutants

(Molle et al., 2013). Crowded sidewalks coincide often with traffic congestion, most frequently

in major cities where pedestrian paths are adjacent to streets.

2.1 Air Quality Management Areas

The main purpose of declaring AQMAs is the mitigation of emissions from diesel and motor

vehicles which emit NO2, particulate matter (PM10 & PM2.5), sulfur dioxide (SO2) and

carbon monoxide (CO). Road transport is the largest source of NO2 emissions in the UK

affecting human health as NO2 inflames the airways in the lungs and, in the long-run, affects

how well our lungs work - especially for children, elderly people and asthma patients (Air

Quality Expert Group, 2004).

AQAPs are considered as an essential Local Air Quality Management (LAQM) component

(Department of Environment Food and Rural Affairs, 2013) as they provide local authorities

with the mechanism to state their intentions to meet the AQOs (NSCA, 2000). Since emissions

from road vehicles are likely to be the triggering factor for most of the declared AQMAs, the

action plans entail transport-related measures executed by local authorities. Local authorities

are free to choose the exact measures they want to adopt. Typically, AQMAs are areas in

which additional investment into public transportation is made, bike lanes are being built, air

quality warnings go up, multiple occupancy lanes and car-pooling schemes are designed, etc...

Many of these measures have been trialled by various local governments across the UK.

Road pricing initiatives such as small- or large-scale pilot schemes - in which motorists are

charged if they enter a specific zone - have been implemented in Bristol, Cambridge, Leicester,
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Edinburgh and Leeds in order to reduce vehicle movements. Furthermore, several local

authorities have undertaken random vehicle emissions testing schemes. This means that the

local authority can test vehicles at the roadside and issue penalties to drivers whose vehicles

fail emission tests (Elsom et al., 2000). Other measures such as the parking levies give the

local authority discretionary powers to dis-incentivize driving and the provision of workplace

parking (Beattie et al., 2000).

The implemented action plans following an AQMA’s declaration often follow a similar

blueprint across local authorities, especially when they are located within the same region

and when they breach the threshold of the same pollutant, which puts similar challenges

in front of local authorities. However, strategic planning is an evolutionary process that

takes into consideration changes in circumstances and air quality over time. Therefore, a

periodic review and assessment process can lead to changes in the action plans reflecting

locality-specific circumstances and implemented by each local authority (Beattie et al., 2000).

2.2 Low Air Quality: Potential Effects

The main concern of environmental policies is human health. Principally, the motivation

for these policies is to protect people against risky exposure to pollution in the environment

where they live and work. Besides retaining human health, the establishment of environmen-

tal policies considers other integral concerns related to economic growth, industry, trade,

transportation, and energy.

Our understanding of the relationship between environment and public health comes from

toxicology and epidemiology in the health science literature. So far, economists have made

significant contributions to this topic. On the one hand, the economics literature examines

the relationship between environmental degradation and public health among other related

outcomes (labor productivity, human capital, welfare, economic costs, etc...), and on the
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other hand, it questions the effectiveness of certain environmental policy measures – such as

air quality policy – in curbing air pollution.

2.2.1 Public Health

Many studies have documented the relationship between air pollution and health outcomes.

Chay & Greenstone (2003) used a quasi-experimental research approach to examine the

relationship between infant mortality and pollution. Their study exploited differential

variations in total suspended particulates (TPSs) across different counties and sites in the US

caused by the 1981-1982 recession. They found that reducing pollution decreases infant death

rates at the county level, suggesting that reducing TPSs by 1 µg/m3 results in 4-7 fewer

deaths per 100,000 live births. Currie et al. (2009a) examined the impact of air pollution

on infant health. The authors obtained information about the exact addresses of mothers

and information on air quality levels in New Jersey in the 1990s. Mothers were selected

based on the proximity to monitoring stations in addition to accounting for maternal fixed

effects. Currie et al. (2009a) concluded that mothers’ exposure to pollution, especially CO,

has negative effects both during and after birth. Particularly, the estimates showed that

exposure to CO increases the likelihood of low birth weight by 8% and the likelihood of infant

mortality by 2.5%.

Janke (2014) studied the impact of air pollution on children aged 5–19 years in England.

She compiled information on daily hospital emergency admissions and pollution levels of NO2

and ozone O3, and combined this information with air pollution warnings data to measure

the effect of avoidance behavior caused by air quality alerts released by local governments in

the UK. Only when controlling for avoidance behavior the results were statistically significant.

Janke (2014) found that children’s admissions to hospital due to respiratory problems has

increased by 0.1% as a result of a 1% increase in NO2 or O3 concentrations. Fan et al.

(2020) examined the relationship between heating and air pollution and the latter’s impact
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on health across several Chinese cities from 2014 to 2015. The method they used was a

regression discontinuity design based on the effect of air pollution on mortality levels around

the turning-on dates of the heating systems in 114 northern Chines cities. The estimates

suggested that heating in winter leads to deterioration in the Air Quality Index (AQI) by a

10-point increase which causes overall death rates to increase by 2.2%.

Transportation pollution is known worldwide as a major source of air pollution which also

affects public health among other economic indicators. Schlenker & Walker (2016) benefited

from the large variation in daily air pollution levels caused by daily airport congestion

measured as the amount of time planes spend idling on the tarmac. They demonstrated

that daily congestions on airport runway lead to significant increases in local pollution in

California. More importantly, their estimates showed that one standard deviation in daily

pollution levels results in an increase in hospitalization costs by $1 million for people living

close to the twelve largest airports in California. Using a generalized difference-in-differences

model, Bauernschuster et al. (2017) documented that higher traffic volumes caused by strikes

in public transportation in Germany have led to increases in air pollution by 14%, which

in turn caused an 11% increase in hospital admissions for respiratory diseases among young

children. Based on a natural experiment, and exploiting the dispersion of cheating diesel

cars and the rapid spread of these cars - which offers a reasonable external variation of the

exposure to pollution across the United States - Alexander & Schwandt (2019) found that

cheating diesel cars (polluting cars) affect both air quality and public health. Precisely, their

estimates revealed that the increase in cheating diesel cars in the US from 2008 to 2015 has

led first, to a 2.0% increase in AQI for PM2.5, second, to a 1.9% increase in low-birth-weight

rates, and third, to an increase in the number of visits to asthma emergency department

among children.
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2.2.2 Human Capital and Labour Productivity

Economic research has expanded the scope of analyzing the impact of environmental pollution

beyond traditional health outcomes. Health shocks caused by environmental factors can

affect the economy through direct effects on human capital and productivity.

