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Abstract

This thesis explores innovative methodologies for modelling volatilities of network-based

high-dimensional time series that exhibit asymmetry. We start with a law of large

numbers and a central limit theorem for triangular arrays of random fields that are

non-stationary. We derive key intermediate results to bridge the gap between the

proposed limit theorems and their application to the inference of high-dimensional time

series under large dimension N and sample size T . These theoretical advancements

are exemplified through a maximum likelihood estimation of a network autoregressive

model.

Building on this foundation, we propose a threshold network GARCH (TNGARCH)

model that incorporates asymmetries in the reaction of conditional variances to posi-

tive and negative shocks. Taking integer-valued data into account, we also propose a

Poisson TNGARCH (PTNGARCH) model, which has an unknown threshold that can

be estimated alongside other parameters. For both models, the stationarity over time

is investigated, and the maximum likelihood estimation is proved to be consistent and

asymptotically normal for large N and T . The asymptotic properties are tested by

simulation studies. For real data analysis, we fit the TNGARCH model to the daily

log-returns of stocks from two Chinese stock markets and the PTNGARCH model to

the daily counts of car accidents in New York City neighbourhoods. Wald tests are

conducted to show the asymmetry in both data sets.

Additionally, we establish unified methodologies for a class of network GARCH

models with conditional distributions in the one-parameter exponential family. This

theoretical framework is applied to a new negative binomial TNGARCH model. We
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evaluate its performance against the Poisson TNGARCH model using the same car

accident data, employing a probability integral transformation test for comparative

analysis.

Keywords: High-dimensional time series, conditional heteroscedasticity, threshold

GARCH, integer-valued GARCH, network GARCH, limit theorems, arrays of random

fields.
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Chapter 1

Introduction

1.1 Background

Volatility refers to the fluctuation of prices of assets in a financial context. A widely

conducted approach to volatility modelling starts from the autoregressive conditional

heteroscedasticity (ARCH) model (Engle, 1982), which depicts the conditional vari-

ance of the United Kingdom’s inflation as linearly dependent upon past realizations.

Bollerslev (1986) then proposed a generalized ARCH (GARCH) model to further ac-

commodate the dependence of the conditional variance on its own past. The GARCH

model has become one of the most popular models in econometrics, and numerous

variations of it have been developed ever since, extending the scope of econometric

phenomena that can be explained by GARCH models. In this research, we focus on

three directions in which the GARCH model has been extended in the literature:

• GARCH models that depict asymmetry in the response;

• GARCH models for integer-valued data;

• High-dimensional GARCH models for spatio-temporal data.

Aiming to accommodate asymmetry in volatility, GARCH models with thresh-

old structures were proposed: Glosten et al. (1993) fitted their GJR-GARCH to the

monthly returns of a stock index and found that the variance responds differently to

1



Chapter 1. Introduction

positive and negative shocks. Zaköıan (1994) and Nelson (1991) also observed asym-

metry in the standard deviation and log-transformed variance through their threshold

GARCH (TGARCH) and exponential GARCH (EGARCH) models, respectively. In the

study of integer-valued data, some authors replaced the conditional Gaussian distribu-

tion in the original GARCH model with discrete distributions, including the Poisson

distribution (Ferland et al., 2006; Fokianos et al., 2009; Wang et al., 2014), the bino-

mial distribution (Ristić et al., 2016), and the non-negative binomial distribution (Zhu,

2010; Xu et al., 2012). In particular, Wang et al. (2014) found asymmetry in annual

earthquake counts through their threshold Poisson autoregressive model.

The aforementioned GARCH variations are limited to univariate cases. Starting

from Bollerslev et al. (1988), a series of multivariate GARCH (MGARCH) models have

been developed (Bollerslev, 1990; Engle and Kroner, 1995; Tse and Tsui, 2001; En-

gle, 2002), aiming to simultaneously study the dynamic structure in the conditional

covariances between cross-sectional variables. However, the number of parameters of

these MGARCH models increases with the dimension, causing significant challenges

in statistical inference. Therefore, applications of MGARCH models are often lim-

ited to multivariate data of very low dimension, such as two stock indices (Karolyi,

1995) or exchange rates of two currencies (Tse and Tsui, 2001). To circumvent the

over-parameterization problem in MGARCH models, some authors use a network to

describe cross-sectional relations instead of relying on dynamic conditional covariances.

This idea was first applied by Zhu et al. (2017) to their network vector autoregression

(NAR), in which the number of parameters is fixed even with increasing dimension. It

led to a series of subsequent studies, including Zhou et al. (2020)’s network GARCH

(NGARCH) model, Xu et al. (2024)’s dynamic network quantile regression (DNQR),

and Armillotta and Fokianos (2024)’s Poisson network autoregressive (PNAR) model.

Distinct from traditional multivariate time series models, these network-based models

are capable of handling time series with very high dimensions. For example, Zhou

et al. (2020) fitted their NGARCH to daily log returns observed simultaneously from

hundreds of stocks, and Armillotta and Fokianos (2024)’s PNAR was used to analyse

monthly crime numbers from 552 blocks in Chicago.

2



Chapter 1. Introduction

An open issue related to high-dimensional GARCH models is to establish limit the-

orems for statistics under increasing dimension. Zhou et al. (2020)’s network GARCH

assumed a fixed dimension N . The asymptotic properties of their quasi maximum like-

lihood estimation (QMLE) hold under increasing temporal sample size, i.e., T → ∞.

However, their limit theorems cannot be applied when both T → ∞ and N → ∞. An

innovative approach to this problem was proposed by Xu et al. (2024), who regarded

samples under large N and large T as random fields, deriving the asymptotic properties

using limit theorems for random fields. In this research, we will use the idea of treating

high-dimensional time series as random fields and establish methodologies to estimate

a series of network GARCH models under large N and large T .

1.2 Research method

With the background being introduced, in this research we make the following contri-

butions to modelling volatilities of high-dimensional time series:

• We propose two new network GARCH models that accommodate asymmetric

and potentially integer-valued spatio-temporal data in a large-scale network;

• We propose general methodologies that apply to a wide range of network GARCH

models with different conditional distributions and structures;

• We develop limit theorems for non-stationary arrays of random fields, and we

apply these results to the proposed models, establishing parameter estimations

that are consistent and asymptotically normal when T → ∞ and N → ∞.

As we have mentioned in the background, the first issue in the development of high-

dimensional GARCH models is the over-parameterization problem caused by a large N .

To address this issue, we adopt the idea of incorporating an observed network into the

model. Compared to other parameter-reduction techniques, such as the conditional

correlations (Bollerslev, 1990; Tse and Tsui, 2001) and the Factor-GARCH models

(Engle et al., 1990; Pan et al., 2010; Li et al., 2016), the network approach is advanced

in two aspects: first, it is natural to describe cross-sectional relations by a network;

3



Chapter 1. Introduction

second, the number of parameters is fixed under increasing N . Further introduction

and comments on the network approach and other parameter reduction techniques are

made in Section 2.2.

Empirical evidence has shown that bad news and good news have asymmetric effects

on predictable volatility (Black, 1976; French et al., 1987). In this research, we use the

self-excited threshold structure to capture this asymmetry, as in the GJR-GARCH

(2.1.5) by Glosten et al. (1993). This choice is based on the work of Engle and Ng

(1993), who fitted different asymmetric GARCH models to daily stock return data,

and the GJR-GARCH (Glosten et al., 1993) outperformed the others. We propose a

threshold network GARCH model (4.1.1) with a threshold of 0, which is appropriate

for analyzing stock returns. However, in the Poisson threshold network GARCH model

(5.2.1) that is proposed for non-negative integer-valued data, we follow Wang et al.

(2014) and let the threshold value be an unknown integer, which can be estimated

simultaneously with other parameters. We also propose a negative binomial threshold

network GARCH (6.5.2) as an example of the generalized network GARCH model

(6.2.2), following the piece-wise threshold structure of Samia and Chan (2011).

Maximum likelihood estimation is a conventional approach in estimating univari-

ate GARCH models and multivariate GARCH models with fixed N . See Francq and

Zaköıan (2004) and Zhou et al. (2020) for example. The asymptotic properties of max-

imum likelihood estimation are based on limit theorems that do not apply when both

T → ∞ and N → ∞. Xu et al. (2024) adopted the limit theorems for random fields

in the inference of their dynamic network quantile regression (DNQR) model, estab-

lishing a consistent and asymptotically normal instrumental variable estimation that

accommodates the large N case. As far as we know, it was the first time limit theo-

rems for random fields were applied in the statistical inference of a high-dimensional

model. Xu et al. (2024) used the limit theorems proposed by Jenish and Prucha (2012)

under near-epoch dependence (NED), which is a spatial dependence measure of ran-

dom fields. However, NED cannot be used without an auxiliary random field (see our

introduction and comments on NED in Section 2.4.2), as in models (5.2.1) and (6.2.2).

In this research, we use the ϵ-weak dependence measure of random fields in the sense of

4



Chapter 1. Introduction

Doukhan and Louhichi (1999). There is no preceding work in the literature that applies

the limit theorems under ϵ-weak dependence to the inference of high-dimensional time

series models. We fill the gap in two aspects: first, we extend existing limit theorems

for ϵ-weakly dependent random fields (Dedecker et al., 2007; Curato et al., 2022) to ac-

commodate non-stationarity; second, we establish some important results to facilitate

the application of proposed limit theorems, e.g., the preservation of ϵ-weak dependence

under transformations and infinite shifts.

1.3 Thesis outline

Chapter 2 is a review of preliminary knowledge regarding GARCH models and random

fields. First, a series of univariate GARCH models are introduced, including asym-

metric GARCH models and integer-valued GARCH models. Then, we introduce the

multivariate GARCH models and the over-parameterization problem caused by high

dimension. Conditional correlation GARCH and Factor-GARCH are introduced as

classic approaches to parameter reduction, followed by the introduction of the network

approach. At last, we introduce two dependence measures for random fields, namely

NED and ϵ-weak dependence. We comment on the limitations of the NED measure

and existing limit theorems under ϵ-weak dependence.

In Chapter 3, we propose a law of large numbers and a central limit theorem for

random fields that are weakly dependent with respect to θ- and η-coefficients. Some

properties of these coefficients are also derived, including weak dependence under trans-

formations and infinite shifts. These intermediate results fill the gap between the pro-

posed limit theorems and their application to the inference of high-dimensional time

series. We establish a maximum likelihood estimation that is consistent and asymp-

totically normal under large NT . Finally, we apply our results to estimate a network

autoregressive model as an example.

In Chapter 4, we propose a threshold network GARCH (TNGARCH) model. The

major part of this chapter has been published in Pan and Pan (2024). Compared to

Zhou et al. (2020)’s network GARCH, we also consider asymmetry in how conditional

5
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variances react to positive and negative shocks. The stationarity of proposed model is

checked under fixed N , and the limit theorems of QMLE are investigated under large N

and large T . We fit the model to log-returns of four groups of stocks from the Shanghai

Stock Exchange and the Shenzhen Stock Exchange. A Wald statistic is proposed to

test the existence of the threshold, and a high-dimensional white noise test is carried

out to check the model adequacy.

In Chapter 5, we consider an extension of the TNGARCH model to accommodate

integer-valued high-dimensional time series, where the conditional distribution is as-

sumed to be Poisson. Unlike the continuous-valued TNGARCH, the threshold value

in this Poisson TNGARCH (PTNGARCH) model is unknown. We propose a two-step

maximum likelihood estimation (MLE) method to estimate the threshold and other

parameters simultaneously. The model is fitted to the daily counts of car accidents in

different neighborhoods of New York City.

In Chapter 6, we establish unified methodologies for a class of network GARCH

models with conditional distributions in the one-parameter exponential family. The

stationarity under fixed N is checked, and we establish a consistent and asymptotically

normal maximum likelihood estimation under large N and large T . The results are

applied to a new negative binomial TNGARCH model. We fit this model to the same

car accident data and compare its performance against the Poisson TNGARCH model

through a probability integral transformation test.
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Chapter 2

Preliminaries

2.1 Univariate GARCH models

Let {yt : t ∈ Z} be a univariate time series. A major purpose of time series models is

to forecast the future based on past information. For example, the one-step forecast of

yt based on past information Ht−1 is the conditional mean E(yt|Ht−1). Conventional

econometric models assumed constant conditional variance Var(yt|Ht−1). For example,

a first-order autoregressive model is written as:

yt = ϕyt−1 + εt, (2.1.1)

where {εt : t ∈ Z} is independently and identically distributed (IID) with mean 0 and

Var(εt) = σ2. Then the one-step forecast is E(yt|yt−1) = ϕyt−1 with conditional vari-

ance Var(yt|yt−1) = σ2. However, some econometric forecasters found that randomness

associated with forecasts changes widely over time (McNees, 1979), hence the constant

conditional variance seems inappropriate. Engle (1982) proposed the ARCH model in

order to accommodate time-varying conditional variance in time series forecasting. A

first-order ARCH model is written as:

yt|Ht−1 ∼ N(0, ht),

ht = ω + αy2t−1,
(2.1.2)

7
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where ω > 0 and α ≥ 0, ensuring the positiveness of ht. The conditional distribution of

yt is assumed to be normal with mean 0 and variance ht. In this setting, the conditional

variance Var(yt|yt−1) = ht is allowed to change over time.

Bollerslev (1986) proposed a natural generalization of the ARCH model, namely

GARCH. A GARCH(1,1) model has the following form:

yt|Ht−1 ∼ N(0, ht),

ht = ω + αy2t−1 + βht−1,
(2.1.3)

where ω > 0, α ≥ 0 and β ≥ 0, ensuring the positiveness of ht. Unlike the ARCH

model, the conditional variance in the GARCH model is related to both y2t−1 and its

own past ht−1. This feature allows the GARCH model to incorporate longer memory

in the conditional variance. In fact, it can be regarded as an ARCH(∞) model when

0 < β < 1 (p.309, Bollerslev, 1986). The GARCH model has been widely applied

in econometric studies, leading to a series of extensions that accommodate additional

features not described by the original GARCH model. Next, we will introduce two types

of extended GARCH models: threshold GARCH models, which allow for asymmetry

in the conditional variance, and integer-valued GARCH models, which are designed for

count data. For readers interested in other types of GARCH variations, we recommend

Teräsvirta (2009)’s survey of univariate GARCH-type models.

2.1.1 Asymmetric GARCH models

According to the empirical works by Black (1976) and French et al. (1987) among others,

sometimes an unexpected drop in price (bad news) increases predictable volatility more

than an unexpected increase in price (good news) of similar magnitude. The original

GARCH model (2.1.3) cannot explain this effect, as the impact of yt−1 on ht is not

related to the sign of yt−1. Different extensions of the GARCH model have been

proposed to accommodate this effect by incorporating different coefficients around the

threshold 0. We list two important examples below.
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Example 2.1.1. Nelson (1991) proposed an exponential GARCH as follows:

yt = εt
√
ht,

log(ht) = ω + αεt−1 + γ [|εt−1| − E|εt−1|] + β log(ht−1),
(2.1.4)

where {εt : t ∈ Z} is IID with mean 0 and variance 1. Nelson (1991) fitted his model

to daily returns for a value-weighted market index and obtained a negative estimation

of α, indicating that negative shocks generate more volatility than positive shocks.

Example 2.1.2. Glosten et al. (1993) proposed a more natural specification, namely

GJR-GARCH, as follows:

ht = ω + αy2t−1 + γ1{yt−1>0}y
2
t−1 + βht−1, (2.1.5)

where 1{yt−1>0} is an indicator that equals 1 if yt−1 > 0 and 0 otherwise. It is assumed

that ω > 0, α ≥ 0, γ ≥ 0 and β ≥ 0, to ensure the positiveness of ht. Therefore,

the slope of y2t−1 is α + γ on the right side of the threshold 0 and α on the left side.

Their empirical results agreed with those of Nelson (1991), as the estimation of γ was

negative.

Engle and Ng (1993) conducted an excellent comparison between different speci-

fications of asymmetric ARCH/GARCH models, including the EGARCH and GJR-

GARCH, on daily Japanese stock return data. Their empirical results suggested that

the GJR-GARCH outperformed the others. Therefore, in Chapter 4, we will adopt a

threshold structure similar to the GJR-GARCH, as we will also analyze daily stock

return data.

2.1.2 Integer-valued GARCH models

The original GARCH model (2.1.3) assumes a normal conditional distribution of yt,

while in the EGARCH model (2.1.4) and the GJR-GARCH model (2.1.5), the condi-

tional distribution is centered and continuous. These GARCH models are not capable

of handling time series of counts, such as the trading volume of houses in the real estate

market De Wit et al. (2013), the number of stock transactions Jones et al. (1994), or
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the daily mortality from COVID-19 Pham (2020).

A natural idea is to consider a discrete conditional distribution of yt. For example, a

conditional Poisson distribution was considered by Heinen (2003), with a GARCH-type

autoregressive conditional intensity. A similar specification was also used by the integer

GARCH (INGARCH) model of Ferland et al. (2006) and the Poisson autoregression

(PAR) of Fokianos et al. (2009). There are other specifications in the literature, ac-

cording to different features presented by the data. For example, Ristić et al. (2016)

considered a conditional binomial distribution for bounded Z-valued data, and Zhu

(2010) proposed a negative binomial integer-valued GARCH (NB-INGARCH) model

to handle Z-valued data with over-dispersion. We give two examples below.

Example 2.1.3. A GARCH(1,1) model with a conditional Poisson specification has the

following form:

yt|Ht−1 ∼ Poisson(λt),

λt = ω + αyt−1 + βλt−1,
(2.1.6)

where ω > 0, α ≥ 0 and β ≥ 0, ensuring the positiveness of λt. The conditional Poisson

intensity λt can be interpreted as the conditional variance or the conditional mean.

Accordingly, model (2.1.6) can be named integer-valued GARCH (Ferland et al., 2006)

or Poisson autoregression (Fokianos et al., 2009). We tend to use the name INGARCH

since the autoregressive structure of the intensity process parallels that of (2.1.3).

Example 2.1.4. An NB-INGARCH(1,1) model from Zhu (2010) is written as follows:

yt|Ht−1 ∼ NB(K, pt),

1− pt
pt

= λt = ω + αyt−1 + βλt−1,
(2.1.7)

where ω > 0, α ≥ 0 and β ≥ 0, ensuring the positiveness of 1−pt
pt

. Here, yt is the

count of failures before K successes, and pt is the (conditional) probability of success.

Although λt =
1−pt
pt

is not the conditional variance, it is still appropriate to call it a

GARCH-type model, since the conditional variance K(1−pt)
p2t

changes over time.

Analogous to the continuous-valued case, integer-valued time series can also exhibit

asymmetry. For example, Wang et al. (2014) proposed a self-excited threshold Poisson
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autoregression (SETPAR) model and fitted it to annual counts of earthquakes, with

results showing an asymmetric structure around an estimated threshold of 25. With

a conditional Poisson distribution of yt, a SETPAR specification on the conditional

intensity λt is:

λt =


ω1 + α1yt−1 + β1λt−1 yt−1 ≤ r,

ω2 + α2yt−1 + β2λt−1 yt−1 > r.
(2.1.8)

To ensure the positiveness of λt, it is supposed that ω1 and ω2 are positive, α1, α2,

β1 and β2 are non-negative. Here, the coefficient parameters change when yt−1 is on

different sides of the threshold r. Unlike the GJR-GARCH, the threshold r is a positive

integer to be estimated simultaneously with the coefficient parameters. Wang et al.

(2014) suggested a two-step maximum likelihood estimation. Because the threshold is

an integer, it is not computationally demanding to search within a range of candidates

for the one that maximizes the likelihood.

Davis and Liu (2016) established a unified theory and inference related to a class of

GARCH models with conditional distributions in the one-parameter exponential family

and the accompanying process of the conditional mean µt = E(yt|Ht−1) evolving as a

function of yt−1 and µt−1. i.e.:

µt = gθ(yt−1, µt−1). (2.1.9)

The one-parameter exponential family includes a wide range of continuous and discrete

distributions, e.g., the normal distribution, Poisson distribution, and binomial distri-

bution, among others. Therefore, Davis and Liu (2016)’s methodology applies to many

classical GARCH models, including the original GARCH (2.1.3), the GJR-GARCH

(2.1.5), the Poisson GARCH (2.1.6), and the NB-INGARCH (2.1.7).

2.2 Multivariate GARCH models

Let {yt : t ∈ Z} be an N -dimensional time series where yt = (y1t, y2t, ..., yNt)
′. The

univariate volatility models (2.1.2) and (2.1.3) concern the dynamics of the conditional
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variance. So it is natural to consider the dynamics of conditional covariance matrix

in the multivariate case. Bollerslev et al. (1988) first proposed a multivariate GARCH

model as follows:

yt|Ht−1 ∼ N (0, Ht),

vech(Ht) = C +A vech(yt−1y
′
t−1) +B vech(Ht−1).

(2.2.1)

The conditional distribution of yt−1 is a multivariate normal distribution N (0, Ht). Ht

is the N × N conditional covariance matrix, and the 1
2N(N + 1)-dimensional vector

vech(Ht) is the stacked columns of Ht. A total number of 1
2N(N + 1) + 1

2N
2(N + 1)2

parameters are contained in A, B, and C.

The MGARCH model of Bollerslev et al. (1988) is very general, as it considers all

cross-sectional relations between these conditional variances and covariances. However,

the positive definiteness of Ht cannot be ensured by simply restraining A, B and C,

and the number of parameters can be excessive even when N is only mildly large.

These two problems make the estimation of parameters computationally infeasible in

practice. In fact, in the empirical study on the quarterly percentage returns from

three assets (N = 3), Bollerslev et al. (1988) used a simplified version of (2.2.1) with

diagonal matrices A and B. The over-parameterization problem is one of the major

obstacles in the development of multivariate GARCH models, and many efforts have

been made in the literature to reduce the number of parameters without sacrificing

too many cross-sectional relations. For a systematic survey of multivariate GARCH

models, we recommend Bauwens et al. (2006). Selected examples of parameter reduced

multivariate GARCH models will be introduced in the subsequent sections.

2.2.1 CCC-GARCH and DCC-GARCH

Bollerslev (1990) proposed a constant conditional correlation GARCH (CCC-GARCH)

model, which only considers dynamics in the diagonal elements (conditional variances)

of the conditional covariance matrix Ht. Specifically, a CCC-GARCH(1,1) model as-
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sumes that

hii,t = ωi + αiy
2
i,t−1 + βihii,t−1, i = 1, 2, ..., N ;

hij,t = ρij
√
hii,thjj,t, j ̸= i.

(2.2.2)

Each conditional variance hii,t follows a typical GARCH dynamic, while the conditional

covariance hij,t is derived from hii,t, hjj,t, and a constant correlation ρij . To ensure the

positiveness of hii,t it suffices that ωi > 0, αi ≥ 0, and βi ≥ 0 for all i = 1, 2, . . . , N . Ad-

ditionally, the number of parameters in (2.2.2) is of order O(N2), which is significantly

reduced compared to model (2.2.1).

Tse and Tsui (2001) proposed a dynamic conditional correlation GARCH (DCC-

GARCH) model, extending the CCC-GARCH model by assuming time-varying condi-

tional correlations as follows:

ρij,t = (1− θ1 − θ2)ρij + θ1ρij,t−1 + θ2ϕij,t−1, (2.2.3)

where ϕij,t−1 is a function of lagged observation of yit, θ1 ≥ 0, θ2 ≥ 0 and θ1 + θ2 ≤ 1.

The DCC-GARCH model adds more flexibility to the CCC-GARCH while retaining

O(N2) parameters, since the coefficients θ1 and θ2 (2.2.3) are the same for all i =

1, 2, ..., N .

Compared to model (2.2.1), the CCC-GARCH imposes a standalone GARCH dy-

namic with different coefficients on each conditional variance while assuming constant

conditional correlations. The DCC-GARCH further imposes standalone GARCH dy-

namics with the same coefficients on each conditional correlation. However, these

models still suffer from the over-parameterization problem with large N despite their

significance in parameter reduction.

2.2.2 Factor-GARCH

Another approach to reducing parameters in multivariate GARCH models is using fac-

tor models. The idea behind Factor-GARCH is assuming that the problem of modeling

the N × N conditional covariance matrix Ht can be reduced to modeling the K ×K

conditional covariance matrix of K common factors, where K is supposed to be much
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smaller than N . For example, Pan et al. (2010) assumed that

yt = Axt + vt, (2.2.4)

where xt is the K-dimensional vector of factors, vt is an IID innovation vector with

mean 0 and covariance Σv, and A is a N ×K matrix of parameters. It is not hard to

obtain that

Ht = AH
(f)
t A′ +Σv,

where H
(f)
t = Var(xt|Ht−1) is a K ×K matrix. The first factor volatility model was

proposed by Engle et al. (1990), followed by a series of extensions including Bollerslev

and Engle (1993), Pan et al. (2010), Hu and Tsay (2014), and Li et al. (2016).

The performance of a factor model when fitted to high-dimensional time series

largely relies on the estimated number of factors. For example, Li et al. (2016) fitted

their factor GARCH model to daily returns of 196 stocks (N = 196), and the estimated

number of factors was only 1 (K = 1), reducing the high-dimensional process to a

univariate process. However, such efficiency in dimension reduction cannot be assured

and completely depends on the data itself.

2.2.3 Network GARCH

Zhu et al. (2017) proposed an alternative approach to the aforementioned parameter-

reduction and dimension-reduction methods by incorporating observed social relation-

ships into a vector autoregression. They regarded yt = (y1t, y2t, . . . , yNt)
′ as observa-

tions from N nodes in an undirected and weightless network, which should be observed

in practice. The cross-sectional relations are represented by edges aij , where aij = 1

if node i and node j are connected, and aij = 0 otherwise. Moreover, Zhu et al.

(2017)’s network AR model has a fixed number of parameters. They fitted their model

to weekly log(1+x)-transformed post lengths from N = 2982 social media users, where

the network was established directly based on the follower-followee relations.

Zhou et al. (2020) saw the merits of network in high-dimensional time series analysis

14



Chapter 2. Preliminaries

and established a network GARCH(1,1) as follows:

hit = ω + αy2i,t−1 + λ
N∑
j=1

wijy
2
j,t−1 + βhi,t−1, i = 1, 2, · · · , N. (2.2.5)

where wij =
aij∑N

k=1 aik
, ω > 0, α ≥ 0, λ ≥ 0 and β ≥ 0. Compared to conventional

multivariate GARCH models, (2.2.5) uses minimum parameterization and depicts the

cross-sectional relations in a direct way, i.e. the conditional variance hit of an individual

i is associated with past observations on its neighbours.

The parsimony in this idea leads to a series of network time series models, including

network quantile autoregression (Zhu et al., 2019; Xu et al., 2024) and Poisson network

autoregression (Armillotta and Fokianos, 2024). The network can be established ac-

cording to empirical needs (Anselin, 1988). For example, Zhu et al. (2019) and Zhou

et al. (2020) considered connections between stocks through common shareholders; Xu

et al. (2024) saw two companies as connected if their headquarters are in the same city;

Armillotta and Fokianos (2024) assumed that crime numbers from two geometrically

neighboring locations are related.

2.3 Spatio-temporal GARCH models

Multivariate time series models belong to a much larger family of spatio-temporal mod-

els. Spatio-temporal models deal with random variables observed over both time and

space. For example, a random variable yt(s) (s ∈ R2) observed at time t on geographic

coordinate s is spatio-temporal. An observation yit from the network GARCH model

(2.2.5) is also spatio-temporal, with the spatial location s = i (i ∈ Z).

A general form of a spatio-temporal model is written as:

yt(s) = f (t,s)
(
θ(t,s),Xt(s), εt(s)

)
, (2.3.1)

where f (t,s) is a space-time-specific function of the parameters θ(t,s), a vector of ex-

planatory variables Xt(s), and an error term εt(s). In practice, it is essential to design

a simplified version of model (2.3.1), as the general form typically includes more pa-
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rameters than observations (Anselin, 1988). For example, Lu et al. (2009) proposed

a spatio-temporal model with parameters varying only across spatial locations s. The

network GARCH model (2.2.5) is a more simplified version of (2.3.1), with parameters

unchanged over both time and space. The Spatial Bilateral BEKK GARCH model pro-

posed by Billio et al. (2023) incorporates space-varying parameters embedded within

time-varying network structures.

The spatio-temporal GARCH model of Hølleland and Karlsen (2020) is a direct

extension of the original GARCH model (2.1.3). It is written as:

yt(s) = εt(s)
√
ht(s),

ht(s) = ω +

p∑
i=1

∑
u∈∆1i

αi(u)y
2
t−i(s− u) +

q∑
i=1

∑
u∈∆2i

βi(u)ht−i(s− u),
(2.3.2)

where s ∈ Zd is a d-dimensional spatial location, ω > 0, ∆1i =
{
u ∈ Zd : αi(u) ≥ 0

}
and ∆2i =

{
u ∈ Zd : βi(u) ≥ 0

}
. The original GARCH model (2.1.3) only considers the

temporal heterogeneity of the conditional variance process, while model (2.3.2) further

incorporates spatial effects.

Autoregressive spatio-temporal models have been extensively studied (Fan et al.,

2003; Lu et al., 2009, 2024), but the study of spatio-temporal GARCH models is still

in its early stages. Since high-dimensional time series data is a special case of spatio-

temporal data where the location s is a single index i ∈ Z, the network-based GARCH

models proposed in this research are spatio-temporal GARCH models with highly spe-

cific structures. Similar to existing network-based models (Zhu et al., 2017; Zhou et al.,

2020; Xu et al., 2024; Armillotta and Fokianos, 2024), we employ an explicit network

structure to represent the spatial heterogeneity of conditional variances. Furthermore,

it is the connection between high-dimensional time series data and spatio-temporal

data that inspires us to consider the limit theorems for random fields in the estimation

of high-dimensional time series models.
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2.4 Limit theorems for random fields

In this research, we are interested in statistical inference for asymmetric network

GARCH models considering the case when N → ∞. N -dimensional time series model

with N → ∞ are also called spatio-temporal models by some authors. The empiri-

cal study of Zhou et al. (2020) showed that the network GARCH model can handle

data with a large N ; however, their quasi-maximum likelihood estimation was estab-

lished with a fixed N . Their proof of asymptotic normality cannot be applied when

N → ∞ since it relied on the strict stationarity of the N -dimensional random vector

yt = (y1t, y2t, . . . , yNt)
′. Zhu et al. (2017) employed ordinary least squares estimation

for their network AR model, and Armillotta and Fokianos (2024) adopted a quasi-

maximum likelihood estimation for their Poisson network AR model, both allowing

N → ∞. However, their methods cannot be applied to GARCH-type models, and no

parameter estimation for high-dimensional GARCH models in the existing literature

remains valid when N → ∞, as far as we know.

2.4.1 Limit theorems in the inference of high-dimensional models

Limit theorems are essential in statistical inference for time series models. Particularly,

the classical law of large numbers (LLN) and the central limit theorem (CLT) are fun-

damental in establishing consistent and asymptotically normal parameter estimation.

Example 2.4.1. Let {Xt : t ∈ Z} be a time series of IID random variables with mean

µ and variance σ2, the classic law of large numbers and the central limit theorem are

written as:

(LLN) X̄T
a.s.→ µ;

(CLT )
√
T (X̄T − µ)

d→ N(0, σ2)

as T → ∞, where X̄T = 1
T

∑T
t=1Xt is the sample mean.

The IID assumption required by the classical limit theorems in Example 2.4.1 is

too stringent in time series analysis. Limit theorems corresponding to different types
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of sequential dependence have been developed and applied in the estimation of time

series models. For example, Zhu et al. (2017) and Zhou et al. (2020) used the central

limit theorem for martingale difference sequences (Proposition 7.8, Hamilton, 2020).

However, if the limit theorems for dependent time series are used in the inference for

high-dimensional models, severe assumptions on limiting behaviors as N → ∞ are often

required. See, for examples, Assumption (C3) in Zhu et al. (2017), Assumption (C2)

in Zhu et al. (2019), and Assumption (B3) in Armillotta and Fokianos (2024).

Remark. {Xt : t ∈ Z} is a martingale difference sequence if E(Xt|Xt−1, Xt−2, ...) = 0

and E∥Xt∥ < ∞. This concept defines a measure of dependence of Xt on its past.

However, if Xt is an N -dimensional vector, being a martingale difference sequence tells

no information about the cross-sectional dependence.

In contrast, Xu et al. (2024) employed an instrumental variable estimation for their

dynamic network quantile regression (DNQR) model that accommodates N → ∞, and

it was proved to be consistent and asymptotically normal by using the limit theorems

for random fields. The dependence measure they use is the near-epoch dependence

(NED), which was extended by Jenish and Prucha (2012) to random fields.

Remark. A random field is a collection of random variables Xi : i ∈ D where Xi is

indexed by i in a lattice D. For example, letting i = t ∈ Z, a time series {Xt : t ∈ Z} is

a random field on the lattice D = Z; letting i = (i, t) ∈ Z2, a spatio-temporal process

{yit : (i, t) ∈ Z2} is a random field on the lattice D = Z2.

Comparing to the conventional measures of serial dependence such as martingale dif-

ference, using a dependence measure for random fields seems to be more appropriate

when investigating the spatio-temporal dependence.

2.4.2 Near-epoch dependent random fields

The limit theorems of Jenish and Prucha (2012) were established for random fields that

are NED on a mixing random field. According to their definition, {Xi : i ∈ D} is said

to be Lp-NED (p ≥ 1) on {εi : i ∈ D} if supi∈D ∥Xi∥p <∞, and

∥Xi − E(Xi|Fi(s)∥p ≤ diψ(s),
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where Fi(s) := σ{εj : ∥j − i∥ ≤ s}, {ψ(s) : s ≥ 1} are non-negative constants such

that lims→∞ ψ(s) = 0, and {di : i ∈ D} are finite positive constants. Moreover, it

is called uniformly NED if di’s are uniformly bounded. It is called NED of size−µ if

ψ(s) = O(s−µ) for some µ > 0.

NED measures the approximability of a random field by another random field that

is mixing in the sense of Jenish and Prucha (2009). Therefore, NED becomes an invalid

concept if such an auxiliary random field can not be appropriately identified. In the

DNQR model of Xu et al. (2024), there exists a auxiliary random field consisting of IID

uniformly distributed random variables {Uit}. On the other hand, in GARCH mod-

els with conditional Poisson distribution (Fokianos et al., 2009) or negative binomial

distribution (Zhu, 2010), there is no appropriate auxiliary random field.

2.4.3 ϵ-weakly dependent random fields

Let U ⊆ D and V ⊆ D be two sub-lattices, with ρ(U, V ) = min{∥i− j∥ : i ∈ U, j ∈ V }

defining their distance. XU denotes a collection of random variables {Xi : i ∈ U}.

Doukhan and Louhichi (1999) introduced a dependence measure

ϵu,v(s) = sup

{
|Cov(f(XU ), g(XV ))|

Ψ(f, g)
: f ∈ F , g ∈ G, |U |c = u, |V |c = v, ρ(U, V ) ≥ s

}
,

where F and G are two classes of real-valued functions and Ψ is a positive bounded

real-valued function of f ∈ F and g ∈ G. The ϵ-coefficient ϵu,v(s) is specified by Ψ and

regularity conditions on F and G, and it measures the dependence between two groups

of random variables (with cardinality u and v respectively) that are s-apart spatially.

In what follows, we give two examples of dependence coefficients.

Example 2.4.2. (Dedecker and Doukhan, 2003) ϵ-coefficients become θ-coefficients if

F is a class of bounded functions, G is a class of Lipschitz continuous functions, and

Ψ(f, g) = v∥f∥∞ Lip(g).

Example 2.4.3. (Doukhan and Louhichi, 1999) ϵ-coefficients become η-coefficients if

Fu and Gv are classes of bounded and Lipschitz continuous functions, and Ψ(f, g) =

v∥f∥∞ Lip(g) + u∥g∥∞ Lip(f).
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Other types of ϵ-coefficients can be looked up in Dedecker et al. (2007). The random

field {Xi : i ∈ D} is said to be (F ,G,Ψ)-dependent (or ϵ-dependent for short) if

lims→∞ ϵ(s) = 0. (F ,G,Ψ)-dependence is named θ- or η-dependence, according to

different specifications of dependence coefficients in above examples.

Comparing to the concept of NED, ϵ-dependence measures the spatial dependence

in a more direct way, as it does not require an auxiliary random field. However, there

is no attempt in the literature on applying limit theorems under ϵ-dependence to the

inference of high-dimensional time series models. In fact, existing limit theorems for

random fields under ϵ-weak dependence is not as flexible as that under NED (Jenish

and Prucha, 2012). For example, the most recent result is a central limit theorem

proposed by Curato et al. (2022) for θ-lex weakly dependent random fields, where their

θ-lex dependence considers the covariance between f(XU ) and g(XV ), with v = 1 and

all indices in U are lexicographically smaller than the one in V (see Definition 2.1 in

Curato et al. (2022) for details).

Example 2.4.4. {Dn : n ≥ 1} is a series of finite subsets of Zm such that

lim
n→∞

|Dn|c = ∞, lim
n→∞

|∂Dn|c
|Dn|c

= 0,

where ∂Dn = {i ∈ Dn : ∃j /∈ Dn, ∥i− j∥ = 1}. {Xi : i ∈ Zm} is a strictly stationary

centered real-valued random field such that E|Xi|2+δ < ∞ for some δ > 0, and the

dependence coefficients θ(s) = O(s−µ) for some µ > m(1 + 1/δ). Then as n→ ∞,

1√
|Dn|c

∑
i∈Dn

Xi
d→ N(0, σ2),

where σ2 =
∑

j∈Zm E(X0Xj|I) with I being the σ-algebra of shift invariant sets as

defined in Dedecker (1998).

For the aforementioned high-dimensional models (Zhu et al., 2017; Zhou et al., 2020;

Xu et al., 2024; Armillotta and Fokianos, 2024), stationarity over t can be proved under

mild conditions. However, the CLT above requires strict stationarity over both i and

t, which is too stringent for high-dimensional time series. Indeed, the type II strict
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stationarity proposed by Zhu et al. (2017) can be proved for some high-dimensional

network models (Zhu et al., 2017; Armillotta and Fokianos, 2024), but it is not a

widely accepted definition of stationarity in a spatio-temporal sense.
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Chapter 3

Limit Theorems of Weakly

Dependent Random Fields

3.1 Introduction

High-dimensional models have drawn much attention recently in science, social science,

econometrics, among other fields. High-dimensional models, or spatio-temporal models,

have their merits in describing dependence over both time and space. However, since the

samples from high-dimensional models form a two-dimensional panel that grows in two

directions, the limit theorems used in the inference of univariate or fixed-dimensional

time series are no longer valid. Note that a spatio-temporal model can be regarded as

a random process running on a two-dimensional lattice, i.e., a random field. Therefore,

we seek limit theorems for random fields that could potentially provide useful tools in

the inference of high-dimensional models.

Limit theorems for random fields have been extensively studied in the literature.

Jenish and Prucha (2009) proposed limit theorems for arrays of random fields un-

der α- and ϕ-mixing. Compared to previous limit theorems for mixing random fields

(Bolthausen, 1982; Guyon, 1995; Dedecker, 1998), their limit theorems are more general

in the sense that they accommodate arrays of random fields that are non-stationary

and have asymptotically unbounded moments. However, the mixing property may fail
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to hold for integer-valued time series (see (3.6.2) in Dedecker et al. (2007)). Even a

simple AR(1) model with Bernoulli-distributed innovation is not mixing (Gorodetskii,

1978; Andrews, 1984). To solve this flaw of the mixing property, Doukhan and Louhichi

(1999) introduced a new concept of weak dependence, which can be extended to random

fields. See Chapter 2 in Dedecker et al. (2007) for details.

However, existing limit theorems under weakly dependence either require station-

arity (Dedecker et al., 2007; El Machkouri et al., 2013; Curato et al., 2022) or are

only established for single-indexed sequences (Neumann, 2013; Merlevède et al., 2019).

For example, El Machkouri et al. (2013) proposed a CLT for random fields that are

Bernoulli shifts of IID innovations, which could be regarded as a special case of the

models that our CLT can handle. Neumann (2013) and Merlevède et al. (2019) pro-

posed a CLT and a functional CLT, respectively, for non-stationary triangular arrays

of random variables. Since they are both limited to random sequences along a single

time index, their results are not applicable to high-dimensional time series that we will

discuss later, and, moreover, none of them is robust against asymptotically unbounded

moments. In Theorem 3.1 and Theorem 3.2, we will propose a law of large numbers

and a central limit theorem for weakly dependent triangular arrays of random fields,

which are not necessarily stationary and have potentially asymptotically unbounded

moments.

Another flaw of existing literature is the lack of applications of limit theorems for

random fields to the inference of high-dimensional time series. The property of weak

dependence that we use in this chapter has been proved to be preserved under trans-

formations with certain conditions. See, for example, Proposition 2.4 in Curato et al.

(2022). In Proposition 3.2, we will also show that weak dependence can be preserved

under infinite shifts. Facilitated by these properties of weak dependence, we are able

to apply our limit theorems to establish a maximum likelihood estimator for high-

dimensional time series, with consistency and asymptotic normality being proved in

Proposition 3.4 and Proposition 3.5. With these new results, we have built a sufficient

theoretical basis for making asymptotic inference in a wide range of high-dimensional

time series models that can be treated as weakly dependent random fields under rea-
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sonably general conditions. As an example of the application of our general theory, we

obtained the asymptotic normality of the estimation for network autoregressive (NAR)

models in Proposition 3.6 without assuming second-type stationarity and under less

restrictive conditions on networks (ref. Zhu et al. (2017)).

The rest of this chapter is organized as follows. In Section 3.2, we will introduce

the concept of weak dependence for arrays of random fields and investigate its heredity

under transformation and infinite shift. Our LLN and CLT for arrays of random fields

will be presented in Section 3.3. In Section 3.4, we will provide the conditions for high-

dimensional time series to be weakly dependent and establish the asymptotic properties

of the MLE. The proofs of all our results are included in Section A.1.

3.2 Weakly dependent random fields

Random fields are random processes running on multi-dimensional lattices. Considering

a metric space (T, ρ), one could easily define on T an infinitely countable lattice D ⊂ T,

which satisfies the following assumption throughout this chapter:

Assumption 3.2.1. Defined on the metric space (T, ρ), the lattice D ⊂ T is infinitely

countable, and there exists a minimum distance ρ0 = infi,j∈D ρ(i, j), and without loss

of generality we assume ρ0 ≥ 1.

This minimum distance assumption is required to ensure the growth of sample size with

the expansion of sample region on D. A simple example that satisfies Assumption 3.2.1

is T being a d-dimensional Euclidean space Rd and D = Zd being an infinite lattice with

minimum distance of 1. Let {Dn : Dn ⊂ D,n ≥ 1} be a series of sub-lattices of D with

finite sizes. In the rest of the section, we consider a random field {Xi,n : i ∈ Dn, n ≥ 1},

with Xi,n takes its value in a Banach space (X , ∥ · ∥).

In their Definition 2.2, Dedecker et al. (2007) defined the (F ,G,Ψ)-coefficients

that measure the dependence between two separated groups of random variables on

Z. Dedecker et al. (2007) also remarked that their definition could be easily extended

to general metric sets of indices. Curato et al. (2022) defined their θ-lex dependence

coefficients for random fields on Rm. In Section 3.2.1 we will adopt the weak depen-
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dence by Dedecker et al. (2007), and extend it for triangular arrays of random fields

with indices on any lattice D that satisfies Assumption 3.2.1.

3.2.1 Weak dependence

Let Fu and Gv denote two classes of functions from X u to R and X v to R respectively.

If Ψ is some function mapping from Fu × Gv to R+, and X and Y are two arbitrary

random variables in X u and X v, then we can define the measurement of dependence

between X and Y by

ϵ(X,Y) = sup

{
|Cov(f(X), g(Y))|

Ψ(f, g)
: f ∈ Fu, g ∈ Gv

}

Given any Un ⊂ Dn with cardinality |Un|c = u and Vn ⊂ Dn with cardinality |Vn|c = v,

let XUn = (Xi,n)i∈Un , XVn = (Xi,n)i∈Vn . Then the dependence coefficient of random

fields {Xi,n : i ∈ Dn, n ≥ 1} is defined by

ϵn,u,v(s) = sup {ϵ(XUn ,XVn) : |Un|c = u, |Vn|c = v, ρ(Un, Vn) ≥ s} , (3.2.1)

where ρ(Un, Vn) := mini∈Un,j∈Vn ρ(i, j) measure the distance between Un and Vn.

Remark. For any functions f ∈ Fu and g ∈ Fv such that Ψ(f, g) <∞, inequality below

follows directly from (3.2.1):

|Cov(f(XUn), g(XVn))| ≤ Cϵn,u,v(ρ(Un, Vn)) (3.2.2)

for some constant 0 < C <∞ that is related to f , g and Ψ.

Remark. Similar to Definition 1 in Jenish and Prucha (2009), we introduce the following

notations:

ϵ̄u,v(s) = sup
n
ϵn,u,v(s), ϵ̄(s) = sup

u,v
ϵ̄u,v(s).

Now we are ready to give a formal definition of weak dependence as follows:

Definition 3.1. The random fields {Xi,n : i ∈ Dn, n ≥ 1} in Banach space (X , ∥ · ∥)

are said to be ϵ-weakly dependent if lims→∞ ϵ̄(s) = 0.
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Using specifications (2.2.3) and (2.2.7) of Ψ in Dedecker et al. (2007), two varia-

tions of weak dependence coefficients can be defined according to different regularity

conditions on Fu and Gv:

• If Fu is a class of bounded functions and Gv is a class of Lipschitz continuous

functions, then we can define the θ-dependence coefficient as

θn,u,v(s) = sup {ϵ(XUn ,XVn) : |U |c = u, |V |c = v, ρ(Un, Vn) ≥ s} , (3.2.3)

by letting Ψ(f, g) = v∥f∥∞ Lip(g).

• If Fu and Gv are both classes of bounded Lipschitz continuous functions, we can

also define the η-dependence coefficient as

ηn,u,v(s) = sup {ϵ(XUn ,XVn) : |U |c = u, |V |c = v, ρ(Un, Vn) ≥ s} , (3.2.4)

by letting Ψ(f, g) = u∥g∥∞ Lip(f) + v∥f∥∞ Lip(g).

