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Abstract

This thesis explores innovative methodologies for modelling volatilities of network-based
high-dimensional time series that exhibit asymmetry. We start with a law of large
numbers and a central limit theorem for triangular arrays of random fields that are
non-stationary. We derive key intermediate results to bridge the gap between the
proposed limit theorems and their application to the inference of high-dimensional time
series under large dimension N and sample size 1. These theoretical advancements
are exemplified through a maximum likelihood estimation of a network autoregressive
model.

Building on this foundation, we propose a threshold network GARCH (TNGARCH)
model that incorporates asymmetries in the reaction of conditional variances to posi-
tive and negative shocks. Taking integer-valued data into account, we also propose a
Poisson TNGARCH (PTNGARCH) model, which has an unknown threshold that can
be estimated alongside other parameters. For both models, the stationarity over time
is investigated, and the maximum likelihood estimation is proved to be consistent and
asymptotically normal for large N and 7. The asymptotic properties are tested by
simulation studies. For real data analysis, we fit the TNGARCH model to the daily
log-returns of stocks from two Chinese stock markets and the PTNGARCH model to
the daily counts of car accidents in New York City neighbourhoods. Wald tests are
conducted to show the asymmetry in both data sets.

Additionally, we establish unified methodologies for a class of network GARCH
models with conditional distributions in the one-parameter exponential family. This

theoretical framework is applied to a new negative binomial TNGARCH model. We
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evaluate its performance against the Poisson TNGARCH model using the same car
accident data, employing a probability integral transformation test for comparative

analysis.

Keywords: High-dimensional time series, conditional heteroscedasticity, threshold

GARCH, integer-valued GARCH, network GARCH, limit theorems, arrays of random
fields.
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List of Notations

e R, Z and N denote the sets of real numbers, integers and non-negative integers,

respectively.
e ||-|| denotes a generic norm unless otherwise specified.

e LP(E,E,m) denotes classes of measurable functions:

i1, = ([ |f<m>|pdm<x>); ‘o

1

Specifically, || X||, = (E[X|P)? for a random variable X.

o L>°(E,&,m) denotes classes of measurable functions:

| fllo = Inf{C > 0:|f| < C almost everywhere} < oc.

e |A|. denotes the cardinality of a finite set A.

e (X,d;) and (Y,d,) are two metric spaces equipped with metrics d, and d,, then

. _ dy(f(X1), f(X2))
Lin(f) = sup = X Xa)

denotes the Lipschitz constant of function f : X +— ).
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Chapter 1

Introduction

1.1 Background

Volatility refers to the fluctuation of prices of assets in a financial context. A widely
conducted approach to volatility modelling starts from the autoregressive conditional
heteroscedasticity (ARCH) model (Engle, 1982), which depicts the conditional vari-
ance of the United Kingdom’s inflation as linearly dependent upon past realizations.
Bollerslev (1986) then proposed a generalized ARCH (GARCH) model to further ac-
commodate the dependence of the conditional variance on its own past. The GARCH
model has become one of the most popular models in econometrics, and numerous
variations of it have been developed ever since, extending the scope of econometric
phenomena that can be explained by GARCH models. In this research, we focus on

three directions in which the GARCH model has been extended in the literature:
e GARCH models that depict asymmetry in the response;
e GARCH models for integer-valued data;
e High-dimensional GARCH models for spatio-temporal data.

Aiming to accommodate asymmetry in volatility, GARCH models with thresh-
old structures were proposed: Glosten et al. (1993) fitted their GJR-GARCH to the

monthly returns of a stock index and found that the variance responds differently to
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positive and negative shocks. Zakoian (1994) and Nelson (1991) also observed asym-
metry in the standard deviation and log-transformed variance through their threshold
GARCH (TGARCH) and exponential GARCH (EGARCH) models, respectively. In the
study of integer-valued data, some authors replaced the conditional Gaussian distribu-
tion in the original GARCH model with discrete distributions, including the Poisson
distribution (Ferland et al., 2006; Fokianos et al., 2009; Wang et al., 2014), the bino-
mial distribution (Risti¢ et al., 2016), and the non-negative binomial distribution (Zhu,
2010; Xu et al., 2012). In particular, Wang et al. (2014) found asymmetry in annual
earthquake counts through their threshold Poisson autoregressive model.

The aforementioned GARCH variations are limited to univariate cases. Starting
from Bollerslev et al. (1988), a series of multivariate GARCH (MGARCH) models have
been developed (Bollerslev, 1990; Engle and Kroner, 1995; Tse and Tsui, 2001; En-
gle, 2002), aiming to simultaneously study the dynamic structure in the conditional
covariances between cross-sectional variables. However, the number of parameters of
these MGARCH models increases with the dimension, causing significant challenges
in statistical inference. Therefore, applications of MGARCH models are often lim-
ited to multivariate data of very low dimension, such as two stock indices (Karolyi,
1995) or exchange rates of two currencies (Tse and Tsui, 2001). To circumvent the
over-parameterization problem in MGARCH models, some authors use a network to
describe cross-sectional relations instead of relying on dynamic conditional covariances.
This idea was first applied by Zhu et al. (2017) to their network vector autoregression
(NAR), in which the number of parameters is fixed even with increasing dimension. It
led to a series of subsequent studies, including Zhou et al. (2020)’s network GARCH
(NGARCH) model, Xu et al. (2024)’s dynamic network quantile regression (DNQR),
and Armillotta and Fokianos (2024)’s Poisson network autoregressive (PNAR) model.
Distinct from traditional multivariate time series models, these network-based models
are capable of handling time series with very high dimensions. For example, Zhou
et al. (2020) fitted their NGARCH to daily log returns observed simultaneously from
hundreds of stocks, and Armillotta and Fokianos (2024)’s PNAR was used to analyse

monthly crime numbers from 552 blocks in Chicago.
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An open issue related to high-dimensional GARCH models is to establish limit the-
orems for statistics under increasing dimension. Zhou et al. (2020)’s network GARCH
assumed a fixed dimension N. The asymptotic properties of their quasi maximum like-
lihood estimation (QMLE) hold under increasing temporal sample size, i.e., T — oo.
However, their limit theorems cannot be applied when both T"— oo and N — oco. An
innovative approach to this problem was proposed by Xu et al. (2024), who regarded
samples under large N and large T" as random fields, deriving the asymptotic properties
using limit theorems for random fields. In this research, we will use the idea of treating
high-dimensional time series as random fields and establish methodologies to estimate

a series of network GARCH models under large N and large T.

1.2 Research method

With the background being introduced, in this research we make the following contri-

butions to modelling volatilities of high-dimensional time series:

e We propose two new network GARCH models that accommodate asymmetric

and potentially integer-valued spatio-temporal data in a large-scale network;

e We propose general methodologies that apply to a wide range of network GARCH

models with different conditional distributions and structures;

e We develop limit theorems for non-stationary arrays of random fields, and we
apply these results to the proposed models, establishing parameter estimations

that are consistent and asymptotically normal when T" — co and N — oo.

As we have mentioned in the background, the first issue in the development of high-
dimensional GARCH models is the over-parameterization problem caused by a large V.
To address this issue, we adopt the idea of incorporating an observed network into the
model. Compared to other parameter-reduction techniques, such as the conditional
correlations (Bollerslev, 1990; Tse and Tsui, 2001) and the Factor-GARCH models
(Engle et al., 1990; Pan et al., 2010; Li et al., 2016), the network approach is advanced

in two aspects: first, it is natural to describe cross-sectional relations by a network;
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second, the number of parameters is fixed under increasing N. Further introduction
and comments on the network approach and other parameter reduction techniques are
made in Section 2.2.

Empirical evidence has shown that bad news and good news have asymmetric effects
on predictable volatility (Black, 1976; French et al., 1987). In this research, we use the
self-excited threshold structure to capture this asymmetry, as in the GJR-GARCH
(2.1.5) by Glosten et al. (1993). This choice is based on the work of Engle and Ng
(1993), who fitted different asymmetric GARCH models to daily stock return data,
and the GJR-GARCH (Glosten et al., 1993) outperformed the others. We propose a
threshold network GARCH model (4.1.1) with a threshold of 0, which is appropriate
for analyzing stock returns. However, in the Poisson threshold network GARCH model
(5.2.1) that is proposed for non-negative integer-valued data, we follow Wang et al.
(2014) and let the threshold value be an unknown integer, which can be estimated
simultaneously with other parameters. We also propose a negative binomial threshold
network GARCH (6.5.2) as an example of the generalized network GARCH model
(6.2.2), following the piece-wise threshold structure of Samia and Chan (2011).

Maximum likelihood estimation is a conventional approach in estimating univari-
ate GARCH models and multivariate GARCH models with fixed N. See Francq and
ZakoTan (2004) and Zhou et al. (2020) for example. The asymptotic properties of max-
imum likelihood estimation are based on limit theorems that do not apply when both
T — oo and N — oo. Xu et al. (2024) adopted the limit theorems for random fields
in the inference of their dynamic network quantile regression (DNQR) model, estab-
lishing a consistent and asymptotically normal instrumental variable estimation that
accommodates the large NV case. As far as we know, it was the first time limit theo-
rems for random fields were applied in the statistical inference of a high-dimensional
model. Xu et al. (2024) used the limit theorems proposed by Jenish and Prucha (2012)
under near-epoch dependence (NED), which is a spatial dependence measure of ran-
dom fields. However, NED cannot be used without an auxiliary random field (see our
introduction and comments on NED in Section 2.4.2), as in models (5.2.1) and (6.2.2).

In this research, we use the e-weak dependence measure of random fields in the sense of
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Doukhan and Louhichi (1999). There is no preceding work in the literature that applies
the limit theorems under e-weak dependence to the inference of high-dimensional time
series models. We fill the gap in two aspects: first, we extend existing limit theorems
for e-weakly dependent random fields (Dedecker et al., 2007; Curato et al., 2022) to ac-
commodate non-stationarity; second, we establish some important results to facilitate
the application of proposed limit theorems, e.g., the preservation of e-weak dependence

under transformations and infinite shifts.

1.3 Thesis outline

Chapter 2 is a review of preliminary knowledge regarding GARCH models and random
fields. First, a series of univariate GARCH models are introduced, including asym-
metric GARCH models and integer-valued GARCH models. Then, we introduce the
multivariate GARCH models and the over-parameterization problem caused by high
dimension. Conditional correlation GARCH and Factor-GARCH are introduced as
classic approaches to parameter reduction, followed by the introduction of the network
approach. At last, we introduce two dependence measures for random fields, namely
NED and e-weak dependence. We comment on the limitations of the NED measure
and existing limit theorems under e-weak dependence.

In Chapter 3, we propose a law of large numbers and a central limit theorem for
random fields that are weakly dependent with respect to 8- and n-coefficients. Some
properties of these coefficients are also derived, including weak dependence under trans-
formations and infinite shifts. These intermediate results fill the gap between the pro-
posed limit theorems and their application to the inference of high-dimensional time
series. We establish a maximum likelihood estimation that is consistent and asymp-
totically normal under large NT'. Finally, we apply our results to estimate a network
autoregressive model as an example.

In Chapter 4, we propose a threshold network GARCH (TNGARCH) model. The
major part of this chapter has been published in Pan and Pan (2024). Compared to

Zhou et al. (2020)’s network GARCH, we also consider asymmetry in how conditional
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variances react to positive and negative shocks. The stationarity of proposed model is
checked under fixed NV, and the limit theorems of QMLE are investigated under large N
and large T'. We fit the model to log-returns of four groups of stocks from the Shanghai
Stock Exchange and the Shenzhen Stock Exchange. A Wald statistic is proposed to
test the existence of the threshold, and a high-dimensional white noise test is carried
out to check the model adequacy.

In Chapter 5, we consider an extension of the TNGARCH model to accommodate
integer-valued high-dimensional time series, where the conditional distribution is as-
sumed to be Poisson. Unlike the continuous-valued TNGARCH, the threshold value
in this Poisson TNGARCH (PTNGARCH) model is unknown. We propose a two-step
maximum likelihood estimation (MLE) method to estimate the threshold and other
parameters simultaneously. The model is fitted to the daily counts of car accidents in
different neighborhoods of New York City.

In Chapter 6, we establish unified methodologies for a class of network GARCH
models with conditional distributions in the one-parameter exponential family. The
stationarity under fixed IV is checked, and we establish a consistent and asymptotically
normal maximum likelihood estimation under large N and large T. The results are
applied to a new negative binomial TNGARCH model. We fit this model to the same
car accident data and compare its performance against the Poisson TNGARCH model

through a probability integral transformation test.
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Preliminaries

2.1 Univariate GARCH models

Let {y; : t € Z} be a univariate time series. A major purpose of time series models is
to forecast the future based on past information. For example, the one-step forecast of
y¢ based on past information H;_; is the conditional mean E(y;|H;—1). Conventional
econometric models assumed constant conditional variance Var(y|#H:—1). For example,

a first-order autoregressive model is written as:

Yt = PYr—1 + &t (2.1.1)

where {g; : t € Z} is independently and identically distributed (IID) with mean 0 and
Var(g;) = 02. Then the one-step forecast is E(y|y;—1) = ¢y;—1 with conditional vari-
ance Var(y|y;—1) = 0. However, some econometric forecasters found that randomness
associated with forecasts changes widely over time (McNees, 1979), hence the constant
conditional variance seems inappropriate. Engle (1982) proposed the ARCH model in
order to accommodate time-varying conditional variance in time series forecasting. A
first-order ARCH model is written as:

ytI’Ht—1 ~ N(O, ht),
(2.1.2)

hi =w+ aytz_l,



Chapter 2. Preliminaries

where w > 0 and « > 0, ensuring the positiveness of h;. The conditional distribution of
1y is assumed to be normal with mean 0 and variance h;. In this setting, the conditional
variance Var(y;|y:—1) = hy is allowed to change over time.

Bollerslev (1986) proposed a natural generalization of the ARCH model, namely
GARCH. A GARCH(1,1) model has the following form:

yt’Ht—l ~ N(07 ht)7
(2.1.3)

he = w + ayiy + Bhi-1,
where w > 0, @ > 0 and 8 > 0, ensuring the positiveness of h;. Unlike the ARCH
model, the conditional variance in the GARCH model is related to both y? ; and its
own past h;—1. This feature allows the GARCH model to incorporate longer memory
in the conditional variance. In fact, it can be regarded as an ARCH(co) model when
0 < B < 1 (p.309, Bollerslev, 1986). The GARCH model has been widely applied
in econometric studies, leading to a series of extensions that accommodate additional
features not described by the original GARCH model. Next, we will introduce two types
of extended GARCH models: threshold GARCH models, which allow for asymmetry
in the conditional variance, and integer-valued GARCH models, which are designed for
count data. For readers interested in other types of GARCH variations, we recommend

Terdsvirta (2009)’s survey of univariate GARCH-type models.

2.1.1 Asymmetric GARCH models

According to the empirical works by Black (1976) and French et al. (1987) among others,
sometimes an unexpected drop in price (bad news) increases predictable volatility more
than an unexpected increase in price (good news) of similar magnitude. The original
GARCH model (2.1.3) cannot explain this effect, as the impact of y;—1 on h; is not
related to the sign of y,_1. Different extensions of the GARCH model have been
proposed to accommodate this effect by incorporating different coefficients around the

threshold 0. We list two important examples below.
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Ezample 2.1.1. Nelson (1991) proposed an exponential GARCH as follows:

Yt = €\ he,
(2.1.4)

log(h) = w + agi—1 + 7 [let—1] — Eler—1[] + Blog(he—1),

where {e; : t € Z} is IID with mean 0 and variance 1. Nelson (1991) fitted his model
to daily returns for a value-weighted market index and obtained a negative estimation

of a, indicating that negative shocks generate more volatility than positive shocks.

Ezample 2.1.2. Glosten et al. (1993) proposed a more natural specification, namely

GJR-GARCH, as follows:
hy =w+ Oéth_l + fyl{yt_1>0}ytz_1 + Bhy—1, (2.1.5)

where 1¢,, | -0y is an indicator that equals 1 if y—1 > 0 and 0 otherwise. It is assumed
that w > 0, « > 0, v > 0 and 8 > 0, to ensure the positiveness of h;. Therefore,
the slope of y? | is a + 7 on the right side of the threshold 0 and « on the left side.
Their empirical results agreed with those of Nelson (1991), as the estimation of v was

negative.

Engle and Ng (1993) conducted an excellent comparison between different speci-
fications of asymmetric ARCH/GARCH models, including the EGARCH and GJR-
GARCH, on daily Japanese stock return data. Their empirical results suggested that
the GJR-GARCH outperformed the others. Therefore, in Chapter 4, we will adopt a
threshold structure similar to the GJR-GARCH, as we will also analyze daily stock

return data.

2.1.2 Integer-valued GARCH models

The original GARCH model (2.1.3) assumes a normal conditional distribution of y,
while in the EGARCH model (2.1.4) and the GJR-GARCH model (2.1.5), the condi-
tional distribution is centered and continuous. These GARCH models are not capable
of handling time series of counts, such as the trading volume of houses in the real estate

market De Wit et al. (2013), the number of stock transactions Jones et al. (1994), or

9
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the daily mortality from COVID-19 Pham (2020).

A natural idea is to consider a discrete conditional distribution of 3. For example, a
conditional Poisson distribution was considered by Heinen (2003), with a GARCH-type
autoregressive conditional intensity. A similar specification was also used by the integer
GARCH (INGARCH) model of Ferland et al. (2006) and the Poisson autoregression
(PAR) of Fokianos et al. (2009). There are other specifications in the literature, ac-
cording to different features presented by the data. For example, Risti¢ et al. (2016)
considered a conditional binomial distribution for bounded Z-valued data, and Zhu
(2010) proposed a negative binomial integer-valued GARCH (NB-INGARCH) model

to handle Z-valued data with over-dispersion. We give two examples below.

Ezample 2.1.3. A GARCH(1,1) model with a conditional Poisson specification has the

following form:

yt|Hi—1 ~ Poisson(A),
(2.1.6)

At =w+ay—1+ BN,

where w > 0, a > 0 and § > 0, ensuring the positiveness of A\;. The conditional Poisson
intensity A; can be interpreted as the conditional variance or the conditional mean.
Accordingly, model (2.1.6) can be named integer-valued GARCH (Ferland et al., 2006)
or Poisson autoregression (Fokianos et al., 2009). We tend to use the name INGARCH

since the autoregressive structure of the intensity process parallels that of (2.1.3).

Ezample 2.1.4. An NB-INGARCH(1,1) model from Zhu (2010) is written as follows:

(2.1.7)

where w > 0, @« > 0 and 8 > 0, ensuring the positiveness of I;—tpt. Here, y; is the

count of failures before K successes, and p; is the (conditional) probability of success.
Although A\ = % is not the conditional variance, it is still appropriate to call it a
K(1—pt)

GARCH-type model, since the conditional variance —z changes over time.
t

Analogous to the continuous-valued case, integer-valued time series can also exhibit

asymmetry. For example, Wang et al. (2014) proposed a self-excited threshold Poisson
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autoregression (SETPAR) model and fitted it to annual counts of earthquakes, with
results showing an asymmetric structure around an estimated threshold of 25. With
a conditional Poisson distribution of y;, a SETPAR specification on the conditional
intensity A is:
w1+ Y1+ Bid-1 Y1 <
A = (2.1.8)
w2 + aoyi—1 + Pade—1 Y1 > T
To ensure the positiveness of A, it is supposed that w; and we are positive, a1, as,
B1 and (B2 are non-negative. Here, the coefficient parameters change when y;_1 is on
different sides of the threshold r. Unlike the GJR-GARCH, the threshold r is a positive
integer to be estimated simultaneously with the coefficient parameters. Wang et al.
(2014) suggested a two-step maximum likelihood estimation. Because the threshold is
an integer, it is not computationally demanding to search within a range of candidates
for the one that maximizes the likelihood.
Davis and Liu (2016) established a unified theory and inference related to a class of
GARCH models with conditional distributions in the one-parameter exponential family
and the accompanying process of the conditional mean p; = E(y;|H¢—1) evolving as a

function of 41 and p—p. i.e.:

pe = go(Ye—1, fht—1)- (2.1.9)

The one-parameter exponential family includes a wide range of continuous and discrete
distributions, e.g., the normal distribution, Poisson distribution, and binomial distri-
bution, among others. Therefore, Davis and Liu (2016)’s methodology applies to many
classical GARCH models, including the original GARCH (2.1.3), the GJR-GARCH
(2.1.5), the Poisson GARCH (2.1.6), and the NB-INGARCH (2.1.7).

2.2 Multivariate GARCH models

Let {y; : t € Z} be an N-dimensional time series where y; = (y1¢, Yot ..., ynt)’. The

univariate volatility models (2.1.2) and (2.1.3) concern the dynamics of the conditional

11
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variance. So it is natural to consider the dynamics of conditional covariance matrix
in the multivariate case. Bollerslev et al. (1988) first proposed a multivariate GARCH
model as follows:

yi|Hi—1 ~ N(0, Hy),
(2.2.1)

vech(H;) = C + Avech(y;—1y;_1) + B vech(H;_1).

The conditional distribution of y;—; is a multivariate normal distribution N (0, H;). H;
is the N x N conditional covariance matrix, and the 1 N(N + 1)-dimensional vector
vech(H,) is the stacked columns of Hy. A total number of 1N (N + 1) + N?(N + 1)?
parameters are contained in A, B, and C.

The MGARCH model of Bollerslev et al. (1988) is very general, as it considers all
cross-sectional relations between these conditional variances and covariances. However,
the positive definiteness of H; cannot be ensured by simply restraining A, B and C,
and the number of parameters can be excessive even when N is only mildly large.
These two problems make the estimation of parameters computationally infeasible in
practice. In fact, in the empirical study on the quarterly percentage returns from
three assets (IV = 3), Bollerslev et al. (1988) used a simplified version of (2.2.1) with
diagonal matrices A and B. The over-parameterization problem is one of the major
obstacles in the development of multivariate GARCH models, and many efforts have
been made in the literature to reduce the number of parameters without sacrificing
too many cross-sectional relations. For a systematic survey of multivariate GARCH
models, we recommend Bauwens et al. (2006). Selected examples of parameter reduced

multivariate GARCH models will be introduced in the subsequent sections.

2.2.1 CCC-GARCH and DCC-GARCH

Bollerslev (1990) proposed a constant conditional correlation GARCH (CCC-GARCH)
model, which only considers dynamics in the diagonal elements (conditional variances)

of the conditional covariance matrix H;. Specifically, a CCC-GARCH(1,1) model as-
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sumes that
hiig = wi + Qiypy 1 + Bihiig—1,  i=1,2,..,N;

hije = pij\/hiithjjt, j #i.

Each conditional variance h;; ¢ follows a typical GARCH dynamic, while the conditional

(2.2.2)

covariance h;j;; is derived from hy; ¢, hjj; ¢, and a constant correlation p;;. To ensure the
positiveness of h;; ; it suffices that w; > 0, o; > 0,and 8; > Oforalli =1,2,...,N. Ad-
ditionally, the number of parameters in (2.2.2) is of order O(N?), which is significantly
reduced compared to model (2.2.1).

Tse and Tsui (2001) proposed a dynamic conditional correlation GARCH (DCC-
GARCH) model, extending the CCC-GARCH model by assuming time-varying condi-

tional correlations as follows:

pijt = (1 =01 — 02)pij + 01piji—1 + O26iji—1, (2.2.3)

where ¢;;;—1 is a function of lagged observation of y;;, 61 > 0, 62 > 0 and 67 + 6 < 1.
The DCC-GARCH model adds more flexibility to the CCC-GARCH while retaining
O(N?) parameters, since the coefficients 6; and 6y (2.2.3) are the same for all i =
1,2,..,N.

Compared to model (2.2.1), the CCC-GARCH imposes a standalone GARCH dy-
namic with different coefficients on each conditional variance while assuming constant
conditional correlations. The DCC-GARCH further imposes standalone GARCH dy-
namics with the same coefficients on each conditional correlation. However, these
models still suffer from the over-parameterization problem with large N despite their

significance in parameter reduction.

2.2.2 Factor-GARCH

Another approach to reducing parameters in multivariate GARCH models is using fac-
tor models. The idea behind Factor-GARCH is assuming that the problem of modeling
the N x N conditional covariance matrix H; can be reduced to modeling the K x K

conditional covariance matrix of K common factors, where K is supposed to be much
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smaller than N. For example, Pan et al. (2010) assumed that
yYe = AXt + vy, (224)

where x; is the K-dimensional vector of factors, v; is an IID innovation vector with
mean 0 and covariance ¥, and A is a N x K matrix of parameters. It is not hard to
obtain that

Ho=AHDA + %,

where Ht(f ) = Var(x¢|H;—1) is a K x K matrix. The first factor volatility model was
proposed by Engle et al. (1990), followed by a series of extensions including Bollerslev
and Engle (1993), Pan et al. (2010), Hu and Tsay (2014), and Li et al. (2016).

The performance of a factor model when fitted to high-dimensional time series
largely relies on the estimated number of factors. For example, Li et al. (2016) fitted
their factor GARCH model to daily returns of 196 stocks (N = 196), and the estimated
number of factors was only 1 (K = 1), reducing the high-dimensional process to a
univariate process. However, such efficiency in dimension reduction cannot be assured

and completely depends on the data itself.

2.2.3 Network GARCH

Zhu et al. (2017) proposed an alternative approach to the aforementioned parameter-
reduction and dimension-reduction methods by incorporating observed social relation-
ships into a vector autoregression. They regarded y; = (y1t, yat, - - -, Ynt)' as observa-
tions from N nodes in an undirected and weightless network, which should be observed
in practice. The cross-sectional relations are represented by edges a;;, where a;; = 1
if node ¢ and node j are connected, and a;; = 0 otherwise. Moreover, Zhu et al.
(2017)’s network AR model has a fixed number of parameters. They fitted their model
to weekly log(1+ x)-transformed post lengths from N = 2982 social media users, where
the network was established directly based on the follower-followee relations.

Zhou et al. (2020) saw the merits of network in high-dimensional time series analysis
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and established a network GARCH(1,1) as follows:

N
hit = w + ayztfl + A Z wijy]%tfl + Bhig—1, 1=1,2,--- N. (2.2.5)
j=1
where w;; = %, w>0,a>0,A>0and 8 > 0. Compared to conventional
=1 %

multivariate GARCH models, (2.2.5) uses minimum parameterization and depicts the
cross-sectional relations in a direct way, i.e. the conditional variance h;; of an individual
1 is associated with past observations on its neighbours.

The parsimony in this idea leads to a series of network time series models, including
network quantile autoregression (Zhu et al., 2019; Xu et al., 2024) and Poisson network
autoregression (Armillotta and Fokianos, 2024). The network can be established ac-
cording to empirical needs (Anselin, 1988). For example, Zhu et al. (2019) and Zhou
et al. (2020) considered connections between stocks through common shareholders; Xu
et al. (2024) saw two companies as connected if their headquarters are in the same city;
Armillotta and Fokianos (2024) assumed that crime numbers from two geometrically

neighboring locations are related.

2.3 Spatio-temporal GARCH models

Multivariate time series models belong to a much larger family of spatio-temporal mod-
els. Spatio-temporal models deal with random variables observed over both time and
space. For example, a random variable 1 (s) (s € R?) observed at time ¢ on geographic
coordinate s is spatio-temporal. An observation y;; from the network GARCH model
(2.2.5) is also spatio-temporal, with the spatial location s =i (i € Z).

A general form of a spatio-temporal model is written as:

yi(s) = f&) (H(t’S),Xt(S),ét(S)> 7 (2.3.1)

where f(t9) is a space-time-specific function of the parameters () a vector of ex-
planatory variables X;(s), and an error term £,(s). In practice, it is essential to design

a simplified version of model (2.3.1), as the general form typically includes more pa-
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rameters than observations (Anselin, 1988). For example, Lu et al. (2009) proposed
a spatio-temporal model with parameters varying only across spatial locations s. The
network GARCH model (2.2.5) is a more simplified version of (2.3.1), with parameters
unchanged over both time and space. The Spatial Bilateral BEKK GARCH model pro-
posed by Billio et al. (2023) incorporates space-varying parameters embedded within
time-varying network structures.

The spatio-temporal GARCH model of Hglleland and Karlsen (2020) is a direct
extension of the original GARCH model (2.1.3). It is written as:

ye(s) = ex(s)v/ hu(s),
_w+22a2 u)y? (s +ZZBZ Yhi—i(s —u),

i=1 u€lAq; =1 u€Aq;

(2.3.2)

where s € Z¢ is a d-dimensional spatial location, w > 0, Ay; = {u ezd: a;(u) > O}
and Ag; = {u € Z¢: B;(u) > 0}. The original GARCH model (2.1.3) only considers the
temporal heterogeneity of the conditional variance process, while model (2.3.2) further
incorporates spatial effects.

Autoregressive spatio-temporal models have been extensively studied (Fan et al.,
2003; Lu et al., 2009, 2024), but the study of spatio-temporal GARCH models is still
in its early stages. Since high-dimensional time series data is a special case of spatio-
temporal data where the location s is a single index i € Z, the network-based GARCH
models proposed in this research are spatio-temporal GARCH models with highly spe-
cific structures. Similar to existing network-based models (Zhu et al., 2017; Zhou et al.,
2020; Xu et al., 2024; Armillotta and Fokianos, 2024), we employ an explicit network
structure to represent the spatial heterogeneity of conditional variances. Furthermore,
it is the connection between high-dimensional time series data and spatio-temporal
data that inspires us to consider the limit theorems for random fields in the estimation

of high-dimensional time series models.
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2.4 Limit theorems for random fields

In this research, we are interested in statistical inference for asymmetric network
GARCH models considering the case when N — oco. N-dimensional time series model
with N — oo are also called spatio-temporal models by some authors. The empiri-
cal study of Zhou et al. (2020) showed that the network GARCH model can handle
data with a large N; however, their quasi-maximum likelihood estimation was estab-
lished with a fixed N. Their proof of asymptotic normality cannot be applied when
N — oo since it relied on the strict stationarity of the N-dimensional random vector
ve = (Y1t Y2t, - - -, yne) . Zhu et al. (2017) employed ordinary least squares estimation
for their network AR model, and Armillotta and Fokianos (2024) adopted a quasi-
maximum likelihood estimation for their Poisson network AR model, both allowing
N — oco. However, their methods cannot be applied to GARCH-type models, and no
parameter estimation for high-dimensional GARCH models in the existing literature

remains valid when N — oo, as far as we know.

2.4.1 Limit theorems in the inference of high-dimensional models

Limit theorems are essential in statistical inference for time series models. Particularly,
the classical law of large numbers (LLN) and the central limit theorem (CLT) are fun-

damental in establishing consistent and asymptotically normal parameter estimation.

Ezample 2.4.1. Let {X; : t € Z} be a time series of IID random variables with mean
p and variance o2, the classic law of large numbers and the central limit theorem are

written as:

(LLN) Xp =% 3

(CLT) VT(Xr —p) % N(0,0?)

as T — oo, where X7 = % Z?:l X, is the sample mean.

The IID assumption required by the classical limit theorems in Example 2.4.1 is

too stringent in time series analysis. Limit theorems corresponding to different types
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of sequential dependence have been developed and applied in the estimation of time
series models. For example, Zhu et al. (2017) and Zhou et al. (2020) used the central
limit theorem for martingale difference sequences (Proposition 7.8, Hamilton, 2020).
However, if the limit theorems for dependent time series are used in the inference for
high-dimensional models, severe assumptions on limiting behaviors as N — oo are often
required. See, for examples, Assumption (C3) in Zhu et al. (2017), Assumption (C2)
in Zhu et al. (2019), and Assumption (B3) in Armillotta and Fokianos (2024).

Remark. {X; : t € Z} is a martingale difference sequence if E(X|X;—1, X¢—92,...) =0
and E||X;|| < co. This concept defines a measure of dependence of X; on its past.
However, if X; is an N-dimensional vector, being a martingale difference sequence tells

no information about the cross-sectional dependence.

In contrast, Xu et al. (2024) employed an instrumental variable estimation for their
dynamic network quantile regression (DNQR) model that accommodates N — oo, and
it was proved to be consistent and asymptotically normal by using the limit theorems
for random fields. The dependence measure they use is the near-epoch dependence

(NED), which was extended by Jenish and Prucha (2012) to random fields.

Remark. A random field is a collection of random variables Xj:i € D where Xj is
indexed by i in a lattice D. For example, letting i =t € Z, a time series {X; : t € Z} is
a random field on the lattice D = Z; letting i = (i,t) € Z?, a spatio-temporal process
{yit : (i,t) € Z*} is a random field on the lattice D = Z2.

Comparing to the conventional measures of serial dependence such as martingale dif-
ference, using a dependence measure for random fields seems to be more appropriate

when investigating the spatio-temporal dependence.

2.4.2 Near-epoch dependent random fields

The limit theorems of Jenish and Prucha (2012) were established for random fields that
are NED on a mixing random field. According to their definition, {X; : i € D} is said
to be LP-NED (p > 1) on {g; : i € D} if supjcp [|Xil|,, < oo, and

1% = E(Xi| Fi(s)[l,, < ditp(s),
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where Fi(s) := o{gj : [|j —1i|| < s}, {¢(s) : s > 1} are non-negative constants such
that lims ,o09(s) = 0, and {d; : i € D} are finite positive constants. Moreover, it
is called uniformly NED if d;’s are uniformly bounded. It is called NED of size—pu if
P(s) = O(s™*) for some p > 0.

NED measures the approximability of a random field by another random field that
is mixing in the sense of Jenish and Prucha (2009). Therefore, NED becomes an invalid
concept if such an auxiliary random field can not be appropriately identified. In the
DNQR model of Xu et al. (2024), there exists a auxiliary random field consisting of IID
uniformly distributed random variables {U;;}. On the other hand, in GARCH mod-
els with conditional Poisson distribution (Fokianos et al., 2009) or negative binomial

distribution (Zhu, 2010), there is no appropriate auxiliary random field.

2.4.3 e-weakly dependent random fields

Let U C D and V C D be two sub-lattices, with p(U,V) = min{|li—j|| :i € U,j € V'}
defining their distance. Xy denotes a collection of random variables {X; : i € U}.

Doukhan and Louhichi (1999) introduced a dependence measure

€uw(8) = sup { | Cov(f(%U)’Sq(%V)N

feF,ge g |Ul.=u,|V|e=v,pU,V 23},
o fEF.geG,Ul=uVle=v,p(U,V)

where F and G are two classes of real-valued functions and W is a positive bounded
real-valued function of f € F and g € G. The e-coeflicient €, (s) is specified by ¥ and
regularity conditions on F and G, and it measures the dependence between two groups
of random variables (with cardinality u and v respectively) that are s-apart spatially.

In what follows, we give two examples of dependence coefficients.

Ezample 2.4.2. (Dedecker and Doukhan, 2003) e-coefficients become 6-coefficients if

F is a class of bounded functions, G is a class of Lipschitz continuous functions, and
U(f,9) = vl fllo Lip(g)-

Ezample 2.4.3. (Doukhan and Louhichi, 1999) e-coefficients become n-coefficients if

F. and G, are classes of bounded and Lipschitz continuous functions, and V(f,g) =

0] flloo Lip(g) + ullglloo Lip(f).
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Other types of e-coefficients can be looked up in Dedecker et al. (2007). The random
field {X; : i € D} is said to be (F,G, V¥)-dependent (or e-dependent for short) if
lims_,00 €(s) = 0. (F,G, ¥)-dependence is named 6- or n-dependence, according to
different specifications of dependence coefficients in above examples.

Comparing to the concept of NED, e-dependence measures the spatial dependence
in a more direct way, as it does not require an auxiliary random field. However, there
is no attempt in the literature on applying limit theorems under e-dependence to the
inference of high-dimensional time series models. In fact, existing limit theorems for
random fields under e-weak dependence is not as flexible as that under NED (Jenish
and Prucha, 2012). For example, the most recent result is a central limit theorem
proposed by Curato et al. (2022) for 6-lex weakly dependent random fields, where their
f-lex dependence considers the covariance between f(Xy) and g(Xy ), with v = 1 and
all indices in U are lexicographically smaller than the one in V' (see Definition 2.1 in

Curato et al. (2022) for details).

Ezample 2.4.4. {D,, : n > 1} is a series of finite subsets of Z" such that

oD
lim |Dy|. = oo, lim 9Dnle _ 0,

n—00 n—oo |Dple

where 0D,, = {i€ D,,: 3j ¢ D, |i—j|| =1}. {X;:1€ Z™} is a strictly stationary
centered real-valued random field such that E|X;[>*? < oo for some § > 0, and the

dependence coefficients 0(s) = O(s™#) for some p > m(1+1/§). Then as n — oo,

1
—— 3 X % N(0,0?),
‘Dn’C ieD,
where 02 = > jezm E(XoX;|Z) with T being the o-algebra of shift invariant sets as
defined in Dedecker (1998).