Outdoor air quality is a major environmental health problem that affects - among other

health outcomes - cognitive performance. Currie et al. (2009b) studied the impact of pollution

on attendance in elementary and middle schools in Texas. They obtained administrative data

on schooling attendance and information about air quality. The authors adopted a triple

difference-in-differences (DDD) strategy; they controlled for average period-by-year effects

across all schools to guard against further unobserved differences by period and year, and

considered differential changes in pollution levels within school-year-period cells. Their results

showed that the increase in CO levels raises absences. As for those who attend and present

at schools, Zweig et al. (2009) found that air pollution affected their performance adversely.

Zweig et al. (2009) used school fixed effects to study the effect of student’s exposure to

outdoor pollution. They combined data on individual-family, air pollution, and standardized

test scores by grade, school, and year in California. The results suggested that a 10% decrease

in PM2.5 increases math test scores and reading scores by 0.14% and 0.21%, respectively.

Exposure to air pollution can affect people’s ability to work productively, often through

illness and absenteeism. Graff Zivin & Neidell (2012) studied the effect of air pollution

exposure on the productivity of farm workers. The authors used a panel data set of daily

worker output in the agricultural sector in California, where farm workers were paid through

piece rate contracts. The results suggested that at levels well below federal air quality

standards, a 10 ppb drop in O3 concentrations raises worker productivity by 4.2%. Hanna &

Oliva (2015) exploited the exogenous variation in air pollution levels caused by the closure of

a refinery in Mexico City on March 18, 1991, to estimate the impact of air pollution reduction

on the number of hours worked. The closure aimed to reduce pollution levels as the refinery
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represented about 35% of the total refining capacity in Mexico. The refinery closure benefited

the workers in the neighborhoods located within a 5 km radius of the refinery relative to

those that were farther away. The results showed that a 20% drop in SO2 led to a 1.3-hour

increase in hours worked the following week after the closure. In addition, pollution reduction

led to monetary gains throughout the year for workers who lived near the refinery (480 Peso

or USD 126).

He et al. (2019) examined the effect of the exposure to pollution on worker output at

two manufacturing sites in China. To investigate the short-term impacts of the variation in

air pollution levels on daily productivity levels, He et al. (2019) used daily output records of

workers at the two manufacturing sites who are paid according to how much each worker

produce daily. They found that a worker output shortfall by 0.5 to 3% is associated with

his/her exposure to an equivalent of 10 µg/m3 PM2.5 during a period of 3-4 weeks preceding

the day of production. In a recent study, Chang et al. (2019) estimated the impact of pollution

on white-collar labor in China. Particularly, they used data on the daily productivity of

call-center workers in Shanghai and Nantong. Their firm-level analysis showed that air

pollution has a statistically significant negative effect on workers’ productivity. Precisely, the

number of daily calls handled by a worker dropped on average by 0.35% as a result of an

increase by 10-unit in the air pollution index (API).

While most previous research has focused on outdoor pollution, there is also a nascent

literature that analyses the effects of indoor pollution, in particular on schooling outcomes.

Several studies have examined the impact of indoor air quality (IAQ) on academic performance

and found that students performed better due to IAQ-renovations such as remediation,

ventilation, and roof projects (Smedje & Norback, 2000, Haverinen-Shaughnessy et al., 2011,

Bakó-Biró et al., 2012, Stafford, 2015).
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2.2.3 Well-being and Violence

Air quality is also associated with people’s subjective well-being. Luechinger (2009) assessed

the impact of air pollution on individuals’ well-being in Germany by combining individual-level

large panel survey and high-resolution SO2 data in a difference-in-difference and instrumental

variable approach. The identification strategy departs from a natural experiment that exploits

the obligation to install scrubbers at power plants, where treatment and control counties

are determined by wind direction. In addition, the author used housing hedonics (rental

prices) to calculate the willingness to pay for good air quality. The results showed that

SO2 concentration negatively affects both life satisfaction (with larger estimates for the

instrumental variable specification) and rents.

Luechinger (2010) investigated the impact of SO2 pollution on life satisfaction in Europe

between 1979 and 1994. In addition to SO2, he obtained data on household income, and

on life satisfaction at the individual level from a cross-section survey in EU member states

and Norway. The author used an instrumental variable approach where he instrumented the

home-country pollution level with trans-boundary air pollution caused by foreign-countries’

emissions. The conventional estimates showed that the willingness-to-pay was inversely

affected by air pollution, while the instrumental variable method doubled the willingness-to-

pay estimates.

Levinson (2012) relied on the US General Social Survey (GSS) and pollution data to

show how air quality affects individuals’ happiness. The author showed that, on the one

hand, a lower level of happiness was reported when respondents were interviewed on days

with low air quality. On the other hand, he showed that wealthy people reported higher levels

of happiness. Therefore, there is a trade-off between air quality and income levels. Moreover,

on a three-point scale, the estimates suggested that a 10 g/m3 increase in air pollution results

in a reduction in happiness of 0.014, while an increase of annual income by 10% causes an

increase of happiness of 0.013. Ferreira et al. (2013) investigated the relationship between air
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pollution and welfare using spatially disaggregated European regional data on ambient air

pollution concentrations (SO2) and other spatial variables to control for climate and several

economic indicators. As for the welfare variable, the authors used the European Social Survey

(ESS) survey data that were collected between 2002 and 2007. The results from the ordinary

least squares (OLS) estimation revealed that, on an 11-point life satisfaction scale, a 1 µg/m3

increase in SO2 concentrations reduces life satisfaction by about 0.016 to 0.030 points.