In this chapter we focus on θ and η coefficients. For readers who may be interested in

other variations, we refer to Dedecker et al. (2007) section 2.2. From now on, we will

use ϵ to denote a generic dependence coefficient despite of cases when specific notations

are necessary.

In some particular cases, we can compare the ϵ−weak dependence to the mixing

(Jenish and Prucha, 2009) and the near-epoch dependence (NED) (Jenish and Prucha,

2012), which are two widely used concepts of dependence of random fields in the lit-

erature. In the case of random processes (i.e. the dimension of D is 1), an AR(1)

process with non-smooth innovation is η-weakly dependent but it is not mixing (An-

drews, 1984), and Proposition 1 in Doukhan et al. (2012) shows that η-weak dependence

implies α-mixing for integer-valued processes. Moreover, by Example 3.4.2 and Propo-

sition 3.3 in Section 3.4, we show that uniform L1-NED on IID random variables implies

η-weak dependence, in the case when D = Z2.
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3.2.2 Heredity of weak dependence

Before we establish the limit theorems in the next section, it is important to investigate

the heredity of weak dependence, which is essential for us to apply the limit theorems

in the inference of high-dimensional models. See for example, the instrumental variable

quantile regression estimation for the dynamic network quantile regression (DNQR) by

Xu et al. (2024) and the quasi maximum likelihood estimation for the threshold network

GARCH (TNGARCH) by (Pan and Pan, 2024). In this section, we will show that the

θ and η weak dependence can be preserved under locally Lipschitz transformations and

infinite shifts.

Proposition 3.1 below is a natural extension of Proposition 2.1 and Proposition 2.2

in Dedecker et al. (2007) to arrays of random fields. It shows that weak dependence is

inherited under transformations satisfying condition (3.2.5). A simple example is any

Lipschitz-continuous function when a = 1.

Proposition 3.1. Let {Xi,n : i ∈ Dn, n ≥ 1} be a Rdx-valued random field with

supn supi∈Dn
∥Xi,n∥p <∞ for some p > 1, and H : Rdx 7→ R is a function such that

|H(x)−H(y)| ≤ c∥x− y∥(∥x∥a−1 + ∥y∥a−1) (3.2.5)

for some c ∈ (0,+∞), a ∈ [1, p), and any x, y ∈ Rdx. Suppose that {Yi,n : i ∈

Dn, n ≥ 1} are transformed from {Xi,n : i ∈ Dn, n ≥ 1} by letting Yi,n = H(Xi,n). If

{Xi,n : i ∈ Dn, n ≥ 1} are weakly dependent with coefficients θ̄x(s) or η̄x(s), then {Yi,n :

i ∈ Dn, n ≥ 1} are also weakly dependent with θ̄y(s) ≤ Cθ̄x(s)
p−a
p−1 or η̄y(s) ≤ Cη̄x(s)

p−a
p−1

for some constant C > 0.

For the heredity of weak dependence under shifts, we consider D ⊂ Zd, equipped

with distance measure ρ(i, j) for any i, j ∈ D. Let {εi : i ∈ D} be a R-valued random

field on D. Let Hi,n : RD 7→ R be a measurable function, and random fields {Xi,n : i ∈

Dn, n ≥ 1} are defined by Xi,n := Hi,n((εj)j∈D). For each h ∈ N, and for any (xj)j∈D
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and (yj)j∈D such that xj ̸= yj if and only if ρ(i, j) = h, Hi,n satisfies that

|Hi,n((xj)j∈D)−Hi,n((yj)j∈D)|

≤Bi,n(h)( max
ρ(i,j)̸=h

|xj |l ∨ 1)
∑

ρ(i,j)=h

|xj − yj |
(3.2.6)

almost surely, where l ≥ 0 and {Bi,n(h) : i ∈ Dn, n ≥ 1} are positive constants

satisfying that

CB := sup
n≥1

sup
i∈Dn

∞∑
h=0

Bi,n(h)h
d−1 <∞. (3.2.7)

In Proposition 3.2 below, we investigate the preservation of weak dependence from the

{εi : i ∈ D} to {Xi,n : i ∈ Dn, n ≥ 1}.

Proposition 3.2. Let {Xi,n ∈ R : i ∈ Dn, n ≥ 1} be an array of Bernoulli shifts

of {εi ∈ R : i ∈ D}, such that Xi,n = Hi,n((εj)j∈D) and Hi,n : RD 7→ R satisfies

conditions (3.2.6) and (3.2.7). Assume that supi∈D E|εi|p < ∞ with p > l + 1. If the

random field {εi ∈ R : i ∈ D} is weakly dependent with coefficients θ̄ε(s) or η̄ε(s), then

{Xi,n ∈ R : i ∈ Dn, n ≥ 1} are also weakly dependent with coefficients

θ̄(r) = C inf
0<s≤[r/2]

{
C(s) ∨

[
sdθ̄ε(r − 2s)

p−1−l
p−1

]}
, (3.2.8)

or

η̄(r) = C inf
0<s≤[r/2]

{
C(s) ∨

[
sdη̄ε(r − 2s)

p−1−l
p−1

]}
, (3.2.9)

where C(s) = supn≥1 supi∈Dn

∑
h≥sBi,n(h)h

d−1 and C > 0 is a constant.

It is not easy to find the exact infinum in (3.2.8) and (3.2.9). However, the depen-

dence coefficients of the outputs have upper bounds in explicit forms, if the dependence

coefficients and Bi,n decay in a regular manner.

Example 3.2.1. Let the dependence coefficients of the input η̄ε(r) = O(r−µ) for some

µ > p−1
p−1−ld, and Bi,n(h) = O(h−b) for some b ≥ p−1−l

p−1 µ. Then the dependence

coefficients of the output are bounded by:

η̄(r) ≤ Cr
d− p−1−l

p−1
µ
. (3.2.10)
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Example 3.2.2. Assume that d = 2, let the dependence coefficients of the input η̄ε(r) =

O(r−µ) for some µ > 0, and Bi,n(h) = O(e−bh) for some b ≥ p−1−l
p−1 µ. Then the

dependence coefficients of the output are bounded by:

η̄(r) ≤ C(log r)2r
− p−1−l

p−1
µ
. (3.2.11)

With θ coefficients we have the same results. The proofs of (3.2.10) and (3.2.11) are

given in section A.1.1.

3.3 Limit theorems for weakly dependent random fields

In this section, we investigate the asymptotic behaviour of a weakly dependent random

field {Xi,n : i ∈ Dn, n ≥ 1} on D ⊂ Rd (d ≥ 1), which satisfies Assumption 3.2.1.

(Dn)n∈Z is a series of sample regions on D with finite cardinality, i.e. |Dn|c < ∞, and

limn→∞ |Dn|c = ∞ represents the expansion of sample region as n→ ∞.

In section 3.3.1 we propose a law of large numbers (in L1) for weakly dependent

random fields in general. In section 3.3.2 we proposed a central limit theorem for θ and

η weakly dependent random fields. Recently Curato et al. (2022) proposed a CLT for θ-

lex weakly dependent random fields that are strictly stationary; The CLT of Neumann

(2013) requires bounded moments instead of stationarity, but it only applies to random

sequences. Our limit theorems, however, are more general compared to theirs in the

following aspects:

• Stationarity is not required;

• Our limit theorems accommodate arrays of random fields with asymptotically

unbounded moments;

• The lattice D is not required to be evenly spaced like Zd.

Our proofs of LLN and CLT are based on Jenish and Prucha (2009), where they de-

rived limit theorems for α and ϕ mixing random fields with asymptotically unbounded

moments.
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3.3.1 Law of large numbers

Assumption 3.3.1 below helps our LLN to accommodate random fields with asymp-

totically unbounded l-th moments, by setting ci,n = E|Xi,n|l ∨ 1. For random fields

with uniform bounded moments, we can simply set ci,n = 1. Assumption 3.3.2 puts

restriction on the decaying rate of dependence coefficient.

Assumption 3.3.1. There exist positive constants {ci,n : i ∈ Dn, n ≥ 1} such that

sup
n

sup
i∈Dn

E
∣∣∣∣Xi,n

ci,n

∣∣∣∣l <∞ (3.3.1)

for some l > 1.

Remark. By Hölder’s inequality and Markov’s inequality, (3.3.1) implies the Lp uniform

integrability for any 0 < p < l. i.e.

lim
k→∞

sup
n

sup
i∈Dn

E
[∣∣∣∣Xi,n

ci,n

∣∣∣∣p 1(∣∣∣∣Xi,n

ci,n

∣∣∣∣ ≥ k

)]
= 0. (3.3.2)

See page 216 in Billingsley (2008) for the definition.

Assumption 3.3.2. The dependence coefficient of {Xi,n : i ∈ Dn, n ≥ 1} satisfies

ϵ̄1,1(s) = O(s−α) with α > d.

Now we are ready to present our LLN as follows.

Theorem 3.1. Let {Xi,n ∈ R : i ∈ Dn, n ≥ 1} be a random field on D ⊂ Rd(d ≥ 1),

where (Dn)n≥1 is a sequence of finite sub-lattices of D with limn→∞ |Dn|c = ∞. If

Assumption 3.2.1, Assumption 3.3.1 and Assumption 3.3.2 are satisfied, then as n →

∞,
1

Mn|Dn|c

∑
i∈Dn

(Xi,n − EXi,n) → 0

in L1, where Mn = supi∈Dn
ci,n.
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3.3.2 Central limit theorem

Let Sn =
∑

i∈Dn
Xi,n and σ2n = Var(Sn). We need the following assumptions to state

our CLT. In Assumptions 3.3.4 and 3.3.5, notice that the condition on θ-coefficients is

slightly weaker than that on η-coefficients, since θ-weak dependence is actually more

stringent than η-weak dependence according to (3.2.3) and (3.2.4). Assumption 3.3.6 is

a standard condition in the limit theory literature, as maintained in Bolthausen (1982),

Jenish and Prucha (2009), and Jenish and Prucha (2012). It is required to prove that

σ2n is asymptotically proportional to |Dn|c as n → ∞, which ensures that no single

summand dominates the sum.

Assumption 3.3.3. There exist positive constants {ci,n : i ∈ Dn, n ≥ 1} such that

sup
n

sup
i∈Dn

E
∣∣∣∣Xi,n

ci,n

∣∣∣∣m <∞ (3.3.3)

for some m > 2.

Assumption 3.3.4. With the same m > 2 in Assumption 3.3.3, the θ-coefficient of

{Xi,n : i ∈ Dn, n ≥ 1} satisfies:

(a). For all u+ v ≤ 4, θ̄u,v(s) = O(s−α) with α > m−1
m−2d;

(b). θ̄∞,1(s) := supu θ̄u,1(s) = O(s−β) with β > d.

Assumption 3.3.5. With the same m > 2 in Assumption 3.3.3, the η-coefficient of

{Xi,n : i ∈ Dn, n ≥ 1} satisfies:

(a). For all u+ v ≤ 4, η̄u,v(s) = O(s−α) with α > m−1
m−2d;

(b). η̄∞,1(s) := supu η̄u,1(s) = O(s−β) with β > 2d.

Assumption 3.3.6. Let Mn = supi∈Dn
ci,n, assume that

lim inf
n→∞

(|Dn|c)−1M−2
n σ2n > 0.

Our CLT is given as a theorem below.
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Theorem 3.2. Let {Xi,n ∈ R : i ∈ Dn, n ≥ 1} be a zero-mean random field on D ⊂

Rd(d ≥ 1), where (Dn)n∈N+ is a sequence of finite sub-lattices of D with limn→∞ |Dn|c =

∞. If Assumption 3.2.1, Assumption 3.3.3 and Assumption 3.3.6 hold true, and the

dependence coefficient of {Xi,n ∈ R : i ∈ Dn, n ≥ 1} satisfies either Assumption 3.3.4

or Assumption 3.3.5, then as n→ ∞,

σ−1
n Sn

d→ N(0, 1).

Theorem 3.2 only applies to scalar-valued random fields, limiting its application in

the inference of high-dimensional time series, whereas vector-valued statistics like the

maximum likelihood estimator (3.4.8) are very common. Facilitated by the transformation-

invariance of ϵ-weak dependence in Proposition 3.1, Theorem 3.2 can be easily extended

to arrays of vector-valued random fields using a standard Cramér-Wold device.

Corollary 3.2.1. Let {Xi,n ∈ Rk : i ∈ Dn, n ≥ 1} be an array of vector-valued zero-

mean random fields. By regarding | · | in Assumption 3.3.3 as Euclidean norm, and

replacing Assumption 3.3.6 by

lim inf
n→∞

(|Dn|c)−1M−2
n λmin(Σn) > 0

where λmin(Σn) is the smallest eigenvalue of Σn := Var(Sn), then as n→ ∞:

Σ−1/2
n Sn

d→ N(0, Ik).

We now compare Theorem 3.2 with existing CLTs for weakly dependent random

variables in the literature. El Machkouri et al. (2013) developed a CLT for a class of

stationary random fields that are Bernoulli shifts of IID innovations. Their results are

derived through a coupling technique, based on p-stability, which is a dependence mea-

sure different from ours. Our CLT can also deal with Bernoulli shifts as a special case

through a similar coupling technique; see Example 3.4.1. For non-stationary triangular

arrays of random sequences, Neumann (2013) proposed a CLT under weak dependence,

while Merlevède et al. (2019) developed a functional CLT for martingale-like sequences.
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Their CLTs are limited to the case when d = 1 and require Lindeberg conditions (see

(2.2) in Neumann (2013) and (3.1) in Merlevède et al. (2019)) that could be violated

by asymptotically unbounded moments, which are allowed by Assumption 3.3.3 in our

CLT.

Indeed, Jenish and Prucha (2009) proposed a CLT for triangular arrays of random

fields without stationarity and bounded moments. However, the α- or ϕ-mixing it

requires does not hold for many integer-valued models or models with discrete-valued

innovations, as we have pointed out in Section 3.1. For instance, the integer-valued

bilinear model is not mixing, but it is proved to be θ-weakly dependent Doukhan et al.

(2006). Jenish and Prucha (2012) later extended Jenish and Prucha (2009)’s CLT for

random fields under L2-NED, which is still stronger than what our CLT requires. In

Example 3.4.2, we will show that L1-NED on an IID random field is sufficient for η-weak

dependence.

3.4 Applications to high-dimensional time series

In order to apply our results, we treat a high-dimensional time series as a random field

with spatial (i.e. cross sectional) index i and time index t. Following Xu et al. (2024)

and Pan and Pan (2024), we set

D = {(i, t) : i ∈ Z, t ∈ Z}

as an infinitely countable lattice on R2, equipped with distance measure ρ((i, t), (u, v)) :=

max{|i− u|, |t− v|}, and D satisfies Assumption 3.2.1. Note that i here represents in-

dividual i, while the i ∈ D we used in previous sections is a location on lattice D. We

will continue to use the same notation under these two scenarios since we don’t think

it would cause any confusion. {Xit : 1 ≤ i ≤ N, 1 ≤ t ≤ T} are NT samples generated

by a high-dimensional time series. With the specification of D above, we furthermore

specify a series of sample regions {DNT : NT ≥ 1} where

DNT = {(i, t) : 1 ≤ i ≤ N, 1 ≤ t ≤ T},
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of which the cardinality |DNT |c = NT expands as NT → ∞. In this setting, we

transform the samples of high-dimensional time series into an array of random fields

{Xit : (i, t) ∈ DNT , NT ≥ 1}. The same setting of sample regions was used by Xu

et al. (2024) on a dynamic network quantile regression model, which is an example of

high-dimensional time series.

After we have built the tools of limit theorems on weakly dependent random fields,

in Section 3.4.1 we will propose general conditions when a high-dimensional time series

model is η-weakly dependent. Then in Section 3.4.2 the proposed limit theorems will

be applied to prove the consistency and asymptotic normality of MLE under certain

restrictions on the likelihood function.

3.4.1 Examples of η-weakly dependent high-dimensional time series

We consider a series of samples {Xit : (i, t) ∈ DNT , NT ≥ 1} from a high-dimensional

time series, with innovations {ξit : (i, t) ∈ DNT , NT ≥ 1} that satisfy:

Assumption 3.4.1. The innovations ξit’s are independently and identically distributed

(IID) across i and t. They are also independent from Xit for any i and t.

Let Fit(s) = σ {ξit : (j, τ) ∈ DNT , ρ((i, t), (j, τ)) ≤ s} for s > 0, then we can define

{X(s)
it : (i, t) ∈ DNT , NT ≥ 1} with X

(s)
it being Fit(s)-measurable. Based on this

definition, X
(s)
it is independent from X

(s)
jτ if ρ((i, t), (j, τ)) > 2s. In the assumption

below we assume that Xit can be approximated by X
(s)
it :

Assumption 3.4.2. supNT≥1 sup(i,t)∈DNT
E
∣∣∣Xit −X

(s)
it

∣∣∣ ≤ Cδ(s) for some constant

C > 0, where δ(s) ≥ 0 and lims→∞ δ(s) = 0.

Note that we do not need Xit to be a Bernoulli shift of ξit as it is required in El

Machkouri et al. (2013). The Bernoulli shift assumption is strict in practice since this

type of model is assumed to be some specific transformation of IID innovations, whereas

our results accommodate random fields with more complicated structures, as long as

they can be approximated by neighbouring innovations in a way as in Assumption 3.4.2.

Nevertheless, we take Bernoulli shifts as a special instance in Example 3.4.1 below.
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Example 3.4.1. If Xit is a Bernoulli shift in the form Xit = H((ξi−l,t−l)l>0), according

to (11) in Doukhan and Truquet (2007), we can define

X
(s)
it = H((ξ

(s)
i−l,t−l)l>0)

with

ξ
(s)
i−l,t−l =

 ξi−l,t−l if l ≤ s,

0 if l > s.

In Example 3.4.2 we give a way to construct the Fit(s)-measurable approximation

in general, adopting the definition of near-epoch-dependence, see Definition 1 in Jenish

and Prucha (2012). The CLT of Jenish and Prucha (2012) is based on L2-NED, which

is stringent in practice since it will either degenerate to L1-NED (see Theorem 17.9 in

Davidson (1994)) or require bounded high-order moments (see Lemma A.2 in Xu and

Lee (2015)) after multiplication. Example 3.4.2 indicates that, comparing to the CLT

of Jenish and Prucha (2012), ours also accommodates L1-NED random fields.

Example 3.4.2. If we define

X
(s)
it = E[Xit|Fit(s)],

then Assumption 3.4.2 is equivalent to the uniform L1-NED on IID innovations, with

coefficient δ(s).

Proposition 3.3. Under Assumptions 3.4.1 and 3.4.2, {Xit : (i, t) ∈ DNT , NT ≥ 1}

is η-weakly dependent with η̄(s) ≤ Cδ(s/2).

Remark. The limit theorems have requirements on the decaying rate of η̄(s) as s→ ∞,

see Assumptions 3.3.2 and 3.3.5. Proposition 3.3 allows us to check the rate of δ(s)

alternatively. With careful specification of X
(s)
it , δ(s) could be derived in explicit form,

making it easier to check the decaying rate in practice.

3.4.2 Maximum likelihood estimation (MLE)

In this section, we will investigate the asymptotic properties (i.e. consistency and

asymptotic normality) of MLE for parameters in a high-dimensional time series model
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with increasing sample size, i.e., |DNT |c = NT → ∞.

Assume that the model of interest is characterized by an array of parameters θ in

a specific parameter space Θ ⊂ Rk, such that the true parameter θ0 ∈ Θ. Based on

samples {Xit ∈ R : (i, t) ∈ DNT }, we could construct log likelihood functions in the

form

LNT (θ) :=
1

NT

∑
(i,t)∈DNT

lit(θ), (3.4.1)

where lit(θ) = log fit(x; θ), and fit(x; θ) denotes the density (or probability mass) func-

tion of Xit with parameter θ. Note that the parameter θ is not necessarily a vector of

real numbers for a model with finite number of real parameters. It could be an element

of an abstract metric space.

To discuss the estimation of parameter θ, We need the following assumptions re-

garding the parameter space Θ and the likelihood function:

Assumption 3.4.3. The parameter space and likelihood function of the model satisfy

(a). Θ ⊂ Rk is compact;

(b). The functions lit(θ) are continuous on Θ, and are measurable for each θ ∈ Θ;

(c). The true parameter θ0 lies in the interior of Θ. And for any δ > 0,

sup
NT≥1

sup
θ∈Θ

∥θ−θ0∥≥δ

{E[LNT (θ)]− E[LNT (θ0)]} < 0.

Usually in practice the exact likelihood function cannot be calculated, and the

estimate of θ0 could only be obtained through an approximation of (3.4.1). i.e.

θ̂NT := argmax
θ∈Θ

L̃NT (θ), (3.4.2)

where

L̃NT (θ) :=
1

NT

∑
(i,t)∈DNT

l̃it(θ). (3.4.3)

To consider the consistency of the MLE (3.4.2), we need Assumption 3.4.4 below
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regarding the convergence of the approximated likelihood function (3.4.3) to the exact

likelihood function (3.4.1).

Assumption 3.4.4. For any θ ∈ Θ, |LNT (θ)− L̃NT (θ)|
p→ 0 as NT → ∞.

And we also need Assumption 3.4.5 below to apply the LLN to {lit(θ)}.

Assumption 3.4.5. (a). The functions lit(θ) are uniformly Lp-bounded for some p >

1, i.e.

sup
NT≥1

sup
(i,t)∈DNT

sup
θ∈Θ

∥lit(θ)∥p <∞.

(b). For any θ ∈ Θ, the array of functions {lit(θ) : (i, t) ∈ DNT , NT ≥ 1} are weakly

dependent with coefficients θ̄(s) = O(s−α) for some α > 2.

The following proposition gives the consistency of MLE for a high-dimensional time

series model with expanding sample sizes or/and expanding dimensions.

Proposition 3.4. If Assumptions 3.4.3, 3.4.4 and 3.4.5 are satisfied, then the MLE

(3.4.2) is consistent, i.e.

θ̂NT
p→ θ0 as NT → ∞.

As for the asymptotic normality of θ̂NT , we need additional assumptions on L̃NT (θ)

and LNT (θ) as in Assumption 3.4.6 below. Besides, Assumptions 3.4.7(a) and 3.4.7(b)

are required for the LLN of
{

∂2

∂θ∂θ′ lit(θ0)
}
, as Assumptions 3.4.7(c), 3.4.7(d) and 3.4.7(e)

for the CLT of
{

∂lit(θ0)
∂θ

}
.

Assumption 3.4.6. As NT → ∞:

(a).
√
NT

∥∥∥∂L̃(θ0)
∂θ − ∂L(θ0)

∂θ

∥∥∥ p→ 0;

(b). sup∥θ−θ0∥<ξ

∥∥∥∂2L̃(θ)
∂θ∂θ′ − ∂2L(θ0)

∂θθ′

∥∥∥ = Op(ξ).

Remark. In the inference of a specific model, the convergences in Assumptions 3.4.4

and 3.4.6 may require extra restrictions on the diverging pattern of N and T . For

example, for the TNGARCH model in Chapter 4, it is required that T → ∞, N → ∞

and N = o(T ). However, these extra restrictions do not cause any issue in applying

our limit theorems, which only require that NT → ∞.
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Assumption 3.4.7. (a). supNT≥1 sup(i,t)∈DNT

∥∥∥ ∂2

∂θ∂θ′ lit(θ0)
∥∥∥
p
<∞ for some p > 1;

(b).
{

∂2

∂θ∂θ′ lit(θ0) : (i, t) ∈ DNT , NT ≥ 1
}
are weakly dependent with coefficients θ̄(s) =

O(s−α) for some α > 2;

(c). supNT≥1 sup(i,t)∈DNT

∥∥∥∂lit(θ0)
∂θ

∥∥∥
p′
<∞ for some p′ > 2;

(d).
{

∂lit(θ0)
∂θ : (i, t) ∈ DNT , NT ≥ 1

}
are weakly dependent with coefficients θ̄(s) =

O(s−α′
) for some α′ > 2 ∨ 2p′−2

p′−2 ;

(e). infNT≥1 λmin(BNT ) > 0 and infNT≥1 λmin(B
−1/2
NT ANT ) > 0, where ANT = −

E
[

∂2

∂θ∂θ′LNT (θ0)
]
, BNT = Var

[√
NT ∂LNT (θ0)

∂θ

]
and λmin(·) denotes the smallest

eigenvalue.

The asymptotic normality of the MLE can be stated as follows.

Proposition 3.5. If Assumptions 3.4.3 to 3.4.7 are satisfied, then (3.4.2) is asymp-

totically normal, i.e.

√
NT (B

−1/2
NT ANT )(θ̂NT − θ0)

d→ N(0, Ik) as NT → ∞.

3.4.3 Application to a network autoregressive model

In this section we will apply our methodology in previous sections to the estimation

of a specific high-dimensional time series model. Zhu et al. (2017) proposed a network

autoregressive (NAR) model. They established an ordinary-least-squares (OLS) estima-

tion that was proved to be consistent and asymptotically normal when min{N,T} → ∞,

and when N → ∞ as T is fixed. The model is defined as

yit = β0 + β1

N∑
j=1

wijyj,t−1 + β2yi,t−1 + Z ′
iγ + εit, (3.4.4)

where the R-valued random variable yit is observed both spatially over i = 1, 2, ..., N

and temporally over t = 1, 2, ..., T . Zi is a Rm-valued covariates vector, which is t-

invariant and observable for each individual i. The innovations εit’s are IID with mean

zero and variance σ2. {Zi} and {εit} are mutually independent. One feature of the NAR
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model is using network structure to describe the spatial dependence. Such network is

represented by a directed graph, with each edge aij = 1 if node i connects to j and

aij = 0 otherwise. In (3.4.4), the effect of each neighboured node j is weighted by

wij =
aij∑N
k=i aik

.

However, the weak dependence of {yit : (i, t) ∈ DNT , NT ≥ 1} cannot be established

under specification (3.4.4). For example, considering the case when β1 = β2 = 0, (3.4.4)

becomes

yit = β0 + Z ′
iγ + εit.

For any s ≥ 1, |Cov(yi,t+s, yit)| = |Cov(Z ′
iγ, Z

′
iγ)| > 0, which does not decay to 0 as s→

∞ since |Cov(Z ′
iγ, Z

′
iγ)| is s-invariant. Therefore, in order to apply our limit theorems,

in this section we will investigate the weak dependence of the NAR model conditioning

on Z = (Z ′
1, Z

′
2, ..., Z

′
N )′. The asymptotic properties of proposed parameter estimates

will also be discussed conditioning on Z.

Denote θ = (β′, γ′)′ the parameter vector, where β = (β0, β1, β2)
′ and γ = (γ1, γ2, ..., γm)′.

Let

xit =


1∑N

j=1wijyjt

yit

Zi

 ∈ Rm+3,

then the quasi log likelihood function conditioning on Z (under Gaussian density) is

written  LNT (θ) =
1

NT

∑
(i,t)∈DNT

lit(θ),

lit(θ) = −(yit − x′
i,t−1θ)

2.
(3.4.5)

Given observations of yit and Zi at t = 0, 1, ..., T and i = 1, 2, ..., N , the quasi maximum

likelihood estimation (QMLE) could be directly evaluated as follows:

θ̂NT =

 ∑
(i,t)∈DNT

xi,t−1x
′
i,t−1

−1 ∑
(i,t)∈DNT

xi,t−1yi,t

 . (3.4.6)
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It has the same form with OLS of Zhu et al. (2017). Notice that

∂LNT (θ0)
∂θ = 2

NT

∑
(i,t)∈DNT

εitxi,t−1,

∂2LNT (θ0)
∂θ∂θ′ = − 2

NT

∑
(i,t)∈DNT

xi,t−1x
′
i,t−1.

(3.4.7)

Then (3.4.6) could be rewritten as

θ̂NT = θ0 −
(
∂2LNT (θ0)

∂θ∂θ′

)−1
∂LNT (θ0)

∂θ
. (3.4.8)

Based on general method in Section 3.4.2, the following assumptions are required to

investigate the asymptotic properties of the QMLE in this particular case of the NAR

model.

Assumption 3.4.8. (a). The innovations εit’s are IID with mean zero and variance

σ2, they are also independent from Zi and xi,t−1;

(b). supNT≥1 sup(i,t)∈DNT
E |εit|p < ∞ and supNT≥1 sup(i,t)∈DNT

E ∥Zit∥p < ∞ for

some p > 2;

(c). |β1|+ |β2| < 1.

Assumption 3.4.9. Let G = β1W + β2IN .

(a). The elements of Gk satisfy

|Gk(i, j)| ≤ C1ρ
k
1|j − i|−α−2

for some constants C1 > 0, 0 < ρ1 < 1, α > 4 ∨ 2p−2
p−2 and p > 2;

(b). The diagonal elements of (GG′)k satisfy

max
i

{|(GG′)k(i, i)|} ≤ C2ρ
k
2

for some constants C2 > 0 and 0 < ρ2 < 1.

Assumption 3.4.10. supNT≥1 sup(i,t)∈DNT
∥yit∥p <∞.
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Assumption 3.4.11. ΣNT = 1
NT

∑
(i,t)∈DNT

EZ

[
xi,t−1x

′
i,t−1

]
satisfies that

inf
NT≥1

λmin(ΣNT ) > 0.

In Assumption 3.4.8, the conditions on the innovations and nodal covariates are the

same as condition (C1) in Zhu et al. (2017), except that the finite fourth-order moments

of εit and Zi are not required in our method. Assumption 3.4.9(a) puts restrictions on

the connectivity between nodes. For example, Assumption 3.4.9(a) indicates that the

effect of node j on node i through the k-step connection between them weakens with

|i − j| and also the length of the connection k. Assumption 3.4.9, together with the

bound condition in Assumption 3.4.10 are crucial in verifying weak dependence in the

proof of Proposition 3.6.

Proposition 3.6. If Assumptions 3.4.8 to 3.4.11 are satisfied, then (3.4.6) is consistent

and follows asymptotically a normal distribution conditioning on Z:

√
NT (ΣNT )

1/2(θ̂NT − θ0)
d→ N(0, σ2Im+3)

when NT → ∞.

Since εit’s are IID, σ2 could be consistently estimated by

σ̂2 =
1

NT

∑
(i,t)∈DNT

(
yit − x′

i,t−1θ̂NT

)2
. (3.4.9)

As it will be verified in the proof of Proposition 3.6, following convergence

1

NT

∑
(i,t)∈DNT

xi,t−1x
′
i,t−1

p→ ΣNT

allows us to estimate ΣNT by

Σ̂NT =
1

NT

∑
(i,t)∈DNT

xi,t−1x
′
i,t−1, (3.4.10)
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where xi,t−1x
′
i,t−1 is a (m+ 3)× (m+ 3) matrix:


1

∑N
j=1 wijyj,t−1 yi,t−1 Z′

i∑N
j=1 wijyj,t−1 (

∑N
j=1 wijyj,t−1)

2
(
∑N

j=1 wijyj,t−1)yi,t−1 (
∑N

j=1 wijyj,t−1)Z′
i

yi,t−1 (
∑N

j=1 wijyj,t−1)yi,t−1 y2i,t−1 yi,t−1Z
′
i

Zi (
∑N

j=1 wijyj,t−1)Zi yi,t−1Zi ZiZ
′
i

 .

The covariance matrices in Theorem 3 and Proposition 2 of Zhu et al. (2017) are

estimated by statistics in the same form as (3.4.10). Nevertheless, our results are

derived on a totally different theoretical basis comparing to their OLS estimation which

is actually the MLE because they assumed normality of innovation terms.
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Threshold Network GARCH

4.1 Introduction

The network GARCH model (2.2.5) was proposed by Zhou et al. (2020), who fitted

their model to daily log returns of stocks on Chinese stock markets. Their analysis

shows that the predictable volatility of one stock is positively related to the log returns

of all its neighboring stocks on the network, which can be established according to

common shareholders. An explicit assumption in model (2.2.5) is that the prediction

of stock volatility is not affected by whether today’s stock price is rising or falling.

However, there exists empirical evidence against this assumption (Black (1976) and

French et al. (1987), among others). The EGARCH model (2.1.4) by Nelson (1991)

and the GJR-GARCH model (2.1.5) by Glosten et al. (1993) were established to iden-

tify the asymmetry in how predictable volatility adapts to positive and negative news.

In their empirical studies on stock return data, they found that negative returns gen-

erate more volatility than positive ones. A comparison between different asymmetric

GARCH models was conducted by Engle and Ng (1993), and the results suggested using

the GJR-GARCH model when analyzing stock return data. In this chapter, we pro-

pose a threshold network GARCH model (TNGARCH) that incorporates a self-excited

threshold similar to that in the GJR-GARCH model (2.1.5).

Recalling from model (2.2.5), the network consists of N nodes and is denoted by

an adjacency matrix A = (aij)N×N , where aij = 1 if nodes i and j are connected,
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and aij = 0 otherwise. Besides, aii = 0 as self-connection is not allowed. For each

individual i = 1, 2, ..., N , the predicted volatility at time t is related to the returns of

all its neighbours through
N∑
j=1

wijy
2
j,t−1

in the sense of Cliff and Ord (1972), where wij =
aij∑N

k=1 aik
is the (i, j)-th component of

the row-normalized adjacency matrix W .

A TNGARCH (1,1) model is written as follows:

yit = εit
√
hit,

hit = ω +
(
α(1)1{yi,t−1≥0} + α(2)1{yi,t−1<0}

)
y2i,t−1 + λ

N∑
j=1

wijy
2
j,t−1 + βhi,t−1,

i = 1, 2, · · · , N,

(4.1.1)

where 1{·} is the indicator function. To assure the positiveness of hit, it is assumed that

ω > 0 while α(1), α(2), λ, β ≥ 0. {εit} is a white noise process satisfying the following

assumption:

Assumption 4.1.1. {εit : i = 1, 2, ..., N ; t ∈ Z} are IID across i and t, sharing an non-

degenerate distribution with mean 0 and variance 1.

If α(1) ̸= α(2), then the effect of y2i,t−1 on the predicted volatility hit changes depending

on whether yi,t−1 ≥ 0 or yi,t−1 < 0. Otherwise, (4.1.1) degenerates to (2.2.5).

Stationarity conditions of this model will be derived in Section 4.2 with fixed N .

The asymptotic properties of QMLE will be investigated in Section 4.3, in the case

when T → ∞ and N → ∞. Then we will propose a Wald statistic in Section 4.4.1 to

test the existence of threshold effect. In Section 4.5, our methodology is tested upon

simulated data that are generated based on four different kinds of network structure.

We observed an asymmetry that is different from existing literature, in how much the

volatility responds to good news and bad news at individual level by applying our model

to high-dimensional time series of log returns in Section 4.6.
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4.2 Stationarity with fixed N

To derive the conditions under which model (4.1.1) is strictly stationary, we rewrite

the conditional variance process in vector form

ht = ω1N +Bt−1ht−1 (4.2.1)

with notations as follows:

ht = (h1t, h2t, ..., hNt)
′ ∈ RN ,

1N = (1, 1, ..., 1)′ ∈ RN ,

Bt−1 = α(1)Rt−1Et−1 + α(2)(IN −Rt−1)Et−1 + λWEt−1 + βIN ,

Rt−1 = diag
{
1{y1,t−1≥0}, 1{y2,t−1≥0}, ..., 1{yN,t−1≥0}

}
,

Et−1 = diag
{
ε21,t−1, ε

2
2,t−1, ..., ε

2
N,t−1

}
.

Since yit = εit
√
hit, yit ≥ 0 is equivalent to εit ≥ 0. Hence

Rt−1 = diag
{
1{ε1,t−1≥0}, 1{ε2,t−1≥0}, ..., 1{εN,t−1≥0}

}
.

In this case, the random matrices {Bt} are i.i.d. and model (4.2.1) is a generalized

autoregressive equation by Definition 1.4 in Bougerol and Picard (1992). It is easy to

verify that E(log+ ∥B0∥∗) < ∞. Therefore, the top Lyapunov exponent associated to

{Bt} is well-defined as follows:

γ := inf

{
E
(

1

t+ 1
log ∥BtBt−1...B0∥∗

)
, t ∈ N

}
, (4.2.2)

where ∥·∥∗ is an operator norm of N ×N matrices, corresponding to any norm on RN

through

∥M∥∗ = sup
{
∥Mx∥ / ∥x∥ ; x ∈ RN , x ̸= 0

}
.
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According to Theorem 3.2 in Bougerol and Picard (1992), the series

ht = ω1N + ω
∞∑
k=1

Bt−1...Bt−k1N (4.2.3)

is the unique strictly stationary and ergodic solution of model (4.2.1) if and only if the

Lyapunov exponent γ < 0. Under this condition, process {yt} is also strictly station-

ary and ergodic where yt = (y1t, y2t, ..., yNt)
′ ∈ RN since we could easily construct a

continuous function Λ : RN → RN according to (4.1.1) such that yt = Λ(ht). Besides,

since yit = εit
√
hit, the almost sure convergence of (4.2.3) guarantees that E(hit) <∞

for any i. Thus, E∥yt∥2 =
∑N

i=1 E(hit) <∞ with ∥ · ∥ being an Euclidean norm.

By the subadditive ergodic theorem in Kingman (1973),

γ = lim
t→∞

1

t+ 1
log ∥BtBt−1...B0∥∗

almost surely. In this case, γ could be approximated through computer simulation

technique given a specific distribution of εit. For the purpose of reducing computation

complexity, we derive a sufficient condition that is simple and much easier to verify.

Theorem 4.1. Under Assumption 4.1.1, model (4.2.1) has a unique strictly stationary

and ergodic solution in the form (4.2.3) if

max
{
α(1), α(2)

}
+ β + λ < 1. (4.2.4)

4.3 Parameter estimation with T → ∞ and N → ∞

Following the settings in Section 3.4, let D := {(i, t) : i ∈ Z, t ∈ Z} be a lattice on space

R2, and ρ((i, t), (j, τ)) := max{|i − j|, |t − τ |} measures the distance between any two

locations (i, t), (j, τ) ∈ D. Assume we have observations {yit, 1 ≤ i ≤ N, 1 ≤ t ≤ T}

from model (4.1.1) with respect to true parameters θ0 := (ω0, α
(1)
0 , α

(2)
0 , λ0, β0)

′ ∈ R5.

Then these observations could be regarded as triangular array of random fields {yit :

(i, t) ∈ DNT , NT ≥ 1} with {DNT , NT ≥ 1} being a series of finite rectangular lattices

DNT := {(i, t) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}.
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Based on the infinite past of observations, the quasi log-likelihood function (ignoring

constants) is

LNT (θ) =
1

NT

∑N
i=1

∑T
t=1 lit(θ),

lit(θ) = log σ2it(θ) +
y2it

σ2
it(θ)

,
(4.3.1)

where σ2it is generated from model (4.1.1) as

σ2it = ω +
{
α(1)1{yi,t−1≥0} + α(2)1{yi,t−1<0}

}
y2i,t−1 + λd−1

i

N∑
j=1

aijy
2
j,t−1 + βσ2i,t−1,

and θ := (ω, α(1), α(2), λ, β)′ ∈ R5 is the parameter vector. Since the evaluation of the

exact value of (4.3.1) is infeasible in practice, it is convenient to approximate (4.3.1)

with

L̃NT (θ) =
1

NT

∑N
i=1

∑T
t=1 l̃it(θ),

l̃it(θ) = log σ̃2it(θ) +
y2it

σ̃2
it(θ)

,
(4.3.2)

where σ̃2it is also generated from model (4.1.1) but with initial value σ̃2i0 = 0. And the

QMLE of θ ∈ Θ is given by

θ̂NT := argmin
θ∈Θ

L̃NT (θ),

where “argmin” is the argument of the minimum.

Remark. A negative-valued constant is ignored in the log-likelihood function (4.3.1).

Therefore the QMLE θ̂NT is the argument that minimizes L̃NT (θ).

Firstly we investigate the weak dependence of {σ2it(θ) : (i, t) ∈ DNT , NT ≥ 1}

and {y2it : (i, t) ∈ DNT , NT ≥ 1} with assumptions below, utilizing the connection

between uniform NED (Jenish and Prucha, 2012) and η-weak dependence (see Example

3.4.2). Assumption 4.3.2 is also required by Zhou et al. (2020) to prove the asymptotic

properties in the case when N is fixed. Assumption 4.3.3 puts restriction on the sparsity

of the network. Similar restrictions on the network structure could also be seen in

Assumption 3 by Xu and Lee (2015) and Assumption 3.2 by Xu et al. (2024).

Assumption 4.3.1. κ4 := Eε4it <∞ such that κ4
(
max{α(1), α(2)}+ β + λ

)2
< 1.
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Assumption 4.3.2. Θ is a compact subset of R5 such that all θ ∈ Θ satisfy that

ω > 0, α(1) ≥ 0, α(2) ≥ 0, λ ≥ 0, β ≥ 0, (4.2.4) and Assumption 4.3.1, and the true

parameter θ0 ∈ Θ is an interior point of Θ.

Assumption 4.3.3. The row-normalized adjacency matrixW satisfies one of following

conditions:

(a). wij = O(|i− j|−
µ+2
2 ) for some µ > 0;

(b). wij ̸= 0 if |i− j| ≤ K for some constant K ≥ 1, and wij = 0 otherwise.

Remark. In Assumption 4.3.3, wij that measures the power of the connection between

two arbitrary nodes i and j is restricted by |i−j|, which does not represent the distance

between node i and node j. Assumption 4.3.3 is simply a technical restriction on

the structure of the matrix W , similar to the Assumption 3.2 in Xu et al. (2024).

Assumption 5.3.3 in Chapter 5 and Assumption (NB4) in Chapter 6 are also purely

technical. Of course, as we have mentioned in Section 2.3, for spatio-temporal models,

i and j often represent spatial locations rather than just two indices. For example,

Xu and Lee (2015) has similar assumption as ours, except that wij is restricted by the

Euclidean distance between i and j, where i and j are vector-valued spatial locations.

Recalling from Section 3.4.1, we could define a σ-algebra

Fit(s) := σ {εit : (j, τ) ∈ DNT , ρ((i, t), (j, τ)) ≤ s}

for all (i, t) ∈ DNT , NT ≥ 1 and s > 0.

Lemma 4.3.1. If (4.2.4), Assumptions 4.1.1, 4.3.1, 4.3.2 and 4.3.3(a) are satisfied,

then for all θ ∈ Θ we have

sup
NT≥1

sup
(i,t)∈DNT

∥∥σ2it(θ)− E(σ2it(θ)|Fit(s))
∥∥
2
≤ Cs−µ

for some constant C > 0. If Assumption 4.3.3(b) holds instead of 4.3.3(a),

sup
NT≥1

sup
(i,t)∈DNT

∥∥σ2it(θ)− E(σ2it(θ)|Fit(s))
∥∥
2
≤ Cρs
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for some constant 0 < ρ < 1.

Remark. By Assumptions 4.1.1 and 4.3.1, the same results in Lemma 4.3.1 could be

directly derived for {y2it : (i, t) ∈ DNT , NT ≥ 1} since y2it = ε2itσ
2
it(θ0).

Remark. Since we have shown that {y2it : (i, t) ∈ DNT , NT ≥ 1} and {σ2it(θ) : (i, t) ∈

DNT , NT ≥ 1} are uniformly L2-NED, by Proposition 3.3 they are also η-weakly

dependent with η-coefficients asymptotically equivalent to the NED coefficients.

It is essential for us to obtain the weak dependence of {lit(θ) : (i, t) ∈ DNT , NT ≥

1}, as well as their first and second order derivatives at θ0, so that we could utilize the

limit theorems (Theorem 3.1 and Theorem 3.2) to prove the consistency and asymptotic

normality of θ̂NT . Therefore we need the assumptions below aside from those required

by Lemma 4.3.1. Particularly, Assumption 4.3.5 is a constraint on the decaying rate

of dependence coefficients, which is required by Assumption 3.3.5. Apparently, in the

second case in Lemma 4.3.1, we do not need Assumption 4.3.5.

Assumption 4.3.4. E|εit|2r < ∞ and supNT≥1 sup(i,t)∈DNT
E|σit(θ)|2r < ∞ for some

r > 2.

Remark. Since y2it = ε2itσ
2
it(θ0) and εit is independent from σit(θ0), we also have

sup
NT≥1

sup
(i,t)∈DNT

E|yit|2r <∞

based on the assumption above.

Assumption 4.3.5. The µ in Assumption 4.3.3 satisfies µ > 4 ∨ 2(r−1)
r−2 .

Assumption 4.3.6. infNT≥1 λmin(ΣNT ) > 0 where

ΣNT :=
κ4 − 1

NT

∑
(i,t)∈DNT

E
[

1

σ4it(θ0)

∂

∂θ
σ2it(θ0)

∂

∂θ′
σ2it(θ0)

]
.

Theorem 4.2. Under Assumptions required by Lemma 4.3.1, the quasi-maximum like-

lihood estimator θ̂NT is consistent, i.e.

θ̂NT
p→ θ0
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as T → ∞ and N → ∞. If N = o(T ), Assumptions 4.3.4, 4.3.5 and 4.3.6 also hold,

then
√
NTΣ

1/2
NT (θ̂NT − θ0)

d→ N(0, (κ4 − 1)2I5).

As we will show in the proof of Proposition 4.1, κ4 and ΣNT above could be ap-

proximated by

κ̂4 :=
1

NT

N∑
i=1

T∑
t=1

y4it
σ̃4it(θ̂NT )

(4.3.3)

and

Σ̂NT :=
κ̂4 − 1

NT

N∑
i=1

T∑
t=1

[
1

σ̃4it(θ̂NT )

∂σ̃2it(θ̂NT )

∂θ

∂σ̃2it(θ̂NT )

∂θ′

]
(4.3.4)

respectively. The latter could be calculated recursively as

∂

∂θ
σ̃2it(θ̂NT ) = ũi,t−1 + β̂

∂

∂θ
σ̃2i,t−1(θ̂NT )

where

ũi,t−1 =



1

y2i,t−11{ε̂i,t−1≥0}

y2i,t−11{ε̂i,t−1<0}∑N
j=1wi,jy

2
j,t−1

σ̃2i,t−1(θ̂NT )


.

4.4 Tests on threshold effect and residuals

4.4.1 A Wald test for the threshold effect

Given a null hypothesis

H0 : Γθ0 = η (4.4.1)

where Γ is an s×5 matrix with rank s and η is an s-dimensional vector, we could define

a Wald test statistic as follows:

WNT := (Γθ̂NT − η)′
{

Γ

NT
(κ̂4 − 1)2Σ̂−1

NTΓ
′
}−1

(Γθ̂NT − η), (4.4.2)
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where κ̂4 and Σ̂NT are defined in (4.3.3) and (4.3.4).