For the aforementioned high-dimensional models (Zhu et al., 2017; Zhou et al., 2020;
Xu et al., 2024; Armillotta and Fokianos, 2024), stationarity over ¢ can be proved under
mild conditions. However, the CLT above requires strict stationarity over both 7 and

t, which is too stringent for high-dimensional time series. Indeed, the type II strict
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stationarity proposed by Zhu et al. (2017) can be proved for some high-dimensional
network models (Zhu et al., 2017; Armillotta and Fokianos, 2024), but it is not a

widely accepted definition of stationarity in a spatio-temporal sense.
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Limit Theorems of Weakly
Dependent Random Fields

3.1 Introduction

High-dimensional models have drawn much attention recently in science, social science,
econometrics, among other fields. High-dimensional models, or spatio-temporal models,
have their merits in describing dependence over both time and space. However, since the
samples from high-dimensional models form a two-dimensional panel that grows in two
directions, the limit theorems used in the inference of univariate or fixed-dimensional
time series are no longer valid. Note that a spatio-temporal model can be regarded as
a random process running on a two-dimensional lattice, i.e., a random field. Therefore,
we seek limit theorems for random fields that could potentially provide useful tools in
the inference of high-dimensional models.

Limit theorems for random fields have been extensively studied in the literature.
Jenish and Prucha (2009) proposed limit theorems for arrays of random fields un-
der a- and ¢-mixing. Compared to previous limit theorems for mixing random fields
(Bolthausen, 1982; Guyon, 1995; Dedecker, 1998), their limit theorems are more general
in the sense that they accommodate arrays of random fields that are non-stationary

and have asymptotically unbounded moments. However, the mixing property may fail
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to hold for integer-valued time series (see (3.6.2) in Dedecker et al. (2007)). Even a
simple AR(1) model with Bernoulli-distributed innovation is not mixing (Gorodetskii,
1978; Andrews, 1984). To solve this flaw of the mixing property, Doukhan and Louhichi
(1999) introduced a new concept of weak dependence, which can be extended to random
fields. See Chapter 2 in Dedecker et al. (2007) for details.

However, existing limit theorems under weakly dependence either require station-
arity (Dedecker et al., 2007; El Machkouri et al., 2013; Curato et al., 2022) or are
only established for single-indexed sequences (Neumann, 2013; Merlevede et al., 2019).
For example, El Machkouri et al. (2013) proposed a CLT for random fields that are
Bernoulli shifts of IID innovations, which could be regarded as a special case of the
models that our CLT can handle. Neumann (2013) and Merlevede et al. (2019) pro-
posed a CLT and a functional CLT, respectively, for non-stationary triangular arrays
of random variables. Since they are both limited to random sequences along a single
time index, their results are not applicable to high-dimensional time series that we will
discuss later, and, moreover, none of them is robust against asymptotically unbounded
moments. In Theorem 3.1 and Theorem 3.2, we will propose a law of large numbers
and a central limit theorem for weakly dependent triangular arrays of random fields,
which are not necessarily stationary and have potentially asymptotically unbounded
moments.

Another flaw of existing literature is the lack of applications of limit theorems for
random fields to the inference of high-dimensional time series. The property of weak
dependence that we use in this chapter has been proved to be preserved under trans-
formations with certain conditions. See, for example, Proposition 2.4 in Curato et al.
(2022). In Proposition 3.2, we will also show that weak dependence can be preserved
under infinite shifts. Facilitated by these properties of weak dependence, we are able
to apply our limit theorems to establish a maximum likelihood estimator for high-
dimensional time series, with consistency and asymptotic normality being proved in
Proposition 3.4 and Proposition 3.5. With these new results, we have built a sufficient
theoretical basis for making asymptotic inference in a wide range of high-dimensional

time series models that can be treated as weakly dependent random fields under rea-
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sonably general conditions. As an example of the application of our general theory, we
obtained the asymptotic normality of the estimation for network autoregressive (NAR)
models in Proposition 3.6 without assuming second-type stationarity and under less
restrictive conditions on networks (ref. Zhu et al. (2017)).

The rest of this chapter is organized as follows. In Section 3.2, we will introduce
the concept of weak dependence for arrays of random fields and investigate its heredity
under transformation and infinite shift. Our LLN and CLT for arrays of random fields
will be presented in Section 3.3. In Section 3.4, we will provide the conditions for high-
dimensional time series to be weakly dependent and establish the asymptotic properties

of the MLE. The proofs of all our results are included in Section A.1.

3.2 Weakly dependent random fields

Random fields are random processes running on multi-dimensional lattices. Considering
a metric space (T, p), one could easily define on T an infinitely countable lattice D C T,

which satisfies the following assumption throughout this chapter:

Assumption 3.2.1. Defined on the metric space (T, p), the lattice D C T is infinitely
countable, and there exists a minimum distance py = inf; jep p(4,7), and without loss

of generality we assume pg > 1.

This minimum distance assumption is required to ensure the growth of sample size with
the expansion of sample region on D. A simple example that satisfies Assumption 3.2.1
is T being a d-dimensional Euclidean space R? and D = Z? being an infinite lattice with
minimum distance of 1. Let {D,, : D,, C D,n > 1} be a series of sub-lattices of D with
finite sizes. In the rest of the section, we consider a random field {X;,, : i € Dy, n > 1},
with X, takes its value in a Banach space (X, || - ||).

In their Definition 2.2, Dedecker et al. (2007) defined the (F, G, ¥)-coefficients
that measure the dependence between two separated groups of random variables on
Z. Dedecker et al. (2007) also remarked that their definition could be easily extended
to general metric sets of indices. Curato et al. (2022) defined their #-lex dependence

coefficients for random fields on R™. In Section 3.2.1 we will adopt the weak depen-
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dence by Dedecker et al. (2007), and extend it for triangular arrays of random fields

with indices on any lattice D that satisfies Assumption 3.2.1.

3.2.1 Weak dependence

Let F, and G, denote two classes of functions from X" to R and X? to R respectively.
If ¥ is some function mapping from F, X G, to Ry, and X and ¥) are two arbitrary
random variables in X" and XY, then we can define the measurement of dependence

between X and ) by

| Cov(f(X),9(D))l
(f,9)

e(%,?j):sup{ :fEfu,QGQU}

Given any U,, C D,, with cardinality |Uy,|. = v and V,, C D,, with cardinality |V, |. = v,
let Xy, = (Xin)icv,, Xv,, = (Xin)iev,. Then the dependence coefficient of random

fields {X;,, : i € Dy, n > 1} is defined by
enup(s) =sup{e(Xu,,Xv,) : [Unle = u, |Vale = v, p(Up, Vi) > s}, (3.2.1)

where p(U,, V,,) := min;ey, jev, p(i,j) measure the distance between U, and V.

Remark. For any functions f € F, and g € F, such that ¥(f, g) < 0o, inequality below
follows directly from (3.2.1):

| Cov(f(Xu,), 9(Xv,))| < Cénuw(p(Uns Vi) (3.2.2)

for some constant 0 < C' < oo that is related to f, g and W.
Remark. Similar to Definition 1 in Jenish and Prucha (2009), we introduce the following

notations:

€uw(8) = Sup €nu.0(5), €(s) = sup €y(s).
n u,v

Now we are ready to give a formal definition of weak dependence as follows:

Definition 3.1. The random fields {X;, : ¢ € Dy,n > 1} in Banach space (X, | - ||)

are said to be e-weakly dependent if lims_,oo €(s) = 0.
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Using specifications (2.2.3) and (2.2.7) of ¥ in Dedecker et al. (2007), two varia-
tions of weak dependence coefficients can be defined according to different regularity

conditions on F,, and G,:

e If F, is a class of bounded functions and G, is a class of Lipschitz continuous

functions, then we can define the 6-dependence coefficient as

en,u,v(s) =sup {e(Xp,, Xv,) : |Ule = u,|V]e = v, p(Un, Vp) > s}, (3.2.3)

by letting W(f, g) = v|| f]loo Lip(g).

e If 7, and G, are both classes of bounded Lipschitz continuous functions, we can

also define the n-dependence coeflicient as

Nnuw(8) =sup{e(Xu,,Xv,) : |Ulc = u,|V]e = v, p(Un, Vi) > s}, (3.2.4)

by letting W(f,g) = ullgllcc Lip(f) + v[| flloc Lip(g)-

In this chapter we focus on 8 and 7 coefficients. For readers who may be interested in
other variations, we refer to Dedecker et al. (2007) section 2.2. From now on, we will
use € to denote a generic dependence coefficient despite of cases when specific notations
are necessary.

In some particular cases, we can compare the e—weak dependence to the mixing
(Jenish and Prucha, 2009) and the near-epoch dependence (NED) (Jenish and Prucha,
2012), which are two widely used concepts of dependence of random fields in the lit-
erature. In the case of random processes (i.e. the dimension of D is 1), an AR(1)
process with non-smooth innovation is 7-weakly dependent but it is not mixing (An-
drews, 1984), and Proposition 1 in Doukhan et al. (2012) shows that n-weak dependence
implies a-mixing for integer-valued processes. Moreover, by Example 3.4.2 and Propo-
sition 3.3 in Section 3.4, we show that uniform L.'-NED on IID random variables implies

n-weak dependence, in the case when D = Z2.
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3.2.2 Heredity of weak dependence

Before we establish the limit theorems in the next section, it is important to investigate
the heredity of weak dependence, which is essential for us to apply the limit theorems
in the inference of high-dimensional models. See for example, the instrumental variable
quantile regression estimation for the dynamic network quantile regression (DNQR) by
Xu et al. (2024) and the quasi maximum likelihood estimation for the threshold network
GARCH (TNGARCH) by (Pan and Pan, 2024). In this section, we will show that the
# and n weak dependence can be preserved under locally Lipschitz transformations and
infinite shifts.

Proposition 3.1 below is a natural extension of Proposition 2.1 and Proposition 2.2
in Dedecker et al. (2007) to arrays of random fields. It shows that weak dependence is
inherited under transformations satisfying condition (3.2.5). A simple example is any

Lipschitz-continuous function when a = 1.

Proposition 3.1. Let {X;,, : i € Dp,n > 1} be a R% —yalued random field with

Sup,, sUp;ep,, | Xinllp < 0o for some p>1, and H : R% s R is a function such that
[H (x) = H(y)| < clla —yll(]|*7" + [ly]*~) (3.2.5)

for some ¢ € (0,+00), a € [1,p), and any x,y € R%. Suppose that {Y;, : i €
Dy,,n > 1} are transformed from {X;,, : i € Dp,n > 1} by letting Vi, = H(X; ). If
{Xin i€ Dy,n > 1} are weakly dependent with coefficients 0.(s) or fjz(s), then {Y;,, :
i € Dy,n > 1} are also weakly dependent with 0, (s) < C’égg(s)i%T or My(s) < Cﬁm(s)%

for some constant C > 0.

For the heredity of weak dependence under shifts, we consider D C Z¢, equipped
with distance measure p(i, j) for any i,j € D. Let {¢; : i € D} be a R-valued random
field on D. Let H;, : R? — R be a measurable function, and random fields {Xin:ie

D,,,n > 1} are defined by X;, := H;,((¢j)jep). For each h € N, and for any (z;);ep
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and (y;)jep such that z; # y; if and only if p(i, j) = h, H;,, satisfies that

|Hin((z)jep) — Hin((y;)jen)|
(3.2.6)
<Bin(h)( max [a;' V1) Y |zj -yl
p(i.5)#h —
p(l,])—h
almost surely, where [ > 0 and {B;,(h) : i« € Dy,n > 1} are positive constants
satisfying that

o0

Cp = sup sup Z:Bm(h)hd*1 < 00. (3.2.7)
77,21 iEDn h=0

In Proposition 3.2 below, we investigate the preservation of weak dependence from the

{eiie D} to{X;n:i€ Dy,n>1}.

Proposition 3.2. Let {X;,, € R : i € D,,n > 1} be an array of Bernoulli shifts
of {e&; € R :i € D}, such that X, = H;n((¢j)jep) and H;y, - RP — R satisfies
conditions (3.2.6) and (3.2.7). Assume that sup;cp E|e;|P < oo with p > 1+ 1. If the
random field {e; € R :i € D} is weakly dependent with coefficients 0-(s) or f-(s), then

{Xin€R:ie D,,n>1} are also weakly dependent with coefficients

-0 {owv[iho-w=), s
nir) = Co<si£[f7“/2} {C(S) v [Sdﬁs(r - 25)1’551} } ’ (3.2.9)

where C(s) = sup,>1 SUPjep, D_p>s Bin(h)h4™t and C > 0 is a constant.

It is not easy to find the exact infinum in (3.2.8) and (3.2.9). However, the depen-
dence coefficients of the outputs have upper bounds in explicit forms, if the dependence
coefficients and B;,, decay in a regular manner.

Ezample 3.2.1. Let the dependence coefficients of the input 7-(r) = O(r™*) for some
o> p’i;ll_ld, and B;,(h) = O(h™) for some b > pp%ll_l,u. Then the dependence

coefficients of the output are bounded by:

_p—1-1

i(ry < cort Tk (3.2.10)
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Ezample 3.2.2. Assume that d = 2, let the dependence coefficients of the input 7.(r) =

O(r=#) for some pu > 0, and B;,(h) = O(e~"") for some b > p;_lflu. Then the

dependence coefficients of the output are bounded by:

p—1-—1

i(r) < Clogr)®r™ 1", (3.2.11)

With 6 coefficients we have the same results. The proofs of (3.2.10) and (3.2.11) are

given in section A.1.1.

3.3 Limit theorems for weakly dependent random fields

In this section, we investigate the asymptotic behaviour of a weakly dependent random
field {X;, : ¢ € Dp,n > 1} on D C R¢ (d > 1), which satisfies Assumption 3.2.1.
(Dp)nez is a series of sample regions on D with finite cardinality, i.e. |Dy|. < oo, and
lim;, 00 | Dn|c = 00 represents the expansion of sample region as n — oo.

In section 3.3.1 we propose a law of large numbers (in L!) for weakly dependent
random fields in general. In section 3.3.2 we proposed a central limit theorem for # and
n weakly dependent random fields. Recently Curato et al. (2022) proposed a CLT for 6-
lex weakly dependent random fields that are strictly stationary; The CLT of Neumann
(2013) requires bounded moments instead of stationarity, but it only applies to random
sequences. Our limit theorems, however, are more general compared to theirs in the

following aspects:
e Stationarity is not required;

e QOur limit theorems accommodate arrays of random fields with asymptotically

unbounded moments;
e The lattice D is not required to be evenly spaced like Z<.

Our proofs of LLN and CLT are based on Jenish and Prucha (2009), where they de-
rived limit theorems for v and ¢ mixing random fields with asymptotically unbounded

moments.
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3.3.1 Law of large numbers

Assumption 3.3.1 below helps our LLN to accommodate random fields with asymp-
totically unbounded I-th moments, by setting ¢;,, = E|X;,|' vV 1. For random fields
with uniform bounded moments, we can simply set ¢;, = 1. Assumption 3.3.2 puts

restriction on the decaying rate of dependence coefficient.

Assumption 3.3.1. There exist positive constants {c;, : i € Dp,n > 1} such that

l

in

sup sup E < 00 (3.3.1)

n i€Dy

Cin
for some l > 1.

Remark. By Holder’s inequality and Markov’s inequality, (3.3.1) implies the L? uniform

N

See page 216 in Billingsley (2008) for the definition.

integrability for any 0 < p <. i.e.

Xi,n

Cin

i,n

lim sup sup E [

k—o0 n €Dy

2k>]:& (3.3.2)

Cin

Assumption 3.3.2. The dependence coefficient of {X;, : i € Dy,n > 1} satisfies
€1,1(s) = O(s™®) with a > d.

Now we are ready to present our LLN as follows.

Theorem 3.1. Let {X;, € R:i € Dy,n > 1} be a random field on D C RY(d > 1),
where (Dp)n>1 is a sequence of finite sub-lattices of D with lim,_,o |Dple = oo. If
Assumption 3.2.1, Assumption 3.8.1 and Assumption 3.8.2 are satisfied, then as n —
w?

1
———— > (Xin — EXipn) = 0
MM&&ED(“" i)

in L', where M, = SUP;ep,, Cin-
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3.3.2 Central limit theorem

Let Sy = > icp, Xin and 02 = Var(S,). We need the following assumptions to state
our CLT. In Assumptions 3.3.4 and 3.3.5, notice that the condition on 6-coefficients is
slightly weaker than that on n-coefficients, since 6-weak dependence is actually more
stringent than 7-weak dependence according to (3.2.3) and (3.2.4). Assumption 3.3.6 is
a standard condition in the limit theory literature, as maintained in Bolthausen (1982),

Jenish and Prucha (2009), and Jenish and Prucha (2012). It is required to prove that

2

= is asymptotically proportional to |D,|. as n — oo, which ensures that no single

g

summand dominates the sum.

Assumption 3.3.3. There exist positive constants {c¢;, : i € Dp,n > 1} such that

m

< o0 (3.3.3)

,n

sup sup E
n i€D,

Cin
for some m > 2.

Assumption 3.3.4. With the same m > 2 in Assumption 3.3.3, the 0-coefficient of
{Xin:i€ Dy,n>1} satisfies:
(a). For all u+v <4, 0y,(s) = O(s™) with a > 1=3d;

(b). 0s0.1(5) :=sup, 0,.1(s) = O(s™P) with B > d.

Assumption 3.3.5. With the same m > 2 in Assumption 3.5.3, the n-coefficient of
{Xin:i€ Dy,n>1} satisfies:

(a). For all u+v <4, fuu(s) = O(s™) with o > 2=1d;
(b). o1 (8) := supy, 7lu,1(s) = O(s™7) with § > 2d.
Assumption 3.3.6. Let M,, = sup,cp_Cin, assume that

lim inf (| D,|.) "' M 202 > 0.
n—oo

Our CLT is given as a theorem below.
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Theorem 3.2. Let {X;,, € R:i € Dy,n > 1} be a zero-mean random field on D C
Re(d > 1), where (Dn)nen, s a sequence of finite sub-lattices of D with limy, o0 |Dp|c =
oco. If Assumption 3.2.1, Assumption 3.3.3 and Assumption 3.5.6 hold true, and the
dependence coefficient of {X;,, € R : i € Dy,n > 1} satisfies either Assumption 3.5.4

or Assumption 3.3.5, then as n — oo,
o718, % N(0,1).

Theorem 3.2 only applies to scalar-valued random fields, limiting its application in
the inference of high-dimensional time series, whereas vector-valued statistics like the
maximum likelihood estimator (3.4.8) are very common. Facilitated by the transformation-
invariance of e-weak dependence in Proposition 3.1, Theorem 3.2 can be easily extended

to arrays of vector-valued random fields using a standard Cramér-Wold device.

Corollary 3.2.1. Let {X;, € R* ;i € D,,n > 1} be an array of vector-valued zero-
mean random fields. By regarding | - | in Assumption 3.3.3 as Euclidean norm, and

replacing Assumption 3.53.6 by
lim inf (| Dy o) ™ My Amin (Sn) > 0
where Amin(Xr) is the smallest eigenvalue of ¥, := Var(S,,), then as n — oo:
S128, 4 N(0,T,,).

We now compare Theorem 3.2 with existing CLTs for weakly dependent random
variables in the literature. El Machkouri et al. (2013) developed a CLT for a class of
stationary random fields that are Bernoulli shifts of IID innovations. Their results are
derived through a coupling technique, based on p-stability, which is a dependence mea-
sure different from ours. Our CLT can also deal with Bernoulli shifts as a special case
through a similar coupling technique; see Example 3.4.1. For non-stationary triangular
arrays of random sequences, Neumann (2013) proposed a CLT under weak dependence,

while Merlevede et al. (2019) developed a functional CLT for martingale-like sequences.
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Their CLT's are limited to the case when d = 1 and require Lindeberg conditions (see
(2.2) in Neumann (2013) and (3.1) in Merlevede et al. (2019)) that could be violated
by asymptotically unbounded moments, which are allowed by Assumption 3.3.3 in our
CLT.

Indeed, Jenish and Prucha (2009) proposed a CLT for triangular arrays of random
fields without stationarity and bounded moments. However, the a- or ¢-mixing it
requires does not hold for many integer-valued models or models with discrete-valued
innovations, as we have pointed out in Section 3.1. For instance, the integer-valued
bilinear model is not mixing, but it is proved to be §-weakly dependent Doukhan et al.
(2006). Jenish and Prucha (2012) later extended Jenish and Prucha (2009)’s CLT for
random fields under L.2-NED, which is still stronger than what our CLT requires. In
Example 3.4.2, we will show that L.'-NED on an IID random field is sufficient for n-weak

dependence.

3.4 Applications to high-dimensional time series

In order to apply our results, we treat a high-dimensional time series as a random field
with spatial (i.e. cross sectional) index i and time index ¢. Following Xu et al. (2024)

and Pan and Pan (2024), we set
D ={(i,t):i€Z,t €L}

as an infinitely countable lattice on R?, equipped with distance measure p((4,t), (u,v)) :=
max{|i — ul, |t — v|}, and D satisfies Assumption 3.2.1. Note that i here represents in-
dividual ¢, while the ¢ € D we used in previous sections is a location on lattice D. We
will continue to use the same notation under these two scenarios since we don’t think
it would cause any confusion. {X;; : 1 <i¢ < N,1 <t < T} are NT samples generated
by a high-dimensional time series. With the specification of D above, we furthermore

specify a series of sample regions {Dyp : NT > 1} where
Dy ={(i,t): 1 <i< N, 1 <t<T},
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of which the cardinality |Dyr|. = NT expands as NT — oo. In this setting, we
transform the samples of high-dimensional time series into an array of random fields
{Xit : (i,t) € Dyp, NT > 1}. The same setting of sample regions was used by Xu
et al. (2024) on a dynamic network quantile regression model, which is an example of
high-dimensional time series.

After we have built the tools of limit theorems on weakly dependent random fields,
in Section 3.4.1 we will propose general conditions when a high-dimensional time series
model is n-weakly dependent. Then in Section 3.4.2 the proposed limit theorems will
be applied to prove the consistency and asymptotic normality of MLE under certain

restrictions on the likelihood function.

3.4.1 Examples of n-weakly dependent high-dimensional time series

We consider a series of samples {X;; : (i,t) € Dy, NT > 1} from a high-dimensional

time series, with innovations {&; : (i,t) € Dy, NT > 1} that satisfy:

Assumption 3.4.1. The innovations &;;’s are independently and identically distributed

(IID) across i and t. They are also independent from Xy for any i and t.

Let Fit(s) = o {&t : (4, 7) € Dnr, p((3,t),(4,7)) < s} for s > 0, then we can define

{XZ,(tS) : (i,t) € Dy, NT > 1} with XZ-(:) being Fj;(s)-measurable. Based on this

definition, XZ.(tS) is independent from X j(i) if p((i,t),(j,7)) > 2s. In the assumption

below we assume that X;; can be approximated by Xl(ts ).

< Co(s) for some constant

Assumption 3.4.2. supy7>1SUP(; epys B ‘Xit — Xi(:)

C > 0, where 6(s) > 0 and lims_,o 0(s) = 0.

Note that we do not need X;; to be a Bernoulli shift of &; as it is required in El
Machkouri et al. (2013). The Bernoulli shift assumption is strict in practice since this
type of model is assumed to be some specific transformation of IID innovations, whereas
our results accommodate random fields with more complicated structures, as long as
they can be approximated by neighbouring innovations in a way as in Assumption 3.4.2.

Nevertheless, we take Bernoulli shifts as a special instance in Example 3.4.1 below.
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Example 3.4.1. If X;; is a Bernoulli shift in the form Xy = H((&—14—1)1>0), according
to (11) in Doukhan and Truquet (2007), we can define

Xz'(tS) = H((fz'(i)z7t_l)l>0)

with
(s) Simlt—1 if 1<s,

Siti-1 = ,
0 if 1>s.

In Example 3.4.2 we give a way to construct the Fj;(s)-measurable approximation
in general, adopting the definition of near-epoch-dependence, see Definition 1 in Jenish
and Prucha (2012). The CLT of Jenish and Prucha (2012) is based on L2-NED, which
is stringent in practice since it will either degenerate to L'-NED (see Theorem 17.9 in
Davidson (1994)) or require bounded high-order moments (see Lemma A.2 in Xu and
Lee (2015)) after multiplication. Example 3.4.2 indicates that, comparing to the CLT

of Jenish and Prucha (2012), ours also accommodates L!-NED random fields.

Ezample 3.4.2. If we define
Xi(tS) = E[Xlt’]:lt(s)]’

then Assumption 3.4.2 is equivalent to the uniform L'-NED on IID innovations, with

coefficient 0(s).

Proposition 3.3. Under Assumptions 3.4.1 and 3.4.2, { Xy : (i,t) € Dyp, NT > 1}
is n-weakly dependent with 7(s) < Cd(s/2).

Remark. The limit theorems have requirements on the decaying rate of 7(s) as s — oo,
see Assumptions 3.3.2 and 3.3.5. Proposition 3.3 allows us to check the rate of J(s)
alternatively. With careful specification of X Z-(ts), 0(s) could be derived in explicit form,

making it easier to check the decaying rate in practice.

3.4.2 Maximum likelihood estimation (MLE)

In this section, we will investigate the asymptotic properties (i.e. consistency and

asymptotic normality) of MLE for parameters in a high-dimensional time series model

35



Chapter 3. Limit Theorems of Weakly Dependent Random Fields

with increasing sample size, i.e., |Dyrlc = NT — oc.

Assume that the model of interest is characterized by an array of parameters 6 in
a specific parameter space © C RF, such that the true parameter 6, € ©. Based on
samples {X;; € R : (i,t) € Dyr}, we could construct log likelihood functions in the

form

1
Lnr(0) = % > laul0), (3.4.1)
(’iﬂf)GDNT

where 1;:(0) = log fit(x;0), and fi1(x;6) denotes the density (or probability mass) func-
tion of X;; with parameter §. Note that the parameter 8 is not necessarily a vector of
real numbers for a model with finite number of real parameters. It could be an element
of an abstract metric space.

To discuss the estimation of parameter 6, We need the following assumptions re-

garding the parameter space © and the likelihood function:

Assumption 3.4.3. The parameter space and likelihood function of the model satisfy
(a). © C R¥ is compact;
(b). The functions l;(0) are continuous on ©, and are measurable for each 0 € ©;

(c). The true parameter 6y lies in the interior of ©. And for any § > 0,

sup sup {E[Ln7(0)] —E[Ln7(6)]} <O.
NT>1 60€6
10—00[| >0

Usually in practice the exact likelihood function cannot be calculated, and the

estimate of 0y could only be obtained through an approximation of (3.4.1). i.e.

éNT = argmax ENT(Q), (3.4.2)
€O
where
- 1 -
Lyr(0) = 55 | > 1y(0). (3.4.3)
(Z,t)EDNT

To consider the consistency of the MLE (3.4.2), we need Assumption 3.4.4 below
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regarding the convergence of the approximated likelihood function (3.4.3) to the exact

likelihood function (3.4.1).
Assumption 3.4.4. For any 0 € ©, |Ly7(0) — Ly7(0)] 20 as NT — co.
And we also need Assumption 3.4.5 below to apply the LLN to {l;+(0)}.

Assumption 3.4.5. (a). The functions l;;(0) are uniformly LP-bounded for some p >
1, i.e.

sup  sup  sup|[li(0)]|, < oo.
NT>1 (i,t)eDnT 0€O

(b). For any 0 € ©, the array of functions {l;;(0) : (i,t) € Dnp, NT > 1} are weakly
dependent with coefficients 0(s) = O(s~*) for some o > 2.

The following proposition gives the consistency of MLE for a high-dimensional time

series model with expanding sample sizes or/and expanding dimensions.

Proposition 3.4. If Assumptions 3.4.3, 8.4.4 and 3.4.5 are satisfied, then the MLE
(3.4.2) is consistent, i.e.

éNT£>00 as NT — oo.

As for the asymptotic normality of 0 ~T, we need additional assumptions on L Nt (0)
and Ly7(0) as in Assumption 3.4.6 below. Besides, Assumptions 3.4.7(a) and 3.4.7(b)
are required for the LLN of {%;o,lit(«%)}, as Assumptions 3.4.7(c), 3.4.7(d) and 3.4.7(e)
for the CLT of {%}.

Assumption 3.4.6. As NT — oo:

(a). FH@L (60) %

5 0;

92L()  92L(6y)
8080’ — T o007

= Op(f)-

(b). supjg gy <c |

Remark. In the inference of a specific model, the convergences in Assumptions 3.4.4
and 3.4.6 may require extra restrictions on the diverging pattern of N and 7. For
example, for the TNGARCH model in Chapter 4, it is required that T — oo, N — oo
and N = o(T). However, these extra restrictions do not cause any issue in applying

our limit theorems, which only require that NT" — oco.
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Assumption 3.4.7. (a). SUpy7>1SUD( HeDyy agige,ll-t(ﬁo)H < 00 for some p>1;
= P

(b). {8980' lir(0o) : (i,t) € Dy, NT > 1} are weakly dependent with coefficients 0(s) =

O(s™%) for some a > 2;

Al (0o)
00

(¢). SUPNT>15UD(; t)e Dy ‘p/ < oo for some p’ > 2;

(d). {81” (B0) : (i,t) € DNy, NT > 1} are weakly dependent with coefficients 0(s) =

- / 2p'—2,
O(s~) for some o/ > 2V T

(6). ianTZl )\min(BNT) >0 and ianT>1 )\mm( ;7;«/214]\71“) > 0, where Ay = —
E [%LNT(QO) Byt = Var [\/ ToLnt 90)] and Apmin(+) denotes the smallest

etgenvalue.
The asymptotic normality of the MLE can be stated as follows.

Proposition 3.5. If Assumptions 3.4.3 to 3.4.7 are satisfied, then (3.4.2) is asymp-

totically normal, i.e.
VNT(By, _l/ Ant) Oyt — 00) 5 N(0,I,) as NT — oco.

3.4.3 Application to a network autoregressive model

In this section we will apply our methodology in previous sections to the estimation
of a specific high-dimensional time series model. Zhu et al. (2017) proposed a network
autoregressive (NAR) model. They established an ordinary-least-squares (OLS) estima-
tion that was proved to be consistent and asymptotically normal when min{ N, T} — oo,

and when N — oo as T is fixed. The model is defined as

N
vie = Bo+ B1 > _ wijyje—1 + Boyie1 + Ziv + €t (3.4.4)

j=1
where the R-valued random variable y;; is observed both spatially over ¢ = 1,2,..., N
and temporally over ¢t = 1,2,...,T. Z; is a R™-valued covariates vector, which is ¢-
invariant and observable for each individual i. The innovations ¢;’s are IID with mean

zero and variance 02, {Z;} and {e;;} are mutually independent. One feature of the NAR
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model is using network structure to describe the spatial dependence. Such network is
represented by a directed graph, with each edge a;; = 1 if node ¢ connects to j and

a;j = 0 otherwise. In (3.4.4), the effect of each neighboured node j is weighted by
_ Gy
o Z{cvzl Ak )

However, the weak dependence of {y;; : (i,t) € Dy, NT > 1} cannot be established

wij

under specification (3.4.4). For example, considering the case when 1 = 2 = 0, (3.4.4)
becomes

yit = Bo + Ziy + €.

For any s > 1, |Cov(¥i t+s, Yit)| = |Cov(Z]y, Z~)| > 0, which does not decay to 0 as s —
oo since |Cov(Z/y, Z!v)| is s-invariant. Therefore, in order to apply our limit theorems,
in this section we will investigate the weak dependence of the NAR model conditioning
on Z = (Z1,2),...,Z%)". The asymptotic properties of proposed parameter estimates
will also be discussed conditioning on Z.
Denote § = (5’,~')" the parameter vector, where 8 = (8o, 81, f2)" and v = (71, Y2, -, Ym)'-
Let

then the quasi log likelihood function conditioning on Z (under Gaussian density) is

written
Ln7(0) = 57 X 1yepyr lit(0),

(3.4.5)
Lit(0) = — (it — X;,t719)2'

Given observations of y;; and Z; at t = 0,1,...,T and i = 1,2, ..., N, the quasi maximum

likelihood estimation (QMLE) could be directly evaluated as follows:

-1

éNT = Z Xi,t—lxg,t_l Z Xit—1Yit | - (3.4.6)
(i,6)€DnT (¢i,6)€DnT

39



Chapter 3. Limit Theorems of Weakly Dependent Random Fields

It has the same form with OLS of Zhu et al. (2017). Notice that

OLnT(60) _ 2 -
a0 = NT Z(i,t)EDNT EitXit—1,
0?Lyt(60) _ 2 /
90007  — — NT 2-(it)eDnp Xit—1Xi4—1-

Then (3.4.6) could be rewritten as

O?Ly7(00) ) L OLnr(60)

bnT =60~ ( 9600’ a0

(3.4.7)

(3.4.8)

Based on general method in Section 3.4.2, the following assumptions are required to

investigate the asymptotic properties of the QMLE in this particular case of the NAR

model.

Assumption 3.4.8. (a). The innovations €;’s are IID with mean zero and variance

o2, they are also independent from Z; and Xit—1;

(b). SUPN7>1SUD(; yepyy Eleal” < 00 and supyrsisuppepy, EllZil? < oo for

some p > 2;

(¢). |Pr] + B2 < 1.
Assumption 3.4.9. Let G = S/1W + Baly.

(a). The elements of G* satisfy

IGF(i,§)| < Crpk|j —i| 7272

for some constants C1 >0,0< p1 <1, a >4V 2;’%22 and p > 2;

(b). The diagonal elements of (GG')* satisfy
max{|(GG")*(i,0)|} < Capf

for some constants Cy > 0 and 0 < pa < 1.
Assumption 3.4.10. Supy7>1 SUP(; y)epyy [¥itll, < 0o
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Assumption 3.4.11. Yy7 = ﬁ Z(i,t)eDNT Ez {xi,t_lxéyt_l] satisfies that

inf Apin (2 0.
Ner}zl mzn( NT>>

In Assumption 3.4.8, the conditions on the innovations and nodal covariates are the
same as condition (C1) in Zhu et al. (2017), except that the finite fourth-order moments
of €;; and Z; are not required in our method. Assumption 3.4.9(a) puts restrictions on
the connectivity between nodes. For example, Assumption 3.4.9(a) indicates that the
effect of node j on node ¢ through the k-step connection between them weakens with
li — j| and also the length of the connection k. Assumption 3.4.9, together with the
bound condition in Assumption 3.4.10 are crucial in verifying weak dependence in the

proof of Proposition 3.6.
Proposition 3.6. If Assumptions 3.4.8 to 3.4.11 are satisfied, then (3.4.6) is consistent
and follows asymptotically a normal distribution conditioning on Z:

VNT(Sn1)?(On7 — 00) 4 N(0,0%I,513)

when NT — oo.

Since g;4’s are 1ID, 02 could be consistently estimated by
~2 1 / N 2
= Y (yit - xi’t,19NT) . (3.4.9)
(i,t)eDNT

As it will be verified in the proof of Proposition 3.6, following convergence

1

/ D,
NT Z Xi,t—lxi,t71—>2NT

(i’t)EDNT

allows us to estimate X7 by

~ 1
ENT = ﬁ Z Xi7t71X;7t_1, (3410)
(i,t)EDNT
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where x;¢—1X;,_; is a (m +3) x (m + 3) matrix:

1 Z;V:l WijYj,t—1 Yit—1 Z]
Z;-V:l WijYj—1 (Zé\;l wijyj,tfl)z (E;\Izl wijyj,t—l)yi,tfl (Z;-V:l wijyj,t71)Z{
Yit—1 (Zj-vzl wijyj,t—l)yi,t—l yiz,t,1 Yijt—12,
Zi (Z?[:I wijy;.1-1) % Yit—12; Z,7!