Exposure to air pollution can impose critical costs on societies and can lead to a rise in

violent crimes. (Herrnstadt et al., 2016) examined the causal relationship between crime and

pollution in Los Angeles and Chicago in a difference-in-differences specification. The authors

compared crime rates in two regions in Los Angeles on treated days with winds blowing from

the sea with dirty air, to untreated days when there was no wind blowing to that area. They

found that on treated days, the rate of crime was 6.1% higher than that on untreated days

compared to control neighborhoods. (Herrnstadt et al., 2016) replicated the same strategy

for Chicago and compared the impact of air pollution on crime rates on opposite sides of

the interstate free highway (I-290). The intuition is as such: on days when the wind blows

from the south, interstate pollution affects the northern areas to the road and vice versa.

Therefore, the side of the road from which the wind blows acts as a control. The results also

suggested a positive relationship where crime rates increased by 2.2% on treated days.

Lu et al. (2018) used two different approaches to assess the relationship between air

pollution, and criminal activity and unethical behavior at the city-level between 1999 and

2009. The first approach was based on fixed-effects Poisson regression models via maximum

likelihood estimation. The results of a 9-year panel of 9,360 cities in the US showed that

air pollution predicted major crime categories. The second approach was based on three

controlled experiments in the US and in India. The findings identified that anxiety is

the mechanism that explains the relationship between pollution and unethical behavior.

Burkhardt et al. (2019) obtained data on daily crime rates, air pollution, and climate from

2006 to 2013 in the US to study the short-term impact of PM2.5 and O3 exposure on crime
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commission and found that air pollution increased violent crimes, particularly, aggressive

behavior. The poisson quasi-maximum likelihood results revealed that air pollution increases

violent crimes, especially assaults. (Bondy et al., 2020) investigated the effect of ambient

air pollution exposure on crime in London for the years 2004-05. The authors used panel

administrative data to estimate models with ward fixed effects and used wind direction to

instrument local air pollution concentrations. The bottom line is that exposure to elevated

levels of air pollution leads to higher crime rates. The findings suggested that an additional

10 AQI points leads to an increase in crime rate by 0.9%.

2.3 Low Air Quality: Policy Measures

Local government measures to tackle air pollution can be broadly divided into two categories:

market-based interventions and command-and-control measures where the restrictiveness of

the controlling element varies. Many local governments focus on policies and regulations

related to traffic and road transport air pollution. A popular market-based policy is congestion

charging schemes (CCSs). London has been one of the pioneers of such a scheme in Europe.

Currently, London drivers pay £11.50 (up from £5 when it was introduced in 2003) in order to

enter the city center. Early evaluations of the policy showed that it was effective in reducing

air pollution. Total emissions of NO2 and PM10, in the charging zones decreased by 12% and

11.9% respectively (Kelly et al., 2011). It also improved traffic flows and reduced inbound

traffic (Leape, 2006). Recent evidence is more mixed. Atkinson et al. (2009) concluded that

there were no overall changes in pollution concentration associated with the introduction of

the scheme. However, background monitors suggest a reduction in some pollutants – such as

NO2, PM10 and CO - in areas covered by the scheme relative to control areas. In any case,

London continues to regularly violate both NO2 and fine particulate limits set by the World

Health Organisation (WHO). A model for rather successful road-pricing is in Milan where

road pricing has encouraged drivers to purchase cleaner vehicles resulting in a reduction of
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PM10 levels (Gibson & Carnovale, 2015).

Examples of command-and-control policies designed to reduce pollution are traffic control,

driving restrictions, plant closure, etc... A prime example is China’s imposition of traffic

control and plant closures to cut back on pollution and thus to improve air quality in Beijing

during the Olympic Games. Chen et al. (2013) found that these actions decreased air pollution

by approximately 25% compared to one year before the start of the games. Although the

reductions were large and arguably health-enhancing, air quality improvements disappeared

within one year after the Games had ended as these temporary measures were abandoned.

China has experimented with other policies. For example, Wang et al. (2014) assessed

the effectiveness of national air pollution control policies and concluded that the National

Total Emission Control (NTEC) had a positive impact on air quality improvement in China’s

metropolitan areas. Using panel data, Zheng et al. (2015) applied a fixed-effect model to

study the effectiveness of the energy-saving and emission reduction regulations in 26 provinces

and four municipalities during the period 2002-2011. Empirically, they found that these

regulations have a positive impact on air quality.

Another common policy measure is driving restrictions. Davis (2008) examined their

effectiveness in Mexico City. He compared the air quality prior to and after the implementation

of the program using data from Mexico’s monitoring stations on five main pollutants (SO2,

O3, NO2, CO, and NOx). His analysis revealed that the policy had actually increased air

pollution because drivers purchased additional (and often dirty) vehicles to avoid the driving

restrictions. A similar finding was obtained by Zhang et al. (2017) for Bogota’s driving

restrictions.

Low emission zones are slightly less restrictive and usually only ban the worst polluters

from entering city centers. Early evidence on their effectiveness in Germany was promising

and showed that LEZs led to reductions of PM10 by about 9% (Wolff, 2014), although this
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estimate was later reduced to 4% (Gehrsitz, 2017) and the reductions appear to be too

small to lead to tangible health improvements. In fact, the city of Frankfurt is currently

considering a driving ban, not least because LEZs have failed to sufficiently reduce pollution

levels, especially from Diesel-powered vehicles. LEZs have nonetheless been widely adopted

in the European Union, Asia and in the United States, with limited success.

AQMAs are best thought of as “soft” command-and-control policies at the local level.

They are, however, less restrictive in imposing counter-measures such as LEZs or let alone

driving restrictions. At the same time, they lack market-based elements.

3 Data and Descriptive Statistics

The Department of Environment, Food and Rural Affairs (Defra) collects detailed data on

local authorities’ air quality and keeps track of declared AQMAs. Defra also provides advice

on local air quality management including a range of support tools. Information on the latest

pollution levels is collected by Defra’s UK Air Information Resource (UK-AIR). They track

concentrations of several pollutants, maintain a list of declared and revoked AQMAs, and

detail the environment type of the various monitoring networks. In addition, Defra provides

pollution forecast information and a data archive2.