By the asymptotic normality of θ̂NT ,WNT could also be proved to follow a canonical

asymptotic distribution as in the following theorem.

Proposition 4.1. Under the same assumptions required by Theorem 4.2, as T → ∞,

N → ∞ and N = o(T ), the Wald test statistic defined in (4.4.2) asymptotically follows

a χ2 distribution with degree of freedom s, i.e.

WNT
d→ χ2

s.

4.4.2 A white noise test on the residuals

There has been a large literature investigating high-dimensional time series models,

including Xu and Lee (2015), Zhu et al. (2017) and Xu et al. (2024) among others, but

none of them has used diagnostic tools to check the model adequacy. In this section,

we will introduce a high-dimensional white noise test developed by Li et al. (2019) that

can be applied to the diagnostic of high-dimensional models including ours.

Assume we have residuals {rt : 1 ≤ t ≤ T}, where rt := (r1t, ..., rNt)
′. We want

to test whether {rt : 1 ≤ t ≤ T} are high-dimensional white noises, i.e. there exists a

matrix P such that

H0 : rt = Pzt, (4.4.3)

where zt = (ε1t, ..., εNt)
′. The test statistic is the sum of squared singular values of first

q lagged sample autocovariance matrices:

Gq :=

q∑
τ=1

tr(Ŝτ Ŝ
′
τ ), (4.4.4)

where Ŝτ = 1
T

∑T
t=1 rtr

′
t−τ with rt = rt+T when t ≤ 0.

If P is unknown, the sample covariance matrix of rt is Ŝ0 =
1
T

∑T
t=1 rtr

′
t. According

to (2.8) in Li et al. (2019), we reject (4.4.3) if

Gq − N2q
T ŝ21√

2N2q
T 2

(
ŝ2 − N

T ŝ
2
1

)2 > Zα
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where ŝ1 =
1
N tr(Ŝ0), ŝ2 =

1
N tr(Ŝ

2
0) and Zα is the upper-α quantile of standard normal

distribution.

Note that {rt : 1 ≤ t ≤ T} being white-noise means that the residuals are uncor-

related over t. However, it does not indicate that the residuals are uncorrelated over

both i and t. The latter indicates a stronger adequacy of high-dimensional model. We

could assume that P = IN in the null hypothesis, and by (2.5) in Li et al. (2019), we

reject H0 : rt = zt if

Gq − N2q
T√

2N2q
T 2 + 4N3q2(κ4−3)

T 3 + 8N3q2

T 3

> Zα.

4.5 Simulation study

4.5.1 Network simulation

The symmetric matrix A in model 4.2.1 represents an undirected network structure, the

pattern of which varies over different application scenarios. In this simulation study,

we tend to use four different mechanisms of simulating corresponding network. The

network structure in Example 4.5.1 adapts to Assumption 4.3.3(b), which is required by

geometric NED as we have shown in Lemma 4.3.1. Simulation mechanisms introduced

in Examples 4.5.2 – 4.5.4 are for testing the robustness of our estimation, against

network structures that may violate Assumption 4.3.3.

Example 4.5.1. (D-neighbourhood) For each node i ∈ {1, 2, ..., N}, it is connected

to node j only if j is inside i’s D-neighbourhood. That is, in the adjacency matrix,

aij = 1 if 0 < |i− j| ≤ D and aij = 0 otherwise. Figure 4.1(a) is a visualization of such

a network with N = 100 and D = 10.

Example 4.5.2. (Random) For each node i ∈ {1, 2, ..., N}, we generate Di from uni-

form distribution U(0, 5), and then draw [Di] samples randomly from {1, 2, ..., N} to

form a set Si ([x] denotes the integer part of x). A = (aij) could be generated by letting

aij = 1 if j ∈ Si and aij = 0 otherwise. In a network simulated with such mechanism,

as it is indicated in Figure 4.1(b), there is no significantly influential node (i.e. node

with extremely large in-degree).
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Example 4.5.3. (Power-law) According to Clauset et al. (2009), for each node i in

such a network, Di is generated the same way as in Example 4.5.2. Instead of uni-

formly selecting [Di] samples from {1, 2, ..., N}, these samples are collected w.r.t. prob-

ability pi = si/
∑N

i=1 si where si is generated from a discrete power-law distribution

P {si = x} ∝ x−a with scaling parameter a = 2.5. As shown in Figure 4.1(c), a few

nodes have much larger in-degrees while most of them have less than 2. Compared

to Example 4.5.2, network structure with power-law distribution exhibits larger gaps

between the influences of different nodes. This type of network is suitable for modeling

social media such as Twitter and Instagram, where celebrities have huge influence while

the ordinary majority has little.

Example 4.5.4. (K-blocks) As it was proposed in Nowicki and Snijders (2001), in a

network with stochastic block structure, all nodes are divided into blocks and nodes

from the same block are more likely to be connected compared to those from different

blocks. To simulate such structure, these N nodes are randomly divided into K groups

by assigning labels {1, 2, ...,K} to every node with equal probability. For any two nodes

i and j from the same group, let P(aij = 1) = 0.5 while for those two from different

groups, P(aij = 1) = 0.001/N . Hence, it is very unlikely for nodes to be connected

across groups. Our simulated network successfully mimics this characteristic as Figure

4.1(d) shows clear boundaries between groups. Block network also has its advantage

from a practical perspective. For instance, the price of one stock is highly relevant to

those in the same industry sector.

In the next section, the simulation study is carried out on datasets that are generated

according to the process (4.1.1) in conjunction with three types of adjacency matrices

in Examples 4.5.1 – 4.5.4.

4.5.2 Simulation results

Setting the true parameters θ0 as (0.1, 0.1, 0.2, 0.2, 0.2)′, we generate data according

to process (4.1.1) with different sample sizes T and number of dimensions N . In our

setting, T increases from 50 to 4000, while N also increases at relatively slower rates

of O(
√
T ) and O(T/ log(T )) respectively, as it is showed in the following table:
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(a). Example 4.5.1 (D = 10) (b). Example 4.5.2

(c). Example 4.5.3 (d). Example 4.5.4 (K = 10)

Figure 4.1: Visualized network structures with N = 100

T 200 500 1000 2000

N ≈
√
T 14 22 31 44

N ≈ T/ log(T ) 37 80 144 263
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For each combination of (T,N), M = 1000 datasets will be simulated indepen-

dently, according to (4.1.1). Based on the m-th (m = 1, 2, ...,M) dataset, the estima-

tion of θ0 will be carried out and the estimation result is denoted as θ̂m = (θ̂km)′ =

(ω̂m, α̂
(1)
m , α̂

(2)
m , λ̂m, β̂m)′. For k = {1, 2, 3, 4, 5}, the following two measurements are

used to evaluate the performance of simulation results:

1. root-mean-square error: RMSEk =
√
M−1

∑M
m=1(θ̂km − θk0)2,

2. coverage probability: CPk =M−1
∑M

m=1 1{θk0∈CIkm}.

CIkm is the 95% confidence interval defined as

CIkm =
(
θ̂km − z0.975ŜEkm, θ̂km + z0.975ŜEkm

)
,

where the estimated standard error ŜEkm could be calculated as the square root of k-th

diagonal element of (NT )−1(κ̂4−1)Σ̂−1
NT and z0.975 is the 0.975th quantile of a standard

normal distribution. In order to eliminate the effect of starting points, a different initial

guess of θ is used for each m.

The results of root-mean-square errors with coverage probabilities in the parentheses

are reported in Table 4.1 and Table 4.2 respectively, under different network structures

and sample sizes. the consistency of the estimator is obvious since RMSE drops towards

zero when T and N increases. Additionally, ŜE provides reliable estimates of true

standard errors since the coverage probabilities are close the theoretical value of 95%.

Moreover, in Figures 4.2 to 4.5 we draw the normal Q-Q plots for the estimation

results when T = 2000, N = 44 and T = 2000, N = 263 under different network

structures. These Q-Q plots provide additional evidence for the asymptotic normality

of θ̂NT in Proposition 4.2. In conclusion, the asymptotic properties of our estimator in

Theorem 4.2 are well supported by our simulation results, even for network structures

in Examples 4.5.2 – 4.5.4 that may violate Assumption 4.3.3.
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T N ω α(1) α(2) λ β

Example 4.5.1

200 14 0.0197 (0.92) 0.0301 (0.94) 0.0378 (0.95) 0.0371 (0.95) 0.0964 (0.91)
500 22 0.0100 (0.94) 0.0152 (0.95) 0.0192 (0.95) 0.0218 (0.95) 0.0492 (0.93)
1000 31 0.0061 (0.95) 0.0086 (0.96) 0.0114 (0.96) 0.0143 (0.96) 0.0299 (0.96)
2000 44 0.0042 (0.92) 0.0053 (0.96) 0.0066 (0.96) 0.0094 (0.95) 0.0201 (0.93)

Example 4.5.2

200 14 0.0173 (0.93) 0.0295 (0.94) 0.0386 (0.94) 0.0344 (0.94) 0.0854 (0.93)
500 22 0.0086 (0.95) 0.0149 (0.95) 0.0191 (0.95) 0.0177 (0.95) 0.0414 (0.96)
1000 31 0.0047 (0.95) 0.0088 (0.95) 0.0110 (0.95) 0.0107 (0.94) 0.0263 (0.95)
2000 44 0.0028 (0.96) 0.0051 (0.96) 0.0067 (0.95) 0.0058 (0.95) 0.0144 (0.96)

Example 4.5.3

200 14 0.0169 (0.92) 0.0299 (0.93) 0.0388 (0.94) 0.0330 (0.94) 0.0852 (0.91)
500 22 0.0077 (0.95) 0.0153 (0.95) 0.0190 (0.95) 0.0166 (0.95) 0.0413 (0.94)
1000 31 0.0047 (0.94) 0.0092 (0.94) 0.0117 (0.93) 0.0099 (0.96) 0.0252 (0.95)
2000 44 0.0027 (0.94) 0.0052 (0.96) 0.0065 (0.95) 0.0057 (0.96) 0.0152 (0.94)

Example 4.5.4

200 14 0.0226 (0.91) 0.0308 (0.94) 0.0383 (0.94) 0.0486 (0.93) 0.1063 (0.90)
500 22 0.0095 (0.94) 0.0152 (0.94) 0.0194 (0.95) 0.0196 (0.95) 0.0478 (0.94)
1000 31 0.0057 (0.94) 0.0092 (0.94) 0.0113 (0.96) 0.0118 (0.94) 0.0286 (0.94)
2000 44 0.0034 (0.95) 0.0053 (0.96) 0.0066 (0.96) 0.0078 (0.95) 0.0169 (0.95)

Table 4.1: Simulation results with different network structures (N ≈
√
T ).

T N ω α(1) α(2) λ β

Example 4.5.1

200 37 0.0131 (0.94) 0.0188 (0.94) 0.0236 (0.95) 0.0301 (0.95) 0.0624 (0.93)
500 80 0.0065 (0.94) 0.0077 (0.96) 0.0100 (0.95) 0.0174 (0.94) 0.0303 (0.93)
1000 144 0.0041 (0.93) 0.0042 (0.96) 0.0054 (0.94) 0.0119 (0.95) 0.0173 (0.92)
2000 263 0.0023 (0.95) 0.0022 (0.95) 0.0028 (0.94) 0.0079 (0.95) 0.0088 (0.93)

Example 4.5.2

200 37 0.0102 (0.94) 0.0183 (0.94) 0.0237 (0.93) 0.0201 (0.95) 0.0521 (0.93)
500 80 0.0044 (0.93) 0.0077 (0.95) 0.0102 (0.95) 0.0086 (0.95) 0.0229 (0.94)
1000 144 0.0024 (0.93) 0.0042 (0.94) 0.0054 (0.94) 0.0048 (0.95) 0.0127 (0.93)
2000 263 0.0013 (0.94) 0.0021 (0.96) 0.0028 (0.94) 0.0025 (0.95) 0.0066 (0.94)

Example 4.5.3

200 37 0.0103 (0.94) 0.0188 (0.94) 0.0225 (0.95) 0.0199 (0.95) 0.0505 (0.94)
500 80 0.0042 (0.94) 0.0076 (0.96) 0.0096 (0.96) 0.0088 (0.95) 0.0225 (0.95)
1000 144 0.0022 (0.94) 0.0041 (0.95) 0.0051 (0.95) 0.0048 (0.95) 0.0119 (0.94)
2000 263 0.0011 (0.95) 0.0022 (0.94) 0.0027 (0.96) 0.0024 (0.95) 0.0061 (0.95)

Example 4.5.4

200 37 0.0129 (0.93) 0.0190 (0.95) 0.0231 (0.95) 0.0282 (0.94) 0.0615 (0.92)
500 80 0.0053 (0.93) 0.0080 (0.95) 0.0095 (0.97) 0.0107 (0.97) 0.0267 (0.93)
1000 144 0.0027 (0.94) 0.0042 (0.95) 0.0053 (0.95) 0.0055 (0.96) 0.0134 (0.94)
2000 263 0.0014 (0.93) 0.0022 (0.95) 0.0027 (0.95) 0.0029 (0.94) 0.0072 (0.93)

Table 4.2: Simulation results with different network structures (N ≈ T/ log(T )).
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(a). T = 2000, N = 44

(b). T = 2000, N = 263

Figure 4.2: Q-Q plots of estimates for Example 4.5.1.
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(a). T = 2000, N = 44

(b). T = 2000, N = 263

Figure 4.3: Q-Q plots of estimates for Example 4.5.2.
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(a). T = 2000, N = 44

(b). T = 2000, N = 263

Figure 4.4: Q-Q plots of estimates for Example 4.5.3.
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(a). T = 2000, N = 44

(b). T = 2000, N = 263

Figure 4.5: Q-Q plots of estimates for Example 4.5.4.
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4.6 Empirical data analysis

In addition to simulation studies, we want to test our model using real data from

Chinese Shanghai Stock Exchange (SSE) and Shenzhen Stock Exchange (SZSE). The

dataset consists of daily log returns of 286 stocks, which are observed in two consecutive

years of 2019 and 2020 (T = 487 except for closing days). These stocks come from four

industry sectors as follows:

• 75 stocks from automotive industry sector;

• 73 stocks from financial industry sector;

• 68 stocks from information industry sector;

• 70 stocks from pharmaceutical industry sector.

And our model is tested within each sector, in which the number of stocks is approxi-

mately T/ log(T ) ≈ 79. Hence the estimates and inferences could be trusted according

to the simulation study.

As an initial impression of data from each category the time plots of daily average

log returns are presented in Figure 4.6. We also have the shareholder information of

each stock, based on which two stocks are considered as connected when they share

at least one common shareholder among their top ten shareholders. By this principle,

four adjacency matrices are constructed and visualized as Figure 4.7 for four different

industry sectors. Although it is quite intuitive to tell from Figure 4.7 the sparsity of

these four networks, we tend to use the network density (ND) as a quantified measure-

ment, which is defined by the ratio of the number of existing edges to the number of

potential connections: ND := 100%×
∑N

i=1 di
N(N−1) .

The results of parameter estimation is summarized in Table 4.3. Positive estimates

of λ indicate positive correlation between the return of a stock and the returns of

its neighbours, however it is worth noticing that the estimated network effect λ for

automotive industry sector is much smaller than those from other sectors. As indicated

in Figure 4.7(a), this could be caused by the sparsity of the network structure as the

data from automotive industry has the lowest network density compared to others.
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(a). Automotive industry (b). Financial industry

(c). Information industry (d). Pharmaceutical industry

Figure 4.6: Average log returns of stocks from different industry sectors
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(a). Automotive industry (ND = 1.26%) (b). Financial industry (ND = 8.11%)

(c). Information industry (ND = 1.58%) (d). Pharmaceutical industry (ND = 2.82%)

Figure 4.7: Visualization of networks for stocks from different industry sectors
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Comparing with other parameters, the estimates of β are much larger for all four

categories. Strong memory of volatility has been observed in many econometric studies

on daily data, and such persistence would be stronger with data sampled at higher

frequency according to Nelson (1991).

Automotive Industry Financial Industry

Parameter Estimation SE Parameter Estimation SE

ω 0.000099 5.83e-07 ω 0.000043 3.12e-06

α(1) 0.199408 1.08e-02 α(1) 0.247765 1.41e-02

α(2) 0.136423 1.01e-02 α(2) 0.202237 1.47e-02

λ 0.004591 4.71e-03 λ 0.010469 5.35e-03

β 0.727756 1.17e-02 β 0.737272 1.09e-02

Information Industry Pharmaceutical Industry

Parameter Estimation SE Parameter Estimation SE

ω 0.000105 6.39e-06 ω 0.000063 4.15e-06

α(1) 0.172737 9.34e-03 α(1) 0.180950 1.05e-02

α(2) 0.122312 8.86e-03 α(2) 0.131722 1.06e-02

λ 0.009475 4.03e-03 λ 0.012929 4.06e-03

β 0.745699 1.11e-02 β 0.753305 1.11e-02

Table 4.3: Estimation results based on daily log-returns (2019&2020) of stocks from
four industries.

We now conduct a Wald test on the existence of threshold effect based on the

estimated parameters. By letting Γ := (0, 1,−1, 0, 0) and η := 0 in (4.4.1), we can

make a null hypothesis as follows:

H0 : α
(1)
0 = α

(2)
0 .

As it is indicated in Table 4.4, we could reject the null hypothesis with strong confi-

dence and conclude that there exists extremely significant threshold effect within each

industry sector.

Automotive Industry Financial Industry Information Industry Pharmaceutical Industry

1.09e-10 2.16e-07 3.8e-06 3.17e-06

Table 4.4: p-values of Wald test on H0 : α
(1)
0 = α

(2)
0

Using the diagnostic tool introduced in Section 4.4.2, we could check the model ade-

quacy by inspecting the correlations between residual vectors rt =
[

y1t
σ̃1t(θ̂NT )

, ..., yNt

σ̃Nt(θ̂NT )

]′
.
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We will test null hypothesis H0 : rt = Pzt with P being unknown and P = IN respec-

tively, the results are summarized in Table 4.5. In all sectors, we can not reject the

hypothesis that the residual vectors are high-dimensional white noises with Ert = 0

and V ar(rt) = PP ′ over t. However, the stronger hypothesis H0 : rt = zt is rejected,

as there exist correlations between residuals
{

yit
σ̃it(θ̂NT )

}
with different i. We might be

able to eliminate such deficiency in the adequacy of our model by heterogeneous pa-

rameterization with coefficients as ωi. α
(1)
i , α

(2)
i , λi and βi, or by considering a dynamic

network structure. However, the purpose of the introduction of network structure is

to reduce the number of parameters of high-dimensional time series. Besides, deriving

limit theorems for models with heterogeneous parameters or dynamic network could be

theoretically challenging.

Automotive Industry Financial Industry Information Industry Pharmaceutical Industry

P is unknown Not rejected Not rejected Not rejected Not rejected

P = IN Rejected Rejected Rejected Rejected

Table 4.5: Results of high-dimensional white noise test on H0 : rt = Pzt with q = 3
and α = 0.01.

On the other hand, our results on asymmetric effect of positive and negative news

are quite different compared to what was derived from univariate data in the literature.

For instance, in a study by Engle and Ng (1993) on the daily returns of Japanese stock

index TOPIX, it was found that negative news would have larger impact on future

volatility. Such a phenomenon is reasonable in the stock market since investors would

lose confidence to a certain asset when it performs badly, hence they would adjust their

portfolio and add more uncertainty to the future. However, it is not necessarily the

case if we take into consideration the whole picture instead of looking at one individual

and ignoring possible impact of its neighbours in the same system. In our estimation

results, α(1) are uniformly larger than α(2), indicating a larger impact of good news on

volatility. A more precise conclusion would be that the volatility of one individual is

more sensitive to its own good news, which actually does not contradict the conclusion

of Engle and Ng (1993), since in the univariate case, how much proportion of the

“bad news” effect is actually contributed by bad performance in systematic perspective

remains unknown. Our results show that good news has larger “local influence” as it
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is indicated by α(1), while there is a possibility that bad news, despite of having less

“local influence”, spreads faster and has larger “global influence” on the neighbours

through network connection. Such potential leads to a future extension of our model

that the threshold effect could be further applied on the coefficient λ, allowing good

news and bad news to have asymmetric network effect.
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Poisson Threshold Network

GARCH

5.1 Introduction

Integer-valued time series can be observed in a wide range of scientific fields, such as

the yearly trading volume of houses on real estate market De Wit et al. (2013), number

of transactions of stocks Jones et al. (1994), or the daily mortality from COVID-19

Pham (2020). A first idea to model integer-valued time series is using a simple first-

order autoregressive model (2.1.1). However in model (2.1.1) yt is not necessarily an

integer given integer-valued yt−1 and εt, due to the multiplication structure αyt−1.

Circumventing such problem by replacing the ordinary multiplication αyt−1 by the

(binomial) thinning operation α◦yt−1 where α◦y|y ∼ Bin(y, α), McKenzie (1985) and

Al-Osh and Alzaid (1987) proposed an integer-valued counterpart of the AR model

(INAR), which was ground-breaking and led to various extensions of thinning-based

linear models including integer-valued moving average model (INMA) (Al-Osh and

Alzaid, 1988) and INARMA model McKenzie (1988) among others. An alternative

approach to the multiplication problem, is to consider the regression of the conditional

mean λt := E(yt|Ht−1) where Ht−1 is the σ-algebra generated by historical information

up to t− 1. Based on this idea, integer-valued GARCH-type models (INGARCH) were
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proposed by (Heinen, 2003; Ferland et al., 2006; Fokianos et al., 2009) with conditional

Poisson distribution of yt, e.g., the Poisson autoregression (2.1.6). In this chapter

we will construct a model based on the Poisson INGARCH model. Other variations

of INGARCH models with different specifications of conditional distribution include

negative binomial INGARCH (Zhu, 2010; Xu et al., 2012) and generalized Poisson

INGARCH (Zhu, 2012) among others.

The application of preceding integer-valued models are all limited to one-dimensional

time series, and the development of multi-dimensional integer-valued GARCH-type

models is still at its early stage. e.g. the bivariate INGARCH models (Lee et al.,

2018; Cui and Zhu, 2018; Cui et al., 2020) and other multivariate INGARCH models

(Fokianos et al., 2020; Lee et al., 2023) on low-dimensional time series of counts. As

for high-dimensional integer-valued time series, there exist several counterparts of the

network GARCH model proposed by Zhou et al. (2020), such as the Poisson network au-

toregressive model (PNAR) by Armillotta and Fokianos (2024) and the grouped PNAR

model by Tao et al. (2024). The PNAR of Armillotta and Fokianos (2024) allows for

integer-valued time series with increasing network dimension. However, their model

adopted an ARCH-type structure without considering the autoregressive term on the

conditional mean, and moreover, there is no threshold structure in their model to cap-

ture asymmetric characteristics of volatilities. The grouped PNAR Tao et al. (2024)

has a GARCH structure indeed, but its network dimension is fixed and not applicable

to ultra high dimensional data. In this chapter we propose a Poisson threshold network

GARCH model (PTNGARCH) that are distinguished in following aspects:

• A threshold structure is designed in our PTNGARCH so that it is capable of

capturing asymmetric properties of high-dimensional volatilities for discrete data.

The threshold effect can also be tested under such a framework.

• Our PTNGARCH includes an autoregressive term on the conditional mean so that

it provides a parsimonious description of dynamic volatilities of high-dimensional

count time series.

• Asymptotic theory, when both sample size and network dimension are large, of
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maximum likelihood estimation for our model is established by the limit theorems

for weakly dependent random fields in Chapter 3.

5.2 Stationarity under fixed N

Recalling the TNGARCH model (4.1.1), we consider an non-directed and weightless

network with N nodes, represented by adjacency matrix A with its entry aij = 1 if there

is a connection between node i and j, and aij = 0 otherwise. Correspondingly we have

the row-normalized adjacency matrix W with its entry wij =
aij∑N
j=1 aij

. Distinguished

from the model (4.1.1), PTNGARCH deals with N-valued data. Let yit be a non-

negative integer-valued observation on node i at time t, and Ht−1 denotes the σ-algebra

consisting of all available information up to t − 1. In our Poisson threshold network

GARCH model, we suppose that yit follows a conditional (onHt−1) Poisson distribution

with (i, t)-varying mean λit. That is, a PTNGARCH(1,1) model has following form:

yit|Ht−1 ∼ Poisson(λit),

λit = ω +
(
α(1)1{yi,t−1≥r} + α(2)1{yi,t−1<r}

)
yi,t−1 + ξ

N∑
j=1

wijyj,t−1 + βλi,t−1,

i = 1, 2, · · · , N.

(5.2.1)

The threshold parameter r is an positive integer, and 1{·} denotes an indicator function.

To assure the positiveness of conditional variance, we need to assume that ω > 0,

α(1) ≥ 0, α(2) ≥ 0, ξ ≥ 0 and β ≥ 0.

Remark. Notice that in (5.2.1) we model the dynamics of conditional mean λit, which

is the reason why the name “Poisson autoregressive” is sometimes used in the literature

(Fokianos et al., 2009; Wang et al., 2014). Some authors still use the name “GARCH”

since the mean is equal to the variance under Poisson distribution, and the dynamics

of conditional mean are GARCH-like. We tend to keep the name “GARCH” to align

with the TNGARCH model in Chapter 4.

Let {Mit : i = 1, 2, ..., N, t ∈ Z} be independent Poisson processes with unit in-

tensities. Depending on λit, yit can be interpreted as a Poisson distributed random
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variable Mit(λit), which is the number of occurrences during the time interval (0, λit].

i.e. P(yit = n|λit = λ) = λn

n! e
−λ. We could rewrite (5.2.1) in vectorized form as follows:

Yt = Mt(Λt),

Λt = ω1N +A(Yt−1)Yt−1 + βΛt−1,
(5.2.2)

where Mt := (M1t(λ1t),M2t(λ2t), ...,MNt(λNt))
′ ∈ NN , and

Λt = (λ1t, λ2t, ..., λNt)
′ ∈ RN ,

1N = (1, 1, ..., 1)′ ∈ RN ,

A(Yt−1) = α(1)S(Yt−1) + α(2)(IN − S(Yt−1)) + ξW,

S(Yt−1) = diag
{
1{y1,t−1≥r}, 1{y2,t−1≥r}, ..., 1{yN,t−1≥r}

}
.

Assumption 5.2.1. The coefficients α(1) and α(2) satisfy:

(a). α(1) ≤ α(2);

(b). α(2) ≤
(
1 + 1

r−1

)
α(1) when r > 1.

Now we are ready to give a sufficient condition for model (5.2.2) to have a strictly

stationary solution.

Theorem 5.1. If Assumption 5.2.1 is satisfied and

max{α(1), α(2)}+ ξ + β < 1,

then there exists a strictly stationary process {Yt : t ∈ Z} that satisfies (5.2.2) and has

finite first order moment.

5.3 Parameter estimation with T → ∞ and N → ∞

Assume that the model of interest is characterized by an array of parameters ν =

(θ′, r)′ with θ = (ω, α(1), α(2), ξ, β)′ and the parameter space Θ × Z+. The samples
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{yit : (i, t) ∈ DNT , NT ≥ 1} are generated by model (5.2.1) with respect to true

parameters ν0 = (ω0, α
(1)
0 , α

(2)
0 , ξ0, β0, r0)

′.

Based on the infinite past of observations, the log-likelihood function (ignoring

constants) is  LNT (ν) =
1

NT

∑
(i,t)∈DNT

lit(ν),

lit(ν) = yit log λit(ν)− λit(ν)
(5.3.1)

where λit(ν) is generated from model (5.2.1) as

λit(ν) =ω + α(1)1{yi,t−1≥r}yi,t−1 + α(2)1{yi,t−1<r}yi,t−1

+ ξ

N∑
j=1

wijyj,t−1 + βλi,t−1(ν).
(5.3.2)

In practice, (5.3.1) cannot be evaluated without knowing the true values of λi0 for

i = 1, 2, ..., N . Therefore, we approximate (5.3.1) by (5.3.3) below, using specified

initial values λi0 = λ̃i0, i = 1, 2, ..., N : L̃NT (ν) =
1

NT

∑
(i,t)∈DNT

l̃it(ν),

l̃it(ν) = yit log λ̃it(ν)− λ̃it(ν).
(5.3.3)

And the maximum likelihood estimates (MLE) are evaluated by

ν̂NT = argmax
ν∈Θ×Z+

L̃NT (ν). (5.3.4)

However, the solution that maximizes the target function L̃NT (ν) cannot be directly

obtained by solving ∂L̃NT (ν)
∂ν = 0, since r ∈ Z+ is discrete, therefore the partial derivative

of L̃NT (ν) w.r.t. r is invalid. According to Wang et al. (2014), such an optimization

problem with integer-valued parameter r could be broken up into two steps as follows:

1. Find

θ̂
(r)
NT = argmax

θ∈Θ
L̃NT (θ, r)

for each r in a predetermined range [r, r̄] ⊂ Z+.
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2. Find

r̂NT = argmax
r∈[r,r̄]

L̃NT (θ̂
(r)
NT , r).

Then ν̂NT =
(
θ̂
(r̂NT )′

NT , r̂NT

)′
would be the optimizer of L̃NT (ν).

Assumption 5.3.1 is a regularity condition on the parameter space. Assumptions

5.3.2 and 5.3.3 are necessary for obtaining η-weak dependence of {lit(ν) : (i, t) ∈

DNT , NT ≥ 1}. Then the consistency of MLE in Theorem 5.2 could be proved based

on the LLN of η-weakly dependent arrays of random fields in Theorem 3.1.

Assumption 5.3.1. The parameter space Θ× Z+ satisfies:

(a). Θ is compact and θ0 is an interior point of Θ;

(b). For any θ ∈ Θ, the conditions in Theorem 5.1 are satisfied.

Assumption 5.3.2. (a). supNT≥1 sup(i,t)∈DNT
∥yit∥2p <∞ for some p > 1;

(b). The array of random fields {yit : (i, t) ∈ DNT , NT ≥ 1} is η-weakly dependent

with coefficients η̄y(r) := O(r−µy) for some µy > 22p−1
p−1 .

Assumption 5.3.3. For any i = 1, 2, ..., N and j = 1, 2, ..., N , there exist constants

C > 0 and b > µy such that wij ≤ C|j − i|−b. That is, the power of connection between

two nodes i and j decays as |i− j| grows.

Theorem 5.2. If Assumptions 5.3.1, 5.3.2 and 5.3.3 are satisfied, then the MLE de-

fined by (5.3.4) is consistent:

ν̂NT
p→ ν0

as T → ∞ and N → ∞.

Since r̂NT is an integer-valued consistent estimate of r0, r̂NT will eventually be

equal to r0 when the sample size NT becomes sufficiently large. Therefore, ν̂NT =(
θ̂
(r̂NT )′

NT , r̂NT

)′
is asymptotically equal to

(
θ̂
(r0)′

NT , r0

)′
. In this way, the problem of inves-

tigating the asymptotic distribution of ν̂NT degenerates to investigating the asymptotic

distribution of θ̂
(r0)
NT .
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Theorem 5.3. Assume that all conditions in Theorem 5.2 are satisfied, with µy >

6p−3
p−1 ∨

(4p−3)(2p−1)
2(p−1)2

in Assumption 5.3.2(b) instead. If the smallest eigenvalue λmin(ΣNT )

of

ΣNT :=
1

NT

∑
(i,t)∈DNT

E
[

1

λit(ν0)

∂λit(ν0)

∂θ

∂λit(ν0)

∂θ′

]
satisfies that

inf
NT≥1

λmin(ΣNT ) > 0, (5.3.5)

then θ̂
(r0)
NT is asymptotically normal, i.e.

√
NTΣ

1/2
NT (θ̂

(r0)
NT − θ0)

d→ N(0, I5)

as T → ∞, N → ∞ and N = o(T ).

Remark. In the proof of Proposition 5.1 we will show that, ΣNT could be consistently

estimated by

Σ̂NT =
1

NT

∑
(i,t)∈DNT

[
1

λ̃it(ν̂NT )

∂λ̃it(ν̂NT )

∂θ

∂λ̃it(ν̂NT )

∂θ′

]

in practice.

Based on Theorem 5.2 and Theorem 5.3, for sufficiently large sample region such

that r̂NT = r0, we are able to design a Wald test with null hypothesis

H0 : Γθ0 = η, (5.3.6)

where Γ is an s× 5 matrix with rank s and η is an s-dimensional vector. For example,

to test the existence of a threshold effect, simply let Γ := (0, 1,−1, 0, 0) and η := 0,

and the null hypothesis (5.3.6) becomes

H0 : α
(1)
0 = α

(2)
0 .

Corresponding to the asymptotic normality of θ̂
(r0)
NT in Theorem 5.3, we define a
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Wald test statistic as follows:

WNT := (Γθ̂
(r0)
NT − η)′

{
Γ

NT
Σ̂−1
NTΓ

′
}−1

(Γθ̂
(r0)
NT − η), (5.3.7)

where

Σ̂NT =
1

NT

∑
(i,t)∈DNT

[
1

λ̃it(ν̂NT )

∂λ̃it(ν̂NT )

∂θ

∂λ̃it(ν̂NT )

∂θ′

]
.

And in Proposition 5.1 below, WNT is proved to have an asymptotic χ2-distribution

with s degrees of freedom.

Proposition 5.1. Under the same assumptions required by Theorem 5.3, as T → ∞,

N → ∞ and N = o(T ), the Wald test statistic defined in (5.3.7) asymptotically follows

a χ2 distribution with degree of freedom s, i.e.

WNT
d→ χ2

s.

5.4 Simulation study and empirical data analysis

5.4.1 Simulation study

Set the true parameters ν0 = (0.5, 0.7, 0.6, 0.1, 0.1, 5)′ of the data generating process

(5.2.1). For the sample region DNT = {(i, t) : i = 1, 2, ..., N ; t = 1, 2, ..., T}, let T

increase from 200 to 2000, while N also increases at relatively slower rates of O(
√
T )

and O(T/ log(T )) respectively, as shown in the following table:

T 200 500 1000 2000

N ≈
√
T 14 22 31 44

N ≈ T/ log(T ) 37 80 144 263

For each network size N , the adjacency matrix A is simulated according to four

different mechanisms in Example 4.5.1 to Example 4.5.4 in Section 4.5.

Remark. Particularly, in the empirical analysis we will study the dataset of car collisions

across different neighbourhoods that are distributed on five boroughs of New York

City. These boroughs are separated by rivers (except for Brooklyn and Queens), and
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neighbourhoods within the same borough are more likely to share a borderline while

cross-borough connections are very rare. Therefore the network constructed with New

York City neighbourhoods follows the block structure in Example 4.5.4 with N = 20

and K = 5.

Based on a simulated network, the data is generated according to (5.2.1), and the

true parameters are estimated by the MLE (5.3.4). To monitor the finite performance of

MLE, data generation and parameter estimation are repeated for M = 1000 times, for

each combination of sample size (N,T ). The m-th replication produces the estimates

θ̂m = (ω̂m, α̂
(1)
m , α̂

(2)
m , ξ̂m, β̂m)′ and r̂m. Root-mean-square errors (RMSE) and coverage

probabilities (CP) with different sample sizes and network simulation mechanisms, are

reported in Tables 5.1 and 5.2; We also report the mean estimates of the threshold r0

at the last columns of both tables.

T N ω α(1) α(2) ξ β r̄

Example 4.5.1

200 14 0.0696 (0.94) 0.0203 (0.94) 0.0278 (0.93) 0.0170 (0.95) 0.0256 (0.93) 5.028
500 22 0.0367 (0.96) 0.0100 (0.95) 0.0138 (0.95) 0.0101 (0.93) 0.0127 (0.95) 5
1000 31 0.0238 (0.95) 0.0058 (0.95) 0.0081 (0.95) 0.0062 (0.97) 0.0074 (0.95) 5
2000 44 0.0153 (0.95) 0.0035 (0.95) 0.0047 (0.95) 0.0041 (0.96) 0.0045 (0.95) 5

Example 4.5.2

200 14 0.0454 (0.95) 0.0200 (0.95) 0.0264 (0.94) 0.0119 (0.96) 0.0245 (0.94) 5.045
500 22 0.0284 (0.95) 0.0101 (0.95) 0.0134 (0.95) 0.0072 (0.94) 0.0126 (0.95) 5.002
1000 31 0.0162 (0.97) 0.0059 (0.96) 0.0077 (0.97) 0.0044 (0.94) 0.0074 (0.95) 5
2000 44 0.0112 (0.96) 0.0034 (0.96) 0.0047 (0.95) 0.0029 (0.94) 0.0043 (0.96) 5

Example 4.5.3

200 14 0.0511 (0.96) 0.0200 (0.95) 0.0272 (0.94) 0.0131 (0.95) 0.0246 (0.95) 5.034
500 22 0.0349 (0.95) 0.0102 (0.95) 0.0135 (0.96) 0.0084 (0.95) 0.0127 (0.96) 5.001
1000 31 0.0146 (0.95) 0.0060 (0.95) 0.0079 (0.95) 0.0038 (0.95) 0.0077 (0.94) 5
2000 44 0.0104 (0.95) 0.0035 (0.95) 0.0048 (0.94) 0.0025 (0.95) 0.0043 (0.96) 5

Example 4.5.4

200 14 0.0882 (0.95) 0.0205 (0.95) 0.0273 (0.95) 0.0227 (0.94) 0.0256 (0.93) 5.013
500 22 0.0379 (0.94) 0.0102 (0.95) 0.0136 (0.95) 0.0096 (0.95) 0.0124 (0.95) 5
1000 31 0.0218 (0.95) 0.0060 (0.95) 0.0078 (0.95) 0.0055 (0.95) 0.0073 (0.96) 5
2000 44 0.0118 (0.94) 0.0035 (0.96) 0.0047 (0.95) 0.0029 (0.95) 0.0043 (0.96) 5

Table 5.1: Simulation results with different network structures (N ≈
√
T ).

From Tables 5.1 and 5.2 we can tell, that the RMSEs of θ̂NT decrease asymptotically

toward zero, and the mean of r̂NT is equal to r0 = 5 for sufficiently large sample size.

These results support the consistency of MLE (5.3.4) in Theorem 5.2. The reported

CPs are close to the value 0.95, showing that ŜE provides a reliable estimation of

the true standard error of θ̂NT . Moreover, in Figures 5.1 to 5.4 we draw the normal

Q-Q plots for the estimation results when T = 2000, N = 44 and T = 2000, N = 263

respectively, under different network structures. These Q-Q plots provide additional
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T N ω α(1) α(2) ξ β r̄

Example 4.5.1

200 37 0.0537 (0.95) 0.0124 (0.95) 0.0164 (0.95) 0.0143 (0.94) 0.0158 (0.94) 5.002
500 80 0.0287 (0.96) 0.0054 (0.94) 0.0071 (0.95) 0.0078 (0.95) 0.0066 (0.95) 5
1000 144 0.0201 (0.95) 0.0029 (0.94) 0.0040 (0.93) 0.0055 (0.95) 0.0036 (0.94) 5
2000 263 0.0136 (0.95) 0.0015 (0.94) 0.0019 (0.95) 0.0038 (0.95) 0.0019 (0.93) 5

Example 4.5.2

200 37 0.0347 (0.95) 0.0121 (0.95) 0.0170 (0.95) 0.0089 (0.95) 0.0161 (0.93) 5.008
500 80 0.0140 (0.95) 0.0053 (0.95) 0.0070 (0.95) 0.0035 (0.95) 0.0066 (0.95) 5
1000 144 0.0073 (0.95) 0.0029 (0.93) 0.0036 (0.95) 0.0020 (0.94) 0.0036 (0.93) 5
2000 263 0.0041 (0.95) 0.0014 (0.95) 0.0020 (0.94) 0.0011 (0.95) 0.0018 (0.96) 5

Example 4.5.3

200 37 0.0385 (0.95) 0.0124 (0.94) 0.0168 (0.95) 0.0092 (0.95) 0.0152 (0.95) 5.003
500 80 0.0144 (0.95) 0.0054 (0.95) 0.0071 (0.94) 0.0036 (0.95) 0.0067 (0.95) 5
1000 144 0.0073 (0.94) 0.0029 (0.94) 0.0035 (0.96) 0.0019 (0.94) 0.0035 (0.95) 5
2000 263 0.0037 (0.95) 0.0015 (0.95) 0.0019 (0.96) 0.0009 (0.95) 0.0018 (0.95) 5

Example 4.5.4

200 37 0.0498 (0.95) 0.0120 (0.95) 0.0165 (0.94) 0.0129 (0.94) 0.0148 (0.96) 5.011
500 80 0.0176 (0.94) 0.0055 (0.94) 0.0071 (0.94) 0.0045 (0.94) 0.0069 (0.94) 5
1000 144 0.0083 (0.97) 0.0028 (0.95) 0.0036 (0.96) 0.0022 (0.96) 0.0034 (0.95) 5
2000 263 0.0048 (0.95) 0.0015 (0.95) 0.0019 (0.95) 0.0012 (0.96) 0.0019 (0.95) 5

Table 5.2: Simulation results with different network structures (N ≈ T/ log(T )).

evidence for the asymptotic normality of θ̂NT in Theorem 5.3.

5.4.2 Analysis of daily numbers of car accidents in New York City

New York City Police Department (NYPD) publishes and regularly updates the de-

tailed data of motor vehicle collisions that have occurred city-wide. These data are

openly accessible on the NYPD website 1 and contain sufficient information for us to

apply our model. We collect all records from February 16th 2021 to June 30th 2022,

each record includes the date when an accident happened, and the zip code of where

it happened. We classified all records into 41 neighbourhoods according to the corre-

spondence between zip codes and the geometric locations they represent. Re-grouping

the data by neighbourhoods and the date of occurrence, we obtain a high-dimensional

time series with N = 41 and T = 500.

Two neighbourhoods are regarded as connected nodes if they share a borderline.

Base on the geometric information, we are able to construct a reasonable network with

41 nodes, which is visualized in Figure 5.5. In Figure 5.6 we plot histograms of daily

numbers of car accidents in 9 randomly selected neighbourhoods. The shapes of the

histograms of sampled data show potential Poisson distribution. Moreover, in Figure

5.7 we could easily observe volatility clustering in the daily numbers of car accident in

1https://www1.nyc.gov/site/nypd/stats/traffic-data/traffic-data-collision.page
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(a). T = 2000, N = 44

(b). T = 2000, N = 263

Figure 5.1: Q-Q plots of estimates for Example 4.5.1.
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(a). T = 2000, N = 44

(b). T = 2000, N = 263

Figure 5.2: Q-Q plots of estimates for Example 4.5.2.
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(a). T = 2000, N = 44

(b). T = 2000, N = 263

Figure 5.3: Q-Q plots of estimates for Example 4.5.3.
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(a). T = 2000, N = 44

(b). T = 2000, N = 263

Figure 5.4: Q-Q plots of estimates for Example 4.5.4.
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four selected neighbourhoods of NYC, indicating potential autoregressive structure in

the conditional heteroscedasticity of the data.

Figure 5.5: Network of 41 neighbourhoods in New York City

The estimation results are reported in Table 5.3. Firstly, it is worthy of note that

α(1) is slightly smaller than α(2), which means that the conditional variance of the

number of car accidents in these neighbourhoods are less affected by the number on

the previous day if it is above the threshold r = 10. Secondly, the volatility in the

number of car accidents in one area is also affected by its geometrically neighboured

areas. Besides, the estimated value of β is significantly larger than other coefficients,

indicating a strong persistence in volatility that leads to volatility clustering. Moreover,

we utilize the Wald test to further investigate the existence of threshold effect. Let

Γ := (0, 1,−1, 0, 0) and η := 0 in (5.3.6), then the null hypothesis becomes

H0 : α
(1)
0 = α

(2)
0 .

The Wald statistic (5.3.7) WNT = 18.94, which suggests the rejection of H0 at signifi-

cant level below 0.01 according to Proposition 5.1.
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Figure 5.6: Distributions of daily occurrences of car accidents in selected neighbour-
hoods.

ω α(1) α(2) ξ β r

Estimation 0.018693 0.126472 0.135026 0.002727 0.862244 10

SE 4.12e-03 4.40e-03 4.68e-03 1.09e-03 4.73e-03 \

Table 5.3: Estimation results based on daily number of car accidents in 41 neighbour-
hoods of NYC.
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Figure 5.7: Daily occurrences of car accidents in 4 neighbourhoods.
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Chapter 6

Network GARCH Models in the

One-Parameter Exponential

Family

6.1 Introduction

Corresponding to different application scenarios, GARCH-type models in existing lit-

erature are designed with different conditional distributions and iterative structures

that drive the hidden conditional mean (or variance) processes. Davis and Liu (2016)

established general theory and inference for a class of univariate GARCH models that

have conditional distributions belonging to the one-parameter exponential family and

the conditional means defined through (linear or non-linear) iterated random functions

of their lagged values and past observations. In this chapter, we will consider high-

dimensional GARCH models with conditional distributions in the one-parameter expo-

nential family. As we have mentioned, one major challenge faced by multi-dimensional

GARCH models is that the number of parameters increases as the spatial dimension ex-

pands, causing problems in establishing a feasible estimation method. As we have done

in preceding chapters, to circumvent this problem, we suppose that the simultaneously

observed individuals are connected through a network structure, and each conditional
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mean (or variance) is driven by a weighted average lag-1 values from its neighbours on

the network (see (6.2.2)). This idea of utilizing a large scale network is popular in the

literature of high-dimensional time series, starting from Zhu et al. (2017)’s network AR

model, followed by other AR-type models (Xu et al., 2024) and GARCH-type models

(Tao et al., 2024; Armillotta and Fokianos, 2024; Pan and Pan, 2024).

This chapter is organized as follows: In Section 6.3 the stationarity shall be dis-

cussed under a fixed-dimension setting, utilizing the method of geometric moment

contraction established by Wu and Shao (2004) for Markov chains driven by iterated

random functions. Then in Section 6.4 we will establish maximum likelihood estima-

tion that is consistent and asymptotically normal under increasing size of temporal and

spatial dimensions, facilitated by the limit theorems of weakly dependent random fields

in Chapter 3. As far as we know, among all the studies on high-dimensional GARCH-

type models, only Pan and Pan (2024) and Armillotta and Fokianos (2024) consider the

case of increasing size of spatial dimension. However, the threshold network GARCH

model of Pan and Pan (2024) is limited to continuous data and the Poisson network

autoregression of Armillotta and Fokianos (2024) has a simple ARCH-type conditional

intensity process. Our methodology accommodates both continuous and integer-valued

data, and it is feasible under non-linear structures in the conditional mean process. In

Section 6.5, we will test our methodology on a new negative binomial threshold network

GARCH model, with simulation studies and real data analysis carried out as well.