The covariance matrices in Theorem 3 and Proposition 2 of Zhu et al. (2017) are
estimated by statistics in the same form as (3.4.10). Nevertheless, our results are
derived on a totally different theoretical basis comparing to their OLS estimation which

is actually the MLE because they assumed normality of innovation terms.
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Threshold Network GARCH

4.1 Introduction

The network GARCH model (2.2.5) was proposed by Zhou et al. (2020), who fitted
their model to daily log returns of stocks on Chinese stock markets. Their analysis
shows that the predictable volatility of one stock is positively related to the log returns
of all its neighboring stocks on the network, which can be established according to
common shareholders. An explicit assumption in model (2.2.5) is that the prediction
of stock volatility is not affected by whether today’s stock price is rising or falling.
However, there exists empirical evidence against this assumption (Black (1976) and
French et al. (1987), among others). The EGARCH model (2.1.4) by Nelson (1991)
and the GJR-GARCH model (2.1.5) by Glosten et al. (1993) were established to iden-
tify the asymmetry in how predictable volatility adapts to positive and negative news.
In their empirical studies on stock return data, they found that negative returns gen-
erate more volatility than positive ones. A comparison between different asymmetric
GARCH models was conducted by Engle and Ng (1993), and the results suggested using
the GJR-GARCH model when analyzing stock return data. In this chapter, we pro-
pose a threshold network GARCH model (TNGARCH) that incorporates a self-excited
threshold similar to that in the GJR-GARCH model (2.1.5).

Recalling from model (2.2.5), the network consists of N nodes and is denoted by

an adjacency matrix A = (a;j)Nxn, where a;; = 1 if nodes ¢ and j are connected,
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and a;; = 0 otherwise. Besides, a; = 0 as self-connection is not allowed. For each
individual ¢ = 1,2, ..., N, the predicted volatility at time ¢ is related to the returns of

all its neighbours through
N
2
Z WijYje—1
=1

in the sense of Cliff and Ord (1972), where w;; = ZNaij is the (7, j)-th component of

k=1 Qik

the row-normalized adjacency matrix W.

A TNGARCH (1,1) model is written as follows:

Vit = €it\/ hit,
N

hit = w + (a(l)l{yz-,tfle} + a(Q)l{yi,Hw}) Yio1 +AY wiys g + Bhigo1, (4.11)
j=1

7;:1727”'7N7

where 1 is the indicator function. To assure the positiveness of ht, it is assumed that
w > 0 while o, a@ X, 8 > 0. {eit} is a white noise process satisfying the following

assumption:

Assumption 4.1.1. {e;; : i =1,2,..., N;t € Z} are IID across i and t, sharing an non-

degenerate distribution with mean 0 and variance 1.

If o) £ @ then the effect of yzt_l on the predicted volatility h;+ changes depending
on whether y; ;1 > 0 or y;;—1 < 0. Otherwise, (4.1.1) degenerates to (2.2.5).
Stationarity conditions of this model will be derived in Section 4.2 with fixed .
The asymptotic properties of QMLE will be investigated in Section 4.3, in the case
when T' — oo and N — oo. Then we will propose a Wald statistic in Section 4.4.1 to
test the existence of threshold effect. In Section 4.5, our methodology is tested upon
simulated data that are generated based on four different kinds of network structure.
We observed an asymmetry that is different from existing literature, in how much the
volatility responds to good news and bad news at individual level by applying our model

to high-dimensional time series of log returns in Section 4.6.
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4.2 Stationarity with fixed N

To derive the conditions under which model (4.1.1) is strictly stationary, we rewrite

the conditional variance process in vector form
ht = wlN + Bt—lht—l (4.2.1)
with notations as follows:

hy = (hit, hat, .o, hve) € RY,

1y =(1,1,..,1) e RY,

Bi1=aVYR 1B 1+ aP(Iy — R 1)Ei 1 + \WE,_1 + By,
Ry = diag {1{y1,t7120}a L1200 1{yN,t7120}} )

o 2 2 2
E; 1 = diag {51,15—1752,15—17 ~--a5N,t—1} :

Since vt = €4V hit, yiz > 0 is equivalent to €;; > 0. Hence

Ri—y = diag {1{61,157120}’ 1{52,t—120}7 ey 1{5N,t7120}} :

In this case, the random matrices {B;} are i.i.d. and model (4.2.1) is a generalized
autoregressive equation by Definition 1.4 in Bougerol and Picard (1992). It is easy to
verify that E(log™ || Byl|,) < oco. Therefore, the top Lyapunov exponent associated to
{B:} is well-defined as follows:

1
v := inf {IE <t 1 log HBtBtl...BOH*) , te ]N} , (4.2.2)

where ||-||, is an operator norm of N x N matrices, corresponding to any norm on RY
through
N
311, = sup {132x] /] x € RY, x 0}
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According to Theorem 3.2 in Bougerol and Picard (1992), the series

oo
h; = wlyn +wZBt_1...Bt,k1N (4.2.3)
k=1
is the unique strictly stationary and ergodic solution of model (4.2.1) if and only if the
Lyapunov exponent v < 0. Under this condition, process {y;} is also strictly station-
ary and ergodic where y; = (y1t, ¥2t, ..., yne) € RY since we could easily construct a
continuous function A : RV — RM according to (4.1.1) such that y; = A(h;). Besides,
since y;; = €4v/hit, the almost sure convergence of (4.2.3) guarantees that E(h;) < co
for any i. Thus, E|ly||? = Zf;l E(hit) < oo with || - || being an Euclidean norm.

By the subadditive ergodic theorem in Kingman (1973),

1
t+1

v = lim log || B¢ Bt—1...Bo,

t—o0
almost surely. In this case, v could be approximated through computer simulation
technique given a specific distribution of €;;. For the purpose of reducing computation

complexity, we derive a sufficient condition that is simple and much easier to verify.

Theorem 4.1. Under Assumption 4.1.1, model (4.2.1) has a unique strictly stationary
and ergodic solution in the form (4.2.3) if

max {a(l), a(2)} +08+A< L (4.2.4)

4.3 Parameter estimation with 7" — oo and N — oo

Following the settings in Section 3.4, let D := {(i,t) : i € Z,t € Z} be a lattice on space
R?, and p((4,t), (4,7)) := max{|i — j|, |t — 7|} measures the distance between any two
locations (i,t), (j,7) € D. Assume we have observations {y;,1 <i < N,1 <t < T}
from model (4.1.1) with respect to true parameters 6y := (wp, 04(()1), a(()Q), Mo, Bo) € RS.
Then these observations could be regarded as triangular array of random fields {y; :

(i,t) € Dyp, NT > 1} with {Dy7, NT > 1} being a series of finite rectangular lattices
DNT = {(Z,t) N IS’LSN,I StST}
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Based on the infinite past of observations, the quasi log-likelihood function (ignoring
constants) is
1 N T
Lnt(0) = w7 2oit1 24— Lt (0),

i (0) = log 0%(0) + —Li
it 0g 754 o2,(0)°

(4.3.1)

where 02 is generated from model (4.1.1) as

N
Uz‘2t =w+ {a(l)l{yi,tqZO} + O‘(2)1{y¢,t71<0}} yzz,tfl + Adz‘_l Z aij?/]z,tfl + 501‘2,#17
j=1

and 6 := (w, oM o)\ B) € R is the parameter vector. Since the evaluation of the
exact value of (4.3.1) is infeasible in practice, it is convenient to approximate (4.3.1)
with

Lyr(0) = 37 Y0ty S ln(0),

i(0) = log 52(0) + i
it 0g 751 52,(0)°

(4.3.2)

where 62 is also generated from model (4.1.1) but with initial value 52, = 0. And the

QMLE of § € © is given by

Ony 1= argmin ]NLNT(G),
0O

where “argmin” is the argument of the minimum.

Remark. A negative-valued constant is ignored in the log-likelihood function (4.3.1).

Therefore the QMLE Ay is the argument that minimizes Ly (6).

Firstly we investigate the weak dependence of {02 () : (i,t) € Dy, NT > 1}
and {yft : (i,t) € Dyp, NT > 1} with assumptions below, utilizing the connection
between uniform NED (Jenish and Prucha, 2012) and n-weak dependence (see Example
3.4.2). Assumption 4.3.2 is also required by Zhou et al. (2020) to prove the asymptotic
properties in the case when N is fixed. Assumption 4.3.3 puts restriction on the sparsity
of the network. Similar restrictions on the network structure could also be seen in

Assumption 3 by Xu and Lee (2015) and Assumption 3.2 by Xu et al. (2024).

Assumption 4.3.1. k4 := Ec}, < 0o such that k4 (max{a(l), a4+ B+ )\)2 < 1.
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Assumption 4.3.2. O is a compact subset of R> such that all & € © satisfy that
w>0,a® >0a? >0x>073>0, (4.2.4) and Assumption 4.3.1, and the true

parameter 6y € © is an interior point of ©.

Assumption 4.3.3. The row-normalized adjacency matric W satisfies one of following

conditions:
(a). wij = O(|i — j|_#T+2) for some p > 0;
(b). wij # 0 if |i — j| < K for some constant K > 1, and w;; = 0 otherwise.

Remark. In Assumption 4.3.3, w;; that measures the power of the connection between
two arbitrary nodes i and j is restricted by |i— j|, which does not represent the distance
between node i and node j. Assumption 4.3.3 is simply a technical restriction on
the structure of the matrix W, similar to the Assumption 3.2 in Xu et al. (2024).
Assumption 5.3.3 in Chapter 5 and Assumption (NB4) in Chapter 6 are also purely
technical. Of course, as we have mentioned in Section 2.3, for spatio-temporal models,
7 and j often represent spatial locations rather than just two indices. For example,
Xu and Lee (2015) has similar assumption as ours, except that w;; is restricted by the

Euclidean distance between ¢ and j, where 7 and j are vector-valued spatial locations.

Recalling from Section 3.4.1, we could define a o-algebra
Fir(s) == o {ew : (j,7) € Dnr, p((i, 1), (4, 7)) < s}

for all (¢,t) € Dyp, NT > 1 and s > 0.

Lemma 4.3.1. If (4.2.4), Assumptions 4.1.1, }.5.1, 4.3.2 and 4.53.3(a) are satisfied,
then for all 6 € © we have

sup sup [0 (6) — E(o(6)| Fu(s)) |, < O5
NT>1 (it)eDyr

for some constant C > 0. If Assumption 4.3.3(b) holds instead of 4.3.3(a),

sup  sup  [|07,(8) — E(07,(0)| Fuuls))|, < Cp*
NT>1 (i,t)eDnT
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for some constant 0 < p < 1.

Remark. By Assumptions 4.1.1 and 4.3.1, the same results in Lemma 4.3.1 could be
directly derived for {y2 : (i,t) € Dyr, NT > 1} since y2 = 4,02 (6p).

Remark. Since we have shown that {y2 : (i,t) € Dyr, NT > 1} and {02(0) : (i,t) €
Dyr,NT > 1} are uniformly L2-NED, by Proposition 3.3 they are also n-weakly

dependent with n-coefficients asymptotically equivalent to the NED coefficients.

It is essential for us to obtain the weak dependence of {l;:(0) : (i,t) € Dnr, NT >
1}, as well as their first and second order derivatives at 6y, so that we could utilize the
limit theorems (Theorem 3.1 and Theorem 3.2) to prove the consistency and asymptotic
normality of On1. Therefore we need the assumptions below aside from those required
by Lemma 4.3.1. Particularly, Assumption 4.3.5 is a constraint on the decaying rate
of dependence coefficients, which is required by Assumption 3.3.5. Apparently, in the
second case in Lemma 4.3.1, we do not need Assumption 4.3.5.
2r 2

Assumption 4.3.4. E|e;; < oo for some

< 00 and supyr>q SUDP (i t)e D s E|oi(0)

r> 2.

Remark. Since yizt = E?taft(eo) and g;; is independent from o4(y), we also have

sup  sup  Elyu|* < oo
NT>1 (i,)e Dy

based on the assumption above.

2(r—1)

Assumption 4.3.5. The p in Assumption 4.5.3 satisfies p > 4V = —5=.

Assumption 4.3.6. infn7>1 Apin(EnT) > 0 where

ke — 1 1 d o
ENT = E|l— 2 62(6)— o '
NT NT Z |:O.4t(90) 8(90-“(90)80’0-“(90)
(i,t)EDNT ¢

Theorem 4.2. Under Assumptions required by Lemma 4.3.1, the quasi-mazximum like-

lihood estimator O is consistent, i.e.

OnT 5 0
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asT — o0 and N — oo. If N = o(T), Assumptions 4.5.4, 4.3.5 and 4.3.6 also hold,
then
VNTSY7(Onr — 60) 5 N(O, (54 — 1)%I5).

As we will show in the proof of Proposition 4.1, k4 and X7 above could be ap-

proximated by

1 N T y4

. it
Ry = —= — (4.3.3)

NT ; t; 4 (OnT)
and
~ 54 -1 N T 1 8&%(éNT) 0535(@NT) 1.3.4
e D DRI U U o
i=1 t=1 NT)

respectively. The latter could be calculated recursively as

0

5 £ 0 .
20 G2(OnT) = 0541 +5%02~2¢_1(9NT)

where
1

2

Yit-1M4e >0}

5 — 1.2

Wi t—1 = yi,t—ll{éi,t71<0}

Y wie?
=1 Wij¥Yj 1

574 1(OnT)

4.4 Tests on threshold effect and residuals

4.4.1 A Wald test for the threshold effect

Given a null hypothesis
HO : FQQ =n (441)

where I is an s X 5 matrix with rank s and 7 is an s-dimensional vector, we could define

a Wald test statistic as follows:

. r . -1
W := (DOyp — 1) {N(m —1)2% 1Tr’} (TnT — 1), (4.4.2)
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where #4 and Sy are defined in (4.3.3) and (4.3.4).
By the asymptotic normality of 0 ~n1, Wit could also be proved to follow a canonical

asymptotic distribution as in the following theorem.

Proposition 4.1. Under the same assumptions required by Theorem 4.2, as T — oo,
N — oo and N = o(T), the Wald test statistic defined in (4.4.2) asymptotically follows

a x? distribution with degree of freedom s, i.e.
d
WNT — Xg.

4.4.2 A white noise test on the residuals

There has been a large literature investigating high-dimensional time series models,
including Xu and Lee (2015), Zhu et al. (2017) and Xu et al. (2024) among others, but
none of them has used diagnostic tools to check the model adequacy. In this section,
we will introduce a high-dimensional white noise test developed by Li et al. (2019) that
can be applied to the diagnostic of high-dimensional models including ours.

Assume we have residuals {r; : 1 <t < T}, where ry := (ri4,...,7n¢). We want
to test whether {r; : 1 <t < T} are high-dimensional white noises, i.e. there exists a
matrix P such that

H() Iy = PZt, (443)

where z; = (£1¢, ...,ent)’. The test statistic is the sum of squared singular values of first

q lagged sample autocovariance matrices:
Gq= Y tr(9,8)), (4.4.4)

where S, = % Z;‘FZI r;r,_ - with r; = ryy7 when ¢ < 0.
If P is unknown, the sample covariance matrix of r; is Sp = % Zle rr;. According

to (2.8) in Li et al. (2019), we reject (4.4.3) if
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where 51 = §tr(S0), 52 = wtr( S2) and Z, is the upper-a quantile of standard normal
distribution.

Note that {r; : 1 < ¢ < T} being white-noise means that the residuals are uncor-
related over t. However, it does not indicate that the residuals are uncorrelated over
both ¢ and ¢. The latter indicates a stronger adequacy of high-dimensional model. We
could assume that P = I in the null hypothesis, and by (2.5) in Li et al. (2019), we

reject Hy : ry = z if

_ N
4T > Zo.
2N2q AN3q2(Kk4—3) 8N3q2
T2 + T + T3

4.5 Simulation study

4.5.1 Network simulation

The symmetric matrix A in model 4.2.1 represents an undirected network structure, the
pattern of which varies over different application scenarios. In this simulation study,
we tend to use four different mechanisms of simulating corresponding network. The
network structure in Example 4.5.1 adapts to Assumption 4.3.3(b), which is required by
geometric NED as we have shown in Lemma 4.3.1. Simulation mechanisms introduced
in Examples 4.5.2 — 4.5.4 are for testing the robustness of our estimation, against

network structures that may violate Assumption 4.3.3.

Ezample 4.5.1. (D-neighbourhood) For each node i € {1,2,..., N}, it is connected
to node j only if j is inside i’s D-neighbourhood. That is, in the adjacency matrix,
a;j =1if 0 < |i—j| < D and a;; = 0 otherwise. Figure 4.1(a) is a visualization of such

a network with NV = 100 and D = 10.

Ezample 4.5.2. (Random) For each node i € {1,2,..., N}, we generate D; from uni-
form distribution U(0,5), and then draw [D;] samples randomly from {1,2,..., N} to
form a set S; ([z] denotes the integer part of ). A = (a;;) could be generated by letting
a;; = 1if j € S; and a;; = 0 otherwise. In a network simulated with such mechanism,
as it is indicated in Figure 4.1(b), there is no significantly influential node (i.e. node

with extremely large in-degree).
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Ezample 4.5.3. (Power-law) According to Clauset et al. (2009), for each node i in
such a network, D; is generated the same way as in Example 4.5.2. Instead of uni-
formly selecting [D;] samples from {1, 2, ..., N}, these samples are collected w.r.t. prob-
ability p; = s;/ Zf\;l s; where s; is generated from a discrete power-law distribution
P{s; =2} o 7% with scaling parameter a = 2.5. As shown in Figure 4.1(c), a few
nodes have much larger in-degrees while most of them have less than 2. Compared
to Example 4.5.2, network structure with power-law distribution exhibits larger gaps
between the influences of different nodes. This type of network is suitable for modeling
social media such as Twitter and Instagram, where celebrities have huge influence while

the ordinary majority has little.

Ezample 4.5.4. (K-blocks) As it was proposed in Nowicki and Snijders (2001), in a
network with stochastic block structure, all nodes are divided into blocks and nodes
from the same block are more likely to be connected compared to those from different
blocks. To simulate such structure, these N nodes are randomly divided into K groups
by assigning labels {1, 2, ..., K'} to every node with equal probability. For any two nodes
i and j from the same group, let P(a;; = 1) = 0.5 while for those two from different
groups, P(a;; = 1) = 0.001/N. Hence, it is very unlikely for nodes to be connected
across groups. Our simulated network successfully mimics this characteristic as Figure
4.1(d) shows clear boundaries between groups. Block network also has its advantage
from a practical perspective. For instance, the price of one stock is highly relevant to

those in the same industry sector.

In the next section, the simulation study is carried out on datasets that are generated
according to the process (4.1.1) in conjunction with three types of adjacency matrices

in Examples 4.5.1 — 4.5.4.

4.5.2 Simulation results

Setting the true parameters 6y as (0.1,0.1,0.2,0.2,0.2)', we generate data according
to process (4.1.1) with different sample sizes T" and number of dimensions N. In our
setting, 1" increases from 50 to 4000, while N also increases at relatively slower rates

of O(V/T) and O(T/log(T)) respectively, as it is showed in the following table:
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(a). Example 4.5.1 (D = 10) (b). Example 4.5.2

(c). Example 4.5.3 (d). Example 4.5.4 (K = 10)

Figure 4.1: Visualized network structures with N = 100

T 200 500 1000 2000
N ~ T 14 22 31 44
N~T/log(T) | 37 80 144 263

o4
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For each combination of (7,N), M = 1000 datasets will be simulated indepen-
dently, according to (4.1.1). Based on the m-th (m = 1,2, ..., M) dataset, the estima-
tion of #y will be carried out and the estimation result is denoted as 0,, = (ékm)’ =
(o&m,&%),dg),;\m,ﬁm)’. For k = {1,2,3,4,5}, the following two measurements are

used to evaluate the performance of simulation results:

1. root-mean-square error: RMSE) = \/M_1 Z%ﬂ(ékm — Oro)?,
2. coverage probability: CP, = M~! Zi\r/le Ligp0eCimn}-

C1y,, is the 95% confidence interval defined as
Clym = (ékm — 200755 Em, O + 20.975@km> ;

where the estimated standard error @km could be calculated as the square root of k-th
diagonal element of (NT) ™! (/4 — 1)53]_\,1T and zp 975 is the 0.975th quantile of a standard
normal distribution. In order to eliminate the effect of starting points, a different initial
guess of f is used for each m.

The results of root-mean-square errors with coverage probabilities in the parentheses
are reported in Table 4.1 and Table 4.2 respectively, under different network structures
and sample sizes. the consistency of the estimator is obvious since RMSE drops towards
zero when T and N increases. Additionally, SE provides reliable estimates of true
standard errors since the coverage probabilities are close the theoretical value of 95%.
Moreover, in Figures 4.2 to 4.5 we draw the normal Q-Q plots for the estimation
results when 7' = 2000, N = 44 and T = 2000, N = 263 under different network
structures. These Q-Q plots provide additional evidence for the asymptotic normality
of Oy in Proposition 4.2. In conclusion, the asymptotic properties of our estimator in
Theorem 4.2 are well supported by our simulation results, even for network structures

in Examples 4.5.2 — 4.5.4 that may violate Assumption 4.3.3.
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T N a® a® A B8

200 14 0. 0197 (0.92) 0.0301 (0.94) 0.0378 (0.95) 0.0371 (0.95) 0.0964 (0.91)

Example 4.5.1 500 22| 0.0100 (0.94) 0.0152 (0.95) 0.0192 (0.95) 0.0218 (0.95) 0.0492 (0.93)
71 1000 31 | 0.0061 (0.95) 0.0086 (0.96) 0.0114 (0.96) 0.0143 (0.96) 0.0299 (0.96)

2000 44 | 0.0042 (0.92) 0.0053 (0.96) 0.0066 (0.96) 0.0094 (0.95) 0.0201 (0.93)

200 14| 0.0173 (0.93) 0.0295 (0.94) 0.0386 (0.94) 0.0344 (0.94) 0.0854 (0.93)

Example 4.5.2 500 22| 0.0086 (0.95) 0.0149 (0.95) 0.0191 (0.95) 0.0177 (0.95) 0.0414 (0.96)
711000 31 | 0.0047 (0.95) 0.0088 (0.95) 0.0110 (0.95) 0.0107 (0.94) 0.0263 (0.95)

2000 44 | 0.0028 (0.96) 0.0051 (0.96) 0.0067 (0.95) 0.0058 (0.95) 0.0144 (0.96)

200 14 | 0.0169 (0.92) 0.0299 (0.93) 0.0388 (0.94) 0.0330 (0.94) 0.0852 (0.91)

Example 4.5.3 500 22| 0.0077 (0.95) 0.0153 (0.95) 0.0190 (0.95) 0.0166 (0.95) 0.0413 (0.94)
7711000 31 | 0.0047 (0.94) 0.0092 (0.94) 0.0117 (0.93) 0.0099 (0.96) 0.0252 (0.95)

2000 44 | 0.0027 (0.94) 0.0052 (0.96) 0.0065 (0.95) 0.0057 (0.96) 0.0152 (0.94)

200 14 | 0.0226 (0.91) 0.0308 (0.94) 0.0383 (0.94) 0.0486 (0.93) 0.1063 (0.90)

Example 4.5.4 500 22| 0.0095 (0.94) 0.0152 (0.94) 0.0194 (0.95) 0.0196 (0.95) 0.0478 (0.94)
711000 31 | 0.0057 (0.94) 0.0092 (0.94) 0.0113 (0.96) 0.0118 (0.94) 0.0286 (0.94)

2000 44 | 0.0034 (0.95) 0.0053 (0.96) 0.0066 (0.96) 0.0078 (0.95) 0.0169 (0.95)

Table 4.1: Simulation results with different network structures (N ~ v/'T).

T N w a® a® A ]

200 37 | 0.0131 (0.94) 0.0188 (0.94) 0.0236 (0.95) 0.0301 (0.95) 0.0624 (0.93)

Example 4.5.1 500 80 | 0.0065 (0.94) 0.0077 (0.96) 0.0100 (0.95) 0.0174 (0.94) 0.0303 (0.93)
2711000 144 | 0.0041 (0.93) 0.0042 (0.96) 0.0054 (0.94) 0.0119 (0.95) 0.0173 (0.92)

2000 263 | 0.0023 (0.95) 0.0022 (0.95) 0.0028 (0.94) 0.0079 (0.95) 0.0088 (0.93)

200 37 | 0.0102 (0.94) 0.0183 (0.94) 0.0237 (0.93) 0.0201 (0.95) 0.0521 (0.93)

Example 4.5.2 500 80 | 0.0044 (0.93) 0.0077 (0.95) 0.0102 (0.95) 0.0086 (0.95) 0.0229 (0.94)
2711000 144 | 0.0024 (0.93) 0.0042 (0.94) 0.0054 (0.94) 0.0048 (0.95) 0.0127 (0.93)

2000 263 | 0.0013 (0.94) 0.0021 (0.96) 0.0028 (0.94) 0.0025 (0.95) 0.0066 (0.94)

200 37 | 0.0103 (0.94) 0.0188 (0.94) 0.0225 (0.95) 0.0199 (0.95) 0.0505 (0.94)

Example 4.5.3 500 80 | 0.0042 (0.94) 0.0076 (0.96) 0.0096 (0.96) 0.0088 (0.95) 0.0225 (0.95)
7211000 144 | 0.0022 (0.94)  0.0041 (0.95) 0.0051 (0.95) 0.0048 (0.95) 0.0119 (0.94)

2000 263 | 0.0011 (0.95) 0.0022 (0.94) 0.0027 (0.96) 0.0024 (0.95) 0.0061 (0.95)

200 37 | 0.0129 (0.93) 0.0190 (0.95) 0.0231 (0.95) 0.0282 (0.94) 0.0615 (0.92)

Example 4.5.4 500 80 | 0.0053 (0.93) 0.0080 (0.95) 0.0095 (0.97) 0.0107 (0.97) 0.0267 (0.93)
711000 144 | 0.0027 (0.94)  0.0042 (0.95)  0.0053 (0.95) 0.0055 (0.96) 0.0134 (0.94)

2000 263 | 0.0014 (0.93) 0.0022 (0.95) 0.0027 (0.95) 0.0029 (0.94) 0.0072 (0.93)

Table 4.2: Simulation results with different network structures (N ~ T'/log(T)).
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4.6 Empirical data analysis

In addition to simulation studies, we want to test our model using real data from
Chinese Shanghai Stock Exchange (SSE) and Shenzhen Stock Exchange (SZSE). The
dataset consists of daily log returns of 286 stocks, which are observed in two consecutive
years of 2019 and 2020 (7' = 487 except for closing days). These stocks come from four

industry sectors as follows:
e 75 stocks from automotive industry sector;
e 73 stocks from financial industry sector;
e 68 stocks from information industry sector;
e 70 stocks from pharmaceutical industry sector.

And our model is tested within each sector, in which the number of stocks is approxi-
mately 7'/ log(T) ~ 79. Hence the estimates and inferences could be trusted according
to the simulation study.

As an initial impression of data from each category the time plots of daily average
log returns are presented in Figure 4.6. We also have the shareholder information of
each stock, based on which two stocks are considered as connected when they share
at least one common shareholder among their top ten shareholders. By this principle,
four adjacency matrices are constructed and visualized as Figure 4.7 for four different
industry sectors. Although it is quite intuitive to tell from Figure 4.7 the sparsity of
these four networks, we tend to use the network density (ND) as a quantified measure-

ment, which is defined by the ratio of the number of existing edges to the number of

Zi‘v=1 di

potential connections: ND := 100% x NvoT)-

The results of parameter estimation is summarized in Table 4.3. Positive estimates
of X\ indicate positive correlation between the return of a stock and the returns of
its neighbours, however it is worth noticing that the estimated network effect A for
automotive industry sector is much smaller than those from other sectors. As indicated
in Figure 4.7(a), this could be caused by the sparsity of the network structure as the

data from automotive industry has the lowest network density compared to others.
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Comparing with other parameters, the estimates of g are much larger for all four

categories. Strong memory of volatility has been observed in many econometric studies

on daily data, and such persistence would be stronger with data sampled at higher

frequency according to Nelson (1991).

Automotive Industry Financial Industry
Parameter | Estimation SE Parameter | Estimation SE
w 0.000099 | 5.83e-07 w 0.000043 | 3.12e-06
a® 0.199408 | 1.08¢-02 a® 0.247765 | 1.41e-02
a® 0.136423 | 1.01e-02 a® 0.202237 | 1.47e-02
A 0.004591 | 4.71e-03 A 0.010469 | 5.35e-03
B 0.727756 | 1.17e-02 8 0.737272 | 1.09e-02
Information Industry Pharmaceutical Industry
Parameter | Estimation SE Parameter | Estimation SE
w 0.000105 | 6.39¢-06 w 0.000063 | 4.15e-06
a® 0.172737 | 9.34e-03 a® 0.180950 | 1.05e-02
a® 0.122312 | 8.86e-03 a® 0.131722 | 1.06e-02
A 0.009475 | 4.03e-03 A 0.012929 | 4.06e-03
B 0.745699 | 1.11e-02 8 0.753305 | 1.11e-02

Table 4.3: Estimation results based on daily log-returns (2019&2020) of stocks from

four industries.

We now conduct a Wald test on the existence of threshold effect based on the

estimated parameters. By letting I' := (0,1,—1,0,0) and n := 0 in (4.4.1), we can

make a null hypothesis as follows:

Hy : ol = aé2).

As it is indicated in Table 4.4, we could reject the null hypothesis with strong confi-

dence and conclude that there exists extremely significant threshold effect within each

industry sector.

Automotive Industry

Financial Industry

Information Industry

Pharmaceutical Industry

1.09e-10

2.16e-07

3.8e-06

3.17e-06

Table 4.4: p-values of Wald test on Hy : oz(()l)

Using the diagnostic tool introduced in Section 4.4.2, we could check the model ade-

quacy by inspecting the correlations between residual vectors r; = e U
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We will test null hypothesis Hy : r; = Pz; with P being unknown and P = Iy respec-
tively, the results are summarized in Table 4.5. In all sectors, we can not reject the
hypothesis that the residual vectors are high-dimensional white noises with Er; = 0

and Var(ry) = PP’ over t. However, the stronger hypothesis Hy : r; = z; is rejected,

as there exist correlations between residuals {%} with different i. We might be
it\UNT

able to eliminate such deficiency in the adequacy of our model by heterogeneous pa-

1 2

rameterization with coefficients as w;. «; ", o;™’, A; and $3;, or by considering a dynamic
network structure. However, the purpose of the introduction of network structure is
to reduce the number of parameters of high-dimensional time series. Besides, deriving
limit theorems for models with heterogeneous parameters or dynamic network could be

theoretically challenging.

Automotive Industry | Financial Industry | Information Industry | Pharmaceutical Industry
P is unknown Not rejected Not rejected Not rejected Not rejected
P=1Iy Rejected Rejected Rejected Rejected

Table 4.5: Results of high-dimensional white noise test on Hy : ry = Pz; with ¢ = 3
and o = 0.01.

On the other hand, our results on asymmetric effect of positive and negative news
are quite different compared to what was derived from univariate data in the literature.
For instance, in a study by Engle and Ng (1993) on the daily returns of Japanese stock
index TOPIX, it was found that negative news would have larger impact on future
volatility. Such a phenomenon is reasonable in the stock market since investors would
lose confidence to a certain asset when it performs badly, hence they would adjust their
portfolio and add more uncertainty to the future. However, it is not necessarily the
case if we take into consideration the whole picture instead of looking at one individual
and ignoring possible impact of its neighbours in the same system. In our estimation
results, a1 are uniformly larger than o(?, indicating a larger impact of good news on
volatility. A more precise conclusion would be that the volatility of one individual is
more sensitive to its own good news, which actually does not contradict the conclusion
of Engle and Ng (1993), since in the univariate case, how much proportion of the
“bad news” effect is actually contributed by bad performance in systematic perspective

remains unknown. Our results show that good news has larger “local influence” as it
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is indicated by oV, while there is a possibility that bad news, despite of having less
“local influence”, spreads faster and has larger “global influence” on the neighbours
through network connection. Such potential leads to a future extension of our model
that the threshold effect could be further applied on the coefficient A, allowing good

news and bad news to have asymmetric network effect.
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Chapter 5

Poisson Threshold Network
GARCH

5.1 Introduction

Integer-valued time series can be observed in a wide range of scientific fields, such as
the yearly trading volume of houses on real estate market De Wit et al. (2013), number
of transactions of stocks Jones et al. (1994), or the daily mortality from COVID-19
Pham (2020). A first idea to model integer-valued time series is using a simple first-
order autoregressive model (2.1.1). However in model (2.1.1) y; is not necessarily an
integer given integer-valued y;—1 and e¢, due to the multiplication structure ay;_1.
Circumventing such problem by replacing the ordinary multiplication ay:—1 by the
(binomial) thinning operation «oy;—1 where aoyly ~ Bin(y, a), McKenzie (1985) and
Al-Osh and Alzaid (1987) proposed an integer-valued counterpart of the AR model
(INAR), which was ground-breaking and led to various extensions of thinning-based
linear models including integer-valued moving average model (INMA) (Al-Osh and
Alzaid, 1988) and INARMA model McKenzie (1988) among others. An alternative
approach to the multiplication problem, is to consider the regression of the conditional
mean )\, := E(y;|H;—1) where H;_1 is the o-algebra generated by historical information

up to t — 1. Based on this idea, integer-valued GARCH-type models (INGARCH) were
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proposed by (Heinen, 2003; Ferland et al., 2006; Fokianos et al., 2009) with conditional
Poisson distribution of y;, e.g., the Poisson autoregression (2.1.6). In this chapter
we will construct a model based on the Poisson INGARCH model. Other variations
of INGARCH models with different specifications of conditional distribution include
negative binomial INGARCH (Zhu, 2010; Xu et al., 2012) and generalized Poisson
INGARCH (Zhu, 2012) among others.

The application of preceding integer-valued models are all limited to one-dimensional
time series, and the development of multi-dimensional integer-valued GARCH-type
models is still at its early stage. e.g. the bivariate INGARCH models (Lee et al.,
2018; Cui and Zhu, 2018; Cui et al., 2020) and other multivariate INGARCH models
(Fokianos et al., 2020; Lee et al., 2023) on low-dimensional time series of counts. As
for high-dimensional integer-valued time series, there exist several counterparts of the
network GARCH model proposed by Zhou et al. (2020), such as the Poisson network au-
toregressive model (PNAR) by Armillotta and Fokianos (2024) and the grouped PNAR
model by Tao et al. (2024). The PNAR of Armillotta and Fokianos (2024) allows for
integer-valued time series with increasing network dimension. However, their model
adopted an ARCH-type structure without considering the autoregressive term on the
conditional mean, and moreover, there is no threshold structure in their model to cap-
ture asymmetric characteristics of volatilities. The grouped PNAR Tao et al. (2024)
has a GARCH structure indeed, but its network dimension is fixed and not applicable
to ultra high dimensional data. In this chapter we propose a Poisson threshold network

GARCH model (PTNGARCH) that are distinguished in following aspects:

e A threshold structure is designed in our PTNGARCH so that it is capable of
capturing asymmetric properties of high-dimensional volatilities for discrete data.

The threshold effect can also be tested under such a framework.

e Our PTNGARCH includes an autoregressive term on the conditional mean so that
it provides a parsimonious description of dynamic volatilities of high-dimensional

count time series.
e Asymptotic theory, when both sample size and network dimension are large, of
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maximum likelihood estimation for our model is established by the limit theorems

for weakly dependent random fields in Chapter 3.

5.2 Stationarity under fixed N

Recalling the TNGARCH model (4.1.1), we consider an non-directed and weightless
network with IV nodes, represented by adjacency matrix A with its entry a;; = 1 if there

is a connection between node ¢ and j, and a;; = 0 otherwise. Correspondingly we have

the row-normalized adjacency matrix W with its entry w;; = —x* — Distinguished
j=1%ij

from the model (4.1.1), PTNGARCH deals with N-valued data. Let y;; be a non-

negative integer-valued observation on node 7 at time ¢, and H;_; denotes the o-algebra
consisting of all available information up to ¢ — 1. In our Poisson threshold network
GARCH model, we suppose that y;; follows a conditional (on H;_1) Poisson distribution
with (¢,t)-varying mean A;;. That is, a PTNGARCH(1,1) model has following form:

Yit|Hi—1 ~ Poisson(Ait),
N

Ait =w + (@(1)1{yi,t_12r} + 0‘(2)1{yi,t_1<7“}) Yit—1 + SZ wiYji—1 + BAig—1, (5.2.1)
j=1

i=1,2,---,N.

The threshold parameter r is an positive integer, and 1;. denotes an indicator function.
To assure the positiveness of conditional variance, we need to assume that w > 0,

a(l)EO,a(2)20,§ZOandBZO.

Remark. Notice that in (5.2.1) we model the dynamics of conditional mean A;;, which
is the reason why the name “Poisson autoregressive” is sometimes used in the literature
(Fokianos et al., 2009; Wang et al., 2014). Some authors still use the name “GARCH”
since the mean is equal to the variance under Poisson distribution, and the dynamics
of conditional mean are GARCH-like. We tend to keep the name “GARCH” to align
with the TNGARCH model in Chapter 4.