From Defra data, I constructed two main variables for this study: pollution levels -

specifically the daily average NO2 measurement for all major local authorities in the UK for

the time period 1997 to 2016; and a list of local authorities that have declared an air quality

management area (AQMA) within their territory. I obtained daily average NO2 measurement

from different monitoring stations that are distributed across several local authorities in the

2Local Air Quality Management guidance can be found on this website:
http://laqm.defra.gov.uk/. UK Air Information Resource can be found on this website:
http://uk-air.defra.gov.uk/.
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UK. The majority of the local authorities have monitoring stations within their territory.

Figure 4 shows the distribution of monitoring stations across the UK. Monitoring stations

typically measure the level of NO2 which is why the focus of this study is on this pollutant.

Often information on NO2, SO2, PM10 & PM2.5, O3 and/or CO in the atmosphere is also

collected. Notice that AQMAs have not been declared for pollutants such as Lead, Benzene

or carbon dioxide (CO2), although some stations monitor such pollutants.

Traffic and non-traffic background stations account for 90% of the monitoring stations

all over the UK. 52% of these monitoring stations are background stations sited in residential

areas, 38% are traffic stations located beside main streets and highways, while the rest of the

monitoring stations are industrial stations. Traffic stations tend to be located in areas where

air pollution levels are high. Indeed, it is expected that areas surrounding traffic stations

are disproportionately affected by air quality policies because traffic stations monitor higher

levels of air pollution compared to other stations types. Some of the monitoring stations have

no available data for the period of interest and are, therefore, dropped from the sample. Out

of 265 stations in the UK, only 212 stations are used in this study.

I have also collected weather data because temperature, rainfall, humidity, wind speed,

and wind direction might affect air quality measurements. For example, Wang et al. (2010)

used data of air pollution from stations near the Olympic Stadium in China to show that

weather conditions could influence air quality and pollution levels. They show that part of the

reduction in air pollution experienced during the 2008 Olympics Games was due to changes

in rainfall, low temperature, and air mass from clean regions in China. However, detailed

daily data on many weather covariates is not consistently and widely collected in the UK,

especially for the late 1990s and 2000s. The only variables that are available at a regional

level are monthly mean temperature and monthly rainfall. These data are collected by the

"Met Office". I have therefore taken the analysis to the monthly level. That is I calculated

monthly NO2 averages for each local authority and matched in monthly temperature and

precipitation measures from the closest weather station.
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In addition to weather control variables, I also collected information on the type of

each monitoring station, i.e. I have generated dummy variables equal to one for traffic,

background rural, background urban, background suburban, industrial urban or industrial

suburban stations, and equal to zero otherwise. I also gathered information on the economic

characteristics of each local authority. In particular, the Office for National Statistics (ONS)

provides annual measures of population size and unemployment rates for each local authority

from 1996 to 2017. Values for both economic indicators are shown in the descriptive statistics,

but – because they are only available annually – do not enter the regression analysis.

Table 1 divides the 125 local authorities with valid pollution measurements into three

groups: “early-adopters” which first introduced an AQMA by the end of 2007; “late-adopters”

which first introduced an AQMA after 2007 but before the end of the sample period; and

“never-adopters” which never introduced an AQMA. The table then shows the annual means

of the outcomes, the weather controls, and economic characteristics. In order to gauge the

size of any immediate effect of an AQMA, I show the means for the 2 years prior to the

introduction of an AQMA in a local authority as well as 2 years after such an introduction.

For never-adopters, I show the means for 2007 and 2017.

Three things stand out. A first indication of Table 1 is that the declaration on an

AQMA has little effect on NO2 levels. In fact, raw NO2 concentrations are slightly higher

two years after an AQMA introduction for early-adopting local authorities. For late-adopting

local authorities, average NO2 levels are mostly constant at 25.24 µg/m3 2 years prior to the

introduction of an AQMA and 25.72 µg/m3 two years later. Second, we see that pollution

levels were much lower in local authorities that have never declared an AQMA. Differences

in levels are not a threat to my identification strategy to the extent that they are captured

by local authority or station-fixed effects. Nonetheless, the fact that air quality is so much

higher in the non-adopting community might limit the suitability of these local authorities as

controls and motivates why I also run all specifications excluding stations from these areas.

Finally, the table of means shows that early-, late, and never-adopting local authorities are
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reasonably similar to one another in terms of average rainfall, temperature, population size,

and unemployment rate.

4 Empirical Framework

While the descriptive statistics suggest that AQMAs did little in the way of improving air

quality, it may well be that the raw means are masking an effect that only becomes apparent

when a more sophisticated regression method is deployed. The institutional features of

AQMAs lend themselves to a difference-in-differences (“diff-in-diff”) analysis that exploits the

staggered introduction of the policy. The first-ever AQMA was declared in 1999 in London

Borough of Westminster. Other local authorities - based on their review and assessment

results of air quality - have declared the policy at different time periods. For example, Cardiff

declared its first AQMA in December 2000, Belfast in July 2004, Mid Sussex in March 2012,

and Merthyr Tydfil in January 2017 (Department of Environment Food and Rural Affairs,

2018). Intuitively, a diff-in-diff design deploys a rolling set of control local authorities that

treatment local authorities are compared to, that is treatment local authorities are compared

to control local authorities in periods where control local authorities have not themselves

become treatment local authorities. The main identifying assumption is that after accounting

for local authority specific time-invariant influences and after accounting for national trends,

treatment and control local authorities would have followed similar air quality trends had

treatment local authorities not declared AQMAs. Section 5 will present raw data and an

event-study specification that support this assumption. The regression setting can also

easily incorporate the fact that some local authorities revoked their AQMAs which they are

allowed to do when air quality has either improved or other measures have been taken. I

also experiment with including never-adopting local authorities which add more power to my

analysis but may not be as comparable. As we will see, including these additional controls

makes little difference. Figure 5 (5a & 5b) shows two maps of the 125 UK local authorities
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in the sample. Local authorities that have at any point in time declared an AQMA are

highlighted in green. Out of 125, 100 local authorities had active AQMAs starting from 1999,

but this process happened slowly over time. In 2000, only 10 local authorities had declared

an AQMA. Over time, more and more local authorities became engaged in this air quality

policy. By the end of 2007, 74 local authorities had declared AQMAs. Figure 5b shows that

by the end of 2017, an additional 26 local authorities had active AQMAs. Note that, some

local authorities have more than one AQMA within their territory. As of 2017, more than

700 areas have been declared air quality management areas. Of these, more than 90% are

linked to emissions caused by traffic such as NO2, SO2, PM10 and PM2.5.