6.2 Network GARCH in one-parameter exponential fam-

ily

Adopting the settings in preceding chapters, we consider an non-directed and weightless

network with N nodes, represented by adjacency matrix A and corresponding row-

normalized adjacency matrix W . For any node i in this network, let yit be an non-

negative observation at time t, and Ht−1 denote the σ-algebra consisting of all available

information up to t− 1. In this chapter, we assume that the conditional distribution of

yit|Ht−1 belongs to the one-parameter exponential family (OPE) with parameter ηit.
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For any random variable y adapts to this family of distribution, the probability

density function of y follows the form

f(y|η) = h(y) exp {ηy −A(η)} , y ≥ 0. (6.2.1)

η is called the natural parameter. The function h(·) is non-negative and independent

from η. The first order derivative of function A(·) exists and B(·) := A′(·); Both

functions in (6.2.1) are known. Based on the density function (6.2.1) we have the

conditional mean E(y|η) = B(η) and the conditional variance Var(y|η) = B′(η).

Remark. Since we assume that y ≥ 0 in (6.2.1) throughout this chapter, then A is a

strictly increasing function since A′(η) = B(η) = E(y|η) > 0. Moreover, to ensure that

Var(y|η) = B′(η) > 0, B is also assumed to be strictly increasing.

An NGARCH-OPE(1,1) model has following form:

yit|Ht−1 ∼ OPE(ηit),

µit = gθ

yi,t−1,
N∑
j=1

wijyj,t−1, µi,t−1

 (6.2.2)

for i = 1, 2, ..., N . Similar to the settings of TNGARCH and PTNGARCH in previous

chapters, we assume that the conditional distributions yit|Ht−1 are independent for i =

1, 2, ..., N and t ∈ Z. Characterized by θ-parameterized function gθ(·), the conditional

mean process µit := B(ηit) has a GARCH-type structure with an extra network term.

The parameter θ takes value that ensures the positiveness of the conditional mean

process µit. With carefully specified OPE and gθ, model (6.2.2) covers a large class

of R-valued and integer-valued network GARCH, as well as univariate GARCH-type

models (N = 1). We will give three examples below.

Example 6.2.1. To model unbounded non-negative integer-valued data, we can set OPE

as a Poisson distribution with parameter λ, (6.2.1) becomes

f(y|η) = 1

y!
exp {ηy − eη} , (6.2.3)
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with η = log(λ), A(η) = eη and B(η) = eη. The grouped network Poisson AR (Tao

et al., 2024) and Poisson network AR (Armillotta and Fokianos, 2024) are special cases

of (6.2.2).

Example 6.2.2. We can also model bounded non-negative integer-valued data, by setting

OPE as a binomial distribution with number of trials n and probability of success p,

then (6.2.1) becomes

f(y|η) =
(
n

y

)
eηy

(1 + eη)n
, (6.2.4)

with η = log p
1−p , A(η) = n log(1 + eη) and B(η) = n

(
1− 1

1+eη

)
. Hence (6.2.2) also

covers the binomial ARCH of Ristić et al. (2016).

Example 6.2.3. For non-negative integer-valued data with over-dispersion, we could set

OPE as a negative binomial distribution with number of success K and probability of

success p, then (6.2.1) becomes

f(y|η) =
(
y +K − 1

y

)
(1− eη)Keηy, (6.2.5)

with η = log (1− p), A(η) = −K log(1− eη) and B(η) = Keη

1−eη . The negative binomial

GARCH of Zhu (2010) is a univariate special case of (6.2.2).

6.3 Stationarity under fixed N

Let Fµ be the cumulative distribution function of OPE in (6.2.2) with µ = B(η) and its

inverse F−1
µ (u) := inf {q ≥ 0 : Fµ(q) ≥ u} for any u ∈ (0, 1). With the N -dimensional

vectors x := (x1, x2, ..., xN ) and u := (u1, u2, ..., uN )′ where ui ∈ (0, 1) for i = 1, 2, ..., N ,

we could define an N -dimensional function

G(x,u) :=



gθ0

(
F−1
x1

(u1),
∑N

j=1w1jF
−1
xj

(uj), x1

)
gθ0

(
F−1
x2

(u2),
∑N

j=1w2jF
−1
xj

(uj), x2

)
· · ·

gθ0

(
F−1
xN

(uN ),
∑N

j=1wNjF
−1
xj

(uj), xN

)


. (6.3.1)
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For all i and t, let Uit’s be independent and identically distributed (IID) random vari-

ables that follow uniform distribution on [0, 1]. With

Xt := (µ1t, µ2t, ..., µNt)
′,

Yt := (y1t, y2t, ..., yNt)
′,

Ut := (U1t, U2t, ..., UNt)
′,

we could define an N -dimensional Markov chain {Xt} based on model (6.2.2) as follows:

Xt = G(Xt−1,Ut). (6.3.2)

The Markov chain (6.3.2) could be regarded as an iterated random function (IRF)

system, where the random function GUt(·) := G(·,Ut) is defined on a complete and

separable metric space (X , | · |∞) with X := RN
+ , and the Ut’s are IID random vectors

that take values in another measurable space [0, 1]N . Therefore the stationarity of

(6.3.2) could be investigated using the methods of Wu and Shao (2004), who established

convergence of IRF to its stationary distribution in the sense of geometric moment

contraction (GMC).

For any starting point X0 = x ∈ X of (6.3.2), we can define an process {Xt(x) : t ≥

0} as

Xt(x) := GUt ◦GUt−1 ◦ ... ◦GU1(x).

If the stationary distribution of (6.3.2) exists and is denoted by π, then (6.3.2) could

also be represented by Xt(x) if x ∼ π. Let x′ ∈ X be another π-distributed starting

point that is independent from x. According to (2) in Wu and Shao (2004), the process

(6.3.2) is said to be geometric moment contracting if there exist constants α > 0,

C = C(α) > 0 and ρ = ρ(α) ∈ (0, 1) such that

E
∣∣Xt(x)− Xt(x

′)
∣∣α
∞ ≤ Cρt (6.3.3)
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for all t ∈ N. Similar to Xt(x), we define a backward iteration process

Zt(x) := GU1 ◦GU2 ◦ ... ◦GUt(x),

which has the same distribution with Xt(x) for all x ∈ X since U1,U2, ...Ut are IID.

Therefore, if there exists a random vector Z∞ such that Zt(x)
a.s.→ Z∞ for all x ∈ X ,

then Xt(x)
d→ Z∞.

Assumption 6.3.1. Let S0 be the range of
(
yit,
∑N

j=1wijyjt, µit

)
for all (i, t) ∈ DNT , NT ≥

1. Then for any (a, b, c) and (a′, b′, c′) in S0,

|gθ(a, b, c)− gθ(a
′, b′, c′)| ≤ ρ1|a− a′|+ ρ2|b− b′|+ ρ3|c− c′|, (6.3.4)

where the constants ρ1, ρ2, ρ3 are non-negative and ρ1 + ρ2 + ρ3 < 1. Moreover,

gθ(0, 0, 0) <∞.

Theorem 6.1. With Assumption 6.3.1, the following statements hold for the process

(6.3.2):

(a). There exists a random vector Z∞ such that, for all x ∈ X , Zt(x)
a.s.→ Z∞. Z∞ does

not depend on x and follows distribution π, which is the stationary distribution

of (6.3.2).

(b). The Markov chain (6.3.2) is geometric moment contracting with unique stationary

distribution π, and Eπ ∥Xt∥ <∞.

6.4 Maximum likelihood estimation

Based on a series of samples {yit : (i, t) ∈ DNT , NT ≥ 1} from (6.2.2), we will in-

vestigate the consistency and asymptotic normality of MLE as the size of the sample

region NT → ∞. Assume that the model of interest is characterized by an array of

k parameters θ in a parameter space Θ that is a compact subset of Rk, and the true

parameter θ0 ∈ Θ. Based on samples {yit : (i, t) ∈ DNT , NT ≥ 1}, we could construct
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a log likelihood function in the form

LNT (θ) =
1

NT

∑
(i,t)∈DNT

lit(θ) =
1

NT

∑
(i,t)∈DNT

[ηit(θ)yit −A(ηit(θ))] , (6.4.1)

where ηit(θ) = B−1(µit(θ)), and µit(θ) is obtained through iteration

µit(θ) = gθ

yi,t−1,
N∑
j=1

wijyj,t−1, µi,t−1(θ)

 .

The exact value of (6.4.1) cannot be calculated solely depending on the samples, since

the starting values µi0(θ) for i = 1, 2, ..., N are not observable. In practice, the the

estimate of θ0 is often obtained through an approximation of (6.4.1), i.e.

θ̂NT = argmax
θ∈Θ

L̃NT (θ), (6.4.2)

where the approximated likelihood is

L̃NT (θ) =
1

NT

∑
(i,t)∈DNT

l̃it(θ) =
1

NT

∑
(i,t)∈DNT

[η̃it(θ)yit −A(η̃it(θ))] , (6.4.3)

with η̃it(θ) = B−1(µ̃it(θ)), and µ̃it(θ) being obtained through iteration

µ̃it(θ) = gθ

yi,t−1,

N∑
j=1

wijyj,t−1, µ̃i,t−1(θ)

 ,

with prior setting of initial values µ̃i0 for i = 1, 2, ..., N . We need Assumption 6.4.1

below regarding the convergence of the approximated likelihood (6.4.3) to the exact

likelihood (6.4.1).

Assumption 6.4.1. For any θ ∈ Θ, |LNT (θ)− L̃NT (θ)|
p→ 0 as NT → ∞.

To establish the consistency of our MLE, we firstly assume that the random fields

of observations {yit : (i, t) ∈ DNT , NT ≥ 1} have uniform bounded moments, and are

weakly dependent.
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Assumption 6.4.2. supNT≥1 sup(i,t)∈DNT
E |yit|2p <∞ for some p > 1, and the array

of random fields {yit : (i, t) ∈ DNT , NT ≥ 1} is η-weakly dependent with η̄y(r) =

O(r−µ) with µ > 3(2p−1)
p−1 ∨ (4p−3)(2p−1)

2(p−1)2
.

The element (i, j) of W , wij measures the power of connection between any two nodes

i and j in a network. In the following assumption we assume that wij decays as the

distance |i− j| grows.

Assumption 6.4.3. wij ≤ C|i− j|−α for some constants C > 0 and α ≥ 2(p−1)
2p−1 µ+ 2.

Comparing to the contracting assumption on gθ in Assumption 6.3.1, in this section gθ

is only required to be partially contracting with respect to its third argument.

Assumption 6.4.4. Let S0 be the range of
(
yit,
∑N

j=1wijyjt, µit

)
for all (i, t) ∈ DNT ,

NT ≥ 1. Then for any (a, b, c) and (a′, b′, c′) in S0,

|gθ(a, b, c)− gθ(a
′, b′, c′)| ≤ C1|a− a′|+ C2|b− b′|+ ρ|c− c′| (6.4.4)

for some constants C1 > 0, C2 > 0 and 0 < ρ < 1.

Facilitated by the assumptions above, in Lemma 6.4.1 below we show that the

unobserved random fields {µit(θ) : (i, t) ∈ DNT , NT ≥ 1} are also weakly dependent

for any θ ∈ Θ.

Lemma 6.4.1. If Assumptions 6.4.2, 6.4.3 and 6.4.4 are satisfied, then the η-coefficients

of {µit(θ) : (i, t) ∈ DNT , NT ≥ 1} satisfy

η̄(0)µ (r) ≤ Cr2−µ

for some constant C > 0. And supNT≥1 sup(i,t)∈DNT
supθ∈Θ E |µit(θ)|2p <∞.

In the proof of consistency, we need to verify the convergence LNT (θ)−ELNT (θ)
p→

0, which requires the weak dependence of likelihood functions {lit(θ) : (i, t) ∈ DNT , NT ≥

1}. With the Lipschitz continuity assumption below, we obtain the weak dependence

of lit(θ)’s in Lemma 6.4.2 thereafter.
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Assumption 6.4.5. Let Sµ be the range of µit for all (i, t) ∈ DNT , NT ≥ 1, the

functions B−1 and A ◦ B−1 are Lipschitz continuous on Sµ.

Lemma 6.4.2. Beside of all the conditions of Lemma 6.4.1, if Assumption 6.4.5 is

also satisfied, then the η-coefficients of {lit(θ) : (i, t) ∈ DNT , NT ≥ 1} satisfy

η̄
(0)
l (r) ≤ Cr

2− 2(p−1)
2p−1

µ

for some constant C > 0. And supNT≥1 sup(i,t)∈DNT
supθ∈Θ E |lit(θ)|p <∞.

Assumption 6.4.6 below is required for the true parameters to be uniquely identifi-

able, i.e. θ0 is the unique maximizer of E|LNT (θ)|.

Assumption 6.4.6. For any δ > 0,

sup
NT≥1

sup
θ∈Θ

∥θ−θ0∥≥δ

{E[LNT (θ)]− E[LNT (θ0)]} < 0.

Lemma 6.4.2 allows us to use the LLN for weakly dependent random fields (Theorem

3.1 in Chapter 3), together with Assumption 6.4.1 and the identifiability Assumption

6.4.6 we can prove the consistency of θ̂NT as follows:

Theorem 6.2. If Assumptions 6.4.1 to 6.4.6 are satisfied, then the MLE defined by

(6.4.2) is consistent, that is

θ̂NT
p→ θ0

as NT → ∞.

As for the asymptotic normality of θ̂NT , we need additional assumptions on the

approximation L̃NT (θ) of LNT (θ) as in Assumption 6.4.7 below.

Assumption 6.4.7. As NT → ∞:

(a).
√
NT

∥∥∥∂L̃(θ0)
∂θ − ∂L(θ0)

∂θ

∥∥∥ p→ 0;

(b). sup∥θ−θ0∥<ξ

∥∥∥∂2L̃(θ)
∂θ∂θ′ − ∂2L(θ0)

∂θθ′

∥∥∥ = Op(ξ).
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There are two essential parts in the proof of asymptotic normality of θ̂NT : Firstly

to establish the limit distribution of the score function

√
NTV

−1/2
NT

∂LNT (θ0)

∂θ

d→ N (0, Ik), (6.4.5)

where VNT = Var
[√

NT ∂LNT (θ0)
∂θ

]
. We also need to verify the convergence of the

Hessian matrix ∂2LNT (θ0)
∂θ∂θ′ to its expectation, i.e.

∂2LNT (θ0)

∂θ∂θ′
+HNT

p→ 0, (6.4.6)

where HNT = −E
[
∂2LNT (θ0)

∂θ∂θ′

]
.

Based on (6.2.2), we write

∂µit(θ0)

∂θ
= g

(1)
θ0

yi,t−1,
N∑
j=1

wijyj,t−1, µi,t−1(θ0),
∂µi,t−1(θ0)

∂θ


for some function g

(1)
θ0

. Let S1 be the range of
(
yit,
∑N

j=1wijyjt, µit(θ0),
∂µit(θ0)

∂θ

)
for all

(i, t) ∈ DNT , NT ≥ 1. In the following assumption, we assume that g
(1)
θ0

is Lipschitz

continuous on S1 and partially contracting with respect to the fourth argument.

Assumption 6.4.8. For any (a, b, c, d) and (a′, b′, c′, d′) in S1,

∥∥∥g(1)θ0
(a, b, c, d)− g

(1)
θ0

(a′, b′, c′, d′)
∥∥∥ ≤ C1|a−a′|+C2|b−b′|+C3|c−c′|+ρ|d−d′| (6.4.7)

for some constants C1 > 0, C2 > 0, C3 > 0 and 0 < ρ < 1.

Lemma 6.4.3. Beside of all the conditions of Lemma 6.4.1, if Assumption 6.4.8 is

also satisfied, then the η-coefficients of {∂µit(θ0)
∂θ : (i, t) ∈ DNT , NT ≥ 1} satisfy

η̄(1)µ (r) ≤ Cr2−µ

for some constant C > 0. And supNT≥1 sup(i,t)∈DNT
E
∣∣∣∂µit(θ0)

∂θ

∣∣∣2p <∞.

Assumption 6.4.9. Let Sµ be the range of µit for all (i, t) ∈ DNT , NT ≥ 1, the

functions (B−1)′ and (A ◦ B−1)′ are Lipschitz continuous on Sµ.
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Assumption 6.4.10. Following bounds exist almost surely:

sup
NT≥1

sup
(i,t)∈DNT

∥∥∥∥∂µit(θ0)∂θ

∥∥∥∥ <∞;

sup
NT≥1

sup
(i,t)∈DNT

∣∣(B−1)′(µit(θ0))
∣∣ <∞;

sup
NT≥1

sup
(i,t)∈DNT

∣∣(A ◦ B−1)′(µit(θ0))
∣∣ <∞.

Lemma 6.4.4. Beside of all the conditions of Lemma 6.4.3, if Assumptions 6.4.9

and 6.4.10 are also satisfied, then the η-coefficients of
{

∂lit(θ0)
∂θ : (i, t) ∈ DNT , NT ≥ 1

}
satisfy

η̄
(1)
l (r) ≤ Cr

2− 2(p−1)
2p−1

µ

for some constant C > 0. And supNT≥1 sup(i,t)∈DNT
E
∣∣∣∂lit(θ0)∂θ

∣∣∣2p <∞.

As for the second order derivative of µit(θ0) we have

∂2µit(θ0)

∂θ∂θ′
= g

(2)
θ0

yi,t−1,
N∑
j=1

wijyj,t−1, µi,t−1(θ0),
∂µi,t−1(θ0)

∂θ
,
∂2µi,t−1(θ0)

∂θ∂θ′


for some function g

(2)
θ0

. Analogous to Assumption 6.4.8, we assume that g
(2)
θ0

is partially

contracting with respect to the fifth argument on S2, which denotes the range of inputs

of g
(2)
θ0

.

Assumption 6.4.11. For any (a, b, c, d, e) and (a′, b′, c′, d′, e′) in S2,

∥∥∥g(2)θ0
(a, b, c, d, e)− g

(2)
θ0

(a′, b′, c′, d′, e′)
∥∥∥ ≤ C1|a−a′|+C2|b−b′|+C3|c−c′|+C4|d−d′|+ρ|e−e′|

for some constants C1 > 0, C2 > 0, C3 > 0, C4 > 0 and 0 < ρ < 1.

Lemma 6.4.5. Beside of all the conditions of Lemma 6.4.4, if Assumption 6.4.11 is

also satisfied, then the η-coefficients of {∂2µit(θ0)
∂θ∂θ′ : (i, t) ∈ DNT , NT ≥ 1} satisfy

η̄(2)µ (r) ≤ Cr2−µ
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for some constant C > 0. Moreover, supNT≥1 sup(i,t)∈DNT
E
∣∣∣∂2µit(θ0)

∂θ∂θ′

∣∣∣2p <∞.

Assumption 6.4.12. Let Sµ be the range of µit for all (i, t) ∈ DNT , NT ≥ 1, the

functions (B−1)′ and (A ◦ B−1)′ are Lipschitz continuous on Sµ.

Assumption 6.4.13. Following bounds exist almost surely:

sup
NT≥1

sup
(i,t)∈DNT

∥∥∥∥∂2µit(θ0)∂θ∂θ′

∥∥∥∥ <∞;

sup
NT≥1

sup
(i,t)∈DNT

∣∣(B−1)′′(µit(θ0))
∣∣ <∞;

sup
NT≥1

sup
(i,t)∈DNT

∣∣(A ◦ B−1)′′(µit(θ0))
∣∣ <∞.

Lemma 6.4.6. Beside of all the conditions of Lemma 6.4.5, if Assumptions 6.4.12

and 6.4.13 are also satisfied, then the η-coefficients of
{

∂2lit(θ0)
∂θ∂θ′ : (i, t) ∈ DNT , NT ≥ 1

}
satisfy

η̄
(2)
l (r) ≤ Cr

2− 2(p−1)
2p−1

µ

for some constant C > 0. Moreover, supNT≥1 sup(i,t)∈DNT
E
∣∣∣∂2lit(θ0)

∂θ∂θ′

∣∣∣2p <∞.

Assumption 6.4.14. θ0 is an interior point of the parameter space Θ.

Assumption 6.4.15. infNT≥1 λmin(VNT ) > 0 and infNT≥1 λmin(V
−1/2
NT HNT ) > 0,

where VNT = Var
[√

NT ∂LNT (θ0)
∂θ

]
, HNT = −E

[
∂2LNT (θ0)

∂θ∂θ′

]
and λmin(·) denotes the

smallest eigenvalue.

With Lemma 6.4.4 and Assumption 6.4.15, we can prove (6.4.5) according to the

Corollary 3.2.1 in Chapter 3.1. (6.4.6) could also be verified with the result of Lemma

6.4.6 by Theorem 3.1 in Chapter 3.1. Combining (6.4.5), (6.4.6) and Assumption 6.4.7,

we obtain the asymptotic normality of θ̂NT as follows:

Theorem 6.3. If Assumptions 6.4.1 to 6.4.15 are satisfied, then the MLE defined by

(6.4.2) is asymptotically normal, that is

√
NT (V

−1/2
NT HNT )(θ̂NT − θ0)

d→ N (0, Ik)

as NT → ∞.
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6.5 A negative binomial threshold network GARCH

Suppose the conditional distribution of yit in (6.2.2) is the negative binomial distribu-

tion:

yit|Ht−1 ∼ NB(K, pit), (6.5.1)

which belongs to the one-parameter exponential family with ηit = log (1− pit), A(x) =

−K log(1 − ex) and B(x) = Kex

1−ex . Notice that the conditional mean B(ηit) = K(1−pit)
pit

is smaller than the conditional variance K(1−pit)
p2it

, therefore the negative binomial dis-

tribution is an appropriate alternative to the Poisson distribution under over-dispersed

data. Let µit =
K(1−pit)

pit
, following the idea of Samia and Chan (2011) and Davis and

Liu (2016) of linking the conditional mean process to a piece-wise linear stochastic

function, we define gθ as follows:

µit = ω + α(1)yi,t−1 + α(2)(yi,t−1 − r)+ + λ
N∑
j=1

wijyj,t−1 + βµi,t−1, (6.5.2)

where x+ denotes the positive part of x, and r > 0 is an integer-valued threshold

parameter. To ensure that µit > 0, we suppose that ω > 0, α(1) ≥ 0, α(1) + α(2) ≥ 0,

λ ≥ 0, β ≥ 0.

(6.5.1) and (6.5.2) together define a negative binomial threshold network GARCH

model (NBTNGARCH), which is an extension of the negative binomial integer-valued

GARCH by Zhu (2010) to high-dimensional network data with threshold effects. Notice

that (6.5.2) can be viewed as two linear regression on different regimes separated by

the threshold r: µit = ω + α(1)yi,t−1 + λ
∑N

j=1wijyj,t−1 + βµi,t−1 yi,t−1 < r;

µit =
(
ω − α(2)r

)
+
(
α(1) + α(2)

)
yi,t−1 + λ

∑N
j=1wijyj,t−1 + βµi,t−1 yi,t−1 ≥ r.

For each i = 1, 2, ..., N , apart from the network structure, (6.5.2) is a special case of

the self-excited threshold autoregression by Wang et al. (2014) in that the coefficient β

is regime-invariant.
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6.5.1 Stationarity and estimation of NBTNGARCH

Proposition 6.1. Based on the model defined by (6.5.1) and (6.5.2), if

max{α(1), α(1) + α(2)}+ λ+ β < 1, (6.5.3)

then the N -dimensional process Xt = (µ1t, µ2t, ..., µNt)
′ is geometric moment contract-

ing with a unique stationary distribution and finite first order moment.

Let (θ′, r)′ be the array of parameters to be estimated where θ = (ω, α(1), α(2), λ, β)′.

Moreover, {yit : (i, t) ∈ DNT , NT ≥ 1} are the samples of size NT , generated by (6.5.1)

and (6.5.2) with true parameters ω0, α
(1)
0 , α

(2)
0 , λ0, β0 and r0.

Based on the infinite past of observations, the log-likelihood function (ignoring

constants) is

 LNT (θ, r) =
1

NT

∑
(i,t)∈DNT

lit(θ, r),

lit(θ, r) = yit logµit(θ, r)− (yit +K) log (µit(θ, r) +K) ,
(6.5.4)

where µit(θ, r) is generated according to process (6.5.2). Based on finite samples {yit :

(i, t) ∈ DNT , NT ≥ 1}, we obtain the approximated log-likelihood function:

 L̃NT (θ, r) =
1

NT

∑
(i,t)∈DNT

l̃it(θ, r),

l̃it(θ, r) = yit log µ̃it(θ, r)− (yit +K) log (µ̃it(θ, r) +K) ,
(6.5.5)

where µ̃it(θ, r) is generated by (6.5.2) with initial values µi0 = µ̃i0, i = 1, 2, ..., N .

Therefore the MLE is the maximizer of L̃NT (θ, r), which can be obtained through a

two-step algorithm as follows according to Wang et al. (2014):

1. For each r in a predetermined range [r, r̄] ⊂ Z+, find θ̂
(r)
NT = argmaxθ∈Θ L̃NT (θ, r)

where Θ ⊂ R5 is the parameter space of coefficients;

2. Find r̂NT = argmaxr∈[r,r̄] L̃NT (θ̂
(r)
NT , r).

Then
(
θ̂
(r̂NT )′

NT , r̂NT

)′
is the optimizer of L̃NT (θ, r).

We need the following assumptions:
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(NB1). θ0 is an interior point of the parameter space Θ, which is a compact subset of R5

such that ω > 0, α(1) ≥ 0, α(1) + α(2) ≥ 0, λ ≥ 0, β ≥ 0, and max{α(1), α(1) +

α(2)}+ λ+ β < 1 for all θ ∈ Θ;

(NB2). supNT≥1 sup(i,t)∈DNT
E |yit|2p <∞ for some p > 1;

(NB3). The array of random fields {yit : (i, t) ∈ DNT , NT ≥ 1} is η-weakly dependent

with η̄y(r) = O(r−µ) with µ > 3(2p−1)
p−1 ∨ (4p−3)(2p−1)

2(p−1)2
;

(NB4). wij ≤ C(|i− j|−γ) for some γ ≥ 2(p−1)
2p−1 µ+ 2;

(NB5). infNT≥1 λmin(ΣNT ) > 0, where

ΣNT =
1

NT

∑
(i,t)∈DNT

E
[

K

µ2it(θ0, r0) +Kµit(θ0, r0)

∂µit(θ0, r0)

∂θ

∂µit(θ0, r0)

∂θ′

]
.

Proposition 6.2. If (NB1) to (NB4) are satisfied, the MLE
(
θ̂
(r̂NT )′

NT , r̂NT

)′
is consis-

tent as T → ∞ and N → ∞, i.e.

(
θ̂
(r̂NT )′

NT , r̂NT

)′ p→ (θ0, r0)
′.

If (NB5) is also satisfied and N = o(T ), then θ̂
(r0)
NT is asymptotically distributed as

follows:
√
NTΣ

1/2
NT (θ̂

(r0)
NT − θ0)

d→ N (0, I5).

Remark. With r̂NT being an integer-valued consistent estimate of r0, r̂NT will eventu-

ally be equal to r0 as T → ∞ and N → ∞, hence θ̂
(r̂NT )
NT and θ̂

(r0)
NT are asymptotically

equal.

6.5.2 Simulation study

Set the true parameters ν0 = (0.5, 0.6, 0.1, 0.1, 0.1, 5)′ and the number of successes

K = 100 in (6.5.1). Let T increases from 200 to 2000, while N also increases at

relatively slower rates of O(T/ log(T )). For each network size N , the adjacency matrix

A is simulated according to four different mechanisms in Example 4.5.1 to Example
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4.5.4. Based on a simulated network, the data is generated according to (6.5.2). To

monitor the finite performance of MLE, data generation and parameter estimation are

repeated for M = 1000 times, for each combination of sample size (N,T ). Root-mean-

square errors (RMSE) and coverage probabilities (CP) with different sample sizes and

network simulation mechanisms are reported in Table 6.1; We also report the mean

estimates of the threshold r0 at the last column of the table.

T N ω α(1) α(2) λ β r̄

Example 4.5.1

200 37 0.0500 (0.95) 0.0153 (0.92) 0.0491 (0.90) 0.0171 (0.95) 0.0169 (0.94) 4.94
500 80 0.0284 (0.94) 0.0062 (0.93) 0.0221 (0.87) 0.0101 (0.94) 0.0073 (0.95) 5.01
1000 144 0.0190 (0.95) 0.0032 (0.94) 0.0100 (0.92) 0.0070 (0.95) 0.0040 (0.94) 5.01
2000 263 0.0132 (0.95) 0.0017 (0.93) 0.0046 (0.95) 0.0050 (0.95) 0.0020 (0.95) 5

Example 4.5.2

200 37 0.0294 (0.95) 0.0151 (0.93) 0.0476 (0.91) 0.0096 (0.94) 0.0179 (0.93) 4.95
500 80 0.0136 (0.94) 0.0065 (0.92) 0.0216 (0.89) 0.0043 (0.95) 0.0075 (0.95) 5.03
1000 144 0.0078 (0.95) 0.0033 (0.93) 0.0099 (0.91) 0.0024 (0.95) 0.0041 (0.94) 5.01
2000 263 0.0040 (0.94) 0.0016 (0.94) 0.0046 (0.94) 0.0012 (0.94) 0.0020 (0.94) 5

Example 4.5.3

200 37 0.0362 (0.94) 0.0151 (0.93) 0.0435 (0.92) 0.0107 (0.94) 0.0172 (0.94) 4.87
500 80 0.0148 (0.93) 0.0064 (0.92) 0.0209 (0.87) 0.0044 (0.95) 0.0072 (0.95) 5.01
1000 144 0.0077 (0.95) 0.0032 (0.94) 0.0102 (0.90) 0.0025 (0.94) 0.0039 (0.95) 5
2000 263 0.0040 (0.92) 0.0016 (0.94) 0.0047 (0.94) 0.0012 (0.96) 0.0021 (0.94) 5

Example 4.5.4

200 37 0.0465 (0.95) 0.0155 (0.92) 0.0459 (0.92) 0.0161 (0.94) 0.0175 (0.94) 4.89
500 80 0.0175 (0.95) 0.0067 (0.91) 0.0202 (0.89) 0.0056 (0.95) 0.0076 (0.94) 4.99
1000 144 0.0093 (0.94) 0.0032 (0.93) 0.0105 (0.89) 0.0030 (0.95) 0.0039 (0.95) 5.01
2000 263 0.0047 (0.95) 0.0016 (0.94) 0.0046 (0.93) 0.0015 (0.95) 0.0021 (0.94) 5

Table 6.1: Simulation results with different network structures (N ≈ T/ log(T )).

From Table 6.1 we can tell, that the RMSEs of θ̂NT decrease toward zero, and the

mean of r̂NT is equal to r0 = 5 for sufficiently large sample size. These results support

the consistency of MLE in Proposition 6.2. The reported CPs are close to the value

0.95, showing that ŜE provides a reliable estimation of the true standard error of θ̂NT .

Moreover, in Figures 6.1 to 6.4 we draw the normal Q-Q plots for the estimation results

when T = 2000, N = 263 under different network structures. These Q-Q plots provide

additional evidence for the asymptotic normality of θ̂NT in Proposition 6.2.

6.5.3 Revisiting the data of car accidents in New York City

We have fitted our Poisson threshold network GARCH model to the daily number of car

accidents in New York City in Section 5.4.2. In this section we will fit the non-negative

binomial threshold network GARCH to the same dataset, then we will use the diagnostic

tool of non-randomized probability integral transform (PIT) to determine whether or
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Figure 6.1: Q-Q plots of estimates for Example 4.5.1.

Figure 6.2: Q-Q plots of estimates for Example 4.5.2.
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Figure 6.3: Q-Q plots of estimates for Example 4.5.3.

Figure 6.4: Q-Q plots of estimates for Example 4.5.4.
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not the non-negative binomial distribution is a better choice over Poisson distribution.

Non-randomized PIT was proposed by Czado et al. (2009) to check the statistical

consistency between the predictive distribution and the distribution of observations for

count data, and it was applied by Christou and Fokianos (2014) to show that their

negative binomial autoregressive model is better than the Poisson autoregressive model

by Fokianos et al. (2009) when fitted to the data of transactions on the stock market.

Firstly we fit the NBTNGARCHmodel to the data of car accidents in New York City

with K = 30, and obtain the MLE θ̂ and r̂. With observed data, then we can generate

the estimated means
{
µ̂it(θ̂, r̂) : i = 1, 2, ..., N ; t = 1, 2, ..., T

}
according to the process

(6.5.2). The PIT is based on following conditional cumulative distribution function:

F (u|yit = y) =


0 u ≤ P (y − 1),

u−P (y−1)
P (y)−P (y−1) P (y − 1) < u ≤ P (y),

1 u > P (y).

(6.5.6)

P is the conditional cumulative distribution function of non-negative binomial distri-

bution evaluated at µ̂it(θ̂, r̂), and the PIT (6.5.6) should be a cumulative distribution

function of standard uniform distribution if y ∼ P . Similar to Christou and Fokianos

(2014), we obtain the mean PIT by

F̄ (u) =
1

NT

N∑
i=1

T∑
t=1

Fit(u|yit), 0 ≤ u ≤ 1, (6.5.7)

where Fit is based on predictive distribution Pit evaluated at µ̂it(θ̂, r̂) and the data yit.

The mean PIT for PTNGARCH can be obtained similarly. We generated 1000 evenly

space values of u ∈ [0, 1], and obtain 1000 samples of mean PIT according to (6.5.6)

and (6.5.7) for PTNGARCH and NBTNGARCH respectively. These two groups of PIT

samples are plotted as histograms in Figure 6.5, which suggests that the PIT samples

of NBTNGARCH are more likely to follow a standard uniform distribution. Therefore

we choose non-negative binomial threshold network GARCH over the Poisson threshold

network GARCH when analysing the data of car accidents in New York City.

The estimation results of NBTNGARCH are reported in Table 6.2. Firstly, it is
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(a). PTNGARCH (b). NBTNGARCH(K = 30)

Figure 6.5: PIT histograms for PTNGARCH and NBTNGARCH.

worthy of note that α(2) < 0, which means that the conditional mean of the number of

car accidents in these neighbourhoods are less affected by the number on the previous

day if it is above the threshold r = 8. Secondly, the conditional mean of the number of

car accidents in one area is also affected by its geometrically neighboured areas. Besides,

the estimated value of β is significantly larger than other coefficients, indicating a strong

persistence in conditional mean. These characteristics align with what we have under

PTNGARCH in Section 5.4.2.

ω α(1) α(2) λ β r

Estimation 0.0195 0.1375 -0.0148 0.0028 0.8596 8

SE 0.0038 0.0032 0.0051 0.0011 0.0032 \

Table 6.2: Estimation results based on daily number of car accidents in 41 neighbour-
hoods of NYC.
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Further Work

7.1 On the network specification

In this research, we use a pre-specified network (denoted by row-normalized adjacency

matrix W ) to describe the relations between N individuals. For example, in model

4.1.1, the network effect on each individual i = 1, 2, ..., N is denoted by

N∑
j=1

wijy
2
j,t−1 (7.1.1)

in the sense of Cliff and Ord (1972). However, this setting can be improved considering

two cases in practice:

• There exist multiple networks that can potentially describe the relationships be-

tween these individuals;

• The formation of the network is dynamic over time rather than being static.

To deal with multiple networks, it is worth considering the weight matrix fusion

technique of Lu et al. (2024). The authors suggested a weighted average of multiple

row-normalized adjacency matrices, with the weights being unknown parameters. If

we incorporate the fusion network effect of Lu et al. (2024) instead of (7.1.1) in the

network GARCH models, we may be able to analyze the effects of different networks

by estimating the weight parameters.
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The study of network formation dates back to Erdős and Rényi (1960), and there

has been a vast literature on random network models, including dynamic models that

describe how networks change over time (see Caldarelli and Vespignani (2007) and

Kim et al. (2018) for literature reviews). However, little has been done to incorporate

dynamic networks in high-dimensional time series models. Therefore, it would be very

meaningful to consider a dynamic network in a network GARCH model.

7.2 Heterogeneous parameters

In this research, we explore time-varying parameters via a self-excited threshold ef-

fect. For instance, in model (4.1.1), the coefficient of y2i,t−1 switches between α(1) and

α(2) based on the value of yi,t−1. Moreover, it is beneficial to examine cases where

parameters switch according to an exogenous random process. Cai (1994) and Hamil-

ton and Susmel (1994) introduced ARCH models with Markov-switching parameters

to depict sudden shifts in the conditional variance. In these models, parameters change

according to a multi-state Markov process. Incorporating Markov-switching param-

eters in a network GARCH model is both meaningful and challenging. Even in the

univariate case, estimating Markov-switching GARCH models poses challenges due to

the path dependence problem, which stems from the latent Markov process. Despite

Bayesian methods proposed to address this issue (Bauwens et al., 2010; Augustyniak

et al., 2018), it remains uncertain whether these methods are applicable for estimating

a Markov-switching network GARCH model, particularly when N is large.

Apart from considering time-varying parameters, another extension to current net-

work GARCH models is to accommodate nodal variant parameters. In model 4.1.1, the

parameters are the same for each i = 1, 2, ..., N . By allowing the parameters to change

across each node i in the network, the model will be able to capture nodal variations,

providing a more accurate and flexible representation of the underlying processes. In

fact, spatially variant parameters have been successfully incorporated by several spatio-

temporal autoregressive models (see Rao (2008), Al-Sulami et al. (2017) among others),

inspiring us to extend network GARCH models in this direction in the future.
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Appendix A

Proofs of Theoretical Results

A.1 Proofs of results in Chapter 3

We use C and ρ uniformly over different contexts to represent constants where 0 <

C < ∞ and 0 < ρ < 1. In some cases we use Ci and ρi with subscript i to distinguish

between different constants.

Lemma A.1.1. Let {Xi,n : i ∈ Dn, n ≥ 1} be a R-valued η-weakly dependent random

field. If supn supi∈Dn
∥Xi,n∥p <∞ for some p > 2, then for any i, j ∈ Dn:

|Cov(Xi,n, Xj,n)| ≤ C∥X∥
p

p−1
p [ηn,1,1(ρ(i, j))]

p−2
p−1 , (A.1.1)

where ∥X∥p := supn supi∈Dn
∥Xi,n∥p. The same result holds for θ-dependence.

Proof. Let Xi,n(k) = −k ∨Xi,n ∧ k be a truncation of Xi,n at level k > 0, where ∨ and

∧ mean maximum and minimum respectively. Then for any i ∈ Dn and a ∈ (0, p):

E|Xi,n −Xi,n(k)|a ≤E [|Xi,n|a1(|Xi,n| ≥ k)]

≤ (E|Xi,n|p)a/p [P(|Xi,n| ≥ k)]1−(a/p)

≤∥X∥ap
[
∥X∥pp
kp

]1−(a/p)

= ∥X∥ppka−p,

where the second line and the third line come from Hölder’s inequality and Markov
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inequality respectively. Hence supn supi∈Dn
∥Xi,n −Xi,n(k)∥a ≤ ∥X∥p/ap k1−(p/a).

For any i, j ∈ Dn we have

|Cov(Xi,n, Xj,n)| ≤|Cov(Xi,n(k), Xj,n(k))|

+ |Cov(Xi,n −Xi,n(k), Xj,n(k))|

+ |Cov(Xi,n, Xj,n −Xj,n(k))|.

For the last term on the right-hand-side (RHS), we could find a ∈ (1, p) such that

1/a+ 1/p = 1 and therefore

|Cov(Xi,n, Xj,n −Xj,n(k))|

≤|E[Xi,n(Xj,n −Xj,n(k))]|+ |E(Xi,n)||E(Xj,n −Xj,n(k))|

≤∥Xi,n∥p∥Xj,n −Xj,n(k)∥a + ∥Xi,n∥1∥Xj,n −Xj,n(k)∥1

≤2∥Xi,n∥p∥Xj,n −Xj,n(k)∥a

≤2∥X∥ppk2−p.

Same bound could also be derived for the second term on the RHS. As for the first

term, note that X(k) is a function of X with bound k and Lipschitz constant 1. Then

by (3.2.4) we have |Cov(Xi,n(k), Xj,n(k))| ≤ 2kηn,1,1(ρ(i, j)), then

|Cov(Xi,n, Xj,n)| ≤ 6∥X∥
p

p−1
p [ηn,1,1(ρ(i, j))]

p−2
p−1

by choosing k =
[

∥X∥pp
ηn,1,1(ρ(i,j))

] 1
p−1

. The proof under θ-dependence follows similar argu-

ments.

Lemma A.1.2. (Proposition 6.3.9 in Brockwell and Davis (2009)) Let (Zn)n≥1 and

(Vn,k)n,k∈N+ be sequences of random vectors. Zn
d→ V if the following statements are

true:

1. For each k ∈ N+, there exists Vk such that Vn,k
d→ Vk as n→ ∞;
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2. Vk
d→ V as k → ∞;

3. limk→∞ lim supn→∞ P(|Zn − Vn,k| > δ) = 0 for any δ > 0.

Lemma A.1.3. (Lemma 2 in Bolthausen (1982)) Let (νn)n∈N+ be a sequence of prob-

ability measures over R with

1. supn
∫
x2νn(dx) <∞,

2. limn→∞
∫
(iλ− x)eiλxνn(dx) = 0 for all λ ∈ R.

Then νn
d→ N(0, 1) as n→ ∞.

Lemma A.1.4. (Lemma A.1 in Jenish and Prucha (2009)) For any i ∈ D ⊂ Rd and

h ≥ 1, let

Ni(h) := |{j ∈ D : h ≤ |j − i| < h+ 1}|c

be the number of all elements of D located at any distance in [h, h + 1) from i. Then

supiNi(h) ≤ Chd−1.

Lemma A.1.5. (Lemma A.4 in Xu et al. (2024)) For any α > 0 and s ≥ 2,

∞∑
h=[s]

h−α−1 <
2α+1

α
s−α,

where [s] denotes the largest integer less than or equal to s.

A.1.1 Proof of results in Section 3.2

Proof of Proposition 3.2

Firstly we prove that Xi,n = Hi,n((εj)j∈D) is well-defined in L1. For any s ∈ N, let

X
(s)
i,n = Hi,n((εj1{ρ(i,j)≤s})j∈D). Then by (3.2.6) we have

∣∣∣X(s+m)
i,n −X

(s)
i,n

∣∣∣
≤

m∑
k=1

∣∣∣X(s+k)
i,n −X

(s+k−1)
i,n

∣∣∣
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=

m∑
k=1

∣∣Hi,n((εj1{ρ(i,j)≤s+k})j∈D)−Hi,n((εj1{ρ(i,j)≤s+k−1})j∈D)
∣∣

≤
m∑
k=1

Bi,n(s+ k)( max
ρ(i,j)≤s+k−1

|εj |l ∨ 1)
∑

ρ(i,j)=s+k

|εj |.

Since supi∈D ∥εi∥p < ∞ with p > l + 1, by Hölder’s inequality and Lemma A.1.4 we

obtain that ∥∥∥X(s+m)
i,n −X

(s)
i,n

∥∥∥
1
≤ C

m∑
k=1

(s+ k)d−1Bi,n(s+ k). (A.1.2)

Notice that (s + k)d−1Bi,n(s + k) → 0 as s → ∞, according to (3.2.7). Then if m is

fixed,
∥∥∥X(s+m)

i,n −X
(s)
i,n

∥∥∥
1
→ 0 as s→ ∞. Therefore {X(s)

i,n : s ≥ 0} is a Cauchy sequence

in L1, and Xi,n = lims→∞X
(s)
i,n is well-defined.

Let Un, Vn ⊂ Dn be two arbitrary sub-lattices of Dn with |Un|c = u, |Vn|c = v

and ρ(Un, Vn) ≥ r. f ∈ Fu and g ∈ Gv are two arbitrary Lipschitz functions with

∥f∥∞ = ∥g∥∞ = 1. For an arbitrary threshold value T > 0, define εi(T ) := −T ∨εi∧T ,

and X
(s)
i,n (T ) := Hi,n((εj(T )1{ρ(i,j)≤s})j∈D). Notice that

|Cov[f((Xi,n)i∈Un), g((Xi,n)i∈Vn)]|

≤
∣∣∣Cov[f((Xi,n)i∈Un)− f((X

(s)
i,n (T ))i∈Un), g((Xi,n)i∈Vn)]

∣∣∣
+
∣∣∣Cov[f((X(s)

i,n (T ))i∈Un), g((Xi,n)i∈Vn)− g((X
(s)
i,n (T ))i∈Vn)]

∣∣∣
+
∣∣∣Cov[f((X(s)

i,n (T ))i∈Un), g((X
(s)
i,n (T ))i∈Vn)]

∣∣∣ .
(A.1.3)

We start with the first term in the right-hand-side (RHS) of (A.1.3):

∣∣∣Cov[f((Xi,n)i∈Un)− f((X
(s)
i,n (T ))i∈Un), g((Xi,n)i∈Vn)]

∣∣∣
≤2Lip(f)

∑
i∈Un

E|Xi,n −X
(s)
i,n (T )|

≤2uLip(f)

[
sup
i∈Un

E|Xi,n −X
(s)
i,n |+ sup

i∈Un

E|X(s)
i,n −X

(s)
i,n (T )|

]
.
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Same as (A.1.2), we can prove that

E|Xi,n −X
(s)
i,n | ≤ C

∑
h≥s

hd−1Bi,n(h).

