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Abstract

The aim of the presented research is to investigate and develop methods to model

rubber hyperelasticity. Accurate numerical modelling of the hyperelastic behaviour

of rubber requires a capable constitutive model and experimental data from the ma-

terial or component of interest. This research focuses on three areas: hyperelas-

tic constitutive modelling with homogeneous experimental parameter identification,

implementing hyperelasticity in the Finite Element Method and simulating the hy-

perelastic behaviour of industrial rubber components.

Postulated conditions are proposed to ensure the physical plausibility of hyperelastic

homogeneous experimental data. Using experimental data from literature deemed

to meet these conditions, the connection between constitutive model, the extent of

experimental data and the ability to predict the complete hyperelastic behaviour is

investigated. A more efficient means of experimental parameter identification is sug-

gested, which uses only “sufficient” experimental data. This data encompasses the

expected range of deformations for a material or component. To develop this method

for industrial rubber components, the Finite Element Method is used.

Open-source user subroutines are developed to enable the implementation of hypere-

lastic constitutive models in the Finite Element Method. Analytical implementations

are developed for hyperelastic constitutive models defined by two common strain

measures, Cauchy-Green invariants and principal stretches. Implementations are

also developed for two complimentary real-domain approximation methods. All im-

plementations are validated in terms of their numerical accuracy and computation

time. The implementations are accurate to double precision and analytical methods

are more computationally efficient than approximation methods.

A methodology for simulating rubber components using sufficient experimental data

is developed. The approach uses prototype simulations to identify the strain region

of the component under operating conditions. A modification is proposed for sim-

ulating strain-loaded and stress-loaded components, as the latter affects the strain

region. The method is demonstrated by simulating two industrial components, one

for each loading type.
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Chapter 1

Introduction

From the discovery of natural rubber and the realisation of the vulcanisation process,

natural and synthetic rubber compounds have found use in many engineering appli-

cations due to their unique mechanical properties. Applying relatively small applied

mechanical loads, compared with other engineering materials, rubbers are low cost

materials capable of sustaining large elastic deformations without damage. Deforma-

tions of over 800% are known to be possible for some technical rubber compounds.

As a compounded material, the ingredients of a rubber enable a wide variety of

mechanical and chemical properties. The compounding recipe and process affects

a rubber’s stiffness, maximum elongation, damping properties, operating tempera-

tures, chemical compatibilities, frictional behaviour, density and cost, to name but

a few (1, 2). This flexibility of material properties enables the use of rubbers across

a broad range of applications, including critical sealing components in pressurised

systems, tyres for automobiles and aircraft, and the soles of shoes. Some of these

properties are also shared by soft biological tissues. “Rubber” may therefore be ap-

plied to any material that shares similar mechanical properties and fits the description

of a rubber-like material.

Prior to the employment of a product within an engineering application, it is bene-

ficial to gain prior knowledge of how it will respond to service conditions. This is a

key aspect of a modern design process and has led to the development of analytical

and numerical modelling methods. To describe the mechanical response of a material

to a prescribed loading, a constitutive model is required. For components with sim-

ple geometries and boundary conditions, analytical equations may be derived from a

constitutive model describing the material. However, for more complex components

and boundary conditions, a numerical method is likely to be required. For the mod-

elling of solids, the Finite Element Method (FEM) is a commonly applied numerical

simulation method. Accurate prediction of a component by either numerical method

requires constitutive model parameters that are fitted to experimental data from the
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physical component. An accurate insight of component performance and behaviour

through Finite Element Analysis (FEA) enables engineering design capabilities, such

as: identifying design weaknesses, computing fatigue life or geometric optimisation.

In the presented work, numerical modelling of rubber was investigated in terms

of analytical solutions for simple homogeneous experiments and by FEA of indus-

trial rubber components. These investigations were restricted to the isothermal equi-

librium behaviour of rubber in the time-domain, for which hyperelasticity theory

may be applied. Homogeneous experimental data from literature was studied, moti-

vated by its use in parameter identification of hyperelastic constitutive models. Us-

ing hyperelastic constitutive models fitted to experimental data from a component,

the isothermal equilibrium behaviour of a rubber component may be predicted us-

ing FEA. By way of literature review, it was found that the extent of experimental

data and the choice of constitutive model to accurately simulate a rubber component

was not well understood. An investigation into both factors was carried out, with

consideration of how they relate to one another. There was indication that certain

constitutive models may be generally more capable than others and that some may

even accurately predict the complete hyperelastic behaviour of rubber using minimal

experimental data.

The commercial FEM software Abaqus (3) was used to study the extent of experimen-

tal data required and the choice of constitutive model to simulate industrial rubber

components. As the wealth of published constitutive models were not available in

the FEM software, numerical implementations were developed. The aim of these was

to allow the implementation of most known hyperelastic constitutive models in the

FEM. This was enabled through the development of open-source subroutines, which

aimed to minimise user input with acceptable computational costs. The ambiguous

nature of certain hyperelastic constitutive model definitions led to an investigation of

numerically approximated implementations. Using the developed user subroutines,

two industrial rubber components were studied. A methodology was proposed for

the simulation of the hyperelastic behaviour of industrial rubber components using

only “sufficient” experimental data.

This thesis consists of seven chapters. The topics of each chapter are described as

follows. All data associated with this thesis and the developed programs and sub-

routines are available in the dataset (4).

Chapter 2 introduces and reviews the isothermal behaviour of rubber. The general

isothermal behaviour is discussed to justify the focus on only the equilibrium hyper-

elastic behaviour. The complete hyperelastic behaviour and the complex behaviours

of rubber are introduced. The approaches to hyperelastic constitutive modelling, ex-

perimental parameter identification and the FE (Finite Element) implementation of
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hyperelasticity are then reviewed.

Chapter 3 investigates hyperelastic constitutive modelling and parameter identifica-

tion using homogeneous experiments. This aims to reveal the relationship between

the choice of constitutive model, the extent of experimental data and the ability to

predict the complete hyperelastic behaviour. Interpolated behaviours are compared

to investigate the validity of assuming the complete behaviour may be predicted by

single loading experimental data. The prediction of smaller interpolated regions by

lesser extents of experimental data is also investigated by interpolated predictions.

Chapters 4 and 5 discuss the developed FE implementations of hyperelasticity by

user subroutines. In Chapter 4, implementations by numerically approximated tan-

gent moduli are investigated using Cauchy-Green invariant constitutive models. Ini-

tially, two user subroutine interfaces of Abaqus are studied, UMAT and UHYPER.

For this, analytical implementations of Cauchy-Green invariant constitutive models

are developed and validated. Using the validated implementations, two complimen-

tary methods of numerical implementation by real-domain numerical approximation

of tangent moduli are investigated. Chapter 5 develops a FE implementation for

hyperelastic constitutive models defined in terms of principal stretches. The princi-

pal stretches are a strain measure affected by numerical instabilities. The developed

implementation uses an explicitly derived analytical elasticity tensor, which is numer-

ically stable. For all developed implementations throughout Chapters 4 and 5, the

numerical accuracy and computational efficiencies are assessed, with consideration

of built-in constitutive models from Abaqus.

Chapter 6 focuses on developing a methodology for the simulation of the hyperelas-

tic behaviour of industrial rubber components in the FEM. The proposed method is

based on the use of only sufficient experimental data to identify constitutive model

parameters. The sufficient experimental data is that which encompasses the expected

strain range of the component. Predicting the expected strain range requires a dif-

ferent approach depending on the nature of the applied loading, whether it is strain-

loaded or stress-loaded. The former can be predicted without material insights, but

the strain range of a component exposed to stress-loading is dependent on the ma-

terial properties. Either approach provides a more efficient experimental procedure

to simulate industrial rubber components. Two components are investigated, one is

strain-loaded and the other features stress-loading.

Chapter 7 summarises the conclusions from each of these chapters and proposes the

next steps in further developing this research.
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Chapter 2

Numerical Modelling and

Parameter Identification of

Hyperelasticity

A review of the literature is presented for the isothermal behaviour of rubber with a

focus on constitutive modelling, parameter identification and numerical implemen-

tation of the equilibrium behaviour of rubber in the Finite Element Method. Prior to

discussing the isothermal rubber behaviour, the finite elasticity framework is defined

with reference to Holzapfel (5).

2.1 Finite Elasticity Framework

In three-dimensional real coordinate spaceR3, a Lagrangian or reference undeformed

configuration Ω0 and an Eulerian or current deformed configuration Ω are defined

for a body of interest. A material point X in the reference configuration X∈Ω0 at

time t = 0, is mapped to its current position x in the current configuration x∈Ω at

time t = t, by χ. The motion χ :Ω0 → R3 and therefore x=χ (X, t). Arguments are

subsequently neglected for clarity. The motion χ describes the deformation and the

rigid body motions (translation and rotation). To remove translation, the two-point

deformation gradient tensor, defined by F=∂χ/∂X is used. The change in volume, in

terms of the volume ratio J=V/V0, is calculated from this deformation tensor by its

determinant using

J = det (F) (2.1)

The polar decomposition of the deformation gradient splits F into pure stretch and

pure rotation tensors by F=RU and F=vR. Here, U and v are respectively the sym-

metric positive definite right and left stretch tensors in the material and spatial con-
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Figure 2.1: Motion between a body’s reference and current configurations

figurations. Tensor R defines the rigid body rotation and is a proper orthogonal

tensor, which implies the relations RTR=RRT=1, where 1 is the second-order iden-

tity tensor. The superscripted notation AT indicates the transpose of a tensor A. With

these relations, two further symmetric pure stretch tensors in the material and spatial

descriptions may be defined in terms of F. These are, respectively, the right and left

Cauchy-Green deformation tensors C and b

C = FTF =
(

URT
)
(RU) = U2 (2.2)

b = FFT = (vR)
(

RTv
)
= v2 (2.3)

Due to the symmetry of the Cauchy-Green deformation tensors, the spectral decom-

position may be used to represent these tensors in terms of real eigenvalues λa
2 and

sets of mutually orthogonal eigenvectors Na and na

C =
3

∑
a=1

λa
2 (Na⊗Na) (2.4)

b =
3

∑
a=1

λa
2 (na⊗na) (2.5)

The eigenvalues of both Cauchy-Green deformation tensors λa
2 are the squared prin-

cipal stretches. The eigenvectors Na and na are the principal directions in the mate-

rial and spatial configurations. When summation symbols are present the principal

stretches are defined as λa, other principal values are defined using λi. When the

principal stretches are uniform and aligned with the principal directions, which is

often assumed for experimental convenience, each may be defined in terms of an
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arbitrary initial length L0 and their current length L in the principal direction i as

λi =
L
L0

i = 1, 2, 3 (2.6)

This is related to another useful experimental measure, the principal nominal strain,

which is defined by εi by εi = λi − 1 where i = 1, 2, 3.

The Cauchy-Green deformation tensors and principal stretches are also related in

terms of three scalar invariants I1, I2 and I3. These are referred to throughout as the

Cauchy-Green invariants. As they are “invariant”, this implies that they are objective

and do not change with a transformation of basis or a change of observer. They are

therefore defined equivalently in terms of the tensors C and b and can be expressed

in terms of the principal stretches by

I1 = trC = trb = λ1
2 + λ2

2 + λ3
2 (2.7)

I2 =
1
2

[
(trC)2 − tr

(
C2
)]

=
1
2

[
(trb)2 − tr

(
b2
)]

= λ1
2λ2

2 + λ1
2λ3

2 + λ2
2λ3

2 (2.8)

I3 = detC = detb = λ1
2λ2

2λ3
2 = J2 (2.9)

These use the definition of the trace of a tensor A as trA = Aii and the determinant

of A is defined using the Levi-Civita symbol ε ijk as detA = ε ijk A1i A2j A3k.

As originally proposed by Flory (6), the nearly incompressible nature of rubber ne-

cessitates a split of the deformation into deviatoric and dilatational contributions. Bar

notation is used to indicate an isochoric, constant volume quantity. Starting with the

deformation gradient F, the multiplicative split is defined as

F =
(

J
1
3 1
)

F = J
1
3 F (2.10)

The volumetric deformation is therefore a ratio of the original volume defined as

J
1
3 1. The isochoric part is F, which is computed by F = J−

1
3 F. Other isochoric strain

measures are defined implicitly from this, such that

C = J−
2
3 C (2.11)

b = J−
2
3 b (2.12)

λa = J−
1
3 λa (2.13)

The isochoric Cauchy-Green invariants may then be defined equivalently to equations

(2.7), (2.8) and (2.9) by these isochoric components. Alternatively they are defined

I1 = J−
2
3 I1, I2 = J−

4
3 I2 and I3 = 1. In the case of incompressibility, the volume is

constant such that I3 = I3 = J = 1, which implies I1 = I1, I2 = I2 and λa = λa.

A multiplicative split of the deformation allows near and full incompressibility and

was used throughout, unless otherwise stated.
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2.2 Isothermal Behaviour of Rubber

The widespread use of rubber as an engineering material is primarily due to its

ability to stretch up to several hundred times its length elastically, without damage.

Its stiffness is also significantly lower than other engineering materials, meaning that

these large deformations are induced by much smaller applied stresses. For most

materials, an applied stress is equilibrated by internal stress of a material due to

intermolecular forces. However, these forces only support internal strains to around

10% (7). The ability of rubber materials to undergo large deformations and produce

an equilibrating stress without damage therefore requires additional theories.

The finite strain equilibrium behaviour of rubber is typically defined by hyperelastic-

ity. Though this behaviour is the focus of the presented work, an overview of com-

plex isothermal behaviours for rubber in the time-domain is also presented. These

theories are discussed for the isothermal behaviour of rubber with reference to stress-

strain plots and the underlying hyperelastic equilibrium response. The experimental

methods to characterise the hyperelastic behaviour are discussed in greater detail

in Section 2.4. The discussion of rubber’s behaviour is categorised into equilibrium

elasticity and complex behaviours.

2.2.1 Rubber Elasticity

Rubbers are a network of molecules primarily consisting of a “backbone” of long-

chain monomers with cross-links (2). The backbone material is typically what the

rubber material is referred to as. Common examples include polyisoprene (natural

rubber), silicone and ethylene propylene diene. The mechanical properties of vul-

canized rubbers are dependent on the properties of the backbone monomer and the

degree of cross-linking induced during vulcanization (8). Additives included in the

compounding of rubber also strongly influence its mechanical properties. The most

pronounced effect is due to the inclusion of reinforcing filler particles, which are most

commonly carbon-black or silica (2, 9). The internal forces of rubber are due to in-

teractions within and between the long chain molecules and the other compounding

constituents.

The typical hyperelastic behaviour of rubber is shown in Figure 2.2 for three stress-

strain curves with different applied modes of deformation. The complete stress re-

sponse for a typical rubber material may be described in terms of three characteristic

features (10, 11, 12, 13, 14). The first two features describe the S-shaped (15, 16) stress

response in each deformation mode. At low to moderate strains the initial stiffness

decreases gradually but remains positive. This is then followed by a stiffening pos-

itive asymptotic stress response at high strains. The third feature is that there is a
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Figure 2.2: Dimensionless plot of typical stress-strain elastic behaviour of rubber in dif-

ferent deformation modes

distinct difference in stress at the same stretch value for different deformation states.

The asymptotic behaviour in any deformation mode will cause the rubber to fail. The

deformation state dependence means that the asymptote, and therefore material fail-

ure, occurs at different stretch magnitudes depending on the mode of deformation

(11).

The seminal paper by Flory (17) outlines the historical development of the accepted

theory of rubber elasticity. The three stated features may be described in terms of

the molecular theory of rubber and were developed in respective historical order.

The decreasing stiffness at low strains was initially explained by a Gaussian distri-

bution of the long-chain monomer network (2, 7, 17). The long-chain molecules are

assumed to have an end-to-end length related to a Gaussian distribution, which is

much shorter than the total length of each molecule. When stretched to low and

moderate strains, the network is initially stiff due to the orientation of the molecules.

As the molecules align, the stiffness decreases. The network is assumed to be affine

such that the stiffness decrease at the molecular level explains the macroscopic soft-

ening response. However, as the strain increases, the Gaussian network chains do not

have a limited extensibility (7, 15), which fails to produce an asymptotic rise in the

stiffness at higher strains.

The asymptotic behaviour of rubber may be described by considering the finite exten-

sibility of the chains (10, 15, 18, 19). This may be modelled by a non-Gaussian distri-

bution of molecular chain lengths, for example an inverse Langevin distribution was

shown by Arruda and Boyce (15) to be suitable. The inverse Langevin distribution

was also assumed to be non-affine to account for the deformation state dependence.

However, this theory does not adequately characterise the distinction, additional the-

ory is required (20). The distinction is explained by topological tube-like constraints

(11, 21, 22, 23). In the tube theory, as described by McCleish (23), the chains are
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contained within tubes of constant diameter, which may entangle with other chains

and tubes during deformation. In uniaxial deformation, the tubes are deformed in

the same direction and so the least amount of entanglement occurs. In equibiax-

ial tension, where the material is deformed by equal amounts in two perpendicular

directions, the maximum amount of tube entanglement occurs. This phenomena ex-

plains the magnification of stress from the conforming uniaxial tensile deformation

to the more constrained equibiaxial tensile deformation.

Prior to vulcanization, rubber materials are typically in a fluid-like state at room

temperature (7). The ratio of the shear and bulk modulus for a fluid is very low.

This implies that applied stress will cause the fluid to distort but its volume will not

change unless the fluid is highly confined. When rubber is vulcanized, the low ratio

of shear to bulk moduli is retained. The linear equation relating the bulk modulus K,

the shear modulus G and the Poisson’s ratio ν is given by

ν =
(3K− 2G)

(6K + 2G)
(2.14)

If the ratio of G/K tends towards zero, the Poisson’s ratio tends towards 0.5. In

this case, a simple tensile deformation causes enough hydrostatic compression in the

transverse direction to preserved volume. Therefore, unless the rubber material or

component is highly confined, loads applied to rubbers cause only isochoric defor-

mations.

Vulcanized rubber ideally behaves as an incompressible elastic solid, in that it returns

to its original configuration upon removal of stress. The described elastic behaviours

of rubber are defined by hyperelasticity. This is discussed in greater detail in Sec-

tion 2.3. However, rubber is affected by rate-dependence, inelastic effects and other

phenomena. Rubbers used in industry are often highly filled, due to the stiffness rein-

forcement effect of filler particles. An increased content of filler particles is known to

intensify some of these effects (24, 25). When more complex behaviours are modelled,

the hyperelastic behaviour represents their equilibrium behaviour (26, 27, 28, 29, 30).

2.2.2 Complex Rubber Behaviours

This discussion of complex behaviours is not considered to be a comprehensive de-

scription of all rubber phenomena. For example, the complex behaviour of rubber

friction and temperature effects (31, 32) were omitted. As the presented work focuses

on the equilibrium hyperelastic behaviour, the prominent complex behaviours for

rubber in the time-domain are briefly discussed. The complex behaviours included

are hysteresis, viscoelasticity, the Mullins effect and strain crystallisation.
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Rubber hysteresis is an elastic phenomenon that appears in cyclic loading. During

loading, the stress required to reach a certain strain value is higher than if the same

value of strain was measured through unloading. The effect is illustrated in Figure

2.3a. Hysteresis in rubber is often assumed to be a time-dependent viscoelastic effect

(2, 33, 34). This is due to its pronounced magnitude at higher strain-rates (24, 26,

35). Bergström and Boyce (26, 35) observed a specimen held at same value of strain

reached by loading and unloading over a long relaxation time. They assumed that

an infinitely large relaxation time would eventually achieve the same equilibrium

stress value. Due to the experimental infeasibility to allow long relaxation times

without material degradation, some authors (24, 36) propose that hysteresis may be

considered as a time-independent effect. In either case, the equilibrium hyperelastic

behaviour may be measured between the loading and unloading responses. The

hysteretic response may then be modelled as a scaling of the hyperelastic behaviour

with dependence on the nature of the applied loading (35, 36, 37).

The viscoelastic behaviour of rubber is explained in part as time-dependent hysteresis

and the description of the remaining behaviour depends on whether the component

is strain-loaded or stress-loaded (2, 33, 34). For strain-loading, time dependence is

considered in terms of the strain-rate in applying or removing a load and the dura-

tion of strain-loading if the load is held constant. In strain-loaded experiments with

linearly scaled strain-rates, the measured stress responses are amplified for higher

strain-rates, as shown in Figure 2.3b. This amplification is nonlinearly related to the

strain-rates (29, 35, 38). If strain-loads are applied and held constant, stress relaxation

will occur at a higher rate for larger strains, shown in Figure 2.3c. Due to nonlinear

viscoelasticity, the rate of relaxation is nonlinearly related to the magnitude of the

applied strain. With constant stress-loading, the strain will increase over time during

loading and decrease during unloading, both tending towards equilibrium, shown

in Figure 2.3d. This creep behaviour is nonlinearly related to the amplitude of the

applied stress. These effects may also be modelled as a scaling of the equilibrium

hyperelastic behaviour (29, 35, 37), but the scaling should account for nonlinear time-

dependence. For an application without dynamic effects or rubbers with very short

relaxation times (39), the viscoelastic effects may be neglected.

When rubber is cycled to the same magnitude of stress or strain, a stress softening

(35) or cyclic creep (40) response occurs between each subsequent load cycle during

the first number of cycles. The largest softening occurs after the first cycle (41) and the

effect has been found for up to ten cycles (42). This softening is known as the Mullins

effect (43). An idealised depiction of the Mullins effect, which removes the hysteretic

behaviour, is shown in Figure 2.3e. In this idealised Mullins effect behaviour, the first

loading to any strain magnitude that exceeds the maximum of the material’s loading

history has an amplified stiffness during loading. The unloading path is then at a
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lower stress than the unloading for any previous maximum. All subsequent loadings

lie on the unloading path of the historical maximum load (44). The effect may also

be coupled with residual strains, which are known as permanent set for rubber (45).

The amount of permanent set increases with strain magnitude and the percentage

filler content (25). Without hysteresis, the Mullins effect and permanent set may be

modelled by a hyperelastic constitutive model with a damage parameter (25, 30, 44).

More complex models account for the induced anisotropy of the Mullins effect. These

models also use the hyperelastic behaviour as the equilibrium response but, as the

historical maximum loading and softening occurs in the direction of the applied load,

a directional history is required (37, 46, 47).

Strain crystallisation is another cyclical behaviour. It affects the stress-strain response

similarly to the Mullins effect, as shown in Figure 2.3f. During loading, rubber may

begin to crystallise once the strain exceeds a critical strain threshold (48), which in-

creases the stiffness. Upon unloading, the crystallites begin to melt, lowering the

stiffness, and the stress-strain path reunites the loading curve at approximately the

point of the critical strain threshold. The capability of a rubber to crystallise depends

on its backbone monomer (2). For crystallising rubbers, the strain at which crystalli-

sation occurs is dependent on the compounding recipe and it ranges from a lower

limit of around 200% up to 450% (7) at room temperature. The onset of crystallisa-

tion is delayed by higher strain-rates and at higher temperatures (49). Loos et al (48)

recently demonstrated a thermodynamically consistent constitutive model to predict

the stress-strain behaviour and a measure of the crystallinity content of a crystallis-

ing rubber in a uniaxial tension test. This model is based on the assumption that a

hyperelastic constitutive model represents the equilibrium behaviour of the material.

2.2.3 Complete Behaviour of Rubber

From the literature, it is clear that the molecular theory of the rubber elasticity is

well understood and there is significant progress in understanding and modelling

the discussed complex effects. There are several models that take into account two or

more of these behaviours. Hysteresis, viscoelasticity and the Mullins effect have been

modelled successfully (30, 50, 51). Models are also available for complex processes

such as rubber curing (52, 53, 54) and the thermal recovery of the Mullins effect (55).

The common goal of research into these complex behaviours and processes seems to

be to achieve a complete model for rubber. In state of the art research, hyperelasticity

is used to model part of the equilibrium behaviour of rubber, often as the foundation

of a complex model. This highlights the importance and relevance of further study

into accurate numerical modelling of rubber hyperelasticity.
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2.3 Isochoric Hyperelastic Constitutive Modelling

Based on the framework defined in Section 2.1, a hyperelastic material is an idealised

constitutive theory for largely deforming elastic behaviour. The theory assumes that

a Helmholtz strain energy function ψ exists (5). Assuming isothermal and isotropic

behaviour, the function is objective and fully defined by a strain measure in terms

of unit volume, ψ = ψ (F) = ψ (QF), where Q is an orthogonal rotation tensor.

These functions are often referred to as strain energy density functions or hyperelastic

constitutive models. The practical use of strain energy density functions is that they

may be used to compute the stress and stiffness of a material. In finite elasticity

definitions, these quantities are fully defined by a second-order stress tensor and

a fourth-order elasticity tensor. Variations of these tensors exist for reference and

current configurations. For demonstration, the material second Piola-Kirchhoff stress

S and the material elasticity tensor C are defined in terms of the derivative of the

strain energy density ψ and the right Cauchy-Green tensor C by

S =2
∂ψ

∂C
(2.15)

C =2
∂S
∂C

= 4
∂2ψ

∂C∂C
(2.16)

As the stress is defined as a derivative of the strain energy density with respect

to strain, hyperelastic constitutive models may be formulated from stress-strain be-

haviour then integrated to determine the strain energy density function (56). Due to

the near incompressibility of rubber, the stress-strain behaviour may be assumed to

be purely isochoric. Otherwise, the strain energy is split additively into isochoric W

and volumetric U components (6) as

ψ = W
(
F
)
+ U (J) (2.17)

The stress and stiffness are also assumed to be additively split into isochoric and

volumetric contributions and are computed or measured as such. Both quantities

may require definition for numerical methods, however, the subsequent discussion

focuses on isochoric hyperelastic constitutive models. It is assumed that rubber is

fully incompressible and the discussion of hyperelastic constitutive models is there-

fore related only to the isochoric behaviour.

The isochoric hyperelastic behaviours, discussed in Section 2.2.1, should be captured

by the constitutive model. The constitutive models should be capable of fitting the

decreasing stiffness at low strains, the asymptotic finite extensibility and the defor-

mation mode dependence. Many constitutive models have been proposed to predict

some or all of these behaviours. The constitutive models may be categorised in two
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ways. The first is due to the nature of their constants, which may be either micro-

mechanical or phenomenological (11, 57, 58). This means, respectively, that they are

defined in relation to physical characteristics of the rubber’s microstructure or are

purely numerical constants for the purpose of curve-fitting the mechanical response.

Alternatively, constitutive models may be categorised on how they define strain (59).

The modelling approaches discussed here are categorised as Cauchy-Green invariant

constitutive models, principal stretch constitutive models and network constitutive

models. Data-driven approaches, which are free of a specific constitutive model for-

mulation, are mentioned for completeness. Prior to these descriptions, postulates

and conditions to ensure the physical plausibility of hyperelastic constitutive models

are discussed.

2.3.1 Hyperelastic Constitutive Modelling Postulates

To ensure the physical plausibility of a constitutive model, regardless of its phe-

nomenological or micro-mechanical nature, a number of postulates and conditions

have been proposed. Postulates were proposed by Treloar (7) and Ogden (19). Attard

(60) compiled these with additional postulates related to compressibility. Darijani and

Naghdabadi (61) presented postulates based on these for only isochoric behaviour,

which are as follows

1. “The strain energy density function must be non-negative for all deformations.”

2. “The strain energy density function must be invariant under coordinate transforma-

tions.”

3. “The strain energy density must be a function of either the stretch or strain invariants.

Also, because of isotropy, the strain energy density is symmetrical with respect to the

principal stretches λ1, λ2 and λ3.”

4. “The strain energy density must have a zero value at the undeformed state (λ1 = 1,

λ2 = 1 and λ3 = 1)”

5. “The strain energy density must be a minimum at the undeformed state. This guaran-

tees that the material is stress free at the undeformed state.” Hence(
∂W
∂λa

)
=0, a = 1, 2, 3 (2.18)

(
∂2W
∂λa

2

)
>0, a = 1, 2, 3 (2.19)

6. “The strain energy density must approach positive infinity at the singularity case (λ1 =

0, λ2 = 0 or λ3 = 0) and for very large deformations (λ1 = ∞, λ2 = ∞ or λ3 = ∞).”

14



A constitutive model obeying these conditions would have an initial positive stiff-

ness and an asymptotic response. To ensure positive stiffness until finite extensibil-

ity, the Drucker stability inequality (62),
[
∑3

i=1 dσidεi > 0
]

where σ is the Cauchy

stress, should be satisfied. These would ensure only that the finite extensibility was

modelled and the decreasing stiffness at low strains could be modelled. The Baker-

Ericksen inequality (63),
[(

σi − σj
) (

λi − λj
)
> 0 if λi 6= λj

]
, should also be obeyed.

This ensures that the direction of the largest principal stress is in the direction of the

largest principal stretch. However, no postulate or inequality is known to define the

deformation state dependence of the stress response and its physical nature.

Few constitutive models are known to have been developed on the basis of phys-

ically plausible postulated behaviour (16, 18, 61). Models developed on the basis

of stress-strain relationships require a correction factor after integration to ensure

zero energy in the undeformed state (56, 64). The more common approach taken to

achieve this is through constrained parameter identification (22, 63, 65). Constitutive

models, whether described phenomenologically or micro-mechanically, are typically

developed with the aim of describing experimental data. For use in analytical or

numerical predictive methods, hyperelastic constitutive models are fully defined in

terms of common strain measures, their derivatives and numerically fitted parame-

ters.

2.3.2 Cauchy-Green Invariant Constitutive Models

Many constitutive models are defined in terms of the first and second isochoric

Cauchy-Green invariants, I1 and I2. One of the earliest models was proposed by

Mooney (66). This was expressed in terms of Cauchy-Green invariants by Rivlin (67)

and is commonly known as the Mooney-Rivlin model. Rivlin (68) later derived a

general expression, from which the Mooney-Rivlin model is a specific form of, it is

defined as

WR =
n

∑
i,j=0

Cij
(

I1 − 3
)i (I2 − 3

)j (2.20)

This constitutive model is often referred to as the generalised Rivlin model or the

polynomial model (63). The Mooney-Rivlin model is described as the case where

i = j = 1 and C00 = C11 = 0 leaving the two coefficient model with parameters C10

and C01. Simplifying to one parameter C10, so that C01 = 0, leaves the neo-Hookean

model (69). This simple one parameter model defined only by I1 is said to represent

the Gaussian network (7). To model the complete hyperelastic response, many other

models are derived from the generalised Rivlin form using the infinite combinations

of whole integer values for i and j. As reviewed by Hartmann (63), models are less

numerically stable when a greater number of higher-order terms are included. The
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stability of models fitted to experimental data is also dependent on the extent of

experimental data available (70).

Modifications of the generalised Rivlin model form the basis of many other constitu-

tive models. The reduction to only terms using the first invariant I1 is said to improve

stability (70). Non-integer powers may be used (71, 72) to improve the mathematical

range of fitted behaviour. Many of the proposed models based on the generalised

Rivlin model have been derived from a model building approach. Model building

approaches using Cauchy-Green invariants were reviewed by Beda (73) and Darijani

and Naghdabadi (61). Their approaches consider paired combinations of the invari-

ants using polynomial, power law, exponential and logarithmic terms. These models

can be created in terms of the strain energy density functions or as a stress function

by the derivatives of W with respect to I1 and I2 (56, 74, 75, 76). These approaches

demonstrate the infinite possibilities of modelling hyperelasticity by Cauchy-Green

invariants.

An alternative approach to constitutive modelling with Cauchy-Green invariants is

to fit the three characteristic features of a typical rubber material. As mentioned, the

low strain behaviour can be predicted by a simple one term neo-Hookean model (7)

defined in terms of the first invariant I1. Models of the finite extensibility behaviour

build upon this by including an additional parameter to define the location of the

asymptotic behaviour, also in terms of only I1. The inverse Langevin function was

shown to be approximated by Arruda and Boyce (15) in their eight-chain model. Fol-

lowing this, a simpler phenomenological model using a logarithmic term to predict

the finite extensibility was proposed by Gent (18). These models, and similar terms

within more complex models (22, 77), were shown to be equivalent by Chagnon et

al (78) as they all use two parameters with the same purpose of providing an initial

stiffness and an asymptotic response at finite chain extensibility.

The low strain and finite extensibility behaviours, whether described phenomeno-

logically or micro-mechanically, are modelled capably by the first Cauchy-Green in-

variant I1. Models of the tube-like phenomena, responsible for the deformation state

dependence, are often defined with two additive contributions, one part defines the

energy of the chains and the other part defines the tube constraints (12, 14, 22, 59, 79).

Khiêm and Itskov (59) approximate the tube behaviour using a one parameter ad-

ditive contribution in terms of the second invariant I2. The second Cauchy-Green

invariant is significantly higher for the same value of stretch in equibiaxial tension

compared with uniaxial tension. It is therefore a useful term in predicting the dis-

tinction between deformation states (80). The extension of a two parameter finite

extensibility model to consider this behaviour by an additional I2 term is common
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(10, 77, 81, 82). Of the known tube models, the tube component is more commonly

modelled in terms of principal stretches (12, 14, 22, 79).

2.3.3 Principal Stretch Constitutive Models

Hyperelastic constitutive models defined in terms of principal stretches were origi-

nally based on the Valanis-Landel hypothesis (83). The “model” proposed by Valanis

and Landel (83) assumes the strain energy is a separable function of the three princi-

pal stretches such that the total strain energy density function is defined by

WVL = f (λ1) + f (λ2) + f (λ3) (2.21)

The model is unlike other constitutive models as it does not have adjustable param-

eters. Each function of energy is to be determined from experimental data in which

one stretch is held constant as another is applied. On its own, the model is more

frequently referred to as a hypothesis. From this hypothesis, Ogden (84) developed

a purely phenomenological constitutive model in terms of principal stretches with a

wide fitting capability (85)

WOg =
N

∑
i=1

2µi

αi
2

(
λ1

αi + λ2
αi + λ3

αi − 3
)

(2.22)

The Ogden model may be viewed as a phenomenological power law model in terms

of principal stretches (86). Attard (60) proposed a similar model where each power

of N has two component terms, though this model can be derived from the Ogden

model. Phenomenological models in terms of principal stretches may also be derived

or constructed from exponential and logarithmic terms, or combinations of any of

these (13, 64, 87). As with Cauchy-Green invariant models, the number of terms

and the use of higher-order terms in a model increases the likelihood of numerical

instabilities (62, 88).

Principal stretch constitutive models may also be derived with a view of fitting the

complete hyperelastic behaviour. The Gaussian response is modelled by a single term

Ogden model with N = 1 and α1 = 2. Using equation (2.7), this model is equivalent

to the neo-Hookean model (69). A finite chain extensibility model in terms of log-

arithmic principal stretches was proposed by Horgan and Murphy (89). The model

of Davidson and Goulbourne (12) uses principal stretches to define the finite exten-

sibility and the tube constraints. However, as the first invariant adequately models

the chain contribution, other tube models use the first invariant for this and the tube

contribution is predicted with one or two additional parameters in an additive con-

tribution defined in terms of principal stretches (12, 14, 22, 79). Though there are a

greater number of micro-mechanical tube-like models defined in terms of principal
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stretches, in general, fewer models are known to have been derived with this strain

measure. It is supposed (40) that this is due to the difficulties associated with their

implementation in a numerical method. These difficulties are discussed in further

detail in Section 2.5.2.

