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Abstract

In this thesis we explored the consequences of considering generalised non-quantum no-
tions of entanglement in the classical simulation of noisy quantum computers where the
available measurements are restricted. Such noise rates serve as upper bounds to fault
tolerance thresholds. These measurement restrictions come about either through im-
perfection, and/or by design to some limited set. By considering sets of operators that
return positive measurement outcome probabilities for the restricted measurements, one
can construct new single particle state spaces containing quantum and non-quantum
operators. These state spaces can then be used with a modified version of Harrow and
Nielsen’s classical simulation algorithm to efficiently simulate noisy quantum computers
that are incapable of generating generalised entanglement with respect to the new state
spaces.

Through this approach we developed alternative methods of classical simulation, strongly
connected to the study of non-local correlations, in that we constructed noisy quantum
computers capable of performing non-Clifford operations and could generate some forms
of multiparty quantum entanglement, but were classical in that they could be efficiently
classically simulated and could not generate non-local statistics.

We focused on magic state quantum computers (that are limited to only Pauli meas-
urements), with ideal local gates, but noisy control-Pauli Z gates, and calculated the
noise needed to ensure the control-Z gates became incapable of generating generalised
entanglment for a variety of noise models and state space choice, with the aim of finding
an optimal single particle state space requiring the least noise to remove the general-
ised entanglement. The state spaces were required to always return valid measurement
probabilities, this meant they also had had to have octahedral symmetry to ensure local
gates did not take states outside the state space. While we able to find to the optimal
choice for highly imperfect measurements, were we unable to find the optimal in all
cases. Our best candidate state space required less joint depolarising noise at ≈ 56% in
comparison to noise levels of ≈ 67% required if the algorithm used quantum notions of
separability. This suggests that generalised entanglement may offer more insight than
quantum entanglement when discussing the power of Clifford operation based quantum
computers.
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1 Introduction and preliminaries

1.1 Introduction

Quantum computers are information processing devices that appear to be capable of
solving certain computational tasks more efficiently than any currently conceivable
classical computer. Solving a task more efficiently means fewer time and space resources
are required to solve the task [1]. It is important to consider how these resources scale
as the input size of the task grows in size, i.e. how many more steps does it take to
finish and how much more resources are used. For this thesis it is sufficient to consider
a computation to be efficiently solvable by a device if the resources and time required to
complete depend polynomially on the input size. Computational tasks that are hard,
i.e. not efficient, require exponentially more resources when the input size of the task
grows.

There remain many unresolved questions about the power of quantum computation;
for example, what types of computational tasks can be efficiently solved on a quantum
computer, but not on a classical computer? What features make a quantum computer
more powerful? Intuitively, the difficulties related to simulating naturally occurring
quantum mechanical systems on classical computers can help us answer these questions.
Whether classical computers can efficiently simulate ideal quantum computers has yet
to be proven, although it is not believed to be true.

It is widely believed that a key component to the power of quantum computers is
the ability of quantum systems to generate entangled states. A common approach to
building simulations of physical systems on classical computers is to use divide and
conquer techniques by taking a computational task and breaking it down into two
or more smaller sub-problems. The evolution of each of these sub-problems can be
modelled individually, before combining their solutions to obtain a final solution to
the original problem. Such techniques, in general, cannot be used on systems with
entangled states, as such states cannot be split into subsystem states. In a sense
entangled states contain more information as a whole than as a composite of their
constituent sub-systems.

A key concept in discussing quantum computation is the idea of universal quantum
computers (UQC), which will be described in greater detail later in the thesis. For now,
any quantum computer capable of efficiently simulating any other quantum device to
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an arbitrary accuracy can be thought of as being universal. While there exist universal
quantum computers composed of different gate sets, of particular relevance to later
work in the thesis are magic state architectures [2] which we consider as a particular
example of gate model quantum computers.

Quantum computers are prone to errors made during computation. In particular, they
are highly susceptible to the effects of environmental interaction, a phenomena called
decoherence. Such environmental interactions disturb quantum states in the computa-
tion, collapsing the states and destroying information contained in the superpositions
of the states. Such environmental interactions leak information from system leading to
errors and the failure of the computation. It is therefore essential for quantum com-
puters to have a method of controlling and correcting these errors. This came about
with the development of quantum error correcting codes (QECC) [1, 3], which provided
a way of spreading out the information contained within the states of the system by
encoding them onto new states over more qubits, in a similar way to redundancy in
classical error correction. Errors that may have occurred during any stage of compu-
tation could be identified and corrected before decoding the state. QECC therefore
provides a way of protecting stored information within our quantum computer.

In addition to storage errors, the fallibility of the quantum logic gates manipulating
the information in the qubits contributes additional errors to the computation. It
is possible to encode the individual logic gates forming the quantum computer using
the QECC, in such a way that for low enough physical error rates the action of the
encoded gates on the encoded states produces the same decoded output as applying
the errorless gates on the states. Using such techniques failure rates may be reduced in
quantum computation. If this failure rate can be brought sufficiently low to efficiently
simulate quantum computers then the circuit is called fault tolerant [1, 3, 4], and the
quantum device will work effectively despite having non-ideal elementary components.
The upper noise rate for which fault tolerant quantum computation can be achieved is
called the noise threshold. In other words, a noisy quantum computer with error rates
below the noise threshold can efficiently simulate an ideal universal quantum computer.
The value of the noise threshold varies greatly depending on the gate architecture and
noise models, as well as the threshold calculation method.

Instead of investigating whether noisy quantum devices can simulate ideal ones, we
can consider whether the noisy quantum device can be chosen to be so noisy that its
quantum features enabling powerful computation are lost, making it efficiently simu-
lated on a classical computer. The rate of noise at which this happens can be used as
an upper bound to the noise threshold, as the computation would offer no benefit over
classical computation, whereas specific fault tolerance designs give us lower bounds to
the threshold.

The noise threshold provides a way of identifying three regions of quantum/classical
simulatability based on the bounds on the value of the threshold; the first, where the
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noise rate is below the lower bound gives a region where noisy quantum computers
can simulate an idealised universal quantum computer. The second describes an inter-
mediary region where error correction techniques cannot be used to allow for efficient
simulation of a UQC, nor can the noisy quantum system be simulated efficiently by a
classical computer. The third and final region is where the noise rate is greater than
the upper bound, in such a case a classical computer can efficiently simulate the noisy
quantum computer.

In almost all cases the exact values of these lower and upper bounds are unknown and
determining these bounds is a difficult task. This thesis looks to find new values for
the upper threshold bound for a gate architecture with well known fault-tolerant error
correction schemes, for a selection of simple but realistic noise models. Two relevant
methods for classically simulating noisy quantum computers will be outlined. The first
method [5] argues that sufficient noise in the quantum computer takes all of the oper-
ations and states in the noisy system to the restricted classically simulatable Clifford
set [3]. The second method is based on an algorithm by Harrow and Nielsen [6] and
is applicable to systems composed of operations incapable of generating entanglement.
Their classical algorithm can efficiently sample from a probability distribution for the
available measurements arbitrarily close to that from the noisy quantum computer. In
other words the noisy quantum computer in such instances may be efficiently classically
simulatable.

This thesis presents work from the following two papers [7, 8], which considered a mod-
ified version of the Harrow and Nielsen algorithm applied to “magic state architecture”
devices based on gates from the Clifford set. Such a device has an innate restriction on
the available measurements opening up the question of whether non-quantum entan-
glement can strengthen the Harrow and Nielsen algorithm. The work presented instead
takes a cue from generalised probability theories and looks at new sub-divisions of sys-
tem that include non-quantum states, based on the available measurements. These
sub-divisions, or new single particle state spaces, allow for a definition of a new form
of entanglement based on them. We also considered specifying the single particle state
space based on restrictions from fault on input state preparation and/or the final state
measurements.

The initial aim of the work was to show that Harrow and Nielsen algorithm, using
this redefined single particle state space could (a) provide new regimes that could be
efficiently classically simulated, and (b) obtain lower upper threshold bounds. This
objective was achieved for a variety of single particle state spaces based on different
preparation and measurement restrictions. This lead us to search for the single particle
state space(s) giving the optimal bounds on the threshold value. Whilst we were unable
to find the optimal for all kinds of preparation/measurement fault, we were able to
specify a region containing the optimal value. We finally present the single particle
state space corresponding to the best threshold value we were able to attain.
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This thesis will have the following structure:

In the second half of this chapter we will introduce some key concepts in quantum
mechanics and quantum information that will be used later in the thesis.

Chapters (2) and (3) will cover the main background topics; introducing the reader to
quantum error correction, the Gottesman-Knill theorem, the threshold theorem, and
magic state architectures in Chapter (2), and classical simulation of noisy quantum
computers the Harrow and Nielsen algorithm in Chapter (3).

In Chapter (4) we will specify how restricted measurements relate to new single particle
state spaces. The connections between non-locality and separability with respect to our
redefined state space will be discussed for the specific case of the “Bloch cube” state
space, before stating the main technical problem of the research.

Chapter (5) looks at the results from [7] where we determined the threshold values for
state spaces corresponding to the Bloch sphere modified for preparation/measurement
fault, and the Bloch cube state space.

Chapter (6) will present results from [8], relating to our best candidate - the “trun-
cated cube” state space. We will give a give overview of linear optimisation and the
simplex method, before showing how we used linear optimisation, for a specific case,
to determine the threshold value and sufficiency of the result.

In Chapter (7) we will construct necessity bounds based on restrictions to the norm
lengths of “Bloch vectors” of operators in single particle state spaces. We will show
how these bounds lead us to obtain the optimal state space for measurement fault over
a specific parameter value.

Chapter (8) will conclude the thesis.

1.2 Mathematical preliminaries

The remainder of this chapter will introduce some of the key concepts in quantum
mechanics and quantum information relevant to the later discussions in the thesis. The
reader will be assumed to have an understanding of the basic postulates of quantum
mechanics and Dirac notation as found in the literature [1, 9, 10]. The following chapter
will discuss the density matrix description of quantum states, the Bloch sphere repres-
entation of qubit states, POVMs, Kraus operation decompositions, the PPT criterion,
and finally Choi-Jamiołkowski isomorphisms. Readers familiar with these concepts may
wish to skip ahead to Chapter (3).

The following subsections will give a quick recap of linear operators before defining
density operators as well as providing more details on their properties.
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1.2.1 Linear operators on finite Hilbert spaces

Let a d-dimensional quantum system S be associated with a d-dimensional Hilbert
space Hd with the pure states of S given by vectors |ψ〉 ∈ Hd. The inner product of
Hd is written here as 〈φ|ψ〉 ∈ C, and its norm as:

‖ψ‖ =: ‖|ψ〉‖ :=
√
〈ψ|ψ〉 (1.1)

A pure state |ψ〉 can be expressed as a linear combination of d orthonormal basis vectors
{|i〉} of Hd:

|ψ〉 =
d∑
i

ψi |i〉 whereψi = 〈i|ψ〉 ∈ C (1.2)

The dynamics of quantum states of S are given by operators A, defined as linear
mappings A : Hd → Hd, and written as A |ψ〉 =: |Aψ〉. In analogy to vectors, an
operator A has a corresponding dual operator A† given by the adjoint or Hermitian
conjugate of A, characterised by

〈φ|Aψ〉 =
〈
A†φ|ψ

〉
∀ |φ〉 , |ψ〉 ∈ Hd (1.3)

The linear operators acting on Hd form a complex vector space L(Hd). An important
function - the trace of an operator, tr [·], is defined:

tr [A] :=
d∑
i

〈i|A |i〉 =
d∑
i

Aii (1.4)

Here the trace function is independent of the orthonormal basis {|i〉} chosen. Using
the operator trace we define the Hilbert-Schmidt inner product, and Hilbert Schmidt
norm on L(Hd) as:

〈A|B〉HS := tr
[
A†B

]
(1.5)

‖A‖HS =
√

tr [A†A] (1.6)

Just as vectors of the Hilbert space can be expanded in terms of an orthonormal basis
of vectors, operators in L(Hd) can be expanded in terms of an orthonormal basis of
operators using the Hilbert-Schmidt inner product. Given Hd with the basis {|i〉}, an
operator A can be expressed as

A =
d∑
i, j

〈Bij |A〉HS Bij (1.7)

where {Bij = |i〉 〈j|} is a d2-dimensional orthonormal basis in L(Hd) and 〈Bij |A〉HS =
〈i|A |j〉 = Aij .

An important operator that will be used extensively is the identity operator 1 on Hd
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characterised by 1 |ψ〉 = |ψ〉, ∀ |ψ〉 ∈ Hd. Following on from eq. (1.7) the identity
operator has the decomposition

1 =
d∑
i

Bii =
d∑
i

|i〉 〈i| (1.8)

Abstract quantum states and operators on a finite Hilbert space can be represented in
matrix form for some particular choice of orthonormal basis, with the ψi’s in eq. (1.2)
forming elements of a d-dimensional row vector, and the Aij ’s corresponding to the d2

complex matrix elements of a d×d-dimensional matrix. The linear algebra of operators
on Hd translates directly into matrix algebra. We will term density operators in their
matrix representation density matrices.

1.2.2 Density operator representation of quantum states

Pure quantum states are often represented by state vectors |ψ〉 on a Hilbert space, this
description alone cannot characterise quantum systems that are in statistical mixtures
of quantum states. Density operators are an alternative representation of quantum
states that can encode all accessible information about the quantum system. The
density operator representation will be used throughout this thesis.

Let ρ denote a density operator. Suppose S is in a statistical mixture of N pure states
|ψn〉 ∈ Hd, with the likelihood of finding S in the pure state |ψn〉 given by a probability
pn. The density operator ρ for S is then defined as:

ρ =
N∑
n

pn |ψn〉 〈ψn| where
N∑
n

pn = 1 (1.9)

Rather than using density operators directly, we will often use their d× d-dimensional
matrix representation in some chosen basis. A density matrix corresponding to the
density operator in eq. (1.9) has complex matrix elements given as:

ρij =
N∑
n

pn 〈i|ψn〉 〈ψn|j〉 (1.10)

In general any linear operator A on Hd with a corresponding matrix representation is
a valid density operator if for all states |ψ〉 ∈ Hd, we have 〈ψ| ρ |ψ〉 ≥ 0, ρ is Hermitian,
and if tr [ρ] = 1.

An important property of ρ is the purity of ρ given by tr
[
ρ2]. Pure states have a

tr
[
ρ2] = 1, whilst for mixed states tr

[
ρ2] < 1. If ρ = 1

d , ρ is called maximally mixed,
and ρ cannot reveal any information about the quantum system if measured.

For brevity we will often refer to states as being in some quantum state rather than
referring to the density matrix as representing the quantum state.
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The single particle state space or set of all density operators S(Hd), forms a closed
convex set1, whereby any state can be expressed as a convex combination of pure
states - extrema of the convex set2. This means that any state ρ′ ∈ S(Hd) can be
expressed as

ρ′ =
∑
m

λmρm (1.11)

where each λm ∈ [0, 1],
∑
m
λm = 1, and every ρm = |ψm〉 〈ψm| is a pure state in S(Hd)

1.2.3 Expanding density matrices

It is possible to specify a complex d × d dimensional Hermitian matrix (A = A†) by
specifying d2 real numbers. The set R of d × d dimensional Hermitian matrices form
a d2-dimensional vector space over R under matrix addition and real number scalar
multiplication. By fixing the trace to some specific value, the number of real parameters
required to specify a Hermitian matrix is reduced by one, and so the set of traceless
Hermitian matrices form a (d2 − 1) dimensional subspace of the d2 dimensional vector
space.

As with eq. (1.7) a Hermitian matrix in R can be decomposed as a linear sum of d2

basis vectors that are orthonormal to each other with respect to the Hilbert-Schmidt
inner product. A real multiple of the d−dimensional identity taken together with the
d2 − 1 traceless and Hermitian generators of the group SU(d) form an orthonormal
basis for R. A Hermitian matrix A can therefore be split into trace and traceless parts
(see [11]) as:

A = tr [A]
d

1d + 1
2

d2−1∑
i=1

tr [σiA]σi (1.12)

where 1d is the d-dimensional identity matrix, and the matrices σi satisfy the relations:

1. tr [σiσj ] = 2δij
2. σi = σ†i
3. tr [σi] = 0

The density matrix ρ, as a Hermitian matrix can therefore be written as:

ρ = 1
d

1d +
d2−1∑
i=1

riσi

 (1.13)

where r = (r1, r2, . . . , rd2−1)T. The vector r ∈ Rd2−1 will be referred to as a Bloch
vector. The structure of the set of valid density matrices comes as restrictions on

1A set A is said to be convex if for all x1,x2 ∈ A, and λ ∈ [0, 1], the sum λx1 + (1 − λ)x2 ∈ A. The
convex hull of a set of points B is the smallest convex set containing B.

2Another way of saying this is that the set S(Hd) is the convex hull of all pure states |ψ〉 〈ψ|, |ψ〉 ∈ Hd.
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the l2 norm lengths and “directions” on the Bloch vectors, with quantum pure states
corresponding to the density matrices with the longest Bloch vectors equal to 1, and
< 1 for mixed states.

1.2.4 Multiparticle systems and entanglement and PPT criterion

This subsection will briefly introduce multipartite quantum systems and entanglement
before finally describing the PPT criterion as a means to decide whether a pair of
quantum subsystems are entangled or not.

When combining two or more quantum systems, the Hilbert space of the compound
system is given by the tensor product of the constituent parts. The tensor product
Hilbert space HAB of two sub-system Hilbert spaces HA and HB, whose dimensions
need not be the same, can be expressed as:

HAB = HA ⊗HB (1.14)

where the tensor product satisfies scalar multiplication and associativity on both sides.
A state in HAB can be expressed in terms of states in the individual sub-systems . For
a pair of pure states |ψ〉A ∈ HA and|φ〉B ∈ HB there exists a product state in HAB

denoted in the following equivalent ways:

|ψ〉A ⊗ |φ〉B ≡ |ψ〉A |φ〉B ≡ |ψ, φ〉AB (1.15)

Where the sets
{
|i〉A

}
and

{
|j〉B

}
form an orthonormal basis for HA and HB, the set

of products
{
|i, j〉AB

}
form an orthonormal basis for HAB.

Linear operators acting on the tensor product Hilbert space act naturally as follows; for
linear operators A⊗B acting on HAB, the pure product state |ψ〉 =

∑
i
αi |ui〉 ⊗ |vi〉 ∈

HAB, αi ∈ C transforms as follows:

(A⊗B)(
∑
i

αi |ui〉 ⊗ |vi〉) ≡
∑

αiA |ui〉 ⊗B |vi〉 (1.16)

This expression also ensures the linearity of A ⊗ B. The density matrix for a given
compound system state contains not only information about the collective system but
also provides us with a way of describing the sub-systems composing the whole quantum
system. The description of the sub-system is provided by the reduced density operator.
Suppose for systems A and B whose states is described by the density matrix ρAB the
reduced density operator for system A is denoted by:

ρA ≡ trB[ρAB] (1.17)

The operation trB[·] is called the partial trace over system B. For the states |u1〉 , |u2〉 ∈
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HA and |v1〉 , |v2〉 ∈ HB the partial trace operation over B is defined by:

trB[|u1〉 〈u2| ⊗ |v1〉 〈v2|] ≡ |u1〉 〈u2| tr[|v1〉 〈v2|] (1.18)

The trace operation tr[|v1〉 〈v2|] in eq. (1.18) has its usual meaning. The partial trace
operation is defined to be linear in its input. Suppose a composite quantum system is
in the pure state ρAB = %A ⊗ σB, where %A ∈ HA, σB ∈ HB. Taking the partial trace
of ρAB over system B can be calculated as:

trB[ρAB] = trB[%A ⊗ σB] = %Atr[σB] = %A (1.19)

Similarly the partial trace over the system A can be calculated as follows:

trA[ρAB] = trA[%A ⊗ σB] = tr[%A]σB = σB (1.20)

The tensor product of the remaining sub-systems %A and σB intuitively recreates the
product state ρAB. Hence the tensor product of the sub-systems of the state ρAB

contain the full details of the measurement statistics of the composite state ρAB. The
reduced density matrix %A in this example provides the correct measurement statistics
for the system A, and we can identify the density matrix %A corresponding to the state
of the system A and σB for B. The sum of the information about the individual sub-
systems can provide a full description of the whole composite system, but this is not
always the case as we will see in the next example.

Let us consider the pure quantum state - the Bell state |ψ+〉 = 1√
2 (|00〉+ |11〉) with

the following density matrix

ρ = 1
2 (|00〉 〈00|+ |11〉 〈00|+ |00〉 〈11|+ |11〉 〈11|) (1.21)

If we trace out the second system, we will arrive at the reduced density matrix ρ1 = 1

2
- the maximally mixed state. This Bell state is an example of a special type of multi-
particle quantum state that is called an entangled state, as shown in the example these
states in a sense contain more information as a whole than the information gained from
the sub-states together. We call all non-entangled states separable states. Entangled
pure states like this Bell state are defined to be those that cannot be written as products
of individual subsystems. Bipartite separable mixed states are defined as those that
can be written as:

ρAB =
∑
i

piρ
A
i ⊗ ρBi (1.22)

where
∑
i
pi = 1, and the states

{
ρAi

}
and

{
ρBi

}
are density matrices of the respective

sub-systems.

Where
{
σAi ⊗ σBj

}
is some orthonormal tensor product basis we can in general express

a bipartite density matrix as:
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ρ =
∑
ij

pijσ
A
i ⊗ σBj (1.23)

A tool used to determine when a given bipartite product state is entangled or separable
is called the PPT (positive partial transpose) criterion [12]. We will start by defining
the partial transposition over system B as the following:

ρTB =
∑
ij

pijσ
A
i ⊗

(
σBj

)T
(1.24)

The PPT criterion states that if a quantum state ρ is separable then it is necessary
that its partial trace ρTB is a positive operator. In the case where ρ corresponds to a
quantum state in a 2×2 or 2×3 dimensional Hilbert space, then the positivity of ρTB is
also sufficient for the separability of ρ. In cases where ρ is a state in a higher dimensional
Hilbert space the PPT criterion no longer becomes sufficient for separability, that is in
higher dimensions there exist density matrices corresponding to entangled states that
are positive and PPT.

For composite quantum systems composed of more than two sub-systems describing
entanglement becomes a considerably difficult and complex task. We will later discuss
many-particle systems that are entangled across pairs of sub-systems but separable
across others. For example, say we had a four qubit system ρABCD, with sub-systems
denoted A, B, C, D, and the sub-systems A and B, C, andD in two-way entanglement,
the state ρABCD is said to be separable with respect to the AB : CD cut if ρABCD can
be expressed as:

ρABCD =
∑
j

pjρ
AB
j ⊗ ρCDj (1.25)

Where ρAB, and ρCD correspond to sub-systems AB, and CD respectively. Note that
by expressing ρABCD as in eq. (1.25) we are also saying that there is no entanglement
between the sub-systems (AB) and (CD).

1.2.5 Measurements of quantum states

In describing a quantum measurement we require rules describing (a) the measure-
ment statistics obtained from the measurement, (b) a description of the potential post-
measurement state of the system. In situations where the post-measurement state is
of little interest we may use POVM (Positive Operator-Valued Measure) formalism
to analyse the measurement. Suppose a measurement described by the measurement
operator Mm is performed on a quantum system in the state |ψ〉. The probability of
getting an outcome m associated with Mm is then given by the Born rule as:

p(m) = 〈ψ|M †mMm |ψ〉 (1.26)
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We describe the operator Em associated to the outcome m to be an element of the
POVM or POVM element in short. It is defined as:

Em ≡M †mMm (1.27)

The POVM element Em is a positive operator with outcome probabilities given as
p(m) = 〈ψ|Em |ψ〉. The full set of POVM elements are required to satisfy

∑
m
Em =

1 and are sufficient in determining the probabilities for the different measurement
outcomes associated with the measurement. The entire set of operators {Em} is called
the POVM.

In the instance where the measurement performed is described by projection operators
Pm satisfying PmPn = δmnPm, and

∑
m
Pm = 1, the POVM elements associated with

this measurement satisfy:

Em = P †mPm = PmPm = Pm (1.28)

This equality between the measurement operator and POVM element is only true in
this instance.

In the density operator formalism, for a measurement associated with Hermitian oper-
ator Em, with eigenvalue/measurement outcome m, the Born rule becomes:

p(m) = tr [ρEm] (1.29)

1.2.6 Quantum dynamics

In closed quantum systems, states evolve linearly to new states in Hd through unitary
operations U defined as

U †U = UU † = 1 (1.30)

Crucially unitary operators act to preserve the lengths of vectors in Hd, acting to
“rotate” states to new states. In the density operator representation, unitary operators
act in conjugation as:

ρ→ ρ′ = UρU † where ρ, ρ′ ∈ L(Hd) (1.31)

Many realistic quantum systems are not closed, and the evolution of quantum systems
cannot be described purely in terms of unitary operators. The general evolution of a
quantum system transforming the input state ρ to the final state ρ′ can be described
by the quantum operation E , which is:

1. A linear mapping.

2. Satisfies tr[E(ρ)] ≤ 1.
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3. A completely positive mapping. Where complete positivity is defined by

E ⊗ 1n ≥ 0 ∀n ∈ Z+ (1.32)

Here the index n is a positive integer denoting the dimension of the additional particle.
The final transformed state can be normalised and expressed as ρ′ = E(ρ)

tr[E(ρ)] . It can
be shown [9] that an operation E is a valid quantum operation if and only if it can be
decomposed as:

E(ρ) =
∑
i

KiρK
†
i (1.33)

with linear operators Ki, that satisfy the condition:

∑
i

K†iKi ≤ 1 (1.34)

We term the operators Ki Kraus operators and describe the decomposition of the op-
eration as a Kraus decomposition. A key point of this decomposition is that the Kraus
operators for a given quantum operation are not unique - the operation can often be
represented by many different sets of Kraus operations. Any two sets of Kraus operators
for a quantum operation are related via a unitary operation [9, 10].

If the transformation on a quantum system is due to a measurement, we can relate
the measurement operators to the Kraus operators describing the transformation. The
POVM elements of the measurement are related as:

Em = K†mKm (1.35)

If the equality holds in eq. (1.34) then the collection of the Kraus operators
{
Em = K†mKm

}
form a valid POVM.

1.2.7 The Choi-Jamiołkowski Isomorphism

The Choi-Jamiołkowski isomorphism [13, 14] is an isomorphism from the set of trace
preserving quantum operations E mapping from HA to HA′ to bipartite density oper-
ators ρ in the tensor product Hilbert space HA⊗HA′ . The Hilbert spaces HA and HA′
need not be of the same dimension, however will be taken to be so in this thesis. We
will take HA, HA′ to be both of dimension d. We express the Choi-Jamiołkowski state
(CJ state) ρ(E) as:

ρ(E) := (1A ⊗ EA) (|Φ〉 〈Φ|AA) |Φ〉 = 1√
d

d∑
i=1
|ii〉AA (1.36)

The state |Φ〉 is the canonical maximally entangled state for the state space HA⊗HA.
For ρ(E) to be a valid CJ state the reduced state trA[ρ(E)] must be a maximally mixed
state.
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A useful tool to understand the CJ isomorphism is by comparing it to quantum tele-
portation; suppose we have three quantum systems A, B, C, where the systems B and
C share the maximally entangled state |Φ〉 〈Φ| and system A is in the state %. Let
us follow the transformation due to the action of the Bell state measurement POVM
element P+ = |Φ〉 〈Φ| on systems A and B:

A• B•︸ ︷︷ ︸
P+

|Φ〉〈Φ|







C•

The Bell POVM element teleports the system A state % to system C. Now we do a
local trace preserving quantum operation E(·) on C’s particle taking the overall system
state to |Φ〉 〈Φ|AB ⊗ E(%C):

A•
|Φ〉〈Φ|







B• C•︸︷︷︸

E(%)

We can generate CJ state with a method similar to a slightly re-ordered teleportation
procedure. Just as with “normal” teleportation we start with three systems A, B, C
where B and C are in the maximally entangled |Φ〉 〈Φ|BC state, only this time we start
by doing a E(·) on the C state σ:

A• B•
|Φ〉〈Φ|







C•︸︷︷︸
E(σ)

This takes our B − C state to a CJ state:

A• B•
Choi−

Jamio lkowski







C•

The action of the POVM element P+ on A and B now takes us to the final teleportation
state under action of the operation E(·):

A•
|Φ〉〈Φ|







B• C•︸︷︷︸

E(%)

A simple rearrangement of the teleportation protocol described above generates a CJ
state, and provides us insights on how to use the CJ state to arrive at say how the
operation E transforms an input state. We can use this to determine the action of the
CP map for a given CJ state and input state.

Where E is a two particle operation acting on particles A and B mapping from the
Hilbert spaces HA ⊗HB to HA′ ⊗HB′ the corresponding CJ state ρ is defined as:

ρ(EAB) := (1A ⊗ 1B ⊗ EAB) (|Φ〉 〈Φ|AA ⊗ |Φ〉 〈Φ|BB) (1.37)
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2 Quantum computation and error
correction

2.1 The circuit model of quantum computation

Quantum computation is a physically realisable model of computation based on quantum
mechanics. While there are various ways of modelling quantum computation, the model
used throughout this thesis pictures it in terms of quantum circuits - the quantum
analogue to classical boolean logic circuits. Before outlining the main components of
quantum circuits we will first introduce qubits in the next section.

2.1.1 Qubits and the Bloch sphere representation

The basic unit of information in most models of quantum computation is the qubit
[15], the quantum analogue to classical bits. A single qubit is treated as a two-level
quantum system, like say the spin orientation of an electron. A qubit in a pure quantum
state can be specified by four real numbers, and represented by a unit-vector |φ〉 in a
two-dimensional Hilbert space H2 with an orthonormal basis denoted {|0〉 , |1〉} as:

|φ〉 = α |0〉+ β |1〉 where α, β ∈ C (2.1)

As in subsection (1.2.3) we will most often use density matrices to represent qubit
states. The 2-dimensional identity matrix with the three Pauli matrices1 (shown in eq.
(2.2) below) span L(H2):

X :=
(

0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
(2.2)

From the expansion of density matrices into trace and traceless parts as in eq. (1.13)
it is possible to express the qubit density matrices ρ as:

ρ = 1
2 (12 + r · σ) (2.3)

where the Bloch vector r = (rx, ry, rz)T ∈ R3 and σ = (X, Y, Z)T. The set of all single
qubit states - the Bloch sphere Q is defined as follows:

1These matrices are diagonalised in the Pauli Z eigenbasis {|0〉 , |1〉}.
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Figure 2.1: Representation of the Bloch sphere of qubit states. An arbitrary qubit state
ρ represents a point in the sphere, with surface points (as in the figure)
corresponding to pure states and internal sphere point corresponding to
mixed states. The north and south “poles” of the sphere correspond to the
basis states |0〉 and |1〉 and are the Pauli Z eigenstates.