Notice that
∑

ρ(i,j)≤s = O(sd) according to Lemma A.1(ii) in Jenish and Prucha (2009),

then by using (3.2.6) repeatedly we can also prove that (ignoring a constant factor):

E|X(s)
i,n −X

(s)
i,n (T )|

=E
∣∣Hi,n((εj1{ρ(i,j)≤s})j∈D)−Hi,n((εj(T )1{ρ(i,j)≤s})j∈D)

∣∣
≤

( ∞∑
h=0

Bi,n(h)h
d−1

)
E

∣∣∣∣∣∣( max
ρ(i,j)≤s

|εj |l)
∑

ρ(i,j)≤s

|εj |1{|εj |≥T}

∣∣∣∣∣∣
≤

( ∞∑
h=0

Bi,n(h)h
d−1

)
sdE

∣∣∣∣ max
ρ(i,j)≤s

|εj |l+11{|εj |≥T}

∣∣∣∣ .
Since E|εi|p <∞ and p > l + 1, by Hölder’s inequality we have

E|X(s)
i,n −X

(s)
i,n (T )| ≤

( ∞∑
h=0

Bi,n(h)h
d−1

)
CsdT l+1−p.

Then we obtain the bound∣∣∣Cov[f((Xi,n)i∈Un)− f((X
(s)
i,n (T ))i∈Un), g((Xi,n)i∈Vn)]

∣∣∣
≤2uLip(f)

[
C1C(s) + C2CBs

dT l+1−p
]
.

(A.1.4)

The bound of the second term on RHS of (A.1.3) follows analogously:

∣∣∣Cov[f((X(s)
i,n (T ))i∈Un), g((Xi,n)i∈Vn)− g((X

(s)
i,n (T ))i∈Vn)]

∣∣∣
≤2v Lip(g)

[
C1C(s) + C2CBs

dT l+1−p
]
.

(A.1.5)

To obtain the bound for the last term on RHS of (A.1.3), define following functions

FT : Rsdu 7→ R and GT : Rsdv 7→ R as follows:

FT (((εj)ρ(i,j)≤s)i∈Un) := f((Hi,n((εj(T )1{ρ(i,j)≤s})j∈D))i∈Un) = f((X
(s)
i,n (T ))i∈Un);
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GT (((εj)ρ(i,j)≤s)i∈Vn) := g((Hi,n((εj(T )1{ρ(i,j)≤s})j∈D))i∈Vn) = g((X
(s)
i,n (T ))i∈Vn).

By the η-weak dependence of {εi : i ∈ D}, if r ≥ 2s we have

∣∣∣Cov[f((X(s)
i,n (T ))i∈Un), g((X

(s)
i,n (T ))i∈Vn)]

∣∣∣
≤[sduLip(FT ) + sdv Lip(GT )]η̄ε(r − 2s).

Notice that for any X = (Xi,n)i∈Un ,Y = (Yi,n)i∈Un ∈ Rsdu:

|FT (X)− FT (Y)|∑
i∈Un

|Xi,n − Yi,n|

≤Lip(f)

∑
i∈Un

∣∣Hi,n((Xij,n(T )1{ρ(i,j)≤s})j∈D)−Hi,n((Yij,n(T )1{ρ(i,j)≤s})j∈D)
∣∣∑

i∈Un

∑
ρ(i,j)≤s |Xij,n − Yij,n|

≤Lip(f)

( ∞∑
h=0

Bi,n(h)h
d−1

)
T l

∑
i∈Un

∑
ρ(i,j)≤s |Xij,n(T )− Yij,n(T )|∑

i∈Un

∑
ρ(i,j)≤s |Xij,n − Yij,n|

by using (3.2.6) repeatedly. Therefore we can prove that:

Lip(FT ) ≤ CBT
l Lip(f);

Lip(GT ) ≤ CBT
l Lip(g).

Then we can bound the last term on RHS of (A.1.3) by

∣∣∣Cov[f((X(s)
i,n (T ))i∈Un), g((X

(s)
i,n (T ))i∈Vn)]

∣∣∣
≤[uLip(f) + v Lip(g)]CBs

dT lη̄ε(r − 2s).

(A.1.6)

for any r ≥ 2s.

Combining (A.1.4), (A.1.5), (A.1.6) we can prove Proposition 3.2 by setting the

threshold value T = η̄ε(r − 2s)
− 1

p−1 . The result under θ-coefficients could be verified

analogously.
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Verification of (3.2.10) and (3.2.11)

Assume that η̄ε = O(r−µ) for some µ > p−1
p−1−ld and Bi,n(h) = O(h−b) for some b ≥

p−1−l
p−1 µ. Notice that:

∞∑
h=s

h−k ≤
∫ ∞

s−1

1

xk
dx =

1

k − 1
(s− 1)1−k

if k > 1. Then we have C(s) =
∑∞

h=sBi,n(h)h
d−1 ≤ Cs−b+d. (3.2.10) follows by letting

s = [r/3] < [r/2] in (3.2.9).

Assume that d = 2, η̄ε = O(r−µ) for some µ > 0 and Bi,n(h) = O(e−bh) for some

b ≥ p−1−l
p−1 µ. Notice that:

∞∑
h=s

he−bh =
se−bs − (s− 1)e−b(s+1)

(1− e−b)2
.

Then C(s) =
∑∞

h=sBi,n(h)h = O(se−bs), and (3.2.11) follows by letting s = [log r] <

[r/2] in (3.2.9).

A.1.2 Proof of Theorem 3.1

Let Yi,n =
Xi,n

Mn
where Mn = supi∈Dn

ci,n. From (A.1.9) and Claim A.1.1, we could

verify that Yi,n also satisfies Assumption 3.3.1 and Assumption 3.3.2 if Xi,n does.

Again in the proof of LLN, we still use the decomposition Yi,n(k) and Ỹi,n(k) in

(A.1.10), which are continuous transformations of Yi,n with Lipschitz constants 1. From

Proposition 3.1 we know that Yi,n(k) and Ỹi,n(k) also inherit the dependence coefficient

from Yi,n.

Since

E

∣∣∣∣∣∑
i∈Dn

(Yi,n − EYi,n)

∣∣∣∣∣ ≤E

∣∣∣∣∣∑
i∈Dn

(Yi,n(k)− EYi,n(k))

∣∣∣∣∣+ E

∣∣∣∣∣∑
i∈Dn

(Ỹi,n(k)− EỸi,n(k))

∣∣∣∣∣
≤E

∣∣∣∣∣∑
i∈Dn

(Yi,n(k)− EYi,n(k))

∣∣∣∣∣+ 2
∑
i∈Dn

E|Ỹi,n(k)|,
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we have∥∥∥∥∥(|Dn|c)−1
∑
i∈Dn

(Yi,n − EYi,n)

∥∥∥∥∥
1

≤

∥∥∥∥∥(|Dn|c)−1
∑
i∈Dn

(Yi,n(k)− EYi,n(k))

∥∥∥∥∥
1

+ 2 sup
n

sup
i∈Dn

E|Ỹi,n(k)|

Note that supn supi∈Dn
E|Ỹi,n(k)| ≤ supn supi∈Dn

E [|Yi,n| 1 (|Yi,n| ≥ k)] for any k > 0,

then according to (3.3.2), it suffices to show that

lim
k→∞

lim
n→∞

∥∥∥∥∥(|Dn|c)−1
∑
i∈Dn

(Yi,n(k)− EYi,n(k))

∥∥∥∥∥
1

= 0 (A.1.7)

in order to prove that

lim
n→∞

∥∥∥∥∥(|Dn|c)−1
∑
i∈Dn

(Yi,n − EYi,n)

∥∥∥∥∥
1

= 0.

Let σ2n(k) = Var
[∑

i∈Dn
Yi,n(k)

]
, then

∥∥∥∥∥(|Dn|c)−1
∑
i∈Dn

(Yi,n(k)− EYi,n(k))

∥∥∥∥∥
1

≤ (|Dn|c)−1σn(k)

by Lyapunov’s inequality. Since Yi,n(k) is a bounded function of Yi,n with Lipschitz

constant 1, then by Lemma A.1.(iii) in Jenish and Prucha (2009) and (3.2.2) we have

σ2n(k) ≤ C|Dn|c
∞∑
s=0

sd−1ϵ̄1,1(s).

Recall from Assumption 3.3.2 that ϵ̄1,1(s) = O(s−α) with α > d, therefore limn→∞(|Dn|c)−1σn(k) =

0 for each k > 0. This completes the proof.
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A.1.3 Proof of Theorem 3.2

Let Yi,n =
Xi,n

Mn
where Mn = supi∈Dn

ci,n, and denote Sn,Y =
∑

i∈Dn
Yi,n and σ2n,Y =

Var(Sn,Y ). Then it could be easily verified that

σ−1
n Sn = σ−1

n,Y Sn,Y .

Therefore it suffices to prove the CLT for {Yi,n : i ∈ Dn, n ≥ 1}. In what follows, we

would denote for simplicity that Sn =
∑

i∈Dn
Yi,n and σ2n = Var(Sn).

In this new setting, Assumption 3.3.6 becomes

lim inf
n→∞

(|Dn|c)−1σ2n > 0. (A.1.8)

Assumption 3.3.3 implies that Yi,n are uniformly Lm-bounded as

sup
n

sup
i∈Dn

E|Yi,n|m ≤ sup
n

sup
i∈Dn

E
∣∣∣∣Xi,n

ci,n

∣∣∣∣m ≤ ∞ (A.1.9)

for some m > 2. Then we will show that Assumption 3.3.4 and Assumption 3.3.5 about

dependence coefficient of Xi,n covers the dependence coefficient of Yi,n in the following

claim:

Claim A.1.1. The dependence coefficients ϵ∗n,u,v(s) of Yi,n and the dependence coeffi-

cients ϵn,u,v(s) of Xi,n satisfy

ϵ∗n,u,v(s) ≤
1

Mn
ϵn,u,v(s).

Proof. Let f ∈ Fu : Ru 7→ R and g ∈ Gv : Rv 7→ R be two arbitrary Lipschitz bounded

functions. Define

XUn := {Xi,n : i ∈ Un, Un ⊂ Dn}, XVn := {Xi,n : i ∈ Vn, Vn ⊂ Dn},

and

YUn := {Yi,n : i ∈ Un, Un ⊂ Dn}, YVn := {Yi,n : i ∈ Vn, Vn ⊂ Dn}.
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Then we could define functions F : Ru 7→ R and G : Rv 7→ R:

F (XUn) := f((Xi,n/Mn)i∈Un),

G(XVn) := g((Xi,n/Mn)i∈Vn).

For the Lipschitz constants of F and G we have

Lip(F ) = sup
(x1,...,xu )̸=(y1,...,yu)∈Ru

|F (x1, ..., xu)− F (y1, ..., yu)|
|x1 − y1|+ ...+ |xu − yu|

= sup
(x1,...,xu )̸=(y1,...,yu)∈Ru

∣∣∣f( x1
Mn

, ..., xu
Mn

)− f( y1
Mn

, ..., yu
Mn

)
∣∣∣

|x1 − y1|+ ...+ |xu − yu|

=
1

Mn
sup

(x1,...,xu )̸=(y1,...,yu)∈Ru

∣∣∣f( x1
Mn

, ..., xu
Mn

)− f( y1
Mn

, ..., yu
Mn

)
∣∣∣

| x1
Mn

− y1
Mn

|+ ...+ | xu
Mn

− yu
Mn

|

≤ 1

Mn
Lip(f).

And similarly Lip(G) ≤ 1
Mn

Lip(g). Obviously, we also have ∥F∥∞ ≤ ∥f∥∞ and

∥G∥∞ ≤ ∥g∥∞. Consequently, for case when Xi,n are η-dependent, we have

|Cov(f(YUn), g(YVn))| =|Cov(F (XUn), G(XVn))|

≤[u∥G∥∞ Lip(F ) + v∥F∥∞ Lip(G)]ηn,u,v(s)

≤[u∥g∥∞ Lip(f) + v∥f∥∞ Lip(g)]
1

Mn
ηn,u,v(s).

Hence η∗n,u,v(s) ≤ 1
Mn

ηn,u,v(s), and same results hold for θ-dependence as well.

For k > 0, we decompose Yi,n into two parts:

Yi,n(k) = −k ∨ Yi,n ∧ k,

Ỹi,n(k) = Yi,n − Yi,n(k).
(A.1.10)
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Their variances are

σ2n(k) = Var

[∑
i∈Dn

Yi,n(k)

]
, σ̃2n(k) = Var

[∑
i∈Dn

Ỹi,n(k)

]
.

Claim A.1.2. |σn − σn(k)| ≤ σ̃n(k).

Proof. Let

Sn(k) =
∑
i∈Dn

[Yi,n(k)− EYi,n(k)], S̃n(k) =
∑
i∈Dn

[Ỹi,n(k)− EỸi,n(k)].

Note that Sn = Sn(k) + S̃n(k), σn = ∥Sn∥2, σn(k) = ∥Sn(k)∥2 and σ̃n(k) = ∥S̃n(k)∥2,

then the inequality could be derived according to Minkowski’s inequality.

Recalling from (A.1.9) that ∥Y ∥m := supn supi∈Dn
∥Yi,n∥m < ∞ for some m > 2,

then for each k > 0,

∥Y (k)∥m := sup
n

sup
i∈Dn

∥Yi,n(k)∥m ≤ ∥Y ∥m,

and

∥Ỹ (k)∥m := sup
n

sup
i∈Dn

∥Ỹi,n(k)∥m ≤ ∥Y ∥m.

Claim A.1.3. There exists constants 0 < C∗ ≤ C∗ <∞ and 0 < N <∞ such that

C∗|Dn|c ≤ σ2n ≤ C∗|Dn|c,

for all n ≥ N .

Proof. (A.1.8) implies that, there exists C∗ > 0 and N > 0 such that C∗|Dn|c ≤ σ2n for

all n ≥ N , which proves the lower bound.

For the upper bound, according to the covariance inequalities (A.1.1) derived in
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Lemma A.1.1 with p = m:

σ2n ≤
∑
i∈Dn

EY 2
i,n +

∑
i,j∈Dn
i ̸=j

|Cov(Yi,n, Yj,n)|

≤∥Y ∥2m|Dn|c + C1∥Y ∥
m

m−1
m

∑
i,j∈Dn
i ̸=j

[ϵ̄1,1(ρ(i, j)]
m−2
m−1

≤∥Y ∥2m|Dn|c + C1∥Y ∥
m

m−1
m

∑
i∈Dn

∞∑
s=1

∑
j∈Dn

ρ(i,j)∈[s,s+1)

[ϵ̄1,1(ρ(i, j)]
p−2
p−1 .

Lemma A.1 (iii) in Jenish and Prucha (2009) gives

sup
i∈D

|{j ∈ D : ρ(i, j) ∈ [s, s+ 1)}|c ≤ C2s
d−1

for s ≥ 1. Therefore, there exists constant C∗ > 0 such that

σ2n ≤

{
∥Y ∥2m + C1C2∥Y ∥

m
m−1
m

∞∑
s=1

sd−1[ϵ̄1,1(s)]
m−2
m−1

}
|Dn|c

:=C∗|Dn|c,

where the last equality follows from Assumption 3.3.4(a) and Assumption 3.3.5(a).

Observe that Ỹi,n(k) is a continuous function of Yi,n with Lipschitz constant 1,

therefore Ỹi,n(k) inherits the dependence coefficient from Yi,n according to Proposition

3.1. For each k > 0,

σ̃2n(k) ≤
∑

i,j∈Dn

|Cov(Yi,n − Yi,n(k), Yj,n − Yj,n(k))|

≤
∑

i,j∈Dn

ρ(i,j)≤r

[|Cov(Yi,n, Yj,n − Yj,n(k))|+ |Cov(Yi,n(k), Yj,n − Yj,n(k))|]

+
∑

i,j∈Dn

ρ(i,j)>r

[|Cov(Yi,n, Yj,n − Yj,n(k))|+ |Cov(Yi,n(k), Yj,n − Yj,n(k))|]
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≤C1r
d∥Y ∥mmk2−m|Dn|c +

{
C2∥Y ∥

m
m−1
m

∞∑
s=r+1

sd−1[ϵ̄1,1(s)]
m−2
m−1

}
|Dn|c.

The last inequality follows from similar arguments in the proof of Lemma A.1.1, com-

bining with Lemma A.1 (ii), (iii) in Jenish and Prucha (2009). Let r = kδ where

δ ∈ (0, m−2
d ), together with the lower bound of σ2n in Claim A.1.3, there exists N > 0

such that

lim
k→∞

sup
n≥N

σ̃2n(k)

σ2n
= 0. (A.1.11)

Combining Claim A.1.2 with (A.1.11) we get

lim
k→∞

sup
n≥N

∣∣∣∣1− σn(k)

σn

∣∣∣∣ ≤ lim
k→∞

sup
n≥N

σ̃n(k)

σn
= 0 (A.1.12)

for some N > 0.

On the other hand, note that Yi,n(k) is a bounded function of Yi,n with Lipschitz

constant 1. By (3.2.2) we have

σ2n(k) ≤ C1C2|Dn|c
∞∑
s=0

sd−1ϵ̄1,1(s) (A.1.13)

for each k > 0. With the lower bounds for σ2n, we have for each k > 0, there exists

constants N > 0 and C > 0 such that

σn(k)

σn
≤ C <∞ (A.1.14)

for all n ≥ N . This result, together with (A.1.12) play a key role in the commencing

arguments.

For the next step, we will adopt Lemma A.1.2 to reduce the problem of proving

CLT for Yi,n to the problem of proving CLT for the bounded random field Yi,n(k).

Claim A.1.4. We have

σ−1
n

∑
i∈Dn

Yi,n
d→ N(0, 1) (A.1.15)
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if

σ−1
n (k)

∑
i∈Dn

[Yi,n(k)− EYi,n(k)]
d→ N(0, 1) (A.1.16)

for each k ∈ N+.

Proof. Let Zn = σ−1
n

∑
i∈Dn

Yi,n, and Vn,k = σ−1
n

∑
i∈Dn

[Yi,n(k)− EYi,n(k)]. Let µn

and ν be the probability measures of Zn and V respectively. If Zn does not converge

to V in distribution, then the Lévy-Prokhorov metric d(µn, ν) does not converge to

0 as n → ∞, i.e. for any δ > 0, there always exist sub-indices (nm)m∈N+ such that

d(µnm , ν) > δ for all nm. Next, we will find a sub-sequence of (Znm) such that it

converges to V , contradicting with that d(µnm , ν) > δ for all nm. Recalling from

(A.1.14), there exists N > 0, C(k) > 0 such that σn(k)
σn

≤ C(k) for each k ∈ N+ and all

n ≥ N . Assume that nm ≥ N , by Bolzano–Weierstrass theorem we have:

• For k = 1, there exists sub-sub-indices (nm(l1))l1∈N+ such that

lim
l1→∞

σnm(l1)
(1)

σnm(l1)

= α(1);

• For k = 2, there exists sub-sub-sub-indices (nm(l1(l2)))l2∈N+ such that

lim
l2→∞

σnm(l1(l2))
(2)

σnm(l1(l2))

= α(2);

· · ·

Now we could find a sub-sequence (n∗r) of (nm) by letting n∗1 = nm(1), n
∗
2 = nm(l1(2)),

· · · such that

lim
r→∞

σn∗
r
(k)

σn∗
r

= α(k)

for each k ∈ N+.

Observe that

Vn∗
r ,k =

σn∗
r
(k)

σn∗
r

σ−1
n∗
r
(k)

∑
i∈Dn∗

r

[
Yi,n∗

r
(k)− EYi,n∗

r
(k)
] .
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If (A.1.16) holds, then the first condition in Lemma A.1.2 is satisfied since

Vn∗
r ,k

d→ Vk ∼ N(0, α2(k))

as r → ∞. Recalling from (A.1.12),

lim
k→∞

|α(k)− 1| ≤ lim
k→∞

lim
r→∞

∣∣∣∣α(k)− σn∗
r
(k)

σn∗
r

∣∣∣∣+ lim
k→∞

sup
n≥N

∣∣∣∣σn(k)σn
− 1

∣∣∣∣ = 0,

hence the second condition in Lemma A.1.2 is also verified.

Using Markov’s inequality,

P(|Zn − Vn,k| > δ) = P

(∣∣∣∣∣σ−1
n

∑
i∈Dn

(Ỹi,n(k)− EỸi,n(k))

∣∣∣∣∣ > δ

)
≤ σ̃2n(k)

δ2σ2n
,

for any δ > 0. Hence condition 3 in Lemma A.1.2 holds for Zn and Vn,k because of

(A.1.11), obviously it also holds for the sub-sequences Zn∗
r
and Vn∗

r ,k.

Applying Lemma A.1.2 on the sub-sequences Zn∗
r
and Vn∗

r ,k, we have Zn∗
r

d→ V

as r → ∞. Since (n∗r) is a sub-sequence of (nm), Zn∗
r

d→ V contradicts with former

assumption that Zn does not converge weakly to V .

Now we consider the case when (Yi,n) are bounded as supn supi∈Dn
|Yi,n| ≤ CY . Let

(dn)n≥1 be a sequence such that limn→∞ dn = ∞, limn→∞
ddn

(|Dn|c)1/2
= 0, and

1. limn→∞ θ̄∞,1(dn)(|Dn|c)1/2 = 0 for θ-coefficients;

2. limn→∞ η̄∞,1(dn)(|Dn|c) = 0 for η-coefficients.

According to Assumption 3.3.4(b), we could set dn = (|Dn|c)p with p ∈ ( 1
2β ,

1
2d) since

β > d for case 1 above. As for case 2, we could set dn = (|Dn|c)q with q ∈ ( 1β ,
1
2d) since

β > 2d in Assumption 3.3.5(b).

Define

an =
∑

i,j∈Dn

ρ(i,j)≤dn

Cov(Yi,n, Yj,n).
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Recalling from the covariance inequality for bounded random variables (3.2.2), there

exists constant C > 0 such that

|σ2n − an| =
∑

i,j∈Dn

ρ(i,j)>dn

|Cov(Yi,n, Yj,n)|

≤
∑

i∈Dn

∑∞
s=dn

∑
j∈Dn

ρ(i,j)∈[s,s+1)

Csd−1ϵ̄1,1(s)

≤ CC2|Dn|c
∑∞

s=dn
sd−1ϵ̄1,1(s)

= o(|Dn|c).

(A.1.17)

Then we have

0 < lim inf
n→∞

(|Dn|c)−1σ2n ≤ lim inf
n→∞

(|Dn|c)−1an + lim inf
n→∞

(|Dn|c)−1o(|Dn|c).

Through similar arguments in the proof of Claim A.1.3, we have supn≥N an = O(|Dn|c)

for some N > 0. Consequently, σ2n = an + o(|Dn|c) = an[1 + o(1)] for sufficiently large

n. Define

S̄n = a−1/2
n

∑
i∈Dn

Yi,n =
σn

a
1/2
n

σ−1
n

∑
i∈Dn

Yi,n,

then it remains for us to show following convergence, which could be verified using

Lemma A.1.3.

Claim A.1.5. S̄n
d→ N(0, 1) as n→ ∞.

Proof. The first condition in Lemma A.1.3 is satisfied since an = O(|Dn|c) and σ2n =

O(|Dn|c) for sufficiently large n. Then it suffices to verify the second condition, i.e.

lim
n→∞

E
[
(iλ− S̄n)e

iλS̄n

]
= 0 (A.1.18)

for all λ ∈ R.

Let

Si,n =
∑
j∈Dn

ρ(i,j)≤dn

Yj,n, S̄i,n = a−1/2
n Si,n.
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Then we can make decomposition as follows

(iλ− S̄n)e
iλS̄n = T1,n + T2,n + T3,n,

where

T1,n = iλeiλS̄n

(
1− a−1

n

∑
i∈Dn

Yi,nSi,n

)
,

T2,n = a−1/2
n eiλS̄n

∑
i∈Dn

Yi,n

(
e−iλS̄i,n + iλS̄i,n − 1

)
,

T3,n = −a−1/2
n

∑
i∈Dn

Yi,ne
iλ(S̄n−S̄i,n).

For the next step, we will prove that limn→∞ E|Tk,n| = 0 for each k = 1, 2, 3.

We firstly consider the term T1,n. Note that
∑

i∈Dn
E(Yi,nSi,n) = an, then for

sufficiently large n we have

E|T1,n|2 =λ2
1− 2a−1

n

∑
i∈Dn

E(Yi,nSi,n) + a−2
n E

(∑
i∈Dn

Yi,nSi,n

)2


=λ2

[
1− 2a−1

n an + a−2
n Var

(∑
i∈Dn

Yi,nSi,n

)
+ a−2

n a2n

]

=λ2a−2
n Var

 ∑
i,j∈Dn

ρ(i,j)≤dn

Yi,nYj,n


=λ2a−2

n

∑
i,j,k,l∈Dn

ρ(i,j)≤dn
ρ(k,l)≤dn

Cov(Yi,nYj,n, Yk,nYl,n)

≤Cλ|Dn|−2
c

∑
i,j,k,l∈Dn

ρ(i,j)≤dn
ρ(k,l)≤dn
ρ(i,k)>3dn

|Cov(Yi,nYj,n, Yk,nYl,n)|

+ Cλ|Dn|−2
c

∑
i,j,k,l∈Dn

ρ(i,j)≤dn
ρ(k,l)≤dn
ρ(i,k)≤3dn

|Cov(Yi,nYj,n, Yk,nYl,n)|,
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for some 0 < Cλ <∞.

Define function fu : Ru 7→ R as

f(x1, · · · , xu) = −Cu
Y ∨ x1 · · ·xu ∧ Cu

Y , (A.1.19)

then fu is a bounded Lipschitz function. Recalling from (3.2.2) we have

|Cov(Yi,n, Yj,n)| = |Cov(f1(Yi,n), f1(Yj,n)| ≤ C1ϵ̄1,1(ρ(i, j)),

|Cov(Yi,nYj,n, Yk,nYl,n)| = |Cov(f2(Yi,n, Yj,n), f2(Yk,n, Yl,n))| ≤ C2ϵ̄2,2(ρ({i, j}, {k, l})),

|Cov(Yi,n, Yj,nYk,nYl,n)| = |Cov(f1(Yi,n), f3(Yj,n, Yk,n, Yl,n))| ≤ C3ϵ̄1,3(ρ(i, {j, k, l})),

for some positive constants C1, C2 and C3.

When ρ(i, k) > 3dn, we have ρ({i, j}, {k, l}) > ρ(i, k)− 2dn. Let

Ni(r) = |{(j, k, l) : ρ(i, j) ≤ dn, ρ(k, l) ≤ dn, 3dn < r ≤ ρ(i, k) < r + 1}|c .

Then according to Lemma A.1(ii), (iv) in Jenish and Prucha (2009) we have supi∈Rd Ni(r) ≤

C4d
2d
n r

d−1 for some constant C4 > 0. Then we have for each i ∈ Dn,

∑
j,k,l∈Dn

ρ(i,j)≤dn
ρ(k,l)≤dn
ρ(i,k)>3dn

|Cov(Yi,nYj,n, Yk,nYl,n)|

≤C2

∞∑
r=3dn

sup
i∈Rd

Ni(r)ϵ̄2,2(r − 2dn)

≤

C2C4

∞∑
r=3dn

rd−1ϵ̄2,2(r − 2dn)

 d2dn
≤

C2C43
d−1

∞∑
r=dn

rd−1ϵ̄2,2(r)

 d2dn .

123



Appendix A. Proofs of Theoretical Results

Therefore, there exists constant C5 > 0 such that

∑
i,j,k,l∈Dn

ρ(i,j)≤dn
ρ(k,l)≤dn
ρ(i,k)>3dn

|Cov(Yi,nYj,n, Yk,nYl,n)| ≤ C5|Dn|cd2dn . (A.1.20)

When ρ(i, k) ≤ 3dn, let Vi(r) be a ball centered at i with radius of r, then Vi(4dn)

includes all (j, k, l) such that ρ(i, j) ≤ dn, ρ(k, l) ≤ dn and ρ(i, k) ≤ 3dn. Let

Mi(r) = |{(j, k, l) : j, k, l ∈ Vi(4dn), r ≤ ρ(i, {j, k, l}) < r + 1}|c .

Then by Lemma A.1(ii), (v) in Jenish and Prucha (2009) we have supi∈Rd Mi(r) ≤

C6d
2d
n r

d−1 for some constant C6 > 0. Then for each i ∈ Dn,

∑
j,k,l∈Dn

ρ(i,j)≤dn
ρ(k,l)≤dn
ρ(i,k)≤3dn

|Cov(Yi,nYj,n, Yk,nYl,n)|

≤
∑

j,k,l∈Vi(4dn)

|Cov(Yi,nYj,n, Yk,nYl,n)|

≤
∑

j,k,l∈Vi(4dn)

[|E(Yi,nYj,nYk,nYl,n)|+ |E(Yi,nYj,n)||E(Yk,nYl,n)|]

≤
∑

j,k,l∈Vi(4dn)

[
C3ϵ̄1,3(ρ(i, {j, k, l})) + C2

1 ϵ̄1,1(ρ(i, {j, k, l}))ϵ̄1,1(ρ(dn))
]

≤(C3 + C2
1 )

∑
j,k,l∈Vi(4dn)

ϵ̄1,3(ρ(i, {j, k, l}))

≤(C3 + C2
1 )

4dn∑
r=1

Mi(r)ϵ̄1,3(r)

≤(C3 + C2
1 )C6d

2d
n

4dn∑
r=1

rd−1ϵ̄1,3(r).
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By Assumption 3.3.4(a) and Assumption 3.3.5(a) we have

∑
i,j,k,l∈Dn

ρ(i,j)≤dn
ρ(k,l)≤dn
ρ(i,k)≤3dn

|Cov(Yi,nYj,n, Yk,nYl,n)| ≤ C7|Dn|cd2dn (A.1.21)

for some C7 > 0.

Note that limn→∞
d2dn

|Dn|c = 0, then (A.1.20) and (A.1.21) imply that

E|T1,n|2 ≤ Cλ(C5 + C7)
d2dn
|Dn|c

→ 0

as n→ ∞.

Now we consider the second term, for sufficiently large n we have

|T2,n| =|a−1/2
n ||

∑
i∈Dn

Yi,n

(
e−iλS̄i,n + iλS̄i,n − 1

)
|

≤C8(|Dn|c)−1/2CY

∑
i∈Dn

|e−iλS̄i,n + iλS̄i,n − 1|

for some constant C8 > 0. Note that

|S̄i,n| ≤a−1/2
n

∑
j∈Dn

ρ(i,j)≤dn

|Yj,n|

≤C9CY a
−1/2
n ddn

=O((|Dn|c)−1/2)ddn.

for some C9 > 0. The second inequality adopts Lemma A.1(ii) in Jenish and Prucha

(2009). Then limn→∞ |S̄i,n| = 0, hence |iλS̄i,n| < 1/2 for sufficiently large n. Since

|e−z + z− 1| ≤ |z|2 for complex number |z| < 1/2, |e−iλS̄i,n + iλS̄i,n − 1| ≤ λ2|S̄i,n|2 a.s.

for sufficiently large n.
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Now we have

E|T2,n| ≤C8(|Dn|c)−1/2CY

∑
i∈Dn

λ2E|S̄i,n|2

≤C8(|Dn|c)1/2CY λ
2 sup
i∈Dn

E|S̄i,n|2

≤C8(|Dn|c)1/2CY λ
2a−1

n sup
i∈Dn

∑
j,k∈Dn

ρ(i,j)≤dn
ρ(i,k)≤dn

E|Yj,nYk,n|

≤C10(|Dn|c)−1/2) sup
i∈Dn

∑
j,k∈Dn

ρ(i,j)≤dn
ρ(i,k)≤dn

ϵ̄1,1(ρ(j, k))

≤C10(|Dn|c)−1/2) sup
i∈Dn

∑
j∈Dn

ρ(i,j)≤dn

2dn∑
r=1

Nj(r)ϵ̄1,1(r)

≤C11(|Dn|c)−1/2)ddn

2dn∑
r=1

rd−1ϵ̄1,1(r)

≤C12(|Dn|c)−1/2ddn,

where Nj(r) = |{i : r ≤ ρ(i, j) < r + 1}|c, the last two inequalities come from Lemma

A.1 (iii) in Jenish and Prucha (2009), Assumption 3.3.4(a) and Assumption 3.3.5(a).

Then limn→∞ E|T2,n| = 0.

As for the third term, we want to prove that limn→∞ |ET3,n| = 0. Firstly note that

|ET3,n| =

∣∣∣∣∣E
[
a−1/2
n

∑
i∈Dn

Yi,ne
iλ(S̄n−S̄i,n)

]∣∣∣∣∣
≤C(|Dn|c)−1/2

∑
i∈Dn

∣∣∣EYi,neiλ(S̄n−S̄i,n)
∣∣∣

≤C(|Dn|c)−1/2
∑
i∈Dn

(∣∣EYi,n cosλ(S̄n − S̄i,n)
∣∣+ ∣∣EYi,n sinλ(S̄n − S̄i,n)

∣∣) .
Let f∗(Yi) = cosλ(S̄n − S̄i,n) where Yi = (Yj,n)j∈Dn,ρ(i,j)>dn . f∗ is bounded with

Lipschitz constant Lip(f∗) = |λ|a−1/2
n , with domain Ru for some u ≤ |Dn|c. Another
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bounded Lipschitz function f1 is defined in (A.1.19). By (3.2.3) we have:

|E[Yi,n cosλ(S̄n − S̄i,n)]| =|Cov[f∗(Yi), f1(Yi,n)]|

≤θ̄∞,1(dn).

Same holds if f∗(Yi) = sinλ(S̄n − S̄i,n). Since limn→∞ θ̄∞,1(dn)(|Dn|c)1/2 = 0, we have

|ET3,n| ≤ C(|Dn|c)−1/2
∑
i∈Dn

θ̄∞,1(dn) ≤ C(|Dn|c)1/2θ̄∞,1(dn) → 0

as n→ ∞. Similarly by (3.2.4) we have:

|E[Yi,n cosλ(S̄n − S̄i,n)]| =|Cov[f∗(Yi), f1(Yi,n)]|

≤(CY |Dn|c|λ|a−1/2
n + 1)η̄∞,1(dn).

Same holds if f∗(Yi) = sinλ(S̄n − S̄i,n). Since limn→∞ η̄∞,1(dn)|Dn|c = 0, we have

|ET3,n| ≤ C(|Dn|c)−1/2
∑
i∈Dn

(|Dn|c)1/2η̄∞,1(dn) ≤ C|Dn|cη̄∞,1(dn) → 0

as n→ ∞.

The proof of Theorem 3.2 is completed as Claim A.1.5 is verified.

A.1.4 Proof of results in Section 3.4

Proof of Proposition 3.3

For any r > 0 and U ⊂ DNT , let XU = (Xit)(i,t)∈U and X
(r)
U = (X

(r)
it )(i,t)∈U . f ∈

Fu, g ∈ Gv are two arbitrary bounded Lipschitz functions, then for any V ⊂ DNT such

that ρ(U, V ) > 2r, f(X
(r)
U ) is independent from g(X

(r)
V ). By Assumption 3.4.2 we have

|Cov [f(XU ), g(XV )]|

≤
∣∣∣Cov [f(XU )− f(X

(r)
U ), g(XV )

]∣∣∣+ ∣∣∣Cov [f(X(r)
U ), g(XV )− g(X

(r)
V )
]∣∣∣
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≤2 ∥g∥∞ E
∣∣∣f(XU )− f(X

(r)
U )
∣∣∣+ 2 ∥f∥∞ E

∣∣∣g(XV )− g(X
(r)
V )
∣∣∣

≤2 ∥g∥∞ Lip(f)
∑

(i,t)∈U

E
∣∣∣Xit −X

(r)
it

∣∣∣+ 2 ∥f∥∞ Lip(g)
∑

(i,t)∈V

E
∣∣∣Xit −X

(r)
it

∣∣∣
≤2C1 [u ∥g∥∞ Lip(f) + v ∥f∥∞ Lip(g)] δ(r),

for some constant C1 > 0. Therefore, η̄(s) ≤ C2δ(s/2) for some constant C2 > 0 by

letting s = 2r + 1.

Proof of Proposition 3.4

Assumption 3.4.5 allows us to adopt Theorem 3.1 on functions lit(θ). i.e. for any θ ∈ Θ,

1

NT

∑
(it)∈DNT

[lit(θ)− Elit(θ)]
p→ 0 (A.1.22)

as NT → ∞. Together with Assumption 3.4.3(c) we have

limNT→∞[LNT (θ)− LNT (θ0)]

= limNT→∞{E[LNT (θ)]− E[LNT (θ0)]}

≤ 0,

(A.1.23)

and the equality holds only if θ = θ0, which means θ0 is uniquely identifiable.

Note that Assumption 3.4.4 implies that

lim
NT→∞

P
[
|LNT (θ̂NT )− L̃NT (θ̂NT )| <

δ

3

]
= 1

for any δ > 0, hence

lim
NT→∞

P
[
LNT (θ̂NT ) > L̃NT (θ̂NT )−

δ

3

]
= 1.

Since θ̂NT maximizes L̃NT (θ), we have

lim
NT→∞

P
[
L̃NT (θ̂NT ) > L̃NT (θ0)−

δ

3

]
= 1.
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So

lim
NT→∞

P
[
LNT (θ̂NT ) > L̃NT (θ0)−

2δ

3

]
= 1.

Furthermore, from Assumption 3.4.4,

lim
NT→∞

P
[
L̃NT (θ0) > LNT (θ0)−

δ

3

]
= 1.

Therefore we have

lim
NT→∞

P
[
0 ≤ LNT (θ0)− LNT (θ̂NT ) < δ

]
= 1. (A.1.24)

Let Vk(θ) be an open sphere with centre θ and radius 1/k. Note that LNT (θ) is

continuous in θ and Θ ∖ Vk(θ0) is a closed set according to Assumption 3.4.3. By

(A.1.23), we could find

δ = inf
θ∈Θ∖Vk(θ0)

[LNT (θ0)− LNT (θ)] > 0.

Then by (A.1.24),

lim
NT→∞

P
{
0 ≤ LNT (θ0)− LNT (θ̂NT ) < inf

θ∈Θ∖Vk(θ0)
[LNT (θ0)− LNT (θ)]

}
= 1.

This implies that

lim
NT→∞

P
[
θ̂NT ∈ Vk(θ0)

]
= 1

for any given k > 0, which means θ̂NT
p→ θ0 as NT → ∞.

Proof of Proposition 3.5

Based on Assumptions 3.4.7(a) and 3.4.7(b), Theorem 3.1 facilitates the convergence

1

NT

∑
(i,t)∈DNT

{
∂2

∂θ∂θ′
lit(θ0)− E

[
∂2

∂θ∂θ′
lit(θ0)

]}
p→ 0
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as NT → ∞, hence
∂2LNT (θ0)

∂θ∂θ′
+ANT

p→ 0. (A.1.25)

By Assumption 3.4.7(e) we have

−B−1/2
NT

∂2LNT (θ0)

∂θ∂θ′
A−1

NTB
1/2
NT = Ik + op(1). (A.1.26)

On the other hand, with Assumptions 3.4.7(c), 3.4.7(d) and 3.4.7(e), we can prove

that
√
NTB

−1/2
NT

∂LNT (θ0)

∂θ

d→ N(0, Ik). (A.1.27)

By the Taylor expansion, for some θ∗ between θ̂NT and θ0 we have

∂L̃NT (θ̂NT )

∂θ
=
∂L̃NT (θ0)

∂θ
+
∂2L̃NT (θ

∗)

∂θ∂θ′
(θ̂NT − θ0).

Since ∂L̃NT (θ̂NT )
∂θ = 0, we have

√
NT (B

−1/2
NT ANT )(θ̂NT − θ0)

=− (B
−1/2
NT ANT )

(
∂2L̃NT (θ

∗)

∂θ∂θ′

)−1√
NT

∂L̃NT (θ0)

∂θ

=− (B
−1/2
NT ANT )

(
∂2LNT (θ0)

∂θ∂θ′

)−1

B
1/2
NT

√
NTB

−1/2
NT

∂LNT (θ0)

∂θ
+ op(1),

according to Assumption 3.4.6 and the fact that θ̂NT
p→ θ0. Therefore, combining

(A.1.26) with (A.1.27), we can prove the asymptotic distribution of θ̂NT as follows:

√
NT (B

−1/2
NT ANT )(θ̂NT − θ0)

d→ N(0, Ik).

Proof of Proposition 3.6

By (3.4.8) we have

√
NT (θ̂NT − θ0) = −

(
∂2LNT (θ0)

∂θ∂θ′

)−1√
NT

∂LNT (θ0)

∂θ
,
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with

∂LNT (θ0)

∂θ
=

2

NT

∑
(i,t)∈DNT

εitxi,t−1,

∂2LNT (θ0)

∂θ∂θ′
= − 2

NT

∑
(i,t)∈DNT

xi,t−1x
′
i,t−1.

To prove Proposition 3.6, it suffices to verify following statements:

(i). 1√
NT

Σ
−1/2
NT

∑
(i,t)∈DNT

εitxi,t−1
d→ N(0, σ2);

(ii). 1
NT

∑
(i,t)∈DNT

[
xi,t−1x

′
i,t−1 − E

(
xi,t−1x

′
i,t−1

)]
p→ 0.

To prove (i), we will prove in Claim A.1.7 that {εitxi,t−1 : (i, t) ∈ DNT , NT ≥ 1}

satisfies the conditions of Corollary 3.2.1. Particularly in proving weak dependence, we

will make use of Proposition 3.3, hence we need to prove Claim A.1.6 at first. Notice

that the weak dependence and asymptotic properties are derived conditioning on Z in

this proof.

Claim A.1.6. For any s ≥ 0, let Fit(s) = σ{εjτ : |i − j| ≤ s, |τ − t| ≤ s}. Under

Assumptions 3.4.8, 3.4.9 and 3.4.10 we have

sup
NT≥1

sup
(i,t)∈DNT

∥yit − E [yit|Fit(s)]∥2 ≤ Cδ(s) (A.1.28)

and

sup
NT≥1

sup
(i,t)∈DNT

∥∥∥∥∥∥
N∑
j=1

wijyjt − E

 N∑
j=1

wijyjt|Fit(s)

∥∥∥∥∥∥
2

≤ Cδ(s) (A.1.29)

with δ(s) = O(s−α) for some α > 4 ∨ 2p−2
p−2 .

Proof. Let Et = (ε1t, ε2t, ..., εNt) and Z = (Z1, Z2, ..., ZN )′. By (2.3) in Zhu et al.

(2017), under Assumption 3.4.8(b) we can rewrite (3.4.4) as

yit = e′i

[
(IN −G)−1B0 +

∞∑
k=0

GkEt−k

]
,

where B0 = β01N + Zγ, G = β1W + β2IN , IN is an N × N identity matrix, 1N is

an N -dimensional vector with all elements being 1, and ei is an N -dimensional vector
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with the i-th element being 1 and others being zero. Then we have

∥yit − E [yit|Fit(s)]∥2

≤

∥∥∥∥∥e′i
{ ∞∑

k=0

GkEt−k −
∞∑
k=0

E
[
GkEt−k|Fit(s)

]}∥∥∥∥∥
2

≤

∥∥∥∥∥e′i
{

s∑
k=0

[
GkEt−k − E(GkEt−k|Fit(s))

]}∥∥∥∥∥
2

+

∥∥∥∥∥e′i
{ ∞∑

k=s+1

[
GkEt−k − E(GkEt−k|Fit(s))

]}∥∥∥∥∥
2

=T1 + T2.

Note that Et−k is independent from Fit(s) when k > s. Then by Assumption

3.4.9(b) we have

T 2
2 =E

∣∣∣∣∣e′i
∞∑

k=s+1

GkEt−k

∣∣∣∣∣
2

=E

[( ∞∑
k=s+1

e′iG
kEt−k

)( ∞∑
k=s+1

E ′
t−k(G

′)kei

)]

=σ2
∞∑

k=s+1

e′i(GG
′)kei

≤C
∞∑

k=s+1

ρk,

which converges to zero exponentially as s→ ∞ since 0 < ρ < 1.

Moreover, by Assumption 3.4.9(a),

T1 =

∥∥∥∥∥∥
s∑

k=0

N∑
j=1

e′iG
kej [εj,t−k − E(εj,t−k|Fit(s))]

∥∥∥∥∥∥
2

≤
s∑

k=0

N∑
j=1

∥∥∥e′iGkej [εj,t−k − E(εj,t−k|Fit(s))]
∥∥∥
2

=
s∑

k=0

∑
|j−i|>s

∥∥∥e′iGkejεj,t−k

∥∥∥
2
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≤C
s∑

k=0

ρk
∑

|j−i|>s

|j − i|−α−2.

According to Lemma A.1.4 and Lemma A.1.5, we have

∑
|j−i|>s

|j − i|−α−2 =
∞∑

h=[s]

∑
h≤|j−i|<h+1

|j − i|−α−2

≤
∞∑

h=[s]

Ch−α−1

<C
2α+1

α
s−α.

Therefore we complete the proof of (A.1.28).

Now we prove (A.1.29). According to Assumption 3.4.9(a), we can verify that

max
i ̸=j

wij < C|j − i|−α−2.

Based on (A.1.28), Lemma A.1.4 and Lemma A.1.5, we have∥∥∥∥∥∥
N∑
j=1

wijyjt − E

 N∑
j=1

wijyjt|Fit(s)

∥∥∥∥∥∥
2

≤
∑

|j−i|≤s/2

wij ∥yjt − E [yjt|Fit(s)]∥2 +
∑

|j−i|>s/2

wij ∥yjt − E [yjt|Fit(s)]∥2

≤
∑

|j−i|≤s/2

wij ∥yjt − E [yjt|Fjt(s/2)]∥2 +
∞∑

h=[s/2]

∑
h≤|j−i|<h+1

wij ∥yjt∥2

≤C1(s/2)
−α + C2(s/2)

−α.

Claim A.1.7. Under Assumptions 3.4.8, 3.4.9 and 3.4.10,

(a). supNT≥1 sup(i,t)∈DNT
E ∥εitxi,t−1∥p <∞ for some p > 2;

(b). {εitxi,t−1 : (i, t) ∈ DNT , NT ≥ 1} are η-weakly dependent with η̄(s) = O(s−α) for

some α > 4 ∨ 2p−2
p−2 .
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Proof. Claim A.1.7(a) can be easily derived from Assumption 3.4.8(a) and Assumption

3.4.10. As for Claim A.1.7(b), notice that

εitxi,t−1 =


εit

εit
∑N

j=1wijyj,t−1

εityi,t−1

εitZi

 .

Since

E ∥εitxi,t−1 − E(εitxi,t−1|Fit(s))∥2

≤2E

∣∣∣∣∣∣εit
 N∑
j=1

wijyj,t−1 − E

 N∑
j=1

wijyj,t−1|Fit(s)

∣∣∣∣∣∣
2

+ 2E |εit [yi,t−1 − E (yi,t−1|Fit(s))]|2 .