2.3.4 Molecular Network Constitutive Models

The molecular phenomena of rubber hyperelasticity may be approximated in some

cases by Cauchy-Green invariants and principal stretches. However, a closer physi-

cal definition is possible through the use of network models. In these models, the

behaviour of rubber molecules are approximated by a simplified unit-cell micro-

structure (90). If the assumed chain model is of simple enough geometry, the de-

formation may be scaled up to macroscopic strain measures, as is the case for the

three-chain (91) and eight-chain (15) models. It was shown in a review by Boyce and

Arruda (90) that the eight-chain model shows a greater deformation state dependence

than the three-chain model, but is still lacking in this area (10, 92). The difference is

due to the eight-chain model modelling non-affine chain deformation. Affine net-

work models assume that the stretch of a chain is equal to the macroscopic stretch.

In a real polymer network, a chain approaching its finite extensibility limit will op-

pose further stretch and surrounding chains will therefore stretch more to account

for further increases in macroscopic deformation (7). An improvement on the eight-

chain model is the non-affine micro-sphere model proposed by Miehe et al (11). This

model considers both the finite extensibility of chains and the tube-like constraints

using an integration of a unit-sphere by 42 chains, 21 chains with symmetry.

2.3.5 Data-driven Approaches

Although data-driven approaches were not explored, an overview is presented for

completeness. These methods require a wealth of experimental data and may even

require specially developed simulation tools (93). The first and simplest data-driven

method was the general first-invariant hyperelastic constitutive model by Marlow

(94). This model uses a single set of experimental data to obtain the derivative of

the measured strain energy density with respect to the first invariant. The stress and

stiffness are computed by interpolated experimental values. As only one experiment

may be used, the deformation state dependence is not predicted accurately by this

approach. Marlow (95) later extended this to include the second invariant and in-

corporate uniaxial tension and equibiaxial tension, or equivalent data. Deformation

states lying between these are interpolated by an energy contribution from each of

the measured experimental data sets.
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An alternative approach was presented by Sussmann and Bathe (96) using spline

interpolations of the strain energy defined in terms of principal logarithmic strains.

This method allows any number of data points obtained from conventional homo-

geneous experiments to be used. Latorre and colleagues (97, 98, 99, 100) further de-

veloped these models referring to them as WYPIWYG (“what you prescribe is what

you get”) models. The WYPIWYG models have been extended to include transverse

isotropic hyperelasticity, orthotropic hyperelasticity and compressibility. A develop-

ment of data-driven isotropic hyperelasticity models by Dalemat et al (93) enables

the use of inhomogeneous experimental methods. This is achieved by matching ex-

perimentally measured digital image correlation (DIC) quantities to their equivalent

simulated values by FEA.

2.4 Experimental Parameter Identification

The review of hyperelastic constitutive modelling revealed that regardless of the ap-

proach taken, models are constructed and chosen based on their ability to fit stress-

strain experimental data from the material of interest. Experimental test specimens

should be extracted from the component itself or manufactured similarly to the com-

ponent (62, 101, 102). A hyperelastic constitutive model is fitted to experimental data

by the adjustment of its parameters. This is achieved by comparing the experimental

and model predicted values graphically or more accurately by the use of an error

function. The error is minimised by adjustment of the constitutive model parameters

manually or by an optimisation algorithm.

Parameter identification by conventional homogeneous experimental methods is a

focus of the presented work. These methods are outlined with reference to their ex-

perimental procedure and measurements. Inhomogeneous parameter identification

methods are mentioned for completeness. Following this, two particular aspects of

experimental parameter identification are discussed: the extent of experimental data

required to model the complete hyperelastic behaviour and the selection of consti-

tutive models. The ideal hyperelastic constitutive model would be that which could

predict the complete behaviour using the least amount of experimental data.

For an incompressible material, the entire range of deformations may be represented

by the region of attainable deformations (103) on a plot of the isochoric invariant

plane, as shown in Figure 2.4. Each point in the region of attainable deformations

is defined in terms of the first and second Cauchy-Green invariants I1 and I2. The

isochoric invariants were computed in terms of the experimental principal stretches,

as defined in equations (2.6) and (2.9). Evaluating the ability to fit or predict the com-

plete hyperelastic behaviour therefore requires experimental data across this region.
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3
3

 Region of attainable deformations
 Lower bound (UT or EC)
 Pure shear line ( = ) (PT, PC or SS)
 Upper Bound (ET or UC)

Figure 2.4: Dimensionless plot of the isochoric invariant plane

2.4.1 Homogeneous Experiments for Parameter Identification

Homogeneous experiments are assumed to be those in which the strain may be re-

duced to a single scalar quantity. The stress and stiffness tensors may therefore also

be reduced to scalar functions. Based on this assumption, two further restrictions are

placed on the definition of a homogeneous experimental method. A homogeneous

experiment requires that the stress and strain is assumed to be constant in a mea-

surable region of the specimen. The other is that the stress should be computed as

a function of a measured strain quantity directly, such that an iterative solution is

not required. These restrictions mean that only a limited number of experiments are

referred to throughout. In terms of the invariant plane, the strain range of an ex-

periment loaded monotonically in one state of deformation is restricted to the upper

and lower bounds and the pure shear line. These are referred to throughout as sin-

gle loading experiments. To obtain additional data by a homogeneous experiment, a

general biaxial experiment is used, which consists of multiple loadings in tension.

Due to the high bulk modulus of rubber, homogeneous experiments are assumed

to be approximated by fully incompressible behaviour. Symbolic distinctions are

therefore not made for isochoric quantities.

Uniaxial Tension and Equibiaxial Compression The lower bound of the region

of attainable deformations is achieved experimentally by uniaxial tension (UT) or

equibiaxial compression (EC). The uniaxial tension experiment is common as it is

simple to perform and does not require bespoke equipment. Testing procedures are

well-defined for rubber by the international standards BS ISO 37 (104) and ASTM

D412 (105). Alternatively, the equivalent equibiaxial compression experiment is not
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Figure 2.5: Uniaxial tension “dogbone” specimen with highlighted gauge length
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Figure 2.6: Planar experimental specimens: (a) planar tension, (b) planar compression

known to have been realised experimentally. Therefore, only the uniaxial tension

experiment was considered.

In a standardised uniaxial tension experiment, a “dogbone” shaped specimen of con-

stant thickness is loaded in the direction of its longest dimension, as shown in Figure

2.5. The loading may be applied by a force or displacement, which are equivalent for

a time-independent material. The strain is measured by observation of two or more

points in the gauge length of the specimen where the deformation is assumed to be

homogeneous. The measured nominal strain ε1 is the ratio of the change in length

∆L to the original length L0 of two observed points, defined as ε1 = ∆L/L0. The first

principal Piola-Kirchhoff, or nominal, stress P1 is found from the measured longitu-

dinal force F1 divided by the undeformed cross-sectional area of the gauge length

A0 = w0t0, in terms of its undeformed width w0 and thickness t0, as P1 = F1/w0t0.

Planar Tension and Planar Compression International standards are not known for

either planar tension or planar compression experiments. The planar tension experi-

ment is more common but requires a bespoke wide grip fixture (106, 107). The spec-

imen should be wide enough that thinning in its width direction may be treated as

negligible. The planar compression experiment also requires bespoke equipment in

the form of a wide bounded compression channel (26, 35). Furthermore, it is required

that friction is negligible. The lateral constraints of the channel ensure the specimen

remains constant in this direction. Diagrams of these experiments are shown in Fig-

ures 2.6a and 2.6b.

Ensuring that the undeformed width w0 = w and therefore the strain in one dimen-

sion is kept constant, ε2 = 0 or λ2 = 1, the applied stretch λ1 is inversely proportional

21



F1

H

w

Figure 2.7: Idealised deforming homogeneous simple shear specimen

to the remaining free stretch λ3, whether loaded in tension or compression, such that

λ1 = 1/λ3. This leads to a deformation where the first and second strain invariants

are equal I1 = I2 and the deformations are therefore equivalent to pure shear. The

measured nominal strain ε1 is the ratio of the change in height ∆H to the original

height of the specimen H0, defined by ε1 = ∆H/H0. The first Piola-Kirchhoff stress

P1 is calculated by the same method as the uniaxial tension experiment, P1 = F1/w0t0.

Simple Shear An alternative method of attaining experimental data for the pure

shear line of the invariant plane is by a simple shear experiment, shown in Figure

2.7. This experiment is described for rubber in the testing standards BS ISO 1827

(108) and ASTM D429 (109). With the exception of Method A in BS ISO 1827 where

a 25% shear modulus is found, the primary focus of these standards is related to the

adhesion behaviour of rubber. However, the procedure to obtain stress-strain data

from this test may otherwise be found in the literature (7, 110, 111, 112).

In this experiment, one or four rubber cubic specimens are bonded to metal plates

that are assumed to be rigid. The rigid plates are then displaced with constant sepa-

ration to maintain the specimen height. Throughout their deformation it is assumed

that the specimen maintains a constant parallelogram cross-section and constant

thickness. The strain measure for this test is unlike the others in that a dimensionless

quantity κ is used, known as the amount of shear. κ is related to the ratio of the dis-

placed distance δ and the fixed specimen height H, through κ = δ/H. It is therefore

equivalent to tan φ, where φ is the angle of the shear deflection as annotated in Figure

2.7. The stress measure used for simple shear is the first Piola-Kirchhoff shear stress

P12. This is obtained experimentally from the applied force F1 divided by the constant

area A = wt of the top face of the specimen by P12 = F1/A. Though it is known that a

physical specimen will deviate from this idealised deformation (113, 114), if the bulk

of the material follows the assumed behaviour then the deviation is assumed to be

negligible.

Equibiaxial Tension and Uniaxial Compression Equibiaxial tension and uniax-

ial compression are equivalent experimental means of attaining data for the upper
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Figure 2.8: Uniaxial compression specimens (a) bonded compression, (b) frictionless

compression

bound of the region of attainable deformations. While there are no known industry

standards for the testing procedure of equibiaxial tension experiments on rubber, uni-

axial compression experiments are described in ASTM D575 (115) and BS ISO 7743

(116).

In the testing procedure of ASTM D575 (115), a cylindrical specimen is compressed

between rigid platens with either a bonded or high friction interface to prevent slip.

This results in an inhomogeneous deformation, as shown in Figure 2.8a. As a result

of the bulging behaviour, the force and displacement data cannot be interpreted in

terms of stress and strain. To achieve the desired homogeneous deformation state by

a uniaxial compression test, a frictionless interface is required, shown in Figure 2.8b.

In BS ISO 7743 (116), it is recommended that the test specimen is suitably lubricated

and has a slenderness ratio (height to diameter) greater than one. In an idealised

frictionless uniaxial compression experiment, identical stress-strain results would be

found regardless of specimen geometry. This is not possible in practice and negligible

friction should be sought. A high slenderness ratio is known to reduce the effect of

friction (116, 117, 118) but is limited by buckling effects when the slenderness ratio

> 1. The compressive strain is found from ε1 = ∆H/H0 and the compressive first

Piola-Kirchhoff stress is computed by P1 = F1/A0, where the undeformed area A0 is

defined in terms of the undeformed diameter D0 as A0 =
(
πD0

2) /4 and the other

symbols have their usual definitions.

In an equibiaxial tension test, bespoke testing equipment is required in order to apply

equal perpendicular stretches to a region of a rubber specimen (119, 120, 121). This

can be achieved using a cruciform specimen, as shown in Figure 2.9a. By application

of equal and perpendicular forces or displacements, the centre of the specimen is

deformed homogeneously in a state of equibiaxial tension. Alternatively, but with

greater complexity, square or circular specimens may be used with circumferentially

symmetric tensile loading. The use of advanced optical methods, e.g. DIC (122),

and an optimised specimen geometry is recommended (39, 123, 124). Tensile equib-

iaxial loading is difficult to attain high strains due to stress concentrations occurring

around where the specimen is gripped. Alternatively, a thin circular specimen may be
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Figure 2.9: Equibiaxial tension specimens (a) (equi)biaxial cruciform, (b) membrane in-

flation

inflated to produce an equivalent deformation at the apex of the inflated membrane

(106, 125, 126, 127), as shown in Figure 2.9b.

By either variation of tensile loading, the nominal strain ε1 may be measured by con-

tinuous observation of two points, or a shape, within a central region of the specimen.

In terms of an initial distance between two points a0 and the change in distance ∆a,

the nominal strain is therefore defined as ε1 = ∆a/a0. For planar equibiaxial experi-

ments, the first Piola-Kirchhoff stress is defined by P1 = F1/A0, using the measured

or applied force in either direction F1 = F3 and the undeformed cross-sectional area

A0 of the region of interest. The undeformed area is defined as A0 = b0t0, where

the distance b0 = a0 due to the equal perpendicular loading and t0 is the thickness

of the undeformed specimen. In the inflation experiment, the first Piola-Kirchhoff

stress is defined by the membrane stress P1 = pinr/2t0 (106). Here pin is the applied

pressure, r is the radius of curvature of the membrane and t0 is the initial thickness

of the membrane, as annotated in Figure 2.9b.

General Biaxial Strain Using a cruciform or square specimen, the general biaxial

experiment is measured by the same method as the equibiaxial experiment shown in

Figure 2.9a but requires independent actuation of the perpendicularly applied load-

ing. This allows measurement of strains in both ε1 and ε3 directions. The measured

forces F1 and F3 are then used with their undeformed perpendicular areas to compute

P1 and P3. A typical testing method (128, 129) is to initially load the cruciform spec-

imen in the λ1 direction, creating an initial uniaxial tension deformation state. The

perpendicular load λ3 is then applied from its contracted state until the equibiaxial

tension state, λ3 = λ1, with stress and strain measured throughout.
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2.4.2 Inhomogeneous Experimental Parameter Identification

To reduce the time and difficulty of obtaining the experimental specimens and per-

forming the conventional homogeneous experiments, alternative means of parameter

identification have been developed using inhomogeneous experiments. In an inho-

mogeneous experiment, a specimen may be deformed in multiple deformation states

simultaneously (130). A numerical method may then be used to simulate the inho-

mogeneous specimen and compare its results to multiple experimentally measured

quantities. The experimental quantities may consider only macroscopic behaviour,

the force and displacement of an indentation test (131, 132) for example, or a full-

field measurement, such as a three-dimensional strain field (125). These experimental

measurements may be compared to FEA results by the inverse Finite Element Method

(133, 134). As with homogenous experiments, the error between experimental and

numerical quantities is minimised by optimisation of constitutive model parameters.

An approach developed with a focus on industrial rubber components is component-

oriented parameter identification (102, 135). In this method, the specimen geometry

and boundary conditions are chosen to be similar to the component and its operat-

ing conditions. The deformation state and strain range of the simplified component

is therefore similar to that of the component during operation. Another advantage

is that the differences in material properties due to the production between the ex-

perimental specimen and the component are reduced. This method provides an

alternative viewpoint for parameter identification where only sufficient experimental

data of the component is collected, rather than experimental data for the complete

behaviour of the material. Though the computational nature of this method, and in-

verse FE methods in general, is more complex and more time consuming, the extent

of experimentation is more efficient.

2.4.3 Selection of Experimental Methods and Constitutive Models

Numerically predicting the complete hyperelastic behaviour of a rubber material or

component is important in engineering design (136, 137). It is apparent that a model’s

ability to predict general hyperelastic behaviour would be related to how well it can

fit or predict general biaxial experimental data (128, 129). Though the complete hy-

perelastic behaviour is also assumed to be consistently predicted by a constitutive

model capable of fitting or predicting a complete set of single loading homogeneous

experiments (7, 84, 127, 138). A complete set of single loading homogeneous exper-

iments is therefore assumed to consist of uniaxial, planar and equibiaxial tension

experimental data, or data from equivalent experiments.
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It has been suggested that parameters identified to uniaxial and equibiaxial ten-

sion, or both uniaxial states, can also predict the complete hyperelastic response

(117, 139, 140). If both variations of complete data are equivalent, they will return

the same parameters. Other combinations of data, or the use of one single loading

experiment, to identify parameters are generally considered as being incapable of ac-

curately predicting the complete behaviour (11, 39, 141, 142). It has also been shown

for fits to single experiments that extrapolating beyond the experimentally measured

strain range has high variation for different models (143, 144). However, it is not

known if models fitted or predicting the complete behaviour also have high varia-

tion beyond the fitted strain range. Furthermore, this ability and more generally the

extent of experimental data required may be dependent on the chosen constitutive

model.

A vast number of hyperelastic constitutive models are available. To predict the be-

haviour of a material, the models’ parameters are identified by fitting prescribed

experimental data. In an ideal scenario, for any constitutive model and any experi-

mental method, unique parameters would be found. As a minimisation problem, a

unique global minimum, which gives unique parameters, is known to be dependent

on both the choice of constitutive model and experimental method (145). A simple

one parameter model may have a unique minimum when identified to a single ex-

periment (146). If the parameters are suitably constrained (141), the same can be

shown for models with a greater number of parameters fitted to a single experiment.

However, complete hyperelastic behaviour requires a prediction of deformation state

dependence, found using multiple experiments.

A one parameter model fitted to data from one single loading experiment requires a

different magnitude when fitted to a different experiment (57). A constitutive model

capable of predicting the complete hyperelastic behaviour of rubber that returns the

same parameters regardless of experimental input is not known. However, it has

been shown that the use of a physically defined constitutive model may return sim-

ilar parameters and therefore predict similar behaviour when fitted to data from

different deformation states (57, 58, 132). Of particular interest is the extended-tube

model, which was shown by Hossain and Steinmann (58) to accurately predict unfit-

ted experimental data. Parameters were identified using each of the single loading

experiments from the complete data set of Treloar (127), and its predictions of the

unfitted deformation states were shown to be accurate.

Another approach to constitutive model selection is to refer to studies where models

are ranked against one another. In Marckmann and Verron (138), twenty constitutive

models are compared and their ranking is based on several factors: the ability to

fit the complete strain range, the number of parameters (lower being better) and the
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same parameter set being able to simultaneously predict the data of Treloar (127) and

Kawabata et al (129). If models remain alike after those three criteria then a micro-

mechanically defined model is given preference of a higher ranking. Given that the

experimental materials and procedures of Treloar (127) and Kawabata et al (129) are

not identical, this associated criterion is considered to be unsubstantiated.

The ranking study by Dal et al (147) compares forty models and considers only the

ability of the model to fit the prescribed data, with modification of the strain range

if an adequate fit cannot be found. As these ranking studies focus on the fitting

of the data of Treloar (127), it is unknown if the rankings are generally applicable

to complete hyperelastic material data. A more appropriate method of constitutive

model selection may be to repeat the procedures of these ranking studies and use the

model with the lowest error when fitting the prescribed data.

2.5 Finite Element Implementation of Hyperelastic Constitu-

tive Models

The geometry and loading conditions of industrial rubber components means that

simple analytical solutions, as used for homogeneous deformations, are rarely appli-

cable to predict their behaviour. The complex nonlinear behaviour of rubber may be

modelled by a numerical method, such as the FEM. The FEM software used through-

out the presented work was Abaqus (3). Within this package, the implicit solver

Abaqus/Standard was preferred over the explicit solver Abaqus/Explicit. This was

due to the Abaqus/Standard better modelling static simulations and approximating

incompressibility, whereas Abaqus/Explicit is better suited to transient analyses. The

elements and formulations in Abaqus/Standard are capable of accurately modelling

the near or fully incompressible behaviour of rubber. For an overview of how nu-

merical incompressibility is computed, see Kadapa and Hossain (148).

The associated modelling interface software, Abaqus/CAE, contains a library of hy-

perelastic constitutive models. This consists of generally understood and well docu-

mented models. Many of the highly ranked constitutive models of interest (138, 147)

were not available. However, the user subroutine interfaces of Abaqus allow the

implementation of any user-defined constitutive behaviour. The FE implementa-

tion of hyperelastic constitutive models was therefore investigated, with a focus on

Abaqus/Standard user subroutines. In an implicit FEM, like Abaqus/Standard, both

the stress tensor and consistent tangent moduli require computation. While stress

computations determine the physical nature of the simulated component, the tan-

gent moduli are used in the iterative solution of the stiffness matrices to ensure
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convergence and detect stiffness instabilities (149). For hyperelasticity, the consis-

tent tangent moduli are identical to the components of the fourth-order elasticity

tensor. As defined in equation (2.16), the elasticity tensor is the derivative of the

stress tensor with respect to the strain tensor (5). These derivatives may therefore be

found analytically or by alternative differentiation methods. The discussion of the

implementation of hyperelastic constitutive models in the FEM is presented in terms

of analytical implementations of Cauchy-Green invariant constitutive models, prin-

cipal stretch constitutive models and implementations by numerical differentiation

methods.

2.5.1 Implementation of Hyperelasticity in terms of Cauchy-Green Invari-
ants

For hyperelastic constitutive models defined in terms of Cauchy-Green invariants,

two user subroutine interfaces are relevant, UHYPER and UMAT. In both cases, the

subroutines are written in fixed format Fortran 77 code and require the user to define

a number of predefined variables. These required variables are defined in terms of

additional predefined variables, which are read at every iteration of the simulation at

each integration point.

UHYPER provides a specialised interface for the implementation of user-defined hy-

perelastic constitutive behaviour. However, it is restricted to isotropic hyperelastic

constitutive models defined in terms of the isochoric Cauchy-Green invariants, I1 and

I2, and optionally the volumetric behaviour may be defined in terms of the volume

ratio J. The simulation outputs the magnitudes of these variables to the subroutine.

The user is required to define the strain energy density function and its derivatives

in terms of these variables. The stress and elasticity tensors are then computed by

Abaqus. UHYPER cannot therefore be used for the implementation of constitutive

models defined in terms of isochoric principal stretches λi, or fictitious tensors, as in

the micro-sphere model (11).

The UMAT subroutine interface may be used to define any mechanical constitutive

behaviour. The benefit of developing implementations of hyperelastic constitutive

models in the UMAT environment is the ability to extend the code to consider more

the complex behaviours for which hyperelasticity is the equilibrium response, see

Section 2.2.2. As in the UHYPER interface, predefined variables are output by the

simulation. In UMAT, these variables are then used to compute the stress and tan-

gent moduli tensors used by Abaqus/Standard. These tensors are defined as the

Cauchy stress and the Jaumann-rate of the Cauchy stress, respectively. The elastic

strain energy must also be defined if it is to be output by the simulation. For hy-

perelastic constitutive models, due to their rate-independence, only the deformation
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gradient is required to compute the strain energy density, stress tensor and tangent

moduli. There are several approaches to obtain stress and elasticity tensors for hy-

perelasticity in terms of the Cauchy-Green invariants (5, 150, 151, 152). These have

some minor differences, primarily in terms of their depth of derivation. One method

uses fictitious stress and elasticity tensors and matrix operations (151). The alterna-

tive method fully expands and groups terms and may therefore be obtained by any

derivation (5, 150, 151, 152). Numerical implementation of hyperelasticity in terms of

Cauchy-Green invariants is therefore well understood, though a comparison of these

different implementations is not known.

2.5.2 Implementation of Hyperelasticity in terms of Principal Stretches

The current UHYPER interface in Abaqus enables only the implementation of user-

defined hyperelastic constitutive models in terms of Cauchy-Green invariants. To

implement principal stretch hyperelasticity, the UMAT interface must be used. For

the implementation of these constitutive models, various forms of the elasticity tensor

were found in literature. The ambiguity of their elasticity tensor transpires as a

consequence of how the principal stretches are computed. As the eigenvalues of the

Cauchy-Green strain tensors, these may be computed by direct or explicit methods,

along with their associated eigenvectors.

The original analytical derivation of elasticity tensors for principal stretch hyperelas-

ticity relied on explicit calculation of these eigenvalues and eigenvectors (19, 153, 154).

Though the seminal numerical implementation in the FEM by Simo and Taylor (155)

used direct methods to compute the principal stretches. The computation of the

principal directions was avoided entirely by the use of eigenvalue bases. This was

justified by the aim to reduce computational effort. However, due to technological

advances, Simo (156) later stated that explicit calculation should be preferred due to

the instabilities associated with the direct methods when the principal stretches are

equal or numerically similar (156, 157, 158). Despite this, the direct methods and as-

sociated tensors find continued use (22, 132, 158, 159, 160, 161, 162, 163). A detailed

numerical implementation for explicitly defined principal stretch hyperelasticity was

not found in the literature.

2.5.3 Implementation by Numerical Approximation

In the UMAT interface, an alternative to analytical implementations is to use a differ-

entiation method. Alternative differentiation methods previously applied to obtain

tangent moduli can be categorised into symbolic, automatic and numerical methods.

In a symbolic differentiation method (164), algebraic mathematics software is used,
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or developed, such that the stress equations are differentiated symbolically to give

the analytical expressions. Following this, the program codifies these expressions for

numerical usage in the form required by the FE solver. In automatic differentiation

methods (165, 166, 167, 168), the derivative is obtained numerically by algorithmic

accumulation of “elementary operations with known derivatives, thus allowing eval-

uation of exact derivatives”. Perhaps due to the additional programming required,

these methods are generally less common. A more prevalent approach applies nu-

merical differentiation methods to obtain approximated tangent moduli, as first pro-

posed by Miehe (169).

For both material and spatial finite strain configurations, Miehe (169) applied a per-

turbation technique wherein the stress components are perturbed in the six unique

directions and orientations of the symmetric stress tensor. The tangent moduli are

subsequently found by connection of the perturbed and stationary (unperturbed)

stress components by the well-known forward difference formula. This method was

further developed by Sun et al (170), adapting the expressions to the Jaumann-rate

of the Cauchy stress, for implementation in Abaqus/Standard. In these methods, the

accuracy of the numerically approximated tangent moduli is dependent on the mag-

nitude of the applied perturbation. Ideally, as the perturbation tends towards zero,

the truncation error would also tend towards zero. However, due to finite floating-

point precision in these computational problems, the accuracy is limited due to a

conflicting source of error: subtractive round-off error. For an overview of these error

descriptions, see the references (171, 172, 173, 174).

The forward difference formula is a first-order approximation but higher-order ap-

proximations may also be utilised in this context. The central difference method

is a second-order approximation that has been investigated in several studies (173,

174, 175, 176, 177). In (173, 175, 176, 177), it is shown that second-order approxima-

tions give more accurate tangent moduli; but their optimal perturbation magnitude

is larger due to the influence of the subtractive round-off error. Kiran and Khandel-

wal (176) use numerical approximations of tangent moduli up to the eighth-order.

They found that the computational cost increases (176) as the order of approximation

increases. However, the optimal perturbation magnitude and the numerical accuracy

of higher-order approximation methods beyond second-order were not investigated.

Approximation methods utilising complex numbers allow for smaller perturbation

magnitudes and reduce truncation error, as they are not subjected to subtractive

round-off error. Complex approximation methods were first implemented for small

strain problems by Pérez-Foguet et al (173, 174), using the complex step derivative

approximation (178). This method has also been applied to finite strain problems

(149, 175). The numerically approximated Cauchy integral, implemented by Kiran
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and Khandelwal (176), is a further example of a complex numerical differentiation

method used to compute tangent moduli. Another complex numerical differentia-

tion method uses hyper-dual numbers (179), applied in the context of finite elasticity,

by Tanaka et al (180), for first and second derivatives of hyperelastic strain energy

functions. The complex approximation methods allow for tangent moduli closer to

the analytical solutions. However, their implementation is more difficult than real

domain approximations. Complex methods require redefinition of pre-programmed

mathematical functions to allow for complex variables, otherwise its benefits are lim-

ited (173). Such a change is not possible in older programming languages such as

Fortran 77 used by Abaqus/Standard.

Improvements to numerically approximated tangent moduli in the real domain were

therefore of interest. Higher-orders of approximation were found to have been ap-

plied previously (176), but their numerical accuracy, computational costs and limi-

tations were not known to have been investigated. Additionally, it has been shown

in other applications that round-off error may be reduced by the use of increased

floating-point precision (181). However, these have also not been investigated in the

context of approximating finite elasticity moduli for the FEM.

2.5.4 A Note on Work Conjugacy Errors

The spatial elasticity tensor exists in several other forms due to the requirement of

fulfilling objectivity, which is not inherent as in the reference configuration (182).

The spatial tensors used throughout were known to be objective. However, a possible

concern is that they may not satisfy work-conjugacy (87, 183, 184, 185, 186). These

may be missing a volumetric term in their objective rates. The error is therefore

insignificant for near and full incompressibility. If compressive behaviour requires

consideration, Bazant et al (184) provide a modification for commercial FEM software.

This was not needed due to the assumption of near and fully incompressibility.

2.6 Research Aims

Based on the reviewed literature, three key areas were identified for the research

conducted and presented in this thesis.

The first area concerned parameter identification of hyperelastic constitutive models

by homogeneous experiments. This work is presented in Chapter 3. Many constitu-

tive models appear to be capable of predicting the identified complete hyperelastic

response, which consists of a reducing stiffness at low strains, an asymptotic finite

extensibility and distinct deformation state dependence. Predicting this behaviour
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uses hyperelastic constitutive models that either fit or predict experimental data for

these phenomena by optimisation of their parameters. Various postulates and crite-

ria ensure the behaviour of optimised hyperelastic constitutive models is physically

plausible. However, similar postulates or criteria are not known for ensuring that

homogeneous experimental data is physically plausible. It was determined that a

set of postulates to ensure the physical plausibility of experimental data would be

proposed and assessed. Data that fulfills these proposed postulated conditions may

be assumed to be physically plausible, but the extent of experimental data required

to predict the complete hyperelastic behaviour required investigation.

The extent of experimental data was suggested to be dependent on the chosen con-

stitutive model. Whether certain constitutive models are capable of predicting un-

fitted hyperelastic behaviours would be investigated. Additionally, the applicabil-

ity of constitutive model rankings would be investigated by the same method. The

studies from literature often use only data from single loading experiments. The

error when fitting or predicting complete data is often assumed to be an indication

of a model’s ability to predict the general hyperelastic behaviour. This assumption

was studied by comparing their interpolated predictions in terms of the invariant

plane. Inspired by component oriented parameter identification, interpolations be-

tween strain ranges from lesser amounts of experimental data were investigated.

These determined whether the use of only sufficient experimental data was valid for

homogeneous experiments.

The second area, presented in Chapters 4 and 5 aimed to develop numerical imple-

mentations of hyperelastic constitutive models for the FEM such that any constitutive

model could be implemented. These UMAT subroutines aimed to require minimal

user input and be made available open-source. Firstly, UMAT subroutines for the

two different implementations of Cauchy-Green invariant constitutive models were

created. These were compared to equivalent built-in and UHYPER models for val-

idation and to assess their computation time. Implementations using real-domain

numerically approximated elasticity moduli were developed. These implementations

would investigate the use of higher floating-point precision and higher-order approx-

imations in terms of their numerical accuracy and computation time. Then validated

analytical implementations for principal stretch constitutive models were developed

using explicitly derived terms and current eigenvalue and eigenvector algorithms.

With the ability to implement hyperelastic constitutive models in the FEM, the third

key area, presented in Chapter 6, investigated methodologies for the efficient simula-

tion of industrial rubber components. These methodologies would apply the findings

of the study into hyperelastic parameter identification. An approach for gaining only

sufficient experimental data, identifying parameters of the constitutive model and
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simulating industrial rubber components was proposed. This investigation would

validate the proposed methodologies by FEA studies involving real industrial rubber

components. The aim being to ensure that hyperelastic constitutive models with pa-

rameters identified using sufficient data would give as consistent, or more consistent,

predictions of the behaviour of industrial rubber components when compared with

predictions by models with parameters identified using complete data.
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Chapter 3

Homogeneous Parameter

Identification of Hyperelastic

Constitutive Models

The prediction of the hyperelastic behaviour of a rubber component requires ade-

quate experimental data. A “complete” set of experimental data is considered to be

that which, when accurately fitted, enables consistent predictions of a material or

component’s general mechanical behaviour throughout the range of attainable de-

formations. The aim of the following investigations was to determine the extent of

experimental data required, or at least recommended, to accurately predict hyperelas-

tic behaviour. Within this, it was considered whether certain hyperelastic constitutive

models have the capability to accurately predict a material’s response beyond the ex-

perimentally measured strain range. The applicability of constitutive model rankings

across different materials was also investigated.

Studies of homogeneous experimental data from literature are presented with a fo-

cus on parameter identification of hyperelastic constitutive models. The numerical

solutions for these experimental methods are described. A set of criteria is proposed

to ensure that gathered hyperelastic experimental data is physically plausible. A pa-

rameter identification method was developed for investigations into the sufficiency

of homogeneous experimental data. Using single loading experimental data, case

studies are presented wherein constitutive model parameters were identified using

varying extents of experimental data. The final investigation of the chapter assessed

the assumption of single loading experiments as a complete experimental data set

by comparing predictions of interpolated behaviour. The interpolated data was then

used to propose and investigate a more efficient means of parameter identification

where only sufficient experimental data is acquired.
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3.1 Numerical Solutions for Homogeneous Experiments

In the parameter identification of a hyperelastic constitutive model, experimentally

measured data is compared to equivalent numerical predictions made by a constitu-

tive model. Throughout this chapter, it was assumed that the experimented materials

are fully incompressible. In the following, the analytical solutions for homogeneous

experimental methods are described.

As discussed in Section 2.3, the isochoric contribution W to the strain energy density

ψ of hyperelastic constitutive models is generally defined as a function in terms of

either the first and second invariants of the isochoric Cauchy-Green strain tensors

or the isochoric principal stretches. For hyperelastic constitutive models defined by

these strain measures, the analytical solutions to homogeneous deformations are sub-

sequently defined. Analytical solutions for constitutive models defined by alternative

means are detailed where required. Simple shear solutions are omitted due to the

ability to convert their experimental data to equivalent planar tension data, as later

defined in Section 3.2.3.

It was assumed that boundary conditions are applied in the direction of the princi-

pal axes for the homogeneous experimental data sets. The analytical solutions were

therefore defined in terms of the principal components of the first Piola-Kirchhoff

stresses Pi and the principal stretches λi, where i = 1, 2, 3 each representing a direc-

tion of the reference Cartesian coordinate system. The principal first Piola-Kirchhoff

stresses are defined for an incompressible material in terms of the partial derivative

of the isochoric strain energy density function W by the principal stretches λi and the

hydrostatic pressure p as

Pi =
∂W
∂λi

+
p
λi

(3.1)

For convenience, it was assumed throughout that the boundary conditions were ap-

plied to the λ1 and λ3 directions only, such that the material is free to expand or

contract in the λ2 direction. This implies that the stress in the λ2 direction is zero,

P2 = 0. With the assumption of incompressibility, the unloaded λ2 direction is there-

fore used in determining the hydrostatic pressure as follows

p = −λ2
∂W
∂λ2

(3.2)

Hence, the applied stress in the λ1 direction is computed by

P1 =
∂W
∂λ1
− ∂W

∂λ2

λ2

λ1
(3.3)

The Cauchy-Green invariants may be expressed in terms of the principal stretches,

and therefore the first Piola-Kirchhoff stresses are also calculable from equation (3.3).
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However, due to the abridged derivatives, it is more convenient to define the first

Piola-Kirchhoff stresses in terms of the derivatives of the isochoric energy function

W by the first and second invariants I1 and I2 as

P1 = 2

[(
λ1 −

λ2
2

λ1

)
∂W
∂I1
−
(

λ1
−3 − λ2

−2

λ1

)
∂W
∂I2

]
(3.4)

The assumption of incompressibility also permits the relationships between the prin-

cipal stretches to be defined such that the solutions for homogeneous planar defor-

mations aligned with the principal axes are calculable as follows

Uniaxial λ1 = λUT; λ2 = λUT
− 1

2 ; λ3 = λUT
− 1

2 (3.5)

Planar λ1 = λPT; λ2 = λPT
−1; λ3 = 1 (3.6)

Equibiaxial λ1 = λET; λ2 = λET
−2; λ3 = λET (3.7)

These relationships are applicable to uniaxial, planar and equibiaxial deformations in

both tension and compression. The first Piola-Kirchhoff stresses in the direction of the

applied loads for these single loading deformation states in tension may be defined

by P1,UT, P1,PT and P1,ET, or equivalently P1,UC, P1,PC and P1,EC in compression.