Definition 2.1.1. The Bloch sphere Q

The single qubit state space Q is the closed convex set of density operators ρ on
H2 with Bloch vectors r satisfying 0 ≤ |r| ≤ 1.

Figure (2.1) above shows a geometric representation of the Bloch sphere.

2.1.2 Quantum circuits and universality

Computation on quantum circuits generally involves three stages; preparation of an
input state in a quantum register, performing a sequence of logic gate operations, and
finally measuring the output of the gates to obtain some bit-string as a result.

The quantum register serves as a “working memory” for the quantum device storing a
finite set of qubits that are acted upon by the logic gates forming the quantum circuit.
The Hilbert space of a quantum register storing N qubits corresponds to a tensor
product of each single qubit Hilbert space as H2⊗H2⊗ . . .⊗H2 = H⊗N2 . If |0〉 and |1〉
denote the basis states for some qubit in the register, then the computational basis of
the circuit is the set of register states {|ω〉} where ω is some N -bit string. The single
qubit basis states |0〉 and |1〉 will be taken here to be the Pauli Z eigenstates.

Quantum operations acting as gate operations for the circuit are restricted to unitary
operations using Stinespring’s dilation theorem [16] - as any arbitrary quantum op-
eration E : ρ → E(ρ) can be enacted by performing a unitary operation on a larger
system composed of the quantum register coupled with some ancillary qubits, followed
by projective measurements on just the ancillary qubits [17].
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Gate operations in the quantum circuit correspond to unitary transformations of one
or more of the qubits in the register, and are reversible. It is worth noting that gate
operations may often be applied stochastically, as in the case of adaptive computation
where measurement operations are performed after certain gate operations with the
subsequent gates chosen based on those measurement results.

Measurements on individual qubits in the quantum circuit are always projective meas-
urements in the Pauli-Z eigenbasis {|0〉 , |1〉} resulting in the output of a single classical
bit. Single qubit measurements on different qubits commute. Multi-qubit measure-
ments (like a Bell state measurement) can be performed by first performing a multi-
qubit unitary, followed be a succession of single qubit measurements.

In analogy with classical circuits, quantum circuits can be pictured in terms of quantum
versions of wires and gates with quantum wires serving to carry single qubit state
information from one gate operation to the next in a temporal sense.

Any arbitrary N qubit quantum operation can often be approximated to a desired ac-
curacy by performing sequences of operations from some smaller, restricted elementary
set called a universal set of quantum gates [18]. An example of just such a set is the
standard universal set [19] containing the single qubit Hadamard H, π

8 -gate Pπ
8
, and

the two qubit entangling control-not gate CX:

H = 1√
2

(X + Z) Pπ
8

= ei
π
8 e−i

π
8Z CX =

(
1 0
0 X

)
(2.4)

2.2 Quantum error correction

Physical implementations of quantum computers are difficult due to the fragility of
quantum states and the difficulty in manipulating them. Any undesired change to the
density matrix representing a quantum system is termed quantum noise. Given the
non-local nature of quantum computation, even single qubit errors can quickly spread
throughout the computation accumulating exponentially. Noise has the effect of des-
troying the “quantum-ness” of quantum states, diminishing the believed computational
speed-up of quantum computers over their classical counterparts.

Errors in the computation can occur not only from non-ideal gate implementations,
but also from interactions of the quantum system with the environment it is contained
in. As the coupled quantum system and environment evolve unitarily, potentially non-
unitary evolution takes place on the quantum system. Quantum errors, unlike digital
classical ones are continuous and must undergo some digitisation process to give us the
hope of correcting them.

Given the importance of trying to build quantum devices resistant to the effects of
quantum noise considerable work has been done to develop methods for protecting
quantum computational states against the effects of noise.
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Within this section we will introduce some simple quantum noise models and outline
quantum error correction, before discussing the stabiliser formalism, and concluding
with fault tolerant quantum computing and the threshold theorem.

2.2.1 Some quantum noise models

In this section we will briefly introduce three noise models that will feature later in
this thesis. All three noise models are trace-preserving, completely positive maps and
so have a Kraus decomposition as in section (1.2.6).

Local depolarising

The single qubit depolarising channel takes input states ρ to the following output states:

ρ→ ρ′ = (1− ε)ρ+ ε
1

2 (2.5)

where ε represents some probability. We can rewrite eq. (2.5) as:

ρ′ = 1
2(1 + (1− ε)r︸ ︷︷ ︸

r′

· σ) (2.6)

As we can see, the effect of adding the depolarising noise is to transform the Bloch
vector r to r′. The map takes input states from the Bloch sphere into a smaller sphere
contained within the Bloch sphere.

Suppose we now have quantum noise affecting a two qubit input state, we can imagine
depolarising noise effecting each of the individual qubits as being such a two qubit
noise. We term a noise model like this as local depolarising noise, where each of the
qubit forming the pair independently undergoes depolarising noise at a rate of ε. For
this noise model we have no change to the input state at a rate of (1 − ε)2, one qubit
depolarised but not the other at a rate of ε(1 − ε), or both depolarised at a rate ε2.
We may express two qubit local depolarising noise as a map taking the input state ρAB
(where A and B denote sub-systems) to the following output state:

ρ′AB = (1− ε)2ρAB + ε(1− ε)ρA ⊗
1

2 + ε(1− ε)12 ⊗ ρB + ε21

4 (2.7)

Joint depolarising

An alternative way of thinking about two qubit depolarising noise is to consider such
noise acting on both qubits together rather than on the sub-qubits individually. We
call this joint depolarising noise, its action being to take an input state ρAB to the
following state (where again εis some probability):
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ρ′AB = (1− ε)ρAB + ε
1

4 (2.8)

From section (1.2.3) we see that the output state ρ′AB can be written in terms of a
tensor Pauli-basis as:

ρ′AB = 1
4(1 + (1− ε)rAB︸ ︷︷ ︸

r′AB

· σAB) (2.9)

where rAB is a 15 element real vector, and σAB is a vector formed from the tensor
product of each of the three Pauli matrices. As with eq. (2.6), we see that joint
depolarising noise has the effect scaling non-identity Pauli components by a factor of
(1− ε).

Local dephasing

The final natural noise model we will look at is local dephasing noise. Single qubit
dephasing noise acts with probability ε to perform a phase-flip (Pauli Z) on an input
state ρ. We may express such a transformation as:

ρ→ ρ′ = (1− ε)ρ+ εZρZ (2.10)

The dephasing noise channel takes the Bloch vector of the input state to the transformed
Bloch vector r′ = ((1− 2ε)rx, (1− 2ε)ry, rz)T i.e. the dephasing acts to take input
states from the Bloch sphere to a subset represented by a sphere contracted along the
Z axis - like a Z axis cigar. As with the local depolarising noise case, for a two qubit
input state ρAB we can imagine dephasing noise acting independently on each qubit at
rate ε. Hence the noise has no effect on the input state at a rate of (1− ε)2, one qubit
dephased but not the other at a rate of ε(1− ε), or both dephased at a rate ε2:

ρ′AB = (1− ε)2ρAB + ε(1− ε)(Z ⊗ 1)ρAB(Z ⊗ 1)

+ε(1− ε)(1⊗ Z)ρAB(1⊗ Z) + ε2(Z ⊗ Z)ρAB(Z ⊗ Z) (2.11)

Where ε = 1
2 we say that the output state is completely dephased, corresponding to

states that are mixtures of the Pauli Z eigenstates.

2.2.2 Overview of error correction

Classical digital computation devices need not concern themselves with error correction
as the failure rate of most of the components composing them is on the order of one error
in 1017 operations [1]. Communication devices like modems and optical disc readers on
the other-hand use error-correcting codes to protect the information from the effects of
noise.
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Just as with classical error correcting codes, the idea behind quantum error correction
is that in order to protect information against the effects of noise redundant informa-
tion must be added. By encoding our logical states the information contained in them
is spread over many more physical qubits, and may be repeatedly checked for corrup-
tion by the effects of noise. If any information is corrupted, there should in principle
be enough redundancy that the original information can be retrieved by performing
appropriate recovery and decoding operations on the encoded message.

Adding redundancy to quantum information is less straightforward than in classical
coding due to the No Cloning Theorem [1]; an unknown quantum state cannot be
duplicated. Additionally, as measurements of quantum states can destroy quantum
superpositions damaging our logical states, quantum error correction methods must
detect and correct quantum errors without modifying the quantum state in question
and gaining any information about it.

To protect the quantum information on k qubits we can encode them in n qubits, that
is we will take the 2k k-qubit logical basis states and map them to 2n n-qubit code
basis states by first adding a suitable number of ancilla qubits and then performing
an appropriate unitary encoding operation. Likewise by performing the inverse of the
encoding unitary and discarding the (n−k) ancilla states we can return to our original
computational states.

Any computational state formed of a linear combination of computational basis states
gets mapped to a code state formed from the linear combination of appropriate code
basis states. The space of all code states C hence forms a Hilbert space - a subspace
of the full n qubit tensor product Hilbert space.

Assuming that gate operations are ideal, and that quantum noise affects states in
between gate operations, the cumulative errors affecting the system over some fixed
period of time can be represented as a quantum channel E acting on a density matrix
representing a coded state ρ1...n as:

ρ1...n → ρ̃1...n = E(ρ1...n) =
∑
a

Eaρ1...nE
†
a where

∑
a

E†aEa = 1 (2.12)

The set of Kraus elements {Ea} form a set of errors acting on the system, for example, if
errors were affecting a single qubit then {Ea} could correspond to bit-flip and phase-flip
errors.

If a quantum error is correctable for some quantum code then there exists a recovery
operation - a trace-preserving quantum channel R acting on an erroneous code state
ρ̃1...n as:

ρ̃1...n → R(ρ̃1...n) =
∑
k

Rkρ̃1...nR
†
k where

∑
k

R†kRk = 1 (2.13)
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If R is a recovery operation for the set of errors {Ea} then for the coded state ρ1...n:

(R ◦ E) (ρ1...n) = ρ1...n (2.14)

It is worth noting that not every E and code C will have an associated R. There may
also be situations where a noisy channel E may have a recovery operation R, but a
very close channel E ′ may not. In such cases R may still be able attempt to correct E ′

albeit with some (high) probability of success.

A specific quantum code is typically only suitable for correcting a certain basis of errors
{Ea}. We will now look at the relationship between a given basis of errors and the
basis code states capable of correcting them.

In order to be able to correct two different quantum errors Ea and Eb we must have the
ability to distinguish the action of one error Ea on a basis code state |ψi〉, from the action
of the other error Eb on a different basis code state |ψj〉. For perfect distinguishability
the two different erroneous code states Ea |ψi〉, Eb |ψj〉 must be orthogonal:

〈ψi|E†aEb |ψj〉 = 0 where i 6= j (2.15)

The restrictions from eq. (2.15) alone are not sufficient to specify a code useful for
quantum computation. In order to learn what error has occurred (or if an error has
even occurred) we must perform measurements on the quantum system. These meas-
urements however must not reveal any information about the code state prior to being
“affected” by noise; doing so would damage the superpositions within the quantum
state we wish to protect. By measuring all inner products 〈ψi|E†aEb |ψi〉 for all combin-
ations of Ea and Eb (including where Ea = 1, i.e. no error) we may learn exactly what
error has effected our system. In order for us to learn nothing about the uncorrupted
code state these measurements must all be equal for all basis code states:

〈ψi|E†aEb |ψi〉 = 〈ψj |E†aEb |ψj〉 (2.16)

The literature [20, 21, 22] provides the full quantum error correction code restriction
as:

〈ψi|E†aEb |ψj〉 = αabδij (2.17)

where |ψi〉, and |ψj〉 run though all basis code states, Ea and Eb over all basis errors
(including the identity) and αab is some complex number, independent of i and j, that
forms an element of a positive matrix α. As αab is independent of i and j, we see that
eq. (2.16) is satisfied for all |ψi〉, and |ψj〉. The proof that a quantum code satisfying
eq. (2.17) for a given set of errors {Ea} is both necessary and sufficient for the existence
of R capable of correcting {Ea} can be found in [23].
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Crucially, the ability to correct errors from the finite set {Ea} means that we can then
correct for any error with Kraus error elements formed from the linear combination
of {Ea}. Any error channel E acting only on a single qubit has Kraus error elements
Ea that can be expressed as a linear combination of the identity matrix 1 and the
Pauli X, Y , Z matrices. We therefore only need R to be able to detect and reverse the
action of the 3n individual qubit Pauli operators acting under conjugation to correct for
any single qubit error. Naturally this scheme extends to systems of higher dimension,
however it becomes progressively more complex with error syndrome measurements.

An example of a very basic error correcting code can be found in section (9.1) in the
appendix.

2.2.3 Introduction to the stabiliser formalism

One of the most important results to come out of quantum error correction is the
stabiliser formalism [3]. The formalism considers n-qubit systems where the set of
states and operations is constrained. This restricted set - the stabiliser states can be
efficiently specified in terms of a number of parameters that is polynomial in n. Despite
having this compact description such states can still exhibit multiparticle entanglement,
providing us valuable insights into the relationship between classical and quantum
computation.

The stabiliser formalism also provides us a way of compactly describing an important
class of quantum error correcting codes called stabiliser codes. Within this section
we will introduce the stabiliser formalism, outlining stabiliser codes, before leading
into concatenated coding for its relevance to fault-tolerant quantum computation. The
ideas introduced from the stabiliser formalism will be important when discussing the
Gottesman-Knill theorem and magic state architectures later in the chapter.

2.2.3.1 The Pauli group and stabiliser states

An operator Si is said to stabilise a state |ψ〉 if:

Si |ψ〉 = |ψ〉 (2.18)

In other words, the state |ψ〉 is an eigenstate of Si with eigenvalue of +1. By specifying
a set of operators S and looking at their mutually stabilised states we can specify an
associated subspace VS of the Hilbert space. A particular state in VS may be uniquely
stabilised and therefore specified by a large enough set of operators in S (up to some
global phase). In such cases it is often more efficient to work with a set of stabilising
operators rather than a state.

21



The stabiliser states presented in the literature crucial to fault tolerant quantum com-
puting are those specified from considering operators from the Pauli Group.

The single qubit Pauli group G1 is the following,

G1 := {±1, ±X, ±Y, ±Z, ±i1, ±iX, ±iY, ±iZ} (2.19)

and the Pauli group Gn on n qubits is:

Gn := G⊗n1 (2.20)

The weight of an element M of Gn is defined as the number of qubits on which M

acts as a non-identity operator. The 2n dimensional matrix representation of the Pauli
group Gn has the following properties:

1. For each M ∈ Gn, M2 = ±1⊗n.

2. Elements M ∈ Gn satisfying M2 = 1
⊗n are hermitian, and those satisfying M2 =

−1⊗n are anti-hermitian.

3. Any pair of elements M, N ∈ Gn, commute (MN = NM) or anti-commute
(MN = −NM).

It is possible to specify every operator in a Pauli group by considering group products
of a subset of operators. In general, a subset of elements {T1, T2, ..., Tr}, r ≤ n, of a
group T is said to generate T if every element of T can be written as a group product of
elements from the subset and their inverses. Each element of {T1, T2, ..., Tr} is called
a generator and T may be denoted as 〈T1, T2, ..., Tr〉. A group of cardinality |T | has
at most log2 (|T |) generators [1, 3].

The literature [1, 3] defines stabiliser groups S as:

Definition 2.2.1. The n qubit stabiliser group.

Suppose we have a system of n qubits. A stabiliser group S is an abelian
subgroup of Gn that does not contain the elements −1⊗n and ±i1⊗n.

Any vector stabilised by the generators of a stabiliser group would also be stabilised
by any products of generators. A stabiliser group S can be specified in terms of its
smallest generating subgroup.

Given a stabiliser group S, its associated stabiliser subspace VS is:
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Definition 2.2.2. The n qubit stabiliser subspace.

Suppose we have a stabiliser group S = 〈S1, S2, ..., Sr〉 acting on n qubits. We
will define the stabiliser subspace VS associated to S as the set of states
|ψ〉 ∈ H⊗n that satisfy

Si |ψ〉 = |ψ〉 , ∀Si ∈ S (2.21)

If S has minimally r generators then VS has dimension 2n−r.

Stabiliser subspaces are useful in that we only need to specify a small set of stabiliser
group generators to represent the set of states contained in the subspace. A straight-
forward example of a stabiliser group and its associated stabiliser subspace is that for
three qubits found in section (9.2) in the appendix.

2.2.3.2 Unitary evolution in the stabiliser formalism

Having looked at stabiliser subspaces we will now look at their evolution under unitary
operations. Suppose we apply a unitary operation U to a state within the stabiliser
subspace VS , associated with the stabiliser set S. Let |ψ〉 ∈ VS , then for any element
Si of S we have:

U |ψ〉 = USi |ψ〉 =
(
USiU

†
)
U |ψ〉 (2.22)

The transformed state U |ψ〉 is therefore stabilised by USiU †, that is it now stabilised
by the group S ′ =

〈
US1U

†, US2U
†, ..., USrU

†
〉
, with an associated “transformed”

stabiliser subspace VS′ = {U |ψ〉 | |ψ〉 ∈ VS}. We see that the evolution of the stabiliser
states can be computed purely in terms of the evolution of the stabiliser generators of
S.

An important set of operators associated to the Pauli group is its normaliser group.
These operators acting under conjugation, map Pauli group elements to Pauli group
elements. In particular the normaliser to Gn can be generated by the n qubit Clifford
group:

Cn :=
〈
Hi, Pπ

2 i
, CXij

〉
(2.23)

where the indices i and j denote the qubits the operators act on, with identities on all
others. Readers should recall from subsection (2.1.2), the Hadamard H and control-not
CX gates, with the phase gate Pπ

2
is given as:

Pπ
2

= ei
π
2 e−i

π
2Z (2.24)

As Clifford operators are in the normaliser to Gn, the action of a Clifford operator on a
stabiliser state requires us to simply update the generators of the associated stabiliser
group, needing at most n operations to perform.

We conclude this section with the following theorem from the literature [3]:
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Theorem 2.2.3. Normaliser from Clifford generators.

Suppose U is in the normaliser to Gn, then U may be composed from the product
of O(n2) Clifford group generators (up to some global phase).

We have that computing any n-qubit quantum circuit preparing stabiliser states and
involving only operations from the associated Clifford group can be done polynomially
in n. Measurement in the stabiliser formalism is discussed in section (9.3) in the
appendix.

2.2.3.3 The Gottesman-Knill theorem

An important result of the stabiliser formalism relevant to this thesis is the Gottesman-
Knill theorem [1, 24]. Let us suppose we have an n -qubit quantum computer capable
of adaptive computation only involving operations from the following list:

(2.25)1. The ability to prepare qubits in the Pauli Z eigenstate |0〉.

2. Can probabilistically apply any unitary operations from the Clifford group Cn.

3. Have the ability to measure an eigenvalue of a Pauli operator on any qubit.

By adaptive computation we mean that the description of an operator in the computa-
tion to be performed at step t, may be dependent on all of the measurement outcomes
in steps 1, . . . , t− 1. The Gottesman-Knill theorem states that quantum computation
restricted to only the above operations may be efficiently classically simulated on a
classical computer.

We can see this result as follows: In the previous subsections we observed that a
stabiliser state can be specified compactly with at most n-stabiliser generators. As we
are restricted to only Clifford operators only, each Clifford gate operation requires us to
simply update the set of generators. As mentioned in section (9.3), Pauli measurements
of stabiliser states can also be performed efficiently.

Interestingly, stabiliser circuits based on the operations listed in eq. (2.25) can generate
bipartite maximally entangled states and multi-partite entangled states despite being
classically simulatable [25]. It is important to note that stabiliser circuits alone cannot
perform universal quantum computation, unless the operations in eq. (2.25) addition-
ally include the ability to perform a single qubit unitary that cannot be generated by
Clifford operations [26]. The ability to take Clifford operations to a full universal set
is explored further with magic state architectures in section (2.3).

2.2.3.4 Stabiliser codes and error correction

Given a stabiliser group S, we can define an associated stabiliser subspace VS that can
be used as our coding subspace for some quantum error correcting code - such codes are
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called stabiliser codes. Specifically, for a stabiliser S generated by r elements we can use
its subspace VS to encode k = n− r logical qubits onto n code qubits. The normaliser
is important in the context of stabiliser codes as the elements of the normaliser of S,
not contained in S, act on encoded states as Pauli operators would on logical states.

In example (9.2) in the appendix it is straightforward to show that set of errors that
satisfy the quantum error correction conditions in eq. (2.17) for the specified stabiliser
subspace are the bit-flip errors from section (9.1) in the appendix.

2.2.4 Introduction to fault tolerant quantum computing

In our discussion so far we have only looked at instances where qubit dynamics, prepar-
ation, and measurements can be performed perfectly, with errors only occurring during
“rest” intervals between operations. Physical implementations of quantum computers
must also account for errors that can occur during such dynamical processes, including
during error correction recovery procedures.

Fault tolerant quantum computing (FTQC) [27, 28, 29] shows that arbitrarily accurate
quantum computation can be achieved despite the presence of faulty circuit elements
provided that the quantum noise in the system is below some noise threshold [30,
28]. Within this section we will introduce the basic ideas in fault tolerant quantum
computing, and show how we can arrive at the noise threshold for some restricted
setting.

The essential idea in FTQC is that a computational circuit can be designed to use
faulty physical components in a particular way, and then use error correction to suppress
errors multiplying and propagating throughout the subsequent computation. Quantum
computation circuits in particular are susceptible to multiplying errors through the use
of multiparticle gates. For example, an error on a control qubit of a CX gate may be
propagated to the target qubit too, therefore the single qubit error can become a two
qubit error.

Computation can be made fault tolerant by performing encoded versions of operations
on encoded qubits rather than decoding the qubits prior to performing the operation.
That is, each element of the intended computation is replaced with a fault tolerant
circuit simulating the action of the intended computation and suppressing error accu-
mulation.

We will say that a computational circuit element is fault tolerant if, for ≤ t component
failures, at most t errors are in the output of each logical qubit block outputted from
the circuit element.

This definition is reliant on the error-correcting code used in the computation. For
example, if our code could protect against two qubit errors then the definition is taken
to require only two qubit errors on each logical qubit outputted. In order to be able
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to perform fault tolerant computation we must be able to perform fault-tolerant error
correction, encoded logical gate operations, measurement, and preparation of encoded
states.

The key result from fault tolerant quantum computing is the threshold theorem intro-
duced in the next subsection.

2.2.5 The fault tolerance threshold

Theorem 2.2.4. Threshold theorem.

Suppose that the error rate of a gate-component forming a quantum circuit is
some probability p. There exists some constant pth > 0, such that if p < pth then
the quantum circuit can be implemented by said faulty components to an
accuracy ε, with a polylogarithmic overhead, and arbitrarily long quantum
computation is possible.

Here we have made assumptions on the nature of the components forming the logical
gates (i.e.. the gate architecture used) and on how they fail, namely we have considered
a particular noise model effecting them. The threshold value for a given quantum
system is dependent on a variety of factors including the gate architecture used, the
error correction code used and the component level error corrected.

An error correction code like that described in section (9.1) in the appendix can protect
against single qubit errors, but we will have failures where two or more errors occur
simultaneously. Well designed encoded gates should output encoded blocks of qubits
that if decoded would only contain errors that scale as O(p2) [1].

An important concept in fault tolerant quantum computation is the idea of concatenated
codes. It is possible to reduce the effective error rate in the quantum computation
further, by recursively applying the fault tolerant scheme in constructing a hierarchy
of quantum circuits. For example if a single qubit is encoded on n qubits, then these
n qubits may be encoded again on n2 qubits. If the effective error rate from one level
of coding is p, then by encoding it again the effective error rate can be reduced to cp2.
This repeat encoding can be done ad-infinitum.

From the proof of the threshold theorem in the literature [1] we see that if the individual
gate noise is less than pth, then for fault tolerant computation of length T , we need on
the order of log2(log2(T )) levels of concatenation acting on a circuit size of the order
of polylog(T ).
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2.3 Magic state based gate architectures

Inspired by results from fault-tolerant quantum computing that showed that operat-
ors from the Clifford group can be implemented fault-tolerantly2, Bravyi and Kitaev
presented in [2] a universal quantum computation gate architecture based on operations
from the Clifford group. More specifically their architecture consists of operations from
the following list:

1. The ability to perform stabiliser operations from list in eq. (2.25).

2. Can prepare ancillary qubits in a mixed state ρ that lies outside of the convex
hull of Pauli eigenstates.

The idea behind these choices of operations is that while we can perform the operations
from eq. (2.25) fault tolerantly using stabiliser codes, the ancilla state ρ is taken to be
mixed from imperfections in the preparation procedure, i.e. from environmental noise,
etc. When preparing n mixed ancilla qubits it is required that all of the ancillary qubits
are independent from each other i.e. we can obtain the state ρ⊗n.

Bravyi and Kitaev in [2] looked to find the ancilla states ρ which in addition to the
operations in eq. (2.25) could be used to efficiently simulate universal quantum com-
putation.

As we know from section (2.2.3.3), we may, with suitable weighted dice rolls prepare
any state within a “Bloch octahedron” using the set of operations in eq. (2.25). When
ρ is within the Bloch octahedron our model is also classically efficiently simulatable,
and hence accepted to be incapable of UQC. As it is conjectured that a quantum
computer capable of universal computation cannot be efficiently classically simulated,
it was argued that ρ must lie outside the octahedron in order to perform quantum
computing. While not proving that universal quantum computation is simulatable for
all states ρ outside the Bloch octahedrons, Bravyi and Kitaev showed that they could
achieve universality for a large set of states using two schemes based on magic state
distillation. The magic states are defined as:

Definition 2.3.1. The T-type and H-type magic states

Consider the following two pure quantum states |T 〉, |H〉:

|T 〉 〈T | = 1
2

{
1 + 1√

3
(X + Y + Z)

}
|H〉 〈H| = 1

2

{
1 + 1√

2
(X + Z)

}
(2.26)

The magic states are defined as the set of eight T-type quantum pure states
{U |T 〉 , U ∈ C1}, and the twelve H-type quantum pure states {U |H〉 , U ∈ C1},
where C1 is the single qubit Clifford group.

2Using concatenated methods described in section (2.2.4).
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The magic states have two roles in the model simulating a universal quantum computer.
The first is that it is possible to obtain a magic state from multiple copies of the
mixed state ρ by using operations from eq. (2.25) provided that the maximum fidelity3

between ρ and all the magic states are above certain thresholds. Secondly that the set
of operations in eq. (2.25) together with the ability to supply ideal magic states allows
us to implement non-Clifford single qubit unitaries V through a process of (potentially
repeated) magic state preparation, and Clifford measurements/gate operations. The
set of Clifford operators together with V form a universal set of gates. The exact
technical details of how operators V are obtained from a supply of ρ are beyond the
scope of this thesis and can be found in [2].

2.4 Summary of Chapter (2)

In this chapter we defined the Bloch sphere single particle state space Q and gave an
overview of quantum circuits before introducing the idea of a universal set of quantum
gates. We then gave an introduction to quantum error correction, the stabiliser formal-
ism and error correction within the stabiliser formalism, leading to the Gottesman-Knill
theorem. The next section gave a brief overview of fault tolerant quantum computing
and introduced the threshold theorem. The chapter concluded with an introduction to
magic state architecture based quantum computers for their relevance to the research
presented later in the thesis.

3The maximum fidelity of ρ and a T , or H-type magic state labelled |m〉 is defined as: Fm(ρ) ≡
max
U∈C1

√
〈m|U†ρU |m〉.
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3 Classical simulation of noisy quantum
computers

3.1 Bounds on the noise threshold

The threshold theorem provides us a goal to work towards for a physical realisation of
a quantum computer. Wide efforts have therefore been made to determine values of
the threshold pth for a variety of different quantum computing architectures, and noise
models. Calculating precise values of the threshold has proven to be extremely difficult,
and so in many cases only estimates for the threshold value have been attained. The
focus has therefore been on tightening the ranges of these noise values.

We can imagine the computational capabilities of noisy quantum computing to fall
within three regions based on the error rate ρnoi in the computing device; A lower
bound region of noise rates satisfying pnoi ≤ plow, an upper bound region pupp ≤ pnoi,
and finally an intermediate region plow < pnoi < pupp.

In the following sections we will provide the interpretations of these noise regions and
state current best estimates of the threshold bound values.

3.2 Lower bound results

The lower noise threshold value plow indicates the maximum error rate at which a
particular fault tolerant error correction scheme can be used to allow a noisy quantum
computer to efficiently simulate an ideal universal quantum computer.

Values for plow have been calculated using three methodologies, each giving significantly
different values from the others:

Numerical simulation methods often give the highest valued lower thresholds. They
typically work by randomly applying simple errors to simulations of noisy quantum
computers with error correction, and observing how resilient the simulation is to these
errors.

The second method looks to rigorously prove that a specific quantum circuit, designed
under some error correction scheme, is fault tolerant for a given error rate. This method
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gives the lowest, most conservative lower bound threshold values, magnitudes lower
than those obtained from numerical methods.

The final method is to estimate threshold values analytically under certain assumptions
that are speculated to have negligible effects. This method yields intermediate values
for the threshold between the rigorous calculations and numerical simulation values.

As mentioned in the previous chapter, computed threshold values highly depend on the
chosen error correcting code, available fault-tolerant circuitry, and method of analysis.
Current lower threshold values are as follows:

For concatenated 7-qubit codes, various numerical estimates place the threshold value
on the magnitude of 10−3 [31]. Lower bounds for such codes have been rigorously
proved to be 2.73 × 10−5 [32, 33]. Better values for the lower threshold bound have
been rigorously proved for 25-qubit Bacon-Shor code at 1.9× 10−4 [34].

An alternative approach to simply considering error correcting codes is to prepare
complex ancilla states in lieu of gates on the data qubits. Erroneous ancilla states can
easily be discarded, but achieving low error rates throughout the computation can be
prohibitively expensive in terms of resources [35, 36]. Numerical simulations calculate
the lower threshold for such systems at around 10−2, with a rigorous analytical proof
placing the value to be around 10−3 [37, 38].