Let {M;; : i = 1,2,...,N,t € Z} be independent Poisson processes with unit in-

tensities. Depending on A\, v+ can be interpreted as a Poisson distributed random
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variable Mj;(A;), which is the number of occurrences during the time interval (0, ;.

i.e. P(yir = n|A\y = A) = 2re~*. We could rewrite (5.2.1) in vectorized form as follows:

Yy = Mg (Ay), (5.2.2)

Ay =wly + AY1) Y + BA 1,
where Mt = (Mlt()\lt)y M2t<)\2t), ceny MNt()\Nt))I S NN, and
At = (s, Aoty - Ane) € RY,
1y = (1,1,...,1) e RY,

A(Yi—1) = aM8(Yi_1) + aP Iy — S(Yi_1)) + W,

S(Yt*ﬂ = diag {1{y1,t7127"}’ ]'{?JQ,t—lZT}’ ) 1{yN,t—1ZT}} :
Assumption 5.2.1. The coefficients o'V and a? satisfy:
(a). aM) < a?;
(b). o < (1 + ﬁ) o) when r > 1.

Now we are ready to give a sufficient condition for model (5.2.2) to have a strictly

stationary solution.

Theorem 5.1. If Assumption 5.2.1 is satisfied and
max{a(l),a@)} +&+ 8 <1,

then there exists a strictly stationary process {Y, : t € Z} that satisfies (5.2.2) and has

finite first order moment.

5.3 Parameter estimation with 7' — oo and N — oo

Assume that the model of interest is characterized by an array of parameters v =

(¢0',7) with 8 = (w,aM),a® ¢ B) and the parameter space © x Z,. The samples
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{yit : (i,t) € Dyp, NT > 1} are generated by model (5.2.1) with respect to true
parameters vy = (wo,a(()l), 04(()2),50,60, o).

Based on the infinite past of observations, the log-likelihood function (ignoring
constants) is

Lyr(v) = NTZ t)eDnT lit(v),

(5.3.1)
lit(v) = yirlog Nt (v) — Aie(v)
where \j¢(v) is generated from model (5.2.1) as
Ait(v) =w + a(l)l{yi,tqzr}yivt—l + a(2)1{yi,t71<r}yi7t_1
(5.3.2)

N
+¢ Z wijyYji—1 + BAi—1(V).

j=1
In practice, (5.3.1) cannot be evaluated without knowing the true values of \;p for
i = 1,2,...,N. Therefore, we approximate (5.3.1) by (5.3.3) below, using specified

initial values A\jp = Ao, 4 = 1,2, ..., N:

Lyt(v) = NTZ t)eDNT i(’/)a

] (5.3.3)
lit(v) = it log At (V) — Nt (v).
And the maximum likelihood estimates (MLE) are evaluated by
Iy = argmax Lyt (v). (5.3.4)

VE@XZ+

However, the solution that maximizes the target function L N7 (V) cannot be directly

M = 0, since r € Z is discrete, therefore the partial derivative

obtained by solving
of Ly7(v) w.rt. ris invalid. According to Wang et al. (2014), such an optimization

problem with integer-valued parameter r could be broken up into two steps as follows:

1. Find

OA(erf = argmax Ly7(0,r)
0O

for each r in a predetermined range [r,7] C Z.
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2. Find
FNT = argmax IZNT(QA(NT%F, T).
relr,7]
Then Oy = (ég%T)/,fNT), would be the optimizer of fLNT(V).
Assumption 5.3.1 is a regularity condition on the parameter space. Assumptions
5.3.2 and 5.3.3 are necessary for obtaining 7-weak dependence of {l;(v) : (i,t) €
Dnp,NT > 1}. Then the consistency of MLE in Theorem 5.2 could be proved based

on the LLN of n-weakly dependent arrays of random fields in Theorem 3.1.
Assumption 5.3.1. The parameter space © X Z, satisfies:

(a). © is compact and Oy is an interior point of ©;

(b). For any 0 € O, the conditions in Theorem 5.1 are satisfied.
Assumption 5.3.2. (a). SUpy7>1SUP(; )epyy, Yitlly, < 00 for some p > 1;

(b). The array of random fields {yi : (i,t) € Dy, NT > 1} is n-weakly dependent

2p—1
p—1"

with coefficients 7y (r) := O(r=Hv) for some p, > 2
Assumption 5.3.3. For any i =1,2,...N and j = 1,2,..., N, there exist constants
C >0 and b > p, such that w;; < C|j — i|™b. That is, the power of connection between

two nodes i and j decays as |i — j| grows.

Theorem 5.2. If Assumptions 5.5.1, 5.3.2 and 5.3.3 are satisfied, then the MLE de-
fined by (5.3.4) is consistent:
IQNT ﬁ) 1Z0)

asT — oo and N — oo.

Since 7y is an integer-valued consistent estimate of rg, 7y will eventually be
equal to rp when the sample size NT becomes sufficiently large. Therefore, iy =

NS ’ / ~ / /

(9%¥T) ,f’NT) is asymptotically equal to (H%OT) ,ro) . In this way, the problem of inves-

tigating the asymptotic distribution of Iy7 degenerates to investigating the asymptotic

distribution of é(NTOT) .
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Theorem 5.3. Assume that all conditions in Theorem 5.2 are satisfied, with fi, >
6p—3,, (4p—3)(2p—1)

in Assumption 5.3.2(b) instead. If the smallest eigenvalue Apin(ENT)

p—1 2(p—1)2
of
_ 1 1 (9)\1',5(110) a)\it(l/o)
“vr=yp ) E [)\it(uo) 00 o0
(Z,t)EDNT
satisfies that
Nirgl )\min(ZNT) > 0, (5.3.5)

then é%OT) s asymptotically normal, i.e.
VNTSY2 60 — 6) % N(0, I5)

as T — 0o, N — oo and N = o(T).

Remark. In the proof of Proposition 5.1 we will show that, X7 could be consistently

estimated by

S Z 1 i(nr) Nt (OnT)
Nit (ONT) 00 0o’

in practice.

Based on Theorem 5.2 and Theorem 5.3, for sufficiently large sample region such

that #y7 = g, we are able to design a Wald test with null hypothesis
Hy :T6y = n, (5.3.6)

where I' is an s x 5 matrix with rank s and 7n is an s-dimensional vector. For example,
to test the existence of a threshold effect, simply let T := (0,1,—1,0,0) and 7 := 0,
and the null hypothesis (5.3.6) becomes

Hy: all) = a(()2).

Corresponding to the asymptotic normality of HA](GOT) in Theorem 5.3, we define a
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Wald test statistic as follows:

Al r ~ -1
W := (009 — ) {NTleTr’} (oe) — ), (5.3.7)

where

o 1 1 i(onr) ONie (9
Snr=m Y [x L Oulv) ge,NT)] .
(i,t)eDNT it(UNT)
And in Proposition 5.1 below, Wy is proved to have an asymptotic y?-distribution

with s degrees of freedom.

Proposition 5.1. Under the same assumptions required by Theorem 5.3, as T — oo,
N — o0 and N = o(T), the Wald test statistic defined in (5.3.7) asymptotically follows

a x? distribution with degree of freedom s, i.e.

d 2
WNT — Xs-

5.4 Simulation study and empirical data analysis

5.4.1 Simulation study

Set the true parameters vy = (0.5,0.7,0.6,0.1,0.1,5)" of the data generating process
(5.2.1). For the sample region Dy = {(i,t) : i = 1,2,...,N;t = 1,2,....,T}, let T
increase from 200 to 2000, while N also increases at relatively slower rates of O(v/T)
and O(T'/log(T)) respectively, as shown in the following table:

T 200 500 1000 2000
N ~ /T 14 22 31 44
~T/log(T) | 37 80 144 263

For each network size N, the adjacency matrix A is simulated according to four

different mechanisms in Example 4.5.1 to Example 4.5.4 in Section 4.5.

Remark. Particularly, in the empirical analysis we will study the dataset of car collisions
across different neighbourhoods that are distributed on five boroughs of New York

City. These boroughs are separated by rivers (except for Brooklyn and Queens), and
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neighbourhoods within the same borough are more likely to share a borderline while
cross-borough connections are very rare. Therefore the network constructed with New
York City neighbourhoods follows the block structure in Example 4.5.4 with N = 20
and K = 5.

Based on a simulated network, the data is generated according to (5.2.1), and the
true parameters are estimated by the MLE (5.3.4). To monitor the finite performance of
MLE, data generation and parameter estimation are repeated for M = 1000 times, for
each combination of sample size (N,T'). The m-th replication produces the estimates
O, = (Wi, o?,(n), aﬁﬁ K Bm) and 7,,. Root-mean-square errors (RMSE) and coverage
probabilities (CP) with different sample sizes and network simulation mechanisms, are

reported in Tables 5.1 and 5.2; We also report the mean estimates of the threshold r¢

at the last columns of both tables.

T N w a® a® I3 B

T

200 14 | 0.0696 (0.94) 0.0203 (0.94) 0.0278 (0.93) 0.0170 (0.95) 0.0256 (0.93) | 5.028
Example 4.5.1 | 200 22| 00367 (0.96) 0.0100 (0.95) 0.0138 (0.95) 0.0101 (0.93) 00127 (0.95) | 5
%1 1000 31 | 0.0238 (0.95) 0.0058 (0.95) 0.0081 (0.95) 0.0062 (0.97) 0.0074 (0.95) | 5
2000 44 | 0.0153 (0.95) 0.0035 (0.95) 0.0047 (0.95) 0.0041 (0.96) 0.0045 (0.95) | 5

200 14 | 0.0454 (0.95) 0.0200 (0.95) 0.0264 (0.94) 0.0119 (0.96) 0.0245 (0.94) | 5.045

Example 45,2 | 200 22| 00284 (0.95) 0.0101 (0.95) 0.0134 (0.95) 0.0072 (0.94) 0.0126 (0.95) | 5.002
211000 31| 0.0162 (0.97) 0.0059 (0.96) 0.0077 (0.97) 0.0044 (0.94) 0.0074 (0.95) | 5
2000 44 | 0.0112 (0.96) 0.0034 (0.96) 0.0047 (0.95) 0.0029 (0.94) 0.0043 (0.96) | 5

200 14 | 0.0511 (0.96) 0.0200 (0.95) 0.0272 (0.94) 0.0131 (0.95) 0.0246 (0.95) | 5.034

Example 45,3 | 200 22| 00349 (0.95)  0.0102 (0.95) 0.0135 (0.96) 0.0084 (0.95) 0.0127 (0.96) | 5.001
2211000 31 | 0.0146 (0.95) 0.0060 (0.95) 0.0079 (0.95) 0.0038 (0.95) 0.0077 (0.94) | 5
2000 44 | 0.0104 (0.95) 0.0035 (0.95) 0.0048 (0.94) 0.0025 (0.95) 0.0043 (0.96) | 5

200 14 | 0.0882 (0.95) 0.0205 (0.95) 0.0273 (0.95) 0.0227 (0.94) 0.0256 (0.93) | 5.013
Example 45,4 | 200 22| 00379 (0.94)  0.0102 (0.95) 0.0136 (0.95) 0.0096 (0.95) 0.0124 (0.95) | 5
52011000 31| 0.0218 (0.95)  0.0060 (0.95) 0.0078 (0.95) 0.0055 (0.95) 0.0073 (0.96) | 5
2000 44 | 0.0118 (0.94) 0.0035 (0.96) 0.0047 (0.95) 0.0029 (0.95) 0.0043 (0.96) | 5

Table 5.1: Simulation results with different network structures (N ~ v/T).

From Tables 5.1 and 5.2 we can tell, that the RMSEs of Oy decrease asymptotically
toward zero, and the mean of 7#n7 is equal to rg = 5 for sufficiently large sample size.
These results support the consistency of MLE (5.3.4) in Theorem 5.2. The reported
CPs are close to the value 0.95, showing that SE provides a reliable estimation of
the true standard error of éNT. Moreover, in Figures 5.1 to 5.4 we draw the normal
Q-Q plots for the estimation results when T = 2000, N = 44 and T = 2000, N = 263

respectively, under different network structures. These Q-Q plots provide additional
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T N w a® a®@ £ 153

=
200 37 | 0.0537 (0.95) 0.0124 (0.95) 0.0164 (0.95) 0.0143 (0.94) 0.0158 (0.94) | 5.002
Example 4.5.1 | 700 80 | 0.0287(0.96) 0.0054 (0.94) 0.0071 (0.95) 0.0078 (0.95) 0.0066 (0.95) | 5
2211000 144 | 0.0201 (0.95) 0.0029 (0.94) 0.0040 (0.93) 0.0055 (0.95) 0.0036 (0.94) | 5
2000 263 | 0.0136 (0.95) 0.0015 (0.94) 0.0019 (0.95) 0.0038 (0.95) 0.0019 (0.93) | 5
200 37 | 0.0347 (0.95) 0.0121 (0.95) 0.0170 (0.95) 0.0089 (0.95) 0.0161 (0.93) | 5.008
Example 4.5.2 | 200 80 | 0.0140 (0.95) 00053 (0.95) 0.0070 (0.95) 0.0035 (0.95) 0.0066 (0.95) | 5
2211000 144 | 0.0073 (0.95) 0.0029 (0.93) 0.0036 (0.95) 0.0020 (0.94) 0.0036 (0.93) | 5
2000 263 | 0.0041 (0.95) 0.0014 (0.95) 0.0020 (0.94) 0.0011 (0.95) 0.0018 (0.96) | 5
200 37 | 0.0385 (0.95) 0.0124 (0.94) 0.0168 (0.95) 0.0092 (0.95) 0.0152 (0.95) | 5.003
Example 4.5.3 | 700 80 | 0.0144 (0.95) 0.0054 (0.95) 0.0071 (0.94) 0.0036 (0.95) 0.0067 (0.95) | 5
2211000 144 | 0.0073 (0.94) 0.0029 (0.94) 0.0035 (0.96) 0.0019 (0.94) 0.0035 (0.95) | 5
2000 263 | 0.0037 (0.95) 0.0015 (0.95) 0.0019 (0.96) 0.0009 (0.95) 0.0018 (0.95) | 5
200 37 | 0.0498 (0.95) 0.0120 (0.95) 0.0165 (0.94) 0.0129 (0.94) 0.0148 (0.96) | 5.011
Example 4.5.4 | 200 80 | 00176 (0.94) 00055 (0.94) 0.0071 (0.94) 0.0045 (0.94) 0.0069 (0.94) | 5
2711000 144 | 0.0083 (0.97) 0.0028 (0.95) 0.0036 (0.96) 0.0022 (0.96) 0.0034 (0.95) | 5
2000 263 | 0.0048 (0.95) 0.0015 (0.95) 0.0019 (0.95) 0.0012 (0.96) 0.0019 (0.95) | 5

Table 5.2: Simulation results with different network structures (N ~ T'/log(T)).
evidence for the asymptotic normality of Onr in Theorem 5.3.

5.4.2 Analysis of daily numbers of car accidents in New York City

New York City Police Department (NYPD) publishes and regularly updates the de-
tailed data of motor vehicle collisions that have occurred city-wide. These data are
openly accessible on the NYPD website ! and contain sufficient information for us to
apply our model. We collect all records from February 16th 2021 to June 30th 2022,
each record includes the date when an accident happened, and the zip code of where
it happened. We classified all records into 41 neighbourhoods according to the corre-
spondence between zip codes and the geometric locations they represent. Re-grouping
the data by neighbourhoods and the date of occurrence, we obtain a high-dimensional
time series with N =41 and T = 500.

Two neighbourhoods are regarded as connected nodes if they share a borderline.
Base on the geometric information, we are able to construct a reasonable network with
41 nodes, which is visualized in Figure 5.5. In Figure 5.6 we plot histograms of daily
numbers of car accidents in 9 randomly selected neighbourhoods. The shapes of the
histograms of sampled data show potential Poisson distribution. Moreover, in Figure

5.7 we could easily observe volatility clustering in the daily numbers of car accident in

"https://wwwl.nyc.gov/site/nypd /stats/traffic-data/traffic-data-collision.page
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Figure 5.1: Q-Q plots of estimates for Example 4.5.1.
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Figure 5.3: Q-Q plots of estimates for Example 4.5.3.
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four selected neighbourhoods of NYC, indicating potential autoregressive structure in

the conditional heteroscedasticity of the data.

e .,.
e - @
(]
[ ] e o
. (0]
. @ o
oO. ®
(©)
.O. ®
@
@
...

Figure 5.5: Network of 41 neighbourhoods in New York City

The estimation results are reported in Table 5.3. Firstly, it is worthy of note that
a® is slightly smaller than «(?), which means that the conditional variance of the
number of car accidents in these neighbourhoods are less affected by the number on
the previous day if it is above the threshold » = 10. Secondly, the volatility in the
number of car accidents in one area is also affected by its geometrically neighboured
areas. Besides, the estimated value of 3 is significantly larger than other coefficients,
indicating a strong persistence in volatility that leads to volatility clustering. Moreover,
we utilize the Wald test to further investigate the existence of threshold effect. Let
I':=(0,1,-1,0,0) and 1 := 0 in (5.3.6), then the null hypothesis becomes

Hy : ozél) = a(()2).

The Wald statistic (5.3.7) Wy = 18.94, which suggests the rejection of Hy at signifi-

cant level below 0.01 according to Proposition 5.1.
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Figure 5.6: Distributions of daily occurrences of car accidents in selected neighbour-
hoods.

20 20

w a(l) a(2) é' /B r
Estimation | 0.018693 | 0.126472 | 0.135026 | 0.002727 | 0.862244 | 10
SE 4.12e-03 | 4.40e-03 | 4.68e-03 | 1.09¢-03 | 4.73e-03 | \

Table 5.3: Estimation results based on daily number of car accidents in 41 neighbour-
hoods of NYC.
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Figure 5.7: Daily occurrences of car accidents in 4 neighbourhoods.
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Chapter 6

Network GARCH Models in the
One-Parameter Exponential

Family

6.1 Introduction

Corresponding to different application scenarios, GARCH-type models in existing lit-
erature are designed with different conditional distributions and iterative structures
that drive the hidden conditional mean (or variance) processes. Davis and Liu (2016)
established general theory and inference for a class of univariate GARCH models that
have conditional distributions belonging to the one-parameter exponential family and
the conditional means defined through (linear or non-linear) iterated random functions
of their lagged values and past observations. In this chapter, we will consider high-
dimensional GARCH models with conditional distributions in the one-parameter expo-
nential family. As we have mentioned, one major challenge faced by multi-dimensional
GARCH models is that the number of parameters increases as the spatial dimension ex-
pands, causing problems in establishing a feasible estimation method. As we have done
in preceding chapters, to circumvent this problem, we suppose that the simultaneously

observed individuals are connected through a network structure, and each conditional
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mean (or variance) is driven by a weighted average lag-1 values from its neighbours on
the network (see (6.2.2)). This idea of utilizing a large scale network is popular in the
literature of high-dimensional time series, starting from Zhu et al. (2017)’s network AR
model, followed by other AR-type models (Xu et al., 2024) and GARCH-type models
(Tao et al., 2024; Armillotta and Fokianos, 2024; Pan and Pan, 2024).

This chapter is organized as follows: In Section 6.3 the stationarity shall be dis-
cussed under a fixed-dimension setting, utilizing the method of geometric moment
contraction established by Wu and Shao (2004) for Markov chains driven by iterated
random functions. Then in Section 6.4 we will establish maximum likelihood estima-
tion that is consistent and asymptotically normal under increasing size of temporal and
spatial dimensions, facilitated by the limit theorems of weakly dependent random fields
in Chapter 3. As far as we know, among all the studies on high-dimensional GARCH-
type models, only Pan and Pan (2024) and Armillotta and Fokianos (2024) consider the
case of increasing size of spatial dimension. However, the threshold network GARCH
model of Pan and Pan (2024) is limited to continuous data and the Poisson network
autoregression of Armillotta and Fokianos (2024) has a simple ARCH-type conditional
intensity process. Our methodology accommodates both continuous and integer-valued
data, and it is feasible under non-linear structures in the conditional mean process. In
Section 6.5, we will test our methodology on a new negative binomial threshold network

GARCH model, with simulation studies and real data analysis carried out as well.

6.2 Network GARCH in one-parameter exponential fam-
ily

Adopting the settings in preceding chapters, we consider an non-directed and weightless

network with NN nodes, represented by adjacency matrix A and corresponding row-

normalized adjacency matrix W. For any node ¢ in this network, let y;; be an non-

negative observation at time ¢, and H;_1 denote the o-algebra consisting of all available

information up to ¢t — 1. In this chapter, we assume that the conditional distribution of

yit|Hi—1 belongs to the one-parameter exponential family (OPE) with parameter 7.
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For any random variable y adapts to this family of distribution, the probability

density function of y follows the form

f(yln) = h(y)exp{ny — A(n)}, y>0. (6.2.1)

7 is called the natural parameter. The function h(-) is non-negative and independent
from 7. The first order derivative of function A(-) exists and B(-) := A’(-); Both
functions in (6.2.1) are known. Based on the density function (6.2.1) we have the

conditional mean E(y|n) = B(n) and the conditional variance Var(y|n) = B'(n).

Remark. Since we assume that y > 0 in (6.2.1) throughout this chapter, then A is a
strictly increasing function since A’(n) = B(n) = E(y|n) > 0. Moreover, to ensure that

Var(y|n) = B'(n) > 0, B is also assumed to be strictly increasing.

An NGARCH-OPE(1,1) model has following form:

Yit|Hi—1 ~ OPE(n;t),

N (6.2.2)
Mit = g0 | Yit—1, Z WijYjt—1, Hit—1

j=1
for i =1,2,..., N. Similar to the settings of TNGARCH and PTNGARCH in previous
chapters, we assume that the conditional distributions y;;|H:—1 are independent for i =
1,2,...,N and t € Z. Characterized by 6-parameterized function gy(-), the conditional
mean process p;; := B(n;¢) has a GARCH-type structure with an extra network term.
The parameter 6 takes value that ensures the positiveness of the conditional mean
process p;. With carefully specified OPE and gy, model (6.2.2) covers a large class
of R-valued and integer-valued network GARCH, as well as univariate GARCH-type

models (N = 1). We will give three examples below.

FEzample 6.2.1. To model unbounded non-negative integer-valued data, we can set OPE

as a Poisson distribution with parameter A, (6.2.1) becomes

fyln) = ;exp {ny — e}, (6.2.3)
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with 7 = log(A), A(n) = €7 and B(n) = €". The grouped network Poisson AR (Tao
et al., 2024) and Poisson network AR (Armillotta and Fokianos, 2024) are special cases
of (6.2.2).

FEzample 6.2.2. We can also model bounded non-negative integer-valued data, by setting
OPE as a binomial distribution with number of trials n and probability of success p,

then (6.2.1) becomes

flyln) = <n> v (6.2.4)

y) (1+enn’

with n = log 1, A(n) = nlog(1 + €") and B(n) = n <1 — ﬁ) Hence (6.2.2) also
covers the binomial ARCH of Risti¢ et al. (2016).

Ezample 6.2.3. For non-negative integer-valued data with over-dispersion, we could set
OPE as a negative binomial distribution with number of success K and probability of

success p, then (6.2.1) becomes

y+ K -1

sl = (V0

)(1 —eNEem, (6.2.5)

with n =log (1 —p), A(n) = —Klog(1l — €") and B(n) = 1156!,7 The negative binomial
GARCH of Zhu (2010) is a univariate special case of (6.2.2).

6.3 Stationarity under fixed N

Let F}, be the cumulative distribution function of OPE in (6.2.2) with u = B(n) and its
inverse Fﬂ_l(u) :=inf {q > 0: F,(q) > u} for any u € (0,1). With the N-dimensional
vectors X := (z1, 22, ...,xy) and u := (uy, ug, ...,uy) where u; € (0,1) fori =1,2,..., N,

we could define an N-dimensional function

— N —
96 (Fz 1(“’1)7 Zj:l wlijjl(uj)a .’E1>

— N —
960 (szl (u2), Zj:l ngszl(u]'), :E?)

G(x,u) := (6.3.1)

960 (Fa;]vl (un), Y0, wn; Fyt (uy), xN)

87



Chapter 6. Network GARCH Models in the One-Parameter Exponential Family

For all ¢ and t, let U;t’s be independent and identically distributed (IID) random vari-
ables that follow uniform distribution on [0,1]. With

Xt = (,U,lt, Moty ey ,u’Nt)lv
/

Yt = (ylt,me -~-,3/Nt)
[Ut = (Ulta U2t7 ceey UNt)/v

we could define an N-dimensional Markov chain {X;} based on model (6.2.2) as follows:
X = G(Xi—1,Uy). (6.3.2)

The Markov chain (6.3.2) could be regarded as an iterated random function (IRF)
system, where the random function Gy, (-) := G(-,U;) is defined on a complete and
separable metric space (X, |- |«) with X := R¥, and the Uy’s are IID random vectors
that take values in another measurable space [0,1]"V. Therefore the stationarity of
(6.3.2) could be investigated using the methods of Wu and Shao (2004), who established
convergence of IRF to its stationary distribution in the sense of geometric moment
contraction (GMC).

For any starting point Xg = x € X of (6.3.2), we can define an process {Xy(x) : t >
0} as

X¢(x) := Gy, o Gy,_, o ... o Gy, (x).

If the stationary distribution of (6.3.2) exists and is denoted by m, then (6.3.2) could
also be represented by X;(x) if x ~ 7. Let x’ € X be another r-distributed starting
point that is independent from x. According to (2) in Wu and Shao (2004), the process
(6.3.2) is said to be geometric moment contracting if there exist constants o > 0,

C =C(a) >0 and p = p(a) € (0,1) such that

E|Xi(x) — X¢(x')|2, < Cp* (6.3.3)
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for all t € N. Similar to X;(x), we define a backward iteration process
Z(x) := Gy, o Gy, o ... o Gy, (x),

which has the same distribution with X;(x) for all x € X since Uy, Uy, ...U; are IID.
a.s.

Therefore, if there exists a random vector Zs, such that Z;(x) =5 Ze for all x € X,

then X¢(x) 4 Zoo.

Assumption 6.3.1. Let Sy be the range of (ym Z;Vﬂ Wi Yit, Mz‘t) forall (i,t) € Dnp, NT >
1. Then for any (a,b,c) and (a’,V', ) in Sy,

‘99(a7 b, C) - ge(alab,acl)’ < P1|a - a/| + PQ‘b - b/‘ + P3’C - Cl’v (634)

where the constants p1, p2, p3 are non-negative and p1 + p2 + p3 < 1. Moreover,

99(07 0, 0) < 0.

Theorem 6.1. With Assumption 6.3.1, the following statements hold for the process
(6.3.2):

(a). There exists a random vector Ze, such that, for allx € X, Zy(x) “3 Zoo. Zeoo does
not depend on x and follows distribution w, which is the stationary distribution

of (6.3.2).

(b). The Markov chain (6.3.2) is geometric moment contracting with unique stationary

distribution w, and Er [|X¢|| < oco.

6.4 Maximum likelihood estimation

Based on a series of samples {y;; : (i,t) € Dyp, NT > 1} from (6.2.2), we will in-
vestigate the consistency and asymptotic normality of MLE as the size of the sample
region NT — oco. Assume that the model of interest is characterized by an array of
k parameters 6 in a parameter space © that is a compact subset of R¥, and the true

parameter 0y € ©. Based on samples {y; : (i,t) € Dyp, NT > 1}, we could construct

89



Chapter 6. Network GARCH Models in the One-Parameter Exponential Family

a log likelihood function in the form

L@ =5 S @)= om S @y~ AGa@)],  (641)

(i,t)EDNT (i,t)EDNT
where 7;1(0) = B~ (11:1(0)), and p1;4(6) is obtained through iteration
N
wit(0) = go yi,tflaZwijyj,tflaﬂi,tfl(e)

j=1

The exact value of (6.4.1) cannot be calculated solely depending on the samples, since
the starting values p;o(0) for i = 1,2,..., N are not observable. In practice, the the

estimate of 6 is often obtained through an approximation of (6.4.1), i.e.

éNT = argmax ENT(H), (6.4.2)
0cO

where the approximated likelihood is

~ 1 - 1 ~ 3
Lnr(0) = NT Z lir(0) = NT Z (7t (0)yir — A7 (0))] , (6.4.3)
(i,t)eDNT (i,t)eDnT

with 7;(0) = B~1(f11(0)), and fi;;(0) being obtained through iteration
N
fit(0) = go yi,tfl,Zwijyj,tfla/li,tfl(e) ,

Jj=1

with prior setting of initial values ji;o for i = 1,2,...,N. We need Assumption 6.4.1
below regarding the convergence of the approximated likelihood (6.4.3) to the exact
likelihood (6.4.1).

Assumption 6.4.1. For any 0 € ©, |Ly7(0) — Ly7(0)] > 0 as NT — co.

To establish the consistency of our MLE, we firstly assume that the random fields
of observations {y;; : (i,t) € Dy7, NT > 1} have uniform bounded moments, and are

weakly dependent.
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Assumption 6.4.2. sup 7> SUp(; pepy, B |yit| P < oo for some p > 1, and the array
of random fields {yi : (i,t) € Dy7,NT > 1} is n-weakly dependent with 7,(r) =

O(r=#) with p > 3(227’1_11) Vv (4p2—(2)£?})7;l).

The element (7,j) of W, w;; measures the power of connection between any two nodes
¢ and j in a network. In the following assumption we assume that w;; decays as the

distance |i — j| grows.

Assumption 6.4.3. w;; < Cli — j|~* for some constants C > 0 and a > 22(2:}),u +2.

Comparing to the contracting assumption on gg in Assumption 6.3.1, in this section gg

is only required to be partially contracting with respect to its third argument.
Assumption 6.4.4. Let Sy be the range of (yit, Z;\le wijyjt,uit) for all (i,t) € Dy,
NT > 1. Then for any (a,b,c) and (a’,b', ") in So,

196(a,b,¢) — go(a .V, )| < Cila — d| + Colb = V'] + ple — (| (6.4.4)

for some constants C1 >0, Co >0 and 0 < p < 1.

Facilitated by the assumptions above, in Lemma 6.4.1 below we show that the
unobserved random fields {p;(0) : (i,t) € Dyp, NT > 1} are also weakly dependent
for any 6 € ©.

Lemma 6.4.1. If Assumptions 6.4.2, 6.4.3 and 6.4./4 are satisfied, then the n-coefficients
of {pit(0) : (i,t) € Dn1, NT > 1} satisfy

i) (r) < Cr2r

for some constant C > 0. And supyp>1SUP(; pyepy, SUPgco E |3 (0) ] < 0.

In the proof of consistency, we need to verify the convergence Ly7(0) —ELy7(0) 5
0, which requires the weak dependence of likelihood functions {l;+(0) : (i,t) € D7, NT >
1}. With the Lipschitz continuity assumption below, we obtain the weak dependence

of 1;(#)’s in Lemma 6.4.2 thereafter.
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Assumption 6.4.5. Let S, be the range of pi for all (i,t) € Dyp, NT > 1, the

functions B~! and Ao B~! are Lipschitz continuous on Sp.

Lemma 6.4.2. Beside of all the conditions of Lemma 6.4.1, if Assumption 6.4.5 is
also satisfied, then the n-coefficients of {1;t(0) : (i,t) € Dyp, NT > 1} satisfy

2(p—1)
A (r) < Cr*ae

for some constant C' > 0. And sup y7>1 SUp(; yepy, SWPsco E [lit(0)[” < co.

Assumption 6.4.6 below is required for the true parameters to be uniquely identifi-

able, i.e. 6 is the unique maximizer of E|Ly7(6)].

Assumption 6.4.6. For any § > 0,

sup  sup {E[Lnr(0)] —E[Ln7(6)]} <O.
NT>1 0e®
|16—00]|>

Lemma 6.4.2 allows us to use the LLN for weakly dependent random fields (Theorem
3.1 in Chapter 3), together with Assumption 6.4.1 and the identifiability Assumption

6.4.6 we can prove the consistency of éNT as follows:

Theorem 6.2. If Assumptions 6.4.1 to 6.4.6 are satisfied, then the MLE defined by
(6.4.2) is consistent, that is

as NT — oo.

As for the asymptotic normality of On1, we need additional assumptions on the

approximation L7 () of Ly7(6) as in Assumption 6.4.7 below.
Assumption 6.4.7. As NT — oo:

(a). VNT HaL (60) aLa(go)

5 0;

92L()  9%L(80)
"9000" 5067

= 0p(8)-

(b)- supjo-ayj<e |
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There are two essential parts in the proof of asymptotic normality of OnT: Firstly

to establish the limit distribution of the score function

VNTVy,! QE)L]V@Z(QO) 4 N, 1), (6.4.5)

where Vyr = Var |[VN dLNT(OO) . We also need to verify the convergence of the

Hessian matrix 8?91(;7750(,90) to its expectation, i.e.

0?Lnt(0o)

oo T HNT 20, (6.4.6)
where HNT =-E [%} .
Based on (6.2.2), we write
Opie(Bo) _ (v S Opsis—1(00)
it(Vo 1 it~
90 = Y, yi,t—l,;wijyj,t—h Mi,t—1(90)7 T

for some function gél). Let S1 be the range of (yit, ZN:1 wijYit, it (0o), %W) for all

(1) -

(i,t) € Dy, NT > 1. In the following assumption, we assume that g, is Lipschitz

continuous on S; and partially contracting with respect to the fourth argument.

Assumption 6.4.8. For any (a,b,c,d) and (a',V/,c,d’) in Sy,

Hgé?(a, b,c,d) — gé?(a’,b',c’,d’) < Cila—d'|+Colo—b'|+Cslc— |+ p|ld—d'| (6.4.7)

for some constants C1 >0, Co >0, C3 >0 and 0 < p < 1.

Lemma 6.4.3. Beside of all the conditions of Lemma 6.4.1, if Assumption 6.4.8 is
also satisfied, then the n-coefficients of {8“”(90 : (i,t) € Dnp, NT > 1} satisfy

) (r) < G

2
At (00) | P
E |2

for some constant C'> 0. And supn7>1 SUP(; 1yepyr < 00.

Assumption 6.4.9. Let S, be the range of py for all (i,t) € Dyp, NT > 1, the

functions (B™1) and (Ao B~1) are Lipschitz continuous on S,,.
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Assumption 6.4.10. Following bounds exist almost surely:

‘<oo;

sup  sup  |(B7Y) (uit(60))] < oo;
NT>1 (it)eDnr

Opit(6o)
00

sup  sup
NT>1 (it)eDnT

sup  sup ’(AO B_l)/(,uit(ﬂo))} < 00.

NT>1 (i,t)eDnr
Lemma 6.4.4. Beside of all the conditions of Lemma 6.4.3, if Assumptions 6.4.9
and 6.4.10 are also satisfied, then the n-coefficients of {81’57(990) : (i,t) € Dyp, NT > 1}
satisfy

2(p—1)

2 (r) < Cr* s

for some constant C'> 0. And supn7>1SUp(; yyepy, E ‘ al“(eo) < 00.
As for the second order derivative of pt(6y) we have
9?1t (6o) (2) Opir—1(00) 9*pi—1(6o)
o000 9oy | Yist—1> Z WiYjt—1, tit—1(60), 20 " 9000

=1

for some function gé ) Analogous to Assumption 6.4.8, we assume that 9,

(2) 4 partially

contracting with respect to the fifth argument on So, which denotes the range of inputs

of géi).

Assumption 6.4.11. For any (a,b,c,d,e) and (a’,V',c,d’,€') in S,

Hgéi)(a,b,c,d,e) 92 (a' b, d e la—a'|+-Colb—b| +Cs|e—c | +Culd—d' |+ ple—e'|

for some constants C1 >0, Co >0, C3>0,Cy >0 and 0 < p < 1.

Lemma 6.4.5. Beside of all the conditions of Lemma 6.4.4, if Assumption 6.4.11 is
also satisfied, then the n-coefficients of{aé%ee,o) (i,t) € D7, NT > 1} satisfy

) (r) < Crh
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924 (60) |

P
for some constant C' > 0. Moreover, Sup xr>1 SUP(; yepy, B ) 50007 < 00.

Assumption 6.4.12. Let S, be the range of pi for all (i,t) € Dyp, NT > 1, the

functions (B™1) and (Ao B~1) are Lipschitz continuous on S,,.

Assumption 6.4.13. Following bounds exist almost surely:

0% it (0o)
0000’

sup  sup ‘ < 00;

NT>1 (’i,t)GDNT

sup  sup ‘(Bfl)”(uit(ﬁo))‘ < 005
NT>1 (i,t)eDnT

sup  sup |(Ao B (i(60))] < oo.
NT>1 (i,t)eDyr

Lemma 6.4.6. Beside of all the conditions of Lemma 6.4.5, if Assumptions 6.4.12

and 6.4.13 are also satisfied, then the n-coefficients of { aalg)ta(g,o) (i,t) € D7, NT > 1}

satisfy

2(p—1)
P

8 lzt 90)
Jor some constant C > 0. Moreover, sup >4 SUP(; )eDyr B ) 9000

<OO.