For a general biaxial experiment, λ2 = λ1
−1λ3

−1 and both λ1 and λ3 are applied

or measured experimentally. The first Piola-Kirchhoff stresses P1,GB and P3,GB are

therefore also calculated using either equation (3.3) or (3.4).

3.2 Plausibility of Homogeneous Hyperelastic Experimental

Data

As discussed in Section 2.3.1, a number of postulates and conditions have been pro-

posed to ensure constitutive models are physically plausible. Similar considerations

are not known for assessing the physical plausibility of hyperelastic experimental

data. Based on homogeneous parameter identification experiments and the known

postulates, general criteria for assessing plausible hyperelastic experimental data in

multiple deformation modes are proposed. In addition, a novel criterion is proposed.

An explicit proof of the proposed criterion was not realised, however its prevalence

is demonstrable with physically constrained constitutive models. The simple means

of assessing the plausibility of hyperelastic experimental data is aided by utilising

the equivalence of homogeneous deformation modes for an incompressible material.

Case studies on the plausibility of published experimental data sets are then consid-

ered, in which plausible experimental data sets were identified for later parameter

identification and constitutive modelling studies.
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3.2.1 Criteria for Plausible Hyperelastic Experimental Data

The postulates discussed in Section 2.3.1 for a physically realistic strain energy den-

sity function were modified here, where applicable, to define criteria for physically

realistic experimental data. From an experimental perspective, the following criteria

are proposed

1. Stress magnitude must be zero and at a minimum in the undeformed state

2. Stress magnitude must be greater than zero for any non-zero strain

3. Stress components should be equal if obtained for applied strains that are equivalent to

a coordination transformation, ensuring material isotropy

4. Stress should tend towards a positive or negative singular value (until material failure)

in the application of a maximum tensile or compressive strain, respectively

In addition to these criteria, a simple and novel criterion for physically plausible

experimental data is proposed. Considering a general biaxial experiment for an in-

compressible material where strain is applied and varied in the λ1 and λ3 directions,

leaving the λ2 direction to deform freely, the fifth criterion is proposed as follows

5. For a constant applied principal stretch λ1, where λ1 > 1, the first Piola-Kirchhoff

stress P1 increases monotonically as λ3 increases from λ3 = λ−1/2
1 to λ3 = λ1

To elaborate, it is considered in this hypothetical general biaxial experiment that

the principal stretch in the λ1 direction is initially loaded while the λ3 direction is

allowed to deform freely, resulting in uniaxial tension. If the principal stretch in the

λ3 direction is then loaded through λ3 = λ−1/2
1 to λ3 = λ1, from uniaxial tension to

equibiaxial tension, then P1 increases as λ3 → λ1, due to the increasing constraint and

resulting additional hydrostatic pressure. The prominence of this proposed criterion

in physically constrained constitutive models is demonstrated in Section 3.2.2.

This chapter investigates parameter identification of hyperelastic constitutive mod-

elling mainly using single loading experimental data. By applying conversions of

equivalent deformation modes, the criterion is more easily assessed in terms of a

hierarchical order of the three homogeneous single loaded experiments in the tensile

domain. These are uniaxial tension (UT), planar tension (PT) and equibiaxial tension

(ET) experiments. The criterion is therefore simplified for an equal stretch λ to

For all λ1 > 1 : P1,ET (λ1) > P1,PT (λ1) > P1,UT (λ1) (3.8)
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3.2.2 Demonstration of Proposed Plausibility Criterion

The proposed criterion is based on an observed outcome when constitutive models

are restricted to physically realistic behaviour (62, 63, 65). One aspect of guaranteeing

a physically realistic response of a constitutive model requires that a material stabil-

ity criterion is met. This criterion states that a positive incremental increase in strain

induces a positive increase in stress, for which the reverse should also be true for

negative increments of strain. Additionally, polyconvexity is said to ensure a physi-

cally realistic response (65, 187). For Rivlin-type constitutive models, Hartmann and

Neff (65) state that polyconvexity is ensured unconditionally by constraining model

parameters to positive values. Constitutive models with parameters constrained to

physically realistic responses are used to demonstrate the proposed plausibility cri-

terion.

Simple Constitutive Models For a simple constitutive model with linear shear

modulus, the hierarchical response may be shown from the analytical solutions to

the homogeneous deformations. The analytical solutions for constitutive models de-

rived in terms of the Cauchy-Green invariants are defined for uniaxial tension (UT),

planar tension (PT) and equibiaxial tension (ET) in terms of the first Piola-Kirchhoff

stress in the loaded λ1 direction P1 as follows

P1,UT =2
[(

λ− λ−2) ∂W
∂I1

+
(
1− λ−3) ∂W

∂I2

]
(3.9)

P1,PT =2
[(

λ− λ−3) ∂W
∂I1

+
(
λ− λ−3) ∂W

∂I2

]
(3.10)

P1,ET =2
[(

λ− λ−5) ∂W
∂I1

+
(
λ3 − λ−3) ∂W

∂I2

]
(3.11)

The simplest constitutive model defined by both strain invariants is the Mooney-

Rivlin model (66). It may be derived from the generalised Rivlin model defined in

equation (2.20) as

WM−R = C10 (I1 − 3) + C01 (I2 − 3) (3.12)

The derivatives of the Mooney-Rivlin model are simply ∂WM−R/∂I1 = C10 and

∂WM−R/∂I2 = C01. With the parameters constrained to positive values for a physi-

cally realistic constitutive model , C10 > 0 and C01 > 0, the behaviour P1,ET > P1,PT >

P1,UT is apparent since
(
λ− λ−5) >

(
λ− λ−3) >

(
λ− λ−2) and

(
λ3 − λ−3) >(

λ− λ−3) > (1− λ−3) for all λ > 1.

The neo-Hookean model (69), which may be seen as a simplification of the Mooney-

Rivlin model, is represented in terms of only the I1 term as

WnH = C10 (I1 − 3) (3.13)
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Implicitly, the proposed criterion P1,ET > P1,PT > P1,UT also holds true for this model

for all C10 > 0 and λ > 1.

Finite Extensibility Constitutive Models Another type of constitutive model for

which the proposed criterion may be demonstrated are those that model the finite

extensibility response of rubber. A phenomenological model of this type is the Gent

model (18). The model consists of only two parameters and represents the finite

extensibility behaviour of rubber in a convenient form (82, 188). Its strain energy

density is defined as

WG = −µJm

2
ln
(

1− I1 − 3
Jm

)
(3.14)

The parameter µ is the shear modulus, and therefore µ > 0 for a physically realistic

response. The other parameter Jm is the limit of the first invariant defined by Jm =

I1,max − 3. Its first derivative is fully defined as

∂WG

∂I1
=

µ

2
(

1− I1−3
Jm

) (3.15)

From this equation it can be seen that lim(I1−3)→Jm (∂WG/∂I1) → ∞ and hence the

stress tends towards a singular value in the same limit. The relationships for the first

invariant for uniaxial tension, planar tension and equibiaxial tension deformations

are then considered, respectively given by

I1,UT =λ2 + 2λ−1 (3.16)

I1,PT =λ2 + λ−2 + 1 (3.17)

I1,ET =2λ2 + λ−4 (3.18)

From these, it can be shown that I1,ET > I1,PT > I1,UT for all λ > 1. This establishes

that the stress response always obeys P1,ET > P1,PT > P1,UT for the realistic strain

range (I1 − 3) < Jm for all λ > 1, further demonstrating the proposed criterion’s

appearance in physically constrained constitutive models.

The 8-chain network model by Arruda and Boyce (15) is based on an inverse Langevin

distribution of network chains to model the finite extensibility of rubber. Its strain

energy density function may be described by an approximation in terms of I1 as

W8c = µ

[
1
2
(I1 − 3) +

1
20N

(
I2
1 − 9

)
+

11
1050N2

(
I3
1 − 27

)
+

19
7000N3

(
I4
1 − 81

)
+

519
673750N4

(
I5
1 − 243

)] (3.19)

Similar to the Gent model, µ is the shear modulus, with µ > 0 for a physically realistic

response, and N is a positive parameter that dictates the asymptotic response of the
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model. It is therefore observed that the same behaviour as in the Gent model occurs

for the 8-chain model. The Hart-Smith model (77) was shown by Chagnon et al (78) to

be equivalent to the Gent and 8-Chain models in that it models the finite extensibility

response but through a different mathematical means. Regardless of the functions

used to approximate the finite extensibility of rubber, physically constrained finite

extensibility models are found to exhibit the behaviour of the proposed criterion as

they tend towards an asymptotic limit.

Polyconvex Rivlin-type Polynomial Models For more complex hyperelastic con-

stitutive models, analytical means of demonstrating the proposed criterion were not

realised. Graphical methods were therefore used to investigate the proposed crite-

rion within physically constrained constitutive models. Following the procedure by

Hartmann and Neff (65), two Rivlin-type polynomial models are investigated with

parameters constrained to positive values to ensure polyconvexity and hence a phys-

ical response. For both models, the analytical solutions for the first Piola-Kirchhoff

stress P1 in the λ1 direction of a general biaxial experiment were computed using

equation (3.5). The computed values were investigated for a fixed range of values for

λ1, where λ1 > 1, while λ3 was varied from λ3 = λ
− 1

2
1 to λ3 = λ1. The results are

presented over two scales: at a small scale (from λ3 = 1.1 to λ3 = 1.5) and a large

scale (from λ3 = 2 to λ3 = 6).

The first investigated constitutive model is the model proposed by Yeoh (189) with

strain energy density function

WY = C10 (I1 − 3) + C20 (I1 − 3)2 + C30 (I1 − 3)3 (3.20)

Arbitrary positive values for the parameters were defined (C10 = 1MPa, C20 =

0.01MPa and C30 = 0.001MPa). The results are plotted in Figures 3.1a and 3.1b.

These show that for all fixed values of λ1 the first Piola-Kirchhoff stress increases as

λ3 is varied from λ3 = λ−1/2
1 to λ3 = λ1.

The same procedure was repeated for the constitutive model proposed by Haines and

Wilson (190), henceforth referred to as the Haines-Wilson model. Its strain energy

density function is defined as

WHW = C10 (I1 − 3) + C01 (I2 − 3) + C11 (I1 − 3) (I2 − 3)

+ C02 (I2 − 3)2 + C20 (I1 − 3)2 + C30 (I1 − 3)3
(3.21)

As previous, arbitrary positive values are assigned to each of the parameters of

the model (C10 = 0.1MPa, C01 = 0.01MPa, C11 = 1e−4MPa, C02 = 1e−6MPa,

C20 = 1e−5MPa, C30 = 1e−6MPa). The results are plotted in Figures 3.2a and

3.2b demonstrating the same results as the Yeoh model in that the proposed criterion

exists for a physically constrained constitutive model.
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Figure 3.1: General biaxial analytical solutions for a Yeoh model with physically con-

strained parameters (a) small scale, (b) large scale
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Figure 3.2: General biaxial analytical solutions for a Haines-Wilson model with physi-

cally constrained parameters (a) small scale, (b) large scale
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Figure 3.3: Unconstrained three-term Ogden model fitted to non-physical synthetic data

where P1,ET < P1,PT < P1,UT

Further Observations An additional method of demonstrating the proposed crite-

rion is by attempting parameter identification of a synthetic data set in which the

reverse of the proposed criterion occurs such that P1,ET < P1,PT < P1,UT. As would be

suggested by the earlier demonstrations, a constitutive model restricted to physically

constrained parameters is unable to accurately fit such behaviour with any accuracy.

However, using a phenomenological model with unconstrained parameters, fitting

this unrealistic data is still possible. The Ogden model (84) is known to accurately

fit prescribed data but not necessarily with a physically realistic outcome (191). Its

strain energy density function was defined previously in equation (2.22). Using the

parameter identification method, discussed later in Section 3.3, an Ogden model with

N = 3 is fitted to synthetic data where P1,ET < P1,PT < P1,UT. The result, which is

shown in Figure 3.3, shows that it is possible for non-physical data to be fitted by

an unconstrained constitutive model. Whereas previous studies (63, 143, 187) restrict

constitutive models to physically realistic behaviour, this observation highlights the

importance of ensuring physically plausible experimental data.

3.2.3 Conversion of Equivalent Homogeneous Experimental Data

To assess the plausibility of single loading homogeneous experimental data in terms

of the criterion proposed in equation (3.8), equations were derived for the conver-

sion of experimental data to the tensile domain. By consideration of the invariant

plane, any coordinate (I1,I2) that lies on the upper and lower bounds and the pure

shear line has a unique deformation gradient. For a point on either the upper or

lower bound, its unique deformation gradient may be attained by either tensile or

compressive loading. A coordinate on the pure shear line may be obtained by pla-
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nar tension, planar compression or simple shear deformations. It is apparent that a

unique coordinate (I1,I2) has equal derivatives ∂W/∂I1 and ∂W/∂I2. This is central in

the conversion of equivalent experimental data. In the following, conversions to the

tensile domain are defined for uniaxial compression, planar compression and simple

shear experimental data.

Uniaxial Compression to Equibiaxial Tension A point (I1,I2) on the upper bound

of the invariant plane corresponds to a deformation gradient obtained by either uni-

axial compression or equibiaxial tension. The applied principal stretches for these

deformations, λUC and λET, are related by considering that their applied stresses and

hydrostatic pressures are opposite but equivalent. Based on equations (3.5) and (3.7),

the relationship between λUC and λET is defined as

λUC = λET
−2 (3.22)

The above is then substituted into the analytical solution for the first Piola-Kirchhoff

stress in uniaxial compression P1,UC, which is equivalent to equation (3.9). This gives

P1,UC in terms of the converted equibiaxial tension stretch λET as

P1,UC = 2
[(

λET
−2 − λET

4
) ∂W

∂I1
+
(

1− λET
6
) ∂W

∂I2

]
(3.23)

By comparison of equation (3.23) to the analytical solution for the first Piola-Kirchhoff

stress in equibiaxial tension P1,ET, defined in equation (3.11), and given that the

derivatives ∂W/∂I1 and ∂W/∂I2 are equal, the conversion is defined by

P1,ET = −λET
−3P1,UC (3.24)

Planar Compression to Planar Tension Applying the same arguments, a point that

lies on the pure shear line of the invariant plane may correspond to a planar tension

or a planar compression deformation. The relationship between principal stretches

for planar compression λPC and planar tension λPT is defined as

λPC = λPT
−1 (3.25)

Then by equivalent substitutions as those previous, the first Piola-Kirchhoff stresses

are related by

P1,PT = −λPT
2P1,PC (3.26)
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Simple Shear to Planar Tension Simple shear experiments also produce deforma-

tion states that lie on the pure shear line of the invariant plane. Though the ho-

mogeneous simple shear experiment is not characterised by a deformation applied

in a perpendicular system, its measurements may still be converted by the equiva-

lence of the derivatives ∂W/∂I1 and ∂W/∂I2 for simple shear and planar tension (or

compression).

The analytical solution for planar tension is further derived from equation (3.10) to

P1,PT = 2
(

λPT − λPT
−3
)(∂W

∂I1
+

∂W
∂I2

)
(3.27)

For a simple shear experiment, the analytical solution for the first Piola-Kirchhoff

shear stress P12 was defined by Rivlin (192) as

P12 = 2κ

(
∂W
∂I1

+
∂W
∂I2

)
(3.28)

These stresses may be simply related as the derivatives
(

∂W
∂I1

+ ∂W
∂I2

)
are equal in both

cases. The relationship between planar tension and simple shear first Piola-Kirchhoff

stresses is therefore derived as

P1,PT =
P12

κ

(
λPT − λPT

−3
)

(3.29)

An additional relationship is required to convert the experimental strain measures.

The amount of shear κ is related to the corresponding planar tension stretch λPT, as

derived by Horgan and Murphy (114), by the following

λPT =
κ +
√

4 + κ2

2
(3.30)

3.2.4 Case Studies of Published Experimental Data Sets

The method for assessing the plausibility of homogeneous experimental data for hy-

perelastic parameter identification was established as follows. First, experimental

data sets are converted into equivalent data in the tensile domain where required.

The data is then plotted in the tensile domain and the criteria for physically plausible

experimental data are assessed. In the case where deformation modes are repeated

upon conversion, the tensile and converted data are superimposed and compared.

This provides further insights into the accuracy of the experimental data and the

validity of experimental assumptions. In the following, experimental data sets from

literature are described and assessed. Plausible sets of experimental data were iden-

tified for later use in hyperelastic parameter identification studies.
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Treloar (1944) The first set of experimental data defined is the classical experimen-

tal data set of Treloar (127). The data was digitised by Lopez-Pamies (71) and this

was used in the present work. It consists of uniaxial tension, planar tension and

membrane inflation experiments. This data is widely considered as a benchmark

in the proposal and comparison of hyperelastic constitutive models due to its high

strain range and classical S-shaped softening-stiffening response in each of the three

deformation modes (22, 57, 58, 59, 84, 138, 147). Since the three deformation modes

are tensile and unique, no conversion or superposition is required to establish the

physical plausibility of the data. Upon observation of the digitised data, as shown in

Figure 3.3a, the data satisfies the criteria.

Jones and Treloar (1975) The experimental data of Jones and Treloar (128) is taken

from a general biaxial experiment. The data used here was taken from the tabulated

form by Haines and Wilson (190). The equibiaxial tension data points are only ap-

proximately equal in terms of the applied stretches, such that λ1 ≈ λ3. There is no

duplication of experimental methods and no conversion is required. Despite a lack of

equibiaxial tension data points and some scatter of the uniaxial tension data points,

the experimental data is physically plausible, as observed in Figure 3.3b.

Kawabata et al (1981) A general biaxial experiment was used in Kawabata et al

(129) with the experimental data presented in tabulated form. For each fixed value of

stretch in the general biaxial experimental data, the stress generally increases as the

other stretch is varied from uniaxial to equibiaxial tension as required for physical

plausibility. However, as can be seen in Figure 3.3c when the uniaxial and planar

tension stresses are plotted together, the stresses overlap at higher strain magnitudes.

This suggests that the data is mostly physically plausible but is affected by experi-

mental errors or imperfect elasticity at high strain.

Heuillet and Dugautier (1997) The experimental data of Heuillet and Dugautier

(193) is referenced within several studies involving constitutive modelling of hypere-

lasticity (16, 56, 61, 194). However, the original data could not be found. The data was

therefore obtained by digitisation of figures from two sources: Attard and Hunt (16)

and Darijani and Naghdabadi (61). The data consists of uniaxial, planar and equibi-

axial tension experiments as well as a uniaxial compression experiment. The uniaxial

compression experiment was converted and superimposed in the tensile domain.

Upon observation of the combined data, as shown in Figure 3.3d, it was deemed

to be physically plausible. The converted uniaxial compression data is seen to be

affected by noise, this is primarily due to errors in digitisation related to the scal-

ing of the published figures. Despite this, it can be seen that the converted uniaxial
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compression data corresponds well with the equibiaxial tension data, which suggests

that the experimental assumptions are valid and that the experimental methods were

accurate.

Yeoh and Fleming (1997) Yeoh and Fleming (70) performed uniaxial tension, sim-

ple shear and uniaxial compression tests on specimens made from four rubber com-

pounds. Each compound is of the same backbone material (2), natural rubber, but

has different amounts of sulphur in its compounding recipe, labelled A, B, C and

D. The simple shear and uniaxial compression data are converted to planar tension

and equibiaxial tension data, respectively. The combined data for each compound is

plotted in Figures 3.5a-d, with respect to their compound label names. For all other

than specimen B, the simple shear data has lower stress than uniaxial tension. For

all specimens, the stiffness of the uniaxial compression converted data begins to de-

crease below that of uniaxial tension. It is therefore determined that the four sets

of experimental data are not considered to be physically plausible by the proposed

criteria.

Bradley et al (2001) Bradley et al (117) investigate whether uniaxial data alone,

considering both tension and compression, is sufficient for the prediction of the gen-

eral mechanical response. For validation, a planar tension experiment was also per-

formed. Bradley et al (117) converted uniaxial compression data to equibiaxial ten-

sion data. They then used a constitutive model with parameters identified to the

uniaxial compression data to predict the converted equibiaxial tension data. The pre-

diction of the converted data is identical to the fit to the original compression data,

however, making the comparison redundant. If the converted data was compared

in the tensile domain, as shown in Figure 3.6a, the non-physical nature of the data

may have been observed. The data used in the present plausibility assessment is sub-

jected to digitisation errors due to the scale of the published graphs (117). As such,

the original experimental data may be plausible but cannot be stated conclusively

here.

Meunier et al (2008) The experimental data of Meunier et al (88) is of particular in-

terest due to the inclusion of equivalent deformation modes. The data consists of five

homogeneous experiments: uniaxial tension, planar tension, uniaxial compression,

planar compression and membrane inflation. The experimental data was extracted

by digitisation. Due to the high quality of the published figures (88) the plotted data

was assumed to be an accurate reproduction of the original data. The planar com-

pression data and uniaxial compression data were both converted and combined with
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their equivalent tensile data. The combined data of the five experiments is plotted in

Figure 3.6b and was found to be physically plausible.

The comparison of the superimposed membrane inflation and converted uniaxial

compression data shows that both experiments produce consistent results. This sug-

gests that the assumptions of incompressibility and negligible friction are valid for

the selected material and experimental procedures. Upon comparing the planar ten-

sion data and converted planar compression data, it is found that the results are

similar but with some deviation. The larger specimen size of the planar compres-

sion specimen increases both the frictional effects and hydrostatic pressure, which

are likely to affect the frictionless and incompressible assumptions, respectively.

Le Saux et al (2011) In Le Saux et al (132), uniaxial tension, planar tension and

uniaxial compression tests are performed. The uniaxial compression test data is con-

verted to equibiaxial tension and the data from the three tests is plotted, as shown

in Figure 3.6c. The data is found to be physically plausible in terms of the proposed

criteria. Converting the uniaxial compression data to the tensile domain highlights

the distinct difference in the strain ranges of the three tests. This is another insight

allowed by converting and comparing experimental data in the tensile domain.

Moreira and Nunes (2013) The experiments of Moreira and Nunes (195) focused on

the comparison of simple shear and planar tension. The data is of interest as the two

pure shear experimental data sets were compared by parameter identification. Each

of the shear experiments was used to identify the parameters of an Ogden model

(84) and used to predict the other shear experiment. As derived in Section 3.2.3, the

data may simply have been converted for comparison without the influence of error

induced by parameter identification and prediction by the constitutive model. The

simple shear data is converted and compared to the planar tension in Figure 3.6d,

which reveals the same divergence discussed in Moreira and Nunes (195).

3.2.5 Observations

Assessing the physical plausibility of experimental data is not known to have been

previously proposed. By converting data into the tensile domain, an insight into the

validity of the experimental methods and data and their associated assumptions is

enabled. It may be demonstrated, as shown in Bradley et al (117), that parameter

identification to equivalent deformation modes will produce the same parameters,

provided that the constitutive model parameters are obtained from the global mini-

mum and are suitably unique (145). Therefore, it is recommended that repeated ex-

periments should be converted to the tensile domain and used to assess experimental
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validity and physical plausibility prior to parameter identification. The converted and

combined physically plausible data may then be used in parameter identification.

The case studies reveal some additional insights into homogeneous experimental

methods. It was found that uniaxial compression tests can be problematic for obtain-

ing equibiaxial data. This is due to the experimental difficulty in achieving negligible

friction as well as the effect of hydrostatic pressures affecting the compressibility of

the specimen at higher strains. In practice, neither the effects of friction or compress-

ibility can truly be zero (89). It was also found that planar tension data generally

tends towards the uniaxial result. The divergence from ideal pure shear behaviour

in a planar tension test was demonstrated by FEA of this experiment by Chevalier

and Marco (196). Similarly, the simple shear test is known to have an ambiguous

nature in terms of its produced stress field (113). Simple shear measurements are

based on the assumption that the bulk of the material is deforming homogeneously.

The indeterminate normal stress distributions are then assumed to have negligible

effect on the measured shear stress and strain quantities (113, 114). For pure shear

experimental methods, measurements are improved by the use of optical methods

such as digital image correlation (107, 197). These problems highlight the importance

of assessing the physical plausibility of gathered experimental data.

3.3 Parameter Identification Methodology

The investigations of hyperelastic constitutive models require plausible hyperelastic

experimental data and a reliable parameter identification method. The parameter

identification method was developed to fit experimental data from multiple single

loading experiments. The obtained experimental data was optimised with the aim of

removing statistical bias towards a particular experiment or strain range. An error

function was defined to quantitatively compare predictions of the constitutive models

to the experimental data. An optimisation method was selected to compute and

minimise the difference between the numerical solutions and the experimental data

by way of an error function and an optimisation algorithm.

3.3.1 Homogeneous Experimental Data

Based on the previously defined plausibility criteria, the data of Treloar (127), Heuil-

let and Dugautier (193) and Meunier et al (88) were chosen for use in the subse-

quent parameter identification studies. These data sets consist of uniaxial, planar

and equibiaxial tension, or equivalent, experimental data. The combination of these

experiments was assumed to be sufficient for the prediction of the general hyperelas-

tic behaviour, such that it may be described as a complete set of experimental data.
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To ensure that constitutive model parameters were fitted with a view of accurately

predicting the complete isochoric deformation range, it was necessary to minimise

any statistical bias evident in the experimental data. The source of statistical bias was

identified to be due to two factors, strain range distribution and stress magnitude.

While the latter is accounted for in the definition of the error function, discussed in

Section 3.3.3, the former may be minimised by modification of the experimental data.

To ensure that the optimisation was evenly weighted across the measured experimen-

tal strain range, the proposed approach ensures that the data for each deformation

mode consists of an equal number of evenly distributed data points along their strain

axes. For this purpose, Dal et al (147) used the micro-sphere model of Miehe et al

(11) to fit the data for each deformation mode independently then applied the fitted

constitutive model to predict an equal number of extrapolated data points for each

deformation mode. However, given that the ability of various constitutive models to

fit experimental data was being investigated, this method seems problematic as there

will naturally be bias towards the constitutive model used to create the extrapolated

data. To avoid this, the method of Dal et al (147) was modified.

A sixth-order polynomial function was fitted to each deformation mode within Mi-

crosoft Excel. To ensure physical behaviour, the polynomial functions were con-

strained to fit data with an intercept of zero stress (P1 = 0) in the undeformed state,

ε = 0). The average percentage error was compared with the experimental data to

ensure that the error from modifying the data was assumed to be within an accept-

able range, similar to that of experimental measurement errors. The fitted polynomial

functions were then used to extrapolate 28 evenly spaced data points for each defor-

mation mode.

As shown in Figure 3.7, the fit of the independent polynomial functions to each set

of experimental data is visually accurate. The average absolute percentage errors are

computed for each of the data sets and presented in Table 3.1. The largest errors,

from the Heuillet and Dugautier (193) equibiaxial tension data and Meunier et al (88)

planar tension data, are due to the scatter caused by digitisation errors at low strain

of the converted uniaxial compression and planar compression data sets, respectively.

The polynomials functions are determined to be accurate for use in extrapolating the

experimental data.

3.3.2 Chosen Constitutive Models

Eight hyperelastic constitutive models were chosen for subsequent investigation.

They were selected as the top models from two different papers in which hypere-

lastic constitutive models are ranked. This included the top five ranked models from

Marckmann and Verron (138) which, in ranked order, are: extended-tube (22), Shariff
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Figure 3.7: Polynomial fits to experimental data: (a) Treloar (1944), (b) Heuillet & Dugau-

tier (1997), (c) Meunier et al (2008)
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Table 3.1: Average absolute percentage error for sixth-order polynomials independently

fitted to experimental data

UT error PT error ET error

Treloar 1.43% 0.84% 0.49%

Heuillet & Dugautier 2.62% 2.62% 5.51%

Meunier et al 0.45% 6.00% 1.68%

(64), non-affine micro-sphere (11), three-term Ogden (84) and Haines-Wilson (190).

Also, the top six ranked models from Dal et al (147) which, in ranked order, are: non-

affine micro-sphere (11), Alexander (74), Diani-Rey (56), extended-tube (22), Shariff

(64) and Carroll (76) models. The Carroll (76) model was of particular interest due

to its high ranking (147) with only three parameters. The parameters and the spe-

cific forms of the strain energy density functions W, where applicable, for the chosen

constitutive models are defined in Table A.1. The strain energy density functions for

some models are obtained by integration. For the Alexander (74), Diani-Rey (56) and

Carroll (76) models, this is because they are derived based on the derivatives ∂W/∂I1

and ∂W/∂I2. The Shariff (64) model is similar in that it is derived as a function of the

principal Cauchy stresses σi where i = 1, 2, 3. However, for parameter identification,

only the derivatives with respect to the relevant strain measures are required.

In the subsequently described studies in Section 3.4, it was investigated as to whether

the performance of the chosen constitutive models, implied by their ranking, is

broadly applicable. This was assessed by determining their relative performances

and rankings when different materials’ hyperelastic experimental data is included.

The analytical solutions for all models other than the micro-sphere (11) are defined

using the previous analytical solutions, equations (3.3) and (3.4). The extended-tube

(22) and three-term Ogden (84) models require definition of their derivatives with re-

spect to the isochoric principal stretches, as defined in Table A.2, and are then solved

using equation (3.3). The Haines-Wilson (190), Alexander (74), Diani-Rey (56) and

Carroll (76) models require definition of their derivatives with respect to the first and

second isochoric Cauchy-Green invariants, defined in Table A.3, and are solved using

equation (3.4).

The Shariff (64) model is defined in terms of the principal Cauchy stresses σi where

i = 1, 2, 3. For an isochoric material, the principal Cauchy stresses σi are identical to

the principal Kirchhoff stresses τi and are therefore related to the derivative of the

strain energy density in terms of principal stretches λi by (5)

∂W
∂λi

=
1
λi

σi (3.31)
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The derivative of the Shariff model may therefore be defined as in Table A.2, and

solved using the analytical solution for the principal stretches, from equation (3.3).

For the non-affine micro-sphere model (11), the analytical solutions to homogeneous

deformations were computed using the fictitious Kirchhoff stress tensor τ defined in

Table 4 of Miehe et al (11). As the homogeneous deformations are aligned with the

principal axes, the components of the fictitious Kirchhoff stress tensor τii are equal

to the principal components τi , where i = 1, 2, 3. All other shear tensor components

are equal to zero. Due to incompressibility, the hydrostatic pressure is equal to the

fictitious Kirchhoff stress τ2 such that the first Piola-Kirchhoff stress P1 is given by

P1 =
1

λ1
(τ1 − τ2) (3.32)

With the plausible experimental data determined and analytical solutions defined

for the chosen constitutive models, a robust optimisation method was developed to

identify constitutive model parameters.

3.3.3 Optimisation Method

The optimisation of hyperelastic constitutive model parameters revolves around the

automated adjustment of parameters to minimise the difference between the numer-

ical analytical solutions and the prescribed experimental data. An error function is

defined to quantify the difference between experimental and analytically computed

data sets. An optimisation algorithm is chosen to adjust the parameters and min-

imise the error function for all models and each variation of input experimental data.

To constrain the problem to a finite number of solutions, the parameters’ upper and

lower bounding values were defined for all constitutive models. For most micro-

mechanically defined parameters, the bounds may be constrained to physically plau-

sible values. However, the values for phenomenological parameters were arbitrarily

defined then expanded if a probable global minimum was not found.

In an ideal optimisation method, a low number of iterations would locate a unique

set of parameters that attain the global minimum error for all constitutive models.

However, in the case of hyperelastic constitutive models when multiple experimental

data sets are used, a unique global minimum error may not exist (145, 146). The

optimisation method was therefore developed to locate a probable global minimum

with acceptable computation time.

The optimisation procedures were carried out using the Solver module in Microsoft

Excel and automated by macros. The chosen algorithm was a nonlinear Generalised

Reduced Gradient algorithm combined with a multi-start method, limited to 10,000

randomly seeded initial parameters. A benefit of this method is that it significantly
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reduces any dependence on initial parameters, which would otherwise find only local

minima. The developed macros minimised the need for user input by allowing the

Solver module to run automatically and sequentially for all optimised quantities.

The minimised error function was a summed absolute relative error function, which

can be expressed as a percentage. By summing the absolute values, it is ensured that

the weighting of an over or under prediction contribute equally to the total error.

The relative component of the error function ensures that the weighting of any given

point is independent of its stress magnitude. This error function was chosen over

a least squares error function as the latter is affected by outliers in the data, which

was not required as the fitted experimental data was smooth. The summed absolute

relative error function ERE is defined in terms of the analytical and experimentally

measured first Piola-Kirchhoff stresses in the λ1 direction P1ai and P1di , respectively,

for the number of deformation modes D and the number of data points N as

ERE =
D

∑
i=1

(
N

∑
j=1

∣∣∣∣∣P1aj − P1dj

P1dj

∣∣∣∣∣
)

i

(3.33)

After fitting the parameters to each variation of experimental data, it was assessed

for each constitutive model whether the optimised minima were consistent and could

be assumed to be global minima. These assessments ensured that the lowest error

was found for the minimised quantity across the ten variations of input experimental

data. For example, the optimisation where the complete data set was minimised

should have a lower error than any prediction of this data set by the same constitutive

model. Furthermore, optimising the error of a single experiment should attain lower

error than when the experiment was predicted or formed only a part of the minimised

error function. If this was found not to be the case, the optimisation was repeated

with a wider range of parameter bounds until a more probable global minimum was

found.

3.4 Parameter Identification Case Studies

The investigations of hyperelastic constitutive models are organised into four case

studies. Within each of the case studies, the parameters of the chosen constitutive

models were identified using varying extents of prescribed experimental data. In

the first case study the models were compared on their ability to fit the assumed

complete sets of experimental data. The second case study identified parameters

using experimental data with limited strain ranges; in the third, only two of the three

single loaded homogeneous experiments were used; and in the final case study the

parameters were identified using the data of only one of the three homogeneous

experiments. In all case studies, the models were compared on their ability to fit the
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prescribed data. When parameters were identified by lesser extents of experimental

data, as in all case studies but the first, it was also investigated how well constitutive

models could predict the complete data.