Then by Claim A.1.6 and Proposition 3.3 we complete the proof.

Notice that xi,t−1x
′
i,t−1 is a (m+ 3)× (m+ 3) matrix as follows:


1

∑N
j=1 wijyj,t−1 yi,t−1 Z′

i∑N
j=1 wijyj,t−1 (

∑N
j=1 wijyj,t−1)

2
(
∑N

j=1 wijyj,t−1)yi,t−1 (
∑N

j=1 wijyj,t−1)Z′
i

yi,t−1 (
∑N

j=1 wijyj,t−1)yi,t−1 y2i,t−1 yi,t−1Z
′
i

Zi (
∑N

j=1 wijyj,t−1)Zi yi,t−1Zi ZiZ
′
i

 .

To prove statement (ii), we need to verify that each element of xi,t−1xi,t−1 satisfies

the conditions of Theorem 3.1. By Assumption 3.4.8(a), Assumption 3.4.10 and Claim

A.1.6, LLN already holds for elements
∑N

j=1wijyj,t−1, yi,t−1,
(∑N

j=1wijyj,t−1

)
Zi and

yi,t−1Zi. The LLN of the rest of the elements in xi,t−1xi,t−1 will be proved with the

support of Claim A.1.8 below.

Claim A.1.8. Under Assumptions 3.4.8, 3.4.9 and 3.4.10, following arrays of random

fields

{
y2it : (i, t) ∈ DNT , NT ≥ 1

}
,
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
 N∑

j=1

wijyjt

2

: (i, t) ∈ DNT , NT ≥ 1

 ,


 N∑

j=1

wijyjt

 yit : (i, t) ∈ DNT , NT ≥ 1


are η-dependent with η̄(s) = O(s−µ) for some µ > 2.

Proof. By triangle inequality and Cauchy-Schwartz inequality we have∥∥∥∥∥∥
 N∑

j=1

wijyjt

 yit − E

 N∑
j=1

wijyjt

 yit|Fit(s)

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
 N∑

j=1

wijyjt

 yit −

 N∑
j=1

wijyjt

E [yit|Fit(s)]

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
 N∑

j=1

wijyjt

E [yit|Fit(s)]− E

 N∑
j=1

wijyjt|Fit(s)

E [yit|Fit(s)]

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥E
[yit − E(yit|Fit(s))]

 N∑
j=1

wijyjt − E

 N∑
j=1

wijyjt|Fit(s)

 |Fit(s)


∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
N∑
j=1

wijyjt

∥∥∥∥∥∥
2

∥yit − E(yit|Fit(s))∥2

+ ∥E(yit|Fit(s))∥2

∥∥∥∥∥∥
N∑
j=1

wijyjt − E

 N∑
j=1

wijyjt|Fit(s)

∥∥∥∥∥∥
2

+ ∥yit − E(yit|Fit(s))∥2

∥∥∥∥∥∥
N∑
j=1

wijyjt − E

 N∑
j=1

wijyjt|Fit(s)

∥∥∥∥∥∥
2

.

Then by (A.1.28), (A.1.29) and Proposition 3.3, the array of random fields
 N∑

j=1

wijyjt

 yit : (i, t) ∈ DNT , NT ≥ 1


is η-dependent with η̄(s) = O(s−α) for α > 4 ∨ 2p−2

p−2 > 2. Using similar arguments we

can also verify the η-dependence of the other two in Claim A.1.8.
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With statements (i) and (ii) we complete the proof of Proposition 3.6.
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A.2 Proofs of results in Chapter 4

Lemma A.1.4 and Lemma A.1.5 are needed in the proof of Lemma 4.3.1. In the proofs

of asymptotic properties of MLE, we rely on Proposition 3.3 to prove η-weak depen-

dence by verifying near-epoch-dependence instead (see the definition of near-epoch-

dependence in Section 2.4.2). A useful property of near-epoch dependence is that it

is preserved under summation, multiplication and finite shift, as what will be shown

respectively in Lemma A.2.1 to Lemma A.2.3 below. For the proof of these lemmas we

refer to Davidson (1994). Comparing to the AR-type models, the likelihood functions

in GARCH-type cases are evaluated in a iterative way. Therefore we also need Lemma

A.2.4 at last, followed by its proof.

Lemma A.2.1. If {xit : (i, t) ∈ DNT , NT ≥ 1} and {yit : (i, t) ∈ DNT , NT ≥ 1} are

Lp-NED on {εit : (i, t) ∈ D} of size-µx and size-µy respectively. Then {xit+yit : (i, t) ∈

DNT , NT ≥ 1} is Lp-NED on {εit : (i, t) ∈ D} of size-min{µx, µy}.

Lemma A.2.2. If {xit : (i, t) ∈ DNT , NT ≥ 1} and {yit : (i, t) ∈ DNT , NT ≥ 1} are

L2-NED on {εit : (i, t) ∈ D} of size-µ.

(a). {xityit : (i, t) ∈ DNT , NT ≥ 1} is L1-NED on {εit : (i, t) ∈ D} of size-µ;

(b). {xityit : (i, t) ∈ DNT , NT ≥ 1} is L2-NED on {εit : (i, t) ∈ D} of size- r−2
2r−2µ, if

supi,t ∥xit∥2r <∞ and supi,t ∥yit∥2r <∞ for some r > 2;

(c). {xityit : (i, t) ∈ DNT , NT ≥ 1} is L2-NED on {εit : (i, t) ∈ D} of size-µ, if

supi,t ∥xit∥ <∞ and supi,t ∥yit∥ <∞ almost surely.

Lemma A.2.3. If {xit : (i, t) ∈ DNT , NT ≥ 1} is Lp-NED (p ≥ 1) on {εit : (i, t) ∈ D},

so is {xjτ : (j, τ) ∈ DNT , NT ≥ 1} with ρ((i, t), (j, τ)) <∞.

Lemma A.2.4. {xit : (i, t) ∈ DNT , NT ≥ 1} is an array of random fields being

uniformly Lp-NED on {εit : (i, t) ∈ D} of size-µ, and uniformly Lq-bounded (q ≥ p ≥ 1)

in the sense that supN,T sup(i,t)∈DNT
∥xit∥q < ∞. Let {yit : (i, t) ∈ DNT , NT ≥ 1}

be another uniformly Lq-bounded array of random fields where yit = xit + ϕyi,t−1 with

|ϕ| < 1, then {yit : (i, t) ∈ DNT , NT ≥ 1} is also uniformly Lp-NED on {εit : (i, t) ∈ D}

of size-µ.
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Proof. With |ϕ| < 1, the solution of yit = xit + ϕyi,t−1 converges in Lq to yit =∑∞
k=0 ϕ

kxi,t−k. By triangle inequality we have

∥yit − E(yit|Fit(s))∥p ≤
∞∑
k=0

|ϕ|k ∥xi,t−k − E(xi,t−k|Fit(s))∥p . (A.2.1)

When k ≤ s, according to Theorem 10.28 in Davidson (1994) we have

∥xi,t−k − E(xi,t−k|Fit(s))∥p ≤2 ∥xi,t−k − E(xi,t−k|Fi,t−k(s− k))∥p

≤C1ψx(s− k)

where C1 is some positive constant and ψx are the NED coefficients of xit. When k > s,

∥xi,t−k − E(xi,t−k|Fit(s))∥p = ∥xi,t−k − E(xi,t−k)∥p ≤ C2

where C2 is some finite constant as ∥xit∥p <∞. Therefore (A.2.1) becomes

∥yit − E(yit|Fit(s))∥p ≤ C1

s∑
k=0

|ϕ|kψx(s− k) + C2

∞∑
k=s+1

|ϕ|k. (A.2.2)

The second term on the right-hand-side of (A.2.2) decays exponentially as s→ ∞, and

is therefore neglectable compared to the polynomial term of ψx(s) = O(s−µ). As for

the first term, since

s∑
k=0

|ϕ|kψx(s− k)

s−µ
=

s∑
k=0

|ϕ|kO((s− k)−µ)

s−µ

≤C3

s∑
k=0

|ϕ|k,

we have
∑s

k=0 |ϕ|kψx(s− k) = O(s−µ) and complete the proof.

Lemma A.2.5. If 0 < β < 1, supNT≥1 sup(i,t)∈DNT
E
∣∣σ2it(θ)∣∣ <∞, then

σ2it(θ) =
∞∑
k=1

βk−1ci,t−k(θ) (A.2.3)
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almost surely, where

ci,t−k(θ) = ω + α(1)y2i,t−k1{yi,t−k≥0} + α(2)y2i,t−k1{yi,t−k<0} + λ
N∑
j=1

wijy
2
j,t−k.

Proof. Since yit = εitσit(θ0) and εit is independent from σit(θ0), we also have

sup
NT≥1

sup
(i,t)∈DNT

E |yit|2 <∞.

Let log+(x) = log(x) if x > 1 and 0 otherwise, by Jensen’s inequality we have

E log+ |ci,t−k(θ)|

≤ log+ E

∣∣∣∣∣∣ω + α(1)y2i,t−k1{yi,t−k≥0} + α(2)y2i,t−k1{yi,t−k<0} + λ
N∑
j=1

wijy
2
j,t−k

∣∣∣∣∣∣
<∞.

By Lemma 2.2 in Berkes et al. (2003) we have
∑∞

k=1 P
[
|ci,t−k(θ)| > ζk

]
< ∞ for any

ζ > 1. Therefore |ci,t−k(θ)| ≤ ζk almost surely by the Borel-Cantelli lemma. Letting

1 < ζ < 1
|β| , we can prove that the right-hand-side of (A.2.3) converges almost surely.

It remains for us to show that

σ2it(θ) =
∞∑
k=1

βk−1ci,t−k(θ).

Notice that

σ2it(θ)− βkσ2i,t−k(θ) = ci,t−1(θ) + βci,t−2(θ) + ...+ βk−1ci,t−k(θ).

Using Markov’s inequality we obtain that
∑∞

k=1 P
{
|βkσ2i,t−k(θ)| > δ

}
< ∞ for any

δ > 0, then by Borel-Cantelli lemma |βkσ2i,t−k(θ)|
a.s.→ 0 as k → ∞. Letting k → ∞ on

both sides of above equation we complete the proof.
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A.2.1 Proof of Theorem 4.1

Recall that (4.2.1) is a generalized autoregressive equation since the random matrices

{Bt} are i.i.d.. According to Theorem 3.2 in Bougerol and Picard (1992), there exists a

unique strictly stationary solution of model (4.2.1) if and only if the Lyapunov exponent

γ < 0.

By the sub-additive ergodic theorem (see Kingman (1973)),

γ = lim
t→∞

1

t+ 1
log ∥BtBt−1...B0∥

almost surely, according to (1.4) in Kesten and Spitzer (1984), we know that the Lya-

punov exponent associated with i.i.d. random matrices {Bt} satisfies

γ ≤ log ρ[E(Bt)],

where ρ(·) denotes the spectral radius of a matrix. Hence the condition of γ < 0 is

implied by a stronger condition that ρ[E(Bt)] < 1. Denoting α∗ := max{α(1), α(2)} and

di =
∑N

k=1 aik, we have

E(Bt) = E
{
α(1)RtEt + α(2)(IN −Rt)Et + λWEt + βIN

}
≤ E {α∗RtEt + α∗(IN −Rt)Et + λWEt + βIN}

= α∗IN + λW + βIN

=


α∗ + β + λa11

d1
λa12

d1
... λa1N

d1

λa21
d2

α∗ + β + λa22
d2

... λa2N
d2

λaN1
dN

λaN2
dN

... α∗ + β + λaNN
dN

 ,

and then ρ[E(Bt)] ≤ α∗ + β + λ according to the Gershgorin circle theorem (see Horn

and Johnson (2012)). Consequently, it suffices to verify that α∗ + β + λ < 1 to ensure

the strict stationarity of model (4.2.1).
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A.2.2 Proof of Lemma 4.3.1

For simplicity we use the notation X(i,t,s) := E(X|Fit(s)) for an arbitrary random

variable X, B := E(Bt), B
(2) := E(Bt ⊗Bt), and | · |max(| · |min) denotes the maximum

(minimum) element of vectors and matrices.

Claim A.2.1. c̄1 := |B1N |max < 1 and c̄2 := |B(2)(1N ⊗ 1N )|max < 1.

Proof. Since EBt ⪯ α∗IN + λW + βIN and W1N = 1N , one can easily verify that

c̄1 ≤ α∗ + β + λ < 1.

For arbitrary i1, i2, j1, j2,

E

α∗ε2i1t + λ
∑
j1

wi1j1ε
2
j1t + β

⊗

α∗ε2i2t + λ
∑
j2

wi2j2ε
2
j2t + β


≤κ4(α∗ + β + λ) < 1

by Assumption 4.3.1. Then

|B(2)(1N ⊗ 1N )|max

=|E [(Bt1N )⊗ (Bt1N )] |max

⪯|E [(α∗Et1N + λWEt1N + β1N )⊗ (α∗Et1N + λWEt1N + β1N )] |max

≤κ4(α∗ + β + λ) < 1.

Denote the element (i, j) of Bt as

b
(t)
ij =

 α(1)1{εit≥0}ε
2
it + α(2)1{εit<0}ε

2
it + β i = j,

λwijε
2
jt otherwise.

Notice that the stochastic part in Bt consists of {εit : i = 1, 2, ..., N}. Therefore for any

k > s, Bt−k is independent from Fit(s) and B
(i,t,s)
t−k = B. When k ≤ s, only some of the
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elements of Bt−k are independent from Fit(s), and we will handle this case carefully in

Claim A.2.2 below.

Claim A.2.2. When k ≤ s we have

E
[
Bt−k ⊗B

(i,t,s)
t−k

]
= E

[
B

(i,t,s)
t−k ⊗Bt−k

]
⪯ B(2),

E
[
B

(i,t,s)
t−k ⊗B

(i,t,s)
t−k

]
⪯ B(2).

Proof. For arbitrary i1, i2, j1, j2,

E
[
b
(t−k)
i1j1

E(b(t−k)
i2j2

|Fit(s))
]
=

 E
[
b
(t−k)
i1j1

]
E
[
b
(t−k)
i2j2

]
j1 = j2 & |j2 − i| > s,

E
[
b
(t−k)
i1j1

b
(t−k)
i2j2

]
otherwise.

(A.2.4)

And

E
[
E(b(t−k)

i1j1
|Fit(s))E(b

(t−k)
i2j2

|Fit(s))
]
=

 E
[
b
(t−k)
i1j1

]
E
[
b
(t−k)
i2j2

]
j1 = j2 & |j2 − i| > s,

E
[
b
(t−k)
i1j1

b
(t−k)
i2j2

]
otherwise.

(A.2.5)

Since E
[
b
(t−k)
i1j1

]
E
[
b
(t−k)
i2j2

]
≤ E

[
b
(t−k)
i1j1

b
(t−k)
i2j2

]
when j1 = j2, we complete the proof.

Let ei be an N -dimensional vector with the i-th component being 1 and others

being 0. By (4.2.3) we have

hit = e′iht = ω

∞∑
k=0

e′iΠt−1,k1N ,

where Πt−1,k = Bt−1...Bt−k for k ≥ 1 and Πt−1,0 = IN . Now we will show that

sup
NT≥1

sup
(i,t)∈DNT

∥hit − E(hit|Fit(s)∥2 = O(s−µ) (A.2.6)

with Assumption 4.3.3(a); Or

sup
NT≥1

sup
(i,t)∈DNT

∥hit − E(hit|Fit(s)∥2 = O(ρs) (A.2.7)
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with Assumption 4.3.3(b).

By (4.2.3) we have

∥hit − E(hit|Fit(s)∥2
=

∥∥∥e′i∑k≥0Πt−1,k(ω1N )− E
[
e′i
∑

k≥0Πt−1,k(ω1N )|Fit(s)
]∥∥∥

2

≤
∥∥∥e′i∑k≤s

[
Πt−1,k −Π

(i,t,s)
t−1,k

]
(ω1N )

∥∥∥
2

+
∥∥∥e′i∑k>s

[
Πt−1,k −Π

(i,t,s)
t−1,sB

k−s
]
(ω1N )

∥∥∥
2
.

(A.2.8)

Then we handle the two terms separately.

When k > s,

E

∣∣∣∣∣e′i∑
k>s

[
Πt−1,k −Π

(i,t,s)
t−1,sB

k−s
]
(ω1N )

∣∣∣∣∣
2

≤
∑
k>s

ω2(e′ ⊗ e′)E
{[

Πt−1,k −Π
(i,t,s)
t−1,sB

k−s
]
⊗
[
Πt−1,k −Π

(i,t,s)
t−1,sB

k−s
]}

(1N ⊗ 1N )

≤
∑
k>s

ω2(e′ ⊗ e′)E [Πt−1,k ⊗Πt−1,k] (1N ⊗ 1N )

+
∑
k>s

ω2(e′ ⊗ e′)E
[
Πt−1,k ⊗ (Π

(i,t,s)
t−1,sB

k−s)
]
(1N ⊗ 1N )

+
∑
k>s

ω2(e′ ⊗ e′)E
[
(Π

(i,t,s)
t−1,sB

k−s)⊗Πt−1,k

]
(1N ⊗ 1N )

+
∑
k>s

ω2(e′ ⊗ e′)E
[
(Π

(i,t,s)
t−1,sB

k−s)⊗ (Π
(i,t,s)
t−1,sB

k−s)
]
(1N ⊗ 1N ).

For the first term, we use Claim A.2.1:

(e′ ⊗ e′)E [Πt−1,k ⊗Πt−1,k] (1N ⊗ 1N )

=(e′ ⊗ e′)E [(Bt−1 ⊗Bt−1)(Bt−2 ⊗Bt−2)...(Bt−k ⊗Bt−k)] (1N ⊗ 1N )

=(e′ ⊗ e′)
[
B(2)

]k
(1N ⊗ 1N )

≤c̄k2.

For the second term, notice that
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E
[
Πt−1,k ⊗ (Π

(i,t,s)
t−1,sB

k−s)
]

=E
[
(Bt−1 ⊗B

(i,t,s)
t−1 )(Bt−2 ⊗B

(i,t,s)
t−2 )...(Bt−s ⊗B

(i,t,s)
t−s )(Bt−s−1 ⊗B)...(Bt−k ⊗B)

]
⪯
[
B(2)

]s
(B ⊗B)k−s.

In the second line above, the first s terms are in forms Bt−k ⊗ B
(i,t,s)
t−k with k ≤ s, and

then the third line is obtained by applying Claim A.2.2. Therefore we have

(e′ ⊗ e′)E
[
Πt−1,k ⊗ (Π

(i,t,s)
t−1,sB

k−s)
]
(1N ⊗ 1N )

≤(e′ ⊗ e′)
[
B(2)

]s
(B ⊗B)k−s(1N ⊗ 1N )

≤c̄s2[c̄21]k−s.

Similarly, we could also verify that

(e′ ⊗ e′)E
[
(Π

(i,t,s)
t−1,sB

k−s)⊗Πt−1,k

]
(1N ⊗ 1N ) ≤ c̄k−s

2 [c̄21]
s

and

(e′ ⊗ e′)E
[
(Π

(i,t,s)
t−1,sB

k−s)⊗ (Π
(i,t,s)
t−1,sB

k−s)
]
(1N ⊗ 1N ) ≤ [c̄21]

k.

Therefore,

E

∣∣∣∣∣e′i∑
k>s

[
Πt−1,k −Π

(i,t,s)
t−1,sB

k−s
]
(ω1N )

∣∣∣∣∣
2

≤ 4
∑
k>s

ω2ρk = O(ρs), (A.2.9)

where ρ = max{c̄21, c̄2} < 1 by Claim A.2.1. Hence the second term on the right-hand-

side of (A.2.8) decays exponentially as s→ ∞. It remains for us to deal with the first

term ∥∥∥∥∥∥e′i
∑
k≤s

[
Πt−1,k −Π

(i,t,s)
t−1,k

]
(ω1N )

∥∥∥∥∥∥
2

.
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When k ≤ s,

E

∣∣∣∣∣∣e′i
∑
k≤s

[
Πt−1,k −Π

(i,t,s)
t−1,k

]
(ω1N )

∣∣∣∣∣∣
2

≤
∑
k≤s

ω2(e′ ⊗ e′)E
{[

Πt−1,k −Π
(i,t,s)
t−1,k

]
⊗
[
Πt−1,k −Π

(i,t,s)
t−1,k

]}
(1N ⊗ 1N )

=
∑
k≤s

ω2(e′ ⊗ e′)E
[
Πt−1,k ⊗Πt−1,k −Πt−1,k ⊗Π

(i,t,s)
t−1,k

]
(1N ⊗ 1N )

+
∑
k≤s

ω2(e′ ⊗ e′)E
[
Π

(i,t,s)
t−1,k ⊗Π

(i,t,s)
t−1,k −Π

(i,t,s)
t−1,k ⊗Πt−1,k

]
(1N ⊗ 1N )

:=T1 + T2.

By (A.2.4), E
[
b
(t−k)
ij1

b
(t−k)
ij2

]
̸= E

[
b
(t−k)
ij1

E(b(t−k)
ij2

|Fit(s))
]
only if j1 = j2 and |j1 − i| > s,

then

(e′i ⊗ e′i)E
[
Bt−k ⊗Bt−k −Bt−k ⊗B

(i,t,s)
t−k

]
(1N ⊗ 1N )

=
∑
j1

∑
j2

{
E
[
b
(t−k)
ij1

b
(t−k)
ij2

]
− E

[
b
(t−k)
ij1

E(b(t−k)
ij2

|Fit(s))
]}

=
∑

|j−i|>s

{
E
[
b
(t−k)
ij

]2
− Eb(t−k)

ij Eb(t−k)
ij

}
.

Since

Eb(t−k)
ij =

 α(1)κ+2 + α(2)κ−2 + β i = j,

λwij otherwise,

and

E
[
b
(t−k)
ij

]2
=


[
α(1)

]2
κ+4 +

[
α(2)

]2
κ−4 + 2α(1)βκ+2 + 2α(2)βκ−2 + β2 i = j,

λ2w2
ijκ4 otherwise,

where κ+2 := E
[
ε2it1{εit≥0}

]
, κ−2 := E

[
ε2it1{εit<0}

]
, κ+4 := E

[
ε4it1{εit≥0}

]
and κ−4 :=

E
[
ε4it1{εit<0}

]
. Then we obtain that

E
[
b
(t−k)
ij

]2
− Eb(t−k)

ij Eb(t−k)
ij = (κ4 − 1)λ2w2

ij if i ̸= j. (A.2.10)
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In light of Claim A.2.2 we also have

E
(
Πt−1,k−1 ⊗Π

(i,t,s)
t−1,k−1

)
⪯
[
B(2)

]k−1
,

E
(
Π

(i,t,s)
t−1,k−1 ⊗Π

(i,t,s)
t−1,k−1

)
⪯
[
B(2)

]k−1
.

(A.2.11)

Note that (A.2.10), (A.2.11) and Claim A.2.1 allow us to derive that

T1 ≤
∑
k≤s

(e′i ⊗ e′i)
[
E (Πt−1,k−1 ⊗Πt−1,k−1) + E

(
Πt−1,k−1 ⊗Π

(i,t,s)
t−1,k−1

)]
× E

[
Bt−k ⊗Bt−k −Bt−k ⊗B

(i,t,s)
t−k

]
(1N ⊗ 1N ) (A.2.12)

≤2
∑
k≤s

[c̄2]
k−1

∑
|j−i|>s

{
E
[
b
(t−k)
ij b

(t−k)
ij

]
− Eb(t−k)

ij Eb(t−k)
ij

}
≤C

∑
|j−i|>s

w2
ij

for some constant C > 0. Hence, with Assumption 4.3.3(a) we obtain T1 ≤ C
∑

|j−i|>s |j−

i|−µ−2. This could also be verified for T2 by following similar arguments. Then accord-

ing to Lemma A.1.4 and Lemma A.1.5,

∑
|j−i|>s

|j − i|−µ−2 =

∞∑
h=[s]

∑
h≤|j−i|<h+1

|j − i|−µ−2

≤
∞∑

h=[s]

Ch−µ−1

<C
2µ+1

µ
s−µ

for some constant C > 0. Together with (A.2.8) and (A.2.9) we prove (A.2.6).

As for the proof of (A.2.7), using Assumption 4.3.3(b) and letting s ≥ K in (A.2.12)

we can verify that the first term of (A.2.8)∥∥∥∥∥∥e′i
∑
k≤s

[
Πt−1,k −Π

(i,t,s)
t−1,k

]
(ω1N )

∥∥∥∥∥∥
2

= 0,

while the second term decays exponentially according to (A.2.9). Now we complete the
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proof of Lemma 4.3.1.

A.2.3 Proof of Theorem 4.2

By Lemma A.2.5 we have

σ2it(θ) =

∞∑
k=1

βk−1ci,t−k(θ),

σ̃2it(θ) =
t∑

k=1

βk−1ci,t−k(θ),

almost surely, where

ci,t−k(θ) = ω + α(1)y2i,t−k1{yi,t−k≥0} + α(2)y2i,t−k1{yi,t−k<0} + λ
N∑
j=1

wijy
2
j,t−k.

We have

σ2it(θ)− σ̃2it(θ) = βtσ2i0(θ). (A.2.13)

The partial derivatives of σ2it(θ) are

∂σ2it(θ)

∂ω
=

∞∑
k=1

βk−1,

∂σ2it(θ)

∂α(1)
=

∞∑
k=1

βk−1y2i,t−k1{yi,t−k≥0},

∂σ2it(θ)

∂α(2)
=

∞∑
k=1

βk−1y2i,t−k1{yi,t−k<0},

∂σ2it(θ)

∂λ
=

∞∑
k=1

βk−1

 N∑
j=1

wijy
2
j,t−k

 ,

∂σ2it(θ)

∂β
=

∞∑
k=2

(k − 1)βk−2ci,t−k(θ).

(A.2.14)

By similar arguments to the proof of Lemma A.2.5, we can show that the right-hand-
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sides of (A.2.14) converge almost surely as 0 < β < 1, that is

∥∥∥∥∂σ2it(θ)∂θ

∥∥∥∥ <∞ a.s. (A.2.15)

We also have
∂σ2it(θ)

∂θ
− ∂σ̃2it(θ)

∂θ
= tβt−1σ2i0(θ)e5 + βt

∂σ2i0(θ)

∂θ
, (A.2.16)

where e5 = (0, 0, 0, 0, 1)′.

Now we consider the second order derivatives. For any θm, θn ∈ {ω, α(1), α(2), λ},

∂2σ2it(θ)

∂θm∂θn
= 0.

And
∂2σ2it(θ)

∂ω∂β
=

∞∑
k=2

(k − 1)βk−2,

∂2σ2it(θ)

∂α(1)∂β
=

∞∑
k=2

(k − 1)βk−2y2i,t−k1{yi,t−k≥0},

∂2σ2it(θ)

∂α(2)∂β
=

∞∑
k=2

(k − 1)βk−2y2i,t−k1{yi,t−k<0},

∂2σ2it(θ)

∂λ∂β
=

∞∑
k=2

(k − 1)βk−2

 N∑
j=1

wijy
2
j,t−k

 ,

∂2σ2it(θ)

∂β2
=

∞∑
k=3

(k − 1)(k − 2)βk−3ci,t−k(θ).

(A.2.17)

The right-hand-sides of (A.2.17) also converge almost surely as 0 < β < 1, that is

∥∥∥∥∂2σ2it(θ)∂θ∂θ′

∥∥∥∥ <∞ a.s. (A.2.18)

We also have:

∂2σ2it(θ)

∂θ∂θ′
− ∂2σ̃2it(θ)

∂θ∂θ′
= t(t−1)βt−2σ2i0(θ)e5e

′
5+2tβt−1∂σ

2
i0(θ)

∂θ
e′5+β

t∂
2σ2i0(θ)

∂θ∂θ′
, (A.2.19)

where e5 = (0, 0, 0, 0, 1)′.
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The third order derivative of σ2it(θ) is also bounded almost surely, as

∂3σ2it(θ)

∂ω∂β2
=

∞∑
k=3

(k − 1)(k − 2)βk−3,

∂3σ2it(θ)

∂α(1)∂β2
=

∞∑
k=3

(k − 1)(k − 2)βk−3y2i,t−k1{yi,t−k≥0},

∂3σ2it(θ)

∂α(2)∂β2
=

∞∑
k=3

(k − 1)(k − 2)βk−3y2i,t−k1{yi,t−k<0}, (A.2.20)

∂3σ2it(θ)

∂λ∂β2
=

∞∑
k=3

(k − 1)(k − 2)βk−3

 N∑
j=1

wijy
2
j,t−k

 ,

∂3σ2it(θ)

∂β3
=

∞∑
k=4

(k − 1)(k − 2)(k − 3)βk−4ci,t−k(θ).

almost surely.

Proof of Consistency

Claim A.2.3 below validates that L̃NT (θ) serves as an appropriate approximation of

the likelihood function LNT (θ). Claim A.2.4 and Claim A.2.5 facilitate the adoption of

Theorem 3.1 on lit(θ)’s, and Claim A.2.6 assists in showing the unique identifiability

of the true parameters θ0.

Claim A.2.3. For any θ ∈ Θ, |LNT (θ)− L̃NT (θ)|
p→ 0 as T → ∞ and N → ∞.

Proof. By (A.2.13) we have

E|LNT (θ)− L̃NT (θ)|

≤ 1

NT

∑
(i,t)∈DNT

E
[∣∣∣∣σ2it(θ)− σ̃2it(θ)

σ2it(θ)σ̃
2
it(θ)

∣∣∣∣ y2it + ∣∣∣∣log(1 + σ̃2it(θ)− σ2it(θ)

σ2it(θ)

)∣∣∣∣]

≤ C1

NT

∑
(i,t)∈DNT

E
[∣∣σ2it(θ)− σ̃2it(θ)

∣∣ y2it]+ C2

NT

∑
(i,t)∈DNT

E
∣∣σ2it(θ)− σ̃2it(θ)

∣∣
=
C3

NT

∑
(i,t)∈DNT

βtE[y2it] +
C4

NT

∑
(i,t)∈DNT

βt
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for any θ ∈ Θ. Since E[y2it] <∞, we have

E|LNT (θ)− L̃NT (θ)| → 0

as T → ∞ and N → ∞.

Claim A.2.4. sup(i,t)∈D supθ∈Θ ∥lit(θ)∥p <∞ for some p > 1.

Proof. For any θ ∈ Θ we have

∥lit(θ)∥p =
∥∥∥∥log σ2it(θ) + y2it

σ2it(θ)

∥∥∥∥
p

≤
∥∥log σ2it(θ)∥∥p + 1

ω

∥∥σ2it(θ0)ε2it∥∥p ,
where

∥∥log σ2it(θ)∥∥p ≤ ∥∥log+ σ2it(θ)∥∥p + ∥∥log− σ2it(θ)∥∥p
≤
∥∥σ2it(θ)∥∥p + 1 +max{0,− log(ω)}.

By Assumption 4.3.1 and Lemma A.2.5 we complete the proof.

Claim A.2.5. For any θ ∈ Θ, {lit(θ) : (i, t) ∈ DNT , NT ≥ 1} is η-weakly dependent

with η̄(s) ≤ Cs−µ for some constants C > 0 and µ > 2.

Proof. Note that σ2it(θ) ≥ ω for any (i, t) ∈ D and θ ∈ Θ, we could easily verify that

functions f(x) = log(x) and g(x) = 1
x are both Lipschitz on the interval (ω,∞]. Then by

Lemma 4.3.1, Lemma A.2.1, Lemma A.2.2(a) and Proposition 2 in Jenish and Prucha

(2012) we can prove that

sup
NT≥1

sup
(i,t)∈DNT

∥lit(θ)− E(lit(θ)|Fit(s))∥1 ≤ Cs−µ. (A.2.21)

Then by Proposition 3.3 we complete the proof.

Claim A.2.6. If σ2it(θ) = σ2it(θ0) for each i = 1, 2, ..., N and some t ∈ Z, then θ = θ0.
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Proof. For any i = 1, 2, ..., N , we have

(1− βB)σ2it(θ) = ω + αBy2it + λ
N∑
j=1

wijBy
2
j,t,

where B stands for the back-shift operator in the sense that By2it = y2i,t−1, and α

represents α(1) or α(2) for simplicity. With ht(θ) :=
(
σ21,t(θ), ..., σ

2
N,t(θ)

)′
and vt :=(

y21,t, ..., y
2
N,t

)′
, this equation could be vectorized as

(1− βB)ht(θ) = ω1N + (BRθ + λBW )vt,

where Rθ is a constant matrix (given yt−1) with diagonal elements of either α(1) or

α(2), and other entries being zero.

The polynomial 1− βx has a root x = 1/β, which lies outside the unit circle since

0 < β < 1. Therefore the inverse 1
1−βx is well-defined for any |x| ≤ 1, and we have

ht(θ) =
ω

1− β
1N +Mθ(B)vt

with Mθ(B) := B
1−βBRθ +

λB
1−βBW.

If σ2it(θ) = σ2it(θ0) for each i = 1, 2, ..., N and some t ∈ Z, thus ht(θ) = ht(θ0),

consequently,

{Mθ(B)−Mθ0(B)}vt =

(
ω0

1− β0
− ω

1− β

)
1N .

IfMθ(B) ̸= Mθ0(B),Mθ(B)−Mθ0(B) could be write in polynomial form
∑∞

k=0CkB
k

with constant matrix coefficients Ck. Therefore,

C0vt =

(
ω0

1− β0
− ω

1− β

)
1N −

∞∑
k=1

Ckvt−k.

This means that vt is measurable w.r.t. Ht−1 := σ{vt−1,vt−2, ...}, i.e. vt = E(vt|Ht−1).

However, since {εit} is a non-degenerate random process according to Assumption

4.1.1, vt − Eθ0(vt|Ht−1) = vt(Et − IN )ht(θ0) ̸= 0, which contradicts with Mθ(B) ̸=
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Mθ0(B). Hence Mθ(x) = Mθ0(x) holds for any |x| ≤ 1, i.e.

x

1− βx
Rθ −

x

1− β0x
Rθ0 =

(
λ0x

1− β0x
− λx

1− βx

)
W.

Note that the diagonal elements of W are all zeros while the matrix on the left side of

the equation has non-zero diagonal elements, so we have

αx

1− βx
=

α0x

1− β0x
,

λx

1− βx
=

λ0x

1− β0x
,

which imply α(1) = α
(1)
0 , α(2) = α

(2)
0 , β = β0 and λ = λ0. Besides, ω = ω0 could be

easily derived from ω
1−β = ω0

1−β0
.

Claim A.2.4, Claim A.2.5 and Proposition 3.3 allow us to adopt Theorem 3.1 on

functions {lit(θ) : (i, t) ∈ DNT , NT ≥ 1}. i.e. for any θ ∈ Θ,

1

NT

∑
(i,t)∈DNT

[lit(θ)− Elit(θ)]
p→ 0 (A.2.22)

as T → ∞ and N → ∞. Therefore we have

lim
T,N→∞

[LNT (θ)− LNT (θ0)]

= lim
T,N→∞

1

NT

∑
(i,t)∈DNT

E
{
log

σ2it(θ)

σ2it(θ0)
+ ε2it

[
σ2it(θ0)

σ2it(θ)
− 1

]}

≥ lim
T,N→∞

1

NT

∑
(i,t)∈DNT

E
[
(1− ε2it) log

σ2it(θ)

σ2it(θ0)

]
=0.

The equality in ≥ above holds only if θ = θ0 by Claim A.2.6. Following similar argu-

ments in the proof of Proposition 3.4 we can prove the consistency of θ̂NT .
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Proof of Asymptotic Normality

Notice that yit = εitσit(θ0), then we have

∂LNT (θ0)

∂θ
=

1

NT

∑
(i,t)∈DNT

[
1

σ2it(θ0)

∂

∂θ
σ2it(θ0)−

y2it
σ4it(θ0)

∂

∂θ
σ2it(θ0)

]

=
1

NT

∑
(i,t)∈DNT

[
1− ε2it
σ2it(θ0)

∂

∂θ
σ2it(θ0)

] (A.2.23)

and

ΣNT =
κ4 − 1

NT

∑
(i,t)∈DNT

E
[

1

σ4it(θ0)

∂

∂θ
σ2it(θ0)

∂

∂θ′
σ2it(θ0)

]
= (NT )var

[
∂LNT (θ0)

∂θ

]
.

Firstly we need to prove a CLT:

(ΣNT )
−1/2

√
NT

∂LNT (θ0)

∂θ

d→ N(0, I5). (A.2.24)

Since σ2it(θ0) ≥ ω0 for any (i, t) ∈ DNT , by Assumption 4.3.4 and (A.2.15) we can prove

that ∥∥∥∥1− ε2it
σ2it(θ0)

∂

∂θ
σ2it(θ0)

∥∥∥∥
r

<∞ (A.2.25)

for some r > 2. With Assumption 4.3.6 and Claim A.2.7 below, we can use Corollary

3.2.1 in Chapter 3 to prove (A.2.24).

Claim A.2.7.
{

1−ε2it
σ2
it(θ0)

∂
∂θσ

2
it(θ0) : (i, t) ∈ DNT , NT ≥ 1

}
is η-weakly dependent with

η̄(s) ≤ Cs−µ for some constants C > 0 and µ > 4 ∨ 2(r−1)
r−2 .

Proof. Note that function g(x) = 1
x is Lipschitz continuous on the interval (ω0,∞].

Then by Lemma 4.3.1 and Proposition 2 in Jenish and Prucha (2012) we can prove

that ∥∥∥∥ 1

σ2it(θ0)
− E

(
1

σ2it(θ0)
|Fit(s)

)∥∥∥∥
2

≤ Cs−µ (A.2.26)
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As for the term ∂
∂θσ

2
it(θ0), note that ∂

∂θσ
2
it(θ0) = ui,t−1 + β ∂

∂θσ
2
i,t−1(θ0) where

ui,t−1 =

1, y2i,t−11{εi,t−1≥0}, y
2
i,t−11{εi,t−1<0},

N∑
j=1

wi,jy
2
j,t−1, σ

2
i,t−1(θ0)

′

.

{
y2it1{εit≥0} : (i, t) ∈ DNT , NT ≥ 1

}
is uniformly L2-NED of size-µ on E , since

∥∥y2it1{εit≥0} − E
(
y2it1{εit≥0} | Fit(s)

)∥∥
2

=
∥∥ε2it1{εit≥0}σ

2
it(θ0)− ε2it1{εit≥0}E

[
σ2it(θ0) | Fit(s)

]∥∥
2

≤C
∥∥σ2it(θ0)− E

[
σ2it(θ0) | Fit(s)

]∥∥
2

for some constant C > 0. The inequality holds since E
(
ε4it1{εit≥0}

)
≤ Eε4it < ∞. By

Assumption 4.3.4, we could verify that
{
y2it1{εit≥0} : (i, t) ∈ DNT , NT ≥ 1

}
is uniformly

Lr-bounded (r > 2), since E
(
y2rit 1{εit≥0}

)
≤ E

[
ε2rit σ

2r
it (θ0)

]
< ∞. Moreover, recall that∑N

j=1wij = 1, then
{∑N

j=1wijy
2
jt : (i, t) ∈ DNT , NT ≥ 1

}
is also uniformly L2-NED of

size-µ on E since∥∥∥∥∥∥
N∑
j=1

wijy
2
jt − E

 N∑
j=1

wijy
2
jt

∣∣∣∣∣∣Fit(s)

∥∥∥∥∥∥
2

≤
N∑
j=1

wij

∥∥y2jt − E
[
y2jt
∣∣Fit(s)

]∥∥
2
.

By Assumption 4.3.4, we could also verify that
{∑N

j=1wijy
2
jt

}
is uniformly Lr-bounded.

Therefore by Lemma A.2.4 we obtain that:

∥∥∥∥ ∂∂θσ2it(θ0)− E
(
∂

∂θ
σ2it(θ0)|Fit(s)

)∥∥∥∥
2

≤ Cs−µ. (A.2.27)

By Lemma A.2.2(c), (A.2.26) and (A.2.27) lead to

∥∥∥∥1− ε2it
σ2it(θ0)

∂

∂θ
σ2it(θ0)− E

(
1− ε2it
σ2it(θ0)

∂

∂θ
σ2it(θ0)|Fit(s)

)∥∥∥∥
2

≤
∥∥1− ε2it

∥∥
2

∥∥∥∥ 1

σ2it(θ0)

∂

∂θ
σ2it(θ0)− E

(
1

σ2it(θ0)

∂

∂θ
σ2it(θ0)|Fit(s)

)∥∥∥∥
2

≤ Cs−µ.

(A.2.28)
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According to Proposition 3.3 we complete the proof.

Notice that yit = εitσit(θ0), by (A.2.23) we have

∂2LNT (θ0)

∂θ∂θ′
=

1

NT

∑
(i,t)∈DNT

[(
2y2it
σ6it(θ0)

− 1

σ4it(θ0)

)
∂σ2it(θ0)

∂θ

∂σ2it(θ0)

∂θ′

+

(
1

σ2it(θ0)
− y2it
σ4it(θ0)

)
∂2σ2it(θ0)

∂θ∂θ′

]
=

1

NT

∑
(i,t)∈DNT

[
2ε2it − 1

σ4it(θ0)

∂σ2it(θ0)

∂θ

∂σ2it(θ0)

∂θ′

+
1− ε2it
σ2it(θ0)

∂2σ2it(θ0)

∂θ∂θ′

]
:=

1

NT

∑
(i,t)∈DNT

(ηit + ξit).

With Claim A.2.8 and Claim A.2.9 below, by Theorem 3.1 we have

1

NT

∑
(i,t)∈DNT

ηit −
1

κ4 − 1
ΣNT

p→ 0,

1

NT

∑
(i,t)∈DNT

ξit
p→ 0.

This leads to
∂2

∂θ∂θ′
LNT (θ0)−

1

κ4 − 1
ΣNT

p→ 0. (A.2.29)

Claim A.2.8.
{

2ε2it−1

σ4
it(θ0)

∂σ2
it(θ0)
∂θ

∂σ2
it(θ0)
∂θ′ : (i, t) ∈ DNT , NT ≥ 1

}
is uniformly Lp-bounded

for some p > 1, and η-weakly dependent with η̄(s) ≤ Cs−µ for some constants C > 0

and µ > 2.

Proof. By Lemma A.2.2(a) and (A.2.28) we can prove the L1-NED of size µ, which

leads to η-weakly dependence with η̄(s) ≤ Cs−µ according to Proposition 3.3. And the

uniform Lp-boundedness is directly obtained from Assumption 4.3.1 and (A.2.25).

Claim A.2.9.
{

1−ε2it
σ2
it(θ0)

∂2σ2
it(θ0)

∂θ∂θ′ : (i, t) ∈ DNT , NT ≥ 1
}

is uniformly Lp-bounded for

some p > 1, and η-weakly dependent with η̄(s) ≤ Cs−µ for some constants C > 0
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and µ > 2.

Proof. Notice that
∂2σ2

it(θ0)
∂θ∂θ′ =Mi,t−1 + β

∂2σ2
i,t−1(θ0)

∂θ∂θ′ where

Mi,t−1 =



0 0 0 0
∂σ2

i,t−1(θ0)

∂ω

0 0 0 0
∂σ2

i,t−1(θ0)

∂α(1)

0 0 0 0
∂σ2

i,t−1(θ0)

∂α(2)

0 0 0 0
∂σ2

i,t−1(θ0)

∂λ

∂σ2
i,t−1(θ0)

∂ω

∂σ2
i,t−1(θ0)

∂α(1)

∂σ2
i,t−1(θ0)

∂α(2)

∂σ2
i,t−1(θ0)

∂λ
2
∂σ2

i,t−1(θ0)

∂β


.

Since all entries of Mit are components of
∂σ2

it(θ0)
∂θ , by (A.2.27), Lemma A.2.4 and

Assumption 4.3.4, we have

sup
NT≥1

sup
(i,t)∈DNT

∥∥∥∥∂2σ2it(θ0)∂θ∂θ′
− E

(
∂2σ2it(θ0)

∂θ∂θ′
|Fit(s)

)∥∥∥∥
2

≤ Cs−µ. (A.2.30)

Lemma A.2.2(a), (A.2.26) and (A.2.30) imply that

sup
NT≥1

sup
(i,t)∈DNT

∥∥∥∥1− ε2it
σ2it(θ0)

∂2σ2it(θ0)

∂θ∂θ′
− E

(
1− ε2it
σ2it(θ0)

∂2σ2it(θ0)

∂θ∂θ′
|Fit(s)

)∥∥∥∥
1

≤ Cs−µ. (A.2.31)

Then by Proposition 3.3 we complete the proof.

Since the target function L̃NT (θ) is an approximation of the exact likelihood func-

tion LNT (θ), we need following claim:

Claim A.2.10. As T → ∞, N → ∞ and N = o(T ),

(a).
√
NT

∥∥∥∂L̃NT (θ0)
∂θ − ∂LNT (θ0)

∂θ

∥∥∥ p→ 0.

(b). sup∥θ−θ0∥<ξ

∥∥∥∂2L̃NT (θ)
∂θ∂θ′ − ∂2LNT (θ0)

∂θθ′

∥∥∥ = Op(ξ).