Advances have been made using surface codes which operate as stabiliser codes con-
structed from a two dimensional lattice of physical qubits acting on nearest neighbours
(or other geometries of physical qubits). Such topological quantum computers are in-
herently tolerant to the formation of local errors [39]. Error correction procedures based
on surface codes have achieved lower threshold values of approximately 10−2 [40], with
a better value of 1.85× 10−1 obtained when the error model considered is restricted to
depolarising noise [41] (see section (2.2.1)).

The following table summarises the lower threshold values for approaches highlighted:

Approach Method Threshold value
Concatenated 7-qubit codes Numerical 10−3

Concatenated 7-qubit codes Analytical 2.73× 10−5

25-qubit Bacon-Shor code Analytical 1.9× 10−4

Ancilla state preparation Numerical 10−2

Ancilla state preparation Analytical 10−3

Surface codes Numerical 10−2

Surface codes (Depolarising noise) Numerical 1.85× 10−1 (3.1)
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3.3 Upper bound results

Whilst the majority of effort has been put towards calculating better lower bounds,
steps have also been taken towards calculating upper bound values. The central aim of
the work presented in this thesis is to find new better upper bounds to the threshold.

The upper noise threshold value pupp indicates the largest possible noise value at which
we believe we can get worthwhile computation from a noisy quantum computer. Note
that by worthwhile we do not mean full universal quantum computation but rather
something lesser that is still better than classical computation.

The methodology for determining upper bound values, most relevant to this thesis looks
at when quantum circuits built around specific gate architectures and affected only by
certain noise models can be efficiently simulated by some classical algorithm. This is
based on the view that quantum computers are capable of computational tasks beyond
classical computers. If quantum computation is simulatable on a classical computer
then there is no need to construct a quantum computer in the first place.

We will now outline a couple of approaches that show how various restricted quantum
systems can be efficiently simulated by classical algorithms.

Stabiliser formalism based methods (as with Virmani et al. in [42]) show that noisy
quantum systems with noise rates above the upper threshold bound enter regimes that
can use the Gottesman-Knill theorem (see section (2.2.3.3)).

An important result following the approach in [42] is that by Buhrman et al. in [43],
where a restricted model was considered composed of perfect Clifford operations and
access to an arbitrary non-Clifford single qubit gate subject to depolarising noise. As
already mentioned such a set of gates are universal for quantum computation.

It was shown that at depolarising noise rates of ≈ 0.453 any arbitrary single qubit gate
could be expressed as a convex sum of single qubit Clifford gates and therefore follow
the Gottesman-Knill result. Following on from this Plenio et al [5] again considered
a system composed of Clifford and a non-Clifford resource. Here noise was added
to Clifford resources and then commuted around to specific Clifford and non-Clifford
resources. A variety of noise models were considered yielding noise rates of the range
of approximately 0.0301 to 0.2605.

The most relevant method for this thesis is that using the Harrow and Nielsen al-
gorithm [6], which will be outlined in more detail in section (3.5). Their approach
considers quantum devices composed of single qubit gates and a restricted set of two
qubit gates. If a quantum device is affected by sufficient gate noise then the two qubit
gates forming the device lose their ability to generate quantum entanglement, and the
enter the specified restricted set which can be efficiently simulated using the algorithm.
In [6], they consider the CX gate as the two qubit gate, and show that probabilistic
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depolarising noise acting immediately on both output qubits at a rate of ≈ 0.74 is suf-
ficient to ensure the noisy CX gate can’t generate entanglement. In other words they
show that ≈ 0.74 is an upper bound value for the threshold. Under a more adversarial
noise model this rate is lowered to 0.5. Virmani et al. in [42] sharpen this result to
≈ 0.67 joint depolarising noise acting on the CX gate.

3.4 Classical simulations of quantum systems

3.4.1 Types of classical simulation

There has been other interest in classically simulating quantum computers outside of
determining the upper threshold bound values. In this section we will introduce two
types of classical simulation specified by Jozsa et al. [44, 45, 46] that some of the key
results in the following sections fit into.

Definition 3.4.1. Strong efficient classical simulation

Suppose we have a quantum circuit C acting on a register of n qubits and
consisting of at most poly(n) gates acting on any individual qubit. Let Λ denote
the set of input states, and Π the set of output observables.

C is strongly efficiently simulatable with respect to Λ and Π if we have a
deterministic classical algorithm that can compute all expectation values
tr [C(ρ)π] to an accuracy of m digits within poly(n,m) time, for every ρ ∈ Λ
and π ∈ Π.

This notion of simulation can be made weaker by lessening the accuracy required, for
example, rather than using an accuracy ofm, a weaker notion of simulation may require
computation of expectation values to an accuracy of log(m) digits.

The second type of simulation is defined as the following:

Definition 3.4.2. Weak efficient classical simulation

A quantum circuit C acting on a register of n qubits is weakly efficiently
simulatable if we have a probabilistic classical algorithm that can sample once
from a probability distribution suitably close to the output probability
distribution in poly(n) time.

As we are sampling only once at the end, this simulation type is more “natural” in that
it mimics quantum measurements in a lab situation. The ability to be able to strongly
simulate a system, implies that we can also weakly simulate it [47], but there may exist
quantum circuits that can only be weakly simulated and not strongly. As a weaker
property, it may be more straightforward to consider weak simulation over strong.
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3.4.2 Other examples of classical simulation

Within the literature the majority of simulation schemes fit into the strong simulation
definition.

Looking back at the two schemes already mentioned; as it is easy and efficient to track
the evolution of states and calculate all marginal probability distributions within the
stabiliser formalism, the Gottesman-Knill theorem corresponds to a strong simulation.

The Harrow and Nielsen algorithm is based around repeated sampling during the evol-
ution and measurement of states we therefore have a weak simulation.

Some other notable methods of classical simulation that will be worth briefly mentioned
here are Matchgate Circuits [48, 44], Matrix Product States [49, 50], and methods using
the Tensor Network formalism [49, 51]. It is worth noting that unlike those mentioned
before, all these methods consider the topology of the qubits.

We will begin by first defining matchgates:

Definition 3.4.3. Matchgates and matchgate circuits

A matchgate G is a two qubit unitary gate of the form:

G =


a 0 0 b

0 w x 0
0 y z 0
c 0 0 d

 where

[
a b

c d

]
,

[
w x

y z

]
∈ SU(2) (3.2)

Matchgate circuits are quantum circuits composed of nearest neighbour
matchgates.

As with the Gottesman-Knill theorem, matchgates provide a compact way of describing
certain states and following their evolution through the quantum circuit in an efficient
way. A result proven by Valiant [48] shows that we can perform a strong classical
simulation of poly-sized matchgates circuits acting only on nearest neighbour qubits for
any arbitrary input. Just as with Clifford circuits and the Gottesman-Knill theorem,
matchgate circuits can generate entanglement whilst also being efficiently classically
simulatable [52]. If the nearest neighbour restriction is relaxed so that the matchgates
act on nearest neighbour and next nearest neighbour qubits, then the matchgate circuit
is can efficiently perform universal quantum computation.

Within the Matrix Product formalism n-qubit quantum states are be represented
uniquely by a set of n-matrices. The idea being that the number of variables required
to specify the n-matrices is fewer than the 2n independent variables that would be
required to specify an arbitrary state. The sizes of the matrices is dependent only the
maximal Schmidt rank over the possible partitions of the n qubits, and if the rank is
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polynomial in n, then performing single qubit gates and measurements, and two qubit
gates on nearest neighbour qubits can be simulated efficiently.

Matrix product states are an example of the broader class of tensor network states.
While a detailed description is beyond the scope of this thesis, in summary within
the tensor network formalism quantum states and operators are represented by sets of
tensors, with computational steps corresponding to contractions of these tensors. Just
as with matrix product states, we may reduce the number of parameters we need to
represent states by representing them with tensors with smaller ranks, reflecting the
expected entanglement properties of states. If the number of parameters describing the
these tensors are sufficiently small, then we have an efficient description of the state.
By describing states using tensors, the computation of a quantum circuit has a can be
mapped to a graph, with vertices representing gate operations and edges corresponding
to the individual qubit “wires” connecting gates. The action of a circuit can then be
determined by contracting the vertices in the network.

3.5 The Harrow and Nielsen algorithm

In this section we will go into detail about the Harrow and Nielsen algorithm [6]
(shortened to H&N), as the algorithm we consider in our research is an application
of the H&N algorithm in a modified context. We will begin by defining the set of oper-
ations the algorithm is limited to. In brief, the H&N algorithm shows that gate model
quantum computers without entanglement can be efficiently simulated classically.

3.5.1 The separability preserving operations and subsets

The separability preserving (SP) operations are a wide class of two qubit quantum
operations that are defined to have separable output states for separable input. Har-
row and Nielsen [6] state that there is currently no known simple characterisation of
separability preserving operations, which is why they chose to instead study separable
operations, and, SWAP + separable operations - sub-sets of the separability preserving
operations that have stronger properties than separability preserving operations [6].
It is important to note that the set of SP operations are convex and closed under
composition.

3.5.1.1 Characterising separable operations

In this subsection we will look at the properties of separable operations. They were
introduced in [53, 54], and have the following definition:
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Definition 3.5.1. Separable Operations

Let E correspond to a completely positive, trace-preserving map acting on a
composite quantum system composed of two subsystems labelled A and B. E is
said to be a separable operation if it has a Kraus representation as:

E(ρ) =
∑
i

(Ai ⊗Bi)ρ(A†i ⊗B
†
i ) (3.3)

By a SWAP + separable operation, we mean a two qubit operation, consisting of first
swapping the two qubits then performing a separable operation on the two swapped
qubits.

The complete set of separable operations plus SWAP + separable operations do not
form a complete set of SP operations [42]. The set of SWAP + separable operations
is distinct from the set of only separable operations, as SWAP + separable operations
are capable of generating entanglement with the aid of local ancillary systems.

We will now discuss the properties of separable operations by looking at their associ-
ated Choi-Jamiołkowski (CJ) state as the properties of the operations translate into
properties of the CJ states. As in section (1.2.4), we will follow the convention used by
Harrow and Nielsen when describing separability of certain sub-systems as cuts across
those specific subsystems.

Suppose we have a quantum system composed of the sub-systems RA, A, B, RB, where
RA, RB are copies of A and B respectively. The subsystems A and B have Hilbert space
dimensions dA and dB. The canonical, maximally entangled states of the subsystems
RAA , and BRB are:

|α〉 = 1√
dA

∑
i

|iRAiA〉 and |β〉 = 1√
dB

∑
i

|iBiRB 〉 (3.4)

Let ρE denote the CJ state associated to the quantum operation EAB acting only on
the subsystems A and B:

ρE = (1RA ⊗ EAB ⊗ 1RB ) (|α〉 〈α| ⊗ |β〉 〈β|) (3.5)

For ρE to be a valid CJ state the reduced state (ρE)RARB must be a maximally mixed
state of RARB. A straightforward characterisation of separable operators is presented
in the following theorem (see [55]):
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Theorem 3.5.2. Operator-separability theorem

Suppose we have a composite quantum system composed of the sub-systems RA,
A, B, RB. Let the operation EAB (as in eq. (3.5)) be trace-preserving. EAB is
separable across the RAA:BRB cut, if and only if ρE can be written in the form:

ρE =
∑
i

piρ
RAA
i ⊗ ρBRBi (3.6)

where pi is a probability, and ρRAAi , ρBRBi , are density operators of the
subsystems RAA, and BRB respectively.

In other words EAB is separable when ρE is separable. It is important to note that
not all separable states of the RAA:BRB cut correspond to CJ operators ρE as in
eq. 3.6. When EAB is trace-preserving then trAB(ρE) must be the maximally mixed
state of RARB. In general, separable states σ of RAA:BRB have trAB(σ) that are not
maximally mixed.

We can finally list the characterisation as:

Theorem 3.5.3. The set of separable operation CJ operators [55]

The set of density operators σ of the composite system RAABRB such that
σ = ρE as in 3.6 where EAB is a trace-preserving quantum operation
corresponds to: (a) those σ that are separable with respect to the RAA:BRB
cut, and (b) trAB(σ) is a maximally mixed state of RARB.

Following on from the characterisation of separable operations, we may characterise
SWAP + separable operations using the following CJ representation:

ρ(E) =
∑
j

pjρ
ARB
j ⊗ ρRABj (3.7)

In other words the CJ state representing this type of operations is separable across the
ARB : RAB cut.

3.5.1.2 Separable machines

Harrow and Nielsen in [6] studied a noisy quantum device restricted to separable opera-
tions and SWAP + separable operations. They termed such devices separable machines,
defining them to be circuit model based quantum computers, capable of adaptable com-
putation that are restricted to using only the following procedures:
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1. Preparation of single qubit states in some fixed state.

2. Able to perform some arbitrary set of single qubit quantum operations i.e. unitary
transformations, measurement, etc.

3. Able to perform operations from the arbitrary set of two qubit operations that
can be expressed as convex combinations of (a) separable operations, and (b)
SWAP + separable operations.

3.5.2 Overview of the algorithm

We will now provide a summary of the H&N algorithm. The main technical concern
is with the accuracy required to adequately simulate the noisy quantum computer,
and how increased accuracy of the simulation relates to the increase in computational
overhead. We will however not go into any detail on this as Harrow and Nielsen’s
arguments regarding accuracy in [6] are directly applicable to our algorithm.

The separable machines looked at by Harrow and Nielsen were modelled as follows: The
initial state of the quantum system was prepared in the computational basis state |x〉,
after which a quantum circuit composed of single qubit, and two qubit separable/SWAP
+ separable gates was performed. This circuit was taken from {Cn} - the uniform family
of quantum circuits1 containing p(n) gates that act on q(n) qubits, where p(n) and q(n)
are polynomials in n. The computation was concluded by performing a computational
basis measurement on some or all qubits yielding measurement outcomes y with an
associated probably distribution px(y).

The classical algorithm for input x, outputs result y, with the probability distribution
p̃x(y). It was argued that for the classical simulation to be “accurate”, the distribution
p̃x(y) must approximate px(y) sufficiently well. Note the algorithm as a weak simula-
tion, aims not to recreate the whole distribution px(y), but rather efficiently sample
from the approximation p̃x(y). The H&N algorithm can achieve these accuracies with a
classical computational overhead scaling as polynomial function of p(n) not dependent
on the circuit family {Cn}.

We will now go into more detail on the classical simulation procedure, starting by
specifying the variables used in the classical simulation, before describing how these
variables are updated when enacting gate operations and measurements.

Each qubit j = 1, . . . , q(n) of the separable machine is represented in the classical
algorithm by a three element real vector ~sj . Similarly the multipartite state of the whole
system is represented by a 3q(n)-dimensional real vector ~s that can be constructed from
each ~sj , as ~s ≡ (~s1, . . . , ~sq(n)). Each sub-vector ~sj is called valid if its elements are: (a)

1A quantum circuit C computes the function f : {0, 1}n → {0, 1}, its size corresponds to the number
of logical gates forming the circuit. Here we say a circuit family consists of a set of quantum circuits
{Cn} for each circuit input length. If a family of circuits are computable with a running time
polynomial in n then we say that they are uniform.
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specified to l bits of precision, and (b) ensure that ‖~sj‖ ≤ 1. If every sub-vector ~sj
forming ~s is valid, then ~s is called valid too. When a given vector ~s is valid it has a
corresponding density operator that can be expressed as:

ρ(~s) ≡ 1 + ~s1 · σ
2 ⊗ · · · ⊗

1 + ~sq(n) · σ
2 σ ≡ (X, Y, Z) (3.8)

Within the classical simulation the valid vectors ~s are used as the variables of the
simulation - used to represent the quantum states ρ(~s). Each ~sj is a single qubit Bloch
vector, and the space of all valid sub-vectors ~sj corresponds to the Bloch sphere. Harrow
and Nielsen state that at l bits of precision the simulation is effective enough to attain
sufficient accuracy.

The computation is started on the separable machine by preparing an q(n) qubit
quantum state |x〉. Here x is a q(n) digit long binary string that can be expanded
as x1 · · ·xq(n), with each xj corresponding to the jth qubit’s computational basis state.
If xj = 0 then we have a corresponding ~sj = (0, 0, 1) stored in the simulation, and if
xj = 1 then ~sj = (0, 0,−1).

We can now describe how the simulation approximates the quantum gates forming the
circuit of the separable machine. The transformation of quantum states corresponds
to updating the ~s vectors in the simulation. All quantum gates are treated by the
simulation as bi-partite, with single qubit gates as special cases where one of the qubits
is acted upon trivially.

Let EAB denote a separable two-qubit gate acting on qubits A and B. The simulation
procedure takes the vector ~s as input, performs a stochastic operation on it before
outputting another valid 3q(n)-dimensional vector ~s′. The vector ~s is then replaced
with ~s′ in the simulation, and the process is then repeated over for each of the p(n)
gates of the quantum system. After all of the gates a final output vector ~s is produced,
and a simulation of the final measurement takes place.

Looking at the action of EAB more explicitly; at some stage of the computation the
state of the system is represented in the simulation by a valid vector ~s corresponding
to the following density operator:

ρ(~s) = 1 + ~s1 · σ
2 ⊗ · · · ⊗ 1 + ~sA · σ

2 ⊗ 1 + ~sB · σ
2 ⊗ · · · ⊗

1 + ~sq(n) · σ
2 (3.9)

The density operator for just qubits A and B can be expressed as:

ρ(~sAB) = 1 + ~sA · σ
2 ⊗ 1 + ~sB · σ

2 (3.10)

The set of separable two qubit states as in eq. (3.10), form a convex set with pure
states corresponding to the extrema of the set. Following on from section (1.2.3) we
may represent the separable two qubit states geometrically as a convex shape in a
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15-dimensional space. As the output of EAB(ρ(~sAB)) remains separable we can use
Caratheodory’s Convex Hull Theorem2 to express it as the convex sum of at most 16
points within the convex shape as:

∑
i

qi
1 + ~tiA · σ

2 ⊗ 1 + ~tiB · σ
2 (3.11)

where i are positive integers up to 16,
∑
i
qi = 1, and ~tiA, ~tiB are real three element

vectors satisfying
∥∥∥~tiA∥∥∥,∥∥∥~tiB∥∥∥ ≤ 1. The operators

(
1+~tiA·σ

2 ⊗ 1+~tiB ·σ
2

)
each correspond

to the extrema of the convex shape - pure states of the “Bloch sphere tensor Bloch
sphere”.

The simulation aims, for an input ~s, to find a set of three-vectors ~riA and ~riB and at
most a 16-element probability distribution pi that can approximate the qi, ~tiA, ~tiB’s in
eq. (3.11) to l-bits of precision and ensure that the corresponding density operator is
close enough to EAB(ρ(~sAB)).

Writing EAB(ρ(~sAB)) out as in eq. (3.11) is not straightforward, as finding the distri-
bution qi, and vectors ~tiA, ~tiB is non-trivial, however in [6] it is stated that a brute force
search over all valid probability distributions and vectors requires a polynomial number
of operations as a function of n, which is sufficient for the simulation.

With a suitable set of ~riA, ~riB, and distribution pi found, the simulation outputs a valid
q(n) vector ~s′ as follows: Let j = 1, . . . , A,B, . . . q(n), for j 6= A, B the algorithm sets
~s′j = ~sj , that is, the input vector’s variables. With a probably pi it selects one extrema
from the convex set - one pair ~riA, ~riB, and sets ~sA′=~riA, and ~sB ′=~riB. The new output
vector ~s′ is finally formed from the ~s′j vectors.

To repeat, the action of a separable operation EAB is to transform the input vector ~s
as

(~s0, . . . , ~sA, ~sB, . . . , ~sq(n))
with prob pi=⇒ (~s0, . . . , ~r

i
A, ~r

i
B, . . . , ~sq(n)) (3.12)

The simulation is concluded with a computational basis measurement as follows:

Let K be the subset of qubits that are to be measured at the end of the quantum
computation. As the third component of every ~sj corresponds to the Pauli Z component
of the block vector, for each qubit k ∈ K we will denote the third component of the
associated ~sk vector as s3

k. A computational basis measurement of qubit k would then
yield the result 0 with probability 1

2(1+s3
k), and the result 1 with probability 1

2(1−s3
k).

2If x ∈ Rd lies in the convex hull of set P then there exists a subset P ′ of P consisting of d + 1 or
fewer points such that x lies in the convex hull of P ′.
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Summary of the algorithm

In summary, provided that the operations forming a quantum circuit are separable
operations, or, SWAP + separable operations, the algorithm can simulate each one with
at most polynomial in n overhead. Harrow and Nielsen proved in [6] that the algorithm
can sample efficiently from p̃x(y), a distribution arbitrarily close to the intended circuit’s
measurement probability distribution px(y). They note that their proof only requires
the operations to only be separability preserving, and so the algorithm can extend to
the broader class of operations.

3.6 Introduction to generalised probability theories

In the research presented in the following chapter we modify the Harrow and Nielsen
algorithm by loosening the what the valid variables of the simulation are, choosing
single particle state spaces that are not the Bloch sphere. This was inspired by ideas
from generalised probability theories (GPT), that will be briefly introduced here. A
good introduction to GPTs can be found in [56, 57].

At present it still remains a mystery exactly which key features of the quantum form-
alism are responsible for providing the power of quantum computation over classical.
Indeed whether quantum computation is better than classical computation remains un-
proven, but accepted. Quintessential features of quantum mechanics absent in classical
mechanics like entanglement, non-locality and so on are often pointed to as the source
of this computational speed-up.

Our understanding of the connections between features of physical theories and inform-
ation processing can be deepened by looking at a broader range of “physical” theories.
The features of these hypothetical theories can be then contrasted with quantum and
classical mechanics, and insight can be gained.

The extended Harrow and Nielsen algorithm presented in this thesis will be set in a
GPT we construct. This GPT, despite being very similar in structure to noisy quantum
mechanics in terms of unitary dynamics, will have an inherent restriction to the set
of measurements allowed/chosen. The restricted measurements allow us to consider
a redefined single particle state space within the GPT, that contains both quantum
and non-quantum operators. These state spaces are chosen as sets of operators that
give positive outcome probabilities for the restricted measurements, and are required
to reflect the symmetries of the dynamics to ensure that the GPT is consistent and
measurement outcome probabilities remain positive.

The new single particle state space construction allows us to consider a generalised no-
tion of entanglement over these new state spaces, and our algorithm is able to efficiently
classically simulate a class of noisy quantum computers that are unable to generate gen-
eralised entanglement with respect to our new state spaces, in analogy to the Harrow
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and Nielsen algorithm simulating noisy quantum systems unable to generate quantum
entanglement. In the cases where the noisy dynamics cannot generate generalised en-
tanglement, our GPT essentially becomes a classical theory. We will specify these state
spaces in detail in the the next chapter.

3.7 Summary of Chapter (3)

This chapter began by specifying three regions of values for the fault tolerant noise
threshold; a region below the lower bound to the threshold in which noisy quantum
computers can efficiently simulate ideal universal quantum computers using fault tol-
erant computing techniques, an upper bound above which we believe we can gain no
meaningful or advantageous computation because it can be classically simulated effi-
ciently, and an intermediately region in which noisy quantum computation is believed
to be unable to efficiently simulate ideal universal quantum computers, whilst also not
being efficiently classically simulatable. We highlighted the key results and method-
ologies to obtain threshold bound values in each region before focussing on classical
simulation methods to determine the upper bound to the threshold. We defined clas-
sical simulation and mentioned some alternative approaches before discussing the main
topic of the chapter - the Harrow and Nielsen algorithm.

We started by specifying the separability-preserving operations the algorithm is limited
to, and then went into more detail on the algorithm, describing the algorithms state
space, and its simulation of quantum dynamics and measurement. The section was
concluded by mentioning Bi-entangling machines as extensions of those covered by
Harrow & Nielsen. The chapter finally ended with a brief introduction to generalised
probability theories and generalised entanglement which served as an inspiration for us
to consider extensions of the Harrow & Nielsen’s algorithm with modified single particle
state spaces in the next chapter.

41



4 Introduction to remaining chapters

4.1 Introduction

We will start this chapter with a brief summary of the motivations behind the research,
listing the key ideas, before introducing the technical problems studied.

The difficulty of simulating quantum mechanics has been a known computational prob-
lem for a long time [58]. As already mentioned in earlier chapters, an immediate prob-
lem is how one deals with the exponential growth in the number of parameters required
to describe quantum states of increasing numbers of qubits or of greater degrees of free-
dom. This is a particular problem when considering many-body systems with complex
entangled states.

Just as in Chapter (3), we are lead to the question of “when can quantum systems be
efficiently classically simulated?” While this is a broad question with applications in
many areas, in this thesis we are interested in applying it to the study of noisy quantum
computation, in particular determining noise levels at which noise rates noisy quantum
computation become classically simulatable.

Approaches to obtain such classical simulation thresholds bounds involve: (a) firstly
identifying a quantum regime that is restricted enough to have efficiently classical
simulatable dynamics, and then (b) determining the amount of noise required to take
a noisy quantum system into that regime. Broadly speaking, previous approaches have
followed two routes - there are those that show noisy quantum systems enter regimes
restricted to Clifford operators, using the Gottesman-Knill result as in section (2.2.3.3),
and those that consider regimes with limited entanglement, as with the Harrow and
Nielsen algorithm in section (3.5).

The approach taken in our research is to consider an extension of the Harrow and
Nielsen algorithm to use generalised notions of entanglement for systems that have
restricted measurements. As we will discuss shortly, it is through these restricted
measurements that we can replace the single particle state space of the H&N algorithm
with a set of operators S containing both quantum and non-quantum states. The
non-quantum separability considered here is specified with respect to the state space
S, instead of the quantum Bloch sphere. If a noisy quantum computer with restricted
measurement enters a regime in which all its dynamics map operators from S to other
operators in S, and the dynamics are not capable of generating entanglement with
respect to S, then it can be efficiently simulated classically. We will show that, for
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certain choices of S we require less noise for efficient classical simulation, and that
we may be able to efficiently classically simulate a slightly broader range of quantum
regimes than other methods.

In this thesis we principally consider magic state based architectures that are restricted
to Clifford operations (see section (2.3)). Restrictions to the set of available measure-
ments arise in fault tolerant quantum computation for the following reasons: firstly,
many error correction schemes require only measuring a certain set of observables, e.g.
the computational basis states for a number of qubits; secondly, that measurements
themselves are susceptible to noise and so are restricted. We will go into more detail
about how the limited available measurements, and Clifford dynamics of magic state
architectures restrict S later in this chapter.

The only Clifford operation that entangles operators from our chosen S in a generalised
sense will be the bipartite CZ operation (see theorem (9.6)). The main technical
problem of our research is to determine the amount of noise to make a noisy CZ gate
generalised separable with respect to S. Our aim was, for a given noise model, to find a
choice of S requiring the least amount of noise on a CZ gate for generalised separability
with respect to S. While we were able to improve upon previous results, were often
unable to find analytic results, and the optimal choice of S.

The first half of this chapter will define S, in relation to the restrictions on the available
measurements. We will define a generalised non-quantum notion of entanglement with
respect to S, before considering an illustrative example of S - the Bloch cube. Next we
will present the main technical problem of the research. The second half of the chapter
will start by relating observations about cube-entanglement to quantum entanglement
and prior work. These observations will provide important further motivation to the
research. and go through the variations of the problem considered in this thesis. Section
(4.5.4) provides an overview of these variations. The chapter ends by introducing new
notation used through the remainder of the thesis.

4.2 Operator sets S, and S-separability

The simulation capabilities of our new algorithms are tied to the choice of single particle
state space S for those algorithms. Here, a “state” is considered to be a description
that allows us to sample measurement outcomes, albeit for a restricted choice of meas-
urements. We begin by defining S before specifying how restrictions to the available
measurements allow us to construct a particular S-set.
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Definition 4.2.1. The single particle state space S

To each particle forming a quantum system, we will associate a convex set S of
unit trace 2× 2 Hermitian operators % that will represent the state of that
particle (within the algorithm). S may contain operators outside the Bloch
sphere.

As with the density operators in the Bloch sphere we expand % in terms of identity and
Pauli operators:

% = 1
2 (1 + v · σ) where, σ = (X, Y, Z)T (4.1)

Here v is analogous to the Bloch vector, although crucially |v| may be larger than 1
for some %. The probabilities associated measurement outcomes can be obtained by
applying the Born rule1 to %.

Definition 4.2.2. S as the dual to a measurement set.

LetM denote a set of single particle measurement operators. We can define a
dual setM∗ of operators toM through the Born rule, as follows:

M∗ := {ρ | tr [ρ] = 1, tr [ρM ] ≥ 0, ∀M ∈M} (4.2)

The setM∗ is the largest a single particle state space S can be, as operators
outside ofM∗ will return negative probabilities for measurements inM.

The following example will help visualise how we can construct a set M∗ for a given
M. We will look at how Pauli X measurement projectors bound the set of operators
by two surfaces:

Example 4.2.3. Pauli X measurements.

The projectors for this measurement take the form:

PX+ = 1
2 (1 +X) , PX− = 1

2 (1−X) (4.3)

Operators ρ within S can be expanded as:

ρ = 1
2(1 + αX + βY + γZ) α, β, γ ∈ R (4.4)

The positivity of tr [ρPX−] determines the values that α, β, and γ can take:

1The probability of obtaining outcome i associated with the measurement operator Πi is given by
Prob (i) = tr [ρΠi].
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Figure 4.1: Representation of the set of operators on the X − Y plane bounded by the
projector PX− under eq. (4.2) (as shaded). The blue circle represents the
set operators representing the pure qubit states.

tr
[1

2 (1−X) ρ
]

= 1
2tr [(1− α)1 + (α− 1)X + . . .] = 1− α ≥ 0 (4.5)

Hence for PX− we require α ≤ 1 and are free to choose the values of β, γ. The
set of valid operators on the X − Y plane bounded by PX− are plotted on figure
(4.1). By considering the second projector element PX+ we can similarly bound
the set of operators on the other side.

The bounds placed from considering a single measurement extend naturally as follows:

Example 4.2.4. The Bloch sphere.

IfM is the set of all quantum measurements, thenM∗ is Q the Bloch sphere.

Of particular importance to much of the motivation behind the research is the case
where theM is the set of Pauli measurements as with magic state architectures. The
corresponding setM∗ is termed a Bloch cube in analogy to the Bloch sphere.