A difference-in-differences approach is operationalized by running regressions that corre-

spond to the following regression equation which is estimated using OLS:

yijt = α + βActivejt + λXijt +
212∑
j=1

θiStationi +
240∑
t=1

δttimet + εijt (1)

Where, yijt in Eq.1 is a vector for the outcomes of interest, namely the monthly average

NO2 level and the number of exceedance days in month “t” at monitoring station “i”, located

in local authority “j”. β is the main coefficient of interest and the difference-in-differences

estimate which indicates the causal effect of having an AQMA in operation on the outcome.

Activejt is a dummy variable that is equal to one if local authority "j" has declared an AQMA

at a certain point in time "t", and equal to zero otherwise. Xijt is a matrix of control variables

such as the monthly mean temperature, rainfall, and monitoring station characteristics. θi

and δt are the monitoring station fixed effect and time fixed effect, respectively. The error

term is represented by εijt.

I estimated this regression using an unbalanced panel of 212 monitoring stations that are

located in 125 local authorities over 20 years (240 months). I also deployed an event study

specification to assess the dynamics (see more detail below) of an AQMA introduction, and

21



experimented with station-specific linear time trends to assess the robustness of the main

specification. As is best practice in diff-in-diff settings (Bertrand et al., 2004), I accounted for

clustering at the local authority level. There are 125 clusters which should all but guarantee

that the standard errors are asymptotically valid3.

5 Results

5.1 Main Specification

Parallel trends in outcomes of treatment and control in the absence of the treatment is the

key identifying assumption in this analysis. Figure 6 provides a first piece of evidence that

this common time trends assumption might even hold when the potentially problematic

sample of never-adopters is being used. The figure shows that the annual pollution level

means across adopters and never-adopters move almost exactly in parallel. On the one hand,

this supports the main identifying assumption. On the other hand, this again suggests that

the introduction of AQMAs did little in the way of improving air quality as there is no break

in the trend at any time even though more and more ever-adopting local authorities introduce

AQMAs as time goes by.

This is confirmed by Panel A in Table 2 which displays the regression results of Eq.1 for

all local authorities (ever-adopters and never-adopters), where the monthly average NO2 is

the outcome with monitoring station fixed effects and time (month) fixed effects included in all

specification. In column (2) I add control variables for weather conditions and stations types.

In column (3), I control for station-specific linear trends. All coefficients are positive but

close to zero and either insignificant or borderline significant at the 5% level. The standard

3Sets of results where I cluster at the level of the monitoring station are available upon request. They
yield virtually identical standard errors.
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errors are precisely enough estimated to rule out any undetected negative effects. Taken at

face value, an active AQMA is associated with an increase in monthly mean NO2 levels of

approximately by 0.8 µg/m3. By way of comparison, the monthly average NO2 concentration

in the UK local authorities is 33µg/m3, so this is a very small (and insignificant at the 1%

level) effect of about a 2.5% increase in NO2 levels.

The same regression is repeated separately for both background (non-traffic) monitoring

stations - where the measurements for NO2 levels would be expected to be lower as we move

far away from streets congestion and traffics - and for traffic stations that are expected to be

the most affected by air quality policies as they produce more emissions than other stations

type. There is no indication of any statistically significant impact.

Panel B in Table 2 shows the results of the regression when only adopting local authorities

are used. In other words, I discard the potentially inadequate observations from never-adopting

units. The identifying variation here comes entirely from differential timing in the policy

introduction. This specification is very much in the same ballpark as Panel A. An active

AQMA is associated with an increase in the average monthly NO2 level of 1.0 µg/m3, or

about 3%. The effect is statistically significant at the 5% level but not at the 1% level and

statistically significant at the 10% level when I control for station-specific linear time trends.

Again, the standard errors are small enough to rule out any substantial, undetected negative

effects. Columns (4) to (9) focus on background and traffic stations for which I find very

similar results.

The positive coefficients might be slightly surprising but are to some extent a mechanical

feature of the AQMA declaration process. The active dummy captures both short-run and

long-run effects of an AQMA. Bear in mind that AQMAs are only declared when a pollution

threshold is crossed. Thus, by definition, the presence of an AQMA is initially likely associated

with a small increase in pollution. The event-study specification in section 5.2 will confirm

this positive short-run effect. What is surprising is that the overall effect remains positive. If
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AQMAs were reducing pollution the β coefficient should overall be negative. The fact that

this does not happen suggests that AQMAs indeed lack the teeth to push for improved air

quality.

The effect of AQMAs on a measure of compliance with NO2 daily pollution limits is

documented in Table 3. The left-hand side variable here is the number of exceedance days on

which the average NO2 concentration of 40 µg/m3 was exceeded. Panel A shows the impact

of AQMAs on the number of exceedance days when all local authorities (ever-adopters and

never-adopters) in the sample are used. The results indicate that there are no statistically

significant effects in most of the specifications regardless of whether I consider all stations or

just background and traffic stations respectively. However, columns (3) and (6) show that the

coefficients are statistically significant at the 5% level when I control for station-specific linear

time trends. Panel B repeats this exercise by limiting the sample to adopting local authorities.

Columns (1) to (6) show statistically significant but very small coefficients. AQMAs increase

the number of NO2 exceedance days by approximately 0.5 days for all stations, 0.8 days

for background stations, and reduce the number of exceedance days at traffic stations by

0.4. Again, I find no evidence of a negative relationship of the presence of an AQMA and

improved air quality and the standard errors are precisely enough estimated to rule out any

large undetected benefits.