Assumption 6.4.14. 6y is an interior point of the parameter space ©.

Assumption 6.4.15. infy7s1 Amin(Vvr) > 0 and infygsq Amin (V! “Hyr) > 0,

where Vyp = Var VN 8LNT(90) . Hyr = —-E [%] and Apmin(-) denotes the

smallest eigenvalue.

With Lemma 6.4.4 and Assumption 6.4.15, we can prove (6.4.5) according to the
Corollary 3.2.1 in Chapter 3.1. (6.4.6) could also be verified with the result of Lemma
6.4.6 by Theorem 3.1 in Chapter 3.1. Combining (6.4.5), (6.4.6) and Assumption 6.4.7,

we obtain the asymptotic normality of Oy as follows:

Theorem 6.3. If Assumptions 6.4.1 to 6.4.15 are satisfied, then the MLE defined by

(6.4.2) is asymptotically normal, that is
vV NT(V_I/ HNT)(QNT — 90) —> N(O Ik>

as NT — oo.
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6.5 A negative binomial threshold network GARCH

Suppose the conditional distribution of y;; in (6.2.2) is the negative binomial distribu-
tion:

Yit Hi—1 ~ NB(K, pit), (6.5.1)

which belongs to the one-parameter exponential family with 7, = log (1 — py), A(x) =

—Klog(l —€”) and B(x) = lli‘fz Notice that the conditional mean B(n;) = %
K(

;7?)“), therefore the negative binomial dis-
it

is smaller than the conditional variance
tribution is an appropriate alternative to the Poisson distribution under over-dispersed
data. Let p; = %, following the idea of Samia and Chan (2011) and Davis and
Liu (2016) of linking the conditional mean process to a piece-wise linear stochastic

function, we define gy as follows:

N
Wit = w + Oé(l)yi,t—l +a? (Yiz—1— 1)+ )\Zwijyj,t_l + B i—1, (6.5.2)
j=1
where % denotes the positive part of z, and » > 0 is an integer-valued threshold
parameter. To ensure that p; > 0, we suppose that w > 0, o >0, a +a® >0,
A>0,5>0.

(6.5.1) and (6.5.2) together define a negative binomial threshold network GARCH
model (NBTNGARCH), which is an extension of the negative binomial integer-valued
GARCH by Zhu (2010) to high-dimensional network data with threshold effects. Notice
that (6.5.2) can be viewed as two linear regression on different regimes separated by

the threshold 7r:

it = w4+ aWy; g + A Zj»v:l WijYji—1 + Bltiz—1 Yig—1 < T3
Wit = (w - 04(2)7”) + (Oé(l) + 04(2)) Yiz—1 + )\Z;-V:l WijYjt—1 + Blig—1 Yit—1 = T

For each i = 1,2,..., N, apart from the network structure, (6.5.2) is a special case of
the self-excited threshold autoregression by Wang et al. (2014) in that the coefficient [

is regime-invariant.
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6.5.1 Stationarity and estimation of NBTNGARCH

Proposition 6.1. Based on the model defined by (6.5.1) and (6.5.2), if
max{a®, o + @} + A+ 4 < 1, (6.5.3)

then the N-dimensional process Xy = (p1y, tot, ...,,uNt)/ 18 geometric moment contract-

ing with a unique stationary distribution and finite first order moment.

Let (6/,r) be the array of parameters to be estimated where 6 = (w, a2, a® X BY.
Moreover, {yi; : (i,t) € Dy, NT > 1} are the samples of size NT, generated by (6.5.1)
and (6.5.2) with true parameters wy, a(()l), a(()2), Ao, 8o and 7g.

Based on the infinite past of observations, the log-likelihood function (ignoring

constants) is

LNT(ea T) = ﬁ Z(i,t)eDNT lit(e) T),
lit(97 ’f’) = Vit log ,uit(ea T) - (Z/zt + K) log (/’L’Lt(ea T) + K) )

(6.5.4)

where p;(0,7) is generated according to process (6.5.2). Based on finite samples {y;: :

(i,t) € D7, NT > 1}, we obtain the approximated log-likelihood function:

ENT(ev r) = ﬁ Z(i,t)EDNT Zit(97 r),

1it(0,7) = yirlog [ (0,7) — (yir + K)log (1t (0, 7) + K),

(6.5.5)

where fi;;(6,r) is generated by (6.5.2) with initial values p;o = f0,7 = 1,2,...,N.
Therefore the MLE is the maximizer of Ly7(0,r), which can be obtained through a

two-step algorithm as follows according to Wang et al. (2014):

1. For each r in a predetermined range [r, 7| C Z4, find é(Nr)T = argmaxpee Lyt (6,7)

where © C R? is the parameter space of coefficients;
2. Find #y7 = argmax,c, » Z}NT(HA(NT%“, r).

N ’ / ~
Then (Gggﬂ ,fNT> is the optimizer of Ly (6,7r).

We need the following assumptions:
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(NB1). 6 is an interior point of the parameter space ©, which is a compact subset of R?
such that w > 0, a® >0, a® +a® >0, A >0, 3 > 0, and max{a(l),a(l) +
@Y+ A+8<1forallfeO;

(NB2). supyr>1SUp;pyepyy E lyit| P < oo for some p > 1;
(NB3). The array of random fields {y;; : (i,t) € Dyp, NT > 1} is n-weakly dependent

with 7,(r) = O(r~#) with p > (2p 1y (4p2(]3;)(%) D,

(NB4). wij < C(Ji — j|~7) for some v > Z2={py 4 2;

(NB5). infn7>1 Amin(EnT) > 0, where

1 T = [ K Opit (0o, o) 3##(90’7“0)}
,ult(‘g(]’ TO)

ENT = —= ]
NT (i,)eDnr + Kpit(6o,70) o0 90

/
Proposition 6.2. If (NB1) to (NB4) are satisfied, the MLE (9(TNT) T‘NT> is consis-

tent as T — oo and N — oo, i.e.
!/
(9§§§V~T) TNT) % (B, 70) -

If (NB5) is also satisfied and N = o(T), then 67](65}) is asymptotically distributed as
follows:

VNTEN2009) — 69) % N(0, I5).

Remark. With 7y being an integer-valued consistent estimate of rg, 77 will eventu-
ally be equal to rg as T' — oo and N — oo, hence éxgﬂ and é%(}) are asymptotically

equal.

6.5.2 Simulation study

Set the true parameters vy = (0.5,0.6,0.1,0.1,0.1,5)" and the number of successes
= 100 in (6.5.1). Let T increases from 200 to 2000, while N also increases at
relatively slower rates of O(T'/log(T)). For each network size N, the adjacency matrix

A is simulated according to four different mechanisms in Example 4.5.1 to Example
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4.5.4. Based on a simulated network, the data is generated according to (6.5.2). To
monitor the finite performance of MLE, data generation and parameter estimation are
repeated for M = 1000 times, for each combination of sample size (N, T’). Root-mean-
square errors (RMSE) and coverage probabilities (CP) with different sample sizes and
network simulation mechanisms are reported in Table 6.1; We also report the mean

estimates of the threshold rg at the last column of the table.

T N a® a® A 7
200 37 | 0. 0500 (0.95) 0.0153 (0.92) 0.0491 (0.90) 0.0171 (0.95) O. 0169 (0.94) | 4.94
Example 4.5.1 500 80 | 0.0284 (0.94) 0.0062 (0.93) 0.0221 (0.87) 0.0101 (0.94) 0.0073 (0.95) | 5.01
71 1000 144 | 0.0190 (0.95) 0.0032 (0.94) 0.0100 (0.92) 0.0070 (0.95) 0.0040 (0.94) | 5.01
2000 263 | 0.0132 (0.95) 0.0017 (0.93) 0.0046 (0.95) 0.0050 (0.95) 0.0020 (0.95) 5
200 37 | 0.0294 (0.95) 0.0151 (0.93) 0.0476 (0.91) 0.0096 (0.94) 0.0179 (0.93) | 4.95
Example 4.5.2 500 80 | 0.0136 (0.94) 0.0065 (0.92) 0.0216 (0.89) 0.0043 (0.95) 0.0075 (0.95) | 5.03
71 1000 144 | 0.0078 (0.95) 0.0033 (0.93) 0.0099 (0.91) 0.0024 (0.95) 0.0041 (0.94) | 5.01
2000 263 | 0.0040 (0.94) 0.0016 (0.94) 0.0046 (0.94) 0.0012 (0.94) 0.0020 (0.94) 5
200 37 | 0.0362 (0.94) 0.0151 (0.93) 0.0435 (0.92) 0.0107 (0.94) 0.0172 (0.94) | 4.87
Example 4.5.3 500 80 | 0.0148 (0.93) 0.0064 (0.92) 0.0209 (0.87) 0.0044 (0.95) 0.0072 (0.95) | 5.01
711000 144 | 0.0077 (0.95)  0.0032 (0.94) 0.0102 (0.90) 0.0025 (0.94) 0.0039 (0.95) 5
2000 263 | 0.0040 (0.92) 0.0016 (0.94) 0.0047 (0.94) 0.0012 (0.96) 0.0021 (0.94) 5
200 37 | 0.0465 (0.95) 0.0155 (0.92) 0.0459 (0.92) 0.0161 (0.94) 0.0175 (0.94) | 4.89
Example 4.5.4 500 80 | 0.0175 (0.95) 0.0067 (0.91) 0.0202 (0.89) 0.0056 (0.95) 0.0076 (0.94) | 4.99
771 1000 144 | 0.0093 (0.94) 0.0032 (0.93) 0.0105 (0.89) 0.0030 (0.95) 0.0039 (0.95) | 5.01
2000 263 | 0.0047 (0.95) 0.0016 (0.94) 0.0046 (0.93) 0.0015 (0.95) 0.0021 (0.94) 5

Table 6.1: Simulation results with different network structures (N ~ T'/log(T)).

From Table 6.1 we can tell, that the RMSEs of 6 nT decrease toward zero, and the
mean of 7y is equal to ro = 5 for sufficiently large sample size. These results support
the consistency of MLE in Proposition 6.2. The reported CPs are close to the value
0.95, showing that SE provides a reliable estimation of the true standard error of OnT.
Moreover, in Figures 6.1 to 6.4 we draw the normal Q-Q plots for the estimation results
when T = 2000, N = 263 under different network structures. These Q-Q plots provide

additional evidence for the asymptotic normality of OnT in Proposition 6.2.

6.5.3 Revisiting the data of car accidents in New York City

We have fitted our Poisson threshold network GARCH model to the daily number of car
accidents in New York City in Section 5.4.2. In this section we will fit the non-negative
binomial threshold network GARCH to the same dataset, then we will use the diagnostic

tool of non-randomized probability integral transform (PIT) to determine whether or
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Chapter 6. Network GARCH Models in the One-Parameter Exponential Family

not the non-negative binomial distribution is a better choice over Poisson distribution.
Non-randomized PIT was proposed by Czado et al. (2009) to check the statistical
consistency between the predictive distribution and the distribution of observations for
count data, and it was applied by Christou and Fokianos (2014) to show that their
negative binomial autoregressive model is better than the Poisson autoregressive model
by Fokianos et al. (2009) when fitted to the data of transactions on the stock market.

Firstly we fit the NBTNGARCH model to the data of car accidents in New York City
with K = 30, and obtain the MLE 6 and 7. With observed data, then we can generate
the estimated means {ﬂit(é, 7):i=1,2,..,N;t=1,2, ...,T} according to the process

(6.5.2). The PIT is based on following conditional cumulative distribution function:

Fulyi =y) = % Py —1) <u < P(y), (6.5.6)
1 u > P(y).

P is the conditional cumulative distribution function of non-negative binomial distri-
bution evaluated at iz (6, #), and the PIT (6.5.6) should be a cumulative distribution
function of standard uniform distribution if y ~ P. Similar to Christou and Fokianos

(2014), we obtain the mean PIT by

N T

Plu) = —— S Fululya), 0<us<t, (6.5.7)

where Fj; is based on predictive distribution P;; evaluated at /l,-t(é, 7) and the data y;.
The mean PIT for PTNGARCH can be obtained similarly. We generated 1000 evenly
space values of u € [0, 1], and obtain 1000 samples of mean PIT according to (6.5.6)
and (6.5.7) for PTNGARCH and NBTNGARCH respectively. These two groups of PIT
samples are plotted as histograms in Figure 6.5, which suggests that the PIT samples
of NBTNGARCH are more likely to follow a standard uniform distribution. Therefore
we choose non-negative binomial threshold network GARCH over the Poisson threshold
network GARCH when analysing the data of car accidents in New York City.

The estimation results of NBTNGARCH are reported in Table 6.2. Firstly, it is
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Network GARCH Models in the One-Parameter Exponential Family
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Figure 6.5: PIT histograms for PTNGARCH and NBTNGARCH.

worthy of note that «(® < 0, which means that the conditional mean of the number of
car accidents in these neighbourhoods are less affected by the number on the previous
day if it is above the threshold » = 8. Secondly, the conditional mean of the number of
car accidents in one area is also affected by its geometrically neighboured areas. Besides,
the estimated value of (3 is significantly larger than other coefficients, indicating a strong

persistence in conditional mean. These characteristics align with what we have under

PTNGARCH in Section 5.4.2.

w a® a® A 15} r
Estimation | 0.0195 | 0.1375 | -0.0148 | 0.0028 | 0.8596 | 8
SE 0.0038 | 0.0032 | 0.0051 | 0.0011 | 0.0032 | \

Table 6.2: Estimation results based on daily number of car accidents in 41 neighbour-

hoods of NYC.
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Chapter 7

Further Work

7.1 On the network specification

In this research, we use a pre-specified network (denoted by row-normalized adjacency
matrix W) to describe the relations between N individuals. For example, in model

4.1.1, the network effect on each individual i = 1,2, ..., N is denoted by
N
Y Wi (7.1.1)
j=1

in the sense of Cliff and Ord (1972). However, this setting can be improved considering

two cases in practice:

e There exist multiple networks that can potentially describe the relationships be-

tween these individuals;
e The formation of the network is dynamic over time rather than being static.

To deal with multiple networks, it is worth considering the weight matrix fusion
technique of Lu et al. (2024). The authors suggested a weighted average of multiple
row-normalized adjacency matrices, with the weights being unknown parameters. If
we incorporate the fusion network effect of Lu et al. (2024) instead of (7.1.1) in the
network GARCH models, we may be able to analyze the effects of different networks

by estimating the weight parameters.
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Chapter 7. Further Work

The study of network formation dates back to Erdés and Rényi (1960), and there
has been a vast literature on random network models, including dynamic models that
describe how networks change over time (see Caldarelli and Vespignani (2007) and
Kim et al. (2018) for literature reviews). However, little has been done to incorporate
dynamic networks in high-dimensional time series models. Therefore, it would be very

meaningful to consider a dynamic network in a network GARCH model.

7.2 Heterogeneous parameters

In this research, we explore time-varying parameters via a self-excited threshold ef-
fect. For instance, in model (4.1.1), the coefficient of yztfl switches between 1) and
a® based on the value of Yit—1. Moreover, it is beneficial to examine cases where
parameters switch according to an exogenous random process. Cai (1994) and Hamil-
ton and Susmel (1994) introduced ARCH models with Markov-switching parameters
to depict sudden shifts in the conditional variance. In these models, parameters change
according to a multi-state Markov process. Incorporating Markov-switching param-
eters in a network GARCH model is both meaningful and challenging. Even in the
univariate case, estimating Markov-switching GARCH models poses challenges due to
the path dependence problem, which stems from the latent Markov process. Despite
Bayesian methods proposed to address this issue (Bauwens et al., 2010; Augustyniak
et al., 2018), it remains uncertain whether these methods are applicable for estimating
a Markov-switching network GARCH model, particularly when N is large.

Apart from considering time-varying parameters, another extension to current net-
work GARCH models is to accommodate nodal variant parameters. In model 4.1.1, the
parameters are the same for each ¢ = 1,2, ..., N. By allowing the parameters to change
across each node ¢ in the network, the model will be able to capture nodal variations,
providing a more accurate and flexible representation of the underlying processes. In
fact, spatially variant parameters have been successfully incorporated by several spatio-
temporal autoregressive models (see Rao (2008), Al-Sulami et al. (2017) among others),

inspiring us to extend network GARCH models in this direction in the future.
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Appendix A

Proofs of Theoretical Results

A.1 Proofs of results in Chapter 3

We use C and p uniformly over different contexts to represent constants where 0 <
C < oo and 0 < p < 1. In some cases we use C; and p; with subscript ¢ to distinguish

between different constants.

Lemma A.1.1. Let {X;, : i € Dy,n > 1} be a R-valued n-weakly dependent random

field. If sup,, sup;cp,, | Xinll, < oo for some p > 2, then for any i,j € Dy:

p—2

p
| CoV(Xis Xj)| < CIXNF I (pli, )5, (A.L1)

where || X ||, := sup, sup;ep, | Xinll,- The same result holds for 0-dependence.

Proof. Let X; (k) = —kV X;, Ak be a truncation of X, at level k£ > 0, where V and

A mean mazimum and minimum respectively. Then for any ¢ € D,, and a € (0, p):

E|Xin — Xin(k)[® <E[|X;0]%1(Xin] > F)]
< (B[ X0 [P) P [P(| Xy 0] > k)] (0P
||X||£} 1=(a/r)

= [IX[[RR,

<ty |15

where the second line and the third line come from Holder’s inequality and Markov
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inequality respectively. Hence sup,, sup;cp || Xin — Xin(k)|la < ||X||£/“]<;1—(p/a),

For any i,5 € D,, we have

| Cov(Xin, Xjn)| <[ Cov(Xin(k), Xjn(k))|
+ | COV(Xi,n — Xz,n(k), X]m(k)”

+ | Cov(Xin, Xjn — Xjn(k))|.

For the last term on the right-hand-side (RHS), we could find a € (1,p) such that
1/a+1/p =1 and therefore

| Cov(Xin, Xjn = Xjn(k))|
SEXin (Xjn = Xjn ()] + [E(Xin) [[E(Xjn — Xjn (k)]
< Xinllpll Xjn = Xjn(F)lla + [ Xinll1[[ Xjn = Xjn ()l
SQ”Xz‘,anHij - Xj,n(k)Ha

<2||X 2>

Same bound could also be derived for the second term on the RHS. As for the first
term, note that X (k) is a function of X with bound & and Lipschitz constant 1. Then
by (3.2.4) we have | Cov(X; (), X;jn(k))| < 2kn,1.1(p(4,7)), then

p—2

P
| Cov(Xim, Xjin)| < 6IXN5" (101 (p(E, )]~

X115

1
p—1 . .
m] . The proof under #-dependence follows similar argu-

by choosing k = {
ments.

O

Lemma A.1.2. (Proposition 6.3.9 in Brockwell and Davis (2009)) Let (Zy)n>1 and
(Vn7k)n,k€N+ be sequences of random vectors. Z, i V' if the following statements are

true:

1. For each k € Ny, there exists V}, such that V;, i> Vi as n — oo;
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2. Vkiv as k — oo;
3. limy_yo0 limsup,, o P(|1Zy, — Vi, x| > 6) =0 for any 6 > 0.

Lemma A.1.3. (Lemma 2 in Bolthausen (1982)) Let (Vp)nen, be a sequence of prob-

ability measures over R with

1. sup,, [ 2%, (dz) < oo,

2. limy, 00 [(IX — 2)ePu, (dz) = 0 for all X € R.
Then v, % N(0,1) as n — oo.

Lemma A.1.4. (Lemma A.1 in Jenish and Prucha (2009)) For anyi € D C R? and
h>1, let
Ni(h):=|{jeD :h<|j—i| <h+1}.

be the number of all elements of D located at any distance in [h,h + 1) from i. Then
sup; N;(h) < Chd—1.

Lemma A.1.5. (Lemma A.4 in Xu et al. (2024)) For any o > 0 and s > 2,

a+1

G 2

§ :h—a—l < S—a’
(07

h=[s]

where [s] denotes the largest integer less than or equal to s.

A.1.1 Proof of results in Section 3.2

Proof of Proposition 3.2

Firstly we prove that X;, = H;,((¢;)jep) is well-defined in L!. For any s € N, let
X% = Hi ((41¢p(i.5y<s1)ien). Then by (3.2.6) we have

i,m

‘Xs—l—m_ )

<Z‘X (s+k) (s+k 1)‘
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M-

| Hin((e51(p(i5)<s+41)jeD) = Hin((€51(p(ij)<s+k-1})jeD)]

i
I

B; k 1tV 1
in(s + R max etV D e
p(i,5)=s+k

UL

B
Il
—

Since sup;ep |l€illp < oo with p > 1 + 1, by Hélder’s inequality and Lemma A.1.4 we

obtain that
HX(S—i-m . s)

S Ci(s +k)IB; (s + k). (A.1.2)
k=1

Notice that (s + k) 'B; (s + k) — 0 as s — 00, according to (3.2.7). Then if m is
fixed, || X5 — X[°)

i,n

in LY, and X, = lim, o0 X3 is well-defined.

— 0 as s = 0o. Therefore {XZ.(;) : s > 0} is a Cauchy sequence

Let U,,V, C D, be two arbitrary sub-lattices of D,, with |Uy|. = u, |[Vp|c = v
and p(U,,V,) > r. f € F, and g € G, are two arbitrary Lipschitz functions with
I fllcc = llglloc = 1. For an arbitrary threshold value T' > 0, define £;(T) := —T'Ve&; AT,
and X\%)/(T) := Hin((£;(T)1(y(s,5)<s))je). Notice that

|Cov[f(Xin)iev,), 9(Xin)iev,)]|
< |Covlf (Ximiev,) = FUXST)iev, ) 9((Kimievs )|
+ |CovIF (XN iew), o((Kimiev,) = g((XENT)iev, )|

+ | Cov (XD icv,), g (XENTiews )|

(A.1.3)

We start with the first term in the right-hand-side (RHS) of (A.1.3):

Covlf (Kim)iev,) = FXENT)iew,): 9((Xin)iev: )|

<2Lip(f) > E|Xi — X))
€Uy

<2uLip(f) [sup E|Xin — X0)| + sup B|X() — X0)(T >!]-
ieUn 'LeUn
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Same as (A.1.2), we can prove that

E|Xin — X0 < CS 1B (h).
h>s

Notice that >° ; 7<, = O(s%) according to Lemma A.1(ii) in Jenish and Prucha (2009),
then by using (3.2.6) repeatedly we can also prove that (ignoring a constant factor):
(s) (s)
E|X;, — X5 (T)]

=B |Hin((51(pi.5)<s})ien) — Hin((€5(T)1p(ig)<s})jen))|

o
< (ZBi,n(h)hd‘1> E (,,{?J%’i i) D leillge =
h=0 =8

p(i,3)<s
< (Z Bi,n(h)hM) s'E
h=0

I+1
max [e;|"" Ly >7
pling)<s lleal2T}

Since E|g;|P < 0o and p > [ 4 1, by Holder’s inequality we have
E|IX) - X5/(T)| < (Z Bi,n(h)hd—1> Csiiti-p,
h=0

Then we obtain the bound

’COV[f((Xi,n)ieUn) - f((Xi(,Srz (T))icv,) 9((Xin)iev,)]

(A.1.4)
<2uLip(f) [Clc(s) + CchsdTlH—P} .
The bound of the second term on RHS of (A.1.3) follows analogously:
(CovF (X5 (T)iew) 9((Ximdiens,) = (XN ievs )] rs)

<2v Lip(g) [ClC(s) + CyCpsiTHH7P|

To obtain the bound for the last term on RHS of (A.1.3), define following functions

Fr: R+ R and Gr: R*™ s R as follows:

Fr(((e))p(sy<s)ievn) = F(Hin((e5(T) 1 pgy<s))ien))ievs) = FXENT))iew, );
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Gr(((£)pigy<s)ievn) = 9(Hin (5(T) Lpigy<s))ien)ievs) = 90X ievs)-

By the n-weak dependence of {g; : i € D}, if r > 2s we have

Cov[f((XENT))iev, ) a((XEN(T))ievs, )]

§[sdu Lip(Fr) + 5%y Lip(G7)|7(r — 2s).

Notice that for any X = (X;)icv,.D = (Yin)icv, € R

|Fr(X) — Fr(9)
Zz‘eUn |Xi7n - Yi,n’
< Lip(f)ZieUn | Hin(Xijin(T) 1. y<s})ien) — Hin((Yign(T)1{o(i,5)<s})jeD)]
D icUn 2op(inj)<s [ Xijn — Yijnl

= Dictn 2aptijy<s [ Xijn(T) = Yijn(T)|
S Llp(f) Bim(h)hd_l Tl n P ))S
hz;) D icUn 2opli)<s | Xijm = Yijnl

by using (3.2.6) repeatedly. Therefore we can prove that:

Lip(Fr) < CpT"' Lip(f);

Lip(Gr) < CpT" Lip(g)-
Then we can bound the last term on RHS of (A.1.3) by

Cov[ (XN (T)ier,) 9(XENT)iev, )]

<[uLip(f) + vLip(g)]CBsdTlﬁg(r — 2s).

(A.1.6)

for any r > 2s.
Combining (A.1.4), (A.1.5), (A.1.6) we can prove Proposition 3.2 by setting the
threshold value T' = 7.(r — 25)_10%1. The result under #-coefficients could be verified

analogously.
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Verification of (3.2.10) and (3.2.11)

Assume that 7. = O(r™#) for some p > p’:ild and B;,(h) = O(h™?) for some b >
22 . Notice that:

e 0o

Zh_k S/ ikdx: ! (s — 1)+

hes s—1 T k—1

if k> 1. Then we have C(s) = Y72 B;n(h)h?™t < Cs7t+4. (3.2.10) follows by letting
s=[r/3] <[r/2] in (3.2.9).
Assume that d = 2, 7. = O(r~#) for some p > 0 and B;,(h) = O(e~*") for some

b> p[;l;lu. Notice that:

io:h Con Se—bs _ (s _ 1)e—b(s+1)
ST e

Then C(s) = Y32, Bin(h)h = O(se™*), and (3.2.11) follows by letting s = [log7] <
[r/2] in (3.2.9).

A.1.2 Proof of Theorem 3.1

Let Y;,, = )]f}: where M,, = sup;cp, Cin. From (A.1.9) and Claim A.1.1, we could

verify that Y, also satisfies Assumption 3.3.1 and Assumption 3.3.2 if X, does.
Again in the proof of LLN, we still use the decomposition Y;, (k) and Y, (k) in

(A.1.10), which are continuous transformations of Y; , with Lipschitz constants 1. From

Proposition 3.1 we know that Y; ,,(k) and Y; ., (k) also inherit the dependence coefficient

from Y; .
Since
B> (Yin —EYin)| <E| Y (Yin(k) —EY;n(k)| +E| > (Yin(k) — EY (k)
€Dy, €Dy, €Dy,
<E|) " (Yin(k) = EY;n(k)| +2 > E[Y;,(k),
€Dy, €Dy,
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we have

<

(1Dnle)™ Y (Yin(k) — EYin(k))

1€Dn

||(‘Dn|6)_1 Z (Y;,n - EYi,n)

i€Dp

1

+ 2 sup sup E|Y (k)]
n €Dy

Note that sup,, sup;ep, E|Y; (k)| < sup, sup;ep, E[|Yin| 1(|Yin| > k)] for any k& > 0,

then according to (3.3.2), it suffices to show that

lim lim
k—o0 n—00

(IDale)™" Y (Yin(k) = EYiu (k)| =0 (A.L7)

1€Dp

in order to prove that

1

Let 02 (k) = Var [ZiEDn Yin(k)], then

H(IDnlc)1 Y Yin(k) =EYin(k)|| < (IDnle) " on(k)

1€Dn

1

by Lyapunov’s inequality. Since Y; (k) is a bounded function of Y;, with Lipschitz
constant 1, then by Lemma A.1.(iii) in Jenish and Prucha (2009) and (3.2.2) we have

op(k) < C|Dnle > s e (s).
s=0

Recall from Assumption 3.3.2 that € 1(s) = O(s™%) with a > d, therefore lim;,_o0 (| Dp|c) Lo (k)

0 for each k > 0. This completes the proof.
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A.1.3 Proof of Theorem 3.2

X;
Let Y;,, = 37~ where M,, = sup,cp, Cin, and denote S,y = > ieD,, Y and O'ZY =
n b

Var(S,,y). Then it could be easily verified that
Ungn = a;%/Sny.

Therefore it suffices to prove the CLT for {Y;, : i € D,,n > 1}. In what follows, we
would denote for simplicity that S, =Y, Yin and o7 = Var(S,).

In this new setting, Assumption 3.3.6 becomes
lim inf (| D,|.) "t > 0. (A.1.8)
n—oo

Assumption 3.3.3 implies that Y;,, are uniformly L,,-bounded as

m

<o (A.1.9)

sup sup E|Y; ,|™ < sup sup E
n (€D, n 4€Dy

Cin

for some m > 2. Then we will show that Assumption 3.3.4 and Assumption 3.3.5 about
dependence coefficient of X; , covers the dependence coefficient of Y;,, in the following

claim:

Claim A.1.1. The dependence coefficients €}, ,, ,(s) of Yi, and the dependence coeffi-

U,V

cients €nu0(s) of Xin satisfy

" 1
en,u,v(s) < Een,u,v(s)-

Proof. Let f € Fy :R*— R and g € G, : R” — R be two arbitrary Lipschitz bounded

functions. Define
Xy, ={Xin:1€U,, U, CD,}, Xy, ={Xin:1€V,,V,CDy},

and

Vo, ={Yin:1€ Uy U, C Dy}, Dy, :={Yin:i€V,,V, CDyp}.
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Then we could define functions F': R* — R and G : RY — R:

F(%Un) = f((Xi,n/Mn)iEUn)a

G(%Vn) = g((Xi,n/Mn)iGVn)'

For the Lipschitz constants of F' and G we have

F - F
Lip(F) = sup (@1, ey u) = F 1,9

(2150 y ) Z (Y15 oy Yu ) ER® |'CC1 - y1| + ot ‘1'“ - yu|

= sup
(Z15e s ) F (Y1 5oy Y ) ERY |5L‘1 - Z/1| + ...+ |33u - yu|
; | £ ) = F (s 22)
:ﬁ sup T1 U1 Tu U
" (21,a) £y |3 — | o R — A
1.
<— Lip(f)

And similarly Lip(G) < M¢ﬂLip(g). Obviously, we also have ||Fllcc < | fllcc and

|Glloo < |lglloc- Consequently, for case when X, ,, are n-dependent, we have

| Cov(f(Du,.), 9(Dv,))| =| Cov(F(Xu,), G(Xv,,))|
<[ul|Glloo Lip(F) + v[|F[[oo Lip(G)]1m,u,0(5)

1
<[ullglioe Lip(f) + v flloo LiP(9)] - 1hm,00(5)-

Hence 7y, ,, ,(s) < ﬁnnn,u,v(s), and same results hold for #-dependence as well.

For k£ > 0, we decompose Y ,, into two parts:

Yin(k) =—-kVYin, Ak,
(A.1.10)
Y; n(k) = }/i,n - Yz,n(k)

)
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Their variances are

o2(k) = Var , 52 (k) = Var

> Yin(k)

i€Dp

Claim A.1.2. |0, — 0, (k)| < 6 (k).

Proof. Let

Su(k) =Y [Yin(k) —EY;n(k)],  Sa(k) =Y _ [Yin(k) — EY;n(k)].

1€Dn, 1€Dp

Note that S, = Sy, (k) + Sp(k), on = I1Snll2, on(k) = ||Sn(k)||2 and 6, (k) = HS’n(k)HQ,
then the inequality could be derived according to Minkowski’s inequality.

O]

Recalling from (A.1.9) that ||Y||,, := sup,, sup,ep, [|Yin|lm < oo for some m > 2,

then for each k > 0,

1Y (F)lm := sup sup [|Yn (k) lm < [[Y [,

n €Dy, N
and

1Y (k) [l = sup sup [[Vin(k)llm < (Y [lm-
n 1€D,

Claim A.1.3. There exists constants 0 < C, < C* < o0 and 0 < N < oo such that
Ci|Dylc < 07 < C*| Dy,

for alln > N.

Proof. (A.1.8) implies that, there exists Ci > 0 and N > 0 such that C,|Dy|. < o2 for
all n > N, which proves the lower bound.

For the upper bound, according to the covariance inequalities (A.1.1) derived in
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Lemma A.1.1 with p = m:

A Y VR Y [ CorVin Vi)

€Dy, 1,7€Dn
]
_m__ L m—2
<Y Dale + CullY [l * Y (e (pli, )] =
4,J€Dn
i#]

_m_ o o p=2
<IVIEIDale+CullY i DD > [enalpi, )]

i€Dy s=1  jeDy,
p(i5)€[s,s+1)

Lemma A.1 (iii) in Jenish and Prucha (2009) gives

sup [{j € D : p(i, ) € [s,5 + 1)}], < Cos™"
ieD

for s > 1. Therefore, there exists constant C* > 0 such that

m_ m—2
ot < {||Y||?n FOGIVIET S s () } Dul.
s=1

:=C"|Dpe,

where the last equality follows from Assumption 3.3.4(a) and Assumption 3.3.5(a).
O

Observe that ﬁ,n(k) is a continuous function of Y;, with Lipschitz constant 1,
therefore ﬁn(k) inherits the dependence coefficient from Y;,, according to Proposition

3.1. For each k > 0,

G2(k) < > | Cov(Yip — Yin(k), Yjm — Yin(k))|
4,J€EDy,

< > (1Cov(Yim, Yig = Yjin(k))| + | Cov(Yip(k), Vim — Yjn (k)]
i,jE€Dn
p(i,5)<r

+ Y (1Cov(Yin, Yjm = Yin(k)| + | Cov(Yin(k), Yjn — Yin (k)]

i,jE€Dn
p(i,g)>r
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m = m=2
<Cyr||Y |1k Dnle + {CzHYW_1 > Sdl[ﬁl,l(s)]m‘l}\Dnlc-
s=r+1
The last inequality follows from similar arguments in the proof of Lemma A.1.1, com-
bining with Lemma A.1 (ii), (iii) in Jenish and Prucha (2009). Let r = k° where
§ € (0,52), together with the lower bound of 2 in Claim A.1.3, there exists N > 0

such that
G (k)
li L = 0. Al.11
R (ALY
Combining Claim A.1.2 with (A.1.11) we get
lim sup ‘1 _ onlk) < lim sup In(k) =0 (A.1.12)
k—oop>N On k—oop>N Op

for some N > 0.
On the other hand, note that Y; ,(k) is a bounded function of Y;,, with Lipschitz
constant 1. By (3.2.2) we have

o
op(k) < CLCo|Dnle Y s¥e1(s) (A.1.13)
s=0

for each k& > 0. With the lower bounds for o2

=, we have for each k > 0, there exists

constants N > 0 and C > 0 such that

on(k)

On

< (< oo (A.1.14)

for all n > N. This result, together with (A.1.12) play a key role in the commencing
arguments.
For the next step, we will adopt Lemma A.1.2 to reduce the problem of proving

CLT for Y; ,, to the problem of proving CLT for the bounded random field Y; ,, (k).

Claim A.1.4. We have

ot Y Yin 4 N(0,1) (A.1.15)
€D,
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if
o (k) Y [Yin(k) — EYin(k)] % N(0,1) (A.1.16)

i€Dnp

for each k € Ny

Proof. Let Z, = 0,' Y icp Yim, and Vo = 0,1 Y icp [Yin(k) —EYin(k)]. Let g,
and v be the probability measures of Z, and V respectively. If Z,, does not converge
to V in distribution, then the Lévy-Prokhorov metric d(u,,v) does not converge to
0 as n — oo, i.e. for any 0 > 0, there always exist sub-indices (nm,)men, such that
d(pn,,,v) > ¢ for all n,,. Next, we will find a sub-sequence of (Z,,,) such that it
converges to V, contradicting with that d(uy,,,v) > § for all n,,. Recalling from
(A.1.14), there exists N > 0, C'(k) > 0 such that U’;—(n) < C(k) for each k € N and all

n > N. Assume that n,, > N, by Bolzano—Weierstrass theorem we have:

e For k = 1, there exists sub-sub-indices (7,,(;,))1;en, such that

o 1
lim 7nm(l1)( )
l1—o0 On,

= a(l);

m(l1)

e For k = 2, there exists sub-sub-sub-indices (7,1, (1,)))1,en, such that

lim O—nnz(ll(lQ))(2) _ a(Z)'
)
12700 Onpqy 1))

Now we could find a sub-sequence (n;) of (n,,) by letting nj = n,,1), N5 = N, (2))s

- such that
nk k
tim 7% _ o)

r—00 Onp*
-

for each k € N,
Observe that
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If (A.1.16) holds, then the first condition in Lemma A.1.2 is satisfied since
Vs = Vi ~ N(0,0%(k))

as r — oo. Recalling from (A.1.12),

ot - 218)

+ lim sup‘
O—n;i

lim |a(k) — 1] < lim lim
k=00 >N

k—o0 k—o00 T—00

hence the second condition in Lemma A.1.2 is also verified.