We will define a Bloch cube state space as:

Definition 4.2.5. The Bloch cube state space.
IfM is the set of Pauli measurements then the corresponding dualM∗ becomes
a cube containing both Q and non-quantum states outside Q as shown in figure
(4.2). The extremal states of the Bloch cube have the following eight Bloch
vectors:

{(1, 1, 1), (1, 1,−1), (1,−1,−1), . . . , (−1,−1,−1)} (4.6)

The surfaces of the Bloch cube represent positive operators % for which the Born rule
fires deterministically for one Pauli measurement, that is tr [Π%] ∈ {0, 1} where Π is
a projector associated to a Pauli X, Y, or Z measurement. The vertices represent
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Figure 4.2: Representation of Bloch cube of states, and the Bloch sphere. The set of
Bloch sphere forms a sub-set of Bloch cube set. The two sets intersect at
the Pauli eigenstates highlighted by the red points.

operators that fire deterministically for any of the three Pauli measurements. The six
Pauli eigenstates lie at the very center of each cube face.

Note that we can have S ⊂ Q when we allow for noise on measurements/preparations
as will be discussed later, and for appropriate choices of M∗. For example, S may
be taken to be the convex hull of the Pauli eigenstates (as the Bloch octahedron from
section (2.2.3.3) and (2.3)) dual to the following set of operators:

{M = 1
2(1 + k · σ)}

where k ∈ {(1, 1, 1), (1, 1,−1), (1,−1,−1), . . . , (−1,−1,−1)} , σ = (X, Y, Z) (4.7)

For the most part we will assume our measurements/preparations are ideal and that
our state space choices will satisfy Q ⊆ S ⊆M∗.

We can now define S-entanglement through S-separable multi-partite operators:

Definition 4.2.6. S-separability.
An operator %sys acting jointly over all n particles is defined to be S-separable if
it can be expressed as the following convex product:

%sys =
∑
α

pα%
α
1 ⊗ %α2 ⊗ %α3 ⊗ . . .⊗ %αn (4.8)

where %αi is an operator taken from the convex set S and is associated to the ith
particle, and pα ∈ [0, 1] with

∑
α
pα = 1. Operators %sys that cannot be expressed

as (4.8) are called S-entangled.
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Note that with this definition, even single qubit quantum gates can S-entangle operat-
ors, as they take operators from S to operators outside of S. In this thesis, we will be
only trying to simulate noisy quantum systems containing multi-partite S-entangling
gates, as we will assume that all single qubit gates are restricted so that they preserve
S (as is the case with magic state architectures whose single qubit gates correspond to
octahedral symmetry transformations of S).

With our definition of S-entanglement, we can now relate the extended algorithm back
to Harrow and Nielsen’s in Chapter (3.5). We will represent operators of S within
the extended algorithm as vectors listing elements corresponding to the probabilities
for the permitted measurement outcomes. These vectors may be embedded in a real
vector space allowing us to also consider linear combinations of states and in particular
convex combinations of states.

The extended algorithm can perform a weak classical simulation of a noisy quantum
computer with restricted measurements, if the dynamics of the computer preserve S-
separability. The extended algorithm simulates single and bipartite S-separable gates
identically to the H&N simulation of quantum separable gate, albeit with a modified
notion of “valid” vectors to reflect our redefined state space. Measurements are similarly
performed. We will later show that some quantum-entangled states are S-separable, so
it is possible that our extension of the H&N algorithm could lead to a broader range
of efficiently simulatable situations.

4.3 The main problem discussed in this thesis

In order to use the modified H&N algorithm it is required that all of the multi-partite
quantum gates forming the noisy quantum device be S-separable:

Definition 4.3.1. S-separable gates.

Multi-partite quantum gates are defined to be S-separable if they are unable to
output S-entangled operators for all possible S-separable inputs.

Our definition of S-separable quantum operations is analogous to separable operations
in the original H&N algorithm, it is worth noting though that unlike in the H&N
algorithm single particle unitaries can entangle S in general. For a choice of S there
will be gates forming the quantum device that are S-entangling, each requiring a varying
amount of noise to ensure they become S-separable. For a given quantum system will
select the gate U requiring the most noise to become S-separable for a choice of noise
model.

Prior to proceeding we will make the following two definitions:
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Definition 4.3.2. Noisy multi-partite unitaries.

Let U denote a multi-partite quantum gate, and Nε some particular noise model
whose noise strength is parametrised by ε ∈ [0, 1]. We will define a noisy
multi-partite unitary Uε as:

Uε(·) = Nε ◦ U(·) (4.9)

Definition 4.3.3. λUε,S noise parameter.

For a given noisy quantum gate Uε and set S, we will define the noise
parameter λ as

λUε,S := min
{
ε|Uε ∈ US

}
(4.10)

where US is the set of (noisy) quantum gates that can only output S-separable
operators from S-separable input. If there exists no ε ∈ [0, 1] such that Uε ∈ US

then we will set λUε,S =∞. The noise parameter λUε,S is implicitly depends on
the noise model considered for Uε.

This thesis is looking to solve variations of the following technical problem:

Problem 4.3.4.
Suppose that we can prepare each particle in the system from a state in the set
Q and have available the local measurements fromM. We are looking to find
single particle operator sets S satisfying Q ⊂ S ⊆M∗ that require the lowest
λUε,S value for a given Uε, because then we can efficiently classically simulate
the system.

4.4 Contrasts between quantum and Bloch cube
entanglement

This section will present observations about the relationship between non-quantum
Bloch cube entanglement, quantum entanglement and non-locality, to provide better
context for the main problem discussed in the previous section. The observations here,
were originally presented in [7]. We will begin by defining operator compatible sets of
measurements, relating such sets to non-locality and classical simulation.

Definition 4.4.1. Operator compatibility.

Suppose we have some set of measurement operatorsM = {Mij} with
associated measurement outcomes mij. For measurement i the probability of
obtaining outcome mij is given by the Born rule as in eq. (1.29).
The setM is said to be “operator compatible” if there exists some (possibly
non-positive operator) % that fires deterministically for all possible measurement
combinations, that is, for the outcome combination (m1j , m2j , m3j , . . . ) we
have (tr [M1j%] , tr [M2j%] , tr [M3j%] , . . . ) equalling some binary string.
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An example of just such a set of operator compatible measurements would be Pauli X,
Y , and Z measurements. We denote e, f, g as the eigenvalues of each measurement
X, Y, Z respectively. As the set of measurements are operator compatible there must
exist an operator % that would fire deterministically for all combinations of the three
measurements, namely tr[Me%], tr[Mf%], and tr[Mg%] ∈ {0, 1}, where Me, Mf , Mg,
represent the projector elements for the measurement results e, f, g. The operators
% = 1

2 (1 + eX + fY + gZ) achieve these conditions under the Born rule and correspond
to the corners of the Bloch cube.

In general, sets of quantum measurements are not operator compatible, but sets that
are compatible are characterised geometrically by the following:

Lemma 4.4.2. Characterising operator compatibility.

Suppose we have a quantum system of dimension d, and a set of N POVMs
with ni outcomes each. The set of POVMs can only be operator compatible if
the following constraint is satisfied:

∑
i=1,...,N

ni ≤ d2 +N − 1 (4.11)

We can see that a set of operator compatible measurements must satisfy this criterion
by looking on the constraints placed on operators acted upon by these measurements.
Let A denote a d × d dimensional trace-one Hermitian matrix, and the ith POVM to
have elements labelled (Pi)j . Following on from subsection (1.2.3), we see that A may
be expanded in terms of trace and traceless Hermitian operators and be characterised
by a (d2 − 1) element real vector rA. If the set of POVMs are operator compatible
then there must exist an operator A for which all the POVMs must return probability
values as tr [(Pi)jA] ∈ {0, 1}. Each tr [(Pi)jA] can be expressed as a dot product of
two d2 element real vectors, and so the set of all elements for all N POVM can be
combined into a (

∑
i=1,...,N

ni) × d2 dimensional matrix P . This transform the problem

into an linear algebra one of finding solutions to P rA = b where b is a binary string
of outcome probabilities. Solutions can only exist to this problem when eq. (4.11) is
satisfied.

In the non-trivial instance where N > 1, and where all N POVMs have d measurement
outcomes, the condition for operator compatibility reduces to the following:

N · d ≤ d2 +N − 1 ⇒ 0 ≤ (d− 1)(1 + d−N) ⇒ N ≤ 1 + d (4.12)

A set of measurement is called tomographically complete if a state %, may uniquely fix
and be fixed by taking the traces of % with the measurement operators of the tomograph-
ically complete set. The property of operator compatibility for sets of measurements
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has importance to classical simulatability if those measurements are also tomographic-
ally complete, as matrices formed from Born measurement probabilities and definition
(4.2.6)) are separable with respect to single particle state space (and usable with the
extended H&N algorithm) if and only if they satisfy a local hidden variable model:

Lemma 4.4.3. Multiparticle states, separability and local hidden variables.

LetM∗ be a single particle state space, dual to a set of tomographically
complete operator compatible measurementsM. A multiparticle state ρ is
M∗-separable if and only if there is a local hidden variable model (LHVM) [59]
for measurements fromM on ρ.

Proof. For simplicity we will only consider two particle systems, as it is straightforward
to extend the arguments to multi-partite cases. As the measurements M are tomo-
graphically complete the probability distribution of measurement outcomes from M
exactly characterises %.

Let Pa and Pb denote POVMs corresponding to measurements in the a and b
“directions”. A bi-partite probability distribution that satisfies a LHVM by definition
can be expressed as

tr [%((Pa)i ⊗ (Pb)j)] =
∑
γ

p(γ)p(i|a, γ)p(j|b, γ) (4.13)

where (Pa)i and (Pb)j correspond to the ith and jth POVM elements, p(γ) is a
probability distribution over the hidden variable γ, and p(i|a, γ), p(j|b, γ) correspond
to the probability distributions for the local measurements on each particle. These
local measurement distributions can then be expressed as statistical mixtures of local
deterministic distributions, where each measurement choice specifies a single
deterministic outcome. The local deterministic distributions can then be matched, via
the Born rule, to extrema points ofM∗ and by tomographic completeness the
mixture of these extrema equals ρ . The state % therefore, is separable with respect to
M∗ if and only if it satisfies a LHVM for the measurements inM.

Returning to the case of Pauli measurements, a state is then cube-separable if, and
only if, it has a LHVM for the Pauli measurements. Following the proof above we can
explicitly show this; suppose we had a two particle system with sub-systems denoted
A and B, and we wished to perform some Pauli X axis measurement on system A

and Y on system B. These measurements have associated POVM elements (PX)i and
(PY )j with measurement outcomes i, j respectively. For the state ρ, we may express
the probability of getting the two measurement outcomes i and j as:

p(i, j|X, Y ) = tr[(PX)i ⊗ (PY )jρ] (4.14)
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If the state ρ is cube-separable, we may express (4.14) as:

p(i, j|X, Y ) = tr[(PX)i ⊗ (PY )j

(∑
k

pkσ
A
k ⊗ σBk

)
]

p(i, j|X, Y ) =
∑
k

pktr
[
(PX)iσAk

]
tr
[
(PX)jσBk

]
P (i, j|X, Y ) =

∑
k

pkP (i|X, k)P (j|Y, k) (4.15)

Where σAi and σBi are extremal single particle cube-states. Upon inspection of (4.15)
we can clearly see that for the cube-separable state ρ we have a LHVM for the Pauli
X, and Y measurements. The state ρ is separable with respect to the (tomograph-
ically complete) Pauli measurements if and only if it satisfies a LHVM for the Pauli
measurements.

In summary, if there exists an operator (be it non-positive), that gives deterministic
outcomes for combinations of measurement outcomes then that means that those meas-
urements are operator compatible. This is important in the context of generalised prob-
ability theory, because if a set of measurements are not operator compatible then states
cannot be uniquely specified by measurement outcomes from the set of measurements
and there is the possibility of a distinction between non-locality and non-separability.
This is also a point of discussion within quantum theory, as, while any separable state
has a LHVM, there exist non-separable states that have a LHVM [60].

We may use a H&N type algorithm to efficiently classically simulate any dynamics
preserving separability of state spaces M∗ dual to operator compatible sets M, if we
have a LHVM forM and if the quantum dynamics considered cannot generate negative
probabilities

Connections between quantum entanglement and cube-separability are presented in the
following lemma:

Lemma 4.4.4. There exist quantum entangling, cube-separable operations.

Two-qubit Bell states are cube-separable. As such, there exist quantum
operations that are both cube-separable and quantum entangling.

Proof. As Bell states are cube-separable, any operation that creates a Bell-diagonal
state, by say discarding a two qubit input and creating a Bell state in its place is
cube-separable.

Such operations would also be entanglement breaking (see section (9.4) in the appendix)
as they would break any entanglement of the input with the other subsystems forming
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the whole [61], and so may not be used to generate multiparticle entanglement without
the aid of other operations. Without the ability to generate multiparticle entanglement
these operations can be efficiently classical simulated using the approach in [42].

An alternative proof can be found in the appendix (9.5) and uses table notation intro-
duced in section (4.6).

In [7] we go on to present further observations about Bloch cube entanglement. Whilst
these observations are beyond the scope of this thesis, we will briefly summarise them
as follows. We showed the existence of genuinely multiparticle quantum entangled
states that are cube separable. The operations that could create such cube separable
states could then be used to generate quantum entanglement of an increasing number
of particles.

This result was then extended to show that we could construct cube separable quantum
gates that are quantum entangling, non-entanglement breaking, and non-Clifford, mean-
ing that we can classically simulate operations outside previous regimes.

4.5 Restrictions and variations

4.5.1 Restrictions for all cases

Determining the optimal S for problem (4.3.4) is hard as we have potentially infinitely
many choices for S. Additionally calculating λUε,S becomes difficult for choices of S
with many extrema. Problem (4.3.4) is dependent on many variables, for example; the
choice of noise model N , the set of measurementsM available to the system, and the
multi-partite quantum gate U requiring the most the most noise for S-separability. As
mentioned earlier, another point to consider is the action of single qubit unitaries on
the S, so operators in S remain in S.

Simple symmetry arguments can be used to simplify problem (4.3.4) in the cases we
have mentioned. We can split these arguments into symmetry arguments on the choices
of S, and those that can reduce the numbers of inputs needed to calculate λUε,S .

4.5.2 Transformations on S

In addition to restrictions from measurements, S is also limited by the set of single
particle quantum gates available to the quantum system. As only S-entanglement over
multiple particles will be considered, S will be chosen in such a way that all the single
particle gates be S-separable without the need for noise. As a consequence S will reflect
the symmetry of these operations, and only the multi-partite gates will be S-entangling.

As already mentioned we will focus on magic state architecture based quantum devices.
These devices are restricted to Pauli X, Y , Z, measurements, and are formed of the
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single particle Clifford Group operations and the two particle S-entangling control-not
gate (CX). The single particle Cliffords represent octahedral symmetry transforma-
tions. Any choice of S satisfying Q ⊆ S ⊆ M∗ must therefore also have octahedral
symmetry.

4.5.3 General method and reducing the number of inputs

The multipartite CX gate is the only S-entangling operation and thus requires noise to
ensure it becomes S-separable. For mathematical convenience we will instead consider
the control-sign (CZ) gate as our multi-partite S-entangling operation instead of the
CX gate. We are free to make this choice as it has no bearing on the λUε,S value for
each gate. We can see this in the following:

Let the noisy versions of the CZ and CX gates be denoted by CZε and CXε respect-
ively. The two gates are related as:

CX = (1⊗H) · CZ · (1⊗H) (4.16)

Since S is chosen to have octahedral symmetry, the local Hadamard gates simply act
to perform a symmetry rotations on the input and outputs of the CZ gate, and so the
following holds true:

λCZε,S = λCXε,S (4.17)

Just like the CX gate, noise must be added to the CZ gate not only to ensure separ-
ability, but also to at very least to ensure measurement positivity. We go into further
detail on this in section (9.6) in the appendix, where we show that the CZ gate acting
on any state space S containing Q may return negative measurement probabilities for
Pauli measurements.

For a given S and noise model, we calculate λCZε,S by performing the following sequence
of steps:

1. Select a tensor product of “pure”-extrema operators from S.

2. Determine for our chosen input product the minimum ε value to ensure CZε
outputs a S-separable product state.

3. Cycle through all other tensor product of pure states, noting ε for each input.
After scanning through all product pairs set λ to be the largest ε value listed.

It is possible to simplify the calculation of λCZε,S by using symmetry arguments to
reduce the number of product inputs needed to be scanned over. Here will be detailed
the two main symmetries used in the thesis to reduce to calculation.

Suppose for some particular state-space S and noise model N , we determine ε to be the
minimum noise strength to ensure S-separable CZ output for the S-separable input
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ρ = α⊗ β. We can express the mapping from ρ to the output state as follows:

ρ = α⊗ β → Nε ◦ CZ(α⊗ β) ∈ (S−separable) (4.18)

Let F denote some two qubit operation acting on the output of the noisy CZ gate. If
F corresponds to a Swap gate it will keep the output S-separable, and as it commutes
with the CZ operation it allows us to pass it through the CZ operation to act directly
on the input state. If F also commutes with N then eq. (4.18) becomes:

F ◦Nε ◦ CZ(α⊗ β)→ Nε ◦ CZ(β ⊗ α) ∈ (S−separable) (4.19)

By swapping the subsystems in the input we still require the ε amount of noise to
ensure S-separable CZ output. There is therefore no need to consider the swapped
product inputs and we can halve the number of input products we need to consider.

Similarly if F is the tensor product of single particle Clifford operations that act by
conjugation, then we can pass it through the CZ gate to get another tensor product of
single particle Clifford operations G acting on the input state. If our noise model N is
such that it commutes with F then the action of F on the noisy CZ output state is

F (Nε ◦ CZ(α⊗ β))F † → Nε ◦ CZ(G (α⊗ β)G†) (4.20)

The action of the single particle Clifford operations on operators in S correspond to
octahedral symmetry transformations. By choosing appropriate sequences of G, it is
possible to cycle the extrema in one octant of S through the analogous extrema in
the other octants. If ε is large enough to ensure S-separable CZ outputs for all tensor
products of states in one octant of S, then ε is large enough for product inputs in S⊗S.

4.5.4 Variants of problem (4.3.4) considered in this thesis

In the upcoming chapters we will determine λCZε,S for a variety of S and a variety of
choices of noise model. In this section we will briefly outline what these variations are.

We will start by considering S to only be restricted by imperfect preparation and meas-
urement of the states. In this case S is chosen to be a Bloch sphere that is contracted
(corresponding to depolarised preparation) or expanded (corresponding to depolarised
measurements) based on the level of noise on the preparation or measurement respect-
ively. Three noise models are considered on the CZ operation; local depolarising noise,
joint depolarising noise, and local dephasing noise.

For all of the other variations we will look at state spaces S also bound by allowed
measurement restrictions, initially taking S to be the full dualM i.e. the Bloch cube.
As already detailed in section (4.4), this choice is conceptually of interest as it can be
shown that certain quantum entangled states are Bloch cube-separable. In Chapter (5)
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we will go into more technical detail on how we calculate λCZε,S for the Bloch cube
specifically. We will allow for imperfect Pauli measurement and noisy preparation, and
once again consider the three noise models; local depolarising noise, joint depolarising
noise, and local dephasing noise.

As stated previously it is not necessary that we include the full dual space, and we
can choose sets S satisfying Q ⊂ S ⊂ M∗. In Chapter (7) we restrict ourselves to
only joint depolarising noise, and attempt to identify the optimal choice of S that
satisfies the restrictions in subsection (4.5.1) requiring the least λCZε,S . As there are
seemingly infinite choices for S we show that by characterising the sets by various
norms (factoring in imperfect measurement and preparation), we are able to to arrive
at necessary bounds on the noise needed by the CZ gate for S-separability that ensure
Born rule measurement positivity. The noise required for Bloch cube separability forms
an upper bound, specifying a region of noise rates for an optimal S.

In the final research Chapter (6) we will choose S to be a truncated Bloch cube, the S
requiring the least amount of joint depolarising noise that we found. We will go through
a detailed calculation and numerical results for the amount of joint depolarising noise
required to ensure CZ gate S-separability. Finally arriving at a symbolic expression for
the exact noise noise value for separability in the specific case of perfect measurements
and preparations.

4.6 Pauli table notation and asides

Throughout this thesis we will make use of Pauli table notation to conveniently repres-
ent two particle operators. This notation becomes especially useful when considering
the effects of Clifford operations on two particle operators. As the Pauli operators form
an operator-basis for the Hilbert spaces of the individual particles, the set of tensor
products of the Pauli operators form an operator basis for two particle systems. Thus
any two particle operator A′ can be written as:

A′ =
∑
ij

Aijσi ⊗ σj (4.21)

where we may denote σ0 = 1, σ1 = X, σ2 = Y , σ3 = Z. These operators can be
represented in a 4× 4 table (denoted by curly brackets) whose elements correspond to
the coefficients for the various Pauli tensor product combinations:

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33


(4.22)
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These elements correspond to the coefficients of the following Pauli tensor product
terms: 

1⊗ 1 1⊗X 1⊗ Y 1⊗ Z
X ⊗ 1 X ⊗X X ⊗ Y X ⊗ Z
Y ⊗ 1 Y ⊗X Y ⊗ Y Y ⊗ Z
Z ⊗ 1 Z ⊗X Z ⊗ Y Z ⊗ Z


(4.23)

I.e. the entries in the table corresponding to the Pauli tensor X⊗Y , correspond to the
coefficients A12 in the decomposition of the operator A′. Two particle operators of the
form %A⊗%B where %A, %B∈ S with Bloch vectors (x, y, z), and (A, B, C) respectively
have the following Pauli table representation:

1
4


1 A B C

x xA xB xC

y yA yB yC

z zA zB zC


(4.24)

Where the “1
4” in front of the Pauli table corresponds to a normalisation factor that

would multiply each of the coefficients. The CZ gate has the following effect on arbit-
rary two particle states %A ⊗ %B:

1
4


1 A B C

x xA xB xC

y yA yB yC

z zA zB zC


→ 1

4


1 zA zB C

xC yB −yA x

yC −xB xA y

z A B zC


(4.25)

4.6.1 The effect of noise on two particle product states

The action of noisy CZ gates on product pure operators can be represented as:

%A ⊗ %B → CZε(%A ⊗ %B) = Nε ◦ CZ(%A ⊗ %B) (4.26)

where %A, %B are arbitrary operators from S. This sequence has the following effect on
the Pauli tables of input states for the three noise models introduced in section (2.2.1):

Joint depolarising noise

1
4


1 A B C

x xA xB xC

y yA yB yC

z zA zB zC


→ (1− ε)

4



1
(1−ε) zA zB C

xC yB −yA x

yC −xB xA y

z A B zC


(4.27)
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Local depolarising noise

1
4


1 A B C

x xA xB xC

y yA yB yC

z zA zB zC


→ (1− ε)2

4



1
(1−ε)2

zA
(1−ε)

zB
(1−ε)

C
(1−ε)

xC
(1−ε) yB −yA x
yC

(1−ε) −xB xA y
z

(1−ε) A B zC


(4.28)

Local dephasing noise

Where ε′ = 1− 2ε:

1
4


1 A B C

x xA xB xC

y yA yB yC

z zA zB zC


→ 1 + ε′

4


1 zAε′ zBε′ C

xCε′ yBε′2 −yAε′2 xε′

yCε′ −xBε′2 xAε′2 yε′

z Aε′ Bε′ zC


(4.29)

4.6.2 Pauli measurements

It is straightforward to use Pauli table notation to calculate measurement probabilities,
especially if these measurements correspond to local Pauli X, Y , or Z measurements.
We will begin by outlining how to perform the trace of a product of operators repres-
ented by Pauli tables as this would be necessary when using the Born rule. Suppose
we have two particle operators ρ and σ with Pauli tables:

1
4


ρ00 = 1 ρ01 ρ02 ρ03

ρ10 ρ11 ρ12 ρ13

ρ20 ρ21 ρ22 ρ23

ρ30 ρ31 ρ32 ρ33


1
4


σ00 = 1 σ01 σ02 σ03

σ10 σ11 σ12 σ13

σ20 σ21 σ22 σ23

σ30 σ31 σ32 σ33


(4.30)

As each Pauli table represents a summation of Pauli operator tensor products and
coefficients the product of σ and ρ gives a summation of Pauli operator tensor products
and products of these various coefficients with some additional signs and imaginary
terms gained from the Pauli products, i.e.

σρ = 1
16 (ρ+ (σ01ρ)1⊗X + (σ02ρ)1⊗ Y + . . .)

= 1
16((

∑
ij

σijρij)1⊗ 1 + ρ011⊗X + ρ021⊗ Y + . . .) (4.31)

The only terms to come out of tr [σρ] are those coefficients of the 1 ⊗ 1 term as the
Pauli operators are traceless:

tr [σρ] = 1
4
∑
ij

σijρij (4.32)
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We can now look at an example of using eq. (4.32) to calculate measurement probab-
ilities using the Born rule:

Example 4.6.1. Pauli tables and Pauli measurements.
Suppose a system’s state ρ is represented by the Pauli table given in eq. (4.30),
for the Pauli measurements X on system A, and Y on system B, the probability
of getting the results (−1)n and (−1)m is given through the Born rule as:

(4.33)

The only terms from ρ that contribute to the trace are those corresponding to
the Pauli products X ⊗ 1, 1⊗ Y , and X ⊗ Y . From eq. (4.32) we can see that
by looking up these coefficients in the Pauli table representing ρ eq. (4.33)
becomes:

= 1
4
(
A00 + (−1)nA10 + (−1)mA02 + (−1)n+mA12

)
(4.34)

4.7 Summary of Chapter (4)

We started this chapter by defining the single particle state space S, detailing how
restrictions on the available measurements bound the space of trace 1 operators to those
that return positive measurement probabilities with respect to those measurements via
the Born rule. In particular we define the Bloch cube state space - the cube of operators
associated with Pauli X, Y , Z. measurements. Following on from the definition of S,
we defined a new notion of entanglement with respect to S. We modified the H&N
algorithm be replacing the algorithm’s Bloch sphere single particle state space, with
our larger S state space. If the operations of the noisy quantum computer only could
generate S-separable states then H&N’s algorithm would translate and we would be
able to classically simulate the noisy quantum computer.

In the next section we focused on some observations about the relationship between
Bloch cube-separability, quantum-entanglement, and non-locality. We observed that
we could construct operations that were cube-separable, quantum-entangling, and non-
Clifford, suggesting that a H&N-like algorithm based around Bloch cubes could classic-
ally simulate regimes not covered by straightforward application of previous schemes.

We then moved onto detailing the exact technical problem of the thesis, that being, we
are looking to find the S contained in a Bloch cube, but containing the Bloch sphere,
giving the lowest value of λCZε,S . We detailed symmetries reducing the complexity
of the problem, and stated the variations of the problem we will be looking at. The
chapter concluded by introducing Pauli table notation, and showing how the three
noise models we considered transform CZ output states. We finally described how to
calculate Pauli measurements using the Pauli table notation.
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5 The rescaled Bloch sphere and the
Bloch cube

5.1 Introduction

This chapter will present the results obtained in [7].

Non-ideal measurements correspond to another type of restriction on measurements,
allowing us to choose state-spaces S ′ for the algorithm that are enlargened/shrunken
(termed here “rescaled”) versions of state-spaces S corresponding to ideal measurements
sets.

We will start by showing how non-ideal measurements and non-ideal preparations of
states allow us to specify a new single particle state space. Then we will outline the
method used in the calculations of λ(CZε,S) for such state spaces, before stating the
symmetry arguments used to aid in these calculations.

We will next consider a straightforward extension of the H&N algorithm to the case
where S is taken to be the Bloch sphere modified to allow for non-ideal prepara-
tion/measurements. We observe the connections between a rescaling parameter spe-
cifying “non-ideal”-ness and values of λCZε,S . This investigation was motivated by the
hope that noise on measurements translates into a reduction in λCZε,S over the H&N
algorithm.

In the second half of this chapter we take S to be the full dualM∗ for Pauli measure-
ments giving us the Bloch cube state space. We first calculate λCZε,S in the ideal case
where the there is no noise on preparation/measurement and then again with noisy
preparation/measurement allowing us to rescale the Bloch cube state space. The mo-
tivation for both of these cases was that again the geometry of the state space and/or
rescaling would allow in a reduction of λCZε,S .

5.2 Non-ideal measurements

Non-ideal measurements can be imagined operationally as a noisy channel, followed
by an ideal measurement. Here we will consider our particles to be subject to de-
polarising noise with probability p immediately prior undergoing a projective meas-
urement associated to projectors Π. Where our particle is initially prepared in state
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Figure 5.1: Cross-section on the X − Y plane showing the action of the depolarising
noise at rate p prior to measurement on the rescaled Bloch sphere, with
radius R coloured dark blue. The lighter blue region inside shows a cross-
section of the usual Bloch sphere. The states depicted on the left image are
for the noise rate p are taken back to the Bloch sphere.

ρ = 1
2 (1 + u · σ) ∈M∗, the effect of the noise is as follows:

ρ→ ρ′ = (1− p)ρ+ p

21 = 1
2(1 + (1− p)u · σ) (5.1)

As eq. (5.1) illustrates, the effect of the depolarising noise is to transform the Bloch
vector u, into (1− p)u shrinking any input operator’s Bloch vector for any value p > 0.
This allows us to accept input density operators from a larger set containing operat-
ors outside M∗- it is simply required that these operators ensure that tr [Πρ′] ≥ 0.
Therefore for a system containing imperfect measurements the input density operator
representing each particle will be taken from the set M̃∗ containing operators ρ̃ of the
form:

ρ̃ = 1
2 {1 +Ru · σ} where R = 1

1− p (5.2)

For R > 1, M̃∗ simply is an enlargement ofM∗, and where R = 1, there is no-rescaling
and M̃∗ =M∗. Figure (5.1) shows a cross-section of the admissible operator set for a
noise at rate p prior to measurement in the case whereM∗ = Q the Bloch sphere.

The parameter R can also be used to describe noise in the preparation of the input
qubits where 0 < R < 1 , i.e. we can prepare particles and then individually depolar-
ising them at a rate of 1−R:

ρ→ ρ′ = Rρ+ (1−R)
2 1 (5.3)

In the rescaled sphere case we use the quantum PPT criterion to determine separability
of the output states. In order to do this however, we need to perform an inverse map
taking the output states back to quantum Bloch sphere state space as the PPT criterion
is only usable with quantum Bloch spheres.

Let TR denote maps taking operators fromM∗ to the rescaled set M̃∗, and its inverse
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as T−1
R . The action of TR ⊗ TR(·) represents faulty preparation of states or faulty

measurements, rescaling the input states prior to the CZε operation. The product
inverse map T−1

R ⊗ T−1
R (·) undoes any rescaling returning states back to the fault-less

size (although still possiblyM∗-entangled from the CZε operation).