5.2 Event Study Specification

The Activejt indicator in the main specification mixes short-run and long-run effects to give

us an aggregate headline estimate of the effect of AQMAs. Not least because this effect

is positive, it is worthwhile evaluating the dynamics of AQMA introductions. I do this by

running an event-study specification in which the single Activejt indicator of Eq.1 is replaced
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with a set of 1-year leads and lags:

yijt = α +
t=4∑
t=−3

βtActivejt + λXijt +
212∑
j=1

θiStationi +
240∑
t=1

δttimet + εijt (2)

The left-out reference period is the 3+ year lag and the final lag refers to time periods that

are 4 or more years after the introduction of an AQMA. All other leads and lags follow

1-year increments. The first column of Table 4 presents the base specification augmented

with the leads and lags for all local authorities. Two things stand out. First, all lags

are statistically insignificant which strongly supports the common time-trends assumption

underpinning the identification strategy. This also suggests that there is no evidence of an

anticipatory response by local authorities about to declare an AQMA. Second, most of the

positive association between AQMAs and pollution appears to occur in the long-run. In the

periods around an AQMA’s declaration, NO2 levels increase only slightly. But most the main

effect appears to be driven by pollution increases that occur years after the declaration of

an AQMA. This strongly suggests that AQMAs fail to reign in air pollution in the long-run.

The point estimate in column (1) suggests that in fact, long-run pollution levels are 1.4

µg/m3 higher in the long run in local authorities with AQMAs relative to local authorities

without AQMAs. This result is robust across specifications and the point estimate is even

slightly larger when the sample is limited to ever-adopters (see columns (4) to (6)). Figure

7 plots the coefficients corresponding to the regression of Eq.2 along with 95% confidence

intervals. For both Figures 7a and 7b, the intervals on the x-axis represent the number of

years prior to or after the declaration of an AQMA. The figure illustrates very well that NO2

levels in AQMA-declaring local authorities are mostly flat in the short-run but increase in

the long-run.

Column (1) of Table 5 presents the results of the event-study specification for the

number of monthly exceedance days. Again, most pre-treatment coefficients are statistically

insignificant and hover around zero. There is no break in the trend around the adoption of
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an AQMA, again suggesting that the measure had no impact and the result is robust across

specifications. Figure 8 illustrates this graphically.

5.3 Placebo Tests

As an additional robustness check, I have conducted a placebo intervention by changing the

outcome as stated in Eq.3:

Rainfallijt = α + βActivejt + λXijt +
212∑
j=1

θiStationi +
240∑
t=1

δttimet + εijt (3)

Where Rainfallijt is the monthly rainfall amount which is the depth of precipitation (mm)

that occurs over a unit area (one meter squared) in month “t” at monitoring station “i”,

located in local authority “j”. In other words, I replace the outcome of interest by a measure

that cannot possibly be affected by the intervention of interest. Such a placebo test provides

a useful falsification strategy to investigate whether the results might be driven by other

unobservable factors that are time-invariant within a local authority and whose influence is

not captured by the station-specific time trends. If I found an effect on my placebo outcome,

this would cast doubt on my empirical design. Table 6 indicates that this is not the case.

The effect of an active AQMA on rainfall in the placebo estimation is almost equal to zero

and statistically insignificant at any reasonable level of significance, regardless of whether

control variables are included or not.

6 Discussion and Conclusion

Air pollution is a major issue for many countries in the world from three interrelated

dimensions: the environment, public health, and the economy. Governments have adopted
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stricter environmental polices and have undertaken serious national and local efforts to retain

the environment and to protect public health as well as the economy. In 2017, the UK

government announced a new plan to tackle roadside NO2 concentrations as the policies

that had been implemented were not as effective as it had been expected (Department

of Environment Food and Rural Affairs, 2017). Local authorities have tried to tackle air

pollution problems. Their ability to successfully reach air quality objectives and subsequently

devise and implement air quality action plans (AQAPs), however, has been constrained by

several factors. Most measures within an AQAP require close collaboration. Nevertheless,

the lack of interdepartmental responsibility (Olowoporoku et al., 2010), the inconsistency

between departmental policies that is reflected in local divergent agendas (Everard et al.,

2013, Kilbane-Dawe, 2012), the absence of a strong local political will and the inability to

raise awareness of local air quality (Carmichael & Lambert, 2011) affect the success of air

quality measures taken by local governments. Indeed, air quality management, including

monitoring and modelling, is an expensive process. Defra grants air quality funds, but they

are limited and virtually always oversubscribed (Barnes et al., 2011). Consequently, a lack of

funding may have put budget constraints on the local authorities’ ability to implement more

ambitious AQAPs.

Low air quality and its adverse effects prompted the UK government to announce its Air

Quality Management Area (AQMA) policy in 1997. This decision delegated the responsibility

to monitor air pollution to local authorities. As part of the policy, local policymakers were

required to develop and implement measures to improve air quality when their measurements

put them into violation Europe-wide pollution limits. Local authorities were allowed to

design AQMAs as areas with increased investments into public transport, renewable energies

or additional bike lanes, etc.. At first glance, giving responsibilities to the people on the

ground rather than pursuing a national one-size-fits-all approach may have seemed appealing.

However, this study shows that AQMAs have not been effective tools in reducing NO2

concentrations which are primarily caused by vehicle emissions. My identification strategy
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exploits the fact that different local authorities introduced AQMAs at different points in

time. This staggered introduction allows for the isolation of credibly causal effects using a

difference-in-differences design. I find no significant reduction in NO2 concentrations and

obtain standard errors that are small enough to rule out any substantial pollution-reducing

effects. In fact, this study provides evidence that air pollution continued to be on the rise

years after the introduction of AQMAs.