The minimised error values were used to quantitatively investigate and compare the

ability of the chosen constitutive models to fit the prescribed experimental data and

predict the complete experimental data. These errors were converted throughout to

the average percentage error of each data point. The averaging considered both the

number of deformation modes and the number of data points within each defor-

mation mode. The average percentage error E% is adapted from equation (3.33) as

E%(%) =
1

ND

D

∑
i=1

(
N

∑
j=1

∣∣∣∣∣P1aj − P1dj

P1dj

∣∣∣∣∣
)

i

× 100 (3.34)

This function allows the minimised errors to be compared to one another for different

amounts of data points or deformation modes.

The case studies used the assumption that a complete set of hyperelastic experi-

mental data consists of uniaxial, planar and equibiaxial experiments. A constitutive

model capable of accurately fitting or predicting these single loading experiments

was assumed to imply an ability to predict the complete hyperelastic response of the

experimented material. The error in the prediction of complete data was therefore

used as a metric of the performance of the constitutive models within each of the

case studies. An overall ranking of the constitutive models considering all four case

studies was not sought. This was due to inconsistent constitutive model performance

when different materials were considered.

Across four case studies there were ten variations of experimental data fitted by each

constitutive model. This was repeated for the three chosen materials. With eight

constitutive models, this resulted in a total of 240 sets of parameters and predictions

of the complete data sets. For this reason, and due to the sensitivity to numerical

rounding for some parameters, the optimised parameters sets are not provided here.

The parameters and related data are available in the dataset (4).

3.4.1 Case Study 1: Complete Data - Three Single Loading Experiments

The first case study investigated parameter identification with experimental data

from a complete set of single loading experiments. The parameters of each con-

stitutive model were identified by minimisation of the summed uniaxial, planar and

equibiaxial tension errors. By comparing error values from all case studies, it was

assumed that probable global minima were found. The results were tabulated in

terms of the average percentage error of each data point E% and an assigned rank-

ing R for each material. The average error of the eight constitutive models for each
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Figure 3.8: Case study 1: Error of models fitted to Treloar, H&D and Meunier complete

data sets

material was also calculated. Additionally, an overall ranking based on the totalled

rankings from the three experimental data sets was given. The overall ranking was

determined by a summation of each model’s ranking to the three materials; if equal,

the model with the lower average error was given the better ranking. Though the

ranking studies of Marckmann and Verron (138) and Dal et al (147) use different pa-

rameter identification methods, they provide a useful reference for discussion of the

first case study’s results.

The following abbreviations are used: the experimental data of Heuillet and Dugau-

tier is abbreviated to H&D, the data of Meunier et al is abbreviated to Meunier, the

extended-tube model is abbreviated as e-t, Miehe’s non-affine micro-sphere model

is given by m-s, the three term Ogden model is referred to as Ogden, Haines and

Wilson’s model is HW, Lambert-Diani and Rey’s is denoted D&R, and the Alexander

model is abbreviated to Alex..

The tabulated results for the first case study are given in Table 3.2. Their errors

are plotted in Figure 3.8. Plots of the nominal stress and strain for the best and

worst fitting models to the complete data for each of the three materials are given

in Figure 3.9, where only half of the experimental data points are plotted for clarity.

All models fitted the complete data sets with an average error of less than 5% for the

three materials. The lowest error achieved was an average error of only 1.27% for the

Ogden model fitting the data of Treloar. The highest error remained at only 4.38%

of the extended-tube model in fitting the data of Heuillet and Dugautier. In terms of

the general ranking of the chosen constitutive models, there is a lack of consistency

across the different materials.

For brevity and due to the lack of generality, the discussion is limited to the best

and worst performing models of this study and the best performing models of Mar-

ckmann and Verron (138) and Dal et al (147). The Ogden model was found in the
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Table 3.2: Case study 1 results – minimised error and rankings of the investigated con-

stitutive models

Treloar H&D Meunier Overall

E% R E% R E% R R

e-t 1.88% 2 4.38% 8 4.25% 8 7

Shariff 2.07% 4 3.58% 4 2.72% 5 3

m-s 2.46% 5 3.03% 1 2.38% 4 2

Ogden 1.27% 1 3.40% 3 2.14% 1 1

HW 3.99% 8 4.07% 5 2.18% 2 6

Alex. 3.17% 6 3.19% 2 3.18% 6 5

D&R 1.98% 3 4.19% 7 2.24% 3 4

Carroll 3.82% 7 4.15% 6 3.95% 7 8

Average 2.58% 3.75% 2.88%

present case study to be the best performing model overall, achieving the lowest error

for two of the three data sets and the third best fit to the other data set, that of Heuil-

let and Dugautier. The Carroll model was the least accurate, suggesting that using

only three parameters is inadequate to capture the response of different hyperelastic

materials. The micro-sphere model, ranked as the best model in Dal et al (147) and

third best in Marckmann and Verron (138), provided the second best ranked model

overall. The extended-tube model, ranked as the best in Marckmann and Verron

(138) and fourth in Dal et al (147) for fits to Treloar’s experimental data, achieved the

second most accurate fit to the data of Treloar but was the least accurate in fitting the

other two materials.

The inconsistency of model rankings highlights the need for a robust parameter iden-

tification procedure when a complete set of experimental data is available, such as

the method developed in Section 3.3. The procedure should compare multiple con-

stitutive models to the prescribed experimental data. From this the most accurate

constitutive model may be identified and selected for numerical predictions of a ma-

terial’s general hyperelastic behaviour. The likelihood of an accurate fit is improved

by the inclusion of a wide range of constitutive models.

3.4.2 Case Study 2: Strain Range Reductions

In the second case study, the original sets of experimental data for the three materials

were modified in terms of their strain ranges. For each set of complete experimental

data, the uniaxial, planar and equibiaxial tension data were each reduced to strain

ranges of 75%, 50% and 25% of their maximum values. The parameters of the eight

constitutive models were then identified by minimising the error between the modi-

fied experimental data and the numerical solutions of this data.
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Figure 3.10: Case study 2: Error of complete data prediction by models fitted to (a)

Treloar, (b) H&D and (c) Meunier reduced strain range data sets

The results of this case study are tabulated separately for each of the investigated

materials in Tables B.1, B.2 and B.3 for Treloar, Heuillet and Dugautier and Meunier

data, respectively. The prediction error values for this case study are plotted in Fig-

ure 3.10. Within the tables, two error values are given: the error when fitting the

prescribed strain range data EF% and the error of the prediction of the complete data

set EP%. The average errors were computed for both. These are given alongside a

ranking value to determine the models most capable of fitting the minimised data RF

and those most capable of predicting the complete data RP based on a fit using a min-

imised strain range. The difference in error between each model’s global minimum

error when fitting the complete data to the predicted error was computed, denoted

as “Dif.” throughout. An overall ranking was given for both the models’ ability to fit

the prescribed reduced data and their ability to predict the complete data, following

the procedure of the first case study.

By observation of the average fitted errors, it was found that the error in fitting the

limited strain ranges generally decreases with a smaller strain range. While this
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means that low strain ranges are generally modelled more accurately, the error in

predicting the complete data increased significantly when smaller strain ranges were

used. In some cases this also led to significant instabilities. The worst case was the

Diani-Rey model fitted to reduced Meunier data. This model’s fit of the 75% data

and its prediction of the complete data were the most accurate of the chosen models.

However, when fitted to 25% strain range data its prediction resulted in a numerical

instability; it was therefore assigned an error value of EP% = 1e99%. Stress-strain

plots demonstrating this deteriorating accuracy are shown in Figures 3.11a, 3.11b,

and 3.11c.

There are only four exceptions where the error difference value was found to improve

upon reduction of the strain range: micro-sphere 75% to 50% for Treloar’s data,

micro-sphere 50% to 25% for Heuillet and Dugautier’s data, Ogden 50% to 25% for

Meunier et al’s data and Alexander 50% to 25% for Meunier et al’s data. Even in these

exceptional cases, the prediction of the complete error was at least twice as high as

their global minimum errors when the complete data was fitted. When fitted using

75% of the strain range, on average, there was only a small increase in error. These

results imply that predictions of hyperelastic behaviour are increasingly unreliable as

they extend beyond the experimental strain range used in parameter identification.

However, if the expected range of deformations was less than the experimental data,

fitting a lower strain range is more accurate.

3.4.3 Case Study 3: Two of Three Single Loading Experiments

The third case study investigated the performance of constitutive models when two

of the three single loading homogeneous experiments were used in parameter identi-

fication. There are therefore three different experimental combinations for each of the

three materials: uniaxial and planar tension (UT&PT), planar and equibiaxial tension

(PT&ET) and uniaxial and equibiaxial tension (UT&ET). The combination of uniaxial

and equibiaxial tension has been hypothesised by some authors (50, 117, 139, 140)

to describe the complete behaviour of a material; this combination is therefore of

particular interest.

The results for this case study are tabulated with the inclusion of an average differ-

ence column for each constitutive model. The results are given in Tables B.4, B.5 and

B.6. The prediction errors are shown in Figure 3.12. All models fitted the prescribed

data from the two tests with an error of less than 5%. The error in predicting the com-

plete data was found to vary with a general dependence on the chosen experimental

combination. The combination of uniaxial and equibiaxial experiments resulted in

the lowest average error in the prediction of the complete behaviour. A difference in
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Figure 3.11: Case study 2: Meunier reduced strain range data fitted by D&R model (a)
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Figure 3.12: Case study 3: Error of complete data prediction by models fitted to two

experiment combinations of (a) Treloar, (b) H&D and (c) Meunier experimental data

error of less than 1% for the all constitutive models was found with only one excep-

tion in the Haines-Wilson model for Heuillet and Dugautier’s data. The remaining

two combinations were less consistent. The combination of planar and equibiaxial

data in the case of Heuillet and Dugautier’s data gave a low average difference com-

parable to the uniaxial and equibiaxial combination. This is thought to be due to

their similar strain ranges and that uniaxial and planar deformations are less distinct

than equibiaxial deformations in terms of the invariant plane for this material’s data.

From the average difference and overall predictive rankings, some general conclu-

sions can be drawn on the individual predictive performance of the constitutive mod-

els. For Treloar’s data, three models attained an average difference of less than 1%

for all three combinations. The extended-tube model in particular was found to have

a very low average difference for this data. However, the extended-tube’s average

difference to the other material data was considerably higher; both its fit and pre-

diction were generally less accurate than most other models. Regarding the average
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Figure 3.13: Case study 3: H&D UT&ET data fitted by Haines-Wilson

error and overall predictive ranking of the other models, no model was found to be

capable of predicting the complete behaviour when fitted to any arbitrary combi-

nation of two single loading experiments. In the overall rankings for RF, the Ogden

model was generally the most accurate. However, its predictive performance was less

consistent; as with all models, the predictability depends on the chosen experimental

combination.

For all models and materials, the parameter set obtained by fitting the complete data

was not returned by any combination of two single loading experiments. However,

with the assumption that accurate fitting or prediction of complete data enables a

consistent prediction of a material’s general behaviour, the combination of uniaxial

and equibiaxial tension is the most suitable. The effectiveness of this combination

is hypothesised to be a result of these deformation modes bounding the attainable

deformations, as represented on the invariant plane, see Figure 2.4 for reference.

All other attainable deformations may be considered as interpolations between these

bounds.

In alignment with the findings of the previous case study, if the expected range of de-

formations by a component was contained between the bounds of planar tension and

either uniaxial or equibiaxial tension, it would be assumed that these interpolations

would be more accurate if their associated fitted data was used. In the mentioned

atypical result, which would evidence the contrary to this, as shown in Figure 3.13, it

can be observed that the predicted planar tension stress does not meet the proposed

criterion from Section 3.2.1. It is therefore recommended that predictions of planar

tension or other interpolations are assessed in terms of their physical plausibility.
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Figure 3.14: Case study 4: Error of complete data prediction by models fitted to a single

loading experiment from (a) Treloar, (b) H&D and (c) Meunier experimental data

3.4.4 Case Study 4: One Single Loading Experiment

Based on the results of the second and third case studies, and from literature (57, 58,

139), it was presumed that models with parameters identified to a single deformation

mode would not be capable of consistent and accurate prediction of the complete data

set. The only exception being the extended-tube model in the case of Treloar’s data,

as demonstrated by Hossain and Steinmann (58). These hypothesised results were

found to hold true. The results are presented in the same method as in the third case

study and given in Tables B.7, B.8 and B.9. The prediction errors are plotted in Figure

3.14. The accurate prediction by the extended-tube model was found for uniaxial

and equibiaxial tension fitted parameters but was less accurate for planar tension, as

shown in Figures 3.15a, 3.15b, and 3.15c.

All models fitted the prescribed data with lower average errors than the other case

studies. However, the predictions and differences in error from the complete data

were considerably higher. Examples of the accurate fit to the prescribed data and
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high error in the prediction of the unfitted deformation modes are shown in Fig-

ures 3.15d, 3.15e, and 3.15f. The large deviations in the predicted behaviour suggest

that predicting a hyperelastic material’s complete behaviour is not recommended

when constitutive model parameters are identified from only one single loading ex-

periment. A constitutive model with parameters identified with such data would

be recommended only if the material or component was expected to deform with

minimal deviation from the fitted mode of deformation with physically constrained

parameters.

3.4.5 Summary of Case Studies

The developed parameter identification method was well-suited to this study. A

probable global minimum was found for all variations of experimental data and all

constitutive models. The requirements of low computation time and robustness in

finding the probable global minima were achieved using easily employed and avail-

able methods. The use of macros further improved the method by reducing user

input. The developed method was employed to reveal insights into parameter iden-

tification through the four case studies.

It was found that the ability of constitutive models to fit the prescribed experimental

data is dependent on the nature of the data. Opposed to selecting a model based on

a general ranking value, it is recommended that parameters for multiple constitutive

models are identified and then compared on how well they fit experimental data.

However, the accuracy of a model’s fit to a prescribed experimental data set does

not necessarily indicate how well a material’s behaviour is described. To predict the

general hyperelastic response throughout the range of attainable deformations, the

chosen constitutive model should be that which most accurately fits or predicts a

complete set of experimental data.

Of the limited and reduced experimental data used in the case studies, it was found

that only the combination of uniaxial and equibiaxial tension data may constitute a

complete set of experimental data. However, if a material or component’s expected

range of deformations does not span the region of attainable deformations, it is pro-

posed that parameters may be identified using only “sufficient” experimental data.

This was suggested by the consistent lower errors when fitting smaller ranges of ex-

perimental data. Sufficient experimental data could therefore include reduced strain

ranges and fewer experiments. Validating these findings and the assumption of com-

plete single loading experimental data is the focus of the following section.
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3.5 Complete Hyperelastic Experimental Data

The previous parameter identification case studies investigated the ability of con-

stitutive models to predict the upper and lower bounds and pure shear line of the

invariant plane. This assumed that accurately fitting these single loading experiments

gives a consistent prediction of the general mechanical behaviour of a hyperelastic

material. As well as by fitting the three experiments, the combination of uniaxial and

equibiaxial tension, or equivalent, data may also be capable of consistent predictions

by the same assumption. A means of evaluating the assumption was developed us-

ing predictions of the stress response at interpolated deformation states. Another

consideration concerns the range of interpolated values for which the predictions

are consistent. Additional studies using the interpolated data were also performed.

These investigated: the difference in constitutive models’ fitted to interpolated be-

haviour and their predictions from fits to complete data, predictions of interpolated

behaviour by parameters obtained from all data variations, and the difference in pre-

dictions by constitutive models fitted to complete and sufficient data.

3.5.1 Synthetic General Biaxial Data

All possible deformation states within the region of attainable deformations can be

achieved by a general biaxial experiment. As a homogeneous experiment with sim-

ple analytical solutions, the general biaxial experiment is ideal for investigating the

predictions of the interpolated behaviour. General biaxial data was not available for

any of the three materials investigated previously. The interpolated general biaxial

responses were computed using constitutive models with parameters fitted to com-

plete data. This had the advantage of being free from experimental error. Using

the generated synthetic general biaxial data, the consistency of interpolated predic-

tions was investigated. Consistent predictions would imply that the assumption of

complete hyperelastic experimental data by single loading experiments is valid.

Using the experimental data for the three materials and the concept of the invariant

plane, interpolated “paths” were generated in terms of I1 and I2 coordinates. As

found in Section 3.4.2, extrapolations beyond the fitted strain range are unreliable.

The interpolated paths were therefore constrained by the maximum experimental

values. Ten paths consisting of 31 points each were generated for the three materials

by two methods of linear interpolation. In the first method, I1 and I2 coordinates

were obtained by linearly interpolating between the uniaxial tension coordinate to

the planar tension coordinate, then from the planar tension coordinate to the equib-

iaxial tension coordinate. The second method interpolated between the uniaxial ten-

sion and equibiaxial tension coordinates directly. In both methods the first path was

69



generated by interpolating between the maximum values for the principal stretch in

the λ1 direction. The remaining nine paths were created using 10% decreasing in-

crements of the maximum principal stretch λ1. The first interpolated path method

is denoted as UT)PT)ET and the second is denoted as UT)ET. The ten paths by

the first method are shown in Figures 3.16(a), 3.16(c) and 3.16(e) and for the second

method in Figures 3.16(b), 3.16(d) and 3.16(f).

The constitutive models’ predictions were investigated using the maximum principal

Piola-Kirchhoff stress P1 at each generated point. In order to compute the analyti-

cal solutions of the general biaxial tests, the interpolated I1 and I2 coordinates were

resolved into principal stretches. The principal stretches were obtained by an op-

timisation problem. The difference between the computed and interpolated I1 and

I2 coordinates was minimised, obtaining the computed invariants in terms of the

principal stretches by equations (2.7) and (2.8) with the constraint λ1 ≥ λ3 ≥ λ2.

As previous, this assumed that the biaxial specimen was loaded in the λ1 and λ3

directions in tension while the λ2 direction was free to contract.

To compare the general biaxial predictions quantitatively, the previous error func-

tion ERE from equation (3.33) was used. This error function required a value for

experimental data which was not available. To resolve this, the most accurate con-

stitutive model to each complete experimental data set was used to create synthetic

experimental data. The errors were computed with respect to the synthetic data. The

average errors of all paths of the general biaxial predictions were used to determine

the consistency of the predictions. Also, the correlation was determined between the

closeness of fit to the complete single loading data sets and the error in predicting

general biaxial data. Pearson’s correlation coefficient (PCC) was used to quantify

the correlation. The value of this correlation coefficient ranges between +1 and -1.

A correlation of +1 indicates linear correlation, -1 indicates linear inverse correlation

and a value of zero means that no correlation exists. Though the magnitude of the

PCC is subjective, it provided a useful comparative measure.

The parameter identification studies of Section 3.4 used eight models for succinctness,

five additional models were considered here to increase the statistical significance of

the results. Additional highly ranked models from Marckmann and Verron (138) and

Dal et al (147) were considered: Biderman (Bid.) (from Alexander (74)), Hart-Smith

(H-S) (77) and Network-averaging tube (NA-t) (59). The Edwards-Vilgis (E-V) model

(79) was not used in either ranking study but was shown to be a capable model by

Le Saux et al (132) and was therefore included. Additionally, a novel constitutive

model referred to as the eight-chain tube (8c-t) model was included. Based on the

discussion by Meissner and Matějka (10), this model combines the eight-chain model

(15) with a tube constraint component based on the extended-tube model (22). The
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strain energy density functions for these constitutive models are defined in Table A.4.

Using the parameter identification method defined in Section 3.3, two parameter sets

for each additional model were identified by fitting uniaxial, planar and equibiaxial

tension data and fitting uniaxial and equibiaxial tension data for the three materials.

As previous, the parameters are not defined here due to their vastness and numerical

sensitivity. These are available with the complete numerical results in the dataset (4).

3.5.2 Consistency of Predicted Synthetic General Biaxial Data

With three materials, two fitted parameter sets for thirteen constitutive models and

two sets of ten paths, this resulted in 1560 sets of synthetic biaxial experimental

data. The data required reduction in order to be effectively studied. Therefore,

only the average errors for the 10 paths were compared. From this, the results were

viewed in terms of the three materials, the two interpolation path variations and

the two complete data variations. This gave twelve average error values and twelve

correlation coefficients such that each variation could be compared. The fitted error

EF% refers to the minimised error function used in parameter identification, from

either UT+PT+ET or UT+ET errors. The other error values refer to the values

computed with respect to the predicted and synthetic biaxial data averaged over the

ten computed paths. The models used to generate the synthetic data are identifiable

as they have zero error.

The results for the average biaxial errors and their corresponding parameter identifi-

cation error are shown for all variations in Table B.10 for Treloar and H&D data and

in Table B.11 for Meunier data. The average errors and correlation coefficients for

all data in both pairs, data combination and interpolation paths, were computed and

shown in Table B.11. The overall average error and overall correlation coefficient com-

puted using all 156 pairs of average biaxial and fitted errors is also given. The two

variations of assumed complete experimental data and the interpolation path meth-

ods were examined by extracting and rearranging only their average biaxial errors

and correlation coefficients for all models in Tables B.12 and B.13, respectively.

It was found that the overall average error is 3.16% and the individual errors of

the twelve variations are all generally similar, ranging from 2.51% to 4.57%. This

suggests that general biaxial data, and hence implies the general isochoric behaviour

also, can be predicted based on fits to single loading homogeneous experiments with

similar consistency for the considered data variations. The overall correlation was

computed as 0.644, implying that a positive correlation exists between the fitted error

to a complete set of single loading experiments and the consistency of predicting the

general behaviour.
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Comparing the two variations of prescribed experimental data, it was found that the

biaxial prediction by three experiments was marginally more consistent, as shown in

Table B.12, and had lower total average error, as shown in Table B.11. The correlation

coefficients show on average that the use of three tests gave a stronger correlation be-

tween biaxial predictions and fitted errors. This difference was primarily due to the

atypical result of the combined uniaxial and equibiaxial tension data for the Heuil-

let and Dugautier synthetic data. This reflects the previous finding in Section 3.4.3

where the Heuillet and Dugautier uniaxial tension and equibiaxial tension exper-

iments could be fitted accurately but the unconstrained parameter fit produced a

physically unrealistic result for the planar tension test. Combining all results sep-

arately for the three and two experiment generated data, a higher correlation and

marginally less variation in biaxial predictions was found when three experiments

were used in parameter identification.

The results of the interpolation paths are given in Table B.13 with overall averages

referring to the results in Table B.11. The average error for the two path interpolation

methods was found to be similar, the first method had generally lower average error.

In terms of correlation coefficient, the first method generally had a higher correla-

tion coefficient and an overall higher correlation coefficient in the results combined

for all materials. The correlation for the Heuillet and Dugautier data was low for

these, which was due to the previous observation for this material when two experi-

ments were used. In the case of three experiments with Heuillet and Dugautier data,

the correlation was slightly higher for the second path method. Generally, the first

method gave a lower average biaxial prediction error and a better overall correlation

and is therefore considered the more reliable method of interpolation.

3.5.3 Additional Investigations of Interpolated Behaviour

To provide further insight into the validity of predicting the interpolated behaviour

by parameters identified using single loading experiments, two additional investiga-

tions were carried out. In the first, the error was compared between the fitted con-

stitutive models’ interpolated predictions and the minimum error attainable when

optimised to the synthetic biaxial data. Following this, all constitutive models and

all experimental data variations from the case studies of Section 3.4 were used to

predict biaxial data. Their error values were computed compared with the generated

synthetic data. The final investigation of this chapter assesses the proposed efficient

method of parameter identification using only sufficient data.

Comparison to a Fitted Biaxial Response The general biaxial error EGB% and the

fitted biaxial error EFB% were compared for each material. The parameters of each
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constitutive model were identified by minimisation of their average biaxial errors.

The average biaxial error was computed as previous, using the most accurate fitting

model to create the synthetic data. For the three materials, the first method of in-

terpolation was used, UT)PT)ET, and synthetic data using both UT+PT+ET and

UT+ET data combinations were considered.

The results are shown in Table B.14 for synthetic data generated using the best fit

to UT+PT+ET data. The average biaxial error value represents the error obtained

in the previous study from predictions of the biaxial data. The fitted error is the

error obtained when parameters are identified using the generated synthetic biaxial

data. The constitutive model used in the generation of the data has zero error in

the first instance and when parameters are fitted since the same parameters should

be re-identified. As expected, the average biaxial error for all models and all three

materials decreased when parameters were identified using the synthetic biaxial data.

However, the largest average difference was only 1.08% in the case of the Heuillet and

Dugautier data. This demonstrated that a significant proportion of the biaxial errors

was due to difference in the ability of the constitutive models to fit the interpolated

biaxial data.

Using synthetic data generated by the best fit to UT+ET data, the results were sim-

ilar, as shown in Table B.15. The error when the constitutive models were fitted to

the synthetic biaxial data was found to be lower than when the synthetic data was

predicted. The average difference for the constitutive models was found to be higher

than with three single loading experiments. However, the maximum average differ-

ence was only 1.61%. This further demonstrates that a significant contribution to the

error lies in the ability to fit, rather than predict, the synthetic biaxial data. It may

therefore be concluded that the use of sufficient single loading experiments is ap-

propriate in the prediction of general hyperelastic behaviour and that the fitted error

value is a good indicator of how well the behaviour is predicted.

Predictions of Biaxial Response from Experimental Data Variations The thirteen

constitutive models were used to predict interpolated behaviour using parameters

identified from the ten variations of experimental data from Section 3.4. Some further

parameter identification was required for the five additional constitutive models. The

parameters were obtained using the previous method outlined in Section 3.3. For

each variation, the biaxial data was predicted and compared to synthetic biaxial data

by way of the error function used throughout, defined in equation (3.33). Based

on the previous investigations of the interpolated behaviour, it was determined that

the best approximation of the biaxial data was by constitutive models fitted to three

single loading experiments and with the interpolation path UT)PT)ET.
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Figure 3.17: Average predicted biaxial errors for all variations of experimental data

The results were viewed in terms of the predicted biaxial errors EGB% averaged across

all constitutive models for the three materials. As shown in Figure 3.17, this provides

an insight of the consistency of biaxial predictions with a focus on the experimental

data used in parameter identification. The results of these predictions were con-

sistent with the previous conclusions of the case studies in Section 3.4. Parameter

identification by three experiments gives the lowest error, followed generally by the

combination of uniaxial and equibiaxial tension. The combination of pure shear and

equibiaxial tension and a 75% strain range were found to have relatively low errors in

their predictions. This was due to a significant number of data points that lie between

these strain ranges. Along with the high error of the other results, it becomes clear

that complete experimental data should encompass the range of attainable deforma-

tions to enable consistent and hence accurate predictions within that strain range.

The results of this investigation also further suggest the use of the more efficient

approach of parameter identification when the complete response is not required.

It has been shown in the present study that interpolated predictions are consistent.

However, predictions of the complete material response are not required if the com-

ponent is not expected to deform over the entire region of attainable deformations.

It would therefore be more efficient to identify parameters using only experimental

data that encompasses the expected strain region for the material or component of

interest. Based on the case studies for reduced strain ranges and using only two

of three experiments in Sections 3.4.2 and 3.4.3, it was hypothesised that the more

accurately fitted reduced or limited data would give more consistent predictions of

their interpolated regions. The proposed use of only sufficient data was therefore

investigated.

75



3
3

 Example of smaller range of deformations
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Figure 3.18: Dimensionless plot of the invariant plane with an example of a smaller

range of deformations

Sufficient Hyperelastic Experimental Data A final investigation using the interpo-

lated biaxial data was performed to assess the proposed efficient method of parame-

ter identification using sufficient data. To further clarify what is meant by sufficient

data an example is shown in Figure 3.18. In this example, the material or compo-

nent has a reduced strain range and its deformations are bounded by planar and

equibiaxial tension, or equivalent, deformations. In the proposed method, it would

be beneficial to neglect the uniaxial tension experiment and use a strain range that

efficiently encompasses the smaller range of deformations.

A comparison was made between the consistency of the predictions by complete data

and sufficient data by constitutive models. As previous, the synthetic biaxial data was

generated using the most accurate fit to the prescribed data for the three materials.

To compute the consistency for predictions made by models fitted to sufficient data,

additional synthetic data was required. This data was generated using the best fitting

model to the limited or reduced experimental data set, found from the previous case

studies and the inclusion of the additional constitutive models. With the generated

synthetic data, the consistency was compared by use of the previous error function

EGB% defined in equation (3.33).

Five variations of sufficient experimental data were used, each taken from the pre-

vious case studies. The experimental data sets were: 75% strain range, 50% strain

range, 25% strain range, uniaxial and planar tension, and planar tension and equibi-

axial tension. The constitutive models used the previously identified parameters for

the complete data or the reduced data where relevant. The synthetic biaxial data

for these reduced strain regions was obtained simply by modification of the biaxial

data with the interpolation path UT)PT)ET to the smaller ranges required. To gain a

general insight into the applicability of the use of complete or sufficient experimental
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Figure 3.19: Average predicted biaxial errors for constitutive models fitted to complete

or sufficient experimental data

data, only the average errors for each material and data variation was observed.

The results of this investigation are shown in Figure 3.19. As hypothesised, it was

found that the parameters identified by limited and reduced experimental data gen-

erally gave more consistent predictions of interpolated data within these ranges of

deformation. Of the thirty averaged errors, there were found to be only two excep-

tions to this conclusion, for 50% strain in H&D and Meunier data sets. In both of

these cases the difference in their average predicted error values was small, within

0.3%. Upon observation of the predictions made by models fitted to the complete

data, the consistency was found to often be much lower, with errors of up to 4.5%.

It is therefore apparent and quantifiable that predictions of a material or component

are more accurate if only sufficient experimental data is used, which encompasses

the range of expected deformations. For a component with a well-defined range of

deformations, such as one with only displacement loads, use of only the relevant ex-

periments enables a more efficient approach to hyperelastic parameter identification.

3.5.4 Discussion of Biaxial Investigations

Predictions of general biaxial experiments by constitutive models with parameters

fitted to data from single loading experiments were found to show a positive cor-

relation between the fitting accuracy and the consistency of biaxial predictions. For

the investigated materials it was found that the error when fitting uniaxial, planar

and equibiaxial tension data generally gives a better indication of how consistently

the interpolated behaviour is predicted when compared with the error when fitting

only uniaxial and equibiaxial tension data. However, both data combinations enable

consistency of predicted interpolated behaviour with an average of 3.13% and 3.19%
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for three and two fitted experiments, respectively. When only uniaxial tension and

equibiaxial tension, or equivalent, data is available it should be ensured that the pre-

diction of the planar tension stress obeys the proposed physically realistic criterion.

When linearly interpolating the single loading data on the invariant plane, the use of

an interpolation path from uniaxial to planar to equibiaxial behaviour was found to

be slightly favourable to a linear interpolation from uniaxial to equibiaxial behaviour.

If the complete response is to be predicted, interpolations should be constrained to

the maximum experimental strain range for reliability, as initially found in the case

study with reduced strain ranges, in Section 3.4.2, and further evidenced in the sec-

ond investigation of Section 3.5.3. A distinction between complete and sufficient

experimental data was also made. A material or component’s complete response re-

quires parameters to be identified using a complete set of experimental data covering

the region of attainable deformations. However, accurate prediction of a material or

component may use experimental data that encompasses its expected strain range.

This is particularly useful for strain-loaded materials or components as their expected

strain range is expected to be independent of material properties. This therefore per-

mits a more efficient approach to experimentation for hyperelastic parameter iden-

tification. With the use of sufficient experimental data, it should still be assessed

whether the interpolated behaviour is physically realistic.

3.6 Summary of Homogeneous Parameter Identification Stud-

ies

The various studies of this chapter aimed to provide new insights into homogeneous

experiments used in hyperelastic parameter identification. A set of criteria to assess

the physical plausibility of hyperelastic experimental data was proposed. These were

based on previously defined constraints to ensure the physically realistic behaviour

of constitutive models. An additional criterion was proposed that provides a simple

means of assessing the plausibility of homogeneous experimental data in the tensile

domain. A robust parameter identification method for hyperelastic constitutive mod-

els was then developed. To fit the complete strain range of the input experimental

data with minimised bias, consideration was given to each data set’s strain range

distribution and stress magnitude.

Using a developed parameter identification method, an investigation of the use of

single loading experimental data and the implications of constitutive model selection

was carried out. It was found that an accurate fit to prescribed experimental data

does not necessarily imply an accurate prediction of a material’s general behaviour.
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Extrapolations outside of the fitted experimental data range are unreliable; this in-

cludes exceeding the experimental strain range or predictions of unfitted deformation

modes. The exception of this is when the unfitted deformations are interpolations of

the experimental measurements, in terms of their strain ranges when viewed on the

invariant plane. The hypothesis of complete data was tested for two experimental

data combinations: uniaxial, planar and equibiaxial tension experiments and uni-

axial and equibiaxial tension experiments. By comparing predictions of synthetic

general biaxial data, it was found that the use of three experiments has more reliable

predictions, but either method predicted the synthetic general biaxial data accurately

for the chosen constitutive models.

In terms of hyperelastic constitutive model selection, the results of the studies pre-

sented in this chapter highlight some key findings. The ability of a specific constitu-

tive model to predict unfitted behaviour was shown to be unreliable when different

materials were considered. On the same basis, the ranking of constitutive models

based on their fit to a single material was found not to be universally applicable.

To predict the hyperelastic response of a material, it is recommended that sufficient

experimental data is acquired. It was shown that sufficient experimental data is that

which encompasses the expected strain range of the component’s deformation, for

which the use of the invariant plane is insightful. A more efficient method is to use

only relevant experiments bounding the expected range of deformations. A param-

eter identification method for the sufficient data should then be used with several

capable constitutive models. The constitutive model should be chosen on the basis

that it most accurately fits the sufficient experimental data and its predicted interpo-

lated values are physically realistic.

The use of experimental data from literature and synthetic general biaxial data al-

lowed an insight into the predictions of the interpolated hyperelastic behaviour. A

more efficient approach to hyperelastic parameter identification was proposed and

demonstrated to be valid for predictions of interpolated biaxial behaviour. It is also

relevant to demonstrate the proposed approach and investigate the implications of

parameter identification with complete and sufficient experimental data in the con-

text of predicting the behaviour of an industrial component. The nature of industrial

components is often too complex to feasibly construct analytical solutions. A nu-

merical method may therefore be employed. Therefore, the implicit Finite Element

Method was used within the commercial solver Abaqus/Standard (3). Some of the

investigated constitutive models were not available in Abaqus’ constitutive model li-

brary. Numerical implementations for user-defined hyperelastic constitutive models

were therefore developed. These are discussed subsequently in Chapters 4 and 5. In-

vestigations of hyperelastic parameter identification are then continued in the context

of simulating industrial components in Chapter 6.
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Chapter 4

Finite Element Implementation of

Hyperelasticity by Numerically

Approximated Elasticity Moduli

User subroutines for the numerical implementation of hyperelastic constitutive mod-

els in the FEM were investigated with a focus on Abaqus/Standard. As discussed

in Section 2.5, there are well established derivations for constitutive models defined

in terms of Cauchy-Green invariants. However, models defined in terms of isochoric

principal stretches are ambiguous in their elasticity tensor’s definition and its nu-

merical implementation. This led to the development and investigation of various

methods of numerical implementation discussed in this chapter and subsequently in

Chapter 5.

The ambiguous nature of the elasticity tensor for principal stretch models, which is

obtained by differentiation of the relevant stress tensor, led to an investigation into

numerical differentiation methods. Two complimentary real domain approximation

methods for accurate computation of finite strain elasticity moduli were developed.