Operationally the entire process of rescaling the input to the measurement can be
viewed as the following sequence of operations acting on ρA ⊗ ρB ∈M∗⊗2:

T−1
R ⊗ T−1

R ◦ CZε ◦ TR ⊗ TR(ρA ⊗ ρB) (5.4)

Once again it’s important to note that the application of specific local unitaries after
the final T−1

R ⊗ T−1
R (·) does not affect the separability of the output operators as they

commute with T−1
R ⊗ T−1

R and would simply act to rotate any tensor product state.
The TR map has the following effect on the Pauli table

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33


→


A00 RA01 RA02 RA03

RA10 R2A11 R2A12 R2A13

RA20 R2A21 R2A22 R2A23

RA30 R2A31 R2A32 R2A33


(5.5)

And similarly the inverse T−1
R :

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33


→


A00

1
RA01

1
RA02

1
RA03

1
RA10

1
R2A11

1
R2A12

1
R2A13

1
RA20

1
R2A21

1
R2A22

1
R2A23

1
RA30

1
R2A31

1
R2A32

1
R2A33


(5.6)

5.3 The rescaled Bloch sphere

5.3.1 Method and symmetry arguments

Within this section we will explore the effects on λCZε,S of taking S to be a rescaled
Bloch sphere by allowing for non-ideal measurements or preparation. For a particular
noise model and rescaling parameter R, in order to determine whether the noisy CZ
is separable with respect to the rescaled state-space, we must show that all outputs
of the inverse scaling operation T−1

R ⊗ T−1
R (·) are Bloch sphere separable. We require

that the output states are Bloch sphere separable as we will use the PPT criterion
[62, 63] to determine separability, as PPT outputs from the T−1

R ⊗ T−1
R (·) correspond

to S-separable outputs from the noisy CZ gate. We use the PPT criterion here as it is
the most straightforward way to determine separability of the state spaces in question.

As described in section (4.5.3), symmetry arguments can be used to simplify the calcu-
lation of λCZε,S for a given noise model and S for a particular R parameter. We choose
our CZ noise models to be local depolarising noise, joint depolarising noise, and local
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dephasing noise. It is important to note that the application of local unitaries after the
final T−1

R ⊗ T−1
R (·) do not affect whether the output state is positive or PPT, as they

commute with T−1
R ⊗ T−1

R and would simply act to rotate any tensor product state to
another product state.

The two symmetry arguments from section (4.5.3) are used here to reduce the number
of input product states. We may further reduce the number of input states by using
symmetries particular to the Bloch sphere geometry. Suppose we applied local Pauli Z
axis rotations on each output particle from the T−1

R ⊗T
−1
R (·) operation, these unitaries

can be commuted through to act upon the input product states rotating them around
the Z axis. As these rotations are changes to the input states with no impact on
the amount of noise needed for separability we are thus free to chose the input states
ρ = α ⊗ β up to arbitrary rotations about the Pauli Z, and will choose to only input
product pure quantum states with no Pauli Y components i.e. with Bloch vectors
(cos(ϑ), 0, sin(ϑ)) and (cos(θ), 0, sin(θ)) for the states α and β respectively. We may
once again use the table notation from section (4.6) to describe the input states. The
rescaled input state TR⊗TR(α⊗β) is proportional to a state with a table representation:

1 Rcos(ϑ) 0 Rsin(ϑ)

Rcos(θ) R2cos(θ)cos(ϑ) 0 R2cos(θ)sin(ϑ)

0 0 0 0
Rsin(θ) R2sin(θ)cos(ϑ) 0 R2sin(θ)sin(ϑ)


(5.7)

Under the action of the CZ operation the transformed table is proportional to:
1 R2sin(θ)cos(ϑ) 0 Rsin(ϑ)

R2cos(θ)sin(ϑ) 0 0 Rcos(θ)

0 0 R2cos(θ)cos(ϑ) 0
Rsin(θ) Rcos(ϑ) 0 R2sin(θ)sin(ϑ)


Under the effect of the three noise models shown in section (4.6.1), the coefficients of
the output state of the CZ operation gain “factors” 0 ≤ r ≤ 1 which may vary for each
Pauli term. The transformed table is therefore proportional to:

1 rR2sin(θ)cos(ϑ) 0 rRsin(ϑ)

rR2cos(θ)sin(ϑ) 0 0 rRcos(θ)

0 0 rR2cos(θ)cos(ϑ) 0
rRsin(θ) rRcos(ϑ) 0 rR2sin(θ)sin(ϑ)


(5.8)

Finally the action of the inverse rescaling map removes some of the R parameters,
with partial transposition on the second system we are left with a table representation
proportional to:
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
1 rRsin(θ)cos(ϑ) 0 rsin(ϑ)

rRcos(θ)sin(ϑ) 0 0 r
R
cos(θ)

0 0 ±rcos(θ)cos(ϑ) 0
rsin(θ) r

R
cos(ϑ) 0 rsin(θ)sin(ϑ)


(5.9)

We aim to show that all states outputted by the sequence of operations mentioned
remain positive for both choices of sign in eq. (5.9). Symmetry arguments can reduce
the number of input states that need to be considered: adding π to ϑ, flips the sign
of sin(ϑ) and cos(ϑ), this is equivalent to applying the local unitary operation Y ⊗ Z
to the final state represented by eq. (5.4). Similarly adding π to θ, changes the sign
of sin(θ) and cos(θ) and is equivalent to the local unitary operation Z ⊗ Y . As
local unitary operations, neither Y ⊗ Z nor Z ⊗ Y have any effect on the final states
separability that is whether it satisfies the PPT criterion, we can therefore make the
restriction θ, ϑ ∈ [0, π]. Applying the unitary Z ⊗ 1 to the final state is equivalent to
the transformation θ− π

2 →
π
2 − θ, and similarly the operation 1⊗Z to ϑ− π

2 →
π
2 −ϑ,

hence we may, without loss of generality, restrict θ, ϑ ∈ [0, π2 ].

With these restrictions to the input states in mind numerical calculations were per-
formed to calculate the noise rates for CZ separability for varying R for each CZ noise
model mentioned. These numerics followed the methodology in laid out in section
(4.5.3) and (5.2), determining if, for a given input state, R value and noise rate, the
output of the T−1

R ⊗ T−1
R (·) operation satisfies the PPT criterion. The R and noise

rate were separately incrementally increased and the whole process was repeated for
all inputs. The input state requiring the most noise to satisfy the PPT criterion was
identified and that noise rate was used as the noise threshold for that particular value
of R.

From the numerics, for joint and local depolarising noise, we saw that for 0 < R < 1, the
product state with θ, ϑ = 0 (corresponding to the product of two Pauli X eigenstates)
required the most noise to become positive and PPT, for R > 1 the states ϑ = 0 , θ = π

2
, and ϑ = π

2 , θ = 0, (corresponding a Pauli X eigenstate tensor a Pauli Z eigenstate)
required the most noise on the CZ operation. It is important to note that we were not
able to confirm these results analytically.

The local dephasing case behaved differently from the other two noise models, and will
be described in more detail in the next section.

5.4 Rescaled Bloch sphere-separability noise threshold results

In this section we will present the results obtained from the numerical calculations.
These results are presented in two forms; firstly as a relationship between the CZ
gate noise threshold and the rescaling parameter R, and secondly, between the noise
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threshold and the depolarisation noise on preparation/measurement. The connection
between R and the depolarisation noise on preparation/measurement is given in equa-
tions (5.2) and (5.3).

5.4.1 Joint depolarising noise for rescaled Bloch spheres

Figure (5.2) contains a plot obtained from numerics showing the amount of joint
depolarising noise needed to ensure CZ operations output separable rescaled Bloch
sphere states for the rescaling parameter R. We can see from figure (5.2) the minimal
value occurs for the rescaling parameter R ≈ 1.73, corresponding to a local
depolarisation rate of approximately 42.2% immediately prior to measurements. At
this rescaling we require a joint depolarisation rate ε of approximately 53.6% on the
CZ operation. This noise rate on the CZ is less than if we had considered no
rescaling of the input state i.e. where R = 1. Hence by considering some noise on the
measurement, we can reduce the amount of noise to make the CZ operation
S-separable.

5.4.2 Local depolarising noise for rescaled Bloch spheres

Figure (5.3) contains a plot obtained from the numerics showing the amount of local
depolarising noise needed to ensure CZ operations output separable rescaled Bloch
sphere states for the rescaling parameter R. We can see from figure(5.3) where we
have the rescaling parameter R ≈ 1.16, corresponding to a local depolarisation rate of
approximately 13.8%, immediately prior to measurements, we require a local depolar-
isation rate ε of approximately 39.5% on the CZ operation. This noise rate on the CZ
is less than if we had considered no rescaling of the input state. i.e. where R = 1.
Again by considering some noise on the measurement, we can reduce the amount of
noise to make the CZ operation S-separable.

5.4.3 Local dephasing noise for rescaled Bloch spheres

For the local dephasing noise case our results were unlike those for depolarising noise
in that we only were able to achieve separability of one output state, and only when
either there was no rescaling, or there was total dephasing noise on the CZ output. We
show this result in more detail as follows.

Suppose we chose the states α ⊗ β to be the input states 1
2(1 + X) ⊗ 1

2(1 + Z). The
sequence of operations expressed in eq. (5.4) produces a state proportional to the
following output state for our choice of α⊗ β, where we choose the noise model for the
CZ operation to be a local dephasing operation:

1⊗ 1 + (1− 2ε)RX ⊗ 1 + 1⊗ Z + (1− 2ε)
R

X ⊗ Z (5.10)
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Figure 5.2: Plots of joint depolarising noise verses rescaling parameterR, and equivalent
depolarisation noise on measurement/preparation.

(Top) Joint depolarising noise verses rescaling parameter R. By adding a
slight amount of noise to measurements (R > 1) we can achieve CZ output
separability with less joint depolarising noise acting on the CZ than for the
no measurement noise case (R = 1).

(Bottom) Joint depolarising noise verses equivalent depolarisation rate on
preparation (R < 1) for the higher curve, and noise on measurement (R > 1)
for the lower curve. The vertical axis labels noise required for quantum-
separable outputs from the CZ operation. Images taken from [7].
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Figure 5.3: Plots of local depolarising verses rescaling parameter R, and equivalent
depolarisation noise on measurement/preparation.

(Top) Local depolarising noise verses rescaling parameter R. By adding a
slight amount of noise to measurements (R > 1) we can achieve CZ output
separability with less local depolarising noise than for the no measurement
noise case (R = 1).

(Bottom) Local depolarising noise verses equivalent depolarisation rate 1−R
on preparation (R < 1) for the curve that starts higher, and measurement
(R > 1) for the curve that starts lower. The vertical axis labels noise
required for quantum-separable CZ outputs. Images taken from [7].
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Partial transposition has no effect on the form of eq. (5.10), so we must simply prove
that eq. (5.10) is positive in order to prove that the CZ operation is separable with
respect to the rescaled Bloch sphere state space. Two of the eigenvalues of eq. (5.10)
are:

(1− 2ε)
(
R− 1

R

)
, (1− 2ε)

( 1
R
−R

)
(5.11)

As one eigenvalue is the negative of the other, they can only be positive if they are
both zero, which requires that R = 1 or ε = 1

2 . In all other cases the output state in
eq. (5.10) is not positive and PPT meaning the CZ operation is not S-separable.

5.5 Cube-separability noise threshold results

This half of the chapter will look at the effect on the calculation of λCZε,S from taking
S to be the full dualM∗ - the Bloch cube for systems restricted to Pauli measurements
and preparations. We will first calculate λCZε,S without faulty measurements, and
then also factor in non-ideal preparation/measurement into the calculation of λCZε,S
for Bloch cubes at the end. We will again consider the three types of natural noise
from section (4.6.1) for both cases.

In [7] we construct an operation, (as described by a Choi-Jamiołkowski state) that
was cube-separable but not a quantum separability preserving/entanglement break-
ing/Clifford operation, therefore describing classically simulatable operations outside
previous regimes of operations that can be efficiently simulated classically. The hope
here was that the noise required to take the CZ gate to a cube-separable operation
would be less than that needed for CZ output quantum separability. If we could show
we need less noise to make our CZ cube-separable, then we have shown that we need
less noise than existing schemes to take a quantum computer to a system that can be
efficiently simulated on a classical computer.

Unfortunately for the case of ideal preparation/measurement, with all of the noise mod-
els considered, the noise thresholds derived have been the same, or slightly worse, than
those which could be achieved under existing schemes considering quantum separability.

The approach taken to calculate the noise threshold for Bloch cubes differed slightly
from that taken with the rescaled Bloch sphere. The methodology followed that laid
out in section (4.5.3) and used the symmetry arguments there to reduce the number of
input states that we needed to consider.

As we were no longer dealing with Bloch spheres we could not use the PPT criterion to
determine separability. We looked to consider the amount of noise required to ensure
Pauli measurements on the CZ output states returned positive probability outcomes.
Specific measurements were identified as requiring the least amount of noise for posit-
ivity, and we then manually identified and showed that Bloch-cube separability could
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be achieved at those noise rates by constructing a LHVM. That is, we showed that the
CZ output state could be expressed as a convex combination of Bloch cube product
states.

5.5.1 Joint depolarising noise for cubes

As described in section (4.6.1) the effect of the joint depolarising noise acting immedi-
ately on the output state of the CZ operation takes the state to the following table:

(1− ε)
4



1
(1−ε) zA zB C

xC yB −yA x

yC −xB xA y

z A B zC


(5.12)

If we again consider the effect of a Pauli X ⊗X measurement, the probability of ob-
taining +1 for the X measurement on the first particle, and −1 for the X measurement
on the second particle can be expressed in a modified expression to (4.6.2):

P (+1, −1) = 1
4 (1 + (1− ε)(xC − zA− yB)) (5.13)

When xC = −1, yB = 1, and zA = 1, we require ε to be at least 2
3 to ensure that

P (+1, −1) is positive. We can show that this rate of noise is sufficient by showing
that at this noise rate we can construct a LHVM for the system. Using the symmetry
arguments from section (4.5), we only need to consider one input state for Bloch cubes.
Here we choose the input state undergoing the CZ operation to have coefficients x =
y = z = A = B = C = 1, and show that the cube-separable state can be constructed
as follows:

1 1
3

1
3

1
3

1
3

1
3 −1

3
1
3

1
3 −1

3
1
3

1
3

1
3

1
3

1
3

1
3


= 1

3


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


+ 2

3


1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 0


(5.14)

Where the second term itself may be constructed in terms of cube-separable states as:
1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 0


∝

∑
p,q,r,s∈±1


1 p q r

−q −qp −q2 −qr
−p −p2 −pq −pr
s sp sq sr


(5.15)

The noise rate of 2
3 is the same as that required in the Bloch sphere/quantum separ-

ability case where a 2
3 joint depolarised noise rate is needed to take an EPR pair to a

quantum-separable state.
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5.5.2 Local depolarising noise for cubes

The effect of this noise acting immediately on the output of the CZ operation is to
take the input state to the following table representation:

(1− ε)2

4



1
(1−ε)2

zA
(1−ε)

zB
(1−ε)

C
(1−ε)

xC
(1−ε) yB −yA x
yC

(1−ε) −xB xA y
z

(1−ε) A B zC


(5.16)

Once again we consider looking at a Pauli X ⊗ X measurement. The probability of
obtaining +1 for the X measurement on the first particle, and −1 for the second takes
the form:

P (+1, −1) = 1
4
(
1 + (1− ε)(xC − zA)− (1− ε)2yB

)
(5.17)

Again, choosing the input state to have coefficients xC = −1, yB = 1, and zA = 1, our
expression becomes:

P (+1, −1) = 1
4(−2 + 4ε− ε2) (5.18)

The probability P (+1, −1) remains positive where ε≥ 2 −
√

2 ≈ 60%. At this noise
rate we can show that the output state has a LHVM as follows: We are free to choose
the input state to the CZ operation to have coefficients x = y = z = A = B = C = 1,
the output state has a LHVM that can be constructed as follows:

1
4W ∝ (1− 2(1− ε)− (1− ε)2)X + ((1− ε)− (1− ε)2)

(
Y + Y ′

)
+ 3(1− ε)2Z (5.19)

where each component corresponds to the tables:

W =


1 (1− ε) (1− ε) (1− ε)

(1− ε) (1− ε)2 −(1− ε)2 (1− ε)2

(1− ε) −(1− ε)2 (1− ε)2 (1− ε)2

(1− ε) (1− ε)2 (1− ε)2 (1− ε)2


, X =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Y =


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0


, Y ′ =


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0


, Z =


1 1

3
1
3

1
3

1
3

1
3 −1

3
1
3

1
3 −1

3
1
3

1
3

1
3

1
3

1
3

1
3


and each of the component tables have the following decomposition:

X = 1
4


1 1 1 1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1


+ 1

4


1 −1 −1 −1
1 −1 −1 −1
1 −1 −1 −1
1 −1 −1 −1


+ 1

2


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


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Y = 1
2


1 1 1 1
−1 −1 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1


+ 1

2


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



Y ′ = 1
2


1 −1 −1 −1
1 −1 −1 −1
1 −1 −1 −1
1 −1 −1 −1


+ 1

2


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


Z → see eq. (5.14) (5.20)

The noise rate of ε = 2 −
√

2 ≈ 59% is worse than that required to take an arbitrary
entangled two qubit quantum pure state into the set of quantum-separable states. Using
the PPT criterion this noise rate can be shown to be ε = 1− 1√

3 ≈ 42%.

5.5.3 Local dephasing noise for cubes

The effect of this noise acting immediately on the output of the CZ operation is to
take the state to the following table representation:

1
4


1 (1− 2ε)zA (1− 2ε)zB C

(1− 2ε)xC (1− 2ε)2yB −(1− 2ε)2yA (1− 2ε)x
(1− 2ε)yC −(1− 2ε)2xB (1− 2ε)2xA (1− 2ε)y

z (1− 2ε)A (1− 2ε)B zC


(5.21)

Measuring the Pauli operators X ⊗ X, the probability of obtaining +1 for the X

direction measurement on the first particle, and −1 for the second takes the form:

P (+1, −1) = 1
4
(
1 + (1− 2ε)(zA+ xC) + (1− 2ε)2yB

)
(5.22)

Where the input product cube-pure state has coefficients x = −C, z = A, y = B, this
expression takes the form:

P (+1, −1) = 1
4(1− (1− 2ε)− (1− 2ε)2) (5.23)

The noise rate of ε = 1 − 1√
2 ≈ 30% is sufficient to ensure this measurement remains

positive. For this amount of noise, a system whose input state is a product cube-pure
state, with coefficients x = y = z = A = B = C = 1 leads to a system with a LHVM
as follows:
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1
4F ∝

(
1− 2(1− ε)− (1− ε)2

)
G+

(
(1− ε)− (1− ε)2

) (
H+H′

)
+ 3(1− ε)2I (5.24)

where each component corresponds to the tables:

F =


1 (1− 2ε) (1− 2ε) 1

(1− 2ε) (1− 2ε)2 −(1− 2ε)2 (1− 2ε)
(1− 2ε) −(1− 2ε)2 (1− 2ε)2 (1− 2ε)

1 (1− 2ε) (1− 2ε) 1


, G =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



H =


1 1 1 1
0 0 0 0
0 0 0 0
1 1 1 1


, H′ =


1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1


, I =


1 1

3
1
3

1
3

1
3

1
3 −1

3
1
3

1
3 −1

3
1
3

1
3

1
3

1
3

1
3

1
3


Where the component tables have the following decomposition:

G = 1
4


1 1 1 1
−1 −1 −1 −1
−1 −1 −1 −1
1 1 1 1


+ 1

4


1 −1 −1 1
1 −1 −1 1
1 −1 −1 1
1 −1 −1 1



+1
4


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1


+ 1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



H = 1
2


1 1 1 1
−1 −1 −1 −1
−1 −1 −1 −1
1 1 1 1


+ 1

2


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



H′ = 1
2


1 −1 −1 1
1 −1 −1 1
1 −1 −1 1
1 −1 −1 1


+ 1

2


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


I → see eq. (5.14) (5.25)

This value of ε ≥ 1 − 1√
2 ≈ 30%, is the same as that when considering quantum-

separability. A local dephasing noise at this rate is sufficient to make the CZ operation
quantum separable.

71



5.6 Rescaled Bloch cube states

Earlier in this chapter in section (5.4) we found that adding some noise immediately
prior to measurements allowed for less noise needed to make a noisy CZ operation
separable with respect to a rescaled Bloch sphere state space. This rescaled state
space was defined without any restrictions to the available measurements. Within
this second half of the chapter we consider the effects of considering non-ideal meas-
urement/preparations in addition to measurement restrictions in defining our single
particle state-space.

The point being, that noise on the Pauli measurements might allow for a reduction
in the noise needed to make the CZ operation separable with respect to the rescaled
Bloch-cubes. As the three noise models we will look at are mixtures of Pauli operators,
the arguments presented in section (4.5.3) still apply, and it is sufficient to only consider
one product pure rescaled cube state.

Of particular relevance to magic state architectures are the rescaling noise factors that
scale the Bloch-cube states such that they still contain the set of T-type and H-type
magic states. The amount of noise required for separability of these state spaces would
indicate the amount of noise needed to classically simulate stabiliser state based com-
putation with access to pure magic states of those types (see section (2.3)). Where
R ≥ 1√

2 our rescaled Bloch cube contains both sets of T-type and H-type magic states,
where 1√

3 the rescaled Bloch cube contains just the set of T-type magic states. The
rescaling value R = 1√

3 also corresponds to the local depolarising noise required to take
a Bell state to a quantum-separable state. Given that Bell states are cube-separable
(see section (4.4)), for the rescaling parameter 1 ≥ R > 1√

3 , the device can have access
to quantum entangled pure Bell diagonal states.

We shall begin by describing the transformation of rescaled input cube states under the
action of noisy CZ gates. The sequence of transformations on our product cube pure
input states goes as; rescaling of the input states in terms of the rescaling parameter
R > 0, performing the CZ operation, enacting a noise model characterised by the
parameter r < 1, and finally undoing the rescaling operation.

As with the ideal preparation/measurement Bloch cube case our approach here was to
consider Pauli measurements that require the least amount of noise for positivity. We
then commented on whether we could obtain a LHVM and output separability at that
noise rate.
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5.6.1 Local depolarising noise for rescaled cubes

For the cube pure input states with the Bloch vectors (x, y, z) and (A, B, C), under
the rescaling factor R our cube-pure inputs are transformed as follows:

1 A B C

x xA xB xC

y yA yB yC

z zA zB zC


→


1 RA RB RC

Rx R2xA R2xB R2xC

Ry R2yA R2yB R2yC

Rz R2zA R2zB R2zC


(5.26)

Under the action of the CZ operation eq. (5.26) is transformed to:
1 R2zA R2zB RC

R2xC R2yB −R2yA Rx

R2yC −R2xB R2xA Ry

Rz RA RB R2zC


(5.27)

The local depolarising noise at a rate of ε takes eq. (5.27) to:


1 (1− ε)R2zA (1− ε)R2zB (1− ε)RC

(1− ε)R2xC (1− ε)2R2yB −(1− ε)2R2yA (1− ε)2Rx

(1− ε)R2yC −(1− ε)2R2xB (1− ε)2R2xA (1− ε)2Ry

(1− ε)Rz (1− ε)2RA (1− ε)2RB (1− ε)2R2zC


(5.28)

Following undoing the rescaling operation R:


1 (1− ε)RzA (1− ε)RzB (1− ε)C

(1− ε)RxC (1− ε)2yB −(1− ε)2yA (1− ε)2 1
Rx

(1− ε)RyC −(1− ε)2xB (1− ε)2xA (1− ε)2 1
Ry

(1− ε)z (1− ε)2 1
RA (1− ε)2 1

RB (1− ε)2zC


(5.29)

For cube-pure input states where x, y, z, A, B, C ∈ ±1, the table (5.29) becomes:
1 (1− ε)R (1− ε)R (1− ε)

(1− ε)R (1− ε)2 −(1− ε)2 (1−ε)2

R

(1− ε)R −(1− ε)2 (1− ε)2 (1−ε)2

R

(1− ε) (1−ε)2

R
(1−ε)2

R (1− ε)2


(5.30)

As before we need to ensure that all possible measurements available have must positive
probabilities for our generalised theory to be consistent. From numerics we identify two
pairs of Pauli measurements as requiring the most amount of noise for positivity. The
probabilities of measuring, −1 for X, −1 for Y , are given by the Born rule as:

1
4
(
1− (1− ε)2 − 2(1− ε)R

)
≥ 0
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Figure 5.4: Local depolarising noise ε on the vertical axis against the rescaling para-
meter R on the horizontal axis. The increasing curve corresponds to eq.
(5.31) derived from ensuring the positivity of −1 Pauli X, −1 Y , meas-
urement. The decreasing curve corresponds to eq. (5.32) looking at the
positivity of +1 for X, −1 for Z, measurements. The regions of valid values
of ε, R ensuring both measurement probabilities remain positive lie below
the two curve. The dotted line corresponds to ε = 1 − R. Image has been
taken from [7].

ε ≥ 1−
√

1 +R2 −R (5.31)

Similarly getting +1 for a X, and −1 for a Z measurement have the probabilities:

1
4

(
1 + (1− ε)R− (1− ε)− 1

R
(1− ε)2

)
≥ 0

ε ≥ 1−
R− 1 +

√
(R− 1)2 + 4

R(
2
R

) (5.32)

These inequalities form the probabilities that require the smallest value of ε to ensure
cube separability, and may be plotted as in figure (5.4).

We can see from figure (5.4) that the line corresponding to eq. (5.31), increases mono-
tonically for R > 1, therefore make choosing R > 1 (allowing for imperfect measure-
ments) unnecessary. We will therefore restrict ourselves to only looking at R ≤ 1. As
we can see from figure (5.4) the smallest ε required to ensure both states remain posit-
ive is given at the value of ε equalling approximately 39.29%, for noise on preparation
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1 − R equalling approximately 47.99%. This value of ε is smaller than the value of
ε = 42.27%, shown in earlier calculations to ensure that a CZ operation is quantum
separable.

We do not believe [7] from numerical investigations that the value of ε= 39.29% could
correspond to a set of valid LHVM for the set of measurements available. It is believed
that eq. (5.31) only has a LHVM for R ≥ 54.49% and ε = 40.61% approximately.
This value of R is still sufficiently large to allow for the magic states to still remain
within the rescaled Bloch cube, the H-type magic states are contained in a cube of size
R = 1√

2 , and the T-type in R = 1√
3 .

The rescaling parameters R = 1√
2 , and R = 1√

3 , correspond to the local depolarising

values ε = 1 −
√

3−1√
2 ≈ 48.24%, and ε = 1 − 1√

3 ≈ 42.27%, respectively. This last
value of ε means that magic state architectures with T-type magic state distillation as
described in section (2.3) can become classically simulatable where CZ gates and Pauli
eigenstate preparation are subject to local depolarising noise at a rate of approximately
42.27%.

5.6.2 Joint depolarising noise for rescaled cubes

We will now consider state transformations as in eq.’s (5.26) to (5.30) using joint de-
polarising noise instead of local depolarising. The final output state immediately prior
to measurement can be expressed using the following table:

1 (1− ε)R (1− ε)R (1− ε)
(1− ε)R (1− ε) −(1− ε) (1−ε)

R

(1− ε)R −(1− ε) (1− ε) (1−ε)
R

(1− ε) (1−ε)
R

(1−ε)
R (1− ε)


(5.33)

Once again numerical investigation helps us determine two Pauli measurement prob-
abilities that allow us that are being important in calculating the values of ε and R for
which we get a cube-separable output. The probability of measuring −1 for X, −1 for
Y , using the Born rule can be gives us:

1
4 (1− (1− ε)− 2(1− ε)R) ≥ 0

ε ≥ 1− 1
2R+ 1 (5.34)

The second important measurement, measuring +1 for a Y , and −1 for a Z measure-
ment gives the probabilities:

1
4

(
1− (1− ε)− (1− ε)

R
+ (1− ε)R

)
≥ 0
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Figure 5.5: Joint depolarising noise ε on the vertical axis against the rescaling para-
meter R on the horizontal axis. The increasing curve corresponds to eq.
(5.34) derived from ensuring the positivity of −1 Pauli X, −1 Y , meas-
urement. The decreasing curve corresponds to eq. (5.35) looking at the
positivity of +1 for Y , −1 for Z, measurements. The regions of valid values
of ε, R ensuring both measurement probabilities remain positive lie above
the two curves. Numerical investigations lead us to believe the intersection
point of the two curves is achievable by a LHVM. This intersection point
have ε, and R values of 1√

3 ≈ 58%, and
√

3
(2+
√

3) ≈ 46% respectively. Image

has been taken from [7].

ε ≥ 1− 1
1 +

(
1
R

)
−R

(5.35)

Plotting the inequalities in figure (5.5) shows that as the inequalities in eq. (5.34) are
monotonically increase for larger R, to find the smallest noise value for separability we
can restrict ourselves to R < 1.

We can see from numerical results that the inequality (5.34) for local depolarising noise
on the preparation of cube states, is achievable by a LHVM for a value of 1 − R =
1 − 1√

2 ≈ 29.29%, corresponding to the value of ε = 1 − 1√
2+1 . We therefore need a

joint depolarising noise rate ε of approximately 58.58%. We can see that for this value
of R that the pure T-type and H-type magic states remain within the rescaled Bloch
cube. Therefore for a magic state architecture based quantum system with access to
both T and H-type magic states, we can show that the system is classically efficiently
simulatable if there is at least approximately 29.29% local depolarising noise in Pauli
eigenstate preparations, and at least approximately 58.58% joint depolarising noise on
the CZ gates forming the system.
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5.6.3 Local dephasing noise for rescaled cubes

Under local dephasing noise the final output state has the table representation:
1 (1− 2ε)R (1− 2ε)R 1

(1− 2ε)R (1− 2ε)2 − (1− 2ε)2 (1−2ε)
R

(1− 2ε)R − (1− 2ε)2 (1− 2ε)2 (1−2ε)
R

1 (1−2ε)
R

(1−2ε)
R 1


(5.36)

For any R 6= 1, we only have rescaled cube state separability of the output state when
the dephasing is total. i.e. where ε = 1

2 . This is easier to see if we explicitly calculate
the measurement probability for measurements of −1 for Z, and +1 for X, or −1 for
Z, and −1 for X:

1
4

(
1− 1 + (1− 2ε)R− (1− 2ε)

R

)
≥ 0 (5.37)

1
4

(
1− 1− (1− 2ε)R+ (1− 2ε)

R

)
≥ 0 (5.38)

We can see from eq. (5.37) and eq. (5.38) that unless we have ε = 1
2 - total dephasing,

our generalised theory is not consistent with the measurement outcomes from the state
as we would get negative probabilities for measurements.