Using Markov’s inequality,

S (Vin(k) — EVa(k))

€Dy

P(1Zn = Vail > 6) = (

>0§&®

for any 0 > 0. Hence condition 3 in Lemma A.1.2 holds for Z,, and V,,;, because of
(A.1.11), obviously it also holds for the sub-sequences Z,x and Vx 1.
Applying Lemma A.1.2 on the sub-sequences Z,: and Vy: j, we have Z,: 4y

*

») is a sub-sequence of (1), Znx 4 V contradicts with former

as r — 0o. Since (n

assumption that Z,, does not converge weakly to V.

O]

Now we consider the case when (Y; ;) are bounded as sup,, sup;cp, |Yin| < Cy. Let

(dn)n>1 be a sequence such that lim,, o dp, = 00, limy,_so =0, and

dg
(IDnle)'/

1. lim, oo éoo,l(dn)(\Dn\c)l/Z = 0 for #-coefficients;

2. limy 00 700,1(dn ) (| Dnle) = 0 for n-coefficients.

According to Assumption 3.3.4(b), we could set d,, = (|Dy|.)? with p € (2,8 > since
B > d for case 1 above. As for case 2, we could set dy, = (|Dy].)? with ¢ € (B &) since

B > 2d in Assumption 3.3.5(b).
Define
Z Cov(Yin,Yjn).

1,J€EDn
p(i,5)<dn
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Recalling from the covariance inequality for bounded random variables (3.2.2), there
exists constant C' > 0 such that

<> D Z;)O:dn Y. jeDn Csd_lgm(s)
© p(i,j])e[s,s—l—l) (All?)

< CCsq|Dy|c Zzidn Sd_lgl,l(s)
= o(|Dnlc)-

Then we have
0 < liminf(|Dy,|.) o2 < liminf(|Dy|e) tan + liminf(|Dyl.) " o(| Dale)-
n—o0 n—oo n—oo

Through similar arguments in the proof of Claim A.1.3, we have sup,,~ y an = O(|Dy/c)
for some N > 0. Consequently, 02 = a,, + o(|Dy|c) = an[1 + o(1)] for sufficiently large

n. Define

o —1/2 Z On 1 Z
Sn = an / }/7:777, = 1/2 Un }/i,n)
i€Dp an i€Dp

then it remains for us to show following convergence, which could be verified using

Lemma A.1.3.

Claim A.1.5. S, % N(0,1) as n — oo.

Proof. The first condition in Lemma A.1.3 is satisfied since a,, = O(|Dy|.) and o2 =
O(|Dy.) for sufficiently large n. Then it suffices to verify the second condition, i.e.

lim E | (i) - Sn)ei*sn] =0 (A.1.18)

n—oo

for all A € R.

Let
Si,n = Z Y},na S’i,n = a;1/2si,n-

JEDy
p(i,5)<dn
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Then we can make decomposition as follows
(XA — 8p)eMm =Ty, + T + Ts o,

where

Tl,n = i)\ei)\gn (1 — a;l Z Y;l,nsi,n> s

i€Dy,
Top = a;l/QelAS” Z Yin (e_l/\s"’” +iASin — 1) ,
€Dy,

T3,n — *CL,ZI/2 E Y;’nel)\(sn—sim).
1€Dy,

For the next step, we will prove that lim,_,o E|T} | = 0 for each k =1, 2, 3.
We firstly consider the term T7,. Note that EieDn E(Y;nSin) = an, then for

sufficiently large n we have

2
E’T17n|2 :)‘2 1- 26’/71 Z E anSzn +a, (Z Y;nsz n)
lEDn ’LeDn

=22 |1- 2a;1an + a;Q Var (Z YmSm> + a_2a2]

1€Dnp

=\2a, % Var Z

4,JE€EDn
p(i,j)Sdn

2 -2
=\ Ay, Z COV(Y%,nYVj,naYk,nYi,n)
1,7,k,l€Dyp,

p(6,3)<dn
p(k‘:l)gdn

§0A|Dn|c_2 Z | COV(ifi,anj,na Yk,nyi,n”
t,9,k,1€Dn
p(i,5)<dn
p(k,1)<dn
p(i,k)>3dn

+CADal2 > [Cov(YinYim, YinYim)l,

i,5,k,l€Dn,
p(k,D)<dn
p(i,k)<3dp
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for some 0 < C, < oo.

Define function f, : R* — R as
f(z1,-- ,xy) = —Cy V- -z, ANCy, (A.1.19)
then f, is a bounded Lipschitz function. Recalling from (3.2.2) we have

| Cov(Yin, Yjn)| = | Cov(f1(Yin), f1(Yin)| < CrEri(p(i,4)),
| COV(Y'i,anj,na Yk,nYi,n)| = | COV(fZ()/;,na }/},n)a f2(Yk,n> le,n))| < 02€2,2(p({i7j}a {ka l}))a

| COV(Y;JL? Y,v?',nYk‘,anl,n” = | COV(f1 (Y;J,n)a f3(Yrj,n7 Yk’,na le,n))| < 0351,3(P(i7 {,77 k? l}))v

for some positive constants C7, Co and Cs.

When p(i, k) > 3d,,, we have p({i,j},{k,1}) > p(i, k) — 2d,. Let

Then according to Lemma A.1(ii), (iv) in Jenish and Prucha (2009) we have sup;cga N;(r) <

C’4d%drd_1 for some constant C4 > 0. Then we have for each i € D,,,

Z | Cov(YinYjn: YinYin)l
jklE€D,
p(kvl)gd"
p(Z,k) >3dn

[oe)
<Cy Z sup N;(r)éx o (r — 2d,)
r=3dn i€R?

CyCy Y r e a(r — 2dy) | &
r=3dn

IN

IN

CoCy3471 Y " g 5 (r) | d2.

r=dn
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Therefore, there exists constant Cs > 0 such that

> [Cov(YinYm, YinYin)| < Cs|Dpledal. (A.1.20)
1,7,k,l€Dy,
p(ZJ)Sdn
p(k,l)<dn
p(i,k)>3dn

When p(i, k) < 3d,, let Vj(r) be a ball centered at ¢ with radius of r, then V;(4d,)
includes all (j, k,1) such that p(i,j) < dy, p(k,l) < d, and p(i, k) < 3d,,. Let

M;(r) = {4, k1) - 4,k, 1 € Vi(4ddy),m < p(i, {4, k, 1}) <r+1}..

Then by Lemma A.1(ii), (v) in Jenish and Prucha (2009) we have sup;cga M;(r) <

C’Gd%drd_l for some constant Cg > 0. Then for each i € D,,,

> 1Cov(YinYim, YinYim)|
j k€D,
p(k,l)ﬁdn

< > Cov(YinYjm, YinYin)l
3,k 1€V (4dy,)

< D) B nYinYinYin)| + [E(YinYjn) [ [E(YinYin) |
J,k,1€V;(4dn)

< Z [C3€1,3(p(ia {]7k7l})) —1—0%5171(,0(2., {jvkal}))gl,l(p(dn))]

J,k,1EVi(4dn)

S(Cg—f‘clz) Z E1,3(p(i7{j7kal}))
3,k,1EV; (4dy)
4dy,
<(C34CP) D Mi(r)ers(r)
r=1
4dy,
<(C3+ CHCedn® Y rt e ().

r=1
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By Assumption 3.3.4(a) and Assumption 3.3.5(a) we have

Y [ Cov(YinYm, YinYin)| < C7|Dplcds? (A.1.21)
,7,k,l€Dy,
p(z,])gdn
p(kl)<dn
p(i,k)<3dy,

for some C7 > 0.
Note that limy, o - = 0, then (A.1.20) and (A.1.21) imply that

2d

d
E|T1 .| < CA\(C5 + Cr) |D”| -0

as n — oQ.

Now we consider the second term, for sufficiently large n we have

|T2,n

;2| Z Yin (e_iAS*i,n +iAS;, — 1) |

1€Dy,
<C3(|1Dule) ™20y D e 1iNG;, — 1

1€Dn

for some constant Cg > 0. Note that

|Sinl <az'? Y7 [Yial
JEDn
P(l7])§dn

<CyCya;/?d?

=O((|Dule)™?)d.

for some Cy > 0. The second inequality adopts Lemma A.1(ii) in Jenish and Prucha
(2009). Then lim, 0 [Sin] = 0, hence [iAS;,| < 1/2 for sufficiently large n. Since
le* 4z — 1| < |2|? for complex number |z| < 1/2, |e=*Sin 4 iIAS; s — 1] < A2|S; )% as.

for sufficiently large n.
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Now we have

E‘TZ,n’ §C8(|Dn|c)_1/2CY Z A2E|‘§i,n|2
1€Dn

<Cs(|Dnc)*Cy A? sup E|S; [

lEDn

<Cs(|Dnle)?CyN%a," sup > E|YjuYi
ZEDn j,kEDn

p(4,5)<dn
p(ik)<dn

<C1o(|Dule) ™) sup > @il k)
p(i,k)<dn

2d,
<Cio(|Dnle) V) sup D> Y Nj(r)ena(r)
i€Dn jep, r=1
p(i,5)<dn
2dy,

Scll(’Dn‘c)il/Q)dz Z rdilgl,l(r)

r=1

<Cha(|Dyple)~12dl,

where Nj(r) = |{i:r < p(i,j) < r+ 1}, the last two inequalities come from Lemma
A.1 (iii) in Jenish and Prucha (2009), Assumption 3.3.4(a) and Assumption 3.3.5(a).
Then lim, oo E|T2,,| = 0.

As for the third term, we want to prove that lim,_, |ET3,| = 0. Firstly note that

|ET3,| = |E

a2 Yi,ne“(S"Siv“]

1€Dn

<C(Dale) ™2 Y [BY e SemSir)
1€Dp

<C(1Dnle) 1 Y (|EYincos A(Sn = Sin)| + [EYinsin A(Sn — Sin)|) -
1€Dy,

Let f*(9i) = cos A(Sp — Sin) where Qi = (Yjn)jep, p(ij)>d.- f* is bounded with

Lipschitz constant Lip(f*) = ])\|a;1/2, with domain R* for some u < |Dp|.. Another
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bounded Lipschitz function f; is defined in (A.1.19). By (3.2.3) we have:

|E[Y;n cos A(Sp, — Sin)]

=[ Cov[f*(Di), [r(Yin)]|
Sg_oo,l(dn)

Same holds if f*(2);) = sin A(S,, — Sin). Since limy,, o0 t§(>c>71((1,L)(|Dn|C)1/2 = 0, we have

[ETs.0] < C(1Dnle) ™ ) Ooo1(dn) < C(I1Dnle)*0s0,1(dn) — 0
i€Dy,

as n — oo. Similarly by (3.2.4) we have:

IE[Y; r, cos A(Sp, — Sin)]

=|Cov[f*(Di), 1(Yin)]]
S(CY‘DH‘C‘/\‘aﬁl/z + 1)70o,1(dn)-

Same holds if f*();) = sin A(S,, — S; ). Since limy, o0 foo,1(dn)|Dnlc = 0, we have

|ET5,n| < C(|Dnle) 172 Z (IDne)! 7700 1(dn) < C|Dnlefloo,1(dn) = 0
ZEDTL

as n — o0.

The proof of Theorem 3.2 is completed as Claim A.1.5 is verified.

A.1.4 Proof of results in Section 3.4
Proof of Proposition 3.3

For any r > 0 and U C DNT7 let %U = (Xit)(i,t)GU and xg) = (Xz(tr))(z,t)EU f S
Fu, g € G, are two arbitrary bounded Lipschitz functions, then for any V' C Dy such
that p(U, V) > 2r, f(%(r ) is independent from g(f{( )) By Assumption 3.4.2 we have

|Cov [f(Xv), g(Xv)]|
< |Cov [f(x0) = FEE). 9(x0)] | + |Cov [£(x), () — (2] |
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<2 lglloe E|£(%0) = ()] + 2 £l B |9(2v) — 9(x)

<2 gl Lin(f) Y. E|Xu—X|+20flLinl9) Y. E|Xu— X
(i,t)eU (i,t)eV

<2C1 [ulgllo Lip(f) + v [l Lin(g)] (7)),

for some constant Cy > 0. Therefore, 7j(s) < C20(s/2) for some constant Co > 0 by
letting s = 2r + 1.
Proof of Proposition 3.4

Assumption 3.4.5 allows us to adopt Theorem 3.1 on functions ;:(6). i.e. for any 0 € O,

1
~T > [le(0) — Elie(6)] 5 0 (A.1.22)
(it)EDNT

as NT — oo. Together with Assumption 3.4.3(c) we have
HmyT— o0 [LnT(0) — LnT(60)]

= lmn7ooo{E[LnT(0)] — E[LnT(00)]} (A.1.23)
< 07

and the equality holds only if # = 6y, which means 6y is uniquely identifiable.
Note that Assumption 3.4.4 implies that

R ~ R )
. _ — | =1
Ghm P [’LNT(HNT) Lyt (OnT)| < 3]

for any d > 0, hence

_ i . 5
N%Flgloop [LNT(HNT) > Lnt(OnT) — 3] =1
Since Oy maximizes L ~7(0), we have
lim P |Lyr(Onr) > Lyr(60) il -
im —~| =1.
A NT(ONT vr(fo) — 3
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So
lim P|Lyr(Onr) > L (9)—23 =1
N NT(ONT N1 (0o 3| =t
Furthermore, from Assumption 3.4.4,
lim P|Ly7(6) > L (6)—§ =1
e N1 (00 nro) = 51 = 1.
Therefore we have
lim P[ogLNT(eo)—LNT(éNT)d} ~1. (A.1.24)
NT—o0

Let Vj(0) be an open sphere with centre 6 and radius 1/k. Note that Lyr(0) is
continuous in 6 and © \ Vi(p) is a closed set according to Assumption 3.4.3. By

(A.1.23), we could find

6= inf [LNT(Q()) — LNT(Q)] > 0.
ECNACD)

Then by (A.1.24),

lim P<0 < Lyp(o) — Lnr(0 inf  [Lyr(f0) — Lnr(6)] p = 1.
dim Lo < Lurb) - Lnellve) < int - [Lye(60) - Lur(0)]}

This implies that

N%goop OnT € Vk(go)] =1

for any given k£ > 0, which means 0 NT 2 0y as NT — oo.

Proof of Proposition 3.5

Based on Assumptions 3.4.7(a) and 3.4.7(b), Theorem 3.1 facilitates the convergence

L Z ill(g)_E 8721.(9) 20
NT 0000’ "1\70 0000”170

(i,t) eEDnT
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as NT — oo, hence
02 Lnt(6o)

Se00 T ANT 2. (A.1.25)

By Assumption 3.4.7(e) we have

—1720°Ln7(00)

By ANYBNE = I + 0,(1). (A.1.26)

On the other hand, with Assumptions 3.4.7(c), 3.4.7(d) and 3.4.7(e), we can prove
that

\/NTB]‘VIT/Q‘%\(’;;%) 4 N(0, ). (A.1.27)

By the Taylor expansion, for some 6* between fyp and 6y we have

OLNnT(OnT) _ OLNT(6h) L PLvr(9)

o0 00 0000 (Onr = o).

Since %&61‘”) = 0, we have

VNT (B> Ant) (Onr — 60)

~ -1 ~
o pe1/2 O*Lnr(6%) 0Lt (00)
=~ (Byr Ant) ( 9600’ NT—5¢

_ 2Lnr(6)\ —1/20Ln7 (6
— - e (T ) BT B o),

according to Assumption 3.4.6 and the fact that Onr 2 6. Therefore, combining

(A.1.26) with (A.1.27), we can prove the asymptotic distribution of §x7 as follows:
_ A d
A% NT(BN;/QANT)(QNT — 90) — N(O, ]k)

Proof of Proposition 3.6

By (3.4.8) we have

— _ (0Lyr(60)\ " 0Lt (00)
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with

OLNT (6 2
nr(fo) T Z EitXit—1,

00 ,
(Z,t)EDNT
02 Lyt (60) 2
o0 = NT 2. Fu-iXier
(i,t)EDNT

To prove Proposition 3.6, it suffices to verify following statements:
. 1 —1/2 d
(1). WENT{ Z(Lt)EDNT EitX4,t—1 — N(()? 02)7

(i) 37 Ziinennr [Xit-1Xi1 — E (Xz’,t—lxé,mﬂ 0.

To prove (i), we will prove in Claim A.1.7 that {exx;;—1: (¢,t) € Dnyp, NT > 1}
satisfies the conditions of Corollary 3.2.1. Particularly in proving weak dependence, we
will make use of Proposition 3.3, hence we need to prove Claim A.1.6 at first. Notice
that the weak dependence and asymptotic properties are derived conditioning on Z in

this proof.

Claim A.1.6. For any s > 0, let Fy(s) = o{ejr : [i —j| < s,|7 —t] < s}. Under
Assumptions 3.4.8, 3.4.9 and 8.4.10 we have

sup  sup ||y — E [yl Fie(s)]|ly < Cé(s) (A.1.28)
NT>1 (it)eDnr
and
N N
sup  sup Z wijyje — E Zwijyjt|fit(s) < CH(s) (A.1.29)
NTZ>1(it)eDnr || 5= oy ,

with 6(s) = O(s™%) for some a >4V 25%22.
PTOOf. Let 5t = (51t752t7---75Nt) and Z = (Zl,ZQ,...,ZN)/. By (2.3) in Zhu et al.

(2017), under Assumption 3.4.8(b) we can rewrite (3.4.4) as
oo
yie =€ [(Iv = G) ' Bo+ Y _GF& |,
k=0

where By = Boly + Zv, G = B1W + Boly, Iy is an N x N identity matrix, 1y is

an N-dimensional vector with all elements being 1, and e; is an N-dimensional vector
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with the ¢-th element being 1 and others being zero. Then we have

yit — B [yie| Fie (s)]ll

| {Z 6 — Y B | GRE sl Fa(s) }
k=0 k=0
e {Z [Gkgt—k — E(Gkgt_k|ﬂt(8))} }

k=0

<

2

<

2

_l’_

e { i [Gk&_k — E(Gk&_k\fz‘t(s))] }

k=s+1

2
=T+ T5.

Note that &_j is independent from F;(s) when k& > s. Then by Assumption
3.4.9(b) we have

2

T22 =E e; Z Gkgtfk

k=s+1

—E K > e;G’fetk> ( > S{k(G’)kei>]
k=s+1 k=s+1
=02 Z el (GG ke,
k=s+1

<C i o",

k=s+1

which converges to zero exponentially as s — oo since 0 < p < 1.

Moreover, by Assumption 3.4.9(a),

s N
T =Y elGre;leji—k — Eleji—klFirls))]

k=0 j=1 2
s N
< Z Z ‘ eiGhe; ek — E(€j,t—k|fit(3))]H2
k=0 j=1
S
=3 3 [eictescio],
k=0 |j—i|>s
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oYt Y it

k=0 [j—il>s

According to Lemma A.1.4 and Lemma A.1.5, we have

oo
doli—der= > i

[7—i|>s h=[s] h<|j—i|<h+1

00
< Z Ch—a—l
h=|s]
2a+1

<C s .
«

Therefore we complete the proof of (A.1.28).

Now we prove (A.1.29). According to Assumption 3.4.9(a), we can verify that

maxw;; < Clj —i|~* 2.
7]

Based on (A.1.28), Lemma A.1.4 and Lemma A.1.5, we have

N N
> wigyje —E | Y wizyjel Fiels)
j=1 7j=1

< > willye —Elyel Fallla+ Do wis llyje — ElyslFals)]ly

2

l7—il<s/2 |j*i|>3/2
< > wig lyie — Byl Fe(s/2)), + Z > wi e,
j—i<s/2 h=[5/2) h<lj—il<h+1

<C1(s/2)"" 4 Ca(s/2)™

Claim A.1.7. Under Assumptions 3.4.8, 3.4.9 and 3.4.10,

(a). SUPNT>1SUP(; epyy B lleiXit—1]]” < oo for some p > 2;

(b). {eitxit—1: (i,t) € Dyp, NT > 1} are n-weakly dependent with n(s) = O(s~*

2p—2

some a >4V 2
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Proof. Claim A.1.7(a) can be easily derived from Assumption 3.4.8(a) and Assumption
3.4.10. As for Claim A.1.7(b), notice that

Eit

N
Eit ijl WijYjt—1

EitXit—1 =
EitYit—1
EitZi
Since
2
E ||leixii—1 — E(euxi—1]Fit(s))]]
2
N N
<2E (g4 E wijYji—1 — E E wi;yji—1|Fie(s)
Jj=1 Jj=1
2
+ 2K [eit [yit—1 — E (yig—1|Fu(s))]]”
Then by Claim A.1.6 and Proposition 3.3 we complete the proof. O
Notice that x; 1%}, ; is a (m + 3) X (m + 3) matrix as follows:
1 Sl Wiy a1 Yijt—1 Z!
2
S wiyie1 (S wiyie)” (SN wigyse 1)y (SN wijyse1)2;
Yit—1 (Zj\;l wijyj,tfl)yi,tfl yf,t_l Yit—17Z]
Z; (Zf’:l wijyj,tfl)zi Yit—1Z; Z; 2]

To prove statement (ii), we need to verify that each element of x;; 1%, satisfies
the conditions of Theorem 3.1. By Assumption 3.4.8(a), Assumption 3.4.10 and Claim
A.1.6, LLN already holds for elements Zjvzl Wi Yji—1, Yit—1, (Zjvzl wijyj,t,l) Z; and
Yit—1Zi. The LLN of the rest of the elements in x;;_1x;;—1 will be proved with the

support of Claim A.1.8 below.

Claim A.1.8. Under Assumptions 3.4.8, 3.4.9 and 3.4.10, following arrays of random
fields

{vii : (i,1) € Dy7,NT 2 1},
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> wijyse | 1 (i,1) € Dyp . NT > 13,

N

> wijyse | wie : (i,t) € Dyp, NT > 1
are n-dependent with 7(s) = O(s™#) for some pu > 2.

Proof. By triangle inequality and Cauchy-Schwartz inequality we have

N
> wiyie | v =B || D wigyse | yal Fuls)

Jj=1 11
N
< way]t Yit — wayjt yzt’ﬁt )]
1
N
+ D wigwje | B [yirl Fr(s) wayﬁw ) | E [yit] Fir(s)]
Jj=1 1
N
+||E [yit ylt|]:lt wayjt Zwijyjt’]:it(s) ’]:zt(s)
=1 .

N
< sz’jyjt ”yit_E(yit’Et(s))”Q
j=1

N
+ E @il Fie ()], wayﬁ > wijyjel Fie(s)
=1
2

N
+ llyie — E(yae| Fie(s)) [l Zwmyjt_ > wijyjil Fuuls)
= 2

Then by (A.1.28), (A.1.29) and Proposition 3.3, the array of random fields

> wigyjt | yie : (i) € Dyp, NT > 1
j=1

2p2

is n-dependent with 7(s) = O(s™%) for a« > 4V > 2. Using similar arguments we

can also verify the n-dependence of the other two in Claim A.1.8. O
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With statements (i) and (ii) we complete the proof of Proposition 3.6.

136



Appendix A. Proofs of Theoretical Results

A.2 Proofs of results in Chapter 4

Lemma A.1.4 and Lemma A.1.5 are needed in the proof of Lemma 4.3.1. In the proofs
of asymptotic properties of MLE, we rely on Proposition 3.3 to prove n-weak depen-
dence by verifying near-epoch-dependence instead (see the definition of near-epoch-
dependence in Section 2.4.2). A useful property of near-epoch dependence is that it
is preserved under summation, multiplication and finite shift, as what will be shown
respectively in Lemma A.2.1 to Lemma A.2.3 below. For the proof of these lemmas we
refer to Davidson (1994). Comparing to the AR-type models, the likelihood functions
in GARCH-type cases are evaluated in a iterative way. Therefore we also need Lemma

A.2.4 at last, followed by its proof.
Lemma A.2.1. If {zy : (i,t) € Dy, NT > 1} and {yi : (i,t) € Dnp, NT > 1} are
LP-NED on {ej : (i,t) € D} of size-pi, and size-pi, respectively. Then {zi+yi : (i,t) €
Dy, NT > 1} is LP-NED on {e; : (i,t) € D} of size-min{ iz, fiy }-
Lemma A.2.2. If {zj : (i,t) € Dy, NT > 1} and {yit : (i,t) € Dyp, NT > 1} are
L2-NED on {e; : (i,t) € D} of size-.
(a). {zuyi : (i,t) € Dy7, NT > 1} is L'\-NED on {e; : (i,t) € D} of size-u;
(b). {xiyir : (i,t) € Dy, NT > 1} is L2-NED on {ey : (i,t) € D} of size—%u, if
sup; ¢ [|it||lor < 0o and sup;  ||yitll2r < oo for some r > 2;
(c). {zyyi = (i,t) € Dyp, NT > 1} is L2-NED on {ey : (i,t) € D} of size-u, if
sup; ¢ [|zit|| < oo and sup; ; |yit| < oo almost surely.
Lemma A.2.3. If{zjy : (i,t) € DNy, NT > 1} isLP-NED (p > 1) on {ei : (i,t) € D},
so is {xjr : (j,7) € Dnr, NT > 1} with p((i,1), (j, 7)) < 0.
Lemma A.2.4. {z;y : (i,t) € Dyp, NT > 1} is an array of random fields being
uniformly LP-NED on {ey : (i,t) € D} of size-u, and uniformly L1-bounded (¢ > p > 1)
in the sense that supy rSup(; yepyy |Titll, < oo. Let {yi : (i,t) € Dnp, NT > 1}
be another uniformly IL1-bounded array of random fields where yiy = xi + dyi—1 with
|p| < 1, then {yi : (i,t) € Dy, NT > 1} is also uniformly LP-NED on {e; : (i,t) € D}

of size-u.
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Proof. With |¢| < 1, the solution of y;; = xi + ¢y;—1 converges in L9 to y; =
Yo ¢k‘xi7t,k. By triangle inequality we have

llyit — E(yat| Fie () Z s 150k — E(@s -k Fie (s ))H (A2.1)
When k < s, according to Theorem 10.28 in Davidson (1994) we have

@ip—k — B(@ie—k | Fie (), S2[wip—k — Bwig—i|Fip—r(s — k)|l

SCWI(S - k)

p

where C] is some positive constant and ), are the NED coefficients of x;;. When k > s,

@i t—k — @i -kl Fie ()], = [|zi0—k — E(@ie—n)ll, < Co

p

where Cs is some finite constant as [|z|, < co. Therefore (A.2.1) becomes
oo
lyit = E (il Fie(5))]l,, < Ca Z olFba(s — k) +Ca > [ol*. (A2.2)
k=s+1

The second term on the right-hand-side of (A.2.2) decays exponentially as s — oo, and
is therefore neglectable compared to the polynomial term of ¢,(s) = O(s™#). As for

the first term, since

S_N
k=0

STH
k=0
SC?) Z |¢|k7
k=0
we have Y 7 _,|¢[F1b(s — k) = O(s™#) and complete the proof. O

Lemma A.2.5. If0 < 8 <1, sSupyr>1SUD(;)epyy B |02(0)] < oo, then

=> B eirn(0) (A.2.3)
k=1

138



Appendix A. Proofs of Theoretical Results

almost surely, where

N

cl}t—k(e) =w+ a(l)y’it*kl{yi,t—kzo} + a(Q)yiQ:t*kl{yi,t—k<0} A Z wijyjz',t*k'
j=1

Proof. Since y;; = £40i1(6p) and € is independent from o;,(6p), we also have

sup  sup  E|yy|* < oc.
NT>1 (it)eDnr

Let log™(z) = log(x) if # > 1 and 0 otherwise, by Jensen’s inequality we have
Elog* |cit—k(0)]
N
< 10g+ Elw+ a(l)y’it*kl{yi,t—kzo} + O‘(Q)yi%t*kl{yi,t—k<0} +A Z wijyit*k

=1

<00.

By Lemma 2.2 in Berkes et al. (2003) we have Y3 P [|c;1—x(0)| > ¢¥] < oo for any
¢ > 1. Therefore |c;; x(0)] < ¢* almost surely by the Borel-Cantelli lemma. Letting
1<(¢< \T%I’ we can prove that the right-hand-side of (A.2.3) converges almost surely.

It remains for us to show that

o2 (0) = Zﬁk_lci,t—kz(e)-

k=1

Notice that
0'121‘/(9) — kdgt_k(e) = Ci,t—l(e) + BCM_Q(Q) + ...+ 6’“’101-’,5_;6(0).

Using Markov’s inequality we obtain that Zﬁlp{\ﬂkaft_k(eﬂ > 5} < oo for any
0 > 0, then by Borel-Cantelli lemma | kazt_k(H)] %20 as k — co. Letting k — oo on

both sides of above equation we complete the proof. ]
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A.2.1 Proof of Theorem 4.1

Recall that (4.2.1) is a generalized autoregressive equation since the random matrices
{B:} are i.i.d.. According to Theorem 3.2 in Bougerol and Picard (1992), there exists a
unique strictly stationary solution of model (4.2.1) if and only if the Lyapunov exponent
v < 0.

By the sub-additive ergodic theorem (see Kingman (1973)),

1
t+1

log ||BtBt_1...BO H

= lim
t—o00

almost surely, according to (1.4) in Kesten and Spitzer (1984), we know that the Lya-

punov exponent associated with i.i.d. random matrices {B;} satisfies

v < log p[E(By)],

where p(-) denotes the spectral radius of a matrix. Hence the condition of v < 0 is
implied by a stronger condition that p[E(B;)] < 1. Denoting a* := max{a™,a(®} and

d; = Z,lcvzl a;,, we have

E(B,) = E {a(l)RtEt +a®(Iy — R)E; + \WE; + mN}
<E {Oé*RtEt + a*(IN — Rt)Et + A\WE; + BIN}

:a*IN—F)\W—{—ﬁIN

o + B+ ALY AY2 Ak
= Agz o+ B+ AR AN ,
e A AR

and then p[E(B;)] < a* 4+ 8 + A according to the Gershgorin circle theorem (see Horn
and Johnson (2012)). Consequently, it suffices to verify that a* + 8+ A < 1 to ensure
the strict stationarity of model (4.2.1).
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A.2.2 Proof of Lemma 4.3.1

For simplicity we use the notation Xt := E(X|Fy(s)) for an arbitrary random
variable X, B :=E(B;), B® := E(B; ® B;), and | - |max(] - |min) denotes the maximum

(minimum) element of vectors and matrices.
Claim A.2.1. ¢ = |Bly|max <1 and & = |B@(1y @ 15)|max < 1.

Proof. Since EB; < a*Iny + AW + 81y and W1y = 1y, one can easily verify that
a<a*+B8+A<1.

For arbitrary i1, 12, j1, jo2,

. 2 2 % 2 2
E || o', +A g Wiy €5+ 0| @ | a'el + A g Wiyjs€pr + B
J1 J2

<kg(a®+p+N) <1
by Assumption 4.3.1. Then

|B(2)(1N b2y 1N)|max
:|E [(Bt]-N) & (Bt]-N)] ‘max
<|E[(«*Ely + \WWE1y + 81y) ® (a*Efdy + AWE 1y + B1N)] max

<kg(a™+ B+ M) < 1.

Denote the element (i, ) of By as

b(t) = 05(1)1{6“20}57’% + a(2)1{5it<0}€12t + B L= j7
’ Awijg?t otherwise.

Notice that the stochastic part in By consists of {e;; : i = 1,2, ..., N}. Therefore for any
k > s, By_j is independent from Fj(s) and Bt(fzs) = B. When k < s, only some of the
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elements of B;_j, are independent from Fj;(s), and we will handle this case carefully in

Claim A.2.2 below.

Claim A.2.2. When k < s we have

Proof. For arbitrary i1, 42, j1, jo,

OB =& la—il > s

I L)) I S T
[ 11 252 } E[bgf;lk)bg];k)} otherwise.

(A.2.4)
And

[0 EPES] gi=d &l il > s,

[ i 2 } E [bgf;lk)bg;k)} otherwise.
(A.2.5)
Since E [bg]_lk)} E [bg;f)} <E [bg;lk)bg;k)} when j; = ja, we complete the proof. [

Let e; be an N-dimensional vector with the i-th component being 1 and others

being 0. By (4.2.3) we have

00
/ § : /
hit = eiht = w eth_LklN,
k=0

where Il;_y , = By_1...B;_, for k > 1 and II;_1 9 = Iy. Now we will show that
sup  sup |\hit — E(hu| Fit(s)||y = O(s™#) (A.2.6)
NT>1 (i,t)EDNT

with Assumption 4.3.3(a); Or

sup  sup |lhit — E(hi| Fie(s)]l, = O(p?) (A.2.7)
NT>1 (i,t)eDnT
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with Assumption 4.3.3(b).
By (4.2.3) we have

[hit — E(hit| Fit(s) |,
Zk>0 Ht 1 k(w]‘N

€ > >0 L1,k (WL )| Fie(s )}Hz (A.2.8)

IA

Then we handle the two terms separately.

When k > s,

2
ot 3 [ - 5] (o)

k>s

<Y W ®e)E { [Ht—l,k - Hf_’t{,ss)Bk_s] ® [Ht—l,k — "4 Bk } } (1y ®1y)
k>s

<Y e @e)E M1, @ 1] (Iy ® 1y)
k>s

—i—sz(e/@e’) Ht 1k® H%tig)Bk S] 1N®1N
k>s

+ 3w @ B [ B ) o T, 4] (1y @ 1y)
k>s
+ > wie @ B () B ) @ (M) B (1y @ 1),

k>s

For the first term, we use Claim A.2.1:

(€ ®@e)EML_1, @114 (1y @ 1n)
:(e’ & e’)IE [(Bi—1 ® Bi—1)(Bi—2 @ Bi—2)...(Bi— @ By_)] (1y ® 1n)
=(e'®¢€) [3(2)}]~C (1y ® 1y)

<ch.

For the second term, notice that
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oy ® (I BR=)

(Bi1 ® B (Bios @ BISY).(Bis @ BUL) (Bioyo1 @ B)...(Byy @ B)|
~ B(ﬂ (B® B)F*

E|
:E[
|

In the second line above, the first s terms are in forms B;_; ® Bt(l’ %) with k < s, and

then the third line is obtained by applying Claim A.2.2. Therefore we have

(e/ & e’)E |:Ht—1,k X (Hgi_’tis)Bkis)] (]-N ® ]—N)

<o [5] B pt ot

<ejleq]re

Similarly, we could also verify that

(¢/ @ &)E (I B ) @ 4] (1v @ 1) < ()"

and
(¢ @€ E | () B © () B (Iy @ 1y) < [
Therefore,
Elef Y [Mo1x - DB (win)| <4 w?pt (A.2.9)
k>s k>s

where p = max{é},é} < 1 by Claim A.2.1. Hence the second term on the right-hand-

side of (A.2.8) decays exponentially as s — oo. It remains for us to deal with the first
term

ey [HH,k - Hiitff,i] (wln)

k<s 9
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When k < s,

2

Ele > [~ 17 i)
k<s

< kg w?(e/ @ &)E { [Ht—l,k - HE’_T,E} ® [Ht—l k— Hf tls;z} } Iy ® 1n)

= ZwQ(e’ X e’)E [Htfl,k X Hthk — Htflyk (= Hgl_’tl’f” (1N & ]-N)
k<s

+) Wi @e)E [Hffi,&g @I — T @ T k} Iy ®1y)
k<s

=11 + Th.