As the stress and elasticity tensors for hyperelasticity in terms of Cauchy-Green in-

variants are well established and numerically stable, these enabled the development

and validation of the numerically approximated tangent moduli implementations.

The developed methods were also investigated in terms of their computational effi-

ciencies. The methods from this chapter were used in the development of a novel

principal stretch implementation, discussed subsequently in Chapter 5.
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4.1 Finite Element Implementation of Hyperelasticity in terms

of Cauchy-Green Invariants

An initial investigation presented in this chapter compared built-in constitutive mod-

els in Abaqus/Standard to UHYPER and UMAT implementations of the same consti-

tutive model. This validated the UMAT implementations developed for hyperelastic-

ity in terms of Cauchy-Green invariants, which were later used for the development

of the novel numerical implementations. A UHYPER user subroutine and two vari-

ations of UMAT subroutines were investigated using a benchmark FEM simulation

in Abaqus/Standard. The criteria for the comparison were their numerical accuracy,

computational efficiencies and convergence behaviour. Initially, the stress and elastic-

ity tensors for hyperelasticity in terms of Cauchy-Green invariants are outlined and

the developed numerical implementations are discussed.

4.1.1 Hyperelasticity in terms of Cauchy-Green Invariants

Two variations were considered for numerical implementation of isochoric Cauchy-

Green invariant constitutive models. The difference between the numerical imple-

mentations is their depth of derivation. One method uses the derivation by Miehe

(151) with fictitious stress and elasticity tensors. These are required in the implemen-

tation of the non-affine micro-sphere model (11). Opposed to deriving these terms

further, the developed method performs various tensor operations within matrices

to compute the necessary stress and elasticity tensor components directly. The other

method further expands the derivation and the resulting variables can therefore be

obtained by any known derivation (5, 150, 151, 152). The terms derived by Miehe

(151) are therefore applicable for both considered methods. This derivation was used

for reference and is outlined here with comment upon where the two numerical

implementation methods deviate. For completeness, the variables are defined ini-

tially in the reference configuration and their spatial equivalent terms required by

Abaqus/Standard are obtained by push-forward operations.

Both methods are defined using the finite elasticity framework described in Section

2.1. An additive split of the isochoric and volumetric contributions of the strain

energy density function is used (6). The stress tensor and elasticity moduli are also

split into isochoric and volumetric contributions. The total strain energy ψ is split

into isochoric W and volumetric U contributions. With symbols defined as previous,

this is defined as

ψ = W
(

I1, I2
)
+ U (J) (4.1)
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Material Stress Tensor In the reference configuration, the second Piola-Kirchhoff

stress tensor S defines the material stress. For a hyperelastic constitutive model this

is calculated as the derivative of the energy ψ with respect to the right Cauchy-Green

deformation tensor C as

S =2
∂ψ

∂C
(4.2)

S =Siso + Svol = 2
∂W

(
I1, I2

)
∂C

+ 2
∂U (J)

∂C
(4.3)

The volumetric stress tensor Svol is simply defined using a chain rule (5) to give

Svol = 2
∂U
∂J

∂J
∂C

= J
∂U
∂J

C−1 (4.4)

The isochoric component Siso is defined (5, 151, 152) in terms of the volume ratio

J and the Lagrangian deviator of the fictitious second Piola-Kirchhoff stress tensor

Dev
(
S
)

as

Siso = J−
2
3 Dev

(
S
)

(4.5)

The fictitious second Piola-Kirchhoff stress tensor S is defined by

S = a11− a2C (4.6)

The scalar coefficients a1 and a2 are constitutive model dependent and computed by

a1 = 2
(

∂W
∂I1

+ I1
∂W
∂I2

)
(4.7)

a2 = 2
(

∂W
∂I2

)
(4.8)

The Lagrangian deviatoric operator Dev (A) is defined for a generic second-order

material tensor A by

Dev (A) = (A)− 1
3
[(A) : C]C−1 (4.9)

By performing the tensor operations in the subroutine using matrices, the above

terms are therefore sufficient to obtain the stress tensor. However, in the further de-

rived implementation the isochoric second Piola-Kirchhoff stress tensor was defined

as

Siso = a1 J−
2
3

(
1− 1

3
I1C−1

)
+ a2 J−

4
3

(
C− 1

3
tr
(

C2
)

C−1
)

(4.10)

Spatial Stress Tensors The equivalent spatial stress tensors may all be obtained by

push-forward operations of the previous variables. Both implementations use the

same scalar coefficients a1 and a2 for user input. The total spatial stress tensor is
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defined in terms of the Kirchhoff stress, τ. This stress tensor is related to the second

Piola-Kirchhoff stress tensor by

τ = FSFT (4.11)

The spatial Kirchhoff stress tensor is also split into isochoric τiso and volumetric τvol

components by τ = τiso + τvol . The volumetric Kirchhoff stress tensor τvol is found

using equation (4.11) to give

τvol = J
∂U
∂J

1 (4.12)

For the implementation with matrix operations, the isochoric Kirchhoff stress tensor

τiso is defined in terms of the Eulerian deviator of the fictitious Kirchhoff stress tensor

τ as

τiso = dev (τ) (4.13)

The fictitious Kirchhoff stress tensor is defined in terms of the same scalar coefficients

as previous, a1 and a2, by

τ = a1b− a2b
2

(4.14)

This is then used in the Eulerian deviatoric operator dev (a), which is defined in

terms of a generic second-order spatial tensor a as

dev (a) = (a)− 1
3

tr (a) 1 (4.15)

Alternatively, the numerical implementation may use the fully derived form of the

isochoric Kirchhoff stress tensor. This is defined by

τiso = a1

(
b− 1

3
I11
)
+ a2

(
b

2 − 1
3

tr
(

b
2
)

1
)

(4.16)

The spatial Cauchy stress tensor σ is required for implementation into Abaqus. By

summation of the isochoric and volumetric Kirchhoff stress tensors, defined in equa-

tions (4.16) and (4.12), the Cauchy stress tensor is calculated from the total Kirchhoff

stress tensor as

σ = J−1τ (4.17)

Material Elasticity Tensor The material elasticity tensor may be obtained by con-

nection of the rate form of the stress and deformation tensors, Ṡ and Ċ respectively

(151). These quantities are connected to the material elasticity tensor C by

Ṡ = C : Ċ/2 (4.18)

Due to the rate-independence of hyperelasticity and the objective nature of the mate-

rial elasticity tensor, C may be defined equivalently by differentiation of the second
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Piola-Kirchhoff stress tensor with respect to the right Cauchy-Green deformation ten-

sor

C = 2
∂S
∂C

(4.19)

The fourth-order material elasticity tensor C is additively split into isochoric Ciso and

volumetric components Cvol by

C = Ciso+Cvol (4.20)

The volumetric elasticity tensor is defined in both implementations in terms of a

chain rule. The volumetric second Piola-Kirchhoff stress, defined in equation (4.4), is

differentiated with respect to the right Cauchy-Green tensor. This is given as

Cvol = 2
∂Svol

∂C
= 4

[
∂U
∂J

(
∂2 J

∂C∂C

)
+

∂2U
∂J2

(
∂J
∂C
⊗ ∂J

∂C

)]
(4.21)

Using various identities, see Holzapfel (5) for full derivation, this leads to the expres-

sion

Cvol = J
(

∂U
∂J

+
∂2U
∂J2 J

)(
C−1 ⊗ C−1

)
−2

∂U
∂J

J
(

C−1 � C−1
)

(4.22)

The symmetric fourth-order dyadic product, notated by �, has been introduced for

convenience, as in the work of Holzapfel (5). It is defined as

(A� B)I JKL =
1
2
(AIKBJL + AILBJK) (4.23)

To obtain the isochoric contribution to the material elasticity tensor, the derivative

in equation (4.19) can be applied to the fully derived and expanded form of the

isochoric second Piola-Kirchhoff stress tensor in equation (4.10) or to the earlier form

in equation (4.5). In the implementation of the fully derived and expanded variables,

either approach may be used. The implementation using the fictitious stress tensor

and matrix operations requires differentiation of equation (4.5). This results in the

following definition for the isochoric material elasticity tensor

Ciso = Dev
(
C
)
+

2
3

J−
2
3
(
S : C

)
P− 2

3
J−

2
3

(
Siso ⊗ C−1 + C−1 ⊗ Siso

)
(4.24)

The material elasticity tensor requires definition of the modified projection tensor P

and the fictitious elasticity tensor C, which uses the fourth-order Lagrangian devia-

toric operator Dev (A). These are defined by

P =

[(
C−1 � C−1)− 1

3
(
C−1 ⊗ C−1)] (4.25)

C = J−
4
3
[
b1 (1⊗ 1)− b2

(
1⊗ C + C⊗ 1

)
+ b3

(
C⊗ C

)
− b4I

]
(4.26)

Dev (A) = A− 1
3
[
C−1 ⊗ (A : C)

]
− 1

3
[
(A : C)⊗ C−1]+ 1

9
(C : A : C)

(
C−1 ⊗ C−1)

(4.27)
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The constitutive model dependent scalar coefficients b1, b2, b3 and b4 are defined by

b1 = 4

(
∂2W

∂I1
2 +

∂W
∂I2

+ I1
2 ∂2W

∂I2
2 + 2I1

∂2W
∂I1∂I2

)
(4.28)

b2 = 4

(
I1

∂2W

∂I2
2 +

∂2W
∂I1∂I2

)
(4.29)

b3 = 4

(
∂2W

∂I2
2

)
(4.30)

b4 = 4
(

∂W
∂I2

)
(4.31)

These variables are sufficient for numerical implementation with coded tensor opera-

tions. With further derivation for the alterative implementation, the material elasticity

tensor may be given as

Ciso = ∆1 (1⊗ 1) + ∆2 [(1⊗ C) + (C⊗ 1)] + ∆3

[(
1⊗ C−1

)
+
(

C−1 ⊗ 1
)]

+∆4 (C⊗ C) + ∆5

[(
C−1 ⊗ C

)
+
(

C⊗ C−1
)]

+ ∆6

(
C−1 ⊗ C−1

)
+∆7

(
C−1 � C−1

)
+ ∆8 (1� 1)

(4.32)

The eight ∆n coefficients of the material elasticity tensor are defined as

∆1 = b1 J−
4
3 (4.33)

∆2 = − b2 J−2 (4.34)

∆3 =
1
3

(
2a1 J−

2
3 − b1 I1 J−

4
3 + b2tr

(
C2) J−2

)
(4.35)

∆4 = b3 J−
8
3 (4.36)

∆5 =
(

2a2 J−
4
3 + b2 I1 J−2 − b3tr

(
C2) J−

8
3 + b4 J−

4
3

)
(4.37)

∆6 =
1
9

(
2a1 I1 J−

2
3 − 2a2tr

(
C2) J−

4
3 + b1 I1

2 J−
4
3

)
+

1
9

(
−2b2 I1tr

(
C2) J−2 + b3tr

(
C2) 2 J−

8
3 − b4tr

(
C2) J−

4
3

)
(4.38)

∆7 =
2
3

(
a1 I1 J−

2
3 − a2tr

(
C2) J−

4
3

)
(4.39)

∆8 = − b4 J−
4
3 (4.40)

Spatial Elasticity Tensor While the material elasticity tensor is naturally objective

(182), the spatial elasticity tensor exists in several forms to enable objectivity (198).

The form required by Abaqus/Standard is the Jaumann-rate of Cauchy stress cABQ.

For convenience, the spatial elasticity tensor c defined as the Oldroyd-rate of the

Kirchhoff stress was initially derived. Its fourth-order spatial tensors are obtained by
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push-forward of the equivalent material elasticity variables. The Jaumann-rate of the

Cauchy-Stress may then be found using the relationship between these two variations

of the spatial elasticity tensor.

In index notation, the total fourth-order material elasticity tensor C is related to the

total spatial elasticity tensor c by

cijkl = J−1FiI FjJ FkKFlLCI JKL (4.41)

Using this relationship the volumetric spatial elasticity tensor cvol is defined as

cvol = J
(

∂U
∂J

+
∂2U
∂J2 J

)
(1⊗ 1)−2

∂U
∂J

J (1� 1) (4.42)

The isochoric contribution ciso is obtained by push-forward of equation (4.24) to give

ciso = dev (c) +
2
3

tr (τ)p− 2
3
(τiso ⊗ 1 + 1⊗ τiso) (4.43)

The equivalent spatial fourth-order tensors require definition. These are the spatial

projection tensor p and the fictitious spatial elasticity tensor c, for which the Eulerian

deviatoric operator of a fourth-order tensor dev (a) is used. These are obtained by

push forward operations and defined as

p =

[
(1� 1)− 1

3
(1⊗ 1)

]
(4.44)

c =
[
b1

(
b⊗ b

)
− b2

(
b⊗ b

2
+ b

2 ⊗ b
)
+ b3

(
b

2 ⊗ b
2
)
− b4

(
b� b

)]
(4.45)

dev (a) = a− 1
3
[1⊗ (a : 1)]− 1

3
[(a : 1)⊗ 1] +

1
9
(1 : a : 1) (1⊗ 1) (4.46)

These variables are sufficient for the computation of c if the numerical implementa-

tion performs the required tensor operations within the subroutine. The alternative

form of the isochoric component ciso can be further derived from the above or by

push forward of equation (4.32). This is defined as

ciso = δ1

(
b⊗ b

)
+ δ2

[(
b⊗ b

2
)
+
(

b
2 ⊗ b

)]
+ δ3

[(
b⊗ 1

)
+
(

1⊗ b
)]

+ δ4

(
b

2 ⊗ b
2
)
+ δ5

[(
1⊗ b

2
)
+
(

b
2 ⊗ 1

)]
+ δ6 (1⊗ 1)

+ δ7 (1� 1) + δ8

(
b� b

) (4.47)
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With the eight δn coefficients defined by

δ1 = b1 (4.48)

δ2 =−b2 (4.49)

δ3 =
1
3
(
2a1 − b1 I1 + b2tr

(
b2)) (4.50)

δ4 = b3 (4.51)

δ5 =
(
2a2 + b2 I1 − b3tr

(
b2)+ b4

)
(4.52)

δ6 =
1
9
(
2a1 I1 − 2a2tr

(
b2)+ b1 I1

2)
+

1
9
(
−2b2 I1tr

(
b2)+ b3tr

(
b2) 2 − b4tr

(
b2)) (4.53)

δ7 =
2
3
(
a1 I1 − a2tr

(
b2)) (4.54)

δ8 =−b4 (4.55)

The total spatial elasticity tensor c, defined in terms of the Oldroyd-rate of the Kirch-

hoff stress, is then transformed in both implementation methods using the relation-

ship to the Jaumann-rate of the Cauchy stress cABQ. This is the form required by

UMAT subroutines in Abaqus/Standard and it is computed as follows (156)

cABQ = J−1 (ciso + cvol) + (σ� 1) + (1�σ) (4.56)

4.1.2 Aspects of FEM Implementation

With the definition of the second-order Cauchy stress tensor σ and the fourth-order

elasticity tensor in terms of the Jaumann-rate of the Cauchy stress cABQ, some fur-

ther considerations are required for the two methods of numerical implementation.

The following discussion is based on the use of the input of a UMAT subroutine in

Abaqus/Standard using the standardised format for a Fortran “.for” code provided

in the Abaqus documentation (3). The method for developing the implementations

initially used self-contained Fortran programs with a manually prescribed deforma-

tion gradient. These programs were then adapted to an additional subroutine to

be called within the standardised UMAT formatted codes. The stand-alone pro-

grams and UMAT subroutines for the developed implementations are available in

the dataset (4).

An aim for the developed FEM implementations was to reduce the user input. For

an isochoric material in either configuration, the user is required only to provide the

derivatives ∂W
∂I1

and ∂W
∂I2

to compute the stress tensors. For computing the tangent
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moduli, the derivatives ∂2W
∂I1

2 , ∂2W
∂I2

2 and ∂2W
∂I1∂I2

require definition. Then with the declara-

tion of the constitutive model parameters and any additional values as variables, the

derivatives may be computed. Optionally, the elastic strain energy density may be

defined and computed. The codes were annotated to highlight where user input is

required. The remainder of the UMAT codes remains independent for Cauchy-Green

invariant constitutive models. The amount of user input was therefore considered

to be minimised and of similar difficulty as that of an Abaqus/Standard UHYPER

subroutine.

The stress and tangent moduli components are predefined in UMAT by the arrays

STRESS(6) and DDSDDE(6,6), or STRESS(4) and DDSDDE(4,4) for 2D plane strain

or axisymmetric FE models. The bracketed terms represent the dimensions of the

arrays. However, the second-order Cauchy stress tensor σ has nine components and

the spatial elasticity tensor cABQ has eighty-one components. The difference is due to

the use of Voigt notation. The symmetric second-order tensor σij, where i, j = 1, 2, 3,

may be represented in Voigt notation as σa, where a = 1, 2, 3, 4, 5, 6. This is because

symmetric second-order tensors have three pairs of equal components, for example

σ12 = σ21, σ13 = σ31 and σ23 = σ32. In the notation used by Abaqus, the indices (1, 2,

3, 4, 5, 6) representing (11, 22, 33, 12, 13, 23), respectively. Similarly, the eighty-one

components of the elasticity tensor cABQijkl
where i, j, k, l = 1, 2, 3 may be represented

by thirty-six components in Voigt notation. This is due to the minor symmetries

cABQijkl
= cABQjikl

and cABQijkl
= cABQijlk

. Hence, the elasticity tensor is defined in

Voigt notation as cABQab
, where a, b = 1, 2, 3, 4, 5, 6 with the same definitions of the

indices as previous. For isotropic materials, the elasticity may be further reduced

to twenty-one components as it also has major symmetry, cABQijkl
= cABQklij

or in

Voigt notation cABQab
= cABQba

. In 2D problems, the user subroutines are adapted to

reduce the STRESS and DDSDDE matrices to the required dimensions. For the stress

components only the first four components are used and for the elasticity tensor the

matrix is reduced to the first four by four components. The codes are otherwise

unaltered.

The deformation gradient alone is sufficient to compute the stress tensor and tangent

moduli for a hyperelastic constitutive model. In UMAT, the deformation gradient

F is input to the Fortran subroutine at each integration point of the FE model as

the variable DFGRD1(3,3). As this tensor is not symmetric, it may not be stored

in Voigt notation. However, the required strain tensor b, and its isochoric variants,

are symmetric and are therefore computed and stored in Voigt notation throughout.

Within the developed codes, utility subroutines were used to perform repeat opera-

tions for computing the determinant of arrays, the fourth-order tensor products, and

the fourth-order symmetric tensor products. The UMAT user subroutines then coded
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the expressions defined in Section 4.1.1 within the two developed numerical imple-

mentation methods for comparison with built-in and UHYPER implementations of

hyperelasticity.

4.1.3 Finite Element Investigation of Cauchy-Green Invariant Implemen-
tations

The investigation of the two UMAT implementations, UHYPER implementation and

a built-in model for hyperelasticity in Cauchy-Green invariants used Finite Element

models created in the Abaqus/CAE interface and solved using Abaqus/Standard.

For a built-in constitutive model, the user is required only to select the constitutive

model and define the magnitude of its parameters. If the material is incompressible,

the user specifies incompressibility by equating the volumetric parameters to zero.

In UHYPER, a user-defined hyperelastic material is selected and the parameters are

assigned by modifying the “.inp” input file. Also, the user must assign a Fortran file

with definition of the number of parameters and the strain energy density derivatives

with respect to I1, I2 and J. The UHYPER interface provides a checkbox to specify

whether compressible effects are considered and included in the Fortran file. With

UMAT the user enters the parameter values and the number of parameters are im-

plied by the number of values entered in the provided interface. The UMAT Fortran

file is specified within the interface and requires definition of the stress components

and tangent moduli as discussed in Sections 4.1.1 and 4.1.2. The input file is mod-

ified to specify that the solution requires the use of a fully incompressible hybrid

formulation if no volumetric behaviour is defined. Otherwise, the volumetric strain

energy and its derivatives must be defined in the UMAT Fortran code with non-zero

compressibility parameters.

The chosen geometry, shown in 4.1, for the FE investigations was a three-dimensional

rectangular plate of 4mm in length, 2mm in height and 1mm thick, with a hole of

0.5mm diameter through its centre. The 3D geometry was discritized using linear,

quadrilateral, hybrid C3D8H elements. The hybrid element is a mixed displacement-

pressure element used to maintain constant volume (3). The models were solved

using five meshes with an increasing number of elements to compare the computa-

tion time of the different implementations when computational costs vary. Due to

symmetry, only an eighth of the model was used. The Haines-Wilson (190) consti-

tutive model, as defined in Table A.1, was used throughout. Its parameters were

obtained from identification from Section 3.4.1 using the complete data set of Treloar

(127). The plate was loaded in its longitudinal direction by an applied displacement

of 2mm in ten fixed increments of 0.2mm.
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All FE models by the four different implementations achieved converged solutions.

The total iterations to gain a converged solution was approximately equal. When

there were differences in the total iterations, there was no general conclusion that a

particular implementation required fewer total iterations. The two UMAT implemen-

tations were identical in this respect for all levels of mesh refinement. The physical

results of the simulation showed the two UMAT variations were identical for all

observed values. Comparing the physical results for UHYPER and UMAT to the

built-in constitutive behaviour, only small differences were found which decreased

with mesh refinement. The largest percentage difference was in the first mesh of

112 elements for the von Mises stresses σvM; the built in model calculated the stress

as σvM = 2.47MPa, while the UHYPER and UMAT results were both approximately

1.65% higher at σvM = 2.51MPa. For the fifth mesh, all output physical results for

UHYPER and UMAT were within 0.20% of the built-in constitutive model. The von

Mises stresses are shown on the deformed shape of the third mesh in Figure 4.1.

The only significant differences in the four implementations were found in their com-

putational efficiencies. The relative solve times of the UHYPER and two UMAT im-

plementations were computed with respect to the built-in constitutive model’s solve

times. These are shown in Figure 4.2, where the fully derived UMAT implemen-

tation is referred to as “Derived” and the matrix operation UMAT implementation

is referred to as “Matrices”. The UHYPER implementation required less computa-

tional effort than either of the UMAT implementations. Compared to the built-in

model it also generally had lower computational cost. Both UMAT implementations

required as much as 46% additional solution time than the built-in model. With in-

creased model complexity this difference decreased. For the numerically converged

fifth mesh with 76640 elements, the difference was within 10% of the built-in and

UHYPER solve times. The fully derived UMAT implementation was generally more

computationally efficient than the implementation with matrix operations.

4.1.4 Discussion of Cauchy-Green Invariant Implementations

The two developed FE implementations for hyperelasticity in terms of Cauchy-Green

invariants by UMAT were proven to be numerically accurate and converged appropri-

ately. The practical differences in the built-in, UHYPER and UMAT implementations

have already been discussed in the introduction to Section 4.1. In terms of computa-

tion time, the UMAT methods have higher computation times when compared with

built-in and UHYPER implemented models. The “Derived” implementation has a

lower solve time than the “Matrices” implementation, and should be preferred for

UMAT implementation of Cauchy-Green invariant models. However, the “Matrices”
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Figure 4.2: Solve times of the two user subroutine implementations and the UHYPER

relative to a built-in model for increasing mesh density of a hole-plate test

implementation makes it possible to implement the non-affine micro-sphere model

(11), or any model defined in terms of fictitious stress and elasticity tensors.

4.2 Numerical Approximations of Elasticity Moduli

The ambiguous nature of the elasticity tensors for hyperelasticity in principal stretches

led to an investigation into alternative differentiation methods, discussed in Section

2.5.3. These methods obtain the tangent moduli by automating the derivative of the

stress tensor with respect to the strain tensor. Due to the use of fixed format Fortran

code in UMAT for Abaqus/Standard, the methods of interest used only numerical

approximations in the real domain. These methods are advantageous as they do not

require the redefinition of preprogrammed mathematical functions. From the stud-

ied literature presented in Section 2.5.3, two complimentary methods of numerical

approximation were identified. These have not otherwise been developed or investi-

gated within the context of approximating finite strain tangent moduli. The methods

are higher-order and higher floating-point precision numerical approximations.

The aim of these investigations was to develop a real-domain approximation method

for elasticity moduli with comparable accuracy and computational effort to the ana-

lytical fully derived implementation developed in Section 4.1. The formulae are first

outlined for nth-order approximations in Lagrangian and Eulerian configurations and

the procedure to enable higher-order approximations is subsequently derived. Ad-

ditionally, the procedure to incorporate higher floating-point precision is described.

The numerical accuracy of the proposed methods was investigated using Fortran

programs wherein the approximated elasticity moduli were quantitatively compared

to the analytical elasticity moduli from Section 4.1. The computation time was in-
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vestigated, as previous, by solving a benchmark FE problem in Abaqus/Standard.

The Fortran programs and subroutines for the higher-order and higher floating-point

precision methods are available in the dataset (4).

4.2.1 Approximated Material Elasticity Tensor

The first-order approximated material elasticity tensor is defined. For proof, see

Miehe (169) and the references therein. The second Piola-Kirchhoff stress S is taken

as a function of the right Cauchy-Green tensor C. Alternatively to Section 4.1.1, the

material elasticity is expressed as a linear relationship of the stress increment ∆S and

the strain increment ∆C and defined as

∆S = 2
∂S
∂C

:
1
2

∆C (4.57)

This implies that C may also be defined by numerical differentiation of S with respect

to C. Here, only the first-order forward approximation is shown. The general formula

of a first-order forward difference approximation is given by

f ′(x) =
f (x + η)− f (x)

η
+O (η) (4.58)

where η is a small perturbation magnitude, O(η) is the truncation error and O is the

big O Landau symbol. Adapting this to compute the material elasticity moduli in

the form proposed by Miehe (169)

CI J(KL)≈
1
η

[
ŜI J

(
F̂(KL)

)
− SI J

]
(4.59)

ŜI J represents the perturbed stress tensors which are each a function of the perturbed

right Cauchy-Green tensors and may therefore be defined as an argument of the per-

turbed deformation gradient F̂(KL). The indices I J are the components of the second

Piola-Kirchhoff stress tensors and KL indicate the direction and orientation of the

applied perturbations. To compute the forward perturbed strains, and subsequently

the perturbed stresses, the perturbed deformation gradients are calculated by

F̂(KL) = F + ∆F̂(KL) (4.60)

The applied perturbation, denoted as ∆F̂(KL), is defined as

∆F̂(KL) =
η

2

(
F−TEK ⊗ EL + F−TEL ⊗ EK

)
(4.61)

Including the indices of the deformation gradient in equation (4.60) and using the

Kronecker delta δij, the perturbed deformation gradients are calculated using(
F̂(KL)

)
i J
= Fi J +

η

2

(
FiK
−TδLJ + FiL

−TδKJ

)
(4.62)
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The perturbed stresses are calculated, allowing calculation of the approximated ma-

terial elasticity moduli using equation (4.59).

As the elasticity tensor has both minor symmetries, it may therefore be computed

using only six approximations, or four if the problem is reduced to assume 2D plane

strain or axisymmetric conditions. Voigt notation is employed with the same defini-

tion of indices as in Section 4.1.2. Using the indices A = I J and B = KL (in 3D A

and B = 1, 2, 3, 4, 5, 6; in 2D A and B = 1, 2, 3, 4) the approximated material elasticity

tensor from equation (4.59) is given in the convenient form

CA(B)≈
1
η

[
ŜA

(
F̂(B)

)
− SA

]
(4.63)

4.2.2 Approximated Spatial Elasticity Tensor

For computation of the approximate spatial elasticity tensor c, the Kirchhoff stress

tensor τ and the left Cauchy-Green tensor b were used initially. The spatial elas-

ticity tensor as required by Abaqus/Standard cABQ was obtained as previous using

equation (4.56). Proofs are omitted and only the first-order forward approximation is

given.

Expanding the increment of the strain tensor ∆C =
(
FT∆F+∆FTF

)
followed by a

push-forward operation, the spatial equivalent of equation (4.57) is given as

∆τ− τ
(

∆FF−1
)
− τ

(
∆FF−1

)T
= c :

1
2

[(
∆FF−1

)
+
(

∆FF−1
)T
]

(4.64)

c may also be defined in terms of the Lie time derivative of the Kirchhoff stress Lv (τ)

and the rate of deformation tensor d as Lv (τ) = c : d. The rate of deformation has

its usual definition in terms of the spatial velocity tensor L, which in turn is de-

fined in terms of the rate of the deformation gradient, as follows d = 1
2

(
L− LT) =

1
2

(
ḞF−1 −

(
ḞF−1)T

)
. The derivatives may be linearized (5) and can therefore also be

numerically approximated. However, unlike the material tensor, geometric contribu-

tions are present to preserve objectivity. The first-order forward approximation of the

spatial elasticity tensor is therefore defined as

cij(kl)≈
1
η

[
τ̂ij

(
F̂(kl)

)
− τij

]
− (1� τ+ τ� 1)ij(kl) (4.65)

where τ̂ij represents the perturbed Kirchhoff stress tensors, which are a function of

the spatial perturbed deformation gradients F̂(kl). The other symbols have their usual

meanings.

Equivalent to the material implementation, the spatial perturbed deformation gradi-

ent is given by

F̂(kl) = F + ∆F̂(kl) (4.66)
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However, the spatial perturbed deformation gradients are calculated using

∆F̂(kl) =
η

2
(ek ⊗ elF + el ⊗ ekF) (4.67)

Then, including the indices and the Kronecker delta in equation (4.66), the perturbed

deformation gradients are calculated by(
F̂(kl)

)
i J
= Fi J +

η

2
(
δikFl J + δil FkJ

)
(4.68)

In Voigt notation, with the same interpretations as in the material tensor, the spa-

tial elasticity tensor defined in terms of the Oldroyd-rate of the Kirchhoff stress is

simplified to

ca(b)≈
1
η

[
τ̂a

(
F̂(b)

)
− τa

]
− (1� τ+ τ� 1)a(b) (4.69)

By substitution of this equation (4.69) in the conversion of the Oldroyd-rate of the

Kirchhoff stress to the Jaumann-rate of the Cauchy stress, given in equation (4.56),

the required spatial elasticity tensor cABQ is defined by

cABQij(kl)≈
1
Jη

[
τ̂ij

(
F̂(kl)

)
− τij

]
(4.70)

In Voigt notation it is given as

cABQa(b)≈
1
Jη

[
τ̂a

(
F̂(b)

)
− τa

]
(4.71)

4.2.3 Higher-order Numerical Approximation

General equations are derived for higher-order approximations of both the mate-

rial and spatial elasticity moduli. While higher-order approximations of forward

and backward difference methods are possible, only central difference methods were

investigated in detail, as they are generally of higher numerical accuracy (199). Fur-

thermore, central difference methods are more convenient for investigation as their

truncation error exponentially decreases twofold compared with forward and back-

ward methods, O
(
η2n) compared with O (ηn). For clarity, central difference schemes

are referred to by their order of approximation. For example, the first central differ-

ence is a second-order approximation and so is referred to as the second-order central

difference approximation.

For a fixed perturbation magnitude, increasing the order of the approximation will,

in theory, reduce the truncation error. For this, the higher-order approximations

require more forward and backward perturbed points. In the central difference ap-

proximations applied here, an equal number of equidistant forward and backward
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perturbations are used. Weighted coefficients are assigned to ensure that the approx-

imation is found at the centre point. The general formula for a central difference of

nth-order, where n is an even number, from Li (200), is given as

f ′ (x) =

(
1
η

neven

∑
2m=−neven

(cm) f (xm)

)
+O

(
η2n) (4.72)

Here, m refers to the position of the approximation as if it were to lie on a linear grid,

such that m = −2 is a twice backward perturbed point, which is non-zero for central

difference schemes of fourth-order and greater. Then the argument (xm) = (x + mη)

is calculated. For forward and backward perturbed points, the coefficients cm are

calculated by the equation

cm =
(−1)m+1[( n

2

)
!
]2

m
( n

2 −m
)
!
( n

2 + m
)
!

(4.73)

Manual calculation of the required coefficients can be tedious and so an algorithm

similar to that of Fornberg (201) may be used to obtain them. The coefficients for the

central difference schemes used in this study, up to twelfth-order, are given in Table

C.1 in Appendix C.

Higher-order Approximations of Material Elasticity Moduli Higher-order approx-

imations of the material elasticity moduli require calculation of additional perturbed

second Piola-Kirchhoff stresses. The stresses are a function of the perturbed defor-

mation gradients, which are calculated using a modification of equation (4.60)

m︷ ︸︸ ︷(
F̂(KL)

)
= F + m

(
∆F̂(KL)

)
(4.74)

The notation

m︷︸︸︷
(·) is introduced to identify the position, m, of the approximation, with

m defined as previous. In 3D the 6n (4n for 2D) perturbed second Piola-Kirchhoff

stresses are then calculated. The general formula for central difference approximate

elasticity moduli is found by combining equations (4.59) and (4.72) to give

CI J(KL) ≈

 1
η

 neven

∑
2m=−neven

(cm) ŜI J

m︷ ︸︸ ︷(
F̂(KL)

)
+O

(
η2n) (4.75)

In Voigt notation, where A and B are as previously defined, this is defined as

CA(B) ≈

 1
η

 neven

∑
2m=−neven

(cm) ŜA

m︷ ︸︸ ︷(
F̂(B)

)
+O

(
η2n) (4.76)
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Higher-order Approximations of Spatial Elasticity Moduli The higher-order ap-

proximations are then modified equivalently to give the corresponding equations for

the spatial elasticity tensor. In the spatial configuration, the perturbed deformation

gradients are calculated using

m︷ ︸︸ ︷(
F̂(kl)

)
= F + m

(
∆F̂(kl)

)
(4.77)

The general equation for the spatial elasticity tensor in terms of the Oldroyd-rate of

the Kirchhoff stress is given by

cij(kl) ≈

 1
η

 neven

∑
2m=−neven

(cm) τ̂ij

m︷ ︸︸ ︷(
F̂(kl)

)− (1� τ+ τ� 1)ij(kl)

+O
(
η2n) (4.78)

Then in Voigt notation this is defined as

ca(b) ≈

 1
η

 neven

∑
2m=−neven

(cm) τ̂a

m︷ ︸︸ ︷(
F̂(kl)

)− (1� τ+ τ� 1)a(b)

+O
(
η2n) (4.79)

As in equation (4.70), the geometric contributions cancel to give the general formula

for the spatial elasticity tensor in terms of the Jaumann-rate of the Cauchy stress as

cABQij(kl) ≈

 1
Jη

 neven

∑
2m=−neven

(cm) τ̂ij

m︷ ︸︸ ︷(
F̂(kl)

)
+O

(
η2n) (4.80)

Furthermore, in Voigt notation, it is given by

cABQa(b) ≈

 1
Jη

 neven

∑
2m=−neven

(cm) τ̂a

m︷ ︸︸ ︷(
F̂(b)

)
+O

(
η2n) (4.81)

4.2.4 Higher Floating-point Precision

While higher-order approximations increase the exponential decay of the truncation

error, by O
(
η2n) for increasing n, the benefit of this is well-known to be restricted

by the conflicting round-off errors (171, 202). However, with higher floating-point

precision, the range of perturbation magnitudes for which round-off error is negligi-

ble may increase. Due to its availability within current Fortran compilers, quadruple

precision was used. In Fortran, all arrays, variables and constants are initially defined

in quadruple precision. The variables and arrays required by the FE solver are also

defined equivalently in double precision. After computation of the quadruple preci-

sion arrays, the values are returned to double precision by equating these arrays to
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their double precision counterparts. This truncates the higher precision values to ap-

proximately 16 significant figures. The method has not previously been implemented

or investigated in this context. For all orders of approximation, quadruple precision

enables twice the number of significant figures allowing smaller perturbation mag-

nitudes. This was expected to result in lower truncation error and more accurate

approximations of the elasticity moduli.