5.7 Summary of Chapter (5)

This chapter looked at another type of measurement restriction - fault on input pre-
paration/output measurement. We saw how such faults allowed us to define new state
spaces characterised by a rescaling parameter that described the amount by which the
unmodified state space was shrunk or enlarged. Rescaling was considered as another
variation in the calculation of λCZε,S .

The first half of this chapter studied the Bloch sphere modified for faulty prepar-
ations/measurements. Continuing on from section (5.2), we began by describing the
methodology used in calculating λCZε,S for rescaled Bloch spheres. Symmetries specific
to the Bloch sphere reducing the problem were stated, and the following subsections
presented numerical results for the calculation of λCZε,S for each noise model for varying
rescaling parameter.

For both the joint depolarising noise, and local depolarising noise case it was observed
that adding noise to the measurement reduced the amount of noise required for separ-
able output. For local depolarising noise, we required slight noise on the measurements
of R ≈ 1.16 with a noise rate of ≈ 39.5%, and for joint depolarising, more noise on
measurements with R ≈ 1.73, and a corresponding noise rate of ≈ 53.6%. In the local
dephasing case it was observed that adding any fault to preparation/measurement re-
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quired maximal noise to ensure separable output. We were not able to obtain analytical
solutions in any of the cases.

In the second half we focused on the Bloch cube - the largest state space returning posit-
ive probabilities for Pauli measurements. We started by calculating λCZε,S analytically
for each noise model in the instance where there was no preparation/measurement fault.
In both the joint depolarising, and local dephasing cases we require the same amount
of noise as the Bloch sphere case. In the local depolarising case we had worse results
requiring more noise.

We then looked at the Bloch cubes modified to account for faulty preparations and
measurements. In the local depolarising and joint depolarising noise cases we observed
that the inclusion of noise in the preparation allows for a reduction in the noise needed
for separability. For local depolarising noise we believed we had a valid LHVM for
output states with noisy preparation of 1−R ≥ 54.49% and noise rates of ε ≈ 40.61%.
This value is less than the ε ≈ 42.26% required for quantum separability. With joint
depolarising, noise numerics showed that we had a valid LHVM output states with pre-
paration noise of 1−R ≈ 29.29% and a corresponding noise rates of ≈ 58.58% less than
the ≈ 66.67% needed for quantum separability. As with the rescaled Bloch spheres, in
the local dephasing case we observed that adding any fault to preparation/measurement
required maximal noise to ensure separable output.

There was no improvement to the threshold value as hoped from considering the Bloch
cube state space over Bloch sphere. For the depolarising noise models both Bloch
cubes and spheres achieved similar threshold values when allowing for noise on prepar-
ation/measurement, although the sphere case had noise on measurements enlargening
the initial state space, and the cube case had noise on preparation shrinking the initial
state space. This result suggests that state spaces smaller/larger in particular “direc-
tions” are preferred, lending more towards lowering the noise threshold than others,
for the noise models considered. What these directions are is unclear from the ana-
lysis here, and still leaves open the question if there exists a state space S between
Q ⊆ S ⊆M∗ that gives lower threshold values.
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6 The truncated cube state space

6.1 Introduction

The previous chapter looked at the most straightforward choice of S as the full dual
to Pauli measurements with little gained in terms of the reduction of the noise needed
for S-separability of the CZ gate. We did show there exists a shape S requiring less
joint depolarising noise for CZ S-separability than the Bloch sphere. This S was the
rescaled Bloch cube - a shrunken version of the Bloch cube, rescaled by a factor of
R = 1√

2 ≈ 0.707.

Previously we considered state spaces defined in terms of restrictions on measurements,
either through inherent restrictions on the measurements available, or through noise
on measurements. In this chapter we relax our state space definition, requiring that S
satisfies Q ⊂ S ⊂ M∗ where M∗ is the Bloch cube. We maintain the restriction to
Pauli measurements and require S satisfy the restrictions listed in section (4.5), but we
no longer consider all possible operators that return positive probabilities as forming
the state space. As there are infinitely many choices for S we instead choose to focus
on one - the truncated cube state space.

While we believe that it is not the optimal choice for S requiring the least possible
noise for CZ output separability, it does require less joint depolarising noise than any
other S considered up to this point and is the best candidate we have. The results
presented in this chapter can be found in [8]. It is important to note that within this
chapter we won’t be considering any noise on measurements and that for all truncated
cube state spaces R = 1.

6.2 The truncated cube state spaces

We shall now define the set of truncated cube single particle state spaces. These spaces
can be formed by taking the Bloch cube and “slicing-off” each of its eight vertices by
varying degrees, quantifying the amount sliced off each vertex by a parameter c.
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Figure 6.1: Plot of truncated cube state spaces with varying c; c = 0 (top-left), c = 0.25
(top-right), c = 0.5 (bottom-left), c = 1 (bottom-right).

Definition 6.2.1. The truncated cube state spaces.

Truncated cube state spaces (denoted TRUNC(c)) are defined to be the convex
hulls of vertices represented by the following Bloch vectors with i, j, k ∈ {0, 1}:(

(−1)ic, (−1)j , (−1)k
)
,
(
(−1)i, (−1)jc, (−1)k

)
,
(
(−1)i, (−1)j , (−1)kc

)
(6.1)

where the truncation parameter c, satisfies 0 < c ≤ 1.

Figure (6.1) shows plots of truncated cube state spaces for varying values of c. It is
important to note that TRUNC(c) becomes a Bloch cube when c = 1, and a cubeoc-
tahedron for c = 0.

We will denote the number of vertices a given TRUNC(c) has by N . This value can
vary based on the value of c, with N = 12 for c = 0, N = 24 for 0 < c < 1, and N = 12
for c = 1.
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6.2.1 Input states from symmetry arguments

It is possible to reduce the number of product states we need to consider by considering
the symmetry arguments detailed in section (4.5.2). We therefore only need to look at
the noise needed to ensure separability for the following 6 product input states with
the Pauli tables:

%1 : 1
4


1 c 1 1
c c2 c c

1 c 1 1
1 c 1 1


%2 : 1

4


1 1 c 1
c c c2 c

1 1 c 1
1 1 c 1


%3 : 1

4


1 1 1 c

c c c c2

1 1 1 c

1 1 1 c



%4 : 1
4


1 1 c 1
1 1 c 1
c c c2 c

1 1 c 1


%5 : 1

4


1 1 1 c

1 1 1 c

c c c c2

1 1 1 c


%6 : 1

4


1 1 1 c

1 1 1 c

1 1 1 c

c c c c2


(6.2)

6.3 Pauli measurement positivity necessity bounds

We are interested in understanding the relationship between the c parameter and the
amount of noise needed to ensure that the noisy CZ gate becomes separable with
respect to TRUN(c). We will look to determine what the optimal c value is requiring
the least noise.

As before, we can use positivity to check that the noise rates are large enough so that at
least there is enough noise to ensure positivity of local Pauli measurements probabilities
as we checked in Chapter (7). In other word we are checking that the following is true
for all relevant % ∈ TRUNC(c)⊗2:

tr
[
CUBE(α = 1)∗⊗2CZε(%)

]
≥ 0 (6.3)

From working through each % and CUBE(α = 1)∗⊗2 element, we obtain an inequality
relating necessary noise ε to the truncated cube parameter c:

ε ≥ 1 + c2

2 + c2 (6.4)

Figure (6.2) shows a plot of the amount of noise needed to ensure Pauli measurement
positivity verses truncation parameter c.
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Figure 6.2: Plot of truncated cube state spaces with varying c values plotted against
the amount of joint depolarising noise to ensure positivity of local Pauli
measurements on the output of the noisy CZ gate.

6.4 Least noise rate as a linear programming problem

Up to this point we have shown various noise rates are sufficient by using educated
guesses at what the convex sum of separable states that equal the noisy CZ gate
output state are.

Here we will show that if S is a convex polytope (i.e. it has a finite number of extrema),
and there is joint depolarising noise is acting on the CZ gate, then it is possible to
determine the amount of noise needed to ensure CZ gate S-separability, and work
out the convex decomposition of the separable CZ output state by transforming the
problem into a linear programming problem (LPP).

A good discussion of linear optimisation can be found in [64, 65].

In the next section we will be outlining the simplex method of solving LPP’s, we will
then present numerical results showing the necessary and sufficient rates of noise needed
to ensure CZ separability with respect to TRUN(c) state spaces.

After, we will show using the numerical results that we can arrive at a set of algebraic
necessary bounds, and for specific values of c, attain exact algebraic convex decompos-
itions of separable CZ output.

Suppose we have a single input product state % ∈ S⊗2. The state % transforms under
the action of a noisy CZ gate effected by joint depolarising noise at a rate ε as:

%→ %′ = (1− ε)CZ(%) + ε

41
⊗2 (6.5)
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If ε is sufficiently large then %′ ∈ S⊗2, i.e. %′ can be expressed as a convex sum of the
N2 extrema ei of S⊗2 as:

(1− ε)CZ(%) + ε

41
⊗2 =

∑
j

ηjej where 0 ≤ ηj ≤ 1,
N2∑
j=1

ηj = 1 (6.6)

Rather than using the usual Pauli table notation, we can represent each state in terms
of a vector using the Pauli table elements as its elements. The general two particle state
A′ in eq. (4.22) may therefore be expressed as a 16 element column vector, transposed
here as:

(6.7)

We will refer to a vector rA′ formed from the last 15 elements of (6.7) as a product
Bloch vector of A′. Just as we can geometrically visualise normal Bloch vectors, we
can visualise product Bloch vectors in a two-particle analogy, where each of the 15
dimensions corresponds to each Pauli tensor product direction i.e. the X⊗1 direction,
Y ⊗ Z, 1⊗X and so on.

We can use this vector form in eq. (6.7) to rearrange eq. (6.6) as

ε

(
CZ(%)− 1

⊗2

4

)
+

N2∑
j=1

ηjej︸ ︷︷ ︸
Ax

= CZ(%)︸ ︷︷ ︸
b

(6.8)

where the vector x = (ε, η1, η2, . . . , ηN2)T, and A is a 16× (N2 + 1) dimensional matrix
formed of vectors of the states as:


...

CZ(%)− 1
⊗2

4
...

 ,


...
e1
...

 ,


...
e2
...

 ,


...
e3
...

 , · · · ,


...
e(N2)
...


 (6.9)

We therefore have a system of linear equations, with potentially infinite solutions. In
line with problem (4.3.4) in section (4.3), for each of the input states, we are looking
to find a vector x < 01 solving Ax = b such that ε is minimised. Note that where
0 < ε < 1 and the η′js satisfy the constraints in eq. (6.6) the minimal ε value would
correspond to the amount of joint depolarising noise necessary to take the CZ output
state back into the convex shape S⊗2. The ε values for each product input would
finally be compared and the largest will be taken to be the λCZε,S value. It turns out
that problem of determining λCZε,S as we have laid out here is a linear programming
problem (LPP) that can be put into the standard form:

1Each element of x is greater than 0.
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Definition 6.4.1. Standard form of linear programming problems.

Linear programming problems look to optimise the value of an objective
function z ∈ R, a linear function acting on a set of decision variables xj ∈ R
that themselves are subject to a finite number of linear constraints. In this
thesis, a LPP in the following form, is said to be in standard form:

maximise : z = cTx (6.10)

subject to : Ax = b (6.11)

x < 0 (6.12)

where x is an n component vector of decision variables as (x1, x2, . . . , xn)T,
the cost vector c a n component vector, A a m× n dimensional matrix, and b a
m component vector that will be assumed to be < 0.
As x ∈ Rn, and b ∈ Rm, A specifies a linear mapping from Rn to Rm.

We will, for our LPP set our equality constraints to be represented in the matrix form
as in eq. (6.9), and choose an objective function dependent only on ε by choosing
a cost vector cT = (1, 0, 0, 0, . . .). As our decision variables correspond to a joint
depolarising noise rate and convex coefficients, our choice of x = (ε, η1, η2, . . . , ηN2)T <

0. Finally, the requirement that
N2∑
j=1

ηj = 1 is encapsulated within the first of our

equality constraints in eq. (6.11) (the first row of A).

Our LPP as formulated here is still not in standard form; we require taking two addi-
tional steps:

1. In our LPP, we are looking to minimise our objective function z = cTx = ε, we
can however use the objective function:

maximise : z = cTx = (−1, 0, 0, 0, . . .) · (ε, η1, η2, . . . , ηN2)T = −ε (6.13)

2. If some element bi of b is negative then we can simply multiply the ith constraint
by −1, that is, we can multiply the ith row of A by −1.

6.5 Outline of the simplex method

6.5.1 Definitions and assumptions

Within this section we will outline how the simplex method can be used to solve LPPs.
This was the specific method used later in the chapter. Readers interested in the results
may wish to skip to section (6.6). Note that the theorems stated in this section can be
found in the literature [65].
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We will avoid discussing non-essential details by making a number of assumptions at
the outset, starting with the following:

Assumption 6.5.1. Full rank assumption.

For a LPP in standard form, with an equality constraint matrix A of
dimensional m× n, it will be assumed that m < n, and that rank(A) = m.

We make the assumption (6.5.1) to avoid inconsistencies in the equality constraints,
and instances where there are no sets of decision variables satisfying eq. (6.11). For
our specific optimisation problem m is always 16, and the simplest2 single particle state
space satisfying octahedral symmetry and containing the entire Bloch sphere, would be
the Bloch cube with a corresponding A that has n = 64 + 1 columns.

We will now proceed by defining the following types of solutions:

Definition 6.5.2. Solutions to systems of linear equalities.

A solution is defined to be any vector x ∈ Rn satisfying a set of linear equalities
Ax = b as in eq. (6.11).

Definition 6.5.3. Feasible solutions and the feasible region of solutions

Solutions to the LPP satisfying both the constraints eq.’s (6.11), and (6.12), are
called feasible solutions. The set of all possible feasible solutions is called the

feasible region.

Definition 6.5.4. The optimal objective function value and optimal solution.

The optimal objective function value zopt is the least upper bound value the
objective function (6.10) can take for the entire feasible region. An optimal

solution xopt to an LPP is the feasible solution that attains the optimal objective
function value, that is z(xopt) ≥ z(x) for all feasible solutions x in the feasible
region.

We will now define a very important sub-set of feasible solutions that will later be
shown to be key in finding the optimal solution to the LPP using the simplex method.

2With fewest vertices.
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Definition 6.5.5. Basic solutions, degeneracy and basic feasible solutions.

Suppose we have a system of linear equalities Ax = b, with rank(A) = m < n.
We can form a smaller square matrix B out of m columns from A, denoting the
rectangular matrix formed from the remaining (n−m) as R. We are free to
rearrange columns of A, elements of x and b, and can thus rewrite Ax = b as:

Ax = (B + R)x = (BxB + RxR) = b (6.14)

Here x = (xB, xR)T, where xB and xR denote vectors of dimension m and
(n−m) respectively.
If B is a non-singular matrix and xR is a (n−m) element zero vector 0R, then

xB = B−1b (6.15)

and the solution x = (xB, 0R)T is called a basic solution of the system. The
elements xBi, i ∈ {1, 2, . . . ,m}, forming xB are termed basic variables, and xRl,
l ∈ {1, 2, . . . , n−m}, non-basic variables.

If one or more elements of xB are zero then the basic solution x is degenerate.

If basic solutions also satisfy the constraint in eq. (6.12) then they are termed
feasible basic solutions, and like basic solutions may also be degenerate.

It is worth noting that the solutions achieving the optimum may not be unique. Degen-
erate feasible solutions can have the same objective function value. While it is possible
to take degeneracy into consideration, we will make the following assumption to avoid
unnecessary technical detail in this outline:

Assumption 6.5.6. All basic feasible solutions are non degenerate

It will be assumed that every basic feasible solution to the LPP is a non
degenerate basic feasible solution.

Note that degeneracy was taken in account when performing the calculations.

6.5.2 The fundamental theorem of linear programming

We will now present the theorems central to linear programming as an optimisation
method, as they provide structure to the feasible region of solutions.
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Theorem 6.5.7. The fundamental theorem of linear programming.

For an LPP in standard form, with an equality constraint matrix A of
dimensional m× n, and rank m, we have that:

1. If there exists a feasible solution, then there exists a basic feasible solution.

2. If there exists an optimal feasible solution, then there exists an optimal
basic feasible solution.

In other words the optimal solution occurs at a basic feasible solution. The proof of
theorem (6.5.7) can be found in the literature [65].

Theorem (6.5.7) transforms the task at hand into one where we are searching over the
basic feasible solutions to the system for the one that is optimal. For an A matrix of
dimensional m× n, we have at most(

n

m

)
= n!
m!(n−m)! (6.16)

ways of selecting sets of m columns, that is, we have this many basic solutions to eq.
(6.11). It is worth noting that not all of these basic solutions may be feasible and so
this must be taken to consideration.

Theorem 6.5.8. Convexity of feasible regions.

The set of feasible solutions forms a convex set.

Proof. Let x1 and x2 be two feasible solutions to the linear constraints in eq.’s (6.11),
and (6.12). Let x3 = tx1 + (1− t))x2, by linearity x3 is also a feasible solution to eq.’s
(6.11), and (6.12). Any feasible solution can be expressed as a probabilistic mixture of
other solutions, so the feasible region must be convex.

Theorem 6.5.9. Basic feasible solutions and feasible region extrema.

The basic feasible solutions (BFS) to a LPP correspond to extremal points of the
associated feasible region, and vice-versa.

We can see from this theorem that we are geometrically searching over the vertices of
the feasible region for optimal extrema for the vertex.

Most LPP optimisation methods in the literature [65] break the task down into two
phases; the first to identify any basic feasible solution from which to start the search
procedure, and second, the actual search procedure itself, looking to identify adjacent
basic feasible solutions with larger objective function values. The second phase is then
repeated until the optimal objective function value is arrived at.
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We may simplify things here by skipping the first phase entirely as we already know a
basic feasible solution - if we have full joint depolarising noise acting on the CZ gate
then the output will be a maximally mixed product state. That is, we have our initial
BFS by setting ε = 1 and choosing B to be formed from vectors formed from the first
column of A and 15 ej vectors that average over to give:(1

4 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)

T

Their corresponding nj values can be weighted depending on their contribution so that
they sum to 1. We can see it is a BFS as it satisfies eq.’s (6.8), and (6.11), (6.12). When
we performed the calculation numerically, we let the solver choose its own starting basic
feasible solution automatically.

The next section will look at the second phase, identifying better BFS, and the optimal
solution.

6.5.3 Improving basic feasible solutions

We will look at the value of the objective function z where x is taken to be a basic
or basic feasible solution. As a basic solution x can be expressed in terms of basic
variables as x = (xB, 0R)T, the objective function thus becomes

z = cTx = cT
BxB + cT

R0R = cT
BxB (6.17)

where cT
B is called, the reduced cost vector, and is a m component vector of elements of

cT corresponding to the non-zero basic variables of x.

From assumption (6.5.1), as rank(A) = m we can choose m columns from A to form a
set of basis vectors. Any m element vector can therefore be expressed as a linear sum
of this basis set of columns.

Suppose we selected as our basis the m columns forming the B matrix associated to
some basic feasible solution (as in eq. (6.14)). We will denote the columns forming B

as β
i
where i ∈ {1, 2, . . . ,m}. A column vector aj can be written in terms of our basis

as:
aj =

m∑
i=1
yijβi ∀ j ∈ {1, 2, . . . ,n} (6.18)

Let y
j

= (y1j , y2j , . . . , ymj)T, eq. (6.18) can be expressed as

aj = By
j
→ y

j
= B−1aj (6.19)

Given a starting BFS as in eq. (6.15) we will obtain an improved BFS by replacing the
rthcolumn of B denoted β

r
with a suitable non-basic column of A - aj to give a new

BFS solution with a better objective function value. If the component yrj associated
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to aj and βr as in eq. (6.18) is not equal to zero then aj is suitable to replace β
r
and

form a new column basis.

We will look at conditions on the choice of aj and βr to ensure feasibility:

From eq. (6.18) we have:

β
r

= 1
yrj

aj −
m∑
i=1
i 6=r

yij
yrj

β
i

where yrj 6= 0 (6.20)

By replacing the column the basic variables vector xB = (xB1 , . . . , xBm)T associated to
the basic feasible solution x transforms from

BxB =
m∑
i=1
xBiβi = b (6.21)

to the following: (
xBr
yrj

)
aj +

m∑
i=1
i 6=r

(
xBi − xBr

(
yij
yrj

))
β
i

= b (6.22)

We have in effect arrived at a new basic solution x̃ with decision variables x̃i as:

x̃i =


xBi − xBr

(
yij
yrj

)
i = 1, 2, . . . ,m(

xBr
yrj

)
i = j

0 i = m+ 1, . . . , n

(6.23)

Note that where i = r, x̃r = 0. The new basic solution x̃ takes the form:

x̃ = (x̃1, x̃2, . . . , x̃r−1, 0, x̃r+1, . . . , x̃m, 0, . . . , 0, x̃j , 0, . . . , 0)T (6.24)

In order for x̃ to be a valid basic feasible solution it must satisfy eq. (6.12), that is, we
require: xBi − xBr

(
yij
yrj

)
≥ 0 i = 1, 2, . . . ,m(

xBr
yrj

)
≥ 0 i = j

(6.25)

We will therefore choose a column β
r
to replace, by first choosing an aj and β

r
and

where
(
xBr
yrj

)
≥ 0, and secondly where

(
xBr
yrj

)
= min

i=1,2,...,m

{(
xBi
yij

)
: yij > 0

}
(6.26)

so as to ensure feasibility of the new solution.
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We are free to rearranged the elements of x̃ so the sub-vector x̃B becomes

x̃B = (x̃1, x̃2, . . . , x̃r−1, x̃j , x̃r+1, . . . , x̃m)T (6.27)

x̃Bi =

xBi − xBr
(
yij
yrj

)
i = 1, 2, . . . ,m & i 6= r(

xBr
yrj

)
i = r

(6.28)

Choosing columns with better objective function values

The transformation from one basic feasible solutions to another is pointless if the new
basic feasible solution has an objective function value equal to or less than that of the
original basic feasible solution. We will now show that we can place restrictions on
the choices of aj so as to ensure we move to a solution vertex with a better objective
function values. Let us consider the objective function in eq. (6.17), with a new basic
feasible solution it is transformed as

z = cT
BxB → z̃ = c̃T

Bx̃B (6.29)

Here for i = 1, 2, . . . ,m and i 6= r, c̃Bi = cBi , and for i = r, c̃Br = cj . We can therefore
expand z̃ as:

z̃ =
m∑
i=1
c̃Bi x̃Bi =

m∑
i=1
i 6=r

cBi x̃Bi + cj x̃Br

=
m∑
i=1
i 6=r

cBi

(
xBi − xBr

(
yij
yrj

))
+ cj

(
xBr
yrj

)

= cT
BxB −

(
xBr
yrj

)
cT
Byj + cj

(
xBr
yrj

)
= z +

(
xBr
yrj

)
(cj − cT

BB−1aj︸ ︷︷ ︸
zj

)
(6.30)

The numbers cj − zj , (where zj = cT
BB−1aj) are termed reduced cost coefficients with

respect to the matrix B, we see that z̃ > z only when cj − zj > 0. We will therefore
choose a new column aj such that the corresponding cj − zj > 0 and also the choice
also satisfies yrj > 0, yij > 0 to ensure feasibility from eq. (6.25). As xBr > 0 from the
assumed non-degeneracy of our basic feasible solutions we have z̃ > z.

Finally the following two theorems summarise the simplex method:
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Theorem 6.5.10. The steps taken to arrive at better basic feasible solutions.

Suppose we have a basic feasible solution x = (xB, 0R)T with a corresponding B

matrix and objective function z. If (a) there exists a column from A not in B

satisfying cj − zj > 0 with (b) at least one yij > 0, then it is possible to arrive at
a new basic feasible solution with a larger objective function value z̃ by replacing
one of the columns in B with aj. As we are only considering non-degenerate
basic feasible solutions z̃ > z.

Theorem 6.5.11. The optimal basic feasible solution.

Suppose we have a basic feasible solution x =
(
xT
B, 0T

R

)T
with objective function

value z = cT
Bx

T
B. If zj > cj for all columns aj forming A, then z > z̃ in every

case and x is said to be optimal.

6.6 Numerical solutions for truncated cubes

In this section we will use computational implementations of the simplex method to
calculate the amount of joint depolarising noise required for CZ-separability. The single
particle state space S will be set to TRUNC(c). We remind the reader that we are
interested in the relationship between c and the amount of noise needed for separability,
in particular if there exists some c value that can lead to lower amounts of noise.

For each value of c, and chosen product input state, we have a new LPP. In order to
calculate a numerical value for λCZε,TRUNC(c) we follow the procedure:

1. Select a numerical value for c, and a product input state from eq. (6.2).

2. Perform the necessary operations on the product input states to construct the
standard form matrices and vectors for the LPP.

3. Input the matrices and vectors into a computational implementation of the sim-
plex method.

4. The numerical solver outputs for our chosen input state and c value, an optimal
solution to that particular LPP. This solution is given in terms of a list of
optimal basic variables xB and associated B matrix columns. We will label
the optimal basic solution and basic matrix obtained from the numerics and
associated with input state k as xBnum, k and Bnum, k respectively. The vector
xBnum, k , Bnum, k chosen c value, and product input state %k are then recorded.
Most importantly, it is worth remembering that the first element of the basic
solution is ε our joint depolarising noise rate, the rest are convex coefficients.

5. Steps 1 − 4 are repeated for the same c value, but with other input states from
(6.2).
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Figure 6.3: Plot of truncated cube state spaces with varying c values plotted against
the amount of joint depolarising noise to ensure CZ gate separability with
respect to the TRUNC)(c) state space.

6. Finally the ε values for each input state are compared and the largest ε value as is
selected as being the λCZε,TRUNC(c) value, i.e. the least amount of noise required
to ensure CZ separability for all possible product input states for that value of c.

Figure (6.3) shows a numerical results plot of the amount of joint depolarising noise
needed for separability with the truncation parameter c. We see from the numerics
that for the lowest value of λCZε,TRUNC(c) is approximately 0.556 around c = 0.5.

6.6.1 Determining expressions linking c and λCZε,TRUNC(c)

For the remainder of the chapter we will improved on the numerical result by showing
how we can arrive at a symbolic expression relating c to λ(CZε, TRUNC(c)). We
remind the reader that each input state %k from eq. (6.2) requires different amounts of
noise to ensure CZ output separability and that the input %k requiring the most noise
would change depending on the value of c

Rather than performing steps 5 and 6 to in section (6.6) determine a numerical value of
λCZε,TRUNC(c), the recorded numerical vector xBnum, k and Bnum, k matrix associated
with each product input state can be used to determine symbolic necessary bounds
like:

ε ≥ Γ%k(c) where c′ ≤ c ≤ c′′ (6.31)

Where for a certain range of values of c, Γ is a function of c, and is associated to %k.
As usual, ε is the amount of noise needed to ensure the CZ gate output from the %k
input remains separable.
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Bringing together each function Γ%k we have:

λ(CZε, TRUNC(c)) = max (Γ%1 ,Γ%2 ,Γ%3 ,Γ%4 ,Γ%5 ,Γ%6) (6.32)

We will explain how we can arrive at each Γ%k function as following: To every %k we
can associate an optimal face of the convex set TRUNC(c)⊗2 corresponding to the
face at which the output state enters TRUNC(c)⊗2 given enough joint depolarising
noise. The optimal face can be viewed as a subset of some 14 dimensional hyperplane
in the 15 product Bloch space. Every extrema of TRUNC(c)⊗2 must lie either on this
hyperplane or on one side of it.

Using the results for step 4 in section (6.6) for a particular %k and truncation parameter
c, it is possible to guess what the corresponding optimal face is for %k and a range of
truncation parameter values c, and in doing so obtain the associated Γ%k function.

For a particular %k we identify the columns of Bnum, k with vertices of TRUNC(c)⊗2

for a range of values of c. As we want to relate ε to to some function dependent on a
symbolic c, we replace the numerical entries of the columns of Bnum, k with symbols.
For example if we have xBnum, k and Bnum, k generated for some input state %k with
truncation parameter c = 0.2, we will replace all “0.2” entries in Bnum, k with the
symbol “c”, and all entries “0.4” with “c2”, thereby constructing a symbolic version of
Bnum, k, that we will call Bs, k.

In order to specify the face we need to determine what the normal n to the hyperplane
containing the optimal face is. To find n we take Bs, k and perform the following steps:

As we are picturing this optimal face geometrically we are only interested in the product
Bloch vector elements from each column of Bs, k. We will therefore start modifying
Bs, k by removing its first row of elements. The first column will also be removed, as the
first column of Bs, k corresponds to CZ(%)− 1

⊗2

4 which is not a vertex of TRUNC(c)⊗2.

The remaining 15 columns correspond to Bloch vectors to vertices of TRUNC(c)⊗2.
We will select the first of these (denoted ζ) and subtract it from the others thereby
giving 14 vectors on the hyperplane containing the optimal face. These vectors can
then be used to construct the rectangular matrix Ds, k of dimension 15 × 14. We are
looking for solutions to the homogeneous system of linear inequalities

DT
s, kn = 0 (6.33)

In other words we are looking to find the nullspace of DT
s, k, which would contain the

vector normal to the hyperplane. This can be done easily by a symbolic mathematics
software package using guassian elimination. Let (1 − ε)rCZ(%k) correspond to the
product Bloch vector associated to the noisy CZ output state for %k input. The normal
can then be used to arrive at a symbolic expression for ε by taking the dot product of
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the normal with ((1− ε)rCZ(%i) − ζ):

n · ((1− ε)rCZ(%k) − ζ) ≥ 0 (6.34)

Finally this expression can be rearranged to give a expressions as eq. (6.31) for %k and
range of c values.

6.6.2 Example: calculating Γ%1

To clarify this process of calculating Γ%k functions we will look at an example for one
input; suppose we choose c = 0.7, and have a product input state %1 represented by
the Pauli table (left) that under a noisy CZ gate transforms as follows (right):

1
4


1 0.7 1 1

0.7 0.49 0.7 0.7
1 0.7 1 1
1 0.7 1 1


CZ→ 1

4


1 0.7 1 1

0.7 1 −0.7 0.7
1 −0.7 0.49 1
1 0.7 1 1


(6.35)

After constructing the necessary matrices we submit the LPP to the simplex solver
which outputs a basic variable vector xBnum, 1 (rounded to 4 decimal places):

(0.5833, 0.2208, 0.0708, 0.1100, 0.0001, 0.1343, 0.0429, 0.0456,

0.0858, 0.0000︸ ︷︷ ︸
≈10−15

, 0.0267, 0.0687, 0.0871, 0.0441, 0.0229, 0.0402)T (6.36)

It is important to take note of the 10th element of xBnum, 1 which is not equal exactly
to zero. We see that for this choice of input state and value of c the amount of noise
needed for separability is approximately 58.3%, the remaining 15 elements sum to 1 as
required by convex coefficients. The matrix Bnum, 1 is given in eq. (9.14), in section
(9.7) in the appendix.