By (A24)’ E |:b£§1 k 7,]2 :| # E |: Z]l ) ( 'L;Q k)‘flt( ))i| Only lf ]1 = ]2 a‘nd |]1 - Z| > S?

then

(e; @ €))E [Bt k®Big — Bi_ ® B(l’t’s)] (1y ® 1)

=33 {E [b 800 — B [b V0P 1) |

J1 o J2
2
-y {E [bg"“)] —Ebg"“)Ebg"“)}.

|[j—i|>s
Since

g0 _ ) Ve a5 =g,

Y Aw;j otherwise,

and

& [b(m)r _ { W] kf + [a®@]% k7 + 20083 +20@ k3 + 52 i =,

2,2 ;
A Wi K4 otherwise,

where 3 = E [eltl{%m}] =E [E’th]‘{git<0}:|7 ki =E [5?t1{6“20}] and Kk, :=
E [al-tl{sit@}]. Then we obtain that

2
o {b(;fk)} B Ebg—k)Ebg—k) — (k4 — 1))\2ng if Q. (A.2.10)
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In light of Claim A.2.2 we also have

i,t,8 k=1
E (Mo ) < [B2]

)

o (A.2.11)
i,t,s i,t,8
E (i) ent) ) < [B2]
Note that (A.2.10), (A.2.11) and Claim A.2.1 allow us to derive that
T1<Z [ (g g1 @ y—q g 1)+E(Ht 1k1®H£Zt1’,S]2,1)}
k<s
XE Bk @ By — By ® BUY| (1y @ 1) (A.2.12)
~ k-1 (t—k)y (t—k) (t=k)y (t=k)
<2y felt ™ Y0 {E ] - Eb T Ee Y )
k<s l[j—il|>s
2
<C Z w;;
|[7—i|>s

for some constant C' > 0. Hence, with Assumption 4.3.3(a) we obtain 77 < C le*ibs l7—
i|7#~2. This could also be verified for Ty by following similar arguments. Then accord-

ing to Lemma A.1.4 and Lemma A.1.5,

RIS DINEY

|7—i|>s h=[s] h<|j—i|<h+1

<) chwt
h=[s]
2u+1

7

<C s H

for some constant C' > 0. Together with (A.2.8) and (A.2.9) we prove (A.2.6).
As for the proof of (A.2.7), using Assumption 4.3.3(b) and letting s > K in (A.2.12)
we can verify that the first term of (A.2.8)

e [More = 7] (win)| =0,

k<s 9

while the second term decays exponentially according to (A.2.9). Now we complete the
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proof of Lemma 4.3.1.

A.2.3 Proof of Theorem 4.2

By Lemma A.2.5 we have

Z/B Cit— k 7

2215(9) Z/Bk 1C’Lt k(9)7

k=1
almost surely, where
N
C’iﬂf—k‘(e) =w+ a(l)yit*kl{yi,t—kzo} + a(z)yit*kl{yi,t—k<0} +A Z wiijQ',t*k'
j=1
We have
o5 (0) — 53,(8) = By (6). (A.2.13)
The partial derivatives of o2 (6) are

095(0) _ <~ pht

aw - ; 5 9
9o3,(9) o k1, 2
oo - ; p Yit—k Ly 1200
801 k—1
78 t Zﬁ yzt kM yi k<o) (A.2.14)
90%(6) -

8t>\ —Z/Bk ! sz]y]t k>

k=1

9o3,(9) - k—2

L = kE—1 itk (0).

= - 18 )

By similar arguments to the proof of Lemma A.2.5, we can show that the right-hand-
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sides of (A.2.14) converge almost surely as 0 < 8 < 1, that is

30%(0)
' 50 H a.s. (A.2.15)
We also have
30—1'21&(9) 851'215( ) t—1 2 taazzo(e)

where e5 = (0,0,0,0,1)".

Now we consider the second order derivatives. For any 6,,,6,, € {w, a® o), A},

82‘7i2t(9) —0
00,,00,
And _
0? 12t — Z ,Bk 2
Owdf pt
0?07, (0) k-2 2
804(1)85 - é(k o 1)6 yivt*kl{yi,t—kzob
820_7L2t(9) - k—2 2
0a)0p3 - 2(1{: -1)B Yit—k{yi s n<0}s (A.2.17)
9’0} (0) N L
ONOB z::(k - 1B ;wij%’,t—k ;
i) & .
Z Cit— 9 .
032 kzzg +—k(0)

The right-hand-sides of (A.2.17) also converge almost surely as 0 < 8 < 1, that is

82‘71‘215(9)
‘ 2000 ‘<oo a.s. (A.2.18)
We also have:
620i2t(9) 825%(9) t—2 2 / tflao-?o(g) / tﬁzai?o(e)
9000 9000 =t(t—1) aj0(0)eses +2tf3 20 es+ 5 2000’ , (A.2.19)

where e; = (0,0,0,0,1)".
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The third order derivative of o2 (6) is also bounded almost surely, as

o) ks
8w852 Z —D(k=2)p

Poh0) _ -
ol - kz_g(k —1)(k—2)B" 7y}, i1y, w01

1)862
33‘71'215(‘9) > k—3, 2
m = kzg(k - 1)(k-2)B yi,t—kl{yi,t7k<0}7 (A.2.20)
3 2
811:2:2 2)gk—3 waytk7
oNOp P = J
3 2 0
0°08) _ 5™k — 1)k — 2)(k — 3)5* ers_(6).
op k=4 7

almost surely.

Proof of Consistency

Claim A.2.3 below validates that ENT(H) serves as an appropriate approximation of
the likelihood function Ly7(6). Claim A.2.4 and Claim A.2.5 facilitate the adoption of
Theorem 3.1 on 1;(#)’s, and Claim A.2.6 assists in showing the unique identifiability

of the true parameters 6.
Claim A.2.3. For any 0 € ©, |Ly7(0) — Ly7(0)]| 5 0 as T — 00 and N — oo,

Proof. By (A.2.13) we have

E|Ln7(0) — Lnr(0)|

1 o2(0) — 52(0) 52(0) — o2(0)
< E|: it _ it y7,2+ log 14+ it it
2 El awme 20
Cl 02
<ok S E[AO) -GEO[] o S Elk6) - #50)]
(Z,t)EDNT (’L t)EDNT
C C
=xr 2 PEWil+t gy > 8
(l,t)GDNT (’L,t)GDNT
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for any 6 € ©. Since E[y3] < oo, we have
E|LNT(9) — ENT(9)| —0

as T'— oo and N — . O
Claim A.2.4. sup(; ycp Supgee [|lit(0)l], < 0o for some p > 1.

Proof. For any 6 € © we have

2 y'2t
Ogozt( ) Z2t(0)

1
< [llog o @), + - o 0)<% -

1Lt (O)l,, =

p

where
llog @), < llog™ 3@, + flog o3(6)]],
< Hai(&)“p + 1+ max{0, —log(w)}.
By Assumption 4.3.1 and Lemma A.2.5 we complete the proof. O

Claim A.2.5. For any 6 € O, {l+(0) : (i,t) € D7, NT > 1} is n-weakly dependent

with 7(s) < Cs™ for some constants C' > 0 and p > 2.

Proof. Note that ¢%(0) > w for any (i,t) € D and 6 € ©, we could easily verify that
functions f(z) = log(z) and g(z) = % are both Lipschitz on the interval (w, oc]. Then by
Lemma 4.3.1, Lemma A.2.1, Lemma A.2.2(a) and Proposition 2 in Jenish and Prucha

(2012) we can prove that

sup  sup |[lix(0) — E(lx(0)| Fie(s))]|; < CsH. (A.2.21)
NT>1 (i,t)eEDnT

Then by Proposition 3.3 we complete the proof. ]

Claim A.2.6. If 02(0) = 02 (00) for each i =1,2,..., N and some t € Z, then § = 6.
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Proof. For any i =1,2,..., N, we have

N
(1—BB)o%(0) = w+ aBy2 + A Z wijBy]%t,
j=1
where B stands for the back-shift operator in the sense that By’ = yzt_l, and «
/
represents o) or a(® for simplicity. With hy(6) := <Uit(9),...,(f]2\,t(0)) and vy 1=

/
(yit, e y]2\,’t> , this equation could be vectorized as
(1 -pB)h(0) =wly + (BRg + ABW)vy,

where Ry is a constant matrix (given y;—1) with diagonal elements of either oW or
o and other entries being zero.
The polynomial 1 — Sz has a root x = 1/3, which lies outside the unit circle since

0 < B < 1. Therefore the inverse ﬁ is well-defined for any |z| < 1, and we have

hu(6) = 51w+ Mo(B)vi

with Mg(B) := 125 Ry + 255 W.
If 02(0) = 02(6p) for each i = 1,2,..., N and some ¢t € Z, thus hy(0) = h(6y),

consequently,

1-5 1-p
If Mg(B) # My, (B), My(B)—Ma,(B) could be write in polynomial form Y 3>, Cy B

(Mo(B) = May(Bbve = (1205 = 125 ) 1

with constant matrix coefficients C. Therefore,

w0 W NN
COVt—<1_ﬁO 1—5>1N ;Ckvt—k-

This means that v, is measurable w.r.t. H;—1 := 0{vi_1,vi_2,...},1.e. vi = E(v|Hi—1).
However, since {g;;} is a non-degenerate random process according to Assumption

4.1.1, vi — Eg (v¢|Hi—1) = vie(Er — In)he(6p) # 0, which contradicts with My(B) #
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My, (B). Hence My(x) = My, (z) holds for any |z| < 1, i.e.

T T Ao AT
Ry — Ry, = — w.
1- Bz " 1— gz ™ (1—ﬂox 1—ﬁm)

Note that the diagonal elements of W are all zeros while the matrix on the left side of

the equation has non-zero diagonal elements, so we have

ar  apT
1- 51‘ N 1- B()SL’7
A\x AT

1—ﬁ$_1—ﬁ0$7

which imply o) = a(()l), a® = a(()Q), 8 = Bo and A = A\y. Besides, w = wy could be
-B

easily derived from 5 = 1f°50. O
Claim A.2.4, Claim A.2.5 and Proposition 3.3 allow us to adopt Theorem 3.1 on

functions {l;+(0) : (i,t) € Dnr, NT > 1}. i.e. for any 6 € ©,

1
~T > [la(6) — Ely(6)] 5 0 (A.2.22)
(i,t)EDNT

as T — oo and N — oo. Therefore we have

lim [Ln7(f) — Ly (60)]

T,N—o0
1 o2 (0) 2 [‘72 (6o) ]}
= lim — E{log -2 4 g2 |20
T,N—oco NT (.OcDNT { Ui2t(90) ! Jz'zt(e)
. 1 2 01'2 (9)
2 i NT 2 E [(1 ~ €l log J-2t(9 )
: (i,)€Dn i\70
=0.

The equality in > above holds only if § = 6y by Claim A.2.6. Following similar argu-

ments in the proof of Proposition 3.4 we can prove the consistency of OnT.
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Proof of Asymptotic Normality

Notice that y;; = €104 (0p), then we have

OLnt(00) _ 1 S [tla a7, (60) — y” 0. 5%00)

00  NT 2(00) 96”1 ok (60) 0071
(i,t)eD
1 M L_2 5 (A.2.23)
. it
“NT > [at(e ) 96 “(90)}
(Z,t)EDNT ?

and

kg —1 1 0 o B OLn1(00)
SN 2 E{ +(60) 00 7i(00) 5 “(00)] - (WTvar {ae '
(i,t)eDNT

Firstly we need to prove a CLT:

(Snr)~ 1/2F8L%T0(90) 4 N(0,I5). (A.2.24)

Since 02 (6p) > wp for any (i,t) € Dy, by Assumption 4.3.4 and (A.2.15) we can prove

that

€2 0
Eit 0
(90) 89 'Lt( 0) .

< 0 (A.2.25)

for some r > 2. With Assumption 4.3.6 and Claim A.2.7 below, we can use Corollary
3.2.1 in Chapter 3 to prove (A.2.24).

Claim A.2.7. {%%ai(%) : (i,t) € Dnp, NT > 1} is n-weakly dependent with

n(s) < Cs™" for some constants C >0 and p > 4V 2(T 1).

Proof. Note that function g(z) = % is Lipschitz continuous on the interval (wp, co].
Then by Lemma 4.3.1 and Proposition 2 in Jenish and Prucha (2012) we can prove
that

< CsH (A.2.26)
2

1 1
200 (aiwo) 7 it(s))
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As for the term %U%(Qo), note that %agﬁ(%) =u—1+ B%Uzt_l(ﬂo) where

/
N

_ 2 2 ) 2
i1 = | Lyi1lqe,,_1>00 Yie—11{e;,_1<0} E wz,gyj,t—laffi,t—1(90)
j=1

{y21c, >0y : (i,t) € Dyp, NT > 1} is uniformly L2-NED of size-u on £, since

1951 ten >0y — E (431,01 | Fir(9))
= [l {ei0y 71 (00) — €51 iei >0} E [07(00) | Fie(s)]
<C |0 (60) — E [07,(60) | Fur(s)] |,

for some constant C' > 0. The inequality holds since E (5;&1{8#20}) < Ee}, < o0. By
Assumption 4.3.4, we could verify that {y?tl{gitm} : (i,t) € DNy, NT > 1} is uniformly
L"-bounded (r > 2), since E (y 1., >0y) < E [2/ 07/ (09)] < co. Moreover, recall that
Zj.vzl w;j = 1, then {Z;V 1 wwyﬁ (i,t) € DNy, NT > 1} is also uniformly L2-NED of

size-p on & since

=

N N
> wigys = B | Y wijyh| Fuls) Z wij [[y5 — B [5] Fa(s)] ], -
P p

By Assumption 4.3.4, we could also verify that {Z =1 Wij yﬁ} is uniformly L"-bounded.
Therefore by Lemma A.2.4 we obtain that:

Hé(?@ a7 (6o) — ((989 o7,(00)| Fia(s )> i < Cs™ (A.2.27)
By Lemma A.2.2(c), (A.2.26) and (A.2.27) lead to
—ep 0 S,
(90) ag7(00) < 7 ) 990 %0)| 7l )> )

<|1- (A.2.28)

1 9 1 0
[ g — & (g gt o) )

2
< (Cs*#
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According to Proposition 3.3 we complete the proof.

O
Notice that y;; = €;10:(0p), by (A.2.23) we have
0? Lyt (60) 1 Z [( 2yi2t 1 > 801-275(90) 802-2,5((90)
/ - 6 T4 /
0000 NT (5D o, (0o)  o;,(6o) o0 o0
N I v2 0202 (o)
Ji(Ho) aft(eo) 0006’
_ 1 Z |:2612t —10903(6o) 957,(60)
NG 4 /
(.5cDyr a7 (6o) 00 00
| 1= 003 (0)
02%(90) 0006’
1
32@ ‘ Z (it + &it)-
(i,t)eDNT
With Claim A.2.8 and Claim A.2.9 below, by Theorem 3.1 we have
1 1 P
WZ nzt_n4_12NT_>Oa
(l,t)EDNT
1 P
NT ‘ Z &t — 0.
(l,t)GDNT
This leads to
H? P
WLNT(GO) — Fa — 1ZNT = 0. (A.2.29)

Claim A.2.8. {ii%@_(s aa%éeo) 80(%9(,00) : (i,t) € DNy, NT > 1} s uniformly ILP-bounded
it

for some p > 1, and n-weakly dependent with n(s) < Cs™" for some constants C > 0

and p > 2.

Proof. By Lemma A.2.2(a) and (A.2.28) we can prove the L'-NED of size y, which
leads to n-weakly dependence with 7j(s) < C's™* according to Proposition 3.3. And the

uniform LP-boundedness is directly obtained from Assumption 4.3.1 and (A.2.25). O

Claim A.2.9. {2t 25000 . (i) € Dy, NT > 1} is uniformly LP-bounded for
it

some p > 1, and n-weakly dependent with n(s) < Cs™ for some constants C > 0
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and p > 2.

. 9202, (6 902, (0
Proof. Notice that 5915(9,0) =M1+ 508’5785,(0) where

2
97 +_1(00)

0 0 0 0 L

a2, 1 (0p)

3,t—1\70

0 0 0 O T
d0? 0

]\41'7t71 — 0 0 0 0 U’Lst;(éso)

2('9(1

807 0

0 0 0 0 70“’55;< 0

80, 1(00) 902, 1(00) 00F, 1(00) 0%, 1(60)  80Z, 1(60)
w 9D 90 (2) N 98

Since all entries of M;; are components of %, by (A.2.27), Lemma A.2.4 and

Assumption 4.3.4, we have

2,2 2,2
9 zt(eo)_E<a Zt(aO)]:it(S)>

< CsM (A.2.30)
2

sup  sup

NT>1(it)eDyy || 0000’ 0006’

Lemma A.2.2(a), (A.2.26) and (A.2.30) imply that

sup  sup < Cs M. (A.2.31)

1 -3 807, (6) _E (1 — &3, 0%03,(6o)
NT>1 (i,t)eDnrp

o31(60)  D000' oZ(6o) 0000 mt(s))

1

Then by Proposition 3.3 we complete the proof.
O

Since the target function L ~7(0) is an approximation of the exact likelihood func-
tion Ly7(0), we need following claim:

Claim A.2.10. AsT — oo, N = 00 and N = o(T),

(Cl) \/7 H{)LNT 90) 8L1\(%(90)

2.

2L Nt ® 0?Ln(60)
(b)- supjg—go||< H 9600 260"

= 0p(8).

Proof. We start with the proof of (a). Notice that

OENT(OO) o aLNT(HO)
o8 op
1 06%4(0) 1 00%(by)

52(60) 0p oZ(6o) OB

VNT

1
NT (i7t)EDNT

<
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+ 1 Z y?t a5i2t(90) _ yi2t 801'215(90)
VNT \; eDn (o) OB oi(60) 9B
Z 1 952 (6y) 80%(90)
F e LA CON NI B
1 1 aa2t(00) 2 ~92
= ! g; 00 — 0; 0
VAT @@eZDNT Z@aG || o5 |17~ 7ul®)
1 1 9526, ol AL,
Z ’yzt’ i(6o) _ i+(6o)
(i,t)eDN ( 0> 8’8 aﬁ
! 2 1 1 a7, (6o)
+ 7/— Yi = + =
NT (i tEZDNT | t| O?t(eo)a-?t(eo) 0-7%(90)0-1'215(00) 0B
<oy L 057(00) _ 907, (6o)
~VNT (G)eDyr 0 op 9B
1 IR A I
t o= D o | as | [oh(60) — 55(60)|
NT (i.t)eDyr 0 op
1 1 5 |952(0) 0o (6o)
+ == 1Y -
NT (i,t)EZ;NT w% ‘ t| aﬁ 85
1 ol ACY) 9
S~ Z =yl | 2= |07 (60) — 57:(60)|
NT (i,t)eD 0 o8
Firstly, in view of (A.2.16) we have:
]i]T Z ((j + yg> 80'3(690) 8&%2@0)
v (i)eDyp N0 %0 )
oy N T 1
S tﬁt_l 5
\/ﬁ ZZ; ; 0 \/ NT ZZ; tz; 0 U.)o wo 1
N T N T
CS 1 C4 ¢
<= > thy SN s
VNT i=1 t=1 \/W i=1 t=1
C3 N 1 C4 N BO
< + -0
AT AR AT A

when 7' — oo, N — oo and N = o(T).
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Then by (A.2.13) and (A.2.15) we have

6512;&(90)
op

> < 12 + 2yn> a(60) — 571(60)|

(i,t)€eDn 0 “o

02 N T
_FZZ% INT

i=1 t=1 =1 t=1

Zl—ﬁo

1

1
A

(A.2.33)

when 7' — 0o, N — oo and N = o(T). In light of (A.2.32) and (A.2.33) we can prove

that 3
OLNT(00) OLnNT(60)

VNT 58~ 55

The proof regarding partial derivatives w.r.t. w, a(¥), a? and X follows similar argu-
ments and is therefore omitted.

Now we turn to the proof of (b). For any ,,, 6, € {w,a®, o ) 3},

PLyr(0) _ 1 ii 22 1\ 902(0) B0 (6)
00,00, ~ NT & |\ ! 00n 00y,
= (A.2.34)

e 22| ot o)

Since B
Lyr(8)  9*Lnr(fo)
00,,00,, 00,,00,,

sup
10—00ll<€

0% (0)  0*1u(6)
600,00,  90,,00,

0%1;1(0) 32lit(90)
00,,00,, 00,,00,, |’

(A.2.35)

16—60]l<&

we will handle above two terms separately.

For the first term on the right-hand-side of (A.2.35), we have

N

RTDIPIETS

i=1 t=1 69

D%11(0)  D%1;(H)
80,00, 80,00,
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1 0%03(0) 1 0%53(0)
02(0) 00,00,  52(0) 00,00,

t=1 i—1 V€O
T N ~ ~
1 1 902(0) 9o (0) 1 952(0) 05%(0)
NT y - y L A2,
* NT;ZZISES oL(0) 0y 00,  GL6) 00, 00, ’ (A-2.36)
T N ~
b LS Y |t Dok v 254(6)
NT & “yeo | 0}4(0) 00,00, G},(0) 001,00,
b LSS | 20 00R(0)00h0) 2 064(6) 9550
NT 222308 105(6) 06, 06, 55,(0) 00n 06,
=T+ T+ T5+1T).
According to (A.2.13) and (A.2.19) we have:
T N ~
1 1 1 |]o2(0) — &2(0 )' 8202 (0)
Ty <— sup v + = Zf it it
VST L 2RV 20 T 2@ sa0mno) || 600,
T N ~
LS Y el v ||0%05(0) _ 0°5(0)
NT 2 2o 8 |51(0)| | 00,100, — 96,00,
T N
1 2yt P a7,(6)
<— z 2(0 )
T N ~
1 yzt oy (0)  9°55(6)
TNT ; Z; o0 w2 | 000,00, 00700,
<O S LS e+ S e
T t=1 i=1 NT t=1 i=1 NT t=1 i=1

Therefore we have T3 2 0 as T — 0o, N — oo and N = o(T). And this convergence
could be derived similarly for T, T5,Ty. Hence

%15 (0 021;1(0)

Y4
90, ae = 96,00, 'V

1 T N
VT

0cO

For the second term on the right-hand-side of (A.2.35), a Taylor expansion of gel%(gi

at 0y yields that

031:4(0)

9%1;1(0) 82lit(90)
00,,00,,00; |

<
06,00, 3690, | =%,

ll6—60ll<¢

sup
l16—60ll<&
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Therefore we have

1% sup O*(6) _ 0°lir(60)
NT i=1 t=1 I0—6oll<€ 007,00, 00,00y,
N T
1 931;+(0)
< £ sup  |—rt—
NT;; J6—60ll<¢ | 00m 000,
N T
! by | 2 ‘ 90%,(0) 90%,(0) 953,(0)
<<= £ sup |- +
NT zz; tz:; [|[0—60||<€ Uz’st(e) U?t (‘9) 00, 00, 00,
N T
LSS |2 L |2006) 00406)
NT i=1 t=1 |10—0oll<¢ 0 (0) 0 (0)|] 00,00, 06y,
N T
1 2y3 1 ||002(0) 925%(0)
TRT 22 S| Te s T oA || a6, 98,00
i=1 t=1 |l oll<€ 194t it (A237)
N T 2.
1 2y3 1 ||902%(6) 0%0%(6)
+ == £ sup o i i
N T;; lo—eoll<e | 5(0) o3 (O) || 00 96mOOy,
N T
1 ylt H o 12t
+ 5 sup |—
NT;; 10—00|< 00,,00 ae,
N
Ch 6yt 2 (s 2y'2t 1
< ¢ sup L 4+ == sup it | -
T;; lo—oll<¢ | W w5 NT;; lo—6o)<e | WO wl
N T
2yt 1 202 1
¢ swp =% ¢ sup |2y L
ZZ [ e [
yzt 1
5 sup |——
NT@ 1¢=1 lI0=0oll<¢ Wl w2

a.s. for any 6;,0,,,0, € {w,a, al?

)€, B}. Therefore the second term on the right-

hand-side of (A.2.35) is O(&) in probability. With (A.2.36) converging to 0 in proba-
bility, we prove Claim A.2.10(b).

By the Taylor expansion, for some 6* between Oyp and 6y we have

OLNT(OnT) _

OLnT(60)

O*LnT(0%)

00

00 06000’
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Since %(;NT) =0, we have

~ —1 ~
1/2 B 1/2 [ O*Lnr(6%) OLNT(00)
VNTY N (QNT 0o) = X ((99(99’ \/NTiae

1/2 [ «—1/20>Lnr (60 ~1/2 5LNT to
__xl2 (sl (,) L2 /T ( )+0p(1)
0006
(A.2.38)
according to Claim A.2.10. By Assumption 4.3.6 and (A.2.29) we have

—120°Lyp(6o) 1 1/2
ZNT 0006 - kg — 1ENT to (1)

Therefore

—1/20?Ln7(0 _ 1
(H4—1) <2N1T/289]V;10(/0)> EN1T/2 — (/4}4—1) (/@1—12]1\;; —+ Op(l)) EN’IT/Q — I5+Op(1).
(A.2.39)

Combining (A.2.24), (A.2.38) and (A.2.39) we complete the proof of Theorem 4.2.

A.2.4 Proof of Proposition 4.1

Note that
yzt
R NT Z Z
=1 t= 1
and N X X
NT — g QNT) 00 06’

’ﬂ

;| NI y

2t p
N—ZZ O] (A.2.40)
and

N T ~ A - A
1 1 80%(9]\@) aagt(QNT) 1 802-275(90) 801275(90) D
NT 2= 2 { 10 90 oo [a;lt(e@ 00 o0 ] 0

(A.2.41)
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Then it remains to show that S; 2 0 to prove (A.2.40).

1 T N 4 1 T 4 4
- Z Z yzt yAzt + yAzt o Yit
TN NT) A (OnT) TN ok (Onr)  is(60)

t=1 1=1 ot t=1 i=1

=511 + S12

where Si2 20 since OnT EN 0p. Meanwhile

o%(Onr) + G2 (0NT)

Yih
Sl < _T ZZ

= = 54 (Onr)ok (On)

Lsos o)
52

t 1i=1 it HNT zt(eNT)

1 202 (A ) 5
Sﬁzz 0 ﬁtyzt

t=1 i=1

o I »
Sﬁzzpyit'

t=1 i=1

o%(OnT) — 5z2t(éNT)‘

o2 (OnT) &zzt(gNT)

Then S1; 5 0 according to the remark following Assumption 4.3.4. Thus (A.2.40) is

proved.
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As for (A.2.41), note that

L iv: r aO'Zt HNT) aazt(ONT) _E 1 80'2%(90) 80'1215(90)
NT 22\ 5ty 00 o L0y 00 oF
_ 1 i i 952 (OnT) 052 (OnT) 1 9a},(6) D3 (8o)
TN 2+ 2 ) 00 90 ok 00 00

1 1 902 (60) 902 (6) 1 902 (6y) D3 (6o)
ZZ{ ) 00 atef _E[ag(eo) o0 o0’ ”

~

o sy [ L 9%h0nn) 05Onr) L 9ok 0 (Ov)
5%(&NT) 00 oy’ ob(Onr) 00 o0y’

S ZT:ZN: 1 90%(Onr) 002 (Onr) 1 902 (60) 92 (6)
ok(Oyr) 00 o0’ ok(6y) 00 o0’

=171 + Ths.

Ty1 % 0 has been proved in (A.2.36), and T1o = 0 as Oyr = 6. With (A.2.40) and
(A.2.41) we complete the proof.
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A.3 Proofs of results in Chapter 5

Lemma A.3.1. If 0 < f < 1, Elyi| < oo and E |X\i(v)| < oo uniformly for all
(i,t) € D7, NT > 1, then

o) N
Xir(v) =D B w ot qigoilipk + €D wiglja—n (A.3.1)
k=1 =1

with probability one.

Proof. Let log™(z) = log(z) if z > 1 and 0 otherwise, u; (V) := w + @ r—kYit—k +

€Z§V: 1 WijYjt—k- By Jensen’s inequality we have
Elog™ [ui s (v)]
N
<log"E |w + Qt—kYit—k + & Z WijYsjt—k

j=1

<00.

By Lemma 2.2 in Berkes et al. (2003) we have Y7 P [|u;—x(v)| > ¢¥] < oo for any
¢ > 1. Therefore |u;¢—x(v)| < ¢* almost surely by Borel-Cantelli lemma. Letting
1< (< ﬁ, we can prove that the right-hand-side of (A.3.1) converges almost surely.

It remains for us to show that
Aite(v) = Z B iy (v).
k=1
From (5.3.2) we have
Xit(v) = BNt k1 (V) = i1 (V) + Bt o (V) + oo+ B gk (v).
Using Markov’s inequality we obtain that > 3> P{|8¥); ;—k_1(v)| > 0} < oo for any

§ > 0, then by the Borel-Cantelli lemma [8*\;; ,_1(¥)] “3 0 as k — oo. Letting

k — oo on both sides of above equation we complete the proof. ]
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A.3.1 Proof of Theorem 5.1

Our proof of Theorem 5.1 relies on the arguments given by Doukhan et al. (2006) in
their proof of Theorem 2.1. Let

0 0 0 0)\’
AD = (DD, D)

!/
v = (M1 AD), Mot A Mt (AWD )

where {)\l(.?) :1=1,2,...,N,t € Z} are IID positive random variables with mean 1. For

each n > 1, we define {an) 1t € Z} and {Ag”) :t € Z} through following recursion:

(n) (n)
Yi =M (Ay7);

! n 1 1 1 (A.3.2)
A = wiy + A YD 4 A,

Claim A.3.1. {an) 1t € Z} is strictly stationary for each n > 0.

Proof. Since {M;:(-) : i = 1,2,...,N,t € Z} are independent Poisson processes with

unit intensity, then for any ¢ and h we have

P{Y{, =1, YLD, = ¥i}

—F (P {Ygﬁ-)h =y, aYEi)h =Y ‘Aﬁ-)h’ 7A§Th })

= (IP’ {M1+h(Aﬁ)h) =¥y1, ...,Mt-‘rh(AEZ) )=y ‘Aﬁ)h’ "'7A§i)h }) (A.3.3)
t N ()\2(7’2)+h>yik o

When n =0, P {th =Y, YES_)}L = yt} is h-invariant for any ¢ and h, by (A.3.3)
and the IID of {)\Z(.?) : 4 =1,2,..,N,t € Z}. Therefore {Ygo) : t € Z} is strictly
stationary. Assume that {anil) 1t € Z} and {Agnil) .t € Z} are strictly stationary,
then {Agn) :t € Z} is also strictly stationary since Agn) =wly + A(Yﬁ;l))Yiﬁzl) +
BA?_III). According to (A.3.3) and the strict stationarity of {Agn) :t € Z}, we have
{an) : t € Z} being strictly stationary too. Claim A.3.1 can be proved by induction.

O
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Claim A.3.2. E HY,ﬁ”“) —y

< Cp™ for some constants C' >0 and 0 < p < 1.

Proof. 1t is easy to verify that

E Hygn—i-l) . an)

oo -

)

Recall from (A.3.2) that
AP = wly + AYTYETY A,

then
Hyin—l—l) . Y}En)

< HA(Y@DY@l _A(Ygﬁl))Ygﬁl)H +5HA§n1 A(” DH (A.3.4)

Define a function ¥(y) = a(l)l{yzr}y + a(2)1{y<r}y for y € N, then Assumption
5.2.1(b) assures that ¢ (y) is non-decreasing on N. Let 3/, y € N such that y' > y:
e If y/ >y > r, we have 0 < (/) — ¥(y) = oWy — 1) < o*(y/ — y) where
o = max{a(M, @},
o If 7>y >y, we have 0 < ¢(y) — ¥(y) = aP(y —y) < a*(y' —y);

o Ify' > 7 >y, we have 0 < (y) —v(y) = oMy —aPy < aD(y' —y) < a*(y'~y)
by Assumption 5.2.1(a).

Similarly when ¢y’ < y, we have 0 > ¥(y') — ¥(y) > o*(y' — y). Therefore we obtain
that:

lb(y") — ()] < o™y -yl (A.3.5)

for any ',y € N. Then we have:

(A, - A ) |

= w(yz(jz)—l)_d}(yzt 1 +€Zw1] yjt 1 y](;i })) (A36)
j=1
n—1
<a” yz(t)l_yzt 1)‘+€sz] y]t 1 ygt 1)‘
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fori=1,2,..., N, where (Y); is the i-th element of Y.
Combining (A.3.4) and (A.3.6) we have

E[y{"? -y

<IEH @Iy + EW + BIy)(Y! " 1 t 1 H
<p(a*Iy +EW + BIN)E H\Yt_l o H

<lo* + ¢+ BIE [¥i) - ("7

where p(-) denotes the spectral radius, and the last inequality is due to the Gershgorin

circle theorem. Let p := |o* + £ + (|, we have:

E [yt -y

<k | ¥, — v

<p"E HYil_)n

=p"E HAﬁl_)n - A,

<Cp"

forsome 0 < p<land C' =E HAS_)” - Agg)n

< Q.

By Claim A.3.2,

P (170 w7} = e -

<E Hytn—l-l) _ an)‘

=)

<Cp".

Therefore Y 2 | P {YEHH) # an)} < 00, and

P { ﬁ G [ngﬂ) ” ng)} } -0
n=1k=n
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according to Borel-Cantelli lemma. This indicates that, there exists M such that for
all n > M, an) equals (almost surely) to some Y; with integer components. i.e.
Y = limy, oo an) exists almost surely. Apparently, {Y; : ¢ € Z} is strictly stationary
since {an) .t € Z} is strictly stationary for each n > 0, according to Claim A.3.1.

At last, by Claim A.3.2 we also have:

m—1 m—1
< Z E HYEHHU _ YEan)H <cp Z o
k=0 k=0

for any n,m € N. Therefore {an) : n > 0} is a Cauchy sequence in L!, hence

E [ < o0

A.3.2 Proof of Theorem 5.2

By Lemma A.3.1 we have

0 N
Xie(v) =Y B w i ki + > Wil
k=1 j=1
and
sup  sup sup | Ait(v)] < o0 (A.3.7)

NTzl (Z,t)EDNT rved XZ+

with probability one, where a; s, = a(l)l{yi,t—kzr}+a(2)1{yi,t—k<'f}' Given initial values
Nio =0 fori=1,2,....N, we could replace A\j(v) with S\it(u) and get

. t N

Xit(w) =D B w+ i kiek €D Wil k

k=1 j=1

fori=1,2,...,N,t > 1. Therefore we have
Xit (V) — A (v) = B hio(v). (A.3.8)

Now we are ready to prove the consistency of oy when T'— oo and N — oo. The

proof is broken up into Claim A.3.3 to Claim A.3.6 below: Claim A.3.3 shows that
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the choice of initial values is asymptotically negligible; Claims A.3.4 and A.3.5 verify
the weak dependence of {l;(v) : (i,t) € Dyp, NT > 1}, and facilitate the adoption of

LLN; Claim A.3.6 is concerned with the identifiability of the true parameters vy.
Claim A.3.3. For any v € © X Z, |Lyr(v) — Lyr(v)] 2 0 as T — 0o and N — .
Proof. The proof is similar to that of Claim A.2.3 and is omitted here. O

Claim A.3.4. The functions l;s(v) are uniformly LP-bounded for some p > 1, i.e.

sup  sup sup ||l (v)]], < o0.
NT>1 (i,t)EDNT I/E@XZ+

Proof. According to Holder’s inequality, we have

1Lt ()], = [lit log Aie(v) — A (W),
< llyit log Xt (W), + [ Xae (W),

< lyitllp [og it (1)l + [1Ait (W), -

Notice that
sup [[log Ait(v) |y,
VG@XZ+

< 1/6%152+ [log™ Nit(v) H2p + Vezuxph ||log™ )\it(V)HQP

< sup  [Aa(v) + 1y, + sup max{—log(w),0},
VEOX L, VEOX L,

where log™ (z) =0 if x > 1 and log™ () = —log(z) if 0 < z < 1. Then by Assumption
5.3.2(a) and (A.3.7) we complete the proof. O

Claim A.3.5. For any v € © X Zy, the array of random fields {ly(v) : (i,t) €

Dnp,NT > 1} is n-weakly dependent with coefficients 1jo(r) < Cr=H° where py > 2.

Proof. For each (i,t) € Dyp and h = 1,2, ..., define {yj(};) :(4,7) € Dy7, NT > 1} such
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that y](ﬁ) # yjr if and only if p((4,t), (4, 7)) = h.

h)
)‘( Zﬁk ! w+az(t) k:yzt k+§zwlj?/gt k>

where

agz),k = oM +a®1

{yf’? W7} W <ry

Then by (A.3.5) and Assumption 5.3.3 we have
i) =X ()

<Zﬁk 1|azt kYit— k_azt kyzt k‘+225 éwZ]|y]t kE— ]t k|
k=1 k=1 j=1

(h)

_ h - h
=B"" v t—nyig—n — ai,t,hy§7tlh| +EBMT N wijlyjan — y](’t),h|

1<|j—i[<h
. (A.3.9)
+ w; ixn Z B Nyithi—k — yz‘i)h,t—k’
k=1
* nh— h - "
<a*B" Myigon — yvg,t)_h’ +¢ ! Z Y56 = yﬂ(?t)—h’
1<|j—i|<h
h
- h
+ CER™" Y |yithp—k — yz(:l:)h,t—k"
k=1

Therefore \;(v) satisfies condition (3.2.6) with B(; ) n7(h) < Ch™®and [ = 0. By
Proposition 3.2 and (3.2.10), the array of random fields {\;t(v) : (i,t) € D7, NT > 1}
is n-weakly dependent with coefficients 7, (r) < Cr—Hv+2,

Similarly we can define

1P w) =y 10g XD () = AP ().