AQMAs can be thought of as a “soft” command-and-control policy at the local level. The

apparent failure of the policy to tackle air quality issues raises concerns about delegating

such decision making on environmental policy to small local entities. However, there are

some financial constraints that may limit the ability of local governments to adopt and to

successful execute such policies. Local governments in the UK rely on three main sources

to fund their services and expenditures, albeit in different proportions across services and

time: property tax revenues, general grants from central government, and specific grants

that target certain central government objectives. As part of its ongoing efforts to reduce

public-sector deficits, the government implemented various austerity measures in 2010 and

cut spending across all levels of government (Fetzer, 2019). Therefore, local governments

have had to decide on which service areas to prioritise; for some service areas, the cuts have

been greater 4. In general, some of these services are relate to the action plans aimed at

improving air quality at the local government level.

From a political economy point of view, this is hardly surprising. Failure to improve air

quality is not sanctioned which limits local authorities’ incentives to adopt robust measures

that may hurt some constituents. This study on one of the UK’s flagship environmental policies

is thus best thought of as a cautionary tale on the effectiveness of local environmental policies

without national government oversight, sanction mechanisms, or market-based approaches.

4For example, in England, the real-terms change in local government service spending for planning
and development declined by over 55% (31.6% in Scotland and 52% in Wales), by over 10% for environ-
mental services (8.1% in Scotland and 19.4% in Wales), and by 40% for transportation (22% in Scotland
and 21% in Wales), from 2009-10 to 202016-17 (Smith et al., 2016).
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7 List of Tables and Figures

Figure 1: The Shape of Local Authorities’ AQMAs.

Source: Map created by the authors from Defra’s UK Air Information Resource (UK-AIR).
Red areas are AQMAs.
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Figure 2: Overview of the process of AQMA’s declaration (as of July 2015).

Source: Local Air Quality Management Policy Guidance (Department of Environment
Food and Rural Affairs, 2016)
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Figure 3: NO2 Exceedance & AQMA’s Declaration.

Source: Authors’ calculations from Defra’s UK Air Information Resource (UK-AIR).
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Figure 4: The Distribution of NO2 Monitoring Stations Across the UK.

Source: Map created by the authors using Defra’s UK Air Information Resource
(UK-AIR).
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(a) Active AQMAs between 1999-2007 (b) Active AQMAs between 2008-2017

Figure 5: UK Local Authorities with Active AQMAs.

Source: Map created by the authors using Defra’s UK Air Information Resource
(UK-AIR). Green areas indicates the existance of an active AQMA/s in the local
authority.
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Figure 6: NO2 Trend: Pre- & Post-Declaration.

Source: Authors’ calculations from Defra’s UK Air Information Resource (UK-AIR).
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Table 2: Effect of AQMAs on air pollution: Diff-in-Diff estimates.

All Stations Background Stations Traffic Stations
Outcome: NO2 (1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A (Ever- & Never-adopters)
Active 0.835** 0.846** 0.826* 0.551 0.570 0.519 0.620 0.631 0.561

(0.412) (0.413) (0.455) (0.406) (0.406) (0.402) (1.390) (1.392) (1.401)

Observations 24,026 24,026 24,026 15,650 15,650 15,650 6,535 6,535 6,535
R-squared 0.915 0.915 0.922 0.902 0.903 0.912 0.891 0.891 0.902

Panel B (Ever-adopters)
Active 1.024** 1.039** 0.752* 0.954** 0.978** 0.459 0.923 0.957 0.373

(0.422) (0.422) (0.452) (0.435) (0.432) (0.411) (1.537) (1.536) (1.508)

Observations 20,378 20,378 20,378 13,724 13,724 13,724 5,631 5,631 5,631
R-squared 0.909 0.909 0.917 0.893 0.892 0.903 0.882 0.882 0.894

Station Dummies X X X X X X X X X
Time Dummies X X X X X X X X X
Control Variables - X X - X X - X X
Station-specific-trends - - X - - X - - X
SE Clustered at LA LA LA LA LA LA LA LA LA

Robust standard errors (in parentheses) are clustered at the Local Authority (LA) Level.
Regression results correspond to Eq.1. Dummy for Active AQMA is equal to one if at the
time of NO2 measurement, an AQMAs has been declared. Dependent variable is monthly
mean NO2 levels. Data Source: Defra’s UK Air Information Resource (UK-AIR), daily
pollution measurements (1997–2016).

*** Indicate significance at the 1% level.

** Indicate significance at the 5% level.

* Indicate significance at the 10% level.
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Table 3: Effect of AQMAs on the number of Days with Exceedance: Diff-in-Diff
estimates.

All Stations Background Stations Traffic Stations
Outcome: Exceedance Days (1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A (Ever- & Never-adopters)
Active 0.296 0.307 0.456** 0.310 0.323 0.590** -0.329 -0.322 -0.392

(0.212) (0.213) (0.222) (0.268) (0.270) (0.254) (0.494) (0.488) (0.454)

Observations 24,026 20,026 20,026 15,650 15,650 15,650 6,535 6,535 6,535
R-squared 0.822 0.822 0.834 0.779 0.779 0.795 0.809 0.809 0.82

Panel B (Ever-adopters)
Active 0.563*** 0.573*** 0.440** 0.774*** 0.795*** 0.5857** -0.376 -0.367 -0.443

(0.200) (0.200) (0.221) (0.24) (0.241) (0.255) (0.520) (0.510) (0.461)

Observations 20,378 20,378 20,378 13,724 13,724 13,724 5,631 5,631 5,631
R-squared 0.819 0.818 0.830 0.779 0.779 0.794 0.796 0.796 0.808

Station Dummies X X X X X X X X X
Time Dummies X X X X X X X X X
Control Variables - X X - X X - X X
Station-specific-trends - - X - - X - - X
SE Clustered at LA LA LA LA LA LA LA LA LA

Robust standard errors (in parentheses) are clustered at the Local Authority (LA) Level.
Regression results correspond to Eq.1. Dummy for Active AQMA is equal to one if at the
time of NO2 measurement, an AQMAs has been declared. Dependent variable is the number
of days where NO2 concentration of 40 µg/m3 was exceeded on a given year. Data Source:
Defra’s UK Air Information Resource (UK-AIR), daily pollution measurements (1997–2016).