4.2.5 Optimal Perturbation Magnitude

The optimal perturbation magnitude is that which exactly minimises the impact of

both truncation and round-off errors. As these are known to vary for even a scalar

function of an independent scalar variable, determining the exact optimal perturba-

tion magnitude is generally not possible. An approximation of the optimal pertur-

bation can be obtained by optimisation (172), which, in this context, would require a

minimisation in which all tensor components are considered. A simpler approach by

Miehe (169) concludes that for a first-order approximation of the first derivative, the

optimal perturbation ηopt may be approximated as

ηopt ≈
√
macheps (4.82)

The machine epsilon, macheps is the smallest computable η for 1 + η > 1 to hold

true. The approximation in equation (4.82) can be seen to hold true graphically

in log-log plots of relative error vs perturbation magnitude from later studies (149,

173, 175, 176, 180). Based on equation (4.82) and the observations of Pérez-Foguet

et al (173), a simple general equation for higher-order derivatives and higher-order

approximations is proposed here as

ηopt ≈ (macheps)
1

n+d (4.83)

The superscripts n and d are the orders of the approximation and of the derivative,

respectively. The equation draws on the observation that the total error corresponds

to the truncation error: Error ≈ γηn, where γ is a constant, until it intercepts the

round-off errors. The round-off errors then increase the total error by Error ≈ ωη−d,

where ω is a constant. Therefore, by assuming the minimum error occurs when

truncation and round-off errors are equal, as in Pérez-Foguet et al (173), and that the

constants are a function of macheps such that equation (4.82) is satisfied, the optimal

perturbation magnitude may be approximated by equation (4.83).

This equation permits an approximation of the optimal perturbation magnitude,

which can be seen to hold true to the error plots of previous studies and is in agree-

ment with equation (4.82). Comparisons with previous studies (149, 173, 175, 176,
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180) is not a complete validation as these approximations only investigated up to

second-order approximations and second-order derivatives. The validity for first-

order derivatives and approximations of up to the twelfth-order is assessed in Section

4.3.3.

The proposed equation (4.83) predicts that for increasingly higher-order approxima-

tions the optimal perturbation size exponentially increases due to conflicting round-

off error. It also predicts that the use of quadruple precision lowers the optimal per-

turbation magnitude. For example, a first-order forward approximation in double

precision (macheps = 1e−16, n = 1 and d = 1) the optimal perturbation magnitude

is calculated as ηopt ≈ 1e−8. With the same approximation scheme in quadruple pre-

cision (macheps = 1e−32, n = 1 and d = 1) the optimal perturbation magnitude is

predicted as ηopt ≈ 1e−16. In terms of the truncation error O (ηn), the use of quadru-

ple precision reduces the error by a squared power. Given that double precision

numbers are stored with 1e−16 significant figures, a first-order approximation using

quadruple precision is predicted to obtain solutions with error approximately equal

to the finite precision limit. Following the investigation into higher-order approxi-

mations in double and quadruple precision, the optimal perturbation magnitude and

the validity of equation (4.83) is discussed in further detail in Section 4.3.5.

4.3 Numerical Investigation of Approximated Elasticity Mod-

uli

The use of higher-order numerical approximation methods was investigated in stan-

dard double precision and with the proposed quadruple precision method. The

methods were assessed in terms of their numerical accuracy through comparison

with analytical solutions for both material and spatial configurations. Two hypere-

lastic constitutive models were used throughout: the neo-Hookean (69) and Gent (18)

models. These were chosen due to their differences in stability and function smooth-

ness. The neo-Hookean model is unconditionally stable and a smooth function. The

Gent model has a clearly defined numerical stability limit, where the stiffness in-

creases asymptotically as the strain tends towards the finite extensibility limit of the

material. Stability here refers to the positive definiteness of stress and strain incre-

ments, as discussed by Hartmann (145) for hyperelastic parameter estimation.

4.3.1 Hyperelastic Constitutive Models

The neo-Hookean and Gent strain energy functions were defined only in terms of

an isochoric energy contribution. An incompressible hybrid formulation and the use
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of hybrid elements later enforced incompressibility in the FE investigations. The

volumetric contributions to the total energy, stress and elasticity moduli were disre-

garded. The isochoric energy of the two models was defined as in Section 3.2.2, see

equation (3.13) for the neo-Hookean model and equation (3.14) for the Gent model.

The parameters were defined as C10 = 0.1MPa, µ = 1MPa and Jm = 22.5 throughout

the initial purely numerical investigations and the latter FE investigations.

4.3.2 Investigation of Approximate Elasticity Moduli

The accuracy of the approximate elasticity moduli was investigated by comparison to

the analytical solutions outlined in Section 4.1. The average relative error was calcu-

lated for all (Voigt notation) tensor components using five unique deformation gra-

dients. The deformation gradients were input to a Fortran program to calculate the

stress tensor and elasticity moduli. These programs are also available in the dataset

(4). The five deformation gradients may be respectively described as follows: un-

deformed, uniaxial tension, uniaxial compression, shear without dilation and shear

with dilation. In matrix form, they are given as

F1 =

 1 0 0
0 1 0
0 0 1

 ; F2 =

 4.5 0 0
0 1√

4.5
0

0 0 1√
4.5

 ; F3 =

 0.2 0 0
0 1√

0.2
0

0 0 1√
0.2

 ;

F4 =

 3 1 0
1 1 0
0 0 0.5

 ; F5 =

 1.1 0.2 0.2
0 0.9535 0.2
0 0 0.9535


(4.84)

The relative error was calculated for each approximation method using a range of

perturbation magnitudes η. The investigations used perturbations of 1ex and 3ex,

where x is an integer, to provide a good insight into the range of suitable perturba-

tion magnitudes and to find an approximate value of the optimal perturbation mag-

nitude. For double precision, perturbation magnitudes from 1e0 down to 1e−18 were

used. For quadruple precision, the range was extended from 1e0 to 1e−36. Perturba-

tion magnitudes smaller than these ranges were much lower than macheps and thus

resulted in an unperturbed deformation gradient for real domain approximations,

which implies 1 + η > 1 is false. The relative error was calculated by comparison of

the approximate moduli, CApp. and cApp., to the quadruple precision analytical elas-

ticity moduli, CA16 and cA16, for the material and spatial configurations respectively.

This also allowed for the double precision analytical elasticity moduli, denoted A(8),

to be included in the comparison. The error between the double and quadruple pre-

cision analytical moduli is a result of the truncation and rounding errors throughout

its calculation. The relative error ER was calculated and averaged for each index of
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the elasticity tensor in Voigt notation by the following equation

ER =

[
6

∑
a,b=1

(
CA16ab −CApp.ab

)2
] 1

2

/

[
6

∑
a,b=1

(CA16ab)
2

] 1
2

(4.85)

To independently investigate the effect of higher-order approximations and higher

floating-point precision, approximated material and spatial moduli were compared

for both constitutive models using double and quadruple precision for approxima-

tions up to the twelfth-order. The results are plotted using log-log graphs of pertur-

bation magnitude vs relative error. These plots also reveal the approximate optimal

perturbation magnitude. In the following numerical investigations, the first two let-

ters indicate the type of approximation scheme used (FD and CD are the forward

and central differences respectively), the number in brackets is the precision used

(double precision is (8) and quadruple precision is (16)), and the number following

the hyphen indicates the order of the approximation.

4.3.3 Numerical Validation of Material Elasticity Moduli

The result of the comparison between the approximated and analytical material elas-

ticity moduli is shown for double precision in Figures 4.3a and 4.3b. These plots show

there was little difference between the neo-Hookean and Gent models for all approx-

imations, suggesting that the approximation methods are not affected by differences

in function stability or smoothness. For both constitutive models, lower relative er-

ror was obtained with an increased order of approximation but with diminishing

returns. Once round-off errors were significant, as the perturbation magnitude de-

creased, all orders of approximation converged to the same error as the first-order

approximation.

With quadruple precision, shown in Figures 4.3c & 4.3d, the approximated elasticity

moduli reached higher accuracy than the double precision analytical solution for

all orders of approximation. When truncated to double precision, these quadruple

precision approximations of the material elasticity moduli were generally identical

to the double precision analytical solutions. This was true for all non-zero terms;

otherwise, values close to zero were found to have a residual value of around 1e−16

since these were not lost in truncation. However, given their magnitude, these errors

are physically negligible.

At larger perturbation magnitudes, greater than 1e−2, it was found that the relative

error of the approximations does not follow the expected logarithmic gradient equal

to the order of the approximation. Since this was present in both double and quadru-

ple precision, this error was not due to truncation or rounding errors. Also, as it was
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present in both neo-Hookean and Gent constitutive models, it was not due to sta-

bility or smoothness. The error was therefore due to invalid truncation errors (172).

Approximations greater than first-order resulted in an invalid perturbation, which

restricted the accuracy of higher-order approximations whose optimal perturbation

would be expected within this range.

4.3.4 Numerical Validation of Spatial Elasticity Moduli

The results for the spatial approximated elasticity moduli are shown in Figure 4.4 for

both neo-Hookean and Gent constitutive models. These results were similar to those

of the material elasticity moduli but the spatial approximations were less affected by

invalid perturbation error. In double precision, the increased order of approximation

generally achieved lower error. However, approximations of greater than the eighth-

order showed diminishing increases in accuracy. The quadruple precision results

were similar to those of the material elasticity moduli, though their error continued

to decrease for higher-order approximations since the optimal perturbation occured

at lower (valid) perturbation magnitudes. As with the material elasticity moduli, the

use of higher floating-point precision obtained more accurate elasticity moduli than

the double precision analytical solution for all orders of approximation.

4.3.5 Optimal Perturbation Magnitude

The approximate optimal perturbation magnitudes were calculated using equation

(4.83) for both double and quadruple precision and all orders of approximations used

in the numerical investigations. The calculated approximations were compared to

the measured spatial neo-Hookean optimal perturbation magnitudes, with measured

values taken to the nearest exponent, as shown in Table 4.1. The approximate values

of equation (4.83) were generally reasonable for lower orders of approximation; but

the optimal perturbation magnitudes were not in agreement for double precision

higher-order approximations due to the invalid perturbation errors.

The nature of truncation and round-off errors were examined further using more per-

turbation magnitudes around the minimum error. The neo-Hookean spatial elasticity

moduli were approximated using fourth- and eighth-order central difference approx-

imations in quadruple precision with 450 linear steps of the perturbation magnitude

for each order of magnitude, as shown in Figure 4.5. Using more points revealed

that the truncation errors steadily decreased at a logarithmic gradient equal to the

order of the approximation. However, when approaching the optimal perturbation

magnitude, the round-off errors fluctuated, as highlighted in Figure 4.5. Following

the optimal perturbation, they continued to fluctuate but then tended towards an
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Table 4.1: Approximate optimal perturbation magnitudes, from equation (4.83) and Fig-

ures 4.4a and 4.4c

FD-1 CD-2 CD-4 CD-6 CD-8 CD-10 CD-12

DP: calculated 1.0e−8 4.6e−6 6.3e−4 5.2e−3 1.7e−2 3.5e−2 5.9e−2

DP: measured 1.0e−8 1.0e−5 1.0e−3 1.0e−3 1.0e−2 1.0e−2 1.0e−2

QP: calculated 1.0e−16 2.2e−11 4.1e−7 2.7e−5 2.8e−4 1.2e−3 3.5e−3

QP: measured 1.0e−17 1.0e−11 1.0e−7 1.0e−5 1.0e−4 1.0e−4 1.0e−3

10-8 10-7 10-6 10-5 10-4 10-310-32

10-30
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Figure 4.5: Relative error of fourth- and eighth-order approximations of neo-Hookean

spatial elasticity moduli

indirectly proportional relationship between the perturbation magnitude and the er-

ror. These results showed further agreement with equation (4.83) and the related

discussion of Section 4.2.5.

4.3.6 Discussion of Numerical Investigation

The numerical investigations show that higher-order and higher floating-point preci-

sion approximations both improve the accuracy of approximated elasticity moduli, in

the material and spatial configurations. With increasing order of approximation, the

accuracy of the approximated elasticity moduli was generally increased but with di-

minishing returns. The diminishing returns were due to the requirement for a larger

perturbation, which resulted in invalid perturbation errors and was also likely to be

influenced by the rounding errors from the additional coefficients. The use of quadru-

ple precision numerical approximations, novel in this context, is the more significant

development. Due to round-off errors in the computation of the double precision an-

alytical solutions, the quadruple precision approximated elasticity moduli are more

accurate than these analytical solutions for even a first-order approximation. This

level of accuracy with real-domain approximations is not known to have otherwise
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been accomplished in this context.

It was shown that the higher-order and higher floating-point precision approxima-

tion methods are complementary. Utilising both of these methods, approximated

elasticity moduli tend towards the quadruple precision analytical moduli. However,

current FE solvers use only double precision and hence any improvement in accuracy

beyond the double precision limit is inconsequential due to truncation. Therefore, a

first-order quadruple precision approximation is at present a satisfactory means of

obtaining precise elasticity moduli. Though another important factor is the associ-

ated computational costs of these methods. This was investigated in the context of

the FEM and is presented in the following section.

4.4 Finite Element Investigation of Approximated Elasticity

Moduli

The performance of the approximation methods in FE simulation was investigated in

terms of numerical convergence and computation time. For double precision UMAT

subroutines, the Cauchy stress was computed and stored in the STRESS(6) array, as

in the previous subroutines in Section 4.1. The spatial elasticity tensor in terms of the

Jaumann-rate of the Cauchy stress was obtained by numerical approximation and

stored in the DDSDDE(6,6) tangent moduli array. For quadruple precision codes,

the stress and tangent moduli arrays were first calculated using independently de-

fined quadruple precision arrays. These were then truncated to double precision by

equating them to the pre-defined arrays STRESS(6) and DDSDDE(6,6).

Higher-order approximations, with standard double precision and the novel quadru-

ple precision method, were investigated by solving the well-known Cook’s membrane

problem. The measured approximate optimal perturbation magnitudes from Table

4.1 were used throughout. The convergence and computation time of the approxi-

mation methods were compared to a solution obtained using the analytically fully

derived elasticity tensor from Section 4.1 over seven levels of mesh refinement. The

UMAT subroutines used here are available in the dataset (4).

4.4.1 Cook’s Membrane

The Cook’s membrane problem is commonly used in the assessment of FE proce-

dures. The model is shown with dimensions for the third level of mesh refinement

with 2048 elements in Figure 4.6a. It consists of a tapered membrane where one

face is fully fixed and a shearing load is applied at the opposite face. The model

was simulated in 3D using plane strain boundary conditions such that its thickness
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was constant. The body was meshed using hybrid C3D8H elements to enforce in-

compressibility. For all approximation methods, the model was simulated with a

shearing load of 15 N for both neo-Hookean and Gent constitutive models, with the

parameters defined in Section 4.3.1.

4.4.2 Convergence with Optimal Perturbation Magnitudes

All approximation methods with optimal perturbation magnitudes were found to

attain convergence. The deformed contour plot showing the shear stress in the 1-2

plane is shown in Figures 4.6b and 4.6c for the neo-Hookean and Gent constitutive

models respectively. Given that the stress was computed equivalently for the ana-

lytical and approximation methods, the same values were computed for all output

quantities. Within Abaqus/Standard, the convergence behaviour may be observed

by inspection of the maximum residuals in each iteration. The maximum force resid-

uals were plotted for both neo-Hookean and Gent simulations, as shown in Figures

4.7(a) and 4.7(b). Both double and quadruple precision analytical elasticity moduli

are included, denoted as A(8) and A(16) respectively. Quadratic convergence in five

iterations was reliably obtained for all methods, despite minor differences in their

residuals.

4.4.3 Computation times

Where available, evaluating the analytical elasticity moduli was found to be more

computationally efficient than using numerical approximation. This is due to analyt-

ical solutions typically requiring fewer computations and quadratic convergence is

generally guaranteed. While the numerical approximations implemented here with

optimal perturbation magnitude show quadratic convergence, it was known from the

first implementation by Miehe (169) that approximation methods have higher com-

putation times. However, previous studies (149, 169, 177, 180) have shown that with

increased mesh refinement the difference between analytical and approximate meth-

ods’ solve times are decreased. This is due to the increased solution time required for

the global matrix iterations in a more complex model, such that the computational

effort of the stress and tangent components becomes less significant.

Using seven levels of mesh refinement, the computation time of higher-order approx-

imations, with standard double precision and the novel quadruple precision method,

was investigated using the neo-Hookean constitutive model. Mesh refinement was

controlled using a constant two elements through the thickness, since stress was con-

stant in this direction. Then, starting with an 8× 8 mesh, the elements were doubled

on each side, increasing the total elements by a factor of four for each subsequent
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Figure 4.7: Maximum force residuals during convergence for (a) neo-Hookean and (b)

Gent simulations. CD, central difference; FD, forward difference

mesh. In a finite elasticity problem, the elasticity moduli require recalculation at each

iteration for all integration points. Therefore the total CPU times were compared.

The results are given in Figure 4.8 where double and quadruple precision results

are separated due to their considerable difference. To demonstrate the disparity, and

for improved clarity, the quadruple precision first-order forward difference approx-

imation (FD(16)-1) result is included in both plots. The plots show that even the

first-order forward difference in quadruple precision required significantly higher

CPU times than all orders of double precision approximation. In contrast, the double

precision first- and second-order approximations show CPU times similar and even

lower than the analytical implementation. Using a greater number of mesh refine-

ments than previous studies (149, 169, 177, 180), the relative CPU times were found

here to generally increase as the mesh was refined until it reached a maximum before

then decreasing with further refinements. The quadruple precision approximations

require more than twice the CPU time for all meshes.

4.5 Summary of Analytical and Numerical Implementation

Studies of Cauchy-Green Invariant Hyperelasticity

Hyperelastic constitutive models defined in terms of Cauchy-Green invariants al-

lowed the development, validation and investigation of four methods of FE imple-

mentation of hyperelasticity. The use of their known elasticity tensors enabled vali-

dation of two developed analytical implementations. Both methods were identical in

their numerical accuracy. Fully derived terms were found to be more computationally

efficient than using the matrix implementations. However, the latter method enables

implementations of constitutive models defined in terms of fictitious tensors. These
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Figure 4.8: Relative CPU time for (a) double and (b) quadruple precision approximations.

CD, central difference; FD, forward difference

implementations were compared to built-in and UHYPER implemented constitutive

models. No general differences were found in their convergence behaviour and all

output physical results were found to be within 1.65%. However, the solution times

of both UMAT implementations were found to be consistently higher. In implement-

ing user-defined hyperelastic constitutive models defined in terms of Cauchy-Green

invariants, UHYPER subroutines are the recommended method. If more complex be-

haviour is required, the equilibrium hyperelastic behaviour should be implemented

using the developed fully derived method.

With the validated UMAT implementation, two numerical approximation methods

were developed and investigated. These two real-domain approximation methods,

higher-order and higher floating-point precision, were confirmed to be complimen-

tary and found to be capable of attaining accuracy comparable to analytical solutions.

Using higher-order approximations, accuracy that tended towards the analytical val-

ues was found but with diminishing returns as the order of the approximation in-

creased. However, in terms of numerical accuracy, higher floating-point precision

was shown to be the more effective method.

For all orders of approximation, the increase to quadruple precision obtained elastic-

ity moduli more accurate than the double precision analytical solution. This was due

to the higher floating-point precision tangent moduli having reduced round-off errors

throughout their computation. In current FE solvers, quadruple precision approxi-

mations higher than first-order are not required as the additional accuracy is negated

upon truncation. The first-order quadruple precision approximation therefore guar-

antees equivalent convergence to an analytical solution with a simpler implementa-

tion. If computational effort is an important consideration, analytical tangent moduli

should be preferred, if they are available.

When analytical tangent moduli are complicated or intractable, the proposed first-
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order quadruple precision approximation method is an accurate and effective means

of implementation. This approximation method did not achieve the complete aim

of approximating elasticity moduli with comparable accuracy and computational ef-

fort of an analytical implementation. However, it permits a simpler implementation

requiring only the definition of the stress tensor. Approximating tangent moduli

therefore remains a useful aid to confirm derived analytical tangent moduli and for

debugging their implementation. Though it was determined that an analytical imple-

mentation of principal stretch hyperelasticity should be developed. This is presented

subsequently in Chapter 5.
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Chapter 5

Finite Element Implementation of

Principal Stretch Hyperelasticity

Various forms of the elasticity tensor for hyperelasticity in terms of principal stretches

were known from literature, as discussed in Section 2.5. A Finite Element implemen-

tation for principal stretch hyperelasticity was therefore developed using analyti-

cally derived elasticity tensors. These required explicit computation of the principal

stretches and principal directions for which an efficient, open-source Jacobi method

algorithm was employed, from Kopp (203). The aim was to develop a numerically sta-

ble and accurate implementation of principal stretch hyperelastic constitutive models

using analytically derived stress and elasticity tensors with minimised user input and

comparable computation time to a built-in constitutive model. The developed imple-

mentation has some novel features: the stress and elasticity coefficients are efficiently

implemented, symmetric dyadic products of the principal directions are utilised, and

the numerical instabilities associated with equal and similar principal stretches are

resolved by derived approximations with L’Hôpital’s rule.

The implementation was numerically validated by evaluating the stress and elas-

ticity tensors for constitutive models typically described in terms of Cauchy-Green

invariants. By expressing these constitutive models in terms of principal invariants,

this enabled a comparison to the implementations of Cauchy-Green invariants de-

veloped in Section 4.1. These were known to be free from numerical instabilities

for deformations with equal and similar principal stretches. This form of valida-

tion was not otherwise known from literature. The implementation was further

validated and its computation time was investigated using Finite Element simula-

tions in Abaqus/Standard, where the developed implementation was programmed

as a UMAT subroutine. This investigation used all previous implementations from

Chapter 4, with approximated implementations in terms of Cauchy-Green invari-

ants and principal stretches, and an implementation based on Simo and Taylor (155).
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For implementations with approximated tangent moduli, only first-order double and

quadruple precision approximations were used.

5.1 Isotropic Hyperelasticity in Principal Stretches

The stress and elasticity tensors for isotropic hyperelasticity in principal stretches

were derived based on the explicit computation of principal stretches and principal

directions (19, 153, 154). The strain, stress and elasticity tensors were defined with

respect to the framework outlined in Section 2.1. In the following, the complete

derivation is omitted but is referenced where required. Some additional aspects of

the developed numerical implementation are also detailed, including the treatment

of numerically similar and equal eigenvalues.

The material tensors were defined with respect to the reference configuration, then

transformed to their spatial equivalent form in the current configuration by push-

forward operation. The push-forward operations, were defined previously in equa-

tion (4.11) for the material second Piola-Kirchhoff stress tensor pushed-forward to the

spatial Kirchhoff stress tensor and in equation (4.41) for the material elasticity tensor

pushed-forward to the spatial elasticity tensor defined in terms of the Oldroyd-rate

of the Kirchhoff stress.

For stress and elasticity tensors defined in terms of principal stretches and princi-

pal directions, the push forward operations used a form of the deformation gradient

based on spectral decomposition. The deformation gradient is not generally symmet-

ric, and cannot therefore be represented using spectral decomposition as in equations

(2.4) and (2.5) for the Cauchy-Green strain tensors. However, it can be described in

terms of the same real eigenvalues and orthogonal eigenvectors by

F = RU =
3

∑
a=1

λa (RNa ⊗Na) =
3

∑
a=1

λa (na ⊗Na) (5.1)

The material principal directions Na are related to the spatial principal directions

na by na=RNa. As they are of unit length, this implies |Na|= |na|=1, which is

equivalent to the identity

Na ·Na = 1; a = 1, 2, 3 (5.2)

Equations (5.1) and (5.2) enable convenient push-forward operations of the material

stress and elasticity tensors to their equivalent spatial tensors.
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5.1.1 Definition of Stress Tensors

As in Chapter 4, the definition of the stress and elasticity tensors is derived from the

split of the total strain energy ψ into isochoric W and volumetric components U (6).

For hyperelasticity in terms of principal stretches the additive split is defined as the

sum

ψ = W
(
λ1, λ2, λ3

)
+ U (J) (5.3)

The isochoric contribution to the energy is computed using isochoric principal stretches

defined in equation (2.13). The volumetric strain energy contribution is identical to

hyperelasticity in terms of Cauchy-Green invariants defined in Section 4.1. Hence,

the volumetric stress and elasticity tensors in material and spatial configurations were

omitted as they are as previously defined.

Material Stress Tensor In the reference configuration, as in Section 4.1, the second

Piola-Kirchhoff stress tensor S is defined as the derivative of the total strain energy

ψ with respect to the right Cauchy-Green deformation tensor C. Its isochoric con-

tribution is defined equivalently where the strain energy density is a function of the

isochoric principal stretches λa defined by

Siso = 2
∂W

(
λ1, λ2, λ3

)
∂C

(5.4)

The derivative is found using well-known identities and the chain rule, see Simo and

Taylor (155) and the references therein for a complete derivation. This results in the

following expression for the isochoric stress tensor

Siso = 2
3

∑
a,b=1

∂W
∂λa

∂λa

∂λb

∂λb

∂C
=

3

∑
a=1

βaλa
−2Na ⊗Na (5.5)

In this expression the principal directions Na and squared principal stretches λa
2 are

found from the right Cauchy-Green deformation tensor C defined in equation (2.4),

using the iterative Jacobi algorithm from Kopp (203). The stress coefficients βa are

defined as

βa = λa
∂W
∂λa
− 1

3

3

∑
b=1

λb
∂W
∂λb

(5.6)

Spatial Stress Tensors The spatial stress tensor was defined initially in terms of

the Kirchhoff stress, τ. This was found using the push-forward operation from the

second Piola-Kirchhoff stress tensor, defined previously in equation (4.11), τ = FSFT.

The isochoric Kirchhoff stress tensor was found using the identities defined in equa-

tions (5.1) and (5.2) in equation (5.5) to give

τiso =
3

∑
a=1

βa (na ⊗ na) (5.7)
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The stress coefficients βa are as previously defined. The principal directions na and

the squared principal stretches λa
2 for the current metric are found from the left

Cauchy-Green deformation tensor b, defined in equation (2.5). Here, the Jacobi

method from Kopp (203) was used.

As previous, the spatial Cauchy stress tensor σ is required by Abaqus. It was ob-

tained using its relationship to the total spatial Kirchhoff stress tensor τ, as was

previously defined in equation (4.17), σ = J−1τ.

5.1.2 Definition of Elasticity Tensors

Unlike the stress tensor, the elasticity tensor appears in different forms throughout

the literature. This is due to differences in the calculation of the principal directions.

Here, the elasticity tensor was defined explicitly in terms of the principal directions,

which were calculated from the relevant Cauchy-Green tensor by the Jacobi algo-

rithm. As mentioned in Section 4.1.1, the derivation of the elasticity tensor may have

its foundations in either the rate-forms, using Ṡ and Ċ, or by differentiation of S with

respect to C. In other definitions of the elasticity tensor with explicit calculation of the

principal directions (5, 153, 154), the derivation is based on the use of the rate form.

The developed implementation derived the material elasticity tensor C by differenti-

ation, as defined in equation (4.19). The spatial elasticity tensors were then obtained

by a push-forward operation with the inclusion of additional terms for objectivity

where required.

Material Elasticity Tensor The isochoric component of the material elasticity tensor

was obtained by differentiation of the isochoric second Piola-Kirchhoff stress defined

in equation (5.5) with respect to the right Cauchy-Green tensor. Using the chain rule,

this may be represented by three components as follows

Ciso = 2
∂Siso

∂C
= 2

(
3

∑
a=1

∂βa

∂C
λa
−2 (Na ⊗Na)

)

+ 2

(
3

∑
a=1

βa
∂λa

−2

∂C
(Na ⊗Na)

)

+ 2

(
3

∑
a=1

βaλa
−2 ∂

∂C
(Na ⊗Na)

) (5.8)

The first and second terms were derived with reference to Simo and Taylor (155).

The third term appears in explicit derivations where the rate form is used (5, 19, 153).

It may otherwise be derived using linear perturbation theory (204). The combined

115



derived terms give the following definition of the isochoric elasticity tensor

Ciso=
3

∑
a,b=1

(
γabλ−2

a λ−2
b −2δabβaλ−4

a

)
(Na ⊗Na ⊗Nb ⊗Nb)

+
3

∑
a,b=1;a 6=b

βbλ−2
b −βaλ−2

a

λ2
b−λ2

a
[(Na ⊗Nb)⊗ (Na ⊗Nb + Nb ⊗Na)]

(5.9)

The isochoric elasticity coefficients γab are defined as

γab =

[
λb

(
λa

∂W
∂λa

)
∂W
∂λb

]
+

1
9

3

∑
c,d=1

[
λd

(
λc

∂W
∂λc

)
∂W
∂λd

]

−1
3

3

∑
c=1

[
λc

(
λa

∂W
∂λa

)
∂W
∂λc

+ λb

(
λc

∂W
∂λc

)
∂W
∂λb

] (5.10)

When the squared principal stretches are equal in equation (5.9) a numerical divide

by zero error will occur, due to its second term. In general, a numerical treatment

such as eigenvalue perturbation (159) may be used. However, for the explicitly de-

fined elasticity tensor, an analytical solution is obtained by applying L’Hôpital’s rule

(5, 19). As the squared principal stretches tend towards one another, this rule enables

the second term in equation (5.9) to be approximated by

lim
λa→λb

βbλb
−2 − βaλa

−2

λb
2 − λa

2 =
∂
(

βbλb
−2
)

∂λb
2 −

∂
(

βaλa
−2
)

∂λb
2 (5.11)

This equation was further developed to be approximated in terms of the stress and

elasticity coefficients as follows

lim
λa→λb

βbλb
−2 − βaλa

−2

λb
2 − λa

2 = λb
−4
(

1
2

γbb − βb

)
− 1

2
λa
−2λb

−2γab (5.12)

The numerical implementation of this required consideration of a means of detect-

ing the numerical similarity of the squared principal stretches with an associated

numerical tolerance. This is discussed further in Section 5.1.3.

Spatial Elasticity Tensors The isochoric elasticity tensor defined in terms of the

Oldroyd-rate of the Kirchhoff stress ciso was obtained from the equation for the ma-

terial elasticity tensor Ciso, defined in equation (5.9). The push-forward relationship

defined in equation (4.41), with the identities defined in equations (5.1) and (5.2), was

applied to define ciso as

ciso =
3

∑
a,b=1

(γab−2δabβa) (na ⊗ na ⊗ nb ⊗ nb)

+
3

∑
a,b=1;a 6=b

βbλ2
a−βaλ2

b
λ2

b−λ2
a

[(na ⊗ nb)⊗ (na ⊗ nb + nb ⊗ na)]

(5.13)
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The elasticity coefficients γab are defined as previous in equation (5.10). This elasticity

tensor is also subjected to divide by zero errors if two or more principal stretches are

equal. The expression obtained from the use of L’Hôpital’s rule in the reference

configuration, in equation (5.12), was pushed-forward to give the spatial equivalent

form as

lim
λa→λb

βbλa
2 − βaλb

2

λb
2 − λa

2 = λa
2λb
−2
(

1
2

γbb − βb

)
− 1

2
γab (5.14)

The implementation of this approximation also required consideration of detecting

numerical similarity with definition of a numerical tolerance, discussed in Section

5.1.3.

To obtain the spatial elasticity tensor in terms of the Jaumann-rate of the Cauchy

stress cABQ, as required by Abaqus/Standard, the transformation defined in equation

(4.56) was used
(
cABQ = J−1c+ (σ� 1) + (1�σ)

)
.

5.1.3 Aspects of Numerical Implementation

With the stress and elasticity tensors defined in reference and current configurations,

these terms may be implemented in numerical methods. Some additional consid-

erations are now discussed regarding particular aspects of the developed numerical

implementation for any hyperelastic constitutive model defined in terms of principal

stretches. The first consideration is the simplified implementation of the isochoric

stress and elasticity coefficients βa and γab. The next is the use of symmetric dyadic

products of the principal directions, which enables Voigt notation and reduces the

computational cost. The final consideration is the required algorithm for detection

of numerical similarity in the squared principal stretches and employment of the

L’Hôpital’s rule approximations to avoid numerical instability. These features are

discussed in reference to the developed programs and subroutines in the associated

dataset (4).

Implementation of Isochoric Stress and Elasticity Coefficients In the proposed

implementation, the required user input was minimised. In other implementations

(22, 132, 155), the stress coefficients βa are required. Here it is noted from equation

(5.6) that the use of a generic expression for ∂W
∂λa

may be defined by considering a

specified principal stretch e.g. ∂W
∂λ1

. As, due to isotropy, this derivative is symbolically

equivalent to ∂W
∂λ2

and ∂W
∂λ3

, a general expression is therefore defined to compute all

three derivatives. The stress coefficients βa are then computed using these derivatives,

as defined in equation (5.6).

Similarly, in other implementations the elasticity coefficients γab are defined in full. It

is observed here that in the definition of γab in equation (5.10), the derivatives expand
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to the same form

λb

(
λa

∂W
∂λa

)
∂

∂λb
=

(
∂2W

∂λa∂λb
λaλb +

∂W
∂λa

δabλb

)
(5.15)

Only the second derivatives of the isochoric energy function ∂2W
∂λa∂λb

require definition,

which may be defined for the two possibilities: a = b and a 6= b. As in the definition

of the stress coefficients, the derivatives may be obtained by considering specific prin-

cipal stretches (e.g. ∂2W
∂λ1∂λ1

and ∂2W
∂λ1∂λ2

) before generalising. The elasticity coefficients

were therefore implemented using the expanded expression

γab =

(
∂2W

∂λa∂λb
λaλb +

∂W
∂λa

δabλb

)
+

1
9

3

∑
c,d=1

(
∂2W

∂λc∂λd
λcλd +

∂W
∂λc

δcdλd

)

− 1
3

3

∑
c=1

(
∂2W

∂λa∂λc
λaλc +

∂W
∂λc

δacλc

)
− 1

3

3

∑
c=1

(
∂2W

∂λb∂λc
λbλc +

∂W
∂λb

δbcλc

) (5.16)

Using the aforementioned simplifications, an incompressible hyperelastic constitutive

response defined in principal stretches may be computed. The user is required to

define the isochoric derivatives of the strain energy density function ∂W
∂λ1

, ∂2W
∂λ1∂λ1

and
∂2W

∂λ1∂λ2
in general form. To include compressive behaviour, the derivatives ∂U

∂J and ∂2U
∂J2

require user input.