Proof. We start with the proof of (a). Notice that

√
NT

∣∣∣∣∣∂L̃NT (θ0)

∂β
− ∂LNT (θ0)

∂β

∣∣∣∣∣
≤ 1√

NT

∑
(i,t)∈DNT

∣∣∣∣ 1

σ̃2it(θ0)

∂σ̃2it(θ0)

∂β
− 1

σ2it(θ0)

∂σ2it(θ0)

∂β

∣∣∣∣
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+
1√
NT

∑
(i,t)∈DNT

∣∣∣∣ y2it
σ̃4it(θ0)

∂σ̃2it(θ0)

∂β
− y2it
σ4it(θ0)

∂σ2it(θ0)

∂β

∣∣∣∣
≤ 1√

NT

∑
(i,t)∈DNT

∣∣∣∣ 1

σ̃2it(θ0)

∣∣∣∣ ∣∣∣∣∂σ̃2it(θ0)∂β
− ∂σ2it(θ0)

∂β

∣∣∣∣
+

1√
NT

∑
(i,t)∈DNT

∣∣∣∣ 1

σ2it(θ0)σ̃
2
it(θ0)

∣∣∣∣ ∣∣∣∣∂σ2it(θ0)∂β

∣∣∣∣ ∣∣σ2it(θ0)− σ̃2it(θ0)
∣∣

+
1√
NT

∑
(i,t)∈DNT

|y2it|
∣∣∣∣ 1

σ̃4it(θ0)

∣∣∣∣ ∣∣∣∣∂σ̃2it(θ0)∂β
− ∂σ2it(θ0)

∂β

∣∣∣∣
+

1√
NT

∑
(i,t)∈DNT

|y2it|
∣∣∣∣ 1

σ2it(θ0)σ̃
4
it(θ0)

+
1

σ4it(θ0)σ̃
2
it(θ0)

∣∣∣∣ ∣∣∣∣∂σ2it(θ0)∂β

∣∣∣∣ ∣∣σ2it(θ0)− σ̃2it(θ0)
∣∣

≤ 1√
NT

∑
(i,t)∈DNT

1

ω0

∣∣∣∣∂σ̃2it(θ0)∂β
− ∂σ2it(θ0)

∂β

∣∣∣∣
+

1√
NT

∑
(i,t)∈DNT

1

ω2
0

∣∣∣∣∂σ2it(θ0)∂β

∣∣∣∣ ∣∣σ2it(θ0)− σ̃2it(θ0)
∣∣

+
1√
NT

∑
(i,t)∈DNT

1

ω2
0

|y2it|
∣∣∣∣∂σ̃2it(θ0)∂β

− ∂σ2it(θ0)

∂β

∣∣∣∣
+

1√
NT

∑
(i,t)∈DNT

2

ω3
0

|y2it|
∣∣∣∣∂σ2it(θ0)∂β

∣∣∣∣ ∣∣σ2it(θ0)− σ̃2it(θ0)
∣∣

Firstly, in view of (A.2.16) we have:∥∥∥∥∥∥ 1√
NT

∑
(i,t)∈DNT

(
1

ω0
+
y2it
ω2
0

) ∣∣∣∣∂σ2it(θ0)∂β
− ∂σ̃2it(θ0)

∂β

∣∣∣∣
∥∥∥∥∥∥
1

≤ C1√
NT

N∑
i=1

T∑
t=1

tβt−1
0

∥∥∥∥ 1

ω0
+
y2it
ω2
0

∥∥∥∥
1

+
C2√
NT

N∑
i=1

T∑
t=1

βt0

∥∥∥∥ 1

ω0
+
y2it
ω2
0

∥∥∥∥
1

≤ C3√
NT

N∑
i=1

T∑
t=1

tβt−1
0 +

C4√
NT

N∑
i=1

T∑
t=1

βt0

≤ C3√
NT

N∑
i=1

1

(1− β0)2
+

C4√
NT

N∑
i=1

β0
1− β0

→ 0

(A.2.32)

when T → ∞, N → ∞ and N = o(T ).
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Then by (A.2.13) and (A.2.15) we have∥∥∥∥∥∥ 1√
NT

∑
(i,t)∈DNT

(
1

ω2
0

+
2y2it
ω3
0

) ∣∣σ2it(θ0)− σ̃2it(θ0)
∣∣ ∣∣∣∣∂σ̃2it(θ0)∂β

∣∣∣∣
∥∥∥∥∥∥
1

≤ C1√
NT

N∑
i=1

T∑
t=1

βt0 +
C2√
NT

N∑
i=1

T∑
t=1

βt0 ∥yit∥1

≤ C3√
NT

N∑
i=1

β0
1− β0

→ 0

(A.2.33)

when T → ∞, N → ∞ and N = o(T ). In light of (A.2.32) and (A.2.33) we can prove

that
√
NT

∣∣∣∣∣∂L̃NT (θ0)

∂β
− ∂LNT (θ0)

∂β

∣∣∣∣∣ p→ 0.

The proof regarding partial derivatives w.r.t. ω, α(1), α(2) and λ follows similar argu-

ments and is therefore omitted.

Now we turn to the proof of (b). For any θm, θn ∈ {ω, α(1), α(2), λ, β},

∂2LNT (θ)

∂θm∂θn
=

1

NT

N∑
i=1

T∑
t=1

[(
2y2it
σ6it(θ)

− 1

σ4it(θ)

)
∂σ2it(θ)

∂θm

∂σ2it(θ)

∂θn

]

+
1

NT

N∑
i=1

T∑
t=1

[(
1

σ2it(θ)
− y2it
σ4it(θ)

)
∂2σ2it(θ)

∂θm∂θn

] (A.2.34)

Since

sup
∥θ−θ0∥<ξ

∣∣∣∣∣∂2L̃NT (θ)

∂θm∂θn
− ∂2LNT (θ0)

∂θm∂θn

∣∣∣∣∣
≤ 1

NT

N∑
i=1

T∑
t=1

sup
θ∈Θ

∣∣∣∣∣ ∂2 l̃it(θ)∂θm∂θn
− ∂2lit(θ)

∂θm∂θn

∣∣∣∣∣
+

1

NT

N∑
i=1

T∑
t=1

sup
∥θ−θ0∥<ξ

∣∣∣∣ ∂2lit(θ)∂θm∂θn
− ∂2lit(θ0)

∂θm∂θn

∣∣∣∣ ,
(A.2.35)

we will handle above two terms separately.

For the first term on the right-hand-side of (A.2.35), we have

1

NT

N∑
i=1

T∑
t=1

sup
θ∈Θ

∣∣∣∣∣ ∂2 l̃it(θ)∂θm∂θn
− ∂2lit(θ)

∂θm∂θn

∣∣∣∣∣
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≤ 1

NT

T∑
t=1

N∑
i=1

sup
θ∈Θ

∣∣∣∣ 1

σ2it(θ)

∂2σ2it(θ)

∂θm∂θn
− 1

σ̃2it(θ)

∂2σ̃2it(θ)

∂θm∂θn

∣∣∣∣
+

1

NT

T∑
t=1

N∑
i=1

sup
θ∈Θ

∣∣∣∣ 1

σ4it(θ)

∂σ2it(θ)

∂θm

∂σ2it(θ)

∂θn
− 1

σ̃4it(θ)

∂σ̃2it(θ)

∂θm

∂σ̃2it(θ)

∂θn

∣∣∣∣ (A.2.36)

+
1

NT

T∑
t=1

N∑
i=1

sup
θ∈Θ

∣∣∣∣ y2it
σ4it(θ)

∂2σ2it(θ)

∂θm∂θn
− y2it
σ̃4it(θ)

∂2σ̃2it(θ)

∂θm∂θn

∣∣∣∣
+

2

NT

T∑
t=1

N∑
i=1

sup
θ∈Θ

∣∣∣∣ 2y2it
σ6it(θ)

∂σ2it(θ)

∂θm

∂σ2it(θ)

∂θn
− 2y2it
σ̃6it(θ)

∂σ̃2it(θ)

∂θm

∂σ̃2it(θ)

∂θn

∣∣∣∣
:= T1 + T2 + T3 + T4.

According to (A.2.13) and (A.2.19) we have:

T3 ≤
1

NT

T∑
t=1

N∑
i=1

sup
θ∈Θ

y2it

∣∣∣∣ 1

σ2it(θ)
+

1

σ̃2it(θ)

∣∣∣∣ ∣∣∣∣σ2it(θ)− σ̃2it(θ)

σ̃2it(θ)σ
2
it(θ)

∣∣∣∣ ∣∣∣∣∂2σ2it(θ)∂θm∂θn

∣∣∣∣
+

1

NT

T∑
t=1

N∑
i=1

sup
θ∈Θ

∣∣∣∣ y2it
σ̃4it(θ)

∣∣∣∣ ∣∣∣∣∂2σ2it(θ)∂θm∂θn
− ∂2σ̃2it(θ)

∂θm∂θn

∣∣∣∣
≤ 1

NT

T∑
t=1

N∑
i=1

sup
θ∈Θ

2y2it
ω3

∣∣σ2it(θ)− σ̃2it(θ)
∣∣ ∣∣∣∣∂2σ2it(θ)∂θm∂θn

∣∣∣∣
+

1

NT

T∑
t=1

N∑
i=1

sup
θ∈Θ

y2it
ω2

∣∣∣∣∂2σ2it(θ)∂θm∂θn
− ∂2σ̃2it(θ)

∂θm∂θn

∣∣∣∣
≤ C1

NT

T∑
t=1

N∑
i=1

y2itβ
t +

C2

NT

T∑
t=1

N∑
i=1

y2ittβ
t−1 +

C3

NT

T∑
t=1

N∑
i=1

y2itt(t− 1)βt−2.

Therefore we have T3
p→ 0 as T → ∞, N → ∞ and N = o(T ). And this convergence

could be derived similarly for T1, T2, T4. Hence

1

NT

T∑
t=1

N∑
i=1

sup
θ∈Θ

∣∣∣∣∣ ∂2 l̃it(θ)∂θm∂θn
− ∂2lit(θ)

∂θm∂θn

∣∣∣∣∣ p→ 0.

For the second term on the right-hand-side of (A.2.35), a Taylor expansion of ∂2lit(θ)
∂θm∂θn

at θ0 yields that

sup
∥θ−θ0∥<ξ

∣∣∣∣ ∂2lit(θ)∂θm∂θn
− ∂2lit(θ0)

∂θm∂θn

∣∣∣∣ ≤ ξ sup
∥θ−θ0∥<ξ

∣∣∣∣ ∂3lit(θ)

∂θm∂θn∂θl

∣∣∣∣ .
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Therefore we have

1

NT

N∑
i=1

T∑
t=1

sup
∥θ−θ0∥<ξ

∣∣∣∣ ∂2lit(θ)∂θm∂θn
− ∂2lit(θ0)

∂θm∂θn

∣∣∣∣
≤ 1

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣ ∂3lit(θ)

∂θm∂θn∂θl

∣∣∣∣
≤ 1

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣− 6y2it
σ8it(θ)

+
2

σ6it(θ)

∣∣∣∣ ∣∣∣∣∂σ2it(θ)∂θm

∂σ2it(θ)

∂θn

∂σ2it(θ)

∂θl

∣∣∣∣
+

1

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣ 2y2it
σ6it(θ)

− 1

σ4it(θ)

∣∣∣∣ ∣∣∣∣∂2σ2it(θ)∂θm∂θl

∂σ2it(θ)

∂θn

∣∣∣∣
+

1

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣ 2y2it
σ6it(θ)

− 1

σ4it(θ)

∣∣∣∣ ∣∣∣∣∂σ2it(θ)∂θm

∂2σ2it(θ)

∂θn∂θl

∣∣∣∣
+

1

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣ 2y2it
σ6it(θ)

− 1

σ4it(θ)

∣∣∣∣ ∣∣∣∣∂σ2it(θ)∂θl

∂2σ2it(θ)

∂θm∂θn

∣∣∣∣
+

1

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣− y2it
σ4it(θ)

+
1

σ2it(θ)

∣∣∣∣ ∣∣∣∣ ∂3σ2it(θ)

∂θm∂θn∂θl

∣∣∣∣
≤ C1

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣6y2itω8
+

2

ω6

∣∣∣∣+ C2

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣2y2itω6
+

1

ω4

∣∣∣∣
+

C3

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣2y2itω6
+

1

ω4

∣∣∣∣+ C4

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣2y2itω6
+

1

ω4

∣∣∣∣
+

C5

NT

N∑
i=1

T∑
t=1

ξ sup
∥θ−θ0∥<ξ

∣∣∣∣−y2itω4
+

1

ω2

∣∣∣∣

(A.2.37)

a.s. for any θl, θm, θn ∈ {ω, α(1), α(2), ξ, β}. Therefore the second term on the right-

hand-side of (A.2.35) is O(ξ) in probability. With (A.2.36) converging to 0 in proba-

bility, we prove Claim A.2.10(b).

By the Taylor expansion, for some θ∗ between θ̂NT and θ0 we have

∂L̃NT (θ̂NT )

∂θ
=
∂L̃NT (θ0)

∂θ
+
∂2L̃NT (θ

∗)

∂θ∂θ′
(θ̂NT − θ0).
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Since ∂L̃NT (θ̂NT )
∂θ = 0, we have

√
NTΣ

1/2
NT (θ̂NT − θ0) = −Σ

1/2
NT

(
∂2L̃NT (θ

∗)

∂θ∂θ′

)−1√
NT

∂L̃NT (θ0)

∂θ

= −Σ
1/2
NT

(
Σ
−1/2
NT

∂2LNT (θ0)

∂θ∂θ′

)−1

Σ
−1/2
NT

√
NT

∂LNT (θ0)

∂θ
+ op(1)

(A.2.38)

according to Claim A.2.10. By Assumption 4.3.6 and (A.2.29) we have

Σ
−1/2
NT

∂2LNT (θ0)

∂θ∂θ′
=

1

κ4 − 1
Σ
1/2
NT + op(1).

Therefore

(κ4−1)

(
Σ
−1/2
NT

∂2LNT (θ0)

∂θ∂θ′

)
Σ
−1/2
NT = (κ4−1)

(
1

κ4 − 1
Σ
1/2
NT + op(1)

)
Σ
−1/2
NT = I5+op(1).

(A.2.39)

Combining (A.2.24), (A.2.38) and (A.2.39) we complete the proof of Theorem 4.2.

A.2.4 Proof of Proposition 4.1

Note that

κ̂4 :=
1

NT

N∑
i=1

T∑
t=1

y4it
σ̃4it(θ̂NT )

and

Σ̂NT :=
κ̂4 − 1

NT

N∑
i=1

T∑
t=1

[
1

σ̃4it(θ̂NT )

∂σ̃2it(θ̂NT )

∂θ

∂σ̃2it(θ̂NT )

∂θ′

]
.

By the asymptotic normality of θ̂NT in Theorem 4.2, it suffices to prove that

κ̂4 :=
1

NT

N∑
i=1

T∑
t=1

y4it
σ̃4it(θ̂NT )

p→ κ4 (A.2.40)

and

1

NT

N∑
i=1

T∑
t=1

{
1

σ̃4it(θ̂NT )

∂σ̃2it(θ̂NT )

∂θ

∂σ̃2it(θ̂NT )

∂θ′
− E

[
1

σ4it(θ0)

∂σ2it(θ0)

∂θ

∂σ2it(θ0)

∂θ′

]}
p→ 0.

(A.2.41)
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κ̂4 =
1

TN

T∑
t=1

N∑
i=1

{
y4it

σ̃4it(θ̂NT )
− y4it
σ4it(θ0)

}
+

1

TN

T∑
t=1

N∑
i=1

y4it
σ4it(θ0)

:=S1 + S2

By the law of large numbers and the fact that εit is i.i.d. across i and t, we have:

S2 =
1

TN

T∑
t=1

N∑
i=1

ε4it
p→ κ4.

Then it remains to show that S1
p→ 0 to prove (A.2.40).

S1 =
1

TN

T∑
t=1

N∑
i=1

{
y4it

σ̃4it(θ̂NT )
− y4it
σ4it(θ̂NT )

}
+

1

TN

T∑
t=1

N∑
i=1

{
y4it

σ4it(θ̂NT )
− y4it
σ4it(θ0)

}

:=S11 + S12

where S12
p→ 0 since θ̂NT

p→ θ0. Meanwhile

|S11| ≤
1

TN

T∑
t=1

N∑
i=1

y4it
σ̃4it(θ̂NT )σ4it(θ̂NT )

∣∣∣σ2it(θ̂NT )− σ̃2it(θ̂NT )
∣∣∣ ∣∣∣σ2it(θ̂NT ) + σ̃2it(θ̂NT )

∣∣∣
=

1

TN

T∑
t=1

N∑
i=1

σ2i0(θ̂NT )

σ̃2it(θ̂NT )σ2it(θ̂NT )

∣∣∣∣∣ 1

σ2it(θ̂NT )
+

1

σ̃2it(θ̂NT )

∣∣∣∣∣ β̂ty4it
≤ 1

TN

T∑
t=1

N∑
i=1

2σ2i0(θ̂NT )

ω̂3
β̂ty4it

≤ C

TN

T∑
t=1

N∑
i=1

ρty4it.

Then S11
p→ 0 according to the remark following Assumption 4.3.4. Thus (A.2.40) is

proved.
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As for (A.2.41), note that

1

NT

N∑
i=1

T∑
t=1

{
1

σ̃4it(θ̂NT )

∂σ̃2it(θ̂NT )

∂θ

∂σ̃2it(θ̂NT )

∂θ′
− E

[
1

σ4it(θ0)

∂σ2it(θ0)

∂θ

∂σ2it(θ0)

∂θ′

]}

=
1

TN

T∑
t=1

N∑
i=1

{
1

σ̃4it(θ̂NT )

∂σ̃2it(θ̂NT )

∂θ

∂σ̃2it(θ̂NT )

∂θ′
− 1

σ4it(θ0)

∂σ2it(θ0)

∂θ

∂σ2it(θ0)

∂θ′

}

+
1

TN

T∑
t=1

N∑
i=1

{
1

σ4it(θ0)

∂σ2it(θ0)

∂θ

∂σ2it(θ0)

∂θ′
− E

[
1

σ4it(θ0)

∂σ2it(θ0)

∂θ

∂σ2it(θ0)

∂θ′

]}
:=T1 + T2

where T2
p→ 0 by Claim A.2.8, and

T1 =
1

TN

T∑
t=1

N∑
i=1

{
1

σ̃4it(θ̂NT )

∂σ̃2it(θ̂NT )

∂θ

∂σ̃2it(θ̂NT )

∂θ′
− 1

σ4it(θ̂NT )

∂σ2it(θ̂NT )

∂θ

∂σ2it(θ̂NT )

∂θ′

}

+
1

TN

T∑
t=1

N∑
i=1

{
1

σ4it(θ̂NT )

∂σ2it(θ̂NT )

∂θ

∂σ2it(θ̂NT )

∂θ′
− 1

σ4it(θ0)

∂σ2it(θ0)

∂θ

∂σ2it(θ0)

∂θ′

}

:=T11 + T12.

T11
p→ 0 has been proved in (A.2.36), and T12

p→ 0 as θ̂NT
p→ θ0. With (A.2.40) and

(A.2.41) we complete the proof.
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A.3 Proofs of results in Chapter 5

Lemma A.3.1. If 0 < β < 1, E |yit| < ∞ and E |λit(ν)| < ∞ uniformly for all

(i, t) ∈ DNT , NT ≥ 1, then

λit(ν) =

∞∑
k=1

βk−1

ω + αi,t−kyi,t−k + ξ

N∑
j=1

wijyj,t−k

 (A.3.1)

with probability one.

Proof. Let log+(x) = log(x) if x > 1 and 0 otherwise, ui,t−k(ν) := ω + αi,t−kyi,t−k +

ξ
∑N

j=1wijyj,t−k. By Jensen’s inequality we have

E log+ |ui,t−k(ν)|

≤ log+ E

∣∣∣∣∣∣ω + αi,t−kyi,t−k + ξ

N∑
j=1

wijyj,t−k

∣∣∣∣∣∣
<∞.

By Lemma 2.2 in Berkes et al. (2003) we have
∑∞

k=1 P
[
|ui,t−k(ν)| > ζk

]
< ∞ for any

ζ > 1. Therefore |ui,t−k(ν)| ≤ ζk almost surely by Borel-Cantelli lemma. Letting

1 < ζ < 1
|β| , we can prove that the right-hand-side of (A.3.1) converges almost surely.

It remains for us to show that

λit(ν) =
∞∑
k=1

βk−1ui,t−k(ν).

From (5.3.2) we have

λit(ν)− βkλi,t−k−1(ν) = ui,t−1(ν) + βui,t−2(ν) + ...+ βk−1ui,t−k(ν).

Using Markov’s inequality we obtain that
∑∞

k=1 P
{
|βkλi,t−k−1(ν)| > δ

}
< ∞ for any

δ > 0, then by the Borel-Cantelli lemma |βkλi,t−k−1(ν)|
a.s.→ 0 as k → ∞. Letting

k → ∞ on both sides of above equation we complete the proof.
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A.3.1 Proof of Theorem 5.1

Our proof of Theorem 5.1 relies on the arguments given by Doukhan et al. (2006) in

their proof of Theorem 2.1. Let

Λ
(0)
t :=

(
λ
(0)
1t , λ

(0)
2t , ..., λ

(0)
Nt

)′
;

Y(0)
t :=

(
M1t(λ

(0)
1t ),M2t(λ

(0)
2t ), ...,MNt(λ

(0)
Nt)
)′
,

where {λ(0)it : i = 1, 2, ..., N, t ∈ Z} are IID positive random variables with mean 1. For

each n ≥ 1, we define {Y(n)
t : t ∈ Z} and {Λ(n)

t : t ∈ Z} through following recursion:

Y(n)
t = Mt(Λ

(n)
t );

Λ
(n)
t = ω1N +A(Y(n−1)

t−1 )Y(n−1)
t−1 + βΛ

(n−1)
t−1 .

(A.3.2)

Claim A.3.1. {Y(n)
t : t ∈ Z} is strictly stationary for each n ≥ 0.

Proof. Since {Mit(·) : i = 1, 2, ..., N, t ∈ Z} are independent Poisson processes with

unit intensity, then for any t and h we have

P
{
Y(n)
1+h = y1, ...,Y

(n)
t+h = yt

}
=E

(
P
{
Y(n)
1+h = y1, ...,Y

(n)
t+h = yt

∣∣∣Λ(n)
1+h, ...,Λ

(n)
t+h

})
=E

(
P
{
M1+h(Λ

(n)
1+h) = y1, ...,Mt+h(Λ

(n)
t+h) = yt

∣∣∣Λ(n)
1+h, ...,Λ

(n)
t+h

})
=E

 t∏
k=1

N∏
i=1

(
λ
(n)
i,k+h

)yik
yik!

e−λ
(n)
i,k+h

 .

(A.3.3)

When n = 0, P
{
Y(0)
1+h = y1, ...,Y

(0)
t+h = yt

}
is h-invariant for any t and h, by (A.3.3)

and the IID of {λ(0)it : i = 1, 2, ..., N, t ∈ Z}. Therefore {Y(0)
t : t ∈ Z} is strictly

stationary. Assume that {Y(n−1)
t : t ∈ Z} and {Λ(n−1)

t : t ∈ Z} are strictly stationary,

then {Λ(n)
t : t ∈ Z} is also strictly stationary since Λ

(n)
t = ω1N + A(Y(n−1)

t−1 )Y(n−1)
t−1 +

βΛ
(n−1)
t−1 . According to (A.3.3) and the strict stationarity of {Λ(n)

t : t ∈ Z}, we have

{Y(n)
t : t ∈ Z} being strictly stationary too. Claim A.3.1 can be proved by induction.
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Claim A.3.2. E
∥∥∥Y(n+1)

t − Y(n)
t

∥∥∥ ≤ Cρn for some constants C > 0 and 0 < ρ < 1.

Proof. It is easy to verify that

E
∥∥∥Y(n+1)

t − Y(n)
t

∥∥∥ = E
[
E
(∥∥∥Y(n+1)

t − Y(n)
t

∥∥∥ ∣∣∣Λ(n+1)
t ,Λ

(n)
t

)]
= E

∥∥∥Λ(n+1)
t − Λ

(n)
t

∥∥∥ .
Recall from (A.3.2) that

Λ
(n)
t = ω1N +A(Y(n−1)

t−1 )Y(n−1)
t−1 + βΛ

(n−1)
t−1 ,

then ∥∥∥Y(n+1)
t − Y(n)

t

∥∥∥
≤
∥∥∥A(Y(n)

t−1)Y
(n)
t−1 −A(Y(n−1)

t−1 )Y(n−1)
t−1

∥∥∥+ β
∥∥∥Λ(n)

t−1 − Λ
(n−1)
t−1

∥∥∥ . (A.3.4)

Define a function ψ(y) = α(1)1{y≥r}y + α(2)1{y<r}y for y ∈ N, then Assumption

5.2.1(b) assures that ψ(y) is non-decreasing on N. Let y′, y ∈ N such that y′ > y:

• If y′ > y ≥ r, we have 0 < ψ(y′) − ψ(y) = α(1)(y′ − y) ≤ α∗(y′ − y) where

α∗ = max{α(1), α(2)};

• If r > y′ > y, we have 0 < ψ(y′)− ψ(y) = α(2)(y′ − y) ≤ α∗(y′ − y);

• If y′ ≥ r > y, we have 0 < ψ(y′)−ψ(y) = α(1)y′−α(2)y ≤ α(1)(y′−y) ≤ α∗(y′−y)

by Assumption 5.2.1(a).

Similarly when y′ ≤ y, we have 0 ≥ ψ(y′) − ψ(y) ≥ α∗(y′ − y). Therefore we obtain

that:

|ψ(y′)− ψ(y)| ≤ α∗|y′ − y| (A.3.5)

for any y′, y ∈ N. Then we have:

∣∣∣(A(Y(n)
t−1)Y

(n)
t−1 −A(Y(n−1)

t−1 )Y(n−1)
t−1

)
i

∣∣∣
=

∣∣∣∣∣∣ψ(y(n)i,t−1)− ψ(y
(n−1)
i,t−1 ) + ξ

N∑
j=1

wij(y
(n)
j,t−1 − y

(n−1)
j,t−1 )

∣∣∣∣∣∣ (A.3.6)

≤α∗
∣∣∣y(n)i,t−1 − y

(n−1)
i,t−1

∣∣∣+ ξ

N∑
j=1

wij

∣∣∣y(n)j,t−1 − y
(n−1)
j,t−1

∣∣∣
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for i = 1, 2, ..., N , where (Y)i is the i-th element of Y.

Combining (A.3.4) and (A.3.6) we have

E
∥∥∥Y(n+1)

t − Y(n)
t

∥∥∥
≤E

∥∥∥(α∗IN + ξW + βIN )(Y(n)
t−1 − Y(n−1)

t−1 )
∥∥∥

≤ρ(α∗IN + ξW + βIN )E
∥∥∥Y(n)

t−1 − Y(n−1)
t−1

∥∥∥
≤|α∗ + ξ + β|E

∥∥∥Y(n)
t−1 − Y(n−1)

t−1

∥∥∥
where ρ(·) denotes the spectral radius, and the last inequality is due to the Gershgorin

circle theorem. Let ρ := |α∗ + ξ + β|, we have:

E
∥∥∥Y(n+1)

t − Y(n)
t

∥∥∥
≤ρE

∥∥∥Y(n)
t−1 − Y(n−1)

t−1

∥∥∥
≤ρnE

∥∥∥Y(1)
t−n − Y(0)

t−n

∥∥∥
=ρnE

∥∥∥Λ(1)
t−n − Λ

(0)
t−n

∥∥∥
≤Cρn

for some 0 < ρ < 1 and C = E
∥∥∥Λ(1)

t−n − Λ
(0)
t−n

∥∥∥ <∞.

By Claim A.3.2,

P
{
Y(n+1)
t ̸= Y(n)

t

}
=

∞∑
h=1

P
{∥∥∥Y(n+1)

t − Y(n)
t

∥∥∥ = h
}

≤E
∥∥∥Y(n+1)

t − Y(n)
t

∥∥∥
≤Cρn.

Therefore
∑∞

n=1 P
{
Y(n+1)
t ̸= Y(n)

t

}
<∞, and

P

{ ∞⋂
n=1

∞⋃
k=n

[
Y(k+1)
t ̸= Y(k)

t

]}
= 0
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according to Borel-Cantelli lemma. This indicates that, there exists M such that for

all n > M , Y(n)
t equals (almost surely) to some Yt with integer components. i.e.

Yt = limn→∞Y(n)
t exists almost surely. Apparently, {Yt : t ∈ Z} is strictly stationary

since {Y(n)
t : t ∈ Z} is strictly stationary for each n ≥ 0, according to Claim A.3.1.

At last, by Claim A.3.2 we also have:

E
∥∥∥Y(n+m)

t − Y(n)
t

∥∥∥ ≤
m−1∑
k=0

E
∥∥∥Y(n+k+1)

t − Y(n+k)
t

∥∥∥ ≤ Cρn
m−1∑
k=0

ρk,

for any n,m ∈ N. Therefore {Y(n)
t : n ≥ 0} is a Cauchy sequence in L1, hence

E ∥Yt∥ <∞.

A.3.2 Proof of Theorem 5.2

By Lemma A.3.1 we have

λit(ν) =

∞∑
k=1

βk−1

ω + αi,t−kyi,t−k + ξ

N∑
j=1

wijyj,t−k


and

sup
NT≥1

sup
(i,t)∈DNT

sup
ν∈Θ×Z+

|λit(ν)| <∞ (A.3.7)

with probability one, where αi,t−k = α(1)1{yi,t−k≥r}+α
(2)1{yi,t−k<r}. Given initial values

λ̃i0 = 0 for i = 1, 2, ..., N , we could replace λit(ν) with λ̃it(ν) and get

λ̃it(ν) =
t∑

k=1

βk−1

ω + αi,t−kyi,t−k + ξ
N∑
j=1

wijyj,t−k


for i = 1, 2, ..., N, t ≥ 1. Therefore we have

λit(ν)− λ̃it(ν) = βtλi0(ν). (A.3.8)

Now we are ready to prove the consistency of ν̂NT when T → ∞ and N → ∞. The

proof is broken up into Claim A.3.3 to Claim A.3.6 below: Claim A.3.3 shows that
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the choice of initial values is asymptotically negligible; Claims A.3.4 and A.3.5 verify

the weak dependence of {lit(ν) : (i, t) ∈ DNT , NT ≥ 1}, and facilitate the adoption of

LLN; Claim A.3.6 is concerned with the identifiability of the true parameters ν0.

Claim A.3.3. For any ν ∈ Θ× Z+, |LNT (ν)− L̃NT (ν)|
p→ 0 as T → ∞ and N → ∞.

Proof. The proof is similar to that of Claim A.2.3 and is omitted here.

Claim A.3.4. The functions lit(ν) are uniformly Lp-bounded for some p > 1, i.e.

sup
NT≥1

sup
(i,t)∈DNT

sup
ν∈Θ×Z+

∥lit(ν)∥p <∞.

Proof. According to Hölder’s inequality, we have

∥lit(ν)∥p = ∥yit log λit(ν)− λit(ν)∥p

≤∥yit log λit(ν)∥p + ∥λit(ν)∥p

≤∥yit∥2p ∥log λit(ν)∥2p + ∥λit(ν)∥p .

Notice that

sup
ν∈Θ×Z+

∥log λit(ν)∥2p

≤ sup
ν∈Θ×Z+

∥∥log+ λit(ν)∥∥2p + sup
ν∈Θ×Z+

∥∥log− λit(ν)∥∥2p
≤ sup

ν∈Θ×Z+

∥λit(ν) + 1∥2p + sup
ν∈Θ×Z+

max{− log(ω), 0},

where log−(x) = 0 if x ≥ 1 and log−(x) = − log(x) if 0 < x < 1. Then by Assumption

5.3.2(a) and (A.3.7) we complete the proof.

Claim A.3.5. For any ν ∈ Θ × Z+, the array of random fields {lit(ν) : (i, t) ∈

DNT , NT ≥ 1} is η-weakly dependent with coefficients η̄0(r) ≤ Cr−µ0 where µ0 > 2.

Proof. For each (i, t) ∈ DNT and h = 1, 2, ..., define {y(h)jτ : (j, τ) ∈ DNT , NT ≥ 1} such
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that y
(h)
jτ ̸= yjτ if and only if ρ((i, t), (j, τ)) = h.

λ
(h)
it (ν) =

∞∑
k=1

βk−1

ω + α
(h)
i,t−ky

(h)
i,t−k + ξ

N∑
j=1

wijy
(h)
j,t−k

 ,
where

α
(h)
i,t−k = α(1)1{y(h)i,t−k≥r} + α(2)1{y(h)i,t−k<r}.

Then by (A.3.5) and Assumption 5.3.3 we have

|λit(ν)− λ
(h)
it (ν)|

≤
∞∑
k=1

βk−1|αi,t−kyi,t−k − α
(h)
i,t−ky

(h)
i,t−k|+

∞∑
k=1

N∑
j=1

βk−1ξwij |yj,t−k − y
(h)
j,t−k|

=βh−1|αi,t−hyi,t−h − α
(h)
i,t−hy

(h)
i,t−h|+ ξβh−1

∑
1≤|j−i|≤h

wij |yj,t−h − y
(h)
j,t−h|

+ ξwi,i±h

h∑
k=1

βk−1|yi±h,t−k − y
(h)
i±h,t−k|

≤α∗βh−1|yi,t−h − y
(h)
i,t−h|+ ξβh−1

∑
1≤|j−i|≤h

|yj,t−h − y
(h)
j,t−h|

+ Cξh−b
h∑

k=1

|yi±h,t−k − y
(h)
i±h,t−k|.

(A.3.9)

Therefore λit(ν) satisfies condition (3.2.6) with B(i,t),NT (h) ≤ Ch−b and l = 0. By

Proposition 3.2 and (3.2.10), the array of random fields {λit(ν) : (i, t) ∈ DNT , NT ≥ 1}

is η-weakly dependent with coefficients η̄λ(r) ≤ Cr−µy+2.

Similarly we can define

l
(h)
it (ν) = y

(h)
it log λ

(h)
it (ν)− λ

(h)
it (ν).

Since

|lit(ν)− l
(h)
it (ν)| ≤yit

∣∣∣∣∣log λit(ν)

λ
(h)
it (ν)

∣∣∣∣∣+ |λit(ν)− λ
(h)
it (ν)|
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≤yit

∣∣∣∣∣ λit(ν)λ
(h)
it (ν)

− 1

∣∣∣∣∣+ |λit(ν)− λ
(h)
it (ν)|

≤yit
ω
|λit(ν)− λ

(h)
it (ν)|+ |λit(ν)− λ

(h)
it (ν)|,

lit(ν) also satisfies condition 3.2.6 with B(i,t),NT (h) ≤ Ch−b and l = 1 by (A.3.9), the

array of random fields {lit(ν) : (i, t) ∈ DNT , NT ≥ 1} is η-weakly dependent with

coefficients η̄0(r) ≤ Cr
− 2p−2

2p−1
µy+2

. Notice that 2p−2
2p−1µy − 2 > 2 since µy >

4p−2
p−1 .

Claim A.3.6. λit(ν) = λit(ν0) for all (i, t) ∈ DNT if and only if ν = ν0.

Proof. The if part is obvious, it remains for us to prove the only if part. Observe that

(1− βB)λit(ν) = ω + αByit + ξ
N∑
j=1

wijByjt,

where B stands for the back-shift operator in the sense that By2it = y2i,t−1, and α

represents either α(1) or α(2) according to the value of αit at time t. Therefore we have

(1− βB)Λt(ν) = ω1N + (αBIN + ξBW )Yt.

The polynomial 1− βx has a root x = 1/β, which lies outside the unit circle since

0 < β < 1. Therefore the inverse 1
1−βx is well-defined for any |x| ≤ 1, and we have

Λt(ν) =
ω

1− β
1N + Pν(B)Yt

with Pν(B) := αB
1−βB IN + ξB

1−βBW. As λit(ν) = λit(ν0) for each i = 1, 2, ..., N ,

[Pν(B)− Pν0(B)]Yt =

(
ω0

1− β0
− ω

1− β

)
1N .

We can deduce from above equation that Pν(x) = Pν0(x) for any |x| ≤ 1, otherwise Yt

will be degenerated to a deterministic vector given Ht−1. Pν(x) = Pν0(x) implies that

αx

1− βx
IN − α0x

1− β0x
IN =

(
ξ0x

1− β0x
− ξx

1− βx

)
W.
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The diagonal elements of W are all zeros while the matrix on the left side of above

equation has non-zero diagonal elements, so we have

αx

1− βx
=

α0x

1− β0x
,

ξx

1− βx
=

ξ0x

1− β0x
,

which imply α = α0, β = β0 and ξ = ξ0. Besides, ω = ω0 could be easily derived from

ω
1−β = ω0

1−β0
.

With Claim A.3.4 and Claim A.3.5, we can apply Theorem 3.1 and prove the con-

sistency of ν̂NT following similar arguments in the proof of Theorem 4.2.

A.3.3 Proof of Theorem 5.3

With a fixed threshold parameter r = r0, we will rewrite θ̂NT := θ̂
(r0)
NT , λit(θ) :=

λit(θ, r0) and lit(θ) := lit(θ, r0) etc., in succeeding proofs for notation simplicity. Before

we prove the asymptotic normality, we derive some intermediate results regarding the

first, second and third order derivatives of λit(θ). These results are repeatedly used in

later proofs.

Since

λit(θ) =

∞∑
k=1

βk−1

ω +
(
α(1)1{yi,t−k≥r} + α(2)1{yi,t−k<r}

)
yi,t−k + ξ

N∑
j=1

wijyj,t−k


almost surely, the partial derivative of λit(θ) are

∂λit(θ)

∂ω
=

∞∑
k=1

βk−1,

∂λit(θ)

∂α(1)
=

∞∑
k=1

βk−1yi,t−k1{yi,t−k≥r},

∂λit(θ)

∂α(2)
=

∞∑
k=1

βk−1yi,t−k1{yi,t−k<r}, (A.3.10)
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∂λit(θ)

∂ξ
=

∞∑
k=1

βk−1

 N∑
j=1

wijyj,t−k

 ,

∂λit(θ)

∂β
=

∞∑
k=2

(k − 1)βk−2ui,t−k(θ),

where

ui,t−k(θ) = ω + α(1)yi,t−k1{yi,t−k≥r} + α(2)yi,t−k1{yi,t−k<r} + ξ
N∑
j=1

wijyj,t−k.

We also notice that

∂λit(θ)

∂θ
− ∂λ̃it(θ)

∂θ
= tβt−1λi0(ν)e5 + βt

∂λi0(θ)

∂θ
, (A.3.11)

where e5 = (0, 0, 0, 0, 1)′.

Now we consider the second order derivatives. For any θm, θn ∈ {ω, α(1), α(2), ξ},

∂2λit(θ)

∂θm∂θn
= 0.

Also

∂2λit(θ)

∂ω∂β
=

∞∑
k=2

(k − 1)βk−2,

∂2λit(θ)

∂α(1)∂β
=

∞∑
k=2

(k − 1)βk−2yi,t−k1{yi,t−k≥r},

∂2λit(θ)

∂α(2)∂β
=

∞∑
k=2

(k − 1)βk−2yi,t−k1{yi,t−k<r}, (A.3.12)

∂2λit(θ)

∂ξ∂β
=

∞∑
k=2

(k − 1)βk−2

 N∑
j=1

wijyj,t−k

 ,

∂2λit(θ)

∂β2
=

∞∑
k=3

(k − 1)(k − 2)βk−3ui,t−k(θ).
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We also have:

∂2λit(ν)

∂θ∂θ′
− ∂2λ̃it(ν)

∂θ∂θ′
= t(t−1)βt−2λi0(ν)e5e

′
5+2tβt−1∂λi0(ν)

∂θ
e′5+β

t∂
2λi0(ν)

∂θ∂θ′
, (A.3.13)

where e5 = (0, 0, 0, 0, 1)′.

As for the third order derivatives of λit(θ),

∂3λit(θ)

∂ω∂β2
=

∞∑
k=3

(k − 1)(k − 2)βk−3,

∂3λit(θ)

∂α(1)∂β2
=

∞∑
k=3

(k − 1)(k − 2)βk−3yi,t−k1{yi,t−k≥r},

∂3λit(θ)

∂α(2)∂β2
=

∞∑
k=3

(k − 1)(k − 2)βk−3yi,t−k1{yi,t−k<r},

∂3λit(θ)

∂ξ∂β2
=

∞∑
k=3

(k − 1)(k − 2)βk−3

 N∑
j=1

wijyj,t−k

 ,

∂3λit(θ)

∂β3
=

∞∑
k=4

(k − 1)(k − 2)(k − 3)βk−4ui,t−k(θ).

(A.3.14)

Based on the consistency of θ̂NT , we are now ready to prove asymptotic normality.

We split the proof into Claim A.3.7 to Claim A.3.10 below.

Claim A.3.7.
√
NT

∣∣∣∂L̃NT (θ0)
∂θ − ∂LNT (θ0)

∂θ

∣∣∣ p→ 0 as min {N,T} → ∞ and T/N → ∞.

Proof. 
∂LNT (θ)

∂θ
=

1

NT

∑
(i,t)∈DNT

(
yit

λit(θ)
− 1

)
∂λit(θ)

∂θ
,

∂λit(θ)

∂θ
= hi,t−1 + β

∂λi,t−1(θ)

∂θ
,

(A.3.15)

where

hi,t−1 :=

1, yi,t−11{yi,t−1≥r}, yi,t−11{yi,t−1<r},
N∑
j=1

wijyj,t−1, λi,t−1

′

.
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Similarly we have


∂L̃NT (θ)

∂θ
=

1

NT

∑
(i,t)∈DNT

(
yit

λ̃it(θ)
− 1

)
∂λ̃it(θ)

∂θ
,

∂λ̃it(θ)

∂θ
= h̃i,t−1 + β

∂λ̃i,t−1(θ)

∂θ
.

(A.3.16)

Therefore we have

√
NT

∣∣∣∣∣∂L̃NT (θ0)

∂β
− ∂LNT (θ0)

∂β

∣∣∣∣∣
≤ 1√

NT

∑
(i,t)∈DNT

∣∣∣∣∣yit
[
λit(θ0)− λ̃it(θ0)

λ̃it(θ0)λit(θ0)

∂λ̃it(θ0)

∂β

+
1

λit(θ0)

(
∂λ̃it(θ0)

∂β
− ∂λit(θ0)

∂β

)]
−

(
∂λ̃it(θ0)

∂β
− ∂λit(θ0)

∂β

)∣∣∣∣∣
≤ 1√

NT

∑
(i,t)∈DNT

yit
ω2
0

∣∣∣λit(θ0)− λ̃it(θ0)
∣∣∣ ∣∣∣∣∣∂λ̃it(θ0)∂β

∣∣∣∣∣
+

1√
NT

∑
(i,t)∈DNT

(
yit
ω0

+ 1

) ∣∣∣∣∣∂λit(θ0)∂β
− ∂λ̃it(θ0)

∂β

∣∣∣∣∣ .
Firstly, by Assumption 5.3.2(a) and (A.3.8) we have∥∥∥∥∥∥ 1√

NT

∑
(i,t)∈DNT

yit
ω2
0

∣∣∣λit(θ0)− λ̃it(θ0)
∣∣∣ ∣∣∣∣∣∂λ̃it(θ0)∂β

∣∣∣∣∣
∥∥∥∥∥∥
1

≤ C1√
NT

N∑
i=1

T∑
t=1

βt0 ∥yit∥1

≤ C2√
NT

N∑
i=1

β0
1− β0

→ 0

(A.3.17)

when min {N,T} → ∞ and T/N → ∞. Then in view of (A.3.11):∥∥∥∥∥∥ 1√
NT

∑
(i,t)∈DNT

(
yit
ω0

+ 1

) ∣∣∣∣∣∂λit(θ0)∂β
− ∂λ̃it(θ0)

∂β

∣∣∣∣∣
∥∥∥∥∥∥
1

≤ C1√
NT

N∑
i=1

T∑
t=1

tβt−1
0

∥∥∥∥yitω0
+ 1

∥∥∥∥
1

+
C2√
NT

N∑
i=1

T∑
t=1

βt0

∥∥∥∥yitω0
+ 1

∥∥∥∥
1

(A.3.18)
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≤ C3√
NT

N∑
i=1

T∑
t=1

tβt−1
0 +

C4√
NT

N∑
i=1

T∑
t=1

βt0

≤ C3√
NT

N∑
i=1

1

(1− β0)2
+

C4√
NT

N∑
i=1

β0
1− β0

→ 0

when min {N,T} → ∞ and T/N → ∞. In light of (A.3.17) and (A.3.18) we can prove

that
√
NT

∣∣∣∣∣∂L̃NT (θ0)

∂β
− ∂LNT (θ0)

∂β

∣∣∣∣∣ p→ 0.

The proofs regarding partial derivatives w.r.t. ω, α(1), α(2) and ξ follow similar argu-

ments and are therefore omitted.

Claim A.3.8. sup|θ−θ0|<ξ

∣∣∣∂2L̃NT (θ)
∂θ∂θ′ − ∂2LNT (θ0)

∂θθ′

∣∣∣ = Op(ξ) as min {N,T} → ∞ and

T/N → ∞.

Proof. For any θm, θn ∈ {ω, α(1), α(2), ξ, β},

∂2LNT (θ)

∂θm∂θn

=
1

NT

N∑
i=1

T∑
t=1

[(
yit

λit(θ)
− 1

)
∂2λit(θ)

∂θm∂θn
− yit
λ2it(θ)

∂λit(θ)

∂θm

∂λit(θ)

∂θn

]
,

(A.3.19)

and

∂2L̃NT (θ)

∂θm∂θn

=
1

NT

N∑
i=1

T∑
t=1

[(
yit

λ̃it(θ)
− 1

)
∂2λ̃it(θ)

∂θm∂θn
− yit

λ̃2it(θ)

∂λ̃it(θ)

∂θm

∂λ̃it(θ)

∂θn

]
.

(A.3.20)

Since

sup
|θ−θ0|<ξ

∣∣∣∣∣∂2L̃NT (θ)

∂θm∂θn
− ∂2LNT (θ0)

∂θm∂θn

∣∣∣∣∣
≤ 1

NT

N∑
i=1

T∑
t=1

sup
θ∈Θ

∣∣∣∣∣ ∂2 l̃it(θ)∂θm∂θn
− ∂2lit(θ)

∂θm∂θn

∣∣∣∣∣
+

1

NT

N∑
i=1

T∑
t=1

sup
|θ−θ0|<ξ

∣∣∣∣ ∂2lit(θ)∂θm∂θn
− ∂2lit(θ0)

∂θm∂θn

∣∣∣∣ ,
(A.3.21)
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we will handle above two terms separately.