*** Indicate significance at the 1% level.

** Indicate significance at the 5% level.

* Indicate significance at the 10% level.
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(a) Ever- & Never-adopters (b) Ever-adopters

Figure 7: Event Study Regression Graphs: NO2

Source: Authors’ calculations from Defra’s UK Air Information Resource (UK-AIR).
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(a) Ever- & Never-adopters (b) Ever-adopters

Figure 8: Event Study Regression Graphs: Exceedance

Source: Authors’ calculations from Defra’s UK Air Information Resource (UK-AIR).
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Table 4: Event Study Estimates: Ever- & Never-adopters

Ever- & Never-adopters Ever-adopters
Outcome: NO2 (1) (2) (3) (4) (5) (6)
AQMA Declaration leads and lags
Activet−3 -0.424 -0.422 -0.083 -0.122 -0.120 -0.100

(0.417) (0.414) (0.388) (0.446) (0.441) (0.403)
Activet−2 -0.032 -0.054 0.463 0.302 0.283 0.364

(0.537) (0.532) (0.484) (0.595) (0.591) (0.511)
Activet−1 0.084 0.079 0.562 0.588 0.584 0.516

(0.552) (0.546) (0.575) (0.636) (0.628) (0.597)
Activet0 0.614 0.628 2.007** 1.165* 1.179* 1.950**

(0.568) (0.571) (0.830) (0.651) (0.649) (0.842)
Activet+1 0.818 0.823 2.325** 1.538** 1.56** 2.325**

(0.638) (0.641) (0.911) (0.740) (0.739) (0.919)
Activet+2 0.877 0.873 2.624** 1.605* 1.605* 2.523**

(0.758) (0.758) (1.019) (0.878) (0.874) (1.029)
Activet+3 0.742 0.730 2.706** 1.563 1.556 2.597**

(0.804) (0.802) (1.120) (0.953) (0.946) (1.126)
Activet+4ormore 1.458* 1.446* 4.053*** 2.612*** 2.603** 3.868***

(0.796) (0.792) (1.435) (0.988) (0.980) (1.408)

Observations 24,026 24,026 24,026 20,378 20,378 20,378
R-squared 0.915 0.915 0.915 0.909 0.909 0.917

Station Dummies X X X X X X
Month-Year Dummies X X X X X X
Covariates - X X - X X
Station-specific-trends - - X - - X
SE Clustered at LA LA LA LA LA LA

Robust standard errors (in parentheses) are clustered at the Local Authority (LA) Level.
Regression results correspond to Eq.2. Dummy for Active AQMA - with leads and lags - is
equal to one if at the time of NO2 measurement, an AQMAs has been declared. Dependent
variable is monthly NO2 levels. Data Source: Defra’s UK Air Information Resource (UK-AIR),
daily pollution measurements (1997–2016).

*** Indicate significance at the 1% level.

** Indicate significance at the 5% level.

* Indicate significance at the 10% level.

48



Table 5: Event Study Estimates: Ever- & Never-adopters

Ever- & Never-adopters Ever-adopters
Outcome: Exceedance (1) (2) (3) (4) (5) (6)
AQMA Declaration leads and lags
Activet−3 -0.198 -0.198 0.428 0.074 0.075 0.486

(0.308) (0.307) (0.314) (0.319) (0.318) (0.323)
Activet−2 -0.039 -0.050 0.743** 0.293 0.280 0.785**

(0.329) (0.326) (0.356) (0.355) (0.353) (0.362)
Activet−1 0.057 0.055 0.877** 0.531 0.526 0.973**

(0.322) (0.317) (0.433) (0.350) (0.346) (0.440)
Activet0 0.144 0.152 1.602*** 0.663* 0.671* 1.681***

(0.338) (0.339) (0.548) (0.372) (0.372) (0.544)
Activet+1 0.546 0.549 2.038*** 1.170*** 1.174*** 2.152***

(0.378) (0.376) (0.611) (0.432) (0.431) (0.612)
Activet+2 0.364 0.364 1.968*** 1.027** 1.027** 2.050***

(0.394) (0.393) (0.614) (0.461) (0.461) (0.619)
Activet+3 0.275 0.269 2.002*** 1.026** 1.022** 2.104***

(0.428) (0.425) (0.706) (0.507) (0.504) (0.710)
Activet+4ormore 0.249 0.244 2.214*** 1.282** 1.276** 2.302***

(0.493) (0.490) (0.762) (0.589) (0.588) (0.764)

Observations 24,026 24,026 24,026 20,378 20,378 20,378
R-squared 0.915 0.915 0.922 0.909 0.909 0.917

Station Dummies X X X X X X
Month-Year Dummies X X X X X X
Covariates - X X - X X
Station-specific-trends - - X - - X
SE Clustered at LA LA LA LA LA LA

Robust standard errors (in parentheses) are clustered at the Local Authority (LA) Level.
Regression results correspond to Eq.2. Dummy for Active AQMA - with leads and lags - is
equal to one if at the time of NO2 measurement, an AQMAs has been declared. Dependent
variable is the number of days where NO2 concentration of 40 µg/m3 was exceeded on a
given year. Data Source: Defra’s UK Air Information Resource (UK-AIR), daily pollution
measurements (1997–2016).

*** Indicate significance at the 1% level.

** Indicate significance at the 5% level.

* Indicate significance at the 10% level.
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Table 6: Placebo Test: Rainfall

Placebo Outcome: Rainfall (Ever- & Never-adopters) (1) (2)

Active 0.508 0.588
(0.605) (0.586)

Observations 50,880 50,800
R-squared 0.792 0.794

Station Dummies X X
Month-Year Dummies X X
Control Variables - X
SE Clustered at LA LA

Robust standard errors (in parentheses) are clustered at the Local Authority (LA) Level.
Regression results correspond to Eq.3 with. Dummy for Active AQMA is equal to one if at
the time of NO2 measurement, an AQMAs has been declared. Dependent variable is the
monthly amount of rainfall. Data Source: UK Met Office, monthly rainfall (1997–2016).
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