Before proceeding we will replace the entries of the modified Bnum, 1 with symbols i.e.
entries like “0.7”→ c and “0.49”→ c2 to give Bs, 1. As we are only interested in the
product Bloch vectors components of each column of Bs, 1 corresponding to vertices of
TRUNC(c)⊗2, we will remove the first row comprising of only 0, and 1’s, and the first
column as it does not correspond to a vertex of the optimal face.

We will take the first column ζ of the modified Bs, 1 and subtract it from the remaining
rows to arrive at 14 vector directions on the hyperplane containing our newly symbolic
optimal face. These columns are used to construct the matrix Ds, 1 as in eq. (9.15)
found in section (9.7) in the appendix. The normal to the hyperplane is given by
determining the null space of DT

s, 1:

n = nullspace(DT
s, 1) = (0,−1, 0,−1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T (6.37)
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Finally we can calculate eq. (6.34) for this product input state to arrive at Γ%1 , valid
where approximately 0.47 < c ≤ 1:

ε ≥ Γ%1 = 2c
1 + 2c (6.38)

Repeating this procedure for the other product states and values of c we arrive at the
functions:

Γ%1 = Γ%4 =


c2−1
c2−2 for 0 ≤ c > 0.376

2c
1+2c for 0.46 > c ≤ 1

(6.39)

Γ%2 = 1 + c2

2 + c2 for 0 ≤ c ≤ 1 (6.40)

Γ%3 = Γ%5 =


3−2c+c2

5−c for 0 ≤ c > c′

1+c2
2+c2 for c′ > c ≤ 1

where c′ ≈ 0.326 (6.41)

Γ%6 =



6−2c2
10+c−c2 for 0 ≤ c > k

4(3+2c+c2)
20+16c+9c2+2c3+c4 for k > c > k′

5+c+c2−c3
9+2c+c2−c3 for k′ > c > k′′

2c
1+2c for k′′ > c ≤ 1

where k ≈ 0.161

where k′ ≈ 0.507

where k′′ ≈ 0.624

(6.42)

For Γ%1 and Γ%4 in eq. (6.39), it appears that optimal face varies greatly for different c
values between 0.376 < c < 0.46, for this reason we have not included any expressions
for the functions for those c values. From our numerical results we observed that the
amount of noise needed for CZ output separability for %1, and %4 inputs, for these c
values was low, and therefore we could confidently disregard the necessary bounds from
this case. It is worth noting that Γ%2 in eq. (6.40) matches exactly the necessary bound
obtained in eq. (6.4) corresponding to positivity of Pauli measurements. Figures (6.4)
and (6.5) show plots of these necessary bounds plotted against numerical results for
their associated product inputs.

Let us now consider eq. (6.32); we see that for 0 ≤ c ≤ 1 that the key necessary bounds
are from the functions Γ%6 , and, Γ%1 or Γ%2 , that is it is necessary that:

λCZε,TRUNC(c) =


6−2c2

10+c−c2 for 0 ≤ c ≤ k
4(3+2c+c2)

20+16c+9c2+2c3+c4 for k ≤ c ≤ l
1+c2
2+c2 for l ≤ c ≤ 1

where k ≈ 0.161

where l ≈ 0.502
(6.43)

The minimum value of eq. (6.43) is ≈ 0.55601, and occurs at l ≈ 0.502298, where the
functions 4(3+2c+c2)

20+16c+9c2+2c3+c4 and 1+c2
2+c2 intersect. While we cannot exactly determine the
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convex coefficients of the optimal solution at c = l, it is possible to calculate these
coefficients for c values near l for each product input state, thereby showing that noise
rates for these values of c are sufficient, as will be discussed in the next subsection.

6.6.3 Calculating exact convex coefficients

We wish to arrive at a symbolic version of xB (denoted xBs, k) for some particular c
and product input state, so we can obtain exact expressions for the convex coefficients
forming xB.

Just as we constructed Bs, k, we can construct a symbolic version of the b equality
vector from eq. (6.11) by replacing the numerical entries with symbols. For example,
suppose c = 0.7, the associated b to the product input state %1 is:

(1, 0.7, 1, 1, 0.7, 1,−0.7, 0.7, 1,−0.7, 0.49, 1, 1, 0.7, 1, 1)T (6.44)

Replacing entries “0.7”→ c and “0.49”→ c2, we obtain the symbolic version denoted
bs, 1: (

1, c, 1, 1, c, 1,−c, c, 1,−c, c2, 1, 1, c, 1, 1
)T

(6.45)

The symbolic matrix Bs, 1 and bs, 1 must satisfy the following:

Bs, 1xBs, 1 = bs, 1 (6.46)

As Bs, 1 is a square matrix we may invert it arriving at an expression for xBs, 1 :

xBs, 1 = B−1
s, 1bs, 1 (6.47)

Hence for the specific value of c, the last 15 elements of xBs, 1 correspond exactly to the
convex coefficients. In order to show sufficiency we must arrive at exact expressions for
the convex coefficients for each product input.

Section (9.8) in the appendix shows Bs, k matrices and convex coefficient vectors con-
structed for each product input where c = 0.5.

It is important to note that the techniques used in this chapter can be extended to
other shapes S.
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Figure 6.4: Plot optimal face necessary bounds and numerical results of truncated cube
state spaces. Results for %1 and %4 (top). Here the non-solid lines (dark blue,
green, and red) correspond to the necessary bounds from eq. (6.39), the
solid line (light blue) corresponds to the numerical results for the amount
of joint depolarising noise needed to ensure CZ output separability for
%1 or %4 input. The exact necessary bound characterising the region of
approximately 0.376 < c < 0.46 is unclear. Results for %3 and %5 (bottom).
The numerical results match the two necessary bounds from eq. (6.41)
exactly.
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Figure 6.5: Results for %2 (top). Here the numerical results and necessary bounds in
eq. (6.40) match exactly. Results for %6 (bottom). The numerical results
match the three necessary bounds in eq. (6.42) exactly.
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6.7 Summary of Chapter (6)

In this chapter we looked at the truncated cube state space - our best candidate for a
choice of S. While we believe it not to be optimal, it required the least amount of joint
depolarising noise to ensure CZ output separability with no rescaling, over all state
spaces we looked at. We started the chapter by defining the state space, parametrising
it in terms of its truncation, and parameter c. We then specified the six input states
for the truncated cube from the symmetry arguments. Relating back to the necessary
norms in Chapter (7) we came up with a bound for cube positivity as a function of the
truncation parameter c.

The next section looked at determining values of λCZε,S , for a varying value of c, we
went on and showed that the problem could be re-expressed as a linear programming
problem, solvable using the simplex method as outlined in the following section. We
then detailed the procedure by which we could obtain numerical values for λCZε,S for
specific truncation values.

Using the numerical results we were able to make educated guesses to obtain symbolic
relationships between the noise needed for separability for a specific input, and the
truncation parameter. This method was then used again to obtain a convex decompos-
ition of the sufficiently noisy CZ output state, and symbolic expressions for the convex
coefficients. Although we did not obtain an analytic solution, we did show that our
result was sufficient, and obtained an exact value of λCZε,S , of approximately 0.55601
when c ≈ 0.502298. This is lower than the approximately 0.667 required for Bloch
sphere and cube separability.
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7 Positivity bounds

7.1 Introduction

In the previous chapter we looked at the truncated cube as a choice of S. This set
improved upon some of the previous chapters results in that for certain amounts of
truncation it was found we needed less joint depolarising noise for S-separability of the
CZ gate.

In this chapter we will look to see if we can obtain bounds that would allow us narrow
the choices of S corresponding to the lowest joint depolarising noise threshold values. In
particular we are interested in seeing if state spaces smaller/larger in certain directions
allow for reductions in the threshold value. To this end we will look at state spaces S
satisfying V ⊆ S ⊆ W, where V is some subset, possibly within the Bloch sphere, and
W is a superset, possibly containing all quantum qubit states. By choosing V and W
with a variety of specific geometries we will look to try and identify key directions.

As we will see in the next section we will specify sets V and W by considering norms
on the Bloch vectors of the elements of S. The positivity of operators with respect to
W can be used to construct necessary bounds on the noise threshold. In the second
half of the chapter we will arrive at another set of necessary bounds by looking at the
structure of Pauli tables representing states. Finally we combine all previously obtained
bounds to specify a region of noise threshold values containing the threshold value for
an optimal S.

Like in Chapter (5) we will interpret the shrinking and enlargening of state spaces with
noise on the preparation/measurement.

7.2 Specifying norms

For a positive operator% to be in a given convex set S⊗2, it is necessary that it satisfies
the following relation:

tr [%σ] ≥ 0 ∀σ ∈ S∗⊗2 (7.1)

Here S∗ denotes the dual set of operators to S (see section 4.2). We will use the
following shorthand notation to represent these inequalities:

tr
[
%S∗⊗2

]
≥ 0 (7.2)
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If % is an output state from the noisy CZ gate then eq. (7.2) forms a necessary test on
whether % is an element of S⊗2, that is, a necessary test on if % is S-separable. This
works in an analogous way to measurement probability positivity, and like measurement
positivity does not guarantee separability with respect to S.

As before we can express a positive operator % ∈ S, as % = 1
2(1 + r · σ), where σ is a

vector formed of Pauli operators as (X, Y, Z). In this chapter we will, as a shorthand,
sometime express operators in terms of their r vectors, i.e. in statements like r ∈ S.
In principle there are infinite choices for S, and it is impossible to characterise them
completely. We will instead characterise S sets in terms of norms on the r vectors. The
reason for using them is they are strongly related to the symmetries and the constraints.
We will consider the following norms on the absolute values on a number of components:

l∞ norm ‖r‖∞ := max{|x| , |y| , |z|}

Ky-fan 2-norm ‖r‖k := max{|x|+ |y| , |y|+ |z| , |x|+ |z|}

l1 norm ‖r‖1 := |x|+ |y|+ |z|

l2 norm ‖r‖2 :=
√
x2 + y2 + z2 (7.3)

The “longest” r vector lengths of operators in S are denoted by:

α(S) := max{‖r‖∞ | r ∈ S}

β(S) := max{‖r‖k | r ∈ S}

γ(S) := max{‖r‖1 | r ∈ S}

δ(S) := max{‖r‖2 | r ∈ S} (7.4)

For example, letR be the truncated cube state space (see section (6.2)), with truncation
parameter c = 0.5. We have norm valuesα(S) = 1, β(S) = 2, γ(S) = 2 + c, δ(S) =√

2 + c2 given for R.

Just as there is infinite freedom in choosing S, there is also considerable freedom in
choosing V and W. The norms in the list in eq. (7.4) (above), in addition to the
octahedral symmetries mentioned in section (4.5.2), and convexity of S guarantee the
existence of various subsets and supersets of S as will be shown in the following sections.
These subsets and supersets give an indication of the possible choices of V and W and
allow us to form necessary bounds on the amount of noise needed for S-separability.

7.3 Specifying subsets and supersets from norms

In this section we will specify sets in terms of the norms listed in eq. (7.4), using them
to construct subsets and supersets of those sets. These supersets and subsets will be
used in the following way, we will begin by first specifying an arbitrary convex operator
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Figure 7.1: Representation of different T sets. (Left) The T set generated for % repres-
ented by the r vector (1, 1.5, 2), (Middle) (2, 1, 0), (Right) (2, 0.5, 2).

set T that has octahedral symmetry, before detailing how we can characterise the size
of T in terms of the norms. We will specify T as the convex hull of operators arrived at
by performing octahedral symmetry operations on %, where % is some positive operator.
Figure (7.1) presents three T sets generated through this method for different starting
% operators. Here T is visualised geometrically in the familiar Bloch sphere picture.
The operator 1

2 corresponding to the vector (0, 0, 0) at the center of the shape will be
sometime be referred to as the origin.

Guaranteed subsets of T will be specified by looking at the faces of the geometric
representation of T and then forming polytopes of operators using the points at the
centers of these faces. Supersets will be arrived at by looking at the sets of operators
with vectors satisfying the various norms listed in eq. (7.4).

7.3.1 Subset and supersets specified by α(·)

A set T characterised by the norm α = α(T ) must contain an octahedron subset - a
convex hull of extrema with the following Bloch vectors:

(±α, 0, 0), (0, ±α, 0), (0, 0, ±α) (7.5)

The octahedron specified by α(T ) will be denoted by OCT (α). It is important to note
that the vertices of this octahedron point in the directions of the Pauli eigenstates.

We can specify a superset by looking at all of the positive operators with vectors r
satisfying the inequalities ‖r‖ ≤ α(T ). It is clear that the set T must be a contained in a
superset denoted CUBE(α), where CUBE(α) is a Bloch cube state space characterised
by the norm value α = α(T ), with extremal vertices of l∞ norm length α = α(T ).
Figure (7.2) presents an plot of OCT (α) and CUBE(α) generated for the Bloch vector
(1, 1.5, 2).
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Figure 7.2: Representation of a subset and superset induced by α(T ). T is generated
for the vector r = (1, 1.5, 2), (Left) shows T containing the subset OCT (α)
(Right) T is contained in the superset CUBE(α).

7.3.2 Subset and supersets specified by γ(·)

Let us consider a ray from the origin in the direction of (1, 1, 1), that is, in the direction
of one of the T -type magic states. This vector will intersect with a face of T and if we
average over the vertices forming this face we end up with a center point of the face.
Performing octahedral symmetry operations this the point gives a set of eight vectors,
the convex hull of which specifies a cube contained within T . The vectors of this cube
have Bloch vectors satisfying:

|x| = |y| = |z| = γ(T )
3 (7.6)

where γ corresponds to the maximum l1 norm length in eq. (7.3). We denote this
internal cube as CUBE(γ3 ). The set of all operators associated with vectors r satisfying
‖r‖ ≤ γ(T ) form an octahedron containing T . We will denote this superset as OCT (γ).
Figure (7.2) presents a plot of CUBE(γ3 ) and OCT (γ) for a set T generated with the
vector (1, 1.5, 2).

7.3.3 Subset and supersets specified by β(·)

The set T contains at least one point with an r vector as (cβ, (1 − c)β, z) where
c ∈ [0, 1]. Hence by symmetry and convexity it contains (β2 ,

β
2 , 0). Then by symmetry

it contains the other points. The convex hull of these points forms a subset of T -
a cubeoctahedron. If the r vectors of T have a maximal Ky-fan length of β = β(T )
then this cubeoctahedron subset will be denoted CUBOCT (β2 ) and will have vertices
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Figure 7.3: Representation of a subset and superset induced by γ(T ). T is generated
for the Bloch vector r = (1, 1.5, 2), (Left) shows T containing the subset
CUBE(γ3 ) (Right) T is contained in the superset OCT (γ).

represented by operators with r vectors satisfying:

|x| = |y| = β

2 , z = 0 |x| = |z| = β

2 , y = 0 |y| = |z| = β

2 , x = 0 (7.7)

The set of all operators associated with r vectors satisfying ‖r‖ ≤ β(T ) form a rhombic
dodecahedron containing T . We will denote this superset as RHOM(β). Figure (7.4)
presents an plot of CUBOCT (β2 ) and RHOM(β) generated for the r vector (1, 1.5, 2).

7.3.4 Characterisation through δ(·) and summary

We can finally characterise T using the Euclidean norm as follows; whilst we did not
specify a subset, a superset of T was taken to be sphere of radius equal to the longest
r vector Euclidean norm length for T , in other words the superset is the set of all
operators with r vectors satisfying ‖r‖ ≤ δ(T ).

The subsets and supersets characterised by the various norms are summarised as:

Norm Superset Subset Dual to superset
α(S) CUBE(α) OCT (α) OCT ( 1

α)
β(S) RHOM(β) CUBOCT (β2 ) CUBOCT ( 1

β )
γ(S) OCT (γ) CUBE(γ3 ) CUBE( 1

γ )
δ(S) SPHE(δ) - SPHE(1

δ ) (7.8)
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Figure 7.4: Representation of a subset and superset induced by β(T ). T is generated
for the Bloch vector r = (1, 1.5, 2), (Left) shows T containing the subset
CUBOCT (β2 ) (Right) T is contained in the superset RHOM(β).

7.3.5 Necessary constraints from superset-subset positivity

The supersets and subsets can be used with eq. (7.2) to arrive at lower bounds on
λCZε,S . The noise acting on CZε must be sufficient to ensure that any product input
operator taken from product subsets remain separable with respect to the supersets.
Using eq. (7.2) taking σ to be an operator from a subset, and S to be a superset we
can arrive at necessary conditions as:

tr
[
(SUPSET ∗)⊗2CZε(SUBSET⊗2)

]
≥ 0 (7.9)

The quantum noise acting on the CZ gate, parametrised by ε must be sufficiently large
to ensure the trace for all product subset inputs in eq. (7.2) are positive.

Focusing only on joint depolarising noise acting on the CZ gate, we will now look at
the positivity bounds induced from each of the norms, that is we will scan over all
inequalities in eq. (7.2) for a particular subset and superset induced by a norm, and
select those requiring the most noise.

Necessary bounds from α(T )

Cycling through all possible inequalities of the form:

tr
[
(CUBE(α)∗)⊗2CZε(OCT (α)⊗2)

]
≥ 0 (7.10)
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Figure 7.5: Necessary bounds induced by α. The solid lines represent the minimum
noise needed to ensure positivity as in eq. (7.10).

we find the following two inequalities requiring the most noise:

α < 1 : α2 − 1
α2 − α− 1 ≤ λ (7.11)

α ≥ 1 : α2 − 1
α2 + α− 1 ≤ λ (7.12)

Figure (7.5) shows a plot of these two bounds. At α = 1 the superset cube contains
the Bloch sphere. We can see that at this size no noise is needed to ensure positivity
with eq. (7.10).

Necessary bounds from γ(T )

Cycling through all possible inequalities of the form:

tr
[
(OCT (γ)∗)⊗2CZε(CUBE(γ3 )⊗2)

]
≥ 0 (7.13)

we find the following five inequalities requiring the most noise:

γ <
3
2

12− 8γ
12 + γ

≤ λ

γ < 1
2(
√

13− 1) −12 + 4γ + 4γ2

−12− 5γ + 4γ2 ≤ λ

1
2(
√

13− 1) ≤ γ < 2 0 ≤ λ
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Figure 7.6: Necessary bounds induced by γ. The solid lines represent the minimum
noise needed to ensure positivity as in eq. (7.13).

γ ≥ 2 4γ − 8
4γ + 1 ≤ λ

γ ≥ 1
2(1 +

√
13) −12− 4γ + 4γ2

−12 + 5γ + 4γ2 ≤ λ (7.14)

Figure (7.6) shows a plot of these bounds. For eq. (7.13), we see that subset inputs of
size 1

2(
√

13−1) ≤ γ < 2 require no noise to ensure positivity with respect to OCT (γ)∗,
this includes, at γ =

√
3 the Bloch sphere.

Necessary bounds from β(T )

Cycling through all possible inequalities of the form:

tr
[
(RHOM(β)∗)⊗2CZε(CUBOCT (β2 )⊗2)

]
≥ 0 (7.15)

we find the following five inequalities requiring the most noise:

β <
3
2

2β − 3
2β + 1 ≤ λ

β < 1
3(
√

33− 1) 2β2 + β − 4
2β2 − 3β − 4/ ≤ λ

1
3(
√

33− 1) ≤ β < 4
3 0 ≤ λ

β ≥ 4
3

4− 3β
4 + β

≤ λ
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Figure 7.7: Necessary bounds induced by β. The solid lines represent the minimum
noise needed to ensure positivity as in eq. (7.15).

β ≥ 1
2(
√

33 + 1) 2β2 − β − 4
2β2 + 3β − 4 ≤ λ (7.16)

Figure (7.7) shows a plot of these bounds. For eq. (7.15) we see that for subset inputs
of size 1

3(
√

33 − 1) ≤ β < 4
3 we require no noise to ensure positivity with respect to

RHOM(γ)∗, this includes, at β =
√

2 the Bloch sphere.

7.3.6 Comments on positivity bounds from norms

In order to contrast the positivity bounds plotted in figures (7.5), (7.14) and (7.7), we
will relate the sets specified by each norm to a sphere of radius δ(T ), i.e. we will relate
the superset set specified to each norm to the largest sphere of size size δ(T ) that the
superset contains. This is equivalent to relating the subset specified by each norm to
the smallest sphere of size δ(T ) containing the subset. Figure (7.8) shows a plot of the
necessary bounds in eq.’s (7.10), (7.13), and (7.15) scaled in terms of δ(T ).

From figure (7.8) for a given T we would expect the superset/subset positivity for α(T )
requiring a larger amount of noise to ensure positivity, than positivity required from
considering γ(T ) or β(T ).

The most apparent feature is the minima for all norms around the δ = 1 value. At this
value the other norms take the values α = 1, β =

√
2, and γ =

√
3. At these values
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Figure 7.8: Necessary bounds plotted against δ(T ). The supersets induced by each
norm each contain a sphere of size δ(T ). The solid line represent the amount
of noise required for positivity from considering α(T ), the dashed line from
γ(T ), and the dotted line β(T ).

the subsets and duals to the supersets are equal and so we will describe these values as
duality points for their respective norms.

We can see why this is a minima as follows: at these duality points the vertices of
the superset dual/subsets of T correspond to operators on the surface of the Bloch
sphere. The CZ operation, as a quantum operation automatically satisfies positivity
constraints of the form in eq. (7.9) where the superset dual/subset is the Bloch sphere.
In other words if the operators in the duals of the shapes and subsets, are at the surface
of the Bloch sphere we have a local minima and require no extra noise for positivity.

7.4 Necessary from product structure constraints
As shown in section (4.6) a general two particle operator ρ may be represented using
the Pauli table notation as the following array of numbers:

1 ρ01 ρ02 ρ03

ρ10 ρ11 ρ12 ρ13

ρ20 ρ21 ρ22 ρ23

ρ30 ρ31 ρ32 ρ33


(7.17)

Suppose our algorithmic state space T ⊗2 is formed from the convex hull of tensor
products operators with r vectors of the form ra := (xa, ya, za), and rb := (xb, yb, zb).
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The elements of T ⊗2 may be represented using a Pauli table as:
1 xb yb zb

xa xaxb xayb xazb

ya yaxb yayb yazb

za zaxb zayb zazb


(7.18)

We are interested in determining whether the arbitrary operator ρ is in T ⊗2. The
method outline here will look at forming vectors of certain elements in the Pauli tables
in eq.’s (7.17) and (7.18), and then compare the norms of the two vectors.

For example, suppose we picked two elements of the top row of the table in eq. (7.17)
forming a two element vector out of them as (ρ01, ρ02) . We will compare this vector to
an analogous vector formed from the table in eq. (7.18) requiring that for our choice
of norm ‖·‖ the following expression is satisfied:

‖(ρ01, ρ02)‖ ≤ max{‖(xb, yb)‖ | (xb, yb, zb) ∈ T } (7.19)

We can see that eq. (7.19) is solely dependent on rb. It is possible to construct
inequalities dependent on both ra and rb; for example let us consider a vector formed
from the elements (ρ11, ρ23, ρ32), if we compare it to a vector (xaxb, yazb, zayb), for our
choice of norm we arrive at the condition:

‖(ρ11, ρ23, ρ32)‖ ≤ max{‖(xaxb, yazb, zayb)‖ | ra, rb ∈ T } (7.20)

If we choose the l1 norm, then we know from eq. (7.20) that it is necessary that the
components satisfy:

|ρ11|+ |ρ23|+ |ρ32| ≤ x2 + 2 |yz| = (δ(T ))2 − y2 − z2 + 2 |yz|

→ |ρ11|+ |ρ23|+ |ρ32| ≤ (δ(T ))2 (7.21)

This inequality will be used in next sections. For δ = 1, it requires the partial transpose
to have positive expectation values on Bell pairs, in this, it is related to the PPT test
applied to quantum states.

7.5 Combining necessary constraints

Here we will show how we can use the delta inequality in eq. (7.21) and positivity
requirements in section (7.2) to arrive at stronger necessary bounds on the joint depol-
arising noise rate to make the CZ gate T -separable.

Let % denote two particle state outputted from a noisy CZ gate affected by joint
depolarising noise acting on an operator from T ⊗2. If T is contained within the cube
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superset specified by α(S) and % is S-separable, then we see from eq. (7.2) and table
in eq. (7.8) that % must satisfy the following inequalities:

tr
[
OCT ( 1

α
)⊗2%

]
≥ 0 (7.22)

In particular, we will focus on one of these inequalities - that generated by σ⊗η, where
σ, η ∈ OCT ( 1

α), with σ represented by the Bloch vector (− 1
α , 0, 0), and η by (0,− 1

α , 0):

tr [(σ ⊗ η)%] ≥ 0 (7.23)

The Pauli table for σ ⊗ ς is:

1
4


1 0 − 1

α 0
− 1
α 0 1

α2 0
0 0 0 0
0 0 0 0


(7.24)

It is clear from table (7.24) using eq. (4.32) that the trace becomes

(1− ε)
4

( 1
(1− ε) −

1
α
xC − 1

α
zB + 1

α2 (−yA)
)
≥ 0 (7.25)

We are free to to choose input states from S into the CZ operator such that A = y,
B = z, C = x. Simplifying (7.25) we can rearrange terms where x, y, and z are picked
to achieve δ(T ) - inserting the norm δ2 = x2 + y2 + z2:

1
(1− ε) −

1
α

(x2 + z2 + y2

α
) ≥ 0

ε ≥ 1− α

(δ2 + (1−α
α )y2)

(7.26)

For α ≥ 1 we see that
(

1−α
α

)
becomes negative, and so the largest the right side of

inequality (7.26) can only be achieved when y is the smallest value possible, i.e. when
y = 0. Inequality (7.26) becomes:

ε ≥ 1− α

δ2 (7.27)

For α ≤ 1,
(

1−α
α

)
remains positive and so we can make y the largest possible value,

that is y = α:
ε ≥ 1− α

(δ2 + (1− α)α) (7.28)

Using inequality (7.21) for input state choices represented by Bloch vectors (0, α, 0),
and (0, α, 0) gives:
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(1− ε)(α2 + 2α) ≤ δ2 =⇒ 1− δ2

α(α+ 2) ≤ ε (7.29)

As inequalities (7.27) and (7.28) are monotonically increasing in δ, and inequality (7.29)
is monotonically decreasing for a fixed value of α it is possible to tie these inequalities
together to eliminate δ by, for a given value of α, finding the value of δ that maximises
the inequalities on ε: We arrive at the following inequalities on ε:

α ≤ 1 : ε ≥ 1− (α− 1) +
√
α2 + 2α+ 9

2(α+ 2) (7.30)

α ≥ 1 : ε ≥ 1− 1√
α+ 2

(7.31)

Note that for α = 1 these two constraints attain the value 1 − 1√
3 ≈ 0.423, not the

minima observed from the positivity constraints.

7.6 Sufficiency for sets with α(T ) = δ(T )

The simplest single particle state space polytope we can choose for α = 1 is an octa-
hedron formed of Pauli eigenstates. We know from the Gottesman-Knill result that
this state space (where α = 1) in conjunction with Pauli measurements/preparation
and Clifford dynamics is efficiently classically simulatable.

Within this section we will make a specific choice of T as OCT (α). We will analytically
calculate the amount of noise needed to ensure that the noisy CZ gate (under joint-
depolarising noise) becomes OCT (α)-separable, showing that such noise levels are also
sufficient and the necessary bounds determined previously are satisfied.

From the symmetry arguments in section (4.5) we only need to six of the product input
states from OCT (α)⊗2. These input states transform as follows under a CZ gate acted
upon by joint depolarising noise:

1
4


1 α 0 0
α α2 0 0
0 0 0 0
0 0 0 0


→ (1− ε)

4



1
(1−ε) 0 0 0

0 0 0 α

0 0 α2 0
0 α 0 0


(7.32)

1
4


1 0 α 0
α 0 α2 0
0 0 0 0
0 0 0 0


→ (1− ε)

4



1
(1−ε) 0 0 0

0 0 0 α

0 −α2 0 0
0 0 α 0


(7.33)
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1
4


1 0 α 0
0 0 0 0
α 0 α2 0
0 0 0 0


→ (1− ε)

4



1
(1−ε) 0 0 0

0 α2 0 0
0 0 0 α

0 0 α 0


(7.34)

1
4


1 0 0 α

α 0 0 α2

0 0 0 0
0 0 0 0


→ (1− ε)

4



1
(1−ε) 0 0 α

α2 0 0 α

0 0 0 0
0 0 0 0


(7.35)

1
4


1 0 0 α

0 0 0 0
α 0 0 α2

0 0 0 0


→ (1− ε)

4



1
(1−ε) 0 0 α

0 0 0 0
α2 0 0 α

0 0 0 0


(7.36)

1
4


1 0 0 α

0 0 0 0
0 0 0 0
α 0 0 α2


→ (1− ε)

4



1
(1−ε) 0 0 α

0 0 0 0
0 0 0 0
α 0 0 α2


(7.37)

We will now work through each of the noisy CZ output states showing that they can
be expressed as convex combinations of OCT (α)-separable state if for some particular
range of values α values the rate of noise ε is above a certain value.

We can however, place the six output states into three groups containing states that
require the same amount of noise to ensure CZ OCT (α)-separability. The first group
contains output states; in eq.’s (7.32), (7.33), and (7.34), the second; (7.35), and (7.36),
and the third group only (7.37).