For the first term on the right-hand-side of (A.3.21), we have

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

sup
θ∈Θ

∣∣∣∣∣ ∂2 l̃it(θ)∂θm∂θn
− ∂2lit(θ)

∂θm∂θn

∣∣∣∣∣
∥∥∥∥∥
1

≤ 1

NT

N∑
i=1

T∑
t=1

∥∥∥∥yit sup
θ∈Θ

(
1

λit
− 1

λ̃it

)
sup
θ∈Θ

∂2λit
∂θm∂θn

∥∥∥∥
1

+
1

NT

N∑
i=1

T∑
t=1

∥∥∥∥∥supθ∈Θ

(
yit

λ̃it
− 1

)
sup
θ∈Θ

(
∂2λit
∂θm∂θn

− ∂2λ̃it
∂θm∂θn

)∥∥∥∥∥
1

+
1

NT

N∑
i=1

T∑
t=1

∥∥∥∥∥yit supθ∈Θ

(
λ2it
λ̃2it

− 1

)
sup
θ∈Θ

1

λ2it

∂λit
∂θm

∂λit
∂θn

∥∥∥∥∥
1

+
1

NT

N∑
i=1

T∑
t=1

∥∥∥∥∥supθ∈Θ

yit

λ̃2it

[
∂λ̃it
∂θm

(
∂λ̃it
∂θn

− ∂λit
∂θn

)]∥∥∥∥∥
1

+
1

NT

N∑
i=1

T∑
t=1

∥∥∥∥∥supθ∈Θ

yit

λ̃2it

[
∂λit
∂θn

(
∂λ̃it
∂θm

− ∂λit
∂θm

)]∥∥∥∥∥
1

:=T1 + T2 + T3 + T4 + T5

(A.3.22)

Analogous to the proof of (A.3.17) we can show that T1 → 0 and T3 → 0 as min{N,T} →

∞ and T/N → ∞. In light of (A.3.13), we can also verify that

T2 ≤
1

NT

N∑
i=1

T∑
t=1

[C1t(t− 1)ρt−2 + C2tρ
t−1 + C3ρ

t]

∥∥∥∥sup
θ∈Θ

(
yit

λ̃it
− 1

)∥∥∥∥
1

.

Then T2 → 0 as well. Similarly, using (A.3.11) we obtain that T4 → 0 and T5 → 0.

Then it remains to investigate the second term in the right-hand-side of (A.3.21).

A Taylor expansion of ∂2lit(θ)
∂θm∂θn

at θ0 yields that

1

NT

N∑
i=1

T∑
t=1

sup
|θ−θ0|<ξ

∣∣∣∣ ∂2lit(θ)∂θm∂θn
− ∂2lit(θ0)

∂θm∂θn

∣∣∣∣
≤ 1

NT

N∑
i=1

T∑
t=1

ξ sup
|θ−θ0|<ξ

∣∣∣∣ ∂3lit(θ)

∂θm∂θn∂θl

∣∣∣∣
≤ 1

NT

N∑
i=1

T∑
t=1

ξ sup
|θ−θ0|<ξ

∣∣∣∣ yitλit − 1

∣∣∣∣ ∣∣∣∣ ∂3λit
∂θm∂θn∂θl

∣∣∣∣
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+
1

NT

N∑
i=1

T∑
t=1

ξ sup
|θ−θ0|<ξ

∣∣∣∣2yitλ3it

∣∣∣∣ ∣∣∣∣∂λit∂θl

∂λit
∂θm

∂λit
∂θn

∣∣∣∣ (A.3.23)

+
1

NT

N∑
i=1

T∑
t=1

ξ sup
|θ−θ0|<ξ

∣∣∣∣ yitλ2it
∣∣∣∣ ∣∣∣∣∂λit∂θl

∂2λit
∂θm∂θn

∣∣∣∣
+

1

NT

N∑
i=1

T∑
t=1

ξ sup
|θ−θ0|<ξ

∣∣∣∣ yitλ2it
∣∣∣∣ ∣∣∣∣∂λit∂θn

∂2λit
∂θl∂θm

∣∣∣∣
+

1

NT

N∑
i=1

T∑
t=1

ξ sup
|θ−θ0|<ξ

∣∣∣∣ yitλ2it
∣∣∣∣ ∣∣∣∣∂λit∂θm

∂2λit
∂θn∂θl

∣∣∣∣
:= B1 +B2 +B3 +B4 +B5

for any θl, θm, θn ∈ {ω, α(1), α(2), ξ, β}. According to Assumption 5.3.2(a), (A.3.14) we

can verify that

E
∣∣∣∣ yitλit − 1

∣∣∣∣ ∣∣∣∣ ∂3λit
∂θm∂θn∂θl

∣∣∣∣ <∞,

hence B1 = O(ξ) in probability. The other terms could be verified following similar

lines, in light of (A.3.10) and (A.3.12).

Taking (A.3.22) and (A.3.23) back to (A.3.21), we complete the proof.

Claim A.3.9. (a). supNT≥1 sup(i,t)∈DNT

∥∥∥∂lit(θ0)
∂θ

∥∥∥
2p
<∞ for some p > 1;

(b). For each v ∈ R5 such that |v| = 1,
{
v′ ∂lit(θ0)

∂θ : (i, t) ∈ DNT , NT ≥ 1
}

are η-

weakly dependent, with dependence coefficients η̄1(r) ≤ Cr−µ1 where µ1 > 4 ∨
2p−1
p−1 .

Proof. Recall from (A.3.15) that

∂lit(θ0)

∂θ
=

yit
λit(θ0)

∂λit(θ0)

∂θ
− ∂λit(θ0)

∂θ
.

By Assumption 5.3.2 we could prove (a).

Now we verify (b). In the proof of Claim A.3.5, for each (i, t) ∈ DNT and h =

1, 2, ..., we defined {y(h)jτ : (j, τ) ∈ DNT , NT ≥ 1} such that y
(h)
jτ ̸= yjτ if and only if

ρ((i, t), (j, τ)) = h. At first, we verify that ∂lit(θ0)
∂β satisfies condition (3.2.6). Notice
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that ∣∣∣∣∣∂lit(θ0)∂β
−
∂l

(h)
it (θ0)

∂β

∣∣∣∣∣
≤yit

∣∣∣∣∣ 1

λit(θ0)

∂λit(θ0)

∂β
− 1

λ
(h)
it (θ0)

∂λ
(h)
it (θ0)

∂β

∣∣∣∣∣+
∣∣∣∣∣∂λit(θ0)∂β

−
∂λ

(h)
it (θ0)

∂β

∣∣∣∣∣
≤
∣∣∣∣yitω0

+ 1

∣∣∣∣
∣∣∣∣∣∂λit(θ0)∂β

−
∂λ

(h)
it (θ0)

∂β

∣∣∣∣∣+ yit
ω2
0

∣∣∣∣∣∂λ(h)it (θ0)

∂β

∣∣∣∣∣ ∣∣∣λit(θ0)− λ
(h)
it (θ0)

∣∣∣ .
(A.3.24)

Since
∂λit(θ0)

∂β
=

∞∑
k=2

(k − 1)βk−2
0 ui,t−k(θ0),

where

ui,t−k(θ0) = ω0 + α
(1)
0 yi,t−k1{yi,t−k≥r0} + α

(2)
0 yi,t−k1{yi,t−k<r0} + ξ0

N∑
j=1

wijyj,t−k.

Following analogous arguments in (A.3.9), we obtain that∣∣∣∣∣∂λit(θ0)∂β
−
∂λ

(h)
it (θ0)

∂β

∣∣∣∣∣ ≤α∗
0(h− 1)βh−2

0 |yi,t−h − y
(h)
i,t−h|

+ ξ0(h− 1)βh−2
0

∑
1≤|i−j|≤h

|yj,t−h − y
(h)
j,t−h|

+ Ch−b
h∑

k=2

|yi±h,t−k − y
(h)
i±h,t−k|.

(A.3.25)

Combining (A.3.9), (A.3.24) and (A.3.25) we can verify that ∂lit(θ0)
∂β satisfies con-

dition (3.2.6) with B(i,t),NT (h) ≤ Ch−b and l = 1. Partial derivatives of lit(θ0) with

respect to other parameters in θ0 follows similarly. Therefore v′ ∂lit(θ0)
∂θ satisfies condi-

tion (3.2.6) with B(i,t),NT (h) ≤ Ch−b and l = 1 for each v ∈ R5.

According to Proposition 3.2 and (3.2.10), the array of random fields {v′ ∂lit(θ0)
∂θ :

(i, t) ∈ DNT , NT ≥ 1} is η-weakly dependent with coefficients η̄1(r) ≤ Cr
− 2p−2

2p−1
µy+2

.

Notice that 2p−2
2p−1µy − 2 > 4 ∨ 2p−1

p−1 since µy >
6p−3
p−1 ∨ (4p−3)(2p−1)

2(p−1)2
.
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Claim A.3.10. (a). supNT≥1 sup(i,t)∈DNT

∥∥∥∂2lit(θ0)
∂θ∂θ′

∥∥∥
p
<∞ for some p > 1;

(b). With respect to all θm, θn ∈ {ω, α(1), α(2), ξ, β},
{

∂2lit(θ0)
∂θm∂θn

: (i, t) ∈ DNT , NT ≥ 1
}

are η-weakly dependent, with dependence coefficients η̄2(r) ≤ Cr−µ2 where µ2 > 2.

Proof. Recall from (A.3.19) that

∂2lit(θ0)

∂θm∂θn
=

(
yit

λit(θ0)
− 1

)
∂2λit(θ0)

∂θm∂θn
− yit
λ2it(θ0)

∂λit(θ0)

∂θm

∂λit(θ0)

∂θn
.

Then Claim A.3.10(a) could be directly obtained by Assumption 5.3.2(a).

Same as previous proofs, for each (i, t) ∈ DNT and h = 1, 2, ..., we defined {y(h)jτ :

(j, τ) ∈ DNT , NT ≥ 1} such that y
(h)
jτ ̸= yjτ if and only if ρ((i, t), (j, τ)) = h. To prove

(b), we verify that ∂2lit(θ0)
∂θm∂θn

satisfies condition(3.2.6). Firstly we have:

∣∣∣∣∣∂2lit(θ0)∂θm∂θn
−
∂2l

(h)
it (θ0)

∂θm∂θn

∣∣∣∣∣
≤
∣∣∣∣ yit
λit(θ0)

+ 1

∣∣∣∣
∣∣∣∣∣∂2λit(θ0)∂θm∂θn

−
∂2λ

(h)
it (θ0)

∂θm∂θn

∣∣∣∣∣+ yit

∣∣∣∣∣∂2λ(h)it (θ0)

∂θm∂θn

∣∣∣∣∣
∣∣∣∣∣ 1

λit(θ0)
− 1

λ
(h)
it (θ0)

∣∣∣∣∣
+

yit
λ2it(θ0)

∣∣∣∣∣∂λit(θ0)∂θm

∂λit(θ0)

∂θn
−
∂λ

(h)
it (θ0)

∂θm

∂λ
(h)
it (θ0)

∂θn

∣∣∣∣∣
+

∣∣∣∣∣∂λ(h)it (θ0)

∂θm

∂λ
(h)
it (θ0)

∂θn

∣∣∣∣∣
∣∣∣∣∣ yit
λ2it(θ0)

− yit

(λ
(h)
it (θ0))2

∣∣∣∣∣ (A.3.26)

≤
∣∣∣∣ yit
λit(θ0)

+ 1

∣∣∣∣
∣∣∣∣∣∂2λit(θ0)∂θm∂θn

−
∂2λ

(h)
it (θ0)

∂θm∂θn

∣∣∣∣∣
+

yit

λit(θ0)λ
(h)
it (θ0)

∣∣∣∣∣∂2λ(h)it (θ0)

∂θm∂θn

∣∣∣∣∣ ∣∣∣λit(θ0)− λ
(h)
it (θ0)

∣∣∣
+

yit
λ2it(θ0)

∣∣∣∣∂λit(θ0)∂θm

∣∣∣∣
∣∣∣∣∣∂λit(θ0)∂θn

−
∂λ

(h)
it (θ0)

∂θn

∣∣∣∣∣
+

yit
λ2it(θ0)

∣∣∣∣∣∂λ(h)it (θ0)

∂θn

∣∣∣∣∣
∣∣∣∣∣∂λit(θ0)∂θm

−
∂λ

(h)
it (θ0)

∂θm

∣∣∣∣∣
+

yit

λit(θ0)λ
(h)
it (θ0)

∣∣∣∣∣∂λ(h)it (θ0)

∂θm

∂λ
(h)
it (θ0)

∂θn

∣∣∣∣∣
∣∣∣∣∣ 1

λit(θ0)
+

1

λ
(h)
it (θ0)

∣∣∣∣∣ ∣∣∣λit(θ0)− λ
(h)
it (θ0)

∣∣∣
≤
(
yit
ω0

+ 1

) ∣∣∣∣∣∂2λit(θ0)∂θm∂θn
−
∂2λ

(h)
it (θ0)

∂θm∂θn

∣∣∣∣∣+ C1
yit
ω2
0

∣∣∣λit(θ0)− λ
(h)
it (θ0)

∣∣∣
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+ C2
yit
ω2
0

∣∣∣∣∣∂λit(θ0)∂θn
−
∂λ

(h)
it (θ0)

∂θn

∣∣∣∣∣+ C3
yit
ω2
0

∣∣∣∣∣∂λit(θ0)∂θm
−
∂λ

(h)
it (θ0)

∂θm

∣∣∣∣∣
+ C4

yit
ω3
0

∣∣∣λit(θ0)− λ
(h)
it (θ0)

∣∣∣ .
Taking the second order derivative with respect to ξ and β as an example, analogous

to (A.3.9) and (A.3.25) we have:∣∣∣∣∣∂2λit(θ0)∂ξ∂β
−
∂2λ

(h)
it (θ0)

∂ξ∂β

∣∣∣∣∣
≤

∞∑
k=2

(k − 1)βk−2

∣∣∣∣∣∣
N∑
j=1

wijyj,t−k −
N∑
j=1

wijy
(h)
j,t−k

∣∣∣∣∣∣
≤(h− 1)βh−2

0

∑
|i−j|≤h

|yj,t−h − y
(h)
j,t−h|

+ Ch−b
h∑

k=2

|yi±h,t−k − y
(h)
i±h,t−k|.

(A.3.27)

Proofs regarding second order derivatives with respect to other parameters follow sim-

ilar arguments and are omitted. Substituting (A.3.9), (A.3.25) and (A.3.27) back to

(A.3.26), we have that ∂2lit(θ0)
∂θm∂θn

satisfies condition (3.2.6) with B(i,t),NT (h) ≤ Ch−b and

l = 1.

According to Proposition 3.2 and (3.2.10), the array of random fields {∂2lit(θ0)
∂θm∂θn

:

(i, t) ∈ DNT , NT ≥ 1} is η-weakly dependent with coefficients η̄1(r) ≤ Cr
− 2p−2

2p−1
µy+2

,

and 2p−2
2p−1µy − 2 > 2.

By the Taylor expansion, for some θ∗ between θ̂NT and θ0 we have

∂L̃NT (θ̂NT )

∂θ
=
∂L̃NT (θ0)

∂θ
+
∂2L̃NT (θ

∗)

∂θ∂θ′
(θ̂NT − θ0).

Since ∂L̃NT (θ̂NT )
∂θ = 0, we have

√
NTΣ

1/2
NT (θ̂NT − θ0)
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=− Σ
1/2
NT

(
∂2L̃NT (θ

∗)

∂θ∂θ′

)−1√
NT

∂L̃NT (θ0)

∂θ
(A.3.28)

=− Σ
1/2
NT

(
Σ
−1/2
NT

∂2LNT (θ0)

∂θ∂θ′

)−1

Σ
−1/2
NT

√
NT

∂LNT (θ0)

∂θ
+ op(1)

according to Claims A.3.7 and A.3.8.

Notice that yit =Mit(λit(θ0)) is Poisson distributed with mean λit(θ0) conditioning

on historical information Ht−1, with {Mit : (i, t) ∈ DNT , NT ≥ 1} being IID Poisson

point processes with intensity 1. Therefore we have

E
(
∂2LNT (θ0)

∂θ∂θ′

)
=

1

NT

N∑
i=1

T∑
t=1

E
{
E
[(

Mit(λit(θ0))

λit(θ0)
− 1

)
∂2λit(θ0)

∂θ∂θ′
|Ht−1

]}

− 1

NT

N∑
i=1

T∑
t=1

E
{
E
[
Mit(λit(θ0))

λ2it(θ0)

∂λit(θ0)

∂θ

∂λit(θ0)

∂θ′
|Ht−1

]}

=− 1

NT

N∑
i=1

T∑
t=1

E
[

1

λit(θ0)

∂λit(θ0)

∂θ

∂λit(θ0)

∂θ′

]
=− ΣNT .

By Claim A.3.10 and Theorem 3.1 we have

∂2LNT (θ0)

∂θ∂θ′
+ΣNT

p→ 0. (A.3.29)

According to condition (5.3.5) we can further prove that

−
(
Σ
−1/2
NT

∂2LNT (θ0)

∂θ∂θ′

)
Σ
−1/2
NT =

(
Σ
1/2
NT + op(1)

)
Σ
−1/2
NT = I5 + op(1). (A.3.30)

When τ ̸= t or j ̸= i we have

E
[(

Mit(λit(θ0))

λit(θ0)
− 1

)(
Mjτ (λjτ (θ0))

λjτ (θ0)
− 1

)
∂λit(θ0)

∂θ

∂λjτ (θ0)

∂θ′
|Ht−1

]
= 0
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assuming τ < t. Then we can verify that

Var

(√
NT

∂LNT (θ0)

∂θ

)
=

1

NT
E

{[
N∑
i=1

T∑
t=1

(
Mit(λit(θ0))

λit(θ0)
− 1

)
∂λit(θ0)

∂θ

]

×

[
N∑
i=1

T∑
t=1

(
Mit(λit(θ0))

λit(θ0)
− 1

)
∂λit(θ0)

∂θ′

]}

=
1

NT

N∑
i=1

T∑
t=1

E

[(
Mit(λit(θ0))

λit(θ0)
− 1

)2 ∂λit(θ0)

∂θ

∂λit(θ0)

∂θ′

]

=ΣNT .

For each v ∈ R5, Var
(∑

(i,t)∈DNT
v′ ∂lit(θ0)

∂θ

)
= (NT )v′ΣNTv. By (5.3.5) and the sym-

metry of ΣNT ,

inf
NT≥1

v′ΣNTv > 0.

Then by Claim A.3.9 and Theorem 3.2 we can prove that

[(NT )v′ΣNTv]
−1/2v′(NT )

∂LNT (θ0)

∂θ

d→ N(0, 1).

According to the Cramér-Wold theorem, we have:

(ΣNT )
−1/2

√
NT

∂LNT (θ0)

∂θ

d→ N(0, I5). (A.3.31)

Combining (A.3.28), (A.3.30) and (A.3.31) we complete the proof of Theorem 5.3.

A.3.4 Proof of Proposition 5.1

Recalling from (5.3.7), the Wald statistic is

WNT := (Γθ̂NT − η)′
{

Γ

NT
Σ̂−1
NTΓ

′
}−1

(Γθ̂NT − η),
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where

Σ̂NT :=
1

NT

∑
(i,t)∈DNT

[
1

λ̃it(θ̂NT )

∂λ̃it(θ̂NT )

∂θ

∂λ̃it(θ̂NT )

∂θ′

]
.

It suffices to show that

1

NT

∑
(i,t)∈DNT

[
1

λ̃it(θ̂NT )

∂λ̃it(θ̂NT )

∂θ

∂λ̃it(θ̂NT )

∂θ′

]
p→ ΣNT . (A.3.32)

Firstly,

1

NT

∑
(i,t)∈DNT

[
1

λ̃it(θ̂NT )

∂λ̃it(θ̂NT )

∂θ

∂λ̃it(θ̂NT )

∂θ′

]
− ΣNT

=
1

NT

∑
(i,t)∈DNT

[
1

λ̃it(θ̂NT )

∂λ̃it(θ̂NT )

∂θ

∂λ̃it(θ̂NT )

∂θ′
− E

(
1

λit(θ0)

∂λit(θ0)

∂θ

∂λit(θ0)

∂θ′

)]

=
1

NT

∑
(i,t)∈DNT

[
1

λ̃it(θ̂NT )

∂λ̃it(θ̂NT )

∂θ

∂λ̃it(θ̂NT )

∂θ′
− 1

λit(θ0)

∂λit(θ0)

∂θ

∂λit(θ0)

∂θ′

]

+
1

NT

∑
(i,t)∈DNT

[
1

λit(θ0)

∂λit(θ0)

∂θ

∂λit(θ0)

∂θ′
− E

(
1

λit(θ0)

∂λit(θ0)

∂θ

∂λit(θ0)

∂θ′

)]
:=T1 + T2.

Similar to the proof of Claim A.3.10, we can verify that the LLN Theorem 3.1 applies

to
{

1
λit(θ0)

∂λit(θ0)
∂θ

∂λit(θ0)
∂θ′ : (i, t) ∈ DNT , NT ≥ 1

}
and therefore T2

p→ 0.

T1 can be further decomposed as follows:

1

NT

∑
(i,t)∈DNT

[
1

λ̃it(θ̂NT )

∂λ̃it(θ̂NT )

∂θ

∂λ̃it(θ̂NT )

∂θ′
− 1

λit(θ0)

∂λit(θ0)

∂θ

∂λit(θ0)

∂θ′

]

=
1

NT

∑
(i,t)∈DNT

[
1

λ̃it(θ̂NT )

∂λ̃it(θ̂NT )

∂θ

∂λ̃it(θ̂NT )

∂θ′
− 1

λit(θ̂NT )

∂λit(θ̂NT )

∂θ

∂λit(θ̂NT )

∂θ′

]

+
1

NT

∑
(i,t)∈DNT

[
1

λit(θ̂NT )

∂λit(θ̂NT )

∂θ

∂λit(θ̂NT )

∂θ′
− 1

λit(θ0)

∂λit(θ0)

∂θ

∂λit(θ0)

∂θ′

]

:=S1 + S2.

S2
p→ 0 since θ̂NT

p→ θ0. And the proof of S1
p→ 0 is similar to the proof of (A.3.22),
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therefore omitted.

185



Appendix A. Proofs of Theoretical Results

A.4 Proofs of results in Chapter 6

A.4.1 Proof of Theorem 6.1

Firstly, in Claims A.4.1 and A.4.2 below we will verify Conditions 1 and 2 in Wu and

Shao (2004) respectively.

Claim A.4.1. There exists an x ∈ RN
+ such that E |x−G(x,u)|∞ <∞.

Proof. Assume that |x−G(x,u)|∞ =
∣∣∣xi − gθ0

(
F−1
xi

(ui),
∑N

j=1wijF
−1
xj

(uj), xi

)∣∣∣ for

some i ∈ {1, 2, ..., N} without loss of generality. Then by Assumption 6.3.1 we have

E |x−G(x,u)|∞

=

∫ 1

0

∫ 1

0
...

∫ 1

0

∣∣∣∣∣∣xi − gθ0

F−1
xi

(ui),

N∑
j=1

wijF
−1
xj

(uj), xi

∣∣∣∣∣∣ du1du2...duN
≤xi + gθ0(0, 0, 0) + ρ1

∫ 1

0
F−1
xi

(ui)dui

+ ρ2

∫ 1

0

∫ 1

0
...

∫ 1

0

N∑
j=1

wijF
−1
xj

(uj)du1du2...duN + ρ3xi

≤gθ0(0, 0, 0) + (1 + ρ1 + ρ3)xi + ρ2

N∑
j=1

wijxj ,

where
∫ 1
0 F

−1
x (u)du = x since u follows a uniform distribution on (0, 1). By choosing x

such that |x|∞ <∞ we complete the proof.

Claim A.4.2. There exists an x′ ∈ RN
+ , constants C > 0 and ρ ∈ (0, 1) such that

E
∣∣Xt(x)− Xt(x

′)
∣∣
∞ ≤ Cρt|x− x′|∞

for all x ∈ RN
+ and t ∈ N.

Proof. According to (6.3.4), for some i ∈ {1, 2, ..., N}:

E
∣∣X1(x)− X1(x

′)
∣∣
∞

=E
∣∣GU1(x)−GU1(x

′)
∣∣
∞

186



Appendix A. Proofs of Theoretical Results

=

∫ 1

0

∫ 1

0
...

∫ 1

0

∣∣∣∣∣∣gθ0
F−1

xi
(ui),

N∑
j=1

wijF
−1
xj

(uj), xi


−gθ0

F−1
x′
i
(ui),

N∑
j=1

wijF
−1
x′
j
(uj), x

′
i

∣∣∣∣∣∣ du1du2...duN
≤ρ1

∫ 1

0

∣∣∣F−1
xi

(ui)− F−1
x′
i
(ui)

∣∣∣ dui
+ ρ2

∫ 1

0

∫ 1

0
...

∫ 1

0

N∑
j=1

wij

∣∣∣F−1
xj

(uj)− F−1
x′
j
(uj)

∣∣∣ du1du2...duN
+ ρ3|xi − x′i|

≤(ρ1 + ρ3)|xi − x′i|+ ρ2

N∑
j=1

wij |xj − x′j |

≤(ρ1 + ρ2 + ρ3)|x− x′|∞.

Assume that E |Xt(x)− Xt(x
′)|∞ ≤ (ρ1 + ρ2 + ρ3)

t|x− x′|∞, then we obtain that

E
∣∣Xt+1(x)− Xt+1(x

′)
∣∣
∞

=E
∣∣GUt+1(Xt(x))−GUt+1(Xt(x

′))
∣∣
∞

=E
[
E
(∣∣GUt+1(Xt(x))−GUt+1(Xt(x

′))
∣∣
∞ |Ut,Ut−1, ...,U1

)]
≤E

[
(ρ1 + ρ2 + ρ3)

∣∣Xt(x)− Xt(x
′)
∣∣
∞
]

=(ρ1 + ρ2 + ρ3)
t+1|x− x′|∞.

(A.4.1)

Therefore Claim A.4.2 could be proved by induction.

Claims A.4.1 and A.4.2 allow us to apply Theorem 2 in Wu and Shao (2004) on

the backward iteration process Zt, hence Theorem 6.1(a) is proved, and {Xt : t ≥ 0} is

geometric moment contracting with unique stationary distribution π.

To prove (b) we still need to verify that Eπ|Xt|∞ <∞. By (6.3.2) and (6.3.4), there

exists some i ∈ {1, 2, ..., N} such that

E|X1(x)|∞ =E(|X1|∞|X0 = x)
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=E

gθ0
F−1

xi
(ui1),

N∑
j=1

wijF
−1
xj

(uj1), xi

∣∣∣∣∣∣X0 = x


≤gθ0(0, 0, 0) + (ρ1 + ρ2 + ρ3)|x|∞.

Notice that for any i = 1, 2, ..., N , E
(
F−1
xi1

(ui2)|X0 = x
)
= E (xi1|X0 = x) since Ut’s

belong to another space that is independent from X . Then there exists some i ∈

{1, 2, ..., N} such that

E|X2(x)|∞ =E(|X2|∞|X0 = x)

E

gθ0
F−1

xi1
(ui2),

N∑
j=1

wijF
−1
xj1

(uj2), xi1

∣∣∣∣∣∣X0 = x


≤gθ0(0, 0, 0) + (ρ1 + ρ2 + ρ3)E|X1(x)|∞.

Iterative calculation leads to

E|Xt(x)|∞ ≤ 1− (ρ1 + ρ2 + ρ3)
t

1− (ρ1 + ρ2 + ρ3)
gθ0(0, 0, 0) + (ρ1 + ρ2 + ρ3)

t|x|∞.

By Theorem 6.1(a) we have Xt(x)
d→ Z∞ ∼ π for all x ∈ X as t → ∞. Choosing x

such that |x|∞ <∞, we have

Eπ|Xt|∞ ≤ lim inf
t→∞

E|Xt(x)|∞ ≤ gθ0(0, 0, 0)

1− (ρ1 + ρ2 + ρ3)
<∞,

according to Theorem 3.4 in Billingsley (1999).

A.4.2 Proof of results in Section 6.4

Proof of Lemma 6.4.1

In this proof we utilize the property that every Cauchy sequence in the Banach space

L2p, p > 1 converges to a limit within the space. For any i = 1, 2, ..., N , t ∈ Z and
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s ∈ N, define

ỹ
(i,t,s)
kl =

 ykl if max{|i− k|, |t− l|} ≤ s;

0 otherwise.
(A.4.2)

Correspondingly, let

µ̃
(i,t,s)
kl (θ) = gθ

ỹ(i,t,s)k,l−1 ,

N∑
j=1

wkj ỹ
(i,t,s)
j,l−1 , µ̃

(i,t,s)
k,l−1(θ)

 (A.4.3)

For s > 1, by iteration there exits a function g
(s)
θ such that

µ̃
(i,t,s)
it (θ) = gθ

ỹ(i,t,s)i,t−1 ,
N∑
j=1

wij ỹ
(i,t,s)
j,t−1 , µ̃

(i,t,s)
i,t−1 (θ)


= gθ

yi,t−1,
∑

|i−j|≤s

wijyj,t−1, gθ

ỹ(i,t,s)i,t−2 ,

N∑
j=1

wij ỹ
(i,t,s)
j,t−2 , µ̃

(i,t,s)
i,t−2 (θ)


· · ·

= g
(s)
θ

yi,t−k,
∑

|i−j|≤s

wijyj,t−k


1≤k≤s

 .

(A.4.4)

Claim A.4.3. For any i = 1, 2, ..., N , t ∈ Z, µit(θ) = lims→∞ µ̃
(i,t,s)
it (θ) is well-defined

in L2p.

Proof. Fixing an integer m ≥ 0, by Assumption 6.4.4 we have

∣∣∣µ̃(i,t,s+m)
it (θ)− µ̃

(i,t,s)
it (θ)

∣∣∣
≤C2

∑
s<|i−j|≤s+m

wij |yj,t−1|+ ρ
∣∣∣µ̃(i,t,s+m)

i,t−1 (θ)− µ̃
(i,t,s)
i,t−1 (θ)

∣∣∣
· · ·

≤ρsC1|yi,t−s−1|+
s−1∑
k=0

ρkC2

∑
s<|i−j|≤s+m

wij |yj,t−k−1|

+ ρsC2

∑
|i−j|≤s+m

wij |yj,t−s−1|+ ρs+1
∣∣∣µ̃(i,t,s+m)

i,t−s−1 (θ)− µ̃
(i,t,s)
i,t−s−1(θ)

∣∣∣
· · ·
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≤
m−1∑
k=0

ρs+kC1|yi,t−s−1−k|+
s−1∑
k=0

ρkC2

∑
s<|i−j|≤s+m

wij |yj,t−k−1|

+
m−1∑
k=0

ρs+kC2

∑
|i−j|≤s+m

wij |yj,t−s−1−k|.

By Assumption 6.4.2 and Assumption 6.4.3 we have Cy := supNT≥1 sup(i,t)∈DNT
∥yit∥2p <

∞ for some p > 1 and wij ≤ C|i− j|−α for some α > 2. By Lemma A.1.(iii) in Jenish

and Prucha (2009) we obtain that:

∥∥∥µ̃(i,t,s+m)
it (θ)− µ̃

(i,t,s)
it (θ)

∥∥∥
p

≤CyC1ρ
s

(
m−1∑
k=0

ρk

)
+ CyC2

(
s−1∑
k=0

ρk

)(
s+m−1∑
h=s

Ch1−α

)

+ CyC2ρ
s

(
m−1∑
k=0

ρk

)(
s+m−1∑
h=0

Ch1−α

)
,

which converges to 0 as s→ ∞. Therefore
{
µ̃
(i,t,s)
it (θ) : s ≥ 0

}
is a Cauchy sequence in

L2p, completing the proof of Claim A.4.3.

By Claim A.4.3, there exists a function g
(∞)
θ such that

µit(θ) = g
(∞)
θ

yi,t−k,
N∑
j=1

wijyj,t−k


k≥1


is well-defined in L2p.

Claim A.4.4. The η-coefficients of {µit(θ) : (i, t) ∈ DNT , NT ≥ 1} satisfy

η̄(0)µ (r) ≤ Cr2−µ

for some constant C > 0.

Proof. For any s ∈ N, we take

y
(i,t,s)
kl = ykl if and only if max{|i− k|, |t− l|} ≠ s (A.4.5)
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Correspondingly, let

µ
(i,t,s)
it (θ) = g

(∞)
θ

y(i,t,s)i,t−k ,
N∑
j=1

wijy
(i,t,s)
j,t−k


k≥1

 . (A.4.6)

Then we have ∣∣∣µit(θ)− µ
(i,t,s)
it (θ)

∣∣∣
≤ρs−1C1

∣∣∣yi,t−s − y
(i,t,s)
i,t−s

∣∣∣
+ Cs−α

s−2∑
k=0

ρkC2

∣∣∣yi±s,t−k−1 − y
(i,t,s)
i±s,t−k−1

∣∣∣
+ ρs−1C2

∑
|i−j|≤s

wij

∣∣∣yj,t−s − y
(i,t,s)
j,t−s

∣∣∣ .
(A.4.7)

By Example 3.2.1 in Chapter 3 we complete the proof.

Proof of Lemma 6.4.2

For any i = 1, 2, ..., N , t ∈ Z and s ∈ N, define

l
(i,t,s)
it (θ) = B−1(µ

(i,t,s)
it (θ))y

(i,t,s)
it −A ◦ B−1(µ

(i,t,s)
it (θ)), (A.4.8)

where y
(i,t,s)
it is defined by (A.4.5) and µ

(i,t,s)
it (θ) is defined by (A.4.6). By Assumption

6.4.5 we have

∣∣∣lit(θ)− l
(i,t,s)
it (θ)

∣∣∣ ≤ C(|yit|+ 1)
∣∣∣µit(θ)− µ

(i,t,s)
it (θ)

∣∣∣ .
Then by the result we have in (A.4.7), we can prove that the η-coefficients of {lit(θ) :

(i, t) ∈ DNT , NT ≥ 1} satisfy

η̄
(0)
l (r) ≤ Cr

2− p−4
p−2

µ

for some constant C > 0.

At last, by Assumption 6.4.2 and the Lipschitz continuity of B−1 and A ◦ B−1 in

Assumption 6.4.5, it is easy to verify that supNT≥1 sup(i,t)∈DNT
supθ∈Θ ∥lit(θ)∥ p

2
< ∞
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for some p > 4, using Hölder’s inequality.

Proof of Lemma 6.4.3

The proof of Lemma 6.4.3 is similar to the proof of Lemma 6.4.1, therefore it is omitted

here.

Proof of Lemma 6.4.4

For any i = 1, 2, ..., N , t ∈ Z and s ∈ N, by (A.4.8) we have

∂l
(i,t,s)
it (θ0)

∂θ
=
[
(B−1)′(µ

(i,t,s)
it (θ0))y

(i,t,s)
it − (A ◦ B−1)′(µ

(i,t,s)
it (θ0))

] ∂µ(i,t,s)it (θ0)

∂θ
(A.4.9)

where y
(i,t,s)
it is defined by (A.4.5) and µ

(i,t,s)
it (θ) is defined by (A.4.6). By Assumption

6.4.9 we have∣∣∣∣∣∂lit(θ0)∂θ
−
∂l

(i,t,s)
it (θ0)

∂θ

∣∣∣∣∣
≤
∣∣∣∣(B−1)′(µit(θ0))

∂µit(θ0)

∂θ
yit − (B−1)′(µ

(i,t,s)
it (θ0))

∂µit(θ0)

∂θ
yit

∣∣∣∣
+

∣∣∣∣∣(B−1)′(µ
(i,t,s)
it (θ0))

∂µit(θ0)

∂θ
yit − (B−1)′(µ

(i,t,s)
it (θ0))

∂µ
(i,t,s)
it (θ0)

∂θ
yit

∣∣∣∣∣
+

∣∣∣∣(A ◦ B−1)′(µit(θ0))
∂µit(θ0)

∂θ
− (A ◦ B−1)′(µ

(i,t,s)
it (θ0))

∂µit(θ0)

∂θ

∣∣∣∣
+

∣∣∣∣∣(A ◦ B−1)′(µ
(i,t,s)
it (θ0))

∂µit(θ0)

∂θ
− (A ◦ B−1)′(µ

(i,t,s)
it (θ0))

∂µ
(i,t,s)
it (θ0)

∂θ

∣∣∣∣∣ (A.4.10)

≤C
∣∣∣µit(θ0)− µ

(i,t,s)
it (θ0)

∣∣∣ ∣∣∣∣∂µit(θ0)∂θ

∣∣∣∣ |yit|
+

∣∣∣∣∣∂µit(θ0)∂θ
−
∂µ

(i,t,s)
it (θ0)

∂θ

∣∣∣∣∣ ∣∣∣(B−1)′(µ
(i,t,s)
it (θ0))

∣∣∣ |yit|
+ C

∣∣∣µit(θ0)− µ
(i,t,s)
it (θ0)

∣∣∣ ∣∣∣∣∂µit(θ0)∂θ

∣∣∣∣
+

∣∣∣∣∣∂µit(θ0)∂θ
−
∂µ

(i,t,s)
it (θ0)

∂θ

∣∣∣∣∣ ∣∣∣(A ◦ B−1)′(µ
(i,t,s)
it (θ0))

∣∣∣ .
The rest of the proof follows similarly as the proof of Lemma 6.4.2.
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Proof of Lemma 6.4.5

The proof of Lemma 6.4.5 is similar to the proof of Lemma 6.4.1, therefore it is omitted

here.

Proof of Lemma 6.4.6

For any i = 1, 2, ..., N , t ∈ Z and s ∈ N, similar to (A.4.9) we have

∂2l
(i,t,s)
it (θ0)

∂θ∂θ′

=
[
(B−1)′(µ

(i,t,s)
it (θ0))y

(i,t,s)
it − (A ◦ B−1)′(µ

(i,t,s)
it (θ0))

] ∂2µ(i,t,s)it (θ0)

∂θ∂θ′

+
[
(B−1)′′(µ

(i,t,s)
it (θ0))y

(i,t,s)
it − (A ◦ B−1)′′(µ

(i,t,s)
it (θ0))

] ∂µ(i,t,s)it (θ0)

∂θ

∂µ
(i,t,s)
it (θ0)

∂θ′
(A.4.11)

where y
(i,t,s)
it is defined by (A.4.5) and µ

(i,t,s)
it (θ) is defined by (A.4.6). By Assumption

6.4.12 we can decompose

∣∣∣∣∂2lit(θ0)
∂θ∂θ′ − ∂2l

(i,t,s)
it (θ0)
∂θ∂θ′

∣∣∣∣ similarly as (A.4.10). With Assumption

6.4.13 it is not hard to prove Lemma 6.4.6.

A.4.3 Proof of Proposition 6.1

We need to verify that the function gθ defined in (6.5.2) satisfies Assumption 6.3.1.

That is, the function

gθ(x, y, z) = ω + α(1)x+ α(2)(x− r)+ + λy + βz

satisfies condition (6.3.4). For any a, a′, b, b′, c, c′ ∈ R, we have

∣∣gθ(a, b, c)− gθ(a
′, b′, c′)

∣∣ ≤ max{α(1), α(1) + α(2)}
∣∣a− a′

∣∣+ λ
∣∣b− b′

∣∣+ β
∣∣c− c′

∣∣ .
Since

max{α(1), α(1) + α(2)}+ λ+ β < 1,

by Theorem 6.1 we complete the proof.
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A.4.4 Proof of Proposition 6.2

According to Theorem 6.2, Assumptions 6.4.1 to 6.4.6 are sufficient to obtain con-

sistency. Verifying Assumption 6.4.1 and Assumption 6.4.6 is similar to the proof of

Claims A.2.3 and A.2.6, therefore omitted here. Assumption 6.4.2 and Assumption

6.4.3 follow directly with (NB2), (NB3) and (NB4). Notice that in the case of (6.5.2),

gθ(a, b, c) = ω + α(1)a+ α(2)(a− r)+ + λb+ βc.

For any (a, b, c) and (a′, b′, c′) in S0:

|gθ(a, b, c)− gθ(a
′, b′, c′)|

≤max{α(1), α(1) + α(2)}|a− a′|+ λ|b− b′|+ β|c− c′|.

By (NB1) we can easily verify Assumption 6.4.4. Now it remains to verify Assumption

6.4.5. Firstly, notice that µit(θ) ≥ ω > 0. By the compactness of Θ in (NB1), there

exists a constant ω∗ > 0 such that supθ∈Θ sup(i,t)∈DNT
supNT≥1 µit(θ) ≥ ω∗. That is,

for all x ∈ Sµ, x ≥ ω∗. Therefore functions

B−1(x) = log(x)− log(x+K),

A ◦ B−1(x) = K log(x+K)−K log(K)

are Lipschitz continuous on Sµ. Now we have proved the consistency part of Proposition

6.2 with assumptions (NB1) to (NB4).

According to Theorem 6.3, we still need to verify Assumptions 6.4.7 to 6.4.15, in

order to prove the asymptotic normality part. The verification of Assumption 6.4.7 is

omitted here since it is similar to the proof of Claim A.3.7 and Claim A.3.8 if N = o(T ).
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As for Assumption 6.4.8, since

∂µit(θ, r)

∂θ
=



1

yi,t−1

(yi,t−1 − r)+∑N
j=1wi,jyj,t−1

µi,t−1(θ, r)


+ β

∂µi,t−1(θ, r)

∂θ
,

that is

g
(1)
θ (a, b, c, d) =



1

a

(a− r)+

b

c


+ βd,

for (a, b, c, d) ∈ S1. Then Assumption 6.4.8 is satisfied since 0 < β < 1. We also have

that

∂2µit(θ, r)

∂θ∂θ′
=


0 0 0 0

∂µi,t−1(θ,r)

∂ω

0 0 0 0
∂µi,t−1(θ,r)

∂α(1)

0 0 0 0
∂µi,t−1(θ,r)

∂α(2)

0 0 0 0
∂µi,t−1(θ,r)

∂λ
∂µi,t−1(θ,r)

∂ω

∂µi,t−1(θ,r)

∂α(1)

∂µi,t−1(θ,r)

∂α(2)

∂µi,t−1(θ,r)

∂λ
2
∂µi,t−1(θ,r)

∂β

+β
∂2µi,t−1(θ, r)

∂θ∂θ′
,

and similarly we can verify Assumption 6.4.11.

As for Assumption 6.4.9, since

d

dx
B−1(x) =

1

x
− 1

x+K
,

d

dx
A ◦ B−1(x) =

K

x+K
,

and x ≥ ω∗ for all x ∈ Sµ, then d
dxB

−1(x) and d
dxA ◦ B−1(x) are Lipschitz continuous

on Sµ. The first bound in Assumption 6.4.10 can be proved similarly to (A.2.14) and
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(A.3.10). The other two bounds also hold since

∣∣∣∣ ddxB−1 (µit(θ0, r0))

∣∣∣∣ ≤ ∣∣∣∣ 1

µit(θ0, r0)

∣∣∣∣+ ∣∣∣∣ 1

µit(θ0, r0) +K

∣∣∣∣ ≤ 1

ω∗ +
1

ω∗ +K
,∣∣∣∣ ddxA ◦ B−1 (µit(θ0, r0))

∣∣∣∣ = ∣∣∣∣ K

µit(θ0, r0) +K

∣∣∣∣ ≤ K

ω∗ +K
.

Assumptions 6.4.12 and 6.4.13 can be verified similarly, noticing that

d2

dx2
B−1(x) = − 1

x2
+

1

(x+K)2
,

d2

dx2
A ◦ B−1(x) = − K

(x+K)2
.

Assumption 6.4.14 is supported by (NB1), and it remains to verified Assumption

6.4.15. Firstly notice that

E
[(

yit
µit(θ0, r0)

− yit +K

µit(θ0, r0) +K

)(
yjτ

µjτ (θ0, r0)
− yjτ +K

µjτ (θ0, r0) +K

)]
=E

{
E
[(

yit
µit(θ0, r0)

− yit +K

µit(θ0, r0) +K

)
×
(

yjτ
µjτ (θ0, r0)

− yjτ +K

µjτ (θ0, r0) +K

)∣∣∣∣Ht−1

]}
=0

if either i ̸= j or t ̸= τ(t > τ without loss of generality).

Since

E(yit|Ht−1) = µit(θ0, r0),

E(y2it|Ht−1) =
µ2it(θ0, r0) +Kµit(θ0, r0)

K
+ µ2it(θ0, r0).

Then

E

[(
yit

µit(θ0, r0)
− yit +K

µit(θ0, r0) +K

)2 ∂µit(θ0, r0)

∂θ

∂µit(θ0, r0)

∂θ′

∣∣∣∣∣Ht−1

]

=
∂µit(θ0, r0)

∂θ

∂µit(θ0, r0)

∂θ′

[
E(y2it|Ht−1)

µ2it(θ0, r0)
+
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− 2E(y2it +Kyit|Ht−1)

µit(θ0, r0)(µit(θ0, r0) +K)

]
=

K

µ2it(θ0, r0) +Kµit(θ0, r0)
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∂θ
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∂θ′
.

Moreover,

E
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∂2LNT (θ0)

∂θ∂θ′

]
=

1

NT

∑
(i,t)∈DNT

E
{
E
[(

yit
µit(θ0, r0)

− yit +K

µit(θ0, r0) +K

)
∂2µit(θ0, r0)

∂θ∂θ′

−
(

yit
µ2it(θ0, r0)

− yit +K

(µit(θ0, r0) +K)2

)
∂µit(θ0, r0)

∂θ
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∂θ′

∣∣∣∣Ht−1

]}
=

1

NT

∑
(i,t)∈DNT

E
[(

1

(µitθ0, r0) +K
− 1

µit(θ0, r0)

)
∂µit(θ0, r0)

∂θ

∂µit(θ0, r0)

∂θ′

]
.

Therefore we have

Var

[√
NT
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]
=

1

NT
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(i,t)∈DNT

E
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yit

µit(θ0, r0)
− yit +K

µit(θ0, r0) +K

)2 ∂µit(θ0, r0)

∂θ

∂µit(θ0, r0)

∂θ′

]

=
1

NT

∑
(i,t)∈DNT

E

{
E

[(
yit

µit(θ0, r0)
− yit +K

µit(θ0, r0) +K

)2 ∂µit(θ0, r0)

∂θ

∂µit(θ0, r0)

∂θ′

∣∣∣∣∣Ht−1

]}

=
1

NT

∑
(i,t)∈DNT

E
[

K

µ2it(θ0, r0) +Kµit(θ0, r0)
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∂θ

∂µit(θ0, r0)

∂θ′

]

=− E
[
∂2LNT (θ0)

∂θ∂θ′

]
.

By (NB5) we can verify Assumption 6.4.15. Now we complete the proof of Proposition

6.2.
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