Symmetric Dyadic Products of Principal Directions For all variations of the elas-

ticity tensors defined in this chapter, the stress and strain tensors used in their deriva-

tion are symmetric. This therefore enabled the use of Voigt notation. The convention

used by Abaqus/Standard was followed, as defined in Section 4.1.2.

The stress tensors are defined in terms of the stress coefficients and the dyadic prod-

ucts of the relevant principal directions, na ⊗ na or Na ⊗Na. These dyadic prod-

ucts are inherently symmetric since they are constructed from the same vectors, as

a ⊗ b = (a⊗ b)T if a = b. These can therefore be represented in Voigt notation.

However, the definitions of the elasticity tensors, in equations (5.9) and (5.13), contain

several non-symmetric second-order tensors, for example, in equation (5.9), Na ⊗Nb

where a 6= b and by the nature of eigenvectors Na 6= Nb for a 6= b. In this form,

these cannot be represented in Voigt notation and nor can their fourth-order dyadic

products, e.g. Na ⊗Nb ⊗Na ⊗Nb. A modification was therefore required.

It was known that all elasticity tensors defined previously contain both minor sym-

metries, such that cijkl = cjikl = cijlk. Furthermore, due to isotropy, the elasticity

tensor also contains major symmetry such that cijkl = cklij. Therefore, using the

concept that any tensor may be decomposed into a symmetric tensor and a skew

symmetric tensor (5), the sum of the components of the isochoric elasticity tensors,

in equations (5.9) and (5.13), must result in the cancellation of all skew symmetric
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parts. This permits the use of only the symmetric parts of the dyadic products. The

symmetric part of a second-order tensor A is found as the halved sum of itself and

its transpose

sym (A) =
1
2

(
A + AT

)
(5.17)

This was applied to the dyadic product of the principal directions to give

sym (Na ⊗Nb) = sym (Nb ⊗Na)

=
1
2
[(Na ⊗Nb) + (Nb ⊗Na)]

(5.18)

This observation allowed for the symmetric dyadic products of the principal direc-

tions to be represented as tensors in Voigt notation. Also, only three of these second-

order tensors required calculation, opposed to six. Furthermore, in the calculation of

the fourth-order elasticity tensor, in equation (5.9) or equation (5.13), there are only

three unique fourth-order dyadic products of the principal directions, opposed to

twelve otherwise. This equivalence is shown for the indices 1 and 2 as follows

sym (N1 ⊗N2)⊗ sym (N1 ⊗N2) = sym (N1 ⊗N2)⊗ sym (N2 ⊗N1)

= sym (N2 ⊗N1)⊗ sym (N2 ⊗N1)

= sym (N2 ⊗N1)⊗ sym (N1 ⊗N2)

(5.19)

The same can be shown for the other two unique pairs of indices 1 and 3 and 2 and 3.

The symmetries used here simplified the implementation significantly by permitting

the use of Voigt notation throughout. This approach has not previously been used in

literature.

Equal and Similar Principal Stretches When two or three of the squared princi-

pal stretches (eigenvalues of the Cauchy-Green deformation tensors) are equal, the

elasticity tensors result in a divide by zero error. In a numerical method, the finite

floating-point precision limit of the computation means that the solution also en-

counters numerical inaccuracy when the eigenvalues are numerically similar. With

equal eigenvalues, the application of L’Hôpital’s rule provides an exact alternative

solution, though numerically similar eigenvalues require additional consideration.

It was therefore necessary to find an approximate numerical tolerance at which the

use of L’Hôpital’s rule gives an approximation more accurate than the original func-

tion. There was also a requirement for an algorithm to compare the similarity of the

eigenvalues.

The proposed algorithm is based on an eigenvalue perturbation algorithm by Miehe

(159). Eigenvalue perturbation is an alternative means of avoiding divide by zero

errors, but is less accurate and stable (65) than the method used here. The proposed

algorithm used a similar method for the detection of equal and similar eigenvalues,

119



but employed approximations by L’Hôpital’s rule if the absolute difference between

eigenvalues is found to be less than the defined tolerance value. The developed

algorithm includes additional checks for three equal or similar eigenvalues, as it

is possible numerically that (|λ1 − λ2|) ≤ tol and (|λ1 − λ3|) ≤ tol are true but

(|λ2 − λ3|) ≤ tol is false, repeated for all combinations. The proposed algorithm is

defined in Table 5.1 for the spatial elasticity tensor, where tol is the magnitude of the

numerical tolerance.

An equivalent algorithm was used in the numerical investigations of the isochoric

material elasticity tensor defined in equation (5.9). Both can be found in the dataset

(4). The algorithm prevents divide by zero errors provided that a suitable tolerance

value is selected. Optimisation of the tolerance value was investigated and is dis-

cussed in Section 5.2.3.

5.2 Numerical Validation of Principal Stretch Hyperelasticity

The implementation of hyperelasticity in principal stretches defined in Section 5.1

was investigated and validated. Throughout the investigations hyperelastic constitu-

tive models defined in terms of the first and second isochoric Cauchy-Green invari-

ants were used, as defined in Section 4.1. Any constitutive model defined in terms of

these isochoric strain invariants may also be defined, and therefore implemented, by

isochoric principal stretches using their relationships defined in equations (2.7) and

(2.8). A comparison can therefore be made between the implementations, which is

otherwise unknown from literature, despite its usefulness; the invariant implemen-

tation is unambiguous and is not subjected to numerical difficulties for deformations

with equal or similar principal stretches. The invariant implementation therefore pro-

vided a stable and accurate solution from which the principal stretch implementation

was validated. Additionally these were used to optimise the numerical tolerance of

L’Hôpital’s rule.

This numerical investigation is divided into three studies, all of which use Fortran

programs. These programs allow computation of the stress and elasticity tensors for

a user-defined deformation gradient with a chosen constitutive model and definition

of its parameters and derivatives. The error is then computed by using an equiv-

alent Cauchy-Green invariant implementation. The proposed implementation was

validated for unique eigenvalues, then compared for two and three equal eigenval-

ues. The tolerance value was optimised using similar eigenvalues. The validated

and optimised implementation was then used to create UMAT user subroutines to

investigate performance in the FEM using Abaqus/Standard.
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Table 5.1: Proposed algorithm for robust computation of the spatial elasticity tensor

- Calculate the common first term

ciso =
3
∑

a,b=1
(γab − 2δabβa) (na ⊗ na ⊗ nb ⊗ nb)

- Define the numerical tolerance, tol

tol = N

- Check numerical similarity and apply L’Hôpital’s rule if 6 tol

If (|λ1 − λ2|) ≤ tol then

If (|λ2 − λ3|) ≤ tol then

ciso = ciso +
3
∑

a,b=1;a 6=b

[
λa

2λb
−2
(

1
2 γbb − βb

)
− 1

2 γab

]
Else if (|λ1 − λ3|) ≤ tol then

ciso = ciso +
3
∑

a,b=1;a 6=b

[
λa

2λb
−2
(

1
2 γbb − βb

)
− 1

2 γab

]
Else

ciso = ciso +
[
λa

2λb
−2
(

1
2 γbb − βb

)
− 1

2 γab

]
[(a,b)=(1,2);(2,1)]

+

(
βbλ2

a−βaλ2
b

λ2
b−λ2

a

)
((a,b) =(1,3);(3,1);(2,3);(3,2))

End if

Else if (|λ1 − λ3|) ≤ tol then

If (|λ2 − λ3|) ≤ tol then

ciso = ciso +
3
∑

a,b=1;a 6=b

[
λa

2λb
−2
(

1
2 γbb − βb

)
− 1

2 γab

]
Else

ciso = ciso +
[
λa

2λb
−2
(

1
2 γbb − βb

)
− 1

2 γab

]
[(a,b)=(1,3);(3,1)]

+

(
βbλ2

a−βaλ2
b

λ2
b−λ2

a

)
((a,b)=(1,2);(2,1);(2,3);(3,2))

Else if (|λ2 − λ3|) ≤ tol then

ciso = ciso +
[
λa

2λb
−2
(

1
2 γbb − βb

)
− 1

2 γab

]
[(a,b)=(2,3);(3,2)]

+

(
βbλ2

a−βaλ2
b

λ2
b−λ2

a

)
((a,b)=(1,2);(2,1);(1,3);(3,1))

Else

ciso = ciso +
3
∑

a,b=1;a 6=b

βbλ2
a−βaλ2

b
λ2

b−λ2
a

End if

- Note: The eigenvector terms [(na ⊗ nb)⊗ (na ⊗ nb + nb ⊗ na)] are omitted for brevity.
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The Fortran programs and UMAT user subroutines used in these investigations, as

well as templates for a generic implementation of isochoric-volumetric split constitu-

tive models, are provided in the dataset (4).

5.2.1 Unique Eigenvalues

The validity was assessed in the reference configuration, the current configuration

defined in terms of the Oldroyd-rate of the Kirchhoff stress and in terms of the

Jaumann-rate of the Cauchy stress. To compute the error for the stress tensors calcu-

lated in terms of principal stretches, the relative error of each of the 6 components in

Voigt notation was calculated by comparison to the invariant implementation. The

sum of the error ES of these components was then computed using an error function

equivalent to that used in Section 4.3 defined in equation (4.85). The error function

for the stress tensor was defined as

ES=

[
6

∑
I=1

(
Sλ I − SI12 I

)2
] 1

2

/

[
6

∑
I=1

(
SI12 I

)2
] 1

2

(5.20)

Here the components in Voigt notation are denoted by I to represent the indices 1 to

6, as defined previously. The second Piola-Kirchhoff stress tensors Sλ and SI12
rep-

resent the components computed in terms of principal stretches and Cauchy-Green

invariants respectively. The same method was applied for calculating the error of the

spatial Kirchhoff and Cauchy stress tensors, Eτ and Eσ respectively.

To validate the elasticity tensors, the relative error computation was modified to ac-

count for all 36 components of the material elasticity tensor C in Voigt notation as

EC=

[
6

∑
I,J=1

(
Cλ I J−CI12 I J

)2
] 1

2

/

[
6

∑
I,J=1

(
CI12 I J

)2
] 1

2

(5.21)

The notations are defined analogously to the stress tensor. The error was also cal-

culated equivalently for the spatial Oldroyd-rate and Jaumann-rate tensors, Ec and

EcABQ respectively.

To validate the developed expressions and their numerical implementation, as de-

fined in Section 5.1, the stress and elasticity tensors were computed for two deforma-

tion gradients. These deformation gradients were previously used in Section 4.3 and

defined as F4 and F5 in equation (4.84). They are redefined here as

F1 =

 3 1 0
1 1 0
0 0 0.5

 ; F2 =

 1.1 0.2 0.2
0 0.9535 0.2
0 0 0.9535

 (5.22)

To ensure the validity of the use of symmetric dyadic products for the eigenvectors,

the deformation gradients were rotated. The method for rotation is equivalent to that
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Table 5.2: Error of stress tensors: material (second Piola-Kirchhoff), spatial (Kirchhoff),

and spatial (Cauchy)

ES Eτ Eσ

F1 1.306e-15 3.248e-15 3.248e-15

F2 3.085e-15 1.145e-15 1.000e-15

of (149, 180). The rotated deformation gradient FR1 was computed by

FR1 = QF1 (5.23)

The rotation tensor Q is a product of three rotation matrices

Q=

 cos π
4 − sin π

4 0
sin π

4 cos π
4 0

0 0 1

 cos π
3 0 sin π

3
0 1 0

− sin π
3 0 cos π

3

 1 0 0
0 cos π

6 − sin π
6

0 sin π
6 cos π

6

 (5.24)

The chosen constitutive model for this comparison was the neo-Hookean model (69).

This is conventionally represented in terms of the first isochoric Cauchy-Green in-

variant I1 as in equation (3.13) and may also be expressed in terms of the isochoric

principal stretches. As the volumetric components were consistent for both imple-

mentations, which are mutually defined in terms of the volume ratio J, they were

omitted from the comparisons.

The sum of the relative error of the stress tensor is shown in Table 5.2. Given that

these were calculated using double precision, their accuracy is close to the finite pre-

cision limit ∼ 1e−16. These low errors are due to rounding. The stress tensors can

therefore be said to be consistent and accurate for the principal stretch implemen-

tation. There was also no notable difference between the accuracy for isochoric and

dilational deformations. As the stress tensors are generally well-agreed upon, this

result was anticipated.

The validation of the elasticity tensor and its numerical implementation was of par-

ticular interest, as some aspects are novel and had not previously been validated. The

error of the elasticity tensors for both deformation gradients and all configurations

are given in Table 5.3. The error was of similar scale to the finite precision limit for

both isochoric and dilational deformations. This suggested that the developed elas-

ticity tensors and their numerical implementation was consistent with the invariant

implementation for deformations with unique eigenvalues.

5.2.2 Equal Eigenvalues

With equal squared principal stretches, the algorithm of Table 5.1 was required to

avoid undefined divide by zero errors for all variations of the elasticity tensors. As the
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Table 5.3: Error of elasticity tensors: material, spatial (Oldroyd), and spatial (Jaumann)

EC Ec EcABQ

F1 1.525e-15 5.867e-16 1.449e-15

F2 1.642e-15 1.243e-15 1.589e-15

eigenvectors are identical, any tolerance value N is acceptable for which 1 + N > 1

is true. As the stress tensor was found to be accurate and is unaffected by equal or

similar principal eigenvalues, it was not considered in the latter investigations. Com-

putation of the eigenvalues and eigenvectors may be problematic when the eigenval-

ues are equal or similar. However, the Jacobi method algorithm was known to be

consistently stable and accurate (203).

With equal eigenvalues, the elasticity tensors were investigated in the same method as

previous in Section 5.2.1. The Mooney-Rivlin model was used, as defined in equation

(3.12) for the invariant implementation. The identities defined in equations (2.7) and

(2.8) were then used to express the model in terms of isochoric principal stretches.

The rotation of the deformation gradient defined in equation (5.22) was applied for

isochoric and dilational deformations in the case of both two and three equal eigen-

values. The pre-rotation deformation gradients for two equal eigenvalues were the

isochoric and dilational uniaxial tension deformations, F3 and F4, defined by

F3 =

 0.25 0 0
0 2 0
0 0 2

 ; F4 =

 4 0 0
0 0.45 0
0 0 0.45

 (5.25)

For three equal eigenvalues, the pre-rotation deformation gradients F5 and F6 corre-

spond to an undeformed configuration and a hydrostatic compression. These were

respectively defined as

F5 =

 1 0 0
0 1 0
0 0 1

 ; F6 =

 0.5 0 0
0 0.5 0
0 0 0.5

 (5.26)

The summed errors for the error with two and three equal eigenvalues are respec-

tively given in Tables 5.4 and 5.5. It was found that the error throughout was of a

similar order to the finite precision limit. The accuracy was of a similar order for

isochoric and dilational deformations in the case of two and three equal eigenvalues.

The derived approximations by L’Hôpital’s rule and their numerical implementation

was therefore assumed to be valid and accurate for the cases of equal eigenvalues.

5.2.3 Eigenvalue Similarity Tolerance

Finding an appropriate tolerance value for numerically similar eigenvalues was re-

quired to complete the proposed implementation principal stretch hyperelasticity.
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Table 5.4: Error of elasticity tensors with two equal eigenvalues

EC Ec EcABQ

F3 1.436e-16 5.928e-15 7.398e-16

F4 1.395e-15 5.478e-15 3.083e-15

Table 5.5: Error of elasticity tensors with three equal eigenvalues

EC Ec EcABQ

F5 5.617e-16 3.378e-16 3.144e-16

F6 7.4106e-16 4.798e-16 4.577e-16

The cases of two and three similar eigenvalues were investigated in each configura-

tion. To achieve numerically similar eigenvalues, a perturbation was applied to the

deformation gradients. For two similar eigenvalues, a uniaxial tension deformation

gradient was used with a perturbation of the two non-zero, equal components prior

to rotation. For three similar eigenvalues, the perturbation was applied to two of the

non-zero components of the undeformed deformation gradient prior to its rotation.

These are defined as F7, with the perturbation magnitude η, for λ=2 and λ=1 in the

equation

F7 =

 λ 0 0
0 1√

λ
+ η 0

0 0 1√
λ
+ η

 (5.27)

The perturbation magnitude η was decreased exponentially from 1e−2 to 1e−16 us-

ing only integer powers, as perturbations lower than 1e−16 result in 1 + η ≯ 1 for

double precision. The elasticity tensors were calculated with and without L’Hôpital’s

rule for increasingly similar eigenvalues and compared to the stable solution ob-

tained from a Cauchy-Green invariant implementation. For this investigation, the

Gent model (18) was used, as defined as in equation (3.14).

For two and three similar eigenvalues, it was found that as the perturbation magni-

tude tended towards zero, for all configurations, without L’Hôpital’s rule the error

increased and with L’Hôpital’s rule the error decreased. Both are shown for the spa-

tial elasticity tensor cABQ in Figures 5.1a and 5.1b. The optimal tolerance magnitude

is therefore that which employs L’Hôpital’s rule at the point where these lines inter-

sect. It is seen from Figure 5.1 that the intercept of the lines for these deformation

gradients occurs around η=1e−6. This was then checked further for what are consid-

ered to be the approximate extremes of elastic deformations, with λ=10 and λ=0.05.

As shown in Figure 5.1c and 5.1d, the magnitude of the intercept does not diverge

significantly in either case from the intercept of η=1e−6.

The algorithm presented in Table 5.1 was designed such that the tolerance value
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corresponds to the perturbation magnitude. The optimal tolerance magnitude was

therefore approximated as 1e−6, the results for which were also plotted in Figure

5.1. For the four deformation gradients, assumed to be the limits of elastic deforma-

tions, and for all configurations, the elasticity tensor was computed accurately, with

a maximum error of less than 1e−10.

5.3 Finite Element Investigations of Principal Stretch Hyper-

elasticity

The proposed implementation was validated numerically in that it was accurate and

consistently stable, even for deformations with equal and similar eigenvalues. Two

Finite Element benchmark simulations were performed for further validation and

an assessment of computation time. Physical results output by the simulation were

compared for further numerical validation. To assess the computation time, solve

times relative to the performance of the built-in constitutive model were compared

throughout.

The simulated Finite Element models represent an inhomogeneous tensile test and

a combined tension-torsion test. These were both created using Abaqus/CAE and

solved implicitly using Abaqus/Standard. In the first FE model, a Cauchy-Green in-

variant hyperelastic constitutive model was used. This enabled a comparison of the

developed principal stretch implementation to those from Chapter 4, which included

a built-in model, a UHYPER implementation, and first-order forward difference ap-

proximations in double and quadruple precision. In addition to these, implemen-

tations using the first-order approximated tangent moduli in double and quadruple

precision were included where the perturbed stress tensor was defined in terms of

principal stretches. Also, an implementation based on that of Simo and Taylor (155)

was included in the comparison. The implementation directly computed eigenvalue

bases and used eigenvalue perturbation from Miehe (159) to avoid numerical instabil-

ities. For the second FE model, a constitutive model implementable only in terms of

principal stretches was applied. This granted an insight into the built-in performance

to the developed implementation for this type of model.

5.3.1 Inhomogeneous Tension

The first benchmark simulation was a 3D inhomogeneous tension test of a rubber

specimen. The cuboidal specimen had a 1mm by 1mm cross-section and is 1.5mm

long. One of the 1mm by 1mm faces of the specimen was fully fixed and a displace-

ment load of 1mm was applied to the opposing face in the longitudinal direction in
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a minimum of 10 increments using automatic incrementation. The body was meshed

by hybrid, higher-order tetrahedral elements (C3D10H). The tetrahedral element was

chosen to further ensure that the principal directions were computed appropriately.

The model was solved for five levels of mesh refinement, giving additional insight

into any differences in computational effort. Incompressibility was assumed such

that only the isochoric constitutive model required consideration. The isochoric hy-

perelastic response used for this was the Yeoh model (189), as defined in equation

(3.20). The three model parameters were defined for a fit to Treloar’s experimental

data (127) and can be found in the dataset (4).

In the incremental solutions of the inhomogeneous tensile test, all implementations,

apart from that based on Simo and Taylor (155), achieved convergence in the speci-

fied minimum of 10 increments for all levels of mesh refinement, with approximately

equal total iterations. The Simo and Taylor (155) implementation achieved conver-

gence in 10 increments for only the simplest mesh, where it required additional itera-

tions in the convergence of the first increment. For an increasingly refined mesh, the

Simo and Taylor (155) implementation required additional increments. This was due

to the numerical instability in the early increments of the solution. The difference

between the implementations was present only in their convergence behaviour. The

converged physical results were found to be within 0.1% across all levels of mesh

refinement for all implementations.

The von Mises stress results are shown for the third mesh with 5617 elements in Fig-

ure 5.2 for solved models using the built-in model and the developed principal stretch

implementation. For these results, the maximum residual forces during convergence

had a maximum difference of ∆F ≤ 1e−7N between the presented implementation’s

model and the built-in model. There were therefore no observable differences be-

tween the solved models for all increments.

The computational effort of the implementations were compared by their solve times

relative to that of the built-in model. The results for the five levels of mesh refinement

are shown in Figure 5.3. In this figure, the analytical Cauchy-Green invariant imple-

mentation is labelled as “I1I2”, the presented implementation is “λ”, the Simo and

Taylor implementation is “λ S&T”, the approximations are forward difference (FD)

in double (8) and quadruple (16) precision and their labelling is defined implicitly

based on this information.

The built-in model was found to be the most computationally efficient for meshes

one through four. Following this, the UHYPER implementation was found to have a

maximum relative solve time of 1.214 and was more computationally efficient in the

case of the fifth mesh with a relative solve time of 0.995. The developed analytical im-

plementations for Cauchy-Green invariant and principal stretch defined tensors were
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Figure 5.3: Solve times of the three user subroutine implementations relative to a built-in

model for increasing mesh density of an inhomogeneous tension test

both of similar computational effort with the former generally requiring less. Com-

pared to the λ S&T implementation, the developed principal stretch implementation

was found to be significantly more efficient. The double precision approximation

implementations also had lower solve times than the λ S&T implementation. These

findings highlight the importance of numerically stable and accurate tangent moduli

in implicit FE simulations.

Comparing the two different double precision approximation implementations, the

approximated implementation with principal stretches had comparable but generally

higher computational effort compared with the approximation with Cauchy-Green

invariants. This is due to the additional computation time when computing the

eigenvalues and eigenvectors for all perturbed deformation gradients. As found in

Section 4.4, the use of quadruple precision significantly increases the solution times.

With quadruple precision eigenvalue and eigenvector computation, in the approxi-

mated implementation with principal stretches, the solution times further increased.

The difference between all implementations was found to decrease with increasing

mesh refinement due to the relative increase in solution times of the global matrix

iterations, as observed in Section 4.4.3. The implementation by UHYPER subrou-

tine remains the preferred method of implementation for hyperelastic constitutive

behaviour in terms of Cauchy-Green invariants.
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5.3.2 Combined Tension-torsion

The second Finite Element benchmark model was of a combined tension-torsion test

using a specimen geometry defined within Miehe and Göktepe (37). A coupling

was used on the top face of the specimen with reference to the centre node. In a

minimum of 10 increments using automatic incrementation, the reference node was

displaced 10mm in the 2 direction and rotated 90◦ around the y axis, the top face was

otherwise fixed from expanding or contracting. The bottom face of the specimen was

fully fixed. The specimen was meshed by hybrid, first-order hexahedral elements

(C3D8H) and assumed to be incompressible. As with the previous model, five levels

of mesh refinement were used. The third-order Ogden constitutive model was used

with parameters fitted to the complete set of Meunier’s data (88) from Section 3.4.1.

These can be found in the dataset (4).

Based on the results of the first FE study, only the built-in model, the developed

implementation and the first-order approximation using principal stretch defined

perturbed stress tensors were used. The minimum number of increments were re-

quired for the built-in model, the Cauchy-Green invariant implementation and the

presented implementation for all levels of mesh refinement, each with approximately

the same number of total iterations. As in the previous example, the examined phys-

ical results were found to be very similar. The largest difference found was in the

case of the first mesh for the minimum principal stress, with an absolute difference

of approximately 1.165%. The maximum principal stress results are shown for the

third mesh with 5376 elements in Figure 5.4, showing visually inseparable results for

the built-in and the proposed implementation FE models.

The computational effort was compared using solve times relative to the built-in

model. The results are shown for the five levels of mesh refinement in Figure 5.5 with

the same labelling as before. It was found again that increasing mesh density leads

to a smaller difference in solve times for all implementations. Compared with the

built-in implementation, the developed analytical principal stretch implementation

required a minimum of around 35% additional solution time for the fifth mesh and a

maximum of around 94% for the third mesh. Although this difference is significant,

the developed implementation was consistently more efficient than the alternative

implementation by double precision first-order approximated tangent moduli. For

implementation of user-defined constitutive models in terms of principal stretches,

the developed analytical implementation was shown to be a suitable method.
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Figure 5.5: Solve times of the two user subroutine implementations relative to a built-in

model for increasing mesh density of a combined tension-torsion test

5.3.3 Discussion of Developed Implementation

The numerical validation and Finite Element Method investigation results show that

the developed implementation is accurate and of satisfactory computation time. Al-

though it is noted that the proposed implementation was not optimised for compu-

tation time. The priority of the developed programs and user subroutines was the

ease of user implementation. If all implementations were optimised for computation

time then the results may differ.

In the case of equal and similar eigenvalues, it was shown that the approximated

terms using L’Hôpital’s rule were accurate and valid. It was apparent that in the case

of similar eigenvalues that the algorithm and tolerance value could be optimised

and improved. However, this would result in imperceptible changes to the output

physical results and was not considered to be necessary. The developed algorithm

and the approximate tolerance of 1e−6 is found to produce converging solutions

with a maximum error in the order of 1e−10.

5.4 Summary of Principal Stretch Hyperelasticity Implemen-

tation

The proposed implementation of analytically derived principal stretch hyperelastic-

ity involved simple user input while attaining numerical robustness and accuracy.

The user input is unchanged in the definition of constitutive models in the reference

and current configurations. The user is required only to define the derivatives of the

isochoric and volumetric strain energy functions with respect to the isochoric princi-
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pal stretches and the volume ratio. The isochoric principal stretches and associated

principal directions are computed explicitly using an iterative Jacobi method. Ex-

plicit computation requires additional computational effort, compared with a direct

method, but was shown to require less total computational effort in the solution of an

FE model due to its improved numerical stability and accuracy. Compared with alter-

native implementations, the computational effort is satisfactory. This is in part due to

the novel use of symmetric dyadic products of the principal directions. These enable

Voigt notation to be used throughout, reducing the overall number of computations.

The proposed implementation was validated by numerical investigations of hyper-

elastic constitutive models that are typically defined in terms of the Cauchy-Green

invariants. Evaluations were made between the proposed implementation and a con-

ventional Cauchy-Green invariant implementation. The evaluations show that the

proposed implementation is accurate and stable. Through an FE simulation, the

implementations from Chapter 4 were compared to the developed principal stretch

implementation and approximate tangent moduli implementations with perturbed

stress tensors defined in terms of principal stretches. It was found that for Cauchy-

Green invariant constitutive models, the UHYPER implementation remains the most

computationally efficient method for user-defined hyperelastic behaviour in terms

of Cauchy-Green invariants. For UMAT subroutines, if more complex behaviour

was to be considered, the analytical implementation of Section 4.1 should be pre-

ferred for this type of constitutive model. For constitutive models implementable

only in terms of principal stretches, the developed analytical implementation is nu-

merically accurate but requires additional solve time compared with a built-in model

in Abaqus/Standard. However, it is more computationally efficient than an approxi-

mation method and, more importantly, when compared to an implementation based

on past approaches.

The developments in chapters 4 and 5 enable the numerical implementation of any

user-defined hyperelastic constitutive model in terms of Cauchy-Green invariants,

fictitious tensors or principal stretches. The associated programs and subroutines

were made available within open-source data sets (205, 206), associated with the re-

lated open access publications (207, 208). Thus, all of the constitutive models used

in the investigations of Chapter 3 may be implemented within the FEM. The imple-

mented constitutive models enabled the Sufficient data investigation from Section

3.5.3 to be developed for the simulation of industrial rubber components.
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Chapter 6

Simulating the Hyperelastic

Behaviour of Industrial Rubber

Components

It was found in Chapter 3 that accurate prediction of the general mechanical be-

haviour of a hyperelastic material or component requires a complete set of experi-

mental data and a constitutive model capable of fitting the experimental data. The

accuracy in fitting the complete experimental data was shown to be correlated with

the ability to predict interpolated behaviour. For predictions of smaller ranges of

deformation, it was proposed that it may be more efficient to identify parameters

using only a sufficient set of experimental data. It was then shown that constitutive

models with parameters fitted to data that encompassed the modified reduced strain

regions generally gave more consistent predictions of the interpolated data. The next

step was to further develop the proposed method for the analysis of industrial rubber

components.

The complex structural behaviour of industrial rubber components may be studied

through FEA. In Chapters 4 and 5, numerical implementations were developed to

enable hyperelastic constitutive models to be used within the FEM. The approaches

revolved around the use of UMAT user subroutines for the implicit FE commer-

cial software Abaqus/Standard. For the investigations in this chapter, the thirteen

constitutive models used in Chapter 3 were implemented using analytically derived

elasticity tensors. When coding these subroutines, the first-order quadruple preci-

sion approximated tangent moduli programs were used for debugging and to ensure

that the analytical derivatives were correct for all models. However, the analytical

implementations were preferred due to their lower computational costs. Some of the

constitutive models were available in the Abaqus/CAE library or could be imple-

mented through UHYPER subroutines. However, the developed UMAT subroutines
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were used throughout. This was due to the known differences in formulation, as

mentioned in Section 2.5.4 (87, 183, 184, 185, 186), which may affect the simulated

results. This would negatively influence the objectivity of the present investigations,

as they focus on the parameter identification of constitutive models.

The proposed use of sufficient data was motivated by the desire to improve the per-

formance of industrial rubber components by gaining insight through accurately sim-

ulating their structural behaviour. In the present chapter, the methodology developed

for the simulation of industrial rubber components with sufficient experimental data

is presented. The method was demonstrated for two industrial rubber components

under approximated conditions in the FEM using Abaqus/Standard and UMAT sub-

routines. The FE models’ assumptions and variables are outlined with reference to

their physical implications. For full definition of the models used in these investiga-

tions, their input files are available in the dataset (4). FEA of the two components

was used to investigate the consistency and differences of predicting the industrial

components’ structural behaviour by constitutive models with parameters identified

from complete and sufficient experimental data.

6.1 Methodologies for Industrial Component Investigations

In this section the proposed method of using sufficient experimental data for accurate

simulation of industrial rubber components is described. Following this the investi-

gation methods are outlined for demonstrating the validity of predicting industrial

components’ structural behaviour by models fitted to complete and sufficient exper-

imental data.

The proposed methodology for simulation with sufficient data was demonstrated

by analysis of two industrial rubber components: an automotive constant velocity

(CV) rubber boot and a hydraulic piston radial O-Ring seal. Industrial rubbers are

often highly filled causing more complex behaviours to be present. This includes

viscoelasticity, the Mullin’s effect and permanent set. As discussed in Section 2.2.3,

the hyperelastic behaviour represents the equilibrium response in the presence of

these complexities. The two components were therefore chosen on the basis that

their hyperelastic behaviour is relevant to their performance. Both components also

have modes of failure caused by structural phenomena and their design is benefit-

ted by FEA. Furthermore, the nature of their loading differs in that the CV boot is

strain-loaded and the O-Ring seal is pressure-loaded. A modification of the proposed

method is required depending on whether the component is only strain-loaded or if

there are stress loads present.
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By either method, initial prototype simulations are utilised. These apply the simple,

one-parameter neo-Hookean constitutive model, as defined in equation (3.13). The

purpose of the prototype simulations is to reveal a component’s approximate strain

range such that sufficient experimental data may be identified. The method also

has a practical advantage; the neo-Hookean model provides unconditionally stable

constitutive behaviour. This is particularly helpful while determining the numerous

variables of the often highly nonlinear FE models for industrial rubber components.

The importance of the magnitude of the neo-Hookean model’s parameter is depen-

dent on whether the component is strain-loaded or stress-loaded.

6.1.1 Sufficient Data for a Strain-loaded Component

A strain-loaded component is considered to be that which is loaded by contacting

stiff bodies, often assumed to be rigid. In these cases, the strain will remain constant

and the stress will relax over time until it reaches equilibrium. It was hypothesised

in Section 3.5.4 that the proposed use of sufficient data for experimental hyperelastic

parameter identification is particularly useful for strain-loaded materials or compo-

nents. In the ideal strain-loaded case, the component could be initially simulated

prior to material testing and the strain region would be revealed independently from

the constitutive model input.

The proposed method is therefore to first simulate the component using the neo-

Hookean constitutive model. The isochoric Cauchy-Green invariants are output by

the simulation and plotted within the region of attainable deformations. With the

known strain or invariant range, experiments would then be identified to extract the

sufficient experimental data. These would ensure that the observed strain region is

encompassed, as shown for biaxial predictions in Figure 3.18 of Section 3.5.3. The

most accurate model in fitting the sufficient data, with plausibility checks if required,

would then be used in FEA of the component for the accurate prediction of the

component’s stress and stiffness related behaviour.

6.1.2 Sufficient Data for a Stress-loaded Component

A stress-loaded component is one in which the strain will creep until it reaches equi-

librium under a constant stress load. This includes force and pressure loading. For

stress-loaded components, the magnitude of strain is dependent on the component’s

material properties; the deformation modes may also be affected by this. A varia-

tion on the proposed method was therefore required. For components loaded in this

nature, it is proposed that the initial prototype simulation requires initial experimen-

tal input. This input is used to configure the single parameter of the neo-Hookean
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model. Appropriate testing to configure this parameter may include any single-

loading experiment (145) from Chapter 3, a hardness test (209) or an indentation

test (131, 132, 145, 210, 211). With this parameter configured, the sufficient data is

obtained as with strain loading: the strain region is identified, sufficient experimen-

tal data is collected and the component may be efficiently and accurately simulated

using a constitutive model fitted to the sufficient data.

6.1.3 Method of Investigating the use of Sufficient Experimental Data

To investigate the validity of the sufficient data method, a study was performed sim-

ilar to the general biaxial interpolations of Section 3.5.3. Material data from Chapter

3 was applied to each of the two industrial rubber components. Following the initial

prototype simulations, the sufficient data set was selected from one of the reduced

sets of experimental data from the case studies of Section 3.4. The components were

then simulated using the thirteen constitutive models from Section 3.5, using the two

sets of parameters. The complete and sufficient fitted parameters were known from

the previous investigations.

For both components, the maximum principal stress, maximum principal nominal

strain and force reactions from rigid bodies were observed. The principal stress and

strain were chosen as they are used in fatigue life calculations (137, 212, 213, 214). The

fatigue life could not be computed as this would require additional experimental data

from the materials and a post-processing method or fatigue software, which were

beyond the scope of the present study. As the principal stress and strain quantities

consider the maximum values from a single nodal value, the force reactions were

studied as they provided an insight into the components’ macroscopic behaviour.

The simulated deformed components were also compared visually to ensure their

macroscopic behaviour was similar.

The consistency of FE results by complete and sufficient data fitted models was stud-

ied using the observed physical measures. The average output quantities of the thir-

teen constitutive models fitted to complete and sufficient data were compared. An

error function was computed with the assumption that the most accurate fit to each

of the complete or sufficient data sets represented synthetic data of the component.