3 (2

Since

] o )\it(V)

lin(v) — 15 ()] <y |lo + a(v) = AP )]

it
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)\it(V)
)\(h)(y)

it

— 1)+ D) = AP )]

Yi h h
<P () = X W]+ () = AP )],

lit(v) also satisfies condition 3.2.6 with B; yy y7(h) < Ch™® and I = 1 by (A.3.9), the

array of random fields {l;s(v) : (i,t) € Dyr,NT > 1} is n-weakly dependent with
2p—2

coefficients 7jo(r) < Cr~2-1"F2 Notice that %Ny — 2> 2 since py, > ZZL—?. O

Claim A.3.6. )\ (v) = \it(vo) for all (i,t) € Dy if and only if v = .

Proof. The if part is obvious, it remains for us to prove the only if part. Observe that

N
(1-B8B)Au(v) =w+ aByu + € > wiByji,
=1

where B stands for the back-shift operator in the sense that By? = yztfl, and «

represents either a(!) or a(?) according to the value of a;; at time ¢. Therefore we have
(1 = BB)A(v) =wly + (aBIy + {EBW)Y,.

The polynomial 1 — Sz has a root x = 1/, which lies outside the unit circle since

0 < B < 1. Therefore the inverse ﬁ is well-defined for any |z| < 1, and we have

Ae(v) = ﬁlN +P,(B)Y,

with P, (B) := 1f§BIN + 1ngVV. As \it(v) = Ait(vg) for each i =1,2,..., N,

[Pu(B) = Puy(B)] Yy = (1 f"ﬂo - 1_“’5) 1.

We can deduce from above equation that P, (x) = Py, (x) for any |z| < 1, otherwise Y,

will be degenerated to a deterministic vector given H;_1. Py, (x) = Py, () implies that

ax QT B éox _ Ex
1—BxIN1—60xIN_<1—50$ 1—51‘>W
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The diagonal elements of W are all zeros while the matrix on the left side of above

equation has non-zero diagonal elements, so we have

ar  aox
1—pBz 1-— oz’
§x o

1—pBx 1-—PByx’

which imply a = «aq, 8 = Gy and £ = &. Besides, w = wg could be easily derived from

w — wo

1-8 1-Bo "
OJ

With Claim A.3.4 and Claim A.3.5, we can apply Theorem 3.1 and prove the con-

sistency of Uy following similar arguments in the proof of Theorem 4.2.

A.3.3 Proof of Theorem 5.3

With a fixed threshold parameter r = rg, we will rewrite Ong = ég%), Ait(0) =
Xit(0,70) and 1;(0) := 1;4(0, ro) etc., in succeeding proofs for notation simplicity. Before
we prove the asymptotic normality, we derive some intermediate results regarding the
first, second and third order derivatives of A\;(#). These results are repeatedly used in

later proofs.

Since
> N
)\zt(e) = Z 5]'6—1 w + (Oé(l)l{yi,tszr} + a(Q)l{yi’tik<r}) Yit—k + 5 Z WiiYjik
k=1 st
almost surely, the partial derivative of A\;(f) are
() -
8&] - Z /B )
k=1
ONi(0) o~ k1
OHal) - kz—l B yi7t_k1{yi,t—k27"}’
Ot (0 —
3;((2)) - Zﬂk Witk Ly, <r)s (A.3.10)
k=1
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DNir(0) = [
atg( ) - YA (Z wz‘jyj,tk) ;

k=1 j=1
OXit(0)
op

= (k= 1)B" 2w k(0),
where

N
Uik (0) = w + O‘(l)yivt*kl{yi,kaT} + a(2)yivt*k1{yi,t7k<7'} +¢€ Z WigYjt—k-
j=1

We also notice that

ONit(6)  OXu(6)
90 90

ONio(0)

= tﬁt_l)\ig(l/)e5 + Bt 00

(A.3.11)
where e; = (0,0,0,0,1)".
Now we consider the second order derivatives. For any 6,,, 6, € {w, oM, a? ¢},

Pal0) _
3000,

Also

ONlD) _ S 152,

dwdf P

gi)(\ggg) = g(k ) AR TS P

gi)(\;(aeg) - ;i(k = DB yit kg o rys (A.3.12)
823225(59) = ki;(k —1)p+2 (ﬁ; wijyj,tk> ,

82352(9) _ ,i,(k 1)k — 25, 4 (0).
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We also have:

*Xir(v) 9 Xir(v) 2 L Lot Nio (V) 0P hio(v)
9006’ - 9000’ _t(t_l)ﬁ )\10(7/)9595"‘2tﬁ 00 e5+ﬁ 90007 ,(A.3.13)
where e; = (0,0,0,0,1)".
As for the third order derivatives of \;; (),
23 Nit (0) i k- 1)k 2)8h8
(%1862 — ’
Pri(0) = _
aa(l)aﬁ2 - Z(k - 1)(k - Q)Bk Sy@t_kl{yi,tszr}’
k=3
BNt (0) > o3
o292 - Z(k 1k =2)8 Yist—k Ly, o <r)s (A.3.14)
k=3
3&952 :Z — Dk —2)8* 3(2%% k)
k=3
83 zt > k—4
95 :Z —1)(k — 2)(k — 3)8 w11 (9).
k=4

Based on the consistency of 6 ~NT, we are now ready to prove asymptotic normality.

We split the proof into Claim A.3.7 to Claim A.3.10 below.

Claim A.3.7. VNT |2xz) _ OLnr(00)| 2, 45 yyin {N, T} — 0o and T/N — oc.

Proof.
8LNT(9) _ 1 Yit 1 8)\“3(9)
00 NT Xit(0) 00
(i,t)eDnT (A315)
OXit(0) . OXit—1(0)
90 — hl,tfl + /6 o0 )
where

!
N

h;; 1:= 17yz‘,t—11{yi,t,12r},yi,t—ll{yi,t,lq},g WiiYj -1, Nig—1 | -
i=1
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Similarly we have

8LNT(0) 1 Z < Yit )8)\%(0)
%  NT o \Xal0) 9
Nt (0) ONi—1(0)
89 — hZ t—1 + /8 80
Therefore we have
OLnT(00) ~ 0Ly (o)
VNT 35 o5
1 Xit(00) — Nie(00) ONit (60)
S—F= Yit | —=
VNT |, ZD t [ Ait(0)Xir(0o) OB
8)\1,5 00 CMaB0) \ | [ 9Xi(Bo)  ONis(Bo)
GJ] 0B op
Yit < ONit(6o)
- = Aie(0g) — At (6
\/7 Zl:) 7 ¢(6o) +( o)‘ 93
1 Yit OXir(B0)  Nie(6o)
tUNT 2 <w0+1) 95 95
(i,t)eDnT

Firstly, by Assumption 5.3.2(a) and (A.3.8) we have

Ot (60)
o}

it (6o) — S\zt(eo)’
0

Z yi
w2
NT

i,

<

1

Bo llyilly

when min {N,T} — oo and T'//N — oco. Then in view of (A.3.11):

1 <yit > ONit(60)  ONit(fo)
- Z 2 —
VNT (D \&o ap op 1
c N T y Oy N T y
1 t—1 || Yit t it
< B+ 1+ BEII== +1
\/]\]V,Z_';t1 0 wo 1 \/NT;; 0 wo 1

(A.3.16)

(A.3.17)

(A.3.18)
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\/—ZZBO

zltl =1 t=1

Cs 1
_\/W;(l—ﬁo) Zl—ﬁo

when min {N,T} — oo and T/N — oo. In light of (A.3.17) and (A.3.18) we can prove

that :
OLNT(60)  OLNT(60)

VNT %8~ 55

The proofs regarding partial derivatives w.r.t. w, a(¥), a? and ¢ follow similar argu-

ments and are therefore omitted.

O
Claim A.3.8. supjp_g,|<¢ 8255\%,(9) - BQL(%ZI(QO) = 0p(§) as min{N,T} — oo and
T/N — co.
Proof. For any 6,,,6, € {w,a o ¢ B},
0?Lyt(9)
00, 80
A.3.19
ZZ yzt L\ PAa0) oy 9Na(0) Oi(6) ( )
NTl <2 000, N2(0) 00 00y |
and
0?Lnr(0)
00,00, (A )
- ~ ~ .3.20
1 ZZTI yzt S\ Pha0) g 9Xa(0) 9Aa(9)
NT e 9000, N2(0) 00m 0Oy
Since ~
ooto<e| 00m0, 00,00,
N T -
1 9204(0)  9%1,,(0)
<_—_
—NTZ:Z;EES 00,00, _ 90,,00, (A-3.21)
N T

0?1;1(0) 82lit(00)
00,00, 00,00,

1
+ —= sup
NT 2 ; 6—f0|<¢

I
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we will handle above two terms separately.

For the first term on the right-hand-side of (A.3.21), we have

\
1 1 O \it
yir Sup (/\n - M) veb 00,00, ||,
e e () (s )
pons Byt |
s [ (-5
i o e ()

N T fod
1 920,(0)  9%14(0)
WZZS“’ 80,00,  00,,00,

i—1 t—1 9€©

ll

(A.3.22)

1

3

1

Analogous to the proof of (A.3.17) we can show that 73 — 0 and 73 — 0 as min{N, T} —
oo and T'/N — oo. In light of (A.3.13), we can also verify that

sup <y — 1)
0ce \ A

Then T — 0 as well. Similarly, using (A.3.11) we obtain that 7y — 0 and 75 — 0.

N

T
1 t2 t—1
Ty < Mz;;cltt—l) + Cotp'™ + C3p']
1= =

1

Then it remains to investigate the second term in the right-hand-side of (A.3.21).

A Taylor expansion of 897(2 at 0y yields that

1%% lir(0)  9*Lir(fo)
NT 2= 2 3% e | 00700, 90,00,
N T
1 a3lit( )
ST £ sup |t
NT;; 10—8|<¢ | 00m 00,00,
N T
1 Yit ' ‘ aSAZ‘t
SNT sup |2t _q|| L2t __
N T;;§|9—901|)<5 Ait 00,,00,00,
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ONit ONir ONig
00, 00, 00,

1 N T 2y
it
+ — E E & sup : (A.3.23)
NT i—1 t—1 10—06o|<¢ )‘?t

N T
1 yi | | ONie 0*Nit
T el o2,

N T
1 Yir | [ONie 0% Xis
T &2tz |0, 9aom,

N T
1 yit | | ONir 0% it
+ -3¢ sup (Y2
NT i=1 t=1 [0—0o|<€ A% | 00, 00,00,

:= DB1+ By + B3+ By + Bs

for any 0y, 0,0, € {w,a®, a® € B}. According to Assumption 5.3.2(a), (A.3.14) we
can verify that

E

< 00,

Yit ‘ ‘ O3 N\it

)=
it 00,,00,00,

hence By = O(§) in probability. The other terms could be verified following similar
lines, in light of (A.3.10) and (A.3.12).
Taking (A.3.22) and (A.3.23) back to (A.3.21), we complete the proof.

0l (6o)

Claim A.3.9. (a). supyr>; SUP(; e Dy 5

) < oo for some p > 1;
D

(b). For each v € R’ such that |v| = 1, {v’al“ai(;o) : (i,t) € D7, NT > 1} are 1-

weakly dependent, with dependence coefficients n1(r) < Cr=*' where pup > 4V

2p—1
p—1~

Proof. Recall from (A.3.15) that

20 du(by) 00 00

Alit(6) yit  ONit(6o)  ONit(bo)

By Assumption 5.3.2 we could prove (a).
Now we verify (b). In the proof of Claim A.3.5, for each (i,t) € Dyr and h =
1,2, ..., we defined {yj(?) : (j,7) € Dnp, NT > 1} such that yj(i") # yjr if and only if

p((i,t), (4, 7)) = h. At first, we verify that 81%7%00) satisfies condition (3.2.6). Notice
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that
Ilir(0o) ol (6y)
op op
. (h) , (h)
- 1L ddallo) 1 9N (60) ONit(Bo) — ON;” (bo) (A.3.24)
a0 05 APy 0P o5 o >
(h) (h)
Yit 8Alt(00) a)‘t (90) Yit 6)\15 (00) (h)
<[4 Bk Yit | C2u 37003, (60) — A\ ,
<[t | P - R+ 2 |2 Pt - i)
Since
Z — 1)BE ;-1 (60),
k=2
where
o (00) = W, 1 @, 1 .
it (00) = wo + g Yit—kly, ,_>re} T A0 Yit—k {yi,t_k<r0}+£Ozwl]yj,t—k-
j=1
Following analogous arguments in (A.3.9), we obtain that
X)) oA (6o)| - ()
a5 o <ag(h = 1By |Yit—n — Y; ¢l
_ h
+&(h=1)872 Y |yj7t—h_yg(',t)fh| (A.3.25)

1<i—j|<h

h
_ h
+ O |y — yéﬁh,t_kl-
k=2

Combining (A.3.9), (A.3.24) and (A.3.25) we can verify that ”(;O) satisfies con-

dition (3.2.6) with B(; ) nr(h) < Ch™? and | = 1. Partial derivatives of l;;(6) with

10l (6o)
00

respect to other parameters in 6y follows similarly. Therefore v satisfies condi-

tion (3.2.6) with B(; ) y7(h) < Ch™" and I =1 for each v € R%.
According to Proposition 3.2 and (3.2.10), the array of random fields {v’ 81%7%00) :

. . g . . _ —%;@—I—Q
(i,t) € Dyp, NT > 1} is n-weakly dependent with coefficients 7;(r) < Cr~ 2» .

2p 2 2p—1 . 6p 3 (4p—3)(2p—1)
Notice that 5>y —2 >4V =1 since fiy > e TR
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92144 (60)
0600’

Claim A.3.10. (a). supyy>1SUD; pepyy

< o0 for some p > 1;
P

(b). With respect to all O, 0, € {w,a® a® € B}, {%el;té%i) (i,t) € D7, NT > 1}

are n-weakly dependent, with dependence coefficients nj2(r) < Cr—H2 where pg > 2.

Proof. Recall from (A.3.19) that

&1+ (6o) (e PNit(fo)  wie  OXit(Bo) Oit(6o)
00,00, it (6o) 0000, N\i(6p) 06, 00,
Then Claim A.3.10(a) could be directly obtained by Assumption 5.3.2(a).
Same as previous proofs, for each (i,t) € Dy and h = 1,2, ..., we defined {yy;) :
(4,7) € Dnp, NT > 1} such that y](.};) # yjr if and only if p((i,t), (j, 7)) = h. To prove
(b), we verify that M satisfies condition(3.2.6). Firstly we have:

PLu(80)  9*1)” (6o)
90,00, 00,00,

S R M W N G B A ) I S
= it (60) Wm0y 00,00, | | 00,00, || Nul0) AP ()
e | OMa0) Xr(B) NG (6) DN (B0)
N2(00) | 00, 00, 90,, 00,
| @) N )| | e i (4.3.26)
B 0bn || X(00) (A (60))?
S (92/\it(90)_32>\§?)(90)
= it (60) 00,000,  00,,00,,
; 22" (g
+ yt(h) i (%) Ait(90)*>\gl)(90)‘
Nit(B0) My (80) | OOmOn
Yie [ 0Xi(0o) | [ONit(fo) Ny (6o)
X2(00) | 06, 9, 99,
e [N @) | [02ie(B) N (00)
X2(00) | 00, R 90,
(h) (h)
Yit Ny (o) ON;,” (6o) 1 1 (h)
i i L + Ait(Bo) — Ay (6o)
)\zt(eo))\gl) (90) 89m 80n )\it(HO) )‘z(z?) (90) t

0*Xit(6o)  0°AY (6o)
900, 0030y,

yzt
0

+C1=

< (y“+1>
wo

it (6o) — A§f)(00>)
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ot [DXl00) N @) |, yie | 9Mal00) 0N (B0)
2G| 09, 6,, SW2 | 96, 36,
+ Oy 2 N (00) — AP (90)‘ :
Wo

Taking the second order derivative with respect to £ and 8 as an example, analogous

to (A.3.9) and (A.3.25) we have:

92i(60) 22 (6y)
008 9o

o0 N N
_ h
< (k=182 wigysek — E:wijyg(',t)—k
— j=1 J=1

k=2

(A.3.27)
_ h
<(h =187 3 lyge-n =954l
li—j|<h
i h
+Cn Z |Yith,t—k — Z/Ei)h,tfﬁ-
k=2
Proofs regarding second order derivatives with respect to other parameters follow sim-
ilar arguments and are omitted. Substituting (A.3.9), (A.3.25) and (A.3.27) back to
(A.3.26), we have that % satisfies condition (3.2.6) with B(; ;y y7(h) < Ch~" and
[=1.
According to Proposition 3.2 and (3.2.10), the array of random fields % :
2p—2
(i,t) € Dyp, NT > 1} is n-weakly dependent with coefficients 77;(r) < Cr_%uyﬂ,

2p—2
and ﬁuy—Q > 2.

By the Taylor expansion, for some 6* between fy7 and 6y we have

OLnT(OnT) _ OLNT(6h) L PLvr(07)

o0 00 00y \Ont = bo)-

OLnT(OnT)

Since —*5577+ = 0, we have

VNTSX2(0n7 — 60)
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~ —1 ~
1/2 [ O*Lnr(6%) OLnT(00)
_xl (a . VNTSNEE0 (A.3.28)

_1/90%L 0 _ oL 0
Y <ZN1T/2 8g§0<' 0)) 5212/ oknT (o) NT( 0) + op(1)

according to Claims A.3.7 and A.3.8.
Notice that y;; = M;;(X\it(6p)) is Poisson distributed with mean \;;(6y) conditioning
on historical information H;_j, with {My : (i,t) € Dy, NT > 1} being IID Poisson

point processes with intensity 1. Therefore we have

8089’
e e (M ) e
g o
- o )
= — XNT-

By Claim A.3.10 and Theorem 3.1 we have

& Lnr(6o) P

According to condition (5.3.5) we can further prove that

—1/20?Lnr(00) (i—1/2 1/2 1/2
- <2NT/ 8989’> ENT/ = (2 240 (1)> EN/ =I5 + o0p(1). (A.3.30)

When 7 # t or j # i we have

Mit(Xit(60)) Mjr(Ajr(80)) 1\ OXar(6o) OAs-(60) _
E[(At(f)o)l>< e (60) 1) 50 pgr [P =0
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assuming 7 < t. Then we can verify that

Var (\/ﬁ%\g‘;(%))
1 & it(Nit(6o)) Ot (o)
“NT { Z; ; ( Xie(f0) 1) 90

N T Mlt()\lt(GO)) 8A7,t(90)
" ; tzl <M(90) 1) 00"
_ 1 d M (Nite(6)) 2 it (00) ONit(00)
NT i=1 ;E W - 1) 59 59/
=XnNT

For each v € R%, Var (E(l "

)eDnr v’al”aiggo)) = (NT)v'En7v. By (5.3.5) and the sym-

metry of Xy,

inf v'% .
]\}%121 vXynrv >0
Then by Claim A.3.9 and Theorem 3.2 we can prove that

ILNnT(00) 4

[(NT)WVEnpv] V2 (NT) o5 N1,

According to the Cramér-Wold theorem, we have:

(Snr) Y2VNT aL%TG(QO) 4 N(0, I5). (A.3.31)
Combining (A.3.28), (A.3.30) and (A.3.31) we complete the proof of Theorem 5.3.

A.3.4 Proof of Proposition 5.1

Recalling from (5.3.7), the Wald statistic is

. | PSP B
Wt := (TOnt — 1)’ {NTENlTF/} (FOnT = 1),
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where

ZNT =

1 > 1 OlOnr) Oi(Onr)
T Xit(Onp) OO0 o0’ '

(i,t)EDNT

It suffices to show that

1 1 u(Ont) ONit(OnT) | p
— B 2 SNt (A.3.32)
NT (iﬂf)GZDNT [)\it<9NT) 00 o6’
Firstly,
1 [ 1 65\it(éNT) 85\it(éNT)
— — — XNT
N e o o
1 5 [ 1 ONau(bnr) OOyt _E< 1 9Xi(6o) axit(90)>
o ) 0 ow Nl 00 on
1 5 1 OalByr) OhalBnr) 1 ONi(B0) dNie(bo)
T .5 | Nallnr) 09 o0’ Ne(Bo) 00 o0
n i Z 1 8/\it(90) Ot ((90) _E 1 Ot ((90) 8)\#(90)
NT MilBo) 90 0@ MilBo) 90 00
(l,t)EDNT
=171 + Ts.

Similar to the proof of Claim A.3.10, we can verify that the LLN Theorem 3.1 applies

to {Ait%é?o) 8)‘3(500) 8’\59(,90) : (i,t) € DNy, NT > 1} and therefore Ty 5 0.

T can be further decomposed as follows:

1 3 1 MalOnr) Oda(Onr) 1 9Xi(Bo) ONis(bo)
NT & | Ralfnr) 09 o0 NelBo) 06 00
_ 1 3 1 ONiOnr) Oi(Onr) 1 alOnr) Oa(Onr)
T i i5cDyy LitlOnT) O oy’ Nit(Onr) 00 v’
n 1 1 ONi(Onr) ONit(OnT) 1 9Xa(bo) OXie(6o)
NT 2 alinr) 90 o0 Mi(Bo) 06 00
=51 + 55.

Sy B 0 since Oyr 2 6y. And the proof of S; & 0 is similar to the proof of (A.3.22),
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therefore omitted.
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A.4 Proofs of results in Chapter 6

A.4.1 Proof of Theorem 6.1

Firstly, in Claims A.4.1 and A.4.2 below we will verify Conditions 1 and 2 in Wu and
Shao (2004) respectively.

Claim A.4.1. There ezists an x € RY such that E|x — G(x,u)|, < oo.

Proof. Assume that |x — G(x,u)| for

Li — 9o (FQI(Ui),Zévlme l(uj) )

some ¢ € {1,2,..., N} without loss of generality. Then by Assumption 6.3.1 we have

E ‘X - G(X7 u)’oo

1,1 1
:/ / / i — g, uZ Zw” uj z; | | durdus...duy
0 0 0

1
<z; + 99,(0,0,0) +P1/ Fy (ug)du;
0

1,1 1 N
+ p2 / / Zwi]F (uj)durduy...dun + pax;
0o Jo (R
N
<90,(0,0,0) + (1 4 p1 + p3)zi + p2 Z wijT;,
j=1
where fo (u)du = x since u follows a uniform distribution on (0, 1). By choosing x
such that |x|s < 0o we complete the proof. O

Claim A.4.2. There erists an x' € RY, constants C > 0 and p € (0,1) such that
E }Xt(x) - X,g(x')’00 < Cplx — ¥|oo

for alleRf and t € N.

Proof. According to (6.3.4), for some ¢ € {1,2,..., N}:

E |Xi(x) —Xl(x’)\oo

=K ‘G[[h (X) - GUl (X/) ‘oo
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1 1 ) N .
:/ / / 9o, FJ: (ui),szjFx—j (uj),xi
o Jo Jo ot
N

— 3o, Fw_;l(ui), wijFx_;_l(uj),x' duiduy...duy

1
<p1 /
0

1 p1 1 N
+p2/ / / Zwij F;jl(u]') —Fx_g_l(u]') duidus...duy
0 0 0
]:

Fo(w) — F ' (ug)

T

1
+ p3lzi — i
N
<(p1 + p3)|wi — | + pa Y wijlw; —
j=1

<(p1 + p2 + p3)Ix = X'| .
Assume that E [X;(x) — X¢(x')] . < (p1 + p2 + p3)f|x — X/|c, then we obtain that

E [Xpp1(x) = Xpp1 (x)|

=E ‘GUtJrl (Xt(x)) - GUt+1 (Xt(xl)) ‘oo
=E [E (|Gu,,, (Xi(%)) = Gu,, (Xe(x)| . U1, Ups, .., Un)] (A1)

<E [(p1 + p2 + p3) [Xe(x) = X (x)| ]

=(p1 + p2+ p3)" " x — X'| o
Therefore Claim A.4.2 could be proved by induction. O

Claims A.4.1 and A.4.2 allow us to apply Theorem 2 in Wu and Shao (2004) on
the backward iteration process Z;, hence Theorem 6.1(a) is proved, and {X; : ¢ > 0} is
geometric moment contracting with unique stationary distribution .

To prove (b) we still need to verify that E,|X¢|s < 0o. By (6.3.2) and (6.3.4), there
exists some ¢ € {1,2,..., N} such that

EIX1(%)]oo =E(1X1]o0|Xo = %)
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N

:E 900 Fx_il(uil)a ZwijFx_jl(ujl), ZT; XO =X
7j=1

<90,(0,0,0) + (p1 + p2 + p3)[%]oo-

Notice that for any i = 1,2,...,N, E (F, (u;2)|Xo = x) = E (2:1|Xo = x) since Uy’s
belong to another space that is independent from X. Then there exists some i €

{1,2,..., N} such that

E[X2(%)|o0 =E(|X2/00[X0 = %)

N
E | g6, Fx:ll(uﬂ)aZwing;i(ujQ)?xil Xo=x
=1

<96,(0,0,0) + (p1 + p2 + p3)E[X1 (X)]0o-

Iterative calculation leads to

1— t
E[X, ()]0 < (p1 + p2 + p3)
1—(p1+ p2+p3)

90,(0,0,0) + (p1 + p2 + p3)" %] co-

By Theorem 6.1(a) we have X;(x) Y Too ~ m for all x € X as t — oo. Choosing x

such that x|~ < 00, we have

96,(0,0,0)
(p1+ p2 + p3)

< lim1 <
Er|Xt|oo < hg(lgfth(xﬂoo <7o < 00,

according to Theorem 3.4 in Billingsley (1999).

A.4.2 Proof of results in Section 6.4
Proof of Lemma 6.4.1

In this proof we utilize the property that every Cauchy sequence in the Banach space

Loy, p > 1 converges to a limit within the space. For any i = 1,2,..., N, t € Z and
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s € N, define

(it,s yr  of max{|i — k|, |t =1} <s;
g = (A4.2)

0 otherwise.

Correspondingly, let

7

N
A 0) = go | 3073wl w ) 0) (A.4.3)
j=1

For s > 1, by iteration there exits a function gés) such that

*, (it _(it,8) ~(3.t,
MEZ S)(e) flt Slvzwwyg(zt 81)7 izt 81)(9)
it £,5) ~
=go | Yie-1, D WisYje-1,90 yzlt 527Zwuyft e )(9)
li—j1<s (A.4.4)
_ (s _ Z o
=3y Yit—k, WijYjt—k
|i_j|§3 1<k<s

Claim A.4.3. Foranyi=1,2,...N, t € Z, pi(0) = lims_,o0 uz(zts) (0) is well-defined

m Lgp.

Proof. Fixing an integer m > 0, by Assumption 6.4.4 we have

A 0) = )

1t

<Cy Y wiglyjul +p

s<|i—j|<s+m

Al @) — Al (6)

)

s—1
<p°C1lyip—s—1| + Z pFCy Z Wi | Y —k—1]
k=0 s<]i—j|<s+m
t + 7 '7t7
00 Y wglyaeel + o AT 0) - G (0)
[i—j|<s+m
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-1 s—1
< Rkl ) PC > wilyie—ka

3

k=0 k=0 s<|i—j|<s+m
m—1
s+k
+ E P~ Cs E Wi |Yj t—s—1—k|-
k=0 li—j|<s+m

By Assumption 6.4.2 and Assumption 6.4.3 we have Cy 1= sup yp>1 SUp(; epyy [Vitllap <
oo for some p > 1 and w;; < Cli — j|=¢ for some o > 2. By Lemma A.1.(iii) in Jenish

and Prucha (2009) we obtain that:

(I

Nl(i,t,s+m) (9) _ ﬂf-i’t’s)(ﬁ) Hp
m—1 s—1 s+m—1
<CyChp° (Z pk> +CyCo (Z pk> < > Ch1°‘>
k=0 k=0 h=s

m—1 s+m—1
+ CyCap® (Z pk> ( > Chl_"‘>,
k=0 h=0

which converges to 0 as s — co. Therefore { ﬂg’t’s)(ﬁ) 18> 0} is a Cauchy sequence in

Loy, completing the proof of Claim A.4.3. O

By Claim A.4.3, there exists a function géoo) such that

N
pit(9) = 957 | | vi—rs > wiiyja—n

J=1 E>1

is well-defined in Loy,.

Claim A.4.4. The n-coefficients of {pi(0) : (i,t) € Dy, NT > 1} satisfy
M (r) < G

for some constant C' > 0.

Proof. For any s € N, we take
y,(:l’t’s) =y if and only if max{|i —k|,|[t —1|} #s (A.4.5)
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Correspondingly, let
AN it it,8)
" (0) = 957 | | it z%Zwuy/ i

Then we have

pir(0) = iy (0)

<p*~tCy Yit—s yz(lt’t’i)
s—2
. 7t7
Cs aZPkCQ Yits,t—k—1 — yz(:zl:si) k— 1‘
k=0
B -,
+ p° Loy Z Wij ’yj,t s y](,lt ? :

li—j|<s

By Example 3.2.1 in Chapter 3 we complete the proof.

Proof of Lemma 6.4.2

For any i =1,2,.... N, t € Z and s € N, define

19(0) = B~ (1l (0))y — Ao B (" (8)),

)

(A.4.6)

(A.4.7)

(A.4.8)

where yi(Z’t’s) is defined by (A.4.5) and ug’t’s) (0) is defined by (A.4.6). By Assumption

6.4.5 we have

L (0) — 19)(0)] < C(yarl + 1) |pan(0) — i (0))|.

Then by the result we have in (A.4.7), we can prove that the n-coefficients of {l;:(0) :

(i,t) € Dyp, NT > 1} satisfy

p—4

(r) < Cr? it

for some constant C' > 0.

At last, by Assumption 6.4.2 and the Lipschitz continuity of B~ and Ao B~! in

Assumption 6.4.5, it is easy to verify that supyy>1SUp(; y)epy, SUPsco ||lit(9)||g < 00
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for some p > 4, using Holder’s inequality.

Proof of Lemma 6.4.3

The proof of Lemma 6.4.3 is similar to the proof of Lemma 6.4.1, therefore it is omitted
here.

Proof of Lemma 6.4.4

For any i =1,2,.... N, t € Z and s € N, by (A.4.8) we have

ol (0)

(,t,8)
= BT (00w = (Ao BT (i (60)) Ay (80)

5 (A.4.9)

where yg’t’s) is defined by (A.4.5) and ug o S)(G) is defined by (A.4.6). By Assumption
6.4.9 we have

it(6o) 1" (80)

00 00
|67 00 25— (57 s ) P
ey o 200, gy g 2D,
|0 B o) 22080 0 5y i) g 2tlE0)
o By 0 25800 g 5y 50 00y 2 0] 410
SC‘Mit(QO Mz;ts Hamt (60) |Yit|
Qo) _ dui™ )‘\(s—w'(uz‘-i’“)(eo))]|yit|

+C

%,t,8 81 0
i 60) = s 00)] | 220

Opir(00) _ Oy (6) ()
. Gi || (Ao B (00|

The rest of the proof follows similarly as the proof of Lemma 6.4.2.
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Proof of Lemma 6.4.5

The proof of Lemma 6.4.5 is similar to the proof of Lemma 6.4.1, therefore it is omitted

here.

Proof of Lemma 6.4.6

For any i =1,2,..., N, t € Z and s € N, similar to (A.4.9) we have

15" (60)
0000’
2 (i,t,s)
Tty (is) (irt.5) L1y (its) O i (bo)
= | BT (™ B0l = (Ao BT (™) (00))| i
" (80) O™ (60)

_ it,s it,s — it,s ow;
B Gy o)y — (Ao B (™ (00))] o
(A.4.11)

where yg’t’s) is defined by (A.4.5) and ,ug’t’s)(e) is defined by (A.4.6). By Assumption
9Ly (00) 92 (80)

0000’ 0000’
6.4.13 it is not hard to prove Lemma 6.4.6.

6.4.12 we can decompose similarly as (A.4.10). With Assumption

A.4.3 Proof of Proposition 6.1

We need to verify that the function gy defined in (6.5.2) satisfies Assumption 6.3.1.

That is, the function
90(z,y,2) =w+ oWz + P (@ —r)t + Xy + 82
satisfies condition (6.3.4). For any a,d’,b, V', ¢, ¢ € R, we have
‘gg(a,b, c) — gg(a’,b’,c')‘ < max{a(l),a(l) + 04(2)} |a - a" + A ‘b - b" + 5 }c — c" )

Since

max{a, o + @} £ X+ 5 <1,

by Theorem 6.1 we complete the proof.
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A.4.4 Proof of Proposition 6.2

According to Theorem 6.2, Assumptions 6.4.1 to 6.4.6 are sufficient to obtain con-
sistency. Verifying Assumption 6.4.1 and Assumption 6.4.6 is similar to the proof of
Claims A.2.3 and A.2.6, therefore omitted here. Assumption 6.4.2 and Assumption
6.4.3 follow directly with (NB2), (NB3) and (NB4). Notice that in the case of (6.5.2),

go(a,b,¢) = w+ aWa+a®(a— )T + X+ Be
For any (a,b,c) and (a’,V/,¢") in Sp:

‘99((17 b, C) - 99(a/7 blv C/)’

<max{aW, a®) +a@}a—d'| + b —¥|+ Blc—¢]|.

By (NB1) we can easily verify Assumption 6.4.4. Now it remains to verify Assumption
6.4.5. Firstly, notice that p;(6) > w > 0. By the compactness of © in (NB1), there
exists a constant w* > 0 such that supgecg SUP(; 1yepyp SUPNT>1 Hit(0) > w*. That is,

for all z € S;, > w*. Therefore functions

B~ (2) = log(x) — log(x + K),

Ao B H(z) = Klog(z + K) — K log(K)

are Lipschitz continuous on S,,. Now we have proved the consistency part of Proposition
6.2 with assumptions (NB1) to (NB4).

According to Theorem 6.3, we still need to verify Assumptions 6.4.7 to 6.4.15, in
order to prove the asymptotic normality part. The verification of Assumption 6.4.7 is

omitted here since it is similar to the proof of Claim A.3.7 and Claim A.3.8 if N = o(T).
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As for Assumption 6.4.8, since

1
s (0.1) Yit—1 5 6.1
Hit\U, T Hit—1\0, T

Top | et T

Z;‘V:1 Wi jYjt—1

pig—1(0,7)
that is
1
a
(1) _ +
P (CL, b, c, d) = (CL - T) + Ad,
b
C

for (a,b,c,d) € S;. Then Assumption 6.4.8 is satisfied since 0 < § < 1. We also have

that
O p—1(0,m)
0 0 0 0 — 5
0 0 0 0 Oujt—1(0:r)
2 da(1) 2
07 pit(0,7) o o o o Opiot1(0,7) +ﬁ5 pit—1(0,7)
0000 00(2) 0000’
0 0 0 0 O p—1(0,m)
X
Opg ¢—1(0,7) Opyp1(0,r) Opgq_1(0,m) Opy¢—1(0,r) _Opy ¢ 1(6,7)
w o) 9a(2) X a8

and similarly we can verify Assumption 6.4.11.

As for Assumption 6.4.9, since

d . 1 1
wB W= w
%AOB (x)_igc—l—K’

and z > w* for all x € S, then d%B_l(a:) and %A o B~!(z) are Lipschitz continuous

on S,. The first bound in Assumption 6.4.10 can be proved similarly to (A.2.14) and
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(A.3.10). The other two bounds also hold since

d 1 1 1 1
B (ae(o,m0)| < Seterr

‘dl‘ (12t (6o TO))‘ = | it (B0, 7o) it (0o, 0) +K‘ —w* w4+ K
d K K

4 (00,70))| = < '

dmAOB (1t (6o, 70)) pit(00,70) + K|~ w*+ K

Assumptions 6.4.12 and 6.4.13 can be verified similarly, noticing that

2 1 1
@t W= Gt i
d? . K
e e S ik

Assumption 6.4.14 is supported by (NB1), and it remains to verified Assumption
6.4.15. Firstly notice that
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if either i # j or t # 7(t > 7 without loss of generality).
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By (NB5) we can verify Assumption 6.4.15. Now we complete the proof of Proposition
6.2.
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