Working through the first set; the output state in eq. (7.32) can be expressed as the
following summation of OCT (α)-separable states

(1− ε)
4



1
(1−ε) 0 0 0

0 0 0 α

0 0 α2 0
0 α 0 0


= 1

4


(t+u+v) 0 0 0

0 0 0 vα2

0 0 uα2 0
0 tα2 0 0



= t

4


1 0 0 0
0 0 0 0
0 0 0 0
0 α2 0 0


+ u

4


1 0 0 0
0 0 0 0
0 0 α2 0
0 0 0 0


+ v

4


1 0 0 0
0 0 0 α2

0 0 0 0
0 0 0 0


(7.38)

It is important here to note that the separable states within the convex sum be (7.38)
can be expressed in terms of a summation of product input states.
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t

4


1 0 0 0
0 0 0 0
0 0 0 0
0 α2 0 0


= t

8


1 α 0 0
0 0 0 0
0 0 0 0
α α2 0 0


+ t

8


1 −α 0 0
0 0 0 0
0 0 0 0
−α α2 0 0


(7.39)

Comparing table entries in (7.38) we can arrive at the following four expressions:

t+ u+ v = 1

t = 1
α(1− ε)

u = (1− ε)

v = 1
α(1− ε)

(7.40)

Such a convex summation is only possible when we have at least a noise rate of ε =
1 − a

2+α . It is straightforward to show that the other output states in the first group
also require a noise rate of ε = 1− a

2+α to ensure OCT (α)-separability.

In the second group we have for eq. (7.35), the following convex summation of product
input states

(1− ε)
4



1
(1−ε) 0 0 α

α2 0 0 α

0 0 0 0
0 0 0 0


= p

4A+ q

4B + r

4C + s

4D (7.41)

with the following product tables:

A =


1 0 0 α

α 0 0 α2

0 0 0 0
0 0 0 0


B =


1 0 0 α

−α 0 0 −α2

0 0 0 0
0 0 0 0



C =


1 0 0 −α
α 0 0 −α2

0 0 0 0
0 0 0 0


D =


1 0 0 −α
−α 0 0 α2

0 0 0 0
0 0 0 0


Comparing Pauli table components we arrive at a set of linear eq.’s that can be expressed
as the following matrix:

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


︸ ︷︷ ︸

K

·


p

q

r

s

 =


1

(1− ε)
α(1− ε)

(1−ε)
α

 (7.42)
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As matrix K is non-singular we can invert it to arrive at expressions for the convex
coefficients p, q, r, and s:

p = 1
4α
(
α+ (1− ε)(α2 + α+ 1)

)

q = 1
4α
(
α− (1− ε)(α2 − α+ 1)

)
r = 1

4α
(
α− (1− ε)(1 + α− α2)

)
s = 1

4α
(
α− (1− ε)(α2 + α− 1)

)
As with the first group we require that each of these convex coefficient must be positive.
This requirement allows us to calculate the minimum value of ε to ensure all coefficients
remain positive.

p ≥ 0→ 1 ≥ ε

q ≥ 0→ ε ≥ 1− α

(α2 − α+ 1)

r ≥ 0→

 0 < α < 1 : ε ≥ 1− α
(1+α−α2)

α ≥ 1 : 1 ≥ ε

s ≥ 0→

 0 < α < 1 : 1 ≥ ε
α ≥ 1 : ε ≥ 1− α

(α2+α−1)
(7.43)

The last two inequalities of (7.43) are key requiring the most amount of noise. It is
worth noting that these inequalities are equal to the necessary constraints in eq.’s (7.11),
and (7.12).

Finally for the third group we can immediately see that the output state in eq. (7.37)
is separable without the need for any noise ε.

Putting together the inequalities from all three sets we have

0 < α <
√

3 : ε ≥ 1− a

2 + α

α ≥
√

3 : ε ≥ 1− α

(α2 + α− 1) (7.44)

We have shown for all possible values of α that above noise bounds (7.44) the CZ gate
is OCT (α)-separable. Figure (7.9) shows a plot of the sufficiency bounds in (7.44) and
the necessary bounds determined in previous sections. We see that the bounds (7.44)
are both necessary and sufficient - sufficient in the sense that we have shown explicitly
that the convex decomposition at these noise rates, and necessary, as for 0 < α <

√
3

we achieve a bound from product structure constraints and for α ≥
√

3 we have a
bound from Pauli measurement positivity.
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Figure 7.9: Plot of α necessary bounds (7.11) & (7.12) (solid line), product structure
necessary bounds (7.30) & (7.31) (dashed line), and octahedron sufficiency
inequalities (7.44) (dotted line). The region above the two necessary curves
and below the sufficiency curve represents the range of joint depolarising
noise rates that for a given α value ensures that the CZ-gate is OCT (α)-
separable.

While for 0 < α <
√

3 , the OCT (α) is not the optimal shape it does provide an
upper limit to the noise required for output separability - an optimal shape contained
within a cube of the size α = 1 would require a joint depolarising noise rate of between
approximately 0.423 and 0.667.

7.7 Summary of Chapter (7)

In this chapter we attempted to narrow the choices on the optimal S by construct-
ing necessary bounds from considering norms on the Bloch vectors of operators in S.
These norms were used to specify octahedrally symmetric supersets and related sub-
sets, parametrising each shape by the norm length of its vertices. We determined, for
each norm, the amount of noise required to ensure trace positivity of operators from
the subsets with the duals to the supersets as a function of the norm parameters. We
considered four norms, each specifying a different superset shape, and while not using
a rescaling parameter, identified shrinking/expanding of the state space with noise on
the preparation/measurement. The key inequalities for each norm were identified and
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contrasted with each other by relating each superset to a sphere contained within the
superset. By matching all the spheres we identified the superset-norm necessary bounds
requiring the most amount of noise for positivity, and found it to be those induced from
considering the cube superset with an associated octahedron subset.

In the next section we contrasted Pauli table elements of an S-separable state, with
elements from an arbitrary two particle state, arguing that the elements form the
arbitrary state should satisfy be less than some norm length of the S-separable elements.
This allowed us to construct another necessary bound. Drawing on what was learnt with
the superset-subset necessary bounds, we constructed a new necessary bound arguing
that an arbitrary CZ gate output state must satisfy positivity with respect to a cube
superset. We finally combined this, and the previous Pauli table structure constraint
to arrive at a tight necessary condition as a function of the cube norm length.

In the final section we constructed S-separability sufficiency bounds for S taken to an
octahedron of Pauli eigenstates rescaled to fit exactly inside a cube superset. When
comparing the final necessary bounds and the octahedron sufficiency bound we identi-
fied the octahedron to be the optimal shape above a certain amount of rescaling. Under
that level of rescaling, the optimal S remains a unknown.
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8 Summary and conclusion

In this thesis we have explored the role of generalised non-quantum notions of entangle-
ment in the efficient classical simulation of noisy quantum devices. We arrived at these
new notions by considering a redefined single particle state space based on restrictions
to the set of available measurements to the system. These state spaces were sets of
quantum, and non-quantum operators that returned positive measurement probabil-
ities with respect to the restricted measurements. The new state spaces were then
employed to modify the Harrow and Nielsen algorithm [6] to arrive at new algorithms
for classical simulation.

The aim of the research was to come up with new classical algorithms could efficiently
classically simulate regimes outside those covered by existing schemes.

Restricted measurements come about in two ways; firstly where the restrictions are a
design feature as with some fault tolerant schemes, and secondly where the available
measurements are faulty or non-ideal. Within this thesis we chose to focus on magic
state architecture based devices because of the developed fault tolerant schemes for
them. In particular we considered the case where the single qubit Clifford unitaries
were ideal and only the two-qubit CX gate (or equivalently for us the CZ gate) was
susceptible to noise.

The restriction to only Pauli measurements, specified a Bloch-cube within which we
could choose our new state space S (subject to restrictions from the single qubit dy-
namics). We also restricted S to be invariant under single qubit unitaries and so as the
CZ gate was the only “entangling” gate for the possible state spaces, we required it
be subject to noise to ensure S-separability so that the Harrow and Nielsen algorithm
could be applied. The main technical problem of the thesis was to find the optimal
state space S requiring the least amount of noise to ensure CZ output S-separability,
for a range of natural noise models.

We looked at a number of possible of state spaces, starting with the Bloch sphere, and
the whole measurement dual state space - the Bloch cube allowing for their modification
to account for faulty preparation and measurement. We then looked at the truncated
cube, and finally ended by looking at cube, rhombic dodecahedron, octahedron, and
sphere supersets to arrive at necessary bounds.

By looking at non-quantum notions of entanglement, we were considering a type of
generalised probability theory, where we had a non-quantum state space, but noisy
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quantum state dynamics. At particular sufficient noise rates these dynamics were
rendered essentially classical. Observations made about the relationship between cube-
entanglement, quantum entanglement and non-locality, motivated the research.

In Chapter (5) we presented noise threshold calculation results for the Bloch sphere
subject to faulty preparation/measurement, and the Bloch cube with ideal and faulty
preparation/measurement, for each of the noise models; local depolarising, joint depol-
arising, and local dephasing noise.

In general we observed little to no appreciable improvement with the cube state spaces
in the ideal case over those obtained using Harrow and Nielsen or application of the
Gottesman-Knill theorem for the noise models we considered. In the case where we
allowed for fault in the preparation/measurement for Bloch spheres and cubes we did
observe some slight improvements. Specifically by adding slight amounts of local depol-
arising noise immediately prior to measurement, we were able to consider larger versions
of the Bloch sphere and cube state space, that required less noise to ensure separable
CZ-output. Adding noise to qubit preparation however had the inverse effect, requiring
us to add more noise for separability. Interestingly, for Bloch sphere input, a CZ gate
undergoing local dephasing noise, required maximum noise to ensure separable output
if the Bloch sphere was rescaled in anyway for faulty preparation/measurement.

In Chapter (6) we presented our best candidate for choice for S - the truncated cube, a
cube with its corners sliced-off, the amount of “slicing-off” parametrised by value c. We
showed how the separability calculation could be transformed into a linear programming
problem, whose numerical results we could uses to make educated guesses to arrive at
a symbolic solution for the joint depolarising noise threshold. We calculated this value
to be approximately 0.5562, when c ≈ 0.5 and the truncated cube is contained within a
cube of size α = 1, and improvement over the 2

3 achieved with the cubes in the previous
chapters. Again we did not consider the other noise models as they would not have
transformed into linear programming problem, but instead into optimisation problems
with linear objective functions and quadratic constraints.

In the final Chapter (7) we characterised single particle state spaces using norms on the
Bloch vectors of the operators in the space. These norms were used to specify subsets
and supersets that gave lower bounds on the joint depolarising noise threshold values.
We allowed for faulty measurement by allowing these supersets to extend outside the
Bloch cube. The optimal state space contained within a cube of size α ≥

√
3 was found

to be an octahedron/sphere meeting the cube in the Pauli eigenstate directions. In the
case where we considered a cube of size 0 < α <

√
3, we could not find an optimal, and

instead could only specify a region within which the optimal must lie. The methods we
used to arrive at positivity bounds can be extended to the other noise models in future
work.
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To summarise, in this thesis we have shown, for quantum computers with restricted
measurements, we could use a non-quantum notion of entanglement with a Harrow
and Nielsen type algorithm to simulate a broader range of noisy quantum computers
with limited entanglement. This non-quantum notion of entanglement allowed us to
redefine the single particle state space S used in the algorithm, and we investigated the
relationship between S and the noise threshold required for the algorithm to become
applicable. For a particular noise model, when our preparations/measurements were
noisy, we were able to identify the optimal state spaces leading to the lowest threshold
values. For the noiseless preparations/measurement case we found the truncated cube
state space attained a lower threshold value than previous work, but identifying the
optimal state space remains an open problem. In addition to the straightforward con-
nection to the fault tolerance noise threshold, the approach taken in this thesis has
strong links to studies of generalised probability theories, and would be of interest
to those looking at the role of entanglement in the classical simulation of quantum
computers with restricted measurements.

Table (8.1) summarises our results for the various choices of S.
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9 Appendix

9.1 Example: The single bit-flip code

Figure 9.1: Diagram showing quantum circuit used to encode single qubit states |ψ〉
into the three qubit bit-flip code.

The best example to see the mechanics of a basic quantum code is the incomplete three
qubit code for correcting only single qubit bit-flip errors1. The Pauli X operator acting
on the single qubit basis states has the effect of “flipping” the single qubit logical basis
states:

X |0〉 → |1〉 , X |1〉 → |0〉 (9.1)

We may protect against single qubit bit-flip errors using a three qubit code with the
following logical basis states:

|0〉L = |000〉 , |1〉L = |111〉 (9.2)

An arbitrary single qubit state |ψ〉 = α |0〉+ β |1〉 is thus mapped to:

|ψ〉 = α |0〉+ β |1〉 → |ψ〉L = α |0〉L + β |1〉L

= α |000〉+ β |111〉 (9.3)

Figure (9.1) shows a quantum circuit capable to encoding |ψ〉 to |ψ〉L.

A single qubit bit flip error channel acting on the logical basis states in (9.2) has the
following Kraus elements:

1The three qubit code is an incomplete code as it cannot correct for any arbitrary single qubit quantum
error.
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Figure 9.2: Diagram showing quantum circuit encoding into the three qubit bit-flip
code, exposure a bit-flip error channel and recovery operation. Here the re-
covery operation is formed of two stages; The first introduces ancilla states
for use with syndrome measurements to detect whether errors have oc-
curred, they then feed classical information to select the appropriate cor-
rection operation to be enacted.

{1⊗ 1⊗ 1, X ⊗ 1⊗ 1, 1⊗X ⊗ 1, 1⊗ 1⊗X} (9.4)

corresponding to no error, and a lone bit-flip on the first, second, and third physical
qubits respectively.

The recovery operation here will be broken down into two stages; firstly a syndrome
measurements to ascertain what error have occurred and finally a restorative operation
undoing the effects of the error channel.

The syndrome measurement involves introducing ancilla qubits and measuring them
to discern the nature of the error that may occurred. As with eq. (2.16), syndrome
measures should in no way learn anything about |ψ〉L. Figure (9.2) shows a quantum
circuit diagram depicting the three qubit error correction scheme.

For the bit-flip code, the addition of two ancilla is sufficient to discern the location
of a flip error on one of the qubits forming the encoded state. Various control-not
operations are used to couple the ancilla to the corrupted encoded state. Immediately
prior to measurement the state of the corrupted encoded state is:

Location of error State prior to measurement
No error α |000〉 |00〉+ β |111〉 |00〉
Qubit 1 α |100〉 |11〉+ β |011〉 |11〉
Qubit 2 α |010〉 |10〉+ β |101〉 |10〉
Qubit 3 α |001〉 |01〉+ β |110〉 |01〉 (9.5)
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Projective Pauli X measurements on the ancillas yield the bit pairs; 00, 11, 10, 01 cor-
responding to no error, and bit-flip on the first, second, and third qubit of the encoded
state. Crucially these projective measurements have no bearing on the superpositions of
the corrupt encoded state. With the error identified, application of a Pauli X operator
to the effected qubit with undo the effects of noise on the original state.

9.2 Example: The 3 qubit stabiliser group

The three qubit stabiliser set S = {1⊗3, Z⊗Z⊗1, 1⊗Z⊗Z, Z⊗1⊗Z} has generator
elements Z⊗Z⊗1, and Z⊗1⊗Z. We may therefore write S = 〈Z ⊗ Z ⊗ 1, Z ⊗ 1⊗ Z〉.

The table below lists the states stabilised by each non-identity element of S:

Operator State Stabilized
Z ⊗ Z ⊗ 1 |000〉 , |001〉 , |110〉 , |111〉
1⊗ Z ⊗ Z |000〉 , |100〉 , |011〉 , |111〉
Z ⊗ 1⊗ Z |000〉 , |010〉 , |011〉 , |111〉 (9.6)

From (9.6) we see that the only vectors stabilized by all of the elements of S are
|000〉 , |111〉, and thus the associated subspace VS is spanned by |000〉 , |111〉.

9.3 Measurement in the stabiliser formalism

It is straightforward to calculate the effects of Pauli group element measurements within
the stabiliser formalism. Let us consider an elementM of the Pauli group Gn. Without
loss of generality M can be assumed to not have a factor of ±i. We can therefore take
M to be a Hermitian with M2 = 1

⊗n and the following projectors:

P+ = 1
2(1⊗n +M) P− = 1

2(1⊗n −M) (9.7)

associated with the eigenvalues +1, and −1 respectively.

Suppose we have a state |ψ〉 stabilised by the set S = 〈S1, S2, ..., Sr〉. The action of a
projective measurement of M on |ψ〉 has the two possible effects depending on whether
or not M commutes with the elements of S:

1. M commutes with all elements S ∈ S.

2. M anti-commutes with some or all generators of S.
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In the first case, as M commutes with the elements of S and has an eigenvalue +1, it
follows that either M or −M must be elements of S. M (and similarly −M) therefore
leaves S invariant and |ψ〉 unmodified. The probability of measuring M in the +1
eigenstate |ψ〉 is hence unity.

For the second case, let us assume without loss of generality that M anti-commutes
with S1, and commutes with all other Si ∈ S, where i 6= 1. As S1 |ψ〉 = |ψ〉 the
measurement probabilities for M are transformed as follows:

p(+1) = tr [P+ |ψ〉] = tr [P+S1 |ψ〉] = tr [S1P− |ψ〉] = p(−1) (9.8)

As p(+1) = p(−1) it follows that p(+1) = p(−1) = 1
2 . If we obtain the eigenvalue +1 for

a M measurement then stabiliser set specifying the new state becomes 〈M, S2, ..., Sr〉,
for −1 we have 〈−M, S2, ..., Sr〉.

As we are checking through all the 2r commutation relations, each taking O(r) time
to perform, the act of performing a Pauli group measurement takes O(r2) time.

9.4 Entanglement breaking operations

Entanglement breaking operations were used in [42] where extensions of separable ma-
chines were considered. They are characterised as follows; suppose we have a composite
quantum system composed of sub-systems denoted A and B. A two system trace pre-
serving map EAB is said to be entanglement breaking if the operation has the following
CJ state representation:

ρ(EAB) =
∑
j

pjρ
AB
j ⊗ ρRARBj (9.9)

In other words the CJ state representing the operation is separable across the AB :
RARB cut.

9.5 Proof for lemma (4.4.4)

Proof. The extremal “pure” cube product states represented by the corners of the Bloch
cube take the following form in table notation:

1
4


1 x2 y2 z2

x1 x1x2 x1y2 x1z2

y1 y1x2 y1y2 x1z2

z1 z1x2 z1y2 z1z2


(9.10)
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where the coefficients xk, yk, zk (k = 1, 2) take the values of ±1. The maximally
quantum entangled Bell state |ψ+〉 = 1√

2 (|00〉+ |11〉), can through explicit calculation
by expressing the basis state dyads (i.e. |00〉 〈00| , |01〉 〈00| , etc.) as Pauli tensor
products, be shown to correspond to the decomposition table:

1
4


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


(9.11)

Within this table representation it is easy to see that the Bell state |ψ+〉 is cube-
separable as it can be formed by a uniform average of corner cube extrema states
satisfying x1 = x2, y1 = −y2. The remaining Bell quantum states may also be shown
to be cube-separable as they differ from each other by only local Pauli unitaries acting
on each side.

9.6 CZ gate leads to negative probabilities

The following example shows that the noiseless CZ gate can take products of operators
from the Bloch cube to two particle operators that return negative probabilities under
Pauli measurements:

Example 9.6.1. Negative probabilities from cube input.

Let us consider the CZ output state in eq. (4.25), the probability of measuring
X ⊗X and obtaining +1 on one particle and −1 on the other is:

1
4 (1 + xC − yB − zA) (9.12)

If we choose to input a product of pure cube states with x = A = 1, y = B = 1,
z = 1, and C = −1, the probability of getting the pair of outcomes is −1

2 .

We must therefore add noise to the CZ gate not only to ensure separability, but also
at very least to ensure measurement positivity. Here we will expand on this example
and prove the following:

Theorem 9.6.2. Negative probabilities from input outside Q.

LetM be the set of Pauli X, Y , Z measurements, and our choice of S satisfy
Q ⊂ S ⊆M∗, where Q is the Bloch sphere.
The noiseless CZ gate acts to take all input product operators %A ⊗ %B ∈ S ⊗ S,
where %A,%B /∈ Q, to operators that return negative Pauli measurement
probabilities.

126



Proof. Let us consider eq. (9.12) again; for consistency we require that this probability
be positive. As S ⊃ Q we are free to fix the vector V = (C,−B,−A) to be any unit
vector taken from Q, i.e. A, B, C can be components of any unit Bloch vector. Setting
the vector v = (x, y, z), we can express eq. (9.12) as

1 + v · V ≥ 0 (9.13)

This can only be positive for all choices of V , if v corresponds to a Bloch vectors in Q.
Therefore for separable input, the CZ gate can only output states that yield positive
measurement probabilities if these input states are in the Bloch sphere.

9.7 Matrices from section (6.6.2)

The Bnum, 1 matrix for the product input state %1 where c = 0.7:

0

0.7

1

1

0.7

1

−0.7

0.7

1

−0.7

0.49

1

1

0.7

1

1

1

1

1

0.7

0.7

0.7

0.7

0.49

1

1

1

0.7

1

1

1

0.7

1

−1
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1

1

−1
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1

1

−1

0.7

1

0.7

−0.7

0.49

0.7

1

0.7

−1

1

1

0.7

−1

1

1

0.7

−1

1

0.7

0.49

−0.7

0.7

1

−0.7

−1

−1

1

−0.7

−1

−1

1

−0.7

−1

−1

0.7

−0.49

−0.7

−0.7

1

−1

1

0.7

−1

1

−1
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1

−1

1
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

(9.14)
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The constructed Ds, 1 matrix for the product input state %1 where c = 0.7:

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−c−c2

−2

−2

0

−2c

0

−1−c

−1−c

1−c

1−c

−2c

−1−c2

−1−c

−1−c

−1+c2

0

−2

−2

−1+c

1−c

0

0

−2c

1−c

1−c

1−c

−c−c2

−2

−2

−2

0

−1−c

−1−c

−1−c

−c+c2



(9.15)

9.8 Obtaining symbolic coefficients

For the product input %1; the corresponding Bs, 1 matrix for c = 0.5 is:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c 1 1 c −c 1 1 c −1 c −1 −1 1 1 1 1

1 1 c −1 1 1 1 −1 −1 −1 1 1 c c −c 1

1 c 1 1 1 c −c 1 c −1 c −c −1 −1 −1 −c

c c 1 1 −c 1 −1 1 1 1 −c −1 c 1 1 −1

1 c 1 c c2 1 −1 c −1 c c 1 c 1 1 −1

−c c c −1 −c 1 −1 −1 −1 −1 −c −1 c2 c −c −1

c c2 1 1 −c c c 1 c −1 −c2 c −c −1 −1 c

1 1 c 1 1 −c −1 1 1 1 1 1 −1 −1 −1 −c

−c 1 c c −c −c −1 c −1 c −1 −1 −1 −1 −1 −c

c2 1 c2 −1 1 −c −1 −1 −1 −1 1 1 −c −c c −c

1 c c 1 1 −c2 c 1 c −1 c −c 1 1 1 c2

1 1 1 c 1 1 c −c −c −c −1 −c −1 −c −c −1

c 1 1 c2 −c 1 c −c2 c −c2 1 c −1 −c −c −1

1 1 c −c 1 1 c c c c −1 −c −c −c2 c2 −1

1 c 1 c 1 c −c2 −c −c2 c −c c2 1 c c c



(9.16)
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The symbolic basic variable vector is:

(9.17)

For %2; the corresponding Bs, 2 for c = 0.5 is:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 c −1 1 1 −1 1 1 1 −c −1 −1 −1 1 1 1

c 1 −c −c 1 1 1 c 1 −1 −c 1 c c −1 −c

1 1 1 1 −c −c c −1 c 1 −1 c 1 −1 −c −1

c c c 1 −1 −1 c −c −1 1 1 −c −1 1 1 −1

c c2 −c 1 −1 1 c −c −1 −c −1 c 1 1 1 −1

−1 c −c2 −c −1 −1 c −c2 −1 −1 −c −c −c c −1 c

c c c 1 c c c2 c −c 1 −1 −c2 −1 −1 −c 1

1 1 1 c 1 1 −1 −1 −c 1 1 1 1 −1 −1 −c

−c2 c −1 c 1 −1 −1 −1 −c −c −1 −1 −1 −1 −1 −c

c 1 −c −c2 1 1 −1 −c −c −1 −c 1 c −c 1 c2

1 1 1 c −c −c −c 1 −c2 1 −1 c 1 1 c c

1 1 1 1 c c 1 1 1 −c −c −1 −c −c −c −1

1 c −1 1 c −c 1 1 1 c2 c 1 c −c −c −1

c 1 −c −c c c 1 c 1 c c2 −1 −c2 −c2 c c

1 1 1 1 −c2 −c2 c −1 c −c c −c −c c c2 1



(9.18)
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The symbolic basic variable vector is:

(9.19)

We can alternatively guess at the coefficients for %2 provided the CZ gate is undergoing
noise at a rate of ε = 1+c2

2+c2 , where c = 0.5. The noisy CZ output state for %2 in this
instance can be given as

1
4

( 1
2 + c2

)


2 + c2 1 c 1
c c −1 c

1 −c2 c 1
1 1 c 1


(9.20)

This output state can be expressed as a convex combination of the separable states:

1
4

( 1
2 + c2

)


1 1 c 1
c c c2 c

1 1 c 1
1 1 c 1


+ 1

4

(
1 + c2

2 + c2

)
1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 0


(9.21)
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For %3; the corresponding Bs, 3 for c = 0.5 is:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 c 1 −1 1 1 1 −1 −1 −1 1 c −1

1 1 −c c 1 1 1 −1 −c 1 −1 1 1 −1 −1 1

c −c 1 1 1 −c c −c 1 −c c −c c c −1 −c

c2 c 1 1 −1 −1 −1 1 1 −c 1 −c −1 1 1 −1

1 c 1 1 −c −1 1 1 1 −c −1 c 1 1 c 1

−1 c −c c −1 −1 −1 −1 −c −c −1 −c −1 −1 −1 −1

c −c2 1 1 −1 c −c −c 1 c2 c c2 −c c −1 c

c 1 c 1 c c 1 −c −1 −1 c 1 1 −c −c −c

−c 1 c 1 c2 c −1 −c −1 −1 −c −1 −1 −c −c2 c

c 1 −c2 c c c 1 c c −1 −c 1 1 c c −c

1 −c c 1 c −c2 c c2 −1 c c2 −c c −c2 c c2

1 1 1 c 1 1 c 1 c 1 −1 −1 −c −1 −1 −1

1 1 1 c c 1 −c 1 c 1 1 1 c −1 −c 1

1 1 −c c2 1 1 c −1 −c2 1 1 −1 −c 1 1 −1

c −c 1 c 1 −c c2 −c c −c −c c −c2 −c 1 c



(9.22)

The symbolic basic variable vector is:

(9.23)
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For %4; the corresponding Bs, 4 for c = 0.5 is:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 −c c 1 1 1 1 −1 −1 −1 −1 −c 1 1

c c −c 1 1 1 1 −1 1 1 −c c −1 1 −1 −1

1 1 1 1 1 c −c c −c −c −1 1 −c −1 −c −c

1 1 1 1 −c −1 −1 1 −1 c c 1 1 −c 1 1

c2 1 1 −c −c2 −1 −1 1 −1 −c −c −1 −1 c2 1 1

−c c −c 1 −c −1 −1 −1 −1 c −c2 c −1 −c −1 −1

1 1 1 1 −c −c c c c −c2 −c 1 −c c −c −c

c c c 1 1 c c −1 −1 1 1 1 1 1 −c −1

−c c c −c c c c −1 −1 −1 −1 −1 −1 −c −c −1

1 c2 −c2 1 1 c c 1 −1 1 −c c −1 1 c 1

c c c 1 1 c2 −c2 −c c −c −1 1 −c −1 c2 c

1 1 1 c 1 1 1 c c −1 −1 −c −c −1 −1 −c

1 1 1 −c2 c 1 1 c c 1 1 c c c −1 −c

c c −c c 1 1 1 −c c −1 c −c2 c −1 1 c

1 1 1 c 1 c −c c2 −c2 c 1 −c c2 1 c c2



(9.24)

The symbolic basic variable vector is:

(9.25)
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For %5; the corresponding Bs, 5 for c = 0.5 is:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 −c 1 c −1 −c 1 1 1 1 −1 −1 −1 1 1 1

1 1 1 1 1 1 c 1 −1 1 −1 1 c −1 −1 −1

c 1 −c 1 −c 1 1 −c c −c c c −1 −c c −c

c c 1 1 −c −1 c c 1 −1 c −c −c 1 1 −c

c −c2 1 c c c c c 1 −1 −c c c 1 1 −c

−c c 1 1 −c −1 c2 c −1 −1 −c −c −c2 −1 −1 c

1 c −c 1 c2 −1 c −c2 c c c2 −c2 c −c c c2

c2 1 c 1 1 1 −1 −1 −1 −c 1 1 1 −c −1 −1

−1 −c c c −1 −c −1 −1 −1 −c −1 −1 −1 −c −1 −1

1 1 c 1 1 1 −c −1 1 −c −1 1 c c 1 1

c 1 −c2 1 −c 1 −1 c −c c2 c c −1 c2 −c c

1 1 1 c 1 c 1 1 c 1 −1 −1 −1 −1 −c −1

1 −c 1 c2 −1 −c2 1 1 c 1 1 1 1 −1 −c −1

1 1 1 c 1 c c 1 −c 1 1 −1 −c 1 c 1

c 1 −c c −c c 1 −c c2 −c −c −c 1 c −c2 c



(9.26)

The symbolic basic variable vector is:

(9.27)
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For %6; the corresponding Bs, 6 for c = 0.5 is:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c c 1 −1 1 1 1 c 1 c −1 −1 −c −1 1 −1

c 1 c 1 −1 c 1 1 1 1 −c −1 −1 1 −1 −c

c 1 1 c c −1 −c −1 −c −1 1 c 1 −c −c −1

c c 1 −1 1 −c −c −1 −1 −1 c 1 1 −1 1 −1

1 c2 1 1 1 −c −c −c −1 −c −c −1 −c 1 1 1

−1 c c −1 −1 −c2 −c −1 −1 −1 −c2 −1 −1 −1 −1 c

1 c 1 −c c c c2 1 c 1 c c 1 c −c 1

c 1 c 1 −1 −1 −1 −c −c −1 1 c 1 1 −1 −c

−1 c c −1 −1 −1 −1 −c2 −c −c −1 −c −c −1 −1 c

1 1 c2 1 1 −c −1 −c −c −1 −c −c −1 1 1 c2

1 1 c c −c 1 c c c2 1 1 c2 1 −c c c

c 1 1 c c 1 1 1 1 c −1 −1 −c −c −c −1

1 c 1 −c c 1 1 c 1 c2 1 1 c2 c −c 1

1 1 c c −c c 1 1 1 c c 1 c −c c c

c2 1 1 c2 c2 −1 −c −1 −c −c −1 −c −c c2 c2 1



(9.28)

The symbolic basic variable vector is:

(9.29)
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