In addition to this, the relative standard deviation of each quantity was also com-

puted. This gave a quantitative value for the variance of each output quantity as a

percentage such that the consistency of their predictions could be compared. As a

relative value, it enabled the computation of an average percentage of the variance

across all observed outputs.

It is noted that both FE models used a simple representation of rubber friction. A

Coulomb frictional coefficient was used throughout to model the tangential contact
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Figure 6.1: Simplified assembly of outer CV joint and rubber CV boot

behaviour. It was known that realistic modelling of rubber friction would require

a more complex model or a different approach, such as multi-scale modelling (215,

216). However, this was beyond the scope of the present investigation. In both

cases, the coefficient was chosen based on some trial-and-error analysis between a

range of values assumed to be representative of approximate values for rubber-to-

steel and rubber-to-rubber interfaces ranging from 0 to 0.6 (217). The chosen value

was that which provided the most stable model in terms of numerical convergence.

A coefficient of zero, which assumes fully frictionless behaviour, was found to be the

least stable for both components.

6.2 Automotive Rubber CV Boot

In automotive applications, a constant-velocity (CV) axle connects the drive shaft to

the steering joint of front-wheel drive vehicles to enable power transmission through

a required range of steering angles. CV axles consist of a pair of CV joints, termed

as inner and outer CV joints. To ensure smooth operation and prevent corrosive

and erosive wear, a rubber CV boot is used, as shown in the assembly in Figure

6.1 for an outer CV joint. The CV joint is initially greased, the boot is then fitted

over both ends, the drive shaft connection and the steering joint, and fastening rings

are applied to each. This effectively encloses the CV joint from the surrounding

environment, preventing damage by external contaminants such as dust, dirt, water

and oil. Rubber is chosen for this component due to its flexibility and low stiffness.

This ensures continuous protection of the joint through a wide range of motion with

a negligible increase in the operating forces of the joint.

During operation, the outer CV boot is loaded by axial and bending displacement

loads from the steering joint. The axial displacements are due to the suspension

system and may be tensile or compressive. Angular displacements occur during
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steering. Due to the nature of these loads, it was assumed that the strain region

during operation would be independent of the constitutive behaviour of the mate-

rial. However, upon bending of the boot during steering, both its inner and outer

surfaces come into contact with themselves and the material is compressed. During

these interactions, the contact forces are dependent on the material’s stiffness char-

acteristics. It was found that the small amount of compression due to self-contact

did not significantly affect the component’s predicted strain range. The CV boot was

therefore considered to be a suitable strain-loaded component for demonstration of

the method.

A correctly fitted CV boot is expected to have an operating lifespan of tens of thou-

sands of miles (218). Towards the end of its productive lifespan, a CV boot’s failure

is due to ageing of the rubber. Ageing leads to embrittlement of the material which

causes a loss of elasticity and fracture may occur. The ageing of natural rubber is

well-understood to be accelerated by stress magnitude (219). FEA of the CV boot

is therefore relevant in that areas of increased stress magnitude may be identified.

From this the fatigue life may be computed and the design may be optimised to re-

duce the stress in these areas and increase its lifespan. It was found that the largest

stresses occurred during simultaneous compression and bending of the steering joint.

This loading scenario was therefore used for the investigation of the complete and

sufficient experimental data simulations.

6.2.1 Finite Element Model of a CV Boot

The CV boot assembly was created in Abaqus/CAE. To simulate a representative

FE model of this component, several variables required consideration. This included

the geometry, displacement constraints, contact interactions and meshing. These are

subsequently outlined. The material properties are discussed independently with

reference to the prototype simulations in the following subsection.

The geometry for the CV boot assembly is shown in Figure 6.4a. The component was

created in 3D, utilising symmetry in the out-of-plane 3 axis such that only half of

the assembly was modelled. This symmetry plane was valid for the loading scenario

used in this investigation. Due to the relative stiffness of the CV joint compared to

the CV boot, the CV joint was reduced to a single analytical surface body. This body

consists of a revolved cylinder 14mm in radius and 120mm high and a reference point

representing the centre of its rotation 25mm below its base. The CV boot geometry

was constructed from a two-dimensional surface created in the 1-2 plane and revolved

by 180◦ around the 2 axis. It can be seen from Figure 6.4a that there is an initial

overlap of the CV boot over the CV joint. During installation this means that the CV
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boot must be stretched over the CV joint. This creates a contact pressure, preventing

the entrance of external contaminants and the leakage of internal lubricant.

The boundary conditions were established using displacement constraints applied in

three steps. The constraints applied to the CV boot remained constant through all

three steps. In the symmetry plane of the CV boot, a symmetric boundary condition

was applied to prevent movement in the 3 direction. The remaining two boundary

conditions were applied using a cylindrical coordinate system defined with respect

to the geometry of the CV joint. The base of the CV boot was constrained in the axial

2 direction. The bottom 5mm of the outer surface of the CV boot was constrained

circumferentially, this represented a fastened connection to the steering joint. For

the CV joint, displacement constraints were applied at the reference point defined

previously. In the first step, the CV joint was fully fixed while contact was established.

In the second step, the compressive load was applied by a 10mm axial displacement

of the CV joint in the negative 2 direction. In the third step, a steering angle of 20◦

around the 3 axis was applied at the reference point.

As mentioned, simple Coulomb friction was used to define the tangential contact

behaviour. The CV boot assembly contained three contact pairs. Due to the CV boot’s

smaller radius, an interference fit of the contact between the inner surface of the CV

boot and the outer surface of the CV joint was solved in the first step. The remaining

two contact pairs were due to self-contact of the CV boot’s inner and outer surfaces.

These were modelled using surface-to-surface contact, as this was found to be more

computationally efficient than establishing both surfaces as “general contact” groups.

For all contact pairs, a friction coefficient of 0.2 was found to be stable.

The CV boot was then meshed. As the CV joint was represented by an analytically

rigid surface, it did not require meshing. The CV boot was assumed to be incompress-

ible due to it not being highly confined. A swept mesh of C3D8H hybrid elements

was applied. The number of elements was determined by a mesh sensitivity study.

It was found that a mesh of 17,613 elements produced stable results. While a more

refined mesh would give higher numerical accuracy, the investigations of this chap-

ter revolved around the constitutive material behaviour using complete and sufficient

data for the thirteen constitutive models.

6.2.2 Prototype Simulation of CV Boot Assembly

The prototype simulations of the CV boot required only the definition of the neo-

Hookean model’s isochoric parameter, C10, and modification of the input file to en-

able a fully incompressible hybrid formulation. As the component was primarily

strain-loaded, the magnitude of C10 was arbitrarily defined as C10 = 0.16MPa. A
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Figure 6.2: CV Boot prototype FEA invariant outputs with plotted Meunier complete

and sufficient data limits

UMAT subroutine of the neo-Hookean model was created with user-defined vari-

ables to output the first and second isochoric Cauchy-Green invariants I1 and I2 as

field variables. The nodal results for these were plotted on an invariant plane to view

the strain region of the deformed component.

As shown in Figure 6.2, the strain range of the CV boot is comparatively small when

plotted with the limits of the experimental data of Meunier et al (88). As this data

set had the lowest strain range of those investigated in Chapter 3, it was chosen to

represent the material of the CV boot. Based on this plotted data, the most appropri-

ate choice for the sufficient data, from the reduced experimental data sets, was a 25%

strain range of Meunier’s experimental data. The component was then simulated

using the most accurate fitting models to the complete and sufficient data, which

were the Ogden and Haines-Wilson models respectively. The I1 and I2 outputs were

plotted and compared for the prototype neo-Hookean model, the Ogden complete

data fitted model and the Haines-Wilson sufficient data fitted models, shown in re-

spective order in Figures 6.3a, 6.3b and 6.3c. These show that most output values are

contained within the interpolated limits of the 25% Meunier data and this is therefore

an appropriate choice of sufficient experimental data.

The plotted invariants revealed that the strain region for all input data variations

remains similar and appears to be independent of the constitutive model input. This

was assessed further by comparison of their maximum principal nominal strains. The

deformed FE models with contours for this output are shown for the CV boot with

the prototype, complete data and sufficient data input in Figures 6.4c, 6.4d and 6.4e,

respectively. The maximum principal nominal strain for the prototype simulation was

computed as 0.333. The average value of the maximum principal nominal strain for

the thirteen constitutive models fitted to complete data was also computed as 0.333.

For the sufficient data fitted models this was computed as 0.344. It could therefore
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be assumed that the strain region of this component may be accurately predicted by

a prototype simulation.

To ensure that the validity was not the result of an appropriately chosen value for

the neo-Hookean C10 parameter, the maximum principal stresses were observed. The

prototype simulation computed a maximum principal stress of 2.508MPa, the aver-

age value for the complete fitted models was 2.710MPa and for the sufficient fitted

models was 2.715MPa. As the prototype simulation stress value was somewhat sim-

ilar, the prototype simulation was repeated with the parameter C10 = 160MPa. The

maximum principal stress in the repeated simulation was computed as 250.735MPa,

while the maximum principal nominal strain remained very similar to previous, it

was computed as 0.331. The use of strain-loaded prototype simulations was therefore

shown to be valid for this component.

6.2.3 Complete and Sufficient Data Predictions of CV Boot

The CV boot was simulated with the thirteen constitutive models fitted to complete

and sufficient experimental data. The numerical results of the maximum principal

stress, maximum principal nominal strain, force reaction in the 1 direction and force

reaction in the 2 direction are given in Tables D.1 and D.2. The results are presented

in order of the constitutive models’ error in fitting the prescribed complete or suffi-

cient experimental data. The average values and standard deviation (SD) were then

computed, from which the relative standard deviation (RSD) was found. Addition-

ally, average errors were computed with respect to the most accurate model for each

data set, using equation (3.33).

The average values for the maximum principal stress and maximum principal nomi-

nal strain have already been stated. These were found to be similar for the complete

data and sufficient data fitted models. The average stress was predicted within a

0.19% difference and the average strain was within 3.25%. The average force reaction

in the 1 direction and 2 directions were also found to be similar, 5.79N and -3.57N for

the complete data fitted models and 5.82N and -3.62N for the sufficient data fitted

models, respectively. This is a difference of less than 0.52% for the 1 direction and

1.40% for the 2 direction.

The error across all measured values was low; with the highest error computed as

5.13% for the maximum principal nominal strain with the Diani and Rey model fitted

to complete data. The average error was computed with respect to the most accurate

model for each data set. On average it was found that the percentage error was

lower for the sufficient data fitted models than the complete data fitted models, 0.98%

compared with 1.22%. In terms of the computed RSD, the variance for models fitted

to either of the input experimental data sets was low. The sufficient data fitted models
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were found to have a lower average variance, 1.21% compared with 1.48% of the

complete data fitted models.

6.2.4 Discussion of Strain-loaded CV Boot Results

Across all simulated results using the complete and sufficient data fitted models,

the observed outputs were found to be similar. The low statistical variance within

each data variation showed that the CV boot’s behaviour may be predicted with high

consistency, with an RSD of less than 1.25%. These results are in agreement with the

biaxial study of Section 3.5.3. These suggest that the use of sufficient data gives a

more reliable prediction than fitting to a larger complete experimental data set. The

method of attaining the sufficient data strain region by prototype simulation was

shown to be effective for a strain-loaded component. Only a small difference was

found in their computed isochoric Cauchy-Green invariants between the prototype

simulation and the complete and sufficient data fitted simulations. This method

was therefore assumed to be valid for strain-loaded components under the present

assumptions.

6.3 Hydraulic Cylinder: Radial O-ring Seal

A common application of rubber in engineering components is for the purpose of

fluid sealing. An application where rubber seals are applied is in hydraulic cylinders.

A hydraulic cylinder is a linear actuation device used to apply a pushing or pulling

force. In its simplest form, the device consists of a piston and a cylinder. The piston

is inserted into the cylinder, sealing one or two fluid chambers. Either one or both

sides of the piston may be pressurised, and often also depressurised. A linear force

is created by the pressurised and expanding fluid volume. To achieve this force,

the pressurised fluid medium must maintain a complete seal of the fluid chamber.

Hydraulic cylinders require multiple seals to prevent fluid leakage.

A rubber O-Ring seal within a single acting hydraulic cylinder was studied. A sim-

plified model of the hydraulic cylinder assembly is shown in Figure 6.5. The chosen

design used a two-part piston, consisting of a piston-rod and piston-head, in which

an O-Ring is installed radially to prevent leakage. Prior to assembling the two-part

piston, the radial O-Ring seal is lubricated and installed into a gland in the piston-

rod’s outer surface. The diameter of this gland should be larger than the inner diam-

eter of the O-Ring. This initial “stretch” phase induces a hoop stress in the O-Ring to

provide a sealing pressure at the O-Ring and piston-rod interface. The piston-head

is then installed over the tapered and threaded end of the piston-rod. The inner di-

ameter of the piston-head must be larger than the outer diameter of the piston-rod
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O-Ring

Cylinder

Piston-rod

Piston-head Cylinder head-end cap

Figure 6.5: Simplified and sectioned assembly of hydraulic cylinder with static radial

O-ring seal

to allow clearance during assembly. To prevent fluid leakage through this clearance

gap, the O-Ring cross-sectional diameter must be larger than the gland depth. The

installation of the piston-head therefore induces radial compressive stress of the O-

Ring’s cross-section. During assembly of the cylinder, this “squeeze” phase creates

a sealing pressure between the O-Ring and the piston-head while further increasing

the sealing pressure between the O-Ring and the piston-rod.

The clearance gap between the piston-head and piston-rod is required such that these

parts may be assembled without damage. However, once the system is pressurised,

the O-Ring may extrude into the clearance gap. As the O-Ring extrudes into the small

clearance gap, a large stress concentration occurs at the corner of the gland closest to

the gap. For this reason, a small fillet radius is applied at the corner of the gland to

reduce this stress. Excessive pressure or incorrect design may still lead to extrusion

damage, known as fretting (220). This damage may cause leakage, or in the worst

case scenario the seal may fail catastrophically. In the event of the hydraulic cylinder

O-Ring’s failure, the pressurised fluid would leak into the opposing end and cause

pressure loss and loss of function. To replace this O-Ring, disassembly of the cylinder

and two-piece piston is required.

Industry guides for O-Ring selection (221) can provide reliable recommendations

for the appropriate O-Ring material and dimensions for standardised component

geometries. For these components, FEA of the assembled O-Ring provides confidence

and additional insights into the design. For non-standard geometries, the use of FEA

or a similar design tool is essential. In either case, FEA can be used to predict the

amount of extrusion that will occur under operating pressures and surging pressures.

As previous, the stresses and strains may also be observed for the computation of

fatigue life. These results could then be used to determine if the seal is fit for purpose

or if the design could be improved. These engineering design decisions rely on

accurate modelling of the O-Ring’s constitutive behaviour.
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6.3.1 Finite Element Model of Static Radial O-ring Seal Assembly

The piston-rod and piston-head move relative to one another during operation. The

O-Ring seal assembly was therefore assumed to be static and the equilibrium hyper-

elastic behaviour of the industrial rubber would appropriately represent the consti-

tutive material behaviour. The geometry of the radial O-Ring allows reduction to a

2D axisymmetric model, created in Abaqus/CAE. As previous, the FE variables are

described prior to the prototype simulation and sufficient data investigation.

The chosen geometry for the hydraulic piston assembly is shown in Figure 6.5. The

dimensions of the assembly revolved around the recommended dimensions for an

O-Ring with a 5.33mm cross-sectional diameter fitted to a standardised piston bore

diameter of 40.25mm, using Parker’s O-Ring Handbook (221). The recommended

O-Ring size for this piston has an inner diameter of 32.69mm. The gland depth

was 4.02mm, which gives a diameter for the gland of 33.81mm. These dimensions

determine the initial amount of stretch of the O-Ring, which is computed by the

following

Stretch (%) =

(
dgland

dO−Ring
− 1
)
× 100 (6.1)

From this it was found that the O-Ring’s stretch is around 3.43%, which lies in the typ-

ical range from 0-6%. Based on these established dimensions, the maximum amount

of squeeze of the O-Ring cross-section may be computed by the equation

Squeeze (%) =

[
1−

(
dbore − dgland

2CSO−Ring

)]
× 100 (6.2)

This gives a maximum squeeze of approximately 24.58%. However, a clearance is

required between the piston-rod and piston-head during installation to avoid dam-

age to either of these surfaces. The inner diameter for the piston head was chosen to

give a 20% squeeze of the O-Ring cross-section. This lies in the recommended range

of squeeze of 12-28%. Assuming that the stretch during installation causes a negli-

gible difference to the O-Ring cross-section, equation (6.2) was used to compute the

piston-head inner diameter as 42.339mm. During assembly, the piston-head slides

over the O-Ring, inducing the compressive force. To avoid damage to the O-Ring

during sliding, the leading edge of the piston-head should be chamfered to 15− 20◦;

a chamfer of 20◦ was used.

The remaining dimensions to be defined are that of the O-Ring seal gland. The

width of a gland is designed based on the desired percentage amount of “fill”, rec-

ommended between 60-90%. From a 2D axisymmetric view, the fill is computed as a
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Figure 6.6: Radial O-Ring and piston geometry (dimensions in millimetres)

ratio of the cross-sectional area of the O-Ring and the gland area including the clear-

ance gap. Neglecting the area of the gland’s filleted radii, a gland width of 7.2mm

was chosen, which gives a fill of approximately 72.68%. The inner fillet radius of the

gland was chosen as 0.6mm based on the Parker O-Ring Handbook (221) for this ge-

ometry. A fillet radius of 0.1mm was applied to the corners of the clearance interface

to reduce stress concentrations during extrusion.

The O-Ring FE model established boundary conditions over three steps. These were

representative of the stages in assembling the O-Ring seal and its operating condi-

tions. In all three steps, the piston-rod was assumed to be fully fixed and the O-Ring

was unconstrained in terms of applied displacements. The first step simulated the

“stretch” of the O-Ring over the gland. This involved solving the interference fit of

the contact between the O-Ring and the piston-rod’s outer surface. In the second

step, the “squeeze” was applied by installation of the chamfered piston-head with a

displacement in the positive 2 direction. The piston-head was otherwise fully con-

strained. In the third step, pressure was applied to the O-Ring through a “pressure

penetration” boundary condition available in Abaqus/CAE. This boundary condition

applies a normal pressure across an existing contact group in all locations that are

not considered to be in closed contact (72). The pressure was initiated in the centre of

the exposed surface of the O-Ring and propagated bi-directionally until the elements

that were in contact with the piston-head and piston-rod. It was therefore considered

to be a reasonable approximation of fluid pressure, avoiding the complexity of mod-

elling the fluid itself (222). The pressure magnitude was chosen as 2.5 MPa. For the

chosen material, this magnitude allowed for stable convergence and did not produce

excessive element distortion in the extruded region.

Three contact groups were created; two contact groups simulated the connection be-
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tween the O-Ring and the two piston surfaces, the third contact group applied the

pressure penetration. A contact group was created between all outer surfaces of the

piston-rod and select outer surfaces of the partitioned O-Ring. The partitions were

required as this contact was used to initiate the pressure penetration boundary condi-

tion, which does not allow closed-loop contact surfaces. A break in the outer surface

of the O-Ring was therefore created in a location that could not come into contact

with the piston-rod throughout the analysis. In the first step, this contact group

solved the initial interference fit of these bodies, with standard Coulomb frictional

contact behaviour continued in the second and third steps. The second contact group

was created with Coulomb friction between the inner surfaces of the piston-head and

the outer surfaces of the O-Ring. For these two groups, a Coulomb friction coefficient

of 0.3 was found to give stable convergence and was used throughout. The third

contact group was activated in the third step to apply fluid pressure. A central point

on the surface of the O-Ring was selected as an initiation point. The pressure was

ramped up linearly throughout the load step. This allowed for the location of the

pressure to update with the changing contact status at higher pressures.

For a highly confined component, such as the O-Ring in the current investigation,

the effect of compressibility should be considered. As well as improving the pre-

diction of the true material behaviour, including a small amount of compressibility

improves the numerical stability and convergence for highly confined FE models of

nearly incompressible components. The thirteen constitutive models were therefore

considered to be the isochoric contributions of the overall strain energy by using an

isochoric-volumetric split, as defined in equation (4.1). A one parameter volumetric

constitutive model was included for all constitutive models. This was defined as

U =
1

D1
(J − 1)2 (6.3)

As no material data for the compressibility of the materials was known, the chosen

magnitude for the compressibility parameter, D1, was that which provided stable

convergence with negligible total change in the volume of the body. To check this, the

volume ratio J of each element was output by a user-defined variable in the UMAT

subroutine. The chosen value was D1 = 0.001MPa−1. This was the most stable

in terms of convergence and was found to have a maximum dilatational change in

volume of 0.08% and a minimum change of -0.35%.

The piston-head and piston-rod were assumed to be rigid in comparison with the

O-Ring seal. They were therefore each represented as 2D analytical rigid line bodies

with an assigned reference point and did not require meshing. The O-Ring was

modelled as nearly incompressible using axisymmetric CAX4H hybrid elements. As

the component was not modelled as fully incompressible, the solver formulation was
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not updated to a fully incompressible hybrid formulation. The inclusion of a small

amount of compressibility may therefore be seen as a penalty parameter (223). In

terms of the mesh density, the partitioning of the O-Ring allowed higher refinement at

the surface of the O-Ring, with further refinement of the extruding elements. A lower

mesh density was applied to the centre of the O-Ring. A mesh of 13374 elements was

found to be stable in terms of numerical convergence and it was assumed to be

accurate in terms of mesh sensitivity.

6.3.2 Prototype Simulation of Radial O-Ring Seal

As a stress-loaded component, the prototype simulation of the O-Ring seal required

the initial selection of a material. The experimental data of Heuillet and Dugautier

(193) from Chapter 3 was selected to represent the O-Ring material. The neo-Hookean

C10 parameter was then approximately fitted manually to the uniaxial tension data

for the H&D material. This test was chosen as tensile testing of a cut ring specimen is

simple to perform and well-defined in tensile testing standards for rubber, BS ISO 37

(104) and ASTM D412-16 (105). A value of C10 = 0.21MPa fitted the low strain range

for this material and was therefore used in the prototype simulation. The UMAT

subroutine for the neo-Hookean model was modified to include the volumetric be-

haviour defined in equation (6.3); a value of D1 = 0.001MPa−1 was used throughout.

The prototype simulation of the O-Ring was solved with I1 and I2 outputs. These

were plotted on the invariant plane with the interpolated limits of the H&D complete

experimental data. As shown in Figure 6.7, the strain range of the O-Ring is much

lower than that of the complete H&D experimental data. The highest range of de-

formation of the plotted I1 and I2 values were found to lie close to the pure shear

line. From the reduced data of the Case Studies in Section 3.4, it was determined that

the most appropriate choice of sufficient experimental data was a 50% strain range.

For the initial prototype simulation, it was found that the chosen sufficient data fully

encompassed the prototype I1 and I2 values.

The model was then solved using the thirteen constitutive models with parameters

fitted to the complete and sufficient experimental data. The output I1 and I2 values

were plotted for the best fitting models to the complete and sufficient data, which

were the micro-sphere and Alexander models. This is shown with the prototype out-

puts in Figure 6.8. It was found that the models fitted accurately to the complete and

sufficient data similarly predicted the O-Ring’s strain region. The output maximum

I1 and I2 points were found to be lower for the complete and sufficient data com-

pared with the prototype simulation. This was due to the neo-Hookean model with

C10 = 0.21MPa predicting a softer response for planar tension at moderate strains.
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Figure 6.7: O-Ring prototype FEA invariant outputs with H&D complete and sufficient

data

However, their predicted strain regions are generally similar and encompassed by

the interpolated strain range limits of the chosen sufficient data.

Comparing the deformed and contoured results for the maximum principal nominal

strains of the O-Rings further demonstrates the macroscopic similarity of the proto-

type simulation to the complete and sufficient data fitted simulations, as shown in

Figures 6.9a, 6.9b and 6.9c. In terms of their output maximum principal values, the

differences are more significant. The prototype simulation had a maximum principal

nominal strain of 2.285, whereas the complete data fitted micro-sphere model com-

puted a value of 1.768 and the sufficient data fitted Alexander model computed a

value of 1.724. In terms of the maximum principal stress, the prototype model com-

puted a value of 2.358MPa, the complete fit stress was computed as 1.626MPa and

the sufficient fit computed a value of 1.524MPa. Overall, these results demonstrate

that the modified prototype simulation provides a good approximation of the strain

range. It may therefore be used to obtain sufficient experimental data.

6.3.3 Complete and Sufficient Data Predictions of an O-Ring Seal

The O-Ring simulations were investigated on a nodal level by comparison of their

maximum principal stresses and nominal strains and on a macroscopic level by their

force reactions in the 1 and 2 directions. An extruded length was also considered.

This was manually measured as the furthest point in the 2 direction from the upper

surface of the gland to the outermost point of the O-Ring. These results are given

in Tables D.3 and D.4 in order of the constitutive models’ error in fitting their fitted

experimental data.

The measured values for complete and sufficient data fitted models were generally

found to be predicted consistently. The average maximum principal stresses for the
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complete and sufficient data fitted models were computed as 1.58MPa and 1.52MPa,

which is a difference of 3.48%. The average maximum principal nominal strains were

both approximately found as 1.78, with a percentage difference of 0.14% between

their exact values. The force reactions in the 1 and 2 directions were also very similar;

for the complete data these were computed as 1249.36N and -1274.73N, and 1253.37N

and -1275.53N for the sufficient data. This gives a percentage difference of only 0.32%

and 0.06% for the average force reactions in the 1 and 2 directions. The average

extrusion amount had the largest difference between complete and sufficient data

fitted models’ predictions of 4.12%. The extrusion for the complete data fitted models

was computed as 10.06e−2mm and for the sufficient fitted models it was predicted

as 9.65e−2mm.

In terms of the overall averages, it was found that the complete data fitted models

had a lower average error but the sufficient data gave the lower average RSD. In both

cases, the error and relative standard deviation are small values. The overall average

errors were computed as 1.83% for the complete data fitted models and 2.26% for

the sufficient data fitted models. The average RSD was computed as 2.29% for the

complete data fitted models 1.92% for the sufficient data fitted models.

6.3.4 Discussion of Stress-loaded Radial O-Ring Seal Results

It was found that the predicted strain range with the fitted neo-Hookean parameter

was similar to that of the complete and sufficient data fitted models. To account

for the differences in the prototype data, it is recommended that the encompassing

boundaries of sufficient data should be extended. The low variance of all observed

outputs further confirms the ability to consistently predict interpolated behaviour be-

tween single-loading experiments. Using sufficient data was found again to provide

more consistent predictions of an industrial rubber component’s structural behaviour.

The modified method for finding the strain region by prototype simulation of stress-

loaded components was implied to be valid. The requirement of initial experimental

input means that the approach is less time and resource efficient than with strain-

loaded components. However, for a stress-loaded component, the initial prototype

simulations may reveal that the chosen material is not appropriate for the application

based on the simulation with minimal input experimental data. For instance, a cho-

sen O-Ring material may be found to extrude excessively under the design pressure.

The design may then require consideration of one or more backup rings (221) or the

use of a stiffer material. The proposed method can therefore be more economical, as

complete material testing would not be required for each possible material or design.
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6.4 Summary of Industrial Component Investigations

Based on the conclusion from Chapter 3, the hyperelastic behaviour of two industrial

rubber components was studied with the aim of demonstrating the use of sufficient

experimental data for parameter identification in a practical context. The developed

implementations of Chapters 4 and 5 allowed the thirteen constitutive models to

be utilised for FEA of the industrial components. The use of sufficient data was

developed into an approach of using prototype simulations. This was demonstrated

to effectively reveal the approximate strain range of the studied components. In both

cases, the rubber components deformed inhomogeneously such that predicting their

behaviour requires the input of experimental data from across the invariant plane. In

practice, the use of prototype simulations may be affected by frictional behaviour if

candidate materials for a component are diverse in this regard. In this case, frictional

experimental data would be required along with a more accurate numerical model

for rubber friction.

The results of this chapter extend the earlier conclusion, that predictions encom-

passed within a fitted strain range are consistent, to the case of predicting rubber

industrial components’ hyperelastic behaviour by FEA. It has been shown that the hy-

perelastic behaviour of industrial rubber components may be consistently predicted

by FEA with hyperelastic constitutive models fitted to complete and sufficient exper-

imental data. The predictions by sufficient data were found to have lower variance

for two investigated industrial rubber components. This was computed in terms

of relative standard deviation using FE computed values of interest for engineering

design of rubber components and force reactions to ensure consistent macroscopic

behaviour.

Though the average error for the complete data was found to be lower in the case of

the O-Ring simulation, the RSD value was lower for both components. As the strain

range of the simulated components do not output evenly distributed points, the abil-

ity to predict these results is less correlated with the error in fitting the experimental

data. The RSD value was therefore considered to the more meaningful result. This

value provides a measure of the statistical variance of predictions from the fitted con-

stitutive models independent of the fitted data error. Therefore, a lower RSD value

computed for the sufficient data fitted models implies that inhomogeneous predic-

tions are predicted with higher consistency by this input data.
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Chapter 7

Conclusions

This thesis and the associated research aimed to contribute to the understanding of

the numerical modelling of rubber hyperelasticity. This focused on homogeneous

experimental parameter identification for hyperelastic constitutive models, imple-

mentations of hyperelasticity in the FEM and simulating the hyperelastic behaviour

of industrial rubber components. Contributions were made to each of these three ar-

eas. The contributions are presented by summarising the findings from each research

chapter.

Chapter 2. The isothermal behaviour of rubber was discussed with a review of the

equilibrium hyperelastic behaviour. The complete hyperelastic response was identi-

fied to consist of three behaviours, a low strain decrease in stiffness, an asymptotic

finite extensibility and a distinct deformation state dependence. Hyperelastic con-

stitutive modelling approaches were discussed. The selection of constitutive models

and the extent of experimental data to identify their parameters were discussed and

suspected to affect one another. Postulates and criteria to ensure the physical plau-

sibility of constitutive models and their identified parameters were outlined. Studies

of inhomogeneous parameter identification methods in the FEM revealed that pa-

rameters may be identified using only sufficient experimental data. To enable the use

of most known hyperelastic constitutive models in the FEM, numerical implementa-

tions of hyperelasticity were reviewed in terms of analytically derived hyperelasticity

and alternative numerical implementation methods.

Chapter 3. Homogeneous parameter identification of hyperelastic constitutive mod-

els were studied. Postulates were proposed to ensure the physical behaviour of ho-

mogeneous experimental data and their validity was demonstrated by case studies

of published data sets. With physically plausible experimental data and a developed

parameter identification method, parameter identification of hyperelastic constitutive

models by single loading experiments was studied. It was found that no constitu-

tive model has a general ability to predict behaviour outside of the experimentally
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measured strain range. The prediction of the general hyperelastic behaviour requires

complete experimental data and a constitutive model capable of fitting this behaviour.

Through investigations of synthetic general biaxial experiments, the accuracy of fit-

ting a complete set of single loading experimental data was found to be correlated

with the consistency of interpolated predictions. This implies validity of the use of a

complete set of single loading experiments. This consists of at least uniaxial tension

and equibiaxial tension, or equivalent experiments. The inclusion of pure shear data

improves the accuracy of interpolated predictions. Smaller strain ranges were found

to be more accurately predicted by parameters identified using only sufficient exper-

imental data. The sufficient experimental data consists of single loading experiments

that encompass the interpolated strain region.

Chapter 4. In this chapter, UMAT and UHYPER user subroutines were initially devel-

oped and compared to a built-in model for hyperelasticity in terms of Cauchy-Green

invariants. Two variations of the UMAT implementation were investigated. The fully

derived implementation was more computationally efficient but the matrix method

allows models defined in terms of fictitious stress and elasticity tensors. With vali-

dated UMAT implementations, two complimentary real-domain numerical approx-

imation methods were developed, using higher floating-point precision and higher-

orders of approximation. It was found that as the order of approximation increased,

the numerical error tended towards a limit greater than the tolerance for floating-

point precision. The numerical accuracy of all orders of quadruple floating-point

precision approximation was found to be greater than analytical terms in double

precision. However, quadruple precision approximations have higher computational

costs, with a minimum of double the computation time compared with an analyti-

cal implementation. Implementation of analytically derived tangent moduli should

therefore be preferred unless they are intractable.

Chapter 5. Analytical implementations were developed for hyperelasticity in terms

of principal stretches. These used explicitly derived stress and elasticity tensors and

utilised current algorithms to compute the necessary eigenvalues and eigenvectors.

When principal stretches were equal or similar, an algorithm was developed to em-

ploy L’Hôpital’s rule and avoid numerical instability. Implementations were vali-

dated by expressing Cauchy-Green invariant models in terms of principal stretches,

a simple and novel approach. The developed implementations were demonstrated

to be highly accurate, including when principal stretches were equal or similar. This

enabled a comparison of all developed implementations and a previous implemen-

tation of principal stretch hyperelasticity. The developed implementation had higher

computational costs than Cauchy-Green invariant constitutive models, however, it

was more efficient than the alternative implementation.
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Chapter 6. Methodologies were developed for efficient simulation of the hypere-

lastic behaviour of industrial rubber components. The approach considered the use

of constitutive models with parameters identified using only sufficient experimental

data. Prototype simulations were used effectively to determine the expected strain

region of the component. The simulation methodology was adapted to ensure the

method of obtaining sufficient experimental data was effective for both strain-loaded

and stress-loaded components. Through simulation of two industrial rubber com-

ponents, the method was demonstrated to predict their hyperelastic behaviour with

improved consistency when compared with predictions by constitutive models with

parameters identified using complete experimental data.

Recommendations for Future Work

The research presented here contributes to the understanding of numerical modelling

of the behaviour of rubber in terms of hyperelasticity. The conclusions drawn from

the use of physically plausible experimental data in Chapter 3 are generally con-

sidered to be validated. An exception to this is the use of synthetic general biaxial

interpolated data. Though using synthetic data for these removed the influence of

experimental errors, experimental validation with a biaxial experiment would fur-

ther strengthen the conclusions regarding interpolated predictions by single loading

experiments.

The extent of experimental data to characterise the complete hyperelastic behaviour

is now better understood in terms of using homogeneous data. This could be de-

veloped for inhomogeneous parameter identification methods. Component-oriented

parameter identification achieves this to some degree. However, complex geometries

and loading conditions are not feasible. Using the strain region identified from proto-

type simulations, the suggested method would use the specimen geometry and apply

easily attained experimental boundary conditions to provide data that encompasses

the expected deformations. The extension of this simulation methodology and the

existing methods proposed in Chapter 6 should also be validated experimentally.

Another extension of this work is to consider the more complex behaviours of rubber.

As in the study of homogeneous parameter identification methods for hyperelastic-

ity, this would require some consideration of the use of sufficient data. For exam-

ple, viscoelastic behaviour has an almost infinite experiment range, restricted by the

maximum applied strain rates. With a parameter identification procedure for more

complex models, the development of open-source user subroutines considering one

or more of the complex behaviours would be a valuable contribution. The simulation

methodology using sufficient data for simulation of the complex behaviour of rubber

industrial components could also be further developed.
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